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Get the most from this book 

rior knowledge 
This is a short list of topics that 
you should be familiar ~ith before 
sla.rtmg a chapter. The quesdons 
will help to t,est your understanding. 

Welcon1e to the AQA A-level Physics Year I Student's Book. This book 
covers Year 1 of the AQA A-leve] Physics specification an.d aU content for 
the AQA AS Physics specification. 

The following features have been in.eluded lo help yo,u get the most fr,om 
this book. 
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Activities and Required-------......_ 
practicals 
These practica 1-based activities 
will he]p consolidate your learning 
andl 'test your practical skills. AQ.As 
Tequi red practicals are clearly 
highlighted. 
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Tips 
These highlight impottanl facts) 
conunon ni:isconceptions and signpost 
you 10,vards other relevant topics. 



Practice qu stions 
You \.vill find Practice questions 
at the end of every chapter. These 
follovl the style of the different types 
of questions you might see in your 
exa1ninatiou, including multiple­
,choice questions, and are colour 
coded to highlight the level of 
difficulty. Test your understanding 
even further ~ith Stretch and 
challenge ques ions. 

Key rms n for u la 
These are highlighted in the text 

and definitions are given in the 
margin to help you pick out a.nd 
learn these important concepts. 

Examples 
Examples of ,questions and 
calculations feature full workings 
and sample answers. 
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Questions are colour-coded, to help target your practice: 

Green - Basic questions that everyone should be able to ans,~ter 
v...it h out difficulty. 

Orange - Questions that are a regular feature of exams and that all 
competent candidates should be able lo handle. 

II Purple - More demanding questions which the best candidates should 
be able to do . 

II Stretch and challenge - Questions for the most able candidat,es to test 
their full understanding and sometitnes th eir ability to use ideas in a 
novel situation . 
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Dedicated chapters for developing your ~1aths an d Practical skills and 
Preparing for your exam can be found at the back of this hook. 
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Particles and nuclides 
.................................................................................................................. 
• • i PRIOR KNOW LEDGE 
• 

• • 
z 
• 

• • : 
• • • • • • • • • • 

: 
• M:atter i1s made of atoms. Ato:ms are made up of a very small ce nt ral ~ 

nu cleus co ntain,i,ng parti,c les caUed protons and neutrons. surrounded : 
• 

by orbiting ele·ctrons. The number of protons conta in ed in the nucleus : 
of an1 atom is ea lled the proton or ato1m ic num,ber and the tota l nu m.ber i "" • • ! of protons and neutrons is caHed the nucleon or mass number. i 

• • : • Protons aire pos it:ively charged partkles wrth a relative charg'e of+ 1: i 
• I 

: e lectrons are negaitively charged parti cles w1ith a re lative cha,rge of - l ; i 
f neutrons are electr ica lly neu tra l with a re labve charge of zero . 1 ! • Atoms are electrica lly neutral overa ll, which mea 1ns that they have .. 
: the same nu mber of protons and elec tron s. W hen atoms lose or 
• 
: ga i1n etec trons they become io ns. An excess of elec trons produces a 
• : negatiively cha rged i1on whereas a shorta 9e of e :Lec trons prod uces a 
• 
: pos iitively charged ion . 
• 
: • Th e dtiameter of an ato mic nucteus 1i s of th e order of 10 OOO times 
• • • • • • • • • • • • • 

s mraHer than the diameter of an atom, but con tains tne vast maj o.rity 
of the ato,m1ic mass. Protons and neutrons have a r e!lat [ve mass of 1. 
with elec t r ons about 18[) 0 t i·m1es Less 1mass ive. 

• • ' • • • • • • • • • • ' • • • • • • • • • 
: • Elements are made up of atoms with the same proton number. Atoms : 
• • 
: can have the same number of protons but different num bers of : 
• t 

: neutrons : these are caUed isotopes. : 
• • 
: • The relative atom.fc mass of an elemen,t compares the mass of atoms : 
• • 
: of the etemen t with the ear b o n-12 ~so top e. ; 
• • : ........................................................................................................... .... 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
TEST YOURSELF ON PRIOR KNOWLEDGE 

• • • • • • • • • • i 1 Naturally occurr~ng hydrogen has three isotopes: (' nor mail') hydrogien j ! 
i deuteri1Jm arnd tritium. What three properties do ato,mis of each of i 
i these i1sotopes have in common? How do the isotopes differ? f 
J 2 Wha,t ~s the relatrve charge of a co pper ato,m that has los t two I 
! electrons? ! 
! 3 Chtorine ha.s two n,atura,Uy occurring isotopes that exi,st in an aLmost ! 
+ I 

; 75 ~ 25 abu nda,nce ratio. The average relat~ve aitomi c mass of chtor1ine i 
I ~s 35 .5. What are th e re lative atomic masses of these two fsotopes? i 
• i 

: Fi,nd out their proton and nucleon numbers . i 
! 4 As at spring 2015~ th e element with the highest atomic number so far i 
.. t 

i discovered Js unun oc tium. ,uuo, atomic number 118L ·discovered' in, ! 
4 t i 2005, of which only three or four aito·ms have bee n observed~ ea,ch wrth ! 
i a relative atomic mass o'f 294. Determine its: : . ~ 

i a ] proton number i 
t ! b) neutron number : . ' 

: cJ e lec tron nu mber : . : f d] proton: e lectron ma,s s ratio. j 
: • •••••• ••••••••••••••••••• ~··· · · ···· ·· · ········~·· · ·················· · ·············· ..._ .................... llllllllliii. 
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Figure 1.1 Peter Hi:ggis and the Higgs 
Boson Theory. 

Figure 1.2 A more r~cent i mag·e tak~n 
by~ trans 1mission elQ,ctron mkroscope 
shovving individual gold atoms each 
separEJted from i1ts neighbour by e1 

On 8th October 2013 the Nobel Prize in Physics was awarded jointly to 
Fran<;ois Englert ,and Peter Higgs for the theoretical discovery of the particle 
kno\vn as the Higgs Boson. (This follo"red its experimenta] discovery by 
the Large Hadron CoUider tea1n at 1CERN on 4thjuly 2012). This discovery 
completes our current best n1odel of what the Universe is built fron1, called 
the Standard l\1,odlel, a model that started development nearly t,~,o and a half 
thousand years ago by a Greek philosopher caHe.d Democlitus. 

It is said that Democritus observed that the sand on a beach was once part 
,of the rocks of the cliffs and he questioned whether the sand could be cut 
in to ev,er smaller pieces by a succession of sharper and smaller knives. It 
"'ras Democritus who first coined the word 'atom)~ meaning the smallest 
indiv-isible piece that the sand could be cut up into. Nearly 2500 years later~ 
JJ Thomson was able to €A~end Democritus' though1 experiment when he 
discovered the electron splittu.1g up atoms and discovering the first sub-
atomic particle. 

ln the early 1980s, researchers at IBM i.n Zudch produced a machine 
called an atomic force microsoope that was able to image individual atoms. 
Figure] .2 shows a more recent image taken by a transmission electron 
microscope sho'Wing individual gold a.toms. Each individual gold atom is 
separated fro1n its neighbour by a distance of 2 .3nm (2.3 x 10-9 m). 

d rstance of 2 .3 n,m (2.3 x 1· o-9 m). 

0 What are the building blocks 
of the Universe? 
\\That is the material of the Universe made of? l ike so many things in 
pl1)1<Sic:s, it depends on v;,rhlch model you are using to explain things . Physics 
is a series of evermore cornplex, layered n1odels de.signed to ,explain hovv 
the Universe behaves as \Ve see i t no,v. Over the years, as ou r o·bservations 
of the Universe - particularly on the sub-aton1ic and cosn1ological scales -
have become more and more detailed> so the physical models have had to 
adapt to the n e\\, observations and measuren1,ents. It is rar-e now for a theory 
to be developed as the r-esult of a ' thought' experiment such as Democritus'. 

Models in physics 
ln science~ and in p·hysics il1. particular, we rely on 1.nodels to explain ·hov,.~ 
the Universe around us works. Mo,dels make con1plex) often in"visi.ble 
things or processes ,easier to ·~risualise. l\1ode1s take many fom1S. Some, 
like the models ,of atoms and nuclei used in this chapter, are visual models 
used as analogies of the rea] thing. The Ruth rford-Bohr m,odel used in the 
next s ction is a go,od example of this type of model, where the nucleus is 
modelled as a small baU containing neutrons and protons, with electrons 
whizzing round the outside. Atorcs donl actually 'look> like this. but it is a 
convenient, easy fi rst model to use because i.t uses the analogy ,o,f everyday 
objects that we are very familiar with. 

Other types of model in physics are tn ·ore mathematically based. A good 
exa1nple of this is the kineti.c d1eory of gases, v.rhere simple physical rules 
expressed mathematically aFe applied to a model of gas molecules behaving 
as hard, bouncy elastic balls . These rules allow the model to predict the 
behaviour of real gases. 
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Figure 1.3 The Ruthe rfo rd-'Boh r model 
of the ato:m. 

Figure 1.4 l1f the atom was the si,ze of 
the Wembley Stad.1um complex, then the 
nucleus wou ld be the size of a pea on 
the centre spot 

Sotne n1odels are very good analogies and others not so. Models and 
analogies have their limits. The best physical m odels are those that are 
a daptable to take in new experimental discoveries. 1Good physicists always 
state andl explain the limitations of the n1odels that they are using. 

JJ Thomson \vas the first p erson to create a n1odel of the structure of the 
atom, which he called the plum pudding model. Thon15on produced this 
model just a£ter he had discovered the electron in 1897 1 and it was named 
ah,er a popular steamed desse11. His model consisted ,of a sphere of positive 
charge with the electrons embedded throughout the positive charge, rather 
like. the smaU pieces of plum (or currants) inside the stean1,ed pudding. 
The tectrons were allowed to mo,v,e through the structure in rtnged orbits. 
Thomson}s model1 ho~·ever1 was sh ort-lived. The nucleus of the atom was 
discovered by Rutherford 1 Geiger and Marsden in 1909. 

The Rutherford-Bohr ,atom 
The Rutherford-Bohr model ,of the atom ,consists of a 
tin}~ central, positively charged nucle·us 1 containing 
protons and neu trons, surrounded by orbiting negatively 
charged electrons (analogous to the Solar System). This 
model is particularly useful for chemi.sts as it can be use,d 
to explain much of the chemical behaviour of atoms. The 

Rutherford-Bohr model is a useful model for visualising the atom, and is 

used a great deal by th e popular media to describe atoms. 

Rutherford scattering 
Experhnents carried out by En1est Rutherfo1~d and his research assistants 
Hans Geiger and Ernest Marsden iI1 1911 proved that th e nuclear radius 
is about 5000 ti1nes smaller than the atotnic radius. Geiger and Marsden 
performed alpha-particle scattering ~'Perim ents on thin films of gold, 
,vhich has an atomic radius of 134 pm (picometre.s) -wheTe 1 pn1 = 1 x 
10- 12 m . They found that the radius of the nucleus of gold is about 2 7 fn1 

(fe1nton1etres or fermi) - ;Nhere l fm = l x l o-15 1n. However> n1odem 
1neasurements of the 1·adius of a gold nucleus produce a value of about 5 &n. 
So a n1ore accurate ratio of ihe radius of a. gold aton1 to the radius of a gold 
nucleus is about 25 OOO. 

As a ,vay of visualising the scale of tb1e aton1. and the nucleus > if the aton1 
had a radius equal to that of d1e Wembley Stadium co-n1plex~ then the 
nucleus \Vould be about the size of a smaU pea on the centre spot. 

Charges, 1masses and specific charges 
The charges and masses of the proton, neutron and electron are shown in 
Table .1 below: 

Table1.1 

-~S, ~ ~;:~ 19 m f( p_~ ~ ~ i ~1L,~ '.: 
-· 
Proton +1 .60x1I0- 19 .... , , , 6 7 3 X 1 o-2 7 

Neutron 0 0 1 . 6 7 5 X 10-2 j' 

Electron - 1.60 )( ,, 0- 19 - 1 9. , 1 x 1 0-31 
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Next year you w1illl meet the 
concept of bi1nd ing energy. 
where so me of th e ·mass of th e 
pa,rtkles invo lved with form,[ ng 
n u c le i i1 s t ran s fer red T n to in u c lea r 
energy holdin,g the nuclei 
togieth er. So the ea le u latiio n s in 
the exa1m,ptes are approx imations 
based on the separate masses of 
the protons and n,e,utrons. 

PLE 

The specific charge, of a panicle is defined as the charge per unit tu.ass , and 
its units are Ckg- 1. Specific charge is calculated using the formula : 

"f" h f . . 1 cha1-ge of the particle Q 
spec]. llC c arge o a panic e = = -

n:1ass of the particle. m, 

So the specifi,c charge of the proton is calculated by: 

+l.60 X 10-19 
specific charge of a proton = -----

1.673 X 10-27 

= 9.56 x 107 C kg-1 

The specific charges o.f the neutron and the electron are O and 
-1.76 x 10 11Ckg-1 respectively. 

Ca lculate the spec ifi c charge of a beryll.ium -9 
nucleus, con tai ,n in g 5 neutrons and 4 protons_ 
C.a,lc ula te the spec iflc charge of a lith i u m-7 ( + 1) 
ion, con tainrng 4 neutron s. 3 protons and 

The re lative tota,l charge, Q, of the ion is+ 1 
1(3 protons and 2 electrons) so the cha rgers 

, x [ + 11 • 6 o x 1 0-1 91 

= +1 .60 x 10-19 C 
2 e tectrons. 

Answer 
The total mass, m, of the ion i's [ 1mass of protons.] 
+ [m,ass of neutrons) + [mass of electrons ] 

The tota( charge, Q, of the nucleus ~s 
4 X [ + 1 . 6 0 X 1 0-l 9] 

m = [3 X 1.6 73 X 1 Q-27j + :(4 X 11.675 X 1 Q- 27] 

+ [ 2 X 9. t 1 X 1 0-31 )i 
= +6_4a x 1' 0-19 c 

The total mass. m. of th e nucteus is ,(rmass of 
protons~ + [mass of neutrons) 

= 1 . 1 7 X 1 0-26 kgi 
The spectfic charge of the ion 1s~ 

specific c harge = !1 = + 1 ·60 x 1 o-19 

m = 14 X 1. 6 73 X 1 0-2 71 + ( 5 X 1i • 6 7 5 X 1 0-27): 

= 1.507 X 1 Q-26 kg 

m 11 . 1 7 x 1 0-26 

= + 1. 3 7 x 1 o7 c k9- 1 

The speci fi c c harg e of the nu cleus ~s: 

specific charge = Q 
m 
+6.40 X 1 o-lQ 

= 1. 5()7 X 1 Qr26 

~ -+-4.25 x l 07 C kg-1 

• ..... ... ..... .... ... ..... .... ... .. ... .... .... .... • .. ........... 111• •• ...... ... ...... • ............. ,. .......................... ,. 

I" C' l c is the word us,ed to des cr11b e 
protons or neutrons. Thes,e are particles that 
exist in the nudeus. 

Th,e r" n num r of a nudeuis is the 
nu m1b er of pro to n:s in the nud,eu s. 

Th,e , , 1 lP n J m r of a nucleus is the 
number of protons pfus the number of 
n eiutro,ns. 

nucileon 
numbGr 

A 

/ zX"""" 
p rotori chsm,1cal 

number symbol 

Figure 1.5 The 1x notation . 

Describing nuclei and isotopes 
The number of protons in any ghren nucl u.s is called the I 1'£ hH1 nun b r , Z. 
The total number of pro,tons and neutrons in the nucleus is called the 

11,·J on 1 011 I er, 1 • (Protons and neutrons .ar both found in the nucleus 
and are th.erefore called nu-..= 1 t·u 11 ). These two numbers comp ]e.tely describe 
any nucleus as the number of neutrons in a nucleus can be calculated by 
subtracting the pr,oton number from the nucleon nuinber. The t,~.ro nuclear 
numbers and the chemical symbol are used together as a shonhand ~ray of 
describing any nucleus. This is caHed the 1X notation. 

The nucleon number, A, is always VvTitten as a supe1·scripted prefix to 
the chemical symbol, and the pro ton number, Z, i.s al~lays a subscripted 
prefix. 



p ~ are nude, with the same number of 
protons, but different numbers of neutrons. 

Note: chemists use d,ifferent 

names ifor A and Z. They call 
A th e m1as5 nu,mber and Z th e 
atomic n·umber; this is because 
chemists generally use this 
n otat'ion for d esc ri1bi n g atoms 
on the Periodi c Ta.bile wn ereas4 
as physici sts. we are using th e 
notation to very specifi ca fl!ly 
desc ribe nuclei. 

hydrogc;n 
hydrogen~ "11 

1H 
1 

deuterium 
nyd'ro g Q n:~2 

2H 
1 

; proton 
ie neutron 

trltlium 
hydrogen-3 

3H 
1 

Figure 1.7 The isotopes of hyd rog,en . 

This notation aUovfs all nuclei to b e described u niqu el)~ including isoto pes , 
which are nuclei (and atoms) of the same elen1en t having th e san1e p roton 
number, Z, and therefore ch emical syn--ibol, X, but diffeTent num beTs of 
neutrons and 11e.n ce different nucleon numbers, A. 

A goo,d example of hovl the 1X n otation is used is when describing the 
tw,o n1ain isotopes of uranium used in nuclear fission reactors. Abo·u t 
99.3% of all naturaUy occurring uraniuin atonIS (and therefor,e nuclei) 
are uranium-238, n1eaning 238 nucleons (the nucleon nun"lber, A) 
comp rising of 92 protons (the proton number, Z) and 146 neutrons 
(238 - 92 = 146) . Only a.bout 0. 7% of naturally occurring u raniu1n is 
the more us fu] uranium-235, ,vhich can be used in nuclear reactors as 
nuclear fuel. Uranium-235 has the same proton n un1ber. 92; but only 
143 neutrons (235 - 92 = 143) . Using the iX notaUon1 the tw,o, nuclei are 
written as: 

2ssu 
92 

235 
a2u 

uranlum-238 uranlum-235 

Figure 1.6 The two most a.bu:nde1nt isotopes of uran ium. 

Naturally occurring hydrogen has three isotopes - 'n onnar hydrogen, 
deuterium and 'tritilun - 99.98% of all hydrogen is normal hydrogen- I~ less 
'than 0 .02% is deuterium, l1ydrogen-2~ and there are only trace -amounts of 
l ritium hydrogen-3. 

~ -····················································································································································: : TEST YOURSELF ji) State the number of nucleons 1n the ion. : 
• • 
: 'iii] Calculate th e sp eci fi' c charg.e of the sil~con ion . : 
: Data for tes t yo,urself quest~ons j,5 g,ener at ty g,ive n i·n : 
~ the ques tii ons, but you can find ex tr a f nformabon on 6 a) Germanium atO'ms are frequently lafd onto th e ~ 
! s pecific nucUdes us f ng an on line data base such as top of s ilicon subs.trates. About 370/o of naturally ! 
! Kaye and Laby from the National Phys ica l l aboratory occur r ing; germ ani um is german ium-74. ! 
: [N'PL] k l. b l ~~ Determ1ine the charg_e of a germa ni um -74 nu cleus. : 
: 1 · , • aye a y.np .cO.Uf\. : 
: b), A pos it ive ion with a german ium-74 nucileus has : 
~ 1 Exp lain w hat fs m ea nt by the sp·eti1fic charge of an a charge of 4.80 x 10-19 C. Ca tcutate the numher ~ 
: elect ron . of electrons rn this ion. : 
• • 
: 2 Wha t ar e iso topes? : : 7 Ca lculate th e specrfic cna rges of the ·foltowi ng,: : 
i 3 Using the data on p. 3 obtatn ed by Ruther ford. a) a deuter ium nuc'leus (h eavy hydrogen _ one ; 
: Geiger and Marsden . calculate the [atomic proton + on e neutron] i 
i ra drus: nuclear radius) ratio for go ld. b] a ea rbo n-l 2 nucleus : 
1 4 Ruther ford realised that the nuclear rad ius that he i. ! cl an '(oxygen-16J2- 1on . l had calcu lated from Geiger and Mar sden·s data fro.m i 
i positively charged alpha pa,rtk le scatter ing would be 9 Ra,don-222 1s a colou,riless, na,tura lly occurr ing i 
= a, ,maximum value. [Thi,s value i,s now caUed the charge radroactive gas. : I rad ius.) More modern methods of determ ining the aJ How many protons are there in a nuclleus of I 
; nuclea r radius of go ld, usi1ng ellec tron scatteriing', put radon-222? i 
! the rad ius at a,bout 5fm [ ..... 5. x 1a-1smL Why is ther-e bJ How m any neutron are there in a nu cleus of ! : . 
: such a d i1fference betvveen the tvvo va'l'U'es? ra do n-2 2 2? : 
• A • i 5 This quest ion is about th e elem en t s ili cori -28, f!Si

1 
c) Wr ite th e zX notat ion for r adon-222 . i 

! which is common ly used as a subs tr ate for th,e 9 There ar e two natura lly occurr11ng: isotopes of : 
• • 
~ m an ufac tur e of integrat ed c i1r cui t s. copp er~ 69o/o i,s co pp er -63, 31°/o is co pper-65 . : : 
~ a] How ma1ny protons. ne utrons and e lect ro n,s a re aJ Write th eiX nota bons for e a.eh of the two isotopes. f 
! th a ra in an a tom of ~f S i? b] Calculate the nu:m ber of :neutron s 1n ea ch o f t ha ~ 
i b] The ffSJ a tom [oses two e[ectr ons and form s a,n two isotopes. ! . ] . : 1·on. c Calculate th e average atom ~c mass of the se two : 
• • 
: i] Ca lcula te the charge of the i on. i,sotopes. : 
• • 
: ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••• ••••••••••••••••• 41111111 .................... lllllllli. 
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Th,e tr n n l -r is one o,f the four 
f u ndament~l 'f,orces of n aitu re (i ncludirng 
elGc tro m1a~et•c, weak .a1n d gr.arvitatm onal 
forces}. ~t ls a very shortarange fo,rce a1nd 
acts between nudeons, (pr,o,to,ns ,and 
neutro,ns) holding nudei together. 

-~ Repu11s1ve 
a> force 
~ 
.E 

Attractive 
force 

nucleon 
separaUon 

3 (fm) 

Figure 1 .. 8 The strong nucilea r force . 

The neutrino,, v, is a neutral almost mass­
lesS: fundam,ental sub-atomic particle that 
rar,ely Enteracts. With matt,er. n I ut ri n nc 

ar,e the anti parudes of th,e neutrino. The re 
are three forms. of neutr~no·: the electron­
neutri no, v 9~ the muon-neutrino, v lt; and the 
ta u-neutn no, v t· 

vVhy are 1nos1 nuclei stable? Protons are positively charged) so vlhen they 
aH! confined close together in a nucleus they sltould aU repel each other 
and break up the nucleus> so why don't they? If nuclei are stable then 
there must be another attractive, short-range force 'that i.s stronger th.an the 
force of electromagnetic repulsion bet,qeen the protons. In addition> this 
s'tronger force mus't als,o act between neutrons as well as protons, othel\i\iise 
it would be extren1 ly easy to remove n utron.s from nuclei· at extremely 
short-ranges the force must be repulsive~ otherwise the nucleons inside the 
nucleus would implod . 

The . • rtl n,, 1 uc lear k rcc is one of the four fundamental forces (the other 
three are ,electromagnetic, gravitational and v;.reak nuclear) and it acts betw~een 
nucle,ons. It is the force that holds nuclei together and keeps them stable. 
The strong force is attractive up to distances ,of about 3 (m (3 x 10-15 m) and 
repulsive below very short-range distances of about 0.4fm. The graph of 
force against nucleon separation is sho'Wn in Figure. 1.8 . 

You can see from Figure 1.8. that at separations o,f about 0.4·fm; the 
magnitude of the strong nuclear force is zero. The force i.s neither 
attractive nor repulsive. This is the equilibrium position. for the nucleons 
(protons or neutrons), where fl1e resultant force on each nucleon is zero . 
In a stable nucleus I this is tl1e separation o f each nucleon. Tl1e graph also 
shows how short range the force is: at a separation of just 3 fm> the strong 
force. has dropped to zero . 

Alpha and beta radioactive decay 
Not all nuclei are stable. In fact the vast n1ajority of kno-wt1 isotopes 
are unsrable. . Unstable nuclei can become more stable by the process 
of radioactive nuclear decay. Although there are n1any different decay 
n1echanisms, three types are far more conunon than all the od1ers. These 
are alpha~ beta and garmna decay~ Alpha dec,ay involves the emission 
of two protons an d two neutrons joined together (identical to a helium 
nucleus) . Beta decay involves the decay of a neutron into a proton, and an 
,electron and an ~n incu trin o ~ which are subsequently emitted from the 
nucleus. Gamma emission involves the protons and neutrons inside t·he 

nucleus losing e·nergy (in a si.mHar \vay to electrons changing energy level) 
and en1itting a gatnma ray photon as part of the process. 

The ant,ineutrin o em 1itted during beta decay was first 
suggested to be emitted by the Austrian phys,idst 
Wolfgang Pa ull 1in 1,930. Beta1 parttcles are emitted 
from a parent nucileus wi1th a1 range of d:ifferent 
energies, up to a m,ax imum vatue. Pa,uli suggested 
tnat whe11 beta particles are emHted, another particle 
is emjtted at the same tim,e, taki1ng u1 p the balance of 
t lie energy. Pa u lli ea lled these pa rt i c,les · n eutrrnos' 1 

sy mbol u, 1meariing 'Uttle neutral on1es· . He proposed 

that neutrinos were electrica lly neutral and atmost 
mass- less (th e'ir ,mass is so small that it has never 
been determi1ned accurate ly!: they also on ly feet 
the wea1k nuctear and gravitational forces. The anti ­
neutrino is the a,nti particle of the neutrino. It has 
nuclear properti,es opposiite to that of its particle 
·sister·. Antiparticles have the same nuclea r symbol 
as th eir particle eq uivalents, but th ey have a ba r over 
them,, hence the symbol for the antineutririo ls v. 



Observed 
spectrum 

.·. of energies 

Kinetic energy of beta 
partl1cl es ( MeV) 

Expected beta 
erectron 
energy, Eror 

Ena point 
01 spectrum 

The observed beta particle spectrun1 graph (Figure 1.9) 
sl1ows that b eta particles are emitted vtith a range of en ergies, 
E~, from just over zero up to a n1aximum value Eror· Eror is 
th,e exp ected energy determined by an alysing the energies of 
the pa·rent and daughter nucHde.s. Eror is constant for any 
one radioactive beta-en1itting nucHde, so another particle, 
the antineut1i no,, 1nust be en1itted \\>i th an en ergy Ev, ,vhich 
can be any value fron1. just above zero up to a n1axilnum 
value Eror· The con1bined energy of the beta particle and the 
antineutrino must equal E101, so : 

Figure 1.9 A typica l beta particle em ission spectrum. 
The totarl em ission energy Eror is made up of tihe 
kinetic energy of the beta particle plus the ki1netic 

Eror • E~ .f. Ev · 

energy of tti e a ntj neutrino. 

glass plate 

Detecting nuclear radiation 
The clo1ud chamber 

Hght--­
beam 

fonfsing 
1nuolea1r 
irad liat loni 
source 

One of the earliest ways of detecting ionising nuclear radiation ,vas 
invented by Charles Wilson in 191 1. He came up v..rith th e idea of 
creating clouds artificially in the laboratory~ by rapidly expanding 
air saturated with \Vater vapour inside a sealed chamber. Wilson 
suspected that clouds form on charged particles in the atmosphere, 
and he experimented by passh1g X-rays througl1. his chamber. 

-----saturated a lr 

---plcStori 

metal 
cylinder 

Figure L 10 The WiLson cloud c hamber. Ut yo u 
are co rid uct1i ng thi s expe riimen t yours.elf. follow 
the CUEAPSS l93 r i·sk a1ssess1ment.) 

He discovered that the X-rnys left \vide cloudy tracks inside the 
chain her. Wilson then p assed alpha~ beta and gatnn1a radiation 
through th e chamber and found that th.e highly ionising alpha 
p articles left broad, straiglH1 definite length tracks; th e ionising 
beta p articles left thin , straight or curved tracks (depending on 
how high their en ergy was); but the \veakly ionising gamma rays 
left no lracks at all 

Rad~at~on 
source 

ov 8 

thin wire--

+ 50COV 

spa1rklng 
here 

Fig u re 1. 1 1 A .s p; rk co u n t er. ! If you a re 
coinductfng th,is experiment yourself 
USQ a cu rrent- li mi te,d [S 1m A 1max] EH T 
d 1nd follow the CLEAPSS L93 risk 
assessm ent.)1 

The spark counter 
Spark counters only detect highly ionising alpha particles. Beta andl gan1n1a 
radiation do not ionise enough of the air between the metal gau2;e and the 
thin vrire. underneath. \~/hen the air particles are ionised by the alpha particles 
the charged particles produced cause a spark 'to be formed. That spark jumps 
across the SOOOV gap bet,veen the gauze and 'the wire. The spark can be 
seen, heard and co'Unted by an observer or \Vith a mict·opbone. This method 
of detecting alpha particles is particularly useful for sho,-vmg that they have a 
very short range in air. 

The Geiger-Muller co1unter 
Figure 1.12 shows a modem 1Geiger-MuUer counter, which is designed to detect 
.and count radioactive ·emisions automaticaU}~ vrithout having to count sparks or 
scin:tillations one at a t.ime. 

Ionising radiation enters the GM tube through the thin mica windov.-· 
(alpha or beta radiation)) or through the window or sides ,of the counter 
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Figure 1 .. 12 A Gei ge r- M uiller (GM:] cou nit er . 

(gatmna radiation). The low-pressure in,en gas inside tl1e detector (helium, 
neon or argon) is ion ised p roducin g a cascade of charged particles that 
ar,e attracted to opp ositely charged el.ectrodles . The soi.all p ulse of current 
produced by the m oving charge is detected by the electronic counter~ 
~~hich registers a lcount' . Geiger coun ters have a distinct advantage over 
spark counters and cloud ch ambers in that they can detect all three types 
of radiation. 

. - . _- . ·····················································································································································! JEST-YOURSELF : 

10 Th e p1ictures to th e rtg,ht show 
th e path s of alpha pa,rt ic tes . 
beta particles and X-rays i :n s,id e 
a. c loud chamber: 

a] Whf eh c loud chamber 
prcture[s) show the 
follow~ng? 

i] alpha particle tracks 
i,i) an X-ray track 

iii] a beta particle t rack 
b] Exp lai.n why cloud chamber 

picture C show two types. of 
partic[es? 

11 Explain why a spark counter 
ea n easi1ly detect a lp ha particles 
but 1u s uailly ea n not detect beta 
part~c les or gamma rays. 

12 A Geig-er counter is used to 
detect the intensity of alpha 
particles heing emiitted from 
a radi,um source ·containing 
tvvo atpha-erni tti11g isotopes, 
radium.-223 a.nd radium-226. 
A graph a.f intensity [counts per 
mrnute~ aga i·nst ra nge in a1ir 
(c.ml for thi s source ~s shown in 
Fi g u re 1. 17. 

Ra,dium-223 emi1ts a lpha 
parti cles w~th h f g her energy 
than ira.dium-226. Use the graph 
to deter1mi1ne th e range of alpha 
partkles in a·ir em,itted by each 
rsotope. Explain your reason 1 ng. 

Figure 1.13 Ctou d 
chamber Picture A. 

Figure 1.14 Cloud 
chamber Pi.cture B . 

Figure 1.15 Cloud chamber Picture C . Figure 1.16 Cloud chamber Picture D . 
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The beta particle emission spectrum of bismuth-210 
A student ca rri ed out an experim ent m easu r ing t he kinetic energy of beta particles 
emitted by the radioisotope bi sm,ut'h-21 D. IHer ·measur ements are shown below. 
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1 Plot a graph of beta particle intensi1ty (y-ax i1sli aga fn,st beta pa,rtic le energy ,x-axis). 

186 

0.0 

2 A secon.d student measures beta particles beingi emiitted w ith a second bi.smuth -2 l 0 
so urce w ith an intens ity of 11 arbitrary un its. Use the graplh to determ~r,e the poss i·ble 
kinetic energ ies of the emitted beta particles fro1m the second source. 

3 The maxim,um kiri etfc energy of beta partictes e:mitted from bis,muth-2 10 rs 186fJ [186 x 10-15JL 
Ca le u la te t h e en e rg i e s of t h e anti n e u t r in o s em it te d at t h 1i s in ten s i ty. 
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o--~~~~~~-
N u c Le a r equat ions 

: He - alpha particle { a.) 

_ ~ e- beta particle· (p-} 

y- f!a·mma ray (strictly gy) 

v - neutrino ( stric.tly ~v) 

v- anti neutrino ( strictly ~v) 

Figure 1.18 The JX notation for 
ion isi1ng rad lation [Note: values of 

g>(° a re us ua t1ly wri tten witho 1ut th,e 
ze rost 

Some nuclei that are unstabte and 
decay via ga,m,ma ray emission 
have the letter ·m · added after 
the~r n,ucleon nu m,ber, mea ning 
·meta stable .. A good exa mpte 
of thi s is technetium -991m, a 
common gamma ray emiitter used 
in nuclear medica l imag~ng. Thi1s 
i·s covered ,in next year's book. 

The ix notation can be used to describe the nuclear reactions that take 
place during radioactive decay. 

During alpha> beta and gamma :radioactive deca~ two simple conservation 
rules com e into play: 

• nucleon numbe1·, A, is ahvays conserved 
• proton number) Z') is always conservedk 

In practice this 1neans 'that fl1e 'total (addition ) value for A before the decay 
is equal to the total (addition) value of A after the decay (and, sinlilarly, 
the totals for Z retnain the san1e before and after the decay). Look at the 
following t,vo e.xarnples: 

l A common a]pha d~cay is the decay of radium-226 in granite rocks~ 
producing an alpha particle and the radioactive gas, mdon-222. This 
nuc1ea.r decay can be written as: 

226Ra --+ 222Rn + 4H e 
88 85 2 

Tota,1 nucleon number before CJ 226 Total n uc1 eon number a,tte r 222 + 4 c 22G 

~ +-...... ' 2: Ra 
t 

Total proton number 'before - 88 

Figure 1.19 Decc1y of rad ium. 

__ _.,.. 222 Rn 4H,e 
86 I + 2 

'--+/ 
Total proton number aflter B6 + 2 - as 



U'1 
L&J 
C -.....I 
u 
::, 
z 
Q 
z 
<C 
U1 

~ 
u -l-
ei:: 
!:t 
0.: 

It is ha·ndy to have access to 
a database of t he different 
n uc l1 des. The database should 
g1ive you t he va lues of A and Z~ as 
well as other key data~ such as 
the haH-Ufe, abundance and ~ts 
decay m echani s1ms. You will find 
such databases on, the web. 

2 The same rules apply to beta decay. A good example is the dlecay of 
carbon-14> a naturally occurring radio-nuclide used in carbon dating 
techniques. Carbon-14 decay"'S via beta ,emission to nitro gen-14, emitting 
an a:rntineutrino in the process. This decay can be su1n1narised by: 

Total nucleon number before e 14 

Total proton number before !!!:! s 

Fig u re 1. 20 Decay of c a rbon-14 .. 

Total nucleon number after 14 + O e 14 

.,,-+""' 
1~NI + op +v 
7 -1 
'----+~ 

Total proton number after 7 + (-1 ) c 6 

In both these examples both the nucleon number, A, and the proton 
number\ Z, are conserved during the decay. 

- ········ ········•••••+t••••••·•·•••••t•············ ·········•••••t•••••••······························••••tt••···································· ··t 
: TEST YOURSELF ~ 
• • • • • • 
: 13 Ptutonium was the ffrst man-made ele1me nt. The 1, Americium-241 is cH'l1 a lpha emitter commonly i 
• • i e lement ls made by bomba1rding ura nfu,m-238 used iri sm oke detectors : its daughter nu cli de 1is i 
i w ith deuterons (nuc le i of deuterium. ~;4]. neptu n~um -237. i 
i p r odu cing ne.ptun ium-238 and two neutrons, (6nJ; 15 Stron t ium - 90 is a be ta e 1m itte r used as a i 
• • : the neptun ium -238 th en decays vi a beta decay fu el so urce in radiofso to pe t hermoelectric : 
! [where the nucleus e mH s a n etec tron ,-~e,] t o generato rs (RTGs) on space probes and j 
• • 
: plutonium-238. Li ghthouses ; it decays to y ttr ,ium-90, e,m it t111 gi an : 
: antin eutri no in th e process . : 
i Write nu clear equati ons s um ma ris1r1g th e form ation 16 Ph osphor ous -32 i,s a beta emiit te r used as a ~ 
! of plutoniu m-238. Urarriu m has a p ro to n 1n u1mi'ber tracer in DNA research. i 
: of 9 2 · 17 P'l , 2 38 ~ l h . l d : : · uton1um- . JS an .a p ,a em,rtter a1 so use as : 
+ • 
: Use a nu cUd e database. or a pedo d1ic tab le. t o w rite th e fuel source for RTGs. : 
• • 
: nuclea r e quations t a sum mar1se the foUow in g 18 Tritium [or hyd rogen-3] is a beta em i t te r used in : 
i radioactive decays. some 'glow- in -the dark' paints. ! 
• 41 

: ... ............................................................................................. ...................................................................... lllllli 

o~~~~~~~-
T he photon model of electromagnetic 
radiation 
Around the turn of the twentieth century, pl1ysicists such as Albert Einstein 
and Max Planck developed a patticle. inodel of ,electromagnetic radiation to 
acc,ount for two experimental o,bs,ervations that '\\i"ere impossible to e:kl)lain 
using ,classical physics. 

Planck developed the concept of a f·undamental unit of energy, which became 
known as a quantum. He proposed 'that atoins absorb and en1it radiation in 
multiples of discrete amounts that a.re given by the Planck equatt.on: 

E = lif 
v.rhere: 

J is the frequ.ency of the radiation absorbed or emitted~ and 

his a constant) n o'\\r called the Planck constant. 

lt W'"as Planck ,~lho called these discrete units of energy 'qua.11.ta/ and the 
small Lpacke.ts' of electrom agnetic radiation making up these quanta became 



kno~n as photons. Me-asu1"e·ments of the energy of photons has produced a 
value for the Planck constant o[ 6 .63 x 10-34] s . This theory is discussed in 
more detail in Chapters 3 and 4 . 

~ -···················································································································································: 
i TEST YOURSELF ~ 
I • • • • i 

i 19 A Ught-emii'tt ing d' i1ode [LEDi emits li ght pnotons of ; 
• .i i energy 3. 6 x 1, o-1 9 J. T : : 
: a] C ailcu late the frequency of this : 
I I 

: electromagnet ic rad iatJon. ! 
i bi Catc1..1 late the energy emitted per second j 
i [ca lled the output power] of the LED, when it ~ 
i em its 0.9 >< 1017 photons each second . : 
• • 
• I 
• I i 20 LEDs are now used extensive ly as the li ght source Figure 1_21 LED torch. i 
i 1in torc hes. f 
: The LEDs used in th e torch shown in the diagram LEDs need to be connected to a certain mf ri i1mum : 
I ' I I ! above emit blue photons of li.91ht. The wavelength vo ltag-e, caHed th e aict i'Vation volta91e, before they i . .. i of th e blue Hg ht is 420 nm. emi,t Ug,ht. A blue LED needs a highe,r voltage than i 
: a] Show tha t the energiy of a photo n f rom thi,s a longer wave length red LED. : 
~ LED 1s a.bout 5 x 1 o- 19 J. b] Exp la1in w hy a red LED needs a Lower voltage ~ 
• • 
: thain a blue LE D. : 
• • : ..................................................................................................................................................................... .... 

o~~~~~~~-
A n tip articles 

st m - n ijs the am cunt of energy 
released by converting all of the miass of a 
parUde at r,est into energy using E.inste~n's 
famous mass~energy equation, 

E=mc:2 
where m iis the rest ma.ss ,of the parUde and 
c is the speed ,of light. 

• •• , 11. ..... ........... . .......... . ..... " .. ... . ,. ..... . .......... , .. ,. ........ " ••.or . ........ .. .- ...... .. --•• 

M I ctrl"n- I The energy of nuclear 
part,des is usuaUy gi~en an M·eV. mega 
ele cuo n-vo lt s. one ,electro n-v,o It is a very 
s mal I amount o,f ,energy, e·qu~vale nt to 1.6 x 
10-19 J. fhjs is the same numerjcal value as 
the char:ge on a,n electron and i·s defined as 
the a1mount ·Of ,energy n,eeded to accelerate 
an electron ,of ·cha1rge 'e', (1.6, x 10- 19 c) 
thr,ough a pote,ntial differenc,e of 1 volt. One 
MeV Is a mmion electiron-volts. ~quWa~ent 
t,o 1.6 x 10--1l J. This unit comes from the 
d~finction of the volt. A volt is the amount of 
en,errgy per u n mt eh a1rge o,r: 

so, 

energy 
votts ~ h c arge 

energy!!::: charge x volts 

In 1928, Paul Dirac proposed the existe11ce of the positron, the antiparticle 
of the electron. He suggested that the positron had the same n1ass as an 
electron, but ihat m ost of its other physical p roperties (such as its charge) 
~lere die opposite to that of the electron .. Dirac lhought that posit1~ons we.1~ 
positively charged elect~ons. 

All particles have a correspondil1g antiparticle. Each p article - antiparticle 
pair has the sam.e 1nass a11d therefore the same est Jnass-cncrgy (the 
amount of energy re.leased by converting all of the mass into energy) 1 but 
they have- opposite properties such as their charge. The positron is on e 
of the few antiparticles that has its own different n a1ne; 1nost o:th er anti­
particles are described by the vvord 'anti) in front of the particle name. The 
other 1nore c,on1n1on antiparticles are the antiproton , the antineutron and 
the antineutrino . Antipatticle.s generally have the san1e syn'lbol as th ir 
particle but h ave a bar drawn over the top of the symbol; for ·exatnple the 
proton has the symbol p and the antip ro,ton has the symbol P'· An .exception 
to this is the positron. It was the first antiparticle to be discov,ered and is 
given the symbol e-+-. 

Antipartic.les are n,ot common. The Universe appears to be overwhelmingly 
dominat d by 1natter. Antimatter O·nly beco1n es apparent i11. high-energy 
particle interactions, for example in the interaction of high- nergy ,cosmic 
rays 1.\-ith the annosphere., or in particle accelerato r experiments su ch as the 
large Hadron Collider (LHC) at 1CERN. 
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Other particle - anhpartf c le 
pa ~rs w ith ·non-bar· symbols 
a re : muon"" [~"'l and muon- [1.rL 
p~on+ (n;+) and IP ion- (1c] ; kaon'I" 
(K+)I and kaon- ~ K- ]. The photon 
and the pion° !'1°)1 are th-eir own 
anti1part icles. You wilt meet these 
partic les again in Chapter 2. 

.... ,. •• , •• ~~1!•1111<'11<1•1••• ... , .. , ..... ~ •••• • • ~. lllill"••• .. ,..<11 .... !ii,1!'11il•t11'" 111.ii•1••• • ....... ... , .... . 

When a parrttde m,~ets its ant1particle and 
themll' totail_ mass is c.onverted to ,en.12irgy 1in 
the form of tvv,o gamma r;r; photo n.s. the 
p,arUdes ~ n t I h I ~ each other. 

Particle-antiparticle interactions 
\\Then a particle m eets its corresponding antiparticle they Vvill anuihllatc 
,each other. This m eans that the total mass of the pan1icle pair is converted 
into energy. in the f onn of two gamma :ray photons. 

11. Electro n~po s Itron ann I h I latlon 

proton p p antlproton 
r 

e I ectro n e-c o e+ pos Itron 

Figure 1.22 Diagram showing annihilati·on. 

l"N"O gamma photons are always produced during particle- antiparticle 
annihilation in order to conserve momentum_. The total energy of the 
gamma p'hotons is ,eq11al to the total rest energies of the panicle -antipartic]e 
p-air, i.n order to consenre energy 

The rest energy of an electron ,s the same as t hat of a positron and 1s 
0.51 MeV. Calculate the wave'Length [in pico 1metres~ pm1 of the two ga rmm·a 
ray photons produced when an electron and a positron annihi late each 
other at rest 

Answer 
As the electron and the positron are initially at :rest i therr total 'mromen.tum 
i,s zero. This means that the total momentum of the photons produced w hen 
the e[ectron/posiitron annih flates must al so be zero. Both the photons wf ll 
have the sam1e energy and wHl be moving at the same speed [the speed of 
lightL so they mu st be movf ng ~n oppos ite direct1ons for their momenta to 
ea nee l out to zero. 

The total energy of the a.nni,hHat,on will be 1! .02 1MeV. The hNo photons that 
are produced during the ann ihilat~on 1must therefore have an energy equat 
to 0.5 1 MeV. 

0. 51 M eV - 0 . 51 )< 1. 6 X 1 0- 13 J ~ 8. 2 )( 1 0-14 j 

To calculate the wavelength of the photons: 

Ea l1f ,._ 

~- he 
E 
6.6 X 1 o-34 Js X 3 )( 1108 ,m s- 1 

,._ i;;i ,8 . 2 >< 1 0- ·14 J 

- 2.4 >< 10-12 mr 

l- 2.4 pm, 



Pair pr1oduction 
The opposite process l o annihilation is called pair p roductio n . In this 
process , a photon ,vith enough energy can int,eract with a large nucleus 
and be ,c,onverted directly into a patticle - antiparticle pai.r. The rest 
energy of an electron (and therefore a positron) is 0.51 MeV, or 8.2 x 
10-14 J. In order to cr,e~ue 1his particle - antiparticle ·pair, ihe photon must 
h ave enough energy to c reate both particles, in other words, (2 x 0. 51) = 
1.02 MeV, or 16.4 x 10-14). The vtavelength of the photon needed to do 
this can be calculated by: 

E=hf 
A 

A=11£ 
E 

A= 6.6 x I0-34 J s x 3 x l08m s-1 = 1.2 x 10-12 m 
16 .4 X 10-14] 

A= l.2pm 

~ --··················································································································································: 
: TEST YOURSELF ! 
• • • • • • 
: 21' 
• • .. .. 
• • • • • • • • • • .. .. 
• • • • • • • • • • .. • • 
: 22 • • • • • .. .. 
• • • • • • • 

A proton and an antiproton ann1ihitate at rest 
produdng two high-energy photons_ each with 
an ener9y of 1. 5 )( 10-10 J. Cailcula te the frequency 

and the wave.Len g,th of the photons. Com pare 
the wavelength of these photons to the photons 
produced by etectron - pos]tron ann ihi~atf on. The 
rest 'mass-energy of the proton and ant~proton ~s 
938 MeV . 
Every type of particle has f ts corresponding 
antiparticle. 
a] Write down the name of one partlcle and its 

co r re s po n d i n g pa rt i1 c l e . 

~ b] State one pro per ty that the par tic ~e and ~ts 
: : antiparticle share. 
i cJ State one property that is ditf:erent for ttie 
i pa:rticte aind its antiparticle. 
' : 23 Under certain drcu:mstances lt is possible for a 
• : very high -energy photon to be converted into a 
i 
• • i • 
i 

proton and an ant1proton ~ each with a r es t energy 
Of 1.50 X 10~10J . 

a] State the name of th 1s process. ~ 
The photon i:n this process ·must have a minimum1 i 
energy in order to create a proton and an ant,iproton . : 

• 
b] Calculate the min1mum energy of the ph oton ~ 

• 
1n Joules. giving your answer to an appropriate : 

• number orf sf gn ifi ea nt fr gures . : 
• cl A photon of even higher energiy than that : 

catculated in part [bl is als o converted into a f 
• proton/antiproton pair. State what happens to : 
• 

the exce.ss energy. : .. 
d i Explain why th·e photon requrred to p rodu ce : 

• 
an elec tron/po s1tro n pcri r woutd not be able to : 

• 
produce a proton/ a ntip rota n pa i1r. : 

: 
e] The antiprotons produced during this :p rocess : 

• have very sh,ort lifetimes. Describe what i1s i 
likely to happen to the anti p rotor, soon after tit i 
is formed. : • • fJ Explain why a s ingle photon could not produce i 

• 
a single proton dur1ngi this process rather tha,n i 

• a pro ton/ainti.proton pair. i 
: ............ i····························································································································i•••ii4llllllllllllllllllllllllllllllllii 
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Practice questions 
1 Which line represents the can·ect number of protons, neutrons and 

electrons in an ato1n of one of the isotopes o,f lead 2g~pl,,? 

protons neutrons electrons 

A 82 126 126 
B 126 82 126 

C 208 ,82 208 
D 82 126 82 

2 What is the specific cha1·ge ·Of a gold 7~7Au nucleu.s? The mass of the gold 
nucleus is 3.29 x l(r25 kg; the charge on the electron is ] .6 x 10-19 C. 

,A 3. 63 x 101 C kg-1 3. 92 x l O 7 C kg-1 

B 3.84 x 101 Ckg-1 D 9.56 x 101 C g-1 

3 Uranium-236 may split in.to a caesium nucleus, a rubidium nucleus and 
four neutrons as shoVv'TI below in the f0Uov.ri1,g nuclear equation . vVhat is 
the value of X for the n1bi.dh1m nucleus? 

236u ---?' l37cs + x. ;n L. + 4 l fl 
92 55 37.tW · 0 

A 92 B 95 C 98 D 99 

4 W hat is die charge; in C, of an a'tou1 of 1;N from which a single electron 
has been rem oved? 

A - 9.6 x 10- 19 c 
B - 1.6 x 10- 19,c 

C +1.6 X 10-19 C 

D + 9.6 x 10-19 c 
5 In a radioactive decay a gamn1a photon of ,vavelength 8 .3 x 10-13 n1 

is emitted. What is the energy of the photon? The speed of light is 
3 x 108 ms~1 . 

A 5.4 x 10-46} 

B 2.4 >< 10-13 J 

C 57] 

D 2.0 X 10 43
] 

6 Thoriutn decays by the en1ission of an alpha particle as sho\Vn in the 
equation: 

2~Th _, :Ra + a 

Wl1at a.re the correct values for X and 'Y? 

X V 

A 225 88 

B 88 225 
C 229 91 

D 227 B6 

7 1:c is a radioactive isotope of carbon. It can form an ion when tvlo 
electrons at",e removed from the atom. \\!hat is the charge on this ion in 
coulombs? 

A -9.6 x 10-19 C 

B -3.2 x 10- 19 C 

c J.2 x 10-1~c 

D 9.6 x 10-H> C 



8 The line spectrurn from heliun1 includes a yellow line with a ,vavelength 
of 587.6nm. \i\that is the energy of a photon \vith this wave.length? 

A 3.89 X 10-40J 

B 1.11 x 10-31 J 

C 1.13 X 10-27] 

D 3.38 x 10-19 J 

9 An alpha particle has a kinetic energy of 9.6 >< 10-13] . The mass o,f the 
alpha particle is 6. 6 x l o-2 7 kg. \\'hat is the speed of the particle? 

A 1.2 x 107 ms-1 

B l. 7 x 10 7 m s-1 

1.5 x 1014ms-1 

D 2.9 x 10141ns-1 

10 2~~U decays by emitting a and,- particles in a nu1nber ,of st ges to 
form 2~~Pb. H,o'-"" many p- decays are involved in this decay chain? 

A 2 B 4 6 

11 a) Name the constituent of an atom which 

i) ha-S zero charge 

D 8 

(1) 

ii) has tl1e largest specific charge (1) 

iii) when removed leaves a different isotope of die element. (1) 

b) The equation 

99Ic ~ARu + Oa, + X 
43 Z -1"' 

represents 'lhe decay of technetium-99 by the etnission of a 
p- particle. 

i) Identify the particle X. 

ii) Determine the values of A and Z. 

12 Alpha decay is a process by ,vhich an unstable iso tope of an 
elen1ent 1nay decay. 

(1) 

(2) 

a) State Vlhat is meant by an iso tope. (2) 

b) Copy and con1plete this equation for alpha decay: (2) 

A - . ·· y -+ 
2 X ----+ ... + 

2
He 

c) Ex.plain ,vhy the alpha patticle, once outside the nucleus , is 
unaffected by the strong nuclear force of the parent nucleus. (2) 

13 An atom of calci.un1, ;~ea, is ionised by r,em oving two electroM. 

a) Stat the number of protons neutrons and electrons in the ion 
formed. (1) 

b) Calculate the charge of the ion. (1) 

c) Calculate the specific charge of the ion. (2) 

14 a) Describe 110,;,v the st1nn.g nuclear force beween two nucleons varies 
vvilh the separation of the nucleons) quoting suitable values for the 
separation . (3) 
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b) An unstable nucleus can decay by the emission of an alpha 
particle. State the natur,e of an alpha particle. 

c) Copy and coinplete the equation below to represent the 
emission of an a particle by a 2;fu nucleus. 

238 .. · TL · · · 92u ~ .. . n + ... Q 

II I - a) Explain what is meant by th e specific charge of a nucleus. 

The incomplete table sho,""·s information for two isotopes 
of uranium. 

Number of Number of Specific charge of 
protons neutrons nucleus ... ~ 

Fi,rst isotope 92 143 
Second isotope 3.7 X 1'07 

h) C,opy the table and add the unit for specific charge in the 

(1) 

(2) 

(1) 

heading of the last column of the table. (1) 

c) Add the n1nnber of protons in the second isotope to the second 
ro,v of the table. (1) 

d) Calculate the specific charge of the first isotope and write this 
in the tab le~ (J) 

e) Calculate the nmnber of neutrons in the second isotope and 
put this uuniber in the tab le. (4) 

Stretch and challenge 
16 Figure 1.23 shows an arrangen1ent to tneasure the Planck constant. 

tlylng lead 

Figure 1.23 Circuit diagram for measuring the Planck constant 

The data obtained from this experim nt is sho'\\n belo\v. 

LED number Wavelength of Frequency Activation 
emitted photons, of emitted voltage, VA.IV 

>~/nm phot,ons, I/Hz 
1 violet 413, 3.011 
2 bl.ue 470 2.65 
3, green 545 2.28 

4yeUow 592 2.09 
5 red 625 L98 

a) Write a method as a numbered list for this experiment. 

b) Copy and complete the table, calculating the frequency of 
ihe emitted photons. 



c) Plot a graph of activation voltage (y--axis) against photon 
fre,quency (x-axis). 

d) Draw a line of best fit on the graph and calculate the gradient. 

e) ·use the equation eVA = hf, together \.Vith the gradient of the best 
fit line, to determine a value of dte Planck constant. Show your 
working. 

17 How does the pr,oton number, Z, and the nucleon nun1ber, A, ,of a 
nucleus change due to: 

a) the emission of an alpha panicle 

b) th emission of a beta particle 

c) the fusion "'ith a deuterium nucleus? 

18 The potassium isotope i~K disintegnnes into i~Ca. 
a) What are the likely type/s Qf ra.dia.tion produced? 

b) How many protons, 11eutrons and electrons are present in an 
atom of the daughter nucleus ;:~ea? 

19 A muon and an antimuon. annihilate e.:1.ch o ther to produce two 
7-rays. Resea11ch the data that you need for this question and use 
it to calculate the 1ninimum energy of the photons. 



Fundamental particles 
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Matter i:s made of atoms. 

• 
" • • 
"' f 

i • 
Atoms are made LI'P of a very smaU central nucleus contajning partictes = .. 
called proton s and neutrons, surrounded by orbiting electrons. : 

• 
Ato 1ms a re electriica lty neu,traL Protons carry a positive charge and : 

~ 

electrons carry the sam,e m,a·gn itude, negative charge. l1n atoms~ the : 
number of ,protons equails the number of elec tro nis, so their overall i 

: charg e 1is zero. : ., 
Protons and neutrons have a m ass about 1800 t'imes larger than ~ 
electro,ns. M,ost of the mass of an atom· is conce ntrated in the nucteus : .. 

i due to the protons and neutrons . .. .. 
: • • 

· ··········· ········ ·································~········ ········· ······· i··· ·· ........................ lllllllli 

............................................................................................. .. , 

• • 
TEST YOURSELF ON PRIOR KNOWLEDGE 

: Data for Test Yourself questions ,j5 gen era Uy given in the questions 

• • • • • • • • • • • • 
: but you can find extra information on specifjc: nuclides us in9 an online : 
• • 
: database such as Kaye and Laby from the National Phys ical Laboratory : 
• • 
: [INPLL kayelaby npl.co .uko. : 
• • • • • • : 1 a ] Ca,lculate the totat chargie on a sod[u,m-23 nucleus. : 
• • i b] Calculate the approximate 1mass of the sod .ium-23 nucleus. : 
• • i 2 The atomric radius of an e lement can be estimated using the Avogadro ! 
~ Ni umber. NA= 6.02 x 10 23, {the number of partkles 1n 1 ·m,ole]. the ~ 
• • : density of the element and the m·olar 1mass of the element. The m,olar : 
i mass of carbon -12 f s 12.0 x 1 o-3 kg mot- l, and carbon-1,2 [diamond ! 
i aUotropeJ has a de:nsity of 3500 kg m-3. ! 
• • 
: al Calculate the mass of one atom of ea rbon-12. : 
• • 
: b] Calculate the vol1u me of one atom of carbon -112. : 
• • i c) C a:lculate the radiu s of one atom of ca1rb on -12 [vo lu m,e of a sphere i 
~ is gi1ven by V = ~ 1tf3]. ~ 
i d] Th e nuclear rad tu s of an elem ent :is given by th e fo llowf ng 'form ula: i 
• • i r~ ro4* j 
f wh ere r0 i1s a con stant equal to 1.25 x l 0-15 ml an d A is th e nucleon : 
; number ~number of protons + nu mber of neutrons). Use thi,s i 
• • : informat iion to catculate th e r adi us of a ca r bon-12 n1ucteus. • 
t i 
* e] Ca lcuilate th e r a,ti o ato mic red i.us for c a,r bo n-12. : i nuclear radius i 
p I 

: .................... .......... .............. , .............................. , ................................ .... 

he particl garden 
The dliscove1.y of the three basic su~atomic particles: 1he electr-on (in 1897 
by JJ Thomson); the proton (in 1917 by Ernest Rutherford) and the neutron 
(in 1932 by James Ch.ad\vick)\ seen1ed to complete the .structure of the 
atom. However; m the 1930s, pl'lysicists started to discover a range of new sub­
atomic particles) such as the positron and the muon, primarily as the result of 
experiments on high-energy coStnic radiation fro1n space. The Second World. 
vVar forced a break in the discovery of new particles as physicists were put to 
use workilt1g on new warfare technology; such as die ato1nic botnb and radar. 



exchange 
8V8ryclay matter 8xotlc matt;r partlclM 

Afrer the end of the Second World War> physicists returned to their research 

into sub-aton1ic particles. The huge advance in technology nrade during the war 
years led to the discoveries of n1any new particles and the production of more 

sophisticated pa1:1ticle accelerators and detectors. 

It became o'bviou.s that particles weie being discovered 
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in ·fan1ilies), rather like the groups of ,elemen ts on the 

periodic table. and ·ne\~l names such as leptons> hadrons 
and mesons were in~tented t,o classify these group·s. 

2.4M ii! ,.:zrG 21.~ i71.2G 2.13 

u C t 
up charm top 

• .01,1 • 1] 104M • 113 a.2G ·113 

d s b 
down stran~e bottom 

o.s,,M r1 1os.1M ., 1',1'77G ., 

e µ l: 
electron l'TlLDi tau 

42' 0 ;;:fl.11"'4 D <-11:j.a._. .e 
1 {I 17 Vt 1· e-n-eutrino µ-neu rmo t~nautrino 

oharge J J 
mass S 8. 
(evtc") 

~ 
B' 

gl~n JI ., 

1 
photon 

i0.4G ./·1 a1.2G 

w+- z 

126..eG 

H 
h1gg~ 

t 
i 
m 
n 
!.l'i 
n -~ 

cc! .m 
I 
~ 
:;I 

= Q. 

i -, 
Q 
fa 

i'.EJ 
; 

(- - - -\;a: 
I I!!. 
1 graviton 11 o· 
I I~ 
"' ,~ ---·- 0 

~ 

h1 1967. the Standard Mod 1 of particle physics v;as first 
described by Steven Weinberg and Abdt1s Salam, and it 
is from this that the cun·ent picture of he structure and 
behaviour of matter was constructed. ln 2012, the final 
piece of the Standard Ivlodel jigsaw, the Higgs Boson, 
was "discovered' by a large team of physicists v.1orking on 
data fro1n the Large Hadron Collidcr .at CERN in G,eneva. 
(CERN stands for Co1tsei1 Europe,cn p·our Ja Rechcrche 
.1'-Tucltain!· or European Council for Nudea.r Rese,a.rd1.) 

The Standard Model 

Figure 2.1 The Standard Model of m,dtteir showing the 12 
funda,mentat partictes and the· exchange particles, togethe r 
w ith their masses and charges. 

The Standard Model of matter has proved to be very· 
powerful h successfully describes the huge proliferation of 
particles discovered during tl1e latter part of the t\ventieth 

century. The 1nodel is surprisingly simple) consisting of 
two fanulies of funda1nental particles and a set of fo1ces 

that bind the1n together. 

The masses of fundamental partkles are nearly always 
given as mass-energy equi1valents. Einstef n's energy-

equ i,va lent to 9 .1 1 x 1 o-31 kg. The heaviest funda mental 
pa rtlcile. th e top quark. has .a mass of 171.2 GeV/c2 

mass equatiion~ E = mc2• can be rearra nged tom=~-
c 

or 3. 1 x 1 o-25 kg. Rest m,ass-energies can th erefore 
be gfven as a m ass lu1suaHy in MeV/c21 or an energy 
equ iva lent l(u sua lly in M eV]. 

As c2 1s a co nstant va l1u·e then mass also has the unit 

eV/c2. The 1ma ss of th e e lectron is 0.51: iMeV/c2• which is 

o~~~~~~~-
F u n dame n ta l particle 

n i , tld are fundamental part.ides 
with the same mass and e ne r~ as. their 
parttde counterparts, but hav,e ,oppo,site 
properties such as charge. When a partide 
meets its antipan ide they annih~ late 
(see Ch ap,t,er 1) conv,eirting to ga1m ma ra1y 
photons. 

The ~·ord ·fundamentar in physics has profound meaning. Fun.dan1ental 
particles are particles that appeai- t,o have no structure. Fundamental 
particles c-annot be bt,oken do~11 into smaller pieces and they are the basic 
building blocks of the Universe. When Democrilus performed his thought 
expeliment on the nature o.f matter on a beach in Ancient Greece, his idea 
v;as simple - the smallest building block of matter "\\~S called an at,om~ 
and for about tv..·o and a half millennia, this concept dominated science. 
JJ Thoms,ons discovery of tl1e electron started the hunt for sub-atomic 
particles and the Standard Model a.ppe~u-s to finish the hunt with a group 
of 12 fundamental particles (and their anti parLic h:~) . The 12 fundamental 
particles (and th e four exch'1nge panicles that hold them together) of the 
Standard M.odel can be arranged in many different ways to make up any 
obsen.red composite particles in the Universe 1 v.riJ.th the overw .. helming 
proponi.on of the observed Universe appearing to be made of just three 
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funda1nental particles: the electron , the up quark and the down quark . 
Up and di.own quarks co1nbine togeth er in threes to make p rotons and 
neutrons, and these co1nbine iogether to form nu.c]ei. The addition of 
electrons to surround the nuclei forms atoms. 

~ -····················································································································································i 
i TEST YOURSELF ; 
' f ; i 
• • ! 1 What is the 'Standa,rd Model '? 5 What is the cnarg,e on the follow ~ng particles? I 

2 State on e simltar ·ity and one differ ence between al electron ! 
a 'pa,rtfcle' and its ·ant1partk le' ~for exa m1ple, an b] muon-neutrino i 
etectron and a positron]. cl up qu ark j 

! 3 What is the convers:ion factor from MeV into joules? dJ posi,tron , 

l These questions refer to th e Standard Mode l s in ow n el down quark J 
jn Fi 91u re 2. 1. fJ s tra,n g e quark. i 

• 
I+ Sta,te the si,x leptons and the six quarks tha,t ma,ke up 

th·e Standard Model. 

6 What are th e four m ost common particles shown in ! 
• 

Fig1ure 2.1? : 
• 

7 What ~ s meant by a fun da, me ntai l pa rticle? f 
.. 

B How many quarks are there i1n a proton? : 
• • 
: ......................... ...................................................................................... ......................... .............................. lllllllllli 

()- a- u_a_r_k~~~~~~~~~~~ 

a re fundamental partides that m alke 
up partmcles such as protons and neutrons. 
Th,ey ,exert the strong nudear force on one 
another. 

,. • • 1 •• ••• ... •• 111111• ii•••••• •114 •" iol!• ... .. . ., •• ••11o !Iii Ili a .... • • .-., ..i .. ••"•• !1111• •• ••• •1..m:1t• •• •• •111• f 

r. • ,..n aim on,e o,f the four exchang,e 
pan ich~·s ,of the Standard Mo de t Gluon s 
aict between quar~s holdi1ng them together. 
Gluons have an extremely short range of 
acUon of about , 0,- 1,s m. 

Although you have already met tl1e electron as a fun dai-nental particle, you 
may n ot have come across quarks . The concept of quark s as fundainental 
building blocks of matter ,vas first p roposed by Murray Gell-Mann and 
George Zweig in 1964 ) as part of the original Standard 1v1odel, which 
initially only contained three (flavours' of quark s (up 1 u; down, d; and 
strange~ s). The other 1hree IlavouTs (charm ) c; bottoin~ b; and top, t) ,vere 
added later. (The b ottom quark is also known as the beauty quark .) A 
basic difference between these quarks is their mass. Figur e. 2 .2 shows the 
111.asses of each quark dravin to scale (with the area representing m ass). 

The proton an d electron masses are sh ov.rn for comparison to th e left. 

~ - etectiron 
u-proton 0 

'UP down stnmge charm top quark 
quark quarK quark quarK 

Figure 2.2 T1he relative masses of the six quarks. 

Most of the mass of a. proton is du . 't·O the ,energy of the interactions 
betv..1 en the qua1·ks and the ,C?lu on · that hold the quarks together via 
the str·ong nuclear fore e. These gluons c,onstandy co1ne into and go ,out 
of existence as they exchange betwe,en the q1.u1irks. The energy requir,ed 
lo, do this is included in the mass of the p·roton or the neutron. The 
up a1,d down quarks a.re mucl~. less massive than the other quarks. 
The strange quark is o b,served in particles a.t l1igh altitude due to the 
interaction of high-energy cosmi.c rays v.ithin the upper atmosph ere. 
The charm~ bottom and top quarks are only observed in particle 
accelerator d etecto rs a t extremely high en ergy. 



p-inel s i ea erin involves fir~ng 
electrons at p rota n:s at very high ener:gie s 
(hence t he w,ord 'deep} Elistic statt,ering, 
for example. invow,es two particles sudh a.s 
two protons co tud ing wmth each other and 
rebo,unding off ,each other W',th1 the same 
ldneuc energy- rather ~ike t\P!Jo .snooker bams 
h ltting eaoh o~her head-on and rebounding 
back. The word ~e~astic- in thi'S context 
mea1ns that no kinetilc energy is l.ost lnelasuc 
scattering involves th,e con~ersion of kin,et.c 
,energy ~nto other form1s. ln thi·s case the 
,electro:ns pen,etrate into the pr,o,ton and 
intrua et with the quarks (v~ a1 ex·change of 
photons), kinetjc energy is converted into 
mass as the proton ·shatters I producing a 
shower of other particles. Usirng th,e snooker 
analogy,, jt would be as if one s1i,ooker baU 
ent~red the saco,nd bell caus,ng it to break 
into, other pt~ces a~ th,e first snook)er baU 
scattered rNJ ay fm m it. 

The fi1~t direct observation of quarks was earned out using deep-in lastic 
sc-1ttt·r ing of electrons by protons at the Stanford Line-ar Accelerator (SI.AC) 
facility in 1968. Protons ,v,ere observed to be made up of two up quarks 
mid a dovm quark . The strange quark was observed as a result of further 
experiments at SLA1C and the chami. quark vtas observed in 1974. The 
bottom quark \'Vas disc·ove1~d three years later in 1977, bu t it took until 1995 
for a particle accelerat,or 'Vith enough energy, the Tevatron at Fem1ilab, to 
produce interactions involving tl1e top quark 

Jiet ot partlcles 
formed by th·e 
e lectron,.qu ark 
Interact Ion 

rncl:dent 
electron 

electron Interacts 
with, quark 

proton recon 

proton 
rQcoll slectron 

Figure 2.3 Deep-~nelas tic scattering. 

Make sure you know about th e up. u; down. d: ar,d st raingie, s. quarks (and 
their antiquarks). You do not need to know about the charmi top or bottom 
qua rk~ although they could be set as exa mples in the exam ~ where alt factual 
knowledge would be provided in the q:,u esticm. 

~ -····················································································································································i : TEST YOURSELF i 
• • • + • • • 
: 9 What are th e six 'fl avo urs· of quarks a nd w ha t js 11 Why are quarks beli eved to be 'funda menta ll i 
• • ! th e ma1in d,ffer·ence betwee n th em? parti,ctes'? i 
i T • : 10 he ori gina1l deep- inelastic sca tterf ng 12 Arrange the f0Uow1ng par tiicte.s ~n1 order of t heir : 
! ex periments carried out at SLAC in 1968 involved masses (heaviest fiirst): i 
i w hich of th e following partiicte interactions? proton. elect ro n~ bottom qu,ark, down quark, up j 
f A protons and neutrons quark. i 
i B protons and pos itrons 13 Explain what is 1meant by 'deep- inelasti1c scat tering·. i 
f = i C proteins and electrons ! 
I D • : p rot o in s an d ·mu o ri s : i : 
············•••t••············i····~··································•t•••••···········i···························••t••••········i··········· ............................ ll)i 

Fundarn ntal fore s 
In the san1e way t'ha t the Standard Mode] describes the 12 fundamental 
particles, it also d escribes the four fundamental forces that allow 
1he p articles to interact ,vith each oth er. Indeed the words force and 
inter action are interch angeable in th is context and mean the same 
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n , p air.e part~des i nvolve-d 
with the interaction of particles via the 
four fundaime nta1I fo roes of nature on the 
quantum sc~t.e. Exchange rpairtmdes ain1 ,onfy' 
creatad, emittedl absorbed and destroyed 
between the interacting particles . 

DI rectlon Of 
motion 

Exchange 
particle - photon 

Figure 2j, Two basketba ll players 
'exchang in g' a basketba lL Th is is 
ana logous to two protons excnangrng 
a photon. 

thing. The ,.vord in teraction is used to describe these forces on a 
n1icroscopic quantum scale, because the mechanism used to explain 
how th,e forces ,.vork is different from the classical 'Newtonian' field 
theory that is used to describe how forces vvork in the large-scale, 
macroscopic world. 

In the macroscopic world, charges and n1a.sses exen. forces on each othe·r 
due to the electric and gravitational fo1·ce fields that extend out into space, 
away from the charge or mass. The patterns of the forc.e field lines show 
the action of the forces . On the microscopic, quantum scale, classical field 
theory cannot explain son1e of the V."ays thai particles interact \vith each 
-other~ and a different 'quantum' interact' on approach is used. 

The Standard Model describes particles interacting by transferring 
l·. hitn~c p~ 11 i --1,: . The :e are three fundamental forces described by 
the Standard Model, each one "'jth its own distinct exchange pa.nicle or 
particles. Table 2.] oudines the three fu.ndame·ntal forces of the Standard 
Model and gravity (,vhich falls ,outside the Stan.dard Model, but is included 
in Grand Unification Theories) and their exchange particles. 

Table 2.1 Funddment~t forc~s and their exch; nge pdr ticles. 
I 

Fundamental force Nature Exchange pa rticlels] 

Electroma gneti,c Acts .between char9.ed particles Photo n 

St ron1g Acts between quarks Gluon 

Weak Responsib le for rad~oac t,ive de.cay W+. w-. zo 
[with the except10 n of alp ha decay] 
and in uclear fus,ion 

Gravity Acts between part ictes with mass Graviton 

On the. quantu1n scale) two protons ca11 interact with each other by 
exchanging virtual photons via the ,electro1nagnetic interaction. The 
photons are exchanged in both directions but exist for only nrinute amounts 
of ti.tne - hence rhe word ·vi1tual A simple n1odel of this interaction could 
be constructed by two basketball players thro\\ri.ng a basketball back and 
fonvard to each otJ1,er as sholNTI in Figure 2 .4. Ivlomen·tum is exchanged 
bet,veen tb.e players and the ball and a force is produced. 

This model works quit,e well for illustrating the repulsiv,e fo rce that occurs 
bet,veen t\\-~o particles with the same charge but it does not 'W'ork very 
well with 1he attractive forces, such as the strong, W·eak and gravitati,onal 
forces, and the electromagnetic .attraction between particles with opposite 
cha1·ge. In this case H you visualise the basketballs attached to elastic 
cords that stretch tight just befor,e being caughl by the catcher, this means 
that as the baskelbaU is caught it pulls the catcher back to,wards the 
thrower as sho~rn in Figure 2 .5 . To hnprove the model further make th.e 
elastic cord stiffer as the distance hetv,leen the catcher and thro'vver gets 
smaUer1 increasing the force of attrac:iion. This makes it more realistic to 
'the quantum world wl1er-e the attractive forces de.crease v,li.th increasing 
separation. Trying to visualis·e the quantum world is very dHficuh from 
our viev.rpoiut. 

The electr1omagnetic force 
We are very used to rhe everyday effects of the electromagnetic force. Not 
only do we see and feel the effects of static charge, but the electromagnetic 



Bal I' thrown 
attac hie d to 
elastic cord 

Stretched cord 
exerts pu l'I on 

catcher 

Dlrectl.on of 
P motion 

Exchange 
partl.cle - photon 

Figure 2.5 A basketbe1Lll on e1, cord 
prov id2s an attract1v6'! force. 

distance = r 

(,) eu----.... - -------ea 
Force = F 

(2) ©f--------· 
distance = 2r 

force is the sou1"Ce of the contact forces b etween eveT}lday objects. On the 
quantum scale the electrotnagnetic in teraction occurs between ch arged 
particles, m ost commonly electrons and proton s. 

Figure 2.6 An electro 1magneti,c interaction . 

Force - F/4 ® 
~ P. 

The eleotro1nagnetic interaction exchange particle, the 
photon , acts oveT infin~te distances. However~ ilie strength 
of the force decreases with an inverse-square relationship 

to distance~ ~ - This means thal if the distance betw,een the 
f°' 

p a1ticles is doubled then the foroe reduces by a. factor of 
four as sh o\.\'11 in Figure 2. 7. 

Figure 2.7 As the di,stance between two oppositely cbarg;ed 
pa,rti cles doubles. then th e forc.e reduces b,y a, factor of fo LI' r. 

The photons created during electron1agnetic htteractions 
are called virtual photons, because they only el!..ist 
du1ing the time ,of the interaction. They are created~ 
interact and decay all vtithin the time o,f the interacti,011. 

The ,el ectromagnetic interaction is responsible for m,o,st of the behaviour of 
matter on an atomic and molecular scale. (In £act the other three forces are 
almost insignificant on this scale.) 

The stron1g nuclear force 
The strong interaction is an extremely short-range force (typica11y acting 011 

·the scale of 10-14 to 1cr15 1n - the scale of the nucleus) and it acts bet~reen 
quarks. The exchange particle is the gluon. 

Althou gh lhe strong force is very short range 1 it has a very h igh 
tnagnitude, 137 times larger than the electromagnetic force; l1en.ce the 
name 'stro11.g'. The strong force acts between quarks, so i.t is t h e force 
that holds nucleons su ch as protons and neutrons together~ and it is 
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also the force that h olds nuclei together. If the strongest of the 
fund.a1n ental forces, the strong nuclear force, has a magnitude of 
l, then the corresponding electromagnetic force would have a 

magnitude ,o,f 
1
~

7
-. 

The weak force 
A version of the ~leak force ·\1.ras first described in 1933 by Enrico 
Fermi while he \\i~as trying to explain beta decay~ TI1e ,veak force 
is noVv~ known to be responsible for~- and~+ radi,oacti-ve decay, 
electron capture and electron-proton collisions. There a1·e three 
exchange particles involv,ed with the Vv~ak force, the w+, w- and 
the zo I but these "w~ere no , expe1imentally veiified until 1983. 
The w.ea.k fo·rc-e is about a million times ~leaker than the str,ong 
nuclear force (hence the name) 1 and it acts over an even shorter 
range 1 typically 10-18m Vi,~htch is about 0.1 % o.f the diameter of a 
proton. 

1Gravity 
The force of gravity is Vlell known. to us. We feel i ts effect at all 
times. It is the fundamental force that drives the 1nacro_co pic 
beh aviour of the Universe as it acts over infinite distances 

Figure 2~8 Murray Q.eU-Mann, orlglnator o-f th e 
Standard Model, -qua rks and glu ons . 

and it acts betwe,en masses. On th-e quantum scale; gravity is 

the weakest of all the four fun.damental fo1--ces (typically 6 x 
10-39 of the magnitude of the strong force). Althou gh classical, 
macroscopic, gravitational field theory works very well, the 
quantum nature of gravity is not ve1J7 ·~>rell ·u11:deTst.ood. The 

M ro c pie means large scale', as 
opposed to the microscopi,c:, quantum scale. 
Quantium effects operate at d•stances les.s 
than .about 100nm, so anything above 
this scale i:s considered macr,oscopfcJ and 
class~cal (sometimes. called Newtonian) 
physics ~s appHed. 

In the exam1nabon~ you wiill not 
be requ ired to recaH information 
regard1ng the gluonJ zo or 
the graviton . 

proposed nante of the exchange particle is the graviton but) on the 
quantum scale> lhe graviton would be almost in1possible to observe due to 
the extretnely small tnagnitude of the force of interaction. Huge, planet­
scale, detectors would be needed to -capture the extremely rare effects of 
graviton in.teractions. 

~ ............ ............ .................. ................................... .............. . 
: TEST YOURSELF ~ 
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What aire the four fund a m,entail forces? For eac h one. state its 
exchange particl-e. 
Why are tt"le fundamenta l forces ca lled "interactiions· on the 
quantu:m1 scale? 
Why are exc hange pa,rti cles sometiimes ca lled ·virtu.a.l partf cles·? 
Whkh of th e fo !llowi ng parti cle events is not an exa,mple of the wea:k 
interaction? 
beta- decay 
atpha e,mission 
beta"' decay 
eilectron ea ptu r e 
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0---------------F e y nm an diagrams 

p 

n 
Figure 2.9 Feynm,an drag ram illustrat ing 
5- decay. 

e 8 

e-

Figure 2 .. 1 O Feynman di1agra m iiUustrati n g 
two etectrons meeting. 

p 

Figure 2.11 FQY nman diagra.m ;uustrating 
w·· [pos itron! ra di:oactive decay. 

Feynman diagran1s ar,e pictorial ways of representing the interactions of 
quantun1 particles. They were first introduced by Richard Feynman in 
1948. Feynman realised ihat the interaction s of particles on the quantum 
scale could be represented on paper by a series of arrows and \varvy lines~ 
foUo",,.ing a set of .sin-iple rules. As an examp]e) Figure 2.9 shows the 
standard Feytunan diagran1 illustrating ~- radioactive deca)~ 

Feynn1an diagrams are generally read fron1 left to tight. Figure 2.9 shovls 
a neutro,n decaying into a proton and a w- exchange particle, ·\vhich 
subs ·quently decays int,o an electron and an electron antineutrino. This is 
an example. of the w ak interaction and can be ~rritten as an equation: 

1 ~1 -+ ln + o e + v 
O l r -l e 

You can see imme dialely the advantage of the Feynman diagram over the 
symbol equation, The Feynma.n diagram summarises all the parts of the 
inte1-action) whereas the equati,on only tells us what goes into d1e interaction 
and what ·co·mes out. It teUs us nothing .about what goes on during the 
int eracti o,n. 

Feynman diagram rules 
• Particles are represented by straight lines v,itl-1. arro,v heads drav.rn on then1. 

• Exchange particles are represented by wavy lines. 
• Tnne generally moves on the x-axi.s fro1n left to right (although this is 

not a hard and fast rule~ and many Feynman chagnnns have time running 
vertically). 

• Particles are created and annihilated at d1.e vertices between the lines. 
• Particles t11ade up of quarks l1ave the quark lines draw parallel and next 

to each other. 
• Exchange particles generally transfer fron1 left to right unless indicat.ed 

by an arrow~ above the v..ravy line. 

Feynman diagram examples 
T,vo eleclro11s scattering off eacl1t o tl1er (Figure 2 .10) 
Two electrons meet1 exchange photons and scatter away from each 
other. The photon syn.1bo] y indicates th at this is an exam·ple of an 
e lectro1nag11etic interaction. 

~+ (po itron) radioactiv d ay (Figur 2.11) 
1n this cas , a p roton decays into a neutron and a w-+ exchange particle, 
which subsequently decays int,o a positron and an electron neutrino. 
This is another example of the ,v ak interac'tion, (like 1~- decay\ and is 
summarised by the equation: 

~p - +~n++~e+ve 

El ctron captur (Figure 2 .12) 
Electron. capture is another exa1nple of the weak interaction. An electron is 
absorbed by a proton within a nucleus. The proton decays into a neutron 
and a w+ exchange particle, which interacts \Vith the electroi--t forming an 
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Figure 2.12 Feynman diagram iUustrating 
electron capture. 

Figure 2.13 FQyin ms n d iag ram 
iLtust rati ng1 e Lectr on-p roton co Llis ioin . 

n p 

n p 

Figure 2.14 Feynman diagiram, iUustratiing 
proton-neutron binding via gluon 
exchange. 

electron n.eu trino (as the proton acts on the ,electron the arrow above the 
exchange particle moves left to righ t) : 

1 0 l 
1P+-1e ~ on+v~ 

Electron- proton collis ion (Figure 2.13) 
An electron and a proton collide transferring a w- exchange particle, 
indicating the weak interaction~ the proton decays into a neutrQn and the 
electron decays into an elect1·011 neunino (as the electron collides with the 
proton the arrow above the .exchange particle n1oves right ~o left) : 

lp+ oe___. l n+v 
l - 1 O e 

~- decay is nega tive so invo lves e-1 an antine,utrino and w-. whereas~· 
decay is posi1ti,ve so invotves e+. a neut r ino and W+. 

Proton ..... n utron bound by a gluon (Figure 2.14) 
A gluon is exchanged between a neutro11 and a proton binding the two 
particles together (the process repeats over an d o,~er again). Notice that the 
Feyn1nan diagratn syrnbol for a gluon is a different wavy line from that of 
the photon or the W ±/Z exchange pa1.ticles. This i.s an exa1nple of the strong 
interaction. 
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Drawing Feynman diagrams 
Wdte decay equaboins and draw Feynman diag·ram.s for the 
foHow~ng decays. 

1 A muon plus lµ+J decays lnto a w+ exc hange particle and a m.uon­
antjneutr1ina (vµl. Thew+ then decays into a positron (e+] a n-d an 
e lec tron neutdn,o [v12 ]. 

2 A kaon ze ro ('KOJ decays into a pion minu s ~n:-) and a w+ exc hange 
pa r tiic te. which sub seq uenUy decays tn to a pion plu s [ n:+l. 

3 An electron neutrino and an electron antineutrino annih~ilate into a 
ga mma ray photon. 

4 An electron neutr ino decays into an electron. and a w• exchang,e 
particle, whk h subsequently co llides with a neutron producing a1 proton. 

5 An electron and a positron ann:ilhilate to produce a gamma ray photons, 
one of w hi1ch th en pa .ir produces an electron a.nd a positron pair. 
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o~~~~~~~-
c Lass if i cation of par icl s 
Although the Standard Model is used to describe d1e nature of the 
matter in the ob served Uni.verse, m any of the fundamental particles that 
are part of ihe model are rarely observ,ed on their o,~ln and1 even ""~hen 
they are, it is only at extremely hig11 energy. Most of the fundamental 
particles are seen in con1bination with oth ers, forming particles that can 
exist on tl1eir own_ at lov.rer energies. Most of these composite particles 
were 'discovered~ before their constitu ent funda1nental panic]es and. 



t 
Leptons 

Do NOT 'fee1· me 
strong torce. 
Are subject to the 
weak force. 

Are ·fundamenta1,1 
part lcl es. 1. e. cannot 
be split up Into 
anyth tn g e'lse. 

E.le ctron - e-· 
Electron neutr.lno-v9 

Muon - µ-
Muon neutrl no - v"' 
Tau -,c-

Ta.u neutrrno -vT 
(plus antlpartldles) 

Figure 2.15 lhe parti.cle garden. 

in the years after the Second vVorl d War, na111es we1~e given to these 
composite particles and the groups that they see.1ned to belong to. 

The particles were arranged into three groups: hadrons) leptons and 
exchange particles. 

Matter 

+ 
Excnange partlcles 

Transmit the four forces ot 
matter: 
Ele ctromag1net le - Photon, 
strong - Gil u on 
Weak -W-.4:./Z 
G:ravlty - Graviton 

t 
Hadrons 

Are made up of 
'QUARKS'. 
Feel the strong force. 

au arks 
Up (U) Down (d} 
Strange (s) Ch,arm {c) 
Top (t) Bottom (b) .......... ------
{plus antlpartl'cles) 
Are fundamental' 
particles. 

Baryons 

Tnn;e quarks - qqq 
Ant I baryons ~ qqq, 

Examples: 
Proton - p (uud) 
Neutron - n {udd) 
(p1lus antipartlcres) 

Mesons 
I au ark - An tl quark pal r - q~ j 

Examples; 
Pion - ;rr.+- ( LI a) 
'Kaon - K + (u~} 
(plus antlpartlcl9s) 

All the leptonsi exchange particles and quarks ,make up the parttcles of the 
Standard Model. However. the tau and tau-neutrfn o leptons and the charm, 
top and bottom quarks are not part of the exam inatf on spec,ficati'on. Any 
questions set on the exa,m,i1nation pap-ers invo lving these part 1icles would 
g-ive you a'Ll th e informat,i.on that you need to answer the quesbon. 

·········~···············~········ ········· ······························••t•• ··········~··· 
: TEST YOURSELF .. 
• • ! 20 Use the foHowing Ust to answer pa,rts [a) to [e). 
: proton pion muon photo1n neutron 
• i al Which particle is a le,pton? 
... i b] Wh ich partic les a,re ha,drons? 
i c) Which particles are funda menta,l partic'les? 
i d] Whi'ch particle is a meso n·? .. 
: eJ Which particle is an exchange part icle? 
I : 21' Sta te the differenice between a baryon and a meson . 
• i 22 Which parhcles feet th e w eak intera ction? 

. . 
• • : 
• • • • • • : 
: 
t 
t 

' • • • • t 
i • • • I! 
I! • : 
t 

' r • • 
I 

i 23 Use the foHowing Ust of pa·rt icle grroups to answer parts (a] to [dl. 
: 

• • • • • • 
= • • • • .. • • • • • : .. 

• • .. .. 
• .. 
• • • • • • • 

lepton hadron meso n baryon ex change pa rt,j cte. 

Whi:ch group[s] do th e following· parti cles belong to? 
al neutron 

b] kaon minus 
cl w+ 
d) elec tron antineutrino 

• • 
I! • • • • • • • t • • • • • • • • • • • • • • • 

: ........................................................................... ................................. lllllllii. 
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All lepto n.s have a Lepton nu m!b er 
L == + 11 ~ b u t a c h a rg e Q = - 1 [ e l 
or 0. All a ntileptons have a lepton 
nu1mber L = - 1 and a charge 
Q = + 1 (e) or 0. 

lr, th e exa minafion~ you wf ll onty 
be set q uesti,ons i1 nvo lv i 11 g· th e 
conservation of lepton nu.m,ber 
in terms of electron leptons 
[e-, e·\ ve, vel and muon leptons 
[µ-, µ+. vµ. '\.J You do nol need to 
know about tau Leptons. 

Partide I etlm i:s the average time that a 
partr:cle exists from its creation to its decay. 
Table 2.2 shows some examph!s. 

v~ 
e-

-1,,'ilil 

~-
Figure 2 16 Feyn man diagram sll owing 
muon decay. 

Leptons 
Exchange particles aside, n1atter is arranged into t"\.VO broad groups with 
very different properties: leptons and hadrons. Leptons are fundamental 
particles (and are described as part of the Standard Model). The lepton 
group is made up ,of ilte eleciron, the n1uon and the tau particles, their 
respective neutrinos and all their antiparticles (12 particles in total). 
leptons do not fe el th e strong force, but they are subject to th e ,veak 
force. All leptons are assigned a quantum nuniber, called a lepton 
number, L which distinguishes th,em as leptons. All the leptons (like 
the e ectron) have a l pton number L = + 1 all the an ileptons (like the 
positron) have a lepton number L = -1. and all other (non-leptonic) 
particles have a lepton number l = 0 (zero) . In any pa ticle interaction, 
the law f con rvati n f lept 11 number holds. The total lepton 
number befor,e an intera.ction must be equal t-o the total lepton number 
afoer the interaclion. 

For example, during p- rai.dioact.ive decay] lepton number) L, is conserved. 

ln ·..._....).1p~ oe..f.-v 
l 1 -1 e 

L: 0 ~ 0 + ( + 1) + (- 1) 

L: 0----+ 0 + 1 - 1 ./ conserved 

Remember - protons and neut rons are n ot J.eptons. 

Muon decay 
Muons are unstable particles with. a n1ass of about 200 times the tnass of an 
electron. Muons nave unusually long lif et i tncs i of the order of 2 .2 µs and 
only the neutron , p roton and atomic nuclei have higher lifetimes. All 1nuons 
decay via the weak interaction into tln~e particles) one of which has to be 
an electron ( or a positron) and the other two particles are neutrinos. The 
decay equations for the muon and the antirnuon are: 

µ- ~ e- + Ve· + V JI 

u+ ~ e+ + V + ·y rs~ e µ 

Table 2.2 1Mean Ufetrmes for some .particles . 

electron 
[f reel neutron 
muon 

l~~AW!t@t ~- -- ~ 
-:.1 x l O 2 9 ye a rs 

>4.6 x 1026 years 
885. 7 seco,nds 
2.2x 10-6seco nds 
8.4 x 1 o-17 seconds 
2.6 x 1 a-a seconds 
1 x 10-25 seconds 

The Feyrnnan diagram for the de·cay of the muon is given in Figure 2 .16. 
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The Pierre Auger Observatory and Project AIRES Cosmic 
Ray Shower Simulations 
Th e following tnforma,t1on is taken by kind perm,issjan 
from the COSMUS website a,n,d Sergio Sci1utto from 
the Al,RES softwa.re package: 

http://astro.uehicago.edu/ cosm us/projects/auger/ 

and 

http://as tro.u eh icago.edu/cosm us/projects/a ires/ 

"The Pierre Auger Observatory f n Matargue. 
Argentina, fs a m,uttinaHonal collaboration of 
physic ists trying to detect powerful cosmic rays 
from outer space. The energy of the part1icles 
here is above 1019 eV. or over a m,,illion times more 
powerfu,l tha ,n th e most energeti c particles ,jn any 
huma,n-1madie accelerator, Thi s value is about 1 J 
and , as such , would warm up one cu b1c centimetre 
of water by 0.2 °C. No one knows where these rays 
come from . 

Such cos m,ic rays are very rare, hitting a:n area the 
s,ze of a football pitch once every 10 DOD years . Th·is 
means you need an enormous ''net'· to catch these 
mysterious uttra h,igh energy partktes. The Auger 

project will have, when, com,pleted. about 1600 
detectors. 

Eacfi detector is a tank fiUed with 11 OOO Utres of 
pure water and sittin g about l.5 km away from th e 
next tank. Thi s array on th e Argent,inian Pa,mpa,s 
will cover a,n area of a bout 3000 k,m2, whi ch is about 
th e si,ze of th e state of Rhode Island or ten tim es 
the size of 1Par1s. A second detect1ion system sits 
on hills overlooking th e Pampa s a,nd , on dark nights, 
capt ures a fa1int li ght or fluorescence caused by th e 
shower pa,rtictes collid ing w ~th t he atmosph ere·. 

The cos rn ic rays tha1t htt th e a,tm,osph eire crea te huge 
s hewers of pa irti cles . rpa rt1 cu:la r tly le pto,n s; the paths 
of th:ese part,icles through the atm osphe re ha·s been 
model led by Se rgio Sci,utto·s Al'RES softwa re and 
you can 1nvesti91ate these particle showers usin.g 

the software and the download mavie fites. A good 
place to start is the ''Five showers·· an1matiion on the 
A,IR ES page. l,nvesbgate the interact1ive so'ftware and 
the movie fi les to f in,d out 1more about how cosm 1c 
rays produce particle Interac ti ons in the upper 
atm os ph ere. 
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Reimember - you need to know 

about the fottowing quarks: 

up [u} charg e, +f e 

down ldl cnarge. - ~ e 

strain g e [s] charge, - ~ e 
[and the~r antiqua,.rks, with oppos,ite 
s i9ns of c harg,e). 

~ ···························································································: 
: TEST YOURSELF ~ 
"' "' "' • • • • 

24 What is the law of co n:servat1 on of lepton number? 
~ 25 The rest-mass of an electron is 9.1 l x 1 o- 31 kgi. Use th ,i5 va lue to 
"' : eshmate th e rest - 1mass of a 'muon . • • 
: 26 Use the la,w of conse rvatjon of lepton num ber to expla,in why an 
lo 

: t nterac ti on involvin g an electro ni and a p osH ran a nn ih ilati ng and 
• : producing two muons is not po ssible. 
I 
• • 
t : • iii 

27 Explain why an etectron antineutrin o 1is always produced dur,ing 
p- emissi,on . 

• • • • • 41 
• • • • 
' • • • • • • • • • 
' • • • .. 
• • i 
i 
• 

! • I 
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Hadrons 
Hadrons are p articles that are made up of quarks and are therefor,e subject 
10 the strong nuclear interaction. There are two sub-classes of hadrons. 

Baryons
1 

such as the p roton and the neutron (and their antipar-ticLes)) are 
made up ,of three quarks (or three antiquarks) . Th e proton comp1ises uud~ 
with a total ch arge of ,1.le and the antiproto11 ,comprises Tfild; with a total 
charge of - l e . 

Mesons; such as the pion and the kaon (an d th.eir ant iparticles) ; are 1n ade 
up of a qua.rk-antiquark pair. 



Remember charge is a tso a 
quantum number li :ke baryon 
nu1rnber and .is also conserved in 
pa rttcte i interactions. 

For exa mple. d·uring electron 
capture a proton inside a. nucleus 
can interact w.ith one of the 
etectron s su rrou ndi1n,g the nucileu s 
and it can decay into a neutron 
and w+ exc h:a·ng1e particle, wh~ch 
th en jnteracts with the electron 
producin g an electron neutrino~ 

Ip+ Oe ~ ln + v l -1 0 e, 

8: + 1 + 0 ~ + 11 + 0 ./ conserved 

Q: + 1 + [- 1] ~ + 0 + 0 
,,/ conserved 

Make sure you know th e quark str·ucture of the followin9 partlcles : 
• Proton , p. uud (a nd aint,iproton. u u d] 
• N e,u tro n • n. u d d ~ an d an b n e u t ro n . u d d) -P. + + d • l10r'l • 1t 'u 
• Pi1on-~ re,, dTJ 
• PionO. rcO, uu or dd 
[Th e 1C"' ari d n- are ant~pairticles of each other, n01 is its own a.r, tipa1rti cte.~ 
• Kaon + K+ us ~ J 

e Kaon-f K- ~ sU 
• ·KaonO, Ko, d'S' (and antiparti1cle1 Ro. sd] 
(Th e K+ a,nd K- are antiparti cles of each other.) 

Baryons 
As batyons are made up of three quarks, and there a.re six flav,ours of quark, 
ihere are many different possible baryons. Two of these ba.1yons, the proton and 
the neutron, are we.Ill knovm and :make up 1nost of the mass of the Universe.. 
The other baryons, containing t]1e more massive quarks) are more exotic and 
are only observed at high energy inside particle detectors such as the LHC, 
or lugh up in the atmosphere as the result of interactions of cosmic rays ·with 
particles in the upper atmosphere. Each baryon has hs O\.Vn antibaryon - wl1.ich 
is 1nade up o( the corresponding anhquarks. For ex.a1nple, the sigina baiyon, 
E+, is 1nade up of two up quarks and a strange qu.ark, uus, and the anti-sigma 
baryon, L +, is m ade up of t\vo anti-up quarks and. an anti-strange qu.ark, u·us. 

The proton is the most stable and abundant baryon. Spontaneous free 
proton decay has never been ob,se:rved and1 although sou1e non-Standard 
Mode] theories predict that it can happen , the predicted lifetime of the 
proton is of tl1e order of 1034 years. The current 1neasure1nen t of the 
age of the Universe is only 13.8 billion years (13.8 x 109 years). As tl1e 
Standard Model has proved to be re1narkably robust~ then it seems that free 
protons are stable) and all other baryons ,~ill eventually decay into protons. 
Neu trons also appear t.o be stable vtithin 1nost nuclei (unless they a1-e ~-
1-adioactive decay emitters), but ,vhen they ai--e isolated on their 01.vn (free) 
they h ave a mean lifetime of 882 sec.ends (about 15 minutes). The vast 
tt-uj o rity of all the other baryons have vanishingly short lif eti ines, between 
10-10 and 1 o-24 seconds. 

AH baryons are assigned a baryon quantum numb r, B. All bruyons have 
baryon number B = + 1 all anti-baryons have a baryon number B = -1 and all 
non-baryons l1ave B = 0. Like lepton number, baryon number is .also conserved 
in. particle interactions. The total batyon number of all particles befo1-e an 
interaction must equal the to,tal baryon nu1nber after the i lteraction. 

As baryons have inu:.ger values ,of baryon numberl quarks must have a ba1yon 
number of +! and antiquarks have a baryon number of ~ . Protons a.re 
baryons 'With a quark structure of uud, so they must have a baryon number 
of +!~!+t -+ l .~ and antiprotons with l q11ark structure of U U ct must have a 

baryon number of 4-!-! = -1 . 

Feyninan diagrams ca11. be drawn involving composite particles such as the 
proton and the neutron (containing quarks)~ and they also sh ovt how the 



~·································1 : TEST YOURSELF : 
• • • • • • • 28 Expilain why a proton can be • • • • • • .. 
• a hadiron and a ba ryon . • • • • • • • • 

29 What is the quark stru cture • • .. • .. • • • of a neutron? • • .. • .. 
• • • • • 30 Du rim 9 pos itron em rssi o n r 

• • • • • • .. • th e quark struc ture of a • • • • • • .. 
• proto n c hang e.s. Des cd be • • • • • • • • th'is change. • • .. • .. 
• • • 31 Write a nu c lear rea ction • • .. 
• .. 
• • • egu a ti on for posi·tron • • • • • • • • emiss ion and use the 

.. 
• • • • • • • equati on to show that baryon 

.. 
• • • • • • • number is co nserved . • • • • .. 
• .. 
• ............................ 

"'1 ... , ... , •. 11 .• , .,,i•,f'-lli,~ •ji,········•Jiill~,,· , ...... ,"-!, ••• ~.,- .. -~~-t ,••,,,, ... ,,,. 
M _ c.on. are hadron particles made 1up of a 
q uark-a1nt,,quank pair. 

quarks change during an interaction . The quarks u1aking up the comp osite 
particle are shown by arr-owed lines drawn parallel and next to each oth er:. 

The Feynman diagra1n for ~- decay then becomes: 

n 
UdU 

e 

Figure 2~17 Feynma1n diagram for~- decay. 

In this example~ th down quark decays into the w- exchange particle and 
an up quark. 

The Fey11man diagrams: for positron emission by protons in terms of quarks 
is also sho,'!iArn belo\'\1: 

n 
ui d d 

Figure 2.18 Feynman dfagram illustrating~+ (positron) rad~oacti,ve decay involving 
quarks. 

·Mesons 

Meson particles ,vere first proposed by the Japanese physicist Hideki Yukawa 
in 1934 as a v,lay of explaining the str-ong force h olding protons and neutrons 
togeth er to n1ake nuclei.. Yukawa suggested that the strong force was due to 
th e p1uton and the neutron exchanging mesons. We no,v kno,v that pions 
(pi-mesons) are exchanged behveen pr-oto11S and neutrons, but that the. strong 
interaction is actually due to the interaction betvleen quarks that make up the 
proton s and neut1uns. Pions, being made up· of quarks, also feel the strong 
force and are able to, exist outside nucle,ons and so the strong interaction 
bet\veen the prot,on and the neutron is due to the pion exchange mth the 
pi ons acting as a 'f otce canier). 

i\'f ·s 11-.; are made up of qua.rk-a11dquark 1,airs. qcf ~ and as '\Vith ba1yons, 
because there are six quarks and six antiquarks~ th re are many different 
po,ssible 1nesons. Most mesons are high-energy particles and are only se,en 
'lo exist inside the detecto,rs of patticle accelerators, but the pion and the 
kaon are produced when high-energy cosmic rays 'interact with the upper 
atmosphere and can be observed by high-altitude pa.nicle detectors. Mesons 
have a lepton number, L :; 0 (they a.re noi leptons) and a baryon number; 
B = 0 (they are not baryons). 

Although mesons are hadro ns, th ey are n.o t baryons arid he nce thei1r 
ba iryon num ber is D. 
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Figure 2.19 Feynman di ;;gram, 
slhowi n g pion m in u:s dece1,y. 

lhe [K+ pa rti c le has a c ha rge of 
+ 1 because of the ad dit10 n, of th e 
charges on th e u a nd '5 quarks, 

+ ; e + [ + ~ e) ·= + 1 e. The same 

is tn.1ie for th e charge on the K-

pa rt~cle~,, -f e + [-; eJ = -1e. 

The strange quark has 
strangeness-1. The a,nt i-strange 
quark '1as strangeness +1. 

Pions are cotnbinations of the up, u, and down, d, quarks and their 
antiparticles. There are th ree types of pion: 

n;+ = ud 

Tt- = du 

rc0 = uu or dd 

The rr+-/rr 1nesons are antiparticles of each other and the 11° is its o·wn 
antiparticle. All the pions are unstable and decay \.Vi.th lifetimes ,of 'the order 
of l o-8 s for the n+ /re- mesons and 10-16 s for the n° meson. The 1E+/1iC- mesons 
decay into muons and electron neutrinos via the ""·eak interacti,on: 

re+--+,µ++ vµ 

TC- ---+ µ- + Vµ 

The Feynrnan diagram for rr decay is sho\\.11 in Figure 2.19. 

The rfJ meson decays int,o two gamma rays. 

The other common 1neson produced by cosmic ray interactions is lhe 
kaon. Kaons contain the strange quark (or antiquark), s, which has a 
charge of~¥· The quantum nu1n.ber stra ngeness> symbol S, is a p,roperty 
possessed by particles containing the strange quark and Vlas coined by 
Murray Gell-Ma11n to describe the 'strange' behaviour of particles that are 
always produced in pairs by the strong interaction but decay "ia the vi1eak 
interaction. To explain this; GeU-Mann su.ggested that strangeness ·was 
conserved in the production of s trange panicles 1 but not in their decay. 

There are four different kaons, (with their st1'angeness values, 5): 

K+ = us (S = +l) 

K- =SU (S =-1) 

K 0 = ds ( S = + l ) and K0 = s d ( S = ·-1) 

Kaon pair production occurs via the strong interaction (where stran.geness is 
conserved). 

For example1 during the high-energy collision of two vrotons, a K+fK- pair 
is produced: 

p+p~p+p+K++K"' 

Strangeness check~ 

0 + 0 = 0 + 0 + (+l) + (-1) = 0 .,/ co1i.served. 

Kaons ane unstable~ decaying via the weak interaction vtith lifetimes of 
about 10-8s to 10-10's. There are several pr,ocesses by 'Which the charged 
kao11s can de,cay: 

K+ 4 µ.+ + vµ 

K+-, n"" + rr:0 

K- ~ µ- + V . µ 

K- ~ rr~ + 11° 
K- ·~ n° + µ- + v µ 

None of the decay products of these decays contain a strange quark~ so 
sirangeness is not conserved. 
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: TEST YOURSELF 
• • • 
~ 32 What ,is the chargie and baryon number of the 
; fo llowt n g pa rtrc Les: 
i a) proton 
• : bl anti proton 
i 
i 
• I 
I 

cl neutro n 
= d) electron 
= i e) anti ne,u tro n 

fJ pos~tron 
gJ uds ba ryon 
h] UUS' baryon 
j) dss baryon 

i : 33 The Sta,nda,rd Model and the parti cle garden 
; arranges matter Lnto th e following' gr oups: 
• ! A leptons D baryons 
j B quarks E mes ons 
: C exch an gie pa rti,c:les 
I 
• 
i W~ri ch groups do the followin g parti cles 
i 
: [represented by their symbols only] belo ng to? 
• : a] p eJ p+ 
• : bJ n f J 1t-
• 
~ c] e- gJ u 
• 
: d) y h] uds 

34 W hich of the following par ti cles a re possible 
baryon s? 
aJ duu 
D) duu 
cl SSS 

d) dud 

e) dU!' 
f] sdu 
g] dd'd 
h) !T'S d 

35 Which of the followin g are impossible mesons? 
aJ ud d] sd 
b) d-s e] dd 

-cJ ,u i1 f] dd 
36 Wh at is th e ba ryon and lepton str uicture of the 

follow ing a,toms? 

aJ ~H 

b) ~He 

dJ i~Na 
eJ 2Jfu 
f] 294uuo 118 · · 

• • • • • • 

• : • • j 
i 
• I 
• • • 

! 

i 
' I 
I 
l!I • !!I 
I 

: • • • • : 
• • • • • • .. 
• • • • • • • • • ..................................................................................................................................... .................................. ~ 

~ 
~ 

~ 

4 •• ••• •• ._ .... ••• ........... ••• ........ ...... .., ...... ••• .......................... ..-....... 11 .. ., ••• I. of • ••~!lo.&.'l,•4 1.4 ••• ............ ••• ......... 1.44 •• • • • 1.4 1,1,4 1.4,L l.4 1, 1, ,11 .......... •• • 1.4 1.1,.r.a.""1~•· 1.1', 4 ••• 1.4 .. . ._ ... 1,1,4 1.411. ...... 1.4 1.44 .. ., ••• ••!l,, !lo.6.""" 1.4 1.1.4 1,4,Ll, 4 ••• ......... 1.44 • • I.I. I.A.4 4 .6.4 ••• 1.4 1.1,4 .... ._ .. .,, .. ., 1,4 ,11,.r.1, • 11 

The Lancaster Particle Physics Package (LPPP) 
The LPPP is an online resource for s tudying th e 
1 nte racti ons of part1cles. The package con s1sts of a 
series of guided computer simulations that take you 
througih the way that partic le physkfs ts s tudy parti,cle 
intera ctfons expedm·enta lly. Th e computer s rmulations 
are backed up with ba sk physics explanations of 
what 1is going on .ins ide each s imulation. The package 

cont ains some :m,ate ria [ s tudied tn other chapters of 
th1s book and at A level. The package can he a ccess ed 
by using the fo'llowrng lin k: 

www .Lppp. La ncs.ac .u k 

Work you r way through th e pac kag;e; you ca n d.ip in a nd 
out of a throughout the whole of the A level course. 

