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Absolute measurable space and absolute null space are very old topological notions,
developed from descriptive set theory, topology, Borel measure theory and analysis.
This monograph systematically develops and returns to the topological and
geometrical origins of these notions. Motivating the development of the exposition
are the action of the group of homeomorphisms of a space on Borel measures, the
Oxtoby–Ulam theorem on Lebesgue-like measures on the unit cube, and the
extensions of this theorem to many other topological spaces. Existence of
uncountable absolute null space, extension of the Purves theorem, and recent
advances on homeomorphic Borel probability measures on the Cantor space are
among the many topics discussed. A brief discussion of set-theoretic results on
absolute null space is also given.

A four-part appendix aids the reader with topological dimension theory,
Hausdorff measure and Hausdorff dimension, and geometric measure theory. The
exposition will suit researchers and graduate students of real analysis, set theory and
measure theory.
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Preface

This book is about absolute measurable spaces. What is an absolute measurable space
and why study them?

To answer the first question, an absolute measurable space, simply put, is a sep-
arable metrizable space X with the property that every topological embedding of X
into any separable metrizable space Y results in a set that is µ-measurable for every
continuous, complete, finite Borel measure µ on Y . Of course, only Borel measures
are considered since the topology of Y must play a role in the definition.

For an answer to the secondquestion, observe that the notion of absolutemeasurable
space is a topological one in the spirit of many other notions of “absolute” such as
absolute Borel space, absolute Gδ space, absolute retract and many more. As the
definition is topological, one is led to many topological questions about such spaces.
Even more there are many possible geometric questions about such spaces upon
assigning a metric to the space. Obviously, there is also a notion of “absolute null
space”; these spaces are those absolute measurable spaces for which all topological
copies have µ measure equal to 0. Absolute null spaces are often called “universal
measure zero sets” and have been extensively studied. The same topological and
geometric questions can be investigated for absolute null spaces. It is well-known
that absolute Borel spaces are absolute measurable spaces. More generally, so are
analytic and co-analytic spaces. Many topological and geometric questions have
already been investigated in the literature for absolute Borel spaces and analytic
spaces. The challenge is to prove or disprove analogues of these known results in the
context of absolute measurable spaces.

It is clear that absolute measurable spaces are invariant under Borel isomorphism
(Borel measurable bijection whose inverse is also Borel measurable). Consequently,
each absolute measurable space will correspond to an absolute measurable subspace
of the real line R. It would be tempting to investigate only absolute measur-
able spaces contained in R, which has been extensively done. This would be
fine if one is interested only in, say, measure theoretic or set theoretic proper-
ties of absolute measurable spaces, but clearly inadequate if one is interested in
topological or geometric structures since they may not be preserved by Borel iso-
morphisms. The emphasis of the book is on topological and geometric properties
associated with absolute measurable spaces. Homeomorphisms will be empha-
sized for topological structures. For geometric structures, one must have a metric
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assigned to the separable metrizable space – bi-Lipschitzian maps will replace
homeomorphisms.

There is a second notion called “universally measurable sets.” This notion fixes a
space X and considers the collection of all subsets of X that are µ-measurable for
every continuous, complete, finite Borel measure µ on X . Obviously a subset of
X that is an absolute measurable space is a universally measurable set in X . But a
universally measurable set in a space X need not be an absolute measurable space –
indeed, for a non-Lebesgue measurable set X of R, the set X itself is a universally
measurable set in X that is not an absolute measurable space. It is easily seen that X
is an absolute measurable space if and only if every universally measurable set of X
is an absolute measurable space.

An extensive literature exists concerning the notions of absolute measurable space
and universally measurable set. The 1982 survey article [18], written by J. B. Brown
and G. V. Cox, is devoted to a large number of classes of “singular” spaces among
which is the class of absolute null spaces. Their article is essentially a broad rang-
ing summary of the results up to that time and its coverage is so ambitious that a
systematic development from the basics of real analysis and topology has not been
presented. There are two other survey articles that are devoted to set theoretic results
on certain singular sets. From the set theoretic point of view only subsets of the real
line needed to be considered. The first article is a 1984 survey about such subsets
by A. W. Miller [110] and the second is his 1991 update [111]. Absolute measur-
able spaces and absolute null spaces have appeared also in probability theory – that
is, probability theory based on abstract measurable spaces (X ,A) in which met-
rics are induced on X by imposing conditions on the σ -algebra A of measurable
sets. Obviously this approach to the notion of absolute measurable space concen-
trates on probability concepts and does not investigate topological and geometric
properties. In 1984, R. M. Shortt investigated metric properties from the probabil-
ity approach in [139] (announced in 1982 [138]). Also in non-book form are two
articles that appeared much earlier in 1937; one is a commentary by S. Braun and
E. Szpilrajn in collaboration with K. Kuratowski that appeared in the “Annexe” [15]
to the new series of the Fundamenta Mathematicae and the other is a fundamen-
tal one by Szpilrajn-Marczewski [152] that contains a development of the notions
of absolute measurable space and universally measurable subsets of a metric space
with applications to singular sets. Years have passed since the two articles were
written.

The book sets aside many singular sets whose definitions depend on a chosen met-
ric; fortunately, the definition of the Lebesgue measure on the real line depends only
on the arithmetic structure of the real number system and is metric independent. This
setting aside of metric-dependent singular set theory permits a systematic develop-
ment, beginning with the basics of topology and analysis, of absolute measurable
space and universally measurable sets in a separable metrizable space. Two themes
will appear. One deals with the question of the possibility of strengthening theorems
by replacing absolute Borel spaces in the hypothesis of known theorems with abso-
lute measurable spaces. The other is an investigation of the possibility of extending
topological properties or geometric properties of universally measurable sets in R to
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absolute measurable spaces X other than R. The first question is complicated by the
following unresolved set theoretic question [110] due to R. D. Mauldin. Note that
there are c Borel sets in R.

(Mauldin)What is the cardinality of the collection of all absolute measurable subspaces of the
real line R? In particular, are there always more than c absolute measurable subspaces of R?

The cardinality of absolute null spaces plays a role in Mauldin’s question since an
absolute measurable space is not necessarily the symmetric difference of an absolute
Borel space and an absolute null space.

There are six chapters plus a four-part appendix. The first chapter is a system-
atic development of the notions of absolute measurable space and absolute null
space. Clearly countable separable metrizable spaces are always absolute null spaces.
Solutions of the question of the existence, under the usual axioms of set theory, of
uncountable absolute null spaces are presented.

The second chapter is a systematic development of the notion of universally mea-
surable sets in a separable metrizable space X . The concept of positive measures
(loosely speaking, µ(U ) > 0 whenever U is a nonempty open set) is introduced.
This concept leads naturally to the operation called positive closure which is a topo-
logical invariant. Of particular interest is the example [0, 1] and HOMEO([0, 1]),
the group of all homeomorphisms of [0, 1]. It is a classical result that the collection
of all universally measurable sets in [0, 1] is generated by the Lebesgue measure λ

on [0, 1] and HOMEO([0, 1]). Even more, it is known that the collection of all pos-
itive, continuous, complete, finite Borel measures on [0, 1] is generated by λ and
HOMEO([0, 1]).

The topological project of replacing the space [0, 1]with other absolute measurable
spaces is the focus of the third chapter. This project, which addresses the second of the
two above mentioned classical results, leads naturally to the Oxtoby–Ulam theorem
and its many generalizations. The Oxtoby–Ulam theorem does not generalize to the
Cantor space {0, 1}N. Fortunately there is a Radon–Nikodym derivative version of the
Oxtoby–Ulam theorem which includes the Cantor space and allows the introduction
of analysis into the book.

There are many results in analysis on functions f : R → R in the context of uni-
versally measurable sets in R. Chapter 4 is devoted to the question of the replacement
of the domain or the range of f by absolute measurable spaces. The usual approach
of using Borel isomorphisms does not necessarily apply to the task at hand. But the
results of Chapter 3 can be applied.

Chapter 5 is devoted to geometric properties of universally measurable sets in Rn –
in particular, the Hausdorff measure andHausdorff dimension of absolute null spaces.
Results, due to O. Zindulka, that sharpen the classical inequalities between Hausdorff
dimension and topological dimension form the main part of the chapter.

Finally, Chapter 6 is a short discussion of the set theoretic aspect of absolute
measurable spaces. The literature on this aspect is quite extensive. Only a brief survey
is given of the use of the continuum hypothesis and the Martin axiom in the book. Of
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particular interest is the topological dimension of absolute null spaces. Surprisingly,
the result, due to Zindulka, depends on set axioms.

Appendix A collects together the needed descriptive set theoretic results and mea-
sure theoretic results that are used in the book. Developing notational consistency is
also an objective of this part.Aproof of the Purves theorem is also presented since it is
extended to include universally measurable sets and universally null sets in Chapter 2.

Appendix B is a brief development of universally measurable sets and univer-
sally null sets from the measure theoretic and probability theoretic point of view,
which reverses our “Borel sets lead to probability measures” to “probability mea-
sures lead to Borel sets.” This reversal places emphasis on Borel isomorphism and not
on homeomorphism; consequently, topological and geometrical questions are not of
interest here.

Appendix C concerns Cantor spaces (metrizable spaces that are nonempty, com-
pact, perfect and totally disconnected). Cantor spaces have many realizations, for
example, k ω, where k is a finite set with card(k) > 1. The homeomorphism equiv-
alence classes of positive, continuous, complete Borel probability measures on a
topological Cantor space are not very well understood. Even the Bernoulli measures
on k ω are not completely understood. Extensive investigations by many authors have
been made for card(k) = 2. In this case a weaker equivalence relation introduces
a connection to polynomials with coefficients in Z. These polynomials are special
Bernstein polynomials found in classical approximation theory. Recent results of
R. Dougherty, R. D. Mauldin and A. Yingst [47] and T. D. Austin [6] are discussed
and several examples from the earlier literature are given. The E. Akin approach
of introducing topological linear order into the discussion of Cantor spaces is also
included.

Finally, Appendix D is a brief survey of Hausdorff measure, Hausdorff dimen-
sion, and topological dimension. These concepts are very important ones in the
book. Zindulka’s new proof of the classical relationship between the Hausdorff and
topological dimensions is given.

The book is somewhat self-contained; many complete proofs are provided to
encourage further investigation of absolute measurable spaces.
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1

The absolute property

Ameasure spaceM(X ,µ) is a triple
(
X ,µ,M(X ,µ)

)
, whereµ is a countably additive,

nonnegative, extended real-valued function whose domain is the σ -algebra M(X ,µ)

of subsets of a set X and satisfies the usual requirements. A subset M of X is said to
be µ-measurable if M is a member of the σ -algebra M(X ,µ).

For a separable metrizable space X , denote the collection of all Borel sets of X
by B(X ). A measure space M(X ,µ) is said to be Borel if B(X ) ⊂ M(X ,µ), and if
M ∈ M(X ,µ) then there is a Borel set B of X such thatM ⊂ B and µ(B) = µ(M ).1

Note that if µ(M ) < ∞, then there are Borel sets A and B of X such that A ⊂ M ⊂ B
and µ(B \ A) = 0.

Certain collections of measure spaces will be referred to often – for convenience,
two of them will be defined now.

Notation 1.1 (MEAS ; MEASfinite). The collection of all complete, σ -finite Borel
measure spaces M(X ,µ) on all separable metrizable spaces X will be denoted by
MEAS. The subcollection of MEAS consisting of all such measures that are finite
will be denoted by MEASfinite.2

In the spirit of absolute Borel space, the notion of absolute measurable space will
be defined in terms of µ-measurability with respect to all Borel measure spaces
M(Y ,µ) in the collection MEAS. After the notion of absolute measurable space has
been developed, the notion of absolute 0-measure space – more commonly known as
absolute null space – is defined and developed. Two early solutions to the question of
the existence of uncountable absolute null spaces are presented. They use the notion
of m-convergence introduced by F. Hausdorff [73]. A more recent example, due to
E. Grzegorek [68], that has other properties is also developed. The theorems due to
S. Plewik [127, Lemma] and to I. Recaw [130] will conclude the discussion of
existence.

1.1. Absolute measurable spaces

Definition 1.2. Let X be a separable metrizable space. Then X is called an abso-
lute measurable space if, for every Borel measure space M(Y ,µ) in MEAS, it is

1 Such measures are often called regular Borel measures. We have dropped the modifier regular for
convenience.

2 See also equations (A.4) and (A.5) on page 187 of Appendix A.
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2 The absolute property

true that every topological copy M of X that is contained in Y is a member of the
σ -algebraM(Y ,µ). The collection of all absolute measurable spaces will be denoted
by abMEAS.

Obviously, the notion of absolute measurable space is invariant under homeomor-
phisms. Hence it would be appropriate to define the notion of topological equivalence
for Borel measure spaces on separable metrizable spaces. In order to do this we need
the following definition of measures f#µ induced by measurable maps f .

Definition 1.3 ( f#µ). Let X and Y be separable metrizable spaces, let M(X ,µ) be
a σ -finite Borel measure space, and let f : X → Y be a µ-measurable map. A subset
M of Y is said to be ( f#µ)-measurable if there exist Borel sets A and B in Y such that
A ⊂ M ⊂ B and µ( f −1[B \ A]) = 0.

It is clear that M( f#µ, Y ) is a complete, finite Borel measure on Y whenever
µ(X ) < ∞, and that M( f#µ, Y ) is complete and σ -finite whenever f is a homeomor-
phism of X into Y and µ is σ -finite.3

Definition 1.4. σ -finite Borel measure spaces M(X ,µ) and M(Y , ν) are said to
be topologically equivalent if there is a homeomorphism h of X onto Y such that
h#µ(B) = ν(B) whenever B ∈ B(Y ).

The last definition does not require that the Borel measure spaces be complete –
but h# does induce complete measure spaces. Hence the identity homeomorphism
idX of a space X yields a complete Borel measure space M(idX # µ,X ), indeed, the
measure completion of M(µ,X ).

It is now evident that there is no loss in assuming that the absolute measurable
space X is contained in the Hilbert cube [0, 1]N for topological discussions of the
notion of absolute measurable space.

1.1.1. Finite Borel measures. Often it will be convenient in discussions of absolute
measurable spaces to deal only with finite Borel measure spaces rather than the more
general σ -finite ones – that is, the collection MEASfinite rather than MEAS. The
following characterization will permit us to do this.

Theorem 1.5. A separable metrizable space X is an absolute measurable space if and
only if, for every Borel measure space M(Y ,µ) in MEASfinite, it is true that every
topological copy M of X that is contained in Y is a member of M(Y ,µ).

Proof. Clearly, if a space X is an absolute measurable space, then it satisfies the
condition given in the theorem. So suppose that X satisfies the condition of the
theorem. Let M(Y ,µ) be a σ -finite Borel measure space. There is a finite Borel
measure space M(Y , ν) such that the σ -algebra equality M(Y ,µ) = M(Y , ν) holds
(seeSectionA.5 ofAppendixA). SoM ∈ M(Y ,µ), henceX is an absolutemeasurable
space. ✷

3 See Appendix A for more on the operator f#.
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1.1.2. Continuous Borel measure spaces. Later it will be necessary to consider the
smaller collection of all continuous Borel measure spaces.4 If this smaller collection
is used in Definition 1.2 above, it may happen that more spaces become absolute mea-
surable spaces. Fortunately, this will not be the case because of our assumption that
all measure spaces in MEAS are σ -finite. Under this assumption, for a measure µ,
the set of points x for which µ({x}) is positive is a countable set. As continuous
Borel measures have measure zero for every countable set, the collection of absolute
measure spaces will be the same when one considers the smaller collection of all
continuous, complete, σ -finite Borel measure spaces. The following notation will
be used.

Notation 1.6 (MEAScont). The collection of all continuous, complete, σ -finite
Borel measure spaces M(X ,µ) on all separable metrizable spaces X is denoted
by MEAScont . That is,

MEAScont = {M(X ,µ) ∈ MEAS: M(X ,µ) is continuous }. (1.1)

1.1.3. Elementary properties. Let us describe some properties of absolute measur-
able spaces. Clearly, each absolute Borel space is an absolute measurable space. The
M. Lavrentieff theorem (Theorem A.2) leads to a characterization of absolute Borel
spaces. This characterization yields the following useful characterization of absolute
measurable spaces.

Theorem 1.7. Let X be a separable metrizable space. The following statements are
equivalent.

(1) X is an absolute measurable space.
(2) There exists a completely metrizable space Y and there exists a topological copy

M of X contained in Y such that M ∈ M(Y , ν) for every complete, finite Borel
measure space M(Y , ν).

(3) For each complete, finite Borel measure spaceM(X ,µ) there is an absolute Borel
space A contained in X with µ(X \ A) = 0.

Proof. It is clear that the first statement implies the second.
Assume that the second statement is true and let h : X → M be a homeomorphism.

ThenM(Y , h#µ) is a completeBorelmeasure space inMEASfinite. There exists aBorel
set A′ such that A′ ⊂ M and h#µ(M \ A′) = 0.As Y is a completely metrizable space,
the space A′ is an absolute Borel space. The restrictedmeasure spaceM(M , (h#µ)|M )

is complete and is topologically equivalent to M(X ,µ). So µ(X \ A) = 0, where
A = h−1[A′]. As A′ is an absolute Borel space, we have A is an absolute Borel space;
hence statement (3) follows.

Finally let us show statement (3) implies statement (1). LetY be a space and letM be
a topological copy of X contained in Y . Suppose that M(Y ,µ) is complete and finite.
Then M(M ,µ|M ) is also complete and finite. It is easily seen that statement (3) is
invariant under topological equivalence of Borel measure spaces. HenceM(M ,µ|M )

4 See Appendix A, page 187, for the definition of continuous Borel measure space.
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also satisfies statement (3). There is an absolute Borel space A such that A ⊂ M and(
µ|M )

(M \A) = 0.As µ∗(M \A) = (
µ|M )

(M \A) = 0, we haveM \A ∈ M(Y ,µ),
whence M = (M \ A) ∪ A is in M(Y ,µ). ✷

1.1.4. σ -ring properties. As an application of the above theorem, let us investigate
a σ -ring property of the collection abMEAS of all absolute measurable spaces. We
begin with closure under countable unions and countable intersections.

Proposition 1.8. If X = ⋃∞
i=1 Xi is a separable metrizable space such that each Xi is

an absolute measurable space, then X and
⋂∞

i=1 Xi are absolute measurable spaces.

Proof. Let Y be a completely metrizable extension of X and ν be a complete, finite
Borel measure on Y . Then Xi ∈ M(Y , ν) for every i. Hence X ∈ M(Y , ν) and⋂∞

i=1 Xi ∈ M(Y , ν). Theorem 1.7 completes the proof. ✷

Proposition 1.9. If X = X1 ∪ X2 is a separable metrizable space such that X1

and X2 are absolute measurable spaces, then X1 \ X2 is an absolute measurable
space.

Proof. Let Y be a completely metrizable extension of X and ν be a complete, finite
Borel measure on Y . Then Xi ∈ M(Y , ν) for i = 1, 2. Hence X1 \ X2 is in M(Y , ν).
Theorem 1.7 completes the proof. ✷

The σ -ring property of the collection abMEAS has been established. The next
proposition follows from the ring properties.

Proposition 1.10. If X is a Borel subspace of an absolute measurable space, then X
is an absolute measurable space.

Proof. Let Y be an absolute measurable space that contains X as a Borel subspace.
Let Y0 be a completely metrizable extension of Y . There exists a Borel subset B of Y0

such that X = Y ∩ B. As Y0 is a completely metrizable space, we have that B is an
absolute Borel space, whence an absolute measurable space. The intersection of the
spaces Y and B is an absolute measurable space. ✷

1.1.5. Product properties. A finite product theorem for absolute measurable spaces
is easily shown.

Theorem 1.11. A nonempty, separable, metrizable product space X1 × X2 is also an
absolutemeasurable space if and only if X1 andX2 are nonempty absolutemeasurable
spaces.

The proof is a consequence of the following proposition whose proof is left to the
reader as it follows easily from LemmaA.34 in Appendix A.

Proposition 1.12. Let M(Y1 × Y2,µ) be a complete, σ -finite Borel measure space.
If X1 is an absolute measurable subspace of Y1, then X1 × Y2 is µ-measurable.
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Proof of Theorem. Suppose thatX1 andX2 are nonempty absolutemeasurable spaces
and let Y1 and Y2 be completely metrizable extensions of X1 and X2, respectively.
Consider any complete, finite Borel measure space M(Y1 × Y2,µ). By the propo-
sition, X1 × Y2 is a µ-measurable subset of Y1 × Y2. As Y1 × Y2 is a completely
metrizable space, we have by the characterization theorem that X1×Y2 is an absolute
measurable space. Analogously, Y1 × X2 is an absolute measurable space. By the
σ -ring properties of absolute measurable spaces, we have that X1 ×X2 is an absolute
measurable space.

For the converse, assume X1 ×X2 is a nonempty absolute measurable space. Then
X1 and X2 are nonempty. By Proposition 1.10, we have that X1 × {x2} and {x1} × X2

are absolute measurable spaces. Consequently, X1 and X2 are absolute measurable
spaces. ✷

Let us turn to a countable product theorem. To this end, we may assume that
Xi, i ∈ N, is a countable collection of absolute measurable spaces contained in the

Hilbert cube [0, 1]N. Clearly, Xi∈N Xi ⊂ ([0, 1]N
)N

. A simple application of the
finite product theorem and the σ -ring property gives

Theorem 1.13. If Xi, i ∈ N, is a sequence of absolutemeasurable spaces, thenXi∈N Xi

is an absolute measurable space.

1.1.6. Inclusion properties. There are several subclasses of the class of all separable
metrizable spaces that are naturally associated with the notion of absolute measurable
space. Let us define them now. In order to do this we will need the definitions of
analytic and co-analytic spaces.

Definition 1.14. A separable metrizable space is said to be analytic if it is the image
of a continuous map on N , where N is the space { x ∈ [0, 1] : x is irrational }. A
separable metrizable space is said to be co-analytic if it is homeomorphic to the
complement of an analytic subspace of some completely metrizable space.

The space N is topologically the same as the product space NN.
It is known that analytic spaces and co-analytic spaces are topologically invariant.

Moreover, we have that a subset of a separable metrizable space Y that is an analytic
space or a co-analytic space is µ-measurable for every measure space M(Y ,µ) in
MEAS. Hence these spaces are also absolute measurable spaces. It is known that a
space is both analytic and co-analytic if and only if it is an absolute Borel space.Also,
a separable metrizable space is completely metrizable if and only if it is an absolute
Gδ space.5

Consider the following classes of spaces.

MET : the class of separable metrizable spaces.
abMEAS : the class of absolute measurable spaces.
ANALYTIC : the class of analytic spaces.
CO-ANALYTIC : the class of co-analytic spaces.

5 See Appendix A for the assertions made in the paragraph.
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abBOR : the class of absolute Borel spaces.
METcomp : the class of completely metrizable spaces.
ab Gδ : the class of absolute Gδ spaces.

We have the following inclusions.6

MET ⊃ abMEAS ⊃ ANALYTIC ∪ CO-ANALYTIC,

ANALYTIC ∩ CO-ANALYTIC = abBOR ⊃ ab Gδ = METcomp .

As there are non-Lebesgue measurable subsets of R, the first inclusion of the first
line is a proper one. That the second inclusion of the first line is proper will be
illustrated by totally imperfect spaces7 that are also uncountable absolute measure
spaces. Such spaceswill be shown to exist later in the chapter; they are the uncountable
absolute null spaces. To make sure that the space is not co-analytic as well, take a
disjoint topological sum of the spacewith the space that is analytic but not co-analytic.

1.1.7. Invariance of absolute measurable spaces. The collection ANALYTIC is
invariant under Borel measurable maps (TheoremA.13) and the collection abBOR is
invariant under injective Borel measurable maps (Theorem A.15). There are images
of absolute Borel spaces under Borel measurable maps that are not absolute Borel
spaces – of course, the images are analytic spaces. This cannot happen if the Borel
measurable maps are restricted further to be B-maps, whose definition (Definition
A.18) is repeated next.

Definition 1.15. Let X and Y be separable metrizable spaces. A Borel measurable
mapping f : X → Y is a B-map8 if f [B] ∈ B(Y ) whenever B ∈ B(X ).

By the R. Purves Theorem A.43, abBOR is invariant under B-maps. Indeed, let
f : X → Y be a surjective B-map and let X be in abBOR. Then card(U ( f )) ≤ ℵ0

by Purves’s theorem, where U ( f ) is the set of uncountable order of f . Hence, by
TheoremA.22, Y is an absolute Borel space. As B ∈ B(Y ) implies B ∈ abBOR, the
assertion follows.

An invariance property also holds for the collection abMEAS under Borel isomor-
phisms. In our book we shall rename Borel isomorphism to be B-homeomorphism.

Theorem 1.16. Let f : X → Y be a surjective B-homeomorphism of separable
metrizable spaces X and Y . Then X is an absolute measurable space if and only
if Y is an absolute measurable space.

Proof. Suppose X ∈ abMEAS and let M(Y ,µ) be a complete, finite Borel measure
space. Then the Borel measure space M(X , f −1

#µ) is complete and finite. There is
an absolute Borel space A′ with A′ ⊂ X and

(
f −1

#µ
)
(X \ A′) = 0. Observe that

6 See also Section A.3.1 of Appendix A.
7 Totally imperfect spaces are those nonempty separable metrizable spaces that contain no topological

copies of the space {0, 1}N.
8 As mentioned in the footnote to Definition A.18, in [129] R. Purves calls such maps bimeasurable with

the extra requirement that X and f [X ] be absolute Borel spaces. See that footnote for further comments.
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A = f [A′] is an absolute Borel space that is contained in Y . Since µ(Y \ A) =(
f −1

#µ
)
(X \ A′) = 0, it follows that Y is an absolute measurable space by

Theorem 1.7. ✷

It was observed that each Borel measure space M(X ,µ) in MEAS is, in a topo-
logical sense, determined by some complete, σ -finite Borel measure on the Hilbert
cube [0, 1]N since X can be topologically embedded into the Hilbert cube. The above
theorem shows that, in a measure theoretic sense, each Borel measure space inMEAS
is determined by some σ -finite Borel measure on the topological space {0, 1}N.
Indeed, there is a B-homeomorphism of the Hilbert cube [0, 1]N onto {0, 1}N,
which is topologically embeddable in the interval [0, 1]. Hence measure theoreti-
cal properties can be studied by concentrating on the topological spaces {0, 1}N and
[0, 1]. Of course, topological properties are not preserved by B-homeomorphisms.
Consequently, homeomorphisms are still important for our considerations.

1.1.8. More characterizations. Let us conclude this section with one more charac-
terization theorem.

Theorem 1.17. Let X be a separable metrizable space. The following statements are
equivalent.

(1) X is an absolute measurable space.
(2) There is a topological copy M of X contained in some absolute measurable

space Y such that M ∈ M(Y , ν) for every complete, finite Borel measure space
M(Y , ν).

Proof. That the first statement implies the second is trivial.
Let us show that the second statement implies the first. To this end let Y be an

absolute measurable space and letM be a topological copy of X contained in Y such
that M ∈ M(Y ,µ) for every complete, finite Borel measure µ. Let M(X , ν) be a
complete, finite Borel measure space. Then µ = f#ν is a complete, finite Borel mea-
sure on Y , where f yields the embedding. As Y is an absolute measurable space there
is an absolute Borel subspace B of Y such that µ(Y \ B) = 0. Since M ∈ M(Y ,µ),
there exists a set A in B(Y ) such that A ⊂ M and µ(M \ A) = 0. We may assume
A ⊂ B. As µ(M ) = µ(Y ), we have 0 = µ(M \ A) = µ(Y \ A) = ν(X \ f −1[A]).
Since f −1[A] is an absolute Borel space, X is an absolute measurable space. ✷

1.2. Absolute null spaces

Anatural collection of separablemetrizable spaces is the one consisting of those spaces
X whose topological copies in Y are null sets for every M(Y ,µ) in MEAScont (see
equation (1.1) above), that is, absolute 0-measure spaces. The present day convention
is to call these spaces absolute null spaces.

Definition 1.18. Let X be a separable metrizable space. Then X is called an absolute
null space if, for everyM(Y ,µ) inMEAScont , it is true that every topological copy M
of X that is contained in Y is a member ofN(Y ,µ), that is, µ(M ) = 0. The collection
of all absolute null spaces will be denoted by abNULL.
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The reader is reminded that, unlike the definition of absolutemeasurable spaces, the
complete Borel measure spaces M(Y ,µ) are required to be continuous; for, without
this additional condition, only the empty space would be a member of abNULL.

There is the following analogue of Theorem 1.5.

Theorem 1.19. A separable metrizable space X is an absolute null space if and only
if, for every continuous, complete, finite Borel measure spaceM(Y ,µ), it is true that
every topological copy M of X that is contained in Y is a member of N(Y ,µ).

The proof is analogous to that of Theorem 1.5 and is left to the reader.

1.2.1. Characterization. We have the following characterizations of absolute null
spaces.

Theorem 1.20. Let X be a separable metrizable space. Then the statement

(o) X is an absolute null space

is equivalent to each of the following four statements.

(α) If X is a subspace of a separable completely metrizable space Y and if M(Y ,µ)

is a continuous, complete, σ -finite Borel measure space, then µ(X ) = 0.
(β) If M(X ,µ) is a continuous, complete, σ -finite Borel measure space, then

µ(X ) = 0.
(γ ) Every subspace of X is an absolute measurable space.
(δ) X is both a totally imperfect space and an absolute measurable space.

Proof. Clearly the statement (o) implies statement (α). That (α) implies (β) is equally
clear since, with the aid of the inclusionmap, any continuous, complete, σ -finiteBorel
measure space M(X ,µ) can be extended to a continuous, complete, σ -finite Borel
measure space M(Y , ν) for any completely metrizable extension Y of X .

To prove that (β) implies (o) let Y be a separable metrizable space that contains
X and let M(Y , ν) be a continuous, complete, finite Borel measure space. Then
µ = ν|X is a continuous, complete, finite Borel measure on X . If X satisfies (β),
then 0 = µ(X ) = ν∗(X ), whence ν(X ) = 0. Thereby (β) implies (o).

Obviously (o) implies (γ ).
To show that (γ ) implies (δ), assume that X satisfies (γ ). Then X is an absolute

measurable space. Suppose that X is not totally imperfect. Then X contains a topo-
logical copy of {0, 1}N. As {0, 1}N contains a nonabsolute measurable space, (γ ) is
not satisfied by X . Hence X satisfies (δ).

Finally, suppose that X satisfies (δ) and let M(X ,µ) be a continuous, complete,
σ -finite Borel measure space.As X is an absolute measurable space, by Theorem 1.7,
there is an absolute Borel subspace A of X such that µ(X \A) = 0.As A is also totally
imperfect, we have card(A) ≤ ℵ0 whence X ∈ N(Y ,µ). Hence (δ) implies (β). ✷

1.2.2. Cardinal number consequences. At this point let us consider cardinal num-
bers of sets which have not been assigned topological structures. We shall consider
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nonnegative real-valued, continuous measures µ on sets X for which every subset
is µ-measurable, denoted by the measure space

(
X ,µ,P(X )

)
, where P(X ) = {E :

E ⊂ X } is the power set of X . If one assigns the discrete topology to X , then X is a
completely metrizable space (but not necessarily separable). With this topology, we
have B(X ) = P(X ), whence the continuous, complete, finite Borel measure space
M(X ,µ) is exactly the same as

(
X ,µ,P(X )

)
. We have the following theorem due to

W. Sierpiński and E. Szpilrajn [142].

Theorem 1.21 (Sierpiński–Szpilrajn). If n is the cardinality of an absolute null space
X0, then each nonnegative real-valued, continuous measure space

(
X ,µ,P(X )

)
with

card(X ) = n is the 0 measure space.

Proof. Let X0 be a separable metrizable space with card(X0) = n and let f : X → X0

be a bijective map. The discrete topology on X makes f continuous, whence Borel
measurable. Then ν = f#µ is a continuous, complete, finite Borel measure on X0.
(Note that f#µ is well defined since f is a bijection.) So µ is identically equal to 0
if and only if ν is identically equal to 0. The above characterization, Theorem 1.20,
completes the proof. ✷

1.2.3. Product theorem. As an application of the above characterization theoremwe
will give a product theorem for absolute null spaces.

Theorem 1.22. A nonempty, separable metrizable product space X1 × X2 is also an
absolute null space if and only if X1 and X2 are nonempty absolute null spaces.

Proof. Suppose that X1 and X2 are nonempty absolute null spaces. By the character-
ization theorem, X1 and X2 are totally imperfect spaces and absolute measurable
spaces. By Proposition A.26, X1 × X2 is a totally imperfect space; and, by
Theorem 1.11,X1×X2 is an absolutemeasurable space. Hence by the characterization
theorem, the product X1 × X2 is an absolute null space.

Conversely, suppose thatX1×X2 is a nonempty absolute null space, whenceX1×X2

is a totally imperfect space and an absolute measurable space. By Theorem 1.11, X1

and X2 are absolute measurable spaces. Also, by Proposition A.26, X1 × {x2} and
{x1}×X2 are totally imperfect spaces. Hence, X1 and X2 are nonempty, absolute null
spaces by the characterization theorem. ✷

Observe that {0, 1}N andNN are countable products of absolute null spaces. Hence,
unlike absolutemeasurable spaces, there is no countable product theorem for absolute
null spaces.

1.2.4. Amapping theorem. Aproof of the converse part of the above product theorem
can be achieved by means of the next mapping theorem.

Theorem 1.23. Let X and Y be separable metrizable spaces and let f : X → Y be a
Borelmeasurablemap such that f [X ] is an absolute null space. Then, X is an absolute
null space if and only if f −1[{ y}] is an absolute null space for each y in f [X ].
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Proof. Suppose X ∈ abNULL. Since f −1[{ y}] is a subset of X , we have f −1[{ y}] ∈
abNULL.

To prove the converse, let µ be a continuous, complete, finite Borel measure
on X . Then f#µ is a finite, complete Borel measure on Y . Let us show that it is
also continuous. As f −1[{ y}] is a Borel set and f −1[{ y}] ∈ abNULL, we have
µ

(
f −1[{ y}]) = 0, whence f#µ

({ y}) = 0. So, f#µ is continuous.As f [X ] ∈ abNULL,
there is a Borel set B in Y such that f [X ] ⊂ B and f#µ(B) = 0. Hence µ(X ) = 0. ✷

We leave the second proof of the product theorem to the reader.
Here is an interesting and useful lemma. Its proof is left to the reader.

Lemma 1.24. Let X and Y be separable metrizable spaces and let f : X → Y be
an arbitrary surjection. Then there is a separable metrizable space Z and there are
continuous maps f1 : Z → X and f2 : Z → Y such that f = f2 f1

−1, f1 is bijective,
and f2 is surjective. Indeed, Z = graph( f ) and the natural projection maps satisfy
the requirements.

The following is an application of the lemma to absolute null spaces.

Theorem 1.25. Let X be an absolute null space and Y be an arbitrary nonempty
separable metrizable space. If f : X → Y is an arbitrary function, then the graph
of f is an absolute null space. Consequently, f [X ] is the continuous image of some
absolute null space.

Proof. As the natural projection map f1 of the lemma is a continuous bijection of
graph( f ) ontoX , the aboveTheorem1.23 applies. Themap f2 of the lemma completes
the proof. ✷

1.2.5. σ -ideal property of abNULL. Theorem 1.20 together with σ -ring properties
of abMEAS and Proposition A.26 will yield the following σ -ideal property of the
collection abNULL of all absolute null spaces.

Proposition 1.26. The collection abNULL possesses the properties

(1) if X ⊂ Y ∈ abNULL, then X ∈ abNULL,
(2) if a separable metrizable space X is a countable union of subspaces from

abNULL, then X ∈ abNULL.

1.3. Existence of absolute null spaces

It is obvious that every countable space is an absolute null space. Hence the ques-
tion of the existence of an uncountable absolute null space arises. Hausdorff gave
a sufficient condition for the existence of such spaces in [73]. With the aid of this
condition, two examples of uncountable absolute null spaces will be presented, the
first by Hausdorff [73] and the second by Sierpiński and Szpilrajn [142]. Hausdorff’s
condition is shown to yield a theorem that characterizes the existence of uncount-
able absolute null spaces contained in separable metrizable spaces, more briefly,
uncountable absolute null subspaces.



1.3. Existence of absolute null spaces 11

1.3.1. Hausdorff sufficient condition. To give Hausdorff’s theorem on sufficiency
we must define the following.

Definition 1.27. Let X be an uncountable separable metrizable space. A transfinite
sequence Bα , α < ω1, of subsets of X is said to be m-convergent in X if

(1) Bα is a nonemptyµ-measurable subset of X for every α and for every continuous,
complete, σ -finite Borel measure space M(X ,µ),

(2) Bα ∩ Bβ = ∅ whenever α �= β,
(3) X = ⋃

α<ω1
Bα ,

(4) for each continuous, complete, σ -finite Borel measure spaceM(X ,µ) there exists
an ordinal number β such that β < ω1 and µ

( ⋃
β≤α<ω1

Bα

) = 0.

The next result, which is implicit in [73], is due to Hausdorff.

Theorem 1.28 (Hausdorff). Assume X is an uncountable separable metrizable space.
If there exists a transfinite sequence Bα , α < ω1, that is m-convergent in X , then X ′ is
an absolute null subspace of X with card(X ′) = ℵ1 whenever 0 < card(X ′∩Bα) ≤ ℵ0

for every α.

The proof will follow immediately from the next lemma.

Lemma 1.29. Let X be a separable metrizable space and let Bα , α < ω1, be a
transfinite sequence that is m-convergent in X . If B′

α is a nonempty absolute Borel
space contained in Bα for each α, then X ′ = ⋃

α<ω1
B′

α is an absolute measurable
space. Moreover, the set X ′ is an uncountable absolute null space if and only if
0 < card(X ′ ∩ Bα) for uncountably many α, and card(X ′ ∩ Bα) ≤ ℵ0 for each α.

Proof. Let Y be a separable completely metrizable space that contains X and let
M(Y , ν) be a complete, finite Borel measure space. Let µ = ν|X be the restriction
measure. Then there is an ordinal number β with β < ω1 and µ

( ⋃
β≤α<ω1

Bα

) = 0.
So, ν∗( ⋃

β≤α<ω1
B′

α

) = µ
( ⋃

β≤α<ω1
B′

α

) = 0 because
⋃

β≤α<ω1
B′

α ⊂ X and
µ = ν|X . From the completeness of the measure ν we have ν

( ⋃
β≤α<ω1

B′
α

) = 0.
Since B′

α , α < β, is a countable collection of absolute Borel spaces, we see that
X ′ is ν-measurable, whence X ′ is an absolute measurable space by Theorem 1.7.
Moreover,

⋃
β≤α<ω1

B′
α ∈ abMEAS whenever β < ω1.

To prove the second statement, assume that X ′ is an uncountable absolute null
space. Then X ′ ∩ Bα = B′

α is an absolute null space as well as an absolute Borel
space, whence card(X ′ ∩ Bα) ≤ ℵ0 for each α. As X ′ is uncountable, we have
0 < card(X ′ ∩ Bα) for uncountably many α. Conversely, for each α, suppose that
card(X ′ ∩ Bα) ≤ ℵ0, and let M(X ′, ν) be a continuous, complete, σ -finite Borel
measure space. With µ = f#ν, where f is the inclusion map X ′ ⊂ X , we have
M(X ,µ) is also a continuous, complete, σ -finite Borel measure space. Hence there
is a β with µ

( ⋃
β≤α<ω1

Bα

) = 0. Consequently we have ν
( ⋃

β≤α<ω1
B′

α

) = 0. As
card

(⋃
α<β B′

α

) ≤ ℵ0 we have ν(X ′) = 0. Hence X ′ ∈ abNULL by statement (β) of
Theorem1.7.We have thatX ′ is uncountable since 0 < card(X ′∩Bα) for uncountably
many α. ✷
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1.3.2. The Hausdorff example. Hausdorff proved in [73] the existence of a trans-
finite sequence Bα , α < ω1, that is m-convergent in {0, 1}N. As the proof is quite
elementary we shall present it. We follow the proof found in R. Laver [88].

Although the proof can be carried out in the space {0, 1}N, the description of
the constructions is easier made in the topologically equivalent space N {0, 1}, the
collection of all functions from N into {0, 1}. Hence we shall work in the space
N {0, 1}.

Let f and g be members of N {0, 1}. Then f is said to be eventually less than
or equal to g, denoted f ≤* g, if there is an m in N such that f (n) ≤ g(n) when-
ever n ≥ m. We write f <* g if f ≤* g holds and g ≤* f fails (that is, f (n) < g(n)

for infinitely many n). It is not difficult to see that ≤* and <* are transitive. We
shall use [ f , g] to denote the set { x : f ≤* x≤* g }. Observe that [ f , f ] is a countably
infinite set and that [0, 1] = N {0, 1}, where 0 and 1 are respectively constantly 0
and 1 on N. Note that { x : 0 ≤ x(n) ≤ f (n) } is compact for each n. Since
[0, f ] = ⋃∞

m=1
⋂

m≤n{ x : 0 ≤ x(n) ≤ f (n) } we have that [0, f ] is a σ -compact set.

Moreover, the aboveHausdorff’s binary relation≤* , as a subset of N {0, 1}× N {0, 1},
is equal to the set { ( f , g) : f ≤* g } = ⋃∞

m=1

⋂
m≤n{ ( f , g) : f (n) ≤ g(n) }, which is

a σ -compact subset of N {0, 1}× N {0, 1}.
Hausdorff asserted: If [ fα , gα], α < ω1, is a nested collection whose intersection⋂
α<ω1

[ fα , gα] is empty, then the nonempty sets among

B0 = [0, 1] \ [ f0, g0], Bα = [ fα , gα] \ [ fα+1, gα+1], 0 < α < ω1,

is m-convergent in N {0, 1}. Such a nested collection of sets was called an �-�∗ gap
by Hausdorff. His assertion will follow if, for each continuous, complete, finite Borel
measure µ on N {0, 1}, there is an α with α < ω1 such that µ([ fα , gα]) = 0. Let us
show that this is so.

Let Tα = [ fα , gα], α < ω1, be an �-�∗ gap. As µ(Tα), α < ω1, is a non-
increasing transfinite sequence of real numbers, there is an η with η < ω1 such
that µ(Tα) = µ(Tη) whenever η < α. Let us suppose ε = µ(Tη) > 0 and derive
a contradiction. As { fη(n), gη(n) } ⊂ {0, 1} for each n, there is a j in Tη such
that µ

({ f ∈ Tη : f (n) = j(n) }) ≥ ε/2 for every n. Let α be such that α > η and
{ fη, gη, j } ∩ Tα = ∅. As fη <* fα <* gα <* gη, the set of n for which 0 ≤ fη(n) <

gη(n) ≤ 1 holds is infinite and among them are infinitely many with fα(n) = gα(n).
Letni be an enumeration of thosen such that 0 = fη(n) ≤ fα(n) = gα(n) ≤ gη(n) = 1.
Then Tα = ⋃∞

m=1 Tα,m, where

Tα,m = { f ∈ Tα : f (ni) = fα(ni) whenever i > m }.

Pick an m with µ(Tα,m) > ε/2. Since j /∈ Tα there is an ni with i > m such that
j(ni) �= fα(ni). Hence, for f in Tη, we have f (ni) = j(ni) if and only if f (ni) �= fα(ni).
So,

Tη ⊃ { f ∈ Tα : f (ni) �= j(ni)} = { f ∈ Tα : f (ni) = fα(ni)} ⊃ Tα,m.
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We now have ε = µ(Tη) ≥ µ
({ f ∈ Tη : f (ni) = j(ni) }) + µ(Tα,m) > ε/2 + ε/2

and a contradiction has appeared. Hausdorff’s assertion is proved.
It remains to prove the existence of an �-�∗ gap. To this end, define

δ( f , g) = min {m : f (n) ≤ g(n) whenever m ≤ n }.

Of course, δ( f , g) = ∞ if f ≤* g fails. The following statement is easily proved:

δ( f , g) ≤ max { δ( f , h), δ(h, g) } whenever f ≤* h≤* g.

For subsets F of N {0, 1} and for h in N {0, 1} such that f <* h for every f in F ,
Hausdorff defined in [73] the property P(F , h):

card({ f ∈ F : δ( f , h) = m }) < ℵ0 for every m in N.

He observed the following easily proved fact about this property: If F and G are
nonempty subsets of N {0, 1} such that f <* g for every f in F and every g in G, and
such that P(F , g) holds for every g in G, then P(F , h) holds whenever h satisfies
f <* h<* g for every f in F and every g in G.

For an h in N {0, 1} and a nonempty subset F of N {0, 1} define

F
<h = { f ∈ F : f <* h }.

Hausdorff also proved the next three key lemmas.

Lemma 1.30. Let α < ω1. If

F = { f
β
: β < α } and G = { g

β
: β < α }

are such that f
β
≤* f

β+1 <* g
β+1 ≤* g

β
for every β, then there exists an h such that

fβ <* h<* gβ for every β. Moreover, if P(F
<fβ

, gβ ) holds, then P(F
<fβ

, h) holds.

Proof. Let βk , k = 1, 2, . . . , be a sequence such that βk ≤ βk+1 for all k and
limk→∞ βk = α. One can easily construct a sequence N0,N1,N2, . . . of disjoint
intervals of N with N = ⋃∞

k=0 Nk such that, for each k ,

f
β1

(n) ≤ · · · ≤ f
βk−1

(n) ≤ f
βk

(n) ≤ g
βk

(n) ≤ g
βk−1

(n) ≤ · · · ≤ g
β1

(n),

for every n in N2k−1 ∪ N2k , and f
βk

(n) < g
βk

(n) for some n in N2k−1 and also for
some n in N2k . For k = 0, let h(n) = fβ1 (n) for every n in N0; and, for k > 0,
let h(n) = fβk (n) for every n in N2k−1, and h(n) = g

βk
(n) for every n in N2k . For

every k , it follows easily that fβk (n) ≤ h(n) ≤ gβk
(n) for every n in

⋃
j≥k Nj, that

h(n) < gβk
(n) infinitely often in

⋃
j≥k N2j−1, and that f

βk
(n) < h(n) infinitely often

in
⋃

j≥k N2j . Hence f
βk

<* h<* g
βk

for every k . The lemma follows from the above
Hausdorff observation. ✷

Lemma 1.31. Let { fi : i = 1, 2, . . . } ∪ { h, h′ } ⊂ N {0, 1} be such that fi <* fi+1 <*

h′ <* h for every i. For each i let Hi be a finite subset of N {0, 1} such that fi ∈ Hi and
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such that fi <* f <* fi+1 whenever f ∈ Hi and f �= fi. Then there is a g in N {0, 1}
such that, for each i, f <* g <* h′ and δ( f , g) ≥ i − 1 whenever f ∈ Hi.

Proof. Let mk ,0 = max { δ( fi, f ) : f ∈ Hi , i ≤ k }. Since it is given that
fi <* fi+1 <* h′ <* h for every iwe can inductively select a sequencemk , k = 1, 2, . . . ,
such that mk and Nk = [mk ,mk+1) satisfy

(1) mk ≥ mk ,0 + k ,
(2) f (n) ≤ fj+1(n) ≤ h′(n) ≤ h(n) for n in Nk and f in Hj whenever j ≤ k ,
(3) there is an n0 in Nk such that f (n0) = fk+1(n0) < h′(n0) whenever f ∈ Hk ,
(4) there is an n1 in Nk such that fk(n1) < fk+1(n1) = h′(n1) = h(n1),
(5) for each f in Hk that is not fk there is an n2 in Nk such that fk(n2) < f (n2).

Define N0 = [0,m1), and define g to be

g(n) =
{
f1(n), if n ∈ N0

fk (n), if n ∈ Nk whenever k > 0.

It is easily seen that N = ⋃∞
k=0 Nk and f <* g <* h′ whenever f ∈ Hk . For k > 1

let us compute a lower bound for δ( f , g) for each f in Hk . In Nk−1 there is an n1
such that g(n1) = fk−1(n1) < fk(n1), and fk(n) ≤ g(n) whenever n ≥ mk . Hence
δ( fk , g) ≥ mk−1 ≥ k−1. For each f inHk that is not fk , there is an n2 in Nk such that
g(n2) = fk(n2) < f (n2), and f (n) ≤ fk+1(n) ≤ g(n) whenever n ≥ mk+1. Hence
δ( f , g) ≥ mk ≥ k . Consequently, δ( f , g) ≥ k − 1 whenever f ∈ Hk . ✷

The proof of the next lemma is taken from [73].

Lemma 1.32. Letα be a countable limit ordinal number. If h andF = { f
β : β < α } are

such that f0 <* f1 <* . . . <* f
β

<* h and such that P(F
<fβ

, h) holds whenever β < α,

then there exists a g such that f
β

<* g <* h whenever β < α and such that P(F , g)

holds.

Proof. As <* orders F we shall write F<β for F
<fβ

. There is an increasing sequence

βk , k = 1, 2, . . . , of ordinal numbers such that limk→∞ βk = α and β1 = 0. For each
f and each m, define Bm( f ) = { f

β
∈ F : δ( f

β
, f ) = m }.

We follow Hausdorff’s argument. Define the possibly infinite sets

Ak = ⋃
m≤k{ fβ : fβ ∈ Bm(h) }, k = 1, 2, . . . ,

and, for each j, define the finite set (since P(F<β , h) holds)

Hk
j = { f

βj
} ∪ (

Ak ∩ (F
<βj+1

\F
<βj

)
)
.

Observe that F = ⋃∞
k=1 A

k and Ak = ⋃∞
j=0 H

k
j .

With the aid of Lemmas 1.30 and 1.31, we can find a g1 such that fβ <* g1 <* h
for every β and such that δ( fβ , g

1) ≥ i− 1 whenever fβ ∈ H 1
i . Let fβ ∈ Bm(g1)∩A1.

There is an i such that fβi ≤* fβ <* fβi+1
. Hence, i − 1 ≤ δ( fβ , g

1) = m, or
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i ≤ m + 1. That is, Bm(g1) ∩ A1 ⊂ F<βm+2
∩ A1 ⊂ ⋃m+2

j=0 H 1
j . As the right-

hand side of the inclusion is finite we have that P(A1, g1) holds. Inductively
employing Lemma 1.30, we can construct a sequence gk , k = 1, 2, . . . , such that
f
β

<* . . . <* gk+1 < gk <* . . . <* g1 <* h whenever β < α and such that P(Ak , gk )
holds for every k . By Lemma 1.30 there is a g such that fβ <* g <* gk for every
β and every k . We prove that P(F , g) holds by establishing a contradiction. Sup-
pose that F ′ = { fγ : δ( fγ , g) = m } is infinite for some m. From δ( fγ , h) ≤
max{δ( fγ , g), δ(g, h)} we infer F ′ ⊂ Ak for some k . So P(Ak , g) also fails for this k .
But, P(Ak , gk) holds by the construction. By Hausdorff’s observation, we have that
P(Ak , g) holds. Thereby a contradiction has occurred. ✷

The last lemma is the inductive step for a transfinite construction in the Hausdorff
existence theorem.

Theorem 1.33 (Hausdorff). There exists an �-�∗ gap.

Proof. Let f0 = 0 and g0 = 1. Suppose for α < ω1 that

f0 <* f1 <* . . . <* fβ <* fβ+1 <* . . . <* gβ+1 <* gβ <* . . . g1 <* g0

is such that P(F
<β

, g
β
) holds whenever β < α. We must find fα and gα such that

fβ <* f
α

<* g
α

<* g
β
whenever β < α and such that P(F

<α
, g

α
) holds. This is very

easy if α is not a limit ordinal. For the limit ordinal case, there are h and h′ such
that fβ <* h′ <* h<* gβ whenever β < α. An application of Lemma 1.32 provides
a gα such that P(F<α , gα ) holds. Let fα be such that f

β
< fα < gα whenever β < α.

The α-th step of the transfinite construction is now completed. Suppose that there is
an h such that fα <* h<* gα for every α. Then for some m there will be uncountably
many fβ such that δ( fβ , h) = m. Hence P(F<α , h) fails for some α, which contradicts
the Hausdorff observation that P(F<α , h) holds whenever fα < h < gα . ✷

1.3.3. The Sierpiński and Szpilrajn example. Sierpiński and Szpilrajn gave this
example in [142]. It uses the constituent decomposition of co-analytic spaces (see
Appendix A, page 181).

Theorem 1.34 (Sierpiński–Szpilrajn). Every co-analytic space X that is not an ana-
lytic space has a transfinite sequence Bα , α < ω1, in abBOR that is m-convergent
in X .

Proof. From equation (A.1) on page 181 of Appendix A, we have

X = Y \ A = ⋃
α<ω1

Aα ,

where Y is some separable completely metrizable space and A is an analytic
space. From Theorem A.5, Corollary A.7 and Theorem A.9, we have that the con-
stituents Aα are absolute Borel spaces and that the collection of those constituents
which are nonempty is uncountable. Hence there is a natural transfinite subsequence
Bα , α < ω1, of Borel sets such that the first three conditions of the definition of
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m-convergence in X are satisfied. To verify the fourth condition let M(X ,µ) be a
complete, σ -finite Borel measure space. There is a σ -compact subset E of Y such
thatE ⊂ X andµ(X \E) = 0. By equations (A.2) and (A.3) ofTheoremA.6, there is an
ordinal number β such that β < ω1 andE ⊂ ⋃

α<β Bα , whenceµ
(⋃

β≤α<ω1
Bα

)= 0.
Thereby the m-convergence is verified. ✷

We infer from the above theorem that {0, 1}N has a transfinite sequenceBα , α < ω1,
that is m-convergent in {0, 1}N. Indeed, select a co-analytic subset X of {0, 1}N that
is not an analytic space and let B′

α , α < ω1, be m-convergent in X as provided by the
lemma. Then simply let B0 = B′

0 ∪ ({0, 1}N \X ) and Bα = B′
α for α �= 0.

1.3.4. A characterization theorem. We now have the promised theorem.

Theorem 1.35. Let X be a separable metrizable space. Then the following three
statements are equivalent.

(1) X contains an uncountable absolute null space.
(2) X contains an uncountable absolute measurable space.
(3) X has a transfinite sequence Bα , α < ω1, that is m-convergent in X .

Proof. As absolute null spaces are absolutemeasurable spaces, wehave that statement
(1) implies statement (2).

To prove that statement (2) implies statement (3), suppose that X ′ is an absolute
measurable space that is contained in X . If X ′ is already an uncountable absolute null
space, then X ′ contains a subset X0 with card(X0) = ℵ1. Let B0 = X \ X0 and Bα

be singleton subsets of X0 for the remaining ordinal numbers α. Hence statement
(3) follows for this case. So assume that X ′ is not an absolute null space. Then there
exists a continuous, complete, σ -finiteBorelmeasure spaceM(X ,µ)withµ(X ′) > 0.
As X ′ is an absolute measurable space there is an absolute Borel space B contained in
X ′ with µ(X ′ \ B) = 0. So B is uncountable. Let Y be a topological copy of {0, 1}N
contained in B and define B0 = (X \ Y ) ∪ B′

0 and Bα = B′
α for 0 < α < ω1, where

B′
α , α < ω1 is a transfinite sequence that is m-convergent in Y . It is easily seen that

Bα , α < ω1, is m-convergent in X .
That statement (3) implies statement (1) is Hausdorff’s sufficiency theorem

(Theorem 1.28). ✷

This characterization theorem has been proved without the aid of the continuum
hypothesis. Also, as the above two examples provide the existence of uncountable
absolute null spaces without the aid of the continuum hypothesis, we have

Theorem 1.36. There exist absolute null spaces of cardinality ℵ1.

The use of the continuum hypothesis in the early years of the subject of absolute
null spaces will be commented on below. Absolute null spaces have played a special
role in what is called the Ulam numbers. That is, in Section 1.2.2 it was shown that
ℵ1 is an Ulam number. Other remarks on Ulam numbers will be given below in the
Comment section.
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1.3.5. Existence under the continuum hypothesis. There is a novel presentation
of the existence of absolute null spaces with the aid of the continuum hypothesis
in the book Measure and Category by J. C. Oxtoby [120]. The development there
uses a partition theorem that will permit the use of the Hausdorff condition of the
characterization theorem (Theorem 1.35).

Let us beginwith the statement of the partition theorem. This theorem is a purely set
theoretic one; that is, there are no topological assumptions made. Also the continuum
hypothesis is not required. For the reader’s benefit, we shall include also the beautiful
proof in [120].

Theorem 1.37. Let X be a set with card(X ) = ℵ1, and let K be a class of subsets of
X with the following properties:

(1) K is a σ -ideal,
(2) the union of K is X ,
(3) K has a subclass G with card(G) = ℵ1 and the property that each member of K

is contained in some member of G,
(4) the complement of each member of K contains a set with cardinality ℵ1 that

belongs to K.

Then X can be decomposed into ℵ1 disjoint sets Xα , each of cardinality ℵ1, such
that a subset E of X belongs to K if and only if E is contained in a countable union
of the sets Xα . Moreover, each Xα is in the σ -ring generated by G.

Proof. Let Gα , α < ω1, be a well-ordering of G. For each α define

Hα = ⋃
β≤α Gβ and Kα = Hα \ ⋃

β<α Hβ .

Put B = { α : Kα is uncountable }. Properties (1), (3) and (4) imply sup B = ω1.
Therefore there exists an order-preserving bijection ϕ of {α : α < ω1 } onto B. For
each α, define

Xα = Hϕ(α) \ ⋃
β<α Hϕ(β) .

By construction and property (1), the sets Xα are disjoint and belong to K. Since
Xα ⊃ Kϕ(α), each of the sets Xα has cardinality ℵ1. For each β we have β < ϕ(α)

for some α ; therefore,

Gβ ⊂ Hβ ⊂ Hϕ(α) = ⋃
γ≤α Xγ .

Hence, by property (3), each member of K is contained in a countable union of the
sets Xα . Using property (2), we see that

X = ⋃
K∈K K ⊂ ⋃

α<ω1
Xα .

Thus {Xα : α < ω1 } is a decomposition of X with the required properties. ✷

As an application of this decomposition, consider the σ -ring that consists of all
sets of first category of Baire.
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Lemma 1.38. Assume the continuum hypothesis. In an uncountable, separable com-
pletely metrizable space that contains no isolated points, the collection K of all sets
of the first category of Baire and the collection G of all Fσ first category sets satisfy
the conditions of the partition theorem.

Proof. Under the continuum hypothesis the cardinality of G is ℵ1. As X is of the
second category of Baire and contains no isolated points, the complement of a first
category set is uncountable. Hence the conditions of the partition theorem are easily
verified. Moreover, the sets Xα of the partition are absolute Borel spaces. ✷

We now have the following theorem.

Theorem 1.39 (Lusin). Assume the continuum hypothesis. In an uncountable, sepa-
rable completely metrizable space that contains no isolated points, there exists a set
X of cardinality c (= ℵ1) such that every set K of the first category of Baire satisfies
card(K ∩ X ) ≤ ℵ0.

Proof. From the decomposition, which is assured by the above lemma, select exactly
one point from each Xα to form the set X . Let K be any set of the first category of
Baire. There is a β with β < ω1 and K ⊂ ⋃

α≤β Xα . Hence, card(K ∩ X ) ≤ ℵ0. ✷

Finally we have need of the following lemma which will be left as an exercise.

Lemma 1.40. Let X be an uncountable, separable completely metrizable space and
let M(X ,µ) be a continuous, complete, σ -finite Borel measure space on X . If D is
a countable dense subset of X , then there exists a Gδ subset E of X that contains D
such that µ(E) = 0 and X \ E is an uncountable Fσ subset of X of the first category
of Baire.

Now the above lemma and Theorem 1.37 (the partition theorem) yield a transfinite
sequence Xα , α < ω1, in X that is m-convergent, whence there exists an uncount-
able absolute null space in X . That is, the following proposition results. Assume
the continuum hypothesis. If X is an uncountable, separable completely metrizable
space that contains no isolated points, then there exists an uncountable absolute null
space contained in X . Observe that every uncountable absolute Borel space contains
a topological copy of the Cantor space. Hence the continuum hypothesis implies
the existence of an uncountable absolute null space contained in each uncountable
completely metrizable space.

We remind the reader that it was the novelty of the partition theorem that motivated
this section on the continuum hypothesis.

1.4. Grzegorek’s cardinal number κG

It is easily seen that uncountable absolute measurable spaces that are not absolute null
spaces must have cardinality c = 2ℵ0 . The question of the existence of a non absolute
null space X that has the same cardinality as some uncountable absolute null space X
is addressed in this section. This is a question of S. Banach [7, Problem P 21],
which was proposed in a measure theoretic form and which is precisely stated in
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footnote 10 after all the required definitions are given. We shall present an example,
due to Grzegorek [68], which gives an affirmative answer. The existence of the
example relies on the cardinal number κG used by Grzegorek, which will be defined
shortly.

1.4.1. An embedding. We have seen earlier that the notion of absolute null space
has connections to the Ulam numbers, a purely set theoretic notion related to the
existence of measures. (See also the Comment section for Ulam numbers.) It will
be convenient now to consider a purely measure theoretic setting.9 Let S be a set
and let A be a σ -algebra of subsets of S. A nonempty member C of A is called
an atom if it is a minimal element under inclusion. Denote by A(A) the collection
of all atoms that are contained in A. A countably generated σ -algebra A is a pair
(A,E) such that E ⊂ A and A is the smallest σ -algebra that contains E. (Often we
will not display E.) A countably additive, finite measure µ on a countably generated
σ -algebra A on S is called a nontrivial continuous measure if 0 < µ(S) and if
µ(C) = 0 whenever C ∈ A(A). A countably generated σ -algebra A on S is said to
be measurable if there exists a nontrivial, continuous measure on A. Otherwise, A

is said to be nonmeasurable (hence, µ(S) = 0). A σ -algebra A on S is said to be
separable if it is countably generated and A(A) = { {s} : s ∈ S

}
.10 Observe that

the set X of a separable metrizable space has associated with it the natural σ -algebra
B(X ) of all Borel subsets of X . Even more, this σ -algebra is separable – indeed,
any collection E that is a countable basis for the open sets of X generates B(X ). The
σ -algebra B(X ) is measurable if and only if there is a nontrivial, finite, continuous
Borel measure on the separable metrizable space.

Let us show that there is a natural injection of the set S into the product space {0, 1}N
produced by a separable σ -algebra A on a set S. Suppose that (A,E) is a separable
σ -algebra on a set S and let {Ei : i ∈ N } be a well ordering of the collection E. For
each set Ei let fi : S → {0, 1} be its characteristic function; that is, fi(s) = 1 if s ∈ Ei,
and fi(s) = 0 if s /∈ Ei. This sequence of characteristic functions defines an injection
f of S into {0, 1}N. Observe that the topology of {0, 1}N induces a topology on f [S]
and hence a natural topology τ on S is induced by E. Indeed, the set

Ei = { s ∈ S : fi(s) = 1 } = f −1[{ x ∈ {0, 1}N : xi = 1 }]
is both closed and open in the topology τ . Also, S \ Ei is both closed and open in the
topology τ . Hence the natural topology τ on S induced by E is separable and metriz-
able, the collection A is the collection of all Borel sets in this topological space, and
this topological space is topologically embeddable into {0, 1}N. Consequently, if the
resulting topological space is an absolute null space, then the separable σ -algebra A

9 A discussion of the measure theoretic and probability theoretic approaches to absolute measurable
spaces and absolute null spaces can be found in Appendix B.

10 The above mentioned Grzegorek example solves the Banach problem in [7, Problem P 21] which is the
following: Does there exist two countably generated σ -algebras A1 and A2 on R that are measurable
such that the σ -algebra generated by A1 ∪ A2 is nonmeasurable? Banach’s problem will be discussed
further in Chapter 6.
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on S is nonmeasurable.And, if the separable σ -algebraA on S is nonmeasurable, then
every finite, complete Borel measure µ on the topological space S is trivial. Hence
the separable metrizable space S is an absolute null space if and only if the separable
σ -algebra A on S is nonmeasurable.

Let us summarize the above discussion as follows.

Theorem 1.41. Suppose that X is a separable metrizable space. Then the natural
σ -algebra B(X ) of the set X is separable and measurable if and only if there is a
nontrivial, continuous, finite, Borel measure space M(X ,µ) = (

X ,µ,M(X ,µ)
)
.

Theorem 1.42. Let A be a separable σ -algebra on a set S and let E be a countable
subcollection of A that generates A. Then there is a natural topology τ on the set
S induced by E such that A is precisely the collection of all Borel subsets of S in
the topology τ , and this topological space is embeddable into {0, 1}N. Moreover, the
topological space is an absolute null space if and only if (A,E) is a nonmeasurable
separable σ -algebra on the set S.

1.4.2. Grzegorek’s example. A set S is said to support a measurable separable σ -
algebra if there exists a σ -algebra A of subsets of S such that A is measurable and
separable. Following Grzegorek [68], we define κG to be the cardinal number

κG = min { card(S) : S supports a measurable separable σ -algebra }.

Note that card(S) = c whenever S is a Borel measurable subset of R with positive
Lebesgue measure. Hence, ℵ1 ≤ κG ≤ c. Also, if S is a subset of a separable
metrizable space X such that card(S) < κG , then µ(S) = 0 for every continuous,
complete, finiteBorelmeasure onX . Indeed, suppose that card(S) < κG and that some
continuous, complete, finite Borel measure µ on S has µ(S) > 0. Then A = B(S) is
a measurable separable σ -algebra since the measure spaceM(S, ν) with ν = µ|B(S)

(the function µ restricted to B(S)) is nontrivial. Hence κG ≤ card(S) < κG and a
contradiction has occurred.

Denote by M
({0, 1}N)

the collection of all continuous, complete, finite Borel mea-
sures on {0, 1}N. For a subset S of {0, 1}N and a µ in M

({0, 1}N)
, the outer measure

µ∗(S) is a well defined nonnegative real number. Define the cardinal number κ0 as
follows:

κ0 = min
{
card(S) : µ∗(S) > 0 for some µ in M

({0, 1}N) }
.

We prove the following lemma due to Grzegorek [68].

Lemma 1.43. The cardinal numbers κG and κ0 are equal.

Proof. Let S ⊂ {0, 1}N and µ ∈ M
({0, 1}N)

with µ∗(S) > 0. Then the restricted
measure ν = µ|S andA = B(S)will result in ameasurable separable σ -algebraA on
the set S, whence κG ≤ κ0 . To prove the other inequality, letµ be a nontrivial measure
on a separable σ -algebra A on a set S. A topology τ on the set S corresponding to this
separable σ -algebra A results in a topological embedding f of S into {0, 1}N. Hence
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ν = f#µ is a nontrivial, continuous, complete, finite Borel measure on {0, 1}N and
ν∗( f [S]) = µ(S) > 0. As card( f [S]) = card(S), we have κ0 ≤ card(S). Therefore,
κ0 ≤ κG and the lemma is proved. ✷

We now give Grzegorek’s theorem.

Theorem 1.44 (Grzegorek). Let S ⊂ {0, 1}N and let µ be a continuous, complete,
finite Borel measure on {0, 1}N such that card(S) = κ0 and µ∗(S) > 0. Then there
exists a nonmeasurable separable σ -algebra A on S.

Proof. Let ν = µ|S be the nontrivial continuous measure on the σ -algebra B(S) of
all Borel subsets of the topological space S and let B = {Ui : i < ω0 } be a countable
base for the open subsets of S. Let sα , α ∈ κG ,

11 be a well ordering of the set S. For
eachα letGα be an open subset of themetrizable space S such that { sβ : β < α } ⊂ Gα

and ν(Gα) ≤ 1
2 ν(S).

Define Y to be the following subset of the product κG × S.

Y = ⋃
α ∈ κG

({α} × Gα

)
.

For each i, let

Ei = {α ∈ κG : Ui ⊂ Gα }.
Let us show

Y = ⋃
i<ω0

Ei × Ui.

Clearly, if α ∈ Ei, then {α} × Ui ⊂ {α} × Gα . Hence the left-hand member of the
equality contains the right-hand member. Let (α, s) ∈ Y . Then s ∈ Gα . Hence there
is an i such that s ∈ Ui ⊂ Gα . Obviously α ∈ Ei for the same i, thereby the left-
hand member is contained in the right-hand member and the equality is established.
Let (A1,E1) be any separable σ -algebra on κG . Then there is a separable σ -algebra
(A,E) on the set κG generated by E1 and the family {Ei : i ∈ ℵ0 }. We claim that this
separable σ -algebra on κG is nonmeasurable. Assume to the contrary that there is a
nontrivial continuous measure λ on A.

For each member sγ of the set S, the set {β : (β, sγ ) ∈ Y } contains {β : β > γ }.
Hence theλ-measure of every horizontal section is equal toλ(κG).Also, every vertical
section of Y has ν-measure not greater than 1

2 ν(S). Now observe that Y is in the σ -
algebra on κG × S generated by the σ -algebrasA andB(S). Hence the Fubini theorem
may be applied to χY . We get 0 < λ(κG)ν(S) = ∫

S(
∫

κG
χY dλ) dν = ∫

Y d(λ×ν) =∫
κG

(
∫
S

χY dν) dλ ≤ 1
2ν(S)λ(κG) and a contradiction has occurred. ✷

Corollary 1.45. There exists a subspace X of {0, 1}N such that X is an absolute null
space with card(X ) = κG .

11 A cardinal number κ will be identified with the minimal initial segment of ordinal numbers whose
cardinal number is κ .
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With the aid of Theorem 1.21 we have the following corollary, where P(X ) is the
power set of X .

Corollary 1.46. If (X ,µ,P(X )) is a nonnegative real-valued, continuous measure
space with card(X ) = κG , then µ is identically equal to 0.

1.4.3. abNULL is not preserved by Borel measurable maps. Let us begin with a
simple proposition.

Proposition 1.47. There exists a subset Y of {0, 1}N and there exists a continuous,
complete, σ -finite Borel measure space M({0, 1}N,µ) such that card(Y ) = κG , Y
is not µ-measurable and µ∗(Y ) > 0. Clearly, the subspace Y of {0, 1}N is not an
absolute null space.

Proof. Let Z be a subset of {0, 1}N and µ be a continuous, complete, finite Borel
measure on {0, 1}N with card(Z) = κG and µ∗(Z) > 0. If Z is not µ-measurable,
then let Y = Z . Suppose that Z is µ-measurable. Let X1 and X2 be a Bernstein
decomposition of {0, 1}N. That is, X1 and X2 are disjoint sets whose union is {0, 1}N,
and X1 and X2 are totally imperfect. Clearly, µ∗(X1 ∩ Z) > 0. Indeed, suppose that
µ∗(X1 ∩Z) = 0. Then X2 ∩Z would be a µ-measurable set with positive µ measure.
So there would exist a nonempty perfect subset of it, whence of X2. But X2 cannot
contain a nonempty perfect set, and a contradiction has occurred. Also Y = X1 ∩ Z
is not µ-measurable since every Fσ kernel of Y is a countable set. Observe that
κG = κ0 ≤ card(Y ) ≤ card(Z) = κG holds to complete the proof. ✷

Theorem 1.48. Let Y be a subspace of {0, 1}N with card(Y ) = κG that is not an
absolute null space. Then there is a continuous bijection f : N → Y of an absolute
null space N contained in {0, 1}N.

Proof. By Corollary 1.45 there is an absolute null space X contained in {0, 1}N
with card(X ) = κG . Let ϕ : X → Y be any bijection. Since {0, 1}N ×{0, 1}N is
topologically the same as {0, 1}N, Theorem 1.25 completes the proof. ✷

For the next theorem recall that the set of uncountable order of f : X → Y is the
set U ( f ) = { y ∈ Y : card( f −1[{ y}]) > ℵ0 }.
Theorem 1.49 (Grzegorek). Let f : X → Y be a Borel measurable map from an
absolute Borel space X into a separable metrizable space Y . If card(U ( f )) > ℵ0,
then there is a topological copy X ∗ of {0, 1}N ×{0, 1}N contained in X and there
is a topological copy Y ∗ of {0, 1}N contained in Y such that f |X ∗ is a continuous
surjection of X ∗ to Y ∗ and such that f [M ] is not an absolute measurable space for
some absolute null space M contained in X ∗.

Proof. We infer from Corollary A.60 and the proof of Lemma A.61 the existence
of a continuous map f ∗ : {0, 1}N × {0, 1}N → {0, 1}N and continuous injections
Θ : {0, 1}N × {0, 1}N → X and ϑ : {0, 1}N → Y such that f ∗(x∗, y∗) = y∗ for every
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(x∗, y∗) in {0, 1}N × {0, 1}N and such that the diagram

X
f−−−−→ Y�Θ

�ϑ

{0, 1}N × {0, 1}N f ∗
−−−−→ {0, 1}N

commutes, that is, f �B f ∗ (see page 195 for the definition of theB-successor relation
�B). Let X ∗ = Θ

[{0, 1}N ×{0, 1}N]
and Y ∗ = ϑ

[{0, 1}N]
. By Theorem 1.48 there

is a continuous bijection g : N → Y0 of an absolute null space N contained in {0, 1}N
onto a non-absolute measurable space Y0 contained in {0, 1}N. By Theorem 1.25,
we have that graph(g) is an absolute null space. Let M = Θ

[
graph(g)

]
. Observe

that M is an absolute null space and that ϑ[Y0] is a non absolute measurable space.
From the commutative diagram, f |X ∗ = ϑ f ∗Θ−1. As f [M ] = ϑ[Y0], the proof is
completed. ✷

Theorem 1.50. Let f : X → Y be a B-map, where X is an absolute Borel space.
Then f [M ] is an absolute measurable space whenever M is an absolute measurable
space contained in X .

Proof. As f is a B-map and X is an absolute Borel space, we have from Purves’s
theorem that card(U ( f )) ≤ ℵ0. So C = X \ f −1[U ( f )] is an absolute Borel space.
Let us return to the proof ofTheoremA.22. Itwas shown there that there is a continuous
injection g : N → graph( f |C) such that graph( f |C) \ g[N ] is a countable set. With
the natural projection π : graph( f |C) → Y , the composition h = πg provides a
collection Bn, n = 1, 2, . . . , of Borel subsets of N such that N = ⋃∞

n=1 Bn and
h|Bn is a homeomorphism for each n. Note that Cn = C ∩ π1g[Bn], where π1 is
the natural projection of graph( f |C) onto C, is an absolute Borel space and f |Cn is
B-homeomorphism ofCn onto h[Bn]. AsM ∩Cn is an absolute measurable space, we
have that f [M ∩ Cn] is an absolute measurable space for each n. Also, C \ πg[N ] is
a countable set. Thus we have shown that f [M ∩C] is an absolute measurable space.
Since U ( f ) ⊃ f [M \ C], we have that f [M ] is an absolute measurable space. ✷

The proof given here is essentially that of R. B. Darst [37]. A “converse” statement
will be investigated in the next chapter on universally measurable sets in a fixed space
X , namely, we shall present the theorem due to Darst and Grzegorek.

Corollary 1.51. Let f : X → Y be a B-map, where X is an absolute Borel space.
Then f [M ] is an absolute null space whenever M is an absolute null space contained
in X .

Proof. Let us prove that every subset of f [M ] is an absolute measurable space. To
this end, let Y0 ⊂ f [M ]. Note that M0 = M ∩ f −1[Y0] is an absolute measurable
space since M is an absolute null space. Clearly f [M0] = Y0, whence an absolute
measurable space.We have that f [M ] is an absolute null space by the characterization
theorem, Theorem 1.20. ✷
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1.5. More on existence of absolute null spaces

We have seen earlier that Hausdorff’s m-convergence, a sufficient condition for the
existence of uncountable absolute null spaces, was essentially a part of a characteriza-
tion theorem. The characterization used a well ordering of ℵ1-many disjoint subsets
of an uncountable absolute measurable space. The well ordering idea was used to
advantage by Recaw [130] for subspaces of R and by Plewik [127, Lemma] for sub-
spaces of {0, 1}N to prove another sufficient condition for the existence of absolute
null spaces. It was pointed out by Recaw that, with the aid of B-homeomorphisms,
Rn can replace the ambient space R. Of course the use of B-homeomorphisms
defeats the emphasis on topological homeomorphism if one can avoid the use of
B-homeomorphisms. We shall present the results of Recaw and Plewik in a setting
more in line with the notions of absolute measurable space and absolute null space.
This will permit us to state a more general characterization of absolute null spaces.

For a set X , recall that R is a relation on Y if R ⊂ Y × Y – that is, for s and t in Y ,
we say that s is related to t, written s R t, if (s, t) ∈ R. We say that a subset R of Y ×Y
well orders a subset X of Y if the relation R ∩ (X × X ) is a well ordering of X . So,
if the ordinal number η is the order type of such a well ordered set X , then X has an
indexing { xα : α < η } such that xα R xβ if and only if α < β < η. Of course, the
ordinal number η need not be a cardinal number.

Before we turn to Recaw’s theorem let us make an elementary observation about
absolute null spaces X contained in a separable metrizable space Y . Note that X ×X
is an absolute null space contained in Y × Y . Let { xα : α < η } be a well ordering of
X by an ordinal number η. This well ordering corresponds to a unique subset R of
X × X . As every subset of X × X is an absolute measurable space we have that R is
an absolute measurable space that is contained in Y × Y such that X is well ordered
by R.

Recaw’s theorem is the following.

Theorem 1.52 (Recaw). Let R be an absolute measurable space contained in [0, 1]×
[0, 1]. Then, any subset X of [0, 1] that is well ordered by the relation R is an absolute
null space contained in [0, 1].
We shall prove the following more general form.

Theorem 1.53. Let Y be a separable metrizable space and let R be an absolute
measurable space contained in Y × Y . Then, any subset X of Y that is well ordered
by the relation R is an absolute null space contained in Y .

Proof. There is no loss in assuming that Y is a subspace of the Hilbert cube [0, 1]N.
Let X be a subset of Y that is well ordered by the relation R and denote its indexing
by { xα : α < η }. We shall assume that it is not an absolute null space contained
in Y and derive a contradiction. There is a continuous, complete Borel measure µ

on [0, 1]N such that 1 = µ
([0, 1]N

) ≥ µ∗(X ) > 0. As X is well ordered, there is an
η0 such that µ

({ xα : α < η0 }) > 0, and such that µ
({ xα : α < β }) = 0 whenever

β < η0. Denote { xα : α < η0 } by X0. Let A be a Borel set in [0, 1]N such that
A ⊃ X0 and such that the inner measure µ∗(A \ X0) is 0. Let W denote the relation
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{ (x, y) ∈ A×A : y R x }. AsW = (A×A)∩R−1 we have thatW is an absolute measur-
able space. Hence there is a Borel set V such that V ⊂ W and

(
µ × µ

)
(W \ V ) = 0.

As usual, we denote { y ∈ [0, 1]N : (x, y) ∈ V } by Vx, a Borel set in [0, 1]N. As
the function x �→ µ(Vx) is Borel measurable, the set { x : µ(Vx) > 0 } is a Borel
subset of [0, 1]N. We assert that this set is contained in A \ X0. Indeed, for x
in X0, the set D = { y ∈ X : y R x } is a µ-null set, whence there is a Borel
set C in [0, 1]N that contains it with µ(C) = 0. Since Vx ∩ (X \ D) is a sub-
set of X and R ∩ (X × X ) is a well ordering of X we have Vx ∩ (X \ D) = ∅.
Consequently Vx \ C ⊂ Vx \ X0 ⊂ A \ X0. Now Vx \ C is a Borel set and
µ∗(A \ X ) = 0, whence µ(Vx \ C) = 0. Thereby we have shown µ(Vx) = 0 when-
ever x ∈ X0. The assertion that the Borel set { x : µ(Vx) > 0 } is a subset of A \ X0

has been verified. We have
(
µ × µ

)
(V ) ≤ ∫

A µ(Vx) dµ ≤ µ∗(A \ X0) = 0. Conse-
quently

(
µ×µ

)
(W ) = (

µ×µ
)
(W \V )+(

µ×µ
)
(V ) = 0.We are ready to establish a

contradiction. Observe that, for each y inA, the setWy = { x ∈ X0 : (x, y) ∈ W } satis-
fies Wy ⊃ { x ∈ X0 : y R x } = X0 \ { x ∈ X0 : x R y, x �= y }. Hence µ(Wy) ≥ µ∗(X0)

whenever y ∈ X0. As µ∗(A \ X0) = 0, by the Fubini theorem, we have the con-
tradiction 0 = (

µ × µ
)
(W ) = ∫

A µ(Wy) dµ ≥ (
µ∗(X0)

)2
> 0. The theorem is

proved. ✷

There is the following straightforward characterization of absolute null spaces that
are contained in Y . The proof is left to the reader.

Theorem 1.54. Let Y be a separable metrizable space. In order that a subspace X of
Y be an absolute null space it is necessary and sufficient that there exists an absolute
measurable space R contained in Y × Y with the property that X is well ordered by
the relation R.

Theorem 1.52 generalizes a result of Plewik [127, Lemma ] who assumes that the
relation R is formed by a Borel subset of [0, 1] × [0, 1] – clearly R is an absolute
measurable space. Actually, Plewik works in the collection P(ω) = {X : X ⊂ ω },
which is homeomorphic to the space {0, 1}N. He devises a schema for constructing
relations on P(ω) by beginning with relations <n on the subsets of { k : 0 ≤ k <

n } = [0, n) = n, that is <n ⊂ P
([0, n)

) × P
([0, n)

)
, for each n in ω. He comments

that, for each n in ω, the relation

<n= { (X ,Y ) : X ∩ n <n Y ∩ n }

on P(ω) is a simultaneously closed and open subset of P(ω) × P(ω). Define X ≺ Y
for X and Y in P(ω) to mean that X ∩ n <n Y ∩ n holds for almost all n, that is, there
is an m such that X ∩ n <n Y ∩ n holds whenever n ≥ m. This, of course, defines a
relation ≺ on P(ω). We now have the following proposition by Plewik.

Proposition 1.55 (Plewik). The relation ≺ is an Fσ subset of P(ω) × P(ω).

The proof of the proposition is left to the reader as an exercise. Recall that Fσ sets of
{0, 1}N ×{0, 1}N are absolute Borel spaces, hence the above characterization theorem
applies.
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Plewik gives several applications of his proposition by defining appropriate rela-
tions≺, that is, by devisingways to invoke his schema for the relation≺. Indeed, he is
able to include the Hausdorff �-�∗ gap example of an absolute null space contained
in {0, 1}N. He also shows that examples like that of Grzegorek’s among others can be
included in his setting. Recaw also exhibits an example of a relation R on [0, 1] that
is an absolute measurable space and not an absolute Borel space, thereby sharpening
Plewik’s theorem (see Exercise 1.11 on page 29). The details of and more comments
on these applications will be given in Chapter 6.

1.6. Comments

We close the chapter with a few comments.

1.6.1. Metric spaces. The results in Sections 1.1 and 1.2 are found in [152]. These
early results concerning absolute measurable spaces were couched in the context
of separable metric spaces, which differs from that of separable metrizable spaces
used in our book. The definitions in the book are independent of the metric that can
be assigned to a given metrizable space. Hence the notion of absolute measurable
space as has been developed in the book is based solely on the Borel sets of a given
separable, metrizable space, which are – of course – independent of the metrics that
are associated with a given metrizable space. This observation was made by R. Shortt
in [138, 139].12 The motivation for this change from metric to metrizable is the
following definition, due to E. Szpilrajn-Marczewski [152], of property M and its
related property M(rel Y ) for separable metric spaces Y .

Definition 1.56 (Szpilrajn-Marczewski). A subset X of a separable metric space Y
is said to have property M(rel Y ) if, for each finite Borel measure µ on X , there are
Borel sets A and B of Y such that A ⊂ X ⊂ B and µ(A) = µ(B).

Definition 1.57 (Szpilrajn-Marczewski). A separable metric space X is said to have
property M if, for every separable metric space Y , each topological copy of X
contained in Y has property M(rel Y ).

On inspection of the definition of property M(rel Y ), one can easily see that only
the topology that results from the metric on the space Y is used in the definition
since the collection B(Y ) of all Borel sets of Y is the same for any metrization of
a metrizable space Y . In the second definition, the embedding is not required to be
an isometric embedding. Hence the definition of property M clearly is independent
of the metric for metrizable spaces X . The appropriate modification of property M
has resulted in our definition of absolute measurable spaces, the modifier absolute is
used to emphasize the topological embedding feature of the definition. Since every
metric space is metrizable, this change in definition will cause no loss in the analysis
of any specific metric space.

The next chapter will be concerned with the notion of universally measurable sets
X in a metrizable space Y . This notion is the appropriate modification of the property

12 An extended discussion of Shortt’s observation can be found in Appendix B.
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M(rel Y ). The modifier universally is used to indicate that the metrizable space Y is
fixed, not the metric.

1.6.2. Absolutely measurable functions. It is natural to want to consider functions
f : X → R in the context of absolute measurable spaces, where X is a separable,
metrizable space. Given such a space X , we define the σ -ring

ab M(X ) = {M : M ⊂ X ,M ∈ abMEAS }.

This σ -ring is a σ -algebra if and only if X ∈ abMEAS. It is natural to say that
a function f : X → R is absolutely measurable if M ∩ f −1[F] is in ab M(X )

for every closed set F of R and every M in ab M(X ). Observe, for an absolutely
measurable f : X → R, that f −1[F] ∈ ab M(X ) for every closed set F if and only
if X ∈ ab M(X ). In the next chapter we shall investigate the completely different
notion of universally measurable function, which will agree with that of absolutely
measurable function whenever X ∈ abMEAS. A general investigation of absolutely
measurable functions will not be carried out, since the more interesting investigation
will be in the context of universally measurable sets in a space X .

1.6.3. Historical references. Here we give credit to the various authors who have
influenced the theorems proved in this chapter. Other references will also be made.

The paper [152] by Szpilrajn-Marczewski13 is the source of Theorem 1.7, Propo-
sition 1.12, and Theorems 1.16 and 1.17. Statement (δ) of Theorem 1.20 was
observed by E. Grzegorek andC. Ryll-Nardzewski in [71].We have already attributed
Theorem 1.21 and Theorem 1.34 to Sierpiński and Szpilrajn [142]. The characteri-
zation14 provided by Theorem 1.35 of the existence of absolute null subspaces of a
space is motivated by Hausdorff [73]. Our development of the �-�∗ gap example
of Hausdorff follows the one given by Laver [88] with added details from the origi-
nal paper by Hausdorff [73].15 The development of the second example, which uses
constituents of co-analytic spaces, is due to Sierpiński and Szpilrajn [142].

The partition theorem, Theorem 1.37, has other applications – in particular, the
Sierpiński–Erdös theorem and the related Duality Principle. The reader is directed to
the book [120] by Oxtoby for a nice discussion of these topics. The Duality Principle
yields an intimate connection between sets of measure 0 and sets of the first category
of Baire. See also C. G. Mendez [107, 108]. Theorem 1.39, which has been attributed
to N. Lusin [92] and also proved by P. Mahlo [95], provides the existence of what is
now called Lusin sets. ALusin set in a space X is an uncountable setM with the prop-
erty that every nowhere dense subset of X intersects M in an at most countable set.
For more on Lusin and other singular sets see Brown and Cox [18] and A. W. Miller
[110, 111].

13 This paper is written in Polish. An English translation of it has been made by John C. Morgan II.
14 This characterization anticipates the results of Recaw [130] and Plewik [127] which are also discussed

in Section 1.5 of this chapter.
15 A nice survey article by M. Scheepers [134] contains a historical discussion of Hausdorff’s work on

gaps. More will be said about this article in Chapter 6.
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Section 1.2.2 concerns what are called the Ulam numbers (see [55, page 58]) and
what are called real-valued measurable cardinal numbers (see [58, definition 4.12,
page 972]).Acardinal number κ is anUlamnumber if every nonnegative, real-valued,
continuous measure µ on a set X with card(X ) = κ is the 0 measure whenever
the collection M(X ,µ) of µ-measurable sets is P(X ), that is the measure space(
X ,µ,P(X )

)
is trivial. Hence ℵ1 is an Ulam number. A cardinal number κ is real-

valued measurable if there exists a continuous probability measure µ on a set X with
card(X ) = κ and M(X ,µ) = P(X ); that is, µ(X ) = 1 and every subset of X is
µ-measurable. Hence ℵ1 is not real-valued measurable.

The cardinal number κG was used by Grzegorek [68] for the purpose of solving a
problemproposed byBanach [7] concerning the existence of certain kinds ofmeasures
(see the footnote on page 19; more will be said about Banach’s problem in Chapter 6).
In that paper, Grzegorek used the nondescript symbol m1 to denote this cardinal
number, we have used κG to honor him. With the aid of this cardinal number he
gave an affirmative answer to the problem of Banach. Grzegorek uses the notion of
characteristic functions as developed by Marczewski (= Szpilrajn) in [7, 150, 151].16

The use ofMarczewski’s development allows theBanach problem to be translated into
a problem involving Borel measures on subsets of {0, 1}N. In [68] Grzegorek used the
closed interval [0, 1] and Lebesgue measure λ to define his cardinal number m0 (see
page 45). The present day literature uses non-L to denote m0 . The presentation given
in our book uses the space {0, 1}N in place of [0, 1] to define the cardinal number κ0 in
Section 1.4.2. We shall show in the next chapter that Grzegorek’s cardinal number m0

is the same as κ0 . In a subsequent paper [71] Grzegorek and Ryll-Nardzewski used
this cardinal number to show that the use of the continuum hypothesis by Darst in [39]
was not necessary (we shall turn to Darst’s theorem in the next chapter). We mention
that κG is an Ulam number and is not real-valued measurable.

Darst [37] proved Theorem 1.50 for real-valued B-maps defined on Borel subsets
X of R. As Grzegorek’s example shows, the requirement that the domain of B-maps
be absolute Borel spaces cannot be avoided. Corollary 1.51 can be strengthened as
follows. First define a map f : X → Y to be an ab M-map if f [M ] is an absolute
measurable space wheneverM is an absolute measurable space contained in X . Then
the proof of Corollary 1.51 will result in the rather trivial

Proposition 1.58. If f : X → Y is an ab M-map, then f [N ] ∈ abNULL whenever
N ⊂ X and N ∈ abNULL.

Note that f need not be Borel measurable and that X is arbitrary. Hence the def-
inition of ab M-map appears to be somewhat contrived. Observe that a continuous
bijection of an absolute measurable space X need not be such a map as witnessed by
Grzegorek’s example.

Exercises

1.1. Prove Proposition 1.12 on page 4.
1.2. Prove Theorem 1.19 on page 8.

16 Marczewski’s development is reproduced in many articles and books cited in our book. In particular,
it appears in some form or other in [12, 32, 145, 94].
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1.3. Let f : X → Y be a Borel measurable map, where X and Y are separable
metrizable spaces. Prove that f −1[{ y}] is an absolute null space for every y in
Y if and only if f#µ is continuous for every continuous, complete, finite Borel
measure µ on X .

1.4. Prove Lemma 1.24 on page 10.
1.5. Prove Proposition 1.26 on page 10, the σ -ring property of the class abNULL

of absolute null spaces.
1.6. Prove Lemma 1.40 on page 18. Hint: Show that µ(X ) < ∞ may be assumed.
1.7. Show that Grzegorek’s example (Theorem 1.44, page 21) leads to a solution of

Banach’s problem stated in the footnote on page 19. Hint: The example A has
the property that there is a countably generated subalgebraA′ that is measurable
(obviously A = A ∪A′); use disjoint copies of the set S.

1.8. Let Y and Z be separable metrizable spaces. Let R be a subset of Y × Y and
let X = { xα : α < η } be a well ordered subset of Y . Each homeomorphism h
of Y into Z gives a natural homeomorphism h× h of Y × Y into Z × Z , where(
h× h

)
(s, t) = (h(s), h(t)) for (s, t) ∈ Y ×Y . Denote

(
h× h

)[R] by S, a subset
of Z × Z . Prove that h[X ] = { h(xα) : α < η } is well ordered by the relation S
if and only if X = { xα : α < η } is well ordered by the relation R. Clearly S is
an absolute measurable space contained in Z ×Z if and only if R is an absolute
measurable space contained in Y × Y .

1.9. Prove Theorem 1.54 on page 25.
1.10. Prove Proposition 1.55 on page 25.
1.11. Let F be a Borel set in [0, 1] 2 such that Fu = { v : (u, v) ∈ F } is not empty

for each u in [0, 1]. Define the Borel sets A and B in [0, 1] 3 as follows: A =
{ (x, y, z) : (x, z) ∈ F }, B = { (x, y, z) : ( y, z) ∈ F }.
(a) Show π [A \ B] = { (x, y) : Fx \ Fy �= ∅ }, where π(x, y, z) = (x, y).
(b) Show R = {(x, y) : Fx ⊂ Fy } is a co-analytic set that is a linear ordering of

[0, 1] (though not necessarily the usual linear ordering).
(c) Show that there is an absolute measurable space R with card(R) = c such

that it is contained in [0, 1] 2, is not analytic or co-analytic or absolute null,
and is a linear ordering of { x : (x, y) ∈ R }. Hint:AddGrzegorek’s example.
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The universally measurable property

The property of this chapter historically precedes that of absolute measurable spaces.
The works of Sierpiński and Szpilrajn [142] and Szpilrajn-Marczewski [152] make
morenatural the introductionof absolutemeasurable spaces before the development of
universally measurable sets in a space. The universally measurable property concerns
sets in a fixed separable metrizable space rather than the property of topological
embedding of a space into other spaces. This change of emphasis will be highlighted
by switching the modifier “absolute” to “universally.” Interesting situations arise
when the fixed space is absolute measurable.

The notion of a universally measurable set in a space is more complicated than that
of absolute measurable spaces. Emphasis will be placed on the interplay between uni-
versally measurable sets in a space and absolute measurable subspaces. Of particular
importance is the coinciding of universally null sets in a space X and the absolute
null subspaces of X . Included is a presentation of a sharpening, due to Darst and
Grzegorek, of the Purves theorem.

A closure-like operation, called the universally positive closure, is introduced to
facilitate the study of the topological support ofmeasures onX . This closure operation
is used to define positive measures, those whose topological supports are as large as
possible. It is shown that the notion of universally measurable sets in X can be
achieved by using only those measures that are positive.

The Grzegorek and Ryll-Nardzewski solution to the natural question of symmetric
differences of Borel sets and universally null sets is given. Their solution has connec-
tions to the question in the Preface, due to Mauldin, concerning absolute measurable
spaces contained in R. (This connection will be discussed in Chapter 6, the chapter
whose emphasis includes set theoretic considerations.)

The historically early results for X = [0, 1] will be used to motivate the use of the
group of homeomorphisms in the study of universally measurable sets. These results
for [0, 1] together withB-homeomorphism also lead to results about universally mea-
surable sets in other separable metrizable spaces. Of course, topological properties
are not preserved by B-homeomorphisms, properties that are of interest in this book.
The use of B-homeomorphism will not be excluded if topological considerations are
not involved. (In Appendix B, a brief discussion is given of universally measurable
sets from the point of view of measure and probability theories which emphasizes
B-homeomorphism.)
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2.1. Universally measurable sets

Recall that MEAS is the collection of all Borel measure spaces M(X ,µ) =(
X ,µ,M(X ,µ)

)
that are σ -finite and complete, that M(X ,µ) is the σ -algebra

associated with a measure space, and that MEAScont is the collection of those mea-
sure spaces in MEAS that are continuous. Let us establish notation that emphasizes
a fixed space.

