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Get the most from this book

Welcome to the AQA A-level Physics Year 2 Student’s Book. This book
covers Year 2 of the AQA A-level Physics specification.

The following features have been included to help you get the most from

this book.

Prior knowledge
This is a short list of topics that
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Activities and Required
practicals

These practical-based activities
will help consolidate your learning s
and test your practical skills. AQASs re=’
required practicals are clearly

highlighted.

Test yourself questions

These short questions, found
throughout each chapter, are useful
for checking your understanding as ﬂ
you progress through a topic. '.

These highlight important facts,
comImon 'nﬁsmnceplinns and signpnst
you towards other relevant topics.



Practice questions

You will find Practice questions

at the end of every chapter. These
follow the style of the different types
of questions you might see in your
examination, including multiple-
choice questions, and are colour
coded to highlight the level of
difficulty. Test your understanding
even further with Stretch and
challenge questions.

Key terms and formulae
These are highlighted in the text

and definitions are given in the
margin to help you pick out and
learn these important concepts.

Maths boxes

These provide additional material
for the more mathematical

physicists.

Examples

Examples of questions and
calculations feature full workings
and sample answers.
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Questions are colour-coded, to help target your practice:

without difficulty:

be able to do.

Green — Basic questions that everyone should be able to answer
Orange — Questions that are a regular feature of exams and that all
competent candidates should be able to handle.

Purple — More demanding questions which the best candidates should

Stretch and challenge — Questions for the most able candidates to test

their full understanding and sometimes their abi]ity to use ideas in a
novel situation.
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AQA has provided five optional topics as part of the full A-level course so students can focus on their areas of

interest: Astrophysics, Medical physics, Engineering physics, Turning points in physics, and Electronics.

A chapter covering the first optional topic, Astrophysics, has been included in this book (Chapter 13), as well as

a dedicated chapter for developing your Maths in physics (Chapter 14). Additional chapters covering the other
optional topics can be accessed online, as well as further chapters focusing on Developing practical skills in physics,
and Preparing for written assessments. More information on how to access these can be found in the Free online

resources section at the back of this book.
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

e i

change of velocity
time

T T e

Acceleration =

@ Resultant force = mass x acceleration.

® You need to recall that a vector quantity has magnitude and direction:
force, velocity and acceleration are vectors.

® Resolving a vector into components.

® Circumference of a circle = 2Zn x radius of circle, ¢ = 2nr.

® Newton's first law of motion: a body remains at rest or continues
to move in a straight line at a constant speed unless acted on by an
unbalanced force. :

L =S

m EEEEEE S AAEE NN AR ENdSSFEFFAhLEEREN S S SRR EENERNESSSdEREARRENE

TEST YOURSELF ON PRIOR KNOWLEDGE

1 a) Explain the difference between speed and velocity.
b] Explain why acceleration is a vector quantity.
2 The three diagrams in Figure 1.1 show three separate examples
of how a vehicle's velocity changes from v, to v, over a time of 10s.
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T L L L L e L S o]
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u
u
.
]
¥
*
]

V=¥,
t

to calculate the magnitude (a)
and direction of the
acceleration in each case.

3 The vehicle in question 2 has (b) —V" =3ms™ Ye=4ms
a mass of 2kg. In each case
shown in Figure 1.1, calculate
the average resultant force that
caused the acceleration of the

vehicle,
4 Anunbalanced force acts on a
moving vehicle. Explain three
changes that could occur to the Figure 1.1
vehicle's velocity.
5 Youwalk a quarter of the way round a circle of diameter 20 m.
a) Calculate the distance you have walked.
b) Calculate your displacement if you started at the north of the circle
and walked to the eastern side of the circle.

Use the equation a=

v,=3ms’ v,=4ms”

L

v,=3ms” v,=4ms"

() >
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Figure 1.2

Radian The radian measure of a central
angle of a circle, 8, is defined as the ratio of
the arc length, s, subtended by the angle 6,
to the radius r:

==

Angular displacement The angle
(measured in radians) through which a line
rotates about a fixed point.

Angular velocity The rate of change of
angular displacement (measured in radians

per second).

EXAMPLE
The ‘big wheel’

A ‘bigwheel at a funfair takes its
passengers for a ride, completing
six complete revolutions in 120s.

1 Calculate the angular
displacement of the wheel.

Answer
f=6x2n=12nrad = 37.7 rad
2 Calculate the average angular

velocity during the ride.

Answer
12n
1205
=0.1m=03rads™’

=

Circular measure

You are used to measuring angles in degrees, but in physics problems
involving rotations we use a different measure.

In Figure 1.2, an arc AB is shown. The length of the arc is s, and the radius
of the circle is r. We define the angle 8 as

5
6=3

The advantage of this measure is that € is a ratio of lengths, so it has no
unit. However, to avoid the confusion that the angle might be measured in
degrees, we give this measure the unit radian, abbreviated to rad.

Since the circumference of a circle is 2nr, it follows that 27 radians is the
equivalent of 360°:

2nrad = 360°
S0
o
2m
= 57.3°

Equations of rotation

‘When something rotates about a fixed point we use the term angular
displacement to measure how far the object has rotated. For example, in
Figure 1.2, when an object rotates from A to B, its angular displacement is
@ radians.

The term angular velocity, @, is used to measure the rate of angular
rotation. Angular velocity has units of radians per second or rads:

or

where A@ is the small angle turned into a small time At.

In general, there is a useful relationship connecting the time period of one
complete rotation, T, and angular velocity, @, because after one full rotation
the angular displacement is 2n:

-
T

or
@ = 2nf

where f is the frequency of rotation. There is a further useful equation,
which connects angular velocity with the velocity of rotation. Since

s=86r



and

As A6 2
Wi = r

At At =

then "E

Y

Vv =0r ﬁ

This equation shows that the rotational speed of something is faster further i

away from the centre. For example, all the children on a roundabout in a @

playground have the same angular velocity @, but the ones near the edge oy

are moving faster (Figure 1.3). E

Figure 1.3

:; TEST YOURSELF :
' 1 The Earth has a radius of 6400km. The Shetland b) Calculate the frequency of rotation of the
¢ Isles are at latitude of 60°. protons. :
: a) Calculate the angular velocity of the Earth. c] Calculate the proton's angular velocity.
! b) Calculate the velocity of rotation of a point on 3 The Sun rotates around the centre of our Galaxy, :
: the equator. the Milky Way, once every 220 million years, in an
é ¢) Calculate the velocity of rotation of the Shetland orbit of about 30000 light years. 5
: Isles. al Calculate the angular velocity of the Sun about  :
¢ 2 Aproton in a synchrotron travels round a circular path the centre of the Milky Way. !
¢ ofradius 85m at a speed of close to 3.0 x 108ms, Calculate the velocity of the Sun relative to the
: al Calculate the time taken for one revolution of centre of the Galaxy. :
: the synchrotron. [1 lightyear = 9.47 x 10m; 1 year =3.16 x 107s] i

In Figure 1.4 a particle is moving round a circular path at a constant
speed v, and because it is continually changing direction the particle is
always accelerating.

It is easier to understand the acceleration when you recall the formula:

cha_nge of ve_loc_ity_

acceleration = -
time

Velocity is a vector quantity, so if the direction of the motion changes, even
though there is no change of speed, there must be an acceleration.

Figure 1.4 A particle moving round a
circular path with a constant speed is
always accelerating.

Figure 1.5 shows the direction of the acceleration. In going from position A
to position C, the particle’s velocity changes from v, to v;. So the change in
velocity, Av, is the vector sum vy-v;.

The diagram shows the change in velocity, Av, which is directed along the
line BO, towards the centre of the circle. So, as the particle moves around
the circular path, there is an acceleration towards the centre of the circle.
This is called the centripetal acceleration. Because this acceleration is at
right angles to the motion, there is no speeding up of the particle, just a
Figure 1.5 change of direction.
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Centripetal acceleration When a

particle moves in a circular path of radius
r, at a constant speed v, there must be a
centripetal acceleration towards the centre
of the circle, given by

v..?

a:—
r

curved track

"
- 3
|y i

stralght track

Figure 1.6 A train carriage
turns a corner, but a ball on
the floor of the carriage keeps
on moving in a straight line.

The size of the acceleration, a, is calculated using this formula:

vz
a=-—
r

or because v = @r

a=@r

Here v is the constant speed of the particle, @ is its angular velocity, and r is
the radius of the path.

i MATHS BOX

You are not expected to be able to derive the formula for centripetal
acceleration, but it is given here for those who want to know where the
formula comes from.

FRS$+ES+FSATNER

In Figure 1.4, the particle moves from A to C in a small time At. We now
look at the instantaneous acceleration at the point B, by considering
a very small angle A@. The distance travelled round the arc AC, As, is

given by
As=vAt and As=rA@

LR R A S = = 2 2 k4.

LE & & B

S0

ERESsSTTFERALE

rA@=vAt and A@=ZAt (i)
r

PR STRFRIER

In Figure 1.5 the angle & is given by

LE Lo 2 o L 2 03 J

Al (ii)

v
provided Af is very small. Then by combining equations (i) and (i), it
follows that
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A

Centripetal force

Figure 1.6 illustrates the path of a railway carriage as it turns round a
corner (part of a circle), moving from A to B at a constant speed v. The
rails provide a force to change the direction of the carriage. However,

a ball that is placed on the floor behaves differently. The ball carries on
moving in a straight line until it meets the side of the carriage. The ball
experiences no force, so, as predicted by Newton’s first law of motion, it
carries on moving in a straight line at a constant speed, until the side of
the carriage exerts a force on it.



(a)

Figure 1.7 Views of a ball suspended
from the back of the train carriage
looking forwards. (a] When the train
moves along a straight track, the ball
hangs straight down. [b] When the train
maoves around the curved track, as in
Figure 1.6, the ball is displaced to the
right. [c] There is a resultant unbalanced
force R acting on the ball.

Centripetal force When an object moves
around a circular path, there must be a
centripetal force acting towards the centre
of the circle. Something must provide this
force, such as a pull from a string or a push
from the road.

(a) (b)

Figure 1.8

Now suppose that the ball is suspended from the ceiling of the carriage and
the experiment is repeated. Figure 1.7 illustrates what happens now as the
carriage moves from a straight track to a curved track. In Figure 1.7(a) the
carriage moves along a straight track at a constant speed. The ball hangs
straight down and the forces acting on it balance: the tension of the string,
T, upwards, balances the balls weight, W, downwards.

In Figure 1.7(b) the train turns the corer. The ball keeps moving in a straight
line until tension in the string acts to pull the ball round the corner. Now the
forces acting on the ball do not balance. The vector sum of the tension T and
the weight W provides an unbalanced force R, which acts towards the centre
of the circle (Figure 1.7c).

This unbalanced force R provides the centripetal acceleration. So we can
write

mv"’

r

R =

where R is the unbalanced centripetal force, m is the mass of the ball, v
is the balls forward speed, and r is the radius of the (circular) bend it is
going round.

It is important to understand that a centripetal force does not exist
because something is moving round a curved path. It is the other way
around — according to Newton’s second law of motion, to make something
change direction a force is required to make the object accelerate. In

the example you have seen here, the tension in the string provides

the centripetal force, which is necessary to make the ball move in a
circular path. When a car turns a corner, the frictional force from the

road provides the centripetal force to change the cars direction. When a
satellite orbits the Earth, the gravitational pull of the Earth provides the
centripetal force to make the satellite orbit the Earth — there is no force

acting on the satellite other than gravity.

A common misunderstanding

Figure 1.8 shows the same ball discussed earlier held hanging, at rest, at

an angle in the laboratory. Now it is kept in place by the balance of three
forces: the tension in the string, T, its weight, W, and a sideways push, P,
from a student’ finger.

If the student removes his finger, the ball will accelerate and begin moving
to the left, because there is now an unbalanced force acting on it, exactly as
there was in Figure 1.7,

However, the situations are different. In Figure 1.8 the ball is stationary
until the finger is removed, and it begins to accelerate and move in

the direction of the unbalanced force. In Figure 1.7 the ball is moving
forwards and the action of the unbalanced force is to change the

direction of the ball.
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: TEST YOURSELF
4 Explain how a force can change the velocity of a iii) Show that the angle at which the ball hangs ;
:  body without increasing its speed. to the vertical is about 11.5°. :
: 5 The force of gravity makes things fall towards the b) The train reaches a speed of 55ms™ and
¢ ground. Explain why the Earth’s gravity does not travels round a curved piece of the track. At
:  make the Moon fall towards the Earth. this moment, the ball is deflected sideways by i
§ & A satellite is in orbit around the Earth, at a distance about 11.5°, ,
i of 7000km from the Earth’s centre. The mass of i) State and explain the direction and
the satellite is 560kg and the gravitational field magnitude of the resultant force on the ball.
; strength at that height is 8.2 N kg ii) E'xptain why the ball is ar;celerating. In which £
: a) Draw adiagram to show the direction and direction is the acceleration? Calculate the
: magnitude of the force (or forces) that actls] on it. magnitude of the acceleration.
b} Calculate the centripetal acceleration of the iii) Explain why the ball's speed remains $
: satellite. constant. :
:  ¢) Calculate iv] Calculate the radius of the bend the train is
i] the speed of the satellite going round.
: ii] the time period of its orbit. c] The train carriage that carries the ball has a 3
i 7 This question refers to the suspended ball in the train, mass of 40tonnes. :
illustrated in Figure 1.7. The ball has a mass of 0.15kg. i) Calculate the centripetal force that acts on =
: al The train accelerates forwards out of the station the carriage as it turns the corner. What :
$ along a straight track at a rate of 2ms™2. provides this force? :
E ) Eplswiwhytheballis displesed Backnaids, ii) Explainwhy trains go round tight bends at
% ii} Calculate the resultant force on the ball. reduced speeds. ;
T T T T T P T e o 1
: ACTIVITY
- Investigating centripetal forces
' Figure 1.9 shows a way in which you can investigate ® A suitable plastic tube is an old case from a plastic
| centripetal forces. The idea is that you whirl a rubber ballpoint pen.
' bung around your head in a horizontal circle. The @® The time of rotation, T, can be calculated by
= bung is attached by a thin string to a plastic tube, measuring the time for 10 rotations, 107,
© i which is held vertically. A weight is hung on the @ The radiusr can be measured after you have ;
5 | bottom of the string. This causes the tension to finished 10 rotations by pinching the string with your :
= | provide the necessary centripetal force to keep the finger, then measuring the length from the ;
gy v gt ,
< | bung moving in its circular path. top of the tube to the centre of the bung.
=T ® We assume that there is no friction between the
~ ™ plastic tube and the string.
o - ~=~~_| rubber bung ® |t is assumed that the string is horizontal,
— ‘s % ",pofmass m although this will not be entirely possible, so it is
1 important to try to meet this condition as far as
thin string Sl
plastic tube Table 1.1 shows some data measured by a student
doing this experiment.
1 Copy and complete Table 1.1 by filling in the gaps.
! Comment on how well the results support the
hypothesis that the weight on the end of the string
Figure 1.9 causes the centripetal force to keep the bung in
5 its circular path. In this experiment the bung has a
® Use a bung, of mass m, of about 50q to 1004g. mass of 0.09 kg.

. ® Wear safety glasses (useful to protect yourself :
from others doing the same experiment). =
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é‘l"able 1.1 2 Discuss the sources of error in this experiment.
Sugge.st how the errors can be minimised.

Y 18.8 0.94 3 To improve the reliability of the data, it might be

helpful to plot a graph.

i10.2 1.5 0.78 al Plota graph of F against ma?r.

{02 10.2 0.56 b) Explain why this should be a straight line. What :
0.3 8 4 0.61 | gradient do you expect to get when you measure it?
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0.3 79 0.52
0.4 5.4 0.31

- EXAMPLE

Round in circles

| A physics teacher, shown in Figure 1.10,
demonstrates a well-known trick. She puts a beaker
of water on a tray, suspended by four strings at its
corners. Then she whirls the tray round in a vertical
circle, so that the beaker is upside down at the top.
She then asks why the water does not fall at the top
of the swing. A student [who has not been paying
attention) says 'the pull of gravity is balanced by an
outwards force'. Explain why this is not correct.

Answer G
The teacher gives this explanation: At the top, the

water and the beaker are falling together. Look

at Figure 1.10. At point A, the beaker is travelling

along the direction AB. The string pulls the

beaker down in the direction BC so at the top it

has fallen to point C.

The teacher repeated the demonstration and
asked the students to time the revolutions. The
students determined that the tray completed 10
revolutions in 8.3s. They measure the radius of
the circle to be 0.95m.

The speed of the tray is

2n r
V'T Figure 1.10
= 2 x 0.95m

0.83s
1

=7.2ms

So, while the beaker rotates, it has a centripetal
acceleration of This tells us that the water is accelerating all
2 the time at 55m s™% [more than five times the
P, gravitational acceleration]. So the water does
i not fall out ofthe beaker at the top, because it is
_ (7.2ms™)? already falling with an acceleration greater than
095 m gravitational acceleration.

-55ms2
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2 Acyclistis cycling at 14.5msin a
velodrome where the track is bankedat
an angle of 40° to the horizontal
(Figure 1.11). The track is curved so
that the cyclist is turning in a horizontal
circle of radius 25m. The cyclist and
bicycle together have a mass of 110kag.
al Calculate the centripetal force acting

on the cyclist.

40°

Answer

mv2

= L

r

110kg x (145m s
3 25 m Figure 1.11

=930N|(2s.f]

-
Unbalanced centripetal force

R, = Rcos 40°

b Calculate the contact force R from the track on R, = Rsin40°
the bicycle.

The vertical component R, balances the weight, and
Answer the horizontal component provides the unbalanced
centripetal force. (It is important to realise that the
cyclist can only lean her bicycle as shown because
she is accelerating towards the centre of the circle.
She would fall over if she were stationary.] So

Figure 1.11 shows the two forces acting on the
bicycle and cyclist: the contact force R and the
weight W. The forces combine to produce the

unbalanced centripetal force, which keeps the

the tyres and the road surface is increased by

the CIrcuLar path that the teacher used. using soft rubber tyres, which provide a large
b} The only two forces that act on the beaker and frictional force, and by using wings to increase the
water are their weight, W, and the contact force, down force on the car.

R, from the tray. Calculate the size and direction

cyclist moving round her horizontal circular path. R sin40° = 930N
Force R may be resolved horizontally and vertically R= ?BGNO
as follows: iy
=1440N
z Wl'ffl".il'!‘!lll.l!Q!‘fﬂ'i"*""!‘!'#P""ﬁ#"‘f'tl'lPPP"‘"'“'!'ll!'l‘ii"‘!I'!llOC.40?!‘."5#!!'1("'?.'1‘!!'i'!!'l"!"l‘""“Il!!"'f'?."ﬁﬁ!‘.#!#‘f?'.ﬂ‘#ﬁ'!.l'i?ff‘i""!!'i
I_E_  TEST YOURSELF
o . : : H
= : 8 This question refers to the teacher’s demonstration in a circle of 0.95m radius, calculate the :
a : with the beaker of water shown in Figure 1.10. minimum speed at which the water does not :
g : a) The beaker and water have a combined mass fall out of the beaker at point C.
O f0.1kg. Use this information, together with : - ;
4 fh 5 fg- 5k : t" 19 lateth | 9 Formula 1 [F1] racing cars are designed to enable :
= BRI TSR AaM G 0 ek A them to corner at high speeds. Traction between s
- centripetal force required to keep the beaker in :

of R at the following points shown in Figure 1.10: The tyres of an F1 car can provide a maximum
i) C i) D iii] E. frictional force to resist sideways movement of
i ¢) The waterwill fall out of the beaker at point C 15500N. The car's mass [including the driver] is :
: if the beaker moves so slowly that the required 620kg. {
centripetal acceleration is less than g. Calculate the maximum cornering speed of the car

going round a bend of
a) radius 30m b) radius 120m.

L L L L T R ]

Assuming the teacher still rotates the beaker

(LIl L LR Y]
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Practice questions 5
0

1 The orbit of an electron in a hydrogen atom may be considered to be =

a circle of radius 5 x 10" m. The period of rotation of the electron i

is 1.5 x 10715, The speed of rotation of the electron is =

3

A 2x10°ms™ C 2x10°ms™! )

B 4x10°ms! D 4x10"ms! “

2 From the information in question 1, the centripetal acceleration of
the electron is

A 3 x10*ms? C 12 x10*¥ms?
B 9x 10¥ms? D 30 x 10??ms-2

3 The Moon orbits the Earth once every 29 days with a radius of orbit of
380000 km. The angular velocity of the Moon is

A 2.5x 10°rads™! C 85 x 10%rads™
B 5.0 x 10-®rads™ D 25 x 10 %rads™

4 From the information in question 3, the Moon’s centripetal acceleration is

A 24mms™? C 7.6mms™
B 4.0mms D 24mms
5 The centripetal acceleration of a car moving at a speed of 30ms™ round
a bend of radius 0.45km is
A 1.0ms™ C 100ms™
B 2.0ms™ D 200ms™?

6 A satellite is in orbit around the Earth in a circular orbit of radius
10000 km. The angular velocity of the satellite is 6.4 x 10~*rads-1.
The time of orbit of the satellite is

A 4800s C 8400s
B 6800s D 9800s

7 From the information in question 6, the centripetal acceleration of
the satellite is

A 2ms™ C 4ms?
B 3ms™ D 8ms?

8 A student swings a bucket of water in a vertical circle of radius 1.3m. The
bucket and water have a mass of 2.5kg. The bucket rotates once every 1.4s.

When the bucket is upside down, the water does not fall out. Which of the
following gives a correct explanation of why the water stays in the bucket.

A The weight of the water is balanced by a centrifugal force.
B The centripetal force and the weight of the water balance.
C The water and bucket are falling at the same rate.

D The bucket moves so fast that the water has no time to fall.
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9 From the information in question 8, the centripetal force on the
swinging bucket is
A 6N £ 92N

B 36N HipzN

10 From the information in question 8, for the swinging bucket, at the
bottom of the swing the rope exerts a force on the student’s hand of

A 90N C 52N
B 63N D 36N

" 11 An astronaut undergoes some training to test his tolerance to
acceleration. He is placed in a rotor, which carries him in a circle of
radius 7.0m. The rotor completes 10 revolutions in 24.3 s, moving
at a constant speed.

a) Explain why the astronaut is accelerating, although his speed is
constant. 2)

b) Calculate the size of the astronaut’s acceleration. (3)

B 12 (Synoptic question: you need to think about energy transformations
to help solve this question.)

A large steel ball of mass 2100kg is used to demolish buildings. The ball
is suspended on a cable of length 8 m, and is pulled back to a height of
4m above its lowest point, before being released to hit a building,

a) Calculate the maximum speed of the ball just prior to hitting
the building. (3)

b) Calculate the tension in the cable when the ball is at its

lowest point. (4)

B 13 Figure 1.12 shows an aircraft propeller that is
undergoing tests in a laboratory.

The propeller is made out of high-strength,
low-density carbon-fibre-reinforced plastic
(CFRP). In a test, it is rotating at a rate of 960
times per minute.

a) Calculate the angular velocity of the
propeller. (2)

b) Calculate the speed of the propeller blade at
these two positions. 2)

i) A
ii) B

¢) Explain why the propeller blade is made Figure 1.12
of CFRP. @)

d) At which point is the blade more likely
to fracture, A or B? Explain your answer. (2)



e) Estimate the centripetal force required to keep a propeller blade
rotating at a rate of 960 times per second, if its centre of mass is
0.6 m from the centre of rotation and the mass of the blade is 3.5kg. (3)

Stretch and challenge

14 This question is about apparent weight. Your weight is the pull of
gravity on you. But what gives you the sensation of weight is the
reaction force from the floor you are standing on.

a) A man has a mass of 80kg. Calculate his apparent weight
(the reaction from the floor) when he is in a lift that is

i) moving at a constant speed of 3ms~!
ii) accelerating upwards at 1.5ms™
iii) accelerating downwards at 1.5 ms-2,

b) A designer plans the funfair ride shown in
Figure 1.13. A vehicle in an inverting
roller coaster leaves point A with a very
low speed before reaching point B, the
bottom of the inverting circle. It then
climbs to point C, 14m above B, before

leaving the loop and travelling to point
1 2

Assuming that no energy is transferred
to other forms due to frictional forces,
show that

i) the speed of the vehicle at B is
20ms™!

Figure 1.13
ii) the speed of the vehicle at C is 11ms™.

¢) Use your answers to (b) to calculate the centripetal
acceleration required to keep the vehicle in its circular path

i) atB ii) at C. rotatioV

d) Now calculate the apparent weight of a passenger of mass
70kg

i) atB ii) atC.

In the light of your answers, discuss whether or not this is a
safe ride.

e) Figure 1.14 shows the design of a space station. It rotates so
that it produces an artificial gravity. The reaction force from
the outer surface provides a force to keep people in their
circular path.

- 120m -

Use the information in the diagram to calculate the angular ~ Figure 1.14
velocity required to provide an apparent gravity of 9.8 ms™2,
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Simple harmonic
motion
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

@ Displacement, velocity, force and acceleration are all vector
guantities.

TS HEPFF T AN ETTNTT NN S S-S FW

LR & & 3

change of velocity
time

® Acceleration =

1
frequency
@ Frequency = number of oscillations per second.
: ® The natural measure of angle is the radian; 2r radians = 360°.

i ® Resultant force = mass x acceleration.
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 a) An electromagnetic wave has a frequency of 2.6 GHz. Calculate the
time period of the wave.
b) A boat thatis anchored at sea lifts up six times in 30s as waves
pass it. What is the frequency of the waves?

2 A caris travelling with a velocity of 20ms™' due north. Two minutes
later the car has travelled round a large bend and is travelling with a
velocity of 15ms™! due south. Calculate the car's average acceleration
over this time.

3 Calculate the values of these trigonometric functions, where the
angle has been expressed in radians.

a) tan0.01
b) sinn
c) cosm

@ Time period =
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(EEXNER S 2t TS SRS F RN RS SR A AR RS AR R &2 2 X ]

er !l ‘h

LA AR LR LRSS SRR LI AR RS L AL AR Ll IR Rt Ll L AR L] 1]
TR LT L A T RS L R AR RS L P RS R I B P R RS LR PR R Y]

|

FEERRF 44T PRRRRR RN R HHHH PR BRI R R A TP PSSR RR N A F HHH P RRR R AR R R R b A PR EET RS

Simple harmonic motion

Last year, when you studied wave motion, you learnt that all types of waves
require a vibrating source to produce them. For example, vibrating or
oscillating electric and magnetic fields are responsible for the production of
electromagnetic waves. There are also many examples of mechanical waves —
sound waves, water waves, waves on strings or wires, and shock waves from
earthquakes. All these waves are caused by a vibrating source.



In this chapter, you are going to be studying oscillations about a fixed point.

Figure 2.1 shows three examples of mechanical oscillations — a clamped )
ruler, a mass on a spring and a pendulum. In each of these examples, we =
observe that the motion is repetitive about a fixed point. The oscillating o
object is stationary at each end of the motion, and is moving with its E"
maximum speed, in either direction, at the midpoint. 3
o

3,

:

S

clamped rule 3

=

oscillations

pendulum

L mass on
' aspring

oscillations

Figure 2.1

To a good approximation, these objects have these features in common:

® The force acting on the body always acts towards the equilibrium
position.

® The force acting on the body is proportional to its displacement from the
equilibrium position.

An oscillating body that satisfies both these conditions is said to be moving

Simple harmonic motion A repetitive ; , ; . :
P 5 with simple harmonic motion or SHM. The two features of the motion

motion about an equilibrium position. The

equation that describes this motion is above may be summarised in the equation:
= —kx,

B i

or
ma = —-kx

or

k ;

=N VNN 13

Here kis a constant (which can be called the spring constant or the force per
unit displacement). The significance of the minus sign is that it shows that
the force (and acceleration) are in the opposite direction to the displacement.
Force, acceleration and displacement are vectors, so we must define the
direction of the displacement and motion.



2 SIMPLE HARMONIC MOTION

14

Figure 2.3

equilibrium equilibrium
position - position
tF X
A
Pull down a distance Mass accelerates upwards
A and release. X due to resultant force £

Figure 2.2 Amass on a spring is a simple harmonic oscillator.

