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Absolute measurable space and absolute null space are very old topological notions,
developed from descriptive set theory, topology, Borel measure theory and analysis.
This monograph systematically develops and returns to the topological and
geometrical origins of these notions. Motivating the development of the exposition
are the action of the group of homeomorphisms of a space on Borel measures, the
Oxtoby—Ulam theorem on Lebesgue-like measures on the unit cube, and the
extensions of this theorem to many other topological spaces. Existence of
uncountable absolute null space, extension of the Purves theorem, and recent
advances on homeomorphic Borel probability measures on the Cantor space are
among the many topics discussed. A brief discussion of set-theoretic results on
absolute null space is also given.

A four-part appendix aids the reader with topological dimension theory,
Hausdorff measure and Hausdorff dimension, and geometric measure theory. The
exposition will suit researchers and graduate students of real analysis, set theory and
measure theory.

Toco NisHI1URA is Professor Emeritus at Wayne State University, Detroit, and Asso-
ciate Fellow in Mathematics at Dickinson College, Pennsylvania.
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Preface

This book is about absolute measurable spaces. What is an absolute measurable space
and why study them?

To answer the first question, an absolute measurable space, simply put, is a sep-
arable metrizable space X with the property that every topological embedding of X
into any separable metrizable space Y results in a set that is w-measurable for every
continuous, complete, finite Borel measure v on Y. Of course, only Borel measures
are considered since the topology of ¥ must play a role in the definition.

Foran answer to the second question, observe that the notion of absolute measurable
space is a topological one in the spirit of many other notions of “absolute” such as
absolute Borel space, absolute Gs space, absolute retract and many more. As the
definition is topological, one is led to many topological questions about such spaces.
Even more there are many possible geometric questions about such spaces upon
assigning a metric to the space. Obviously, there is also a notion of “absolute null
space”; these spaces are those absolute measurable spaces for which all topological
copies have u measure equal to 0. Absolute null spaces are often called “universal
measure zero sets” and have been extensively studied. The same topological and
geometric questions can be investigated for absolute null spaces. It is well-known
that absolute Borel spaces are absolute measurable spaces. More generally, so are
analytic and co-analytic spaces. Many topological and geometric questions have
already been investigated in the literature for absolute Borel spaces and analytic
spaces. The challenge is to prove or disprove analogues of these known results in the
context of absolute measurable spaces.

It is clear that absolute measurable spaces are invariant under Borel isomorphism
(Borel measurable bijection whose inverse is also Borel measurable). Consequently,
each absolute measurable space will correspond to an absolute measurable subspace
of the real line R. It would be tempting to investigate only absolute measur-
able spaces contained in R, which has been extensively done. This would be
fine if one is interested only in, say, measure theoretic or set theoretic proper-
ties of absolute measurable spaces, but clearly inadequate if one is interested in
topological or geometric structures since they may not be preserved by Borel iso-
morphisms. The emphasis of the book is on topological and geometric properties
associated with absolute measurable spaces. Homeomorphisms will be empha-
sized for topological structures. For geometric structures, one must have a metric
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assigned to the separable metrizable space — bi-Lipschitzian maps will replace
homeomorphisms.

There is a second notion called “universally measurable sets.” This notion fixes a
space X and considers the collection of all subsets of X that are p-measurable for
every continuous, complete, finite Borel measure © on X. Obviously a subset of
X that is an absolute measurable space is a universally measurable set in X. But a
universally measurable set in a space X need not be an absolute measurable space —
indeed, for a non-Lebesgue measurable set X of R, the set X itself is a universally
measurable set in X that is not an absolute measurable space. It is easily seen that X
is an absolute measurable space if and only if every universally measurable set of X
is an absolute measurable space.

An extensive literature exists concerning the notions of absolute measurable space
and universally measurable set. The 1982 survey article [18], written by J. B. Brown
and G. V. Cox, is devoted to a large number of classes of “singular” spaces among
which is the class of absolute null spaces. Their article is essentially a broad rang-
ing summary of the results up to that time and its coverage is so ambitious that a
systematic development from the basics of real analysis and topology has not been
presented. There are two other survey articles that are devoted to set theoretic results
on certain singular sets. From the set theoretic point of view only subsets of the real
line needed to be considered. The first article is a 1984 survey about such subsets
by A. W. Miller [110] and the second is his 1991 update [111]. Absolute measur-
able spaces and absolute null spaces have appeared also in probability theory — that
is, probability theory based on abstract measurable spaces (X,%2() in which met-
rics are induced on X by imposing conditions on the o-algebra 20 of measurable
sets. Obviously this approach to the notion of absolute measurable space concen-
trates on probability concepts and does not investigate topological and geometric
properties. In 1984, R. M. Shortt investigated metric properties from the probabil-
ity approach in [139] (announced in 1982 [138]). Also in non-book form are two
articles that appeared much earlier in 1937; one is a commentary by S. Braun and
E. Szpilrajn in collaboration with K. Kuratowski that appeared in the “Annexe” [15]
to the new series of the Fundamenta Mathematicae and the other is a fundamen-
tal one by Szpilrajn-Marczewski [152] that contains a development of the notions
of absolute measurable space and universally measurable subsets of a metric space
with applications to singular sets. Years have passed since the two articles were
written.

The book sets aside many singular sets whose definitions depend on a chosen met-
ric; fortunately, the definition of the Lebesgue measure on the real line depends only
on the arithmetic structure of the real number system and is metric independent. This
setting aside of metric-dependent singular set theory permits a systematic develop-
ment, beginning with the basics of topology and analysis, of absolute measurable
space and universally measurable sets in a separable metrizable space. Two themes
will appear. One deals with the question of the possibility of strengthening theorems
by replacing absolute Borel spaces in the hypothesis of known theorems with abso-
lute measurable spaces. The other is an investigation of the possibility of extending
topological properties or geometric properties of universally measurable sets in R to
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absolute measurable spaces X other than R. The first question is complicated by the
following unresolved set theoretic question [110] due to R. D. Mauldin. Note that
there are ¢ Borel sets in R.

(Mauldin) What is the cardinality of the collection of all absolute measurable subspaces of the
real line R? In particular, are there always more than ¢ absolute measurable subspaces of R?

The cardinality of absolute null spaces plays a role in Mauldin’s question since an
absolute measurable space is not necessarily the symmetric difference of an absolute
Borel space and an absolute null space.

There are six chapters plus a four-part appendix. The first chapter is a system-
atic development of the notions of absolute measurable space and absolute null
space. Clearly countable separable metrizable spaces are always absolute null spaces.
Solutions of the question of the existence, under the usual axioms of set theory, of
uncountable absolute null spaces are presented.

The second chapter is a systematic development of the notion of universally mea-
surable sets in a separable metrizable space X. The concept of positive measures
(loosely speaking, w(U) > 0 whenever U is a nonempty open set) is introduced.
This concept leads naturally to the operation called positive closure which is a topo-
logical invariant. Of particular interest is the example [0, 1] and HOMEO([0, 1]),
the group of all homeomorphisms of [0, 1]. It is a classical result that the collection
of all universally measurable sets in [0, 1] is generated by the Lebesgue measure A
on [0, 1] and HOMEO([0, 1]). Even more, it is known that the collection of all pos-
itive, continuous, complete, finite Borel measures on [0, 1] is generated by A and
HOMEO([0, 1]).

The topological project of replacing the space [0, 1] with other absolute measurable
spaces is the focus of the third chapter. This project, which addresses the second of the
two above mentioned classical results, leads naturally to the Oxtoby—Ulam theorem
and its many generalizations. The Oxtoby—Ulam theorem does not generalize to the
Cantor space {0, 1}V, Fortunately there is a Radon—Nikodym derivative version of the
Oxtoby—Ulam theorem which includes the Cantor space and allows the introduction
of analysis into the book.

There are many results in analysis on functions f: R — R in the context of uni-
versally measurable sets in R. Chapter 4 is devoted to the question of the replacement
of the domain or the range of /* by absolute measurable spaces. The usual approach
of using Borel isomorphisms does not necessarily apply to the task at hand. But the
results of Chapter 3 can be applied.

Chapter 5 is devoted to geometric properties of universally measurable sets in R” —
in particular, the Hausdorff measure and Hausdorff dimension of absolute null spaces.
Results, due to O. Zindulka, that sharpen the classical inequalities between Hausdorff
dimension and topological dimension form the main part of the chapter.

Finally, Chapter 6 is a short discussion of the set theoretic aspect of absolute
measurable spaces. The literature on this aspect is quite extensive. Only a brief survey
is given of the use of the continuum hypothesis and the Martin axiom in the book. Of
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particular interest is the topological dimension of absolute null spaces. Surprisingly,
the result, due to Zindulka, depends on set axioms.

Appendix A collects together the needed descriptive set theoretic results and mea-
sure theoretic results that are used in the book. Developing notational consistency is
also an objective of this part. A proof of the Purves theorem is also presented since it is
extended to include universally measurable sets and universally null sets in Chapter 2.

Appendix B is a brief development of universally measurable sets and univer-
sally null sets from the measure theoretic and probability theoretic point of view,
which reverses our “Borel sets lead to probability measures” to “probability mea-
sures lead to Borel sets.” This reversal places emphasis on Borel isomorphism and not
on homeomorphism; consequently, topological and geometrical questions are not of
interest here.

Appendix C concerns Cantor spaces (metrizable spaces that are nonempty, com-
pact, perfect and totally disconnected). Cantor spaces have many realizations, for
example, k£, where k is a finite set with card(k) > 1. The homeomorphism equiv-
alence classes of positive, continuous, complete Borel probability measures on a
topological Cantor space are not very well understood. Even the Bernoulli measures
on k ® are not completely understood. Extensive investigations by many authors have
been made for card(k) = 2. In this case a weaker equivalence relation introduces
a connection to polynomials with coefficients in Z. These polynomials are special
Bernstein polynomials found in classical approximation theory. Recent results of
R. Dougherty, R. D. Mauldin and A. Yingst [47] and T. D. Austin [6] are discussed
and several examples from the earlier literature are given. The E. Akin approach
of introducing topological linear order into the discussion of Cantor spaces is also
included.

Finally, Appendix D is a brief survey of Hausdorff measure, Hausdorff dimen-
sion, and topological dimension. These concepts are very important ones in the
book. Zindulka’s new proof of the classical relationship between the Hausdorff and
topological dimensions is given.

The book is somewhat self-contained; many complete proofs are provided to
encourage further investigation of absolute measurable spaces.
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The absolute property

Ameasure space M(X, ) isatriple (X , M, MY, u)), where u is a countably additive,
nonnegative, extended real-valued function whose domain is the o -algebra 9T (X, u)
of subsets of a set X and satisfies the usual requirements. A subset M of X is said to
be p-measurable if M is a member of the o -algebra (X, w).

For a separable metrizable space X, denote the collection of all Borel sets of X
by B(X). A measure space M(X, u) is said to be Borel if B(X) C IM(X, n), and if
M € M(X, ) then there is a Borel set B of X such that M C B and u(B) = uw(M).!
Note that if (M) < oo, then there are Borel sets 4 and B of X suchthat A C M C B
and u(B\ 4) = 0.

Certain collections of measure spaces will be referred to often — for convenience,
two of them will be defined now.

Notation 1.1 (MEAS ; MEASTM®) " The collection of all complete, o-finite Borel
measure spaces M(X, ) on all separable metrizable spaces X will be denoted by
MEAS. The subcollection of MEAS consisting of all such measures that are finite
will be denoted by MEASfinite 2

In the spirit of absolute Borel space, the notion of absolute measurable space will
be defined in terms of p-measurability with respect to all Borel measure spaces
M(Y, ) in the collection MEAS. After the notion of absolute measurable space has
been developed, the notion of absolute 0-measure space — more commonly known as
absolute null space — is defined and developed. Two early solutions to the question of
the existence of uncountable absolute null spaces are presented. They use the notion
of m-convergence introduced by F. Hausdorff [73]. A more recent example, due to
E. Grzegorek [68], that has other properties is also developed. The theorems due to
S. Plewik [127, Lemma] and to I. Recaw [130] will conclude the discussion of
existence.

1.1. Absolute measurable spaces

DerFINITION 1.2, Let X be a separable metrizable space. Then X is called an abso-
lute measurable space if, for every Borel measure space M(Y, u) in MEAS, it is

1 Such measures are often called regular Borel measures. We have dropped the modifier regular for
convenience.
2 See also equations (A.4) and (A.5) on page 187 of Appendix A.
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2 The absolute property

true that every topological copy M of X that is contained in Y is a member of the
o-algebra MM (Y, w). The collection of all absolute measurable spaces will be denoted
by abMEAS.

Obviously, the notion of absolute measurable space is invariant under homeomor-
phisms. Hence it would be appropriate to define the notion of topological equivalence
for Borel measure spaces on separable metrizable spaces. In order to do this we need
the following definition of measures f4u induced by measurable maps /.

DerFINITION 1.3 (fap). Let X and Y be separable metrizable spaces, let M(X, 1) be
a o -finite Borel measure space, and letf : X — Y be a jt-measurable map. A subset
M of 'Y is said to be (fy/)-measurable if there exist Borel sets A and B in Y such that
ACM CBand u(f~'[B\ 4]) =0.

It is clear that M(fzu, Y) is a complete, finite Borel measure on ¥ whenever
w(X) < oo, and that M(fupu, Y) is complete and o -finite whenever f is a homeomor-
phism of X into ¥ and p is o-finite.3

DerINITION 1.4, o-finite Borel measure spaces M(X, ) and M(Y,v) are said to
be topologically equivalent if there is a homeomorphism h of X onto Y such that
hup(B) = v(B) whenever B € B(Y).

The last definition does not require that the Borel measure spaces be complete —
but Az does induce complete measure spaces. Hence the identity homeomorphism
idy of a space X yields a complete Borel measure space M(idy# u, X ), indeed, the
measure completion of M(u, X).

It is now evident that there is no loss in assuming that the absolute measurable
space X is contained in the Hilbert cube [0, 11N for topological discussions of the
notion of absolute measurable space.

1.1.1. Finite Borel measures. Often it will be convenient in discussions of absolute
measurable spaces to deal only with finite Borel measure spaces rather than the more
general o-finite ones — that is, the collection MEAST® rather than MEAS. The
following characterization will permit us to do this.

THEOREM 1.5. A separable metrizable space X is an absolute measurable space if and
only if, for every Borel measure space M(Y, u) in MEA , it is true that every
topological copy M of X that is contained in Y is a member of M (Y, ).

Sﬁnite

Proor. Clearly, if a space X is an absolute measurable space, then it satisfies the
condition given in the theorem. So suppose that X satisfies the condition of the
theorem. Let M(Y, u) be a o-finite Borel measure space. There is a finite Borel
measure space M(Y, v) such that the o-algebra equality (Y, u) = M(Y, v) holds
(see Section A.5 of Appendix A). SoM € 9(Y, u), hence X is an absolute measurable
space. m|

3 See Appendix A for more on the operator fy.
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1.1.2. Continuous Borel measure spaces. Later it will be necessary to consider the
smaller collection of all continuous Borel measure spaces.* If this smaller collection
isused in Definition 1.2 above, it may happen that more spaces become absolute mea-
surable spaces. Fortunately, this will not be the case because of our assumption that
all measure spaces in MEAS are o -finite. Under this assumption, for a measure p,
the set of points x for which p({x}) is positive is a countable set. As continuous
Borel measures have measure zero for every countable set, the collection of absolute
measure spaces will be the same when one considers the smaller collection of all
continuous, complete, o-finite Borel measure spaces. The following notation will
be used.

NotaTioN 1.6 (MEAS®™). The collection of all continuous, complete, o-finite
Borel measure spaces M(X, ) on all separable metrizable spaces X is denoted
by MEAS®®™, That is,

MEAS®™ = {M(X, ) € MEAS: M(X, p) is continuous }. (1.1)

1.1.3. Elementary properties. Let us describe some properties of absolute measur-
able spaces. Clearly, each absolute Borel space is an absolute measurable space. The
M. Lavrentieff theorem (Theorem A.2) leads to a characterization of absolute Borel
spaces. This characterization yields the following useful characterization of absolute
measurable spaces.

THEOREM 1.7. Let X be a separable metrizable space. The following statements are
equivalent.

(1) X is an absolute measurable space.

(2) There exists a completely metrizable space Y and there exists a topological copy
M of X contained in Y such that M € (Y, v) for every complete, finite Borel
measure space M(Y,v).

(3) Foreach complete, finite Borel measure space M(X, ) there is an absolute Borel
space A contained in X with n(X \ 4) = 0.

ProoF. It is clear that the first statement implies the second.

Assume that the second statement is true and let 2: X — M be a homeomorphism.
Then M(Y, hy ) is acomplete Borel measure space in MEAS™it® There exists a Borel
set A" suchthat A" € M and hgju(M \ A’) = 0. As Y is a completely metrizable space,
the space A’ is an absolute Borel space. The restricted measure space M(M,, ()| M)
is complete and is topologically equivalent to M(X, i). So u(X \ 4) = 0, where
A = h~1[4']. As 4’ is an absolute Borel space, we have 4 is an absolute Borel space;
hence statement (3) follows.

Finally let us show statement (3) implies statement (1). Let ¥ be a space and let M be
a topological copy of X contained in Y. Suppose that M(Y, i) is complete and finite.
Then M(M, u|M) is also complete and finite. It is easily seen that statement (3) is
invariant under topological equivalence of Borel measure spaces. Hence M(M, | M)

4 See Appendix A, page 187, for the definition of continuous Borel measure space.
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also satisfies statement (3). There is an absolute Borel space 4 such that 4 C M and
(/L|M)(M\A) =0.Asu*(M\4) = (/LlM)(M\A) = 0,wehave M\ 4 € MY, ),
whence M = (M \ 4) UA is in IM(Y, n). O

1.1.4. o-ring properties. As an application of the above theorem, let us investigate
a o-ring property of the collection abMEAS of all absolute measurable spaces. We
begin with closure under countable unions and countable intersections.

ProposiTION 1.8. If X = |22, X; is a separable metrizable space such that each X; is
an absolute measurable space, then X and ( ;= X; are absolute measurable spaces.

Proor. Let Y be a completely metrizable extension of X and v be a complete, finite
Borel measure on Y. Then X; € 9M(Y,v) for every i. Hence X € 9(Y,v) and
ﬂ?; X; € M(Y,v). Theorem 1.7 completes the proof. O

ProposiTioN 1.9. If X = X| U X, is a separable metrizable space such that X
and X are absolute measurable spaces, then X1 \ Xy is an absolute measurable
space.

Proor. Let Y be a completely metrizable extension of X and v be a complete, finite
Borel measure on Y. Then X; € M(Y,v) fori = 1,2. Hence X7 \ X3 is in M (Y, v).
Theorem 1.7 completes the proof. |

The o-ring property of the collection abMEAS has been established. The next
proposition follows from the ring properties.

ProposITION 1.10. If X is a Borel subspace of an absolute measurable space, then X
is an absolute measurable space.

Proor. Let Y be an absolute measurable space that contains X as a Borel subspace.
Let Yy be a completely metrizable extension of Y. There exists a Borel subset B of Yy
such that X = Y N B. As Yy is a completely metrizable space, we have that B is an
absolute Borel space, whence an absolute measurable space. The intersection of the
spaces Y and B is an absolute measurable space. |

1.1.5. Product properties. A finite product theorem for absolute measurable spaces
is easily shown.

THeOREM 1.11. A nonempty, separable, metrizable product space X1 x X3 is also an
absolute measurable space if and only if X1 and X, are nonempty absolute measurable
spaces.

The proof is a consequence of the following proposition whose proof is left to the
reader as it follows easily from Lemma A.34 in Appendix A.

PropoSITION 1.12. Let M(Y] X Ya, ) be a complete, o-finite Borel measure space.
If X1 is an absolute measurable subspace of Y1, then X1 X Y, is u-measurable.
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Proor oF THEOREM. Suppose that X] and X, are nonempty absolute measurable spaces
and let Y1 and Y; be completely metrizable extensions of X and X3, respectively.
Consider any complete, finite Borel measure space M(Y; x Y2, ). By the propo-
sition, X1 x Y3 is a u-measurable subset of Y] x Y>. As Y] x Y> is a completely
metrizable space, we have by the characterization theorem that X x Y> is an absolute
measurable space. Analogously, Y1 x X, is an absolute measurable space. By the
o -ring properties of absolute measurable spaces, we have that X7 x X, is an absolute
measurable space.

For the converse, assume X] x X, is a nonempty absolute measurable space. Then
X1 and X, are nonempty. By Proposition 1.10, we have that X7 x {x;} and {x1} x X>
are absolute measurable spaces. Consequently, X7 and X, are absolute measurable
spaces. U

Let us turn to a countable product theorem. To this end, we may assume that
Xi, i € N, is a countable collection of absolute measurable spaces contained in the
Hilbert cube [0, 11N Clearly, X;enXi C ([0, I]N)N. A simple application of the
finite product theorem and the o -ring property gives

TueoREM 1.13. IfX;, i € N, is a sequence of absolute measurable spaces, then XN Xi
is an absolute measurable space.

1.1.6. Inclusion properties. There are several subclasses of the class of all separable
metrizable spaces that are naturally associated with the notion of absolute measurable
space. Let us define them now. In order to do this we will need the definitions of
analytic and co-analytic spaces.

DerFINITION 1.14. A separable metrizable space is said to be analytic if it is the image
of a continuous map on N, where N is the space {x € [0,1]: x is irrational }. A
separable metrizable space is said to be co-analytic if it is homeomorphic to the
complement of an analytic subspace of some completely metrizable space.

The space N is topologically the same as the product space N N,

It is known that analytic spaces and co-analytic spaces are topologically invariant.
Moreover, we have that a subset of a separable metrizable space Y that is an analytic
space or a co-analytic space is p-measurable for every measure space M(Y, 1) in
MEAS. Hence these spaces are also absolute measurable spaces. It is known that a
space is both analytic and co-analytic if and only if it is an absolute Borel space. Also,
a separable metrizable space is completely metrizable if and only if it is an absolute
Gs space.’

Consider the following classes of spaces.

MET : the class of separable metrizable spaces.
abMEAS: : the class of absolute measurable spaces.
ANALYTIC : the class of analytic spaces.
CO-ANALYTIC: the class of co-analytic spaces.

5 See Appendix A for the assertions made in the paragraph.
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abBOR: the class of absolute Borel spaces.
MET comp : the class of completely metrizable spaces.
ab G; : the class of absolute G5 spaces.

We have the following inclusions.®

MET > abMEAS D> ANALYTIC U CO-ANALYTIC,
ANALYTIC N CO-ANALYTIC = abBOR D abGs = MET comp -

As there are non-Lebesgue measurable subsets of R, the first inclusion of the first
line is a proper one. That the second inclusion of the first line is proper will be
illustrated by totally imperfect spaces’ that are also uncountable absolute measure
spaces. Such spaces will be shown to exist later in the chapter; they are the uncountable
absolute null spaces. To make sure that the space is not co-analytic as well, take a
disjoint topological sum of the space with the space that is analytic but not co-analytic.

1.1.7. Invariance of absolute measurable spaces. The collection ANALYTIC is
invariant under Borel measurable maps (Theorem A.13) and the collection abBOR is
invariant under injective Borel measurable maps (Theorem A.15). There are images
of absolute Borel spaces under Borel measurable maps that are not absolute Borel
spaces — of course, the images are analytic spaces. This cannot happen if the Borel
measurable maps are restricted further to be $5-maps, whose definition (Definition
A.18) is repeated next.

DErFINITION 1.15. Let X and Y be separable metrizable spaces. A Borel measurable
mapping f: X — Y is a B-map® if f[B] € B(Y) whenever B € B(X).

By the R. Purves Theorem A.43, abBOR is invariant under ®B-maps. Indeed, let
f: X — Y be asurjective B-map and let X be in abBOR. Then card(U(f)) < Ry
by Purves’s theorem, where U (f') is the set of uncountable order of /. Hence, by
Theorem A.22, Y is an absolute Borel space. As B € B(Y) implies B € abBOR, the
assertion follows.

An invariance property also holds for the collection abMEAS under Borel isomor-
phisms. In our book we shall rename Borel isomorphism to be 2B-homeomorphism.

THEOREM 1.16. Let f: X — Y be a surjective B-homeomorphism of separable
metrizable spaces X and Y. Then X is an absolute measurable space if and only
if Y is an absolute measurable space.

Proor. Suppose X € abMEAS and let M(Y, i) be a complete, finite Borel measure
space. Then the Borel measure space M(X, f _1# W) is complete and finite. There is
an absolute Borel space 4" with 4’ C X and (f’l#u)(X \ A") = 0. Observe that

6 See also Section A.3.1 of Appendix A.

7 Totally imperfect spaces are those nonempty separable metrizable spaces that contain no topological
copies of the space {0, I}N.

8 As mentioned in the footnote to Definition A.18, in [129] R. Purves calls such maps bimeasurable with
the extra requirement that X and f[X] be absolute Borel spaces. See that footnote for further comments.
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A = f[A'] is an absolute Borel space that is contained in Y. Since u(¥ \ 4) =
( f _l#u)(X \ A) = 0, it follows that Y is an absolute measurable space by
Theorem 1.7. O

It was observed that each Borel measure space M(X, u) in MEAS is, in a topo-
logical sense, determined by some complete, o -finite Borel measure on the Hilbert
cube [0, 17V since X can be topologically embedded into the Hilbert cube. The above
theorem shows that, in a measure theoretic sense, each Borel measure space in MEAS
is determined by some o -finite Borel measure on the topological space {0, .
Indeed, there is a B-homeomorphism of the Hilbert cube [0, 1]N onto {0, I}N,
which is topologically embeddable in the interval [0, 1]. Hence measure theoreti-
cal properties can be studied by concentrating on the topological spaces {0, 1} and
[0, 1]. Of course, topological properties are not preserved by 2B-homeomorphisms.
Consequently, homeomorphisms are still important for our considerations.

1.1.8. More characterizations. Let us conclude this section with one more charac-
terization theorem.

THEOREM 1.17. Let X be a separable metrizable space. The following statements are
equivalent.

(1) X is an absolute measurable space.

(2) There is a topological copy M of X contained in some absolute measurable
space Y such that M € I(Y,v) for every complete, finite Borel measure space
M(Y,v).

Proor. That the first statement implies the second is trivial.

Let us show that the second statement implies the first. To this end let ¥ be an
absolute measurable space and let M be a topological copy of X contained in ¥ such
that M € 9(Y, u) for every complete, finite Borel measure . Let M(X, v) be a
complete, finite Borel measure space. Then i = fyv is a complete, finite Borel mea-
sure on Y, where /" yields the embedding. As Y is an absolute measurable space there
is an absolute Borel subspace B of Y such that u(Y \ B) = 0. Since M € M(Y, n),
there exists a set 4 in B(Y) such that A C M and u(M \ 4) = 0. We may assume
A C B.As u(M) = u(Y), wehave 0 = u(M \ A) = (Y \ 4) = v(X \ f~1[4)).
Since f~[4] is an absolute Borel space, X is an absolute measurable space. a

1.2. Absolute null spaces

Anatural collection of separable metrizable spaces is the one consisting of those spaces
X whose topological copies in Y are null sets for every M(Y, ) in MEAS®™ (see
equation (1.1) above), that is, absolute 0-measure spaces. The present day convention
is to call these spaces absolute null spaces.

DerFINITION 1.18. Let X be a separable metrizable space. Then X is called an absolute
null space if, for every M(Y, ) in MEAS®™, it is true that every topological copy M
of X that is contained in Y is a member of (Y, ), that is, u(M) = 0. The collection
of all absolute null spaces will be denoted by abNULL.
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The reader is reminded that, unlike the definition of absolute measurable spaces, the
complete Borel measure spaces M(Y, u) are required to be continuous; for, without
this additional condition, only the empty space would be a member of abNULL.

There is the following analogue of Theorem 1.5.

THEOREM 1.19. A separable metrizable space X is an absolute null space if and only
if, for every continuous, complete, finite Borel measure space M(Y, ), it is true that
every topological copy M of X that is contained in Y is a member of (Y, ).

The proof is analogous to that of Theorem 1.5 and is left to the reader.

1.2.1. Characterization. We have the following characterizations of absolute null
spaces.

THEOREM 1.20. Let X be a separable metrizable space. Then the statement
(0) X is an absolute null space
is equivalent to each of the following four statements.

() If X is a subspace of a separable completely metrizable space Y and if M(Y, i)
is a continuous, complete, o-finite Borel measure space, then (X) = 0.

(B) If M(X, ) is a continuous, complete, o-finite Borel measure space, then
uX)=0.

(y) Every subspace of X is an absolute measurable space.

(8) X is both a totally imperfect space and an absolute measurable space.

Proor. Clearly the statement (o) implies statement («). That («) implies (8) is equally
clear since, with the aid of the inclusion map, any continuous, complete, o -finite Borel
measure space M(X, 1) can be extended to a continuous, complete, o-finite Borel
measure space M(Y, v) for any completely metrizable extension ¥ of X.

To prove that (8) implies (o) let ¥ be a separable metrizable space that contains
X and let M(Y,v) be a continuous, complete, finite Borel measure space. Then
© = v|X is a continuous, complete, finite Borel measure on X. If X satisfies (8),
then 0 = u(X) = v*(X), whence v(X) = 0. Thereby (8) implies (o).

Obviously (o) implies (y).

To show that () implies (8), assume that X satisfies (y). Then X is an absolute
measurable space. Suppose that X is not totally imperfect. Then X contains a topo-
logical copy of {0, 13N, As {0, 1} contains a nonabsolute measurable space, (y) is
not satisfied by X. Hence X satisfies (§).

Finally, suppose that X satisfies (§) and let M(X, i) be a continuous, complete,
o -finite Borel measure space. As X is an absolute measurable space, by Theorem 1.7,
there is an absolute Borel subspace 4 of X such that (X \ 4) = 0. As 4 is also totally
imperfect, we have card(4) < R whence X € 91(Y, u). Hence (§) implies (8). O

1.2.2. Cardinal number consequences. At this point let us consider cardinal num-
bers of sets which have not been assigned topological structures. We shall consider
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nonnegative real-valued, continuous measures p on sets X for which every subset
is u-measurable, denoted by the measure space (X , M, P(X )), where P(X) = {E:
E C X } is the power set of X. If one assigns the discrete topology to X, then X is a
completely metrizable space (but not necessarily separable). With this topology, we
have B(X) = P(X), whence the continuous, complete, finite Borel measure space
M(X, ) is exactly the same as (X, i, P(X)). We have the following theorem due to
W. Sierpinski and E. Szpilrajn [142].

TueoreM 1.21 (Sierpinski—Szpilrajn). Ifn is the cardinality of an absolute null space
Xo, then each nonnegative real-valued, continuous measure space (X ,u, P(X )) with
card(X) = n is the 0 measure space.

Proor. Let Xy be a separable metrizable space with card(Xp) = nandletf: X — Xy
be a bijective map. The discrete topology on X makes f continuous, whence Borel
measurable. Then v = fiu is a continuous, complete, finite Borel measure on Xj.
(Note that fz e is well defined since f is a bijection.) So w is identically equal to 0
if and only if v is identically equal to 0. The above characterization, Theorem 1.20,
completes the proof. O

1.2.3. Product theorem. As an application of the above characterization theorem we
will give a product theorem for absolute null spaces.

THEOREM 1.22. A nonempty, separable metrizable product space X1 X X» is also an
absolute null space if and only if X1 and X, are nonempty absolute null spaces.

Proor. Suppose that X; and X, are nonempty absolute null spaces. By the character-
ization theorem, X and X, are totally imperfect spaces and absolute measurable
spaces. By Proposition A.26, X x X, is a totally imperfect space; and, by
Theorem 1.11, X7 x X5 is an absolute measurable space. Hence by the characterization
theorem, the product X7 x X3 is an absolute null space.

Conversely, suppose that X7 x X3 is anonempty absolute null space, whence X7 x X»
is a totally imperfect space and an absolute measurable space. By Theorem 1.11, X
and X, are absolute measurable spaces. Also, by Proposition A.26, X; x {x;} and
{x1} x X> are totally imperfect spaces. Hence, X1 and X> are nonempty, absolute null
spaces by the characterization theorem. O

Observe that {0, 1}N and NN are countable products of absolute null spaces. Hence,
unlike absolute measurable spaces, there is no countable product theorem for absolute
null spaces.

1.2.4. Amapping theorem. Aproofofthe converse partof the above product theorem
can be achieved by means of the next mapping theorem.

THeOREM 1.23. Let X and Y be separable metrizable spaces andletf: X — Y be a
Borel measurable map such that f [ X] is an absolute null space. Then, X is an absolute
null space if and only if f ~V[{y}] is an absolute null space for each y in f[X].
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ProOF. Suppose X € abNULL. Since f~'[{y}] is a subset of X, we have f ~![{y}] €
abNULL.

To prove the converse, let u be a continuous, complete, finite Borel measure
on X. Then fyu is a finite, complete Borel measure on Y. Let us show that it is
also continuous. As f~![{y}] is a Borel set and f~![{y}] € abNULL, we have
M(f_l[{y}]) =0, whencef#,u({y}) = 0. So, f# e is continuous. As f[X] € abNULL,
there is a Borel set B in Y such that f[X] C B and fyu(B) = 0. Hence u(X) = 0. O

We leave the second proof of the product theorem to the reader.
Here is an interesting and useful lemma. Its proof is left to the reader.

LemMmA 1.24. Let X and Y be separable metrizable spaces and let f: X — Y be
an arbitrary surjection. Then there is a separable metrizable space Z and there are
continuous maps fi: Z — X and f»: Z — Y such that f = f>fi"", fi is bijective,
and f> is surjective. Indeed, Z = graph(f’) and the natural projection maps satisfy
the requirements.

The following is an application of the lemma to absolute null spaces.

THEOREM 1.25. Let X be an absolute null space and Y be an arbitrary nonempty
separable metrizable space. If f: X — Y is an arbitrary function, then the graph
of f is an absolute null space. Consequently, f[X] is the continuous image of some
absolute null space.

PrOOF. As the natural projection map f of the lemma is a continuous bijection of
graph(f’) onto X, the above Theorem 1.23 applies. The map f; of the lemma completes
the proof. a

1.2.5. o-ideal property of abNULL. Theorem 1.20 together with o -ring properties
of abMEAS and Proposition A.26 will yield the following o -ideal property of the
collection abNULL of all absolute null spaces.

PROPOSITION 1.26. The collection abNULL possesses the properties

(1) if X C Y € abNULL, then X € abNULL,
(2) if a separable metrizable space X is a countable union of subspaces from
abNULL, then X € abNULL.

1.3. Existence of absolute null spaces

It is obvious that every countable space is an absolute null space. Hence the ques-
tion of the existence of an uncountable absolute null space arises. Hausdorff gave
a sufficient condition for the existence of such spaces in [73]. With the aid of this
condition, two examples of uncountable absolute null spaces will be presented, the
first by Hausdorff [73] and the second by Sierpinski and Szpilrajn [142]. Hausdorft’s
condition is shown to yield a theorem that characterizes the existence of uncount-
able absolute null spaces contained in separable metrizable spaces, more briefly,
uncountable absolute null subspaces.
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1.3.1. Hausdorff sufficient condition. To give Hausdorff’s theorem on sufficiency
we must define the following.

DerINITION 1.27. Let X be an uncountable separable metrizable space. A transfinite
sequence By, o < wi, of subsets of X is said to be m-convergent in X if

(1) By is a nonempty p-measurable subset of X for every a and for every continuous,
complete, o -finite Borel measure space M(X, 1),

(2) By N Bg = ) whenever o # B,

(3) X = Ua<w1 By,

(4) for each continuous, complete, o -finite Borel measure space M(X , ) there exists
an ordinal number B such that 8 < w1 and ,u( Uﬁ§a<w1 Ba) =0.

The next result, which is implicit in [73], is due to Hausdorff.

TueoreM 1.28 (Hausdorff). Assume X is an uncountable separable metrizable space.
If there exists a transfinite sequence By, a < w1, that is m-convergent in X, then X' is
an absolute null subspace of X with card(X") = 8| whenever 0 < card(X'NBy) < Ry
for every a.

The proof will follow immediately from the next lemma.

LemMA 1.29. Let X be a separable metrizable space and let By, o < w1, be a
transfinite sequence that is m-convergent in X. If B), is a nonempty absolute Borel
space contained in By for each o, then X' =, _,,, By, is an absolute measurable
space. Moreover, the set X' is an uncountable absolute null space if and only if
0 < card(X' N By) for uncountably many «, and card(X' N By) < Vo for each a.

Proor. Let Y be a separable completely metrizable space that contains X and let
M(Y,v) be a complete, finite Borel measure space. Let © = v|.X be the restriction
measure. Then there is an ordinal number 8 with 8 < w; and ,u( U B<a<o Ba) =0.
SO’ v*(Uﬂ§a<w1 B(/x) = 'U“(Uﬂfoz<w1 B:x) = 0 because Uﬁ§a<w1 B(/Jt C X and
p = v|X. From the completeness of the measure v we have v ( Up<a<w B)) = 0.
Since B,,, @ < f, is a countable collection of absolute Borel spaces, we see that
X' is v-measurable, whence X’ is an absolute measurable space by Theorem 1.7.
Moreover, Uﬁ§a<w1 B/, € abMEAS whenever 8 < w;.

To prove the second statement, assume that X’ is an uncountable absolute null
space. Then X' N B, = B, is an absolute null space as well as an absolute Borel
space, whence card(X’ N By) < Ny for each o. As X’ is uncountable, we have
0 < card(X’ N By) for uncountably many «. Conversely, for each «, suppose that
card(X’ N B,) < Ry, and let M(X’,v) be a continuous, complete, o-finite Borel
measure space. With & = fsv, where f is the inclusion map X’ C X, we have
M(X, ) is also a continuous, complete, o -finite Borel measure space. Hence there
isa B with t({Ug<y<w, Ba) = 0. Consequently we have v(Ug<yp, By) = 0. As
card(UOKl3 fo) < R¥g we have v(X”) = 0. Hence X’ € abNULL by statement (8) of
Theorem 1.7. We have that X’ is uncountable since 0 < card(X’NBg) for uncountably
many «. |
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1.3.2. The Hausdorff example. Hausdorff proved in [73] the existence of a trans-
finite sequence By, ¢ < wi, that is m-convergent in {0, I}N. As the proof is quite
elementary we shall present it. We follow the proof found in R. Laver [88].

Although the proof can be carried out in the space {0, 1}, the description of
the constructions is easier made in the topologically equivalent space N {0, 1}, the
collection of all functions from N into {0, 1}. Hence we shall work in the space
Nyo,11.

Let / and g be members of N {0, 1}. Then f is said to be eventually less than
or equal to g, denoted 1 <" g, if there is an m in N such that f(n) < g(n) when-
ever n > m. We write f <" g if f <" g holds and g <" f fails (that is, f(n) < g(n)
for infinitely many 7). It is not difficult to see that <™ and <" are transitive. We
shall use [/, g] to denote the set {x: f <*x<* g}. Observe that [ £, f] is a countably
infinite set and that [0, 1] = N {0, 1}, where 0 and 1 are respectively constantly 0
and 1 on N. Note that {x: 0 < x(n) < f(n)} is compact for each n. Since
[0,/1 = Upei Myp<nfx: 0 < x(n) < f(n)} we have that [0,/] is a o -compact set.
Moreover, the above Hausdorff’s binary relation <" asasubsetofN {0, 1} x N {0, 1},
is equal to the set { (f,g): f <" g} = Uo, Nm<nl (f58): f(n) < g(n)}, which is
a o-compact subset of N {0, 1} x N {0, 1}.

Hausdorff asserted: If [ fy,gq], @ < w1, is a nested collection whose intersection
ﬂole [fo> o] is empty, then the nonempty sets among

Bo =1[0,11\ [fo.8],  Bo = [fu,&al\ [fat1,8a+1], 0 < <oy,

is m-convergent in ™ {0, 1}. Such a nested collection of sets was called an ©2-Q* gap
by Hausdorff. His assertion will follow if, for each continuous, complete, finite Borel
measure [ on N {0, 1}, there is an @ with @ < w; such that w([ fy,g]) = 0. Let us
show that this is so.

Let Ty, = [fa,80], @ < wi, be an Q-Q* gap. As u(Ty), @ < i, is a non-
increasing transfinite sequence of real numbers, there is an 1 with n < w; such
that u(7y) = u(Ty,;) whenever n < a. Let us suppose & = wu(73;) > 0 and derive
a contradiction. As {f,(n),g,(n)} C {0,1} for each n, there is a j in T, such
that u({/ € T,: f(n) =j(n)}) > &/2 for every n. Let o be such that « > 5 and
@i} N Ty = . As fyy <" fo <" gu <" gy» the set of n for which 0 < f,(n) <
gn(n) < 1 holds is infinite and among them are infinitely many with f, (n) = gu(n).
Letn; be an enumeration of those nsuch that0 = f,(n) < fo (n) = go(n) < g, (n) = L.
Then Ty = U5 | Tom» Where

To,m ={f € Ty : f(n;) = fo(n;) wheneveri > m}.
Pick an m with w(Ty,n) > €/2. Since j ¢ Ty there is an n; with i > m such that
Jj(n;) # fo(n;). Hence, for f in T;), we have f (n;) = j(n;) if and only if f (n;) # fo ().
So,

Ty D {f € Ta: f(n) #jn)} ={f € Ta: f(ni) = fa(n)} D Tam.
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We now have & = u(T)) = u({f € Ty: f (i) = j(m))) + i (Tum) > £/2+ £/2
and a contradiction has appeared. Hausdorff’s assertion is proved.
It remains to prove the existence of an -Q* gap. To this end, define

38(f,g) =min{m: f(n) < g(n) whenever m < n}.
Of course, 8(f,g) = oo if f <" g fails. The following statement is easily proved:
8(f.g) < max{8(f,h),5(h,g)} wheneverf <" h<"g.

For subsets F of N {0, 1} and for 4 in N {0, 1} such that f <" h for every f in F,
Hausdorff defined in [73] the property P(F,h):

card({f € F: 6(f,h) =m}) < R for every m in N.

He observed the following easily proved fact about this property: If F and G are
nonempty subsets ofN (0, 1} such that f <" g for every f in F and every g in G, and
such that P(F,g) holds for every g in G, then P(F,h) holds whenever h satisfies
f<"h<"gforeveryf inF and every g in G.

For an h in N {0, 1} and a nonempty subset F of N {0, 1} define

F,={feF:f<h)

Hausdorff also proved the next three key lemmas.

LemMma 1.30. Let o < wy. If

F={f,:B<a} and G={g;,: p <o}

are such that f, f*f[m <*gﬁ+] <*gﬁ for every B, then there exists an h such that

Sy <h<” g Jor every B. Moreover, if P( F<fﬁ ,8y) holds, then P(F_ . h) holds.

Proor. Let B, k = 1,2,..., be a sequence such that 8; < Bi4 for all £ and
limg_ ~ Bx = «. One can easily construct a sequence Ng, N1, N2, ... of disjoint
intervals of N with N = U/?io N such that, for each k,

L) < <f () <f, () <g, () <g, )<---=<g, (),

for every n in Ny U Ny, and(]jsk (n) < 8, (n) for some n in Np;_; and also for
some n in Nog. For k£ = 0, let h(n) = fﬁ1 (n) for every n in Np; and, for k > 0,
let h(n) = fﬁk (n) for every n in Nyj_1, and h(n) = 8, (n) for every n in Ny. For
every k, it follows easily that fﬂk (n) < h(n) < g, (n) for every n in szk Nj, that
h(n) < gg, (n) infinitely often in szk Naj—1, and that f; (n) < h(n) infinitely often
in )=k N2j. Hence fﬂk <h<t 8, for every k. The lemma follows from the above
Hausdorff observation. O

Lemva 1.31. Let {fi: i = 1,2,...Y U {h K} c N{0,1} be such that f; <" fi11 <"
W <" h for every i. For each i let H; be a finite subset ofN {0, 1} such that f; € H; and
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such that f; <" f <" fi+1 whenever f € H; and f # f;. Then there is a g in ™ {0,1}
such that, for each i, f <" g <" and 8(f,g) > i — 1 whenever f € H;.

Proof. Let mpg = max{d8(f,f):f € H;,i < k}. Since it is given that
fi <*f,-+1 <" <" hfor every i we can inductively selectasequence my, k = 1,2, ...,
such that my and Ny = [my, mj1) satisfy

(1) mp = myo+k,

(2) f(n) < fix1(n) < K (n) < h(n) for nin Ny and f in H; wheneverj < k,

(3) there is an ng in Ny such that f'(n9) = fi11(no) < 4 (ng) whenever f € Hy,
(4) there is an ny in Ny such that f; (n1) < fre1(n1) = H' (n1) = h(ny),

(5) for each f in Hj that is not f; there is an ny in Nj such that f; (n2) < f(n2).

Define Ny = [0, m1), and define g to be

filn), ifne Ny
gln) = ,
fr(n), ifn € Ny whenever k > 0.

It is easily seen that N = | J{2 Ny and /' <" g <" i’ whenever f € Hy. For k > 1
let us compute a lower bound for §(f,g) for each f in Hy. In Ny_; there is an n;
such that g(ny) = fr—1(n1) < fx(n1), and f(n) < g(n) whenever n > my. Hence
8(fx,g) = my_1 > k—1.Foreach f in Hy that is not f;, there is an n, in Ny such that

gny) = fr(m2) < f(ny), and f(n) < fr+1(n) < g(n) whenever n > my1. Hence
8(f,g) = my > k. Consequently, 6(f,g) > k — 1 whenever / € Hy. m|

The proof of the next lemma is taken from [73].

Lemma 1.32. Let a be a countable limit ordinal number. If hand F = {f,: B < a }are
such that f, <" f, <" ... <*fﬂ <" h and such that P(F<f)3 ,h) holds whenever B < a,

then there exists a g such that f, <" g <" h whenever B < o and such that P(F,g)
holds.

PrROOF. As <~ orders F we shall write F _p for F¥ gy There is an increasing sequence
Bi, k=1,2,...,of ordinal numbers such that limy_, o 8x = o and 81 = 0. For each
S and each m, define B,,(f) = {f, € F: 8(f,./) =m}.

We follow Hausdorff’s argument. Define the possibly infinite sets

A =Upailfy: fy €Bu)), k=12,...,

and, for each j, define the finite set (since P(F

<p> h) holds)

]—]jk = {f/‘Sj} U (Ak N (F<ﬁj+1\F</3j))'

Observe that ' = {2 4 and 4* = (72, H}'.
With the aid of Lemmas 1.30 and 1.31, we can find a g! such that 1, <"gl<"h
for every § and such thaté(ﬁs,gl) > i— 1 whenever f; € Hl-l. Letf, € Bn(ghnAl.

There is an i such that fﬁi §*fﬂ <*fﬁi+1' Hence, i — 1 < S(fﬁ,gl) = m, or
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i < m+ 1 Thatis, Byghndl ¢ F, N4 c U7 H!. As the right-
hand side of the inclusion is finite we have that P(4',g!) holds. Inductively
employing Lemma 1.30, we can construct a sequence g, k = 1,2, ..., such that
Sy <<Tgtt < g <L <M gl < h o whenever B < « and such that P(4%, g)
holds for every k. By Lemma 1.30 there is a g such that f; <" g <" gk for every
B and every k. We prove that P(F,g) holds by establishing a contradiction. Sup-
pose that F/ = {/,: 6(f,,g) = m} is infinite for some m. From §(f,,h) <
max{5(f,,g),3(g,h)} we infer F’ c A¥ for some k. So P(4*, g) also fails for this k.
But, P(4*, gk) holds by the construction. By Hausdorff’s observation, we have that
P(4¥, g) holds. Thereby a contradiction has occurred. O

The last lemma is the inductive step for a transfinite construction in the Hausdorff
existence theorem.

THeorReM 1.33 (HausdorfY). There exists an Q-Q* gap.

Proor. Letf, = 0and g, = 1. Suppose for @ < w; that

* * * * * * * * *
< h< < fi<fin< < g < &< -..&< &

is such that P(F_g, g,) holds whenever 8 < «. We must find f, and g, such that
Sy <*(]f1 <*ga <*gﬁ whenever f < « and such that P(F__, g, ) holds. This is very
easy if « is not a limit ordinal. For the limit ordinal case, there are 4 and /4’ such
that f, < <h<S g Whenever B < a. An application of Lemma 1.32 provides
a g, such that P(F_,,g,) holds. Let f, be such that f, < f, < g, whenever B < a.
The «-th step of the transfinite construction is now completed. Suppose that there is
an /4 such that f, <h<t g, for every o. Then for some m there will be uncountably
many f, such that §(f,, /) = m. Hence P(F_,, h) fails for some o, which contradicts
the Hausdorff observation that P(F_,, ) holds whenever f, < h < g,. O

<a?

1.3.3. The Sierpinski and Szpilrajn example. Sierpinski and Szpilrajn gave this
example in [142]. It uses the constituent decomposition of co-analytic spaces (see
Appendix A, page 181).

THEOREM 1.34 (Sierpinski—Szpilrajn). Every co-analytic space X that is not an ana-
Iytic space has a transfinite sequence By, o < wi, in abBOR that is m-convergent
inX.

Proor. From equation (A.1) on page 181 of Appendix A, we have
X =Y \4=Uyc0 4as

where Y is some separable completely metrizable space and A4 is an analytic
space. From Theorem A.5, Corollary A.7 and Theorem A.9, we have that the con-
stituents 4, are absolute Borel spaces and that the collection of those constituents
which are nonempty is uncountable. Hence there is a natural transfinite subsequence
By, a < wy, of Borel sets such that the first three conditions of the definition of
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m-convergence in X are satisfied. To verify the fourth condition let M(X, i) be a
complete, o-finite Borel measure space. There is a o-compact subset £ of ¥ such
that E C X and w(X'\E) = 0. By equations (A.2) and (A.3) of Theorem A.6, there is an
ordinal number 8 suchthat 8 < wjandE C UOK/3 B, Whence,t,L(L_JﬁSGKw1 Ba): 0.
Thereby the m-convergence is verified. a

We infer from the above theorem that {0, 1 }N has a transfinite sequence By, o < wi,
that is m-convergent in {0, 1}N. Indeed, select a co-analytic subset X of {0, 1N that
is not an analytic space and let B),, @ < wj, be m-convergent in X as provided by the
lemma. Then simply let By = B;, U ({0, 1N\X) and B, = B, fora # 0.

1.3.4. A characterization theorem. We now have the promised theorem.

THEOREM 1.35. Let X be a separable metrizable space. Then the following three
statements are equivalent.

(1) X contains an uncountable absolute null space.
(2) X contains an uncountable absolute measurable space.
(3) X has a transfinite sequence By, a < wy, that is m-convergent in X.

ProoF. Asabsolute null spaces are absolute measurable spaces, we have that statement
(1) implies statement (2).

To prove that statement (2) implies statement (3), suppose that X’ is an absolute
measurable space that is contained in X. If X is already an uncountable absolute null
space, then X’ contains a subset Xy with card(Xp) = R;. Let By = X \ Xp and By
be singleton subsets of Xy for the remaining ordinal numbers «. Hence statement
(3) follows for this case. So assume that X’ is not an absolute null space. Then there
exists a continuous, complete, o -finite Borel measure space M(X, ) with u(X”) > 0.
As X’ is an absolute measurable space there is an absolute Borel space B contained in
X’ with (X’ \ B) = 0. So B is uncountable. Let ¥ be a topological copy of {0, 1}
contained in B and define By = (X \ ¥) U Bj and B, = B, for 0 < a < w;, where
B, o < w; is a transfinite sequence that is m-convergent in Y. It is easily seen that
By, a < w1, is m-convergent in X .

That statement (3) implies statement (1) is Hausdorff’s sufficiency theorem
(Theorem 1.28). O

This characterization theorem has been proved without the aid of the continuum
hypothesis. Also, as the above two examples provide the existence of uncountable
absolute null spaces without the aid of the continuum hypothesis, we have

THEOREM 1.36. There exist absolute null spaces of cardinality R1.

The use of the continuum hypothesis in the early years of the subject of absolute
null spaces will be commented on below. Absolute null spaces have played a special
role in what is called the Ulam numbers. That is, in Section 1.2.2 it was shown that
R is an Ulam number. Other remarks on Ulam numbers will be given below in the
Comment section.
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1.3.5. Existence under the continuum hypothesis. There is a novel presentation
of the existence of absolute null spaces with the aid of the continuum hypothesis
in the book Measure and Category by J. C. Oxtoby [120]. The development there
uses a partition theorem that will permit the use of the Hausdorff condition of the
characterization theorem (Theorem 1.35).

Letus begin with the statement of the partition theorem. This theorem is a purely set
theoretic one; that is, there are no topological assumptions made. Also the continuum
hypothesis is not required. For the reader’s benefit, we shall include also the beautiful
proofin [120].

THEOREM 1.37. Let X be a set with card(X) = Ry, and let IC be a class of subsets of
X with the following properties:

(1) Kis ao-ideal,

(2) the union of K is X,

(3) K has a subclass G with card(G) = R and the property that each member of K
is contained in some member of G,

(4) the complement of each member of K contains a set with cardinality R\ that
belongs to K.

Then X can be decomposed into R disjoint sets Xy, each of cardinality X1, such
that a subset E of X belongs to KC if and only if E is contained in a countable union
of the sets X,. Moreover, each Xy, is in the o-ring generated by G.

Proor. Let Gy, o < wy, be a well-ordering of G. For each o define

Hy =Up-y G and Ky =Hy \Upy Hp .