; •• ••• 1,.e.1 •••• " ••••.1 ••" •• ••• ••• "" ••-. •~•11• iai•• .. •Ta.1 .. .,. •• ••• "" •L• ••••I•••••• ••••••••••••• L• 1o•• i.J.1 •• ••• " " ••• •• • .,._••• ...... .,.._.,. ••••••Ii••••• .. ••• i.J ••••• ••• ••• • • • •• •••L.i •••••••••It• ••••• ••• .. .... ., L• ••• ••• •• ••• ••••••• .. •a.••• •••• •T•.1 •• ••• ••• •• 1.a..-1.••-"• ••••• ••• ••• •• •tl• ••• 1..I 

()~C-o-n_s_e-rv-a-t-io-n~la-w~. ~~~~~~~~~ 

Remember - Einstein's energy­
mass eq ua.t ion~ E • mc2~ snows 
th at. o.n the quantum sca le, 1ma1ss 
and energy a.re interchanig,ea,bte -
mass can1 co1nvert to energy and 
energy ca n convert back to mass. 
It is bet ter to ta lk a bout mass­
energy beingi co nserved on a, 
quantu ·m. sca le ra th er than1 the 
co nservat ion of ,m ass and th e 
conservation of energy. 

Throughout this chapter you have met s,everal different quantum number 
conserva:tion 1a,vs - properties or physical quantities that are the same aft.et· 
an interaction as they are b fore the interacti,on. Three further quantities are 
also al""·ays con served in any interaction . these are : 

• charge 1 Q 
• momenruml p 
• mass-energy, E ~ mc2• 

To 1hes e we add the quantum number consen nition laws: 

• lepto11 number, L 
• baryon number~ B 
• s l rangeness ~ S. 
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With the exception of strangeness, aU the other qua11.tities are a h,vays 
conserved in any interaction. Strangeness is conserved in strong interactions 
but not in ,veak interactions (as the strange quark changes flavour). 

So1ne exanl.ination questions ask you to decide if a given particle interaction, 
usually giv,en to you in equation forn1, ,can happen or not. Momentum and 
nl.aSs-energy will al~)i'S be conserved) so all you have to do is to determine 
if charge, Q·, lepton number, l; baryon nun1ber, B; and strangeness, S a.~e. 
conserved. Of strangeness is not c,onserved this ,could indicat that th 
interaction is a ,,1,eak interaction). Consider the examples sho,\-n below. 

Is th,is pa rticte intera1cti1on poss ible? 

p +Ve~ e+ + n 

Answer 
A great way to do thi s is to cons tru ct a ta ble s im ilar to the one below: 

Table 2.3 

Conservation 
quantity 

CJ 

B 

L 

s 

Before interaction 

p v. Total 
+1 0 +1 

+1 0 +1 

0 -1 -1 

0 D 0 

After interaction Quantity 
e+ n Total conserved? 

+1 0 +1 ,/ 

0 -t-l +.1 ,/ 

-1 0 -1 ;/ 

0 0 () ./ 

In t hjs example all the quantiitres are conserved. so the interact ~on fS possibte. 

Is th1s interact ion posstble? 

p + e+-+ e- + I.0 + K+ 

Answer 
The r 0 ba ryo,n has the fo tlowi·n g propert ies : a!::! O; B = + 1; L ~ 0 and S = -1. 
Us1ing the same table as in, the previ,ous exa,mple, but a,dding an extra ,product 
colu mn~ 

Table 2.4 

• • -• • • . -
Total. to K• • • - . . - • • • 

Q +1 +i +2 - 11 0 +i 0 , 
B +1' 0 +11 0 +1 0 +1 ./ 

L 0 - l _,1 +1 0 0 +1 X 

s 0 0 0 0 - 11 +1 0 ,I 

~n th is case charge, Q, and le pton num ber. L, are not conserved, so thi s 
in t era et i on is in o t possible. 



The format of the table can 
be modffi ed depending on the 
number of pa rti'cles involved -
you ca n add extra ·col1u,m ns or 
take th em away. 

• ••• •• r•• ••• •• r•• ••• •• r•• ••• •• • •• ••• •• r•• ••• •• ••• ••• •• ••• ••• •• ••• ••1 •• ••• ••• •• ••• ••" •• ••• ••1 •• ••• ••" •• ••• ••1 •• ••• .,. r•• ••• •• r•• ••• •• r•• ••• • . . 
~ ACTIVITY ~ 
t 

Use the conservaHon laws to dec fde 1if the followingi partic le inte ra ct:ions 
can occur. A table of properties of parti c les is also shown. 

Table 2.5 

Particle Charge., a Barton number. B L~pt~n number, L str~ng·eness, s· 

. . • 

p +1 

n 0 
e- - 1 
e· +1 
Ve. 0 
v~ a 
ro 0 
i - - 1 
K+ +1 

1 p + n;- ~ E- + K· 
2 p + v& ·~ e+ + Lo 
3 n --4 p + e+ + v~ 

+1 

+1 

0 
0 
0 
0 

+1 
+1 
0 

a 
0 

+1' 
- 1' 
+11 
- 1 

0 
0 
0. 

4 p + e* ~ e- + 1:0 + K+ 
5 n ---+ p + e- + vei 
6 R-+p~n +1C 0 +ve, 

a 
0 
a 
0 
0 
a 

- l 
- 1 

+1 

; = ••• .::••••I'!•• ••• r s r•• ••~"'" ••s..••• •• ••ll r•• r'I r•"I ••'I r~ ••• ••• r"I r•• r• .. ,.,. r• .. ••• •s..•••••• r!I .,..,. ....... ••s..••,. •• ••:t r•• •• r•, • •, ., 1:•• ••I!•• ••• r• r•• r•:-1• .. ••s..••• •• ••• r•• P"I r•• ••• r;11 • •• • •• r• ••• • 

0 ---------------h t you need to know 
• For every tyl)e of particle tl1ere is a correspo11Lding antiparticle. 
• Particles and antiparticles have: rest-mass (in 1vleV/c2); charge (in C) and 

rest-energy (in MeV). 
• The positron, the antip1·01ton, the antineutron and the electron antineutrino 

are the antiparticles of the electron, the protoTll~ the n eutron and the 
electron neutrino respectiv,ely: 

• The four fundamental interactions are: gravity, el ectron1agnetic , w,eak and 
strong. (The strong nuclear force is also. kno\vn as the strong :interaction .) 

• Exchange pa1ticles are used to explain forces bet\veen elementary 
particles on the qua.ntui-n scale. 

• The virtual photon is the exchange particle for the. electromagne tic 
il1terac't ion. 

• Examples of the ,veak interaction are ~- decay, ~+ decay, electron capture 
and electron- proton collisions. 

• The w+ and w- are the exchange particles of the W·eak in teraction . 
• Feynma.n diagrams are used to represen t re:actions or interactions in 

tenns of particles goin g in and out and ,exchange p ar ticles. 
• Hadrons are particles that are subject to the strong interaction . 
• There are two classes of hadron__::: 

- baryons (proton, neutron) and antibaryons (antiproton and antineutron) 
- mesons (pion, kaon) 

• Baryon number~ B., is a quantum number tha:t de-Scribes baryons. Baryons 
have B;;;; 4--1 ; antibary,ons., B ;; -1; non-baryons; B =· 0. 

• Baryon number is always conserved in particle interactions. 
• The proton is the only stable baryon and all other baryons will eventuaUy 

decay into protons. 
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• Free neutrons are unstab,le and decay via the \1i.1eak interaction Corming a 
proton~ p- particle and an electron antineuhi.no. 

• Pions and kaons are exan1ples of mesons. The pion is the exchange 
p article of the strong nuclear fo1~e bet,vee.n baryons. The kaon is a 
p article that can decay into pioru. 

• Leptons are particles that are subject to the weak interaction. 
• Leptons include: e]ectron1 muon, neutrino (electron and tnuon types) 

and their anti.particles. 
• Lepton number, L, is a quantum nun1ber used to describe leptons; 

leptons hav L = +l; antileptons, L = -1; non-lept,ons, L = 0. 
• Lepton number is alv..rays conserved in particle interactions. 
• Muons are particles lhat decay into electr,ons. 
• Strange particles are particles that are produced through th slrong 

interaction and decay through the weak interact'on (e.g. kaons). 
• Strangeness (syinbol S) is a ,quantum number to describe strange 

particles. Strange particles are .nihvays created in pairs by the strong 
interaction (to conserve strangeness). 

• Strangeness is conserved in strong interactinns. In weak interactions the 
strangeness can ,change by -1 , 0 or +l , 

• Quarks have: charger~~ - j ; +;, ;.), baryon number~ ( 4, j.) and 

strangeness (+ l ; 0 or - 1). 
• Hadrons have the following quark structures: _ 

- baryons (proton~uud; neutron~ udd) > antiproton, u u d1 and 
antineut ran, u d d,) 

- Ill·CSOilS: 

- pions - Pion+, 11+, u d; Pion- , 1c, du; Pion°, n° > u u or d d 
- kaons - Kaon+, K+ > us; Ka.on- , K- su; Kaon° > K0 , ds or sd. 

• Du1.ing p- decay ad quark changes into au qua1~k , and during~+ decay a 
u quark changes into a d quark. 

• Conservation la,vs fnr charge, baryon nutnber, lepton nutnber and 
strangeness can be applied to particle interactions. 

t;; ~ -····················································································································································: f TEST YOURSELF ! 
-I i 

i:! 37 Matdi th e pions to the ir co rrect quark structu res: 39 ildentify th e quark s tructure of th e followin g. i 
ffi n° n• n- stra.nge parti cles from th e qiiua rk list below. : 
:I: : du u u ud, u d P u us ! 
,(( . . 
i ; 38 Whi'ch of the foHowing ip jon decays is not possible? Q uds i 
:::, ii R I 

u. i a) 1r~-; e• + v~ dJ x- -; µ- + p+ · us i 
! bi n:- --1- µ- + Vµ el x• --1- µ• + vµ ~ ;~ ! 
: c) ;rO -+ IV + 'V : 

i 1 
' a] K+ i 

= .. 
! b) K- ! 

N 

I II ! c] Ao [la,m,daO) ba ryon ~ ! 
=······••tt,iii•••·········iit•••••••••••••i······•••••tttt•••••••••••t••••·••••••;•ttit••••••·••;•,tt•••••·······iit•••••••••••••t•••••••••••••i•••••·•••••tiit••••••••••l 
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• • • • : 40 Strange quarks. responsible for the tong half- they are travelling 1n opposite drirections with : 
• • 
; lives of strang.e parti!ctes dur:ing the weak the same speed. The result ing collisions : 
• • 
: interaction, were trrst propos ed by M,urray produced top quark-antitop quark pa ii rs that : 
• • 
: Gell-Mlann and George Zweig in 1964. As baryon were then obs·erved in th e particle detectors. : • • • ... • • • • • • + • • '4 ,. 
• • • • • • • • • • : • • : • • • • • • .. 
• 
! • • • • .. • • • : • • • • • • 
"" • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. 
• • • • • • • • • • • • • ... 
• • • • • • • • .. 
i • • • • • • • • 
t 
• • • • • • • • 41 • • • : • : • • • • • • • • ~ : 
• .. 
• • • • • 
i • t' • • • .. 
• • • • • ,t 
• • • • • • • • • • 

• 
number had already bee:n defined as + 1, for Expla1in wny top quark- a,ntitop qua rk pairs : 
proton s and neutrons the s ubse~luent di.scovery of move in opposite directions after they are ! 
quarks required the,m to have +~ aind -t baryon, produced by the colUsion. ! 
numb ers. Table 2.6 compares some of properties c] Th e top quark 1{and an triquarkj has an j 
of stran,ge and down qua.rks a,nd th eir antiqua,rks: extremely shor t Ufetim e (5 x 1 o-25 s] and f 

Table 2.6 

s 
, 1 - 1 3 - 3 

1 1 +1 --r +-
3 , , 

D - -3 3 
rJ 

1 , a 3 +-
3 

d 

a] Quarks and antiqua,rks can cam bine to form 
four possi1bte mesons. Copy a.nd complete the 
ta bte, calc,u ilatrn g the baryon number, cha rg·e 
and strangeness of the four mesons. 

Table 2.7 

Quark pair I SS I s.d I ds 

Name phi kaon° kaoin° 
fa nti- sym metric] [symmetric! 

Baryon 
number 
Charge/e 

Strangeness 

b) The ph1i and rho0 mesons have th e .same 
properties in the table. Suggest .a way that 
these two mes ons coutd be d isting,uished 
from each othe r. 

I dd 

rho0 

decays i1nto a, bottom quark and a W:, exchange : 
par ti cle. This is shown in Figure 2.20. i 

" • 
Identify partiicles X and Y. : 

• • 

·Jee of 
part1c·1es 

T t 

'Jet' of 
pairt,cl'es 

! : • • • • • : • • • .. 
• .. 

Colli sion 
happens 

here 

• • • • • • • • • - µ+ : 

y 

Figure 2.20 Feynman diagram of top-a11titop quar k 
pa!ir production . 

42 The charm quark was observed experim·entaHy 
by two pa rttc te p hysk s tea ms at almost the 
same t.ime f n 19·74. One team was based at the 

• • • • • • • • • • • • • • • • • • • • .. 
• • • • • • • • • • .. 
• • • • • • Brookhaven Nat1ional Laboratory l[BN L] and the : 
• other at the Stanford Linea r Ac ce'le raitor [SLAG]. : 
• 

Both tea m 15 observed a cc mes on . Th e BN L team : • • 
called it the psi hvl m.eson and the S LAC team : 

• 
named it the J mes on - since th en ~t ha s b e·e n : • • 
known as the J/'V m es on. . The J/v meson has th e i 

• 
f oUowi n g pro per tf es: : .. 

Table 2.8 
• • • • • • • • : • ... • • 

Th e tast quark t.o be identified experimentally wa s i 
the top~ t, quark in 199 5~ 18 yea rs aifter it was first : 
dd d t 'h s d d M d l The J/¥1 meson can decay in rma ny .. ways; two of these • a . . e as a con cept to , , e tan · a r ·, o · e . : 

are shown below : • a] Suggest why phys:ic ists wer·e a,ble to predict i 
the ex,jstenice of th e top quark even thou,gh it J/1/f ..... e+ + e- i 

• took 18 years to obs·erve it exp·eri mentally. : 
Jl 'I' -+ µ• + µ- • 

bi The top qu a,rk was observed experi'm.entally by i 
th e Tevatron particle a,ccelerator at Fermi1la b Expla in. us1ng conservattoin laws. how bott) of th ese i 
f n the USA. The tevatro n co llid ed protons decay equ at io:n s a re correct. You need to c orisrde r: i 
a,tid anti protons wi,th an energy of 1.8 TeV e1n ergy i 
(1,_8 >: 1012 eVL Alth ough th e protons a nd ainti:- • mom entu m i 
proteins have a1 hi gh m omentu ,m. the sam of the • charg e i 
m omentum s of a collriding pair of partkles - a, • baryon numbe r i 

• proton a nd a n a ntrproton - is zero. because • lepton number. ~ • • • 
• • • • ....................................................................................................................................................................... ~ 



-ractice ques ion 
1 The group of particles kno1vn as hadrons ~ue composed of quarks. There 

are t,va sub-groups of hadrons: mesons and ha.l)rons. 

a) What is the name of the property that defines a hadron? (1) 

b) State the quark structure of a meson. (1) 

c) State the quark structure of a baryon. (1) 

d) The antiprot,on is the antiparticle of the proton. State one way 
that the proton and the antiproton are similar, and one wary that 
'they are differe11t. (2) 

e) \\lhat are the following values of an antiproton : 

i) its charge 

ii) its baryon number 

... ) Ill its quark structu.re ?' 

2 In the Standard Model of Matter; particles can be ]ept,ons, hadrons or 

exchange. particles. Here is a list of particles: 

electron muon 
. 

p11.on proton neu tron 

(1) 

(1) 

(1) 

a) From the Hst state die nam-e of one lepton and on.e hadron. (2) 

b) State one difference betv,leen leptons and hadrons. (1) 

c) Slate the difference in structure bet\veen baryons and mesons. (1) 

d) From the list sta.te the name of one baryon and one m eson. (2) 

3 The table below shows son1e basic information about three had1-ons. 

Table 2.9 

Sub-atomic particle Quark structure Baryon 01R Meson Relative charge 

ud meson 

udd 

I\ siQ,ma+ +1 

a) Copy and complete the table. (3) 

b) All of the sub..,ato,mic particles sho~ in the. table have. a 
corre.siJondi.ng antiparticle. State one example of a baryon and. 
its antibaryon not shoMt in the table and state their quark 
structures. (4) 

c) The e]ectr,o,n and the positron are an example ,of a lepton 
parti,cle......antipanicle pair. State one prope1ty ,of positron that is 
the same as an electron 1 and one property that is different. (2) 

4 Figure 2.21 shows two particles interacting . . An offset line has 
been drawn to represent the ex.change particle. 

a) State the. name of d1e interaction shown and give the name. 
of the exchange particle drawn on the diagratn. (2) 

Baryon number Strangeness 

0 

D 

- 1 

b) ln this interaction) momentum and ei1ergy are conserved. Figure 2.21 Feynman diagram 

Give the nan1e. of another quantity 'that is conserved. (l) showi.ngi two par ticles interacting. 



Figure 2.22 shows another type of interaction. Another offset line 
has been d1'"'avvn to repre5ent the exchange particle. 

c) Name the pat1.icles [abeUed A> B an d C. 

d) State the nan1e of this type of particle interaction. 

c) Mo1nentum and energy a.re also conserved in thi.s particle 
interaction. N an1e two other ,quantities that must be consented 

(3) 

(1) 

for this interaction to, occur and show how they are cons·e.rv"ed. (4) 

0 The Standard Model predicted the ,existence ,of the exchange 
particle involved in this interaction before it had been 
observed e>rperimentaUy. Explain why it is important to test 
the prediction of a scientific 1nodel expertmentally. (3) 

A B 

C 

p 

5 The K- kaon is a meson ,vith stmngen, ss -1. It can decay into a 
muon, p-; and a muon-antineutrino; Vµ, as shown i.n the 
equation belo,v: 

Figure 2.22Aniother type ,of intera,ction. 

K- ~ µ- + v - µ 

a) State and explain ,Yhich partic]e interact ion is responsible for 
this decay. (1) 

b) Energy and momentum are conserved in this decay~ as are tw o 
other quantities. State the name of ihese two qu antities. (2) 

c) State one property of a strange particle> such as tl1e K- kaon, that 
1nakes it different to a non-stran ge particle> such as arr pion. (l) 

The K+ kaon is also strange. It could decay via eith er of the 
follo\\7ing decay equations~ how·ever one of th ese decay equations 

is not possible: 

K+ ---t µ+ + Vµ 

K+ ~ rr.o + 1T.f:. 

d) State and explain v.rl1ich of these decay equations is no t possible. (2) 

n1e K- kaon can also decay in the f,ollowing way; producing a muon , a 
muon-neutrino and a third particle~ X: 

K----+ X + µ-+ vµ 
e) State "'rhich interaction is responsible for thi.s decay. (1) 

0 Particle X is identified as a pion. Explain why X must be 
a 1n,es,on. (2) 

g) State the charge on this particle. (1) 

During ~- decay a neutro,n decays into a proton and an electron 
antineutrlno. 

a.) Write an equation describing this decay. (l) 

b) Using conservation laws, explain why a11 anti-ele~tron-neutrino 
is produced rather than tln electron-neutrino. (2) 

c) Draw a Feynm.an diagram for this decay. (3) 



~+ decay involves the emission of positrons. f~Mg is a p ositron en1iUer, 
decaying into a ~l\fa nucleus~ a positron and another particle~ X. 

d) State the name of the oth,er particle, X. (1) 

) S'tate whether each decay ·product is a baryon ,or a lepton. (3) 

During ~+ de~ an up quark decays to a dmvn quark and 
an exchange particle, ·which subsequendy decays into the po·sitron 
and the oth r patticl , X. n 

£) State the quarks ructure of an utron and a pi-o,ton. (2) 

) Dra.,v a Feymna.n diagram for this decay. (3) 

7 Figure 2.23 iUustrates the particle interaction known as 
electron capture. 

a) During electron ,capture, charge, bary,on number and lepton 
number are all conserved. Sl'llow how these three quantities 
are onnse1-ved. (3) ,p 

b) The isotope potassium-40, igK, is an extremely llTillsual 

nuclide because it can decay by all th.r,ee- types of b eta decay. 
lt can decay via electron capture or positron emission or p­
emission .. \1\rrite an equation summarising each decay. 

Figure 2.23 ,Feynman diagram showing 
electron capture. 

(6) 

II B The proton is an example of a hadron. The positron is an example of lepton. 

a) Slate one sinrilarity and one difference between protons and 
positrons. 

b) There are £our forces t'hat act between particles. Exchange 
pa11ticles can be used to explain th ese forces. Match the correct 

(2) 

exchange p,anicle to its force. (3) 

Table 2~10 

Force Gra,vity Strong Weak Electro 1ma g n ebc 
Exe ha nge particle Gra.vi,ton P h·oiton Gluon Wt Z • 

c) Describe how the force between a proton and a neutron varies 
" rith the separation distance between the two particles and quote 
suitable values for separation distance. (3) 

d) P1ositrons and protons can interact via three ,of the above fo,rces. 
Identify the force that ,cannot exist bet\v,een the proton and the 
positr,on, and explain why they cannot in1 eract in this way. (2) 

II 9 Pions and muons are produced when high--e·nergy cos-1nic rays interact 
with gases high up in the. Earth~s atmosphere. W1ite an account ,of how 
the Standard Model is u sed to classify pions and muons into particle 
groups. Your acc.ount should include the follo-wing: 

• the names ,of the groups of particle_s th.at pions and muons be long to 

• other examples of particles in these groups 

• details of any properties that the particles have in common 

• description of the ways that each particle can interact with 
other particles. (6) 



Stretch and challenge 
10 The l;+ baryon has a st1~ngeness of -1. 

a) State the quark co1nposition of th~s particle.. 

The]:+ is unstable and can decay into a n"leson and another baryon 
as shown in the e,quation below: 

1:·~rr++n 

b) State the naines and the quark structut,es of the tvlo decay particles. 

c) Apan from momentum and energy; which two other quantides are 
cons rved in this decay? 

d) Na.me a qua11tity that is not conserved in this decay. 

e) State the. name of the particle interaction shown by the equation. 

f) Both of the decay product particles of the :1:+ baryon are unstable. 
Write the decay equati.on for the decay of the n particle. 

11 Figure 2.24 shows the decay of a strange quark 1 s. 

a) State which interaction is responsible £or the decay of the strange quark. 

b) Give names for particles l ~ 2 and 3 . 

12 An+ meson has a rest mass of 139.6 MeV/c1 and a. mean lifetime of 
2.6 x 10-Bs. This meson decays into an antimuon and a muon neutrino. 

a) What sort of particle interaction is involved 1Nith this decay? 

b) \\lhich exch ange panicle is involved in this decay? 

c) Draw a Feynn1an diagran1 for this decay. 

A particle of rest tnass M decays at rest into tv.;ro high-speed panicles> 
m1 and m2, as sho~rn in Figure 2.25. 

1 

2 

s 

Figure 2.24 Feynman 
diagram, showin,g the decay 
of a s trange quark. 

The relativistic version of Einsteins energy-n1ass equation is given by: 

E2 = c2p'). + mo2 c4 
momentum. P1 momentum, P2 

d) Use this relationship to sho~l: 

E1 = (M2 + m12 - m22) c2 
2M 

and 

total energiy, E1 total enBrgy. E2 

Figure 2.25 Particle decay d~agram. 

e) Experiments hav,e sho,vn that the rest mass of an antin1uon is 
105.7MeV/c2, and the Standard Model requires a ·1nuon neutrino to 
be massless. Using this data, and the data for the pion, show t l1at the 
kinetic energy of the antimuon emitted during th d cay is 4.1 MeV. 



Electrons and 
energy levels 

•••••••••••••••••••• , ••••• ~ •• , •••••• , •• ~.~•••f~• •••••••••••••••• ··················~··~····••,t•,~••••f•••~···· ! PRI OR K OW DGE i 
• • • • 
; En·ergy is mea1sured in joules~ J. A potentia l difference of 1 volt : 
~ trainsfers 11 joule per coutomb. C. of charge: 1 V 1JC·1• ~ 
• • 
: • In the nuclear mode l of the ato,m1 the atom ha s a. central, massFve : 
l nucleus. which is positively charged. The nucleus contains protons ! . -: and neutrons and ~s surro un ded by a clo1ud of or bft,ing electrons~ : . ~ 

; w htch are nega·tively charged . : . ~ 

i A neutral atom has eq u1al nu·mbers of protons and electrons. When an : 
• • i a tom lloses or g,a,ins an elect,ron. it is i.on ised. The atom is teft with an : . ~ 

: ove ra ll pos itive charge if it loses eilectro ns. or a negative charg,e i1f it : 
~ . 
: ga,i· ns e lectro n,s. : 
~ . 
i L ight ~s one form of e lect ro m agnet ic radiatiion. H1igher f requency : 
• • 
: rad.iatiion, for exa,mple ga m ma r ays~ has a s horter wa1velengt h : 
• • 
: corn pared wrth lower frequency radi at ion~ f or exam-pte 1m icrowaves . : 
~ . 
: In order of dec rea s,in g wavele ngth . th e me mbe rs of the : 
• • i electro ma gnetic s pectr um are: radio waves. m[crowaves. infra r ed, : 
• • ! vis ible ligh t, ultravio let. X-rays. gamm,a rays. i 
: ........................................................................................................... ~· 

······································································~····················· 

• • 

TEST YOURSELF ON PRIOR KNOWLEDGE 

~ 1 How mu eh ener gy does a po ten t1a l diiiffe re n ce of 6 V trains fer to 2 C 
: of c ha rge? 

• 
"' "' • • ~ • • • • • 
"' ' • 

• • : 2 A sod iu m a to,m has 11 protons. When a part icular sodium atom is • 
• • • • • 

• • 
t i1an i1sed 1 jt loses elect rons. : • • ! al How 1many electrons does a sodium atom have? ! 
• • 
; b] Is thJs sodh..1m ion po5itive ly or negatively char9ed? i 
t • 

i 3 Explain one di fference between a sod rum atom and a sodium ion . i 
I I 

: 4 Put these m.e m·bers of the elec trom,ag,n eti c s pee tru m i1n order of : 
t • i increasing frequency~ gia,m,ma rays~ 1nf raredl v.isi ble li ghtr m~crowaves. i 
: 5 Which colour of visible lfg ht has the longest wave.Length? ! 
• I 
I 

li•••••·························································· ··········· ····1••••4111 .................... lllllllli 

Electromagnetic radiation carries information throughout the Universe to 
Earth at the speed of light. Under the right c,onditions all elements formed 
since the Universe began, ~lherever they are in the Universe, can give out 
the sam e ·unique patterns of lighti called a spectrum. The spectrum from 
a star can be analysed in detail to reveal whi,ch elem,ents are present in the 
star. Light from very distant galaxies takes billions of years to reach Earth. 
When it anives) th~ spectrum from each gala.A').,. has been red shifted. Vvhen 
the red shift of the light i5 measured, the spe,ed and distan ce of each galaxy 
from Earth can be calculated, helping u s estimate of the age of the Universe. 

There are many other u ses of spec tra. Using line spectra. from samples 
collected at the scene ) forensic scientists can identify samples of illegal 
d1·ugs) or 1na1ch p aint chips from vehicles thought to be involved in 



Figure 3J The spe·ctrum of our Sun 
corn pared with the spe,ctrum from 
8AS11. a gala1xy about 1 biUion l,ig1ht 
years away. 

A q1; an l m f r , is a 5maH packet of 
.energy. The word ,quantum me,Mis d;screte 
or separate. 

A ho n is the name giiven to a discrete 
pa d<et (q uantu m)i of ,dectro magnetjc 
energy. 

hit-and-run road acc1dents. One lucky lottery ,vinner ·was ab·le to coHect 

her "'innings after spectral analysis p roved her ticket ,vas genuine; a 
computer error had originally suggested it ,vas fake . In this topic you wiU 
learn ho,;v line spectra are caused~ and the role of photons and electrons 
in atoms . 

Photons 
We often see electromagnetic radiation behaving as a wave. For exan1ple; 
waves change wav.ele11gth and speed at the boundary between different 
materials (refraction) and spread through gaps. ,or around obstacles 
(diffraction). When electro1nagnetic \\"aves in the satne. region overlap, 
'their amplitudes add (superposition). Waves of similar amplitude and 
wavel,ength, tn th same regio·n- produce interference patt,ems; virhic:h can 
be detected (see Chapter 6). 

Other obsenrations can only be explalned by thinking of e]ectromagnetic 
radiation as a stream of packets (or quanta) of energy called ,.-..It tun . A photon 
has no mass or charge and is described by its energy~ wavelength or frequency. 
For example~ an X.-ray photon can have a wavelength of 1 nm and frecpiency 
of 3 x l 011 Hz) and a photon of yellow light h_15 a wavelength of 600 nm and 
frequency of 5 x 1014Hz. The energy carried by a photon is discussed below. 

En 1ergy of photons 
The energy of a photon is proportional to its frequency. A photon of light 
cani.es less energy than an X-ray pl1oton because the photon of light has a 
lower frequency ( dris is covered further in Chapter 4). 

The energy carried by each photon is calculated using: 

where E is the energy in joules 

h is Pla.ncks constant 

J is the frequency of tl1e photon in henz. 

Plancks constant is 6.63 x 10,-3+J s. 

Calculate the energy carried by a photon1 that ha s a, frequency of 
5.60 )( 1 Q13 Hz. 

Answer 
f ... hf 

.. 6 '63 )< 11 0-34 j s )( 5 . 60 )( 11 013 s-1 

... 3. 111 x 10-20 J 

Since frequency x wavelength equals wave speed, you can rewrite the 
. b E A( equauon a ove as = 1 . 
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When workijng with very Larg e 
and very smaH numbers, use 
the brackets on your ea lculator 
wisely. Use the powers of ten to 
work out the order of magn itude 
of th e answer you shou ld expect. 

Calculate th e energy carried by a photon that has a wavelength 
o·f 630 nm. 

Answer 
Ee! 11f. 

.l 
• 6.63 x 1 Or34 J s x 3>0 x 108 m s-1 

630 >< 1 o-9 m 
- a.1: 6 x 10-19 J 

Intensity 
The intensity of electromagnetic radiation is the energy transferred per unit s ~~,,~~~~c=:::::::;~-~ ti1ne per unit area. The intensity depends on the energy carried by photons, 

3r 

Figure 3. 2 Dou bli ngi the djsitance trom 
the light source spreads. the energy 
over four times the area. 

.. , ................................... ........... .... , ............................................ , 

In r". • ta la applies. when a 
,quanttity, such as intensjty, is. ~nversely 
proportional to the square of the distan'C,e 
fr,o,m1 the source. 

the number ,of photons transferred each second and the 
area on v.rhich they are incident. The intenstiy increases: 

• when the light source is made more powerful, so more photons tn·e 
transferred per second; for .example, the intensity of light from a lOOW 
bulb is greater than the intensity from a lOW bulb if all other factors 
remain the same 

• ,vl1en e-ach photon transfers more energy; for example, a bea1n of 
ultraviolet photons is rnor.e powerful than a ·bean1 transferring the sru11e 

nuinber of infrared photons per second 
• when the light is i11cident on a smaller area; for exan1.ple, when you n1ove 

closer to a light source, more light ene1·gy enters your eye each second~ 
and you sense a gr,eater intensity of light. Intensity ·follows an inverse 
squ· rt: h.1 T> so tl1e intensity of light measured from a light source 
quadruples if you half the distance away front the same light source. 

An 11 W Ught bulb em~ts light of average wavelength 550 nm. The bulb 
i1s 20o/o efficient. 

Calculate the energy carri1ed by one photon, and hence the number 
of visi,ble photons em1tted each second. 

Answer 
Energy per photon - !J.f. 

l 
• 6.63 x 11 0-3~ J sx 3 x J 09 m s-1 

550:x 1 o-9 m 
= 3,, 6 )( 10-19 J 

The b u{b is 20°/o ef fid en t. 

Power output - power 'i:nput x eff1dency ;;;; 11 W x 0.2 ;.;; 2.2W 

Power output ;: number of photons emitted per second x energy ,p er photon 

Numb er of p1h otons per second = 2. 2 W 
3.6 X 10- 19 J 

= 6 x 11 01.B photons per second. 



............ ..................... .. ................... .... 
An l r n · l r ~s a unJt of e ne rg,; 
equal to 1.6, x 10- i s, J. It is the ,energy 
gained by an electron when it ms a,ccelerated 
thr,ough a potential differenc,e of 1 volt. 

Cheek the ma,ths c hapte r 
[Cha pter 1 5) ,i f yell a re not 
co nfid ent working with verry sma ll 
o r very largie numbers. 

The electron volt 
Electrons inside atoms can absorb photons and gain energy. They may gain 
enough energy to n1ove furtheT from the nucleus into a higher energy level or 
leave the atotn akogether . 

The ,energy ,canied by a photon and the energy gained by electrons are so 
small that ~~e use a different unit of energy fo,r these changes. The unit of 
energy is called the I ~ ·tnl1 vo lt. eV. An electron volt is the en ergy needed 
10 mov. an electron through a potential difference of one volt. vVl1en charge 
fiov.rs around an electrical circuit, 1 joul ,of work is done moYing 
] ,coulon1b of charge through a potential difference of l volt In the san1e 
wary, v,.rork is done tno·tting electrons in an electtic field . 

The work done in electron volts is calculated using: 

W=VO 

where 

W is the energy transferred in electron volts 

V is the potential difference in volts 

Q is du! electron charge> 1.6 x 10-19 C . 

Since the charge on an electron is 1.6 x 10-19 C) the. etllergy transferred per 
electron vol t is 1.6 x 10- 19 J. 
• To convert joules to electron volts~ divide the energy·in joules by 

1.6 x 10-19)/eV. 

• To convert electron volts to joules, multiply the energy in electro11. vohs 
by 1.6 X } Q-19j/e\~ 

Catc:u :Late the energy of an electron w hen it m,oves th rough a potent ia l 
difference of 6 V in electron vo lts and in joules. 

Answer 
W=VQ 

~ 6 )( e 

~ 6eV 

One electron volt equals 1.6 x 10-19 J so the energy 1in jou!les is: 

• 6 >< 1.6 >< 10- 19 

- 9 . 6 >< 1 0-19 J 

··························· ···········t•••••····················••••tt+•••··············-··~ t TEST YOURSELF • .. .. 
I 4' 
!I .. . ~ 

i 1 State th e form ula th a,t links the energy of a photon w ,ith its f requency. : 
! Calculate the energy ca r r ied by these photons in jou,les. P lanck's ! 
: co n s ta n t i s 6. 6 3 x 1 o-3Li J s . : 
• • 
~ a] an infrared photo n w ith a frequency of 2 x 1013 Hz ! 
~ b] a vis ible light ph oton wrth a fre quency 6 x 1014 Hz ~ . .. 
: c] a n ultrav iotet ph oton with a freq ue ncy 9 x 1:015 Hz : 
: .-t:\. : . -v . • • ....................................... ...................... ................................ ........................ ...................... 
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Figure 3.3 Atoms em it photons w hen 
eilectrons m.ove fro ,m a1 hi gher energiy 
Level to a Lower energy LeveL They move 
f rom a llower energy Leve l to a htgher 
ene,rgy leve l w hen th·ey abso rb photons . 

Electrons c:an only occupy a s.maU number 
of separate r I , withi 111 an atom. 
1Etectr,ons in an ato,m move between 
diffeH~nt e111ergy states o,r l·ev,e~s when they 
absorb ,or emit a photon. 

Potential energy 

0 Step 5 

Step 4 

Step 3 

Step 2 

Step 1 

Figure 3~t. There ;;J re· fixed va Lu9s of 
allovved energy when y·ou cU mb stairs. 
j ust as electrons iin cln i3to m heive fixed 
v;Lues of aUowedl energy. 

••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • q) . • • • • • • • • 
~ 2 State how to convert joule.s in to e lect ron volt s. Conve rt your answers ! 
: fo r qu es tion 1 into e lec tron volts. : .. . 
i 3 Calcula te the frequency of a photo n w ith tne energ1i es be low . i 
• • : Reme1mber to convert e lect ron volts to joules . : 
i a J 5. 0 X 10-19 j i 
• • j b) 2.5 -eV i 
i c) 1975 eV I 
i 4 State th,e formu la which relates the energy of a photon to its i .. . 
: wavelengt h. Ca lculate th e wavelength of a photon w~th these : I energ1,es . i 
j al 8.0 x 1 o-19 J I 
: b) 16 eV i 
>A I 

! cl 254 eV : 
• i I 5 a) Exp lain what is mea nt by an electro n volt and how to convert i 
: between electron votts and jiou te s. s 
• • 
: b] Calculate the ener gy needed to move these charged pa rt icles : 
.. I! 

! through a p oteriit ia l d iffe ren ce of 6 00 V: : .. . 
i i] a n e lectro n : 
• • i ii) a he lium nucleus [this contain s two pr otons a nd two ne·u t r ons!. i 
• • . ............................... ..... ........... ................................................................ ~ 

Absorbing and emitting photons 
An electron in an atom gains and loses energy as it m oves ,vithin the a.tom. 
The electron has a combination of kin etic ,en ergy an d electrostatic p oten tial 
enerro~ Because th e electron. 11.as a n egative charge and the nucleus has a 
positive charge, the electron is attracted to the nucleus and work 111ust be 
done to m ove the electron away from the nucleus. TI1is i.s ,vhy the electron 
has less en ergy close to the nucleus. 

The electron moves fu11h er fron1 the n1lcleus if it gains d ie Tight a1nount 
of energy by absorbin g a ph oton . We say th e electron m oves to a higher 
en t:rgy· 1 .. v1: 1. 

If the elechnn drops from a higher energy lev,el to a lovver ,en ergy level, 
it loses its surplus energy by eu1ilting a photon an d moves closer to the 
nucleus. 

Quantised energy levels 
An ,electron can only absorb a specific amount of ,energy because 
the p·ossible , or allow1 d, energi s f.or electrons in an atom are not 
continuous. 0 1nly certain, fixed separate energy levels ar,e allo,ved. These 
energy levels are caUed quantised energy levels because they have fixed 
ene'tgy values. 

You co.m e across this idea ·when you use stairs. You cannot climb, part of a 
step , bu t 1nust gain or lose gravitational potential energy in p recise am ounts 
th at match the energy difference between each stair. You can gain or lose 
energy in larger amounts to move bet\veen stairs further apart , but you 
are .still only allowed fix,ed values of energy: Ho,vever, while stairs ill have 
th.e same spacing, the arrangements of energy levels i.n atoms are more 
comp licated. 



C)--E-x-ci-ta-t-io-n--a_n_d_i_o_n_is_a_t-io-n------------~ 

When efectrons in an atom are in their 
lowest energy state" they are in the round 
t 

When an etectron in an atom moves to a 
h•gher energy level (above the ground state) 
aftQr it has abso~bed energy, it is in an 
·QX)Cn'.edl state. • I has occurred. 

I nl occurs when a1n atom gains or 
loses an electron and becomes charg,ed. it 
has been monised. 

If all electrons in an atom are in 1he lowest energy state, \Ve say the aton1 is 
in its grotmd ta l c·. 

If an electron, or electrons in an ato1n have absorbed en erro, ... and n1oved to 
higher energy states, we say th e atom is excited . . c il 1 ioll occu t-s when 
electrons absorb exacdy the tight amount of energy to move to higher 
energy levels. This occurs either by. 

• absorbing a photon Vlith the exactly the tight amount of energy to move 
betw,e,en tvv·o lev,els. A p hoion is not absorbed if its energy is different 
from the amount 11,eeded fo.r the electron to move between t\V·O levels 

• absorbing e.xa,ctly the right an1ount of energy to m ove beP,veen two l vels 
after colliding vtith a. free electron that has nergy equal to o,r greater 
lhan the energy r·equired. The e.nergy gained by the electron in 1he a.tom 
,equals the energy lost by the colliding electron . The free t lectrons kinetic 
energy after the coUision i5 equal to its kinetic energy before the collision 
minus the energy· transferred to the excited electron in. the atom. 

Ionisat ion 
lf an electron in an atom absorbs enough energy to escape the ato1n 

completel)~ we say the atom is ionised . lo isatio n occurs when an atom 
gains or loses an electron and becon1es a charged parcic]e called an ion. The 
ionL a ti )11 en rgy is the minimum energy needed to remove the electron 
fro1n the atom completely. 

I n I a I n en r · is the .energy req u ir,ed to 
r,emov,e an el·ectro111 from its ground state t.o 
inf~nity, Le. to lbeco·me detached from th.e 
atom. 

~ -··························································································: 
: TEST YOURSELF ~ 
• • • • Ionisation 
• • f 6 Des cribe the processes by which e lectroris gain and [ose energy 1in i 
: the atom1. : 
• • • • 
: 7 Expla1 n th e difference between the ground s tate and an exci ted s tate : 

-- ~ - -- ~ - - ::. =====::::c: 

-0.544 eV n = 5 
-O.Bo ev second exc~ted state ',nn 

3
4 

- 1.51 eV 

_3.4 eV _____ fl_rs_t_ex_c_lt_e_d_s_ta_,te_. n = 2 ! in a n atclm . ! 
• • 
: 8 Exp la1 n the difference between excitation and ioni sation . : 
• • i 9 ThLs ques t~ on refers to the energy leve l diagram in Fi1gure 3.5. A i 
i free e'lectron collid es with an electron rn a hydrogen atom" which ! 
f ·is orig in a[ly ~n th e gr·ound s tat e~ n = 1. The giround .sta·te etectron is i 

ground state n ~ 
1 

! m
1
oved to th e exited state, n - 2. ! 

- 13.e eV ,_________ i a How 1mu1ch energy has been t ransferred to the excited elec tron? : 
Figur e J .5 When an electrorn absorbs a ; Give your answer in ellectron volts. and in jou les. I 
photon, it move s rnto higher exc~ted states ! The electron now fa lls to th e ground state by emittring a photon . ! 
or escapes completely fi:onisa,tron] . This i b) Ca·lcuta,te th e wavelength of this photon. i 
diagram shows a number of possible • 

•••• , , ••••• • •••••••• ,,, •• ••••• ••••• , •••• •••• f • • • ••• ,, •• ••• ••••••••• ,, • • t.,fftt••••••• 
excited states for a1 hydrogen atom .. 

~ ............................... ........................... ·•··· ................................................................................................................................................... . 
. C 

~ ACTIVITY I . 
I Calculating the Planck constant using Light-
i emitting diodes -
' -

~ A stude int ha.s bee n as ke d to measure P la nc: k's 
~ 
c co nstant by investigating the equation: 

She sets up the seri,es drcuit show1n in Figure 3.6 
using a, variable power supply, ligiht- emitting diode 
(LED)1 and a 3000 resiistor. The potenti,al differen:ce 
across the LED 1s measured usi,ng a volt meter. 

' ~ E = he. She in ere as es th e potential differeinc e aero ss the 
~ A LED un.tH th e LED is ju st Ut; this pote nt1a1l difference 

~ 

= : 
; 

~ ~ -~ '-v . 
... . .. . ...... .................. . . . ............ ...... . .......... . . ............... . .......... . ... ............ - . . ... . ...... ............. :11 ..... . ........ . ....... . . ..... .. . . . . ...... ..... ................ ..... ............ ... ....... ;I . .... ... I; .......... . ... . .... ...... ... ........ . . . .. . 
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~ 
is measured by th e volt mete r. She changes the LED 
a:nd r epeats the experirm ent usin 9 d i1fferent co lours 
of L ED s; he r r esults are s hown in Tablle 3.1 , whfch 
compa res the wavelength of the li ght e,mitted~ l . w ith 
the o per ati ng p. d ·~ V. 

A semicondu c tor a llows electrons to occupy diffe rent 
energy levels. Energy is needed for e lec trons to 
move from the valence band to t he co ndu ct ion 
band . Th1s energy is suppUed by a,pplytngi a potentfa [ 
differ ence to t he LED. When an electron m oves to 

300-oh,m 
resistor 

Volt­
mete'r 

----- 1-
oc power 

suppl;y 

Figure 3.6 Circuit to measure 
Ptanck's constant. 

th e co nduction band, tt l eaves a posi,tively charged 
'h ole· in the va lence ban,d. Wh en an electron 1n the 
condu cti·on ba,nd drops down to the va lence band and 
reco·mb ines w·ith a hole! the electron re leases su rptus 
energy as li ght. The energy of th ese photons equals 
th e differ ence in ener giy between, the valence band 
and the conducti:on ba,nd. 

Table 3.1 

I e I • p.d. when LEO is 
just lit/V 

Red 624 1.9·9 
The principle behind th e opera,t join of an LED is 
illus t ra ted iri Figure 3 .7. 

Orange 

Ye llow 

602 2.06 
590 2.11 

Conduction 
ban di Electron 

Green 

Blue 

525 2.36 

470 2.64 

f\/L,,,, Emuted energy 
f\/L,,,, In the form 

of llght 

1 Explain why th e blue LED needs a h~gher p.d. to 
light t ha n th e red LED. 

. 

® 
Valence Hole 

,band1 

Figure 3.7 The pr inciple behind 
the operati on of an l ED. 

2 Us~ ng the da ta 11 n Tab .le 3.1 , plot a graph of the 
opera ting p.d .i V, across th e diodes aga inst l · Use 

the gradi ent of th e gra ph to ca lculate t he IPla nck 
co nstant 

= ....................................................................... 111• ..................................... ., ........................ ................................................................. ,. ••••••••••••• ••••••••••••• ••11 .................. ., •••••••••••••••••• 

• ,..,. • ., ~a•,..,,. ••• ., ... f'a'I a"!I "'• .. •• ra"I aara, lf'tf'a'la, rara'I ,..,. • ., •• ,. • ., •• .... •• ,. • ., a'I I"•"" a""l r'I ..... • 

A dlffr rtl n ..,r in ms a pfece of 
transparent mater,ail ruled w~th very dos,ety 
spa,ced lines! used to see the d~ffraction of 
light. 

A n lnt II is a spectruim 
whQr,e all frequencies of r.adiatfon or colours. 
,o,f light are pass, Me. 

A Ii r II is a s pectru mi of d ~s crete 
collioured lines of light. 

Figure 3~B Compa ring the emisslon 
spectra of different L~g ht sources. 

Line spectra an 1d continuous spectra 
Light p assing through a fine gap is diffracted, which means that i t spreads 
out after passin g througl1 th e gap . A diffrar.:tinn gratin° is n1ade from a 
tran sparent m aterial m th n1any gaps between very closely ruled Hnes, or 
ridges. Light passing between each gap in the grating spreads and interferes 
with light spreading through neighbouring lines. This process splits the 
light int,o· a spectrutn of the colours it c,ontains. The pattern of the coloured 
light carries info·nnation a.bout the light soutce. You will n1e.e't a n1ore 
detailed explanati,on of the diffraction grating in Chapter 6 . 

Sunlight and light f-rom a filament bulb (o·r incandescent bulb) give 
a continuous spread of colours that m,erge into each other. This is a 
l'.t111 i I Ul u~ --.pl·ctru111 . A bulb has a so,]id filament that is heated. Energy 
levels in a solid overlap, so- all energy changes for the electrons are allo"'red. 
This means the electrons can emit photons with any encrgy1 producing a 
continuous spectrum when ·a solid is heated. 

Ligh t from a fluorescent tube produces a spectru.m of co]oured lines 
on a dark background. Th is pattern 1of lines i.s called a li ne sp clrun1. 
The pattern of lines is characteristic for certain elemenls . All fluorescen'l 
bulbs have a similar line spectrum because electrons in th e mercury 
vapour inside them have the same excited states regardless of the shape 
of the bulb. 



An mis Inn ctrum is a bright spectrum 
s·een when photons are emiitted by atoms. 

An s ion r is a spectrum of 
dark lines seem on a1 coloured baokground 
produced when a gas absorbs photons. 

4 
3 

2 

n=1 

Figure 3.9 An ene rgy level d.iagram. 

Emission spectra 
An t..: tnissio11 s t1cctru1r1 is seen ,vhen electro1:1S in aton1S fall from higl1e1~ energy 
lev:els t,o lo-\~ler energy levels, releasing photons. ln a gas> mercury vapour for 
example, ,electrons can only occupy a sn1aU nun1ber of discrete energy levels. 
Vi/hen a gas is heated, electrons absorb energy and reach higher energy levels. 
Ho"'rever, electrons stay in these higher states ( or excited states) for a short 
·tin1e, before falling back to a lower energy level. 'When the electron falls to its 

lower state, it emits a photon ,,.rhose energy is equal to· the difference in energy 
bet,veen the two -e11efg;f levels. Since only a smaU number of possib] -energy 
le.'11 ls exist, there is only a small number of possible transitions between them. 
The photons that are emitted have specific ,energies, and therefore specific 
w-ai;elengths and colours. It is these spe.,ciftc colours 'that we see as lines when 
the light is diffracted through a diffnction grating. 

When you heat salts in a Bunse 1 flame 1 som times you see different 
colours. For example~ compounds with copper in. them emit green light, 
and sodium compounds a bright yellow Ught. These co]ours are determined 
by electrons faUing from one ene.rgy level to another\ ,emitting the parti.eular 
colou r of light specific to that element. 

Absorption spectra 

J ~ 

An ~ bsnrpt io n S{)Cctnu n can be seen when light shines through a gas) 
an d electrons in d1e atoms absorb photons corresponding to lhe possible 
energy transitions. All other pl1otons pass through, as they cannot be 
absorbed. The dark lines of the spectrum correspond to the ,vavelengths 
of the possible energy transitions for th e electrons of the gas atoins. The 
electrons beco1ne excited, moving from lower energy levels to higl1er 

lr Em,lsslon 

Absorption 

' i 

A scnemattc 

energy levels. ]n fact, the: electrons then faU hack to 
f their original energy state, releasing photons as they 
>. do so~ but the spectrum still appears to have black 
i lines as -chese p hotons are emitted in all directions. 
w 

r eprese ntat Ion o,f the 

Fraunl10~ r lines: ar1 absorption spectrum 
Joseph von Fraunhofer realised that the continu ous 
spectrum from the Sun "ras oveTlaid "'rith about. 570 
dark absorption lines, no,v knov.rn as Fraunhofer lines. orblta·1 energy levels 

Proc,esses v.,rithin the Sun create a ·continuous 
spect1i.un of radiation that passes througl1 cooler 

gases in the Sun~ o,uter l~yers. El-ectrons, which are bound to ,at,o,ms in the 
cooler gases~ absorb photons at specific freciuencies and then re-emit the 
photons in a.U direC'tions when returning to their gr,ound state. This is why 
we see a dark Hne surround d by the rest of the continuous spectnnn. The 
continuous spe,ctrum is caused by radiation emitted by free electr,ons. 

~ -···················································································································································· 
TEST YOURSELF 

1·0 A beam of sun li ght passes thro ugh the 
Sun·s at1mosphere. Exp la in why dark Unes are 
seen in the continuous spectrum from the 
sunlight [These li nes a re ca lle d Fra u n hofer 
U nes.) 

11 Describe the difference betw·een an emiss:ion 
spec trum and a n absorption spectrum. 

12 Exptain, whether an e:m1ssior1 spec trum is caused 
by atoms jin their ground state or by atoms jn 

exc 1ted states . 
................................................................................... ....................................................................................... 
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Use Fig ure 3. 10 to calcu late t he 
frequency of a photon released 
when an elect ron moves from 
energy level n ~ 6 to n ~ 2 in a 
hydrog·en atom. 

Answer 
Th e energy of the photon ris the 
difference in er,erg:y between level 
6 and level 2, which is - 0.38 eV -
[-3.41 eV) .. 3. 03 eV. 

To convert energy in electron 
voUs to energy in: jo,u les. multiply 
by the e lee t ro n c h a, rg e, e ~ 1. 6 x 

10-19 C. Thi,s g1ives an energy of 
4.85 X 1 o-1~ J. 
To find f, rearrange the equation 
E=hf 

f = _f_ 
h 
4. 8 5 X 11 0- l 9 J 

6. 63 X 10-34 JS 
= 7.3 x 1014 Hz 

The 1energy of spectral lines 
vVhen an electron moves to a lo\ver energy level, h ·etnits a pholon . The 
energy lost by the electron equals the energy of the photon. This energy is 
calculated as: 

E2 - E1 = hf 

vthere E1 and E2 are the energies of energy levels l and 2 (inJ), his the 
Planck constant (in J s) and f is the frequency of radiation (in Hz). 

Many spectral Une diagran1s show the ,energy in lectron v,ohs. One electron 
volt is 1.6 X 1 Q-lQ j. 

Figure 3.10 sho¥1S energy levels in a hydrogen aton,. 

• The grou11d state is labeUed as n = 1, and the first excited energy level is 
n = 2 and so on. 

• The ionisation energy is 13.6eV (m,oving the electron from its ground 
state up to n = oo). 

• The @rrro"v'.rs indicate: the ele,ctron moves to a lowe:r energy"' level , ,e1nitti ng 
photons. An emission spectrum would be seen. 

• The energy is always neg~tive as we define the zero point of energy is 
when the electron is at infinity. This energy gets lower as the electron 
gets closer to the nucleus. 

• The energy of the green line is the difference in energy bet\veen n = 4 and 
n = 2 , that is - 0 .BSeV - (- 3.41 e\')1 or 2.56eV: 

• 2.56 eV is equivalent to 4 .1 x 10-19 ]. 

n=CO • 
n::6_.....--+ 
n=5____.........-­
n = 4 -----------+ 

n = 3 -----• 

' , ' 
, , f 

Figure 3.10 Spectral tines in a hydro9en atom. 

, ,. 

...: O Oonisation) 
~-0.38eV 
+----....._ -0.54 eV 

-0.85eV 

-,'I(--- - 1.51 eV 

-3.4~ eV 

......... ---13.6eV 

w 

u:I ~ ·····················································································································································= 
i TEST YOURSELF ! 
+ I 
+ I 
+ I 

: Use Figure 3.10 to answer these questions. 16 Ca lcutate t he frequency of a photon emitted : 
! !II f when an electrons faUs from: • 
• 13 What is the [onisation energy of hydrogen in • i etec tr,o r, volts? a) energy level n ;;:i 5 to n '-' 2 f 
! 11. How would th e diagram be differeint if photons b) energy leve l n ... 6 ton - 5. ; 
i were absorbed, not emated? 17 Expla,in whi1ch of t hese photon energies can be i 
; 15 Wh~ch energy levels does an e'lectro,n move betwee:n absorbed by the e lectron: 10.1 eV; 0.16 eV. 1.20 eV ! 
i and 0.47 eV. : : if j,t em its a photon w ith each of these energ ies? : 

I 

• • : aJ 0. 31 eV b] 1. 9 eV c) 1.13 eV : . ' • ........................................................................................................................................................................ ~ 



C)--T-he __ fl_u_or_e_s_c_en_t_t_u_b_e ______________ _ 

Fh I res n is when a substance abs.orbs 
short wave~eng,th electromagnetic radiatfion 
and e1m1ts it ,as fonger waveteng,th radmatmon. 

A lu r 1, nt 11 ~s a type of light bulb 
that giVes, out light when its ~nner coating 
flu o,r,es,ces. 

Th .rml nic I i n happens when 
free electrons ar,e released fi-om a h,eated 
filament. 

l m is, a mocture of i,o,ns and electrons 
in a gas. 

If you are at school or college, the morn you ar,e in probably uses flluoresc,ent 
lights. Fl or ~sct:ncc in these lights occurs when electrons absorb pho'tons 
of ultraviolet radiation, and move to a higher energy level When the excited 
electrons fall back to the lo,;Ner energy level, energy is released as visible light. 

anod~ 

Figure J.11 The· m,ain components of a fluorescent tube. 

A lltu rc~t· nt tube is a glass tube (iUed \Vlth mercury vapour and coated 
inside with fluorescent materials called phosphors. When the light 
is s\vitched ,on, the cathode is heate.d causing ih r ntin n i Ln is iou. 
Thenni.onic emission occurs when a heated cathode releases free electrons 
fro1n its surface. The free electrons have a range of energies. A poteruial 
difference of SOOY\ applied across ends of the glass tubei accelerates the 
electrons from the cathodle to the anode dnuugh dte mercury vapour. If the 
free electrons collide with n1ercury atoms inelastically; so1ne energy may ·be 
transferred from the fI:ee electrons to the mercury atoms. These atoms n-iay 
be ionised or excited , provided the free electrons transfer en ough kinetic 
en.ergy. High-energy .electrons cause ionisation, and lower energy elechyons 
cause excita1ion. As the mercury atom s in the vapour become ionised (lose 
electrons)> a mixture of ions and free elect1yons is created~ this is called a 
pla:s1u a. Wlren the electrons in the excited t11ercury atoms retuni. lo their 
ground s tate, they release photons of ultraviolet radiation. These photons 
strike the phospors in the coating and are absorbed. The energy is 1ce-emhted 
as visible light~ and some ·energy is transferred as heat. 

~ -····················································································································································: 
: TEST YOURSELF 1,on1sed : 
: 10.44 : 
• • i 18 Descdbe the pu rpose of these pa r ts of a 8.85 i 
i ft u ores cent tube: electro d: e, me re u ry v a po u r, 8. 84 i 
I phospor coa tin g. I 
: 1,9 Exp la·i1n w hy a perso n1 viewin g a fluorescent bu lb ~:~~ ! 
I ii 

! t hough a drffracti on grati:ng observes spec ifk ! 
I I 

; peaks in t he spectrum. 6.70 i 
,, ,, 

I 20 Exp lain why the spec trum fro1m a fluorescent i 
i lamp and an incandescent bulb are dliifferent 5.46 ; I~ 

i 21 The di:a1gram, shows some allowed energy levels 
4

.
89 

: 

: for mercury. Use the diagram to cailculate: 4.67 I ' . ,, 
'' 

! aJ th e energy of photo ns emitted for each of the ! 
• • : three ·etectron tra nsi,ti ons from excit ed states : • • • • : to the gro und sta te : 
• • 
: bi the wave length of th e emitted photons. : . ' • • g roru nd state • • • • • • • • • • 

I o 1 P ,, 
0.00 eV 

Figure 3.12 Some allowed energ,y leve ls for mercury. 

• • • • • • • • • • : ...................................................................................................................................................................... lllllllllli 



tn 
-' 
I.LI 
> I.LI 
...J 
> 
C) 
Cl!:: 
I.LI 
z 
I.LI 
Q 
z 
<C 
Ul z 
C 
c::: 
1-
(J 
w 
-I w 

Practice questions 
1 Figure 3.13 sho\vs some energy levels~ in ,e\ ~ of an atom. 

Energy/eV level: 
-o., --------n:=4 
-3.1 n - s 

- 12.4 -------n - 2 

- 18.6 ------- n - 1' (ground state) 

Figure 3.13 

An emitted photo11t has an energy of 9.92 x 10-10J. Which transition v..~as 
responsible for this photon? 

An =- 4 ton""": l 

B n = 3 ton= 1 

C n = 2 to n. = 1 

D n = 3 ton = 2 

2 An atom emits light of wavelength 2.0 x 10-7 m .. What is 1he energy; inJ, 
of a photon ,vith this wavelengtl1? 

A 5.0 X 10-19 J 

B 9.9 x 10-19 J 

C 1.2 x 10-18 J 

D 9.9 x 10-18 J 

3 Figure 3.14 shovrs part of the ,energy level diagran1 for a hydr-ogen atom. 

n = 4 --------a.as ev 
n = 3 -1.SOeV 
n ~ 2 -3.40· ev 
n = 1 --------1.3.60eV 

Figure 3.14 

vVh.at is the ionisation energy of the atom in J? 

A 3.04 x 10-10 J 
B 4.08 x 10-19 J 

2.04 X }0-18 ] 

D 2 .18 x 10-18 J 
4 The electron in a hydrogen atom (as sl10-wn abov·e.) is excited to then== 4 

level. How many dliffe1-ent frequencies of pl1otons would this ·produce in 
the hydrogen emission spectru1:n? 

.A 3 

B4 

C 6 

D 7 



5 Read the foUomng statements. 

I The frequency and wav,elength of light are inversely proportional. 

2 i\s the ,energy of electromagnetic Tadiation increases, its frequency 
decr,eases. 

An ato,m can be excite.d by emitting light energy. 

4 An excited atom can return to .a lower energy level by emitting light 
,en rgy. 

\iVhich of the staten1ents are true? 

2 and 3 

B 1 and 4 

1 and 3, 

D 3 and 4 

6 A student is using LEDs in an lecironics project. The wavelength of 
the LEDs are given in the table. What is the energy of the lo·""est energy 
photon einitted by the LEDs in the project? 

Wavelength Ix 10-t m 

530 

,600 

680 

A 1.5 X 10-19 J 

B 2.2 x l0- 19 ] 

C 2.9 X 10-19 J 

D 3.7 X 10-19 J 

7 An electron is accelerated through a large potential difference and gains a 
kinetic energy of 36 ke V. What is this energy exp1essed in joules? 

A 2.88 x 10-16 J 

B 5.76 x 10-18 J 

C 2.88 x 10-15 J 

D 5.76 x 10-15 J 

8 A photon has an energy of i .14' ke\~ What is ihe frequency of the 
photon? 

A 5.86 x 1013 Hz 

B LOO x 1015 Hz 

C 1.06 x 1018 Hz 

·o 6.27 x 1033 Hz 

9 \Vhich of the follov.1ng graphs best describes how photon energy varies 
,vith the '\\i"av,elength of the photon? 

A E/9V B E/eV 

/ 
0-----

0 )Jnm 

C E/eV D E/eV 

0'-------
0 )./nm Nnm 

Figure 3 .. 15 
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10 Figure 3.16 represents the three lowest energy levels of an atom. 

Which of the diagran1S in Figure 3.17 b est represents the emission spectru1n 
that could arise from electron transitions bet\\1,een these energy levels? 

n !!!!I 3--------

n - 2-------­
n - 1--------

Energy 
A 

I 

DI I I 
1ncreas.1ng wave11ength1 

I I I I I 
11ncreas1ng waveiength 

Figure 3.16 Figure 3.17 

11 Figure 3.18 shovirs the lo'\.ve,5't four energy levels of a hydrogen atom. 

lon.l'sat lon 

-0.544 9V---------- n = E 
-D.85 ev n = 4 
-i _51 ev second excltGd state n = 9 

-3.4 ev first excited state n = 2 

-"13.6 eV 
ground state n = 1 

Figure 3.1 B Energy levels of a hydro geni atom. 

C 

D 

An eleotron in a hydrogen atom is excited f1~om the ground state to the n = 2 
energy lev,el. The atom the.n emits a photon \vh en the election retun1s to the 
ground state. 

a) Explain ,vhat n--iust bappen to the electron for it 'to move from 
lhe ground state to its excited state. (2) 

b) Calculate the frequency of the photon and state \vhich part of 
the electron1agnetic spectrun1 it belongs to. (3) 

II 12 A fluor·es·cent tube contains n1ercu.ry vapour at lo,v pressure. When 
the mercury atoms are ,excited then fall back to their ground state 
the ato·ms emit electromagnetic radiation. 

a)Vvha is meant by the ground state of an atom? (1) 

b)E,q,lain how mercury atoms can become excited in a 
fluorescent tube. (3) 

c) \\lhat is the purpose of th·e cathode in a fluoresc- nt tube? (2) 

d)Explain why only specific peaks in the spectrum are observed. (2) 

I I I ~ 
I ncre asln g wave I ength 

I I I 
lncreaslng1 wavelength 



13 Some of the ,energy levels of a tungsten atom are sho,vn in Figure 3. 19. 

0 ~~•n 
-1.8 ----------------3.0 _________ ..,_ _____ _ 

-1 1 .4 .......... _______ ..,_ _____ _ 

-69.6 ............................................................................................................................... ......... 
!Energy /keV 

Figure 3.19 S01me of the energy leveils of a tungsten atom. 

a) Calculate the wavelength of a photon emitted as an €lectron 
moves from the energy level -1 .8 keV to e11ergy lev,el -11 .4 keV. (J) 

b) Calculate the frequency of the photons required to ionise the 
tu ngs1en atoms. (3) 

c) State one transition v.rhich emits a photon o f a shoner w avelength 
than that emitted in the transition fron1 level n = 4 to level n = 3. (2) 

d) i) An electron collided with an ato1n, exciting the ato1n from 
the ground state to the level -ll .4keV. The initial kinetic 
energy of the incident electron is 3.2 x 1 o-15 J. Calculate its 
kinetic energy after the collision. (2) 

ii) Sho,v ,vhether the incident electron can ion ise the aton1 
from its ground state. (2) 

e) State the ionisation energy of tungsten in jou les. Give your 
answer to m1. approp1iate number of significant figures . (3) 

14 Photons of more than one frequency may be released when electrons 
in an a tom are excited above. then= 2 energy level 

a) Sketch a diagram sho\\ting the low,est thre,e energy levels in an 
atom to· explain ;,vhy photons of more than one fr.equency can 
be released. You do not need to inc]ude specific energy values. (3) 

b) Use your diagranl to explain how many different frequencies 
can be produced. (2) 

II 15 Fluorescent tubes are filled v..ith low-pressure mercury vapour. D·escribe 
the purpose of lhe main features of a fluorescent tube and use this to 
explain ho"Yt visible light is generated. 

The quality o( your \\'Titten comn1unication will 
be assessed in this question. (6) 
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II 16 Figure 3.20 shows the energy levels in a sodiu1n atom. The 
an·ows show son1e of the transitions that occur. 

a) What is ionisation energy of the scdiun1 atom? 

b) The most ,common transitions are 589.6nmand 
589nm, giving the strongest spectral lines. What 
colour do you expect a s,odiun1c discharge tube to be? 

c) Use the diagratn to determine the the \vavelength of 
light ,emitted for these transitions: 4s to 3p; 3 d to 3p ~ 
3p to 3s. 

d) Wh.ic h transitions gives rise to a spectral line of 
wav,elength 620mn? 

Stretch and challenge 

17 X-ray machines produce photons with wavelengths 
between 0. 0 l nm and l O nm by colliding electrons with 

energy/eV 

4d 4d 4f' 

-2.0 

-3.0 

- 4.0 

3s 
a tungsten n1eta] target. X-rays '\t\o'lth energies above 5 keV 
are Cc"ltegorised as hard x-rays. These x-rays pass ihrough 
most tis5ues. Soft x- rays usuaUy have energies in the range 

Figure 3.20 The energy tevels in a sodi um ;;i to m. 

lOOeV to SkeV, and are to taUy absorbed in the body. Mami-nograms 
are routine x-rays itnages used to detect tumours in the breast before 
sy1nptoms are observed. 

a) Explain whether hard x-rays or soft x-rays are n1ost useful 
for :rnedical diagnosis, giving t\!\,To reasons 

18 A successful mam.u:10gram use..s the lov;rest x-ray dose that c.-.1.n pass 
through tissues, while still producing clear contTast bet\.veen tumours 
and surrounding tissue. Low energy x-rays increase contrast but are less 
penetrating; higher energy x-rays reduce contrast but pass well through 
tissues. lvlany nIBun11ogran1s uses energies of about 24 ke\T 

a) Calculate the wavelength of a typical mamn1ogra.m x-ray 

b) Explain whether bone x-rays should have a higher or lo,ver 

vravelength than for mamn1ogra1ns. 



Particles of light 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : : 
: PRIOR KNOWLEDGE : . ~ • • 
: • Electromagnetic waves are tran sverse waves with a range of : . , 
: wavetengths. In order of in creasing frequency, mem,bers of the : . ~ 

: elec trom,a,g.n etic spectrum aire radio waves. microwaves4 infrared,, : 
i v1isi ble~ u ttravi10 let, X-rays. g1am ma rays . f 
: • Wh en atoms are i1onised, they lose or g1ain elect ron s. Etectrom,a,gnetic i . ~ 

: wa,ves can i:on ise atoms when an etectroin absorbs a photon. : . ' 
: Electromagnetic waves with a higher frequency and shor ter : : ~ i wavelength are more ionis,ing. i 
: • D,iffra ction occurs wh en, waves sprea d through a gap or around an : 
• • 
: obsta,cle. The wa,vefront is more curved wh en th e wavel,engt h is a,bout : . ~ 

i the same size as the gap, and diffract,ion is greatest. : 
• • i • Electrons are negat ive~y charged part ~c les .. The electron's m1a,s s is : . ' : about 2000 times !Less tha.n that of a r,roton o:r neutron . : 
+ • 

: • Electr ica l c u rrent is a How of charged parti,c les. : 
• • : • tn c lassfcal mechan ics. 1morment um is calculated using: ! 
• • 
: m oment um = m ass x velocity. : 
• • 
: • Ve loc i,ty 1s a vector. so t h e di rec ti,on of miotion must be spedf iecL : 
• • ! • Kinetic energy= ~ mass x veloc~ty2

• ! 
: • Ene rg.y is conse rved. It cannot be create d or dest royed. but m us t be : 
• • 
: accou nted for at all stages of a process. ; 
+ • 

: • 1 e lec tron vo lt= 1.6 x 1 o-19 J : 
+ • 

: • Th e ene rgy of a photon ~5 gi1ven by : E = hf, w here h ~5 Planck·s constant : 
• • 
: and f t he f requency of th e etect ramagnet fc radration. : 
• • + • 
• • + • • • : ........................................................................................................... ~· 
~ ............................................................... ............................ . ~ - . 

; TEST YOURSELF ON PRIOR KNOWLEDGE i 
• • • • 4 t 

: 1 Liist the members of the elect romagnet ic spectrum in order of : 

f i,ncreasing freq uericyi giv ing one use for each member. i 
i 2 Sketch the shape of wavefronts diffracbng through e gap when the gap ls: ! 
j al much !larger than the wavelength i 
: bl approximately equa l i.n size to one wavelength . : 
; . 
i 3 a, ] Compa,re th e k inetic energy a:nd momentu,m of a proton and an i 
: electron t ravetli n g at th e s a m.e vetoci ty. i 
j b) Co,m,pare th e k1ineti c energy of a proton and an elect ron w ith the i 
• • : sa,me mo·mentum. : 
• t 

i 4 Describe th e cha,nge in momentum of an a,tom when it bo·u nces off a I . ' 
: sur face and travels in the oppos ite directio1n at the sa me speed . : 
: : ! 5 Describe the energy transfers tha,t occur in a, torch circuit when tt ~s i 
! turned on. : 
• • • 
•• t+•••································································~········ ··•••41111111 .................... .... 

Have you ever \Vondered how photovoltaic (s,olar) cells work? Light­
sen sitive nialerial m photovoltaic cells absorbs photons fro1n sunlight. 
When electrons in th.e n1aterial absorb this ene1·gy; tl1e electrons are released 
and can generate electrical p ower. O the1~ devices, such as 1CD players and 
bar code scanners ~ \\:--ork in a similar way using light set1LSirive cells. 
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Charge coupled devices (CCD) are digital picture sensors that also use 
photodiodes. They are found in digital cameras, astronon1.ical telescopes 
and digital X-ray n1acl1.ines. A CCD device is a grid of thousands of 
photodiodes. Each photodiode absorbs photons fTom the light shining on 
it and emits electrons. 1V1ore electrons are released if bright,er light shines on 
the photodiode. The signals fron1 all the photodiodes combine to produce 
signals that change in real-tin1e. 

AH of these applicati,ons make use of quantum ,effects, ~"hich you "'---ill learn 
about in this chapter. 

0 The photo lectric effect 

teat fells 
Immediately 

Figure 4~1 Demonstrating the 
photoeilectric eff.ect of ultraviotet Ught on a 
negat1ivety charged g,old leaf electroscope,. 

no effect 

Figure 4.2 Demonstrati.ng the 
photoe Lectric effect of ultraviotet light on a 
pos.itiveily charged gold Leaf electroscope·. 