Figure 2.2 shows some important features of a simple harmonic oscillator.
When at rest, the mass hangs in its equilibrium position. A is the amplitude
of the oscillation — this is the greatest displacement of the oscillator from
its equilibrium position. When the mass is displaced downwards by x, the
force acts upwards on the mass towards the equilibrium position.

If you investigate the time period of a simple harmonic oscillator, you will
discover that the time period does not depend on the amplitude of the
oscillations, provided the amplitude is small. If you overstretch a spring or swing
a pendulum through a large angle, the motion ceases to be simple harmonic.

Mathematical description of SHM

The question we want to answer is this: How do the displacement, velocity
and acceleration of a simple harmonic oscillator vary with time?

Figure 2.3 gives us some insight. Here a mass is oscillating up and down on
a spring. The mass has been stroboscopically photographed by a camera,
moving horizontally at a constant speed. The shape of the curve we see is
sinusoidal. Figure 2.4 shows how the displacement of the mass varies with
time if it is released from rest with an amplitude A.

ad

displacement/m
Q

[ —A‘
¥ | |
Figure 2.4
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TIP

NOTE

In the AQA specification the
symbol ® is used to represent

2r for -2.-|.7-£ , 50 you will also

meet equations in this form:

x=Acosmt
2

a=—0x

vm-um

Apoe = ®A

V=4 Az—xz

The graph has the shape of a cosine function, which can be written as

x=Acosf

But the value of 8 is 2n after one complete cycle so, at the end of the cycle,
x =Acos(2n)

However, we know that the oscillation is a function of t. The function that

fits the equation is

x =Acos (%)

or
x = Acos(2nft) (ii)

where T is the time period for one oscillation. Remember that T = }’- where f

is the frequency of the oscillation. This function solves the equation because
after one oscillation t = T, so the inside of the bracket has the value 2.

Once we have an equation that connects displacement with time, we
can also produce equations that link velocity with time, and then also
acceleration with time. These are shown below:

x = Acos(2nft)

v = —2nfAsin(2nft) (iii)

a = —(2nf)*A cos(2nft) (iv)
and since x = A cos(2nft)

a = -(2nf)%x v)

We derive this assuming x = A when t = 0. However, the same equation
would have been obtained whatever the starting condition.

(Mathematicians will see that the velocity equation is the derivative of the
displacement equation, and that the acceleration equation is the derivative
of the velocity equation.)

Since the maximum value of a sine or cosine function is 1, we can write the
maximum values for x, v and a as follows:

xm = A ("ﬂ)
Vimax = 2TfA (vii)
Ay = (271)°A (viii)

We also write down one further useful equation now, which allows us to
calculate the velocity v of an oscillating particle at any displacement x:

veam fy A - X (i)
This will be proved later when we consider the energy of an oscillating system.

Figure 2.5 shows graphically the relationship between x, v and a. These
graphs are related to each other.
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Figure 2.5

® The graph of velocity v against time t links to the

gradient of the displacement—time (x—t) graph because
Ax

Y = —

At
For example, at time O (in Figure 2.5), the gradient of
the x—t graph (a) is zero, so the velocity is zero. At time
1, the gradient of the x—t graph (a) is at its highest
and is negative, so the velocity is at its maximum
negative value.
The graph of acceleration a against time ¢ (c) links
to the gradient of the velocity—time (v—t) graph (b)
because

Av

a=—

At
For example, at time 1 (in Figure 2.5), the gradient of

the v—t graph (b) is zero, so the acceleration is zero.
At time 2, the gradient of the v—t graph (b) is positive
and at its largest value, so the acceleration has its
largest value.

EXAMPLE
SHM of a mass on a spring
A mass hanging on a spring oscillates with simple

harmonic motion. The amplitude of the oscillation is
4.0cm, and the frequency of the oscillation is 0.5 Hz.

The spring is released from rest at its lowest position,

4 cm below its equilibrium position [Figure 2.6).

J

—
=
=
=

Equilibrium
position

Figure 2.6

1 Calculate the maximum velocity of the mass.

Answer
Venax = 2RFA
=2 %055 x0.04m

-0.13ms"
2 Calculate the maximum acceleration of the mass.

Answer

IR
a =|[2nf] A

max

2
=[2nx05s ") x0.04m
=039ms™

2 Calculate the acceleration of the mass 1.2s after
release.

Answer

We need to define a direction before applying our
formulae. In Figure 2.6 we define positive as our
downwards direction. [This is arbitrary. You will get the
same answer if you choose this direction to be negative.]

a =-12nf]2Acos{2Efﬂ
=-[2nx 055 x 0.04mxcos(2rx0.5x1.2)
=-9.952%0.04 mx(-0.81)
=032ms™?

Since this is positive, the acceleration is downwards.

N
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Calculate the velocity of the mass when it is 5 f\/F
displaced Zcm from itsequilibrium position. A =%

il
- +21%0.55 [0.04°-0.029)% m
=:s  x0.035m

=:011ms"
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TEST YOURSELF

1 A pendulum is released from point A in Figure 2.7. It swings from
A to C and back with SHM. The distance AC is 24cm, and the time
taken to travel from A to B is 0.8s.

a) State the frequency of the oscillation.
b) State the amplitude of the oscillation.
c] il Calculate the speed of the pendulum as it passes B.
ii) Calculate the velocity of the pendulum when it is displaced
4cm from B.
dl Calculate the acceleration of the pendulum when it is displaced
6cm to the right of B.

2 Aruleris clampedto a bench. When the free end is displaced, the
ruler oscillates with SHM, at a frequency of 100Hz. The amplitude
of the oscillations is 1.8 mm.

a) Calculate the highest velocity of the ruler.

bl Calculate the highest acceleration of the ruler. State where
this is.

c] State the point in the oscillation where
il the acceleration of the ruleris zero
ii} the velocity of the ruler is zero.

3 A marker buoy is oscillating in a vertical line with SHM. The buoy
takes 2.8s for one oscillation and is seen to fall a distance of 1.8 m
from its highest to its lowest point. 4

a) Calculate the buoy’'s maximum velocity.
/ L

YR FHFEFEAEI SRS FPFARNLRSEFFFADR

ENYTSHFEFAND

A B C
Figure 2.7
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b] Calculate the buoy's acceleration when it is 1.4 m below its
highest point.

4 Figure 2.8 shows the displacement of a particle oscillating with
SHM. To represent its motion, the equation x = Asin[2xft] is used,
where x=0when t=0.

Copy the diagram and add sketches, using the same time axis, to
show the variations of v and a with time,

time t

C
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— Time period of oscillations

We can combine two of the equations that we used in the previous
sections to produce a further equation that links the time period of
oscillation, T, to the mass of the oscillating particle, m, and the force per
unit displacement, k.
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EXAMPLE

Calculating the time period
1 A mass of 400g hangs on
a steel spring, which has a
spring constant of 0.20Nem™.

Calculate the time period for
one oscillation,

Answer
m
T =2n, p

0.4 kg

=2

20Nm
=0.895=09s

Figure 2.9

2 In Figure 2.9, a light ruler
Is clamped to a desk and a
mass of 250 g is attached
securely to the free end. When
a newtonmeter is attached to
the end of the ruler, a force
of 1.4 N displaces the ruler by
3cm. Calculate the time period
of the oscillations, stating any
assumptions you make.

Answer

The force per unit displacement
E

PRLE. L U

0.03m

T=2n:\[%

0.25kg
ATNm
=0.465=0bs

50

2m

i

The two equations that define the motion of a simple harmonic oscillator
that we need from the earlier sections are equations (i) and (v):

a=-~f—cﬁx and a=—(2nf)’x

Combining these gives

k 2
= (2nf)
or
k 2n ’
m=| T
or
g e, M L
k (x)

Once you recognise that a particle is oscillating with SHM, you can use this
general solution to calculate the time period of any oscillator.

The simple pendulum

Figure 2.10(a) shows a pendulum held at rest by a small sideways force F.
Figure 2.10(b) shows the three forces acting on the pendulum bob to keep
it in equilibrium.

g
g
;
r
Y mg
F
mass m
mg F
Figure 2.10(a) Figure 2.10(b} Figure 2.10(c)

The force F = mgsin @. For small angles we have @ = sin @, and therefore

F = mgé. (xi)
Figure 2.10(c) shows that x can be related to the length of the pendulum, [, by

x =ltan@.



For small angles, we also have @ =~ tan 8, and therefore

x =16

X _
=3 (xii)
Combining equations (xi) and (xii) gives

F=mg-‘-?-

s
3
]
o
Q
all
Q.
S
2
Q,
&
g:,
3

When the pendulum is released, the restoring force now acts in the
opposite direction. So

X
ma = -mgT
and

T
G T X

This is the defining equation for SHM because the acceleration is
proportional to, and in the opposite direction to, the displacement.

Therefore

=3 \{% (xiii)
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. Investigation into simple harmonic motion ® Investigate whether the time period of the

. using a mass-spring system and a simple pendulum depends on the amplitude of the swings.
: g e P @ Investigate how the time period, T, of the pendulum

penduu‘"ﬁ'. ‘ varies with length between 1.5 m and 0.2 m.

Note: Thff' 15 }Ufjt one exai:nple of how you might ® Plot a suitable straight line graph to investigate
 tackle this required practical. whether: T?al. Use the gradient of the graph to find
= Make a simple pendulum using a small mass hanging a value for g.

; on a piece of string about 1.5 m long.

(e

: ACTIVITY

- Oscillation of a tethered trolley

. The purpose of this activity is to investigate how In Figure 2.11, the identical springs A and B are both

: the time period of a tethered trolley depends on its under tension, but in the trolley’s equilibrium position
. mass. The mass of the trolley is changed by putting the forces from the two springs balance.

additional weights on top of it. 5
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2 Inan experiment, a student determines the spring
constant of her springs to be 177.8 Nm™". She then
recorded the set of data shown in Table 2.1 for the

A 5 oscillation of her trolley, as she varied its mass.

WO - v ——

Mass of : .
‘I.U 1.5 |20 | 25 | 3.0 | 40

Time for five 53 164 174 183 |91 | 105

: Figure 2.11 A tethered trolley oscillates with SHM, Each
: spring has a spring constant k.

i

Each spring has a spring constant k. What is the oscillations/s

. resultant force acting on the trolley when it is |

- displaced a distance x to the right? Plot a graph of T2 against m.

. @ Spring A exerts an extra force of kx to the left. al Discuss whether or not your graph is consistent

. ® Spring B exerts a force reduced by kx to the right. with the formula quoted in part 1.
: b) Determine the gradient of your graph. Comment :
. So the resultant force on the trolley is 2kx to the left. on this result. s

1 Explain why the time period of the tethered trolley
. is given by

T« P |20
\Jzk

i,

. Other systems that might show SHM

Figure 2.12 shows two systems to investigate. It is suggested that both are 3 ——

: simple harmonic oscillators.
. i | -

1 A U-tube is partly filled with water, as shown in [a]. The total length of  -===-—qecbomaen L1 - - equillbrium :

the water in the tube is L. K=o a=ss) position

al Investigate whether or not the amplitude of the oscillations affects
their time period.

bl Check to see if the time period of the oscillations agrees with the
formula:

- T2 =

29

. 2 Aweighted boiling tube is allowed to oscillate up and down in a large
. beaker of water [b]. In its equilibrium position, a length L of the tube is

submerged.

al Investigate whether or not the amplitude of the oscillations affects
: their time period.
. b) Check to see if the time period of the oscillations agrees with the L
' formula:

L
I'=2n \f; ¥ &% — lead shot

(b)

"o 1EE=3r - - equilibrium
| position

‘ [Both formulae for the time periods are derived in the on-line material.] Figure 2.12
: Note: Make sure to wash your hands after handling lead shot
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TEST YOURSELF

9 A pendulum has a length of Z2m. Calculate its time period of oscillation _ elastic ropes
in each of these places: suspended from
a door lintal

a) on Earth
b) onthe Moon, where g = 1.6 Nkg™
c) ona comet, where g = 0.0006 Nkg™.
& A baby bouncer’ is a harness that can be used to amuse and exercise
a baby before the baby can walk. Figure 2.13 shows a baby enjoying

this experience. This is a simplified model, in fact, the baby's feet will
touch the floor.

AREIESFSSFRARENN

The suspension ropes for a bouncer are 1.30m long and stretch to
1.48 mwhen a baby of mass 9.5kg is put in it.

a) i) Determine the spring constant for the baby bouncer.
ii} Determine the time period of the baby's simple harmonic motion.
iii) Determine the baby's maximum speed, when released from 10cm

above the equilibrium position.

b)] When the baby was bouncing three months later, the
baby’s father noticed that the time period of
the oscillations had increased to 1.0s. He is —HAN A
delighted that his baby has put on weight lor mass, M TN T T T T T e T 1
as baby's mother correctly points out]. What is o ' ‘ BAEE
baby’s mass now?

c) Explain what is meant by the terms
i) weight
i) mass.

7 Figure 2.14 shows a graph of displacement against time

for a mass of 0.okg oscillating on a spring.

a) Use the graph to estimate the speed of the mass —t
between points A and B. |

b) Use your knowledge of SHM equations to calculate
the theoretical maximum speed from the graph, s Jeeed A gl bl el
using the information shown on the axes. Figure 2.14

c) Calculate the spring constant of the spring.
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Figure 2.13
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O Energy in simple harmonic motion

Figure 2.15 shows a pendulum swinging backwards and forwards from A
to B to C, and then back to B and A. As the pendulum moves, there is a
continuing transfer of energy from one form to another.

® At A, the velocity of the pendulum bob is zero. Here the kinetic energy,
Ey, is zero, but the bob has its maximum potential energy, E,.

® At B, the velocity of the pendulum is at its maximum value, and the
bob is at its lowest height. Therefore, E, is at its maximum, and E,, is
at its minimum value. This can be defined as the system’ zero point of
potential energy:.




@ At C, the velocity is once more zero. So the bob has
zero kinetic energy and its maximum value of potential
\ ENergy.

\ The potential energy can be calculated as follows. The force
\ acting on the pendulum along its line of motion is —kx when
| \ it has been displaced by x (where k is the force per unit

N displacement).

A I \ C The work done to take the mass to x is

G

=
n
o

W = average force x distance

g 1
max = —=kx x (-x)

2
V = max

o B
= Max ) ka
% e or the potential energy is given by

4T

= Lk (xiv)
Figure 2.15 5 2
So the maximum potential energy of any simple harmonic

oscillator is %kAz, where A is the amplitude of the
i displacement.
ThA® total energy

The kinetic energy of the oscillator at a velocity v is

Ey = %mvz
Figure 2.16 shows how the potential energy Ep and the
kinetic energy E, change with displacement for a simple
harmonic oscillator. The total energy of the system
remains constant (assuming there are no energy transfers

out of the system.)

potential
energy

Figure 2.17 shows how the potential, kinetic and total
energies change with time as the pendulum oscillates.

In one oscillation, the potential energy and the kinetic
energy both reach a maximum twice. The total energy

~A 0 A remains constant.
Figure 2.16

kinetic
nergy

PE O

KB te—

| Total
energy

-
=)
e
o
=
=
=
=
=
E_
I
L
wad
o
=
wn
o~

energy

Nl
|

Figure 2.17



We can now write an equation to link these three energies at a displacement x:

m

=

total energy = kinetic energy + potential energy é

LrA? = 2my? 4 2kx? (xv) E

2 2 2 - ¥

< =)

0 E"

S

mv? = k(A2 - x2) 3

o

3

and g
$

v=¢[£] (A= *)? (xvi) &

m s

S

(Remember that when you take the square root of a function, there is a
Y q
positive and a negative root.) But

T=2n kﬂ

or

(xvii)

When equation (xvii) is substituted into equation (xvi), we get the familiar
equation for velocity:

v =22 f(A2=x?)?

or

v=x2nfyfA? —x* (xviii)

&
-
&
&
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interatomic bond. pendulum is at its maximum from the equilibrium

g TEST YOURSELF §
: B A simple model of a diatomic gas molecule c) Calculate the total energy of vibration of the two &
i treats the two atoms as small masses, which are atoms:
: connected by an atomic bond that behaves like a i) in joules [J] :
tiny spring. The atoms in a particular molecule iil in electronvolts (eV).
‘ vibra*lce with SHMqazt a frequency of 102 Hz ﬁﬂdl 9 Draw a sketch to show how the potential energy, :
amplrtudis x 107%m. The mass of each atom is kinetic energy and total energy of a particle,
i about 107*°kg. oscillating with SHM, vary with the particle’s 3
: a) What fraction of a typical atomic separation displacement. :
3 does this amplitude represent? 10 A pendulum with a mass of 0.1kg oscillates with an §
§ b) Calculate the approximate force constant of the amplitude of 0.2 m. When the displacement of the §
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potential energy is 0.02 J.

displacements of
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point, the pendulum has a potential energy of il 0 i} 0.1m.
0.08J, and when the displacement is 0.1 m, the b) i} Use the maximum speed of the pendulum

a) Calculate the speed of the pendulum at the time period of the pendulum.

and the amplitude of the swing to calculate

i) Now calculate the length of the pendulum.
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Damped oscillation A damped oscillation
occurs when friction or wind resistance
takes energy out of the oscillation.

C)

Free, clamped and forced oscillations

So far, we have only dealt with free oscillations. These are oscillations

that (in theory) carry on indefinitely because there are no forces acting

to stop the oscillation. A close approximation to a free oscillator is a very
heavy pendulum supported by a very fine wire, which is attached to a

rigid support. Under these circumstances, the energy transfers from the
pendulum are very low, and the pendulum keeps swinging for a long time.
Of course, in the end any pendulum stops swinging because frictional forces
transfer the pendulum’s energy to the surroundings as heat. A pendulum
clock can run for a week, because energy from a slowly falling weight gives
the pendulum a little energy every time it swings.

In practice, all mechanical oscillations are damped oscillations. In such
oscillations, the oscillator transfers energy to the surroundings. When

the damping is light, energy is transferred slowly. When the damping is
heavy, energy is transferred more quickly and the oscillations stop after a
few swings. The best way for you to investigate the effects of damping on
an oscillator is to use a motion sensor and a data logger. In this way, small
changes in amplitude can be recorded, which you could not do by eye.

(b)

interface/

data logger

Figure 2.18

Figure 2.18 shows experimental set-ups to investigate damping in two
oscillating systems. In Figure 2.18(a) the motion sensor records the
displacement against time for a mass on a spring. The card on the bottom
has two functions: first, to act as a good reflector for the motion sensor;
second, to act as a ‘damper’. It causes drag to dampen the oscillations.
Increasing the size of the card will increase the damping of the oscillator.

In Figure 2.18(b) a rotary sensor records the motion of a pendulum. The
computer records how the angle of rotation varies with time. By attaching



cards to the pendulum, the motion of the pendulum can be damped.
Figure 2.19 shows how the angular displacement of a pendulum varies
with time, for different amounts of damping,

(a)
light damping
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heavy damping
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Figure 2.19 Graphs of the angular displacement of a pendulum against time for different levels of damping:
[a] Light damping, [bl medium damping and [c] heavier damping. Data provided by Data Harvest Group Ltd.

You may be able to use data logging equipment to investigate damping
for yourselt.



. ACTIVITY

. A damped oscillator 2 To investigate if the amplitude decays exponentially,
: we can plot a graph of the natural logarithm of the
amplitude against the number of swings. Since it is
suggested that the amplitude obeys the law

. A teacher suggests that the amplitude of a damped
: oscillator decays exponentially with time. This means
: that the amplitude can be described by the following

: equation: A= Ane"‘“ (where t is the number of swings)
: where A is the amplitude at time t and Ay is the InA = nAg - At ‘
i amplitude at t =0 (the start of the swings). al Using your data, plot a graph of InA against the

number of swings.

b) Discuss whether or not your data follows an
exponential law.

c) Determine the ‘half-life’ 7'1 for your pendulum
using the expression

1 Investigate this relationship, using the graphs in
. Figure 2.19. Work in teams of three, so that each
: person can analyse one of the graphs. Rather than
. working in seconds, work in 'swings’. Then copy
. and complete Table 2.2. Measure the amplitude

after each complete swing. ln?
T_‘L e
 Table 2.2 ? A 1
; where you determine A from your graph.
M Number |Amplitudeof |Amplitude of |Amplitude of [You will find a similar expression derived in
of swings | graph graph graph Chapter 11.] Here T, is the number of swings it

2.19(al/degrees | 2.19(bl/degrees | 2.19([c])/degrees

takes your pendulu“-‘m's amplitude to reduce by a
half.

s
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O Forced oscillations

When you let a pendulum swing freely, it swings at its natural frequency,
which is determined by its length. Gradually the pendulum transfers its
energy and slows down. It is also possible to force a pendulum to oscillate
at a different frequency by pushing it at regular time intervals, This is
demonstrated in Figure 2.20. In Figure 2.20(a) a pendulum is driven by
hand at a frequency below its natural frequency. The amplitude of the
oscillations is low, and the pendulum bob moves in phase with the hand. In
Figure 2.20(b) the hand moves backwards and forwards at a high frequency,
above the natural frequency of the pendulum. Now the pendulum bob
moves out of phase with the hand, and the amplitude of the oscillations

is still small. In Figure 2.20(c) the pendulum is given a push at its natural




Figure 2.20

Resonant frequency The resonant
frequency of a structure (or oscillator) is
the same as its natural frequency. When an
oscillator is driven or pushed at its natural
frequency, the amplitude of the oscillations
grows large.

Resonance An oscillator undergoes high-
amplitude oscillations (resonance) when the
driving frequency is the same as the natural

frequency.

frequency. Just as the pendulum stops moving, the
hand gives it a small nudge. Now the oscillations of the
pendulum become very large. The pendulum is said to
be driven at its resonant frequency. When you push a
child on a swing, you push at the resonant frequency.
Just as the child reaches the maximum displacement
from the centre, the swing momentarily stops. After that
point, you give the swing a push and the amplitude of
the swing builds up.

The idea of resonance is demonstrated by Barton’s
pendulums (see Figure 2.21). Here, a number of light
pendulums (A-E) are suspended from a string. Also
attached to the string is one heavy pendulum (X),
which is the ‘driving’ pendulum. When the driving
pendulum is released, it pushes the string as it swings.

These pushes then begin to drive the other pendulums. Most of them swing
with low amplitude, but the pendulum that has the same length (L) as the
driver swings with a large amplitude. This is because its natural frequency is
the same as the driving frequency:.

Figure 2.21 Barton's pendulums.

IR

Investigating resonance

: You can use the apparatus in Figure 2.22 to help you
. understand how the amplitude of a driven oscillator
. changes with the driving frequency. The oscillator
pulls the string up and down. The string is attached
to a mass on a spring, which oscillates up and down
. at the same frequency as the driving oscillator.

Proceed as follows.

. ® Choose a spring lor springs) and masses so that

i the natural frequency of the system is about 1-2 Hz.

:  Measure this frequency.

i @ Vary the frequency of the oscillator in small steps

:  from about a third of the natural frequency to about
three times the natural frequency. Record the
amplitude of the oscillations in each case.
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[This can be difficult because the oscillations do ® Repeat the experiment with a piece of card
i not always settle into a steady pattern.] attached to the masses to increase damping.
: ® Plot a graph of the amplitude of the oscillations
i against frequency.

) Figure 2.23 shows an idealised resonance curve that
amplitude you might get when you try the activity. The amplitude
of the driven oscillations peaks sharply at the natural
frequency of the system. The sharpness of the peak
depends on the amount of damping. When a system

is heavily damped, the peak is not so sharp because
energy is being lost from the system and the amplitude
does not build up so far.

Figure 2.24 shows the effect of increasing damping on a
resonance curve:

-
applied frequency

arviiline morktee Whin @ the peak of the amplitude is lower

applied frequency = natural @ the peak is broader
frequency of ceciliaing body @ the peak of the amplitude occurs at a frequency
Figure 2.23 slightly lower than the natural frequency of the

system.

amplitude

7 | soplied reckianc
et T pplied frequency
Y natural frequency

resonating alr = of oscillating body
column 3 Figure 2.24

Examples of resonance
Musical instruments provide a good example of resonance. If the air in a
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wind instrument oscillates at the natural frequency of the instrument, a
loud note is produced. In a stringed instrument, when a string is plucked it
vibrates at its natural frequency.

Figure 2.25 shows how you can demonstrate resonance in the laboratory.
Here a tuning fork is held above a column of air. The length of the column
can be adjusted by moving the reservoir of water, on the right, up or down.
When the tuning fork is made to vibrate, the column of air vibrates. However,
sevsnky sosssnsly the amplitude of the oscillations is small when the driving frequency does
tuning fork forcing air not match the natural frequency of oscillations in the air column. When the
column into resonance length of the column is adjusted so that its natural frequency is the same as
Figure 2.25 the tuning forks frequency, a loud sound is heard as the air resonates.




A microwave oven takes advantage of the resonance of water molecules.
The frequency of the microwaves is matched to the natural frequency

of oscillation of water molecules. So when something is cooked in the
microwave oven, water molecules absorb energy from the microwaves. The
water molecules start to vibrate. This energy is then dissipated as random
vibrational energy among all the molecules in the food. Random vibrational
energy is heat energy.

Resonance can cause serious problems in any mechanical structure, because
all structures have a natural frequency of oscillation. Even a large structure
such as a chimney or a bridge can be set oscillating by eddies of wind. And
if the wind causes vortices of just the right frequency, large oscillations

can build up. Famous examples of bridges being made to oscillate by the
wind include the Millennium Bridge in London in 2000, and the Tacoma
Narrows Bridge in the USA in 1940. The decks of large boats can also be
made to oscillate if the boat hits waves with the same frequency as the
natural frequency of part of the deck. The Broughton Suspension Bridge
was an iron suspension bridge built in 1826 to span the River Irwell in
Manchester. In 1831, the bridge collapsed due to the mechanical resonance
caused by a troop of soldiers marching in step. Unfortunately for them,

the frequency of their steps caused the bridge to oscillate so much that it
collapsed. As a result of the accident, the British Army issued an order that
troops should ‘break step’ when crossing any bridge.

Reducing resonance

The best way to avoid resonance in structures is to design them so that their
natural frequencies lie well outside the range of frequencies likely to be
caused by wind blowing across them. However, if that is not possible then
the amplitude of oscillations can be reduced by damping the motion. In the
case of the Millennium Bridge, the oscillations were reduced by applying
fluid dampers (see Figure 2.26).

F’”.ﬂﬂh@h .

Figure 2.26 Fluid dampers were used to reduce the lateral
oscillations of the Millennium Bridge.
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Pistons are able to move inside a cylinder containing fluid and this
causes the energy to be dissipated rapidly. Car suspension systems use
the same idea. A car uses springs and shock absorbers to make the ride
more comfortable for passengers. When a car goes into a pothole (for
example) a strong spring allows the wheel to drop into the hole. With no
shock absorber, the car would then oscillate up and down. But the shock
absorber removes the energy. It consists of a piston that moves inside an
oil-filled cylinder. The shock absorbers are critically damped. This means
that the wheel only oscillates once before returning to its normal position
relative to the car (see Figure 2.27).

Figure 2.27 The spring and the
piston-cylinder on a shock absorber

form the suspension system for a wheel
inacar.
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TEST YOURSELF

11 Figure 2.28 shows a system of pendulums suspended from
a string. A heavy pendulum on the right is set in motion,
which then sets the other pendulums in motion too. These
light pendulums are made using small paper cones.
al Describe the motions of the eight light pendulums.

b) The small cones are replaced by larger paper cones.
Describe the changes you see in the motion of the
pendulums.

12 a} Explain what is meant by the term ‘resonance’,

b) Give and explain an example of how resonance can be
useful in a mechanical system.

c) Give and explain an example of how resonance can
cause problems in a mechanical system.

heavy pendulum

Figure 2.28
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Practice questions

1 A metal ruler is clamped to the desk and a mass of 80 g is fixed
securely to the end (Figure 2.29). A force of 12 N is applied to
displace the end of the ruler by 3 mm upwards. When the ruler is
released, it oscillates with simple harmonic motion.

The frequency of the oscillation is
A lHz C 36H:z
B 12Hz D 360Hz

2 The maximum speed of the ruler in Figure 2.29 when released
with an amplitude of 3mm is

A 0.36ms™! C 3.6ms™
B 0.67ms™! D 6.7ms}

3 In Figure 2.30(a) a mass m oscillates vertically on a spring with
time period T. The same mass is now attached to two springs, as
shown in Figure 2.30(b). All the springs are identical.