Put B = {«: K, is uncountable }. Properties (1), (3) and (4) imply sup B = w;.
Therefore there exists an order-preserving bijection ¢ of {@: o« < w; } onto B. For
each «, define

Xo = Hyp) \ Upg<a Hop) -

By construction and property (1), the sets X, are disjoint and belong to K. Since
Xo D Ky(a), €ach of the sets X, has cardinality 8. For each 8 we have 8 < ¢(a)
for some « ; therefore,

Gp C Hp C Hya) = Uy <o Xy -

Hence, by property (3), each member of K is contained in a countable union of the
sets Xy . Using property (2), we see that

X = UKEICK c Uoz<co1 Xo .
Thus { Xy : o < w1 } is a decomposition of X with the required properties. O

As an application of this decomposition, consider the o-ring that consists of all
sets of first category of Baire.
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LemMa 1.38. Assume the continuum hypothesis. In an uncountable, separable com-
pletely metrizable space that contains no isolated points, the collection K of all sets
of the first category of Baire and the collection G of all F, first category sets satisfy
the conditions of the partition theorem.

Proor. Under the continuum hypothesis the cardinality of G is Rj. As X is of the
second category of Baire and contains no isolated points, the complement of a first
category set is uncountable. Hence the conditions of the partition theorem are easily
verified. Moreover, the sets X, of the partition are absolute Borel spaces. |

We now have the following theorem.

THEOREM 1.39 (Lusin). Assume the continuum hypothesis. In an uncountable, sepa-
rable completely metrizable space that contains no isolated points, there exists a set
X of cardinality ¢ (= K1) such that every set K of the first category of Baire satisfies
card(K N X) < R.

Proor. From the decomposition, which is assured by the above lemma, select exactly
one point from each X, to form the set X. Let K be any set of the first category of
Baire. There is a 8 with 8 < w1 and K C Uafﬁ X,. Hence, card(K NX) <R. O

Finally we have need of the following lemma which will be left as an exercise.

LemMA 1.40. Let X be an uncountable, separable completely metrizable space and
let M(X, ) be a continuous, complete, o-finite Borel measure space on X. If D is
a countable dense subset of X, then there exists a G5 subset E of X that contains D
such that w(E) = 0 and X \ E is an uncountable F; subset of X of the first category
of Baire.

Now the above lemma and Theorem 1.37 (the partition theorem) yield a transfinite
sequence X, ¢ < wi, in X that is m-convergent, whence there exists an uncount-
able absolute null space in X. That is, the following proposition results. Assume
the continuum hypothesis. If X is an uncountable, separable completely metrizable
space that contains no isolated points, then there exists an uncountable absolute null
space contained in X. Observe that every uncountable absolute Borel space contains
a topological copy of the Cantor space. Hence the continuum hypothesis implies
the existence of an uncountable absolute null space contained in each uncountable
completely metrizable space.

We remind the reader that it was the novelty of the partition theorem that motivated
this section on the continuum hypothesis.

1.4. Grzegorek’s cardinal number

It is easily seen that uncountable absolute measurable spaces that are not absolute null
spaces must have cardinality ¢ = 280, The question of the existence of a non absolute
null space X that has the same cardinality as some uncountable absolute null space X
is addressed in this section. This is a question of S. Banach [7, Problem P 21],
which was proposed in a measure theoretic form and which is precisely stated in
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footnote 10 after all the required definitions are given. We shall present an example,
due to Grzegorek [68], which gives an affirmative answer. The existence of the
example relies on the cardinal number « used by Grzegorek, which will be defined
shortly.

1.4.1. An embedding. We have seen earlier that the notion of absolute null space
has connections to the Ulam numbers, a purely set theoretic notion related to the
existence of measures. (See also the Comment section for Ulam numbers.) It will
be convenient now to consider a purely measure theoretic setting.’ Let S be a set
and let 2 be a o-algebra of subsets of S. A nonempty member C of 2 is called
an atom if it is a minimal element under inclusion. Denote by A(2l) the collection
of all atoms that are contained in 2(. A countably generated o-algebra 2 is a pair
(2, &) such that & C 2 and 2 is the smallest o -algebra that contains &. (Often we
will not display &.) A countably additive, finite measure p on a countably generated
o-algebra A on S is called a nontrivial continuous measure if 0 < p(S) and if
w(C) = 0 whenever C € A(2). A countably generated o-algebra 2 on S is said to
be measurable if there exists a nontrivial, continuous measure on 2. Otherwise, 2
is said to be nonmeasurable (hence, u(S) = 0). A o-algebra 2 on S is said to be
separable if it is countably generated and A() = { {s}:s €8 }.10 Observe that
the set X of a separable metrizable space has associated with it the natural o -algebra
B(X) of all Borel subsets of X. Even more, this o-algebra is separable — indeed,
any collection € that is a countable basis for the open sets of X generates B(X). The
o-algebra B(X) is measurable if and only if there is a nontrivial, finite, continuous
Borel measure on the separable metrizable space.

Letus show that there is a natural injection of the set S into the product space {0, 1 o
produced by a separable o-algebra 2l on a set S. Suppose that (2, &) is a separable
o-algebra on aset S and let { E;: i € N} be a well ordering of the collection &. For
eachset E; let f;: S — {0, 1} be its characteristic function; that is, fi(s) = 1 if s € E},
and f;(s) = 0 if s ¢ E;. This sequence of characteristic functions defines an injection
f of S into {0, 1}V, Observe that the topology of {0, 1} induces a topology on f[S]
and hence a natural topology t on § is induced by €. Indeed, the set

Ei={seS:fiss=1}=f"{xefo,}V:x; = 1}]

is both closed and open in the topology 7. Also, S \ E; is both closed and open in the
topology t. Hence the natural topology t on S induced by € is separable and metriz-
able, the collection 2/ is the collection of all Borel sets in this topological space, and
this topological space is topologically embeddable into {0, 1}Y. Consequently, if the
resulting topological space is an absolute null space, then the separable o -algebra 2

9 A discussion of the measure theoretic and probability theoretic approaches to absolute measurable
spaces and absolute null spaces can be found in Appendix B.

The above mentioned Grzegorek example solves the Banach problem in [7, Problem P 21] which is the
following: Does there exist two countably generated o -algebras 211 and 20y on R that are measurable
such that the o -algebra generated by 2| U2, is nonmeasurable? Banach’s problem will be discussed
further in Chapter 6.

10
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on S is nonmeasurable. And, if the separable o -algebra2( on S is nonmeasurable, then
every finite, complete Borel measure  on the topological space S is trivial. Hence
the separable metrizable space S is an absolute null space if and only if the separable
o-algebra 2 on S is nonmeasurable.

Let us summarize the above discussion as follows.

THEOREM 1.41. Suppose that X is a separable metrizable space. Then the natural
o-algebra B(X) of the set X is separable and measurable if and only if there is a
nontrivial, continuous, finite, Borel measure space M(X, 1) = (X, w, MX, /1,)).

THEOREM 1.42. Let A be a separable o-algebra on a set S and let € be a countable
subcollection of A that generates 2. Then there is a natural topology t on the set
S induced by € such that U is precisely the collection of all Borel subsets of S in
the topology T, and this topological space is embeddable into {0, 1}. Moreover, the
topological space is an absolute null space if and only if (A, €) is a nonmeasurable
separable o-algebra on the set S.

1.4.2. Grzegorek’s example. A set S is said to support a measurable separable o -
algebra if there exists a o-algebra 21 of subsets of § such that 2 is measurable and
separable. Following Grzegorek [68], we define «; to be the cardinal number

ks = min { card(S) : S supports a measurable separable o -algebra }.

Note that card(S) = ¢ whenever S is a Borel measurable subset of R with positive
Lebesgue measure. Hence, 8] < k; < ¢. Also, if S is a subset of a separable
metrizable space X such that card(S) < k, then u(S) = 0 for every continuous,
complete, finite Borel measure on X . Indeed, suppose that card(S) < « and that some
continuous, complete, finite Borel measure @ on S has ©(S) > 0. Then 2 = B(S) is
ameasurable separable o -algebra since the measure space M(S, v) withv = u| B(S)
(the function p restricted to B(S)) is nontrivial. Hence k; < card(S) < kg and a
contradiction has occurred.

Denote by M ({0, 1}N) the collection of all continuous, complete, finite Borel mea-
sures on {0, 1}N. For a subset S of {0, 1} and a s« in M({0, 1}), the outer measure
n*(S) is a well defined nonnegative real number. Define the cardinal number «,, as
follows:

k, = min { card(S): ©*(S) > 0 for some u in M({0, I}N) }.

We prove the following lemma due to Grzegorek [68].

LemMa 1.43. The cardinal numbers kg and k, are equal.

Prook. Let S C {0, 1} and € M({0, 1}Y) with *(S) > 0. Then the restricted
measure v = u|S and A = B(S) will result in a measurable separable o -algebra 2l on
the set S, whence k; < . To prove the other inequality, let i be a nontrivial measure
on a separable o -algebra 2l on a set S. A topology 7 on the set S corresponding to this
separable o -algebra 2 results in a topological embedding f of S into {0, 1}V, Hence
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v = fyu is a nontrivial, continuous, complete, finite Borel measure on {0, 1}N and
v*(f[S]) = u(S) > 0. As card(f[S]) = card(S), we have «, < card(S). Therefore,
Kk, < kg and the lemma is proved. O

We now give Grzegorek’s theorem.

THEOREM 1.44 (Grzegorek). Let S C {0, 1N and let w be a continuous, complete,
finite Borel measure on {0, 1}N such that card(S) = «, and *(S) > 0. Then there
exists a nonmeasurable separable o-algebra A on S.

Proor. Let v = u|S be the nontrivial continuous measure on the o -algebra B(S) of
all Borel subsets of the topological space S and let B = { U;: i < wp } be a countable
base for the open subsets of S. Let s, a € k,'! be a well ordering of the set S. For
eacha let Gy be an open subset of the metrizable space S suchthat{s,: 8 <a} C Gq
and v(Gy) < 5 v(S).

Define Y to be the following subset of the product «; x S.

Y = UaEKG ({Ol} X GC‘)'

For each i, let
Ei={aek;: U CGyl.

Let us show
Y = Ui<a)0Ei X U,'.

Clearly, if @ € Ej, then {«} x U; C {a} x G,. Hence the left-hand member of the
equality contains the right-hand member. Let («,s) € Y. Then s € G,. Hence there
is an 7 such that s € U; C G,. Obviously o € E; for the same i, thereby the left-
hand member is contained in the right-hand member and the equality is established.
Let (1, €1) be any separable o -algebra on k. Then there is a separable o -algebra
(2, €) on the set k; generated by €; and the family { £;: i € 8 }. We claim that this
separable o -algebra on k is nonmeasurable. Assume to the contrary that there is a
nontrivial continuous measure A on 2.

For each member s, of the set S, the set { B: (B,s,) € ¥ } contains {B: B > y }.
Hence the A-measure of every horizontal section is equal to A (k). Also, every vertical
section of Y has v-measure not greater than % v(S). Now observe that Y is in the o' -
algebraon i x S generated by the o -algebras A and *B(S). Hence the Fubini theorem
may be applied to X y. We get 0 < A(k;)v(S) = fS(fKG Xy d\)dv = [, dxxv) =

f“c (fg Xy dvydr < %U(S)A(KG) and a contradiction has occurred. O

CoROLLARY 1.45. There exists a subspace X of {0, 1N such that X is an absolute null
space with card(X) = k.

11" A cardinal number « will be identified with the minimal initial segment of ordinal numbers whose
cardinal number is «.
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With the aid of Theorem 1.21 we have the following corollary, where P(X) is the
power set of X

CorOLLARY 1.46. If (X, u, P(X)) is a nonnegative real-valued, continuous measure
space with card(X) = kg, then p is identically equal to 0.

1.4.3. abNULL is not preserved by Borel measurable maps. Let us begin with a
simple proposition.

ProposiTioN 1.47. There exists a subset Y of {0, 1}N and there exists a continuous,
complete, o-finite Borel measure space M({0, I}N, W) such that card(Y) = kg, ¥
is not p-measurable and uw*(Y) > 0. Clearly, the subspace Y of {0, 1N is not an
absolute null space.

PrOOF. Let Z be a subset of {0, 1} and 1 be a continuous, complete, finite Borel
measure on {0, 1}N with card(Z) = k; and u*(Z) > 0. If Z is not p-measurable,
then let Y = Z. Suppose that Z is u-measurable. Let X; and X, be a Bernstein
decomposition of {0, 1}N . That is, X7 and X, are disjoint sets whose union is {0, 1}N ,
and X and X, are totally imperfect. Clearly, u*(X; N Z) > 0. Indeed, suppose that
w*(X1NZ) = 0. Then X, N Z would be a u-measurable set with positive y measure.
So there would exist a nonempty perfect subset of it, whence of X,. But X, cannot
contain a nonempty perfect set, and a contradiction has occurred. Also ¥ = X1 N Z
is not p-measurable since every F, kernel of Y is a countable set. Observe that
kg =k, < card(Y) < card(Z) = k holds to complete the proof. O

THEOREM 1.48. Let Y be a subspace of {0, 1}N with card(Y) = kg that is not an
absolute null space. Then there is a continuous bijection f: N — Y of an absolute
null space N contained in {0, I}N.

Proor. By Corollary 1.45 there is an absolute null space X contained in {0, 1}
with card(X) = «;. Let ¢: X — Y be any bijection. Since {0, DN x 0, 1} is
topologically the same as {0, 1}, Theorem 1.25 completes the proof. a

For the next theorem recall that the set of uncountable order of f: X — Y is the
set U(f) = {y € ¥: card(f~[{y}]) > No }.

THEOREM 1.49 (Grzegorek). Let f: X — Y be a Borel measurable map from an
absolute Borel space X into a separable metrizable space Y. If card(U (f)) > R,
then there is a topological copy X* of {0, 1N x {0, 13N contained in X and there
is a topological copy Y* of {0,1}N contained in Y such that f|X* is a continuous
surjection of X* to Y* and such that f[M] is not an absolute measurable space for
some absolute null space M contained in X*.

Proor. We infer from Corollary A.60 and the proof of Lemma A.61 the existence
of a continuous map f™*: {0, DN x (0,13 = {0, 1}Y and continuous injections
@:{0,1}N x {0, 1} — X and ¥ {0, 1} — ¥ such that f*(x*,y*) = y* for every
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(x*,y*) in {0, 1N x {0, 1} and such that the diagram

X % Y
To To
f*

0, N x {0, )N —— (o, 1}

commutes, that is, f >p ™ (see page 195 for the definition of the B-successor relation
=p). Let X* = ©[{0, 1} x {0, 1}V] and Y* = #[{0, 1}"]. By Theorem 1.48 there
is a continuous bijection g: N — Y, of an absolute null space N contained in {0, 1}
onto a non-absolute measurable space Yy contained in {0, 1N, By Theorem 1.25,
we have that graph(g) is an absolute null space. Let M = @[graph(g)]. Observe
that M is an absolute null space and that ¢[Yp] is a non absolute measurable space.
From the commutative diagram, f|X* = 9f*®~!. As f[M] = ¥[Y], the proof is
completed. O

THEOREM 1.50. Let f: X — Y be a B-map, where X is an absolute Borel space.
Then f[M] is an absolute measurable space whenever M is an absolute measurable
space contained in X .

ProOF. As f is a B-map and X is an absolute Borel space, we have from Purves’s
theorem that card(U(f)) < Ro. So C = X \ f~[U(f)] is an absolute Borel space.
Letus return to the proof of Theorem A.22. It was shown there that there is a continuous
injection g: V' — graph(f|C) such that graph(f|C) \ g[N]is a countable set. With
the natural projection 7 : graph(f|C) — Y, the composition 2 = mg provides a
collection B,, n = 1,2,..., of Borel subsets of A/ such that N' = (J°2, B, and
h|B,, is a homeomorphism for each n. Note that C,, = C N mg[B,], where m; is
the natural projection of graph(f|C) onto C, is an absolute Borel space and f|C), is
B-homeomorphism of C,, onto i[B,]. As M N C,, is an absolute measurable space, we
have that f[M N C,] is an absolute measurable space for each n. Also, C \ wg[N] is
a countable set. Thus we have shown that f[M N C1] is an absolute measurable space.
Since U(f) D f[M \ C], we have that f[M] is an absolute measurable space. O

The proof given here is essentially that of R. B. Darst [37]. A “converse” statement
will be investigated in the next chapter on universally measurable sets in a fixed space
X, namely, we shall present the theorem due to Darst and Grzegorek.

CorOLLARY 1.51. Letf: X — Y be a *B-map, where X is an absolute Borel space.
Then f[M] is an absolute null space whenever M is an absolute null space contained
inX.

Proor. Let us prove that every subset of f[M] is an absolute measurable space. To
this end, let Yo C f[M]. Note that My = M N f ~1[Yo] is an absolute measurable
space since M is an absolute null space. Clearly f[Mp] = Yy, whence an absolute
measurable space. We have that f[M] is an absolute null space by the characterization
theorem, Theorem 1.20. O
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1.5. More on existence of absolute null spaces

We have seen earlier that Hausdorff’s m-convergence, a sufficient condition for the
existence of uncountable absolute null spaces, was essentially a part of a characteriza-
tion theorem. The characterization used a well ordering of 8 |-many disjoint subsets
of an uncountable absolute measurable space. The well ordering idea was used to
advantage by Recaw [130] for subspaces of R and by Plewik [127, Lemma] for sub-
spaces of {0, 1} to prove another sufficient condition for the existence of absolute
null spaces. It was pointed out by Recaw that, with the aid of ®8-homeomorphisms,
R”" can replace the ambient space R. Of course the use of B-homeomorphisms
defeats the emphasis on topological homeomorphism if one can avoid the use of
$B-homeomorphisms. We shall present the results of Recaw and Plewik in a setting
more in line with the notions of absolute measurable space and absolute null space.
This will permit us to state a more general characterization of absolute null spaces.

For a set X, recall that R is a relationon Y if R C Y x Y —thatis, forsand¢in Y,
we say that s is related to t, written s R ¢, if (s, ) € R. We say that a subset Rof' Y x Y
well orders a subset X of Y if the relation R N (X x X) is a well ordering of X. So,
if the ordinal number 7 is the order type of such a well ordered set X, then X has an
indexing {xy: o < n} such that xo Rxg if and only if « < B < n. Of course, the
ordinal number 1 need not be a cardinal number.

Before we turn to Recaw’s theorem let us make an elementary observation about
absolute null spaces X contained in a separable metrizable space Y. Note that X' x X
is an absolute null space contained in ¥ x Y. Let {xy: o < 1} be a well ordering of
X by an ordinal number 5. This well ordering corresponds to a unique subset R of
X x X.As every subset of X x X is an absolute measurable space we have that R is
an absolute measurable space that is contained in ¥ x Y such that X is well ordered
by R.

Recaw’s theorem is the following.

THEOREM 1.52 (Recaw). Let R be an absolute measurable space contained in [0, 1] x
[0, 1]. Then, any subset X of [0, 1] that is well ordered by the relation R is an absolute
null space contained in [0, 1].

We shall prove the following more general form.

THEOREM 1.53. Let Y be a separable metrizable space and let R be an absolute
measurable space contained in Y x Y. Then, any subset X of Y that is well ordered
by the relation R is an absolute null space contained in Y.

Proor. There is no loss in assuming that Y is a subspace of the Hilbert cube [0, 1] N,
Let X be a subset of Y that is well ordered by the relation R and denote its indexing
by {xy4: ¢ < n}. We shall assume that it is not an absolute null space contained
in Y and derive a contradiction. There is a continuous, complete Borel measure p
on [0, 11N such that 1 = ([0, I]N) > w*(X) > 0. As X is well ordered, there is an
no such that 14({xe: @ < no}) > 0, and such that u({xy: & < B}) = 0 whenever
B < no. Denote {x4: @ < no} by Xp. Let 4 be a Borel set in [0, 1]N such that
A D Xy and such that the inner measure (4 \ Xo) is 0. Let W denote the relation
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{(x,y) € AxA: yRx}.As W = (4 x A)NR~! we have that }¥ is an absolute measur-
able space. Hence there is a Borel set /' such that V' C W and (M X u)(W \V)=0.
As usual, we denote {y € [0, 1y (x,y) € V'} by Vy, a Borel set in [0, 11N, As
the function x — w(V,) is Borel measurable, the set {x: u(¥Vy) > 0} is a Borel
subset of [0,1]N. We assert that this set is contained in A4 \ Xp. Indeed, for x
in Xg, the set D = {y € X:yRx} is a u-null set, whence there is a Borel
set C in [0, 11N that contains it with w(C) = 0. Since Vy N (X \ D) is a sub-
set of X and R N (X x X) is a well ordering of X we have Vy N (X \ D) = 0.
Consequently V, \ C C Vy \ Xo C A\ Xo. Now Vi \ C is a Borel set and
x4\ X) = 0, whence u(Vy \ C) = 0. Thereby we have shown © (V) = 0 when-
ever x € Xp. The assertion that the Borel set {x: u(Vy) > 0} is a subset of 4 \ Xp
has been verified. We have (u x u)(V) < [, n(Vx) dp < ps(4 \ Xo) = 0. Conse-
quently (ux ) (W) = (uxu)(W\V)+(uxu) (V) = 0. We are ready to establish a
contradiction. Observe that, for each yin 4, the set W7 = {x € Xy: (x,y) € W }satis-
fiess WY D {xeXp: yRx} =Xo\ {x € Xo: xRy, x #y}. Hence u(W?) > u*(Xop)
whenever y € Xp. As u«(4 \ Xo) = 0, by the Fubini theorem, we have the con-
tradiction 0 = (i x w)(W) = [, u(W")dp > (pL"‘(Xo))2 > 0. The theorem is
proved. a

There is the following straightforward characterization of absolute null spaces that
are contained in Y. The proof is left to the reader.

THEOREM 1.54. Let Y be a separable metrizable space. In order that a subspace X of
Y be an absolute null space it is necessary and sufficient that there exists an absolute
measurable space R contained in Y x Y with the property that X is well ordered by
the relation R.

Theorem 1.52 generalizes a result of Plewik [127, Lemma ] who assumes that the
relation R is formed by a Borel subset of [0, 1] x [0, 1] — clearly R is an absolute
measurable space. Actually, Plewik works in the collection P(w) = {X: X C w},
which is homeomorphic to the space {0, 1})\. He devises a schema for constructing
relations on P(w) by beginning with relations <, on the subsets of {k: 0 < k <
n} =1[0,n) = n, thatis <, C P([O, n)) X P([O, n)), for each n in w. He comments
that, for each » in w, the relation

<={X,Y): XNn<,YNn}

on P(w) is a simultaneously closed and open subset of P(w) X P(w). Define X < Y
for X and Y in P(w) to mean that X Nn <, ¥ Nn holds for almost all n, that is, there
is an m such that X Nn <, Y N n holds whenever n > m. This, of course, defines a
relation < on P(w). We now have the following proposition by Plewik.

ProprosiTION 1.55 (Plewik). The relation < is an F, subset of P(w) X P(w).

The proof of the proposition is left to the reader as an exercise. Recall that F; sets of
{0, 1 }N x {0, 1 }N are absolute Borel spaces, hence the above characterization theorem
applies.
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Plewik gives several applications of his proposition by defining appropriate rela-
tions <, that is, by devising ways to invoke his schema for the relation <. Indeed, he is
able to include the Hausdorff 2-Q* gap example of an absolute null space contained
in {0, 1}V. He also shows that examples like that of Grzegorek’s among others can be
included in his setting. Recaw also exhibits an example of a relation R on [0, 1] that
is an absolute measurable space and not an absolute Borel space, thereby sharpening
Plewik’s theorem (see Exercise 1.11 on page 29). The details of and more comments
on these applications will be given in Chapter 6.

1.6. Comments

We close the chapter with a few comments.

1.6.1. Metric spaces. The results in Sections 1.1 and 1.2 are found in [152]. These
early results concerning absolute measurable spaces were couched in the context
of separable metric spaces, which differs from that of separable metrizable spaces
used in our book. The definitions in the book are independent of the metric that can
be assigned to a given metrizable space. Hence the notion of absolute measurable
space as has been developed in the book is based solely on the Borel sets of a given
separable, metrizable space, which are — of course — independent of the metrics that
are associated with a given metrizable space. This observation was made by R. Shortt
in [138, 139].!2 The motivation for this change from metric to metrizable is the
following definition, due to E. Szpilrajn-Marczewski [152], of property M and its
related property M(rel Y) for separable metric spaces Y.

DEerFINITION 1.56 (Szpilrajn-Marczewski). A subset X of a separable metric space Y
is said to have property M(rel Y) if, for each finite Borel measure n on X, there are
Borel sets A and B of Y such that A C X C B and u(4) = u(B).

DerINITION 1.57 (Szpilrajn-Marczewski). A4 separable metric space X is said to have
property M if; for every separable metric space Y, each topological copy of X
contained in Y has property M(rel Y).

On inspection of the definition of property M(rel Y), one can easily see that only
the topology that results from the metric on the space Y is used in the definition
since the collection ‘B(Y) of all Borel sets of Y is the same for any metrization of
a metrizable space Y. In the second definition, the embedding is not required to be
an isometric embedding. Hence the definition of property M clearly is independent
of the metric for metrizable spaces X. The appropriate modification of property M
has resulted in our definition of absolute measurable spaces, the modifier absolute is
used to emphasize the topological embedding feature of the definition. Since every
metric space is metrizable, this change in definition will cause no loss in the analysis
of any specific metric space.

The next chapter will be concerned with the notion of universally measurable sets
X in a metrizable space Y. This notion is the appropriate modification of the property

12° An extended discussion of Shortt’s observation can be found in Appendix B.
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M(rel Y). The modifier universally is used to indicate that the metrizable space Y is
fixed, not the metric.

1.6.2. Absolutely measurable functions. 1t is natural to want to consider functions
f: X — R in the context of absolute measurable spaces, where X is a separable,
metrizable space. Given such a space X, we define the o-ring

abMX) ={M: M C X,M € abMEAS }.

This o-ring is a o-algebra if and only if X € abMEAS. It is natural to say that
a function f: X — R is absolutely measurable if M N f~1[F] is in ab MM (X)
for every closed set F' of R and every M in ab9t(X). Observe, for an absolutely
measurable /: X — R, that f~1[F] € ab(X) for every closed set F if and only
if X € ab91(X). In the next chapter we shall investigate the completely different
notion of universally measurable function, which will agree with that of absolutely
measurable function whenever X € abMEAS. A general investigation of absolutely
measurable functions will not be carried out, since the more interesting investigation
will be in the context of universally measurable sets in a space X .

1.6.3. Historical references. Here we give credit to the various authors who have
influenced the theorems proved in this chapter. Other references will also be made.

The paper [152] by Szpilrajn-Marczewski'? is the source of Theorem 1.7, Propo-
sition 1.12, and Theorems 1.16 and 1.17. Statement (§) of Theorem 1.20 was
observed by E. Grzegorek and C. Ryll-Nardzewski in [71]. We have already attributed
Theorem 1.21 and Theorem 1.34 to Sierpinski and Szpilrajn [142]. The characteri-
zation'# provided by Theorem 1.35 of the existence of absolute null subspaces of a
space is motivated by Hausdorff [73]. Our development of the Q2-Q* gap example
of Hausdorff follows the one given by Laver [88] with added details from the origi-
nal paper by Hausdorff [73]."> The development of the second example, which uses
constituents of co-analytic spaces, is due to Sierpinski and Szpilrajn [142].

The partition theorem, Theorem 1.37, has other applications — in particular, the
Sierpinski—Erdos theorem and the related Duality Principle. The reader is directed to
the book [120] by Oxtoby for a nice discussion of these topics. The Duality Principle
yields an intimate connection between sets of measure 0 and sets of the first category
of Baire. See also C. G. Mendez [107, 108]. Theorem 1.39, which has been attributed
to N. Lusin [92] and also proved by P. Mahlo [95], provides the existence of what is
now called Lusin sets. A Lusin set in a space X is an uncountable set M with the prop-
erty that every nowhere dense subset of X intersects M in an at most countable set.
For more on Lusin and other singular sets see Brown and Cox [18] and A. W. Miller
[110, 111].

13 This paper is written in Polish. An English translation of it has been made by John C. Morgan II.

4 This characterization anticipates the results of Recaw [130] and Plewik [127] which are also discussed
in Section 1.5 of this chapter.

15 A nice survey article by M. Scheepers [134] contains a historical discussion of Hausdorff’s work on
gaps. More will be said about this article in Chapter 6.
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Section 1.2.2 concerns what are called the Ulam numbers (see [S5, page 58]) and
what are called real-valued measurable cardinal numbers (see [58, definition 4.12,
page 972]). A cardinal number « is an Ulam number if every nonnegative, real-valued,
continuous measure i on a set X with card(X) = « is the 0 measure whenever
the collection (X, i) of pu-measurable sets is P(X), that is the measure space
(X , M, P(X )) is trivial. Hence R is an Ulam number. A cardinal number « is real-
valued measurable if there exists a continuous probability measure p on a set X with
card(X) = « and M (X, n) = P(X); that is, u(X) = 1 and every subset of X is
u-measurable. Hence 8 is not real-valued measurable.

The cardinal number «, was used by Grzegorek [68] for the purpose of solving a
problem proposed by Banach [7] concerning the existence of certain kinds of measures
(see the footnote on page 19; more will be said about Banach’s problem in Chapter 6).
In that paper, Grzegorek used the nondescript symbol m; to denote this cardinal
number, we have used «; to honor him. With the aid of this cardinal number he
gave an affirmative answer to the problem of Banach. Grzegorek uses the notion of
characteristic functions as developed by Marczewski (= Szpilrajn) in [7, 150, 151].1¢
The use of Marczewski’s development allows the Banach problem to be translated into
a problem involving Borel measures on subsets of {0, 1 N In[68] Grzegorek used the
closed interval [0, 1] and Lebesgue measure A to define his cardinal number m, (see
page 45). The present day literature uses non-IL to denote m,. The presentation given
in our book uses the space {0, 1}N in place of [0, 1] to define the cardinal number «,, in
Section 1.4.2. We shall show in the next chapter that Grzegorek’s cardinal number m,
is the same as «,,. In a subsequent paper [71] Grzegorek and Ryll-Nardzewski used
this cardinal number to show that the use of the continuum hypothesis by Darst in [39]
was not necessary (we shall turn to Darst’s theorem in the next chapter). We mention
that k; is an Ulam number and is not real-valued measurable.

Darst [37] proved Theorem 1.50 for real-valued B-maps defined on Borel subsets
X of R. As Grzegorek’s example shows, the requirement that the domain of B-maps
be absolute Borel spaces cannot be avoided. Corollary 1.51 can be strengthened as
follows. First define a map f: X — Y to be an ab 9t-map if f[M] is an absolute
measurable space whenever M is an absolute measurable space contained in X. Then
the proof of Corollary 1.51 will result in the rather trivial

ProposiTioN 1.58. Iff: X — Y is an ab9M-map, then f[N] € abNULL whenever
N C X and N € abNULL.

Note that / need not be Borel measurable and that X is arbitrary. Hence the def-
inition of ab 9Jt-map appears to be somewhat contrived. Observe that a continuous
bijection of an absolute measurable space X need not be such a map as witnessed by
Grzegorek’s example.

Exercises
1.1. Prove Proposition 1.12 on page 4.
1.2. Prove Theorem 1.19 on page 8.

16 Marczewski’s development is reproduced in many articles and books cited in our book. In particular,
it appears in some form or other in [12, 32, 145, 94].
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Exercises 29

Let f: X — Y be a Borel measurable map, where X and Y are separable

metrizable spaces. Prove that £ ~![{ y}] is an absolute null space for every y in

Y if and only if fz i is continuous for every continuous, complete, finite Borel

measure i on X.

Prove Lemma 1.24 on page 10.

Prove Proposition 1.26 on page 10, the o-ring property of the class abNULL

of absolute null spaces.

Prove Lemma 1.40 on page 18. Hint: Show that (X) < oo may be assumed.

Show that Grzegorek’s example (Theorem 1.44, page 21) leads to a solution of

Banach’s problem stated in the footnote on page 19. Hint: The example 2l has

the property that there is a countably generated subalgebra 2!’ that is measurable

(obviously 2 = 20U "); use disjoint copies of the set S.

Let Y and Z be separable metrizable spaces. Let R be a subset of ¥ x Y and

let X = {x4: a < n} be awell ordered subset of Y. Each homeomorphism 4

of Y into Z gives a natural homeomorphism # x 2 of Y x Y into Z x Z, where

(h x h)(s,t) = (h(s),h(t)) for (s,t) € Y x Y. Denote (h x h)[R] by S, a subset

of Z x Z. Prove that h[X] = { h(xy): @ < n} is well ordered by the relation S

ifand only if X = {x4: o < n} is well ordered by the relation R. Clearly S is

an absolute measurable space contained in Z x Z if and only if R is an absolute

measurable space contained in ¥ x Y.

Prove Theorem 1.54 on page 25.

Prove Proposition 1.55 on page 25.

Let F be a Borel set in [0, 1]% such that F,, = {v: (u,v) € F'} is not empty

for each u in [0, 1]. Define the Borel sets 4 and B in [0, 1]° as follows: 4 =

{(x,y,2): (x,2) e F},B={(x,y,2): (y,2) € F}.

(@) Show w[4\ B] = {(x,y): Fx \ F), # 0}, where w(x,y,2) = (x, ).

(b) Show R = {(x,y): Fx C F) }is a co-analytic set that is a linear ordering of
[0, 1] (though not necessarily the usual linear ordering).

(c) Show that there is an absolute measurable space R with card(R) = ¢ such
that it is contained in [0, 1]2, is not analytic or co-analytic or absolute null,
and is a linear ordering of { x: (x,y) € R }. Hint: Add Grzegorek’s example.
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The universally measurable property

The property of this chapter historically precedes that of absolute measurable spaces.
The works of Sierpinski and Szpilrajn [142] and Szpilrajn-Marczewski [152] make
more natural the introduction of absolute measurable spaces before the development of
universally measurable sets in a space. The universally measurable property concerns
sets in a fixed separable metrizable space rather than the property of topological
embedding of a space into other spaces. This change of emphasis will be highlighted
by switching the modifier “absolute” to “universally.” Interesting situations arise
when the fixed space is absolute measurable.

The notion of a universally measurable set in a space is more complicated than that
of absolute measurable spaces. Emphasis will be placed on the interplay between uni-
versally measurable sets in a space and absolute measurable subspaces. Of particular
importance is the coinciding of universally null sets in a space X and the absolute
null subspaces of X. Included is a presentation of a sharpening, due to Darst and
Grzegorek, of the Purves theorem.

A closure-like operation, called the universally positive closure, is introduced to
facilitate the study of the topological support of measures on X . This closure operation
is used to define positive measures, those whose topological supports are as large as
possible. It is shown that the notion of universally measurable sets in X can be
achieved by using only those measures that are positive.

The Grzegorek and Ryll-Nardzewski solution to the natural question of symmetric
differences of Borel sets and universally null sets is given. Their solution has connec-
tions to the question in the Preface, due to Mauldin, concerning absolute measurable
spaces contained in R. (This connection will be discussed in Chapter 6, the chapter
whose emphasis includes set theoretic considerations.)

The historically early results for X = [0, 1] will be used to motivate the use of the
group of homeomorphisms in the study of universally measurable sets. These results
for [0, 1] together with ®B8-homeomorphism also lead to results about universally mea-
surable sets in other separable metrizable spaces. Of course, topological properties
are not preserved by ‘B-homeomorphisms, properties that are of interest in this book.
The use of *B-homeomorphism will not be excluded if topological considerations are
not involved. (In Appendix B, a brief discussion is given of universally measurable
sets from the point of view of measure and probability theories which emphasizes
$B-homeomorphism.)
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2.1. Universally measurable sets
Recall that MEAS is the collection of all Borel measure spaces M(X,u) =
(X S, MY, ,u)) that are o-finite and complete, that (X, u) is the o-algebra
associated with a measure space, and that MEAS®™ is the collection of those mea-
sure spaces in MEAS that are continuous. Let us establish notation that emphasizes
a fixed space.

NOTATION 2.1. Fix a separable metrizable space X and define the following collection
of measures on X.

MEAS(X) = { u: M(X, u) € MEAS}
MEAS®M(X) = { u: M(X, ) € MEAS®},

We shall now modify the definition of the property M(rel X) defined by Szpilrajn-
Marczewski (see Definition 1.56).

DErFINITION 2.2. Let X be a fixed separable metrizable space. A subset M of X is said
to be a universally measurable set in X if M is in 9N (X, n) whenever u € MEAS(X).
The collection of all universally measurable sets in X will be denoted by univ 91(X).

DErFINITION 2.3. Let X be a fixed separable metrizable space. A subset M of X is said
to be a universally null set in X if M is in (X, u) whenever i € MEAS®"(X). The
collection of all universally null sets in X will be denoted by univ M (X).

Obviously, the collections univ 91 (X) and univ 91(X) are the intersections
univImx) = N{MX, 1) : 1 € MEAS(X) }
and
univ N (X) = {NX, ) : © € MEAS®™M(X) }.

Analogous to Theorems 1.5 and 1.19, the o-finite requirements in the above defini-
tions may be replaced with finite with no changes in the collections. The proof'is easy
and is left to the reader.

2.1.1. Elementary relationships. We have the obvious

PROPOSITION 2.4. For separable metrizable spaces X, the collection univ 9 (X) is
a o-algebra of subsets of X such that B(X) C univI(X), and the collection
univN(X) is a o-ideal.

For the next proposition recall from page 27 that ab 931 (X) is the collection con-
sisting of all absolute measurable subspaces M contained in X. The proof of the
proposition is left to the reader (see Theorem 1.17).

PROPOSITION 2.5. For separable metrizable spaces X, ab M (X) is a o -ring contained
in univ M (X). Moreover, univot(X) = ab9M(X) if and only if X is an absolute
measurable space.

We also have the following
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PrOPOSITION 2.6. Let Y be a separable metrizable space. If X is a universally
measurable set in Y, then

univitXxX) ={E eunivM(Y): EC X }.

Proor. Denote the inclusion map of X into Y by /. Let u be a complete, finite Borel
measure on X . Then fzu is a complete, finite Borel measure on Y. Hence X is (fzu)-
measurable. It follows that the restriction measure (fxu)|X is the measure u on the
subspace X of Y. Consequently, if £ is a universally measurable set in Y that is also
a subset of X, then E is a universally measurable set in X. Next let v be a complete,
finite Borel measure on Y. Then v|X is a complete finite Borel measure on X. It
follows that fz(v].X) is the limited measure v|. X. So, if £ is a universally measurable
setin X, then £ is a (v X)-measurable setin Y, whence a v-measurable setin Y. O

The following theorems are essentially due to Sierpinski and Szpilrajn [142].

THEOREM 2.7. Let M be a subset of a separable metrizable space X. Then M €
univ N (X) if and only if M is an absolute null space (that is, M € abNULL).

ProoF. It is clear that M € univ91(X) whenever M € abNULL and M C X. So let
M € univ9(X). By the definition of univ 9 (X) we infer from the statement («) of
Theorem 1.20 that M € abNULL. O

THEOREM 2.8. For separable metrizable spaces X and Y, let [ be a *B-
homeomorphism of X onto Y. Then, for subsets M of X,

(1) £~ M] € BX) ifand only if M € B(Y),
(2) f~HM] € univOR(X) if and only if M € univ M (Y),
(3) f~YM] € univ(X) if and only if M € univN(Y).

Proor. The first equivalence assertion follows easily from the definition of
$B-homeomorphism. The other two follow since f; establishes a natural bijection
between Borel measures on X and on Y. a

REMARK 2.9. It is well-known that every separable metrizable space can be topologi-
cally embedded into the Hilbert cube [0, 1] N, Also, there is a B-homeomorphism ¢ of
the Hilbert cube onto {0, I}N, which is homeomorphic to the classical Cantor ternary
set. Consequently, the study of univ 91 (X') only from the point of view of universally
measurable sets in X can be carried out on subspaces of the Cantor set. The difficulty
is that the B-homeomorphism ¢ does not preserve the topological structure of the
space X. Nor does it preserve many other structures of X, for example, the order
structure of the space R. Consequently, the study of universally measurable sets in a
separable metrizable space X does not end with the above theorem if one is interested
in, for example, the topological structure of such sets in the ambient space X, or the
geometric structure of such sets in the event that X is a metric space.
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2.1.2. The theorem of Darst and Grzegorek. Darst and Grzegorek investigated the
above Theorem 2.8 under the sole condition that f': X — Y be Borel measurable,
that is, without the bijection requirement. We do this now.

It will be convenient to use the usual convention: If f: X — Y is any function
and My and My are collections of subsets of X and Y respectively, then f[Mx]
and f [ My] are, respectively, the collections {f[M]: M € My} and
(f~UM]: M e My).

With this convention we have that f is a Borel measurable map if and only if
f “1B(Y)] c BWX). It is well-known that there exists an absolute Borel space X
such that f[*B(X)] Q B (Y) for some Borel measurable map f.

By Definition 1.15, amap f: X — Y, where X and Y are separable metrizable
spaces, is a B-map if and only iff’l[%(Y)] C B(X) and f[BX)] C B(Y).
Consequently, Purves’s Theorem A.43 can be stated as /' [B(Y)] ¢ BX) and
fIBX)] CB(Y) ifand only if card(U (f)) < Vo, whenever X is an absolute Borel
space, where U (f) is the set of uncountable order of /. The next theorem by Darst
and Grzegorek is a sharpening of Purves’s theorem.

THEOREM 2.10 (Purves—Darst-Grzegorek). Let f: X — Y be a Borel measurable
map from an absolute Borel space X into a separable metrizable space Y. Then the
following conditions are equivalent.

(1) f is a B-map.

(2) card(U(f")) < Ro, where U(f) is the set of uncountable order of f.
(3) fIBX)] C B(Y).

(4) flunivOM(X)] C univOM(Y).

(5) fTunivO(X)] C univ ().

(6) flunivO(X)] C univ(Y).

Proor. Purves’s Theorem A.43 yields the equivalence of the first three conditions
since f is a Borel measurable map. That condition (1) implies condition (4) follows
from Theorem 1.50. Proposition 1.58 gives condition (4) implies condition (5). Obvi-
ously, condition (5) implies condition (6). It remains to prove that condition (6) implies
condition (2). Suppose that condition (2) fails. Then, by Grzegorek’s Theorem 1.49,
condition (6) fails. This completes the proof. m|

2.1.3. Universally positive closure. Let M be a subset of a separable metrizable
space X. Denote by V the collection of all open sets V' such that ¥ N M is a
universally null set in X. As X is a Lindeloff space, there is a countable sub-
collection Vo, Vi,..., of ¥V such that ¥ = (JV = (U2, Vi Since univI(X)
is a o-ideal, we have V' N M is a universally null set in X. We call the closed
set Fx(M) = X\V the universally positive closure of M in X (or, positive clo-
sure for short). Fy is not the topological closure operator Cly, but it does have
the following properties. (Often the reference to the ambient space X will be
dropped from the operators Fy and Cly whenever the context of a discussion
permits it.)
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ProposiTION 2.11. Let X be a separable metrizable space. Then the following
statements hold.

(1) IfM) C M> C X, then Fx (M) C Fx(M>).
(2) If M| and M, are subsets of X, then

Fx (M U M) = Fx(M) U Fx (M2).
() IfM C X, then
Fx(M) = Fx (M NFx(M)) = Cly (M N Fx(M)).
(4) If M C X, then Fx (Fx(M)) = Fx(M).

Proor. Statement (1) is obvious.
Let us prove statement (2). As

M; N (X \ (F(M1) UF(M3))) € M; N (X \ F(M)) € univN(X),
fori = 1,2, we have
(M1 UM) N (X \ (F(Mp) U F(Mz))) € univ N (X).

Hence F(M; UM;) C F(M) UF(M>). We infer F(M1) UF(M>) C F(M| U M3) from
statement (1), thereby statement (2) is proved.

Clearly, F(N) = @ whenever N is a universally null set in X. Hence F(M) =
F(M NFWM )) follows from statement (2). The open set U = X \ Cl(M NFWM ))
satisfies U NM C X \ F(M). As

UNM C (X \F(M)) N M € univN(X)

we have X \ CI(M NF(M)) = U C X \ F(M). Thereby F(M) = CI(M NF(M)) is
established.

Let us turn to statement (4). As F(M) D M N F(M), from statements (1) and
(3), we have F(F(M)) D F(M N F(M)) = F(M). Applying (3) again, we have
F(F(M)) = CI(F(M) NF(F(M))) = CI(F(M)) = F(M). o

PrROPOSITION 2.12. Let Y be a separable metrizable space. If M C X C Y, then
Fx(M) =X NFy(M).

Proor. Observe that (Y\Fy(M))NM € abNULL. AsM C X wehave (Y\Fy(M))N
M = X\FyM))NM.So,Fx(M) C XNFy(M). Nextlet V be an open subset of ¥
suchthat VNX = X\Fx(M).AsM C X wehave VNM = M \Fx (M) € abNULL.
Hence Y \ V D Fy(M). The proposition follows because Fy(M) =X N (Y \ V) D
XNFEFyM). m]

Another property is the topological invariance of the positive closure operator.
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ProPOSITION 2.13. For homeomorphisms h: X — Y of separable metrizable spaces
Xand?, if M C X, then Fy(h[M]) = h[Fx(M)].

Proor. Denote the open subset X \ Fx (M)] of X by U. Then U N M is a universally
null set in X. It follows that /{U N M is a universally null setin Y. As /{lU N M] =
hlU] N h[M] and A[U] is an open set in Y, we have h[U N M] C Y \ Fy(h[M]),
whence Fy(h[M]) C h[M N Fx(M)]. Also Cly(h[M N Fx(M)]) = h[Cly(M N
Fx(M))] = h[Fx(M)]. Hence Fy (h[M]) C h[Fx(M)]. From the last inclusion we
have h[Fx (M)] = h[Fx (h~"h[M])] C h[h~'[Fy (hIM])]] = Fy (h[M]). o

2.2. Positive measures

Let X be a separable metrizable space. Since X \ Fx (X) is an absolute null space, it is
immediate that support(u) C Fy(X) for every continuous, complete, o -finite Borel
measure i on X. A useful class of continuous, complete, o-finite Borel measures
on X consists of those that are designated as positive. A u is defined to be a positive
measure if support(u) = Fx(X) # . We denote this class of measures by
MEASP(X), that is,

MEASP(X) = { 1 € MEAS®™(X): @ # support(x) = Fx(X) },

where MEAS®™(X) is the collection of all continuous, complete, o -finite Borel

measures w1 on X. (Note: MEASP®(X) C MEAS®™(X) is assumed.) It is obvi-
ous that MEASP® (X)) # ¢ does not imply that X is an absolute measurable space.
Indeed, consider any subspace of R that is non Lebesgue measurable. Equally
obvious is that MEASP®(X) = ¢ if X is an absolute null space. We turn to the
converse next.

2.2.1. Existence of positive measures. It is not immediate that positive measures
exist if Fy (X) # @. To this end, we have

THEOREM 2.14. For separable metrizable spaces X, MEASP®S (X)) is not empty if and
only if Fx (X) is not empty.

Proor. We shall use F for Fy in the proof. Suppose MEASP®S (X) is not empty. Then
there exists a measure u such that support(u) = F(X) # @.

Suppose that F(X) # . Note that M(X \F(X )) = 0 forevery continuous, complete,
finite Borel measure i on X. Let Uy, U1, . . ., be a countable base for the open sets of
X. From the definition of F(X), we have 1, (U, N F(X)) > 0 for some continuous,
complete, finite Borel measure u, on X whenever U, N F(X) # (. We may assume
u,,(U,, N F(X)) < 27" Letv, = uy,L (U,,ﬁF(X)) for each n. Then, for each Borel set
B, we have v(B) = Z;’io vu(B) < 2. Also, v({x}) = 0 for every point x of X. Hence
v determines a continuous, complete, finite Borel measure on X. We already know
support(v) C F(X). Let U be an open set such that U N F(X) # @. There exists an n
such that U D U, N F(X) # @, whence v(U) > 0. Hence F(X) C support(v). O
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COROLLARY 2.15. Let X be a separable metrizable space. If M is a subset of X with
Fx (M) # @, then support(u) = Fx (M) for some continuous, complete, finite Borel
measure |L on X.

Proor. We have Fyy(M) = M N Fxy(M) # (. Hence there is a measure v in
MEASP(M). Let u be an extension of v such that support() = Fx(M). Such
an extension will exist with the aid of the inclusion map of Fj; (M) into X. O

Of course, there are spaces for which the existence of positive measures is
obvious — for example, the unit n-cube [0, 1]” has the Lebesgue measure.

LEMMA 2.16. Let X be a separable metrizable space and let . be a continuous, com-
plete, finite Borel measure on X. If Fx (X) # 0, then there is a positive, continuous,
complete, finite Borel measure v on X such that v| support(u) = | support(i).

Proor. Let U = X \ support(n) and let 0 € MEASP®(X). Then v =
L (support(u)) + o | U is a positive measure that fulfills the requirements. Indeed,
to show that v is positive, observe that F(X) = support(u) U (U NFWX )) since
support(u) C F(X). Hence, if V' is an open set such that V' N F(X) # @, then either
V N support(u) # @or VN (U N F(X)) # , whence v(V) > 0 and thereby v is
positive. The remaining part of the proof is trivial. |

2.2.2. Acharacterization of univ 2t (X). Let X be a separable metrizable space and
recall that the collection of all positive measures on X is denoted by MEASPS(X).
Define the two collections

univ PSS (X) = N{MX, 1) : u € MEASP®(X) |,
univ NP4 (X) = N{ N, 1) : u € MEASPS(X) |

Clearly, univ 9 (X) C univ 9P (X) and univ(X) C univ 9P (X). We have the
following characterization.

THEOREM 2.17. Let X be a separable metrizable space. Then
univ M (X) = univMP%S(X) and univN(X) = univ NPS(X).

This characterization will turn out to be quite useful in the investigation of the unit
n-cube [0, 1]". We shall see later in this chapter that the homeomorphism group of
the space [0, 1] will play a nice role in a characterization of univ 93?([0, 1]).

PrOOF OF THEOREM. If F(X) = (J, then MEASPS(X) = ) and X € abNULL.
Hence univ 9P*(X) = (1@ which, by the usual convention, is equal to P(X) =
{E : ECX}. Moreover, univ9t(X) = univIX) = P(X).

Assume F(X) # (. Let us prove that univ 0t(X) D univ 9P%(X). To this end, let
M € univ 9P (X) and let i be a continuous, complete, finite Borel measure on X
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By Lemma 2.16 there is a positive, continuous, complete, finite Borel measure v on
X such that

1L (support(p)) = vl (support(u)).

Since M € M(X,v), we have M N support(n) € IM(X,v); and from M N
support(u) C support(u) we conclude M N support(u) € IM(X, w). Also, from
the completeness of p, we have M \ support(n) € (X, ). We have shown
M € M(X, ) for every u. Therefore M € univIM(X), and the first equation of
the theorem is proved.

The proof of the second equation is left to the reader.

2.3. Universally measurable maps

Let X and Y be separable metrizable spaces and consider a map f: X — Y. Recall,
for a complete, o -finite Borel measure space M(X, ), that the map £ is said to be
w-measurable if f ~1[U] is s-measurable for each open set U of Y. The collection of
all such p-measurable maps will be denoted by MAP(X, i ; Y).

At the end of Chapter 1 we defined the notion of absolute measurable functions on
the o -ring ab M (X), which may be properly contained in the o -algebra univ 9t (X)
(see Section 1.6.2 on page 27). Here we turn our attention to universally measurable
mapsf: X — 7.

2.3.1. Definitions. There are two possible ways to define universally measurable
maps. The following is preferred.

DeFINITION 2.18. Let X and Y be separable metrizable spaces. Amap f: X — Y is
said to be universally measurable if it is a member of the collection

univ MAP(X; Y) = N{MAP(X, u; Y): u € MEAS(X)}.

We have the following obviously equivalent condition.

PROPOSITION 2.19. Let X and Y be separable metrizable spaces. Amapf: X — Y is
universally measurable if and only if f ~'[B] is in univ MM (X)) whenever B is in B(Y).

Clearly every Borel measurable map is a universally measurable map. We have the
obvious proposition on composition of maps.

ProposiTiON 2.20. For separable metrizable spaces X, Y and Z let g: Y — Z
be a Borel measurable map. Then gf is in univ MAP(X;Z) whenever f is in
univ MAP(X;Y).

Improvements of the last two propositions can be found in Section 4.1 of Chapter 4.

A sequence of maps f,, n = 1,2, ..., defined on a set X into a metrizable space ¥
is said to be pointwise convergent if the sequence f,(x), n = 1,2, ..., is convergent
for every x in X; the resulting map is denoted as lim,_, « f;;. The following is easily
proved.
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THEOREM 2.21. For separable metrizable spaces X and Y, if a sequence f,
n=1,2,..., in univMAP(X;Y) is pointwise convergent, then lim,_, f, is in
univ MAP(X;Y).

2.3.2. Graph of universally measurable map. Suppose that X and Y are separable
metrizable spaces and let / : X — Y be a universally measurable map. Then for each
complete, finite Borel measure v on X there is a Borel class 2 map g: X — Y such
that f = g v-almost everywhere (see Appendix A). As graph(g) is a Borel set in
X x Y, the graph of g is a universally measurable set in X x Y. The same is true for
the graph of /', which will be shown next.

THEOREM 2.22. If f: X — Y is a universally measurable map, where X and Y are
separable metrizable spaces, then graph(f) is a universally measurable setin X x Y.
Additionally, if X is an absolute measurable space, then so is graph(f).

Proor. Let u be a complete, finite Borel measure on X x Y and denote the natural
projection of X x Y onto X by w. As v = mupu is a complete, finite Borel measure
on X, there is a Borel measurable map g: X — Y suchthat £ = {x: f(x) # g(x) }
has v measure equal to 0. Let 4 be a Borel set in X such that £ C 4 and v(4) = 0.
We have that graph(f) = (7 ~'[4] N graph(f)) U (= ~'[X \ 4] N graph(g)). As the
first summand has u measure equal to 0 and the second summand is a Borel set in
X x Y, we have that graph(f) is p-measurable. Therefore graph(f) is a universally
measurable setin X x Y.