1brlgnt source 
~~~·Of White lllglht 

no effect 

Figure 4.3 Oem,onstraiting the 
photoelectriic effect-bright source ·Of 
w,h,ite light. 

A Ji1nt H of Ught is a smaU indivisU,te 
package of energy. This is the sm1altest unit 
of energy for a pairticula1r firequency of Ught. 
The total ene irgy emitted from a sou me of 
Ught is a multiple of this quantum1 o,f energy. 

The photoe]e,cuic effect was first observed in the 1880s. This w.as a highly 
significant disco·very because it caused scientists to think about light in a.n 
entirely new way. At that time light was thought to be .a w"ave) and vl,ave 
theory prov,ed to be suffici,ent to explain many propertie-S of hght) such a.s 
reflection, refraction and diffraction] \vhich you Vvill meel in Chapter 5. 

The photoelectric effect can be demonstrated using the apparatus shown in 
Figure 4 .1. A fre_shly cleaned sheet of zinc is placed on top of a negatively 
charged gold leaf electroscope. When a weak source of ultraviolet light is 
directed towards the zinc sheet) the electroscope discl1arges i1.n1n,ediately. 
However, ,vl1en the gold leaf electroscope is charged positively, as shown 
in Figt1re 4.2, the electroscope remains charged. This is evidence that the 
ultravio]et light knocks electrons out of the metal surlace. A zinc plate with 
a negative charge can release electrons but this is not possible ,vhen the 
plate is positively charged. Electr,ons which are emitted fro1n the surface of 
a n1etal are called photoelectrons. 

Figure 4 .3 sl1ows that a very bright ~rhite light shining on d1'e zinc sheet 
does not discharge the electToscope , nor does a very intense red laser. This 
1cesult surprised the physilcists of the 1880s. They e!A.Tected the electroscope 
to discharge when a strong light source v,ras incident on it. At that time, 
p hysicists we1-e familiar with the thermionic emission of electrons from 
a heated metal 'Wire. The electrons in such a Vlire gain enough energy for 
theni. to escape from the attractive forces of the atoms in th.e Vlire. This is a 
sinnlar process to evaporation. When wa'ter molecules have enough kinetic 
,energy, they are able to .escape from the body of the fluid. 

Using wave theory physicists had argued that shining a bright light on the zinc 
she et ,.~,..ould be rather like heating it. After a small delay, the light faUing on the 
zinc would heat it, and some electrons would be emitted from the surface. 

The problem ,vas that the b1ight white light did not discharge the electroscope, 
~rhile th weak ultraviolet light began to discharge the electroscop immediately. 

(Note: if you are condticting an experiment like this yours·elf this yourselfJ 
you 1Ai"iU need a 280 nm (UVC) lamp. Do not shine UV hght on skin or eyes.) 

An explanation with quantum theory 
In 1900 Max Planck suggested a solution that would solve the problem 
with his quantum theory. His idea was d1at hght and other types of 
electrotnagn.etic radiation are emined in indii.,isib]e small packets of energy) 
\Vhich he called quanta (a single packet of eu.ergy is called a tt ta nlu1n). 
You met this idea in C11.apter 3 1 a.ncl you will recall Ihat the quanta are also 



Threshold fr u n js the minimum 
frequency o·f Ught require'CI to cause th,e 
photoe~ectric enect. 

I nt n it js rate of energy transfer per 
unit area. 

A ph,i o ctr n ~s an electr,on em ltted 
dur~ng the photoetectrtc effect. 

kno\\'n as photons. Planck argued that the energy of a. quantuu1 of light is 
proportional to its :frequency; and is given by the equation: 

E=hf 

,vhere E is the energy of the photon in joules, f is the fre,quency of the light 
in Hz, and h is the Plan ck constant, which has a value of 6. 6 x 10-34 J s. 

This theory provides a solution to the problem of the electroscope. For 
the electron to be rem,oved froin the surface of the metal. it tnust absorb 
a cenain ttlinimun1 amount of energy. Planck suggested that when light 
falls on to the surface of the metal, one phot,on interacts \Vith one. eleclron, 
and that the photons energy is absorbed by the electr,on. The ultraviolet 
photons hav·e enough energy to knock an electron out of the metal; so~ as 
soon as the ultraviolet photons hit the zinc sheet in Figur,e 4.1, electr·ons 
are rem,oved from the metal and the electroscope ilnmediately begins to 
discharge. However, the photons of visible light have a lower frequency 
and, when they .are absorbed by an electron, the e]ectron doe-Snot have 
sufficient energy to escap e from. the metal surface, so the electroscope does 
not discharge~ as sho1Arn in Figure 4.3. 

Further photoelectric experiments 
The previous section described a simple demons'tration of the photoelectric 
effect using u ltraviolet light and an electroscope. There are many n1ore 
experin1ents that can be done using different metals and a wide range of 

frequencies of incident light. It is also possible to measure the kinetic ene1-gies 
of the pl1otoelectrons after they have been emitted from the surface of the 

metal Here is a summary of these e.1t...rperimental observations. 

• N o photoelect rons are emitted if the frequency of light is belo,v a certain 
value. This is called the th re -hold frcqu..:n cy 

• The threshold frequency varies for dillerent 1naterials. Visible light 
Iemoves photoelectrons fTon1 alkali metals~ and calcium and barium. 
Other n1etals require uln--aviolet radiation ) 1,.vhich has a higher frequency 
than visible light. 

• More ph otoelectrons aTe ,e1nitted as the intcn ily of light increases, but 

only il the fre·quency of the light used is above "£he thresh old value. 
• Pholt""l .. l ~c tn.Jn , emitted from a particula·r metal, have a range of energies. 

Their n1axin11un1 kinetic energy depends on the frequency of the incident 
light so long as the {reciuency of this light is above the l11reshold frequency. 

••••••••••t•••••••t•••+•ftt•••••• ••••••t•••••••t••················ ff tt••························•t••·······································•t••••••••• 
TEST YOURSELF I 

: : • • ! 1 a] Describe the ma in feat 1u1res of the photoelec tric 3 Ex plaitn w hy th is statem ent is i,ncorrect: ·rhe ! 
: effe et. p h otoelect r1i c effect is on ly seen using u ttrav iotet : 
I b] State two exp er iments l observations of the light.' I 
i p h otoelect r i c effec t th a.t were evid ence that tight 4 The tn reshold freq u,en cy of copper is 1. 1 >< 1015 Hz. ! 
: does not behave as a wave. Oescri be what :js observed ff a sneet of copper, i 
• • ! 2 A 2.5 m,W laser po in ter is powered by one L5V celll wh ich is placed on th e top of a negativety charged i 
i deUve.ring a curre nt of 6.0 mA. elec troscope~ is ·exposed to li.ght of frequency! i 
J a] Ca.lculate the eff iciency of the laser po.inter. al 1. tJ x 1:015 Hz i 
i bJ If the wavelength of li g,ht produced is 532 nm,, b] 1.2 x 1015 Hz f 
• • 
: ca lculate th e nu m,ber of photons re leased per 5 a ] Why was the photoelectri'c effec t s ign ifican t : 
• • 
: second. when it wa s fi.rst observed? ~ : . -v . 
• • , ......................................................................................................................................................................... . 
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i·····~······························································································································································ ··i . ~ . . l . : b The photoetectric effect ,j5 only seen with z~nc 6 Explain whether a photon of u Ltraviolet radiation : 
• • 
: using ultraviotet tightt but can be seen when carries more or Less energy than a photon of : 
• • 
: vi1sible Ught shines on sodiu im . Compare the ga·mma ra,dration . : 
• • 
: energy needed to release photoelectrons from 7 A las er pen emits red Ught of frequency 4.3 x 1014 Hz. i : . 
: th e c.Hfferent meta ls. ln1 terms of photonsl explain the chan ges if: : 
• • 
i c] 'Explain how th e kin etic en ergy of a) a laser pen emitting more intense ligiht i·s used : . : ! photoe:lectron s relea,sed from sodiu,m changes b) a la ser pen emitting green Ught [frequency 5.5 x ; 

! when u ltravtolet light is used ~n stea d of visible l014 Hz] with the same fntens~ty is used. : 
i Ught. B Give two examples of quanti1t1ies that a re qu,a ntised. I 
• • • ................................................................. ...................................................................................................... lllllii 

n r is the mln~mum 
amount of ~nQrgy 1r,equired to caus,e the 
photo~ lectric: effect 

n I I · I is a mode t to he~ us 
understa1nd why ,electro,n·s require energy to· 
remove them fr,o,m1 a metall. An electron has 
its least potential energy in the potentiat welt. 

high energy violet photon 

potential well 

electron leaves metal 

work function 

1 
electron 
kinetic energy 

----------

quantum energy 
- ----

Figure t..4 An elec tron ca n Leave a 
potentj; l energy well if it absorbs 
enough energy by absorbi,ng a photon. 

A model to explain the p1hotoelectric effect 
• To, CA'"p lain h r ·s h 1 d n · 1 , · ; we can describe el,ec t r,o,ns in a metal 

as being trapped in a pu tcn ti I,\· ·11. This type of well is a \vcU of 
electrostatic attraction . The 'depth1 of the well represents the least 
am ount of energy an electron requires to escape from the m etal. For 
photoelectro,ng; this amount is the tl r ·sh ,1] l c 11L"r ·· • It is a bh like a 
person trying to jump out of a hole. The person can only jump out if 
they make one jump diat is high enougl1.. They cannot escape from the 
hole by making several small jumps. In the sa1ne ,vay, an electron also 
n eeds en ou gh e11ergy to escap e from ihe 1netal, V,lhic.h is gained when 
the electron absorbs a ph oton . lf the eneTgy fro1n the photon m atches or 
exceeds d ie thresh old energy then the electron escapes from the p otential 
v;.rell and is released as a photoelectron . 

• The energy needed to escape from lhe poten tial \i\r,ell is differen t for 
different m etals, so the thTeshold en e1~gy varies fo r d1e.se metals. For 
example, in -alkali m etals the potential well is sn1all) so the th1~esh old 
energy is sm all and photoelectron s are released using visible ligh t. The 
p oten tial vvell also varie.s 'Withil:'1 th e n1etaL Electrons at che surface 
require less energy to escap e compared to electrons deeper within the 
n1etal ) ,vhiclt m ay be bound m ore stro ngly to atonlS. The thresh old 
energy is the minimum en,ergy required to remove an electron from 
the metal. 

• Plancks formula for the energy of a p hoton, E = hf, explains the 
thresho,ldl frequency. Below the thresh.,old frequency~ photons do not 
carry eno,ugh ,enel'gy to· release a photoelectron so· the photoelectric 
·effect is not observed. Electrons cannot be r,eleased by abs.orbing 
t\vo photons, jusl as the person cannot es,cape from a hole with two 
smaller jumps . Each photon must carry at least the d1reshold energy 
in O·rder to release an electron . 

• A:s light intensity increases, the number of photons increases but th 
energy per pho,ton stays the same. Becau se th ere are more photons, 
more electr,ons can be released, so long as the frequency of the 
radiation is above the threshold fre,quency: 

• The photons energy does work to release the photoelectron and give it 
kinetic energy: The maximum kinetic energy of a photoelec1tron is the 
difference between the photon~ energy and the threshold energy. This 
is ~~hy the ~ximum kineti c energy of photoelectrons in.creases v.tith 
frequency. 



~ -···················································································································································: 
: TEST YOURSELF ! 
• • • • 
~ . 
i 9 Describe how threshold energy can b·e expla,n ed 11 The threshold ene rgy for sod:i1um1 ts 2.29 eV an d for : 
• • i us·in g th e potentriat welt m ode l for a metal. sel·eniu.m is 5J 1' eV. Calcula te the threshold ener gy i 
i 1D Use Tab le 4.1 to ca lcutate tne ener·gy carried by a, of each metal h, j:oules. i 
• • 
: photon of each colour ·Of light in j,oules and in eV. 12 Expla,fn w hy the maxim,um krn,etk: energy : 
i Table 4.1 Freq1ue nci,es and! wave le ng.ths for photo ns of of photoelec trons 1 s n at prop ort ion ail to the i 
i different co lou rs. frequency of ra,diati,on. i 
• • • • • • 
• I 
• I 
I I 
• ii 

YeUow 5.187 578 • • i ! 

i I Gree·n 5.490 546 

I !!' Blue .6.879 436 
I ' I I Vj.olet 7.409' 405 I I 
I I 
R I 
~ ~ 

Ultraviolet 8.203 365 • • 
I I 
: .... ..................................... ............ .......................................................................... ......... ~ .................................... lllllllllli 

'or un t lon is th,e least energy needed 
to release a photoelectron from a material 
This equals the threshold ,energy. 

700 nm 
1.11 ev 

Einstein's photoelectric equation 
Energy· fro1n a photon is used to release a photoelectron and give the 
photoe.lectron kinetic energy. 1Conservation of energy means that energy 
&·om the photon equals the threshold energy plus kinetic energy of the 
photo electron. 

The '\vorI~ functio of a n1aterial is the least en.ergy needed to release a 
photoelectron from a material. The v.1ork function has the symbol q>. 

Applying the conservation of energy when ener~ hi is transferred from tlte 
photon to a photoelectron: 

hf =- J.. + lmv 2 
~ 't' 2 max 

where h is Plancks constant 

J is the frequency of tl1e radiation iil hertz 

<P i5 the work function of a ni.aterial in joules 

-1 mvm.ax 2 is the ma,dmun1 kinetic energy of photoelectrons, Mth niass m and 

maxin1urn velocity v mroc· 

This equation is called Einste.ins photoelecttic equation. Electrons en1iued 
from the materials surfac,e have the maxilnum kinetic en rgy because energy 
is not used inoving to the surface. Electrons from deeper in the material have 
less kinetic energy as some energy is used moving to the surface. 

SOO nm 
2.so ev 

KE ax • 0.81 eV 
max veloc1Ty - 5.3 x 105 ms-1 

l<Em(!;( • 0.21 eV 
max velocity - 2.7 x 10s ms- 1 

/ 400 nm 

; ~' 
~ , no 

electrons 

,/ 3.1~ev / !3 

., ; 

~~-·~-----~- ::.---~ ' - --------- . -------

Potassium 

Figure 4.5 Potasslum·svvork function is 2.29eV. Surplus energy tabove th e work fun ction) becomes the kinetic 
energy of emitted electrons. 
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En ergy Uoules) = energy [·eVJ x charge r[C) 
For a photon: 
• E = hf1 or 
• E- hc/"A 
A photon of energy 1' eV has a. frequency of a,bout 2 x 1014 Hz and a 
wavelen,gth of about 1:0-6 ,m. 

Catculate the m,in,imum frequency of radiat ion that 
causes th e photoelectric effect for aluminium. The 
work fun ction for a,lu min1iu1m i!s 4.08 electron vo lts . 

Calculate th e energy of a photoin if its wavelength is 
240 nm: 

he E ... hf.:A -
IC a le u late the max i1mu m ki,neti,c energy Ii n etectro n 
vottsl of a photoelectron ~flight of wavelength ;;; 

i 
6, 6 3 X 1 0-34 j S X 3 )( 1 08 m 5- l 

240 X 10-9 m 240 nm, shines on the surface. 

Answer 
-=; s.2a >< 10- 19 J 

Convert th1s energy in electron voHs to joules: 
Convert joules to etectronvo lts: 

E= 8.28x 10-19j = 5.118eV 
4.08eV x 1.6 x 10-1 9 C = 6.53 x 10-1 9 JI 1.6 x 10-19 J/eV 

Use E = hf to ca lculate the frequen cy that matches 
th 1is energy~ 

U 5,j n g Ef nstei n · s p h otoelect rf c eq uati:on, KEmax = E - cp 
Subtract the work function from energy carried by the 
photon to find K'Emax r = E = 6. 53 x 10-19 J 

h 6 .63 X 1 o-34 JS 

r = 9 .a x 1014 Hz 

A mk n ••et is a matertal with 
,conducttiv Ety betw,een a metal and an 
insiu tato r. 

KEmax = 5.18 eV - 4.08 eV 

= 1.10 eV 

Ush1g tli.e work function 
vVhen a material's ·\vork function is less than 3.1 eV, visib]e light can release 
electrons. For exan1ple) the ,vork function for calciun1 is 2 .87 e~ potassium 
is 2.29eV, and caesiun1 is l.95ev: 

vVhen a materiars work [unction is less than 1. 77 e V, infrared light can 
r,ele-ase eJ.ectrons. S --1nic :H1du clors are materials that h ave been treated so 

they have a low wo,rk function and respond to visible Ught and infr:ared 
radiation. Sen1iconductors are found in many appHcations, for example in 
CCD devices in digital can1eras, and in photovoltaic cells. 

~ ~ -····················································································································································= 
: TEST YOURSELF : 
: ; 
: : I 13 Using yo,ur answers to questions 10 and 1, l : 15 Th e work fun cbon of s.ilver is 4.26 ev~ : 
: aJ For eac h of the meta'ls~ sod,ium and se teni1um, a) Calcu late the threshold freq uenicy for si,lver. ! 
• I 

: exp la1n whi ch co lours of Ught r·elease b] Ultraviolet light of frequency 1.50 x 101s Hz i 
• I 

: photoelectrons correspond ing to the thresho ld shines on a sHver surfa ce. Expla1iin whether : 
• • ! energy for each metal. photoelectrons are emitted from, thrs m,eta l's i 
f b) IFor eech coilour of Ug1lht, catculaite the maxrmum, surface. ; 
i lk1inet:i c energy f n eV of ph otoe lectro n s . Ref er to c] Cale u la,te the max rm um kineti c energy of the ! 
i th e ta,ble in ques ti on, 10, p. 61. ph otoelectrons . [Hlf nt: calcu late th e energy ~ 
: 1.t. Vi s ible light r e[ea:;es e lectro n 5 from th e from incident photons Hrst] : 
: : 
: s urfa ce of caes~ um but not fro1m iron. 16 The work fun ct1ion of ca lci um 1is 2.87eV. : • • • • 
: U ltrav 'io let Li ght re lease.s e~ectrons from a] Calculate the thres hold waveilength of Ught : 
• • 
: both m,eta ls. Exp la in which metat has the larger tha t matches the work fun c tion of cailc~um. : 
i work fun ction . 9 i 
• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 



•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••• •••••••••••••••••••••••••••••••• • • • 
~ ~ b] Light of wave le ngth 700 nm fa,lls on th e cl Light of wavelength 400 nm now shines on the ~ 
• • 
: surface of a piece of calcium. EJ~scuss surface of the catci um. Calculate the maximum, : 
• • 
: w heth er electrons are emitted from the kinetic. e nergy of electron5 em itted from the : 
• t 

: surface. surface. : • • • • 
: ........ .... . .......... . ......................... .... . .......... . .. . .......... . .... .. ......... . .. . .......... . .... . ...... .. . . . .. . ........ ...... ......................... lllllllllii. 

llght negatively 
charged plate 

poslUveily svacuated tuba 
charg c;d p ia t9 

Figure 4.6 Photoetectric ceLL. 

p E 

Stopping po1 tential 
Figure 4.6 shows a photoele,ctric cell. When light strikes the meta] surface 
,on the left photoelectrons are emitted for so,me wavelengths of light. The 
photoelectrons hat are emitted can be detected by a sensitive ammeter 
Vi.rhen they reach the electrode on the right of the tube. 

By making the potential of the right-hand electrode negative 'With respect to 
the lefr-hancl electrode~ the photoelectrons can be tume.d back~ so that they do 
not reach the right-hand electrode. At this point, the current is zero1 and v,le 
say that 'Are have appHed a stopping potential to the electrons. The stopping 
potential gives a nleasure of the electrons' kin.etic energy, beca·use the "vork 
done by the electric field, e V, is equal to tlie p bo,toelectrons kinetic energy. 

So the electrons kinetic energy may be calculated from the equadon: 

~ mv2 = eV stDp 

Use Figure 4.7 to answer t hese questions~ 1:JI Ca lculate the work fun ction for t hi s material. 

8 
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~r ,- + ~tl-
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0 1 2 3 4 
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Figure 4.7 Graph to show how stopping 
potenti,al varies W1ith fre·quency. 

c Ca lculate the maximum kinet ic energy of 
photoetect rons w hen the incident rad iatron 1s of 
freq u e n cy 2. 5 ;x 1: 01, 5 Hz. 

Answer 
a Higher frequency photons tran sfer more energy to 

each pha toe lectro n. Th e s urplus energy above t he 
wo rk function is changed to kinetic energy of th e 
ph otoe lectro n 

b The work funct ion equ·als hf when the line intercepts 
t he x-axi1s. hfi = 6.63 x 10-31. J s-1 x 1 x 1015 Hz 

~ 6. 63 X 1 Q·19 J 
Usin gi the graph 1 the stoppin g potential is 6V when the 
incidenit radiation is of frequency 2.5 x 1015 H'z. Using 

<- Expla:in why the stopping potential changes with 
frequency. 

KE ~ -eVt givesKE ~ex6V~6eVor96x 1,0~1:9J , mu s~ m~ · 

C)--L~e_t_r_o_n_d_if_fr_a_ct-io-n~~~~~~~~ 
Since waves behave as pa.rti,cles, scientists wondered if pa.nicles could 
behave as ,vaves. Diffraction can be seen ,,\then waves spread round ,an 
obstacle or through a gap and is a defining ·wave property. If scientists could 
,observe diffraction patterns using particles such as electrons, this would 
prove that particles also behave as "~aves. 

The wavel ngth of particles 
If particles behave as v.raves) they must have a wavelength. In 1923 1 Louis 
de Broglie suggested how to calculate the \Vavelengt.h of particles using the 
particles momentum. The mon1.entum of a photon, 

p= me. 
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The Ii · H I n th f,o,ir a paructe is 
the ii>tanck constant divided by a p,airt,de1s 
morm,en tum: ~t rep,res,ents the wav,elength o,f 
a moving pairtide, or l = f. 

Diffraction rings 

Substituting p = me in the equation E: mc2 gives 

E E = pc or p = -c 

Since E = hf then 

- tiJ h p=c=x 
De Broglie proposed that this relationship ·~rould hold f,o,r an electron, or any 
particle. He ca1culat d that the cl nl;li~ \V. l ·r gth of electro,ns trarv,elling 
about O. l 'tO l % of the spe,ed ,of light is similar to the wavelength of X-rays. 

Diffraict ion using crystals 
Diffraction is greatest whe.n the " ~avel tigth of the wav is roughly equal lo the 
size of the gap it passes through. The wavelength of X-rays is of the same order 
,of magnitude as the spacing between i,ons in many crystals. Diffraction images 
were first produced using X-rays travelling through crystals in 1912. Sinc,e the 
wavelength ,of ,electrons is similar to the wavelength of X-rays; the same crystals 
should diffra,ct X-rays and electrons. In 1927; electron diffraction ·\ws se,en 
in experiments by Davisson and Germer, then repeated in other laboratories 
around. the ""~orld. 

Figure 1..8 X-ray diffra cHon. Figure 4.9 Etectron d1iffraction. 

In the diffraction r ings exper~ment. a beam of 
e lectrons is fired from an e lectron gun. Th e electrons 
pass through a thin graphite screen 1iin Wh'ich the 
car bon atom s are arrang:ed tn a latti ce~ aicting as a 
di,ffraiction, grating. As the electrons pass through the 
lattice. they d'i ffract and interfere. ,Many i ndiiv~d ua l 
d~ffractf.on1 pa,tterns are produced~ which comb in e to 
form a si·ngle pattern of diffra,ct i,on, rings. A volta,ge 
across the electron gun accelerates the electrons. 

The screen glows w here the electrons str'ike i1t and the 
dtameter of the ring:s can be measured. When the r1ings 
are closer together, e lectro ns have deviated less fro m 
their or ,igina'L path so less diif f ract~o n has occurred. 

1 Exp larn why a diffraction pattern i.s produced. 
2 What does the d iffrection :pattern prove about the 

spacing in the graph ite lattke a n,d the wavelength 
of the e lee tro ns? 

3 Ca lcu late the kinetic energ1y of the electron when the 
ace eleratlng vo ltage is: 

. 

evacuated tube 
0,1n graphite 

target 

e le ctmns s hO'IIV 
parUcle prope rt le s 

d lffractJon 
'rings 

low 
accQ·1eratl ng voltage 

@) 
@ 

high, 
accelerating voltage 

Figure &.10 Diffraction r~ngs apparatus . 

a) 2000V 
b) 4000V 

4 Catcu late th e speed of th e elec tron fo r each 
voltag,e. 

5 Ca lcu late th e wavelength of th e electr on for 
ea eh vo ltage. 

6 Us e yo ur answer ta q·uestion .5 to e xplain why th ere 
is less diffraction. w hen the ac celera ti1ng volta g1e ,js 

higher. 

••a•••••••• aa!I •• ••• •• ••• ••• •• ••• •• ••• •• ••• ••• •• ••••• ••a••• ••••••• •••••• ••••••• ••a•• •••••• ••••••• •••••• ••••••••••••• ••••••• a••••••••••••••• aa••• aa!l .aa ••• •• aaa ••• •• ••• •• •- ••• •• aa"I •• ••• •• ••• ••• aa••• aa ••• ••• ••••• •• ••• aaw •• ••• •• ••• •• ••• ••• •• ••• •• ••• ••• •• ••• •• • 



Calculating the de Broglie wavelength 
The de Broglie wavelength is the wavelength of a tnoving particle. The 

'------------ wavelength is calculated as Planck's constant divided by the mon1E:ntun1 of 

Calcuta,te the wavelen:gth of an 
electron 1m1oving at 0.11 o/o of the 
speed of l~ght. The mass of th-e 
electron is 9 .1 x 1 0~31 kg. 

Answer 
h 

A mv 
6. 6 3 >< 1 Q-3A J s ------------19. 1 )( 11 rQ-31 kg X 3 >< 1 Q 5 m 5-, J 

- 2.4 x 1;0-9 m 
-"-------

.................................. .,. ......................... .. ........... .. ................................................................................ .,. .. .,l . 

par ic le d • li is the fd,ea that 
matter and radiation can be described best 
by somet~mes using a wave mod,el and 
sometimes us~ng a partide mod,el. 

'the p article u sing this equation : 
1 A=---1... mv 

~~here A is the de Broglie ~~avelength in 1netres 
ti is Planck~ constant 
m is the mass of the particle in kg~ vis the ·velocity of the particle in ms-1. 

This equation sho~·s that faster moving particles have a shorter Vv·avelength. 

This equation can also be ~lritten as: 
h A=p 

where p is the momentum of the particlej mass x velocity. 

Wave-particl - duali y 
\, ave- particlt duc. lity is d1e idea that particles such as electrons and 
electron1.a.gnetic radiation can behave as particles as well as waves. E]ectron 
diffraction proves that electrons do diffract. and interfere, just as waves do. 
The pl1otoelectric effect can only be explained using a particle 1nodel of 
electromagnetic radiation. It Vlas 110 longe1~ possible to use the same model 
to eJ...1)lain die behaviour of electrons in an electric field and the behaviour 
of electrons when they diffract. The idea of wave-particle duality and 
the quantum th eory were radically different to conventional thinking of 
'the thne. The quantum theory completely changed our understanding of 
physics and led us to a better understanding of the tnicroscopic world . 

~ -····················································································································································: : TEST YOURSELF ~ 
• • • 
: 17 A crysta l of rock salt diffracts X-rays but not 
+ i vis i'b le Ug ht. 
• : al State th e conditions for diffract ion. • • f b) X- rays have a1 wavelength of about 1 nm and 
: vis.ible light has a wavelength of about 400 nm 
• ; to 700 nim. Sugges t the approximate spaci ng. ~n 
i th e cry s ta l ta tti c e. 
"' ! 18 al Com pa re the de Brog Ue waveilenigth for a 
i neutron with the de Broglie wavelen gtn of an 
i elec tron m,ov ing at th e sa,me speed. 
: 
: b, Use your answer to [a] to s,uggest why neutrons 
I 

i do not p Ii od u c e d i1ff ra c ti on p a1 tt er n s from t h e 
... 
: same crystals that electron diffract1on pattern,s : 
• 
" • • 
!I • • • + 

a re ctea dy see n w ith, if the n eutrorns and 

electron s a re travelliing at the sa.me speed. 

• • : 
19 Ca lculate the de Brag, lie w.avelen g th of: : 

• 
al a 70 kg perso n running at 5 m s-1 ~ 

• 
bJ a proton travelling at 1 x 106 m s-1• The proton i 

mass is 1.67 x 10-27 kg i 
• 

t) Comiment on your answer to [al . ; 
d] Supp ose Pla,nck's constant sudden,ly became i 

,ooJ s. Expla in what wou,ld happen to a class of I 
students ais they left a classroom to go for lunch. ; 

Ii 

20 Exp la·in which of these are evidence for wave- : 
pa rtk le dua lity : I 

' 
a) th e diffractiion of neutrons! and the know ledge i 

that a neutron ca-r, have k~netic energy and i 
momentum : 

• 
bJ polarisation of X-rays ! 

• cJ dHfractio n of m1icrowaves. ! 
• 

: • • •••••••••• • •• •••••••••••••••• ••••••••••• • •• • ••••••• •••• ••••••••••••••••••••••••••• ••• ••••••••••••••••••••••••••••••••••••• • ••• •••• •••••••••• ~ .................... llllllllllii 
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Practice questions 
I Which. of the follorwing is not true about the photoelectr ic effect? 

A For most meta]s UV light is needed for the. pho'toelectric effect to· occur. 

B A bright light causes n1ore electrons to be emitted than a faint light provided 
the fre,quency is above the. threshold fr,equency. 

Higher frequency light emits electrons v,tith high,er kinettc energies. 

D A faint light contains very litde energy so it takes a fe,v minutes before 
electrons are emitted from the metal it is shining ,on. 

2 Monochromatic light of wavelength 4 .80 x 10-7 m is shone on to a metal surface. 
The work functi,on of the metal surface is 1.20 x 10-19 J. What is the maximum 
ki11elic energy~ in J \ of an electron emitted from the surface? 

A 2.94 x 10-19] 

B 4.14 x 10- 19 J 
C 5.34· x l0~19J 
D 6.25 X 1014J 

3 Electrons lravelling at a speed of 5.00 x !05ms-1 exhibit wave properties. What is 
the ,vavelength of these electrons? 

A 7.94 X 10-13 1-n 

B 2.42 x 10-12 1:n 

C 1.46 x 10-9 m 

D 6.85 x 106m 

+ Radiation from a n1.ercury lamp has an energy of 2 .845 eV. What is the wavelength 
of the radiation? 

A 355.0nm 

B 435.9nn1 

C 453.5nn1 

D 554.2nm 

5 Ultraviolet light shines on a metal surface and photoelectrons are released. The 
effect of doubling the intensity of the ultraviolet light while keeping the frequency 
constant is to release \\rhat? 

A T-wice. as tnany photoelectrons) and do-uble th eir Inaximum kinetic energy. 

B The sarn.e nuniber of photoelectrons with double the maximum kinetic energ-y. 

C T'Wice as n1any photoelectrons ,vi.th the sanl'e maxin1um kinetic euerg}! 

D The same nutnber of photoelectrons with the sa1ne maxi1num kinelic energy. 

6 Some 1 ctrons hav a de Broglie ,vavelength of 1.80 x 10-10m. At what spe·ed are 
they travelling? 

A 2.20 x 103ms-1 8.04 x 106 ms-3 

7 The vlork function of ca.esiu1n is 1.95 e.V. Electrons are produced by the 
photoele--ctric effect when a caesium plate is irradiated v.rith e]ec-tron1agnetic 
radiation of vlavelength 434nm. What is the kinetic energy of the emitted 
ph.otons? 

A 1.46 x 10-19 J 

B 2.35 x 10-lJJ J 

C 2.92 x 10-19 J 
D 4.16 X 10-10 J 



8 What is the i,vavelength of an electron that has been accelerated through a 
potential difference of 9. 0 kV? 

A 1.2 x 10-26m C S.2 x 10-21 m 

B 1. 7 x 10-22 m 

9 Monochromatic ultraviolet radiation lNi.th a photon energy of 3.2 x 10-19 J 
falls on the surface of a metal. Photoelectt·,ons ar, emitted from the metal 
Mth a maximum kinetic energy of 2 .1 x 10-19 J. 
What is the work function of the 1netal? 

A 0. 7 x 10-10 J 
B Ll X 0-101 

1.5 X 10-lO j 

D S.3 x 10-10 J 
10 A proton and an ele,ctron have the same velocity. The de Broglie \vavelength 

of ihe electron is 3. 2 x 10-8 1n. \:vhat is the de Eroglie ·wavelength of the 
prot,on? 

A l.7xI0-11 m C 6.4xl0...sm 

B 5.5 x I0-9 m 

11 When light shines on a clea11 copper surface~ photoelectrons ,vith a range 
of kinetic energies up to a maximum of 2.4 x 10-20) are released. The work 
function of copper is 4 .70eV. 

a) State ,vhat is meant by a photoelectron. (2) 

b) Explain why the kinetic energy of the pl1otoelectrons has a 
n1axitnum value. (1) 

c) 1Calculate the ,vavelength of the light. 1Give your ans,ve.r to an 
app,ropriate nun1ber of significant figures. (4) 

II 12 As a result of work on the photoelectric effect and electron diffraction, 
a n1odel of wave-particle duality i.vas suggested. 

a) State one effect that can only be explained if electrons have wrave 
properties. Details of apparatus used are not required. (l) 

b) TI1e theory of ,vave-particle duality n1odified existing idenis of the 
behaviour of particles and v;aves. EAl)lain~ with a relevant example1 

the stages inv,olved when an ,existing scientific theory can be 
modified or replaced with a new theory: The quality of your written 
communica.tion ,vin be assessed in this question. (6) 

1 When a clean m,etal surface in a vacuun1 is irradiated with u]traviolet 
radiation of a high frequency, electrons are emitted from the metal. 

a) Explain what is meant by the threshold frequency. (2) 

b) Explain ,vhy electrons may be emitte.d [rom the S'urface ,of one metal 
but not from the surfac.e of a different metal when light ,of the same 
frequency shines on each surface. (2) 

c) Explain "'That is meant by the term work functton
1 
and state its unit. (1) 
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14 Electrons can exhibit ,vave properties. 

a) Explain what is meant by wave-particle duality. (2) 

b) Calculate the de Broglie wavelengtl1t of electrons travelling at a speed 
of 3.2 x l a4n1.s""'J. The tnass of an electron is 9.11 x l(r31 'kg. (3) 

) The proton has a mass equal to 1836 times the mass of an electron. 
Calculat,e d1e speed of protons \vith the same d~ Br,ogHe '\\ravelength 
as the electrons in part (b). (2) 

1 Light energy of frequency 1.4 x 1015 Hz is incident on each square 
c,entimen·e of an .aluminium surface at a rate of 3.0 x 10-7 J s-1 . 

a) Calculate the energy of an incident photon. (2) 

b) Calculat,e the number o,f photons incident per second per square 
centim·etre of the aluminium surface. (2) 

161 Describe 1he main features ,of the photoelectric effeet and explain how 
these proirided evidence for the particle nature of light. The qu3li1y of 
your v;ritten communication \Vill be assessed in this question . (6) 

17 A freshly cleaned zinc plate has a ¥lark function. of 3.6 eV. 

a) i) Explain what is n1eant by the term work function. (2) 

ii) Ultraviolet light of wavelength 280 nm is now shone on to 
the metal surface. ShoVt.1 that photoelectron ;,vill be emitted 
from the zinc surface. (3) 

b) The zinc plate is now charged to a potential of +2 V relative to 
the surroundings. v\lh.at is the minimum wavelength of light 
,vl1ich ~ cause photoelectrons to be emitted n ow? (3) 

Stretch and challenge 
1 8 A teacher dernonstrates an experin1ent to sho,v electron diffraction (see 

Figure 4 .11). A m etal filam,ent is h ,eated , releasing electrons. A high voltage 
accelerates ,elect.tuns through a ,1acuum in an evacuated tube. As the electrons 
pass through the carbon disc~ the carbon lattice fotming the disc diffracts 
thetn. The diffraction rings seen on the phosphor layer are caused by different 
layers of atoms. 

a) Explait'l vlhy the electrons arre diffracted as they pass 
1hr.ough the carbon target. tl lament 

carbon 
d·ISC 

b) The electrons are accelerated through 5000V. Calculate: 6. 3 V ac --11.-r17"'..==~-i:-­
sup p!y 

i) their kinetic energy 

ii) tl1eir velocity 

to the 
rnament 

ov 
cathod 1e 

5000V 

phosphor 

d iffractilon 
rings 

electron 
beam ill) use your ans~let t,o, calculate the de 

B,roglie wavelength of the electrons. 

c) The potential differen,ce is halved. Predict how these 
quantities change: 

Figure .&.11 Us1ng a diffraction tub·e to di1ffract 
electrons. For safety. the 5000v current is 
Lim ited to 5 mA. 

i) kinetic ene·rgJl 

ii) momentum of electrons 

iii) de Broglie ,,ravelength. 



d) When the potential difference dec1~eases, the diametel" fa] 
of the 1ings increases. Suggest why. 

e) Suggest why a. magnet held near the screen changes 
the pat tern se,en . 

19 Youngs double slit ~'\.-periment was a fatn·ous experiment you mU 
learn about in more detaH in Chap ter 6. It demonstrated that 
waves passing through two very nan·ow slits interfere \Vith each l(b) 

other causing a pattern ·of alternating regions of darkiless and 
brightness call d fringes . These patterns can only be ·seen 
,vith waves. 

a) ,Compar the hnage.s in Figure 4.12 which sho\\r the 
pattern obtained by passing protons> electrons and 
very low intensity I ight , one photon at a time, through 
double slits. 

b) Suggest why the patterns look similar and how ynu 

could use this as evidence for wave- p article duality. 

c) Explain ""·hether the slit separation would be the same 
in all experiments. 

l(cl 

Figure 4.12 lmages showrng the 
patterns obta irn ed w hen a] electrons 
b] protons and cl single photons pass 
through double s Lits. 



Waves 
...................................................................... .......................................... 
• • • • ; PRIOR KNOWLEDGE ! 
~ . 
~ . 
: • Wave mot,ion transfers energy and information w itho ut t ransferring ; 
: matter. i • • • • 
: • Vibra·tions or osci tlations ~n transverse waves are perpendku lar : 
w • 

j to the direction of energy trans fer, for example electromaginetic j 
• • : waves . : . -: • Vi bra ti' ons or os c i Hat ,ions in long it u din a· l waves are i n th e same : 
• I 

: direcHon as the ·energy transfer; for example sound waves. : . ' i • Frequency 1[i 1n 1Hz)1 i1s the n,umber of cycles per second; wave leng,th f 
~ (in m~ ~s the distance between equiva lent points in successive cycles. : 
• • 
: Am pli tude i's t he max imum displace,ment from the equ,ilibr ium : 
• • 
: pos~tf on. : 
! • T he wave eq uation states that the speed of a wave [1in m.s-1J eq uals its i 
• • ! f req uency [in Hz]: m ultip lied by Jts wavetength On ml. : 
• • • • 
: V= fx'Ji. : 
• • 
~ . 
i • Refrac tion is the change of wave speed a nd direc tio n a t a boundary. : 
• • i • ReHection occurs w hen a wave bounces off a surface. The ang te of : 
• • 
: r eflect~on equals th e ang te of in c i,dence. : 
• • 
: • Tota l inte rnal r e flectio n occurs w he n all wave e n ergiy reflect s off the : 
~ . 
: insi1 de surface of a matedal. : 
• • ! • Diffra ction ~s th e spreadingi of waves a round an obstacte orth rough a gap. : 
• • • ~-····································································· ·············-4111111111111111111111111~ 

··· ··········································································~·············· . . 
TEST YOURSELF ON PRIOR KNOWLEDGE 

• • • • • • • • • • 
~ 1 Two tr ansverse waves travet on a .s li niky. Both w.aves have the .saime i 
: fr equency but one wave has dou ble the a m pli tude of the other : 
• • 
~ wave. Make a sketc h t o s h ow these waves, usi1 ng t he 5ame axes : ~ 
i th e y-ax i:s shows tn e transverse d~5place m ent of the waves, a nd i 
: the x-ax i,s t he d istance al ong th e s li nky. Label t he a·mp titude fo r : • • 
: ea,c h wave. : 
I • 

i 2 Sketch two waves w~th the same amp li'tude but one wave has ! : : 
: doub le t he frequency of the ot her wave. La bet the wave length for : 
: eaich waive. ! 
I M 

j 3 Wri,te down one s1mHarity and one diffe rence between reflect ion, a,nd ! 
: re fracbon . : 
• • i 4 a] Ca,lcutate the speed of a, sound wave : its wavelength is 2 m and its ! 
i frequency is 170 Hz; give your answer in 'ITT s-1• i 
: b] Sound waves from the saime so,urce nO\N travet in water at 1500 m s-1. : 
I I 

i The frequency does inot change. Calculate the new waveleng,th . i 
i 5 Draw a diagram to show how a mirror can be used to see around a ! 
• • 
I corner. lncilude the incident ray end the reflected ray, and label the : 
• • : ang le of i1ncidence and t he ang le of ref lectiion. : 
• • 
: 6 Wri te down two si,mi,lari t ies and one difference between tra nsverse : 
• • 
: waves and longHu diinal waves. : 
• • : ............................... .............................................................................. .... 



Figure 5~ 1 An endoscope,. 
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A 11r t. I 1 , is a wav,e that travels 
thr,ough a substaince ,or ,space,, tr.ansferr~ng 
energy. 

Figure 5.2 The energy spreads out from 
the ce ntre . 

ray 

Figure S.3 Water sprea di,n9 out from 
a r,ipple . 

• I ilill ••• 1111,f ••• t• 1114• il l io• ._,,. ii •••all' .... •• •tJi• ~-•Ii• ...... Iii, I•• •..i 111•• •• .... •• I '!II'"• •,ii" ... ~·· pa ii•• 

mpllt• d 1is the maximum displacem,ent 
from the undmstonbed positmon (for a wave). 

ThP djstaince lb~tween w:r,.,e: pe~ks ~s ttu~ 
1vl11t . 

Optical fibres transtnit infonnation using an electro1nagnetic \.\,ave, ,vhich 
lraviels down a fibre by means of repeated reflections off the surface of 
the fibre. This is called total internal reflection. Cable TV nen.vorks and 
com1nunications networks transn1it information through optical fibres by 
converting electrical signals to digital pulses ,of light or infrared. These travel 
through the fibre by total internal 1~nection. Endoscopes also use optical 
fibres to exatnine inside a patient vti1hout needing to operate. Optica] fibres 
inside a ligb1t cable transmit li0 ht into the patient· reflections are transmitted 
back through the fibre optic cable and sent to a display screen to show a 
real-tim image. 

What are progressive waves? 
Waves are caused by a vibrating source. A p at . r, • si · ,va ~l · is an oscillation 
or vibration that transfers energy and information. Only energy is transferred, 
although the substance is disturbed as the. ,vaves pass through. The particles 
,oscillate about lheir fixed positions but do, not move to a different place. As 
you hear your te~c·her speak, a sound wave travels through the air from your 
teacher to your ear. The air does not move from your teacher~ mouth to your 
ear, but the air oscillates ba.clcwTards and fonvards . 

·v.laves are represented in two different ways: 

• A wave front joins points on a wave diat are at the same point of the 
cycle as tl1eir neighbours. 

• For \Vaves caused by a stone dropped in water, the ripples ar,e wave 
fronts, and the rays radiate outwards from where the stone fell into 
the water. You can see wave: fronts spreading out from a point i.i1 

Figure 5.3 . 
• .A ray is an hnaginary line showing the direction the wave travels in. lt 

joins the position of the v.,Tave source to the ,vave fronts. 

How do particles move in waves? 
Mechanical vvaves on a string cause particles to vibrate perpenclicular to the 
direction energy is transfetTe.d. The · 1111 l i udc is the maximum displacement 
fron1 the particles undisturbed position and the larger the an-iplitude is> 
t11e m ore energy is transferred. The distance between ,vav,e peaks is the 
"va ·l ... n lh ; A. A is the di.stance bet,veen two equi,1alent points in successive 
cycles. 

dlstance/m 

~ I ~ 
~vave,length., l.. 

Figure 5.,4 Wave terminology. 



Fr uenc · is the number of cydes per 
second, measured in Hz. 

Hert,. is the unit of frequency1, equmvafent 
to, s-1• 

ri ,s the tijm,e for one comptete cyde, 
1measured 1n saconds. 

Be careful when you are using the 
wave equabon as c: can be used 
to represent wave speed but it 1is 
also often used to represent the 
speed of light, 3 :x 108 m s-1. 

Reme1mber to convert units to 
metres, seconds. hertz. m s-·1. 

The frcqu "nc-y of a ·wave., 1neasured in h rtz, is the nu1nber of cycles or 
vibrations per second. The time per cycle is the period of a wave and is 
measured in seconds. A wave ,vith a :frequency of lOHz has 10 cycles per 
second, each one taking 0.1 se,conds. Period and frequency are '.related using: 

T=! 
f 

where T = petiod in s 

J = frequency in Hz 

Since l Hz is a very lo·w frequency w-e also ni.easure hertz in kHz 
(103Hz)~ MHz (106Hz) and GHz (lO~Hz). 

2 
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Figure 5.5 The time period for one oscjllation ls 0.8 seconds, 

The wave equation 
Different waves travel at very different speeds, but in e-ach case the speed is 
calcu]ated the same ,vay using the equation: 

cl 
distance 

spee = .. . 
time 

For a ,vave, d1-e \Vavelength, A,, is the distance travelled in one cycle and the 
time to complete one cycle is the period, T. 

This nlleans that: 

d 
wavelength 

wave spee = . 
p e1iod 

The petiod is the time (in seconds) for one complete cycle, and frequency 

is the number of cycles per second. This gives frequency; f = ~. Substituting 
T 

for 2:.. in the equation above gives: 
T 

'w~ave speed= frequency (Hz) x wavelength (m) 

c (ms-1 ) = f (Hz) x A (n1.) 

This is known as the wave quation . 

A 1microweve oven operates at a frequ ency of 2450 M1 Hz and produces 
waves of wavelength 12.2 cm,. Use thi s inform,a.tion to calculate the 
speed of microwaves. 

Answer 
wave speed= freque.ncy !Hz) x waveleng th [ml 

= 2 45 0 x HJ 6 Hz '>< 0. 1 2 2 m 

= 2. 9 :x 108 m s- 1 



Part.des, along a w"Jve that move 1n pha 
move in th,e same direct~,011 with the 
same speed. The pairtides have the same 
d~splaGement fro,m thejr mean positiron. 
Part~des in phase arei separated by a wholl,e 
number, n, ,of wavelengths. n.:t 

Partklles along a w i!Ne that move 
u p are at different points in their 

,cyde at ,a pa rtic1u I ar Um,e. 

Part;des along a wa.,e that move in 
n b I move In o,ppos~te direct~onis at 

the saime sp~ed. The part•des harve opposite 
displacements fr,o,m their mean posi1tfo,n. 
Part1ides moving in a1ntipha1se a1r,e separat,ed 
by a di'stance of a whale number. n, of 
w;velen,gths plus an Qxtra ha1lf wavelength. 

) -

n..l.+-. 
2 
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P - iff r nt jS, rmeasuredl as a fractfon 
of the w~Ne cycle between two po,nt s a long 
a wave. separated by a distance x. 
w = 2iiX rad 

l 
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OnQ com p:tete ro tat~o n •nvolves tumi ng 
through 211: r ~ ~. S·O, 211: (or 6.28) radijans 
is iq u ivat~n t to 360°. 

Phase difference 
A ,vave repeats its cycle at regular time intervals. The phas .. of a ·wave 
describes the fraction of a cycle completed con1par,ed to the start of the 
cycle. Particles in parts of a \vave that are moving at the san1e speed in the 
same direction ar,e 1n pha ... . They are 0 111 :if pha ~c if they are at differen.t 
points in their cycle at a particular thne. Particles in parts of a vvave that 
move in opposite directions and at exactly the sa1ne spe,ed are moving in 
~,111 i Ill 1 - , or co1npletely ou t of phase. 

d I rectlon 01 wave trave ~ 

20 C K undisturbed posltilon 

E: f t of sllnky 

I 

g 10 B D~ It J 
Li i 

A !a ~ M 

t + t distance ij 
along j- - 1·0 F H N p 

"C ! l srln.ky 
/metres 

-20 
G 0 

Figure 5.6 The. displacement of ai sl:inky a long its length. The arrows on the ,graph 
s how the direction of mot ion af the s l 1ioky, the wave 1s travetlf ng f ro,m r ight to left. 

One ,vavelength is the shortest distance bet,veen two points that are 
moving in phase. Points that are a whole number of wavelengths apart 
move in phase; points that are lralf a \Vavelengd1 or 1.5 wavelengths or 
2.5 wavelengths> etc. move exactly out of phase (or in antiphase) \vitl1 
each other. 

Figure 5.6 shows a transverse wave travelling on a slinky. In this diagram~ 

• points E and Mare in phase as they n1ove in the same direction at the 
same speed and are at the same point in their cycle . These three points 
are out of phase with all other points 

• points E and I are moving in antiphase> because they are n1ovi11g in 
opposite directions with the same speed. 

Any pl1· • c d iJTc:r ·ncl can be measured as an angle in degrees or 
radians. The motion of many waves can b e described using a sine 
function. Since a sin,e function repeats itself over an angle of 360° or 
2,r radians, ,ve say the phase change of a \vave during one complete 
cycle is 360° or 2ir radians. You can read more ahout radian and degree 
measure in Chapter 15. 

Th: 1nath of pha dif~~r n · s 
One ·compl tc 1:otation of a circle involves turning through an angle of 360°. 
You can a.ls,o measur,e this angle in ra lia n~. One complete rotation involves 
turning thro,ugh 21r radians; so 21Cradians is equivalent to 360°. 

Tl1e motion ,of the ,va.ve in Figure 5.6 is sinusoidal \Vith .a tim-e period of T. 
When time t~ equals T1 one cycle has been completed 1 so 'the value of tl~e 
angle in the sine function must be 27[ radiaru;. This happens when. ,t = T for 

h A] 2m t e anEfe; - . 
T 



{a) In pnase 

(:b} out of phase 

(c) comptete~y out of phase 

Figure 5.7 

We can describe tl1e vertical displacement of the particles in the v,lave using 
an equation of the form: 

y =A sin t22 
Since f = f I this can also be Vlritten as 

y = A sin (27eft) 

\\rh,ere y is the vertical displacen1ent at a time t, A is the amplitude of the 
wave~ and f is the fr,equency of the oscillations. 

At a different point, the oscillations ~"ill be out ·Of phase. We des,cribe this 
phase difference a.s a fraction of the angle 2n. So points that are haH a 
wavelength apart have a phase difference of H (points Band F, fo·r example, 
in Figure 5.6), and points thr,ee-quarters of a wavelength apan have a phase 

difference ,of ~n- (points C and l] for example) in Figure 5.6). ln general tv.ro 

points separated by a distance x on a \vave have a phase difference .of: 

2nx 
ff>·:= 

;t 

where 4> is the phase difference; measured in. radians. 

We also talk about phase differences in terms of a fraction of a cycle. For 

example, a phase difference of! of a cycle is a phase difference of; 

radians1 and a phase difference of i a cycle is a difference of rr radians. 

PLE 
What 1is the phase difference between tvvo po ints alongi a wave separated 
by a distance of 3.51? 

Answer 

<P = 21lX 
A 

= 2H ~i~ 
= 7tc 

S.u1 t thf s phase difference ca n be reduce to ;r [or half a cycleL because a 
phase difference of 61r is the samie as a phase difference of 0. Points that 
are three wavelengths a pa rt, on a wave train, move ~n phase. 

Figure 5.7 show t\\10 \vaves travelling in the same direction. They are in 
phase when, at a.U places the particles in each wave mov,e up and down 
together at the same speed and in the s:ame direction, as in Figur:e 5. ?(a). 

The ,vaves are out o[ phase when the panicles at the same distance along 
the 1;vave train, do not move tog.ether in the same direction and wi.th the 
same spe·ed. This is shown in Figure 537(b). 

ln Figure 5.7(c) the particles in the each wave, at the same position on the 
~rave train, move exactly out of phase,, or in antiphase. Now the pa.nicles on 
each wave m,ove in the opposite direction but with the same speed. 



tenectlve surface 

Inc I dent wave .. 
~ 

Figure 5.8 When a wave reflects from 
a denser mater ial. there is a phase, 
eh; nge of 180°. 

Phase chat1ge on reflection 
When a wave is reflected off the surfac,e of a denser medium, it undergoes a 
phase cl1ange of 180°. This is illustrated in Figure 5.8 . 

····················~··············································~··············~~········ 
: TEST YOURSELF 
• -+ • : 1 A student uses a rope, fixed at one end , to demionstrat e t ransverse I wa,ves. A knot is ti ed at th e ·midp oi,nt of th e ro pe. One end of th e rope 
i i's fixed and th e stud-ent can1 move the other end of the rope. Describ e 
i how th e d,isptacement of th e knot changes dur ing one co mplete cycle! 
! sta r ting fro,m its equHibrium posaion . 
! 2 al A stud ent reads th at some ra:dio navigatiion syste,m,s use w aves 
~ ! off requency 1,5 kH z. Calculate the period of a radhl wave of thi s 
: freqru en,cy. 
• 
i b] A pulse of th ese radi,o waves is emitted for 0.03 s. How many 
• : com,plete waves are emitted during thi s time? .. 
: 3 A s ignal generator, atta ched to a l-oudspeaker~ gen erates a sound 
• 
: wave with a waveteng,tn of 3 m. The sound wave travets at 330 m s-1 
: • • .. .. 
• • • • • • • • • .. .. 

. . 
rn a 1r. 

a ] Catcutate the frequency of the sound wave. 

b] The toudspea ker fro ·m the si·gnal generator 1s now pilaced 
u nd erwa ter. The frequency of the sound wave does not change. 

• • • • ji 
i 
I 
• I • : 
I 
' I 
I 
I 

I 
' • • I 
I 

: 
j 
' • I • 
-• • : 
t • 
' • • • • • • • • • • ' • • • • • • • • • • • • • • • • • • • • • 

What is the wave:Length of t his sound wave underwater? The speed : 
of sound in water is 1500 m s-1. : • • • • • • • • • • • • • 

: 4 Calculate the smallest phase difference 1n degrees a11d rad,ians 
• • 
: a,) far two poi.nts a long a wave that are .1 of a cycle au t of phase 
; 4 
• • .. .. b] fo r tvvo points a long a wave that a re ~ of a cy cile out of p hase. : 
: 4 : • • • • i 6 Calculate the smallest distances . in terms of wavelength , between : 
• • : two points along a wave. which a,re: : .. . 
: a l m au t of p h a s e : 
• • • • i b ] : out of phase ! .. . • • 
~ cl 2

3
n: out of phase. ~ 

,i, • • • i 6 Some s tudents are using a slinky s pring ta create transverse waves. i 
i The a·mphtud e [maxlm1u m displacem ent~ of the t ran sver se wave at : 
• II • • .. 
i • • ,ii 

• • • 

! • 

pornt X on, a slinky is 3 cm1 wh en th e ti,me is O s . Th e per jod of th e wave i 
t eye.le i,s 4 s. i 

al State th e di sp lacement at the point X when the t i.me t = 1 s, 2 s~ ! 
I 

J 
3 sand 4 s. i 

b Calcu'late th e disp 'lacement at th e po,int at a tiim1e of 0.5 s. i 
ii 
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In l n i I iln L , pa1rt1ides vibrate 
para~tel to the direct~on that energy travels in. 

So,und waves 1 primary seismic ,va,1es and pulses moving along a slink-y 
spring are all examples of longitudinal waves. Le 11 i t udiual ayes are 
v,ave.s where the ,vave source vibrates parallel to the direction in which the 
wave travels 1 so particles in the medium a]so vibrate paraHe] to the direction 
of energy travel . 



In ran et •e v~ bratio,iris are at right 
angles to the direction that en,eirgy travels in. 

El ctr m n tic v r are trainsverse 
waves a~l of wh,ch travel at the speed 
3 x 1oBm·s-1' ln a vacuum. 

M h ni l ~e cannot travel throug.h 
a vacuum, but need a m1ed~um to traive! 
through. 

Electromagnetic waves and secondary seismic waves are exan1ples of 
transverse waves. Tran~;ycrsc '"'·ave - are creat,ed \\7hen the \vave source 
vibrates at right angles to the direction th e ,va.ve travels in, so vibrations 
in the medium are at right angles to the direction that energy travels in . 
El - LJ ~n1a~n -- Li ··· , ·s an? transverse vvave.s all of which travel at 'the 
speed 3 x l OS m s-1 in a vacuum. The ,electric field and tnagnetic fields of 
the electromagnetic wave vibrate at right angles to ,each other and t,o the 
direction of transmission. The \W.v,elength of an electromagnetic wave is the 
shortest distance between two points ·,vhere· the electric field (or magnetic 
field) is i.n phase. 

B 
electric fteld oscillation 
(horizonte.10 

distance 
magnetic field oscillation 

~ertical) 

Figure 5 .. 9 The energy i1n electromag:neth: waves i,s carried by oscillating 
electric and ,magnetic fie Lds. 

I\·1 .cbanicnl ~ ·ave~ need a medium to travel through and can travel as 
transverse or longitudinal Vlaves. Seis1rnic \Vaves~ sound waves and waves on 
a suing are exatnples of mechanical waves . 

~ ·········································································································································: 
~ ACTIVITY ~ ' ; ~ Slinky springs ~ 
! 

You can i,11ve·st 1igate llongi,tu,d1na.l a.nd transverse mechanical wave5 us,ing 
a sUnky sp ring. 

v,ibratlon at the end 

vibra tfon, at the and 

direction of wave motion 

,c JI 
oscillation 

of loop 

osci 11.ation 
of ioop 

direction of wave motion 

rarefaction 

~ Figure 5 .. 10 A s Li niky sp r1in,g_ = 
........ ,., .. .. ....... ., .. ........ .&. . .... .. .. ............. .. " ..... .. .... , ........................ ...... ....................... .. .... '""" "" .................. ,. ........... ................ .. .............. , .. . .. .... .. 1, 1,,E l,,1 ....... l,,EI, ............ .. ................. ~ .............. , ........... .. 1.#1..I.I .._._ .. . .................... .. 



A lo:ng it,udi1 nal wave shown on 
an oscilloscope looks simitar 
to a transverse wave although 
the :processes creating it are 
different. Com press ions and 
rairefactions ln the sound wave 
vibrate a m icrophone, wh ich 
genera,tes an eile,ctri ca l signa l. 
The sign ail on the osciltoscope 
shows the form of these 
compressions and rarefractions. 

1o-,Qm 

- X-rays -

More about longitudinal waves 
Sound! waves aTe longitudinal vi,raves produced by vibrations that n1ove 

back\vards and forwaitls along the line of v.rav,e progression. These 
vibrations produce regions of high and low pressure. The regions of high 
pressure are caUed com pressions and the regions of lower pressure are 
caUedl rarefactions. The vtavelength of a longitudinal \Vave is the distance 
betw,een successive corn pressions, or the distance betvr.reen successive 
rarefacti,o ns. 
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trace s1h0Wfl, on an os c 11,los cope 

Figure 5.11 This diagram shows the chaniig,es in air pressure at a microphone 
d ia phragha ,m. measured over a pe r,iod of tiim e. 

vVhen sound travels through a solid, energy is transferred through iI1ter­

molecular 01~ inter~atonlic bonds. S0u11.d travels quickly through solids 
because the bondls are siiEf and the atoms are close together. In gases the 
energy is transferred by molecules colliding, so the speed of the sound 
depends on the speed of the n1olecules. Sound waves travel fastest in solids 
(SlOOn1s-1 in aluminiun1), less quickly in liquids (1500 n1s-1 in ,vater) and 
even slower in gases (340ms-1 in air). Sound \.Vaves are n1e,chanical waves, 
so they cannot travel through a vacuutn. 

Electromagn,etic waves 
All electromagnetic waves a1-e sinlilar in that they aH travel at the speed 
,of light, and their energy is carried by oscillating electric and magnetic 
fields. However, the properties ,of ·the waves vary considerably 'With their 
wavelength s,o ""~,e no,i-1nally consider the spect1um as seven n1-ain groups 
sho'Wl1 in Figure 5.12. 

1<r8m 1m 10am 

~ 1.nrra-red radio waves 

- 1gamma rays --- ...- ultra-violet - mtorowaves ~ 

I ' 

Figure 5~ 12 The electromag,netk s pectrum. 



Effect of electron1agnetic radiation on living cells 
The effect of electromagnetic radiation on Hving cells depends on the 
intensity, duration of exposure and frequency of the radiation. Radio 
waves, n1.icrowaves and inf rared radiation do not cause ionisation, but 
may have a heating effect. Ionising radiation includes shorter ~~avelength 
electromagnetic radiation: ultraviolet r-adiation, X-rays or ganuna rays. 
If Hving cells absorb i,onising radiatio,n 1 DNA 1nolecules in the ceHs may 
be damaged, ~~hich can lead to mutations or cancer. (The ionising effect 
of short ,vavelength radiations can be understood by the particle natur,e 
,of waves· photons of ultraviolet light X-ravs and aamma rays have 

' ' J C 

sufficient energy to remove electrons from atoms. This is explained i.n 
Chapter 3.) 

• Radio waves have Httle effect on living ceHs. 
• In microwave ovens, water and fat molecules in food absorb microVi.~aves 

,effectively. The molecules are forc .. ed to ·vibrate) heating the food. 
Microwave ovens used in many homes and businesses produc,e the 
frequencies most strongly absorbed by water, 2450 MHz. 

• Molecules that absorb infrared radiation vibrate more\ incre-asin.g their 
internal ,energy. The heating effect is used for cooking and heating. 

• We can see because light-sensitive cells in the retina at die back of our 
eyes absorb visib,le hgb1. 

• Ultraviolet radiation absorbed by skin causes a tan as a molecule called 
n1elanin develops i.n these ceHs. Exposure to uhravii.olet radiation raises 
the risk of skin cancer but, if a person is tanned , ihe melanin absorbs 
some UV radiation, reducing the amount of lN reaching cells deeper 
in the tissues. Skin cells exposed to ultraviolet radiation also produce 
vitan1in D. 

• Gamma rays a11d X-rays have similar properties> bul gan1.n1.a rays 
con1e fron1 radioactive decay v,,rhile X-rays are created when electrons 
strike a metal target. X-rays are used for medical imaging as t.hey can 
penetrate soft tissues but are absorbed by dense cells such as bones . 
Higl1 doses of radiation kills cells> for exan1.ple from exposure to 
high-intens ity, h igh-energy radiation or exposure for a long duration. 
Gamma rays are used in radiotherapy and to st,erilise surgical 
instruments . 

1Cornm1unication uses of electromagnetic ra1diation 
Electromagnetic waves are used in many different situations to 
transmit information. Our radios, tel visions and phones all depend on 
electromagnetic \vaves carrying progran1-mes and messages. In deciding 
v.rhich wavelength to use for a particular form of communication, 
consideration must be giv-·en to how much a ·t~lave will be absorbed by 
the atmosphere or how 1nuch a wave VliU spread out due the ~ffects of 
diffraction. 

• Radio waves transn1it TV and radio programmes by superimposing 
information from the programme on to a carrie.r wave) changing 
(modulating) either hs amplitude or its frequency. The receiver is tuned 
to the frequency of the carrier wave and. convens the signal into sound 
and images. Radio telescopes are massive, land-based telescopes that 
receive radio signals fro1n bodies in space that can penetrate through 
the at1nosphere. 



Most of the 

Gamma rays! X-rays and uttrav10·1et 
llgnt 01ocf(ed by tne upper atmospne,e 
(,best abserveC11 ~rom space) 

V~SICls Ught 
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from Earth, 
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Ol·st.ortlon 
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Figure 5.13 Astronomical telQscopes can be b·ased on ~artn oriin £peice. 
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• Some microwave frequencies penetrate the a tmosphere and are used for 
satellite communication and in mobile phone networks. 1Ylicrowaves 
have a sho1ter wavelength than radio waves and diffract less> so 
transu1Litters and receivers need a straight line of sight. 

• Infrared and visible Tadiation can carry data in optical fibres. Remote 
con trols ofte1:1. use infrared radiation as it only travels a short distance 
. . 
tn air. 

• Gam1na rays~ X-rays and shorl-vvavelength ultraviolet radiation do not 
pe.netrate the atn1osphere) so space-based telescopes are needed 10 

investigate these Vlavelengths in the Universe. 

P,olarisatia n 
Figur,e 5.14 sho\-\'+s a simple ,vay to demonstrate polarisation 
using laboratory equipment. In the diagram you can see 
a radio aerial ti-ans111itting 30cm radio, v,laves, ,vhich are 
:received by another ae1ial placed a metre .awa.y. A high­
·fr-eque.ncy (1 1GHz) signal is applied to the transtnitting 
aerial, which causes electrons to vibrate up and d-0~. 
TI1erefore, the electromagnetic ,,~yes that are transmitted 
only have their electric fields osciUating venicaUy (and their 
magnetic fields oscillating horizontally) . When the fie]ds 

recetving aer·ia1 of an electromagnetic wave only oscillate in one dire.ction
1 

the ,,._~v,e is said to be a r o la r i~l d \ ·a ' l . In lhis case we 
say the wave is veni:cally polartscd. because th electric 
fi lds are confined to the vertical plane. (By convention 

coll, adlng a.s receiving aeriial 

Figure 5.14A sim.ple way to demonstrate potarisatio n. 
the direction ,of polarisation is defined as the direction of 

the electric field ,oscillation.) We can show d\e polarisation of the waves hy 
turning the receiving aerial: when the receivtng aerial is placedl vertically, as 
in the diagran1; radio waves are detected; because they cause electrons in 
1he venic.:-d aerial to oscillate up and do,vn; ,vhen the aerial is turned to a 
h orizontal dire,ction1 no signal is detected, because the electric [ield is in the 
wrong direction to n1ake the electrons n1ove along the ·aerial. 

• I l''I, ....... I'-•-.• It. lo.'I ... •. r• ..... ,.. a.•'I • ••• IO 'I •• ••••I• 1. t I.¥• I I 1111 ..... 4''1 f •'.I_, I I •• lo,'O ••• •• I. I' 

When the osciUatro,ns of the w;i.,HJ! are 
confmn,ed to one plane th,e wave is a 
I- ~ r· (.d "'Lal • for example. in an 
electromagnetrc wave the efectric field might 
be c:onfilned just to the vert,cal plane. Th,e_se 
waves are samdl t,o he vertical~ polarised. 



(a) 

(b) 

(c) 

Unpolarlsed 

PI an e-pol arl·s ed 
ve rtlca111y 

Pra.n '1!-pol arl,s '1d 
horlzontal~y 

Figure 5.15 Unpola rised and 
polari1sed: light. These Unes show 
the djrecHon of the osc il lating 
e Lectr[c fields. 
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llf a second polarising filt,er ~s held at right 
angles to the or1iginal filter, this is calted 

.. 1 1 the p oiarisers. 

Light is an exatnple of an electromagnetic wave that is usually 
unpolarised when it is transn1itted. Light ,vaves are produced when 
electrons osciUate in atoms producing electromagnetic waves of 
frequency about 5 x 1014 Hz. Since electrons in atoms can vibrate in 
any direction, the electric and magnetic fie lds of light osciUate in any 
direction - so such light is unpolarised. Figure 5.15 shows the electric 
fields of unpolarised and polarised light (the tnagnetic fields are omitted 
for clarity): in part (a) light is unpolarised because the electric field 
oscillating in any directio·n. ln part (b) th light is vertically pola1ised, 
and in part (c) the light is ho1izontally polarised. 

Figure 5.16 shows unpolarised micr,owaves incident on a metal 
grille. The electric fields of the waves have vertical and horizontal 
components. The horizontal electric field components of the \vaves 
ar absorbed by the v..ires ,of the grille because they caus·e electrons to 
oscillat·e along this direction. The vertical components of the electric 
field are not absorbed by the· grille, so the ,vaves that e1nerge from 
the grille are polarised \vhh. their electric field verti.od. Polarisation 
is a property of transverse. ~lave-s only. Longitudinal waves canu.ot be 
polarised as the particles in a longitudinal wave always oscillate alon.g 
the direction of energy lransfer. 

Figure 5.16 A po Lari se r. 

Polarisation effects 
Light is polarised ,vhen it passes through a polarising filter. The filter 
only allows through electric field oscilhnions in on e plane because tl1e 
fHter abs,o,rbs energy from oscillatio11s in all other planes. The metal 
grille sho·vln in Figure 5. l 6 is a good n1ode] for a polarising light 
filter, such as that shown i.n Figui-e 5 .17 a. Long lno lecules of quinine 
iodosulphate are Uned up and electrons in these molecules affect th,e 
light in the same way as the n1icrowaves are affected by th grille. 
Polarised light is less intense tha11 unpolarised light because ,only half 
the energy is transmitted. thr,ough the fiher. If a second p ,olarlsing filter 
is held at right angles 'to the original .filter, aU oscillalions are blocked 
and no light is transmitted. This is caUed c:n 5~ing the pohuisers. 



Horizontally mou nteo: ae rl a.1 

vertlcauy mounted aa r1,a1 

Figure 5.19 A h or izonta Lly m1ou nted 
e1 GH"~el l ;;ibso rbs horizo nta Lly po La rrs9d 
s ignals e,ffi ch;mtly. 

polarising filters - -------+-
polat~ed Ught 

"' a) 

po'larised ray 

po1anised 
reflected rray 

b) 

Figure 5.17 a) A polarising filter and b]i refle·cted Light is sometimes polarized. 

Llght reflecting from a Sllrface can be polarised by reflection. At some angles 
of incidence, the only ·reflected rays are rays vlhose electric fields oscillate in 
one direction. 

Figure 5.18 A scene wii"thout po.larf sing sung lasses [left! and with poilarisi1n9 
su nglasses lhg-hd. Pol~:ir,ised sunglasses do not transmit reflections from the water 
surface, ma,ki ng it easiQ r to see 1into th,e wa,terr. 

Polarisatio11 app llcations 
Po,larisi.ng sunglasses include lenses with polarising filters that are orientated 
so ·that they reduce the glare of reflected light. Vlhen light has been reflected 
it is partially polarised. The filters are odentated so that they cut out light 
reflecting from horizontal surfaces 1 such as water and sno,v. This reduces 
eyestrain for skiers and n1akes it much safer for drivers. Using polarising 
filters to reduce the glare of reflected light also makes it far easier to se·e 
into water. 

Outdoor televisi,on and FM radio aerials must be correctly aligned for 
the best reception. Transmitters generate plane-polarised electro1nagnetic 
"'~1,ves, v.~11.ich are picked 1.1p mo-st effe,ctively by a receiver with the same 
alignment . It is possible to reduce interference between nearby transmitters 
if one of the t,vo transmitters is aligned venically; and lhe other is .aligned 
ho rizontaHy as shown in Figure 5 .19. 
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: TEST YOURSELF 
• • • 
: 7 
• • 
"' • • • • • • .. .. 

a] Describe how you could use a 
sl1inky spring to de.monstrate the 
na,ture of 

i) transverse waves 

p 
dlsplacsment 

d lre,ctirnn ot wave trave I 

• • • • • • • • • • ii 

• • • 
"' • • • • • • • • I 
• 

• • i 

~ ii) longitudrna'l waves. 
! 

poslUon ! 
: b) Describ e how you could show along, wave i 
I that light 1is a tran,sverse wave. 
I 

: 8 Exp lain how th e ,properties of 
j microwaves make th em suiita ble for 
! a) cookrn g food 
: bJ sa tellite co m muinication . 
I 
I 

; 9 Explain why the alignment of a TV aer·iat affects 
• i the strength of the signat r eceived. 
2 : 10 Staite oine everyday ,use of a polarising fHter, 
! ex p La i1 r, i n g w hy t t is us ef u l. 
: 11 Earthquakes produce transverse and lo·n g,itudi,nat : 
: wa,ves tha,t travel through the Earth. The diagra-m 
' shows the displacement of particle5 of rock at a 

parHcu:La,r time for different positions of a transverse 
wave. 

al iJ State tlh e phase difference betwe·en ,points 
P and R. 

iU Describe the difference in the motion of the 
rock at points Q and R. 

bJ Describe th e motiion of the ro ck and point 
P over the next co mplete cycle. 

cJ A se.ismologjst detec ts a wave that is 
polarised. Explain what the seismologist can 
deduce from thi,s. 

d] The frequency of the seismi,c wave is 0.65 Hz and 
1ts speed is 4.8 km s-1. 

iJ Calculate the frme perf od of the wave. 
iU Calculate the waveleng,th of the wave. 

I 
I 
I 
I 
I 
I • 

i 
i 
' • I • II 
I • i • • • t 
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Polarisation of gluco.se solution 
A s tudent rnvestigiates how glucose solution affects the plane of polarisation 
of Ught pass·ing, through lt. The student f s told that glucose soluti.on rotates the 
plane of polads.ation of polar1sed Ught. The angle of r otafion is measured' us1ng 
two polaris~ng filters, one pila ced below the analyser and one pla:ced a.bove. 
Both polar is i·ng filters are ali1gried so t ra ns 1m .itted li ght has m.ax1imu,m. i1ntens i1ty 

when th ere is no soluti:on. Gl1uco.se solutf on is poured into the ana lyse r and one 
polarisingr fflter is rotated until the U9ht intensity is a m,aximu,m ega1in . 

The student uses the same concentr.ati on of glu cose each t,ime but changes the 
depth of the sotutjon. 

Here is a table of her resu lts . 

2 8 11 
4 21 25 
6 30 29 
8 42 38 

10 54 52 

1 Ffr,d the mearn of the student's results 
2 The student i.s told that the equa,tion linking th ese res ults :is: 

m easured a n gte of ro tat ion ... spec ifi c an1gle of rrotat1on per 
decimetre :x so lution depth jn de c im etres 

Ptot ar s uitable graph to s how if her results obey th 1s relati.o ns hip. 
3 Use the grap h to c:a lcutate the sped fie .a ngte of rotation . 

sea.le 

.7'1"-~- g le.e.s 
--- container 

liqufd 

Figure 5.20 Po larisation of 
glucose solution . 
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()--Re-f-ra_c_t-io_n ____________________ _ 

fra i n is the change in direction at a 
boundary when a wave travels 'from one 
medium to anoU1er. 

incident ray 

gmss block 

reh.cted ray 

Figure 5.21 Ught in a,ir travels faster 
th i;)rt ltght in the glass block. Light 1s 
refracted at each bounda,ry. 

n of Ind enc is the angle between the 
incMent ray and! the normal {ei mn F~gure 5.22). 
Th,e norm a I is an imaginary hne at right 
ang,les to the boundary betw,een tw'o 
materi;als. 

n l f ri fra i is the angle betw,een 
the refrac:ted ray and the 1rmrma& 
(er in F~gure 5.22). 

~ _ f~ r • • lnti _ x ~s the ratio oif.a w.ave1s 
speed !between two mater~als. it is normauy 
quoted for i~g,ht traveUing from a vacuum 
into ,a materfa1I. 

What is refraction? 
Waves change sp eed as they travel from one n1edium into another. 
When light travels at any angle other d1an along tl1e no,rmal, the change 
in speed causes a change in direction. This is called rc lract it n . All 
~·aves refract , including light , sound and seismic waves. The frequency 
·Of a v.,"aV· dloes not change "'h,en it travels from one 1nedium t,o another 
but its ,vavele.ngth does. When light travels fron1 air int,o a n1ediun1c 
such as glass or water, the ,vave slo,;vs do~·n and the wavelength gets 
shorter. 

• Waves arriving along the normal do not change direction because all 
parts of the \,·ave front reach the boundary simultaneously. 

• Waves arriving at any other angle change directio,n as some parts of 
the wave front arrive earlie.r and slow dov,n b efore the rest of the 
'\vave front. 

• Vilave5 change direction towards the normal when they slow dovrn on 

entering a medium. Waves change direction away from the normal when 
they speed up on entering a medium. 

Figure 5 .22 shows light entering three different mediums from air; all at 

'the san1e angle ol incidence (the angle between lhe incident ray and the 
nonnal) . The light changes direction least v..J'hen i t enters water> and the 
most \vhen it enters diamond. This is because the light travels fastest in 
,~later, slo"rer in glass and, of the three mediu1ns, the slowest in diamond. 
Light refracts more when it enters dian1ond from ai r than i t does v.rhen 
it enters glass frotu air. The ungk· of rt·fraction is least in dian1ond. 
Dimnond is said to have a high.er refractive index than glass. 

I 

e - 45J I i - I 
I 
I 
I 
I 

A1r 1 

Water 

I 

8 450 I 
i = I 

I 
I 
I 
I 

Atr 1 

Glass 

I 

e1 = 45° I 
I 
I 
I 
I 

~lr I 

Diamond 

Figure 5422 Angle of refraction for d'i·fferent materials. In each ca,se the angle O·f 
inctdence is 45°,, but the angle of refraction is different for each m,ateriaL 

Refractiv1e index 
The r · r ract i ·c i1 1d~· · , n, is the ratio ,of the wave1s sp eed between t\VO 

materials. Because refractive index is a ratio it has no units. A refractive 
index is calculated using: 

n ~.£ 
Cs 

v.rhere n is the re fr-active indlex 

c is the speed nf light in a vacuum 

cs is the speed of light in the material. 



,medium 1 

medium 2 

Figure 5.23 Ug ht refracted lbetwe en 
two ma,terials. 

p 

Calcu la te the refractive index 
when [i.ght passes from : 

a water to gitass 
bJ 91la,ss to water: 

Answer 
ni 

a 1n2 -
n1 
1.33 - 1.5 

~ 0.89 

---L33 
g 1.125 

However) the speed of light in a vacuum is aln1ost exactly the san1e as the 
speed of Hgl1t in air. This leads to two us efu1 and accurate approxin1.ations: 

• the refractive index of air~ 1 
• the r-ef ractive ind~x of a material 

speed of light in air 
n ~ ------::........----

speed of light in the material 

The refractive inde.x of window glass is about 1.5, which n1eans that the speed 
,of light in air is about 1.5 times faster than it is in glass. The refractive index 
,of water is l .33~ so light travels 1.33 times faster in ait than it does in water. 

Vvnen light travels from one material to another (other than air) we can 
define· th relative refractive index bet~·een them as follows: 

' 1 
1"2 = c; 

~ 

where 1n2 = r,efractiv,e index betv;leen materials 1 and 2 

c1 is the speed of light in. material 1 
c2 is the speed of light in material 2 . 

However, if we divide the top and bottom of the equalion above by th.e 
speed of light in. air~ c; v,le get: 

Since ~ = _!_ and --2 = _!_ 
c n1 c n2 

it follows that: 

~ (Itn1) _ n2 
1 n2 - (Itnz) = nl 

The advantage of this fom1ula is that we only need lo know one refractive 
index for a n1aterial, and we can calculate a new refractive index \\rhen light 
p-asses b et,~leen any pairs of mate1ials other than air. 

This la.sl example leads to an in1ponant result , V./hich sho~ that the 
refractive index travelling from ,vater ·to glass is the reciprocal of the 
refractive index when light travels fron1 glass to water. 

In general: 

l 
1tl2 = -

2n1 

Law of refraction 
Fo,r many hundreds of years scientisls have studied refraction and hav,e 
been able to predict the angles ,of refraction inside transparent materials. 
VJiUebrord SneUiu.s was the first person to realise that the foUov.ring ratio is 
always ,constant for all materials: 

sine. 
-"""""""'

1 = constant 
sin 61' -

where Bi is the angle of incidence and 8
1 

is the angle of refraction. This is 
now known as Snell's law. 

At a later date it was understood tl1at this constant ratio is tl1e refractjve 
index between the two materials that the light passes between . 



More generallf> SneUs la"' of refraction is stated .as: 

sin1B1 
1n2 = . 

s1n 18i, 

where 

1n2 = refractive index between mat-erials 1 and 2 

6'1 = angle of incidence in material 1 

e2 = angle of re.fraction in material 2 

or. stnce 

1n2=~ 
l 

it Collows that: 

n2 sin Bi 
"J = sin tJi 

EJJnd 
n1 sin fJi ~ n2sin 92 

where 

n1 = refractive index of material 1 

n2 = refractive index of material 2 

The speed of light f s 3.00 x 108 m s- 1 in air, and 2.29 x 108 m· s-1 in f ce. 

a Ca lculate the ref ract1ve [ ndex of i c:e . 
b Ca lcu late the a ngle of refra cti on fo r a ray of Ught tha t is in d den t on 

the a ir- tce bounda ry at 35°. 

Answer 
. . C1 

a) re fra·ct,ve , nd ex = -
C2. 

3.00 X 108 
= 

2.29 X 1: 'Qr8 

= 1.31 

bl S neffs law states that : 
_ sin 61

1 
1n2 = --

sin 8z 

1 _31 = si_n 35 
s11n e2 

.o . _, ,sin 35 260 u2 !: s t n I ==i 

1 .311 

Light traveUing 1n waiter is inddent on a 91la,ss suirface at an angle of 37°. 
What ~s the aing le of refractio,n of the Ugiht i,n the glass of refractive index 1.5? 

Answer 

and 

n, sin 91 - n2s i:n ~ 

1.33 x sin 37° -- 1.5 sJn ~ 

111.33 s1i n 182 ;;; ,.-
5 

x s ir, 37° 

sj n 82= 0.533 

02 = 32° 



T t al intem I r ft Ion of light is the 
comptete reflectiron of Ug,ht at a boundary 
wijtn in a m at,eria I. that hais a1 h~gher refract~ve 
1 ndex than its su rro u ndi ngs.. 

Critic n I is the angle of r,e~raction for 
wh lch the angle o,f incidence is 90°. 

PLE 
The refractive index of ice is 1.311. 
Ca lculate the crrti.cat ang le for 
light strikin g a boundary betwee n 
ice and air. 

Answer 

So 

n 
sin 61 = ---1 

C n 
l 

sin B' = 
1 

= 0.763 
C 1.31 

EJ = 50° C 

PLE 
l[g ht travelling inside f Unt glass 
with a refractive jn d ex of 1. 5-8 is 
1n cide nt at boundary wrth a layer 
of pa ra:ffi n, which has a re fractive 
ind·ex of 1.44. What i1s the critical 
ang le for the glass-para1ffin 
boundary? 

Answe,r 

So 

Total internal reflection 
To t I int ' rnal r ·llcctinn is the complete reflection of v.,aves back inside 
a medium at a boundary \\ri.th a second material in which the wave travels 
faster. For exan~ple, light can be totally internaHy reflected off the inside of 
a glass block in air. Light travels more slo"r}y in glass than air. (Air has a 
lo,v,er refractive index than glass.) 

In the example of light passing from glass to air, the angle of refraction i.s 
larger than the angle of incidence. \Vli.en the angle ,of refraction reaches 
90° 1 refracted light travels along the boundary and the angle is calle-d th,e 
c ·i1 i ·a l n~lc ~ 8c. When the angle of refraction reach es 90c aU light is 
refracted internally. -At this point the refracted angle is 90° and sin 8 = 1. 

When Hght is in a mate.rial with refractive index n1 and is incident on a 
boundary with mediu1n which has refractive index n2, we can use SneUs 
la\\r to p reclict the critical angle as fo Uo,~.rs: 

n1 sin 81 = n2sin 82 

n1 sin Be =- n2 

since Bi = 90Q 

sin Bi = l 
so 

incident 
ray 

reflected 
ray 

a (!), leas than the critical 
&ng le. Some light is 
1'9flected 

b 81 equals the critical! 
angle. Ug ht has been1 
refracted to 90 °. Total 
inter,ned reflection just 
begins. 

Figure 6.21. Total internal reftect i,on. 

c 01 greater than the 
critical erigle. Tote.I 
~nt.ernal 1reflection 
takes place. 
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: TEST YOURSELF 
• • • 
~ 1:2 a) Calculate the angle of refrac Hon for a ray of 
i light travelling from water into air; when the 
i angte of incidence is 24°. The refractive index 
: of water ts 11.3,3. 
I 
Ii ! bi Calculate the criit ica l angle for water. 
! 1'3 Light travels from water into oil. approachf ng the .. 
: boundary at an angle of 30°. The refractive index 
I 

: of the oil ~s 1.52 and the refractive index of water .. • i IS 1.33,. 
i a) Calculate the angle the refra,cted ray makes 
! wi,th the boundary. 
! bi Calculate the ratio speed of light in water 
+ 
i :(ew) : speed of light in oil [col. 
!I! 

: 14 When tight ;pa,sses from air into a crown g.lass 
" i prism, ·it disperses into a v,isible spectru1m fliom 
: red to viotet 'light. The refracti1ve ]index of re d 
• 
: Ught in crown glass is 1 .5D9 and the refractive 
• 
: index of Violet light is 1.52 1. Ca,lcuta.te the 
• 
: d d f e re n c e i n ref ra c t e d a n g il e for ea c h co lo u r 
• 
: 1f the light orfginaHy approaches the boundary 
• 
: at 40°. 
• 
: 15 .. 
• • • • • • • • • • • .. .. .. 
• • • • • • • • • • 

Dia ,mond has a refracbve index of 2.4 . 
a) Catculate the critical angle of diamond . 
b] Explai,n what a jeweller must do to a d{amond 

to make it spare le . 
cl Catculate the critrcal angle fo·r rays leaving a 

di.amond when it 1's submerged 1n water w~th a 
refractive rnd ex of 1.33 . 

• .. 
: 16 A tight ray Leaves a fish 1in a flsh tank and is 
• : inci:dent on the glass aq·uarium waH at an angle 
• 
: of 40°. At what angle of refraction does the ray 
• 
: emerge into the afr on the other si-de of the glass? .. 
: The refractive index of water 1s 1.3,3. • • 
: 17 Read the following; passage then answer the 
• i 

: questions below. 
= .. 
: , 
: • I 
I 
I 
I 
Iii 

t 
: 
i 
i .. 
• • • • t 

I 
i 

i , 
• 
II 
!I • I!! .. 
: • • 
= • • • • • • • • .. .. 
• • 

F,igure 5.25 shows a cross-section of the 
Earth with seism.ic waves spreading out from 
an earthquake at the top of the diagram. Two 
types of wave are slhown : p-waves (prima ry 
or pressure waves! are tongitudi1 nal waves; 
s-waves (se-condary or shear waves~ are 
t ran sv ers e waves. The Earth has three m a:j o rr 
layers: the so lid mantle is its outer layer; below 
tha,t is the outer core, which is molten or Uqu."id 
rock~ and th·e deepest la1yer rs the sol.id inner 
core. Waves are refra,cted as they pa,ss into the 
Earth's centre. and there is marked change of 
d1irection when the waves pass from the m,antle 
into th e o uteir co.re. 

• • • .. .. .. .. 
• 

al Explain why pressure waves can travel through : 
i the outer core but shear waves cannot : 
: 

b) U Explaiin how th e djagra m shows that : .. 
p-waves slow down when they pass from : .. 
the 'mantle to the outer core. ; 

J 
; ii Explai1n: how the diiagra.m shows that both i 

p-waves a,nd s-waves travel more qu1ickty : 
• as they travel deeper into the man,tle. : 

1 I cl P-waves travel wrth a veto city of 12.5 km s- as : 
they reach the mantle/outer-core boundary. ! 
Use the :informa,t~·on in the diagram to calculate i 
the speed of the p-waves as they enter the : 

= outer core from1 the mantle. 1 .. 
d) Calculate th e cr itrcal angle for p-waves : 

t, 

as they pass from th e outer core into the : 
• mantle. Comment on the ang.tes you see in the : 
l 

d~agiram. : 
• 

eJ A p-wave with a frequency of 0.2 H2 reaches : 
• 

the mantle/outer-core boundary. Use the : 
• 

j 11fo rmafion ~n pa rt kl to ea lcula1te the : .. 
wavelength of the wave. : 

• 
f] The diagram shows a region that is called i 

the 'shadow .zone'. The theory of refraction i. .. 
predicts that no seismic waves witl reach : 

• 
this zone. However, weak se1smiic waves are : • 
detected ~n this zone. A sefsmolog1st suggests i .. 
waves may reach the shadow zone due to : .. 
djffracfion. Explain how th :is might happen. : 

• • ; 

eptoontre 
{the point on the crust Immediately 
above 1he focus ot the earthquake) 

I 

23" _ .... /"i'\ 
,,. ~ .. Cl , , , ST 

42" , 
, go.· 

Figure 5.25 Se,ismic waves. 
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Opti l flbr ts a thin glass (or plastic) fjbre 
that tra nsm ~ts hght. 

• • •• f .,t ""' ••• ••••••••• .- .. f •• •. f . ...... _. ...... ., • 1 ... f ·"' . .. .._ ..... f.' •• f .... •tt ........ f •• ..... I • • "I 

· n i l fi r is an opucal. fibre 
w,th a uniform rQfractwe index In the co.re 
and a smaUer uniform refractw,e ~index for 
the dadd ~ng. 

low- refractive· 
index oladding 

high refractive 
index core 

Figure 5 .. 26 Optical fibre. 

ri I · p ~s the spreading ·of ai 

signal caused by the var~i:lltion of refractive 
index with wavelength. 

nl r nin occurs when the duratmon 
of a pulse increas e.s as a resu it of dispersion 
in an optical fibre. 

M I dis i r ~s the spreading o·f a 
s 1gnal caused by rays taking sUghtty dif fe1rent 
paths in th,e fibre. 

Optical fibres 
An op tical fihr · is a thin glass (or plastic) fibre that trans1nits ligh1 or 
infrared radiation. These waves travel th1·ough the glass but are trapped 
inside by repeated total in.temal reflection. This is possible if each refl.ection 
has an angle of incidenoe larger than the critical angle. The critical angle 
depends on the ratio between the refra:ctive index of the optical fibre and its 
cladding (coating). 

A t p inn - 111tk·; l lihr has a central core with a unifo,nn refractiv.e 
index, while the cladding has a different, smaller, refractive index. By 
choosing a suitable material for the core andl cladding> only certain 
wa\i~elengths -of Hght or infrared radiation can tra.v,el through the fibre by 
total internal reflection. 

Material and modal dispersion 
A spectrum seen \.tsing a prism is caused by di pc rsjc. 11 . Differ,ent colours 
of light lraveUing through the g]ass slow dcn,vn by different amounts. The 
refractive index varies with wavelength. A similar effect happens inside: 
optical fibres. As a signal travels within an optic,l fibi:ej it disperses. Two 
'types of dispersion occur in step index optica] fibres: 

• 1na Lcri·;1l di -pcrsio occurs because the refractive index of the optical 
fibre varies v..ith frequency: Different ,vavelengths of ligl1t in the signal 
travel at different speeds. This causes a sharp pulse to sp:r:ea.d into a 
broader signal. Therefore~ the duration of each pulse increases. This is 
C'alled pu1sc broadening. Pulse broadening is a problem because it limits 
die n1aximum frequency of pulses and therefore lhe bandwidth available. 

Figure 5.27 Material d·ispersion : cHfferent frequencies have a different 
refractive index . 

• 111odaJ di P'-"' r~it n occurs ;,vhen 1-ays inside an optical fibre take 
slightly different paths. Rays taking longer paths take longer to trav,el 
through the fib1·e! so the duration of the pulse increases and tl1e pulse 
broadens. Modal dispersion is significant in multimode fibres because 
d1ese fibres are br,oad enough to· al!lovt rays to take different paths. For 
con1munications, m,onomode fibres are used. These have a very natTO~l 

co re~ so that ligllt is very nearly confined to one single path along the 
a.xis of the cab le. 

travels further travels less fair 

Figure 5.28 Mode:1[ dispersi,on: rays ca n take more than one pa,th in the fibre. 



Absorption 

A sorpti n oc,curs when eneirg_y horn a 
signal is .absorbed by Ule optilcal fibre in 
wh ~eh ~t trav,el s. 

Some ·wavelengths of light are ab sorbed strongly in materials tl1at are used 
to n1ake optical fibres, so the signal strength falls. It is iu 1Lportant to make 
an optical fibre fro,n1 a matetial with Low nbsorp ion at the wavelength used 
to send signals. The v'7avelengths commonly used are 650nm> 850 ntn and 
1300nm. It may also be necessary to amplify the signal if i.t travels long 
distances through the optical fibre. 

········ ······ ·········· ············································;············· ··································································· : TEST YOURSELF 
; 
! 18 
" • • • • .. 

Optica l fiibres have a co re surrounded by claddi·ng made from a different m,ater,ia l. 
al Descdbe the fun,ct·ion of th e core and of th e ctaddjng for an optica,,l flbre . 

I • 
: 19 
• • • • • 

bJ Su·ggest at least one suita.ble property for each material. 
The refractive index of the clad di rig of an opbcat f ibre is 1:.52, 
and the core has a re fractive index of 1.62. 

i Ca,tcu la,te the cr ,itica l an g:le for lii g ht in dd en t on the core-
E cladding bour,da ry. 
J 20 Descri,be one simHar.ity and one difference between modal 
• : di,spe.rsion and matedat dispersion . .. 
: 21 a] Describe on·e way an optkal fibre can be des1gned to 
• 
: :minim, ise multi path di sp ers 1 on. 
• 
: bi Explain why it is important to minimise pulse broadening. 
• f 22 Figure 5.29 shows three c tear p1eces of glass, X, Y and z. which 
• : are aHjoined together. Each piece of gilass has a. different 
• : refractive i·ndex . A ray of Ught passes through the blocks as 
• : shown . 
• • : a] State two conditcons necessary for i~ght to under go total 
• 
: internal reflection at a boundary between two transparent 
• 

norma:'1--

glass z (1 .36) 

1norma1 
I 

I 

I 
I 
I 
I • 
I I 

------1 J normal 
~ 120 , 
I .f 
I r 
I I 
I J 
I I 
II 

: media . • • 
Figure 5.29 Mlfltiple refra ctions. 

: bi The refra c tive ~nd ex of glass X is 1'. 73. Ca.Leu late the speed of 
• 
: light in this glass. 
• i c] Show that angle 8' is abou,t 34°. 
• : dl The r·efractive ~ndex of glass Z is 1.36. Catc: ·ulate the critical 
• • • • • : 

a,ngte between glass X and glass Z. 
e) Explain wha,t happens to the ray once it s tdkes gla!s s Z. 

• • • • : • 
I • • • • .. 
"' • • : s 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
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Practice questions 
I A p1is1n for which all angles are 600 has a refractive index of 1.5. Wbat 

angle of incidence at the first face will jus t aUmv total inten.'lal re.fraction 
at the second face? 

A 48° 

B 42° 

C 28° 

D 60° 

2 T,vo polarising filters are aligned to transmit verticaUy polarised Ught. 
They are held in fro,nt of a source of horizontally polarised light. The 
filter clo,sest to the light source is rolated by 45°. The int nsity ,o,f light 
passing through the filters 

A does not change 

B increases 

increases to maximum intensity 

D decreases 

3 Electromagnetic radiation and sound ·waves are t,vo types of \~.raves. 
Which statement below correctly describes both of them? 

A prog1·essive waves that can be polarised and re.fleeted 

B transverse waves that can be polarised and refracted 

C longitudlinal waves that can be r:efracied and reflected 

D pro gressi.ve \vaves that can be refracted and reflected 

4 Figure 5.30 shows the path of light travelling from air, through 
,vater and into glass. The refractive index of glass is 1.50. 

The refracted angle in glass, fJg , is 

A 25° 

B 301) 

C 40° 

D 66° 

5 A ship is stationary on the ocean. As the ocean ,vav,es move past 
the ship, the front of the ship rises and faUs with a period of 10s. 
W11en the crest of a "\\rave is under the front of the ship, an adjacent 
trough is under the b,ack of the ship. The ship is 60m long. What 
is the speed of the ocean \¥aves Telative to the sea bed? 

!\ 
I 
I 

air 

water 

: 8~ glass 

A 61ns-1 70ms-1 Figure 5.30 Light traveHing from air~ 
thro,ugh water and into gilarss. 

B 12ms-1 D 120ms-1 

6 A wave of frequency 2. 5 I-Iz travels along a string vtith a sp ed of 
20ms-1. Vi/hat is the pha5e difference between the oscillations at poi11ts 
2 m apart along the string? 

A !E. mds 
4 C ,r rads 

B .! rads 
2 

D 21trads 



7 A transverse seismic w-ave is produced by au eanhquake. The 
,vave travels through rock. Figure 5.31 shows tli.e position of 
particles in the rock at an instant as the wave passes. 

vVhich line shows the corr.ect phase difference bet,ve.en A and B,, and B 
andC? 

Phase difference I rads 

bet.ween A and B bet-ween Band C 

A ?C 31r 
4 T 

B 1l 'H 

2 
C 7r 3" 

2 T 
D 3;,r ,r 

T 

d'I rectlon of wave trave I 

positron 
along 
wave 

Figure 5.31 T,h,e posiUon of partiictes 
in the rock at ain instant as the wave 
passes. 

8 The frequency of the seismic ,va.ve shown in question 7 i.51neasured 
and found to be 6.0Hz. The waive speed is 4.5 x 103 ms-1. What is tl1e 
wavelength of the seis1nic ,vave? 

A 750m C 13500m 

B 7500m D 270001n 

9 Figure 5.32 shows a typical glass step in dex optical fibre used for 
con1munications. \¥hat is the refractive index of the core? 

A -3. l 

B 0.04 

C 1.47 

D 1.49 

llght ray claddJng ---------

normal 
Jlne 

core 

air clad'dlng 

normat llne 

'X 

Figure 5.32 An optical fibre. 

10 A light ray travels fron1 a slab of air into amber. The refractive index of 
amber is 1 .56. 'Which of the follov.-i.ng pairs gives possible i.ralue.s for lhe 
angle of incidence and the angle of refraction7 

Angle of inci de nee Angle of refraction 

A 20° 16° 

B 40,0 20° 
C 60,0 34° 
D 80° 40° 

11 The diagra1n sho\'\i~s an a.c. supply. TI1is is a ·three-pha5e supply, so 
three voltages are su1Jpued, running at the sam ti1ne but out of 
phase v.rith each other. 

a) The si1pply has a fr,equency ,of 50 Hz. Calculate 
its time period. (1) 

b) Stale the phase difference between phase 2 
and p base 3 in terms of radians. (1) 

c) Calculate the time between phase 1 ha\ling a maximum va]ue 
and phase 3 having a maximum value. (1) 

11 .0 

0.5 

a ......... ~~....,... .......... """'"""'~--....... ~ 

Figure 5.33 An a .c. su pp1Ly. 



12 Subn1arine.s comtnunicate underwater using very low-frequency 
radio waves. These ,vaves travel at approxin1ately 3.33 x 107 n1s-1 

in seawater. One underwater systen1 uses a frequency of 82 Hz. 

a) Calculate the wavelength of radio waves of this frequ.ency, 
giving the unit. (2) 

A dolphin near the su·bxnarine sends ,out a series of clicking 
sounds of ft·equency IOOkHz. The speed of sound ·\vaves in 
water is 1500 n1 s-1. The tin1e for the dolph·n to detect the 
sounds reflecting off the subn1arine is lOOms. 

b) How far a,vay is the submarine? (3) 

c) Compare the two m thods of communicating underwater. (4) 

I Figure 5.34 show:; a glass sculpture 1nade by Colin Reid. In one 
picture; a reflection. of the internal surface is visible~ from a 
slightly different angle the reflection is not visible. 

a) State the effe-et that makes this possible. (1) 

b) Explain w'"hat has changed [o change the appeara:nce of the 
sculpture. (4) 

Figure 5.34 Two pictures of a glass sculpture made by Co Un Re·id. 

normal 
14 A ptism (not drawn to scale) has a refractive. index of I • 50, and 

internal angles of 60° and 120°. Light is incident on the face 
sho\vtl at an angle of 30° to the normal, which is shown as a 
doued line. Use calculations to show th pa.th of the light 
through the prisn1. 

15 Figure 5.36 shows a11 opti,cal fibre . 
Figure 5.35 A prism. 

a) Name the process by which light is trapped in the 
optical fibre. (1) 

b) The refractive index of the core is 1. 60 and the refractive 
index of the cladding is 1.50. Calculate the critical angle 
for light travelling in the optical fibre. 

t 1 
(3) core dJa.dding, coatl ng 

Figure 5.36 An optical fibre. 



c) A n1.ultiu1ode optical fibre lras a wider dian1eter core than a single 
·mode fibre, and carries n1ore information. 

i) Explain what is meant by pulse broadening. (2) 

ii) Explain "''hy a n1ultin1ode optical fibre is tnore likely 
to suffer from pulse broadening than a single mo,de 
optical fibre. (2) 

iii) Explain ·Ol'l·e itnp lication of pulse broadening. (2) 

d) Explain why it Ls important to select the material for the core 
wryarefu~ ~ 

16 A student n1easures the refractive index of glass using Sn lts law. The 
stude11t measured the angle of incidence and angle of refraction for rays 
'travelling through the g]ass block. 

Angle of incidence Angle of refraction Angle of refraction (mean] 

Cl 0,0 0 

10 5.6 5.5 
15 10, 110 10 

20 12 t4 • 13 

25 lS , 18 16.5 
30 20, 20 20 
35 23. 24 23.5 

40 25 , 25 25 
,45 29, 30 29.5 

50 3 2, 32 32 
S5 34,33 33.5 

a) The student kept the san1e number of decimal places in the 
ra\.v data. Explain ,vhy this is acceptable. (l) 

b) The student has cakulated th,e 1nean. Explain ,vhy the 
calculated data has not been presented correcdy in the table. (l) 

c) Calculate the values of sini and sin r, and plot these on a graph. (5) 

d) The ratio sini: sin r equals th,e refractive index, n, for the material 
Use your grapl1 to calcula:te the refractive inde}( for the mate.rial. (4) 

e) Calculate the maxi.mum uncertainty in the readings. (2) 

0 De.scribe two difficuhi,e.s 'With canying out this experilnent, and 
ho,.v the student could overcome these. (4) 

) The angles are measured using a pro·tractor to a precision of :t:0.5°. 
For the angle e, me sured to be 20°) calculate tl1e range of the Yalues 
of sin 8 and the percentage uncertainty in sin 61

• 

17 The Fermi gamma ray space telescope is a sateUhe that orbits Earth 
at a height of 550km. Communications with the sateUit,e from 
Earth use electromagnetic radiation. 

a ) ,Calculate the minin11un time i t takes a signal to reach 
the satellite. 

b ) Suggest) with reasons, a suitable type of electromagnetic 
radiation to cotnmunicate Vvith the satellite. 

(3) 

(2) 



c) Explain two advantages of using a space-based telescope orbiting 
Ea11.h to observe gamma ray bursts &om distant galaxies. (2) 

The Arecino Observatory includes a telescope ,vith a 305n1. 
diameter dis·h . It detects wavelengths bet,veen 3 cm and l m. 

d) Describe the two advantages of basing the telescop e on Earth. (2) 

5 re eh and challenge 
I A fibre optic cable h.as a core of refractive index flco, and is sun·ounded 

by cladding of refractive index nd. 

a) Write an expression for the critical angle, Be, for a pulse of red Hght 
·t ravening inside the core. 

The fibre optic cable is made from glass whose refractive index varies 
with wavelength. The table gives information about the refra·ctive index 
of the cladding and the core for light of differe11t Y.rav,elengths. 

Wavelength Refractiv·e index [core) Refractive index (cladding) 

400nm 1.635 1.470 

700 nm 1.602 1.4.56 

h) Calculate the difference in critical angle for red light and for 
green lighL 0.2mm t--------------- -----~ , 

' An endoscope is a device that uses optical fibres to look inside 
the body~ One endoscope uses th1e material described in pan a) 
for a light guide used to illunrinate inside a patient's body. The 
diagra1n) which is not to scale., shows the core of the optical fibre 
of d.ia1neter 0.20 mm. 

A ray of ~vhite light traveUi.ng along the axis of tl1e [ibre reaches 
the region where. the fibre is coiled into an arc of radius R Figure 5.37 

c) Write dovrn the condition n eeded for all light to ren1ain in the fibre. 

d) Calculate the sinaUest value of R, 1,vhich aUo,vs the ray to remah1 
"rithin the fibre 

e) Explain ~rhy it is in.1pottant to, use a cladding n1ate11.al fair optical 
fibres used in an end,oscope 

19 TI1e speed of longitudinal waves> c on a spring is given by 

C = V(kllµ) 

where k is th spring constant, 1 is the stretched length of 'lhe spring and 
µ is the 1nass per unit length. 

a) By substltuting the dimensions of the quantities in this equation; 
sho"r that the dimensions of the spring constant are MT-2 

b) The sHnky has a mass of 0. 6 kg and is stretched by 3 m using a 
force of 9 N . Calculate the speed of longitudinal wave·s in the slinky. 
Assu1ne the spring had negligible length initially. 

c) ShoVi7 that doubling the length of the stretched slinky does not affect 
the time for the wave to travel from one end of the slinky to the o'ther. 

axis 



Combining waves 
.. ................... .............................................. .............................................. 
• • I PRIOR KNOWLEDGE ! 
; • The wa,ve equation states th at th e speed~ v, of a wave 1(in m s-1] eq,uails j 
! its frequency~ f [in HzL 1mu lti pli ed by its wavelength, A [in m) . : 
I ~ 
I + 

: v - f~').,, : 

j • The frequency of a wave, r-+. where T is the peri od of the w ave. I 
: • The phase of a wave desc ribes the fra ctiion of a cycle co m,p leted : 
I • 

! compared to the start of th e cycle. : 
i • Phase difference for a sing le wave compares different points along i 
i ! : the wave at th e sam,e t~me. : 
' . ! Pa,rts of a wave aire j r, phase w hen pa r tkles in t he med~u.m m,ove at : 
• • 
: the sa·m.e s peed in the s a me directi on. : : : i ii Par ts of a wave tha t move in differen t d,irect~ons and speeds are out i 
: of phas e. : 
• • 
: iii Par ts of a wave m ov~ng ~n oppo site direction s at the sa,me speed : 
• • 
i are in antipha se. : 
• • 
: • In one c omplete cyc le. waves travel a djs ta nce of one wavelen gth . : 
• • 
: • The shortest di stance between1 two points m ov ing in pha se fs one : 
• • 
: wavele ngth, l.. : 
• • 
: • The phase diffe re nce b etwee n two points a wave le ngt h apa r t is 21r or : 
• • : 360°. : • • • • 
: • Th e phase diffe re nce, 4>: betw een two points a long a wave, separated : 
• • 
: by a distanc e X; is g1iven by: : 
• • • • 
: rt,= 21rx r a d : • • : 'A : 
• • 
: • Waves diffract wh en they go through a s,maU gap. The an·gle of : 
• • : diffra.ction is s mall wh en the wavelength Ls s ma ll tn comparison wfth : 
• • 
: th e gap w1dth ; th e angle of di,ffracbon i,s targe when the wavelength is : 
• • 
: comparable f n size to the gap w idth . : 
• • • • •••••••••••••••••••••••••••••••••••••••f••••••••••••••••••••••••••••••••••••••••••••"IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

!!!!!!!!!!!!!l~....,;..a., ~ --· ·· · ··· ····················· ············· ··· ·············· ··· ·············· ············ ··: 

i TEST YOURSELF ON PRIOR KNOWLEDGE ! 
I!' • • 
• • • • 
: 1 Calculate the time peri od of a wave of frequency 50 Hz. : 
• • . ~ . 
: 2 Calcu,late the frequency of a wave if its t1ime period is 2 x 1 o-.., s. i I 3 W hat is the phase differ ence between two poj nts a,long a· wave j 
: separated by a1 di1sta,,nce of 2. 75 wavelength s? : 
• • i 4 When1 tvvo po'i nts of a wave a re i1n phase~ what ea n you say a bout their j 
t moti1on? : 
~ . 
£ 5 Exp lain, why a radf o ,receiver can detect ra,dio waves [wavelength 30 m i . ] . ! to 1 OOO m emitted by a transmiit ter on the oppo s:ite s,ide of a hill that is ; 
• • : lb etw eer, th e receiver an d t ransmitter. : • • • • 
: 6 Explain, why w e ca,n hea r but not see ar ound th e cor ner of bu ii tdings : 
i (w aveteng t:h of sound is 0.3 m to 10 m; w avelength of Ugh t rs 400 nm to ! 
• • 
: 700 nmL : 
• • 
: 7 What is th e speed of ra dio waves of wave leng th 3 km a nd frequency : 
• • 
: 1(l 0 kHz? : 
• • • • .............................................................................................................. ~ 
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Figure 6J Permanent chang1es to your 
v,ision are possi·bte usi,ng, la ser surg,ery. 

lasers have impacted our lives since they were developed in the 1960s. The 
word laser is an acronym standing for Ught AinpHfication by Stiinulated 
En1ission of Radiation. You lea.m-ed about emission of photons in Chapter 3. 

The great int,ensity of laser beams has several practical uses: laser surgery 
allo,~s correction5 to eyesight by reshaping the cornea on th,e outer surface 
of the eye; surgeons can cut through llesh using a laser instead of a scalpel. 
The accuracy and focus of the bea1n makes lasers useful in DVD players, 
scanners and optical disc drives. Much scientific research relies on the 
precise 1 pola1ised, coherent bea1n of radiation from a laser, ,vhich is created 
using two mirrors in an optical cavity to produce stationary waves. You ,;,,iU 
learn about stationary ,vaves in this chapt,e r, and O'ther ·effects ea.used when 
two waves interact. 

o~~~~~~~-s up er posit ion 

. ... .. ... .. ... .. .. ... .. ... .. ... .. ... .. ... .. .... .. .. . .. .. ... .. ... .. ... .. ... .. ... .. . 
s u .. rpo I tlo n i1s when two waves of th,e 
same type {e.g. sound waves) overlap and 
1intera,ct. The displacement of the medh1m1 

where the w;r,.;es overtap1 is the vector sum1 
of the two wa:ve d~splac.ements. 

! __ --
=2A 

+ 

i ___ --
consttu ctlve superposition 

-

destructive eu pa-position 

Figure 6~2 The superposition of 
two wateir waves. 

When tVlO waves of lhe same type meet at the sa1ne point and overlap, the 
resultant. displacement ,of the oscillations is the vector sum of the displacements 
of each ,vave. This phenomenon is called the superposition of waves. You can 
see water waves superpose: when you watch waves on the seashore: when two 
peaks of waves me.et, tJ1ey combine to make a larger ·wave . 

Figure 6.2 sho'\\i"'S the supc rposi Lion of two Vilater v,,raves of the same amplitude1 

A
1 
in phase and in antiphase. The resultant au1plit.udes are 2A wl1en the Vlftves 

are in phase> and zero when the waves are in a:ntiphase. When water waves 
overlap in phase, larger displaccrnents of the water occur, when waves overlap in 
an.tiphase., the "'~ater can remain still The idea of ,va;ve superposition is used to 
reduce unvtanted noise. Figure 6 .3 shows the principle. Unwanted sound 1 fron1 
some nearby source~ is received by a microphone and fed into noise-cancellation 
circuitry. This cir,cuitry inverts the noise (which is the srune as cl-langing its phase 
by 180°), so that the original sound and the ne,vly added wavefonn cancel each 
other out. A ,vorke1· can be protected from the sound by "\.Vearing headphones 
that soften a loud noise1 "'rhich has the potential to dan1age their hearing. 

4: Ortglnal back-ground noise and m~wly 
added v,avefor m can ce I each other out 

3~ Nols e-cance,11atlon circuitry ----· 
Inverts ·wave and sends ft 
bacK to he ad phone 

Figure &.3 How noise ca ncellatton works. 

1 ~ Incoming background1 nol:S0 

-- 2: Nolse Is picked· up by microphone 
and sent to noJse- cane e Uatlon 
circuitry 

Superposition oJ wa.ves only occurs between the same type.s oJ wave. 1'V'o 
vlater waves can superpose; but light and sot_ind waves cannot superpose. 
We can n otice the superposition ,of water \Vaves as the process takes 
place relatively slowly. O ften ,vhen two souTces of waves overlap) ,ve 
do not notice the superposition, as lhe fyequency of the 1vvaves might be 
high and any pattern of superposition lasts for a very short time. Under 
some circun1Stances~ two sources of ,vaves can overlap in such a way 



lnt rf renc is the name given to 
th,e superposition ,of waves. from two 
co,her,ent sources of waves. I nterf err en ce 
,s constructive If wav,es are in phase, 

that positions of high and low intensity are produced in fixed positions. 
Here fixed patterns of "'ave superposition occur in the same place ove.:r 
long peiiods of 'lin1e, so that v.re can observe them. A fixed pattern of 
superposition is called interlt rcncc. 

or d,estructiv,e if wav,es air,e in 

antlph~e~utofp~se~180°~ ~~,-n-t_e_r_f_~~r~-. -n-c-~~~~~~~~~~~~~~~~~~ 

,-11,. ""' •• 1 •e "•, .,. •• "'""' .... ••• 1111 ,.e.,.,.,••,".,,.., •11 ••••"'•'I·•• • ., •11• '"" '!111>• .,.. !'!Ill••••••••• •!I• ... 

1Jw:o waves are h nt when they hav,e 
a fixed phas,e differenc,e and have the sa1m,e 
frequency. 

Figure 6.4 Path, difference. 

Two sources o[ waves can overlap and produce consttuctive and destructive 
regions of superposition. Hovtever, a stable patten, or superposition 
(or interference) ~ill only occur if tht: two soufces of ~·aves a.re · her · 11L . 

Two sources are coherent when the waves from each source have the 
same wavelength (and, therefore, the sam·e frequency), and there is also ,a 

constant phase relationship bet~veen the two sources. For example, light 
·which meets at a point from tvlo coherelt sources can produce regions of 
bright light (or maxima) wbere hghl interfefe-S c,onstn1ctively, and regions o,f 
darkness (or minima) where hght interferes destn1ctively. 

Interference patterns, from sound waves 
A single sustained note from a signal generator played through. two 
loudspeakers cl'eates i.nterference patterns. The l,oudness .of the sound 
heard by a person walking in front of the speakers varies from loud to quiet 
on a regular spacing due to the pattern of constructive and destructive 
interference. When coherent sound waves are in phase> the sound is louder 
because of constructive interference. 

The path difference is the difference in distance travelled by the two v.raves 
produced by the loud speakers. Path difference is usually measured in 
1nultiple.s of wavelength. 

If the waves are in phase ,Nhen they leave the speakers, they ar,e in phase 
at any point vll1ere they have travelled the san1e distance or \vhere their 
path difference is a whole number of \Vavelengths, AA. These sound waves) 
initially in phas·e) are out of phase at any point where the path difference 
is a \\7hole nun1ber of wavelengths plus a half wavelength, (n + ;)A. Points 
along a wave are in phase if they are separated by a whole number of 
vvavelengths) and in antiphase ~'"hen the distance beh~leen them is a. half 
Vt~velength, one and a half wavelengths, and so on. 

s - 1 

path difference = J. 
constructive 
interference 

pa1h difference = a 
destructive 2 

interference 
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A student walks between two louds peakers 
each playing a note of frequency 300 Mz. 
lhe waves are in rpha.s e a s th-ey leave the 
'loudspeakers. Th e speed of sound in air is 
340m s-1. 

a Cailcu late th e sm,allest path difference for 
waves from eac h lloud spea k.er when th e 
student hears 

constructive 1i nterferen,ce 
1 J destruct:ive i1nterfere n ce. 

LOUD 
QUIET 

LOUD ~ 
QUIET ~v,~ 

LOUD '~ ' 
QUIET 

I Now ea lculate the next smaUest path 
difference for 

Figure 6.5 An experim,eint demonstrating interferen,ce of so und waves. 

I co nstructive interference 
1 destruct1ve ~nterfere n ce. 

Answers 
iJ Condition for co ,ns tru cti:ve iinterf eren,ce is a path difference of n'.A. 

The s hortes t path differen ce s occur when n ·= 0 s o the sho rtest path 
dlfferen ce is () m . 

iii Condibon for destructive interference is a path diffe rence of [n + ;111. 
For the min11mum path drifference, n = 0. 

The rpath difference is l .= 
1·13 

2 2 

= 0.57 m . 

b U The next sm1allest path difference for constructive ijnterference. is 
n = 1 

So the path difference is 
C A. =-
f 
{340 rn s-·1) 

-
300Hz 

= 1.113 m 

i ii) The next path difference for th e first minimum occurs at a distance of 
,= 1. 5 ~ = 1 . 70 .m. [n = 1 ] 
(!) 

z -z -CCI 
:I: 
Q 
(..) l he stu dent iin th e prev[ous exa mple stands in a reg,ion 

of destru ctive interference. Explain wh at the stu dent 
would expect to hea,r 

a if on e loudspeaker is covered wit h a cushi1on1 
bi if th e conn ecti ons to one loud spea ker a,re reversed. 

Answers 
a Th e student will hear th e sound g,et loud er as th ere 

is no destru ctive interferen ce, but only t he sound 
fro'm one :s peake r. 

Changing th e conrn ect:ions round ,m,akes soun d 
fro:m the t.vvo speakers m,ove out of phase wi th ea·ch 
other. A path d1ifference of 1 inow ma kes t he waives 
in phase aga in. So th ere is cons tructive interference 
and t he sound becomes louder. 



constructive 
hterference 
(crest on crest) 

destructive 
interference 
(crest on trough) 

constructive 

Figure 6. 6 l1nterfe rencQ in a ri pplQ tank. 

Yo1ung's double slit experiment-Required practical 
number 2 
Young's double slit experiment demon strates interference betwe,en coheren t 
light sourc,es) thus shmving the v.rave nature of light. The experin1ent uses t,vo 
c,oherent sources of light "raves, p1uduced from a single source of light, ,~lhich 
t'hen pass through two vety narrow, para.He! slits. The light diffracts (spreads) 
th1ough the slits, producing an interference pattern of ftinges on a screen. 
Interference occurs because the ~~v:es overlap and superpose in a stable panen1. 

Light has such a sho,rt wavelength it is difficult to see its interference· 
patt,ems. This is why Young's double slit e:h.-periment ,vorks best using a 
blacked out ro,om and ,a very bright white. light source, or a laser as a s,ource 
of intens·e single-\V'avelength (monochroma:tic) light. The slits must be very 
narrow and less than 1 mm apart. An interference pattern can be seen where 
patches of bright light alternate '\vith regions of darkness. These correspond 
to areas of constructive and destruclive interference. These patterns are 
called fringes. The interference fringes aire visible on a screen placed at least 
l 1n av.raiy from the slits. If the screen is furd,.er away, the fringe separation 
increases but their appearance beco1nes fainter. 

X 

central axl s 

Figure 6 .. 7 Young·s double s.lH experi1ment. 

Light fron1 each slit travels a slightly different rou te ta the screen, creating 
a path difference as shown in Figure 6. 7 . Dark fr inges ,occur wheTe d1ere 
is destructive interrerence (th e path difference betwe,en the two slits is 
(n + f)A). Brigh t fringes occur where there is constructive i.nterference 
(the pat.h difference betvleen the t,vo slits is nl.). 

Ft"inges are o,rdered. The order of the c,entral bri,ght fringe is n = 0. The 
order of th fringes closest to the centra] fringe is n = ; the order of the 
n "t pair of fringes is t1 = 2, elc. 

Referring to Figure 6.7, the c,ondition for constructive interference (bright 
fringes) is: 

ssinf?Ji= nA 

where s =· spacing between the slits 

e = angle from the beam towards the screen 

n = a ,vhole num ber 

A = ,,rave length oJ light. 

TI1e extra distance travelled by the waves leaving 52 is ssin 91 and for­
constnlctive interference this dlista11ce (or path difference) 1nust be a whole 
nu1nber of wavelengths~ nA. 
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We can also express the sep ration of the fringes in terms of the angle 8. 

Ref ering again to Figure 6. 7 ) we can se,e that: 

X = tan 8 
D 

where X is the distan ce to the nth fringe from the midpoint I and 
Dis the distance fron1 the slits to the screen on which ,ve see the 
interference 'fringes. 

However, since D >> X, the angle e is sman. 

Then, the m1a.ll angle approximation gives: 

sin 81

~ tane 
• since 

sin8= nA 
s 

and 

tane =! 
D 

it follows that (for small angles): 

nJ1.. _ X 
-- -
s D 

We can use this formula to predict tl1e fringe spacing, w) between two 
adjacent bright fringes. When n = I the distance X becomes the spacing, w, 
between adjacent bright fringes. 
So 

and 

'A w ----
s D 

w w :: -
5 

A student shines monoc hro1matic ligh t of wavele ng. th 580 nm through 
two slits 0.25 mm a·pa,rt. A sc reen is posritiio ned 2.3 m. a.way. What is th e 
separati on of t he bri .ght interference fringes seen on the .screen? 

Answer 
AD 

We-
S 
I 580 x 1, o-9 m} x (2.3 m) 

w • [2. 5 x 1 o-4 m) 
• 5.3 >< 1 o-3m or 5.3 m,m 

LASER DANGER 
La,sers produce a very intense light. 1ln schools, the most powerful lasers 
that are aUowed a1re cla,ss 2 tasers whk h must have a power output of Less 

than 1 mw. You s .hou:Ld never Look dkectly at a laser or ~ts reftecbon" or a How 
i1t to reftect from shiny surfaces into anyone's eyes. 
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: TEST YOURSELF 
• • • 
: 1 a)1 Rad iowaves are emitted from two aerials 1 n 

pha·s e. At a pos ition x~ the path diffe rence 
between the two ae rira ls 1s 3 wavelen g,ths . 
Explajn whether there wi,ll be co nstructive or 
destructive interference of the w aves at x. 

• • • 
"' "' "' • 'Ill 

• • • • 
"' $ 
"' • • Ii 
Ii 
• I • ,i 

b) Ex pla:in how your answ er to part [a] WOU, [d 

change i,f th e waves w ere out of ph arse as they 
left the ae ri al. ! 

! 
: cl Coherent soundwaves are emitted from two 
I 

: loudspeakers in phase. A m,icrophone i:s placed 
i • at a pos i1tion where th e path difference between, 
i : th e two loudspeakers is 5-.5 w avetengths. What 
I 

: type of interference is detected? 
• i dJ Expla1n how yo'U.r answer to part [d] would 
j charng e i1f th e w aves w ere out o,f ph a1se as ·they 
j left the lou dspea,ker. 
• : 2 Compare the different condrti ons needed for 

• 
"' "' "' • • • • 

superposition and for i1r1terfe rence. 

3 Explain what i.s meant by two s ources of coherent 

wavesh g~v1ng an example. 

I+ Two rad·io wave transmitters , that are separated by a 
distance of 6.0 m, e·mH w aves of frequency 1 GHz. The 
waves leave the transmitters ln phase. The waves 
a re directed i·nto a f1ield where they a r e detected by a 
man holding an aeriat at a distance of 200 m. 
a] Describe what the man detects on h,is 

~ 1 
~ 

• • • • • • • • 
5 A Young·s slit exp eri rm:ent uses Ligiht of wavelength : 

• 
600 nm. : 

• 
al Explain why laser light is often used for Young·s ~ 

I 

sUt experiments. : : 
'b] If the two st~ts are 0.2 mm apart . artd the sc reen ! 

• 
is 3.0 ,m aw ay~ ea lcutate th e separa ti on of the : 

• 
f r inges. : 

el What changes could be made to inc rease the I 
sepa,ra ti on of th e frin ges? : 

I 

6 A m1~crow a,ve tra nsmiitter t ran,sm its waves wi th a j 
wa,ve length of 2.8 c1m th rough slits iin a meta 'l plate : 
that a,re 5.8 c1m, apart. A probe ,is placed 30 cm, ; 

I 

from, th e slits and detec ts re9ions of high and low : 
• intensity. Ca lculate th e s epa rat~o n of th e reg,, 0 1n s of : s 

high i·ntensi ty. : 
7 In a You ng's sUt exp er iment. a1 student meas ures 

the separ ation between s ix br jg ht f d nges to 
be 3 .0 mm . The Ught used in the experiment 
h as a wavelength of 600 nm , a nd the sUts are 
pla ced 36 cm fro m the s creen. Ca lcula·te the slit 
sepa rati:o n. 

8 The diagram below shows tw o waves approach jng 
each other on a strf n g: . Describe the dis prla cemrent 

of the strin9 at pof nts A and B ov er the next 5 
seconds . 

1ms-1 1ms- 1 

----1...-... A B ....... _ _ 

II • 
~ • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • 
"' "' "' 

aerial as he walks along a line XY, w hich 
i,s parallel to the Line join ingr the two 
transmitters. CD 0 

~ ------ -----~----_._~----- ---~------~-

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • II • • • • • • • : 
"' "' "' • • • • • ,I 

i 
"' "' "' • • 

b) The m,a n stands at a point of 1maximum 
i ntensiity, when the phase of ·on:e of the 

transmitters is advan ced by~ of a cyc:Le. 

How far does he have to walk a long. XY to 
detect a maximum ag'adn? Does it maitter 
which way he wa lks? 

~ 5 
CIJ 
'O -1 

Figure 6.8 Two waves approaching ea ch other on a string. 

• • • • • • • • • • .. 
• • • • • • • • : • • rl 

=······••iii····································••iiii••·············································~··························~·············· iiilii ......................... . 

o~~~~~~~-
s tat i an a r y waves 
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A t tion r, for .. t ndln ) ' is a 
wave forimed by the supe~position of two 
prograss iw~ waves. of the same f raque ncy and 
a1mpUtude travelling in1 opposite d~rectjons. 

If you 'Vatch a plucked guitar suing closely, you ~ill see that it appears to be in 
two fixed positions at once. 1n fact, the string is vibrating rapidly b tween two 
positions. \\!hat you see is called a sL.t1 1nn. rv (01 ~anrl int..,.) :.1v . Stationary 
\vavcs can be set up in many situations including using a guitar string. 

Creating stationary waves 
Stationary ,va,res are created when two progressive waves of ihe same 
frequency and amplitude n1oving in opposite directions superpose. This 
often occurs " rhen reflections of a progres5ive w.ave superpose with the 
original wave. When ,vaves reflect off a rigid boundary~ the reflect,ed waves 
are out of phase with the original \\rave by 180° and t ravelling in the 
opposite direction, but have the sam e amplitude and frequen cy. 
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Th e :max1mu m dispilacement 
of all the partictes along a 
sta tionary wa1ve is not the same 
for statio nary waves. Partictes 
at nodes do n-ot move at a. ll, but 
particles at a ntinodes vibrate at 
the maxi 1mum ampl'itude. 

\ / 
Af'litlnodes 

Figure 6.9 A s tatiorHHywave. 

A is a poh1t of zero a1111pUtude on a 
stationary Wcr,J,e. 

An ntln • is a point o.f ma~dmum 
ampHtude on a stat~onairy wave. 

Stationary w11ves only fonn on a guitar string at specific frequencies. Wn,ere 
the " '"aV,e.s are in phase~ d1,e displacements add. to form a peak or a tTough 
of double the original amplitude. vVhe1e the waves are in anti-phase, their 

displacements cancel out. For stationa11r i.-vaves> the positions of maximum and 

minimum atnplitude rerrwin in the same places> v\rith particles, at antinodes, 
vibrating rapidly bet\veen their positi,ons of maximum displacement. This is 

why the ,~laves don't appear to pr,ogress allong the string. 

A sr.ati,onary ,vave alternaies bet,,reen the. positions sho,vn by the red wave 
and the blue ,vave in Figure 6.9. 

Nodes and antinodes 
Nodes and andnodes are at fixed points along the guitar string. At a I od ·) 
the amplitudes of the tV1lO progressive. V.'.aves 1noving in opposite directions 
always cancel out so the particles do not oscillate at all. At an ~ 1 t i1 1, u lc:: , the 
amplitudes add together and the guitar string is displaced bel,veen the peak 
and trough during a. cycle. The amplitude of the peak ·Or trough is double the 
amphtude of the 't\VO progressive waves . Nodes are aJw1JJys separated by half 
a \Vavelength, as are. antinodes. The displacements of particles in positions 
between the nodes and antinodes vary but do nol re1nain zero or reacl1 'the 
amplitude of a:n antinode during the cycle according to their positions. 

How stationary waves form 
Figures 6.10 (a) to (d) show hovl stationary waves form on a guitar string. 
Wave land wave 2 are progressive v.·aves travelling in opposite directions 
along the string witl1 the san1e frequency and amplitude. The amplitude of 
ihe ,vave 3 is the an1plitude of the two '-'7aves superin1posed. 

The diagrams show a sequence of snapshots of -rhe wave at different times 
during one complet,e cycle. 

(b) t • .1 T 
4 

(d) (o} (a} 

Figure 6JO(a)Waves 1 and 2 are i,n phase at the start ·Of the cycle but move in opposite 
directions. The r-e ~s constructive superpos~tion a,nd their displace,m ents add. Th,e 
combined displacement of botti waves is d·oubl.e· their ori1ginal displacement. 

Figure 6.10(bJ Waves 1 and 2 are in antiphas·e after quarter of a cycle. The partjcles 
at a H po1ints a re d1isp Laced in opposite di rgcti:ons. Their displacements c;u,.cel out as 
the superposition is destructive·. Thie com,b,ined d'ispt;ceme nt of both waves is Z'ero. 

Figure 6.10(c) Wav;s 1 and 2 ar12 in phase haHway through their cyc le. Comp;red 
to the start of the cycte, the poslt ion of peaks and troughs :is r~versed. The re 
is constructive supewposi tion and the iii disp lacem,mts add. The combi:ned 
d·isplacQment of both w;ves is doubte their oli iginat displa cement. 

Figure 6.10[d) Waves 11 and 2 are in antiphase three-quarters of the way thro,ugh 
a cycle. Their disp lacements cancel out as the superposition ls destructive. The 
combi,ned dtsplacemernt of both waves 1is zero. 



A h rm n I is a mode of vi brratmon that is a 
multiple of the first harmon,c. 

Figure 6.11 The three lowest ha rmon,ics 
for a guitar st,ri ng . 

Harmonics 
A guitar string can support different modes of vibration for stationary 
vvaves. The different modes of vibration are called harn1onic . Hatm.onics 
are. numbered: the first harmonic is t'he mode of vibration with the longest 
wavelength. The second harmonic is the mode of vibta.tion with t11e next 
longest wav,e. 

The frequency of the vibration is found using 

J=f 
where f = frequency of the harmonic in Hz 

v = speed of wav·e in m s-1 

A = wavelength of harmonic in m 

In Figure 6.11 

• rhe first harmonic on a string i11cludes on.e antinode and two nodes. 
Stringed instruments have nodes at each end of the string as these points 
are fixed. For a guitar string of length I, the wavelength of the lowest 
harmonic is 2k this is because there is one loop only of tl1e stationary 
1.,vave > \\1luch is a half wavelength. Therefore the frequency is: 

!1 = { = ;l 
• the second harmonic ]ias three nodes and two antinodes; the wavelength 

is 1 and frequency is: 

f2 = ~ ==: ; > or 2 f 1 

• the third harmonic has four nodes and three antinodes; the ,vavelength is 
2U3 and frequency is: 

f3 = ~ = ~ or 3f1 l 2l 

The first harmonic on a string 
For waves travelling along a string in tension, the speed of a ?la.Ve is given by: 

v=f 
where: 

T = tension in the siring in N 

µ=mass per unit length of the string in kgm-1 

Usrng Figure 6.11 ~ you can see that th first haimonic for a stationary ,vave 
on a string is half a '"'·avelengtll. The \\i"avelength of the first harmonic is 21 
for a string o[ length 1. 

We can combine the e,quation above aind the \vave equation as follows: 

c=J 

so Pf = f ~;. 
= fx 2l 
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There[ore: 

J= ;, ! 
This equation gives the frequency of the first harmonic Vi.7here: 

f = frequency in Hz 

T = tension in the string in N 

µ=mass per unit length of the string in kgm-1 

l = the length of the string length in m 

A str1ng is st retched betvveen two points 0.45m apart. 

a Ca :Lculate th e frequ ency of the first harmoni c whein 
the tension 1in the stringi ·is 80 N an d the ·maiss per 
unit ileng th is 3.2 g m-1• -

1 80 N 
)( 

2 X Q.45 m ' 3.2 X 1: Q- 3 kg m- 1 

- 1 75. 7 Hz or 1 7 6 Hz to 3 sf 

b) i Frequency is proportfona l to T· so doubting the 

le ngth halves the frequency ho 88 Hz!. I I Pred ict th e effect on frequency of~ 
i doubU·ng the Length of the string 
ii doubtlngi th e tension jn th e string . 

ii Frequen cy i1s proportiona l to 1f. so dou bling1 the 
tens1o n increases the frequency by a factor of fl 
(to 248 Hz). Answers 

f = ~I H 
Stationary waves: Sound waves and musical 
instruments 
Longitudinal waves such as sound "'raves also form stational}r waves. 
Sound "'raves are pressure waves \\rid1 particles vibrating in the direction 
the wave travels. Stationary wave diagrams for sound waves sho,v the 
an1pHtude for pa.t1icles vibrating lon gitudinally in the air colu111n. The 
amplitude is greatest at the open end of pipes., where the.re is an antinode. 
The particles cannot vibrate at a closed end and so there is a node. If the 
pipe has two open ends, the stationary ,vave has at least tw,o antinodes, 
at either end of the pipe. 

Figure 6.12 Stat1ionarywaves for sound waves in open-ended tubes. When there rs one 
open end. there is an arttin ode at the· open end and a node· at the closed end . in a pipe 
tihat is open at both ends~ there is a node jn the middle and anti nodes at both ends. 

Musical instruments include stringed instruments\ \vhere stationary waves 
fo,nn on the stnng \vhen it is plucked ,or bowed. Stationary waves also 
form when the air column in. organ. pipes or wind instn1inen ts is forced 
to vibrate. The hannonic freque,ncies available to players will vary with 
different i11st.ruments1 even if the air column is the same length\ depending 
,on wl1ethcr the instrument has one or both ends open. 



Figure 6 .. 13 O,iffe rent n,otes are created A l A 
from the different har·monics of 

• stationary waves in air columns. I 
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REQUIRED PRACTICAL 1 ~ 

Investigation into the variation of the frequency of stationary waves on a string with length, 
tension and mass per unit length of the string 

Note: Th~s is just one example of how yo u might tackle this req u~red practtcaL 

A student used the equripment shown f n, Fiigure 6.14 to 
investigate how the frequency of stafionary waves on a 
wire varried wah tension in the wire. The student fi:xed 
a tength of wire at one end and passed the other end 
over a pulley. A hange r was attached to the end of the· 
w1re. The tension 1n the wire was changed by add ,ing 
m,a s se s to the h a niger. 

Figure 6.14 

pluc'kec( the frequency of the s ound coutd be r ead 
off the frequency ana lyzer. The student sometimes 
observed several frequendes ,, but onty recorded the 
'lowest frequency . 

The s tuden t was to'ld the mass per ,un it length of w ke 

was 0. 16 g/ m. 

1. Suggest why the string is pas.sed over a pulley~ a,nd 
not over the ed g:e of th e tab le. 

The student obtained these results wtth a length, l. of 
0.4m,: 

0.20 140 135 

0.40 195 200 

0.60 24 0 240 

0.80 280 278 

1.00 310 310 

1.20 340 340 

11.40 365 368 

1.6,0 392 390 

2) Catcu late th e average freque·ncy us ing the data 
3} Ca lculat~ th e frequency using. the equat~on 

, __ , [I 
- 2l vµ 

. . . . . . : . . . . 

Th e student placed a m1cr opholil e connected to a 
frequ ency a n a lyze r near the w~re . Wh en the w ire was 

s> ~ 
• ... ••11 I • . . .. • • • • '-••" •••• ••• ••" •• 11 •• ••"' r • • • • " • • •• • • • •• • •• •• •• 11 ••• •11 "•" . .. ••• •• ••• ••• •• ••• •• r • 11 -'• "•"''"•• •Iii"•••• ••• Ptl ••• ••• • 11 ••• r • "• • P•• •• ••• "" ••11 r• • • • • • • • • P•• •• '"•• r • " •• P•• •• P•• "• ••11 ••• . .. ••• •'- ••• •• ••• r•11 •11 r• 11 •'I• •• r1 ••• t1•• •• ••• r • • •• r • • • • P•• •11 ••• •• ••• ••• •• r•11 "" r • 

V, ...... 
Sl) .... a· 
~ 
Q) 

~ 
~ a, 

ii 
"" 



U) 
LLI 

~ 

== (!) 

z -z -CCI 
:I: 
Q 
(..) 

11.Q 

.......................... ··~ ........................... ., .......................................... .,, .............. 1.•.1 ........................... """ ........................ , ............ .. ......................................................................................................................................................................................... ., ............................................................................. .. 

' . : ~ . 
: 

41 Suggest. with reasons. the maximum percentage 
uncertainty in th~s experiment. You wirll need to 
suggest th e resolut~on of the equ,pment used in tne 
ex perii me nt. 

E>ctension 
Measure the change in frequency of standing waves 
if w, res of different length are used or ,f a w ire with a 
different rmass per unit Length is used . . . . 

'11• ••• •11 ••• •• 1..!llt •• 1.•• ••• •• •e• tl• • •• ••••••!I••••••••••• ee• •• ••• 1111 • •• ••• •• ••• •• 111111 ell!.;••••• I'll••• •11• •• ••• •• ••• 111!.i II•••• tle ••• •• •99 ••• • • ••• •9 ••• •9• •• 9•11 •11 ••9 99• 99 ••• •• ••• 99 •e• 1111• •11 • •• •• i. !lle ••11 •• ••• 9 9 •it:•••• 9!1 ••• •• • 11• •9 ••• ••• e 9 9it:• II• • •9 ••• •• 999 •• ••9 9•• 99 91!9 11 9 • •• e• •• II 93 

. 
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i 
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Measuring the wavelength of sound waves 
A student uses a: set-up ea lled a 
Kundfs tu be to measure the speed 
of sound in ai,r. The Kundt's tub e is 
placed horizontally, and a fine powder 
is sprinrkled atorng :its length. One end 
of th e tube is c'losed: th e other end has 
a lo u dspea·ker co.n r, e cted to a s1 gn ail 
generator to produce notes of different 
frequen cy in side th e tube. 

The pitch of the note is changed until 
the sound from the tube 1i n,creases to 

a maxim l.l ltTI , an di a s tati o nary wave 
is set up !inside the tube. The powder 
m aves with a,r a.n d sett Les f nto p ites 
corre5ponding to nodes . 

closed end 

microphone 

ad]ustable 
position 

1 Use the pattern of powder to work 
out whfch frequen cy matched a 

Figure 6.15 1Kundt's tube apparatus . 

stafionary wave with a wavelength of 1.5 m. You m1ay 
find it helpful to sketch tn e pattern . 

2 Calculate the nlUm ber of statronary waves in th e 
tub e for each frequency. 

3 Calculate the wave length of the stationary wave and 
speed of s ound for each frequen cy. 

4 The speed of sound in ai'r is about 340 m s-1. Com ment 
on your answ·er and any reason for differences. 

• 

I -

118 

23.5 

357 

179 

Length of Where powder· 
tube/m piled up/cm 

1.5 75 

1.5 38 and 1'1 2 

11 .5 25; 75; 125 

l .5 0 100 r 

Wher e there was 
no. powder/cm 

0 150 • 

0 715 150 I J 

0 50 100 150 • • • • 

'50 1 '50 • 

• 
c 
i 
( 

I 
i 
t 
C 
I 

~ . . . 

: : 
• 1,,1.5•• t..1• 5.t 11•.t • • •ii• a-,1 ••• L• 111...t ·--~ 1,,,1 • •• •• .,.. 1:.1 1. •ill 1.111• Lill••• IIW 11 1..11. ,1.tli"•.I t. •11 ti.t ••.t •• ••• .-.1 t.lla ••• 1,,1. · --~ 1,,,1 1, r• 11• 1.'-ill .-.t • ••••• Lill••• 11• 111. .11,,1. 5•,1 • • • 5.t 11•.t • • ••• L.I ••• 11'.1• 1...t •• .,_ 1,,11, r• •• 1.!eill 1:-'• llill I.Ill .I Lit t. •9 11• 11 1.ol 1, ,1 lli•.11.•• a.I .-ii• I.it al <I ... •••••• • ._ -. 9.-1,,.11.•• 11• 1.'-ol .-,. 11• 1.•• Lit t.•9 11• IIL.I • •• 11 • 1.•• .-.1 .-ii• lliit •h • 

Stationary waves: microwaves 
Microwaves and other electromagnetic wav,es can intet'act and foi-n1 
stationary v.raves. Microwaves in microwave ,o,vens a.re generated u sing a 
de,;.,ice caUed a magnetron. Since micro\Vaves refl et off metals, they are 
directed from the magnetron and reflect off metallic inner surfaces to 
ensure they spread evenly throughout the oven . However stationary " raves 
still tend 'to develop 1 resulti11g in over-cooked food at the a11'tinodes and 
undercooked food at the nodes. This is why m·ost microwave o,vens have 
a relating turn.table. Grated cheese or chocolate covering a plate placed in 
a microwave oven with the turn'table disabled meh in places about 6 cm 
apart. These places correspond to an1tinodes for 1he first h annonic. This 
information tells us that the wavelength of the 1nic1~0,vaves is about 12c1n . 



.............. ._ ........................ 5 .................... . ........... •i1• ••••••••••••••••• ••• •••••••••••••••••••••• ._ ............................................. ............................................... ....................... :.. 
: 

ACTIVITY : 

Interference patterns fr·om microwaves 
Etectroma9netic waves are ca,rried by oscillating 
electric and magnetic fields. For clarity of explanati'on 
we will consider on'ly the electriic fields i1n this cha.pter. 
Wh en two microwaves overlap and superpose~ 
interference can take place. Wh ere the electri c fields 
of th e two waves are ~n phase, there is constructive 
interference and regions of hi,gh 1intensity. Th e 
intensity is low where the etectri c components are out 
of phase. Th e chariges in intensity are detected usi,ng 
a probe and this informati1on can, be used to ca lculate 
the wavelength of th e mkrowaves. 

A s tud ent sets up a microwave transm:iitter, 
mjcrowave detector and a'lumi'num pilate ptaced 
ab out 40 cm from the transmitter as 5nown in 
Figure 6 .16. M ic row aves that reflect off th e meta- l 
plate in te rf ere wi1th the tra n s m rtted m i:c rowav es. 
The in te rf erer, ce pattern has re 9i,o n s of low i nten say 
where the waves are out of phase. and regions of 
hrgh intensity where the waves are ,in phase. She 
us es a receiving aerial. or pro be, to detect node 5 . 

The student discovers that the distance between 
successive regions of destruct1ve interference is 1.4 cm. 

1 By cons id err n g the path d iffe re n ce between the 
wave reaching the receiver directly from the 
transmitter. and the wave reaching the receiver 

after H ha,s been reflected from the metal platej 
deduce the wavelength of the microwaves. 

2 The stu1dent takes measurements to check th e 
wavelength. De scribe how she coul d! redu ce 
un,certa·inties 1in her measurements. 

3 Explain the student's could explain her observa,ti1on,s j 
using ideas a.bout stationary w aves. 

1receiVilng 
aerial 

reflecting 
board 

Figu re 6..16 An experiment demonstrating i,nterference of 
microwaves. 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 
: TEST YOURSELF i 
• • • • • • ! 9 State and expla1iF1 one difference between : a] the first harmonic ~ 

~ al a statjona,ry wave and a progress ive wave b) the third harmonic . ! 
I bi a node and an antinode. 14 a) A stationary sound wave is set up jn-a hollow ! 
• • 
: 10 Sta,te three cond iti,on s tlnat are needed for a pjpe wi1th both ends open of 'length 1. 4 m. Wrrte : 
! stationa,ry wa,ve to be et up. down the wavelength of: i 

l : ! 11 Two progressi,ve wa·ves travetliin g in opposite i the first harmonic : 
: directions or,iginatly have the sa,me ampUtude. ii ) the second harm onic. : ; i 
: Expilain why th e am,plitu,de of an anti node in a b) On e end of th e pi:pe i1s now closed. Wri te down : 
I stationary w a,ve is double th e amplitude of the the w avelengths of: ! 
• • ! prog ress ive w aves. il the fi rs t harmon ic i 
! 12 Describe how the di1spla,cement of a particle at an iiJ the second harm onic. ! 
• I i anti node chang es during1 one co.mip tete wave cycle. 15 A stu dent blows across the top of a bottle. setting i 
f 13 A stati,or,ary w ave 'is set up on a rope of length up a sta.ti ona,ry w ave, a,ndl creati ng a note. The : i 3 m. Wrrte d ow1n th e wavelength of: bott!le is 20 cm high. ~ i 
. -...... , ...............•........................................................................••.........•........................................•..................... , 
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, ........................................................................................................................................................................ . : ~ : . ~ . 
~ a) What is the wave:Length of the first harm,on1c? A steel wire .is fixed at one end and the other ~ 
• • : b) The speed i:n air is 340 ,m s-1. W hat is the end is s tretched ove r a pullley~ with a m,ass of : 
• • 
: frequency of the note? 4kg hung on th e end. Th e wire is set v ibratrng : 
• • 
: c) Th e student firlls half th e bottle with wate r. at a frequency of 83 Hz~ and the Length of wire : 
• • 
: Desc ribe the note that the student hea·rs now 'between the firxed end an,d the ,pulley is 63 cm. : 
• • : w hen he b lows acr oss th e top of the bottle. At th is freq,uency a sta.tronary wave is set up. i 
! 16 a) A string

1 

has a mass per u ni,t length of w hkh h.as two nodes between t he pulley and :: 
i 5, g ·m -1 . I t h as a l en g t M of O. 9 ·m a n d ha s a fi r s t t h e f i x e d e n d · j 
; harm,oni c frequency of 170 Hz. Ca lculate the a) Ca lculate the wavelength of the waves. i 
j tension in the striin gi. bJ Catcurla,te the speed of the waves . ! 
: bl The tension, irs in creased by a factor of 4. cl Cailc1ulate the tens,ion in the w ire. : 
! Calculate th·e freq uency of the first and second dJ Use your answers to parts f b) an.d [cl to ! 
: harmoni cs now. cal cutate th e 1mass per unit length of the w ire. : 
I • i 17 It ts possrble to ca.lcutate the diameter of a, metal wire e] G·iven th at th e den sjty of the stee l wire is J 
: by using .informat~on about 1its harm,o.nic frequenc ies. 7800 kg m,- 3~ ca lculate the d,iamieter of ; 
I • 

: Work throug1h this question to find out how. th e wire. : 
= t ····················~··········,········~·-·················~········~·················~············~········~~··~······~···~···-~~····~··········~···~·····~············· 

C)~D-iff-r-ac-·t-io-n~~~~~~~~~~-

When wJiJes p·ass through a ga1p or 
move past an obstade, they 5priead out. 
TMs i1s caUed i• r: c iu1 . 

A single. source of light can also create interference patterns. This effect 
occurs because of di ffrac tion. Diffraction occurs v.rhen vvaves spre.ad around 
an obstacle or through a gap. l t affects all ,vaves) and is why we can hear 
conversations around corners even if ,ve cannot see the people speaking. 
Diffraction can be sl1own easily using a ripple tank, and is most pronounced 
if the ,vavelength is of a similar order of 1uagnitude as the obstacle or gap. 
The wavelength of diffracted waves does not change, but the waves become 
curved and spread into shado,v regions around the obstacle or gap . 

Diffraction of light 
Visible light has a ve:r-y sl1ort ,vavelength ( 400 x l o-9 :n1. 

to 700 x 10-9 n1) so diffraction is only si.gnificant if 

Figure 6.17 D~ff ractio n of water thro ug1h a gap. 

the slit is veiy n arrow". When light diffracts through a 

narrow slit~ a hinge pattern is s·e,en as a btight central 
fringe surrounded by other less-b,right fringes either side. 
These fringes, called maxima, ~ue due to constructive 
interference of light. TI1e dark regions in between 
(tnininta) are due to destructive mterference of light. The 
interference pattern is due to light fron1 ,one pan of the 
slit diffracting overlapping and then interfering ,\iith light 
that has diffracted from other parts of the slit. \iVhen the 
path difference between the top haH of the slit and the 
bottom half of the slit is half a vlavelength destructive 
inteiference ,occurs and 1he light intensity is zero. 

The width of the central d.iffnction maximuin depe:nds on Ehe wavelength of 
light and ihe slit v11idrh. At the edges of the central mrod.ma

1 
light leaving the 

top half of the slit interferes destructively "With light lea,:ing the bottom half, so: 
A a . a 
- = ~stnu· 
2 2 

or the first 1ninimum occurs at an angle giv,en by: 
A 

sine= ­
a 
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A cllffr I n r in'"' h;is thousands of sUts 
s.paoedl very clos·e~ together. 

Slit 
lntens,lty 
at llght. 

monochromatic 
llgh,t 

fr,lnge pattern 
on screen 

Figure 6.18 D·iffracti,on fri1nges from a singte slit. 

where A is the wavelength of light> a is the slit width and ifJ is the angle of 
diffraction. 

As the \Varvelength of hght increases; the central ma..'\.'lmum becomes Vi.rider 
b "l • • (} l . eca use, as 1... increases > s1n · :; - Increases. 

a 

As the slit wi.dth increases, the central maxhnun1 becomes narrowe·r be,cause, 
. . (J ""de as a u1.c1·eases > s1n · · = - . c1·eases. 

QI 

If a source or white light is used; the fringes are coloured because \vhite 

light is a mixture of differe11t colours of ligh t. Since the central maximu1.11 

depends on the ratio : ~ the central 1naxiinun1 is broader for red light than it 
is for blue light. Red light has a longer wavelength tl1an blue light. 

Figure &.19 Co1mpa1r ing diffraction of monochromatic tight 
and: white· light. 

Diffraction gratings-Required practical number 2 
We can see interference. patterns using a dittr~ t:tiun --..,r~uin :-r . A diffraction 
grating has thousands of shts spaced very closely together. The slits are 
very narrow so that the Ugh t diffracts through a v,,ri.de angle. TI1Le pattern is 

a result of light overlapping (or superposing) and interfering from a great 
number of slits. 

When light passes straight through the slits 1 'the path difference between 
each slit is zero, so tl1e light from each slit is in p~1se and the overlapping 
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Figure 6.20 IF1in ding, the path d iffe rem ce 
far a d iff ra cti1on g rat~n g. 

\\raves co111bine to form a maxunun1 intensity. This ll.1.aximu:rn is called the 
central n1aximu1n. lt can also be called the z,eroth order maxin1un1. because 
there iis O path difference between each slit. Such a maximum is easily seen 
on a screen when a laser is shone through a grating. A diffraction grating a]so 
produces other maxima on either side of the central maxin-iun1. These occur 
when the v.rav,e.s leaving the slits arrive in phase ,on the vieMng screen. The 
condition for constructive interference is that the path difference for ,vaves 
lea\'ing adjacen slits must be a whole nuinber of \\i~avelengths. The first 
order mroi..imum is seen "'hen the path difference for waves leavi11g adjacen t 
slits is ,on, wavelength; the second O·rder maximum is se n \vhen the path 
difference for waves leaving adjacent slits is two ~tavelengths, and so on. 

For the first order maxima: 
• interference is constructive 
• the path difference of light from adjacent slits is A 
• light travels at angle 81 to the direction ,of incident light. 

~A.pplying this in.formation to the triangle abc; 
. be l 

91n 81 = - ;;:: -d - ab 

This means that 
. l.. 

srn81 = d 

,vhere A is the ,vavelength of light in tn 

ell is the angle bet\veen the 0 th and 1st order maxirna 

dis the spacing between slits in m . 

For second order fringes) the path difference is 2l and light travels at angle 
B1. to the direcri011 of incident light. The equarioTt becomes: 

. il_ 2A 
Sill.~ =d 

In general, the condition for n1axima to occur is given by: 
. 8. n.:l.. 

S1Il - = -
n ,d 

where n is 3 whole number, .and the order of the maxm1um. 

Calculate the angle of a third order maxi·mum for ligiht of wavelength 
500 nm pass ing through a diffraction graiting wi,th 600 Unes per mm. 

Answer 
The spadng of the grating. d, i's 1 

:ic ;i~3
m 1.67 x 1 o-6 m 

The order . .n, is 3; the wave:length. ).. - 500 x 1 o-9 m 
. n~ 

stn 9ri - d 

3 x 5 0 0 x H)-9 m -------·1.67 X 1 Q-6 1m 

= 0.898 

s i n-1 0.898 = 9 

So 9 = 64° 



.Applications of d iffraction gratings 
Diffraction gratings are used to separate light of different wavelengths in 
great detail (high Tesolu tion ). TI1is is useful \vh en the diffraction grating 
is p art of a spectrotnet,er and used for inv-estigating atonric spectra in 
laboratory measurements. Diffraction gratings are also used in telescopes to 
analyse light from galaxies. CDs and DVDs use diffraction gratings but they 
reflect light f-ron1 a grating rather than transmit ting it. The light source is a 
laser installed inside the CD or DVD drive. 

·····················••t•••············································ ·····························••t••···················••••t••··········~·······i : TEST YOURSELF ! 
I I 
I I 
I I i 18 Why is d,iffra,ction of light best seen usi,n,g very 22 Ca lculate the spa,c,in g of a diffract1on gratin g ! 
i narrow sl.it sizes? when th e ang1le of a second order max imum for ! 
' . i 19 Refer to t h e p hot o g r a. p h in Fig u re 6. 19, w hi eh l'i g· h t ( A ~ 4 0 0 n m) is 2 0 °, I 
i shows a diffracti on pattern for green light wh en, 2.3 Ad iffra,ction1 grating has 400 li nes per m'm. Wh ite ; 
~ it passes th rough a na rrow slit. Describe how th e ti ght is shone th roug1h th e g,ratrng. ! 
• • 
: fringie pattern chan,ges as th e angle in cr ea.ses a] Desc rib e the diffracti on pattern produced by ; .. .. 
: away from th e central maximum. th1s girating . : 
• • 
= 20 A student i's lookrng at a diffractlon pattern from a There is a second order maxi m u·m fo r red U9ht : 
• • 
: siing,le slit. He makes the s U t na rirower. How does of wave[en gth 69 D nm at the sa m,e angle a,s a : .. .. 
: this affect the friinge pattern he sees? thi:rd order maximum for blue light of wavelengt h : 
• • 
: 21 L1ght of wavelength 500 nm passes through 460 nm. : 
• • 
~ a diffracti.011 grating with 500 lines per nm . bJ Calculate this angle. i 
i Calculate the angle f or the second order c] How ,m.aniy orders of the blue l ight and how many ! 
~ maximum seen for the Hght. orders of the r ed light does this grat~ng produce? ~ 
• • : .......................... .. ............................ .................. . . ...... ............................. ~ ................................ . ........................................... . 
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Practice questions 
1 When two waves are initially in phase, their path difference at any point 

"'rhere the waves are i.n antiphase is: 

A M. 

B nA.+ 1-
C nA.+~ 

4 
D 0 

2 The separation between a node and the adjacent antinode in a stationary 
transverse wave 011 a rope is: 

A 1:_ 
4 
~ B T D 2A 

3 Wbich statement is not always tnte about coherent waves? 

A Coherent waves have the same frequency. 

B Coherent waves have the same wavelength. 

C Coherent waves have a constant phase difference. 

D Coherent waves ha:ve the same amplitude. 

4 In an experitnent to investigate nodes and an tinodes p roduced by 
stationary microwaves> a microV'i.iave p1nbe detects antinodes 3 .0 cm 
apart. What is the wavelength of the 1nicrowaves? 

A 3.0cm C 6.0cm 

B 1.5 011 D 12.0cn1 

5 A pipe~ open at both ends1 has a first ha.nnonic of 30 Hz. The frequency 
of the second ha.m1onic is: 

A 60Hz 

B 15Hz 

C 120Hz 

D 40Hz 

6 Wh,en a wav,e reflects off a dens,er n1edium, i ts phase change is: 

A 90° 

B 180° 

C 360° 

D 45° 

7 Which oJ these statements i.s incorrect about interference patterns for light? 

A Dark fringes are caused by the interference of waYes \Vith a phase 
difference of 180°. 

B Dark fringes a.re the result of constructive interference. 

Light fringes are caused by the inte1·ference of ,vav,es with a path 
difference of a ,vhole number of wavelengths. 

D Dark fringes are the result of destructive interference. 

8 Light ,of Vv'"avelength 500 x 10-91n shines through a pair of narrow slits 
0. 5 mm apan. The separation of fringes on a screen 2 m away is: 

A 2 x 10-4m C 2 x 10-3 m 

B 1.25 x 10-3 1n D 0.125m 



9 A diffraction grating has 500 lines per mm. 

a) ,Calculate the spacing of the lines on the grating. (l) 

b) ·Calculate the angle of the 3rd order diffraction lines when light of 
,vavelength 633 nm shines through the gtating. (3) 

c) Explain if it is possible to see the 4th order diffraction lines. (2) 

10 Youngs double slit e,...periment is set up using slits set 0.3 mm apai-t 
and a screen 2m from the slits. A student shines light of ,vavelength 
557nm fron1 a ktypton source through the slits and measures the 
fringe pattern. 

a) Calculate the "vidth oft n fringe spacings. (3) 

b) Describe the changes the student could make to increase the 
separation of the fringes. (3) 

11 A few· people can se,e a spectrutn caused by diffraction through their 
eyelashes. 

a) Explain the conditLons needed for a diffraction pattern like this 
to be seen. (2) 

b) The wavele-ngth of visible Hglu is 400 nm to 700 nm. Your eyelashes 
have a separation of about 0.1 mm. Use this information to estitnate 
the angles at '\vhich. the 4th order spectrtun ,viU be seen. (4) 

c) 1Comi-nent on your ans,ver. (2) 

12 a) Explain ,vhat is meant by a stationary ·wave. (2) 

b) i) The frequency of the microwaves generated i.i-1 a micro\vave 
ov,en is 2 .4 GHz. Calculate the wavele11gtl-1 of the waves. (2) 

ii) Using your answer to part (i), calculate the distance bet\veen 
antinodes inside the oven. (I) 

c) A person placed a plate of grated cheese inside the n1icro1-vave oven~ 
51,vitched off the tun1table and turned tl1e oven on £01~ about 30 
seconds. State and explain \vhat would happen, and ho,v 
a person could use this to verify the frequency of the microwaves. (2) 

13 Discuss the fomiation of scationaty wave.sin an open pipe. You should: 

• include a diagram of the first harmonic, explaining ,vhere nodes and 
a:ntinodes are found 

• describe hoVr-ar nodes and antinodes form 

• e>..-plain what conditions are needed for the fonnation of stationat'Y ,~laves. 

The quality of written ,comn1.unication \Vil1 be assessed in y,out answer. (8) 

14 Coherent light of wavelength 460nm shines on a pair of parallel slits; 
a pattern of dark and blight fringes is seen on a screen some distance 
away. 

a) Stat one reason why the ,experiment was impnrtant when it was 
first performed 200 years ago. (I) 

b) Explain vlhy coherent waves are necessary for this experiment. (2) 

c) 1Calculate the ratio of slit width to screen distance if d1.e fringes 
are 1.8mm apart. (J) 
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II 15 a) A laser emits monochromatic light. Explain what is meant by 
1nonoc.hromatic Hght. 

Blue light from a laser travels through a single slit. The intensity 
graph for the diffracted blue light is shovrn. 

b) Explain hov.r the intensity graph char1ges if a different laser 
that emits red light is used. 

c) State and explain one risk of w,o,rking Vlith lasers, describing 
how to reduce this risk. 

d) The red laser light i.s replaced by a non-laser source -mitting 
"'rhitc light. Describe the n,ew appearance of the pattern. 

1 Monochromatic Hght o,f ;,vavelength A shines on a diffraction 

(1) 

(2) f 
~ 
m 

(2) £ 

(2) 

s ing le-sl It d lftractton pattern 

0 ... 

gmting1 which has Hnes separated by a. distance d. Figure 6.21 

a) Derive the formula : dsin 9n = nl for light of wavelength A 
shining through a diffraction grating of spacing d where 8

11 
is 

the angle at which the nth order maximum occurs. (4) 

b) Describe and ,e:,,..1Jlain two ways that the pattern of n1a:ximum 

intensities changes as ·ihe wayelengtl1. in.creases. (2) 

c) Calculate the wavelength of light for 3rd order fringes. The 
spacing of the gra1ing is 1 x l o-6m and one sharp maximum 
is seen at a diff racti-on angle of 70°. (2) 

II 1 7 A grating with slit separation of 2 x 10-6 m is used analyse a 
helium spectrum. A blue line au.d a Ted line are observed very 
close to each other at 42°. What 01·d.er are these lines"? (Range of 
red light is 6i5 nm to 700 nm: range of blue light is 440 nm 
to 490 n1n.) (5) 

II 18 A grating has 300 lines per mn1 ru1:d is used with a laser that 
emits light of \Va.velength 7 x 10-7 m . 

a) Wnat is the slit spacing of th e grating? 

b) lf the light is incident at right angles, ho\\r many orders of 
diffraction are visible and in what directions do they occur? 

5 re eh and challenge 
19 Compare the three Vlays of observing int,e.rference patterns: 

Young~ double slits, diffraction gratings and diffraction through 
a single slit~ including a discussion of why the patterns form. 

20 \Vhite light travels through a diffraction grating. Use calculations 
to work out the lowest order spectrum \.vhen colo,urs overlap Vvith 
the neXJt ,order spectrum. The wavelength of red light is 700ntn 
andl violet light is: 400 nm. 

0) 

(4) 



21 A stellar intederometer is located on a cliff top , 100m high. It is 
used to study I.Sm ,vaves from the sun . 

R 
recerlver 

!100 m 

Sea 

Figure 6.22 

a) Using the letters on the diagram 1 name the path differe.nce that may 
give rise to interference. 

b) The path difference is 200sin8. \~/rite down the condition for the 
receiver to detect an intensity ma11.."i.mum. Remember that there is a 
phase change for \Vaves reflecting off the sea. (Mathematicians might 
like to prove this r~-ult for the path difference.) 

c) Explain w]1y the intensity goes through a series of maxima and 
ntlnhna as the sun sets. 

d) WiU the changes in ma.."i{j_Jna and minima be most rapid when the sun 
is directly overhead or when it is nearly set? Explain your answer. 

22 Explain why a diffraction grating ,vi th 100 lines per mm produces a few 
shaiply defined niaxi1na wJ1en laser liglllt shines ihrough it~ W"'hereas the 
same laser shining through just two slits, produces equal areas of light 
and dark. (Hint: think of part of the grating-perhaps 100 lines. If the 

palh difference between the first and second slit is 1~0 ~ what is the path 
difference between the first and 51st slit?) 

23 Two microscope sHdes, length L, are placed flat ",ith one slide on top 
of the other. 

One end of the top slide is raised through a sn1-all distance D, enclosing 
a ~ledge 1of air between the two slides. 

Monochromatic light shines on to the. slides and a11 interference pattern 
of parallel, equally spaced fringes can be seen. 

a) Light reflects in two places: from the bottom face of the upper slide 
and from the upper face of the lo,.ver slide. \Nltich reflect, dray 
undergoes a phase change of 180°? 

b) Write dov.i11 the general condition for dark fringes to b e seen in this 
interference pattern. 

c) The reflection takes place VIThere the thickness of the air wedge is .a 
distance~ d. Write down an -el..l)ression for the path difference "rhen 
dark fringes can be seen in terms of distanced', and wavelength A. 

d) Use your ans\ver to part (c) to predict ho,v the fringe pattern would change if: 

i) the light source does not change but the air gap is filled with a 
transparent liquid 

ii) the only change is to increase the \vavelength of light. 



Introduction to 
mechanics 

·······~~••••f*••••······~···~•••t••••••'·····~·························'·························'··········'·· j PRIOR KNOWLEDGE ! 
! • A sca lar quantity ha,s only s,ize, for example a mass of 2 kg. ! 
' ~ i • A vector qua nbty Irias both s ize and d free ti,on, for example a 5 N force i 
I I 

! act ing downwards. i 
• • I • A force is a push or a pu ll. Forces are measured in newtons I N. f 
: • The size of a t,ur·ni :ng effect is called a turr, jng moment or torque. ! 
! • Turn11ing mo,ment - fo rce appli ed x perpendiic ular dis tance fro ,m, I 
• • 
i t h e pivot. : 
• • 
: • Newton 's fi rs t law of motion sta tes thet when rio force acts. or : 
• • 
: ba tan ced f orc:e s act on an olbj ect, tha1t objec t w ill remain at rest or : 
• + i co ntinue t o move ili'I a st raight line at a co nstant speed. j 
: ................................................................................................................ lllii 

Figure 7.1 Form u:'la 11 racing c a rs 
movi,ng at speed around a corner. 

Figure 7.2 A modern bridge with central 
pillar chords. 

Engineers who, build bridges, or who design Formula 1 cars, ne,ed a 
profound understanding of mechanics. Engineers use the la""'~ of physi.cs1 

and their knowledge of the strength and flexibility of inaterials~ lo calc.ula1e 
lhe size and shape of 1naterial requi.red at each stage c.f design and 
constn1ction. In this chapter you ,viU meet ideas abo,ut the vector nature of 
forces, and also the concept of turning moments. Both these ideas are used 
by design and construction engineers. 



~ -··························································································· 
: TEST YOURSELF ON PRIOR KNOWLEDGE j 
• • • • • • ! 1 Explai n why s peed is a scalar quan t ity and veloc ity :is a vector quanti1ty. ! 
• • : 2 Ma,ke an estim,ate of th e s i.ze of the followin gi fo rces~ : 

i a] The we,ight of an a:pple. i 
• • 
: b] The p u, s h on a peda l w h en you cy c Le. i 
• • I cl The drag, on a1 car m.ovi,ng at 20 m s-1• ! 
: 3 A pa rach uti,st fa lls at a co nstant speed of 5 m s-1. Which of the i 
i foUow in g s tatements is tr ue? i : : 
: a] The pull of gra:vity on the parachubst is grea,ter than the dra19. i 
i b) The pull of gravity on the parachutist is less tha,11 the drag. i 
i cl The pull of gravity on the parachutist is the same size as the dragi. i 
i 4 a] Expla in wny it is eas ier to undo a nut using a, spanner w ith a long J 
: handle. : : . 
! bl Calcutate the turning mioment when a force of 30 N lS a,pptied at ! 
i night ang les to the hand le of a spa,nner with a te,ngith of 0.25 mi. i 
• 
······················· ·······~,······················ ·······~~·····••t••···· ········ ........................ .... 

o~~~~~~~-s c a La rand vector quantit ies 
A .. c la r qua n i its one wh rch has size only. 

A t qu nti , is one whic:h ha5 size and 
d ~lfe.Cti O 11. 

A ~ ultan ector is the vector that results 
from addin.g tvvo or more vectors in a v,ector 
sum (e.g. riesultant force or resultant 
d ~splacement). 

A scalar qu;.u1Lity is one that only has size. Scalar quantities include: 
m ass, ten1perature, energy, d.istance 1 speed and tim.e: . '\/,le say that 'room 
temperature: is l 9°1C'; i t makes no sense to say ~19°c westwards' . 

A v~ctor quantity is one that has magnitude (size) and di19 ection. Vector 
quantities include: force, acceleration, v,elocity and displacement. Velocity 
and speed se,etn like si1nilar quantities, as they both can be tneasured in 
ms-1. But, if you ,wile that a car is travellh1g at 30ms-1 , you are talking 
about a spee~ ,vhen you ,~rrite that a car is travelling at 30ms- 1 due 
east, you have used a vector quantity; ,.vhich is called velocity. ]n a sin1ilar 
way, tl1e word displacement is used to describe a distance travelled in a 
particular direction. 

You have learnt to add ·Or subtract simple v,ectars. In Figure 7.3 (a) t,vo 
furc,es acting in the s an1e direction add up to make a larger r. sull al force 
of 200 N , and in Figure 7~3 (b) t\vo forces acting in opposite d.in?ctions 
make a smaUer resultant [orce of 300N. 

100 N 

100N 

10)N 

+ 
100 N1 

200 N 

BOON 

+ 
SOON 

:300 N 

SOON 

Figure 7.3 [a] two forces acting in the s@.me d~rection and [b] two fa rces actiing in 
opposi te directi ons. 
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~ ·····················································································································································: 
: TEST-YOURSELF ~ 
• • • • • • 
: 1 Name three sca lar and three vector quantrtiesi : . .. 

including at least one of each that do not a1ppear N f 
on th i s page o r on pa g e 12 3. i .. 

2 Which of the fol lawingi a,re vector qua,ntiUes a,nd : 
: which are ::,ca ta rs: densityf volume~ 'momentum l 
• [mass>: velodtyL we~ght, gravita1t1onal fi eld ~ : 

i stre ngth, electrica l r·es i sta nee, p otentla l . 101<.m : 
difference? : 

25kim : 3 A motorist drives from, Abi nton to Barmouth via -------------- -- - • 
, Chine Roundabout i(see Fig,ure 7.4]r. The journey f I takes 0.8 hours. Calculate: I 
• ) t : a the distance traveUed and th e d'isplac ement : 
I • 

: of t h e c a, r. : 
~ . 
I b) the avera,ge speed of the ca1r during the 'Figure 7ai. Route, map of journey from, Abinton to I 
i journey and' th e avera,ge veloc1ty of the cair B~rmouth via1 Chi,ne Ro,undabout. f 
i during the journey. ! 
• • 
=··········~······~··············~·····~···········~··················,·········~~·-········~·,················,·~·······~··········~~·······~· .............................. . 

()~, _T_h_e_a_d_d-it-io_n_· _of_v_e_c_t_or-s~~~~~~~-
The method of adding vectors is illustrated by the following example. 

A rambler watks a distance of 8 km travell:ing due east. before 
watking1 6 km due north. Ca lcula te their displacem,er1t. 

Answer 
0 1isp lacement is a vector quan t fty. so we m,ust ca lcutate its 
ma gin i tu d e an d d ire et I on. Th j s c a ,le u la t i o n i f o r v e c to rs at rig h t 
ang les to each other; can be done using Pythagoras· theorem, 
and the laws of tr igonometry. 

[AC )2 = [8 km)2 + ! 6 km)2 

[AC )2 = [64 + 36) km2 

=t> AC~ 10 km 

A 

Figure 7~5 

Directions can be ca lculated on a bearing from due north; th is is tne angle 91 
in Figure 7.54 which is also th e angle 61~ i1n th e tr,iang le. 

tan e 8 km 
6km 

~ e- 53° 

The displa,cement is 10 km on a beari'ng of 53°. 

C 

6km 

B 

N 

You. are expected to be able to, calculate ve,ctor magnitudes when two 

vectors are at right angles~ but the calculations are harder when two vectors 
are separated by a different angle. Now the magnitude can be calculated 
using a scale dra.wing. 



PLE 
In F1igure 7.6a. a U ner j,5 be~ng pulled by two tugs. What 
is the magriitude and di rection of the res ulta.nt force? 

Answer 

passenger llner 

Figure 7.6a A llinet be,ing puLLQd by two tugs. 

Figure 7.6b shows you how to make the sea.le draw1ing . 
The hNo vectors AB and AD s how the pulls from the 

two tug boats; these can be added by s1mply adding 
the vector BC fwhlch is para llel to ti.ne AD' to vector 
AB . The resultan,t force is represented by the vector 
AC. which can be measured to be 870 OOO N . 

B 

D 

400000N 
sca1·e 

Figure 7.6b Prepare a scale drawi1ng. 