The mass now oscillates with time period
A 2T T

A
B \27T D %

4 A pendulum of length 12 m is suspended from the ceiling of
a tall room. The time period of the pendulum is

A 2s C 78
B 5s D 12s

5 A mass m hangs on a spring with spring constant k. The mass
oscillates with simple harmonic motion. The amplitude of the
oscillations is A. The highest speed of the mass is

Fa LY c L [ky
m 21: m
B Zu,/-rfA D ZnﬁA
m

6 An astronaut lands on a planet and decides to calculate the
gravitational field strength, g, using a pendulum of length 1.5m.

For his pendulum, he discovers that the time period is 1.4s. The
gravitational field strength is

A 15Nkg! C 45Nkg™
B 30Nkg! D 60Nkg!

7 A copper atom in a lattice can be modelled as a mass, m, tethered
by two springs, k, as shown in Figure 2.31, where m is 1025 kg
and k for each spring is 40 Nm.

Figure 2.29
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The frequency of the oscillations of the atom is given

K _ K
\**mwm*wmwm
m

k
by f= %EJ% . The frequency of the oscillations is

A 3.5x 1011Hz C 4.5x 1012Hz
B 6.6 x 10'1Hz D 85x 1012Hz

= eSS e

| Figure 2.31
8 The oscillating copper atom in Figure 2.31 has oscillations with

an amplitude of 5 x 10~ m. The energy of the oscillations is
A 0.1leV € D.5eV
B 0.3eV D 0.6eV

9 A pendulum swings with an amplitude of 10cm. The time period
of the swings is 0.8s. When the pendulum is displaced 6 cm from its
equilibrium position, its speed is

A 0.6ms! C 10ms!
B 0.8ms! D 2.0ms!

10 A particle oscillates with simple harmonic motion. Its displacement
is given by the equation x = Acos(2nft), where A is the amplitude
of the oscillation, 2.5cm, and f is the frequency of the oscillation,
10Hz. At a time of 0.025s, the displacement of the oscillator is

A -25cm c 0
B -1.25cm D +1.25cm

8 11 a) What condition is necessary for a body to exist with simple
harmonic motion? (1)

b) A buoy of mass 65 kg oscillates up and down in the sea with
simple harmonic motion (Figure 2.32). It takes an additional
downwards force of 28N to push the buoy an extra 5cm into
the water.

Calculate the force per unit displacement, k, in Nm-1,
for the buoy. (1)
¢) The time period of the oscillation is given by T = Zm\[-? ,

where m is the mass of the buoy and k is the force per unit Figure 2.32
displacement. A
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Use the equation above to calculate the time period
of oscillations. (2)

d) At t = 0 the buoy is at rest. Copy the axes of the graph in
Figure 2.33 and sketch how the kinetic energy of the
buoy changes over one complete oscillation, time T. 2)

Kinetic energy

B 12 A girl sits on a swing,. She takes 39s to complete 14 swings.

;
Z
The girl has a mass of 42 kg. t

time
Figure 2.33




a) Calculate the distance between the girls centre of gravity
and the suspension point of the swing. (3)

The girl is travelling with a speed of 3.5ms™! at the lowest
point of her swing,

b) Calculate the height between the lowest and highest points
of her swing. Assume that she is swinging freely. 2)

N
™
ﬁ
a-
]
)
E
3
Qm
P |
A

¢) i) Calculate the centripetal force that acts on the girl at
the bottom of her swing when she is travelling at

3.5ms L. 2)

ii) Calculate the total upwards force exerted on her by
the swing at this point. (1)

B 13 In Figure 2.34, a trolley of mass 0.7 kg is moving to the left with velocity
0.1ms™. A stiff compressible spring is attached to the trolley, which
acts as a buffer. The trolley collides with a solid barrier and rebounds
elastically. The spring obeys Hooke’s law and has a spring

constant & ﬂ .
a) Write an equation to describe how the force, F, that the spring A5

exerts on the trolley changes with the compression of the
spring, x. Hence explain why the motion of the trolley, while mass 0.7kg
the spring is in contact with the block, is simple harmonic. Figure 2.34

@)

Figure 2.35 shows graphs of how (i) the velocity and (ii) the
acceleration of the trolley change with time while the trolley is in
contact with the block.
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Figure 2.35

b) Use your knowledge of the equations of motion to explain
the relationship between graphs (i) and (ii). (3)

c¢) The trolley has a mass of 0.7 kg and the spring has a spring
constant of 25 Nm~1. Calculate the time, t, that the trolley is
in contact with the block. (3)

d) i) Calculate the maximum compression of the spring. (2)



ii) Calculate the maximum acceleration of the trolley. (2)

e) The trolley now approaches the block with a speed of 0.2 m 51,

Describe what effect this has on the following: (2)
i) the maximum acceleration of the trolley
ii) the time of contact with the block.

f) Explain what would happen to the time of contact, t, if the
trolley was now made more massive by adding weight to it (2)

® 14 Describe how you would design and set up some mechanical
apparatus to demonstrate resonance. (6)

Stretch and challenge

15 A particle of mass m is connected by two pieces of elastic, each of
unextended length I, to two fixed points A and B, one vertically
above the other, and separated by a distance 3.

a) If the elastic is such that a force F causes an extension e given by

ke
F=—
l

find the equilibrium position of the particle.

b) The particle is now depressed a small distance z; from its
equilibrium position, and then released. Assuming that it can
move only vertically up or down, and that damping effects can
be neglected, derive an equation describing its subsequent
motion. Then solve the equation to find the vertical motion z
of the particle as a function of time. Find the time period of the
subsequent oscillations, and the maximum velocity of the particle.

c) A piece of graph paper has x and y coordinates drawn on it. On
these axes is plotted a point whose x coordinate is the vertical
displacement of the particle at time t during its motion, and whose
y coordinate is the vertical velocity at the same instant. Explain
what would be seen if a whole series of points were drawn
corresponding to positions and velocities of the particle over an
extended time period.

d) Describe qualitatively the effects on the motion of the particle in
the following separate situations:

=
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i) the initial displacement g, is not small

ii) the damping effects cannot be neglected.
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PRIUR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

l
L)
*
*
]

FTEFFRTRRRRYEY

® The Earth, other planets and stars produce gravitational fields, which
exert a force on other massive objects.

@ A gravitational field exerts a non-contact’ force, which acts over very
long distances.

® Gravitational field strength, g, is defined as the force that acts on a
mass of 1kg. On the Earth, g = 9.81Nkg™.

® A planet's or star's gravitational field strength, at its surface, depends
on its mass and radius.

® The gravitational potential energy, £, [in J] gained by a mass m [in kg)
lifted through a height h (inm) in a uniform gravitational field g (in Nkg™)
s given by AE; = mgh.

® The kinetic energy [E,] of an object with mass m [in kg and velocity v

-
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lin ms™) is given by £, = imvz.
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 Listed below are four bodies in our Solar System, and four possible
values of gravitational field strengths at their surfaces. Match the
field strengths to the bodies, explaining your choices.

Four bodies in our Solar System:

Sun, Earth, Mercury, Ceres [a dwarf planet].

Possible values of surface gravity:
0.3Nkg™', 3.7Nkg™", 98Nkg™", 270Nkg™.

2 Olympus Mons is the tallest mountain on Mars and stands a height
of 22.0 km above the Martian plain. Mount Everest stands at a
height of 8.8km above sea level. Compare the energy expended by
a mountaineer climbing these two mountains. The gravitational
field strength on the surface of Mars is 3.7Nkg™!. [Assume that
the mountaineer has a mass of 120kg, including equipment and/or
spacesuits.)

3 al An object is dropped on Earth from a height of 5m. Calculate its

speed when it hits the ground.

b) An object is dropped from a height of 31 m on the Moon, and it
reaches a speed of 10ms™ when it hits the surface of the Moon.
Calculate the Moon's gravitational field strength.

¢l Ona planet, an object is dropped from a height h and it hits the
ground with a speed of 10ms™!. Calculate the object’s speed when
it hits the ground if it is dropped from a height of 2h. '
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O Newton's law of gravity
We live in an age in which humans have travelled to the Moon and space
probes have been sent to investigate all the planets in our Solar System.
From our own experience and this exploration of space, we know that, on
Earth, gravity exerts a larger force on more massive objects. We have learnt
that the Moon has a smaller surface gravity than the Earth because it is a
less massive body. We have understood that a planet’s pull of gravity gets
weaker further away from that planet’s surface.

These facts seem obvious to us now, but that is because we have seen
experimental proof of them. It is a mark of Isaac Newtons genius that he

(b)
r -
|
|
-—O
' My
r -

my

Figure 3.1 In each of these examples, Newton's law can be
used to calculate the gravitational force of attraction that
the objects exert on each other.

had enough insight to produce a law of gravitation based
on the observations of astronomers before him.

Newtons law of gravitation states that the gravitational
force of attraction between two point masses m; and m,
(measured in kg) separated by a distance r (in m) is given by

» Gmlma

ri

where G is the universal constant of gravitation:
G=6.67 x 1001 Nm?kg?

This constant can only be accurately measured by
careful laboratory experiment.

Although Newton’s law only applies to point masses,

it can also be used to calculate the force of attraction
between large spherical objects (such as planets and
stars) because a sphere behaves as if all the mass were
concentrated at its centre. So Newton’s law can be
correctly used to calculate the force of attraction in each
of the cases in Figure 3.1: (a) the force between two point
masses; (b) the force between a planet and a small mass;
and (c) the force between two planets or stars. Newton’s
law cannot be used to calculate the force between

two irregularly shaped objects, unless a complicated
summation of the forces is made.

EXAMPLE

Gravitational force

1 Calculate the gravitational force between the Sun, mass
2 x 10%%kg, and Halley's comet, mass 3 x 104 kg, when
separated by a distance of 5x 10°km. This is its furthest
distance from the Sun, which it will reach in 2023.

Answer
o Grn]rvﬁg
r2
_ (667 x 107"NmPkg™®) x (2 x 10%%kg) x (3 x 10"kg]
(5 % 10"2mJ
=2x10°N(1s.f)

=5




=
It is important to remember to convert the distance This is what you would expect when you remember <
into metres in the calculation. that this is your weight, which can also be g
ioEt o
2 Calculate the gravitational attraction between you calculated.uing: a..
[assume you have a mass of 65kg] and the Earth, W =mg=65kg x 9.8Nkg™' = 637N o~
; . 24 E diu
Whg:zgghEE N L You should also remember, from Newton's third ;
= e law of motion, that you exert a gravitational force of Q
Answer 637N on the Earth too. Y
e Gm,m,
f'2
6,67 x 107 'Nm?kg?) x[6.0 x 10*kg]x (65kg)
(6.4 x 10°mP
= 637N
_
light source The inverse square law

When Newton formulated his law of gravity, he imagined that the

force of gravity spreads out in the same way as light spreads out
from a candle.

Figure 3.2 shows his idea. When you hold a card at a distance of
I m from the candle, you see a particular intensity of light, I. When
you move a distance of 2 m from the candle, the same amount of
light now spreads out over four cards of the same area. So the light

intensity is now a quarter of its original value, %I ;

Light intensity obeys an inverse square law:

Here [ is the intensity of light in Wm™2, L is the luminosity of
the light source (the amount of energy emitted per second) in
W, and r is the distance away from the source in m. The factor
4n comes into the equation because the light spreads out into a
sphere, and the surface area of a sphere of radius r is 4nr?,

Figure 3.2 The intensity of light 2m away from
a light source is a quarter of the intensity

1 m away from the source, because the light
spreads across four times the area.
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Y TEST YOURSELF

_ . 30
3 Jupiter is approximately five times further lone solar mass] is 2 x 107 kg.

from the Sun than the Earth is, and Jupiter has

‘ 1 An astronaut of mass 100kg [including his a mass approximately 300 times larger than %
i  spacesuit] stands on a planet of mass 4 x 10%°kg, that of the Earth. How many times larger is the :
:  with a radius of 8400km. Sun’s gravitational pull on Jupiter than the Sun's i
t a) Calculate his weight. gravitational pull on the Earth? 3
i bl Calculate the gravitational field strength at the 4 a) A spherical light bulb is fitted in a darkened :
: surface of the planet. room. I he li-ght intensity at a distance 1 m away 3
i 2 a] Make an estimate of the gravitational attraction from it is 0.2Wm Calculate the light intensity :
i between two people, each of mass 80kag, at a distance of 3m away from it. :
: standing about 10 m apart. What assumption do b} Calculate the electrical power of the light bulb  }
you make in this calculation? assuming it is 20% efficient in transferring
i b) Explain why we do not notice gravitational electrical energy into light energy. ¢
i forces between objects on the Earth. 5 Estimate the gravitational attraction between our 3
" c) You can charge a balloon, by rubbing it, and get Galaxy, th? Milky Way, and the Amldromeda Galaxy. ‘
it to stick to a wall. What does this tell you about The gatfgxles are separated by a distance of about i
: the size of electrostatic forces compared with 2.4» 107 km and each galaxy has a mass of about  }
_ gravitational forces? 7 x 10" solar masses. The mass of the Sun ;

I

$ARABERRRRR R Rt R RO BB BB R H R r A AR PR R R AR R R BB RE R R AR R SRR DR R RR RN R R R R R R R R R R R R RR PR R R AR R B RRRR B PR P R AR R R PRB R R R R AR A BB R RS

U Gravitational fields
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Gravitational field A region in space A gravitational field is a region in which a massive object experiences a

in which a massive object experiences a gravitational force. Any object with mass produces a gravitational field,
gravitational force. but we usually use the term to describe the region of space around large
Field strength The strength of the celestial objects such as galaxies, stars, planets and moons.

gravitational field measured in Nkg™'. Field
lines represent the direction and strength of
the field.

The gravitational licld strength in a region of space is defined by

F
5T 5

where g is the field strength measured in Nkg~! and F is the gravitational
@ force in N acting on a mass m in kg.

= Y ¥ Y Y Y Y Y Y VY VYg=16Nkg' < :

= Uniform fields

E Near the surface of a planet, the gravitational field is very nearly uniform,

E (b) which means that the field is of the same strength and direction everywhere.
- Figure 3.3(a) illustrates a uniform field. The field lines show the direction

™ f Y Y Y Y g=8Nkg of the gravitational force on an object, and the spacing of the lines gives

a measure of the strength of the field. Figure 3.3(b) shows another
gravitational field, which is half the strength of the field in Figure 3.3(a).

Figure 3.3 [a] Field lines of equal spacing

38

A T T TR You should remember that the spacing of the lines is chosen just for

gravitational field. (b) This shows another illustrative purposes — another person might have represented the field

uniform field with a lower strength. strengths in these diagrams with a different separation of the field lines.
Radial fields

Figure 3.4 shows the shape of a gravitational field near to Earth; thisis a
radial field. Here the field lines all point towards the centre of the planet.
This is why we can use Newton's law of gravity to calculate the gravitational
forces between two planets. The field is exactly the same shape as it would
have been if all of the mass of the planet were concentrated at its centre C.



You can also see from Figure 3.4 that the gravitational field decreases in

RPN — strength with increasing distance from the centre of the planet. The field _C;:
-5 lines at a distance of 2r from the centre of the planet are further apart than 2
X they are at distance r, which is the planets surface. (Remember that the ﬁ'
; planet is a sphere, so that the lines spread out in three dimensions. The 5
; diagram shows the field lines in just one plane.) 5
‘ We can also produce a formula to describe the field strength close to a E
planet. From Newton’s law of gravity, we know that &

F Gmlzmz

r

Also if m, is the mass of a small object close to the surface of the planet,
Figure 3.4 The radial gravitational field e know that

decreases with distance away from

a planet. " F
> 'm,
Therefore
_ Gm,
g 3

Note that we often use a capital M to describe the mass of a

1ig 15 | go B 2'5 | aiD 10211{5, the forces of gravity overcome the massive forces of the
T A oM G rocks t;o turn the planet mto.-a sphere. However, smaller moons
of the Earth/km x 102 and minor planets can have irregular shapes, so Newton’s law of

gravity cannot be used to simply predict fields near them, but it

101 T ; :
EEIEEE large object such as a star or planet. So using M as the mass of a
" £iia: planet, and r as the distance away from the centre of the planet,
ST o we have
gl GM
2 SESEIEEEEEE e .
€ HH £
S A Figure 3.5 shows how the gravitational field strength varies with
HHHH height above the Earth.
2 ey 5 ) _
o b For most planets, treating them as uniform spheres works as a
S iR Sai good approximation. For most objects with a mass larger than
|' i
5

Figure 3.5A graph of g as a function of distance

from the Earth’s centre. can be used accurately at large distances.
EXAMPLE
Planets and stars Answer
1 A minor planet has a mass of 2 x 1522kg, and it has GM
a radius of 1200 km. Calculate the gravitational field g

X
_[6.67 x 107N m?kg™?) x (2 x 10%kg]
(1.2 x 10°m}?

=0.9Nkg™’

strength at its surface.




=5

2 A star has a gravitational field strength at its surface So
of 300N kg™'. Another star has the same mass but z 1 2
10 times the radius of the first star. Calculate the 9, =, [L‘] - 300N kg“ [_ =3 ng“
gravitational field strength at the surface of the 2 10

second star. 3 Show that the gravitational field strength near to

Answer the surface of a planet or star is given by g = 4nGpr,
where pis the density of the body and r its radius.

oM

9 E Answer

el oM

9= r

2 G x z‘nprs
2
9 _GM_ 7 b '32
2 =—TnGpr
TIP
The volume V of a sphere of radius ris V= %nrs.

' TEST YOURSELF
' In these questions use G = 6.7 x 10-1" N m?kg2. and at the top of Mount Everest. The Earth's radius §
t & Aplanet has a mass of 4.6 x 1023kg and a radius at sea level is about 6400km, and the height of :
: of 3200 km. Mount Everest is 8.8km. The mass of the Earthis 3
§ a) Calculate the gravitational field strength at the 6.0 x 10%%kg. :
; planet’s surface. 9 This question requires you to think about g
i b) Calculate the gravitational field at a height of gravitational fields end alsotorecall lastyears 3
6400km above the planet’s surface. work on v-t and s-t graphs. :
7 A star has a gravitational field strength of A spacecraft is flying away from the centre of
400N kg™ and a radius of 8.4 x 10°km. At the end the Earth, at a height of 10000 km. However, it is
~ of its life, assume that it collapses to become a travelling too slowly to escape from the Earth. At 3
= neutron star, of the same mass but with a radius a height of 20000km above the Earth's surface, it~ §
é g of 14 km. stops moving and begins to fall back to Earth. Use 3
E i a) Calculate the ratio of the star’s initial radius Figure 3.5 to help you to sketch: :
S ; to the radius of the neutron star it eventually a) a velocity-time graph for the spacecraft i
2 becomes. b) a displacement-time graph for the spacecraft. :
: b) Calculate the gravitational field strength on In both cases, start the graph from the initial §
the surface of the neutron star. height of 20000km, and finish the graphs as the 3
t B8 Show that there is a negligible difference between spacecraft crashes into the Earth,
‘ the Earth’s gravitational field strength at sea level 10 Express the unit for G in Sl base units. 3
i :
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You will be familiar with the equation that we use to calculate the increase
in gravitational potential energy when a mass is lifted in a gravitational
field. We calculate the change of gravitational potential energy, AE,, using
the equation

&EP = mgAh




Gravitational potential difference The
gravitational potential energy difference
per kilogram. Gravitational potential, and
potential difference, have units of Jkg".

EXAMPLE

Gravitational potential
difference

The equation in the main text
can be used to calculate the
magnitude of potential changes.
In Figure 3.6, what is the
gravitational potential difference
between being on the ground and
being at a height of 80 m?

Answer

AV = ghh = 5N kg™ x 80m
= 400J kg™

S ————————————————

Gravitational field A gravitational field g is
linked to the gravitational potential gradient
by the equation

AV

g:—_
Ah

where m is the mass lifted in kg, g is the gravitational field strength in

; [T ; a 3 s _
Nkg ', and Ah is the increase in height. 5}
Figure 3.6 shows the gravitational field lines (in green) close to the surface S
of a planet, where the gravitational field strength is 5N kg‘l. When a 1 kg G
mass is lifted through a height of 20m in this field, the equation above tells g
us that the increase in gravitational potential energy of the mass is 100] —~
(AE, = 1kg x 5Nkg™! x 20m = 100]). When the mass is lifted through E
40m, the increase in potential energy becomes 200]. g
Gravitational o

potential Height
400 Jkg™ —-——---——--———-E-i- 1.
o 3 1 o A PSS RS [NNEEN S SRV S
200 JKg~! |- m - e = o m I=5NKT”
c D
i S [ — R | FCRSR | SE—— || S ‘
100 Jkg e 20m

Piane’i's surface

Figure 3.6 Gravitational field lines and equipotentials close to the surface of a
planet, where g = 5N kg

These calculations lead us to the idea of gravitational potential difference,
which can be defined as the change in gravitational potential energy per kg.

Gravitational potential is given the symbol V, and gravitational potential
difference is given the symbol AV. Since AE, = mgAh, it follows that

AE.
AV = —F=g&h
m
50
AV = ghh

Gravitational potential has units of Jkg~!.

Equipotential lines

Figure 3.6 also shows equipotentials close to the surface of the planet. In
the diagram these look like lines, but in three dimensions they are surfaces.
On the diagram, equipotential surfaces have been drawn at intervals of
100]kg™!. When an object moves along an equipotential, it means that the
potential (and therefore the potential energy) stays the same.

Equipotential surfaces are always at right angles to the gravitational field.
When something moves at right angles to the field (and hence along an
equipotential), no work is done by or against the gravitational field, so there
is no potential energy change. When something moves along a field line,
there is a change of gravitational potential energy.

To be exact, in the link between gravitational [ield and potential, we
should link them with this equation:

AV

'g=_.&_h



(@

EXAMPLE

Gravitational potential
energy change

Refer to Figure 3.6.

| What is the gravitational
potential energy change in
moving a 2kg mass from A to B7?

Answer

The mass moves along an

equipotential, so the change is (.
2 What is the gravitational

potential energy change in

moving a 2kg mass from A to C7
Answer

It does not matter which path the
mass takes, the potential change

AV

The significance of the minus sign is that the potential gradient <5 1 in

a positive direction upwards, because the potential increases as the height
above the planet increases. The gravitational field direction is downwards.
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TEST YOURSELF

11 a) Explain the term gravitational potential difference’.
b) Give the unit of gravitational potential.
¢)] Explain the term equipotential.
12 Refer to Figure 3.6. Calculate the work done in moving a 5kg mass
through these distances:
a] AtoD
b] CtoD
c] BtoE.
i 13 Calculate the gravitational potential gradient in Figure 3.6. Comment
on your answer.
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Gravitational potential in radial fields

In this section we calculate gravitational potential energy
changes over large distances in gravitational fields, which change in
strength. Figure 3.7 shows how the gravitational force on an object of mass

from A to C is 100 Jkg™!. So the

potential energy change is
AE,= mAV = 2kg x 100Jkg™!
=200

m changes near to a planet of mass M. (Note the common use of M for the
planet and m for a small mass near

the planet).

The graph shows that a force, F, acts on the object at a distance
r from the centre of the planet. If the object is moved a small
distance, Ar, further away from the planet, we can calculate the
increase in the objects gravitational potential energy as

ﬁEP = work done = FAr

FAr is more usually written as mgAh because the force acting on
the mass is equal to its weight, mg.

forcem

How do we calculate the increase in gravitational potential energy
if the mass is moved from ry to ry? This is more complicated
because the force changes as we move from r; to r,.

area = FAr

|
r, Ar 7
distance from centre of planet/m

In the earlier calculation, FAr represents a small area under

the graph. So the work done on the mass (or the increase in
gravitational potential energy) in moving from r; to r, is the area
under the graph.

3 GRAVITATION

Figure 3.7 Graph of gravitational force acting on an
object in the vicinity of a planet,

42

The formula to calculate the increase in potential energy is
given as equation (i) (the Maths box shows how the formula is

derived):
] . -
AEP =GMm|——-—
n h (i)
From this, we can also derive a formula for the increase in potential AV, because
AE i 4
AV = —E=GM|—-—
m O (ii)
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MATHS BOX

: Using Newton’ law of
gravitation, the work done on m
is
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work done = FAr = @;ﬁr

r
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: So the increase in gravitational :
i potential energy in moving m 5
fromrytoryis

L S SR

€] _‘
A= [
H P rz H
: "l :
: .
| GMm|®
—— L_i]
! S :
Position Potential (V) Jkg™

A -2x 107

B -3x 107

& 4 % 107

D ~5x 107

E -6 x 107

I ~7 %107

G -8x 107

Equation (ii) allows us to think about defining gravitational potential close

However, we choose to define o as the point of zero potential for all planets
and stars. If we chose any other point as zero, such as the surface of the
Earth, we would get a more complicated set of equations when we deal with
potentials near to other planets.

to a planet. We can calculate the potential change in moving from a distance 9
ry to a point infinitely far away from the planet. When r, = 00,1 2 0. So the 2
potential change in moving from r, to o is h g
a-
. GM

AV = W (iii) _g-

3

%

So, since we define the potential as zero at infinity, it means the potential
near to any planet is a negative quantity, because potential energy decreases
as something falls towards a planet. This leads to the following definition of
potential V at a distance r from the centre of a planet of mass M:

GM

Vi s

r

Figure 3.8 shows the gravitational field lines and equipotentials near to

a planet. The equipotentials are shown in equal steps of 1 x 107 Jkg™
from the surface G, where the potential is -8 x 107] l(g‘l, to A, where the
potential is -2 x 107 Jkg™!.

radius of planet = 10000 km

Figure 3.8 This diagram shows gravitational field lines and equipotentials near to a planet.



m This diagram shows two important linked points:

ACTIVITY i @ The potential gradient is steeper close to the planets surface, because the
. Equipotentials and equipotentials are closer together.
variation of potential with i @ The field lines are closer together near the surface, because the
| distance 5 gravitational field strength g is stronger.
Using the information in These two statements are linked through the equation you met earlier:
. Figure 3.8, copy and complete | AV
. Table 3.1 linking potential and T AR
: distance from the centre of the |
i planet.You will need a ruler to EBE %
. measure the distance of the ; g=———
. equipotentials from the planet Ar
TR, : These equations are exactly the same, except that Ah has been used for a
: i change in height, and Ar has been used for a change in distance from the
: Table3.] i centre of a planet.
§ 107Jkg™! 107 m! :
_ — Escape velocity
-8 1.00 | 1.00
i i  The Earth has its atmosphere because the molecules of gas, moving in our
-y 114 | 0.88 e -
atmosphere, do not have enough kinetic energy to escape from the pull of
= 139 i3 gravity at the Earth’s surface. So how fast does something have to move to
=9 escape from the Earth’s surface?
-8 When a fast-moving object leaves the surface of a planet, we can write that:
~3
=2 decrease in kinetic energy = increase in gravitational potential energy
1 Plot a graph of potential AE, = AE,
. againstr. . This assumes that the object is not affected by an atmosphere, and is in free
2 Use the gradient of the graph |  fall — this is not a spacecraft with a rocket.
to determine the planet’s ' _
gravitational field at a distance The equation above can be written as
of s
a) 20000km from the centre %mv?-%mvﬁ =mAV
b) 40000km from the centre.
= 3 Plot a graph of potential i 1f the object is to just escape the pull of the planet, its speed, v,, will just
E ' against — | Use the graph to . reach zero at an infinite distance from the planet. This leads to the idea of
";" determme the mass of the i escape velocity, which is the minimum velocity that an object must have
< planet. . at the surface of a planet in order to escape the pull of gravity of the planet
(G Gl L T O S 1T M T
)
The gravitational potential at the surface of a planet is given by
GM
&é Ve i
r
so the change in potential is
._...an...u......“..“-.“..‘...ﬁ...u........-.‘-.‘-:.-n...a.nu-.“u...:.u”ua....-. GM
Escape velocity The minimum velocity an AV = —
object must have at the surface of a planet J
to escape the pull of gravity using its own So the escape velocity for a planet can be calculated using
kinetic energy.
GM
-l-mvl =mAV = il

Z r
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, 2GM

Vo o=

(iv)

r
For the Earth, M = 6 x 1024 kg and r = 6400 km, so

o
)
&

, 2X(6.67x10™ Nm? kg?)x (6x10* kg)
6.4%10° m

v

v=11200m s’

Since air molecules travel at approximately 500ms-! on the surface of the
Earth, they travel well below the Earth’s escape velocity.

a hole.
a) Use the equation for escape velocity [marked
liv] in the text) to calculate the maximum

iv) point 4 to point 5.
b) Use your answer to part [a] to explain why a

spacecraft can stay in a circular orbit round a radius for & bisckohiole tarived by a star of :
FLEnECnacintiey. mass 103Tkg. The speed of light is 3x 108ms-".