Suppose further that X is an absolute measurable space. Let Y’ be a completely
metrizable space that contains Y, 7’ be the natural projection of X x Y’ onto X, and
let &/ = @uu, where @ is the inclusion map of X x Y into X x Y. With v = /4’
there is an absolute Borel space B contained in X such that v(X \ B) =0.As B x ¥’
is an absolute Borel space, we have that 7 ~'[B] N graph(g) is an absolute Borel
space. Moreover, u( ~![X \ B]) = 0. Thereby graph(f) is an absolute measurable
space. |

It is known that if f: X — Y is a map such that graph(f) is an analytic space,
then X is an analytic space and f is a Borel measurable map. Also, if graph(f) is an
absolute Borel space, then X is an absolute Borel space and /" is a Borel measurable
map. (See Section A.2 of Appendix A.) It is tempting to conjecture that the same can
be said if graph(f) is an absolute measurable space. But this cannot be as witnessed
by Grzegorek’s example of an absolute null space Y with card(Y) = non-L. Let X be
a non-Lebesgue measurable subset of R with card(X) = non-L. Then each bijection
f: X — Y has the property that graph(f) is an absolute null space whence an
absolute measurable space. Suppose that f is universally measurable and let v be a
complete, finite Borel measure on X, say the naturally induced measure on X by the
Lebesgue measure on R. Then the map ¢ given by x — (x,_ f (x)) will be universally
measurable and gz v is the zero measure because graph(f’) is an absolute null space.
So we will have 0 = (p#v(graph(f)) = v(X) = A*(X) > 0 and a contradiction
will occur.



2.4. Symetric difference of Borel and null sets 39

In [85, Theorem 2, page 489] it is shown that if X is an analytic spaceandf: X — Y
is amap whose graph is also an analytic space then f is necessarily a Borel measurable
map. This leads to the question

QuestioN. Suppose that X is an absolute measurable space and Y is a separable
metrizable space. Let f: X — Y be a map whose graph is an absolute measurable
space. Is f necessarily universally measurable?

2.3.3. Real-valued functions. We have been using the notation fg for the composi-
tion of maps /" and g. Now we want to introduce real-valued functions f and g and
the pointwise products of them. This presents a notational difficulty since products of
real numbers 7 and s are usually indicated by rs. To avoid confusion, we shall use f-g
to denote the product of real-valued functions f and g. We shall use rf for the scalar
multiple of a real number » and a real-valued function /. The same conventions will
be used for complex-valued functions. (The set of complex numbers will be denoted
by C.)

In addition to the usual operations of addition, subtraction, multiplication and
division of real-valued functions we will deal with the lattice operations of pointwise
maximum and minimum of finite sets of real-valued functions and also the supremum
and infimum of countable collections of real-valued functions (of course, extended
real-valued functions may result in the last two operations). We shall use the usual
symbols for these operations. A collection of real-valued functions is said to be point-
wise bounded above (or simply bounded above) by a function /" if every member of
the collection is pointwise less than or equal to 1.

THEOREM 2.23. Let X be a separable metrizable space.

(1) Ifr e Rand f € univ MAP(X;R), then rf € univ MAP(X;R).

(2) Iff € univMAP(X;R), then |f| € univ MAP(X;R).

3) Iff and g are in univMAP(X;R), then so are f + g, f-g, f Vgandf Agin
univ MAP(X; R).

@ If fu, n = 1,2,..., is a pointwise bounded sequence of functions in
univ MAP(X;R), then \/52., fn and N\oe, fn are in univ MAP(X; R).

Of course, one may replace R in the above theorem with a complete normed linear
space of functions and the statements (1), (2), and the appropriate parts of (3) will
remain valid; and, if the linear space has a suitable lattice structure as well, with
appropriate changes, the remaining statements will remain valid.

2.4. Symmetric difference of Borel and null sets

For complete, o-finite Borel measure spaces M(X, u), it is well-known that each
p-measurable set M is the symmetric difference of a Borel set B and a u-null set
N. (The symmetric difference of 4 and Bistheset AAB = (A\B)U(B\4).) It
was shown by E. Grzegorek and C. Ryll-Nardzewski [70] that no such representation
exists for universally measurable sets and universally null sets in an uncountable,
separable completely metrizable space X . That is, for such a space X and a universally
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measurable set M in X, it can be false that M is the symmetric difference of a Borel
set B and a universally null set N in X. This section is devoted to their proof of this
result.

2.4.1. Properties of the symmetric difference. Let X be aseparable metrizable space.
Denote by univ 9t o (X) the collection of all sets in X that have a symmetric difference
representation X = B A N for some B in B (X) and for some N in univ 91(X). Clearly,
univ N A (X) C univ M (X).

Suppose that M is in univ 9ia (X). Then M = B A N, where B is some Borel set
and N is some absolute null space. Hence there are absolute null spaces N1 and N,
such that

(1) Ny C B,
(2) BAN, =0,
(3) M = (B\ Ny) UN,.

So, Ny = M N (X \ B) is a Borel subset of the subspace M, and both N1 and N, are
totally imperfect spaces.
Recall from Chapter 1 that ANALYTIC is the collection of all analytic spaces.

ProrosiTiON 2.24. If A € ANALYTIC Nuniv9Ma (X), then there is a Borel set By
such that A C By and N = By \ A is a totally imperfect space.

Proor. With M replaced by 4, from condition (2) above, N, is a Borel subset of an
analytic set. As NV, is also totally imperfect, we have that NV, is a countable set. Let
By = BU N,, a Borel set, and let N = N;. Then By \ 4 = Nj, and the proposition is
proved. O

2.4.2. Main theorem. The main theorem concerns the equality univ9i(X) =
univ M (X).
Employing the equation (A.1) on page 181, we have

LemMA 2.25. Let X be a separable metrizable space and let Y be a subset of X
such that Y is an uncountable absolute Gs space. If A is a subset of Y such that
A € ANALYTIC Nnuniv M A (X), then the constituent decomposition

Y\4= Ua<w1 Aq,

of the co-analytic space Y \ A has the property that there exists a B with B < w| such
that card(Ay,) < Rg whenever o > .

Proor. By the above proposition, there is a Borel set By such that 4 C By and
N = By \ 4 is totally imperfect. There is no loss in assuming that By C Y. By
Theorem A.6, there is a 8 with 8 < w; such that the Borel subset Y \ By is contained
in Jy<g4a- S0, Ugs g 4a C N. As the constituents are mutually disjoint, we have
Ay = Ay NN for o > B. So the absolute Borel space A4, is totally imperfect, whence
countable, whenever o > f. a
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THEOREM 2.26 (Grzegorek—Ryll-Nardzewski). If X is an uncountable, separable,
completely metrizable space, then univ M a (X) is not equal to univ M (X).

Proor. In the space X there is an analytic space A such that the co-analytic space
X \ 4 has a constituent decomposition X \ 4 = |, <w; Ao With the property that the
Borel orders of the constituents 4, are unbounded (see the sentence that immediately
follows Theorem A.5). By the lemma, such an analytic set is not in univ 9t (X). O

As a corollary we have

CoroLLARY 2.27. If X is a separable metrizable space that is not totally imperfect,
then univ M A (X) # univ N (X).

Proor. If X is not totally imperfect, then it contains a nonempty, compact, per-
fect subset Y. Hence univdi(¥Y) = ab9M(¥) C univI(X). Suppose that
univMa(X) = univd(X). With the aid of the theorem there exists an M in
univ O (Y) \ univia(Y). Obviously M C Y and M € univIN(X). Clearly, if
M C Yand M € univIa(X), then M € univIta(Y). So a contradiction will
occur if M € univ N (X). a

The completely metrizable space requirement in the theorem may be replaced by
the requirement that X be an absolute measurable space as the next corollary shows.

COROLLARY 2.28. Let X be an absolute measurable space. Then univ i (X)
# univIM(X) if and only if Fx (X) # @.

Proor. Let Fy (X) # ¢ for an absolute measurable space X. By the definition of the
positive closure operator, X is not an absolute null space, whence X is not totally

imperfect.
Let Fx(X) = @ for an absolute measurable space X. Then X is an absolute null
space. So, univI(X) = univit(X) = {M: M C X } = univ I (X). O

Observe that the disjoint topological union of a space X that is not absolute mea-
surable and a space X, that is absolute measurable but not absolute null yields the
following proposition.

ProposiTION 2.29. There is a separable metrizable space X that is a non absolute
measurable space with univ 9t (X) # univ M (X).

2.4.3. More continuum hypothesis. Let us turn to the equality question for spaces
X that are not absolute measurable spaces. The following example uses a space
constructed by Sierpinski. The existence of this example is assured by the continuum
hypothesis. Sierpinski showed that there is a subset X of R with card(X) = ¢ = Ry
such that every subset M of X with card (M) = ¢ has positive outer Lebesgue measure.
Of course the continuum hypothesis then implies that a subset N of X has Lebesgue
measure 0 if and only if card(NV) < Ro.

We shall give a proof of the existence of a Sierpinski set with the aid of the partition
theorem, Theorem 1.37. To this end, consider the collection K of all subsets N
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of R with A(N) = 0. It is easily seen that this collection satisfies the hypothesis of
Theorem 1.37. Hence there is a partition Xy, @ < wq, of R such that card(X,) = R
and X, € K for each «. Thatis, R = U()Kw1 Xy and Xy, N Xg = §) whenever o # .
From each X, select a point x, and let X = {xy: o < w1 }.

ProposiTION 2.30. Assume that the continuum hypothesis holds. The subset X of R
defined above is a Sierpinski set, that is, card(X) = Ry and X has the property that
a subset M of X has A(M) = 0 if and only if card(M) < K.

ProoF. Suppose that M is a subset of X with A(M) = 0. As M € K, there is a
B with B < w; such that M C Ua<,sXa- Then M C {x4: a < B}, whence
card(M) < Ry. O

ProposITION 2.31. Assume that the continuum hypothesis holds and let X be
a Sierpinski subset of R. Then X is not an absolute measurable space and
univ N a (X) = univ NX).

PROOF. Suppose M € univI(X). Then M is (A|X)-measurable. Hence there are
Borel subsets of 4 and B of X such that 4 D M D B and A*(4 \ B) = 0, whence
card(4 \ B) < Rg. From M = A\ (4 \ M) we infer M € univ9i,(X). Hence
univ N (X) = univMX).

Suppose that X € abMEAS. As A(X) > 0, we have Fx(X) # @. Consequently,
univ N a (X) # univ M (X) and a contradiction has been reached. Thereby we have
X ¢ abMEAS. O

Sierpinski sets will be discussed further in Chapter 6.

2.5. Early results

In a summary of the early works [15] (written by S. Braun and E. Szpilrajn in colla-
boration with K. Kuratowski in 1937), the following result concerning subsets M of
the interval [0, 1] is presented. As we shall see, this theorem provides the motivation
for a large part of the book.

THEOREM 2.32. Let M be a subset of [0, 1]. Then the following statements concerning
the Lebesgue measure ) are equivalent.

(1) Iff: R — R is a nondecreasing function, then A(f[M]) = 0.

(2) Iff is a homeomorphism from M onto a subset of R, then A(f[M]) = 0.

(3) Iff is a B-homeomorphism of M into R, then A(f[M]) = 0.

(4) If f is a bijection of M into R for which f~' is Borel measurable, then
A(fIMT) = 0.

(5) M is an absolute null space.

(6) Iff: R — R is an orientation preserving homeomorphism, then A(f[M]) = 0.

Proor. Letusprove thatstatement (5) implies statement (4). Let M € abNULL and let
1 be the restriction measure 1 = A|(/[M]). As f~! is an injective Borel measurable
map, the induced measure v = f ! 4 1s a continuous, complete, finite Borel measure.



2.6. The homeomorphism group of [0, 1] 43

Hence v(M) = 0. Also, v(M) = (f~'yp) (M) = pu(f[M]). Therefore the Lebesgue
outer measure of /[M] is equal to 0, thereby statement (4) is verified.

That statement (4) implies statement (3), and that statement (3) implies state-
ment (2) are quite trivial.

It is obvious that statement (1) implies statement (6) and that statement (2) also
implies statement (6).

Letus prove that statement (6) implies statement (5). Let v be a positive, continuous,
complete, finite Borel measure. There is no loss in assuming that v([O, 1]) = 1. Let
f:[0,1] — [0, 1] be the increasing function defined by

o= {v([O,x]), if0<x<l;

0, ifx = 0.
Clearly f is a homeomorphism and can be extended to an increasing homeomorphism
of R. Observe that A([0,y]) = v(f~'[[0,»]]) whenever 0 <y < 1. Hence A(B) =
v(f_1 [B]) for every Borel set B contained in [0, 1]. By statement (6), A(f[M]) =0.
Let B be a Borel subset of R such that f[M] C B and A(B) = 0. Then 0 = A(B) =
v(f 1B = v (£ [fIMT]) = vE ).

To complete the proof, let us prove that statement (5) implies statement (1). Let
f: R — R be anondecreasing function. There is a countable subset D of R such that
f restricted to R\~ [D] is a homeomorphism. It follows that k( f [M \f~! [D]]) =0
and A(f[M Nf~1[D]]) = 0, whence A(f[M]) = 0. O

Actually the statement (6) was not part of the summary mentioned above. We have
included it here to illustrate how the homeomorphism group of [0, 1] plays a role in
this theorem. Indeed, in the proof of (6) implies (5) we have actually shown that,
for each positive, continuous, complete Borel measure v with v([O, 1]) = 1, there
is an increasing homeomorphism f of [0, 1] such that A|[0, 1] = fzv. Clearly the
last requirement on v is not a serious one since the formula can be corrected by the
insertion of a suitable coefficient before the measure 1|[0, 1].

2.6. The homeomorphism group of [0, 1]

For a topological space X, the group of homeomorphisms of X onto X will be denoted
by HOMEO(X).

2.6.1. Elementary general properties. Observe that, for any Borel measure  on a
separable metrizable space X and for any positive number ¢, we have the o -algebra
equality 9T(X, u) = 9M(X, c u). Hence the measures u used in the definitions of
univ M(X) and univIMP%(X) may be required to have the added condition that
w(X) = 1 whenever u(X) # 0 without any change in the resulting collections. As
usual, measure spaces M(X, n) with w(X) = 1 are called probability spaces.

LemMma 2.33. For a separable metrizable space X, if | is a complete, o-finite Borel
measure on X and ifh € HOMEO(X), then hyu is a complete, o -finite Borel measure
on X. Moreover, h™\[M] e IM(X, ) if and only if M € M(X, ha ).
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Proor. The first statement follows from Proposition A.36. Let us prove the second
statement. Observe that 4 and B are Borel sets such that 4 C M C B if and only if
h~1[4] and h~'[B] are Borel sets such that 7~ '[4] ¢ h~'[M] c h~'[B]. We infer
the second statement from Ay (B \ A) = u(h~'[B\ 4]). O

Observe that Ay [MEAS“’nt X )] = MEAS®™(X) whenever 4 is in HOMEO(X).
Hence we have invariance under action of HOMEO(X).

THEOREM 2.34. Let X be a separable metrizable space and let h be in HOMEO(X).
For subsets M of X, M is an absolute measurable subspace if and only if h~ ' [M]
is absolute measurable subspace. Also M € univOR(X) if and only if ™' [M] e
univ O (X). Hence, for continuous, complete, finite Borel measures  on X,

A~ [univ M(X)] = univMX) C N{MX, hgp): h e HOMEO(X) }.

Proor. The first statement is the result of the topological embedding property of
absolute measurable spaces. The second statement follows from the above lemma.
The final statement follows easily. |

We remind the reader of the definition of ab 9T(X), it is the collection of all subsets
of X that are absolute measurable spaces (see page 27). The first statement of the
theorem is the invariance of the collection ab 9Jt(X) under the action of HOMEO(X).

The universally positive closure operator Fy has the following nice property. The
proof is immediate from Proposition 2.13.

ProPosITION 2.35. Let X be a separable metrizable space. If M is a subset of X, then
h[Fx(M)] = Ex(h[M]) whenever h € HOMEQO(X). Hence h[Fx (X)] = Fx(X) for
every h in HOMEO(X).

2.6.2. The space [0,1]. The observation made in Section 2.5 about probability
measures will now be stated as a lemma.

LemMma 2.36. If  is a positive, continuous, complete, Borel probability measure
on [0,1), then there exists an h in HOMEO([0, 1]) such that © = h#(M[O, 1]).
Additionally, h may be assumed to be increasing, that is, orientation preserving.

Thus we have

THEOREM 2.37. A necessary and sufficient condition for M to be in univ im([O, l]) is
that M be in 93?([0, 11, hx (A|[0, 1]))f0r every h in HOMEOQO([0, 1]).

Proor. The necessary condition is clear since [0, 1] is an absolute measurable space.

For the sufficiency, let u be a positive, continuous, complete Borel prob-
ability measure on [0,1]. Let 2 be such that u = hu(A|[0,1]). As M is in
M ([0, 11,24 (1[0, 1)) we have that A~'[M] is in M([0, 1], ). Consequently,
R~ [M] € univ9PS([0, 1]) = univ 93?([0, 1]). O

The above lemma also yields the next theorem.



2.6. The homeomorphism group of [0, 1] 45

THEOREM 2.38. Let u and v be any pair of positive, continuous, complete, finite
Borel measures on [0, 1]. Then there exists an h in HOMEO([0, 1]) such that © =
huv whenever ([0, 1]) = v([0, 1]). Moreover, h may be assumed to be orientation
preserving.

ProoF. There exist 41 and 4, in HOMEO([0, 1]) such that . = h14(c A|[0, 1]) and
v = ha(c A[0, 11). We have ju = hig(c A|[0,11) = hig(ha™"),v = (b "),v. As
h = hihy~' € HOMEO([0, 1]), the theorem is proved. O

The following theorem is the case n = 1 of the Oxtoby—Ulam theorem, the subject
of Chapter 3. We leave its verification to the reader.

THEOREM 2.39. In order that a complete Borel measure pu on [0, 1] be such that
A = hygu for some h in HOMEO([0, 1]), where A is the Lebesgue measure, it is
necessary and sufficient that

(1) w(U) > 0 for every nonempty, open set U of the space [0, 1],
2) M({x}) = 0 for every x in [0, 1],
(3) u(0,1)) = 1.

It also may be required that h|9[0, 1] is the identity map.

2.6.3. non-L and « revisited. We promised in the comment section of the previous
chapter a proof of the equality of the two cardinal numbers «, and non-L where

non-L = min { card(E): E C [0, 1] with A*(E) > 0}.

Here 1* is the Lebesgue outer measure on [0, 1]. In Section 1.4 we defined another
cardinal number «,. The idea for the definition of «, (which has already been shown
to be equal to k) is the same as that used in the definition of non-L. We have the
equality of the three cardinal numbers.

PrROPOSITION 2.40. non-L = «; = «,.

Proor. Let E be a subset of [0, 1] with A*(E) > 0. We may assume £ N Q = 0,
where Q is the set of rational numbers, whence £ C N. Let f be a topological
embedding of NV into {0, I}N. Then 1 = f#(A|N) is a continuous, complete, finite
Borel measure on {0, I}N. It is easily seen that f[E] is a set with p* (f[E]) > 0.
Hence non-L > «, = .

Next suppose that w is a continuous, complete, finite Borel measure on {0, N
and E is a set with u*(E) > 0. Let f be a homeomorphism from {0, 1}N onto
the Cantor ternary set C, whence f is a continuous map into [0, 1]. Hence fyu is a
continuous, complete, finite Borel measure defined on [0, 1]. Let v be the positive,
continuous, complete Borel measure fyu + M([O, 1] \ support( f#u)). There is a
homeomorphism % of [0, 1] such that -gv = cA where ¢ is a positive number. It is
casily shown that E’ = A[f[E]] is a subset of [0, 1] such that A*(E") > 0. Indeed, let
B be a Borel set that contains E’. As (hf)’1 [B] D E, we have cA(B) = hyv(B) =
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v(h_l[B]) > fun(h7'[B]) = ,u((hf)_l[B]) > u*(E) > 0. Thereby we have shown
that k; = k, > non-L. |

We now have the important example of Grzegorek that shows the existence of an
absolute null subspace X of R with card(X) = non-L.

THEOREM 2.41. There exists a subset X of R such that card(X) = non-L and X is an
absolute null space.

Proor. By Corollary 1.45 there is a subset Y of {0, 1} such that ¥ € abNULL and
card(Y) = non-L. Let : {0, l}N — R be a continuous injection. The set X = A[Y]
fulfills the requirement. a

The reader will find several exercises on non-IL in the Exercise section at the end of
the chapter. Clearly, card(|_,, _non.1. £«) < non-L if and only if card(E,) < non-L
whenever o < non-L.

It can happen that a set £ can be small in the Lebesgue measure sense even though
A*(E) > 0 and card(E) = non-L. It can also happen that such a subset £ of [0, 1]
is such that [0, 1] \ £ contains no subset of positive Lebesgue measure. As usual, the
Lebesgue inner measure of a set E is

A (E) =sup{A(M): M C E,M is a Borel set }.

A subset £ of [0, 1] is said to have full Lebesgue measure in [0, 1] if and only if
A«([0,1]\ E) = O (note that £ need not be Lebesgue measurable). Let us state the
assertion as a proposition.

ProOPOSITION 2.42. There are subsets E of [0, 1] with card(E) = non-L that have full
Lebesgue measure in [0, 1].

The next theorem will follow easily and is left as an exercise.

THEOREM 2.43. Let X be an absolute measurable space. If | is a continuous, complete,
finite Borel measure on X with u(X) > 0, then there is a subset Y of X such that
card(Y) = non-L and such that the p inner measure (. (X \ Y) is equal to 0.

2.7. The group of B-homeomorphisms

Let X be a separable metrizable space. The collection of all B-homeomorphisms
f: X — X forms a group which will be denoted by B-HOMEO(X). The collection
MEASP ([0, 1]) of all positive, continuous, complete, finite Borel measures on [0, 1]
is not invariant under the action of B-HOMEOQO([0, 1]). That is, there exists an f in
B-HOMEO([0, 1]) such that f (M[O, 1]) is not a positive measure. Indeed, let C be
the Cantor ternary set. There is a ‘B-homeomorphism f such that f[C] = (%, 1] and
f[10,11\C] = [0, %]. For this / we have that (%, 1]is a set whose fi(1/[0, 1]) measure
is 0. Despite this fact, there is an analogue of the homeomorphism group property for
the group B-HOMEO(X) for absolute measurable spaces X which will be proved in
Section 2.7.2.
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2.7.1. Positive measures and B-homeomorphisms. Let Y be an absolute Borel
space with Fy (Y) # @. Then each open set V with N Fy(Y) # @ is an uncountable
absolute Borel space. Clearly, there is a countable collection V;,i = 1,2,. .., of mut-
ually disjoint, nonempty, open sets of Y such that V; N Fy(Y) # @. Let Uy =
Y\ U=, Viand U; = Viy1, i > 1. Each Uj is an uncountable absolute Borel space.
Nextlet F;,i =1,2,..., be asequence of mutually disjoint topological copies of the
Cantor ternary set such that each nonempty open set of [0, 1] contains an F; for some i.
Define g: ¥ — [0, 1] to be a B-homeomorphism such that g[Up] = [0, 1]\ U,Oil F;
and g[U;] = F; fori = 1,2, ... . With the aid of this B-homeomorphism we have

LeEMMA 2.44. Let Y be an absolute Borel space and | be a positive, complete, finite
Borel measure on Y. Then there is a B-homeomorphism g: Y — [0, 1] such that
guL 1S a positive, complete, finite Borel measure on [0, 1]. If u is also continuous,
then guu is also continuous.

Proor. Let u € MEASP?(Y). Then Fy(Y) = support(n) # @. Hence u(V) > 0
whenever V is an open set with V N Fy(Y) # @. Letg: Y — [0, 1] be as defined
above. Then gz (F;) > 0 for every i and therefore gup is in MEASPS([0,1]). O

2.7.2. B-homeomorphism group. Here is a ®B-homeomorphism analogue of Theo-
rem 2.38 for absolute measurable spaces X .

THEOREM 2.45. Let X be an absolute measurable space. If u and v are positive,
continuous, complete, finite Borel measures on X such that u(X) = v(X), then there
is an f in B-HOMEO(X) such that fuv = .

Proor. Since X is an absolute measurable space, there are absolute Borel spaces Y,
and Y, contained in Fy (X) such that ,u(YM) = u(X) and v(Yv) =vX). LetY =
Y,UY,. ThenY C Fx(X), u(X\Y)=0and v(X \Y) = 0. Letg: ¥ — [0,1]
be a B-homeomorphism provided by the above lemma. As g4(v|Y) and gz(u|Y)
are positive, continuous, complete Borel measures on [0, 1] with gu(v|Y )([0, 1]) =
g#(mY)([O, 1]), there is an # in HOMEQO([0, 1]) such that hzgs(v|Y) = gu(u|Y).
Consequently, g~ !,husgs(v|Y) = u|Y.Letf : X — X bethe B-homeomorphism that
is equal to g~ '/1g on Y and to the identity map on X \ Y. Then we have fyv = . O

Let us now relax the positive measure requirement of Theorem 2.45.

LeEMMA 2.46. Let X be an absolute measurable space and u be a continuous, complete,
finite Borel measure on X with 0 < (X). Then there is a ¢ in B-HOMEQO(X) such
that gy is a positive, continuous, complete, finite Borel measure on X.

Proor. Since pu(X) > 0 we have that Fx(X) is not empty. Hence, for every open
set U with U N Fx (X) # @, there is an uncountable absolute Borel set contained in
U NFx (X). From this we infer that there is a countable collection F;,i = 0,1,2, ...,
of mutually disjoint topological copies of {0, 1} such that each F; is a nowhere dense
subset of Fx (X) and such that Y| = U?io F; is dense in Fx (X). There is no loss in
assuming that u(F;) = 0 for each i. As X is an absolute measurable space, there
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is an absolute Borel space Yy contained in Fy (X) such that u(X) = w(¥p). Then
Y = Yp U Y] is an absolute Borel space. Let Z; = Y \ support(u) and denote by
Up the uncountable absolute Borel space Fy U Z;. Observe that £ (Uy) = 0 holds.
There exists a collection U;, i = 1,2,. .., of mutually disjoint, uncountable absolute
Borel spaces such that @ (U;) > 0 for each i and such that ¥ \ Uy = Uloil U;. Let
¢ be a B-homeomorphism of X such that ¢|(X \ Y) is the identity map on X \ ¥,
and ¢[U;] = F; fori = 0,1,2,... . Then support(pzu) = Fx(X) and the lemma is
proved. O

THEOREM 2.47. Let X be an absolute measurable space. If i and v are continu-
ous, complete, finite Borel measures on X with w(X) = v(X), then there is a ¢ in
B-HOMEOX) such that psv = L.

Proor. If u(X) = 0, then let ¢ be the identity map. Next suppose 1 (X) > 0. Then
v(X) > 0. There are ¢; and ¢, in B-HOMEO(X) such that ¢z and @4V are
positive measures with g1 (X) = ¢24v(X). Hence there is a ¢ in B-HOMEO(X)

such that @141 = Qos@24v. So 1t = 17 4pospayv. Let @ = 1~ o2 to complete
the proof. a

THEOREM 2.48. Suppose X is an absolute measurable space that contains a topolog-
ical copy K of {0, 1N, Let h: {0, 1}N — K be a homeomorphism and let yu be a
positive, continuous, complete, finite Borel measure on {0, I}N. If v is a continuous,
complete, finite Borel measure on X with u({O, I}N) = v(X), then there is a ¢ in
B-HOMEO(X) such that gsv = hu .

PrROOF. As hyu isa continuous, complete, finite Borel measure on X, the proof follows
immediately from the previous theorem. a

2.7.3. An example. For each absolute measurable space X, the B-HOMEO(X)
equivalence classes of continuous, complete, finite Borel measures on X are pre-
cisely those determined by the values p(X). The following example shows that
the values 1 (X) does not characterize the HOMEO(X) equivalence classes of con-
tinuous, complete, finite Borel measures on X. Consider the absolute Borel space
X =[0,1] x [0, 1]. Denote the algebraic boundary of X by d.X. If » € HOMEO(X),
then 2[0X] = 0X. For an f in B-HOMEO(X), it may happen that f[9.X] is not the
same as 0.X. The homeomorphism property of [0, 1] x [0, 1] will be investigated in
Chapter 3.

2.7.4. An application. A straightforward application of Theorem 2.45 will result in
the following theorem.

THEOREM 2.49. Let X be an absolute measurable space and p be a positive, continu-
ous, complete, finite Borel measure on X . Iff is a ji-measurable, extended real-valued
function on X such that [ is real-valued -almost everywhere on X, then there is a ¢
in B-HOMEO(X) such that f ¢ is w-measurable and [ f¢ d exists.
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We will consider the measure v on X given by
v(E) = [y g dn.  E € M, ),

where £ is such that v(X) = w(X). Clearly, v(E) < k u(E) whenever E € 9(X, ).
Moreover, v(E) = 0 if and only if u(E) = 0 because f is real-valued u-almost
everywhere on X. So v is a positive, continuous, complete, finite Borel measure on X
By Theorem 2.45 there is a ¢ in B-HOMEO(X) such that g = v. For E in B(X)
we have V(E) = () = (@~ '[E]). So, v(E) = 0 if and only if (¢~ ' [E]) = 0.
Let us show that a set is p-measurable if and only if it is v-measurable. If E is
u-measurable, then it is the union of a Borel set M and a set Z with u(Z) = 0, whence
v(Z) = 0. Thereby E is v-measurable. Conversely, suppose that E is v-measurable.
Then E = M U Z where M is a Borel set and v(Z) = 0. Hence u(Z) = 0, that is, E
is p-measurable.

LEmMA 2.50. Let X be an absolute Borel space and letf, (v and v be as in the discussion
above. If g is a Borel measurable, real-valued function on X with fX|g| dv < oo,
then fngv = fX g du where @ is ‘B-homeomorphism with g = v.

Proor. Clearly v(g~'[U]) = u((gp)~'[U]) whenever U € SB(R). Hence
[y gdv = [y gpdusince [y |g|dv < oco. ]

PROOF OF THEOREM 2.49. As there is an absolute Borel space X’ such that i (X \X") = 0
we may assume that X is an absolute Borel space. Since f is p-measurable and is
real-valued p-almost everywhere on X we have that f is v-measurable and real-
valued v-almost everywhere. There is a Borel measurable, real-valued function g
such that f = g v-almost everywhere. Now v(Z) = 0 and u(¢~'[Z]) = 0, where
Z = {x:f(x) # gx)}. As {x: fo(x) # go(x)} = ¢~ '[Z] we have f¢ = gp
p-almost everywhere. Since [, {‘Jrl—glf'l du = [y 1k+—blff‘| dp < oo, we have [, fdv =
[ygdv=[,gpdu = [, f¢du and the theorem is proved.

2.8. Comments

Comments on universally measurable sets in a space X cannot be isolated from
comments on absolute measurable spaces. So we shall comment on both of them
here.

Similar to the notion of absolute Borel space, the notion of absolute measurable
space is based on invariance under topological embedding — in this case, invariance
of u-measurability of topologically embedded copies of the space into any complete,
finite Borel measure space (Y L, MY, M))~ This notion is an extension of that of
absolute Borel space in the sense that every absolute Borel space is an absolute
measurable space. The topological nature of the definition of both absolute Borel
space and absolute measurable space will naturally lead to topological questions
about such spaces. As every separable metrizable space is topologically embeddable
into the Hilbert cube [0, 11V, one might wish to study only subspaces of this space.
But the richer structure of Borel measurability of mappings is also available in the
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investigation of these spaces. The role of Borel measurable injections of absolute
Borel spaces and absolute measurable spaces has been studied in the previous chapter.
It has been shown that absolute measurable spaces are not invariant under Borel
measurable injections. But they are preserved under ®B-homeomorphic embeddings.
Employing such embeddings, one finds that absolute measurable spaces may be
investigated by considering only subspaces of the space {0, 1} or the space [0, 1] if
the topological structure of the absolute measurable spaces is not of special interest.
An example of this situation is found in Section 1.5

2.8.1. R. M. Shortt’s observation. We have mentioned earlier in Chapter 1 that Shortt
observed that universally measurable sets in a space X is independent of the metric that
corresponds to the topology of the separable metrizable space (see [139]). Actually
he made a stronger claim, namely that the universally measurable sets in X depend
only on the fact that the o-algebra 2 is generated by a countable subcollection €
of 2. The setting for this claim is measure theory and probability theory in contrast to
the setting for the present book which concerns topological embedding and the role
of homeomorphism in the notion of absolute measurable spaces. In general, measure
theory and probability theory deal with a set X together with a given o -algebra 2 of
subsets of the set X. The isomorphisms are required to preserve o -algebra structures.
Usually no topological structures are assumed. Hence questions that are of interest to
us often do not appear. That part of measure theory and probability theory that con-
cerned Shortt assumed a condition that induced a metric structure, namely countably
generated o-algebras. The resulting topological structure need not be unique since
the o -algebra may be countably generated in many ways. Of course, under this con-
dition the isomorphisms generally will not be homeomorphisms or bi-Lipschitzian
homeomorphisms. See Appendix B for a development of the probability theoretic
approach to universally measurable spaces.

2.8.2. Historical references. In the Darst and Grzegorek Theorem 2.10, the equiv-
alence of conditions (1), (2) and (3) is Purves’s theorem (see Theorem A.43)
which was proved in 1966 [129]. Hence their theorem sharpens Purves’s result.
For X = R, Darst proved in 1970 [37] that condition (1) is equivalent to con-
dition (4) and in 1971 [39] proved the equivalence of conditions (1) through (5)
by assuming the continuum hypothesis in both papers. In 1981 Grzegorek and
Ryll-Nardzewski [71] eliminated the continuum hypothesis from Darst’s proof. The
inclusion of condition (6) into the theorem was made by Grzegorek [69] in 1981.
The investigation of the symmetric difference property of universally measurable
sets in a space was carried out by Grzegorek and Ryll-Nardzewski in [70]. The
main theorem (Theorem 2.26) was first proved by Marczewski [97] with the aid
of the continuum hypothesis. In Corollary 2.28, absolute Gs spaces are replaced by
absolute measurable spaces. The continuum hypothesis reappears in the investigation
of the symmetric difference property by way of the Sierpinski set in R. Sierpinski
proved in 1924 [141, pages 80, 82] the existence of his set under the assumption
of the continuum hypothesis. The Lusin sets and the Sierpinski sets are intimately
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connected by the Sierpinski—Erdds duality principle. For a nice discussion of this
duality, see the book by Oxtoby [120]. We have given a proof of the existence of
Sierpinski sets by means of the partition theorem, Theorem 1.37, without the aid of
the duality.

The early results about subsets of [0, 1] were summarized in [15]. This article
concerned not only universally null sets of [0, 1] but also many other singular sets
such as Lusin sets, Sierpinski sets, concentrated sets and others. A good survey
about singular sets can be found in the article by Brown and Cox [18] and in two
articles by Miller [110, 111]. The 1937 article [152] by Marczewski deals with spaces
more general than [0, 1], that is, separable metric spaces. The notions of absolute
measurable spaces and universally measurable sets in separable metrizable spaces
lead to the singular sets called absolute null spaces and universally null sets, which
are the same as was shown in Theorem 2.7. Though the book is about absolute
measurable spaces and absolute null spaces, a few other singular sets will be included
in later chapters as they are absolute null spaces with additional useful properties that
will be exploited.

The homeomorphism group HOMEO([0, 1]) was seen to be important very early
in the study of universally measurable sets in [0, 1]. Indeed, the group reduced the
investigation of all positive, complete, continuous, finite Borel measures on [0, 1] to
only the Lebesgue measure A|[0, 1]. Analogues of this phenomenon are presented in
Chapter 3.

The cardinal number « was first shown to equal non-L in [68]. The homeomor-
phism group property of universally measurable sets in [0, 1] is used to establish
the equivalence of the Grzegorek’s approach to the cardinal number non-L and
the approach of Section 1.4. Observe that the proof of the equivalence of the two
approaches also implicitly uses a B-homeomorphism into {0, 1} to prove Ky = Kg-

2.8.3. Positive measures and groups of maps. For separable metrizable spaces X,
the groups HOMEO(X) and B8-HOMEO(X) have natural roles in the book. The
collections univM(X) and univ H(X) are invariant under the action of the group
HOMEO(X). It was shown that the collection univ9t(X) is determined by the
collection of positive measures on X, that is, univ9(X) = univOP=(X) and
univ N (X) = univ NP (X). This fact is facilitated by the closure-like operation Fy
which connects the absolute null subspaces of X and the topology of X. The group
HOMEO(X) preserves the collection MEASPS (X)) of all positive, continuous, com-
plete, o -finite Borel measures on X . This is due to the identity Fx (h[M]) = A[Fx (M)]
for every # in HOMEO(X) and every subset M of X. Of course the identity does not
hold for every 4 in 5-HOMEO(X).

The group B-HOMEO(X) does not preserve topological properties; in particu-
lar, we have seen that MEASP®(X) is not invariant under this group. Indeed, if
X is an absolute measurable space that is not an absolute null space and if w is
a positive, continuous, complete, finite Borel measure on X, then the collection
{pui: ¢ € B-HOMEO(X)} is precisely the collection of all continuous, complete
Borel measures v on X with v(X) = u(X).
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2.1.

2.2.

2.3.

2.4.

2.5.

The universally measurable property

Exercises

Let X be the union of a totally imperfect, non Lebesgue measurable subset of
[0, 1] and the interval [2, 3]. X is not an absolute measurable space. Describe the
collection ab M (X). Describe the collection B(X) \ ab M (X).

Prove: non-L. = min {card(E): E C [0, 1] with u*(E) > 0} whenever u is a
positive, continuous, complete, finite Borel measure on [0, 1].

Prove that if M is a Lebesgue measurable subset of [0, 1] with A(M) > 0, then
there is a subset £ of M such that A*(E) = A(M) and card(E) = non-L. Hint:
There is a topological copy G of A contained in M such that A|G is a positive
measure on G and A(G) > %A(M).

Prove (see page 46 for A,): If a sequence E,,, n € w, is such that E,, C E,4+1 C
[0, 1] for every n, then

310, 11\ Uy En) = inf {2 ([0, 11\ E): n € ).

Prove Theorem 2.43. Hint: There exists an absolute Borel space B contained in
X such that |B is a positive measure and (X \ B) = 0.
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The homeomorphism group of X

The collection univ(X) of universally measurable sets in a space X has been
shown to be those subsets of X that are pu-measurable for every p in the collec-
tion MEAS®™(X) of all continuous, complete, o-finite Borel measures on X. We
have seen that the collection MEAS®™(X) can be replaced by the smaller collection
MEASPS(X) of those measures p in MEAS®™ (X)) that are also positive — that is,

support() = Fx (X) # @.

Very early in the history of universally measurable sets in [0, 1] it was seen that
the Lebesgue measure A on R determined the o -algebra univ 9([0, 1]). That is, the
measure A|[0, 1] and the group HOMEO([0, 1]) generated all of univ 21([0, 1]) in
the sense that

univ 9 ([0, 1]) = N{M € M([0, 11, hx (1[0, 11)) : & € HOMEO([0, 11)}.
This was made possible because of the elementary fact
{n € MEASP([0, 11): n([0, 1) < oo}
= U0 Ulchu(rI[0,1]): h € HOMEO([0, 1])}.

The aim of the chapter is to investigate these phenomena for spaces X other than
[0, 1].

For a separable metrizable space X it will be convenient to denote the collection
of all finite measures in MEASP?(X) by MEASPOSin (X)) that is,

MEASP () = (1 € MEASPS(X): (X)) < oo} (3.1)

Associated with this collection are two actions of the group HOMEO (X') on measures.
In particular, for a fixed p in MEASPOSin (X)),
Uewo Ufchun: h e HOMEO(X)} € MEASPOSin(x),
univMX) C (O, hzp): h € HOMEO(X)}.
NotaTioN 3.1. For a separable metrizable space let G(X) be a nonempty subset of

HOMEO(X) and let i be a continuous, complete, o -finite Borel measure on X. The
collection {hyw: h € G(X)} will be denoted by G(X )4 .
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The above two inclusions lead to

DerINITION 3.2. For a separable metrizable space X let © be a measure in
MEASPOSH™ (XY and let G(X) be a subgroup of HOMEO(X). w and G(X) are said
to generate MEASPOSin (X jf

MEASPI () = .o U{ev: v e Gun). (3.2)
w and G(X) are said to generate univ M (X) if
univ M) = N{MX, hgp): h € GX)}. (3.3)

Of special interest is the action of homeomorphisms on the Lebesgue measure on
the space [0, 1]”. Suppose that ¢ is a homeomorphism of [0, 1]” onto X and Aq is
the Lebesgue measure on [0, 1]”. Then ¢y is a positive, continuous, complete,
finite Borel measure on X with g0 (¢[0[0, 11"]) = 0. This leads to the following
definition.

DEFINITION 3.3. A measure pu on an n-cell' X is said to be Lebesgue-like if

(1) 1 € MEASPoSfin(x),
(2) n(@X) =0, where 0X is the algebraic boundary of X.

Note that not every measure x in MEASPS0 ([0, 117) is Lebesgue-like if n > 1.
In the context of HOMEOQO(X) it will be convenient to define the notion of
homeomorphic measures on X, which is related to Definition 1.4.

DEerFINITION 3.4. Borel measures |t and v on X are said to be homeomorphic if there
is an h in HOMEO(X) such that v = hypu.

Let us begin by introducing a metric p on HOMEO(X).

3.1. A metric for HOMEO(X)

On choosing a bounded metric d for a separable metrizable space X, one will realize
a useful metric p on the collection HOMEO(X). Although most of the results on
relationships between the group HOMEO(X) and the o -algebra univ 91(X) do not
refer to a metric on HOMEQO(X), we will often use such a metric in many construc-
tions that appear in this chapter. Fortunately, the constructions are made on compact
spaces X . In this setting the metric p on HOMEO(X) is complete. This completeness
will avail us with the Baire category theorem.

DerINITION 3.5. Let d be a bounded metric on X. For each h in HOMEO(X), its
norm, denoted by ||h||, is defined to be

12| = sup{d(h(x),x): x € X}.

1 An n-cell X is a topological copy of [0, 1]”. Its algebraic boundary 3.X is the topological copy of [0, 1]".
Of course, the topological boundary of X is always empty. Clearly, Fx (X) = X # 0.
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For f and g in HOMEO(X), define the distance p(f,g) by the formula

o(f,e) =l I+ 11/ "gl.

Obviously p(f,g) = d(f(x),g(x)) + d(f~!(x),g"(x)) for each x in X. So, if
fu,on = 1,2,..., is a Cauchy sequence in HOMEO(X), then f,(x) and f,~'(x),
n=1,2,...,are Cauchy sequences in X with respect to the metric d. From this we
infer that p is a complete metric on HOMEO(X) whenever d is a bounded, complete
metric for X.

PRrOPOSITION 3.6. Suppose that X is a compact metrizable space and let d be a metric
for X. The following are group properties of the norm | - | and the metric p on

HOMEO(X).

W 1A=

) p(f,2) = p(f ", g™"), whence p(f,id) = p(f~1,id),

3) p(gfg’l,ghg’l) < 2a)(g: o(f, h)), where w(g: n) is the usual modulus of
uniform continuity’ of g,

@) p(ef.2) < If I +o(g: 111)

() p(f2.2) < IS+ (g™ IF1)-

The verifications of these properties are simple exercises left to the reader. The
next proposition, which concerns the hyperspace’® of a compact metric space X, is
also left as an exercise for the reader.

PROPOSITION 3.7. Let X be a compact metric space and let the hyperspace 2% of
nonempty closed subsets of X be endowed with the Hausdorff metric. The map
(F,h) — h~'[F) is a continuous map of 2¥ x HOMEO(X) into 2X.

Let F be a subset of a metric space X. A homeomorphism # is said to keep F' fixed
if 7(x) = x whenever x € F, and is said to keep F invariant if h[F] = F. Consider
the subgroups

HOMEO(X; F fixed) = {h e HOMEO(X): h~'(x) = x, x € F},
HOMEO(X; F inv) = {h e HOMEO(X): h~'[F] = F}

of HOMEO(X). As the reader can easily verify, the first one is always closed, and
the second one is closed whenever F is a compact subset of X .

Let us introduce a continuous, finite, Borel measure p into the discussion. We
assume that F' is a compact subset of a separable metric space X . There is no loss in
assuming that X is a subspace of the Hilbert cube and that the metric on X is induced
by a metric on the Hilbert cube. The map f +— fuu(F) is a real-valued function on
the metric space HOMEO(X). We claim that this map is upper semi-continuous.
Indeed, let o be a real number and f* be such that fzu(F) < «. Let U be an open

2 For a function f: X — Y, where X and Y are metric spaces, the modulus of uniform continuity of f is
w(f:n) = sup{dy (f (¥),/ (") dx (x,x") < 7}, where n > 0.
3 See Appendix A, page 196, for the definition of the hyperspace 2¥ and its Hausdorff metric.
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neighborhood of F in the space X such that fuu(U) < a. Let U’ be an open set in
the Hilbert cube such that U = U’ N X. As F is compact there is a positive number
8 such that A~'[F] ¢ U’ whenever p(h,id) < 8. Hence there is neighborhood V'
of / in HOMEO(X) such that ggu(F) < o whenever g € V, thereby the upper
semi-continuity at f* follows. Let us summarize this discussion as a lemma.

LemMmA 3.8. Let X be a metric space with a totally bounded metric. If F is a compact
subset of X and w is a continuous, finite Borel measure on X, then the function
f = fu(F) is an upper semi-continuous real-valued function on the metric space

HOMEO(X).

Here is a simple proposition that will be used often. Its proof is left to the reader.
Note that no metric on X is assumed.

PROPOSITION 3.9. Suppose that X is a separable metrizable space. Let U and V be
disjoint open sets and let F be X \ (UU V). If h,, is in HOMEO(X \ V; F fixed ) and
h, is in HOMEO(X \ U, F fixed), then there is an h in HOMEO(X; F fixed ) such
that h|(X \ V) = h, and h|(X \ U) = h,,.

3.2. General properties

There are several assertions that hold for spaces more general than those investigated
in this chapter. The first theorem follows easily from definition.

TueoreM 3.10. For a separable metrizable space X, if p is a measure
in MEASPSIN (XY and G(X) is a subgroup of HOMEO(X) that generate
MEASPSIN (XY then v and G(X) generate MEASPos:finx) for every v in
MEASPos-fin (),

We have the following lemma.

Lemma 3.11. For a separable metrizable space X, let u be a measure in
MEASPSin (XY and G(X) be a subgroup of HOMEO(X). If MEASPOsfin(x) jg
generated by u and G(X), then

univ M) = N{MWX, hgp): h € G},
that is, i and G(X) generate univ 9 (X).

PrOOF. Suppose w satisfies equation (3.2). Let v be any measure in MEASPOSfin ().
Then there is a # in G(X') and a positive ¢ such that ¢ hxu = v. Note M (X, c hup) =
M (X, hy ). The proof is easily completed by an application of Theorem 2.17. O

The next countable union theorem will prove quite useful.

THEOREM 3.12. Suppose that X is an absolute measurable space and that X;,
i =1,2,..., is a sequence in univ IM(X) such that X = U?i] X;. Let u be a pos-
itive, continuous, complete, finite Borel measure on X and G(X) be a subgroup of
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HOMEO(X). If; for each i, u|X; and
Gi(X) = {hlX;: h € G(X) and h[X;] = X;}
generate univ M (X;), then u and G(X) generate univ M (X).

ProoF. Only ({9N(X, Agw): h € G(X)} C univ M (X) must be shown. Suppose that
M is amember of the left-hand side and fix an i. As X; is auniversally measurable set in
X, we have, by Proposition 2.5, that X; is an absolute measurable space. Hence the set
E; = M NX; satisfies E; € E)J?(Xi, (h|)(,')#(/1,|)(l')) whenever i € G(X) and h[X;] = X;.
As p|X; and G;(X) generate univ 91(X;), we have that E; is in univ 91 (X;). Hence E;
is an absolute measurable space. As M = J;2, E; is an absolute measurable space,
it now follows that M is in univ M (X). a

The proof of the last theorem leads to the observation: If a subset Go(X) of
HOMEO(X) is such that | J,.ofcv: v € Go(X)au} = MEASPSfin (X)  then
w and any subgroup G(X) of HOMEO(X) that contains Go(X) will generate
MEASPoSfin(x) A similar observation can be made for generating univ M (X).

Here are simple observations whose proofs are left to the reader. Recall the defini-
tion of ab 9JT(X); it is the collection of all subsets of X that are absolute measurable
spaces (see page 27).

ProposiTION 3.13. Let X and Y be absolute measurable spaces with X C Y. If
M € abM(X), then M € ab9N(Y). And, if M € abIN(Y), then MNX € abIM(X).
Consequently, a subset M of X is in univ 9 (X) if and only if M is in univ 9t (Y).

ProposITION 3.14. Let X be a separable metrizable space. A subgroup G(X) of
HOMEO(X) and a continuous, complete, finite Borel measure |1 on X will generate
univ M (X) if and only if there is a subcollection Go(X) of G(X) such that

univ M X) D (M, hgp): h € Go(X)}.

3.3. One-dimensional spaces

Let us begin with the simplest of one-dimensional spaces, namely the connected one-
dimensional manifolds M. Topologically, there are four of them: [0, 1], [0, 1), (0, 1),
and ([0, 1] x [0, 1]), the algebraic boundary of the two-cell [0, 1] x [0, 1]. We shall
derive the desired results from the theorem for the Lebesgue measure A|[0, 1] and the
group HOMEO([0, 1]).

3.3.1. Universally measurable sets in M ;. Since one-dimensional manifolds M) are
absolute Borel spaces we have univ 9t (M) = ab M (My).
Consequently we have

ProPOSITION 3.15. Let X be (0, 1) or [0, 1). For subsets E of X, E is in univ 9 (X) if’
and only if E is in univ SDT([O, 1]).
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PropPOSITION 3.16. Let X be (0,1) or[0, 1) and letf : X — [0, 1] be the inclusion map.
If i is a positive, continuous, complete, finite Borel measure on X, then (fy)|X = p.
Also, if v is a positive, continuous, complete, finite Borel measure on [0, 1], then

JelX) =v.

Proor. The first implication is obvious. The second implication follows easily since
the measure v is continuous. a

For completeness we state the theorem for the manifold [0, 1].

THEOREM 3.17. The group HOMEO([0, 11; 8[0, 1] fixed ) and the restricted Lebesgue
measure A|[0, 1] generate MEASPosfin ([0, 17) (the collection of all positive, continu-
ous, complete, finite Borel measures on [0, 1]) and thereby generate univ 9t([0, 1]).

Of course, the issue is whether some w in MEASPOS™(Af;) and the group
HOMEO(M,) will generate MEASPS"(A17). Let us begin with M being either
(0,1) or [0, 1).

Lemma 3.18. If X is either (0, 1) or [0, 1), then HOMEO(X) and Lo = L|X generate
MEASPoSfin (x) Hence

univ MM (X) = {9, hgho): h € HOMEO(X)),
that is, Lo and HOMEQO(X) generate univ M (X).

Proor. Consider the commutative diagram

where 1" is the inclusion map and 4 is an orientation preserving homeomorphism. We
have fgAo = A1, where A; = A|[0, 1]. Let v be in MEASPS-fn (X)) with v(X) = 1.
As fuv is in MEASPesfin ([0, 1]), there is an orientation preserving homeomorphism 4
in HOMEO([0, 1]) such that fyv = hgA1 = hyfyro. From the commutative diagram
we have fyv = hyfgro = f(h|X)u)o. Note thatf_l[M] = M whenever M C X.
Hence v(M) = fyv(M) = fu(h| X)uro(M) = (h|X)gro(M) whenever M € B(X).
The lemma now follows. o

Letus turn to the one-dimensional manifold S, the algebraic boundary of the planar
set {(x, e < 1}. We denote the one-dimensional Hausdorff measure by
H;. Let I; and I; be two topological copies of [0, 1] in Sy such that S| = (/1 \ 9/1) U
(I \ 81»). Then Hy |I; and HOMEO(J;) generate MEASPSfin (1) for each i. Also, for
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each i, u|l; € MEASPSMin (1;) whenever © € MEASPOS(S ). We are now ready to
prove

LemMa 3.19. The collection MEASPOSfN(S1) is generated by the measure Hy|S1 and
the group HOMEQ(S,). Hence

univi)ﬁ(Sl) = ﬂ{,‘)ﬁ(Sl,h#(H”Sl)): he HOMEO(Sl)},
that is, H{|S; and HOMEQ(S) generate univ 9t (Sy).

Proor. Forconvenience let © = H;|S;. Let v be a positive measure such that v(S|) =
1 (S1). With the notation that precedes the statement of the lemma, there is no loss in
assuming v(/1) > u(ly). Hence

vo = plL (I \ ) + SRy | (1N D) + vl (b \ )

is a positive Borel measure. Observe vo(/1) = v(/1) and vo(S1) = v(S1) = w(Sy).
There is an h; in HOMEQO(/;; 917 fixed) such that vg|ly = hygz(v|[;). Let Hj be
the map /1 on /) and the identity map on S \ /. Clearly, H; € HOMEO(S;). Let
fi: 1 = S; be the inclusion map. Then Hyxv = fighi#(voll1) + vL(S1 \ I1) = vo.
Let us work on I5. As vo(I; \ ) = (1 \ ) we have vo(l3) = n(lz). Hence
there is an /1, in HOMEQ(/,; 01, fixed) such that hyy(vo|l) = u|l>. Let Hy be the
map A on I, and the identity map on S; \ I». Clearly, H, is in HOMEO(S;). Let
f2: I — Sj be the inclusion map. Then Hryvg = wl (S1\ L2) +foashou(vol 1) = p.
Finally, h = HyH; is in HOMEO(S;) and huv = . The remainder of the proof is
easily completed. O

A second proof can be produced by selecting a point * in S; and considering
the subgroup HOMEO(Sy; {*} fixed) of HOMEO(S;). Let ¢: [0,1] — S| be a
continuous surjection such that ¢|(0,1) is a homeomorphism and ¢[d]] = {*}.
Observe that each 1 in MEASPOSfi"(S,) corresponds to a unique measure g in
MEASPoSin ([0, 11) with @40 = p and that phg is in HOMEO(S; {*} fixed ) when-
ever hy € HOMEO([0, 1]). The reader is asked to show that if u and v are in
MEASPoSfin(S,) then there is an 7 in HOMEO(S; {*} fixed ) such that v = hzu
whenever 1(S1) = v(S). As a consequence we have that MEASPOST"(S ) is gener-
ated by u and HOMEO(S; {*} fixed ). The reader will see this approach can be used
to advantage in the case of the n-dimensional sphere S, (see page 73).