Notation 2.1. Fix a separablemetrizable space X and define the following collection
of measures on X .

MEAS(X ) = {µ : M(X ,µ) ∈ MEAS }
MEAScont(X ) = {µ : M(X ,µ) ∈ MEAScont }.

We shall now modify the definition of the property M(rel X ) defined by Szpilrajn-
Marczewski (see Definition 1.56).

Definition 2.2. Let X be a fixed separable metrizable space. A subset M of X is said
to be a universally measurable set in X if M is inM(X ,µ) whenever µ ∈ MEAS(X ).
The collection of all universally measurable sets in X will be denoted by univ M(X ).

Definition 2.3. Let X be a fixed separable metrizable space. A subset M of X is said
to be a universally null set in X if M is inN(X ,µ) whenever µ ∈ MEAScont(X ). The
collection of all universally null sets in X will be denoted by univ N(X ).

Obviously, the collections univ M(X ) and univ N(X ) are the intersections

univ M(X ) = ⋂{M(X ,µ) : µ ∈ MEAS(X ) }

and
univ N(X ) = ⋂{N(X ,µ) : µ ∈ MEAScont(X ) }.

Analogous to Theorems 1.5 and 1.19, the σ -finite requirements in the above defini-
tions may be replaced with finite with no changes in the collections. The proof is easy
and is left to the reader.

2.1.1. Elementary relationships. We have the obvious

Proposition 2.4. For separable metrizable spaces X , the collection univ M(X ) is
a σ -algebra of subsets of X such that B(X ) ⊂ univ M(X ), and the collection
univ N(X ) is a σ -ideal.

For the next proposition recall from page 27 that ab M(X ) is the collection con-
sisting of all absolute measurable subspaces M contained in X . The proof of the
proposition is left to the reader (see Theorem 1.17).

Proposition 2.5. For separable metrizable spaces X , ab M(X ) is a σ -ring contained
in univ M(X ). Moreover, univ M(X ) = ab M(X ) if and only if X is an absolute
measurable space.

We also have the following
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Proposition 2.6. Let Y be a separable metrizable space. If X is a universally
measurable set in Y , then

univ M(X ) = {E ∈ univ M(Y ) : E ⊂ X }.

Proof. Denote the inclusion map of X into Y by f . Let µ be a complete, finite Borel
measure on X . Then f#µ is a complete, finite Borel measure on Y . Hence X is ( f#µ)-
measurable. It follows that the restriction measure ( f#µ)|X is the measure µ on the
subspace X of Y . Consequently, if E is a universally measurable set in Y that is also
a subset of X , then E is a universally measurable set in X . Next let ν be a complete,
finite Borel measure on Y . Then ν|X is a complete finite Borel measure on X . It
follows that f#(ν|X ) is the limited measure ν X . So, if E is a universally measurable
set in X , then E is a (ν X )-measurable set in Y , whence a ν-measurable set in Y . ✷

The following theorems are essentially due to Sierpiński and Szpilrajn [142].

Theorem 2.7. Let M be a subset of a separable metrizable space X . Then M ∈
univ N(X ) if and only if M is an absolute null space (that is, M ∈ abNULL).

Proof. It is clear that M ∈ univ N(X ) whenever M ∈ abNULL and M ⊂ X . So let
M ∈ univ N(X ). By the definition of univ N(X ) we infer from the statement (α) of
Theorem 1.20 that M ∈ abNULL. ✷

Theorem 2.8. For separable metrizable spaces X and Y , let f be a B-
homeomorphism of X onto Y . Then, for subsets M of X ,

(1) f −1[M ] ∈ B(X ) if and only if M ∈ B(Y ),
(2) f −1[M ] ∈ univ M(X ) if and only if M ∈ univ M(Y ),
(3) f −1[M ] ∈ univ N(X ) if and only if M ∈ univ N(Y ).

Proof. The first equivalence assertion follows easily from the definition of
B-homeomorphism. The other two follow since f# establishes a natural bijection
between Borel measures on X and on Y . ✷

Remark 2.9. It is well-known that every separable metrizable space can be topologi-
cally embedded into the Hilbert cube [0, 1]N.Also, there is aB-homeomorphism ϕ of
the Hilbert cube onto {0, 1}N, which is homeomorphic to the classical Cantor ternary
set. Consequently, the study of univ M(X ) only from the point of view of universally
measurable sets in X can be carried out on subspaces of the Cantor set. The difficulty
is that the B-homeomorphism ϕ does not preserve the topological structure of the
space X . Nor does it preserve many other structures of X , for example, the order
structure of the space R. Consequently, the study of universally measurable sets in a
separable metrizable space X does not end with the above theorem if one is interested
in, for example, the topological structure of such sets in the ambient space X , or the
geometric structure of such sets in the event that X is a metric space.
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2.1.2. The theorem of Darst and Grzegorek. Darst and Grzegorek investigated the
above Theorem 2.8 under the sole condition that f : X → Y be Borel measurable,
that is, without the bijection requirement. We do this now.

It will be convenient to use the usual convention: If f : X → Y is any function
and MX and MY are collections of subsets of X and Y respectively, then f [MX ]
and f −1[MY ] are, respectively, the collections { f [M ] : M ∈ MX } and
{ f −1[M ] : M ∈ MY }.

With this convention we have that f is a Borel measurable map if and only if
f −1[B(Y )] ⊂ B(X ). It is well-known that there exists an absolute Borel space X
such that f [B(X )] � B(Y ) for some Borel measurable map f .

By Definition 1.15, a map f : X → Y , where X and Y are separable metrizable
spaces, is a B-map if and only if f −1[B(Y )] ⊂ B(X ) and f [B(X )] ⊂ B(Y ).
Consequently, Purves’s Theorem A.43 can be stated as f −1[B(Y )] ⊂ B(X ) and
f [B(X )] ⊂ B(Y ) if and only if card(U ( f )) ≤ ℵ0, whenever X is an absolute Borel
space, where U ( f ) is the set of uncountable order of f . The next theorem by Darst
and Grzegorek is a sharpening of Purves’s theorem.

Theorem 2.10 (Purves–Darst–Grzegorek). Let f : X → Y be a Borel measurable
map from an absolute Borel space X into a separable metrizable space Y . Then the
following conditions are equivalent.

(1) f is a B-map.
(2) card(U ( f )) ≤ ℵ0, where U ( f ) is the set of uncountable order of f .
(3) f [B(X )] ⊂ B(Y ).
(4) f [univ M(X )] ⊂ univ M(Y ).
(5) f [univ N(X )] ⊂ univ N(Y ).
(6) f [univ N(X )] ⊂ univ M(Y ).

Proof. Purves’s Theorem A.43 yields the equivalence of the first three conditions
since f is a Borel measurable map. That condition (1) implies condition (4) follows
fromTheorem 1.50. Proposition 1.58 gives condition (4) implies condition (5). Obvi-
ously, condition (5) implies condition (6). It remains to prove that condition (6) implies
condition (2). Suppose that condition (2) fails. Then, by Grzegorek’s Theorem 1.49,
condition (6) fails. This completes the proof. ✷

2.1.3. Universally positive closure. Let M be a subset of a separable metrizable
space X . Denote by V the collection of all open sets V such that V ∩ M is a
universally null set in X . As X is a Lindeloff space, there is a countable sub-
collection V0,V1, . . . , of V such that V = ⋃ V = ⋃∞

i=0 Vi. Since univ N(X )

is a σ -ideal, we have V ∩ M is a universally null set in X . We call the closed
set FX (M ) = X \V the universally positive closure of M in X (or, positive clo-
sure for short). FX is not the topological closure operator ClX , but it does have
the following properties. (Often the reference to the ambient space X will be
dropped from the operators FX and ClX whenever the context of a discussion
permits it.)
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Proposition 2.11. Let X be a separable metrizable space. Then the following
statements hold.

(1) If M1 ⊂ M2 ⊂ X , then FX (M1) ⊂ FX (M2).
(2) If M1 and M2 are subsets of X , then

FX (M1 ∪ M2) = FX (M1) ∪ FX (M2).

(3) If M ⊂ X , then

FX (M ) = FX
(
M ∩ FX (M )

) = ClX
(
M ∩ FX (M )

)
.

(4) If M ⊂ X , then FX
(
FX (M )

) = FX (M ).

Proof. Statement (1) is obvious.
Let us prove statement (2). As

Mi ∩
(
X \ (F(M1) ∪ F(M2))

) ⊂ Mi ∩ (X \ F(Mi)) ∈ univ N(X ),

for i = 1, 2, we have

(M1 ∪ M2) ∩ (
X \ (F(M1) ∪ F(M2))

) ∈ univ N(X ).

Hence F(M1 ∪M2) ⊂ F(M1)∪F(M2). We infer F(M1)∪F(M2) ⊂ F(M1 ∪M2) from
statement (1), thereby statement (2) is proved.

Clearly, F(N ) = ∅ whenever N is a universally null set in X . Hence F(M ) =
F
(
M ∩ F(M )

)
follows from statement (2). The open set U = X \ Cl

(
M ∩ F(M )

)
satisfies U ∩ M ⊂ X \ F(M ). As

U ∩ M ⊂ (X \ F(M )) ∩ M ∈ univ N(X )

we have X \ Cl
(
M ∩ F(M )

) = U ⊂ X \ F(M ). Thereby F(M ) = Cl
(
M ∩ F(M )

)
is

established.
Let us turn to statement (4). As F(M ) ⊃ M ∩ F(M ), from statements (1) and

(3), we have F(F(M )) ⊃ F(M ∩ F(M )) = F(M ). Applying (3) again, we have
F(F(M )) = Cl(F(M ) ∩ F(F(M ))) = Cl(F(M )) = F(M ). ✷

Proposition 2.12. Let Y be a separable metrizable space. If M ⊂ X ⊂ Y , then
FX (M ) = X ∩ FY (M ).

Proof. Observe that (Y \FY (M ))∩M ∈ abNULL.AsM ⊂ X we have (Y \FY (M ))∩
M = (X \FY (M ))∩M . So, FX (M ) ⊂ X ∩FY (M ). Next let V be an open subset of Y
such thatV ∩X = X \FX (M ). AsM ⊂ X we have V ∩M = M \FX (M ) ∈ abNULL.
Hence Y \ V ⊃ FY (M ). The proposition follows because FX (M ) = X ∩ (Y \ V ) ⊃
X ∩ FY (M ). ✷

Another property is the topological invariance of the positive closure operator.
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Proposition 2.13. For homeomorphisms h : X → Y of separable metrizable spaces
X and Y , if M ⊂ X , then FY (h[M ]) = h[FX (M )].

Proof. Denote the open subset X \ FX (M )] of X by U . Then U ∩M is a universally
null set in X . It follows that h[U ∩M ] is a universally null set in Y . As h[U ∩M ] =
h[U ] ∩ h[M ] and h[U ] is an open set in Y , we have h[U ∩ M ] ⊂ Y \ FY (h[M ]),
whence FY (h[M ]) ⊂ h[M ∩ FX (M )]. Also ClY (h[M ∩ FX (M )]) = h[ClX (M ∩
FX (M ))] = h[FX (M )]. Hence FY (h[M ]) ⊂ h[FX (M )]. From the last inclusion we
have h[FX (M )] = h[FX (h−1h[M ])] ⊂ h[h−1[FY (h[M ])]] = FY (h[M ]). ✷

2.2. Positive measures

Let X be a separable metrizable space. Since X \FX (X ) is an absolute null space, it is
immediate that support(µ) ⊂ FX (X ) for every continuous, complete, σ -finite Borel
measure µ on X . A useful class of continuous, complete, σ -finite Borel measures
on X consists of those that are designated as positive. A µ is defined to be a positive
measure if support(µ) = FX (X ) �= ∅. We denote this class of measures by
MEASpos(X ), that is,

MEASpos(X ) = {µ ∈ MEAScont(X ) : ∅ �= support(µ) = FX (X ) },

where MEAScont(X ) is the collection of all continuous, complete, σ -finite Borel
measures µ on X . (Note: MEASpos(X ) ⊂ MEAScont(X ) is assumed.) It is obvi-
ous that MEASpos(X ) �= ∅ does not imply that X is an absolute measurable space.
Indeed, consider any subspace of R that is non Lebesgue measurable. Equally
obvious is that MEASpos(X ) = ∅ if X is an absolute null space. We turn to the
converse next.

2.2.1. Existence of positive measures. It is not immediate that positive measures
exist if FX (X ) �= ∅. To this end, we have

Theorem 2.14. For separable metrizable spaces X ,MEASpos(X ) is not empty if and
only if FX (X ) is not empty.

Proof. We shall use F for FX in the proof. Suppose MEASpos(X ) is not empty. Then
there exists a measure µ such that support(µ) = F(X ) �= ∅.

Suppose that F(X ) �= ∅. Note thatµ
(
X \F(X )

) = 0 for every continuous, complete,
finite Borel measure µ on X . LetU0,U1, . . . , be a countable base for the open sets of
X . From the definition of F(X ), we have µn

(
Un ∩ F(X )

)
> 0 for some continuous,

complete, finite Borel measure µn on X whenever Un ∩ F(X ) �= ∅. We may assume
µn

(
Un ∩ F(X )

)
< 2−n. Let νn = µn

(
Un∩F(X )

)
for each n. Then, for eachBorel set

B, we have ν(B) = ∑∞
n=0 νn(B) < 2. Also, ν({x}) = 0 for every point x of X . Hence

ν determines a continuous, complete, finite Borel measure on X . We already know
support(ν) ⊂ F(X ). Let U be an open set such that U ∩ F(X ) �= ∅. There exists an n
such that U ⊃ Un ∩ F(X ) �= ∅, whence ν(U ) > 0. Hence F(X ) ⊂ support(ν). ✷



36 The universally measurable property

Corollary 2.15. Let X be a separable metrizable space. If M is a subset of X with
FX (M ) �= ∅, then support(µ) = FX (M ) for some continuous, complete, finite Borel
measure µ on X .

Proof. We have FM (M ) = M ∩ FX (M ) �= ∅. Hence there is a measure ν in
MEASpos(M ). Let µ be an extension of ν such that support(µ) = FX (M ). Such
an extension will exist with the aid of the inclusion map of FM (M ) into X . ✷

Of course, there are spaces for which the existence of positive measures is
obvious – for example, the unit n-cube [0, 1]n has the Lebesgue measure.

Lemma 2.16. Let X be a separable metrizable space and let µ be a continuous, com-
plete, finite Borel measure on X . If FX (X ) �= ∅, then there is a positive, continuous,
complete, finite Borel measure ν on X such that ν support(µ) = µ support(µ).

Proof. Let U = X \ support(µ) and let σ ∈ MEASpos(X ). Then ν =
µ

(
support(µ)

) + σ U is a positive measure that fulfills the requirements. Indeed,
to show that ν is positive, observe that F(X ) = support(µ) ∪ (

U ∩ F(X )
)
since

support(µ) ⊂ F(X ). Hence, if V is an open set such that V ∩ F(X ) �= ∅, then either
V ∩ support(µ) �= ∅ or V ∩ (

U ∩ F(X )
) �= ∅, whence ν(V ) > 0 and thereby ν is

positive. The remaining part of the proof is trivial. ✷

2.2.2. Acharacterization ofuniv M(X ). LetX be a separablemetrizable space and
recall that the collection of all positive measures on X is denoted by MEASpos(X ).
Define the two collections

univ Mpos(X ) = ⋂{
M(X ,µ) : µ ∈ MEASpos(X )

}
,

univ Npos(X ) = ⋂{
N(X ,µ) : µ ∈ MEASpos(X )

}
.

Clearly, univ M(X ) ⊂ univ Mpos(X ) and univ N(X ) ⊂ univ Npos(X ). We have the
following characterization.

Theorem 2.17. Let X be a separable metrizable space. Then

univ M(X ) = univ Mpos(X ) and univ N(X ) = univ Npos(X ).

This characterization will turn out to be quite useful in the investigation of the unit
n-cube [0, 1]n. We shall see later in this chapter that the homeomorphism group of
the space [0, 1] will play a nice role in a characterization of univ M

([0, 1]).
Proof of Theorem. If F(X ) = ∅, then MEASpos(X ) = ∅ and X ∈ abNULL.
Hence univ Mpos(X ) = ⋂ ∅ which, by the usual convention, is equal to P(X ) =
{E : E ⊂X }. Moreover, univ N(X ) = univ M(X ) = P(X ).

Assume F(X ) �= ∅. Let us prove that univ M(X ) ⊃ univ Mpos(X ). To this end, let
M ∈ univ Mpos(X ) and let µ be a continuous, complete, finite Borel measure on X .
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By Lemma 2.16 there is a positive, continuous, complete, finite Borel measure ν on
X such that

µ
(
support(µ)

) = ν
(
support(µ)

)
.

Since M ∈ M(X , ν), we have M ∩ support(µ) ∈ M(X , ν); and from M ∩
support(µ) ⊂ support(µ) we conclude M ∩ support(µ) ∈ M(X ,µ). Also, from
the completeness of µ, we have M \ support(µ) ∈ N(X ,µ). We have shown
M ∈ M(X ,µ) for every µ. Therefore M ∈ univ M(X ), and the first equation of
the theorem is proved.

The proof of the second equation is left to the reader.

2.3. Universally measurable maps

Let X and Y be separable metrizable spaces and consider a map f : X → Y . Recall,
for a complete, σ -finite Borel measure space M(X ,µ), that the map f is said to be
µ-measurable if f −1[U ] is µ-measurable for each open set U of Y . The collection of
all such µ-measurable maps will be denoted by MAP(X ,µ ;Y ).

At the end of Chapter 1 we defined the notion of absolute measurable functions on
the σ -ring ab M(X ), which may be properly contained in the σ -algebra univ M(X )

(see Section 1.6.2 on page 27). Here we turn our attention to universally measurable
maps f : X → Y .

2.3.1. Definitions. There are two possible ways to define universally measurable
maps. The following is preferred.

Definition 2.18. Let X and Y be separable metrizable spaces. A map f : X → Y is
said to be universally measurable if it is a member of the collection

univ MAP(X ;Y ) = ⋂{
MAP(X ,µ ;Y ) : µ ∈ MEAS(X )

}
.

We have the following obviously equivalent condition.

Proposition 2.19. Let X and Y be separable metrizable spaces. A map f : X → Y is
universally measurable if and only if f −1[B] is in univ M(X ) whenever B is inB(Y ).

Clearly every Borel measurable map is a universally measurable map. We have the
obvious proposition on composition of maps.

Proposition 2.20. For separable metrizable spaces X , Y and Z let g : Y → Z
be a Borel measurable map. Then gf is in univ MAP(X ;Z) whenever f is in
univ MAP(X ;Y ).

Improvements of the last two propositions can be found in Section 4.1 of Chapter 4.
A sequence of maps fn, n = 1, 2, . . . , defined on a set X into a metrizable space Y

is said to be pointwise convergent if the sequence fn(x), n = 1, 2, . . . , is convergent
for every x in X ; the resulting map is denoted as limn→∞ fn. The following is easily
proved.
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Theorem 2.21. For separable metrizable spaces X and Y , if a sequence fn,
n = 1, 2, . . . , in univ MAP(X ;Y ) is pointwise convergent, then limn→∞ fn is in
univ MAP(X ;Y ).

2.3.2. Graph of universally measurable map. Suppose that X and Y are separable
metrizable spaces and let f : X → Y be a universally measurable map. Then for each
complete, finite Borel measure ν on X there is a Borel class 2 map g : X → Y such
that f = g ν-almost everywhere (see Appendix A). As graph(g) is a Borel set in
X × Y , the graph of g is a universally measurable set in X × Y . The same is true for
the graph of f , which will be shown next.

Theorem 2.22. If f : X → Y is a universally measurable map, where X and Y are
separable metrizable spaces, then graph( f ) is a universally measurable set in X ×Y .
Additionally, if X is an absolute measurable space, then so is graph( f ).

Proof. Let µ be a complete, finite Borel measure on X × Y and denote the natural
projection of X × Y onto X by π . As ν = π#µ is a complete, finite Borel measure
on X , there is a Borel measurable map g : X → Y such that E = { x : f (x) �= g(x) }
has ν measure equal to 0. Let A be a Borel set in X such that E ⊂ A and ν(A) = 0.
We have that graph( f ) = (

π−1[A] ∩ graph( f )
) ∪ (

π−1[X \ A] ∩ graph(g)
)
. As the

first summand has µ measure equal to 0 and the second summand is a Borel set in
X × Y , we have that graph( f ) is µ-measurable. Therefore graph( f ) is a universally
measurable set in X × Y .

Suppose further that X is an absolute measurable space. Let Y ′ be a completely
metrizable space that contains Y , π ′ be the natural projection of X × Y ′ onto X , and
let µ′ = ϕ#µ, where ϕ is the inclusion map of X × Y into X × Y ′. With ν = π ′

#µ
′

there is an absolute Borel space B contained in X such that ν(X \ B) = 0. As B× Y ′
is an absolute Borel space, we have that π−1[B] ∩ graph(g) is an absolute Borel
space. Moreover, µ(π−1[X \ B]) = 0. Thereby graph( f ) is an absolute measurable
space. ✷

It is known that if f : X → Y is a map such that graph( f ) is an analytic space,
then X is an analytic space and f is a Borel measurable map. Also, if graph( f ) is an
absolute Borel space, then X is an absolute Borel space and f is a Borel measurable
map. (See Section A.2 of Appendix A.) It is tempting to conjecture that the same can
be said if graph( f ) is an absolute measurable space. But this cannot be as witnessed
by Grzegorek’s example of an absolute null space Y with card(Y ) = non-L. Let X be
a non-Lebesgue measurable subset of R with card(X ) = non-L. Then each bijection
f : X → Y has the property that graph( f ) is an absolute null space whence an
absolute measurable space. Suppose that f is universally measurable and let ν be a
complete, finite Borel measure on X , say the naturally induced measure on X by the
Lebesgue measure on R. Then the map ϕ given by x �→ (

x, f (x)
)
will be universally

measurable and ϕ#ν is the zero measure because graph( f ) is an absolute null space.
So we will have 0 = ϕ#ν

(
graph( f )

) = ν(X ) = λ∗(X ) > 0 and a contradiction
will occur.
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In [85, Theorem2, page 489] it is shown that ifX is an analytic space and f : X → Y
is amapwhose graph is also an analytic space then f is necessarily a Borel measurable
map. This leads to the question

Question. Suppose that X is an absolute measurable space and Y is a separable
metrizable space. Let f : X → Y be a map whose graph is an absolute measurable
space. Is f necessarily universally measurable?

2.3.3. Real-valued functions. We have been using the notation fg for the composi-
tion of maps f and g. Now we want to introduce real-valued functions f and g and
the pointwise products of them. This presents a notational difficulty since products of
real numbers r and s are usually indicated by rs. To avoid confusion, we shall use f ·g
to denote the product of real-valued functions f and g. We shall use rf for the scalar
multiple of a real number r and a real-valued function f . The same conventions will
be used for complex-valued functions. (The set of complex numbers will be denoted
by C.)

In addition to the usual operations of addition, subtraction, multiplication and
division of real-valued functions we will deal with the lattice operations of pointwise
maximum andminimum of finite sets of real-valued functions and also the supremum
and infimum of countable collections of real-valued functions (of course, extended
real-valued functions may result in the last two operations). We shall use the usual
symbols for these operations. A collection of real-valued functions is said to be point-
wise bounded above (or simply bounded above) by a function f if every member of
the collection is pointwise less than or equal to f .

Theorem 2.23. Let X be a separable metrizable space.

(1) If r ∈ R and f ∈ univ MAP(X ;R), then rf ∈ univ MAP(X ;R).
(2) If f ∈ univ MAP(X ;R), then |f | ∈ univ MAP(X ;R).
(3) If f and g are in univ MAP(X ;R), then so are f + g, f ·g, f ∨ g and f ∧ g in

univ MAP(X ;R).
(4) If fn, n = 1, 2, . . . , is a pointwise bounded sequence of functions in

univ MAP(X ;R), then
∨∞

n=1 fn and
∧∞

n=1 fn are in univ MAP(X ;R).

Of course, one may replace R in the above theorem with a complete normed linear
space of functions and the statements (1), (2), and the appropriate parts of (3) will
remain valid; and, if the linear space has a suitable lattice structure as well, with
appropriate changes, the remaining statements will remain valid.

2.4. Symmetric difference of Borel and null sets

For complete, σ -finite Borel measure spaces M(X ,µ), it is well-known that each
µ-measurable set M is the symmetric difference of a Borel set B and a µ-null set
N . (The symmetric difference of A and B is the set A�B = (A \ B) ∪ (B \ A).) It
was shown by E. Grzegorek and C. Ryll-Nardzewski [70] that no such representation
exists for universally measurable sets and universally null sets in an uncountable,
separable completelymetrizable spaceX . That is, for such a spaceX and a universally
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measurable set M in X , it can be false that M is the symmetric difference of a Borel
set B and a universally null set N in X . This section is devoted to their proof of this
result.

2.4.1. Properties of the symmetric difference. LetX be a separablemetrizable space.
Denote byuniv M�(X ) the collection of all sets inX that have a symmetric difference
representationX = B�N for someB inB(X ) and for someN inuniv N(X ). Clearly,
univ M�(X ) ⊂ univ M(X ).

Suppose that M is in univ M�(X ). Then M = B�N , where B is some Borel set
and N is some absolute null space. Hence there are absolute null spaces N1 and N2

such that

(1) N1 ⊂ B,
(2) B ∩ N2 = ∅,
(3) M = (B \ N1) ∪ N2.

So, N2 = M ∩ (X \ B) is a Borel subset of the subspace M , and both N1 and N2 are
totally imperfect spaces.

Recall from Chapter 1 that ANALYTIC is the collection of all analytic spaces.

Proposition 2.24. If A ∈ ANALYTIC ∩ univ M�(X ), then there is a Borel set B0

such that A ⊂ B0 and N = B0 \ A is a totally imperfect space.

Proof. With M replaced by A, from condition (2) above, N2 is a Borel subset of an
analytic set. As N2 is also totally imperfect, we have that N2 is a countable set. Let
B0 = B ∪ N2, a Borel set, and let N = N1. Then B0 \ A = N1, and the proposition is
proved. ✷

2.4.2. Main theorem. The main theorem concerns the equality univ M(X ) =
univ M�(X ).

Employing the equation (A.1) on page 181, we have

Lemma 2.25. Let X be a separable metrizable space and let Y be a subset of X
such that Y is an uncountable absolute Gδ space. If A is a subset of Y such that
A ∈ ANALYTIC ∩ univ M�(X ), then the constituent decomposition

Y \ A = ⋃
α<ω1

Aα ,

of the co-analytic space Y \A has the property that there exists a β with β < ω1 such
that card(Aα) ≤ ℵ0 whenever α > β.

Proof. By the above proposition, there is a Borel set B0 such that A ⊂ B0 and
N = B0 \ A is totally imperfect. There is no loss in assuming that B0 ⊂ Y . By
TheoremA.6, there is a β with β < ω1 such that the Borel subset Y \B0 is contained
in

⋃
α≤β Aα . So,

⋃
α>β Aα ⊂ N . As the constituents are mutually disjoint, we have

Aα = Aα ∩N for α > β. So the absolute Borel space Aα is totally imperfect, whence
countable, whenever α > β. ✷
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Theorem 2.26 (Grzegorek–Ryll-Nardzewski). If X is an uncountable, separable,
completely metrizable space, then univ M�(X ) is not equal to univ M(X ).

Proof. In the space X there is an analytic space A such that the co-analytic space
X \ A has a constituent decomposition X \ A = ⋃

α<ω1
Aα with the property that the

Borel orders of the constituents Aα are unbounded (see the sentence that immediately
follows TheoremA.5). By the lemma, such an analytic set is not in univ M�(X ). ✷

As a corollary we have

Corollary 2.27. If X is a separable metrizable space that is not totally imperfect,
then univ M�(X ) �= univ M(X ).

Proof. If X is not totally imperfect, then it contains a nonempty, compact, per-
fect subset Y . Hence univ M(Y ) = ab M(Y ) ⊂ univ M(X ). Suppose that
univ M�(X ) = univ M(X ). With the aid of the theorem there exists an M in
univ M(Y ) \ univ M�(Y ). Obviously M ⊂ Y and M ∈ univ M(X ). Clearly, if
M ⊂ Y and M ∈ univ M�(X ), then M ∈ univ M�(Y ). So a contradiction will
occur if M ∈ univ M�(X ). ✷

The completely metrizable space requirement in the theorem may be replaced by
the requirement that X be an absolute measurable space as the next corollary shows.

Corollary 2.28. Let X be an absolute measurable space. Then univ M�(X )

�= univ M(X ) if and only if FX (X ) �= ∅.
Proof. Let FX (X ) �= ∅ for an absolute measurable space X . By the definition of the
positive closure operator, X is not an absolute null space, whence X is not totally
imperfect.

Let FX (X ) = ∅ for an absolute measurable space X . Then X is an absolute null
space. So, univ M(X ) = univ N(X ) = {M : M ⊂ X } = univ M�(X ). ✷

Observe that the disjoint topological union of a space X1 that is not absolute mea-
surable and a space X2 that is absolute measurable but not absolute null yields the
following proposition.

Proposition 2.29. There is a separable metrizable space X that is a non absolute
measurable space with univ M�(X ) �= univ M(X ).

2.4.3. More continuum hypothesis. Let us turn to the equality question for spaces
X that are not absolute measurable spaces. The following example uses a space
constructed by Sierpiński. The existence of this example is assured by the continuum
hypothesis. Sierpiński showed that there is a subset X of R with card(X ) = c = ℵ1

such that every subsetM ofX with card(M ) = c has positive outer Lebesguemeasure.
Of course the continuum hypothesis then implies that a subset N of X has Lebesgue
measure 0 if and only if card(N ) ≤ ℵ0.

We shall give a proof of the existence of a Sierpiński set with the aid of the partition
theorem, Theorem 1.37. To this end, consider the collection K of all subsets N
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of R with λ(N ) = 0. It is easily seen that this collection satisfies the hypothesis of
Theorem 1.37. Hence there is a partition Xα , α < ω1, of R such that card(Xα) = ℵ1

and Xα ∈ K for each α. That is, R = ⋃
α<ω1

Xα and Xα ∩ Xβ = ∅ whenever α �= β.
From each Xα select a point xα and let X = { xα : α < ω1 }.
Proposition 2.30. Assume that the continuum hypothesis holds. The subset X of R
defined above is a Sierpiński set, that is, card(X ) = ℵ1 and X has the property that
a subset M of X has λ(M ) = 0 if and only if card(M ) < ℵ1.

Proof. Suppose that M is a subset of X with λ(M ) = 0. As M ∈ K, there is a
β with β < ω1 such that M ⊂ ⋃

α<β Xα . Then M ⊂ { xα : α < β }, whence
card(M ) < ℵ1. ✷

Proposition 2.31. Assume that the continuum hypothesis holds and let X be
a Sierpiński subset of R. Then X is not an absolute measurable space and
univ M�(X ) = univ M(X ).

Proof. Suppose M ∈ univ M(X ). Then M is (λ|X )-measurable. Hence there are
Borel subsets of A and B of X such that A ⊃ M ⊃ B and λ∗(A \ B) = 0, whence
card(A \ B) ≤ ℵ0. From M = A \ (A \ M ) we infer M ∈ univ M�(X ). Hence
univ M�(X ) = univ M(X ).

Suppose that X ∈ abMEAS. As λ(X ) > 0, we have FX (X ) �= ∅. Consequently,
univ M�(X ) �= univ M(X ) and a contradiction has been reached. Thereby we have
X /∈ abMEAS. ✷

Sierpiński sets will be discussed further in Chapter 6.

2.5. Early results

In a summary of the early works [15] (written by S. Braun and E. Szpilrajn in colla-
boration with K. Kuratowski in 1937), the following result concerning subsets M of
the interval [0, 1] is presented. As we shall see, this theorem provides the motivation
for a large part of the book.

Theorem 2.32. Let M be a subset of [0, 1]. Then the following statements concerning
the Lebesgue measure λ are equivalent.

(1) If f : R → R is a nondecreasing function, then λ( f [M ]) = 0.
(2) If f is a homeomorphism from M onto a subset of R, then λ( f [M ]) = 0.
(3) If f is a B-homeomorphism of M into R, then λ( f [M ]) = 0.
(4) If f is a bijection of M into R for which f −1 is Borel measurable, then

λ( f [M ]) = 0.
(5) M is an absolute null space.
(6) If f : R → R is an orientation preserving homeomorphism, then λ( f [M ]) = 0.

Proof. Let us prove that statement (5) implies statement (4). LetM ∈ abNULL and let
µ be the restriction measure µ = λ|( f [M ]). As f −1 is an injective Borel measurable
map, the inducedmeasure ν = f −1

#µ is a continuous, complete, finiteBorelmeasure.
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Hence ν(M ) = 0. Also, ν(M ) = (
f −1

#µ
)
(M ) = µ

(
f [M ]). Therefore the Lebesgue

outer measure of f [M ] is equal to 0, thereby statement (4) is verified.
That statement (4) implies statement (3), and that statement (3) implies state-

ment (2) are quite trivial.
It is obvious that statement (1) implies statement (6) and that statement (2) also

implies statement (6).
Let us prove that statement (6) implies statement (5). Let ν be a positive, continuous,

complete, finite Borel measure. There is no loss in assuming that ν
([0, 1]) = 1. Let

f : [0, 1] → [0, 1] be the increasing function defined by

f (x) =
{

ν
([0, x]), if 0 < x ≤ 1;

0, if x = 0.

Clearly f is a homeomorphism and can be extended to an increasing homeomorphism
of R. Observe that λ

([0, y]) = ν
(
f −1

[[0, y]]) whenever 0 ≤ y ≤ 1. Hence λ(B) =
ν
(
f −1[B]) for every Borel set B contained in [0, 1]. By statement (6), λ

(
f [M ]) = 0.

Let B be a Borel subset of R such that f [M ] ⊂ B and λ(B) = 0. Then 0 = λ(B) =
ν
(
f −1[B]) ≥ ν∗( f −1

[
f [M ]]) = ν∗(M ).

To complete the proof, let us prove that statement (5) implies statement (1). Let
f : R → R be a nondecreasing function. There is a countable subset D of R such that
f restricted toR\ f −1[D] is a homeomorphism. It follows that λ

(
f
[
M \ f −1[D]]) = 0

and λ
(
f
[
M ∩ f −1[D]]) = 0, whence λ( f [M ]) = 0. ✷

Actually the statement (6) was not part of the summary mentioned above. We have
included it here to illustrate how the homeomorphism group of [0, 1] plays a role in
this theorem. Indeed, in the proof of (6) implies (5) we have actually shown that,
for each positive, continuous, complete Borel measure ν with ν

([0, 1]) = 1, there
is an increasing homeomorphism f of [0, 1] such that λ|[0, 1] = f#ν. Clearly the
last requirement on ν is not a serious one since the formula can be corrected by the
insertion of a suitable coefficient before the measure λ|[0, 1].

2.6. The homeomorphism group of [0, 1]
For a topological spaceX , the group of homeomorphisms ofX ontoX will be denoted
by HOMEO(X ).

2.6.1. Elementary general properties. Observe that, for any Borel measure µ on a
separable metrizable space X and for any positive number c, we have the σ -algebra
equality M(X ,µ) = M(X , cµ). Hence the measures µ used in the definitions of
univ M(X ) and univ Mpos(X ) may be required to have the added condition that
µ(X ) = 1 whenever µ(X ) �= 0 without any change in the resulting collections. As
usual, measure spaces M(X ,µ) with µ(X ) = 1 are called probability spaces.

Lemma 2.33. For a separable metrizable space X , if µ is a complete, σ -finite Borel
measure on X and if h ∈ HOMEO(X ), then h#µ is a complete, σ -finite Borel measure
on X . Moreover, h−1[M ] ∈ M(X ,µ) if and only if M ∈ M(X , h#µ).
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Proof. The first statement follows from Proposition A.36. Let us prove the second
statement. Observe that A and B are Borel sets such that A ⊂ M ⊂ B if and only if
h−1[A] and h−1[B] are Borel sets such that h−1[A] ⊂ h−1[M ] ⊂ h−1[B]. We infer
the second statement from h#µ(B \ A) = µ

(
h−1[B \ A]). ✷

Observe that h#
[
MEAScont(X )

] = MEAScont(X ) whenever h is in HOMEO(X ).
Hence we have invariance under action of HOMEO(X ).

Theorem 2.34. Let X be a separable metrizable space and let h be in HOMEO(X ).
For subsets M of X , M is an absolute measurable subspace if and only if h−1[M ]
is absolute measurable subspace. Also M ∈ univ M(X ) if and only if h−1[M ] ∈
univ M(X ). Hence, for continuous, complete, finite Borel measures µ on X ,

h−1[univ M(X )] = univ M(X ) ⊂ ⋂{M(X , h#µ) : h ∈ HOMEO(X ) }.

Proof. The first statement is the result of the topological embedding property of
absolute measurable spaces. The second statement follows from the above lemma.
The final statement follows easily. ✷

We remind the reader of the definition of ab M(X ), it is the collection of all subsets
of X that are absolute measurable spaces (see page 27). The first statement of the
theorem is the invariance of the collection ab M(X ) under the action ofHOMEO(X ).

The universally positive closure operator FX has the following nice property. The
proof is immediate from Proposition 2.13.

Proposition 2.35. Let X be a separable metrizable space. If M is a subset of X , then
h[FX (M )] = FX (h[M ]) whenever h ∈ HOMEO(X ). Hence h[FX (X )] = FX (X ) for
every h in HOMEO(X ).

2.6.2. The space [0, 1]. The observation made in Section 2.5 about probability
measures will now be stated as a lemma.

Lemma 2.36. If µ is a positive, continuous, complete, Borel probability measure
on [0, 1], then there exists an h in HOMEO([0, 1]) such that µ = h#

(
λ|[0, 1]).

Additionally, h may be assumed to be increasing, that is, orientation preserving.

Thus we have

Theorem 2.37. A necessary and sufficient condition for M to be in univ M
([0, 1]) is

that M be in M
([0, 1], h#(λ|[0, 1])) for every h in HOMEO([0, 1]).

Proof. The necessary condition is clear since [0, 1] is an absolute measurable space.
For the sufficiency, let µ be a positive, continuous, complete Borel prob-

ability measure on [0, 1]. Let h be such that µ = h#(λ|[0, 1]). As M is in
M

([0, 1], h#(λ|[0, 1])) we have that h−1[M ] is in M
([0, 1],µ)

. Consequently,
h−1[M ] ∈ univ Mpos([0, 1]) = univ M

([0, 1]). ✷

The above lemma also yields the next theorem.
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Theorem 2.38. Let µ and ν be any pair of positive, continuous, complete, finite
Borel measures on [0, 1]. Then there exists an h in HOMEO([0, 1]) such that µ =
h#ν whenever µ([0, 1]) = ν([0, 1]). Moreover, h may be assumed to be orientation
preserving.

Proof. There exist h1 and h2 in HOMEO([0, 1]) such that µ = h1#
(
c λ|[0, 1]) and

ν = h2#
(
c λ|[0, 1]). We have µ = h1#

(
c λ|[0, 1]) = h1#

(
h2

−1)
#ν = (

h1h2
−1)

#ν. As
h = h1h2

−1 ∈ HOMEO([0, 1]), the theorem is proved. ✷

The following theorem is the case n = 1 of the Oxtoby–Ulam theorem, the subject
of Chapter 3. We leave its verification to the reader.

Theorem 2.39. In order that a complete Borel measure µ on [0, 1] be such that
λ = h#µ for some h in HOMEO([0, 1]), where λ is the Lebesgue measure, it is
necessary and sufficient that

(1) µ(U ) > 0 for every nonempty, open set U of the space [0, 1],
(2) µ

({x}) = 0 for every x in [0, 1],
(3) µ([0, 1]) = 1.

It also may be required that h|∂[0, 1] is the identity map.

2.6.3. non-L and κG revisited. We promised in the comment section of the previous
chapter a proof of the equality of the two cardinal numbers κG and non-L where

non-L = min { card(E) : E ⊂ [0, 1] with λ∗(E) > 0 }.

Here λ∗ is the Lebesgue outer measure on [0, 1]. In Section 1.4 we defined another
cardinal number κ0 . The idea for the definition of κ0 (which has already been shown
to be equal to κG) is the same as that used in the definition of non-L. We have the
equality of the three cardinal numbers.

Proposition 2.40. non-L = κG = κ0 .

Proof. Let E be a subset of [0, 1] with λ∗(E) > 0. We may assume E ∩ Q = ∅,
where Q is the set of rational numbers, whence E ⊂ N . Let f be a topological
embedding of N into {0, 1}N. Then µ = f#(λ|N ) is a continuous, complete, finite
Borel measure on {0, 1}N. It is easily seen that f [E] is a set with µ∗( f [E]) > 0.
Hence non-L ≥ κ0 = κG .

Next suppose that µ is a continuous, complete, finite Borel measure on {0, 1}N
and E is a set with µ∗(E) > 0. Let f be a homeomorphism from {0, 1}N onto
the Cantor ternary set C, whence f is a continuous map into [0, 1]. Hence f#µ is a
continuous, complete, finite Borel measure defined on [0, 1]. Let ν be the positive,
continuous, complete Borel measure f#µ + λ|([0, 1] \ support( f#µ)

)
. There is a

homeomorphism h of [0, 1] such that h#ν = cλ where c is a positive number. It is
easily shown that E′ = h

[
f [E]] is a subset of [0, 1] such that λ∗(E′) > 0. Indeed, let

B be a Borel set that contains E′. As (hf )−1[B] ⊃ E, we have cλ(B) = h#ν(B) =
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ν
(
h−1[B]) ≥ f#µ

(
h−1[B]) = µ

(
(hf )−1[B]) ≥ µ∗(E) > 0. Thereby we have shown

that κG = κ0 ≥ non-L. ✷

We now have the important example of Grzegorek that shows the existence of an
absolute null subspace X of R with card(X ) = non-L.

Theorem 2.41. There exists a subset X of R such that card(X ) = non-L and X is an
absolute null space.

Proof. By Corollary 1.45 there is a subset Y of {0, 1}N such that Y ∈ abNULL and
card(Y ) = non-L. Let h : {0, 1}N → R be a continuous injection. The set X = h[Y ]
fulfills the requirement. ✷

The reader will find several exercises on non-L in the Exercise section at the end of
the chapter. Clearly, card(

⋃
α<non-L Eα) ≤ non-L if and only if card(Eα) ≤ non-L

whenever α < non-L.
It can happen that a set E can be small in the Lebesgue measure sense even though

λ∗(E) > 0 and card(E) = non-L. It can also happen that such a subset E of [0, 1]
is such that [0, 1] \ E contains no subset of positive Lebesgue measure. As usual, the
Lebesgue inner measure of a set E is

λ∗(E) = sup{ λ(M ) : M ⊂ E,M is a Borel set }.

A subset E of [0, 1] is said to have full Lebesgue measure in [0, 1] if and only if
λ∗([0, 1] \ E) = 0 (note that E need not be Lebesgue measurable). Let us state the
assertion as a proposition.

Proposition 2.42. There are subsets E of [0, 1] with card(E) = non-L that have full
Lebesgue measure in [0, 1].

The next theorem will follow easily and is left as an exercise.

Theorem 2.43. Let X be an absolutemeasurable space. Ifµ is a continuous, complete,
finite Borel measure on X with µ(X ) > 0, then there is a subset Y of X such that
card(Y ) = non-L and such that the µ inner measure µ∗(X \ Y ) is equal to 0.

2.7. The group of B-homeomorphisms

Let X be a separable metrizable space. The collection of all B-homeomorphisms
f : X → X forms a group which will be denoted by B-HOMEO(X ). The collection
MEASpos([0, 1]) of all positive, continuous, complete, finite Borel measures on [0, 1]
is not invariant under the action of B-HOMEO([0, 1]). That is, there exists an f in
B-HOMEO([0, 1]) such that f#

(
λ|[0, 1]) is not a positive measure. Indeed, let C be

the Cantor ternary set. There is a B-homeomorphism f such that f [C] = ( 1
2 , 1] and

f
[[0, 1]\C] = [0, 1

2 ]. For this f we have that ( 12 , 1] is a set whose f#
(
λ|[0, 1])measure

is 0. Despite this fact, there is an analogue of the homeomorphism group property for
the group B-HOMEO(X ) for absolute measurable spaces X which will be proved in
Section 2.7.2.
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2.7.1. Positive measures and B-homeomorphisms. Let Y be an absolute Borel
space with FY (Y ) �= ∅. Then each open set V with V ∩FY (Y ) �= ∅ is an uncountable
absolute Borel space. Clearly, there is a countable collection Vi , i = 1, 2, . . . , of mut-
ually disjoint, nonempty, open sets of Y such that Vi ∩ FY (Y ) �= ∅. Let U0 =
Y \ ⋃∞

i=2 Vi and Ui = Vi+1, i > 1. Each Ui is an uncountable absolute Borel space.
Next let Fi , i = 1, 2, . . . , be a sequence of mutually disjoint topological copies of the
Cantor ternary set such that each nonempty open set of [0, 1] contains anFi for some i.
Define g : Y → [0, 1] to be a B-homeomorphism such that g[U0] = [0, 1] \⋃∞

i=1 Fi

and g[Ui] = Fi for i = 1, 2, . . . . With the aid of this B-homeomorphism we have

Lemma 2.44. Let Y be an absolute Borel space and µ be a positive, complete, finite
Borel measure on Y . Then there is a B-homeomorphism g : Y → [0, 1] such that
g#µ is a positive, complete, finite Borel measure on [0, 1]. If µ is also continuous,
then g#µ is also continuous.

Proof. Let µ ∈ MEASpos(Y ). Then FY (Y ) = support(µ) �= ∅. Hence µ(V ) > 0
whenever V is an open set with V ∩ FY (Y ) �= ∅. Let g : Y → [0, 1] be as defined
above. Then g#µ(Fi) > 0 for every i and therefore g#µ is in MEASpos([0, 1]). ✷

2.7.2. B-homeomorphism group. Here is a B-homeomorphism analogue of Theo-
rem 2.38 for absolute measurable spaces X .

Theorem 2.45. Let X be an absolute measurable space. If µ and ν are positive,
continuous, complete, finite Borel measures on X such that µ(X ) = ν(X ), then there
is an f in B-HOMEO(X ) such that f#ν = µ.

Proof. Since X is an absolute measurable space, there are absolute Borel spaces Yµ

and Yν contained in FX (X ) such that µ
(
Yµ

) = µ(X ) and ν
(
Yν

) = ν(X ). Let Y =
Yµ ∪ Yν . Then Y ⊂ FX (X ), µ(X \ Y ) = 0 and ν(X \ Y ) = 0. Let g : Y → [0, 1]
be a B-homeomorphism provided by the above lemma. As g#(ν|Y ) and g#(µ|Y )

are positive, continuous, complete Borel measures on [0, 1] with g#(ν|Y )
([0, 1]) =

g#(µ|Y )
([0, 1]), there is an h in HOMEO([0, 1]) such that h#g#(ν|Y ) = g#(µ|Y ).

Consequently, g−1
#h#g#(ν|Y ) = µ|Y . Let f : X → X be theB-homeomorphism that

is equal to g−1hg on Y and to the identity map on X \Y . Then we have f#ν = µ. ✷

Let us now relax the positive measure requirement of Theorem 2.45.

Lemma 2.46. LetX be an absolutemeasurable space andµbe a continuous, complete,
finite Borel measure on X with 0 < µ(X ). Then there is a ϕ in B-HOMEO(X ) such
that ϕ#µ is a positive, continuous, complete, finite Borel measure on X .

Proof. Since µ(X ) > 0 we have that FX (X ) is not empty. Hence, for every open
set U with U ∩ FX (X ) �= ∅, there is an uncountable absolute Borel set contained in
U ∩FX (X ). From this we infer that there is a countable collection Fi, i = 0, 1, 2, . . . ,
of mutually disjoint topological copies of {0, 1}N such that each Fi is a nowhere dense
subset of FX (X ) and such that Y1 = ⋃∞

i=0 Fi is dense in FX (X ). There is no loss in
assuming that µ(Fi) = 0 for each i. As X is an absolute measurable space, there
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is an absolute Borel space Y0 contained in FX (X ) such that µ(X ) = µ(Y0). Then
Y = Y0 ∪ Y1 is an absolute Borel space. Let Z1 = Y \ support(µ) and denote by
U0 the uncountable absolute Borel space F0 ∪ Z1. Observe that µ(U0) = 0 holds.
There exists a collection Ui, i = 1, 2, . . . , of mutually disjoint, uncountable absolute
Borel spaces such that µ(Ui) > 0 for each i and such that Y \ U0 = ⋃∞

i=1 Ui. Let
ϕ be a B-homeomorphism of X such that ϕ|(X \ Y ) is the identity map on X \ Y ,
and ϕ[Ui] = Fi for i = 0, 1, 2, . . . . Then support(ϕ#µ) = FX (X ) and the lemma is
proved. ✷

Theorem 2.47. Let X be an absolute measurable space. If µ and ν are continu-
ous, complete, finite Borel measures on X with µ(X ) = ν(X ), then there is a ϕ in
B-HOMEO(X ) such that ϕ#ν = µ.

Proof. If µ(X ) = 0, then let ϕ be the identity map. Next suppose µ(X ) > 0. Then
ν(X ) > 0. There are ϕ1 and ϕ2 in B-HOMEO(X ) such that ϕ1#µ and ϕ2#ν are
positive measures with ϕ1#µ(X ) = ϕ2#ν(X ). Hence there is a ϕ0 in B-HOMEO(X )

such that ϕ1#µ = ϕ0#ϕ2#ν. So µ = ϕ1
−1

#ϕ0#ϕ2#ν. Let ϕ = ϕ1
−1ϕ0ϕ2 to complete

the proof. ✷

Theorem 2.48. Suppose X is an absolute measurable space that contains a topolog-
ical copy K of {0, 1}N. Let h : {0, 1}N → K be a homeomorphism and let µ be a
positive, continuous, complete, finite Borel measure on {0, 1}N. If ν is a continuous,
complete, finite Borel measure on X with µ

({0, 1}N) = ν(X ), then there is a ϕ in
B-HOMEO(X ) such that ϕ#ν = h#µ.

Proof. As h#µ is a continuous, complete, finiteBorelmeasure onX , the proof follows
immediately from the previous theorem. ✷

2.7.3. An example. For each absolute measurable space X , the B-HOMEO(X )

equivalence classes of continuous, complete, finite Borel measures on X are pre-
cisely those determined by the values µ(X ). The following example shows that
the values µ(X ) does not characterize the HOMEO(X ) equivalence classes of con-
tinuous, complete, finite Borel measures on X . Consider the absolute Borel space
X = [0, 1] × [0, 1]. Denote the algebraic boundary of X by ∂X . If h ∈ HOMEO(X ),
then h[∂X ] = ∂X . For an f in B-HOMEO(X ), it may happen that f [∂X ] is not the
same as ∂X . The homeomorphism property of [0, 1] × [0, 1] will be investigated in
Chapter 3.

2.7.4. An application. A straightforward application of Theorem 2.45 will result in
the following theorem.

Theorem 2.49. Let X be an absolute measurable space and µ be a positive, continu-
ous, complete, finite Borelmeasure onX . If f is aµ-measurable, extended real-valued
function on X such that f is real-valued µ-almost everywhere on X , then there is a ϕ

in B-HOMEO(X ) such that f ϕ is µ-measurable and
∫
X f ϕ dµ exists.
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We will consider the measure ν on X given by

ν(E) = ∫
E

k
1+|f | dµ, E ∈ M(X ,µ),

where k is such that ν(X ) = µ(X ). Clearly, ν(E) ≤ k µ(E) whenever E ∈ M(X ,µ).
Moreover, ν(E) = 0 if and only if µ(E) = 0 because f is real-valued µ-almost
everywhere onX . So ν is a positive, continuous, complete, finite Borel measure onX .
By Theorem 2.45 there is a ϕ in B-HOMEO(X ) such that ϕ#µ = ν. For E in B(X )

we have ν(E) = ϕ#µ(E) = µ
(
ϕ−1[E]). So, ν(E) = 0 if and only if µ

(
ϕ−1[E]) = 0.

Let us show that a set is µ-measurable if and only if it is ν-measurable. If E is
µ-measurable, then it is the union of a Borel setM and a set Z withµ(Z) = 0, whence
ν(Z) = 0. Thereby E is ν-measurable. Conversely, suppose that E is ν-measurable.
Then E = M ∪ Z where M is a Borel set and ν(Z) = 0. Hence µ(Z) = 0, that is, E
is µ-measurable.

Lemma 2.50. LetX beanabsoluteBorel space and let f ,µand ν beas in the discussion
above. If g is a Borel measurable, real-valued function on X with

∫
X |g| dν < ∞,

then
∫
X g dν = ∫

X gϕ dµ where ϕ is B-homeomorphism with ϕ#µ = ν.

Proof. Clearly ν
(
g−1[U ]) = µ

(
(gϕ)−1[U ]) whenever U ∈ B(R). Hence∫

X g dν = ∫
X gϕ dµ since

∫
X |g| dν < ∞. ✷

Proof of Theorem 2.49. As there is an absoluteBorel spaceX ′ such thatµ(X \X ′) = 0
we may assume that X is an absolute Borel space. Since f is µ-measurable and is
real-valued µ-almost everywhere on X we have that f is ν-measurable and real-
valued ν-almost everywhere. There is a Borel measurable, real-valued function g
such that f = g ν-almost everywhere. Now ν(Z) = 0 and µ(ϕ−1[Z]) = 0, where
Z = { x : f (x) �= g(x) }. As { x : f ϕ(x) �= gϕ(x) } = ϕ−1[Z] we have f ϕ = gϕ

µ-almost everywhere. Since
∫
X

k |g|
1+|f | dµ = ∫

X
k |f |
1+|f | dµ < ∞, we have

∫
X f dν =∫

X g dν = ∫
X gϕ dµ = ∫

X f ϕ dµ and the theorem is proved.

2.8. Comments

Comments on universally measurable sets in a space X cannot be isolated from
comments on absolute measurable spaces. So we shall comment on both of them
here.

Similar to the notion of absolute Borel space, the notion of absolute measurable
space is based on invariance under topological embedding – in this case, invariance
of µ-measurability of topologically embedded copies of the space into any complete,
finite Borel measure space

(
Y ,µ,M(Y ,µ)

)
. This notion is an extension of that of

absolute Borel space in the sense that every absolute Borel space is an absolute
measurable space. The topological nature of the definition of both absolute Borel
space and absolute measurable space will naturally lead to topological questions
about such spaces. As every separable metrizable space is topologically embeddable
into the Hilbert cube [0, 1]N, one might wish to study only subspaces of this space.
But the richer structure of Borel measurability of mappings is also available in the
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investigation of these spaces. The role of Borel measurable injections of absolute
Borel spaces and absolute measurable spaces has been studied in the previous chapter.
It has been shown that absolute measurable spaces are not invariant under Borel
measurable injections. But they are preserved under B-homeomorphic embeddings.
Employing such embeddings, one finds that absolute measurable spaces may be
investigated by considering only subspaces of the space {0, 1}N or the space [0, 1] if
the topological structure of the absolute measurable spaces is not of special interest.
An example of this situation is found in Section 1.5

2.8.1. R.M. Shortt’s observation. Wehavementioned earlier inChapter 1 that Shortt
observed that universallymeasurable sets in a spaceX is independent of themetric that
corresponds to the topology of the separable metrizable space (see [139]). Actually
he made a stronger claim, namely that the universally measurable sets in X depend
only on the fact that the σ -algebra A is generated by a countable subcollection E

of A. The setting for this claim is measure theory and probability theory in contrast to
the setting for the present book which concerns topological embedding and the role
of homeomorphism in the notion of absolute measurable spaces. In general, measure
theory and probability theory deal with a set X together with a given σ -algebra A of
subsets of the set X . The isomorphisms are required to preserve σ -algebra structures.
Usually no topological structures are assumed. Hence questions that are of interest to
us often do not appear. That part of measure theory and probability theory that con-
cerned Shortt assumed a condition that induced a metric structure, namely countably
generated σ -algebras. The resulting topological structure need not be unique since
the σ -algebra may be countably generated in many ways. Of course, under this con-
dition the isomorphisms generally will not be homeomorphisms or bi-Lipschitzian
homeomorphisms. See Appendix B for a development of the probability theoretic
approach to universally measurable spaces.

2.8.2. Historical references. In the Darst and Grzegorek Theorem 2.10, the equiv-
alence of conditions (1), (2) and (3) is Purves’s theorem (see Theorem A.43)
which was proved in 1966 [129]. Hence their theorem sharpens Purves’s result.
For X = R, Darst proved in 1970 [37] that condition (1) is equivalent to con-
dition (4) and in 1971 [39] proved the equivalence of conditions (1) through (5)
by assuming the continuum hypothesis in both papers. In 1981 Grzegorek and
Ryll-Nardzewski [71] eliminated the continuum hypothesis from Darst’s proof. The
inclusion of condition (6) into the theorem was made by Grzegorek [69] in 1981.

The investigation of the symmetric difference property of universally measurable
sets in a space was carried out by Grzegorek and Ryll-Nardzewski in [70]. The
main theorem (Theorem 2.26) was first proved by Marczewski [97] with the aid
of the continuum hypothesis. In Corollary 2.28, absolute Gδ spaces are replaced by
absolute measurable spaces. The continuum hypothesis reappears in the investigation
of the symmetric difference property by way of the Sierpiński set in R. Sierpiński
proved in 1924 [141, pages 80, 82] the existence of his set under the assumption
of the continuum hypothesis. The Lusin sets and the Sierpiński sets are intimately
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connected by the Sierpiński–Erdös duality principle. For a nice discussion of this
duality, see the book by Oxtoby [120]. We have given a proof of the existence of
Sierpiński sets by means of the partition theorem, Theorem 1.37, without the aid of
the duality.

The early results about subsets of [0, 1] were summarized in [15]. This article
concerned not only universally null sets of [0, 1] but also many other singular sets
such as Lusin sets, Sierpiński sets, concentrated sets and others. A good survey
about singular sets can be found in the article by Brown and Cox [18] and in two
articles by Miller [110, 111]. The 1937 article [152] by Marczewski deals with spaces
more general than [0, 1], that is, separable metric spaces. The notions of absolute
measurable spaces and universally measurable sets in separable metrizable spaces
lead to the singular sets called absolute null spaces and universally null sets, which
are the same as was shown in Theorem 2.7. Though the book is about absolute
measurable spaces and absolute null spaces, a few other singular sets will be included
in later chapters as they are absolute null spaces with additional useful properties that
will be exploited.

The homeomorphism group HOMEO([0, 1]) was seen to be important very early
in the study of universally measurable sets in [0, 1]. Indeed, the group reduced the
investigation of all positive, complete, continuous, finite Borel measures on [0, 1] to
only the Lebesgue measure λ|[0, 1]. Analogues of this phenomenon are presented in
Chapter 3.

The cardinal number κG was first shown to equal non-L in [68]. The homeomor-
phism group property of universally measurable sets in [0, 1] is used to establish
the equivalence of the Grzegorek’s approach to the cardinal number non-L and
the approach of Section 1.4. Observe that the proof of the equivalence of the two
approaches also implicitly uses a B-homeomorphism into {0, 1}N to prove κ0 = κG .

2.8.3. Positive measures and groups of maps. For separable metrizable spaces X ,
the groups HOMEO(X ) and B-HOMEO(X ) have natural roles in the book. The
collections univ M(X ) and univ N(X ) are invariant under the action of the group
HOMEO(X ). It was shown that the collection univ M(X ) is determined by the
collection of positive measures on X , that is, univ M(X ) = univ Mpos(X ) and
univ N(X ) = univ Npos(X ). This fact is facilitated by the closure-like operation FX
which connects the absolute null subspaces of X and the topology of X . The group
HOMEO(X ) preserves the collection MEASpos(X ) of all positive, continuous, com-
plete, σ -finite Borelmeasures onX . This is due to the identity FX (h[M ]) = h[FX (M )]
for every h in HOMEO(X ) and every subsetM of X . Of course the identity does not
hold for every h in B-HOMEO(X ).

The group B-HOMEO(X ) does not preserve topological properties; in particu-
lar, we have seen that MEASpos(X ) is not invariant under this group. Indeed, if
X is an absolute measurable space that is not an absolute null space and if µ is
a positive, continuous, complete, finite Borel measure on X , then the collection
{ϕ#µ : ϕ ∈ B-HOMEO(X )} is precisely the collection of all continuous, complete
Borel measures ν on X with ν(X ) = µ(X ).



52 The universally measurable property

Exercises

2.1. Let X be the union of a totally imperfect, non Lebesgue measurable subset of
[0, 1] and the interval [2, 3]. X is not an absolute measurable space. Describe the
collection ab M(X ). Describe the collection B(X ) \ ab M(X ).

2.2. Prove: non-L = min { card(E) : E ⊂ [0, 1] with µ∗(E) > 0 } whenever µ is a
positive, continuous, complete, finite Borel measure on [0, 1].

2.3. Prove that if M is a Lebesgue measurable subset of [0, 1] with λ(M ) > 0, then
there is a subset E of M such that λ∗(E) = λ(M ) and card(E) = non-L. Hint:
There is a topological copy G of N contained in M such that λ|G is a positive
measure on G and λ(G) > 1

2λ(M ).
2.4. Prove (see page 46 for λ∗): If a sequence En, n ∈ ω, is such that En ⊂ En+1 ⊂

[0, 1] for every n, then

λ∗([0, 1] \ ⋃
n∈ω En) = inf { λ∗([0, 1] \ En) : n ∈ ω }.

2.5. Prove Theorem 2.43. Hint: There exists an absolute Borel space B contained in
X such that µ|B is a positive measure and µ(X \ B) = 0.
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The homeomorphism group of X

The collection univ M(X ) of universally measurable sets in a space X has been
shown to be those subsets of X that are µ-measurable for every µ in the collec-
tion MEAScont(X ) of all continuous, complete, σ -finite Borel measures on X . We
have seen that the collection MEAScont(X ) can be replaced by the smaller collection
MEASpos(X ) of those measures µ in MEAScont(X ) that are also positive – that is,
support(µ) = FX (X ) �= ∅.

Very early in the history of universally measurable sets in [0, 1] it was seen that
the Lebesgue measure λ on R determined the σ -algebra univ M([0, 1]). That is, the
measure λ|[0, 1] and the group HOMEO([0, 1]) generated all of univ M([0, 1]) in
the sense that

univ M([0, 1]) = ⋂{M ∈ M
([0, 1], h#(λ|[0, 1])) : h ∈ HOMEO([0, 1])}.

This was made possible because of the elementary fact

{µ ∈ MEASpos([0, 1]) : µ([0, 1]) < ∞}
= ⋃

c>0
⋃{c h#(λ|[0, 1]) : h ∈ HOMEO([0, 1])}.

The aim of the chapter is to investigate these phenomena for spaces X other than
[0, 1].

For a separable metrizable space X it will be convenient to denote the collection
of all finite measures in MEASpos(X ) by MEASpos,fin(X ), that is,

MEASpos,fin(X ) = {µ ∈ MEASpos(X ) : µ(X ) < ∞}. (3.1)

Associatedwith this collection are two actions of the groupHOMEO(X ) onmeasures.
In particular, for a fixed µ in MEASpos,fin(X ),⋃

c>0
⋃{c h#µ : h ∈ HOMEO(X )} ⊂ MEASpos,fin(X ),

univ M(X ) ⊂ ⋂{M(X , h#µ) : h ∈ HOMEO(X )}.
Notation 3.1. For a separable metrizable space let G(X ) be a nonempty subset of
HOMEO(X ) and let µ be a continuous, complete, σ -finite Borel measure on X . The
collection {h#µ : h ∈ G(X )} will be denoted by G(X )#µ.
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The above two inclusions lead to

Definition 3.2. For a separable metrizable space X let µ be a measure in
MEASpos,fin(X ) and let G(X ) be a subgroup of HOMEO(X ). µ and G(X ) are said
to generate MEASpos,fin(X ) if

MEASpos,fin(X ) = ⋃
c>0

⋃{
c ν : ν ∈ G(X )#µ

}
. (3.2)

µ and G(X ) are said to generate univ M(X ) if

univ M(X ) = ⋂{
M(X , h#µ) : h ∈ G(X )

}
. (3.3)

Of special interest is the action of homeomorphisms on the Lebesgue measure on
the space [0, 1] n. Suppose that ϕ is a homeomorphism of [0, 1] n onto X and λ0 is
the Lebesgue measure on [0, 1] n. Then ϕ#λ0 is a positive, continuous, complete,
finite Borel measure on X with ϕ#λ0

(
ϕ
[
∂[0, 1] n]) = 0. This leads to the following

definition.

Definition 3.3. A measure µ on an n-cell1 X is said to be Lebesgue-like if

(1) µ ∈ MEASpos,fin(X ),
(2) µ(∂X ) = 0, where ∂X is the algebraic boundary of X .

Note that not every measure µ in MEASpos,fin([0, 1] n) is Lebesgue-like if n > 1.
In the context of HOMEO(X ) it will be convenient to define the notion of

homeomorphic measures on X , which is related to Definition 1.4.

Definition 3.4. Borel measures µ and ν on X are said to be homeomorphic if there
is an h in HOMEO(X ) such that ν = h#µ.

Let us begin by introducing a metric ρ on HOMEO(X ).

3.1. Ametric for HOMEO(X )

On choosing a bounded metric d for a separable metrizable space X , one will realize
a useful metric ρ on the collection HOMEO(X ). Although most of the results on
relationships between the group HOMEO(X ) and the σ -algebra univ M(X ) do not
refer to a metric on HOMEO(X ), we will often use such a metric in many construc-
tions that appear in this chapter. Fortunately, the constructions are made on compact
spaces X . In this setting the metric ρ on HOMEO(X ) is complete. This completeness
will avail us with the Baire category theorem.

Definition 3.5. Let d be a bounded metric on X . For each h in HOMEO(X ), its
norm, denoted by ‖h‖, is defined to be

‖h‖ = sup{d(h(x), x) : x ∈ X }.
1 An n-cell X is a topological copy of [0, 1] n. Its algebraic boundary ∂X is the topological copy of ∂[0, 1] n.

Of course, the topological boundary of X is always empty. Clearly, FX (X ) = X �= ∅.
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For f and g in HOMEO(X ), define the distance ρ( f , g) by the formula

ρ( f , g) = ‖ fg−1‖ + ‖ f −1g‖.

Obviously ρ( f , g) ≥ d( f (x), g(x)) + d( f −1(x), g−1(x)) for each x in X . So, if
fn, n = 1, 2, . . . , is a Cauchy sequence in HOMEO(X ), then fn(x) and fn

−1(x),
n = 1, 2, . . . , are Cauchy sequences in X with respect to the metric d. From this we
infer that ρ is a complete metric on HOMEO(X ) whenever d is a bounded, complete
metric for X .

Proposition 3.6. Suppose that X is a compact metrizable space and let d be a metric
for X . The following are group properties of the norm ‖ · ‖ and the metric ρ on
HOMEO(X ).

(1) ‖ f ‖ = ‖ f −1‖,
(2) ρ( f , g) = ρ( f −1, g−1), whence ρ( f , id) = ρ( f −1, id),
(3) ρ( gfg−1, ghg−1) ≤ 2ω

(
g : ρ( f , h)

)
, where ω( g : η) is the usual modulus of

uniform continuity2 of g,
(4) ρ( gf , g) ≤ ‖ f ‖ + ω

(
g : ‖ f ‖),

(5) ρ( fg, g) ≤ ‖ f ‖ + ω
(
g−1 : ‖f ‖).

The verifications of these properties are simple exercises left to the reader. The
next proposition, which concerns the hyperspace3 of a compact metric space X , is
also left as an exercise for the reader.

Proposition 3.7. Let X be a compact metric space and let the hyperspace 2X of
nonempty closed subsets of X be endowed with the Hausdorff metric. The map
(F , h) �→ h−1[F] is a continuous map of 2X × HOMEO(X ) into 2X .

Let F be a subset of a metric space X . A homeomorphism h is said to keep F fixed
if h(x) = x whenever x ∈ F , and is said to keep F invariant if h[F] = F . Consider
the subgroups

HOMEO(X ;F fixed ) = {h ∈ HOMEO(X ) : h−1(x) = x, x ∈ F},
HOMEO(X ;F inv ) = {h ∈ HOMEO(X ) : h−1[F] = F}

of HOMEO(X ). As the reader can easily verify, the first one is always closed, and
the second one is closed whenever F is a compact subset of X .

Let us introduce a continuous, finite, Borel measure µ into the discussion. We
assume that F is a compact subset of a separable metric space X . There is no loss in
assuming that X is a subspace of the Hilbert cube and that the metric on X is induced
by a metric on the Hilbert cube. The map f �→ f#µ(F) is a real-valued function on
the metric space HOMEO(X ). We claim that this map is upper semi-continuous.
Indeed, let α be a real number and f be such that f#µ(F) < α. Let U be an open

2 For a function f : X → Y , where X and Y are metric spaces, the modulus of uniform continuity of f is
ω( f : η) = sup{dY ( f (x), f (x′)) : dX (x, x′) ≤ η}, where η > 0.

3 See Appendix A, page 196, for the definition of the hyperspace 2X and its Hausdorff metric.
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neighborhood of F in the space X such that f#µ(U ) < α. Let U ′ be an open set in
the Hilbert cube such that U = U ′ ∩ X . As F is compact there is a positive number
δ such that h−1[F] ⊂ U ′ whenever ρ(h, id) < δ. Hence there is neighborhood V
of f in HOMEO(X ) such that g#µ(F) < α whenever g ∈ V , thereby the upper
semi-continuity at f follows. Let us summarize this discussion as a lemma.

Lemma 3.8. Let X be a metric space with a totally bounded metric. If F is a compact
subset of X and µ is a continuous, finite Borel measure on X , then the function
f �→ f#µ(F) is an upper semi-continuous real-valued function on the metric space
HOMEO(X ).

Here is a simple proposition that will be used often. Its proof is left to the reader.
Note that no metric on X is assumed.

Proposition 3.9. Suppose that X is a separable metrizable space. Let U and V be
disjoint open sets and let F be X \ (U ∪V ). If hU is in HOMEO(X \V ;F fixed ) and
hV is in HOMEO(X \ U ;F fixed ), then there is an h in HOMEO(X ;F fixed ) such
that h|(X \ V ) = hU and h|(X \ U ) = hV .

3.2. General properties

There are several assertions that hold for spaces more general than those investigated
in this chapter. The first theorem follows easily from definition.

Theorem 3.10. For a separable metrizable space X , if µ is a measure
in MEASpos,fin(X ) and G(X ) is a subgroup of HOMEO(X ) that generate
MEASpos,fin(X ), then ν and G(X ) generate MEASpos,fin(X ) for every ν in
MEASpos,fin(X ).

We have the following lemma.

Lemma 3.11. For a separable metrizable space X , let µ be a measure in
MEASpos,fin(X ) and G(X ) be a subgroup of HOMEO(X ). If MEASpos,fin(X ) is
generated by µ and G(X ), then

univ M(X ) = ⋂{
M(X , h#µ) : h ∈ G(X )

}
,

that is, µ and G(X ) generate univ M(X ).

Proof. Suppose µ satisfies equation (3.2). Let ν be any measure in MEASpos,fin(X ).
Then there is a h in G(X ) and a positive c such that c h#µ = ν. Note M(X , c h#µ) =
M(X , h#µ). The proof is easily completed by an application of Theorem 2.17. ✷

The next countable union theorem will prove quite useful.

Theorem 3.12. Suppose that X is an absolute measurable space and that Xi,
i = 1, 2, . . . , is a sequence in univ M(X ) such that X = ⋃∞

i=1 Xi. Let µ be a pos-
itive, continuous, complete, finite Borel measure on X and G(X ) be a subgroup of
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HOMEO(X ). If, for each i, µ|Xi and

Gi(X ) = {h|Xi : h ∈ G(X ) and h[Xi] = Xi}

generate univ M(Xi), then µ and G(X ) generate univ M(X ).

Proof. Only
⋂{M(X , h#µ) : h ∈ G(X )} ⊂ univ M(X )must be shown. Suppose that

M is amember of the left-hand side and fix an i.AsXi is a universallymeasurable set in
X , we have, by Proposition 2.5, that Xi is an absolute measurable space. Hence the set
Ei = M∩Xi satisfiesEi ∈ M

(
Xi, (h|Xi)#(µ|Xi)

)
whenever h ∈ G(X ) and h[Xi] = Xi.

As µ|Xi and Gi(X ) generate univ M(Xi), we have that Ei is in univ M(Xi). Hence Ei

is an absolute measurable space. As M = ⋃∞
i=1 Ei is an absolute measurable space,

it now follows that M is in univ M(X ). ✷

The proof of the last theorem leads to the observation: If a subset G0(X ) of
HOMEO(X ) is such that

⋃
c>0{c ν : ν ∈ G0(X )#µ} = MEASpos,fin(X ), then

µ and any subgroup G(X ) of HOMEO(X ) that contains G0(X ) will generate
MEASpos,fin(X ).A similar observation can be made for generating univ M(X ).

Here are simple observations whose proofs are left to the reader. Recall the defini-
tion of ab M(X ); it is the collection of all subsets of X that are absolute measurable
spaces (see page 27).

Proposition 3.13. Let X and Y be absolute measurable spaces with X ⊂ Y . If
M ∈ ab M(X ), thenM ∈ ab M(Y ). And, ifM ∈ ab M(Y ), thenM∩X ∈ ab M(X ).
Consequently, a subset M of X is in univ M(X ) if and only if M is in univ M(Y ).

Proposition 3.14. Let X be a separable metrizable space. A subgroup G(X ) of
HOMEO(X ) and a continuous, complete, finite Borel measure µ on X will generate
univ M(X ) if and only if there is a subcollection G0(X ) of G(X ) such that

univ M(X ) ⊃ ⋂{M(X , h#µ) : h ∈ G0(X )}.

3.3. One-dimensional spaces

Let us begin with the simplest of one-dimensional spaces, namely the connected one-
dimensional manifoldsM1. Topologically, there are four of them: [0, 1], [0, 1), (0, 1),
and ∂([0, 1] × [0, 1]), the algebraic boundary of the two-cell [0, 1] × [0, 1]. We shall
derive the desired results from the theorem for the Lebesgue measure λ|[0, 1] and the
group HOMEO([0, 1]).

3.3.1. Universally measurable sets inM 1. Since one-dimensional manifoldsM1 are
absolute Borel spaces we have univ M(M1) = ab M(M1).

Consequently we have

Proposition 3.15. Let X be (0, 1) or [0, 1). For subsets E of X , E is in univ M(X ) if
and only if E is in univ M

([0, 1]).
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Proposition 3.16. Let X be (0, 1) or [0, 1) and let f : X → [0, 1] be the inclusionmap.
Ifµ is a positive, continuous, complete, finite Borel measure on X , then ( f#µ)|X = µ.
Also, if ν is a positive, continuous, complete, finite Borel measure on [0, 1], then
f#(ν|X ) = ν.

Proof. The first implication is obvious. The second implication follows easily since
the measure ν is continuous. ✷

For completeness we state the theorem for the manifold [0, 1].

Theorem 3.17. The groupHOMEO([0, 1]; ∂[0, 1] fixed ) and the restricted Lebesgue
measure λ|[0, 1] generateMEASpos,fin([0, 1]) (the collection of all positive, continu-
ous, complete, finite Borel measures on [0, 1]) and thereby generate univ M([0, 1]).

Of course, the issue is whether some µ in MEASpos,fin(M1) and the group
HOMEO(M1) will generate MEASpos,fin(M1). Let us begin with M1 being either
(0, 1) or [0, 1).

Lemma 3.18. If X is either (0, 1) or [0, 1), then HOMEO(X ) and λ0 = λ|X generate
MEASpos,fin(X ). Hence

univ M(X ) = ⋂{
M(X , h#λ0) : h ∈ HOMEO(X )

}
,

that is, λ0 and HOMEO(X ) generate univ M(X ).

Proof. Consider the commutative diagram

X
f−−−−→⊂ [0, 1]

h|X
� �h

X
f−−−−→⊂ [0, 1]

where f is the inclusion map and h is an orientation preserving homeomorphism. We
have f#λ0 = λ1, where λ1 = λ|[0, 1]. Let ν be in MEASpos,fin(X ) with ν(X ) = 1.
As f#ν is in MEASpos,fin([0, 1]), there is an orientation preserving homeomorphism h
in HOMEO

([0, 1]) such that f#ν = h#λ1 = h#f#λ0. From the commutative diagram
we have f#ν = h#f#λ0 = f#(h|X )#λ0. Note that f −1[M ] = M whenever M ⊂ X .
Hence ν(M ) = f#ν(M ) = f#(h|X )#λ0(M ) = (h|X )#λ0(M ) whenever M ∈ B(X ).
The lemma now follows. ✷

Let us turn to the one-dimensionalmanifoldS1, the algebraic boundary of the planar
set

{
(x, y) : ‖(x, y)‖2 ≤ 1

}
. We denote the one-dimensional Hausdorff measure by

H1. Let I1 and I2 be two topological copies of [0, 1] in S1 such that S1 = (I1 \ ∂I1) ∪
(I2 \ ∂I2). Then H1 |Ii and HOMEO(Ii) generate MEASpos,fin(Ii) for each i. Also, for
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each i, µ|Ii ∈ MEASpos,fin(Ii) whenever µ ∈ MEASpos,fin(S1). We are now ready to
prove

Lemma 3.19. The collectionMEASpos,fin(S1) is generated by the measure H1|S1 and
the group HOMEO(S1). Hence

univ M(S1) = ⋂{
M(S1, h#(H1|S1)) : h ∈ HOMEO(S1)

}
,

that is, H1|S1 and HOMEO(S1) generate univ M(S1).

Proof. For convenience letµ = H1|S1. Let ν be a positivemeasure such that ν(S1) =
µ(S1). With the notation that precedes the statement of the lemma, there is no loss in
assuming ν(I1) ≥ µ(I1). Hence

ν0 = µ (I1 \ I2) + ν(I1)−µ(I1\I2)
ν(I1∩I2) ν (I1 ∩ I2) + ν (I2 \ I1)

is a positive Borel measure. Observe ν0(I1) = ν(I1) and ν0(S1) = ν(S1) = µ(S1).
There is an h1 in HOMEO(I1; ∂I1 fixed ) such that ν0|I1 = h1#(ν|I1). Let H1 be
the map h1 on I1 and the identity map on S1 \ I1. Clearly, H1 ∈ HOMEO(S1). Let
f1 : I1 → S1 be the inclusion map. Then H1#ν = f1#h1#(ν0|I1) + ν (S1 \ I1) = ν0.

Let us work on I2. As ν0(I1 \ I2) = µ(I1 \ I2) we have ν0(I2) = µ(I2). Hence
there is an h2 in HOMEO(I2; ∂I2 fixed ) such that h2#(ν0|I2) = µ|I2. Let H2 be the
map h2 on I2 and the identity map on S1 \ I2. Clearly, H2 is in HOMEO(S1). Let
f2 : I2 → S1 be the inclusion map. Then H2#ν0 = µ (S1 \ I2)+ f2#h2#(ν0 I2) = µ.
Finally, h = H2H1 is in HOMEO(S1) and h#ν = µ. The remainder of the proof is
easily completed. ✷

A second proof can be produced by selecting a point ∗ in S1 and considering
the subgroup HOMEO(S1; {∗} fixed ) of HOMEO(S1). Let ϕ : [0, 1] → S1 be a
continuous surjection such that ϕ|(0, 1) is a homeomorphism and ϕ[∂I ] = {∗}.
Observe that each µ in MEASpos,fin(S1) corresponds to a unique measure µ0 in
MEASpos,fin([0, 1]) with ϕ#µ0 = µ and that ϕh0 is in HOMEO(S1; {∗} fixed ) when-
ever h0 ∈ HOMEO([0, 1]). The reader is asked to show that if µ and ν are in
MEASpos,fin(S1) then there is an h in HOMEO(S1; {∗} fixed ) such that ν = h#µ
whenever µ(S1) = ν(S1). As a consequence we have that MEASpos,fin(S1) is gener-
ated by µ and HOMEO(S1; {∗} fixed ). The reader will see this approach can be used
to advantage in the case of the n-dimensional sphere Sn (see page 73).

Let us summarize the theorem for [0, 1] and the last two lemmas into the following.

Theorem 3.20. If M1 is a connected one-dimensional manifold, then some µ

in MEASpos,fin(M1) and the group HOMEO(M1), indeed the subgroup
HOMEO(M1; ∂M1 fixed ), will generate MEASpos,fin(M1). Hence

univ M(M1) = ⋂{
M(M1, h#ν) : h ∈ HOMEO(M1)

}
,

whenever ν ∈ MEASpos,fin(M1).
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3.3.2. The simple triod. This examplewill show theutility ofDefinition 3.2.Asimple
triod is a one-dimensional space that is homeomorphic to the letterT. That is, a simple
triod is the union of three planar line segments I1, I2 and I3 with exactly one common
point which is one of the two end-points of each of the line segments. Denote the
common point by p and the other end-point of Ii by ai, i = 1, 2, 3. For each ϕ in
HOMEO(T), observe that ϕ

[{a1, a2, a3}] = {a1, a2, a3} and ϕ( p) = p. Denote the

set
⋃ 3

i=1 ∂Ii by V .
We shall assume that the line segments Ii, i = 1, 2, 3, each have length equal

to 1. Consider the restricted Hausdorff measure µ = H1 |T. We have the following
proposition.

Proposition 3.21. Let µ = H1 |T and G(T) = HOMEO(T;V fixed ). Then µ and
G(T) generate univ M(T), and hence µ and HOMEO(T) generate univ M(T). The
measure µ and the group HOMEO(T) do not generate MEASpos,fin(T).

Proof. The above notation gives T = I1 ∪ I2 ∪ I3. Let Gi(T) = {h|Ii : h ∈
HOMEO(T;V fixed ), h[Ii] = Ii} for i = 1, 2, 3.As Gi(T) is HOMEO(Xi; ∂Ii fixed ),
the measure µ|Ii and the group Gi(T) generate univ M(Xi); Theorem 3.12 establishes
the first statement of the proposition. To establish the second statement consider the
measure ν = 1µ I1 + 2µ I2 + 3µ I3. The reader is asked to verify the second
statement with the aid of µ and ν. ✷

It is clear that the argument in the above proof will apply to the more general one-
dimensional finitely triangulable space |K1| (that is, roughly speaking, |K1| is formed
from a finite number of vertices and a finite number of arcs that join pairs of distinct
vertices with at most one arc joining such pairs; the higher dimensional case will be
defined later). The space |K1| need not be connected. Let |K0

1 | denote the collection
of all vertices of |K1|.

Theorem 3.22. Let |K1| be a one-dimensional finitely triangulable space. Then there
is a µ in MEASpos,fin(|K1|) such that µ and the group HOMEO(|K1|; |K0

1 | fixed )

generate univ M(|K1|). Hence the same µ and HOMEO(|K1|) also generate
univ M(|K1|).

A one-dimensional finitely triangulable space can be realized by vertices and
straight line segments in Rk for a sufficiently large k . The proof of the theorem
is left to the reader.

For a space X , the equivalence classes {h#µ : h ∈ HOMEO(X )} of the collection
MEASpos,fin(X ), where µ is in MEASpos,fin(X ), can be quite complicated. Let us
investigate these equivalence classes for some simple examples. We have already
determined them for the connected one-dimensional manifolds M1 and the sim-
ple triod T. That is, for M1, the equivalence classes are characterized by the pair
(µ, r) where µ is a measure in MEASpos,fin(M1) and µ(M1) = r. We leave the
description of the equivalence classes for the simple triod T as an exercise for
the reader.
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3.3.3. More examples. Up to now all of the examples in this chapter have been
locally connected. The next two examples are the usual connected but not locally
connected spaces.

Example (Graph of sin(1/x)). In the space R2, let X = X0 ∪ X1 where X0 =
{(x1, x2) : x1 = 0 , −1 ≤ x2 ≤ 1} and X1 is the graph of x2 = g(x1) = sin(1/x1),
where 0 < x1 ≤ π−1. As X is locally connected at x if and only if x ∈ X1, we
have h[X0] = X0 whenever h is in HOMEO(X ). Hence a necessary condition on µ

and ν to satisfy h#µ = ν is that µ(X0) = ν(X0) and µ(X1) = ν(X1). But this
condition is not sufficient as we shall show. Let p0 = ( 1

π
, 0

)
. The points of maximum

of the graph X1 will be listed as pi, i = 1, 2, . . . , where the first coordinates of the
sequence form a decreasing sequence in (0,π−1]. Denote by Ii the arc in X1 that
joins pi−1 to pi, i = 1, 2, . . . . Also, let Jk be the arc in X1 that joins

( 1
kπ

, 0
)
to( 1

(k+1)π
, 0

)
, k = 1, 2, . . . . Select positive, continuous, complete Borel measures µ

and ν on X such that µ(Ii) = 2−i and ν(Jk) = 2−k and µ(X0) = ν(X0) = 1. Then
An = ⋃n

i=1 Ii and Bn = ⋃n
k=1 Jk are arcs such that p0 is an end point of both An

and Bn and such that µ(An) = ν(Bn) = 1 − 2−n for each n. Suppose that h is a
homeomorphism in HOMEO(X ) such that ν = h#µ. Note that h−1[Bn] is a unique
arc inX1 that containsp0.As ν(Bn) = h#µ(Bn) = µ(h−1[Bn])wehaveAn = h−1[Bn],
whence Bn = h[An]. Consequently, h( pi) = ( 1

(i+1)π
, 0

)
. Hence h( pi) converges to

(0, 0) as i → ∞. But pi converges to (0, 1) and h
(
(0, 1)

)
is either (0, 1) or (0,−1).

A contradiction has appeared. Consequently, there are no h in HOMEO(X ) such that
ν = h#µ.

Example (Warsaw circle). The Warsaw circleW is a well-known example in topol-
ogy. It is a one-dimensional subset of R2 formed from the space X of the above
example by joining the points (0,−1) and (π−1, 0) with a topological arc X2 in R2

so that X ∩ X2 is precisely the set consisting of these two points. The space
W = X0 ∪ X1 ∪ X2 is the Warsaw circle. The above analysis of X can be adjusted to
apply to theWarsaw circle. Clearly, h[X0] = X0 and h[X1 ∪X2] = X1 ∪X2 whenever
h ∈ HOMEO(W ). Observe that a continuous, complete, finite Borel measure µ on
W is positive if and only if µ|(X1 ∪ X2) is positive.

We leave the proof of the following theorem as an exercise.

Theorem 3.23. LetW be theWarsaw circle. For somemeasureµ inMEASpos,fin(W ),
µ and HOMEO(W ) generate univ M(W ).

An analogous theorem holds for the sin(1/x) example above.

3.4. The Oxtoby–Ulam theorem

We have seen that the collection MEASpos,fin([0, 1]) of all positive, continu-
ous, complete, finite Borel measures on [0, 1] can be characterized by the group
HOMEO([0, 1]) and the Lebesgue measure λ on [0, 1]. Indeed, it was shown that the
equivalence classes of MEASpos,fin([0, 1]) are determined by the nonnegative real
numbers c (that is, c λ). The natural generalization of this fact to the unit n-cell [0, 1] n
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was proved by J. C. Oxtoby and S. M. Ulam in [122]. Rather than just cite the result
we include a proof for the benefit of the reader.

Theorem 3.24 (Oxtoby–Ulam). Let λ be the Lebesgue measure on the n-cell [0, 1] n.
In order for aBorelmeasureµ on [0, 1] n be such that there is an h inHOMEO([0, 1] n)
with µ = h#λ it is necessary and sufficient that

(1) µ be a positive, continuous, complete Borel measure,
(2) µ([0, 1] n) = 1,
(3) µ(∂[0, 1] n) = 0.

Moreover, the homeomorphism h may have the property that it is the identity map
on ∂[0, 1] n.

The proof will be divided into several parts. Before embarking on the proof let
us state a consequence of the Oxtoby–Ulam theorem for n-dimensional finitely
triangulable spaces.

Theorem 3.25. Let |Kn| be an n-dimensional finitely triangulable space. Then there
exists a measure µ in MEASpos,fin(|Kn|) such that µ and HOMEO(|Kn|) generate
univ M(|Kn|).

We shall first prove the Oxtoby–Ulam theorem, delaying the proof of this con-
sequence to the end of the section. The definition of a finite-dimensional finitely
triangulable space is also delayed to the end of this section (see the footnote on
page 72).

3.4.1. Profs of the Oxtoby–Ulam theorem. The literature contains two proofs of
the Oxtoby–Ulam theorem. They are essentially the same since both rely on the same
key lemma concerning the existence of a homeomorphism that possesses a special
property. The fact is that the two proofs of the key lemma are very different. The orig-
inal proof by Oxtoby and Ulam relies on a complete metric on HOMEO([0, 1] n) and
the Baire category theorem, and the subsequent proof by C. Goffman and G. Pedrick
[63] relies on a measure theoretic property of σ -finite Borel measures on Rn. We shall
give both proofs of the key lemma.

It is time to state the key Lemma 3.26. Observe that the universally positive closure
FM (M ) of an n-dimensional manifold isM . We shall call a measure µ on a compact,
connected manifold M (with or without boundary) Lebesgue-like if µ is a positive,
continuous, complete, finite Borel measure on M with µ(∂M ) = 0.

Lemma 3.26. For an m-cell J let µ be a Lebesgue-like Borel measure on I =
J × [−1, 1] and let α1 and α2 be positive numbers such that α1 + α2 = µ(I).
Then there is a ϕ in HOMEO(I ; ∂I fixed ) such that ϕ#µ is Lebesgue-like on
both R1 = J × [−1, 0] and R2 = J × [0, 1] and such that ϕ#µ(R1) = α1 and
ϕ#µ(R2) = α2.

We begin with the proof by Goffman and Pedrick. The proof uses a “parallel slicing
lemma” for continuous, σ -finite Borel measures µ on Rn (proved by Goffman and
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Pedrick in [63, Lemma 1]) which assures that every slice parallel to some fixed
hyperplane has µ measure equal to 0. (See also [62].)

A hyperplane E of Rn is the set of all solutions of the equation 〈x − b , e〉 = 0,
where e is in the unit sphere Sn−1 and b is in Rn, and 〈 · , · 〉 is the usual inner prod-
uct of Rn. The vector e is, of course, a unit normal vector of the hyperplane E.
By a k-flat we mean a nonempty intersection of n − k hyperplanes whose nor-
mals are linearly independent. Each k-flat determines a family consisting of all
hyperplanes that contains the k-flat. This family yields a set of unit normals that
forms a closed nowhere dense subset of Sn−1 whose (n − 1)-dimensional Hausdorff
measure is 0.

For a finite Borelmeasureµ onRn (not necessarily continuous) and for each integer
k with 0 < k < n let Fk be the collection of all k-flats F such that µ(F) > 0 and such
that F contains no j-flats with positive µ measure with j < k . It is easily seen that F1

is a countable set. Indeed, let us assume the contrary. Then there is an uncountably
infinite number of 1-flats F with the property that µ(F) > 0 and µ({ p}) = 0 for
each p in F . Clearly we may assume that there is a positive number ε with µ(F) ≥ ε

for these uncountably many 1-flats F . Now select a sequence Fm, m = 1, 2, . . . , of
distinct members from this collection. Clearly, µ(Fm ∩ ⋃

j<m Fj) = 0 for each m. So
we have m ε ≤ µ(

⋃
j≤m Fj) ≤ µ(Rn) < ∞ for each m, a contradiction. Analogously

one can show that each Fk is a countable set. Let Fµ = ⋃n−1
j=1 Fj . Then, by the Baire

category theorem, the set

Eµ = ⋃
F∈Fµ

{e ∈ Sn−1 : e is normal to F}

is of the first Baire category in Sn−1. It is easily seen that Hn−1(Eµ) = 0, also. We
have the following lemma.

Lemma 3.27. If µ is a continuous, σ -finite Borel measure on Rn, then, except for
points e in a subset Eµ of the first Baire category in Sn−1 with Hn−1(Eµ) = 0,

µ(E) = 0 for every hyperplane E for which e is a normal.

Proof. First assume that µ is finite and let e ∈ Sn−1 \Eµ. Suppose that µ(E) > 0 for
some hyperplane E with e as its normal. From e ∈ Sn−1 \ Eµ we infer E /∈ Fn−1. Let
En−2 be an (n − 2)-flat contained in E such that some j-flat contained in En−2 has
positive µ measure, where j < n− 1. Clearly En−2 is not in Fn−2 since e is a normal
to En−2 and e /∈ Eµ. After finitely many steps we will get a 1-flat E1 contained in E
such that some 0-flat ofE1 has positivemeasure. This shows thatµ is not a continuous
measure. Hence, if µ is a continuous, finite Borel measure and e ∈ Sn−1 \ Eµ, then
µ(E) = 0 for every hyperplane E whose normal is e. Moreover, Eµ is a set of first
Baire category in Sn−1 with Hn−1(Eµ) = 0.

For a σ -finite measure µ, write µ as a sum
∑∞

m=1 µm, where the summands are
finite measures. Then E = ⋃∞

m=1 Eµm is a subset of the first Baire category of Sn−1

with Hn−1(E) = 0. If e is in Sn−1 \ E and E is a hyperplane with normal e, then
µ(E) = ∑∞

m=1 µm(E) = 0. This completes the proof. ✷
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TheGoffman–Pedrick construction of a homeomorphismwith certain special prop-
erties uses the following simple observations. Let I = J × [−1, 1], where J is a
Cartesian product of m intervals. We begin with a continuous function f : J → [0, 1)

that satisfies f (u) = 0 if and only if u ∈ ∂J . Then u �→ (
f (u)

)r
, where u ∈ J

and 0 < r, is a one-parameter family of continuous functions on J such that

graph( f s) ∩ graph( f t) = ∂J whenever s �= t.

Also, for each positive number ε and for each ν in MEASpos,fin(I), there is a t0 and
an s0 such that the sets

M1 = {(x, y) ∈ I : y ≤ −f t0(x)} and M2 = {(x, y) ∈ I : f s0(x) ≤ y}

satisfy ν(M1) < ε and ν(M2) < ε and such that

ν(graph(−f t0)) = ν(graph( f s0)) = 0.

Let us go to the Goffman–Pedrick proof.

Goffman–Pedrick Proof of Lemma 3.26. Let f1 : J → [0, 1) be a continuous func-
tion such that M1 = {(x, y) ∈ I : y ≤ −f1(x)} satisfies µ(M1) < α1/2. By
means of continuous piecewise linear maps on the line segments {x} × [−1, 1]
that map −1, −f1(x) and 1 respectively to −1, 0 and 1, one can construct a ψ1

in HOMEO(I , ∂I fixed ). We then have ψ1#µ(R1) < α1/2.
Let f2 : J → [0, 1) be a continuous function whose graph satisfies

ψ1#µ(graph( f2)) = 0 and is such that M2 = {(x, y) ∈ I : y ≤ f2(x)} satisfies
ψ1#µ(M2) > α1. Select next a positive number y0 such thatψ1#µ(J×[−1, y0]) < α1,
and let y1 = max{f2(x) : x ∈ J }. Obviously, 0 < y0 < y1 < 1. In view of Lemma 3.27
there is a unit normal e in Rm+1 such that some hyperplane H0 with normal e sepa-
rates J × [−1, 0] and J × [ y0, 1], and some hyperplane H1 with normal e separates
J × [−1, y1] and J × {1}, and every hyperplane with normal e intersects I with
ψ1#µ measure equal to 0.