¢) The spacecraft returns to the planet. It passes b) Calculats:
point 5 travelling at a speed of 5200m s, and '

falls freely to point 2. How fast is it travelling as

it passes point 27 :
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i) the gravitational field at this surface
ii) the gravitational potential at this surface.

:; TEST YOURSELF .
14 Explain why we choose to define the zero point of 17 The radius of the planet shown in Figure 3.8

: gravitational potential at an infinite distance from is 10000 km. Either by estimating the distance

any planet. between the equipotentials near the planet’s -=
§ 15 Calculate the gravitational potential at the surface, or otherwise, calculate the value of g '
i surface of Jupiter. The mass of the planet is near the planet’'s surface.

3 1.9 x 10?7 kg and its radius is 70000 km. 18 When a large star collapses at the end of its

; 16 This question is based on the information in life, it can collapse into a black hole. The pull :
: Figure 3.8. of gravity at its surface is so strong that not :
: a) Calculate the work done in taking a 1200 kg even light can escape. Einstein’s theory of
§ spacecraft from general relativity predicts that black holes are
§ i} point1to point 2 'singularities’, which means they have collapsed '
: ii) point 2 to point 3 into a tiny space. However, we can use Newton's :
i iii) point 3 to point 4 theory to calculate the maximum size of such :

O Orbits

In Figure 3.9, a planet of mass m is in a circular orbit around a star of
mass M. You have already studied circular motion. Now we can combine
the equations of circular motion and gravitation to link the speed or time
period of a planets orbit to its distance from the Sun.

The pull of gravity provides the necessary centripetal force to keep the
planet in orbit. So we can write

GMm mv’
X r
GM v*
r Ty
Figure 3.9
B GM

r
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From this, you can see that the speed of the orbit is faster for small orbits.
Figure 3.10 shows the link between orbital speed and the distance of our
eight planets from the Sun.

200 - ~ 2000
150 —» Mercury ~ 1500 "%
. @
% velocity ;
%‘ Venus o
5 100 = Earth ~ 1000 s
o 8
E 2
50 - - 500 §
Mepiune
#
| 1 | 1
1000 2000 3000 4000
average distance from the Sun/10% km
Figure 3.10

We can also link the time period of the orbit (1 year for the Earth) to the
radius of the orbit. The speed of the orbit is linked to the circumference,
2mr, and the time period of the orbit, T, through the equation

2nr
V=0Fr =—
T
S0
2 _4mrt GM
T r
r’ _GM
T 4
T2 i 47[2 r3
GM

Figure 3.10 also shows the relationship between time period and orbital
radius of the planet — the green curve.

Elliptical orbits

In the previous section, we treated all orbits as if they were circular — this
is because it is relatively easy to cope with the mathematics of circular
orbits. In practice, very few orbits are circular — most orbits have an
elliptical shape. Figure 3.11 shows a possible elliptical orbit for a comet
(black dot) travelling round the Sun. Most planetary orbits are nearly
circular, For example., the Earth’s closest approach to the Sun (perihelion)
is 147 x 10°km and its furthest distance (aphelion) is 152 x 10%km.
However, comets and some minor planets have elongated (or eccentric)
elliptical orbits.
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Figure 3.11 Comets move in elongated or eccentric
elliptical orbits round the Sun. Note that the Sun’s solar
wind always blows the comet’s tail away from the Sun.

You should note that the relationship derived in the last section linking the
time period of an orbit to the radius of the orbit is still valid for elliptical
orbits, provided r is taken to be half the major axis of the ellipse. The major
axis in Figure 3.11 is the distance AC, and the minor axis is the distance
BD. So, for the elliptical orbits we can write

4’

GM

T2 - ( rsma )3

where r___ is the semi-major axis, equal to AO or OC.

When a planet or comet moves in an elliptical orbit, its speed changes, but
the total energy of the body stays the same.

At point A in Figure 3.11, the comet is moving at its fastest orbital speed,
but it has the smallest gravitational potential energy, because it is closest
to the Sun.

At point B, there is a component of the Sun’s gravitational pull on the
comet, which slows it down.

When the comet reaches point C, it is at its furthest point from the Sun.
It has its lowest kinetic energy at this point, but its highest gravitational
potential energy.

At point D, the comet is falling back towards the Sun. There is a component
of the Sun’s gravitational pull, which speeds it up. The comet’s potential
energy is being transferred into kinetic energy, and the comet reaches its
maximum speed again at A.

Satellite orbits

There are many satellites in orbit round the Earth, which are used for
a range of purposes. Two of the most common uses of satellites are
communications and observation.

Satellites placed in low orbits are able to take photographs of the world
below. We are used to seeing images of mountain ranges, lakes and cities
taken from space, and we use weather images on a daily basis.



bt e Satellites placed in higher orbits are useful for communications, because
aquator messages may be sent from one part of the world to another via the satellite.
Different types of orbit are illustrated in Figure 3.12.

One of the most useful orbits for satellites is the geosynchronous orbit.

In this case the satellite is placed in an orbit above the Earths equator, at
such a height that it takes exactly one day to complete an orbit. The orbit is
synchronised with the Earth’s rotation, so that it remains in the same place
above the Earths surface. This means that our satellite dishes, for example,
can be aligned with a satellite, which always lies in the same position

Figure 3.12 relative to Earth.

low polar orbit

EXAMPLE

Geosynchronous satellite

Calculate the height of a geosynchronous satellite in orbit above the
Earth’'s surface.

Answer
We can use the equation we derived earlier in this chapter:
T2 = 4_1:2 r3
GM
or
3_|GM |2
4n?
3 _ (667 107" Nm?® kg™?)x (6.0 x 10% kg)x (24 x 3 600 s)*
4n?
r=42.4%10°m

Since the radius of the Earth is 6.4 x 109m, the height of the orbit is
about 36 x 10%m or 36000 km.

When a satellite is launched, it requires more energy to place it in a

= . ! : .
=) higher orbit, even though it travels more slowly. This is because we
= have to increase the potential energy of the satellite more to place it in
= a high orbit.
S —
o
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_ : MATHS BOX :
: How much energy has to be supplied to a satellite of In its orbit of radius r,, the satellite’s potential energy
¢ mass m to lift it into an orbit of radius r, above the ‘ :
: is ~SM™ The satellite’s kinetic energy in orbit may be :
: Earth? g ' :
. Answer calculated as follows.
: At the Earth’s surface, radius ry, the satellite’s In a circular orbit we can write
! o : . G L 2 :
© gravitational potential energy is - f‘m and its kinetic mv-  GMm :
- A l — 1 . E
EHEI'gy 1S ZeT0. I 3 rl E
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S0
. _1_ 5 GMm
Ek = 3 my = 21’1

The satellite’s total energy is the sum of its kinetic
energy and potential energy:

GMm GMm GMm
E +E. = - =—
k"R 2 r 2r,

This shows us that the total energy approaches zero
as r, tends to infinity, and it is more negative for
small value of r,. You will remember that we chose to
define the zero point of potential energy at infinity.
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The moons of Saturn

Saturn is thought to have 62 moons in orbit around

: it. Table 3.2 shows information about six of Saturn’s
{ inner moons.

i

Table 3.2

Orbital Orbital period/
radius/10°km | days

Atlas 137 0.6

Mirmas 185 0.9

Methone 194

Enceladus 238 1.4

Tethys 295 1.9

Dione 377 2.7

| The orbital period and orbital radius are linked by the

equation:

4
GM

3

7= r

i 1 Draw up a table of 7?and r? values [T should be

calculated in seconds, and r in metres). Plot a
graph of T against r®. From your graph, determine:

al Methone’s orbital period
bl Saturn's mass.

i 2 Dione has the same orbital radius about Saturn as

our Moon does about Earth. Our Moon has an orbital
period of about 27 days, which is 10 times longer

So the work done to put a satellite in orbit is the
difference between its energy in its orbit and its
energy on the Earths surface:

work done = -—% ] - Ll
2r2 N
[n ?.r2

In practice, the kinetic energy of the satellite at the
Earth’s surface is not zero, as the Earth is rotating, This
kinetic energy reduces the work done necessary to put
a satellite in orbit and is one reason why launch sites are
near the equator where the speed of rotation is greatest.

than Dione’s. Use the expression above to deduce
the ratio of Saturn's mass to the Earth's mass.

3 You could also check the relationship between T
and r by plotting a graph of logqy T against loggr.

4’
GM

3

T? = r

By taking the log of both sides we get

2 ]
logT? =log sl 7

Therefore

log Té= Log[g%] +log r

and then
i
2logT-tog[-g%]+3togr

Al
togT-%tog v +Elogr

When you plot a graph of log T against logr, you
should find

that its gradient is ..3. which confirms the relationship
that T2 is proportional to r3,
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% 19 A satellite is in a low orbit over the poles of the 21 A satellite takes 120 minutes to orbit the Earth.
Earth. It is 300km above the surface of the Earth. a) Calculate the satellite’s angular velocity.
3 The gravitational field strength at the surface of bl Calculate the radius of the satellite's orbit. :
the Earth is 9.8 N kg™, and the radius of the Earth Take GMg to equal
is 6400 km. 4.0 x 10"N kg™' m2.
: a) i) Explain how this satellite might be used. 22 The Sun has a mass of 2 x 103%kg; the radius of i
: ii} State another use of satellites, and explain the Earth's orbit is 1.5 x 108km; the Earth's mass |
. what orbit you would use for the satellite is 6 x 10% kg, !
you have chosen, al i) Calculate the angular velocity of the Earth. i
b) i) Calculate the gravitational field strength at ii) Calculate the Earth's orbital speed.
g a height of 300 km. b) i) Calculate the centripetal force on the Earth.
i ii) Calculate the orbital period of the satellite. ii) Show that the centripetal force on the Earth :
: 20 a) Explain the difference between a planet’s orbit Is equal to the Sun's gravitational pull on :
and a comet’s orbit. the Earth.
b) Explain why a comet's orbital speed changes c) Calculate the Sun's gravitational field strength &
; throughout its orbit. at a distance equal to the Earth’s orbit round it. i
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Practice questions 3
™

1 The gravitational field strength at the surface of a planet, of radius =
8000km, is 15Nkg!. The gravitational field strength at a height of i

4000 km above the planet is =

q

A 10Nkg! C 6.7Nkg! )

B 8.0Nkg! D 4.4Nkg! 7

2 The gravitational field strength on the surface of the Earth is g. The
gravitational field strength on a planet with twice the mass of the Earth
and twice the radius of the Earth is

A g/8 C g
B g4 D¢

3 The gravitational potential on the surface of a planet with mass M and
radius R is V. The potential on a second planet with mass 2M and

radius R/3 is
A =2V/3 C <2V
B -3V/2 D -6V

4 A satellite is in a circular orbit round a planet of radius 5200 km, at
a height of 1800 km. At this height the gravitational field strength is
4.2 Nkg!. The speed of the satellite is

A 54kms! C 2.4kms!
B 4.5kms! D 0.2kms!

5 The centres of two planets, each of mass M, are separated by
a distance r.

Which of the following correctly gives the gravitational field
strength and the gravitational potential, at a point halfway between
the centres of the planets?

Gravitational field Gravitational potential
A 8 GM/r? 0
B 4LGM/r? -2GM/r
C 0 0
D 0 -4 GM/r

6 The gravitational field strength at the surface of the Earth is 9.8 Nkg!.
At the surface of the Moon the field strength is 1.7 Nkg™!. The Earth has
a mass 81 times that of the Moon. The ratio of the Earth’s radius to the
Moon’ radius is

A 29 C49
B 3.7 D 7.6




7 Two stars of mass M and 4M are a distance r apart (Figure 3.13).

Star A Star B
e
aM
r
- >~
Figure 3.13

The resultant gravitational field strength is zero along the line between their
centres at a distance x from the centre of the star with mass M. The ratio of

x/ris
A 3/4 C 1/2
B 2/3 D 1/3

8 The diameter of the Earth is twice that of Mars and the mass of the Earth is
10 times that of Mars. The gravitational potential at the surface of Mars is
~13MJkg!. The gravitational potential at the surface of Earth is

A -290MJkg! C -65M]kg™!
B -120MJkg! D -28MJkg™

O A satellite is in orbit above the Earth at a distance of 9000 km from the
Earth’s centre. At this height the gravitational field strength is 5.0ng‘l.
The time period of the orbit of the satellite is

A 90 minutes C 180 minutes
B 140 minutes D 270 minutes

10 The time period, T, of a body orbiting the Sun is given by the formula
4R’
GM

where M is the mass of the Sun and R is the radius of the
orbit. Halleys comet takes 76 years to orbit the Sun. The ratio

T =

average radius of Halley's comet orbit
average radius of the Earth’'s orbit  '°

A9 C 76
B 18 D 660
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= 11 a) Work out the correct unit, expressed in SI base units, for %-

. (2)

b) The gravitational field strength at the surface of the Earth is six
times the gravitational field strength on the surface of the Moon.
The mean density of the Moon is 0.6 times the mean density

radius of Earth

radius of Moon | - G)

of the Earth. Calculate the ratio;




" 12 In Figure 3.14, the gravitational potential at A is =16 MJkg~! and the

A
% . a _ A % |

gravitational field strength at A is 4 Nkg™". a
p_!anet g.
€
A B ™
| | 2
| ! o
| I S
r - } &

| |

' or !

Figure 3.14
a) Calculate the work done in taking a 120 kg mass from A to B. (3)
b) Calculate the gravitational field strength at B. (2)

" 13 The gravitational field strength at the surface of the Sun is
270Nkg™. Betelgeuse is a red giant star, which has a density of
approximately 0.01 times that of the Sun and a radius about
1000 times that of the Sun.

Calculate the gravitational field strength on the surface of Betelgeuse. (3)

" 14 At point P in Figure 3.15, the gravitational field strength is zero,
and the gravitational potential is -8.0 x 107 Jkg™!.

planet A

planet B

ar s ¥

Figure 3.15

a) Calculate the work done to remove a spacecraft of mass 600 kg
to a point infinitely far away from these planets. (3)

mass of planet A 3)

b) Calculate the ratio: 5HRSS of tlaHEED

B 15 lo is a moon of Jupiter. lo rotates around Jupiter once every
42 hours, in an orbit of radius of 420000 km.

a) Calculate the angular velocity of lo. (3
b) Use the data above to calculate the mass of the planet Jupiter. (3)

¢) The radius of the orbit of a moon is proportional to T%, where
T is the time period of the orbit. Ganymede is another moon of
Jupiter that takes 168 hours to rotate around the planet.

Calculate the radius of Ganymede’s orbit. (4)

© 16 Two identical spheres exert a gravitational force F on each other.

a) What gravitational force do two spheres, each twice the mass
of the original spheres, exert on each other when the separation
of their centres is four times the original separation? (2)

b) The gravitational force between two uniform spheres is
3.7 x 10N when the distance between their centres is



200 mm. The mass of one sphere is 3.0kg; calculate the mass
of the second sphere. (3)

¢) The gravitational potential difference between the surface of
a planet and a point 20 m above the surface is 800 kg.
Calculate the gravitational field strength in the region close
to the planet’s surface. (3)

B 17 a) Calculate the time period of the Earth’s rotation, if you were to
be made to feel weightless at the equator. The radius of the Earth
is 6.4 x 10°m. (3)

b) A satellite is in orbit, of radius r, around a planet of mass M.
Write down expressions for

i) its orbital speed (2)
ii) the time period of its orbit. (2)

B 18 Figure 3.16 shows a sketch of the Earth-Moon system. The
gravitational potential at the surface of the Earth is -62.8 MJ kg™*;
the gravitational potential at the surface of the Moon is 2.3 MJkg™!; the
gravitational potential at point N is -1.3M]Jkg™". Point N is the neutral
point between the Earth and Moon where the gravitational field is zero.

Figure 3.16

a) The Earth is 81 times as massive as the Moon. Calculate
r

the ratio r_; (2)
b) i) Calculate the minimum amount of energy required to
move a space probe of mass 2.0 x 10% kg from the Earth
to point N. (3)

ii) Explain why no more fuel is required to take the space
probe from point N to the Moon. (1)

¢) The amount of fuel required to take a spacecraft to the Moon
is much higher than that required to return it to Earth. Explain
why this is so referring to the forces involved — gravitational
field strength and gravitational potential. (6)
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Stretch and challenge

19 M87 (Messier Catalogue number 87), is a giant galaxy, and is about
6 x 10'? times as massive as our Sun. The gravitational pull of this
galaxy keeps star clusters in orbit around it. In the centre of this
galaxy is a giant black hole of about 5 x 10 solar masses.




a) The event horizon of the black hole is the maximum radius from
which something can just escape the black hole travelling at the

speed of light.

i) Write down an expression for the gravitational potential at this
point, in terms of the mass of the black hole, M, and the radius
of the event horizon, r.
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ii) Write an expression for the kinetic energy of a kilogram mass
travelling at the speed of light, c.

iii) Calculate the radius of the event horizon. Take the mass of the
Sun to be 2 x 10°%kg, the speed of light to be 3 x 10®°ms!, and
G=6.7x10"1 ng‘2 m?2.

b) i) A globular cluster of stars orbits M87 at a distance of 300000
light years. Calculate the time period of the orbit.
[1 light year = 9.5 x 10" m]

ii) What happens to any stars or clusters of stars near the galaxy if
they rotate too slowly to stay in an orbit?

20 Figure 3.17 shows the orbit of a comet as it falls in towards the D comet’s orbit

Sun and then leaves the inner Solar System again. The gravitational e Saturnss

potential due to the Sun has the following values at these distances ot

from the Sun: at Saturn’s orbit, <93 M] kg‘l; at Jupiters orbit, i Jup-lter"g\

~172M] kg"L; at the Earths orbit, 893 MJ kg, ek oy

a) From this information calculate this ratio: Earth's | :
radius of Saturn’s orbit AN : !
radius of Jupiters orbit *,f' ;"

b) As the comet moves from point A to point B, it increases its ‘_,"'
speed. Explain why.

. -
‘‘‘‘‘‘
'''''''

c¢) i) The comet has a mass m. At point A its speed is v, and
at point B its speed is vg. Write an equation to link the
comet’s increase in kinetic energy to its decrease in
gravitational potential energy.

Figure 3.17

ii) At point A the comet’s speed is 3 x 10*ms-1. Calculate the
comet’s speed at point B.

iii) State the comet’s speed at points C and D.




Thermal physics
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

@ The kinetic theory model of solids, liquids and gases assumes that
particles are incompressible spheres.

® Solids have a close-packed, regular particle structure - the particles
vibrate about fixed points.

® Liquids have a close-packed, random, irregular particle structure -
the particles are free to move.

® Gases have a widely spaced, irregular particle structure - the
particles move at high speed in random directions.

® Thermal energy can be transferred from somewhere hot [ata high
temperature] to somewhere cooler (at lower temperature) by the
processes of conduction, convection, radiation and evaporation.
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 Draw simple diagrams showing the arrangements of particles inside
a solid, a liquid and a gas.

2 Explain the difference between the transfer of thermal energy, from a
hot body to a cold body, through conduction and through convection.

3 Explain how evaporation transfers thermal energy away from a hot
cup of tea.
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Thermodynamics

During the late 18th and early 19th centuries scientists, inventors and
engineers began to develop steam engine technology, such as the giant
steam-powered beam-engine pumps used to pump water out of deep
Cornish tin mines.

Development of the engines required a systematic and fundamental
understanding of the nature of heat energy; its relationship to the behaviour
of steam and the other materials making up the engines; and the work done
by the engine. This study became known as thermodynamics and Britain
led the world, not only in the development of the new engines, but also in
the fundamental physics of thermodynamics.

Thermodynamics deals with the macroscopic (large-scale) behaviour of
a system, but it is complemented by the kinetic theory of matter, which
deals with the microscopic, particle-scale behaviour of matter. Some




Internal energy The sum of the randomly
distributed kinetic and potential energies of
the particles in a body.

—= kinetic
energy

— potential
anergy

Figure 4.1 Glass of water, showing
internal energy.

Fluid A substance that can flow - i.e. a gas
or a liquid.

cylinder frictionless piston

pressure, p

plston area= A

plston moves
through a
distance Ax
causing an
Increasing
volume AV

Figure 4.2 A gas expanding in a cylinder,

aspects of thermal physics are best explained in terms of macroscopic
thermodynamics, such as the behaviour of engines, but other aspects

are best explained using microscopic kinetic theory, such as Brownian
motion (the tiny random motion of pollen or smoke particles seen under
a microscope).

Internal energy

One of the most fundamental properties of thermodynamics is the concept
of internal energy, U, which is the sum (sometimes called an ensemble in
thermodynamics) of the randomly distributed kinetic energies and potential
energies of the particles in a body:

U = E(kinetic energies) + X(potential energjes)

Consider a glass of water (Figure 4.1). The water particles have two types

of energy — kinetic energy associated with their movement (the faster they
move, or vibrate or rotate, the higher their kinetic energy) and potential
energy associated with any forces or interactions between the particles (such
as any electrostatic attraction or repulsion).

The kinetic energjes of the particles depend on their temperature, and
the potential energies depend on any intermolecular forces between the
particles. For ideal gases, in which there are no intermolecular forces, the
internal energy is dependent on only the kinetic energies.

The first law of thermodynamics

The physicists working on the theories of how engines worked quickly
realised that there was an interplay between the changes in heat energy and
the work being done on or by the [luids in the engines. This was formalised
by the first law of thermodynamics, written by Rudolf Clausius in 1850.

A modern version of his law can be stated as follows:

The increase in internal energy of a system is equal to the heat added to
the system minus the work done by the system.

In terms of symbols, this can be written:
AU = AQ - AW

where AU is the increase in internal energy of the system (usually a gas), AQ
is the thermal energy added to the system and AW is the work done by the
system.

Work done by an expanding gas

When a gas expands, it exerts a force on the surroundings, causing them to
move — the gas does work on the surroundings. We can use the first law of
thermodynamics to determine the work done, AW, by an expanding gas at
constant temperature (called an isothermal change). Consider a gas enclosed
in a cylinder by a frictionless piston, as shown in Figure 4.2.

The gas of volume V exerts a pressure p on the walls of the cylinder. This in
turn exerts a force F on the frictionless piston of area A, where

F:PA

This causes an increase in the volume, AV. We assume that AV is very small
and that the force moves the piston at a slow but steady rate such that the
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TEST YOURSELF

: 1 What is thermodynamics?

2 State two ways in which the
internal energy of a gas inside
a bicycle tyre pump can be
increased.

3 Calculate the work done on a
gaswhen its internal energy
increases by 1864kJasitis
heated, causing its thermal
energy to increase by 1247 kJ.
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external force exerted on the piston is equal to the force exerted by the
pressure p of the gas in the cylinder. This effectively makes the pressure
exerted by the gas constant during the expansion. The gas does work, and
so AW is positive. The force on the piston moves it through a distance, Ax,
such that:

AW = -FAx

substituting for F = pA gives
AW = pAAx

But AAx = AV, the change in volume of the gas, so
AW = pAV

Q

Heating up substances and changes
of state

When substances are heated, thermal energy is supplied to the particles of
the substance, increasing their internal energy U, and therefore the average
kinetic energy of the particles. Increasing the average kinetic energy of

the particles causes the temperature of the particles to rise. The size of
temperature change, A#, is dictated by several macroscopic, measurable
factors: the amount of thermal heat energy supplied, @Q; the mass of

the substance, m; and a quantity called the specific heat capacity of the
substance, ¢, which is unique to each substance; and its state. These factors
are related to each other by the equation:

Q = mcA@

The thermal energy Q is measured in joules (J), the mass m is measured in
kilograms (kg), and the temperature change A@ is measured in kelvin (K),
so the units of specific heat capacity, ¢, are Jkg K1

The specific heat capacity of a material is a fundamental property of the
material and is particularly important to engineers and scientists designing
engines and insulation systems. A specific heat capacity dictates how easy it
is for a material to change its temperature. Materials with very high specific
heat capacities, such as water, ¢, = 4186 ] kg™ K-! (usually rounded up

to 4200 kg1 K-1), require a great deal of thermal energy to increase the
temperature of 1 kg of the material by 1 K, whereas materials such as gold
with quite low specific heat capacities, c,, = 126 Jkg™' K-}, require only a
small quantity of thermal energy to increase the temperature of 1kg of the
material by 1 K.

Water has a particularly high specific heat capacity. Other common
materials on Earth have substantially lower values: granite rock, for
example, has a specific heat capacity of 790 kg™ K™, less than one fifth
that of water. Without this property, life may not have been possible on
Earth, because water would almost alway be in the gaseous state.

The specific heat capacity of a material enables us to measure the change in
temperature of a material following a change in thermal energy.
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EXAMPLE
Warming water Thermal energy supplied to the water is
An aluminium saucepan is used to warm 1.50kg Q= 60 « 79 % 105 J
of tap water (at 18°C) for a hot-water bottle 100
by heating it on a 3.0kW electric hob for 4.0 =432 % 105
minutes, Assuming that 60% of the electrical
energy is absorbed by the water, and that there But Q = mcA8 so
are no subsequent heat losses, calculate the
final temperature of the warm water. The specific AQ= a
heat capacity of water is ¢,,= 4186 Jkg™ K™, mc :
7 (m— e 4.32x10 J_1 1
Total electrical energy produced by the electric 1.50kgx 4186 Jkg™ K
hob is = 68.8K= 69K [25.f)
= 3 .
Seb Because a temperature change of 1K is equal toa
=72 105) temperature change of 1°C, the final temperature of the
water in the saucepan is 18°C + 69°C = 87°C.
—_—

(@

EXAMPLE
Falling lead shot stopper — N 4
The specific heat capacity of lead can be determined by letting
lead shot fall inside a long tube. The lead shot heats up as measure allow shot to
gravitational potential energy is transferred to thermal energy temperature fall 20 times
of the shot. The experiment is shown in Figure 4.3. before and (turn tube
after falls over and
A student tipped some lead shot up and down in the tube and L B over)
found that after 20 turns the temperature of the lead had risen R
by 1.5°C. Estimate the specific heat capacity of lead. You may « : -/ | distance=1m
assume that the tube itself does not warm up. : ’ ‘ Ao
falls down |~
Note: If you are handling lead shot, make sure to wash your tube
hands afterwards. |
Answer e '.,!‘j-"' O f;h"';“ closed
The gravitational potential energy of the falling lead is L -A:‘;,:"i': tube
transferred to heat in the lead. So YCoooe of stopper
'

mgh = mch8 _“
and (because a temperature change of 1°C is equalto a Figure 4.3 Lead shot experiment.
temperature change of 1K] we obtain

gh

Cm o
AB
98Nkg”' x 20m
1.5K
=130 Jkg' K™
—_—3
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Mixing hot with cold

If a hot liquid or a solid is placed into a cold liquid, the internal energy
transterred from the hot object when it cools down is equal to the thermal
energy gained by the cold liquid and its container, plus the thermal energy
lost to its surroundings. In the example shown in Figure 4.4, the thermal
energy lost to the surroundings is assumed to be negligible.

Mass m, of liquid 1|
at temperature T,

IT"——--"'

Test tubes

Mixed

e — Mass m, + m, of mixture

of iquids 1 and 2 and
test tube at
e

Mass m,, of liquid 2|
at temperature T,

=
&

ternperature T,

Figure 4.4 Specific heat capacity and mixtures.

EXAMPLE
Mixing hot and cold liquids

In an experiment, 20.0g of hot seawater at 65°C

is mixed with 80.0 g of tap water at 12.0°C inside a
copper calorimeter of mass 75.0g also at 12°C. If the
thermal energy lost to the surroundings is negligible,
calculate the new temperature of the mixture and the
calorimeter. The specific heat capacities of seawater,
tap water and copper are 3990 kg™ K™, 4200 Jkg™' K™
and 386 Jkg 'K, respectively.