Let us summarize the theorem for [0, 1] and the last two lemmas into the following.

TueoreM 3.20. If My is a connected one-dimensional manifold, then some
in MEASPSTN (A1) and the group HOMEO(M)), indeed the subgroup
HOMEO((M;; aM, fixed), will generate MEASPSi" (M ). Hence

univ M M) = N{M@M,, hgv): h € HOMEO (M)},

whenever v € MEASPOSfin (37},
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3.3.2. Thesimpletriod. Thisexample will show the utility of Definition 3.2. A simple
triod is a one-dimensional space that is homeomorphic to the letter T. That is, a simple
triod is the union of three planar line segments /1, /5 and /3 with exactly one common
point which is one of the two end-points of each of the line segments. Denote the
common point by p and the other end-point of /; by a;, i = 1,2,3. For each ¢ in
HOMEO(T), observe that (p[{al,az,a3}] = {a1,a2,a3} and ¢(p) = p. Denote the
set |, 9L by V.

We shall assume that the line segments 7;, i = 1,2,3, each have length equal
to 1. Consider the restricted Hausdorff measure © = H; |T. We have the following
proposition.

ProposiTION 3.21. Let u = Hy |T and G(T) = HOMEO(T; V fixed). Then u and
G(T) generate univON(T), and hence u and HOMEO(T) generate univ(T). The
measure y and the group HOMEO(T) do not generate MEASPOS" (T,

Proor. The above notation gives T = I} UL U 3. Let Gi(T) = {hll;: h €
HOMEO(T; ¥V fixed), A[l;] = I;} fori = 1,2,3. As G;(T) is HOMEO(X;; 91; fixed),
the measure w|/; and the group G;(T) generate univ 91(X;); Theorem 3.12 establishes
the first statement of the proposition. To establish the second statement consider the
measure v = 1 | Iy + 2l I + 3 L 5. The reader is asked to verify the second
statement with the aid of © and v. O

It is clear that the argument in the above proof will apply to the more general one-
dimensional finitely triangulable space |K| | (that is, roughly speaking, |K| | is formed
from a finite number of vertices and a finite number of arcs that join pairs of distinct
vertices with at most one arc joining such pairs; the higher dimensional case will be
defined later). The space |K| need not be connected. Let |K? | denote the collection
of all vertices of |[K1]|.

THEOREM 3.22. Let |K1| be a one-dimensional finitely triangulable space. Then there
is a pu in MEASPOSIN (K, |) such that ju and the group HOMEO(|K; |; |KY| fixed)
generate univON(|K,|). Hence the same u and HOMEO(|K|) also generate
univ MM (1K1 ).

A one-dimensional finitely triangulable space can be realized by vertices and
straight line segments in R for a sufficiently large k. The proof of the theorem
is left to the reader.

For a space X, the equivalence classes {fsu: h € HOMEO(X)} of the collection
MEASPoSfin (x) " where p is in MEASPOS (X)), can be quite complicated. Let us
investigate these equivalence classes for some simple examples. We have already
determined them for the connected one-dimensional manifolds M; and the sim-
ple triod T. That is, for M, the equivalence classes are characterized by the pair
(i, 7) where p is a measure in MEASPSfi" (A7) and (M) = r. We leave the
description of the equivalence classes for the simple triod T as an exercise for
the reader.
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3.3.3. More examples. Up to now all of the examples in this chapter have been
locally connected. The next two examples are the usual connected but not locally
connected spaces.

ExampLE (Graph of sin(1/x)). In the space R?, let X = Xy U X; where Xy =
{(x1,x2):x1 = 0, —1 < xp < 1} and X is the graph of x, = g(x1) = sin(1/x1),
where 0 < x; < w7, As X is locally connected at x if and only if x € Xj, we
have h[Xy] = Xo whenever £ is in HOMEO(X). Hence a necessary condition on i
and v to satisfy Az = v is that u(Xp) = v(Xp) and pn(X;) = v(X7). But this
condition is not sufficient as we shall show. Let pg = (%, 0). The points of maximum
of the graph X7 will be listed as p;, i = 1,2,..., where the first coordinates of the
sequence form a decreasing sequence in (0,77~ !]. Denote by J; the arc in X that
joins p;—1 to p;, i = 1,2,.... Also, let J; be the arc in X that joins (/%,O) to
(W,O), k =1,2,.... Select positive, continuous, complete Borel measures u
and v on X such that u(Z;) = 2% and v(J;) = 2% and u(Xo) = v(Xy) = 1. Then
A4, = UL, I and B, = | Jj_, Ji are arcs such that py is an end point of both 4,
and B, and such that ©(4,) = v(B,) = 1 — 27" for each n. Suppose that / is a
homeomorphism in HOMEO(X) such that v = hyu. Note that 2/~ '[B,] is a unique
arc in X| that contains po. As v(B,,) = hsju(B,) = u(h~'[B,]) wehaved, = h~'[B,],
whence B, = h[A4,]. Consequently, 4(p;) = (m,O). Hence h(p;) converges to
(0,0) as i — oo. But p; converges to (0, 1) and h((O, 1)) is either (0, 1) or (0, —1).
A contradiction has appeared. Consequently, there are no 4 in HOMEO(X) such that
v = hup.

ExampLE (Warsaw circle). The Warsaw circle W is a well-known example in topol-
ogy. It is a one-dimensional subset of R? formed from the space X of the above
example by joining the points (0, —1) and (z !, 0) with a topological arc X5 in R?
so that X N X, is precisely the set consisting of these two points. The space
W = Xo U X1 UXj; is the Warsaw circle. The above analysis of X can be adjusted to
apply to the Warsaw circle. Clearly, 2[Xy] = Xp and A[X] UX>] = X] U X, whenever
h € HOMEO(W). Observe that a continuous, complete, finite Borel measure x on
W is positive if and only if u|(X] U X3) is positive.
We leave the proof of the following theorem as an exercise.

THEOREM 3.23. Let W be the Warsaw circle. For some measure n in MEASPOSi (i),
w and HOMEQ (W) generate univ I (W).

An analogous theorem holds for the sin(1/x) example above.

3.4. The Oxtoby—Ulam theorem

We have seen that the collection MEASPSfin([0,1]) of all positive, continu-
ous, complete, finite Borel measures on [0, 1] can be characterized by the group
HOMEO([0, 1]) and the Lebesgue measure A on [0, 1]. Indeed, it was shown that the
equivalence classes of MEASPOs-f ([0, 1]) are determined by the nonnegative real
numbers c (that is, ¢ 1). The natural generalization of this fact to the unit n-cell [0, 1]"



62 The homeomorphism group of X

was proved by J. C. Oxtoby and S. M. Ulam in [122]. Rather than just cite the result
we include a proof for the benefit of the reader.

THEOREM 3.24 (Oxtoby—Ulam). Let A be the Lebesgue measure on the n-cell [0, 1]".
In order for a Borel measure j1 on [0, 11" be such that there is an hin HOMEQO([0, 1]1")
with . = hg it is necessary and sufficient that

(1) w be a positive, continuous, complete Borel measure,
(2) p(0,11") =1,
(3) n(a[0,11") = 0.

Moreover, the homeomorphism h may have the property that it is the identity map
on 9[0, 11"

The proof will be divided into several parts. Before embarking on the proof let
us state a consequence of the Oxtoby—Ulam theorem for n-dimensional finitely
triangulable spaces.

THeOREM 3.25. Let |K,| be an n-dimensional finitely triangulable space. Then there
exists a measure (v in MEASPS (1K 1) such that n and HOMEO(|K,,|) generate
univ 9 (K, ).

We shall first prove the Oxtoby—Ulam theorem, delaying the proof of this con-
sequence to the end of the section. The definition of a finite-dimensional finitely
triangulable space is also delayed to the end of this section (see the footnote on
page 72).

3.4.1. Profs of the Oxtoby—Ulam theorem. The literature contains two proofs of
the Oxtoby—Ulam theorem. They are essentially the same since both rely on the same
key lemma concerning the existence of a homeomorphism that possesses a special
property. The fact is that the two proofs of the key lemma are very different. The orig-
inal proof by Oxtoby and Ulam relies on a complete metric on HOMEO([0, 1]1") and
the Baire category theorem, and the subsequent proof by C. Goffman and G. Pedrick
[63] relies on a measure theoretic property of o -finite Borel measures on R”. We shall
give both proofs of the key lemma.

It is time to state the key Lemma 3.26. Observe that the universally positive closure
Fyr (M) of an n-dimensional manifold is M. We shall call a measure © on a compact,
connected manifold M (with or without boundary) Lebesgue-like if u is a positive,
continuous, complete, finite Borel measure on M with w(dM) = 0.

LemMmA 3.26. For an m-cell J let ;v be a Lebesgue-like Borel measure on I =
J x [—1,1] and let a; and oy be positive numbers such that ay + oar = u(l).
Then there is a ¢ in HOMEQO(; 01 fixed) such that guu is Lebesgue-like on
both Ry =J x [—1,0] and Ry = J x [0,1] and such that osuu(R1) = o1 and
st (R2) = a.

We begin with the proof by Goffman and Pedrick. The proofuses a “parallel slicing
lemma” for continuous, o -finite Borel measures i on R” (proved by Goffman and
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Pedrick in [63, Lemma 1]) which assures that every slice parallel to some fixed
hyperplane has ;« measure equal to 0. (See also [62].)

A hyperplane E of R" is the set of all solutions of the equation (x — b,e) = 0,
where e is in the unit sphere S,_1 and b is in R”, and (-, -) is the usual inner prod-
uct of R”. The vector e is, of course, a unit normal vector of the hyperplane E.
By a k-flat we mean a nonempty intersection of » — k hyperplanes whose nor-
mals are linearly independent. Each k-flat determines a family consisting of all
hyperplanes that contains the k-flat. This family yields a set of unit normals that
forms a closed nowhere dense subset of S,,_| whose (n — 1)-dimensional Hausdorff
measure is 0.

For a finite Borel measure i on R” (not necessarily continuous) and for each integer
kwith 0 < k£ < nlet Fj be the collection of all k-flats F such that w(F) > 0 and such
that F contains no j-flats with positive u measure withj < k. It is easily seen that F
is a countable set. Indeed, let us assume the contrary. Then there is an uncountably
infinite number of 1-flats F with the property that w(F) > 0 and u({p}) = 0 for
each p in F'. Clearly we may assume that there is a positive number & with ©(F) > ¢
for these uncountably many 1-flats . Now select a sequence F,,, m = 1,2,..., of
distinct members from this collection. Clearly, w(F, N J; F;) = 0 for each m. So

lj<m
wehaveme < M(Uj Fj) < u(R") < oo for each m, a contradiction. Analogously

<m

one can show that each F is a countable set. Let F,, = U}’z_l F;j. Then, by the Baire
category theorem, the set

Ew = Urper,{€e € Sp-1: eis normal to F}

is of the first Baire category in S,_1. It is easily seen that H,_1(£,) = 0, also. We
have the following lemma.

LemMa 3.27. If u is a continuous, o-finite Borel measure on R", then, except for
points e in a subset £, of the first Baire category in S,_1 with H,_1(€,) =0,

w(E) = 0 for every hyperplane E for which e is a normal.

Proor. First assume that p is finite and let e € S,—1 \ &,.. Suppose that 1 (E) > 0 for
some hyperplane £ with e as its normal. Frome € S,_1 \ £, we infer £ ¢ F,_. Let
E,_> be an (n — 2)-flat contained in £ such that some j-flat contained in E,_ has
positive ;1 measure, where j < n — 1. Clearly E,_; is not in F,_, since e is a normal
to E,—> and e ¢ &, . After finitely many steps we will get a 1-flat £ contained in £
such that some 0-flat of £| has positive measure. This shows that u is not a continuous
measure. Hence, if 1 is a continuous, finite Borel measure and e € S,—; \ £, then
w(E) = 0 for every hyperplane £ whose normal is e. Moreover, £, is a set of first
Baire category in S,_1 with H,_1(£,) = 0.

For a o-finite measure w, write ;£ as a sum ano:] m, Where the summands are
finite measures. Then £ = (J;,_; &,,,, is a subset of the first Baire category of S,_;
with H,—1(£) = 0. If eis in S,_; \ £ and E is a hyperplane with normal e, then
W(E) = Zf;f:l Um(E) = 0. This completes the proof. |
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The Goffman—Pedrick construction of a homeomorphism with certain special prop-
erties uses the following simple observations. Let / = J x [—1,1], where J is a
Cartesian product of m intervals. We begin with a continuous functionf': J — [0, 1)
that satisfies f(#) = 0 if and only if u € dJ. Then u — (f(u))r, where u € J
and 0 < r, is a one-parameter family of continuous functions on J such that

graph(f®) N graph(f’) = 3J whenever s # t.

Also, for each positive number ¢ and for each v in MEASPOS () there is a 7y and
an sq such that the sets

My ={(x,y) el:y<—fPx)}and My = {(x,y) € I: f*(x) <y}

satisfy v(M1) < ¢ and v(M3) < & and such that

v(graph(—f™)) = v(graph(f*)) = 0.
Let us go to the Goffman—Pedrick proof.

GorrmMaN—PEDRICK PrOOF OF LEMMA 3.26. Let f1: J — [0, 1) be a continuous func-
tion such that M7 = {(x,y) € I:y < —fi(x)} satisfies u(M1) < «a1/2. By
means of continuous piecewise linear maps on the line segments {x} x [—1,1]
that map —1, —fj(x) and 1 respectively to —1, 0 and 1, one can construct a ¥
in HOMEO(Z, a1 fixed). We then have ¥4 (R1) < a1 /2.

Let fo: J — [0,1) be a continuous function whose graph satisfies
Yz (graph(f2)) = 0 and is such that My = {(x,y) € I:y < fa(x)} satisfies
Y (Ma) > . Select next a positive number yg such that Y1z (J < [—1,10]) < @1,
andlety; = max{f;(x): x € J}. Obviously,0 < yg < y; < 1.Inviewof Lemma3.27
there is a unit normal e in R”*! such that some hyperplane Hy with normal e sepa-
rates J x [—1,0] and J x [yo, 1], and some hyperplane H; with normal e separates
J x [—1,y1] and J x {1}, and every hyperplane with normal e intersects / with
Y1# 4 measure equal to 0.

For the above unit normal e in R”*! let 4,: R” — R be a linear function such
that e is normal to graph(%,) and %,(0) = ¢ for each ¢ in R. There is a fy such that
graph(hy,,) = Hy, and there is a #; such that graph(h,,) = H;. The map

t= Ypn({v) el: 0 <v<h AW}, to <t <1,

is a continuous function whose value at #; is less than «; and whose value at 7] is
greater than «j. Consequently there is a continuous function g: J — [0, 1) such
that g(u) = O ifand only ifu € 8J, and Y1pu({(u,v) € I: 0 <v < g(u)}) = a1, and
Yixp(graph(g)) = 0. In a manner similar to the construction of 1r; we can construct
a Yrp in HOMEO(/; o/ fixed ) such that

o R = {(u,v) € 1: 0 < v < g(u))
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and
Y2~ '[J x {0}] = graph(g).

Hence (Y2¥1)#1(R1) = o and (Y2yr1)4p(J x {0}) = 0. The composition ¢ = ¥
clearly satisfies ¢ € HOMEQO(Z; 91 fixed), p#u(R1) = o1 and pspu(Ry) = ap. O

We give next the Oxtoby—Ulam proof of the key Lemma 3.26. Their proof contains
the germ of the proof of Lemma 3.46 due to J. C. Oxtoby and V. S. Prasad [121]
which allows the extension of the Oxtoby—Ulam theorem to the Hilbert cube [0, 1] N
the subject of Section 3.6.

As stated earlier, the Oxtoby—Ulam proof relies on the Baire category theo-
rem applied to a suitable nonempty complete metric space H that contains the
collection

F = {g € HOMEO(; 9/ fixed): ggiu(R1) = a1, gep(Ro) = oz}

asa dense G subset. Recall that every nonempty closed subspace of a complete metric
space is complete. We have shown earlier that the map g +— g#u(X) is an upper semi-
continuous function on the complete metric space HOMEO(Z; 87 fixed ) whenever
X is a closed subset of 7. Hence a suitable closed subspace of HOMEQO(/; 91 fixed)
that contains F is

H = {g e HOMEO(; dI fixed): gsi(R1) > oy}
N {g € HOMEO(/; dI fixed): guiu(R2) > az}.

Since it is not immediate that H is not empty, we shall show in the next paragraph the
existence of an element in H. It is interesting that this proof of existence does not use
the Baire category theorem. Observe that

F=H\UZX, U2, {¢ € HOMEO(U; 31 fixed): gsu(R)) = o + 1}
and that every set

Hin = {g € HOMEO(/; 91 fixed): gyu(R)) > o + 1}
is closed in HOMEO(/; 91 fixed ). Hence the Baire category theorem will apply after
we show that H N H;,, is nowhere dense in the space H.

To show that H is nonempty, first note that if both «(R;) < a1 and w(R2) < a3
fail then the identity map is in H. So assume @ (R1) < 1. As in the Goffman—Pedrick
proof, select a continuous function f: J — [0, 1) such that ' (x) > 0 if and only if
x ¢ dJ. For each positive number ¢ define the two sets

A ={(,y)el: —1<y<fx),
Bi={x,»)el:f'x) <y <1}



66 The homeomorphism group of X

There is a v, in HOMEO(/; 31 fixed ) such that ¥, ~'[R;] = 4, and ¥, "' [R,] = B,.
As A; D Ry and B, C R, we have

Vs '[R1] D ¥, '[R1] D R whenever 0 < s < f, (3.4)
1//,_1[R2] C 1/15_1[R2] C Ry whenever 0 < s < ¢. 3.9

The strictly decreasing function ¢ — ¥4 (R1) converges to ;(Ry) as t — oo and
converges to u(/) as t — 0. From equation (3.4), it is continuous from the left,
and also {s: Y (R1) > o1} is equal to (0,sp] for some real number 59 because
a1 > p(Ry). Hence Yyuu(R1) > oy. Let t > sg. Then oy > vYu(Ry). From
equation (3.5) we have Y (R2) < ¥u(R2). Hence

ap +ay = YD) < Y (R1) + Y (Ry)
= Vi (Ry) + Ysou it (R).

Consequently, oy < ¥guu(R2) as well as o) < Yrgo# 0 (R1). Thereby we have shown
thatg = v, isinHif u(R1) < «j.Asimilarargument applies to the case u(R2) < o2,
hence H # ¢.

First, a preliminary lemma is needed for the Oxtoby—Ulam proof of the key lemma.

Lemma 3.28. Let u be a continuous, finite Borel measure on a compact metrizable
space X, let 0 < o < B < pu(X) be given, and let F be a closed set with u(F) = 0.
Then there exists an open set G such that GNF =@ and o < u(G) < .

PROOF. As u is continuous, each point x of X' \ F has an open neighborhood Uy with
w(Uy) < B—aand U, NF = @. Let K be a compact set such that K N F = @ and
w(K) > a. The above open cover of X' \ F' contains a finite open cover Uy, Ua, ..., Uy,
of K. Let G; = U]-Si U;. There is no loss in assuming U; \ U_/<i U; # 0 for every i.
Let &k be such that £ (Gy) > a and w(Gi_1) < . Then u(Gy) < u(Gr_1)+un(U) <
o + (B — a) = B. The open set Gy, fulfills the requirement of the lemma. O

OxtoBY-ULAM PrOOF OF LEMMA 3.26. It remains to be shown that H;, N H is closed
and nowhere dense in H. As we already know that H;, is a closed subset of
HOMEO(/; 31 fixed), we need to show that H \ H;, is a dense in H. We consider
thecasei = 1. Let g € H,NHand 0 < ¢ < 1. We seek a g’ in H \ Hy, such
that p(g’,g) < &. To this end, observe that g € Hy,, N H implies

Ry > a1+ 1 and  guu(Ry) —ay < gup(J x {0}),

where the second inequality holds because of the identity

ar +ay = ggu(R1) + gui(Ry) — guin(J x {0})

and because g € H yields gz (R)) > «p and gsu(Ry) > . By Lemma 3.28
applied to gyul(J x {0}) with F = (3J) x {0}, @ = gyu(R)) — o — L and
B = gsu(R1) — o, there is a set G that is open relative to J x {0} such that
GNF =@and ¢ < ggu(G) < B. With n = min{e,w(g: ¢)}, where w is the
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modulus of uniform continuity, select a continuous function f: J x {0} — [0, /2]
such that f(x) = 0 if and only if x € J x {0} \ G. For each x in J x {0} and for
each § with 0 < § < 1, let [;(x, -) be a continuous linear function that respec-
tively maps the intervals [—1, —f ()], [—f (x), =8f (x)], [=&f (x), f (x)], and [f (x), 1]
onto the intervals [—1, —f (x)], [/ (x), O, [0,/ (x)], and [f (x), 1]. These maps /; (x, -)
define a homeomorphism 7, (x,?) = (x,/;(x,?)) of I onto I such that 4, is fixed
on ol U {(x,t) € J x [—1,1]: (x,0) ¢ G}. Observe that ha_l[Rz] D Ry, and
Uo<s<i ' [R1] = Ri \ G. We now have (h,)#1(R2) > gsi(Ra) > a2 and
o] +% > lims—o(h;@)upn(R1) = geu(Ry) — g#u(G) > «j. Select a § such that
g = hyg satisfies o1 < g'yu(R1) < o1 + % We have g’ € H, p(g,2) < e,
and g’ is in the open subset {f € HOMEO(/;dI fixed): fup(R)) < a1 + %’}
of HOMEQO(Z; ! fixed). Hence Hj, N H is nowhere dense in H. To prove the
same for Hy,, use the isometry ¢ defined by the map (x,7) — (x,—12) for (x,?)
inJ x[—1,1]. O

This concludes the two very different proofs of the key Lemma 3.26. We turn to
the remainder of the proof of the Oxtoby—Ulam theorem that results from the key
lemma.

Sometimes it will be convenient to work with n-cells. By an n-cell subdivision P
of an n-cell X we mean a finite collection of nonoverlapping compact subsets o of X
that are n-cells such that the union of the members of P is X. As usual, two subsets 4
and B of X are said to be nonoverlapping if Inty (4) N Inty (B) = @, where Inty is
the usual interior operator in the topological space X . If P is an n-cell subdivision of
an n-cell X, then the mesh of P is defined to be

mesh(P) = max{diam(o): o € P}.

An n-cell subdivision P’ of X is said to refine an n-cell subdivision P of X if each
member of P’ is contained in some member of P.

By a rectangular subdivision P of an an n-cell I = X!_,[a;, b;] we mean an
n-cell subdivision of / whose members are n-dimensional rectangles with edges that
are parallel to the coordinate axes of /. The collection of all end-points of the i-th
intervals that form the subdivision P can be used to construct another rectangular
subdivision P’ of I that refines P. Let P’(o) be the collection of those o in P’ that
are contained in o whenever o € P.

Here is an elementary construction. With n > 1 let /" be the Cartesian prod-
uct of I = [0,1]. Let x;5, j = 0,1, ..., k, be partition points of the i-th coordinate
interval / of I”. The coordinate hyperplanes of R” determined by these partition
points will form a rectangular subdivision of /", which we will denote by P. Let u
and v be Lebesgue-like Borel measures on /" such that u(I”) = v(I"). We select
the partition points of the coordinate intervals / in such a way that v(do) = 0 for
every o in P. Repeated applications of the key lemma, one coordinate hyper-
plane at a time, will lead to a homeomorphism ¢ in HOMEO(/"”; 31" fixed ) such
that (pzu)|o is Lebesgue-like on o and ¢su(o) = v(o) whenever o € P. A note
of caution: the subdivision ¢~ ![P] = {¢~![o]: 0 € P} need not be a rectangular
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subdivision of /”. This is not of concern since it is the fact that P is a rectangular
subdivision that matters. The next proposition follows easily from this elementary
construction.

ProposITION 3.29. For ¢ > 0 and Lebesgue-like Borel measures |v and v on an n-
dimensional rectangle X with (X)) = v(X), there is a rectangular subdivision P of
X and a ¢ in HOMEO(X; 0.X fixed) such that

(1) mesh(P) < ¢,
(2) (pyp)|o and v|o are Lebesgue-like on o whenever o € P,
(3) ppu(o) = v(o) whenever o € P.

Proor. It will be convenient to work with the n-cell /”. So let ¥ : X — [" be a linear
homeomorphism. Consider the Lebesgue-like Borel measures 94 and dxv on I”. If
P’ is a rectangular subdivision of /7, then P = # ~![P'] is a rectangular subdivision
of X whose mesh will be small if mesh(P’) is sufficiently small. From the previous
paragraph we can construct a rectangular subdivision P’ with mesh(P’) < ¢ and a
homeomorphism ¢’ of I" such that, for each o’ in P, (¢'y94p)|0’ and (94v)|o” are
Lebesgue-like on o’ and ¢’y (0’) = ¥4v(c”), and such that ¢’(x) = x whenever
x € 3I". Then ¢ = ©~'¢'® is in HOMEO(X) and P = 9~ ![P'] is a rectangular
subdivision of X such that (pgu)|o and v|o are Lebesgue-like on o and gz (o) =
v(o) for each o in P and such that ¢(x) = x whenever x € 0.X. O

Note that the n-cell subdivision ¢ ' [P] need not have small mesh. Our final lemma
for the proof of the Oxtoby—Ulam theorem overcomes this deficiency. The following
property will facilitate the statement of the lemma. A pair i and v of Lebesgue-like
Borel measures on an n-cell X and an n-cell subdivision P of X are said to satisfy
the property P(u, v ;P) if u(o) = v(o) and u(do) = v(do) = 0 whenever o € P.
Observe the following: P(u, v; P) ifand only if P(v, i ; P), and P(¢su, v ; P) if and
only if P(ut, o141 ; 91 [P]) whenever ¢ is in HOMEO(X).

Lemma 3.30. Suppose that w and v are Lebesgue-like Borel measures on an
n-dimensional rectangle X and P is a rvectangular subdivision of X. If u, v and P
satisfy P(u, v ; P) and if ¢ > 0, then there is a ¢ in HOMEO(X) and a rectangular
subdivision P' of X such that s, v and P’ satisfy P(psu, v ; P") and

(1) ¢plo € HOMEO(o; do fixed) whenever o € P,
(2) P’ refines P,
(3) mesh(P’) < e.

Proor. After applying the last proposition to each o in P, we have a ¢ in HOMEO(X)
and a rectangular subdivision P’ of X such that P(psu, v ;P’) is satisfied, ¢|lo €
HOMEO(o; 90 fixed ) whenever o € P, mesh(P’) < ¢, and P’ refines P. a

Proor oF THE OxToBY—ULAM THEOREM. Let v satisfy the three conditions given in
the Oxtoby—Ulam Theorem 3.24. We shall inductively construct two sequences
of homeomorphisms ¢;, ¥;, j=1,2,..., and two sequences of rectangular
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subdivisions P;, Pj’ ,j=1,2,...,0f I". The following diagram indicates the steps of
the construction.

P(®@jsie, W(j—1yuh; Py) = P(@jup, Wjuh; P) =
P(®@ (4 1ytts Wish; Pir1) == P(@ sk, Y(it1yeds Py,
forj =1,2,..., where Wg = id, P is undefined, and

(D D =gipi—1---¢1 and mesh(Pj) < 2-/',

(2) W = Y;¥;—1--- ¥1 and mesh(P)) < 277,

(3) ¢jlo’ € HOMEO(o'; do” fixed) whenever o’ € P/_j,
(4) ¥jlo € HOMEO(o; 9o fixed ) whenever o € P,

&) mesh(dDj_l[Pj’]) <27,

(6) mesh(¥;_1~'[P;]) <277,

(7) P refines P;,

(8) Pj refines P/_;.

By the above lemma, with u, v = A, P = {I"} and ¢ = 27!, we have a
@1 in HOMEO(";dI" fixed) and a rectangular subdivision P; that satisfy
P(® 141, Wour; P1) as well as mesh(P;) < 27!, Conditions (1), (3) and (8) are
satisfied for j = 1, thus the first step forj = 1 is completed. We still need to get v
and P to verify conditions (2), (4), (5) and (7) forj = 1, which is the second step. To
this end we begin by selecting a positive number §; such that the modulus of uniform
continuity of @, ! satisfies w(cbl_l 181 < 271 we may assume §; < 2-1 also.
Then, in the lemma, use ®14u for u, v = Youd, ¢ = §; and P = Pj. Then there
is a Y1 and a rectangular subdivision P that satisfies P(®14u, W14A; P)) as well as
mesh(P) < 27!, whence condition (2) is satisfied for j = 1. Also conditions (4),
(5), (6) and (7) are satisfied for j = 1; hence all the conditions are satisfied for
j = 1. Finally we shall indicate only the third and fourth steps since the inductive
construction is clear from the steps two, three and four. For the third step, we select
a positive number 8| with 8] < 272 such that the modulus of uniform continuity of
W, ! satisfies w (W ! : 8 < 272, Then, in the lemma, let ® 4 be w, Wixv be v,
¢ = &) and P = P;. Then there is a ¢, and a rectangular subdivision P that satisfies
P(®241, Wigh; P2) as well as mesh(P2) < 81, and P, refines P;. Condition (1) is
satisfied for j = 2. Also conditions (3), (6) and (8) are satisfied for j = 2. We still
must construct ¥, and P, which is the fourth step. This is achieved by applying the
second of the four steps again. Then conditions (2), (4), (5) and (7) are satisfied for
Jj = 2. Hence all the conditions are satisfied for j = 2.

It is easily seen that ®;(x) = x and W;(x) = x whenever x € d". One must verify,
as indicated in the diagram, that the sequences ®; and ¥;, j = 1,2,..., are con-
vergent in HOMEO(/"; 91" fixed ). To this end let us show that ®;, j = 1,2,...,
is a Cauchy sequence. We compute an upper bound for d(®;y(x), ®;(x)) =
d(¢j+1(x"),x"), where x" = ®;(x). From conditions (3) and (7) of the construc-
tion, we have that ¢ |Uj’ is in HOM EO(Uj’; Baj’ fixed ) whenever aj’ is in 731.’, and
that P41 refines ”P/’ . There is a 0j4 in P41 and there is a aj’ in 7?/ such that
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Yi+1(x) € 0j41 C oj/ = §0j+1_1[0j/], whence x’ is also in oj/; that is,

for each x in 1", {x, g;+1(x)} C aj’ for some aj/ in PJ/ (3.6)

||<I>]~+1CI>]-_1 | < 27/. Next, consider

So d(gj+1(x),x) < diam(oj’) < mesh(Pj’) < 277; consequently we have

d(®;41 7' (x), @7 () = d(@; 7 i1 T ), @7 ().

The statement displayed in (3.6) above and conditions (3) and (5) of the construc-
tion yield d(®417'(x), ®;7'(x)) < mesh(®;"'[P/]) < 27/, thereby we have
||d>j+1_lcl>j|| < 27. 80 P(Pjy1,®)) < 277+ for every j. Denote by ® the limit
of this Cauchy sequence. An analogous computation will show that W;,j = 1,2,. ..,
is a Cauchy sequence. We denote its limit by W.

Let us show @z = WyA. To this end let k£ < j and let o3, € Py. From conditions
(7) and (8) of the construction we have

Diup(or) = Prpp(or) = Y—nur(og) = Yiph(ok),
Dipp(doy) = Pppi(dor) = W—1)#A(dog) = Vur(dog) = 0,

and hence
Oy (E) = WuA(E) whenever Int(ox) C E C oy.

Let F = Ufil ‘P;. From conditions (7) and (8) we infer ®yu(E) = WxA(E) whenever
E is the union of a countable subset of F because the equality holds for the union of
finite subsets of F. Observe that for each x and each open set I with x € V there is
ao in F such thatx € o C V. So each open set U is the union of a countable subset
of F, whence ®uu(U) = Wul(U). Thereby @y = WyA follows.

As p = (@7 'W)ux and ®~'W € HOMEO(™"; 31" fixed), the proof of the
Oxtoby—Ulam theorem is completed. O

Of course there is the following topological n-cell version of the Oxtoby—Ulam
theorem whose proof is left to the reader.

THeorReM 3.31. Let X be a topological n-cell. If u and v are Lebesgue-like measures
on X with w(X) = v(X), then there is an h in HOMEO(X; 9.X fixed) such that
= huv. Also, if v is Lebesgue-like on X and there is an h in HOMEO(X) such that
W = huv, then w is Lebesgue-like on X.

Other consequences of the Oxtoby—Ulam theorem are the following three lemmas.

Lemma 3.32. Let X be a topological n-cell and . be a Lebesgue-like measure on X.
If F is a nowhere dense closed subset of X and § is a positive number, then there is
an h in HOMEQO(X; 0.X fixed) such that hyu(F) = 0 and p(h,id) < 8.

Proor. There is no loss in assuming X is [0, 1]”. Let P be a rectangular subdi-
vision of X with p(do) = 0 for each o in P. Let Xo = J,.pdo and v =
Y ooep %ML(U \ F). Obviously v(F) = 0. Observe that vlo and w|o are
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Lebesgue-like measures on o such that v(o) = (o) for every o in P. Applying the
above theorem to w|o and v|o for each o in P, we infer from Proposition 3.9 that
there is an 2 in HOMEO(X'; Xj fixed ) such that v = Ahsu and p(h,id) < mesh(P).
Such a subdivision P with mesh(P) < § clearly exists. O

Lemma 3.33. With I = [0, 11" let u be a positive, continuous, complete, finite Borel
measure on 1. Then a subset E of I \ 01 is an absolute measurable space if and only
ifh~Y[E1N I = @ and h™'[E] € MU, u) whenever h € HOMEO(I; 81 fixed ).

ProOF. Suppose that £ is an absolute measurable space contained in / \ d/. Then
h~'[E]is an absolute measurable space whenever /2 is in HOMEO(/). Hence hUEIN
9 = P and h™'[E] € MU, v) whenever h € HOMEO(I; 3! fixed ).

To prove the converse, let £ be such that h~V[E] satisfies the conditions of the
lemma. Let v be a positive, continuous, complete, finite Borel measure on /. Then
VvV =v [ (I\dI)and u' = | (I\3I) are Lebesgue-like measures on /. By the Oxtoby—
Ulam theorem there is a positive number £ and an 2 in HOMEQO(/; 9/ fixed) such
that k v/ = hyp'. As h='[E] € MU, ), we have that E is (hu)-measurable, whence
E e MU,V'). Since E C I\ 3], we have E € M (I, v) and thereby E € univ ().
Since / is an absolute measurable space, we have that E is also an absolute measurable
space. |

LEMMA 3.34. For n > 1, let B, be the unit ball {x € R": |x|» < 1} and let S,,_1
be its surface {x € R": ||x||o = 1}. Denote by F that part of S,—| defined by
{x € Sy—1: x1 <0}. Let u be a positive, continuous, complete, finite Borel measure
on B, such that u|S,—1 is a positive, continuous, complete, finite Borel measure
on Sy_1. Then a subset E of B, \ F is an absolute measurable space if and only if
hYEINF =@ and h~'[E] € M(B,, ) whenever h is in HOMEO(B,,; F fixed).

Proor. Let E be an absolute measurable space contained in B, \ F. As h~YE]is an
absolute measurable space whenever & € HOMEO(B,,), we have A~ [E]NF = ¢
and h~'[E] € M (B, u) whenever 4 is in HOMEO(B,; F fixed ).

For the converse, let us consider the two cases: E C S,_1 \ Fand ENS,—_; = @.
In the first case, let £ be a subset of S,_; \ F such that hYUEINF = ¢ and
h~V[E] € M(B,, u) whenever 4 is in HOMEO(B,; F fixed). Since Clp, (Sn_l \
F) ={xeSy_1:x1 =0} weseethat/ =Clp, (S,,_l \F) is an (n — 1)-cell and that
9l = {x € S;—1: x = 0}. Clearly, every g in HOMEQO(/; 9/ fixed) has an extension
h in HOMEO(B,,; F fixed). For such an extension we have g~ '[E] = h~![E]. As
MU, n|l) C M(B,, 1), the preceding lemma shows that E is an absolute measurable
space that is contained in B, \ ', and the first case is shown. In the second case, let £ be
asubset of B,\S,_1 suchthat A~ [E]NF = Pand h~[E] € M (B, ) whenever & is
in HOMEO(B,,; F fixed ). As HOMEO(B,,; S, fixed) ¢ HOMEO(B,; F fixed),
we have that A~ [E] is in M (B, ) whenever & fixes S,,_;. Hence E is an absolute
measurable space that is contained in B, \ S,,—;.

Now let E be such that A~ [E] C B, \ F and hYE] € M (B, 1) whenever
h € HOMEO(B,; F fixed). Then E N S,_; and E \ S, are absolute measurable
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spaces, whence E is an absolute measurable space contained in B, \ ¥ and thereby
the converse is proved. ]

Proor oF THEOREM 3.25. The proof is by induction on the dimension of the
n-dimensional finitely triangulable space (such a space is homeomorphic to a sub-
space of an N -simplex4 Ap). By definition, |K,| is the union of a finite collection
K, = {S,/: j=12,...,jm,m < n}, where S,, are m-simplices. The subcollection
of all m-simplices in K,, whose dimensions do not exceed & is denoted by K,’f and is
called the k-dimensional subcomplex of K;,. So K,? is the collection of all vertices of
K.

We give the proof for n = 2; the proof of the inductive step is easily modeled after
this proof. Let us apply Theorem 3.12. Define X = |Kz|, Xo = |[KY|, X1 = |K;|,
and Xp; = S'zj \ BS{ forj = 1,2,...,/2. Then, by Theorem 3.22 applied to X,
there is a positive, continuous, complete, finite Borel measure vy on X such that vy
and HOMEO(X}; X) fixed) generate univ 9Ji(X;). Observe that ¢'[3S>] = 3.5, for
every ¢’ in HOMEO| (X1; Xy fixed) whenever S is a 2-simplex in K. As S, is
convex, each ¢’ in HOMEO(X1; Xy fixed ) can be extended to a homeomorphism in
HOMEO(X; X, fixed ), call it ¢. Hence we have

G1(X) = {plX1: ¢ € HOMEO(X; Xy fixed ), p[X1] = X1}
= HOMEO(X;; Xy fixed).

As S{ \ BS{ was defined to be X»; and each ¢’ in HOMEO(S{; SS{ fixed) has an
extension ¢ in HOMEO(X'; Xj fixed ), we also have, forj = 1,2,...,/2,

G2 (X) = {plX;: ¢ € HOMEO(X; Xo fixed ), ¢[Xp;] = X35}
D G (X) = {¢1Xyj: ¢’ € HOMEO(SS; 8] fixed)}.

By Lemma 3.33 and the topological n-cell version of the Oxtoby—Ulam theorem there
is a positive, continuous, complete, finite Borel measure v;; on Xp; such that vy; and
Q’zj(X) generate Univ M(Xo)). Let u = gryvy + ijil 824V where g1 and g; are
the obvious inclusion maps. Then, by Proposition 3.14 and Theorem 3.12, we have p
and HOMEO(X; Xy fixed ) generate univ 91 (X). We leave the proof of the inductive
step to the reader. a

4 By an N-simplex Ay we mean the convex hull (in the Euclidean vector space RN+ ofthe N +1 points
v; whose (i 4 1)-coordinate is 1 and the remaining coordinates are all 0,7 = 0, 1, ..., N. The points v,
v1, ..., vy are called the vertices of Ay . A q-face of Ay is the convex hull of ¢ + 1 distinct vertices
of Ay. Also, a face will be referred to as a simplex. A simplicial complex K is a collection of faces
of Aj satisfying the condition that every face of a simplex in the collection is likewise in the collection.
A subcollection L of a complex X is called a subcomplex of K whenever L is also a complex. The space
|K| of K is the subset of Ay consisting of those points which belong to simplexes of K. A simplicial
complex K is said to be n-dimensional provided K contains an n-simplex but no (n + 1)-simplex. These
definitions are modeled after those in [49, pages 54—60]. Note that the simplexes in these definitions are
compact; in definitions found in other books, say [79, pages 67-68], g-faces Sy do not contain the points
in 98, for ¢ > 0, that is, they are ‘open’ faces. A triangulable space X is one that is homeomorphic to
|K| for some simplicial complex K; X is called a triangulation of X .
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A sharper result holds for the n-sphere S, = {x € R"*!: |x| = 1}. The methods
of proofs for the 1-sphere used in Lemma 3.19 and in the succeeding paragraph can
be used here also.

Lemma 3.35. H,IS,, and the group HOMEO(S,), where H, is the Hausdorff
n-dimensional measure on R"!, generate MEASP*SI(S,), the collection of all
positive, continuous, complete, finite Borel measures on S,. Hence

univ O (Sy) = N{M(Su, hx(HalSy)) : h € HOMEO(S,)}.

3.5. n-dimensional manifolds

We have seen in the last section that the manifold S, has a measure u such that it and
HOMEO(S,) generate univ 93t(S,). We will show that this holds for all separable
manifolds. A manifold is defined by local conditions. That is, a separable metrizable
space M, is an n-dimensional manifold if each point has a neighborhood that is
homeomorphic to R” or [0, c0) X R"~!. Points whose neighborhoods are of the second
kind are called boundary points of the manifold. d(M,,) denotes the set of boundary
points. Let us show that univ 21(X) is also characterized by local conditions.

ProposITION 3.36. Let U be an open cover of a separable metrizable space X. Then
E € univIn(X) ifand only if EN U € univ I (X) whenever U € U.

ProOF. Asevery opensetisauniversally measurable setin X we have that ENU isalso
universally measurable whenever E is a universally measurable set in X. Conversely,
suppose that £ N U is universally measurable set in X for every U in U. As X is
a Lindeloff space, the cover I/ has a countable subcover, whence E is universally
measurable. |

If a point x of an n-manifold M, has a neighborhood that is homeomorphic to R”,
then there is an embedding ¢: [—1,1]" — M, such that ¢(0) = x, where 0 is the
origin of R”, and such that <p((—1, 1) ") is a neighborhood of x.

If x is in M, then there is an embedding ¢ of [0, 1] x [—1, 1] n=1 into M,, such
that ¢((0,0)) = x, where (0, 0) is the origin of R x R"~!, and such that ¢[[0, 1) x
(—1,1)"""] is a neighborhood of x.

Tueorem 3.37. If M, is an n-dimensional manifold, connected or not and with or
without boundary, then there is a positive, continuous, complete, finite Borel measure
u on M, such that u and HOMEO(M,,) generate univ M (M,,).

Proor. Observe first that d0M,, = @. Let u be such that u and u|9M,, are positive,
continuous, complete, finite Borel measures on M,, and 0M,,, respectively, and let
be the open cover

{Intps, (B): B is an n-cell contained in M,,}.

By Proposition 3.36, a subset £ of M), is in univ 9t (M,) if and only if £ N U is
in univ MM (M,,) for each U in U. As M, is an absolute measurable space, the last
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condition will be satisfied if and only if £ N U is an absolute measurable space for
each U in Y. Lemmas 3.33 and 3.34 complete the proof. a

The proof given here is rather simple in that it uses only the definition of a manifold.
In fact, the manifold need not be connected nor compact. We shall see shortly that
the Oxtoby—Ulam theorem can be extended to compact, connected n-dimensional
manifolds. Hence the last theorem can be proved in the compact case with the aid
of this extension. This extension uses the next very nice topological theorem due to
M. Brown [21] whose proof will not be provided here.

THEOREM 3.38 (Brown). Forn > 1letl =[0,1]" and U = I\ 1. For each compact,
connected, n-dimensional manifold M, there is a continuous surjection ¢: I — M,
suchthat p|U : U — @[U]is a homeomorphism and ¢[01] is a nowhere dense subset
of M,, that is disjoint from ¢[U].

It is easily shown that the map given by Brown’s theorem has the properties that
@[81]1 D dM,, and ¢~ '[d]] = dI. But, in order to apply the Oxtoby—Ulam theorem
to /, it will be necessary to have the added measure theoretic condition v(p[d/]) = 0.
Whenever this condition is satisfied we can use the homeomorphism v = ¢~ ! |p[U]
to define the measure ;| = Y¥4v; where vi = v|p[U]. The inclusionmap g: U — [
will give us the following implications:

M(g[U],v1) M(U,u1)
( vi=v|p[U] ) :1/,> (m:l/f#l)l )

= (2460) = Ch) 6

where 1 (01) = 0. Now vg|p[U] = v|¢[U], whence vg = v whenever v(p[dl]) = 0.
The next theorem shows that there is a map that satisfies the conditions of the Brown
theorem and also the added measure theoretic condition.

THEOREM 3.39. Forn > 1let I = [0,1]" and U = I \ dl. For each compact,
connected, n-dimensional manifold M, and for each positive, continuous, complete,
finite Borel measure v on M, with v(0M,) = 0 there is a continuous surjection
¢: 1 — M, such that p|U: U — @[U] is a homeomorphism, ¢[d1] is a nowhere
dense subset of M, that is disjoint from ¢[U], and v(p[dl]) = 0.

Proor. Let B;, i = 1,2,...,k, be n-cells contained in M), such that Y = {U; =
Inty, (B;)): i = 1,2,...,k} is an open cover of M,,. Let : I — M, be as provided
by the Brown theorem above and consider the measure

vi = vL (M, \ Up) +ar vL(Ur \ Y[811), where a1 = 5o
which satisfies v(M,,) = v{(M,). Clearly v| is a continuous positive Borel mea-

sure since B N r[d]] is a nowhere dense subset of Bj. Observe that (vi | Up)|B;
and (v Uj)|B; are Lebesgue-like on B; and that v (U;) = v(U;p). We infer from
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Lemma 3.32 that there is an #; in HOMEO(M,;; 9M,, fixed) such that Aj4v = vy.
Let us proceed in the same manner for U, and vy. Define

vy = viL(My \ U2) + a2 vi L(Ua \ W1911), where ay = 5y -

which satisfies vi(M,) = vy(M,) and v, ((U1 Ulh)N w[al]) = 0. Let &, be in
HOMEO(M,,; dM,, fixed ) such that (hy/1)#v = v;. After finitely many steps we have
the homeomorphism /2 = hhy_1 - - - hohy such that 4 is in HOMEO(M,,; 0M,, fixed),
hygv is a positive, continuous, complete, finite Borel measure on M,, and
hyv(y[d1]) = 0.Letp = h~'y. Theng: I — M, isacontinuous surjection such that
o|U: U — ¢[U] is a homeomorphism, ¢[d/] is nowhere dense, p[U] Ng[d]] = 0,
and v(¢[d]]) = 0. Observe that p(h,id) < Zf;l o (h;,id). O

Now we can state and prove the extension of the Oxtoby—Ulam theorem to compact
manifolds (S. Alpern and V. S. Prasad [5, page 195]).

TueEOREM 3.40 (Alpern—Prasad). Let A be a positive, continuous, complete, finite Borel
measure on a compact, connected, n-dimensional manifold M,, such that A(dM,,) = 0.
In order that a Borel measure . on M, be such that there is an h in HOMEO(M,,)
with (. = hg it is necessary and sufficient that

(1) w be a positive, continuous, complete Borel measure on M,
(2) //L(Mn) = )\(Mn);
(3) m(oM,) =0.

Moreover, the homeomorphism h may have the property that it leaves 0M,, fixed.

Proor. If u = Ay for some h in HOMEO(M,,), then it is easily seen that u satisfies
the conditions that are enumerated.

Suppose that p satisfies the conditions and let ¢ : / — M,, be as in Theorem 3.39
for the measure v = A+ . From the implications (3.7) that precede this cited theorem
we infer that there are positive, continuous, complete, finite Borel measures Ao and
o on I such that pzAg = A and gzuo = p and such that A and pg are Lebesgue like
on /. There is an 4 in HOMEQO(/; 91 fixed) such that hzAg = . As & fixes 9 and
go_lgo[al] = 91/, there is a well defined map H : M, — M, such that the following
diagram

I—¢>M,,

] Tu

I —2 5 wm,

is commutative; indeed, if p € M,, then card(H[{p}]) = 1 whence H is a map.
Clearly, H is bijective. Moreover, H is continuous since each closed subset F' of M,
satisfies H'[F] = ¢h~'¢~![F] = F. The diagram also yields the fact that
fixes @[d]], whence H € HOMEO(M,; oM, fixed). Finally HsA = u is easily
verified. m]
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The last theorem would have been better stated if we had used the definition of
Lebesgue-like measures on manifolds given earlier in the discussion of the Oxtoby—
Ulam theorem. That is, a measure p is said to be Lebesgue-like on a n-dimensional
manifold M, if p is a positive, continuous, complete, finite Borel measure on M,
with ©(0M,) = 0.

Letus turn to a nice application of the extension of Brown’s theorem, Theorem 3.39.
Suppose that F' is a closed, nowhere dense subset of a compact n-dimensional manifold
M, and u is a Lebesgue-like measure on M,,. Then for each positive number ¢ the
collection

HE, w,e) ={h € HOMEOM,,; 0M, fixed ): huu(F) < &}

is a dense open subset of the metric space HOMEO(M,; dM,, fixed). That
H(F, i, ) is open follows from the upper semi-continuity of the real-valued func-
tion & > hgu(F). Let us prove that it is dense in HOMEO(M,,; M, fixed). Let
f € HOMEO((M,,; 0M,, fixed) and § > 0. We seek an & with Af € H(F, u,¢) and
p(h,id) < §. By Theorem 3.39 there is a continuous surjection¢: I — M,,, where [ is
a topological n-cell, such that ¢|(/ \ 97) is a homeomorphism, ¢[/ \ d/]N[d]] = @,
[dI] is nowhere dense, and fzu(p[dl]) = 0. Using the properties of the map ¢,
we have a topological n-cell J contained in @[/ \ 9I] such that fzu(dJ) = 0 and
far(M, \ J) < e. By Lemma 3.32 there is an #' in HOMEO(J; 8J fixed) with
p(H,idy) < § and h’#((f#u)L]) (FNJ) = 0. Let & be the extension of /4’ such that
h|(M,, \ J) is the identity map on M, \J . Itis clear thath € HOMEO(M,,; 0M,, fixed),
p(h,id) < 8, (hufu)|(My \ J) = (fap)|(My \ J), and (hgfe)lJ = By ((fa)lJ).
A simple computation yields (A )su(F) < €.
We now have

THEOREM 3.41. If M, is a compact, connected, n-dimensional manifold and | is a
positive, continuous, complete, finite Borel measure on M, with uw(0M,) = 0 (that
is, Lebesgue-like), then the set

{h ¢ HOMEO(M,,;; M, fixed): hzu(F) = 0}

is a dense Gs subset of HOMEO((M,,; 0M,, fixed) whenever F is a closed, nowhere
dense subset of M.

See Exercise 3.12 on page 97 for a noncompact manifold setting.

3.6. The Hilbert cube

An obvious question that results from the finite dimensional considerations of the
previous section is: What can be said about the Hilbert cube [0, 1] N'9 The answer
is easily seen due to the extension of the Oxtoby—Ulam theorem to the Hilbert cube
which was proved by Oxtoby and Prasad in [121]. We shall denote [0, 11V by O.
They have proved a stronger version of the following theorem.
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TuEOREM 3.42 (Oxtoby—Prasad). Let p and v be positive, continuous, complete Borel
probability measures on Q. Then there exists an h in HOMEO(Q) such that hyp = v.

We shall give their proof of the stronger version shortly. But first let us state the
theorem that connects the o -algebra univ 91(Q) and the group HOMEO(Q).

TueoreM 3.43. Each positive, continuous, complete, finite Borel measure (i on Q
and the group HOMEO(Q) generate MEASPS(Q) (the collection of all positive,
continuous, complete, finite Borel measures on Q) and hence they also generate
univ MM (Q).

The proof follows immediately from the preceding theorem.

3.6.1. Definitions and notations. Several definitions and notations are used in the
proof. We shall collect them in this subsection.
It will be convenient to select a suitable metric d on Q = [0, 1] N namely,

d(x,y) = Y2, Ixi — il /2%

By a rectangular set we mean a set R = X°,[a; ,b;] where 0 < a; < b; < 1 forall i,
and [a;, b;] = [0, 1] for all but finitely many values of i. Clearly, a rectangular set is
the closure of a basic open set of Q.

We shall have need to refer to certain subsets of a rectangular set R. For a fixed i,
the set {x € R: x; = ¢} with a; < ¢ < b; is called a section of R, and the sets
{x € R: x; = a;} and {x € R: x; = b;} are called faces of R. Each rectangular set
R has countably many faces, the union of which is a dense subset of R. Indeed, for
x € R and ¢ > 0, let n be such that

X € X?:l[agab;] X Xloin+1[07 1] C {y € Q: d(xay) < ‘9}'

The face of R given by {y € R: y,4+1 = 0} contains the point z = (x1,x2,...,
Xn,0,0,...) which is in both R and the e-neighborhood of x. The pseudo-boundary of
R, denoted by 8R, is the union of all the faces of R. Of course, SR is not the same as the
topological boundary Bdg (R) which is the union of finitely many faces of R, namely,
the faces {x € R: x; = a;} with 0 < a; and the faces {x € R: x; = b;} with b; < 1.
The pseudo-interior of Q is the set Q \ §0.