~~~~~-~·········································································································································i 
t • 
t • 
• • 
~ 4 A plane flies due north wtth a speed of 420 km h-1 ~ 6 A li ght aeroplane. whose a1 r speed 1s 60 m s-1• is ~ 
i a cross wind blows in a westerly di rect ~on w ith a f Ly ~ng 1 n a. wester'ly gale of 4 0 m s-1• (Wester ly mean sf 
i speed of 90 km h-1. that the w1ind [s com jng from t he west.] f 
t • 
t • 

~ a] Calc ula te th e ptane·s ve lodty relative to the Draw vector d lagram s to calculate the plane·s ~ 
• d • : gro wn . ground speed 1 whe n: ; 
I b] Calc ulate th e hme taken for a 600 1km Hfg ht. al The pi lot keeps the plane head ing east. £ 
~ On anoth er day. th e plane f Li es due west w ith a b] The pfl ot keeps t he plane heading, north ~ 
~ ve loci,ty of 40 0 km h-\ and thewlnd blows fro m {the plane·s nose is poi nti.ng north, but jt ! 
i a beari·ng of 45,

0 
w ith a speed of 100km h-1. does not travel ri,orth because the wind blows ! 

• • i cl :Make a scaile drawin9 to ca lcu late the plane··s a sideways]. ! 
i veloc~ty. cl The pi lot now keeps the plane flying north. ! 
i di Ca,lcuil.ate the tjme taken for a 600 k!m flight. In which direction rs the p'lane hea:ded i1 n j 
; th is case? r_· i 5 C atcu late the resu!lta:nt fore e on the pta nre shown : 
• • : 1in Fiig·u re 7.7. : 
• • 

I lilft 22000 N i 
! l ' . . ~ • • • • 
~ . 
~ . 
• • • • • • 
: thrust from drag i 
i engines iSOOON iOOOON ! 
• • ' . ~ . • • 
~ . 
• • • • • • • • 
: WQlght 20000N t 
t • 

; Figure 7.7 : 
• • 
=···························~·················································································································· ........................ ...... 
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The resolution of vectors 

• ••~ e, ,... ••"' ,.. ,.., r• ,...,. 11:• ••'II•"",...,.•"' ra1 •• ... ra1 ... r•, •• ra, •• ra, a,,.. ... ••,. ...... r11 ra"! .... ••· • 

s 1 lnrr v et r Spllt ,t into tvvo 
mutually perpendicular co1m ponents. that 
add up to the ortginal ve,ct or. 

Figure 7.8a shows a passenger pulling his wheelie bag at the airport. He 
puUs the bag with a force , F, part of whicl1 helps to p ull the bag [orward 
and part of which puUs the bag upwards, " 'hich is useful "rhen the bag 
hits a step . 

The force, F: can be resolved into tvto components: a hoiizontal component 
Fb and a vertical component Fv. A vector can be res,olved into any two 
components that are perpendicular, but resolving a vector into v ,tical and 
horizontal components is often useful, due 10 the action of gravity. 

Using the laws ,of trigonometry: 

. 0 F sin =-! 
Fv F 

and 

Figure 7~8a and Figure 7.Bb 

You must m alke sure you 
understand yo ur tdg,on o m.etriica l 
formula s to reso lve vectors. 

\N 

Figure 7 .. 10 

F cos a,= ..Ji 
F 

The venical componenl of the force is: f v ·~ Fsfn ,0 

The horizontal con1ponent of the force is: Fh = F cos0 

In Fi·gu re 7.9. a ba ll is travelli ng at a velocity of 
25 m s-1 at an an gle of 30 ° to tne hcrtz ontaL 
Ca lculate th e horizontal and vertica l com ponents 
of the ball's ve locjty. 

Answer 
Figure 7.9 

Vh = [25 m s- 1~ X COS30 ° 

= 21 .7 m s-1 

Yv = (25 m s-1 ix s,in 30° 

= 12.5 m s-1 

An inclined plane 
Figure 7 .1 0 shows a car at rest on a sloping ro,ad. The weight of the car 
acts vertically down\n,,"ards, but here it is useful to resolve the v.reight in 

w 

~vs1ne 

directions parallel (U) and p rp,endicular (.1) to the 
road. Th comp·onent of th,e weight parallel to the 
road provides a force to accelerate the· car downhill . 
There are other (orces acting on the car, ~lhich are 
dealt ·with in Figure 7 .12 . 

The component of the weighit acting along the slope is: 

\\711 = W sin '9 

The component of the weight acting perpendicular to 
the slope is: 

WJ_ = Wcos61 



1100 N 2500N SOON 

Figure 7 .. 11 

N 

w 
Figure 7.12 

2200N 

w 

Forces in equilibrium 
You met the idea of balanced forces in the prior knowledge 
sectim1. In Figure 7 .11 the 1notorcyclist has a weigh t of 

800 N and the bike has a w eight of 2500 N - a total of 
3300N. Those forces a1"7e. balanced by the two cnn tact forces 
e~en ed by the road, so the bike remains at rest. This is an 
example ,of the application of Nev.,-ton~ first law of motion. 

The example in Figure 7.11 is easy to solve as all of the forces 
act in one direction. Figure 7 .12 sho,ws all the fore s acting 
0 11 the stationary car first shown in Figu i·e 7. 10. New tons 
fi rst law of motion applies to this siruation too 1 although the 
forces do not all acl in a straight line. However the vecto·r 
sum of the forces must still be zero. Three fooces act on the 
car: its vteight) .a nonual reaction perpe 1dicular to 'the road, 
m d a frictional force parallel to the road. 

The triangle of forces shows that ihe three forces - W, N 
an d F - add up to zero; so th ere is n o resultant force to 
accelerate the car. We can also explain ~..-T.rhy the car has no 
resultant force ~cting on it by resolving the forces alon g 
and perpendicular to t l1e plane. 

Along the plane: F = W sin 0 

A.t right angles to the plane: N = W cos e 

So the two components of the weight are balanced by 
friction and the norm.al reaction . 

......... ..... ,. ........... ,. .. ,. . ., ........................ ._ .......................... ... .................. ._ .... .. ,.., ........................... ............. ., .............. ..... .._ ................. ., ........................ ._ .... ,.., ..................... ._ ............................................... ..... ,.., ........... ._ ................................... ..,. ................ ._: 

Th e appar atus shown in Ffgure 7.13 prov ides a 
prac ti ca l way for yo u to t est the th eory disc ussed 
in th e last sec tiion . Three weig hts are set up in 
equHrbrru.m. A ce ntral weight, W3~ ·is suspended by two 
Ught stri·ngs that pass over two fr icti,o nless puUeys. 
These str ingis are attached to the we1g hts W1 .a nd W2• 

S1ince point O is stat~onary. th e three forces actin g on 
tha t poiin t, T1 j T 2 and W8, must ba lance. The tens1oris 
T1 and T2 a.re equal to w.1 and W2 respectively. 

wood·en 
board _.... 

pulley-.._ ..... 

WIJ. 

. ..._---...... p u II ey 

,,......_t1" string 

slotted 
metal 
W9l'ghts 

We ca n dem onst ra te th e balan ce of forces by 
r e soilving the for ces a et~ n g on pof n t O vertf ea ~ty 
a1nd horizantaHy. Th e farces must balance in eec h 
d i·rectio:n . 

So. resolvrng ho ri.zontally: T1 sin 01 = T 2 sin1 02 

And resolving ver ti ea lly: T 1 cos e, + T 2 cos e2 ~ w 3 

We can check ,using the example num bers in, the 
diag,ra mi: 

T1 sin ,81 
• 3 N sin 60 - 2.6 N 

T2si1n0 .. 5 N srn 30 .. 2.5 1N 

So th e hor izontal components batance to with in a 
reasonable exper imentat error. 

Resolving ver ti·ca lily~ 

3 N cos 60 + 5 N cos 30 ::;; 5 .8 N 

' 
= : 

; Figure 7.13 In thii s example a1 = 60° and 02 ~ 30°. c:f)i 
! .. """""" """' ""'" "" r rYr""'"" ,.. , .,, ..,.., , ... ., ,. " " . ,. ., r,, """""" ,.., ,.,..., ,. . , "" """ """ "" rr, r, , r, ..-. , .. ., rr , r, • "" """'""~"" ,. ,.., r, , "" ••., r, .,. ., """ ,. ...... ., """"""' ,.,. ., """ "" """ ""' rr, ,. .,., ,.., --,,,. ,. .,. ., ., ,. ., """' ,.., ., ,. ..,. .... , ,.., ,.,. ., ,.., .. ,. ., "" " """ r, ,.,. ., ,. .,., r, ... ,. ,. ., rr, """' "" ,.,...,. ... ~,., ,.,. ., ,..,., r, """ "" 111r, r,, """""" """""" """ r, • "" ,. • ., r, ,. ,.., • 
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And, to within a reasona ble exper 'imental error, the 
vertica l co 1mpone nts ba lan ce too: th is 'is c lose to the 
welght of 6 N shown 1'n the df agrarn . 

a) Discuss how yo·u would measure th e angles 01 
a· n d '82 acc,u rateily . 

b) Di,scu ss what oth er sources of error might 
conthbute to th e si,ze of errors seen in th ese 

checks. 
1 ! cl A student now ca rri es out so me experiments 
I and ~n each ca,se tri es to calculate the unknown 

com plete the tab le, filllng f n the gaps. Suggest 
what we1ght the st udent actually used ; in each 
ca·se she used wei.ghts that were a wh ole number 
of newtons. 

Table 7.1 

W1/N ·;i {'/Jj I!!_ . ·W·/ N ·• e, • 'ei. 
6 6 60° 60,C 

8 8 40° 40° 
7 14 ,42° 28° -

= j we1ghts or angles shown fn Ta,bte 7. t Copy and ~ 6 8 10 53° 
I •• . •. . ii• ••• •• •••••• •• ••• ••• •• ••• • ii•·• ... ........ . .......... .. ........ . ... •• -•• ... ..... .. ........ ..... . . . .... ••-•• ... ..... . . .. . ... .... ... .. ••- ••••• ••• ••.••••• •• ... .. ••Iii•• ...... ..... ..... . ii ......... . ...... . . . . . . .. . . . .. . .. . il ... . .. .... . .... . . . ... ... . . ,. ..... ... ... . . . ... . . ..... .... ~ 

·····················-················~····~·········-····6····················~· ······~··~· ···-······~·········6~··········-·········· ·············· 
TEST YOURSELF 

7 An oi.l tanker ~s pulled into harbour by two tu gs. 
Each tug appltes a force of 180 OOO N at a n angle of 

: 37° to the forwards dfrec tion of th e tug,. Ca1lculate 
~ the resultant force on th e tu g. Yo u may ea lc u late 
: th .is o r use a sea le draw ing. 
• • : B Thr e e men are try1Lng to move a p:iano. 0 ne pu shes 
• : southw ards wi th a force of 100 N; th e s eco nd 
• 
: push es westwa rd w1th a for ce of 173 N; the thkd 
• : pushe s in a dfrecti on 60 ° e a s t of north w ith a 

• • • • • • • • • ,i 

• • • • • • • • • • Ii 
• • • • • • • • t • ;i 

• • I 
• t 
~ • ' 

force of 200 N. Calculate the resultant for ce on 
the pian o. 

9 A he licopte r rotor provi des a Uft of 1'80 OOO N whe n 
the blades are tilted 10 ° from th e hodzo n ta l. 

a) Heso lve the lift into horizonta l and verbcal 
co mponents . 

b) Th e he Ucopter ls flying level. Calc ulate its mass . 

Uft 180000 N 

,oo- .. 

B-f::---- . ---.... -1m 

! 
Figure 7.15 

al By res otv,ng the weights of the cycliist and 
th e bike, ca[culate th e force ac trng down the 
stop e. 

b] Calcu late th e force he m ust exe rt on t he road 
to cli m b at a constant speed. 

11 A m.ass1ve ba l t is suspended on a stri ng 1 m Long. 
a nd P'U lle d sideways by a force of 1 N th rough a 
di sta nee of 30 cm . 

• .. 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

aJ Calcu la te th e angle 0 ; 

s how n ~n Frgure 7.16. i 
• • b] Make a s ca le drawin,g : 

[1 n th e form of a vector : 
tr ian9 le ]of th e thr·ee ·.1 

fo rces that ac t on the • • I 

ba ll: its w eight W~ th e : 
tens ion f n t h e s t r i n g T~ i 

! and th e sf·deways ,pull of ! 
: 1 N. Use the triang le to ~ i------..._ 1N : 
• I 

: Figure 7.14 calcu late the mag1n1tud e : 
! 10 A cyclist climbs a 1 in 5 sl ope as shown in Figure of W and T. I 
: 7J 5. The combined weights of the cycli st and the cl Check your answers by 0.3m : 
I • 

: hike are 950 N. The frict iona,l forces acting on the calculaHon. Figure 7.16 ; 
• • 
: cy c l i1 s t a re 4 0 N . : 
• • : ...... ................................................................................................................................................................ ~~ 
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T urn in g moments 

[b) ... l ... 1-------- 0.8 m ---~.., 
I 

Introducing moments 
You knovil fr.om experienc,e that it takes a large force. to itu rn the lid on an 
unopen ed jan1. jar> and th at it is easier to tun"l a screw using a screwdriver 
with a b road handle. So 10 tum some'thilng effectively i t is necessary to 
apply a large force and to apply that force at a large distance fron--i the 
central point1 or ph· t , of the rotation. 

The size of the turning effect is called a turning 1no1nl·n1 or torque . 

Turning moment= force applied x perpendicular distance from the pivot 

Figure 7.17a and Figure 7.17b illustrate the importance of the 
perpendicular distance. ]n figuI"e 7.17a there is no, tu1ning effect when the 

100 N fiorc,e acts through the pivot. However, in Figure 7. 7b: 

Figure 7.17 

orr.. n The force x perpendicular distance 
fro1m the piiVot. The unit of a moment is Nm 
or Nr m1. 

,, Th,e point about which an o,bj,ect 
rot ates. In Figure 7.18 the support of the 
s,ee-saw js the piivot. 

Eq•1i ' ium An object is in eql!Jmbrium, 
when the sum1 of the forces= O and the sum 
of the turn,ng moments = o. 

Turning moment = lOO N x 0.3m 

=30N m 

You know from. Ne\vton's first larw of 1notion th at an object "'rill remain 
at rest if the forces on it balai-1ce. However) if ithe body is to remain. at 
rest without translation al m ovement) or rotation ; then d~e sum of th e 
forces o n it must balancej and the sum of the moments on the object 
must also balance. 

.Another v.ray of-expressing Newton s firs t l a\\r is to say that when the vector 
sum of ithe forces adds to zero, a body v.,ill remain at ·rest or move at a 
constant velo city. 

Figure 7.18 sh ows two children on a see-sai;c.~ The see-sa\v has a weight of 
200 N , \vh ich can be taken to act through its suppon. We can sho,v that the 
see-saw is in. equilibriun1 as [oUows. 

ASO N 

Figure 7,,18 

I 
I 1 m _ ___,..,.. .... ,,-m111- - 1.5 m---111-
1 
I 
I 
I 
I 
I 
I 

200 N 

clocKwlse 

300 N 

The anticloch""Wise turning moment of the boy = 450 N x ] .0, m = 450 Nm 

The clock'Wise turning inoment of the girl = 300N x 1.5m = 450N in 

Since the clock\.vise and anticloch.-wise moments balance (or add up to 
zero)) on e condition for equiUbriu1n is met. 

The total weight of the see-saw and the children , which acits on its support 
is: 450 N + 300 N + 200 N = 950 N. The support provides an upwards force 
of 950N on the see.-saw, so the resultant force acting on itt is zero an d the 
see-saw is in equilibrium. 
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Thg n r f m iS> the po~nt in a body 
around which the resultant torque due to 
the pu U of grav~ty is zero. 

Figure 7.22 Th,e rocking toy ,is stab Le 
because fits centre of graviity Lies below 
the pivot. 

Centre of mass 
Figure 7.21a shows a rod in equilibrium on top of a pivot. G1-avity acts 
,equally on both. sides of the rod> so that tl1e clockwise and anticlockwise 
turning m oments balance. This rod is equivalent (mathen1atically) to 
another rod that has all of the mass concentrated into the n1idpoint; this 
is knovvn as the e n lrc n [ n1ass. In Figure 7 .21 b the \veight acts down 
through the pivot> and the turning moment is zero. 

(a) R (b) A 

tlVOI 
l pivot 

wel ght we lg:ht 
w 

Figure 7.21a, Figure 7.21b and Figure 7.21c 

(c) 
centre of 
gravity 

w 

The centre of 1nass is the point in a body around \vhich the resultant torque 
due to the pull of gravity is zero. 

TI1.is means that you can always balance a body by supporting it under its 
centre of mass. ln figure 7 .2 lc the tapered block of w,ood lies nearer to the 
thicker end. 



----_ ... 
.... ---- ..... o.sm -

100N 

Moments in action 
When ,ve look al problen1s in real situations they are nol ah,1ays as 
straightforw.ard as the exan1ples above. Figure 7 .23 sho¥1~ the action of a 
forc,e to turn a spanner, but the line of action lies at a.n angle of 4' 5° to the 
spanner. HoVi7 do \Ve detemline the tun1ing mon-ient no\v? 

This ca11 be do,ne in t\vo ways. 

First, a scale drawing sho,ws that the perpendicular distance between the 
line of the force and the pivot is 0.21 m, so the tun1ing n1on1,ent is: 
100N x 0.21 ·m = 2 Nm. 

Secondly, the turning moment can be calculated using trigonometry, 
because the perpendicular distance is (the length of the spann r) x sine. 

~Moment= F x l x sin0 

= ]OON x 0 .3m x sin45 

=2.lNm 

Figure 7.24 shows a man standing on a sma ll bridge; he has a weig ht of 
800 N and the brfdge has a wef g·ht of 1200N. wh ich acts th rougih the midpoint 
!centre o f mass}' of the bridge. How can we use the principle of moments to 
ca lculate the reaction forces, R.1 and R2• which support the bridge? 

Answer 
If we ca lcu la te the moments 
about A. th en the clockwi'se 
m,omen.ts of the two we igh ts are 
balanced by the antictockw1ise 
m,oment of R2• 

It fo llows th,at: 

R2 x 5 n1 = 800 N x 1 m + 

l 2 00 N x 2. S m 

A 

BOON 
1:200N 

o 1 m 2m 3m 
R2 x 5 m, = 3800 N mi 

R2 ~ 760 N 
Figure 7 .. 24 

iBut the sum of the forces~ in, th e 
vertical direction! ·m,ust also ba,tance: 

R 1 + R 2 • 8 00 'N + 1 2 0 0 N .. 20 0 0 N 

R1- 2000 N - 760 iN - 1,240 N 

B 

4m 5m 

1R, is la·rger than R2 because the m,an is standing, closer to A than to B. 
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Figure 7.25 

Couples 
In Figure 7.25 a force is applied to an object. Th.is will have t\VO effects. The 
fi1-st is to set the obj,ect off n1.oving in the direction of the force (translation); 
the second is to start the object rotating abou t its centre of gravity: If th e 
intention of applying the force is just lO rotate the object) applying one 
force is inefficient because it sets the object 1no,ving along too. To avoid 

II ••I'•• Ill•••••"••••• PIO• 111• ••• •• 11!•9 •ii••• • 911! • !0 ""'••I Ii• P 111 ••• •• " " "' •• ••• •• P'!II • ••••ii•• 1• ••• S 

this probletn ·we often apply two forces to th e object that are paraUel but in 
opposite cli1--ections; this is called a -.ul I ·. l A pai1r of forces that pr,ovide a tum1ing 

eff,ect but no translational movem,ent. They 
act in o ppos~te djr@ct4ons. are para,Het, but do 
not act along thE! same Une. 

A c,oupl is shown in Figure: 7.26a. Y:ou apply a couple wh 11 you tun, a 
steering vtheel; the two forces tum the whe,el but exert no translati,onal 
force. If you take one hand otl the wheel (which you should do, only to 
change gear), you can still exert .a couple but the second force ls appHed by 
the reaction from the steering v.-"'heel (see Figure 7.26b) . 

• • • • • • • • • • • • • • • • • • • • • • • .. 
• II 
• I 
I 
• • t 
t ; 
• • I • • II • • : : • • • • • • • I • i • • t • • 
!! • • I • • • • • • • • • • • • • • • • • 

20cm (b] 

10N 

1'0 N .20N 

Figure 7 .. 26a and Figure 7.26b 

•••• ••••••••••••••••••••••••••• •••••••••• •••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

TEST YOURSELF 
• • • • • • • • • • • • 

15 Fi9ure 7.27 shows a window c leane r carryi1ng a 
!ladder and bucket . 

•I 
I 
I 

80 N 2JN 

Th e bucket is now moved to th e oth er end of the 
ladder, 1 m away from her s hould e r . 

c) Calc uta t e th e r eacti on force now . 

d) Expla in how the wo man can arrange the bucket 
and tadder so that the rea.ct:ion force is on ty 
,,ooN . 

• • • • • • • • • • I • • • • • • • • • I 

16 The man shown in 1Fi gure 7.24 now stan ds 2 m ! 
! away fro m A. By takin g m·omenits about B, : 
• ca lculate th e rea,ction forces H1 an d R2• : 
I 
I 

17 Ca,lcutate the two co uples in Figures 7.26a and i 
7.26b; com:ment on th e answers. i • • I 

18 The unrt of a turning m,oment is Nm. The jou le4 i 
~ 

which is tn e unit of work, can also be written a·s Nm. : 
• 

Expla·in why a turn~ng, moment is never described I 
• 

as a joule. Hint; how do you calculate the work done : 
• 

Figure 7.27 when a turning moment moves an object? J 
• 

a) Ca lcula te the fcrce
1 

F. s h e m,ust exert to 19 l="igure 7.28 show s a w ind surfer i·n act ion. ~ 
balance the la,dde r. Th e sa il expedences a Uft, L, which can be : 

• 
• 

b) !Now catcutate th e reac tion f ro1m her s houlder rep resented by a force of 500 N a,s shown~ th is : 
: to s upport the ladder. ac ts a t an a,ngle of 3 0° an d a t a he1g ht of 1.5 m i 
: ~ ~ 
• '---r/ • 
• • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
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~ .above the board . The surfer has a weight of 650 N. 20 A LJ1n:iform, beam AC 1s 6 mi Long . It is su pported at ~ 
: How far out does lne have to Leain to batance the two points, B and C. where AB = 1 m,; BC= 5 m. : 
• • i board? The we~ght of the bea 1m is 250 N. i 
i a] Calculate the reaction forces from, the : • • • • f support s on the beam at poirits 8 and1 C. To i 
! sta rt solving th ,is problem. take moments f 
i a bout poi1nt B. i 
i i, 

• L A man of mass 850 N stands on the bea,m at a I I point D. The reaction forces from the supports at I 
t i 

: '8 and C are now equa l. i 
I I i b] State the si,ze of the two react ion forces now. i 
! cl Calculate the distance AD. I 
i 1,.Sm 21 The Royat Engineers buHd a small bridge to ! 
i 1 cross a river. The bridge js 1'8 ,m tong and 1is i 
: supported at each end by two pilta,rs of concrete. i . ' . : The bridge is O i1 u nrform cross secbon along : 
' . : its leng th. The weight of tine bridge span i.s ! 
• • : 3·2 OOO N. A Jeep wi·th its occupants. wrth a weight : 
• • : of 11 2 OOO N, 1s 6 m from orie end. Calculate the : 
• • 
: forces on the pilla rs . : 
: Figure 7.28 : 
• 
·················~···························································································································· ......................... .... 
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Practice questions 
I Which of the following quantities is a scalar? 

A acceleration 

B momentum 

C kinetic ener y 0 

D force 

2 TI1e direction and size of tv..'o forces acting on a body are shown 
in Figure 7 .29. The su1n of these forces acts along the line AC. 
Wbiich of th follo~ng paiJs gives the con·ect magnitude of the 
sum of the f 01-c,es, and the angle 0? A 

A O.ON; 34° 

B 7.2 N1 34° 

7.2 N, 48° 

D 8.4N, 42° 
Figure 7.29 

3 In Figure 7 .JO, a car accelerating down aJ slope under the action of 
gravity , its engine is turned off. The mass of the car is 800kg, and 
the frictional force acting up the slope against the car is 720N. 
Which of the answers b elow gives th e oorrect acceleration of the 
car do""71 the slope? 

A 8 .5ms-2 C ·4.9 in s-2 

D 4.0m s-2 

-1- Which of the following values gives the va]ue for the nonnal force N ,!Figure 7.30 

that the road exerts on the car in the previous question? 

A 7800N 

B 6800N 

C 3900N 

D 3400N 

5 Figure 7.31 sho\\JS a n1eta] ball supported by a string and held 
at an angle of 20° to the vertical by a horizontal force of ] .S N. 
Wbich of the following possible answers is the correct value foT 

the weight of tl1e ball? 

A 4 .1 N 

B 0.6N 

C 1.'4N 

D 4.4N 

I 
I 
I 
I 
I 
I 
200 r . . 

I 
I 

6 A plank of wood with a "'reight of 120 N rests symmetrtcally on two Figure 7.31 

suppotts, A and B1 ,vhich are 3.0m apart as sho\Vl'l in the diagram 
belo\v. A box of weight 300 N is placed on the plank a distance 
0. 75m from B. By taking moments about A, determine which of the 
a.1mvers is the correct reaction force. R2, exetted on the plank at point B. 

A 285N 

B 225 N 

195N 

D 180N 

7 The weig11t is no,v moved to the right of B, 
to a point v.rhere the p lank begins to tip up 
about B. \Vhich of the ansv,.rers below gives the 
correct distance between the box and point B? 

A 

3.0m 

,i!iil 

120 N 

14A 

6N 

--1.SN 

1.Sm 

B 

300N 

.I A 0.50m 

B 0.60m 

C 0.75m 

D 1.20m 
0.75m 

Figure 7 .. 32 

C 

18 



8 A piece of wood of weight 2.4 N is balanced on a support as 
sho'Wll in Figure 7.33. Which of the anS\vers gives the correct 
position of the ,vood's centre of gravity? 

A 0.8 n1 to the tight o[ the support 

B 0. 5 n1 to the tight o.f the supp ort 

0.4m t,o, the light of the support 

D 0.1 m to, the left of the suppon 

9 Figure 7.3i sho\vs a uniform ruler ,vhich is supponed at its 
midpoint. Two forces act on either side of the ruler as sho\\-11: a 
force)~ acting at an angle of 37c and a weight of 3 Non the other 
side. Th.e ruler is in equiUhrium. Which of the following answers is 
the closest to the value of the force, F? 

SN 
I 

r---------
1 
I 
I 

i, 

support 

:... 42cm ____..,i....., 35 cm ..,..i 
A 12N 

B 9N 

C 6N 

D 4N 

I I I 

3N 

10 The nder has a weight of 3 N. Which of uhe following answers is 
the closest to the vertical chnponent of the reaction force exerted 
on the ·ruler by the pivot? 

Figure 7.34 

A 12N 

B lON 

C 9N 

D 6 N 

11 Copy and co1np ,lete the table belo,v to show tl1e fundamental SI units of 
the listed quantities~ and to show ivhether each quantity is a vector or 
a scalar quantity. 
Table 2.1 U 

Quanti.ty Fundamenta L .Sl units Type of quantity 

Force ikg m s-2 vector 

Kinetic energy 

Accel@ration 

Displacement 

Power 

12 A sprinte1· is set for the start ,of a race. His ,veight, W~ is 780N and the 
1·eaction fro1n the track on his hands, R1, is 320 N . 

...,... _____ O.S1 m ____ ....,... 

Figure 7.35 
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By taking motnents about B, cakulate: 

a) ·the reaction R3 

b) the reaction R2. 

13 A truck has a we.ight of 16000N .and a load of 8000N. 
0.75m 

...----3.0 m---.... 

Figure 7.36 

a) Calculate the co1nbined moments of the load and the weight 
of the truck about point B. (~ 

b) State the principle of moments. (1) 

c) Use the principle of moments to calculate the reaction force R1, 

and then calculate R2. (3) 

d) S-rate the values of R1 and R2 when the truck carries no load. (1) 

(3) 

(I) 

II 14 A golfer decides to, detennine the position of the centre of 
gravity of one of his clubs. He balances it as shown i.n the 
di.a.grain. The mass of the club is 350 g. 

head 

a) Explain why this balancing arrangement produces a stable 
position of equilibrium. (I) 

60cm 

b) Calculate the ,veight of the club. (l) Figure 7"'37 

c) Use the information to deter1nine the position of the centre 
of gravity fron1 the head end of the club. (2) 

The golier no"'~ hits the ball with a speed of 45 ins-1 at an angle 
of 40P to the horizontal. 

d) Calculate: 

i) th vettica] co,mponent of its velocity (2) 

ii) th horizontal c.ompon nt of its velocity: (2) 

The ball is h1 flight for 51
• 9 s. 

e) Determine the distance the baU trav,els before it lands 
on the ground. (2) 

15 Figure 7.38 shoiw~ the fo·rces acting on a kite that is in 
equilib,ritnn. 

a) Use the information in the diagra1n to calculate the magnitude 
of the tension) T) in the string. (3) 

b) Now calculate the magnitude of the lifr on the kite) L. (3) Figure 7.38 

1 38cm I 14 cm 1 
""'I.,. 1111... Ito I 

I I I 
I I I 

halildle 

pJvot 0 
5.4N 



II 16 Here is a cable car vthich is stationary on a "Wire. 

a) Drraw"' a diagram for the point A ( v;rhere the 
car is suspended from the cable) to show 
how the three forces are in equilibrium. (3) 

b) Either hy scale dra\'\'~ing, or by calculation, 
determine the tension, I, in the cable. (4) 

II 17 A shelf ,vith a Vr-'Feight of 16 N is placed (Mthout 
being fixed) 011 two supports B and D (see 
Figure 7. 40) . 

a) Stat the size of the reaction contact forces 
at Band D. (l) 

A b-0x of weight 40N is nov,l p]aced on the shelf 
as shown in Figure 7.41. 

b) Use the principle of moments to calculate the 
reaction ,co11tact forces at Band D now. (4) 

The box is now moved to the left o[ B. 

c) Calculate the position of the b,ox so th at 
the contact force at Dis zero. (2) 

d) 1Calculate what additional weight yo1] would 
have. to place above C to ensure that the 
box ,vill not tip the shelf ,vhen it is placed 
at A or E. (3) 

II 18 A pedal bin is a labour-saving device i.n the 
kitchen. Pressing on the pedal ,vith your foot 
causes a series or pivots and leve.rs to lift the lid 
so that vou can thro\v 1'Ubbish into the bin. 

~ 

When the pedal is depressed> 1~od R lifts the lid 
(see Figure 7 .42). 

a) When a force of 20N is applied to the. 
pedal, as sho"\\111, calculate the force acting 
-upvvards at ,A> to lift the rod R (2) 

b) If 20N is the minimum necessary force 
applied to the pedal to lift the lid, 
calculate the weight of the lid. (2) 

) Calculate the contact force bet'\tve,en pivot 2 
and the lid as it is lifted by the 20 N fo,rc 
from the pedaL (2) 

d ) Explain how a small displacement of the 
pedal lifts the ]id a much. larger distance. (2) 

T 

W E;;; 13500N 

Figure 7a39 

T 

75cm 

25cm .... ... 25cm .... .. 
A 

A 
B 

Figure 7.40 

i 5 om 
----i)lo-. ...,..._ 

R1 

A B 

40 N 

Figure 7.41 

Ud 

Ptvot 1 

• C 

A 
D 

D 

3cm 
I I I , ....... ,scm.........i, 
I I I 

w 
R 

40cm 

A 

I I 
~ --~ ,-... - 1Bcm 

I 

• I 
I 1 9cm 1 

Figure 7.42 

E 

E 

Pivot 2 
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Stretch and cha Llenge 
19 The figu1-e below shows a big wheel al a fun[air. 

The "'heels centre of mass is at its centre of 
rotation, point 0. ln the following calculations, 
you may ignore any effects of friction. 

At present only two of the seats on the wheel 
are occupied: at A two people sit with a 
combined weight of 1600N; one person sits at 
B with a w.eight ,o,f SOON. 

a) Calculate th vertical force required at the 
embarking point C to prevent the \\-~heel 
rotating: 

i) in the position s ho,'W11. 

ii) afte.r the wheel has been rotated 
clock\vise by 60°. 

b) In what position will the wheel be in stable 
equilibrium? 

c) ln whicl1 pos~tion \vould you place two 
Figure 7.43 

more passengers > and what should their combined 
weight be, so that ihe wheel has no tendency to rotate 
in any position? 

20 A light, rigid straight beam ABC is smoothly hinged at end 
A) on a v,ertical waU and supported in a horizontal position 
by a ,vire, which is attacJied to the wall and the midpoint of 
the beam) B1 at an angle of 60° to the beam. 

Calculate the tension in the \Vire and the direction 
and magnitude of the force on the hinge ,,,hen a n1ass M is 
suspended fron1 point C. 



Motion and its 
measurement 

•••••i•••• ··· ·········· ··· ················· ···························· ·········•••i••························· : : 
i PRIOR KNOW LEDGE ! 
• • . ~ 

i • averag· e speed • dis.tance i 
• t1 me • : ! 
: • Speed is measure d in mi s-1 or km h-1• : • • j • Wh en we dea1l with the vec tor quant1iti es, di sp lacement and vetocity. f 
: we write a simi lar equati:o:n: i 
• • 
: l ·t d,isp lacement = : average ve' oc1 y ;;; . - : 
i t ime i 
~ • When an object speeds up it accelera tes, and when iit s lows down (t : 

i dece lerates. : 
• • i • Acee le ration is a vector qua ntiity as it ha.s a dfrectiio n. it is def i,n ed by I 
i this equa ti on : i 
• • i ac ce leration= c hange .o f vetoc ity ! 
: t1 1me : • • i • The units of acceleratio n are m/s per second; ustua Uy written as m s-2. : 
• • 
: • The 9ravHational Held s trength. g. nea r a planet is defined as the : 
• • 
: gra.vitational force act1ng on each kilogram: : 
• • 
: • On Earth. g = 9.81 N kg-1 : 
• • 
: • Newton's firs t law of motion : an object wrH continue to move in a : 
• • i s t r a,ight Ur1e with a constant speed !or remain at rest] unless acted on : 
• • 
: by an unbatanc.ed force. : 
• • 
i • Newton's second [aw of motiion: resultant fo rce = mass x acce leratiion : 
• • 
: • A vetod ty vector may be resolved into horizon.tat and ver tical : 
• • 
: components . i 
• t 

: .......................................... .. ................................................................ .... 

~ ------········---------········-·-----·········-·-----·······--------········----·-·-······= : TEST YOURSELF ON PRIOR KNOWLEDGE ! 
• i 
i 

i 1 A car travels at 40 km h-1 for 2 hours then 60 km h-·, for 4 hours . 

'i 

• • • • • • i 
i 

% • • I 
; 
• I 
I 
i 
I 
!! • I • II • 
+ 
% • ... 

: 
' !I II 
I • I 
I 
• 
I 

l • • • • 

Ca lcu late the car·s ave ra.ge speed. 
2 A ca,r stows down from a speed of 30 :m, s-1 to ~2 m s-1 ~n a tim e of 6 s. 

Ca lcula: te th e car's accele ra1tion . 
3 Convert a speed of 54 km h_., to .m s-1• 

4 A baH i1s fall ing in a di rec ti on at 35° to th e horizon tail w ith a1 speed 
of 12 m s-1. 

! 
I • • • I 
I 
I 
II 
II • 

I 
Ca lculate the vertical an.d horizontal components of fts ve lodty. i 

• 
5 An astrona u1t throws a ball horrzontally when standfng on the surface : 

I 

of the Mo on. where there i1s no atmosphere. ; 
• 

Draw a diagram to show the direct iorn of th e force '[s) ac ting on it. ! 
• !There is no need to ca lculate th e size of any. force.] : 
2 i .................................................................................................................. 
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Motion in a straight line 

Figure 8.1 Alan Eustace on hi1s way up 
to break Fe Lfx Baun gartner~s record . lin 
October 20l4. Alan fe U from a height of 
41 .5 km. 

E i ,I) B C 
1? 
(D 

E 
CD u 
ro 
a 
CJ:) 

=a 

3 5 10 
time/s 

Figure 8.2 A displacem,ent-time [s-f J 

graph for a wailker. 

as 

tl'me/s 
Figure 8 .. 3 A displacement- tiime graph 
for; veh icle th.at 1is ~cce Leraiting. 

The g.radient of a di sp'la cement­
tim e gra ph is velo city. 

In October 2012 Felix Baumgartner broke the existing r,ecords for the 
highest manned balloon flight. the highest altitude for a parachute jump 
and the greatest free fall v,elocity. He jumped from a height of nearly 
39 km and reached a speed of 377 ms-1 (1357 kmh-1). The successful 
completion of such a challenge depends on careful planning and design. 
Felix :need,ed a balloon inflated to exa,ctly the right p'Iessure at sea level so 
that it could expand as tl,e atmospheric pressure reduced at high altitude· 
he needed a pressurised space suit, capable of withstanding the shock ,of 
free fall; a:nd he i lied 011 the calculations ,of physicists using the equations 
of motion to predict his time of fall and knowing when it was safe to open 
his -parachute. You \\ill learn about these equations in the chapter that 
f o,}],o\VS. 

D1 isplacement-time graphs 
ln the work "vhich follows '"'~.e study motion in a straight line, but since 
the motion might be from left t.o right, or upwards then down,vards, the 
direction. is important. Therefore we shall use the vector displacemen t , S; 

and velocity; v. 

Figure 8 .2 shows a displacement-time (.s--t) graph for a walker. In the. first 
three seconds she walks to the right (whicl1 is chosen to be positive); then 
she stands still for two seconds> so her displace1nent does i-1ot cl-ia11ge; 
then she moves back to the left for fiv,e seconds and gets back to where 
she started. So, after ten seconds, her displacement is zero. 

The velochy of the ,v-alker can be calculated from the gradient of tl1e 
graph. 

Over the region AB,: 

(10- O)m 1 v = = 3.3ms-
3s 

Over the region BC: 

v=O 

Over the region 1CD: 

(O - lO)n1 2 - 1 v = = - n1s 
5s 

Because the gradient is negative over the region ,CD the v locity is negative~ 
the \valker is moving to the le[t. 

ln Figur 8 .2 there are three constant velocities . This 1neans that the 
gradients of the graph are constant~ so the graphs are 'straight line'. 
Figure 8.3 is a displacement-time graph for a vehicle that is accelerating. 
As the velocity increases, the gr~dient incr,eases. 

To calculate the velochy at point P~ we measure the gradient~ which we do 
by drawing a tangent to the curve at that po·int. We measure a sinall change 
in displacement, &1 whicl1. occurred over a small time u1terval~ at. 
Then 

As 
V - --

At 



~ -································································································································· ··················: 
: TEST YOURSELF f 
• • • 
: 1 
• : • • • : • • : 2 • • • • • 

i 
i • • • • • • • • : 
i 
! '(a I 
• • • • • ~ 
: • • • • 

Figu res 8.4a , b and c show displacement-tim e 
9raphs forth ree mov1ing objec ts. 1ln each case 
descr ibe, the matron in as ,mu ch deta il as poss,ible. 
Draw disptacement- tim e graphs to iiltu:s trate the 
motion tn ea,ch of the following cases . 

al A w alker travels at a constairit velocrty of 3 m s-1 
for 30 s. 

b] An express train stows down as it com es into a 
stat,ion and stops; five m inutes lat er it sets off 
and accelerates up to f ts ori'gin,a[ veloc ity. 

(bl 

s 

• • • cl A parachuhs t jumps ou t of a planei accele rates ; 
: 

to a high consta nt velociity before opening : 
the pa, ra eh ute a n,d co1miii'n g to 9rou n,d. Draw ! 
a graph w i,th th e ground as the point of zero ! 
di spla,ce ment i 

• d] A rubber ba ll fa lls from a he1gh t of 1 m a,nd : 
hits the ground . It bo,u nces back to height of ; 

• 
0.5 m. Sketch a gra ph to show t he disp lacement : 

• 
agains t tim e up to the second bounce. : 

i • • 
I 

(c] 60 ! 
• • • .. 
• • 40 : • • 

~m ! : s 
• • • • • • • • • • • • • • • • • 

o--~~---~~---~~--~~- 20 
" • • • • • • • • • • • • • 

: 0 t • • • • : Figure e., O~splace,ment- time graphs for th r,ee movi ng objects . 

0 
5 10 

t/S 

: 
15 ! 

• • • • • • • • • • • • • • 
• • • • • ....................................................................................................................................................................... llllllllli 

160 Velocity-time graphs 
At 

C 

20 40 60 00 1100 
tlme/S 

f-'i gure 8 .. 5 A velocity- t ime graph for 
an a f rptane at take off. 

20 ~A ........................................................................................................................ -.8 

A1 ;a 20 m s-1 x 1 e s 
1:. :320 m 

4 a 12 

tlme/s 
'1 6 

D Figure 8 .5 shows a velocity-time g1-aph for an aeroplane as it takes off. 
Initially; the plan e accelerates at a constan t rate, sh o,vn on part AB of the 
graph. Then the acceleration slows until th e plane r,eaches a constant 
velocity at p oint D. 

Over the part AB> you can see fron1 the graph that the acceleration is 
41ns-2. This is the gradient of the graph : (80ms-1)/(20s). But , ov,er the 
region BC~ the gradient is changing~ so we no\v use the fon1lula: 

where llv means a small change in velocity, and .6t means 
a stnaU interval of time. 

A2 ~ x 20 ms-1 x a s At point P: 

- av - 601ns-
1 

- l 25 -2 1:1 80 m 

24 

a--- - .. · ms 
fl.t 4·8 s 

Figur,e 8.6 s·ho\vs: h.o~, we can use a velocity-time 
gra.ph to calculate the distance travelled by a 
motorbike. ln chis gra·ph ) 'th e 1.notorbike travels 

Fi gure 8 .. 6 How to use a velocity·-time graph to ea lcu late the 
distance travelled by a motorbike . 

at a con s tant velocity over the period AB., before 
decelerating over the period BC. While the velocity is 
constant ) the distance traveUed is represented by .area A 1, 

which is 320m. 
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'While the bike decelerates, ,ve could use the formula; 

distance = average velocity x time 

But the average velocity is l On1s-1, which is the average of 0 1ns- ll and 20m s-1. 

So the distance can also be calculated using the area: 

The area u ode r a veloclty- ti me 
graph i,s th e di:stance trave lled. 
The g radi:ent of a velod ty- trm e 
gra ph is th e accelera tion . 

A2 = ! x 20 m s-1 x 8s = 80m 
2 

Figure 8 .6 also shows that when the gradien t of a velocity-time graph is 
zero , then the velocity is constant ; v.rhen the gradient is negative, the bike is 
decelerating. 

~ -··························································· ··········································· ··············································1 : TEST YOURSELF : 
l!I 
II • f 3 a] Draw a velodty- t i,m e graph for a t ra i,n t nat 
I s lows down and stops at a stait i:or\ and then sets 
; off a.-ga 1in in the sam1e dir ect ion, reaching the 
: sam·e speed. 
• ! b] Draw a second ve lodty-tiime graph for a t ra,in 
• 
: that co,mes into a term inus, stops an d then 
• 
: re tu r ns back in the opposite di rect i:on. reaching 
• : th e sa m,e speed. 
• 
: 4 F~g ure 8 .7 ~s a vetoc ity- time graph for the Magrlev 
• 
: t ra in, w'h i:c!h trave ls fro,m long:yang Station jn 
• 
: S ha nghai ta Pu dong lnternati onail Airport. 
• • • • • • • • • • • 41 
• • • • • • • • • • • • 41 
• • • • • • 

i 
U'J 

€. 
>. ..... 
-~ 
0 

120 
B C 

1100 

80 

60 

5 Frgure 8.8 1is a velo·city-tim e graph fo r a fi:rework 
rocket whi ch takes off ver tfcaUy and. wh en the fuel 
runs O·Ut. fa lls back to wh ere it took off. 

C 

F 

Figure 8.8 A Ve·Locity-tlme graph for a 
fi rework rocket. 

i a ) Explain why the gr ad ient g,e ts steeper over the 
40 i 

41 

: r eg,'ion AB. 

• ;II 

: • • • • • • • 
' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 41 • • • • • • • • • • • • • • • • • • • • • • • • 41 • • • • • • • • • • • • • • • • • D • 

: - b) At whrch point does the ro cket s top burn~ng? : 
• • 
: 100 200 300 400 t)' Explain why the giracfi ent of the gra ph should be : 
i time/s about 10 m s- 2 over the regio n C 0. i 
• • i Figure 8~7 A vetocity- tirme graph for the d] Why is th e g,radient zero over the reg,ion EF? ; 
! Maglev trai1n. e] Exp ta in why the areas A1 and A2 are the same. i 
: J : a Calculate th e trai1n·s acceleratlon over the 6 A rubber ball falls for a time of 0.6 s before hit t1 ng i 
I I 

: reg ion1 AB. the giro,und. It is in contact with the grou nd for 0.02 s, i.: I bi Calculate th e distance travelled wh en the train before bouncing upwards for 0.4 s; it then falls to 1 
: travelled at a consta,nt veloc ity. th e g:ro,und ,jn 0.4s. Sketch a veloc ity-t im,e g,raph for ! 
; c] Ca,lcula,te th e di,stance from Longya,ng Stat ion to the baH up to the second bounce. i 
i + • Pudong Airnort. i 
~ - I"" = 
i di Calculate the tra 1in's average speed for the j ourney. i 
I l!I 
I • • • 
········4···········4·4··························4····························4············4·········································44········ ....................... llllllllli 

()~ E_q_u_a-ti_o_n_s_f_or~ u-n-if-o-rm~ a- c_c_e-Le_r_a_t-io_n_· ~~-
So far you 11.ave learnt to analyse m otion USllng graphs. We can use a 
velocity- tin1e graph) ,~..rhere the acceleration is co11stant

1 
to derive formulas 

to help us calcu late velocity and displacem ent changes. 



V 

V4- U 

2 
v- u 

Area~ f (v - u)t 

Figure B.9 is a velocity-titne graph sho\ving a vehicle 
increasing its velocity mth a constant acceleration, a from 
an initial velocity~ u, to a final velocit~ v, over a tin1e, t. 

The first equation is: 

1 t
. change ,of velocity 

acce era 10n = --------­
tin1e 

v-u a=--
t 

u --------------------------------- Rearranging the equation to make v the subject of the 
fo·nn u la gives: 

Area._. ut u 
V = U + at (Equation 1) 

Ume/s 
The second e,quation is: 

t 

Figure 8~9 A veloc ity- time graph showing a vghrcle 
in crQasi,ng its ve Lo city with a cons ta n,t acc~le ration. 

disp]ace1nent = average velocity x time 

The average velocity is half way between the initial and 
.final ve:lo cities. 

Substituting for average velocity using: 

(u + v) 
2 . 

gives: 

(
U + V) s = t 

2 
(Equation 2) 

The dis placement: can also be calculated fron1 die aJ·ea under the velocity-
tin1:e graph~ which is the sum of the t,1ro areas sho,vn in Figure 8. 9. 

The third equation is: 

s = ut + ! ( v - u)t 
2 

(whicl1 is the area under the gt-aph). 

Therefore 

1 
s = u.t + -at1 

2 
because 

(v - -u) = at 

(Equation 3) 

(from Equation 1) 

The fourth i:.,quation, which links velocit~ acceleration and displacement, is: 

v2 = u.2 + 2as (Equation 4) 

Ther is none d to be able to derive these equations and you iwill find th m on 
your formula she,et. The dclivation of Equation 4 is shown in the Maths box. 

Th e fo ·urth equation ca,n be derived' as follows: 
V = U + at 

-t v2 = (u -+- a,t }2 
~ v2 = u2 + 2uat + a2 t2 

~ v2 = u2 + 2a ut + --lat2] 
2 

......; v2 = u2 + 2as {using Equation 3) 
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You drop a sto ne off the edge of a high cliff lmaking sure there is no-one 
below}. How fa.r does it faU after 2 seconds? 

Answe,r 
Use 

s !!::! ut + .lat2 
2 

The ~n it~al velocity is zero 1 and the acceleration due to gravity is 9 .8 m s-2• 

s • 0 + ! ic 9.8 m s-2 
)< 22s2 

s 19.6 m 

What is the displacement after 2 seconds if you throw 
the ston1e: 

lwi,th a.n downward veloc~ty of 5.0 m s-1 

I.J I wl th a u.pvt1ard velocity of 5 .0 m s-1? 

Answer 
We ineed to remember that veloc ity and d1splacement 
are vector quantities, so we need to define a direction . 
We w iH caH down a positive direction, and up a 
nega tive direction. [The choice is arbitrary; you can 
reverse the direction si,gns iif you wrsh .l 

PLE 
A ba ll is thrown upwards w~th an i,n,tial velodty of 
11 S,m s-1 from a height of 1 m above the ground. When 
does i:t rea;ch a heig,ht of 71m above the ground? 

Answer 
The first point to appreciate a bout this example is that 
there are two ti,mes when the baiU is 7 m above the 
ground: when it is on the way up, an,d when it 1s on the 
way down aga in. 

We use the same equation again~ using s g - 61m (for 
the distance travelled fro 1m the start}; u - - 1, 5 m s-1: 
g - 9.8 im s-2. Here the downward di rect ion has been 
def~ned as positive. 

Use 

s = ut + lat2 
. 2 

' Use 

s = ut + lat2 

2 

s = 5. () m s-1 x 2 s + .1 x 9. 8 m s-2 x 2 2s 2 
2 

S = 29.6m 

Use 

s = ut+ lat2 

2 

s = -5.0 m s-1 x 2 s + 1 x 9.8 m s-2 x 22s2 
2 

s = 9.6m 

1 2 -6 = - 1 5t + ...... ~ 9 .8 x t 
2 

4. 9 t2 - 1i 5 t + 6 ~ 0 

This can be so,bied 'using the sta ndard formuila for the 
solut~on of quad ra ties : 

t • 1' 5 ± ~ 1 5 2 - 4 )( 4. 9 x 6 
2 X 4.9 

t m 15 :I: l 0.3 
9.8 

t 1::1 2 .6 s or O .5 s 

So the ball reaches a hef ght of 7 m after 0.5 son th e 
way u P~ and passes the sa m1e he,ight on the way down 
after 2.6 s. 
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i TEST Y0URSELF .. .. 
• • • .. .. .. • • • • • • • • • • • .. 
i 
i • • • • • • .. 
! 
• • : • • • • • .. 
• 
i 
! 
4' • .. 
• • • • • • • • 

7 A ptane accelerates from, res t along a runway at 
a constant rate of 1.8 ,m 5-2. The plan e takes off 
after 40 s. 
a) Calculate the velo d ty of th e plane ait take off . 
b) Calculate the minimum length of runway 

required for the plane to take oH. 
8 A car stows down from a speed of 30 m s-1 to 

22 m s-1 over a distance of 120 mi. Ca lculate the 
decelerati1on of the ear . 

9 A Formu,la1 11 car aiccelerates off the grid reaiching 
a speed of 55 im s- 1 in 3.6 s . 
a] Ca lcu 'late the acceleration of the car over thi s 

time. 
b] Ca lculate tne di sta nce traiveUed by th e car i'n 

this tim e . 

which ,it pa sses at 30 m s-1 . How far from the 
stati:on wa·s the train when th e brakes were flrst 
appli ed? 

• • • • • • • • • • • • 
= • • • • • • 

11 A ca r starts from. rest with a u,niform acceleration : 
i, 

of 2 rn s-2 along a long st ra1ight track. At t1he i 
' moment the car starts. a second car passes i,t on I 

a pa1raUe l track traveUrng at a constant speed of i 
20 m s-1. Ca lcu late~ ! 

I 

a) the time at whiich the cars are tevel j 
bJ the velocity of the first car at that time : 

i 

cl the distance travelled by the first car when it : 
catches the second ear. ! 

J 12 A baU is la un ched upwards from ground level : 
w i t h a s p e e di of 2 0 m s- 1 • At what t i mes i1 s t h e b a: l l ~ 
at a, height of 10 m, above the gro und? [H int: look i 

• 
! 10 Ain expr ess train travelUng at 50 m s-1 applies j,t s 

brakes for 3 minutes before reaching, a statiion, 

at the exa mple above.l : 
• • • • • 
~ 

.. 
• • • .. 
: ............................................................................... . . ........................................ . . ..... . .............. .......................... llllllllllli 

Acceleration due to gravity, g 
One of the first scientists to study the acceleration of objects due to gravity 
,.vas Galileo Galilei. There is story that he dropped t,vo iron ha.Us of different 
1nasses from the top of the Leaniu.g Tov.rer of Pisa. Thereb~ he demonstrated 
that gravity accele1-ates a ll masses at the sa1n.e r ate> prrovided that air 
resistance is negligibly S1nall. 

By such an experin1ent you could calculate the acceleration due to gravity~ 
using the equation: 

s = ! gt2 

2 
\.Vhich l'es,'UTanges to give 

2s 
g=2 

t 
For exan1ple, GalHeo)s assistant could have tim·ed such a fall (from the top of 
the to,\·er~ which is 55 n1 high) as three and a quarter S\\ii n gs of his l -s,econd 
pendulum. 

2 X 55m 
g = 3.252 

g= 10.4ms-2 

This answer illustrates one of the. problems -Y.1e have if w e try to m easure 
g accurately. We need very accurate timing and; because the calculated 
ans"ver dep ends on the value of t2 , small errors in the measurement of t 
b ecome significant. 
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REQUIRED PRACTICAL 3 
Determination of g by a free-fall method 
Note: This is Just one exa mple ·Of how you might t.a.ckle this required 
pract1cal. 

Figure 8.10 shows an experimental arrangement using two tight gates to 
calculate the gravitations l accelerati1on. A steet ba,Ll is dropped through 
the two gates, and the times to f all th rough the gates are measured 
and recorded in the table. The ball is gu,irded th rougrh the light gates by a 
glass tube. 

Diameter of the baU [cm) 1.32 1.32 1.32 
Time for the ball to pass 8.3 6.7 9.7 
thirou , h a,t9 A [ms] 

T1ime for the ball to pass 2.8 3.1 5.2 
t1hirou , h at; B !m,s~ 

T~me for the b@ LL to pe1ss from 318 .0 219.7 121 .2 
the cenitir; of gate A to trhg 
ce ntre of g;;tg B [ms] 

Us:ing the resutts from expertment. 1. the acce[erat1on g is catcutated as follows. 
I i lne velocity of the ball as it fall s through gate A: 
= D.01132 m _1 
. VA= O.OHB3s = 1.59 ms 
: 

j Tne velocity of the bal'L as it falls through gate B: 

~ 
= : 

0.0132 m 
Vs = 0.0026 s = 4. 71 m s-1 

Vs- VA 
g = t 

4. 71 m s-1 - 1.59 m,s-1 
.... --~--~---

0.318s 

! An advantage of usingr ljght gaites and a co,mputer is that the 
• 
~ experim ent can be repeated sever-al times. and the computer 
i ca n be prog:rammed to ea Lcutate the acce le rat,io n directly. . 
; . 
i 
= ! 

t 
i 
l 
; 

! 
I 
! 
! 

1 The experi1ment is repeated using different separations of the 
l'ight gates. Use the da.ta in ex periments 2 and 3 to catcuta te 
the accetera ti1on due to gravity. 

2 Use the equait~ons of m,otion to ca lcu late the separations of 
the light gate-Si n each of the experjments . 

J Exp lain why it is not necessary to know the separat ion of the 
Ught gates to ca lcu late to gravitationa l accele ration,; 

4 Does it matter how fair above the fi rst li ght gate you release 
t he steel ball? 

5 Drscuss the poss ible s ou r ces of error tn this et<periment. 

A 

B 

I 
I 
I 
I 
I 

• I 

' 
I 
I 

I 
I 
I 

t 

I 
I 

• I 
I 

• I 
I 

t 

steelr ban 

~ to compute, 

-- glass tubs 

/ to computer 

6 Calcula te the averarge value of the acce lera tion and estimate 
the percentage error rn the measurements. 

Figure 8.10 A baU is t imed as i,t faUs between 
two Ught gates . . . . . ..... .......... ..... ........................ ....................... ........ , ........ .................................................................. ............ ............................... ..................... ...................... ................ ........ ... " ....... ... ......................... ... ...... ....... ..................... ..... ............... .. ................ ..... .......... .. 



Terminal speed T~rmin pe d is the speed reachedwh,en 
the weight of an object in free f;alll 1s bal::H1ced 
by drag forces acting u pw.ards on the object 

ra rr ts the name gw,en to resistive forces 
expertenced by an object movjng through a 
fluid such as amr or w.arter. 

In ev.ei-yday life ;,ve are all a,vare of the effect of ,vi.nd resistance, or dr .r, 

when soinething falls to the ground. A piece of paper that has been rolled 
up into a baU accelerates quickly downward, but the same piece of pap er 
left as a sheet -wiU flutter from sidle to side as it falls due to a large drag 
acting over the larger surface arrea. 

The size of the drag ,on a falling object increases \\'itht: 

t1N ttN • speed 
• su 1face area. 

Figure 8.1 1 e>..-p lains in more detail how drag affects the accelerations of tw,o 
similar balls. They .are both of identical size and shape~ but 'the blue baU 

Figu re SJ 1 At this i nste nt the· two 
bells fall at the sa1me speed; the drag 
is the· sea me on eaich but the bl1ue baU 
co nt i nu~s. to acc,slQira te. 

has a weigh t ,o,f l ON and the red ball ! N. ln the diagram 'they are falling at 
the same speed and they both have an upward drag of l N. The blue ball 
continues to accelerate because there is a resultant do""n,,1ards force acting 
on it~ b ut the 1·ed b all moves "Nith a con stant speed as th e pull of gravity is 
balanced by the drag. The red ball has reached its h: rmi n~ I ~pt·~d . 

~ ......................................................................................................................................•............... ~ . . 
: TEST YOURSELF ~ . . . 
• • i 13 A parac huHs t togeth er w ith his pa rachute has a weight of 850 N. 
~ a) Draw a diagram to s how his wei-ght and the drag for ce acting on him 
• 
: w he n he falls at his term ii'nal speed without h~s parachute open . 
• ! b) Draw a second di1agram to s how the weight and drag forces w hen he 
• 
: fatts at hi1s te rminal sp eed with his pa r achute open. Exptain w hy the 
• 
: two t erm1nal speeds are dlffe rent. 
• 
: 14 A s tud ent drops a ping- pong ball and a steel ball of th e same dia1m eter 
• 
: fro m a heig.ht crf 5 m. 
• i a] Expla in w hy th e s teel batl reac hes th e ground fl rst. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

• 
: bi Sketch gi r aphs to s how how th e veloci ty of each baU chang es w i'th t ime. 
• 

• • • • • • • • • • • 
• i ! 1:5 'Figure 8.12 s hows another meth od of meas urrng g. A small steel ba liL is 

! dro pped fro,m a height h. and passes through a light g,a te . T he data fro 1m 
• 
: th e gate -goes ,into a computer~ w hich ea llc u la te s the ball· s speed~ v. 
• • • • • • • • • • • • : • • 11 
i 
I 
I 
i • f • 
i 
I 
I 
I 
I 
I! 

! 
z 
i 
I 
I • I 
I! • • t 
+ • • • I 
II 

" • • • • + • • • • • • • • • • • • 

~ h (m1l~ I v2 (m2s-2J 
----- --

0.1: 0 1.40 

0.115 1.72 

0.26 2.26 
0.38 2.73 

0.55 3. 28 
0.75 3.84 

a, Copy the ta ble and co mp lete the co lu mn to calculate value of v2• 

b) The relatiionship between v and h is given by th e equat ion: 

v2 = 2gh 

Thi,s rela1t ,ionshi p can be deduced from th e equati on of motion,; 

Ptot a su ~table graph and use it to ca tcu ta,te t he vatue of g . 

I : 
I : 
I : 
I : 
I t 
I : 
I : 
I : 
I : 
I i 
I • 
I : 
1 _....,__ glass tube : 
I • I 

n i 
I • 
I ' 
I : 

I 

I : 
I t 
I : 
I S 
I ' 
l : 
I Z 
I ! 

' i • • • • • i • : • • 
Figure 8J2 The, spee,d is measured as : 

~ 

the baH fa Lls from di,f ferent he.ig hts. : ~= • 
············································································································································~····························· ~ 
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··~· .................................................................................................................................................................... . . . . • • . .. . • • • 
: 16 Figu re ,8.1·3 shows th e vellocity-ti me graph that descrf bed FeUx : 
• • 
: Bau mga rtner·s free fe ll f ro.m a he~g ht of 39 km1• : 

• • i a) Determ in e his accelerati on over the regiio n AB of t he graph . i 
! b l Ex p ta ·i n why his a1 cc e le r at 1 o n d e c re a S·e s ov e r the r·e g ·1 on B C of the gi r a p h. i 
• • 
: c) Over the reg-ion CD of the grap;h, Felix was i 
• • f fa llfn g at his termina l speed. Yet this 400 i 
i term inat speed kept decreasing. Exp lain why. ! 
i dl At tim·e E Felix opened hi s parac hute. Use the ~ 300 i 
i graph to est fmate th e di1 sta nee he ( i 
i fell before he opened h·is para chute. 8 200 i 
: e) Ca lc,utate Fe lix's ave ragie speed over the period Q) : 
: > : 
: A to E. i OO : 
! f] One of th e cta ims made abou:t this descent w as i 
i th a,t Felix reaiched · Ma,ch t. 2" ! that J 
• • 
~ he travelled at 1' .2 tf mes the speed o·f sou n,d. 1,co 200 300 E 
i From the graph , deduce the speed of Hme/s i 
: so u n d a t h 1 g: h al t rt u d e. W hty is t h is s p e e d ile ss : 
I tha,n the s peed of sourid 81t seai level , Figure 8.13 The veloc,ity- tim1e graprh that d~scribed F~ Lix E 
! a t 2 0 oc. wn ich , s 340 m 5-1? B ; u·mga rtne r's free fal l fro mi ; height of 39· :km. i 
• • • ....................................................................................................................................................................... ...., 

C)~P-ro_j_e-ct-il_e_m~o-ti-on~--o-r_f_a_ll_in_g_s_i-de_w_.-ay-s~-
Projecri1e motion builds on the followin g principles. 

• NewtonJs first la-v.r of 1notion : an object will continue to move in a straight 
line with a constant speed. (or remain at Test) unless acted on by an 
unb alanced force. 

• Newton's second law o f motion : at1 object accelerates in the direction of 
a resuhanl force acting on it (resultant force = mass x acceleration), 
see Chapter 9. 

• PTojectile pr,Uhs may be predicted using th e equations of motion . 
• A vector velocity 1:nay b e resolved into horizontal and vertical components. 

Figure 8.11. A m an jum,ping off a diving boa rd into the sea. 

Falling sideways 
Figui-e 8 .14 shows a dive1 jun1ping into the sea. Each 
image is taken O .2 seconds apart. You can see that the 
diver is displaced sidevvays by a constant an~ount in each 
frame of the picture. This is because there is no, ho,riz.ontal 
force acting on him so he keeps 1n,o,ving with a constant 
speed in that .direction. Yet his displacement downwards 
increases v.rith ·each frame of the picture·. This is because 
gravity acts t,o accelerate hhn , so his dov,;nwards velocity is 
increasing. 

An important ·principle is that the vertical and. horizontal 
motions of the diver are independent of each oiher. ¥/hen 
the diver jumps horizontally off the diving board1 he will 
al~ys reach the ·\.vater :in the same time because he has no 
initial velocity in a vertical direction. H,owever, the faster he 
runs side,vays, the f1.1nher he v.-ill travel away from the board 
as he falls. 



In all of the calculations that follo\v, \\1e shall assun1e that we may igno1'C the 
effects of air resistance. However when something is moving very quickly -
a golf ball for exan1ple -the effects of air resistance need to be taken into 
account. The effect of air resistance on the path ,of a golf baH is to Teduce 

its maxitnun1 height and t ,o, reduce the horizontal d istance (range) that it 
travels. 

In Figure 8.14, the boa,rd is 12.5 m above the sea. and 
the man ju,mps 7.0 m s,ideways~ from the end of the 
boa,rd. by the time he splashes into the sea. 
d How long does it take him to faU into th e sea? 
t How fa,st was he runningi when he jumped off th e 

board? 

Answer 
Use the equa1tion~ 

s:;;; ut + .lat2 
2 

This eq uation is being used to consrder the vertka.L 
disp[acem·ent under the influence of grav1ty; the final 
displacement ls 12.5 m. the init~al (downward) velocity 
is zero. and the acceleration due ta gravity, g~ 1s 
9.,8 ms-2. 

A basketbaH player passes th e ba ll at 
a speed of 111 m s-1 at an angle of 30° 
as shown in Fi 9ure ·8.115. 

Cakulate 

the greatest heig ht the balt rea,ches 
I the tim e the ba ll takes to rea,ch this 
heig ht 
the horizontal di1stance. x, it travels. 

Answer 
c Figure 8.16 shows how we ea n 

res otve the vetoc i ty of the ball in to 
vertical and horizonta l corn po n entsl 
Vv an d vh. 

s. lgt2 
2 

12.5m • t" 9.Bms-2 " t2 

Rearirainging to fjnd t2: 

t2 1::1 12. 5 52 
4.9 

Ta kh1g squa1re roots of each sjde of the equabon gives: 

t;; 11.6S 

Because his hodzontal velocrty. vh, remains constant 

honizonta l di sp lacement 
~= ~~~~~~-~~~~ 

t ime 
7m 

vh = 
1.6 s 

= 4.4 m s-1 

B 

Vv 1::1 11 Stn 30° - 5.5 m,s- 1 

Vn - 11 cos 30° - 9 .5 m s-1 Figure 8"' 15 A basketba ll player pa~si,ng a, ball. 
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The heightt h~ to which the ball rises above the line AC 
can be calculated usi.ng the equatiioni of motion : 

vv2 ==2gh 

(5.55 m s-1)2 == 2 ~ 9.81 m s-2 x h 

h~1.5 1m 

so the grea,test height the baH rea,ches a.bove the ground 
'iS 3.5 m. 

The tiime taiken to reach this hei1 g ht is cailcu lated 
using, the equat ion of 1m1otion : 

V U + at 
The final vertical ve loc1ty at the top of the ball's path 
[point B] i1s zero. the in,iiti,atveloc ity i·s-5.5m s-1, and 
the acceleration 1s +9 .8 ms-2. 

0 - - 5.5 ms-1 + 9 . .S ms-2 >< t 

t - 5.5ms-1 
- .· -1 9.Bm,s 
= 0.56 5 

- . -1 vs ln 30 ~ 5.5 ms 

vcosso ~ 9.5 ms-1 

Figure B.16 Resolving the velocity of tlhe ball 
into vertical and horizontal components. 

1 The tim e taken for the ball to travel from A to 18 is 
0.56 s, so the ti ,me taken for ·it to travel from A to C 
~S 2 X 0.56 5 1.12 5. 

The horfzontal displacement. xJ is ca lculated ,using 
the equatlon: 

x- vht 

x = 9 .5 m s-1 x 1. 1.2 s 

X= 10.6m 

~ ................................................................................................................................................................................................................................ ! 
i ACTIVITY ~ 1 · .. I : 

Projectile paths 
Figure 8.17 shows a mulUple exposure photograph 
of two small balts that are allowed to fa'll free[y 
under gravity. Ball A i:s dropped from rest and falls 
vertically from position A1 to position A5• Ball B is 
released at the same tim1e as A, but falls wi1th an 
1n1Ha[ sideways velocity of 1 m s-1: baa B falls f ram 
po51tion B1 to posrtion B5. The gr1id behrnd the balls 
allows you to calculate how far they travel. 

All the positi:ons of ball A -- A1 to A5- are showr1; but 
posHions~ 8 3 and B4 of baH B have been rem,oved . 

1 A s tu,dent thinks that a ball wh iich 1is thrown 
s ideways takes long er to reach th e grcu1nd than1 
a srmltar balt dropped from the same height. 
Look at F~9u:re 8.17 an·d: comment oin 
this ob S·e rvati on. 

2 Use the infor.mation1 in, the diagram to show 
that the t~me interva l between each photogra,ph 
~ s CL 1 s. 

3 Either copy th e diagram and mark in the positions 
83 and B"~ orwrite the coordinates of 183 and 18A. 

4 Catcu,late the velocity of ball A at po.slti:011 Ai 
[g ;. 9.8 m s-2]. 

5 Calc1utate the magnitude and direc tion of th e 
velocity of ba[l Bat pos1tion 8 5. 

E 
.g 
:::,;, 
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60 
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~ o 

A.a 
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~ 

0 

B 1 

20 

~ rll1S : 

o B2 

30 40 50 

x/cm 
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60 70 

~ . . . . . . . . . . . . . . . . . . 
t 

Figure 8~ 17 A multipte exposure photo·g ra ph of two sma LL balls. ~ 
: ~~-
i ................................. I.ii,# ............................... . ......................... .. ...... .... ................... . .. ,6, .... l,;11 ................................................. l,lii,I ......... .. .......... .. ......... .. 1,-6- 1, ,1,.LI, ................. .. . . ..................... ,A.- ............. ,l,A.1,,1 .............................................................................................. .&. .. .. ................... .. ........... .. .......... .. ........ ,6,1,,1 ,1 .............. 1,,1 ......................... : 



... , ,., ....... , .... ..................................................... ....................................................... ............................................ ............ .............................. ............. ....................................... ................. .............. ................ .,. ............... ... ..-.... .............. ................. .......................... ............. .............. ,. ... .. 
: ~ : r • : ~ . : . . . . 
~ In a second experiment ba lls 
~ A and B are photographed agcrin with 
~ multiple exposures separated by 
~ 0.11 s . Th1s time A Is thrown upwards 
~ w,ith a1n i1n it ie l veloc ity of 7 m s-1• w h 1ille 
= B has an in ,itial upward velodty of 

7 m 5 - 1and a hori zontal velocity of 2 m s-1 

to the right. 

6 Copy the diagrarm on to graph paper 
and mark ,in th e positions 84 , 85, B6 
and B7, or write tn e,ir coordinates. 

7 Posit~on Aa is th e maximum neight 
reached by ball A. 
a) State th e velocity of ball A at thi,s 

highest pos ition. 
b] Sta,te th e velocity of ba ll B at its 

h~ghest pos ition. B8. 

8 Dra1w driag,rams to show tne positi·ons 
of ba lls A and Bat ,interva ls of 0.1 s as 
they faH back to th e gro und . 
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Figure 8.1 B The S·econ d ·expe rri ment . 
• • : ... &.•••.a ........ L ... . . .......... •• 1,e,1 .. ..I 1.•.a ....... l,.a ••• L• ......... 1.•.a .. .._ ..... .1,,1 1.•• l..a .... •• . .......... • • • 1,,1 1.•.a .... 1.•,1 .. ..I 1.•.a •• ••• • •• ... ••• .... ••• •• ..... L.i .. ... L..I 1.•.a •• ••• ••• •• .................... L.I ••.a •• 1.• • ••• •• ••• 1,,1 ...... .. .... 1,,1 L• • ... L•.t • • , . .. ••• t. .a ....... ••• .. .. L•• &• ••• 1.• • •• ••• ........ 1,,1 ••• W,1 t.•• ....... . "-•: 

~ ···························· ·············· ···········································································································: 
i TEST YOURSELF i 
.. . 
i I 1 ! i 17 Ex pla in which of th e following. statements is are a Ca.lculate tn e ttm e the bulllet takes to reach i 
i tru e. th e target i 
.. ) J -i a A bullet f ired horizontally takes long er to fall b How far has the butlet fallen i,n this t~m e? i 
f to th e ground tha,n a bullet wh ich ris dro pped cl The target i1s now pla,ced 480 m away from t he i 
• I 

: from th e same heigiht. marksman. : 
i bi Wh en you th row a· ball sideways. there is a j' Calculate how far the bullet fa lls now before ! 
i force pushing i1t forward s w hiile the ball i1s in reaching the target. ! 
• I 

~ mid-air. ii] Exp lain, why th e ,m:a,rrksman must adj'ust hi s i 
i t] The pull of gravi·ty on an object is independent sights before a·imin g at the second target. j 
i of the veloc·ity of the object. 19 A cricketer tn row s a ba ll sideways w ith a,n i1nitial ! 
i 1B A marks ma.n aim s his rifle a1t a tar g,,et 16 0 m away vetoc it y of 30 m s-1• S he releases the ball from a ! 
• • : fr om hrm . The ve locity of the bullet as it leaves hei,ght of 1.3 m. Ca lcu: late how fai r the ball t ravel.s : 
~ the rifle horizonta lly ·is 800 m s- 1

• befo re hitting: the ground. ~ 
• • : ..... .................................................................................................................................................................. .... 
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Practice questions 
1 A ball is thro\vn vertically upwards, \vith an initial speed of 20n1.s-1 on 

a planet ,vhere the acceleration due to gravity is Sni.s-2. \Vhich of the 
foUo'Wing statements about the balls velocity afoer 6s is true?' 

A The balls velocity is 0 . 

B The balls velocity 10 m s-1 upvlards. 

The balls velocity is 10 ms-1 do"wnwards. 

D The baits velocity is 5ms-1 downwards. 

2 A car accelerates from rest at a rate of 3.5 m s-2 for 6 s; it then travels at 
a constant spe-ed for a funher Ss. \Vl1ich of the foUowing is th corre-et 
distance that the car has trave Ue.d in this tim·c? 

A 231m 

B 215m 

C 147m 

D 49m. 

3 A plane accelerates from r,est along a run\vay: It takes off after travelling a 
distance of 1200m along the nnnwy at a velocity of 60ms-1. wT·hich of 

the foUo\ving is the average acceleration of the plane along the runway? 

A 3.00ms-2 C 0.67ms-2 

B l.50ms-2 D 0.33ms-2 

4 A ball P of mass 2tn is tl-tro\vn vertically 11p"\\rards with an initial speed 
u. At the same instant a b,.all Q of mass 3m is thro,vn at a:n angle of 30° 
to the horizontal ,vith an initia] speed of 2u. Which of the follo\Ving 
statements about the two balls is true? 

A Q reaches t"\.-vice the vertical height as P. 

B Q reaches the ground first. 

C Q and P reach the ground at the same tim,e. 

D The horizontal component of Q~ velocity is u. 

In ·each of the questions 5-7, select frotn the list A-D the relationship that 
correctly describes the connection bet,veen y and x. 

A y is proponional to x2 
1 

B y is proportional ito x'! 

y is propo11ional to x 

D y is proportional to .!. 