Answer

The new (unknown] final temperature of the water
mixture and the calorimeter we will call T (°C). So
|because a temperature change in °C is equal to a
temperature change in K| the thermal energy Q lost by
the hot seawater is:

Q= Meoawater * Ceeawater * &BSEEWB’EEF
=20.0x 1073kg % 3990 Jkg™ K" x [65 - T)K
= [5187 - 79.8T) J

This is equal to the thermal energy Q gained by the tap
water and the copper calorimeter:

Q=[80.0x 10%kg x 4200 Jkg™ K1 x [T - 12) K] J
+[75.0 x 10-%kg x 386 Jkg T K1 x (T - 12) K] J

= [336T - 4032] J + [28.95T - 347.4])
= [364.95T - 4379.4] J
Equating these two values and rearranging gives
5187 - 79.8T = 364.95T - 4379.4
444, 75T = 9566.4
T=21.5°C
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- Measuring the specific heat capacity of
a metal block

The specific heat capacity of a solid material can be

. measured [with reasonable certainty in the laboratory)
: by heating a known mass of the material with a known
. quantity of thermal energy, usually supplied via an

. electrical heater. One such experiment involving a

. copper block is shown in Figure 4.5. : |

- In this experiment, the mass of the copper block was
. measured with an electronic balance and was found
. to be 0.814kg. The block is heated using a stabilised

. 12.0V dc power supply delivering 4.0A of current to @D
the electric heater in the block. The temperature

of the block was measured every 20s for 2 minutes

: while all the apparatus came to thermal equilibrium.
: After 2 minutes the heater was switched on and

. the temperature recorded every 20s again for a

i further 3 minutes, before itwas switched off. The

. temperature of the block continued to be measured

. every 20s for a further 2 minutes, during which time
the block started to cool down.

thermal insulation :
(e.g. plastic bubble wrap) :

12V dc electric heater

thermometer

material under test
(e.g. copper block)
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Figure 4.5 Experiment to measure the specific heat
capacity of a metal block.

The results of the experiment are shown in Table 4.1. 1 Plot a graph of the results and draw a smooth best-
! Table 4.1 fitting line through the points.
L - 3 2 A calorimetric technique is used to determine the
temperature change of the block. The cooling part of
t |0 16.4 the graph is used to take into account the heat still
: | 20 146.5 present in the electric heater when it was turned off i
40 16,4 but had not transferred into the block. A sketch of
how to use this technigue is shown in Figure 4.6.

60 16.4

80 16.3 ‘Ln“ |
- | 100 16.4 ¥ i
= | B
= 120 16.4 e | AT< i Mg,

: =

140 19.1 3 |

;[ 160 2Ly =

- [ 180 24.6 o |

- | 200 27.4 -

220 30.1 it ;
P 329 Figure 4.6 Graph showing how to calculate
the temperature change.
i | 260 35.6
. | 280 38.4 The change in temperature of the block, AT, :
300 A1 will always be slightly higher than the highest |
' 370 408 temperature reached minus the starting
: : temperature - this accounts for the extra thermal
P | 340 40.5 energy left in the heater when it is switched off. In

360 40.2 other words, AT gives the temperature the block

380 399 would have reached if all the energy could be

transferred instantly to the block, without any heat
: 400 39.5 being lost. Use this graphical calorimetric
E1 420 39.3 :‘;}

AN EE R
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technique to determine the temperature change of 5 Explain how repeating the experiment would lead
. the copper block in this experiment. to determining the uncertainty in the measurement
. 3 Use the rest of the data to calculate the specific of the specific heat capacity of copper using this
. heat capacity of the copper in the block. technique. i
4 The given specific heat capacity of copper at 6 This experiment suffers from a collection of :
. room temperature is about 386 Jkg™ K. Suggest random and systematic errors. ldentify these

reasons why your calculated value may be different errors, state whether they are random or

from the given value. systematic in nature, and suggest ways in which

they could be minimised.
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: din f t=ide with ot t where 8, is the temperature of the water
o el sl el el bl st in the tank and &, is the temperature of the

of 5.0°C. Overnight, the heater in the dome is surroundings. If the temperature of the water

turned off, and the average temperature of the . o
air in the dome falls to 5.0°C. Calculate the WoR e iEala TNl i iEe dhiy Sompd T

thermal energy required to heat the air in the
dome to a more pleasant 16°C in the morning,
The specific heat capacity of air is 1000Jkg™' K.
¢l The dome contains four industrial space heaters
rated at 14.7 kW. If the space heaters are 100%

62

temperature of the room it was in was 15.0°C,
use your answer to [c] to determine the value of
the constant k.

e) Use yourvalue of k to determine the rate of
cooling of the water in the fish tank if the
temperature of the room was to fall to 8°C.
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: TEST YOURSELF
; 4 A student uses a microwave oven to warm up a cup efficient, how long will it take for the heaters to ;
: ofcold tea, warm the air up in the dome to 16°C? :
E al Thermal energy s suppl_jed to the tea at a rate d) Explain Why the actual energy value required §
: of 750W. The tea has a mass of 0.42kg and an to heat up the dome will be larger than that 1
initial temperature of 17°C. Calculate the final calculated in [b).
§ temperature of the tea. Assume that the specific 6 A large tropical fish tank has dimensions of 3
heat capacity of the tea is 4200 J kg™ K™\ 240cm x 60cm x 60cm. :
i bl In reality, some of the thermal energy goes into a) If the density of water is 1.0gcm™, calculate the :
the cup and some is used by [water) particles to mass of water in the tank [in kg). :
evaporate. What is the effect of this evaporation bl The tank is set up using water from an outside i
on the final temperature of the tea? water butt with a temperature of 9.5°C. The -
i c) Following re-heating the tea, the student decides thermostat on the heater is set to 25.5°C. :
that the tea is too strong and adds milk from Calculate the thermal energy needed to :
: the fridge at a temperature of 5.5°C, and the warm up the water in the tank to the desired g
: temperature of the tea drops to 71.0°C. During temperature. The specific heat capacity of water §
this time the student assumes that no thermal is 4200 J kg K. :
' energy is lost to the surroundings. Calculate the c] The tank is kept at its optimum temperature of §
decrease in thermal energy of the tea. 25.5°C by a 100W heater and thermostat. If the i
i d) Ifall the thermal energy transferred by the tea is heater should develop a fault and fail, show that i
- used to heat up the milk, calculate the mass of the initial rate of fall of temperature in the tank ;
o the milk added by the student to the tea. Take the will be about 0.1°C per hour. :
- specific heat capacity of milk to be 4000 Jkg™' K. dl The rate of fall of temperature of the water in
- 5 A college sports dome has an internal air volume of the fish tank, AG/At, can be described using
- 24000 m?, Newton's law of cooling:
§ a) If the air inside the dome has a density of
E 1.2kg m-3, calculate the mass of air inside the ..‘?‘ﬁ: -kle,, ..95]
- dome. :
< bl During winter, the dome is kept inflated with *
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EX AMPLE
Continuous flow method

Work out the specific heat
capacity of water using the
following data measured during
one such experiment involving
water in a continuous flow
method:

@ time of each experiment,
t=460s

® temperature difference in both
experiments, A@= 10.0°C

@ p.d. across the heater,
Vi=V,=12.0V

@ current through heaterin
experiment 1, I; = 6.0A

@ current through heater in
experiment 2, I, = 2.0A

® mass of water flowing in
experiment 1 for 60s,

® mass of water flowing in
experiment 2 for 60s,
my = 5609

Answer
The specific heat capacity is worked
out by substituting values in the
equation:
o (V4 = V3]t
[y = ] AB
_[[6Ax12V]-[2AXx12V]]x 60
[0.126 kg-0.056 kgl x 10K

~ 4114 Jkg K

Measuring the specific heat capacity of water using
a continuous flow method

The specific heat capacity of a fluid can be measured using a continuous
flow method (Figure 4.7), where the fluid moves over an electric heater
at a constant rate. It is assumed that the thermal energy transferred
from the apparatus to the surroundings is constant. The experiment is
carried out and then the flow rate of the fluid is changed, and a second
set of readings is taken. The heat loss can then be eliminated from the
calculations.

electric V |P
thermometer = W]

| electric
|-|| (A thermometer

liquid In heater 12V
Figure 4.7 Measurement of specific heat capacity by the continuous flow method.

A fluid flows through an insulated tube containing an electric heating
wire, as shown in Figure 4.8. The rise in temperature of the fluid is
measured by the two electronic thermometers and calculated by A8 =

T, — T,. The mass of the fluid that flows through the apparatus in a time
t; is my, and is measured using a beaker on a balance and a stopwatch.
The flow rate of the fluid is then altered to give another value, m,, and
the heater controls are changed to give the same temperature difference
AB. The specific heat capacity of the fluid can then be determined by
assuming that the thermal losses to the surroundings are constant for
both flow rates.

For the first flow rate, the electrical energy supplied to the fluid in time t;
is given by

Ilvltl = mlcﬂ-ﬁ? + Elust (1)

where I} and V| are the initial current and p.d. of the heater and Ej,, is the
thermal energy lost to the surroundings. For the second flow rate:

I2V2£2 = mzcﬁﬂ = Elost (11)

Ejoq can be assumed to be the same in each experiment, so subtracting
equation (ii) from equation (i) gives

[}Vit) = LVat = mcAf = mycAf
= cAE (m; - my)
If the experiments are both run for the same time ¢, then
NS
(ml—ml)é 7]
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Specific latent heat The specific latent

heat of a material is the amount of thermal
energy required to change the state of
1kg of material, without a change in

temperature, at a specified ambient pressure

(normally atmospheric pressure, p = 1atm).

latent heat of vaporisation

Changing state

When liquids are heated up to their boiling point, the thermal energy is
used to increase the internal energy of the molecules of the liquid. We
measure this as a temperature change. However, at the boiling point, the
temperature change stops and all the thermal energy input is used to
overcome the intermolecular forces between the particles of the liquid,
converting it into a gas,

The amount of thermal energy required to change the state of a substance,
without a change in temperature, Q (in J), is given by

Q =ml

where m is the mass of the substance (in kg) and [ is

A liquid + gas the specific latent heat (‘latent’ means ‘hidden’) of
b o the substance (in Jkg™). This equation applies to all
T BT = Eonclenslng | — gas the phase changes involved with changes of state.
@ I e O i So water, for example, has a specific latent heat of
5 solid + liquid i L :
= 1 vaporisation, I, which deals with the phase change
g < freezing from liquid to gas (and vice versa), and a specific
a T "“"""/ melting —» latent heat of fusion, I, which deals with the phase

change from solid to liquid (and vice versa).

The relationship between the kinetic theory models

time

Figure 4.8 Kinetic theory graph.

EXAMPLE
Evaporating water

A Bunsen burner delivers heat
energy at a rate of 200W to water
inside a glass beaker. The water is
at its boiling point, and the 200W
of thermal energy is used to

turn 0.50 kg of water into steam.
Calculate how long it will take for
the water to turn to steam. The
specific latent heat of vaporisation
of water is 2260 kJ kg™

Answer
Using the equation from the main
text
Q=ml, =0.50kg x 2260
103Jkg'=1.13 x 108J
If the power supplied as thermal
heat to the water is 900W, the
time required to boil the water is:
Q 1.13x10%

P~ 900W
= 1256 5 = 21minutes

t=

of solids, liquids and gases and the concept of latent
heat is illustrated by Figure 4.8. Thermal energy
supplied to a substance that is changing state is
used to loosen the intermolecular bonds holding the particles together
(completely in the case of a liquid turning into a gas). The thermal
energy is called a latent heat because during the change of state the
temperature does not change, despite thermal energy being supplied to
the substance.

The values of |, and I; for a few selected materials are shown in Table 4.2.
Once again, the high values for water mean that a high proportion of the
water on planet Earth is in the liquid state, and our ambient temperature is
kept within a relatively small range.

Table 4.2
Material Specific latent heat of Specific latent heat of
| vaporisation, /./kJ TR fusion, //kJ kg™
Water 2260 334
Carbon dioxide 574 184
Nitrogen 200 26
Oxygen 213 14
Lead 871 23
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TEST YOURSELF
7 A12.5g ice cube melts in the sunshine. Calculate The heat supplied to the water is given by :
the thermal energy from the Sun absorbed by the Vit =myl +E 5
ice during melting. The specific latent heat of fusion * __ L .
of water is 334kJ kg™, where V; is the p.d. across the heater, /; is the :

current supplied to the heater, t is the time that the
experiment is left to run, boiling a mass of water
my in the time t, {, is the specific latent heat of
vaporisation of water and E is the thermal energy
lost to the surroundings. The experiment is then
repeated with a different p.d., V5, across the heater
and a different current, /5, flowing through it,
boiling a different mass of water, m,, in the same
time t. In this case:

8 Lead is a major component of the solder used to
construct integrated circuits. A soldering iron delivers
18W of thermal energy to a small 4.2 g block of lead.
Calculate the time taken for all the lead to melt. The
specific latent heat of fusion of lead is 23kJkg™.

9 A range oven rated at 3kW actually delivers
2.7 kW of thermal power to 1.5 kg of water inside a
whistling kettle. The specific heat capacity of water,
¢, is 4200 Jkg ' K-, and the specific latent heat of
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vaporisation of water, (,, is 2260 Jkg™. Valat = myly, + E

al How much thermal energy is required to heat (The thermal energy lost in each experiment, E, will i
the water from 8°C to 100°C? be the same.]

bl How long does it take the kettle to heat the a) Use both equations to derive an expression for :
water from 8°C to 100°C7? the specific latent heat of vaporisation of water.

c] The water starts to boil and the whistle on the b) In one such experiment, the following datawas i
kettle starts to blow and keeps blowing for 25s obtained in t = 600s.

until the kettle is removed from the heat. What
mass of water is converted into steam during
the 25s of boiling?

10 The specific latent heat of vaporisation of a liquid

S ERERERER

Quantity | Value | Quantity |Value
V, v,

8.00V 12.00V

connections

S / 2.41A / 3.00V
|such as water| can be measured using the : £ :
apparatus shown in Figure 4.9. m 5.8 A 10.3g
electrical Use this data and your answer to (a) to calculatea  ?

value for the specific heat capacity of water.

11 Stearic acid, a common chemical found in soaps,
is frequently used to show the phase change of a
material. A student set up an experiment using
a test tube with 4 g of initially liquid stearic acid

platinum contained in a small water bath containing 25 g of

hoasel water set at 95°C. She puts thermometer probes
connected to a data logger into the stearic acid and

st ARLAENER

holes

water

4N the water in the water bath and then she turns off _
— the temperature control. The data logger measures |
and records the temperatures over the course of |
- ten minutes as the water and the stearic acid cool i
i down. Her results are shown in Figure 4.10. :
100 - ;
— 0 | —stearic {
B0 =T acid ¢
b I 70 | j —— water :
w ¥ T 5 bath i
= 60 - ; E
1| g W :
Oug g il | §
Ay () — : :
g 49 5 :
§ a0- :
water 20 :
L 1=
Figure 4.9 Apparatus for measuring the 0 1.69 2{']{] 3('30 4['){) .5(')0 5{‘)3

specific latent heat of vaporisation of water. Figure 4.10 =5
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¢ a) Drawa diagram of the experimental set-up. cl Use the graph and the rate of thermal heat :
§ b) The specific heat capacity of water is transfer to estimate: :
$ 4200J kg 1K1, Neglecting the effect of the glass i} the specific heat capacity of solid stearic acid }
test tube, estimate the rate of thermal energy ii) the specific latent heat of fusion of stearic ¢
transfer from the water [and the stearic acid). acid. :
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120 -
100 |
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pressure/k Pa
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g0 (= e i
10 16 20 25 30 35 40 45 5O
volume/cm?

Figure 4.11 Boyle's law graph.

(O,

Investigating Boyle's (constant temperature) law
. Note: This is just one example of how you might tackle this required

. practical.

A student uses the standard Boyle's law apparatus
: shown in Figure 4.12 to determine the value of the

. constant involved in the equation

pV = constant

. In the experiment, performed at 17°C, the foot pump

. is used to pressurise the oil inside the cylinder, which

. compresses the air column above it,reducing its volume.
: The pump valve is closed when the pressure is ata
maximum and the air column volume is at a minimum.

The gas laws

Between 1662 and 1802 three laws were discovered by a collection of
European physicists that seemed to describe the behaviour of gases in
response to changes in their pressure, volume and temperature. The laws
themselves are all empirical, which means that they describe the mathematical
relationships between the three variables purely based on experiments.

Boyle's law

The first gas law to be discovered was Boyle’s law, the relationship between
the pressure and volume of a gas. The experiments were carried out by
Robert Boyle and his research student Robert Hooke in 1662, involving
J-shaped tubes of sealed glass and mercury. Boyle quickly realised that

there was a relationship between the volume of the air trapped behind the
mercury and the weight of the mercury acting across the cross-sectional area
of the tube causing increased pressure.

Boyle realised that the pressure acting on the gas and the volume occupied by
the gas were inversely proportional to each other. Boyle would have obtained
results similar to those shown in Figure 4.11. A modern version of his law states:

For a fixed mass of an ideal gas at constant temperature, the pressure
of the gas is inversely proportional to its volume.

Writing this mathematically:

ptx% or pxV =constant

where p is the pressure acting on a gas of volume V. A more useful version
of this equation involves the same mass of gas at the same temperature, but
different pressures and volumes, where

nvi=p»;

Figure 4.12 Apparatus used to :
investigate Boyle's law. by
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i The apparatus is then left to come to [thermal)

. equilibrium as the oil drains back down the

: sides of the column. The pressure and the volume of
the air column then

: measured and recorded. The student then opens the
. pump valve very slightly and the pressure is reduced
slightly, expanding the air in the column. The valve

i is shut, the apparatus is allowed to come to thermal
equilibrium again and the pressure and volume are

¢ measured and recorded. This process is repeated

: until the pressure returns fully to its atmospheric
value. The student’s results are shown in Table 4.3.

. Table 4.3

Pressure, p/10°Pa
3 (£0.01 x 105Pa)

35 90 constant.

8 i — 5 Explain why the student allowed the experiment to

: 130 10.0 come to thermal equilibrium before measuring the

’ 2.5 12.0 pressure and volume in the apparatus.

L |20 15.5

.15 20.0

P10 30.5
i e e e e The pressure-temperature law ([Amonton’s law)
Wi B and absolute zero temperature

o 1.8 e bR g

464 | Inl702 Guillaume Amonton discovered the empirical relationship between

% vt EEiEnE # | the pressure and temperature of a gas as a result of his efforts to design and

@ 1'2 RmmERaniEaans . build air thermometers. Amonton realised empirically that there was a linear

= Ao A H relationship between the two variables, provided that the mass and the
10 - volume of the gas were kept constant. Amonton struggled to build accurate

0 300 400 500 600
temnearatiralk

Figure 4.13 Amonton’s law [pressure-
temperature law),

The student estimates that she can measure the
pressure readings from the pressure gauge with an

uncertainty of +0.01 x 105Pa, and the volume from the

measuring scale with an uncertainty of £0.5cm?.

1 Make a copy of the table and add two further
columns: 1/V [in cm=%) and p x V [in 10°Pacm?)] -
calculate the values and enter them in the table.

2 Plot graphs of the following:

e Vagainst p
e 1/Vagainst p.

3 Foreach graph, include error bars and a best-
fitting line.

4 Useyour graphs to measure a value for the
constant, where pV is constant. Use your graph
to estimate an uncertainty in the value of the

I thermometers and, although his ideas were published, they lacked basic
quantitative data. A modern version of his graph is shown in Figure 4.13.

A modern version of Amonton’s law can be written more formally as:

The pressure of a fixed mass and fixed volume of gas is directly
proportional to the absolute temperature of the gas.

Writing this mathematically:

gl

or

S
l'b
2
A
vy
5

E" = constant
T

This relationship has a third, more useful, form that is used to compare the
same gas under different pressures and temperatures. This can be written as:

n_P
T T

Amonton realised at the time of his experiments that if he extrapolated
his data back through lower and lower temperatures there would be
a temperature where the pressure of a gas dropped to zero. At this
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Absolute zero The temperature when all
molecular motion ceases, and the pressure
of a gas drops to zero. The accepted value is
the zero of the Kelvin temperature scale and
is defined as —273.15°C.

absolute zero

-
f"’
-
-

0K 273.15 K temperature, T
-273.15 °C 0°C

Figure 4.14 Absolute zero.

(@ e

TIP

Always use the absolute [Kelvin)
temperature scale when doing
problems and calculations

involving the gas laws.
o

\[}I'BSSU[G, D

volume Wm®)

temperature T/K

Figure 4.15 Charles’ law.

temperature, the molecules would stop moving and so they could not
exert a pressure by hitting anything else. This temperature became
known as absolute zero and Amonton calculated it to be -240°C,
which, considering the thermometer technology available to him at the
time (air thermometers), was a pretty remarkable achievement — he was
only about 35°C out. In 1848 William Thomson (Lord Kelvin) used the
concept of absolute zero to construct a temperature scale with absolute
zero as the ‘zero’ of his scale. Using the better thermometer technology
of the day, Kelvin predicted that absolute zero would be at a temperature
of =273°C or 0K — only 0.15°C away from today’s defined value of
-273.15°C (Figure 4.14).

Kelvin’s absolute scale of temperature became the SI unit of temperature,
and is defined in terms of two fixed temperature points — absolute zero
(0K) and the triple point of water (0.01°C or 273.16K — the temperature
and pressure values where ice, liquid water and water vapour can coexist).
Converting a temperature from °C into an absolute temperature measured
in K involves using the equation:

T(inK) = T (in °C) + 273.15

You must note that the magnitude (size) of 1°C is equivalent to 1 K. In other
words: |1°C| = |1 K].

Charles’ law

In 1802, the French chemist Joseph Gay-Lussac published a paper
showing the experimental link between the volume and the temperature
for a gas. Gay-Lussac named the law after his balloonist friend, Jacques
Charles, who produced an unpublished version of the law following his
observations of the behaviour of balloons. The empirical law is illustrated
by the graph in Figure 4.15.

A modern version of Charles’ law states:

At constant pressure the volume of a fixed mass of an ideal gas is
directly proponional to its absolute temperature.

Writing this mathematically:
Ve T

or
Vv
— = constant
T

Once again, the temperature T is an absolute temperature using the Kelvin
scale (T/K = T/°C + 273.15). Another useful form of this relationship
(similar to the other gas laws) is

v V

Sl
TI Tl



! REQUIRED PRACTICAL 8

. Investigation of Charles’ law for a gas -
. Note: This is just one example of how you might tackle this

© required practical.

¢ Charles' law can be used to make an estimate for the value of
: absolute zero. This can be achieved by measuring the volume of ﬂi :
. a gas at different temperatures and then extrapolating the graph
. back to a volume of zero. In reality, non-ideal gases do not end

. up with zero volume but, for the purposes of this experiment, the
difference is so small that it will not affect the outcome.

In this experiment, two small sealed gas syringes, one with a
total volume of 10 cm? and the second with a volume of 30 cm?, £
i are put, one at a time, into a freezer cabinet at -15°C, and

: then into a beaker of iced water at 0°C [Figure 4.16]). The iced oS
. water is then gradually warmed using a Bunsen burner. The L-/
: volume of the air trapped inside the gas syringes is recorded

" +—— thermometer

gas syringe

—— water bath

at temperatures of =15, 0, 20, 40 and B0®C. The results of the stopper

: experiment are shown in Table 4.4.

| Table 4.4

Figure 4.16 Measuring absolute zero.

Temperature, T/°C | Volume of air in syringe, W/ml [£0.2cm?]

10cm? syringe 30cm? syringe

—15 13.5

0 4.6 14.2
20 49 15.1
40 2.2 16.4
80 59 18.3

1 Plot a graph of this data. Include error bars on the volume measurements

and best-fitting lines.

2 Extrapolate each best-fitting line back so that it crosses the temperature
axis. Use the temperature-axis intercepts to determine a range of values
for the absolute zero temperature in °C.

Combining the gas laws

The three gas laws — namely Boyle’s law, Amonton’s law and Charles’

law — can be combined into one expression linking the pressure, volume
and temperature of a gas, in a combined gas law, which is expressed
mathematically as:

"
% = constant

A more useful form of this equation can be written as
pVi _ paVa
I I
where py, V; and T, describe the initial pressure, volume and temperature

of a gas, and p,, V; and T, describe the final pressure, volume and
temperature of the same gas after a change has been applied to it.

S
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TIP

Remember that, when using

the combined gas law, absolute
temperature must be used and
temperatures in degrees Celsius

must be converted to kelvins.
TEEEEEEEEES———

Standard temperature and pressure This
refers to 0°C (273.15K) and 1.01 x 105Pa
(1atm).

Room temperature and pressure This

refers to 25°C (278.15K) and 1.01 x 10°Pa
(1atm).

In questions on the combined gas law, pressure is usually measured in
pascals (Pa) or kilopascals (kPa), where a pressure of 1Pa is equivalent

to a force of 1 N acting over an area of 1 m?. Pressure is also measured in
atmospheres (atm), where one standard atmosphere is defined as a pressure
equivalent to 101 325 Pa, and is the average value for atmospheric pressure
at sea level. The volume of a gas is normally measured in m?, but cm?, litres
and ml are also commonly used. Temperatures may be given in kelvin or
degrees Celsius. The latter must be converted to kelvin.

Which of these units should you use in your work? The answer is generally
to use the units included in the question, converting temperatures to kelvin.
State any calculated values using the units from the question.

Also, you should be aware that questions sometimes refer to standard
temperature and pressure (STP), which are 0°C (273.15K) and 1.01 x 10°Pa
(1atm), and room temperature and pressure (RTP), which are 25°C
(278.15K) and 1.01 x 10°Pa (1 atm).

EXAMPLE

Changing volume of a balloon

The volume of a party balloon at a room temperature
of 15°C and an atmospheric pressure of 1.0atm at sea
level is 2400 cm?. The balloon is taken up a mountain,
where the temperature is 1.4°C and the atmospheric
pressure has dropped to a value of 0.80atm. Calculate
the new volume of the balloon at the top of the
rmountain.

Answer
Use
Vi _ P2V
h T

Substituting numbers:
latmx 2400 cm® 0.80atmxV,
(15+273.15) K [1.4+273.15]/K

Rearranging gives:

y. _ 1atmx2400 cm® x(1.4+273.15) K
’ (15+273.15) K x 0.80 atm

= 2858.4 cm® = 2900 cm® (2sf)

TEST YD U EEEE-E---u“““u"n.u-““"- .............. wrrnn

12 A small patio heater gas bottle has avolume of
6.0litres (6.0 x 10-*m?) and contains butane gas at
a temperature of 5.0°C and a pressure of 2.5MPa.
What would be the volume of the gas if it were let out
of the canister into an inflating balloon on awarm

| day at 20°C and atmospheric pressure (0.1 MPa]?

13 A closed gas syringe contains a fixed mass of
air at 24°C. To what temperature must the gas
be heated so that its volume doubles, when the
pressure remains constant?

14 An empty treacle tin contains air at a temperature
of 16°C and a pressure of 1.5 x 10°Pa. The lid will
blow off the tin if the pressure inside the tin rises
beyond 2.4 x 10°Pa.

a)l Atwhat temperature will the top blow off if the
air is heated evenly with a Bunsen burner?
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b) Why will this trick work better if you put some
water in the tin?

15 A large car tyre has a volume of 22 x 1073m?, and
the air inside is pumped to a pressure of 2.5atm
above atmospheric pressure (1atm). Calculate the
volume that the air inside the tyre would occupy
at atmospheric pressure. You should assume that
the temperature remains constant.

16 A steam cleaner has a steam tank with a
volume of 150 cm® in which the steam is kept
at a temperature of 100°C and a pressure of
1.5 x 10°Pa. If the steam cleaner is used to clean
windows outside on a cold day where the air is
at atmospheric pressure and the temperature is
6.5°C, calculate the volume of steam generated if
all the steam is let out of the tank.
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Q Avogadro’s law, the ideal gas equation

and moles

A fourth experimental gas law was hypothesised and published by Amadeo
Avogadro in 1811. In this law he suggested that equal volumes of gases at the
same temperature and pressure contained the same number of molecules.