We shall use several subgroups of HOMEO(Q). The first one is the closed subgroup
that leaves every face of Q invariant, that is,

HOMEQO((Q) = ({HOMEO(Q; W inv): W is a face of Q}.
Given a subset B of O we have the closed subgroup

HOMEOQ(Q; B fixed) = HOMEO(Q; B fixed ) N HOMEO (Q).
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3.6.2. Main lemma. The main lemma reduces the general positive, continuous,
complete, finite Borel measure case to those that vanish on the set §Q. For the
finite-dimensional space [0, 1]”, where n > 1, there is no such analogue, hence one
must necessarily assume that the measures vanish on 9([0, 1]”) in the Oxtoby—Ulam
theorem.

LemMa 3.44 (Main lemma). If u is a positive, continuous, complete, finite Borel
measure on Q and B is the union of finitely many faces of Q with u(B) = 0, then
hui(8Q) = 0 for all h in a some dense Gy subset of HOMEO(Q; B fixed).

Proor. Let W be a face of Q that is not contained in B. There is no loss in assuming
W = {x € O: x; = 0}. For each positive integer j, we assert that

E;(W) = {f e HOMEO(Q; B fixed ) : fuu(W) < 1/}

is open and dense in HOMEQO(Q; B fixed).

The upper semi-continuity of the function f ——> fip (W) implies that E;(W) is an
open subset of HOMEO(Q; B fixed).

To see that E;(W) is dense we first show that there is an / in E;(W) with small
norm. As this is obvious if u (W) < jl we shall assume (W) > Jl Let0 <e <1
and fix a § such that 0 < § < 5 and such that the §-neighborhood B of B satisfies
w(Bs) < % Choose an n suchthatk < n, Zl—n < % , and the two faces {x € O: x, = 0}
and {x € Q: x,, = 1} are not contained in B.

With J = [ x [, let ¢: O — J be the natural projection and let
dJ((Xk,xn), (yk,yn)) = % + ‘x”z;,,y"‘ be the metric on J. Then gxu is a finite
Borel measure on /i x I,, though not necessarily continuous. Let p be such that
0 <p < land gzu(lx x {p}) = 0. Select an open interval I, contained in 7, such
that pgu(ly x 1) < % andp €I, C I,.

Let us assume that there is a continuous family {H;: 0 < ¢ < 1} in HOMEO(/J; x
Iy [8, 1] x I, fixed} such that Hy is the identity and H; maps {0} x I, into I x 1.
The existence of such a family will be established at the end of the proof. Obviously
{H,7': 0 < < 1} is a continuous family. Define the continuous function

t(x) = min {dist(x, F), }, x €0,

where F is the union of all faces contained in B that meet 7. (Note dist(x, ) = +00.)
Define 4 as follows: for x in O, /(x) is the point y whose k-th and n-th coordinates
are those of H;y)(¢(x)) = (¥k,yn) and y; = x; for the remaining coordinates. Also
define g as follows: for x in Q, g(x) is the point y whose k-th and n-th coordinates
are those of Ht(x)’l (p(x)) = (zg,z,) and y; = x; for the remaining coordinates. Note
that /(x) and g(x) have the same i-th coordinates for every i not equal to £ and n.
Observe that g(h(x)) = x and #(g(x)) = x. Hence 4 and g are homeomorphisms and
=g

If x € W, then ¢(x) € {0} x I,,. Hence H;(¢(x)) € {0} x I, whenever ¢ is in [0, 1]
and x isin . Consequently, 2(x) € W forevery x in W.If W’ is the face of Q opposite
W and x € (W')s, where (W'); is the §-neighborhood of W', then o[W'] = {1} x I,
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1(x) = 1 and dist;(¢(x), p[(W")s]) < 8. Hence h(x) = x whenever x € (W')s.
Observe that a face that is contained in B is either /' or contained in F. Since
@[B] C {0,1} xI,, we have h € HOMEO(Q; B fixed). It is easily shown that each
section {x: x; = constant} of Q is invariant under # whenever i is not k and n.

Let us compute an upper bound for the norm |4]. Suppose #(x) < 1. Then
d(x, i(x)) = d(e), p(h(x)) <6+ % < &. Suppose #(x) = 1. Then dist(x,F) > §
and hence d(A(x),x) = dj(p(h(x)), ¢(x)). So, ||A| < e.

Since B is a fixed point set of /, it follows from the continuity of / that 4[Bs] C Bs.
The same is true for A1, hence A[Bs] = Bs.

We have ¢(x) = 1 if and only if § < dist(x, ). For such an x, ¢(k(x)) € Iy x I,
whenever x € . Hence (ph) ! [I; x I']1 D W\ Bs. We are ready to estimate fiu (W)
where f = h~1.

Sets(W) = furu(W 0 Bs) + fun (W \ Bs)
< u(fBs) + fim((of T T e x D)
= 1u(Bs) + (of “Dafani x 1)
= u(Bs) + oy x 1)
< % + %

We have shown that there are arbitrarily small members of £(j).

Let us show that E(j) is dense in HOMEO(Q; B fixed ). To this end, let g €
HOMEO(Q; B fixed) and consider guu. As gz (B) = 0, there is a small f in
HOMEO(Q; B fixed ) such that fuguu(W) < Jl So p(fg,g) is small if £ is small
enough.

Except for the promised proof of the existence of the continuous family of homeo-
morphisms, the proof of the main lemma is now at hand. It only remains to intersect the
countable collection of open dense sets £; (W) over all j and the countable collection
of all faces W of Q that are not contained in B.

Consider the disk D = {(r,®): r € [0, 1], ¥ € [—m, )} using polar coordinates.
The map that sends (r,?) to (r,9[0|"/!=?) for 0 < [#] < 1 and to (r,) for the
remaining ¥’s can be easily transferred to the square [—1,1] x [—1, 1] by radial
projection. O

It is easy to see that there are positive, continuous, complete, finite Borel measures
w on Q such that u(§Q) = 1 and u(Q \ §Q) = 0. Indeed, for each k let X; be
the factor of Q that is the product of all factors of Q other than /. Define uj to
be the product measure on X; generated by the usual one-dimensional Lebesgue
measure on each of the factor space of X; and let ¢; be the obvious bijective map
of X;. onto {x € Q: xx = 0}. Then @uu is a measure such that pzur(Q) = 1 and
ol (Q \ 8Q) = 0. Let ¥ be the analogous map of X; onto {x € Q: x; = 1}.
Then Yuuy is a measure such that Yyuur(Q) = 1 and Yuur(Q \ §Q) = 0. With
vy = %(go#uk + Yauy), let v = Z,‘io:] Zikvk. It is a simple calculation to show that
v(Q) = 1land v(Q \ Q) = 0. As §Q is dense in O, we have v is also a positive
measure on Q.
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3.6.3. The Oxtoby—Prasad theorem. The measure A on the Hilbert cube Q = [0, 1] N
that appears in the Oxtoby—Prasad theorem, which is the next theorem, is the product
measure generated by the usual one-dimensional Lebesgue measure on each factor
space I, of Q. Clearly, L(6Q) = 0.

THEOREM 3.45 (Oxtoby—Prasad). Let p be a continuous, positive, complete Borel
measure on Q such that u(Q) = 1 and let B be the union of finitely many faces of Q
with w(B) = 0. Then . = hu for some homeomorphism h in HOMEO(Q; B fixed ).
If n(8Q) = 0, then w = hyh for some homeomorphism h in HOMEQ (Q; B fixed ).

As in the proof found in [121], three preliminary lemmas will be proved. By the
main lemma, only the last statement of the theorem needs to be proved. The first
lemma is the Hilbert cube analogue of Lemma 3.26. The proof of this analogue uses
the Baire category version of the proof of that lemma.

LeEMMA 3.46. Let 1 be a positive, continuous, complete, finite Borel measure on Q
with w(§Q) = 0, let B be the union of finitely many faces of Q, and let R = {x €
O:xp < cland Ry = {x € Q: xx > c} be the rectangular sets in Q formed by
the section P = {x € Q: x; = c}. Then for any two positive numbers o) and oy with
a1 +ap = w(Q) thereis an h in HOMEQOy (Q; B fixed ) such that hu#jt(R1) = o and
hu(Ry) = ap. For such an h, h#jt(8R1) = hait(SRy) = hy(R1 N Ry) = 0.

Proor. The proof is essentially the same as for /”, where n is finite. The reader is
referred to page 65 for the proof of the finite dimensional case. First observe that O
can be written as ¥ x [ where Y is the product space formed by the interval factors
of QO that are not the k-th interval factor /. We follow the finite dimensional proof
with J replaced by Y and [—1, 1] replaced by /. A replacement for 9/ in the finite
dimensional proof must be found. To this end, let 7 be the union of all faces of
O contained in B that intersect P. If = denotes the natural projection of Q onto P,
then 7~ !'7[F] = F and #[F] = P N F. So we shall replace 3J with 7[F]. With
these replacements, the proof of the lemma proceeds in the same manner as the Baire
category proof of Lemma 3.26 given by Oxtoby and Ulam. |

A simple subdivision of Q is a subdivision of Q into rectangular sets defined by
a finite number of sections of Q. We now generalize the last lemma to simple sub-
divisions of Q. The proof is a straightforward induction on the cardinality of finite
families of sections of Q since a rectangular set is a copy of Q and the boundary of
a rectangular set is the union of a finite number of its faces. The proof is left for the
reader.

LemMmA 3.47. Let u be a positive, continuous, complete, finite Borel measure on Q
with uw(§Q) = 0, and let B be the union of finitely many faces of Q. If {R1,...,Ry}is
a simple subdivision of Q and a1, . . . ,a,, are positive numbers withoy + - - -+ o, =
u(Q), then there is an h in HOMEQOg(Q; B fixed) such that hy(R;) = «a; and
hup(8R;) = 0 for every i.

The proof of the Oxtoby—Prasad theorem is now in sight. It is an inductive
construction which is facilitated by the next lemma.
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Lemma 3.48 (Key lemma). Let u and v be positive, continuous, complete, finite
Borel measures on Q with 1(6Q) = 0, v(§Q) = 0 and u(Q) = v(Q), let B be the
union of a finite number of faces of Q and let P be a simple subdivision of Q such
that u(R) = v(R) and w(8R) = v(6R) = 0 for each R in 'P. For each positive ¢
there exists a simple refinement P’ of P with mesh(P’) < ¢ and there exists an h in
HOMEOy(Q; B fixed ) such that h leaves R invariant and SR fixed for each R in P
and such that v(R") = hap(R') and v(SR') = huu(SR') = 0 for each R’ in P'.

Proor. Let P’ be a refinement of P with mesh(P’) < ¢ defined by taking addi-
tional sections of O whose v-measures are 0. As each R in P is a copy of O we
may apply the last lemma to R resulting in R}, ..., R}, as members of P’ that are
contained in R, where o; = v(R}) for each i, and (B N R) U Bdp(R) replaces B in
the application of the lemma. The homeomorphisms that are obtained in this manner
will fit together to form an 4 in HOMEOy (Q; B fixed ) that meets the requirements of
the lemma. a

As in the proof of the finite dimensional Oxtoby—Ulam theorem the following
definition and property will be helpful. We say that a measure u is Lebesgue-like on Q
if w is a positive, continuous, complete, finite Borel measure on Q and w(§Q) = 0.
A pair u and v of Lebesgue-like Borel measures on QO and a simple rectangular
subdivision P of Q are said to satisfy the property Po(u,v;P) if u(o) = v(o) and
uw(8o) = v(do) = 0 whenever o € P.

ProoF oF THE OXTOBY—PRASAD THEOREM. As we mentioned earlier only the last state-
ment of the theorem requires proof. Suppose that x and v are Lebesgue-like Borel
measures on O and P is a simple rectangular subdivision of Q. We have from the key
lemma above that if i, v and P satisfy Po(u, v ;P) and if & > 0, then there is a ¢ in
HOMEOQOy(Q; B fixed) and a simple rectangular subdivision P’ of Q such that papu,
v and P’ satisfy Po(¢yu, v ; P’) and

(1) ¢lo € HOMEOy(o; BN o fixed) whenever o € P,
(2) P’ refines P,
(3) mesh(P) < &.

Let u be a positive, continuous, complete, finite Borel measure on Q that satisfies
w(B) =0, u(Q) =1 and Q) = 0 as in the last statement of the Oxtoby—Prasad
Theorem 3.45. We shall inductively construct a sequence of homeomorphisms g;
and ¥; j = 1,2,..., and two sequences of simple rectangular subdivisions P, P]f,
j=1,2,..., of O satisfying certain requirements specified below. Analogous to the
proof of the Oxtoby—Ulam theorem, the following will help in the construction.

Po(®up, W(—1)uhr; Py) =
Po(@jup, Wik P) == Po(P@(j1yuit, Yighs Pit1)
= Po(@+ s, Wi Py,

forj > 1, where ¥y = id, and P is undefined.



82 The homeomorphism group of X

(1) ®; = @jp;—1---¢1 and mesh(P;) < 2,

2) ¥ =vYjj_1--- ¥, and mesh(Pj’) <277,

(3) ¢jlo’ € HOMEQq(c'; BN o' fixed ) whenever o’ € ’P]f_l,
(4) ¥jlo € HOMEOq(o; BN o fixed) whenever o € P;,

(5) mesh(qaj—l[ij]) <27,

(6) mesh(¥;_1~'[P]) <27,

(7) P} refines 7,

(8) Pj refines P/_.

From the assertion of the initial paragraph of the current proof with pu, v = A,
P = {0} and ¢ = 27! we have the existence of a ¢; in HOMEQ(Q; B fixed )
and a simple rectangular subdivision P that satisfies Po(® 14, Woxh; P1) as well
as mesh(P;) < 27!, Condition (1) is satisfied for j = 1. Thereby, the induction is
started. The rest of the proof follows the lines of the finite dimensional case and is
left to the reader. O

3.7. Zero-dimensional spaces

Let us now turn to spaces with the smallest dimension. The two of most interest at
this point are the spaces NN and {0, 1}N. The first is topologically the space A equal
to the set of irrational numbers between 0 and 1, and the second is topologically
the classical Cantor ternary set in R. The space N is not as “rigid” as the Cantor
space which is compact. The space N has been characterized in [4, Satz IV] as
those separable completely metrizable spaces that are zero-dimensional and nowhere
locally compact (see also [85, Theorem 4 and Corollary 3a, pages 441-442]). Such a
space X has a complete metric and a sequence of subdivisions P, n = 1,2, ..., with
the properties

(1) P, consists of nonempty sets that are both closed and open,

(2) Ppy1 refines P, and the collection {E' € P,41: E’ C E} is infinite for each E in
PV!)

(3) mesh(P,) < 5.

It is not difficult to show that two such spaces are homeomorphic. Using the above
properties, J. C. Oxtoby [119] proved the following theorem.

THEOREM 3.49 (Oxtoby). Let i be a Borel measure on N'. Then there exists an h in
HOMEOW) such that hap = AN, where A is the Lebesgue measure on R, if and
only if w is positive, continuous and complete, and satisfies u(N) = 1.

An immediate consequence of this theorem is the next theorem whose proof is left
to the reader.

TueoreM 3.50. HOMEO((W) and AN generate univ M (N).

3.7.1. Prof of Oxtoby’s theorem. We give the proof found in [119]. The proof uses
the next two lemmas.
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LemMA 3.51. Let ju be a positive, continuous, complete, finite Borel measure on N.
If{a;: i = 1,2,...} is a sequence of positive real numbers such that y oo, o; =
w(N), then there exists a subdivision P = {U;: i = 1,2,...} of N that consists of
simultaneously closed and open sets such that u(U;) = «; for every i.

ProoF. Observe that the map x — ([0,x] N A) is a homeomorphism of [0, 1] onto
[0, £(NV)] and that [r,7'] N N is a closed and open subset of A/ whenever 7 and »’
are rational numbers in [0, 1] with » < #. For (i,j) in N x N, let a(i,j) = +L ;. The

i i J+1
linear ordering

(i,j) < (@’,j") ifand only if
i+j<i+j,ori+j=i+jandj </

well orders the set N x N. For each (i,j) we shall inductively select intervals
1(i,j), closed on the left-side and open on the right-side, with rational end points
such that

a(i,j) <Y _ ud@n)NN) <a(,j+1)

for all / and j. Let | be a rational number such that /(1,1) = [0, r) satisfies the
required condition. Suppose that (7, ) is the k-th pair and that ry, r», ..., ry are rational
numbers such that the m-th pair (i, ") corresponds to the interval I (i', ;') = [rm—1,7m),
m = 1,2,...,k, which satisfy the above requirement. Let (i”,;”) be the (k + 1)-th
pair. Clearly one can select a rational number ;| such that 7(i”,;") = [rg,rks1)
satisfies the required condition. Observe that U(i J)eN x n1@.j) = [0,1). The sets
U =Nn Uj’il I1(i,j), i = 1,2,..., constitute a subdivision of A/ which satisfies
w(U;) = «; for all i. O

Lemma 3.52. Let p be a complete metric for N and let ¢ be a positive number. If u
and v are two positive, continuous, complete Borel measures on N and if U and V
are nonempty open sets such that u(U) = v(V) < oo, then there are subdivisions
{Uj: i e N}of U and {V;: i € N} of V that consist of nonempty simultaneously closed
and open sets of diameter less than & such that u(U;) = v(V;) for every i.

Proor. Let {H;: i € N} be a subdivision of V' into nonempty closed and open sets of
diameter less than ¢. As U is ahomeomorphic copy of NV, the previous lemma provides
a subdivision {G;: i € N} of U by closed and open sets such that u(G;) = v(H;) for
every i. For each i let {G;;: j € N} be a subdivision of G; by nonempty closed and
open sets of diameter less than &. As H; is a homeomorphic copy of V, the previous
lemma provides a subdivision {H};: j € N} of H; by closed and open sets such that
w(Gy) = v(Hy) for every j. Clearly {Gj;: (i,j) € Nx N} and {Hj;: (i,j) € Nx N}
are subdivisions of U and V, respectively, with u(G;) = v(H};) whenever (i,)) €
N x N. O

ProoF oF THEOREM 3.49. Let p be a complete metric for V. By repeated applications
of the last lemma we obtain subdivisions U, = {U,;: i € N}and V, = {V,;;: i € N},
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n € N, of N by simultaneously closed and open sets such that

(1) mesh(Uy) < 5 and mesh(V,) < 5,
2) w(Uyi) = v(Vy;) for every i,
(3) Uy refines U, , and V1| refines V,.

Each point x of A/ corresponds to a unique nested sequence Uy, k =1,2,... .
As the metric p is complete and this sequence corresponds to the unique nested
sequence Vy,;,, k = 1,2,..., there is a unique point y = ¢(x) determined by V,;,,
k=1,2,....Itis clear that the map ¢ is bijective and that ¢[U,;] = V;; and U,;; =
<p_1 [Vy:i] for every nand every i, whence ¢ € HOMEO(N). Consequently, u(Uy;) =
oyv(Uy;) for every n and every i. Obviously the smallest o-algebra generated by
o2, Uy is BN). Hence 1 = pyv and the theorem is proved. O

3.7.2. The Cantor space. The next obvious zero-dimensional space is the Cantor
space {0, 1N, Here the question is whether some positive, continuous, com-
plete, finite Borel measure p on {0, 13N and the group HOMEO({O, I}N) generate
univ 93?({0, I}N) can be resolved by methods that were used up to this point of the
book, that is, by proving an analogue of the Oxtoby—Ulam theorem for the space
{0, 1}N. This analogue is not possible as results of F. J. Navarro-Bermudez and
J. C. Oxtoby [117], F. J. Navarro-Bermudez [115, 116], and K. J. Huang [78] show.
In 1990, some of these results were further elaborated on by R. D. Mauldin in [105]
and problems related to them were proposed there. More recently, E. Akin [2, 3] made
substantial advances in the investigation of topological equivalence of measures on
the Cantor space. Those who are interested in more details concerning the above
mentioned results are referred to Appendix C in which a detailed discussion of them
as well as the results of R. G. E. Pinch [126] and the very recent results of T. D. Austin
[6] and R. Dougherty, R. D. Mauldin and A. Yingst [47] are presented.

Following Akin, we shall designate as topological Cantor spaces (or, more briefly,
Cantor spaces) those spaces that are topologically the same as {0, 13N, For any sep-
arable metrizable space X, the collection €O (X) consisting of all simultaneously
closed and open subsets of X is a countable one. Moreover, if X is a Cantor space,
then €O (X) is a base for the open sets of X'; consequently, it is also a base for the
closed sets of X.

Let © be a continuous, finite Borel measure on a separable metrizable space X.
The value set of u is the subset of R defined by

vs(i, X) = {n(U): U € €DX)).

Clearly, vs(u, X) is a countable set that contains the values 0 and u(X). Hence, if
is a probability measure, then vs(u, X)) C [0, 1]. For Cantor spaces X, the value sets
vs(u, X) are dense subsets of [0, u(X)]. Generally, if #: X — A[X] is a continuous
map, then

VS(M,X) D) Vs(h#/’(/a h[X])>
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where equality holds whenever /4 is a homeomorphism. Consequently, the value set
of a measure is a topological invariant. But the value set does not determine the
equivalence class {hgu: h € HOMEO(X)}, where p is a probability measure on a
Cantor space X . Indeed, Akin has shown that the measure p on {0, 1 1Y determined by
the Bernoulli probability measure on {0, 1} with values % and % and the measure v on
{0, 1,2} N determined by the uniform measure on {0, 1,2} are not topologically equiv-
alentand yet vs(u, {0, I}N) = vs(v, A[{0, I}N]) for every homeomorphism /4 of {0, 1}N
onto {0, 1,2} N such that sy = v (see Proposition 1.7 of [2] and also Appendix C).
In [2], Akin finds another invariant that does determine equivalence classes. This
invariant uses the order topology. Let us turn our attention to this invariant.

It is not difficult to show that {0, 1}N is homogeneous; that is, if x; and x; are points
of {0, 1}, then there is an # in HOMEO(({0, 1}Y) such that A(x]) = x; and A(x2) = x].
Hence it follows that, for distinct points xo and x| of the classical Cantor ternary set,
there is a self-homeomorphism /4 of the Cantor ternary set such that 4(xg) = 0 and
h(x1) = 1. Consequently we have’

ProposITION 3.53. If X is a Cantor space and if xo and x1 are distinct points of X,
then there is a linear order < on X such that

(1) xo <x < x1 wheneverx € X,
(2) the order topology induced by < on X is precisely the topology of X.

A separable metrizable space X with a linear order < that satisfies the above two
conditions will be denoted by (X, <) and will be called a linearly ordered topological
space (or, more briefly, an ordered space). We recall two definitions from Appendix C.

DEFINITION 3.54. Let (X, <) be an ordered space and let . be a complete, finite Borel
measure on X. The function F,: X — [0, u(X)] defined by

Fu(x) = p(lxo,x]), xeX,

where xq is the minimal element of X in the order <, is called the camulative distri-
bution function of w. Define V$(u, X, <), called the special value set, to be the set of
values

Vs(u, X, <) = {u([x0,x]): [x0,x] € €OWX)} U {0}.

DerINITION 3.55. Let (X1, <1) and (X», <») be ordered spaces. ¢ : X1 — X is said
to be an order preserving map if p(a) <2 ¢(b) whenever a <1 b. Such a map that is
also bijective is called an order isomorphism.

For Cantor spaces X, Akin showed in [2] that every linear order < on X which
results in an ordered space (X, <) is order isomorphic to the classical Cantor ternary
set endowed with the usual order.®

Here is a useful proposition.

5 This is Proposition C.31 from Appendix C. Akin’s extensive study of Cantor spaces with linear order
that satisfy the two conditions that are enumerated in the proposition is presented in Appendix C.

6 See Theorem C.37. Akin showed this to be a consequence of Theorem C.36. Actually a direct proof of
the existence of such order isomorphisms can be made.
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PropOsSITION 3.56. Let (X, <) be an ordered space. If F: X — [0, 1] is an order
preserving, right continuous function satisfying F (x1) = 1, where x| is the maximal
member of X, then there is a unique probability measure |1 on X such that FF = F,.

Akin proved [2, Theorem 2.12] the following interesting theorem which will prove
useful in Chapter 4. The theorem uses Radon—Nikodym derivatives as a substitute
for homeomorphisms. Recall that a measure w is said to be absolutely continuous
with respect a measure v (denoted u <« v) if w(£) = 0 whenever v(E) = 0. For
convenience we shall assume p and v are continuous, finite Borel measures on a
separable metrizable space X. If u is absolutely continuous with respect to v, then
there is a real-valued, Borel measurable function, denoted by fl—’: and called the
Radon—Nikodym derivative of p with respect to v, that satisfies u(B) = f B ’;—‘: dv =
Iy Xgﬁ—"f dv whenever B € B(X).

THEOREM 3.57 (Akin). Let (X1, <1) and (X2, <3) be ordered Cantor spaces and let |1
and |1y be positive, continuous, complete Borel probability measures on X1 and X>,
respectively. For each real number L with L > 1 there exists an order isomorphism
h: (X1,<1) — (X2, <2) such that hyp < w3 and the Radon—Nikodym derivative

Tis satisfies
-1 dhy i
< <
L < pm L
everywhere on Xa. Consequently, pp < hypy and %%-Zﬁ#—% = 1 everywhere

on Xs.
The proof will rely on the following two lemmas.

LemMma 3.58. Let Dy and Dy be countable dense subsets of [0, 1]with {0,1} C D1ND>.
For each real number L with L > 1 there exists an order isomorphism ¢ of the
ordered space ([0, 1], <) such that [D1] = D> and L™! < % < L. Hence
Lip(¢) <L and Lip(p~") < L.

ProoF. Let us begin by establishing some notation. Let L > 1 be fixed. In the
plane R? a parallelogram with vertices 4 = (a1, a2), B = (b1,b2), C = (c1,¢2),
D = (dy,d>) (oriented counterclockwise) and whose two pairs of opposite parallel
sides have slopes L and L™!, respectively, will be denoted by PARA(4, B, C, D). We
will assume that the first vertex 4 has its coordinates to be smaller than the respective
coordinates of the other vertices, hence the coordinates of the opposite vertex C has
its coordinates larger than the respective coordinates of the other vertices. Clearly
the slope of the diagonal AC is between L~! and L. We shall denote the bounded
component of the open set R2 \ PARA(4, B, C, D) by [4, C] (note that B and D are
determined by 4 and C). It is easy to see, for each P in [4, C], that [P, C] C [4, C],
[4,P] C [4,C], and [4,P] N [P,C] = @. For each x and y in R the line parallel to
the second coordinate axis of R? with the first coordinate equal to x will be denoted
by L, and the line parallel to the first coordinate axis of R? with second coordinate
equal to y will be denoted by L. Clearly, L, N [4, C] is an open linear interval of
L, if and only of ¢ < x < c¢1. A corresponding statement holds for LY. It will be
convenient to identify R and L, and to identify R with L in the coming construction.
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Finally, for points P = (x1,y1) and Py = (x2,)») in D1 X Dy, we write P < P to
mean x| < xz and y; < y;, and P1P; to be the line joining Py and P>. The notational
introduction is completed.

Letay,az,a3,...,and by, by, b3, .. ., be well orderings of D and D, respectively,
where a; = by = 0and ay = by = 1; and let L > 1. We shall inductively construct
a sequence ¢,, n = 1,2, ..., of piecewise linear functions of the interval [0, 1] onto

itself that are determined by a sequence P, = {P{"”: 1 <i < 2n} of finite subsets of
D1 x Dj such that, for each n,

(n-1) L7! < Lip(gn) < L;

(n-2) P, satisfies P;”) < P;'fﬁl for each i, P;") = (0,0), Pg;; = (1, 1); and, the graph
of ¢, is the union ofPE")PEZzI, 1 <i<2n

(n-3) with (", 3") = P}" € Py, k =1,2,...,2n, the subsets X;, = {x{" : i < 2n}
and Y, = {y}”) 1 J < 2n} of D and D», respectively, satisfy {a;: i < n} C X,
and {b;: j < n} C Yy;

(n-4) the open planar set [P;"),P;fﬁ]] is defined for each i, and the set M, = P, U
ux! [P{", P} ] is connected;

(I’l—5) P, C Pn+1.

Let ¢ be the piecewise linear function associated with the collection P; =
{(0,0), (1, 1)}. Clearly the conditions (1-1) through (1-4) are satisfied and condition
(1-5) is vacuously satisfied. The reader can readily see how to prove the inductive
step from the example of the construction of ¢, and P,. Let i = 3. Then the line
La,1 has a nonempty open interval as the intersection with the connected set M. Let
J1 be the least index j such that b; is in this intersection. Let P’ = (a;,,b;,) and
let P{ = {P'} U P;. Let M be the connected set that corresponds to the collection
P;. Let jj be the least j such that b; is not one of those already selected. The line

Lbf'q has a nonempty open interval as the intersection with the connected set M. Let
i1 be the least index i such that a; is in this intersection. Let P” = (ai/1 ,b./l) and
let P, = {P’, P"} U Py, where the collection is reindexed to meet the requirements
of condition (2-2). Define ¢, accordingly. The verifications of the conditions (2-1)
through (2-5) are easily made.

The sequence ¢,, n = 1,2, ..., converges on the dense set D and has uniformly
bounded Lipschitzian constants. Hence, by the Arzela—Ascoli theorem, the sequence
converges uniformly to a function ¢ such that L=' < Lip(¢) < L. We infer from
conditions (n-1) through (n-5) that ¢[D1] = D». O

LEmMA 3.59. Let X be the Cantor ternary set with the usual order. Suppose that | and
W2 are positive, continuous, complete Borel probability measures on X . If  is an order
isomorphism of [0, 1] such that w[%(uz,X, 5)] = vs(u1,X, <), then there exists an
order isomorphism h: X — X such that oF,, = Fy,,,,. Consequently, if x| and x;
are points of X with x| < xj, then (Lip((p_l))_luz([xl,xz]) < hyu ([x1 ,xg]) <
Lip((p)uz([xl,xg]) whenever Lip(¢~!) > 0.

Proor. Define E to be the set of all left end points of the deleted open intervals of R
that are used in the construction of the Cantor ternary set. Observe, for each i, that v is
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in V8(u;, X, <) if and only if there is a unique e in E such that F,, (e) = v. First let us
show that there is an order isomorphism /#: E — E such that oF,, (h(e)) = F, (e).
To this end, let e be in E. Then F;, (e) € go[\'i's(Mz,X, 5)], There is a unique €’ in
E such that F,, (e) = ¢F,,(¢’). Hence h(e) = ¢ and A is defined on E. It follows
that Fy, (h(e)) = o~ 'F 1, (€). It remains to prove that / is an order isomorphism.
Let g denote the function on vs(u2,X, <) \ {0} that is the inverse of the restric-
tion of F, to E. Then g is an order isomorphism (see Exercise 3.13). We have
hie) = gp™'F u;(e). Clearly & is an order preserving injection. It is not difficult to
show that % is surjective since F,; is a surjective map of E onto Vs(u;, X, <) \ {0}
for each i. From the order denseness of £ in X we infer the existence of an order
preserving extension of /4 to all of X. We shall continue to use /4 for this extension.
As E is order dense in X, this extension is an order isomorphism of X. We now have
hyp (10,x1) = w1 (h~1[10,x1]) = Fu, (") = @Fu,(x), where h~!(x) = x'. Hence
@F ., = Fp,,, . The final statement of the lemma follows easily from this identity. O

Proor oF THEOREM 3.57. As (X1, <1) and (X3, <») are each order isomorphic to the
Cantor ternary set X with the usual order <, we may assume that both of them are
X, <). Given L > 1, let ¢ and / be as provided by the above two lemmas. Then,
for x; and x; in X with x; < x», we have L™! Mz([xl,xz]) < h#ul([xl,xz]) <
L pa([x1,x2]). It follows that uy < gy and kg < o, and that the Radon—
Nikodym derivative of Az with respect to py exists and satisfies the requirements

of the theorem. O

We complete this section by connecting the last theorem to the collection
univ M {0, 1}Y) of all universally measurable sets in the Cantor space {0, N,

THEOREM 3.60. Let X be a Cantor space. If wu is a positive, continuous, complete,
finite Borel measure on X, then u and HOMEO(X) generate univ 91 (X).

Proor. Let E be a subset of X such that A~![E] is u-measurable when-
ever h € HOMEO(X). We must show that E is v-measurable for every v in
MEASPoSin(x) the collection of all positive, continuous, complete, finite Borel mea-
sureson X . Let v be such a measure. There is no loss in assuming (. (X) = v(X). There
exists an 7 in HOMEO(X) such that v < hgt. We have that A~ [E] is u-measurable.
Hence there exist Borel sets A and B such that 4 ¢ A~ 1[E] C B and w(B\A4) =0.
Then A" = h[A] and B = h[B] are Borel sets such that A’ ¢ E C B’. Now
huu(B'\ A") = n(B\ A) = 0. Hence v(B’' \ 4’) = 0 and thereby E is v-measurable.
E is a universally measurable set in X a

3.8. Other examples

With the aid of the Oxtoby—Ulam theorem, Marczewski proved that Lebesgue mea-
sure and HOMEO(R") generate univ 9t (R"). An even stronger theorem holds, that
is, Theorem 3.37 — actually, Marczewski’s result is implied by this theorem since
Lebesgue measure is not finite on R”; the implication is a consequence of the fact
that there is a finite measure on R” such that its measurable sets coincide with those of
Lebesgue measure. The measures in the theorem are positive. There is a nonpositive,
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continuous, complete, finite Borel measure i on R” such that it and HOMEO(R")
generate univ M (R").

ExampLE 3.61. The measure u = A [0, 1]", where X is Lebesgue measure on R”,
and the group HOMEO(R") generate univ DT(R"). For a connected n-dimensional
manifold M, with 0M, = @ let ¢: R" — M, be a topological embedding. Then the
measure g and the group HOMEO(M,,) generate univ 9t (M,,). See Exercise 3.15.

Every example given so far has been an absolute Gs space, though not necessarily
locally connected for the connected examples. The following example will supply
a non absolute G5 space X for which there exists a positive, continuous, complete
Borel measure i on X such that it and the group HOMEO(X) generate univ Dt(X).

ExaMpLE 3.62. IfDisacountable space, then there is a positive, continuous, complete,
finite Borel measure i on X = D x [0, 1] such that univ91(X) is generated by u
and the group HOMEO(X). See Exercise 3.16.

In the above example the countable space can be the space QQ of rational numbers,
a non absolute G5 space. The next example concerns the group of homeomorphisms
of the space X = A x [0, 1].

ExampLE 3.63. Let m: N x [0,1] — A be the natural projection and define f
on N to be the injection x — (x,0). Note that 4[{x} x [0, 1]] is a component of
N x [0, 1] for each # in HOMEO(N x [0, 1]) and each x in V. Hence there is
a bijection #*: N' — N and a homeomorphism g, in HOMEQ([0, 1]) such that
h(x,y) = (h*(x),gx(y)) whenever (x,y) € N x [0, 1]. As &* = whf we have that 4*
is continuous. Clearly the following diagram commutes.

N —L s Nx[01] = N

hﬁ Th Th*
N L Nx0,1] " N

Hence /* is in HOMEO(N). (See Exercise 3.17.)

Now denote A/ x [0, 1] by X. It is easy to show that there exists a positive, con-
tinuous, complete Borel probability measure  on X with (N x 9[0, 1]) = 0 such
that u is not topologically equivalent to A|X, where X is the Lebesgue measure on
RZ; that s, u # hy(A|X) for every h in HOMEO(X). (See Exercise 3.18.)

For the inclusion map ¢ of ' x [0, 1] into [0, 1] x [0, 1] and the above u, the
measure @z is homeomorphic to A[([0, 1] x [0, 1]). Also the restricted measure
w| (N x N) is homeomorphic to A|(N x N) since AV is to homeomorphic N x N.

We have used products of two spaces in the last two examples. Clearly, not every
measure in MEAS (X x Y) need be a product measure and the group HOMEO(X x Y)
can be quite large in comparison to HOMEO(X) x HOMEQO(Y). It would be inter-
esting if some general results about the generation of universally measurable sets in
product spaces could be proven.

Here is a question that arises from the second example.
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QuestioN. Let my: N x [0,1] = N and m2: NV x [0,1] — [0, 1] be the natural
projections. Suppose that w is a positive, continuous, complete Borel probability
measure on A/ x [0, 1] such that 714/ is a continuous measure. Then, by Oxtoby’s
theorem, there is a homeomorphism ¢ in HOMEO (V) such that gu # is the restric-
tion of the Lebesgue measure on R to the set /. Hence there is a homeomorphism
h1 in HOMEO(N x [0, 1]) such that 7y 4h 140 = @smigi. Is © homeomorphic to
AW x [0,1]), where A is the Lebesgue measure on R2? Failing that, is there a
homeomorphism /4, in HOMEO(N x [0, 1]) such that 7aghsxu is continuous?

Every example so far has been an absolute Borel space. It is time to present an
example of an absolute measurable space that is not an absolute Borel space.

ExampLE 3.64. Let N be a nowhere dense subset of the Hilbert cube O = [0, 1]N
that is also an uncountable absolute null space, and let X;,, n = 1,2,. .., be a discrete
collection of absolute measurable subspaces of Q whose diameters form a sequence
converging to 0. Suppose N N (Ujﬁl X») = ¥ and Fp(X,,) # ¥ for each n. It can
happen that N N Clp(Upo; Xn) # 0. Let X = N U (U,2 X,) and let 1 be a
continuous, complete, finite Borel measure on X such that, for each #n, the measure
w| X, is positive on X;,. Obviously X is not an absolute Borel space. If, for each n, | X,
and HOMEO(X;,) generate MEASPSfi" (X)), then a measure v in MEASPSfin () is
such that 4y = v for some 2 in HOMEO(X) if and only if v|.X, is a positive measure
on X, and u(X,) = v(X,) for every n. Hence u and the group HOMEO(X) do not
generate MEASPSfin (X) Nevertheless,  and HOMEO(X) do generate univ 9t (X)
since each 4 in HOMEQO(X;,) has an extension in HOMEO(X). As for examples of
X, one may take them to be arcs or Cantor spaces or topological copies of N or
topological k-spheres.

3.9. Comments

In this chapter we have been concerned with the interplay between a pair
(/,L, HOMEO WX )) and the collection univ9i(X) of universally measurable sets
in a space X, where u is a positive, continuous, complete, finite Borel mea-
sure on X and HOMEO(X) is the group of homeomorphisms. The origin of this
investigation is found in the early part of the twentieth century during which the
investigation of those subsets of the unit interval [0, 1] which are measurable for
every continuous, finite, complete Borel measure on [0, 1] was initiated. These
sets were called universally measurable or absolutely measurable. In 1937, a sum-
mary of results was made by Braun, Szpilrajn and Kuratowski in the Annexe to
the Fundamenta Mathematicae [15]. There one finds the basic fact that Lebesgue
measure A and the group HOMEQO([0, 1]) generate univ ([0, 1]). Of course, it
is not difficult to replace [0, 1] with R in this assertion. So the question then
becomes: Can one replace R with R”? For the plane, this is Problem 170 pro-
posed by Szpilrajn in The Scottish Book (this book was the subject of a conference
whose proceedings were edited by Mauldin [104]). The problem was solved by
Marczewski [96]. Its solution is a simple consequence of the Oxtoby—Ulam theo-
rem. (See Example 3.61.) Hence properties provided by the Oxtoby—Ulam theorem
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are sufficient conditions for the group HOMEO(R") to generate univ 9t (R"). This
motivates the study of the “action” of the group HOMEO(X) in the generation of
univ M (X). As we have seen in the case of the Cantor space, absolute continuity of
measures leads to nice a generalization of the Oxtoby and Ulam approach to the group
HOMEO(X) generating univ 90t (X). This approach will be expanded on in the next
chapter.

3.9.1. The unit n-cube and the Hilbert cube. The Oxtoby—Ulam theorem gives a
characterization of those Borel measures on [0, 1]” that are homeomorphic to the
Lebesgue measure A on [0, 1]”. The theorem has an interesting history. It was conjec-
tured by Ulam in 1936 that the Oxtoby—Ulam theorem is true (see [122, page 886]).
In the following year J. von Neumann gave an unpublished proof [155]. The Oxtoby
and Ulam proof [122] appeared in 1941. They applied the Baire category theorem to
a closed subgroup of the topological group HOMEQO([0, 1]") to prove the key lemma
needed for their proof. In 1975 Goffman and Pedrick [63] gave a measure theoretic
proof of the key lemma.

The two approaches to the proof to the key lemma mentioned earlier have different
consequences in terms of extensions of the Oxtoby—Ulam theorem. The Baire category
proof is found to work equally well in the infinite product [0, 1]V, which is the
Hilbert cube. This was carried out by Oxtoby and Prasad in [121]. Their result is a
remarkable one in that the Hilbert cube does not have an algebraic boundary (that is,
a[0, 1] N— #) and hence, due to the main Lemma 3.44 of their proof, a much cleaner
theorem results. The measure theoretic approach of Goffman and Pedrick has the
interesting consequence of a different nature. Their proof of the key lemma can be
couched easily in a homeotopy form (see [62]). Hence an algebraic topological form
of the Oxtoby—Ulam theorem will result for finite product spaces [0, 1]". Indeed, for
each pair w and v in {v: v([0,1]") = 1, u is Lebesgue-like} there is a continuous
map

G: [0,1] — HOMEO([0,11";3[0, 11" fixed) 3.9)

such that GO)xu = wu, G()gn = v, and G(Oxu(E) = w(E) for E in
B([0,1]™). There is a sharper result that is a consequence of a fact (attributed to
Alexander) that the space HOMEO([0, 1]”; [0, 1]” fixed) is contractible, which
was observed by R. Berlanga and D. B. A. Epstein [8, Remark, page 66].
HOMEO([0, 1]%;8[0, 1]" fixed) is contractible means there is a homotopy H
of HOMEO([0, 11"; 8[0, 11" fixed ) to itself such that H(1, -) is the identity on
HOMEO([0, 11%; 8[0, 11" fixed ) and H (0, -) is a fixed homeomorphism. Since the
proof is easy let us give it. Let us replace [0, 1]” with the closed unit ball B in the
Euclidean space R” that is centered at the origin and 9[0, 1]” with dB. For each pos-
itive ¢ let ¢ B be the closed ball with radius ¢. If 4 is in HOMEQO(B; 9B fixed ), then
the map /%, defined by /,(x) = th(t’lx), x € tB, is a homeomorphism of ¢ B onto
itself such that 4, is the identity map on d(¢ B). For each ¢ in (0, 1], the identity map
on B\ t B will yield an extension of /, to a homeomorphism of B onto B such that its
restriction to a8 is the identity map. We shall denote this extended map by H (¢, h).
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It is easily seen that H (¢, - ) is a continuous map of HOMEO(B; 3B fixed ) into itself
with H(0,#) = idg and H(1,h) = h for every h. Hence HOMEOQO(B; 9B fixed)
is contractible. Consequently, if n is a Lebesgue-like probability measure, then
H(1,h)yu = v for some 4 by the Oxtoby—Ulam theorem. The above argument is
a finite dimensional one.

Interestingly enough, the measure theoretic approach does not seem to yield the
extension of the Oxtoby—Ulam theorem to the Hilbert cube because Lemma 3.27 is a
finite dimensional result. Also, the Baire category approach to the key lemma loses
the homeotopy refinement in the equation (3.9) achieved by the measure theoretic
approach.

QUEsTION. Is there a homotopy version of the Oxtoby—Prasad theorem? Is there an
equation (3.9) version?

3.9.2. Compact, connected manifolds. Observe that [0, 1]" is a compact, connected
manifold with boundary. The Oxtoby—Ulam theorem concerns Lebesgue-like mea-
sures on this manifold. In a natural manner, for a compact, connected manifold M,
(with or without boundary), we defined a positive, continuous, complete, finite Borel
measure i on M, to be Lebesgue-like if 1 (dM,) = 0. Applying a topological theorem
due to Brown [21], Alpern and Prasad show in [5, page 195] that the Oxtoby—Ulam
theorem holds for compact, connected manifolds. Another proof can be found in
T. Nishiura [118] which does not employ the Brown theorem, just the definition of
manifolds. There are results concerning homeomorphic measures on noncompact,
connected, separable manifolds due to Berlanga and Epstein [8].”As their results
require the notion of “ends” of a manifold, we have not included them in this chapter.
To illustrate the role of ends we give the following rather simple example. In the
square [—1, 1] x [—1, 1] consider the points p~ = (—1/2,0) and p* = (1/2,0). The
noncompact manifold X = [—1,1] x [—1,1]\ {p~,p"} has the end-point compact-
ification [—1, 1] x [—1, 1] with ends consisting of the points p~ and p*. Let u be a
continuous, positive, complete Borel measure on X with ,u(a([—l, 1]x[—1, 1])) =0
and n(X) = A(X), where X is the Lebesgue measure on the plane. For this example,
it is not difficult to see that sy = A|X for some & in HOMEO(X). (The proofis not
a simple application of the Oxtoby—Ulam theorem for the square [—1, 1] x [—1, 1]
because the homeomorphism % must indirectly see the ends p~ and p™.) See the
book by Alpern and Prasad [5, pages 196—-204] for a more detailed discussion on the
Berlanga—Epstein results.

3.9.3. Nonmanifolds. Remember that the basic question is the existence of a posi-
tive, continuous, complete Borel measure p on a space X such that it and the group
HOMEO(X) generate univ 9t(X). With the aid of Oxtoby and Prasad extension of
the Oxtoby—Ulam theorem to the Hilbert cube [0, 1] N a nonmanifold, the question
is easily answered in the affirmative for this nonmanifold.

7 The manifolds in this paper are o-compact, connected manifolds. It is easy to see that such manifolds
are precisely the connected, separable manifolds.



3.9. Coments 93

It has been shown that the answer is also in the affirmative for other nonmani-
folds such as finitely triangulable n-dimensional spaces, the “sin()lc) space” and the
Warsaw circle even though the Oxtoby—Ulam theorem does not generalize to these
spaces.

Another example, which we did not present, is a Menger manifold. A Menger
manifold is a separable metrizable space such that each of its point has a neighborhood
that is homeomorphic to the Menger compact, universal space of dimension z (see S0,
page 121] for the definition of the Menger universal space). H. Kato, K. Kawamura
and E. D. Tymchatyn [81, Theorem 3.1, Corollary 4.12] have shown that the analogue
of the Oxtoby—Ulam theorem is valid for the Menger compact, universal space of
dimension n and for compact Menger manifolds of dimension n, where n > 0. The
case n = 0 is the Cantor space; the Oxtoby—Ulam theorem analogue is not available
here. Their proof is based on the work of M. Bestvina [11], see [11, pages 15 and 98]
for the basic definitions.

3.9.4. The space N. Oxtoby investigated in [119] homeomorphic measures on
the zero-dimensional space A/, which is homeomorphic to the product space N N,
He showed that the equivalence classes with respect to homeomorphisms are char-
acterized by positive real numbers, that is, two positive, continuous, complete, finite
Borel measures p and v are homeomorphic if and only if (N and v(N) are equal
to the same positive real number. The Oxtoby theorem for the space A/ leads to the
fact that Lebesgue measure on A" and HOMEO(N) generate univ 9T (N).

In the same article, Oxtoby defined the notion of almost homeomorphic measures.
This will be discussed in the next chapter.

3.9.5. The Cantor space. The other familiar zero-dimensional space is the Cantor
space {0, 1}, Here, characterizations of the equivalence classes of homeomorphic
positive, continuous, complete, finite Borel measures on {0, 1} were not known in
the mid-1970s. In Section 3.7.2 there are several references with partial results which
show that the Oxtoby—Ulam theorem does not extend to the Cantor space {0, N In
his 1999 paper [2] Akin successfully “characterized” the equivalence classes of home-
omorphic positive, continuous, complete, finite Borel measures on Cantor spaces X .
In that paper he showed that the value set vs(u,X) is invariant under homeomor-
phisms, but not conversely; consequently, the word characterized in the previous
sentence is enclosed in quotation marks. As every Cantor space is homeomorphic to
the classical Cantor ternary set, the usual order on the Cantor ternary set provides
each positive, continuous, probability Borel measure p with a natural cumulative dis-
tribution function. After a thorough investigation of linear orders on Cantor spaces X,
he showed that the special value set VS(u, X, <) is a linear (that is, order) isomor-
phism invariant. Hence if » > 0 and if D is a countable, dense subset of [0, ], then
the collection D(r) of all positive, continuous, complete Borel measures on X with
Ww(X) = ris partitioned into linear isomorphism equivalence classes B(r) consisting
of those u such that D U {0, 7} = VS(u, X, <), where the linear order < on X results
in the Cantor space topology of X. Exercise 3.14. shows that each such countable set



94 The homeomorphism group of X

D yields a nonempty collection 5(r). It follows that, for a fixed r, the cardinality of
the collection of all linear isomorphism classes 5(;’) is c.

There is a stronger result for Bernoulli measures on X = {0, I}N. A Bernoulli
measure P on {0, 1}, where 0 < r < 1, is the unique measure that assigns the values
P({0}) = r and P({1}) = 1 — r. This measure produces the shift invariant Bernoulli
product measure on {0, 13N in the obvious way. This product measure will be denoted
also by ;. The value set vs(8,, X) consists of the numbers of the form

Y gair'(1 ="t neN,

where the coefficients a; are integers that satisfy 0 < a; < ﬁ .Hencerand1 —r
are in vs(B,,X). Akin has observed (see [2, Proposition 1.8])

THEOREM 3.65. For each r in (0, 1) there are only countably many s in (0, 1) such
that the Bernoulli measure By on {0, 1} is homeomorphic to the Bernoulli measure
B, on {0, 11N Hence, among the collection {B,: r € (0, 1)} of Bernoulli measures on
{0, 13N, the set of homeomorphism equivalence classes has the cardinality c.

The following earlier and finer conclusions were proved by Navarro-Bermudez
[115, Theorem 3.3 and Theorem 3.4].

THEOREM 3.66 (Navarro-Bermudez). Let r and s be in (0, 1). If v is a rational number,
then the Bernoulli measures B, and Bs on {0,1}Y are homeomorphic if and only
ifs =rors =1—r Also, if ris a transcendental number, then the Bernoulli
measures B and Bs on {0, 1} are homeomorphic if and only if s = r ors =1 — r.

The investigation of the cases where r is an algebraic number is not very easy and
far from complete. The remaining cited references in Section 3.7.2 concern Bernoulli
measures S, where 7 is an algebraic number in the interval (0, 1). Several questions
along this line are raised in Mauldin [105].

A more detailed discussion of Borel probability measures on Cantor spaces can be
found in Appendix C.

3.9.6. Measure preserving homeomorphisms. On several occasions we have
referred to the book [5] by Alpern and Prasad on measure preserving homeomor-
phisms. In their book these are called automorphisms. An automorphism of a Borel
measure space M(X, ) is a g in B-HOMEO(X) such that u(4) = wu(gld]) =
w(g'[A4]) for every p-measurable set 4. Hence the task is to investigate those
positive, probability Borel measures n on X that have nontrivial solutions g in
HOMEO(X) of the equation gyt = . These automorphisms play an important
role in dynamics. It is the typical behavior (in the sense of Baire category) of these
automorphisms that is the emphasis of the book by Alpern and Prasad. The spaces
X of interest in their development are connected n-dimensional manifolds of various
kinds.

There is a marvelous development in the appendix of their book of the Oxtoby—
Ulam theorem for the n-cube, the extension of the Oxtoby—Ulam theorem to compact,
connected n-manifold, and a mention of the related Oxtoby—Prasad theorem for the
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Hilbert cube. Their development, being somewhat terse, has been expanded upon
in this chapter. Another reason for our repeating the proofs is that their proofs use
notations that are inconsistent with ours — notational consistency will allow easier
passage through the proofs.

One of the objectives of this chapter is to investigate the existence of a measure  on
separable metrizable spaces X, among which are connected n-dimensional manifolds,
such that u and the group HOMEO(X) generate the o -algebra univ 9t(X). This was
not an objective of the Alpern—Prasad book. As the reader can see, many examples
of spaces X which are commonly known in mathematics have been included.

3.9.7. Terminology and notations. The meaning of “positive Borel measure on X
is not standardized in the literature. It could mean w(X) > 0 which, of course, is
not what is needed in the Oxtoby—Ulam type of theorems. To emphasize the stronger
condition, the statements “locally positive” or “positive on nonempty open sets”
have been used in the literature. These two correspond to the condition that the
topological support of w (that is, support(u)) is the whole space X. The assumption
X = support(u) is not a good one since the emphasis of our book is on absolute
measurable spaces and absolute null spaces. Another condition that is often used is
“nonempty countable subsets are not open.” This condition is used to make the Baire
category theorem “reasonably” available for investigating several singular sets. To
study these singular sets it is desirable that countable subsets be nowhere dense and
that the space be an uncountable absolute G5 space. There is an uncountable compact
metrizable space X such that some countable subset U is dense and open (such a
space is easily constructed). The set X \ U is an uncountable nowhere dense set,
hence of the first category, and U is a set of the second category. From a singular
set point of view, especially those that involve the Baire category, it is the set X \ U
which forms the interesting part of X. From the measure theoretic point of view, the
interesting part of a space X is also X \ U because U is an absolute null space — a
continuous Borel measure p on X should be called positive if support(un) = X \ U.
It is known that there are many absolute null spaces that are not countable, hence
countable subsets are not sufficient for the determination of the “reasonable” part
a universally measurable set in an arbitrary separable metrizable space. Indeed, a
“reasonable” universally measurable set M in a space is one in which every absolute
null space contained in M is nowhere dense in M. The objections to the various other
approaches mentioned above for a useful definition of positive measures are avoided
by the use of the closure-like operator Fy in the space X. Hence a measure © on
X is positive if and only if support() = Fx(X) # @. Fortunately, many of the
spaces X — of course, nonempty — that have been studied in the chapter are such that
Fx(X) = X # 0, hence positive measures exist on these spaces.