For the above unit normal e in Rm+1 let ht : Rm → R be a linear function such
that e is normal to graph(ht) and ht(0) = t for each t in R. There is a t0 such that
graph(ht0) = H0, and there is a t1 such that graph(ht1) = H1. The map

t �→ ψ1#µ({(u, v) ∈ I : 0 ≤ v ≤ ht ∧ f2(u)}), t0 ≤ t ≤ t1,

is a continuous function whose value at t0 is less than α1 and whose value at t1 is
greater than α1. Consequently there is a continuous function g : J → [0, 1) such
that g(u) = 0 if and only if u ∈ ∂J , and ψ1#µ({(u, v) ∈ I : 0 ≤ v ≤ g(u)}) = α1, and
ψ1#µ(graph( g)) = 0. In a manner similar to the construction of ψ1 we can construct
a ψ2 in HOMEO(I ; ∂I fixed ) such that

ψ2
−1[R1] = {(u, v) ∈ I : 0 ≤ v ≤ g(u)}
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and

ψ2
−1[J × {0}] = graph( g).

Hence (ψ2ψ1)#µ(R1) = α1 and (ψ2ψ1)#µ(J×{0}) = 0. The compositionϕ = ψ2ψ1

clearly satisfies ϕ ∈ HOMEO(I ; ∂I fixed ), ϕ#µ(R1) = α1 and ϕ#µ(R2) = α2. ✷

We give next the Oxtoby–Ulam proof of the key Lemma 3.26. Their proof contains
the germ of the proof of Lemma 3.46 due to J. C. Oxtoby and V. S. Prasad [121]
which allows the extension of the Oxtoby–Ulam theorem to the Hilbert cube [0, 1]N,
the subject of Section 3.6.

As stated earlier, the Oxtoby–Ulam proof relies on the Baire category theo-
rem applied to a suitable nonempty complete metric space H that contains the
collection

F = {g ∈ HOMEO(I ; ∂I fixed ) : g#µ(R1) = α1, g#µ(R2) = α2}

as a denseGδ subset. Recall that every nonempty closed subspace of a completemetric
space is complete.We have shown earlier that themap g �→ g#µ(X ) is an upper semi-
continuous function on the complete metric space HOMEO(I ; ∂I fixed ) whenever
X is a closed subset of I . Hence a suitable closed subspace of HOMEO(I ; ∂I fixed )

that contains F is

H = {g ∈ HOMEO(I ; ∂I fixed ) : g#µ(R1) ≥ α1}
∩ {g ∈ HOMEO(I ; ∂I fixed ) : g#µ(R2) ≥ α2}.

Since it is not immediate that H is not empty, we shall show in the next paragraph the
existence of an element in H. It is interesting that this proof of existence does not use
the Baire category theorem. Observe that

F = H \ ⋃ 2
i=1

⋃∞
n=1

{
g ∈ HOMEO(I ; ∂I fixed ) : g#µ(Ri) ≥ αi + 1

n

}
and that every set

Hin = {
g ∈ HOMEO(I ; ∂I fixed ) : g#µ(Ri) ≥ αi + 1

n

}
is closed in HOMEO(I ; ∂I fixed ). Hence the Baire category theorem will apply after
we show that H ∩ Hin is nowhere dense in the space H.

To show that H is nonempty, first note that if both µ(R1) < α1 and µ(R2) < α2

fail then the identity map is in H. So assume µ(R1) < α1. As in the Goffman–Pedrick
proof, select a continuous function f : J → [0, 1) such that f (x) > 0 if and only if
x /∈ ∂J . For each positive number t define the two sets

At = {(x, y) ∈ I : − 1 ≤ y ≤ f t(x)},
Bt = {(x, y) ∈ I : f t(x) ≤ y ≤ 1}.
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There is a ψt in HOMEO(I ; ∂I fixed ) such that ψt
−1[R1] = At and ψt

−1[R2] = Bt .
As At ⊃ R1 and Bt ⊂ R2 we have

ψs
−1[R1] ⊃ ψt

−1[R1] ⊃ R1 whenever 0 < s < t, (3.4)

ψt
−1[R2] ⊂ ψs

−1[R2] ⊂ R2 whenever 0 < s < t. (3.5)

The strictly decreasing function t �→ ψt#µ(R1) converges to µ(R1) as t → ∞ and
converges to µ(I) as t → 0. From equation (3.4), it is continuous from the left,
and also {s : ψs#µ(R1) ≥ α1} is equal to (0, s0] for some real number s0 because
α1 > µ(R1). Hence ψs0#µ(R1) ≥ α1. Let t > s0. Then α1 > ψt#µ(R1). From
equation (3.5) we have ψt#µ(R2) ≤ ψs0#µ(R2). Hence

α1 + α2 = ψt#µ(I) ≤ ψt#µ(R1) + ψt#µ(R2)

≤ ψt#µ(R1) + ψs0#µ(R2).

Consequently, α2 ≤ ψs0#µ(R2) as well as α1 ≤ ψs0#µ(R1). Thereby we have shown
that g = ψs0 is inH ifµ(R1) < α1.Asimilar argument applies to the caseµ(R2) < α2,
hence H �= ∅.

First, a preliminary lemma is needed for the Oxtoby–Ulam proof of the key lemma.

Lemma 3.28. Let µ be a continuous, finite Borel measure on a compact metrizable
space X , let 0 ≤ α < β ≤ µ(X ) be given, and let F be a closed set with µ(F) = 0.
Then there exists an open set G such that G ∩ F = ∅ and α < µ(G) < β.

Proof. As µ is continuous, each point x of X \ F has an open neighborhood Ux with
µ(Ux) < β − α and Ux ∩ F = ∅. Let K be a compact set such that K ∩ F = ∅ and
µ(K) > α. The above open cover ofX \F contains a finite open coverU1,U2, …,Um

of K . Let Gi = ⋃
j≤i Uj . There is no loss in assuming Ui \ ⋃

j<i Uj �= ∅ for every i.
Let k be such thatµ(Gk ) > α andµ(Gk−1) ≤ α. Thenµ(Gk) ≤ µ(Gk−1)+µ(Uk) <

α + (β − α) = β. The open set Gk fulfills the requirement of the lemma. ✷

Oxtoby–Ulam Proof of Lemma 3.26. It remains to be shown that Hin ∩ H is closed
and nowhere dense in H. As we already know that Hin is a closed subset of
HOMEO(I ; ∂I fixed ), we need to show that H \ Hin is a dense in H. We consider
the case i = 1. Let g ∈ H1n ∩ H and 0 < ε < 1. We seek a g′ in H \ H1n such
that ρ( g′, g) < ε. To this end, observe that g ∈ H1n ∩ H implies

g#µ(R1) ≥ α1 + 1
n and g#µ(R1) − α1 ≤ g#µ(J × {0}),

where the second inequality holds because of the identity

α1 + α2 = g#µ(R1) + g#µ(R2) − g#µ(J × {0})

and because g ∈ H yields g#µ(R1) ≥ α1 and g#µ(R2) ≥ α2. By Lemma 3.28
applied to g#µ|(J × {0}) with F = (∂J ) × {0}, α = g#µ(R1) − α1 − 1

n and
β = g#µ(R1) − α1, there is a set G that is open relative to J × {0} such that
G ∩ F = ∅ and α < g#µ(G) < β. With η = min{ε,ω( g : ε)}, where ω is the
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modulus of uniform continuity, select a continuous function f : J × {0} → [0, η/2]
such that f (x) = 0 if and only if x ∈ J × {0} \ G. For each x in J × {0} and for
each δ with 0 < δ ≤ 1, let l

δ (x, · ) be a continuous linear function that respec-
tively maps the intervals [−1,−f (x)], [−f (x),−δf (x)], [−δf (x), f (x)], and [f (x), 1]
onto the intervals [−1,−f (x)], [−f (x), 0], [0, f (x)], and [f (x), 1]. These maps lδ (x, ·)
define a homeomorphism hδ

(x, t) = (x, l
δ
(x, t)) of I onto I such that h

δ
is fixed

on ∂I ∪ {(x, t) ∈ J × [−1, 1] : (x, 0) /∈ G}. Observe that hδ

−1[R2] ⊃ R2, and⋃
0<δ≤1 hδ

−1[R1] = R1 \ G. We now have (h
δ
g)#µ(R2) ≥ g#µ(R2) ≥ α2 and

α1 + 1
n > limδ→0(hδg)#µ(R1) = g#µ(R1) − g#µ(G) > α1. Select a δ such that

g′ = h
δ
g satisfies α1 < g′

#µ(R1) < α1 + 1
n . We have g′ ∈ H, ρ( g′, g) < ε,

and g′ is in the open subset {f ∈ HOMEO(I ; ∂I fixed ) : f#µ(R1) < α1 + 1
n }

of HOMEO(I ; ∂I fixed ). Hence H1n ∩ H is nowhere dense in H. To prove the
same for H2n, use the isometry ϕ defined by the map (x, t) �→ (x,−t) for (x, t)
in J × [−1, 1]. ✷

This concludes the two very different proofs of the key Lemma 3.26. We turn to
the remainder of the proof of the Oxtoby–Ulam theorem that results from the key
lemma.

Sometimes it will be convenient to work with n-cells. By an n-cell subdivision P
of an n-cell X we mean a finite collection of nonoverlapping compact subsets σ of X
that are n-cells such that the union of the members of P is X . As usual, two subsets A
and B of X are said to be nonoverlapping if IntX (A) ∩ IntX (B) = ∅, where IntX is
the usual interior operator in the topological space X . If P is an n-cell subdivision of
an n-cell X , then the mesh of P is defined to be

mesh(P) = max{diam( σ ) : σ ∈ P}.

An n-cell subdivision P ′ of X is said to refine an n-cell subdivision P of X if each
member of P ′ is contained in some member of P .

By a rectangular subdivision P of an an n-cell I = Xn
i=1[ai, bi] we mean an

n-cell subdivision of I whose members are n-dimensional rectangles with edges that
are parallel to the coordinate axes of I . The collection of all end-points of the i-th
intervals that form the subdivision P can be used to construct another rectangular
subdivision P ′ of I that refines P . Let P ′(σ ) be the collection of those σ ′ in P ′ that
are contained in σ whenever σ ∈ P .

Here is an elementary construction. With n > 1 let I n be the Cartesian prod-
uct of I = [0, 1]. Let xi,j , j = 0, 1, . . . , k , be partition points of the i-th coordinate
interval I of In. The coordinate hyperplanes of Rn determined by these partition
points will form a rectangular subdivision of In, which we will denote by P . Let µ

and ν be Lebesgue-like Borel measures on I n such that µ(I n) = ν(In). We select
the partition points of the coordinate intervals I in such a way that ν(∂σ ) = 0 for
every σ in P . Repeated applications of the key lemma, one coordinate hyper-
plane at a time, will lead to a homeomorphism ϕ in HOMEO(In; ∂I n fixed ) such
that (ϕ#µ)|σ is Lebesgue-like on σ and ϕ#µ(σ) = ν(σ ) whenever σ ∈ P . A note
of caution: the subdivision ϕ−1[P] = {ϕ−1[σ ] : σ ∈ P} need not be a rectangular
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subdivision of I n. This is not of concern since it is the fact that P is a rectangular
subdivision that matters. The next proposition follows easily from this elementary
construction.

Proposition 3.29. For ε > 0 and Lebesgue-like Borel measures µ and ν on an n-
dimensional rectangle X with µ(X ) = ν(X ), there is a rectangular subdivision P of
X and a ϕ in HOMEO(X ; ∂X fixed ) such that

(1) mesh(P) < ε,
(2) (ϕ#µ)|σ and ν|σ are Lebesgue-like on σ whenever σ ∈ P ,
(3) ϕ#µ(σ) = ν(σ ) whenever σ ∈ P .

Proof. It will be convenient to work with the n-cell I n. So let ϑ : X → I n be a linear
homeomorphism. Consider the Lebesgue-like Borel measures ϑ#µ and ϑ#ν on I n. If
P ′ is a rectangular subdivision of In, then P = ϑ−1[P ′] is a rectangular subdivision
of X whose mesh will be small if mesh(P ′) is sufficiently small. From the previous
paragraph we can construct a rectangular subdivision P ′ with mesh(P ′) < ε and a
homeomorphism ϕ′ of In such that, for each σ ′ in P ′, (ϕ′

#ϑ#µ)|σ ′ and (ϑ#ν)|σ ′ are
Lebesgue-like on σ ′ and ϕ′

#ϑ#µ(σ ′) = ϑ#ν(σ ′), and such that ϕ′(x) = x whenever
x ∈ ∂I n. Then ϕ = ϑ−1ϕ′ϑ is in HOMEO(X ) and P = ϑ−1[P ′] is a rectangular
subdivision of X such that (ϕ#µ)|σ and ν|σ are Lebesgue-like on σ and ϕ#µ(σ) =
ν(σ ) for each σ in P and such that ϕ(x) = x whenever x ∈ ∂X . ✷

Note that the n-cell subdivision ϕ−1[P] need not have small mesh. Our final lemma
for the proof of the Oxtoby–Ulam theorem overcomes this deficiency. The following
property will facilitate the statement of the lemma. A pair µ and ν of Lebesgue-like
Borel measures on an n-cell X and an n-cell subdivision P of X are said to satisfy
the property P(µ, ν ;P) if µ(σ) = ν(σ ) and µ(∂σ) = ν(∂σ ) = 0 whenever σ ∈ P .
Observe the following: P(µ, ν ;P) if and only if P(ν,µ ;P), and P(ϕ#µ, ν ;P) if and
only if P(µ,ϕ−1

#ν ;ϕ−1[P]) whenever ϕ is in HOMEO(X ).

Lemma 3.30. Suppose that µ and ν are Lebesgue-like Borel measures on an
n-dimensional rectangle X and P is a rectangular subdivision of X . If µ, ν and P
satisfy P(µ, ν ;P) and if ε > 0, then there is a ϕ in HOMEO(X ) and a rectangular
subdivision P ′ of X such that ϕ#µ, ν and P ′ satisfy P(ϕ#µ, ν ;P ′) and

(1) ϕ|σ ∈ HOMEO(σ ; ∂σ fixed ) whenever σ ∈ P ,
(2) P ′ refines P ,
(3) mesh(P ′) < ε.

Proof. After applying the last proposition to each σ inP , we have aϕ inHOMEO(X )

and a rectangular subdivision P ′ of X such that P(ϕ#µ, ν ;P ′) is satisfied, ϕ|σ ∈
HOMEO(σ ; ∂σ fixed ) whenever σ ∈ P , mesh(P ′) < ε, and P ′ refines P . ✷

Proof of the Oxtoby–Ulam Theorem. Let µ satisfy the three conditions given in
the Oxtoby–Ulam Theorem 3.24. We shall inductively construct two sequences
of homeomorphisms ϕj, ψj , j = 1, 2, . . . , and two sequences of rectangular
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subdivisions Pj, P ′
j , j = 1, 2, . . . , of I n. The following diagram indicates the steps of

the construction.

P(�j#µ,�( j−1)#λ;Pj) =⇒ P(�j#µ,�j#λ;P ′
j ) =⇒

P(�( j+1)#µ,�j#λ;Pj+1) =⇒ P(�( j+1)#µ,�( j+1)#λ;P ′
j+1),

for j = 1, 2, . . . , where �0 = id, P ′
0 is undefined, and

(1) �j = ϕjϕj−1 · · ·ϕ1 and mesh(Pj) < 2−j,
(2) �j = ψjψj−1 · · ·ψ1 and mesh(P ′

j ) < 2−j,
(3) ϕj|σ ′ ∈ HOMEO(σ ′; ∂σ ′ fixed ) whenever σ ′ ∈ P ′

j−1,
(4) ψj|σ ∈ HOMEO(σ ; ∂σ fixed ) whenever σ ∈ Pj ,
(5) mesh(�j

−1[P ′
j ]) < 2−j ,

(6) mesh(�j−1
−1[Pj]) < 2−j ,

(7) P ′
j refines Pj ,

(8) Pj refines P ′
j−1.

By the above lemma, with µ, ν = λ, P = {In} and ε = 2−1, we have a
ϕ1 in HOMEO(In; ∂I n fixed ) and a rectangular subdivision P1 that satisfy
P(�1#µ,�0#λ;P1) as well as mesh(P1) < 2−1. Conditions (1), (3) and (8) are
satisfied for j = 1, thus the first step for j = 1 is completed. We still need to get ψ1

and P ′
1 to verify conditions (2), (4), (5) and (7) for j = 1, which is the second step. To

this end we begin by selecting a positive number δ1 such that the modulus of uniform
continuity of �1

−1 satisfies ω(�1
−1 : δ1) < 2−1. We may assume δ1 < 2−1, also.

Then, in the lemma, use �1#µ for µ, ν = �0#λ, ε = δ1 and P = P1. Then there
is a ψ1 and a rectangular subdivision P ′

1 that satisfies P(�1#µ,�1#λ;P ′
1) as well as

mesh(P ′
1) < 2−1, whence condition (2) is satisfied for j = 1. Also conditions (4),

(5), (6) and (7) are satisfied for j = 1; hence all the conditions are satisfied for
j = 1. Finally we shall indicate only the third and fourth steps since the inductive
construction is clear from the steps two, three and four. For the third step, we select
a positive number δ′

1 with δ′
1 < 2−2 such that the modulus of uniform continuity of

�1
−1 satisfies ω(�1

−1 : δ′
1) < 2−2. Then, in the lemma, let �1#µ be µ, �1#ν be ν,

ε = δ′
1 and P = P ′

1. Then there is a ϕ2 and a rectangular subdivision P2 that satisfies
P(�2#µ,�1#λ;P2) as well as mesh(P2) < δ′

1, and P2 refines P ′
1. Condition (1) is

satisfied for j = 2. Also conditions (3), (6) and (8) are satisfied for j = 2. We still
must construct ψ2 and P ′

2, which is the fourth step. This is achieved by applying the
second of the four steps again. Then conditions (2), (4), (5) and (7) are satisfied for
j = 2. Hence all the conditions are satisfied for j = 2.

It is easily seen that �j(x) = x and �j(x) = x whenever x ∈ ∂In. One must verify,
as indicated in the diagram, that the sequences �j and �j, j = 1, 2, . . . , are con-
vergent in HOMEO(In; ∂I n fixed ). To this end let us show that �j , j = 1, 2, . . . ,
is a Cauchy sequence. We compute an upper bound for d(�j+1(x),�j(x)) =
d(ϕj+1(x′), x′), where x′ = �j(x). From conditions (3) and (7) of the construc-
tion, we have that ϕj+1|σ ′

j is in HOMEO(σ ′
j ; ∂σ ′

j fixed ) whenever σ ′
j is in P ′

j , and
that Pj+1 refines P ′

j . There is a σj+1 in Pj+1 and there is a σ ′
j in P ′

j such that
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ϕj+1(x′) ∈ σj+1 ⊂ σ ′
j = ϕj+1

−1[σ ′
j ], whence x′ is also in σ ′

j ; that is,

for each x in I n, {x,ϕj+1(x)} ⊂ σ ′
j for some σ ′

j in P ′
j . (3.6)

So d(ϕj+1(x′), x′) ≤ diam(σ ′
j ) ≤ mesh(P ′

j ) < 2−j; consequently we have

‖�j+1�j
−1‖ < 2−j . Next, consider

d(�j+1
−1(x),�j

−1(x)) = d(�j
−1(ϕj+1

−1(x)),�j
−1(x)).

The statement displayed in (3.6) above and conditions (3) and (5) of the construc-
tion yield d(�j+1

−1(x),�j
−1(x)) ≤ mesh(�j

−1[P ′
j ]) < 2−j; thereby we have

‖�j+1
−1�j‖ < 2−j. So ρ(�j+1,�j) < 2−j+1 for every j. Denote by � the limit

of this Cauchy sequence. An analogous computation will show that �j , j = 1, 2, . . . ,
is a Cauchy sequence. We denote its limit by �.

Let us show �#µ = �#λ. To this end let k < j and let σk ∈ Pk . From conditions
(7) and (8) of the construction we have

�j#µ(σk) = �k#µ(σk) = �(k−1)#λ(σk) = �j#λ(σk ),

�j#µ(∂σk) = �k#µ(∂σk ) = �(k−1)#λ(∂σk ) = �j#λ(∂σk) = 0,

and hence
�#µ(E) = �#λ(E) whenever Int(σk) ⊂ E ⊂ σk .

LetF = ⋃∞
j=1 Pj . From conditions (7) and (8)we infer�#µ(E) = �#λ(E)whenever

E is the union of a countable subset of F because the equality holds for the union of
finite subsets of F . Observe that for each x and each open set V with x ∈ V there is
a σ in F such that x ∈ σ ⊂ V . So each open set U is the union of a countable subset
of F , whence �#µ(U ) = �#λ(U ). Thereby �#µ = �#λ follows.

As µ = (�−1�)#λ and �−1� ∈ HOMEO(In; ∂I n fixed ), the proof of the
Oxtoby–Ulam theorem is completed. ✷

Of course there is the following topological n-cell version of the Oxtoby–Ulam
theorem whose proof is left to the reader.

Theorem 3.31. Let X be a topological n-cell. If µ and ν are Lebesgue-like measures
on X with µ(X ) = ν(X ), then there is an h in HOMEO(X ; ∂X fixed ) such that
µ = h#ν. Also, if ν is Lebesgue-like on X and there is an h in HOMEO(X ) such that
µ = h#ν, then µ is Lebesgue-like on X .

Other consequences of the Oxtoby–Ulam theorem are the following three lemmas.

Lemma 3.32. Let X be a topological n-cell and µ be a Lebesgue-like measure on X .
If F is a nowhere dense closed subset of X and δ is a positive number, then there is
an h in HOMEO(X ; ∂X fixed ) such that h#µ(F) = 0 and ρ(h, id) < δ.

Proof. There is no loss in assuming X is [0, 1] n. Let P be a rectangular subdi-
vision of X with µ(∂σ) = 0 for each σ in P . Let X0 = ⋃

σ∈P ∂σ and ν =∑
σ∈P

µ(σ)
µ(σ\F)

µ (σ \ F). Obviously ν(F) = 0. Observe that ν|σ and µ|σ are
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Lebesgue-like measures on σ such that ν(σ ) = µ(σ) for every σ in P . Applying the
above theorem to µ|σ and ν|σ for each σ in P , we infer from Proposition 3.9 that
there is an h in HOMEO(X ;X0 fixed ) such that ν = h#µ and ρ(h, id) ≤ mesh(P).
Such a subdivision P with mesh(P) < δ clearly exists. ✷

Lemma 3.33. With I = [0, 1] n let µ be a positive, continuous, complete, finite Borel
measure on I . Then a subset E of I \ ∂I is an absolute measurable space if and only
if h−1[E] ∩ ∂I = ∅ and h−1[E] ∈ M(I ,µ) whenever h ∈ HOMEO(I ; ∂I fixed ).

Proof. Suppose that E is an absolute measurable space contained in I \ ∂I . Then
h−1[E] is an absolutemeasurable spacewhenever h is inHOMEO(I). Hence h−1[E]∩
∂I = ∅ and h−1[E] ∈ M(I ,µ) whenever h ∈ HOMEO(I ; ∂I fixed ).

To prove the converse, let E be such that h−1[E] satisfies the conditions of the
lemma. Let ν be a positive, continuous, complete, finite Borel measure on I . Then
ν ′ = ν (I\∂I) andµ′ = µ (I\∂I) are Lebesgue-likemeasures on I . By theOxtoby–
Ulam theorem there is a positive number k and an h in HOMEO(I ; ∂I fixed ) such
that k ν′ = h#µ′. As h−1[E] ∈ M(I ,µ), we have that E is (h#µ)-measurable, whence
E ∈ M(I , ν′). Since E ⊂ I \ ∂I , we have E ∈ M(I , ν) and thereby E ∈ univ M(I).
Since I is an absolutemeasurable space, we have thatE is also an absolutemeasurable
space. ✷

Lemma 3.34. For n > 1, let Bn be the unit ball {x ∈ Rn : ‖x‖2 ≤ 1} and let Sn−1

be its surface {x ∈ Rn : ‖x‖2 = 1}. Denote by F that part of Sn−1 defined by
{x ∈ Sn−1 : x1 ≤ 0}. Let µ be a positive, continuous, complete, finite Borel measure
on Bn such that µ|Sn−1 is a positive, continuous, complete, finite Borel measure
on Sn−1. Then a subset E of Bn \ F is an absolute measurable space if and only if
h−1[E] ∩ F = ∅ and h−1[E] ∈ M(Bn,µ) whenever h is in HOMEO(Bn;F fixed ).

Proof. Let E be an absolute measurable space contained in Bn \ F . As h−1[E] is an
absolute measurable space whenever h ∈ HOMEO(Bn), we have h−1[E] ∩ F = ∅
and h−1[E] ∈ M(Bn,µ) whenever h is in HOMEO(Bn;F fixed ).

For the converse, let us consider the two cases: E ⊂ Sn−1 \ F and E ∩ Sn−1 = ∅.
In the first case, let E be a subset of Sn−1 \ F such that h−1[E] ∩ F = ∅ and
h−1[E] ∈ M(Bn,µ) whenever h is in HOMEO(Bn;F fixed ). Since ClBn

(
Sn−1 \

F
) = {x ∈ Sn−1 : x1 ≥ 0} we see that I = ClBn

(
Sn−1 \ F)

is an (n− 1)-cell and that
∂I = {x ∈ Sn−1 : x1 = 0}. Clearly, every g in HOMEO(I ; ∂I fixed ) has an extension
h in HOMEO(Bn;F fixed ). For such an extension we have g−1[E] = h−1[E]. As
M(I ,µ|I) ⊂ M(Bn,µ), the preceding lemma shows thatE is an absolute measurable
space that is contained inBn\F , and the first case is shown. In the second case, letE be
a subset ofBn\Sn−1 such that h−1[E]∩F = ∅ and h−1[E] ∈ M(Bn,µ)whenever h is
in HOMEO(Bn;F fixed ). As HOMEO(Bn;Sn−1 fixed ) ⊂ HOMEO(Bn;F fixed ),
we have that h−1[E] is in M(Bn,µ) whenever h fixes Sn−1. Hence E is an absolute
measurable space that is contained in Bn \ Sn−1.

Now let E be such that h−1[E] ⊂ Bn \ F and h−1[E] ∈ M(Bn,µ) whenever
h ∈ HOMEO(Bn;F fixed ). Then E ∩ Sn−1 and E \ Sn are absolute measurable
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spaces, whence E is an absolute measurable space contained in Bn \ F and thereby
the converse is proved. ✷

Proof of Theorem 3.25. The proof is by induction on the dimension of the
n-dimensional finitely triangulable space (such a space is homeomorphic to a sub-
space of an N -simplex4 �N ). By definition, |Kn| is the union of a finite collection
Kn = {Smj : j = 1, 2, . . . , jm,m ≤ n}, where Sm are m-simplices. The subcollection
of all m-simplices in Kn whose dimensions do not exceed k is denoted by Kk

n and is
called the k-dimensional subcomplex of Kn. So K0

n is the collection of all vertices of
Kn.

We give the proof for n = 2; the proof of the inductive step is easily modeled after
this proof. Let us apply Theorem 3.12. Define X = |K2|, X0 = |K0

2 |, X1 = |K1
2 |,

and X2j = S j
2 \ ∂S j

2 for j = 1, 2, . . . , j2. Then, by Theorem 3.22 applied to X1,
there is a positive, continuous, complete, finite Borel measure ν1 on X1 such that ν1

and HOMEO(X1;X0 fixed ) generate univ M(X1). Observe that ϕ′[∂S2] = ∂S2 for
every ϕ′ in HOMEO1(X1;X0 fixed ) whenever S2 is a 2-simplex in K2. As S2 is
convex, each ϕ′ in HOMEO(X1;X0 fixed ) can be extended to a homeomorphism in
HOMEO(X ;X0 fixed ), call it ϕ. Hence we have

G1(X ) = {ϕ|X1 : ϕ ∈ HOMEO(X ;X0 fixed ),ϕ[X1] = X1}
= HOMEO(X1;X0 fixed ).

As S j
2 \ ∂S j

2 was defined to be X2j and each ϕ′ in HOMEO(S j
2 ; ∂S

j
2 fixed ) has an

extension ϕ in HOMEO(X ;X0 fixed ), we also have, for j = 1, 2, . . . , j2 ,

G2j(X ) = {ϕ|X2j : ϕ ∈ HOMEO(X ;X0 fixed ),ϕ[X2j] = X2j}
⊃ G′

2j(X ) = {ϕ′|X2j : ϕ′ ∈ HOMEO(S j
2 ; ∂S

j
2 fixed )}.

By Lemma 3.33 and the topological n-cell version of the Oxtoby–Ulam theorem there
is a positive, continuous, complete, finite Borel measure ν2j on X2j such that ν2j and

G′
2j(X ) generate univ M(X2j). Let µ = g1#ν1 + ∑ j2

j=1 g2j#ν2j, where g1 and g2j are
the obvious inclusion maps. Then, by Proposition 3.14 and Theorem 3.12, we have µ

and HOMEO(X ;X0 fixed ) generate univ M(X ). We leave the proof of the inductive
step to the reader. ✷

4 By an N-simplex �N wemean the convex hull (in the Euclidean vector space R
N+1) of theN +1 points

vi whose (i+ 1)-coordinate is 1 and the remaining coordinates are all 0, i = 0, 1, . . . ,N . The points v0,
v1, …, vN are called the vertices of �N . A q-face of �N is the convex hull of q + 1 distinct vertices
of �N . Also, a face will be referred to as a simplex. A simplicial complex K is a collection of faces
of �N satisfying the condition that every face of a simplex in the collection is likewise in the collection.
A subcollection L of a complex K is called a subcomplex of K whenever L is also a complex. The space
|K | of K is the subset of �N consisting of those points which belong to simplexes of K . A simplicial
complex K is said to be n-dimensional provided K contains an n-simplex but no (n+ 1)-simplex. These
definitions are modeled after those in [49, pages 54–60]. Note that the simplexes in these definitions are
compact; in definitions found in other books, say [79, pages 67–68], q-faces Sq do not contain the points
in ∂Sq for q > 0, that is, they are ‘open’ faces. A triangulable space X is one that is homeomorphic to
|K | for some simplicial complex K ; K is called a triangulation of X .



3.5. n-dimensional manifolds 73

A sharper result holds for the n-sphere Sn = {x ∈ Rn+1 : ‖x‖ = 1}. The methods
of proofs for the 1-sphere used in Lemma 3.19 and in the succeeding paragraph can
be used here also.

Lemma 3.35. Hn|Sn and the group HOMEO(Sn), where Hn is the Hausdorff
n-dimensional measure on Rn+1, generate MEASpos,fin(Sn), the collection of all
positive, continuous, complete, finite Borel measures on Sn. Hence

univ M(Sn) = ⋂{
M

(
Sn, h#(Hn|Sn)

)
: h ∈ HOMEO(Sn)

}
.

3.5. n-dimensional manifolds

We have seen in the last section that the manifold Sn has a measure µ such that it and
HOMEO(Sn) generate univ M(Sn). We will show that this holds for all separable
manifolds. Amanifold is defined by local conditions. That is, a separable metrizable
space Mn is an n-dimensional manifold if each point has a neighborhood that is
homeomorphic toRn or [0,∞)×Rn−1. Pointswhose neighborhoods are of the second
kind are called boundary points of the manifold. ∂(Mn) denotes the set of boundary
points. Let us show that univ M(X ) is also characterized by local conditions.

Proposition 3.36. Let U be an open cover of a separable metrizable space X . Then
E ∈ univ M(X ) if and only if E ∩ U ∈ univ M(X ) whenever U ∈ U .

Proof. As every open set is a universallymeasurable set inX wehave thatE∩U is also
universally measurable whenever E is a universally measurable set in X . Conversely,
suppose that E ∩ U is universally measurable set in X for every U in U . As X is
a Lindeloff space, the cover U has a countable subcover, whence E is universally
measurable. ✷

If a point x of an n-manifold Mn has a neighborhood that is homeomorphic to Rn,
then there is an embedding ϕ : [−1, 1] n → Mn such that ϕ(0) = x, where 0 is the
origin of Rn, and such that ϕ

(
(−1, 1) n

)
is a neighborhood of x.

If x is in ∂Mn, then there is an embedding ϕ of [0, 1] × [−1, 1] n−1 into Mn such
that ϕ

(
(0, 0)

) = x, where (0, 0) is the origin of R × R n−1, and such that ϕ
[[0, 1) ×

(−1, 1) n−1
]
is a neighborhood of x.

Theorem 3.37. If Mn is an n-dimensional manifold, connected or not and with or
without boundary, then there is a positive, continuous, complete, finite Borel measure
µ on Mn such that µ and HOMEO(Mn) generate univ M(Mn).

Proof. Observe first that ∂∂Mn = ∅. Let µ be such that µ and µ|∂Mn are positive,
continuous, complete, finite Borel measures on Mn and ∂Mn, respectively, and let U
be the open cover

{IntMn(B) : B is an n-cell contained in Mn}.

By Proposition 3.36, a subset E of Mn is in univ M(Mn) if and only if E ∩ U is
in univ M(Mn) for each U in U . As Mn is an absolute measurable space, the last
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condition will be satisfied if and only if E ∩ U is an absolute measurable space for
each U in U . Lemmas 3.33 and 3.34 complete the proof. ✷

The proof given here is rather simple in that it uses only the definition of amanifold.
In fact, the manifold need not be connected nor compact. We shall see shortly that
the Oxtoby–Ulam theorem can be extended to compact, connected n-dimensional
manifolds. Hence the last theorem can be proved in the compact case with the aid
of this extension. This extension uses the next very nice topological theorem due to
M. Brown [21] whose proof will not be provided here.

Theorem 3.38 (Brown). For n > 1 let I = [0, 1] n and U = I \∂I . For each compact,
connected, n-dimensional manifold Mn there is a continuous surjection ϕ : I → Mn

such that ϕ|U : U → ϕ[U ] is a homeomorphism and ϕ[∂I ] is a nowhere dense subset
of Mn that is disjoint from ϕ[U ].

It is easily shown that the map given by Brown’s theorem has the properties that
ϕ[∂I ] ⊃ ∂Mn and ϕ−1ϕ[∂I ] = ∂I . But, in order to apply the Oxtoby–Ulam theorem
to I , it will be necessary to have the added measure theoretic condition ν(ϕ[∂I ]) = 0.
Whenever this condition is satisfied we can use the homeomorphism ψ = ϕ−1|ϕ[U ]
to define the measure µ1 = ψ#ν1 where ν1 = ν|ϕ[U ]. The inclusion map g : U → I
will give us the following implications:(

M(ϕ[U ],ν1)
ν1=ν|ϕ[U ]

)
=⇒

ψ

(
M(U ,µ1)
µ1=ψ#ν1

)
=⇒
g

(
M(I ,µ)
µ=g#µ1

) =⇒
ϕ

(
M(Mn,ν0)
ν0=ϕ#µ

)
(3.7)

where µ(∂I) = 0. Now ν0|ϕ[U ] = ν|ϕ[U ], whence ν0 = ν whenever ν(ϕ[∂I ]) = 0.
The next theorem shows that there is a map that satisfies the conditions of the Brown
theorem and also the added measure theoretic condition.

Theorem 3.39. For n > 1 let I = [0, 1] n and U = I \ ∂I . For each compact,
connected, n-dimensional manifold Mn and for each positive, continuous, complete,
finite Borel measure ν on Mn with ν(∂Mn) = 0 there is a continuous surjection
ϕ : I → Mn such that ϕ|U : U → ϕ[U ] is a homeomorphism, ϕ[∂I ] is a nowhere
dense subset of Mn that is disjoint from ϕ[U ], and ν(ϕ[∂I ]) = 0.

Proof. Let Bi, i = 1, 2, . . . , k , be n-cells contained in Mn such that U = {Ui =
IntMn(Bi) : i = 1, 2, . . . , k} is an open cover of Mn. Let ψ : I → Mn be as provided
by the Brown theorem above and consider the measure

ν1 = ν (Mn \ U1) + a1 ν (U1 \ ψ[∂I ]), where a1 = ν(U1)
ν(U1\ψ[∂I ]) ,

which satisfies ν(Mn) = ν1(Mn). Clearly ν1 is a continuous positive Borel mea-
sure since B1 ∩ ψ[∂I ] is a nowhere dense subset of B1. Observe that (ν1 U1)|B1

and (ν U1)|B1 are Lebesgue-like on B1 and that ν1(U1) = ν(U1). We infer from
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Lemma 3.32 that there is an h1 in HOMEO(Mn; ∂Mn fixed ) such that h1#ν = ν1.
Let us proceed in the same manner for U2 and ν1. Define

ν2 = ν1 (Mn \ U2) + a2 ν1 (U2 \ ψ[∂I ]), where a2 = ν1(U2)
ν1(U2\ψ[∂I ]) ,

which satisfies ν1(Mn) = ν2(Mn) and ν2
(
(U1 ∪ U2) ∩ ψ[∂I ]) = 0. Let h2 be in

HOMEO(Mn; ∂Mn fixed ) such that (h2h1)#ν = ν2.After finitelymany stepswe have
the homeomorphism h = hkhk−1 · · · h2h1 such that h is in HOMEO(Mn; ∂Mn fixed ),
h#ν is a positive, continuous, complete, finite Borel measure on Mn, and
h#ν(ψ[∂I ]) = 0. Letϕ = h−1ψ . Thenϕ : I → Mn is a continuous surjection such that
ϕ|U : U → ϕ[U ] is a homeomorphism, ϕ[∂I ] is nowhere dense, ϕ[U ] ∩ ϕ[∂I ] = ∅,
and ν(ϕ[∂I ]) = 0. Observe that ρ(h, id) ≤ ∑k

i=1 ρ(hi, id). ✷

Nowwe can state and prove the extension of the Oxtoby–Ulam theorem to compact
manifolds (S. Alpern and V. S. Prasad [5, page 195]).

Theorem 3.40 (Alpern–Prasad). Letλ be a positive, continuous, complete, finite Borel
measure on a compact, connected, n-dimensionalmanifoldMn such thatλ(∂Mn) = 0.
In order that a Borel measure µ on Mn be such that there is an h in HOMEO(Mn)

with µ = h#λ it is necessary and sufficient that

(1) µ be a positive, continuous, complete Borel measure on Mn,
(2) µ(Mn) = λ(Mn),
(3) µ(∂Mn) = 0.

Moreover, the homeomorphism h may have the property that it leaves ∂Mn fixed.

Proof. If µ = h#λ for some h in HOMEO(Mn), then it is easily seen that µ satisfies
the conditions that are enumerated.

Suppose that µ satisfies the conditions and let ϕ : I → Mn be as in Theorem 3.39
for themeasure ν = λ+µ. From the implications (3.7) that precede this cited theorem
we infer that there are positive, continuous, complete, finite Borel measures λ0 and
µ0 on I such that ϕ#λ0 = λ and ϕ#µ0 = µ and such that λ0 and µ0 are Lebesgue like
on I . There is an h in HOMEO(I ; ∂I fixed ) such that h#λ0 = µ0. As h fixes ∂I and
ϕ−1ϕ[∂I ] = ∂I , there is a well defined map H : Mn → Mn such that the following
diagram

I
ϕ−−−−→ Mn

h

� �H

I
ϕ−−−−→ Mn

is commutative; indeed, if p ∈ Mn, then card(H
[{ p}]) = 1 whence H is a map.

Clearly, H is bijective. Moreover, H is continuous since each closed subset F of Mn

satisfies H−1[F] = ϕh−1ϕ−1[F] = F . The diagram also yields the fact that H
fixes ϕ[∂I ], whence H ∈ HOMEO(Mn; ∂Mn fixed ). Finally H#λ = µ is easily
verified. ✷
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The last theorem would have been better stated if we had used the definition of
Lebesgue-like measures on manifolds given earlier in the discussion of the Oxtoby–
Ulam theorem. That is, a measure µ is said to be Lebesgue-like on a n-dimensional
manifold Mn if µ is a positive, continuous, complete, finite Borel measure on Mn

with µ(∂Mn) = 0.
Let us turn to a nice application of the extension ofBrown’s theorem, Theorem3.39.

Suppose thatF is a closed, nowhere dense subset of a compactn-dimensionalmanifold
Mn and µ is a Lebesgue-like measure on Mn. Then for each positive number ε the
collection

H(F ,µ, ε) = {h ∈ HOMEO(Mn; ∂Mn fixed ) : h#µ(F) < ε}

is a dense open subset of the metric space HOMEO(Mn; ∂Mn fixed ). That
H(F ,µ, ε) is open follows from the upper semi-continuity of the real-valued func-
tion h �→ h#µ(F). Let us prove that it is dense in HOMEO(Mn; ∂Mn fixed ). Let
f ∈ HOMEO(Mn; ∂Mn fixed ) and δ > 0. We seek an h with hf ∈ H(F ,µ, ε) and
ρ(h, id) < δ. ByTheorem3.39 there is a continuous surjectionϕ : I → Mn, where I is
a topological n-cell, such that ϕ|(I \ ∂I) is a homeomorphism, ϕ[I \ ∂I ] ∩ϕ[∂I ] = ∅,
ϕ[∂I ] is nowhere dense, and f#µ(ϕ[∂I ]) = 0. Using the properties of the map ϕ,
we have a topological n-cell J contained in ϕ[I \ ∂I ] such that f#µ(∂J ) = 0 and
f#µ(Mn \ J ) < ε. By Lemma 3.32 there is an h′ in HOMEO(J ; ∂J fixed ) with
ρ(h′, idJ ) < δ and h′

#
(
( f#µ)|J )

(F ∩ J ) = 0. Let h be the extension of h′ such that
h|(Mn \ J ) is the identitymap onMn\J . It is clear that h ∈ HOMEO(Mn; ∂Mn fixed ),
ρ(h, id) < δ, (h#f#µ)|(Mn \ J ) = ( f#µ)|(Mn \ J ), and (h#f#µ)|J = h′

#
(
( f#µ)|J )

.
A simple computation yields (hf )#µ(F) < ε.

We now have

Theorem 3.41. If Mn is a compact, connected, n-dimensional manifold and µ is a
positive, continuous, complete, finite Borel measure on Mn with µ(∂Mn) = 0 (that
is, Lebesgue-like), then the set

{h ∈ HOMEO(Mn; ∂Mn fixed ) : h#µ(F) = 0}

is a dense Gδ subset of HOMEO(Mn; ∂Mn fixed ) whenever F is a closed, nowhere
dense subset of Mn.

See Exercise 3.12 on page 97 for a noncompact manifold setting.

3.6. The Hilbert cube

An obvious question that results from the finite dimensional considerations of the
previous section is: What can be said about the Hilbert cube [0, 1]N ? The answer
is easily seen due to the extension of the Oxtoby–Ulam theorem to the Hilbert cube
which was proved by Oxtoby and Prasad in [121]. We shall denote [0, 1]N by Q.
They have proved a stronger version of the following theorem.
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Theorem 3.42 (Oxtoby–Prasad). Letµ and ν be positive, continuous, complete Borel
probability measures on Q. Then there exists an h in HOMEO(Q) such that h#µ = ν.

We shall give their proof of the stronger version shortly. But first let us state the
theorem that connects the σ -algebra univ M(Q) and the group HOMEO(Q).

Theorem 3.43. Each positive, continuous, complete, finite Borel measure µ on Q
and the group HOMEO(Q) generate MEASpos,fin(Q) (the collection of all positive,
continuous, complete, finite Borel measures on Q) and hence they also generate
univ M(Q).

The proof follows immediately from the preceding theorem.

3.6.1. Definitions and notations. Several definitions and notations are used in the
proof. We shall collect them in this subsection.

It will be convenient to select a suitable metric d on Q = [0, 1]N , namely,

d(x, y) = ∑∞
i=1|xi − yi|/2i.

By a rectangular set we mean a set R = X∞
i=1[ai , bi] where 0 ≤ ai < bi ≤ 1 for all i,

and [ai, bi] = [0, 1] for all but finitely many values of i. Clearly, a rectangular set is
the closure of a basic open set of Q.

We shall have need to refer to certain subsets of a rectangular set R. For a fixed i,
the set {x ∈ R : xi = c} with ai < c < bi is called a section of R, and the sets
{x ∈ R : xi = ai} and {x ∈ R : xi = bi} are called faces of R. Each rectangular set
R has countably many faces, the union of which is a dense subset of R. Indeed, for
x ∈ R and ε > 0, let n be such that

x ∈ Xn
i=1[a′

i , b
′
i] × X∞

i=n+1[0, 1] ⊂ { y ∈ Q : d(x, y) < ε}.

The face of R given by { y ∈ R : yn+1 = 0} contains the point z = (x1, x2, . . . ,
xn, 0, 0, . . . ) which is in both R and the ε-neighborhood of x. The pseudo-boundary of
R, denoted by δR, is the union of all the faces of R. Of course, δR is not the same as the
topological boundary BdQ(R) which is the union of finitely many faces of R, namely,
the faces {x ∈ R : xi = ai} with 0 < ai and the faces {x ∈ R : xi = bi} with bi < 1.
The pseudo-interior of Q is the set Q \ δQ.

We shall use several subgroups ofHOMEO(Q). The first one is the closed subgroup
that leaves every face of Q invariant, that is,

HOMEO0(Q) = ⋂{HOMEO(Q;W inv ) : W is a face of Q}.

Given a subset B of Q we have the closed subgroup

HOMEO0(Q;B fixed ) = HOMEO(Q;B fixed ) ∩ HOMEO0(Q).
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3.6.2. Main lemma. The main lemma reduces the general positive, continuous,
complete, finite Borel measure case to those that vanish on the set δQ. For the
finite-dimensional space [0, 1] n, where n > 1, there is no such analogue, hence one
must necessarily assume that the measures vanish on ∂([0, 1] n) in the Oxtoby–Ulam
theorem.

Lemma 3.44 (Main lemma). If µ is a positive, continuous, complete, finite Borel
measure on Q and B is the union of finitely many faces of Q with µ(B) = 0, then
h#µ(δQ) = 0 for all h in a some dense Gδ subset of HOMEO(Q;B fixed ).

Proof. Let W be a face of Q that is not contained in B. There is no loss in assuming
W = {x ∈ Q : xk = 0}. For each positive integer j, we assert that

Ej(W ) = {f ∈ HOMEO(Q;B fixed ) : f#µ(W ) < 1/j}

is open and dense in HOMEO(Q;B fixed ).
The upper semi-continuity of the function f �−→ f#µ(W ) implies that Ej(W ) is an

open subset of HOMEO(Q;B fixed ).
To see that Ej(W ) is dense we first show that there is an h in Ej(W ) with small

norm. As this is obvious if µ(W ) < 1
j we shall assume µ(W ) ≥ 1

j . Let 0 < ε < 1
and fix a δ such that 0 < δ < ε

2 and such that the δ-neighborhood Bδ of B satisfies
µ(Bδ) < 1

2j . Choose an n such that k < n, 1
2n < ε

2 , and the two faces {x ∈ Q : xn = 0}
and {x ∈ Q : xn = 1} are not contained in B.

With J = Ik × In, let ϕ : Q → J be the natural projection and let
dJ

(
(xk , xn), ( yk , yn)

) = |xk−yk |
2k

+ |xn−yn|
2n be the metric on J . Then ϕ#µ is a finite

Borel measure on Ik × In, though not necessarily continuous. Let p be such that
0 < p < 1 and ϕ#µ(Ik × { p}) = 0. Select an open interval I ′n contained in In such
that ϕ#µ(Ik × I ′n) < 1

2j and p ∈ I ′n ⊂ In.
Let us assume that there is a continuous family {Ht : 0 ≤ t ≤ 1} in HOMEO(Ik ×

In; [δ, 1] × In fixed} such that H0 is the identity and H1 maps {0} × In into Ik × I ′n.
The existence of such a family will be established at the end of the proof. Obviously{
Ht

−1 : 0 ≤ t ≤ 1
}
is a continuous family. Define the continuous function

t(x) = min {dist(x,F), 1
δ
}, x ∈ Q,

where F is the union of all faces contained in B that meetW . (Note dist(x,∅) = +∞.)
Define h as follows: for x in Q, h(x) is the point y whose k-th and n-th coordinates
are those of Ht(x)(ϕ(x)) = ( yk , yn) and yi = xi for the remaining coordinates. Also
define g as follows: for x in Q, g(x) is the point y whose k-th and n-th coordinates
are those of Ht(x)

−1(ϕ(x)) = (zk , zn) and yi = xi for the remaining coordinates. Note
that h(x) and g(x) have the same i-th coordinates for every i not equal to k and n.
Observe that g(h(x)) = x and h( g(x)) = x. Hence h and g are homeomorphisms and
h−1 = g.

If x ∈ W , then ϕ(x) ∈ {0} × In. Hence Ht(ϕ(x)) ∈ {0} × In whenever t is in [0, 1]
and x is inW . Consequently, h(x) ∈ W for every x inW . IfW ′ is the face ofQ opposite
W and x ∈ (W ′)δ , where (W ′)δ is the δ-neighborhood ofW ′, then ϕ[W ′] = {1} × In,
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t(x) = 1 and distJ
(
ϕ(x),ϕ[(W ′)δ]

)
< δ. Hence h(x) = x whenever x ∈ (W ′)δ .

Observe that a face that is contained in B is either W ′ or contained in F . Since
ϕ[B] ⊂ {0, 1}×In we have h ∈ HOMEO(Q;B fixed ). It is easily shown that each
section {x : xi = constant} of Q is invariant under h whenever i is not k and n.

Let us compute an upper bound for the norm ‖h‖. Suppose t(x) < 1. Then
d(x, h(x)) = d(ϕ(x),ϕ(h(x)) ≤ δ + ε

2 < ε. Suppose t(x) = 1. Then dist(x,F) ≥ δ

and hence d(h(x), x) = dJ (ϕ(h(x)),ϕ(x)). So, ‖h‖ ≤ ε.
Since B is a fixed point set of h, it follows from the continuity of h that h[Bδ] ⊂ Bδ .

The same is true for h−1, hence h[Bδ] = Bδ.
We have t(x) = 1 if and only if δ ≤ dist(x,F). For such an x, ϕ(h(x)) ∈ Ik × I ′n

whenever x ∈ W . Hence (ϕh)−1[Ik × I ′n] ⊃ W \Bδ . We are ready to estimate f#µ(W )

where f = h−1.

f#µ(W ) = f#µ(W ∩ Bδ) + f#µ(W \ Bδ)

≤ µ( f −1[Bδ]) + f#µ((ϕf −1)−1[Ik × I ′n])
= µ(Bδ) + (ϕf −1)#f#µ(Ik × I ′n)

= µ(Bδ) + ϕ#µ(Ik × I ′n)

< 1
2j + 1

2j .

We have shown that there are arbitrarily small members of E( j).
Let us show that E( j) is dense in HOMEO(Q;B fixed ). To this end, let g ∈

HOMEO(Q;B fixed ) and consider g#µ. As g#µ(B) = 0, there is a small f in
HOMEO(Q;B fixed ) such that f#g#µ(W ) < 1

j . So ρ( fg, g) is small if f is small
enough.

Except for the promised proof of the existence of the continuous family of homeo-
morphisms, the proof of themain lemma is nowat hand. It only remains to intersect the
countable collection of open dense sets Ej(W ) over all j and the countable collection
of all faces W of Q that are not contained in B.

Consider the disk D = {(r,ϑ) : r ∈ [0, 1], ϑ ∈ [−π ,π)} using polar coordinates.
The map that sends (r,ϑ) to

(
r,ϑ |ϑ | t/(1−t)

)
for 0 < |ϑ | ≤ 1 and to (r,ϑ) for the

remaining ϑ’s can be easily transferred to the square [−1, 1] × [−1, 1] by radial
projection. ✷

It is easy to see that there are positive, continuous, complete, finite Borel measures
µ on Q such that µ(δQ) = 1 and µ(Q \ δQ) = 0. Indeed, for each k let Xk be
the factor of Q that is the product of all factors of Q other than Ik . Define µk to
be the product measure on Xk generated by the usual one-dimensional Lebesgue
measure on each of the factor space of Xk and let ϕk be the obvious bijective map
of Xk onto {x ∈ Q : xk = 0}. Then ϕ#µk is a measure such that ϕ#µk (Q) = 1 and
ϕ#µk(Q \ δQ) = 0. Let ψk be the analogous map of Xk onto {x ∈ Q : xk = 1}.
Then ψ#µk is a measure such that ψ#µk (Q) = 1 and ψ#µk(Q \ δQ) = 0. With
νk = 1

2 (ϕ#µk + ψ#µk), let ν = ∑∞
k=1

1
2k

νk . It is a simple calculation to show that
ν(Q) = 1 and ν(Q \ δQ) = 0. As δQ is dense in Q, we have ν is also a positive
measure on Q.
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3.6.3. TheOxtoby–Prasad theorem. Themeasure λ on theHilbert cubeQ = [0, 1]N

that appears in the Oxtoby–Prasad theorem, which is the next theorem, is the product
measure generated by the usual one-dimensional Lebesgue measure on each factor
space In of Q. Clearly, λ(δQ) = 0.

Theorem 3.45 (Oxtoby–Prasad). Let µ be a continuous, positive, complete Borel
measure on Q such that µ(Q) = 1 and let B be the union of finitely many faces of Q
with µ(B) = 0. Then µ = h#λ for some homeomorphism h in HOMEO(Q;B fixed ).
If µ(δQ) = 0, then µ = h#λ for some homeomorphism h in HOMEO0(Q;B fixed ).

As in the proof found in [121], three preliminary lemmas will be proved. By the
main lemma, only the last statement of the theorem needs to be proved. The first
lemma is the Hilbert cube analogue of Lemma 3.26. The proof of this analogue uses
the Baire category version of the proof of that lemma.

Lemma 3.46. Let µ be a positive, continuous, complete, finite Borel measure on Q
with µ(δQ) = 0, let B be the union of finitely many faces of Q, and let R1 = {x ∈
Q : xk ≤ c} and R2 = {x ∈ Q : xk ≥ c} be the rectangular sets in Q formed by
the section P = {x ∈ Q : xk = c}. Then for any two positive numbers α1 and α2 with
α1 +α2 = µ(Q) there is an h in HOMEO0(Q;B fixed ) such that h#µ(R1) = α1 and
h#µ(R2) = α2. For such an h, h#µ(δR1) = h#µ(δR2) = h#µ(R1 ∩ R2) = 0.

Proof. The proof is essentially the same as for I n, where n is finite. The reader is
referred to page 65 for the proof of the finite dimensional case. First observe that Q
can be written as Y × Ik where Y is the product space formed by the interval factors
of Q that are not the k-th interval factor Ik . We follow the finite dimensional proof
with J replaced by Y and [−1, 1] replaced by Ik . A replacement for ∂J in the finite
dimensional proof must be found. To this end, let F be the union of all faces of
Q contained in B that intersect P. If π denotes the natural projection of Q onto P,
then π−1π [F] = F and π [F] = P ∩ F . So we shall replace ∂J with π [F]. With
these replacements, the proof of the lemma proceeds in the same manner as the Baire
category proof of Lemma 3.26 given by Oxtoby and Ulam. ✷

A simple subdivision of Q is a subdivision of Q into rectangular sets defined by
a finite number of sections of Q. We now generalize the last lemma to simple sub-
divisions of Q. The proof is a straightforward induction on the cardinality of finite
families of sections of Q since a rectangular set is a copy of Q and the boundary of
a rectangular set is the union of a finite number of its faces. The proof is left for the
reader.

Lemma 3.47. Let µ be a positive, continuous, complete, finite Borel measure on Q
with µ(δQ) = 0, and let B be the union of finitely many faces of Q. If {R1, . . . ,RN } is
a simple subdivision of Q and α1, . . . ,αN are positive numbers with α1 + · · ·+αN =
µ(Q), then there is an h in HOMEO0(Q;B fixed ) such that h#µ(Ri) = αi and
h#µ(δRi) = 0 for every i.

The proof of the Oxtoby–Prasad theorem is now in sight. It is an inductive
construction which is facilitated by the next lemma.
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Lemma 3.48 (Key lemma). Let µ and ν be positive, continuous, complete, finite
Borel measures on Q with µ(δQ) = 0, ν(δQ) = 0 and µ(Q) = ν(Q), let B be the
union of a finite number of faces of Q and let P be a simple subdivision of Q such
that µ(R) = ν(R) and µ(δR) = ν(δR) = 0 for each R in P . For each positive ε

there exists a simple refinement P ′ of P with mesh(P ′) < ε and there exists an h in
HOMEO0(Q;B fixed ) such that h leaves R invariant and δR fixed for each R in P
and such that ν(R′) = h#µ(R′) and ν(δR′) = h#µ(δR′) = 0 for each R′ in P ′.

Proof. Let P ′ be a refinement of P with mesh(P ′) < ε defined by taking addi-
tional sections of Q whose ν-measures are 0. As each R in P is a copy of Q we
may apply the last lemma to R resulting in R′

1,…,R′
N as members of P ′ that are

contained in R, where αi = ν(R′
i) for each i, and (B ∩ R) ∪ BdQ(R) replaces B in

the application of the lemma. The homeomorphisms that are obtained in this manner
will fit together to form an h in HOMEO0(Q;B fixed ) that meets the requirements of
the lemma. ✷

As in the proof of the finite dimensional Oxtoby–Ulam theorem the following
definition and property will be helpful.We say that a measureµ is Lebesgue-like on Q
if µ is a positive, continuous, complete, finite Borel measure on Q and µ(δQ) = 0.
A pair µ and ν of Lebesgue-like Borel measures on Q and a simple rectangular
subdivision P of Q are said to satisfy the property PQ(µ, ν ;P) if µ(σ) = ν(σ ) and
µ(δσ) = ν(δσ ) = 0 whenever σ ∈ P .

Proof of the Oxtoby–Prasad theorem. As we mentioned earlier only the last state-
ment of the theorem requires proof. Suppose that µ and ν are Lebesgue-like Borel
measures onQ and P is a simple rectangular subdivision ofQ. We have from the key
lemma above that if µ, ν and P satisfy PQ(µ, ν ;P) and if ε > 0, then there is a ϕ in
HOMEO0(Q;B fixed ) and a simple rectangular subdivision P ′ of Q such that ϕ#µ,
ν and P ′ satisfy PQ(ϕ#µ, ν ;P ′) and

(1) ϕ|σ ∈ HOMEO0(σ ;B ∩ σ fixed ) whenever σ ∈ P ,
(2) P ′ refines P ,
(3) mesh(P ′) < ε.

Let µ be a positive, continuous, complete, finite Borel measure on Q that satisfies
µ(B) = 0, µ(Q) = 1 and µ(δQ) = 0 as in the last statement of the Oxtoby–Prasad
Theorem 3.45. We shall inductively construct a sequence of homeomorphisms ϕj

and ψj j = 1, 2, . . . , and two sequences of simple rectangular subdivisions Pj, P ′
j ,

j = 1, 2, . . . , of Q satisfying certain requirements specified below. Analogous to the
proof of the Oxtoby–Ulam theorem, the following will help in the construction.

PQ(�j#µ,�( j−1)#λ;Pj) =⇒
PQ(�j#µ,�j#λ;P ′

j ) =⇒ PQ(�( j+1)#µ,�j#λ;Pj+1)

=⇒ PQ(�( j+1)#µ,�( j+1)#λ;P ′
j+1),

for j ≥ 1, where �0 = id, and P ′
0 is undefined.
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(1) �j = ϕjϕj−1 · · ·ϕ1 and mesh(Pj) < 2−j ,
(2) �j = ψjψj−1 · · ·ψ1, and mesh(P ′

j ) < 2−j ,
(3) ϕj|σ ′ ∈ HOMEO0(σ

′;B ∩ σ ′ fixed ) whenever σ ′ ∈ P ′
j−1,

(4) ψj|σ ∈ HOMEO0(σ ;B ∩ σ fixed ) whenever σ ∈ Pj,
(5) mesh(�j

−1[P ′
j ]) < 2−j,

(6) mesh(�j−1
−1[Pj]) < 2−j,

(7) P ′
j refines Pj ,

(8) Pj refines P ′
j−1.

From the assertion of the initial paragraph of the current proof with µ, ν = λ,
P = {Q} and ε = 2−1 we have the existence of a ϕ1 in HOMEO0(Q;B fixed )

and a simple rectangular subdivision P1 that satisfies PQ(�1#µ,�0#λ;P1) as well
as mesh(P1) < 2−1. Condition (1) is satisfied for j = 1. Thereby, the induction is
started. The rest of the proof follows the lines of the finite dimensional case and is
left to the reader. ✷

3.7. Zero-dimensional spaces

Let us now turn to spaces with the smallest dimension. The two of most interest at
this point are the spaces NN and {0, 1}N. The first is topologically the space N equal
to the set of irrational numbers between 0 and 1, and the second is topologically
the classical Cantor ternary set in R. The space N is not as “rigid” as the Cantor
space which is compact. The space N has been characterized in [4, Satz IV] as
those separable completely metrizable spaces that are zero-dimensional and nowhere
locally compact (see also [85, Theorem 4 and Corollary 3a, pages 441–442]). Such a
space X has a complete metric and a sequence of subdivisions Pn, n = 1, 2, . . . , with
the properties

(1) Pn consists of nonempty sets that are both closed and open,
(2) Pn+1 refines Pn and the collection {E′ ∈ Pn+1 : E′ ⊂ E} is infinite for each E in

Pn,
(3) mesh(Pn) < 1

2n .

It is not difficult to show that two such spaces are homeomorphic. Using the above
properties, J. C. Oxtoby [119] proved the following theorem.

Theorem 3.49 (Oxtoby). Let µ be a Borel measure on N . Then there exists an h in
HOMEO(N ) such that h#µ = λ|N , where λ is the Lebesgue measure on R, if and
only if µ is positive, continuous and complete, and satisfies µ(N ) = 1.

An immediate consequence of this theorem is the next theorem whose proof is left
to the reader.

Theorem 3.50. HOMEO(N ) and λ|N generate univ M(N ).

3.7.1. Prof of Oxtoby’s theorem. We give the proof found in [119]. The proof uses
the next two lemmas.
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Lemma 3.51. Let µ be a positive, continuous, complete, finite Borel measure on N .
If {αi : i = 1, 2, . . . } is a sequence of positive real numbers such that

∑∞
i=1 αi =

µ(N ), then there exists a subdivision P = {Ui : i = 1, 2, . . . } of N that consists of
simultaneously closed and open sets such that µ(Ui) = αi for every i.

Proof. Observe that the map x �→ µ([0, x] ∩ N ) is a homeomorphism of [0, 1] onto
[0,µ(N )] and that [r, r′] ∩ N is a closed and open subset of N whenever r and r′
are rational numbers in [0, 1] with r < r′. For (i, j) in N ×N, let a(i, j) = j

j+1 αi. The
linear ordering

(i, j) < (i′, j′) if and only if

i + j < i′ + j′, or i + j = i′ + j′ and j < j′

well orders the set N ×N. For each (i, j) we shall inductively select intervals
I(i, j), closed on the left-side and open on the right-side, with rational end points
such that

a(i, j) <
∑j

n=1 µ(I(i, n) ∩ N ) < a(i, j + 1)

for all i and j. Let r1 be a rational number such that I(1, 1) = [0, r1) satisfies the
required condition. Suppose that (i, j) is the k-th pair and that r1, r2,…, rk are rational
numbers such that them-th pair (i′, j′) corresponds to the interval I(i′, j′) = [rm−1, rm),
m = 1, 2, . . . , k , which satisfy the above requirement. Let (i′′, j′′) be the (k + 1)-th
pair. Clearly one can select a rational number rk+1 such that I(i′′, j′′) = [rk , rk+1)

satisfies the required condition. Observe that
⋃

(i,j)∈N×N
I(i, j) = [0, 1). The sets

Ui = N ∩ ⋃∞
j=1 I(i, j), i = 1, 2, . . . , constitute a subdivision of N which satisfies

µ(Ui) = αi for all i. ✷

Lemma 3.52. Let ρ be a complete metric for N and let ε be a positive number. If µ

and ν are two positive, continuous, complete Borel measures on N and if U and V
are nonempty open sets such that µ(U ) = ν(V ) < ∞, then there are subdivisions
{Ui : i ∈ N} of U and {Vi : i ∈ N} of V that consist of nonempty simultaneously closed
and open sets of diameter less than ε such that µ(Ui) = ν(Vi) for every i.

Proof. Let {Hi : i ∈ N} be a subdivision of V into nonempty closed and open sets of
diameter less than ε.AsU is a homeomorphic copyofN , the previous lemmaprovides
a subdivision {Gi : i ∈ N} of U by closed and open sets such that µ(Gi) = ν(Hi) for
every i. For each i let {Gi,j : j ∈ N} be a subdivision of Gi by nonempty closed and
open sets of diameter less than ε. As Hi is a homeomorphic copy of N , the previous
lemma provides a subdivision {Hij : j ∈ N} of Hi by closed and open sets such that
µ(Gij) = ν(Hij) for every j. Clearly {Gij : (i, j) ∈ N ×N} and {Hij : (i, j) ∈ N ×N}
are subdivisions of U and V , respectively, with µ(Gij) = ν(Hij) whenever (i, j) ∈
N ×N. ✷

Proof of Theorem 3.49. Let ρ be a complete metric for N . By repeated applications
of the last lemma we obtain subdivisions Un = {Uni : i ∈ N} and Vn = {Vni : i ∈ N},
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n ∈ N, of N by simultaneously closed and open sets such that

(1) mesh(Un) < 1
2n and mesh(Vn) < 1

2n ,
(2) µ(Uni) = ν(Vni) for every i,
(3) Un+1 refines Un , and Vn+1 refines Vn.

Each point x of N corresponds to a unique nested sequence Unk ik , k = 1, 2, . . . .
As the metric ρ is complete and this sequence corresponds to the unique nested
sequence Vnk ik , k = 1, 2, . . . , there is a unique point y = ϕ(x) determined by Vnk ik ,
k = 1, 2, . . . . It is clear that the map ϕ is bijective and that ϕ[Uni] = Vni and Uni =
ϕ−1[Vni] for every n and every i, whence ϕ ∈ HOMEO(N ). Consequently, µ(Uni) =
ϕ#ν(Uni) for every n and every i. Obviously the smallest σ -algebra generated by⋃∞

n=1 Un is B(N ). Hence µ = ϕ#ν and the theorem is proved. ✷

3.7.2. The Cantor space. The next obvious zero-dimensional space is the Cantor
space {0, 1}N. Here the question is whether some positive, continuous, com-
plete, finite Borel measure µ on {0, 1}N and the group HOMEO

({0, 1}N)
generate

univ M
({0, 1}N)

can be resolved by methods that were used up to this point of the
book, that is, by proving an analogue of the Oxtoby–Ulam theorem for the space
{0, 1}N. This analogue is not possible as results of F. J. Navarro-Bermúdez and
J. C. Oxtoby [117], F. J. Navarro-Bermúdez [115, 116], and K. J. Huang [78] show.
In 1990, some of these results were further elaborated on by R. D. Mauldin in [105]
and problems related to themwere proposed there. More recently, E.Akin [2, 3] made
substantial advances in the investigation of topological equivalence of measures on
the Cantor space. Those who are interested in more details concerning the above
mentioned results are referred to Appendix C in which a detailed discussion of them
as well as the results of R. G. E. Pinch [126] and the very recent results of T. D.Austin
[6] and R. Dougherty, R. D. Mauldin and A. Yingst [47] are presented.

FollowingAkin, we shall designate as topological Cantor spaces (or, more briefly,
Cantor spaces) those spaces that are topologically the same as {0, 1}N. For any sep-
arable metrizable space X , the collection CO(X ) consisting of all simultaneously
closed and open subsets of X is a countable one. Moreover, if X is a Cantor space,
then CO(X ) is a base for the open sets of X ; consequently, it is also a base for the
closed sets of X .

Let µ be a continuous, finite Borel measure on a separable metrizable space X .
The value set of µ is the subset of R defined by

vs(µ,X ) = {µ(U ) : U ∈ CO(X )}.

Clearly, vs(µ,X ) is a countable set that contains the values 0 and µ(X ). Hence, if µ

is a probability measure, then vs(µ,X ) ⊂ [0, 1]. For Cantor spaces X , the value sets
vs(µ,X ) are dense subsets of [0,µ(X )]. Generally, if h : X → h[X ] is a continuous
map, then

vs(µ,X ) ⊃ vs(h#µ, h[X ]),
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where equality holds whenever h is a homeomorphism. Consequently, the value set
of a measure is a topological invariant. But the value set does not determine the
equivalence class {h#µ : h ∈ HOMEO(X )}, where µ is a probability measure on a
Cantor space X . Indeed,Akin has shown that the measure µ on {0, 1}N determined by
the Bernoulli probability measure on {0, 1} with values 1

3 and 2
3 and the measure ν on

{0, 1, 2}N determined by the uniformmeasure on {0, 1, 2} are not topologically equiv-
alent and yet vs(µ, {0, 1}N) = vs(ν, h[{0, 1}N]) for every homeomorphism h of {0, 1}N
onto {0, 1, 2}N such that h#µ = ν (see Proposition 1.7 of [2] and also Appendix C).
In [2], Akin finds another invariant that does determine equivalence classes. This
invariant uses the order topology. Let us turn our attention to this invariant.

It is not difficult to show that {0, 1}N is homogeneous; that is, if x1 and x2 are points
of {0, 1}N, then there is an h inHOMEO({0, 1}N) such that h(x1) = x2 and h(x2) = x1.
Hence it follows that, for distinct points x0 and x1 of the classical Cantor ternary set,
there is a self-homeomorphism h of the Cantor ternary set such that h(x0) = 0 and
h(x1) = 1. Consequently we have5

Proposition 3.53. If X is a Cantor space and if x0 and x1 are distinct points of X ,
then there is a linear order ≤ on X such that

(1) x0 ≤ x ≤ x1 whenever x ∈ X ,
(2) the order topology induced by ≤ on X is precisely the topology of X .

A separable metrizable space X with a linear order ≤ that satisfies the above two
conditions will be denoted by (X ,≤) and will be called a linearly ordered topological
space (or, more briefly, an ordered space).We recall twodefinitions fromAppendixC.

Definition 3.54. Let (X ,≤) be an ordered space and let µ be a complete, finite Borel
measure on X . The function Fµ : X → [0,µ(X )] defined by

Fµ(x) = µ([x0, x]), x ∈ X ,

where x0 is the minimal element of X in the order ≤, is called the cumulative distri-
bution function of µ. Define ṽs(µ,X ,≤), called the special value set, to be the set of
values

ṽs(µ,X ,≤) = {µ([x0, x]) : [x0, x] ∈ CO(X )} ∪ {0}.
Definition 3.55. Let (X1,≤ 1) and (X2,≤ 2) be ordered spaces. ϕ : X1 → X2 is said
to be an order preserving map if ϕ(a) ≤ 2 ϕ(b) whenever a ≤ 1 b. Such a map that is
also bijective is called an order isomorphism.

For Cantor spaces X , Akin showed in [2] that every linear order ≤ on X which
results in an ordered space (X ,≤) is order isomorphic to the classical Cantor ternary
set endowed with the usual order.6

Here is a useful proposition.

5 This is Proposition C.31 from Appendix C. Akin’s extensive study of Cantor spaces with linear order
that satisfy the two conditions that are enumerated in the proposition is presented in Appendix C.

6 See Theorem C.37. Akin showed this to be a consequence of Theorem C.36. Actually a direct proof of
the existence of such order isomorphisms can be made.
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Proposition 3.56. Let (X ,≤) be an ordered space. If F : X → [0, 1] is an order
preserving, right continuous function satisfying F(x1) = 1, where x1 is the maximal
member of X , then there is a unique probability measure µ on X such that F = Fµ.

Akin proved [2, Theorem 2.12] the following interesting theorem which will prove
useful in Chapter 4. The theorem uses Radon–Nikodym derivatives as a substitute
for homeomorphisms. Recall that a measure µ is said to be absolutely continuous
with respect a measure ν (denoted µ # ν) if µ(E) = 0 whenever ν(E) = 0. For
convenience we shall assume µ and ν are continuous, finite Borel measures on a
separable metrizable space X . If µ is absolutely continuous with respect to ν, then
there is a real-valued, Borel measurable function, denoted by dµ

dν
and called the

Radon–Nikodym derivative of µ with respect to ν, that satisfies µ(B) = ∫
B

dµ
dν

dν =∫
X

χB· dµ
dν

dν whenever B ∈ B(X ).

Theorem 3.57 (Akin). Let (X1,≤1) and (X2,≤2) be ordered Cantor spaces and letµ1

and µ2 be positive, continuous, complete Borel probability measures on X1 and X2,
respectively. For each real number L with L > 1 there exists an order isomorphism
h : (X1,≤1) −→ (X2,≤2) such that h#µ1 # µ2 and the Radon–Nikodym derivative
dh#µ1
dµ2

satisfies

L−1 ≤ dh#µ1
dµ2

≤ L

everywhere on X2. Consequently, µ2 # h#µ1 and dh#µ1
dµ2

·dµ2
dh#µ1

= 1 everywhere
on X2.

The proof will rely on the following two lemmas.

Lemma 3.58. LetD1 andD2 be countable dense subsets of [0, 1]with {0, 1} ⊂ D1∩D2.
For each real number L with L > 1 there exists an order isomorphism ϕ of the
ordered space ([0, 1],≤) such that ϕ[D1] = D2 and L−1 ≤ ϕ(x2)−ϕ(x1)

x2−x1
≤ L. Hence

Lip(ϕ) ≤ L and Lip(ϕ−1) ≤ L.

Proof. Let us begin by establishing some notation. Let L > 1 be fixed. In the
plane R2, a parallelogram with vertices A = (a1, a2), B = (b1, b2), C = (c1, c2),
D = (d1, d2) (oriented counterclockwise) and whose two pairs of opposite parallel
sides have slopes L and L−1, respectively, will be denoted by PARA(A,B,C,D). We
will assume that the first vertex A has its coordinates to be smaller than the respective
coordinates of the other vertices, hence the coordinates of the opposite vertex C has
its coordinates larger than the respective coordinates of the other vertices. Clearly
the slope of the diagonal AC is between L−1 and L. We shall denote the bounded
component of the open set R2 \ PARA(A,B,C,D) by [A,C] (note that B and D are
determined by A and C). It is easy to see, for each P in [A,C], that [P,C] ⊂ [A,C],
[A,P] ⊂ [A,C], and [A,P] ∩ [P,C] = ∅. For each x and y in R the line parallel to
the second coordinate axis of R2 with the first coordinate equal to x will be denoted
by Lx and the line parallel to the first coordinate axis of R2 with second coordinate
equal to y will be denoted by Ly. Clearly, Lx ∩ [A,C] is an open linear interval of
Lx if and only of a1 < x < c1. A corresponding statement holds for Ly. It will be
convenient to identify R and Lx and to identify R with Ly in the coming construction.
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Finally, for points P1 = (x1, y1) and P2 = (x2, y2) in D1 × D2, we write P1 < P2 to
mean x1 < x2 and y1 < y2, and P1P2 to be the line joining P1 and P2. The notational
introduction is completed.

Let a1, a2, a3, . . . , and b1, b2, b3, . . . , be well orderings ofD1 andD2, respectively,
where a1 = b1 = 0 and a2 = b2 = 1; and let L > 1. We shall inductively construct
a sequence ϕn, n = 1, 2, . . . , of piecewise linear functions of the interval [0, 1] onto
itself that are determined by a sequence Pn = {P(n)

i : 1 ≤ i ≤ 2n} of finite subsets of
D1 × D2 such that, for each n,

(n-1) L−1 < Lip(ϕn) < L;
(n-2) Pn satisfies P(n)

i < P(n)
i+1 for each i, P(n)

1 = (0, 0), P(n)

2n = (1, 1); and, the graph

of ϕn is the union of P(n)
i P(n)

i+1, 1 ≤ i < 2n;
(n-3) with (x(n)

k , y(n)
k ) = P(n)

k ∈ Pn, k = 1, 2, . . . , 2n, the subsets Xn = {x(n)

i : i ≤ 2n}
and Yn = { y(n)

j : j ≤ 2n} of D1 and D2, respectively, satisfy {ai : i ≤ n} ⊂ Xn

and {bj : j ≤ n} ⊂ Yn;
(n-4) the open planar set [P(n)

i ,P(n)
i+1] is defined for each i, and the set Mn = Pn ∪⋃2n−1

i=1 [P(n)
i ,P(n)

i+1] is connected;
(n-5) Pn ⊂ Pn+1.

Let ϕ1 be the piecewise linear function associated with the collection P1 =
{(0, 0), (1, 1)}. Clearly the conditions (1-1) through (1-4) are satisfied and condition
(1-5) is vacuously satisfied. The reader can readily see how to prove the inductive
step from the example of the construction of ϕ2 and P2. Let i1 = 3. Then the line
Lai1

has a nonempty open interval as the intersection with the connected set M1. Let
j1 be the least index j such that bj is in this intersection. Let P′ = (ai1 , bj1) and
let P ′

1 = {P′} ∪ P1. Let M ′
1 be the connected set that corresponds to the collection

P ′
1. Let j

′
1 be the least j such that bj is not one of those already selected. The line

L
bj′1 has a nonempty open interval as the intersection with the connected set M ′

1. Let
i′1 be the least index i such that ai is in this intersection. Let P′′ = (ai′1 , bj′1) and
let P2 = {P′,P′′} ∪ P1, where the collection is reindexed to meet the requirements
of condition (2-2). Define ϕ2 accordingly. The verifications of the conditions (2-1)
through (2-5) are easily made.

The sequence ϕn, n = 1, 2, . . . , converges on the dense set D1 and has uniformly
bounded Lipschitzian constants. Hence, by theArzela–Ascoli theorem, the sequence
converges uniformly to a function ϕ such that L−1 ≤ Lip(ϕ) ≤ L. We infer from
conditions (n-1) through (n-5) that ϕ[D1] = D2. ✷

Lemma 3.59. Let X be theCantor ternary set with the usual order. Suppose thatµ1 and
µ2 are positive, continuous, completeBorel probabilitymeasures onX . Ifϕ is an order
isomorphism of [0, 1] such that ϕ[

ṽs(µ2,X ,≤)
] = ṽs(µ1,X ,≤), then there exists an

order isomorphism h : X → X such that ϕFµ2 = Fh#µ1 . Consequently, if x1 and x2
are points of X with x1 < x2, then

(
Lip(ϕ−1)

)−1
µ2

([x1, x2]) ≤ h#µ1
([x1, x2]) ≤

Lip(ϕ)µ2
([x1, x2]) whenever Lip(ϕ−1) > 0.

Proof. Define E to be the set of all left end points of the deleted open intervals of R
that are used in the construction of the Cantor ternary set. Observe, for each i, that v is
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in ṽs(µi,X ,≤) if and only if there is a unique e in E such that Fµi (e) = v. First let us
show that there is an order isomorphism h : E → E such that ϕFµ2(h(e)) = Fµ1(e).
To this end, let e be in E. Then Fµ1(e) ∈ ϕ

[
ṽs(µ2,X ,≤)

]
. There is a unique e′ in

E such that Fµ1(e) = ϕFµ2(e
′). Hence h(e) = e′ and h is defined on E. It follows

that Fµ2(h(e)) = ϕ−1Fµ1(e). It remains to prove that h is an order isomorphism.
Let g denote the function on ṽs(µ2,X ,≤) \ {0} that is the inverse of the restric-
tion of Fµ2 to E. Then g is an order isomorphism (see Exercise 3.13). We have
h(e) = gϕ−1Fµ1(e). Clearly h is an order preserving injection. It is not difficult to
show that h is surjective since Fµi is a surjective map of E onto ṽs(µi,X ,≤) \ {0}
for each i. From the order denseness of E in X we infer the existence of an order
preserving extension of h to all of X . We shall continue to use h for this extension.
As E is order dense in X , this extension is an order isomorphism of X . We now have
h#µ1

([0, x]) = µ1
(
h−1

[[0, x]]) = Fµ1(x
′) = ϕFµ2(x), where h−1(x) = x′. Hence

ϕFµ2 = Fh#µ1 . The final statement of the lemma follows easily from this identity. ✷

Proof of Theorem 3.57. As (X1,≤ 1) and (X2,≤ 2) are each order isomorphic to the
Cantor ternary set X with the usual order ≤ , we may assume that both of them are
(X ,≤). Given L > 1, let ϕ and h be as provided by the above two lemmas. Then,
for x1 and x2 in X with x1 < x2, we have L−1 µ2

([x1, x2]) ≤ h#µ1
([x1, x2]) ≤

Lµ2
([x1, x2]). It follows that µ2 # h#µ1 and h#µ1 # µ2, and that the Radon–

Nikodym derivative of h#µ1 with respect to µ2 exists and satisfies the requirements
of the theorem. ✷

We complete this section by connecting the last theorem to the collection
univ M({0, 1}N) of all universally measurable sets in the Cantor space {0, 1}N.

Theorem 3.60. Let X be a Cantor space. If µ is a positive, continuous, complete,
finite Borel measure on X , then µ and HOMEO(X ) generate univ M(X ).

Proof. Let E be a subset of X such that h−1[E] is µ-measurable when-
ever h ∈ HOMEO(X ). We must show that E is ν-measurable for every ν in
MEASpos,fin(X ), the collection of all positive, continuous, complete, finiteBorelmea-
sures onX . Let ν be such ameasure. There is no loss in assumingµ(X ) = ν(X ). There
exists an h in HOMEO(X ) such that ν # h#µ. We have that h−1[E] is µ-measurable.
Hence there exist Borel sets A and B such that A ⊂ h−1[E] ⊂ B and µ(B \ A) = 0.
Then A′ = h[A] and B′ = h[B] are Borel sets such that A′ ⊂ E ⊂ B′. Now
h#µ(B′ \ A′) = µ(B \ A) = 0. Hence ν(B′ \ A′) = 0 and thereby E is ν-measurable.
E is a universally measurable set in X . ✷

3.8. Other examples

With the aid of the Oxtoby–Ulam theorem, Marczewski proved that Lebesgue mea-
sure and HOMEO(Rn) generate univ M(Rn). An even stronger theorem holds, that
is, Theorem 3.37 – actually, Marczewski’s result is implied by this theorem since
Lebesgue measure is not finite on Rn; the implication is a consequence of the fact
that there is a finite measure on Rn such that its measurable sets coincide with those of
Lebesgue measure. The measures in the theorem are positive. There is a nonpositive,
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continuous, complete, finite Borel measure µ on Rn such that it and HOMEO(Rn)

generate univ M(Rn).

Example 3.61. The measure µ = λ [0, 1] n, where λ is Lebesgue measure on Rn,
and the group HOMEO(Rn) generate univ M(Rn). For a connected n-dimensional
manifold Mn with ∂Mn = ∅ let ϕ : Rn → Mn be a topological embedding. Then the
measure ϕ#λ and the group HOMEO(Mn) generate univ M(Mn). See Exercise 3.15.

Every example given so far has been an absolute Gδ space, though not necessarily
locally connected for the connected examples. The following example will supply
a non absolute Gδ space X for which there exists a positive, continuous, complete
Borel measure µ on X such that it and the group HOMEO(X ) generate univ M(X ).

Example 3.62. IfD is a countable space, then there is a positive, continuous, complete,
finite Borel measure µ on X = D × [0, 1] such that univ M(X ) is generated by µ

and the group HOMEO(X ). See Exercise 3.16.

In the above example the countable space can be the space Q of rational numbers,
a non absolute Gδ space. The next example concerns the group of homeomorphisms
of the space X = N × [0, 1].
Example 3.63. Let π : N × [0, 1] → N be the natural projection and define f
on N to be the injection x �→ (x, 0). Note that h[{x} × [0, 1]] is a component of
N × [0, 1] for each h in HOMEO(N × [0, 1]) and each x in N . Hence there is
a bijection h∗ : N → N and a homeomorphism gx in HOMEO([0, 1]) such that
h(x, y) = (

h∗(x), gx( y)
)
whenever (x, y) ∈ N × [0, 1]. As h∗ = πhf we have that h∗

is continuous. Clearly the following diagram commutes.

N f−−−−→ N × [0, 1] π−−−−→ N
h∗

� �h

�h∗

N f−−−−→ N × [0, 1] π−−−−→ N
Hence h∗ is in HOMEO(N ). (See Exercise 3.17.)

Now denote N × [0, 1] by X . It is easy to show that there exists a positive, con-
tinuous, complete Borel probability measure µ on X with µ(N × ∂[0, 1]) = 0 such
that µ is not topologically equivalent to λ|X , where λ is the Lebesgue measure on
R2; that is, µ �= h#

(
λ|X )

for every h in HOMEO(X ). (See Exercise 3.18.)
For the inclusion map ϕ of N × [0, 1] into [0, 1] × [0, 1] and the above µ, the

measure ϕ#µ is homeomorphic to λ|([0, 1] × [0, 1]). Also the restricted measure
µ|(N × N ) is homeomorphic to λ|(N × N ) since N is to homeomorphic N × N .

We have used products of two spaces in the last two examples. Clearly, not every
measure inMEAS(X×Y ) need be a productmeasure and the groupHOMEO(X × Y )

can be quite large in comparison to HOMEO(X ) × HOMEO(Y ). It would be inter-
esting if some general results about the generation of universally measurable sets in
product spaces could be proven.

Here is a question that arises from the second example.
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Question. Let π1 : N × [0, 1] → N and π2 : N × [0, 1] → [0, 1] be the natural
projections. Suppose that µ is a positive, continuous, complete Borel probability
measure on N × [0, 1] such that π1#µ is a continuous measure. Then, by Oxtoby’s
theorem, there is a homeomorphismϕ inHOMEO(N ) such thatϕ#π1#µ is the restric-
tion of the Lebesgue measure on R to the set N . Hence there is a homeomorphism
h1 in HOMEO(N × [0, 1]) such that π1#h1#µ = ϕ#π1#µ. Is µ homeomorphic to
λ|(N × [0, 1]), where λ is the Lebesgue measure on R 2 ? Failing that, is there a
homeomorphism h2 in HOMEO(N × [0, 1]) such that π2#h2#µ is continuous?

Every example so far has been an absolute Borel space. It is time to present an
example of an absolute measurable space that is not an absolute Borel space.

Example 3.64. Let N be a nowhere dense subset of the Hilbert cube Q = [0, 1]N

that is also an uncountable absolute null space, and let Xn, n = 1, 2, . . . , be a discrete
collection of absolute measurable subspaces of Q whose diameters form a sequence
converging to 0. Suppose N ∩ (

⋃∞
n=1 Xn) = ∅ and FQ(Xn) �= ∅ for each n. It can

happen that N ∩ ClQ(
⋃∞

n=1 Xn) �= ∅. Let X = N ∪ (
⋃∞

n=1 Xn) and let µ be a
continuous, complete, finite Borel measure on X such that, for each n, the measure
µ|Xn is positive onXn. ObviouslyX is not an absolute Borel space. If, for each n, µ|Xn

and HOMEO(Xn) generate MEASpos,fin(Xn), then a measure ν in MEASpos,fin(X ) is
such that h#µ = ν for some h in HOMEO(X ) if and only if ν|Xn is a positive measure
on Xn and µ(Xn) = ν(Xn) for every n. Hence µ and the group HOMEO(X ) do not
generate MEASpos,fin(X ). Nevertheless, µ and HOMEO(X ) do generate univ M(X )

since each h in HOMEO(Xn) has an extension in HOMEO(X ). As for examples of
Xn, one may take them to be arcs or Cantor spaces or topological copies of N or
topological k-spheres.

3.9. Comments

In this chapter we have been concerned with the interplay between a pair(
µ ,HOMEO(X )

)
and the collection univ M(X ) of universally measurable sets

in a space X , where µ is a positive, continuous, complete, finite Borel mea-
sure on X and HOMEO(X ) is the group of homeomorphisms. The origin of this
investigation is found in the early part of the twentieth century during which the
investigation of those subsets of the unit interval [0, 1] which are measurable for
every continuous, finite, complete Borel measure on [0, 1] was initiated. These
sets were called universally measurable or absolutely measurable. In 1937, a sum-
mary of results was made by Braun, Szpilrajn and Kuratowski in the Annexe to
the Fundamenta Mathematicae [15]. There one finds the basic fact that Lebesgue
measure λ and the group HOMEO([0, 1]) generate univ M([0, 1]). Of course, it
is not difficult to replace [0, 1] with R in this assertion. So the question then
becomes: Can one replace R with Rn ? For the plane, this is Problem 170 pro-
posed by Szpilrajn in The Scottish Book (this book was the subject of a conference
whose proceedings were edited by Mauldin [104]). The problem was solved by
Marczewski [96]. Its solution is a simple consequence of the Oxtoby–Ulam theo-
rem. (See Example 3.61.) Hence properties provided by the Oxtoby–Ulam theorem



3.9. Coments 91

are sufficient conditions for the group HOMEO(Rn) to generate univ M(Rn). This
motivates the study of the “action” of the group HOMEO(X ) in the generation of
univ M(X ). As we have seen in the case of the Cantor space, absolute continuity of
measures leads to nice a generalization of the Oxtoby andUlam approach to the group
HOMEO(X ) generating univ M(X ). This approach will be expanded on in the next
chapter.

3.9.1. The unit n-cube and the Hilbert cube. The Oxtoby–Ulam theorem gives a
characterization of those Borel measures on [0, 1] n that are homeomorphic to the
Lebesgue measure λ on [0, 1] n. The theorem has an interesting history. It was conjec-
tured by Ulam in 1936 that the Oxtoby–Ulam theorem is true (see [122, page 886]).
In the following year J. von Neumann gave an unpublished proof [155]. The Oxtoby
and Ulam proof [122] appeared in 1941. They applied the Baire category theorem to
a closed subgroup of the topological group HOMEO([0, 1] n) to prove the key lemma
needed for their proof. In 1975 Goffman and Pedrick [63] gave a measure theoretic
proof of the key lemma.

The two approaches to the proof to the key lemma mentioned earlier have different
consequences in termsof extensions of theOxtoby–Ulam theorem. TheBaire category
proof is found to work equally well in the infinite product [0, 1]N, which is the
Hilbert cube. This was carried out by Oxtoby and Prasad in [121]. Their result is a
remarkable one in that the Hilbert cube does not have an algebraic boundary (that is,
∂[0, 1]N = ∅) and hence, due to the main Lemma 3.44 of their proof, a much cleaner
theorem results. The measure theoretic approach of Goffman and Pedrick has the
interesting consequence of a different nature. Their proof of the key lemma can be
couched easily in a homeotopy form (see [62]). Hence an algebraic topological form
of the Oxtoby–Ulam theorem will result for finite product spaces [0, 1] n. Indeed, for
each pair µ and ν in {ν : ν([0, 1] n) = 1, µ is Lebesgue-like} there is a continuous
map

G : [0, 1] −→ HOMEO([0, 1] n; ∂[0, 1] n fixed ) (3.9)

such that G(0)#µ = µ, G(1)#µ = ν, and G(t)#µ(E) = µ(E) for E in
B([0, 1] n). There is a sharper result that is a consequence of a fact (attributed to
Alexander) that the space HOMEO([0, 1] n; ∂[0, 1] n fixed ) is contractible, which
was observed by R. Berlanga and D. B. A. Epstein [8, Remark, page 66].
HOMEO([0, 1] n; ∂[0, 1] n fixed ) is contractible means there is a homotopy H
of HOMEO([0, 1] n; ∂[0, 1] n fixed ) to itself such that H (1, · ) is the identity on
HOMEO([0, 1] n; ∂[0, 1] n fixed ) and H (0, · ) is a fixed homeomorphism. Since the
proof is easy let us give it. Let us replace [0, 1]n with the closed unit ball B in the
Euclidean space Rn that is centered at the origin and ∂[0, 1] n with ∂B. For each pos-
itive t let t B be the closed ball with radius t. If h is in HOMEO(B; ∂B fixed ), then
the map ht defined by ht(x) = t h(t−1x), x ∈ t B, is a homeomorphism of t B onto
itself such that ht is the identity map on ∂(t B). For each t in (0, 1], the identity map
on B \ t B will yield an extension of ht to a homeomorphism of B onto B such that its
restriction to ∂B is the identity map. We shall denote this extended map by H (t, h).
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It is easily seen that H (t, · ) is a continuous map of HOMEO(B; ∂B fixed ) into itself
with H (0, h) = idB and H (1, h) = h for every h. Hence HOMEO(B; ∂B fixed )

is contractible. Consequently, if µ is a Lebesgue-like probability measure, then
H (1, h)#µ = ν for some h by the Oxtoby–Ulam theorem. The above argument is
a finite dimensional one.

Interestingly enough, the measure theoretic approach does not seem to yield the
extension of the Oxtoby–Ulam theorem to the Hilbert cube because Lemma 3.27 is a
finite dimensional result. Also, the Baire category approach to the key lemma loses
the homeotopy refinement in the equation (3.9) achieved by the measure theoretic
approach.

Question. Is there a homotopy version of the Oxtoby–Prasad theorem? Is there an
equation (3.9) version?

3.9.2. Compact, connected manifolds. Observe that [0, 1] n is a compact, connected
manifold with boundary. The Oxtoby–Ulam theorem concerns Lebesgue-like mea-
sures on this manifold. In a natural manner, for a compact, connected manifold Mn

(with or without boundary), we defined a positive, continuous, complete, finite Borel
measureµ onMn to be Lebesgue-like ifµ(∂Mn) = 0.Applying a topological theorem
due to Brown [21], Alpern and Prasad show in [5, page 195] that the Oxtoby–Ulam
theorem holds for compact, connected manifolds. Another proof can be found in
T. Nishiura [118] which does not employ the Brown theorem, just the definition of
manifolds. There are results concerning homeomorphic measures on noncompact,
connected, separable manifolds due to Berlanga and Epstein [8].7As their results
require the notion of “ends” of a manifold, we have not included them in this chapter.
To illustrate the role of ends we give the following rather simple example. In the
square [−1, 1] × [−1, 1] consider the points p− = (−1/2, 0) and p+ = (1/2, 0). The
noncompact manifold X = [−1, 1] × [−1, 1] \ { p−, p+} has the end-point compact-
ification [−1, 1] × [−1, 1] with ends consisting of the points p− and p+. Let µ be a
continuous, positive, complete Borel measure on X withµ

(
∂([−1, 1]×[−1, 1])) = 0

and µ(X ) = λ(X ), where λ is the Lebesgue measure on the plane. For this example,
it is not difficult to see that h#µ = λ|X for some h in HOMEO(X ). (The proof is not
a simple application of the Oxtoby–Ulam theorem for the square [−1, 1] × [−1, 1]
because the homeomorphism h must indirectly see the ends p− and p+.) See the
book by Alpern and Prasad [5, pages 196–204] for a more detailed discussion on the
Berlanga–Epstein results.

3.9.3. Nonmanifolds. Remember that the basic question is the existence of a posi-
tive, continuous, complete Borel measure µ on a space X such that it and the group
HOMEO(X ) generate univ M(X ). With the aid of Oxtoby and Prasad extension of
the Oxtoby–Ulam theorem to the Hilbert cube [0, 1]N, a nonmanifold, the question
is easily answered in the affirmative for this nonmanifold.

7 The manifolds in this paper are σ -compact, connected manifolds. It is easy to see that such manifolds
are precisely the connected, separable manifolds.
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It has been shown that the answer is also in the affirmative for other nonmani-
folds such as finitely triangulable n-dimensional spaces, the “sin( 1x ) space” and the
Warsaw circle even though the Oxtoby–Ulam theorem does not generalize to these
spaces.