Que stion y 
5 the speed of an object faUing frQely from rest 
6 the spe,ed of an object faUing freely from1 rest 

7 the d ista nGe of an obj,ect fa IUng free~ from rest 

X 

time 
h em.ght f aUen 
time 



111 ,each of the questions 8-10, select from the graphs A-D the one that A 

correctly shows the relationship between y and x. 

B 

Question y X 

8 the speed of a car wh&ch d~celerat,es at an jncr,easing rate time 
9 the ho,ra.ontai d~stance traveUed by a p,roJectile mov,ng Ume C D 

with out air resistance 
10 the spe-ed of an object famng, when air resistance acts on it t~me 

11 Figure 8.20 sho,,rs the trajectory o,f a real golf ball (path A) and an 
idealised ball (path B) that is n.ot affected by air resistance. Figure 8.19 Fo,1.ff graphs . 

deal b 11.~ 
no air 40~-~--t·~ _,,_-t-~--f----"c--~~-...~-:--~t---~~ 

Go1f e s lstan e 
·bal l 

Q I 

0 40 80 "1 20 "1 60 200 240 280 

Figure 8L20 The trajiectory of a re ail golf ball [path AJ 
and an ldeaUsed ball [path B~ that is not aff.ec ted by 
a'ir resi sta nee. 

a) State three differences between the t\vo trajec'torie.s. 

b) Figure 8.21 shows the forces acting on die ball just after it 
has been struck by the club. Use this infonnation to explain 
your observations in part (a). 

(2) 

(3) 

w 
Figure B .. 21 The forces 
acting ori the baU just after it 
has be·e n struck by the club. 

12 A boy thro1Ns a ball verticaHy upV1ards; it rises to a maxin1un1 height of 
19.0m in 2.0s. 

a) 1Calculate the speed of the ball as it left the boys hand. 

b) 1Calculate the height of the ball, above its position of release , 
3. 0 s after the boy thtev.r it. 

c) State any assumptions you have n1ade in thes,e calculations. 

13 Figute 8.22 shows a velocity-time graph for a haul rubber baH 
which is dropped on to the floor before the rebounding upwards. 

a) Use the graph to calculate the acceleration of the halt 

i) v.,~rule it is falling 

ii) whi]e the ball is in contact v.rith_ the floor. 

In ·each case state the magnitude and direction of the 
acceleration, 

b) i) Calculate the distance from vthich the baU was dropped. 

ii) Calculate the height of the first rebound. 

(2) 

(2) 

(l) 

10 
a~-~...-.-#-1t----1'~~~-1-....-~ 

6 
~ 4 ~ ~ - --i#-+--~•~~~~-F---t-~-~ 

i 2 
(2) ~ 

j -2 I O) >_4 ~---t,~-tt---.it----+-~~t-m_e_1s
1 

-6 -a~-~--~----~~~~---~-· 
(2) 

Figure B.22Velocity- time gra,ph for a 
(2) hard rubber ball. 
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II 14 Figure 8.23 is a velocity-time graph for a moving object. > 

a) Explain the significance. of: 

i) the positive and negative gradients of the graph (2) 

ii) the areas under the graph, bo,th above and below the time axis. (2) t 

b) Use your answer to part (a i) to help you draw an 
accelera.tion-dme graph for ·the object. (2) 

c) Use your ans,ve.r to, part (a ii) to, help you to dra.V;· a 
displacement-time graph for 'the m.oving object. 

15 A bungee jumper takes a plunge off a bridge. Figure 8.24 shovtS 
a velocity-time graph fo,r the jumper as he falls from the bridge. 

a) Use the graph to calculate his acceleration over th first 
2 seconds. (2) 

b) i) At which tilne does the j1.1mper reach the lo\v.est 
point of his fall? (I) 

ii) Use the graph to estimate approximately how far he 
falls before being stopped by the bungee rope. ls the 
distance £alien closest to: 20m, 40m) or 60m? (1) 

iii) Explain ho\v 1he graph shows you that the jumper 
does not bounce back to his original height. (1) 

c) Calculate the acceleratiot1 at point B on the graph.. (1) 

(3) 

20 

15 

10 
.... 

I 
c:n 

5 ~ .::.. 
;?., 
(.) 

0 0 
CD 
> 

-5 

-10 

-·J,5 

Figure 8.23 A velocity-time 
graph for a mov rng object. 

B 

1.0 2.0 3. 

D 16 Figure 8.25 shows a fort that has been built to protect the coast 
fro111 enemy ships. A cannon baU> ,vhicl1 is fired horizontally 
from the fo11 , falls into the sea a distance of 1250m from the 
fort . 

Figure 8.24 A velocity-time graph for the 
jumper as he faHs from the bridge . 

93m \ 

...... --------1250m ________ ........, 

l=igure 8.25 A ·fort that ha,s been built to protect the coast from enemy ships. 

a) Use the information in the diagram to show that the ball takes 
about 4.4s to fan into the sea. (3) 

b) Calculate the horizontal velocity of the cannon baU during i.ts flight. (2) 

c) Calculate: the vertical velocity of the canno11. baU afrer it has fallen 
for 4 .4 s . (2) 



d) Calculate, or determine by scale drawing> the 1nagr1itude 
and direction of the halls velocity as it falls into the sea. (3) 

c) Discuss ho,v you would adjust the cannon to hit a ship 
that is further away fron1 the fort. (1) 

18 A student uses two, light gates as s ho,vn in Figure 8. 2 6 to 
tneasure the thne taken for a sn1all ball bearing to faU ·through 
different heights. The table below sho'VS the results of the 
experiments. The ball bearing was dropped three times from 
each different height. To release lhe ball bearing the student 
held it just abov,e the higher light gate. 

r 
) 

h 

! 1--u - ) To data logger 

Hei,ght (mm) t1 (s) 

100 0.'14 

t2 (s) 
0,.15 

t3 (s) 
0.14 

1Figure 8.26 Using light gates to 1measure 
the tim,e taken for a small ball b·earin,g to 
fall through di,f ferent heights. 

200 0.18 0.20 0.21 

300 0.25 0.25 0.26 

400 0.29 0.28 0.30 

500 0.32 0 .31 0.32 

600 0 .34 0.35 0.34 

a) Calculate the average time of fall from each height. 

b) 1Calculate the maximum percentage error in timing when the 
baU bea1ing is dropped froin a height of 

i) 100mm 

(1) 

ii) 600mm. (2) 

c) Calculate tl1.e approximate percentage error in measuring 
the height of 10 0 rrnn. (1) 

d) Conm1ent of the errors that could be introduced by the 
student's method nf releasing the baU bea1ing. (2) 

e) Plot a graph of height on the y-axis against t2 on the x-axis. 
Use the graph to detennine a value for g. Con1ment on the 
accuracy of the result. (5) 

II 19 A plane trarvelling ~..vith a co,n.stant horizontal speed of 54ms-1 

drops a food parcel to pe,ople stranded in a desett. The parcel 
takes 3. 7 s to reach the ground. 

a) Calculate the height of the plane above the gr,ound. (3) 

b) Calcula:te the ho,rizontal distance travelled by the par,cel 
befor lt hits the ground. (2) 

c) i) Calculat: the parcels venical component of velocity when 
it hits the ground. (2) 

ii) Calculate 'the magnttude ,of the parceli; velocity as it htts ·the 
ground. (2) 

Stretch and challenge 
20 A &unily enjoying an outing ,011. a river a.re cruising upstream in their 

boat. Just as they pass a bridge (point A) their sandwich box faUs into 
the river. 
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They continue upstreatu for l O minutes before they notice 
their loss. TI1ey then turn round (point Bin the diagran1) and 
travel doVirn.stream. They pick up the sand,vich box 1.0km 
d.o,vnstream from the bridge at point C. 

Calculate the velocity of the tiver, assu1ning that the boat has the 
same velocity relative to the water up and do\mstream, and that 
no tim,e is wasted turning round the boat at p,oint B. 

(Hint: you do riot need to k"11·0Vt-' the velocity ,o,f the boat" you 
do ne,ed to set up some equati,ons to calculate the time taken to 
catch up ,vith the sandwich box.) 

21 A s\vimm r at point A n~t to the side of a s'Wimming p·ool 
Vvishes to get to a friend at point Bas ctuickly as possible. He can 
"'w111k next ta th pool at 3 m s-1 and s\Viin at a speed. of 1 m s-1• 

s·hoiv that he must swim at an angle 8 ~ sin-1(!) to· get there in the 
shortest time. 

Figure 8.27 A fam ity enjoying an outing . 

(Hint: yo,u need lo set up an e·quation to calculate the time in terms of 
distances L> x and y > and the speeds. Then differentiation gives you the 
mi.uimum time. You need to use your knowledge of Maths A-level to 
solve this.) 

I 
I 

.., 1 
I 

------ L.------

Figure 8.28 Swimrnin9 pool. 

y 

B 

22 A supersonic aircraft leaves Heatht,o,\v to trave] to Kennedy airport. 
You are required to use· the information below to calculate. the plane>s 
position between the airports at 2:30 p.m. (Hint: sketch a velocity­
time graph to help you plan your solutio,n.) 

• The plane de·patts fro1n Heathrow at 10:30 a.m. sharp. 

• The flight tilne is ,exactly 3 hours and 40 minute.s. 

• The disiance betv.ree.n th,e airports is 5800km. 

• The plane flies for the first 15 minutes to a point 235km from 
Heathro\\r, At that point it is flying at 990 kmh-1• lt then acceler~tes at 
a constant rale for 11 nunutes over a distance of 2:5,0ku1 to a cruising 
speed of 2160kmh-1. 

• The plane fli.es in a straight line. 

• The deceleration into Kennedy airport is uniform. 



Newton's laws of motion 
................................... ............................................................... .............. • • 
! PRIO KNOWLEDGE : 
• • • • .. • . 
• . ... 
• • • • • 
+ • • . .. 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • + 

A force is a pu sh or a p1u lL Forces ea n be contact or non-conta,ct 
for·ces. A contact fo rce is exerted between bodies that touch ea,ch 

~ 

• • 41 s • ' • 
" other; non-conta ct fo rces are exerted over a di1sta,nce by gravitationat~ : 
~ 

elec tric and m,ag,neti:c f ietds. • 
The strength of a giravitation,al field is 'measured in N1kg-1. On the ! 
surfa ce of th e 'Ea rth th e grav itation,a,l fi eld s trength is 9.8 N! kg-1. ; 

• 
Weight - mass x g,rav~tatJonal fleld strength : 

• Newton's fiirst law of motion : a body will re·ma1in a·t rest or continue to ; 
move ,in a straight line with a co nstant veto city unless rt is acted on by ~ 

"' an urn,balanced force. : 
~ • Newton·s second law of motion: when an unbalanced [or resulta,nd : 
• 

force acts on a body. it will acce lerate in the di rection of that force. The : 
• 

s i:ze of the acceleration may be determ,i:n,ed by us,ing the eq uation F;;;. ma. : 
• 

Newton's third law of moti on; when body A exerts a force. F. on body B. i 
• body B exe rts an equal and oppos ite force ,, F. on body A. : 
• 

• • • • • • • • • ·················~·································································· ........................ .... 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 

: TEST YOURSELF ON PRIOR KNOWLEDGE • • • • 

• • • 41 

• • • • • .. .. .. .. .. .. • • • • • • • • • • .. .. .. .. .. • • • .. • • • • • • .. .. .. .. .. .. • • • • • • .. • • • .. 
"' • 
~ 

' ~ • • • : • • • • • • • • i 
I • .. .. .. • .. 
• !!t • : 
• • • : .. 
• • • + • ... 
!!t .. .. .. • • • • • • • • • + • .. .. .. .. .. 
• 

1 

2 

3, 

Karen has a ma ss ot 57 kg . 
• 41 
41 
• • • • • 

a,)! Calc ula te her we1ig,ht on th e Ea rth. : 
• b] Ca lcu~a te her we,igiht on Marsi w here th e gravHationa l fle ld i 
• 

strength ~s 3.7 N kg-1 . : 
• 

a,], Describe what w ill happen to the stage of the motion ofi eac h of the ~ 
bod ies s hown below. In eac h case use a .s ,u itab le phrase such as: 
rem ains a t rest : contf nues to move a.t a consta nt speed ; changies 
dtrecbon ; accelerates; decele rates . 

(I} ( tl) (il l) 

m= 2kg 
10 N 

rn = 2Kg 
10N 

m= 2kg 
10N 

- -- -
v~ D v = 3ms-1 v= ams-1 

lit It 

(rlv) (Y) (VI) 

10N 
m• 2kg 

10N 
rn • 2kg 

BN 
m ms 2,kg 

. -- ~ 

v - 3ms- 1 v- 3ms-1 v- ams-1 
~ ~ .. -

Fi~u re 9.1 What will h:ap pan to these bod~es? 
1'1,0N 

• • • • " • • • • 41 

• • • • • • • • • • s • • • • • • • • • • • • 
i 

I • • • • .. 
• • • : 
4 

i • • • • • " • .. .. 
Tony's push : • b] Ca lcu~ate the a,ccelerati'o-n of the 

bodtes in each case . 

In r=~gure 9.2 you can see Tony pushi,r,g 
aga; ns t a w aU w ith a force of 300 N . 
State the mag,n itu de a1nd direction of the 
force that t he wal l exerts on Tony . 

on the wall1 i 

Figure 9 .. 2 Tony pushing 
against a wa Ll. 

t • • • • • • • • • • • : 
41 
41 
41 
• • • • • • • • • • • 

: •••••••••• 41 ................................................................................................. llllllllllli 



z 
0 ..... 
~ 
0 
:I: 
u.. 
0 
U') 

I 
...J 

V1 z 
Q 
I-

! 
z 

Figure 9.3 Th is water jet pac!k 
r;ties on !;!ach of N,Qwto n,'s thr~e 
laws of motion. 

., ........... . ............ ..... 1 •• ,.., ......................... ,, .................... . 

A rr P bod J di rar , shows all the fon:es 
acting, on a single body; no other bod(y ms 

shovvn mn the diagram1. 

D 

Figure 9.4 Skydiver faHing to the ground 
at a constant speed. 

Figure 9.3 shows a ·man enjoying a ride 'With .a water jet pack. The pack 
on his back pumps water up through the yellow pipe and then forces the 
water out in two high-velocity jets. This recr-eational toy Il!lies on each of 
Ne,vton1s three laws of motion. TI1e jet pack pushes water down,va:rds, and 
the -escaping ;,vater pushes the jet pack back in an up,~ardls direction. When 
the upwards push fron1 the water on the jet pack balances the weight of the 
man and his jet pack, he remains at a constant height. 

N wton 's first la - free bod dia ram 
A body may be subjected to a nun1ber of forces. and the body may als,o 
exert forces on other bodies that come into c,ontact with it. If w-e ny to d1·aw· 
forces on more than o,ne bod)) on th same diagrami it is easy to be-c-ome 
,confused over which force acts on which body So\ to understand the effect 
of forces on a body1 we draw a ln.·c IJocly l1agran1 ~ which only sho\VS the 
forces acting on a single bod~ 

The diagrams below iHustraite free body diagrams "'~ith balanced forces. 

In Figure 9.4 a skydiver and parachute fall to the ground at a constant 
speed. Here the free body diagram is ,easy as the skydiver and parachute 
are not in contact ,vith anything (except the air). The drag; D, up"7ards 
balances the ·weight1 W, of the skydiver and parachute down\vards. 

In Figure 9.Sa, a climber is abseiling do,vn a rock face~ she has just 
paused for a rest and is stationa1y. To draw a free body diagram; we must 
retnove the rock face. The three forces acting are shown in Figure 9.Sb: 
the \Veight of the climber; W; the tension of the rope, T; the reaction 
.fron1 the rock face, R. Since the climber is stationary, these forces act 
through the centre of gravity of tl1e clitnber. ·They add up to zero, as 
shovvn in Figure 9 .Sc. 

Figure 9.5a A cili m ber is 
abselU ng down a rock face. 

centre 01--.. 
g,ravlty 

Figure 9.5b The forces 
actri.ng on the cti mbe r. 

T 

w 

Figure 9~5c The forces 
add 'UP to ze-ro . 

Figure 9.6a shoV/5 a mtJJn climbing a. ladder that rests against a smooth wall. 
Figure. 9 .6b sho,vs a free body diagnun for the ladder when the 1na.n stands 
on it. 



To draw a free body diagram, 
co nsi1der only one body. Draw the 
forces that act on that body. not 
the forces that i,t exerts on other 
bodJes. 

F 

Rm 
w 

Figure 9.6a A man cUmbing a ladder. 
Figure 9.6b A free body d iag:ram for 
the, man on the ladder. 

The forces acting on the ladder are: 

.Rw1 a horizontal reaction fo:rce fro1n the ·wan 

Rp > a vertical reaction force from the floor 

F) a horizontal frictional force from the floor 

W> the weight of the ladder 

~IP a contact force from the man that is equal in size to his ,veight (this is 
not the mans weight, which acts on l1im) . 

Since the ladder remains stationary; the forces on it balance. 

So 

RF=W+~ 

These are the forces acting vertically. 

F=Rw 

These a1-e the forc.es acting h orizontally. 

Newton's second la of motion 
When an unbalanced force is applied to, an object, it eJi...'}Jeriences a change 
in v,el,ocity. An obj et spe ds up or sto,vs do·wn when a force is applied 
along its directt.on of motio-11. When a force is applied at an angle to 
an object~ direction of travel it ,changes direction. When we calculate 
accelera'tions V."e. use the equation: 

resultant force = mass x acceleration 

F = ma 

Provided the force is i.n ne,v1ons; N, and the mass in kilograms; kg; then th,e 
acceleration is meas--ilred. in m s-2. 
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Figure 9.7 shows the forces on a1 c:yc li'st accelerating along 
th·e road. Th e forces in, the vertii ca l djrectioin ba lancej but 
the force pushing her along the road. F. is greater than the 
dra,g forces~ 01 acti,ng on her. The 1ma,ss of the cyclist and 
the bicycle is 100 kg. Calcu late her a,cceleration . 

Answer 
Her a·cceteration can be ca lcu lated as follows. 

F-D - ma 

3 2 o N - 1 a o N .. 1 a o kg x a 

140 a .1-ms-2 
100 

- 1.4 m s-2 

A passenger travels in a Uft that is 
acceterating upwa rds at a ra te of 1.5 m s-2• 

The passe n9er has a mass of 62 kg. By 
draw~.ng a free body d1.agram to s how the 
forces acting on the passenge r i calculate 
the reac tion force that the ,Lift exerts on her. 

Answer 

R- W= ma 

R= W+-ma 

T 

D ~ 1eDN 

W-980N 

Figure 9. 7 The forces on a cyclist. 

R 

t 
a = 1.sms-2 

= 62 kg x 9 .8 m s-2 + 62 kgi x 1.5 m s-2 

= 700 N (2 sig. ti gs)I 
Figure 9.8 A passenger in a Uft. 

w 

F• 320N 

R- W = ma 

•••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 
i TEST YOURSELF ; : : 
= i I 1 Draw free body d1iagra ms to show the forces act~ng in the foltow,in9 ca,ses. f . " : a) A car movi1ng a,t a constant speed. : 
I • 

; b) An aerop la·ne just at th e po int of take off from a runway. f 
j cl A submarine moving at a constant speed and depth . I 
I d' A skydiver4 Just after she has opened her parachute. 1 • • : Illustrate your diagrams to explain whether the bodi,es move at constant : 
I • 

; speed_ or wh ether they are accelera ting or decelera,ting,. : 
~ 2 a) Calcu[aite the rea1ct.ion force acti1ng on the passenger in Figure 9.8 w hen i 
i ii the Uft moves up at a co nstant speed of 3.0 m s-1 f 

ii) it accelerates downwards at a rate of 2.0 m s-2. f 
• 

b] Expla~n why the passeng.er feels heavier just as the ti ft begins to E 
move upwards. .-S:\. : . -v : 

• • 
1••······················································································································· ················································· 
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: m1 = 950kg : 
: D1 = 1IOO N : 
: 3 Fi gure 9.9 s hows the ho rl z-onta l forces m

2 
== 450kg i 

: achri g· on a truck th at is pu Lli ng a tra i Ler. : 
• [),., = 600N 

• • 
i al Calcu late th e acceleratiion of th e t: • • • • • • 

tru ck and traile r. 

: b] Calcu,Lat e th e tension, Ti in t.h e tow F= 2400 N 
• j bar th at is pu Lling th-e trailer. 
: 4 A driver tes ts his car 's accelerat ion. 

Tow bar 
• 
: The resuilt of th js tria,l is shown by the I veloc-i ty- tim,e graph in Figure 9.10. 

Figure 9.9 The horizonta l forces on a truck. 

i al Use th e graph to ca lcu late the car·s acceteration 
i U between O and 2 s I 
• • • • • • : • : 
• • • • .. 
: : • • • • • • • : • • • • • • • • • • • • 

iO between 6 s and 8 s, 
The ca r and the dr iver have a mass of 1200 kg . 
b] Calculate th e in i tia t force th at ac ce le rates the cair 

from rest. 
cJ Assumi1ng that th e same drivin g force acts on th e ca r 

between 6 sa nd 8 s. ca lculate th e d ra g forces aic t ing on 
the car at tn 1s ti m e using info r mation f ro m the gr aph. 

d] Calcutate th e initja t acceleratI01n of th-e car wh-e-n it is 
loaded w ith pass engers an d lug:gage s o tha t ·its ma ss 
is 1·450 kg . 
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Figure 9.10 Vetodty-time graph for a car. 
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[a] 

(b~ 

stretched band 

1 kg 

stac'I<: 
riubbsrb and 

I f.:::::::~:~:::: :3~: :: : :~~: :: : :1 ::: : :~:~ ::: ::: :: : :::~~ :: : :: ~~::: :: :?,~:: ~:~JI ;~a~ 
Figure 9.11 Demonstrating Newton's thi rd taw. 

This la,v has already been stated in the introduction 
but it is stated as f ollo,vs in a slightly different way. 
Eve1y force has a paired equa] and opposi'le force. This 
la.\.v sounds easy to app ly, but it requires so1ne clear 
thinking. It is important to appreciate that the pairs of 
forces must act on .two different b odies , and th e forces 
n1ust be the san~ type of f orc,e. 

An easy way to, demoustrate Newton ~ third law is 
to connect tvvo dynan1ics trolleys togeth er mth a 
stretched rubber band, as sho~n in Figure 9.11. 

\\Then the troUeys are released, they traiv·el the san1e 
distance and me,et in the middle. This is because 
troUey A exerts a force on tro Uey B, and tro,lley 
B exerts a f o,rce of the san,e size, in tl1e opposite 
direction, o,u trolley A. Some examples of paired forc,es 
are given in. Figure 9.12. 
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When applyin g N ewton's th ird 
law, rem e m,be r that th e · equa1l 
and opposite· forces act on 
differe nt bodies. Do not confuse 

thi s with Newton·s first law, when 
ba lan ced forces kee p a body a t 
rest or at a constant s p eed. 

100N 100 N 

Figure 9.12a 1lf I push y,ou with a 
force of 100 N. you push me ba ck 
with a1 force of 10 0 N. 

C ~ 
I Pull from th; Earth 
·+ on the spacQcraft 

... 

e spac ecraf.t 
h, 

Figure 9.12c A spacecraft orbibng the 
Earth 'is p1u lted downwards by Eart:h·s 
gravity. The spacecraft exerts an 
equall and opposi•te g ravitatloria L force 
on the Earth . So if the spacecraft 
moves towards the Ea rth, the Earth 
moves too. but because the Earth is so 
mass~ve its movement ,is very sma ll. 

Force from the 
car on the road 

Foree from the 
road on the car 

l=igure 9.12b When thie whe,el of a ca r 
turns. it pushes the road backwards. 
The road pushes the whee l forwards 
with an equal and o,pposiite force. 

B exerts a 
force on A 

-31---- A exerts a 
force on B 

Figure 9.12d Two balloons have been 
c harged positively. They each experience 
a, repulsive force from the other. These 
forces a re of the same sjze. so ea eh 
b~Uoon f lf of the same mass] is lifted 
through tne ,sam,e ang,te. 

All of these are examples of Newton's third Ia"v pairs . 

Ne\vton•s third law pairs always have these pfoperties: 

• they act on two s parate bodies 
• they are always of the same type for example t,vo electrostatic forces 

or two contact fore s 
• they are of the same magnitude 
• they act a.long the same Hne 
• they act in opposite directions. 

A tug of war 
Alan and Ben are enjoying a tug of war, as this gives tl1em ~11 oppon1.1nity to 
apply a U of Newtons laws of motion. In Figure 9.13a Alan] who-is stronger 
than Ben. is just beginning to win. Alan) Ben and the rope are accelerating 
to the left at 2 m s-2. By dra'1vi11g free body diagrams for Alan (mass 80 kg)\ 
the rope (m ass 2 kg) and Ben (mass 60kg)) we can a11alyse the :forces acting 
on each person . Figure 9.13b shows these diagrams. 



[al mass BO kg 

[ b), mass 80 kg 

accelerating at 2 m:s-2 

--4 

mass 60kg 

240 N ,.__ ,,,_ ___ m_as_s_2_kiii!llig~~ll!II... 

( II) 

mass60kg 

T2 -- 236N 

~ ---~ 236N 

(Ill) 

Figure 9.13 Free body d iagrams for the tug of war. Exercise cautton if you are repeatin9 th,is exper~ment 
yourse lf. 

For each body the resultant forces caused on acceleration of 2 n1s-2. These 
calculations use Newton'.s second law. 

Table 9.1 

·~Res~-hi n·t }_or.ceJN l .. -1 - Mass [kg) I )t I Acceleration ( m s-2) -
Atan [400 - 240] = 80 X 2 

Ben [236- H6) = 60 X 2 

Rope [2.40 - 236] -· 2 X 2 -

N v.rton,,s third law pairs 
• The Earth pushes Alan with 400 N to the left. 

Alan pushes the Ea(rth v,,,i.th 400 N to the 1ight. 
• The Ea1th pushes Ben "with 116N to· the tight. 

Ben pushes the Earth with 116 N to the left. 
• The rope,s tension pulls Alan to the right Vr>ith 240 N. 

Alan pulls the rope to the left with. 240N. 
• The rope>s tension pulls Ben to the left ·with 236 N. 

Ben puUs the rope to the left with 236 N. 

To work out the acce lerabon of a body you m ust draw a free body diagram 
showi,ng a ll the forces that act on that body. Alan and Be,n accelerate 
because u nba lanced forces a et on them. 
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i TEST YOURSELF 
• • • • • • • • • • • i .. 
• It • • : • • • • • i .. 

5 Fr g u re 9 .14 s hows a dog s i:t b ri g s tr U on t h e g r o u n d . 
al Draw a fre·e body diagram to show the two forc es acting on a to keep 

it in equilibrium . 

b] For th e two forces abovej s tate a n.d explain th e two forces wh;ch 
are th eir Newton third law pairs . 

i 6 Th is qu,es tion refer s to the tug of war in Figure 9.13 . Just before Alan 
t!. , started to wi nj th e two men were in equilibrium. The force from the 
i ground on Alan was 300 N. 
i al Draw fr ee body diagrams for 
! il Alan 
• i iH the r ope 
t 

i iHI Ben 
+ 
: to shO\lv aU th e forces acting on them. both riori zo ntalty an,d verti,cally. 
II' 

i b] Count as ma.ny Newton third law pafrs as yo·u can . [Remember to 
!! 

; in clude for ce s acting o,n 
+ 
: the Earth.) 
• • • • • • • • • + 
+ 
+ • • • • • • • • .. .. 
+ 
+ 
+ 
+ • • • • • • • • • • • • • • • • • • • • • .. 
+ + 
+ 
+ • • • • • • • • • • • • • • • • 

7 Use Newton's third ta:w to exptafr, the foHowing . 

a JYou cannot walk ea:sHy on icy ground . 
b] You have to push water backwards so that you ea n swi .m forwards. 

B llf you btow up a, balloon and then retease it. the baUoon fUes around 

the room . Draw a free body dh3gram and explain why the ba Uoon 
travels at a constant speed when air res1stanc e balances the 
forwards push f ro.m the air escap~ng from [t backwards . You need 
Newton's first law to explain this . 

9 a] Underwhat circumstances would a constant force acting on a body 
prod,uce zero acceleration? 

b] Under what circumstances would a constant fo,rce acting on1 a body 
produ ce a decreasing acceleration? 

cl Under what circums tances wou Ld a constant force acting on a body 
produce an increasing acceleration? 

[Mint: for a H of these three exa1m p tes 1 there a re other forces acting 
on the body. It is possible tha1t th e mass of a body changes while 

: it a cceile rates .1 
II 

! 10 A body of mass 5 kg has three forces acting. on 1it of magnitude .. 
: 10N, 7N and 5N. 

a] Sketch a d 1iagra,m to show how the body m·ay be ,in equiUbdum. 
b) The 7 N force is re:moved. Catculate the body's a·ccele ration . 

11 A man, whose mass is 90 kg ~ ju .mps off a wa ll of height 11.5 m. 
Whille he 1s in free fall, wh at force does he exert on th e Earth? 

Fjgure 9.14 A dog sitting stHL 
on th e g ro u n d . 

P ra et i ea l invest i g at i an 
Here are several practical exercises that you canny for yourself, or you 
can use the data and diagrams to discuss or calculate the outcomes of 
these experiments. In these activities it ,vHl make-your calculad.ons more 
straightforward if you assume g = l ON kg-1. 

• • • • • • • • • • • • • • • • • .. 
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~ ACTIVITY ; 
[ 

~ Investigating tension 
Look at Ftgures 9.15a~ 9.115b and 9.15c. ~n each case predict the reading 
on th e force meter. Then check your predictions by read in g th e meters. 
Comment on your resuilts . 

.(a] 

puliley 

SN 

F 

SN SN 

!cl 

F 

5N 
Figure 9J5 Investigating tensio 1n. = . . . . .................................. ··~·· .......... ...................................................... .......................................................................................... ............................... ., ............................................. . 

.. ... .. ... .. ... .... .. ... .. ... .. ... .. ... ...... ... .. ... .. ... .. ... .. ,. .................................................................................................................................................................. . . . 
: . . . 

Balanced forces ~ 

Look at Figure 9.16a and predict the weight. HI: you wiU 
have to put an the strring to balance the 4N weight that 
rs sL1spended by the lower pulley block. 

Now look at Figure 9.l6b. Calculate the ang-le e. to 
which you wirH have to tip the slope so that the 3 N 
wei,ght bata11ces the pull of gravity down the s lope 

on the trolley. Figure 9.16a What weight 
wHL you have to put on the 
string? 4N 

puUey 

Figure 9.16b To what an:g Le w itl you have 
to ti Lt the s lope? 

. . . 

C 
' : 

' = • • ., ,_.,. ,. .... .. ,. ., ... .., rlllrr• ,. ••• ., "'•" ,., ,. • .,,., ... ., ,.., ,. ,. ._ ., .,., r . ,. . .. ,.., ,. • ., "" ... ., ,. ., ,. ,.. _11., ,. ,.., ,. • .., .. ,,. ... ,.., ,. ... ,.., I"•, ,..,., ,.,,. • .,,.., r • • ,. ., ,. ,. .., "'" " " ,. .. ., ,.., ... ., ,. ., ,. •• _,.., ,.. • ., ,. ., ,.,. 111_ ,..,., .. ., ,. . .. r, ,. • ., ,. ., ... ., r• ,..,.,,.,. r "I ,. • .., rl\r• " ,.., .. ... r• ,. .. ., ,. .,., _,. ., ,.. • ., ,.., ,. • ., " " ,.." r <li ,.,.., r• <t " " -•• " " ,. • ., .,.,. ,.. • ., ,. ., ,.,.,,.., ., ,.., .. . .. r• ,. • ., ,.., • •, ,., rr,JI•• ~ 

Acceleration 
Refer to Fig ure 9.17a. A small ball is suspended 
from1 a s tick attached to the troHey ; ,it is free to 
m1ove. The ma ss of th e trolley, st:ick a·nd ba,lll is 
1 kg . The trolley is held stationary by ha1nd while 
a s tretched sp rin,g exerts a forc e of 2 N on, the 
trolley. The trolley 'is th en released so that it 
accelerates to th e right. 

Predi ct what happens to the ball. 

Ca lcutate its maximum ang, le of deflect,io:n. 

Ff naUy, the troltey stops abruptly, when 1t h,it s a barrier. 

mass i kg 

Figure 9.17a A smaU ball is suspended fro m ; sti- ck 
~tte1ch edl to the t roaey. It i,s free to move. 

2N .. 

. . .................................................. . . .............................................. ................ ._ ...................... •1t• . . ................................................................. . ................ ............... ........................ ...... ......... ..... . 
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~ ~ 
i Predkt what happens to the ball. 

Now try the exper;iment and check your predktians, 
as far as possi,ble. 

In F1gure 9.17b a trolley is held jn a sta,tionary 
posrtion by a weight of 2.5 N. The string holding the 
weigh,t is then cut andl the trolley accelerates down 
the s lope coverln-g th e distance of 0.5 m in 0.41 s. 
Catcutate the mass of th e trottey. 

~ 

~ o.som 

--

2.SN I 

Now check the mass of a troltey in this way with your own 
practi,ca l measurements. 

Figure 9.17b A trotley is held in a stationa.ry pos·ition by a 
weight of 2.5 N. 

. . 

In Figure 9.117cj three trolleys !with a mass of about 1 kg eac h]. are hetd in 
a stationary position, The 3 N pull of the weig·ht is being ba la1ncedl by a 
studenf s hand . At the frront of each trolley is a spr1ing that has been extended 
by 12 cm due to th e puH of the 3 N force. 

The hand now releases the last troltey. Predict and explain what wiill happen 
to the extension of each spr1ing~ before you check by tryingi the experiment out 

A B C 

4 3N ® ea ' rl l'@ ea " '® @50 ' 

3:N 

Figure 9J7c Three trolleys [with a ,mass of about 1 kg each]. a ire held in a stationary 
position. The 3 N puU of the weight is be1ng balanced by a student's hand . 
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: ACTIVITY 
: 

F=ma 
Figure 9.18 shows an arra ngem.ent of lig-ht gates 
that ea n be u1sed to ea lcu1 late a ccele rat ·io ns 
directly. Two light gates measure the ti,me it takes 
for a piece of card on an accelerati.ng trolley to 
pass through the g,ates, an,d the time interva,l 
between each of the timed measurements. 

Explain how the three time measurements allow 
the a,ccelera tion to be ca:tculated . Whait furth er 
info r,m.a,tion, is needed? 

0.9kg: 

Light gates 

.~ 

11 nks to c om pu,ter 

1 N weight r 

Predict the acceleration that wo,utd be Figure 9J8 An arran-ge,ment of tight gates t,hat ·Ca,n be used to 
ea lcutated iir1 this experiment cakulate acceterahons directly . . 

. . 

i Design an experim ent to help you prove th e genera1l relationship: F- ma. 
l . •• ••• ••' .__ ••• ... ••• •• ••• ••• - ••II••••••• I!•• •••••••• ••••••• ., •• ••••• I!••.__•••••••• •'I-•••••• •• ••II tJ•• •• ••• •• ••• •• ••• ••• •• ••• •• ••• ••,t •• •1.1• •• 1.•• •• ••• ••!' •• ••• •• ••• .,. ••• ••• •••a.••• ••••• 1t•11 ••• •• ••• •• 11-P• ••• ••• ••I!!• ••11 •• ••• •••a•._ •• ••••••••- ••II••••• •• l!IIJ• ._.,. • • • •• •• ••• • • • •• • 
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Newton's Third Law 
In Figure 9.1'9a1 a we,ight is suspended from a 
fore em eter. It rs then lowered into a beaker of waiter, 

which sits on top of an electronic balance. Use th e 
following inform,ation to draw free body dragrams for 

al th e wa,ter in th e beaker 
b] th e suspended weight when, the weight has been 

lowered into th e water. 

• When the wei,ght is suspen,ded above th e water4 the 
forcemeter reads 2.7 N and the ba lance reads 6.8 N 

• When the weig1ht is 1in the water th e forcemeteir 
reads 2.1 N and the balance rea ds 7.4 IN 

Name as many Newton ·s third law pafrs as you 
ca n in, this experiment 

Fi1gure 9. 19b shows a s.imilar ,idea to the previ1ous 
ex per im·e nt Pre diet what you expect to happen to 
the force meter reading and the balance readfng a s 
the magnet hanging from the forcemeter 1s towered 
over the second magnet on the bailance. Explai:n the 
sign,if,icance of Newton's third law to this experim,ent. 

' 

~ --beaker 
of water 

eiectronlc 
:balance 

Figure 9.19a A WQi ght is; 
suspended from1 a, force meter 
and is the in Lowered into a 
beaker of water, which sfts on 
top of an eLe ctronr c balance. 

I ,. 

electron!c 
ba1ance 

Figure 9.19bWhat do you expect 
to happen to the forcemeter 
reading and the balance rea din.g 
as the magnet hanging from the 
force,meter is towered over the 
second magnet on the balance? 

~ 
: 
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Practice • 
ues In 

I A lift and its passengers have a total mass of 2000 kg. It accelerates 
upwards ,,rith an acceleration of 1.1 n1s-2. Which of the foUo\.\ring is 
the correct value for the tension in the lift cable? 

A 2200N 

B 7400N 

19600N 

D 2 SOON 

2 Two masses hang at rest as sho'Wn in Figure 9.2]. The 
thread separating the two masses is burnt through. 

Which of the following gives the magnitude o( the. 
accelerations of the masses after the thread bums 
through? 

Acce leration of Acceleration of 
A. [ ms-2) B [ ms- 2) 

A 0.5g, g 
8 91 gi 

C 1.5g 1.5 9' 

D l .5 g gi 

2 m A 

m B 

Figure 9F20 A lift and its 
passengers. 

3 Figure 9.22 sl10,vs a box at Test on the floor. The 
reaction force from th.e floor on the box equals the 
1Areight of the box. Which la1N predicts that these tvlo 
forces are equal? 

Figure 9.21 Two ,masses hang at rest. 

A The principle of conservation of momentum. 

B The principle of the. conservation of energy. 

C Ne\vtons First La,v of Motion. 

D Newtons Thini Law of Motion. 

4 Figure 9.23 sho\vs a truck accelerating from res t do\.Vn a 
slope that makes an angle of 30° 'to the horizontal . v\111ich 
of the following is the distance travelled by the truck after 
4 seconds? 

A 78.4n1 

B 58.Sm 

39.2m 

D 19.6m 

" Figure 9.24 sho·ws two boxes, A and B, ·which are connected by 
a light thread X. The bo·~es ar moving at a constant speed of 
2 .Orn s-1• A frictional f a.1~e of 10 N acts on each b,ox, and a force 
Fis applied lo a s,econd light thread Y. Which of the following 
statements is tn,e? 

_>\ F is slightly gre2)ter than 2 0 N. 

B Suing X exens a force of !ON on B. 

C X exerts a greater force on A than it does on B. 

D X exerts a greater force on. B than it does on A. 

. R 

Figure 9~22 A box at rest on the noor. 

Figure 9.23 A truck accelerating fr,om 
rest down a slop,e. 

2.0ms-1 
A B 

y 

F = i ON f = i:ON 

Figure 9~24 Two boxes. A and B. whlch 
are connected by a Light U1read X. 



61 The force Fin Figure 9.24 is suddenly increased to 25 N and, at the same 
instant> the string X breaks. \iVhich of the foUowing pairs of ailS\vers best 
de.scribes 'the subsequent motion of boxes A and B? 

Motion of A M1otion of la 

A trave:ls 0.4 m before stop ping acceterates a·t a rate of 3 m s-2 

is stops moving in a time of 0.4s accelerates at a rate of Sm s-2 

C d ece terates at 5 m s-2 ac·celerates at a rate of 8 m s-2 

,0 Stops mov:ing fn a time of 2s acce lerates a,t a rate of 5 m s-2 

7 A car accelerates from rest and travels a distance of 20m in 4 .0 s. 
The driving force acting ·On the car remains constant at 1750 N. 
'Wnich of th · foUovting is the mass of the car? 

A 900kg 

B 800kg 

700kg 

D 600kg 

8 A skydiver is falling at a termirud speed of 39.8ms-1 when. he opens his 
parachute. For the next 2 seconds the parachute exerts an average drag 
force of tVvice the skydiver's ,;veight in an up\va1·ds direction. Wnich of 
the following statements about the skydivers motion over the next two 
seconds is correct? 

A The skydiver n1oves upwa1~ds for 2 seconds. 

B After two seconds the skydiver 1noves at a constant speed. 

C Over 1,vo seconds the skydiver falls 40 m. 

D Over two seconds the sk-ydiver falls 60 ln. 

9 A child pulls a trolley with a force of 15 Nin the 
direction sho\Vn in Figure 9.25. A frictional force of 
3 N acts on the trolley. V·lhich of the f oUowing gives 
the acceh~Tation of the £rolley along the ground? 

A 3.0ms-2 C 1. 8 n1 s-2 

D 1.2 m s-2 

3N 

5kg 

The info·nnatio,n belo'\\r- is needed for both questions 
10 and 11. 

Figure 9~25 A chi'Ld pu lls a troltey with a force of 
15 N i:n the direction shaw 1n. 

A four-engine aeroplane ,of n1-ass 80000 kg takes off along a runway of length 
1. 0 k"1ll . The a.eroplane)s take-off speed is 50 ms-1. The average drag £0,rces 
acting against the plane during take-off are 20kN. 

10 vVhat is the p]ane1s minitnum acceleration if it is to take-,off fr,01n the 
nlnViray?' 

A 4.00ms-2 

B 2.SOms-2 

l .S·Oms-2 

D l.25ms-2 

11 Vi/hat is the minimum thrust required from each of the four engines to 
achieve an acceleration of 2 .0 m s-2? 

A 35000N 

B 45000N 

C 140000N 

D 160000N 
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12 Figure 9.26a sho"YIS a cylinder of wood. Its density is 720kgrn-3 . 

a) Use the inf 01n1ation in the di a.gram to show that the 1~leight of the 
cylinder is a bout 12 N . (3) 

b) State Newton's first law of inotion. (1) 

The cylinder, Y, is now placed on a tab]e "'1th a second identical 
cylinder~ X, placed on top of it. (Figure 9.26b) 

Figure 9 .26c is a free body diagra.1n that sho"\\-·s the forces that act on 
cylinder Y. 

[bi !cl 

A 

cylinder Y 

X B l ..,.__.._ centre of grav 

'150mn y 

y 
tab!Q 

C 

Figure 9~26c A free body, diagram that 
Figure 9 .. 26a A cylinder of wood. Figure 9 .. 26b Two cy'linders of wood. shows the forces thdt act on cytinderY. 

c) Name and state the magnitude of the fo1'Ces A.~ B' and C. 

d) A force, F., fomis a Ne,vtons third law pair with force B. 

State the following: 

i) the magnitude of F ii) the direction of F 

iii) the type of force that Fis iv) the object on which Facts. 

13 A student v.rith a weight of 580N stands on a set of weighing 
scales. She holds a mass of 2kg in 'her hand by her side. 

(3) 

(4) 

A 

a) Explain why the scales record a ,v-eight of about OOO -+----

600N. (1) 

She tnoves l1er ann upwards rapidly to lift the ,veight 
about her head. The scales change as shoVltn in Figure 
9.27. 

b) Using Newt,ons laws o, motion, explain the readings 
,on the graph at times: 

ii) B 

(6) 

z -m 
! 
u:J 
C: 
0 400 
'C 

~ ; 
E 

~ 200-

J 

C 

B 

14 Tw,o boxes are pulled with a force of 50 N, which causes 
them to accelerate to the right. Frictional forces of 3 N and 

Figure 9.27 Ho,w the reading on the 
scales ch1a ng es. 

2 N, respectiv,ely; act on each box as shown in 
Figure 9.28. T 

a) Calculate the acceleration of the two b,oxes. (3) 
iO kg - i15Kg ~ 

21N 3N 
~ -

h) Calculate the tension 1 II acting i11 the string I 

that connects the tv;.ro boxes. (2) Figure 9 .. 28 Frk ti,onal forces acting on boxes. 

EO N --

I 



15 Two large crates rest on the floor of a warehouse. 
Each crate has a mass of 48 kg. A forklift truck 
provides a force of 250N and the crates accele1--ate to 
the left is shown in Figure 9.29. 

p , ... ,,...1---- 250 N 

a) The crates accelerate at l .2ms-2• 
Figure 9 .. 29 Crates in a warerio 1use. 

. ) 1 Detern"Iine the resultant force acting ,o,n the crates . 

ii) Determine the total resistive (orce acting on both crates. 

b) Assuming that th resistive fore is spread equally between the two 
crates, calculate the fore e that crate P exeits on crate Q when th 
force of 250 N is applied to, crate Q. E1'.1Jlain your answ,er. 

16 A toy plane is pow,ered by a pressured water bottle. The 
principle is illustrated in Figure 9.30. A '\,,ater bottle is 
pressurised \vith a pump and inserted into the plane. Wben 
the plane is lal\ncbed~ water is pusl1ed backwa.rd5 out o( the 
plane and the plane accelerates for,vards. The plane flies 
horizontally after it is th1uv.in to launch it. 

a) Use NeV11.on.s second and third laws of motion to explain 
ho,v the water accelerates the plane. ( 4) 

(2) 

(1) 

(4) 

bottle of water 
In the planQ 

The plane starts v..ith a mass of l .3 kg~ of which 0.4 kg is the 
initial mass of the ~vater in the bottle. 

Figure 9.30 Prindple of how a toy plane works. 

Figure 9.31 sho,vs a velocity-time graph for the planes fligl1t. 

6 

5 

4 
'l, 
E --ei" 3 

8 
(l) 

2 > 

F 

G o--~--~---~--~--~--~--~--~--~-----
o 1 2 4 5 6 7 8 9 110 

~me/S 

Figure 9.31 A velocity-tirm,,e graph forth e plane·. 

b) Calculate the plane's acceleration: 

i) ,o,ver the first second 

ii) over the time l second to 2 seconds 

(2) 

on the graph. (2) 

iii) Explain why the plane~ acceleration increases during 
the period of 1 to 2 seconds, (2) 

c) Cakulate the resultant force on the plane a.t the start of its flight. (2) 

d) At wl1ich point does the water run out? Explain your answer. (2) 
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e) Explain the shape of the velocity-tiine graph over the folloVving 
petiods of time: 

i) Cto D 

ii) o, to E 

iii) E to F 

iv) F to, G. 

0 The distance flo,"Wn by the plane is closest to ,v-hich of these values: 

i) 15m iii) S5,m 

ii) 35m iv) 75m 

(2) 

(1) 

(2) 

(1) 

(2) 

g) i) When the plane increases its spee.d 1 its kinetic , nergy increases. 
Explain V."hat source provided this kinetic en,ergy. (2) 

ii) What else gains kinetic energy in this flight? (1) 

17 A student designs an experiment to inves1iga1e the resistive forces that 
act on a small mass as it falls through a column of water. The apparatus 
is shown in Figure. 9.32. The mass is b.nmersed in the water and 1-eleased 

from rest. A licker tape attached to the mass records die motion of the 
mass as it falls. 

The ticker ti.mer marks the tape every 0 .02s witl1 a s1na1.l dot. The 
separation of d1e dots may be used to calculate the speed of tl1e mass 
over a small interval of time. The student analyses the tape from one of 
tl1eir experiments and reco1·ds tlleir results in the table sho~rn below. 

lnterva l 1G a p between .su cce.s siv e lnterval 1Ga p between successive 
number dots (mm] number dots [mm) 

1 2.0 10 21.5 

2 5.0 1 l 22. 5 

3 8.0 12 23.5 

4 1' 1.0 13 24.0 

5 1. 3. 5 14 25.0 

6 11 5.5 15 26.0 

7 17.0 16 25.0 

a 18.5 17 26.0 

9 20.0 

a) Estimate the accuracy of these measuretnents. Could the results have 
been recorded m ore accurately? (2) 

b) Sh ow that the acceleration of the mass ,o,ver the 
first. four intervals is 7. 5 m s-2. ( 4) 

e) EJ...11lain how the data sh ows that the acceleration 
of the mass d ecreases with time.. (2) 

d) Calculate the tenninal speed of the falling 1nass. (2) 

e.) Sketch graphs to show: 

.- tJ.c'ker tl:me,r 

weight 

--water 

Figure 9.32 An exper imern t 
to investigate the resistive 
forces that act on a sma a 
mass as it fal!ls through a 
·col um l'l of water. 



i) how the velocity of the mass varies with ti1:ne 

ii) how the resistive forces on the mass va1:y 
with speed. (4) 

f) Criticise this expetiment, explaining how you would 
i1nprove this method to investigate the size. of the drag 
force on a falling nbject (4) 

S re eh and challenge 
I A firework rocket r aches its high est point at 100m above 

the ground 1 where it is stati-onary. It then e:h.-plodes into four 
equal parts as shown in Figure 9.33a. Each fragment has 
a mass of O .1 kg. 30 m s-1 

a) Using Newto,ns laws CA1Jlain v.rhy there should be 
symmetry to the explosion. 

b) Calculate how long each of the fragments ~ Q, Rand S 
take to reach the ground. Ignore the. effects of air 
resistance in this and all subsequent calculatio11s. 

c) Calculate ·tvhere each fragment reaches the ground 
relative to the centre of gravit)~ C) which is 100 m above 
the ground. 

d) Cakulate ihe kinetic energy of each fragn1ent as it reaches 
the ground. 

[Hint: you might be able to solve this and the next part 
using your knowledge from. GCSE) or you migl1t have 
to read ahead into the next chapter and come back 
to solve this.] 

e) A second rocket explodes with the four fr.agn1ents moving 
as sho,vn in Figure 9.33b. State the kinetic energy of each 
fragment when they hit the ground. 

19 A n1an ,vith a mass of 80 kg has clle.si gned a. [ i ft in which 
he can use his o,vn body po,;ver to, lift hhnself. The n1a.ss 
of the lift is 40 kg. 

a) In Figure 9.34 he is stationary. By dra,ving free body 
diagrams fior the man and the ]ift, determine the tension i 
n the rope and the reacti,on bet'itv,een the man and the l 
i~ floor. 

b) He pulls on the rope with a force ,of 648 N. D·etennine the 
acceleration of the lift no,v. 

c) Comment on any safety issues you might ha:ve identified 
\V'itl,. tl:tis lift. 

s 

! 30m s-1 

Figure 9 .. 33a A rocket explodes into four 
eq:uat parts. 

30ms- 1 

/ 

/ 
30ms- 1 30ms-1 

Figure 9.33b A rocket explodes 1into four 
equal parts. 

mass of 11ft. - 40 kg 
mass of man - 80 kg 

Figure 9.34 A lift h1 whic h· a man can use 
his own body power to lift htmself. 



Work, energy 
and power 
..••••.... , •.••.......•.......... , ........ ,.~ ...... , •......•••••......•••..•.. ,., ...... , .. , ....•..•... ~ .... ,,, . ' 
~ PRIOR K OW EDGE ~ .. . 

• : .. • • ... 
Work is done when a, force moves an1 object in the direction of the force. : 

• .. • • Work !J! • force !Nl >< distance moved in the direction of the force [ml : 
• 

"' • • .. Th is equation def~nes the joule: : 
: .. • : .. .. 

• • • • .. .. 
" • .. .. .. .. 
• . 
• • .. .. • .. .. .. 
• • .. 
• • .. .. .. .. .. .. 
• 

1J--1 N )< 1m 

Energ;y is the capadty to do work or to heat someth in g up - these 
quant1it1es a re measured in joules. 
Power is th e ra te of do ing work or t ransferr in g energy . 

P
. , _ ener giy 
ower - t· 1me 

Thi s equati on de fiin es th e wat t 

1 W = 1 J s-1 

: • En er gy 1s co nserved. Th[s m1eans that energy cannot be created 
• i or destroyed. but i1t can be tran sfe rred f rom one form to another. 
• 

41 .. 
+ • 
"' "' "' .. 
"' .. 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
"' • : .................................................................................................................... .... 

················~~·········································································· 
: TEST YOURSELF ON PRIOR KNOWLEDGE 
• • • I 1 Cak:u.ilate the wo rk done whe11 you 'l ift a mas s of 24 kg throug h a 
: hefght of 1.3 m. 
• ! 2 You leave a 2 kW electrical heate r on for 3; ho1Jrs . How mu ch 
i e lec trical ene rgy have you used? 
• 
: 3 In which of these exa m.ples is work bein g donie? 
• 
: a] A wei1g htl ifter holds a wei,g1ht stafionary above his head. 
• ! b) A ea r ,m oves at a con st a. nt speed ato n 9 a, road. 
j cJ A spacecraft moves at a, co ns tant speed in outer space in 'zero g·. 
: d) A spacecraft moves in a circular orbJt tff ou,.nd th e Earth. 
• 
! e] A magnet~c attrac ti on keeps a magniet attached to a fr idge door. 
i : f] You1 wa lk down th e sta,i rs at a steady speed . 
• 
: 4 Exp'lain the energy transfers th at occur in th ese cases. 
• i a) You throw a ba l l into the air and it lands on the ground . 
i b) A car drives along a road. 
• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • : 
• • • • • • • : 
• • • + • t • : 
• • • + • • 

I • • .. • : 
: i c) You ,use a r ubber band to launch a paper pe llet. 

~··•••••••111•••••••••••••••• ••••••••••••1•1••••••••••••••••••••••••••rr•11••••••••••.._. .................... .... 

Typhoon Haiyan 1 ,vhich hit the Philippines in November 2013 ,va.s the 
most powerful stonn in history to make landfall. Communities ,ve.re 
devastated by the energy of the· wind. Consider the e11tergy transfers which 
are responsible for the building np of the storm> then consider how the 
storm dissipates its energy v.rhen it hits L1.nd. 
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Figure 10.1 Tracy is us1iing en.erg,y but 
not working. 

Figure 1 D.3 A passenger at an a i,rport 
wheeling her luggag,e. 

Fslna 

Fcose 

Figure 10.4 She pulls the bag with e1 

force, F. at an angle 6' to the ground. 

We all laio,v that if we expect to earn n1.oney doing a job, we must do 
something useful. Nobody 1,-qants t,o pay an employee \~lho is not ~lorking 

effectively. The same idea applies to the scientific definition of ~rork. lt is 
possible to use energy but to do no ,vork. Figures 10.2 and 10.3 sho,w tv;,,+,o 
examples of pe,ople using energy but not vvo,rking. 

ln Figure 10.l Tracy is doing some weight training. She is holding t,vo 
weights but she is not moving them. She gets tiredl holding them out 2 and her 
aims con,,re11 cliernical energy in'lo heat energy> but no work is done as the 
weights do not move. Tracy does work when she lifts the v.r,eights. 

1n Figure 10.2 three p ople are helping to push-start a fliends car: Salim 
and Anne are pushing at he back of the car. Here Salim and Anne are 
working) because they are pushing along the directio,.n in which the car is 
'lrav,eUing. Jim does no work as he is pushing at right angle-S to the direction 
of motion. 

Ofte.n an object moves in a different direction to the applied force. To 
calculate the V"it"ork done, \Ve resolve the force into co1nponents parallel 
and perpendicular to the direction of motion. Only the con1ponent parallel 
lo the motion does i,vork. Figure 10.4 sho\vs a passenger at au airport 
wheeling her luggage. Sl1e pulls the bag Vlith a fo1~ce, F~ at an angle e to the 
ground. 

saJlm 

___ ___... pUS'h 

d irection of 
--------·-- motl on 

work Is done 

push 

L direction ol 
motion 

no work 1ls done 

Figure 10.2 Salim and Anin,e a,re working· but Jim i1s not workjng as he is pushing a1t 
right angles to thie car. 

The co,n1ponent ,o,f force Fsin 8 does no work, but supports the bag. The 
co1nponent f cos 6 does work against frictional forces . 

The general f onn u la. for \vork is 

\VOr k done = F s c,os e 
wher,e Fis the applied force, s the displacement of the object, and 8' the 
angle betwe,en the force and displacement. 

There are times "'Then the force vle are working against does not remain 
constant; so the calculation of the work done is s]ighdy more cotnplicated. 
Figure 10.5 shows an example of the force increasing as an object iis 
displaced. We calculat.e the ,vork don,e by considering a small displacement) 
l:l-s) when the applied force is F. 
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Figure 10JS We calculate the work done 
by conside·r in,g a small d·isplaceme·ntl 
!ls. when the app li ed force is F. 

T]1en the small amount of "'ork done is: 

~w = F x 11s 

Ho\vever, AW is the small area marked under the graph. So to 
calculate th e work done over a bigger distanc,e ~,e calc·ulate the are.a 
under the graph. 

Ca lculate the work done from Figure 10.5 when the obj ect is displaced 
40 1m from its or iginal posjtion. 

Answe,r 
Work done ;:I the area under a force-displacement grra ph 

~ t l 1 5 0 N + 3 0 0 N) " 40 m 

.:: 9000 J 

~ ·····················································································································································: 
: TEST YOURSELF : . . . 
• • • • • • j 1 A passenger pulls he r suitcase, si-rn1ilar to the one in 4 A bag; of mass 23 kg is pulled a long a floor a i 
~ Ftigu re 1. 0.4. a distance of 400 ,m through a-n a-i rport. d is ta n c-e of 50 m; th e f r i c ti on al forces act 1n g on ~ 
i Th e case has a mass of 20 kg, and she pulls it along it are 40 N. It 1s then lifted on to a des k of height ~ 

f with a, force of 60 Nat an angle of 50° to the ground . 0.9 m. Cailcu tate th e total wo rk done Ln the process. ! 
.. .. 
: a] Calculate th e worlk done agains t resistive : 
• • 
: forces. : 
• • 
: b] Explai,n why 1t 1s an advantage to pu ll a : 
• • 
: s uitcase rath er than to push it : 
• • 
~ 2 Three people help to pu sh-start a car. ! 
• • : The strength and directi:on of th e fo,rces : 
j that they apply a re s hown in Figure l 0. 6. 

300 
N d,rectl; n of i 

~ They pus h the ca r along the road for 60 m. movement ~ 

l Calcula te th e w ork done by the th ree 250~. ; 
i peo ple in tota l. ~ ! 
.. . 
: 3 A satelli te, w.ith a mass of 75 kg1 is in a ! 
• • : circu la r orbit of radru5 7000 km a round a Figure 1046 The stre ngth and dfrec tion of applied forces. : 
• • i planet. At this height th e grav itational fietd : 
i strength is 6 N kg-1. Calcula te the work done i 
: by the gravitatf ona l frietd du ring one complete : 
I I i orb i t of the plan et. i 
·~······~· ··· ·········~•+•t•• ·········· ···········~······· ······•••t+••········· ··················· ·······••t++++• •······~····· ········· ···••••illlllllllllllllllllllllllllllllili 

o~~~~~~~-c Lculating th nergy 
When work is done against resistive forces; for example when the suitcase 
is mov.ed at an airport , that work is transferred to hectt energy. Therefore the 
wheels of the suitcase and their surroundin gs warm up by a sroaU amou11t. 

Vvbrk can also be done lo transfer energy into other fonns. 'Tv,le can use this 
idea to derive formulas for gra'1itational potential en ergy> elastic p otential 
-en ergy an d kin etic energy. 
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Figure 1 o. 7 A Loa1d with a weight W lifted 
thro.ugh a hejghtilh . 

The a rea under a force­
displacement grap h is equal to 
the work don e. 
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Figure 10 .. 9 How the force requ ired to 
stretch the band depends on the d ista nee 
it is puUed back. 

Gravitational potential energy 
In Figure 10.7 a load with a "reight W, has ·been lifted through a height flh. 

The V{ork done= increase in gi"avi.tational potential energy 

\Vork = W x Ah 

But 

~·,eight W = nig 

So, thi: increase in potential energy, LiEP' i.s given by: 

~J:P = n~g.61 

N ot,e 1hat vve use the symbol ~ to indicate a change in energy and height. 
There is n,o, defined zero point of gravitalional potential energy on lhe Earth, 
so we talk about changes. 

Elastic potential energy 
Elastic potential energy (Eep) is stored in a stretched wire O·J rubber band. 
Figure 10.8 sho,vs how a rubber band may be stretc11ed. 

runway rub'ber band puck 

Figure 10.8 How a rubber ban.d 1may be stretched. 

When it is released it can convert its stored energy into the kinetic 
energy of a puck) which slides along a run,vay. 

Figure 10.9 sho\\15 how the force required to stretch the band depends 
on the distance i t is p·ulled back. Because the force changes ,ve have to 

use the average fu:rce to calculate the energy stored. 

nCEep) = Fav X s 

In the case of Figure 10.9, where the force to stretch the band is 
proportional to the distance n1oved: 

So 

average force=! x fina1 force 
2 

1 
LiE P = 2 Fs 

The sto,red elastic potential energy can also be calculated more generally 
usi11g the area under the force-extension graph. 

velocity - o ve 1loclty - v IKinetic energy 

I ,--------s-----~ 
I 

Figure 10 .. 10 A constant force acceterates a ca r. 

h1 Figure lOJ O a constant force F accelerates a. car; statting 
at rest > o,1er a distance s. Work is done to increase the 
kinetic energy of the car. We. can use this idea to find a 
formula for kinetic energy; Ek, in terms of the car's speed 
and 1nass. 
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LiEk = Fs 

but from Nevn.on )s Second law: 

F = ma 

and fro n-i 'th e equations of n1o'tion: 

s = lat2 

2 
which gives 

LiEk = ma x iat2 

since 

= - ma2 t2 

2 

V = ,Qt 

8Ek =! mv2 

2 

So the kineiic energy of a body of a mass m \ moving at a velocity v) is given by: 

Ek= ! mv2. 
2 

Note this is a scalar quan tity because v2 has n o di recdon . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 
: TEST YOURSELF • • • 41 
• • • 

• • • 
: 5 a) iJ 
"' "' • 

A cra ne tHts a container of mass 25000 kg 
though a he,ight of 12m above th e quay next to 
a s hip. Ca lcu late the contai·ne r·s increase in 
gravi,taHona t potentral energy . 

i ii] The co ntainer 1s then lowe r·ed ~nto the ship's : 
• 

• • • • • • + • • • • • • • • • • • + 
+ 
• • • • • • • • • • • + • • • • • • • • • • • • Ii 
• • 
"' • • • : • • • • • ,. 

i • • • • • • 
"' ! • 
" " • .. 
• • • • • 
! .. 
" • .. 
" • ~ • : 
t • 

Figure 10.11 A con,tainer bein.g loaded on to a ship . 

ii) The crane t hen r otates. m1ov ing th e conta,iner 
srid ew a,ys 20 m over the ship, The averag:e 
f r} ction al force acting on the craine as ft 
moves sideways is 150 N. Carlcutate the work 
done in t hi1s m ovem,ent 

hold so that t he co nta iner Ues B m below : 
• 

the level of the quay. C.alculate its poten tia l j 
energy now. w hen compared to its orig1inal ~ 
pote ntia l energy. : 

• 
b) A spacecraf t of m ass 18 0 00 kg falls i nto a black i 

• 
hate. The dec rease in the spacecraf t' s potent1a l : 

• e ner9y as ft fa lls 100 m near the event hor;zo n : 
is 5 ~ 1,018 J. Catc.ulate t he average graivftat ional ! 

• 
fie ld s trength in thi's reg.ra n. : 

• 
6 a) A Formula 1 car w :ith a m:as s of 720 kg : 

accelerates from a s peed of 42 m s-1 to 88 m s-1• ! 
• 

Cailcutate ft s i,ncrease i,n k~netic energy. : 
• 

b) A buVlet w:ith mass of 0.05 kg ha,s a veloc ity of : 
• 

300 m s-1. Ca Leu late its kineti c energy. i 
• 7 In an experiment similar to that shown rn Fi,gure 10.8. i 
• a puck of mass 0.1!5 kg is used. The rubber ba,nd is : 
i stretched by 0.12 m wlth an avera·ge force of 4.0 N. : 
I 

a) Cailculate tn e ela,st ic potentra,l energy stored ,in : 
• 

the ru1bber band when it has been putted bac k a i 
• 

dis tance of 0.12 rm. ! 
bl Th e puck ~s released and it slides along 

the r u1nway a distance of 0.96 m parst the 
unstretched positi1on of the band [t he d istanrce s 
f n the di agram]. Esti mate th e average fric ti:ona l 
force ac t1in g on the puck to s low it down . 

• !I • • I • : 
: 
i • II • • • 
"' • • i • 41 
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Q Th principle of conservation of energy 
You are already fa1niliar \Vith the p rinciple of conservation of energy) w·hich 
may be stat.ed as follows: ,en ergy cannot be create d or destroyed ) but i-11ay be 
transferred from one form of energy to an other. 



In the last section you m et formulas for gravitational potential ,energy, 
kinetic en ergy and elasti c po tential en ergy. In this section you VliU learn 
to use these fon nulas to calculate and predict th e motion of bodies as 
one [onn of energy is transfetTed to another. 

A boy throw s a ball upwards with a speed of 16 m s-1• It 
leaves h1is hand at a height of 1.5 m above th e ground. 
Calculate th e ·maximu·m heigiht to which it ri ses. 

So 
BEk ~ 11Ep 

"'* !mv2 
- 0 m mglih 

Answer 
The kin,eti c energy of th e ball as i1t leaves the boy's 
hand is transferred to giravitationa l ipotential energy i1n 
th e ball as it r[ses. At the ba ll's highest point it stops 
moving, so all i,ts kf 1n etk energy has been transferred 
to potential energy at that point. 

• /J.h -~ 
2g 
1, 6 2 ( m s-1 ] 2 

I.I 2 >< 9 .8 m s-2 

- 13 m 

but the tota'l hei··ght gai:ned ,j5 13 m + L 5 m ;;;; i 4.5 m. 

PLE 
A stretched ea tap u lt stores D. 7 J 
of elastic potential. The catapult 
f s t.Jsed to launch a ma rbte of 

mass 0. 01 kg,. Calculate the i1n i tiat 
speed of the marble. 

Answer 
The stored elastic pot en ha l energy 
in the catapult is transferred to 
the marble's ki1rnetic energy. 

So 

f!.Eep = tlEk 
· 1 2 fJ . 7 J = - X 0.01 ~g X V 2 . , 

v2 = 1.4 (ms-1)2 
0.01 

~ V= 12m s-1 

A car of mass 1300 kg is travellfng at 9 m s-1• The driver applres the 
brakes, wh icn exert a braking force of 4400 N on the car. Calculate the 
bra kf n gi d1 stance of the car. 

Answer 
The work done by the brakes is equal to the chang·e of krnetiic ener giy 
in the car. [The ~,dnet~c energy is transferred to heat energy in the 
brake discs) . 

work done= ~Ek 

F "A s = lmv2 
2 

4400N x s- ~ x 1300 kg" [9m s-112 

s = 650 kg ;.c: 81 [m s- 1}2 

4400N 
= 12 m 

o~~~~~~~-
f f i c i enc y 

Figure 10.12 An electr ic motor be,ng 
used to l1ift a weig:ht. 

In Figure 10.12 an electric 1notor is being used to lift a weight. E1lectricaL 
energy is being transferr, d to gravitational potential ene1·gy. Howe·ver1 the 
motol' also transfers electrical ,energy into heat ,en ergy an d sound energy. 

ln Figure l 0.13 a . anl,a:v dia. r~ 111 shov,rs how l OOJ of electrica] energy 
are transferred to other types .of energy The maj ority o f the energy is 
transferred into heat and sound -energy, with only 30J being transferred into 
us,eful gravitational potential en ergy. 
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S · nk 1 d" m A specific ffow d;agram 
in which the width of the arrows shown is 
propoirtfonal to the q1uantqty of the now. In 
tht5 chapter Sankey d1agram1s are used to show 
how energy i1s transfernred ~n vanlous processes. 

100 J e le ctr I cal' energy 

30 J gravitation a~ 
potent lal1 energy 

12 J, heat energy 
In the pu1Uey 

50 J of heat 
energy 1ln 
the motor 

BJ sound 
energy 

Figure 10.13 A Sankey driag,ram. 

The effici,ency of a machine is defined as follo"vs: 

efficiency = useful energy trans fe n·.ed 
energy supplied 

For the motor: 

fr. . 30 I e ]CH~-ncy ~ 
l OOJ 

= 0.3 or 30% 

~ ~;;-~~~·········································································································································1 
• • • • • • ! 8 A m oto r s1.m1Lar to the one s hown 1n F1g:u re 10.12 
! uses 280 J of etectdcal e nergy to li:ft a m ass of 
• : 2.3 kg through a ve rtical height 
i of 3.5 m .. Ca Leu late th e etfl c,1ency of th e motor. 
• : 9 Th e effi dency of a c ar 's petro l engine is 270/o. Th is 
• : mea ns th at only 270/o of the chemica l energ,y sto red 
• 
: in t he car ·s fu et does useful wo rk to dr ive the ca r • • • .. 
• • • 

forwards aga~ns t the drag and frictij ona l forces . 

a] One litre of petro l in. a fuel tank s tores 30 MJ 
of che,mi cat pot ential energy. Ca k ulate t he 
e ne rgy ava iila ble i,n 1 lit re off ue l to work again st 
fric tional fore es. 

b] A ca r traveHiing at a co nsta nt speed of 20 m s-1 

uses 1 litre of petrol to drtve 7 km . Calculate the 
fri ctional fo rces acti,ng on the c.ar. 

• • • • • 

. . ............................................................................................................................................................................. 

C)--Po_w_e_r~~~~~~~~~~~-

P.ov.t,er is defined b,y the e·quation: 

energy transferi-ed work done 
power= . or 

ttme time 

The unit of po,wer is the watt , Vttl, ,o,r J s-1. This d fi11ition can be used t,o, 
produce a useful formula to calculate the power transferred by 1noving 
vehicles. 

power = ~·o,rk done 
time 
Fx s -- t 

= power~ F x v 



PLE Answer 
A car is moving at a, constant speed of 18 m s-1• Th e 
frictional forces act,ing .a9a1inst the c.ar are 800 N: in 
total. lh e c a r has a ,mass of 1 2 D [) kg . 

a] P = F xv 

= 800 N >< 18 m s=1 

J Calculate th e power transferred by the car on1 a 
leve'l road. 

J The ca r maintains its consta nt speed wh~le ctim,bi:ng 
a, hiU of vertical height 30 m in 16 s. Calculate the 
power transferred by the ca r now. 

== 14 kW 

b) P ~ 14kW + mgllh 
t 

• 14 kW+ 1200 kg>< 9.8 N kg,-1 >< 30 m 
16 s 

• 14kW+ 22kW 

• 36 kW 

Ii•••••• ra.a •ii••• a11• •••••Ii• t1•• 1i• ••:JI•••••,•• aa raa •• ••• •• aa1 sa ••• ••~ • • rlia ap aa11a,111aa •• ••••••Ii• a;ii,i •• ••• ,• rm;a •1 ••• 11ai1 •• aa1 m;s •••Ii•••••••••••• a1111: 

; ACTIVITY 
: 
~ 

~ How high can you climb using the energy from 
a chocolate bar? 
Estimate the he,ight of a mountain that you can cUmb us~ng the energy fro,m 
a chocolate bar. You w ill need to research the efficiency of the body in turning 

food energy to work. and the caiL01riflc value of your choc:ota,te bar. 
. . ................................................. 111•• ......... - ....................................................................................... ...... ................ ............ . 

The purpose of the following group of experiments is to account for energy as 
far as is possible. At the start of each experinllent you will calculate the arnount of 
energy in one fon~ and see whcther you can ~l)lain how the original energy has 
been transformed into other fornJS of en erg}{ Preferably you should do your ov;n 
experin1ents ·based on these, but you can use the data pro'vided to guide you. 

~ ACTIVITY 
•• •• ••• •• r•• aa, •• ••• •• ••• •• ••• •• ••• •• r•• ••~ •• ••• •• ••• •• ••• •• ••• •• r•• ••"' •• ••• •• ••• •• ••• •• ••• •• r•• ••., •• ••"' •• ••• •• ••• •• ••• •• r•• •• r•• aa, •• ••• •• ••• •• ••• •• ••• •• ,.._. aa, •• ••• •• ••• •• ••• •• ••• •• r•• ••"' •• ••• •• ••• •• ••• •• ••• •• ••• ••1 •• ••• •• • . . 

. . 
' . . 
: . . 

Elastic potential energy transferred 
to kinetic energy 
Here you 1i nvesti giate how e lastic potentia l energy 
ts transferred into the kinetic energy of a troHey~ 

~ w hich iis tethered by tvvo spfrngs. In Fi1g,ure 1:0. 14 
j the trolley ,is in equi,libriu·m. Pull the trolley a 
= suitable di1stance si,deways,, and measure th e force 

req:ui1red to do thiis. Then release the trolley and 
use the tiight g,ate to measure the speed directly. 

l,lght gate ___J; 

Here !is some samp le data obtained w ,ith a 
trolley of mass 0.85 kg. 

Figure 10.11. The sp-eed of the trolley is measured as it passes through 
the Light g,ate. 

20.0 9.3 

Use these results to calculate the elastic potenti,a l energiy stored in the 
spr in g-s before the release of th e trolley. Use th e formu La~ 

/\E0 p = f force x ex tension 

Th en ea Leu 'Late the trolley's ~d netic energy at its t ast es t pol n t of m otion . 
Com merit on your resu'Lts . 

131 
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: ACTIVITY 
: 

j 
! 

Gravitational potential energy to kinetic energy 
Thi s experiment monitors th e tra,nsfer of grav ita ti onal 
potentiat energy to kf netic energy. In Flgure 10.11 5 a1 ball 
bearing i,s dropp ed through two li ght gates which measure 
the ba ll 's speed in each pos iti on. 

Use the diaita provided in Fig·ure 10.15 to calculate th e change 
of gravitat ional potentiial energy as the lbaU fa1lls from A to 
Bj and th e cha ng e in kinetic energy over th e same distance. 
Com1 ment orn your resu lts. 

The tub e is now tHted so that the ba ll bearing rolls down the 
t1ube ra·ther than fail!Ung (see F igure l 0.161. a fall s thro,ug1h th e 
same vertica l height as before, 0.35 m. 

~ When the ball bear.ing ro lls it has two types of kin eti c 
~ 

~ energy: tran s lati on kinetic energy, w hi ch iis c.alcutated 

i 

by the form ula : 

lmv2 
2 

and rotational kjinetk -energy due t o the rotation of t he baH 

about its own ax ts . The rotation al k~n et ic e11e rgy ea n be 
ca lc ulated us'ing the formula: 

l mv2. 
5 

Use thi s theory to predlct the speed of th e ball bearjng 

after is has roUed down a vert1cail height of 0.35 m. to light 
gate B after ft travelled past Ught g,ate A w ith a speed of 
0.91 m s-1. Explain w hich other energy t ra nsfo rmations 
may take place during, thi s process . 

Check by doing the experi ·ment f or yourself. 

11gnt gates 
0.35m 

A 

1.56ms- 1 

B 

mass of ball 
bearling 15. 7 g 

Figure 10.15 Th,e Light gates re:a d t he 
speed di rectly as the ball bea r jng passes 
through the,m. 

Figure 10~16 The t,ube is now ti lted. 
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~ ..... ............................................................................. ............ . ...................................................... ! 

. ! TEST YOURSELF ! 
• • • • • • i 10 A ball is dropped from a height of 1!5 m. a] Calculate it s kineti c energy when i;t is first f 
f aJ Ca lcu'late its speed when it hits th e ground thrown, ! 
i be low. b] Calculate the ball"s potential e nergy at a hei,glht ; 
• • ! bJ The sa me ball i1s thrown downwards from a 20 m above the ground. ! 
• 1 11 

i heig,ht of 15 m w ith an 1ni:ti at speed of 10 ms- . c) Catcula. te the balt·s kin etic energy w hen it hits : 
• • 
£ Ca lc ulate Lts speed when it hits the ground. th e ground. ! 
! 11 A balt has a mia:ss of O.i kg. It is thrown s ideways d J Calculate the ba ll"s sp eed whe n it hits the ~ 
~ with a s pee d of 10 m s- 1 at a height of .20 m aibove ground. ~ 
i th e g:rou n.d. ..-A. ! 
• '--tl" • 
• • ••••••••••••••••••••••••••• •••••••••••• •••••••••••••••••••••••••• ••••• ••••••••••••• •••••••••••••••••••••••••••• ••• •••••••••••• ••••••••••••••••••••••••••••• •• •••••••••••••• 



:··~······································································································································································: . . . • • • • • • • • 
~ 12 A car of mass l80 0 kg slows from a speed of c) The lloc ust's legs extend by 5 cm d ll r1 ngi the ~ 
: 20 m s-1 to 15 m s-1 over a di.sta1 nce ,of 200 m. jump. Cailculate the work done by the legs. : 
• • 
~ Ca Leu late the average res1st1ve forces act1ng on d) Calculate the power developed in the locusfs ! 
i the car over thi's di1stance. muscles, ~-
i 13 A force of Fis 1used to accelerate, from1 rest. two e) Comipare the power/mass ra·tio for the locust1 i 
i cars over a d1stance, d. One car has a mass m, the with that of a high jumper. Assume the high ! 
: second ca r a ma,ss of 2m . Whk 1h car now has the jumper has a mass of 70kg~ he Ufts his centre i ! greater kinetic energy? of gra,vity by 1.3 m in the jump; his take-off foot j 
: 14 An express train is powered by di,esel eng in es that is i,n contact with th e ground far 0.2 s . ! 
I I i have a maximum output of mecha,nical power to 17 A power station turns the chemicait energy stored i 
i dhve the tra,in of 2.0 MW. Us1ing th!is power the tra~n in coa,l into electri,cal energy with an eff ici1ency I 
i travels at a top speed of 55 m s-1. of 36%. Some of the electrica l energy is used i 
I I i a] Catcula,te the res,istilve forces acti,r,g on the to ddve a tram. The tram·s motor transfers ! 
! t ra i ri at ~ts top speed. e lee tri'c al energy to work against resistlve forces I 
i b] The diesel fuel stores 40 MJ of chem ica l with an effici1ency of 25%. What fraction of the ; 
! energy. The en,ginies have an effrci.ency of 32o/o. coars orig inal chemical erierg1y is used to dr~ve ! 
! Ca,lculate the volume of foel required for a the tram? What happens to the rest of the energy? i 
! journey of 200 km at the traf n's top speed. 19 A hydroe'lectr~c turbo-generator is driven by water ~ 
i 1·5 A fly of mass 16mg flies into a sp1der·s web. The that descends 160m from a h:ig-h-tevel reservoir. ! 
• • i k1i,netk energy of the fly is converted to etaistic Water passes through the turbines at a rate of : 
~ potential energy in the web as it stretches. 700m3s-1• The density of water 1s 1000 kg m-3• The ~ 
i F1gure 10.17 shows how the centre of the web is eff1iciency of the turbo-gene rator is 0.8. i 
• • : d,splaced a.s it slows the fly down. Ca'lcu late the electri'cal power o,utput from the : 
• • i 8 gen era tor. Ex press your an s\~ler in GW. ~ 

! 7 19 lit has been suggested that a tidal barrage could i 
~ 6 be built across the River Severn to generate i 
! z 5 electr1city. The 1dea 1is that. as the t1ide rises. water : 
: € flows ~n through gates 1n the barrage into .a lake. i 
• (1) 4 • 
~ ~ 3 When the tide begrn;s to turn, the gates are closed ~ 
: 2 and the water is stored beh~nd the barrage. At low : 
• • : tide wa,ter 1n the take Js then alllowed to How out : 
: 1 : 
: through turbo-generators. : 
• • • • 
: 4 8 12 16 20 You waHl be asked to .carry out som,e ca lculations : 
• • 
= extension ofwe·b/mm on the generaUon of e'lectrical power. ·vou. w~H ! 
ii • 

: Figure 10.17 How the centre of the web need the following information. : 
• • : is d1splaced as it slows the fly down. • The surface of the lake is at a height of 13 m : 

: J above the turbo-generators at the start of the ! 
= a The ma,ximum stretch of the web when the Hy • 
: generation process and falls to a hei19 ht of 6 m : 
i.·. · h1its it is 14 mm. Estimate the elastic potent 1ial , 

d h bf h
. .. a,bove the turbo-generators. : 

! energy store in t ewe or t 15 d,spla,cem,ent • The surface area1 of the lake i,s 2'00 lkm 2• i 
: G~veyour answer in µJ. : 
: • The e lee triiC'ity is g e11eratedl over a period of 5 .5 : 
f b] Esti1mate the speed of the ny when1 it hit the web. h ; 
i State any assu1mptions yo,u make. ours. 3 i 
: • The density of sea water is 1020 kg m- . : 
: 16 Read this extract from a sc ientifJc article. 1 • ; • g - 9 .811 N kg- . : 
i.. • T h e h i n d legs of a lo c u s t a, re ex t 1r em e ly. Th ff· · f h b · 78 o, I .. • e e 1c11ency o t e tur o - generators 11s "ro , : i powerful. The ,insect takes off w1ith a speed ! 
! of 3 m s- 1• The jump is fast and occurs ·in a a) Ca,lcula,te the gravitational potentia,l energy i 
: ti ,me of 25 milliseconds . The lo cust's mass is ava,itable 1n tlhe la,ke at high t:ide. Express your : 
• • i about 2.5 g.' answer in TJ. I 
i Use the ,1nformation to answer the questions below. b] Calcula,te the average power produced by the i 
i a] Catcu late the locust's average acce leratiion turbo- gen,erators. Expres s you answer :in MW. i 
: during take-off. c) Assumi,ng there are two h~g h tides a day, : 
• • 
: b] Catcu[ate the average force exerted by the estimate the total e lectrical ene rgy product1on : 
• • 
: lo cus t's hind legs. a year. : 
• • : ..................................................................................................................................................................... .... 
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Prac ice questions 
I A car exerts a tractive force of 7S0N ,vhen traveUing at lOB kmh-1. 

What is the V{ork done by this force in 10 minut,es? 

A 10.BMJ 

B ]3.SMJ 

C 15.6MJ 

D 19.61\ilj 

2 A horse pulls a barge along a canal \Vid1 a 
force ·Of 160N. The barge moves at a steady 
speed of 2 .0 m s-1. How n1.uch work does 
the ho,rse do in pulling the barge foTW"ards 
in I hour? 

A. 1. 5 MJ 

B l.04MJ 

0.49MJ 

D 0.05MJ 

3 An electric motor uses lOOW to xaise 10kg 
vertically at a steady speed of 0. 4 ms- 1. 

What is the efficiency of the system? 

A 10% 

B 25% 

C 40% 

D 100°,f> 

Figure 1 Oa18 A ho rse pullrng a barge. 

4 An electric motor has an effici.ency of 22%. It lifts a 6.6 kg load through 
a height of 2 m :in 4· s. What power is the motor using? 

A 75W 

B lOOW 

C 150W 

D 225W 

5 A car of n1.aSS 1200kg brakes from a speed of 30n1s-1 to a speed of l 8n1s-1 

over a distmKe 240m. What is the ave1--age b1--aki.ng force over this distance? 

A 360N 

B 720N 

C 1080N 

D 1440N 

6 A ball is falling at a speed ,of 8 1ns-1 ,vhen it is 6m above the ground. 
What is the speed when it hits tl1e. ground? 

A 13ms-1 

B 15ms-1 

C 17ms-1 

D 19ms-1 

The infonnation here refers 'to both questions 7 and 8. 

A long bow, ,vhen fuUy flexed., stores 75J of elastic potential enerm~ The 
bow transfers this energy v,.ith SO% efficiency to .an arrovv of mass 60 g. 
The arrow has a range of 200m and penetrates a 'target to a depth of 12cm. 

1 The speed of the arrovl as it leaves the bow is: 

A 50 m s-1 

B 45ms-1 

40m.s-1 

D 35ms-1 

8 The average retarding force exerted by the target 011 the arrow is: 

A SOON 

B 200N 

C SON 

D SN 



9 A manufacturer states that a 50 g chocolate bar provides your body with 
lOBOkJ of energy. OuT bodies can convert energy f-rom food to ,vork 
vvith an efficiency of 10%. Ho,v far up a mountain can a 60kg student 
climb using the energy from this chocolate bar? 

A 90m 

B 180m 

C 900m 

D 1800m 

10 A runner loses he.at from her body at an average rate of 90 W \vhen 
at r,est. She plans to run a race that Vvill require ber to use. energy at a 
rate of 600W for thre,e hours. What is th athlete's minimun'l energy 
r,equirement for 'the day?' 

A 6.SMJ 

B 13.3 MJ 

16.?MJ 

D 18.0MJ 

11 A stude.nt investigates the action of a pile driver using the apparatus 
s'hown in Figure 10.19. 

A steel rod is dropped o,n to a nail ] which is embedded 4mm into a 
block of wood. The student then measures the additional depth to 
which th.e nail is knocked in for each drop of the model pile drive·r. 

Use the data below, collected by the student, to answer the following 
questions: 

• Jvlass of tl1e pile d1i ver: 0. 31 kg 

·• Height of the pile driver above tl1e nail for each drop: 25 cin 

length of nai Labove the Number of drops of the 
wood [mm) pile driver 

41 0 Figure 1 O" 19 Apparatus for 

35, 1 i nves tig,a.ting the actiio n of a pite 
driver. 

31 2 

28 3, 

25 4 

23 5 

a) Calculate the average forc,e to drive the nail into the W·Ood 
for the first dro1:, of the pile driver. 

b) U s,e your kno"'rled,ge of forces , work and energy to explain the 
pattern of the students results. 

12 A conveyor belt in a power station lif s 
9.6 tonnes of coal per minute to tip into 
the furnace. 

a) Us,e th.e informati,on in Figure 10.20 to 
calculate the increase in gravitational 
potential energy of the coal per second. (3) 

b) The conveyor bek is powered by a. 80 kW 
electric 1notor. Calculate the efficiency of 
the motor, ignoring fricti.ona] effects. (2) 

\ 
\ 

(4) 

(2) 

Figure 10~20 Conveyor belt lift~ng coal. 

\ 
\ 
\ 

36m 
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13 The following is an ~xtract from a flying manual. 

'The typical drag on a jet aircraft of mass 110 OOO kg, flying at 240 m s-1 

at a constant height of 12000m, is 92 kN. On a four-engine aircraft this 
n1eans that each engine n1ust b e deliv,e1i11g 23 kN of thrust; and under 
these conditions 23 kN of thrust requires a power of just over 5.5 MW, 

a) How do you lmoVt~ fron1 this information that the plane is 
travelling a constan't speed? (2) 

b) Calculat,e d1e lift on th aircraft. (1) 

c) Sho,,r how the author calculated the power deliver,ed by the engines. (3) 

4 a) State the principle of conservation of energy~ 

b) A boy of tnass 32kg travels do,wn a slide 
as sho,vrn below, TI1e distance he travels 
is 12m. 

Calculate his loss of gravhational 
potential energy: (3) 

c) The boy reaches a speedl of 9.3rns-1 at 
the bottom. Calculate his increase in 
kinetic energy. (2) 

(2) 

d) Th~ increase in the boy's kinetic energy 
is less than his decrease in p otentia] 
energy. Explain how the principle of 
conservation of energy still applies here. 

Figure 10.2t Boy sUding down slide. 

(2) 

e) A student suggests that tr.he frictional force acting on the bo,y as l1e 
descends the slide \Vilt generate heat energy. Use this idea to calculate 
an average value for this frictional force . (3) 

15 A golfer hits a golf ball so that it travels vvitl1 a spe·ed of 41 ms-1. The golf 
club is in contact ,vith the baH for 0.49 n1S. The goHball has a mass of 46 g. 

a) i) Calculate the average acceleration of the ball while it is in 
contact ·with the club. (2) 

ii) Calculate the force of contact that accelerated the baH. (2) 

b) Calculate the· balls kinetic energy as it leav,es the club. (2) 

c) Calculate the dis'tance that the clu·b "'ras in contact with the 
bail, assuming that all ,of the. "''fork done by the club "''fas used to 
accelerate the ball. (3) 

d) Explain in practice why the c,on.tact distance might be a little more 
than the distance you calculated in pa1t (c) . (2) 

1 · .An attraction at a theme park is the water plunge as 
sho'WTI. in Figure 10.22. The riders fall do"'rn a slope of 
17m in height and splash into a pool at ithe bottom1 

which slows the·m down to rest over a distZJJnce d. 

The mass of a boat and its three occupant5 is ].300kg. 

a) Calculate the change in gravitational potential energy 

h 

raus for 
safety 

p:latfoirm 

17m 

as the boat falls through 17 m. (2) Figure 10.22 The water plunge. 



b) i) Calculate the maximum speed of the boat at the bottom. (2) 

ii) Ex"']Jlain why the speed of the boat n1.ay be less than your 
calculated values. (l) 

Tne bo1.lt is now loaded with n1ore passengers so that its tnass is 1500kg. 

c) Explain carefully the effect of the larger mass on: 

i) the final spe,ed at the bottom 

ii) the distanced ,o,ver which the boat slo,vs to rest. (4) 

17 Figure 10.23 sho"'rs ho,,r the drag forces on a car depend on its speed. 

A student observes that i't will save petrol to drive the car at 20ms-1 

rather than 30 m s-1, 

a) Explain how the graph backs up the studenfs 
comment. (3) 

b) Calculate the power generated by the car to drive at 
a steady speed of 30ms-1. (2) 

The car engine is 27 % efficient when dri"ving at .a speed 
of 30 ms-1. 

c) i) Calculate the po~rer input to the engine at 
30ms- 1. (2) 

ii) Explain what happens to the wn sled power. (1) 
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velocity/m s- 1 The petrol in the car stores 32 MJ of cl1e1nical potential 
energy per litre. 

d) 1Calculate ho,v much p etrol is used in 1 hour if the 
car drives at a constant speed o f 30 m s-1. 

Figure 10.23 How the drag forces on m3 car 
depend on Hs speed. 

18 The extract be.lo~· is tak en from a scientific .article. Read it and answer 
the questions that follo,v: 

A crater hi the Arizonian desert is thought to have been caused 
by a meteor impact about 50000 years ago. The ·crater n1tcasures 
1200m across and is about 200n1 deep: the volume of the crater is 

(3) 

about 350 OOO OOO m!, and the density of :rock in the region is about 
3000kgin-3. TI1ere is evidence fro1n the sun·ouncling region that the 
debris from the impact must have been thro'\Vn 5 kn1. into the air before it 
settled back to ·eanh. Meteors ent,ering th Eatth! atmosphere can travel as 
fast as 14 kn~s-1

1 the ref ore they possess a. great an1ount o{ kinetic energy/ 

a) Us the data in the .article t,o ,calculate th mass of rock and earth 
removed from the crater. (2) 

b) Calculate the gravitational potential energy gained by 
the material as it rose 5 km above the plai.n. (2) 

c) ·Calculate 1he minimum mass of the meteor that made 
this crater. (2) 

d) Suggest ~"hy the 1neteor was probably bigger than the 
tnass you calculated in part (c). (l) 
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Ill 19 A sprinter uses blocks to help him accelerate quickly 
after the starting gun goes. Figure 10.24 shows how 
the ho1izontal [orce from the blocks acts on the 
sprint,er as he starts the race. The sprinter has a ·mass 

of 86kg. 

a) Calculat,e the ,vork done by the sprinter v.rhile he 
is in contact with the blocks. (3) 

b) Estimate th velocity of tl1 sprinte1· jus·t after h 
left the blocks. (3) 

S retch and challenge 
20 A car accelerates using constant power. It takes 15 

seconds to reach a speed ,of 40 km b-1. How long does 
it take the car to reach a speed of 80 kmh-1? 
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21 Figure 10.25 sho,'lt"S how the fo,rce of atlr.ac.tion varies 
bet,veen bar magnets of length 6 cm and mass 5 0 g. 

Figure 10.24 How thg horiz:on,te11l force from th~ 
btocks eicts on the sprinter as he sta.rts the race. 

a) Two magnets are placed in contact. Use the graph to show 
that the work done to move d1e magnets apart t,o a separation 
of 5 cm is about O.lJ. 

b) Since work is done to pull the magnets apart, energy has been 
1ransferred. Where has this ene1.m7 been transferred to? 

6.0 

4.0 

2.0 

\ 
\ 
\ 

" 

\ ~"' ~ ------

-
~E 

c) While separated by 5 cn1 the two n1agnets are released and 
they move hack together. Eacl11nagnet experiences a constant 
frictional force of 0.4 N. \\!hat is the speed with \vhich each 
magnet is moving) relative to the table) when they collide? 1.0 2.0 3.0 4.0 5.0 6.0 7.0 

d) One n1agnet is now turned round and the ni.agnets are again 
put into contact, so lhat t\\ro north poles touch each other. By 
using the graph and the infonuation in the text 1 ,e.stin1ate how 
far the magnets n1ove apart before they stop Inoving. 

s eparatl on of m ag nets/rn 

Figure 10 .. 25 How the force of attractio 11 

var 1ies between the bar 'magnets. 

e) The magriets are placed 10cm apart Vi.>ith a n orth pole facing a south 
pole. '\/\'hat is the closest distance they can be moved towards each 
other ,vithoui the magnetic forces pulling the magnets together? 

22 a) The- ·unit of pressure is the pascal, ,vhich is equivalent to 1 N m 2. 

Show that the unit l N m-2 is also equivalent to lJm-2. 

b) VJ'hen a champagne cork is reJeased from a bottle the cork (with 
a mass of 15 g) is launched 10m into th air. Use the idea above 
to calculate the excess pressure in a 7 5 cl botde. 



Momentum 
•••••••••••••••••••••• •••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • 
=PRIORKOW E E : . ~ . ~ .. . 
= • M:omentu1m iis defin ed as m,ass ,m1ultipli ed by velodty: p ~ m v. : ; : 
= Momentu,m i,s a vec tor quantity. : 
= • Newton's secon d law of motion states that re sultant for ce is the mass : 
! multipUed by the accelerabon : F • ma. ~ 
• • 
: Newto,n·s thi rd law of motion states that to every fo rce there i,s a1n, : 
i equal and op posi1te force. Such pa ired forces are of the same typ e. a,ct ! 
• • i a long th e same linef and act on separa·te bodies. : 
! • Acce lerati oin ~s the change of veloc ity divided by ti.me: a -- Av/!J.t i 
: K lnetic energy - f mass x (veloc:ity]2 i 
: . i • The pr,incip le of co nservati1on of energy states t ha t en,ergy ca nn ot : 
• • • • 

• 
be created or dest roye d, hut jt ca n be transferr ed from one type of : 

: • 
' • 

energy to anoth er. i .. 
• • 
·············································~······································ ........................ 11111111 

•••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••• • 
: TEST YOURSELF ON PRIOR KNOWLEDGE i 
• • ! 1 Exp la in w hy t he deflnit1on of momentum shows H m ust be a i 
i vector qua ntrty. ~ 
• • : 2 Calculate the m om·e nt uim of a pe rso n of mass 80kg runn 1ng w ~th a : 
! veloc ity of 8 m s-1• State the uni ts of mom e ntuim. f 
• • 
: 3 A ca r ex perJences a r esuUant forw ards for ce of 1. 470 N. It accelerates : 
£ from, a speed of 6 m s-1 to 1'4 m s-1 1n 4 sec on ds. Ca lc ulate the i 
• • 
: car 's mass . : 
• • 
~ I+ You hold a book w ith a weight of 2 IN in your ha nd . How bi, g is th e equa l ~ 
f an d oppos ite fa rce to tha t weig ht . and on w ha t body do·es tha t force act? i 
! 5 A car w ith a mass of 1200 kg t rave tllng a t a s peed of 25 m s-1 applies ; 
• • : its brakes a nd com es to a ha[t. : • • • 
i 
• • • • • 

• 
a.] Calcula te th e kinebc energy that is t ran s ferred to othe r types : 

• 
of energy. : 

• • • • ... .. b] Descr ibe the energy tra·nsfer s 1in th is process . ! 
'··············~·········· · ············· · ·····················~······· ·············••"1111· ........................ mli 

Introdu cing morn nturn 
r-.1nnu.: ntun1 is a useful quantity in physics because the amount of 
mom,entum in a system always remains the same provided n o external 
Iorc,es act on that system. This principle allo,vs us o predi,ct what will 
happen in a. colliston or an explosion. 

In the example of the exploding firework, chemical potential energy 
is transferred t,o them1al ,energy1 light energy and kinetic energy of the 
e:\."Ploding fragments. H·o·v.;rever, during the explosion the mom,entum 
remains the san1.e. Ivlomentum is a vector quantity·, d1e momentum of 
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M men m The product of mass and 
velocity. The unit of mo,mentum ,s kgm s-1• 

The symbol p is used for momentum. 
p;;;; mv 

When a ball h·its a wa.U with 
mo1m1entum p and bounces back 
in the opposite direction with 
mo,m,erih..1:m - p~ the change of 
mo,mentum 1is 2p. 

A baH of mass 0.1 kg hi:ts 
the ground wrtn a velocity 
of 6 m s-1 and sticks to the 
ground. Catcu la,te 1ts change of 
momentum. 

Answer 
Usi1ng the formu la for momentum. 
change: 

Ap = m!J.v 

= 0. 1 1kg x 6 :m s-1 

= 0.6 kg m s-1 

a fragn1ent travelling in one dir,ect~on its balanced by tl1e n1omentun1 of 
a fragment travelling in the opposite direction. The same la,vs of physics 
apply ,equally to all masses whether t.hey are planets, objects ,ve m,eet 
every day or the sub-atomic pa1ticles studied by nuclear physicists. 

Figure 11.1 An u ndersta n d1in g of 1mo m entu m a:nd energy· 
enables us to explain what is going on here. 

A baU of mass 0.1 kg hits the ground v,1i,tn a velocity 
~f 6 m s-1 afrd bounces back wrth a velocity of 4 m s-1. 

Ca lcu late its chang e of momentum. 

Ap = ,mv - mu 

~ 0.1 kg x 4m s-1 - [-0.1' kg x 6m s-1) 

~ 1.0 kg ,m s-1 

Answer 
Us1ng the formula for momentum change, where mu 
rs the momentum of the ball when 1t hi'ts the ground 
and mv is its momentum when it 'begins to bouince 
ba,ck upwards: 

In this case the momentum before a1nd the momentum 
after are 1in opposite direct~ons so one of them must 
be defined a,s a negative quantity; we have defined 
upwards as posit~ve and downwards as negative. 

o~~~~~~~-
M omen tum and impulse 
Ne,vtons second law ,can be used to link an a.ppHed force to a change of 
momentum: 

F=ma 

Substituting 

Av 
a = -

11t 



Note that mom.entu m ca n be 
exp ressed in kg m s-1 or N s. 

lnp The product o,f force and time. Th,e 
unit of impulse i,s N s. 

gymnas. t l 
lands 

at 8 rns-1 

Figure 11~2 

r 
gymnast 
bounces 
back at B m s-1 

gives 

or 

F = ml1v 
/j,t 

F = .A{mv) 
6.t 

This can be put into w,ords as follo,vs: f,orce equals the rate of change of 
momentum. TI1is is a more general statement of Newtons second la\v 
of motion. 

Th, last equation may also be ~rritten in the form: 

F6.t = 8(mv) 

or 

F !:it = n1v2 - mvJ 

,vhere v2 is the velocity after a force has been .applied and v1 the velocity 
before the force was applied. The quantity F 11t is caUed the 11npuL c . 

EXA PLE 
A g.y1m1nast is practisiing her skiUs on a tra1mpoline. 

She [an ds on the tram poUne travelli ng at 8 ·m s-1 and [eaves the t r am po L1i n e 

at the same speed. Her mass 1is 45 kg and she is in c ontact wi th the 
tra-mpoUne for 0.6 s. Ca'Lculate the average force acting on the gymnas t 
wh ile she 1s in contact with the trampoline. 

Answer 
F == mv2-mv.1 

nt 

= 4 5 kg x 8 m, s-1 - [ 4 5 kg x -8 m s -1 ) 

0.65 

= 1200 N 

Gymnasts us.e trampolines to Ieach and then fall fro1n considerable heights, 
fo,r example 5 m. If you jumped from 5 m and landed on a hard flo-or2 you 
would hurt yourself and might even break a bone in your foot., ankle or ].eg. 
The equati,on 

F = fj,(rn v )/ fJ.t 

helps you to understa11d why. 

When you fall you have an amount of m,amentum that is determined by 
how far you fall. The force on you iA"hen you stop moving depends on the 
time interval> A,t; in which you stop. On a trampoline flt is long) so the force 
is small; on a hard floor 11t is short and the force much larger. 
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Figure 1L3 An 1impulsive force: the 
momeintum of the tennis ball i1·s changed 
by a large force acting for a short t,i:m,e. 

It js useful to re m ember tin at t he 
area u nider a force-trm e gra pn 
equ als the chang-e o-f mo·me ntum. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
TEST YOURSELF 

• • • • • .. .. 
• 

1 Use the i1deas of ~mpulse and change of momentum to expta in the : 
• 

• fol low in g : : . .. 
; a) why you bend your Legis wh en you jump from a wall on to the grou nd j 
! b) w hy h o c key p layers we a r shin IP a d s to protect the ir legs i 
t • 

: cl why you move your hands backwards when you catch a fast-movi1ng : 
• • i ba ll coming towa rds you. i 
i 2 A gymnast of mass 45 kg j:ump s from a. waH of hei,g ht 3 m .. When she : 
i lan.ds, her Legs stop her moving in 0.2 s. i 
! a) Calculate her momentu,m on landing. i 
~ . 
: b) Ca,tculate the force on, her 'legs when she lands. I 
i ...•.•••..........•.•••.. , .........•.•.••.......•.•••.•...........••..•........ tt+•+tllllllllllllllllllllllllllllllli 

Car safety 
The idea of imp·ulse is vital in designing cars safely. Figure 11.4 shows two 
force- time graphs for passengers A and B tn a high~speed car crash. Marked 
on the graph is a small area F !J.t~ ihis is equal to the cl1ange in 1nomen tum 
in that time interval~ n:i 6. v. 

80 1-t-t 
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++++++++H++---+~H++•H-+++ ~~· :+m ++-+++++++++++-

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 
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Figure 11.4 Force-time gra1phs for two passengiers in a ca r crash . 

So the total change of momentum of one of the passengers in the crash is 
the sum of aH the stnall areas: i: F fj, t. Thus: 

change of 1nomentum = area und r the forc,e ...... dme graph 

The two passengers have different masses, so the areas under each graph 
are different. However~ passenger B was strapped in by their safety' belt 
~nd was stopped in d1e time i l took d1e cru1nple zones al the front of the 
car to buckle. Passenger A) in the back of the car~ was nol 1-estrained and 
was stopped as they h it the seat in front of then1. Passenger A stopped in a 
sh orter time, so the m.aximuan force on them v.-ras 1nuch grea.ter. 



Figure 11.5 In thi1s test the dummy is prote·cted by an airbag. and tne cn.11mple 
zone at th.e front of the car aUows t~me for the ipa,ssengerrs to slow down. 

~ -····················································································································································: 
: TEST YOURSELF ! 
• • • • • • 
; 3 a] Ex pla,1 n w hy cru,m p:le zones and s ea,t belts a re b' D escr1b e the likely in ju r 1es to both passengers A ; 
~ v ita l safety measures for passengers in ca r s. a,nd B. ! 
• • 
: b] If a h.eli copter crashes it i1 s miost 'li ke ly th at the cl By us,ing th e a rea u nder graph B ~ show tha t the : 
i i1mpact w ill take place on the bottom of th e cra ft car cras hes at a speed of about 3.5 m s-1. i 

• • • 

• • • • 

: • 

Explain w hat safety fea tures s hould be bui tt into 5 A karate expert ca n break a brick by hitti ng It with • 

t he seat s in the helicopt er. the s ide of thei r hand. 

I+ In a n 1mp act_ a pe r so n w ho ex pedences an a] They m,ove th eir hand down .a t a velocity of 
acce lera tron of 300 m s-2

j of s hort du rat1on, wHt 12 m s-1 and t he hand bounces back off the brick 
rece ive mode rate ly seriOus injuries . Howeve r. w~th a veloc ity of 4 m s-1• Calcula te the ~mpulse i 
a mu ch la rger acce lera ti on :is ti kely to infl ic t de live red to the brl ck lf the hand a nd forearm : 

• 
gravely se ri ous injudes. have a mass of 2.2 kg . i 
al i] Exp lain w hy rapfd acce lerat ions cause injury. b] Th e ti'me of contact between the hand and bdck i 

• i il Exp~a in why i nj u ri es are Ukety to be more j5 fou nd to be 64 ms . Ca le u late the average force : 
• 

seve re if a ve ry high accele ra ti on or exerted by the hand on the brf ck. : 
• 

decelerati on ac ts over a longer period of t im,e. c) Ca lculate the averagre force exerted by the brick ! 
In the ca r crash described in Fi19ure 11 .4. pa,ssenger A on the person·s hand . i 

t 

has a mass of 82 kg: and passenger Ba mass of 100kg. : 
• 

: ........................ t••••••••• t••• ············································································· ············· ···· ·· ········ ............................ .. 
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Investigating varying forces 
You ea n inves tjgate how forces vary with time by 
us,ing, a ·force pla,te' that is connected to a data 
logg er. Such plates use piezoelectiri c crysta l s~ wlhich 
produce a: p.d. tha.t depends on, the press ure app li ed 
to th e crysta l. 

A stud ent investigates h,is reacti,on force on the 
ground tn va.rious ac tfvittes . He uses a force ptate 
and a data logg e r, wh ich records the changes in force 
w ith t ime. 

In hi s firs t act11vfty. the s tud ent s teps on to the plate 
in a c rouc hiin g p osit1ioo; then he s tands up. before he 
s teps off t he pla.te again. See Fi1gu.re 1, L6. 
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Answer the following questions . based on the 
student's inves tigat ,io n 

1 al Expla,in what is happen'ing over each of the 
folllowin g times. 
AB~ Bel CDI DE 

b) ExplaJn why the areas A1 and A2 on the grap h 
are equal. 

c) lihe student now jumps on to the force pla,te. 
Sketch a graph to show how the reactjon force 
changes now. 

2 In the next activity the studen t measures his 
reacti·on force on t:he plate while running on the 
spot This is recor·ded in Figu·re ·1t7. 