There are conflicting notations in the literature for a homeomorphism #
in HOMEO(X) acting on a Borel measure © in MEAS(X). We have used Axut,
which is defined by hgu(B) = u(h~'[B]) for B € B(X). Others have used ph to
mean ph(B) = pu(h[B]) for B € 2B(X). Of course, these approaches are formally very
different. The required adjustments have been made in our presentations of results
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that used the ph notation in the literature. Another objection to the ph notation is
that the meaning of ki for Borel measurable maps / is rather awkward to define.
The definition of Borel measurability of a map % uses 2~ !, hence Ay is the natural
choice.

3.9.8. Bounded Radon—Nikodym derivatives. In anticipation of results that will be
developed in the next chapter on real-valued functions, we look at the Oxtoby—Ulam
theorem from the point of view of absolute continuity of measures, which gives rise
to a real-valued function called the Radon—Nikodym derivative. Consider a positive,
continuous, complete, finite Borel measure w on [0, 1]” and a continuous, complete,
finite Borel measure v on [0, 1]”. Then u + v is also a positive Borel measure and
v < u + v. Consequently, v < u + v and the Radon—Nikodym derivative %
may be assumed to be bounded above by 1 everywhere on [0, 1]”. Suppose further
that p is also a Lebesgue-like measure on [0, 1]” and that v(9[0, 1]”) = 0. Then
w + v will be Lebesgue-like. There is a positive constant ¢ such that ¢ u([0, 1]17) =
(1 + v)([0,11™). Then, by the Oxtoby—Ulam theorem, we have ¢ hgp = p + v for
some # in HOMEO([0, 1]"). Hence ¢ X (9,1)» = ZIEZTJ;U))' Consequently, by the chain
rule for Radon—Nikodym derivatives, we have

0< —Z‘(’h#m <cX@1y

for some positive real number ¢ and for some 4 in HOMEO([0, 1]1").

Observe that the above discussion applies also to compact, connected
n-dimensional manifolds, to the Hilbert space, to the space A/, and to n-dimensional
Menger manifolds for n > 1.

The corresponding statement for the Cantor space {0, 1} is also true.

THEOREM 3.67. Suppose that | is a positive, continuous, complete, finite Borel mea-
sure on {0, 1} and suppose that v is a finite, continuous, complete, Borel measure on
(0, 13N, Then there is a positive real number ¢ and there is an h in HOMEO(({0, 1)
such that v < hyp and 0 < % <ec.

Proor. First observe that the Radon—Nikodym derivative is not dependent on the
metric choice on {0, 1}Y. So we may assume that the Cantor space is the Cantor
ternary set X in R. Let ¢’ be such that ©(X) + v(X) = ¢’ u(X). From Theorem 3.57
with L = 2, we infer that there is an # in HOMEO(X) such that u + v < c’hzu
and 24U < 2/ With ¢ = 2¢’ the proof is completed by the chain rule for

d(hgp) o
Radon—Nikodym derivatives. |

The above discussion foreshadows the notion of (ac)-generation by ameasure y and
the group HOMEO(X), see page 111. We conclude with the observation that there
are several possible “topological equivalences” of positive, continuous, complete,
finite Borel measures w and v on X. The first one is modelled after the Oxtoby—Ulam
type of theorems. The second and third ones are modelled after the Cantor space
theorem.
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(1) (TOP) There exists an # in HOMEOQO(X) such that y = hgv.

(2) (ORDER) u(X) = v(X), and there exist positive constants ¢ and ¢’ and there
exists an 4 in HOMEO(X) such that & < chgv and v < ¢’ h~'4u. This, of
course, is equivalent to the Radon—Nikodym derivatives being bounded.

(3) (AC) u(X) = v(X), and there exists an # in HOMEO(X) such that u < hsv
and v < h~lyp.

3.1.
3.2
3.3.

3.4.
3.5.
3.6.
3.7.
3.8.

3.9.

3.10.

3.11.

3.12.

Exercises

Prove Proposition 3.6 on page 55.
Prove Proposition 3.7 on page 55.
For a compact metrizable space X and a closed subset F of X verify
that HOMEO(X; F' fixed) and HOMEO(X; F' inv) are closed subgroups of
HOMEO(X). See page 55 for definitions.
Prove Proposition 3.9 on page 56.
Prove Proposition 3.13 on page 57.
Prove Proposition 3.14 on page 57.
Prove Theorem 3.22 on page 60.
Determine the equivalence classes {hsu: h € HOMEO(T)} of the collection
MEASPOSfin(T) where T is the simple triod and g is in MEASPOSin (T,
Use Theorem 3.12 to prove Theorem 3.23 on page 61. Hint: Let u|Xo =
Hi | Xo and w|X7 = f2A](0, 1], where A is the Lebesgue measure on (0, 1] and
f:(0,1] — Xj is a homeomorphism. Let F be the closure in X of the set of
all points of maxima and all points of minima of X7 = graph(sin(1/x)) (see
page 61). Show that HOMEO(W) can be replaced with the smaller subgroup
HOMEO (W, F fixed) in the above theorem.
Prove that the Oxtoby—Ulam theorem (page 62) implies the topological version
Theorem 3.31 on page 70.
Let ¢: X — Y be a continuous surjection of a compact metrizable space X.
If 1« is a complete, finite Borel measure on X, then we have already seen that
oyt 1s a complete, finite Borel measure on Y. Prove: If v is a continuous,
complete, finite Borel measure on Y, then there is a ®B8-homeomorphism
of Y into X such that the measure ¥uv on X satisfies ¢/yy¥wv = v, where
¢ = @|y¥[Y]. Hint: The map ¥ : ¥ — X is a measurable selection. With
K={x,y) e XxY:x¢€ <p_1(y)}, apply the measurable selection part of
Lemma A .48.
Carry out the exercise without recourse to the Baire category theorem. Let I be
a topological n-cell contained in a separable n-dimensional manifold M,, and
let u be a positive, complete, finite Borel measure on M,,. Observe that M, is
locally compact. Prove: There is a homeomorphism ¢ : [0,1]" — I such that
V= <p71#(u|1) is a measure on [0, 11" with the property v|([0, 11"\ 9[0, 11") <
cA|([0,1]" \ 9[0, 117), where X is the Lebesgue measure and c is a positive
number.

Let n > 0 and let F be a nowhere dense, closed subset of M,. Prove:
There exists an h in HOMEO((M,,; M, \ I fixed) such that p(h,id) < n and
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3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

The homeomorphism group of X

hep(F N (I \ 31)) = 0. Prove: There exists an h in HOMEO(M,,; M, fixed)
with p(h,id) small such that hup(F \ 0M,) = 0.

Let u be a positive, continuous, complete Borel probability measure on the
Cantor ternary set X and E be the set of left end points of the components of
[0, 1]\ X. Prove F,|(E U {0}) is an order isomorphism between £ U {0} and
VS(X, ).

Let X be the Cantor ternary set with the usual order. Show that every count-
able, dense subset D of [0, 1] that contains both 0 and 1 corresponds to a
positive, continuous, complete Borel probability measure © on X such that
D = vs(u, X, <). Hint: If Dy and D, are countable, dense subsets of R, then
there is an order preserving homeomorphism ¢ of R such that ¢[D] = D;.
(See [79, page 44 ] or [2, Lemma 2.3].)

Verify Example 3.61. Let M, be a connected n-dimensional manifold with
oM, = @. Prove: If xo and x| are in M,, then h(xg) = x| for some h in
HOMEO(M,,). That is, M,, is homogeneous.

Verify Example 3.62. That is, prove the assertion: If D is a countable space, then
there is a positive, continuous, complete, finite Borel measure . on X = D x
[0, 1] such that univ 91(X) is generated by 1 and and the group HOMEO(X).
Notice that, for such a measure p, the measure 4 is not continuous, where 7
is the natural projection of D x [0, 1] onto D.

Asin Example 3.63 letw : N x [0, 1] — A/ be the natural projection and define
f on N to be the injection x — (x,0). For each # in HOMEO(N x [0, 1]),
show that #* = whf is in HOMEO(W).

As in Example 3.63, denote A x [0, 1] by X. Show that there exists a posi-
tive, continuous, complete Borel probability measure p on X such that w is
not homeomorphic to A|.X, where X is the Lebesgue measure on R?; that is,
p # hy(11X) for every # in HOMEO(X). (Hint: Use the last two exercises.
Distribute a linear measure in X so that it is dense in the space X.)
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Real-valued functions

In this chapter, attention is turned to topics in analysis such as measurability,
derivatives and integrals of real-valued functions. Several connections between
real-valued functions of a real variable and universally measurable sets in R have
appeared in the literature. Four connections and their generalizations will be pre-
sented. The material developed in the earlier chapters are used in the generalizations.
The fifth topic concerns the images of Lusin spaces under Borel measurable real-
valued functions — the classical result that these images are absolute null spaces
will be proved. A brief description of the first four connections is given next before
proceeding.

The first connection is a problem posed by A. J. Goldman [64] about o -algebras
associated with Lebesgue measurable functions; Darst’s solution [35] will be given.
A natural extension of Darst’s theorem will follow from results of earlier chapters.
Indeed, it will be shown that the domain of the function can be chosen to be any
absolute measurable space that is not an absolute null space.

The second addresses the question of whether conditions such as bounded vari-
ation or infinitely differentiability have connections to theorems such as Purves’s
theorem; namely, for such functions, are the images of universally measurable sets in
R necessarily universally measurable sets in R ? Darst’s negative resolutions of these
questions will be presented.

The third and fourth connect to A. M. Bruckner, R. O. Davies and C. Goffman [24]
and to T. Swiatowski [148]. The proofs presented here use (already anticipated at the
end of Chapter 3) the Radon—Nikodym derivative and the action of homeomorphisms
on measures. More specifically, the Bruckner—Davies—Goffman theorem is a result
about real-valued universally measurable functions of a real variable. The original
proof relied on the order topology of R. It is known that the order topology can be
replaced by the Oxtoby—Ulam theorem, thereby relaxing the requirement that the
function be a universally measurable function of one real variable to n real variables.
A more substantial generalization of the Bruckner—Davies—Goffman theorem that
involves absolute measurable spaces will be proved. The theorem of Swiatowski is a
change of variable theorem for Lebesgue measurable, extended real-valued functions
defined on /”; that is, for each such function f that is real-valued almost everywhere,
there is an H in HOMEQO(/") such that the Lebesgue integral of fH exists. With the
aid of the Radon—Nikodym analogues of the Oxtoby—Ulam theorem, extensions of
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this theorem to p-measurable functions that are defined on various spaces (some that
are absolute measurable and others that are not) are proved.

4.1. A solution to Goldman’s problem

In order to state the Goldman problem we have need of some notation. Fix a separable
metrizable space Y. Let u be a o-finite Borel measure on a separable metrizable
space X. For maps f: X — Y, define the o -algebras

GY;X,u,f)={E:ECY andf*I[E] is ;-measurable},
G(Y;X,n) = (G X, u,f): fis pu-measurable}.

Of course, G(Y;X,u,f) is the largest o-algebra of subsets £ of Y such that
fTUE]is in M(X, ), and G(Y; X, i) contains B(Y).

Goldman's problem concerned the Lebesgue measure A on R and the collection
G(R; R, A). He asked for a characterization of this collection; indeed, he conjectured
that this collection was 8(RR). Darst proved that the collection G(R; R, 1) is precisely
the collection univ M (R). The following proof is essentially that of Darst [35]. First
observe that A corresponds to a continuous, complete, finite Borel measure p on R
such that the o-algebras MM (R, A) and M (R, 1) coincide and the o-ideals N(R, 1)
and 9U(R, 1) coincide. Hence A can be replaced by a suitable finite measure w. Key
to Darst’s argument is the following

ProposiTiON 4.1. Let . be a complete, finite Borel measure on X. For p-measurable
maps f: X — Y, the Borel measure fyu satisfies

G X, w1, f) DM, fup) D univ(y),
whence G(Y; X, 1) D univ(Y).

Proor. Let E be a (fyu)-measurable set. Then there are Borel sets 4 and B such
that 4 D E D Band fyu(4 \ B) = 0. As f~![4 \ B] is a u-measurable set with
,bL(f —114 \B]) = 0 and p is acomplete measure, we have that /' “1E]is (-measurable,
whence E is in G(Y; X, i, f) and the first inclusion is verified. The second inclusion
is obvious. O

We are now ready to give Darst’s solution to Goldman’s problem.

TuroreM 4.2 (Darst). In order that a subset E of R be such that f ~'[E] is Lebesgue
measurable for every Lebesgue measurable function f: R — R it is necessary and
sufficient that E be a universally measurable set in R. Consequently G(R; R, 1) =
univ M (R), where A is the usual Lebesgue measure on R.

Proor. The previous proposition shows that G(R; R, 1) contains univ M (R). So sup-
pose that E is not a universally measurable set in R. Recall that A and HOMEO(R)
generate univM(R). Hence there is an 4 in HOMEO(R) such that 2~ '[E] is
not Lebesgue measurable. As / is a A-measurable function on R, we have £ ¢
GR;R,1). O
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An immediate consequence of the above theorem is that the statement also holds
for real-valued functions f': X — R defined on absolute measurable spaces X and
nonzero, continuous, complete, finite Borel measures on X.

THEOREM 4.3. Let X be an absolute measurable space and i be a continuous, complete
Borel measure on X with 0 < u(X) < oo. In order that a subset E of R be such that
f7YE] is u-measurable for every p-measurable function f : X — R it is necessary
and sufficient that E be a universally measurable set in R. That is, G(R; X, n) =
univ M (R).

ProoF. By the proposition above we already know that f~![E] is u-measurable
whenever £ € univ M (R).

As X is an absolute measurable space and support(i) # @ there is an absolute
Borel space X such that u(Xy) = w(X) and ©|Xp is a positive, continuous, complete
Borel measure on Xp. There is a B-homeomorphism ¢ of X onto R such that ¢y (14| Xo)
is a positive, continuous, complete, finite Borel measure on R and M (R, ¢« (1| Xp)) =
M (R, 1). Let E be a subset of R such that £ ¢ univ M (R). As E is uncountable, there
is no loss in assuming 0 ¢ E. By Darst’s theorem above there is an 4p: R — R such
that Ag is Lebesgue measurable and ho_1 [E] ¢ MR, A). We see from the following
commutative diagram, where fo = hoe, that the map f given by f(x) = fo(x)
whenever x € Xp and f'(x) = 0 whenever x € X \ Xp is u-measurable.

Xo Xo g X
C
rpl fol Lf
R —, R R

Observef_l[E] :fo_l[E] C Xp. Since ¢ is a B-homeomorphism andfo_l[E] =
o 'ho " [E], we have /" [E] ¢ 9M(Xo, | Xo). Hence ' [E] ¢ OM(X, 1) because
Xo is an absolute Borel space. We have shown £ ¢ G(R;X,n) and thereby
GR; X, 1) = univM(R). O

Recall that if Y is an uncountable absolute Borel space then there is a
B-homeomorphism ¥ : ¥ — R. For such a map we have univOit(Y) =
¥~ [univ 9(R)]. So the last theorem implies the next one.

THEOREM 4.4. Let X be an absolute measurable space and y be a continuous, complete
Borel measure on X with 0 < u(X) < oo. Furthermore, let Y be an uncount-
able absolute Borel space. In order that a subset E of Y be such that f~'[E] is
u-measurable for every p-measurable map f: X — Y it is necessary and sufficient
that E be a universally measurable set in Y. That is, G(Y; X, ) = univ O (Y).

Proor. Consider the commutative diagram

X:X
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where v is a ‘B-homeomorphism and g = /. Clearly g is .-measurable if and only
if f is p-measurable. Suppose that E is such that f ~![E] is s-measurable for every
p-measurable map /1 X — Y. As f~![E] = g7![y[E]] for every -measurable
g, we have that ¢ [E] is a universally measurable set in R. Hence E is a universally
measurable set in Y. |

In the above proof we have used compositions of maps. Let us discuss various
facts about compositions. Consider compositions fg of maps f and g. The following
statements are well-known.

(1) Iff and g are Borel measurable, then so is fg.

(2) If f is Borel measurable and g is Lebesgue measurable, then fg is Lebesgue
measurable.

(3) There are Lebesgue measurable functions f and g such that fg is not Lebesgue
measurable.

Recall that a map f: X — Y is universally measurable if and only if f~'[U] €
univ 9t (X) for every open set U of Y. The collection of all such maps has been
denoted by univ MAP(X; Y). The collection of all maps f: X — Y such that f" is
p-measurable (where p is a continuous, complete, finite Borel measure on X) is
denoted by MAP(X, u; Y). Since B(X) C univIi(X), we have that every Borel
measurable map defined on X is also universally measurable on X.

ProOPOSITION 4.5. f € univ MAP(X; Y) ifand only iff ~ [M] € univ 9U(X) whenever
M € univ(y).

ProOOF. Proposition 2.19 yields the if part. Let M be in univOi(Y), f be in
univ MAP(X;Y), and u be a continuous, complete, finite Borel measure on X.
As f is p-measurable, by Proposition 4.1, f ~'[M] is u-measurable. Hence /' [M]
is a universally measurable set in X. ]

To the above list of properties of compositions of maps we can add the following
two theorems which are consequences of the above results. The proofs are left to the
reader as exercises.

THEOREM 4.6. Suppose that X, Y and Z are separable metrizable spaces and that | is
a continuous, complete, finite Borel measureon X. Letf: Y — Zandg: X — Y.

(1) If f is in univMAP(Y;Z) and g is in univMAP(X;Y), then fg is in
univ MAP(X; 2).
(2) Iff isinuniv MAP(Y;Z) and g is in MAP (X, w; Y), then fg is in MAP (X, u; Z).

THEOREM 4.7. Suppose that X, Y and Z are separable metrizable spaces and let
f:Y —>Zandg: X — Y. Suppose further that Y is an absolute measurable space.
In order that fg € MAP(Y, u; Z) holds for every g in MAP(X, u; Y) and for every
continuous, complete, finite Borel measure . on X it is necessary and sufficient that
f be inunivMAP(Y; Z).
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4.2. Differentiability and 23-maps

A B-map (see Definition A.18) is a Borel measurable map for which the images
of Borel sets are Borel sets. By Purves’s theorem, not every continuous function
f: R — Risa®B-map. One would suspect also that differentiability conditions on a
real-valued map of a real variable would have no connections to B-maps. This was
shown to be so by Darst in [40]. This section is devoted to the presentation of his
example.

4.2.1. An observation. Let f: [0,1] — R be a ®B-map. As homeomorphisms are
$B-maps it is clear that the composition 4;fhg is also a B-map whenever 4] is a
homeomorphism of R and /% is a homeomorphism of [0, 1]. This observation will be
useful in the presentation of the example.

4.2.2. An example of A. H. Stone. The following continuous function of bounded
variation is attributed to Arthur H. Stone by Darst in [38]. On the Cantor ternary set
C, define the function g by the formula

gt an37) = 102 a2 97,

where each aj,a, ..., is 0 or 2. The natural extension of g to [0, 1] (by making it
linear on the complementary intervals of [0, 1] \ C) will also be denoted by g. An
elementary computation will show that

lg(s) —g()] <3|s—1t| wheneversand ¢ arein [0, 1].

Indeed, suppose that s and ¢ are in C with g(s) # g(¢). Define ky and k; to be the
natural numbers such that

Soky 7 tok, and sox = o whenever k < ko,
82 —1 #* 1k —1 and sp;_1 = tyr_1 Whenever k < kj.

Then

9ko *

1865) — gD <2 yopy & =
1

w RO

If ki < ko, then |s — 1] = 2= =23 o 1 37 = 50 = 31€() —g@. If by >

ko, then |s — 1] = & =23, 04 57 = gig = 518(s) — g(0)]. Hence |g(s) — g(0)] <

3 |s —t| whenever s and ¢ are in C. It now follows that g is Lipschitzian with Lipschitz
constant not exceeding 3. So g is a continuous function of bounded variation. Clearly
card(g’1 [y]) = ¢ whenever y € g[C]. As g is Lipschitzian, the Lebesgue measure of
g[C] is 0, whence g[C] is nowhere dense in R. Moreover, g[[O, 1]] C [0,1] and g is
infinitely differentiable on the open set U = [0, 1]\ C.

Let K denote the nowhere dense, compact subset g[C] of R. It is well known
that there is an infinitely differentiable function #: R — R such that 4(x) > 0 for
every x and such that 2(x) > 0 if and only if x ¢ K. For the sake of completeness,
we shall give a proof. Let u: R — R be the familiar infinitely differentiable function
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given by the formula u(x) = e_% for x > 0, and let @45 (x) = u(x — a)u(b — x)
for 0 < a < b < 1. With the aid of the Taylor formula it is easily shown that, for
each k, there is a constant M, such that |¢, 5) ® (x)| < My (x — a)®(b — x)* whenever
0<a<x<b<l.Let(ayby,n=1,2,..., beawell ordering of the collection
of all bounded components of R \ K. For each n, let &, = ¢4, 4,). Then a simple
modification of > oo, zinhn on the unbounded components of R \ K will give the
desired infinitely differentiable function 4. Moreover, WO = Zfli] %hn ® on the
bounded components of R \ K for each k.

4.2.3. The example. Let g be Stone’s example and let / be a bounded, infinitely dif-
ferentiable function such that 4(x) > 0 for every x and such that #(x) = 0 if and only
if x € K, where K = g[C]. Then, by the fundamental theorem of calculus, H(y) =
foy h()dt, y € R, is an infinitely differentiable function, whence Lipschitzian.
Also, "'®g is a Lipschitzian function, and /%) (g(x)) = 0 whenever x € C.

Define f to be the composition Hg. Then f is Lipschitzian. Clearly f is infinitely
differentiable on R \ C; moreover,

S0 =10 (g@) (€' @) " whenever x € R\ C.

Let us show, at each x in C, that f is differentiable and /" (x) = 0 = h(g(x)). Indeed,
for ¢ #£ 0, there is an n between g(x) and g(x + ¢) such that

fetn—f0) _, gx+1)—gk)
p = h(n) ;

and observe that g is Lipschitzian and that h(g(x)) = 0 whenever x € C. Since / is
continuous and g is Lipschitzian, it follows that f/(x) exists and is equal to 0 at each
xinC.

Note that g’(x) exists at every x in R \ C. It will be convenient to define the
bounded function

3, ifx € C,
G =1{" _
g (x), ifx ¢ C.

For k > 0, it is easily seen that the product (#®)g)-G is continuous because G is
bounded and is continuous whenever x ¢ C. Hence

FOw) = (hg)©G(x) and f(x) = [ (hg)()G() dt

for every x. Moreover

FED @) = (hPg)(v) (G(x))k+l

whenever x ¢ C and £ > 0.
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Let us show that £ (x) exists and equals 0 whenever x € C. To this end, observe
that, for every x,

O = Gh(gk))
= G@) £V RO @) dr
=GW) [y hV(g(1))G@) dt.

Since G(x’)h(l)(g(x)) = 0 whenever x € C and x’ € R, the first displayed equality
gives £ (x) exists and is equal to 0 = (G(x))zh(l)(g(x)) for each x in C. It now
follows that, for every x,

2@ = (Gx) hM (gx))
= (G)” 5% hD ¢y dr

2
= (GW)~ [y hP(g®))G (@) dt.
It is equally easy to show that f &1 = (h®)g).G*+1 is differentiable for each k.

THEOREM 4.8 (Darst). There are infinitely differentiable real-valued functions of a
real variable that are not B-maps.

Proor. With A, H and g as in the discussion immediately preceding the statement of
the theorem, we have defined an infinitely differentiable function f by the formula

@) =[5 hty de = Hg(v).

The set K = g[C] is an uncountable set. Also, g~ '[{y}] is an uncountable set for each y
in K. Hence f ~'[{z}] is an uncountable set for each z in H[K]. Clearly H|(g[[0, 11])
is a homeomorphism of g[[0, 1]] into R and thereby H[K] is an uncountable set.
As f[C] = H[K] we have that f[C] is an uncountable set that is contained in the set
of uncountable order of /. Consequently f is not a B-map by Purves’s theorem. O

4.3. Radon-Nikodym derivative and Oxtoby—Ulam theorem

At the end of the Comment section of the last chapter the notion of absolute continuity
of measures was introduced in connection with the Oxtoby—Ulam theorem. Although
an analogue of the Oxtoby—Ulam theorem for the Cantor space {0, 1} does not
exist, there is an interesting absolute continuity property shared by the spaces [0, 1]"
and {0, 1} This absolute continuity property will be pursued further in this section.

Recall from page 86 that a measure  is said to be absolutely continuous with respect
a measure v (denoted u < v) if w(E) = 0 whenever v(E) = 0. For convenience we
shall assume u and v are continuous, complete, finite Borel measures on a separable
metrizable space X . If u is absolutely continuous with respect to v, then there is a real-
valued, Borel measurable function, denoted by ’2—’: and called the Radon—Nikodym
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derivative of y with respect to v, that satisfies the identity:
n(B) = [y i,—"f dv =, XB-% dv whenever B € B(X).

In the investigation of the interplay of the Radon—Nikodym derivative and the
Oxtoby—Ulam theorem, we will “piece together” measures associated with the
“piecing together” of homeomorphisms. Here are two straightforward exercises on
absolutely continuous measures and Radon—Nikodym derivatives.

ProposiTION 4.9. Let Xi and X» be disjoint Borel sets of a separable metrizable space
X, and let v = vi|L X1 + v2|L Xp, where v and vy are continuous, complete, finite
Borel measures on X. If i is a continuous, complete, finite Borel measure on X such
that u|. X1 < vy and ul Xo < vy, then u < v and

dpl X1UXp)) _ dul Xy) d(ul X>)
dv — dv : XXI + dvy ' XX2 .

ProposiTiON 4.10. Let ;v and v be continuous, complete, finite Borel measures on a
separable metrizable space X. If h € HOMEO(X), then u < hyv if and only if
e < v.

In Chapter 3 we saw that the Oxtoby—Ulam theorem concerned Lebesgue-like
measures on topological n-cells. We have seen also that it has many generalizations.
But its extensions to spaces such as open subsets of R” or to other positive measures
more general than Lebesgue-like ones on /” are yet to be found. In this section we
will use the Radon—Nikodym derivative to extend the Oxtoby—Ulam theorem. The
proofs of some of the theorems concerning real-valued functions will be facilitated
by the existence of such Radon—Nikodym derivatives.

4.3.1. Homeomorphism group and Radon—Nikodym derivative. The spaces thatare
of interest here are those that contain open sets that are topologically equal to open
sets of n-dimensional Euclidean space. Indeed, we shall concentrate on those open
sets that are homeomorphic to /7 \ 31", where I = [0, 1], or to [0, 1) x (0, 1)"~!.

As we have seen in the comment section of the previous chapter, the Oxtoby—Ulam
theorem can be couched in terms of the existence of a bounded Radon—Nikodym
derivative in conjunction with homeomorphisms. More generally, we have the
following consequence of the Oxtoby—Ulam theorem.

LemMA 4.11. Let X be a separable metrizable space that contains a topological copy
Y1 of I" such that Uy = Y1\ 0Y] is open in X and such that 9Y| contains a topological
copy Yo of I"~V such that Uy = Yo\ Yy is open in X \ U}. Suppose that v is a positive,
continuous, complete, finite Borel measure on X .

(1) If n is a continuous, complete, finite Borel measure on X such that pu|Yy is
Lebesgue-like on Y|, then there exists an h in HOMEO(X ;X \ U, fixed) such

that u| Y1 < hgv and % = % on Uj.
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(2) If n is a continuous, complete, finite Borel measure on X, then u| Uy is
absolutely continuous with respect to hyv and the Radon—Nikodym derivative
% is bounded for some h in HOMEO(X; X \ U] fixed).

(3) If the restricted measure v|Uy is also positive on the set Uy, then | (U1 U Up)
is absolutely continuous with respect to hyv and the Radon—Nikodym derivative
W is bounded for some h in HOMEO(X; X \ (U} U Up) fixed).

Proor. Statement (1) follows easily from the Oxtoby—Ulam theorem. Indeed, vy =
(vL Up)|Y; is Lebesgue-like on Y; and 3&‘,&3 = ")f)((LL/}])) on Uj for some /' in
HOMEOQO(Y; 0Y; fixed). As Uj is open in X, there is a natural extension 4 of 7/

to a homeomorphism in HOMEO(X;.X \ U; fixed). It follows that 4L equals

d(huv)
ZEZ#LU)U . x v, which is equal to % - Xy, . For Borel sets B that are contained

in Uy we have (1L Uy)(B) = u(B) and ((hsv)L Uy)(B) = (huv)(B) = (W 4v0)(B).
Hence % - Xy, is equal to j((}’f,gg)) = ‘ﬁg((lljj‘l)) = ’lf((gl')) on Uj. The first
statement is established.

We turn to statement (2). Let &’ = (u + v)L U;. Then u'|Y; is Lebesgue-like
on Y;. There is an # in HOMEO(X; X \ U] fixed) and a positive number ¢ such that
w < hyv and% =c¢ Xy,.Since0 < ul Uy < wand0 < v U < i/, wehave

ulL Uy < hygv and v Uy < hygv and consequently ZEZ#LV)U‘) + SE;#LU)UU < c. It now

follows that % is bounded.

For statement (3), suppose further that v is positive on Uy. There is an /4’ in
HOMEO(X \ U;; X \ (U U Up) fixed) such that the measures u” = (u|(X \
UD)L Upand v’ = h"u(v|(X \ Uyp)) satisfy u” < v’ and % is bounded on Y.
Observe that " = (ul Up)|(X \Up) andv” = (v Up)|(X \ Uy) hold. As U] is open
in X and as Y is contained in 8 Y1 and Uy is openin X \ Uy, there is an extension 4’ of #”
inHOMEO(X; X \ (U; U Up) fixed ) such that (#'sv)|(X \Uy) = (W"sv)|(X \Uy). It
now follows that | Uy < (K'gu) | Uy < h'4v and jﬁllﬁ;vl)]()) is bounded. There is an
hin HOMEO(X; X \ U fixed) (by statement (2)) such that | U; < (hh')4v and
5(((’2;)[; ]v)) is bounded. From A%’ = k' on Uy we see that ((hh)zv) L Uy = (Huv) L Uy

and Z%i,()iﬁ) = ZEZ‘,:M(;“) on Up. The proofis completed by observing that U; N Uy =

- 1qe Al (U1U0y) _ duL U | d(ul Up)
W yields 7z = Gy T dmmw =

4.3.2. Applications. To apply the last lemma to open subsets of n-dimensional man-
ifolds M we begin by preparing some groundwork. Let u and v be continuous,
complete, finite Borel measures on M such that the support of v is M and the support
of v|0M is the (n — 1)-dimensional manifold M. With the aid of the measure u + v
we can construct a base B for the open sets of M such that each V' in B satisfies the
following conditions.

(1) Clpys (V) is a topological n-cell contained in X and ¥ is equal to Inty, (ClM(V)),

(2) Clys (V) N oM is either empty or a topological (n — 1)-cell,

(3) uBdy (V) = 0 and v(Bdy (V)) = 0. Note that 9V and Bdy, (V) need not
coincide.
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LemMA 4.12. Let i and v be continuous, complete, finite Borel measures on M, and,
for a finite collection Vi, i = 1,2,. ...k, of open sets from the collection BB described
above, let X = \J*_, Clyy(V;). Then there is an h in HOMEO(M; X N dM inv) N
HOMEOM; M \ X fixed ) such that u|. X < hyv, hyv(Bdy (X)) = 0, and jf;;tvj‘)
is bounded.

ProOF. As V;isin B, wehave Y; = Clys(V;) is atopological n-cell contained in M. The
proof'is an induction on k. For k = 1, either Y1 NoM = @ or Y1 NIM is a topological
(n — 1)-cell. The first case follows from Lemma 4.11 (2) since U; = Y7 \ 9Y;. For
the second case we have V1 \ Uj is open in Y7 \ Uj. This case follows from Lemma
4.11 (3).

Let m > 1 and assume the statement is true whenever k£ < m. Let X] and X, be as
in the lemma with k; < m and k» < m. Let &’ be in HOMEO (M ; X; N 0M inv)
N HOMEO(M; M \ X fixed) such that ul X7 < Hyv, (Wyv)Bdy (X)) =
0, and 4ELXD s bounded. Then let 4" be in HOMEO(M; X, N oM inv) N
HOMEOM; M \ X; fixed) such that ul Xo < #"h'yv, (W'H 4v)(Bdy (X2)) = 0,
and % is bounded. Let 2 = &’/ and X = X; U X;. As h(x) = x for every x in
M\ X,wehave h[X]=X and h([X NOM] =X NoM. As

hgv = vL (M \ X) + (W)L (X \ X2)) + (WK )pv) L Xa,

we have u| X = ul (X1 \X2) + L X2 < hxv and hence ZEZ‘#LU?() is bounded. Only

hyv(Bdys (X)) = 0 remains to be shown. To this end we have Bdys (X) C (BdM X))\
Intyr (X)) U (B (X1) \ Inty(X2)). As A~ '[Bdy(X)] C (W"h)~'[Bdu(X2)]
UK~ [Bdy (X)) \ Inty (X2)], we have Agv(Bdy (X)) = 0. m

The next theorem is a Radon—Nikodym version of the Oxtoby—Ulam theorem for
compact manifolds. This generalization permits the use of Borel measures p which
are not necessarily Lebesgue-like and to certain Borel measures v such that v|dM are
finite sums of Lebesgue-like measures. The proof is an immediate consequence of
the previous lemma since M is compact.

THEOREM 4.13. Let M be a compact manifold and let v be a positive, continuous,
complete, finite Borel measure on M such that v|dM is positive on 0M whenever
oM # (. If u is a continuous, complete, finite Borel measure on M, then there is an
h in HOMEO(M ; M inv) such that 1 < hgv and % is bounded.

Let us turn to applications of Lemma 4.12 to sets that are open in R” or open in
[0,00) x R"~!. Here one can take advantage of standard subdivisions of open sets
by countably many nonoverlapping n-cubes. In fact, if u and v are o-finite Borel
measures on an open set X of R” or of [0, 00) x R" 'andifeisa positive number,
then there is a sequence Y = {Y;: i = 1,2, ...} of nonoverlapping n-cells such that

(1) Y covers X,

(2) Y is alocally finite collection in X,

(3) diam(Y;) < e, u(Bdx(Y;)) = 0 and v(Bdy (Y;)) = O for every i,
(4) lim;_, o diam(Y;) = 0.
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In order to apply the lemma to o-finite measures it will be necessary to add the
requirement that the measure of K be finite whenever K is a compact subset of
X. Such measures are called Radon measures. We point out that there are o-finite
measures that are not Radon measures. Indeed, consider the measure p on [0, 112 equal
to the Hausdorff one-dimensional measure limited to the subset of [0, 1]? consisting
of those points whose first coordinate is a rational number.

THEOREM 4.14. Suppose that M is either R" or [0, 00) x R"~1. Let X be an open set
in M and let u and v be continuous, complete, o-finite Borel measures on M such
that w(K) and v(K) are finite whenever K is a compact subset of X and such that v is
positive on M and v|0M is positive on M if M is not empty. Then there exists an h
in HOMEO(M; M \ X fixed) "HOMEO(WM ; X N oM inv) such that u|. X < hyv

and ZEZ‘#LV;X ). Xk is bounded whenever K is a compact subset of X. Moreover, if ¢ > 0,

then the distance between h and id can be made less than ¢.

Proor. Let) be as described in the paragraph preceding the statement of the theorem.
For each m let X,, = | J~, ¥; and define A, to be the corresponding homeomorphism
given by Lemma 4.12. As ) is a nonoverlapping collection we have that /,,[Y;] = Y;
for every i and every m and that A,,(x) = hi(x) whenever x € Y; and m > k.

Hence A,,, m = 1,2,..., converges pointwise to a bijection of M. Also ||A;(x) —
hy(x)|| < max{diam(Y;): i > min{k, m}}, whence the sequences %, , m = 1,2,...,
and hm_l, m = 1,2,..., are uniformly convergent. Consequently there is an % in

HOMEOWM ; M \ X fixed) N HOMEO(M; X N dM inv) such that h(x) = h,(x)
whenever x is in Y. Clearly, u| Xju4+1 < hyv and ZEZ#%);(” D ZEZ‘WLJrﬁ”‘j)l) X Xy -

Observe ul X = Y7 | L (Xn \ Xiu—1). Since ul X1 \ X)) < pl X1, we

m=1

have u| X < hyv and

dulL X) _ ZOO dpl KXn\Xm-1))
d(hgv) m=1 d(hyv)

— o0 d(ul Yim)
= 2o @y

— oe} d(ul Ym)
=2 m=1 Tz} K -

Suppose that K is a compact subset of X. Then, by the conditions on )/, there is an mg

such that X;,, D K whenever m > mg. Hence ZEZ#L\;)X ) is bounded on X, and thereby

on kK. O

In the above theorem the open subset X of the manifold R” or [0, 00) % R#-1
is, in a sense, triangulable by a collection ) of n-cells that are locally finite in the
set X. This permits the Radon—Nikodym derivative to be “locally bounded” in X.
If one is willing to relax this locally bounded condition, then the set X can be cho-
sen to be an open set in any n-dimensional manifold M. Such a weaker form of the
theorem will be useful for “almost every” assertions as we shall see in the discus-
sion of the Bruckner—Davies—Goffman theorem which will be developed shortly.
We leave the proof of the following weaker theorem and preparatory lemma as
exercises.
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Lemma 4.15. Suppose that X is an open set in an n-dimensional manifold M and
let . and v be continuous, complete, o-finite Borel measures on M such that (1 (K)
and v(K) are finite whenever K is a compact subset of X and such that v is positive
on M and v|0M is positive on OM if OM is not empty. Then there is a sequence
Y={Yi:i=1,2,...} of n-cells such that

(1) {Intys(Y): Y € YV} covers X,

(2) Y is alocally finite collection in X,

(3) for each i, diam(Y;) < &, u(Bdy(Y;)) = 0 and v(Bdy (Y;)) = 0,
(4) lim;_, 5 diam(Y;) = 0.

The lemma and Theorem 4.14 imply the following theorem for open subsets of
manifolds.

THEOREM 4.16. Let X be an open subset of an n-dimensional manifold M and let
and v be continuous, o -finite Borel measures on M such that ;1 (K) and v(K) are finite
whenever K is a compact subset of X and such that v is positive on M and v|0M is pos-
itive on M if 9M is not empty. Then there is an h in both HOMEOM ; M \ X fixed)
and HOMEO (M ; X N oM inv) such that 1| X < hgv. Moreover, if ¢ > 0, then the
distance between h and id can be made less than ¢.

Let us turn our attention to the Warsaw circle. The Warsaw circle can be considered
as a compactification of the real line R. Indeed, if one denotes the set of all points
x of the Warsaw circle at which W is not locally connected by Wy, then W =
W \ Wy is homeomorphic to R. It is easily seen that, in the subspace Wi, there is a
countable, closed set ¥ such that each 2 in HOMEQ(W7; V' fixed ) has an extension H
in HOMEO(W; Wy U V fixed).

THEOREM 4.17. Let i and v be continuous, complete, finite Borel measures on the
Warsaw circle W such that v|Wy and v|W| are positive measures on Wy and W1,
respectively. Then there exists an h in HOMEQ(W) such that i < hyv.

PrOOF. As W) is an arc, there is an iy in HOMEO (W); W, fixed ) such that | Wy <
hog(v|Wy). Tt is easy to see that there is an extension /) of kg in HOMEO((W).
So, L Wy < (hgv)L Wy. It is easily seen (see Exercise 4.4) that there is an /;
in HOMEO (W ; W, fixed ) such that u| W) < hau((h1zv) L W1). Clearly we have
(higv)L Wo = hog((higv)L Wo). Hence u = pul Wo + nl Wi <K haghiyv. Let
h = hyhy to complete the proof. O

Finally we turn to the finitely triangulable spaces, the last of the many spaces that
we have studied for which the Oxtoby—Ulam theorem can be used.

THEOREM 4.18. If X is a finitely triangulable space with dim X > 0 and if u and v are
continuous, complete, finite Borel measures on X such that v|o is a positive measure
on o for every nondegenerate simplex o in some triangulation K of X, then there is
an h in HOMEO(X) such that 1 < hgv and % is bounded.

Proor. The proof is a simple induction on the dimension of X. For dim X = 1 let K
be a triangulation of X such that v|o is positive whenever ¢ is a one-dimensional
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simplex in K. Since X is finitely triangulable, there is an 2 in HOMEO(X; V' fixed),
where V' is the set consisting of all vertices of X, such that © < Azv and % is
bounded. We shall give the proof for dim X = 2 ; the general case is easily seen from
this one. Let K! = {0 € K: dimo < 1} and define Xo = |K'|. There is an &g in
HOMEOXy; ¥ fixed ) suchthat u|Xy < hou(v|Xp) and % is bounded on Xj.
Consider one of the finitely many two-dimensional simplex o in K. We have do C Xy
and that o \ do is open in X. Hence /g has an extension sy’ in HOMEO(Xp U o). It
follows that Ao has an extension #; in HOMEO(X) such that u| Xy < (h14v)L Xo
and Z((;: i‘fg") = Zéﬁ()lf(ou)\ 7y on Xo. By Lemma 4.11 we infer the existence of an
hy in HOMEO(X'; Xj fixed) such that w| (X \ Xo) < hox((h1zv) (X \ Xo)) and
(higv)L Xo = hay((higv) L Xo). Hence u = pl Xo + pnl (X \ Xo) < hyv, where
h = hohy. Moreover, as

dp_ dulXe) d(L (X\X0) ,
A = dhyn XX F T gy - X @\Xo)

and the second term of the right-hand side is bounded by Lemma 4.11, the Radon—
Nikodym derivative % is bounded. |

We must not forget the Hilbert space [0, 11N and the space N which is homeo-
morphic to V. Also, there is the compact Menger manifold of positive dimension that
was mentioned at the end of the last chapter. The proof of the corresponding theorem
for these spaces (stated below) is left as an exercise for the reader (Exercise 4.5).

THEOREM 4.19. Let X be the Hilbert cube or the space N or a compact Menger mani-
fold of positive dimension. If © and v are continuous, complete, finite Borel measures
on X such that v is a positive measure on X, then there is an h in HOMEO(X) such
that u < hyv and the Radon—Nikodym derivative % is bounded.

The last of our examples is the Cantor space {0, 1}N . For this, see Theorem 3.67.

We have found many examples of spaces X such that the notions of absolute
continuity and Radon—Nikodym derivative provide connections between the group
of homeomorphisms HOMEO(X) and the collection of all continuous, complete,
finite Borel measures on X. These examples lead to the following definition, where
MEAST™it (x) N MEAS®™ (X) is the collection of all continuous, complete, finite
Borel measures on X

DerINITION 4.20. Let v be a continuous, complete, finite Borel measure on a separable
metrizable space X. The measure v and the group HOMEO(X) are said to (ac)-
generate MEAS™it (X)) "\MEAS ™ (X) if to each continuous, complete, finite Borel
measure L on X there corresponds an h in HOMEQO(X) such that 1 < hyv.

Observe that every space X that has appeared in this application section possessed a
measure v such that itand HOMEOQ(X) (ac)-generate MEAST ™ (X ) "MEA S (X).
We have the following general theorem.
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THEOREM 4.21. Let X be a separable metrizable space and v be a continuous, com-
plete, finite Borel measure on X . If v and HOMEO(X) (ac)-generate MEAST M (X)N
MEAS®" (X)), then v and HOMEO(X) generate univ I (X).

Proor. We will apply Proposition 3.14. Let £ be a subset of X such that £ €
{IMX, hyv): h € HOMEO(X)}. Suppose that u is a continuous, complete, finite
Borel measure on X. There is an 7 in HOMEO(X) such that i < Axv. Since E is in
I (X, hyv), we have Borel sets 4 and B such that 4 C £ C B and (h#v)(B \4) =0.
Hence u(B \ A) = 0 and thereby E € 91(X, u). Consequently, E is a universally
measurable set in X . O

4.4. Zahorski spaces

In the previous section about Radon—Nikodym derivatives on various special
spaces X, the measure v has been assigned a special role due to its “positiveness”
on X. Often this measure is constructed so that nice properties hold for the prob-
lem under investigation. This will happen in the discussion of the Bruckner—Davies—
Goftman theorem which is given in the next section. The constructions will involve
a class of absolute F,, spaces called Zahorski spaces. (See Appendix A for more on
Zahorski spaces.)

DErFINITION 4.22. A separable metrizable space is a Zahorski space if it is the empty
space or it is the union of a countable sequence of topological copies of the Cantor
set. A subset Z of a separable metrizable space X is called a Zahorski set if it is a
Zahorski subspace of X.

Zahorski spaces have very natural continuous, complete, finite Borel measures
associated with them. Indeed, for nonempty Zahorski spaces, positive ones are easily
constructed. Such examples motivate the following definition (which is Definition
A.42 in Appendix A).

DEFINITION 4.23. Let E be a Zahorski set contained in a separable metrizable space X .
A Zahorski measure determined by E is a continuous, complete, finite Borel measure
on X such that w(X \ E) = 0 and uw(E NU) > 0 whenever U is an open set in X
with ENU # @.

Recall the definition of the universally positive closure operator Fy from page 33.
Zahorski sets and this operator are connected by

PrOPOSITION 4.24. Let X be a separable metrizable space.

(1) IfE is a Zahorski set in X, then Cly (E) = Fx (E).

(2) If A is an absolute measurable space contained in X, then there is a Zahorski set
E in X such that E C A and Cly(E) = Fx(A).

(3) IfE is a Zahorski set in X and B is a universally measurable set in X such that
Fx(E\ B) # @, then there is a nonempty Zahorski set E' in X with the properties
E'NB=@,E' CE, and E' is dense in Fx(E \ B).
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ProoF. Suppose that E is a nonempty Zahorski set in X . As every nonempty Zahorski
space is not an absolute null space, we have Cly (£) = Fy (£) because nonempty open
subsets of a Zahorski set of X are Zahorski sets of X by Proposition A.41.

Let 4 be an absolute measurable subspace of X. If Fxy(4) = @, then let £ = (.
If Fx(4) # @, then there is a continuous, complete, finite Borel measure © on X
such that support() = Fx(4). There exists a o-compact kernel K contained in
A N support(u) such that 1 (X) = w(K), where K is the union of a Zahorski set and
a countable set (see Proposition D.7 and Exercise D.1 in Appendix D).

Finally, let us prove statement (3). We have that £ \ B is an absolute measurable
space by Propositions 2.6 and 2.5. Statement (2) completes the proof. O

Observe, for separable metrizable spaces X, that each subset £ of X is associated
with the closed set Fx (£) and the absolute null space £ \ Fx (E). This leads to the
following proposition whose proof is left as an exercise.

PROPOSITION 4.25. Let X be an absolute measurable space. If E is a universally
measurable set in X such that Inty (FX(E)) %+ @, then there is a Zahorski set K in X
such that K C E and such that K is dense in Inty (FX (E)).

Here is a nice connection between the Baire category theorem and universally null
sets. Recall that universally null sets in a space X are always absolute null spaces
(see Theorem 2.7).

LeMMA 4.26. Suppose that X is a separable completely metrizable space with
Fx(X)=X.IfH;, i = 1,2,..., is a sequence of closed sets and if Z is an abso-
lute null space such that X = Z U\ J2| H;, then | i, Inty (H;) is a dense, open
subset of X.

Proor. Observe that Zy = Z \ | J;2; H; is an absolute Borel subset of the absolute
null space Z, hence a countable set. As no point of Z is isolated in X, the lemma
follows from the Baire category theorem. a

Let us apply the lemma to countable covers of X by universally measurable sets.

CoroLLARY 4.27. Let X be a separable completely metrizable space such that
Fx(X) =X.IfX;, i = 1,2, ..., is asequence of universally measurable sets in X and
if Z is a universally null set in X such that X = ZU\ 22, X;, then | o2 Inty (FX (Xi))
is a dense open subset of X .

Proor. Note that X; \ Fx (X;) is a universally null set in X and Fx (X;) is a closed
set for every i. As Z U Ui’il (X,- \ Fx (X,-)) is a universally null set in X, the corollary
is an immediate consequence of the lemma. O

The next corollary is a key to the proof of the Bruckner—Davies— Goffman theorem
and the proof of our generalization of it.

COROLLARY 4.28. Let X be a separable completely metrizable space and let E be a
Zahorski set in X such that E is dense in Fx (X). If Z is a universally null set in X
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and A is a universally measurable set in X such that A C E, then there is a Zahorski
set Fin X suchthat F C E, FisdenseinE, FNZ =, and

XalF = Xy |F.

PROOF. As Fx(A4) = Fry(x)(4) holds because 4 C £ C Fx(X), there is no loss in
assuming Fy (X) = X.

The sets H) = A\ Z and H; = E \ (4 U Z) are universally measurable sets in X .
We have X = Fy (H) U Fx(H>) because E is dense in Fy (X), whence the union of
the disjoint open sets U and V' defined by

Uuvrv = IntX(F)((Hl)) U (IntX(Fx(Hz)) \FX(Hl))

is a dense subset of X. By Proposition 2.5, 4 is an absolute measurable space. So, by
statement (2) of Proposition 4.24, there is a Zahorski set F; contained in Hj such
that Fj is dense in U. As B = 4 U Z is a universally measurable set in X we infer
from statement (3) of Proposition 4.24 that there is a Zahorski set £’ in X such that
E' C E\(AUZ)and E' is dense in E \ (4 U Z). Observe that Fy (E') = Fx(H>)
follows from statement (1) of Proposition 4.24. Hence F» = E’ N V will be dense
inV.Let F = F; UFj. Clearly F is a Zahorski set suchthat FNZ = and F C E.
As F is dense in X we have that it is also dense in £. And as Fy(4) = Fyx (H;) we
have
FNEx(A)=F, CA and F\Fy() =F, C X\A.

The corollary now follows. |

Finally, we have the following connection between the homeomorphism group
HOMEO(X) and Zahorski sets in X

LemMmA 4.29. Suppose that X is an absolute measurable space such that a posi-
tive, continuous, complete, finite Borel measure i on X and HOMEO(X) generate
MEASPOSEn (XY If E is a Zahorski set in X such that E is contained densely in the
support of i, then there is an h in HOMEO(X) such that hyp (X \ E) = 0.

Proor. From statement (4) of Proposition A.41 there is a positive, continuous, com-
plete, finite Borel measure v such that v(X \ E£) = 0 and v(X) = uX). As u
and HOMEO(X) generate MEASPOSfi"(X), there is an 4 in HOMEO(X) such that
hup = v and the lemma is proved. a

As an aside let us discuss another connection between Zahorski sets in absolute
measurable spaces X and continuous, complete, finite Borel measures on X. Oxtoby
proved the following in [119, Theorems 2].! His proof is provided for the reader.

THeOREM 4.30. If X is a separable completely metrizable space and if u is a nonzero,
continuous, complete, finite Borel measure on X, then there exists a Gs set B of X

1 The theorem has connections to the notion of two measures being “almost homeomorphic” defined by
N. Bourbaki [14, Section 6, Exercise 8c, page 84].
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such that (X \ B) = 0 and there exists a homeomorphism h of B onto N such that
hs(|B) = ¢ AM|\N, where X is the Lebesgue measure on R and ¢ = u(X).

Proor. Since w(X) is finite, there exists a countable collection U;, i = 1,2,..., of
open sets with ;1 (Bdx (U;)) = 0 that forms a basis for the open sets of the topology of
X. By = support(u) \ U?; Bdy (U;) is an uncountable, zero-dimensional absolute
Gs space, and (X \ Bg) = 0. (For the definition of dimension 0, see page 244.) The
set By is the union of two disjoint sets B and C such that B is homeomorphic to N
and C is countable. Let 4y be a homeomorphism of B onto N. As u(BNU) > 0
whenever U is an open set such that BN U # §J, the measure /gy (14|B) is a positive
measure on N. Let #; be in HOMEO(N) such that (hlho)#(MB) = cA|N. The
proof is easily completed. O

We now have a corollary which Oxtoby derived in [119, Theorem 4] for the special
case of absolute G5 spaces X . (See Proposition D.7 on page 245 for a similar assertion.)

CoroLLARY 4.31. Suppose that X is an absolute measurable space and let M(X, 1)
be a continuous, complete, finite Borel measure space. For each p-measurable set A
of X with 0 < u(A) there is a Zahorski set E contained in A such that u(4\ E) = 0.
Moreover, if A is an absolute Borel space contained in X, then E can be made to

satisfy Cly (E) = Fx (4).

Proor. As X € abMEAS, there is no loss in assuming X is a subspace of the Hilbert
cube, w is defined on [0, I]N, and X is u-measurable. Also, there is no loss in assuming
that 4 is a Borel set in the Hilbert cube since each p-measurable set contains a Borel
set of equal pu-measure. Hence 4 € abBOR. We also may assume Cly (4) = Fx (4)
because 4 \ Fx (4) is countable. Consider the measure (| 4. There exists a Gs set By
of [0, 1]N such that By C 4 and (/LL A) (X \ Bp) = 0, as provided by the theorem.
Let C be a G set such that X \ By C C and (uL 4)(C) =0.Then By =X \ Cisa
o-compact subset of 4 such that (,u L A)(X \ B1) = 0. As Bj is zero-dimensional,
and as each uncountable, compact, zero-dimensional set is equal to the union of
topological copy of the Cantor set and a countable set, the set B; is the union of
a Zahorski set E” and a countable set. Clearly, u(4 \ E’) = 0. It may happen that
A\ Cly (E") is not empty. As Cly (4) = Fx (4), there is a nonempty Zahorski set E”
contained in 4 \ Clyx (E’) such that Cly(E”) D A\ Fx(E’). Let E = E ' UE". O

4.5. Bruckner-Davies—Goffman theorem

For each continuous, complete, o-finite Borel measure © on X, it is well-known
that a w-measurable, real-valued function f on X is equal u-almost everywhere to
a function in the second Baire class (equivalently to the second Borel class). It was
shown by Bruckner, Davies and Goffman [24] that universally measurable, real-
valued functions f on [0, 1] are connected to Baire class 1 functions by means of
the group of homeomorphisms HOMEQO([0, 1]). Namely, they proved the following
theorem.
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THEOREM 4.32 (Bruckner—-Davies—Goffman). Let f: [0,1] — R be a universally
measurable function. Then there is an h in HOMEO([0, 1]) and a Borel class 1
function g: [0, 1] — R such that fh and g are equal Lebesgue almost everywhere.