Another example, which we did not present, is a Menger manifold. A Menger
manifold is a separablemetrizable space such that each of its point has a neighborhood
that is homeomorphic to theMenger compact, universal space of dimension n (see [50,
page 121] for the definition of the Menger universal space). H. Kato, K. Kawamura
and E. D. Tymchatyn [81, Theorem 3.1, Corollary 4.12] have shown that the analogue
of the Oxtoby–Ulam theorem is valid for the Menger compact, universal space of
dimension n and for compact Menger manifolds of dimension n, where n > 0. The
case n = 0 is the Cantor space; the Oxtoby–Ulam theorem analogue is not available
here. Their proof is based on the work of M. Bestvina [11], see [11, pages 15 and 98]
for the basic definitions.

3.9.4. The space N . Oxtoby investigated in [119] homeomorphic measures on
the zero-dimensional space N , which is homeomorphic to the product space NN.
He showed that the equivalence classes with respect to homeomorphisms are char-
acterized by positive real numbers, that is, two positive, continuous, complete, finite
Borel measures µ and ν are homeomorphic if and only if µ(N ) and ν(N ) are equal
to the same positive real number. The Oxtoby theorem for the space N leads to the
fact that Lebesgue measure on N and HOMEO(N ) generate univ M(N ).

In the same article, Oxtoby defined the notion of almost homeomorphic measures.
This will be discussed in the next chapter.

3.9.5. The Cantor space. The other familiar zero-dimensional space is the Cantor
space {0, 1}N. Here, characterizations of the equivalence classes of homeomorphic
positive, continuous, complete, finite Borel measures on {0, 1}N were not known in
the mid-1970s. In Section 3.7.2 there are several references with partial results which
show that the Oxtoby–Ulam theorem does not extend to the Cantor space {0, 1}N. In
his 1999 paper [2]Akin successfully “characterized” the equivalence classes of home-
omorphic positive, continuous, complete, finite Borel measures on Cantor spaces X .
In that paper he showed that the value set vs(µ,X ) is invariant under homeomor-
phisms, but not conversely; consequently, the word characterized in the previous
sentence is enclosed in quotation marks. As every Cantor space is homeomorphic to
the classical Cantor ternary set, the usual order on the Cantor ternary set provides
each positive, continuous, probability Borel measure µ with a natural cumulative dis-
tribution function.After a thorough investigation of linear orders on Cantor spaces X ,
he showed that the special value set ṽs(µ,X ,≤) is a linear (that is, order) isomor-
phism invariant. Hence if r > 0 and if D is a countable, dense subset of [0, r], then
the collection D(r) of all positive, continuous, complete Borel measures on X with
µ(X ) = r is partitioned into linear isomorphism equivalence classes D̃(r) consisting
of those µ such that D ∪ {0, r} = ṽs(µ,X ,≤), where the linear order ≤ on X results
in the Cantor space topology of X . Exercise 3.14. shows that each such countable set
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D yields a nonempty collection D̃(r). It follows that, for a fixed r, the cardinality of
the collection of all linear isomorphism classes D̃(r) is c.

There is a stronger result for Bernoulli measures on X = {0, 1}N. A Bernoulli
measure P on {0, 1}, where 0 < r < 1, is the unique measure that assigns the values
P({0}) = r and P({1}) = 1 − r. This measure produces the shift invariant Bernoulli
product measure on {0, 1}N in the obvious way. This product measure will be denoted
also by βr . The value set vs(βr ,X ) consists of the numbers of the form∑n

i=0 air
i(1 − r)n−i , n ∈ N,

where the coefficients ai are integers that satisfy 0 ≤ ai ≤ n!
i!(n−i)! . Hence r and 1 − r

are in vs(βr ,X ). Akin has observed (see [2, Proposition 1.8])

Theorem 3.65. For each r in (0, 1) there are only countably many s in (0, 1) such
that the Bernoulli measure βs on {0, 1}N is homeomorphic to the Bernoulli measure
βr on {0, 1}N. Hence, among the collection {βr : r ∈ (0, 1)} of Bernoulli measures on
{0, 1}N, the set of homeomorphism equivalence classes has the cardinality c.

The following earlier and finer conclusions were proved by Navarro-Bermúdez
[115, Theorem 3.3 and Theorem 3.4].

Theorem 3.66 (Navarro-Bermúdez). Let r and s be in (0, 1). If r is a rational number,
then the Bernoulli measures βr and βs on {0, 1}N are homeomorphic if and only
if s = r or s = 1 − r. Also, if r is a transcendental number, then the Bernoulli
measures βr and βs on {0, 1}N are homeomorphic if and only if s = r or s = 1 − r.

The investigation of the cases where r is an algebraic number is not very easy and
far from complete. The remaining cited references in Section 3.7.2 concern Bernoulli
measures βr where r is an algebraic number in the interval (0, 1). Several questions
along this line are raised in Mauldin [105].

Amore detailed discussion of Borel probability measures on Cantor spaces can be
found in Appendix C.

3.9.6. Measure preserving homeomorphisms. On several occasions we have
referred to the book [5] by Alpern and Prasad on measure preserving homeomor-
phisms. In their book these are called automorphisms. An automorphism of a Borel
measure space M(X ,µ) is a g in B-HOMEO(X ) such that µ(A) = µ( g[A]) =
µ( g−1[A]) for every µ-measurable set A. Hence the task is to investigate those
positive, probability Borel measures µ on X that have nontrivial solutions g in
HOMEO(X ) of the equation g#µ = µ. These automorphisms play an important
role in dynamics. It is the typical behavior (in the sense of Baire category) of these
automorphisms that is the emphasis of the book by Alpern and Prasad. The spaces
X of interest in their development are connected n-dimensional manifolds of various
kinds.

There is a marvelous development in the appendix of their book of the Oxtoby–
Ulam theorem for the n-cube, the extension of the Oxtoby–Ulam theorem to compact,
connected n-manifold, and a mention of the related Oxtoby–Prasad theorem for the
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Hilbert cube. Their development, being somewhat terse, has been expanded upon
in this chapter. Another reason for our repeating the proofs is that their proofs use
notations that are inconsistent with ours – notational consistency will allow easier
passage through the proofs.

One of the objectives of this chapter is to investigate the existence of ameasureµ on
separablemetrizable spacesX , amongwhich are connected n-dimensionalmanifolds,
such that µ and the group HOMEO(X ) generate the σ -algebra univ M(X ). This was
not an objective of the Alpern–Prasad book. As the reader can see, many examples
of spaces X which are commonly known in mathematics have been included.

3.9.7. Terminology and notations. The meaning of “positive Borel measure on X ”
is not standardized in the literature. It could mean µ(X ) > 0 which, of course, is
not what is needed in the Oxtoby–Ulam type of theorems. To emphasize the stronger
condition, the statements “locally positive” or “positive on nonempty open sets”
have been used in the literature. These two correspond to the condition that the
topological support of µ (that is, support(µ)) is the whole space X . The assumption
X = support(µ) is not a good one since the emphasis of our book is on absolute
measurable spaces and absolute null spaces. Another condition that is often used is
“nonempty countable subsets are not open.” This condition is used to make the Baire
category theorem “reasonably” available for investigating several singular sets. To
study these singular sets it is desirable that countable subsets be nowhere dense and
that the space be an uncountable absoluteGδ space. There is an uncountable compact
metrizable space X such that some countable subset U is dense and open (such a
space is easily constructed). The set X \ U is an uncountable nowhere dense set,
hence of the first category, and U is a set of the second category. From a singular
set point of view, especially those that involve the Baire category, it is the set X \ U
which forms the interesting part of X . From the measure theoretic point of view, the
interesting part of a space X is also X \ U because U is an absolute null space – a
continuous Borel measure µ on X should be called positive if support(µ) = X \ U .
It is known that there are many absolute null spaces that are not countable, hence
countable subsets are not sufficient for the determination of the “reasonable” part
a universally measurable set in an arbitrary separable metrizable space. Indeed, a
“reasonable” universally measurable setM in a space is one in which every absolute
null space contained inM is nowhere dense inM . The objections to the various other
approaches mentioned above for a useful definition of positive measures are avoided
by the use of the closure-like operator FX in the space X . Hence a measure µ on
X is positive if and only if support(µ) = FX (X ) �= ∅. Fortunately, many of the
spaces X – of course, nonempty – that have been studied in the chapter are such that
FX (X ) = X �= ∅, hence positive measures exist on these spaces.

There are conflicting notations in the literature for a homeomorphism h
in HOMEO(X ) acting on a Borel measure µ in MEAS(X ). We have used h#µ ,
which is defined by h#µ(B) = µ(h−1[B]) for B ∈ B(X ). Others have used µh to
meanµh(B) = µ(h[B]) forB ∈ B(X ). Of course, these approaches are formally very
different. The required adjustments have been made in our presentations of results
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that used the µh notation in the literature. Another objection to the µh notation is
that the meaning of µh for Borel measurable maps h is rather awkward to define.
The definition of Borel measurability of a map h uses h−1, hence h#µ is the natural
choice.

3.9.8. Bounded Radon–Nikodym derivatives. In anticipation of results that will be
developed in the next chapter on real-valued functions, we look at the Oxtoby–Ulam
theorem from the point of view of absolute continuity of measures, which gives rise
to a real-valued function called the Radon–Nikodym derivative. Consider a positive,
continuous, complete, finite Borel measure µ on [0, 1] n and a continuous, complete,
finite Borel measure ν on [0, 1] n. Then µ + ν is also a positive Borel measure and
ν ≤ µ + ν. Consequently, ν # µ + ν and the Radon–Nikodym derivative dν

d(µ+ν)

may be assumed to be bounded above by 1 everywhere on [0, 1] n. Suppose further
that µ is also a Lebesgue-like measure on [0, 1] n and that ν(∂[0, 1] n) = 0. Then
µ + ν will be Lebesgue-like. There is a positive constant c such that cµ([0, 1] n) =(
µ + ν

)
([0, 1] n). Then, by the Oxtoby–Ulam theorem, we have c h#µ = µ + ν for

some h in HOMEO([0, 1] n). Hence c χ(0,1)n = d(µ+ν)
d(h#µ)

. Consequently, by the chain
rule for Radon–Nikodym derivatives, we have

0 ≤ dν
d(h#µ)

≤ c χ(0,1)n

for some positive real number c and for some h in HOMEO([0, 1] n).
Observe that the above discussion applies also to compact, connected

n-dimensional manifolds, to the Hilbert space, to the space N , and to n-dimensional
Menger manifolds for n ≥ 1.

The corresponding statement for the Cantor space {0, 1}N is also true.

Theorem 3.67. Suppose that µ is a positive, continuous, complete, finite Borel mea-
sure on {0, 1}N and suppose that ν is a finite, continuous, complete, Borel measure on
{0, 1}N. Then there is a positive real number c and there is an h in HOMEO({0, 1}N)

such that ν # h#µ and 0 ≤ dν
d(h#µ)

≤ c.

Proof. First observe that the Radon–Nikodym derivative is not dependent on the
metric choice on {0, 1}N. So we may assume that the Cantor space is the Cantor
ternary set X in R. Let c′ be such that µ(X ) + ν(X ) = c′µ(X ). From Theorem 3.57
with L = 2, we infer that there is an h in HOMEO(X ) such that µ + ν # c′h#µ
and d(µ+ν)

d(h#µ)
≤ 2 c′. With c = 2 c′ the proof is completed by the chain rule for

Radon–Nikodym derivatives. ✷

Theabovediscussion foreshadows thenotionof (ac)-generationby ameasureµ and
the group HOMEO(X ), see page 111. We conclude with the observation that there
are several possible “topological equivalences” of positive, continuous, complete,
finite Borel measures µ and ν on X . The first one is modelled after the Oxtoby–Ulam
type of theorems. The second and third ones are modelled after the Cantor space
theorem.
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(1) (TOP) There exists an h in HOMEO(X ) such that µ = h#ν.
(2) (ORDER) µ(X ) = ν(X ), and there exist positive constants c and c′ and there

exists an h in HOMEO(X ) such that µ ≤ c h#ν and ν ≤ c′ h−1
#µ. This, of

course, is equivalent to the Radon–Nikodym derivatives being bounded.
(3) (AC) µ(X ) = ν(X ), and there exists an h in HOMEO(X ) such that µ # h#ν

and ν # h−1
#µ.

Exercises

3.1. Prove Proposition 3.6 on page 55.
3.2. Prove Proposition 3.7 on page 55.
3.3. For a compact metrizable space X and a closed subset F of X verify

that HOMEO(X ;F fixed ) and HOMEO(X ;F inv ) are closed subgroups of
HOMEO(X ). See page 55 for definitions.

3.4. Prove Proposition 3.9 on page 56.
3.5. Prove Proposition 3.13 on page 57.
3.6. Prove Proposition 3.14 on page 57.
3.7. Prove Theorem 3.22 on page 60.
3.8. Determine the equivalence classes {h#µ : h ∈ HOMEO(T)} of the collection

MEASpos,fin(T), where T is the simple triod and µ is in MEASpos,fin(T).
3.9. Use Theorem 3.12 to prove Theorem 3.23 on page 61. Hint: Let µ|X0 =

H1 |X0 and µ|X1 = f#λ|(0, 1], where λ is the Lebesgue measure on (0, 1] and
f : (0, 1] → X1 is a homeomorphism. Let F be the closure in X of the set of
all points of maxima and all points of minima of X1 = graph(sin(1/x)) (see
page 61). Show that HOMEO(W ) can be replaced with the smaller subgroup
HOMEO(W ;F fixed ) in the above theorem.

3.10. Prove that the Oxtoby–Ulam theorem (page 62) implies the topological version
Theorem 3.31 on page 70.

3.11. Let ϕ : X → Y be a continuous surjection of a compact metrizable space X .
If µ is a complete, finite Borel measure on X , then we have already seen that
ϕ#µ is a complete, finite Borel measure on Y . Prove: If ν is a continuous,
complete, finite Borel measure on Y , then there is a B-homeomorphism ψ

of Y into X such that the measure ψ#ν on X satisfies ϕ′
#ψ#ν = ν, where

ϕ′ = ϕ|ψ[Y ]. Hint: The map ψ : Y → X is a measurable selection. With
K = {(x, y) ∈ X × Y : x ∈ ϕ−1( y)}, apply the measurable selection part of
Lemma A.48.

3.12. Carry out the exercise without recourse to the Baire category theorem. Let I be
a topological n-cell contained in a separable n-dimensional manifold Mn and
let µ be a positive, complete, finite Borel measure on Mn. Observe that Mn is
locally compact. Prove: There is a homeomorphism ϕ : [0, 1] n → I such that
ν = ϕ−1

#(µ|I) is ameasure on [0, 1] n with the property ν|([0, 1] n\∂[0, 1] n) ≤
c λ|([0, 1] n \ ∂[0, 1] n), where λ is the Lebesgue measure and c is a positive
number.

Let η > 0 and let F be a nowhere dense, closed subset of Mn. Prove:
There exists an h in HOMEO(Mn;Mn \ I fixed ) such that ρ(h, id) < η and
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h#µ(F ∩ (I \ ∂I)) = 0. Prove: There exists an h in HOMEO(Mn; ∂Mn fixed )

with ρ(h, id) small such that h#µ(F \ ∂Mn) = 0.
3.13. Let µ be a positive, continuous, complete Borel probability measure on the

Cantor ternary set X and E be the set of left end points of the components of
[0, 1] \ X . Prove Fµ|(E ∪ {0}) is an order isomorphism between E ∪ {0} and
ṽs(X ,µ).

3.14. Let X be the Cantor ternary set with the usual order. Show that every count-
able, dense subset D of [0, 1] that contains both 0 and 1 corresponds to a
positive, continuous, complete Borel probability measure µ on X such that
D = ṽs(µ,X ,≤). Hint: If D1 and D2 are countable, dense subsets of R, then
there is an order preserving homeomorphism ϕ of R such that ϕ[D1] = D2.
(See [79, page 44 ] or [2, Lemma 2.3].)

3.15. Verify Example 3.61. Let Mn be a connected n-dimensional manifold with
∂Mn = ∅. Prove: If x0 and x1 are in Mn, then h(x0) = x1 for some h in
HOMEO(Mn). That is, Mn is homogeneous.

3.16. Verify Example 3.62. That is, prove the assertion: IfD is a countable space, then
there is a positive, continuous, complete, finite Borel measure µ on X = D ×
[0, 1] such that univ M(X ) is generated by µ and and the group HOMEO(X ).
Notice that, for such a measure µ, the measure π#µ is not continuous, where π

is the natural projection of D × [0, 1] onto D.
3.17. As in Example 3.63 letπ : N ×[0, 1] → N be the natural projection and define

f on N to be the injection x �→ (x, 0). For each h in HOMEO(N × [0, 1]),
show that h∗ = πhf is in HOMEO(N ).

3.18. As in Example 3.63, denote N × [0, 1] by X . Show that there exists a posi-
tive, continuous, complete Borel probability measure µ on X such that µ is
not homeomorphic to λ|X , where λ is the Lebesgue measure on R2; that is,
µ �= h#

(
λ|X )

for every h in HOMEO(X ). (Hint: Use the last two exercises.
Distribute a linear measure in X so that it is dense in the space X .)



4

Real-valued functions

In this chapter, attention is turned to topics in analysis such as measurability,
derivatives and integrals of real-valued functions. Several connections between
real-valued functions of a real variable and universally measurable sets in R have
appeared in the literature. Four connections and their generalizations will be pre-
sented. The material developed in the earlier chapters are used in the generalizations.
The fifth topic concerns the images of Lusin spaces under Borel measurable real-
valued functions – the classical result that these images are absolute null spaces
will be proved. A brief description of the first four connections is given next before
proceeding.

The first connection is a problem posed by A. J. Goldman [64] about σ -algebras
associated with Lebesgue measurable functions; Darst’s solution [35] will be given.
A natural extension of Darst’s theorem will follow from results of earlier chapters.
Indeed, it will be shown that the domain of the function can be chosen to be any
absolute measurable space that is not an absolute null space.

The second addresses the question of whether conditions such as bounded vari-
ation or infinitely differentiability have connections to theorems such as Purves’s
theorem; namely, for such functions, are the images of universally measurable sets in
R necessarily universally measurable sets in R ? Darst’s negative resolutions of these
questions will be presented.

The third and fourth connect toA. M. Bruckner, R. O. Davies and C. Goffman [24]
and to T. Świa̧towski [148]. The proofs presented here use (already anticipated at the
end of Chapter 3) the Radon–Nikodym derivative and the action of homeomorphisms
on measures. More specifically, the Bruckner–Davies–Goffman theorem is a result
about real-valued universally measurable functions of a real variable. The original
proof relied on the order topology of R. It is known that the order topology can be
replaced by the Oxtoby–Ulam theorem, thereby relaxing the requirement that the
function be a universally measurable function of one real variable to n real variables.
A more substantial generalization of the Bruckner–Davies–Goffman theorem that
involves absolute measurable spaces will be proved. The theorem of Świa̧towski is a
change of variable theorem for Lebesgue measurable, extended real-valued functions
defined on I n; that is, for each such function f that is real-valued almost everywhere,
there is an H in HOMEO(I n) such that the Lebesgue integral of fH exists. With the
aid of the Radon–Nikodym analogues of the Oxtoby–Ulam theorem, extensions of
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this theorem to µ-measurable functions that are defined on various spaces (some that
are absolute measurable and others that are not) are proved.

4.1. A solution to Goldman’s problem

In order to state the Goldman problemwe have need of some notation. Fix a separable
metrizable space Y . Let µ be a σ -finite Borel measure on a separable metrizable
space X . For maps f : X → Y , define the σ -algebras

G(Y ;X ,µ, f ) = {E : E ⊂ Y and f −1[E] is µ-measurable},
G(Y ;X ,µ) = ⋂{G(Y ;X ,µ, f ) : f is µ-measurable}.

Of course, G(Y ;X ,µ, f ) is the largest σ -algebra of subsets E of Y such that
f −1[E] is in M(X ,µ), and G(Y ;X ,µ) contains B(Y ).
Goldman’s problem concerned the Lebesgue measure λ on R and the collection

G(R;R, λ). He asked for a characterization of this collection; indeed, he conjectured
that this collection wasB(R). Darst proved that the collectionG(R;R, λ) is precisely
the collection univ M(R). The following proof is essentially that of Darst [35]. First
observe that λ corresponds to a continuous, complete, finite Borel measure µ on R
such that the σ -algebras M(R, λ) and M(R,µ) coincide and the σ -ideals N(R, λ)

and N(R,µ) coincide. Hence λ can be replaced by a suitable finite measure µ. Key
to Darst’s argument is the following

Proposition 4.1. Let µ be a complete, finite Borel measure on X . For µ-measurable
maps f : X → Y , the Borel measure f#µ satisfies

G(Y ;X ,µ, f ) ⊃ M(Y , f#µ) ⊃ univ M(Y ),

whence G(Y ;X ,µ) ⊃ univ M(Y ).

Proof. Let E be a ( f#µ)-measurable set. Then there are Borel sets A and B such
that A ⊃ E ⊃ B and f#µ(A \ B) = 0. As f −1[A \ B] is a µ-measurable set with
µ

(
f −1[A\B]) = 0 andµ is a completemeasure, wehave that f −1[E] isµ-measurable,

whence E is in G(Y ;X ,µ, f ) and the first inclusion is verified. The second inclusion
is obvious. ✷

We are now ready to give Darst’s solution to Goldman’s problem.

Theorem 4.2 (Darst). In order that a subset E of R be such that f −1[E] is Lebesgue
measurable for every Lebesgue measurable function f : R → R it is necessary and
sufficient that E be a universally measurable set in R. Consequently G(R;R, λ) =
univ M(R), where λ is the usual Lebesgue measure on R.

Proof. The previous proposition shows thatG(R;R, λ) contains univ M(R). So sup-
pose that E is not a universally measurable set in R. Recall that λ and HOMEO(R)

generate univ M(R). Hence there is an h in HOMEO(R) such that h−1[E] is
not Lebesgue measurable. As h is a λ-measurable function on R, we have E /∈
G(R;R, λ). ✷
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An immediate consequence of the above theorem is that the statement also holds
for real-valued functions f : X → R defined on absolute measurable spaces X and
nonzero, continuous, complete, finite Borel measures on X .

Theorem 4.3. LetX beanabsolutemeasurable space andµbea continuous, complete
Borel measure on X with 0 < µ(X ) < ∞. In order that a subset E of R be such that
f −1[E] is µ-measurable for every µ-measurable function f : X → R it is necessary
and sufficient that E be a universally measurable set in R. That is, G(R;X ,µ) =
univ M(R).

Proof. By the proposition above we already know that f −1[E] is µ-measurable
whenever E ∈ univ M(R).

As X is an absolute measurable space and support(µ) �= ∅ there is an absolute
Borel space X0 such that µ(X0) = µ(X ) and µ|X0 is a positive, continuous, complete
Borelmeasure onX0. There is aB-homeomorphismϕ ofX0 ontoR such thatϕ#(µ|X0)

is a positive, continuous, complete, finite Borelmeasure onR andM(R,ϕ#(µ|X0)) =
M(R, λ). Let E be a subset of R such that E /∈ univ M(R). As E is uncountable, there
is no loss in assuming 0 /∈ E. By Darst’s theorem above there is an h0 : R → R such
that h0 is Lebesgue measurable and h0

−1[E] /∈ M(R, λ). We see from the following
commutative diagram, where f0 = h0ϕ , that the map f given by f (x) = f0(x)
whenever x ∈ X0 and f (x) = 0 whenever x ∈ X \ X0 is µ-measurable.

X0 X0
g−−−−→⊂ X

ϕ

� f0

� �f

R
h0−−−−→ R R

Observe f −1[E] = f0
−1[E] ⊂ X0. Since ϕ is a B-homeomorphism and f0

−1[E] =
ϕ−1h0

−1[E], we have f0
−1[E] /∈ M(X0,µ|X0). Hence f −1[E] /∈ M(X ,µ) because

X0 is an absolute Borel space. We have shown E /∈ G(R;X ,µ) and thereby
G(R;X ,µ) = univ M(R). ✷

Recall that if Y is an uncountable absolute Borel space then there is a
B-homeomorphism ψ : Y → R. For such a map we have univ M(Y ) =
ψ−1[univ M(R)]. So the last theorem implies the next one.

Theorem 4.4. LetX beanabsolutemeasurable space andµbea continuous, complete
Borel measure on X with 0 < µ(X ) < ∞. Furthermore, let Y be an uncount-
able absolute Borel space. In order that a subset E of Y be such that f −1[E] is
µ-measurable for every µ-measurable map f : X → Y it is necessary and sufficient
that E be a universally measurable set in Y . That is, G(Y ;X ,µ) = univ M(Y ).

Proof. Consider the commutative diagram

X X

f

� �g

Y
ψ−−−−→ R
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where ψ is a B-homeomorphism and g = ψ f . Clearly g is µ-measurable if and only
if f is µ-measurable. Suppose that E is such that f −1[E] is µ-measurable for every
µ-measurable map f : X → Y . As f −1[E] = g−1

[
ψ[E]] for every µ-measurable

g, we have that ψ[E] is a universally measurable set in R. Hence E is a universally
measurable set in Y . ✷

In the above proof we have used compositions of maps. Let us discuss various
facts about compositions. Consider compositions fg of maps f and g. The following
statements are well-known.

(1) If f and g are Borel measurable, then so is fg.
(2) If f is Borel measurable and g is Lebesgue measurable, then fg is Lebesgue

measurable.
(3) There are Lebesgue measurable functions f and g such that fg is not Lebesgue

measurable.

Recall that a map f : X → Y is universally measurable if and only if f −1[U ] ∈
univ M(X ) for every open set U of Y . The collection of all such maps has been
denoted by univ MAP(X ;Y ). The collection of all maps f : X → Y such that f is
µ-measurable (where µ is a continuous, complete, finite Borel measure on X ) is
denoted by MAP(X ,µ; Y ). Since B(X ) ⊂ univ M(X ), we have that every Borel
measurable map defined on X is also universally measurable on X .

Proposition 4.5. f ∈ univ MAP(X ;Y ) if and only if f −1[M ] ∈ univ M(X )whenever
M ∈ univ M(Y ).

Proof. Proposition 2.19 yields the if part. Let M be in univ M(Y ), f be in
univ MAP(X ;Y ), and µ be a continuous, complete, finite Borel measure on X .
As f is µ-measurable, by Proposition 4.1, f −1[M ] is µ-measurable. Hence f −1[M ]
is a universally measurable set in X . ✷

To the above list of properties of compositions of maps we can add the following
two theorems which are consequences of the above results. The proofs are left to the
reader as exercises.

Theorem 4.6. Suppose that X , Y and Z are separable metrizable spaces and that µ is
a continuous, complete, finite Borel measure on X . Let f : Y → Z and g : X → Y .

(1) If f is in univ MAP(Y ;Z) and g is in univ MAP(X ;Y ), then fg is in
univ MAP(X ;Z).

(2) If f is in univ MAP(Y ;Z) and g is in MAP(X ,µ; Y ), then fg is in MAP(X ,µ; Z).

Theorem 4.7. Suppose that X , Y and Z are separable metrizable spaces and let
f : Y → Z and g : X → Y . Suppose further that Y is an absolute measurable space.
In order that fg ∈ MAP(Y ,µ; Z) holds for every g in MAP(X ,µ; Y ) and for every
continuous, complete, finite Borel measure µ on X it is necessary and sufficient that
f be in univ MAP(Y ;Z).
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4.2. Differentiability and B-maps

A B-map (see Definition A.18) is a Borel measurable map for which the images
of Borel sets are Borel sets. By Purves’s theorem, not every continuous function
f : R → R is a B-map. One would suspect also that differentiability conditions on a
real-valued map of a real variable would have no connections to B-maps. This was
shown to be so by Darst in [40]. This section is devoted to the presentation of his
example.

4.2.1. An observation. Let f : [0, 1] → R be a B-map. As homeomorphisms are
B-maps it is clear that the composition h1fh0 is also a B-map whenever h1 is a
homeomorphism of R and h0 is a homeomorphism of [0, 1]. This observation will be
useful in the presentation of the example.

4.2.2. An example of A. H. Stone. The following continuous function of bounded
variation is attributed to Arthur H. Stone by Darst in [38]. On the Cantor ternary set
C, define the function g by the formula

g
(∑∞

n=1 an 3
−n

) = ∑∞
n=1 a2n 9

−n,

where each a1, a2, . . . , is 0 or 2. The natural extension of g to [0, 1] (by making it
linear on the complementary intervals of [0, 1] \ C) will also be denoted by g. An
elementary computation will show that

|g(s) − g(t)| ≤ 3 |s − t| whenever s and t are in [0, 1].

Indeed, suppose that s and t are in C with g(s) �= g(t). Define k0 and k1 to be the
natural numbers such that

s2k0 �= t2k0 and s2k = t2k whenever k < k0,

s2k1−1 �= t2k1−1 and s2k−1 = t2k−1 whenever k < k1.

Then
|g(s) − g(t)| ≤ 2

∑
k≥k0

1
9k

= 9
4

1
9k0

.

If k1 ≤ k0, then |s − t| ≥ 2
32k1−1 − 2

∑
j>2k1−1

1
3j

= 3
9k1

≥ 4
3 |g(s) − g(t)|. If k1 >

k0, then |s − t| ≥ 2
9k0

− 2
∑

j>2k0
1
3j ≥ 1

9k0
≥ 4

9 |g(s) − g(t)|. Hence |g(s) − g(t)| ≤
3 |s− t|whenever s and t are in C. It now follows that g is Lipschitzian with Lipschitz
constant not exceeding 3. So g is a continuous function of bounded variation. Clearly
card

(
g−1[y]) = c whenever y ∈ g[C]. As g is Lipschitzian, the Lebesgue measure of

g[C] is 0, whence g[C] is nowhere dense in R. Moreover, g
[[0, 1]] ⊂ [0, 1] and g is

infinitely differentiable on the open set U = [0, 1] \ C.
Let K denote the nowhere dense, compact subset g[C] of R. It is well known

that there is an infinitely differentiable function h : R → R such that h(x) ≥ 0 for
every x and such that h(x) > 0 if and only if x /∈ K . For the sake of completeness,
we shall give a proof. Let u : R → R be the familiar infinitely differentiable function
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given by the formula u(x) = e− 1
x for x > 0, and let ϕ(a,b)(x) = u(x − a)u(b − x)

for 0 ≤ a < b ≤ 1. With the aid of the Taylor formula it is easily shown that, for
each k , there is a constantMk such that |ϕ(a,b)

(k)(x)| ≤ Mk (x−a)2(b− x)2 whenever
0 ≤ a < x < b ≤ 1. Let (an, bn), n = 1, 2, . . . , be a well ordering of the collection
of all bounded components of R \ K . For each n, let hn = ϕ(an,bn). Then a simple
modification of

∑∞
n=1

1
2n hn on the unbounded components of R \ K will give the

desired infinitely differentiable function h. Moreover, h(k) = ∑∞
n=1

1
2n hn

(k) on the
bounded components of R \ K for each k .

4.2.3. The example. Let g be Stone’s example and let h be a bounded, infinitely dif-
ferentiable function such that h(x) ≥ 0 for every x and such that h(x) = 0 if and only
if x ∈ K , where K = g[C]. Then, by the fundamental theorem of calculus, H (y) =∫ y
0 h(t) dt, y ∈ R, is an infinitely differentiable function, whence Lipschitzian.

Also, h(k)g is a Lipschitzian function, and h(k)
(
g(x)

) = 0 whenever x ∈ C.
Define f to be the composition Hg. Then f is Lipschitzian. Clearly f is infinitely

differentiable on R \ C; moreover,

f (k+1)(x) = h(k)
(
g(x)

)(
g′(x)

)(k+1)
whenever x ∈ R \ C.

Let us show, at each x in C, that f is differentiable and f ′(x) = 0 = h
(
g(x)

)
. Indeed,

for t �= 0, there is an η between g(x) and g(x + t) such that

f (x + t) − f (x)

t
= h(η)

g(x + t) − g(x)

t

and observe that g is Lipschitzian and that h
(
g(x)

) = 0 whenever x ∈ C. Since h is
continuous and g is Lipschitzian, it follows that f ′(x) exists and is equal to 0 at each
x in C.

Note that g′(x) exists at every x in R \ C. It will be convenient to define the
bounded function

G(x) =
{
3, if x ∈ C,
g′(x), if x /∈ C.

For k ≥ 0, it is easily seen that the product (h(k)g)·G is continuous because G is
bounded and is continuous whenever x /∈ C. Hence

f (1)(x) = (
hg

)
(x)G(x) and f (x) = ∫ x

0

(
hg

)
(t)G(t) dt

for every x. Moreover

f (k+1)(x) = (
h(k)g

)
(x)

(
G(x)

)k+1

whenever x /∈ C and k ≥ 0.
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Let us show that f (2)(x) exists and equals 0 whenever x ∈ C. To this end, observe
that, for every x,

f (1)(x) = G(x)h
(
g(x)

)
= G(x)

∫ g(x)
0 h(1)(t) dt

= G(x)
∫ x
0 h(1)

(
g(t)

)
G(t) dt.

Since G(x′)h(1)
(
g(x)

) = 0 whenever x ∈ C and x′ ∈ R, the first displayed equality

gives f (2)(x) exists and is equal to 0 = (
G(x)

)2
h(1)

(
g(x)

)
for each x in C. It now

follows that, for every x,

f (2)(x) = (
G(x)

)2
h(1)

(
g(x)

)
= (

G(x)
)2 ∫ g(x)

0 h(2)(t) dt

= (
G(x)

)2 ∫ x
0 h(2)

(
g(t)

)
G(t) dt.

It is equally easy to show that f (k+1) = (h(k)g)·G k+1 is differentiable for each k .

Theorem 4.8 (Darst). There are infinitely differentiable real-valued functions of a
real variable that are not B-maps.

Proof. With h, H and g as in the discussion immediately preceding the statement of
the theorem, we have defined an infinitely differentiable function f by the formula

f (x) = ∫ g(x)
0 h(t) dt = Hg(x).

The setK = g[C] is an uncountable set.Also, g−1[{y}] is an uncountable set for each y
in K . Hence f −1[{z}] is an uncountable set for each z in H [K]. Clearly H |(g[[0, 1]])
is a homeomorphism of g

[[0, 1]] into R and thereby H [K] is an uncountable set.
As f [C] = H [K] we have that f [C] is an uncountable set that is contained in the set
of uncountable order of f . Consequently f is not a B-map by Purves’s theorem. ✷

4.3. Radon–Nikodym derivative and Oxtoby–Ulam theorem

At the end of the Comment section of the last chapter the notion of absolute continuity
of measures was introduced in connection with the Oxtoby–Ulam theorem.Although
an analogue of the Oxtoby–Ulam theorem for the Cantor space {0, 1}N does not
exist, there is an interesting absolute continuity property shared by the spaces [0, 1]n
and {0, 1}N. This absolute continuity property will be pursued further in this section.

Recall frompage86 that ameasureµ is said to beabsolutely continuouswith respect
a measure ν (denoted µ # ν) if µ(E) = 0 whenever ν(E) = 0. For convenience we
shall assume µ and ν are continuous, complete, finite Borel measures on a separable
metrizable spaceX . Ifµ is absolutely continuouswith respect to ν, then there is a real-
valued, Borel measurable function, denoted by dµ

dν
and called the Radon–Nikodym
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derivative of µ with respect to ν, that satisfies the identity:

µ(B) = ∫
B

dµ
dν

dν = ∫
X

χB· dµ
dν

dν whenever B ∈ B(X ).

In the investigation of the interplay of the Radon–Nikodym derivative and the
Oxtoby–Ulam theorem, we will “piece together” measures associated with the
“piecing together” of homeomorphisms. Here are two straightforward exercises on
absolutely continuous measures and Radon–Nikodym derivatives.

Proposition 4.9. Let X1 and X2 be disjoint Borel sets of a separable metrizable space
X , and let ν = ν1 X1 + ν2 X2, where ν1 and ν2 are continuous, complete, finite
Borel measures on X . If µ is a continuous, complete, finite Borel measure on X such
that µ X1 # ν1 and µ X2 # ν2, then µ # ν and

d(µ (X1∪X2))
dν

= d(µ X1)
dν1

· χX1 + d(µ X2)
dν2

· χX2 .

Proposition 4.10. Let µ and ν be continuous, complete, finite Borel measures on a
separable metrizable space X . If h ∈ HOMEO(X ), then µ # h#ν if and only if
h−1

#µ # ν.

In Chapter 3 we saw that the Oxtoby–Ulam theorem concerned Lebesgue-like
measures on topological n-cells. We have seen also that it has many generalizations.
But its extensions to spaces such as open subsets of Rn or to other positive measures
more general than Lebesgue-like ones on I n are yet to be found. In this section we
will use the Radon–Nikodym derivative to extend the Oxtoby–Ulam theorem. The
proofs of some of the theorems concerning real-valued functions will be facilitated
by the existence of such Radon–Nikodym derivatives.

4.3.1. Homeomorphismgroup andRadon–Nikodymderivative. The spaces that are
of interest here are those that contain open sets that are topologically equal to open
sets of n-dimensional Euclidean space. Indeed, we shall concentrate on those open
sets that are homeomorphic to I n \ ∂I n, where I = [0, 1], or to [0, 1) × (0, 1)n−1.

As we have seen in the comment section of the previous chapter, the Oxtoby–Ulam
theorem can be couched in terms of the existence of a bounded Radon–Nikodym
derivative in conjunction with homeomorphisms. More generally, we have the
following consequence of the Oxtoby–Ulam theorem.

Lemma 4.11. Let X be a separable metrizable space that contains a topological copy
Y1 of In such that U1 = Y1\∂Y1 is open in X and such that ∂Y1 contains a topological
copy Y0 of In−1 such that U0 = Y0\∂Y0 is open in X \U1. Suppose that ν is a positive,
continuous, complete, finite Borel measure on X .

(1) If µ is a continuous, complete, finite Borel measure on X such that µ|Y1 is
Lebesgue-like on Y1, then there exists an h in HOMEO(X ;X \ U1 fixed) such
that µ Y1 # h#ν and d(µ Y1)

d(h#ν)
= µ(U1)

ν(U1)
on U1.
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(2) If µ is a continuous, complete, finite Borel measure on X , then µ U1 is
absolutely continuous with respect to h#ν and the Radon–Nikodym derivative
d(µ U1)
d(h#ν)

is bounded for some h in HOMEO(X ;X \ U1 fixed ).
(3) If the restricted measure ν|U0 is also positive on the set U0, then µ (U1 ∪ U0)

is absolutely continuous with respect to h#ν and the Radon–Nikodym derivative
d(µ (U1∪U0))
d(h#ν)

is bounded for some h in HOMEO(X ;X \ (U1 ∪ U0) fixed ).

Proof. Statement (1) follows easily from the Oxtoby–Ulam theorem. Indeed, ν0 =
(ν U1)|Y1 is Lebesgue-like on Y1 and d(µ|Y1)

d(h′
#ν0)

= µ(U1)
ν0(U1)

on U1 for some h′ in
HOMEO(Y1; ∂Y1 fixed ). As U1 is open in X , there is a natural extension h of h′
to a homeomorphism in HOMEO(X ;X \ U1 fixed ). It follows that d(µ Y1)

d(h#ν)
equals

d(µ U1)
d(h#ν)

·χU1 which is equal to d(µ U1)
d((h#ν) U1)

·χU1 . For Borel sets B that are contained

in U1 we have
(
µ U1

)
(B) = µ(B) and

(
(h#ν) U1

)
(B) = (

h#ν
)
(B) = (

h′
#ν0

)
(B).

Hence d(µ U1)
d((h#ν) U1)

· χU1 is equal to d(µ|Y1)
d(h′

#ν0)
= µ(U1)

ν0(U1)
= µ(U1)

ν(U1)
on U1. The first

statement is established.
We turn to statement (2). Let µ′ = (µ + ν) U1. Then µ′|Y1 is Lebesgue-like

on Y1. There is an h in HOMEO(X ;X \ U1 fixed ) and a positive number c such that
µ′ # h#ν and dµ′

d(h#ν)
= c χU1 . Since 0 ≤ µ U1 ≤ µ′ and 0 ≤ ν U1 ≤ µ′, we have

µ U1 # h#ν and ν U1 # h#ν and consequently d(µ U1)
d(h#ν)

+ d(ν U1)
d(h#ν)

≤ c. It now

follows that d(µ U1)
d(h#ν)

is bounded.
For statement (3), suppose further that ν is positive on U0. There is an h′′ in

HOMEO(X \ U1 ;X \ (U1 ∪ U0) fixed ) such that the measures µ′′ = (µ|(X \
U1)) U0 and ν′′ = h′′

#(ν|(X \U0)) satisfy µ′′ # ν ′′ and dµ′′
d(h′′

#ν′′) is bounded on Y0.
Observe that µ′′ = (µ U0)|(X \U1) and ν ′′ = (ν U0)|(X \U1) hold.AsU1 is open
inX and asY0 is contained in ∂Y1 andU0 is open inX \U1, there is an extension h′ of h′′
inHOMEO(X ;X \ (U1 ∪ U0) fixed ) such that (h′

#ν)|(X \U1) = (h′′
#ν)|(X \U1). It

now follows that µ U0 # (h′
#µ) U0 # h′

#ν and d(µ U0)
d(h′

#ν)
is bounded. There is an

h in HOMEO(X ;X \ U1 fixed ) (by statement (2)) such that µ U1 # (hh′)#ν and
d(µ U1)
d((hh′)#ν)

is bounded. From hh′ = h′ on U0 we see that ((hh′)#ν) U0 = (h′
#ν) U0

and d(µ U0)
d((hh′)#µ)

= d(µ U0)
d(h′

#µ)
onU0. The proof is completed by observing thatU1∩U0 =

∅ yields d(µ (U1∪U0))
d((hh′)#ν)

= d(µ U1)
d((hh′)#ν)

+ d(µ U0)
d((hh′)#ν)

. ✷

4.3.2. Applications. To apply the last lemma to open subsets of n-dimensional man-
ifolds M we begin by preparing some groundwork. Let µ and ν be continuous,
complete, finite Borel measures onM such that the support of ν isM and the support
of ν|∂M is the (n− 1)-dimensional manifold ∂M . With the aid of the measure µ + ν

we can construct a base B for the open sets of M such that each V in B satisfies the
following conditions.

(1) ClM (V ) is a topological n-cell contained in X and V is equal to IntM
(
ClM (V )

)
,

(2) ClM (V ) ∩ ∂M is either empty or a topological (n − 1)-cell,
(3) µ(BdM (V )) = 0 and ν(BdM (V )) = 0. Note that ∂V and BdM (V ) need not

coincide.
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Lemma 4.12. Let µ and ν be continuous, complete, finite Borel measures on M; and,
for a finite collection Vi, i = 1, 2, . . . , k, of open sets from the collection B described
above, let X = ⋃k

i=1 ClM (Vi). Then there is an h in HOMEO(M ;X ∩ ∂M inv ) ∩
HOMEO(M ;M \ X fixed ) such thatµ X # h#ν, h#ν(BdM (X )) = 0, and d(µ X )

d(h#ν)

is bounded.

Proof. AsVi is inB, we haveYi = ClM (Vi) is a topologicaln-cell contained inM . The
proof is an induction on k . For k = 1, either Y1 ∩∂M = ∅ or Y1∩∂M is a topological
(n − 1)-cell. The first case follows from Lemma 4.11 (2) since U1 = Y1 \ ∂Y1. For
the second case we have V1 \ U1 is open in Y1 \ U1. This case follows from Lemma
4.11 (3).

Let m > 1 and assume the statement is true whenever k < m. Let X1 and X2 be as
in the lemma with k1 < m and k2 < m. Let h′ be in HOMEO(M ;X1 ∩ ∂M inv)

∩ HOMEO(M ;M \ X1 fixed ) such that µ X1 # h′
#ν,

(
h′

#ν
)
(BdM (X1)) =

0, and d(µ X1)
d(h′

#ν)
is bounded. Then let h′′ be in HOMEO(M ;X2 ∩ ∂M inv ) ∩

HOMEO(M ;M \ X2 fixed ) such that µ X2 # h′′h′
#ν,

(
h′′h′

#ν
)
(BdM (X2)) = 0,

and d(µ X2)
d(h′′h′

#ν)
is bounded. Let h = h′′h′ and X = X1 ∪ X2. As h(x) = x for every x in

M \ X , we have h[X ] = X and h[X ∩ ∂M ] = X ∩ ∂M . As

h#ν = ν (M \ X ) + (h′
#ν) (X \ X2)) + ((h′′h′)#ν) X2,

we have µ X = µ (X1 \ X2) + µ X2 # h#ν and hence d(µ X )
d(h#ν)

is bounded. Only

h#ν(BdM (X )) = 0 remains to be shown. To this end we have BdM (X ) ⊂ (
BdM (X2)\

IntM (X1)
) ∪ (

BdM (X1) \ IntM (X2)
)
. As h−1[BdM (X )] ⊂ (h′′h′)−1[BdM (X2)]

∪ h′−1[BdM (X1) \ IntM (X2)], we have h#ν(BdM (X )) = 0. ✷

The next theorem is a Radon–Nikodym version of the Oxtoby–Ulam theorem for
compact manifolds. This generalization permits the use of Borel measures µ which
are not necessarily Lebesgue-like and to certain Borel measures ν such that ν|∂M are
finite sums of Lebesgue-like measures. The proof is an immediate consequence of
the previous lemma since M is compact.

Theorem 4.13. Let M be a compact manifold and let ν be a positive, continuous,
complete, finite Borel measure on M such that ν|∂M is positive on ∂M whenever
∂M �= ∅. If µ is a continuous, complete, finite Borel measure on M, then there is an
h in HOMEO(M ; ∂M inv) such that µ # h#ν and dµ

d(h#ν)
is bounded.

Let us turn to applications of Lemma 4.12 to sets that are open in Rn or open in
[0,∞) × Rn−1. Here one can take advantage of standard subdivisions of open sets
by countably many nonoverlapping n-cubes. In fact, if µ and ν are σ -finite Borel
measures on an open set X of Rn or of [0,∞) × Rn−1 and if ε is a positive number,
then there is a sequence Y = {Yi : i = 1, 2, . . .} of nonoverlapping n-cells such that

(1) Y covers X ,
(2) Y is a locally finite collection in X ,
(3) diam(Yi) < ε, µ(BdX (Yi)) = 0 and ν(BdX (Yi)) = 0 for every i,
(4) limi→∞ diam(Yi) = 0.
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In order to apply the lemma to σ -finite measures it will be necessary to add the
requirement that the measure of K be finite whenever K is a compact subset of
X . Such measures are called Radon measures. We point out that there are σ -finite
measures that are notRadonmeasures. Indeed, consider themeasureµ on [0, 1]2 equal
to the Hausdorff one-dimensional measure limited to the subset of [0, 1]2 consisting
of those points whose first coordinate is a rational number.

Theorem 4.14. Suppose that M is either Rn or [0,∞) × Rn−1. Let X be an open set
in M and let µ and ν be continuous, complete, σ -finite Borel measures on M such
that µ(K) and ν(K) are finite whenever K is a compact subset of X and such that ν is
positive on M and ν|∂M is positive on ∂M if ∂M is not empty. Then there exists an h
in HOMEO(M ;M \ X fixed ) ∩ HOMEO(M ;X ∩ ∂M inv ) such that µ X # h#ν
and d(µ X )

d(h#ν)
·χK is bounded whenever K is a compact subset of X . Moreover, if ε > 0,

then the distance between h and id can be made less than ε.

Proof. LetY be as described in the paragraph preceding the statement of the theorem.
For eachm let Xm = ⋃m

i=1 Yi and define hm to be the corresponding homeomorphism
given by Lemma 4.12. As Y is a nonoverlapping collection we have that hm[Yi] = Yi
for every i and every m and that hm(x) = hk(x) whenever x ∈ Yk and m ≥ k .
Hence hm, m = 1, 2, . . . , converges pointwise to a bijection of M . Also ‖hk (x) −
hm(x)‖ ≤ max{diam(Yi) : i ≥ min{k ,m}}, whence the sequences hm , m = 1, 2, . . . ,
and hm

−1, m = 1, 2, . . . , are uniformly convergent. Consequently there is an h in
HOMEO(M ;M \ X fixed ) ∩ HOMEO(M ;X ∩ ∂M inv ) such that h(x) = hm(x)
whenever x is in Ym. Clearly, µ Xm+1 # h#ν and d(µ Xm+1)

d(h#ν)
= d(µ Xm+1)

d(hm+1#ν)
· χXm+1 .

Observe µ X = ∑∞
m=1 µ (Xm \ Xm−1). Since µ (Xm+1 \ Xm) ≤ µ Xm+1, we

have µ X # h#ν and

d(µ X )
d(h#ν)

= ∑∞
m=1

d(µ (Xm\Xm−1))
d(h#ν)

= ∑∞
m=1

d(µ Ym)
d(h#ν)

= ∑∞
m=1

d(µ Ym)
d(hm#ν)

· χYm .

Suppose that K is a compact subset of X . Then, by the conditions on Y , there is anm0

such that Xm ⊃ K whenever m ≥ m0. Hence d(µ X )
d(h#ν)

is bounded on Xm0 and thereby
on K . ✷

In the above theorem the open subset X of the manifold Rn or [0,∞) × Rn−1

is, in a sense, triangulable by a collection Y of n-cells that are locally finite in the
set X . This permits the Radon–Nikodym derivative to be “locally bounded” in X .
If one is willing to relax this locally bounded condition, then the set X can be cho-
sen to be an open set in any n-dimensional manifold M . Such a weaker form of the
theorem will be useful for “almost every” assertions as we shall see in the discus-
sion of the Bruckner–Davies–Goffman theorem which will be developed shortly.
We leave the proof of the following weaker theorem and preparatory lemma as
exercises.
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Lemma 4.15. Suppose that X is an open set in an n-dimensional manifold M and
let µ and ν be continuous, complete, σ -finite Borel measures on M such that µ(K)

and ν(K) are finite whenever K is a compact subset of X and such that ν is positive
on M and ν|∂M is positive on ∂M if ∂M is not empty. Then there is a sequence
Y = {Yi : i = 1, 2, . . . } of n-cells such that

(1) {IntM (Y ) : Y ∈ Y} covers X ,
(2) Y is a locally finite collection in X ,
(3) for each i, diam(Yi) < ε, µ(BdX (Yi)) = 0 and ν(BdX (Yi)) = 0,
(4) limi→∞ diam(Yi) = 0.

The lemma and Theorem 4.14 imply the following theorem for open subsets of
manifolds.

Theorem 4.16. Let X be an open subset of an n-dimensional manifold M and let µ

and ν be continuous, σ -finite Borel measures onM such thatµ(K) and ν(K) are finite
wheneverK is a compact subset of X and such that ν is positive onM and ν|∂M is pos-
itive on ∂M if ∂M is not empty. Then there is an h in both HOMEO(M ;M \ X fixed)

and HOMEO(M ;X ∩ ∂M inv) such that µ X # h#ν. Moreover, if ε > 0, then the
distance between h and id can be made less than ε.

Let us turn our attention to theWarsaw circle. TheWarsaw circle can be considered
as a compactification of the real line R. Indeed, if one denotes the set of all points
x of the Warsaw circle at which W is not locally connected by W0, then W1 =
W \ W0 is homeomorphic to R. It is easily seen that, in the subspace W1, there is a
countable, closed setV such that each h inHOMEO(W1;V fixed ) has an extensionH
in HOMEO(W ;W0 ∪ V fixed ).

Theorem 4.17. Let µ and ν be continuous, complete, finite Borel measures on the
Warsaw circle W such that ν|W0 and ν|W1 are positive measures on W0 and W1,
respectively. Then there exists an h in HOMEO(W ) such that µ # h#ν.

Proof. AsW0 is an arc, there is an h0 in HOMEO(W0; ∂W0 fixed ) such that µ|W0 #
h0#(ν|W0). It is easy to see that there is an extension h1 of h0 in HOMEO(W ).
So, µ W0 # (h1#ν) W0. It is easily seen (see Exercise 4.4) that there is an h2
in HOMEO(W ;W0 fixed ) such that µ W1 # h2#((h1#ν) W1). Clearly we have
(h1#ν) W0 = h2#((h1#ν) W0). Hence µ = µ W0 + µ W1 # h2#h1#ν. Let
h = h2h1 to complete the proof. ✷

Finally we turn to the finitely triangulable spaces, the last of the many spaces that
we have studied for which the Oxtoby–Ulam theorem can be used.

Theorem 4.18. If X is a finitely triangulable space with dim X > 0 and ifµ and ν are
continuous, complete, finite Borel measures on X such that ν|σ is a positive measure
on σ for every nondegenerate simplex σ in some triangulation K of X , then there is
an h in HOMEO(X ) such that µ # h#ν and dµ

d(h#ν)
is bounded.

Proof. The proof is a simple induction on the dimension of X . For dim X = 1 let K
be a triangulation of X such that ν|σ is positive whenever σ is a one-dimensional
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simplex in K . Since X is finitely triangulable, there is an h in HOMEO(X ;V fixed ),
where V is the set consisting of all vertices of X , such that µ # h#ν and dµ

d(h#ν)
is

bounded. We shall give the proof for dim X = 2 ; the general case is easily seen from
this one. Let K1 = {σ ∈ K : dim σ ≤ 1} and define X0 = |K1|. There is an h0 in
HOMEO(X0;V fixed ) such thatµ|X0 # h0#(ν|X0) and

d(µ|X0)
d(h0#(ν|X0))

is bounded onX0.
Consider one of the finitelymany two-dimensional simplex σ inK . We have ∂σ ⊂ X0

and that σ \ ∂σ is open in X . Hence h0 has an extension h0
′ in HOMEO(X0 ∪ σ). It

follows that h0 has an extension h1 in HOMEO(X ) such that µ X0 # (h1#ν) X0

and d(µ X0)
d(h1#ν)

= d(µ|X0)
d(h0#(ν|X0))

on X0. By Lemma 4.11 we infer the existence of an
h2 in HOMEO(X ;X0 fixed ) such that µ (X \ X0) # h2#((h1#ν) (X \ X0)) and
(h1#ν) X0 = h2#((h1#ν) X0). Hence µ = µ X0 + µ (X \ X0) # h#ν, where
h = h2h1. Moreover, as

dµ
d(h#ν)

= d(µ X0)
d(h1#ν)

· χX0 + d(µ (X \X0))
d(h2#((h1#ν) (X \X0))

· χ(X \X0)

and the second term of the right-hand side is bounded by Lemma 4.11, the Radon–
Nikodym derivative dµ

d(h#ν)
is bounded. ✷

We must not forget the Hilbert space [0, 1]N and the space NN which is homeo-
morphic toN . Also, there is the compact Menger manifold of positive dimension that
was mentioned at the end of the last chapter. The proof of the corresponding theorem
for these spaces (stated below) is left as an exercise for the reader (Exercise 4.5).

Theorem 4.19. Let X be the Hilbert cube or the spaceN or a compact Menger mani-
fold of positive dimension. If µ and ν are continuous, complete, finite Borel measures
on X such that ν is a positive measure on X , then there is an h in HOMEO(X ) such
that µ # h#ν and the Radon–Nikodym derivative dµ

d(h#ν)
is bounded.

The last of our examples is the Cantor space {0, 1}N. For this, see Theorem 3.67.

We have found many examples of spaces X such that the notions of absolute
continuity and Radon–Nikodym derivative provide connections between the group
of homeomorphisms HOMEO(X ) and the collection of all continuous, complete,
finite Borel measures on X . These examples lead to the following definition, where
MEASfinite(X ) ∩ MEAScont(X ) is the collection of all continuous, complete, finite
Borel measures on X .

Definition 4.20. Let ν be a continuous, complete, finite Borel measure on a separable
metrizable space X . The measure ν and the group HOMEO(X ) are said to (ac)-
generate MEASfinite(X )∩MEAScont(X ) if to each continuous, complete, finite Borel
measure µ on X there corresponds an h in HOMEO(X ) such that µ # h#ν.

Observe that every spaceX that has appeared in this application section possessed a
measure ν such that it andHOMEO(X ) (ac)-generateMEASfinite(X )∩MEAScont(X ).
We have the following general theorem.



112 Real-valued functions

Theorem 4.21. Let X be a separable metrizable space and ν be a continuous, com-
plete, finite Borelmeasure onX . If ν andHOMEO(X ) (ac)-generateMEASfinite(X )∩
MEAScont(X ), then ν and HOMEO(X ) generate univ M(X ).

Proof. We will apply Proposition 3.14. Let E be a subset of X such that E ∈⋂{M(X , h#ν) : h ∈ HOMEO(X )}. Suppose that µ is a continuous, complete, finite
Borel measure on X . There is an h in HOMEO(X ) such that µ # h#ν. Since E is in
M(X , h#ν), we have Borel sets A and B such that A ⊂ E ⊂ B and

(
h#ν

)
(B \ A) = 0.

Hence µ(B \ A) = 0 and thereby E ∈ M(X ,µ). Consequently, E is a universally
measurable set in X . ✷

4.4. Zahorski spaces

In the previous section about Radon–Nikodym derivatives on various special
spaces X , the measure ν has been assigned a special role due to its “positiveness”
on X . Often this measure is constructed so that nice properties hold for the prob-
lem under investigation. This will happen in the discussion of the Bruckner–Davies–
Goffman theorem which is given in the next section. The constructions will involve
a class of absolute Fσ spaces called Zahorski spaces. (See Appendix A for more on
Zahorski spaces.)

Definition 4.22. A separable metrizable space is a Zahorski space if it is the empty
space or it is the union of a countable sequence of topological copies of the Cantor
set. A subset Z of a separable metrizable space X is called a Zahorski set if it is a
Zahorski subspace of X .

Zahorski spaces have very natural continuous, complete, finite Borel measures
associated with them. Indeed, for nonempty Zahorski spaces, positive ones are easily
constructed. Such examples motivate the following definition (which is Definition
A.42 in Appendix A).

Definition 4.23. Let E be a Zahorski set contained in a separablemetrizable space X .
A Zahorski measure determined by E is a continuous, complete, finite Borel measure
on X such that µ(X \ E) = 0 and µ(E ∩ U ) > 0 whenever U is an open set in X
with E ∩ U �= ∅.

Recall the definition of the universally positive closure operator FX from page 33.
Zahorski sets and this operator are connected by

Proposition 4.24. Let X be a separable metrizable space.

(1) If E is a Zahorski set in X , then ClX (E) = FX (E).
(2) If A is an absolute measurable space contained in X , then there is a Zahorski set

E in X such that E ⊂ A and ClX (E) = FX (A).
(3) If E is a Zahorski set in X and B is a universally measurable set in X such that

FX (E \B) �= ∅, then there is a nonempty Zahorski set E′ in X with the properties
E′ ∩ B = ∅, E′ ⊂ E, and E′ is dense in FX (E \ B).
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Proof. Suppose that E is a nonempty Zahorski set in X . As every nonempty Zahorski
space is not an absolute null space, we haveClX (E) = FX (E) because nonempty open
subsets of a Zahorski set of X are Zahorski sets of X by Proposition A.41.

Let A be an absolute measurable subspace of X . If FX (A) = ∅, then let E = ∅.
If FX (A) �= ∅, then there is a continuous, complete, finite Borel measure µ on X
such that support(µ) = FX (A). There exists a σ -compact kernel K contained in
A ∩ support(µ) such that µ(X ) = µ(K), where K is the union of a Zahorski set and
a countable set (see Proposition D.7 and Exercise D.1 in Appendix D).

Finally, let us prove statement (3). We have that E \ B is an absolute measurable
space by Propositions 2.6 and 2.5. Statement (2) completes the proof. ✷

Observe, for separable metrizable spaces X , that each subset E of X is associated
with the closed set FX (E) and the absolute null space E \ FX (E). This leads to the
following proposition whose proof is left as an exercise.

Proposition 4.25. Let X be an absolute measurable space. If E is a universally
measurable set in X such that IntX

(
FX (E)

) �= ∅, then there is a Zahorski set K in X
such that K ⊂ E and such that K is dense in IntX

(
FX (E)

)
.

Here is a nice connection between the Baire category theorem and universally null
sets. Recall that universally null sets in a space X are always absolute null spaces
(see Theorem 2.7).

Lemma 4.26. Suppose that X is a separable completely metrizable space with
FX (X ) = X . If Hi, i = 1, 2, . . . , is a sequence of closed sets and if Z is an abso-
lute null space such that X = Z ∪ ⋃∞

i=1 Hi, then
⋃∞

i=1 IntX (Hi) is a dense, open
subset of X .

Proof. Observe that Z0 = Z \ ⋃∞
i=1 Hi is an absolute Borel subset of the absolute

null space Z , hence a countable set. As no point of Z is isolated in X , the lemma
follows from the Baire category theorem. ✷

Let us apply the lemma to countable covers of X by universally measurable sets.

Corollary 4.27. Let X be a separable completely metrizable space such that
FX (X ) = X . If Xi, i = 1, 2, . . . , is a sequence of universally measurable sets in X and
if Z is a universally null set in X such that X = Z∪⋃∞

i=1 Xi, then
⋃∞

i=1 IntX
(
FX (Xi)

)
is a dense open subset of X .

Proof. Note that Xi \ FX (Xi) is a universally null set in X and FX (Xi) is a closed
set for every i. As Z ∪ ⋃∞

i=1

(
Xi \ FX (Xi)

)
is a universally null set in X , the corollary

is an immediate consequence of the lemma. ✷

The next corollary is a key to the proof of the Bruckner–Davies– Goffman theorem
and the proof of our generalization of it.

Corollary 4.28. Let X be a separable completely metrizable space and let E be a
Zahorski set in X such that E is dense in FX (X ). If Z is a universally null set in X
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and A is a universally measurable set in X such that A ⊂ E, then there is a Zahorski
set F in X such that F ⊂ E, F is dense in E, F ∩ Z = ∅, and

χA |F = χFX (A) |F .

Proof. As FX (A) = FFX (X )(A) holds because A ⊂ E ⊂ FX (X ), there is no loss in
assuming FX (X ) = X .

The sets H1 = A \ Z and H2 = E \ (A ∪ Z) are universally measurable sets in X .
We have X = FX (H1) ∪ FX (H2) because E is dense in FX (X ), whence the union of
the disjoint open sets U and V defined by

U ∪ V = IntX
(
FX (H1)

) ∪ (
IntX

(
FX (H2)

) \ FX (H1)
)

is a dense subset of X . By Proposition 2.5, A is an absolute measurable space. So, by
statement (2) of Proposition 4.24, there is a Zahorski set F1 contained in H1 such
that F1 is dense in U . As B = A ∪ Z is a universally measurable set in X we infer
from statement (3) of Proposition 4.24 that there is a Zahorski set E′ in X such that
E′ ⊂ E \ (A ∪ Z) and E′ is dense in E \ (A ∪ Z). Observe that FX (E′) = FX (H2)

follows from statement (1) of Proposition 4.24. Hence F2 = E′ ∩ V will be dense
in V . Let F = F1 ∪ F2. Clearly F is a Zahorski set such that F ∩ Z = ∅ and F ⊂ E.
As F is dense in X we have that it is also dense in E. And as FX (A) = FX (H1) we
have

F ∩ FX (A) = F1 ⊂ A and F \ FX (A) = F2 ⊂ X \ A.
The corollary now follows. ✷

Finally, we have the following connection between the homeomorphism group
HOMEO(X ) and Zahorski sets in X .

Lemma 4.29. Suppose that X is an absolute measurable space such that a posi-
tive, continuous, complete, finite Borel measure µ on X and HOMEO(X ) generate
MEASpos,fin(X ). If E is a Zahorski set in X such that E is contained densely in the
support of µ, then there is an h in HOMEO(X ) such that h#µ(X \ E) = 0.

Proof. From statement (4) of Proposition A.41 there is a positive, continuous, com-
plete, finite Borel measure ν such that ν(X \ E) = 0 and ν(X ) = µ(X ). As µ

and HOMEO(X ) generate MEASpos,fin(X ), there is an h in HOMEO(X ) such that
h#µ = ν and the lemma is proved. ✷

As an aside let us discuss another connection between Zahorski sets in absolute
measurable spaces X and continuous, complete, finite Borel measures on X . Oxtoby
proved the following in [119, Theorems 2].1 His proof is provided for the reader.

Theorem 4.30. If X is a separable completely metrizable space and if µ is a nonzero,
continuous, complete, finite Borel measure on X , then there exists a Gδ set B of X

1 The theorem has connections to the notion of two measures being “almost homeomorphic” defined by
N. Bourbaki [14, Section 6, Exercise 8c, page 84].
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such that µ(X \ B) = 0 and there exists a homeomorphism h of B onto N such that
h#(µ|B) = c λ|N , where λ is the Lebesgue measure on R and c = µ(X ).

Proof. Since µ(X ) is finite, there exists a countable collection Ui, i = 1, 2, . . . , of
open sets with µ(BdX (Ui)) = 0 that forms a basis for the open sets of the topology of
X . B0 = support(µ) \ ⋃∞

i=1 BdX (Ui) is an uncountable, zero-dimensional absolute
Gδ space, and µ(X \B0) = 0. (For the definition of dimension 0, see page 244.) The
set B0 is the union of two disjoint sets B and C such that B is homeomorphic to N
and C is countable. Let h0 be a homeomorphism of B onto N . As µ(B ∩ U ) > 0
whenever U is an open set such that B ∩ U �= ∅, the measure h0#(µ|B) is a positive
measure on N . Let h1 be in HOMEO(N ) such that

(
h1h0

)
#(µ|B) = c λ|N . The

proof is easily completed. ✷

We now have a corollary which Oxtoby derived in [119, Theorem 4] for the special
case of absoluteGδ spacesX . (SeePropositionD.7onpage245 for a similar assertion.)

Corollary 4.31. Suppose that X is an absolute measurable space and let M(X ,µ)

be a continuous, complete, finite Borel measure space. For each µ-measurable set A
of X with 0 < µ(A) there is a Zahorski set E contained in A such that µ(A \ E) = 0.
Moreover, if A is an absolute Borel space contained in X , then E can be made to
satisfy ClX (E) = FX (A).

Proof. As X ∈ abMEAS, there is no loss in assuming X is a subspace of the Hilbert
cube,µ is defined on [0, 1]N, andX isµ-measurable.Also, there is no loss in assuming
that A is a Borel set in the Hilbert cube since each µ-measurable set contains a Borel
set of equal µ-measure. Hence A ∈ abBOR. We also may assume ClX (A) = FX (A)

because A \FX (A) is countable. Consider the measure µ A. There exists aGδ set B0

of [0, 1]N such that B0 ⊂ A and
(
µ A

)
(X \ B0) = 0, as provided by the theorem.

Let C be a Gδ set such that X \ B0 ⊂ C and
(
µ A

)
(C) = 0. Then B1 = X \ C is a

σ -compact subset of A such that
(
µ A

)
(X \ B1) = 0. As B1 is zero-dimensional,

and as each uncountable, compact, zero-dimensional set is equal to the union of
topological copy of the Cantor set and a countable set, the set B1 is the union of
a Zahorski set E′ and a countable set. Clearly, µ(A \ E′) = 0. It may happen that
A \ ClX (E′) is not empty. As ClX (A) = FX (A), there is a nonempty Zahorski set E′′
contained in A \ ClX (E′) such that ClX (E′′) ⊃ A \ FX (E′). Let E = E′ ∪ E′′. ✷

4.5. Bruckner–Davies–Goffman theorem

For each continuous, complete, σ -finite Borel measure µ on X , it is well-known
that a µ-measurable, real-valued function f on X is equal µ-almost everywhere to
a function in the second Baire class (equivalently to the second Borel class). It was
shown by Bruckner, Davies and Goffman [24] that universally measurable, real-
valued functions f on [0, 1] are connected to Baire class 1 functions by means of
the group of homeomorphisms HOMEO([0, 1]). Namely, they proved the following
theorem.
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Theorem 4.32 (Bruckner–Davies–Goffman). Let f : [0, 1] → R be a universally
measurable function. Then there is an h in HOMEO([0, 1]) and a Borel class 1
function g : [0, 1] → R such that fh and g are equal Lebesgue almost everywhere.

They reduced the proof to an application of the Oxtoby–Ulam theorem for [0, 1].
Their theorem will be generalized to universally measurable maps f : X → Y whose
values are taken in absolute Borel spaces Y and whose domains are in a large class
of spaces X for which a “Radon–Nikodym version of the Oxtoby–Ulam theorem”
holds. Among these spaces X are absolute measurable spaces that are not absolute
Borel spaces. Moreover, the measure can be any continuous, complete, σ -finite Borel
measure on X .

4.5.1. Splitting the problem. The following is a characterization theorem due to
Bruckner, Davies and Goffman [24].

Theorem 4.33. Suppose that X and Y are separable metrizable spaces, µ is a con-
tinuous, complete, finite Borel measure on X , and f : X → Y is an arbitrary map.
Then there exists a Borel class 1 map g : X → Y and a homeomorphism h of X onto
X such that fh = g µ-almost everywhere if and only if h#µ({x : f (x) �= G(x)}) = 0
for some Borel class 1 map G : X → Y and some homeomorphism h of X onto X .

Proof. Let h be a homeomorphism. Clearly G is a Borel class 1 map if and only if
Gh is a Borel class 1 map. Also, E is a Borel set that contains {x : f (x) �= G(x)} if
and only if h−1[E] is a Borel set that contains {t : fh(t) �= g(t)}, where g = Gh. As
µ(h−1[E]) = h#µ(E) for Borel sets E, we infer that µ({x : fh(x) �= g(x)}) = 0 if and
only if h#µ({x : f (x) �= G(x)}) = 0, because h#µ is complete. ✷

Let us split the theorem into two parts. Notice that in the Bruckner–Davies–
Goffman theorem the Lebesgue measure on the space [0, 1] is a positive measure
and [0, 1] = F[0,1]([0, 1]). Hence in our splitting of the problem we shall assume that
the measure µ is positive and that X = FX (X ) �= ∅.
Proposition 4.34. Suppose that X is a separable metrizable space with X =
FX (X ) �= ∅. Let µ be a positive, continuous, complete, finite Borel measure on
X , and let f : X → Y be an arbitrary map. If there is Borel class 1 map g such that
fh = g µ-almost everywhere for some homeomorphism h, then there exists a Borel
class 1 map G and a positive, continuous, complete, finite Borel measure ν such that
f = G ν-almost everywhere. Hence there exists a Borel class 1 map G and a dense
Fσ subset E of X such that f = G on E.

In the last statement of the proposition, we have a necessary condition: “There
exists a Borel class 1 map G and a dense Fσ subset E of X such that f = G on E.”
Notice that the condition is free of the measures µ and ν, it is a topological statement.

The next proposition gives a sufficient condition.

Proposition 4.35. Let X be a separable metrizable space such that X = FX (X ) �= ∅
and let f : X → Y be an arbitrary map. Suppose that µ and ν are continuous,
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complete, finite Borel measures on X . If there is a Borel class 1 map G such that
f = G ν-almost everywhere and if there is an h in HOMEO(X ) such that h#µ is
absolutely continuous with respect to ν (h#µ # ν), then there is a Borel class 1 map
g such that fh = g µ-almost everywhere.

The sufficient condition in the proposition can be written in the Borel measure
theoretic form: “There is a Borel class 1 mapG such that f = G ν-almost everywhere
and there is an h in HOMEO(X ) such that h#µ # ν.”

Adevelopment of a class of spaces that satisfies the above necessary condition will
be given in Section 4.5.2, and a class of maps andmeasures that satisfies the sufficient
condition will be given in Section 4.5.3.

4.5.2. A necessity condition. The domain of the universally measurable function in
the Bruckner–Davies–Goffman theorem is [0, 1]. A property of this space, which is
exploited in their proof, is that the Baire category theorem holds. Another property is
thatGδ universally null sets of [0, 1] are necessarily sets of the first category of Baire.
Also, it is an absolute measurable space with the property that an open universally
null set is the empty set, whence X = FX (X ) �= ∅.

We begin with the definition of Baire space, a topological notion.

Definition 4.36. A separable metrizable space X is said to be a Baire space2 if⋂∞
i=1 Ui is dense in X whenever Ui, i = 1, 2, . . . , is a sequence of dense open sets

of X .

Taking a cue from the above discussion, we define the topological notion of a BDG
space.

Definition 4.37. A separable metrizable space X is said to be a BDG space if X is a
Baire space such that every Gδ universally null set in X is a set of the first category
of Baire, and if X = FX (X ) �= ∅.

The following propositions are easily proved.

Proposition 4.38. Let X be a BDG space. If X0 is a nonempty open subspace of X ,
then X0 is a BDG space.

Proposition 4.39. Let X be a separable metrizable space and let X0 be an open
dense subset of X . If X0 is a BDG space, then X1 is also a BDG space whenever
X0 ⊂ X1 ⊂ X .

Proposition 4.40. If a separable metrizable space X is a finite union of closed BDG
subspaces, then X is a BDG space.

It will be useful to have some examples of BDG spaces.

2 The name Baire space is often used in topology to mean the space DN, where D is an infinite discrete
space (see [51, page 326] or [113, page 73] for example.) Of course we have deviated from this
convention in favor of the property of the Baire category theorem.
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Example 4.41. Let E0 be a nonempty absolute null space contained in the open inter-
val (0, 1) and let E1 be a non absolute measurable space that is a one-dimensional
Lebesgue null set in (0, 1). Then X0 = ({0} × E0

) ∪ (
(0, 1) × (0, 1)

)
and X1 =({0} × E1

) ∪ (
(0, 1) × (0, 1)

)
are respectively an absolute measurable space and a

non absolute measurable space. It is easy to show that both are BDG spaces since
(0, 1) × (0, 1) is an absolute Gδ space that is dense in X0 and is dense in X1.

Let us turn to some preliminary constructions that are needed in the proof of our
extension of the Bruckner–Davies–Goffman theorem. Suppose that X is a nonempty
BDG space and let U = {Ui : i ∈ N} be a countable collection of mutually disjoint
universally measurable sets that covers X . Then

V = {Vi = IntX (FX (Ui)) : i ∈ N}

is a collection of open sets whose union is dense in X . To see this, observe that
X \ ⋃{FX (Ui) : i ∈ N} is a universally null Gδ set and hence a set of the first
category in X . Clearly the open sets Vi \ ⋃

j<i FX (Uj) form a mutually disjoint col-
lection that is dense in X . Now suppose that W = {Wn : n ∈ N} is any collection
of mutually disjoint open sets and that K = {Kn : n ∈ N} is a collection of mutually
disjoint universally measurable sets that satisfy: W refines V; K refines W;

⋃ K is
dense in X ; and, for each n, the set Kn is Wn ∩ Ui for some i with Wn ⊂ Vi. (Note:
properties of the operator FX yield Kn is dense in Wn.) Clearly, such collections W
and K exist.

Next let W be a nonempty open subset of X and suppose that Ui is a member
of U such that W ⊂ FX (Ui). Let U ′ = {U ′

j : j ∈ N} be any collection of mutu-
ally disjoint universally measurable sets that covers X and refines U . Denote the
collection {U ′

j ∈ U ′ : U ′
j ⊂ Ui ∩ W } by U ′(W , i) and let

V ′(W , i) = {V ′
j = IntX (FX (U ′

j )) : U
′
j ∈ U ′(W , i)}.

Then, with V ′
0 = W \ ClX

(⋃ V ′(W , i)
)
, the union of the open collection

V∗(W , i) = {V ′
0} ∪ V ′(W , i)

is a dense subset of W . Let W ′(W , i) = {W ′
m : m ∈ N} be any collection of mutually

disjoint open sets that refines V∗(W , i) and whose union is dense in W . If W ′
m ⊂ V ′

0,
then let K ′

m = W ′
m ∩ Ui. Otherwise, select a j such that W ′

m ⊂ V ′
j ∈ V ′(W , i) and let

K ′
m = W ′

m ∩ U ′
j . Then the collection K′(W , i) = {K ′

m : m ∈ N} of mutually disjoint
universallymeasurable sets refines bothU ′(W , i) andW ′(W , i), and its union is dense
in W ∩ Ui. This ends the constructions.

We turn next to maps with discrete ranges. Bruckner, Davies and Goffman, in [24],
cleverly reduce the investigation to discrete-valued universally measurable maps. We
shall slightly modify their proof for discrete-valued maps.

The following discussion will lead to two lemmas that will permit an inductive
construction for the general case as well as lead to a proof of the discrete case. Let
X be a nonempty BDG space and let ϕ : D → D be a map defined on a countable
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discrete space. Suppose that f : X → D is a universally measurable map. Then
ϕf is also a universally measurable map. The collections U = {(ϕf )−1[{d}] : d ∈
ϕ[D]} and U ′ = {f −1[{d}] : d ∈ D} are covers of X such that U ′ refines U . Let
W , W ′, K and K′ be as described in the construction, and let d0 be a fixed point
in D. Note that f [K ′

m] and ϕf [Kn] are singleton sets of D and ϕ[D], respectively,
whenever they are not empty.Also f [K ′

m] ⊂ ϕf [Kn]wheneverK ′
m ⊂ Kn. Let g : X →

ϕ[D] be defined by

g(x) =
{
d0, if x ∈ X \ ⋃ W
ϕf (xn), if x ∈ Wn ∈ W , where xn ∈ Kn

(4.1)

and define g′ : X → D analogously. Then g and g′ are Borel class 1 functions such
that d(g(x), g′(x)) ≤ sup {diam ϕ−1[{d}] : d ∈ ϕ[D]}. Moreover, ϕf = g on

⋃ K,
and f = g′ on

⋃ K′.
We have proved the following two lemmas; the first one will start an induction and

the second one will provide the inductive step.

Lemma 4.42. Let X be a BDG space and V be an open collection such that
⋃ V is

dense in X . If f : X → D is a universally measurable map into a discrete space D,
then there exists an open collection W = {Wn : n ∈ N} of mutually disjoint sets that
refines V such that

⋃ W is dense in X , and there exists a sequence dn, n = 1, 2, . . . ,
in D such that Kn = Wn ∩ f −1[{dn}] is dense in Wn for each n. The pair W and
K defines a Borel class 1 function g : X → D such that g is constant on each Wn

and on X \ ⋃ W , and such that f (x) = g(x) whenever x ∈ ⋃ K. Moreover,
⋃ K is

dense in X .

Lemma 4.43. Let X be a BDG space, and D be a countable, discrete metric space
with metric d. Suppose that f : X → D is a universally measurable map and that
ϕ : D → D is an arbitrary map. Then U = {(ϕf )−1[{d}] : d ∈ ϕ[D]} and U ′ =
{f −1[{d}] : d ∈ D} are collections of mutually disjoint universally measurable sets
in X . For the map ϕf and the collection U , further suppose that the corresponding
collections W and K and Borel class 1 map g : X → ϕ[D] have the properties as
described in the conclusion of the previous lema. Then there are collections W ′ and
K′ and there is a Borel class 1 map g′ : X → D as provided by the previous lema
with the added properties:

(1) K′ refines K,
(2) d

(
g(x), g′(x)

) ≤ sup {diam ϕ−1[{d}] : d ∈ ϕ[D]},
(3) ϕf (x) = g(x) whenever x ∈ ⋃ K,
(4) f (x) = g′(x) whenever x ∈ ⋃ K′,
(5)

⋃ K′ is dense in X .

Lemma 4.42 implies the countable range theorem.

Theorem 4.44. Suppose that X is an absolute measurable space that is a BDG space
and let f : X → Y be a universally measurable map of X into a countable separable
metrizable space Y . Then there exists a Borel class 1 map g and a Zahorski set Z
such that Z is dense in X and f = g on Z.
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Proof. LetD be a discrete space with card(D) = card(Y ), and let ψ : D → Y be any
bijection. Clearly, ψ is continuous andψ−1 is Borel measurable. Themap f0 = ψ−1f
is a universally measurable map of X into D. Let g0 be the Borel class 1 map that is
provided by Lemma 4.42 for the map f0. Then g = ψg0 is a Borel class 1 map such
that f = g on

⋃ K, which is dense in X . As X is an absolute measurable space there
is a Zahorski set Z contained in

⋃ K that is dense in X . ✷

The space N of all irrational numbers in (0, 1) will play an important role in
approximations of universally measurable discrete-valued maps. As N is an absolute
Gδ space, there is a bounded complete metric d on N . Here is a well-known theorem
(see [85, Corollary 1c, page 450]).

Theorem 4.45. If Y is an uncountable absolute Borel space, then there exists a con-
tinuous bijectionψ : N ⊕ N → Y such thatψ−1 is Borel measurable, whereN ⊕ N
is a disjoint topological sum. Moreover, if Y = [0, 1]N, then there exists a continuous
bijection ψ : N → Y such that ψ−1 is a Borel class 1 map.

This theorem results in a very nice factorization.

Theorem 4.46. Let X be a separable metrizable space and let Y be an uncountable
absolute Borel space. Then a map f : X → Y is a universally measurable if and only
if there is a continuous bijectionψ : N ⊕ N → Y and a universally measurable map
F : X → N ⊕ N such that f = ψF. Moreover, F is a Borel class 1 map if and only
if f is a Borel class 1 map.

Our aim is to prove the following uncountable analogue of Theorem 4.44.

Theorem 4.47. Suppose that X is both an absolute measurable space and a
BDG space, and let f : X → Y be a universally measurable map of X into an
absolute Borel space Y . Then there exists a Borel class 1 map g and a Zahorski set
Z such that Z is dense in X and f = g on Z.

Due to the preceding theorem it is clear that only the range space Y = N ⊕ N requires
a proof. We shall use a sequence of discrete-valued maps fn : X → Dn, where Dn

is a subset of Y , such that fn, n = 1, 2, . . . , converges uniformly to f . Uniform
convergence will require a complete metric d on N ⊕ N. As N ⊕ N is an absolute
Gδ space, there exists one such metric. We may assume that d is bounded by 1.

We begin by constructing continuous maps ϕn : N ⊕ N → N ⊕ N for every n in
N such that

(1) ϕn[N ⊕ N] = Dn,
(2) Dn−1 ⊂ Dn,
(3) the collection Wn = {ϕn

−1[{d}] : d ∈ Dn} is a covering of N ⊕ N whose mesh
does not exceed 1

2n−1 ,
(4) Wn refines Wn−1,
(5) card(W ∩ Dn−1) ≤ 1 for every W in Wn.

To this end, observe that the collection of all simultaneously closed and open subsets
of N ⊕ N forms a base for the open sets. For n = 1 let D1 = {y0}, where y0 is a
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fixed point of N ⊕ N, and ϕ1(y) = y0 for every y in N ⊕ N. Suppose that ϕn has
been constructed and consider the collection W of all simultaneously closed and
open sets W such that card(W ∩ Dn) ≤ 1 and diamW < 1

2n , and such that W
refines Wn. Clearly W is a cover. As N ⊕ N is a Lindeloff space, there is a countable
subcollection Wn+1 of mutually disjoint, simultaneously closed and open sets that
covers N ⊕ N. Define ϕn+1 on each W in Wn+1 as follows: if W ∩ Dn �= ∅, then
define ϕn+1(y) to be the unique member ofW ∩Dn for every y inW ; ifW ∩Dn = ∅,
then fix a member d of W and define ϕn+1(y) to be d for every x in W . It is easily
seen that ϕn+1 satisfies the five conditions listed above.

Note that the following identities hold: ϕnϕn = ϕn, ϕn+1ϕn = ϕn andϕnϕn+1 = ϕn.
So, if f : X → N ⊕ N is a universally measurable map, then fn = ϕnf , n = 1, 2, . . . ,
is a sequence of discrete-valued universally measurable maps such that ϕnfn+1 = fn
for each n, and such that the sequence converges uniformly to f . Moreover, ϕn|Dn+1

maps the discrete space Dn+1 onto Dn. Hence Lemma 4.43 can be applied whenever
X is a BDG space.

Suppose that X is both an absolute measurable space and a BDG space and let
f : X → N ⊕ N be a universally measurable map. Consider now the sequence fn,
n = 1, 2, . . . , and the sequence ϕn|Dn, n = 1, 2, . . . , as provided above. Then we
infer from Lemmas 4.42 and 4.43 the existence of a sequence of Borel class 1 maps
gn, n = 1, 2, . . . , and a sequence of universally measurable sets Kn, n = 1, 2, . . . ,
such that, for each n, d(gn(x), gn+1(x)) ≤ 1

2n for every x, fn(x) = gn(x) whenever
x ∈ Kn, and Kn+1 ⊂ Kn. As gn, n = 1, 2, . . . , is a Cauchy sequence, it converges
uniformly to a Borel class 1 map g. We seek a dense Zahorski set contained in X such
that f = g on it. One is tempted to seek it in the intersection

⋂∞
n=1 Kn. Unfortunately

this intersection may not be well behaved. We now use a very clever construction due
to Bruckner, Davies and Goffman that avoids this difficulty. The construction uses

Proposition 4.48. Let X be an absolute measurable space and Y be a separable
metrizable space. For a universally measurable set E in X , if f : X → Y is a
universally measurable map and U is an open set such that FX (U ∩ E) is not empty,
then there is a topological copy of the Cantor set K contained in U ∩E such that f |K
is continuous.

Proof. By the definition of the positive closure operator FX there exists a continuous,
complete, finite Borel measureµ onX such thatµ(U∩E) > 0. SinceX is an absolute
measurable space, there is a compact subset E0 of U ∩ E such that µ(E0) > 0. As
f |E0 is µ-measurable on E0, there is a topological copy K of the Cantor set contained
in E0 such that f |E0 is continuous on K . ✷

Returning to the construction, we let Vn, n = 1, 2, . . . , be a base for the topology
of X . We infer from the above Proposition 4.48 the existence of a sequence Cn,
n = 1, 2, . . . , of mutually disjoint topological copies of the Cantor set such that
Cn ⊂ Vn ∩ Kn, f |Cn is continuous, and Cn is nowhere dense. As d( f (x), fn(x)) ≤ 1

2n

and gn(x) = fn(x) for x in Cn, we have d( f (x), gn(x)) ≤ 1
2n whenever x ∈ Cn.

Define g′
n to be g′

n(x) = gn(x) for x not in
⋃n

j=1 Cj, and g′
n(x) = f (x) for x in⋃n

j=1 Cj . As f is continuous on the compact set
⋃n

j=1 Cj , we have that g′
n is a Borel
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class 1 map. Also, d(g′
n(x), g

′
n+1(x)) ≤ d(gn(x), gn+1(x))+ 1

2n for every x. Hence the
sequence g′

n, n = 1, 2, . . . , converges uniformly to a Borel class 1 map g′. Clearly
f (x) = g′(x) whenever x is in

⋃∞
n=1 Cn, which is a Zahorski set that is dense in X .

We have just proved the last theorem. Thereby we have proved the topological part
of the generalization of the Bruckner–Davies–Goffman theorem.

Theorem 4.49. Let X be both an absolute measurable space and a BDG space and
let Y be an absolute Borel space. If f : X → Y is a universally measurable map, then
there exist a Borel class 1 map g and a Zahorski set Z that is densely contained in X
such that f = g on Z.

This completes the first part of the splitting.

4.5.3. A sufficiency condition. Let us turn to the Borel measure theoretic part of the
Bruckner–Davies–Goffman theorem. The domain of the universally measurable map
in their theorem is [0, 1]. In their proof they used a theorem by W. J. Gorman III
[65] which states that each dense Zahorski set contained in [0, 1] is changed by a
homeomorphism h of [0, 1] into a set of Lebesgue measure 1, which was proved by
Gorman without recourse to Borel probability measures (he was not aware of the
measure theoretic proof given in the early 1900s).

Let us begin with a summary of Gorman’s results. Gorman proved in [66] that
if f : [0, 1] → R is a Lebesgue measurable function with card

(
f
[[0, 1]]) < ℵ0

then there is a Baire class 1 function g and a homeomorphism h such that fh = g
Lebesgue almost everywhere. He also proved that there is a Lebesgue measurable
function f such that the property “fh = g Lebesgue almost everywhere” fails for every
homeomorphism h and every Baire class 1 function g. This leads to the following
definition of a Gorman pair.

Definition 4.50. Let X and Y be separable metrizable spaces. Then ( f ,µ), where µ

is a continuous, complete, finite Borel measure on X and f is a µ-measurable map
from X to Y , is called a Gorman pair if there exist a Borel class 1 map g from X to
Y , a positive Zahorski measure ν on X and an h in HOMEO(X ) such that µ # h#ν
and f = g ν-almost everywhere.

Obviously, if ( f ,µ) is a Gorman pair, then there is a homeomorphism h such that
fh is equal to a Borel class 1 map µ-almost everywhere. We need a class of spaces
that has a rich supply of pairs (µ, ν) of continuous, complete, finite Borel measures
and homeomorphisms h such that µ # h#ν, where the ν’s are required to be positive
Zahorski measures. We will define such a class. But, in anticipation of the definition,
we must discuss invariant subsets of homeomorphisms.

Recall that a subset F of X is said to be invariant under a homeomorphism h
is F = h[F]. There are spaces X and subgroups G of HOMEO(X ) such that some
nonempty closed subset F is invariant under every h in G. Let us give three examples.

Example 4.51. For n > 2 let Bn = {x ∈ Rn : ‖x‖ ≤ 1} and F = {x ∈ ∂Bn : xn ≤
0}, where xn is the n-th coordinate of x. Then ∂F , F , ∂Bn and Bn form a nested,
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closed collection of subsets of Bn, each of which are BDG spaces. Moreover, all of
them are invariant with respect to the group HOMEO(Bn;F inv ).

Example 4.52. LetM be a compact n-dimensionalmanifoldwith nonempty boundary
∂M . Then ∂M andM form a nested, closed collection of subsets ofM , each of which
is a BDG space and is invariant with respect to the group HOMEO(M ).

Example 4.53. Let X be a finite-dimensional triangulable space with X = FX (X ).
For a triangulation K , denote by Fj the space

⋃
Kj , where Kj is the j-dimensional

simplicial complex of a triangulation K . Then Fj, j = 1, 2, . . . , n , is a nested, closed
collection of subsets of X such that each Fj is a BDG space. Moreover, if

G = ⋂n
j=1 HOMEO(X ;Fj inv ) ∩ HOMEO(X ;F0 fixed),

where F0 is the collection of all vertices of K , then each Fj is invariant with respect
to each h in G.

The second part of the splitting uses a class of Zahorski generated measures which
will be defined next. We first establish some notation.

Let X be a separable metrizable space and let F be a finite nested collection of
nonempty closed sets such that FX (F) = F for each F in F , and

⋃ F = X . Let Z(F)

be the collection of all Zahorski measures ν onX such that ν(U ∩F) > 0wheneverU
is an open set and F is a member of F with U ∩ F �= ∅. Clearly, if X is an absolute
measurable space then Z(F) is not empty. Define the group of homeomorphisms

HOMEO(X ;F) = ⋂
F∈F HOMEO(X ;F inv).

With the aid of this notation we define

Definition 4.54. Let F be a finite nested collection of nonempty closed sets of an
absolute measurable space X such that

⋃ F = X and FX (F) = F for each F inF . A
continuous, complete, finite Borel measure µ is said to be Zahorski dominated (more
precisely, relative to F) if there exists a subgroup G of HOMEO(X ;F) such that
for each positive Zahorski measure ν in Z(F) there exists an h in G that satisfies
µ # h#ν. An absolute measurable space X is said to be Zahorski generated relative
to F if each continuous, complete, finite Borel measure on X is Zahorski dominated.

We have a simple characterization of a Zahorski generated space.

Theorem 4.55. Let X be an absolute measurable space, and F be a finite nested
collection of nonempty closed sets such that

⋃ F = X and FX (F) = F for each F
in F . Then X is Zahorski generated relative to F if and only if there is a subgroup
G of HOMEO(X ;F) such that for each positive, continuous, complete, finite Borel
measure µ and for each ν in Z(F) there is an h in G such that µ # h#ν.

The proof is a consequence of the inequality µ ≤ µ + ν since µ + ν is positive
whenever ν is positive.
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Example 4.56. Let X = [0, 1] × [0, 1] and let F1 be one of the four edges
of ∂X . Define F1 be the finite collection consisting of F1 and ∂X , and define
G = HOMEO(∂X ;F1 inv ). It is easily seen that ∂X is Zahorski generated rel-
ative to F1. Also X is Zahorski generated relative to F = {∂X , X } since every
homeomorphism in HOMEO(∂X ) has an extension in HOMEO(X ).

Other examples of Zahorski generated spaces will be given later.

4.5.4. The extended Bruckner–Davies–Goffman theorem. We now combine the
results of Sections 4.5.2 and 4.5.3.

Theorem 4.57. Let f : X → Y be a map of an absolute measurable space X into an
absolute Borel space Y and let F be a finite nested collection of nonempty closed
subsets such that each F in F is a BDG space and X = ⋃ F . If X is Zahorski
generated relative to F , then every pair ( f ,µ), where f is universally measurable
and where µ is a continuous, complete, finite Borel measure on X , is a Gorman pair.
Hence there is a Borel class 1 map g and a homeomorphism h such that fh = g
µ-almost everywhere.

Proof. Let F and G be as given in Definition 4.54. Write F as Fi, i = 1, 2, . . . , n,
with Fi ⊂ Fi+1 for each i. There is no loss in assuming Hi = Fi \ Fi−1 �= ∅ (here
F0 = ∅).AsHi is a BDG space and f |Hi is universally measurable, there is a Zahorski
set Zi that is dense in Hi and a Borel class 1 map gi on Hi such that f |Hi = gi on Zi.
The set Z = ⋃n

i=1 Zi is a Zahorski set. Let ν be a Zahorski measure on Z . As Z is
an absolute measurable space, we may assume that ν is defined on X . Finally, since
X is Zahorski generated relative to F , there is a homeomorphism h in G such that
µ # h#ν. Define g to be the map given by g(x) = gi(x) whenever x ∈ Hi. Clearly g
is a Borel class 1 map such that f = g on Z . Thereby we have shown that ( f ,µ) is a
Gorman pair. ✷

Remark 4.58. We have observed that each continuous, complete, σ -finite Borel
measure µ on a separable metrizable space corresponds to a finite Borel mea-
sure µ0 such that the µ-null sets and µ0-null sets are the same collections. Hence
µ # µ0. It follows that the measures µ in the above theorem may be assumed to be
σ -finite.

4.5.5. Examples. Our first application isTheorem4.32 (Bruckner–Davies –Goffman
theorem) where Y = R and X = (0, 1). Clearly (0, 1) is a BDG space and R is an
absolute Borel space. As the Oxtoby–Ulam theorem applies to [0, 1], the space (0, 1)

is Zahorski generated relative to F = {(0, 1)}. Consequently the Bruckner–Davies–
Goffman theorem follows.

There are many other examples of BDG spaces X that are Zahorski generated
relative to F = {X } for appropriate subgroups G of HOMEO(X ). The spaces
in our first collection of examples uses the property that there exists positive,
continuous, complete, finite Borel measures on X such that it and some subgroup
G of HOMEO(X ) generate MEASfinite(X ).
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Collection 1:One-dimensional manifolds; theHilbert cube;N , which is homeomor-
phic to N N; Menger manifolds of positive dimension. For these spaces the subgroup
G is HOMEO(X ).

The next examples, which use F = {X }, are not in the first collection. We have
seen that the Cantor space fails to have an analogue of the Oxtoby–Ulam theorem.
But, by Theorem 3.57 due to Akin, the Radon–Nikodym derivative version of the
Oxtoby–Ulam theorem is available (also see Theorem 3.67).