Mathematically, this means that:
V
Ven or e constant

where n is the number of moles of the gas. Once again, as with the other gas
laws, this is more usefully written as:

n. %
B &

In 1834, the French physicist Emile Clapeyron combined all four gas laws
and produced the ideal gas equation:

pV = nRT
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where R is a constant now known as the molar gas constant, R =

8.31Jmol ! K-!. The ideal gas equation is a tremendously powerful equation
that models the behaviour of gases extremely well, particularly when the
gases are at relatively low pressures and high temperatures. At conditions
close to liquefaction, it works less well because the gases behave much less
like ideal gases.

The Avogadro constant, N,, was proposed by Jean Baptiste Perrin in 1909,
to represent the number of particles (usually molecules or atoms) present
in one mole (1 mol) of a substance. Perrin named it in honour of Amadeo
Avogadro. Perrin went on to win the Nobel Prize in Physics for his attempts
to measure the Avogadro constant accurately The Avogadro constant is
today defined as 6.022 141 29 x 102 mol™! (rounded to 6.02 x 10%* mol™!
on the AQA Physics Datasheet).

Dividing the molar gas constant, R, by the Avogadro constant, N, yields
another fundamental constant in physics, the Boltzmann constant, k:

R

F o —
—_—

N

A
and it has the value:

R 831 ]mol™ K™
N, 6.02x10* mol™

The Boltzmann constant is the fundamental constant that links the
macroscopic measurements of pressure, volume and temperature to the
microscopic behaviour of particles in a gas, and has a fundamental position
in the model of an ideal gas. The constant enables the microscopic model to
make predictions about the way that ideal gases behave on a macroscopic
scale where they can be measured empirically by the gas laws,

k= =1.38x10™ JK™

The above equation can be rearranged to give:
which can be substituted into the ideal gas equation, giving:



But nN, is the number of particles in the gas and is given the symbol, N, so:
pV = NKT

(This implies that the pressure of an ideal gas is independent of the mass of
the particles.)

Molar mass and molecular mass

Counting particles is not a good way to gauge the amount of substance
present in a gas (or liquid or solid). It is incredibly difficult to observe
individual atoms or molecules, let alone to count them. A better way to work
out the amount of matter in a substance is to use the mass of particles and
weigh large collections of them using an electronic balance. If the mass of one
particle is known, then a measurement of the mass of a large number of them
will yield the number of particles present. We therefore define two quantities:
the molecular mass, m, which is the mass of one molecule of substance; and
the molar mass, M, , which is the mass of one mole (N,) of molecules of the
substance. These two quantities are related to each other by:

M, =Nm
If the mass of a known gas is measured, M,, then dividing this value by the
molar mass gives the number of moles, n, and dividing it by the molecular
mass, m, gives the number of molecules, N:

. e

M m

m
Both of these can then be substituted into the ideal gas equation, allowing
all quantities to be measured macroscopically:

M M
pV = E{—S—RT and pV=—2KkT

- m

inside the cylinder.

& | EXAMPLE
E Propane gas cylinder
5 A propane gas cylinder has a volume of 0.14m? and the total number of molecules of gas in the container is
< pressure of the gas inside the cylinder is 2.0 x 104Pa therefore 6.02 x 1023 x 118 = 7.1 x 102° molecules.
o above atmospheric pressure at 300 K. 3 Calculate the mass of gas inside the cylinder if the
o - -1
= | Calculate the number of moles of propane gas Rttt it i BT

Answer
~

If the molar mass of propane is 44.1 gmol-!, and

ﬁnswtehr i " V=nRT. there are 118 mol of gas, then the mass of propane
5'”‘-’;! R P D S inside the cylinder is 44.1 gmol~! x 118 = 5204 g =
n-% 5.2kg (2 s.f).

_[2.0x10°+1.0x10°)Pax0.14m® _

T T—— 118 mol
8.31Jmol K" x 300 K

2 Calculate the number of propane molecules inside

the cylinder.

Calculate the mass of one molecule of propane.
Answer
The mass of one molecule of propane is

molar mass
m=

N
Answer 8
| - 23 44.1x107 kg mol”’
One mole of an ideal gas contains 6.02 x 10 _ % 9 =73x10°% kg
molecules of gas [the Avogadro constant, NuJ. The 6.02 x10% mol '
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TEST YOURSELF al Which graph shows the variation of the
volume of a fixed mass of the gas [y-axis]
at constant temperature with the pressure
[x-axis] of the gas?

b) Which graph shows the variation in pressure
ly-axis| of a fixed mass of gas at constant
volume with absolute temperature [x-axis)?

c] Which graph shows the variation of the product
[p x V] of a fixed mass of the gas [y-axis] at
constant temperature with the pressure
[x-axis] of the gas?

21 This question is about the two standard conditions of
an ideal gas - standard temperature and pressure
(STP] and room temperature and pressure [RTP).
The table below gives some data for 1 mol of an ideal
gas under each of these conditions.

17 1.5 moles of an ideal gas at a temperature of 312K
is kept at a pressure of 1.7 x 10°Pa. Calculate the
volume of the gas under these conditions.

18 A weather balloon contains helium gas and
occupies a volume of 0.85m3. At a particular
weather station, the pressureis 1.2 x 109Pa and
the temperature of the surrounding air is 18°C.
Assuming that helium behaves as an ideal gas,
show that the balloon contains about 42 mol of
helium gas.

19 A tyre on a cycle in the Tour de France contains
0.15 mol of air at a temperature of 293K and has a
volume of 8.2 x 1074m?3. It is assumed that the air
behaves as an ideal gas.
al Calculate the pressure of the air inside the tyre.
b) At the end of a stage, the pressure in the tyre

has risen to 5.45 x 10°Pa. Use this information
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Standard Room temperature
temperature and pressure

Quantity
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to estimate the temperature of the air in the tyre and pressure [RTP]
at the end of the stage. [Assume that the volume STP] :
does not change.) Temperature, | 273
20 Look at the graphs [labelled A, B, C and D) in T/K :
Figure 4,17 showing the behaviour of an ideal gas. Pressure, 1.01 1.01 '
A | ) p/10°Pa :
Volume, ¥/m? 2.45 x 1072 :
y y y ¥
Copy and complete the table. :
0 = 0 >~ 0 - 0 -
0 X 0 X 0 X 0o X :
A B c D
Figure 4.17
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. ACTIVITY

- The ideal gas equation and

- Mount Kilimanjaro

: Mount Kilimanjaro is the highest mountain in Africa
|[Figure 4.18), and scientists have found that about half
: of all the climbers who attempt to scale its height

: suffer from altitude sickness before they reach the
: summit as a result of ascending the mountain too

i quickly. Every year approximately 1000 climbers are
. evacuated from the mountain suffering from acute

. altitude sickness, and on average 10 climbers die.
Kilimanjaro is a deceptively dangerous place.

Figure 4.18 Mt Kilimanjaro, the highest mountain :
in Africa. =5
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® summit elevation 5895 m above sea level
: ® summit air pressure 50kPa
. ® summit average air temperature -6.8°C

L L LA R R R
-
a
1
"
a
b
a

! Here is some data about Mount Kilimanjaro on the 1 Use this data to calculate the density of air at the
. mountain itself and on the plains below: summit of Mount Kilimanjaro.

2 The proportions of oxygen and nitrogen in the
air on the surrounding plains and the summit
is constant [21% oxygen and 79% nitrogen]. The
average adult lung capacity is about 6 litres. =

® plains elevation 1018 m above sea level Calculate the number of oxygen molecules in a

i ® plains air pressure 90kPa person’s lungs :
; ® plains average air temperature 30°C al on the surrounding plains ‘
e plains air density 1.03kgm b) at the summit of Mount Kilimanjaro. ;

O |deal gases

There are many occasions in physics where we use a simplified model to explain
the behaviour of a system. Models use basic first principles and then usually

add in more complexity to fine-tune the behaviour of the model so that it better
reflects reality. One good example of a simple model is the model of an ideal gas,
which is used to explain the behaviour of gases subject to the changes in their
temperature, pressure and volume. Real gases do not behave exactly like ideal
gases but their general behaviour is sufficiently close that the model predicts and
explains most of the common patterns in the behaviour of the real thing.

The ideal gas model assumes the following:

® An ideal gas consists of a large number of identical, small, hard spherical
molecules.

® The volume of the molecules is very much smaller than the volume of
the container.

® All the collisions between the molecules themselves and the container are
elastic and all motion is frictionless (i.e. no energy loss in motion or collision).

® The movements of the molecules obey Newton’s laws of motion.

® The average distance between molecules is very much larger than the size
of the molecules.

® The molecules are constantly moving in random directions with a
distribution of velocities about a mean velocity.

® There are no attractive or repulsive intermolecular forces apart from
those that occur during their collisions.

® The only forces between the gas molecules and the surroundings are
those that determine the collisions of the molecules with the walls.

@ There are no long-range forces between the gas molecules and their
surroundings.

® The time spent between collisions is very much larger than the time
spent colliding,

Molecular motion

One of the most important properties of an ideal gas is the idea that they
move in random directions. This is important because if this was not true
then gases would exert more pressure on one surface of their container than
they would on another, i.e. the direction that the particles travel in would
be important, and the theories would be different in different directions.

The fact that gases (and all fluid particles) have a random molecular motion was
first observed and described by the botanist Robert Brown in 1827, as a result of
his observations of pollen grains floating on water. Brown saw the grains moving



in random directions as he observed them through a light microscope but he
was unable to explain why they moved — this was left to Albert Einstein during
his ‘annus mirabilis’ (miracle year) of 1905, during which he published his
ideas about the photoelectric effect, special relativity, mass—energy equivalence
(E = mc?) as well as Brownian motion. Einstein explained that the pollen grains
were moving in random directions as the result of the cumulative efect of the
water molecules randomly hitting the pollen grains. At different times the pollen
grains are hit by water molecules more on one side than they are on the other
sides, resulting in a motion in that direction that appears random in nature.
Einstein’s theory of Brownian motion was confirmed experimentally in 1908

by Jean Baptiste Perrin (of Avogadro constant fame). Perrin produced a series of
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Figure 4.19 A modern version of Jean positional plots showing this random motion by observing the motion of 0.5pm
Baptiste Perrin’s plot of the Brownian carbon particles on a grid of 3pm x 3 pm squares and recording their positions
motion of carbon particles. every 30s. His plots would have looked like the modern version in Figure 4.19.

Perrin analysed the motion of the particles and concluded that the motion
was truly random, in line with Einstein’s theory. Both Perrin and Einstein
were (separately) awarded Nobel Prizes partly because of their work on
Brownian motion.

Pressure, volume, temperature and
molecular motion

The importance of Brownian motion and the properties of an ideal gas
should not be underestimated. The observation of the random motion of
fluid particles and the subsequent theory proposed by Einstein provide a
way of explaining the macroscopic gas law quantities, and hence the gas
laws themselves in terms of a microscopic molecular model.

Pressure

Macroscopic pressure is defined in terms of a force acting over a given
area. The kinetic theory model of an ideal gas shows us that the force is
due to the collisions of the molecules with the walls of the container. The
molecules are moving in random directions with a mean average velocity.
The particles hit the walls of the container and rebound off at the same
speed (all the collisions are elastic). This produces a change of momentum,
and the cumulative effect of all the particles colliding over the total inside
surface area of the container per second causes a force per unit area, which
exerts a pressure acting in all directions (as the motion is random).

Volume

The motion of molecules inside a container is random in direction. This

means that there is no preferred direction, so the molecules will spread out
throughout the container filling its volume. Gases take the volume of their
container. If the dimensions of the container are changed, the motion of the
molecules will react to the change and will continue to fill the available volume.
The behaviour of real gases is closest to that of an ideal gas at low pressures,
well away from their phase boundary where they change into a liquid.

Temperature

For an ideal gas, because there are no intermolecular forces, increasing the
temperature of the gas only increases the kinetic energy of the particles.
This increases the average velocity of the particles. The particles still move
in random directions, and they fill the container. Increasing the temperature
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Figure 4.20 Particle in a box.

for a fixed volume increases the pressure because the particles’ average
speed is higher and therefore the change of momentum during collisions
with the walls is greater, and the particles hit the walls more often. This
leads to higher forces and therefore higher pressures. Allowing the pressure
to remain constant requires the volume to change.

A molecular kinetic theory model

Although the gas laws are empirical in nature (they were developed as a result
of analysis of experimental data), the kinetic theory model is derived from
theoretical first principles. However, they both produce the same results when
observing the macroscopic behaviour of gases, but only the kinetic theory
version can explain the behaviour of gases on a microscopic, molecular scale.

In 1860 James Clerk Maxwell and Ludwig Boltzmann both (independently)
used the assumptions of the ideal gas model to link the pressure and
density of a gas, connecting for the first time the molecular behaviour of

a gas to one of its mechanical properties. Their theories started with the
motion of one gas particle inside a cubic box (Figure 4.20).

The gas has a volume V and density p and is enclosed inside a cubic box
of side L. Inside the box there are N identical particles with the same mass,
m, and the gas particles have a range of different velocities ¢, ¢, ¢5...cy.
It is assumed that the volume of the particles is negligible compared to the
volume of the box.

Consider one particle moving parallel to the x-axis with a velocity ¢,. The
particle collides with the shaded wall in the diagram. The ideal gas theory
assumes that the collision is totally elastic and so the particle rebounds back
off the wall with a velocity of —c;. The particle therefore experiences a total
change in momentum equal to 2mc,, during the collision. If the totally
elastic collision assumption was untrue then the particles would gradually
loose energy during the collisions and the average velocity of the particles
in the box would decrease, resulting in a drop in overall gas pressure.
Experimental evidence tells us that this does not happen.

The particle then travels back across the box, collides with the opposite face

before returning to the shaded wall in a time interval At=2Ek. This means

that in the time interval At, the particle makes one collision with the wall and

exerts a force on it. If the particle obeys Newton’s Second Law of motion then,

. 2
r:hange in momentum ch}_ me;

'
time for change (2L/c,) L

The shaded wall has an area, A = 1%, so the pressure exerted by the one particle is:

2
oo B M
A I

There are N particles in the box, and if they were all travelling parallel to

the x-axis: total pressure on the shaded wall would be
I T - - S
_(La)x(cl+cl+c3+ +cN)

but in reality, particles are moving in random directions, with a velocity,
¢, comprising components at right angles to each other in the x, y, and z



dlrectmns (c_,ﬁ z., and c,). Using three dimensional Py thagnras Theorem,
d=cl+ :: +¢Z, but as on average, c2 = {:ﬁ =2, s0 ¢ = 5c%. As there are N
particles i m the bm: the pressure, P, parallel to tae x axls is therefore
_ & % % ( L, R | 2)
3 [}" Cp +Cy+Cy+ o +Cy
We now define a quantity called the root mean square velocity, (c,...),
(the square root of the average of the square velocities) where:

" =J(cf+c§+c§+---+c;)
e N
Substituting and replacing L? = V, gives:

PV = % N?ﬂ(Crms )2

soN(c,, Y =( +Z +c2+ . +c3)

Nm is the total mass of the gas inside the box so the density of the gas
inside the box is given by:
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Comparing two models of the behaviour
of gases
We now have two models that describe the behaviour of a gas. The first
model, the ideal gas equation, describes the experimental, macroscopic
behaviour of the gas:

pV = nRI
The second model, involving the kinetic theory model, describes the
behaviour from a theoretical point of view in terms of a microscopic,
mechanical model of the particles:

ol _ 1 vm 2
p= P(c )? T (C s )

If the average molecular kinetic energy is E; (the bar above the quantity
means ‘mean average'), then E = lm(c )2 and so

p=£x%xim(c Y or pV—ngxE

If this equation is compared to the ideal gas equation, then

R e
nRT:—ixNxEk or Ek=3><-§:~<RT

Because n is the number of moles of the gas and N is the number of

particles of the gas, then

n 1

N=nxN, or N -N—

Substituting this for n/N gives
R

E_k=§><—>=:1"
2 N,



But R/N, has already been defined as equal to k, the Boltzmann constant,
which effectively is the gas constant per particle of gas. So

3
Ey= 5 kT
where Ey is the kinetic energy of one particle of the gas. This is truly a
remarkable end point. We started with three macroscopic, easily measureable

properties of a gas, and we end up with a simple equation that allows us to
measure the kinetic energy of a particle of gas by measuring only its temperature.

EXAMPLE

Molecules in a gas syringe

A collection of 50 ideal gas molecules are observed inside a gas syringe. At a particular time, the distribution of
their molecular speeds is:

Answer
Speed, c/kms™! 1.80 1.90 2.00 230 | 220 |2.3D | 2.40
Number of particles 8 12 10 i 4 3

Calculate the root mean square speed of the particles.

Answer
The first step is to calculate the square speeds of the particles:

Speed, c/kms™’ 1.80 | 1.90 | 2.00 2.10 2.20 2.30 | 2.40
c?/km?s2 3.24 |3.61 | 4.00 4.41 4.84 5.27 |5.76
Number of particles [ 12 10 7 4 3

The next step is to calculate the mean square speed, which is the average

of all the square speeds:

C_g_ [3.24x6]+(3.61x8)+(4.00%12]) +[4.41x10] +[4.84x 7| +(5.29 x 4] +[5.76 x 3)
a0

= 4.25km? 72

To calculate the root mean square [nm.s.) speed ¢ ., we need to take
the square root of this number:

o= NG = 2B ks
=206kms
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EXAMPLE
Air particles in a room Answer

Calculate the r.m.s. speed of the air particlesin a We start with
room. The density of air is 1.3kgm™ and the P -lp[c 12
room pressure of the air is 1.01 x 10°Pa. P=3P %ms
Rearrange to make c . the subject:

. _ [3p_ [3x1.01x10°Pa
™ Np 1.3kgm™>

-4828ms'=480ms! [2sf]
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EXAMPLE

Neon particles in a bulb

A neon-filled lamp bulb used in advertising signs
contains neon particles at a pressure of 1.03 x 10°Pa
and a temperature of 60°C. The molar mass of neon
is 20.2gmol-'. Calculate the density of the neon in the
bulb.

Answer

First calculate the kinetic energy of the individual neon
particles:

E, = 2KT = 2x1.38x 102 JK! x(273+ 601K

=-6.89x107%"

This can then be used to calculate the value of [cpl?
We have

€=lm[c

2
2 rms]

S0
2. 26,26 2EN,
m M. /N, M
2x6.89%107%' Jx 6.02%10% mol
) 20.2x107 kg mol”’
=408648m° s =4.1x10° m? 572 (2sf)

Substituting into
2 ] e ]
P §P ms

gives

3p

[Crms

_ 3x1.03x10° Pa
408648 m” 57

=0.756 kgm™ =0.76 kgm™ (2s.f]

p= ]2
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22 The sealed gas syringe shown in Figure 4.21 is
filled with argon gas.

argon gas

plunger area = 7.1 x 107 m?
Figure 4.21

When an argon atom makes an elastic collision
with the plunger, it undergoes a total momentum
change of 1.33 x 1072 kgms™".

a) If we assume that, every second, 2.6 x 10%
argon atoms collide perpendicularly with the
plunger, calculate the force exerted by the
argon on the plunger.

b) Calculate the pressure of the argon gas inside
the syringe.

23 An official FIFA size 5 football has a circumference of
70cm and an internal air pressure of

6.9 x 10°Pa at 300 K. The molar mass of air is

29gmol™.

a) Calculate the mass of air inside the football.

b)] Calculate the root mean square velocity of the
air particles inside the football.
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24 At STP, 3mol of an ideal gas occupy a volume of
0.067 m3. The Avogadro constant, Ny = 6.02 x 10%,
Calculate:
al avalue for the molar gas constant, R
b) avalue for the Boltzmann constant, k
cl the average kinetic energy of one molecule of

the ideal gas.
25 An ideal gas can be modelled as many molecules
in continuous motion enclosed in a container. Use
the ideas of the kinetic theory to explain why the
pressure of a fixed mass of an ideal gas at constant
volume increases as the temperature of the gas
rises. State any assumptions that you need to make.
26 A cylinder of helium gas, used to inflate party
balloons, has a volume of 3.0 x 10-*m? and contains
42q of helium gas at a room temperature of 20°C,
The molar mass of helium is 4.0gmol™. Calculate:
a) the pressure inside the cylinder
b) the number of helium atoms inside the cylinder
¢l the root mean square speed of the helium
atoms inside the cylinder.

The cylinder is now stored outside, where the

temperature is close to 0°C.

d] State and explain [without the aid of calculations)
the effect of this temperature change on the values
that you have calculated in parts (a), [b) and (c].
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Practice questions

1 Thermal energy is supplied at the rate of 2.5kW for 140s to 0.8kg
of sunflower oil inside a saucepan with negligible heat capacity. This
produces a temperature change of 219 K. The specific heat capacity of
sunflower oil, in Jkg-1K-1, is

A 1500 C 2000
B 1800 D 2200

2 An ice sculpture of mass 25kg at 0°C absorbs thermal energy from its
surroundings at an average rate of 45W. The specific latent heat of fusion
of ice is 334kJ kg™". The time, in days, for the sculpture to melt is

A 18 C 3.3
B 2.1 D 4.9

3 A 0.010kg ice cube at 0°C is dropped into a glass containing 0.10kg of
lemonade at 15°C. The ice cube melts, cooling the lemonade. What is
the new temperature of the drink in °C? The specific latent heat of fusion
of ice is 334kJ kg™, and the specific heat capacity of water (lemonade) is
4200] kg 1K1

A6 £ 10
B 8 D 12

4 A deep-sea diver is working at a depth where the pressure is 3.2 atm. She
is breathing out air bubbles. The volume of each bubble is 1.9 cm?. She
decompresses at a depth of 10m where the pressure is 2.1 atm. What is
the volume of each bubble at this depth in cm™?

A 0.6 C 1.9
B 3.6 D:2.9

5 The helium in a sealed weather balloon at a temperature of 283K has a
volume of 1.4m? and a pressure of 1.01 x 10° Pa. The balloon rises to a
height of 300m, where the temperature is 274K and the pressure is
0.98 x 10° Pa. The volume of the air in the balloon at 300m, in m>, is

A L1 WE
B 15 D 2.4
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6 A mixture of helium and argon is used in a fire extinguisher system.
The molar masses are 4.0gmol™! and 40gmol~!, respectively, and the
extinguisher contains one mole of each gas. The ratio of the pressure exerted
by the helium and the argon, respectively, on the inside of the extinguisher is

A 11 € 119
B 100:1 D 10:1

7 A deodorant can with a volume of 330cm? at 18°C contains deodorant
particles that exert a pressure of 3.2 x 10°Pa on the inside of the can.
The number of moles of deodorant particles in the can is

A 0.04 C 400
B 4 D 40000



8 The density of air at 15°C and 1.01 x 10°Pais 1.225 kgm‘j'. The rm.s.

velocity of air particles, in ms~!, is §

A 604 C 498 &

B 603 D 497 ‘?i
9 Five nitrogen gas molecules have the following velocities, in ms=!: 300, é".

450, 675, 700, 800. The root mean square velocity of the particles, in 3

ms-!, is

A 413 C 613

B 513 D 713

10 Carbon particles of mass 2.0 x 10-*°kg in the hottest part of a Bunsen

burner flame have a temperature of 1200°C. The r.m.s. velocity of these

particles, in ms™, is

A B23 C 1746
B 1235 D 2143

B 11 A jewellery maker is making a gold pendant. She prepares a 3.0kg iron
mould and then pours in 25.0 g of molten gold at a temperature of
1064°C. The mould’s temperature rises from 31°C up to 35°C when it is
then in thermal equilibrium with the solid gold.

Here is the thermal data about the gold and the iron:

e mass of iron mould = 3.0kg

@ specific heat capacity of iron = 440 kg™ K™

e specific latent heat of fusion of gold = 63 x 10°Jkg™!

a) Calculate the thermal energy absorbed by the iron mould. (2)

b) Calculate the thermal energy given out by the gold as it
changes state from a liquid to a solid. (1)

c¢) Use the data to determine the specific heat capacity (c) of gold. (3)

d) State one assumption that you have made for your calculation of ¢. (1)

B 12 A student is making iced tea lollies using her family’ freezer. She
initially pours 0.050 kg of lukewarm tea at a temperature of 40.0°C
into a 0.12 kg aluminium mould at a temperature of 5.0°C. The specific
heat capacity of tea is 4250 kg™ K~! and the specific heat capacity of
aluminium is 900 J kg™ K~'.

a) Calculate the equilibrium temperature of the tea and the mould.  (3)

b) The tea and the mould are then put into the freezer, which removes
thermal heat from the tea and the mould at a rate of 32 W

Calculate how long it takes for the tea to freeze, if the specific latent
heat of fusion of tea is 3.38 x 10°Jkg ™, stating any assumptions
that you make. @)

1 13 A gas combi-boiler can heat water with a power of 15kW. Cold water
with a temperature of 5°C flows into the heater at a rate of 0.24kgs™.
The specific heat capacity of water is 4200 Jkg ' K.



a) Combi-boilers are highly efficient and you can assume that all
the thermal energy from the heater is transferred to the water.
Calculate the output temperature of the water. 2)

b) The water supply to the heater fails and 0.24kg of water is trapped
inside the heating compartment of the heater. The water inside the
compartment has an average temperature of 35°C and the heater
continues to heat the water. How long will it take before the water
reaches 80°C, when the emergency cut-out valve turns off the

gas supply? 2)

* 14 Formula 1 tyres have a volume of 0.09m? and are filled with
nitrogen to a pressure of 1.4 x 10°Pa at 285K.

a) Calculate the number of moles of nitrogen in the tyre. (1)

b) F1 tyres are designed to work at an optimum racing temperature
of 363 K. Calculate the racing pressure in the tyre. You can
assume that the tyre does not expand when heated. (2)

c¢) Calculate the root mean square (r.m.s.) velocity of the nitrogen
molecules in the tyre when it is at racing pressure. The molar
mass of nitrogen is 0.028 kg mol-!, (3)

d) Describe one similarity and one difference in the way that the
nitrogen molecules behave in the tyre at the different pressures.  (2)

B 15 A fixed mass of helium gas is enclosed in a container with a volume of
0.055m”. The gas is cooled and a student measures and records the
pressure of the gas, in atm, for different temperatures. The table shows

the results:
Temperature, /K 320 300 280 260 240
Pressure, p/atm 1.30 s 1.17 1.08 0.95

a) Use the data to plot a graph of the results, with temperature
on the x-axis and pressure on the y-axis. Start both axes at zero.  (3)

b) Use your graph to calculate the number of moles of helium gas
present in the container. (3)

¢) The pressure inside the container is reduced to 0.50atm by
cooling the container. Use your graph to determine the
temperature of the gas at this pressure. (1)
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d) Use your answer to (c) to calculate the average kinetic energy
of a helium atom at a pressure of 0.5atm. (2)

e) Hence calculate the total internal energy, U, of the helium. (2)

" 16 This question is about ideal gases.
a) State what is meant by an ‘ideal gas’. 2)

b) An ideal gas at 300K is enclosed inside a gas canister of
volume 3.3 x 10~*m? at a pressure of 2.02 x 107 Pa. Calculate
the number of moles of gas enclosed inside the canister. (2)

¢) The molar mass of the gas is 0.084 kgmal'l. Calculate the
density of the gas inside the canister. 3)



d) The canister is taken to the top of Mount Kilimanjaro, where it is
used to inflate an air-mat. If the temperature at the top of the
mountain is 266 K and the air pressure is 0.50 x 10-° Pa, what
is the combined volume of the canister and air-mat that could
be inflated by the gas in the canister at this pressure. (1)

Stretch and challenge
The questions that follow here are British Physics Olympiad questions.

17 a) State Boyles law.

Figure 4.23(a) shows a length of capillary tubing in which (a)

a column of air is trapped by a mercury column of length
100mm. The length of the air column is 400mm. The bottom
of the tubing is sealed and the top is open to the atmosphere. - H

b) The tubing is now inverted, as shown in Figure 4.23(b), 100 mm
and the air column is seen to increase in length to
520 mm. Use this observation to calculate a value for 'I' 2

atmospheric pressure, expressed in mm of mercury.