They reduced the proof to an application of the Oxtoby—Ulam theorem for [0, 1].
Their theorem will be generalized to universally measurable maps ' : X — Y whose
values are taken in absolute Borel spaces ¥ and whose domains are in a large class
of spaces X for which a “Radon—Nikodym version of the Oxtoby—Ulam theorem”
holds. Among these spaces X are absolute measurable spaces that are not absolute
Borel spaces. Moreover, the measure can be any continuous, complete, o -finite Borel
measure on X .

4.5.1. Splitting the problem. The following is a characterization theorem due to
Bruckner, Davies and Goffman [24].

THEOREM 4.33. Suppose that X and Y are separable metrizable spaces, [ is a con-
tinuous, complete, finite Borel measure on X, and f: X — Y is an arbitrary map.
Then there exists a Borel class 1 map g: X — Y and a homeomorphism h of X onto
X such that fh = g u-almost everywhere if and only if hap({x: f(x) # G(x)}) =0
for some Borel class 1 map G: X — Y and some homeomorphism h of X onto X.

Proor. Let 4 be a homeomorphism. Clearly G is a Borel class 1 map if and only if
Gh is a Borel class 1 map. Also, E is a Borel set that contains {x: f(x) # G(x)} if
and only if h~'[E] is a Borel set that contains {z: fh(t) # g(t)}, where g = Gh. As
w(h™[E]) = hyp(E) for Borel sets E, we infer that 1 ({x: fh(x) # g(x)}) = 0ifand
only if agp({x: f(x) # G(x)}) = 0, because sy is complete. O

Let us split the theorem into two parts. Notice that in the Bruckner-Davies—
Goffman theorem the Lebesgue measure on the space [0, 1] is a positive measure
and [0, 1] = Fo,1;([0, 1]). Hence in our splitting of the problem we shall assume that
the measure u is positive and that X = Fyx (X) # 0.

ProposITION 4.34. Suppose that X is a separable metrizable space with X =
Fx(X) # @. Let u be a positive, continuous, complete, finite Borel measure on
X, and let f: X — Y be an arbitrary map. If there is Borel class 1 map g such that
fh = g u-almost everywhere for some homeomorphism h, then there exists a Borel
class 1 map G and a positive, continuous, complete, finite Borel measure v such that
f = G v-almost everywhere. Hence there exists a Borel class 1 map G and a dense
F, subset E of X such that f = G on E.

In the last statement of the proposition, we have a necessary condition: “There
exists a Borel class 1 map G and a dense F; subset £ of X such that f = G on E.”
Notice that the condition is free of the measures x and v, it is a topological statement.

The next proposition gives a sufficient condition.

ProposITION 4.35. Let X be a separable metrizable space such that X = Fx(X) # 0
and let f: X — Y be an arbitrary map. Suppose that | and v are continuous,
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complete, finite Borel measures on X. If there is a Borel class 1 map G such that
f = G v-almost everywhere and if there is an h in HOMEO(X) such that hyp is
absolutely continuous with respect to v (hyjr <K v), then there is a Borel class 1 map
g such that fh = g p-almost everywhere.

The sufficient condition in the proposition can be written in the Borel measure
theoretic form: “There is a Borel class 1 map G such that f = G v-almost everywhere
and there is an # in HOMEO(X) such that Az < v.”

A development of a class of spaces that satisfies the above necessary condition will
be given in Section 4.5.2, and a class of maps and measures that satisfies the sufficient
condition will be given in Section 4.5.3.

4.5.2. A necessity condition. The domain of the universally measurable function in
the Bruckner—Davies—Goffman theorem is [0, 1]. A property of this space, which is
exploited in their proof, is that the Baire category theorem holds. Another property is
that G universally null sets of [0, 1] are necessarily sets of the first category of Baire.
Also, it is an absolute measurable space with the property that an open universally
null set is the empty set, whence X = Fx (X) # 0.

We begin with the definition of Baire space, a topological notion.

DEFINITION 4.36. A separable metrizable space X is said to be a Baire space® if
N2, U is dense in X whenever Uy, i = 1,2,..., is a sequence of dense open sets
of X.

Taking a cue from the above discussion, we define the topological notion of a BDG
space.

DEerFINITION 4.37. A separable metrizable space X is said to be a BDG space if X is a
Baire space such that every G universally null set in X is a set of the first category
of Baire, and if X = Fy(X) # @.

The following propositions are easily proved.

ProposITION 4.38. Let X be a BDG space. If Xy is a nonempty open subspace of X,
then Xy is a BDG space.

ProposiTION 4.39. Let X be a separable metrizable space and let Xy be an open
dense subset of X. If Xo is a BDG space, then X1 is also a BDG space whenever
XoCXp CX.

ProposiTION 4.40. If a separable metrizable space X is a finite union of closed BDG
subspaces, then X is a BDG space.

It will be useful to have some examples of BDG spaces.
2 The name Baire space is often used in topology to mean the space DN, where D is an infinite discrete

space (see [51, page 326] or [113, page 73] for example.) Of course we have deviated from this
convention in favor of the property of the Baire category theorem.
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ExamPLE 4.41. Let Ey be a nonempty absolute null space contained in the open inter-
val (0, 1) and let 1 be a non absolute measurable space that is a one-dimensional
Lebesgue null set in (0, 1). Then Xy = ({0} X EO) U ((0, 1) x (0, l)) and X7 =
({0} x E 1) U ((0, 1) x (0, 1)) are respectively an absolute measurable space and a
non absolute measurable space. It is easy to show that both are BDG spaces since
(0,1) x (0, 1) is an absolute G space that is dense in X and is dense in X].

Let us turn to some preliminary constructions that are needed in the proof of our
extension of the Bruckner—Davies—Goffman theorem. Suppose that X is a nonempty
BDG space and let i/ = {U;: i € N} be a countable collection of mutually disjoint
universally measurable sets that covers X. Then

V = {Vi = Inty(Fx(U;)): i € N}

is a collection of open sets whose union is dense in X. To see this, observe that
X\ U{Fx(U): i € N} is a universally null G5 set and hence a set of the first
category in X. Clearly the open sets V; \ | )i<i Fx (U;) form a mutually disjoint col-
lection that is dense in X. Now suppose that W = {W,,: n € N} is any collection
of mutually disjoint open sets and that I = {K,: n € N} is a collection of mutually
disjoint universally measurable sets that satisfy: W refines V; K refines W; | J K is
dense in X; and, for each n, the set K, is W, N U; for some i with W,, C V;. (Note:
properties of the operator Fx yield K, is dense in #,,.) Clearly, such collections W
and C exist.

Next let W be a nonempty open subset of X and suppose that U; is a member
of U such that W C Fx(U;). Let U’ = {Uj/:j € N} be any collection of mutu-
ally disjoint universally measurable sets that covers X and refines &/. Denote the
collection {Uj/ el U]’ cUnNwW}byU (W,i) and let

V(W ,i) = (V] = Inty (Fx (U)): U] e U'(W,i)}.
Then, with ¥ = W \ Cly (V' (W, i)), the union of the open collection
VEW, i) = (V) UV (W, 1)

is a dense subset of W. Let W/ (W, i) = {W,,: m € N} be any collection of mutually
disjoint open sets that refines V* (W, i) and whose union is dense in W. If W, C V),
then let K;, = W,, N U;. Otherwise, select aj such that W, C ¥/ € V'(W,i) and let
K, = W, N U;. Then the collection K'(W,i) = {K,: m € N} of mutually disjoint
universally measurable sets refines both U/ (W, i) and W (W , i), and its union is dense
in W N U;. This ends the constructions.

We turn next to maps with discrete ranges. Bruckner, Davies and Goffman, in [24],
cleverly reduce the investigation to discrete-valued universally measurable maps. We
shall slightly modify their proof for discrete-valued maps.

The following discussion will lead to two lemmas that will permit an inductive
construction for the general case as well as lead to a proof of the discrete case. Let
X be a nonempty BDG space and let ¢: D — D be a map defined on a countable



4.5. Bruckner—Davies—Golffinan theorem 119

discrete space. Suppose that f: X — D is a universally measurable map. Then
¢f is also a universally measurable map. The collections U = {(¢f)"![{d}]: d €
¢[D1} and U’ = {f~'[{d}]: d € D} are covers of X such that ¢/’ refines U. Let
W, W', K and K’ be as described in the construction, and let dy be a fixed point
in D. Note that f[K],] and ¢f[K,] are singleton sets of D and ¢[D], respectively,
whenever they are not empty. Alsof[K,,] C ¢f [K,] wheneverK,, C K,,. Letg: X —
@[D] be defined by

o) — {do, ifxe X \UJW @

of (x,), ifx e W, e W, wherex, € K,

and define g’: X — D analogously. Then g and g’ are Borel class 1 functions such
that d(g(x),g’(x)) < sup {diam ¢~'[{d}]: d € ¢[D]}. Moreover, ¢f = g on | JK,
andf =g on | JK'.

We have proved the following two lemmas; the first one will start an induction and
the second one will provide the inductive step.

LemMma 4.42. Let X be a BDG space and V be an open collection such that | JV is
densein X. If f: X — D is a universally measurable map into a discrete space D,
then there exists an open collection W = {W,: n € N} of mutually disjoint sets that
refines V such that \ JW is dense in X, and there exists a sequence dp, n = 1,2, ...,
in D such that K,, = W, ﬂf’] [{d,}] is dense in W, for each n. The pair W and
IC defines a Borel class 1 function g: X — D such that g is constant on each W,
and on X \ W, and such that f (x) = g(x) whenever x € | J K. Moreover, | JK is
dense in X.

LemMmA 4.43. Let X be a BDG space, and D be a countable, discrete metric space
with metric d. Suppose that f: X — D is a universally measurable map and that
¢: D — D is an arbitrary map. Then U = {(of)"'[{d}]: d € ¢[D]} and U =
{f~'{d}1: d € D} are collections of mutually disjoint universally measurable sets
in X. For the map ¢f and the collection U, further suppose that the corresponding
collections VW and KC and Borel class 1 map g: X — @[D] have the properties as
described in the conclusion of the previous lema. Then there are collections W' and
K’ and there is a Borel class | map g’ : X — D as provided by the previous lema
with the added properties:

(1) K’ refines K,

2) d(g(x),g’(x)) < sup {diam ¢~ '[{d}]: d € ¢[D]},
(3) ¢of (x) = g(x) whenever x € | JK,

4) f(x) = g’ (x) whenever x € | JIK,

(5) UK is dense in X.

Lemma 4.42 implies the countable range theorem.

THEOREM 4.44. Suppose that X is an absolute measurable space that is a BDG space
andletf: X — Y be a universally measurable map of X into a countable separable
metrizable space Y. Then there exists a Borel class 1 map g and a Zahorski set Z
such that Z is dense in X and f = g on Z.
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Proor. Let D be a discrete space with card(D) = card(Y), and let ¢ : D — Y be any
bijection. Clearly, v is continuous and v/ ~! is Borel measurable. The map fy = ¥ ~'f
is a universally measurable map of X into D. Let go be the Borel class 1 map that is
provided by Lemma 4.42 for the map fp. Then g = v gp is a Borel class 1 map such
that / = g on | K, which is dense in X. As X is an absolute measurable space there
is a Zahorski set Z contained in | J K that is dense in X. o

The space N of all irrational numbers in (0, 1) will play an important role in
approximations of universally measurable discrete-valued maps. As N is an absolute
G; space, there is a bounded complete metric d on V. Here is a well-known theorem
(see [85, Corollary 1c, page 450]).

THEOREM 4.45. If'Y is an uncountable absolute Borel space, then there exists a con-
tinuous bijection y: N'@® N — Y such that " is Borel measurable, where N' ® N
is a disjoint topological sum. Moreover, if Y = [0, 11N, then there exists a continuous
bijection - N — Y such that ¥~ is a Borel class 1 map.

This theorem results in a very nice factorization.

THEOREM 4.46. Let X be a separable metrizable space and let Y be an uncountable
absolute Borel space. Then a map f . X — Y is a universally measurable if and only
if there is a continuous bijection Yy : N @® N — Y and a universally measurable map
F: X — N @& N such that f = W F. Moreover, F is a Borel class 1 map if and only
if f is a Borel class 1 map.

Our aim is to prove the following uncountable analogue of Theorem 4.44.

THEOREM 4.47. Suppose that X is both an absolute measurable space and a
BDG space, and let f: X — Y be a universally measurable map of X into an
absolute Borel space Y. Then there exists a Borel class 1 map g and a Zahorski set
Z such that Z is dense in X andf = g on Z.

Due to the preceding theorem it is clear that only the range space Y = N @ Nrequires
a proof. We shall use a sequence of discrete-valued maps f,: X — D,, where D,
is a subset of Y, such that f,, n = 1,2,..., converges uniformly to /. Uniform
convergence will require a complete metric d on /' @ N. As N @ N is an absolute
G; space, there exists one such metric. We may assume that d is bounded by 1.

We begin by constructing continuous maps ¢,: N ® N — N @ N for every n in
N such that

(1) %[N@ N] = D}’la

(2) Dy—1 C Dy,

(3) the collection W, = {oa"{d}): d € D,} isa covering of N @ N whose mesh
does not exceed 2"%1’

(4) W, refines W,_1,

(5) card(W N D,_1) < 1 forevery W in W,.

To this end, observe that the collection of all simultaneously closed and open subsets
of N/ @ N forms a base for the open sets. For n = 1 let D; = {yo}, where yq is a
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fixed point of NV @ N, and ¢;(y) = yg for every y in N' @ N. Suppose that ¢, has
been constructed and consider the collection W of all simultaneously closed and
open sets W such that card(W N D,) < 1 and diam W < 2%, and such that W
refines W,. Clearly W is a cover. As N @ N is a Lindeloff space, there is a countable
subcollection W,y of mutually disjoint, simultaneously closed and open sets that
covers N @ N. Define ¢, on each W in W, as follows: if W N D,, # @, then
define ¢;,+1(») to be the unique member of W N D, forevery yin W;if W ND, = 0,
then fix a member d of W and define ¢,+1(y) to be d for every x in W. It is easily
seen that ¢, satisfies the five conditions listed above.

Note that the following identities hold: ¢, ¢, = @4, @p+190n = @n and ,@p4+1 = @p.
So, if f: X — N & N is a universally measurable map, thenf,, = ¢,f,n = 1,2,...,
is a sequence of discrete-valued universally measurable maps such that ¢, f,+1 = f,
for each n, and such that the sequence converges uniformly to /. Moreover, ¢, |Dy+1
maps the discrete space D, onto D,,. Hence Lemma 4.43 can be applied whenever
X is a BDG space.

Suppose that X is both an absolute measurable space and a BDG space and let
f:X — N @N be a universally measurable map. Consider now the sequence f,,
n = 1,2,..., and the sequence ¢,|D,, n = 1,2,..., as provided above. Then we
infer from Lemmas 4.42 and 4.43 the existence of a sequence of Borel class 1 maps
gn, n = 1,2,..., and a sequence of universally measurable sets K,,, n = 1,2,...,
such that, for each n, d(g,(x), gn+1(x)) < % for every x, f,(x) = g,(x) whenever
x € K, and K11 C K,,. As g,, n = 1,2,..., is a Cauchy sequence, it converges
uniformly to a Borel class 1 map g. We seek a dense Zahorski set contained in X such
that / = g on it. One is tempted to seek it in the intersection ()2, K,,. Unfortunately
this intersection may not be well behaved. We now use a very clever construction due
to Bruckner, Davies and Goffman that avoids this difficulty. The construction uses

ProOPOSITION 4.48. Let X be an absolute measurable space and Y be a separable
metrizable space. For a universally measurable set E in X, if f: X — Y isa
universally measurable map and U is an open set such that Fx (U N E) is not empty,
then there is a topological copy of the Cantor set K contained in U NE such that f|K
is continuous.

Proor. By the definition of the positive closure operator Fy there exists a continuous,
complete, finite Borel measure p« on X such that u(UNE) > 0. Since X is an absolute
measurable space, there is a compact subset Eg of U N E such that w(Ep) > 0. As
f|Eo is u-measurable on E, there is a topological copy K of the Cantor set contained
in Eg such that f|Ey is continuous on K. O

Returning to the construction, we let V,,, n = 1,2,..., be a base for the topology
of X. We infer from the above Proposition 4.48 the existence of a sequence C,,
n = 1,2,..., of mutually disjoint topological copies of the Cantor set such that
C, C Vy, N Ky, f1C, is continuous, and C,, is nowhere dense. As d(f (x), f,(x)) < zin
and g,(x) = f,(x) for x in C,, we have d(f(x),g,(x)) < 2%, whenever x € C,.
Define g, to be g,(x) = gu(x) for x not in U;‘zl Cj, and g,(x) = f(x) for x in
U]l?:l C;. As f is continuous on the compact set U]'-’zl C;, we have that g, is a Borel
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class 1 map. Also, (g} (x), g} 41 (¥)) < d(gs(x), gn+1(x)) + 5 for every x. Hence the
sequence g, n = 1,2,..., converges uniformly to a Borel class 1 map g’. Clearly
f(x) = g’(x) whenever x is in U:il C,, which is a Zahorski set that is dense in X.
We have just proved the last theorem. Thereby we have proved the topological part
of the generalization of the Bruckner—Davies—Goffman theorem.

THEOREM 4.49. Let X be both an absolute measurable space and a BDG space and
let Y be an absolute Borel space. If f : X — Y is a universally measurable map, then
there exist a Borel class 1 map g and a Zahorski set Z that is densely contained in X
such thatf = gonZ.

This completes the first part of the splitting.

4.5.3. Asufficiency condition. Let us turn to the Borel measure theoretic part of the
Bruckner-Davies—Goffman theorem. The domain of the universally measurable map
in their theorem is [0, 1]. In their proof they used a theorem by W. J. Gorman III
[65] which states that each dense Zahorski set contained in [0, 1] is changed by a
homeomorphism /% of [0, 1] into a set of Lebesgue measure 1, which was proved by
Gorman without recourse to Borel probability measures (he was not aware of the
measure theoretic proof given in the early 1900s).

Let us begin with a summary of Gorman’s results. Gorman proved in [66] that
if £:[0,1] — R is a Lebesgue measurable function with card(f[[O, 1]]) < Ny
then there is a Baire class 1 function g and a homeomorphism / such that fh = g
Lebesgue almost everywhere. He also proved that there is a Lebesgue measurable
function /" such that the property “fi = g Lebesgue almost everywhere” fails for every
homeomorphism /4 and every Baire class 1 function g. This leads to the following
definition of a Gorman pair.

DeFINITION 4.50. Let X and Y be separable metrizable spaces. Then (f, ), where
is a continuous, complete, finite Borel measure on X and f is a p-measurable map
from X to Y, is called a Gorman pair if there exist a Borel class 1 map g from X to
Y, a positive Zahorski measure v on X and an h in HOMEO(X) such that u < hsv
and f = g v-almost everywhere.

Obviously, if (f, ) is a Gorman pair, then there is a homeomorphism / such that
fh is equal to a Borel class 1 map u-almost everywhere. We need a class of spaces
that has a rich supply of pairs (i, v) of continuous, complete, finite Borel measures
and homeomorphisms 7 such that u < hxv, where the v’s are required to be positive
Zahorski measures. We will define such a class. But, in anticipation of the definition,
we must discuss invariant subsets of homeomorphisms.

Recall that a subset /' of X is said to be invariant under a homeomorphism %
is F = h[F]. There are spaces X and subgroups G of HOMEO(X) such that some
nonempty closed subset F is invariant under every / in G. Let us give three examples.

EXAMPLE 4.51. Forn > 21letB, = {x e R": ||x|| < 1} and F = {x € 0B,: x, <
0}, where x,, is the n-th coordinate of x. Then dF, F, dB, and B, form a nested,
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closed collection of subsets of B,,, each of which are BDG spaces. Moreover, all of
them are invariant with respect to the group HOMEO(B,,; F inv ).

ExampLE4.52. Let M be a compact n-dimensional manifold with nonempty boundary
0M . Then oM and M form a nested, closed collection of subsets of M, each of which
is a BDG space and is invariant with respect to the group HOMEO(M).

ExAMPLE 4.53. Let X be a finite-dimensional triangulable space with X = Fyx (X).
For a triangulation K, denote by F; the space | Kj, where K; is the j-dimensional
simplicial complex of a triangulation K. Then F;,j = 1,2,...,n, is a nested, closed
collection of subsets of X such that each F; is a BDG space. Moreover, if

G= ﬂ;’zl HOMEO(X; Fj inv) " HOMEO(X; Fy fixed),

where F is the collection of all vertices of K, then each F; is invariant with respect
to each 4 in G.

The second part of the splitting uses a class of Zahorski generated measures which
will be defined next. We first establish some notation.

Let X be a separable metrizable space and let F be a finite nested collection of
nonempty closed sets such that Fx (F') = F foreach F in F,and | J F = X. Let Z(F)
be the collection of all Zahorski measures v on X such that v(UNF) > 0 whenever U
is an open set and F' is a member of F with U N F' # (. Clearly, if X is an absolute
measurable space then Z(F) is not empty. Define the group of homeomorphisms

HOMEO(X; F) = ez HOMEO(X; F inv).

With the aid of this notation we define

DerFINITION 4.54. Let F be a finite nested collection of nonempty closed sets of an
absolute measurable space X such that\ JF = X andFx (F) = F foreach F in F. A
continuous, complete, finite Borel measure | is said to be Zahorski dominated (more
precisely, relative to F) if there exists a subgroup G of HOMEO(X; F) such that
for each positive Zahorski measure v in Z(F) there exists an h in G that satisfies
u <K hyv. An absolute measurable space X is said to be Zahorski generated relative
to F if each continuous, complete, finite Borel measure on X is Zahorski dominated.

We have a simple characterization of a Zahorski generated space.

THEOREM 4.55. Let X be an absolute measurable space, and F be a finite nested
collection of nonempty closed sets such that | J F = X and Fx(F) = F for each F
in F. Then X is Zahorski generated relative to F if and only if there is a subgroup
G of HOMEO(X; F) such that for each positive, continuous, complete, finite Borel
measure (1 and for each v in Z(F) there is an h in G such that i < hyv.

The proof is a consequence of the inequality © < @ 4+ v since u + v is positive
whenever v is positive.
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ExampPLE 4.56. Let X = [0,1] x [0,1] and let F| be one of the four edges
of 0X. Define F; be the finite collection consisting of F| and d.X, and define
G = HOMEO(3.X; F; inv). It is easily seen that X is Zahorski generated rel-
ative to Fi. Also X is Zahorski generated relative to F = {0X, X} since every
homeomorphism in HOMEQO(9.X) has an extension in HOMEO(X).

Other examples of Zahorski generated spaces will be given later.

4.5.4. The extended Bruckner—Davies—Goffinan theorem. We now combine the
results of Sections 4.5.2 and 4.5.3.

THEOREM 4.57. Letf: X — Y be a map of an absolute measurable space X into an
absolute Borel space Y and let F be a finite nested collection of nonempty closed
subsets such that each F in F is a BDG space and X = | JF. If X is Zahorski
generated relative to F, then every pair (f, 1), where f is universally measurable
and where W is a continuous, complete, finite Borel measure on X, is a Gorman pair.
Hence there is a Borel class 1 map g and a homeomorphism h such that fh = g
u-almost everywhere.

Proor. Let F and G be as given in Definition 4.54. Write F as F;, i = 1,2,...,n,
with F; C Fj4 for each i. There is no loss in assuming H; = F; \ Fi—1 # @ (here
Fo = 0). As H; is a BDG space and f | H; is universally measurable, there is a Zahorski
set Z; that is dense in H; and a Borel class 1 map g; on H; such that /|H; = g; on Z;.
The set Z = | J;_, Z; is a Zahorski set. Let v be a Zahorski measure on Z. As Z is
an absolute measurable space, we may assume that v is defined on X. Finally, since
X is Zahorski generated relative to F, there is a homeomorphism # in G such that
u <K hyv. Define g to be the map given by g(x) = g;(x) whenever x € H;. Clearly g
is a Borel class 1 map such that f = g on Z. Thereby we have shown that (f, i) is a
Gorman pair. O

ReEMARK 4.58. We have observed that each continuous, complete, o-finite Borel
measure p on a separable metrizable space corresponds to a finite Borel mea-
sure Lo such that the p-null sets and o-null sets are the same collections. Hence
<K po- It follows that the measures p in the above theorem may be assumed to be
o -finite.

4.5.5. Examples. Our first application is Theorem 4.32 (Bruckner—Davies —Goffman
theorem) where ¥ = R and X = (0, 1). Clearly (0, 1) is a BDG space and R is an
absolute Borel space. As the Oxtoby—Ulam theorem applies to [0, 1], the space (0, 1)
is Zahorski generated relative to 7 = {(0, 1)}. Consequently the Bruckner—Davies—
Goffman theorem follows.

There are many other examples of BDG spaces X that are Zahorski generated
relative to F = {X} for appropriate subgroups G of HOMEO(X). The spaces
in our first collection of examples uses the property that there exists positive,
continuous, complete, finite Borel measures on X such that it and some subgroup
G of HOMEO(X) generate MEAST™ite ().
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COLLECTION 1: One-dimensional manifolds; the Hilbert cube; N, which is homeomor-
phic to N N, Menger manifolds of positive dimension. For these spaces the subgroup

G is HOMEO(X).

The next examples, which use F = {X}, are not in the first collection. We have
seen that the Cantor space fails to have an analogue of the Oxtoby—Ulam theorem.
But, by Theorem 3.57 due to Akin, the Radon—Nikodym derivative version of the
Oxtoby—Ulam theorem is available (also see Theorem 3.67).

COLLECTION 2: Any space X that is topologically equivalent to the Cantor space
{0, 1}, For these spaces, the subgroup G is HOMEO(X). One-dimensional finitely
triangulable spaces use the subgroup G = HOMEO(X; V' fixed ), where V is the set
of vertices of a triangulation of the space.

We have seen that the boundary dM of a separable n-dimensional manifolds M
plays an important role in determining a continuous, complete, finite Borel measure
w which, together with HOMEO(M), (ac)-generate MEAST™t (A1), Thus we have

COLLECTION 3: Separable n-dimensional manifolds M. There are two cases for these
spaces. If aM = @, then let F = {M}. If oM # @, then let F = {dM,M]}. In
both cases let G = HOMEO(M). The verification that M is Zahorski generated by
F follows easily from Theorem 4.16 and Proposition A.41.

CoLLECTION 4: Finitely triangulable spaces. For a finitely triangulable space X with
X = Fx(X), denote by F; the space | JKj, where Kj is the j-dimensional simpli-
cial complex of a triangulation K of X. Then X is Zahorski generated relative to
F ={F;:j=1,2,...,n}, where n is the dimension of X. Here, G is the subgroup
HOMEO(X; F) of HOMEO(X). The verification that X is Zahorski generated by
F follows easily from Theorem 4.18 and Proposition A.41.

CoLLECTION 5: Compact, connected, non locally connected spaces. For the first space
let ' be the closed subset of the Warsaw circle W consisting of all points of W
at which W is not locally connected, and let 7 = {F, W}. Clearly the set F is
invariant with respect to each % in the group HOMEQO(W). 1t follows from Theorem
4.17 and Proposition A.41 that W is Zahorski generated relative to F, where the
subgroup G is HOMEO(W). The second space is X = W x [0,1]" with F =
{F x [0,1]", W x [0, 1]"}. The verification of the fact that X is Zahorski generated
relative to JF is left as an exercise for the reader.

COLLECTION 6: Absolute measurable spaces. The above examples are completely
metrizable. X = ({0} x E) U ((0,1) x (0, 1)), where E is an uncountable absolute
null space contained in the open interval (0, 1), is an absolute measurable space that is
not completely metrizable. We have seen earlier (see Example 4.41) that X is a BDG
space. Let 7 = {X}. We infer from the Oxtoby—Ulam theorem that X is Zahorski
generated relative to F. Also, X’ = ({0} x E) U (N x N) is a BDG space that is
Zahorski generated relative F = {X'} (see Example 3.64).
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4.6. Change of variable

Suppose that f is a map from a space X to a space Y. By a change of variable of
f we mean a composition fH by a homeomorphism H in HOMEO(X). In [148]
Swiatowski proved the following interesting theorem. (See also B. Koszela [82].)

THEOREM 4.59 (Swiatowski). Suppose f is a function on [0, 11" that is extended real-
valued and Lebesgue measurable. If f is real-valued Lebesgue almost everywhere,
then there is a change of variable fH such that fH is Lebesgue measurable and

f[o 1 JH d exists.

Notice that the function f in the theorem is just Lebesgue measurable and not
necessarily universally measurable. Hence it is not obvious that the composition fH
is Lebesgue measurable. The proof of the theorem is a simple application of Theorem
2.49 and the Oxtoby—Ulam theorem. The theorem becomes more complicated if one
adds to the Lebesgue measure the (n — 1)-dimensional Hausdorff measure H,,_;
restricted to the boundary 9/”. There is a change of variable theorem in this case also.
At this point it will be convenient to prove a lemma.

LEMMA 4.60. Let X be a separable metrizable space and v be a continuous, complete,
o -finite Borel measure on X . Suppose that (1 is a continuous, complete Borel measure
on X such that ;u < v, and suppose that H is a homeomorphism in HOMEO (X) such
that for each point x of X there is a neighborhood U, and a positive constant cy such
that (Hyv) Uy < ¢y uL Uy. If f is a v-measurable, extended real-valued function

on X that is real-valued v-almost everywhere, then the following statements hold.

(1) f is p-measurable.
(2) fH is v-measurable.
(3) For each compact set K there is a constant B such that

fH—I[K]IfH| dv < Bf[(lﬂ du
whenever f is locally u-integrable.

Proor. Let g be a real-valued, Borel measurable function such that f = g v-almost
everywhere. As u© < v, we have f = g u-almost everywhere and statement (1)
follows.

Clearly Hyv <« u holds. From statement (1) we have, for the above g, that there
is a Borel set £ such that {y: f(y) # g(y)} C E and u(E) = 0. As H ™! [{y:f(y) *
gW] = {x: fH() # gH ()} we have H'[E] D {x: fH(x) # gH(x)}. Let £ =
H~'[E]. Then

Vil fH () # gH@)) < v(E) = v(H ' [E]) = w(E) = 0.
Hence fH is v-measurable. Statement (2) is proved.

Observe that [(gH)dv = [ gd(Hyv) whenever g is a nonnegative, real-valued,
Borel measurable function follows from v((gH)~'[F1) = (Hyv)(g~'[F]) for all
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Borel sets F. Now let K be a compact set. Then there is a neighborhood U of K and
a positive constant B such that (Hxv)|. U < B | U. Consequently,

JIf-xxlHdv = [|g-Xg|Hdv = [lg-Xk|d(Hyv)
<B[lg-Xyldu =B [|f-Xyldu,

and statement (3) follows. O

For complete, finite Borel measures v on X, each v-measurable, extended real-
valued function / on X yields a finite Borel measure u given by u(B) = |, B ﬁ dv
whenever B € ‘B(X). Clearly, £ < v. With this and the above lemma in mind we
make the following definition.

DErFINITION 4.61. Let v be a continuous, complete, finite Borel measure on X, where X
is a separable metrizable space. The measure v is said to have the Swiatowski property
if, for each v-measurable, extended real-valued function f that is finite valued v-
almost everywhere, there is an H in HOMEO(X) such that fH is v-measurable and

[y JH dv exists.

4.6.1. Examples. The examples of (ac)-generation found in Section 4.3, with the
aid of the above lemma, will yield measures v on spaces X that have the Swiatowski
property. The verifications will be left to the reader.

ExAMPLE 1: Let X be the Hilbert cube or the space N or the Cantor space or a compact
n-dimensional Menger manifold with n > 0, and let v be a positive, continuous,
complete, finite Borel measure on X. Then v has the Swigtowski property.

ExampLE 2: Let K be a triangulation of a finitely triangulable space X. If v is a
positive, continuous, finite Borel measure on the space X such that v|o is a positive
measure on o for each simplex o in K with dimo > 1, then v has the Swigtowski
property.

ExAMPLE 3: Let X be a compact manifold with or without boundary. Let v be a positive,
continuous, finite Borel measure on the space X such that v|0.X is a positive measure
on 9X. Then v has the Swigtowski property.

ExaMPLE 4: Let X be a nonempty open subset of R". To each Lebesgue measurable
extended real-valued function that is real-valued Lebesgue almost everywhere on X
there corresponds an H in HOMEOQO(X) such that fH is Lebesgue measurable and fH
is locally Lebesgue integrable.

The verification of the next example is left as an exercise.

ExampLE 5: Let X = I" and let Xy be a k-dimensional face of /", for example
Xo={xel" 'x; =0,k <i<n}. Let v =vy+ vy where v9 = H;| Xy and
v; = X is the Lebesgue measure on /”. Then the following assertion holds: For
each v-measurable extended real-valued function f on X that is real-valued v-almost
everywhere there is an H in HOMEO(X) such that [y fH dv exists. What can be said
if v is such that v|Xj is Lebesgue-like on Xy and vy is Lebesgue-like on 1" ?
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4.7. Images of Lusin sets

In Section 2.8.1 we promised to discuss the images of Lusin sets X for Borel measur-
able real-valued functions f* — that is, the images f[X] are absolute null space. In the
course of our discussion we will introduce many classes of singular sets that appear
naturally in the proof.

Lusin was interested in subsets X of a separable metrizable space Y with the
property that every nowhere dense subset of Y meets X in a countable set. Clearly
Lusin was interested in the existence of uncountable subsets with this property since
countable ones are easily found. It was seen in Chapter 1 that an uncountable Lusin
set exists under the continuum hypothesis whenever Y is completely metrizable.
Sometimes it is convenient to require that Lusin sets be uncountable; that is, a Lusin
set is an uncountable set with the above property. In the context of singular sets, the
collection of all sets with the above property, where X need not be required to be
uncountable, is denoted by Ly. This leads to the natural collection COUNTABLE,
namely those spaces X with card(X) < Ry. We now have COUNTABLE C Ly. The
next observation is that the ambient space in the definition of spaces in Ly is not
really needed. That is, if a subset of X is nowhere dense in X, then it is also nowhere
dense in the ambient space Y of X. Hence one finds in the literature the property v for
separable metrizable spaces X : every nowhere dense subset of X is countable. We
shall denote the class of all spaces that satisfy the property v by NU. We now have
Ly < NU. The obvious thing to do next is to consider countable unions of spaces in
NU. This class should obviously be denoted by o NU.? Every class defined above is
hereditary — that is, each subspace of a space in a class is also a member of that class.

We begin our task with the continuous map case.

THEOREM 4.62. Suppose X € NU. If f: X — R is continuous, then f[X] is a
Lebesgue null set. Moreover, if h € HOMEO(R), then h™! [f[X]] is a Lebesgue
null set, whence f[X] € univ NI (R).

Proor. Let x,, n = 1,2,..., be a sequence in X such that D = {x,: n € N} is a
dense subset of X. For each positive number ¢ let U, be an open set in X such that
xp € Uyanddiamf[U,] < 5;. Since D is dense in X we have that £ = X\U2, Uyis
nowhere dense in X, whence countable. As f[X] = f[E] U Uf’ilf[Un], we have that
the outer Lebesgue measure of f[X] does not exceed ¢. The final statement follows
easily. a

Implicit in the proof are several notions that have appeared in the early literature.
The first of them is that a subset X a space Z is concentrated about a set C, * that is,
every neighborhood U of C is such that card(X \ U) < 8. The case of a countable set
C is of special interest. The collection of all separable spaces X that are concentrated
about some countable set C of the ambient space ¥ will be denoted by CONy. In
the event that ¥ = X we shall just write, CON.> The next property, called C” in the

3 The reader will see in the literature the symbol L; used for this class. See, for example Brown and
Cox [19].

4 See A. S. Besicovitch [9].

5 In [19] the symbol P is used for this class.
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literature, is the following: For every collection {G(x,n): x € X,n € N} of open
sets of X such that x € G(x,n) for each x and n, there necessarily exists a diagonal
sequence x,, n € N, of elements of X such that X = |J,,cy G(xn, n). The collection
of all spaces that possess this property will be denoted by C”. Tt is not difficult to
prove the inclusion NU C C”. Moreover, the class C” is invariant with respect to
continuous surjective maps. (For proofs of these two assertions see Kuratowski [85,
Theorems 5 and 6, page 527].)

The final property is couched in terms of a metric d on a space X. The metric
is used to define the §-neighborhood of a point x in X. The collection of all such
neighborhoods forms a basis for the topology of X. Observe that if X is R with the
usual metric, then the radius of the §-neighborhood of x is % the Lebesgue measure
of that neighborhood. Since we are interested in maintaining a topological approach
we shall replace the metric with a continuous, complete, finite Borel measure on the
ambient space Y and a basis B(Y) for the open sets of the topology of the space Y. It
will be important that there be a rich supply of continuous, finite Borel measures p on
Y with w(Y) > 0. This will be assured if the separable metrizable space satisfies the
requirement ¥ = Fy(Y) # @ (see page 33 for the positive closure operator Fy). In
such a space, there is a continuous, finite Borel measure © on Y such that u (V) > 0
whenever V' is an nonempty open subset of U. For subsets X of a separable metrizable
space Y, where Y = Fy(Y) # (J, and a basis B(Y) for the open sets of X, the property
of interest is the following : For each sequence ¢,, n € N, of positive numbers and
for each continuous, complete finite Borel measure w on Y there is a sequence xy,
n € N, in X and there is a sequence U (n), n € N, in B(Y) such that x, € U (n) and
w(U(n)) < &, for every n and X C |J,cn U(n). We shall denote the collection of
all subsets X with this property by Cy. Of course, this collection is dependent on the
basis B(X), which has not been displayed in the symbol Cy.

For Y = R, the above property is equivalent to the notion of strong measure
zero, the favored terminology in set theory, where B(R) is the collection of all
8-neighborhoods of the points x and only the Lebesgue measure A is used, that is,
)\((x —8,x+ 8)) = 26. Indeed, if X C [a, b] and & is in HOMEO(R), then A[.X ] is a
set of strong measure zero whenever X is a set of strong measure zero because /|[a, b]
is uniformly continuous. Note that any countable union of strong measure zero sets
is a strong measure zero set. We will use the more descriptive symbol SMZy for Cy.
Clearly, if X € SMZy, then X € univ 91(Y) c abNULL.

The next theorem is Theorem 7 and the following Remark in [85, pages 527-528].
We shall give a proof to illustrate the use of the notions of Baire properties of sets
and of functions. (See Section A.2.3 of Appendix A for the Baire property.)
THEOREM 4.63. Suppose that Y is a separable metrizable space. Then C” C SMZy.
Moreover, if X € NU and if f : X — Y has the Baire property, then f[X] € SMZy;
consequently, f[X] € SMZy whenever f is Borel measurable.

Proor. Let ¢,, n € N, be a sequence of positive numbers and let u be a continuous,
finite Borel measure on Y. Then, for each y in f[X ], there is asequence G(y,n),n € N,
in B(X) such that y € G(y,n) and u(G(y,n)) < &, for every n. The first assertion is
a direct consequence of the definition of property C” applied to this sequence.
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Consider the second assertion. Suppose that X is in NU. Then there is a sequence
xr, k € N, in X such that X is concentrated about C = {x;: k € N}. Let G(y,n)
be an open set in B(Y). As f has the Baire property, there is an open set V (y,n)
in X and a first category set P(y,n) of X such that f~'[G(y,n)] is the symmetric
difference V' (y,n) AP(y,n). Hence P = | J; o P(f (xk), 2k) is a first category set and
V = Ugen V (f (xx), 2k) is an open set that contains the countable set C. As X € NU
we have card(X \ 7) < Rg and f[X] C f[PU (X \ MU Upeny G (31, 2k). Let
vak—1, k € N, be a sequence that exhausts f[PU (X \ V)], and let yo; = f(xx), k € N.
Then the sequence U (n) = G(y,,n), n € N, covers X and satisfies (U (n)) < g, for
every n. Hence f[X] is in SMZy. As a Borel measurable map has the Baire property,
the remainder of the second statement is trivially true. O

THEOREM 4.64. Suppose that X is a Lusin set in a separable metrizable space Y. If f
X — Ris Borel measurable, then f[X] is a strong measure zero set in R, whence an
absolute null space.

Proor. Lusin sets in a separable metrizable space are in NU. Hence the above
theorem completes the proof. O

4.8. Comments

In general, the proofs provided in the chapter differ from those found in the literature.
The comments will center mostly on these differences.

4.8.1. Goldman conjecture. The Goldman problem is a natural one. Goldman him-
self conjectured that the answer was the collection B(R), which was not correct.
The first to show that this conjecture was incorrect was Davies [43] who showed
in 1966 that every analytic set E has the property that f~'[E] is Lebesgue mea-
surable whenever f is Lebesgue measurable. Subsequently, H. G. Eggleston [48]
showed in 1967 that every concentrated set £ (a singular set, see page 128, that
is also a universally measurable set in R but not necessarily analytic) has the
property that f~I[E] is Lebesgue measurable whenever f is Lebesgue measur-
able. In 1968, Davies [44] extended Eggleston’s result to a larger class of singular
set that are also universally measurable sets. Of course it was Darst who, in
[39], recognized that the key to the problem is the induced measure f4A, that is,
he proved Proposition 4.1. The extensions of Darst’s theorem to Theorems 4.3
and 4.4 are natural ones since ‘B-homeomorphisms preserve universally measur-
able sets and the extensions do not involve any topological properties or geometric
properties.

A side effect of the investigation of Goldman’s problem is the characterization of
universally measurable maps — Proposition 4.5 is the analogue of the well-known char-
acterization of Borel measurable maps. Hence universally measurable sets and maps
are natural extensions of the notions of Borel sets and maps. A simple consequence
of this proposition is following analogue of Borel sets.
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PrOPOSITION 4.65. Let X be a subspace of a separable metrizable space Y and let
M be a universally measurable set in Y. Then X N M is a universally measurable
setin X.

To see this, observe that the inclusion map of X into Y is a universally measurable
map. We have the following question.

QuesTion 4.1. For any separable metrizable space Y and any subspace X of ¥ let 4
be any universally measurable set in X . Is it true that there is a universally measurable
set M in Y such that A = X N M? The answer is obviously yes if 4 is an absolute
measurable space or if X is a universally measurable set of Y.

4.8.2. Continuous and bounded variation. Darst wrote a series of papers on con-
tinuous functions of bounded variation and Purves’s theorem, culminating in his
result on infinitely differentiable functions. Clearly, locally analytic functions (i.e.,
functions locally equal to a power series) are infinitely differentiable. In [40] Darst
observed that locally analytic functions are B-maps. This is easily seen from the
Purves theorem. Indeed, a function f that is analytic on a connected open subset of R
is necessarily constant on that set whenever f/ has a nonempty set of points of uncount-
able order U (f). Since each open cover of a set in R has a countable subcover, U (f)
will be countable and the Purves theorem applies.

Darst studied several classes of singular sets of R in [34] and initiated an inves-
tigation of continuous functions of bounded variation that preserved these classes.
In [36] Darst constructed a continuous function of bounded variation that mapped a
universally null set to a nonuniversally null set. The constructed function was very
similar to the A. H. Stone example, which is Lipschitzian.

Itis easily seen that any Lipschitzian function that is not a ®8-map yields an infinitely
differentiable function that is not a $8-map since the method used in the above proof
by Darst or the method used in the proof given in the chapter will apply. Indeed,
Purves’s theorem together with the fact that U (f') is necessarily an analytic set imply
the existence of a nonempty perfect set contained in U (f). From this discussion we
infer that there is an infinitely differential function that is not a ‘B-map if and only if
there is a Lipschitzian function that is not a B-map.

These comments on U (f) should not end without mentioning Theorem 2.10, the
Darst and Grzegorek extension of Purves’s theorem on ‘B-maps. This theorem sup-
ports the fact that absolute measurable spaces are a very natural extension of absolute
Borel spaces.

Darst’s construction of his C* function is related to the problem of characterizing
those continuous functions f on [0, 1] of bounded variation that have the property
that 7% is infinitely differentiable for some # in HOMEOQO([0, 1]). These compositions
are “inner compositions with homeomorphisms.” Such functions were characterized
by M. Laczkovich and D. Preiss [87]. Darst constructed such a continuous function
of bounded variation to get his infinitely differentiable function. Another characteri-
zation of such functions can be found in C. Goffman, T. Nishiura and D. Waterman
[62]. The construction in this chapter is a different sort of composition; Af is an “outer
composition with homeomorphisms.”
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4.8.3. The Bruckner—Davies—Goffman theorem. This theorem was proved for a
universally measurable real-valued function defined on the interval (0, 1) and the
Lebesgue measure A. Their proof used the results of Gorman [65] concerning home-
omorphisms of dense Zahorski sets in (0, 1). (The classical characterization of the
collection MEASPOSfin((0, 1)), which consists of all positive, continuous, complete,
finite Borel measures on (0, 1), by means of A and the group HOMEO((O, 1)) was
not known to him.) Gorman showed in [66] that Lebesgue measurable functions f
with card(f[(0, 1)]) < Ry satisfied the conclusion of the theorem of Bruckner, Davies
and Goffman. He also showed that Lebesgue measurable functions with countable
images need not satisfy the conclusion of the Bruckner—Davies—Goffman theorem.
The argument used by Bruckner, Davies and Goffman is very subtle. It uses the usual
order of the real numbers to construct certain discrete-valued approximations of a
universally measurable function by Baire class 1 functions. Then Gorman’s results
on Zahorski sets were applied to determine the required homeomorphism 4 which
yielded /7 to be equal Lebesgue almost everywhere to a Baire class 1 function. This
final step does not yield the stronger statement where Lebesgue measure is replaced
by any nontrivial, continuous Borel measure on (0, 1). It is the application of the clas-
sical result mentioned in the above parenthetical comment that results in the stronger
theorem.

The above mentioned Gorman results concerning Lebesgue measurable functions
with countable range predates the Bruckner—Davies—Goffman theorem. Gorman
assumes that the function is Lebesgue measurable, a weaker condition than the univer-
sally measurable one of the later theorem. Hence the existence of his counterexample
does not lead to a contradiction. Gorman used another class of sets defined by Zahorski
called the M class. For a set X to be in the M, class, each neighborhood of a point
in the set X must contain a subset of X that has positive Lebesgue measure. This
leads to another closure-like operation F*(X). That is, if X is a subset of R”, then
F*(X) is the set of all points of R” with the property that every neighborhood of the
point contains a subset of X that has positive Lebesgue measure. Gorman proves, for
n = 1, the following proposition, whose proof is left as an exercise.

PROPOSITION 4.66. The closure-like operation F*(X) on R" has the properties

(1) if X C R", then F*(X) is a closed set;

(2) if X is Lebesgue measurable, then there is a Zahorski set E contained in X such
that E is dense in F*(X);

B) ifX, i = 1,2,...,k, is a finite collection of Lebesgue measurable sets, then

FH (Ui X0 = Uiz PO,
This proposition yields Gorman’s theorem

THEOREM 4.67. Iff is a Lebesgue measurable function on I" with card(fI"]) < Ry,
then there is an h in HOMEO(") such that fh is equal Lebesgue almost everywhere
to some Baire class 1 function.

A discussion of the Gorman results and the Bruckner—Davies—Goffman theorem also
appears in Goffman, Nishiura and Waterman [62].
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The above mentioned Gorman results lead to the definition of Gorman pairs (f, )
on separable metrizable spaces (see page 122). The proof given in this chapter for
pairs where 1 is a universally measurable function whose values are in the discrete
space N @ N is a modification of the proof in [24]. The characterization theorem
(Theorem 4.33 on page 116) results in the splitting of the proof of the extension of
the Bruckner—Davies—Goffman theorem into a topological class of BDG spaces (see
page 117) and a class of Zahorski generated Borel measure spaces (see page 123).
For a space X in these classes, every pair (f, i) is a Gorman pair whenever f is
a universally measurable map of X into any absolute Borel space Y and u is a
continuous, complete, finite Borel measure on X. As pointed out in the chapter, the
Bruckner-Davies—Goffman theorem holds for many spaces in addition to (0, 1).

Zahorski sets play an important role in the development of the chapter. These sets
form a subclass of the absolute F, spaces. Zahorski defined and used this class of
sets in his investigations of the derivative function [158, 159]. (A good source on the
subject of the derivative function is the book by Bruckner [22, 23].) Their appear-
ance in the measure theory of continuous, finite Borel measure spaces is illustrated in
Corollary 4.31. Here the measure spaces are defined on absolute measurable spaces
X. The proof provided here is essentially the one given for compact spaces X by
B. R. Gelbaum [59]. Oxtoby [119] gave a proof based on his theorem for separable
completely metrizable spaces X', which was duplicated in this chapter as Theorem 4.30.
As separable completely metrizable spaces are absolute measurable spaces, the above
mentioned Oxtoby’s theorem is actually deducible from the compact case by simply
embedding X into the Hilbert cube. Apropos to this comment, Oxtoby proved the
following theorem [119, Theorem 3] concerning the collection of all continuous, com-
plete Borel probability measure spaces M(X,v) = (X, v, M(X,v)), where X is an
absolute Gs space. We denote this collection by O. We shall provide Oxtoby’s proof.

THEOREM 4.68. Let M(X, ) be a member of O such that for each measure
space M(Y,v) in O there exists a homeomorphism h of X into Y such that
(h#u)|h[X] = v|h[X]. Then there exists a homeomorphism H of X into N such
that Hy o = M.

Proor. Observe that M(N, v), where v = A|N isin O. Let # be ahomeomorphism of
X into \V such that v|A[X] = (h#)|h[X]. The measure hyu is a continuous, complete
Borel probability measure on A/ with 1 = Ayu(N) = hsp(A[X]) = v(A[X]). It
follows that 2[X ] is a dense subset of A/, whence hxu is also positive. Let 4’ be in
HOMEO() such that #'yhsp = A. H = I’} is the desired homeomorphism. O

4.8.4. Change of variable. The change of variable theorem of Swiatowski is a propo-
sition about the integrability of a function. The reader may have noted that the Warsaw
circle was not among the spaces for which our techniques applied. We have the
following question.

QuEsTION 4.2. Let 1 be a continuous, positive Borel measure on the Warsaw cir-
cle W such that it and HOMEO (W) generate univ 9t (W). Let f/ be a u-measurable,
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extended real-valued function that is real-valued p-almost everywhere. Is there an 4
in HOMEO(W) such that fh is u-measurable and | wfhdp exists?

There is a nonlocally compact, absolute measurable space X and a positive, contin-
uous, complete, finite Borel measure v on X that has the Swiatowski property. Also
there is a non absolute measurable space X and a positive, continuous, complete,
finite Borel measure v on X that has the Swiatowski property.

4.8.5. Lusin theorems. In the discussion of the images of Lusin sets we introduced
several of the many classes of singular sets with very little discussion of them. These
classes have set theoretic consequences and further discussions will be delayed to
Chapter 6.

There is another very famous Lusin theorem. Namely, for a ;.-measurable function
f:10,1] — R, where u is a complete, finite Borel measure, and for ¢ > 0, there is
a closed set F such that ([0, 1]\ F) > ([0, 1]) — ¢ and f|F is continuous. There
are other such theorems where continuity is replaced by various kinds of differen-
tiability. If one replaces the “closed” condition by other requirements, then further
measurability requirements on f must be imposed. A possible condition is that /' be
universally measurable. Several papers along this line have appeared; we shall list
some of them rather than provide a discussion of them since they require techni-
calities that do not seem to fit naturally into the context of the book. The reader is
referred to the following references: J. B. Brown and K. Prikry [20], and J. B. Brown
[16, 17].

4.8.6. Fourier series. Investigation of everywhere convergence of Fourier series
under all changes of variable was initiated by Goffman and Waterman and has been
studied extensively. Of course changes of variable lead naturally to universally mea-
surable functions. The universally measurable functions that appear are equal, except
on a universally null set, to a continuous function or to a function of various types
of bounded variation. The reader may find many references to this topic in Goffman,
Nishiura and Waterman [62].

Exercises

4.1. Prove Theorems 4.6 and 4.7 on page 102.

4.2. Prove Proposition 4.9 on page 106.

4.3. Prove Proposition 4.10 on page 106.

4.4. Prove Lemma 4.15 and Theorem 4.16 on page 110.

4.4. Let u and v be continuous, complete, finite Borel measures on the Warsaw
circle W = Wy U Wy such that v| W] is a positive measure on W7, where W
consists of the points at which W is locally connected. Show that there is an 4
in HOMEO(W ; Wy fixed) such that | Wi < hyv.

4.5. Prove Theorem 4.19 on page 111.
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4.6. Prove Proposition 4.25 on page 113.
4.7. Recall that A\ is the set of irrational numbers in the interval [0, 1]. Let X be the
subspace of R? given by

X=(NxN)U{0,r)eR:reQ 0=<r=<lh

(a) Show that X is not an absolute G space.

(b) Show that X is a BDG space (See page 117.)

(c) What can be said if the right-hand member of the union that forms the space
X is replaced with an absolute null space N contained in {0} x [0, 1] ?

4.8. Recall the definition of a Baire space given on page 117.

(a) Show the existence of a separable Baire space that is an absolute Borel space
but not an absolute G space.

(b) Show the existence of separable Baire space that is an absolute measurable
space but not an absolute Borel space.

(c) Show the existence of a separable Baire space that is not an absolute
measurable space.

(d) Prove the generalization of Lemma 4.26 where the condition “completely
metrizable” is replaced with the conditions “absolute Borel and Baire space.”

4.9. Verify that X = W x [0, 1]" is Zahorski generated relative to the collection
F ={Wy x[0,11", W x [0, 1]"}, where W is the Warsaw circle and W is the
set of points of /¥ at which ¥ is not locally connected.