Collection 2: Any space X that is topologically equivalent to the Cantor space
{0, 1}N. For these spaces, the subgroup G is HOMEO(X ). One-dimensional finitely
triangulable spaces use the subgroup G = HOMEO(X ;V fixed ), where V is the set
of vertices of a triangulation of the space.

We have seen that the boundary ∂M of a separable n-dimensional manifolds M
plays an important role in determining a continuous, complete, finite Borel measure
µ which, together with HOMEO(M ), (ac)-generate MEASfinite(M ). Thus we have

Collection 3: Separable n-dimensional manifolds M . There are two cases for these
spaces. If ∂M = ∅, then let F = {M }. If ∂M �= ∅, then let F = {∂M ,M }. In
both cases let G = HOMEO(M ). The verification that M is Zahorski generated by
F follows easily from Theorem 4.16 and Proposition A.41.

Collection 4: Finitely triangulable spaces. For a finitely triangulable space X with
X = FX (X ), denote by Fj the space

⋃
Kj , where Kj is the j-dimensional simpli-

cial complex of a triangulation K of X . Then X is Zahorski generated relative to
F = {Fj : j = 1, 2, . . . , n}, where n is the dimension of X . Here, G is the subgroup
HOMEO(X ;F) of HOMEO(X ). The verification that X is Zahorski generated by
F follows easily from Theorem 4.18 and Proposition A.41.

Collection 5: Compact, connected, non locally connected spaces. For the first space
let F be the closed subset of the Warsaw circle W consisting of all points of W
at which W is not locally connected, and let F = {F ,W }. Clearly the set F is
invariant with respect to each h in the group HOMEO(W ). It follows from Theorem
4.17 and Proposition A.41 that W is Zahorski generated relative to F , where the
subgroup G is HOMEO(W ). The second space is X = W × [0, 1]n with F =
{F × [0, 1]n,W × [0, 1]n}. The verification of the fact that X is Zahorski generated
relative to F is left as an exercise for the reader.

Collection 6: Absolute measurable spaces. The above examples are completely
metrizable. X = ({0} × E

) ∪ (
(0, 1) × (0, 1)

)
, where E is an uncountable absolute

null space contained in the open interval (0, 1), is an absolute measurable space that is
not completely metrizable. We have seen earlier (see Example 4.41) that X is a BDG
space. Let F = {X }. We infer from the Oxtoby–Ulam theorem that X is Zahorski
generated relative to F . Also, X ′ = ({0} × E

) ∪ (N × N )
is a BDG space that is

Zahorski generated relative F = {X ′} (see Example 3.64).
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4.6. Change of variable

Suppose that f is a map from a space X to a space Y . By a change of variable of
f we mean a composition fH by a homeomorphism H in HOMEO(X ). In [148]
Świa̧towski proved the following interesting theorem. (See also B. Koszela [82].)

Theorem 4.59 (Świa̧towski). Suppose f is a function on [0, 1] n that is extended real-
valued and Lebesgue measurable. If f is real-valued Lebesgue almost everywhere,
then there is a change of variable fH such that fH is Lebesgue measurable and∫
[0,1]n fH dλ exists.

Notice that the function f in the theorem is just Lebesgue measurable and not
necessarily universally measurable. Hence it is not obvious that the composition fH
is Lebesgue measurable. The proof of the theorem is a simple application of Theorem
2.49 and the Oxtoby–Ulam theorem. The theorem becomes more complicated if one
adds to the Lebesgue measure the (n − 1)-dimensional Hausdorff measure Hn−1

restricted to the boundary ∂In. There is a change of variable theorem in this case also.
At this point it will be convenient to prove a lemma.

Lemma 4.60. Let X be a separable metrizable space and ν be a continuous, complete,
σ -finite Borel measure on X . Suppose thatµ is a continuous, complete Borel measure
on X such that µ ≤ ν, and suppose that H is a homeomorphism in HOMEO(X ) such
that for each point x of X there is a neighborhood Ux and a positive constant cx such
that (H#ν) Ux ≤ cx µ Ux. If f is a ν-measurable, extended real-valued function
on X that is real-valued ν-almost everywhere, then the following statements hold.

(1) f is µ-measurable.
(2) fH is ν-measurable.
(3) For each compact set K there is a constant B such that∫

H−1[K]|fH | dν ≤ B
∫
K |f | dµ

whenever f is locally µ-integrable.

Proof. Let g be a real-valued, Borel measurable function such that f = g ν-almost
everywhere. As µ ≤ ν, we have f = g µ-almost everywhere and statement (1)
follows.

Clearly H#ν # µ holds. From statement (1) we have, for the above g, that there
is a Borel set E such that {y : f (y) �= g(y)} ⊂ E and µ(E) = 0. As H−1

[{y : f (y) �=
g(y)}] = {x : fH (x) �= gH (x)} we have H−1[E] ⊃ {x : fH (x) �= gH (x)}. Let E′ =
H−1[E]. Then

ν∗({x : fH (x) �= gH (x)}) ≤ ν(E′) = ν(H−1[E]) = µ(E) = 0.

Hence fH is ν-measurable. Statement (2) is proved.
Observe that

∫
(gH ) dν = ∫

g d(H#ν) whenever g is a nonnegative, real-valued,
Borel measurable function follows from ν

(
(gH )−1[F]) = (

H#ν
)
(g−1[F]) for all
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Borel sets F . Now let K be a compact set. Then there is a neighborhood U of K and
a positive constant B such that (H#ν) U ≤ Bµ U . Consequently,∫ |f ·χK |H dν = ∫ |g·χK |H dν = ∫ |g·χK | d(H#ν)

≤ B
∫ |g·χU | dµ = B

∫ |f ·χU | dµ,

and statement (3) follows. ✷

For complete, finite Borel measures ν on X , each ν-measurable, extended real-
valued function f on X yields a finite Borel measure µ given by µ(B) = ∫

B
1

1+|f | dν

whenever B ∈ B(X ). Clearly, µ ≤ ν. With this and the above lemma in mind we
make the following definition.

Definition 4.61. Let ν be a continuous, complete, finite Borel measure on X , where X
is a separablemetrizable space. Themeasure ν is said to have the Świa̧towski property
if, for each ν-measurable, extended real-valued function f that is finite valued ν-
almost everywhere, there is an H in HOMEO(X ) such that fH is ν-measurable and∫
X fH dν exists.

4.6.1. Examples. The examples of (ac)-generation found in Section 4.3, with the
aid of the above lemma, will yield measures ν on spaces X that have the Świa̧towski
property. The verifications will be left to the reader.

Example 1: Let X be theHilbert cube or the spaceN or theCantor space or a compact
n-dimensional Menger manifold with n > 0, and let ν be a positive, continuous,
complete, finite Borel measure on X . Then ν has the Świa̧towski property.

Example 2: Let K be a triangulation of a finitely triangulable space X . If ν is a
positive, continuous, finite Borel measure on the space X such that ν|σ is a positive
measure on σ for each simplex σ in K with dim σ ≥ 1, then ν has the Świa̧towski
property.

Example 3: Let X be a compactmanifoldwith orwithout boundary. Let ν be a positive,
continuous, finite Borel measure on the space X such that ν|∂X is a positive measure
on ∂X . Then ν has the Świa̧towski property.

Example 4: Let X be a nonempty open subset of Rn. To each Lebesgue measurable
extended real-valued function that is real-valued Lebesgue almost everywhere on X
there corresponds an H inHOMEO(X ) such that fH is Lebesgue measurable and fH
is locally Lebesgue integrable.

The verification of the next example is left as an exercise.

Example 5: Let X = In and let X0 be a k-dimensional face of In, for example
X0 = {x ∈ In : xi = 0, k < i ≤ n}. Let ν = ν0 + ν1 where ν0 = Hk X0 and
ν1 = λ is the Lebesgue measure on In. Then the following assertion holds: For
each ν-measurable extended real-valued function f on X that is real-valued ν-almost
everywhere there is an H in HOMEO(X ) such that

∫
X fH dν exists.What can be said

if ν is such that ν|X0 is Lebesgue-like on X0 and ν1 is Lebesgue-like on In ?
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4.7. Images of Lusin sets

In Section 2.8.1 we promised to discuss the images of Lusin sets X for Borel measur-
able real-valued functions f – that is, the images f [X ] are absolute null space. In the
course of our discussion we will introduce many classes of singular sets that appear
naturally in the proof.

Lusin was interested in subsets X of a separable metrizable space Y with the
property that every nowhere dense subset of Y meets X in a countable set. Clearly
Lusin was interested in the existence of uncountable subsets with this property since
countable ones are easily found. It was seen in Chapter 1 that an uncountable Lusin
set exists under the continuum hypothesis whenever Y is completely metrizable.
Sometimes it is convenient to require that Lusin sets be uncountable; that is, a Lusin
set is an uncountable set with the above property. In the context of singular sets, the
collection of all sets with the above property, where X need not be required to be
uncountable, is denoted by LY . This leads to the natural collection COUNTABLE,
namely those spaces X with card(X ) ≤ ℵ0. We now have COUNTABLE ⊂ LY . The
next observation is that the ambient space in the definition of spaces in LY is not
really needed. That is, if a subset of X is nowhere dense in X , then it is also nowhere
dense in the ambient space Y of X . Hence one finds in the literature the property ν for
separable metrizable spaces X : every nowhere dense subset of X is countable. We
shall denote the class of all spaces that satisfy the property ν by NU. We now have
LY ⊂ NU. The obvious thing to do next is to consider countable unions of spaces in
NU. This class should obviously be denoted by σ NU.3 Every class defined above is
hereditary – that is, each subspace of a space in a class is also a member of that class.

We begin our task with the continuous map case.

Theorem 4.62. Suppose X ∈ NU. If f : X → R is continuous, then f [X ] is a
Lebesgue null set. Moreover, if h ∈ HOMEO(R), then h−1

[
f [X ]] is a Lebesgue

null set, whence f [X ] ∈ univ N(R).

Proof. Let xn, n = 1, 2, . . . , be a sequence in X such that D = {xn : n ∈ N} is a
dense subset of X . For each positive number ε let Un be an open set in X such that
xn ∈ Un and diam f [Un] < ε

2n . SinceD is dense inX we have thatE = X \⋃∞
n=1 Un is

nowhere dense in X , whence countable.As f [X ] = f [E] ∪ ⋃∞
n=1 f [Un], we have that

the outer Lebesgue measure of f [X ] does not exceed ε. The final statement follows
easily. ✷

Implicit in the proof are several notions that have appeared in the early literature.
The first of them is that a subset X a space Z is concentrated about a set C, 4 that is,
every neighborhoodU of C is such that card(X \U ) ≤ ℵ0. The case of a countable set
C is of special interest. The collection of all separable spaces X that are concentrated
about some countable set C of the ambient space Y will be denoted by CONY . In
the event that Y = X we shall just write, CON.5 The next property, called C ′′ in the

3 The reader will see in the literature the symbol L1 used for this class. See, for example Brown and
Cox [19].

4 See A. S. Besicovitch [9].
5 In [19] the symbol P is used for this class.
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literature, is the following : For every collection {G(x, n) : x ∈ X , n ∈ N} of open
sets of X such that x ∈ G(x, n) for each x and n, there necessarily exists a diagonal
sequence xn, n ∈ N, of elements of X such that X = ⋃

n∈N G(xn, n). The collection
of all spaces that possess this property will be denoted by C′′. It is not difficult to
prove the inclusion NU ⊂ C′′. Moreover, the class C′′ is invariant with respect to
continuous surjective maps. (For proofs of these two assertions see Kuratowski [85,
Theorems 5 and 6, page 527].)

The final property is couched in terms of a metric d on a space X . The metric
is used to define the δ-neighborhood of a point x in X . The collection of all such
neighborhoods forms a basis for the topology of X . Observe that if X is R with the
usual metric, then the radius of the δ-neighborhood of x is 1

2 the Lebesgue measure
of that neighborhood. Since we are interested in maintaining a topological approach
we shall replace the metric with a continuous, complete, finite Borel measure on the
ambient space Y and a basis B(Y ) for the open sets of the topology of the space Y . It
will be important that there be a rich supply of continuous, finite Borel measures µ on
Y with µ(Y ) > 0. This will be assured if the separable metrizable space satisfies the
requirement Y = FY (Y ) �= ∅ (see page 33 for the positive closure operator FY ). In
such a space, there is a continuous, finite Borel measure µ on Y such that µ(V ) > 0
wheneverV is an nonempty open subset ofU . For subsetsX of a separablemetrizable
space Y , where Y = FY (Y ) �= ∅, and a basisB(Y ) for the open sets of X , the property
of interest is the following : For each sequence εn, n ∈ N, of positive numbers and
for each continuous, complete finite Borel measure µ on Y there is a sequence xn,
n ∈ N, in X and there is a sequence U (n), n ∈ N, in B(Y ) such that xn ∈ U (n) and
µ(U (n)) < εn for every n and X ⊂ ⋃

n∈N
U (n). We shall denote the collection of

all subsets X with this property by CY . Of course, this collection is dependent on the
basis B(X ), which has not been displayed in the symbol CY .

For Y = R, the above property is equivalent to the notion of strong measure
zero, the favored terminology in set theory, where B(R) is the collection of all
δ-neighborhoods of the points x and only the Lebesgue measure λ is used, that is,
λ
(
(x − δ, x + δ)

) = 2δ. Indeed, if X ⊂ [a, b] and h is in HOMEO(R), then h[X ] is a
set of strongmeasure zero whenever X is a set of strongmeasure zero because h|[a, b]
is uniformly continuous. Note that any countable union of strong measure zero sets
is a strong measure zero set. We will use the more descriptive symbol SMZY for CY .
Clearly, if X ∈ SMZY , then X ∈ univ N(Y ) ⊂ abNULL.

The next theorem is Theorem 7 and the following Remark in [85, pages 527–528].
We shall give a proof to illustrate the use of the notions of Baire properties of sets
and of functions. (See Section A.2.3 of Appendix A for the Baire property.)

Theorem 4.63. Suppose that Y is a separable metrizable space. Then C′′ ⊂ SMZY .
Moreover, if X ∈ NU and if f : X → Y has the Baire property, then f [X ] ∈ SMZY ;
consequently, f [X ] ∈ SMZY whenever f is Borel measurable.

Proof. Let εn, n ∈ N, be a sequence of positive numbers and let µ be a continuous,
finite Borelmeasure onY . Then, for each y in f [X ], there is a sequenceG(y, n), n ∈ N,
in B(X ) such that y ∈ G(y, n) and µ(G(y, n)) < εn for every n. The first assertion is
a direct consequence of the definition of property C ′′ applied to this sequence.
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Consider the second assertion. Suppose that X is in NU. Then there is a sequence
xk , k ∈ N, in X such that X is concentrated about C = {xk : k ∈ N}. Let G(y, n)

be an open set in B(Y ). As f has the Baire property, there is an open set V (y, n)

in X and a first category set P(y, n) of X such that f −1[G(y, n)] is the symmetric
difference V (y, n)�P(y, n). Hence P = ⋃

k∈N P( f (xk), 2k) is a first category set and
V = ⋃

k∈N
V ( f (xk ), 2k) is an open set that contains the countable set C. As X ∈ NU

we have card(X \ V ) ≤ ℵ0 and f [X ] ⊂ f [P ∪ (X \ V )] ∪ ⋃
k∈N G( f (xk), 2k). Let

y2k−1, k ∈ N, be a sequence that exhausts f [P∪ (X \V )], and let y2k = f (xk), k ∈ N.
Then the sequenceU (n) = G(yn, n), n ∈ N, covers X and satisfies µ(U (n)) < εn for
every n. Hence f [X ] is in SMZY . As a Borel measurable map has the Baire property,
the remainder of the second statement is trivially true. ✷

Theorem 4.64. Suppose that X is a Lusin set in a separable metrizable space Y . If f :
X → R is Borel measurable, then f [X ] is a strong measure zero set in R, whence an
absolute null space.

Proof. Lusin sets in a separable metrizable space are in NU. Hence the above
theorem completes the proof. ✷

4.8. Comments

In general, the proofs provided in the chapter differ from those found in the literature.
The comments will center mostly on these differences.

4.8.1. Goldman conjecture. The Goldman problem is a natural one. Goldman him-
self conjectured that the answer was the collection B(R), which was not correct.
The first to show that this conjecture was incorrect was Davies [43] who showed
in 1966 that every analytic set E has the property that f −1[E] is Lebesgue mea-
surable whenever f is Lebesgue measurable. Subsequently, H. G. Eggleston [48]
showed in 1967 that every concentrated set E (a singular set, see page 128, that
is also a universally measurable set in R but not necessarily analytic) has the
property that f −1[E] is Lebesgue measurable whenever f is Lebesgue measur-
able. In 1968, Davies [44] extended Eggleston’s result to a larger class of singular
set that are also universally measurable sets. Of course it was Darst who, in
[39], recognized that the key to the problem is the induced measure f#λ, that is,
he proved Proposition 4.1. The extensions of Darst’s theorem to Theorems 4.3
and 4.4 are natural ones since B-homeomorphisms preserve universally measur-
able sets and the extensions do not involve any topological properties or geometric
properties.

A side effect of the investigation of Goldman’s problem is the characterization of
universallymeasurablemaps –Proposition 4.5 is the analogue of thewell-knownchar-
acterization of Borel measurable maps. Hence universally measurable sets and maps
are natural extensions of the notions of Borel sets and maps. A simple consequence
of this proposition is following analogue of Borel sets.
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Proposition 4.65. Let X be a subspace of a separable metrizable space Y and let
M be a universally measurable set in Y . Then X ∩ M is a universally measurable
set in X .

To see this, observe that the inclusion map of X into Y is a universally measurable
map. We have the following question.

Question 4.1. For any separable metrizable space Y and any subspace X of Y let A
be any universally measurable set in X . Is it true that there is a universally measurable
set M in Y such that A = X ∩ M? The answer is obviously yes if A is an absolute
measurable space or if X is a universally measurable set of Y .

4.8.2. Continuous and bounded variation. Darst wrote a series of papers on con-
tinuous functions of bounded variation and Purves’s theorem, culminating in his
result on infinitely differentiable functions. Clearly, locally analytic functions (i.e.,
functions locally equal to a power series) are infinitely differentiable. In [40] Darst
observed that locally analytic functions are B-maps. This is easily seen from the
Purves theorem. Indeed, a function f that is analytic on a connected open subset of R
is necessarily constant on that set whenever f has a nonempty set of points of uncount-
able orderU ( f ). Since each open cover of a set in R has a countable subcover, U ( f )

will be countable and the Purves theorem applies.
Darst studied several classes of singular sets of R in [34] and initiated an inves-

tigation of continuous functions of bounded variation that preserved these classes.
In [36] Darst constructed a continuous function of bounded variation that mapped a
universally null set to a nonuniversally null set. The constructed function was very
similar to the A. H. Stone example, which is Lipschitzian.

It is easily seen that anyLipschitzian function that is not aB-mapyields an infinitely
differentiable function that is not a B-map since the method used in the above proof
by Darst or the method used in the proof given in the chapter will apply. Indeed,
Purves’s theorem together with the fact thatU ( f ) is necessarily an analytic set imply
the existence of a nonempty perfect set contained in U ( f ). From this discussion we
infer that there is an infinitely differential function that is not a B-map if and only if
there is a Lipschitzian function that is not a B-map.

These comments on U ( f ) should not end without mentioning Theorem 2.10, the
Darst and Grzegorek extension of Purves’s theorem on B-maps. This theorem sup-
ports the fact that absolute measurable spaces are a very natural extension of absolute
Borel spaces.

Darst’s construction of his C∞ function is related to the problem of characterizing
those continuous functions f on [0, 1] of bounded variation that have the property
that fh is infinitely differentiable for some h in HOMEO([0, 1]). These compositions
are “inner compositions with homeomorphisms.” Such functions were characterized
by M. Laczkovich and D. Preiss [87]. Darst constructed such a continuous function
of bounded variation to get his infinitely differentiable function. Another characteri-
zation of such functions can be found in C. Goffman, T. Nishiura and D. Waterman
[62]. The construction in this chapter is a different sort of composition; hf is an “outer
composition with homeomorphisms.”
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4.8.3. The Bruckner–Davies–Goffman theorem. This theorem was proved for a
universally measurable real-valued function defined on the interval (0, 1) and the
Lebesgue measure λ. Their proof used the results of Gorman [65] concerning home-
omorphisms of dense Zahorski sets in (0, 1). (The classical characterization of the
collection MEASpos,fin

(
(0, 1)

)
, which consists of all positive, continuous, complete,

finite Borel measures on (0, 1), by means of λ and the group HOMEO
(
(0, 1)

)
was

not known to him.) Gorman showed in [66] that Lebesgue measurable functions f
with card( f [(0, 1)]) < ℵ0 satisfied the conclusion of the theoremofBruckner, Davies
and Goffman. He also showed that Lebesgue measurable functions with countable
images need not satisfy the conclusion of the Bruckner–Davies–Goffman theorem.
The argument used by Bruckner, Davies and Goffman is very subtle. It uses the usual
order of the real numbers to construct certain discrete-valued approximations of a
universally measurable function by Baire class 1 functions. Then Gorman’s results
on Zahorski sets were applied to determine the required homeomorphism h which
yielded fh to be equal Lebesgue almost everywhere to a Baire class 1 function. This
final step does not yield the stronger statement where Lebesgue measure is replaced
by any nontrivial, continuous Borel measure on (0, 1). It is the application of the clas-
sical result mentioned in the above parenthetical comment that results in the stronger
theorem.

The above mentioned Gorman results concerning Lebesgue measurable functions
with countable range predates the Bruckner–Davies–Goffman theorem. Gorman
assumes that the function is Lebesguemeasurable, aweaker condition than the univer-
sally measurable one of the later theorem. Hence the existence of his counterexample
does not lead to a contradiction. Gormanused another class of sets defined byZahorski
called the M2 class. For a set X to be in the M2 class, each neighborhood of a point
in the set X must contain a subset of X that has positive Lebesgue measure. This
leads to another closure-like operation Fλ(X ). That is, if X is a subset of Rn, then
Fλ(X ) is the set of all points of Rn with the property that every neighborhood of the
point contains a subset of X that has positive Lebesgue measure. Gorman proves, for
n = 1, the following proposition, whose proof is left as an exercise.

Proposition 4.66. The closure-like operation Fλ(X ) on Rn has the properties

(1) if X ⊂ Rn, then Fλ(X ) is a closed set;
(2) if X is Lebesgue measurable, then there is a Zahorski set E contained in X such

that E is dense in Fλ(X );
(3) if Xi, i = 1, 2, . . . , k , is a finite collection of Lebesgue measurable sets, then

Fλ(
⋃k

i=1 Xi) = ⋃k
i=1 F

λ(Xi).

This proposition yields Gorman’s theorem

Theorem 4.67. If f is a Lebesgue measurable function on In with card( f [In]) < ℵ0,
then there is an h in HOMEO(In) such that fh is equal Lebesgue almost everywhere
to some Baire class 1 function.

Adiscussion of the Gorman results and the Bruckner–Davies–Goffman theorem also
appears in Goffman, Nishiura and Waterman [62].
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The above mentioned Gorman results lead to the definition of Gorman pairs ( f ,µ)

on separable metrizable spaces (see page 122). The proof given in this chapter for
pairs where f is a universally measurable function whose values are in the discrete
space N ⊕ N is a modification of the proof in [24]. The characterization theorem
(Theorem 4.33 on page 116) results in the splitting of the proof of the extension of
the Bruckner–Davies–Goffman theorem into a topological class of BDG spaces (see
page 117) and a class of Zahorski generated Borel measure spaces (see page 123).
For a space X in these classes, every pair ( f ,µ) is a Gorman pair whenever f is
a universally measurable map of X into any absolute Borel space Y and µ is a
continuous, complete, finite Borel measure on X . As pointed out in the chapter, the
Bruckner–Davies–Goffman theorem holds for many spaces in addition to (0, 1).

Zahorski sets play an important role in the development of the chapter. These sets
form a subclass of the absolute Fσ spaces. Zahorski defined and used this class of
sets in his investigations of the derivative function [158, 159]. (A good source on the
subject of the derivative function is the book by Bruckner [22, 23].) Their appear-
ance in the measure theory of continuous, finite Borel measure spaces is illustrated in
Corollary 4.31. Here the measure spaces are defined on absolute measurable spaces
X . The proof provided here is essentially the one given for compact spaces X by
B. R. Gelbaum [59]. Oxtoby [119] gave a proof based on his theorem for separable
completelymetrizable spacesX , whichwasduplicated in this chapter asTheorem4.30.
As separable completely metrizable spaces are absolute measurable spaces, the above
mentioned Oxtoby’s theorem is actually deducible from the compact case by simply
embedding X into the Hilbert cube. Apropos to this comment, Oxtoby proved the
following theorem [119, Theorem3] concerning the collection of all continuous, com-
plete Borel probability measure spaces M(X , ν) = (

X , ν,M(X , ν)
)
, where X is an

absolute Gδ space. We denote this collection by O. We shall provide Oxtoby’s proof.

Theorem 4.68. Let M(X ,µ) be a member of O such that for each measure
space M(Y , ν) in O there exists a homeomorphism h of X into Y such that(
h#µ

)|h[X ] = ν|h[X ]. Then there exists a homeomorphism H of X into N such
that H#µ = λ.

Proof. Observe thatM(N , ν), where ν = λ|N is inO. Let h be a homeomorphism of
X intoN such that ν|h[X ] = (

h#µ
)|h[X ]. Themeasure h#µ is a continuous, complete

Borel probability measure on N with 1 = h#µ(N ) = h#µ(h[X ]) = ν(h[X ]). It
follows that h[X ] is a dense subset of N , whence h#µ is also positive. Let h′ be in
HOMEO(N ) such that h′

#h#µ = λ. H = h′h is the desired homeomorphism. ✷

4.8.4. Change of variable. The change of variable theoremof Świa̧towski is a propo-
sition about the integrability of a function. The readermay have noted that theWarsaw
circle was not among the spaces for which our techniques applied. We have the
following question.

Question 4.2. Let µ be a continuous, positive Borel measure on the Warsaw cir-
cle W such that it and HOMEO(W ) generate univ M(W ). Let f be a µ-measurable,
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extended real-valued function that is real-valued µ-almost everywhere. Is there an h
in HOMEO(W ) such that fh is µ-measurable and

∫
W fh dµ exists?

There is a nonlocally compact, absolute measurable space X and a positive, contin-
uous, complete, finite Borel measure ν on X that has the Świa̧towski property. Also
there is a non absolute measurable space X and a positive, continuous, complete,
finite Borel measure ν on X that has the Świa̧towski property.

4.8.5. Lusin theorems. In the discussion of the images of Lusin sets we introduced
several of the many classes of singular sets with very little discussion of them. These
classes have set theoretic consequences and further discussions will be delayed to
Chapter 6.

There is another very famous Lusin theorem. Namely, for a µ-measurable function
f : [0, 1] → R, where µ is a complete, finite Borel measure, and for ε > 0, there is
a closed set F such that µ([0, 1] \ F) > µ([0, 1]) − ε and f |F is continuous. There
are other such theorems where continuity is replaced by various kinds of differen-
tiability. If one replaces the “closed” condition by other requirements, then further
measurability requirements on f must be imposed. A possible condition is that f be
universally measurable. Several papers along this line have appeared; we shall list
some of them rather than provide a discussion of them since they require techni-
calities that do not seem to fit naturally into the context of the book. The reader is
referred to the following references: J. B. Brown and K. Prikry [20], and J. B. Brown
[16, 17].

4.8.6. Fourier series. Investigation of everywhere convergence of Fourier series
under all changes of variable was initiated by Goffman and Waterman and has been
studied extensively. Of course changes of variable lead naturally to universally mea-
surable functions. The universally measurable functions that appear are equal, except
on a universally null set, to a continuous function or to a function of various types
of bounded variation. The reader may find many references to this topic in Goffman,
Nishiura and Waterman [62].

Exercises

4.1. Prove Theorems 4.6 and 4.7 on page 102.
4.2. Prove Proposition 4.9 on page 106.
4.3. Prove Proposition 4.10 on page 106.
4.4. Prove Lemma 4.15 and Theorem 4.16 on page 110.
4.4. Let µ and ν be continuous, complete, finite Borel measures on the Warsaw

circle W = W0 ∪ W1 such that ν|W1 is a positive measure on W1, where W1

consists of the points at which W is locally connected. Show that there is an h
in HOMEO(W ;W0 fixed ) such that µ W1 # h#ν.

4.5. Prove Theorem 4.19 on page 111.
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4.6. Prove Proposition 4.25 on page 113.
4.7. Recall that N is the set of irrational numbers in the interval [0, 1]. Let X be the

subspace of R2 given by

X = ( N × N ) ∪ {(0, r) ∈ R2 : r ∈ Q, 0 ≤ r ≤ 1}.

(a) Show that X is not an absolute Gδ space.
(b) Show that X is a BDG space (See page 117.)
(c) What can be said if the right-hand member of the union that forms the space

X is replaced with an absolute null space N contained in {0} × [0, 1] ?
4.8. Recall the definition of a Baire space given on page 117.

(a) Show the existence of a separable Baire space that is an absolute Borel space
but not an absolute Gδ space.

(b) Show the existence of separable Baire space that is an absolute measurable
space but not an absolute Borel space.

(c) Show the existence of a separable Baire space that is not an absolute
measurable space.

(d) Prove the generalization of Lemma 4.26 where the condition “completely
metrizable” is replacedwith the conditions “absoluteBorel andBaire space.”

4.9. Verify that X = W × [0, 1]n is Zahorski generated relative to the collection
F = {W0 × [0, 1]n,W × [0, 1]n}, where W is the Warsaw circle and W0 is the
set of points of W at which W is not locally connected.

4.10. Provide a verification for Example 5 on page 127.
4.11. Prove Gorman’s Proposition 4.66 on page 132.
4.12. Prove Gorman’s Theorem 4.67 on page 132.
4.13. Prove CR is equivalent to the notion of strong measure zero on the space R as

asserted on page 129. See [9, Theorem 1].
4.14. For a separable metrizable space X , let f : X → R be such that f (x) ≥ 0 for

every x in X . Find necessary and sufficient conditions for f to be such that∫
X fdµ exists (and finite) for every continuous, complete, finite Borel measure

µ on X .
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Hausdorff measure and dimension

There are two ways of looking at the dimension of a space – that is, topologically and
measure theoretically.1 The measure theoretic dimension is the Hausdorff dimension,
which is a metric notion. Hence, in this chapter, it will be necessary to assume that
a metric has been or will be selected whenever the Hausdorff dimension is involved.
The chapter concerns the Hausdorff measure and Hausdorff dimension of universally
null sets in a metric space. The recent results of O. Zindulka [160, 161, 162, 163]
form the major part of the chapter.

There are two well-known theorems [79, Chapter VII], which are stated next, that
influence the development of this chapter.

Theorem 5.1. For every separable metric space, the topological dimension does not
exceed the Hausdorff dimension.

Theorem 5.2. Every nonempty separable metrizable space has a metric such that the
topological dimension and the Hausdorff dimension coincide.

The first theorem will be sharpened. Indeed, it will be shown that there is a uni-
versally null subset whose Hausdorff dimension is not smaller than the topological
dimension of the metric space.

5.1. Universally null sets in metric spaces

We begin with a description of the development of Zindulka’s theorems on the
existence of universally null sets with large Hausdorff dimensions.

Zindulka’s investigation of universally null sets in metric spaces begins with com-
pact metrizable spaces that are zero-dimensional. The cardinality of such a space is
at most ℵ0 or exactly c. The first is not very interesting from a measure theoretic
point of view. The classic example of the second kind is the Cantor ternary space
contained in R. Of course, it is topologically equal to the product space {0, 1}N, or
more generally the product space k ω where k is a nondegenerate finite space with the
discrete topology. The selection of metrics on these spaces is important for the study
of Hausdorff measure and Hausdorff dimension. There is a one parameter family of

1 For those who are not so familiar with topological and Hausdorff dimensions, a brief discussion of these
dimensions for separable metric spaces can be found in Appendix D.
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metrics d(k ,α), 0 < α < 1, on k ω such that, for each α, the resulting metric space
C(k ,α) contains a universally null set E with card(E) = non-L and with Hausdorff
dimension that coincides with that of C(k ,α). This is made possible by the existence
of a universally null set in {0, 1}N with cardinality equal to non-L. For appropriate
choices of the parameter α, it is shown that there is a natural embedding of C(2,α),
where 2 = {0, 1}, onto a subspace Cα of R such that the embedding homeomor-
phism and its inverse are Lipschitzian (that is, bi-Lipschitzian), thereby resulting in
a bi-Lipschitzian copy of the Cantor cube (Cα)n in Rn. In this way, for each s in the
closed interval [0, n], a universally null set in Rn with Hausdorff dimension equal to s
is exhibited. With geometric measure theoretic tools, sharper results are shown for
analytic subsets of Rn.

The proof of the main theorem of the chapter relies on a topological dimension
theoretic theorem due to Zindulka [160]. (This dimension theoretic theorem is fully
developed in Appendix D.) It follows from this theorem that each separable metric
space contains a universally null set whose Hausdorff dimension is not smaller than
the topological dimension of the space.

5.2. A summary of Hausdorff dimension theory

Here is a brief survey of p-dimensional Hausdorff measure on a separable metric
space X and Hausdorff dimension of its subsets.

5.2.1. Hausdorff measure. In this section we shall assume that X is a separable
metric space with the metric denoted by d.

Definition 5.3. Let E be a subset of X and let p be a real number with 0 ≤ p.
For δ > 0, define Hδ

p(E) to be the infimum of the set of numbers
∑

S∈G(diam(S))p

corresponding to all countable families G of subsets S of X such that diam(S) ≤ δ

and E ⊂ ⋃
S∈G S.2 The p-dimensional Hausdorff outer measure on X is

Hp(E) = sup { Hδ
p(E) : δ > 0 };

or equivalently,

Hp(E) = limδ→0 Hδ
p(E)

since the limit always exists as a nonnegative extended real number. A set E is said
to be Hp-measurable if Hp(T ) = Hp(T ∩ E) + Hp(T \ E) whenever T ⊂ X .

Let M(X ,Hp) be the collection of all Hp-measurable sets. The triple M(X ,Hp) =(
X ,M(X ,Hp),Hp

)
is a completeBorelmeasure space on the topological spaceX . The

zero-dimensional Hausdorff measure is the usual counting measure on X . For p > 0,
the measure Hp on X is continuous, that is, Hp(E) = 0 for every singleton set E. In
general, M(X ,Hp) is notσ -finite. IfY is a subset ofX whose p-dimensionalHausdorff
outer measure is finite, then the Hausdorff measure space M(X ,Hp) restricted to Y

2 We use the conventions that diam(∅) = 0 and 00 = 1.
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is the continuous, complete, finite Borel measure space M(Y ,Hp) that is induced by
the p-dimensional Hausdorff outer measure on the metric subspace Y of X . If X =
Rn, then Hn = αn λn, where λn is the usual Lebesgue measure on Rn and αn is a
normalizing constant given by Hn([0, 1]n) = αn λn([0, 1]n).

The empty set may, at times, require special treatment. The reader should keep in
mind the statements in the following proposition in the course of the development of
this chapter, where dim denotes the topological dimension function.

Proposition 5.4. If X is a separable metric space, then, for every p,

dim ∅ = −1 < 0 = Hp(∅).

If 0 ≤ p and if E is a subset of a separable metric space X with dim E ≤ 0, then
dim E ≤ Hp(E).

Here is a useful theorem concerning Lipschitzian maps. The simple proof is left to
the reader.

Theorem 5.5. For separable metric spaces X and Y let f : X → Y be a Lipschitzian
map with Lipschitz constant L. If 0 ≤ p and E ⊂ X , then Hp( f [E]) ≤ Lp Hp(E).

It will be convenient to define at this point the notion of a bi-Lipschitzian
embedding.

Definition 5.6. Let X and Y be separable metric spaces with respective metrics dX
and dY . An injection ϕ : X → Y is called a bi-Lipschitzian embedding of X onto
M = ϕ[X ] if ϕ is a Lipschitzian map and (ϕ|M )−1 : M → X is a Lipschitzian map.

Clearly the Lipschitz constants of the maps ϕ and (ϕ|M )−1 in the above definition
are positive whenever card(X ) > 1. Hence we have the obvious theorem.

Theorem 5.7. Let ϕ be a bi-Lipschitzian embedding of X into Y . If 0 ≤ p and E ⊂ X ,
then

Hp(E) < ∞ if and only if Hp(ϕ[E]) < ∞
and

0 < Hp(E) if and only if 0 < Hp(ϕ[E]).
In Chapter 2 we gave a development of Grzegorek’s theorem (see page 20) which

says that for each positive, continuous, complete, finite Borel measure µ on {0, 1}N
there are subsets A and B of {0, 1}N with card(A) = card(B) = non-L such that A
is an absolute null space and the outer µ measure of B is positive. Grzegorek used
this to solve a question posed by Darst by showing there is an absolute null space E
contained in {0, 1}N ×{0, 1}N with card(E) = non-L such that E projects naturally
onto A and B as bijections. Let us use this on topological copies X and Y of {0, 1}N
and any continuous, complete, finite Borel measure µ on Y . We have

Proposition 5.8. For metric spaces X and Y that are homeomorphic to {0, 1}N and
a nontrivial, continuous, complete, finite Borel measure µ on Y there is a subset E
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of X × Y with card(E) = non-L and there are subsets A of X and B of Y such that E
projects onto A and B as bijections, E and A are absolute null spaces, andµ∗(B) > 0.

5.2.2. Hausdorff dimension. We shall continue to assume that X is a separable
metric space. It is easily seen that if 0 ≤ p < q then Hp(E) ≥ Hq(E) for subsets E of
X . Also, if Hp(E) < ∞ then Hq(E) = 0 whenever p < q. This leads to the following
definition.

Definition 5.9. For subsets E of X , the Hausdorff dimension of E is the extended
real number dimH E = sup { p : Hp(E) > 0 }.
Of course the Hausdorff dimension is dependent on the metric d of X . The four
properties of the Hausdorff dimension in the next theorem are easily proved. As
stated earlier, dim denotes the topological dimension function.

Theorem 5.10. Let X be a separable metric space.

(1) −1 = dim ∅ < dimH ∅ = 0.
(2) If E ⊂ X , then dim E ≤ dimH E.
(3) If A ⊂ B ⊂ X , then dimH A ≤ dimH B.
(4) If Ai, i = 1, 2, . . . , is a countable collection of subsets of X , then dimH

⋃∞
i=1 Ai =

sup { dimH Ai : i = 1, 2, . . . }.
We have the following theorem which can be summarized as “the Hausdorff

dimension of a set is a bi-Lipschitzian invariant.” It is a consequence of Theorem 5.5.

Theorem 5.11. Let X and Y be separable metric spaces. For bi-Lipschitzian
embeddings ϕ : X → Y of X onto M = ϕ[X ],

dimH E = dimH ϕ[E] whenever E ⊂ X .

This ends our summary of topological and Hausdorff dimensions of separable
metric spaces.

5.3. Cantor cubes

The Cantor ternary set has been topologically characterized among the metrizable
spaces to be nonempty, compact, perfect and zero-dimensional. The expression
Cantor cube is a nice way to say that a metric has been chosen so as to result in
a metric product space k ω, where k is a finite set with more than one member. For the
purposes of Hausdorff dimension, Cantor cubes are useful in that a correct choice of a
metric and a correct choice of a product measure will facilitate the computation of
the precise values of p-dimensional Hausdorff measure and Hausdorff dimension. Of
particular interest is the Cantor space {0, 1}N.3 But it will be convenient to consider
more general Cantor spaces and provide them with useful specific metrics.

3 See Appendix C for relevant material on metric spaces that are topologically equivalent to {0, 1}N.
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5.3.1. Measures on Cantor cubes. The compact space k ω carries a natural, continu-
ous, Borel, probability measure µk generated by the uniform Bernoulli distribution µ

on the factor spaces k given by µ({x}) = (card(k))−1 for each x in k . Let n be in
N and consider the projection ϕn : (x0, x1, . . . ) �−→ (x0, x1, . . . , xn−1) ∈ kn. As each
singleton set { p} of k n is open we have µk(ϕn

−1[{ p}]) = (card(k))−n. Denote the
open set ϕn

−1[{ p}] by Up. Consider the metrics d(k ,α) on k ω with 0 < α < 1 that
are defined in Appendix C (see page 217). For the convenience of the reader we
shall repeat the definition here in a notational form consistent with the product space
notation, that is, f (m) is the m-th coordinate of a member f of k ω.

For distinct f and g in k ω define

χ( f , g) = min {m ∈ ω : f (m) �= g(m) }.

As f �= g, we have χ( f , g) ∈ ω. Hence χ( f , g) is the length of the initial segment
that is common to f and g. Let 0 < α < 1 and define

d(k ,α)( f , g) =
{

αχ( f ,g), if f �= g,

0, if f = g.

Observe that if f and g are members of Up, then d(k ,α)( f , g) ≤ αn, whence
diam(Up) = αn. Let us summarize this observation as a lemma.

Lemma 5.12. Let n ∈ N and s = ln(card(k))
|ln α| . If p ∈ k n, then

µk(Up) = (card(k))−n = αsn = (diam(Up))
s.

We need to derive another property of the metric d(k ,α). Let E be a nonempty subset
of k ω. First, some notation: for f ∈ k ω and n ∈ N, define f |n to be the point of k n

given by
f |n = 〈 f (0), f (1), . . . , f (n − 1)〉.

If card(E) = 1, then diam(E) = 0 and E ⊂ Uf |n for every f in E and every n. For
card(E) > 1 define

n(E) = min {χ( f , g) : f ∈ E , g ∈ E , and f �= g }.

Then d(k ,α)( f , g) ≤ αn(E) whenever f and g are in E. Hence, for every f in E, we
have E ⊂ Uf |n(E) and diam(Uf |n(E)) = diam(E) = αn(E). Let us also summarize this
as a lemma.

Lemma 5.13. Assume E ⊂ k ω. If card(E) = 1 and n ∈ N, then E ⊂ Uf |n for
every f in E. If card(E) > 1, then there exists an n in N such that E ⊂ Uf |n and
αn = diam(E) = diam(Uf |n) for every f in E.

We now have a proposition on open covers. The proof is left as an exercise.

Proposition 5.14. Let 0 < s < ∞ and 0 < δ < ∞, and let Ei, i = 1, 2, . . . , be
a countable family of nonempty subsets of k ω with diam(Ei) ≤ δ. Then, for each
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positive number ε and for each i, there is an ni in N and there is an fi in Ei such that
Ei ⊂ Ufi|ni and diam(Ufi|ni ) ≤ δ, and such that∑∞

i=1(diam(Ufi|ni ))s ≤ ∑∞
i=1(diam(Ei))

s + ε.

Of course, the ε is needed for the singleton sets of the countable family. We are
now ready to show that µk and Hs, where s = ln(card(k))

|ln α| , coincide on the metric space
C(k ,α).

Lemma 5.15. Let 0 < α < 1 and s = ln(card(k))
|ln α| . Then µk(B) = Hs(B) for every Borel

subset B of k ω. Hence dimH(C(k ,α)) = s.

Proof. Let B be any Borel subset of k ω and let 0 < δ < ∞ and 0 < ε. Suppose that
Ei, i = 1, 2, . . . , is a cover of B by nonempty sets with diam(Ei) ≤ δ. The proposition
yields sets Ufi|ni with ni ∈ N and fi ∈ Ei such that Ei ⊂ Ufi|ni for every i and such
that the above displayed inequality holds. We have

µk(B) ≤ ∑∞
i=1 µk (Ufi|ni ) ≤ ∑∞

i=1(diam(Ei))
s + ε.

Hence µk(B) ≤ Hs(B). On the other hand, by Lemma 5.12, we have for each n in N
the inequality

Hαn

s (k ω) ≤ ∑
p∈kn(diam(Up))

s = ∑
p∈kn µk (Up) = µk (k ω).

Since αn → 0 as n → ∞, we have Hs(k ω) ≤ µk (k ω) = 1. The inequality Hs(B) ≤
µk(B) now follows easily for Borel sets B. ✷

Let us turn to the metric space C(2,α) with 0 < α < 1
2 , where 2 = {0, 1}. Define

the real-valued function ϕ : C(2,α) → R given by the absolutely convergent series
ϕ( f ) = (1−α)

∑∞
m=0 αmf (m). Denote the imageϕ[C(2,α)] byCα .Astraightforward

computation will lead to the inequalities

(1 − 2α) d(2,α)( f , g) ≤ |ϕ( f ) − ϕ( g)| ≤ d(2,α)( f , g)

for every f and g in C(2,α). Consequently, ϕ is a bi-Lipschitzian map between
C(2,α) and Cα .4

5.3.2. Hausdorff dimension of universally null sets. The first theorem establishes
the existence of universally null sets in Cantor cubes with maximal Hausdorff
dimensions.

Theorem 5.16. Let k ∈ ω with k ≥ 2 and let 0 < α < 1. Then there exist universally
null sets E in C(k ,α) with dimH E = dimH C(k ,α) = ln(card(k))

|ln α| and card(E) =
non-L.

4 Related results on Hausdorff measure and dimension of Cantor set type constructions in [0, 1] by
C. Cabrelli, U. Molter, V. Paulauskas and R. Shonkwiler can be found in [26].
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Proof. Let us first construct a universally null set Em in C(k ,α) with

dimH Em ≥ (1 − 1
m ) dimH C(k ,α),

where m − 1 is a positive integer. To this end, consider the product metric space
C(k ,αm) × C(k m−1,αm). By Proposition 5.8 there is a universally null set E′ in
the product metric space C(k,αm) × C(k m−1,αm) with card(E′) = non-L and the
projection of E′ onto B in the second factor space satisfies µk m−1

∗(B) > 0 . As the
projection of E′ onto B is a Lipschitzian map with Lipschitz constant equal to 1, we
have

Hs(E
′) ≥ Hs(B) = µk m−1

∗(B) > 0,

where

s = dimH C(k m−1,αm) = ln(card(k m−1))
|ln αm|

= m−1
m

ln(card(k))
|ln α| = (1 − 1

m ) dimH C(k ,α).

Hence dimH(E′) ≥ (1 − 1
m ) dimH C(k ,α). We infer from Propositions C.8 and C.9

of Appendix C that C(k ,α) is bi-Lipschitzian equivalent to the product metric space
C(k ,αm) × C(km−1,αm). Hence the universally null set Em in C(k ,α) has been
constructed. To complete the proof, observe that the setE = ⋃∞

m=1 Em is a universally
null set in C(k ,α) with dimH E = dimH C(k ,α). ✷

Let us describe an example of a metric space X that illustrates the “gap” between
the Hausdorff dimension and the topological dimension of X .

Example 5.17. Let X be the disjoint topological sum

C(k ,α1) ⊕ C(k ,α2) ⊕ [0, 1]n

with a metric d that satisfies the conditions that d restricted to C(k ,αi) is d(k ,αi) for
i = 1, 2, and that d restricted to [0, 1]n is the usual Euclidean distance. Select α1 and
α2 so that

n < s1 = ln(card k)
|ln α1| < s2 = ln(card k)

|ln α2| .

Then there exists a universally null set E in X such that

dim X = n < s1 = dimH E < s2 = dimH X .

The verification of the last inequalities is left to the reader.

Question. In the example X above there exists a universally null set E in X for which
dimH E = dimH X . Is it true that there always is a universally null set E in X such
that dimH E = dimH X whenever X is a separable metric space?

Let us turn to the questionof the existence of perfect closed subsetsF of uncountable
compact metric spaces X such that Hs(F) = 0 whenever s > 0. Of course, such a
subset has dimH F = 0. Due to Grzegorek’s result there is an absolute null space E
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with card(E) = non-L that is contained in F . With the aid of Exercise 5.5, one can
prove

Proposition 5.18. If X is a uncountable compact metric space, then there is a univer-
sally null set E in X such that card(E) = non-L and dimH E = 0. More generally, if
the metric space X is an absolute measurable space that is not an absolute null space,
then there is a universally null set E in X such that dimH E = 0 and card(E) = non-L.

5.3.3. Euclidean n-dimensional space. Certain Cantor cubes C(k ,α) can be
bi-Lipschitzian embedded into Rn. This will permit us to prove that Rn contains
universally null sets Es such that dimH Es = s for each s with 0 ≤ s ≤ n.

Theorem 5.19. For each positive integer n and for each s with 0 ≤ s ≤ n there is a
universally null subset Es of Rn with dimH Es = s and card(Es) = non-L.

Proof. The case s = 0 follows from Proposition 5.18. Let us consider an s with
0 < s < n. Let α = 2−n/s. Clearly α < 1

2 . Hence C(2,α) is bi-Lipschitzian
equivalent to the subset Cα of R. We have that C(2n,α) and the product (Cα)n with
the maximum metric are bi-Lipschitzian equivalent. It is known that the maximum
metric and the Euclidean metric on Rn are bi-Lipschitzian equivalent. Hence there is
a bi-Lipschitzian embedding of C(2n,α) into Rn endowed with the Euclidean metric.
As there is a universally null set D in C(2n,α) with dimH D = dimH C(2n,α) = s
and card(D) = non-L, the existence of the required set Es is established.

For s = n, define si = n − 1
i . Let Esi be a universally null set in Rn such that

dimH Esi = si and card(Esi ) = non-L. Then En = ⋃∞
i=1 Esi is a universally null set

in Rn such that dimH En = n. As non-L > ω, we have card(En) = non-L. ✷

Of course the above embedded Cantor cube can be arranged to be contained in
a preassigned open set. A natural question is: Can the open set be replaced by an
uncountable Borel set? More specifically, is there a universally null set E contained
in a Borel setB ofRn such that dimH E = dimH B ? This question, whichwas posed by
Zindulka in [161], has been answered by him in the affirmative in [162]. His solution
uses facts from geometric measure theory which are not as elementary as those used
in the above theorem. Note that a more general question has already been proposed
immediately following Example 5.17. Before turning to Zindulka’s solution, we shall
go to a, in a sense, weaker question in the next section.

5.4. Zindulka’s theorem

A classical theorem in topological dimension theory (Theorem 5.1) states that
dimH X ≥ dim X for every separable metric space (X , d). Zindulka showed in
[162] that every separable metric space X contains a subset E that is univer-
sally null in X with dimH E ≥ dim X (see Theorem 5.22 below). It follows that
dimH X ≥ dimH E ≥ dim X and thereby the classical theorem has been sharpened.
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The proof of Zindulka’s theorem relies on a dimension theoretic theorem on the
existence of a certain countable family of Lipschitzian maps for arbitrary metric
spaces. This general theorem is proved inAppendix C.We state and prove the special
separable metric case here since its proof is straightforward.

Theorem 5.20 (Zindulka). If (X , d) is a nonempty separable metric space, then there
is a sequence of Lipschitzian functions hm : X → [0, 1], m = 0, 1, 2, . . . , such that

G(r) = ⋂∞
m=0 hm

−1[{ s ∈ [0, 1] : s �= r }]
is a Gδ set with dimG(r) ≤ 0 for each r in the open interval (0, 1). Moreover,
X = ⋃

r∈E G(r) whenever E is an uncountable subset of (0, 1).

Proof. Let B = {Un : n ∈ ω } be a countable base for the open sets of a nonempty
separablemetric spaceX . For each pair 〈n, j〉 inω×ω, define theLipschitzian function
g〈n, j〉 : X → [0, 1] given by the formula

g〈n,j〉(x) = 1 ∧ (
j dist

(
x,X \ Un

))
, x ∈ X ;

and, for each r in the open interval (0, 1), define the set

G(r) = ⋂
〈n,j〉∈ω×ω g〈n,j〉−1

[{ s ∈ [0, 1] : s �= r }].
Clearly G(r) is a Gδ set. Let us show dimG(r) ≤ 0 for every r. To this end we first
show that the collection

Dr = { g〈n,j〉−1
[
(r, 1]] : 〈n, j〉 ∈ ω × ω }

is a base for the open sets of X . For x ∈ X , let n be such that x ∈ Un. There is
a j such that g〈n,j〉(x) > r. Consequently, x ∈ g〈n,j〉−1

[
(r, 1]]. Hence Dr is a base

for the open sets of X . Next let us show that D = G(r) ∩ g〈n,j〉−1
[
(r, 1]] is closed in

the subspace G(r). Using the fact that the distance function dist
( · ,X \ Un

)
appears

in the definition of g〈n,j〉, one can easily verify g〈n,j〉−1
[[r, 1]] ∩ Cl(Un) ⊂ Un and

G(r) ∩ g〈n,j〉−1
[{r}] ∩ Un = ∅. So

ClG(r)(D) ⊂ G(r) ∩ Cl
(
g〈n,j〉−1[(r, 1]] ∩ Un

)
⊂ G(r) ∩ g〈n,j〉−1[[r, 1]] ∩ Cl(Un)

⊂ G(r) ∩ g〈n,j〉−1[(r, 1]] ∩ Un = D.

Consequently dim(BdG(r)(D)) = −1 and thereby dimG(r) ≤ 0 follows from the
characterization provided by Theorem D.3.

Let us show X = ⋃
r∈E G(r) whenever card(E) ≥ ℵ1. Suppose that there is an x in

X such that x /∈ G(r) for every r inE. From the definition ofG(r) there is a pair 〈nx, jx〉
in ω × ω such that x is not in g〈nx ,jx〉−1

[{ s ∈ [0, 1] : s �= r }], that is g〈nx ,jx〉(x) = r.
This defines a map η : r �→ 〈n, j〉 of E into ω × ω such that gη(r)(x) = r. Since E is
uncountable and ω × ω is countable, there are two distinct r and r′ in E that map to
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the same 〈n, j〉. This implies g〈n,j〉(x) = r and g〈n,j〉(x) = r′, a contradiction. Thereby
the required equality is established.

The proof of the theorem is completed by well ordering ω × ω. ✷

The above theorem does not require the metric space X to be finite dimensional.
The theorem leads to the following dimension theoretic result in which the separable
metrizable spaces have their topological dimensions bounded below, unlike many
theorems of dimension theory which have the dimensions bounded above.

Theorem 5.21 (Zindulka). If X is a separable metrizable space and if m and n are
integers such that dim X ≥ m ≥ n ≥ 0, then to each metric for X there corresponds
a countable family F of Lipschitzian maps of X into [0, 1] n such that for each r in
(0, 1)n there is an f in F with dim f −1[{r}] ≥ m − n.

Proof. Let us use the sequence hk , k = 0, 1, 2, . . . , of Lipschitzian functions as
provided by Theorem 5.20. For each ι in ω n – that is, ι = 〈ι(0), ι(1), . . . ,
ι(n − 1)〉 ∈ ω n – define the Lipschitzian function fι : X → [0, 1] n by

fι(x) = 〈hι(0)(x), hι(1)(x), . . . , hι(n−1)(x)〉,

and define F to be the countable family { fι : ι ∈ ω n }. Let us show that F satisfies
the requirement of the theorem. To do this we shall use well-known theorems from
topological dimension theory; the reader is referred to Theorem D.6 of Appendix D.
Let r = 〈r1, . . . , rn〉 ∈ (0, 1)n. As dimG(rj) ≤ 0 for 1 ≤ j ≤ n we infer from the
addition theorem of dimension theory that dim

⋃n
j=1 G(rj) ≤ n − 1; hence

dim
⋂n

j=1 F(rj) ≥ dim X − dim
⋃n

j=1 G(rj) − 1 ≥ m − n,

where F(t) = X \ G(t) for every t in (0, 1). On the other hand,

⋂n
j=1 F(rj) = ⋂n

j=1

⋃
k∈ω hk

−1[{rj}]
= ⋃

ι∈ωn
⋂n

j=1 hι( j )
−1[{rj}] = ⋃

ι∈ωn fι
−1[{r}].

As fι
−1[{r}] is closed for every ι in ω n, by the sum theorem of dimension theory,

there is an ι in ω n such that dim fι
−1[{r}] ≥ m − n and the theorem is proved. ✷

The following is an application of the last theorem.

Theorem 5.22 (Zindulka). Let X be a separable metrizable space. For each metric
for X , there exists a universally null set E in X with dimH E ≥ dim X . Also, if
dim X ≥ 1, then card(E) = non-L can be required of E as well.

Proof. We have already observed earlier that the statement of the theorem holds
for spaces with dim X < 1. So, let n be an integer such that 1 ≤ n, and assume
n ≤ dim X . We infer from Theorem 5.19 that there is a universally null set Dn in
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(0, 1)n such that dimH Dn = n. Consider the countable family F of Lipschitzian maps
provided by Theorem 5.21 with m = n. Define, for each f in F , the set

Dn( f ) = { r ∈ Dn : f
−1[{r}] �= ∅ }.

For each r in Dn we have an f in F such that dim f −1[{r}] ≥ 0, whence f −1[{r}] is
not empty. Consequently,

Dn = ⋃
f ∈F Dn( f ).

For each f in F and each r in Dn( f ) select a point x( f , r) in f −1[{r}]. Define

En( f ) = { x( f , r) : r ∈ Dn( f ) } and En = ⋃
f ∈F En( f ).

As f |En( f ) : En( f ) → Dn( f ) is a continuous bijection and Dn( f ) is a absolute null
space we have that En( f ) is also an absolute null space. So, En( f ) is a universally
null set in X with card(Dn( f )) = card(En( f )). It follows that En is a universally null
set in X with card(En) = non-L. As f is a Lipschitzian map we have dimH En( f ) ≥
dimH Dn( f ) because f [En( f )] = Dn( f ). Consequently, dimH En ≥ dimH Dn ≥ n.
The required set is E = ⋃{En : 1 ≤ n ≤ dim X }. ✷

We have observed earlier the following corollary which provides a second proof
of the classical Theorem 5.1 as well as a sharpening of it.

Corollary 5.23. If X is a separable metric space, then there is a universally null set
E in X such that dimH X ≥ dimH E ≥ dim X .

(It is shown in Appendix D that Theorem 5.1 is implied directly by Theorem 5.21
without recourse to the above corollary.)

The final theorem is an immediate consequence of Theorem 5.2.

Theorem 5.24. For each nonempty separable metrizable space X there is a metric
for X and a universally null set E in X such that dimH X = dimH E = dim X .

Remark 5.25. A very important consequence of Theorem 5.22 is that every sep-
arable metric space X with dim X = ∞ contains a universally null set E in X
such that dimH E = ∞. Hence the existence of universally null sets E in X with
dimH E = dimH X is only a problem for finite topological dimensional metric spaces
X . It is known that every finite dimensional separable metrizable space can be topo-
logically embedded into [0, 1] 2n+1 (see Theorem D.5 inAppendix D). Unfortunately
the embedding need not be bi-Lipschitzian, witness the case of dim X = 0. In the next
section we shall consider analytic metric spaces that have bi-Lipschitzian injections
into some Euclidean space.

5.5. Analytic sets in Rn

Let us return to universally null sets contained in Borel subsets of Rn as promised in
Section 5.3.3. As we have mentioned already, Zindulka showed in [162] that every
Borel subsetB ofRn contains a universally null setE inB such that dimH E = dimH B;
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indeed, he showed that the subset B can be any analytic subset of Rn. Zindulka’s
geometric measure theoretic proof will be presented.

Let us begin with some side comments about p-dimensional Hausdorff measure Hp

onRn. It is well-known that 0 < Hn([0, 1]n) < ∞ and dimH[0, 1]n = dim[0, 1]n = n.
But, if E is a universally null set in Rn, then either Hp(E) = 0 or Hp(E) = ∞
whenever 0 < p = dimH E. Indeed, if the contrary is assumed, then Hp restricted
to E will be a continuous, finite Borel measure on E with

(
Hp |E)

(E) > 0 and a
contradiction will appear. For analytic subsets A of Rn with Hp(A) = ∞, there is the
following remarkable Besicovitch–Davies–Howroyd theorem. (See Davies [42] and
Besicovitch [10] for the Rn case, and J. D. Howroyd [76] for the separable metric
space case.) No proof will be provided.

Theorem 5.26 (Besicovitch–Davies–Howroyd). Let A be an analytic set contained
in Rn with Hp(A) = ∞. Then there exists a compact set K contained in A such that
0 < Hp(K) < ∞. Moreover

Hp(A) = sup { Hp(K) : K is a compact subset of A, Hp(K) < ∞}.

Every analytic space is an absolute measurable space. The following question is
posed.

Question. The Besicovitch–Davies–Howroyd theorem leads to the following prop-
erty BDH for subsets X of Rn: For each nonnegative p, Hp(X ) is the supremum of the
collection of the values Hp(K) where K is a compact subset of X with Hp(K) < ∞.
What sorts of sets X have this property? For example, does every co-analytic space
have property BDH?Which absolute measurable spaces possess this property? There
are absolute null subspaces X of Rn and a p such that Hp(X ) = ∞, hence property
BDH fails for such X .

5.5.1. Universally null sets in analytic spaces. Let us begin by stating the theorem
[162, Theorem 4.3].

Theorem 5.27 (Zindulka). If A is a nonempty analytic set contained in Rn, then there
is a universally null set E in Rn such that E ⊂ A and dimH A = dimH E.

As the Hausdorff dimension is a bi-Lipschitzian invariant (Theorem 5.11), we have

Corollary 5.28. If A is a nonempty analytic metric space such that there is a
bi-Lipschitzian injection ϕ : A → Rn, then there exists a universally null set E in
A such that dimH E ≥ dimH A.

The inductive proof of Theorem 5.27 will require us to establish some geometric
measure theoretic notation.

5.5.2. Geometricmeasure theory preliminaries. Muchof the preliminarydiscussion
is taken from P. Mattila [99]. For further details, refer to Appendix D.
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For n > 1 we consider m-dimensional linear subspaces V of Rn and their
(n − m)-dimensional orthogonal complements V⊥, which are linear subspaces.
For convenience, we shall call V an m-dimensional plane. The collection of all
m-dimensional planes in Rn, denoted by G(n,m), is called the Grassmannian mani-
fold. There is a natural metric and a natural Radon probability measure γn,m on this
manifold. The metric is provided by employing the natural orthogonal projections
πV : Rn → V , V ∈ G(n,m). The distance in G(n,m) is given by

d(V ,W ) = ‖πV −πW ‖ , (V ,W ) ∈ G(n,m) × G(n,m), (5.1)

where ‖ · ‖ is the usual operator norm. A very nice property of the measures is

γn,m(A) = γn,n-m ({V⊥ : V ∈ A }), A ⊂ G(n,m). (5.2)

For B ∈ B(Rn) and p > 0, define MEAS(B, n, p) to be the collection of all Radon
measures µ on Rn with the property: support(µ) ⊂ B and µ(B(x, r)) ≤ rp whenever
x ∈ Rn and r > 0, where B(x, r) is the closed ball { z ∈ Rn : ‖z − x‖ ≤ r }. The
well-known Frostman lemma (Theorem D.32) characterizes the property Hp(B) > 0
by the property MEAS(B, n, p) �= ∅ . The following lemma was proved by Zindulka.

Lemma 5.29 (Zindulka). Assume B to be a compact subset of R with Hp(B) > 0. If
0 < α < 1

2 , then there exists a Lipschitzian surjection ϕ : C → C(2,α) for some
compact subset C of B.

Proof. Select a µ in MEAS(B, 1, p). Let L be a positive number such that
Lp

∑∞
i=1(2αp)i < µ(B). We will construct a sequence {F(e) : e ∈ {0, 1}n+1 }, n ∈ ω,

of finite collections of disjoint, closed intervals F(e), as in the construction of the
usual Cantor ternary set in R, that satisfy the following conditions.

(1) For each n, µ(B∩F(e)) ≥ 2−nLp
∑∞

i=n+1(2αp)i whenever e is in {0, 1}n, whence
B ∩ F(e) �= ∅.

(2) For each n, distR(F(e),F(e′)) ≥ Lαn whenever e and e′ are distinct members
of {0, 1}n.

(3) F(e) ⊃ F(e′) whenever e is an initial segment of e′.

Let n = 0 and denote by F = [a, b] the convex hull of B. Since µ is a continuous
measure there is a point m in (a, b) such that

µ([a,m]) = 1
2µ([a, b]) = µ([m, b]).

Let r0 = Lα. We have µ([m − r0,m + r0]) ≤ Lpαp. Hence µ([a,m − r0]) and
µ([m + r0, b]) are not smaller than 1

2L
p ∑∞

i=2(2αp)i. Let F(0) be the convex hull
of B ∩ [a,m− r0] and F(1) be the convex hull of B ∩ [m+ r0, b]. The conditions (1)
and (2) are satisfied.

Let us indicate the construction of F(0, 0) and F(0, 1). In the above construc-
tion replace F with F(0) = [a0, b0], r0 with r1 = Lα2 and replace Lp

∑∞
i=1(2αp)i

with 1
2L

p ∑∞
i=2(2αp)i. Let F(0, 0) be the convex hull of B ∩ [a0,m− r1] and F(0, 1)

be the convex hull of B ∩ [m + r1, b0]. Then the statements enumerated above hold
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for F(0, 0) and F(0, 1). We leave the completion of the inductive construction to the
reader.

Let C = ⋂
n∈ω

⋃{F( p) : p ∈ {0, 1}n }. Clearly K ∩ B �= ∅ whenever K is
a component of C. There is a natural surjection ϕ of C onto {0, 1}ω. Indeed,
if p = ( p0, p1, . . . ) ∈ {0, 1}ω, then F( p|n), n ∈ ω, is a nested family, where
p|n = ( p0, p1, . . . , pn−1) for n ∈ ω. Hence, x �→ p for each x in

⋂
n∈ω F( p|n) defines

the map ϕ. Note that ϕ is constant on each component of C. Recall from Section 5.3.1
themetric d(2,α) for the spaceC(2,α). Let us show that ϕ is Lipschitzian. If x and y are
in the same component of C, then d(2,α)(ϕ(x),ϕ( y)) = 0. So suppose that x and y are
in different components ofC. There is a smallest n inω such that x ∈ ⋂

m≤n F(ϕ(x)|m)

and y ∈ ⋂
m≤n F(ϕ( y)|m). Hence |x − y| ≥ Lαn = L d(2,α)(ϕ(x),ϕ( y)) and thereby

ϕ is Lipschitzian. ✷

We now have the existence theorem.

Theorem 5.30 (Zindulka). If B is a nonempty compact subset of R, then there exists
a universally null set E in R such that E ⊂ B and dimH B = dimH E.

Proof. The case dimH B = 0 is easily seen. So assume dimH B > 0. For 0 <

p < dimH B, let α = 2−1/p and let N be an absolute null space contained in
C(2,α) with dimH N = dimH C(2,α) = p. Let C be a compact subset of B and
ϕ : C → C(2,α) as provided by the lemma. Let Ep be a subset of the set C such
that card(Ep ∩ ϕ−1[{y}]) = 1 for each y in N . Then ϕ|Ep is a continuous bijection
onto the absolute null space N , whence Ep is an absolute null space. As ϕ|Ep is
Lipschitzian, we have dimH Ep ≥ p. The proof is easily completed. ✷

5.5.3. Prof of Theorem5.27. IfA is a nonempty analytic set inRn with dimH A = 0,
then the required set E is easily found. Hence we shall assume dimH A > 0. Observe,
for each p with 0 < p < dimH A, that the Besicovitch–Davies–Howroyd theorem
yields a compact set Bp contained in A with 0 < Hp(Bp) < ∞. Hence it is enough to
prove that there exists a universally null set Ep in Rn that is contained in Bp such that
dimH Ep = dimH Bp.

Lemma 5.31 (Zindulka). If B is a compact subset of Rn and if p is a positive number
such that 0 < Hp(B) < ∞, then there exists a universally null set E in Rn such that
E ⊂ B and dimH E = dimH B = p.

Proof. The proof is by induction on n. Let n = 1. As Hp(B) > 0, we have B �= ∅.
Lemma 5.29 completes the proof.

Let us prove the inductive step. Several theorems from geometric measure theory
will be used – their statements are found in Appendix D – the reader is reminded of
the notations that are found in Section 5.5.2. Let B be a compact set in Rn+1 with
0 < Hp(B) < ∞. We shall consider two cases; namely, 0 < p ≤ n and n < p ≤ n+1.

Suppose 0 < p ≤ n. By the projection property (Theorem D.30), there exists a V
in G(n + 1, n) such that dimH πV [B] = dimH B. Since V is isometric to Rn there is a
universally null set D in V such that D ⊂ πV [B] and dimH D = dimH πV [B]. Let E
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be a subset of B such that πV[E] = D and card(E ∩ B ∩ π−1
V [{x}]) = 1 for every x

in D. Then E is a universally null set in Rn+1 and dimH E ≥ dimH πV [E] = dimH B.
Thereby the case 0 < p ≤ n is proved.

Suppose n < p ≤ n + 1. As n ≥ 1, we have p − 1 > 0. By the slicing property
(Theorem D.31), there exists a V in G(n + 1, 1) such that H1

({ x ∈ V : dimH

(
B ∩

(V⊥+x)
) = p−1 }) > 0. ByLemmaD.33, we have that�(x) = dimH

(
B∩(V⊥+x)

)
,

x ∈ V , is a Borel measurable function on the line V . Hence

M = { x ∈ V : dimH

(
B ∩ (V⊥ + x)

) = p − 1 }

is a Borel set. As dim V⊥ = n − 1 there is a universally null set Ex in V⊥ + x such
that Ex ⊂ B ∩ (V⊥ + x) and dimH Ex = dimH

(
B ∩ (V⊥ + x)

)
whenever x ∈ M . As

t = min { p − 1, 1} > 0, we have

M = { x ∈ M : dimH Ex ≥ t } and Ht(M ) > 0.

We infer from the Besicovitch–Davies–Howroyd theorem that there exists a compact
subset M ′ of M with 0 < Ht(M ′) < ∞. It follows that dimH M ′ = t. There exists a
universally null set D in the line V that is contained in M ′ with dimH D = t. Let

E = ⋃{Ex : x ∈ D }.

Then E is a universally null set in Rn by Theorem 1.23. Hence, by Corollary D.39,
dimH E ≥ p. Since E ⊂ B we have dimH E = dimH B and the inductive step is now
proved. ✷

Wehave now finished the preparations for the proof of geometric measure theoretic
theorem.

Proof of Theorem 5.27. Suppose that A is a nonempty analytic set in Rn. The uni-
versally null set E is easily found if dimH A = 0. For dimH A > 0, the statement of
the theorem follows easily from Lemma 5.31. ✷

Weknow fromTheorem 5.22 that ifX is a separablemetric spacewith dim X = ∞,
then there is a universally null setE inX such that dimH E = dimH X . Hence it follows
that only analytic metric spaces A with dim A < ∞ are of interest if one wanted to
generalize Theorem 5.27 to all analytic spaces. This remark leads to

Question. Is it possible to write every finite dimensional, analytic metric space A
as a countable union of analytic subspaces Ai, i = 1, 2, . . . , such that there is a
bi-Lipschitzian embedding of each Ai into some Rni?

We know that every analytic set contained in Rn is an absolute measurable space.
Hence we have the obvious question.

Question. In Theorem 5.27, can the condition that the set A be an analytic set be
replaced by co-analytic set or, more generally, by absolute measurable space?
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5.6. Zindulka’s opaque sets

To investigate singular sets, Zindulka introduced in [163] the notion of small opaque
sets. We shall develop enough of his notion to prove his theorems concerning
Hausdorff dimension and the existence of universally null sets in separable metric
spaces. The reader is referred to the original paper for applications to other singular
sets.

Definition 5.32. Let X be a separable metric space and let C be a family of subsets
of X . A subset Y of X is called C-opaque (or opaque with respect to C) if

C ∩ Y �= ∅ whenever C ∈ C and dimC > 0.

If the family C satisfies the mild additional condition that C ∩F ∈ C whenever C ∈ C
and F is a closed set, then C is said to be closed-complete. By weakening the condition
that F be closed sets to the condition that F be Borel sets, the family C is said to be
Borel-complete.

Clearly the case where the family C is the empty one is not very interesting. Sim-
ilarly, if each C in C satisfies dimC ≤ 0 then every subset of X is C-opaque, in
particular, every C in C. So, if dim X = 0, then every subset Y of X is C-opaque for
any family C of subsets of X . Consequently the notion of C-opaque sets will become
useful only if dimC ≥ 1 for some C in C, whence dim X ≥ 1. Also observe that
any dense set of real numbers is C-opaque in the space R for every family C of sub-
sets of R. Indeed, it appears that the notion of opaque sets is not so interesting for
one-dimensional manifolds if one requires that the opaque sets be dense sets. Conse-
quently, for n-dimensional manifolds X , the interesting cases are those with n ≥ 2.
The next proposition gives some properties of C-opaque sets.

Proposition 5.33. Let Y be a C-opaque set of a separable metric space X .

(1) If C is closed-complete, then dim(C ∩ Y ) ≥ dimC − 1 for each C in C, in
particular, dim(C ∩ Y ) = ∞ whenever dimC = ∞. Moreover, if X ∈ C and
dim X > 1, then dim Y > 0.

(2) If C is Borel-complete, then C ∩ Y is strongly infinite dimensional for each C in
C that is strongly infinite dimensional.5

Proof. To prove statement (1) let us assume that it fails and derive a contradiction. So
assume that there is aC inC such that dim(C∩Y ) < dimC−1.As dim(C∩Y ) is finite,
there is aGδ hullG ofC∩Y (that is, C∩Y ⊂ G ⊂ X ) such that dimG = dim(C∩Y ).
We have by the addition theorem that

dimC ≤ dimG + dim(C \ G) + 1 < dimC − 1 + dim(C \ G) + 1.

Consequently, dimC < ∞ and 0 < dim(C \ G) < ∞. Since X \ G is an Fσ set,
we infer from the sum theorem that there is a closed set F with C ∩ F ⊂ C \ G and

5 A separable metrizable space is strongly infinite dimensional if it cannot be written as a countable union
of zero-dimensional sets. See page 245.
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dim(C ∩ F) = dim(C \ G). As C is a closed-complete family, we have that C ∩ F
satisfies both C ∩ F ∈ C and dim(C ∩ F) > 0. Hence (C ∩ F) ∩ Y �= ∅. But

(C ∩ F) ∩ Y ⊂ (C \ G) ∩ Y = (C ∩ Y ) \ G = ∅,

and the contradiction has been achieved.
The proof of statement (2) is similar to that of statement (1). Assume that there is a

C in C such that C is strongly infinite dimensional and C ∩ Y is not. As in the above
proof, the set C ∩ Y is contained in a Gδσ set G such that G is not strongly infinite
dimensional. Clearly, C \G is strongly infinite dimensional. As C is Borel-complete,
we have C \ G ∈ C. Hence (C \ G) ∩ Y �= ∅. But G ⊃ C ∩ Y and the contradiction
has occurred. ✷

5.6.1. Examples. Here are some examples of C-opaque sets that appear in Zindulka
[163]. Notice that each example is metric independent. The first one motivates the
notion of opaqueness.

Example 5.34. (Visibility) Let X = Rn with n ≥ 2, and let C be the family
{Cu : u ∈ Rn, |u| = 1 }, where Cu = { λu : λ > 0 } is the ray emanating from the
origin and passing through the point u. A C-opaque set Y is visible from the origin in
every direction u. Conversely, a set Y that is visible from the origin in every direc-
tion is C-opaque for this family C. Obviously the whole space Rn and the usual unit
sphere in Rn are visible from the origin in every direction, rather trivial examples.
As card(Cu) = card(Rn) for every Cu, there is a C-opaque set Y such that Y ∩ Cu is
a singleton set {xu} such that |xu| = |xv| if and only if u = v. A more complicated
example is a totally imperfect subset Y of X such that X \ Y is also totally imperfect.

Example 5.35. (Borel opacity) Let X be a separable metrizable space and let C be
the family of all Borel subsets of X . We shall call a subset Y of X Borel-opaque if
it is C-opaque. By Proposition 5.33, dim Y ≥ dim Z − 1 for every subset Z of X ,
whence dim Y ≥ dim X − 1. If X is a compact metrizable space with dim X ≥ 1,
then each totally imperfect subset Y whose complement is also totally imperfect is
Borel-opaque.

Example 5.36. (Arc opacity) Let X be a separable metrizable space and let C be the
family of all arcs (that is, homeomorphic images of the unit interval [0, 1]) contained
in X and their Borel subsets. If Y is a subset of X that is C-opaque, then any arc
between two distinct points of X meets the set Y . We shall designate these C-opaque
sets Y as arc-opaque sets. Also dim Y ≥ dimK − 1 for each arc K in X . Clearly, a
totally imperfect subset Y ofX is arc-opaque wheneverX \Y is also totally imperfect.

5.6.2. Construction of opaque sets. As we have seen in the examples listed above,
totally imperfect sets often appear as opaque sets in the Zindulka sense. Our interest
lies in those totally imperfect sets that are universally null sets in X . So, for example,
arc opacity or Borel opacity for the compact spaces [0, 1]n and X = [0, 1]N are not
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good enough to construct universally null sets in these spaces. Some other process
must be added to C-opacity. We present here Zindulka’s added procedure.

It is known that the real line contains uncountable subsets E that are absolute null
spaces. It is also known that the inverse image under continuous bijections onto E are
also absolute null spaces. The following definition by Zindulka is designed to take
advantage of these facts.

Definition 5.37. For separable metric spaces X and Y let I and J be families
of subsets of the respective spaces X and Y . Then I � J is the binary relation
determined by the following property: If A is a subset of X and f : X → Y is a
continuous map such that f |A : A → Y is an injection and f [A] ∈ J , then A ∈ I.

The families I and J in the above definition are often σ -ideals. Of particular
interest to us is the σ -ideal on a separable metrizable spaceX formed by the collection
of all universally null sets in X . The next theorem provides a sufficient condition for
the existence of C-opaque sets of X that are members of the family I.
Theorem 5.38. For a separable metrizable space X let C be a family of subsets of X
and I be a σ -ideal on X ; and, for the space R let E be a uncountable subset of R
and J be a σ -ideal on R. If I � J , E ∈ J and card(E) = card(C), then there exists
a subset Y of X such that Y is C-opaque and Y ∈ I.

Proof. We may assume E is a subset of [0, 1] and that C is indexed as {Cr : r ∈ E }.
After selecting a metric on X , we have a sequence hm, m = 0, 1, 2, . . . , of continuous
maps and Gδ sets G(r), r ∈ (0, 1), as provided by Theorem 5.20. For eachm in ω put

Em = { r ∈ E : Cr ∩ hm
−1[{r}] �= ∅ }.

Finally, for each r in Em, select a point y(m, r) in Cr ∩ hm
−1[{r}] and then define

Ym = { y(m, r) : r ∈ Em } and Y = ⋃
m∈ω Ym.

We assert that Y is in I. Indeed, note that each hm|Ym : Ym → [0, 1] is an injection
and Ym ⊂ hm

−1[Em]. As E ∈ J and I � J , we have Ym ∈ I. Since I is a σ -ideal
we have Y ∈ I.

It remains to show that Y is C-opaque. To this end let r ∈ E and assume
Cr ∩ Y = ∅. Then, for each m, we have Cr ∩ Ym = ∅ and hence Cr ∩ hm

−1[{r}] = ∅.
From the definition of G(r) we have Cr ⊂ G(r); and, from Theorem 5.20 we
have 0 ≥ dimG(r) ≥ dimCr . Thereby Y is C-opaque. ✷

Here is an application of Theorem 5.38 to orthogonal projections of R2. Let Lϑ be
a one-dimensional oriented linear subspace of R2, where ϑ is the unique unit vector
orthogonal to Lϑ that, together with the orientation of Lϑ , yields the usual orientation
of R2. Note that ϑ is in the unit sphere S = { x ∈ R2 : |x| = 1 }, which carries the
usual H1 measure. Denote by !ϑ the orthogonal projection of R2 onto Lϑ . Given a
subset Y of R2 there corresponds a set of normal vectors ϑ defined as follows:

{ϑ ∈ S : λ∗(Lϑ \ !ϑ [Y ]) = 0 },
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where λ∗ is the Lebesgue inner measure on the line Lϑ . (See page 46 for Lebesgue
inner measure.)

Theorem 5.39. There exists a universally null set Y inR2 such that card(Y ) ≥ non-L
and

H1∗(S \ { ϑ ∈ S : λ∗(Lϑ \ !ϑ [Y ]) = 0 }) = 0,

where H1∗ is the inner H1 measure on R2.

Proof. LetE be a universally null set in (0, 1)with card(E) = non-L. By Proposition
2.42 there exist full measure subsets A of S and B of R, with respect to their respective
measures, such that card(A) = card(B) = non-L. Provide each line Lϑ with an
isometric copy Bϑ of B. Let C be the family {!ϑ

−1[{y}] : y ∈ Lϑ ,ϑ ∈ A }. Then
card(C) = non-L. By Theorem 5.38 there is a C-opaque subset Y of R2 such that Y is
also a universally null set in R2. As each element of C has dimension equal to 1 it also
meets the set Y . Hence !ϑ [Y ] ⊃ Bϑ for each ϑ in A. Clearly card(Y ) ≥ non-L. ✷

Corollary 5.40. There is a universally null set Y in R2 such that

dimH({ϑ ∈ S : dimH(!ϑY ) = 1 }) = 1.

The proof of the corollary is straightforward.

5.7. Comments

The cardinalities of the universally null setsE in Theorems 5.27 and 5.30 can bemade
to satisfy card(E) ≥ non-L whenever the analytic set A is uncountable.

As was already pointed out, the inequality dimH X ≥ dim X was known to
hold for every separable metric space X and the equality held for some metric
for every nonempty separable metrizable space. It was through the recent work of
Zindulka [161, 162] that the existence of universally null sets E in nonempty separa-
ble metric spaces X with dimH E ≥ dim X was established. As dimH X ≥ dimH E, a
completely new proof of the classical result dimH X ≥ dim X (Theorem 5.1) follows
from Zindulka’s existence theorem. The proof relies on an earlier discovered topo-
logical dimension theorem (Theorem D.28) for metric spaces (see Zindulka [163,
Lemma 5.1]) and a careful analysis of the Cantor cubes and the Euclidean space Rn.
A straightforward consequence of Theorem 5.2 is that, for each nonempty separable
metrizable space X , there is a metric for which dimH X = dimH E = dim X for some
universally null set E in X (Theorem 5.24).

The important Theorem 5.21 is a consequence of Theorem D.27, a theorem about
metric spaces that was proved by Zindulka in [163]. The seeds for the latter theorem
are found in Zindulka’s 1999 paper [160, Theorem 2.1] where the functions there
were only continuous and not necessarily Lipschitzian. Clearly, for the purpose of
Hausdorff dimension, one needs Lipschitzianmaps since they preserve p-dimensional
Hausdorff measure 0 whereas continuous maps do not, witness the famous Peano
curve which is a homeomorphic image of [0, 1] contained in [0, 1]2 with positive
Lebesgue measure. In the next chapter we shall turn to the analogue of Theorem 5.21
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that results from replacing the Hausdorff dimension with topological dimension. This
theorem will require some set theory assumptions.

Zindulka’s notion of C-opaque sets also has several applications to various other
singular sets.We repeat again that the reader is referred to [163] for these applications.
In [163] Zindulka applied his notion of C-opaque sets to establish the following
proposition on the existence of universally null sets in a metric space X . Although
this proposition has been superseded by Theorem 5.22, its proof is presented so as
to illustrate the application of C-opacity to the σ -ideal I of universally null sets in X
and the σ -ideal J of universally null sets in [0, 1].
Proposition 5.41. Let X be a separable metric space and let n ∈ ω. If dim X > n,
then there is a universally null set E inX such thatHn(E) = ∞ and card(E) ≥ non-L.

Proof. In order to applyTheorem5.38, twoσ -ideals and a familyC must be identified.
The σ -ideals I and J are univ N(X ) and univ N(Y ), respectively, where Y = [0, 1].
That I � J follows from Theorem 1.23. The family C will consist of closed subsets
F of X with the property that dim F ≥ 0.We infer from the definition of the condition
dim X > n that there are c many such sets F . The next computations will result in the
family C.

LetF be a countable family of Lipschitzianmaps f ofX into [0, 1]n that is provided
by Theorem 5.21. As Hn |[0, 1]n is a positive, continuous, complete finite Borel
measure we infer from the definition of non-L that there is a subset B of [0, 1]n with
card(B) = non-L and Hn(B) > 0. For each f in F let

B( f ) = { r ∈ B : dim f −1[{r}] > 0 }.

Then
⋃

f ∈F B( f ) = B. There is a g in F such that Hn(B( g)) > 0. Clearly, by
the properties of the cardinal number non-L and the inclusion B( g) ⊂ B, we have
card(B( g)) = non-L. We infer from Theorem 2.41 the existence of a absolute null
subspace N of Y with card(N ) = non-L. Now let the family C be the collection
{ g−1[{r}] : r ∈ B( g) }. Theorem 5.38 yields a absolute null subspace E of X that is
C-opaque.

Let us show that Hn(E) = ∞. We first observe that each C in C has positive
dimension and hence C ∩E �= ∅ because E is C-opaque. So g maps E onto B( g) and
consequently Hn( g[E]) ≥ Hn(B( g)) > 0. Let L be a Lipschitz constant for g. Then
Ln Hn(E) ≥ Hn( g[E]) > 0. In order to derive a contradiction assume that Hn(E) is
finite. Then Hn |E induces a nontrivial, continuous, complete finite Borel measure on
the absolute null space E, which is not possible. Thereby Hn(E) = ∞. ✷

It is remarked in [163, 162] that this result was known already to D. H. Fremlin for
the case of X = R2.

The development of the material on Hausdorff measure and Hausdorff dimension
used in this chapter is very much self contained; it is taken from Zindulka [162, 161].
An expanded discussion with some proofs is presented in Appendix D. Concerning
the specifics of Zindulka’s development that have been presented in this chapter, the
key is the choice ofmetric on the topological space k ω. Themetric d(k ,α) is designed to
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make the computation of the Hausdorff dimension ofC(k ,α) an easy task because the
resulting Hausdorff s-measure turns out to be the usual uniform product probability
measure on k ω, where s = dimH C(k ,α). In order to use the product techniques due
to Grzegorek, Zindulka proved the Propositions C.8 and C.9 found in Appendix C
on products of metric spaces C(k ,α), where the key is bi-Lipschitzian equivalence
rather thanmetric equality. These remarkably simple but important propositions stand
in marked contrast to very technical results on Hausdorff measures of products of
sets that were studied in earlier years in the pursuit of geometric properties (see
C. A. Rogers [131, page 130]). But we do not want to make light of the power
of geometric measure theory. Indeed, Theorem 5.27 that establishes the existence
of universally null sets E in analytic subsets of Rn relies very much on geometric
measure theory.

Both the classical proof and Zindulka’s second proof of Theorem 5.1 are presented
in Appendix D; these two proofs are substantially different.

For those who wish to learn more general and more technical aspects of Hausdorff
measures, the books by Rogers [131], K. J. Falconer [52], and Mattila [99] are often
cited as sources. Another source that deals mainly with Rn is H. Federer [55].

Exercises

5.1. Prove Theorem 5.5 on page 138.
5.2. Prove Theorem 5.7 on page 138.
5.3. Verify Theorem 5.10 on page 139.
5.4. Prove Proposition 5.14 on page 140.
5.5. Show that there is a nonempty, perfect subset of each uncountable compact

metric spaceX such thatHs(F) = 0whenever s > 0. Hint: Let sj , j = 1, 2, . . . ,
and am, m = 1, 2, . . . , be strictly decreasing sequences in (0, 1] such that∑∞

m=1 2
mam is finite and limj→∞ sj = 0. For each m let dm = (am)1/sm .

Verify that
∑∞

m=1 2
m(dm)sj is finite for every j. In the usual manner, construct

nonempty closed sets F(m, k), 1 ≤ k ≤ 2m, such that

(a) diam(F(m, k)) ≤ dm for each k ,
(b) F(m, k) ∩ F(m, k ′) = ∅ whenever k �= k ′,
(c) F(m, k) ⊃ F(m + 1, 2k − 1) ∪ F(m + 1, 2k) whenever 1 ≤ k ≤ 2m.

Consider the compact sets Fm = ⋃2k
k=1 F(m, k).

5.6. State and prove the generalization of Theorem 5.39 and its corollary for the
space Rn.



6

Martin axiom

Except for two statements in the earlier chapters that used the continuum hypothesis
(abbreviated as CH), all the others used only what is now called the usual axioms
of set theory – namely, the Zermelo–Frankel axioms plus the axiom of choice, ZFC
for short. In this final chapter a look at the use of the continuum hypothesis and the
Martin axiom in the context of absolute null space will be made. The discussion is
not a thorough coverage of their use – the coverage is only part of the material that is
found in the many references cited in the bibliography.

It has been mentioned many times that absolute null space is an example of the
so-called singular sets1. This example is a topological notion in the sense that it does
not depend on the choice of a metric:2 Two other metric independent singular sets
will be included also. They are the Lusin set and the Sierpiński set in a given ambient
space X . With regards to ambient spaces, it is known that “absolute null subspace of
an ambient space X ” is equivalent to “universally null set in X .”

The chapter is divided into four sections. The first is a rough historical perspective
of the use of the continuum hypothesis in the context of universally null sets in a given
space X . The second concerns cardinal numbers of absolute null spaces. The third
is a brief discussion of the Martin axiom and its application to the above mentioned
singular sets. The fourth is devoted to the dimension theoretic results of Zindulka.

6.1. CH and universally null sets: a historical tour

Let us followBrown and Cox [18] and begin our tour around the time of the “Annexe”
article [15] in the new series of the Fundamenta Mathematicae which appeared
in 1937. This article is a commentary on several problems that were proposed in
Volume 1 of the old series of the journal. Among these problems is Problem 5 on
page 224 which is essentially the start of the notion of universally null sets. Histori-
cally, the problems predate 1937. Problem 5 is the following one which was proposed
by Sierpiński:

1 Several of the many other classes of singular sets have been introduced to the reader in Section 4.7 of
Chapter 4. Amore extensive list of classes of singular sets can be found in the Brown–Cox article [18].

2 In Chapter 5 there was a need to emphasize the metric in the discussion of Hausdorff dimension of
universally null sets in a space X because Hausdorff dimension is a metric dependent notion. In this
context, topological equivalence was replaced by bi-Lipschitzian equivalence.
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Problem 5, FUNDAMENTA MATHEMATICAE, volume 1: Does there exist an uncount-
able subset E of R such that every homeomorphic image of E contained in R has
Lebesguemeasure equal to 0? Can one show its existence on admitting the continuum
hypothesis? (Sierpiński)

Of course, the difficulty of the problem comes from the fact that a topological embed-
ding of a subset E of R into R need not result from a homeomorphism of R onto R.
Indeed, an arbitrary topological embedding of E need not preserve the induced order
on the set E if E is not connected. By 1937 it was known that such subsets of R were
null sets for every continuous, complete, finite Borel measure on R – we have called
them universally null sets in R. Of course, it was not known at that time that the
existence of such sets was in fact a set theoretic question.

The second question was positively resolved in 1924 by Lavrentieff [89]. He used
the existence of Lusin sets in R, which was shown in 1914 to exist by assuming the
continuum hypothesis. (See Lusin [92]; its existence was also shown by Mahlo [95]
in 1913.) A construction of Lusin sets using the continuum hypothesis was given in
Section 1.3.5 of Chapter 1. That construction used the σ -ideal of all first category
subsets of uncountable separablemetrizable spaces andwas taken fromOxtoby [120].
Let us give the definition of Lusin sets. (Note that the notion of ‘nowhere dense’ is
not metric dependent.)

Definition 6.1. Let X be a separable metrizable space. A subset E of X is called
a Lusin set in X if card(E) ≥ ℵ1 and if card(H ∩ E) ≤ ℵ0 whenever H is a first
category set in X .3

It is not difficult to show, without assuming the continuum hypothesis, that the
Lebesgue measure of each topological copy in R of a Lusin set in R has Lebesgue
measure equal to 0. Let us give two proofs.

The first proof is Lavrentieff’s from 1924. First observe that each uncountable Gδ

set B in R can be written as the union N ∪ ⋃∞
n=1 Qn, where N is a Lebesgue null

set, and each Qn is a topological copy of the Cantor set. (Observe that
⋃∞

n=1 Qn

is a Zahorski space, see page 112.) Let E be a Lusin set in R and let h : E → F
be a homeomorphism with F ⊂ R. By his theorem (Theorem A.2 of Appendix A,
whose proof does not assume the continuum hypothesis) we have a homeomorphism
H : A → B that extends h, where A and B are Gδ sets of R. Then F = F ∩ B =
(F∩N )∪⋃∞

n=1(F∩Qn). NowF∩Qn = H
[
E∩H−1[Qn]

]
, andH−1[Qn] is a nowhere

dense subset of R, hence card(F ∩Qn) ≤ ℵ0. Consequently, F is a Lebesgue null set.
The second proof will use the group HOMEO(R). Let µ be a positive, continuous,

complete, finite Borel measure on R such that M(R,µ) = M(R, λ) and N(R,µ) =
N(R, λ), whereλ is theLebesguemeasure.Weknow thatµ andHOMEO(R)generate
MEASpos,fin(R), the collection of all positive, continuous, complete finite Borel
measures onR. Nowobserve that first category sets ofR are invariant under the action
of HOMEO(R), whence Lusin sets are invariant under the action of HOMEO(R).

3 On page 78 of [120] a Lusin set is defined by the property: An uncountable subset E of X with the
property that every uncountable subset of E is a second category set. The reader is asked to prove the
equivalence of these two properties.



6.1. CH and universally null sets: a historical tour 159

Also observe that R = N ∪ Z where λ(N ) = 0 and Z is a Zahorski space. Clearly,
Zahorski sets in R are first category sets. From these observations we see that every
Lusin set has µ measure equal to 0. Consequently, Lusin sets in R are absolute null
spaces.

The notions involved in Sierpiński’s problemwere introduced at the end of the nine-
teenth and the start of the twentieth centuries. Indeed, E. Borel introduced his sets
in 1888, R. Baire introduced sets of first category in 1889, and H. Lebesgue intro-
duced his measure and integral in the years just before the appearance of his 1904
book [90].4 Also, ideas of G. Cantor were very important. Sierpiński’s problem is
made meaningful by the fact that homeomorphisms do not preserve the Lebesgue
measurability of sets in R; this is in contrast to the fact that Borel sets are invariant
under homeomorphisms of R.

There is another σ -ideal of subsets of R, namely the collection of Lebesgue null
sets. Sierpiński, assuming the continuum hypothesis, proved the following [140]
in 1924.

Theorem 6.2. Assume CH. There exists a subset E of R such that card(E) ≥ ℵ1 and
such that card(H ∩ E) ≤ ℵ0 whenever H is a Lebesgue null set.

Aproof is given on page 42. The subspace E is an uncountable non-absolute measur-
able space for which each universally measurable set in E is a symmetric difference
of a Borel set and a universally null set in E.

The theorem leads to the following definition of Sierpiński sets.5

Definition 6.3. A subset E of R is called a Sierpiński set in R if card(E) ≥ ℵ1 and
if card(H ∩ E) ≤ ℵ0 for every Lebesgue null set H .

Clearly the above constructed Lusin set and the Sierpiński set have cardinality c

since the continuumhypothesiswas assumed. Of interest in this regard is the following
1938 theorem of F. Rothberger [132] whose proof does not assume the continuum
hypothesis.

Theorem 6.4. (Rothberger) If a Lusin set X in R exists, then card(Y ) = ℵ1 whenever
Y is a Sierpiński set in R. Also, if a Sierpiński set Y in R exists, then card(X ) = ℵ1

whenever X is a Lusin set in R. Consequently, if a Lusin set X in R and a Sierpiński
set Y in R simultaneously exist, then card(X ) = card(Y ) = ℵ1.