0 o., 0.2 0.3 
Ume/s 

0.4 0.5 o.e 

aJ Use the graph to show that the studenfs 
cha.nge of .momentum on each footfall is about 
250kgms-1• 

b) Explain why his upward momentum as he takes 
off on one foot is 125 kg m s-1. 

cl The s tudent's mass is 80 kg . Show that his 
centre of mass rises by a heigh,t of aibout 12 cm 
between each stride. [Here you witl need to 

Fig u re 11. 'I 

use th e eq uatjoin s of motion that yo,u learned in 
Chapter 8) . 

di Sketch a graph to show how the horizon tal 
component of the foof s reaction on the ground 
varies w ith ti me when the r unner is mov,ing at a 
constant speed . 

O i,---c-o_n_s_e-rv_a_t_i o-n-of-Li-n-ea_r_m_o_m_e_n_u_m ___ _ 

Ur. arm »ntun-. The momentum of ~n 'V\'e use d1e tern1 lin cc r tno1nc ntum v.7hen we refer to coUisions (or 
explosions) that take place in one ditnension, i.e. a]ong a straight line. object that moves only in one dimension. 

(a) (b} 

Figure 11 .8 sho\.vs a demonstration of a sn1ill one-dimensional explosion. 
The head of a match has been wrapped tigl1tlly in aluminium foil A second 
match is used lo heat the foil and the he.ad of the first matcl1, which ignites 

and e..-xplodes inside the foil. The gases produced cause the foil to fly rapidly 
one way, and the matchstick to fly in the opposite direction. (It is necessary to 
use jstrike-anywhere' matches, tl1e heads of which contain phosphorous. The 
,eA--pedment is safe because the n--iatcht blo,~ls out as it flies through the air1 but 
common-sense safely precautions should be taken- do this in the laboratol); 
not in a carpeted rooin at hotne, and dispose of the matches aftenvards.) 

{O) 

~ 

- F tl.t 

- .a(mv) 
+ Far 
+ .d(mV) 

Figure 11.BA srimple experiment th~t demonstreites thQ conservat ion of Lin,e;r momentU1m. 

In all collisions and explosions, both total energy· and mo1nentum are 
conserved.~ but kinetic energy is not alw~ys conserved. 

In. this case, the che1nical potential -energy in the match head i5 tra11sferred 
to tl1e kinetic energy of the foil and matchstick~ and also into therr.nal, light 
and sound energy:. 
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nt; tion rhe totaJ mom,entum ,of two 
bodies in a coUtsion (,or explo.sron) i1s the 
saime afte-r the corn sfon (or explosion) as. it 
was before. 

Momentu m ~s always conserved 
in bod i1es i nvo,lved in colU si ons 
a nd explosions provided no 
exte rnal forces act. Th 1 s is the 
principle of co nservab on of 
momenh.J m . 

i\s the m atch head explod es> N e,vtons third law of m otion tells us that botl1 
the matchstick an d foil experience equal and opposite forces., F. Since the 
forces act for the sam e interval of lin1-e, 8.t, b oth the m atchstick and foil 
expe1ience equal and opposit,e impulses, F ~ t. 

Since F /J,. t = ~(mv), it foUo\Vs that th e foil gains exactly the sa1ne p ositive 
n1omentum as the n1atchs tick gains negative m om entum. 

We can n ow d o a vect,or su1n to find the total momentun, after the 
explosion (see Figui·e 11.Bc): 

-1-fl(n1v) + [-Li(mv)] = 0 

So there is ~ n · r ,. t h 11 of momentum: the total momentum ,of the foil and 
matchstick Vlas zero before the explosion) and the co1nbined momentum of 
the foil and n1atchstick is zero after the e1i..1Jlosion. 

Collisions on an air track 
Collision e.xperin1ents can be carried out using glideis 011 linear air tracks. 
TI1ese can dem onstrate the con ser,;,ration. of linear momentum. The air 
b lo,ving out of sn1aU h oles in the track lifts the gliders so that frictional 
forces are very small . 

air 

g fl der A 
mass o. 63 ,kg 
ve loc~ty 1.35 m s-1 

Blu lack 

--. lig ht 
gates--._ 

Figure 1t.9 A laboratory air track with gl~ders. 

+ momentum --------.... 
holes for 

stationary gU d'e r B 
mass 0.42 kg 

In one air- track exper iment a moving glider col lides 
with a stati onary gUder. To g·et the gliders to stick 
tog ether . a b1it of BluTack ca n be stu ck to each glid er 
ait th e po,i nt of 11mpact. We ea n use the p ri nc ipte of 
co nservation of mom entum to predict the comb~ned 
veto city of the gi li d ers after i m pa et. 

The tvi/o gUders have th e same veloc ity after th e 
col lision because th ey have stuck together: 

momentum after • (mA + m8lv 
.. [0.63 kg + 0.42 kg l x v 

- 1i .05v kg ,m s-1 

In Figure 11 .9 we define posit ive momentum to th e 
right. 

Answer 
m om entum before= mAvA + m8vs 

:::; 0.63:kg x 1.35 m s- 1 + 0 

= 0.85 kg m s- 1 

So. fro·m conse-ri1atton of momentu m: 

1.05vkg m s- 1 ;;; a.as kg 1m s- 1 

V= 0.81 m s- 1 

Both glid ers m,ove to th e r ig:ht at 0.81 m s- 1• A result 
such as th;is ca,n be confirm ed by speed meas urements 
us ing t he Ug,ht gates and data logger. 
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In a seco nd expe 6me nt. glid er 18 i1s pu s hed to the left 
with a ve locity of 2. 7 m s-1 and g li der A i1s pushed to the 
r1ght wfth a ve loc ity of 1.5 m s-1. What happens a fte r 
th ~s colUsion? 

Answe·r 
m om,entui m before I!!! mAvA + m9V9 

• 0.63kg x l.5,ms-1 - 0.42:kg x 2.7ms-i 

• - 0 .1 9 kg m s-1 

Note tha,t B has negative momentu m 1 a nd t hat the 
tota l moime ntum of both g.Uders to·geth e r 1is negative. 