4.10. Provide a verification for Example 5 on page 127.

4.11. Prove Gorman’s Proposition 4.66 on page 132.

4.12. Prove Gorman’s Theorem 4.67 on page 132.

4.13. Prove Cp is equivalent to the notion of strong measure zero on the space R as
asserted on page 129. See [9, Theorem 1].

4.14. For a separable metrizable space X, let f: X — R be such that f'(x) > 0 for
every x in X. Find necessary and sufficient conditions for /" to be such that
/. v fdu exists (and finite) for every continuous, complete, finite Borel measure
pnonlX.
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Hausdorff measure and dimension

There are two ways of looking at the dimension of a space — that is, topologically and
measure theoretically.! The measure theoretic dimension is the Hausdorff dimension,
which is a metric notion. Hence, in this chapter, it will be necessary to assume that
a metric has been or will be selected whenever the Hausdorff dimension is involved.
The chapter concerns the Hausdorff measure and Hausdorff dimension of universally
null sets in a metric space. The recent results of O. Zindulka [160, 161, 162, 163]
form the major part of the chapter.

There are two well-known theorems [79, Chapter VII], which are stated next, that
influence the development of this chapter.

THEOREM 5.1. For every separable metric space, the topological dimension does not
exceed the Hausdorff dimension.

THEOREM 5.2. Every nonempty separable metrizable space has a metric such that the
topological dimension and the Hausdorff dimension coincide.

The first theorem will be sharpened. Indeed, it will be shown that there is a uni-
versally null subset whose Hausdorff dimension is not smaller than the topological
dimension of the metric space.

5.1. Universally null sets in metric spaces

We begin with a description of the development of Zindulka’s theorems on the
existence of universally null sets with large Hausdorff dimensions.

Zindulka’s investigation of universally null sets in metric spaces begins with com-
pact metrizable spaces that are zero-dimensional. The cardinality of such a space is
at most 8¢ or exactly c. The first is not very interesting from a measure theoretic
point of view. The classic example of the second kind is the Cantor ternary space
contained in R. Of course, it is topologically equal to the product space {0, 1}, or
more generally the product space k “ where k is a nondegenerate finite space with the
discrete topology. The selection of metrics on these spaces is important for the study
of Hausdorff measure and Hausdorff dimension. There is a one parameter family of

1 For those who are not so familiar with topological and Hausdorff dimensions, a brief discussion of these
dimensions for separable metric spaces can be found in Appendix D.
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metrics d), 0 < o < 1, on £ such that, for each «, the resulting metric space
C(k,a) contains a universally null set £ with card(£) = non-LL and with Hausdorff
dimension that coincides with that of C(k, ). This is made possible by the existence
of a universally null set in {0, 1}V with cardinality equal to non-L. For appropriate
choices of the parameter «, it is shown that there is a natural embedding of C(2, «),
where 2 = {0, 1}, onto a subspace C, of R such that the embedding homeomor-
phism and its inverse are Lipschitzian (that is, bi-Lipschitzian), thereby resulting in
a bi-Lipschitzian copy of the Cantor cube (C,)" in R”. In this way, for each s in the
closed interval [0, ], a universally null set in R” with Hausdorff dimension equal to s
is exhibited. With geometric measure theoretic tools, sharper results are shown for
analytic subsets of R”.

The proof of the main theorem of the chapter relies on a topological dimension
theoretic theorem due to Zindulka [160]. (This dimension theoretic theorem is fully
developed in Appendix D.) It follows from this theorem that each separable metric
space contains a universally null set whose Hausdorff dimension is not smaller than
the topological dimension of the space.

5.2. A summary of Hausdorff dimension theory

Here is a brief survey of p-dimensional Hausdorff measure on a separable metric
space X and Hausdorff dimension of its subsets.

5.2.1. Hausdorff measure. In this section we shall assume that X is a separable
metric space with the metric denoted by d.

DErINITION 5.3. Let E be a subset of X and let p be a real number with 0 < p.
For § > 0, define Hz(E) to be the infimum of the set of numbers ) g (diam(S))?
corresponding to all countable families G of subsets S of X such that diam(S) < §
and E C Jgeq 8.2 The p-dimensional Hausdorff outer measure on X is

Hp(E) = sup {H)(E): 6 > 0};

or equivalently,
Hy(E) = lims—.o H,(E)

since the limit always exists as a nonnegative extended real number. A set E is said
to be Hp-measurable if H,(T) = H,(T N E) 4+ H,(T \ E) whenever T C X.

Let M(X, H,) be the collection of all H,-measurable sets. The triple M(X,H,) =
(X, 9 (X, H,), H,) is acomplete Borel measure space on the topological space X . The
zero-dimensional Hausdorff measure is the usual counting measure on X. Forp > 0,
the measure H, on X is continuous, that is, H,(E) = 0 for every singleton set £. In
general, M(X, H,) is not o -finite. If ¥ is a subset of X whose p-dimensional Hausdorff
outer measure is finite, then the Hausdorff measure space M(X, H,) restricted to ¥

2 We use the conventions that diam (%) = 0 and 0° = 1.
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is the continuous, complete, finite Borel measure space M( Y, H,) that is induced by
the p-dimensional Hausdorff outer measure on the metric subspace ¥ of X. If X =
R”, then H,, = o, A,, where A, is the usual Lebesgue measure on R” and «,, is a
normalizing constant given by H,, ([0, 1]") = «;, A,([0, 117).

The empty set may, at times, require special treatment. The reader should keep in
mind the statements in the following proposition in the course of the development of
this chapter, where dim denotes the topological dimension function.

ProPoSITION 5.4. If X is a separable metric space, then, for every p,
dim@ = —1 < 0 = H,(®).

If0 < p and if E is a subset of a separable metric space X with dimE < 0, then
dim £ < H,(E).

Here is a useful theorem concerning Lipschitzian maps. The simple proofis left to
the reader.

THEOREM 5.5. For separable metric spaces X and Y let f : X — Y be a Lipschitzian
map with Lipschitz constant L. If 0 < p and E C X, then H,(f[E]) < IF H,(E).

It will be convenient to define at this point the notion of a bi-Lipschitzian
embedding.

DEFINITION 5.6. Let X and Y be separable metric spaces with respective metrics dx
and dy. An injection ¢: X — Y is called a bi-Lipschitzian embedding of X onto
M = ¢[X]if g is a Lipschitzian map and (p|M)~': M — X is a Lipschitzian map.

Clearly the Lipschitz constants of the maps ¢ and (¢|M)~" in the above definition
are positive whenever card(X) > 1. Hence we have the obvious theorem.

THEOREM 5.7. Let ¢ be a bi-Lipschitzian embedding of X into Y. If0 < pand E C X,
then
H,(E) < oo if'and only if Hy(p[E]) < o0

and
0 < H,(E) if and only if 0 < H,(¢[E]).

In Chapter 2 we gave a development of Grzegorek’s theorem (see page 20) which
says that for each positive, continuous, complete, finite Borel measure u on {0, 1}N
there are subsets 4 and B of {0, 1} with card(4) = card(B) = non-L such that 4
is an absolute null space and the outer i measure of B is positive. Grzegorek used
this to solve a question posed by Darst by showing there is an absolute null space £
contained in {0, 1}N x {0, l}N with card(£) = non-L such that £ projects naturally
onto 4 and B as bijections. Let us use this on topological copies X and Y of {0, N
and any continuous, complete, finite Borel measure i on Y. We have

PROPOSITION 5.8. For metric spaces X and Y that are homeomorphic to {0, 1N and
a nontrivial, continuous, complete, finite Borel measure (. on Y there is a subset E
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of X x Y with card(E) = non-L and there are subsets A of X and B of Y such that E
projects onto A and B as bijections, E and A are absolute null spaces, and *(B) > 0.

5.2.2. Hausdorff dimension. We shall continue to assume that X is a separable
metric space. It is easily seen that if 0 < p < g then H,(E) > H,(E) for subsets E of
X.Also, ifH,(E) < oo then H,(E) = 0 whenever p < g. This leads to the following
definition.

DErFINITION 5.9. For subsets E of X, the Hausdorff dimension of E is the extended
real number dim, E = sup {p: H,(E) > 0}.

Of course the Hausdorff dimension is dependent on the metric d of X. The four
properties of the Hausdorff dimension in the next theorem are easily proved. As
stated earlier, dim denotes the topological dimension function.

THEOREM 5.10. Let X be a separable metric space.

(1) =1 =dim¥ < dim, ¥ = 0.

(2) IfE C X, then dimE < dim, E.

(3) IfA C B C X, then dim,; A < dim, B.

(4) If4;, i = 1,2,..., is a countable collection of subsets of X, then dim, | Jio| 4; =
sup {dim, 4;:i=1,2,...}.

We have the following theorem which can be summarized as “the Hausdorff
dimension of a set is a bi-Lipschitzian invariant.” It is a consequence of Theorem 5.5.

THEOREM 5.11. Let X and Y be separable metric spaces. For bi-Lipschitzian
embeddings ¢: X — Y of X onto M = ¢[X],

dim, £ = dim,, ¢[E] whenever E C X.

This ends our summary of topological and Hausdorff dimensions of separable
metric spaces.

5.3. Cantor cubes

The Cantor ternary set has been topologically characterized among the metrizable
spaces to be nonempty, compact, perfect and zero-dimensional. The expression
Cantor cube is a nice way to say that a metric has been chosen so as to result in
a metric product space k£, where £ is a finite set with more than one member. For the
purposes of Hausdorff dimension, Cantor cubes are useful in that a correct choice of a
metric and a correct choice of a product measure will facilitate the computation of
the precise values of p-dimensional Hausdorff measure and Hausdorff dimension. Of
particular interest is the Cantor space {0, 133 But it will be convenient to consider
more general Cantor spaces and provide them with useful specific metrics.

3 See Appendix C for relevant material on metric spaces that are topologically equivalent to {0, .
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5.3.1. Measures on Cantor cubes. The compact space k ¢ carries a natural, continu-
ous, Borel, probability measure 1t generated by the uniform Bernoulli distribution p
on the factor spaces k£ given by p({x}) = (card(k))~! for each x in k. Let n be in
N and consider the projection ¢, : (xg,x1,...) —> (X0,X1,...,X,—1) € k. As each
singleton set { p} of k" is open we have (¢, '[{p}]) = (card(k))™". Denote the
open set go,,_l[{p}] by Up. Consider the metrics d(x o) on £ with 0 < o < 1 that
are defined in Appendix C (see page 217). For the convenience of the reader we
shall repeat the definition here in a notational form consistent with the product space
notation, that is, /' (m) is the m-th coordinate of a member f of £ “.
For distinct / and g in £ “ define

x(f,g =min{m € w: f(m) # g(m)}.

As f # g, we have x(f,g) € w. Hence x(f,g) is the length of the initial segment
that is common to / and g. Let 0 < @ < 1 and define

aXF8) | iff +£g,
d ,8) =
ey (f>8) {O, =g

Observe that if / and g are members of Up, then d o) (f,g) < «”, whence
diam(U,) = a”. Let us summarize this observation as a lemma.

Lemma 5.12. Letn € N and s = ncard®) Ifp ek’ then

[In o]
uk(Up) = (card(k)) ™" = ™ = (diam(U,))".

We need to derive another property of the metric d( o). Let £ be a nonempty subset
of k. First, some notation: for f € £k“ and n € N, define f'|n to be the point of k"
given by

Sin=(fQ0),f(1),....f(n—=1)).
If card(E) = 1, then diam(£) = 0 and E C Uy, for every f in E and every n. For
card(E) > 1 define

nE)y=min{x(f,g):f€eE,gecE,andf #g}.

Then d,)(f,8) < o™E) whenever f and g are in E. Hence, for every f in E, we
have £ C Uy|u(r) and diam(Uy|,(g)) = diam(E) = a"®)  Let us also summarize this
as a lemma.

LEMMA 5.13. Assume E C k®. If card(E) = 1 and n € N, then E C Uy, for
every f in E. If card(E) > 1, then there exists an n in N such that E C Uy, and
a" = diam(E) = diam(Uy|,) for every f in E.

We now have a proposition on open covers. The proof is left as an exercise.

PROPOSITION 5.14. Let 0 < s < ooand 0 < 8§ < oo, and let E;, i = 1,2,..., be
a countable family of nonempty subsets of k® with diam(E;) < §. Then, for each
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positive number € and for each i, there is an n; in N and there is an f; in E; such that
E; C Ug)y, and diam(Uy,,) < 8, and such that

32, diam(Ugy))* < 132, (diam(E))* + e

Of course, the ¢ is needed for the singleton sets of the countable family. We are
now ready to show that u; and Hg, where s = W, coincide on the metric space
Ck, o).

Lemma 5.15. Let0 < o < 1 and s = 2€@4®) 730, wr(B) = Hg(B) for every Borel

|In e

subset B of k. Hence dim,,(C(k,@)) = s.

Proor. Let B be any Borel subset of £ and let 0 < § < oo and 0 < ¢. Suppose that
Ei,i=1,2,...,1isacover of B by nonempty sets with diam(E;) < §. The proposition
yields sets Uy, with n; € N and f; € E; such that £; C Uy, for every i and such
that the above displayed inequality holds. We have

i (B) < 320 ik (Upyny) < D02 (diam(E;))* + €.

Hence u; (B) < Hg(B). On the other hand, by Lemma 5.12, we have for each n in N
the inequality

HY' (k@) < Y (diam(Up))* = 3, cn i (Up) = i (k).

Since " — 0 as n — 00, we have Hg(k®) < ui(k®) = 1. The inequality Hy(B) <
wi (B) now follows easily for Borel sets B. |

Let us turn to the metric space C(2,a) with 0 < a < %, where 2 = {0, 1}. Define
the real-valued function ¢: C(2,) — R given by the absolutely convergent series
o(f) = (1—a) Y0, o™f (m). Denote the image p[C(2, &) ] by Cy . A straightforward
computation will lead to the inequalities

(I =20)duw(f,2) < lo(f) —e(D| <dow(f,2)

for every f and g in C(2,«). Consequently, ¢ is a bi-Lipschitzian map between
C(2,a) and Cy *

5.3.2. Hausdorff dimension of universally null sets. The first theorem establishes
the existence of universally null sets in Cantor cubes with maximal Hausdorff
dimensions.

THEOREM 5.16. Letk € w withk > 2 and let 0 < o < 1. Then there exist universally
null sets E in C(k,a) with dim, E = dim, C(k,a) = % and card(E) =
non-L.

4 Related results on Hausdorff measure and dimension of Cantor set type constructions in [0, 1] by
C. Cabrelli, U. Molter, V. Paulauskas and R. Shonkwiler can be found in [26].
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Proor. Let us first construct a universally null set £, in C(k, o) with
dim, E, > (1 — 1) dim,, C(k, ),

where m — 1 is a positive integer. To this end, consider the product metric space
C(k,a™) x C(k™ 1, ™). By Proposition 5.8 there is a universally null set £’ in
the product metric space C(k, ™) x C(k"~!, &™) with card(E’) = non-L and the
projection of £” onto B in the second factor space satisfies pyn-1*(B) > 0. As the
projection of E’ onto B is a Lipschitzian map with Lipschitz constant equal to 1, we
have

H(E") > Hy(B) = jtym-1"(B) > 0,

where

. —1 In(card (k™!
s = dim,, C(k" ,am)=%

= mol i) — (1 — 1) dimy, Clk, ).
Hence dim,(E") > (1 — %) dim,, C(k, o). We infer from Propositions C.8 and C.9
of Appendix C that C(k, «) is bi-Lipschitzian equivalent to the product metric space
C(k,a™) x C(k™ ', a™). Hence the universally null set E,, in C(k,«) has been
constructed. To complete the proof, observe that the set £ = |, E is auniversally
null set in C(k, @) with dim, £ = dim, C(k, «). O

Let us describe an example of a metric space X that illustrates the “gap” between

the Hausdorff dimension and the topological dimension of X.

ExampLE 5.17. Let X be the disjoint topological sum
Clk, 1) ® Clk, ) ® [0, 17"

with a metric d that satisfies the conditions that d restricted to C(k, &;) is d(k«,) for
i = 1,2, and that d restricted to [0, 1]” is the usual Euclidean distance. Select &y and
o so that

__In(card k) __ In(card k)
N<81=Tha;] <52 Tha -

Then there exists a universally null set £ in X such that
dimX =n < 51 =dimy E < 55 = dim,, X.

The verification of the last inequalities is left to the reader.

QuestioN. Inthe example X above there exists a universally null set £ in X for which
dim, £ = dim X. Is it true that there always is a universally null set £ in X such
that dim,, £ = dim,, X whenever X is a separable metric space?

Letus turn to the question of the existence of perfect closed subsets F of uncountable
compact metric spaces X such that Hy(F) = 0 whenever s > 0. Of course, such a
subset has dim,, // = 0. Due to Grzegorek’s result there is an absolute null space £
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with card(E£) = non-L that is contained in . With the aid of Exercise 5.5, one can
prove

ProPosITION 5.18. If X is a uncountable compact metric space, then there is a univer-
sally null set E in X such that card(E) = non-L and dim, E = 0. More generally, if
the metric space X is an absolute measurable space that is not an absolute null space,
then thereis a universally null set E in X such thatdim,, E = 0 and card(E) = non-L.

5.3.3. Euclidean n-dimensional space. Certain Cantor cubes C(k,) can be
bi-Lipschitzian embedded into R”. This will permit us to prove that R” contains
universally null sets £y such that dim,, E; = s for each s with 0 < 5 < n.

THEOREM 5.19. For each positive integer n and for each s with 0 < s < n there is a
universally null subset Eg of R" with dim, Ex = s and card(Ey) = non-L.

Proor. The case s = 0 follows from Proposition 5.18. Let us consider an s with
0 <s < n Letaw = 2775, Clearly o < % Hence C(2,®) is bi-Lipschitzian
equivalent to the subset C, of R. We have that C(2", «) and the product (C,)" with
the maximum metric are bi-Lipschitzian equivalent. It is known that the maximum
metric and the Euclidean metric on R” are bi-Lipschitzian equivalent. Hence there is
a bi-Lipschitzian embedding of C(2", «) into R” endowed with the Euclidean metric.
As there is a universally null set D in C(2", @) with dim,; D = dim, C2",a) = s
and card(D) = non-L, the existence of the required set E; is established.

For s = n, define s; = n — % Let Ej, be a universally null set in R” such that
dim,, E;, = s; and card(Ey;) = non-L. Then E, = | J;2, E, is a universally null set
in R” such that dim, £, = n. As non-L. > w, we have card(£,) = non-L. O

Of course the above embedded Cantor cube can be arranged to be contained in
a preassigned open set. A natural question is: Can the open set be replaced by an
uncountable Borel set? More specifically, is there a universally null set £ contained
ina Borel set B of R” such that dim,, £ = dim, B ? This question, which was posed by
Zindulka in [161], has been answered by him in the affirmative in [162]. His solution
uses facts from geometric measure theory which are not as elementary as those used
in the above theorem. Note that a more general question has already been proposed
immediately following Example 5.17. Before turning to Zindulka’s solution, we shall
go to a, in a sense, weaker question in the next section.

5.4. Zindulka’s theorem

A classical theorem in topological dimension theory (Theorem 5.1) states that
dimy X > dimX for every separable metric space (X,d). Zindulka showed in
[162] that every separable metric space X contains a subset £ that is univer-
sally null in X’ with dim £ > dimX (see Theorem 5.22 below). It follows that
dim, X > dim,, £ > dim X and thereby the classical theorem has been sharpened.
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The proof of Zindulka’s theorem relies on a dimension theoretic theorem on the
existence of a certain countable family of Lipschitzian maps for arbitrary metric
spaces. This general theorem is proved in Appendix C. We state and prove the special
separable metric case here since its proof is straightforward.

TueorEM 5.20 (Zindulka). If(X,d) is a nonempty separable metric space, then there
is a sequence of Lipschitzian functions hy: X — [0,1], m = 0,1,2,..., such that

G(r) = Npohm [{s €10, 1]: s # r}]

is a Gs set with dim G(r) < 0 for each r in the open interval (0,1). Moreover,
X = U, e G(r) whenever E is an uncountable subset of (0, 1).

Proor. Let B = {U,: n € w} be a countable base for the open sets of a nonempty
separable metric space X . For each pair (n, ;) in w X w, define the Lipschitzian function
g, jy: X — [0,1] given by the formula

gnjxX) =1A (jdist(x,X\ U,,)), xelX;
and, for each r in the open interval (0, 1), define the set

G(r) = Ninjyewxn i) [1s € 10,111 s # r}].

Clearly G(r) is a Gs set. Let us show dim G(r) < 0 for every r. To this end we first
show that the collection

Dy = {guy [, 11]: (n.)) € 0 x w}

is a base for the open sets of X. For x € X, let n be such that x € U,. There is
a j such that g(,,(x) > r. Consequently, x € g<nJ>_1 [(r, 1]]. Hence D, is a base
for the open sets of X. Next let us show that D = G(r) N g<nJ>_1 [(r, 1]] is closed in
the subspace G(r). Using the fact that the distance function dist( XN\ U,,) appears
in the definition of g(, ), one can easily verify g<nJ>_1 [[r, 1]] N Cl(U,) C U, and
G(r) Nguy ' [Ir}] N U, = 2. So

Clg( (D) € G(r) N Cl(gy [, 11] N Uy)
C G(r) N gy~ [Ir, 11] N CL(U,)
C G Ngwy [ 1] N U, = D.

Consequently dim(Bdg((D)) = —1 and thereby dim G(r) < 0 follows from the
characterization provided by Theorem D.3.

Letus show X = |, .z G(r) whenever card(E) > R1. Suppose that there is an x in
X suchthatx ¢ G(r) forevery rin E. From the definition of G(r) there is a pair (ny, jy)
in @ x o such that x is not in g, j,) "'[{s € [0,1]: s # r}], that is g, ;) (x) = 7.
This defines amap n: r — (n,j) of E into w x o such that g;,(-(x) = 7. Since E is
uncountable and w x w is countable, there are two distinct » and 7’ in E that map to
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the same (n, ;). This implies g, (x) = r and g, j (x) = 7/, a contradiction. Thereby
the required equality is established.
The proof of the theorem is completed by well ordering v x w. O

The above theorem does not require the metric space X to be finite dimensional.
The theorem leads to the following dimension theoretic result in which the separable
metrizable spaces have their topological dimensions bounded below, unlike many
theorems of dimension theory which have the dimensions bounded above.

THEOREM 5.21 (Zindulka). If X is a separable metrizable space and if m and n are
integers such that dim X > m > n > 0, then to each metric for X there corresponds
a countable family F of Lipschitzian maps of X into [0, 11" such that for each r in
(0, 1)" there is an f in F with dimf~'[{r}] = m — n.

Proor. Let us use the sequence /i, k =0,1,2,..., of Lipschitzian functions as
provided by Theorem 5.20. For each ¢ in w” — that is, ¢ = (t(0),¢(1),...,
t(n — 1)) € " — define the Lipschitzian function f, : X — [0, 1]" by

Ji0) = (ho) (), by (), - - =1y (X)),

and define F to be the countable family {f,: ¢ € w” }. Let us show that F satisfies
the requirement of the theorem. To do this we shall use well-known theorems from
topological dimension theory; the reader is referred to Theorem D.6 of Appendix D.
Letr = (r1,...,7) € (0,1)". As dim G(r;) < 0 for 1 < j < n we infer from the
addition theorem of dimension theory that dim U;’Zl G(r;) < n—1; hence

dim ﬂj};l F(r;) = dimX — dim U_;",:l Grj)—1=m—n,
where F(t) = X \ G(¢) for every ¢ in (0, 1). On the other hand,

M1 F ) = M2 Ukeo T
= Usewr M1 () ™ TN = Uean i TP

As ﬁ_l[{r}] is closed for every ¢ in w”, by the sum theorem of dimension theory,
there is an ¢ in w” such that dim f; ~![{r}] = m — n and the theorem is proved. a

The following is an application of the last theorem.

THEOREM 5.22 (Zindulka). Let X be a separable metrizable space. For each metric
for X, there exists a universally null set E in X with dim, E > dimX. Also, if
dim X > 1, then card(E) = non-LL can be required of E as well.

Proor. We have already observed earlier that the statement of the theorem holds
for spaces with dimX < 1. So, let n be an integer such that 1 < n, and assume
n < dimX. We infer from Theorem 5.19 that there is a universally null set D, in
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(0, 1)" such that dim,, D;, = n. Consider the countable family F of Lipschitzian maps
provided by Theorem 5.21 with m = n. Define, for each f in F, the set

Du(f) ={reDy: TN #0).

For each r in D, we have an f in F such that dimf_l [{r}] = 0, Whencef_1 [{r}] s
not empty. Consequently,

D, = UfE]:Dn(f)-

For each f in F and each r in D, (f) select a point x(f, ) in f ~![{r}]. Define

E,(f) ={x(f,r):reDy(f)} and En:Ufe]-‘En(f)-

AsfIE,(f): En(f) — D,(f) is a continuous bijection and D, (f) is a absolute null
space we have that E,(f) is also an absolute null space. So, E,(f) is a universally
null set in X with card(D,, (f)) = card(E,(f)). It follows that E,, is a universally null
set in X with card(£,) = non-LL. As f is a Lipschitzian map we have dim E,(f) >
dim, D, (f) because f[E,(f)] = D,(f). Consequently, dim, £, > dim, D, > n.
The required setis E = | J{E,: 1 <n <dimX }. O

We have observed earlier the following corollary which provides a second proof
of the classical Theorem 5.1 as well as a sharpening of it.

CoROLLARY 5.23. If X is a separable metric space, then there is a universally null set
E in X such that dim, X > dim, £ > dim X.

(It is shown in Appendix D that Theorem 5.1 is implied directly by Theorem 5.21
without recourse to the above corollary.)
The final theorem is an immediate consequence of Theorem 5.2.

THEOREM 5.24. For each nonempty separable metrizable space X there is a metric
Jor X and a universally null set E in X such that dim X = dim_ £ = dim X.

REMARK 5.25. A very important consequence of Theorem 5.22 is that every sep-
arable metric space X with dimX = oo contains a universally null set £ in X
such that dim; £ = oo. Hence the existence of universally null sets £ in X with
dim, £ = dim,, X is only a problem for finite topological dimensional metric spaces
X. It is known that every finite dimensional separable metrizable space can be topo-
logically embedded into [0, 1]1%"*! (see Theorem D.5 in Appendix D). Unfortunately
the embedding need not be bi-Lipschitzian, witness the case of dim X = 0. In the next
section we shall consider analytic metric spaces that have bi-Lipschitzian injections
into some Euclidean space.

5.5. Analytic sets in R”

Let us return to universally null sets contained in Borel subsets of R” as promised in
Section 5.3.3. As we have mentioned already, Zindulka showed in [162] that every
Borel subset B of R” contains a universally null set £ in B such that dim,, £ = dim,; B;
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indeed, he showed that the subset B can be any analytic subset of R”. Zindulka’s
geometric measure theoretic proof will be presented.

Let us begin with some side comments about p-dimensional Hausdorff measure H,
onR”. Itis well-known that 0 < H,([0, 1]") < coanddim,,[0, 1]* = dim[0, 1]" = n.
But, if £ is a universally null set in R”, then either H,(E) = 0 or H,(E) = oo
whenever 0 < p = dimy, E. Indeed, if the contrary is assumed, then H, restricted
to £ will be a continuous, finite Borel measure on E with (H, | E)(E) > 0 and a
contradiction will appear. For analytic subsets 4 of R” with H,(4) = oo, there is the
following remarkable Besicovitch—Davies—Howroyd theorem. (See Davies [42] and
Besicovitch [10] for the R” case, and J. D. Howroyd [76] for the separable metric
space case.) No proof will be provided.

THEOREM 5.26 (Besicovitch-Davies—Howroyd). Let A be an analytic set contained
in R" with H,(4) = oo. Then there exists a compact set K contained in A such that
0 < H,(K) < oo. Moreover

Hy(4) = sup {H,(K): K is a compact subset of 4, H,(K) < o0 }.

Every analytic space is an absolute measurable space. The following question is
posed.

QuestioN. The Besicovitch-Davies—Howroyd theorem leads to the following prop-
erty BDH for subsets X of R": For each nonnegative p, H,,(X) is the supremum of the
collection of the values H,(K) where K is a compact subset of X with H,(K) < oo.
What sorts of sets X have this property? For example, does every co-analytic space
have property BDH? Which absolute measurable spaces possess this property? There
are absolute null subspaces X of R” and a p such that H,(X) = oo, hence property
BDH fails for such X.

5.5.1. Universally null sets in analytic spaces. Let us begin by stating the theorem
[162, Theorem 4.3].

THEOREM 5.27 (Zindulka). If 4 is a nonempty analytic set contained in R”, then there
is a universally null set E in R" such that E C A and dim,, 4 = dim,, E.

As the Hausdorff dimension is a bi-Lipschitzian invariant (Theorem 5.11), we have

CorOLLARY 5.28. If A is a nonempty analytic metric space such that there is a
bi-Lipschitzian injection ¢: A — R”, then there exists a universally null set E in
A such that dim E > dim, 4.

The inductive proof of Theorem 5.27 will require us to establish some geometric
measure theoretic notation.

5.5.2. Geometric measuretheory preliminaries. Much ofthe preliminary discussion
is taken from P. Mattila [99]. For further details, refer to Appendix D.
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For n > 1 we consider m-dimensional linear subspaces V' of R” and their
(n — m)-dimensional orthogonal complements V-, which are linear subspaces.
For convenience, we shall call V' an m-dimensional plane. The collection of all
m-dimensional planes in R”, denoted by G(n, m), is called the Grassmannian mani-
Jfold. There is a natural metric and a natural Radon probability measure y, , on this
manifold. The metric is provided by employing the natural orthogonal projections
my: R" = V,V € G(n,m). The distance in G(n, m) is given by

d(V,w) = |lzy —myll,  (V,W) € G(n,m) x G(n,m), (5.1)
where || - || is the usual operator norm. A very nice property of the measures is
Vam A = voom (V1 V €4)), 4 C Gn,m). (5.2)

For B € B(R") and p > 0, define MEAS(B, n, p) to be the collection of all Radon
measures 4 on R” with the property: support(u) C B and u(B(x,r)) <’ whenever
x € R" and r > 0, where B(x,r) is the closed ball {z € R": ||z — x|| < r}. The
well-known Frostman lemma (Theorem D.32) characterizes the property H,(B) > 0
by the property MEAS(B, n, p) # @ . The following lemma was proved by Zindulka.

Lemma 5.29 (Zindulka). Assume B to be a compact subset of R with H,(B) > 0. If
0<a< % then there exists a Lipschitzian surjection ¢ : C — C(2,a) for some
compact subset C of B.

Proor. Select a u in MEAS(B,1,p). Let L be a positive number such that
P Y%, (2aP) < u(B). We will construct a sequence { F(e): e € {0,1}""!},n € w,
of finite collections of disjoint, closed intervals F'(e), as in the construction of the
usual Cantor ternary set in R, that satisfy the following conditions.

(1) Foreachn, u(BNF(e)) > 27"LP Z;ﬁnﬂ (20?)! whenever e is in {0, 1}, whence
BNF(e) # 0.

(2) For each n, distg(F(e),F(e')) > La" whenever e and ¢’ are distinct members
of {0, 1}".

(3) F(e) D F(¢') whenever e is an initial segment of ¢’.

Let n = 0 and denote by F' = [a, b] the convex hull of B. Since p is a continuous
measure there is a point m in (a, b) such that

w(la,ml) = Su(a,bl) = w(im, b).

Let ro = La. We have u([m — ro,m + r9]) < LPaP. Hence u([a,m — rg]) and
w([m 4+ ro, b]) are not smaller than %LP Z?iz(Zap)i . Let F(0) be the convex hull
of BN [a,m — rg] and F (1) be the convex hull of B N [m + ry, b]. The conditions (1)
and (2) are satisfied.

Let us indicate the construction of F(0,0) and F(0,1). In the above construc-
tion replace F with F(0) = [ao, bo], ro with r| = La? and replace 17 Z;’il QaP)?
with 27 32, (2a)'. Let F(0, 0) be the convex hull of B N [ag,m — r1] and F (0, 1)
be the convex hull of B N [m + r1, bg]. Then the statements enumerated above hold
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for F(0,0) and F (0, 1). We leave the completion of the inductive construction to the
reader.

Let C = (e, U{F(p):p € {0,1}"}. Clearly K N B # @ whenever K is
a component of C. There is a natural surjection ¢ of C onto {0,1}*. Indeed,
if p = (po,p1,...) € {0,1}¥, then F(py, n € w, is a nested family, where
pln = (po,p1,---,pn—1) forn € w. Hence, x — p for each x in ﬂnEwF(pm) defines
the map ¢. Note that ¢ is constant on each component of C. Recall from Section 5.3.1
the metric d(2 o) for the space C(2, or). Let us show that ¢ is Lipschitzian. If x and y are
in the same component of C, then d ) (¢ (x), (7)) = 0. So suppose that x and y are
in different components of C. There is a smallest n in w such thatx € (), ., F (¢ (x)|m)
andy € ()<, F(p(y)Im). Hence |x — y| > La" = Ld@.a)(p(x), p(»)) and thereby
@ is Lipschitzian. O

We now have the existence theorem.

THEOREM 5.30 (Zindulka). If B is a nonempty compact subset of R, then there exists
a universally null set E in R such that E C B and dim, B = dim,, E.

Proor. The case dim, B = 0 is easily seen. So assume dimy B > 0. For 0 <
p < dim, B, let « = 277 and let N be an absolute null space contained in
C@2,a) with dimy; N = dim, C(2,«) = p. Let C be a compact subset of B and
¢: C — C(2,a) as provided by the lemma. Let £, be a subset of the set C such
that card (£, N ¢ '[{»}]) = 1 for each y in N. Then @|E, is a continuous bijection
onto the absolute null space N, whence E, is an absolute null space. As ¢|E, is
Lipschitzian, we have dim,, £, > p. The proof is easily completed. a

5.5.3. ProfofTheorem 5.27. If Aisanonempty analytic setin R” with dim, 4 = 0,
then the required set £ is easily found. Hence we shall assume dim; 4 > 0. Observe,
for each p with 0 < p < dim,, 4, that the Besicovitch-Davies-Howroyd theorem
yields a compact set B), contained in 4 with 0 < H,(B,) < co. Hence it is enough to
prove that there exists a universally null set £, in R" that is contained in B, such that
dim, £, = dim, B,.

LemMa 5.31 (Zindulka). If B is a compact subset of R" and if p is a positive number
such that 0 < Hy(B) < oo, then there exists a universally null set E in R" such that
E C Band dim,, E = dim, B = p.

Proor. The proof is by induction on n. Let n = 1. As H,(B) > 0, we have B # 0.
Lemma 5.29 completes the proof.

Let us prove the inductive step. Several theorems from geometric measure theory
will be used — their statements are found in Appendix D — the reader is reminded of
the notations that are found in Section 5.5.2. Let B be a compact set in R"t! with
0 < Hp(B) < oo. We shall consider two cases; namely,0 < p <nandn < p < n+1.

Suppose 0 < p < n. By the projection property (Theorem D.30), there exists a V'
in G(n + 1, n) such that dim, 7, [B] = dim B. Since V' is isometric to R” there is a
universally null set D in V' such that D C m,[B] and dim, D = dim,, 7, [B]. Let £
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be a subset of B such that 7y [E] = D and card(E N BN ngl [{x}]) = 1 for every x
in D. Then E is a universally null set in Rt and dim, £ > dim,, 7, [E] = dim,, B.
Thereby the case 0 < p < n is proved.

Suppose n < p < n+ 1. Asn > 1, we have p — 1 > 0. By the slicing property
(Theorem D.31), there exists a V in G(n + 1, 1) such that H; ({x € V: dim (B N
(vt +x)) =p—1 }) > 0. By LemmaD.33, we have that & (x) = dim,, (Bﬂ(VJ- +x)),
x € V, is a Borel measurable function on the line V. Hence

M={xeV:dim,(BNF*++x)=p—1)}

is a Borel set. As dim V' = n — 1 there is a universally null set £y in V- + x such
that E, C BN (V*+ +x) and dim,, Ex = dim,, (B N (V' +x)) whenever x € M. As
t=min{p — 1,1} > 0, we have

M={xeM: dim E, >t} and H,M)>0.

We infer from the Besicovitch—Davies—Howroyd theorem that there exists a compact
subset M of M with 0 < H;(M") < oo. It follows that dim, M’ = ¢. There exists a
universally null set D in the line ' that is contained in M" with dim,, D = ¢. Let

E=U{E::xeD}.

Then £ is a universally null set in R” by Theorem 1.23. Hence, by Corollary D.39,
dim, E > p. Since £ C B we have dim, £ = dim,, B and the inductive step is now
proved. a

We have now finished the preparations for the proof of geometric measure theoretic
theorem.

Proor oF THEOREM 5.27. Suppose that 4 is a nonempty analytic set in R”. The uni-
versally null set E is easily found if dimg 4 = 0. For dim,, 4 > 0, the statement of
the theorem follows easily from Lemma 5.31. o

We know from Theorem 5.22 that if X is a separable metric space with dim X = oo,
then there is a universally null set £ in X such that dim, £ = dim,, X. Hence it follows
that only analytic metric spaces 4 with dimA < oo are of interest if one wanted to
generalize Theorem 5.27 to all analytic spaces. This remark leads to

QuesTioN. Is it possible to write every finite dimensional, analytic metric space A4
as a countable union of analytic subspaces 4;, i = 1,2,..., such that there is a
bi-Lipschitzian embedding of each 4; into some R"?

We know that every analytic set contained in R” is an absolute measurable space.
Hence we have the obvious question.

QuEsTION. In Theorem 5.27, can the condition that the set 4 be an analytic set be
replaced by co-analytic set or, more generally, by absolute measurable space?
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5.6. Zindulka’s opaque sets

To investigate singular sets, Zindulka introduced in [163] the notion of small opaque
sets. We shall develop enough of his notion to prove his theorems concerning
Hausdorff dimension and the existence of universally null sets in separable metric
spaces. The reader is referred to the original paper for applications to other singular
sets.

DEFINITION 5.32. Let X be a separable metric space and let C be a family of subsets
of X. A subset Y of X is called C-opaque (or opaque with respect to C) if’

CNY # B whenever C € C and dim C > 0.

If the family C satisfies the mild additional condition that CNF € C whenever C € C
and F is a closed set, then C is said to be closed-complete. By weakening the condition
that F be closed sets to the condition that F' be Borel sets, the family C is said to be
Borel-complete.

Clearly the case where the family C is the empty one is not very interesting. Sim-
ilarly, if each C in C satisfies dim C < 0 then every subset of X is C-opaque, in
particular, every C in C. So, if dim X = 0, then every subset ¥ of X is C-opaque for
any family C of subsets of X. Consequently the notion of C-opaque sets will become
useful only if dim C > 1 for some C in C, whence dim X > 1. Also observe that
any dense set of real numbers is C-opaque in the space R for every family C of sub-
sets of R. Indeed, it appears that the notion of opaque sets is not so interesting for
one-dimensional manifolds if one requires that the opaque sets be dense sets. Conse-
quently, for n-dimensional manifolds X, the interesting cases are those with n > 2.
The next proposition gives some properties of C-opaque sets.

PrROPOSITION 5.33. Let Y be a C-opaque set of a separable metric space X .

(1) If C is closed-complete, then dim(C N'Y) > dimC — 1 for each C in C, in
particular, dim(C N'Y) = oo whenever dim C = oo. Moreover, if X € C and
dimX > 1, thendimY > 0.

(2) IfC is Borel-complete, then C N Y is strongly infinite dimensional for each C in
C that is strongly infinite dimensional.’

Proor. To prove statement (1) let us assume that it fails and derive a contradiction. So
assume thatthereisa C inC suchthatdim(CNY) < dim C—1. Asdim(CNY) is finite,
thereis a G5 hull G of CNY (thatis, CNY C G C X)suchthatdim G = dim(CNY).
We have by the addition theorem that

dmC <dim G +dim(C\G)+ 1 <dimC — 1 +dim(C \ G) + 1.

Consequently, dimC < oo and 0 < dim(C \ G) < oo. Since X \ G is an F; set,
we infer from the sum theorem that there is a closed set F with CNF C C \ G and

5 A separable metrizable space is strongly infinite dimensional if it cannot be written as a countable union
of zero-dimensional sets. See page 245.
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dim(C N F) = dim(C \ G). As C is a closed-complete family, we have that C N F
satisfies both CNF € C and dim(C N F) > 0. Hence (CNF)NY # (. But

(CNF)NYC(C\GNY=(CNY)\G=9,

and the contradiction has been achieved.

The proof of statement (2) is similar to that of statement (1). Assume that there is a
C in C such that C is strongly infinite dimensional and C N Y is not. As in the above
proof, the set C N Y is contained in a G, set G such that G is not strongly infinite
dimensional. Clearly, C \ G is strongly infinite dimensional. As C is Borel-complete,
we have C\ G € C. Hence (C\ G)NY # . But G D C N Y and the contradiction
has occurred. O

5.6.1. Examples. Here are some examples of C-opaque sets that appear in Zindulka
[163]. Notice that each example is metric independent. The first one motivates the
notion of opaqueness.

ExampLE 5.34. (Visibility) Let X = R” with n > 2, and let C be the family
{Cy:ueR", Jul =1}, where C, = {Au: A > 0} is the ray emanating from the
origin and passing through the point u. A C-opaque set Y is visible from the origin in
every direction u. Conversely, a set Y that is visible from the origin in every direc-
tion is C-opaque for this family C. Obviously the whole space R” and the usual unit
sphere in R” are visible from the origin in every direction, rather trivial examples.
As card(C,) = card(R") for every C,, there is a C-opaque set Y such that Y N C,, is
a singleton set {x,} such that |x,| = |x,| if and only if # = v. A more complicated
example is a totally imperfect subset ¥ of X such that X \ Y is also totally imperfect.

ExaMpLE 5.35. (Borel opacity) Let X be a separable metrizable space and let C be
the family of all Borel subsets of X. We shall call a subset ¥ of X Borel-opaque if
it is C-opaque. By Proposition 5.33, dim Y > dimZ — 1 for every subset Z of X,
whence dim Y > dim X — 1. If X is a compact metrizable space with dim X > 1,
then each totally imperfect subset ¥ whose complement is also totally imperfect is
Borel-opaque.

ExaMPLE 5.36. (Arc opacity) Let X be a separable metrizable space and let C be the
family of all arcs (that is, homeomorphic images of the unit interval [0, 1]) contained
in X and their Borel subsets. If Y is a subset of X that is C-opaque, then any arc
between two distinct points of X meets the set Y. We shall designate these C-opaque
sets Y as arc-opaque sets. Also dim Y > dim K — 1 for each arc K in X. Clearly, a
totally imperfect subset ¥ of X is arc-opaque whenever X \ Y is also totally imperfect.

5.6.2. Construction of opaque sets. As we have seen in the examples listed above,
totally imperfect sets often appear as opaque sets in the Zindulka sense. Our interest
lies in those totally imperfect sets that are universally null sets in X. So, for example,
arc opacity or Borel opacity for the compact spaces [0, 1]” and X = [0, 11N are not
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good enough to construct universally null sets in these spaces. Some other process
must be added to C-opacity. We present here Zindulka’s added procedure.

It is known that the real line contains uncountable subsets E that are absolute null
spaces. It is also known that the inverse image under continuous bijections onto E are
also absolute null spaces. The following definition by Zindulka is designed to take
advantage of these facts.

DErFINITION 5.37. For separable metric spaces X and Y let T and J be families
of subsets of the respective spaces X and Y. Then T < [J is the binary relation
determined by the following property: If A is a subset of X and f: X — Y is a
continuous map such that f|4: 4 — Y is an injection and f[4] € J, then 4 € 7.

The families 7 and J in the above definition are often o-ideals. Of particular
interest to us is the o -ideal on a separable metrizable space X formed by the collection
of all universally null sets in X. The next theorem provides a sufficient condition for
the existence of C-opaque sets of X that are members of the family Z.

THEOREM 5.38. For a separable metrizable space X let C be a family of subsets of X
and I be a o-ideal on X, and, for the space R let E be a uncountable subset of R
and J beao-idealonR. If T < J, E € J and card(E) = card(C), then there exists
a subset Y of X such that Y is C-opaque and Y € L.

Proor. We may assume E is a subset of [0, 1] and that C is indexed as {C,: r € E'}.
After selecting a metric on X, we have a sequence 4,,, m = 0, 1,2, ..., of continuous
maps and Gs sets G(r), r € (0, 1), as provided by Theorem 5.20. For each m in w put

En={reE:CNhy, '[{rN#0}.
Finally, for each r in E,,, select a point y(m, r) in C, N hm_1 [{r}] and then define
Y = {y(m’r): re Em} and Y = Umew Y.

We assert that Y is in Z. Indeed, note that each %,,|Y,,: ¥, — [0, 1] is an injection
and Y, C hm_l[Em]. AsE e JandZ < J,we have Y,, € 7. Since 7 is a o-ideal
we have ¥ € 7.

It remains to show that Y is C-opaque. To this end let » € E and assume
C,NY = . Then, for each m, we have C, NY,, = ¥ and hence C, N hm_l[{r}] = (.
From the definition of G(r) we have C, C G(r); and, from Theorem 5.20 we
have 0 > dim G() > dim C,.. Thereby Y is C-opaque. O

Here is an application of Theorem 5.38 to orthogonal projections of R?. Let Ly be
a one-dimensional oriented linear subspace of R?, where ¢ is the unique unit vector
orthogonal to Ly that, together with the orientation of Ly, yields the usual orientation
of R?. Note that ¢ is in the unit sphere § = {x € R?: |x| = 1}, which carries the
usual H; measure. Denote by Iy the orthogonal projection of R? onto Ly. Given a
subset ¥ of R? there corresponds a set of normal vectors ¢ defined as follows:

{0 €S: ALy \TIy[Y]) =0},
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where A, is the Lebesgue inner measure on the line Ly. (See page 46 for Lebesgue
inner measure.)

THEOREM 5.39. There exists a universally null set Y in R? such that card(Y) > non-IL
and

HL S\ {? € S: 2Ly \ Ty [Y]) =0}) =0,

where Hy, is the inner H| measure on R2.

ProoF. Let £ be auniversally null setin (0, 1) with card(E) = non-L. By Proposition
2.42 there exist full measure subsets 4 of S and B of R, with respect to their respective
measures, such that card(4) = card(B) = non-L. Provide each line Ly with an
isometric copy By of B. Let C be the family {l'[g’] [(W:y € Ly, € A}. Then
card(C) = non-LL. By Theorem 5.38 there is a C-opaque subset ¥ of R? such that Y is
also a universally null set in R?. As each element of C has dimension equal to 1 it also
meets the set Y. Hence I[Ty[Y] D By for each ¥ in A. Clearly card(Y) > non-L. O

COROLLARY 5.40. There is a universally null set Y in R? such that
dim ({9 € §: dim ([T Y) =1} =1.

The proof of the corollary is straightforward.

5.7. Comments

The cardinalities of the universally null sets £ in Theorems 5.27 and 5.30 can be made
to satisfy card(£) > non-LL whenever the analytic set 4 is uncountable.

As was already pointed out, the inequality dim, X > dimX was known to
hold for every separable metric space X and the equality held for some metric
for every nonempty separable metrizable space. It was through the recent work of
Zindulka [161, 162] that the existence of universally null sets £ in nonempty separa-
ble metric spaces X with dim, £ > dim X was established. As dim,, X > dim, £, a
completely new proof of the classical result dim,, X > dim X (Theorem 5.1) follows
from Zindulka’s existence theorem. The proof relies on an earlier discovered topo-
logical dimension theorem (Theorem D.28) for metric spaces (see Zindulka [163,
Lemma 5.1]) and a careful analysis of the Cantor cubes and the Euclidean space R”".
A straightforward consequence of Theorem 5.2 is that, for each nonempty separable
metrizable space X, there is a metric for which dim; X = dim, £ = dim X for some
universally null set £ in X (Theorem 5.24).

The important Theorem 5.21 is a consequence of Theorem D.27, a theorem about
metric spaces that was proved by Zindulka in [163]. The seeds for the latter theorem
are found in Zindulka’s 1999 paper [160, Theorem 2.1] where the functions there
were only continuous and not necessarily Lipschitzian. Clearly, for the purpose of
Hausdorff dimension, one needs Lipschitzian maps since they preserve p-dimensional
Hausdorff measure 0 whereas continuous maps do not, witness the famous Peano
curve which is a homeomorphic image of [0, 1] contained in [0, 112 with positive
Lebesgue measure. In the next chapter we shall turn to the analogue of Theorem 5.21
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that results from replacing the Hausdorff dimension with topological dimension. This
theorem will require some set theory assumptions.

Zindulka’s notion of C-opaque sets also has several applications to various other
singular sets. We repeat again that the reader is referred to [163] for these applications.
In [163] Zindulka applied his notion of C-opaque sets to establish the following
proposition on the existence of universally null sets in a metric space X. Although
this proposition has been superseded by Theorem 5.22, its proof is presented so as
to illustrate the application of C-opacity to the o-ideal Z of universally null sets in X
and the o-ideal J of universally null sets in [0, 1].

PRrROPOSITION 5.41. Let X be a separable metric space and let n € w. If dimX > n,
then there is a universally null set E in X such thatH,,(E) = oo and card(E) > non-L.

Proor. Inordertoapply Theorem 5.38, two o -ideals and a family C must be identified.
The o-ideals Z and 7 are univ 9t(X) and univ 91(Y), respectively, where ¥ = [0, 1].
That 7 < J follows from Theorem 1.23. The family C will consist of closed subsets
F of X with the property that dim ' > 0. We infer from the definition of the condition
dim X > n that there are ¢ many such sets 7. The next computations will result in the
family C.

Let F be a countable family of Lipschitzian maps / of X into [0, 1]” that is provided
by Theorem 5.21. As H, |[0, 1]" is a positive, continuous, complete finite Borel
measure we infer from the definition of non-IL that there is a subset B of [0, 1]* with
card(B) = non-L and H,(B) > 0. For each f in F let

B(f) ={r € B: dimf~'[{r}]] > 0}.

Then UfE}-B(f) = B. There is a g in F such that H,(B(g)) > 0. Clearly, by
the properties of the cardinal number non-IL and the inclusion B(g) C B, we have
card(B(g)) = non-IL. We infer from Theorem 2.41 the existence of a absolute null
subspace N of ¥ with card(lN) = non-L. Now let the family C be the collection
{g7'[{r}]: r € B(g)}. Theorem 5.38 yields a absolute null subspace £ of X that is
C-opaque.

Let us show that H,,(E) = oo. We first observe that each C in C has positive
dimension and hence C N E # ) because E is C-opaque. So g maps £ onto B(g) and
consequently H,(g[E]) > H,(B(g)) > 0. Let L be a Lipschitz constant for g. Then
L"H,(E) > H,(g[E]) > 0. In order to derive a contradiction assume that H,,(E) is
finite. Then H,, |E induces a nontrivial, continuous, complete finite Borel measure on
the absolute null space E, which is not possible. Thereby H,, (E) = oo. O

It is remarked in [163, 162] that this result was known already to D. H. Fremlin for
the case of X = R2,

The development of the material on Hausdorff measure and Hausdorff dimension
used in this chapter is very much self contained; it is taken from Zindulka [162, 161].
An expanded discussion with some proofs is presented in Appendix D. Concerning
the specifics of Zindulka’s development that have been presented in this chapter, the
key is the choice of metric on the topological space k . The metric dx ) is designed to
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make the computation of the Hausdorff dimension of C(k, «v) an easy task because the
resulting Hausdorff s-measure turns out to be the usual uniform product probability
measure on k “, where s = dim,, C(k, ). In order to use the product techniques due
to Grzegorek, Zindulka proved the Propositions C.8 and C.9 found in Appendix C
on products of metric spaces C(k, ), where the key is bi-Lipschitzian equivalence
rather than metric equality. These remarkably simple but important propositions stand
in marked contrast to very technical results on Hausdorff measures of products of
sets that were studied in earlier years in the pursuit of geometric properties (see
C. A. Rogers [131, page 130]). But we do not want to make light of the power
of geometric measure theory. Indeed, Theorem 5.27 that establishes the existence
of universally null sets £ in analytic subsets of R” relies very much on geometric
measure theory.

Both the classical proof and Zindulka’s second proof of Theorem 5.1 are presented
in Appendix D; these two proofs are substantially different.

For those who wish to learn more general and more technical aspects of Hausdorff
measures, the books by Rogers [131], K. J. Falconer [52], and Mattila [99] are often
cited as sources. Another source that deals mainly with R” is H. Federer [55].

Exercises

5.1. Prove Theorem 5.5 on page 138.

5.2. Prove Theorem 5.7 on page 138.

5.3. Verity Theorem 5.10 on page 139.

5.4. Prove Proposition 5.14 on page 140.

5.5. Show that there is a nonempty, perfect subset of each uncountable compact
metric space X such that Hg(F') = 0 whenevers > 0. Hint: Lets;,j = 1,2,...,
and a,, m = 1,2,..., be strictly decreasing sequences in (0, 1] such that
Z;’le 2"ay, is finite and lim; . s; = 0. For each m let d;, = (am)l/sm.
Verify that Y > | 2" (d,,)¥ is finite for every j. In the usual manner, construct
nonempty closed sets F'(m, k), 1 <k < 2", such that
(a) diam(F (m,k)) < d,, for each k,

(b) F(m,k) N F(m,k") = @ whenever k # k’,
(¢) F(m,k) D Fim+ 1,2k — 1) U F(m + 1,2k) whenever 1 <k < 2™,

Consider the compact sets F,, = U,%l;l F(@m, k).
5.6. State and prove the generalization of Theorem 5.39 and its corollary for the
space R”.
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Martin axiom

Except for two statements in the earlier chapters that used the continuum hypothesis
(