The proof relies on the next lemma.

Lemma 6.5. If X is not a first category set inR, thenR is the union of κ many Lebesgue
null sets, where κ = card(X ). Also, if Y is not a Lebesgue null set, thenR is the union
of κ many first category sets, where κ = card(X ).

4 These years were taken from the classic book by Kuratowski [85] and also from the recent article by
D. Paunić [124]. An interesting discussion of the roots of descriptive set theory can be found in the
Introduction of the book by Y. N. Moschovakis [112, pages 1–9].

5 Note that the notion of "Lebesgue measure on R" is not metric dependent. More generally, the definition
can be couched in the context of Borel measure spaces M(X ,µ), where X is a separable metrizable
space. Recall that a Borel measure space is a triple

(
X ,µ,M(X ,µ)

)
, where M(X ,µ) is the σ -algebra

of µ-measurable sets.
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Proof. To prove the first statement, letG be a denseGδ set with λ(G) = 0, where λ is
the Lebesgue measure on R. Then the collection CX = { x+G : x ∈ X } of Lebesgue
null sets has card(CX ) ≤ κ . Suppose z /∈ ⋃{ x+G : x ∈ X }. Then (z−G) ∩X = ∅.
Clearly z−G is a denseGδ set. So X is contained in the first category set R\ (z−G),
whence X is a first category set in R. But X is not a first category set. Thereby the
first statement is proved.

For the proof of the second statement, let G be a first category set in R such that
λ(R\G) = 0. This time CY = { y+G : y ∈ Y } is a collection of first category sets in
R. Again card(CY ) ≤ κ . Suppose z /∈ ⋃{ y + G : y ∈ Y }. Then λ(R \ (z − G)) = 0
and (z − G) ∩ Y = ∅. Since the outer Lebesgue measure λ∗(Y ) is positive, we have
0 < λ∗(Y ) ≤ λ(R \ (z − G)) = 0 and a contradiction has appeared. Thereby the
second statement is proved. ✷

Proof of Theorem 6.4. Let X be a Lusin set in R. By definition, card(X ) ≥ ℵ1.
As every uncountable subset of a Lusin set is also a Lusin set, we may assume
card(X ) = ℵ1. The definition of Lusin sets in R implies that Lusin sets are not sets
of the first category in R. It follows that R = ⋃

α<ω1
Zα , where Zα is a Lebesgue null

set for each α. Then card(Zα ∩ Y ) ≤ ℵ0 for each α, whence card(Y ) ≤ ℵ1 and the
first statement follows.

For the second statement, letY be aSierpiński set.Againwemay assume card(Y ) =
ℵ1. Hence Y is not a Lebesgue null set. It follows that R = ⋃

α<ω1
Zα , where Zα

is a first category set for each α. Then card(Zα ∩ X ) ≤ ℵ0 for each α, whence
card(X ) ≤ ℵ1 and the second statement follows.

The remaining statement is now obvious.

The 1938 Rothberger theorem raises the question of the existence of Lusin sets and
Sierpiński sets in R in the absence of the continuum hypothesis. This question will
be discussed in the section on consequences of the Martin axiom.

In 1936, Hausdorff proved the existence of an uncountable universally null set in
R without the use of the continuum hypothesis. He introduced the �-�∗ gap in the
Cantor ternary set and defined his notion of m-convergence. Using his �-�∗ gap
and m-convergence, he produced a universally null set in R that is contained in the
Cantor ternary set with cardinality ℵ1. As the Cantor set is a first category set in R,
the universally null set produced by Hausdorff is not a Lusin set in R.

Soon after Hausdorff produced his example, Sierpiński and Szpilrajn produced
in 1936 another example without using the continuum hypothesis. They used
Hausdorff’s m-convergence to show that constituent decompositions of nonanalytic
co-analytic spaces X will lead to the existence of an uncountable universally null set
in X . Again this example has cardinality ℵ1 becausem-convergence will not produce
universally null sets in a separable metrizable spaces of cardinality higher than ℵ1. As
there are such co-analytic sets contained in the Cantor ternary set, the sets produced
by Sierpiński and Szpilrajn also may be non Lusin sets in R.

In 1978, Grzegorek [68] produced another example of an uncountable universally
null set in the Cantor space {0, 1}N without the use of the continuum hypothesis.
Actually Grzegorek had a different goal in mind, it was the construction of certain
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kinds of σ -fields. The purpose of the example was to give a positive resolution
of a question of Banach [7, P 21] (see footnote 10 on page 19 for a statement of
this problem). The cardinal number non-L appears in the paper, though under a
different symbol. It is shown that there is a universally null set X in R such that
card(X ) = non-L. Grzegorek acknowledges using a method of K. Prikry [128]. It is
interesting to note that Haydon’s space given in [58, Example 5.7, page 975] (see also
R. Haydon [74]) has calculations that resemble those found in the Grzegorek paper.
Grzegorek’s example has been instrumental in substantial advances in the study of
universally null sets in ambient spaces.

Grzegorek’s example leads to the following equivalent theorem. That is, the state-
ment “there exists a universally null set X in R such that card(X ) = non-L ,” is
equivalent to

Theorem 6.6. There exists a cardinal number κ with the property: there are subsets
X1 and X2 of R such that card(X1) = card(X2) = κ , λ∗(X1) > 0, and X2 is an
absolute null space.

(The proof of the equivalence is left as an exercise.) This theorem is stated (in a
different form) in [68]. The cardinal numbers that satisfy the requirements of the
theorem are called Banach cardinals. Clearly non-L is a Banach cardinal. It is also
clear that any cardinal number κ smaller than non-L is not a Banach cardinal. Indeed,
if card(X1) = card(X2) = κ < non-L with λ∗(X1) > 0 and X2 is an absolute null
space, then the contradiction non-L ≤ card(X1) = κ < non-L will result. The
question of the uniqueness of the Banach cardinal was posed in the above cited paper
with the announcement that J. Cichoń [30] had shown that Banach cardinals are not
unique.6 We shall return to Banach cardinals shortly.

It is known that ℵ1 ≤ non-L ≤ c. Regarding non-L = c, we mention a 1976 result
of R. Laver [88, page 152] that asserts the existence of a model for ZFC + ¬CH in
which no universally null set E in R can exist with card(E) > ℵ1. Hence non-L = c

cannot be proved inZFC + ¬CH. This discussionwill be expanded in the next section.
Hausdorff’s notion of m-convergence uses the cardinal number ω1 as an indexing

set. Also, in Grzegorek’s existence proof, the cardinal number non-L is used as an
indexing set. By replacing cardinal numbers with ordinal numbers as indexing sets
to well order absolute null spaces, Recaw in 2001 [130] and Plewik in 1993 [127]
used relations on absolute measurable spaces and absolute Borel spaces, respectively,
as sufficient conditions for the existence of absolute null spaces. For an uncountable
absolute Borel space, Plewik devised a schema which resulted in many applica-
tions. Let us turn to the applications that were mentioned in Section 1.5. The first
application of Plewik’s schema is the Hausdorff �-�∗ gap. Following Plewik,
we shall work on the compact space P(ω) of all subsets of the cardinal number

6 The reader will find in [68] an interesting discussion of the theorem which resolves Banach’s problem.
There are four theorems that relate to Banach’s problem, all of them equivalent to each other. The first
one is the resolution of Banach’s problem, the next two concerns the existence of cardinal numbers, and
the fourth concerns the cardinal number non-L. In his discussion he shows that the cardinal number of
the third theorem, which is equivalent to Theorem 6.6, cannot be simply chosen as ℵ1 or c. Grzegorek
calls these cardinal numbers Banach cardinals. The fourth theorem is the one of interest in our book. In
[67] Grzegorek gave an earlier proof of the third theorem under the assumption of the Martin axiom.
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ω = [0,ω) = {α : α < ω }.7 Define the quasi-order ⊆* on P(ω) by F ⊆* G
if F \ G is finite. Define F ⊂* G to mean F ⊆* G holds and G⊆* F fails. With
the notations of Section 1.5 on page 24, define the relation ≤n on P([0, n)) as
follows: ≤0 = ∅ ; X ≤n Y if and only if n − 1 ∈ Y for n �= 0. Then the
relation ≺, as defined in that section, is the relation ≤∗ as given by the Haus-
dorff construction. We can now prove Hausdorff’s assertion that each �-�∗ gap
[ fα , gα], α < ω1, has the property that the set X = { xα : α < ω1 }, where
xα ∈ [ fα , gα], for each α, is an absolute null space (see page 12 for the
m-convergence version). This is obvious since X can be written as the union of
two sets X0 and X1, where the first one is well ordered by the relation ≤* and the
second is well ordered by the reverse of ≤*.

The second application concerns the cardinal number b. In order to define this
cardinal numberwewill need to introduce some notation. Denote by ωω the collection
of all functions from ω into ω and define the quasi-order �* on ωω by

f �* g if f (n) ≤ g(n) for all but finitely many n.

Clearly 〈 ωω,�* 〉 has no maximal elements; indeed, if f is in ωω, then g(n) =∑
i≤n( f (i) + 1), n ∈ ω, is a strictly increasing function in ωω such that f �* g, even

more, f (n) < g(n) for everyn. There is a natural topologyonωω that is homeomorphic
to ω ω (which is the same as NN). A subset B of ωω is said be unbounded if it is
unbounded with respect to the quasi-order �*. The cardinal number b is defined to be

b = min { card(B) : B is an unbounded subset of ωω }

It is easy to construct an unbounded subset B of ωω with card(B) = b that consists
only of strictly increasing functions. Let us turn to the members X of P(ω) with
card(X ) = ω. Observe that the natural indexing X = { ni : i < ω } will define a
unique function i �→ ni in ωω and that the subset

[ω ]ω = {X ∈ P(ω) : card(X ) = ω }

is a Borel subset of P(ω). Hence there is a natural B-homeomorphism ϕ of [ω ]ω

onto the collection of all strictly increasing functions in ωω. It follows that ϕ induces
a natural quasi-order �∗ on [ω ]ω as follows:

For (X ,Y ) ∈ [ω ]ω × [ ω ]ω, X �∗ Y if and only if ϕ(X ) �* ϕ(Y ).

Hence, if X = { xk : k ∈ ω } and Y = { yk : k ∈ ω } are two infinite subsets of ω with
the natural well ordering, then X �∗ Y if and only if xk ≤ yk for all k larger than
some m. This quasi-order can be extended to all of P(ω) by declaring X �∗ Y if X is
a finite subset of ω and Y is any subset of ω. It is known (see P. L. Dordal [46]) that
there is a subset { fα : α < λ } of [ω ]ω which is well ordered by the quasi-order �*

7 The notation developed by E. K. van Douwen [154] will be used. Using characteristic functions of
subsets of ω, one can identify P(ω) with ω {0, 1} which can be identified with {0, 1}N. Hence P(ω) has
a compact topology.
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of ωω and satisfies b ≤ λ, and that the inequality b < λ can hold in some model
for ZFC. As we have seen above, each function fα may be assumed to be strictly
increasing. Hence there is a collection of subsets {Xα : α < λ} that is well ordered by
the relation�∗. It remains to show that the relation�∗ can be produced by the schema
– that is, we must define appropriate relations ≤n on P([0, n)) for each n in ω in order
to define a relation ≺ that is the same as �∗. We do this for even and for odd cases
separately. Let us begin with the odd n’s (these relations ≤n are used to guarantee
that X ≺ Y whenever card(X ) < ω and to guarantee that card(Y ) = ω whenever
card(X ) = ω and X ≺ Y ). If n is odd, then the relation ≤n is defined by “X ≤n Y if
n− 1 ∈ Y whenever n− 1 ∈ X .” Consider n = 2m, where m is in ω (these relations
≤n are used to guarantee that X ≺ Y if and only if X �∗ Y whenever card(X ) = ω).
Let X and Y be in P([0, 2m)) with m > 0. Define X ≤2m Y to fail if card(X ) < m
or card(Y ) < m. If m ≤ card(X ) and m ≤ card(Y ), then X = {xi : 0 ≤ i ≤ s} and
Y = {yi : 0 ≤ i ≤ t}. Then define X ≤2m Y to hold if and only if “s = t = m and
xi ≤ yi all i.” It is left to the reader to verify that ≺ and �∗ are the same.

It now follows that there is an absolute null space whose cardinality is b. It is noted
by D. H. Fremlin [56] that one cannot prove b ≤ non-L using ZFC axioms alone,
hence non-L ≤ b ≤ c. It now follows that the existence of an absolute null space with
cardinality non-L has a second proof in ZFC. From non-L ≤ bwe infer the existence
of a subset M of [0, 1] with card(M ) = b and with positive outer Lebesgue measure
(see Exercise 6.2). Consequently b is a Banach cardinal. Hence in any model for ZFC
for which non-L < b there are more than one Banach cardinal. This gives a second
proof of Cichoń’s 1981 result [30], namely,

Theorem 6.7 (Cichoń). It is consistent with ZFC that there exists more than one
Banach cardinal.

The original proof by Cichoń did not use the cardinal number b. In his article Cichoń
proposed the following question.

Question. Is the supremum of the collection of all Banach cardinals a Banach
cardinal?

Let us return to Recaw’s theorem. This theorem uses relations that are absolute
measurable spaces whereas Plewik’s theorem used the more restrictive class of abso-
lute Borel spaces. Let us give Recaw’s example of a relation that is a co-analytic
space. Recall the following: If B is a Borel subset of R × R, then the relation
R = {(x, y ) : Bx ⊂ By} is a co-analytic space, where the set Bt is defined to be
{s ∈ R : (t, s) ∈ B} for t in R. He used this example to derive several interest-
ing set theoretic consequences which are tangent to the goal of our book and hence
discussions of these consequences will be omitted.

It is shown in Chapter 2 that Hausdorff’s m-convergence, which was defined in
1936, is not only a sufficient condition for the existence of uncountable absolute
null spaces but is also a necessary condition–indeed, with a judicious use of absolute
measurable spaces, a necessary and sufficient condition has been proved for the
existence of absolute null spaces contained in arbitrary separable metrizable spaces
by means of m-convergence (Theorem 1.35). Also Recaw’s theorem has been turned
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into a necessary and sufficient condition for the existence of absolute null spaces
contained in arbitrary separable metrizable spaces (Theorem 1.54). Each of these
results is achieved in ZFC.

Let us turn to the results of Darst that were covered in the earlier chapters. All
but one of the theorems attributed to him during the years 1968–1971 were originally
proved in ZFC + CH, the exception beingTheorem4.2 inwhich only ZFC is assumed.
In each of the original proofs, Darst used the following proposition.

Proposition 6.8. Let K be an uncountable Borel subset of R and let C be the Cantor
ternary set. If A is a universally null set inC andE is a subset ofC×K such thatπC |E is
a bijection of E onto A and πK [E] = K, where πC and πK are the natural projections,
then E is a universally null set in R2 and K is not a universally null set in R.

The proposition is correct; but, Darst could not prove that the hypothesis was not
empty unless the continuum hypothesis was used. He essentially observed that a
certain Lusin set A contained in C would satisfy the hypothesis. In 1981, Grzegorek
and Ryll-Nardzewski [71] made the simple observation that the replacement of the
condition “πK [E] equals K” by the condition “πK [E] is a non Lebesgue measurable
subset of K” would result in a correct proposition in ZFC which would work equally
well in the proof of Darst’s main theorem. Earlier, Mauldin [101, Theorem 5.5]
showed in 1978 that Darst’s main theorem was also true if the continuum hypothesis
was replaced with the Martin axiom.

For the final theorem in ZFC + CH we turn to a simple proof of the following
theorem given by Zindulka in 1999 [160, Proposition 3.9]. The earlier 1937 proof by
S. Mazurkiewicz and E. Szpilrajn [106] will be discussed in the comment section.

Theorem 6.9 (CH-dimension theorem). Assume CH. For each nonempty separable
metrizable space X there is a universally null set E in X such that dim E = dim X −1.

Proof. We may assume dim X > 1 as the contrary case is correct in ZFC. Clearly
card(X ) = c follows from the definition of small inductive dimension (see page
245). Indeed, there are c many closed sets H such that dimH > 0. Let H denote the
collection of all such closed sets.

Let µ be a continuous, complete, finite Borel measure on X such that µ(X ) > 0.
By Proposition D.7, there is a zero-dimensional Fσ set F such that µ(X \ F) = 0.
Denote by F the collection of all such sets F corresponding to all such measures.

Let Hα , α < c, be a well ordering of H, and let Fα , α < c be a map of {α : α < c }
onto F. Since the continuum hypothesis has been assumed, we have, by the sum
theorem of dimension theory, that the setMα = Hα \ ⋃

β≤α Fβ is not empty for each
α. For each α select an xα in Mα . Define E0 = { xα : α < c }.

Let us show that E0 is a universally null set in X . To this end, let µ be a continuous,
complete, finite Borel measure on X with µ(X ) > 0. There exists an α such that
µ(X \ Fα) = 0. As

E0 = (E0 ∩ (X \ Fα)) ∪ (E0 ∩ Fα) ⊂ (X \ Fα) ∪ {xβ : β < α}
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we have µ(E0) = 0 and thereby E0 is a universally null set in X .
It remains to show that there is a subset E of E0 such that dim E = dim X −1. This

follows from the lemma below. ✷

The next lemma is used in the above proof and in the proof of Theorem 6.26
(Zindulka’s Martin axiom version of the CH-dimension theorem) which will be
presented later. The proof of the lemma does not use the continuum hypothesis.

Lemma 6.10. Let X be a nonempty separable metrizable space. If E0 is a subset of X
such that E0 ∩ H is not empty for every closed subset H of X with dimH > 0, then
there is a subset E of E0 such that dim E = dim X − 1.

Proof. The statement is obviously true if dim X ≤ 1. So let n be an integer such that
1 ≤ n < dim X and suppose dim E0 < n. By the Gδ-hull property of topological
dimension (see page 245) there is a Gδ set Y such that E0 ⊂ Y and dim Y = dim E0.
We assert dim(X \ Y ) ≥ 1. Indeed, assume the contrary. Then the addition theorem
yields n < dim X ≤ dim Y +dim(X \Y )+1 ≤ (n−1)+0+1 = n, a contradiction.
As X \ Y is an Fσ set with dim(X \ Y ) ≥ 1, the sum theorem yields a closed set
H such that dimH > 0 and H ∩ E0 = ∅. There is an α such that Hα = H . Then
∅ = E0 ∩ H = E0 ∩ Hα �= ∅ and a contradiction has appeared. Hence dim E0 < n
is not possible. That is, dim E0 ≥ n. If dim X = ∞, then let E = E0. So suppose
dim X < ∞. Then 0 ≤ dim X − 1 ≤ dim E0 ≤ dim X . From the definition of
the small inductive dimension we infer the existence of the subset E of E0 with
dim E = dim X − 1. The lemma is proved. ✷

This brings us to the end of our historical tour of CH and universally null sets.
We turn our attention in the remainder of the chapter to the last half of the twentieth
century.

6.2. Absolute null space and cardinal numbers

The results in this section are set theoretic implications in the study of singular sets;
their statements with a brief discussion seem appropriate at this juncture. Set theoretic
results impact in a very strong way on the study of singular sets and they cannot be
ignored. It is not the purpose of the book to delve deeply into these set theoretic
results. We shall take a rather casual approach to the task of describing those results
that seem to be important for the book.

The results that concern us in this section are not topological, they are results on
the cardinality of certain singular sets. The four important cardinal numbers for us
are ℵ0, ℵ1, ℵ2 and c. The singular sets that have appeared in the book are absolute
null spaces, Lusin sets, Sierpiński sets, and strong measure zero sets. We have made
many references to the 1976 Acta Mathematica article [88] by Laver titled “On the
consistency of Borel’s conjecture.” The Borel conjecture of the title concerns strong
measure zero sets. Borel conjectured in [13, page 123] that “all strong measure zero
sets are countable.” The main result of the paper is

Theorem 6.11 (Laver). If ZFC is consistent, so is ZFC + Borel’s conjecture.
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As the title of our book indicates, the singular sets of prime interest are the abso-
lute null spaces. Laver’s article has in its introduction a very important paragraph
which we shall quote in its entirety. (The cited papers in the quote are [17]=[133]
and [24]=[144].)

Regarding universal measure zero sets, Hausdorff’s theorem is best possible in the sense that
there is a model of ZFC + 2ℵ0 > ℵ1 in which there are no universal measure zero sets of
power ℵ2 (add Sacks reals ([17]) or Solovay reals ([22]) to a model of 2ℵ0 = ℵ1). This fact
(not proved here) is an extension of an unpublished result of Baumgartner which states that
adding Sacks real to a model of 2ℵ0 = ℵ1 gives a model in which there are no strong measure
zero sets of power ℵ2.

A. W. Miller states in his 1984 article [110, page 214] that “… it is a theorem of
Baumgartner and Laver that in the random real model every universal measure zero
set has cardinality less and or equal to ω1.” (Here, universal measure zero set
= universally null set in R.) A proof of this assertion is provided by Miller in
[109, pages 576–578]. Let us extract the relevant parts of his proof. He first proves
(which he says is known but has not been published)

Theorem 6.12. If ω2 random reals are added to a model of CH, then in the extension
every set of reals of cardinality ω2 contains a subset of cardinality ω2 which is the
continuous image of a Sierpiński set.

From this theorem follows the above quoted Baumgartner–Laver assertion

Theorem 6.13 (Baumgartner–Laver). In the random real model every universally null
set in R has cardinality less than or equal to ℵ1.

Proof. Recall that an uncountable subset of a Sierpiński set is not a universally null
set in R. Suppose that there is a universally null set N in R with card(N ) ≥ ℵ2. Then
there is a subset N ′ of N with cardinality ℵ2 and a continuous surjection f : S → N ′
of some Sierpiński set S. Let S ′ be a subset of S such that the restriction f |S ′ is a
continuous bijection of S ′ onto N ′. As N ′ is a universally null set in R we have that
S ′ is also a universally null set as well as a Sierpiński set, which is not possible, and
a contradiction has appeared. ✷

Miller’s main theorem of the paper [109] is

Theorem 6.14. In the iterated perfect set model every set of reals of cardinality ω2

can be mapped continuously onto the closed unit interval.

We have the corollary.

Corollary 6.15. In the iterated perfect set model, the inequalities ℵ1 ≤ c ≤ ℵ2

hold. Hence c = ℵ2 if c �= ℵ1.

Proof. Suppose ℵ2 < c. Then there exists a subset X of R with card(X ) = ℵ2.
Let f : X → [0, 1] be a continuous surjection provided by the theorem. Then c =
card([0, 1]) ≤ card(X ) = ℵ2 < c, which is a contradiction. ✷
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To amplify the above Laver quote, we quote again from the above 1984 Miller
paper. He states there that in the iterated perfect set model “… c = 2ω1 so there are
only continuummany universal measure zero sets… .” Let us state and prove the last
part of the quote as a proposition.

Proposition 6.16. In the iterated perfect set model, the cardinality of the collection
univ N(R) of all universally null sets in R is c.

Proof. Since the cardinality of each universally null set in R is at most ℵ1, we have
c ≤ card

(
univ N(R)

) ≤ cℵ1 = (2ℵ0)ℵ1 = 2ℵ1 = c. ✷

The often quoted Laver assertion about the cardinality of a universally null set in R,
no doubt true, is not explicitly demonstrated in the literature. Hence no explict citation
of the proof due to Laver has been provided. The recent tract [31] by K. Ciesielski
and L. Pawlikowski does present an explicit proof of the Laver assertion. They define
a covering property axiom called CPA and prove that the iterated perfect set model
satisfies the covering property axiom. Among the many consequences of this axiom
that are established in the tract is Laver’s cardinality assertion [31, Section 1.1].

In a private conversation, Mauldin asked if the cardinality of a universally null set
in R was known. Clearly, in ZFC + CH, the answer is c because non-L = c. For
ZFC + ¬CH, by the iterated perfect set model, the answer is ℵ1 which is not c. To
sharpen the question, define the cardinal number n to be the least cardinal number that
is greater than or equal to card(X ) of every absolute null space X . As every absolute
null space can be embedded in the Hilbert cube, we have ℵ1 ≤ non-L ≤ n ≤ c.
Mauldin’s question becomes:

Question. In ZFC + ¬CH, is there an absolute null space X such that card(X ) = n?

Observe that this question is analogous to Cichoń’s question about Banach cardinals.
Zindulka, in a private conversation, provided the author with the following analysis

of the above weak inequalities. It will be shown in the next section that there is a
model of ZFC + ¬CH such that non-L = c; hence ℵ1 < non-L happens for this
model. Cichoń has shown in [30] that there is a model of ZFC such that there are at
least two Banach numbers; hence non-L < n happens for this model.

Related to this is another question attributed to Mauldin which asks if there always
are more than c universally measurable sets in R ? (See page 214 of [110] and page
422 of [111].) Clearly, card

(
univ M(R)

) ≥ c. Proposition 6.16 reveals the difficulties
encountered in this question, which is

Question (Mauldin). Is it consistent to have card
(
univ M(R)

) = c?

In Section 2.4 of Chapter 2, the symmetric difference property of universally mea-
surable set in a space was discussed. Recall that a Lebesgue measurable set in R
is the symmetric difference of a Borel set and a Lebesgue null set. For universally
measurable sets in R this property holds for every continuous, complete, finite Borel
measure on R. It is tempting to claim that each universally measurable set in R is
the symmetric difference of a Borel set and a universally null set in R. Then, in the
iterated perfect set model, the cardinality of the collection of universally measurable
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sets in R would be c. But this analogue of the symmetric difference property fails
as Theorem 2.26 shows. If the consistency question of Mauldin is to have a positive
resolution, another approach will be needed. Of course, the property in the question
could possibly fail or be independent of ZFC.

6.3. Consequences of the Martin axiom

We begin with the definition of the Martin axiom, actually an equivalent topological
form. The definition uses the notion of the countable chain condition which will be
defined first, again in the topological context.

Definition 6.17. A topological space X has the countable chain condition (c.c.c.) if
and only if there is no uncountable family of pairwise disjoint open sets of X . (See
K. Kunen [83, page 50].)

Definition 6.18 (Martin axiom : topological form). No compact Hausdorff space
with c.c.c. is the union of less than c closed nowhere dense sets (equivalently,⋂{Uα : α < κ } �= ∅ whenever {Uα : α < κ } is a family of dense open sets and
κ < c.) (See Kunen [83 pages 52 and 65].)

Often we will designate the Martin axiom as MA. It is known that the continuum
hypothesis implies the Martin axiom (see Kunen [83, page 55]).

6.3.1. Properties of separable metrizable spaces. Two theorems that are conse-
quences of the Martin axiom will be singled out. We shall take the statements from
Kunen [83, pages 58 and 59] without providing proofs. The first is

Theorem 6.19. Assume MA . If {Mα : α < κ }, where κ < c, is a family of first
category sets of R, then

⋃{Mα : α < κ } is a first category set in R.

The proof uses only the second countability of R, that is, there is a countable base
for the open sets of R. It is remarked in Kunen [83, Exercise 13, page 87] that R in
the above theorem can be replaced by any separable metrizable space.

The next lemma was provided to the author by K. P. Hart.

Lemma 6.20. Assume MA . If M ⊂ R and card(M ) < c, then M is a Lebesgue
null set.

Proof. LetG be a denseGδ set of Lebesgue measure zero and denote its complement
by D. Obviously, D is a first category set in R. Let us show R = ⋃

x∈M (x + D)

whenever λ∗(M ) > 0. To this end, let y ∈ R and λ∗(M ) > 0. As λ∗( y −M ) > 0 we
have D∩ ( y−M ) �= ∅. Let z be a point in the intersection and t be a point inM such
that z = y − t. Then y ∈ t + D ⊂ ⋃

x∈M (x + D). By contraposition we have shown
that R �= ⋃

x∈M (x +D) implies λ∗(M ) = 0. By the preceding theorem we have that⋃
x∈M (x+D) is a first category set; the completeness of R provides the final step of

the proof. ✷

The lemma yields the following theorem. See also Fremlin [57, Corollary 22H(d),
page 49].
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Theorem 6.21. Assume MA . A separable metrizable space X is an absolute null
space whenever card(X ) < c.

Proof. We may assume that X is contained in [0, 1]N. As [0, 1]N and R are
B-homeomorphic, only those subsets X of R with card(X ) < c must be considered.
For each h in HOMEO(R) we have h−1[X ] is Lebesgue measurable. Since λ and
HOMEO(R) generate univ M(R), we have X ∈ univ M(R). Hence X is an absolute
measurable space. As card(X ) < c we have X is totally imperfect. Consequently, X
is an absolute null space by Theorem 1.20. ✷

Observe that the theorem implies the lemma.
There is a stronger result than the above Lemma 6.20 that appears in Kunen [83,

Theorem 2.21, page 59]. This is the second of the two theorems that we said would
be taken from Kunen’s book without proof.

Theorem 6.22. Assume MA . If {Mα : α < κ }, where κ < c, is a family of Lebesgue
null sets of R, then

⋃{Mα : α < κ } is a Lebesgue null set in R.

There is a nice corollary of this theorem. The case where X is R was observed by
Miller [110, page 219].

Corollary 6.23. Assume MA . Let X be a separable mertizable space such that
X = ⋃

α<κ Xα , where Xα is an absolute null space for each α and where κ < c. Then
X is an absolute null space.

Proof. As in the proof of Theorem 6.21, we may assume that X is a subset of R.
Let µ be a positive, complete, continuous, finite Borel measure on R such that
M(R, λ) = M(R,µ) and N(R, λ) = N(R,µ). Suppose ν is a positive, continuous,
complete, finite Borel measure onR and let h be inHOMEO(R) such that ν = c · h#µ
for an appropriate positive number c. Now h−1[Xα] is an absolute null space and hence
a Lebesgue null set in R. By the above theorem, h−1[X ] is a Lebesgue null set. So,
ν(X ) = h#µ(X ) = µ(h−1[X ]) = 0. Consequently, X ∈ univ N(R) and therefore X
is an absolute null space. ✷

6.3.2. Universally null sets in R . Grzegorek has shown, with only ZFC assumed,
the existence of a universally null set E in R with card(E) = non-L ≥ ℵ1. It was
mentioned in Section 6.1 that there aremodels of ZFC + ¬CH inwhich no universally
null sets E in R with card(E) > ℵ1 exist. Also fromTheorem 6.21 we have that every
subset of R with cardinality less than c is an absolute null space in ZFC + MA. We
now have the following assertion from Grzegorek and Ryll-Nardzewski [71].

Theorem 6.24 (Grzegorek–Ryll-Nardzewski). Neither the statement “there exists an
absolute null space with cardinality c” nor its negation is provable fromZFC + ¬CH.

Proof. As each absolute null space is B-homeomorphic to an absolute null space
contained in R, it is enough to consider only those absolute null spaces contained
in R. First observe that the statement “every subset of R with cardinality less than
c is Lebesgue measurable” implies the statement “non-L is c.” Indeed, suppose
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non-L < c and every subset of R with cardinality less than c is Lebesgue measur-
able. Then there exists a set E such that card(E) = non-L and λ∗(E) > 0. From
non-L < c we have that the set E is Lebesgue measurable and satisfies λ(E) > 0.
As every positive Lebesgue measurable set contains a copy of the Cantor set we have
card(E) = c. A contradiction has appeared. Hence there is a universally null set X
in R with card(X ) = c in ZFC + MA. It is known that ZFC + MA + ¬CH is consis-
tent provided ZFC is consistent. Hence the negation of the statement “there exists an
absolute null space X with card(X ) = c ” is not provable from ZFC + ¬CH.

It was mentioned earlier in Section 6.1 that Laver has shown the existence of a
model for ZFC + ¬CH for which card(X ) ≤ ℵ1 whenever X is a universally null set
in R. Hence the statement is also not provable from ZFC + ¬CH. Thereby we have
shown that the statement in the theorem is independent of ZFC + ¬CH. ✷

An immediate consequence of the theorem is the fact that one cannot drop the CH
assumption in the CH-dimension theorem. Indeed, suppose it can be shown in ZFC
that there is a universally null set E in X with dim E = dim X − 1 whenever X is a
separable metrizable space. Then this would be true also in ZFC + ¬CH. So it can
be shown that there would exist an absolute null space E with card(E) = c because
dim X > 1 implies dim E ≥ 1, which in turn implies card(E) = c. This denies the
above theorem.

We have the following interesting consequence of Theorem 6.24.

Theorem 6.25. The statement “there is an absolute null space that cannot be
topologically embedded in the Cantor ternary set” is not provable from ZFC + ¬CH.

Proof. Assume ZFC + ¬CH implies the existence of an absolute null space that
cannot be topologically embedded in the Cantor ternary set. It is well-known that a
separable metrizable space has dimension less than 1 if and only if the space can be
topologically embedded in the Cantor ternary set. Hence it would be possible to prove
that ZFC + ¬CH implies the existence of an absolute null space with cardinality c,
contradicting Theorem 6.24. ✷

Another consequence of the theorem is that ZFC + ¬CH implies that there are no
Lusin sets E in R with card(E) = c. For suppose it can be shown that ZFC + ¬CH
implies the existence of a Lusin setE inRwith card(E) = c. The setE is a universally
null set inRwith cardinality c because, in ZFC, Lusin sets inR are always universally
null sets in R whenever they exist.

We have seen in the previous subsection that, in ZFC + MA, every subset E of R
with card(E) < c is simultaneously a first category set and a Lebesgue null set. By
definition, if E is a Lusin set in R, then card(E) ≥ ℵ1. Suppose that the existence of
a Lusin set E in R can be shown in ZFC + MA+ ¬CH. As uncountable subsets of
Lusin sets are also Lusin sets, we may assume card(E) = ℵ1. Then ℵ1 = card(E) =
card(E ∩ E) ≤ ℵ0 and thereby a contradiction has occurred. We have shown that no
uncountable subset of R can be a Lusin set. A corresponding argument will show that
no uncountable subset of R can be a Sierpiński set. Hence, in ZFC + MA + ¬CH,
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each uncountable set in R is not a Lusin set and is not a Sierpiński set. Observe that
this proof did not use the preceding paragraph.

More will be said about the existence of Lusin sets and Sierpiński sets in R in the
comment section at the end of the chapter.

6.4. Topological dimension and MA

Let us begin this section with a short discussion of the dimensions of separable
metrizable spaces X and universally null sets in X . In Chapter 5 we learned that a
nonempty space X has a metric such that dim X = dimH X . For this metric the Haus-
dorff dimension of a universally null set E in X is bounded above by the topological
dimension of the ambient space X . We also know that the topological dimension of E
is no bigger than the Hausdorff dimension of E. Consequently, it still can happen
that dim E < dimH E for every universally null set E in X , indeed, dim E = 0 is still
possible for every nonempty universally null set E in X . In fact, this is so for X = R
since every nonempty universally null set E in R is totally imperfect and thereby is
zero-dimensional. Actually, it is known that every n-dimensional subset of Rn must
contain a nonempty open set and hence is not a universally null set in Rn because
universally null sets in any space X are totally imperfect. This shows dim E ≤ n− 1
whenever E is a universally null set in Rn. We have learned earlier that the statement
“there is a universally null set E in X such that dim E = dim X − 1” is provable
in ZFC + CH and is not provable in ZFC + ¬CH. Hence, in ZFC + ¬CH, some
assumption on the space X as well as some further set theoretic assumption must be
made in order for the statement to be true. In light of this discussion Zindulka proved
the following result [160, Theorem 3.5] for analytic spaces in ZFC + MA.

Theorem 6.26. (MA-dimension theorem)AssumeMA . If X is an analytic space, then
there exists a universally null set E in X such that dim E = dim X − 1.

The proof will depend on a lemma. It is a consequence of a theorem due to J. Stern
[146, Theorem 3] which we state and prove 8 next.

Theorem 6.27 (Stern). Assume MA . Every cover of NN by fewer than c closed sets
has a countable subcover.

Proof. Since NN is homeomorphic to N we shall use N in place of NN. As any set
F that is of the first category in N is also a first category set in the open interval
(0, 1), we may replace the space R in Theorem 6.19 by N to get a corollary that is the
analogue for the spaceN . Let F be a cover ofN by fewer than c closed sets. DefineO

to be the family of all open sets of N that are covered by countably many members
of F. By the above mentioned corollary, the collection O is not empty. Indeed, each
nonempty, simultaneously open and closed subsetU of N has the property that some
F in F contains a nonempty open subset of U . Since

⋃
O is the union of a countable

subfamily of O, we have V = ⋃
O is a member of O and V is dense in N . Let

us show that Y = N \ V is empty. Assume the contrary case. Then we must have

8 The proof given here was provided to the author by K. P. Hart.
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card(Y ) > ℵ0 since countable subsets of N are covered by countable subfamilies
of F. So the uncountable absolute Borel space Y will contain a topological copy Y ′
of N . Hence the family {F ∩ Y ′ : F ∈ F } will have a member F ′ = F ∩ Y ′ such
that its interior relative to Y ′ is not empty. That is, the interior of F relative to N will
contain a point y of Y . Consequently, y ∈ V and a contradiction has arrived. Thereby
we have shown N = V and the theorem is proved. ✷

The lemma needed to prove Zindulka’s theorem is an immediate consequence of
the above theorem because analytic spaces are continuous images of the space N .

Lemma 6.28. AssumeMA . Every cover of every analytic space by fewer than c closed
sets has a countable subcover.

Proof of Theorem 6.26. The proof will have two parts, just as the proof of the CH-
dimension theorem had. The construction of the required set E is similar to the CH
version. The proof that E is a universally null set in X is a little more involved – it
uses the condition that X is an analytic space. The computation of dim E is exactly
the same for the MA version as for the CH version – it does not require that X be an
analytic space.

Let X be an analytic space. The statement of the theorem is clearly obvious if
dim X ≤ 1. So assume 1 < dim X . Then card(X ) = c, whence the collection F of all
zero-dimensional Fσ subsets of X has cardinality c because X contains a topological
copy of the the Cantor space. The collection H of all closed subsets H of X with
dimH > 0 also has cardinality c. The last assertion follows from the definition
of the small inductive dimension. Let Fα , α < c, and let Hα , α < c, be well
orderings of F and H, respectively. Inductively select points xα , α < c, such that xα ∈
Hα \ ⋃

β≤α Fβ . This is possible because Hα is an analytic space and the assumption
of Hα \ ⋃

β≤α(Hα ∩ Fβ) = ∅ together with the above lemma and the sum theorem
of dimension theory imply 0 < dimHα ≤ sup { dim(Hα ∩ Fβ) : β ≤ α } ≤ 0, a
contradiction. Define E0 to be the set { xα : α < c }. By Lemma 6.10 there is a subset
E of E0 such that dim E = dim X − 1.

Let us verify that E is a universally null set in X . To this end, let µ be a continuous,
complete, finite Borel measure on X . By Corollary 4.31 there is a Zahorski space Z
such that Z ⊂ X and µ(X \ Z) = 0. As Z is a zero-dimensional absolute Fσ space,
there is an α such that Fα = Z . So

E0 = (E0 ∩ (X \ Z)) ∪ (E0 ∩ Fα) ⊂ (X \ Z) ∪ { xβ : β ≤ α }.

As { xβ : β ≤ α } is an absolute null space we have µ(E0) = 0. Consequently E is a
universally null set in X . The theorem is proved.

We have the following consequence of the construction of the set E0 in the proof
of the above theorem.

Theorem 6.29. Assume MA . If X is analytic space with dim X ≥ 1, then there is a
universally null set E0 in X such that E0 ∩ H �= ∅ whenever H is a closed set in X
with dimH ≥ 1.
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Let us give three corollaries. Recall that a projection π : X → X of a Banach space
X is a linear map such that composition π π is π .

Corollary 6.30. Assume MA . Let X be a separable Banach space. There exists a
universally null set E in X such that π [E] = π [X ] for all nontrivial projections
π : X → X .

Proof. If X is a one-dimensional Banach space, there are no nontrivial projections
π . So consider the contrary case. Let E be the set E0 from the theorem. As π is
a nontrivial projection, H = π−1[{y}] is a closed set with dimH > 0 whenever
y ∈ π [X ]. Then H ∩ E �= ∅ and the corollary follows. ✷

The next corollary has an equally easy proof.

Corollary 6.31. Assume MA . There exists a universally null set E in R2 such that
E projects onto each line.

Recall that a curve is the continuous image of [0, 1]. Hence a nontrivial curve C
has dimC > 0. As curves are compact the next corollary is obvious.

Corollary 6.32. AssumeMA. Each analytic space X contains a universally null set
E such that E meets each nontrivial curve in X .

Remark 6.33. The MA assumption in Zindulka’s MA-dimension theorem cannot
be dropped. Indeed, if the statement was provable in ZFC alone, then it would be
provable in ZFC + ¬CH, and hence it would be possible to prove that ZFC + ¬CH
implies the existence of an absolute null space E whose cardinality is c. But, just as
we have already seen for the CH-dimension theorem, this will lead to a contradiction
of Theorem 6.24. Obviously, the same remark also holds for the above corollaries.

6.5. Comments

As has been mentioned in the introduction to the chapter, many of the citations on the
use of the continuum hypothesis that are interspersed in the development appear in
the article by Brown and Cox [18]. Also, large parts of the development are derived
from articles in theHandbook of Set-Theoretic Topology [84]. We have used Kunen’s
book [83] as a primary source for the Martin axiom so that a newcomer to the subject
will not be overwhelmed by the need to search too many references. Our commentary
will be ordered by the sections in the chapter. The last two subsections are musings
of the author which set out material that have been left out of the book – that is, tasks
for further study.

6.5.1. Historical comment. Two proofs have been given of the fact that Lusin sets
in R are universally null in R. The first one was Lavrentieff’s original proof in which
he used his famous Gδ extension theorem of homeomorphisms. This proof does not
use the continuum hypothesis, which was used only to prove the existence of Lusin
sets in R. The second proof, which also does not use the continuum hypothesis, uses
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the group HOMEO(R). This second proof seems to avoid the use of Lavrentieff’s
theorem; but, this is not the case since absolute Borel spaces are used in the study of
absolute null spaces and Lavrentieff’s theorem is used to characterize the collection of
absolute Borel spaces. A third proof was given in Chapter 2 that uses the continuum
hypothesis and Hausdorff’s notion of m-convergence, see Section 1.3.5. Zahorski
spaces appear in the above proofs, this is a consequence of the fact that Fσ sets X of
the first category inR contain Zahorski spaces Z such that card(X \Z) ≤ ℵ0.We have
already observed that the collection of Zahorski spaces is topologically invariant, a
very nice property.

The proof of theCH-dimension theorem (Theorem6.9) thatwas given in the chapter
is due to Zindulka. With regards to priority, it was mentioned that another proof
had appeared earlier. We now comment on this earlier proof by Mazurkiewicz and
Szpilrajn [106]. In the cited paper the authors provide a generalmethod of constructing
examples of certain singular spaces X with dim X = n for n = 1, 2, . . . , and ∞
whenever such singular spaces with cardinality c existed as subsets of R. Before
we give the statement and proof of their theorem let us state, without proof, the
dimension theoretic theorem ofA. Hilgers [75] which is key to their method (see also
[85, page 302]).

Theorem 6.34 (Hilgers). For n �= −1, every separable metrizable space Y with
card(Y ) = c is a continuous bijective image of some separable metrizable space X
with dim X = n.

The Hilgers theorem does not use the continuum hypothesis. Consequently, the
Mazurkiewicz–Szpilrajn theorem does not use the continuum hypothesis. We give
only the absolute null space part of their theorem.

Theorem 6.35. If Y is a universally null set in R with card(Y ) = c, then for each n
there exists an absolute null space X with dim X = n.

Proof. Let X be such that dim X = n and let f : X → Y be a continuous bijection
as provided by Hilgers’ theorem. Theorem 1.23 completes the proof since Y is an
absolute null space. ✷

Theorem 6.9 is now a corollary since the continuum hypothesis implies the exist-
ence of an absolute null space Y with card(Y ) = c, which has many proofs. In their
proof, Mazurkiewicz and Szpilrajn observed that the Sierpiński–Szpilrajn example
(see Section 1.3.3) provided an absolute null space Y with card(Y ) = ℵ1. Hence
they concluded that the continuum hypothesis yielded an example that satisfied the
hypothesis of their theorem, thereby proving the existence of higher dimensional
absolute null spaces in ZFC + CH.

It should be mentioned that the proof due to Zindulka that was given earlier is very
different from the above proof.

6.5.2. Cardinal numbers. Although the general relationship of the cardinal num-
bers ℵ0, ℵ1 and non-L to absolute null spaces require only the usual set axioms
ZFC, the literature has shown that cardinal numbers of some classes of absolute null
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spaces are very much influenced by set theoretic assumptions. Since reference to
these assumptions were not needed for our discussion of these general relationships,
the more subtle aspects of set theoretic methods such as the powerful “forcing” were
not included in the earlier chapters. Hence discussions of the Banach numbers were
delayed to the last chapter. But our need to use special classes of absolute null spaces
such as Lusin sets and strong measure zero sets require that the reader be aware of the
set theoretic implications about these sets. Along this line of thought, the unresolved
Mauldin’s cardinal number question is certainly an interesting one.

In Chapter 1 we referred to the survey article [134] by Scheepers on �-�∗ gaps.
This article deals not only with �-�∗ gaps using just ZFC but also using forcing and
using special axioms. One sees from the article that there is an extensive literature on
�-�∗ gaps. Scheepers also discusses several applications of �-�∗ gaps.

6.5.3. Martin axiom. In addition toKunen’s book the readermight find other sources
for the Martin axiom helpful or useful. We mention some that have been used:
A. W. Miller [110], J. R. Shoenfield [137], R. J. Gardner and W. F. Pfeffer [58],
and the first few pages of W. Weiss [156].

Theorem 6.24 is just a comment in [71], with a proof included, by Grzegorek
and Ryll-Nardzewski. We have formalized it as a theorem, using their proof, since
it appears in many other papers in comment form. An application of this theorem
showed that the existence of a Lusin set in R with cardinality c is not provable from
ZFC + ¬CH. One might say that Rothberger’s theorem already denied the possible
existence of a Lusin set inRwith cardinality c in ZFC + ¬CH. But this is amisreading
of Rothberger’s theorem which denies the simultaneous existence of a Lusin set and
a Sierpiński set in R for which one of their cardinalities is greater than ℵ1. It is still
possible that ZFC + ¬CH implies no Lusin set and no Sierpiński set in R exist. But,
as reported in Miller’s article [110, page 205], it is consistent with ZFC + ¬CH that a
Lusin set and a Sierpiński set in R exist. That is, there is a model for ZFC + ¬CH in
which a Lusin set and a Sierpiński set both exist. Hence, by Rothberger’s theorem, no
Lusin set and no Sierpiński set can have cardinality c in this model for ZFC + ¬CH.
Better yet, every Lusin set and every Sierpiński set in R has cardinality ℵ1 in this
model for ZFC + ¬CH. Also, it was shown earlier that ZFC + MA + ¬CH implies
that no uncountable subset of R can be a Lusin set or a Sierpiński set. Consider
now the statement “there exists a Lusin set X in R.” It was already mentioned that
ZFC + MA + ¬CH is consistent provided ZFC is consistent. Hence the statement
is not true for some model of ZFC + ¬CH. Moreover, from the above mentioned
Miller article, the statement is true for some other model for ZFC + ¬CH. Hence the
statement is independent of ZFC + ¬CH. The corresponding assertion may be made
for Sierpiński sets in R. Let us summarize the above discussion as a proposition.

Proposition 6.36. Each of the statements “there exists a Lusin set X inR” and “there
exists a Sierpiński set X in R” is independent of ZFC + ¬CH.

By no means is the discussion of set theoretic results given in the book claimed to
be exhaustive or up to date. The methods used in the subject are not easily mastered
and we have made no attempt to describe many of them. But one thing is certain,
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the study of absolute measurable spaces cannot ignore set theoretic results that have
been proved in the last half century. More generally, the study of singular sets cannot
ignore them, also.

6.5.4. Topological dimension. The main theorem on topological dimension is
Zindulka’s MA-dimension theorem. The proof given in this chapter is slightly shorter
than the original one due to the introduction of Zahorski spaces. The original proof
was based on Zindulka’s theorem on proper, σ -additive, saturated ideals on a space
X (see [160, Theorem 2.8]).

Zindulka proved that the CH-dimension theorem and the MA-dimension theorem
are not theorems in ZFC. To achieve this he proved the following theorem [160,
theorem 3.10] whose proof is based on a suggestion by S. Todorčević.

Theorem 6.37. It is relatively consistent with ZFC that c = ℵ2 and that each absolute
null space is zero-dimensional.

Of course, this theorem is related to Remark 6.33 and to Theorem 6.24. As the
reader can see, we have used Theorem 6.24, proved earlier by Grzegorek and Ryll-
Nardzewski in 1981, to show that the CH-dimension theorem and the MA-dimension
theorem are not theorems in ZFC.

As every analytic space is an absolute measurable space, we have the question

Question. In Theorem 6.26, can the requirement that X be an analytic space be
replaced by the requirement that X be an absolute measurable space?

Topological dimension is a very nice and intuitive way to classify topological
spaces. Dimension theory begins with the empty space being assigned the dimension
−1. Extensions of this process has been successfully investigated in topology (see
J. M.Aarts and T. Nishiura [1]), where the empty space has been replaced by various
classes P of topologically invariant spaces. The class of absolute measurable spaces
and the class of absolute null spaces are certainly good possibilities for extensions
of dimension theory, especially transfinite dimension theory. Perhaps an interesting
interplay between the set theoretic implications that have been discovered so far and
transfinite dimension and its extensions can be found.

6.5.5. Nonmetrizable spaces. The main setting of the book has been separable
metrizable spaces. Our purpose was to develop a theory of absolute measurable
spaces. We were able to carry out this development in ZFC. The very early history of
the subject seemed to have the need to apply the continuum hypothesis to establish
the existence of an uncountable absolute null space. But this was shown not to be
necessary for its existence in ZFC; the continuum hypothesis yielded the existence
of absolute null spaces whose cardinalities were as large as possible, namely c. The
cardinality of an absolute null space is intimately tied to the assumptions made about
set axioms in addition to ZFC. We have used the continuum hypothesis, its negation
and the Martin axiom as applied to the real line. Of course the continuum hypothesis
and the Martin axiom apply to other topological spaces. Indeed, the definition of
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the Martin axiom uses compact Hausdorff spaces. Many advances in the topology of
general spaces have been collected together in the late twentieth century under the
name of set theoretic topology.

It is not obvious to the author that a reasonable theory of absolutemeasurable spaces
and absolute null spaces can be developed for general topological spaces. Clearly,
it is the lack of examples in the non-metrizable setting that hampers the project of
extending the theory of absolute measurable spaces and absolute null spaces beyond
separable metrizable spaces. Perhaps one should begin by considering topologies
that are finer than the Euclidean topology on Rn, especially those that are connected
to the Lebesgue measure. One such topology is the density topology.9 The density
topology satisfies the countable chain condition, also. Notice that homeomorphisms
of Rn with respect to the usual topology need not be a homeomorphism with respect
to the density topology. A simple example is easily found. But a bi-Lipschitzian map
of Rn onto Rn is a homeomorphism with respect to the density topology. Indeed,
there is the following stronger theorem due to Z. Buczolich [25].

Theorem 6.38. If f : S → T is a bi-Lipschitzian map of a Lebesgue measurable set
S onto a Lebesgue measurable set T of Rn, then f maps the set of density points of S
onto the set of density points of T and maps the set of dispersion points of S onto the
set of dispersion points of T .10

6.5.6. Other singular sets. There are many other singular sets that were not consid-
ered in the book. The main reason for excluding them was the metric dependence
of their definitions. But another reason is that the notions of absolute measurable
spaces and of universally measurable sets in a space lead naturally to classes of func-
tions which can be investigated from the point of view of analysis without resorting
to additional set theoretic axioms beyond ZFC as illustrated by Chapter 4. Their
exclusion does not mean that they are not worthy of a systematic treatment from the
basics of descriptive set theory, axiomatic set theory, metric topology, and analysis.
Such a book has been left for others to write; good beginnings can be found in the
literature–waiting to be organized into book form.

6.5.7. Challenge revisited. The preface begans with the challenge to investigate the
role of the notions of absolute measurable space and of universally measurable set
in analysis, topology and geometry in the context of separable metrizable space.
The book has presented several ways in which this challenge has been met. There
must be more – where does one find potential sources of possibilities? Perhaps they
are hidden is the many mathematical handbooks11 or mathematical history books or
mathematical textbooks that have recently appeared – many such books have been
cited in the bibliography.

9 There is an extensive literature on the density topology: C. Goffman, C. J. Neugebauer and T. Nishiura
[61], Oxtoby [120], F. D. Tall [153], S. Scheinberg [135], and J. Lukeš, J. Malý and L. Zajíček [91], to
list a few. The last book contains many other citations.

10 A point x of R
n is a density (dispersion) point of a Lebesgue measurable set S if the Lebesgue density

of S at x is 1 (respectively, 0).
11 An interesting one is the recent [123] by E. Pap.
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To find new conjectures, examples, counterexamples, positive results, negative
results – all are part of the challenge.

Exercises

6.1. Prove that the statement “there exists an absolute null space X such that
card(X ) = non-L” is equivalent to Theorem 6.6 on page 161.

6.2. Find necessary and sufficient conditions on a cardinal number κ to be such that
there is a subset X of R with the property that λ∗(X ) > 0 and card(X ) = κ .

6.3. Verify, as requested of the reader on page 163, that the relations ≺ and �∗ are
the same.

6.4. Prove Corollary 6.31 on page 173.



Appendix A

Preliminary material

Only separable metrizable spaces will be considered. Appendix A will be used to
gather various notions and facts that are found in well-known reference books (for
example, K. Kuratowski [85]) with the goal of setting consistent notation and easing
the citing of facts. Also, the final Section A.7 will be used to present a proof, which
includes a strengthening due to R. B. Darst [37], of a theorem of R. Purves [129].

A.1. Complete metric spaces

Ametric that yields the topology for a metrizable space need not be complete. But this
metric space can be densely metrically embedded into another metric space that is
complete. A space that possesses a complete metric will be called completely metriz-
able. It is well-known that a Gδ subspace of a completely metrizable space is also
completely metrizable (see J. M. Aarts and T. Nishiura [1, page 29]). Consequently,

TheoremA.1. A separable metrizable space is completely metrizable if and only if it
is homeomorphic to a Gδ subset of a separable completely metrizable space.

The collection of all separable metrizable spaces will be denoted by MET and the
collection of all completely metrizable spaces in MET will be denoted by METcomp.

A.1.1. Extension of a homeomorphism. In the development of absolute notions
it is often useful to extend a homeomorphism between two subsets of completely
metrizable spaces to a homeomorphism between some pair of Gδ subsets containing
the original subsets. This is accomplished by means of the M. Lavrentieff theorem
[89].

TheoremA.2 (Lavrentieff). Suppose that X and Y are complete metric spaces. Then
every homeomorphism between subspaces A and B of X and Y , respectively, can be
extended to a homeomorphism between Gδ sets of X and Y .

In passing, we remark that Lavrentieff’s theorem applies to arbitrary metric spaces
(see Aarts and Nishiura [1, page 31]).

A.1.2. Base for the topology. We shall assume that the reader is familiar with the
notions of base and subbase for the open sets of a topology. Useful properties for
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separable metrizable spaces are the existence of a countable base for the open sets,
and the Lindeloff property, namely, every open cover of a subset has a countable
subcover.

A.1.3. Borel set. Let X be a separable metrizable space, not necessarily completely
metrizable. A member of the smallest σ -algebra that contains all open subsets of
X (equivalently, all closed sets) is called a Borel set of X and this σ -algebra will
be denoted by B(X ). The collection of all open subsets of X is denoted by G0

and the collection of all closed subsets of X is denoted by F0. The collection G0 is
closed under the operation of taking countable unions and the collection F0 is closed
under the operation of taking countable intersections. By transfinitely repeating the
operations of taking countable intersections or countable unions, one defines the
collectionsGα andFα for each ordinal numberα less than the first uncountable ordinal
number ω1.

A.1.4. Analytic space. We shall use the following definition of analytic sets in a
separable metrizable space X . We begin with the product space NN, where N is the
set of natural numbers. It is well-known that this product space is homeomorphic to
the spaceN of all irrational numbers between 0 and 1.Asubset of X is called analytic
if it is the continuous image of the space N . (See H. Federer [55, page 65] or [85,
page 478].) Motivated by this definition, we define a separable metrizable space to
be an analytic space if it is the continuous image of the space N (for convenience,
the empty space also will be considered an analytic space).

Theorem A.3. In a separable completely metrizable space, a nonempty subset is a
Borel set if and only if it is an injective, continuous image of some Gδ subset of N .
Hence a Borel subspace of a separable completely metrizable space is an analytic
space.

The reader is referred to [85, Remark 1, page 488] for this theorem. A useful
property of analytic sets is the following ([85, Theorem 0, page 479]).

Theorem A.4. Every uncountable analytic set in a separable metrizable space
contains a topological copy of the classical Cantor ternary set.

The collection of all analytic spaces will be denoted by ANALYTIC. A word of
warning is appropriate at this juncture. Analytic sets are associated with sieves of
the Suslin operations (A) which can be applied also to noncomplete separable met-
ric spaces. The class ANALYTIC may possibly not contain such subspaces of non
completely metrizable spaces.

A.1.5. Co-analytic space. Associatedwith the collection of analytic spaces is the col-
lection of spaces that are the complements, relative to completely metrizable spaces,
of the analytic spaces. That is, a space X is co-analytic if it is homeomorphic to Y \A
for some separable completely metrizable space Y and some analytic subspace A



A.1. Complete metric spaces 181

of Y . It is well-known that not every co-analytic space is analytic. The collection of
all co-analytic spaces will be denoted by CO-ANALYTIC.

A straightforward application of Lavrentieff’s theorem will show that X is in
CO-ANALYTIC if and only if Y \X is in ANALYTIC for every separable completely
metrizable space Y that contains X . Consequently, the class CO-ANALYTIC is
invariant under homeomorphisms.

Of importance to us are two theorems concerning co-analytic spaces. Let us first
introduce some terminology concerning sieves for analytic spaces A. Using the above
definition for a co-analytic space X , we let X = Y \ A, where Y is a separable
completely metrizable space and A is an analytic subset of Y . When A is sieved by
a sieve W composed of closed sets (or, more generally, of Borel sets) there is a
collection {Aα : α < ω1} of mutually disjoint subsets of Y such that

X = Y \ A = ⋃
α<ω1

Aα , (A.1)

where the sets Aα are called constituents of the set X determined by the sieve W .
The following theorems can be found in [85, pages 500–502].

TheoremA.5. The constituents Aα are Borel sets of Y .

It is asserted and proved in [85, page 502] that, in uncountable, separable, completely
metrizable spaces, there are co-analytic subspaces such that the Borel classes of their
constituents Aα , α < ω1, are unbounded.

The next theorem is called the covering theorem and is due to N. Lusin.

TheoremA.6 (Lusin). In equation (A.1) for a co-analytic space X , let E be an analytic
subspace of Y such that

E ⊂ X = Y \ A = ⋃
α<ω1

Aα . (A.2)

Then there exists an index α0 less than ω1 such that

E ⊂ ⋃
α<α0

Aα . (A.3)

An immediate corollary of the last theorem is

Corollary A.7. If a separable metrizable space is both analytic and co-analytic,
then it is a Borel set in every completely metrizable extension of it.

The next theorem is often useful (see [85, page 485] for a proof that does not rely
on the above Lusin theorem).

TheoremA.8. If A and B are disjoint analytic sets contained in a separablemetrizable
space X , then there is a Borel set E in X such that A ⊂ E and B ⊂ X \ E.

A.1.6. Absolute Borel space. Some subspace properties of Borel sets are easily
shown. For example, if X is a separable metrizable space and Y is a subspace of
X , then B∩Y is a Borel subset of Y whenever B is a Borel subset of X . Conversely, a
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subset A of Y is a Borel set of Y if there is a Borel subset B of X such that A = B∩X .
Hence, if Y is a Borel set of X , then every Borel subset of the subspace Y is also a
Borel subset of X .

The modifier “absolute” in the title of this section concerns the process of topologi-
cal embedding.1 AspaceX is said to be an absolute Borel space if, for every separable
metrizable spaceY , all topological copies ofX inY aremembers ofB(Y ). The class of
all absolute Borel spaces will be denoted by abBOR. There is the following theorem.

TheoremA.9. Aseparablemetrizable space X is an absolute Borel space if and only if
X is a Borel set in a completely metrizable extension of it, whence X is homeomorphic
to a Borel subset of some completely metrizable space.

The theorem is a consequence of Lavrentieff’s theorem. Observe that our definition
of analytic spaces has built into it the absolute property.

A very useful theorem (see [85, Corollary 1c, page 450]) concerning uncountable
absolute Borel spaces is

Theorem A.10. A separable metrizable space X is an uncountable absolute Borel
space if and only if there exists a continuous injection f : N → X such that X \ f [N ]
is countable. Moreover, the inverse bijection from f [N ] onto N is Borel measurable.

Absolute G0 (that is, absolute open) spaces can be defined in a similar manner. It
is quite clear that the empty space is the only such space. Absolute F0 (or, absolute
closed) spaces are precisely the compact spaces; absoluteG1 (or, absoluteGδ) spaces
are the separable completely metrizable spaces; and, the absolute F1 (or absolute Fσ )
spaces are precisely the σ -compact spaces. For a discussion of the above in arbitrary
metrizable spaces see Aarts and Nishiura [1, page 114].

The collection of all spaces that are homeomorphic to some Gδ subset of some
completely metrizable space will be denoted by ab Gδ. From Theorem A.1 we have
that ab Gδ is precisely the collection METcomp of all separable completely metrizable
spaces.

A.2. Borel measurable maps

Let X and Y be separable metrizable spaces. A map f : X → Y is said to be Borel
measurable (often abbreviated as B-measurable) if f −1[U ] ∈ B(X ) for every open
set U of Y . The above condition is equivalent to the condition f −1[B] ∈ B(X ) if
B ∈ B(Y ). We have the following useful theorem [85, Theorem 1, page 384].

TheoremA.11. Let X and Y be separable metrizable spaces. If f : X → Y is a Borel
measurable map, then graph( f ) ∈ B(X × Y ).

Corollary A.12. If f : X → Y is a Borel measurable map from an absolute Borel
space X into a separable metrizable space Y , then graph( f ) is an absolute Borel
space.

1 A topological embedding of a space X into a space Y is a mapping e : X → Y such that e : X → e[X ]
is a homeomorphism. The image e[X ] is called a topological copy of X .
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A.2.1. Invariance of analytic spaces. The following invariance theorem is stated in
[85, page 478] and proved in Federer [55, Section 2.2.14, page 70].

TheoremA.13. Let f : X → Y be a Borel measurable map from an analytic space X
into a separable metrizable space Y . Then the image f [X ] is an analytic space.

The proof given in [55] applies since the analytic space X is the continuous image
of the completelymetrizable spaceN and compositions of Borelmeasurablemaps are
again Borel measurable. Concerning the graph of mappings, we infer the following
from [85, Theorem 2, page 489].

Theorem A.14. Let f : X → Y be a map, where X and Y are separable metrizable
spaces. If graph( f ) is an analytic space, then X is an analytic space and f is Borel
measurable.

A.2.2. Invariance of absolute Borel spaces. As absolute Borel spaces are analytic
spaces, TheoremA.13 yields that f [X ] is analytic whenever f is a Borel measurable
map and X is an absolute Borel space. A sharper result holds when the map is also
injective.

TheoremA.15. Let f : X → Y be a Borel measurable injection of an absolute Borel
space X into a separable metrizable space Y . Then the image f [X ] is an absolute
Borel space.

For a proof see [85, Theorem 1, page 489]. A consequence of this theorem is

CorollaryA.16. Let f : X → Y be a map, where X and Y be separable metrizable
spaces. If graph( f ) is an absolute Borel space, then X is an absolute Borel space and
f is Borel measurable.

Let X and Y be separable metrizable spaces. A bijection f : X → Y is said to be
a B-homeomorphism2 if both f and f −1 are Borel measurable. We infer from [85,
Theorem 2, page 450] the following.

Theorem A.17. If X and Y are uncountable absolute Borel spaces, then there exists
a B-homeomorphism of X onto Y .

It is known in topology that the natural projection of an open set of a product space
into a factor space is an open set of that factor space. That is, the projection map is
an open-map – a map that sends open sets to open sets. Also, the projection map of a
product of a space with a compact space onto the first factor space is a closed-map – a
map that sends closed sets to closed sets.3 Analogous to the definitions of open-maps
and closed-maps, we define B-maps as follows.

2 The maps defined here also have been called generalized homeomorphisms. See, for example, the book
[85] by Kuratowski.

3 The definitions of open-map and closed-map in topology also include the requirement that the maps
be continuous. In [85], open continuous maps are called bicontinuous.
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Definition A.18. Let X and Y be separable metrizable spaces. A Borel measurable
map f : X → Y is a B-map4 if f [B] ∈ B(Y ) whenever B ∈ B(X ).

Obviously the composition of two B-maps is again a B-map. With this definition
TheoremA.15 can be restated as

Theorem A.19. If f : X → Y is a Borel measurable injective map into a separable
metrizable space, then it is a B-map whenever X is an absolute Borel space. Conse-
quently, if f : X → Y is a Borel measurable bijection, then f is aB-homeomorphism
whenever X is an absolute Borel space.

Concerning the notion of B-maps, there are very nice theorems [85, Theorem 2,
page 496 and Corollaries 2 and 5, page 498] that deal with countable-to-one maps.
One of the theorems will be given here. The theorem uses the following notation.

Notation A.20. Let f : X → Y be any map. The set of all points y of Y for which
card( f −1[{y}]) > ℵ0 is called the set of uncountable order of f and is denoted by
U ( f ). The set of all points y of Y for which 0 < card( f −1[{y}]) ≤ ℵ0 is called the
set of countable order of f and is denoted by D( f ).

The sets U ( f ) and D( f ) have the following properties.

TheoremA.21. Let Y be a separable metrizable space.

(1) If f : X → Y is a Borel measurable map from an analytic space X , then the set
of uncountable order U ( f ) is an analytic space.

(2) If f : X → Y is a Borel measurable map from an absolute Borel space X , then
the set of countable order D( f ) is a co-analytic space.

(3) If f : X → Y is a continuous surjection of a separable completely metrizable
space X such that Y = D( f ), then Y is an absolute Borel space. Moreover, X is
the union of a sequence Bn, n = 1, 2, . . . , of Borel subsets of X such that f |Bn is
a homeomorphism for each n.

R. Purves in [129] observed the following sufficient condition for a Borel
measurable map to be a B-map.

Theorem A.22. Let f : X → Y be a Borel measurable map from an absolute Borel
space into a separable metrizable space. If the set of uncountable order satisfies
card

(
U ( f )

) ≤ ℵ0, then f [A] is an absolute Borel space whenever A ∈ B(X ), whence
f is a B-map.

Proof. If card(U ( f )) ≤ ℵ0, then f −1
[
U ( f )

]
is a Borel subset of X , whence B =

X \ f −1
[
U ( f )

]
is an absolute Borel space. Suppose that A is a Borel subset of X .

If A ∩ B is a countable set, then f [A] is a countable set; so assume that C = A ∩ B
is uncountable. The graph of f |C is an uncountable absolute Borel space. Hence
there is a continuous injection g : N → graph( f |C) such that graph( f |C) \ g[N ] is
4 In [129] Purves calls such maps bimeasurable with the extra requirement that X and f [X ] be absolute

Borel spaces. It appears that this terminology has been used to preserve somewhat its analogy with the
definition of bicontinuous found in [85].
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countable. The composition h = πg, where π is the natural projection of graph( f |C)

onto f [C], is a continuous map on N into f [C] such that U (h) = ∅. By statement (3)
of the previous theorem, we have that N is the countable union of absolute Borel
spaces Bn such that h|Bn is a homeomorphism for each n. Now, as each h[Bn] is an
absolute Borel space contained in f [C] = π

[
graph( f |C) \ g[N ]] ∪ ⋃∞

n=1 h[Bn], we
have shown that f [A] = f [C] ∪ (

f [A] ∩ U ( f )
)
is an absolute Borel space. ✷

Purves’s converse and Darst’s extension of this theorem will be proved in Section
A.7. Darst’s extension plays a critical role in Section 2.1.2 of Chapter 2.

A.2.3. Baire property. Let X be a separable metrizable space. A very nice property
possessed by Borel subsets B of X is that there exists an open set G such that B \ G
andG\B are sets of the first category of X . Subsets of X with this property are said to
have the Baire property. The collection of all subsets of X having the Baire property
forms a σ -algebra of X . See [85, pages 87–88].

LetX andY be separablemetrizable spaces. Observe that the characteristic function
χB of a Borel subset of X has the property that χB

−1[U ] has the Baire property for
every open set U of R. A Borel measurable map f : X → Y also has the very nice
property that f −1[U ] has the Baire property whenever U is an open set of Y . Any
map with this property is said to have the Baire property. The collection of all such
maps from X into Y is closed under pointwise convergence. For a discussion of maps
having the Baire property, see [85, pages 399–403]. There is the following important
theorem [85, page 400].

Theorem A.23. Let X and Y be separable metrizable spaces. A map f : X → Y has
the Baire property if and only if there is a set F of the first category in X such that
f |(X \ F) is continuous.

A.3. Totally imperfect spaces

Totally imperfect spaces occur in a natural way in the study of singular sets (see
J. B. Brown and G. V. Cox [18]).

Definition A.24. A separable metrizable space is said to be totally imperfect if it
contains no nonempty, compact, perfect subsets (hence, contains no topological
copies of the classical Cantor ternary set).

The existence of such spaces is easily established by a transfinite construction. Let
us state the well-known Bernstein theorem. (See, for example, [85, Theorem 1, page
514].)

Theorem A.25 (Bernstein). Each uncountable completely metrizable space is the
union of two disjoint totally imperfect subsets each with the power of the continuum.

A simple consequence of the theorem is that each of two disjoint totally imperfect
sets whose union is the closed interval [0, 1] is not Lebesgue measurable since they
cannot contain topological copies of the classical Cantor set.
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Let us close with a simple proposition whose proof will be left to the reader.

PropositionA.26. Subspaces of totally imperfect spaces are totally imperfect; finite
products of totally imperfect spaces are totally imperfect; and, a separable metriz-
able space that is a countable union of totally imperfect, closed subspaces is totally
imperfect.

A.3.1. Inclusion properties. Observe the following inclusions for separable metriz-
able spaces.

MET ⊃ ANALYTIC ∪ CO-ANALYTIC

⊃ ANALYTIC ∩ CO-ANALYTIC = abBOR

⊃ METcomp = ab Gδ .

The second inclusion is Theorem A.3. It is well-known that the second and third
inclusions are proper ones. Totally imperfect spaces show the first inclusion is proper
by TheoremA.4.

A.4. Complete Borel measure spaces

We shall assume that the reader knows the definition of a countably additive measure
µ on an abstract set X , the definition of a complete measure, and the definition of a
σ -finite measure µ (where µ is a nonnegative, extended-real-valued function defined
on a σ -algebra M(X ,µ) of subsets of X ). A subset M of X is called µ-measurable
if M ∈ M(X ,µ). We denote a measure space by M(X ,µ) and the domain of the
measure function µ by M(X ,µ). As M(X ,µ) is important to our discussions, we
shall refer to the measure space M(X ,µ) as the triple

(
X ,µ,M(X ,µ)

)
.

Again we emphasize that all topological spaces are to be separable and metrizable.
On such a space X , a measure space M(X ,µ) is called a Borel measure space (often
called regular Borel measure space)

(1) if the σ -algebra M(X ,µ) contains the collection B(X ) of all Borel sets, and
(2) if, for each M in M(X ,µ), there exists a B in B(X ) such that M ⊂ B and

µ(B) = µ(M ).

Observe that if M(X ,µ) is a Borel measure space and M is a µ-measurable set
with µ(M ) < ∞, then there are Borel sets A and B such that A ⊂ M ⊂ B and
µ(A) = µ(M ) = µ(B) (equivalently, µ(B \ A) = 0). Hence, if M(X ,µ) is a σ -finite
measure space and M is a µ-measurable set, then there are Borel sets A and B such
that A ⊂ M ⊂ B and µ(B \ A) = 0.

The null collection {Z ∈ M(X ,µ) : µ(Z) = 0} of a measure space M(X ,µ) will
be denoted by N(X ,µ). Clearly, N(X ,µ) is a σ -ideal whenever the measure space
is complete. The collection of all complete Borel measure spaces will be denoted by
MEAScomp.
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A Borel measure space M(X ,µ) is continuous5 if µ({x}) = 0 whenever x ∈ X . In
general, the set D(X ,µ) = {x ∈ X : µ({x}) > 0} is not empty. Of particular interest
will be those Borel measure spaces for which card(D(X ,µ)) ≤ ℵ0. Clearly σ -finite
Borel measure spaces M(X ,µ) satisfy card(D(X ,µ)) ≤ ℵ0. The collection of all σ -
finite Borel measure spaces will be denoted by MEASsigma, and the subcollection of
all such measure spaces with µ(X ) < ∞will be denoted byMEASfinite. Observe that
all Hausdorff measures6 Hk on Rn with 0 ≤ k < n are not σ -finite, and D(Rn,H0) =
Rn. As the book deals mainly with complete Borel measure spaces that are either
σ -finite or finite we denote the collections of all such measure spaces by

MEAS = MEASsigma ∩MEAScomp, (A.4)

and

MEASfinite = MEASfinite ∩MEAScomp. (A.5)

The topological support of a Borel measure space M(X ,µ) is the smallest closed
set F , denoted by support(µ), for which µ(X \ F) = 0.

A.4.1. Gδ hull and Fσ kernel. If a Borel measure space M(X ,µ) is complete and
σ -finite, then the condition (2) above implies (see Exercise A.1)

(3) M ∈ M(X ,µ) if and only if there exist members A and B of B(X ) such that
A ⊂ M ⊂ B and µ(B \ A) = 0.

In the light of this, it will be convenient to introduce the following terminology: a
Borel set H of a space X such that W ⊂ H is called a Borel hull of W in the space
X ; and, a Borel set K of a space X such that K ⊂ W is called a Borel kernel of W
in the space X . Consequently, if a Borel measure space M(X ,µ) is in MEAS, then a
set M is µ-measurable if and only if there is a Borel kernel A and a Borel hull B of
M such that µ(B \ A) = 0. The last requirement can be strengthened to use Gδ hulls
and Fσ kernels whenever M(X ,µ) is in MEASfinite.

Theorem A.27. Let X be a separable metrizable space and M(X ,µ) be a complete,
finite Borel measure space. If M is a Borel subset of X , then there exists an Fσ

kernel A and there exists a Gδ hull B of M such thatµ(B\A) = 0. Consequently, each
µ-measurable set M also has an Fσ kernel A and a Gδ hull B such that µ(B\A) = 0.

Proof. Consider the collection M of all subsets M of X such that there exists an Fσ

kernel A and a Gδ hull B ofM such that µ(B \ A) = 0. Clearly, all closed sets and all
open sets belong to M. It is obvious that the complement of every member of M is
also a member of M. Let us prove that the collection is closed under countable union.
LetM = ⋃∞

i=1 Mi, whereMi, i = 1, 2, . . . , is a sequence of members ofM. For each
Mi, there is a Gδ hull Bi and an Fσ kernel Ai such that µ(Bi \ Ai) = 0. Let ε > 0. As

5 In some books a point x for which µ({x}) > 0 is called an atom, whence a continuous measure is
sometimes referred to as a nonatomic measure. Another name in the literature for these measures is
diffused measure.

6 For Hausdorff measures see Chapter 5 and Appendix D.
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µ(X ) < ∞, there is an open setUi that contains Bi with µ(Ui \Bi) < ε 2−i for each i.
HenceU = ⋃∞

i=1 Ui satisfiesµ
(
U \⋃∞

i=1 Bi
)

< ε andU ⊃ ⋃∞
i=1 Bi ⊃ M . Since ε is

an arbitrary positive number, there is aGδ hullB of
⋃∞

i=1 Bi such thatµ
(
B\⋃∞

i=1 Bi
) =

0. Obviously A = ⋃∞
i=1 Ai is an Fσ kernel ofM . Hence B is a Gδ hull ofM such that

µ(B \ A) ≤ µ
(
B \ ⋃∞

i=1 Bi) + µ
(⋃∞

i=1 Bi \ A
) ≤ ∑∞

i=1 µ(Bi \ Ai) = 0. We have
µ(B \ A) = 0, whence M ∈ M. It now follows that B(X ) ⊂ M and that M is the
completion of M(X ,µ). Since M(X ,µ) is complete, the theorem is proved. ✷

Remark A.28. A simple trick will permit us to extend the last theorem to the larger
collection MEAS of all complete, σ -finite Borel measure spaces. Indeed, for a σ -
finiteM(X , ν), letXn, n = 1, 2, . . . , be a countable collection of ν-measurable subsets
of X such that ν(Xn) < ∞ for each n and X = ⋃∞

n=1 Xn. For each M in M(X , ν)

define
µ(M ) = ∑∞

n=1
1

2n(1+ν(Xn))
ν(Xn ∩ M ).

It is easily seen thatµ is a finite measure on the σ -algebraM(X , ν) and that ν(N ) = 0
if and only if µ(N ) = 0. By the previous theorem, for each M in M(X , ν), there is
an Fσ kernel A and a Gδ hull B of M such that µ(B \ A) = 0, whence ν(B \ A) = 0.

It is well-known that topological copies M of analytic spaces are µ-measurable in
every complete, σ -finite Borel measure space M(X ,µ), [55, page 69]. Hence there
is an Fσ kernel A of M such that µ(A) = µ(M ). The next lemma is a stronger
statement. It is a consequence of a more general theorem by M. Sion [143, Theorem
4.2, page 774]. We shall give the proof by Sion adapted to the context of our book –
it does not assume that analytic spaces satisfy the property stated at the start of the
paragraph. This lemma will permit a second proof of that property in the next section.
Recall that N is the collection of all irrational numbers in I = [0, 1].
LemmaA.29. LetM(X ,µ) be a complete, σ -finite Borelmeasure space. If g : N → X
is a continuous surjection, then there exists a σ -compact kernel A of X such that
µ(X \ A) = 0.

Proof. By the previous remark there is no loss in assuming the measure space is
complete and finite. Let η < µ(X ). Let Fi, j be compact subsets of I such that
N = ⋂∞

i=1
⋃∞

j=1 Fi, j . Obviously, for each i, we have N = ⋃∞
j=1

(N ∩ Fi, j
)
. Hence,

for i = 1, there is an integer j1 such thatµ
(
g[N ∩ ⋃ j1

j=1 F1, j]
)

> η. Let n be a positive

integer and suppose that there are integers ji such thatµ
(
g[N ∩⋂n

i=1
⋃ ji

j=1 Fi, j]
)

> η.
Then there is an integer jn+1 such that

µ
(
g[(N ∩ ⋂n

i=1
⋃ ji

j=1 Fi, j) ∩ ⋃ jn+1
j=1 Fn+1, j]

)
> η.

For each n, the set Cn = ⋂n
i=1

⋃ ji
j=1 Fi, j is a compact subset of I and Cn ⊃ Cn+1. Let

C = ⋂∞
n=1 Cn. Clearly C is a compact subset of N , whence K = g[C] is a compact

subset of X . Let us show that µ(K) ≥ η. To this end, let U be a neighborhood of
K . Then V = g−1[U ] is a neighborhood of C in the topological space N . Let W be
an open set in I such that W ∩ N = V . As C = ⋂∞

n=1 Cn and each Cn is compact
and Cn+1 ⊂ Cn, there is an n0 such that Cn0 ⊂ W . Hence C ⊂ N ∩ Cn0 ⊂ V ,



A.4. Complete Borel measure spaces 189

whence g[C] ⊂ g[N ∩ Cn0 ] ⊂ U . We now have g[C] = ⋂∞
n=1 g[N ∩ Cn] and

µ
(
g[N ∩ Cn]

)
> η for each n. Hence µ(K) ≥ η. The lemma follows easily. ✷

A.4.2. Subspaces. Corresponding to a µ-measurable set Y of a Borel measure
space M(X ,µ) are two natural Borel measure spaces. The first one is the restric-
tion measure space M(Y ,µ|Y ), where the σ -algebra M(Y ,µ|Y ) is defined to
be {E ∩ Y : E ∈ M(X ,µ)} and the measure µ|Y on Y is given by

(
µ|Y )

(M ) =
µ(M ) whenever M ∈ M(Y ,µ|Y ). The second is the limited Borel measure space
M(X ,µ Y ) where the measure µ Y on the space X is given by(

µ Y
)
(M ) = µ(M ∩ Y ) whenever M ∈ M(X ,µ).

Observe that the limited Borel measureµ Y onX need not be complete evenwhenµ

is complete; an additional step is needed to make the limited Borel measure space
complete. For convenience, we shall assume that the completion step has been taken;
that is, for a complete, σ -finite Borel measure space M(X ,µ),

M(X ,µ Y ) = {M : µ
(
(B \ A) ∩ Y

) = 0 for some A

and B in B(X ) with A ⊂ M ⊂ B}.

A.4.3. Outermeasures. Often it is convenient to define the restriction of ameasureµ

to arbitrary subsets Y of the space X . To accomplish this we define the outer measure
of arbitrary subsets of X .

DefinitionA.30. LetM(X ,µ) be a complete, σ -finite Borel measure space and let W
be a subset of X . The outer measure µ∗(W ) of W is the extended-real number

µ∗(W ) = min {µ(B) : W ⊂ B and B ∈ B(X )}.

LemmaA.31. LetM(X ,µ) be a finite Borel measure space and let Y be a subset of X .
There is a complete Borel measure spaceM(Y , ν) such that ν(B) = µ∗(B) for every B
in B(Y ), whence ν(M ) = µ∗(M ) whenever M ∈ M(Y , ν).

Proof. let M be the collection of all subsets M of Y such that there is a Borel
kernel A and a Borel hull B in the space Y such that µ∗(B \ A) = 0. Obviously,
B(Y ) ⊂ M. It is clear that if M ∈ M, then Y \ M ∈ M. We need to show that
M is a σ -algebra for Y . Suppose that Mi, i = 1, 2, . . . , is a sequence in M. Let
Ai and Bi be a Borel kernel and a Borel hull of Mi in Y with µ∗(Bi \ Ai) = 0 for
each i. Then A = ⋃∞

i=1 Ai and B = ⋃∞
i=1 B1 are a Borel kernel and a Borel hull of

M = ⋃∞
i=1 Mi in Y . As B \ A ⊂ ⋃∞

i=1(Bi \ Ai), we have µ∗(B \ A) = 0. Thereby
M is a σ -algebra for Y . For each M in M let ν(M ) = µ∗(M ). It remains to show
that ν satisfies the conditions for a complete Borel measure on Y . It is sufficient to
show that ν is a measure on B(Y ). Let Bi, i = 1, 2, . . . , be a countable collection of
mutually disjoint members of B(Y ). For each i let Hi be a member of B(X ) such
that ν(Bi) = µ(Hi) and Bi = Hi ∩ Y . As the collection of Bi is mutually disjointed,
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we may further suppose that the collection of Hi is also mutually disjointed. Finally,
let H be a Borel hull of B = ⋃∞

i=1 Bi in the space X such that ν(B) = µ(H ). With
very little effort it can be seen that H = ⋃∞

i=1 Hi may be assumed. Consequently,
ν(B) = µ(H ) = ∑∞

i=1 µ(Hi) = ∑∞
i=1 ν(Bi). It now follows that ν is a measure

on B(Y ), and thereby on the σ -algebra M. That is, M(X , ν) = M. ✷

The resulting measure whose existence is assured by the lemma will be denoted
by µ|Y also.

We can now combine Lemma A.29 with the above lemma to prove that analytic
spaces Y are µ-measurable for each complete, σ -finite Borel measure spaceM(X ,µ)

with Y ⊂ X .

Theorem A.32. Let M(X ,µ) be a complete, σ -finite Borel measure space. If Y ∈
ANALYTIC and Y ⊂ X , then Y ∈ M(X ,µ).

Proof. Consider the restriction M(Y ,µ|Y ). There exists a σ -compact subset A of Y
such that

(
µ|Y )

(Y \ A) = 0. As µ∗(Y \ A) = (
µ|Y )

(Y \ A) = 0 and M(X ,µ) is
complete, we have Y ∈ M(X ,µ). ✷

A.4.4. Measures induced by measurable maps. For separable metrizable spaces X
and Y , letM(X ,µ) be a Borelmeasure space and let f : X → Y be a Borelmeasurable
map. The map f induces a measure f#µ on the space Y and the σ -algebra B(Y ) by
the formula

f#µ(B) = µ( f −1[B]) for B ∈ B(Y )

which has a completion (Y , f#µ,M(Y , f#µ)). That is, M ∈ M(Y , f#µ) if and only if
there exist A and B in B(Y ) such that

A ⊂ M ⊂ B and µ( f −1[B \ A]) = 0.

We shall use the notation f# M(X ,µ) to denote the induced σ -algebra M(Y , f#µ).
Additionally, if g : Y → Z is Borelmeasurable, where Z is also a separablemetrizable
space, then the composition gf : X → Z satisfies

(gf )#µ = g#f#µ,

(gf )# M(X ,µ) = g#f# M(X ,µ).

If M(X ,µ) is a complete, finite Borel measure space, then M(Y , f#µ) is also; clearly,
the requirement of finite cannot be replaced with σ -finite as the constant map will
show.

Due to the “ if andonly if ” requirement in the definitionof theσ -algebra f# M(X ,µ)

the Borel measure space M(X , id# µ) induced by the identity map id : X → X is the
measure completion of the Borel measure space M(X ,µ).

For subspacesX of separablemetrizable spacesY , the identitymap id : X → Y will
provide a means of extending Borel measure spaces. Indeed, we have the following
proposition.
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PropositionA.33. If X is a subspace of a separable metrizable space Y andM(X ,µ)

is a complete, σ -finite Borel measure space, then there exists a complete, σ -finite
Borel measure space M(Y , ν) such that

(
ν|X )

(B) = µ(B) whenever B ∈ B(X ).

Observe that X need not be a member of M(Y , ν) in the above proposition.
A simple application of measures induced by measurable maps is the following

product lemma.

Lemma A.34. Let M(Y1 × Y2,µ) be a complete, finite Borel measure space for a
separable metrizable product space Y1 × Y2 and let P1 be the natural projection
of Y1 × Y2 onto Y1. If X1 is a subset of Y1 such that X1 ∈ M(Y1,P1#µ), then
X1 × Y2 ∈ M(Y1 × Y2,µ).

Proof. LetA′ andB′ beBorel sets inY1 such thatA′ ⊂ X1 ⊂ B′ andP1#µ(B′\A′) = 0.
Then A = P1

−1[A′] and B = P1
−1[B′] are Borel sets in Y1 × Y2 such that A ⊂

X1 × Y2 ⊂ B and µ(B \ A) = 0. As µ is a complete Borel measure, we have
X1 × Y2 ∈ M(Y1 × Y2,µ) and the lemma is proved. ✷

Remark A.35. In the definition of the induced measure f#µ we have assumed that
the map f : X → Y was Borel measurable. The Borel measurability restriction was
made so that compositions of maps could be considered. If one were not concerned
with compositions, then it is possible to consider µ-measurable maps, for f −1[B]will
be a µ-measurable subset of X whenever B ∈ B(Y ). More precisely, let M(X ,µ)

be a complete Borel measure space and let f : X → Y be a µ-measurable map of
X into a separable metrizable space Y . Then the formula that defines f#µ on B(Y )

will result in a complete Borel measure space M(Y , f#µ). This approach was used in
Definition 1.3 on page 2 for complete, σ -finite Borel measure spaces M(X ,µ).

A.4.5. Embedding spaces. In Proposition A.33 a special embedding, namely the
inclusion map, was used. We also have the following proposition for an arbitrary
topological embedding whose proof is the same.

Proposition A.36. Let f : X → Y be a topological embedding of a space X into
a separable metrizable space Y and let M(X ,µ) be a Borel measure space. Then
ν = f#µ is a Borel measure on Y .

As an application, let C denote the usual Cantor ternary set in the interval [0, 1].
The well-known Cantor function on C defines a continuous measure µ on C. It is
also well-known that a nonempty, totally disconnected, perfect, compact metrizable
space X is homeomorphic to the Cantor ternary set C. Suppose that Y is a separable
metrizable space that contains a topological copy X of C and let h : C → X be a
homeomorphism. Then one can easily see that there is a complete Borel measure ν

on Y such that ν is the completion of h#µ and such that support(ν) = X . Clearly,
the measure ν is continuous and ν(Y ) = 1. Let us summarize this discussion as a
lemma.
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Lemma A.37. Let X be nonempty, totally disconnected, perfect, compact subset of a
separablemetrizable spaceY . Then there exists a continuous, completeBorelmeasure
space M(Y , ν) such that ν(Y ) = 1 and support(ν) = X .

Another application of the inclusion map is the proof that co-analytic spaces are
µ-measurable for every complete, σ -finite Borel measure space M(X ,µ). The proof
of the second statement of the theorem uses an argument given in [142] by Sierpiński
and Szpilrajn.

Theorem A.38. Let M(Y ,µ) be a complete, σ -finite Borel measure space and let X
be a co-analytic space. If X ⊂ Y , then X ∈ M(Y ,µ). Moreover, X has a σ -compact
kernel K such that µ(X \ K) = 0.

Proof. Let Y ′ be a separable completely metrizable space such that Y ⊂ Y ′. From
equation (A.1) of page 181, we have

X = Y ′ \ A = ⋃
α<ω1

Aα ,

where A is an analytic space. FromTheoremA.5, CorollaryA.7 and TheoremA.9, we
have that the constituents Aα are absolute Borel spaces. Let M(Y ,µ) ∈ MEAS and
f : Y → Y ′ be the inclusion map. Then M(Y ′, f#µ) is also in MEAS. As Y ′ \ X is an
analytic space we have that X is f#µ-measurable, whence

(
f#µ

)|X = µ|X . There is
anM inB(Y ′) such thatM ⊂ X and f#µ(X \M ) = 0. Since f is the inclusionmap, we
have µ(X \M ) = 0. By equations (A.2) and (A.3) of TheoremA.6, there is a ordinal
number β such that β < ω1 and M ⊂ ⋃

α<β Aα , whence µ
(⋃

β≤α<ω1
Aα

)= 0.
Each set Aα contains a σ -compact kernel Kα such that µ(Aα \ Kα) = 0. Hence
K = ⋃

α<β Kα is a σ -compact kernel of X such that µ(X \ K) = 0. ✷

A.5. The sum of Borel measures

For a fixed separable metrizable space X let M(X ,µ) and M(X , ν) be finite Borel
measure spaces. Let us explain what is meant by the sum of the Borel measures µ

and ν. For each Borel subset B of X the sum µ(B) + ν(B) is well defined. Hence
this function µ + ν defined on the σ -algebra B(X ) is a Borel measure on X . The
σ -algebra M(X ,µ + ν) of (µ + ν)-measurable sets consists of those subsets M for
which there are Borel sets A and B such that A ⊂ M ⊂ B and

(
µ + ν

)
(B \ A) = 0.

Clearly, the measure so defined is complete and is continuous whenever µ and ν are
continuous. The same procedure will work for an infinite sequence µn, n = 1, 2, . . . ,
of Borel measures on X . Clearly, N(X ,

∑∞
n=1 µn) = ⋂∞

n=1 N(X ,µn).
As we have mentioned earlier in Remark A.28, σ -finite Borel measure spaces are

associated in a natural way to finite Borel measure spaces. Indeed, for a σ -finite
Borel measure space M(X ,µ), let Xi, i = 1, 2, . . . , be a countable collection of
µ-measurable sets withµ(Xi) < ∞ for all i such thatX = ⋃∞

i=1 Xi. The finite-valued
measure is defined as

ν = ∑∞
i=1

1
2i(1+µ(Xi))

µ Xi.
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Clearly, the σ -algebras satisfy the equality M(X ,µ) = M(X , ν) and the collections
of null sets satisfy N(X ,µ) = N(X , ν).

Continuous measures will play an important role in our investigations of sets of
measure zero. Since we consider only complete, σ -finite Borel measure spaces,
the set D(X ,µ) consisting of all singletons with positive µ-measure is countable.
Consequently, the measure µ can be written uniquely as

µ = µ0 + ∑
x∈D(X ,µ) µ {x} ,

where µ0 is a continuous measure.

A.5.1. Approximation byBorelmeasurablemaps. Westate thewell-known theorem

TheoremA.39. Let X be a separable metrizable space. Ifµ is a complete, finite Borel
measure on X and f : X → [0, 1] isµ-measurable function on X , then there is a Borel
class 2 function g : X → [0, 1] such that f = g µ-almost everywhere.

Suppose that Y is a subspace of the Hilbert cube [0, 1]N. Denote by !n the coor-
dinate projection of the Hilbert cube onto the n-th coordinate space. If f : X → Y is
a µ-measurable map, then fn = !n f is a µ-measurable map for each n. From this
observation we infer that there is a Borel class 2 map g : X → Y such that f = g
µ-almost everywhere. Indeed, for each i, there is a Borel class 2 map gi : X → [0, 1]
such that µ

({x : fi(x) �= gi(x)}
) = 0. Clearly g = (g1, g2, . . . ) is a Borel class 2 map

and {x : f (x) �= g(x)} ⊂ ⋃∞
i=1{x : fi(x) �= gi(x)}.

A.6. Zahorski spaces

A subset of a separable metrizable space X is called a Zahorski set in X if it is the
empty set or it is the union of a countable collection of topological copies of the Cantor
set.AZahorski space is a space such that it is a Zahorski set in itself.7 Zahorski spaces
appear in a very prominent way in many proofs.

As Zahorski spaces are absolute Fσ spaces, we have

PropositionA.40. Every Zahorski set E in X is a Borel set and hence E ∈ M(X ,µ)

for every Borel measure µ on X .

There are some easily shown facts about Zahorski sets.

PropositionA.41. Let X be a separable metrizable space.

(1) If Ei, i = 1, 2, . . . , is a sequence of Zahorski sets in X , then
⋃∞

i=1 Ei is a
Zahorski set in X .

(2) Every nonempty Zahorski set in X can be written as a countable union of disjoint
topological copies of the Cantor set.

7 In his study [158, 159] of the derivative function, Z. Zahorski used a special class of subsets of the real
line called sets of the type M1. These sets are those that densely contain the union of countably many
topological copies of the Cantor set.
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(3) If E is a Zahorski set in X and U is an open subset of X , then E∩U is a Zahorski
set in X . If E is a nonempty Zahorski set in X , then there exists a closed subset
F of X such that E ∩ F is not a Zahorski set in X .

(4) If E is a nonempty Zahorski set in X , then there is a Zahorski set E′ in X such
that E′ is densely contained in E, and E′ is a set of the first Baire category of X .

(5) If E is a nonempty Zahorski set in X , then there exists a continuous, complete,
finite Borel measure µ on X such that µ(X \E) = 0 and such that µ(E∩U ) > 0
whenever U is an open set in X with E ∩ U �= ∅.