mom,entu·m after= [mA + m8)v 

So 

- 0.1 9 kg ml s-1 ~ 1.05vikg m s-1 

V•-0.18m s-1 

So both tro lleys move to t he left w i1th a veloc1ity of 
0.18 m s-1. 

~~~~~-~·········································································································································~ 
• • • • i 6 A stud ent dec id es to 1investigate th e dynamics of 
i the ·exp~odi ng. 1match as s hown in Fig ure 11.8. Us ing 
! a data log ger she discove rs th at th e match s tart s to 
• ! move at 7. 1 m s-1 il m,med1iately afte r th e explosion. 
i a] Th e m,ass of the m ai tch5ti ck is 0.15 g a nd the 
... 
: m,ass of th e alum In i1um f oil 1s O .06 g . Catcu late 
• 
: the init ial speed of the fo iL 
• 
: bi Ca lcu1ate the krn etic ene rgy of: ... 
: U the alum in~um foil • 
: ii) th e m a,tc hs tic k. .. 

b] Before th.e co llis ion girder A :is stat jonar y an d 
g U d e r B i s m ov In g to the lef t at 2. D m s-1 . 

c]: Before th e co ll ision glid er A is moving to th e 
ri g,ht at LO m s-1 a nd g.l ider B is movi,ng to the 
left at l .51m s-1. 

8 A s tudent now investi:gat es som e more c0Ui si101ns 
betw een gUders on an air t r ack but he ·m akes 
changes to th e apparatus. He re places t he 
BluTa ck ~n Figure 11 . 9 wrth two m agnets that 
re pel ea ch other. Now w hen a co l l ision takes 

! c] Calculate the min·imum chem,ica[ potential place. the two g liders move 1n dependen t:ly after 
i energy s tored in the match h ead before it the co lUs1on. 

• • • • • • .. 
• • • • : .. 
• • • • • .. • • • • • • .. 
• • • • • .. 
• • • • • • .. 
• • • • • • • • • • • • .. f explodes . Explain why the s to red energy is Ukely Calculate the veloc ity of glider B after each of the 

! to be greate r than your answer. fo ltow iin g coUis.ions. ! 
£ d) Th e 5tudent discove rs that the matchs tick travels a) Befor e th e colli slo n glld er A is moving to th e i 
i furth er than the foil. She expected the foi l to travel right at 2.0 m s-1 and glider B ls moving to the i 
: fu r ther.W hat fac tor s affect the d~stance travelled r i g-h t at 1.0 m s-1

. After the col Us ioin gU der A rs E 

f by the maitchshck and th e foil? (You may need to mov~ng a t 1.2 ms-·, to the night. i 
f r efer ba·ck to th e wo rk on drag in Cha pter 8). b) Befor e t he c.o ll is1a n glider A is sta:tiona:ry and : 
• 7 Th ' t ' f t +h ll ' · i.... t t 1:-.. glider B 1s moving to th e lef t at 2.0 m s-1. Afte r •• : : . - ,s qu es 10n re ers o IL e co 1s1ons ue ween , :1e 

f two glid ers on an .ak track as shown in , Figu,re the co lli slon glider A is movlng at 1.6 m s-1 to the i 
• tef t. : f 11 . 9. In each of the fa llowi.n g, ea sesl catcu late the i 
! velodty of the g,liders after th ey have colUd ed. t] Befo re th e co ll is ion glider A i1s mov1ing to the : 
i a] Before th e co lli s ion gUder A i1s moving to the r igh t a1t 1.0 m s-1 and glider B is ·movrng to th e ! 
i r1giht a.t 2.0mis-1 and gi li der B is :moving to the l eft at 1.5ms-1• A ft er t he collisi,on glide r A f 
: right at 1.0 m 5- 1. i1s movi1 ng a,t 1.0 m s-1 to th e left. : 
• • • • 
················································ ·············· ······ ········································· ································••4111111111111111111111111111111! 

o--~~~~~~-
M omen tum and energy 

4 •1111 ...... ,. ,, •••••• ,, ........... , ................ • ••••• , ••• , • ...... , ..... , •• , , •••••••• 

c e:oUiisijonj tdnettc en~rgy ,s, 
conserved. 
lln 1 1 I I coms1ons !kinetic energy is not 
con served. Some or alll ,of the kinetic energy 
is. transferred to heat or other fy pes of 
energy. 

In collisions between two o,r more bo,dies, h o'th momentum and energy are 
,conserved. However, the total k in e.tic energy of the bodies does not always 
stay the same b ecause the kinetic energy can be transferred to o ther types 
of energy: Collisions in which th e kinetic energy of the particles is 1he same 
a ft.er d1e collision as i t ·w as before are described as clasLk·. Collisions in 
\\rh.ich kinetic energy is transferred to oth er fonns of energy are described 
as inelastic.:. Most collisions on .a large scal e are inelastic; but collisions 
between atomic pa rticles are oft.en elas tic. 
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Some useful equations 
Although m on1lentum an·d kinetic en ergy are very different quantities, they 
are linked by some useful equations . 

• : J\.fom entun1 is given the symbol p . : you may need to refer ba,c k to 
• 
: d ef,i n fti ons • .. .. .. 
: from Ch apters 4 and 6. 
• 

.. .. ... .. • i 9 Defln e the volt i 
• 
! I 10 al Ca lcutate the speed of an 

! electron that has been • • .. 
• • : acce lerated throug h 

! a potential diff eren,c e of 

• .. 
i 

i 5000V. • • • • • • • • 

I • • 

I 
,ff ... • • • • • • • • • • • .. 
• • • • • .. .. 
• • • 

b) Which has the larger ! 
moment um, a pro ton that ; 
has been a·cce lerated i • throu gh a p.d. of 20 kV, or i 

• 
an electron that has been : 

• 
ac c:e le rated th rough : 
2 0 'kV? ! m n -; 1. 6 7 x 1 0:-2 7 kg: i 

~ - 31 • 
me-:::;;9.1 x 10 kg-;e = 1.6 x : 
10-19 C) i 

• 
: ................... ........... ......................... lllllllllli 

p = mv 

Kinetic nergy is given the symbol Ek. 
l 

Ek= 7 ntv2 

But Ek can also be "rritten in this form: 

m2v2 
Ek=--2m 

giving 
2 

E -L 
k - 2m 

It is impor tant to remember that momentum is a vec tor quantity and 
kinetic energy is a scalar quantity: We gtve momentum a dire.ction: for 
exam.p le, +p lo the right and - p to tl1e left. A vehicle travelling with 
momentum p has as much kin etic energy when travelling to the right as 
it does to the left. 

To the right: 

- (+p)2. - p2 
Ek- --. 2m 2m 

To the left: 

E = (- p)2 = pi 
k 2m 2 m 

When a vector is squared , ill becomes a scalar qu an tity. 

0-E-la_s_t-ic_a_n_d_i n-e-La_s_t-ic_c_o_l_li-s-io_n_s ____ _ 
Figure 11. l O sho,vs an unfortunate situation: a van just fails to stop in a line 
of traffic and hits a s tationary car; and they move f orNards together. ls this an 
elastic or inelastic collision? Witho.u t doing any calculations, \Ve know that this 
is an inelastic collision because the crash transfers kinetic energy to other forms -
the car is dented! so work must be ·done to defotm the tnetal, and there is 
noise. Ho1w"ever~ ~ can calculate the kinetic energy transferred as sho\\rn in the 
example below. 

3 ms-1 

Before thQ coMlslon 
Figure 11.10 An i n,elast i c collis ion. 

ln tl-1e world of atomic particles. collisions c-an be elastic because, for example, 
elec1rosta1ic charges can repel two atoms or nu clei without a transfer of kinetic 
energy to other forms. 



:I: 

p E 

lln Figure 11 .10 the mament1um 
before the crash ,is equal to the 
momen,tum a her the crash. 

18QQQ kg ,C 3.m S-1 + Q e 2QQQ,Q kgr X y· 

Ve 2.7 ms- 1 

Before th e crash the ldn eti c 
energy of the van was : 

Ek • ~ mvv./ 
.. i x 18 0 0 0 kg x ! 3 m s-1 ] 2 

~ 81 kJ 

After th e co llrisi'on th e kinetic 
energy of the van and ear 
together is; 

Ek ;;; i 1(mv + m c]v2 
. . 2 

= ! X 2 IJ 00 0 kg X 12. 7 m 5-l) 

= 73kJ 

So a bout .S kJ of kr n etk energy 
is transferred to other forms of 

energy. 

In ela st~c co llision sj kinetic 
energy is conserved. In in ela.sti c 
co llis i1oris energy is tra nsferred to 
other forms. 

A helium nucleus of 1ma,ss 4.m collides head-on with a stationary proton 
of m.ass m. Use the 1nformat1on in Figure 11 .11 to show that this is an 
elasti'c colUsion . 

u 

at rest 
4m m 

Before the col'llslon 
Figure11.11 

Answer 

a.au 

4m 

After the col I Is Ion 

The vetodty of th e proton can, be ca lcu lated as foltows. 

m 

The momenitum before the coll1si on equals the momen.tu m after the c:ol Ursion, 

4mu + O;;;; 4m x 0.6u + mv 
mv = 4mu - 2.4mu 

v = L6u 

The total k1inet1c energy before t he coUision was: 

Ek=} x 4mu2 

= 2mu2 

The tota l k1 nettc energy after the co lUs1on was: 

Ek = ! x 4m 1[0.6u)2 + ~ x m ! 1.6u]2 

= 2mf 0.36u2] + ~m[2.56u2} 

= 0. 72mu2 + 1 .28mu2 

= 2mu2 

So the to ta l kinetic energy is conserved in this colUsio n. His a usefuil 
ru le to know th at rim an e lastic co lli s,ion th e rellat ive speeds of tne two 
pa rti1c les ts the s ame before and af t er th e co lUsion . 

~z::::,i ~ · ·····················································································································································~ 
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• • .. • 11 • • • • • ; 
• 

Look a,t th e d iag ra,m of two dod9em cars in a collision ait a funfair . 

• : ... 
• • • • • • • • Smir1 

: • • t • • .. • • • • • • • • • • • • • • • • • • • • • mass 200kg mass 160kg mass 200kg mass 160kg 

• I 

• Ii 
Ii 

i 
i 
' ' ' I 
I 
I! 
I!! 
!Ii 

! • • • p 
: 
' • ' I • • 
I!! 

"' • • • • • • • • • • • • • • • • 
~ Bet ore the col ns 10 11 After the col ills Ion : 
• • i Figure 11.12 ~ i 
• • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 
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~ al Use the information in Figure 11.12 to c2rlculate 14 A baU of mass 0.1 kg faHs f rom a he igh t of 5.0m ~ 
• • 
; th e verloc ity of car B after th e co LU s.ion. and r ebou nd s to a he ight of 3.2 m. F'or th iis : 
i b)I Exp laf n w heth er th is is an elast ic or an quest.ion assume g = 1 [] ·m s-2. ! 
• • 
: in etastk colli sion. al Ca lculate the ve locity of tihe ball j ust before it : 
• • i 12 Two ice skaters,, ea.eh of mass 65 kg, skate hits the 9round. i 
4, ] I i towards each other. Each skater ha s a velocity b Ca lcrula,te the velocity of th e ball jus t after it : 
: of 1 m s-1 relat1ive to th e ice. Th e skaiter s co tUde; has hi t th e ground . I 
• s 
: after th e colli sion each skater retu rns ba clk c) The ball is in contact w~th th e grou nd for : 
i ailong th eiir orig ina.l 1Path w ith a velocity of 2 m s-1• 0.004 s. Ca lcu1tate th e ave rage force that a:cts ! 
• I i al Show tha,t momentum i,s conserved ini the on the balll in th is time. ! 
j collisi,on . d] The momentum of th e ball has cha ng,ed duri11 g I 
: bl Calcu late th e gajn in kinetic energ,y of eac h this process. Th e pri ncipte of the con servation : 
• I ! skater during th e colli s ion . of mo:mentum states th at 'momentu m is ! I cJ Exptaiin wh ere th e extra energy ha·s come always con served'. Expta,in how mo 1mentum is i 
• from . con.served in thi s case. [Hint: there ~s another t • • i 13 Look again at Question 8, Show that each of body ln,volved 1n thi s coHis~on - what is its i 
~ th e colli sions between the two gliders j,s ela5tic . mom,entum?] j 
• • • 
·4·········································································································4·································••4mllll .................... ~ 

More advanced prob lems in momentum 
The gen eralised form of ·Newton 's second law of m otim1 enab les you to 
solve some more com plicated problems. 

force = rate of change of 1nom entun1 

p E 

Li(mv) 
F = !J.t 

Ca lculate the force exe rted by water leavi ng a fire hose 
on the fi ref ighter holding th e hose. The water leaves 
wit h a velodty of 17 m s-1~ the ra,diu s of the hose f s 
a cm; the density of water is 1, OOO kg m-3. 

Answer 
Th e mass of water leav,iing the hose each second is t1irn . 

Th is Is equal to the density of water 1(p] x th e volu mf of 
water~ V, flow1n9 per second : 

/J.m !iV 
At ~ P /J.t 

But the vo lume ftow per second is the cross- sectf onat 
a re a of the h o s e [A J 1m u t t i, p ti e d by t h e ve lo ci t:y of t he 
water (v]. So: 

tim 
nt = pAv 

Thus t he force,, or change of mome ntum per second , . 
15 : 

F = lip = pAv >< v 
lit 

~ pA v2 

~ 11000 kg m-3 x n >< [O .03)i 2 m2 x ( 17 m s-1]2 

820 N 

Thi,s large force explarins why a hose is som.et imes 
held by tvvo firef ig hters~ an.d why large hoses have 
handles . 
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Beto re the co 111 lsion 

statlonafy 

Aftet thQ con1s1on 

statJonary 

Figure 11.13 Head-on c0Uis1ion of 
two protons. 

Before the coll ls1lon 

p sin e 
After the colllrslon 

p cos 8 

p 

Figure 1 t.t4 Non-head-on collision of 
two proton s. 

p 

Fig u re 11.15 In v e c to r terms. p :;.: p cos 6 
+ p sin 01

• 

Collisions in two dimensions 
An inte1estin g special result occurs when t"\vo aton1ic pani,cles of the 
sain,e n1ass collide elastically> 1Nhen one o f the particles is initially 
stationary. 

If the t\VO particles (protons for example) collide head-on, then the 
n1on1entum and kinetic energy of the moving proton (A) is transferred 
completely to the. statto,nary proton (B) . See Figure 11.13. 

In this \vay both momentun-1 and kinetic energy are conse.i-·v,ed. This only 
happens \Vhen the panicles are. of the same mass · in all other cases both 
particles will be moving after the coHisi,011. 

What happens ,vhen two parti,cles of lhe same mass collide but the 
collision is not head-on, as shown in Figure 11 .14? The momentum 
of particle A can be res,olved into two components: p cos 8 along the 
line of coHision and p sin fl perpendicular to the line o.f the collision. 
As in Figure 11 .13, all of the mo,mentum of .A along the Hne of th,e 
collision (here p cos 0) is transferred to particle E. This leaves particle 
A vrith the componen t p sin 81

) which is a t right angles to the line of 
the collision . 

So) in a non-head-on elastic collision between two particles of the sam e 
mass) they always move at right angles to each other. 

Figure 11.15 sho,vs how m.01n entum is conserved as a vect.or quantity. 

Kinetic energy is also con served . Before tl1e" collision tl1e kinetic energy is: 
2. 

.f._ 
2m 

After the collision the kinetic energy of the two particles is: 
2 2. 

L cos2e + L sin18 
2m lm 

However, since cns28 + sin28 = 1) the kinetic energy after the collision is the 
2 

sam e as before, L . 
2m 

. ............. .............................................. ......................................................................................... .... . 

'TEST YOURSELF 
• : ! 15 An a,tph a1 parti cle with a mass of abou t 4 amu 1is 
i em,it ted from a u1ra,nium nuc leus. mass aibout 
I i 238 amu. w,ith a kin eti c energy of 4.9 M,eV. 
t 11 amu1 (a,tomk mass unit] 1.66 x 10-27kg~ 
! e g 1. 6 x 10-19 C 
' 
~ a] Ca lculate the m,om,entum of the alpha partic le. 
• 
i bl Ca,lcuta te the mom:entum of th e nu1c1leus after 
• ! the atpha partic le has been emHted. 
• j cl Ca le ula te th e kin etic ene rgiy of the nucleus 
~ after the a lpha partic le has been e,m it ted:. 
• : dJ ID i,sc uss w here the kinettc e ne r gy has com e 
• : fro m in th i,s process. 
• 

• .. .. .. 
• 

11> A rocket of mass 400 OOO kg takes off on a voyage I 
to Mars. The rocket burns 1600 kg of fuel per ! 
second ej ecti1 n g, it ait a speed of 260 0 m s-1 relative i 
to the rocket. i 
a] Catcutate the force actiing on th e rocket due to ! .. 

the ejec tion of the fuet : .. 
b] i l Calculate the ac ce lerati:on of tti e rocket at : 

• 
take-off. ! 

ii] Ca lcu tate the acce lerat i1on of the rocket 90 
seco nds a fter ta ke-off. 

t .. 
• • • • .. 
• .. .. • • • • • • • • ........................................................................................................... ................ ................................................. 



Practice questions 
I Which of the following is a cotTect unit for momentum? 

A Ns 

B kams-1 
0 

D kgm-1 s 

2 A 'body is in free faU. Which of the foUo\\ring quantities is equal to 'the 
rate of increase of the bodys momentum? 

A kinetic energy weight 

B velocity D decrease in potential energy 

A tennis baU of mass 60g is travelling at 35ms-1. A player hits tht ball 
back in the opposite direction, ,vith a ,relocity of 4Sms-1. 'v'!hat is the 
magnitude of the impulse which the tennis racket exert on the ball? 

A 2.4Ns 

B 4'.8Ns 

C 0.6Ns 

D 2.7Ns 

4 An alpha particle has kh1etic energy of 8.0MeV The mass of the alpha 
particle is 6. 8 x 10-27 kg~ the charge on an electron is 1. 6 x l 0-19 C. 
Which of the foUo\ving gives the correct value for tl1e particles 
momentum? 

A 1.8 x 10-21kgms- 1 C 2.6 x 10-22kgms- 1 

B 1. 8 x 10-19kgm s-1 D l .3 x 10- 19 kg 1n s-1 

5 A lorry trav,elling at 5.5 ms- 1 collides ,vith a stationary ca1~. AfteT the 
coHision) the lo1TY and car tnove forwards together. Use the infonnation in 
the diagram belo,v to calculate which of the following values is the cor1~ct 
velocity of the car and lorry after the collision. 

5.5 ms-1 

at rest 

mass 20000 lt(g mass 2000 Kg 

Figure 11J6 

A 5.Sms-1 5.0ms-1 

B 2. 75 n1.s-1 D l .5 ms-1 

6 ln the collision described in 1Question 5, s,ome of the kinetic energy o,f 
the lony is transferred to oiher forms , such as heat and sound. Which 
of the follovting gives the ,correct value for the change oI kinetic energy 
during the crash? 

A 300000] 

B 275000) 

C 150000] 

D 27 500] 



...... ...... 

7 A snooker ball of mass 160 g collides elastically with the cushion 
of a snooker table . Use the information in the diagram below to 
calculate which of the following is the correct value for the change 
of n1on1,entun1 of the ba]l in the direction nonnal (perpendicular) 
t.o the cushion. 

3.0ms-, 

Figure 11. 17 

A O 

B 0.24kgms-1 

cushl,o,n 

0.42kgms-1 

D 0.48kgms-1 

8 A driver passi11g through a town sees a hazard and brings his car 
to an emergency stop . The driver has a mass of 80 kg. The graph 
shows how the force exerted on him by his seat belt varies while 
the car slows do,vn. Use the graph to calculate vthich of the 
following gives the correct value for the initr.ial speed of the car 
before the brakes were applied. 

A 24 ms- 1 C 12ms- 1 

B 16ms- 1 

9 A n1bber ball of mass 0 .2 kg lands on :a floor with a velocity of 
6 ms-1; it bounces back up with a velocity of 31..n s- 1. The ball is 
in contact with the floor for 0 .06 s. Which of the following is the 
cnrrect value for the average fa1~ce that tl1e floor exerts on the ball 
during the bounce? 

A 60N 

B 30N 

C 20N 

D lO N 

I O Two trolleys co Uide as sho,,vn in the diagram 

below. After the collision they stick together. 
Use the information in the diagran1 to 
calculate which ief the velocity values below 
is the ,correct value for the trolleys after the 
collision . 

l. 75 ms-1 to the right 

B 1. 75ms-1 to the left 

0.25ms-1 to the left 

D 0. 50 m s-1 to the right 

3 k.g ,. 
~.j 

Figure 11.,19 

9-60 

Figure 11.18 

1.5 ms-1 2.5 ms-1 

Jo,- .... 

01 ID?5 

1.0 

tlme/s 

, kg' 

2 .0 

•' 



11 A car travelling at speed ,collides 'With a wall and comes to a halt. 
The Eorce acting on the car during the crash is shown in 
the diagram. 
a) Use the graph to sho,v that the change of n1on1entum of the 

car in the crash is approximately 26 OOON s. (3) 

300 

200 

ff~ .. 
i:. l 

~~. 
·r 

y 

~~ 
1-r-r 

lit 

+ I-

~~ ~· C 

i' 

I• , .. i"' I• 

~ J 
i• 

t:~ I; . ,. 
b) The car and its passengers have a mass of 1300 kg. Calculate 

the spe,ed of the cat before the crash. (2) 

c) There ,;.vere two passengers in the car. One was wearing a seat 
beh and the second was not. Explain why the one without the 
seat belt is more likely to receive serious injuries. (3) 

d) Sketch a graph to sho,v how the velocity of the car changed 
with time durtng the crash. (3) 

12 In the diagram to the right an alpha particle has just been emitted 
fro1n a large nucleus. lt is repelled by the large nuclear charge and 
leaves Vlith a velocity of l. 5, x 10 7 ms- 1. 

a) The alpha panicle has a mass of 6.8 x 10-21 kg and the nucleus 
a inass of 4 .0 x 10-25 kg. ,Calculate the recoil velocity of the 

J ~ ~ :i 
t. r 

i:· ~ r4 
Tu ,oo 
H+ ~~ 

~ 

k 

l = ~~ 
~-" 

Figure 1 t20 

~i'i' 

ll: 
~"" 

N'"" 

1: 1-
,. 

,,~ 

"" "' 
" 
~ 

~I• 

0.11 
tlme/s 

nucleus. (3) 

b) Calculate tlie tota] kinetic energy of the alpha particle a_nd 
a1pha particle 

Figure 11. 21 

nucleus. Express your answer in MeV. (e = 1.6 x 10-19 C) (5) 

c) Explai.n how 1no1nentum and energy have been conserved in this 
alpha decay process. (2) 

13 The diagram below illustrates pan of a ride at a funfair. One of the vehicles, 
witl1 a rnass of 240kg, reaches the bottom of the slope reaching a speed of 
14m s-1. It is slowed do\vn to a speed of S ms-1 by passing through a trough 
of ,vater. The vehicle slo,vs do,,rn over a tiine of 0.6 s. Wl1en it hits the water, 
a 1nass of water is t 'hro\\111 f onvards \\11.Jtlt a velocity of 18 m s-1. 

5 m s-1 

Figure 11.22 

a) Explain ,vhat is meant by the principle o,f conservation of 
n1omentum. (2) 

b) Sho\v~ that the mass o,f water throvrn fonvards by the vehicle is 
about 120kg. (3) 

c) Calculate the change in kinetic energy ,of the vehicle, and lhe 
increase in kinetic energy of the vtater, as the vehicle splashes 
into the trough. (4) 

cl) Explain how ene.rgy is c,onserved during this process. (2) 

e) Calculate tl1e .a.Ye rage deceleration of the vehicle in the Vlat er. (2) 

,~ 
I• 
l ' 

"' 
,. i- ±I 

0.2 

nucleus 



...... ...... 

II 14 A soft robber ball is aUo,ved to fall on to the ground 
and bounce back up again. A data logger measures 
the speed as the baH falls . The graph shows 110w the 
baUs velocity changes with tirne. 

10 .... 
tt'": 

B 

'T"1 

a) Use the graph to determine the time of the 
ball~ bounce over the region AB. 

6 lt: 

(1) 

The ball has a mass o.f 0 .08 kg. 

b) Delen11ine the n101nentum change of the ball 
as it hits the ground. (3) 

· ) Use your answer to, part (b) to calculate the force 
exerted by he ground on the baU a.sit 
is in contact \Vith the ground. (2) 

d) How big ·is the force that the ball exe.rts nn the 
ground v.rhile it is in contact? (1) 

' 

4 

e) A hard rubber ball o,f the same mass, 0 .08 kg Fig u re 11. 23 

is now dropped from the same height. When it 
is in contact ,vith the ground it exeJts a larger 
force than the soft ball. Explain two changes you 
n1ight see in the graph of velocity against tin1e 

measured by the data logger. (4) 

II 15 A steel ball of diame'ter 10cm is allovted to full from a height of 
2 m so that it collides with a steel spike that is e1nbedded in 
a piece of wood. 

a) Steel has a density of 9000kgm-3 . Show that die ball lias a 
mass of about 4 . 7kg. 

b) Detem1ine the balls speed as it comes into contact witl:t the 
steel spike. 

The ball now moves foT\\'ards with the spike togetheri The spike 
has a mass of 2.6 kg. 

c) 1Calculate the velocity of the ball and spike as they move 

(2) 

(2) 

forwards. (2) 

, 

f 
"' , 

2.om 

, ,, 
; , 

"' , 
,. 

.; 

d) By calculating the change of kinetic energy in the collision. explain 
whether this is an elastic or inelastic collision. (4) Figure 1 t24 

The spike penetrates 3.5,cm into the wood before coming to rest. 

) 
1Calculate the average force acting to slov.,.· the ban and spike. (3) 

16 a) A neutron travelling with a velocity of 1.2 x 107 m s-1 is absorbed by a 
stationary uranhun-238 nucleus. Calculate the velocity of the nucleus 
after the neutron has been absorbed. (3) 

b) An alpha particle decays fron1 a nucleus of polonium-208. The speed 
of the alpha particle is 1.5 x 107 m.s-1• Calculate the velocity of the 
polonium nucleus. Tii.e alpha particle has a relative atomic mass of 4. (3) 

" , 
, , 
, ,I' 

, ., ., 
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... , 
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Stretch and challenge 

17 The rotor blades of a helicopter pusl1 air ve1ticaUy do¥.rn,vards 
,vi.ith a speed of 5. 0 n1 s-1. 

a) Use the inforrruuion in diagram (a) and the valu,e for the density 
of air~ 1.2 kgm-3, t,o calculate th,e 1no,1nentun1 ,of the air pushed 
dovm ~"ards per second. 

b) When the helicopt,er pushes air do"Wllwards mth a speed of 
5.0m s-1, it hovers stattonary. Calculate the helico,ptert mass. 

c) The helicopt r~ rotor blades are now tilted forwards at an 
angle of 14° to the horizontal as sh,o,vn in diagram (b) . The 
speed of rotation is increased so that the helicopter flies 
horizontally and accelerates f orvlards. 

Calculate: 

i) the spe-ed of air being pushed a\vay from the blades 

ii) the initial horizonta] acceleration of the heHcopter. 

(b) 

Figure 11.25 

18 A fuework rocket is launched upwa1tls. When it reaches its higl1est point 1 

it explodes syrninetrically into a spherical baU ,vith 100 fragments; eacl1 
of which has a mass of 2.0 g. The chemical energy stored in the explosives 
is 2 kj; 80% of this energy is transferred to the kinetic energy of the 
fragments. Calculate the speed of each fragment . 

19 The photo on the riglu shows a computer-enhanced ini.age of a 
cloud chamber photograpl1. The event s]1own i.s the radioactive 
disintegration of a helium-6 nucleus~ ~He, into a lithium-6 
nucleus> ~Li1 and a ~-patticle. The helium nucleus was originally 
stationary at point 0. The 13-particle is ejected along the thin 
broken Ied t1-ack OA, and the lithiun1-6 nucleus travels a short 
distance along the thick green tr-ack OB. Both particles travel in 
tl1e plane of the paper. The f>-pa.rtiieles track is curved due to the 
presence of a stl~ong magnetic field. 

a) Deduce the direction of the niagnetic fteld . 

b) Explain vvh.y the lithium nucleus track is short and thick, and the 
[}-particle track longer and thinner. 

Figure 11.26 

c) Judging from the cloud chamber tnlcks, momentum is not c,onserved in 
this decay process. Explain why this appears to be the ,case. 

Since physicists accept the principle of c,onservati.on of mo,mentum to be 
a univ,ersal law, it ~·as suggested that another particle must be emitted in 
P-decay: This particle is the antineutrino, which is uncharged and leaves n,o, 
track in the cloud chamber. 

d) The ~-panicle has momentum p1 and the hthium nucleus momentum 
p2. Use the principle of momentum conservation to determine the 
momentum of lhe antineutrino. Express your answer in terms of 
p1 and. p2 ; giving botl'll a 1nagnirude and direction. 

_l1.:t~---



Properties of 
materials 

............................................ , ....................................... .......................... . 
• • 
! PRIOR KNOWLEDGE i 
• I . ~ 

: • A force acting on, an object cain cause it to cha,nge shape and stretch, : : ; 
i squ1ash or bend. : 
• • i • Weight ~s the puU of grav ity on, an object a,nd can, be catc,u lated using : 
• • i th e formu ila: : 
i ; 
: W;:; mg ! 
• • : where W i's th e weight in NI : 
i m is the mass of the object ~n kg t 
! g i s t h e g rav it at ion al fie ld s t re n g t h r n N kg- 1 • I 
! • Work dorie fore nergy transferred) by a fo rce on an object depends j 
j on the magnitude of the force fn the dir,ection of :moti1ori of the object i 
• • : Thi s ca n be ca lculated us~ ng1 the formula : : 
• • 
: W= Fscos6 : • • • • i w here W i,s the work done in J : 
• • 
: Fis the mag nitude of the fo rce in N : 
• • 
~ s is the d,ista11c e m1oved in the d,i rect]o n of the force 111 m : 
• • i Bis the angle between the force and the direction i,n w hi ch th e : 
• • 
: object moves. : 
• • • • ........................................ .......................................................................... 

•••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••• 
: TEST YOURSELF ON PRIOR KNOWLEDGE 

• • • • • • • • • 
: 1 
• • • • • • • • • • • • • • • • • • • • • • II 
• I 
i, 

t • t 

% 
• • • • • • • 

i 
t • • • • II 
II 
!!I 

= t 
i • • • • • • 
Ill • • • • • • • • • 

• • 
The Voyager 2 spacecraft i1 s t rave lling through space at ai steady speed : 

• 
of approximately 23 km s-1 re lative to Ea,rth . Discuss whether work is i 
beingi done by the spacecraft to trave l at thi s speed, assu,ming there ~ 
a re no g rav itatrona l for ces a cb n g on Voyager. j 

• • • • • 4i 
• • II 
• • i 
,i 

s 
i : 
i 
II 
I • I • 
! : 
i • I 
II • II • ; 
l • • 
= • • • • • • 
Iii • • • • • • • • • • • • • • • • • • • 

: Figure 12. 1 Voyager 2. ila u nched over 36 years ago and sti ll : 
: travelling through space. r--l".. : : -v: 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 



Figure 12.2 A pengujn toy race. 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• :~ : .~ . • • : 2 The Mars lander. Curiosity. has a mass of 899 kg. Calculate the : 
• • 
: lander·s weight on Earth and on Mars. The gravitational fie ld strength : 
i on Earth i1s 9.81 IN kg-1 and on !Mars i's 3.7 N kgi-1. i 
• • 
~ J Atex is going on holiday. At the airport sh·e has to lift her suiitcase andl ~ 
: ca rry ft up a flight of sta,k.s which ha s 20 steps, eac h 18 cm ta ll and : 
i • 
£ 22 cm deep. Her suitcase has a· ,mass of 2 0 kg. i 
i Catcu Late the tota·l amount of work Alex did in m,oving- h·er sui1tca1se ! 
i l[a ssu1me g ~ 9.8 l N kg-1J. ! 
• • i 4 A girl is stedging on a snowy day. She pulls her sledge on to a, path i 
! where th e snow ha,s melted. The girt does 12 OOOJ of work to pull the ! 
• • : s ledg:e 100 m along th e path . Ca lcula,te the horizontal force she has : 
• • : used to pull the sledge along the path. : 
f 5 Figure 12.2 shows an example of a penguin toy race. Wheeled I 
: pengui1ns a,re l~fted by a motor up a moving sta ircase. When t hey get : 
• • 
: to th e to·p they iroll down the long sUde and back to t he sta ircase. The : . ~ 

: heigi'ht of th e staircase is 20 c1m. and ea·ch penguin has a m,a,ss of 20 91. i 
i • 

i a] Ca lcutate the work done by th e motor lifting one penguin from the i 
• • : bottom to the top of the s ta 1rcase. : ... . • • 
: b] Compare the value you· ca lculated in part !a} with the cha ng:e in : 
• • : gravitat[ona l potentia l energy of the penguin as it goes down th e : 
• • 
: sUde. : 
• • : ............................................................................................................. ~ -

o--~~~~~~-s u L k properties of solids 
People have been using) and altering) the properties of n1aterials since the 
Stone Age. Flint tools) sa1nurai swords and glass beakers all tnade use 
of the strength, flexibility or optical properties of the m.alerials they \v.ere 
created from. 

Today> engineering n1.at.erials researchers use theiT kno\\rledge of the 
properties of mate1ials to develop novel materials> and find new uses 
for old ones . 

o~~~~~~~--------1 Den s i ty 
Figure 12.3 The p·ole us·ed in pole 
vau1lting must be lightweight~ strong and The density of a inalerial is a n1easure of the mass per unit volunie. It is 
'have some flex ibility. Vau lting poles were given the. syn1bol, p. Density is a useful quantity because it allo\\i"S us to 
originally made from wood. Nowadays. cotnpare different mate1ials. 
th 8'f are usually made· from Layers of 
fi:breglass and carbon-f1ibre materials. p = !!!. 

V 

·where p is density in kg m-3 

m is mass it1 kg 

V i.s volume in m3 



PLE 

Figure 12 .. 4 The large staintess steet globe is more massive than the small stai1nless 
steet ball bearing. The g Lobe floats: the ba lt bearing doesn-t. Why? 

Cale ulate the density of the stain less steel globe 
shown in Figure 12.4 using this data. 

_ 0.3 kg 
4,19 X 1Q-3m3 

!Mass of globe - 0.30 kg - 72kgm-3 

Diameter of globe = 0. 2 m 

Volume of a sphere - ~w-3 

Answer 
Volume of the globe = 4.19 x 10-3 ms 

The density of the globe depends on the density of the 
steel and the density of the air that is within the globe. 
Together. the combined {or average) density is much 
Less than the density of water. which is 1 OOO kg rn-3: 
this is why the globe floats. The ball bearing. which has 
a density of 7800 kg m-3, sinks. densi·ty·· : mass · volume 

Figure 12 .. 5 Aerogel: a very low-density 
m,ateria l that is 99.8% air. 

Figure 12 .. 6 The sample co ltector 
f r om the Stardust space m issi:on. Eac h 
rec tangular block is made· from aerogeL 

Aerogels h ave the lowest density o f any solid . Table 12.1 con1pares the 
density of aerogel m th other co1nmon materials. 

Table 12.1 The density of some common materials 

Mate rial I Density (kg m· 3 ) 

A@rogel 20 

Air (a t 20°c] 1.2 

Water 1000 

Si,lica glass 2200 

Stee·l 7480-8000 

Aero gel has be n used in aerospace industries as a very lo,v-density 
insulation material. Aerogel is a good insulator because it traps air and 
prevents it from moving. If air can circulate it ·~rtn ·transfer h·eat 'thro,ugh 
,co11vection currents. NASA used aero gel on the Mars landers Spf rit and 
Opportunity to provide thermal insulation of key components. 

The NASA Stardust mission used aerogel to capture particles fr,om the 
tail of comet Wild 2. The very low density of the aerogel ,e]-1sured that 
lhe comel dust particles we·re slo,ved do"\VU 1Nithout being damaged. Tl1e 
insulating p,roperti,es of aerogel also me~1nt that the dust particles were 
protected from the heat generated during re~entry of the sample collector 
into the Ean:11:S atmosphere. 
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: TEST YOURSELF 
• • • 
: 1 Sug,ges t w hy d iffer en t samp les of steel ca n have 
• 
: different densit ies. 
• 
~ 2 al The sta,inless s tee l ba ll bearing snown in F11gure 
! 12.4 has a mass of 32.1 g and a d.ia.meter of 
~ 

: 19.98 mm. Calculate th e density of th e s talntess 
i steel u,sed to ma,ke th e baH bear1ing . 
: b] Th e diameter of th e ball lb eariing wa1s measured 
II i using a pair of vernier ca lipers. These ,measure 
: to an accuracy :1:0.02 mm. Estimate the 
• 
= percentage u ncerta·inty for th e valu e of th e 
j diam eter that was measured. 
i 3 The globu la,r clu ster M 11 3 contains approx,imately 
I 

! 300 OOO stars. lit ha s a diaimeter of 145 Ught years. A 
• 
: light year is th e dist al in ce travelled by Ught fn a yea r. 
• 
: Take t he speed of Ug ht to be 3 x 1 oa m s- 1. 
• 
: a ) If a ty~ ical star i1n the clu ster has a m ess of 
• i 2 :x· 1030 kg calculate t he average density of the 
f g lo bu ta r c lus ter. 
• • • • • • • • _. 
• • • 

b ] Use yo ur a. nswer to part [a ] to suggest w hy s tars 
w ithin the globula r c lu ster ra rely coU1f de wH h 
each other. 

4 A w indow m a de from s,iUca glas s has a n a rea of 
1i.5 m x 2 m and is 3 mm th ick. Ca lcu late the mass 
of th e w ·in dow using the va [u-e for density g,iven in 
Table 12.1. 

5 A plumber uses a brass wa sher wh en fltt fng a 
tap . Th e washer is a fl at ring of metal t hat i,s 
0.8 mm th ic k . It has an in.ternal diameter of 
4 mm a,nd a,n ex tern al di,ameter of 8.5 mm. 
The den s1ity of brass is 8. 4 g cm- 3. Ca lc,utate 
th e mass of th e was her. 

6 The ae rogel sampte co llec tor fro ,m the Stardust 
·m iss:ion used 132 aeroget blocks. ea.eh of w hich 
was 3 cm th~ck. l he dus t co llector ha d a total 
s urface area of 1039 cm2 of a·erogel. 
Calculate th e mass of aero get used to capture th e 
co met dust 

7 Est i mate t h e d en s r ty of a ty pica l h u ma ,n body. 
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0---------------H o o k e 's Law 
rom r re are f,oroes that tend 
to squeez,e an object and reduce its sjze in 
the dinKtion that the forc,es. are appU,@d. 
for exampler a heavy weight p~ac.ed on a 
e:o,lumn, together with th,e upwards forc,e on 
the bottom1 o,f the ,column, will reduc,e th,e 
height o'f the ,column. 

r n 1, r are forces that a et to puU or 
stretch an object. The mi@tal ropes hold~ng 
up a lift have tensiles force acting on them 
due to the we,,ght of the lift and the up.wards 
pull from the .cernng on the end of the rope. 

Materials can be characte1ised by the 
properties they show when forces are 
applied to tl1em . Different materials 
will exhibit very different properlies. 
Whe11 scie1n.ists are testing materials 
they may apply co1 1pre sh·c ft rcc -
or t--nsilc for - ·-. 

In 1678, Robert Hooke ,vrote about 
his disco,very of elasticit)~ He used 
his investigati,ons into springs to 
develop a spring fo,r use in the first 
po,rtable tin1.epiece, or o. watch as 
they are novir knov.rn. 

Hooke realised that the ext nsion 
,of som, springs sho-ws a linear 
region for a range ,of applied forces. 
In other words, d~e extension was 
proponi.onal to the force applied. 

extension ex fo rce 

t1l oc F 

Figure 121!7 A bun gee tra ·mpo line 1ma1kes 
use ,of the e'last1ic :properties of ropes. 
When a tensile force is ap ptied to the 
ropes~ they stretch. Thg g.reat;r the 
force applied, the more they st retch. 



5 in on t nt, ·. i1s ai measure of how 
hard it is to bend or stretch a spring. A I arge 
spring. constant means that the spring is 
st~ff. k has units of N mr1. 

E n n ms the length a1 materi.al has 
stretched when a load ~s .added. It is 
calculated by subtract ~ng the ,origin al 
length of the 1materiat from the length 
when stretched. 

Llmi o r t n lit is th,e ,endpoint 
of ihe linearr se-ction of a forc,e-extensi·o,n 
graph. 

i im is the l,oad above wh1.ch a 
mate-rial i1s perma1nently deformed. 

A m~teria1I js said to be l . ti-.: when it 
returns to its original dimg.nsions once the 
appUed load is removed. 

A mat~riaUs . .sa~d to be pl" ti wh,en it is 
pelimaoently deformed and does not IJ',eturn 
to its original dimensions once the app~ied 
lloa d is removed. 

Figure 12.9 These two springs were 
the sam.e :Length. One of them has go ne 
beyond its elastic limit and wiH not 
return to its original Length. 

How n1uch a spiing extends will also depend on the spring cons tant of 
the spring. This is a n1easure of ho~r easy it is to str,etch when a force is 
applied. A spring that extends a large amount for a. force of 1 N is not as stiff 
as a spring that extends only a small amount for tllle same force. The spring 
constant, k, defines the stiffness of a spring as the force required for a unit 
ext.ensio n of the spring. 

We can therefore write Hookes law as: 

F= kal 

where 

Fis the applied force in N 

k is the spring constant it1 N m-1 

.6l is extensi,on in m 

Using the simple equipment shov..-n in Figure 12.8, die spring constant of 
a spring can be measured. The spring is stretched using a t·ensile load. This 
is done by adding masses to a mass h.anger. The ex1c11- inu of the spring is 
measured by noting the change in d1e p osition of the pointer against the n 1le. 

spring 

Weights 
a 1 o 20 30 40 50 so 10 ao 

x/mm 

Figure 12.B Exper·imental set-up for Hooke's law and graph. 

'\Nhen the resuLts from the experime11t are plotted\ the graph imtiaUy has a 
linear region 1 as sho·wn in Figure 12.8. Here the spring is still coiled and the 
e.Acrtension is dirccdy proportional to the load. \\Then more masses .are added 
'the spring stans to stretch more for each increase of load: the extension is 
no longer proportional to the load. The point at v.rhich this occurs is called 
the lhnit ot p · l 11.1011L lity. 

The elastic lhuil of a material is the point below \vhich tllle spring wiU 

return to its original le11gth v,rhe11. the load is removed. The spring is 
showing cl· stu: defonnation. Above the elastic Umi t

1 
the spring will be 

stretched out of shape and will not return. to its original length. This is 
kno\vn as plas Lie deformation. 



LE 
Spdngs are used i:n newton-meters to make 
measurements of force. One particu,lar newton- meter 
is u,sed to mea,sure forces of up to 50 N. The length of 
the scale on the newton -meter i:s 10 cm long. 

Calculate the va Lue of the spring co nstan1t for t1h·e 
sprfng ,in the newton- meter. 

Extension of springs 
Figure 12.10 shows two different corn binat1ions of 
springs: 1n series and in pairaHel. All tne springs 
are the same te,ngth and have the same spring 
constant. 

A student hangs a toad fro:m the bottom, of each 
spr.ing combinat,ion and then measures the extensku,. 
Her results a re g 1ven i' n the table be tow. 

Extension (cmJ 

Load(NJ - - - • I - I 
ll 

I • I 

0 0 0 

0.5 2.5 0.7 

1.0 6.2 1.5 

1.5 9.5 2.6 

2.0 13.6 3.4 

2.5 17.5 4.4 

3.0 21.4 5.3 

1 Pilot a graph of load again st exte 1nsion for th e series 
and paraHel co mbination of sprin9s. 

TIP 
It is usual to plot the i 11 dependent va1ri able on 
th e x-axis and the dependent varra1ble on th e 
y-a1xis. Howeve r. in thi s case we plot the load 
!iindependent vari:a,ble} on tne y-axis so that th e 
sp:ring co nstant~ k. is g'iven by th e g,rad~ent. 

Answer 
F = kA.l 

50 

F k ~-
lll 

50 N 
k ~ 0.1 m 

k - SOO N m-1 

tll (a) the total extens,lon - 261 (b) ln each1 spring, extens,1on - 2 

::-=: 
~,, J_ 
t Al 

J T 
~ 
~ 
*._~ 
:... =':, 

2=~ + ~(M 
load T 

,load 

Figure 12.10 Springs in series and pa raUeL 

2 Use your graph to cakulate the effective spring 
co·nstant for ea.eh combi,nation of spri ngs. 

3 The student predicted that the effect ive spring I 
• cons tant of the series combination W1ill be four ! 

ti'mes smaUer tha,n th e effect ive sprin,g consta,nt of ~ 

th e paraUel comb ination . ~ 
i 

Use the data from your graph to show 1if this predi1ction ~ 
is correct. i 

s 4 Predkt the sp ring con stant when tw·o ident1ca,l i 
spr ings, whi,ch are placed ~n parallel! a,re the1n put I 
in series w:ith another pair of springs. whkh are ~ 
also 1in pa rallel. ; 

5 For the seri es com,binat ion of springsj ca lcuilate the · 
percentage uncertainty in each measurement if the 
student measured th e extensi,on of th e spri1ngs with 
a1n accura cy of :.1:0,t Cim,. . . i ........... -· ................. - ......................... ·-............... - ..... -· ................................. -· .. ..... .................. - .......... ..... ,-............. - ..... ............................. -., ............................... -........ ·-..... . 
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: TEST YOURSELF • 41 41 

• + • • 
• • • 

: B The experi1m·ent shown in Frg:ure 12.8 is repeated 11 Three identical springs with a spr,ing constant k 
• 

• • • • 41 : with a spring havjng doubte the vailue of spr·ing are h:ung in serres with each other. A force, F_ i's 
+ 

• • • 
: constant. Desc ribe, and explain, how th·e linear appUed . What is the effective sprtng constant, k@, 
; 

• • • • • • • • i part of the graph would change. for thi1s combinatiion1 of sphngs in series. 
i 9 A s pd n g ha s a s p r i n g co n s ta n t of 1 N c m- 1 • The 12. a ) A pa i r a f s p rings i n p a r a l le l a, re at ta c he d to ! 
i sca le or, a newton-meter is 10 cm tongi. Would the the bottom of three spdngs in series. Alt five i 
t : 
: spring be S·U itaible for a newton- meter used to spr ings are .identjca l a1nd have a, spr ing con,stant : 
i measure forces up to 10 N? k. A force. F, ,is suspended halfvvay between the i 
i 10 An acrobat 1is cUmb ing up an aeriat rope that is lower ends of the pa1rallel springs. What is the I 
i. suspended vertkalty from a high ce iling. The effective spring constant, ke, of this comb[ na,tion? i 
I unstretched length of the rope is 5 m, and .it b) The three springs, originalty in seri'esi are now I 
: stretches to 5.7 m when the acrobat is starts put in pairallel and then attached. i·n series

1

• to the : 
£ climb,ing up. The 1ma,ss of the acrobat is 55 kg. pair of springs 1in pa·raHeL Ca lculate the effective i 
f Assum:ing that the rope obeys Hooke's taw. spring constant of the new co:m,bi1nation. i 
i calcu late the spri'ng constant of the rope. ; . : • • 
·········41·····················41·········· 41 · ········································· ·····················41·····················41······· ··4141 .......................... .... 
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Investigating wires and fibres 
Nearly aU materials show HookeJs law behaviour up to a point. This include--S 
n1.etals such as copper and steel) fibres such as cotton and silk) natural 
rubber and polymers. 

The applied force beyond wl1icl11naterials no longer obey Hooke:S lav.r 
\\rill be different for each material In a school laboratory it is possible to 
investigate the properties of materials such as copper ,vire and nylon thread. 
These 1naterials p1-oduce measurable extensions for an easily obtainable 
I1lnge of applied forces. Other materials, such as steel w i.re, require much 
larger forces and so specialist equipment is requiTed. 

Investigating the properties of copper wire 
A thin copper wire is cla·m ped between two 

i~~~=·~=-==d=~=~~. ~~- ~~~~~~~~- A;· ~~-~r:w:JM~~~ ~ooden blocks at one end ofa bench . Th e other 
end of tMe wire ~s p a,s sed over a pulley. ,,,,.._._., 

G-olamp rule 

tape 

load 

Figure 12.11 Stretching copperwire. 

'Figure 12.11 shows a s~mp le experi'mental set- up that 
ca n be used to measure tn e properties of copper wire. 

A rule ls placed on the bench next to th e wire~ 
and a s trip of sticky tap e i.s attached to the w ire 
so that i,t touches the rule. 

To begin with~ carry out a preUm inary test to 
determine what length of wire wiill produce 
a reasonable amount of extension as you 
in crease the load. The tape miarker must not 
go pa,st the pu lley. Choose a length of wire,, 
and attach a mass han ger on to the end. Place 
masses on to the mass hanger a:nd note how far 

the tape marker m,oves as you Increase the load. 

! Wear safety g'lasses white carrying out th e experiment. Once you have decided on the length of wi1re. set up the = 

j Ptace padding beneath the masses to break their faill. 
. . 

experfment a9ain. Before a1Hachin91 the ,rna,ss ha:nger., ; 
9); , .......................... -.............. -· ·-................ ............................................................ _ ...................... ··-....... -·· ...... -· ............. _ ··-·· ..... '-•• ... -........................................................... ·-.................. : 
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sbc k the tape marker on the w,ire so that 1t i5 at the 
lower end of the metre scaile on the rule. 

Caref,u lly add a 100 g mass to the hanger and read 
the extensron off the sca le. Continue taking readings 
until the ex tension obtained for each increase 1n 
wetght becomes much larger tha,n before . At this 
point the w 1ire has passed the elastic Um it and is 
now behaving plastkally. Continue to add masses, 
but a How time for the wire to continue to extend 
after each add,itiion. Eventu.alty the wire wHl break. 

1 Plot a graph of force aga,inst extens ion for the 
copper wi,re. On your graph label: 
• the region where the wi're obeyed Hooke's law 
• the elasti.c Um1t 
• the breaking po~nt of the wire. 

2 Catcutate th e spring constant for your wire in the 
region where the wire obeys Hooke·s law. 

3 Exptain, wny using a longer wire gives a larger range 
of values for extensjon . 

4 Esti.mate how accurately yo u were able to read the 
po sition of the marker on the ru leA Expilariin what 
effect this wHl have on the value of spr ing constant 
you have calcu1 lated. 

Extension 

Hepea,t the experrmen t for different thkkn,ess of 
copper wire a·nd co,mpare th·e results. 
Carry out a similar experiment for fibres such 
as cotton and nylon thread ! and compa·re their 
beihaviou,r with that of copper. 

If you do not h a:ve data for this ex pe riim en t th en you 
ca,n use these resutts for a copper wire. 

a o.s 1.0 1.s 2.0 2.s 3;0 3.s ,.a 
o a.a 1.6 2.3 3.2 4.2 5.3 6.8 9.6 

: 

. . 

............ ... .. 1. ..... ..... ............................... .. .. ....... ... .. ....... .............. .................... ..... ....... ................... ....... ..... .. ............. , ....................... ....... ....... 1.•• ..... ....................... ....... ........ .................. ....... ....... a. ...................... ................................ ....... . 

Ductne rnateria!.s can be form,ed into wires 
by stretching them. 'They show du tllit:, . 

A brlttl material is one that :shows Uttlier or 
no1 pl.astic deformation before breaking. 

0 

f 

• , 
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j 
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ill/mm 

Figure 12.12 A typical force- exte·nsion 
graph for a copper wire. The wke shows 
:plastic beh1av iou r when a is stretched 
bey·ond the eilastk limit. 

matenial breaks 

0 
llVmm 

Figure 12.13 Fo rce·-extensfon curve for 
h igh.-carbon mild steeL 

V,/ires obey Hooke,s law because the bonds between the metal atoms 
act like sp rings. When tl1e wire is stretched tl1e bonds lengthen sli.ghtly. 
When the force is remov,ed, the bonds return to their original length. 
HD"\vever, if the force applied is too great> and the elastic limit exceeded, 
then the inetal atoms will be able to n1ove past one another and the 
wire lengthens. This is knowi1. as ductility , and is a very usefu l property 
as it aUo,vs metals to be formed into thin wires. The '\Vire formed 
shows plastic behaviour and V\Till not retur n to its original length when 
1he force is re1noved. Ductile behaviour is also an exan1ple of plastic 
def omiation . 

In Figure 12.12 the dotted line represents the extension n1easured as the 
forc·e is remo,ved fron1 tl1e loaded vme. l't can b e seen that the \Virr! has 
perni.anendy lengthened because. even with no applied force~ there is still a 
measurable extensi,on. 

Some materials do not sho~,. plastic behaviour but are l,1·ittl · and break 
when the ,elastic lin1it is exceeded. Cast il·on and glass are tw,o exatnples of 
brittle materials. Figure 12.13 sho\vs a typical force-extension graph for 
high-carbon steel, v.,·luch is also a brittle 1naterial. The material fractures and 
breaks. It do snot show plastic behaviour. 

The way in 'Which ductile and brittle materials fracture is also different. In 
a ductile material, the sample of material wtU elongate and <neck1 before it 
breaks. On a force-extension graph necking occurs in the plastic region 
of the graph. ln a brittle material then:~ is no change in the shape of the 
material because it does not undergo plastic behaviour. A straight break 
in the material is seen. Figure 12.14 shows the difference between the two 
types of frncture. 



Ductile Brlttle 

Figure 12 .1 t. D uct i,te and brittle 
fr a c tu nL 

................ ,., ...... , ......................... . .... , ....................... ,,. ................... 1, .. , .......................................... .. 

Ela tl r.1ln n r is the ,energy st or,ed 
by str,etched materials. 

Figure 12.15 Th is exGrciise equ1ipment 
uses paraUe!l springs to s t rength·Qn arm 
m,usctes. 

Elastic strain energy 
The ex,ercise e,quipment shown in Figure 12.15 makes use of sp1.ings. 

'When you puU the two handles apart you increase the energy stored by 
the springs. We can calculate how m uch energy is stored as ·la tic t :i iu 

11 rgy in the springs. 

The energy stored is ,equal to d1e work done stretching the springs. The 
work done depends on the average force applied and the ext,ension of the 
springs. 

\vork done= average force x extension 

For a material that obeys Hookes la.,v the average force is: 

Fmruc 
2 

We can express the elastic strain energy using the· e:quation: 

elastic s1rain energy= 1. x F x 8 1 
2 

where: 

J is ·elastic strain energy~ 

F is force in N 

A l is extension in m. 

We can also express [h.e elastic strain energy in tem1s ·of the spring constant: 

Elastic strain en e1av = !_ x F x .6.! 
O J 2 

and 

F = kAl 

substituting for F we obtain: 

elastic strain energy =! :x {kAl) x Al =_!_ x k x L\12 

2 2 
For a material that d oes not fully obey Hooke's la"¥\r, W·e can still calculate 
th e elastic strain energy by calculating the area under the load-extension 
graph. 

For any graph, vve can choose small changes in extension, ,o,,,> and calculate 
the ;,vork done by the load to produce that sn-iaH ext-ension. The total work 
done is then the sum of all these values. 

Wr = I:F5l 

Figure 12.16 shows hoy;r this is done for a simphfied force-extension graph. 

On Figure 12 .16 the region of the graph marked as OA repr,esents the 
applied loads for which the material obeys Hooke~s la\v. For this region the 
area. under the graph is a triangle! so: 

W1 = .!_F ma:it L~J1 2 
For the second region ,of the graph) AB, the material no longer obeys 
Hooke's la,v. However) energy is still required to stretch the material, so 
work is stiU being done. 



The a rea of this r·egion is th at of the rectangle belo\v th e line: 

W2 = Fmax. X l\12 

B ~·hich means th at the total wo1·k done in stretching this material is: 

'"'r= W1 + Wz 

Wr = ±Fmax.6.l1 + Fmax.6.12 

·OI 

Wr = F max(ill.!1 + .6.I2) o_,_ ..... __________________ __.. 

/:Ji 2 o. l!mm The elastic strain energy stored is ·equivalent to the " ',ork done in stretching 
'the ·materia1. 

W1 • t Fl,..~ll ~ 

~i gure 12.16 Calculat in g elastic strain 
energy. 

LE 
For non- li.nea r graph.s e las ti c s trai.n 
energy is calcu lated by counting the 
number of squares under th e tin e an d 

mu'ltiplying, thts by th e vailue of wo rk 
equivalent to eac h s quare. FTind the elast ic 
strain energy in Figure 12. 17. 

Answer 

8 -

6 

5 

Note: We coulld have estim,at ed the ela s tic 
stra ,in energy by assuming that s hape C 
was a trra n9le and ea lcu ta ti n g th e area of 
th at tria ngle. Howeverj tha t wou.ld g,ive a 
less accurate a nswer th a,n th e method of 
counhn g, squa res s hown here. 

o-+-~~--+~--~....-~----~~~ ........ ~~--+~~~ ........ ~-----. 
a 2 3 4 5 6 

In Figure 12. 17 ~ the wo rik ·eq ujva lent o'f 
each sma.Lt squa re 

11 llmm 

Figure 12.17 Elastk strain e nergy is calcula:ted by cou nting the nu,mber of 
squares under the L~ne and m,ulti ply inrg tnis by the value of work equiva lertt 
to each square. 

== 0. 2 N x O. 1 x 1 o-3 ,m == 0. 0 2 x 1 0-3 J 

a re a of A == 1 x 5 N x 2 x 1 Qr3 m 
2 

~ 5 >< , o-3 J 

area of 8 !:I 5 N >< 5 x 1 o-3 m 
- 2s x 1 o-3 J 

Number of small squares in region C ~ 448 

Work equivalent a: 448 x 0.02 x 1 o-3 J 9 )( 1 o-3 J 

So 

elas tic st.ra1r n energy - 3. 9 >< 1 o-2 J 

Conve rt al l measurements to 
s ta ndard uni·ts, for example, 
c m to 1m. 

Energy and springs 
When a n1£Uerial is stretch ed or co1npressed i.ts elastic strain energy is 
altered . Figure 12. 18 shows two common toys 1hat 1nake use o r stored 
elastic strain en ergy. 

7 



PLE 
The sprfng Jumper toy shown i"n Fi1gure 12.18 is 
compressed by pusning the S'uct ion cup on to tne stand. 
When the suction cup relea ses the toy "jlum1ps· to a 
height of 65cm. The toy ha.s a, mass of 16 g. The spring is 
ori1gfne'lly 3.6cm long 1 and is compressed to 0.9 cm, tong. 

Assuml:ng that no energy is di ss.ipated as hea:t aind 
sound when th e toy jumps, calculate: 

the ela·Stfc strain energy stored by the sprin,g 
b the spri n gi consta nit of the spring. 

Answer Figure 12.1B Each of these toy·s sto·res elast,ic strain 
energy by deform~ng an elastic material. 

If there are no energy loses duri'ng the jump then 
the amount of gravitational potential energy ga1ned 
by the toy wiill be eq ual to the amount of elas·tic 
stra in energy stored by the spring. 

i,nstea d o'f the amount the s pdn g h a,s extein d ed we 

need to know t he amount it nas compressed. 

compress~on = initi al length - fina,l length 
gpe;;;: mass x gravitati·onal f,ie'ld strength x height 

= 3.6 cm - 0. 9 cm;:: 2.7 cm 
= 0.016kg x 9.81 N lkg-1 x 0.65 m 

Rearranging the eqLiation for elastic stra f n energy 
we get: = 0.102 J 

Therefore, the e lastic strain energy= 0 .102 J 

I I Elasti c strain energy= ~kt.12 

k = 2 x elastic strain energy 
Al2 

k ·= 2 x 0.1 D2 J 
In this case the spring has been compressed. 
not stretched. The equatiio n, is the same but 

0.027 m 2 

k = 28(] N m-1 

newton-~----­
meter 

rubber 
band 

rn.le 

Figure 12J9 Experimental set- up for 
measuring thei e:dension of a rubber 
band whe,n a force js applied. Raising and 
Lowering the clam1p stand boss alters the 
applied force. which 1s measured using 
the ne.wton-meter. If you a re conducting 
this experiment.wear safety glasses. 

The elastic properties of sotne n1aterials, such as rubber, can be complex. 
When a n1bber band is stn~tched it ,vi.U return to its original length. 
However> the ,~lay in ,vhich it does this is very different from a metal 
wire. Figure 12.19 shows an experin1ental set-up that can be used to 
cany out this measu1--ement. Figure 12.20 sho,vs a typical force-extension 
curve o brained from this experiment. 

Initially, there is a sni.all amount of extension as 'the force is applied. 
Then, as more force is applied> the rubber band stretches easily. Finally, 
just before i t breaks (not sho\\-·n in Figure 12.20) it becomes harder to 
su·eich .again. If you hav,e ever blown up a baUoon, you mll be familiar 
with this changing behaviour. lnitiaUi balloons are hard to inflate, but 
become much easier ,one you\···e 
blown some air inside. Just before 
they burst 1 it becomes mor,e difficu]t 
to inflate them further. 

Figure 12. .2 0 also shows that the 
extension for a given force is different 
when the robber band is being 
Loaded (top curve) or unloaded 
(bono:rn curve.). This means that the 
strain energy stored when the rubber 
band is being loaded is greater than 
the strain energy released "\\l"hen the 
n1bber band is being unloaded. 

0 !Ji.I/cm 

Figure 12.20 Force-extension curve for 
a rubber band. Notice th~t the lo;ding 
and unloadingi characteristics dre 
different. What happens to the elastic 
s trai n energy stored by the rubber band? 



H o\vever1 the law~ of en ergy conservation states that energy cannot b e 
created or destroyed in a closed systen1. The difference in s train energy 
must be accounted for. In th e case of the 1-ubber band it "\viU b ecom e warm 
as it is stretched and r,elaxed . This is why there is a difference in energy 
bet,~een [oading and unload ing. 

····· ·····················••tt••················································'··········· 
i TEST YOURSELF 
i • • • • 13 A weight of 35 N is attac hed to the botto·m of a vert i,cat wire. The wire 

s tretches by 0.8 mm. Calculate the elasti c st rain energy s tored in the f : w1·re. 
• ! 14 A 2 m rope is suspend ed from a tree branch. A chHd of m,ass 30 kg1 
I hangs 01n to th e end of th e rope~ w hi eh s tretches to 2.05 m. Cate u late 
i the ela st ic strai,n energy stored in the rope. Take g - 9.81' N kg-1• 
• i 15 Gu.itar str ings are stretched using a tens1ion key to tun e them to the 
i co rrect frequency. A 750 mm tong nylon guita,r string ,is stretched so that 
• : it experi:e,nces a1 tens,ion fo.rce of 27.5 N. At thi s tensrion the gu·ita,r s tr ing is 
• t 785 mm long. Catculate the elasti c st rain energy stored 1in the str ing. 
• 
: 16 The exerc i,se equ ipment show n jn Fjg ure 12.15 rs des ign ed ta pr ov1rde ... 
: a tota l resisHve force of 1000 N w hen pulled to an ex ten s ion, of 
• 
: 40 cm. Th e effect ive spdng co nstant of th e f ive spri ngs 1n parallel i,s 

• • I • 
i • • I 
I 
I • : • • • I 
I 
I 
II, 

! • I 
I • : • • • • I 
!Ii • • • • • • • • • • • • • • • • • • • t • • • i 2500 N m1-1. Cal cula·te the min1mum energy t hat th e person who fs 

• • 
: exer cising n.eeds to use t o s tret ch the springs by th is extension and : 
• • 
: ex plain w hy thi s is a mini m um va lu e. : 
• • 
: 17 A toy uses a compress,ion spring t o launch a small lbalt at a ta rget. The : 
• • 
£ ba ll moves hodzo ntally. Thespning cons tant of the spring is 1250N m-1• i 
: The spring is com pressed by 3cm before the ball is lau nched. Ca 'Lculate : 
• • 
: th e etast ic stra,in energy stored by the spdn. gi before launch. : ... . 
=···········••tt•••••••••••••••tt•••••••••••••••tt••••••••••••••••t•••••••••••••••tt•~ .................... .... 

0 ---------------5 tress and strain: the Young modulus 
Look back at Figure 12.10 showing sp1i ngs j oined in parallel and in series. 

W h en two identical sp1ings \Vere joined together in se1ies 1 -w~e saw 
that the sp1ings extended twice as much as a single spTing on its ovrn . 
The extension depen ds on the original length. Sin1ilarly, if ,ve join tw.a 

springs in p arallel, then tl1e springs extend half as 1nuch as a single 
spring on its OViln. The extension depends on the area ·over ·\\rh ich the 
force is acting. 

ln each case> the property of the object depends on the dimensions of the 
,object itself. 

If we Vitant to compare tnate1ials fairly1 rather tha.11 co1npare two different 
objects, then it is better to have a measurement that d,oesn>t depend on the 
shape or size of the object. This ·comparison is made by using stress and 
strain instead of foroe and extension. 
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Y un ul 1 • , is a measure of the 
stiffness o·f an ,elastic: materiat It does 11 ot 
depend on the dimensions of the sample 
being·tested. It is. measured in Pa or N m-2• 

Ten s il s tress is a measurement of the force applied over the cross-sectional 
area of sample of material. 

. force 
tefu,.le st ress = . 

cross-sectional area 
. F 

tensile stress = A 

"rhere tensile stress is 1neasu red in Pa , or N 111-1 

F is applied force in N 

A is area in m2 

F Stress is som f m s given the symbol a so· a = A 
·n ii _1 r i1 is the ratio of the extension and original length of th·e sampl . 

' .1 . extension 
tenst e st ra1n = ------

original length 
. .1 . Al tenSt e strain ~ -

l 
\llhere tensile strain is dim e:n.sionlcss because it is a ratio 

~ l is the extension. in m 

l is the ori.gin.aJ length in 1n. 

Strain may also be express,ed as a percentage. It is sometimes given the 
syn-ilio 1 s. 

We can n ovl use these quantities to calculate a measure of the sti.ffness of an 
elastic n1-ateriaJ that is indep endent of the shape of the san1ple of material. 
This is called die 'o un lT 1nud tlus. E, of the 1naterial. 

d I stress Young mo u l us = . 
st1·a1n 

E~o 
E 

EJ~ 
(~) 

Fl E=...__ 
Aii:l 

Y:oung modulus is 1neasured in Pa (or N 1n-2). 

UTS Figure 12.21 sho,..vs a stress-strain graph fo,r copper. It ]ooks like the forc,e­

('J 
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13 
~ g 
en 
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0 ....,---.--........-----.......... -
0 5 10 15 20 

strain/% 

Figure 12.21 A simplified str.9ss-strain 
graph fo r copper. 

extension graph sho:\\,n earlier but this graph will be valid for any san1p]e of 
copper. 

0-P on the graph represents the range of ·tensile stress for which the copper 
obeys Hookes law. The gradient of this section is the Young modulus for 
,copper. This value "\Vill be th,e same no matter what the size or shape ,of the 
sample of copper being used. Point P represents the limit of proportionality 
for the material. 

Point E on the graph represents the elastic limit. U·p to point E 1 if the stress 
is removed\ the sample of copper VliU return to its original length. Beyond 
this point, copper behaves plastically. It does not return to its original length. 

The yield point of the material is given byY. This is d1e value of stress beyond 
\\7hich the strain increases rapidly for small increases in. stress. 



Ma,ke sure tha t you conve rt aU th e 
m easu rements to s ta nda rd units 
before attempting t he questi on. 

The ultimate tensile st ress (UTS) of copper is sometin1es called the 
n1axhnum strength or strength of the ,vire. Just b efore this p oint the copper 
becomes na1Towe:r at the ,v,eakest point, known as necking. This can b e 
seen in Figure 12 .14 for a ductile sample. The UTS is the stress at which the 
m at,erial breaks. 

Some metals vtill also shoV,,~ a phenomenon knovvn as creep . This is ,vhen 
the san1ple continues to ,extend ov,er a period of thn e, ev,en though the 
stress applied is not in creased. 

Pl 
Rock cli mbers often rely on their ropes. Some ropes 
are chosen so that they will stretch if th e cli mber 
loses their footing on the rock and fa lls a s hort 
d istance. Th~s reduces the da,ng e;r from· t he faH. 

To test th e suitabili ty of ropes for c lim bing a weight of 
800 IN is suspended from th e rope a1nd tn e extens ion 
measured. 

This test 1s carrie d out on 50 m of a rope tha t has a 
rHa,m eter of 10 mm. If the rope extends 2 .m dur ing the 
test , calcuta te the Young modiu~us of th~s rope . 

Answer 
Firs t w e catculate tens,ile st ress. 

'l t force tens '! e s ress = --area 
Th e area of the rope is the a rea of a circle = m-2 

The rad,,us of the rope [s half the diam et e r !in m]1 

= 5 X 1 o-3 m 

area = l[ (5 X 11 o-3]2 m 2 

= 7.85 X 1 Q-5 m2 

so 
. BOON 

t en s I le stress .. · 
5 2 7.85 X 1 o- m 

.. 10. 19 )( 1 Q6 N m-2 

N ext we cai lcu la,te tens.i le s tra i.n. ma k~ ii g su re th a.t both 
m easuremen ts a re i1n the same un rts. 

, 1 t . extens~on 
t en s ites ra1n = ------

oriig r nat lengt h 

2 
= 

50 
= 0.04 

v . . d l . t ens He stress fo ung ma u us = 
tens He st rain 

l 0.1 9 x 106 N m - 2 
= 

0.04 

You ng modulus of the rope= 2.5 x 108 N m-2 

• •• "'•-. ••• ,. r•• ••• •• ... ~ .... •• ·••••",a ..... ,.,.•• .... ••'"•• ..... ., ... "'" .... alt• ._. ••r ..... Pa ...... . ,. alt •P• aw• •• •r• ••" ,. ,.._.•I""••••••• •• ,. .. ... Pa .... . ••• a, ioaw ••-P ... ~; 

Som.etiimes the tensHe stress and 
Young mod ulus wi1U be given w ith 
t he 5'1 un its of Pas call, Pa; 1 Pa is 
equal to 11 N m-2• 

c REQUIRED P ACTICAL t.. $ 

i 
~ Determination of the Young modulus by a simple method . . 
~ Note: This is ju·st one examipte of how you might tackle this required 
f practkal. 
: 

~ A stud ent carried out an exper iment to m easur e the extension of a, cop.per 
~ w ire as weights were applied. The or ig,inal length of the w ire w as 2.5 m. 
~ The s tudent used a micro,m eter screw ga,uge to take three m.easurem,en.ts 
I, 

~ of th e dlameter of the wire at d:ifferent places along th e w ire. The mea i, . 
~ . dia1meter of the w1re w as O.S2 mm. ~ ~ 

~ .... ... . . . . .. ... . . .. . . .. . ...... ..... ill .... ....... . .. . .. ...... . . . ........ .. . . .... . . ...... . .. . .. ••.11 .. ... .. .... .. . . . ..... .... . .. ... ... .. ... . . . .. ... . . . ... . .. ... .. ••11 ..... ........ .. ... ..... . . . .. ........ : 



refe,rence wl.re sampl'e wire 

mm scale ve·rnler scale 

reference weight 

Figure 12.22 Experim.ental set-up 
to measure the Young modulus of a 
metal wire . if you a.re cond uctlng· th ts 
ex.peri ment. wear safety g lasse,s. [Not 
drawn to scale .l 

11000 
ceramic 

h lg h -carbon stee I 

0 0.011 

glass 

O:t 
strain 

. 
; 
~ • r 

! 
t 

! 
• . 

The data obtarined are shown rn the ta.ble. 

- ...... ..... ,..... (.,.1 -" ·~-, '-,'iC'•1.-~ ...... • · 

,._. ·Ma·ss,-'.k.gf. ____ ·. ~E~_!_ensi"ori~[~f!l);:. 

0.5 0.5 

1.0 1.0 

tS 1.5 

2.0 2.0 
2.5 2.5 

3.0 3.0 
3.5, 4.0 

4.0 6.0 

1 Sugg.est why the stud ent took three m,easurements of the diameter of 
the wf re. 

2 Celculate the stress and strain va,lues for the res ults. 
· 3 Plot a graph of stress agains t strain and calculate the Youlng modlutus 

of copper from youi r graph. . 
~ 4 Explain whether the wire returned to its original length when the 

weights are removed. 

Extension 

. Measure the Young modulus of a num be;r of different diameter copper 
~ w ·ires and compare the values obtained. 

. . 
: . 
: . . . . . . . . . . . . . . . . . . . 
= . . . . . . . 

•• ••• •• -~· •• ••• ~- ••• •• ••• •• ••• -~ r•• •• , •• • t! • • • • • • ~- ••• •• ••• • • • •• • •••• •• ••• •• • •• •• · ~· •• • • • ~ - I • ••• , . .. • ••••••• • ••••••- ~ · • • • ••~- ••• •• • • • . . ...... • •••• • •••• 1 • • ••• ~ - ••• •• ••• • • • • 

A simple e}...'"P"erimental set-up for copper can be used to 1neasure its Young 
n1odu.lus. However) we can use a n1ore accurate ·experim.entru set-up as 

shovm in Figure 12.22. This is pai-1icularly useful for materials suc]1 as steel, 
which generally give smaller values of strain. 

ln Figure 12.22) the left-hand ,vire is a reference ,vire that holds the main 
scale of the vernier calip ers, usually calibnned in n1illimetres. U1e reference 
,vire has a mass hung from it to k eep iJt taut. The sample wire is hung close to 
the referen ce 'Hire and holds the snrnller scale of the vemier calipers. The hvo 
\vires are n1.ade from the san1e mate1ial. 

As \.Veights are added to the samp]e wire it ,extends, and ·the small scale moves 
ielative to the main scale. This allo~ls the extension of the ·\Vire to be measuted. 

0.2 

Interpreting stress-strain grap1 hs 
Stress-strain graphs aUo,;,v us to desclibe th properties of 
materials. and also to, predict the stresses at which changes in 
those propenies might occur. 

Figure 12 .23 compares the stress-strain graphs for four diff eient 
materials: ceramic steel, glass and copper. 

Figure 12.23 Stres.s-stra,i,in graphs for four diffen;~·nt 
m ateriaLs. 

Ceramics are extremely stron g and have very high UTS values. 
However, they are sh ovl very little (if all1y) plastic behaviour 
before they fracture.) so they are also very britde. Glasses have 
lov..rer UIS values than ceramics an d. so, are less strong) but 
they are also britde, ge11ernlly sho,ving no plastic beh aviour 
before they break. 



Ste,el is made by adding different elements to iron to form an alloy. 
Common elen1ents used in steel-making aTe carbon manganese an.d 
chromium. Types of steel differ in tl1e peTcenta.ge con1position of 
the various elements added to iron to create them. This affects the 
properties of the steels and they are ge.ner-ally much stiffer than ductile 
m etals such as copper. This can be seen on the graph from the shallower 
gradient of copper giving a lo,ver value of Young tn,odulus. 

The high-carbon s·teel sho,wn in the grap·h is a strong but brittle matelial. 
It shows elastic behavt.our at higher values of stress but fractures v.,·ith very 
little plastic behaviour. This type of ste,el is o.ft n used in cutting tools and 
d1iU bits because it has a higher UIS value . Other types of steel may sho,v 
plastic behaviour but have a lo,.,ver UTS value. 

Copper has a long plastic region because it ·s a ductile material ~ and this 
makes it .ideal for forming int,o \\oires for use in ,electrical circuits. 

Strain energy 1density 
The strain energy density i.s the strain energy per unit volume of a sample. 
Earlier ,ve: showed that the spring constant1 k) depends on the dimensions 
of the material sample being tested, but t'he Yo11ng modulus depends only 
on the 1na'lerial used. 1n the srune v.ray v,le can calculate the strain energy 
densit~ whicl1 is a measure of the energy stored tn a material that does not 
d.epend on the dimensions of the sample beitng lested . 

Strain. energy density is the strain energy per unit volume of dlle materiaL 

From earlier: 

strain energy =· _!_ F ~l. 
2 

If l is the 01--iginal length of the 'Wire~ and A its cross-section, then d1e 
volume, of the \Vl.Ie = Al. 

Therefore: 
. . l lp Al strain energy per umt vo urne =2 Ar 

=.!..1(f X Ml 
2 A I) 

bu F d a, . 
t A= stress an . T = stl"IUn. 

Therefore: 

t . . l · d · 1 c ·) s nun energy per unit vo ume; or stratn energy ens1ty = 2 .stress x st ram 

!(stress x strain) ts the area under a linear stress-strain graph. Therefore~ the 
area under any stress-s·train graph is equal to the energy per unit volume. 



PLE 
Why do aU anjmaLs ju 1mp the saime height? 

Answer 
0 bvi ous ly aH an i ma Ls don't j u1m p exactly the sam e 
height However, th ey nearly all jump somewhere 
betvveen O and 1 m. 

If alll animals are th e same sha,pe and they are 1made 
of the sa,me stuff then w e can, say that : 

strain energy per unit volume -f lst ress >< strain] 

Therefore: 

energy stored in muscles~ i lstress >< stra in )( 

volume of animal muscle] 

gravita1tional pote,ntiat energy [Epi g,a1i ned in jumping 
;;;. mgh 

We can estimate the miass of the ai, ,imal {1m1uscle) 
us ing : 

mass= density x vo lume 

50 

EP = density x volume x g x h 

Assuming that .a,U the energy stored in the animal is 

used to Increase the height of the an tmial; we can say: 

energy stored in mu scles !!!:! in crease in gpe 

!ls tress x strain )( volume of an imat musctel 
- density )( votume >< g x h 

th erefore 

heightjumped • f [stress " st ra inl/dens,ity )( g 

So~ 1if all anim1als a re th e sa 1m,e shape and m,a·de out 
of th e same stuff, Le. th ey atl have the samie densi1ty 
and muscle properbes. th en the he1ght ju m,ped is 
indep.endent of the size of th e an jmal and they will aU 
jiu mp the sam,e height 

Altho,ug,h real animels do jump different heights, 
the rangie of hei1gihts is much s1ma1ller than the 
corresponding rang,e of masses. For examp le, from 

a stand1ng start a flea ea n jump about 20 cm1 and a 
human 60 cm. However. a typi·cal ·ftea has a mass of 
approx1mately 0.5 mg and a typical human has a mass 
of approximately 7Dkg. 

~ ·····················································································································································: : TEST YOURSELF : 
• • • 
: 18 
• • • • • • • • • • • • • • • • • • • • • • • Iii 
• • • • • • • • • • • ii 
I 

i : • I 
I 
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% 

19 
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I • • : • • s • • • I 

: 
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A brass wire of length 1.5 m and diameter 0.4 mm 
is extended by 31m m, when a te ns He force of 32 N 
is appt~ed . Caku late: 

al the applied stress 
b] the strain on the wke 
c) the Young, 1m od u lus of the brass . 
A tow bar on a car is used to pull a traHer. Th e 
traHer ·exerts a tensile force of 23 kN on th·e towbar . 
The towbar can be modelled as a cyli.ndr ical bar of 
steel with a di1ameter of 6 cim and a length o.f 25 cm. 
The high -strength steel has a Young modulu s 
of 200 GPa1

• C a1lcu late how much the towba.r w~ ll 
extend when i:t is in use. 
The high -strength steel used i:n th e towbar i n1 
quesbon 19 i1s a brittle material with an ultimate 
tens He strength of 500 M Pa. Estimate th e 
ma1ximum force th e towbar can sustain before it 
fra ctures and brea ks. 

i 21 A meta l component has a le1ngth of 0.5 m. The 
i strain must not exceed O .1' % [1 >< 1 o-3L Ca lculate 
• 

22 A stee l s trut has a cross-sec t ional area of 
0.025 m2 and ~s 2.0 1m long. Calculate the 
co'mpressrve force t hat wr ll cause the strut 
to shorten by (l.3, m ,m . Assume that the Young1 

modulus for this steel is 200 GPa. 

• • • • .. • • .. .. 
• • • • .. .. 
• • .. .. 
• • • • .. 

23 E5ti mate the stress on the lower leg of a pe rs on ! 
who fs standtng still. s ,uggest w hy you.r value is j 
l1ikely to be much less than the ultimate compressive i 
stress of bone. : 

• 
24 An a rchitec t ,makes a sca le model of a br idge I 

she is g,oing to b,ui:Ld . It is made 20 tim es sma ller i 
than the rea t brid9e 1in every di mens1on. Th e i 
mod el is m ad e from exactly th e sam e ma teri'a l j 
as th e real br~d ge. The brid g·e is supported : 
by four steel pi1 llar s. Catcula te th e ratio of the ; 
s t re s s e s i n the sup ,p o r t pH la r s, i n th e re a l b r i d g e i 
to model bridge. ; 

;!! 

25 Lions a re approxim1ately ten tim es la rger than ! .. 
cat s. Use your unders tanding of stress to ! 

• exptafn why th e legs of lions an d ca ts are niot th e ; 
• 

• • • • 
: th e maximum ex tension aUow ed. sa m e shape. : 

·············-···········~····················~···················~····················~···················~~ ················~·············~··· ................................ . 



Practice questions 
Figure 12.24 shows the stress-strain graph for two materials up to 
their breaking points. You need this graph to answer questions 1 to 3. 

l Which ~lord best de.scribes the be11a1;iour sho"tn for matetial M? 

A 'brittle 

B ductile 

fragUe 

D plastic 

2 \iVhich word best describes th behavi:our slioMi for material N? strain 

brittle. plastic 
Figure 12.24A stress-stra in 
graph for two ma,terials. 

B fragile D strong 

Which combinati.on of materials cou]d be best represent d by the graph? 

Mi N 
A gldSS cast iron 
B h i19h-carbon stQe L glass 
C cast iro n lh1i~ h-ca rbori steel 

D cast iron r ubber 

4 A superbounce bouncy ball has a diameter of 2. 5 cm and a mass of 35 g. 
What is the density of the ball in kgm-3? 

3 A 4.3 x 10-

B 4.3 

C 4 .3 x 103 

D 4 .3 x 106 

5 A 10cm spiing is stretc11ed until it is 16cm long. The force needed to 
stretch the spring by this amount is 30N. Vilhat is the spring constant 
of the spring in N m -1? 

A 1.9 

B 50 

C 480 

D 500 

You need the follo\ving infom1ation for questions 6 and 7. 

A 2m long square metal bar has sides of 40m111 ,vidth. A force of BOkN 
is applied to the bar and it extends by 0.046 mn1. 

6 What is the stress in the metal bar? 

A 5.0 Nm-2 

B 5000 Nm-2 

5.0 x 101N m-2 

D 5.0x l09 Nm-2 

7 What is the strain in the 1netal bar? 

A. 2.3 X 10-5 

B 0.23 

23 

D 2 .3 x 105 

You need the follo,ving information for questions 8 and 9 . 

A venical steel wire of length 0 .8 m and radius 1.0 mm has a mass of 0.2 kg 
attached to its lower end. Assume tl1.at the Yotmg modulus of steel is 
2.0 x 1011 N 1n- 2 and g = lONkg-1. 



8 What is the ex1.ension of the wire? 

A 0 .128 x 10-6 1n 

B 2.55 x 10-6 m 

C 0.255 x 10-3 m 

D 2.55m 

9 What is the energy stored in the \vire when stretched? 

A 2.6 X 10-6] 2.6j 

D 26) 

You ne,e.d ihe. folloVving information for questions 10 and 11 . 

Figure 12.25 sho,~'ls the stress-strain graph for a n1eta1 
'\\ire that is stretched until it breaks. 

0 \Vhat is the Young modulus of the metal? 

A 16GPa. 74GPa 

B 53GPa D l20GPa 

11 What does the area under lhe graph represent? 

~A the total stress on the wire 

~ 
l 
i 

0.60 

0.40 

0 .. 20-

B the breaking strain o..f-----~~--i-~~---~--~~---~~ 
C ihe energy stored in the wire per unit volume: 0 1.0 2~0 3.0 4.0 

strain/% 
5.0 

D th.e elasticity of the wire 

12 A sample of ,vood is tested in a tensile testing 

Figure 12.25 The st ress- strai nr graph for a me ta l w ire 
that is stretc hed until i t breaks. 

machine. The wood sample breaks when the applied force is 
840 N. The cross-sectional area of the sainple is 1.3 x 1 o-5 1.n2

. 

Calculate the ultimate tensile stress for the san1ple. 

1 3 A stone paving slab has a mass of 13kg. Its dimensions are 
600n1m x 300n1m x 3Sn1n1. 

a) Calculate the density of the stone. 

b) Calculate the maximum compressive stress that the slab could 
exert on the ground when Ie.sting on one of its edges. 

1 4 A cord made from natural rubber is initially 20cm long. A l,oad ,of 
30 N is attached to it. The new length is m easured as l.O m. 

a) Calculate the· strain in the rubber cord. 

b) The stress on the cord is 14 MPa. ,caJicula:te the cross-sectional 
area o,f the cord. 

15 An experiment is carried out to determine the spring constant o.f a 
meta] in the f onn of a Vvire. Weights are added to the ,vtre in steps of 
5.0N up to 25.0N. 

Loading Unloading 
Load[NJ E.Ktension [m mJ Extension (mm) 

0.0 0.00 0.00 
5.0 0.12 0.12 

10.0 0.23 0.23 

15.0 0.35 0.34 
-

2'0 .0 0.48 0.49 

25.0 D.61 0.61 

(1) 

(1) 

(2) 

(1) 

(1) 



a) ·use the results in the table ("'rithout plotting a graph) tn state and 
e-:k.-plain if the deformation of the wir e is plastic or elastic. (1) 

b) Describe ho,v the length and ext,ension of the "Wire could be 

n1,easured experimentally and explain vilhat safety precautions 
should be taken when carrying out the measurements. (i) 

c) Plot a graph. using the results for loading the Vlire and use 
your graph to calculate the spring constant of the ,vire. (3) 

d) What additional measurements would need to be made to 
aUow ,calculation of the Young modulus of the wire? (1) 

16 A lift has a mass of 500kg. It is designed to carry five passengers 
'Wilh a maximum combin, d mass of 450kg. The lift is mov·ed by 
means of a steel cable of diameter 20mm. When the lift is on the 
ground floor of the building the cable is at its maximum le11gth of 
30m. The density ,of the cable is 9550kgm-3• 

a) Calculate the 1nass of the 30m cable. (1) 

b) The lift is stationary on the ground floor of the building. Show 
that the tensile stress in the cable due to the lift and the 1nass 
of the cable is approximately 30 MPa. (3) 

17 A student measures the extension of an elastic band when a force 
is applied. She then continues to 1neasure the extension as tl1e 

force is progressively ren1oved from the elastic band. A graph of 
her results is sho,vn in Figure 12.26. 

a) Describe a snnple experi111ent that would allow measurement 
of ihe force applied and the extension of the elastic band. (4) 

b) The student did not take repeat measurements. Su ggest 
what effect this might have on her results. (1) 

c) Does the elastic band sl1.o~l Hooke's hn.v behaviour? 
Explain your answer. (2) 

d) Explain how the student could. estimate the amount of energy 
dissipated by the elastic band du1ing the experiinent. (2) 

B " -

0 5 to t 5 
extens lon/cm 

·~ I• 

1T 1'T 

20 25 

Figure 12.26 Results from Loading and 
u nloadl1ng an ela.sti c band. 

c) What physical change ,vould occur in the 200 

elastic band if it was repeatedly stretched 180 ..e:aewuummm~J~~d;~~~~ 
and released in a shott spac,e. o.f dn1e? (1) 160 

II 18 Figure 12.27 shows a str,ess-strain graph for 
copper vtire. 

a) Explain why no units are given for strain 
on the x-axis. (1) 

b) Describe the behavio,ur o.f copper up to a 
strain of LO x 10-3. (1) 

c) State the brea.ki.ng stress of this copper 
·wire. (1) 

d) ·Calculate the Young modulus for copper. (2) 

e) A sin1ilar copper ,vire is loaded up to 
a strain of 3.5 x 10r3 . The load is then 

f ,2o~fflfmffli~~~~ M'fflffmfflfflm~~Hm~~~~~fftmiifflH~ 

~ j 100 
~ ffl 801; ~ rnnM~inm1am~ffl81~mnt1~~ammntiam1 

6Q~E ~ ?tttrir.&mrlffiiiii:tltt:bitiitttriiif?ffi3iiittii:iittl~~mttttfufiiil:firiiir.HH:i~ 

40 -1::4~ ~~~~~~~:~~l~~!:;;:=l~,,~fTTTT'O~m~"' 

20~H '+tirit~~~~~!ffi+H:Hm!tttitt+!~~~~~~~~ 

·0-----~----~----~-------~------~---------i 
0 0.5 1' .o i .5 2.0 2.5 3.0 3.5 4.0 4.5 s.o 5.5 8.0 

straln/1 o-3 

Figure 12.27 A stress- strain graph for copper wke. 



ren1oved fro1n the ,vilre. Sketch on the graph the stress-strain 
m easured as the load is removed and explain the shape of the 
graph you have dra-m1. (2) 

Stretch and challenge 
19 Figure 12 .28 sho,,vs an ,expe.iime:nt in which t,vo Vlires, ,each 2 .0 m long, 

are hung vertically fro1n a fixed bar. The ,ends of the Virires are attached 
to a Hghtvleight horizontal bar 0.1 m apart. 

Wit"e 1 is n1ade from steel and has a diameter of 0.8nun. Wire 2 is made 
from brass and has a diameter of 0. 68 mm. A force of l 00 N is applied 
venicaUy downwards to the centre of the platform. The w·ires remain 
v,ertical but the. brass wire extends more than the stee] wire and the bar 
tilts at 1 ° to the horizontal. 

a) Calculate the difference betv.r,een the extensions oJ the two wires. 

h) The Young modulus for steel is 2.0 x 1011 N m-2: sho,v that the 
extension of the steel wire is 1. 0 mm. 

c) Calculate the 'Young modulus for tl1e brass wire. 

d) Calculate the energy stored in the steel \Vire due to its extension .. 

20 A pinball machine firing mechanisin is used to launch a 
small ball bearing; of mass 100 g; into the playing area. 
The design of the 1nech.anistn is sho,vn in Figure 12.29. 
The. playing area and the mechanistn. are at 8 .5° to the 
horizontal. 

plunger 

sp.rlin!:J 

I I 
'ill .. 
0.1 m 

wl1re 1, wire 2 

I 
llgt1twelg1ht platform 

Figure 12.28 An e)(perimen,t 
jn which two wires, each 
2.0 m long. are hung 
Vt:ltticaUy from a fixed bar. 

-

Initially the spring is relaxed. To lire the ball) the plunger is 
pulled back and compresses the spring by 5.0cm. V'/hen the 
plunger is released the spriu.g extends and the plunger applies 
a for-ce to the ball. The dashed circle shows the position of the 

Figure 12.29 A pinball rmachine firing 
mechanism. 

ball \¥h en it h as a maxi.mun1. speed , just as it loses contact "'With 

the plunger. 

The ball leaves the plunger at a speed of 0 .68111.s-1. Use ideas about 
con.seritation of energy to 1calculate the spring constant of the spring. 
Assun1e that the m·echanisn1 is frictionless. 

21 The table belo,v sho,vs the Young modulus and breaking strength of 
spider silk and steel. 

Young modulus (1Pa) Breaking strength [Pal 
Sp ider sHk 1 X 10 10 1 X 109 

High-tens ile s teel 2 X 1011 2 X 109 

Using data from the table) and ,con-5idering the strain and elastic energy) 
suggest ~thy spiders silk is more effective at catching a fly than steel 
(o( the same thickness) Vlould be. 

21 A long 1·od of metal is suspended and stretches under its O'\VO W·eight. lts 
length is l, its density p; and Young 1vlodulus E. Show tha t its extension 
under its own ,vcight is pgl2 /2E. 



Current electricity 
·····························9···························· ... ·························· ......................... . . ' 
! PRIOR KNOWLEDGE ! 
• • . ~ 

! • Etectri c current i,s e flow of e lee tr i c cha rg e. ! 
i • The size of th e electriic current, I, is th e rate of flow of elec tr ic charge, ~ 
+ I i which [s given by th e equation: 
• 0 i r=~ • t • • • • • • : • 
! 
• • • • • • • • • • • • • • • • • • • • • • • • • • 

wh er e Q is th e charg1e in coulom bs, C. and t is th e ti ime in seconds . 

• Electr ic current i,s m easured rin a 1mper es. A, by an ammeter 
conn·ec ted in se ri es w ith components. 

• Th e potentia l diff er ence or voltage, V. between t w o po i'nts in an 
electr ic circuit is th e work done ten ergy transferredL 'W. per 
coulo mb o'f charg e that passes between the points and ~s gi1ven by 
the e quat ion: 

w 
Y=-

Q 
: • Potent1at differ ence is mea sured in volts , V. by a volt.meter co nnected 
• 
: 1 n, pa,raltel wi,th component s. 
• : • The resistance of a component. R. ca n be found by measuring the 
• 
: cu rrent. I. t hrough and potenbat difference. V. across the co mp onent ; 
• 
: res1stance f s defined by the equation : 
• 
: V 
I R=y 
• • 
: • Resistance ls measlJred 1n ohms, 0 . 
• 
: • Th e curr ent flowfngi th ough , the potentrial d'ifference across and 
• 
: th e resistance of a co mponen t are related by the equahon: 
• • • • • • • • • • • • • • • • • • • • .. 
• • • • • • • • • • • • • • • • : • • • • • • • 
i 
• ; 
• • • • • • 
i 
: 
• • • • • • • 

Y=I x R. 

For example. if th e current in Fig,u re 1:3 .1 is 4.5A and t he 
re sis tan ce is 4 .0 0, th e pote nt~arl differen ce acr oss the r es is to r 
is 18V. 

V '!!!!. 18V 

R 4.00 

Figure 13 .1 Simple ele ctrr ic circui t. 

: • The potentrial d iff erence prov i1ded by ceUs connected ini ser ies is 
• ! th e s um of th e potenha,t d iffe r e nce o-f each1 cell (depen d1ing on the 
: direct] on in wh1ch th ey a re co nnected]. 
• 
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: TEST YOURSELF ON PRIOR KNOWLEDGE 
• • • 
; 1 Draw a ckcuit showingi how you would mea.su re the e lec tr ic cur rent 
• i flowrng througi h a bulb powered from a 12V ba,ttery. i . ' 
: 2 Wdte dow n the naimes and sy 1mbots of the unHs of: : 
• • i a ) curre nt cl re s~s ta nee i 
j b) potentia l difference d) charge i 
i 3 0.6 C of charge flows through a bu lb dur ingi 40 s. Calc1ulate the current i 
• • : flowrng througi h the bulb. : 
• I i 4 The battery prov ides a potentia l drfference of 12V across the bulb. : 

i J Calculate the electrical energy transferred 1into heat and light by the 
: butb when 0.25 C of charge flows througih the bulb. i 

I 
I • 1 1 1 11••••••••••111 • 11 • •••••••• • 111 1 • 1 •••••••••11 • 11 ••••••••••111 11 11 • ••••••• 11 • 11 • 11• tlllllllllllllllllllllllllllllllli 

Q ~M_o_v-in-g- ch_a_r_g_e_a_n_d_e_L_e_c_tr-ic_c_u-rr_e_n_t __ _ 
,.,.. ............ .. ................ ,.. .......... ._~ .............. r,. ....... "1 ............. -.1.-iOI .......................... ~ ......... . 

Et tri u n is the rate of Uow of 
etectri,c charge. The on~t of cuHent is tbe 
ampere. 

A lightning bolt is an extreme example ,of an c ll·c tric cur rent. During the 
largest cloud.-to-ground lightning bolts 2 x 1021 electrons might Jump from the 
bottom of a cloud to Earth in 0.003s~ delilvering 5000MJ of electrical energy. 

An electric current is fanned v,.rhen the electrons move. Electric current, I; 
is the rate of flow of charge: 

I 
. 

1 
(A) an1ount of charge flowing; l\Q (C) e ectnc current) . = ·. 

thne lo flow, !Ji. t (s) 

l = ~Q 
6.t 

The SI unit of current is the ampere (syn1bol1 A)> ~Nl1ich is nearly always 
abbreviated to amps. 1 amp is equal to a charge of l coulomb floMng in 
l second (so IA= 1 Cs-1). 

Note that here \Ve have used the notation flQ and /j,t, rather than Q and t. In 
GCSE work, you perlo1ined calculations in ,vhich the current was a constant 
value. At A-level you will meet questions in which the cutTent is changing. 
Under those circumstances we can calculate a current by consideting a smaU 

Figure 13.2 A cloud- to-g,ound Ughtning flow of charge, t,.iQ, in a small time, !J.t. So the equation above is a 111ore 
striike. general expression of the equaliton you met duting your GCSE course. 

The e lectron1s moved by f ri cti on in a cloud: a,ccu mu la,te 
at the botto m of the cloud produdng a ilarge negative 
charg:e. Each electron has a, charg;e, e, where e • -1.6 >< 

1,,0- 19 cou lombs (sy1mbol, CJ. The tota l magrni,tude of the 
charge (sY'm bo l, Q] of all the electrons is about 320 C 
[Q = ne - 2 X 1021 

X t6 X 1 o-19c - 320C l. The bottom 
of the cloud is 'near' to the g,rou 11d,, which is ·earthed', 
a.nd the etectron,s flow f:ro ,m the cloud to Earth thro ugh 
the air irn 0.003 s. wh ich provides a co,nducting pathway. 

How m,uch current is produced? 

Answer 
Using the current re lationship for a large Ug htn ing 
bolt: 

320C 5 ( f) I = -- . = 1 x 10 A 1 s 1 

0.003 s 



Electronic circuits> such as those that control household applianoes, 
operate vv.ith 1nuch smaller curren ts> typically milliam ps (mA 1 10-3 A)~ and 
m any n1.icroelectronic circuits> such as the printed circuit boEnds inside 
m any oon1puter devices, operate vtith cun-ents of the order of microamps 
(µA, 10-6 A). Even currents of 'the order o f n1icroa1nps stiU inv,olve the 
movement of about 6 x 1012 electrons per second. 

So me elect ri c currents rnvolve beams of electrons. 
A in y devi ce co n ta i n in g a ca thode ray tub e f C RTL 
s ue h as an osc illoscope, involves e lectron bea,m 
cu,rrents . 

Answer 
!J.O n >< e· I = :SL= · = ne 
llt 1 

[The charge, !J.Q, is the charg,e carried by each 
electro n, e, multipl1ied by the number of e lectrons]. A curren t of 30 µA flows rn a CRT. Ca lculate the 

number of elec trons flow in g in th e bea,m per 
second, n. 

_ !_, _ 30 x 10-6 A _ x l 4 - . . 
~ n. - e - Lo x 10_19C - 1.9 10 electrons 

per second 

91Qctron gun Y p1ates 

fluorescent screen 

anode 

Figure 13.3 Ele ctron beam i,n a cathode ray tube. 

An le ly is a conducting solution,. 
usuaUy containing posittve and negative salt 
ions di ssolv,ed in water. 

N ot all electric currents involve the flow of electrons. Charged ions in 
solution (called an l ct rolyt ) can also flow and create a current. Car 
batteries ,vork due to the flow of hydrogen (H+) ions and sulfat.e (S10 4,2- ) 

ions and can deliver cun-ents of up to 450 A. fo r 2.5 seconds. 

... 

Pos It lve 1lons (cations) move 
toward the neg-atrlVe electrodie. 

Negative Ions (anions} move 
to1t.rards the positive eilectrode . 

Electrons flow In the external 
clrcul:t from the posaive el:ectrode 
to the negative electrode. 

Figure 13.t. Electric currQnt ea n also be d:u9 to thQ flo,w of ions;. 
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In th-e ·exam ~inatiori you are 
assessed on your u1n:derstanding 

of the s i,gni!fi cant figures of 
the nu1mbers thait you use in 
calcu,lations. In the exa.m p le 
on the rrg ht, both the pieces of 
data used in the ca lculation are 
to 2 significant fi'gures [sf~. As a 
generat ru·tej you should state your 
answer to the sa me number of 
sf as the least signiffca nt p,iece of 
data used - 2 sf in th l1S case. 

R 

. B 

R 

The area under a current- time 
gra1p~ is th e cha.rge transferred. 

Both of the ions in the solution contribute to the current\ ,vhich can be 
n1easured exten1ally by an an1m,eter connected in series with both electrodes. 

If a ca1r battery d eUvers 450 A for 2.5 seco nds. calculate the total charge 
f lowi n·g. /Ji.Q . 

Answer 

!:J. O· = I >< !:J.t -
=450A x 2.5s 

= 1125 C 
- . - ~ 

= 1100C or 1.1 x 10.,C (2 sf) 

Variations of current with time 
Figure 13.5 shows the variation of the cun-ent drav..n from a cell 'With time. The 
current is drawn £or a total of 10 seconds., but 5 s after turning on SVititch A, 
smtch Bi$ ,closed aUo-v.ring current to travel through the second identical resistor: 

0.9 ...---.----.--....----,----.--....----,------,e------.---,------, 

0.7 - -----------

0.6 - -----------

<C 
-;::.- 0.5 ------------t 
-i--1' 
C 

~ ..... 
~ 0.4--~-~--~-~--

0
.
3 

_ During the first 5 s the 
current is constant at 0.4A. 
The total charge, Oo-6, 

0.2 ~ 1ransferred is equal to the 
area under the graph 

O.i • = 0.4 X 5 
= 2.0C 

During the second 5s the 
curren1 is constant at 0.8 A. 
The total charge, Os-101, 
transferred is equal to the 
area under the graph 
= 0.8 X 5 
= 4.0C 

0-+-~--, ~~--, ~-,~~~,~~-+-~--, ~~--, ~-,~~~,~~-+-~-t 
0 1 2 4 S 6 7 6 g 10 11 

time. ~s 

Figure 13.5 Current-tiime graph. 

As 

6,Q = IX ~t 

the charge trnnsferred during the first 5s is the area under the current-time 
graph from t = 0 s to t =- S s. During tl1e second 3 s 1 the current d.011bl.es. The 
charge transferred during this time is the area under the graph from t ~ 5 s 
to t = 10s. The total charge 6Q transferred d11ring the whole 10 s period is 
the total area uudear the graph 

~Q. = Q0-5 + Q5_10 = 2 .0 C + 4.0C = 6.0C 
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Figure 13.& Cur rent- time graph for a traffic 
li1ght ci,rcuit 
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The total charge tn.lnsferred is the area under a current- time 
graph. 

Figure 13.6 shows the variation of current ,vi.th time through 
part of th.e timing circuit for a set o [ t raffic lights. 

In this case., the current varies continuously -with tin-ie. The total 
charge transferred is still the area under the current-time graph, 
which is calculated to b e 3 C in this case·. 

In a similar Vir't'8.Y, the gradient of a charge-time graph (Q-t) is the 
current. Figure 13 .7 shows the current sparking o£f the top of a 
schoo.l van der Graaff generator. 

The current , I duting this discharge is determined by calculating 

the gradieut of the Q-t graph as I = ~. 

In this case 

I ""' 0.5 )< 10-oc ~ 5, x 10-oA ""' SµA. 
0.1 s 

I ;:;;: ~~ ;;; grad lent of graph: 

0.5 x 10-a C :;;; 5x1o-6A;;;:5µA I --

I 

'1 a 
0.4 

·~ 

' 
0.1 s 

~ ~-

Q)~ 0.3 
a) 

a3 
L: 
Q 

0.2 

0.1 

0 
0 0.02 

-~ .-~ 

"'-
~ 

0.04 

~ 
~ 

0.06 
time, rts 

"' ~ 
"' 0.08 0.112 

Figu re 13.7 The current sparking off the top of a sch o,ot van de r Graaff generator . 
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i TEST YOURSELF .. 
• 
: 1 Here is a li st of electr,ical un,its: : 
t A s A v-1 C s-1 J s-1 J c-1 
.. 
: Choose th e unit for: i a] electric chargie 
• : bJ potent1a l difference 
,t 

i c] el·ectric current. .. 
~ 2, An iPhone ca.n be charged three ways; 
! • v i1a a PC US.S port. wh ich deliver s 0.5 A 
! • v ia t he i Ph one charg er, w hich deUvers L O A 
: • Vi'a an iPad charger, w hich delivers 2.1 A . 
: .. 

Th e iPh one battery capacity is 1420 mAh. 
wh ic h equates to a tota l etectrk cha rg.e of 
51'12C. 
al Ca1lculate th e frm1e needed to cha1 rg e an empty 

lPhone battery from ,each of these cha rging 
methods. 

b] Exp laiir, why 14201mAh eq uals 511 2 C. ,(A charge 
of 1 mAh i,s ·trans ferred wh en a c,u r rent of 1 mA 
flows for 1 hour. i 

• 
! 
= • I 
I 
I, 

I 
' I • I • • 
• ' I • 
Ill • • • • t • • • • : • • • , 
• • • • 

...-!'\. : 
"'-'t/ : • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 



> 
t: 
u -a:: 
..... 
u 
LI.I 
-' w 
~ z w 
= et: 
:, 
(J 

M .... 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• . ~ . : ~ : • • • • : 3 Spdtes are rare. large scale; very high albtud-e of i1ons passing per second. Assume that each : 
• • • • • • • • • • • • • • • • • • • • t • • • i 
i 
i 
i • 
" • • i : • I 
I 
I • • : • • : 
t , 
I 
!I 
II! 
!!! • .. 
Ill • • • • • 
I!' 

' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
"' • • • • • • • • • • • 
= • + • • • • 
" • i 
i 
Ii 
it • : 
t • • ' I 
I 
i 
I 
I • 
' ; 
s 
' I 
I 
I .. 
I 

z : • • • • I 
I 
II! 
!!! • • • • • : 
' • • • • • • • • • • • • • • • • 

lightning bolts that oHen take the shape of a ion ha,s a charge egu iv a lent to the cha rge on the ; 
• jellyfish. e lectro 11. : 

Figur e 1:3. 8 High-a lt1tud; sprite L;g ntn i·ngi . 

A sprite deliivers a total charge of 285 C in 3.5 m s. 

Calc ulate the c,urrent flowing in this type of sprite . 

4 A blue light emttting diode fLEO] has a current 
of 25 m1A flow~ng through rt Ca1lculate the total 
nu m,lber of electrons passing through the blue 

LED per second. [The charge on an elec tron is 
1. 6 x 1 0-19 c. I 

5 A scanni·ng tunnelUng m~ croscope works by bring,ng 
a very fine metal needle ttp up very cllose to a 
surface; electrons then flow between. the ti.p and the 
surface. Tiny piezoelectric crystals in the tjp move 
the tip up and down i:n response to the s ize of the 

current Howing between the tip and th e sample . 

tip 

__ __,,.._ tun ne Iii Ing 
electrons 
produce 
tunnelling 
current 

Figur e 13.9 A scanrn,i 1ng tunn elling m.icrosco pe . 

1, 5 m1i lli on electrons per second How across the gap 
between th e tip and the surface. Ca lculaite the current 
rn the ci re uit. 

I:, An ~on bea m used to cons tru ct ,ntegnated cf r.cuits 
delivers a cha.rge of 80 nC in a tim e of 4 6s . 
Calculate the curre nt of th e beam and the number 

• 
7 This qu1estioni requires you to apply your kn owledge : 

• 
of curre nts in a more co m1pli ca1ted s ituat ion. A ca r : .,. 
battery has a low vottag e4 typica1lly of the ord er of a, i 
few voltst but it ea n produ ce a ve ry large current. f 
The large current resu lts from rapi d chemica l : .. 
reacti ons involving la rg e inu m1bers of ions. You need i 
to use the f ollowin g data: i 
• ma·gnitude of e • 1.6 x 10-19 C ! 
• Avoga dro number, th e number of partic'les i,n one i 

m o le. NA Cl 6. 0 >< 1 0 23 pa rt i c t e s/m o 'le f 
• mola,r mass of lead, MPb - 207.2 g. i 
• In a lea,d chemic al ce ll. th e energ,y transferred I 

by th e chemical reaction s betw een the lead f 
elect rodes and the elect rolyte is about 24 kJ per E 
mole of lead . : 

• • a) Calcula te the charge ea rried by a mo le of i 
electron s !known as a Fa raday of cha:rg.el, ! 

• 
b] Show that the etectrical potential energy : .. 

transferred to ea ch coulomb of charg1e [r.e. the : 
• 

potential d!iffere.nce. V)1 is 0.125V. '(Each teadl : 
atom toses two electrons to become a Pb2+ ion.~ ~ 

• 
c] How many lead chemical cells would be : 

• 
required to produce the same potential : 

• 
difference as a 12V car battery? : 

• 
d] When drivfng at night the battery delivers a i 

• current of 15A to power th e Ughts : how many : 
• e lectrons flow frffm the battery per second ? : 
• 

e] Cailcutate the number of mole s of e le ctrons : 
flowing per se cond . 

fl Che,m1 cal cells cam produce large ch arge How s 
for subs ta ntta l ti m e.s [ i.e large currents] befor e 
their che,mica,ls have all r eacted and the cell 

• • • • • • • • • • • • • • • • • 
·runs o uf. In a lead eh em i,ca t cell, what 1mass of i 

• 
lead is reacting per secon,d to produce a cu rrent i 

• 
of 15A? ~Rem ember that each tead atom l oses : 

• 
two electro:ns to bec omie a Pb2"" j,on. ] i 

g) If the ce ll co nta·in s 640 g of reactable lead, 
for how long cou ld 1t genera,t.e thi s current 
before running out? [N ote that we protect a 
car·s battery by runnin g the lights off the ,car's 
alternato r w hen th e engine is running:; the 
alternato r generates elec tric ity u si1n gi energy 
fro m the en g.tne.l 

S A mobile phone charge r normally ope rates at 
IJ. 70A. Du r i1n g a p artk uila r cha rg in g eye le, t he 
charger ope rates nor mally for 1.5 hou:rs before it 
s udden ly develops a fault and outputs a c ur rent of 
0.12A for a furth e r two hours. 
a) Ptot a n 1- t graph for thi s charg11ng cycle. 
b] Ca lculate th e total charge t ran.sferred during. 

the whole cycile. 

• 

i : 
• • • • • • • 
i • • i • • • • ... • 
£ 
i • • • • • • • • • • • .. 
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Pi'l nt. t r.liff n ~s the amount of 
electr1ical work done per unit charg~ flowing 
through a co,mponent. 

Electrom i re re is the amount of 
electrmcat work done per untit charg,e by a 
pOV11er supp'Y suoh i3lS a c,eU in .an electrical 
cir,c.uit. The power supply transfers the other 
fornms of energy1 s.uch as ch,emical energ,y 
mnto ,ele'Ctrmcal energy. Th,e unit is the vott, v. 

Electric cu1Tent only n1easures the rate at which charged patticles (usually 
electrons) llow around a circuit. It tells us nothing about the electrical 
energy involved \Vith circuits. The quantity used t,o describe the electrical 
energy in circuits is potential difference (pd), syn1bol V, measured in v,olts, V. 
A potential difference across an electrical component is measut·ed by putting 
a vokineter across the con1ponent, in paraUel Vlith it. 

Electrical nergy in circuits is defined in terms of the electrical \vork done 
by the ·el ctric charge flo,ving through the circuit. u I n l i a I Ii Ile r · 1 "l-' (pd) 
is defined as the electrical work done per unit (coulomb) of charge flo\\rmg 
·through compon nts such as bulbs 1 motors 1 resistors, etc. This electrical 
energy is transferred into heat~ light and other mo,re useful fonns of energy 
by ·the ,components . 

. 
1 
a·rr V (V) electrical work done by the charge WU) potenua _1uerence> · = ________ __._. ______ _ 

charge flow, Q (C) 
w 

V;:;;;, -
Q 

lV = lJC-1 

Pote.ntial difference, 110\vever, cannot be used to desc1ibe the energy cha11ges 
involved with po"\ver supplies such as cells~ generators and mains po,ver supply 
units . These devices transfer other fon'tlS of energy1 such as chemical energy 
into electrical en.ergy. To make a distinction between these different energy 
'transfers we define another quantity; electromotive force (entl), symbol E. 

Both emf and pd are measured in volts, synibol V1 using a voltmeter. 

Elcctro1u o tivc f rcc (en1() is defined as the electrical work done per unit 

(ooulon1b) of charge as it flows through a source of elecnical energy such 
as a ceU) generator or power supply unit (psu) . The souJces of electrical 
energy transfer other fonns of energy such as kinetic or light energy into 
electrical energy: 

l 
. r . f\1\ electrical work done on the charge, EU) 

e ectromot1ve Loree., s " v 1 = - -
charge Dow1 0 (C) 

E 
S=-

0 _, 

The law ·Of consen.~ti,on of energy can now be ~lritten in terms of enif 
and pd. In a series circuit, \,there the components are ,connected one 
after another in a complete loop, the total electrical energy per coulon1.b 
transferring in.to the circuit (the sum o,f the emfs in the circui't) must equal 
the ,energy per couloinb transferring into ·Other forms of ,energy (the sum of 
the pds). (There is more about this in Chapter 14 on electrical circuits.) 

Here is an example. The follo\\'ing circuit is set up: 

e;;;; ev 

0.5 A 
I 

80 4Q 

Figure 13.10 Circui t d,iag-ram. 



The einf of the cell, ,E> transfers 6] c-1 (V) of chemical energy into electrical 
en ergy (if the cell is 100% ,e fficient). 

The 6J c-1 of electric-al ,energy is shared bet\veen the tv./o resistors. This energy 
is shared in the san1e ratio as the resistance of the resistors (8 : 4 or 2 : 1). 
The potential difference, V1, across the 8 0 resistor is therefore 4J c-1 (V) and 
the p otentia1l difference 1 V2 across the 4 .0 resistor is therefore 2J c-1 (V). Note 
·that the law of conservation of energy still holds here as 6Jc-1 Mis transferred 
from chemical energy into elect1ical energy in the cell and 6 J c-1 M in total is 
transf e.tred from electrical energy int,o heat enetm7 within the resistors. 
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lnvestigating1 the ability of a travel mug heating element to boil water ~ 
111 an experiment to investigat e th e abil:ity of a t ravel 
mug heating elem ent to boi,l water Jni a mug for a cup 
of tea, a student c onn ec ted th e heabng e lem ent to a 
c: a r battery. 

Figure 13J 1 Travel heatfng ele·ment. 

The student put 180 g of w ater into a mu.g and 
measured th e te1mperature of the water every mi1nute 
for 8 minutes. Here a re the r,esiu lts: 

0.0 15 
1.0 26 
2.0 37 
3.0 48 
4.0 59 
'5,0 70 
6.0 81 

7.0 92 
8.0 lOO 

Qn,e gram of water r equ ,ires 4200 J of heat energy 
to raise th e temperature of the water by 1 °C. Th is 
is called the spec ific heat capacity of w a ter. An 
ammeteir measures the current in th e heater to be 
11..l A du ring the heating. 

1 Convert the tim es to seconds and plot a graph of 
tern peratu re, 9/ °C aga Inst t ime, t/ s . 

2 Plot a best-fit line and calculate the grad1ient of 
the tine. 

3 What q-Uantity is represented by the gradient of 

the line? 
4 The heat energy. ~Q. requ ired to heat the water r.s 

gi1ven by the equatinn : 

AQ= rncAB 

where m f s the mass of th e w ater1 c r s the s pe dhc 
heat capacity of th e water and fl.i(J is the change irn 
temperature. How mu ch energy heats 180 g by 
one degree? [Note: Th e he at en e rgy L\.Q s h ould not 
be confused w 1ith e lec:trjc a l charge.] 

5 How m·uch heat has been supp lied the re fore afte r 
two m 1inutes? 

6 How much charge ,js tra nsferred 1in 2 minutes? 

7 AssumJng that th e etec tr,ica l e nergy supplied to 
the heater rs transfer red into heat en,er gy of the 
w ater~ use y our answ er s to qu esti ons 5 and 6 to 
c a Le u late V: t h e po ten t i a. l di ff e re n c e a c r o s s tih e 
hea ter. 

8 State two haza rd s involved w ith this exper iment 
and descr ib e th e r is ks an d con tro l measures th at 
you would use. 

9 Thi s exp eriiment 'invo lves thr ee meas'urements. 
the volume and temperature of water. a,nd the 
ttm e. Wh at are th e sources of uncert ainty ,in thes·e 
m easurem en,ts? IFor each one, state a way of 
r e due i r, g thi s un cert.a i nty? 

~---·- ..... ·-····· .................. -.............................................................. ,. .... , ··-· .................... ........................................... -..... ---·· .............................. ··-· .......................... .-............................. : 
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Posm ve Ions from meta I When curr,ent flows through the n1aterial of a circuit~ sucl1 as 
the metal of the connecting \\'ires , the mateda.l of the circuit 
gets in the· way of the llo,v of the charge. On a n1icroscopic 
level 1 as the electrons flo,v through the ·metal they collide 
"\vith the vibrating positive ion cores of the n1etal structure. 

'Gas· of electrons. 
free to move 

The collisions bet\v,een the electrons and the positive ion 
c,ores transfer elecu·ical energy from the ,electrons to the 
structure of the inetaJ> causing the metal ion cores to vibrate 
more. lhus heating up 'th wire. 

th roug,h out th·e 
structure 

Figure 13.12 The structu.re o,f a metal. 
Ii 1 11111 ... 4 •• •11 5 ., ., • ....... , ..................... •11 ............... "' ••••••••••• , ......... 11• a 

of a conductor is the 
o ppos;t~on of the conductor to elictnc currant 
Rowing through it Unit is the ,ohm, Q. 

A ... up... o o u o is a mat,erial whose 
resistance drops to z,ero below~ specific 
t,emperatrure~ called the ,critical temperature. 

Figure 13,.13 Magnetically levitating 
s uperconductor. 

Figure 13.14 One of the Shanghai Ma1glev 
tra,ins, w'here superconducting m1agnets 
support the tra·in, enab'ling tt to travel at 
speeds up to 2 70 ,mph [430 km/h]. 

The opposition of a compon ent to the flo\v ,o,f electric 
cun·-e.nt through it is ,caUed r L; s i t an · , Sjmbol R. unit 
ohmsj n. 

The model of a metal shown above explains what happens to the 
resistance of the m,etal when it is heated. The resistance increases as the 
temperature increases. The vibrating, positively charged, ion cores move 
around much mol}e as the ten1perature increases, thus getting in the way 
of electron flo\v. This opposes the flow of the gas of electrons moving 
tl1.rough the structure. 

Components with very high resistances let very little current through 
then1.,. and are considered to be electrical insulators. Some materials.,. at 
very low temperatures, have zero resistance. Tliese n1aterials are called 
s uperconductors . 

Supercon1ductors 
A current set up in a loop of superconducting material canies on flo'-'•ing 
indefinitely. Superconductors also exclude n1agnetic fields inside them. 
This allo\vs a strong permanent magnet to 'be repelled and held above 
the superconductor. Superconducting materials completely lose their 
r,esistance b elow a. te:1nperature called the critical h~n1perature > Tc. Diffe1.~ent 
super.conducting materials have differenl c1itical tetnperatures; the 
metallic element tungsten, W, for example, has the low est kno:vt1.-i critical 
temperature of 0.015 K ) (-273.135 °C); and a type of ceran1ic copper 
oxide. called mercury bariutn thallium coppet ,oxide 1 has the highest 
kno,vn critical temperature of 139K (-134.15 °C). This is n1uch higher 
than the b oiling point of liquid nitrogen (7 7 K). 

As nev,r n-1aterials are deve1oped, s-o the superconducting ctitical 
temperature has risen substantially. The ultimate g,oa.l is to develop 
superconductors with critical temperatures that are around r,oom 
temperature. Imagine the v..·,orld ,o,f possibilities \.vi th zero-resistance 
superconductors. There could be. for ,example; electronic devices and 
computer tu1its that don)t generat any he-at and don\ need! ,co,oling 
fans; bane1ies that last f,or an extremely long time on o,ne charge; cheap 
magnetic levitation : portable MRI scann ers; super-strong electromagnets 
and electrical po,ver transmission lines that don>t waste any energy. 



o~~~~~~~-c u r rent/potential difference 

ri al h r t risti ~s a g,raph 
(usually/ - V} tha1t mustrat,es the e!e,ctrical 
beha1Viour of the component. 

1-V graphs can be drawn with 
1 or V on either axi s to illu strate 
the relati onship betwee n a 
curre nt through a component and 
the potentfa l d iffe ren ce ac ross 
a component. /-V graphs lwtth V 
on th e x-axi s) a re useful because 
the current th rough a component 
depends on the potenti:al 
difference across it. This type 
of graph is particular'ly useful 
for people who are des~gn~ng 
circuHs for devices where th ey 
need to kinow how a component 

wi ll behave wjth different 
applied pote nHa ll d:iff eren ces. 

V-I graphs fwith I on 1he x-ax.isl 
are useful 'for illustrating the 

resi,stance of a component, and 
the characterfst k s of cells and 
batteries are usually plotted 
this way. 

TIP 
Th e equati on: 

V 
R--

I 
defin es res istance. Some sources 
on the web inico rrectly ea ll th e 
eq1uat,iorn O hmijs Law. It ,is not. 

TIP 
Ohm"s Law sta tes thait for som e 

co ndu ctors 

l. a V 

characteristics and Ohm's law 
Most of the properties of an electrical con1ponent can be dete1m ined by 
p lottin g the current - p otential difference graph of the comp onent. This is 
called an ,dc.:c rical ~h ractc 1 1i -. 

Electrical charact,eris tics are graphs that shov.1 how the potential difference 
and current vary when th compo,n,ent is connected in both fo1~rard 
and reverse bias (when the current passes ·One way and then in the other 
direction). The 1nost straightfonvard electrical characteristic is tha o,f a 
fix,ed resistor. 

You can se,e that the graph can be drav.,n with each variable on either axis. 

potentl ail 
current, l dmeren ce, v 

rv eh aracterl st le Vl character~stlc 

OR 
pohantra1 currsn~ I 
d lffe,re n ce1 V 

Figure 13. 15 Electrical char acteri,st ic graphs ofr a fixed res istor. 

Ohm's law 
Jn 1827 > the German physicist 1Georg Ohm p erfonned potential difference -
current experiments on m etal ,vires a.t constant ten1perature. Ohm 
discovered that the curre·n t, I, llow ing through 1h e ,vire v;ras p roportional to 
the p otent ial differenc,e, V, across the ,vire, provided that the ten1perature 
(and o ther physical variables) ren1ain ed con s'Cant . If this is sho"rn on an 
electrical cha1"acte1istic grapl1, tJ1en the graph ,vill be linear. The relationship 
between the ,current and the p oten tial difference becan1e known as Ohm's 
law, wl1ich can be ,vriu en ma.tl1ematically by: 

cu rrent, I a potential differenc,e, V 

la V 

Ohm~s la\\'~ apphes to some conductors under S·Otne circumstances. It is 
generally a special case applied to metal v.rires at consiant temperatur,e. 
But using the concept o,f resistance, a convenient, familiar mathematical 
,equation can be \Vritten that uses the relationship b etween I and V ·to define 
the un it of resistance, the ohm en): 

V 
R=-

I 
In other words~ if a potential difference of IV produces a cun-ent of I A 
flov.,ing th rough a componen t) then its resistance m ust be. l !l This de.fines 
resistance in ohtns. This equation applies in all cases and also make.sit clear 
£hat for a fixed pd) V, a small measured current) I, implies that the com ponent 
has a large resistance) R) and vice versa. Similarly> for a fixed curr:ent, I) we 
need a large pd) V, to drive the curren t through a large resistance, R. 



V 

R 

I 

Figure 13 .. 1& An electriica l 
character ist~c of a fixed resistor 
showi1n9 Ohm's law. 
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The ,current ftowing through an hmlc 
ond t is proportronal to the pd dppUed 

acra.ss it. 

....... , ........................................................................ .. ...... , ......... , "" ..... .,. ..... ......... .......... .. 
A n n-ohm1 component is a co,mponent 
that does not obey ohmjs law; i.e. current 1ls 
not proporUona~ to the potential djfference 
appUed acres s it. 

anode 
(+) 

cathode 
(- ) 

Figure 13.18 A semico,nductor diode ­
symbaLa nd ipicture. Ths current wilt 
only flow in the d·irection of the ~rrow 
[anode to cathode). 

One use of the electrical characteristic graph is that if the current is p lotted 
on the x-axis, for con1.ponents foUowing Ohm's law then the gradient of the 
line is the same value as the resistance of ·the component. As fixed resistors 
and metal \Vires at constant temperature have a fixed :resistance~ then the 
electrical characteristic graph ,~ill be a straight line. On this type of graph, 
hig·h-resistance components have large, steep gradients_, and 1,o,v-resistance 
cotnponents have small, shallo,v gradients. Remen1.ber though., electrical 
charactelistics can be drawn with either va1iable on either nis. 

Fixed resistors and ineta] wires at constant temperature obey Ohm1s lavl 
across their current range and their elect1ical characteristics are linear. 
Compo·nents like th\is are said to be ul 111i co nd tu: tu 1 - i.e. they obey 
Ohm,s la\v. 

Other electricall characteristics 
A. standard tungsten filament lamp transfers electrical energy into light 
and he:at as the current flo,ws through it. As the current incr·eases, S·O the 
frequency 0£ electron collisions \\'ith the positive ion cores of the tungsten 
lattice increases, transferrh1g more l"'lnelic energy. The positive ion cores 
vibrate ,vith greater a1nplitude and so the resistance increases. A higher 
current leads to a higher temperature) \vl1ich in turn leads to a higher 
resistance. The electrical characteristic of a filament lamp is sho~n in 
Figure 13.17 : 

potential 
d lffere nee V I 

Figure 13 .. 17 E'lectricat characteri.shc 
of a f,ita ment lam1p. 

The electrical characteristic shows the ratio VII increasing and therefore the 
r,esistance increasing. Con-.ponents like this, whose electrical characteristics 
are non-linear, are said to be 1on -nh1nic conductors. 

Components such as fixed resistors and filament lamps hav,e the same 
characteristics independent of the direction ,of the current flo~ing through 
them. Their V-l gi·aphs produce the sam,e shapes in forward and reverse 
bias. ,components such as semiconductor di, 1d · d,o, no,t behave in this ,vay. 
Diodes are generally found in electr,onic circuits where they act as one-way 
gates, prev nting the current from flowing back through the circuit. They 
are particularly useful in mains power supplies where they can be used in 
circuits to convert alternating current (ac) into direct current (de). 

Dllodes only c,onduct in forward bias (in the direction of the arrow on the 
symbol)~ their circuit symbol shows this direction using the arrow) and the 
component itself nonnally has a different coloured ring at the fon.vard bias .end 

Diodes do not conduct in reverse bias~ this means that the resistance of the 
diode in. reverse bias is infinite. Di.odes have very lo,v resistance in fonvard 



, 

bias. The electlical cha1~cteristics of diodes are usually drawn in current 
(y-ax:is)-potential difference (x-axis) format: 

our:na.nt · 

Make sure that you are awa re of 
how the electrical cha.rac teri stic 
1is p'lotted. Carefully check which 
quantity is on, ea,ch a,xis. Atsoi be 
ea ref1u l to ensure that you kn ow 
what the units of each ax is are. 

____ _.._..~--i .... potential 
difference 

reverse b,las forward 't> tas 

Figure 13.19 IEtec tri1cal cha racte ri stic of a sem icond ucto r diode • 
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Plotting electrical characteristics 
The etectrical characteristics of a, sma,H butlb and a 
fixed resis to r were compared. The ciTcuit diagrams 
used are shown iin Frgure 13.20 . 

The table shows data taken f ror11 the e~peri1ment. 
[When the components were connected in reverse 
b~as , the current and potentia:l differen ce va lu es were 
numedcaHy the same but wH[h a negative sign .! 

0.00 0.00 

0.25 0.44 

0.50 1.02 

O.T5 1.85 

1.00 3.20 

1, .2s 4.64 

1·.so 6.30 

1.75 8.90 
2.00 11 .43 

1 Plot an 1-V electrka l character is tic illustratin g this 
data (pd on the x-ax is); show bot~ sets of da ta on 
th e same g:raph . 

2 Use your gra,ph to determine and ta bet which 
componen.t obeys Ohm·s law. 

3 Plot a V-1 etectrical cha,racter istk iillustra,ting th is 
da,ta lcu rrent on th e x-ax is]: show both sets of data 
o n1 tine sa me graph. 

4 Exp la i1 n why the grad ie nt of t n e Un e show i n g th e 
r esult s foir the fixed r es istor is tn e r ·es is tan ce [i ·n 
o h,m s)1 of th e resist or. 

5 Use th e graph to ca lculate the res~sta,nce of th e 
f rxed res is tor. 

6 At what current vatue js th e resis tan ce of eac h 
component th e same? 

0- 12V 0- 12V 

-'1--j-- -'~--~--

Figure 13. 20 Electrical drcu ,t dia gram,s . 

f ixed resistor potential differ,ence~ Vrasir.tor (VJ 

0.00 

11.04 

2.IJ 7 

3.10 

.4.12 

S.14 

6.15 
7.20 
8.20 

7 The resista,nce of the b·ulb ·is not constant 
Construct a copy of th e tab Le but on ly include the 
data from the bulb ,[in forwa rd b1as on ly) and add 
an ex tra co lu1mn, show1ing the resi1sta,11ce of the butb 
at ea eh current value. 

8 Pilot a, graph of bulb res istance agai1rist current. 
fl Exptain why th e res~stance of the bu,lb varies i1ri 

thi s wa,y. 
1 O What do you thin 1k hap:pens to Ras I tends to 0 

[ze ro]? 

11 Wr~te a method deta illiing how you wo uld coHect 
s~mi.tar data1 for a d1iode. Includ e a drcui t diagram 
in your descr:iption. 

:J 1,11 ... ., .......................................... . ............................................................... . ....... . ..................................... . ....... . ........ ,.. ........................ .. .................................. . .. 'i• ... .. 5, ,f,f ...... . ............................... . ........ . ................................. 1,111 .. ... ................................................................ 11, ......................................... 1oc• 



0--~~~~~~-T her mist ors 
A th rmist is a component whose 
r,esistanc,e var~es with temperature. Many 
thermistors used in electr~cal circuits have 
a negative temperature coef fic~,ent (ntc), 
mean~ng that th,eir resistance decreases with 
increas Ing tem perra tu re. 

Thcr1nist rs are a type of resistor that change lheir resistance with 
temperature. Thennistors have the following circuit symbol: 

rQSIStanCQ, ·. 
R(O) 

temperature. T(~C) 

Figure 13.21 Therm~stor cir,cuit symbo l and resistance - temperature graph. 

Most thermistors are negative temperature coefficient (ntc) components. 
TI1.is means that their resistance deer.eases \\oith increasing temperature. The 
vast majority of ntc thermistors al so have a non-linear response to changing 
temperature; in other words; a graph of resistance against temperature is a curve. 

Thermistors are Vilidely used in circuits to sense temperarure changes; and then 
to control devices; the change in the resistance of tl1e thenn:istor affects a current, 
wl1ich can be used to swi.tcl1 devices on or off. Thev cai-1 be found in thennal 

.J 

cut-out circuits to prevent devices from ovemeating (such as a hairdryer), central 
heating circuits1 digital thermometers an d engine-management circuits. 

0.014 8D°C - Hlgtl J"emparnture ,1arge QUnEmO 
Resistance = R = Ratlo V/1 
= 11'/0.010 = 11 000 
Low iResistance 

~Y 
0.012 

0.010 -<C V: 
/ 

:::' 0.008 

20°G - Low Temgeraturn {smalf1 current} 
- - Res:ista.n ce = R = Ratio V /f 

V = 6/0.002 = 3000Q __ , 1:-l I gtl Res i ataoe:a / 
/ 0.004 

~ 

· ~ / ~ 
~ 

/" 
~~ 

0,002 

0.000 
0 2 4, s e 1 a g 10 111 12 13 

potentlal dlffere nee, v (V) 

Figure 13.22 The r:m i stor electricat cha,ra cteristic example. 

At a low temperature of 20 °C~ the resistance of the thermistor is high and 
s,o the cun·ent (and the V/R ratio) is lo~v: 

R=y 
I 

= 6V 
0.002A 

= 30000 
A higher temperature of 80°C., th.e resistance is lo\ver and the VIR ratio is higher: 

R;;::; V 
I 

11 V 
- O.OIOA 

= 11000 
the current flowing duougl1 the thermistor is 'therefore high. 
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The resistance of ,a thermistor 
Desigin an experim ent to determ1ne how the 
resistan ce of a· the nmis torvarfes with te1mperat1ure. 

You should tnc lude: 

• a Ust of equipment including appr opriiate capacities, 
ranges and sett1ngis 

• a statement of how you wii'll minimise th e er rors on 
the measurements that you wiill take 

• a numbered method stating how th e experiment 
• a1 desc riipti on of the independent. dependent and will be performed 

control varfa,bles . For each variable you should • a suitable r1isk assess ment 
state appropr,iate ranges~ intervals , values and • a table that could be used to record your pr imary data 
su1itable measuring equipment • a descript 1ion of any cakuilati ons th at nee d to be 

. . . . 

: • a diagra1m1 of your experim ent inclu,ding a suitable ca,rr~ed out~ including how you could calculate the 
~ circuit d~agra1m u1ncerta,inty 1in y. our measurements. : . 
~ .. •• ..... ., • ., 'i• .. . .. 1,,. ... ~ ... .,a;. .. ... ,.., ... ••.,.,. "1• .. a,11 ..... •• ••• ........ """ .. a .. 1o .. .,.,,. .. -i.., .... !'• .. •it rll• ,..1 'i • ...... "" . .. . ,,. ,. . ,. •ii• • • . . .. 5.ii pli• "'•'" ............. t!• .. a 1 ~ · 1 Ii: • • • '!'.- .. P'•"' • • 1 . .. .. . ,. ., . 1 .... ., . . .............. •ii ..... ..... • • .. . ....... liil .,.,,. • "• •• .. . . •• .,m;.;i • • ., 'i• .. ii ...... 1 ~ •·••ii" ... , ... ••••• li:•1' .-i. .......... •• ..... •·, ii• .. . ..... .,.,,. .. . .. ~ 

~ ····················································································································································: • 'TEST YOURSELF ! 
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+ • • • • • I 
I • t • • 
~ • t 

' • • • • • : 
i 
i 
' • I • • • • • • ! • • • • • • : • • • • • • • • • • • • • • • • • • • • 

9 Spdtes a re a relat1ve1ly newly dis covered 
phe nome na. The f i1rst rec o:rd ed v,isua l observabon 
was in 1886, but the fiirst photograph of a sp ri,te 
was only taken jin 1989. Jellyfish spr ites occur 
at alt1tudes of up to 90 km and they can cover an 
area of 50 x 50 k1m. If a sprite trghtning strike is 
generated by a potential difference of 200 OOOOOOV, 
and 325 C of charge 1s transferred , calculate the 
total energy transferred during. the strike . 

10 A smaU neon jnd icator lamp on ai cooker circu~t 
requires 95V i:n order to corn duct. a then draws a 
current of 0.8 mA . 
a) Calculate the resfstance of the lamp at th~s 

current and voltage . 

b] Calculate the nu,mber of e.lectrons moving 
t h rou g:h the [amp each sec o n.d . 

11 Fi1gu,re 13.23 shows the electrical character 'istic 
graphs of three dHfete nt e Lee tdc a l co 1m pone nts: 
A~ Band C . 
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a] Whi ch compon ent, A. B or C, obeys Ohm,'s law ? 
bJ Use valtJes from the graph to determine whi cn 

co·mponent ha,s ain increasi1n9 resi s tance at 
higher current 

12 A red-coloured LED starts to conduct e lectrical 
current when the potential di,fference a, cross it is 
greater than 1.5 V. Figure 1,3.24 shows the ci1r cu 1t 

used to run the LED from a 6.0 V battery that has 
neg lig 1b,le internal rests tan ce. 

6 .0V 

-------41- - ~ --------

R 

Figure 13 .. 21. EilectricaL ci1rcuij t diag ra·m . 

• • • • .. 
• • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. 
• • • ... • • • • • • • • .. 
• • 

a] Explain the rea5on for putHng the res 1istor, Rt i 
• into th e c ircu iit. : .. 
• bl Wh en1 operating at its normal current of : 

20mA the potentia:l difference across th e LED J 
• 

is 2.2V. Catcu la te the va,tu e of th e r-es istori : .. 
R, for operation of the LED at 20 mA from i 
th e 6.0 V batte ry. (R ememher, th e su:m of j 
th e e·mifs is equa l to th e s um of th e pds i1n a : 
seri es circuit.I : 

• • 1 :l ~1guire 13.25 shows how the potential difference i 
varies w'lth current for a red ain d a y-ellow LED. i 
a] Ca lculaite th e res:ista nee of each LEO at each 

.. 
• 
"II • • of the fo llow·i:n g c u r reri ts: : 
• U 30 mA : 
• 

100 i 1SO 2JO 250 ii ] 10 mA : 
ru~~~A : 

0 50 

bi Describe one oth er diffe ren ce between th e : 
Figure 13.23 Electrical chara cteristic graphs of behaviour of the two LEDs. : 

• • • : thre.e different etectri cal components. 9 : . ... . ... , ............. . ......................................................................................................... .......................... ~ ........................................ ~ 
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Figure 13.25 How the potentica L d ifrference v;a r,ies w,ith current for a red and a 
yellow LED. 

Figure 13.26 rllustrates how the resistance of 
a n eg,ative tern peirature coef f'ic tent thermistor 
varies with temperature. 
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Figure 13.26 Re siistance- temperature graph,. 

a] Use th.e graph to es timate th e r ate of chang e of 
resista nee w i'th t emperature at : 
H 24°C 
ii] 84 °C. 

b] The th ermistor is to be used as a r es is tance 
thermom,eter. At which temperat 1u re is it more 
sens1it1ive. 84 °C or 24 °C? Expla1in your answer. 

Figure 13.27 shows th e th er1mi stor from 
Q,uestiion ,4 tog ether with a r esisto r 1in a 
temperature-sensing ci re uit,, si,m ilar to circuits 
found ~n etec trordc th ermom eter s . 

al A voH1meter i.s connec ted to the circuit to 
indicate an increasing potential d ~f ference 

when the sensor detects an rncreasing 
temperature. Copy and corn plete the 
d!iagram showing the crrcuit connections 

for a voltmeter to measure a potentr.al 
d1f fereinc e that 11ncreases with 1ncr easrrig 
temperature. 

b] The value of the flx ed resiisto r j n the 
circu it diagram, 1s 250 D. Tihe thermistor 
is at 25 °C. Using data f r om the graph in 
Figure 13.26. ea Lcutate th·e c,urrent drawn 
from the 6.0V supply. See Quesb on 12 on 
the prevtous ,page. 

6.0V 

............... ,-----~ ............... 

resistor 

th er m:lstor 

Figure 1!t27 A thermistor 
tog etherwrth a res istor 
in a te m pe·ratu re-sensing 
circuit. 
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R e sis t ivity 
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An In rln I pro,perty ,of a m1aterial is. a 
property of the mater,al jtseU, independent 
<Of other factors. The resistance ,of a piece 
of wire, for example] depends ,on the 
d.mens~ons ,of me wire, in addiuon to the 
material that ~t is made of- r,esisti¥ity ~s 
the ,ntr1nsic 'res~stance· of the mater~at 
independent of its dimensions. 

•I ... ,. •• •• •tl'I ,.., r•'I •• , ... "'•• •• .... ,.., r•'I ••, ... •••••I•• r•'I ra'I •• 1 •• •••••I 9• r•'I r•'I •• 1 •• r• 

The r si t i ri y o.f a substanc·e 1tS the tnt1ni11s.ic 
resistance of the material that the substance 
is 1made fro,m~ it is independent of the 
d~mensions of the substance. Res~stiVity 
also var~es with termperature, although the 
res,suv~ty of metals chang,es only graduallly 
w;th temperaiture. 

Ho\\i~ is tl1e int insic 'resistance' of different materials compared? How 
do you decide which material ,vould be best for the int,emal connections 
of a n1ains plug, or for using as a.n insulator on a high-voltage line? The 
resistance ,of a n1etal wire, for example, depends on the length and area 
,of the wire, as weH as the mateiial that the ,vire is made fr.am. Consider 
Figure. 13.28, sho"ring a metal conductor. 

., length, 1 --.. - cross-seotlonal area, A 

resistance. R 

Figure 13.28 The resistance· of a wire depends on its dimensions, bu1t 
resistiv,ity depends on what the material ~s m,ade of. 

The Il~sistance of rhe conductor~ R~ increase-s i.vith increasing length, f (there 
are more positive ion cores in the \Vay of the gas of electrons moving 
through the conductor). ln fact, if the length; I) doubles, then the resistance , 
R~ doubles. TI1.is means that Ra l. 

The resistance of the conductor decreases with increasin.g cross-sectional 
area) A. (Tlrere are more conducting patbways through the conductor 
for the electrons to move through.) In this case, if the cross-sectional area> 
A

1 
doubles) 

Ehen the resistance) R) halves. TI1is me.ans d1at Ra.! . Con1binn'lg both of 

these proportionality statements together: 

l 
Ra A 

and replaciI1g the proportionality sign and adding a constant of 
proportionalit~ p) we l1ave: 

px l 
R=·--

A 

\vhere p ('rho1
) is called the electrical rcsist ivit . r of the ma.te1ial. 

Resisthrity is the property that gives the intrinsic resistance of the n1ate1ial 
independent of its physical di1nensio11S; such as length and cross-sectio11al 
area. Resistivity has the units of ohn1 metresi nm, and is defined by the 
rearranged form of the equation: 

P=~ 
l 

\vhere R is the resistanc (measured in oh1ns, 0); A is the cross-sectiona] area 
(measured in metres squared~ m2) and l is the length (tneasured in metres> m). 

The resistivity of a mate.rial depends on some intrinsic properti s of the 
matertal. In particular1 it relates directly to the number of fre,e1 conducting 
electrons that can fl.o-v.r through ithe structure and the mobili.ty of these 
electrons to flo\\i" through the struclure. The arrangement of the atoms in 
£he conductor and any distribution of impurities affects tl1is mobility, as 
does the temperature of the 1naterial. 

At roo1n temperature (20°C); good insulating materials) such as ABS plastic 
(the material tl1at most mains plugs are novl ma.de from), have extremely 
high resistivity (ABS has an electrical resistivity of 1 x 1015 fl mat .20°C) . 



Good n1eta1lic conductors have very lo\.v resistivity· the resistivity of copper, 
for example) is 1.68 X 10-8 n lll at 20°c. Superconductors have zero 
Tesistivity b elov.1 their critical temperature. 

We can use a water analogy to help understand resistivity. A hose pip e fuU 
of sand is like a high resistivity condu ctor> as \Va.ter trickles through slowly 
,vhen pressure is applied. However, that saine pressure pushes ~lrlter quickly 
through an empty hose pipe, v..rhich is like a low resistivity c,onduc'tor. 
Remen1ber though that the ability of the wat r to pass through the l1osepipe 
also depends on the length o( th hosepipe and its cro,ss-sectional area. 

Resisti ,ity is also dependent on temperature. TI1e resistivity of metals increases 
"'1th increasing temperature. and the resistivity of many semiconductors, 
such as silicon and germairuum! decreases 'Nith increasing temp rature. The 
resistivity of a supe14Conducting 1naterial decreases with decreasing tempera·ture 
above its critical temperature (like a metal)> but its resistivity drops to zero 
below the critical temperature . 
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r REQUIRED PRACTICAL 5 • . . 
. . . . . . . . . Determination of resistivity of a wire using a micrometer~ ammeter and voltmeter 

Note ; ThLs is onty one example of how you mi1g ht tackle this required pract~cat 

~ A 2.0 m length of 36 swg [standard wfre gauge) 
• 
~ constantan is clamped to a laboratory bench. A sui1table 
~ measu'iing instrument is used to measure the d1ameter 
! of the wire ten times at random drstances along the 
~ [ength of the win~. A fixed 6.0V power supply ~5 then 
t connected to one end of the wi:re and arl am 1m1eter 
: 
t and a ftyjng lead and then used to connect in series to 

E 
r 
• 
~ 
t 
' ! 
1 
! . . 
~ 
~ 

dHferent lengths of the wire. Tne di,stance between the 
fixed end of the wire and trie Hying, lead i,s then varied 
from O .DO m to 2.00 m in 0.25 m s teps. 

Tk e diame ter m easure'm ents are (in mm} 

0.1'9; 0.19; 0.20; 0.1,9; 0.18; 0.19; 0.20; 0.18; 0.20; 0.19 

1 
2 

3 

Draw a ct rcu,it diagram for thfs exper iment. 

State the na,me of a suiitable measudng instrument 
for m easurin g the djam,eter of the wire. 

Calculate the average diameter of the wire and 
determjn e an ur,certainty for this meas urement. 
The following da.ta was collected from this 
experiment. Copy thi s t~,ble and add a third 
row showing th e reststance of each lengith of 
constantan. 

6 The ammeter introduces an err-o r of 5%1 on each 
measurement of the current and therefore an 
erro r of 5% on each resrsta nee meas urement. 
Use this informatio n to plot error bars o n your 
g:raph. 

7 lJse a best-fit Une technique to determ1ne the 
9rad1ent of the graph . 

8 Use th e grad 1ient ea lcula ted in step 7 to determ1ne 
t~ e resistivity of the constantan wire. 

9 Kaye and Laby, the National Phys,ical Labo ratory 
Tables of Physica!l and Chemical Constants (www. 
kayelaby. n pl.co. uk/g eneral_ physi cs/2_6/ 2_ 6_ 1. 
html] gives tihe e lectr~cal resisti:vi·ty of co nstantan 
to be 49 ;.i: 1 o-e O m art O °C. Determ~ne the 
percentage error 1in your answer C·Ompared to the 
value given in Kaye arid Laby. 

10 The temperature coefficient of reslstivity for 
consta ntan 1is 8 )( 1 Q-6 °c-1 [tnrs coefficient 1is def~ned 
as the fractional cha,nge in resistiv ity per °Cl. Explain 
why the value from iKaye and Laby~ quoted at 0°C, is 
likely to be very sim·ilar to the va lue a.t 20 °·c. 
Extension 

::Le.ngft( of 
·:wira':. l~n'i ·._ 0.00 0.25 0.50 0.75 1.00 l. 25 1.50 1.75 2.00 Use th e sprea d of th e error hairs and a suittab le 

graphi cal technique to calculate the uncertainty 
' : . . Cu'rrent: ~-. ., .. ·. . . 

(Al 
Short 
ci.rcu it 1 .34 0.84 0. 51 0.35 0.31 0.27 0.2 2 O. 18 in th e measurement of tiie resi,st iv ity of 

co nstantan a,nd comp are it to the va1lue from Kaye 
5 Plot e gra,ph of r esis ta,nce, RID ~y-ax is l a9a inst 

length of wire, l/ m '(x-axis ). -
and la by. 

~ . . 
' ' : ............ .. . ............... , .. ..... . ... . .. . ........... .. . ... a- ........... ........... ... . . . ....... .. ............... .. ........... ....... ... .. . .................... ..... .. ...... ....... ....... .... ...... . ....... .. . .............. ................ ....... ........... ......... . .. .. ... .. .......... ,lj .. ... .................. ... .. . .......... .. ..... ................... = 



~ -····················································································································································: 
: TEST YOURSELF ~ 
~ . 
• t • • J 16 A square semiconductor chip m,a.de from se lenium b] Usin g figure 13.1'2 1 describe a:nd exp lain the i 
i is show n in Ffgu re 1'3.29. Th e res istance of th e trend show n by th e gr aph in ter,m s of the i 
f chip is a,bout 100 D. Cu rre nt is pa ssed in and out of m,icr oscopi,c structure of meta ls. i 
: : 
: the chip by the meta lUc co nnectors shown. 1 B Th e resistanc e1 R~ of a cyUn,dr ical w ir e is given by : 
i the foUowingi equation,. i 
+ I 

: -L .£b.. : : R=L= __, i 
i A n:r ; . : • • + I 
• I + I I Figure 13.29 Seleni,um chip. i 
: a) Draw a circuit diag:ram showing how yo,u cou ld : 
i obtain the electrica l m easur em·ents requ ired i 
: on this chi p to determ ine the electr:ical i i Figure 13.30 Cylinder show,ing 
: res istivity of seleniu1m. dimensi,on,s of a w ire . ! 
: b) Make a Ust of aa the m easurements needed to : • • • • 
: determ ine the resistiv ity, and ex:plain how you Th d' · 1... r · 1·3 30 :. : e , 1:m ens I ons a re sr 1own on r 1,gu re . · . • 
: wo uld make the m. : : Here Ls a li st of mol ti ply 1ng facto rs . : 
~ c] Describe how aH of th e data can be used to 1 , ~ 
: calculate a va lu e for the res1isti1vJty of se len,iu 1m . :x - x - x 2 x 4 : 
: 4 2 • 
: d] S uggest one way in whi ch yo u cou ld Tm prove : 
• Wh ich of the mult1iplying factors above best : ! the uncertainty in the m easurem,ent of • 

descri bes the follow ingi changies : ~ i res is tivity by reducing the er ror in one of the 
: meas ure me nts . a] The length L of th e w1re 1is doubted. The ~ 
: res is tan ce R w iH c hange by a facto r of... : 
: 17 Table 11 .7 be low shows th e the r,m a l candu c t tvi1ty • 
• b] The radius r of the wire is ha lved . The : : a in d e lect rrca l re s1i s t1 vi ty [at room te m peratu re}1 of • 
• res is tan ce R wiH change by a factor of... : : five pure meta ls. • 
: 19 Fig:ure 113.31, shows a copper conn ector on t he : 
i Table 11 .7 su rface of a mobite phone chip. The co nnector ~ 
: ha s a cross-secti onal a rea A = 4.0 x 10-10 m2, : 
• • 
: a length L = 17.0 x ~ o-4 m and the res istivity. pj : 
• • 
~ of cop per= 1. 7 X 11 o-0 n 1m. Ca lcu la te the ~ 
: resista nce R of thi s co nn ector. : 
• • • • • • • • • • • • • • • • • • • • • • : : • • • • • • • • • • • • • i 
• • + I 

; a) Plot th e data o,n a s u]tabte graph with th ermal : 
i co n,d uct iv i ty on th·e x-axis. Figure 13~31 Copper con nectar. J 
! •.••.••.••.•••••••••• i .................................................................................................................................................... 111 



Practice questions 
I The resistivity of a copper \Vire at roon1 temperature is 1. 7 x 10-8 n tn. 

The ,vire has a cross-sectional area of 3.1 x 10-12 m2. The resistance of a 
length of 0.1 nll of this ·wire is: 

A 0.0020 

B lin 

5480 

D 5i840 

l A platinum wire 10,f length 1.6m has a constant diameter of 0 .001 mm. 
The resistivity of platinum is 1.06 x 10-7 nm. The resistance of the 
wire is: 

A 22omn 

B 2000 

2kn 

D 2Mn 

3 The current through a mre made from tin must not exceed ·4 .0A. 
The wire has a cross-sectional area of 7.8 x I0-9m2. If a pd of 2.0V is 

connected across the wire, what is the minimum length of wir,e needed 
to ensure the current remains belo\v 4.0A? The resistivity of tin is 
1.1 x 10-7 Orn. 

A 0.035m 

B 0.070m 

C 0 .140 m 

D 0.350m 

4 Ho,v in.any electrons are p assing t.hrougl-\ a wire each secon d if th e 
current flowing through it is l.OOtnA? 

A 6.3 X 1013 

B 6.J X 1015 

C 6.3 X 1018 

D 6.3 X 1021 

5 The heating elen1:e11t for a small electric heater is made from a v.-ire of 

r,esistance R It is replaced by a \vire nmde from the same material and 
'Vith the same diameter, but v;,i.t'h hall the length . The resistance of this 
second ;,vire is: 

C 2R 

D 4R 

6 A resistor is connected to a cell. In a time 1 C; an amount of charge, 
0 1

~ passes thr,ough the resistor. During this time the electrical energy 
dissipated by tl,e resistor is W . What is the cur-rent in the resistor and 
th,e emf of the ceU?' 

Current emf 

A Q/t WIQ 

B Qt W/Q 

C Qt W/Q 

D Q/t W/Q 
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7 The. -wires sho\Vll in Figure 13.32 are n1ade from the .same 
material but l1ave different ditnensions. Which wire \Vill have 
the sn1allest value of r,esistance? 

8 The unit of electric current> th,e a1npere, is equivalent ·to: 

A Cs 'B Jc-1 C Js 
<; An electric eel can store charge in specialised cells in its bo,dy. 

It then discharges these cells to protect itself from predators. 
The discharge of an electric eel can transfer a charge of 
2 .0 mC in appro,xbnately 2 .0 ms. What current does the ,el 
deliver? 

A lmA B lOmA lOOmA D lA 

10 A car battery delivers a current of 400A for 0.5s. What is ·rhe charge 
flo'Wing? 

A lOOC C 400 C 

B 200C D 800C 

11 When a tungsten filament la1np is S\vitched 011 it takes about 
SOO ms for t'he filament to heat up and reach its nonnal 
operating temperature. The variation of the current ,vith time 
is shown in Figure 13.33. 

a) What is the maximum current passed through the 1 
filament? (1) +-' 

b) This filan1ent bulb is connected to a 6V battel')~ Calculate 
the nom1al operating resistance of the bulb when it has 
reached its standard opera.ting leullperature. (2) 

c) Explain ~,.hy the current ihrough the lan1p increases 
rapidly between O and 50n1s before dropping to a 
steady value. (2) 

d) Use the graph to estin1ate the total charge tha t has 
passed through the filament bulb in tl1e first SOOms 
of operation. (2) 

12 Th,e resistance of a metal ·wire changes '1\iith temperature. You are 
given a length of nichrome ~ire and asked to determine how the 
resistance of the nichrome Vilire changes between 0°C and 100°C. 

~ 
@ .... 
::::] 
0 

a) Dra\v a labelled diagran1. of the ex1:.erimental set-up that ""~ould 
allo,v you to perform this experiment. 

b) Write a suitable, numbered method that ,~.,.ould allow you to 
obtain a,ccurate and reliable measurements of the resistance of 
the wire over a ra-11ge of temperatures between 0°C and ]00°1C. 

c) The m,etaUic element aluminium has a critical tempc.ran1re of 
1.2 K. Explain what is meant by the critical temperature of an 

A 

( ()A 
,.. ..... 

l 

B CDA 
- II, 

1L 
2 

C CDlA 2 
... ... 

, L 
2 

D 

C r Di A 
- -- 2L 

Figure 13.32 These w1ires ~ re mad.e 
from the same materi1a1L but hewe 
differe rt t dtme nsi ons. 

0.3 

0.2 

0.1 

o----~~---~-----t~~--~~~ 
0 200 400 

tlme~~ms 

600 800 

Figure 13.33 Fi,la1ment Lamp current -
tim.e graph. 

(2) 

(3) 

electrical c.onductor. (2) 



13 A student -wished to perfom1 an experilnen t on an electii.cal component 
lo determine if the component was an ohmic conductor. 

a) State what is meant by the term 'oh1nic conductor>. 

b) Draw a circuit diagram for this experiment. 

(1) 

(2) 

c) For the expelimental chcuit diagram that you have dta\vn, wnte an 
account of a suitable experiment. Your acc,ount should mclude: 

• what me.asuren1:ents you ~rou]d tak 

• hov.-· y-ou wou]d use your measurements 

• ho,w you "rould reach a conclusion. (6) 

14 A se1niconducting diode and a filament lamp are both 
examples of non-ohmic components. 

a) 1Copy and complete a sketch on th.e axes shown in Figure 
13.34 of the curren1-voltage characteristics for botb 
cornponents. (2) 

current I _ 

b) Describe~ using the current- voltage characteristic that potsntlal1 d~fferencg, V 

you have dra"vn, how the resistance of the filament lamp 
changes as the potential difference across it changes. (2) 

c) Draw a suitable diagram of the circuit that would enable 
you to collect data so that you could plot the 1- V curve 
for the senuconductor diode. (2) Figure 13.34 Electrical character1sbc axes. 

d) \i\/rite a method that you could follow in order lo 
6.0V obtain this data for a semiconductor diode. (4) 

15 Figure 13.35 shows a thermistor connected in series 1,.vilh a 
resistor, R, and a 6.0V batte17-

~i--~------

V\'hen ilie temperatur-e is 40°C the resistance of the themnstor 
is 1 .4 kn. Th·e voltmeter connected. across R reads 1.8V. 

a) Calculate the potential difference across the th.ennistor. (1) 

b) Calculate the current Ilo\.\ring through the thermistor. (2) 

R 

c) Calculate the resistance of R. (2) 
Figure 13.35 Th,ermistor circuit. 

d) The battery is now replaced \Vith a power supply unit with an 
internal resistance of !On. (This is ·equivalent to adding an extra 
!On to the circuit, but the resistance is inside the battery.) Without 
calculation, state and explain the effect on the ·voltmeter reading. (2) 

I ,Carbon-conducting assembly paste is used by electronics manufaturers 