¢) A typical value for atmospheric pressure, expressed in
SI units, is 101 kPa. The surface area, A, of the Earth is 400 mm
related to its mean radius by the expression, A = 4nR?,
where R has the value 6400 km. Calculate:

IE

i) the sum of the magnitudes of the forces exerted by
the atmosphere on the surface of the Earth Figure 4.22

ii) the mass of the Earth’s atmosphere, assuming that ¢
does not vary with height above the Earths surface

iii) the number of molecules in the atmosphere, assuming that
the molar mass of air is 30 gmol!

iv) the height of the atmosphere if the density p = 1.2kg m—.

d) The height of the atmosphere calculated in ¢) iv) is less than the
height at which many aircraft fly. Explain why our calculation
gives a low result for the height.

e) The height of the atmosphere is typically given as 200km. Does
this mean that our calculation of the mass is completely wrong

(by a significant factor)?
(BPhO A2-2005 Q2; and A2-2011 Q4)

18 An accurate thermometer, of heat capacity 20.0] K-1, reads 18.0°C.
It is then placed in 0.250 kg of water and both reach the same final
temperature of 50°C. Calculate the temperature of the water before
the thermometer was placed in it. The specific heat capacity of
water is 4200 kg K.

(BPhO R1-2005 Q1(a))

19 Wet clothing at 0°C is hung out to dry. The air temperature is 0°C
and there is a dry wind blowing. After some time it is found that
some of the water has evaporated and the water remaining on the
clothes has frozen. The specific heat of fusion of ice is 333k] kg™
and the specific latent heat of evaporation of water is 2500k] kg
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520 mm

100 mm




a) What is the source of energy required to evaporate the water? Explain
the mechanism of evaporation.

b) Estimate the fraction, by mass, of water originally in the clothes that
freezes.

(BPhO R1-2005 Ql(e))

20 A lead bullet at 320K is stopped by a sheet of steel so that it reaches
its melting point of 600K and completely melts. If 80% of the kinetic
energy of the bullet is converted into internal energy, calculate the speed
with which the bullet hit the steel sheet. The specific heat capacity of
lead is 0.12 k] kg *K-! and its specific latent heat of fusion is 21 kJ kg™,

(BPhO R1-2007 Q1(f)

21 a) Water in an electric kettle is brought to
the boil in 180s by raising its temperature
from 20°C to 100°C. It then takes a further
1200s to boil the kettle dry. Calculate the
specific latent heat of vaporisation of water, T
[, at 100°C, stating any assumptions made.

" atmospheric pressure

steam
b) A cylinder, with a weightless piston, has an l constant temperature

internal diameter of 0.24m. The cylinder . hath at 100°C
contains water and steam at 100°C. It is
situated in a constant-temperature water — [ water
bath at 100°C, as shown in Figure 4.24.
Atmospheric pressure is 1.01 x 10°Pa. The
steam in the cylinder occupies a length of Figure 4.23
0.20m and has a mass of 0.37 g.

i) What is the pressure p of the steam in the cylinder?

ii) If the piston moves very slowly down a distance 0.10m, how
much work, W, will be done in reducing the volume of the
steam?

iii) What is the final temperature, Ty, in the cylinder?
iv) Determine the heat, Q_, produced in the cylinder.

¢) A molecule of oxygen near the surface of the Earth has a velocity
vertically upwards equal in magnitude to the root mean square
(r.m.s.) value. If it does not encounter another molecule, calculate:
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i) the height H reached if the surface temperature is 283K

ii) the surface temperature, T, required for the molecule to escape
from the Earth’s gravitational field if the potential energy per unit

mass at the Earth’s surface is [-G%—E- . The oxygen molecule has a
‘e

molar mass of 0.032 kgmol.
(BPhO R1-2002 Q2)



Electric flelds
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

ERTFFROBBANA ST

® Atoms and molecules contain protons and electrons, which carry
positive and negative charges, respectively. These charges are equal
in size, An atom is neutral because there are as many positively
charged protons as there are negatively charged electrons.

® Some materials, such as plastic, can become charged by rubbing with
a cloth. If the plastic is charged positively, then electrons have been
removed from the plastic and transferred to the cloth, which now
carries a negative charge. Another type of plastic might be charged
negatively when rubbed by a cloth - electrons have been transferred
to the plastic and the cloth will be charged positive.

@ Like charges repel each other, and unlike charges attract each other
[Figure 5.1).

negatively
< charged rod
positively
charged rod
Figure 5.1

® Electric charges exert a force on each other over a distance. For
example, a charged comb can pick up pieces of paper [Figure 5.2).

plastic comb i
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Figure 5.2

® Charges produce an electric field.

® An electric field is a region in space where a charged object
experiences a force.

@ Forces between charges are stronger when they are closer together.
The forces are weaker when the charges are further apart.
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 Explain why an atom of magnesium, which has
12 protons in its nucleus, is neutral.

2 Explain how ions are formed.

3 Explain what is meant by the term ‘electric field".
Name two other types of force field.

FEFER AT ERFRRR NI F P RER RN AP AR R RN R R F AP ER RN F R H A PR R RER R F A AR FRFRS R R AP EERRF R AT RRRF RN F T FRERR RN RS FRRRF RN F A SR TR TR A F AP ET RO

4 Draw a diagram to explain how a comb, which is
positively charged, can lift up a piece of paper,
which is neutral. [This takes some explaining,
in terms of electron movement in the paper and
attractive and repulsive forces.]

Voleanic ash thrust into the atmosphere produces ideal conditions for
lightning. The enormous quantity of pulverised material and gases ejected
into the atmosphere creates a dense plume of charged particles. The friction
of particles moving past each other transfers charge in the same way as a
balloon can be charged by rubbing, Potential differences of millions of volts
exist within the plume, which are sufficient to drive large currents, which
discharge the clouds of ash.
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Coulomb’s law

The starting point for work in electrostatics is Coulomb’ law, which states
that the force between two point charges ), and @, separated by a distance
r (Figure 5.3a) is given by

_ Q9

2
411&‘01'

F

Here F is measured in newtons (N), r is measured in metres (m), J; and
(2, are measured in coulombs (C), and &; is a constant, the permittivity of
free space: £y =8.85 x 107 Fm™L. (The Maths box on p. 87 shows how the
units are derived, for the interested reader.)

Sometimes you will find the constant quoted as 9.0 X 10°F ! m. You

1
(4mE,)
might also see Coulombs law written in the form

_ QR
s

r
1

(4mgy)

F

where k =

The value of &, quoted refers to the permittivity of free space — which means
a vacuum. The value of permittivity varies from one medium to another.
However, the permittivity of air is very close to that of a vacuum, so we
shall use the value of &, quoted in those calculations.

The equation for Coulomb law is very similar to that for Newton's law of
gravitation, except that the force between two charges can be repulsive if
the two charges have the same sign, or attractive if the two charges have
the opposite sign. The force between two masses is always attractive.
Coulombs law may also be used to calculate the electrostatic force
between two charged spheres carrying charges Q) and Q. In this case the
distance used is the separation of the centres of the two spheres, as shown
in Figure 5.3(b).
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{ MATHS BOX 5

: P ey
: Where does the unit of permittivity, &y, quoted as However, a joule = newton x metre, and - -
: -1 - ? i ‘ _ {
: Fm ™ or fara..ds pg:'r metre, come from? The reasoning ilp e ]Qule “Thisrefore thie. tiiits of £ e : g
: below explains this. coulomb : 5
: { [
! Coulombs law states that len]= [C1x[C] i A
: O 1% [m] PR
r.0Q T
: die V] [m]
} 22 But the definition of capacitance tells us that
: £ = Q, farad = S2ulomb. Therefore £, has units Fm™.
: 0 2 volt :
: 4nFr :
The units of g5 are therefore
[C] x[C]
{ [ECB] = 2 !
g [N] % [m~] !
__[c]x[c]
[N m] x [m]
EXAMPLE
Coulomb’s law
| Calculate the force of attraction between two point charges A and  (a) (b)
B separated by a distance of 0.2m. The charge at A is +2 pC and
the charge at B is —1puC.
Answer ¢
- 00 T
brg,r 15 cm mg Y
) [2%10°¢ €] x[-107 C)
(41 x 8.85% 1072 Fm™')x (0.2 m)?
=-0.45N
The significance of the minus sign is to remind us that the force |
Is attractive, but it is not really necessary to include it. =8 CM->==3 CM-» F

2 Figure 5.4(a) shows two light polystyrene spheres, which have been  Figure 5.4
coated in a conducting metallic paint. Each has been charged positively
by a high-voltage supply to about 3kV. They are suspended by pieces of cotton
15¢em long, and they are pushed apart by the repulsive electrostatic force
between them. The mass of each sphere is 0.08g.
Use the information in the diagram to calculate the charge on each sphere.

Answer
Figure 5.4[b) shows the forces acting on the right-hand sphere. The tension

in the cotton, T, is balanced by the electrostatic force, F, and the weight of
the ball, mg. From the triangle of forces we can see that

ta‘n9=i

mg




=

From the triangle showing the displacement of the From Coulomb’s law,
two spheres we can see that i 01‘9_2 ) Q?
2
L Grgyr™  hriggr
15em

However, when @is small, sin@ = tan@. Therefore

2

since Gy = Q,. Therefore
Q2 = 4?1&0!‘2 x F
tan@=~ sin@and -F—=0.2. So
mg
F=0.2mg
= 0.2 x (0.08 x 10-%kg) x 9.8 Nkg™!
=1.6x 1074N

Q% =4n % [8.85 x 1072 Fm™1) x (0.06m)% x 1.6 x 10°¢N
Q=80x10°C

. Testing Coulomb’s law

Figure 5.5 shows an experimental —

. arrangement for investigating EHT (<5KV- s 8
: Coulomb’s law. The two current limited threads — |
. polystyrene spheres are charged to <5mA) - .
. by a high-voltage supply. | \ )
i Sphere A is held in a fixed ~ |
position and sphere B is free .

|

vertical board
support rod for shadows

i to move. A light bulb is used to
: casta shadow of the spheres

i onto graph paper, so that

. their separation, and also the
deflection of sphere B, can be
i measured more easily.
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: Table 5.1 shows the results for six
. different separations of the

: spheres’ shadows. Between each light buib
: set of measurements the spheres

: —— charged sphere of
nsEles Teenargs. metallised expanded

polystyrene

1]

shadow

Figure 5.5
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Table 5.1

f Distance between centres of
4l spheres’ shadows/mm

00| 70 | 50 | 40 | 30 | 20
M Deflection of sphere Bs shadow/mm [[NINIE 5 | 8 | 15 | 29

1 Plot a graph of the deflection of sphere B's shadow against —1-, where r is the separation of the centres of the
. spheres’ shadows. 3

i Discuss whether or notyour graph supports Coulomb’s law.

2 Explain why the deflection of sphere B is proportional to the force between the balls.

: 3 Discuss the sources of error in this experiment. You should consider both systematic and random errors.
4 Discuss how you could calculate the real separation of the spheres, rather than their shadows.
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TEST YOURSELF
For these questions, use the following values: mass 4 Two charges, one three times the size of the other, @
of an electron=9.1 x 107%1 kg, charge on an electron = experience a repulsive force of 80 mN when they

1.6 x 1077 C, £,=8.85x 1072F m™, are separated by a distance of 10cm. Calculate the

1 The centre of a small sphere carrying a charge of size of the larger charge.

+2.0nC is placed at a distance of 240 mm from the 5 A small polystyrene sphere of mass 1g is

centre of a second small sphere carrying a charge sus‘pended bl el IR SF?hE"E iy Hhet
of =5.0nC. their centres lie along the same horizontal line.

Both spheres are charged negatively. The small

sphere is now deflected so that the thread holding

it is deflected to an angle of 367 to the vertical.

al Draw a free-body diagram to show the forces
acting on the sphere,

AEEEESdSFFSFFRGANERES

=
-
=
=h
S
L
3
=3
0
=3

a) Calculate the force of attraction between them.

b) Calculate the size of the force between the
spheres when they are separated by each of the
following distances:

EERASFF ST HREDEN A&+ FaD

1:]] ;30 mmrn bl Calculate the size of the repulsive force

o S between the spheres.

f"] 60mm 6 al The average distance of electrons from the

vl 48mm. nucleus, in the lowest energy state of a gold :

2 The electron and proton in a hydrogen atom are atom, is 7 x 1073 m. Calculate the force between :

on average about a distance of 5 x 107" m apart. such an electron and the gold nucleus. Gold has i
Calculate the force the proton exerts on the an atomic number of 79. :
electron. How big a force does the electron exert b) By making the assumption that the electron

: : "’? o A & + el
on the proton? moves in a circular orbit of radius 7 x 1073 m.

3 Auranium nucleus contains 92 protons; the calculate the speed of the electron. How does
nucleus has a radius of 8.0 x 10-°m. Calculate this speed compare with the speed of light?

the force on an alpha particle at the surface of
the uranium nucleus. Comment on the size of this
force.
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CJ Electric field strength

In the last section you met the idea of two point charges exerting a force

on each other. A charge produces an electric field around it, which exerts
a force on another charged object. This idea is similar to a magnetic field
close to a magnet, or a gravitational field around a planet.

An electric field strength is defined by the equation

=L

Q

where F is the force, in newtons, which acts on a charge, Q, in coulombs.
So electric field strength is measured in newtons per coulomb, NC-1,
The direction of the electric field is defined as the direction of the force
on a positive charge. Electric field is a vector quantity because it has both
magnitude and direction.

We represent electric fields by drawing lines. Figure 5.6 shows two uniform
electric fields. The stronger field in Figure 5.6(a) is represented by field
lines that are closer together. The fields are uniform because in all places the
field has the same strength and the same direction. Note that the field lines
start on a positive charge and end on a negative charge. The positive charge
in Figure 5.6(a) experiences an electrostatic force downwards.
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Figure 5.7

EXAMPLE

Force on a small charge

A small charge of +2uC is
placed in the electric field in
Figure 5.7[a). What force does it
experience?

Answer
E=.£—.
Q
F=EQ
=400NC-Tx2x10°¢C

=8 = 107N downwards

+ + + B + + +
A )
+0
! ! :
F=EQ
Y Y
- = = A o - —

Figure 5.8

(a)

|

T P ¥ ¥ + |+ + N+
+
400NC- vy Yoy oyl
(b) T.,.
+ ¥ T+ T +

E= 200 NC-

Figure 5.6

Electric field lines are a model to help us visualise a field, but a direct way
of showing an electric field is shown in Figure 5.7. In this photograph, a
potential difference has been applied to two metal plates, which have been
placed into an insulating liquid. Then short pieces of a fine thread have
been sprinkled on top of the liquid. When the electric field is applied, the
pieces of thread line up along the field lines, in the same way that iron

filings follow magnetic field lines.

Electric field strength and potential gradient

Figure 5.8 shows a charge +Q placed in an electric field between two
parallel plates. The plates have a potential difference of V between them,
and their separation is d (in m). How much work is done if the charge is
moved from A to B? This question can be answered in two ways.

First, the work done = F x d, but the force to move the charge must be equal
in magnitude to the force on the charge, due to the electric field, E x Q. So

work done = EQd

Secondly, the work done is also equal to the energy gained by the charge
in moving through a potential difference V. This is VQ — you should
remember that a volt is defined as a joule per coulomb. Therefore

EQd=VQ

and

ks
d

This equation allows us to calculate the magnitude of a uniform electric
field between two parallel plates. Note that the electric field strength can
also be measured in Vm-!,

Figure 5.9 allows us to produce a more general formula to link electric
field and potential gradient. In the formula above, we just concentrated

on the magnitude of the field, but strictly speaking we should have

included its direction.



[ l In Figure 5.9 the charge @ is moved through a potential

A F=—EQ J-fl‘-.V thmugb a smal'l djstanFa Ar by the' ﬂ?rce F= —EQ. (This _:_'I_

is marked in blue in the diagram and is in the opposite q

| direction to the force from the electric field.) =-

Ar AV s,

So we now get ®

® Q

+Q work done = =EQAr = AVQ g

L)

increasing or Eg:
potential AV
Y F= EQ R

= So the electric field strength is equal in magnitude to
Figure 5.9 the potential gradient, but it is in the opposite direction.

o Figure 5.10 shows a graph of electric field strength
| inaregion. The area under the graph may be used to

A
ExEERESaL calculate the potential difference between two points.
EENEaMmNasmENMNENRRNNNNN. SgERMASSEEAEEEEEEE - A shaded section (green) under the graph has an area
e s e P | EAr, which has a value AV
B TE : =ERS EiEEie IR RER i I general, the area under a graph of E against r gives
e 2 ENENEE B the change of potential AV,
e PR i
T H
Figure 5.10
Electric field strength is defined by (LN _
2 EXAMPLE
e=L£ : , :
Q Change in electric potential
In a uniform field Use Figure 5.10 to calculate the change in potential in moving from
e positionr=0tor=0.2m.
o5 Answer
and ggnera[[y AV = area under the graph
AV =2{2000V m1 + 1500 Vm™ x 0.2m
~E =350V
Units of electric field strength are NC" or
vm-,

The area under an £ against r graph is AV, " : _ . g
the change in potential. Deflection of charged particles by electric fields

Any charged particle experiences a force in an electric field. So when a
moving charged particle enters an electric field, it will change direction.
(Only when a charged particle moves parallel to an electric field does it
keep moving in the same direction.) Figure 5.11 shows a photograph of an
electron beam tube, which can be used to deflect electrons.

Figure 5.12 shows the principle behind the electron beam tube.
Electrons are accelerated by an ‘electron gun’ on the left-hand side. They



then travel across a fluorescent screen, which shows the electron path.
The electrons travel from P to Q. The electrons are deflected by applying
a potential difference between A and B. When a potential difference

is applied so that the top plate is positive, the electrons are deflected
upwards along a path such as PR.

Figure 5.11 Electrons can be deflected and
observed inside this evacuated tube.

fluorescent screen marked
with squares 1 cm x 1 cm

metal plate A
\ i /
Electron gun ’ R
0 IR =i R SRARR
o ______..--—-‘-" = path of
L v — P . C  electron
o= 6V ~_1] beam
e
—
e
o i
metal plate B
L — O
-+
V
Figure 5.12

The path PR is a parabola, which can be explained as follows. The electrons are
travelling in a vacuum, so their velocity in the direction PQ remains unchanged.
While the electrons are in the electric field, they experience a constant
acceleration upwards due to the electric field. This is rather like throwing a ball
sideways — the balls horizontal velocity remains constant, but gravity gives the
ball a constant downwards acceleration. The ball falls along a parabolic path.



e

Now a potential difference of 2200V is applied between
A and B, so that the beam deflects upwards.

2 Calculate the acceleration of an electron in this

electric field.

Answer

The electric field strength is
v

d

_ 2200V
0.06 m

=36.6kVm

To calculate the upwards displacement of the beam,
we use the equation of motion:

s=yt +l.5n§‘2 =lat2

2 2

since the initial upward velocity u= 0. 5o

5 =[%x b4x10" ms‘?]x{mx 107 5)?

=0.02mor2cm

TEST YOURSELF
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7 The strength of an electric field may be expressed
in units of either NC-1 or Vm-~1. By considering
the definitions of the volt and the joule, show that
these two quantities are the same.

B8 Figure 5.13 shows a charged particle placed
between two charged parallel plates. The
potential difference between the plates is 1500V
and their separation is 7.5cm.

=,
—

p
h.ﬂ..l

Figure 5.13

a) Calculate the magnitude of the electric field
strength between the plates.
b) A particle P experiences a force, from the

AdSSSSERRLREESS
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electric field, of 1.5 x 10-7N in the direction
shown. Calculate the charge on the particle.

c¢) Calculate the work done by the electric field
on the particle in taking it from the top plate to
the bottom place.

9 This question refers to the deflection of electrons
shown in Figure 5.12. Explain what will happen to
the path of the electrons when, separately,

a) the potential difference between A and B is
increased

b) the potential difference V, is increased so that
the electrons travel faster as they enter the
deflecting area.

10 A small polystyrene ballis dropped between a pair
of parallel plates as shown in Figure 5.14. As it
enters the plates, it has reached its terminal speed,
which is 1.0ms™". Initially, the plates are uncharged.

EXAMPLE F?'
Electron beam tube %
This example refers to Figure 5.12. In an experiment, The acceleration is given by %“‘
a beam of electrons is directed along the line PQ. The . a
electrons arrive at P with a velocity of 4.0 x 107ms™ e — E',
travelling in the direction PQ. The squares on the grid £Q o
measure lcm x Tem. o LE;
| Calculate the time taken for the electrons to travel where Q is the charge on an electron and m is its
from P to Q. mass. This gives
Answer ‘
,_ 3.66x10°Vm'x1.6x107" C
a=yms 9.1x107% kg
d
ey =64x10° ms™
0.1m 2 Show that the electron beam is deflected upwards
G 0x107 . to point R, which is about 2cm above point Q.
_25x107% & Answer
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c» 25cm

- f] Calculate the ball's maximum sideways

F = & = deflection in the field. Why might the deflection
be less than this? :

1ms™ 11 Calculate the potential difference between the

points r=0and r=0.4m in Figure 5.10.
12 A smalloil drop, of mass 1.7 x 107"%kg, carries
+ = a negative charge. It is suspended between two
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:

:

1aom parallel plates as shown in Figure 5.15. The p.d.

: between the plates is adjusted to 312V so that the

g drop remains stationary, :
z ’ <—5cm—- !

Figure 5.14 312V °- & mm

; al Explain why a falling object has a terminal : — '

: speed. [You may need to refer back to | :
3 Chapter 8 in Book 1) :
: b] Calculate the time taken for the ball to fall Figure 5.15
: through the plates. ) :
§ The experiment = repeated when the p[ates a) Draw a free-body diagram to show the forces on é
i are charged as shown in Figure 5.14, and the the drop. :
i potential difference between them is 3000V. In b) Use the information above and in the diagram to ¢
: this second experiment, the ball has been given a calculate the charge on the drop.
: positive charge of 1.2 x 1078C. It enters the plates ¢) The charge on the drop is changed by the use of
3 at the top at its terminal velocity of 1.0ms™", ionising radiation. A p.d. of 208V is now used to  §
§ c) Sketch the path of the ball as it falls between balance the drop. Calculate the charge on the
: the plates. drop now. 5
$ d) i) Calculate the electric field between the d) What is the smallest charge the drop can carry? ;
§ plates. For a drop that carries this charge, calculate
: iil Calculate the force on the ball due to the the p.d. that would hold the drop in a stationary  §
3 electric field. position. :
§_ e] The ball has a mass of 0.2 g. Calculate its el Find outwho first did this experiment to E
E sideways acceleration as it enters the field. determine the charge on the electron. :

O Radial electric fields

Figure 5.16 shows a photograph of the shape of an electric field close to

a small point charge. This photograph is obtained in the same way as that
shown in Figure 5.7. The electric field has a symmetrical radial shape near
to a small point charge.

Figure 5.17 shows how we can represent the electric field lines close to a
positively charged sphere. The lines point outwards symmetrically from
the sphere as if they had come from the centre of the sphere. You can also
see that the lines spread out. This means that the field gets weaker as the
distance increases from the sphere. This is very similar to the shape of the
gravitational field near to a planet, except that the gravitational field lines
must always point towards the planet. (Under what circumstances do the
field lines point towards a charged sphere?)

Figure 5.16



We can produce a formula for the electric field close to a sphere as follows.

We know from Coulomb’s law that the force between a sphere, carrying E
charge @, and a small charge g at a distance r from the centre is %
®
Fom st : )
4me,r a.
We also know that F'= Eq. It follows that the electric field close to the -5.,
sphere is given by the formula E‘:‘
L]

E= Q -

4ne,r

So the strength of the electric field obeys an inverse square law.

Figure 5.17

As you can see from Figure 5.17, the electric field is a vector quantity. So
when we consider the field close to two or more point charges, we must
take account of the direction of the electric field.

"EXAMPLE
Resultant electric fields
Figure 5.18 shows two small charges, one with Answer
7 charge of 44, the other with charge +Q. The The resultant field is 40NC-"— 10N C' = 30NC" to
magnitude of the electric field at C due to the charge the right
+4Q is 4ONC. ;

3 Show that the position of point O, where the electric

field is zero along the line AB, lies 4cm from B.
- 6CM —»=——6CM—»

2 A +Q Answer
- = E The field due to A is
Figure 5.18 ks 40 kQ 1
: s Ep= o where kK =——
| Calculate the magnitude of the electric field at C 0.08c 0.0016 bareg
due to the charge +Q alone. Tha fistd duete Biis
Answer k0 X0
The field at C due to the charge +Q is 10N el Eg= 0 042 = 0.0016

because the charge is 1. But the field is in the
opposite direction [right to left).

2 Calculate the magnitude of the electric field at C
due to the two charges together.

So at a point 4 cm from B the two fields cancel each
other out.
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TEST YOURSELF

13 al The electric field due to a point charge is 300N C-! at a distance
of 100 mm away from it. Calculate the strength of the field at
distances of

i] 50mm
il 200mm
i) 250 mm.
b) Sketch a graph to show how the field strength varies with distance away from the charge.
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14 Figure 5.19 shows a grid marked with squares. A positive charge

placed at O produces an electric field of strength 3600NC™ at point A. ’ " J l;i
Calculate the magnitude of the electric field strength for each of the
points B to K. [You will need to use a combination of Pythagoras's H
theorem and the inverse square law.] ! * T t !
15 a) Figure 5.20 shows two charged spheres, X and Z. Calculate the
electric field strength at point Y, which lies along the line XZ joining I L L L !
the centres of the two charged spheres. Sphere X has a charge of E F G
+5 % 10-°C, and sphere Z a charge of -10-8C.
& = o _a -
+ExAdgig [F——o3m P 0 A B C D
(; | Figure 5.19
x X

Figure 5.20

bl i) Calculate the field strength, at Y, if the charge of -1078C on sphere Z is
replaced with a charge of +10-8C,
i) Calculate the force between the spheres in this case. |s the force
attractive or repulsive?
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O Electrical potential

Figure 5.21 shows a small charged isolated sphere. In theory, an isolated
sphere should be in contact with nothing and infinitely far away from
anything else. In practice, in a laboratory, the best we can do is to suspend a
sphere by a fine, insulating thread and make sure the sphere is a few metres

from everything else.
The potential at a distance r from the centre of a sphere carrying a charge Q
is given by
S Eﬁsm_anng thread v Q
pporting sphere 4neyr

Note that if the charge is negative, then the potential near to the charged
sphere is also negative.

,. These formulae are very similar to the formula for gravitational potential —

Ny & r ~ except that gravitational potential must always be negative, whereas an

v electrical potential, close to a charge, can be positive or negative. In the
case of gravitational potential, the zero point of potential is defined as a
point infinitely away from any planet or star. In a similar way, the zero
point of electrical potential is defined as a point infinitely far away from
the charged sphere. In practice, the surface of the Earth is our reference
point of zero potential, and by suspending our sphere a long way from
anything else, the Earth can be treated as being infinitely far away. The
Maths box shows how the formula for potential can be derived from the
formula for electric field.

Figure 5.21



: MATHS BOX
- « " . . —
: The electric field at a distance r from the centre of an isolated charged : ®
: sphere carrying a charge +Q is %
Q 2
3 E= - : 9
: An€,r P
- : g_
: But o
5 dv 5
: dr :
$ ’ i
47:89"" :
il [ ]
E 4?[8&1" E
i Note that the limits of the integration set the potential as zero at an :
¢ infinite distance.
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Absolute electric potential The potential ~ The formula V =

difference between a point and a point at 4neqr

zero potential, which is infinitely far away. absolute electric potential at a point r from a charge +Q is the work done
per unit positive charge in moving it from co to that point. Note that if that
charge is —Q, then the potential is negative and the electric field does work

in moving a positive charge closer to the point r.

helps us to define absolute electric potential. The

(-

EXAMPLE
Electric field near a charged sphere V=1000V
Figure 5.22 shows a metal sphere of radius 10cm,
charged to a potential of 1000V. The electric field ) 5 C 5
strength at C is 10000V m™".
-50 cm -i0cm 0 10cm 50 cm

Sketch graphs to show how

Figure 5.22

1 the potential
2 the field strength

vary along the line A to B and then from
C to D.