Proof. The proof relies on two well-known facts about the Cantor space {0, 1}N.
First, every nonempty simultaneously closed and open subset of {0, 1}N is homeo-
morphic to {0, 1}N. Hence, if A and B are simultaneously closed and open subsets of
{0, 1}N with A\B �= ∅, then A\B is homeomorphic to {0, 1}N. Second, the collection
of all simultaneously closed and open subsets of {0, 1}N is a base for the open sets
of {0, 1}N. Hence every nonempty open subset of {0, 1}N is the countable union of
mutually disjoint simultaneously closed and open subsets of {0, 1}N.

The first statement is obvious. The second statement follows from the above two
well-known facts.

To prove the third statement let U be an open subset of X and E be a Zahorski set
in X . Then E = ⋃∞

n=1 En where En is a topological copy of {0, 1}N for every n. As
U ∩ En is a Zahorski set for each n it follows that E ∩ U is a Zahorski set.

The fourth statement is a consequence of the fact that the set of non-end-points of
the Cantor ternary set contains a dense Zahorski subset of the Cantor ternary set.

To prove the last statement let E = ⋃∞
n=1 En, where En is a topological copy of

the Cantor ternary set. By Lemma A.37 there is a continuous, complete, finite Borel
measure µn on X such that µn(X ) = 1 and support(µn) = En. It is easy to see that
the measure µ = ∑∞

n=1
1
2n µn fulfills the requirements of statement (5). ✷

The above statement (5) leads to

DefinitionA.42. Let E be a nonempty Zahorski set contained in a separable metriz-
able space X . A Zahorski measure determined by E is a continuous, complete, finite
Borel measure on X such that µ(X \ E) = 0 and µ(E ∩ U ) > 0 whenever U is an
open set in X with E ∩ U �= ∅.

A.7. Purves’s theorem

Let us turn our attention to Borel measurable maps that preserve Borel measurability,
that is, B-maps (see Definition A.18). The images of absolute Borel spaces under
Borel measurable maps are always analytic spaces. A sufficient condition was given
in TheoremA.22 for the invariance of the class of absolute Borel spaces under Borel
measurable maps. The R. Purves theorem [129] asserts the necessity of this condition.
We state the theorem.

Theorem A.43 (Purves). Let X be an absolute Borel space and let f : X → Y be a
Borel measurable map of X into a separable metrizable space Y . Then a necessary
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and sufficient condition for f to be a B-map is card(U ( f )) ≤ ℵ0, where U ( f ) is the
set of uncountable order of f . Moreover, Y may be assumed to be the Hilbert cube.

The proof of the necessity of the condition will be split into four subsections, namely,
preliminaries and three reductions to special cases. The next definition will facilitate
the reductions.

DefinitionA.44. For absolute Borel spaces X and X ∗ let f and f ∗ be mappings of X
and X ∗ into separable metrizable spaces Y and Y ∗, respectively. Then f ∗ is said to
be a B-successor of f , denoted f �B f ∗, if there are injective B-maps Θ : X ∗ → X
and ϑ : f ∗[X ∗] → f [X ] such that

X
f−−−−→ f [X ] ⊂−−−−→ Y

Θ

� �ϑ

X ∗ f ∗
−−−−→ f ∗[X ∗] ⊂−−−−→ Y ∗

is a comutative diagram and ϑ−1 : ϑ f ∗[X ∗] → Y ∗ is a B-map.

Observe that if f : X → Y is a B-map then so is f |B : B → f [X ] whenever B is a
Borel subset of X . Hence the following transitivity statement is easily proved.

PropositionA.45. If f �B f ∗ and f ∗ �B f ∗∗, then f �B f ∗∗.

Let us show that the B-successor relation preserves B-maps.

Lemma A.46. Let f �B f ∗, whence f ∗[X ∗] is a Borel subset of Y ∗. If f is a B-map,
then f ∗ is a B-map.

Proof. Observe that the above commutative diagram yields f Θ[X ∗]=ϑ f ∗[X ∗]. As
ϑ−1 :ϑ f ∗[X ∗] → Y ∗ is a B-map, we have f ∗ is a B-map. ✷

In our applications of f �B f ∗, the maps f ∗ are surjections, that is f ∗[X ∗] = Y ∗.

A.7.1. Preparatory lemmas. We begin with some lemmas that will be used in the
proof. The first lemma is due to Purves [129, Lemma 6, page 155].

Lemma A.47. For an analytic space S let π : S → Y be a continuous map into a
separable metrizable space. If π [S] is uncountable, then there is a compact subset K
of S such that π [K] is uncountable.

Proof. As S is an analytic space, there is a continuous surjection f : N → S. Hence
the composition g = π f : N → π [S] is continuous surjection. Let µ be a non-
trivial, continuous, complete, finite Borel measure on the analytic space π [S]. By
LemmaA.29 there is a compact set K0 contained in N such that µ(g[K0]) > 0. Then
K = f [K0] is compact and π [K] is uncountable. ✷
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We turn next to a selection lemma. The usual selection theorems result in a mea-
surable selection. As a continuous selection is needed, we shall give a proof of a
measurable selection lemma from which a continuous one will result.

Lemma A.48. Let V and W be compact metrizable spaces and let K be a closed
subset of V × W such that πV [K] = V and πW [K] = W, where πV and πW are the
natural projection maps. Then there is a Borel measurable map s : V → W such that
s(v) ∈ πW

[(
πV |K)−1[{v}]] for every v in V . Moreover, if V is uncountable, then

there is a nonempty, perfect, compact subset V0 of V such that s|V0 is continuous.

Proof. The proof follows the one in L. Cesari [28, 8.2.i, page 275]. It is well-known
that there exists a continuous surjection ϕ : C → W , where C is the Cantor ternary
set. Clearly h = id×ϕ : V × C → V ×W is also a continuous surjection. Denote by
g : h−1[K] → V the natural projection π1 : V × C → V restricted to h−1[K]. Then,
for v in V , the set Fv = π2

[
g−1[{v}]] is closed in C, where π2 is the natural projection

of V × C onto C. For each v in V denote by σ(v) the smallest real number in Fv . The
function σ : V → C is a lower semi-continuous real-valued function, whence Borel
measurable. The composition s = ϕσ is the desired function in the lemma.

Suppose that V is uncountable. As graph(s) is an uncountable Borel set, there is
a topological copy M of the Cantor ternary set C contained in graph(s). Let V0 =
πV [M ]. Clearly, graph(s|V0) = M and πV |M is the inverse function of s|V0. Hence
s|V0 is continuous. ✷

The next lemma will use the hyperspace 2W of nonempty compact subsets of a
compact metrizable spaceW . The members of the hyperspace 2W are precisely those
subsets of W that are nonempty and closed. There is a compact metrizable topology
on 2W associated with the topology ofW . Indeed, let ρ be a metric for W and Hρ be
the Hausdorff metric on 2W . That is, if F1 and F2 are in 2W , then

Hρ(F1,F2) = min{r ∈ R : r ≥ ρ(x,F1) and r ≥ ρ(x,F2)

whenever x ∈ F1 ∪ F2}.

As W is compact, the topology of 2W is independent of the choice of the metric ρ

on W . It is easy to show that the set
⋃

F∈F F is a closed subset of the space W
whenever F is a closed subset of the hyperspace 2W . The following lemma is proved
in Kuratowski [86, Theorem 3, page 50].

Lemma A.49. Let P be the collection of all nonempty, perfect subsets of a compact
metrizable space W . Then P is a Gδ subset of the hyperspace 2W .

We close this preparatory section with Purves’s construction of a canonical home-
omorphism of {0, 1}N onto each nonempty perfect subset P of {0, 1}N. It will be
convenient to choose a particular metric on {0, 1}N, namely,

ρ(x, x′) = ∑∞
n=1

|xn−x′n|
n 2−n, x, x′ ∈ {0, 1}N .

Anice feature of thismetric is thatρ(x, x′) < 1
n 2−n if and only if xi = x′i for 1 ≤ i ≤ n.
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DefinitionA.50. Let P be a nonempty perfect subset of {0, 1}N. A positive integer m
is said to be a free coordinate of P if there are z and z′ in P such that zm �= z′m. Let
m(P) = min{m: m is a free coordinate of P}.

Let I be the set of all finite sequences c = (c1, c2, . . . , cm) of 0’s and 1’s. (The
length m of c will be denoted by l(c).) For each c in I, the set

N (c) = {x ∈ {0, 1}N : xi = ci for 1 ≤ i ≤ l(c)}

is a closed and open set in the space {0, 1}N, and N (d) ⊂ N (c) if and only if c is an
initial finite sequence of d. Clearly, diamN (c) ≤ 2

l(c)2
−l(c).

Observe that if P a nonempty perfect subset of {0, 1}N and z and z′ are in P, then
zi = z′i for 1 ≤ i < m(P). Hence there exist c(P) and c′(P) in I with l(c(P)) =
l(c′(P)) = m(P) such that their coordinates satisfy c(P)i = c′(P)i for 1 ≤ i < m(P),
c(P)m(P) = 0, c′(P)m(P) = 1, and such that

(a) P ∩ N (c(P)) �= ∅ and P ∩ N (c′(P)) �= ∅,
(b) P = (

P ∩ N (c(P))
) ∪ (

P ∩ N (c′(P))
)
.

Moreover, c(P) and c′(P) are unique in the sense that if d and d ′ in I are such that
l(d) = l(d ′) = m, di = d ′

i for 1 ≤ i < m, dm = 0, d ′
m = 1, and

(a′) P ∩ N (d) �= ∅ and P ∩ N (d ′) �= ∅,
(b′) P = (

P ∩ N (d)
) ∪ (

P ∩ N (d ′)
)
,

then m = m(P), d = c(P) and d ′ = c′(P). To see the uniqueness, suppose that v

is in P ∩ N (d) and v′ is in P ∩ N (d ′). Then vi = di = d ′
i = v′

i for 1 ≤ i < m and
vm = dm = 0 �= 1 = d ′

m = v′
m. Hence m(P) ≤ m and c(P)i = di for 1 ≤ i < m(P).

By condition (b), each of v and v′ are in either P∩N (c(P)) or P∩N (c′(P)). In either
case we have vj = v′

j = c(P)j = c′(P)j for 1 ≤ j < m(P). So, m ≤ m(P) and thereby
m = m(P). It is now evident that d = c(P) and d ′ = c′(P). Hence we have a map
ϕ : P �→ (c(P), c′(P),m(P)) of P into the subset I of I × I × N such that (c, c′,m)

satisfies l(c) = l(c′) = m, ci = c′i for 1 ≤ i < m, cm = 0 and c′m = 1. Finally, with
I supplied with the discrete topology andP supplied with the Hausdorff metric, let us
show that ϕ : P → I is continuous at P. From the definition of the Hausdorff metric,
the inequality H (P′,P) < 1

m(P)
2−m(P) implies that P′ ∩ N (c(P)) and P′ ∩ N (c′(P))

are not empty and that P′ is a subset ofN (c(P))∪N (c′(P)). The uniqueness ofm(P′),
c(P′) and c′(P′) gives m(P′) = m(P), c(P′) = c(P) and c′(P′) = c′(P) and thereby
the continuity is proved. The following lemma is now easily shown.

Lemma A.51. Let P ∈ P , where P is the collection of all nonempty perfect subsets
of {0, 1}N supplied with the Hausdorff metric H. With (0) and (1) in I, there are
unique y[P, (0)] and y[P, (1)] in I of length m(P) such that their i-th coordinates are
equal for 1 ≤ i < m(P) and their last coordinates are respectively equal to 0 and 1,
and such that

(a) P ∩ N (y[P, (0)]) �= ∅ and P ∩ N (y[P, (1)]) �= ∅,
(b) P = (

P ∩ N (y[P, (0)])) ∪ (
P ∩ N (y[P, (1)])).
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Moreover, if H (P′,P) < 1
m(P)

2−m(P) for P′ in P , then m(P′) = m(P), y[P′, (0)] =
y[P, (0)] and y[P′, (1)] = y[P, (1)], whence
(c) P′ ∩ N (y[P, (0)]) �= ∅ and P′ ∩ N (y[P, (1)]) �= ∅,
(d) P′ = (

P′ ∩ N (y[P, (0)])) ∪ (
P′ ∩ N (y[P, (1)])).

Let us summarize the features of the above lemma that are essential for our inductive
procedure. Let d be in I with l(d) = 1 and let P be in P . Then there is a unique
y[P, d] in I that satisfies the following properties.

(1.0) l(y[P, d]) ≥ 1 whenever l(d) = 1.
(1.1) N (y[P, d]) ∩ N (y[P, d ′]) = ∅ whenever l(d) = l(d ′) = 1 and d �= d ′.
(1.2) N (y[P, d]) ⊂ N (y[P, d ′]) if and only if d ′ is an initial finite sequence of d with

l(d) = 1.
(1.3) P ∩ N (y[P, d]) �= ∅ whenever l(d) = 1.
(1.4) P ⊂ ⋃

l(d)=1 N (y[P, d]).
(1.5) There is a positive number η1 such that if P′ is in P and H (P′,P) < η1 then

y[P′, d] = y[P, d] whenever l(d) = 1.

Apply the lemma to each nonempty perfect sets P ∩ N
(
y
[
P, d̃

])
with l

(
d̃
) = 1.

Then, for each d in I with l(d) = 2, there is a unique y[P, d] in I that satisfies the
following properties.

(2.0) l(y[P, d]) ≥ 2 whenever l(d) = 2.
(2.1) N (y[P, d]) ∩ N (y[P, d ′]) = ∅ whenever l(d) = l(d ′) = 2 and d �= d ′.
(2.2) N (y[P, d]) ⊂ N (y[P, d ′]) if and only if d ′ is an initial finite sequence of d with

l(d) = 2.
(2.3) P ∩ N (y[P, d]) �= ∅ whenever l(d) = 2.
(2.4) P ⊂ ⋃

l(d)=2 N (y[P, d]).
(2.5) There is a positive number η2 such that if P′ is in P and H (P′,P) < η2 then

y[P′, d] = y[P, d] whenever l(d) = 2.

The following lemma is now evident.

LemmaA.52. For each P in P and for each d in I there is a unique y[P, d] in I such
that

(0) l(y[P, d]) ≥ l(d);
(1) N (y[P, d]) ∩ N (y[P, d ′]) = ∅ whenever d ′ ∈ I, d �= d ′ and l(d) = l(d ′);
(2) N (y[P, d]) ⊂ N (y[P, d ′]) if and only if d ′ is an initial finite sequence of d;
(3) P ∩ N (y[P, d]) �= ∅;
(4) P ⊂ ⋃

l(d)=n N (y[P, d]) for n ∈ N;
(5) for each n inN there is a positive number ηn such that if P′ is inP andH (P′,P) <

ηn then y[P′, d] = y[P, d] whenever l(d) = n.

For x in {0, 1}N let d(n, x) be the initial finite sequence of x whose length is n.
Then, for each P in P , the sequence of compact sets

N
(
y[P, d(n, x)]), n = 1, 2, . . . ,
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is nested and the diameters converge to 0. Hence there is a unique y in {0, 1}N contained
in each member of the nested sequence. Since P ∩ N

(
y[P, d(n, x)]) �= ∅ for each n,

we also have y ∈ P. Clearly, y[P, d(n, x)] is an initial finite sequence of y for each n.

Definition A.53. Define ψ : {0, 1}N ×P → {0, 1}N ×P to be the map given
by (x,P) �→ (y,P), where y is the above described unique member of
P ∩ ⋂∞

n=1 N
(
y[P, d(n, x)]).

Lemma A.54. The map ψ : {0, 1}N ×P → {0, 1}N ×P is a continuous injection.
Moreover, the map ψ( · ,P) is a homeomorphism of {0, 1}N ×{P} onto P × {P} for
each P in P , and

ψ
[{0, 1}N ×P] = {(y,P) : y ∈ P ∈ P}

is an absolute Borel space.

Proof. Let (x,P) and ε > 0 be given. By condition (0) of the above lemma there
is an n such that diamN

(
y[P, d(n, x)]) < ε/2. Note that d(n, x′) = d(n, x) when-

ever x′ ∈ N (d(n, x)). By condition (5) of the same lemma there is an ηn such that
y[P′, d(n, x′)] = y[P, d(n, x′)] whenever P′ is such that H (P′,P) < ηn. Hence we
have

N
(
y[P, d(n, x)]) = N

(
y[P, d(n, x′)]) = N

(
y[P′, d(n, x′)]),

whence P′ ∩ N
(
y[P′, d(n, x′)]) = P′ ∩ N

(
y[P, d(n, x)]). Consequently, ψ(x′,P′) ∈

N
(
y[P, d(n, x)]) × {P′} whenever H (P′,P) < ηn. Also if H (P′,P) < min {ε/2, ηn},

then H (P′,P) + ρ
(
ψ(x′,P′),ψ(x,P)

)
< ε whenever x′ ∈ N

(
d(n, x)

)
. Thereby, the

continuity of ψ at (x,P) has been established.
To show that ψ is injective, let (x,P) �= (x′,P′). If P �= P′, then ψ(x,P) �=

ψ(x′,P′) is obvious. So suppose that P = P′ and x �= x′. There is an n such that
d(n, x) �= d(n, x′). By condition (1) of the above lemma we have ψ(x,P) �= ψ(x′,P).

Let P ∈ P . Then ψ( · ,P) is a continuous injective function into P × {P}. Con-
ditions (2) and (4) of the previous lemma yields the needed onto condition to show
that ψ( · ,P) is a homeomorphism. That the image of ψ is an absolute Borel space
follows from the fact that P is a Gδ subset of 2{0,1}N . ✷

Corollary A.55. For Borel measurable injections h : {0, 1}N → P , let H be the
map (x, t) �→ (x, h(t)) and M = ⋃

t∈{0,1}N{(y, t) : y ∈ h(t)}. Then H is a Borel

measurable injection such that the map � = H−1 ψ H is a B-homeomorphism
of {0, 1}N ×{0, 1}N onto M. Moreover, if h is continuous, then � is a homeomor-
phism.

Proof. Clearly H is a B-homeomorphism of {0, 1}N ×{0, 1}N onto M0 =⋃
t∈{0,1}N

{(
x, h(t)

)
: x ∈ {0, 1}N}

. Since ψ
[
M0

] ⊂ M0, we have that the restric-

tion of H−1 to ψ[M0] is also a B-homeomorphism of ψ[M0] onto M , thereby the
first assertion is proved. The second assertion of the corollary is now obvious. ✷

A.7.2. First reduction of the prof. The first reduction will be stated by two
propositions.
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Proposition A.56. Let X be an absolute Borel space. If f : X → Y is a Borel
measurable map with card(U ( f )) > ℵ0, then there exists a continuous surjection
f ∗ : NN → NN and there exist continuous injectionsΘ : NN → X and ϑ : NN → Y
such that f �B f ∗ and U ( f ∗) = NN.

Proof. The following diagram will help in the proof, where the indicated maps
are defined in the development below. Of course, we want to prove the diagram
is commutative.

NN
g−−−−→ M

π1|M−−−−→ π1[M ] ⊂−−−−→ X

π2g
� π2

� f |(π1[M ])
� f

�
π2[M ] π2[M ] −−−−→

id
f π1[M ] −−−−→⊂ Y

h

�
NN

AsU ( f ) is an uncountable analytic space there is a topological copy Y0 of NN that
is contained in U ( f ). Recall graph( f ) ⊂ X × Y and let π1 and π2 be the natural
projections of X × Y onto X and Y , respectively. As graph( f ) is an absolute Borel
space, the intersection M0 = π2

−1[Y0] ∩ graph( f ) is an uncountable absolute Borel
space. Note that N and NN are homeomorphic. Hence there is a continuous bijection
g : NN → M0 such that D = M0 \ g

[
NN

]
is a countable set. For convenience of

exposition, let M = g
[
NN

]
, an absolute Borel space. The projection π2 : M → Y0

is a continuous map. Remember that Y0 is homeomorphic to NN and observe that
Y0 \ π2[D] ⊂ π2[M ] ⊂ Y0. As π2[D] is countable, we have that π2[M ] and NN are
homeomorphic. Let h : NN → π2[M ] be a homeomorphism. Observe that π1[M ] ⊂
X and f

[
π1[M ]] = π2[M ]. The commutativity of the diagram is easily seen because

M ⊂ graph( f ). Let f ∗ = h−1π2g, Θ = π1g and ϑ = h. The composition Θ =
π1g : NN → π1[M ] is a continuous bijection sinceM ⊂ graph( f ). Clearly,U ( f ∗) =
h−1h[U ( f ∗)] = h−1[U (hf ∗)] = h−1[U ( f |(π1[M ]))] = h−1

[
π2[M ]] = NN. ✷

Proposition A.57. If f : NN → NN is a continuous surjection with U ( f ) = NN,
then there is a continuous surjection f ∗ : {0, 1}N → {0, 1}N and there are continuous
injective maps Θ and ϑ of {0, 1}N to NN such that f �B f ∗ and U ( f ∗) = {0, 1}N.

Proof. Let us first show that there exists a nonempty, perfect, compact subset F of
NN such that

(1) U ( f |F) = f [F],
(2) card(U ( f |F)) > ℵ0,
(3) f [F] is a nonempty perfect set.

Observe that a subset K of NN is compact if and only if there is a b in NN such that
1 ≤ di ≤ bi for every i whenever d ∈ K . We shall write d ≤ b whenever 1 ≤ di ≤ bi
for every i.
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Consider the product space

domain( f ) × domain( f ) × range( f ) = NN ×NN ×NN .

The set H = {
(x, b, y) ∈ NN ×NN ×NN : x ≤ b and x ∈ f −1

[{y}]} is a closed set.
Denote the projection (x, b, y) �→ (b, y) by π0. Then U (π0|H ) is the set

S = {
(b, y) ∈ domain( f ) × range( f ) :

card({x : x ≤ b} ∩ f −1[{y}]) > ℵ0
}
,

an uncountable analytic space. S has the property that if (b, y) is in S and b ≤ b′ then
(b′, y) is in S. Let π1 be the projection (b, y) �→ y. Clearly, π1π0 is the projection
(x, b, y) �→ y. So π1|S maps S onto range( f ). Hence U (π1|S) = NN. By Lemma
A.47 there is a compact subset K of S such that π1[K] is uncountable. Let B be the
perfect part of π1[K]. Let π2 be the projection (b, y) �→ b. As π2[K] is a compact
subset ofNN, there is a b0 such that π2[K] ⊂ {x ∈ NN : x ≤ b0}. LetA be the compact
set {x ∈ NN : x ≤ b0} ∩ f −1[B]. Clearly, A× B ⊂ domain( f ) × range( f ). We assert
that the continuous map f |A is a surjective map of A to B. Let y ∈ B. Then (b, y) ∈ K
for some b in NN. As b ≤ b0, we have {x : card({x : x ≤ b} ∩ f −1[{y}]) > ℵ0} ⊂ A.
Hence we have that f |A is surjective map and also U ( f |A) = B. Let F be the perfect
part of the uncountable compact set A = domain( f |A). As A \ F is a countable set,
we have that F satisfies the conditions (1) – (3) listed above.

Let us define f ∗. Let h1 : {0, 1}N → F and h2 : {0, 1}N → f [F] be homeomor-
phisms. Then f ∗ = h2

−1( f |F)h1 is a B-successor of f |F . ✷

A.7.3. Second reduction of the prof. The first reduction has led us to a continuous
surjection f : {0, 1}N → {0, 1}N with U ( f ) = {0, 1}N. The second reduction will
again be stated as a proposition.

Proposition A.58. If f : {0, 1}N → {0, 1}N is a continuous surjection with U ( f ) =
{0, 1}N, then there exists a continuous surjection f ∗ : {0, 1}N → {0, 1}N and there
exist continuous injections Θ and ϑ of {0, 1}N to {0, 1}N such that f �B f ∗ and
U ( f ∗) = {0, 1}N, and such that the map h given by h(y) = (ϑ f ∗)−1[{y}] is a
continuousmap of {0, 1}N intoP satisfying h(y) ⊂ Θ−1f −1[{y}] for each y in {0, 1}N.
Proof. Let L be the subset of 2{0,1}N × {0, 1}N consisting of all points (F , y) such
that F ⊂ f −1[{y}], where F is a nonempty closed set. As f is continuous, the set L
is compact. The set S = L ∩ (P × {0, 1}N)

is a Gδ set. Let π be the map given by
(F , y) �→ y. As U ( f ) = {0, 1}N, we have π [S] = {0, 1}N. By LemmaA.47 there is a
compact subset K of S such that π [K] is uncountable. Let

V = π [K] and W = {P : (P, y) ∈ K for some y},

so K ⊂ W × V . With πV , the natural projection of the product onto V , apply
Lemma A.48 to find a nonempty, perfect, compact subset V0 of V and a continuous
map s : V0 → W such that

(
y, s(y)

) ∈ (πV |K)−1[{y}] for every y in V0. As s[V0] is
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a compact set in 2{0,1}N we have that X ∗ = ⋃
P∈s[V0] P is a perfect subset of {0, 1}N.

Observe that graph( f |X ∗) = graph( f ) ∩ (X ∗ × V0). Hence ( f |X ∗)−1[{y}] = s(y)
for each y in V0. Let Y ∗ = V0, and let h1 : {0, 1}N → X ∗ and h2 : Y ∗ → {0, 1}N
be homeomorphisms. Define Θ = h1, ϑ = h2

−1 and f ∗ = h2fh1. Then f �B f ∗.
Observe that h1

−1 yields a homeomorphism � between 2X
∗
and 2{0,1}N . As h(y) =

( fh1)−1[{y}] = h1
−1( f |X ∗)−1[{y}] = h1

−1[s(y)] = �(s(y)), the continuity of h is
established. ✷

A.7.4. Third reduction of the prof. The second reduction of the proof has led us
to a continuous map f : {0, 1}N → {0, 1}N such that f −1[{y}] is a nonempty perfect
subset of {0, 1}N for each y in {0, 1}N, themap h given by y �→ f −1[{y}] is continuous,
and U ( f ) = {0, 1}N.

PropositionA.59. Let f : {0, 1}N → {0, 1}N be a continuous map such that f −1[{y}]
is nonempty perfect subset of {0, 1}N for each y in {0, 1}N, let h : y �→ f −1[{y}]
be continuous, and let U ( f ) = {0, 1}N. Then there exists a homeomorphism g of
{0, 1}N ×{0, 1}N onto graph( f ) such that g( · , y) is a homeomorphism of {0, 1}N ×{y}
onto f −1[{y}] × {y} whenever y ∈ {0, 1}N.

Proof. The proof follows immediately from Corollary A.55. ✷

CorollaryA.60. Let f be as in the previous proposition. For the continuous map f ∗
defined by f ∗(x, y) = y, (x, y) ∈ {0, 1}N ×{0, 1}N, there exist homeomorphisms

Θ : {0, 1}N ×{0, 1}N → {0, 1}N and ϑ : {0, 1}N → {0, 1}N

such that f �B f ∗.

Proof. Let π : graph( f ) → domain( f ) be the natural projection. Then ϑ = id and
Θ = πg are the required homeomorphisms. ✷

As all of the maps Θ’s and ϑ’s in the propositions that appear in the reductions of
the proof are continuous injections we have the final lemma.

Lemma A.61. Let X be an absolute Borel space and Y be a separable metrizable
space. If f : X → Y is a Borel measurable map and U ( f ) is uncountable, then there
exist continuous injections

Θ : {0, 1}N ×{0, 1}N → X and ϑ : {0, 1}N → Y

such that the map f ∗ defined on (x, y) ∈ {0, 1}N ×{0, 1}N by f ∗(x, y) = y satisfies
f �B f ∗.

It is well-known that there is a Borel subset B of {0, 1}N ×{0, 1}N such that f ∗[B]
is an analytic set that is not a Borel set, whence f ∗ is not a B-map.
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A.7.5. The prof of necessity. The proof is now quite straightforward. For if there
is a B-map f : X → Y with card(U ( f )) > ℵ0, then, by Lemma A.61, there is a
Borel measurable map f ∗ such that f ∗ is not a B-map, domain( f ∗) is an absolute
Borel space and f �B f ∗. But, by Lemma A.46, this map f ∗ is a B-map, thereby a
contradiction has been established.

A.8. Comments

Except for the development of Purves’s theorem, the material of this chapter is found
in standard reference books, for example, Kuratowski [85] and Federer [55].

In mathematical literature, the name B-map appears for the first time here. As
stated in the footnote to the definition (see page 183), Purves [129] calls these maps
bimeasurable maps. B-maps appear in Chapters 2 and 3.

Purves’s theorem, proved in 1966, sharpens the well-known theorem of N. Lusin
[93, pages 237–252] that a countable-to-one Borel measurable map defined on a sep-
arable, completely metrizable space preserves Borel sets. The later proof of Purves’s
theorem by Mauldin [103] used the notion of parametrization. Proposition A.59 is
an example of a parametrization. See [102, 27, 29, 147] for further references to
parametrizations. Another proof of Purves’s theorem is indicated in the book [145]
by S. M. Srivastava. The proof of Purves’s theorem given here has been modeled
after the one in [129] but with the following changes. The relation �B introduced
here is more suitable for the proof than the equivalence relation defined in [129].
LemmaA.54 is an improvement over the one proved in [129]. Darst [37] was the first
one to strengthen Purves’s construction to yield a weaker form of Proposition A.58.
The final form of this proposition appears here for the first time.

Exercises

A.1 For a σ -finite Borel measure space M(X ,µ) define c M(X ,µ) to be the family
of all subsetsM of X with the property that there exist Borel subsets A and B of
X such that A ⊂ M ⊂ B and µ(B \A) = 0. Show that this family is a σ -algebra.
Show that the measure µ has an extention to c M(X ,µ) and that this extension
of µ is a complete Borel measure on X with M(X ,µ) ⊂ c M(X ,µ). Show that
M(X ,µ) is complete if and only if M(X ,µ) = c M(X ,µ).

A.2 Prove Proposition A.45.



Appendix B

Probability theoretic approach

The notions of universally measurable set and universally null set in a space found
their way in the 1960s into probability theory. This is not surprising since these
notions use Borel measure theory. In a purely measure theoretic setting, questions
concerning properties of universally null sets in a measure space were studied very
early on as witnessed by works of Polish mathematicians in the first half of the
twentieth century. The book has included one of the questions of that time, namely,
problemP21 inS.Banach [7]. This article contains a commentary byE.Marczewski in
which sequences of characteristic functions were applied. In earlier appearing papers
Marczewski (= E. Szpilrajn) [150, 151] had formalized this use of characteristic
functions. Our development of universally measurable sets and universally null sets
in a purely measure theoretic sense will use terminology of these earlier works. For
probability theory we shall use the terminology from the book Measure Theory by
D. L. Cohn [32, pages 288–296].1 Another useful reference is the recent book [145]
by S. M. Srivastava.

B.1. Basic definitions

Let X be a set and let A be a σ -algebra of subsets of X . The pair (X ,A) is called a
measurable space (of course, in themeasure theory sense).Anonempty subsetF ofX
is called an atom2 of the measurable space (X ,A) ifF = ⋂{A ∈ A : x ∈ A } for some
x inF . Clearly each x ofX is a member of some atom of (X ,A). Observe thatF1 = F2

whenever F1 and F2 are atoms of (X ,A) with F1 ∩ F2 �= ∅. For measurable spaces
(X1,A1) and (X2,A2) a map f : X1 → X2 is said to be measurable if f −1[A] ∈ A1

whenever A ∈ A2. For a measurable space (X ,A) a map f : X → Y , where Y is a
topological space, is said to be Borel measurable if f −1[U ] ∈ A whenever U is an
open set of Y (often we shall simply say measurable in this context). A measurable
space (X1,A1) is said to be isomorphic to a measurable space (X2,A2) if there is a
bijection f : X1 → X2 such that f is measurable and f −1 is measurable. A probability
measure space is a triple (X ,A,P) where (X ,A) is a measurable space and P is a

1 In addition to the cited book, useful resources for this discussion are the Blackwell article [12] and the
paper [94] by G. W. Mackey.

2 The definition follows that of Szpilrajn [150, 151] and not of the book Measure Theory by D. L. Cohn
[32, pages 288–296].
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probability measure on (X ,A) (that is, P(X ) = 1). Of great interest in probability
theory is conditional probability, hence it is not assumed that all atoms are singleton
sets. In his article [12], D. Blackwell pointed out the existence in the literature of
three negative examples concerning formulas in probability theory and also the fact
that no such examples existed for perfect probability measure spaces, which will be
defined next (see [60]).

DefinitionB.1. Aprobabilitymeasure space (X ,A,P) is said to be perfect if, for each
measurable real-valued function f and for each subset E of R such that f −1[E] ∈ A,
there is a Borel set B contained in E such that P( f −1[E]) = f#P(B).

Notice that this notion is defined by properties of measurable real-valued functions.
Actually many properties in probability theory are defined by imposing conditions
on real-valued functions, as we shall see later. This permits the use of the existence
of many natural classes of subsets of R that are invariant under Borel isomorphisms.
The space R has a countable subbase S for the open sets, which of course generates
B(R), the collection of all Borel subsets of R. It will be convenient if the measurable
space (X ,A) also has this property. For this we have the following simple proposition.

Proposition B.2. Let (X ,A) be a measurable space and f be a real-valued map. If
f is an isomorphism between (X ,A) and ( f [X ],B( f [X ])), then there is a countable
subcollectionE ofA such that the smallest σ -algebra of X that containsE is precisely
A, and { f −1[{r}] : r ∈ f [X ] } is precisely the collection of all atoms of (X ,A).

The proof is obvious, let E = { f −1[S] : S ∈ S }, where S is a countable subbase
for the open sets of f [X ]. A useful fact is that every separable metrizable space
is isomorphic to some subspace of R. Clearly the isomorphism is generally not a
homeomorphism.Asecond is that if Y is a separable metrizable space and f : X → Y
is a map defined on a set X then there is a natural smallest topology on X such that f
is continuous; moreover, if f is an injection then f is a homeomorphism of X into Y .

With the aid of ExerciseB.2we can prove that surjections induce natural σ -algebras
and probability measures.

Lemma B.3. Let X and X ′ be sets, let g : X ′ → X be a surjection, and let (X ,A) be
a measurable space. If A′ is the smallest σ -algebra of X ′ that makes g measurable,
then the following statements hold.

(1) If (X ,A,P) is a probability measure space, then there is a probability measure
space (X ′,A′, g#P) such that g#g#P = P. Moreover, if (X ,A,P) is perfect, then
(X ′,A′, g#P) is perfect.

(2) If (X ′,A′,P′) is a probability space, then (X ,A, g#P′) is such that g#g#P′ = P′.
Moreover, if (X ′,A′,P′) is perfect, then (X ,A, g#P′) is perfect.

Proof. We leave the proof of the first assertion of each statement to the reader.
Assume that (X ,A,P) is perfect and let f ′ : X ′ → R be measurable. As A′ is

the smallest σ -algebra that makes g measurable, the map f = f ′g−1 is a mea-
surable map of X into R. Let E be a subset of R such that f ′−1[E] ∈ A′. Then
f −1[E] = g

[
f ′−1[E]] ∈ A. There is a Borel set B in R such that B ⊂ E and
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P( f −1[B])=P( f −1[E]). As g#P( f ′−1[B])=P
(
g
[
f ′−1[B]])=P( f −1[B]) and g#P

( f ′−1[E])=P
(
g
[
f ′−1[E]])=P( f −1[E])we have shown that (X ′,A′, g#P) is perfect.

Assume that (X ′,A′,P′) is perfect and let f : X → R be measurable. Clearly
f ′ = fg is ameasurablemap ofX ′ intoR. LetE be a subset ofR such that f −1[E] ∈ A.
Then f ′−1[E] = g−1

[
f −1[E]] ∈ A′. There is a Borel subset B of R such that B ⊂ E

and P′( f ′−1[B]) = P′( f ′−1[E]). It follows that g#P′( f −1[B]) = g#P′( f −1[E]),
whence (X ,A, g#P′) is perfect. ✷

We have the following.

PropositionB.4. Let (X ,A) be isomorphic to an analytic separable metrizable space
and let Y be a separable metrizable space. If f : X → Y is a measurable map, then
f [E] is an analytic subspace of Y whenever E ∈ A.

Proof. Let A be an analytic space and let g : X → A be an isomorphism between
(X ,A) and (A,B(A)). If E is in A, then g[E] is a Borel subset of A. Hence g[E] is
also an analytic subspace of A. Since g|E : E → g[E] is an isomorphism between the
measurable spaces (E,A |E) and (g[E],B(g[E])), where A |E = {A ∩ E : A ∈ A },
it follows that (E,A |E) is isomorphic to the analytic space g[E]. It is easily seen that
F = f (g|E)−1 : g[E] → Y is a Borel measurable map from the analytic space g[E]
into Y . Hence f [E] = F[g[E]] is an analytic subspace of Y . ✷

Corollary B.5. If (X ,A) is isomorphic to an analytic separable metrizable space
and if E ∈ A, then (E,A |E) is isomorphic to an analytic space.

B.2. Separable metrizability

Let us turn to the question of what condition is necessary and sufficient onA to assure
that (X ,A) is isomorphic to a separable metrizable space. The solution was known
many years ago. A necessary condition is easily found. Indeed, from Proposition B.2
we infer that if (X ,A) is isomorphic to a separable metrizable space Y , then a subbase
S of Y and the isomorphism will yield a countable subcollection E of A such that
the smallest σ -algebra that contains E is precisely A. (Recall that the collection of all
finite intersections of S forms a base for the open sets of Y .) Hence there must exist a
countable subcollection E of A such that A is the smallest σ -algebra that contains E.
Let us turn to the proof that this condition is also sufficient.

B.2.1. An embedding. A separable metrizable topology can be associated with
a measure space (X ,A) by imposing the following natural conditions on the
σ -algebra A.

Definition B.6. Let (X ,A) be a measurable space. A countably generated 3 σ -alge-
bra A is a pair (A,E) such that E is a countable subset of A and A is the smallest
σ -algebra of X that contains E. (Often E will not be displayed; the collection E is

3 The usual terminology in the literature for this notion is “separable.” Consistent with [32] we have used
“countably generated” because the word separable is already being used in another context.
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said to generate A.) A σ -algebra A on X is said to be separating if the collection of
all atoms of (X ,A) is

{ {x} : x ∈ X
}
.

The notion of separating by a σ -algebra A concerns the property of disjoint subsets
being contained in disjoint members of A. Obviously distinct atoms as defined earlier
are separated byA. Consequently if every atom ofA is a singleton then distinct points
are separated by A. An analogous situation occurs for distinguishing pseudo-metric
spaces and metric spaces in metric topology theory. We shall see shortly that atoms
are members of A for countably generated measurable spaces (X ,A).

In the terminology of the above definition a measurable space (X ,A) is isomorphic
to a separable metrizable space only if it is a separating, countably generated mea-
surable space. We now turn to the converse. We first show that a countably generated
measurable space corresponds to a natural measurable map f : X → {0, 1}N. This
argument is given byMarczewski in his commentary included in Banach [7] (see also
Szpilrajn [150, 151]).

Theorem B.7. Let (X ,A) be a countably generated measurable space and let E

generate A. Then there is a measurable map f : X → {0, 1}N such that f [E] is both
closed and open in the subspace f [X ] of {0, 1}N whenever E ∈ E and such that
f −1[{ y}] is an atom in A whenever y ∈ f [X ]. Hence there is a pseudo-metric d on
X such that E is a subbase for the open sets of the topology τ given by d, each E in
E is both closed and open, and A is the precisely the collection of Borel subsets of X
for the topology τ . Moreover the continuous map f is an open map if X is endowed
with the topology τ .

Proof. Let {Ei : i ∈ N } be a well ordering of the countable collection E. For each
i let fi be the characteristic function of the set Ei, and let f : X → {0, 1}N be the
map whose i-th coordinate map is fi. Note that if Yi = { y ∈ {0, 1}N : yi = 1 },
then f −1[Yi] = Ei and X \ Ei = f −1

[{0, 1}N] \ f −1[Yi]. As A is a σ -algebra of X
containing E it follows that the f −1[B] ∈ A for each Borel set B of {0, 1}N. Hence
A = { f −1[B] : B ∈ B({0, 1}N) }. It is now clear that f −1[{ y}] is an atom of A

whenever y ∈ f [X ]. A pseudo-metric is now induced on X by a metric on {0, 1}N.
The remaining parts of the proof is left to the reader. ✷

The next theorem is now obvious.

Theorem B.8. For a measurable space (X ,A) the set X has a separable
pseudo-metrizable topology τ such that A is precisely the σ -algebra of Borel sets
of X if and only if (X ,A) is a countably generated measurable space. Moreover,
the sharpening of pseudo-metrizability to metrizability is achieved by requiring the
added condition of separating.

Let us now turn to the definitions of standard measurable spaces and analytic
measurable spaces.
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Definition B.9. A measurable space (X ,A) is called standard if there is a separable
completely metrizable space Y and there is a measurable bijection4 f : X → Y such
that A is the smallest σ -algebra that contains { f −1[B] : B ∈ B(Y ) }. A measurable
space (X ,A) is called analytic if there is an analytic space Y and there is ameasurable
bijection f : X → Y such thatA is the smallest σ -algebra that contains { f −1[B] : B ∈
B(Y ) }.

Let us add definitions that correspond to absolute measurable spaces and absolute
null spaces as defined in Chapter 1.

Definition B.10. Ameasurable space (X ,A) is called absolute measurable if there is
an absolute measurable space Y and there is a measurable bijection f : X → Y such
that A is the smallest σ -algebra that contains { f −1[B] : B ∈ B(Y ) } and is called
absolute null 5 if Y is an absolute null space.

Clearly, every standard measurable space is analytic. It is easily seen that a mea-
surable space (X ,A) is standard if and only if, in the definition, the space Y is some
subset of N or the space Y is equal to R. Standard measurable spaces are invariant
under isomorphisms. But standard measurable spaces are not preserved by measur-
able maps. Indeed, surjective measurable maps of standard measurable spaces yield
analytic measurable spaces. But it is true that analytic measurable spaces are, in some
sense, invariant under measurable surjections (see the exercises).

B.3. Shortt’s observation

R. M. Shortt’s observation, announced in [138] and published in [139], concerns
separable metrizable measurable spaces (X ,A) – that is, separating, countably gener-
ated measurable spaces. For such measurable spaces he observed that the σ -algebra
A can have many countable subcollections E that generate A. Consequently, many
topologically different metrics can result in the same collection of Borel sets if X is
an uncountable set. For a separable metrizable space X with topology τ the collection
of Borel sets will be denoted by B(X , τ). Shortt further observed

Proposition B.11. If (X , τ1) and (X , τ2) are separable metrizable spaces with
A = B(X , τ1) = B(X , τ2) and if (X ,M(X ,P1),P1) and (X ,M(X ,P2),P2) are
continuous, complete, Borel probability measure spaces with P1|A = P2|A, then
M(X ,P1) = M(X ,P2).

Let us state Shortt’s observations as a theorem in topological form. For the
definition of universally measurable set and universally null set see Chapter 2.

Theorem B.12 (Shortt). Let X be a set and let τ1 and τ2 be topologies on X that make
X into separable metrizable spaces with B(X , τ1) = B(X , τ2). Then a subset M of
X is a universally measurable set in the topological space (X , τ1) if and only if it is a
universally measurable set in the topological space (X , τ2). Also, a subset M of X is

4 In [32] f is required to be an isomorphism in both definitions.
5 For an isomorphism f this notion is called nonmeasurable in the discussion of Grzegorek’s example

given in Chapter 1.
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a universally null set in the topological space (X , τ1) if and only if it is a universally
null set in the topological space (X , τ2).

It is now clear that the study of separating, countably generated measurable
spaces (X ,A) of measure theory is equivalent to a study of measurable spaces
(Y ,B(Y )) associated with subspaces of Y of {0, 1}N. As {0, 1}N is isomorphic (that is,
B-homeomorphic in the terminology of the book) to R one may as well assume that
only subspaces of R are of interest. But, as the isomorphism f between (X ,A) and
(Y ,B(Y )) need not be a homeomorphism in the event that X is a separable metrizable
space and A = B(X ), the measure theoretic approach to absolute measurable spaces
may not be useful in the investigation of topological and geometric properties of some
separable metric spaces.

We have the following simple theorem, where “absolute measurable space” is in
the sense of Chapter 2.

TheoremB.13. Suppose that (X ,A) is a separating, countably generatedmeasurable
space. Then every continuous probability measure space (X ,A,P) is perfect if and
only if there is a metric d on X such that A = B((X , d)) and (X , d) is homeomorphic
to an absolute measurable space.

Proof. Suppose that (X ,A) is a separating, countably generated measurable space
such that every continuous complete Borel probability measure space (X ,A,P) is
perfect. Let d be a metric on X such that (X , d) has A = B((X , d)) and such that
(X , d) is homeomorphic to a topological subspace of {0, 1}N. Denote by f the home-
omorphism of X onto Y = f [X ] ⊂ {0, 1}N and let g be a homeomorphism of
{0, 1}N onto the classical Cantor ternary set T in R. Clearly f ′ = g f is a measur-
able real-valued function, indeed, a homeomorphism of X onto Z = g[Y ]. Let µ

be a continuous, complete, finite Borel measure on T and let B be a Borel subset
of T such that µ(B) = µ∗(Z). We have

(
µ|Z)

(Z) = µ(B). If µ(B) = 0 then Z is
µ-measurable. Suppose µ(B) > 0 and let P′ = c (µ|Z), where c−1 = µ(B). The
measure P = f ′−1

#P
′ is a continuous probability measure on X such that f ′

#P = P′.
As the probability measure P|A on (X ,A) is perfect, there is Borel subset A of T such
that A ⊂ Y and P( f ′−1[A]) = P(X ). Since A is an absolute Borel space contained
in Z we have cµ(A) = P′(A) = f ′

#P(A) = P(X ) = 1. Hence Z is µ-measurable.
Consequently, Z is µ-measurable for every complete, finite Borel measure µ and
thereby Z is a universally measurable set in T . So Z is an absolute measurable space.

To prove the converse, let d be a metric on X such that A = B((X , d)) and (X , d)

is an absolute measurable space. Let f : X → R be a Borel measurable function and
(X ,A,P) be a continuous probability measure space. Suppose A ⊂ R and f −1[A] ∈
A. As f −1[A] is a Borel set in the absolute measurable space X we have that it is also
an absolute measurable space. Hence there is an absolute Borel space M contained
in f −1[A] such that P(M ) = P( f −1[A]). Denote the Borel measurable map f |M
by g and the measure P|M by ν. Now g[M ] is an analytic space because f is a Borel
measurable map and M is an absolute Borel set in X . So µ = g#ν is a complete,
finite Borel measure on g[M ]. There is an absolute Borel space B contained in g[M ]
such that µ(B) = µ(g[M ]). Since g−1[B] ⊂ M and µ(E) = (

g#ν
)
(E) ≤ (

f#P
)
(E)
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for allBorel setsE contained ing[M ], wehaveP( f −1[A]) = P(M ) = ν(g−1g[M ]) =
µ(g[M ]) = µ(B) ≤ (

f#P
)
(B) ≤ P( f −1[A]). Hence (X ,A,P) is perfect. ✷

As a result of Lemma B.3 we have the following corollary.

CorollaryB.14. Let (X ,A) be a countably generatedmeasurable space. Then every
probability measure space (X ,A,P) is perfect if and only if there is a pseudo-metric d
on X such that A = B((X , d)) and the quotient metric space X / d is homeomorphic
to an absolute measurable space.

Recalling the definition of absolute measurable (X ,A) from Definition B.10, we
have the following measure theoretic characterization of absolute measurable (X ,A)

and absolute null (X ,A).

Theorem B.15. A countably generated measurable space (X ,A) is absolute measur-
able if and only if every continuous probability measure space (X ,A,P) is perfect.
A countably generated measurable space (X ,A) is absolute null if and only if no
continuous probability measure space (X ,A,P) exist.

As every analytic measurable space (X ,A) is absolute measurable we have

Corollary B.16. If (X ,A) is analytic, then every probability measure space
(X ,A,P) is perfect.

From a measure theoretic point of view, a subset E of a set X is defined to be
universallymeasurable in ameasurable space (X ,A) if for each probabilitymeasureP
on (X ,A) there are sets A and B in A such that A ⊂ E ⊂ B and P(B \ A) = 0.
For separable metrizable spaces X , notice that this is the same as the definition for
universally measurable sets in X as defined earlier if A = B(X ). The measure
theoretic definition of universally null set in a measurable space (X ,A) is easily
formulated. The reader is left with this task.

B.4. Lusin measurable space

In [12] Blackwell gave the following definition of Lusin measurable space.

Definition B.17. Ameasurable space (X ,A) is said to be a Lusin measurable space6

if it is a countably generated measurable space such that f [X ] is an analytic subset
of R whenever f : X → R is a measurable map.

He also proved

Theorem B.18. Let (X ,A) be a measurable space. Then (X ,A) is a Lusin space if
and only if it is analytic.

Proof. Suppose (X ,A) is Lusin. We may assume that (X ,A) is also separating.
There is an isomorphism h of X into {0, 1}N and there is a homeomorphism g of

6 This definition is not the same as the one given in [32]; the two definitions are completely different.
Blackwell’s Lusin spaces are the Suslin spaces in [32].
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{0, 1}N into R. As the real-valued function f = gh is measurable f [X ] is analytic
space. Consequently (X ,A) is analytic. Conversely, suppose (X ,A) is analytic. Then
there is an isomorphism h of (X ,A) onto (Y ,B(Y )) for some analytic space Y . Let
f : X → R be a measurable map. Then g = fh−1 is a Borel measurable map of Y
into R. As Y is analytic we have g[Y ] is analytic, whence f [X ] is analytic. ✷

Blackwell observed that every continuous probability measure space on a Lusin
measurable space (X ,A) is perfect (see Corollary B.16). He asked if the converse
implication was also true. We have seen that absolute measurable (X ,A) is charac-
terized by the condition that (X ,A) is a countably generated measure space with the
property that every continuous probability measure space (X ,A,P) is perfect. Hence
the answer to Blackwell’s question is in the negative. The question was answered by
R. B. Darst andR. F. Zink [41] – they showed that any uncountable absolute null space
X contained in [0, 1] with A = B(X ) is clearly not analytic in the measure theoretic
sense because the identity map is measurable; there are no continuous probability
measure spaces (X ,A,P), whence every such probability measure space is perfect.
A better example is X = Z ∪ [1, 2], where Z is an uncountable absolute null space
contained in [0, 1]; there are many continuous probability measure spaces.

The Blackwell question was refined further. Observe that not every continuous
image of an uncountable absolute null space contained in [0, 1] is a universally mea-
surable set inR ; witness theGrzegorek example. This leads to the followingdefinition
of a D-space (X ,A).

Definition B.19. Ameasurable space (X ,A) is a D-space if it is countably generated
and if f [X ] is a universally measurable set in R whenever f is a measurable real-
valued function on X .

Obviously we have

Proposition B.20. If (X ,A) is a D-space, then (X ,A) is absolute measurable.

Darst showed in [33] the existence ofD-spaces that are not Lusinmeasurable spaces
provided Lusin singular sets in R exists. (We have seen that Lusin singular sets in
R can be shown to exist by assuming the continuum hypothesis.) Let us give his
proof. Darst’s example is any Lusin set X contained in [0, 1] with the usual σ -algebra
A = B(X ). Clearly (X ,A) is not analytic in the measure theoretic sense and hence is
not a Lusin measurable space. It remains to show that (X ,A) is aD-space, that is, the
images of Lusin sets in R under Borel measurable real-valued functions are absolute
null spaces. This is proved in Chapter 4. Again, a better example is X = Z ∪ [1, 2],
where Z is a Lusin singular set contained in [0, 1].

In G. Kallianpur [80], D-spaces were characterized – of course, with only measure
theoretic notions – as follows.

Theorem B.21 (Kallianpur). Let (X ,A) be a countably generated measurable space.
Then (X ,A) is a D-space if and only if every probability measure space (X ,A′,P) is
perfect whenever (X ,A′) is a countably generated measurable space with A′ ⊂ A.
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Proof. There is no loss in assuming (X ,A) is separating. If (X ,A′) is a countably
generatedmeasurable space such thatA′ ⊂ A, then the identity map g is a measurable
bijection of (X ,A) into (X ,A′). Hence a measurable real-valued function f ′ with
respect to A′ results in a measurable function f = f ′g with respect to A. Also, a
measurable real-valued function f with respect to A results in a countably generated
σ -algebra A′ = { f −1[B] : B ∈ B(R) } contained in A and f is measurable on the
measurable space (X ,A′). Hence each f that is measurable on (X ,A) can be factored
as f = f ′g for some f ′ that is measurable on (X ,A′).

Suppose that (X ,A) is a D-space and let A′ ⊂ A. If f ′ is a measurable real-valued
function with respect to A′, then f = f ′g is also measurable with respect to A and
hence f [X ] is an absolute measurable metrizable space contained in R. So f ′[X ] is
an absolute measurable space. By Corollary B.14 and Lemma B.3 we have that every
probability measure space (X ,A′,P′) is perfect.

For the converse let f be a measurable real-valued function on X with respect
to A. Then there is an A′ contained in A and a factorization f = f ′g. As every
probability measure space (X ,A′,P′) is given to be perfect, by Corollary B.14, f ′[X ]
is an absolute measurable space contained in R. Since f [X ] = f ′[X ], the converse
now follows by Lemma B.3. ✷

B.5. Comments

The literature of the subject matter of this appendix uses measurable mappings into R.
This restriction is not really needed since the only property of R that is used is the
metric completeness of the usual metric of R. Actually the needed properties are
that R is an absolute measurable space in the sense of Chapter 1 and that every
absolute measurable space is Borel isomorphic to a subspace of R. We have stated
Theorem B.13 and its corollary with this comment in mind.

For countably generated measurable spaces (X ,A) the conditions of standard, ana-
lytic, D-space, absolute measurable, and countably generated become successively
weaker; and none of them are equivalent. It is easily seen that (X ,A) is any one
of these if and only if (E,A |E) is for each E in A. Darst’s example shows that not
every D-space is an analytic measurable space; his example relies on the continuum
hypothesis. It would be interesting to know if there exists one such in ZFC, the usual
axioms of set theory.

Question. In ZFC, are there uncountable absolute null spaces such that every Borel
measurable image of them are absolute null spaces?

The example that shows that not every absolute measurable space is a D-space is the
example of Grzegorek (see Section 1.4.2 on page 20).

The separating requirement on a countably generated measurable space can be
ignored; the only consequence of this is that the atoms may not be singletons, just
as for pseudo-metric spaces (see Theorem B.7). Perhaps definitions using the prefix
pseudo would have been appropriate; we have not done so.

As mentioned at the start of this appendix, the book Measure Theory by Cohn
[32] is a major source. Its Chapter 8 has a rather self-contained development of the
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measure theory of completely metrizable spaces. The reader may wish to turn to it as
another source for analytic spaces. Cohn’s development does not cover the intricacies
of absolute null spaces which has been included in our appendix.

The reader is reminded again that the probability theoretic approach to absolute
measurable space and to universally measurable set is not very suited to the study
of topological properties or of geometric properties of the measurable space (X ,A)

because the σ -algebra structure A does not necessarily carry any information on such
properties.

Exercises

B.1. Use the Bernstein decomposition of the interval [0, 1] to show the existence
of a probability measure space (X ,A,P) that is not perfect.

B.2. Let g : X ′ → X be any surjection and let (X ,A) be a measurable space. Prove
the following:

(a) A′ = { g−1[A] : A ∈ A } is the smallest σ -algebra of X ′ such that g is
measurable.

(b) g[A′] ∈ A and g−1
[
g[A′]] = A′ for every A′ in A′.

(c) If (X ,A,P) is a probability measure space, then there is a probability
measure space (X ′,A′, g#P) such that g#g#P = P, where g#P(A′) =
P(g[A′]), A′ ∈ A′.

(d) If (X ′,A′,P′) is a probability space, then (X ,A, g#P′) is a probability
space such that g#g#P′ = P′.

B.3. Prove:

(a) A measurable space (X ,A) is standard if and only if it is isomorphic to
(Z ,B(Z)) for some subset Z of N or for Z equal to R.

(b) Standard measurable spaces are invariant under isomorphisms.
(c) If (X ,A) is a standard measurable space and if E ∈ A, then (E,A |E) is a

standard space. Hint: An absolute Borel space is isomorphic to a subspace
of N or to R.

(d) Characterize those separating countably generated measurable spaces
(X ,A) with the property that f [X ] is an absolute Borel space for every
measurable real-valued map on (X ,A).

B.4. Prove: Let (X ,A) be an analytic measurable space and let (X ′,A′) be a sepa-
rating countably generated measurable space. If f : X → X ′ is a measurable
surjection, then (X ′,A′) is analytic. Prove that in the above assertion that
analytic may be replaced with D-space, but not with standard or absolute
measurable. Does the Purves Theorem have any consequences for standard
measurable spaces?

B.5. Prove: Each bijective measurable map between standard measurable spaces
is an isomorphism. Prove: Each bijective measurable map between analytic
measurable spaces is an isomorphism. The last assertion is Proposition 8.6.2
of [32]. Hint: Use TheoremA.8.
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Cantor spaces

It is well-known that a compact metrizable space X is homeomorphic to {0, 1}N if and
only if X is nonempty, perfect and totally disconnected (hence, zero-dimensional).
The classical Cantor ternary set in R is one such, thus the name Cantor spaces. There
are many other classical examples. A useful one is the product space k N, where k is
a finite space endowed with the discrete topology and with card(k) > 1. It will be
necessary that Cantor spaces be investigated not only as topological spaces but also
as metric spaces with suitably assigned metrics.

The development presented in this appendix is based on E.Akin [2], R. Dougherty,
R. D. Mauldin and A. Yingst [47], and O. Zindulka [162, 161]. There are two goals.
The first is to present specific metrics on Cantor spaces which are used in the com-
putations of Hausdorff measure and Hausdorff dimension in Chapter 5. The second
is to discuss homeomorphic measures on Cantor spaces. The lack of an analogue of
the Oxtoby–Ulam theorem for Cantor spaces motivates this goal.

Topologically characterizing homeomorphic, continuous, complete, finite Borel
measures on Cantor spaces is a very complex task which has not been achieved
yet. Simple topological invariants do not seem to characterize the homeomorphism
classes of such measures. By introducing a linearly ordered topology consistent with
the given topology of a Cantor space, which is always possible, a linear topological
invariant has been discovered by Akin in [2]. In another direction, by restrict-
ing the investigation to those measures that are product probability measures, a
courser equivalence relation can be introduced (see Mauldin [105]). This equiva-
lence relation permits the introduction of algebraic methods. Recent advances in
this approach have been made by Dougherty, Mauldin and Yingst [47] and by T. D.
Austin [6].

The appendix begins with a discussion of properties of the simultaneously closed
and open sets of k N. The next section concerns metrics on Cantor spaces. There
are many topologically compatible metrics on {0, 1}N – of special interest are those
induced by homeomorphisms between {0, 1}N and k N. The remaining sections con-
cern shift invariant productmeasures on k N – these are theBernoullimeasures.Akin’s
development of the uniform Bernoulli measures is presented. For card(k) = 2, the
Bernoulli measures are closely tied to the binomial coefficients; suchmeasureswill be
called binomial Bernoulli measures. The discussion of binomial Bernoulli measures
is based on Dougherty, Mauldin and Yingst [47], Akin [3, 2], and Austin [6]. Also
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presented are theworks ofHuang [78], Mauldin [105], Navarro-Bermúdez [115, 116],
and Navarro-Bermúdez and Oxtoby [117].

C.1. Closed and open sets

Let k be a finite set consisting of more than one point and let n be a positive inte-
ger. Then the natural projection πn : k N → k n defines a natural collection Pn of
simultaneously closed and open sets of k N; namely,

Pn = {πn
−1[{w}] : w ∈ k n}.

The members of this collection are called cylinder sets of k N. The collection Pn+1

refines Pn, and the collection
⋃

n∈N
Pn is a countable base for the open sets of k N.

Let X be a nonempty, compact, perfect, zero-dimensional metrizable space and
let h : X → k N be a continuous bijection. Then h−1[Pn], n ∈ N, is a sequence of
simultaneously closed and open sets of X , and

⋃
n∈N h−1[Pn] is a countable base for

the open sets of X . Moreover, for any metric on X , limn→∞ mesh(h−1[Pn]) = 0.

Notation C.1. For each n in N let πn : {0, 1}N → {0, 1} n be the natural projection.
For each subset E of {0, 1} n let 〈E〉 denote the simultaneously closed and open set
πn

−1[E]. For singleton sets {e} the notation 〈{e}〉 will be abbreviated as 〈e〉.
Clearly a subset A of k N is a cylinder set if and only if there exist an n in N and a

point e in kn such that 〈e〉 = A. If A is a nonempty simultaneously closed and open
set in k N, then there is a unique integer n such that 〈πn[A]〉 = A and 〈πm[A]〉 �= A
whenever m < n. Indeed, by the compactness of A, there is a large m such that some
finite subset Em, which is unique, of km is such that πm[A] = Em and 〈Em〉 = A. The
least such m is the required n.

Lemma C.2. Let U = {U1,U2, . . . ,Uk } and V = {V1,V2, . . . ,Vl} be finite sets. Then
the following statements hold.

(1) If ϕ is an injection of U into V , then there exists a continuous injection
� : U N →V N, where the respective i-th coordinates xi and �(x)i of x and �(x)
satisfy �(x)i = ϕ(xi). Moreover, if ϕ is a bijection, then � is a bijection.

(2) Ifψ is amap fromU toV , then there exists a continuous injection� : U N → V N.

The proof of the first statement is straightforward. For the proof of the second
statement observe that there exists a natural homeomorphismbetweenV N and (V k )N

and there is a natural bijection from U to the graph of ψ .
There are two natural continuous surjections from k N to itself. It will be convenient

to adopt the notation used in the above lemma to make some formulas less cumber-
some. That is, for x in k N, the i-th coordinate of x will be denoted by xi. Associated
with the space k N is the continuous surjection s : k N → k N defined by s(x)i = xi+1,
i ∈ N, for x in k N, called the shift map. The other continuous surjection is formed by
permutations of N. Of course, the resulting map is a homeomorphism.

The following is a lemma which provides a homeomorphism between {0, 1}N and
{0, 1, 2}N.
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Lemma C.3. For each e in {0, 1} ∪ {0, 1}2, let 〈e〉 be the cylinder set in the space
{0, 1}N. Let M be any one of the subsets of {0, 1} ∪ {0, 1}2 given by

U = {(0), (1, 0), (1, 1)} and V = {(1), (0, 1), (0, 0)}.

Then there is a homeomorphism h : {0, 1}N → M N and there is a continuous map
n : {0, 1}N ×N → N such that the i-th coordinate of y = h(x) is the unique member
of M determined by the n(x, i − 1)-th and the n(x, i)-th coordinates of x, where
n(x, 0) = 1.

Proof. The key to the proof is the following property of the collection U : If a and b
are in {0, 1}, then

I(a, b) = {(a), (a, b)} ∩ U

is a singleton set.
Recall that there is a natural homeomorphism between U N and NU , the collection

of all functions f on N into a set U . The topology on U is the discrete topology, and
the topology on NU is the topology of pointwise convergence. The map h will be
inductively defined at each x of {0, 1}N; that is, the value h(x), which is a function on
N into U , will be defined inductively. We will inductively define n(x, · ) at the same
time. For k = 1, let h(x)

(
1
)
be the unique member of U determined by I(x1, x2). For

convenience define n(x, 0) = 1. Define n(x, 1) = n(x, 0) + 1 if h(x)
(
1
) = (x1) and

n(x, 1) = n(x, 0) + 2 if h(x)
(
1
) �= (x1). Suppose that h(x)

(
i
)
, i = 1, 2, . . . , k , and

n(x, j), j = 0, 1, . . . , k , have been determined so that h(x)
(
i
)
is the unique member

of I(xn(x,i−1), xn(x,i−1)+1) whenever 1 ≤ i ≤ k and that n(x, j) = n(x, j − 1) + 1
if h(x)

(
j
) = (xn(x, j−1)), and n(x, j) = n(x, j−1)+2 if h(x)

(
j
) �= (xn(x,j−1))whenever

1 ≤ j ≤ k . The definition of h(x)
(
k + 1

)
and n(x, k + 1) follows the same procedure

as the first step of the induction. Clearly h is surjective. Let us show that h is injective
and that h−1 is continuous, whence h is a homeomorphism. Let x and x′ be distinct
members of {0, 1}N. If x1 �= x′1, then h(x)

(
1
) �= h(x′)

(
1
)
. Also, if (x1, x2) �= (x′1, x′2),

then h(x)
(
i
) �= h(x′)

(
i
)
for some i with i ≤ 2. Let k be such that xj = x′j for j < k

and xk �= xk . We may assume k > 2. Suppose that h(x)
(
i
) = h(x′)

(
i
)
for every i such

that i ≤ 2(k + 1). Then n(x, i) = n(x′, i) for each i with i ≤ 2k + 1. Consequently,
xj = x′j whenever j ≤ 2k . But this denies xk �= x′k . Hence h(x)

(
i
) �= h(x′)

(
i
)
for some

i. Thereby h is bijective. Finally, let us turn to the continuity of h−1 at y in N U . Let
x = h−1(y) and 〈(x1, . . . , xk)〉 be a cylinder set for x. By construction, h(x) = y. As
k < n(x, 2k + 2) we have h−1[〈(y1, . . . , y2k)〉] ⊂ 〈(x1, . . . , xk )〉 and the continuity of
h−1 at y is verified.

Observe that n(· , ·) is continuous at (x, k). This follows from the fact that h−1 is a
homeomorphism and N is a discrete space.

The proof for the case M = V = {(1), (0, 1), (0, 0)} follows by interchanging 0
and 1 in the proof for the case M = U . ✷

The homeomorphism h : {0, 1}N → U N has some nice properties that will be
useful later. For n ∈ N let !n : U N → U n be the natural projection and let En =
{0, 1}n ∪ {0, 1}n+1 ∪ · · ·∪{0, 1}2n. There is a natural map en : u �→ en(u) fromU n into
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En associated with h such that 〈en(u)〉 is a cylinder set in {0, 1}N, h−1
[
!n

−1[{u}]] =
〈en(u)〉 and such that if u = (u′, u′′) is in U n−1 ×U then en(u) = (en−1(u′), e1(u′′)).
Hence we have the following

Lemma C.4. Let h : {0, 1}N → U N, En and en be as in the preceding paragraph.
There is a natural map Hn : u �→ 〈en(u)〉 of U n into the collection of all cylin-
der sets of {0, 1}N such that Hn(u) = h−1

[
!n

−1[{u}]] and such that Hn(u) =
〈(en−1(u′), e1(u′′))〉 ⊂ 〈en−1(u′)〉 = Hn−1(u′) whenever u = (u′, u′′) ∈ U n−1 × U.

There is a natural subset of R associated with continuous, complete, finite Borel
measures on a separable metrizable space X .

Notation C.5. For a separable metrizable space X , the collection of all simultane-
ously closed and open sets is denoted by CO(X ). For a continuous, complete, Borel
measure µ on X , the value set of µ is the subset vs(µ,X ) of R defined by

vs(µ,X ) = {µ(U ) : U ∈ CO(X )}.

A simple compactness argument yields

Proposition C.6. If X is a nonempty, compact, perfect, 0-dimensional metrizable
space, then card(CO(X )) = ℵ0. Furthermore, if µ is a continuous, complete, finite
Borelmeasure onX , thenvs(µ,X ) is a countable dense subset of the interval [0,µ(X )]
and contains the end points of the interval.

The inverse image of general Borel measurable maps need not preserve open or
closed sets, but inverse image of continuous maps preserve both open and closed sets.
Hence the following proposition is an easy exercise.

Proposition C.7. Let X1 and X2 be be topological copies of {0, 1}N and let µ be a
continuous, complete, finite Borel measure on X1. If f : X1 → X2 is a continuous
map, then vs( f#µ,X2) ⊂ vs(µ,X1) with equality whenever f is a homeomorphism.

C.2. Ametric for kN

Let k be a finite set with card(k) > 1 and consider ωk , the set of all functions
f : ω → k , where ω is the set of all finite ordinal numbers. For each finite subset A
in ω the collection of all functions from A into k is denoted by Ak . There is a natural
map of ωk onto Ak . By providing k with the discrete topology, the set ωk becomes
a compact, metrizable, topological space that is homeomorphic to k N. Let us define
metrics on ωk that are useful in the computation of certain Hausdorff measures on
k N. For distinct f and g in ωk define

χ( f , g) = min {n ∈ ω : f (n) �= g(n)},
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that is, χ( f , g) is the length of the initial segment that is common to f and g. Let
0 < α < 1 and define the metric

d(k ,α)( f , g) =
{

αχ( f ,g), if f �= g,

0, if f = g.

That d(k ,α) is indeed a metric is left as an exercise. The Cantor cube C(k ,α) is the
topological space ωk endowed with the metric d(k ,α).

Let k and l be finite sets and let 0 < α < 1. Denote by f × g the members of the
metrizable product space C(k ,α) × C(l,α), where f ∈ ωk and g ∈ ωl. Let us display
a natural a metric for C(k ,α) × C(l,α) that makes the map � : ωk × ωl → ω(k × l)
defined by

�( f × g)(n) = 〈f (n), g(n)〉, n ∈ ω,

into an isometry. To this end, we write the value �( f × g) as 〈f , g〉. Clearly, � is an
injection. Next let !1 and !2 be the respective projections of k × l onto k and onto l.
For each h in ω(k×l)wehave!1h ∈ ωk and!2h ∈ ωl. Define� : ω(k×l) → ωk×ωl
to be the map given by�(h) = !1h×!2h. Clearly, � is an injection. Moreover,��

and �� are the identity maps on ωk × ωl and ω(k × l), respectively. Define δ to be
the maximum metric on C(k ,α) × C(l,α), that is,

δ( f × g, f ′ × g′) = max {d(k ,α)( f , f
′) , d(l,α)(g, g

′)}.

That δ is an isometry is left as an exercise.
We have the following proposition.

Proposition C.8. C(k ,α)×C(l,α) andC(k× l,α) are isometric spaces. Hence there
are metrics on k N, lN and (k × l)N such that the natural bijection of k N × l N to
(k × l)N is an isometry.

Let us consider the space ω(mk) where m ∈ ω and 1 ≤ m. Recall that each n in ω

is expressed uniquely as n = qm + r where q is the quotient and r is the remainder
upon division by m. For 0 ≤ r < m let !r : mk → k be defined by !r( f ) = f (r)
whenever f ∈ mk . It is easy to see that, for h ∈ ω(mk), the map !rh is in ωk . Define
the map �m(h) on ωk as follows:

�m(h)(n) = !rh(q) where n = qm + r ∈ ω.

It is easily seen that�m : ω(mk) → ωk is an injection. Next, for f ∈ ωk , define�m( f )

to be the map in ω(mk) as follows:

�m( f )(q) = 〈 f (qm), f (qm + 1), . . . , f (qm + r − 1)〉 where q ∈ ω.

It is easily seen that �m : ωk → ω(mk) is an injection. Moreover �m�m and �m�m

are identity maps on ωk and ω(mk), respectively. We leave the following inequalities
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as exercises.

α1−m d(k ,α)( f , f
′) ≥ d(km,αm)(�m( f ),�m( f ′))

whenever f ∈ k ω and f ′ ∈ k ω. (C.1)

d(km,αm)(h, h
′) ≥ d(k ,α)(�m(h),�m(h′))

whenever h ∈ (km)ω and h′ ∈ (km)ω, (C.2)

The inequalities yield the next proposition.

Proposition C.9. Let k be a finite set with card(k) > 1. For m ∈ ω with m ≥ 1 there
exists a bi-Lipschitzian map �m from C(k ,α) onto C(km,αm). Consequently, there
exist metrics on k N and (k m)N and a bi-Lipschitzian homeomorphism between k N

and (k m)N when they are endowed with these metrics.

C.3. Bernoulli measures

There are natural probability measures P on finite sets k , called Bernoulli mea-
sures on k , where its σ -algebra is the collection of all subsets of k . Of course,∑

w∈k P({w}) = 1. We shall call the measure uniformly distributed or uniform
distribution if P({w}) = 1

card(k)
for every w in k . Also, we shall call the measure

a binomial Bernoulli distribution (binomial distribution for short) if card(k) = 2.
Let k be a finite set with card(k) > 1. If µn is a Bernoulli measure on k for

each n in N, then there is the usual product probability measure µ = Xn∈N µn.
If every factor probability measure µn is the same Bernoulli measure P, then the
resulting product measure will be called a Bernoulli measure for P and will be
denoted by β(P, k) (or simply β(P) if the finite set k is fixed). Clearly the Bernoulli
measures β(P, k) are continuous Borel measures on k N which are shift invariant,
that is,

s# β(P, k) = β(P, k), (C.3)

and which satisfy the product measure property

β(P, k)
(
πn

−1[{w}]) = ! n
i=1P({wi}) whenever n ∈ N, (C.4)

where πn is the natural projection of k N onto k n. Moreover, if µ is a probability
measure on k N that is shift invariant and satisfies the above product measure property,
then µ is the Bernoulli measure β(P, k) on k N with P = π1#µ.

Notation C.10. Let k be a finite set with m = card(k) > 1. The Bernoulli measure
β(P)with the uniform distribution P will be denoted by β( 1

m ). The Bernoulli measure
β(P) with binomial distribution P will be denoted by β(r, 1 − r), where P[{w}] ∈
{r, 1 − r} ⊂ (0, 1) ⊂ R whenever w ∈ {0, 1}.
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C.4. Uniform Bernoulli distribution

Implicit in the notation β
( 1
m

)
is a finite set k with m = card(k) > 1 and the uniform

Bernoulli measure on k . Clearly this notation has assumed that if k1 and k2 are finite
sets with the same cardinality then the two respective uniform Bernoulli measures
on k1 and k2 are the same. This assumption will present no topological difficulties
since this identification leads to natural bijections between k1

N and k2
N that are

homeomorphisms; hence the respective Bernoulli measures induced by the uniform
Bernoulli measures on k1 and k2 are homeomorphic measures. The reference to k N

will be dropped from the value set also. It is easily seen that the value set of the
measure β

( 1
m

)
is

vs
(
β
( 1
m

)) = { i
mn : i = 0, . . . ,mn , n ∈ N

}
. (C.5)

Let us turn to the case of β
( 1
m1

)
and β

( 1
m2

)
with m1 �= m2, that is, finite sets

k1 and k2 with unequal cardinalities. The question is: What are necessary and suf-
ficient conditions for the existence of a homeomorphism h : k1

N → k2
N such that

h#β
( 1
m1

) = β
( 1
m2

)
? To answer this question, we make some preliminary observa-

tions. For finite sets ki, i = 1, . . . , j , let k = X
j
i=1 ki, mi = card(ki) for each i, and

m = m1 · · ·mj . Observe that X
j
i=1 β

( 1
mi

)
is a Borel measure on k . From Proposition

C.8 we infer the existence of a homeomorphism h : k N → X
j
i=1 ki

N such that

h#β
( 1
m

) = X
j
i=1 β

( 1
mi

)
. (C.6)

Similarly, for a finite set k with cardinalitym > 1 and for a positive integer i we infer
from Proposition C.9 the existence of a homeomorphism h : k N → (k i)N such that

h#β
( 1
m

) = β
( 1
mi

)
. (C.7)

We can now answer the question that prompted the last two displayed formulas.

Proposition C.11. Suppose m1 and m2 are integers larger than 1. In order that
h#β( 1

m1
) = β( 1

m2
) for some homeomorphism h it is necessary and sufficient that m1

and m2 have precisely the same prime divisors.

Proof. Suppose that such a homeomorphism h exists. Then their value sets are the
same; that is, vs

(
β( 1

m1
)
) = vs

(
β( 1

m2
)
)
. We infer from Exercise C.6 that m1 and m2

have precisely the same prime divisors. Conversely, suppose that m1 and m2 have
precisely the same prime divisors. Exercise C.7 will complete the proof. ✷

Observed earlier was that the value set vs(µ,X ) is a topological invariant, that is,
homeomorphic measures have the same value set. Akin showed that non homeomor-
phic measures can have the same value set. We now present his example which uses
the uniform Bernoulli measure.

Theorem C.12. The value set of the binomial Bernoulli measure β
(1
3 ,

2
3

)
on {0, 1}N

and the value set of the uniform Bernoulli measure β
( 1
3 ,

1
3 ,

1
3

)
on {0, 1, 2}N are equal
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to { a
3n : 0 ≤ a ≤ 3n, n ∈ N}. Furthermore, h#β

( 1
3 ,

2
3

) �= β
(1
3 ,

1
3 ,

1
3

)
for every

homeomorphism h of {0, 1}N onto {0, 1, 2}N.

Proof. It is already known that vs(β( 1
3 ,

1
3 ,

1
3 ), {0, 1, 2}N) is equal to { a

3n : 0 ≤ a ≤
3n, n ∈ N}. Also, that vs(β( 13 ,

2
3), {0, 1}N) is a subset of { a

3n : 0 ≤ a ≤ 3n, n ∈ N} is
easily shown. The reverse inclusion will be proved by induction – that is, for every
n, there exists for each a with 0 ≤ a ≤ 3n a simultaneously closed and open set U
such that β( 1

3 ,
2
3 )

(
U

) = a
3n . The statement is true for n = 1. For the inductive step

we first write
a
3n = 1

3 · a0
3n−1 + 2

3 · a1
3n−1

with a0, a1 ≤ 3n−1. To see that this is possible, one observes, for a ≤ 2 · 3n−1, that a1
is the integer part of a

2 and a0 is 0 or 1; and, for 2 · 3n−1 < a ≤ 3n, that a1 = 3n−1 and
a0 = a − 2 · 3n−1 (note that a0 ≤ (3 − 2) · 3n−1). Let U0 and U1 be simultaneously
closed and open sets such that β( 13 ,

2
3 )

(
Ui

) = ai
3n−1 for i = 0, 1. For i = 0, 1, define

the one-sided inverses si of the shift map to be (x1, x2, . . . ) �→ (i, x1, x2, . . . ). Let
U = s0[U0] ∪ s1[U1]. Then

β( 1
3 ,

2
3 )

(
U

) = 1
3 ·β(13 ,

2
3 )

(
U0

) + 2
3 ·β( 13 ,

2
3 )

(
U1

) = a
3n .

The inductive step has been verified.
The second statement of the theorem will be proved by contradiction. Suppose that

h : {0, 1}N → {0, 1, 2}N is a homeomorphism such that h#β( 13 ,
2
3 ) = β( 1

3 ,
1
3 ,

1
3 ). Let

π be the natural projection of {0, 1, 2}N onto its first coordinate space {0, 1, 2} and
let A be the collection whose members are Ai = h−1π−1[{i}], i = 0, 1, 2. There is
an n such that Ei = πn[Ai] has the property that 〈Ei〉 = Ai for each i. There is an i
such that 0 ∈ Ei, where 0 = (0, 0, . . . , 0) is the member of {0, 1}n whose coordinates
are all 0. We may assume i = 0. Then each member of E1 has a coordinate whose
value is 1. Hence 1

3 = β( 13 ,
2
3 )

(〈E1〉
) = 2( m

3k
), where m

3k
is in reduced form. This is

a contradiction. ✷

Here is a simple lemma related to the counterexample.

Lemma C.13. Let k and l be finite sets and let g : k → l be a nonconstant map. If P
is Bernoulli measure on k, then there is a continuous map G : k N → l N such that
G#β(P, k) = β(g#P, l).

C.5. Binomial Bernoulli distribution

In this section we shall concentrate on the binomial Bernoulli distribution β(r, 1−r)1

on the Cantor space {0, 1}N. Let us begin with a simple consequence of the properties

1 The discussion of binomial Bernoulli distributions P will be carried out on the set {0, 1} of cardinality 2.
Our assignment of the values of r and 1 − r will be to 0 and 1, respectively, for P, which is opposite
of that in many other papers. (The opposite situation is often called Bernoulli trials, where 1 stands
for success and 0 stands for failure.) Hence the product measure β(r, 1 − r) will also differ. Of course
there is a simple homeomorphism of {0, 1}N which passes from our assignment to the others. Hence the
translations required in statements of assertions and proofs are not difficult to make.
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of the value sets vs(µ) of measures on {0, 1}N; namely, from card(vs(µ)) ≤ ℵ0 and
r ∈ vs(β(r, 1 − r)) we have

Proposition C.14. For each r in (0, 1) there are only countably many s in (0, 1)

such that β(r, 1− r) and β(s, 1− s) are homeomorphic. Hence, among the binomial
Bernoulli measures, the set of homeomorphism equivalence classes has cardinality c.

This proposition does not give much information about the equivalence classes.
Hence a more refined analysis found in the literature will be presented. In order to
simplify the notation in our discussion, the binomial Bernoulli distribution β(r, 1−r)
will be abbreviated as βr . Let B

({0, 1}N)
denote the collection of all measures βr ,

r ∈ (0, 1). Then β : r �→ βr is a bijection of (0, 1) to B
({0, 1}N)

.

C.5.1. Continuity. We begin with the effect of continuous maps f of {0, 1}N on the
value s = f#βr(〈0〉) (here, 0 is in {0, 1}). Of course, only those f for which βs = f#βr

are of interest; this will not happen for every f . We shall say that s continuously
refines r (denoted s ≤ c r) if there is a continuous f such that βs = f#βr . Clearly the
relation ≤ c is transitive and reflexive. A trivial example is given by the permutation
of {0, 1} which results in s = 1 − r. There is the following characterization of such
continuous maps f (see Mauldin [105, Theorem 1.1, page 619]). Clearly, f must be
surjective.

Theorem C.15. There is a continuous map f : {0, 1}N → {0, 1}N such that βs = f#βr

if and only if there is a positive integer n and there are integers ai, 0 ≤ i ≤ n, such
that

0 ≤ ai ≤ (n
i

)
, 0 ≤ i ≤ n , (C.8)

and

s = ∑n
i=0 ai r

i(1 − r)n−i. (C.9)

Proof. Suppose f is a continuous map such that βs = f#βr . Then U = f −1[〈0〉] is
a simultaneously closed and open set. There is an integer n and a subset E of {0, 1} n
such that U = ⋃{〈e〉 : e ∈ E}. For each i with 0 ≤ i ≤ n let

ai = card
({

(q1, . . . , qn) ∈ E :
∑n

p=1 qp = n − i
})
.

One easily verifies that 0 ≤ ai ≤ (n
i

)
and that βr

(
πn

−1[{(q1, . . . , qn)}]
) = ri(1−r)n−i

whenever
∑n

p=1 qp = n − i. Hence

s = βs(〈0〉) = βr
(
U ) = ∑n

i=0 air
i(1 − r)n−i.

To prove the converse assume that the two conditions of the theorem hold and
consider the set {0, 1} n. As 0 ≤ ai ≤ (n

i

)
for each i, there is a subset E of

{0, 1} n such that it has exactly ai members (e1, . . . , en) with
∑n

p=0 ep = n − i
for every i. Let P be the binomial Bernoulli measure on {0, 1} such that βr =
β(P, {0, 1}). Let ϕ : {0, 1}N → ({0, 1} n)N be the obvious homeomorphism. Then
ϕ#β(P, {0, 1}) = β(P n, {0, 1} n). Obviously P n(E) = ∑n

i=0 ai r
i(1 − r)n−1 = s. Let
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g : {0, 1} n → {0, 1} be such that g−1[{0}] = E . Then, by Lemma C.13, there is a
continuous map G : ({0, 1} n)N → {0, 1}N such that G#β(P n, {0, 1} n) = βs. The
continuous map f = Gϕ completes the proof. ✷

It is the above theorem that encourages us to use the name binomial Bernoulli
measure for βr . The following example is given in [105]: There is a continuous map
f such that f#βr = βs if r = 1√

2
and s = 1

2 . Indeed, letting n = 2, a0 = a1 = 0

and a2 = 1 in the theorem, we have the existence of such an f . The theorem also
implies that there are no continuous maps g such that g#β 1

2
= β 1√

2
; hence f is not a

homeomorphism. We shall return to this example in the comment section at the end
of the appendix.

Observe that a permutation ofN induces a homeomorphism h of {0, 1}N and h#βr =
βr . Consequently, f#βr = ( fh)#βr ; and so there are many continuous maps that
satisfy the conditions of the theorem.

C.5.2. Partition polynomials. The equation βs = f#βr results in a polynomial

p(x) = ∑n
i=0 aix

i(1 − x)n−i, (C.10)

in Z[x], where 0 ≤ ai ≤ (n
i

)
, i = 0, 1, . . . , n. Such polynomials are called partition

polynomials.2 The collection of all partition polynomials is denoted by P . Note that
the partition polynomial in equation (C.10) satisfies

0 ≤ p(x) ≤ 1 = ∑n
i=1

(n
i

)
xi(1 − x)n−i, x ∈ [0, 1].

It is well-known that the collection {xi(1 − x)n−i : i = 0, 1, . . . , n} forms a basis for
the vector space of polynomials of degree not exceeding n. We shall call this basis
the partition basis for the polynomials of degree not exceeding n. There is a minimal
n for which a partition polynomial p(x) can be expressed in the form (C.10), which
will be denoted by part-deg(p(x)) and called the partition degree of p(x). It is easily
seen that for each partition polynomial p(x) there is polynomial in the form (C.10)
whenever n ≥ part-deg(p(x)). Hence, if pk(x), k = 1, 2, . . . ,m, is a finite collection
of partition polynomials, then there is an n such that pk(x) = ∑n

i=0 ak ,ix
i(1 − x)n−i

is of the form (C.10) for each k . It may happen that part-deg(p(x)) > deg(p(x)) for
a partition polynomial p(x). For example, the cubic p(x) = 6x2(1 − x) is a partition
polynomial with part-deg(p(x)) > 3.

The following is a useful characterization of partition polynomials (see Dougherty,
Mauldin and Yingst [47]).

Theorem C.16 (Dougherty–Mauldin–Yingst). If p(x) is a polynomial with integer
coefficients, then p(x) is a partition polynomial if and only if p(x) maps (0, 1) into
(0, 1), or p(x) is the 0 or 1 polynomial.

2 This definition is due to Austin [6].
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Proof. If p(x) = ∑n
i=0 aix

i(1 − x)n−i is a partition polynomial, then either p is the
constant polynomial 0, or one of its coefficients is positive, in which case p(x) > 0
whenever x ∈ (0, 1). The same is true for (1 − p)(x) = ∑n

i=0

((n
i

) − ai
)
xi(1 − x)n−i,

so that p(x) < 1 whenever x ∈ (0, 1), or p(x) is the constant polynomial 1. Thereby
one implication is proved.

To prove the other implication, let p(x) = ∑k
j=0 cjx

j be a polynomial with integer
coefficients such that 0 < p(x) < 1 whenever x ∈ (0, 1). We infer from a theorem of
Hausdorff 3 that there are nonnegative integers ai, i = 0, 1, . . . , n, such that p(x) =∑n

i=0 aix
i(1 − x)n−i. Similarly, there are nonnegative integers bi, i = 0, 1, . . . ,m,

such that (1 − p)(x) = ∑m
i=0 bix

i(1 − x)m−i. We may assume n = m. As p(x) =
1−(1−p)(x) for every x, we have

∑n
i=0 aix

i(1−x)n−i = ∑n
i=0

((n
i

)−bi
)
xi(1−x)n−i

andhence, by linear independence, ai = (n
i

)−bi. Consequently 0 ≤ ai ≤ (n
i

)
. Thereby

p(x) is a partition polynomial. ✷

The following corollary is obvious.

Corollary C.17. Let p1(x) and p2(x) be partition polynomials. Then

(1) p(x) = p1(x)p2(x) is a partition polynomial,
(2) p(x) = p2(p1(x)) is a partition polynomial,
(3) if p1(x) < p2(x) whenever x ∈ (0, 1), then p(x) = p2(x) − p1(x) is a partition

polynomial.

Let us observe a connection between partition polynomials p(x) and simultaneously
closed and open subsets C of {0, 1}N that is implicit in the proof of Theorem C.15.
As in the proof, note that each nontrivial such set C corresponds to an n such that
the cylinder sets of the form 〈e〉, e ∈ {0, 1} n, partitions {0, 1}N and refines the binary
partition {C, {0, 1}N \C} of {0, 1}N. Each measure βr assigns the value ri(1 − r)n−i

to 〈e〉 for each e = (e1, e2, . . . , en) in {0, 1} n where i is n−∑n
j=1 ej . Hence, for every

r in (0, 1), p(x) satisfies

βr(C) = p(r) = βp(r)(〈0〉).

Conversely, note that every nonconstant partition polynomial p(x) corresponds to a
simultaneously closed and open subset C of {0, 1}N that satisfies the above equation.
Indeed, let f : {0, 1}N → {0, 1}N be the continuous map such that βs = f#βr , where
s = p(r). Then C is f −1[〈0〉], which depends only on p(x). We say that C is a
closed and open set associated with p(x). For the constant partition polynomial 1 we
associate the set {0, 1}N, and for the constant partition polynomial 0 we associate the
empty set. For r ∈ (0, 1), define P(r) = {p(r) : p ∈ P}. So P(r) is the value set
vs(βr) = {βr(C) : C and {0, 1}N \C are open}.

Implicit in the above discussion is the following.

Theorem C.18. If C2 is a simultaneously closed and open set in {0, 1}N whose asso-
ciated polynomial is p2(x) and if p1(x) is a polynomial with integer coefficients such

3 See Exercise C.9 for details.
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that 0 < p1(x) < p2(x) whenever x ∈ (0, 1), then there is a simultaneously closed
and open set C1 contained in C2 such that p1(x) is its associated polynomial.

Proof. Let n be large enough that p1(x) = ∑n
i=0 aix

i(1 − x)n−i, p2(x) =∑n
i=0 bix

i(1 − x)n−i and (p2 − p1)(x) = ∑n
i=0 cix

i(1 − x)n−i satisfy 0 ≤ ai + ci =
bi ≤ (n

i

)
. Let n also be large enough to yield the simultaneously closed and open set

C2, which is determined by the coefficients bi, i = 0, 1, . . . , n. The remaining step is
obvious. ✷

Connected to the last theorem is the following observation: If C1 and C2 are
simultaneously closed and open sets of {0, 1}N associated with the partition poly-
nomials p1(x) and p2(x), respectively, and if C1 ⊂ C2, then p1(x) ≤ p2(x) whenever
x ∈ (0, 1). This is obvious since p1(r) = βr(C1) ≤ βr(C2) = p2(r) for every r
in (0, 1).

We have found many properties of partition polynomials that do not rely on the
existence of a continuous function f such that f#βr = βs, that is, s ≤ c r. Thus the
following definition using only partition polynomials seems justified.

Definition C.19. Let r and s be in (0, 1). Then s is said to be binomially reducible to
r if there is a partition polynomial p(x) such that s = p(r) (denoted s ≤ b r).

Clearly, s ≤ b r if and only if s ≤ c r.

C.5.3. Binomial equivalence. Let us turn the above relation ≤ b into a symmetric
one.

Definition C.20. A pair of numbers r and s in (0, 1) is said to be binomially related
(denoted r ∼ b s) if the conditions r ≤ b s and s ≤ b r are satisfied. That is, there are
partition polynomials p1(x) and p2(x) such that r = p1(s) and s = p2(r).

It is easily shown that ∼ b is an equivalence relation. Clearly, if either f or g is a
bijection then they are homeomorphisms. This leads to the next definition.

Definition C.21. A pair of numbers r and s in (0, 1) is said to be homeomor-
phicly related if there is a homeomorphism h such that h#βr = βs; this relation
will be denoted by r ∼ h s.

Notice that ∼ h has been defined only for binomial Bernoulli measures, hence it
is more restrictive than the notion of homeomorphic measures which applies to any
pair of Borel measures.

From the equivalence of the binary relations ≤ c and ≤ b we have the following
theorem in the form as stated in [105].

Theorem C.22. Each of βs and βr are continuous image of the other if and only if
there are positive integers n and m and there are finite collections of integers ai,
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0 ≤ i ≤ n, and bj, 0 ≤ j ≤ m, such that

0 ≤ ai ≤
(n
i

)
and 0 ≤ bj ≤ (m

j

)
, (C.11)

r = ∑n
i=0 ai s

i(1 − s)n−i and s = ∑m
j=0 bj r

j(1 − r)m−j. (C.12)

Mauldin observed in [105] the following existence statement.

Proposition C.23. For a given pair n and m of nonnegative integers and collections
ai, i = 0, 1, . . . , n, and bj, j = 0, 1, . . . ,m, that satisfy the condition (C.11) there
exists a pair r and s in [0, 1] such that condition (C.12) is satisfied.

Proof. It is easily shown that the map given by

(r, s) = ϕ(x, y) = (∑m
j=0 bj y

j(1 − y)m−j ,
∑n

i=0 ai x
i(1 − x)n−i

)
,

where (x, y) ∈ [0, 1] × [0, 1], is continuous and has values in [0, 1] × [0, 1]. By the
Brouwer fixed point theorem there exists a pair (r, s) such that (r, s) = ϕ(r, s). ✷

In the same article Mauldin asked: Does r ∼ b s imply r ∼h s ? This question was
answered in the negative by Austin [6].

C.5.4. Austin’s solution. Consider the partition polynomials

p1(x) = 2x(1 − x) and p2(x) = 3x2(1 − x) + 3x(1 − x)2.

There is a pair (r, s) in (0, 1) × (0, 1) such that s = p1(r) and r = p2(s). So there are
continuous maps f and g such that f#βr = βs and g#βr = βs and hence r ∼ b s.

It will be shown that if there is an h in HOMEO({0, 1}N) such that βs = h#βr

then 1
r is an algebraic integer. But the above polynomials imply that that 1

r is not an
algebraic integer, thereby achieving a contradiction.

Let us show the first of the above assertions about 1
r . Let

x̄ = (0, 1, 1, . . .) and ¯̄x = (1, 0, 1, 1 . . .)

be the two points of {0, 1}N with only one 0 entry as indicated. For each i in N let
Ai = {x ∈ {0, 1}N : xi = 0}. Clearly the collection Bj = h−1[Aj], j ∈ N, will generate

a subbase of the topology. Consequently there is a finite intersection U = ⋂k
i=1 Ui

such that x̄ ∈ U and ¯̄x /∈ U , where eachUi is Bj or {0, 1}N \Bj for some j. Hence there
exists an i in N such that x̄ ∈ Bi or ¯̄x ∈ Bi. Let x̃ denote that one of the two points x̄
and ¯̄x that is in Bi. There is an m such that E = 〈πm+2(x̃)〉 ⊂ Bi, where πm+2 is the
usual projection of {0, 1}N onto {0, 1}m+2.

Define the homeomorphism ϕ : Ai → {0, 1}N by the formula

ϕ
(
(x1, x2, . . . , xi−1, 0, xi+1, . . .)

) = (x1, x2, . . . , xi−1, xi+1, . . .).

Then ν = ϕ#(βs|Ai) is a measure on {0, 1}N such that ν(C) = sβs(C) for each
simultaneously closed and open set C of {0, 1}N. Hence 1

s ν = βs. With C = ϕh[E],
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where E is the cylinder set defined in the previous paragraph, there is a partition poly-
nomial p0(x) such that 1

s ν(C) = βs(C) = p0(s). As h[E] ⊂ Ai we have ϕ−1[C] =
h[E] and ϕ−1[C] ⊂ Ai. Consequently, p0(s) = 1

s ν(C) = 1
s (βs|Ai)(ϕ

−1[C]) =
1
s h#βr(h[E]) = 1

sβr(E) = r(1−r)m+1

s . Recalling that s = p1(r) = 2r(1 − r), we have
r(1−r)m+1

2r(1−r) = p0(p1(r)) = p(r), where p(x) is a partition polynomial. Writing p(x) in

the form
∑n

j=0 cjx
j(1 − x)n−j with m < n, we have

(1 − r)m
∑n−m

j=0

(n−m
j

)
rj(1 − r)n−m−j = 2

∑n
j=0 cjr

j(1 − r)n−j .