to ,ensure good connections b etween components and print,ed circuit 
boards. A cylindrical length of this paste is laid outj 8.0 x 10~2m long 
with a radius of 1.4 x 10-2 m. Tbe. resisti"icy- of the paste. is 0.82nm. 

a) 1Calc.ulate the resistance between the ends of the cylinder of 
the assembly paste. Give your answer to a suitable number of 
significant figures. (2) 

b) The paste is now reshaped into a cylinder with half the radius and 
a length that is four times as great. Calculate the new resistance. (3) 
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II 17 A plastic-clad copper connecting Mre used in school electricity 
,expe1"iments is 0.60n1 long and the copper inside the wire has a 
cross-sectional area of 1.3 x 10~1 m 1. The resistivity of copper is 
= 1.7 x 10--Bom. 

a ) Calculate the resistance of the c,onnecting \Vire. 

A filament lan'lp is connected to a power supply using two ,of the 
cotmecting wires; .an amn.1 ter connected in series measures a cun·,ent 
of 2.2A. The potential difference. across the filament lamp is 12.0V. 

(2) 

b ) Calculate the potentia] difference across each of the v..1res. (2) 

c) Calculate 'the potentia] difference across the terminals of the power 
supply. (2) 

Stretch and challenge 
All of the follo,wing questions a.re provided ,vith permission of 
the Br itish Physics ,Olympiad 

18 A ceU that pro,duees a potential E (called. an emf) is shown in Figure 
13.36 and is connected to t~lo resistors in series: a fixed resistor R1 
and a variable resistor R1 . The current ) I; in the circuit is measured 
by the ammeter, A; and the potential difference, V; across resist.or R2 
is measured ,vith the vohmeter, V. 

The relation between the polential E and th e current I is given by: 

E 

R, 

E == IR1 + 1R1 
Figure 13.,36 C·ircuit diagram. 

Which of these graphs would produce a straight-line fi t? 

A Vagainst I 

B V against 1/I 

C IN against 1/I 

D I against I N 

1 9 Two students decide to calibrate a thermistor in 01~der to measure 
variations in the temperature of a room. They connect a sn1aU 
thernrist,or acToss the terrni.nals of a SV power supply and in 
series vvi.th a 1 A arnmeter. The resistance of the thermistor is 
120n at room ten1.perature. See figure 13.37. 

a) Instead of sbowing s1nall variations in room temperature> the 
then1--iistor is likely to go up in smoke. Explain why. 

b) In the. light of this ·eJqJerience, they decide to redesign their simple 
cu·cuit as shown in Figure 13.37. They have a few values o[ resistor 
R to choose from; 5 k.O, SOO n, 50 n. 
State which value of R would give the biggest variation o( V Vvith 
'temperature. Ehl)lain your choice. 

c) State v..rhich value of R would be most likely to, cause the same 
problem as in part (a). Again, explain your choice. 

sv --

R 

ov ---
Figure 13~37 Circua 
diagram1. 



20 The resistance of a wire is proportional to its length and inveTSely 
proportional to its cross-sectional aTea. TI1.e resistance of a wire of 
length I and cross-sectional area A is given by: 

R =£! 
A 

where p is a cons tant that depends ,on the matetial of d1e 'Wire. 

Some m,etals are ductile, Virhich means that they can be drawn into 
long thin ,vires. In doing so, the volume Vren1ains constant while 
the length increases and the cross-sectional area of the ,vire decreases. 
A wir of l ngth 32 m has a resistance of 2. 7 n. We wish to· calculate 
the resistance of a ,,1re formed from the same volume of metal 
but which has a length of 120m instead. 

a) Write down the relationship between V 1 A and l. Obtain an 
eJii.i,ression to show ho,v R depends on the length l of the 
'Mre and its v6lume V. 

b) Re'Write the equation with the constants .P and V on one side and 
the variables we are changing~ Rand l~ on the o,'ther. 

c) Calculate the resistance of ihe longer wire. 



Electrical circuits 
................................................................................................................ 
• • • • 
: PRJOR KNOWLEDGE : 
: : 
: • The ra te at whi ch energy is transferred by an a,pptia,nce from one en-ergy : 
• • i store to another is caHed th e power: : ~· ~ 
: energy tra n:sferred I 
: power• . : 
; t1:m e : 
• • : or = • • .. E I .. . 
: P=-t : .. . 
: t i • Power, P, potent iia l di ff eren ce4 V, and cur re11 t, I, a,re related by the ; 
: equati on: ! 
• 4 
~ : 
: P = / x V : 
~ . • • : • Th e potent1al difference provided by ceHs co nn ec ted lr, se ries is : 
i th e sum of th e potential differenc e of each ce ll !d·ependin.g on the ~ 
i direction rn whi c h they a re con nec ted! - see Figure 11 4.1 . ! 
• • • • : 1. 5 V 1 . 5 V i . 5 V 4 .5 V : 

I ~~~I- - ~I- I 
• • • • .. .. .. 
• • • • • • • • • • .. .. .. 
• • • • • • • • • • .. .. .. 
• • • • • • • • • • .. .. .. 
• • • • • • • .. • • .. .. .. 
• • • : • • .. • • • • • • • • i • • : • • • • .. ... 

Figure 1,~1 C.ircutt diagram show ing. cells. and a batte ry . 
• • • • • • 

• For corn ponents connected in series : : 
• • the total res~stance is the su1m of the resistan ce of ea ch comp onent : 

lsee Ff 9ure 14.2). ~ 

10 Q 20.Q 30.Q =~ 

Figure 11..2 Circu1it dia9ram showing res istan ce in series . 

• • .. • • • • • • • • • • 
• there JS th e sa·m e current through each compon ent [see Figu re 14.3,l. i 

• • 0 .5A 0.5A 0.5A 0.5A : 
> I I > I I > I I> i 
Figure 14.3 Circu,it diagr am show ing c,u rre 1nt in series circu,it s. 

• th e total potentiat differ ence of th e supply is snared between th e 
co:mponent.s [see Fi gur·e 14.4). 

6.0V 

1'.0 V 2.0V 3.0V 

• • • • • • • • • 
"' • • • Ii 
• • f • • t • 
" • • • II • II • f 

i 
! 
I 
I 
I 
I 
I • : .. : 

; Figure 1,., Circuit d~a1gra.m show,ing pds in se ri,es. 
! 

t 

= : • Fo r co rn ponents connected in parallel; 
• 
: • th e potential dif ference a,cross eac h component is the same 
i !see Figiu:re 14.5] 
• .. • .. .. .. 
• • • • • • • • • • .. .. .. 
• • • • • • • • • 

6.0 V -- s.ov 6.0 V 6.0 V 

Figure 11. .. 5 C.ircuit diagram sharing pds in pa rallel ci·rcu its. 

• Ill 
• 
" • • • : • • • i • • • • Ill 

"' • • • • • • • • • • • • • • • • • 
cf> ! 

~-·············································································································· 



••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : ~ : . ~ . 
: • the tota l current t hrough t he whote ci,r cuiit is the sum of the : 
! currents throug h the separate components {see Figure 14.6]. i 
• • • • : : 
: 0.6A : • • • • • • • • 
i 0. 1 A 0. 2 A 0. 3 A : 
• • 
; : 
i : • • • • • 4 • • • • • • • • 
: 0. 1 A 0. 2 A 0. 3 A i • • : i • • : 0.6A : • • • • 
£ Figure 14.6 Ci1rc,uit diagra,m sharing current in paraHeL circuits. : 
: : 
• • • • ! • Th e res istance of a lig1ht- dependen1t res istor [LDRJ decreases as ! 
i Ught intensi ty increases. J 
• • • • • • : • Th e r es is tance of a therm istor dec r ea.ses as the tem per ature : • • . ' . 
: in c re as e s . : 
: •••••••••••••••••••• + ••••••••••••••• + ••••••••••••••••••••• + ••••••••••••• + •••••••••• ·---------· 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
. TEST YOURSELF ON PRIOR KNOWLEDGE 
• • • 

1 A1n electric kettle takes 3 minutes to transfer 360 kJ of elect r]cal • • • • .. 
• • • • 

• • • • • • • • • • • • • energy in.to thermal energy stored in the w.ater. Calculate the pmNer of : 
• • • • 

the kettle. : 
: 2 The kettle in the previous quesbon 1is mains powered from a supp ty 
• 
: with a potential d fHerence of 230V. Callculate the c urrent flow~ng 
• 
: through the kettle element 
• 
: 3 A lab technician puts three used D cells into a battery pack. Atll th ree 
• 
: are connected the same way around . The measured emfs of the cells 
• 
: a re: 1.45V; 1.39V and 1.47V respectiively . Calculate aH t he p os s ible 
• • • • • 

emfs that can be de Uvered from tnis ba.tte ry pack. 

: 4 The circuit i11 Figure 114.7 use s a 1.5V cell, wtth negUg ibte in ternal 
• i resj stance, t o feed current through two fixed r es.istors : 
• • • ; 
• • • • • .. 
• • .. 
i • • • • • .. 
i 
; 
i • • • "' "' 

1.5V 

0.6mA 
A 

R1 R !!!!! 47011 

Figure 11..7 Crrct1it diagram fo r question 4. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 'I' .. • • • • : 
i .. • • 

i 
: • • • • • 
i • : I • • • • • • 4 

.. 
al Ca lcu lla te th e value O·f V 2• : 

• 

: • • • • 

bJ Use the valu e of V2 to calcula,te th e value of V1. j 
cl Now catculate th e vs!lue of R1. : .. 

: d] f ' : State the total r es,ista=n,ce oi the circuit. ={) ! 
• • •••t••tttt••·····················•••tttt••••••••••••t•tt••••••••••••••t••••••••••••••••ttt••••••••••••••t•tt,•••• 



Figure 14.9The iPhone SsA7 
pro,cessor. 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
! ~ · i 
: 5 l1n Fi gure 14.8 a 9. 0V ce ll of : 
• • i neg li gi~ble intern al resistance ~ 
: d eUvers cu rre11 t to th ree : • • • • i r es is tors, R1• R2 and R3, ._ CfJ i 
i connec ted in pairaUe:L: a: ~ c: : 
E 9.0 V 0.9:JA 0.41, A 0. 19A f 
i a l C a llc u tat e t h e tot a· l c u r re n t, ! ; . 
: I~ delivered by the celt. ~ : 
• I • 

: b) N,ow c a lcu late the vatu es of : 
• Figure 14. 8 C i rc,u l t di a g ra,1m for ·q u e s tiio n 5. : 
f R1, R2 and R3. i 
•••••••••••••••••• , •• ii••••••••••t••••••······ii•••••••••••i•••••·· · · ···i•••••••••••i411" ........................ 1111111 

()~E-le_c_t-ri-c-al-p-_o-w~er~in_c_i-rc--u-i-ts _______________ __ 
The integrated circuit o,f an iPhone is an e,i.,1xemely complex piece o,f 
,electronic engineering. It involves the interconnection of many thousands 
of miniature ,electronic components. These a.re designed to work together 
controlling the many (unctions of the phone. Although the circuits are 
intricate, they are all based on some simple basic circuit principles and 
laws. integrated circuits excel at doing simple; single-step things. They just 
do the1n very quickly in predefined sequences. 

One of the most funda1:ne1"1tal properties that electronic engineers need 
to consider ... vhen desigr1ing ,electrical de,rices is the power transferred 
by the circuit in tl1e device. High p o,ver consumption requires specialist 
cooling systenlS and, if the device is b attery po-\vered~ high battery capacity: 
Minimising power consumption reduces costs and bulk. 

The electrical power transfen-edl by a circuit is the su1n of all the po\ver 
rransfcrred by the individual electrical con1ponents in the circuit. The electrical 
power transferred by a con1ponent is related to the cun,ent flo"'ring through it 
and the pot,ential difference across it. The general definition of poVrrer is: 

po,ver = rate of doing ,.vork or rate of energy transfer 

or 

So, in an electrical context, electrical power can be defined as the rate of 
doing ,electrical work. The electrical power transferred by a con1ponent can 
be detennined by using the current, potential difference and resistance of 
the component, and there are several equations that can be used to ,calculate, 
this power. These equations are produced by rearranging the basic equations 
for elecnic current ~ potential difference and the definition of resistance. 

. charge 
curre1u. = -.-­ume 

in terms of sy,nbols: 
Q 

l = -- t 

re.arranging: 

==) 1Q=It 

. 1 difr electrical energy 
poteutia . 1ierence = ---.----=----

charge 

Equation 1 



in tenns of symbols: 
w V= -
Q 

rearranging: 

w 
=>Q=v Equation 2 

Equating Equation 1 'With Equation 2: 

w It=-
V 
• rearrangmg: 

w 
- = IV= P 
t 

01" 

P = IV 

.and ustng the definition of resistance 
v ~ IR 

P = 1 x (IR) = I2R 

o r 

P=(;)xv 
y2. 

-
R 

The relationsl1ip P = IV is a really useful one as it aUo,vs the calculation 
of electric.al power using two easily measured and 1nonitored quantities, 
current an d p otential difference. Data-logging ammeters and volllneters 
allow fo r the real-time 1n onito1i n.g of the electrical power consu1nption of 
a circuit ~ which then allows battery-powered devices such as smartphones) 
tab lets and lap tops to display the an1ount of energy le ft in the battery and 
pi-edict the amount of usage tim,e remaining before charging is required . 

•••••••••••••••••••••••••••••••••• •••• ••••••••••••••••••••••••• ••• •••••••••• •• ••••••••••••••••••••••••••• •• ••••••••••• ••• •••••••••• ••••••••••••••••• •• 

• • • 
TEST YOURSELF 

! 1 A ma1ns electr ic iron opera tes a,t 230V and is rated 
i a,t 2.2 kW. Ca lculate t he res 1istance of the ~ron when 
• i ope rati n 9 nor ma Uy . 
• I 2 Look at th [s U st of el,ectri ea l units: 
i A As D cs-1 
• 
; B VA-1 E VA s 
I 

i C J s-1 

i 
' i 
I 
I 
I 
I • 

Choose the ,uin it for~ 
a] electr ic cha,rge 
b] elec tr ica l pow er 

cJ elec tr ic a1l resistance 
d] elec tr ica l er,e rgy 

tha t t he cur rent ca·n be m a inta f ried] of 156 D mA h 
(1m i tUa m pere-h ours ]. 
a] While play ing a high-graphic usage game 

the power drawn f ro1m t he battery is 0.30W. 
Calculate the current drawrn from th e battery. 

b) Ca lculate the total cha rg,e that ca n be drawn 
from the battery. 

cl Ca lculate the total ava i'labte gia1me-,p lay ttm.e. 
5 Two relati1ons hiip s for electr ica l com ponents are~ 

V= IR a1nd P =N. 

~ :3 A high- power resistor used inside electric aJ Use these two relat1on sh ips to prod uce an 
i 9urtar ampHflers has a res istance of 330 Q and a equation f or electri ca l power in ter ms of 
J maxim um powe r of 25 W. Callcu la te th·e potential V and R only. 
~ difference across the power res ist·or w heri rt i1s b] Th e power diss'ipated from a 33, 0 res ts tor 
~ runningi at full max im u:m power. operat i.ng at 1.5V is 0.068W. The pd . V: is 

• • • • i 

i • • !!I 
I • 
I • !!I • • : • • • : 

! I+ A mob i.le phone bat tery operate s wi th a potentia1l now doub led a.nd t he resis tance is ha,tved. 
i d iffe ren ce of 3.8Vacross it s c irc ui ts a nd a What is the effec t on the pow er diss ipate d by f 
i ca pacity [th e p roduct of th e c urre nt a nd Hm e th e res rs t or? j 
• • • • : ............................................................................................................................................. .......................... ~· 
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Comparing the power of a 12V bulb and a rheostat 
0-12V d:c 0- 12V de 

A stu dent ca rr1ied out a sirmple experim ent to compare the power of a 
1,2V bulb and a rh eostat [acting as a fixed resistor]. The circult s that 
she used are shown in Figure 14.10. 

Here are her measurements. 

0.00 Oi.00 0.00 
2.00 0.08 0.02 
4.00 0.116 0.09 
6.00 0.24 0.21 
8.00 0.32 0.37 

Hl.Ol.1 0.40 0.58 

12.00 0.48 0.83 

1 Copy a nd complete the tab le, ca lcula ting th e power 
of each co rn ponent at each potenti at di,f fererice. 

2 Plot a g ra ph of e lect r ica l power, P. agains t potentta l 
d.iffer en.ce, V. plott~ng both the r heostat a nd the 
bul b on the sa me graph. 

3 Descri be in detail the pattern 1n the va r i.atiion 
of powe r with rp otentia l d'if fer en ce for both 
components . 

4 Use th e data to deterrn,in e th e resrs tan ce of 
th e rheostat. 

5 Th e stud enfs teac her suggests that the relati o11sh1p 
between the powe r. Pi and th e pote ntia l diifference. V. 

Figu re 11..10 Circuit diagram. 

for t he bulb is given by P= kv3. where k is a constant 
Use the data in the table t o draw a suitable graph to 
ena ble you to de ter m ine i,f the tea cher was correct 
a n d, if so. to ea le u l ate a v a lu e for k. 

6 Explai1n w hy the power produced by the bulb varies 
fn a di,fferent way to t he r heos tat. 

Extension 
The potenti a l diJference is m easured to the nearest 
0.01 V, the current to the nearest 0.01 A. Use this 
informa tion to calculate a suitable ,m,ax imum uncertainty 
f or- the ,m easurement of the resistance of the rneostat. 

t 

' : • ••• • •••• aa!I ra1 ............. ., ........... t ... ,. .......... tat •• ir•• .. . ...... t ............ I at .. .......... ta I •• ,. .......... I a 'I •• 1ta1 ...... I at ••:t ......... I .............. ta I ............. I ................................... • • !I •• ••-" ....... ,. ..... t •• ir•• ...... ... I .............. I a I ............ ,.. I ............ t a I ....... . 

0 

Figure 14.11 A ci rcuitj u net.ion. 

Circuit calculations 
Electronic engineers also n eed to know the sin1ple ways that current and 
potential difference act in circuits. The 'rules' for these are universal and 
apply to sin1ple circuits as ~~eU as th intricate circuits found in in tegrated 
circuit chips. TI1ese simple rules were first Vl,orked out by a German 
physicist called Gustav· Kirchoff 'in 1845 and have become known as 
Kirchoffs First and Second Circuit la\VS. 

Kirchoff~s First Circuit Law - the law of c1urrent 
At a d rcuit junction, ,the sum of the currents flowing into the j unction quals the 
sun~ of the currents flo-w;ng ,out of the jllnction.. 

Figure 14 .11 sl1ows a circuit junction "vith two currents (I 1 and I2) 
flowin g into the junction and three cu rren ts flowing out of 1he junction. 
(l3 , I4 and I 5) . 

Kirc h offs First Circuit law states: 



Figure 14.12 Circujt diagram showing 
Ki rchoff's First Ci r,c,ui t Law. 

Figure 14.13 Circu it dliagram 
showing Kirc'hoff"s Second 
Circ,ui,t Law. 

Figure 14.14 Circuit diagrc1,m 
showing 1Ki:rchoff's Se coin d 
Circuit law in a parallel circu it . 

Figure 14.12 shows Kirchoffs First 1Circuit Law in action in a r,eal circuit 
invob,.;n g amn1et,e:rs. 

Conventional cu1Tent llo\.vs from positive 'to negative, so the current flo'Wing 
into the junction indicated on the diagran1 is n1e-asuted by amni,eter A1. 

Current splits or recombines at a junction, so the current flowing out o[ 'the 
junction is measured by A2 and A3. Kircltoff's First Circuit Law tells you that: 

A1 =A2 + A3. 

Wtitten more generally in mathematical notation the law can be summarised 
by: 

I: rmto Junction = i: 1ou oi Junorto:n 

·Or, in other vvords, current is conserved at junctions. 

Looked at from a slightly different perspective, as current is the rate of flow 
,of charge, or 

AQ I ;:a........;;,.,,. 

8.t 
then KirchofPs First Circuit Law could be v.rritten. in terms of charge: 

At a drcuit junction the sum of the charge flowing into the junction equals the 
sum of tke charge> flow;ng out of the junction (per second). 

L Qinto junction = L Qout of junction 

(per unit time). 

Kirchoff's Second Circuit Law - the Law of voltages 
ln a closed circuit ,,0op, the sum of the potential differences is equal to the sum 
of the eiectromotive·forces. 

Figure l -t.13 shows a single closed loop series circuit. In this case, ther,e is 

one emf and t"t~,ro pds) and Kirchoff's Second Circuit Lavv says that: 

£=V1+V2 

Or more generally, using mathematical notation, for any closed circuit loop: 

lf the circuit is extended to make it a parallel circuit such as Figure 14 .14 : 

This par-a.Uel circuit is effectively n1ade up of tVlO se1ies circuits: AB,CD and 
AEFD SO·: 

S= V1 + V2 

and 

or 

Kirchoff s Second Circuit Law applies to any circuit but1 in the case of 
parallel circuits, the circuit must be considered as a succession of individua1 
serl.es circuits with the same power supply. This law is based on the 
conservation of energy: tl1e energy per coulomb transferred to the charge by 
the battery;&, is then transferred to other forms of energy by the charge as it 
fiows through the circuit components. 



+ 

Figure 1,.1s An AA battery. 

~--
CalJ 

~ ·----~~-
Battery 

Figure 14.16 Circu1it symbols 
for celt ;md battery. 

Un Less a questron exp Ucit ly 
states that the power supply 
1n the questton has an ~nterna l 
resistance. you should ign-o re 1t. 

Batteries and ,cells 
The standard AA b~ttery is a comn1on battery for all n1anner of hand-held 
devices such as games cont1·01lers and ren1ote. controls. The ,vord battery is 
actually a. misnomer (a word or tetm that suggests a 1neaning that is known 
to be ,vrong) : the device sho'WlI in the pictUl'ie is actually a c ll. Several cells 
j o,ined in series or in parallel are called a battery. TI1e standard ,electrical 
symbols are shown in Figure 14.16. 

vVhen identical cells are conn,ected in paraUel to, fo1m a batter}~ the emf 
,of the resuhant batt ry is just the emf of the individual cells. Co11necting 
cells in parallel is generaUy not a g,ood idea as they are rarely ide11tical; 

and one cell wHl force current back into the other, causing damage t,o the 
cells. Cells in parallel have a higher ea.pa.city for storing ~nd transferdng 
,elecuical energy· than single cells, but is i't is better t.o jus't buy and use a 
bigger single cell. 

Internal resistance and 
electromotive force 
Real power suppbes

1 
such as batteries and laboratory power packs I ahvays 

have an internal resistance; r. As the current flows through the po¥.ler 

supply) the internal resistance creates a potential difference that leads to 
electrical energy being transferred to thermal energy inside the power 
supply. This is one of the reasons why hand-held devices such as tablets 
,varm up ,vhen they are in use for a long period of titn.e. 

The interna] resistance of most batteries and po,ver supplies is very lo \v: a 
typical AA battery has an internal resistance of about 0.2 !1 and, as such, 
can effectively be ignored. ,vhen n1easuring the electrical properties of 
tnost circuits. 

The intetnal resista11.ce of a power supply cannot be measured directly 
as it is 1inside' the po,veT supp]y. The only vvay to measure it is to use ~ts 

electrical characteristic. A circuit that can be used to do this is sho,wn 
Figure 14.18. 

batt.e ry or rea1, power sup p~y , ------- , 
r 

L. ------- .J 
battery 

I 

r 
. -.____--I, V .,_ _ _. 

I de a:'I battery Intern al r esl stanct;;, 

A 

Figure 14.17 A rea l power sup ply 

Figure 1L..18 A drcu,it used to me~sure· 
the interna t n~s,iste1,nce and electro·mot1ve 
force of a real power supply. 



potentl1al d!l1fe ren ce/ V 

y-lntercept- magnitude (size) of 
electrnmotlve grad·lent- lnternal 

force, e resr stance, r 

0 curn;mtfr 

Circuit calcu]ations can b e used to determine th e inten1al resistance and the 
electromotive force. 

The electrom otive forc,e, s, 1nust be the same as ·the sum of the p oten 'tial 
differen ces in the cir;cuit (Kircl1off's Second Circuit Lavv). There are two 
potential differences in th is circuit: one is across the external variable 
r,esistor, v; and the other is the pd across 1he internal resislot. This 
cannot be measured directly, but the pd across this resistor is equal to Ir . 
This means that: 

e = V + Ir 

The current I, can be m asured direcdy using an annneter: t and rare 
both ,constants, so the equation can be re\vTitten as: 

V = e -1r or V = -rl + s 

Figure 1.4.19 Elgc tri,cal characteri.stic of a 
reei L power supp!Ly, such as ;;i lbe1ttery. 

which is the equatiron of a straight line of the fonn; y = m.x 4- c, where the 
gradient is negative. If an ,electrical characteristic is dnnvn using values 
of Vand I from various values of R (the external load resistance) then. the 
y -intercept of the graph is d ie electromotive fo~ce~ s, and the gradien t is 
negative and equal to - r, the internal resistance. 

: TEST YOURSELF 
• • • 
: 6 ... ... 
• • • • • • • • • • • • ... ... 
• • • • • • • • • • • • ... ... 
• • • • • • • • • • • • ... .. 
• • • • • • • • • • • • • .. 

I • • • • • <!!t 

: 
* : 
i • • • • • .. 

Fi,gure 114.2 0 shows an AAA battery w ith an e mf. E, 

of 1.5V a nd an inte rn a l resis tance. r. of 0.2Dn. Th e 
ce l l de liver s a current. I. of 300 mA into a fixed -loa d 
res:i s tor. Ri o-f 4.8 0 . 

a l Use th e da ta on the circu it djagram to ea Leu late 
t he potentta l differ encei V. across th e fixed-load 
re sis tor, R . 

b] Exp laii n why the p oten ti a L d iffere nce. Vj i3 cross 
the load res is tance :is a ilways less than th e e mf . 

s. of the c e l l. 

r----- ---- --, 
I I 
1 t = 1.50V 1 

I I 

r = 0.20n 
I= 300mA ~-----------.J 

R - 4.8!2 

350 

300 

~ 
s 1so ~~-Ll-+,+'-+H-;-'-'+-U-+-r+++~ ........... ~---++-u.+J.~J.+f..J'-++-'-+--w-+"-H-'--I 
c.:, 

o~----~-----...------i------i------1----e----1 
0 i 2 3 4 5 6 

tl me, Uhours 

• • • • • .. 
• • • • • 

• • • • • • • II 
• .. 
• • • • • • • • .. 
• • • • I, 

• 
= : • • • • • • • • • ' i • • • • • ii 
I 
I 
I 
i 
lo 

' • ' J 

i Figure 11. .. 20 Circ ,uit d1ia9ram for questiion 6. Figure 11..21 Current-time graph. . : 
s = : The AAA battery i1s left connected to the 4.80 fixed- d) Give reaso ns why the current va,r,ies wl th time 'in : 
i toa,d: res i,s tor for a few hours. Fig'Ure 14.2 1 shows how t his way. i 
! U,e current from th e AAA battery var ies w ith time. eJ Use th e gra ph to est imate the tota L charge i 
! c] Using data fro m the graph , desc ribe in detai.l detiver ed by t he AAA battery dudng it s i 
• • 
: how the current va,d es w i1th t i m.e. disc harge. q> : ... . • • • ... ........................................................................................................................................... ............................ , 
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• • : ~ : • '----tl' • 
• • 
: 7 A radro- co ntrolled model ca r c an be modelted £ = 9.0V : • r------------, • 
i w ith the cfrcuH fn Figiu re 14.22: a 9.0V e,mf PP9 1 1 : 

! battery w i1th an ~nternal resis tance r 1s con nected :- 1 I I I 
1 ! 

• II 

• • • • • • • • • • .. 
• I 
I • 
i • ,. 
• " ' I 
I • t 
t : 
' ' I 
II 
I 
I • • " • i 
' ' • • • I!! .. • • • • • • • • 
!I • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
"" • • • • • • • • • I 

"' • • • • • • ,; 
i 
I .. 
Ii, 

z 
• s • ii • • I • • 
~ 
'!' 

I • • I 
I 
I • • • • : 
• ' I! 
!I 
!!! 
I!! • Iii • • 
= 
I' .. 
• • • • • • • t • • • • • • • • • • 

across a va-riab le- load resistor R [representi,ng j r : 
th e motorL i.-- ---------- .J f 

Fig,ure 14. 23- show s th e electri ca t chara cter isti c for 
thi s ci re u,it. 
Use the gra,ph to catcu late the internal resirstan ce, 
r,, of th e PP9 battery. 

o.o--+-'n __ ......_._~...._~......._---+-__ __._ ........... -+---......._ ......... ______ ......... ________ ....__._~-+---'--'--------+--------~-+-------....._ ___ -+-........_........,_~ 

0 2 4 6 8 to 
current, I/A 

Figure 14.23 Electrical chara cter1is tic of a PP9 battery. 

12 

S Three cells 1 X. Y and Z, are co nnec ted consecutlvely 
~n to the ciircuit shown ,in Figure 14.24 . 

R is varied a nd values of V and 1 are co llected for 
each ceU: a co·m posi'te e lectric.al characteris tic is 
drawn and shown 1n Figure 14.25 . 

2.0 ,.--'.. -:,:~ ,. tf: .... ~ 

14 16 

. ~ ' . CI 

:tt ,.. l ,., ' 
;i 1• .I 

.... T ... --~·-· .. •· 't't"'N"t'N't'f' ' ·H n -• Tn •1 14 ~ • + ~ q ~ 

'J.' F 
..... -l H- ·"t't'ti T 1-t' • -· 1, • ·-1-~ • 

rn •' , r .J. .. 1".f. j 

t 

0 0.2 0.4 0.6 0.8 1,0 1.2 1.4 1.6 1.8 2.0 
cu·rrent, I/A 

Figure 14.25 Voltage- ·current graphs for ce lls X. Y and Z. 

18 20 

Fig ure 14.22 Circuit dia·gram 
for question 7. 

r ------------, 
1 X, Y or z celil 1 
I I 

L ------------ .J 
I 

Figure 14.24 Circuit diagram, 
for question 8 . 

State w hich of th e ce lls X" Y o r Z: cJ has the largest inte rn a l resistance 

al 
b] 

ha s th e largest e mf 
wi1ll deliver th e m,ost e 'Lectrica l power at a 
curre nt of (L 5 A 

d] ea n dlel iver an electri ea l power of 2. SW . 

• • • • • • i • 
! 
: • i • I 
I 

! 
I 
I 
I 
I 
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II 
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REQUIRED PRA TICAL 6 
Investigation of the emf and internal 
resistance of electric cells and batteries by 
measuring the variation of the terminal pd 
of the cell with current in it 
Not e: Thts is just one exam ple of how you mi ght 
tac kle thi s. requ ired p rac t ij ea l. 

Lemons contajn ci1t r i:c acrd . This acid ca n un dergo 
electr ochem:ica l reac tro ns when metal electrodes 
made from copper and ztnc [for example] a re pushed 
into th e lemon. The elec trochemh:a,l reacHons 
gene ra1te an e lectro motive force th at ,p rod1uces 
a cu1rre nt high en·ou,gh to activate an LCD clock 
screen. Lemons. however, have a very hrgh intern a·l 
r es ista nce whi ch Um its the current an,d 1ma:kes 
lemon s a poor choice for mos t etectron 1c c: ircu 1ts. l:t 
w ould take about two and a half yea rs. fo r example. 
for a lemon to cha:rge an 1Ph one batte.ry from empty. 

Alth o,u:gh havrng a hi,gh internal resistance is 
a probtem for frurty powered real devices, it 
makes them ain 1deal choke fo r schoo l laboratory 
ex peri ments to measure e m·f and fnternal res istan ce. 
A circua that can be used to m1easure ·these values is 
show n in F~gure 14.27. 

l·n thrs experi.ment. a1 variable resrstor is used as an 
external load: the current flowing throu g:h the c f rcujt is 
measured w1th a suHable ·miUfammeter a.nd the potenbal 
diHerence a cross the var.iahle resistor .is meas ured wf th 
a voltmete r for a rang~ of res is tance v alu·es. One such 
expedment recorded: the follow'ing data : 

Figure 14.26 A lemon clock. 

r 

I A 

.__ __ V __ ____. 

Figure 14 .. 27 A circui t to ,measure the emf 
and internal res is tance of a lemon. 

. Re.s.istance,, Curren·t, I(mA) Potential difference, V[VJ 
.R~.[~ j' · -1--,--~~--..... -~-2- -----.--------3-----~--A-v--4---,--...--2----3--------:.,--Av---

100 0.632 0.6,23 0.644 
220 0.573 0.566 0.581 

470 0.488 0.482 0.500 

1000 0.340 0.336 0.343 

2200 0.244 0.242 0.246 
4700 0.147 0.146 0.148 

1, 0 OOO 0.078 0.077 0.078 
22000 0.038 0.038 0.038 
47 000 0.01,8 0.018 0.018 

100 OOO 0.008 0.008 0.008 
220 OOO 0.004 0.004 0.004 
470 OOO 0.002 0.002 0.0 02 

1 Copy an d co mplete th e table by calcula ting th e m1ea1n 
arverage of th e currents and th e pote ntia l cHfferenc·e. 

2 Plot an electrica t charac teri s tic graph of this data 
with pohn-1tia. l djfference on the y ~ax is. Remember 
t o in clud e a1 best-fit line . 

0 .059 0.058 0.068 

0.125 0.123 0.11 26 

0.229 0.226 0.232 

0.419 0.414 0.422 
0.544 0.540 0.548 
0.676 0.67 l 0.679 
0.774 0.769 0.800 
0.833 0.828 0.834 

0.865 0.861 0.865 

0.881 0.877 0.882 
0.890 0.886 0.890 

0.894 0.890 0.895 

3 The formula for the inte rna l res istance and emf 
of a real pow<er suppty is given by the iformula 
G = 1(R + r), 
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By using a suitable substi·tutio n. rearrange this 
formula into the equat~on of a stra~ght line wHh V. 
the pd, across the va,dable resistor. as the subject 

4 Use the gira,ph to measure. directly the emf; £. of 
the Lemon . 

5 Use the graph to ~atcu late the interna l resistance 

Extension 
The ammeter measures wi,th an un certainty of 
±0.001 mA . and the voltmeter m easures wWh 
an unce rtainty of ±0.001 V. Use the instrum e nt 
uncerta,intfes. the .spread of the da,ta and a suitable 
gra,phicat technique to determine uncertainty values 

! of the lemon. for the internat r es istance, r4 a:nd the emf, s. 
i 
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ammeter 

low 
resistance 

Voltmeters and ammeters 
Am.meters are always put into circuits in series \\rith other components. This 
is be,cause they measure the floVi.r of the ,charge (the electrons) through the 
circuit. Older analogue ammeters involve passing the c.urrent through a coil 
of "'~ire sitting inside a shaped permanent magnet. 

permanent/ 
1magnets 

lower controf spri1ng / 

Figure 14~28 Moving co il ammeter. 

The current in the coil generates a mognetic field that interacts ,vith 
a pern1anent magnetic field, causing the coil to turn; the current is then 
measured by a pointer on an analogue scale. Modern, digital ammeters use 
an integrated circuit 'INithin the· meter to measure the current, \Vhich is then 
dis1:,layed on a nun1ertcal display. Both designs, ho\vever., ""ill alw·ays affect 

component 

voltmeter 

the siz,e ,of the cu.n·ent in some way, as any de\rice put into the 
circuit in series will have a resistance . The extra resistance of the 
an11met r \\'iH therefore reduce the current in the circuit. This 
effe.ct cannot be overcome, so, modem ammeters are designed to 
have very low resistances and .are calibrated to take into account 
the reduction of the current due to the resistance of the m,eter. 

Figure 1.4.29 Ammeters have low resista nce. and 
voUmeters have hlgh resistance. 

Voltmeters arc always c,onnected into circuits in parallel with 
othe.r components. Both sn1alogue and digital voltmeters wo,rk 
in very similar "'ays to ammeters) but a small currenl is drawn 
from tlu~ circuit that passes through. a set; known 1 very hi.gh­
resistance resistor so that the current is proportional to the 
potential difference. High-quality voltn1eteis therefore have very 
high resistance. 



~ ..................................................................................................................................................... : 
i TEST Y0URSELF i 
• • • • • • 
E 9 look at th e following list of units: ~ 

i A O D V f 
: B W E A : 
• • • C J • : : 
• • 
• I 

i :. , Which of the above un its ~s equivatent to the fo llowing: 
!.· ~ :: al J s-1 d) WA-1 ; . ~ 
• I 

: bJ v2w-1 eJ v A-1 ! 
• • 
! cJ C s-1 i 
i ! 
: 10 A student is co1mpari,ng th e br ightness of ca r bulbs wh en they are co nn ected ! 
I to a 12V car battery. She conn ects two bu lbs, P and Q, in pa rallel with the battery 1--~ j 
i as shown in Fi,g.ure 14.30. f 
! Bulb Q is br·igh ter than bulb P. p i 
• • : Copy and complete t he fo l low ing sentences : 
~ . 
: using one of th e phra,ses Usted below: : : . 
i less tha n grea ter than th e same as : 
: a : 
: a , Th e c u r re .n t 1i n b u l b P is .. ... ............................... t h at i n b u lb Q. : 
• • i b J Th e pd a c r o s s il a m p P is ......... ............ .......... ..... t h at i n b u. lb a . ~ 
• • : cl The e le ctr 'ic a l power of bulb a, is .......... ................. that 1·n bulb P. Figure 14.J a C,ircui t : 
• • 
~ d] Th e electr ical resis ta nce of bu tb Q is .... ..... ............ ..... .that in bulb P. di agiram for question 1,0. ~ 
• • ............................................................................................................................................................................ 

()~R-e-s-is_t_or ___ n_e-tw~o-rk-s~~~~~~~~~-

Figure 1l. .. 31a C,irc uit diagram show·in g 
resi·stor co1mbinatron s in, se ri,es. 

Figure 1,.31b Circuit diagra,m showiTlg 
eq u1va ie,nt res istor. 

When co1nponen.ts are connected together to make useful circuits> eacl1 
cotnponent adds a certain resistance to the ci rcuit. The effect of the added 
resistan ce depends on how the compone.n.t is connected into the circuit - in 
series with other com pon ents or in parallel (or both in the case of circu its 

con taining n1any llun dreds of components). There are some simple rules for 
cak:ulating the overall resistance of con1ponents connected in series or in 
parallel. 

Resistors connected in series 
Consider the resist,or network sh o\\7t in Figure 14. 31. 

Figure 14 .31 b represents the single resistor that could replace the three 
resist,ors in series in Figure l 4 .3 la. 

Using Kirchoffs Circuit laws and Ohm~ la\\>~ leads to: 

&=V1+V2+~ 

and 

S = VT 

·whcr,e 

Vr :.;; V1 ... Vi 4-, V1 

but because 

and; as the c.urrenl is the sam e th roughout a series cin:uit: 

IR1 = IR1 + IR2 + IR3 = I(R1 + R2 + R3) 



so 

Rr = R1 + R2 + R3 

and for a seri.es network of n resistors: 

Rr = R1 + R2 + R3 + ... + ~ 

or) using sigma notation 
l1 

Rr= rRi 
i-l 

Resistors connected in parallel 
Consider the following circuit: 

s ln the. right-hand circuit one resistor~ Rr, has been used 
to replace all three resistors arranged in parallel in the 
left-hand cit'CuiL Agai.n, using Kirchoffs Circuit laws and. 
Again; using Kirchoff~ Circuit laVJS and the definition of 
resistance) V = lR 

'Kirchoffs First Circuit law says: 

lr = I1 4- I2 + I3 

and 

V 
l = -

Figure 1.4.32 Ci rcu it.d:i.agira m showFng resistors 
con n e c te d i n pa ra Ue L. 

R 
So as the potential difference, Yr, is the sanie across all of 
the resistors: 

Res 1istors ,in para He l always have 
a resistance less than any of the 
indiv1dua:t res istors. This is a 
useful check when you have done 
a ca lcu la,ti on. 

Rearranging gives: 

So: 

Ir l 1 I 
-;;:-+- + -
VI R1 R2 R3 

Ir = _!_ 
Vr R1 

where; 

l 1 1 1 
-=-+-+-
Rr R1 R2 R3 

F,or a network of n resistors connected in parallel: 

l 1 l 
-=-+-+ ··· +-
Rr R1 ~ ~ 

or using sigma notation: 

_!_ = t _!_ 
Rr i=1 R; 

ln summary, for resistors in series the overall resistance is the sum of the 
individual r,esistances. For resistors in parallel the recipr,ocal of the overall 
resistance is the sum of all the reciprocal of the individual resistance-S. 
Resistors connected in parallel always have a resistance less than any of the 
resistors in that combi.nation .. 



Three res;istors are connected in paraUel to a power supply as shown in Figure 
114.33·. Calculate the value of the one resistor that could replace alt three resiistors . 

Answer· 
Rr ,is the vailue of the one resistor that can replace all three so: 

J_=J_+J_+J_ 
Rr R1 R2 R3 

substitute the numbers: 

So 

.l= 1 + 1 + 1 
Rr 11 0 0 15 0 20 0 

J... = o. 1 a+ o.o7 + o.os -1 0.21:70-1 
Rr 

1 
R r = 0. 21 7 0-1 - 4. 6 0 (2 sf)' 

• I 

I iQ:Q I 
I I 

I 1SQ I 
I I 

: 200 : 

Figure 1 l.~33 Ci rc1J1t 
diagram. 

When calculating the overall resistance of a circuit containing a 1nixture of 
resistors in series and in parallel, it is best to calculate the overall resistance 
of each of the sections arranged in parallel first) and then calculate tl1e 
overall resistance by summing all the effective ·resistances in series. 

PL 
Look at the combinat 1ion circuft in Fi'gure 14.34, contain ,ing resistors 
connected rn series and in parallel. 

What is th e overa [l res:ista n ce of this ciirc u it? 

Answer 

5 Q 

To calculate the overaU resfstance. Rr,1 of thfs circuit~ th e first step is to 11,5 Q 

calcula te tne effective resistance, R; of th e three resistors 
in pa,ralllel : Figure 14.,34 Circui.t diagram. 

J_=_J_+ 1: + 1 
R 50 100 1,5G 

~ = 0.20 + 0.10 + 0.067 = 0.36 70-1 

R = 1 . 1 m 2. 7 0 
o.367 rr 

Rr • 1 5 0 + 2. 7 D + 20 n 
- 37.7,0 
-3 38 0 [2 sf ] 
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: TEST YOURSELF • • • • • • .. .. 1~ Three res1istors 1 each of resistance 3.3 kD, are 
i connected in pa raUeL Calculate the overa ll resista·nce of 
: this network. 
• • ! 12 Two resistors are con nected in paraHel as slhow1n 1in .. 
i IFig·u re l 4.3,5. 
• 
: a] Ca1lculate th e overa ll res·istance of this c ircuit 
• i b] Th e res i1stors a re connected to a. 12 V battery with 
i negUg1ble internal resistance. Calculate th e totail 
! current drawn from the 12V battery . 
• : 13 Three 47 kn res 1istors are connected to a, 6.0V ba,ttery with 
• : neg ligible internal res istance as shown in1 Figure 14.36. 
• 
: a] Ca,tculate th e total resistance of the ci,rciu it. 
• i b) Ca tcu late th e curren t flow1i111 g through each resistor. 
II 

: 14 A tea cher rs th, nk~ng a,bout the res ~stainces of ammeters 
I a rid voltmeters. A battery w,th an emf of 6. 0 V and 
! neglig 1ible internal res 1istaince f s co nnected fiirst to a 2.2 D 
• 
: fixed resistor as shown in Ci:rcuit 1 in Figure 14.37. 
• .. 
: a] Calculate the current flow r n g 1in C i rcuiit 1. 
+ 

: An aim meter wHh a re~dsta nce of 0.30 is connected into the 

330KQ 

Figure 11..35 C1rcu it 
dta·g ram for q,uesti.on 112. 

2.2Q 

C~rcul,t i 

47kn 
47kn 

47kfl 

Figure 11.~36 Circuit 
d,iag.ram for question 13. 

2.2Q 

Circuit 2 

• • • • • • • • • • ii 

• • • • • • • • • • i 
• I 
i 
• • • i • • I 
ii 
I 
I 
I 
I 

% 

I 
I 
I 
I 
!I 
II • z 
t • + 
!I • I 
I • • • • • • • • • • • • • • • • 
' • • • • • • • • • • • • .. 

circuit fn sedes with th e resi,stor as shown by Circu,it 2 . 

b] Calculate the total res is tan ce of Circu,it 2 . 

Figure '14.37 C1rcuit diagrams for questions 14 dl to f] . ~ 
• • • • • • • • • • • • .. .. 
• • • • 

c] C alcu tate the current How in g in C i rcuiit 2 . 

d] Explain why the current in CircuH 2 is lower than the 
CU r rent How 1 f) 9 i n1 C i r CU a 1 . 

e) Sug9est how the manufacturer of the ammeter 
could alter the design of the am,meterr to take its 

resi s ta nee into account. 

f ] The best quaUty ammeters, inctudin9 most 
digHa lam mieters. alter the current in the .circuit 
by as Little as possi'ble. Suggest a va lue for the 
res is tance of an ammeter to make it ·perfect' . 

The sam e battery ~snow conn ected across two fixed 
r esistors as shown in F1igure 14.38 by Crrcutt 3. 

g) Calculate th e pd across points X and V by Ci;rcuit 3. 
A voltmeter with the same res ista nee as the flx·ed 
resrstors is now connected in parallel with X a·nd Y a,s 
shown by Circu it 4 . 

hJ Caitculate th e comb1ined resi,stance across poi.nts 
X and Y in Ciircu i:t 4. 

iJ Ca·lculate th e pd ac ross points X a,nd Y in Circu~t 4. 

H Ex;pla1in why the pd across X and Y in, Ciircu it 3 i,s 
la1rge r than the pd across X and Yin Circuit 4. 

6.0V 6.0V 

.---1 I--~-----. .---1 I--~-----. 

X y 
...._..--I 47 1k.Q-t----147 kil 

Circuit 3 

c ircult4 

Figure 14.38 Circuit diag,ram for question:s 1:4 gl to L]. 

kl Explla 1in why th e best voltmet er to co nnect across X and 
Y wou,ld be one wJth an· ex tremely high res,istan ce. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
' • • • • • • • • • • • • • • • • • • • • • • • • • • 
' * • • : • • i 
i 
I 
I 
I 
I 
'I' : 
: 
i 
I 
I 
I • I 
I • : 
4, 
+ 
! 
II 
I 
!I 
!I 
I 
!I 

' • • 
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Figure 14 .. 39 Circuit diagram of 
a potential divider. 

C)--P-o-te_n_t-ia_l_d-iv_i_d_e-rs __________________ _ 

Potential dividers are simple, three-component. circuits designed to control 
the potential difference in a circuit. 

they consist of a pov,rer supply (such as a cell); a fixed resistor; and a 
ihird resis'tive component, \Vhose resistance can be fixed (fixedl resistor) or 
variable (variable resistors, 'thennistors, light-dependent resistors, etc.). 

All of these compo·nents are connected in series and d1e emf of the p,o,v.rer 
supply is shared across the two resistive compone11.ts. 

The clue to ho~l potential dhiders wo,rk is in their name, pot ntial dividers, 
i.e. something that splits up potential difference. Lo,ok at th, potential 
divider circuit in Figure 14. 39. 

Generally vre are trying to vary the potential difference V1 (across R1) by 
varying R2• 

Assuming that the cell has negligible intemal resistance, then 1l1e_ total 
resistance of the circuit Rr is given by: 

R1 = R1 + R2 

The current~ I, flovtling through the circuit is given by Ohms law: 

J - _E_ - E 
- Rr - (R 1 + R2) 

Then cm1sidering the resistor R1 we can write: 

V1 == IR1 

Substituting for I fro1n above: 

so 

£ 

sR1 
V1=---

(R1 + R:J 

Fron1 this equation it can be seen that ifs and R1 are ft~ed, then Y] only 
depends on R2. ln fact, as Ri increases, V 1 decieases ~ and i,,ice versa. 

Figure 14.40 A wire· potent~ometer. 
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....................................................................................................................................................................................................................................................................................................................... : 

Analysing the results from a wire potentiometer 
A potential divider ea n be mad e out of a ten gth of h ig h-resi:sta n ce ,meta t 
w i1re such as the metal al loy nkhrome. The w~re 1s s t retched ourt a·lorng 
a ruler and a metal probe is used to make contact w i·th the wire a long 
it s length. Th is piece of appara,tus i,s called a, poten,ti ometeri as shown in 
Figure 14.40. 

The circuit 1is shown in Figure 14.411

: 

A particu lar potentiometer has a maxf,mum wire leng1th of 1.0 m. The 
potentiometer ~s connected to a 6.0V battery of negligible internal 
res,istan ce. A student varies th e distance~ l1, between th e fixed 
connection end of th e vo ltmeter and th e slid ing contact a,nd measures 
th e pd for a range of differe nt wire lengths up to 1.0 m,. 

Here a re her results: 

Len.gth of wire, 
,(1 (m), ±0.D02m Average 

0.000 0.00 O.OQ 0.00 

0.100 0.6 0 O.BO 0.611 

0.200 1.20 1.0:4 11.02 

0.300 1, .80 1.87 1.86 

0.400 2.40 2.37 2.46 

0.500 3.00 2.84 2.97 

0.600 3.60 3.52 3.56 

0.700 4.20 4.19 4.37 

0.800 4.80 4.77 4.84 

0 .900 5.40 5.48 5.24 

1.000 6.00 6.00 5.87 

1 M;ake a copy of th e tab!le. 

2 Check th e data for a ny anoma,lou,s resu lts. In th~s exper iment th ese are 
nor .mally due to rpressi ng too hard ori the wire with the s lider. Deal w ith 
these anomali es in the usual way (ig,nore them,l an,d ca lculate th e 
average pd across th-e wire for each length. 

3 Use the sp read of the data for each length to ass i9n an uncertaii nty to 
the pd of eac h length . 

4 Plot a graph of average pd [y-ax is) aga inst length [x-axhsL usi ng. the 
uncerta,,inties and the predsions to plot verti ca l and n orizontal error 
bars for ea,c h :p·o i,r,t. 

5 Plot a best- fit li n·e through th e points. Should [0. 0] be a known fixed 
point on thi s best- fit line? 

6 Use the best-fit line to determ1ine en eq uation for the relation ship 
between Vand t 

7 The erro r bars that you have drawn w itl gi!Ve you a confidence abo ut the 
best- fit li n1e a· n d, therefore, th e re ta.t i on ship between the two variables. 
Va ,n di /. Exp la in how the sp read of the data and their error ba1rs ea n help 
you to dec1de th e pos1t1on of th e best - flt Un e . 

8 State and expla·1n how her orig1na[ resutts would cHffer if she used a 
lower-resista nce a na log u e vo ltmeter. 

= 

: 
~ 

! 
• 
~ • 

Figure 14.41 Ci rcu1t for a potenti,om ete r. ~ 
~ 
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Figure 14.42 Ci,rcui1t diagram 
f,or a pate ntial di,v rde r. 

J .. 

temperature 

e: 

Potential dividers as sensors 
Another use of the potential divider is in sensor circuits. If d1e variable resistor, 
R2~ in the potential di\·ider ,chcuit sl10\vtt in Figure 14.42 is replaced mth a 
con1ponent whose resistance varies \Vith an external physical v"'ariable such 
as temperature or light inten sity; then the potential differenc,e across the fix,ed 
resistor, Ri, "'ill also vary-with the external physical variable. 

The voltmeter connected across R1 can then be caHbrated in tem1s of the 
value of the external physical variable . The ,circuit can. then be made to act 
as an electronic thermometer or an electronic light sensor. 

With an electronic therm,ometer, a thermistor is connected in 
p lace of~- Most thermistors ar,e ntc (negative iemperature 
coefficient) thermistors. This means that as the temperature 
increases) their resistance decreases, as shown in Figure 14.43, 
which also shovls a circuit diagram showing ho·\\~ the components 
are connected: 

The effect on the potential difference across the fixed resistor R1 is that 

Figure 14.J.3 A ther mistor potential divider 
drcu it and th e resistance-termperature graph 
for an ntc thermis tor. 

as the temperature increases, so the resistance of the thenni..stor> R2, 

drops .and V1 rises . Thus increasing temperature produces increasing 
pd. If the voltmeter is connected across the thermistor; the ,opposite 

will happen.: increL1si:ng the tetnperature "'il] produce a decrease in pd. ht 
m ost cases.; applications require the pd to increase '\.vi.th temperature; so the 
voltmeter is usually connected across the fixed resistor. 

The resistance-temperature g1raph for an ntc thermi1stor is shown i'f'1 Figure 14.44. 

100 --.-.-.~~~~~~~~~~~~~~~~~~~~~~~~ 

90-- ---~-.-....----.---........_..------.-.-___,--.--..........-...-.-+-~..-.-.-.------~--.....-.---.-.~------<-<,__,_. 

80 -------------------------------~-------------------------------,--------------
~ c6' 70-- ----.......-t--+~~~~--------t-t-~~---t-T-i"---+--'-+-'-++-"-H~___....'-H-~~~....,..._.--.-....-i 
~ 
i:: 
~ 60 --+- ...,...,...+-;..+--,.-+-",+-...+-,-+4-+-l-.;...i...M~~-w.+~~~'++l-~'-H-+...;..+-+-1-+J-+-1--+-~~.f.-.'-+4,.........+-............. -u.+ .............. '""-1-I 

:m 
~ 5 0~~_._._..~-i-.-a~4-1-..J...L....-14-1-a~~l...w..l.-'-l+-~~~~~4-'-J-~U...J..l.~~~~~~-.-4-l 
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Figure 11. .. l.i. Resiistance-- tempeiratu re graph for an ntc the rm·isto r. 

The thermistor ,is co nnected into a potential div1ider circu it W'ith a 6.0V battery 
of n,eg.Hgrible interna l resistance and 45 kO f i1xed res 11stor. 

At - 1 [) °C the resi,stance of the th ermistor 1s 55 kO. At 40 °C th e res istance of 
the thermi,stor is 5 kO. 

Calcu'late thevolta.ge across the fixed resistor at- lO °C. 
b Ca lcula te the voltage across the flxed resiistor a t 40 °C. 
c) What effect does i1ncreasi ng th e teimperature from -1 0 °C to 40 °C have 

on the voltage? ~ 
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Answer 

v, = eR1_ == 6.0V x 45k0 = 2 ?V 
[R1 + R2l [45 + 55) kO . 

l 
V _ eR1 _ 6. 0 V x 45 k O _ 

b 1 - [R 
1 

+ R 
2 

J - [ 4 5 + 5 ) k O - 5 · 4 V 

c) ln1crea,sing the temperature of the ther1mlstor from - 1· 0 °C to 40 °C 
doubles the vohage [in this case). 

A simUar effect involves the use of a light-de.pend,ent resistor (LDR). 
These ar,e components hat change th,eir resistance vrith light int, nsity1 

which makes them incredibly useful as light sensors. LDRs are made of 
semi-c,on.ducting materials; as the light shin.es on the material, electrons 
are freed .from the stn1ctu.re and can flow thro,ugh it; reducing the 
resistance of the LDR. 

In the dark\ lDiRs can have a very high resistance\ of the order of mega­
,ohms, and yet in the light their resistance can drop as }o\\r as a few hundred 
ohms. If an LDR is connected into a potential divider il1 place of R2 in the 
potential divider circuit then; as the light inlensity increases, then so Vi1il1 
the output pd V1 across the fixed resistor. 

11ght i nten s lty 

(a) (b) (c) 

R 1 

V 1 

Figure 14.45 An LOR: jts ele ctrkal c1irc u tt symbol la) resistance­
li9ht rnte nsity graph [b] and its use in a. potentia L di,v i de r ciircu1t (c]. 

A pa rt 1i cu l a, r L D R ins ide a digital c a me ra has b) In brigi ht sunlight the pd across the fixed 55 kO 
resistor is: a resi stance of 150 kO in low Ug ht levels and a 

res istanice of 720 D 1in bright sun'Liight. The LOR is 
connected to a 55 kll fixed resistor an.d a 3.0 V battery. 

Calcu late the pd across the fixed resiistor in: 

a I low light levels b bri1ght sunUght. 

Answer 
al II n low light levels the pd a,c:ross the fixed 55 kO 

resistor is: 

v, = eR1_ = 3.DV x 55 kO ... O.BDV 
~R, + R2J I 150 + 55)' kO 

V • eR1 
1 IR1 + R2l 

3.0V x 55 kD 
'1::1 ---[ o-. 7-2-+-5-5J_k_() 

- 3.0V [2 sf] 
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Figure 14.46 shows part of the automatic light 
sensor for a digHall camera. The ca mera battery 
has an emf of 6.0V and has negligibte interna.t 
resi·stance. The voltmeter is a dlgi:tal type wrth a 
very h1igh res,istance. 

6.0V - ·--~--
\.~ 

330,Q '-

Figure 14.t.6 Ci1rcu1t diagram far q uestjon 1 'S. 

In bri'ght dayllight the res istance of the LDR is 4500. 

a] Calculate the rati,o 

pd a cross resistor 

pd across UDR 

b] Catcutate the voltmeter readi1ng in bright daylight 

At low light levels, the res,istance of the LOR 
,increases to 470 kO . 

,c) 1Recatcutate the ratio 

pd across resistor 

pd across LOR 

at t h 1s lower light level. 

d) Ca lcu late the vo'Ltmeter read~ng 1n low li g,ht. 

1'6 An ntc thermjstor is connected in series 
with a 660 D fixed resistor and a 6.0V 
battery formin9 a potentia l divid·er circuit for 
an electric therm·ometer. A high-res~stance 
voltmeter is connected across the fixed 
resistor. 

a] Draw a circuit diagiram for thi's drcu it 
b) At 25 °C the thermistor has a resistance 

of 1.5 kO . Catculate the current in the 
circuit. 

cl Calculate the pd across th e 660 n resistor. 
d) The therm~stor is heated to 90 °C and 

its resista,nce drops to 220 rl . State and 
exp la,in what would ha,ppen to the voltmeter 
reading as th e temperature changes from 
25 °C to 90 °C . 

e] At 90 °C, when the thermistor has a 
res1sta nee of 220 0 the thermometer 
develops a fauU a,nd th e current suddenly 
r1ses to 0.4A . Calculate the power loss i1n 
the thermistor i1 m mediate ty after the fault. 

f] State .and expla~n what is [i'kely to happen t o 
the thermistor in the c i:rcuit. 

• • • • • • • • • • • • • • • • • • • • • : 
: • ~ • • • 
i 
: • ' I 
I • ' ' 

I 
f 
I 
II 
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' I • 
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• • • • • • I • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • II 
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Practice questions 
1 A battery of emf 12 'land 'With negligible internal resistance is 

connected to the resistor network shown in Figure 14. 4 7 . 

\Vhat is the current through the 4 7 n resistor? 

A O.lA 

B 0.2A 

0.3A 

D 0.4A 

2 A batt ry has an emf of 12 V and an internal resistance of 2.00. 
Calculate the total current in d1e circui.t sho\\-11 in Figur·e 14. 48 . 

A 0.19A 

B 0.20A 

0.71A 

D 5.2A 

3 A student connects together three resistors together in the 
arrangement shown in P and Qin Figun~ 14.49. 

Each resistor has a resistance of 750. Which line represents the 
equivalent resistance for ,each arrangement of resistors? 

P Ull Q [OJ 

A 25 50 

B CL04 75.D4 

C 25 112.5 

D 225 5,0 

p 

27Q 1800 

919 24Q 

47.Q ~l-l·--~--
1,2V 

Figure 16 .. t.7 Circui1t diagram for 
questton 1'. 

30n 30n 

r ------- --, 
I 2.0Q I 
I I --~.......... .......-----
I 
I i2V 
L.--=-.---- - _.,J 

Figure 1 & .. .48 Ciircui t d iag re1·m for 
questioA 2. 

Q You need the following inf onnation. for qu es1ions 
4 and 5. 

Figure 14 .. ,9 Circui1t diagram·for question 3. 

A resistor and a themtlstor aTe being used as part of a 
ten1perature-sensing circuit. They aTe connect,ed in series "'rith a 12 V 
battery of negligible inte1~1al resistance as shovm in Figu1-e 14.50. 

4 At 200 °C the resistance of the thennistor is 180. and 
the resistance of the resistor is 13 0 0 . 

What is the voltage acr,oss th e terminals AB at this temperature? 

A 1.13V 

B 1.46\r 

C 10.54 V 

D 10.86V 

5 What is the pow,er dissipated by the resistor at 200°C? 

A O.OBW 

B 0 .12 \J\T 

0.85W 

D 0.97W 

6 Three resistors are connected to a battery of mf 12 Vanda 
negligible internal resistance as sho'Wll in Figure 14 .51. 

VVhat is the. voltage across the. 6.0 n resistor? 

A 2V 

B ·4\1 

C 8V 

D 10\7 

A B 

---1- ---
12v 

Figure 14.50 CircuJt diag,ram 
for question 4. 

9.0Q 

4.0Q 

6.0Q 
i 2V 

-------1- ~ ~ ~ ---------
Figure 14.51 Circ ui t di~gram for 
question 6. 



7 A torch bulb is connected to a battery of negligible inten1al resistance. 
The battery supplies a steady current of 0 .25A for 20 hours. In this time 
'the energy transferr,ed by the bulb is 9 .0 x I 04 J. 

What is the power of the bulb? 

A 1.3W 

B 21 Vvr 

C 4500W 

D 5625W 

8 Elecuic blankets have \vires in the centre. The energy dissipated by the 
wir,es when a current fiovvs through them heats the blanket and the 
bedl. One blanket has a power rating of 63 W and is plugged into mah,s 
electricity (230 V). 

What is the total resistance of the wire. iti the blank,et? 

A 40 

B 17Q 

8400 

n 1sooon 
9 A cell of emf l .SV and internal resistance 1.00 is connected to a 5.00 

resistor to form a complete circuit. Calculate the current in this circuit. 

A 0.25A 

B 0.30A 

C 0 .60A 

D I.SA 

10 An electrical generator produces lOOkVil of p ower at a potential difference 
of 10 kV. The power is n-ansn1itted through cables of total resistance 5 Q . 

What is the power loss in the cables? 

A SOW 

B 250W 

C 500W 

D 1000W 

11 Car batteries have a typical en1f of 12 V and a very low internal resistance 
of 5 .0mO. 

a) Explain \.Vhat is meant by the tern-is ~e1nP and 'internal resistance). (2) 

b) 'One such battery delivers a current of SOOA to the starter n1otor of 
a car. Calculate. the potential difference across the starter ni.otor. (2) 

ll Figure 14.52 sho~ .. s three resistors connected to a battery of negligible 
int emal resistance. 

a) Calculate the total resistance o( the circuit. 

b) The power dissipated by I ach of the soon resistors is 
2.0W 1Calculate the pd across the two soon resistors. 

c) 1Calculate the current through the 500 resistor. 

d) ,calculate the emf of the battery. 

(2) 

(2) 

(2) 

(1) 

13 Figure 14.53 shows four identical new ceUs 1 each with an emf of 1.2 V 
and negligible internal resistance, conne·cted to three identical resistors 
each with a resistance of 51). 

a) ,Calculate the total resistance of ! he circuit. 

b) Calculate the total emf of the ceUs. 

(2) 

(l) 

50Q 

800Q 

800Q 

Figure 14.52 Crirc.u~t 
diagra:m for q,u estJo,n 12. 

R S 

~ 

Figure 14.53 Circuit 
diagram for qiu estio n 1, 3. 
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c) Calculate, the cu1Tent passing through cell Q. (2) 

d) Calculate the total charge passing through cell Q in 1 second. (2) 

e) Each of the cells shown in the circuit diagram stores the 
satne a.mount of chemic:al energ~ and hence can transfer 
the .san1·e am,ount of electrical e1·1ergy. State and e,q:,lain 
,vhich 1wo ceBs in th circuit Vv"ould transfer electrical 
energy for the longest time pe1iod. (2) 

II 14 A car engine ·temperature-sensor circuit consists of a 12 V car battery 
connected ins ri s \Vith a lo,"'~-resistance ammeter, a 3300 resistor 
and then connected to an ntc (negath1,e temperature coeffici,ent) 
thermistor and a 1 kO resistor c,onnected in paraHe l to each other 
before returning to the battery as shown 'in Figure 14.54. 

At its no,rrnal \Vorking temperature. the current reading on the 
ammeter is 14.0mA. 

a) Calculate the pell across the 3300 resistor. (2) 

b ) Calculate the pell across the 1 kO resistur. 

c) Calculate the combined resistance of the thermistor and 
1 k.O 1·esistor paralle 1 combination. 

d) Calculate the resistance of the thermistor. 

(2) 

(2) 

(3) 

e) The engine starts to overheat and the temperature of the tl1ermistor 
starts to rise. State and explain tb,e effect that this has on the curren t 

measured by the ammeter. (2) 

1.2V 

330Q 

ikQ 

Figure 11..s, Circui:t diagram for 
quest ion ·14. 

15 A then1:1ist:or is connected to a combination of fixed resistors 

and a 6 V battery of n egligible internal resistance, as shown in 
Figure 14 .55. 

.-----t•---j--
a) At room temperature the resistance of the thermistor, T, is 

2 .5 kO. Calculate the total resistance of the circuit (3) 

b) Calculate the current flmving through the 6V batte1y. (1) 

c) A very high-resistance digital vohn1eter is used to measure the 
pd across different points in the circuit. Copy and complete 
lhe table below by calculating the relevant pds. (3) 

Posit ion ot the voltmeter pd, V (VJ 

C-E 
0-F 
C-D 

6V 

10kQ 
C 

10k.Q 

6kfl 
D 

B .. _--i 

d) The thermistor in the circuit is heated and its resistanc 
decreases. State and explain the effect that this has on dit 

voltmeter reading in the following positions: 

~igure 14.B5 C~rcu it d.iag:ram for question 15. 

(4) 

i) C-E ii) D-E 

16 An LDR is oonne.cted in series with a fixed resistor) R, and a 3.0V 
battery wi'th negligible internal resistance. A high-resistance voltmeter is 
connected in parallel across the fixed resistor. 



a) lliaw a circuit diagran1 of this circuit. (2) 

b) On a cloudy day when the light intensity is lo~r> the r,esistance of the 
LDR is 1.5 kn and the voltmeter reads 0.80V. Calculate the pd across 
the thermistor. (2) 

c) 1Calculate the current flowing through the battery. (2) 

d) ·Calculate the value of the resistance, R, o.f the fixed resist,o,r. (2) 

. ) On a bright sunny day the resistanc,e ·Of the LOR falls to 150 .n. State 
and e}..l)lain what effect this has on the reading on the voltmeter. (2) 

f) State and explain the effect on the current flovling though the battery 
if the resistance of the vo hme ter v.~a s the s aime as 
the resistance ,of the fixed resistor. (2) 

17 Four resistors arc connected into a circuit together 
with a 12 V car battery of negligible internal resistance. 
The current as measured by the lo,w-resistance 
ammeter is 2.2A. The circuit is shov.,n in Figure 14.56. 

a) ,Calculate the total effective resistance of the 
cil·cuit. (2) 

b) Alll the resistors have exactly the same resistance. 

p 

Q· 

1Calculate the resistance of resistor P. (3) s 

c) Calculate the current flowing through resistor R. (3) Figure 14 .. 56 Circuit diagram fo r question. 17. 

d) Calculate the power dissipated by 1cesistor E (2) 

18 Two resistors are conn.ected in series with a 12 V battery with 

negligible intenial resistance as shown in Figure 14.57. 

a) The resistance R2 is 1500 and the voltmeter reads 7 .SV. 
1Calculate the current in the circuit. 

b) Calculate the power dissipated by 1cesi stor R2. 

c) ·Calculate the resistance R1. 

(l) 

(2) 

(2) 

12V 

-1---~-

d) Resistor R2 is replaced 'With an ntc (n egative ten1perature 
coefficient) thermistor. Explain why initially the voltmeter reading 
remains constant , but slowly it changes and then reads another 
constant value. 

Figure 14.57 Circuit dia,gra'm for 
(2) question 18. 

II 19 An LDR (light-dependent resistor), a fixed resistor Rand a variable 
r-e-Sistor are conn cted in seri s vtith a 9.0V battery with negligible 
internal resistance. A high-resistance voltmeter is connected in parallel 
'\\rith the fixed resistor R~ as shown in Figure 14 .58 (o.verl,eaf). 

a) ln ·the dark, the resistance of the lD R is 120 kO, the resistance of the 
fixed resistor is S..Okfl and the variable resistor has a resistance of 
4 2 kn. Caku late the curre11Lt in ihe circuit flowing ·through the battery. (2) 

h) Calollatc the reading of the voltmeter. 

c) The circuit is ihe.n taken out into the dayHght. The resistance of the 
LDR drops quickly to a stnaU value. State and e"-1'0011 the effect on the 

(2) 

reading on the voltmeter. (2) 
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d) This light-sensing ci1cuit forms part of an auto1natic 
Hght cut-off for a greenhouse. At a p1-edetermined light 
intensit)~ the pd across the fixed resistor needs to be 
0 .90V. At this light intensity; the resistance of the LDR is 
12 kfl. ,calculate. the r,e.quired resistance of the variable 

--------1---~------

resistor for this particular light le-ve.l. (2) 

II 20 The two sidelight bulbs of a car are ratedl as 12 V, 3,2 W. 
TI1e bulbs are connected in parallel o a 2 V car battery of 
negligible internal resistance~ an ammet r is connec ,ed in 
s ries with the battery t,o- measure th total curr, nt dra~tn 
fro,m the battery. 

a) Draw a circtdl diagram of this circuit. (2) 

9.0V 

B 

b) Ca lcu lat,e the reading of the ammet,er. (2) 
Figure 14.58 Circuit diagram for q,uesti.on 19. 

c) Calculate the resistance of the bulbs. (2) 

d) State and explain the effect on the brightness of the bulb,s if the 
.ammeter has a higher resistance. (2) 

Both of the b11lbs are now connected to the battery in series 
with t }ie ammeter. 

c) State and explain the change of brightness of the two b1llbs in the 
series circuit. 

f) Apan fron1 the- brightness of the bulbs, suggest another reason ,vhy 
oonnecting d1e bulbs in. parallel vvould be p1--eferable to connecting 

(2) 

then1 i.n serie.s. (1) 

.24V 

II 21 The internal lights on a helicopter consists of t\vo 
bulbs connected iI1 parallel to a 24 V battery of 
negligible internal resistance. The bulb in the cockpit 
needs to be din1.mer than the one in the cabin . Two 
resistors are put into the circuit to ensure that the 
bulbs are both operating at their "rorking voltage, as 

------•---~-------
shoVvn. in Figure 14.59. 

a) Bulb X is rated at 12 V, 36 vV and bulb Y at 4.SV, 
2 .0 W Use this data ta. calculate the current 
flovring though each bulb ~~hen it is ,operating at 
its ,vor king pd. (3) 

b) Calculat,e the pd across resistor R1. 

c) Calculate the current flmving through R1. 

(2) 

(1) 

y 

R, 

X 

d) Calculate the resistance of R1. 
(l) Figure 11. .. 59 Circurt diagram for qu·estton 211. 

e) The pd a.cross bulb Y must be 4.5 V. Cakulate the 
pd across resistor R2• (1) 

0 Calculate· the resistance of R2. (2) 

g) Bulb Y br,eaks. No current runs through bulb Y and resistor R2. 

Explain; \\-ithout using a calculation, the effect on the Yoltmeter 

reading across R 1. (2) 

h) State arid explain \1\1hat h appens to bulb X. (2) 



r--------------, II 22 The circuit in Figure 14. 60 can be used to determine the emf and 
internal resistance o[ a. baue.11~ 

Figure 14.61 sh ows the results from an experiment involving 
a D-type cell. 

--+; ...... ~--1 
I I 
L- - -------- .... --- .I 

, .60 ......,....,.,,....,........,...,...,-rr-~~~l""':'"T":"""'T"T'"l"":'".,............,...,........,...,....,.......,,..,....,.........,....,...,...,....,..,....,,....,....,..,..,....,....,...:""T"'!'"':"'...,........,..~ 

~ . 
Figure 11..60 Circuit diagram for 
questr.on 22. 

• 1. 00 -t+.i+++++++++++t+++,H+H+t+.i++++~ .i..+++++i+++++++t+++++++++~H+H+t+.++H-i++'I 

~ ; 
I o.ao ~ "-T"t++,+tsw,,,;,,,r++,o,~~~-++M+;.,..;,ttoff~ ........... --+-t-....,.,.,~~+t+j-,.+,to;.,.,.,.., 

"O 

a3 
:;;c:: 
(]) o. 60 -t-t-'f"t-t+,.,.;.t,,t-r,,,t-'~~"'T"t+,!'t"t-M-++M'"Pf'f"tttoff'H'+t-M-'M";,,,,t,,t-,..,.,..,..r++,,,;~"T"t+!,;.;+;.,....;-1 

13 a.. 

0. 00 ________ ............................ ________ --+"'-_........-----+_,__.....__-+"---'-"----+-'-____..........____ ______ _ 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 
current I/A 

Figure 14 .. 61 Electrka l c ti a racteristk of a 0-type cell. 

a) Explain why the potential diflerence decreases as die cu1"Te1.1rt n'lcreases. (2) 

b) Use the graph to determine t11e en1f, s, and the internal 
resistance., r~ of the D-type cell. (3) 

c) On a suitable sketch of the graph) d1~aw on a line that illustrates the 
results obtained fron1 another battery with the same e1nf but double 
the iI1ternal resistance of the first battery: Label this Hne X. (2) 

d) On th e san1e sketch dt"a'-V another line that illustrates ·the tl!.S'Ults 
obtained by a thii-d battery vlith the same emf as the other two, but 
1Nith negligible internal resistance. Label this line Y. (2) 

5 retch and challenge 
11 f th £ Uowing questi ns ar 

provided with p rmis i n of the 
British Phy ics l ym p iad 

2 · Tv,,..-elve l ohm resist,ors are connected in a 
cubic network~ as shown in Figure 14.62. 

a) Ora w a two-dimensi 01"1a l circuit 
diagram of this network. 

b) Use your circuit diagram to detem1ine 
the. overall resistance of this network 
between points A and B. A 

Figure 11..62 Circu it d1iagram for q uestlon 23. 

B 
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2-4 If the potential difference between A and Bin Figur,e 14.63 is V: 
then \vhat is the current behveen A and B? All thTee 1~tors 
a.re identical. 

V 
A-

3R 

2V 
B 3R 

C 3V 
2R 

D 3VR 
2 

25 A 10 V battery \Vith negligible internal resistance is connected t,o 
two resistors of resistance 250 n and 400 n, and to con1ponent Z> 
as sho1r''n in Figure 14.64. 

Z is a device that has 1he property of 1naintaining a 
potential difference of SV acr,oss the 4000 resistor. The 
current through Z is: 

~A 2.9m.A. 

'B 7.SmA 

12.SmA 

D l5.4rrtA 

26, In the cireuit shown in Figure 14.65 the resistors have identical 
resistances. If the power converted in R1 is P; what is the power 
d . · · d · R i 1.ssLpate m . 2. 

A P/4 

B P/2 

CP 

D 2P 

27 Three ~dentical voltmeters each have a fixed resisiance~ R~ which. 
a.Rows a small current to flo,v through thein ,vhen they measure 
a potential difference in a circuit. The voltmeters, V 1, V2 , ·\l3 are 
connected in the circuit as shown in Figure 14.66. 

The voltage---current characteristics of the device Dare 
unknown. If V 2 reads 2 V and V 3 reads 3 V, ,vhat is the 
Teading on V 1? 

A IV 

B 2.5V 

C 3V 

D SV 

28 A cell that produces a potential E (called an emf) is sho,wn in 
Figui-e 14 .6 7 and is com1ected to t,vo resistors in series: a fixed 
resistor R1 and a va1iabl resistor~-

The current, I, tn the circuit is measured by the ammeter, A, 
and the p ,otential difference, VI across resistor R2 is measured 
with the voltm ter V. The relationship between the 
pot, ntial> E, and the current~ I, is given by: 

.& = IR1 + IR2 

vVbich of these graphs would produce a straight-lin e fit? 

A Vagainst I 

B V against 1/I 

C 1/V against 1/I 

D I against 1/V 

A B 
:R 

Figure 14.63 Ci rcu,it diagram for 
qu1est1ion 24. 

250Q --- 10V -
4·00!1 

Figure 14.64 C1rcuit dragra:m for 
question 2S. 

Figure 14.65 Circuit diagram1 for 
question 26. 

Figure 14~66 Circuit diagram for 
qu.es ti on 2 7. 

E 

D 

Figure 14.67 Ci rciuit dragra1m for question 28. 



.29 A con1lbination of resistors shown in Figure 14 .68 
represents a pair of transmission lines with a fault in 
d1e insulation bet\veen them. The '-vires have a uniform 
resistance but do not hav,e the same resistance a.s each 
other. The foHowing procedure is used to find the value 
of tlte resistor R5. 

A 

B 

A i 

A po·tential difference of 1.5 \ t is c,onnected in tu1n across 
various points in the an·angement. 

Figure 14.68 Circuit diagram for 
question 2 9. 

With 1.SV applied across terminals AC a current of 37.SmA aows. 

With 1.5 V applied across terminals BD a current of 25 mA flows. 

Vlith 1.5V applied across terminals AB a current of 30mA flo,vs. 

With l .SV applied ac1·oss terminals CD a. current of 15mA flows. 

a) Write down four equations relating the potential differ,enc-e, the 
resistor values and the cun·ents. 

b) Determine the value of resistor R5. 

c) If the ends C and D are connected together, what would be ihe 
resistance measured bet,veen A .and B? 

d) If the length AC (and also BD) is 60 tnetres, hD"w far fro1n A (or C) 
does the [ault occur? 

30 A student decides to calibrate a thennistor in orde-r to tueasure 
variati,ons m the temperature of a room. He connects a sni.aU bead­
sized thermistor across the tenninals of a SV power supply and in 

series 1Nith a. 1 A ammeter. Tl1.e resistance of the thennistor is 12.0 0 
al room temperature. 

a) Instead of sho,ving sn1all variations in room 'ten1peratlue> tl1e 

thermistor is likely to go up in smoke. Explain why: 

In the light of his experienoe, he de.ci des to redesign his simple ciic uit as 
shown in Figure 14. 69. He has a few values of r-e_.:.:istor R to choose fron1: 
SkO, SOOkO and son. 
b) State which value of R would give the biggest variation of V ~ith 

te1nperature. E1:-plain your choice. 

c) State which "~aJue of R would be most likely to cause the same 
problem as in part (a). Again1 e:,....'])lain your choice. 

5V---

R 

ov---
Figure 14.69 Circuit 
d ia gra1m· for question 30. 

G 

D 
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3 1 A single uniform undergy.ound cable linking A to B) 50km 
long, has a fa.uh in it at distance dkm from end A, as sho,vt1 in 
Figu1~e 14. 70. This is caused by a break in t'he insulation at X so 

tha·t ther.i:: is a flow of cu1-rent through a fixed resista.nc,e, R, into 
1the ground. The grou,nd can be taken to be a very low-resistance 
conductor. Potential differences are all n-lleasured ,vith respect to tl1c 
ground, ""~hich is taken to be at O V. 

---d------.- X 50d------

R 

Figure 1,. 70 Circuit d,ieagiram. 

In order to locate 1he fault, the following pTocedure is used. 
A potential difference of 200 V is applied to end A of the cab]e. 
End Bis insulated from lhe ground, and it is rneasured to be at a 
potential of 40V. 

a) What is the potential at X? Explain your reasoning. 

b) What is: 

i) tl1e potential difference between A and X? 

ii) the potential gradient along the cable from A to X 
(i.e. the volts/km)? 

The potential applied to end A is no,v Temoved and A is 
insulated fron1 the ground instead. The potential at end Bis 
raised to 300V, at which point the potential at A is me:asut-ed 

to be 40V. 

c) "What is the potential at X now? 

d) Having measured 40Vat end B, initially, \.Vhy is it that 40V 
has also be,en requited at end A for the second measurement? 

) W'hat is the potential gradient along the cable from. B to X? 

f) The potential gradient fro1n A to X is ,equal to the potential 
gradient froin B to X. 

i) EA~lain why this is true. 

ii) From the two potential gradients that you obtained earlier] 
deduce the value of d. 



3 2 This question is about heating elements. 

a) The po"\\rer dissipa'ted as heat in a resist ur in a circuit is given by 

P = V1. Show that this may also be ,e:JL1Jressed as P = i1 R 
y2 

and P= T· 

b ) A stude:nt goes ,out to purchase an electric heater for their flat . 
U1,e sales person says that to get n1ore heat th y should purchase 
a heater 'With a htgh resistance because P = I2R, but the student 
thinks tha:t a lo,,v resisLmce vtould be best because P = t'· 
Explain who is c,on·ect. 

) 
1Copper is a better conductor than iron. Equal lengths of copper 
and iron ivire; of the same diamete·r, are connected first in 
parallel and then in series as sh0\\-11 by Figure 14.71. A potential 
difference is applied across the ends of each arrangem,ent i11 tum; and 
the pd is gradually increased fro1n a small value until, in each case 1 

one of tl1e wires begins to glow. Explain this, and state which 
wire Mll glow first i-r-1 each case. 

Case 1 Case2 

Figure 14.71 Copper and iron wi re co nnec ted ,in d'iff.ere,n t arrangie ments. 

d) A surge suppressor is a device for preventing sudden excessive 
flows of current in a cin:uit. It is tnade of a 1.naterial whose 
conducting properties are such that the current flowiI1g through 
it is directly p roportional to the fourth po:\ver of the potential 
difference across it. If the supp1~essor t ransfers eneirgy at a rate of 
6W when the applied potential difference is 230V, what is 
the po,ver dissipated ,.vhen the poterrtia.1 difference rises to 1200V? 



Maths in physics 

Physicists use matl1S to explore ho\\r quantities are related, and to 
p1-edict how they depend on each other as changes are made.. Maths is 
used instead of words to describe haw quantities relate to each other in 
different situations using equations . • A.n ·equation can be rearranged to 
investigate different quantities> o:r values can be substituted to predict 
unknovm ,quantities. 

In this chapter we will look at maths skills such as handling data I algebra, 
graphs, and geometry and trigonometry~ 

Maths skills 
In physicsj aU 1neasurements include a nun1ber and a unit) for example 
3.00 x l081n.s- 1

> 0.510 999MeV and 4.562] . The. unit gives the number 
a context: for example , thne measured in hours is not the same .as time 
measured in seconds. 

Base units 
A system of base units is used to create an internationally standardised 
system. so that n1easuren1ents n1ade in diffei-ent countties are directly 
comparable. These base units are: 

• length in metres (n1) 
• time in seconds (s) 
• mass in kilograms (kg) 
• ele.cuic current in an1peres (A) 
• temperature in kelvins (K) 
• amount ,of substance in moles (mo,l) . 

These units can be combined to give other units, .such as those used (or 
frequency (Hz, or s-1), acc,eleration (ms-2) and force (N' ,o,r kgm s-2). 

Converting b,etween1 units 
Prefixes are used for very small or very large measurements. For example~ 
dislances can be measured in lon or in mm depending on their value. 
There are so1ne standard prefixe5 you need to be able to :rccogni5e and 
use~ which. are sho,vn in Table 15.l . 



When ca lcu lating cross-sectional 
area . the pref ix terms wi ll be 
.squared. For exa.mpte, the cross­
sect~onat area of a wfre 0.3 mm in 
radius ~5 1[ X 0.32 X [1 o-3!2 m2 = 

1t X 0.09 X 1 Q,-b m2,or 2.83 X 1 (}-7 m2. 

p E 

What happens to the 9ravitationa1l 
force between tvi/o masses, M 
and m~ wh eri th e di·stance, r, 
se pairaHng them is doubled? 

Answer 
Use 

F GMm 
, - ? 

F GMm 
2- [2r}2 

GMm 
09 4r2 

=1P1 4 

Table 15.1 Standard prefixes 

Factor of 10 • - I I 

1 n-1s fe:mto f 
' 

fm - femtometre 
l0-12 pico. p ps - pico,second 
, o-9 na.no. n n1m - na n,01m etre 
10-6 micro.µ µg - ~i crog1~a,m 
10-3 mill1i. m m,m, - m i1Lli'metre 
1 Qi-2 ce nti. c cl - ce nti liltre 

103 ki Lo, k k - kilog ram 
106 me a. M MJ - m,e a·oule 
109 gi a.G GW- gi awaitt 
1012 tera~ T TW - teraw a tt 

To convert between units with differenl prefix,es: 

• convert the prefix into appropriate powers of ten\ for example 900 run 
becomes 900 x lo-£>m 

• eomplete the calculation , combining po,vers of ten . 

Here is an exam p1e. 

P= I2R 

= 300nlA x 300m.A x 800k0 (substituting values) 

= 300 x 10-3 Ax 300 x 10-3 A x 800 x l03 11 (conven ing prefixes) 

= 72 OOO OOO X 1 o (-3-J+J) (gathering terms) 

= 1.2 x 104 vv, or 72 kW 

Decimal and standard form 
Quantities sucl~ as 3420. 7 t1.1ay b e expressed in standard form. In this 
case) vrrite down the number bet\veen I and 10 ) and add a tenn to indicate 
the correct power of ten , for exampl,e 3.4207 x 103. The nun1ber of 
decimal places you use indicat es the p recision of the number. For example, 
3."1-207 x 103 is more precise than 3.4 x 103 . 

Ratios, fractions and percentag,es 
Ratios compare one ,qua11tity with an,other. Norn1.ally ratios are shown 
mth the two quantities separated by a ,colon. A ratio of five neutrons lo 
six p1-otons in a nucleus is shown as 5: 6. It is best to reduce the ratio, to, its 
sin1plest form. For exan1ple1 5 : 15, can be \\-Titten as 1: 3. 

What rs th e ratio of th e vol·u me of two cubes of edge length a a11d 3a? 

Answer 
V2 f3a]3 

V, - a3 

= 27 

l: 
QJ ... 
er 
~ ...... 
~ 
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Fractions represent the proportion of a whole unit. Fractions are vrritten 
showing the number of parts there are divided by the 'total number of parts. 
F,or example ! means there are thTee pan;s out of a total of four parts. It is 
best to :sl1ow fractions reduced to their sin1ples1 forn1. For exan1ple .f

2 
can be 

-. .. n·tt 3 w 1 . en as 
4

. 

Percentages mean parts out of a hundred. For exam ple, if the efficiency 
of a device is 56%J 56 joules are usefuUy transferred for every 100 joules 
supplied to the device. \Vhen taking measurei.nents using a metre ruler 
marked in mi.llin1:etr. s" a student states her r ading as 35mm :1::l mn1. The 
perc,entage uncertainty is f, x 100% = 2.9% . 

To measure perc ntage change) divide the actual change by the original value 
and multiply by l 00% . For exa1nple, if the potential difference drops from 
8.8V to 6.SV~ the actual change is 2.3V and the% change is j x IOO°lo = 26%. 

Estimating results 
You may have to estimate the effect of ,changing variables on your 
measu.rements or calcula tions. 

Estf mate the effect on the current in a circuit if the 
d1iarmeter of the wi,re doubles assumi1rig the pd across 
the wire remaf ns the same. 

Written mat he mat1 ea lly : 

Answer 
The relevant :relati!ot1ships .are : R = ~ and I=;. 
Since resistance is proportional to 1/cross-sect.ional 
area. dou b lfn g, the d ~a meter reduces resi,sta n ce by 

So 

a factor of four: Reducing: resista nee by a factor of 
four r n creases the curren t fa ur-fold if the voltag.e is 
constant. 

Using calculators 

= ~ 

Calculators usually use the B01DMAS rule: brackets, ordei-s (i.e. powers and 
roots); divide mukipl}~ add, subtract. lf you don,t use brackets ca1-efuUy or 
apply operators in a certain order, operations may not apply as yo,u expeC't. 
For example (3 + 4)/(5 x 7) = 7135 = 0.2; could be entered as: 

• (3 + 4)/(5 X 7) 
• (3 + 4) ~ 5 ~ 7 
• 3 + 4 + 5 ... 7, which give-S the wrong anS\Ver 

lo raJse numbers to a cenain power, use the [exp) button on the calculator. 
For example> for a number ]ike 3.00 x 108~ type in 3 [exp]B. There is no 
ne.e.d to type in 'the final zeros. For 6.63 x 10-3\ type in 6.63 [exp]- 34, 
ahhough some older calculators require: 6.63[expl31'- . Ch eck your own 
calculator and practise. 



To check il you r calculator is set to degrees or radians, press the [mode] 
bu tton until this ch oice is displayed, and press th e number con~esponding 
to the setting you ,van t. 

To calculate sin e, cosine or tangent) type in the functi,on you want followed 
by the value. For example, find cos 45° by-pressing [cos] 45 ·while the 
calculator is in the degrees n1ode. 

Usually n is entered by pressing the [shift] button follo~ted by the [eJL-p] 
button. To find sin n:, set the calculator to the radians mode, then type in 
I sin] [shift 1 [ ei1?]. 

To find degrees or radians ,~lhen you have been given sine, cosine or 
tangent) check the ca]cubtor is set to degrees or radians as required. If you 
are asked for cos-145°, type in [shiftHcosJ [ 45]= 

~ -····················································································································································: ! TEST YOURSELF i 
• • 
II 

: 1 
• + + 
+ 
+ 
+ + ... 
• • • • • • • • • + 
+ 

Write down the correct un it for t hese quant jti es: 

a) ve loci ty 
b] res istivity 

cl dens~ty 

d l frequency . 
: 2 Convert betwee n these units: 
+ i a) 2 ho urs ex pressed in second s 

i b], 300 mm3 expressed in m 3 
• 
: c] 2 eV expressed in j oules. 
+ 

• • • 
5 Esttimate th e effect of changirlg the named variab le: i 

al the effec t on ktn et1c ene rgy of dou bl1 n g velocity i 
whe n KE ;: fl1v2 ~ 

bi the effec t of do ubling the dja,meter of a: w ire : 
• 

on exten s~on. lil. whe n t he extension is inversely i 
• 

proportiona t to the cros s-sect ional area of : 
• 

the w ire : 
• 

cl the effec t of halving th e wavelength, A, on fri nge i .. 
spaci ng, w. w hen: : 

• 
: 3 Write these numb ers rn s tandar d form : 

w : W=s : ... 
... 
: a) 0.5109· 
• 
: b] 3600 
• 
: cl 300 00(] 000.00 
+ 
+ 
: d] 0.009 354 
• i 4 Ca lculate th es e qua ntities: 

• • 
[O and s r emain co nstantL : • 

6 Enter these nu mbers i,n your calculator. Write down 
th e resu .lt. 
a) 6.63 :x 1 o-34 x 3JJO )( 108/400 

• .. • • • • • • • .. 

i a] the eff ic iency of a power s taho n generatrng 
b) [341 j 112 

cl tan 34° 
d] sinx/4 

• • • • • • • .. 
• • • • • • • • 

+ 
: 600 MW outp ut fro m a power in put of l 500 MIW 
+ 
: b] the volum e of a sphere with radius 3.4 mm 
! ,vo lume of a s phere is ~,u3L 

• • • • • • • .. • ,i 

········· ··· ····~····· ························· ············· ·······~···· ·········································· ····························· ........................ ~ 
o~~~~~~~-

H and ling data 
ln physics 1 it is important that you understand the significance o( numbers 
you may calculate or measure. 

Significant figures 
The results of calculations can include some numbers that do not tell us 
anything important. We can ch oose to use a particular number ,of significant 
figures so that we on]y include numbers that tell us something u seful. For 
example, the mass of an electron i.s often given as 9.1,0938291 x l(t=]l kg, 
"'rhich is an approximate. value. You only need to quote tl1e mass of an 
electron to th ree significant figures: 9. 11 x 10-31 kg. 
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before you round down to the 
correct number of srgnificarnt 
figures. If you round down too 
early, your answer may be wrong1. 
Too many s~gn1ificant figiures 
oversta,tes the precisf on. 

To Vfnrk out the nu1nber of significant figures , coui-1t up the nun1ber 
of digits remembering that: 

• .zeros bet~leen non-zero nun1bers are significant (e.g. 3405 has 
four significant plac,es) 

• z,eros after the dechnal place, or with the decimal place shovn1> are 
significant (e.g. 34.50, 3450. and 34.05 have four significant figures) 

• leading zeros are nol significant (e.g. 034 .5 has three significant figures, 
and 0.00136 has three significan:t figures.) 

• trai]ing zeros ,vith no decimal place shown are significant (e.g. 3450 
has four significant figures and 0.04500 has five significant figures) . 
However, 'the significance of trailing zeros in a number not containing 
a decimal point can be ambiguous. For example1 it is not always clear 
,vhether a number such as 6500 is precise to the nearest unit (and 
just happens to be a.n exact mu hiple of a hundred) or whether some 
rounding to the nearest hundred has taken place. The use of standard 
form, 6.5 x 103, gels around the ambiguity; alternatively you can just 
write 6500 (3 sf). 

To reduce the nurnber of significant figures; you should round up if the 
final digit is five or more, and round dovtn if the final digit is four ,or less. 
For example., 

• 3405 has four significant figu.res and 3410 still .has four significant 
figures. So) to write the nu1nber to th1~ee significant figures you ne.ed to 
\Vrite 3410 or 3. 41 sf x ICY. 

• 3.46 has three signifie:1.nt figures but 3.5 has two significant figures. 

Significant figures in calculations 

The choice of significant figures in experiments is important as it gives 
us inf onnation about the p,recision of the equipment. There is more 
in fo1m.ati on about significant figuTes in Chapter 16. 

vVhen you carry out a calculation, your anS\Ver n1ay have 1nor-e significant 
figures than the values giv,en in the questions. For example, j~ = 3. 75. TI1e 
answer has three si.gn.Hicant figures but the data only has t,vo significant 
figures, so you sl10,uld give your an5'ver to two significant figures , 3.8. This is 
because i.ncr.easing the numbers of significant figures suggests the precision 
has itnproved. 

Arithmetic means 
To calcula·te an arithmetic mean total all th valu~s to be averaaed and divide· 

I 0 

the total by the numbe,r ,of readings. For example, a student m,easures the 
warvelength of a ,v11·ve on a. slinky five times: 41 cm~ 43ctn, 42cm~ 46cm, 45·cm. 

The average is '41 + 43 +~2 + 46 + 45l = 2;'1 = 43 .4cm, or 43 cm to t~ro significant 
figures, Vithich is appropriate for the accuracy of the measurements. 

Probability 
Probability measure-s the chance of something happening in a particular 
time. ]t does not mean this will definitely happen in that time . Nuclear 
physicists say the probability of a nucleu5 decaying in uniilt time is a 
constant 1 called the decay constant. This constant has units of s-1. 



Order of magnitude 
Often in physics, we are satisfied with an approximate ansv.rer. For ,example, 
we can make rough predictions knowing that the mass of an electron is 

about two thousand times smaller than the mass of a proton (or 103 times 
smaUer to the nearest order of magnitude). For n1ore accurate. calculations 
\\o"e n-iust use exact ·values, but order of magnitude calculations ·help us 
check calculati,ons I rule out options and make predictions. 

For an order of magnLtude calculation, you sho,u]d; 

• n~ress values in standard formc, for exan1ple a v.ravelength of 700nm 
,c,ould be ~1\itten as l x 10-6 m (or as 7 x 10-7 m) 

• when numbers ar multipli d povters oft n are added~ for example 
105 X 109 = }014 

• v.rhen numbers arc divided 1 poweis of ten ar,e subtracted for example 
105/10° = 10-4 

• some values can be approximaited easily, for example rt- is about 10. 

For example~ \\-.;hat is the energy of an electron travelling at 10% o,f the 
speed. o f Hgh1? 

KE = ix 9.11 x 10-31 x J x 101 x 3 x 107 (exact) 

= ~ x 10 x 10-31 x 10 x 1014 (approxin1.ate) 

= i x 1o(l-3l +l+l4) = 0.5 x 10- 15 J~ which is very close to the answer 
calculated using the values given: 0.40995 x: 1 o-15]. 

Identifying uncertainties 
This topic is covered in more detail in the Cl1apter 16. 

Uncenainties are shown as an absolute vaJue1 e.g. 5.2 :t: 0.2 (so its value 
lies bet\veen 5.0 and 5.4) OT as .a% uncertainty> e.g. 5.2 ± 10% (so its value 
lies between 4. 7 and 5.7). The-re are some general rules to follow when 
combining uncertainties in data: 

• to multiply or divide nvo quantities, add their% uncertainties 
• to add or subtract quantities, add their actual uncertainties 
• to square a. quantit}~ double its % uncertainty; if it is cubed, multiply the 

% uncertainty by three. 

~ ·····················································································································································: j TEST YOURSELF i 
; i 7 Ca lcu'late the avera,ge of this data~ quoting the and, then after three minutesj the number of i 

i resu lt to the appropriate s~g nif ica nt figiures : 9.445, undecayed nuclei is 960. i 
I 9.663, 8.567, 10.345. 11 a) Calculate the vo lume of a wirre, length 1.00m ! 
! 8 How many sig,r,ificant figures have these numbers :1:: 0.01 m a,nd cross-sectional diameter 5.6 ± i 
: got? 0.1 im m ,[volume of a w ire is rrr2ll. i 
: : 
: a) 53 b) 5. 30 c] 0. O 0530 d] 53 x 105 bJ Calculate the o/o error a rid abs ol'Ute error. : 
' . 
: 9 Ca lculate the volu.me of a -c ube of s~de 3.4rm, 12 Make order of magn itude calcutat ionis for: : 
! quoti.rig yo ur answer to the appropriaite number of aJ the vo lume of Earth: its rad ius is 6378 km [h~nt: ! 
I si g:n ificant flg ures. volu me of a s p n ere is '

3 
w 3} E 

' . ! 10 Ca lculate the decay consta nt, 1. i f a sa,mple of b) the mass of Earth; its density is 5540 kg m~3. i 
• • : radioactive materia l has 1 ODD u ndecayed nuc lei : 
• • • • • • 
: ...................................... .............. .......................... .................................. .............. ...... ................................. lllllli. 
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0 Algebra 

Table 15~2 Symbols used in equations 
and their mean ings 

Use lb rackets to 1make clear whk h 
order to appty th,e operators. + - x /. 

Equ ations desc1ibe a physical situation using mathematical syn1bols. FoT 

example> by writing: 

(v - u) 
a= .......... ---

t 

\\re 1nean acceleration equals the change in velocity (fina] velocity minus ,original 
velocity) divid d by the tin1e taken. 

Y,ou. are expected to recognise and use the different symbols ln equations 
sho\vn in. Table 15.2. 

> 

< 

>> 

<< 

· - ---~ 
Equ at to 

Greater than 

Less than 

Much g r'1!ater than 

D iffe re nee betwee n. or 
eh an ge in 

Approxi mately eq
1

ual to 

Pro por tion al to 

Solving equ,ations 

x= 3 1means: x equa ls 3 

x > 5 means: x is greater than 5 

x < 8 mea,ns: x is less tha ni 8 

x >> 15 means: x is mu eh g:reatQr than 15 

x << 6 mea,ns: x is much less th;;;in 6 

h.x m ea ns: a cha nge in x. or the d~Herence 
betwee,n two readings of x 

x ~ 7 ,means: x is approxjmatety equa l to 7 

y oc x 1means: that x is proport1ional toy 
[or; = constant] 

I 1 ... 
I . 1 

To solve 001. equation1 substitute values for each quan'Eity using infonnation 
from the question . Make sure that you use consistent units , for exatnple 
conve1t. all tit11es in to seconds. Then carry out operations in tl1e correct order: 

• con1plete operations inside brackets 
• exponents (once- lhese are isolated) 
• n1ultiplication an d division 
• addition and sub traction. 

Rearranging equations 
Often you u1ust change the subject of an equation. Al~rays d,o the satne 
thlng to ea.eh side of the equation in the satne order. For exan1ple, to 
calculate the original velocity, u: 

a- (v -u) 
- t 

Multiply each side by t 1 giving: at= v - u 
Add u to each side, giving: at + u. = v 
Subtract at !r,om each side, giving: t.i = v - ,at 

R arranging non-Un ar equations 
S01ne equations ar,e non-linear, but the same rules apply: do the same thing 
to each side. 

For example, KE = lmv2. To make v the subject: 

Multiply each side by 2; giving: 2KE-=:; mv2 

'Divide each side by m, giving: v2= 2KE 
m 



Take the square root of each side, giving: 
1 

v = (2!.E)2 
Sol vin_g quadratic equations 

A quadratic equation includes x and x2. If you have to solve a quadratic 
equation in the fonn a.x2 + bx + c = 0, when a, b and c a.re constant, then the 
general solution is: 

- b ±°"_, b2 ___ 4_a_c 
X= 

2a 
At A-level, the most commonly used quadratic equation is the equati-0n of 
motion: 

s = ut+¥t2 
Remember that terms in the ectuation become zero if they involve a q,uandty 
that is zero. It often simplifies your calculation if you substitute in values 
f1~om the question before using the general solution. 

For exaiuple, a book faUs fyom a shelf that is 3m 'high. How long does the 
book fall before it reaches the ground? 

The information fron1 the question gives: 

s = 3m 

u = 01ns-1 

a = acceleration due to gravity; 9 .81 m s- 2 

Substituting into 

s :l ut + lat2 ' 2 

gives: 3 = Ot + ! x 9.Blt2 
2. 

Since Ot is zero, the equation becomes: 

3 = ~ X 9.8lt2 

Multiplying both sides by 2 giv,es: 

6 = 9.81t2 

Dividing both sides by 9. 81 gives: 

0.611 = t2 

Taking the square root of each side gives 

t = 0.78ms-1 

~ ... , .......... , .......... , .................. ............................................................ , ..... ~ .... , .......... , .......... , .......... . 
j TEST YOURSELF j 
+ = ; 13 Exptai,n in words whait th ese equations 1mean: bi Hooke"s Law states force~ F_ equa ls constant, k. i 
i a) a - ~where a is acceteration~ vis veloc ity and m u lti ptied by change in length. l i 
i t 1is t iime c] ve iloci,ty~ v, is th e disp lacement s. div ided by ! 
~ b] sin 9c:;; ~where n1 and n2 aire ref ractive the t i m,e, t. i 
! indices for mater,iat s 1 and 2. and 9c i1s the 15 Rea rra·ng.e t hese equat ions; i 
t - • 

: cdtka 'l angle. a)' E = .mc2 to make c the s ubj
1
ec t : 

• • ! , 4 Express th ese ideas as equat ions . using sym.bols: b) v2 = u2 + 2as to make .s th e subject ! 
! aJ 1, the de IBrogUe wavelengith , is proport iona l t o cJ n1,sin1 = n2 sin2 t o make n2 t he s ubjec t ~ 
~ J. w here p is momentunn ~ h is th e co nstant of d] V= J(R + r) to m aker the subject. i 
! proport1ona li,ty : : ~= •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
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: 16 Calculate the answer using the data gi1ven : cl Use v = u + at to calculate the final veto city. v. : • • • ) 5 1 • : a, Use c = f A to calculate the fre quency, f. of Ug ht of an electron travelUn gi init ially at 3 x 10 ms·- : 
~ of wave length ~ A. 900nm. Th e s:p eed of Ug ht. c, and accelerabn.g far 3 seconds at a rate of 2 x ~ 
i r s 3 >< 1 n8 m s-1. 104 m s-2. i 
i bJ Use the eq

1
uatron ~ ~ f, + i to ca lcu late th e d] Use v2 ~ u2 + 2as to calc ulate the acceteration ! 

t

i combined resistance,
1 

R~ for res~stors of of a car that braikes. reducing rts speed from ! 
• 1'5 ,m s-1 to 3 m s-1 in a distance of 30 m. : 
: re s i. s ta. n c e 3 0 0 oh ms and 5 0 0 ohm s I which a re : 

I connected in parallel. j 
• • 
=••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••~••••••~••••••••••••••••••••••••w••••••••••••••••••••••••••••••••••••••••••• IIIIIIIIIIIIIIIIIIIIIIIIII .... 
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G rap h s 

Figure 15.1 Graiph of y = kx. where k is 
a· constant. 
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Figure t5.4 Graph of y= 1/kx. where k :is 
a constant. 

Graphs display useful infonnation about the relationship between quantities 
at a glance, for example the bel, aviour of a capacito,r or a moving object. 
The line ,of a graph can often be extrapolated (extended beyond the region 
in which data has been collec ted) ,or to make pred ictions ah out b ehaviour 
under different circumstances. 

Recognising graphs 
You should ~ecognise , and be able to sketch., tl1e shape of these graphs in 

Figures 15.1-15. 7. 

X 

Figure 15.2 Graph of y = kx2,, where k i.s a 
coins ta nt. 

y y - sin x 

Figure 15.5 Graph of y = sinx. 

y 

Figure 15.3 Gra·p h of y = 1/k.x2• where k 
is a consta,nt. 

y Y• COS X 

Figure 15.6 Graph of y = cosx. 

X 

X 
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Figure Hi.7 Gra ph of y = e-x. 
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Ume/s 
Figure 15.8 Catcu Lati ng1 gradient. 

Plotting graphs 
The follo'Wll-ig rules for plotting graphs a1~e based on exam boa.rd guidance. 

• You usually plot the independent variable (what you change) on the 
x-axis and the dependent variable (\\rhat you measure) on t'he y-axis. 

• CJ1oose the scale so plon.ed points fiH at le,ast half of the graph grid. You 
need not alvtays include the 01igin. 

• lab 1 axes 1Nith the quantities being plotted going from left t,o right. 
• Choose scales that are easy to Vlo~k ,vith. For example avoid gaps ,o,f 

three and label the scale reasonably frequently. Make sure the spacing and 
separation are regular. For ,example, ,each large square is "rorth two units. 

• Plot points accurat,e t,o half a smaU square. Use a ruler to h lp if necessary 
and d,o not plot points in margins. Use a sharp pencil. 

• The Hne (,or curve) of best fit should be a H11e dra,;rn that has 
approximately equal numbers of points on either side of the line. It does 
not need to go through the ortgin. 

Using straight-line grap1hs 
A straight-line graph has the form.: y = n1x + c ,-vhere m is the gradient of the 
graph and c is a constant. Use these rules for straight-line grap,hs. 

• The equation n1ust be in the f onn y = mx + t\ for exam ple v = u + at. 
Relate both equations . For exan1ple, y = v, m = a, x = t and c = u. 

• In some cases you should process data b efore plotting poin ts. For 
exa.mplc1 v2 = u1 + 2as has .a straight-line form if you ·plot v1 and s. 

• The intercept of the line with the y -axis represents the constant) c. If the 
line goes 1hrough the origin1 c is zero. 

• Draw a large triangle ,vhen calculating th e gi1 adient of the graph. 

• Use the triangle lo find the change in y for a conespon.ding change in x. 

The di 
. lly 

1 gra ent 1s rix· 

• Since the gradient is :, for graphs with t plotted on the x-axis, the 
gradient 1~epre.sents rate of change. For example the gradient of a 

1 . . h . A"V 1 • ve oc1ty-un1e gr:ap 1s Ar> or acce1erat1on. 

Using curved graphs 
Straight-line graphs should be plotted! if possible, because anomalous 
points can more easily be seen. However, sometimes a non-linear function 
is complicated and ai curved graph has to be plotted. Examples ,of cur·vedl 
graphs include motion graphs for non-uniform a,cceleration. Use these rules 
for curv,ed graphs. 

• A curve of best fit should be smooth Vi,,ith equal numbers ,of points above 
and belov.-· the line. 

• To, calculate the gradi nt at a certain point, draw a large triangle ,vith 
the hypotenuse as the tangent to the curve. Use the triangle to, find the 
,change in y (or a corresponding change in x. TI1e gradient is t. 

• A ,curved graph sh ows a non-linear relationship; so the gradient 
changes. For example, the gradient at a pani,cular time on et non-linear 
displacement-time graph shows instantaneous velocity. The average 
velocity is found by comparing readings over a whole section of 

the graph. 
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Figure '15.,9 Calculating gra,di1en:t on a curved g·ra p h. 

Calculations using graphs 
The area. under certain. graphs has a specific physical meaning: 

• the area under a velocity-dme gniph represents distance traveUed 
• the area under the graph 1of force against extension represents ,vork done 

by the force 
• the area under the graph of po1tential difference across a capacitor 

against charge stored on the capacitor represents the ene1·gy stored in 
the capacitor. 

If you are using a grapl1 to calculate area~ the axes must include 
y = 0, x = 0. This is needed if you .are calculating a change in a1·ea~ for 

exan1ple the additional energy stored when charge on a capacitor increases 
&om Q to Q + flQ is V ~Q . 

You n1ay need to divide the are:a under the graph into sections~ either to 
make approximations if the line is curved or if you are calculating a change. 
The fonnula to calculate the area of a triangle is 

Figure 15.10 The shaded area represents 
the extra energy stored w hen the charge 
increasQs from Q' to Q + AQ. 

! x base x heigl1t. 2 . 

Re1ne1nber to use the units sho,vn on the axes) ta.king special care with 
prefixes to Vvrite down the co1TeC't ·values for the calculation. 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : 
TEST YOURSELF J 

: : 1? Sketch a graph, labeH~ng the a·xes, of: : Velocity [ms-1) 

al V IR fVon the x-axis~ I on the y-axis] ; 

b) E - lmv2 tv on the x-axts; Eon the y-a:ds ) t 
2 i 

' 
cl E-hf, IA on the x-axis; Eon the y-axis) in this case A I 

ea n only be pos itive. i 
18 Use the data in this tabte to plot a correctly labelled greph ! 

of v aga,inst t. ; 
I 

0 4.0 

1 5.2 

2 6.4 

3 7.9 - 4 . 9.0 

5 10 .1 

19 Exp lei n w hat you need to plot so each of these equations ! 6 11 .3 
produce stra·ight- li ne graphs. Sta,te the phys ica l : 

• 7 12.6 

• • • • 

sign if i ea nee of th:e y intercept and the gra di1er,t. J 
: al s = ~ atl {a is constant! j 
• • 

8 13.8 

i b] h.,c :::; q> + "¥Tiv21(h, c~ m a nd q> are consta nt] ! 
• .II. • • pl. • i cl R = -A Ip a nd A are constant]. ~ . ~ . 
• • • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••••••••••••• 
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• • • • • • .. 
• • • ,. 
; 
• • • • • ... 
• • • • • : 
• • 
i .. .. • • • It • • • • • • • .. • • • • • • • • • • .. • • • • .. .. 
• • • • • • • .. 
• • 

9 
20 

21 

Use th e gra ph i;n Figure T5 .1 l to calculate the resis ta nce w hen 
the cu rrent t hrough a non-oh mjc filam,ent bu:tb is 0.4A . 
Use th e velocity- ti me gr ap h in Fig,ure 15.12 to ca tcula.te . 

al a ccete ratiio n w hen t ~ 20s 
b] d[sta nce travelled between O seconds and 20 seconds. 

4.0 

3.5 

3.0 

2,5 
~ 
~ 2.0 
~ 

1.5 

t o 
0.5 

0 ---t-'=----"C........-.....------'c.......,_--~~---,-~~---,-~-'-----,-~~ --, 

Q, n.1 0.2 a.3 
cum~nt/A 

Figure 15.11 Graph for e1 fi l a,ment bulb . 
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F=igure 15.12 Ve locity- t ime graph. 
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G e o met r y and trigonometry 
Many physica] situ ations ar e described u sing diagrams) foi- example> the 
interaction bet\veen nuclear particles, m echanical systetns in equilibrium 
and tbte n1otion of waves . 

Calculating areas and volumes 
Often you v;,,ill be given a diagran1 and asked to read values from it to use Ill 
a calculation . Do be aware that units may vary for different m easurements. 
There arc som e b asic rules to r-en1ember as shoM 1t in Tables 15.3 and 15.4. 

Table 15'"3 Ca lculaHng ar ea,s 

Triangle 1 base x height 

Circ le of radius r nr2 

Rectangula,r block 2ab + 2bc + 2ca 
of si1des a., b and c 
Cyl:inder of radius 21rr2 + 2xrh 
r a.nd heiQht h 
Sphere or radius r 4,1tr2 

Table 15.4 Ca lcu'lat1ng voL,u me·s 

Shape 

Ree tang LI lar block abc 
of s ides a. band c 
Cyli rid er oif ra dlus nr2h 
:r and helght h 

Sphere of radius r 4nt3 
3 

Example of calculations using th iis 
inform,atf on 

Area under a v-t graph. 

Cross-sectional area O·f a wire~ chieck if you 
are g,iven the di,ameter or the radtus 

Ca lcu'la,te energy ra d1iated by the Sun 

• • • : - : ~ 

Calculate densi ty 

Calculate densi ty 

'1 
C"l) 
0 
3 
et> ,..... 
~ 

Q.a 
:, 
~ 

""'" ..., 
ea· 
0 :s 
0 
3 
t.l) 

~ 
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Adfacent (A) 

Figure 15~13 Right-angted triang:te. 

Figure 15.14 Resolvi ng a force on a,n 
in clined p'La 11e. 

Other information that 1.nay be useful: 

• the circuntlerence of a circle of radius r is 2nr> this n1ay be used for 
questions involving orbits of satellites, for ~xample 

• the dian1eter., d, of a circle of radius r is 2 r. 

Angles in triangles 
You may need to calculate the angles in a triangle. These rules apply: 

• the sum of the intemal angles in a triangle is 180°. This may be used to 
interpret force diagi-a1ns, for example for obJects on a ramp. 

• for a. right-angled triangle ·Of sides a, band c, Pythagoras' theo,rem states 
that : a2 + b2 = 2-. This may be used to calculate the magnitude of a force 
or to resolve fore, s into components. 

Sine, cosine and tangents 
Right-angle.d triangles are used to define three functi,ons: sine] cosine and 
tangent. The sides of a. right-angled triangle are labeHed in relation to the 
angle as opposite (O,), adjacent (A) and hypotenuse (H) . 

si.11. B = 0 1/H 

cos 8 = A/H 

tan fJ = 0/A 

Y:ou can calculate an unknown value for the side o[ a triangle knoVving the 
length of one other side and the angle) for exan1ple on an inclined plane. 
Ch eck the diagran1 carefully with calculations involving an inclined plane: 
the trian gle to use has the weight as the hypotenuse. 

A useful equation involving sine and cosine is: 

cos2 0 + sin2 0 = I 
Con1bining this equation ,vith Pyth agoi-11~/ theo1--e1n for the vector trian gle in 
Figure 15.14, where H is the length of th e hypotenuse: 

H2 = H 2 cos2 e + H 2 sin2 0 

Resultant vectors 
to calculate a resultant vector> either dra,v a scale diagrau1 or use 
calculatio,ru. 

1\1 thod 1: Ora,"· a scale diagram 

• Dra"'"' each vector as an an:o,w whose length and direction col"responds t,o 
the vectors 1nag11itude and direction. 

• o ,raw each additional vector 'With its end touching the arrovthead of the 
i prev1ous vector. 

• The resultant is the vector ,vith Us end to,uching ·he end of the first 
vector1 and its arrowhead touching the a1Towhead of the last vector. 

For example; find the resultant of two forces if force V1 is ION acting 
horizontally and forc.e V2 is 13 N andl acts at 60° to the horizontal. 

• Drnw a scaJle diagram showing the 1,vo forces. 
• Redraw the force V2 vector 'With. its tail touching the tip of vector \ 71. 

Always include arrows l o sho,v lhe direction of the vector. 
• The resultant force 1 R, joins the tail of vector V 1 to the tip of vector V2. You 

can 1neasure ihe vector and its angle from the scale diagrarn, and R = 20N. 



~ 
Figure 15.15 Resolving vectors. 

lf you 1need conditioins for 
equtlibrium, draw a force 
diagram and find the resultant 
force vector. The force needed 
for equilibrium fS equal 1in size 
and opp o s rte Jn d ,i re c t i: o in to t hi s 
resu Lta n t fo rc:e. 

Figure 15.16 When 6 is mea,s,ured in 
radians. e = : . To go round the circle 
once, the a re is 2 nr. so, th e a, n g le in 
radians is 2;' = 2n:. 

Method 2: Calculation 
The cosine 1.-ule can be used to find the r,esultant in the parallelogran1. 
It states: 

R2 = .A2 + B2 -2ABcos 8 

We now substitute in to tlris equation~ vrith reference to Figure 15.15 where 
V1 corresponds t,o, A, and V2 correspo·nds to B: 

= 102 + 132 -2 x 10 x 13 x cosl20 

= 399 

R = ~399 =20N 

The sin rule is used to find the ang]e the vector m kes relative to the 
hod.zontal: 

R _ Vi _ V2 
sin 8 - sin a - sin/3 

Su bstituti.ng, 

20 10 13 ~--- ---
sin 120 sin a sin/3 

sin (3 = 13 x sin 120 = 0 .563 
20 

fJ = 34° 

Degrees and radians 
Degi~es and radians are used to describe angles. Degrees are calculated as 

3
~

0 
of the a11.gle tun1ed through a complete revolution. An angle in radians 

is the length of an arc, s) t11at the angle subtends in a ciocle of radius r. In 
other words) angle in radians ~ arc length I radius. 

You mu.st b e able to ,convert between the t\vo units and to recognise some 
kev values: 

~ 

• 360 degrees= 2n radians, or one fuU revolution 
• 180 degrees = TI radians or half a revolution . 

Sma ll angle approximations 
For very small angles, you can appro>...1mate. values for the sine, cosine 
o,r tangent. This is usefu] \vhen calculating tl1e fiinge separations in 

interference pat'tenu. Vlhen e is measured in radians~ a sn1all angle segm-ent 
approximates to sir for sin 6, tan 8 and e wh-ere sis the arc length and r is 
the radius. The rules a.re: 

• sin 6 ~ tan 19 ~ 8 
• co,s 6 ~ l 

To conven the angle in radians into an angle in degrees, remember that one 
radian is 80 ~ 57.3 degrees. 

,r 
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: TEST YOURSELF .. 
• • 
~ 22 Ca lcu late these quantibe.s to the appropdate 
: s igniflc:ant f f gures: 
: 
:. a.) t he cros s-sec t~onall area of the Earth, 1its 
• : ira di u s j s 6 3 78 'km .. • .. .. : : 
i ... .. .. .. • " • 

I • .. • • • • • • ,.. 
• ! • .. .. .. .. .. .. • • • • • .. .. .. 
• • • • • .. • • • • • .. .. .. 
• • • • • • • • • • • • .. .. .. 
• • • • • • • • • • • .. .. .. 
• • • • • • 

bl the cross-section area O·f a ha1i1r, its diameter 
1is 901,-1m 

cl the surface area of a, spherf ca l light bulb of 
diaimeter 5 cm1. 

23 al Work out the mi:ssi ng angles X, Y and Z 1in 
Figure 15.17. 

y 

Figure 15 .. 17 Ang L~s bQtvl/een pcar;llel Un.~s. 

b] Us in g F"igure 15 .18, expla in w hy a ngle 9 
a1nd a1ng,le a are the same. 

Figure 15.18Angiles on an rnclined plane . 

• • • • • • • • 
c] Using Figure 15.19, calcu late the component at : 

• 
weight pa·ra lle Land p erpein di C·u la r to the plane I 
if 6 is 40° and W rs 120 N. : 

8 

Figure 15.19 iBody on an in,clined p!lane . 

d] Repea,t pairt [c] 1f e is 3.4° and W ~s 67 N. 

• • • • I 
i 

I • i 
: 
iii 
i 
I 
I 
I 
I • ; 

I 
' I 
I 
!I 
II 
II • : 
i • • ' • • 
!I • • • 

24 Resotve these vectors into horizontail a,nd vertical • • • • • • • • • • • • • • 

25 

compone nts: 
a] the veloci ty of a baH moving at 4 1ms-1 at 

an angle of 30° to th e horrzontat 
b] the veloc ity of a ball mov~ng at 12 m s-1 at 

an angle of 45° t o the hodzonta l . 
Convert these angtes from degrees to rad:ians : 
a] 40° b) 175° cl 270° . 

26 Convert these angles from radrans to degirees: 

a] 'If./4 radians bJ O .3 radians cl 1. 6 rad]a ns . 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • 
27 • Use the sma U angle rule to wr,ite down these va Lu es: : 

a] ta n O. 0 1 rad r a ns : • • 
b] cos 0.05 radi,ans : 

• 
c) sin 0.03 rad ians. : • • • 

• • • • ........... ... ............................................. ................................................................................ .............. . . . ~ ........................ ~ 
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Developing practical 
skills in physics 

A successful eArperime·ntal physicist must develo·p good practical skills 
and the ability to 1neasure quantities accurately. Throughout your A-level 
physics course you ar,e expected to carry out practical 'Nork that mll help 
you to develop a range of competencies. 

You will need to be able t.o show that you can: 

• follo\~l written procedures 
• apply investigative approaches and 

methods during practical work 
• use equipment and materials safely 
• make and record observations 

accurately 
• research, reference and r-eport 

your findings. 

The Mars CH1nate Orbiter ,;,vas designed 
to study the Martian climate and 
surface. The launch w,ent well but) on 
.23 Septen1ber 1999, as it '-'~as moving 
into orbit around Ma-rs, communication 
'With the spacecraft ,vas lost . Du ling 
the 286-day journey between EaTth 
and lvlars the thruster rockets tha t 
were being used to· steer the craft were Figure 16,1 The Mars Cliimate 

Orbiter was launch,ed by NASA 
fired incorrecdy. Lockheed Martin, th on H Dece,mber 1998: this space 
company ca.nying out the calculations~ miss1on illustrated the i'm1porta,nce of 
,ver,e \,rorking in imperial units usi ng the c:orre·ct run its in pra.ctica l 
(pound-force seconds) but NASA:s work. 
navigation team vtere e1rpecting the data in metric units (N, wton seconcls). 
This mismatch meant that th e craft was flying t,oo close to Mars. It passed 
through the upper atmosphere of the planet and broke up. Fortunately; the 
mistakes most of us make in our practical work are not so expensive. 

Mea uremen and errors 
ln physics you will make measurements using a range o[ differen t 
instruments including rulers> stop,vatches> electrical multilneters, 
Geiger counters, top-pan balances, Vemier calipers, oscilloscopes and 
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A (" 1 t ic rrot ~s an error that anects 
a1 s·et o,f measure,ments ~n the s~me way 
each time. 

P 11 o ccurrs when the pas iUon of an 
object appears to, be different when viewed 
fro,m1 differrent posftions. This ca1n lead to 
measurem,ent errors. A mirror is often 
placEd behjn,d the point,e,r o·f meters so that 
by U.ning up the pointer and its image you 
know you are avoiding p~raUax. 

... , ............................................................................................. . 
Ar ndom rr r is. an enrorr that affects a 
measurement in an unpredictable fashion. 

thennom.eters. A measurement provides :information about a property of an 
object1 ghing it both a ·magnitude and unit. 

A measuren1ent error occurs \vhen the value that \Ve n1easure is not the 'true 
va]ue1 of fhe quantity being measured .. The 'true value' of 1neasur,ement is 
the value of th e n1easureme11t that would be obtained in an ideal \vorld. 

The error that caused the loss of the Mars Climate Orbiter was an exainple 
,o.f a systematic error. A y s 1 " tnal ic T r H is a measurement that is 
consistently too s1naU or to,o large. This t-ype of e1Tor may be caused by: 

• poor technique (e.g. not avoiding p .. tra Ila. · ~then reading an analogue 
voltmeter) 

• zero error on an instrument (e.g. a nev,-1.on-met r that sho,,vs a value for 
for:ce when there is nothing hanging from it) 

• poor calibrati.on of the instnlmcnt (the scale on a thermometer being 
incorrect so that one degre,e is too large) . 

• or the ;,vrong unit being ,-ecorded. 

A systematic error "'ill not be reduced by repeating measuremen.ts. Hov.rever, 

using different methods or instruments to obtain the same. value will allow 
you to con1pare the results obtained and may idet--itify 1he systematic error. 
For example; measuring the te1nperature of an object using a mercury 
rhermo1neter, an infrared ca1nera and a bi1:netallic strip thermometer ,vould 
allo,tV a comparison to be made between. the instrnmeuts. 

We can also take systcrnatic errors into account by correcting the value of 
the readings taken. For example, if a newton-meter has a systeniatic error of 
+ 0 .2 N then ,;ve can subtract tl1is from our results to obtain a more accurate 
value. 

A randon1 r or occurs ,vhen repeating the measure1nent gives an 
unpredictable different result. The eHect of this type of error is reduced 
by taking repeated 1neasure1nents. Tl1is also allows an. average value to be 
calculated. 

Random errors may arise due to: 

• observer error (e.g. 1N1:1ting do'WTI a m easuren--ient incorrectly) 
• the rea dabi.lity of the equipment (e.g. trying to 1neasu re the height to 

,vhi.ch a bouncy ball rises, ,or reading an atnmeter ,vhen the current is 
changing quickly) 

• external effects on the measured item (e.g. ,changes in an1-bient 
temper.ature or pressure in gas m easurements). 

Figure 16.2 sho\VS the effect that Sy"Stema'tic and random errors might 
have on a set of r,esults. In this example~ the <true results, should produce a 
siraight li,re graph v.rhich p,asses through the origin. 

Utt le random o·r Systematl c error Ran dam. error 
system a Uc error 

Figure 16. 2 Systematk and rrandom errors. 

Rand'om and 
sysh1rnat.lc error 
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P ri~l'l ;show dosety a set of repeated 
measurements are to Qach other. 

a i 1 1is tihe leve I of consist,en cy of 
a set of repeated measurements made by 
the same pelisonj in the same laboratory, 
using, the same method. 

ro , , i I I , y is the lev,el of cons ristency 
of a1 set o.f repeated m-easurements made 
us.ing the same method by different peoptte 
in different labo.ratonies. 

e nsitl i~': a sensiUve instn1m,ent produces 
a large change in output for a smaU change 
in input. 

The quality of measurement 
Once a scientist has carried out an experiment to obtain measurernents , 
they will then consider the quality of the measurements that they have 
taken to ,enable them to draw conclusions about their work. 

While the ~"'Cpetime.nt is being planned, it is important that it is valid. In. 
other vtords, "'e need to b e sure that the expetiment is gohig to measure 
Vv·hat it i.s supposed to be measuring, and that all the relevant factors have 
been contro Hed. 

The .1 u ra y of a measurement describes how closely the measurem nt 
is to the 'true value' of the quantity being 1neasurecl. However, as \Ve a ·e 
unabl to actually take the 'true value', the accuracy is a qualitative idea 
,only and ,ve cannot give it a numerical ,·alue. 

The pr · · i ~ it 11 of a measurement describes how ,closely a number ,of 
repeated readings agree v.,'ith each other. A precise measureinent 'Will have 
very little spread of reS11lrs around the mean. value. However, it does not 
gi.ve us any indication of how cl,ose to the ttruc- value' ,our resuk is. 

The concepts of accuracy and precision can be illustrated using a dart board 
as sho"~ in Figu.re. 16.3 wl1ere \Ve arc aiming for the centre. 

Not precise 
INot accurate 

Pr,edse 
Not .ace urate 

Figure 16 .. 3 Ace ura cy and prec,ision. 

Not precise 
Accurate 

Pre-dse 
A,c,curate 

The precision of a n1easurement is also linked the concepts of repeatabili ty 
and reproducibility. Both tenns describe the consistency of sets o[ results 
collected by the same metl1od. Rep ·atabili1v is the tem1 used when 
t'he measur,ements are taken by the same person in the same laboratory 
over a sh-ort period of time. Rrp1 od t1cil1il it,· is the tenn used wlllen the 
ineasurements are made by different people iu different laboratotie.s. 

For example, if you were m,easuring the re.sisthity of a copp er w~ire .and take. 
three measurements using the same micro1neter iwithin five minutes of each 
other, then you would expect all the results to be similar (repeatability) . 
Howev,er, if S·On1eone else in your cJass measured the san1.e piece of ~ire the 
£0]10'1'-·ing da~ using a different micrometer, there might be more variation 
between your .results and theirs (reproducibility). 

In general, for the ,e:J\.1Jeriments you car1y out during your A-level physics 
course, the measurements wiU be both repeatable and reproducible. 

Ho,vever, in research into a new phenomenon; it may be that measurements 
have not yet be.en shown to be reproducible, or that the exact method used 
mea11s that it is hard to reproduce in another laboratory. 

The sensitivi t} of an instrument is an imponant feature of 1neasurement. 
A sensitive instrument is one that responds with a large change i.n output 
for a small change h1 input. For example) a sensitive analogue a1nmeter is 

one tl1at shows a large deflection for a small change of current. 
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s l rt1on is the smallest o,bservable 
chang,e ~n the quantity beh'ilg measur,e-d by 6'J 

measun ng instrument. 

Measuring instrun1ents also have a csolution , which limits the 
n1easurements being taken. The resolution is the smallest change in the: 
quantity being measuTed by an instrument that gives a measurable change 
in the value. Using a measuling instrument with a greater resolution ,vill 
increase the accuracy of the measur,ement. 

For exan1p]e~ a student is measuring the dian1eier of a metal bar 1hat is 
about 3 n1m m diaineter. They could use a ruler, v.i'hich can measure to the 
nearest 0. 51nm, or they could use a micrometer, which can measure t,o the 
nearest 0.005mm. The tt1icrometer wiU give a more accurate n1easurement 
~rith greater resolution. 

Uncertainties in measurement 
In physics, error and uncertainty are not the same thing. As we have 
S·een, error refers to the differen·ce betv.~een. the measurement of a physical 
quantity and the 'true ·value> of that quantity. In tJ,..'}1erim,ental work 1 we 
try to a.cco,unt for .any h."llOVln errors; for example by correcting for zero 
point errors . 

Any en~or whose value we don't know is a source of uncertainty. Uncertainty 
is a measure ,of the spread or value ,vhich is likely lo in.elude the 'true value'. 
We can quantify the level of uncertainty for a given measure1nent. 

For example, a top-pa11 balance can n1easure to a resolution of 0.1 g. lf the 
value recorded for the nmss of a cube of copper is 21 .6 g~ then the n1easured 
nwss o[ the copper could be between 21 .5 g and 21.7 g. 

We would write the result as: 2 l. 6 g ± 0.1 g. 

Jn this exa1nple the value of uncenainty is the absolute m1certainty. It has 
the same units as the measurement and represents the range of possible 
values of the measure:n.1.ent. 

If a set of repeated measurem:ents are uw.de> then the absolute uncenainty is 
given as l1alf the range fron1 tl1e highest to the lowest value obtained. 

A stud·ent ta,kes the fotlowring m·easurements of length 
at a given value of force during an experiment to 
measure the Young, 1modulus of a nylon thread. 

However. this value hars four sign i,f icant frg,ures~ white 
our measurements were only to a value of three 
s i·g,n ifi ea n t Hg ures, so we wi1 ll give the value for the 
mea·n to th e same nu1mber of sigrrificant figures . 23.1, cm~ 23. 0 cm I 23,.1 cm. 23. 2 cm,, 23.0 cm 

Find th e m easurement and absolute uncertainty for 
these resu ilts. 

Answe,r 
The mean va,tue of the length of the thread 

_ 23. 1 + 23.0 + 23. 1 + 23.2 + 23.0 cm 
5 

.;; 23.08 cm 

Thus; mean length of thread• 23. l cm 

The absolute un certa inty 

'.loo 23.2 - 23.0 cm 
2 

.:; 0.1 c,m 

The m·easureme nt an.d abso,lute uncerta1inty 1is 
therefore: 

23. 1 cm ± 0. 1 cm 



It i.s good pracbice to give the 
ea Lcu laited q1ua ntiity t o the sa me 
number of s, g n i1fl ca nt figures 
as th e leas t a.cc1urate m easured 
quantity. 

When carrying out experin1ents in physics , ·we often take measurements 
from more than on e iI1shument and th.en use these to calculate a value of a 
different quantity. 

If we ar-e adding or subtracting measurements, then to calculate the 
uncertainty in the overall m,easure:tnen t we add the absolut-e uncertainties. 

In other ·words: 

(a :t .a.a) + lb :1: .6.b) = ( a + b) :1: (.6.a + lib) 

(a± .6a) - (b :1: ~b) = (a - b) ± (.6a + llb) 

Where th calculated quantity is derived fr,om th 1nuhipUcation or 
division ,of them asured quantities then the combined percentage error 
of a calculated quantity is found by adding the percentage errors of the 
individual measurements. 

. . absolute uncertain1 

fractional uncerta1111ty = -----,,---­mean va ue 
. absolute uncertainty 

percen tage unc.ertaanty = mean va.[ue x 100 

For example, calculating th e density of a metal cube to \\'ork out the 
uncertah1ty in the 1neasureme"nt of density; ,Ne can u se either the fractional 
uncertainty or the percentage uncertainty of the measurements for n1ass and 
volun1e. 

In general) if 

a = be 

or 

then 

peICentage error in a= (percentage error in b) + (percentage error in c) 

The potential djfference across a res is tor is measured 
as 1 D.OV ± 0.3V. Th e cu rrenit through the resistor is 
m.easured as 1.3A :!: 0.2A. What is the percenta,gie aind 

absolute uncerta ,inty in th e resi stanc e of th e :resis tor? 

% uncertainty in current = ~:~: x 100% = 15% 

0/o uncertajnty in res istance~ o/a U"ncerta inty in pd+ 0/o 
uncerta1i nty in current 

Answer 
resistance ~ potent ial difference 

current 

-- 1 O.OV 
1.3A 

= 7.70 

~ 3°/o + l So/o 

180/o 

absolute uncertainty . (value x %
1 
~~certaint)'.I 

resistance - 7. 7 0 ± 1.4 n 

o/o UnCerta inty in pd ~ ,0/
0
\ X 100% m 3% 

_:._::_.:..;:___;._~------------------------------------.. 
If you go on to study physics or engineering subjects at university then 
you may learn about more detailed m ethods to estimate uncertainty in 
measurements. However, the tre-atment given in this chapter is sufficient for 
a first look at uncenainties. 
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: TEST YOURSELF i 
• • • • • • f 1 A student is calcutattng1 the dens~ty of tiin. The 2 A spring ex tend s by 3.2 cm w hen a f or ce of 10 N ~ 
! s tudent 1m easures th-e dim en sions of a small is appili ed t o it. The absc 'lu:te uncerta inty in t he ! 
f solid tin cube as 20 m1m x 20 mm x 20 mm. each extension is 0.1 cm and the un certa,in ty ,in the j 
i d im ension acc ura te to 0.2 mm. The mass of the force i1s 0.1 N. T he sprirtg constant, k, of the spring i 
i cube is 5-8.2 g ± 0.2 g. Calcula·te: is g1iven by the formula sprlng co nstant - force/ ! 
! a] ·its volume exten,sion. Ca lcu late the spr in g co-nistant including i 
~ bi the percentage uncerta inty in its volume th e per centage uncerta inty for the spr ing1

• j 
f cl its dens ity in kg m -3 3 The bme 1it takes for a,n ath lete to run H)0.00 m is i 
I d) th e absolute uncerta,inty in its dens:ity. measured as 9.63 s. The uncertainty in the distance ! 
• is O J) 11 m a n d in the t i m e is O. 0 1· s. C a tc u late t h e • • • • • i abso lu1te uncerta i1nty f n the aithlete·s speed. i 
• I 

=······················~········································~························································· ··············· ••11
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E: 

o~~~~~~~-u n c r ainties in raphical data 
O ften in physics we 'Will ,van.t to p lot a graph using experimental 
measurements. Vile represent the uncertainties in the data using ·error bars' 
on the graph. 

Plotting graphs 
l Ch oose your axis scales so that your plotted points MII cover a t least 

half of your grapl1 p aper. Usin g a larger are-a means that you ca11. plot the 
p oints more accurately. 

1 Use sensible divisions that can be plotted and r-ead easily (e.g. rnultiples 
of two or five are often most straigl1tforward to plot accurately). 

3 Label your axes with the plotted quantity and un1t in the format 
'quantity/unit' 

4 Plot your points as either a small horizontal cross'+) or a diagonal cross ~x). 

5 Add error bars to represent the uncertainty. The length of ea,ch bar should 
be the length o( the absolu te uncevtaint.y for the point. 

11ne ot oest Ht 
4. 5 _.---,-.-,---,...-,.....,.-.,..,.....,,..,..,.,...,...,...,..,..,..,.......,..,--"'T'T""T'""...,,,....,....,....,..,.., 

4. a -1...,..,...;,++-~~~~f-!-'!-t-~~;-;--,--h-'h,l'J Sf't-i-,-H 

3.5 -t~~~~~~~'!-+-1-1...+-~ 

3. 0 -1+-1+~!-1-+-!o+++-ll+fa+++Hl+*+++l-+JIIF"+++++++f-i-++-i-! 

Estimating un,certainty in gradient 
To estin1ate the uncertainty in the gradient "\Ve dra\v t,vo addittonal 
lines of fit on to our data points. These are sho~,i in Figure 16.4. 

-. a 2.s -1~.;+l-!-,!-!-l+--*~~+-Ati-~~+++-i-~~, 

Th potnts suggest a straight line so the line of b st Ht is dravm such 
that there are an approximately qual number of points on either 
side of the hne. 

j 2.0 
ie; 

1 ; 5 -l-----r-l"l''"!'l--1r---t:i .......... ~!'"P"M".;.+,;-;.+,,,op...;.+,1~~..;.c1 

'1 . 0 -l~~!-,-4-,M,1; 

0 . 5 """--'--~ ...;..;.++..,....;..,-+ 

0 ll 

o ~9 0 ,;;;:> <;;,9 r':J r:;, k:J~ ;;:,~ ftl? ~9 for;> 
" " t1) ~ ~ ~ ~ b,;: 

tlm-a/s 

Figure 16.4 Est im atfng the uncertain ty ~n 
th e gradient. 

The point (0, O) is not usually plotted because this is not a point 
that "''as measured. Also~ H there is a systernatic error in the 
experim,ent the· line of best fi.t may not pass through (Ol O)., and this 
allows possible system.a.tic errors to be identifie.d . 

To calculate the uncenainty in the gradient, we dra,v t'-''O mor,e 
li:nes of fit; one representing the shaUo,vest acceptable line of fit 
from the bottom of the upper error bar to the top of the lowest 
error bar (red line in Figure 16.4)) and one represent ing the 
steepest acceptable line of fit from the top of the upper error bar 
to the boltom ol th e lowest error bar (blue line in Figure 16. 4). 



The gradient of both of these lines is calculated and the uncertainty is 
given by: 

~ x difference between highest and lowest possible gradient values. 
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~ ACTIVITY . . 
~ Dropping a bouncy ball 
• 
! You ea n either ca,rry out this experiiment or use the data g,iven in the table. 

. Drop a, sma ll bouncy baH from a known, herg1ht and measure the height to 
~ which the baH bounces back 1up. 
; 

1 Before you take any 'measurements. write down what the potential sources 
of error in your rea.ding1s mrght be and how you wfll mini,mise or acco unt 
for them:. 

. 
[ 
• 
~ 
~ • . 
' . 

Repeat each measurement three times and use six different heights. 
Record your resu lts in a table si,milar to the one shown: 

Drop.heig ht [cm') . 

Bou nee 1 (c~rrl°) 

Bounce .2 (cm) 

Bounce 3 .(cm) 

Average bounce 
heig hf(c m] · 

1 O.IJ 

9Jl 

9.5 

8.8 

20.0 

18.0 

17.5 

20.D 

3,0.0 40.0 50.0 60.0 

23.2 32.0 40.0 50.S 

23.0 33.5 40.5 S2.0 

24.0 32.8 ,40.0 51 .'5 

2 From your experiment, suggest a suitable value for uncer tainty 1in the 
measu rement of the drop he~ght. 

3 Calculate the average bounce height and the un certainty for each 
drop herght. 

4 The height that the ball bounces to will d·epend in pa rt on the 
efflciency of energy transfer of the ball. The ball s tarts at the drop 
he 1ight, hd~ wfth a gravitat,ional potential ener·gy of mghd. It th en drops 
to the ground and rebound s to a bounce height, hb wiith a potential 

, - I 

energy of mghb at th e top of its bounce. As you ca n se·e from the data 
in the table l hb < hd. 

~ We can calculate the efficiency of energy transfer during the bounce usfng,: 

~ ff' . . _ bounce hei,ght . e ~ c I en cy - _ _ . 
~ drop he11ght 
~ We rearrange this ·equat ion so that it is of the form 
= C 

~ 
: 
~ 

i • 
i 

y- mx + c 

bounce height - drop height )( efficiency 

Figure 16~5A si,mple expehment to 
i,nvestigate the link between drop he igi1ht 
an d bou nice height for a bouncy ba Ll. 

• 
! 
~ 
f 
C 

~ 
' . 
~ 

There shou ld be no y-in tercept. If we plot a gra,ph of drop height [on the x-axi:s) 
ag,a,in st the bounce heig1ht [on they-axisl. th en the g,radient of the graph will be 
eqiua l to the effi ciien cy of the bouncy ba lL 

t 

i 
= ' c 
• t 
~ 

• . 

5 Plot a graiph of drop height against bou nce height. includi,ng error bars on yo,ur graph. 
6 Ca·lculate the grad ie11t of yo ur graph and use your error bars to fin·d a va lue for 

the un certainty f n yo ur va,lue. 

Ext ension 

Repeat th e exper iment using different balls or differe nt surfa ces . 

~ 
~ ~nvesti1gate whether the reta,ti onsh,i.p you found is valid for targe vailues of drop hei:ght 
~ 

i . 
; 
= . . 
: 
I 

= I 
: 

= I 
! 
I 
! 
! 

~ • 
~ 

~ 
I 

= I 

~ 
' 
z 
! . : 
~ 
C 

~ ....... •• ••• ... ., ...... ., •• .......... •• ..... 1,• I ... 1.•,1 •• .......... •• ...... .._ ........... •• 1,•,1 ..... •• ..... I.S .......... •• &•,I 1.•.1 •• ..... 1,• ..... 1.•il •• ••• 1,•..1 •• 1.s• 1.• .......... •• ..... 1,S4 •• 1.•.1 • • ..... 1.•,1 •• ... ..- ..... •• .... •• I.S ....... •• ..... I.Sil•• I.Sil•• loS,I ..... •• 1.•,1 1,S,1 ....... •• •••11.•,1 •• 1.•,1 1.•,1 •• 1.•,1 •• I.S,I 1,•,1 •• ..... 1.•,1 •• 1.S,1 •• 1..•,1 1.•,1 •• ..... : 
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JEST YOURSELF 

4 A student measures the d iameter of a piece of w ire at different 
places a long ·its length using' a ,micrometer. She obtains th·e foUowiing 
measur ements: 

Diameter (mm) 0.19 0.21 0.18 0.81 0. 22 

al Use her readings to obtain th e mea n value for the diameter of the wire. 
b) Estima,te th e unce rtai,nty in th e mea,n dia1m1eter of th e wire . 

5 A student has made a sample of conductive modelling dough usi.ng 
flour, water and cream of tairtar [potassiu1m bi, ta r trate, KC~fH506l. 
The m·odelling, dough ca n easily be made into differ ent shapes and 
used to bu itd simple circuits using LEDs and lbatter ,ies. Th e stud ent 
wanted to i,nves tigate how the res istance~ R, of a fjxed amount [volum1el 
of modelUng1 dough varied with length , l. F1igu.re 16.6 shows th e 

• • • • • • • • • • 

[ 011.Q t ~- M LI ltl,meter i 

• • 

• • • II 

• • • • 
i • • • i 
I • I 
I • t 
I 
I 
I 

Metal plate ! 
: • : • 

CyHnder of conducuve 
modelling dough 

"' " I 
• I 
I 
I • .. 

Figure 16.6 Meas uring thG! resistance : exp eri m,e,nta l set-up used. She used a mu lt~m eter set to th e oh ms 
range and connected th e leads to two metal ptates pressed on to each 
end of the cyli:nder of the cond uc ting putty. 

• of conductive m,odeHi.ng dough. : 

The student suggest s that the resistiv ity. p, of the conducting putty is 
given by the form1ula: 

RV p=r 
w here Vis the vo lum e of th e cond·uc tive modelling dough . 
aJ Exp la1 11 why plotting a graph of R ag.ainst P wou[d allow you to show 

if the suggested relat 1ionship between Rand l is correct. 
bJ Th e s tude nt took the fallowin g results s hawn in the tab le . 

l [cm) R (n ) 

4 ± [] .2 20 ± 10 

8± 0.2 60 ± 10 

12 ± 0.2 140 ± lO 

16 ± 0.2 250 ± 10 

20 :t 0.2 390:±10 

24 :t: D.2 560 ± 10 
' 

ii Plot a gra ph of R against /2 , includ ingi e rror bars for both 
quantities . 

iii Draw a line of best fit and determine the gradient of thi1s U1nie . 

iii) IBy drawing th e h,ig.hest and lowest a,cceptable lines of fit 1 determ1ine 
the uncertainty in your value of gra.dient. 

c] Th e s t1udent used 26.8 cm3 of co,nducti.ve mode'lUngi dough in her exper1,ment. 
Catc,u late th e r esist 1ivity, p, of th e dough . 

Extension 
If you wi sh to carry out th is exp er1im ent the r ec ip e for conduct1ve ,modelli ng 
dough can be found at http://courseweb.sUhomas.edu/apthomas/ 
Squ ishyC ircuits/con ductive,Dou gh. htm 
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......................................................................................................................................................................... , 
• • . ~ . • • • • • • • • : 6 It has been suggested that tlh-ere is a connection between the length : 
• • 
: of a cha in of paper clips and th e time ft takes to swing back and : 
i forwa rd s [pedodic t~me). Figure 16. 7 iltustrates the pedodic tim e of ~ 
• th h · Chains ot - .. : rec aln . : 
i It 1is suggested that the periodic tim·e ,is g,iven by the following paper clips i . : 
i relationship : ! 
• I 

~ perlodk tlme - k x ~ length i i Describe a possible laboratory exper im ent to investigate this j 
• relationsh ip. You sh ou Ld i1nc lude : .... ,,. s : ........ ... . 
: • the measurements to be taken ....... ~"'"" . ...__ ...,.,,. 
: • th e procedure you wo,uld u,se ... _________ _ 

j • how to con,trol other var~abtes and reduce error rin your Periodic time 
I measurements Figure 16 .. 7 Per1iodic swin g of a paper 
: • how you would analyse th e data . clip, cha in. 
,p 
,p 
• • 
: Extension 
• • : • • • • • 

You may wish to ca,rry out th is experrm ent and co ltect the data to test 
t h e re la t i or, s hi p. 

• • • 
i • 
' • • 
I • 
-• • : • • • • : ........................... ; ............. . ................................................................................................................................ _______ __ 



Preparing for written 
assessments 

At ·the end ,of any course o,f study you must demonstrate what you ha,\'e 
learnt. That often me-ans taking a written assessment, otherwise k'llown 
as an exam. lt is important lo realise 1 however1 that preparing for Virtitt,en 
assessments starts a lo,ng time befor,e the ,exam itself. 

Your physics lessons. and. ,vhat you do after them are a key pan of learning 
the subject. The flo,vcha.rt in Figure 17. l shows one way to approach 
your studies. 

before I esson 

look over 
materml from .._ _ _ 
last lesson 

ask for he~p Get stuck? 
rrom friends or 
your teacher 

Physics 
lesson 

complete 
homework 

after ·lesson 

with.in 1 review 
day materlal: 

Figure 17~1 How to spend your study tlme. 

re ad textboo1k 
section and 
answer que stlons 

, I ear in a.11y 
equations or 
d·efln llfon s 
(quiz cards) 

Before each lesson you should look back at wh_at you did the previous 
lesson . Ask yo-urself questions a.bout what you learnt) ren1ind yourself about 
any definitions or equations that were used and recall ""~hat wer,e the main 
aims of the lesson . 

After the lesson you should complete any home\~lork \\i·ell befor,e any 
deadline that has been set. Remembe1· that your teacher vtill be happy to 
help you if you need it, but asking ten minutes before the lesson is not a 
good idea. 

You should also spend time soon fter the lesson (ideally within a 
day) reviewh1g the ma·terial you ,covered. Read through the textbook 
secdo11 that is linked to th le-Sso11 a11d try to add extra h1f.or1.na.dcn to 
your notes . Try lhe ~rest yourself' questions if you ha"v,en >t done them 
in class. If you u sed any equa tion s or were introduced to key,vord 
definitions in the lesson; you should learn them . . Although you wHl be 
provided with a fonnula sheet in 'the exam, it saves valu able thinking 
tilne if you can quickly recaU the correct equation when answering 
questions. 



o~~~~~~~-
M akin g memory quiz cards 
This activity is based on 'memory pair' gan1es where you have a collection 
of cardls with pairs of matching pictures. The cards are shuffled and laid 
out face do1Nn. Each player takes ~tin turn to turn over t\vo cards. If they 
match1 the player keeps them. If they aren't a pair then they are turned over 
again, and the next player has a go. 

We can use this principle to help learn defh1itions and equations. Testing 
yours lf regularly helps you to recall definitions and equations, and helps 
you t,o, store information in your long-te1m memory. 

Use sheets of card and split each one into eight equal sectio·ns. Q,n one small 
piece of card write the title of a concept and on another write the definition 
of ·that concept. Do this for each definition you need to learn, a.swell as 
fior the equatio·ns that you use duling the course. You ·Could. use different 
coloured card for the different topics in the course. 

Once you have a set of cards~ you can test yourself on the definilions and 
equations. Figure 17 .2 shov..~ an example of a set of me.mory pair quiz cards. 

Figure 17.2 Using memory pair cards to ~mprove recaH of important 
information. Oni matching .pa1i1r has just ibeen turnQd over. 

()--8-ef_o_r_e-th---ex_a_m_s ________________ __ 

Once you kno~· when your exams will be, you mU be able to plan out 
your r·evision. If you are taking more tl1an one subject you will need to 
make sure that your r,evision timetable allows you to spend time \\-'forking 
,on each subject regularly. D,on1t try to revis·e ev rything fo,r on subject 
at once. 

The specification for the subject is a. ve1y useful document to use duting your 
revision. You can obtain an electronic copy of any specification from the exam 
board website. The specification 'Nill give you information about the structure 
of the exams, wl1at you ·n be examined on in each exam and the topics that 
you have learnt during your course_ 

Each e.xa1n wiU contain a variety of questions that aim to measure your 
knowledge of physics through three Assessment Objectives (AOs). Th ese 
AOs are: 



Demonstrate know~edge and understanding of sdenti'fic ideas, processes, 
techni 

1
ues and rocedures. 

Apply knowledge and u ndersta ndi n g of scle ntiHc rde.as. processes. 
tee hn iques and p roced ure·s: 
• In a theoretkal contex t 
• in1 a. pra,cti cal contex t 
• whe n handlin g qu alitative data 
• when ha1nd li:n g u antitative data . 
Analyse. interpret and eva luate sdentific i1nformation. ideas and e·v,i·dence. 
includ ing in relation to issues. to: 
• make judlge,ments and reach conclusions 
• deveto a·nd refine , ra:ctical de si 1n and rocedures. 

In other v1lords, you must be able to recall physics concepts (AOl) 1 apply 
your knov.rledge to new situations (A02) 1 and interpret or evaluate new 
information (A03). 

You ffl\.l.St always thilnk about the number of marks being given for a 

particular question. For exa1nple~ if a c1uesti-on has two marks you are 
not going to get both marks for a one-word answer; the examiner ~Nill 

be looking for two point s. If a questio·n is ~lonl11 six marks, you wdl be 
expected lo write at length and to include some sophisticated analysis or 
co1nmenl~ trying to include six relevant points i.s a good start. 

Another useful document to use> especially with past papers~ is the .examiner 
report. This is summary of how~ students anS\ivered the exam papers and 
often. includes connnoi--t n1istakes that students made. It is written by the 
persm-i in charge of die exam (tl1e senior examiner). Rea.ding it can help you 
spot vthat to avoid~ or help explain ,vhere the 1:narks were a,varded. 

For example on a recent exan1 question about the horizontal motion of a 
projectile, the senio1~ exa111ine1~ wrote: 'lt is surprising how many students 
do not understa1-id that th e horizontal velocity is constant and that the 
''suva.1:" equation s are not nece.ssary. 1 

Structuring your revision 
In recent years psychologists have been researching successful ways of 
re.n-lletnbedng .and tecaUing infoimation. Thi-ee useful findings that are 
particularly rdevant to revision are distiibut,ed pra·otice, testing and interleaving. 

D' tr ibu I d ptactic 
Most students have, at so1ne point in their educa'tioni spent the night before 
a test cramming to try and remember the information. Unsurprisingiyi this 
is not .a good way to, ]earn. They might pass the test but die information 'Will 
probably not 'stick1 in their minds for the longer term. 

Psychologists have found that students remember infonnation better if they 
spr,ea.d their learning over a long r titne period~ even if th,ey spend the same 
amount of time learning ove.raU. 50·1 rather than revising for three hours in 
one evening> it vlould be better to spend 30 minutes revising per even.ing 

• • ,over stX even1ngs. 

P'art of the reason for this is that) as soon as we have learnt someihing, 
\Ve start to forget it. Using distributed practice m-eans that ,~le have to 
recall a topic a nun1ber of ti.tnes; thus strengthen.ing our memory and 
understanding of it. 



Revise the same topk;: a number 
of times over the spa.ce of a few 

weeks. Don ·t try to learn it all in 
one sitting . 

Test yourself regularly on the 
topi c. Use different methods 
to make yourself reca ll the 
information you need to learn. 

Test, test, test 

The \Vord 'tesf often holds unpleasant memories for students. Howeve1\ 
taking practice tests has been shoih1n to be one of the most effective. 
methods of learning tnat.erial. The memory quiz cards described earlier in 
this chapter are one way of testing yours,elf on physics topics. 

Other possible \Vays to include tests in your revision: 

• AllS\ver all the questions in the chapters ,of this textbook. 
• As you read through your notes or the textbook~ jot d0\Vl1 two or three 

possible questions for ,each section. Then7 without your notes 7 ans,ver 
the questions. If they are fairly simple questions you may be able 10 

ans"'rer them v,.,ithout wtiting anything do,;;m. Ho,,v.ever, if you pose mo,re 
di[ftcult q,uestions, or ones that require tnore exl'lanation, then writing 
do'V."'n the answer is a good idea. 

• Use the specification lo help you identify key ideas and then ask yourself 
questi,ons re latcd t,o that. 

For example) 'the specification has the following phrase as part of topic 
3.2.1.1. Constituents of the atom: 'Proton. n1ln1.ber Z) nucleon number A) 
nuclide notation). 

You could ask: 

• vVhat is the proton nun1ber? 
• What is the nucleon number? 
• How are these t,vo numbers linked? 

239 • If an e le1nent has the syn1bol 94 Pu, how 1nany protons m-id neutrons 
,vill it hav,e? 

• What is the importance of the relative number of protons and neutrons 
in an ato1n? 

• Use past exam papers for question p1~ctice. As ,vell as using 
questions from the current specification, exam quest1ons from earlier 
specifications and other exam boards ,vill give you a ,vide range of 
options (though do bear in n1ind that there vrill be differences in som·e 
of the content and style) . 

1 nter lea-viJ1g 
lnte:deavi.ng involves cr-eating a revision schedule that alloins you to nux 
different topics or even subjects during each" session. 

When revising, many students \Vill spend the \_\rhol o.f their revision session 
on one topic, for example gra,11ational fields . Ho1.\'"ever, it can be more 
helpful !or longer-ierm me1nory to ~mix up,1 your revision. For example, 
·~~ark on particles for an 'hou'l', then have a short bre.ak a11d ·work on 
longitudinal and progressive waves. 

When doin.g h1terleaved revisio·n, it can s,ometimes feel like rou are not 
lea1ning the material as well and that you are ·chopping and changing'. 
Hnwever, research suggests that interleaving i1nprov,es students' 
performance on 'tests. 

Interleaving also prepares you for lhe structure of A-level exams; where 
exan1iners will require you to draw on knowledge fron1 different topics in 
physics in the same question. 
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