Dividing by rm and collecting terms, we have

(2c0 − 1)( 1r − 1)n + ∑n−1
k=0 dk(

1
r − 1)k = 0,

where dk ∈ Z, k = 0, 1, . . . , n − 1, and 0 ≤ c0 ≤ (n
0

)
. As 1

r − 1 is a root of a
monic polynomial in Z[x], we have that 1

r is an algebraic integer, thereby the first
assertion is proved. It remains to be prove that 1

r is not an algebraic integer to arrive
at a contradiction.

Notice that the equation r = p2(s) = 3s(1 − s)2 + 3s(1 − s)2 was not used in the
above argument. Substituting s = p1(r) = 2r(1− r) into the last equation, we derive
the equation 5 − 18r + 24r2 − 12r3 = 0. Dividing by r3, we have that 1

r is a root
of the polynomial 5x3 − 18x2 + 24x − 12 in Z[x]. By Eisenstein’s criterion, using
the prime 3, this polynomial is irreducible in Z[x] and not monic. Hence 1

r is not an
algebraic integer, thereby establishing the contradiction.

The above Austin example shows that r ∼ b s and r 
 h s.

C.5.5. Some early results. The equivalence relations ∼ b and ∼ h on (0, 1) induces
equivalence relations on B

({0, 1}N)
, the collection of all binomial Bernoulli mea-

sures, because β : r �→ βr is a bijection. We shall write βr ∼ b βs and βr ∼ h βs,
respectively, for these equivalence relations on B

({0, 1}N)
. These equivalence classes

ofB
({0, 1}N)

determined by∼ b and∼ h are now known to be different due toAustin’s
example. We now turn to the question of the cardinality of these equivalence classes.
It is obvious that the cardinalities cannot be smaller than 2.

A simple observation, which follows from the partition polynomials, is that if r is a
rational number and βr ∼ b βs then s is a rational number.Also, if r is a transcendental
number and βr ∼ b βs, then s is a transcendental number. As r ∼ b s is easier to write
than βr ∼ b βs we shall revert back to it. The first result on the cardinality of the
equivalence classes for rational numbers r in (0, 1) is due to Navarro-Bermúdez
[115, 114].

Theorem C.24 (Navarro-Bermúdez). If r is a rational number in (0, 1) and r ∼ b s,
then either s = r or s = 1 − r; hence, r ∼ h s if and only if s = r or s = 1 − r.

We shall not give his proof, a straightforward one can be found in his article
[115, Theorem 3.3]. He also proved in the same article
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Theorem C.25 (Navarro-Bermúdez). If r is a transcendental number in (0, 1) and
r ∼ b s, then either s = r or s = 1− r; hence, r ∼ h s if and only if s = r or s = 1− r.

Proof. The equations (C.12) hold for r and s. So we have polynomial expressions
with integer coefficients

r = r0 + r1 s + · · · + rj s
j ,

s = s0 + s1 r + · · · + sk r
k ,

such that r0 = a0 and s0 = b0 (which are equal to 0 or 1) and rjsk �= 0, and such
that 1 ≤ j ≤ m, 1 ≤ k ≤ n. Eliminating s from the two equations, we result in a
polynomial p(x) of degree jk . Since the coefficients of p(x) are all integers and r is
a transcendental number with p(r) = 0, we have that all the coefficients of p(x) are
zero. If jk > 1, then the jk-th coefficient of p(x) is rj(sk)j which cannot be zero.
Hence jk ≤ 1. It follows that 0 = r0 + r1s0 + (r1s1 − 1)r. Hence r0 + r1s0 = 0
and r1s1 − 1 = 0. Recall that r0 is either 0 or 1, whence r1s0 = 0 or 1 + r1s0 = 0,
respectively, from the first equality. The second yields r1 = s1 = 1 or r1 = s1 =
−1. If r0 = 0 and r1 = 1, then either s0 = 0 or 1 + s0 = 0, whence s0 = 0
because 1 + s0 �= 0. Hence r = s if r0 = 0 and r1 = 1. If r0 = 0 and r1 = −1,
then −s0 = 0 or −s1 − 1 = 0, whence s0 = 0 because −s1 − 1 �= 0. Hence
r = s if r0 = 0 and r1 = −1. Following the same procedure, we have that the
two remaining cases of r0 = 1 and r1 = 1, and r0 = 1 and r1 = −1 will result in
r = 1 − s. ✷

The next theorem, due to Huang [78], is similar to the last one.

Theorem C.26 (Huang). If an algebraic integer r of degree 2 and s in (0, 1) are such
that r ∼ b s, then s = r or s = 1 − r; hence r ∼ h s if and only if s = r or s = 1 − r.

The proof relies on the following nice lemma concerning the fractional part of a
real number. Recall that the integer part of a real number x is the largest integer,
denoted by [x], not exceeding x, and the fractional part of x is 〈x〉 = x − [x]. Of
course, 0 ≤ 〈x〉 < 1. The proof of this lemma is left as an exercise.

Lemma C.27. Let t be an irrational number and m be an integer with |m| > 1. If
r = 〈mt〉, then t can never be 〈kr〉 for any integer k.
Proof of Theorem C.26. Let r be an algebraic integer in (0, 1). That is, there is an
irrational root ρ of a monic quadratic polynomial with integer coefficients such that 1
and ρ generate an integral domain. Every member of this integral domain is of the
form c + dρ for unique integers c and d. Hence every polynomial expression p(ρ)

with integer coefficient is equal to c+dρ for some unique integers c and d. Moreover
s = c + dρ is also an algebraic integer.

Since r is an algebraic integer in (0, 1), we have that r is an irrational number. As
r ∼ b s the numbers r and s satisfy conditions (C.11) and (C.12). Hence r = c + ds
for some integers c and d, and s = c′ + d ′r for some integers c′ and d ′. We have
r = c+[ds]+〈ds〉, 0 < r < 1 and 0 < 〈ds〉 < 1, whence c+[ds] = 0. Consequently,
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r = 〈ds〉. Analogously, s = 〈d ′r〉. The lemma gives d = ±1. As 0 < s < 1 we have
that 〈ds〉 = s for d = 1, and that 〈ds〉 = 1 − s for d = −1. Thereby the theorem is
proved. ✷

Huang also proved that, for each degree n larger than 2, some algebraic integer r
of degree n fails to have the property that the cardinality of its ∼b equivalence class
is 2. He proved

Theorem C.28 (Huang). For each integer n with n > 2 there is an algebraic integer
r of degree n such that r ∼ b r2 and r2 �= 1 − r.

An improvement of this theorem, where ∼ b is replaced by ∼ h, results from a
theorem in [47], which will be proved in a later section.

For the case n = 3, Navarro-Bermúdez and Oxtoby [117] proved that the finer
condition r ∼ h r2 holds by elementary means. That is,

Theorem C.29 (Navarro-Bermúdez–Oxtoby). Let r be the algebraic integer solution
of the irreducible polynomial x3 + x2 − 1 in (0, 1) and let s = r2. Then there is a
homeomorphism h of the Cantor space {0, 1}N such that h#β(r, 1− r) = β(s, 1− s).

Though later results have generalized this result, we present their proof for the case
n = 3. We first prove their lemma.

Lemma C.30. Let U and V be subsets of {0, 1} ∪ {0, 1}2 given by

U = {(0), (1, 0), (1, 1)} and V = {(1), (0, 1), (0, 0)}.

For p and q in (0, 1), there exist homeomorphisms h : {0, 1}N → U N and
g : {0, 1}N → V N such that h#βp = β(P) and g#βq = β(Q), where P = (P1,P2,P3)

and Q = (Q1,Q2,Q3) are Bernoulli measures on U and V , respectively, with
P1 = βp(〈(0)〉), P2 = βp(〈(1, 0)〉), P3 = βp(〈(1, 1)〉) and Q1 = βq(〈(1)〉),
Q2 = βq(〈(0, 1)〉), Q3 = βq(〈(0, 0)〉). If ψ : U → V is a bijection, then the home-
omorphism � : U N → V N induced by ψ satisfies �#β(P) = β(Q) if and only if

βp
(〈ψ−1(v)〉) = βq

(〈v〉) whenever v ∈ V . (C.13)

The homeomorphism f = g−1�h of {0, 1}N yields βq = f#βp if and only if p and
q satisfy the constraints consisting of the simultaneous equations produced by the
above requirements.

Proof. By Lemmas C.2 and C.3 there are homeomorphism h, g, and � such that the
following diagram commutes.

{0, 1}N f−−−−→ {0, 1}N

h

� �g

U N �−−−−→ V N
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We infer fromLemmaC.4 that h#βp is the Bernoulli measureβ(P) onU N and g−1
#βq

is the Bernoulli measure β(Q) on V N. Using the homeomorphism � induced by
ψ , we get �#β(P) = β(ψ#P). Hence f#βp = βq if and only if ψ#P = Q. The
condition (C.13) determines a constraint on p and q. ✷

We apply the lemma in the following proof of the Navarro-Bermúdez–Oxtoby
theorem (Theorem C.29 above).

Proof of Theorem C.29. In the lemma, let ψ be given by

ψ((0)) = (0, 0), ψ((1, 0)) = (1), ψ((1, 1)) = (0, 1).

Then condition (C.13) becomes

q = p2, q(1 − q) = 1 − p, (1 − q)2 = p(1 − p).

The first two equations q = p2 and q(1 − q) = 1 − p together with the identity
1 − q(1 − q) = q2 + q(1 − q) + (1 − q)2 show that p ∼ b q. Such p and q exist
by Proposition C.23. On eliminating q from all three equations, we find that p must
be the unique root of the irreducible polynomial x3 + x2 − 1 in the interval (0, 1).
Clearly, p > p2 > p3 = 1 − p2. The theorem is proved.

There are several other possible maps ψ available in Lemma C.30. Consider the
map ψ1((0)) = (1), ψ1((1, 0)) = (0, 1), ψ1((1, 1)) = (0, 0). Here, p and q must
satisfy p = 1−q, with any choice of q in (0, 1). Considerψ2((0)) = (1), ψ2((1, 0)) =
(0, 0), ψ2((1, 1)) = (0, 1). Here, p = q = 1

2 . The other cases will be left for the reader
to consider.

C.6. Linear ordering of {0, 1}N and good measures

At the end of Section C.4 it was shown that vs(µ, {0, 1}N), the value set of themeasure
µ on {0, 1}N, does not characterize equivalence classes of homeomorphic measures
on the Cantor space {0, 1}N. We shall turn to a characterization due toAkin that uses a
finer structure on Cantor spaces by the introduction of a linear order. There are many
linear orders that induce the Cantor space topology. Hence a continuous, complete,
finite Borel measure µ on {0, 1}N can be very different if one considers two different
linear orders which give the usual topology on {0, 1}N.

It is not difficult to show that {0, 1}N is homogeneous; that is, if x1 and x2 are points
of {0, 1}N, then there is an h inHOMEO({0, 1}N) such that h(x1) = x2 and h(x2) = x1.
Hence it follows that, for distinct points x0 and x1 of the classical Cantor ternary set,
there is a self-homeomorphism of the Cantor ternary set such that h(x0) = 0 and
h(x1) = 1. Consequently we have

Proposition C.31. If X is a Cantor space and if x0 and x1 are distinct points of X ,
then there is a linear order ≤ on X such that

(1) x0 ≤ x ≤ x1 whenever x ∈ X ,
(2) the order topology induced by ≤ on X is precisely the topology of X .
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Akin has made an extensive study of Cantor spaces with linear orders that satisfy
the two conditions enumerated above. A separable metrizable space X with a linear
order ≤ that satisfies the above two conditions will be denoted by (X ,≤) and will be
called a linearly ordered topological space (or, more briefly, an ordered space). We
need two definitions.

Definition C.32. Let (X ,≤) be an ordered space and letµ be a complete, finite Borel
measure on X . The function Fµ : X → [0,µ(X )] defined by

Fµ(x) = µ([x0, x]), x ∈ X ,

where x0 is the minimal element of X in the order ≤, is called the cumulative dis-
tribution function of µ. (Recall that the collection of all simultaneously closed and
open sets of X is denoted by CO(X ).) Define ṽs(µ,X ,≤) to be the set of values

ṽs(µ,X ,≤) = {µ([x0, x]) : [x0, x] ∈ CO(X )} ∪ {0},

called the special value set.

Definition C.33. Let (X1,≤ 1) and (X2,≤ 2) be ordered spaces. ϕ : X1 → X2 is said
to be an order preserving map if ϕ(a) ≤ 2 ϕ(b) whenever a ≤ 1 b. Such a map that is
also bijective is called an order isomorphism.

To prove his main theorems, Akin [2, Lemma 2.9] established the following
“lifting lemma.”

Lemma C.34 (Akin). For ordered spaces (X1,≤ 1) and (X2,≤ 2), let µ1 and µ2 be
positive, continuous, complete Borel probability measures on X1 and X2, respectively.
An order isomorphism ϕ : (I ,≤) → (I ,≤) satisfies the condition

ϕ
[
ṽs(µ1,X1,≤ 1)

] ⊃ ṽs(µ2,X2,≤ 2)

if and only if there exists a continuous map h : X1 → X2 such that the following
diagram comutes.

X1
h−−−−→ X2

Fµ1

� �Fµ2

I
ϕ−−−−→ I

If such a lifting map h exists, then it is unique and is a surjective order preserving
map of (X1 ≤ 1) to (X2,≤ 2). Furthermore, h is an order isomorphism if and only if
ϕ
[
ṽs(µ1,X1,≤ 1)

] = ṽs(µ2,X2,≤ 2).

Here is a useful proposition.

Proposition C.35 (Akin). Let (X ,≤) be an ordered space. If F is an order preserving
map of X into [0, 1] which is right continuous and satisfies F(x1) = 1, where x1 is
the maximal member of X , then there is a unique probability measure µ on X such
that F = Fµ.
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Proof. As usual we define µ on the collection of all half open intervals (a, b] of the
space (X ,≤) to be µ

(
(a, b]) = F(b) − F(a), and µ({x0}) = F(x0) where x0 is the

minimal member of X . Since this collection of subsets of X generate the Borel sets
of X , the measure µ is defined. The uniqueness is easily proved. ✷

It is not difficult to construct a continuous, complete Borel probability measure µ

on the Cantor ternary set X such that its special value set ṽs(µ,X ,≤) for the usual
order ≤ on X is a proper subset of the value set vs(µ,X ) (see Exercise C.11). Also,
it is quite clear that there are some homeomorphisms of a linearly ordered X that
are not order isomorphisms. A consequence of the lifting lemma is Akin’s theorem
[2, Theorem 2.10] which asserts that ṽs(µ,X ,≤) classifies the order isomorphism
equivalence classes of positive, continuous, complete Borel probability measures on
ordered spaces.

Theorem C.36 (Akin). Suppose that (X1,≤ 1) and (X2,≤ 2) are ordered spaces and
that µ1 and µ2 are positive, continuous, complete probability measures on X1 and
X2, respectively. Then there exists an order isomorphism h : (X1,≤ 1) → (X2,≤ 2)

such that h#µ1 = µ2 if and only if

ṽs(µ1,X1,≤ 1) = ṽs(µ2,X2,≤ 2).

For Cantor spaces X , Akin in [2] showed that every linear order ≤ on X which
results in an ordered space (X ,≤) is order isomorphic to the classical Cantor ternary
set endowed with the usual order.

Theorem C.37. Suppose that (X1,≤ 1) and (X2,≤ 2) are ordered Cantor spaces. Then
there exists an order isomorphism h of (X1,≤ 1) onto (X2,≤ 2).

Proof. We may assume X1 is the Cantor ternary set. Let µ1 be the measure induce
on X1 by the Cantor function on X1. Let β( 1

2 ) be the uniform Bernoulli measure
on {0, 1}N and let ϕ : {0, 1}N → X2 be a homeomorphism. Then ν = ϕ#β( 1

2) is
a measure on X2 and ṽs(ν,X2,≤ 2) is a countable dense subset of [0, 1]. From a
well-known fact of dimension theory4 we infer that there is an order preserving
homeomorphism g : [0, 1] → [0, 1] such that g

[
ṽs(ν,X2,≤ 2)

] = ṽs(µ1,X1,≤ 1).
Hence there is a measure µ2 on X2 such that gFν = Fµ2 and ṽs(X2,µ2,≤ 2) =
ṽs(X1,µ1,≤ 1). Theorem C.36 completes the proof. ✷

Before we introduce the next notion due to Akin [3] let us analyze a particular
example. Let X be the usual Cantor ternary set with the usual order and let µ be the
measure induced on X by the well-known Cantor function F on X . Clearly, the value
set vs(µ,X ) is { k

2n : k = 0, 1, . . . , 2n, n = 1, 2, . . . } and the cumulative distribution
function of µ is F . Moreover, ṽs(µ,X ,≤) = vs(µ,X ).

Observe that the Cantor ternary set X has the following nice property: to each
nonempty simultaneously closed and open setU there corresponds a positive integer
k0 such that every point x of U has the property that J ∩ X ⊂ U whenever x is in

4 If D1 and D2 are countable dense subsets of R, then there is an order preserving homeomorphism h of
R such that h[D2] = D1. See [79].



C.7. Refinable numbers 233

J and J is an interval of the k-th step of the Cantor set construction with k ≥ k0.
An immediate consequence of the observation is that the Cantor ternary set and the
corresponding measure µ determined by the Cantor function satisfies the property
which Akin calls the “subset condition.”

Definition C.38. Let X be a Cantor space. A Borel measure µ on X is said to
satisfy the subset condition if, for simultaneously closed and open sets U and V with
µ(U ) ≤ µ(V ), there exists a simultaneously closed and open set W such that

W ⊂ V and µ(W ) = µ(U ).

A positive, continuous, complete, Borel probability measure µ on X is called good
if it satisfies the subset condition. The collection of all good measures on X will be
denoted by MEASgood.

Our earlier observation that the measure µ associated with the Cantor function has
the property that the two value sets vs(µ,X ) and ṽs(µ,X ,≤) coincide, where ≤ is
the usual order. Akin has given the name “adapted” for this phenomenon.

Definition C.39. Let X be a Cantor space. A measure µ and an order ≤ on X are
said to be adapted if vs(µ,X ) = ṽs(µ,X ,≤).

In [3] Akin proved the following characterization.

Theorem C.40 (Akin). Let X be a Cantor space and let µ be a positive, continuous,
finite Borel measure on X . Then the following two statements hold.

(1) If ≤ is a linear order such that (X ,≤) is an ordered space and if µ and ≤ are
adapted, then µ is a good measure on X .

(2) If µ is a good measure on X and if x0 is a point of X , then there exists a linear
order ≤ on X such that (X ,≤) is an ordered space with x0 ≤ x whenever x ∈ X
and such that µ and ≤ are adapted.

Consequently, µ is a good measure on X if and only if there exists a linear order on
X whose order topology on X is the topology of X and vs(µ,X ) = ṽs(µ,X ,≤).

We conclude the section with a theorem that connects the collectionMEASgood(X )

and the group HOMEO(X ).

Theorem C.41 (Akin). Let X be a Cantor space. Then positive, continuous, finite
Borel measures µ1 and µ2 are in MEASgood(X ) and satisfy h#µ1 = µ2 for some h
in HOMEO(X ) if and only if vs(µ1,X ) = ṽs(µ2,X ,≤) for some order ≤ on X .

C.7. Refinable numbers

Austin’s example shows that, for binomial Bernoulli measures, the binomial equiv-
alence classes determined by ∼ b and the homeomorphic equivalence classes deter-
mined by ∼ h are not the same. This section is devoted to a discussion of a sufficient
condition that assures that they are the same. We have already seen that they are
the same for s in (0, 1) whenever s is a rational number or a transcendental number.
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Hence sufficient conditions for algebraic numbers are needed. The recent results of
Dougherty, Mauldin and Yingst [47] will be discussed.

C.7.1. Definitions and properties. Let us begin with comments on the collections
P and P(r). Recall that P is the collection of all partition polynomials, which is a
collection of functions, and, for an r in (0, 1), that P(r) is {p(r) : p ∈ P}, a collection
of real numbers. From properties of partition polynomials, we know that each poly-
nomial of the form xm(1− x)n, where m and n are nonnegative integers, are partition
polynomials, and that each partition polynomial is a finite sum of such polynomials.
Apolynomial of the form xm(1−x)n will be called a partition monomial. It is obvious
that a finite sum f (x) = ∑k

i=1 gi(x) of nontrivial partition polynomials gi(x) is a par-
tition polynomial if and only if f ≡ 1 or f (x) < 1 whenever x ∈ (0, 1). But there is no
such nice characterization for finite sums

∑k
i=1 gi(r) from the collection P(r) even if

the sum is a number f (r) from the collection P(r). Indeed, there is no assurance that
the corresponding polynomial p(x) = ∑k

i=1 gi(x) is a partition polynomial and that
p(x) is the partition polynomial f (x). Hence the following definition is meaningful.

Definition C.42. A number r in (0, 1) is said to be refinable if f (x), g1(x), . . . , gk(x)
in P are such that f (r) = ∑k

i=1 gi(r), then there is a collection h1(x), . . . , hk(x) in
P such that hi(r) = gi(r) for each i and f (x) = ∑k

i=1 hi(x).

It would seem reasonable that a weaker condition would suffice, that is, only
partition monomials xm(1 − x)n need be considered. Hence the definition

Definition C.43. A number r in (0, 1) is said to be weakly refinable if f (x),
g1(x), . . . , gk(x) are partition monomials such that f (r) = ∑k

i=1 gi(r), then there
is a collection h1(x), . . . , hk (x) in P such that hi(r) = gi(r) for each i and
f (x) = ∑k

i=1 hi(x).

The two definitions are somewhat hard to verify by the very nature of the require-
ments imposed by them. The sole exception is the case where r is transcendental.5

This observation is implicit in Theorem C.25 by Navarro-Bermúdez. But fortu-
nately there is a characterization with a much simpler test for algebraic numbers.
The proof of this characterization is not easy – it very cleverly uses the Bernstein
polynomial approximation of continuous functions f on [0, 1]; that is, the formula
Bn f (x) = ∑n

i=0 f ( 1n )
(n
i

)
xi(1 − x)n−i which looks like a partition polynomial and is

precisely the binomial expansion of the constant 1 function.
The characterization [47, Theorem 11] will be stated without proof. Also, a crucial

lemma used in the proof of the characterization will be stated without proof since the
lemma will be used later.

Lemma C.44 (Dougherty–Mauldin–Yingst). Suppose p(x) is a partition polynomial
that is not the 0 polynomial and suppose f (x) is a polynomial with real coefficients
such that f (x) > 0 whenever x ∈ (0, 1). If R(x) is in Z[x] with |R(0)| = 1 and
|R(1)| = 1 and if p(r) < f (r) whenever R(r) = 0 and r ∈ (0, 1), then there is a

5 See Exercise C.13.
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polynomial Q(x) in Z[x] such that 0 < p(x)+Q(x)R(x) < f (x) whenever x ∈ (0, 1).
Moreover, q(x) = p(x) + Q(x)R(x) is a partition polynomial such that q(x) < f (x)
whenever x ∈ (0, 1) and such that q(r) = p(r) whenever R(r) = 0 and r ∈ (0, 1).

Theorem C.45 (Dougherty–Mauldin–Yingst). Let r be an algebraic number in (0, 1).
The following are equivalent.

(1) r is refinable.
(2) r is weakly refinable.
(3) There is a polynomial R(x) in Z[x] such that |R(0)| = 1, |R(1)| = 1, and

R(r) = 0. Moreover, R(x)maybe assumed to be the unique, up to sign, irreducible
polynomial solved by r such that the gcd of the coefficients is 1.

Note that the only rational number that is refinable is 1
2 . Hence the method which

requires r to be refinable is only sufficient for determining ∼ h equivalence from ∼ b

equivalence.
Note that if g(r) = h(r) for partition polynomials g(x) and h(x), then g(r) =∑n
j=1 ajr

j(1 − r)n−j where h(x) = ∑n
j=1 ajx

j(1 − x)n−j . Here is a second
characterization of weakly refinable numbers.

TheoremC.46. Let r be in (0, 1)and let f (x), g1(x), . . . , gk(x)be partitionmonomials.
Then there is a positive integer m such that, for each n larger than m, f (x) =∑n

j=0 b(n, j)x
j(1 − x)n−j , and gi(r) = ∑n

j=0 a(i, n, j)rj(1 − r)n−j , i = 1, . . . , k.
Moreover, r is weakly refinable if and only if there is an n0 such that n0 > m and
b(n, j) = ∑k

i=1 a(i, n, j) for each j and n ≥ n0.

Proof. The first statement is easily shown. If r is weakly refinable, then the equations
connecting the coefficients are straightforward computations using the definition of
weakly refinable numbers in (0, 1). For the converse, the proof follows from the
inequality 0 ≤ b(n, j) ≤ (n

j

)
. ✷

Here is a useful theoremwhich follows immediately from the first characterization.

Theorem C.47. For r and s in (0, 1), if r ≤ b s (that is, there is a partition polynomial
p(x) such that r = p(s)), and r is refinable, then s is refinable.

The following is the main theorem of [47].

Theorem C.48 (Dougherty–Mauldin–Yingst). Suppose r and s are numbers in (0, 1)

that are refinable. If r and s are binomially equivalent (that is, r ∼ b s), then the
measures βr and βs are homeomorphic (that is, βr ∼ h βs).

Our proof will use limits of inverse systems which will be discussed next.

C.7.2. Inverse systems. Let P be the collection of all finite partitions of {0, 1}N by
open sets. There is a partial order � on P defined by refinement, that is P � Q
if Q refines P. There is a natural map πP

Q, called the bonding map, from the finite
set Q to the finite set P defined by inclusion. The collection P is a directed set
that has an obvious cofinal sequence Pn, n = 1, 2, . . . . Indeed, the cylinder sets
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Pn = {ϕn
−1[〈e〉] : e ∈ {0, 1}n}, n ∈ N, is cofinal in {P,�}, where ϕn is the natural

projection of {0, 1}N onto {0, 1}n. The limit of the inverse system {P,�}, denoted
lim←− {P,�}, is a closed subset of the product space X{P : P ∈ P} consisting of all

threads of the product space.6 The inverse limit is homeomorphic to {0, 1}N. If Q is
a cofinal directed subset of {P,�}, then the limit of the inverse system {Q,�} is also
homeomorphic to {0, 1}N. As an aside, let us mention that P corresponds to uniform
continuity and the inverse system {P,�} corresponds to uniform convergence.

Consider a continuous map f : {0, 1}N → {0, 1}N. As we are interested in the
equation f#βr = βs, themapwill be assumed to be surjective. For eachP inPwe have
f −1[P] = { f −1[u] : u ∈ P} ∈ P, and that P1 � P2 if and only if f −1[P1] � f −1[P2].
For each Q and each P in P such that f −1[P] � Q there is a natural surjective map
f PQ : v �→ u, where v ∈ Q, u ∈ P and v ⊂ f −1[u].

Observe that f −1[P], P ∈ P is a cofinal directed set in {P,�} if and only if f is
a homeomorphism (indeed, f [P] = P if and only if f is a homeomorphism). Let us
define a map ψ : P → P as follows. If f is a homeomorphism, then ψ(P) = f −1[P]
for every P. If f is not a homeomorphism, then, for each P in P, ψ(P) is the cylinder
set Pn(P), where n(P) is the least n such that Pn refines f −1[P]. The maps f PQ satisfy
the commutative diagram

P
πP′
P−−−−→ P′

f P
ψ(P)

� �f P
′

ψ(P′)

ψ(P) −−−−→
π

ψ(P′)
ψ(P)

ψ(P′)

(C.14)

where P and P′ are members of P such that P′ � P. The above map ψ satis-
fies the following property: ψ : P → P is such that ψ(P′) � ψ(P′′) whenever
P′ � P′′, and is such that ψ(P), P ∈ P, is cofinal in {P,�}. This property is
called the monotone-cofinal property for ψ . For the above defined ψ the collection
ψ(P), P ∈ P, is cofinal because f is surjective, hence a monotone-cofinal ψ always
exists. If f is a homeomorphism, then f [ψ(P)] = P for each P in P. Hence f Pψ(P)

is injective for every P in P. If f is not a homeomorphism, let x′ and x′′ be distinct
points such that f (x′) = f (x′′) and let ψ(P′) be a partition that separates x′ and x′′.
Then f Pψ(P) is not injective for every P in P with P′ � P. Hence f is a homeomor-

phism if and only if f P
ψ(P) is bijective for every P in P. Finally, if f#µ = ν, then f PQ

satisfies

ν(u) = µ
((
f Pψ(P)

)−1[{u}]) = ∑{
µ(v) : v ∈ (

f P
ψ(P)

)−1[{u}] }
(C.15)

whenever u ∈ P and P ∈ P. Such measures µ and ν are said to be compatible with
{ f PQ ,P,ψ}.

Conversely, let { f PQ ,P,ψ} be a system of maps f PQ : Q → P, where Q and P are
members of P, ψ : P → P, and µ and ν are measures such that

6 For inverse system, limit of an inverse system, thread of an inverse system, see R. Engelking [51,
page 135].
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(1) ψ has the monotone-cofinal property,
(2) f PQ are surjections that satisfy the diagram (C.14),

(3) µ and ν are compatible with { f PQ ,P,ψ}, that is, satisfies condition (C.15).

With Q = ψ(P), to each f PQ let fP be a map defined on {0, 1}N such that it is

constant on each v in Q and such that fP(x) ∈ f PQ (v) whenever x ∈ v ∈ Q and

v ⊂ (
f PQ

)−1[{u}]. Obviously fP is continuous. The net of maps fP , P ∈ P, is
uniformly convergent to a continuous surjection f . Indeed, let P0 ∈ P. If P ∈ P and
P0 � P, then ψ(P0) � ψ(P). Hence fP(x) ∈ u ∈ P0 whenever x ∈ v ∈ ψ(P0)

and P0 � P. Moreover, f −1[u] = (
f Pψ(P)

)−1[{u}] whenever u ∈ P and P0 � P.
Let us show f#µ = ν. For a nonempty simultaneously closed and open set w such
that w �= {0, 1}N let P0 be

{
w, {0, 1}N \w }

. Let P ∈ P be such that P0 � P.

Then f −1[w] = f −1
[⋃{u ∈ P : u ⊂ w}]. As f#µ(u) = µ

((
f Pψ(P)

)−1[{u}]) = ν(u)

whenever u ∈ P we have f#µ(w) = µ( f −1[w]) = ∑{ν(u) : u ⊂ w, u ∈ P} = ν(w).
Finally, f is a homeomorphism if and only if f P

ψ(P) is bijective for every P in P for
some monotone-cofinal map ψ .

Let us summarize the above discussion as a theorem.

TheoremC.49. Letµ and ν be continuous, complete, finite Borelmeasures on {0, 1}N.
If f is a continuous surjection such that f#µ = ν, then there are maps f PQ , (Q,P) ∈

P × P, and there is a monotone-cofinal map ψ such that f Pψ(P) is surjective for each

P, the system { f PQ ,P,ψ} satisfies the comutative diagram (C.14), and µ and ν are

compatible with this system. Moreover, f is a homeomorphism if and only if f Pψ(P) is
a bijection for each P in P.
Conversely, let f PQ be maps for each (Q,P) ∈ P × P and let ψ be a monotone-

cofinal map such that f Pψ(P)
is surjective for each P. If the system { f PQ ,P,ψ} satisfies

the comutative diagram (C.14) and if µ and ν are compatible with this system, then
there is a continuous surjection f such that f#µ = ν. Moreover, f is a homeomorphism
if and only if there is a ψ such that f P

ψ(P) is a bijection for each P in P.

See Exercise C.17 for another characterization for bijection.
Compositions of maps and compositions of inverse systems are easily described

due to the requirements of the monotone-cofinal property of the map ψ . Indeed, for
a composition gf , there are maps ψf , ψg and ψgf such that ψgf (P) � ψf (ψg(P))

for each P and such that ψf (ψg(P)) � ψf (ψg(P′)) whenever P � P′. Let ψ(P) =
ψf (ψg(P)). Then (g f )Pψ(P) can be defined from (g f )Pψgf (P)

, and gPψg(P)
f

ψg(P)

ψ(P) =
(gf )P

ψ(P)
. The composition of inverse systems has a natural definition.

Let us consider pairs of continuous surjections f and g such that f#µ = ν and
g#ν = µ. Observe that there is a homeomorphism f with this property if and only
if there is a homeomorphism g with this property. Note that fg and gf are measure
preserving, that is, ( fg)#ν = ν and (g f )#µ = µ. As f and g are surjective, f and g
are homeomorphisms if and only if h = fg is a homeomorphism. Thus we find that
only continuous measure preserving surjections need to be considered. For theAustin
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example, both fg and g f are not homeomorphisms. Hence there are measures µ for
which continuous measure preserving surjections h that are not injective exist.

Definition C.50. Let µ be a continuous, complete, finite Borel measure on {0, 1}N.
A continuous surjection h of {0, 1}N such that h#µ = µ is said to be µ-refinable if
for each simultaneously closed and open set u of {0, 1}N and for each finite partition
Q = {v1, v2, . . . , vn} of h−1[u] by open sets there is a partition P = {u1, u2, . . . , un}
of u by open sets such that µ(ui) = µ(vi) for every i.

Theorem C.51. Let µ be a continuous, complete finite Borel measure on {0, 1}N. A
continuous surjection h of {0, 1}N such that h#µ = µ is µ-refinable if and only if h is
a homeomorphism.

Proof. Suppose that h is µ-refinable. Then h defines the system {hPQ,P,ψ} for which

µ and µ are compatible. For P in P consider the map hPQ. By definition, Q is a

refinement of the partition h−1[P]. Let Q = ψ(P). As h is µ-refinable, there is a
measure preserving bijection ζ : {v ∈ ψ(P) : v ⊂ h−1[u]} −→ {u′ ∈ Pu : u′ ⊂ u}
for each u in P, where Pu is a partition of u. Extend ζ to all of ψ(P) in the natural
way. Let η(P) = ⋃{Pu : u ∈ P}, a partition of {0, 1}N that refines P. This defines a
continuous map gP on {0, 1}N that is constant on each v in ψ(P) and gP(x) ∈ ζ(v)

whenever x ∈ v. As η(P) refines P we have that {η(P) : P ∈ P} is a cofinal net.
Hence gP , P ∈ P is a uniformly convergent net of continuous maps whose limit
g is a homeomorphism. The continuous map h satisfies h(x) ∈ u ∈ P whenever
x ∈ v ∈ ψ(P) with ζ(v) ⊂ u. Hence g = h.

The converse is obvious. ✷

Proof of Main Theorem. Suppose there are continuous maps f and g such that βs =
f#βr and βr = g#βs. Then h = fg is such that βs = h#βs. Let us show that s being
refinable implies h is βs-refinable. To this end let u be a simultaneously closed and
open set and let {v1, v2, . . . , vn} be a partition of h−1[u]. Then βs(u) = h#β(u) =
βs(h−1[u]) = ∑n

i=1 βs(vi). Hence there are polynomial numbers pi(s) = βs(vi),
i = 1, 2, . . . , n, and a polynomial number pu(s) = βs(u). As s is refinable, we may
assume that pu(x) = ∑n

i=1 pi(x). We infer fromTheorem C.18 that there is a partition
{u1, u2, . . . , un} of u such that βs(ui) = βs(vi) for every i. Hence h is βs-refinable. By
Theorem C.51, h is a homeomorphism. Thereby Theorem C.48 is proved. ✷

Theorem C.52. Let r ∼ b s. Then r ∼ h s if and only if there exist continuous maps f
and g such that f#βr = βs and g#βs = βr with the property that fg is βs-refinable
(equivalently, gf is βr-refinable).

C.7.3. An application. Let us consider the polynomial R(x) = xn + x − 1 in Z[x].
As R(0) = −1 and R(1) = 1, there is an algebraic number r in (0, 1) that is a root
of R(x). Implicit in R. G. E. Pinch [126] is the fact that if d is an integer factor of
n with 1 < d < n, then rd and 1 − rd are binomially equivalent to r. This follows
immediately from Theorem C.16. Hence the Dougherty–Mauldin–Yingst theorem
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yields that βr and βrd are topologically equivalent measures. Clearly r is not 1
2 if

n > 2, and r > rd > rn = 1 − r.
Some results due to E. S. Selmer [136] on irreducible polynomials in Z[x] will be

used in applications. We quote his theorem.

Theorem C.53 (Selmer). Consider polynomials in Z[x]. The polynomials p1(x) =
xn − x − 1 are irreducible for all n. The polynomials p2(x) = xn + x + 1 are
irreducible if n ≡ 2 fails (mod 3), but have a factor x2 + x + 1 for n ≡ 2 (mod 3).
In the latter case, the second factor is irreducible.

Observe that Selmer’s theorem implies, for even n, that the polynomial p(x) =
xn+x−1 is irreducible, and that the root r that is in (0, 1) is an algebraic integer with
degree n. Hence the vector space over Q, the field of rational numbers, generated by
rk , k = 0, 1, 2, . . . , n − 1 , has dimension n.7

Theorem C.54. For k ≥ 0 let n = 2k+1. Then there are 2k algebraic integers which
are topologically equivalent to each other.

Proof. Let R(x) = xn + x − 1, an irreducible monic polynomial. As R(0) = −1
and R(1) = 1, there is a root r in (0, 1), which is an algebraic integer. We have
already mentioned that Pinch has observed that r2

i
, i = 1, 2, . . . , k , and 1 − r2

i
,

i = 1, 2, . . . , k , form an indexed set of binomially equivalent algebraic integers, no
two distinct members of which are the same numbers. Theorem C.48 completes the
proof. ✷

C.8. Refinable numbers and good measures

Here is an application of the Dougherty–Mauldin–Yingst theorem to good Bernoulli
probability measures on {0, 1}N. Remember that not all good measures are good
Bernoulli measures since the discussion of Section C.6 concerned general Borel
probability measures; the discussion in this section concerns measures that are home-
omorphic to someBernoulli probabilitymeasure. Observe that if βr is a goodmeasure
then r is necessarily an algebraic number.8 Dougherty, Mauldin and Yingst proved

Theorem C.55 (Dougherty–Mauldin–Yingst). Let r be an algebraic number in (0, 1).
A necessary and sufficient condition that βr be good is that r be refinable and r be
the only root of its minimal polynomial in (0, 1).

Proof. To prove necessity, it is easily seen that βr being good implies r is refinable.
Indeed, suppose f (r) = ∑k

i=1 gi(r) with f (r), g1(r), . . . , gk(r) inP(r). LetC andC ′
i ,

i = 1, 2, . . . , k , be simultaneously closed and open sets associated with f (r) and gi(r)
respectively. As βr is good, there are mutually disjoint, simultaneously closed and
open setsCi contained inC such thatβr(Ci) = βr(C ′

i ). Clearlyβr(C) = ∑k
i=1 βr(Ci).

Let pk(x) = f (x), and for i < k let pi be a partition polynomial associated with⋃
j≤i Cj. Obviously pi−1(x) ≤ pi(x) for x ∈ (0, 1). Let hi(x) = pi(x) − pi−1(x),

7 See Exercise C.10.
8 See Exercise C.15.
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i = 1, 2, . . . , k . Hence r is refinable. Now suppose that r′ is a root in (0, 1) of a
minimal polynomial M (x) in Z[x] of r, that is, p(x) = q(x)M (x) with q(x) in Z[x]
whenever p(x) ∈ Z[x]with p(r) = 0. Suppose that A and B are simultaneously closed
and open sets with βr(A) = βr(B). Then we assert that βr′(A) = βr′(B). Indeed,
let pA(x) and pB(x) be partition polynomials associated with A and B, respectively.
Then (pA − pB)(r) = 0. As (pA − pB)(x) = q(x)M (x) for some q(x) in Z[x] and
M (r′) = 0, we have βr′(A) = pA(r′) = pB(r′) = βr′(B). Now suppose that U and V
are simultaneously closed and open sets such that βr(U ) ≤ βr(V ). As βr is a good
measure there is a simultaneously closed and open set W contained in V such that
βr(W ) = βr(U ). So βr′(U ) = βr′(W ) ≤ βr′(V ). That is, if βr(U ) ≤ βr(V ), then
βr′(U ) ≤ βr′(V ). It is a simple exercise9 to show that there exist simultaneously
closed and open sets U and V such that βr(U ) < βr(V ) and βr′(U ) > βr′(V )

whenever r �= r′. Consequently, r = r′.
To prove sufficiency, let U and V be simultaneously open and closed sets such

that βr(U ) < βr(V ). Then there are partition polynomials pU (x) and pV (x) such that
pU (r) < pV (r). We infer from Lemma C.44 the existence of a partition polynomial
p̂(x) such that pU (r) = p̂(r) and p̂(x) < pU (x) whenever x ∈ (0, 1). Theorem C.18
completes the proof. ✷

For rational numbers r in (0, 1), it is now clear that βr is a good measure if and
only if r = 1

2 . We close the discussion with

Theorem C.56 (Dougherty–Mauldin–Yingst). There exist refinable numbers r and s
in (0, 1) such that r ∼ b s, r �= s and r �= 1 − s, and such that both βr and βs are not
good measures.

Proof. The polynomial R(x) = −14x6 + 21x4 − 8x2 − x + 1 is irreducible and has
three roots in (0, 1). It is also minimal in Z[x] for each root r in (0, 1). So r is refinable
and βr is not a good measure. Let s = r2. Then r = p(s) = −14s3 +21s2 −8s+1 =
(s − 1)(−14s2 + 7s − 1). As 0 < p(x) < 1 whenever x ∈ (0, 1), p(x) is a partition
polynomial. Hence r ∼ b s. βs is not a goodmeasure since r ∼ h s. As r is an algebraic
number of degree 6, the vector space over the field Q generated by ri, i = 0, 1, . . . , 5,
has dimension 6; hence s �= r and 1 − s �= r. ✷

C.9. Comments

This appendix has been unusually long. But its length is justified by the inclusion of
the recent activity and advances.

The relation ∼ b defined on B
({0, 1}N)

, the collection of all binomial Bernoulli
measures on {0, 1}N, involves polynomial conditions. These conditions were discov-
ered byNavarro-Bermúdez [114, 115] as necessary conditions for∼ h. The transitivity
of∼ b was proved by Huang in [77]. As observed byMauldin [105], the transitivity is
easily proved by using the relation ≤ c and its equivalent ≤ b. Later, using his notion

9 See Exercise C.16.
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of a-convexity [125], Pinch gave a second proof for the fact that relation ∼ b is an
equivalence relation [126, Proposition 1].

There are many early results cited in Section C.5.5. They were based on algebraic
numbers arising from irreducible polynomials R(x), in particular, x2m+x−1, 2x2m+
2x2m−1 − x2 − x − 1, 2x2m+1 − 2x2m + 2xm − 1 and x3 + x2 − 1. Each of these
polynomials satisfy |R(0)| = 1 and |R(1)| = 1. Hence their roots are refinable,
whence r ∼ b s implies r ∼ h s for roots r of R(x) in (0, 1).

The refinable condition is one that permits the existence of a homeomorphism f
such that f#βr = βs by means of a factorization using limits of inverse systems of
measureswhose factormeasures “commute.” That is, if f ∼ b g then fg andgf result in
measure preserving transformations. It is seen that f is a homeomorphism if and only if
fg is a homeomorphism. Our inverse limits are closed subsets of products of discrete
spaces. Factorizations using product spaces were used in our version of the proof
of Theorem C.29 by Navarro-Bermúdez and Oxtoby. The use of factorization was
foreshadowed in the original Navarro-Bermúdez and Oxtoby proof. A combination
of this factorization method and TheoremC.52 has the potential for a characterization
of r ∼ h s.10

The only rational number that is refinable is 1
2 . In Austin’s example, r and s are

algebraic numbers that are not rational numbers since r ∼ b s and r 
 h s. As neither
of them is refinable, again since r ∼ b s and r 
 h s, there exist irrational algebraic
numbers that are not refinable.

On page 223 it was shown by a direct polynomial computation that r = 1√
2
and

s = 1
2 are such that r ≤ b s fails and s ≤ b r holds. Observe that r is a root of 2x2 − 1

and s is a root of 2x−1. Hence this will give a second proof, albeit a more complicated
one, that r 
 b s.

Let us turn to good measures among the collection B
({0, 1}N)

. These have been
characterized by Theorem C.55. Among the rational numbers r in (0, 1) only r = 1

2
is good. Is there a simple way to find simultaneously closed and open sets U and V
with β 1

9
(U ) < β 1

9
(V ) that fails the subset condition? Let us turn to a more serious

question. Not all Borel probability measures are binomial Bernoulli measures.

Question. Is there a good Borel probability measure µ on {0, 1}N such that µ �= h#βr

for any h in HOMEO({0, 1}N) and any good binomial Bernoulli measure βr?

We conclude with two other questions.

Question. [105, Problem 1067] Is there an infinite ∼ h equivalence class in (0, 1)? Is
there an infinite ∼ b class in (0, 1)?

Question. [47] Is every number in a nontrivial ∼ h equivalence class of (0, 1)

refinable?

10 A very recent preprint by Yingst [157] results in necessary and sufficient conditions for a partition
polynomial that corresponds to a measure preserving surjection to be injective.
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Exercises

C.1. Prove Proposition C.6 on page 217.
C.2. Prove Proposition C.7 on page 217.
C.3. Prove d(k ,α), defined on page 218, is a metric for the space ωk .
C.4. Establish that δ as defined on page 218 is an isometry by proving the

following.

(a) Prove χ(〈 f , f ′〉, 〈g, g′〉) = min {χ( f , f ′) ,χ( g, g′)} whenever 〈 f , f ′〉
and 〈g, g′〉 are in (k × l)ω.

(b) Prove that � and � are Lipschitzian bijections with respect to the metrics
defined above and that the Lipschitz constants are equal to 1.

C.5. Prove the following:

(a) Prove

χ( f , f ′) ≤ m·χ(�m( f ),�m( f ′)) + m − 1

whenever f ∈ kω and f ′ ∈ kω.

Verify equation (C.1) on page 219.
(b) Prove

m·χ(h, h′) ≤ χ(�m(h),�m(h′))

whenever h ∈ (km)ω and h′ ∈ (km)ω.

Verify equation (C.2) on page 219.

C.6. Prove: p is a prime factor of a positive integer m if and only if 1
p ∈ vs

(
β( 1

m )
)
.

C.7. Prove: If k is a finite set with card(k) = m and if pi, i = 1, . . . , j , are all
the prime divisors of a positive integer m, then there is a homeomorphism
h : k N → X

j
i=1 ki

N, where ki is a finite set with cardinality pi for each i.

Hence h#β( 1
m ) = X

j
i=1 β( 1

pi
).

C.8. Let n = n1 + n2 and E ⊂ {0, 1} n. Let πj be a map of {0, 1} n onto {0, 1} nj ,
j = 1, 2, such that

π1(e1, . . . , en1 , en1+1, . . . , en) = (e1, . . . , en1)

and

π2(e1, . . . , en1 , en1+1, . . . , en) = (en1+1, . . . , en).

Prove: If E1 ⊂ {0, 1} n1 , E2 ⊂ {0, 1} n2 and

E = π1
−1[E1] ∩ π2

−1[E2],

then β(t, 1 − t)
(
E
) = β(t, 1 − t)

(
E1

)·β(t, 1 − t)
(
E2

)
.

C.9. Hausdorff [72] proved the following theorem: If p(x) is a polynomial with
real coefficients is such that p(x) > 0 whenever x ∈ (−1, 1), then p(x) is a
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finite sum of the form∑
i, j ci, j(1 + x)i(1 − x)J with ci, j ≥ 0.

Prove that if p(x) is positive on (0, 1) then p(x) is a finite sum of the form∑
i,j ai,jx

i(1−x)j withai,j ≥ 0. Indeed, for somen, p(x) = ∑n
i=1 aix

i(1−x)n−i,
with ai ≥ 0. Moreover, if p(x) has integer coefficients, then ci ∈ Z for each i.

C.10. Prove Lemma C.27 on fractional part of a real number on page 228.
C.11. Let (X ,≤) be the Cantor ternary set with the usual order and let µ0 be the

probability measure on X given by the well-known Cantor function. Show
that there is an order preserving homeomorphism g : [0, 1] → [0, 1] such that
the measure µ as provided by Proposition C.35 for the order preserving map
F = gFµ0 yields a special value set ṽs(µ,X ,≤) that is a proper subset of
vs(µ,X ). Hint: Use a g such that g(y) = y whenever 0 ≤ y ≤ 1

2 and such that
g( 3

4 ) = 2
3 .

C.12. For the Cantor ternary setX show that to each nonempty simultaneously closed
and open setU there corresponds a positive integer k0 such that for every point
x of U there is J such that J ∩ X ⊂ U whenever x ∈ J and J is an interval of
the k-th step of the Cantor set construction with k ≥ k0.

C.13. Prove that each transcendental number in (0, 1) is refinable.
C.14. Let Ps(x) = x2n + x− 1 be a Selmer irreducible polynomial and let r be a root

of the polynomial in (0, 1). (See Theorem C.53 on page 239 for the Selmer
polynomials.) Prove: If k is a positive integer that divides n, then r ∼ b rk .
Moreover, for each such k , rk �= 1− rl for every l with l �= k and 0 ≤ l < 2n.
Consequently, there are at least 2m distinct numbers t in (0, 1) such that r ∼ b t
where m is the total number of positive integers less than 2n that divide 2n.

C.15. Prove that if the binomial Bernoulli measure βr is good then r is an algebraic
number. Hint: If U is a nonempty simultaneously closed and open subset of
〈(0)〉 such that U �= 〈(0)〉 and p(x) is a partition polynomial associated with
U , then deg(p(r)) ≥ 2.

C.16. Let µ1 and µ2 be different continuous, complete, finite Borel probability mea-
sures on an uncountable absolute Borel space. Prove that there exist disjoint
compact sets U and V such that µ1(U ) < µ1(V ) and µ2(V ) < µ2(U ).
Hint: First prove the statement for the space [0, 1] with the aid of the cumu-
lative distribution functions of µ1 and µ2. For the general case, consider a
B-homeomorphism of the space onto [0, 1].

C.17. Let f : {0, 1}N → {0, 1}N be a continuous surjection. Prove that there exists
a Borel measurable injection g : {0, 1}N → {0, 1}N such that g−1 is the map
f restricted to the compact set g

[{0, 1}N]
. Hence f is a homeomorphism if

and only if g
[{0, 1}N] = {0, 1}N. Interpret these assertions in terms of inverse

limit systems. Hint: Devise a selection scheme that reverses the commutative
diagram (C.14).



Appendix D

Dimensions and measures

This appendix contains a summary of the needed topological dimension theory, and,
for metric spaces, the needed Hausdorff measure theory and the Hausdorff dimension
theory.

D.1. Topological dimension

There are three distinct dimension functions in general topology, two of which are
inductively defined and the third is defined by means of open coverings. Each defini-
tion has its advantages and its disadvantages. Fortunately, the three agree whenever
the spaces are separable and metrizable. Let us give their definitions.

Definition D.1. Let X be a topological space.
The space X is said to have small inductive dimension −1 if and only if it is the

empty space. For each positive integer n, the space X is said to have small inductive
dimension not exceeding n if each point of X has arbitrarily small neighborhoods
whose boundaries have small inductive dimension not exceeding n − 1. These con-
ditions are denoted by indX ≤ n. The definition of indX = n is made in the obvious
manner for n = −1, 0, 1, . . . ,+∞.
The space X is said to have large inductive dimension −1 if and only if it is

the empty space. For each positive integer n, the space X is said to have large
inductive dimension not exceeding n if each closed subset of X has arbitrarily small
neighborhoodswhose boundaries have large inductive dimension not exceeding n−1.
These conditions are denoted by IndX ≤ n. The definition of IndX = n is made in
the obvious manner for n = −1, 0, 1, . . . ,+∞.
If the space X is nonempty, then it is said to have covering dimension not exceed-

ing n if each finite open cover of X has a finite open cover refinement whose order1

does not exceed n + 1. This is denoted by dim X ≤ n. (For convenience, the modi-
fier “covering” will be deleted.) dim X = n is defined in the obvious manner, and
dim X = −1 if and only if X = ∅.

Here follows the important properties of topological dimension for separable
metrizable spaces.

1 For a collection {Uα : α ∈ A } of subsets of a set X , the order at a point x is the cardinal number of
{α : x ∈ Uα } (finite or ∞) and the order is the supremum of the orders at the points of X .
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Theorem D.2. If X is a separable metrizable space, then indX = IndX = dim X .

Theorem D.3. Let n be a nonnegative integer. If X is a separable metrizable space,
then dim X ≤ n if and only if there exists a base B for the open sets such that
dim BdX (U ) ≤ n − 1 for every U in B.
Theorem D.4. Let n be a nonnegative integer. If X is a separable metrizable space
and A is a subset of X with dim A ≤ n, then there is a base B for the open sets of X
such that dim(A ∩ BdX (U )) ≤ n − 1 for every U in B.
Theorem D.5. Let X be a separable metrizable space and n be a nonnegative integer.
If dim X = n, then X can be topologically embedded into [0, 1] 2n+1.

Theorem D.6. Let X be a separable metrizable space. Then the following statements
hold.

(1) Normed. If X = ∅ then dim X = −1; if card(X ) = 1 then dim X = 0; if
X = [0, 1]n, then dim X = n.

(2) Monotone. If A ⊂ B ⊂ X , then dim A ≤ dim B.
(3) Sum. If Ai, i = 1, 2, . . . , are closed subsets of X , then

dim
(⋃∞

i=1 Ai
) ≤ sup { dim Ai : i = 1, 2, . . . }.

(4) Decomposition. If 0 ≤ dim X = n < ∞, then there are subsets Ai, i =
0, 1, . . . , n, of X with dim Ai = 0 such that X = ⋃n

i=0 Ai.
(5) Gδ Hull. If A ⊂ X , then there is a Gδ set B such that A ⊂ B ⊂ X and dim A =

dim B.
(6) Compactification. There exists a metrizable compactification Y of X such that

dim X = dim Y .
(7) Addition. If A ∪ B ⊂ X , then dim(A ∪ B) ≤ dim A + dim B + 1.
(8) Product. If A and B are subsets of X , then dim(A × B) ≤ dim A + dim B.

These theorems can be found in any standard book on dimension theory. See, for
example, W. Hurewicz and H. Wallman [79], R. Engelking [50, 51] and J-I. Nagata
[113].

Infinite dimensional spaces are of two types. Clearly one can construct infinite
dimensional spaces by taking unions of countably many finite dimensional ones
whose dimensions are not bounded above. These will be the union of countably
many zero-dimensional subsets. Not every infinite dimensional space is like this.
A space is said to be strongly infinitely dimensional if it cannot be written as the
union of countably many zero-dimensional subsets.

D.1.1. Borel measures. Let us take a small digression. It is well-known that every
finite Borel measure µ on a separable metrizable space X and every Borel setM of X
has the property that there exists an Fσ set K contained in M with µ(M ) = µ(K).
A strengthening of this property is easily shown.

Proposition D.7. Let X be a separable metrizable space and let µ be a finite Borel
measure on X . If M is a Borel set, then there is an Fσ set K such that K ⊂ M,
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dimK ≤ 0, and µ(M ) = µ(K). Moreover, if M is an absolute Borel space, then K
may be selected to be also a σ -compact set.

Proof. Since µ(X ) < ∞ there is a countable base B for the open sets of X such that
µ(BdX (U )) = 0 for eachU in B. Obviously the set A = X \⋃

U∈B BdX (U ) satisfies
dim A ≤ 0 and µ(M ) = µ(M ∩ A). As M ∩ A is a Borel set, there is an Fσ set K
contained in it such that µ(M ) = µ(K). Obviously, dimK ≤ 0. The final assertion
follows easily upon embedding X into the Hilbert cube and extending the measure µ

to a Borel measure on the Hilbert cube. ✷

The following corollary is related to Corollary 4.31. For the definition of a Zahorski
set, see Section A.6.

Corollary D.8. Let X be a separable metrizable space and let µ be a continuous,
complete, finite Borel measure on X . If A is an absolute Borel space contained in X ,
then there exists a Zahorski set Z contained in A such that µ(Z) = µ(A). Moreover,
Z may be chosen to be a set of the first category of Baire.

Proof. As µ(A) is finite there is an absolute Borel space B contained in A with
µ(B) = µ(A). The theorem yields a σ -compact set E′ contained in B such that
µ(E′) = µ(B). Let E′ = ⋃∞

n=1 E
′
n, where E′

n is a compact zero-dimensional set for
each n. As µ is continuous there is a topological copy En of {0, 1}N contained in E′

n
such that µ(En) = µ(E′

n) for each n. Hence
⋃∞

n=1 En is a Zahorski set contained in
A whose µ-measure is equal to µ(A). Repeating the argument, for each countable
dense subset Dn of En, we have a Zahorski set Zn of En \ Dn with µ(Zn) = µ(En).
Clearly Zn is a set of the first category; hence Z = ⋃∞

n=1 Zn is a Zahorski set with the
required property. ✷

D.2. Measure theoretical dimension

Let us quickly review the definitions and properties of Hausdorff p-dimensional
measures on separable metric spaces that were developed in Chapter 5.

D.2.1. Hausdorff measures. We repeat the definition given in Chapter 5.

Definition D.9. Let E be a subset of X and let p be a real number with 0 ≤ p.
For δ > 0, define Hδ

p(E) to be the infimum of the set of numbers
∑

S∈G(diam(S))p

corresponding to all countable families G of subsets S of X such that diam(S) ≤ δ

and E ⊂ ⋃
S∈G S.2 The p-dimensional Hausdorff outer measure on X is

Hp(E) = sup { Hδ
p(E) : δ > 0 };

or equivalently,

Hp(E) = limδ→0 Hδ
p(E)

2 We use the conventions that diam(∅) = 0 and 00 = 1.
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since the limit always exists as a nonnegative extended real number. A set E is said
to be Hp-measurable if Hp(T ) = Hp(T ∩ E) + Hp(T \ E) whenever T ⊂ X .

The above definition of Hp is called an “outer measure” since it is defined for all
subsets ofX . In general, not every subset is Hp-measurable.WithM(X ,Hp) denoting
the collection of all Hp-measurable sets, the measure space M(X ,Hp) is the triple(
X ,Hp,M(X ,Hp)

)
. It is known that M(X ,Hp) is a complete Borel measure space on

the topological space X . If X = Rn, then Hn = αn λn, where λn is the usual Lebesgue
measure onRn andαn is a normalizing constant given byHn([0, 1]n) = αn λn([0, 1]n).
The zero-dimensional Hausdorff measure is often called the counting measure on X .
For p > 0, Hp(E) = 0 for every singleton set E. In general, the complete Borel
measure space M(X ,Hp) is not σ -finite. But, if E ⊂ X and Hp(E) < ∞, then the
restrictedmeasure spaceM(E,Hp |E) of the measure spaceM(X ,Hp) is a continuous,
complete, finite Borel measure onE – the setE need not be Hp-measurable, recall that
M(E,Hp |E) is defined by employing the outer measure on E induced by the measure
space M(X ,Hp). More precisely, if Y is a subset of X , then Y has a natural metric
induced by the restriction of the metric of X , hence it has a p-dimensional Hausdorff
outer measure on the metric space Y using the restricted metric. The corresponding
p-dimensional Hausdorff outer measure on this metric subspace Y agrees with the
outer measure induced by the super measure space M(X ,Hp) for subsets of Y .

Since dim ∅ = −1 and since measures take values that are at least equal to 0,
the empty set may, at times, require special treatment. The reader should keep in
mind the statements in the following proposition in the course of the development of
Appendix D.

Proposition D.10. If X is a separable metric space, then dim ∅ = −1 < 0 = Hp(∅)

for every p. If 0 ≤ p and if E is a subset of a separablemetric space X with dim E ≤ 0,
then dim E ≤ Hp(E).

The reader was asked in Chapter 5 to prove the following theorem concerning
Lipschitzian maps.

TheoremD.11. For separablemetric spacesX andY , let f be aLipschitzianmap from
X into Y with Lipschitz constant L. If 0 ≤ p and E ⊂ X , then Hp( f [E]) ≤ Lp Hp(E).

It will be convenient to define at this point the notion of a bi-Lipschitzian
embedding.

Definition D.12. Let X and Y be separable metric spaces with respective metrics
dX and dY . An injection ϕ : X → Y is called a bi-Lipschitzian embedding of X onto
M = ϕ[X ] if ϕ is a Lipschitzian map and (ϕ|M )−1 : M → X is a Lipschitzian map.

Clearly the Lipschitz constants of the maps ϕ and (ϕ|M )−1 in the above definition
are positive whenever card(X ) > 1. Hence we have

Theorem D.13. Let ϕ be a bi-Lipschitzian embedding of X into Y . If 0 ≤ p and
E ⊂ X , then

Hp(E) < ∞ if and only if Hp(ϕ[E]) < ∞
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and

0 < Hp(E) if and only if 0 < Hp(ϕ[E]).

D.2.2. Hausdorff dimension. Wewill continue to assume thatX is a separablemetric
space. It is easily seen that if 0 ≤ p < q then Hp(E) ≥ Hq(E) for subsets E of X .
Also, if Hp(E) < ∞ then Hq(E) = 0 whenever p < q. This leads to the following
definition.

Definition D.14. For subsets E of X , the Hausdorff dimension of E is the extended
real number dimH E = sup { p : Hp(E) > 0 }.

Of course the Hausdorff dimension is dependent on the metric d of X . Unlike the
topological dimension function dimwhich is integer-valued, theHausdorff dimension
function dimH is nonnegative extended real-valued. The next theorem is easily proved.

Theorem D.15. Let X be a separable metric space.

(1) −1 = dim ∅ < dimH ∅ = 0.
(2) If A ⊂ B ⊂ X , then dimH A ≤ dimH B.
(3) If Ai, i = 1, 2, . . . , is a countable collection of subsets of X , then dimH

⋃∞
i=1 Ai =

sup { dimH Ai : i = 1, 2, . . . }.

An important fact to remember is that if s = dimH E for a subset E of X then the
inequalities 0 < Hs(E) < ∞ may fail.

We have the following theorem that can be summarized as “the Hausdorff
dimension of a set is a bi-Lipschitzian invariant.” It is a consequence of
Theorem D.11.

Theorem D.16. For bi-Lipschitzian embeddings ϕ : X → Y of X onto M = ϕ[X ],

dimH E = dimH ϕ[E] whenever E ⊂ X .

There is an interesting connection between the topological dimension and the
Hausdorff dimension of a separable metric space. It is the classical Theorem 5.1
stated in Chapter 5. As the classical proof is not difficult, we shall give it here. A sec-
ond very different proof will be given in the next section. The proof is a consequence
of the following lemma concerning the Lebesgue measure on R.

Lemma D.17. Let 0 ≤ p < ∞ and suppose that X is a separable metric space with
Hp+1(X ) = 0. For an arbitrary point x0 of X and for each nonnegative real number
r let S(r) = { x ∈ X : d(x, x0) = r }. If 0 < δ < ∞, then the Lebesgue measure of
the set

{ r ∈ R : Hδ
p(S(r)) �= 0 }

is equal to 0, whence Hp(S(r)) = 0 for Lebesgue almost every r.
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Proof.3 We shall begin with a simple estimate. Let E be any nonempty subset of
X with diam(E) ≤ δ. Define f : [0,∞) → [0, δ] to be the function given by the
formula f (r) = diam(E ∩ S(r)). Note that the closed convex hull of { r : f (r) �= 0 }
is a bounded interval I , possibly degenerate. The triangle inequality for the metric d
yields λ(I) ≤ diam(E). Our estimate is

∫ ∞
0 (diam(E) ·χ I )

p dr ≤ (diam(E))p+1. Note
also the inequality f (r) ≤ diam(E) · χ I (r) for every r.

LetX = ⋃∞
i=1 Ei with diam(Ei) ≤ δ for every i. For each nonempty setEi let fi and

Ii be the function and closed interval from the previous paragraph that corresponds
to Ei and let gi = diam(Ei) · χ Ii . Let gi = 0 whenever Ei = ∅. It is easily seen that

Hδ
p(S(r)) ≤ ∑∞

i=1 f
p

i (r) ≤ ∑∞
i=1 g

p
i (r)

for every r. It now follows that G = ∑∞
i=1 gi

p is a Lebesgue measurable function
such that Hδ

p(S(r)) ≤ G(r) for every r and
∫ ∞
0 G dr ≤ ∑∞

i=1(diam(Ei))
p+1. Since

Hp+1(X ) = 0 impliesHδ
p+1(X ) = 0, we have for each positive number ε the existence

of a Lebesgue measurable function Gε such that Hδ
p(S(r)) ≤ Gε(r) for every r

and
∫ ∞
0 Gε dr < ε. We infer from the classical Fatou lemma that Hδ

p(S(r)) = 0

for λ-almost every r. As Hp(S(r)) = limδ→0 Hδ
p(S(r)) for every r, we have that

Hp(S(r)) = 0 for λ-almost every r. ✷

With the aid of the implication H0(E) = 0 implies E = ∅ one can prove by
induction the following theorem.

Theorem D.18. If 0 ≤ n < ∞ and Hn+1(X ) = 0, then dim X ≤ n.

Observe that dim X = 0 implies 0 < H0(X ). Hence the next theorem is equivalent
to the previous one.

Theorem D.19. If 0 ≤ dim X = m < ∞, then 0 < Hm(X ).

Remember that the Hausdorff dimension need not be an integer. The last theorem
can be stated in terms of the Hausdorff dimension as follows (which, of course, is
Theorem 5.1 of the introduction to Chapter 5).

Theorem D.20. For every separable metric space X ,

dim X ≤ dimH X .

It is shown in [79] that every nonempty, separable, metrizable space X has a metric
such that dimH X = dim X . For a proof see [79, page 106].

D.3. Zindulka’s dimension theorem

In order to proceed further we will need Zindulka’s dimension theoretic theorem for
metric spaces. This theorem concerns general metric spaces. Although the emphasis

3 The proof given here is the one found in [113] which uses properties of the Lebesgue integral on R.
An earlier proof given in [79], which is due to Szpilrajn [149], uses properties of the upper Lebesgue
integral on R.
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of the book has been on separablemetrizable spaceswe shall give the proof for general
metric spaces since the proof is not any more difficult in the general metric setting.
In order to present his results we will need some further results in dimension theory
which have not been mentioned earlier (see [113, 50, 51]). We give these results now.

Theorem D.21 (Bing metrization). Let X be a regular Hausdorff space. In order that
X be metrizable it is necessary and sufficient that there is a σ -discrete base for the
open sets of X .

Theorem D.22 (Morita characterization). Let X be a metrizable space and n be a
nonnegative integer. Then dim X ≤ n if and only if there is a σ -locally finite base B
for the open sets such that dim Bd(U ) ≤ n − 1 for every U in B.

It is well-known that dim X = IndX for every metrizable space. To contrast this
with the separable metrizable case, the following theorem has been proved by P. Roy
and, subsequently, by J. Kulesza. Observe that every separable subspace X of this
counterexample has dim X ≤ 0.

Theorem D.23 (Roy–Kulesza). There exists a metrizable space X such that dim X =
1, indX = 0 and card(X ) = c.

Finally, the generalization of Theorem D.6 to arbitrary metrizable spaces remains
true except for the compactification property (6).

We are now ready to present a lemma due to Zindulka. In Chapter 5 we implicitly
gave a proof of it with the stronger assumption of separable metric space. It is Bing’s
metrization theorem that permits the relaxing of the separable condition.

Lemma D.24. Let B = ⋃
n∈ω Bn be a σ -discrete base for the open sets of a nonempty

metric space X . For each pair 〈n, j〉 in ω × ω, define the Lipschitzian function
g〈n,j〉 : X → [0, 1] given by the formula

g〈n,j〉(x) = 1 ∧ (
j dist

(
x,X \ ⋃ Bn

))
, x ∈ X ;

and, for each r in the open interval (0, 1), define the set

G(r) = ⋂
〈n,j〉∈ω×ω g〈n,j〉−1

[{ s ∈ [0, 1] : s �= r }].
Then G(r) is a Gδ set with dimG(r) ≤ 0 for every r. Moreover, if E is an uncountable
subset of the open interval (0, 1), then X = ⋃

r∈E G(r).

Proof. Let r ∈ (0, 1). Clearly G(r) is a Gδ set. Let us show that dimG(r) ≤ 0. To
this end we first show that the collection

Dr = ⋃
〈n,j〉∈ω×ω{ g〈n,j〉−1

[
(r, 1]] ∩ B : B ∈ Bn }

is a σ -discrete base for the open sets of X . Of course, such a base is also σ -locally
finite. As Bn is discrete, it follows easily that Dr is a σ -discrete collection. To see
that Dr is a base for the open sets, let x ∈ B ∈ Bn. There is a j such that g〈n,j〉(x) > r.
Consequently, x ∈ g〈n,j〉−1

[
(r, 1]] ∩ B ⊂ B. Hence Dr is a σ -discrete base for the
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open sets of X . Next let us show that D = G(r) ∩ g〈n,j〉−1
[
(r, 1]] ∩ B is closed in the

subspace G(r). Using the fact that the distance function dist
( · ,X \ ⋃ Bn

)
appears

in the definition of g〈n,j〉, one can easily verify g〈n,j〉−1
[[r, 1]] ∩ Cl(B) ⊂ B and

G(r) ∩ g〈n,j〉−1
[{r}] ∩ B = ∅. So

ClG(r)(D) ⊂ G(r) ∩ Cl
(
g〈n,j〉−1[(r, 1]] ∩ B

)
⊂ G(r) ∩ g〈n,j〉−1[[r, 1]] ∩ Cl(B)

⊂ G(r) ∩ g〈n,j〉−1[(r, 1]] ∩ B = D.

Consequently dim BdG(r)(D) = −1 and thereby dimG(r) ≤ 0 follows from the
Morita characterization theorem.

Let us show X = ⋃
r∈E G(r) whenever card(E) ≥ ℵ1. Suppose that there is an x in

X such that x /∈ G(r) for every r inE. From the definition ofG(r) there is a pair 〈nx, jx〉
in ω × ω such that x is not in g〈nx ,jx〉−1

[{ s ∈ [0, 1] : s �= r }], that is g〈nx ,jx〉(x) = r.
This defines a map η : r �→ 〈n, j〉 of E into ω × ω such that gη(r)(x) = r. Since E is
uncountable and ω × ω is countable, there are two distinct r and r′ in E that map to
the same 〈n, j〉. This implies g〈n,j〉(x) = r and g〈n,j〉(x) = r′, a contradiction. Thereby
the required equality is established. ✷

An immediate dimension theoretic consequence is the following.

Theorem D.25 (Zindulka). If X is a metrizable space, then there is a sequence G(α),
α < ω1, of Gδ sets with dimG(α) ≤ 0 such that X = ⋃

α<ω1
G(α).

This theorem is equivalent to

Theorem D.26. If X is a metrizable space, then there is a sequence B(α), α < ω1, of
mutually disjoint Borel sets with dim B(α) ≤ 0 such that X = ⋃

α<ω1
B(α).

Proof. That the first theorem implies the second is obvious. So assume that the second
theorem holds. Let α ∈ ω1. As the Gδ hull property (5) of Theorem D.6 holds for all
metrizable spaces, there is a Gδ set G(α) such that B(α) ⊂ G(α) and dimG(α) ≤ 0.
Hence the first theorem holds. ✷

Here is a restatement of Lemma D.24 that avoids the use of double indexing.

Theorem D.27 (Zindulka). If X is a nonempty metric space, then there exists a
sequence hm : X → [0, 1], m = 0, 1, 2, . . . , of Lipschitzian functions such that

G(r) = ⋂∞
m=0 hm

−1[{ s ∈ [0, 1] : s �= r }]
is a Gδ set with dimG(r) ≤ 0 for each r in the open interval (0, 1). Moreover,
X = ⋃

r∈E G(r) whenever E be an uncountable subset of (0, 1).

This theorem leads to the following dimension theoretic result. Notice that dim X
may be infinite in this result. Recall our earlier comment that all the properties listed
in Theorem D.6 hold except for the compactification property (6).
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TheoremD.28 (Zindulka). If X is a metrizable space and if m and n are integers such
that dim X ≥ m ≥ n ≥ 0, then to each metric for X there corresponds a countable
family F of Lipschitzian maps of X into [0, 1] n such that for each r in (0, 1)n there is
an f in F with dim f −1[{r}] ≥ m − n.

Proof. We shall use the sequence hk , k = 0, 1, 2, . . . , of Lipschitzian functions
fromX into [0, 1] as providedbyTheoremD.27. For each ι = 〈ι(0), ι(1), . . . ,ι(n − 1)〉
in ω n, the function fι : X → [0, 1] n defined by

fι(x) = 〈hι(0)(x), hι(1)(x), . . . , hι(n−1)(x)〉,

is Lipschitzian. Define F to be the countable family { fι : ι ∈ ω n }. Let us show
that F satisfies the requirement of the theorem. Let r ∈ (0, 1)n. As dimG(rj) ≤ 0
for 0 ≤ j ≤ n − 1 we infer from the addition theorem of dimension theory that
dim

⋃n−1
j=0 G(r( j)) ≤ n − 1; hence

dim
⋂n−1

j=0 F(r( j)) ≥ dim X − dim
⋃n−1

j=0 G(r( j)) − 1 ≥ m − n,

where F(r) = X \ G(r) for every r. On the other hand,

⋂n−1
j=0 F(r( j)) = ⋂n−1

j=0

⋃
k∈ω hk

−1[{r( j)}]
= ⋃

ι∈ωn

⋂n−1
j=0 hι( j)

−1[{r( j)}] = ⋃
ι∈ωn fι

−1[{r}].

As fι
−1[{r}] is closed for every ι in ω n, by the sum theorem of dimension theory,

there is an ι in ω n such that dim fι
−1[{r}] ≥ m − n and the theorem is proved. ✷

Let us use this theorem to provide a second proof of the classical inequality dim X ≤
dimH X for separable metric spaces X .

Second proof of Theorem 5.1. For positive integersm and n such that dim X ≥ m ≥
n ≥ 0, let F be the countable family provided by Theorem D.28. For each r in (0, 1)n

we have dim f −1[{r}] ≥ 0 for some f in F , whence f −1[{r}] �= ∅ for this f . Hence
(0, 1)n = ⋃

f ∈F f [X ]. As each f in F is a Lipschitzian map, we have dimH f [X ] ≤
dimH X whenever f ∈ F . Also sup{ dimH f [X ] : f ∈ F } = dimH(0, 1)n = n. It
follows that n ≤ dimH X . ✷

Notice that this proof does not use Lebesgue integration on R. It uses Zindulka’s
dimension theorem for metric spaces and the fact that dimH (0, 1)n = n.

Remark D.29. There is a simple modification of the above proof. Suppose that F is a
nonempty subset of (0, 1)n and let Ef = f −1[F] for each f in F . Define X ′ = ⋃{Ef :
f ∈ F}. Suppose that E is a subset of X ′ such that F ⊂ ⋃{f [E] : f ∈ F}. Then
dimH F ≤ dimH E ≤ dimH X . Thismodification is used in the proofs of Theorem 5.22
and its corollary in Chapter 5.
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D.4. Geometric measure theory

The powerful results on measure theoretic geometric properties of Rn are used in
many areas of mathematics. We also will use some of these results. A discussion of
general geometric measure theory will not be presented. We shall narrowly focus
our discussion of geometric measure theory to the needs of proving the existence of
universally null sets in Rn that are contained in subsets of Rn.

The geometric measure theory results that are used in the book are nontrivial ones
since the Hausdorff p-dimensional measure space M(X ,Hp |X ) of compact subsets
X of Rn need not be finitely positive if p is less than n. This makes our investigation
of Hausdorff dimension rather delicate for subsets of Rn. We begin with a summary
of facts from geometric measure theory that are used.

D.4.1. Geometric measure theory preliminaries. Much of the preliminary discus-
sion is taken from P. Mattila [99]. For n > 1 we consider m-dimensional linear
subspaces V of Rn and their (n − m)-dimensional orthogonal complements V⊥,
which are linear subspaces. For convenience, we shall callV anm-dimensional plane.
The collection of all m-dimensional planes in Rn, denoted by G(n,m), is called the
Grassmannian manifold. There is a natural metric and a natural Radon probabil-
ity measure γn,m on this manifold. The metric is provided by employing the natural
orthogonal projections πV : Rn → V , V ∈ G(n,m). The distance in G(n,m) is
given by

d(V ,W ) = ‖πV −πW ‖ , (V ,W ) ∈ G(n,m) × G(n,m), (D.1)

where ‖ · ‖ is the usual operator norm. A very nice property of the measures is

γn,m (A) = γn,n-m ({V⊥ : V ∈ A }), A ⊂ G(n,m). (D.2)

For later reference we shall list three theorems without providing their proofs. The
first theorem is a projection property (see [99, Corollary 9.4]).

Theorem D.30 (Projection property). If A is a Borel subset of Rn such that dimH A ≤
m < n, then dimH(πV [A]) = dimH A for γn,m -almost all V in G(n,m).

The second theorem is a slicing property. The statement given here is equivalent
to [99, Theorem 10.10].

Theorem D.31 (Slicing property). Let m ≤ s ≤ n and let A be a Borel measurable
subset of Rn such that 0 < Hs(A) < ∞. Then for all V in G(n,m),

Hs−m
(
A ∩ (V⊥ + x)

)
< ∞ for Hm-almost every x in V ,

and for γn,m -almost every V in G(n,m),

Hm
({ x ∈ V : dimH

(
A ∩ (V⊥ + x)

) = s − m}) > 0.

The third theorem is “the Frostman lemma inRn.”We quote the lemma as it appears
in [99, Theorem 8.8].
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Theorem D.32 (Frostman lemma). Let B be a Borel subset of Rn. Then Hp(B) > 0
if and only if there is a finite Radon measure µ on Rn such that ∅ �= support(µ)

⊂ B and µ
(
B(x, r)

) ≤ rp whenever 0 < r and x ∈ Rn.

Finally, the following Borel measurability lemma is used in the proof of Zindulka’s
Theorem 5.27.

LemmaD.33. Let F be a compact subset of Rn and V be inG(n,m). Then the function
� defined by

�(x) = dimH

(
F ∩ (V⊥ + x)

)
, x ∈ Rn

is Borel measurable.

Before beginning the proof, let us define a function fη. Let F be a nonempty,
compact subset of Rn and let 0 < m < n. For η > 0 let E(x,V , η) be the collection of
all covers {Ei : i ∈ N } of F ∩ (V⊥ + x) with mesh({Ei : i ∈ N }) < η. (Note well the
strict inequality is used rather than the weaker mesh({Ei : i ∈ N }) ≤ η.) Define fη to
be the extended real-valued function on (0,∞)×Rn ×G(n,m) given by the formula

fη(s, x,V ) = inf
{ ∑∞

i=1

(
diam(Ei)

)s
: {Ei : i ∈ N} ∈ E(x,V , η)

}
.

Observe that fη′(s, x,V ) ≤ Hη
s

(
F ∩ (V⊥ + x)

) ≤ fη(s, x,V ) whenever η < η′.

Proposition D.34. For each positive η, the function fη is upper semi-continuous on
(0,∞) × Rn × G(n,m). Moreover, fη is pointwise decreasing as a function of η.

The proof will require some preparation. Let F be a nonempty, compact subset
of Rn. Clearly there exists a positive number r such that the closed n-ball B(0, r)
centered at the origin contains the sets πV [F] for every V in G(n,m). Consider the
set

M = { (x,V ) ∈ Rn × G(n,m) : F ∩ (V⊥ + x) �= ∅ }.
Clearly, M ⊂ B(0, r) × G(n,m). We assert that M is a closed subset of B(0, r) ×
G(n,m). Indeed, let (xk ,Vk), k = 1, 2, . . . , be a sequence in M that converges to(
x,V

)
. Since B(0, r) is compact, we have a sequence F ∩ (Vk

⊥ + xk), k = 1, 2, . . . ,
in the hyperspace 2B(0,r) of all nonempty compact subsets of B(0, r). This hyper-
space, when endowed with the Hausdorff metric dH , is a compact space. Hence
we may assume that this sequence converges to a nonempty, compact subset E
of B(0, r). Let y ∈ E. There is a sequence yk , k = 1, 2, . . . , in B(0, r) such that
each yk is in F ∩ (Vk

⊥ + xk ) and such that the sequence converges to y. We infer

from equation (D.1) that y ∈ V
⊥ + x holds. So E is a subset of F ∩ (

V
⊥ + x

)
.

Hence
(
x,V

) ∈ M . We summarize the argument: If (xk ,Vk ), k = 1, 2, . . . , con-
verges to

(
x,V

)
in the metric space Rn × G(n,m), then some subsequence (xki ,Vki ),

i = 1, 2, . . . , has the property that the sequence F ∩ (Vki
⊥ + xki ), i = 1, 2, . . . , con-

verges in the hyperspace 2B(0,r) to some nonempty, compact subset E of F∩(
V

⊥+x
)

with respect to the Hausdorff metric.
We turn to the proof of the proposition.
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Proof of Proposition D.34. Since A = (0,∞) × M is a closed subset of (0,∞) ×
Rn × G(n,m), we have that f η is upper semi-continuous at each point in the
complement of A. It remains to show that it is upper semi-continuous at each
point of A.

Suppose
(
s, x,V

) ∈ A and let ε > 0. Select a cover {Ei : i ∈ N } of F ∩ (
V

⊥ + x
)

with mesh({Ei : i ∈ N }) < η, and
∑∞

i=1(diam(Ei))
s < f η

(
s, x,V

) + ε. For each i
there is an open set Ui with Ei ⊂ Ui such that

∑∞
i=1(diam(Ui))

s < f η
(
s, x,V

) + ε

and mesh({Ui : i ∈ N }) < η. As F ∩ (
V

⊥ + x
)
is compact there exists an integer N

such that
⋃N

i=1 Ui ⊃ F ∩ (
V

⊥ + x
)
. So there is a neighborhood W of s such that∑N

i=1(diam(Ui))
s < f η

(
s, x,V

) + ε whenever s ∈ W . Let (sk , xk ,Vk ), k = 1, 2, . . . ,
be a sequence inA that converges to

(
s, x,V

)
and satisfies limk→∞ f η(sk , xk ,Vk) = L.

We may assume that F ∩ (Vk
⊥ + xk ) converges with respect to the Hausdorff metric

to a nonempty, compact set E contained in F ∩ (
V

⊥ +x
)
. Hence, for all k sufficiently

large, we haveF∩(Vk
⊥+xk ) ⊂ ⋃N

i=1 Ui and sk ∈ W . Consequently f η(sk , xk ,Vk) ≤
f η

(
s, x,V

)+ ε for all sufficiently large k . Therefore L ≤ f η
(
s, x,V

)
, and thereby we

have shown that f η is upper semi-continuous. ✷

We now have the desired Borel measurability assertions.

Corollary D.35. Let F be a nonempty, compact subset of Rn. Then:

(1) Hs(F ∩ (V⊥ +x)), as a function of (s, x,V ), is Borel measurable, indeed, a Baire
class 2 function,

(2) dimH(F ∩ (V⊥ + x)), as a function of (x,V ), is Borel measurable,
(3) { x ∈ Rn : dimH(F ∩ (V⊥ + x)) = s } is a Borel set of Rn for each (s,V ),
(4) { x ∈ V : dimH(F ∩ (V⊥ + x)) = s } is a Borel set of the m-dimensional linear

space V for each (s,V ).

Proof. We have limη→0 f η(s, x,V ) = Hs(F ∩ (V⊥ + x)) for each (s, x,V ). Hence
statement (1) follows.

For the proof of statement (2), let t be a real number. We must show that Et =
{ (x,V ) : dimH(F∩(V⊥+x)) > t } is a Borel set. To this end, dimH(F∩(V⊥+x)) > t
if and only if there exists an s with s > t and Hs(F ∩ (V⊥ + x)) = ∞. By statement
(1), the set Fs = { (x,V ) : Hs(F ∩ (V⊥ + x)) = ∞} is Borel measurable. Let si,
i =, 2, . . . , be a sequence that strictly decreases to t. Each of the sets Fsi is Borel
measurable and this sequence of sets increases to Et . Hence Et is Borel measurable.
This proves the Borel measurability of dimH(F ∩ (V⊥ + x)) as a function of (x,V ).

Statements (3) and (4) follow easily from statement (2). ✷

For more on the measurability of dimension functions of geometric measure theory
see Mattila and Mauldin [100].

D.5. Marstrand’s theorem

The theorem of this section concerns lower bounds for Hausdorff measures and
Hausdorff dimension of arbitrary subsets of Rn.
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Theorem D.36. Let 0 < m < n, 0 < s ≤ m, 0 < t ≤ n − m and 0 < p. For
a V in G(n,m) and an arbitrary subset F of Rn let E be an arbitrary subset of
{ x ∈ V : Ht

(
F ∩ (V⊥ + x) ≥ p }. Then

pHs(E) ≤ Hs+t(F).

The planar version of the theorem is stated as Proposition 7.11 inK. J. Falconer [53]
with the added statement that the higher dimensional one is true. This planar version
was proved by J. M. Marstrand in [98] with no indication of a higher dimensional
version. With the aid of results (namely, R. O. Davies [45], J. D. Howroyd [76]) that
have appeared after [98], a proof of the above theorem can be made. We shall give
this proof below.4

The proof will use the notion of “weighted Hausdorff measures” (see Mattila [99,
page 59] and Howroyd [76, page 585]).

Definition D.37 (Weighted Hausdorff measure). Let X be a separable metric space
and A ⊂ X . For 0 ≤ s and 0 < δ define

wHδ
s (A) = inf

∑
i ci(diam Ei)

s,

where the infimum is taken over all finite or countable families (called weighted
δ-covers of A) { (ci,Ei) } such that 0 < ci < ∞, Ei ⊂ X , diam Ei < δ and

χA ≤ ∑
i ci χEi . (D.3)

Then define
wHs(A) = limδ→0 wHδ

s (A),

which is called the weighted Hausdorff s-measure of A.

We infer from [76, Theorem1 andNote 9] and from [45, Theorem8 andExample 1]
that

Theorem D.38. If X is a separable metric space and if s is a positive number, then
wHs(A) = Hs(A) for every subset A of X .

Let us establish some notation that will be used in the proof of Theorem D.36. Let
0 < m < n. We equate Rn = Rm × Rn−m in the obvious manner. For convenience
we write V = Rm × {0} and V⊥ = {0} × Rn−m. Let π1 and π2 be the projections of
Rn onto V and V⊥, respectively. Define

C1 = π1[C], C2 = π2[C], and C̃ = C1 × C2 = π1
−1[C1] ∩ π2

−1[C2]
for subsets C of Rn. Then diamC1 ≤ d, diamC2 ≤ d, where d = diamC, and

C̃ ∩ (V⊥ + z) = C2 + z ⊃ C ∩ (V⊥ + z) whenever z ∈ C1. (D.4)

4 K. J. Falconer, by e-mail, informed the author of possible sources for a statement and proof of the
higher dimensional case. Among them was Falconer and Mauldin [54] and Howroyd [76]. Though the
statement and proof of the higher dimensional case were not found in these sources, the sources did
yield the proof that is provided here.
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Proof of Theorem D.36.5 We may assume V = Rm × {0}. The inequality is trivial if
Hs+t(F) = ∞. So assume Hs+t(F) < ∞. Let ε be such that 0 < ε < p. For each z
in E there is a positive number δ(z) such that Hδ

t (F ∩ (V⊥ + z)) > p − ε whenever
δ < δ(z). For each positive integer k define Ek = { z ∈ E : 1 ≤ kδ(z) }. For δ < 1

k
there is a cover C of F such that mesh(C) < δ and

Hδ
s+t(F) <

∑
C∈C(diamC)s+t < Hs+t(F) + ε.

Let us show that C1 = {(
(diamC2)

t

p−ε
,C1

)
: C ∈ C}

is a weighted δ-cover of Ek . To
this end we shall verify condition (D.3). Observe that, for each z in Ek , the family
Cz = { C̃ ∩ (V⊥ + z) : C ∈ C } is a cover of F ∩ (V⊥ + z) with mesh(Cz) < δ. Hence∑

C∈C(diam C̃)t ≥ Hδ
t (F ∩ (V⊥ + z)) > p − ε

whenever z ∈ Ek . Thereby condition (D.3) results from condition (D.4). We now
have

( p − ε)wHδ
s(Ek ) ≤ ∑

C∈C(diamC2)
t(diamC1)

s

≤ ∑
C∈C(diamC)t+s ≤ Hδ

t+s(F) + ε,

that is, ( p − ε)wHδ
s (Ek) ≤ Hδ

t+s(F) + ε. Letting δ → 0, we have, by virtue of
Theorem D.38, ( p − ε) Hs(Ek ) ≤ Hs+t(F) + ε. As Ek ⊂ Ek+1 and E = ⋃

k=1 Ek ,
we finally have ( p − ε) Hs(E) ≤ Hs+t(F) + ε. Theorem D.36 now follows. ✷

An immediate corollary of this theorem is

Corollary D.39. Let 0 < m < n and 0 < t ≤ n − m. If V is in G(n,m) and F is an
arbitrary subset of Rn, then

dimH F ≥ t + dimH{ x ∈ V : dimH

(
F ∩ (V⊥ + x)

) ≥ t }.

Exercises

D.1. Prove: If X is a σ -compact, separable metrizable space, then X = X0 ∪ X1,
where X0 is a countable set and X1 the union of a countable family of perfect,
compact sets.

5 P. Mattila pointed out to the author that the theorem is actually implied by a theorem due to Federer [55,
Theorem 2.10.25 page 158]. The proof provided here is modeled after that of Federer. The cited proof
does not use weighted Hausdorff measure, a concept that is motivated by Federer’s proof.
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Notation index

A(A), all atoms of A, 19
A�B, symmetric difference of sets, 39
(A,E), countably generated σ -algebra, 19, 206
ab Gδ , all absolute Gδ spaces, 6, 182
abBOR, all absolute Borel spaces, 6, 182
ab M(X ), = {Y ⊂ X : Y ∈ abMEAS}, 27, 31, 37, 44, 57
abMEAS, all absolute measurable spaces, 2, 5
abNULL, all absolute null spaces, 7
ANALYTIC, all analytic spaces, 5, 40, 180
B-HOMEO(X ), B-homeomorphism group of X , 46
B(X ), all Borel sets of X , 1, 180
B(X , τ), all Borel sets for topology τ , 208
b, Banach cardinal, 162
β(P, k), Bernoulli measure on kN, 219
β( 1

m ), uniform Bernoulli measure, 219
β(r, 1 − r), binomial Bernoulli measure, 219, 221
βr , = β(r, 1 − r), 222
B

({0, 1}N)
, = {βr : 0 < r < 1}, 222, 227, 240

C(k ,α), Cantor cube, 137, 156, 218
CO-ANALYTIC, all co-analytic spaces, 5, 181
CON, all concentrated spaces, 128
CONY , all concentrated subsets of Y , 128
COUNTABLE, all countable spaces, 128
C′′, all spaces with property C′′, 129
CY , all subsets of Y with property CY , 129
CO(X ), all closed and open sets of X , 84, 217, 231
D( f ), set of countable order of f , 184
d(k ,α), metric for Cantor cube, 137, 155, 218
δR, pseudo-boundary of R, 77
dim, covering dimension, 244
dimH , Hausdorff dimension, 139, 248
dµ
dν

, Radon–Nikodym derivative, 86, 105
D(X ,µ), = {x ∈ X : µ({x}) > 0}, 187, 193
〈E〉, = π−1

n [E], E ⊂ {0, 1}n = πn[{0, 1}N], 215
( f ,µ), Gorman pair, 122, 133
Fµ, cumulative distribution function of µ, 85, 231
FX , positive closure operator in X , 33, 44, 51, 95, 112, 118
{ f PQ ,P,ψ}, inverse system of maps, 236
f ·g, product of real-valued functions, 39
f PQ , map of inverse system, 236
f# M(X ,µ), = M(Y , f#µ), f : X → Y , 190
f#µ, measure induced by f and µ, 2, 190, 191
G(Y ;X ,µ), = ⋂{G(Y ;X ,µ, f ) : f is µ-measurable}, 100
G(Y ;X ,µ, f ), = {E : E ⊂ Y , f −1[E] ∈ M(X ,µ)}, 100
G(n,m), Grassmannian manifold, 148, 253



268 Notation index

G(X )#µ, = {h#µ : h ∈ G(X )}, 53
Hρ , Hausdorff metric for 2W , 196
Hδ
p, Hausdorff outer measure, 137, 246

Hp, Hausdorff outer measure, 137, 246
HOMEO(X ), homeomorphism group of X , 43, 51, 233
see equation HOMEO(X ;F fixed), 55
see equation HOMEO(X ;F inv), 55
HOMEO(X ;F), = ⋂

F∈F HOMEO(X ;F inv), 123
see equation HOMEO0(Q), 77
see equation HOMEO0(Q;B fixed), 77
‖h‖, norm of h in HOMEO(X ), 54
ind, small inductive dimension, 244
Ind, large inductive dimension, 244
k ω , product of finite set k , 139, 155
κ0 , Grzegorek’s cardinal number for {0, 1}N, 20, 28, 45
κG , Grzegorek’s cardinal number, 19, 20, 28, 45, 51
LY , all subsets of Y with Lusin property, 128
lim←−{P,�}, limit of inverse system, 236

M
({0, 1}N)

, = {µ : µ ∈ MEAScont({0, 1}N)}, 20
M(X ,µ), measure space, 1, 31, 186
M(X ,µ Y ), limited measure space Y ⊂ X , 189
M(Y ,µ|Y ), restriction measure space Y ⊂ X , 189
m0 , Grzegorek’s cardinal number for [0, 1], 28
Mn, n-dimensional manifold, 73, 92
M(X ,µ), all µ-measurable sets of X , 1, 31, 186
M(X ,µ Y ), limited measure σ -algebra, 189
MAP(X ,µ; Y ), all µ-measurable maps from X to Y , 37, 102
MEAS, all complete, σ -finite Borel measure spaces, 1, 31, 187
MEAScont, = {M(X ,µ) ∈ MEAS : µ({x}) = 0, x ∈ X }, 3, 31, 111
MEAScont(X ), = {µ : M (X ,µ) ∈ MEAScont}, 31, 53
MEAScomp, all complete Borel measure spaces, 187
MEASfinite, = {M(X ,µ) ∈ MEAS : µ(X ) < ∞}, 1, 111, 187
MEASfinite, all finite Borel measure spaces, 186
MEAS(B, n, p), all Frostman measures on R

n, 148
MEASgood, all good measures, 233
MEAS(X ), = {µ : M(X ,µ) ∈ MEAS}, 31
MET, all separable metrizable spaces, 5, 179
METcomp, all completely metrizable spaces, 6, 179
MEASpos(X ), = {µ ∈ MEAScont(X ) : µ is positive}, 35, 51, 53
MEASpos,fin(X ), = {µ ∈ MEASpos(X ) : µ(X ) < ∞}, 53
MEASsigma, all σ -finite Borel measure spaces, 187
mesh(P), mesh of the collection P , 67
N , = {x ∈ [0, 1] : x is irrational}, 5, 82, 180, 188
NU, all spaces with property ν, 128
N(X ,µ), null collection, 186
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