Answer

Figure 5.23 shows the answer. These are
the points to note.
e V is a scalar and is always positive.

e V obeys a -} law and falls from 1000V
at 10cm to 200V at a distance of 50cm

from the sphere.
e £ is a vector, so must change direction.
@ E is connected to the potential by the

¥ I [ (il
{ ! X H
1 | 1 | ] L - 1 | | 1 | | 1
11 0 . e O 0 E}\‘{_Irﬁ:-. I 0 0 0
il Ul | i L F 11 {, ] (| T I 1 ¥ ] =11 [} Il 3 ¥ ] 1 1
| [ | [ | | ! | | 1 | | | | | | | 1
| | | | 11 | 1 [ { I I 1 1 { 1 | 1 1
| 1 | | | | | | | 1 | | 1 | | 1 | | | |

equation e--3Y Onthe right-hand
dr Figure 5.23




side of the sphere, the potential gradient is negative, sphere, because a positive charge is always repelled
so E is a positive quantity. On the left-hand side of by it.)
the sphere, the potential gradient is positive, so E is e E obeys a lz law and falls from 10000V~ at

a negative quantity. gk "
(More simply, the electric field must be in opposite 10em to 400Vm~ at a distance

directions on either side of the of 50cm from the sphere.
Potential difference The work done, Potential difference
against an electric field, in moving unit Electric potential dilference is the difference in electrical potential between

charge from one point to a second point
at a higher potential. If a charge moves
from a point of higher potential to a lower
potential, work is done by the electric field, AW = QAV

two points. When the potential difference is AV, the work done in moving a
charge Q between the two points is

EXAMPLE

Work done in moving a charge

How much work is done in taking a charge of 1.00 x 107°C from the position ry
to ry, in Figure 5.247

+1.00 x 107C I ra
ea—1.0M—»e -
- 40m -

Figure 5.24

Answer

The potential at a point is

_Q
N ATCEr

v

so the potential difference between ryand ry is

_1oox1077C ¢ 2
4mx8.85x 10" ZFm~ |Im  4m
— 475V

wn
a
-
—
L.
&=
E‘
Q
w
—
L
o

So the work done is
AW =QAV

=1.00x107° Cx 475V
=675nJ

Equipotential surfaces

Figure 5.25 shows a metal sphere that is charged to a potential of 1000V,
The red circles drawn round the sphere show equipotential surfaces, where
the potential is the same, e.g. 900V and 800V. Although the diagram shows
circles, this is because the diagram can only be drawn in two dimensions.
The sphere is surrounded by spherical equipotential surfaces.
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Position | Potential
a 200V

b 300V
c 400V
d 500V
e 600 V
f

9

h

|

700V : . g
800V O 10cm 20cm  30cm
900 V
1000 V

Figure 5.25

The equipotential surfaces may be linked to the electric field strength
through the equation

A ¥

EF=c
Ar

Figure 5.25 shows that, near the surface of the sphere, the equipotential
surfaces are closer together. This means that both the potential gradient and
the electric field strength are higher near the sphere’s surface than they are
further away. The green lines in the diagram represent electric field lines,
which point radially away from the positive sphere. These lines get further
apart with distance from the sphere, which also shows a field diminishing
with distance away from the sphere’s centre.

The field lines are always at right angles to the equipotential surfaces. So,
when a charged particle moves along an equipotential surface, no work is
done by the electric field. This can be explained using two ideas.

First, work done is defined by

AW = AVQ

or, in words, the work done on a charge is the change in potential
multiplied by the charge. When AV = 0 (moving along an equipotential
surface) the work done is zero.
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Figure 5.26

Secondly, work is also defined by

AW = FAr

or, in words, the work done on an object is the force acting on the object
multiplied by the distance moved in the direction of the force. When a charge
is moved along an equipotential, it does not move in the direction of the
force or the electric field, which acts on it, but at right angles to the force.

EXAMPLE

Moving a charge on equipotential surfaces

In Figure 5.25, a charge of 1.0 x 107°C is moved first from point 1 to point 2,
and then from point 2 to point 3. How much work is done in each case?

Answer
No work is done in moving the charge from point 1 to point 2, that is AV = 0,
In moving from point 2 to point 3
AW =Q AV
=1.0x107° Cx(300V —200V]
=1.0x107* J

Further examples of field and potential

Figure 5.26 shows a square ABCD. At point A there is a charge +Q, the
potential at point O (the centre of the square) due to this charge is 25V
What is the potential at O when a charge of +Q is placed at each of the
points A, B, C and D?

The answer to this is 100V. To move a positive charge to point O, work has
to be done against each of the four charges. Therefore the potential at O is
four times larger. (The potential at a point is the work done per unit charge
to take it from infinity to that point.)

Since electric potential is a scalar quantity, we can calculate the potential
at a point close to two or more charges by adding the potential due to
each charge. Figure 5.27 shows the electric potential (calculated by
computer) near to a positive and negative ion, which are separated by a
distance of 10 m.




)
3
g.
—
3
~
‘_é
Y

2.0x 10°C from B to A.

17 This question refers to Figure 5.25. Calculate the
work done in moving a positive charge of 2.0 x
1077C from
a) point 3 to point 4
b) point 4 to point 5
¢l point 3 to point 6.

+ F

Figure 5.27
cTEST YOURSELF
16 Anisolated metal sphere is charged with a i) A, +Q:B,+Q:C,-Q:D, +Q
positive charge of il A +Q;B,-@;C, +Q;D,-@Q
1.5 x 10°77C. iii) A, +2Q; B,-3Q;C, +Q; D, -Q.
a) i} Calculate the potential at point A, a distance b) For which of the above arrangements is the "
of 0.25m from the sphere’s centre. electric field strength zero at 07 Explain your £
ii) Calculate the potential at point B, a distance answer.
of 0.75 m from the sphere’s centre. 19 Anisolated charge of +Q is placed at point Ain i
b] Calculate the work done in moving a charge of Figure 5.28. The potential at point B is 120V. ;
:

TEFF TR FFFEFFFFERRY Y Y

18 This question refers to possible arrangements of s 4 + - 4
charges in Figure 5.26. z B © B E
a) Calculate the potential at O, for each of the Figure 5.28

following arrangements of charges: =
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a) Calculate the potential at points 20 This question refers to the equipotential surfaces
i) C shown near to the ions in Figure 5.27.
ii) D a) Which of the following statements is/are true?
iii) E Explain your reasoning.
ivl E i] The direction of the electric field at point A
b) A second charge of +Q is now placed at E. is correctly drawn.
Calculate the pgtential_ at pgints il The Stl’"Eﬂgth of the electric field is
il B stronger at D than at E.
il C b] Calculate the gain in electrical potential
i) D energy when an electron is moved from
ivl F l] BtoC

ii] BtoF

c] The charge at E is now replaced with a charge :
Express your answers in eV,

of =Q. Calculate the potential at points

SERRF PP F SRS AT AP SRR RS SIS A RB RN B AN PP DBV NN SR A E RS R RN A AT FRRB AR FF RN
R I FFFEIRR RN G AN FEFFE SRR S AR ERFENTRREAAFFRR RN RGP FFFRI R RN IR RN I FFRRD

il B c) Sketch the shape of the electric field close to
il C the two ions.
iii) D
iv] F
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O Similarities between electricity and
gravitation

A comparison between Newtons law of gravitation and Coulomb’s law
shows that there are many similarities between the actions of the two types
of force. There are also some important differences.

The main similarities are as follows:

@ Both electric and gravitational forces are non-contact; forces are exerted
over a distance without direct contact.

@ Both forces are of infinite range.

® Both forces obey inverse square laws.

The main differences are as follows:

® Gravitational forces between masses are always attractive; electric forces
can be attractive or repulsive.

® An electric force is much stronger than the gravitational force.

® [t is possible to shield an electric force, but the gravitational force acts on
all objects.

® An electric force only acts on charged objects; the gravitational force acts
on all objects.



Table 5.2 shows a useful summary of the similarities and differences.

LA
Table 5.2 §
3y
Acts on Mass [positive only] Charge [positive or negative) ﬁ
Force [N] £_GMm PR o
re fm:eurz %
attractive only attractive or repulsive §
: D
infinite range infinite range ﬁ'
relative strength 1 1038 g
Field o W &
I=m i Q W
units N kg™ NCTorVm-! ,E‘
radial field GM g9 2
T * 4megr? ¥
r 0
=
Potential difference AvLAW - S
m
Q
units Jkg! Je-
Potential gradient - AV
i e B it
Ar Ar
Potential in radial fields i GM Ve Q
~ B bmegr
V=0ate V=0at e
Potential ener
ay £ .—GMm o L
5 ¥ P hmegr
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21 a) Calculate the gravitational force between two protons separated

by a distance of 10719 m.

b) Calculate the electrostatic force between the protons separated
by a distance of 10-0m,

c] Calculate the ratio of the two forces calculated above.

d) What will the ratio of the forces be when the protons are
separated by 107'2m?

[Look up data for these calculations.)

22 The strong nuclear force binds nucleons together in a nucleus. Itis
thought that the force acts over a range of about 1013 m, and that the
force is 137 times stronger than the electric force. Comment on the
information in the previous sentence. Does it make sense?

23 Explain how it is possible to shield a region from an electric field.
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Practice questions

1 A proton and an electron are separated by a distance of 5 x 10~ m.
The size of the electrostatic force between them is

A 18x 108N C 6 x 108N
B 9x 108N D18x 108N

2 The potential energy of a proton—electron pair separated
by 5 x 101 m is

A 288eV C 28.8eV
B 92.2eV D 5.6eV

3 An electron starts at rest and is accelerated through a potential difference
of 1200V, The speed of the electron after it has accelerated though this
p.d. is

A 8x10°ms! C 4x10"ms?
B 2x10°ms™! D2x10"ms!

4 On a dry day the electric field near the surface of the
Earth is 140V m™ downwards. A drop of water of A
mass 4.2 mg is suspended in the electric field. The
charge that the drop carries is Al ct

A 310 C C6x107C / U \ / \
A

| A B © O B/AC O
B —3x10-C D -3 x 104C /f\

Use this information to answer questions 5 and 6:

me+
e+

Figure 5.29 shows two equal positive charges that are B}
placed at B and C, along a line AD. Four graphs show the / j
possible variation of quantities along the line AD. A |_=f C /D"‘

:n-\\ "
i 2l

5 Which graph shows the variation of electric field

] along AD? _
- Figure 5.29
L 6 Which graph shows the variation of electric potential along AD?
(19
E Use this information to answer questions 7 and 8:
- ; ‘ . .
& The charge at C is now replaced with a negative charge of the same size.
— .
= 7 Which graph now shows the variation of electric field - 160V
m i
along AD? 120V
8 Which graph now shows the variation of electric potential o 80V
along AD? C
3 ° 40V
O Figure 5.30 shows a series of equipotentials. Which of the s 8 i
following statements is not true? ,
' Figure 5.30

A The work done in taking a charge of 0.1 C from A to B is zero.
B The work done in taking a charge of 0.1 C from A to Cis 4].
C The electric field at D is stronger than the electric field at B.

D The direction of the electric field is downwards.



10 The electric field strength at a distance of 10cm from the surface of a metal

sphere is 900N C-1. The sphere has a radius of 20cm. What is the electric

field strength at a distance of 70cm from the surface of the sphere?
A 450NC-L C 100NC-!
B 225NC-! D 50NC-!

“ 11 In Figure 5.31(a) an electron is placed at P in an electric field, which is

represented by the field lines shown.

a) i) In which direction will the electron accelerate? (1)

ii) Describe how the electron’s acceleration changes
with its position in the field. Explain your answer.  (2)

b) An electron is now placed in another electric field, at Q,
as shown in Figure 5.31(b).

i) Describe how the electron’ acceleration changes
with its position in the field now. (1)

ii) The electron, at Q, is replaced by a proton. Compare the
proton’s acceleration with the electron’s acceleration. (3)

B 12 Figure 5.32 shows two parallel plates, which are connected to
a low-voltage supply. The plates are in a region where there is a
vacuum. A small polystyrene sphere is placed at X between the
plates. The sphere carries an electric charge of +4.0 x 10-18C,
and it has a mass of 2.6 x 10~ kg,

a) Calculate the size of the electric force acting on the sphere. (3)

b) Draw a free-body diagram to show the forces acting on
the sphere. (2)

c) Calculate the magnitude and direction of the sphere’s
acceleration after its release. 4)

d) A different sphere is now introduced into the field at point X.
It carries twice as much charge as the first sphere, and it is
twice as massive. Compare the magnitude and direction of
this second sphere’s acceleration with the first sphere. 2

0 13 A small plastic ball is suspended on a fine glass spring as shown in
Figure 5.33. It carries a negative electric charge. When a potential
difference of 500V is applied to the plates, the ball moves upwards by
a deflection of 9mm. The spring constant of the spring is 0.12Nm™!,

Figure 5.33

a) Use the deflection of the ball to calculate the electrostatic the
force acting on it.

500V

I

."J!Jm A
S B

i J

b) Use the information in the diagram to calculate the electric

field strength.
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Figure 5.31

-0 cm——e

300V X OV

Figure 5.32

2)

(2)



¢) Deduce the charge on the sphere. (2)

d) The electric field is now switched off. Explain why the sphere J/wg
oscillates with simple harmonic motion. Calculate the time | )
period of the motion; the mass of the sphere is 15g. (3) I
(You will only be able to do this part of the question if you I
have studied simple harmonic motion in Chapter 2.) 5 | 5
oV | +600 V
" 14 A small sphere of mass 2.4 g is charged and suspended in an electric |
field (Figure 5.34). It is deflected from the vertical at an angle of 10°. = A
a) Use the information in Figure 5.34 to calculate the .
strength of the electric field between the plates. (1) e 1
b) Show that the force due to the electric field acting on Figure 5.34
the sphere is about 4 x 10~ N. 3
e sphere is about 4 x (3) A e
¢) Calculate the charge on the sphere. @ &
15 Figure 5.35 shows the arrangement of two protons that form a f c g
hydrogen molecule. They are separated by a distance of 3.0 x 10'm, 3.0 x 100} ——————»
a) What is the electric field strength at a point C, midway Figure 5.35
between the two protons? (1)

b) i) Show that the electric potential at point C, due to the
proton at A only, is 9.6V, (3)

il) State the potential at point C due to both protons at A and B. (1)

c) An electron, in its ground state, has 3.7 eV of kinetic energy at point
C. Show that the total energy of the electron at

this point is —15.5eV. (2) U
d) State the ionisation energy of the hydrogen
molecule. (1)
" 16 In Figure 5.36 two charges are placed at points A
and B, which are 1.0m apart. At A there is a charge Ag R® ot
of +6nC, and at B a charge of -6nC. +6nC -6 nC
«—— 05m - 0EmM——m»

a) Calculate the strength of the electric field at
point C, which is halfway between the charges. (3) Figure 5.36

b) i) Draw a vector diagram to show the two electric
fields due to the charges A and B at point D. 2

)
=]
-
—
T
E
=
)
w
-
w
1o

ii) Use the diagram to show the direction of
the electric field at D. (1)

= 17 Figure 5.37 shows equipotentials around a positive charge.

a) Explain how the equipotentials show that the electric
hield is stronger at point A than it is at point C. 2)

b) A charge of -2.0nC is moved from
i) BtoC
ii) CtoD.

Calculate the work done against the electric field in each case. (3) Figure 5.37



B 18 When the electric field strength reaches about 3.0 x 10°Vm!,

air can become ionised. In strong electric fields, free electrons ‘f\\ f
gain sufficient energy to ionise air molecules. ﬂ %
Figure 5.38 shows electric potentials close to an isolated tree. /\ i
=

a) Explain why the electric field strength is stronger over the q ﬁ
top of the tree. 2) g‘

b) A free electron can ionise a molecule if it has sufficient Figure 5.38 ?

energy to dislodge an electron that is attached to an atom

or molecule. In air, at atmospheric pressure, an electron travels an
average distance of 0.5 pm between collisions (this is called the mean
free path).

i) Calculate the energy gained by an electron that accelerates a
distance of 0.5 pm through an electric field of strength 46 MV m~!,
Express your answer in eV, (3)

ii) Explain why gases may be ionised with weaker electric field when
the gas pressure is low. (2)

¢) A thundercloud at a height of 300 m above the ground is charged to a
potential of -7 x 10®V relative to the Earth.

i) Sketch a diagram to show the electric field
between the cloud and the ground. (1)

ii) Calculate the field strength under the cloud. (2)

The cloud is discharged by a flash of lightning, which carries a charge
of 4.5C, in a time of 0.024s.

iii) Calculate the average current during the discharge. (2)

iv) Calculate the energy dissipated during the lightning strike.  (2)

Stretch and challenge

19 Figure 5.39 shows two positive charges, +q, separated by a G
distance 2a.

[
a) Show that the magnitude of the electric field, E, at C is given by

= gx
¢ 2, 2.4 :
2meg (x“ +a”)?

and that the direction of the field is along the line OC.

b) Show that the electric field is a maximum for x =i%, +q
20 This question also refers to Figure 5.39. A particle with charge +q

(the same size as the two charges at A and B) is directed along the
line CO. The particle starts a very long way from the charges. What is the
minimum initial speed the particle must have if it is just to reach point O?

Figure 5.39




Capacitance
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

@ Electric current, /, 15 the rate of flow of charge, In%%.

@ Potential difference [p.d.], V, is the amount of electrical work done per
unit charge, V=%4

EERS ¢S R4 FENERRERE R+ ¢S+ RN

: @ Electrical resistance, R, is defined by R;VT‘ .
: ® Electrical power, P, is the rate of doing electrical work, P=W-—-IER=%.
: ® Electrical energy, E = VIL.

® Kirchhoff's second circuit law states that [in a complete loop of the

circuit) sum of e.m.f.. = sum of p.d...
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 A current of 25 mA flows through a fixed resistor for 1 minute.
Calculate the total charge that flows through the resistor.

2 Calculate the work done in accelerating electrons with a charge of
-1.6 x 107%C through a p.d. of 4800V.

3 Calculate the current flowing through a 1.1 k(] resistor with a p.d. of
7.7V across it.

4 Calculate the electrical energy supplied to a 3901 heating element if a
current of 1.2A flows through it for 3 minutes.

5 A 12V car battery supplies potential differences across a fixed 5.7V
GPS unit and a mobile phone charger connected in series. Calculate
the p.d. across the charger.
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Capacitors

Capacitors are components of electrical circuits that temporarily store
electric charge. The addition of a capacitor into a circuit has two
possible effects: either introducing a time delay into the circuit; or
storing electrical energy for a short period of time. Capacitors are used
extensively in electrical and electronic timing circuits, in power circuits,
for smoothing electrical signals and as part of the signal-receiving
circuits found in radios.

Modern capacitors consist of two parallel conducting plates (usually made
of metal foils, films or coatings) separated by a thin insulating layer known
as a dielectric (generally made from thin plastic films, electrolytes, ceramics




Figure 6.1 Different types of capacitor

Capacita nce The capacitance ofa capacitor

is the ability of the capacitor to store charge
per unit potential difference.

Farad The unit of capacitance is the farad
(F), where 1F is equalto 1CV-" (one
coulomb per volt).

S electron flow

electron flow

Figure 6.4 Capacitor plates discharging.

or metal oxides). Most capacitors are then encased in a metal or plastic
housing. Figure 6.1 shows a selection of different capacitors.

There are several different circuit symbols for capacitors depending on
their type, although they are all based on the same simple pattern shown
in Figure 6.2.

electron flow
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fixed non-electrolytic fixed electrolytic >

Figure 6.2 The main circuit symbols for clacumR oW
capacitors, Figure 6.3 Capacitor plates.

A potential difference from a battery or a power supply connected across
the metal plates causes electrons to flow off one plate, back through the
battery and onto the second plate (Figure 6.3).

One plate becomes positively charged (where electrons are removed),
while the plate with the excess of electrons becomes negatively charged.
If the capacitor is then disconnected from the source of potential
difference, the charge will stay on the plates until a conducting pathway
allows the excess electrons to flow off the negatively charged plate and
back onto the positive plate, until the two plates have equal charge again
(Figure 6.4). The conducting pathway could be a different part of the
circuit (controlled by a switch) or the charge could gradually leak away
to the surroundings.

The ability of any object to store charge is called capacitance.
Capacitance is given the symbol C, and the SI unit is the [arad (F). The
capacitance of a capacitor depends on the area of the metal plates, the
distance between the plates and the electrical properties of the material
separating the plates.

The amount of charge, Q, that can be stored on a capacitor depends on
the size of the capacitance, C, and the potential difference, V, across the
capacitor causing the separation of the charge:

Q=VC
The capacitance of a capacitor can then defined by
G2
V

So one farad is equal to one coulomb per volt. Actually 1F is quite a large
capacitance, and useful ‘real-life’ capacitors have capacitances measured in
microfarads (pF), nanofarads (nF) or picofarads (pF).
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TIP

A capacitance of 1F will store a charge of 1C with a potential difference of 1V across it.

(PR,

. ACTIVITY E
Measuring the capacitance of a capacitor The data sheet supplied with the coulombmeter states
A fully discharged capacitor is connected to a that the tolerance of the charge readings is +10%.

variable d.c. power supply and is then gradually 1 Plot a graph of Q against V. :
i charged to different potential differences. A digital 2 Plot suitable error bars on your data points. =

coulombmeter is then used to measure the charge
: stored on the capacitor at each potential difference 4 Calculate a value for C, the capacitance of the

[Figure 6.5). capacitor, where @ = CV, and use the error barsto |
: (L M determine an uncertainty in this value. i
+

3 Useyour graph to show that Q is proportional to V.

5 Ancther capacitor, with a capacitance of 2C, is
O o coulomb connected into the same circuit in place of the first
C meter capacitor. Sketch a line on your graph illustrating the
variation of @ with V for this new capacitor.

Figure 6.5 Digital coulombmeter measuring charge.

The data from this experiment is shown in Table 6.1.
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| Table 6.1
Potential difference, V/V Charge stored, @/nC
1.0 331
2.0 b64
3.0 1023
4.0 1328
5.0 1670
6.0 1996
L
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é : TEST YOURSELF
~ : 1 Define what is meant by the ‘capacitance’ of a 3 List three factors that dictate the ability of a
0 i capacitor. capacitor to store charge. :
: 2 Copy this table and correctly match the units in the 4 A 4200pF capacitor is connected to a 6.0V battery. :
i first row to the quantities in the second row. Calculate the charge stored on the capacitor. :
' c 1A = Tv 5 A capacitor stores a charge of 3.2mCIat a p.d. of
: o . 6.0V. Calculate the value of the capacitance. :
¢ RRUELIGCER p.d. | capacitance |current |charge :
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& Five different capacitors
are connected one ata time
to the same battery, and a
coulombmeteris used to
measure the charge stored
on each capacitor. The
measurements are shown
graphically in Figure 6.6.
Use the graph to calculate the
output p.d. from the battery.

AL L LR L

7 Copy and complete the table.

AL R R R LI LA R R Rl RRR Ll L Ll LY

4 0 v c
: 6.0V | 440pF
{10.03C |12.0V
i [30pC 10000 uF
i [250nC | 5.0V

9.0V | 120nF

ST FFFFFFEIT IS FFFFEOES

Permittivity The permittivity of a material
is the resistance of the material to an
electric field passing through it.

Dielectric constant Another term for the
relative permittivity of an insulating material. It
describes the relative resistance of the material
to the propagation of electric field through

it and describes the absolute permittivity

of the material in terms of multiples of the
permittivity of free space, ¢z,

o,
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Parallel-plate capacitors

The capacitance of a parallel-plate capacitor depends on the area of the
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capacitance of each capacitor CfF :
Figure 6.6 :
--------------------------------------------------------------------- —

plates, their distance apart and the ability of the insulating material between

the plates to separate the charge, a property known as permittivity.

The permittivity of a material is the resistance of the material to an electric
field passing through it. If the permittivity is high, then a larger charge can
be stored on the plates for any given potential difference across them. The
permittivity of capacitor insulating materials is always measured relative

to the permittivity of free space (vacuum), &, using a relative permittivity,
g,, sometimes called the dielectric constant of the material. The total
absolute permittivity of an insulator is therefore given by the product &,&.
The permittivity of free space &, = 8.854 x 107*Fm™!. Table 6.2 gives

the relative permittivity of a selection of materials commonly used in the
construction of capacitors.

TIP

The permittivity of a material to an electric field is analogous to the
resistance of a material to electric current flowing through it. In the case of
permittivity, current is replaced by electric field.
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Table 6.2

Material Relative permittivity [dielectric constant]
Ceramic [ZnMg]TiO, 32

Polyester 2.8-4.5

Polystyrene 2.5-2.7

Aluminium oxide [electrolyte] 9.8

The capacitance of a parallel-plate capacitor is given by
C = EoA
d

where A is the area of the plates and d is their separation. Since the
capacitance is also given by C = Q/V, it follows that

Q_afA . Q_e&V
Vv d A d

4
so the charge density on each plate is proportional to i which is the

electric field E.
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i TEST YOURSELF ‘
: 8 A capacitor is constructed from two sheets of al Calculate the maximum area of overlap of the :
:  aluminium foil, 45cm x 95cm, separated by a thin plates.

:  layer of polythene cling-film, 12.5pym thick. The bl Calculate the minimum area of overlap between

: relative permittivity of polythene is 2.25 and the the plates.

permittivity of free space g;= 8.854 x 10-12Fm~1.
Calculate the capacitance of the capacitor.

9 A 6.0V battery is connected to a 20nF capacitor.
The area of the capacitor plates is 0.0016m? and
they are separated by a ceramic dielectric layer
Spum thick.

a) Calculate the charge stored on the capacitor.
bl Calculate the relative permittivity of the ceramic
dielectric.

10 A 29-520 pF air-filled variable capacitor is shown in
Figure 6.7.
The five moving capacitor plates behave as five
independent capacitors arranged in parallel,
effectively multiplying the capacitance of one set of
plates by 5. Each moving plate is separated from its
static plate by an air gap 0.5 mm wide. The relative
permittivity of air at room temperature is 1.00.
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fixed plates
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increase
capacitance

& CAPACITANCE

Figure 6.7 An air-filled variable capacitor.
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. Measuring the relative permittivity of a
- dielectric material

i Figure 6.8 shows a digital multimeter being

used to measure the capacitance of a pair of
square capacitor plates separated by a thin

i layer of material from a supermarket shopping
bag. Some digital multimeters can measure
capacitance directly by charging and discharging
the capacitor under test with a known current and
i then measuring the rate of rise of the subsequent
potential difference. The faster the rate of rise, the
i smaller is the capacitance.
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The X and ¥ dimensions of the plates are measured
i using a standard ruler to be 30.0 £ 0.1 cm = 30.0

. + 0.1cm. The thickness of the shopping bag

i dielectric between the plates is measured randomly
! across the dielectric 10 times using a micrometer.

1 The results are shown (in mm] in Table 6.3. Figure 6.8 Digital multimeter measuring
! TeLlaE 3 capacitance.
; 013013014 |0.14 (013 1013|013 1012 |0.13]0.13 Table 6.4
: The area of overlap of the plates is varied by moving X dimension of Y dimension of Capacitance, Cf
i the top plate diagonally relative to the bottom plate. plates in platesin nF [£5%])
i The plates can be positioned with an uncertainty overlap/cm overlap/cm
: of 2mm [X dimension) x 2mm [V dimension] and the [£0.2cm]) [+0.2cm)
digital multimeter can measure a capacitance to +5%. 30.0 30.0 14.1
: 1 Use the data given and the data in Table 6.4 to 28.3 28.3 12.5
. determine the relative permittivity of the shopping 26.5 26.5 11.0
bag material with a suitable value of uncertainty. 24 5 24 5 9.4
22.4 22.4 7.9
20.0 20.0 6.3
173 17.3 4.7
14.7 14.1 3.1
10.0 10.0 1.6

Dielectric heating

Some molecules, such as water, are called polar molecules because the
opposite ends of the molecule have opposite charges (Figure 6.9). When
water molecules form, the hydrogen atoms become slightly positively
Figure 6.9 Water molecules are polar charged, and the oxygen atom becomes slightly negatively charged.
molecules. (There is a covalent bond between the hydrogen and oxygen atoms in a
water molecule, but the shared electrons in the bond are attracted more
towards the oxygen atom than they are towards the hydrogen atoms.) In
a polar molecule, the overall charge of the molecule is zero, but different
‘ends’ of the molecule may have opposite charges. Polar molecules easily
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Dielectric material An insulating material

where the molecules that make up the
material can be polarised inside an electric
field. Electric charges do not move through
the material, but the polar molecules align
themselves with the field.

electric
fleld £

plate
separation d

Figure 6.10 The polar molecules ina
dielectric material align themselves
with the electric field.

TIF

There is a common misconception
that microwave ovens cook food
from the ‘inside out’. This is not
the case. The microwaves cause
water molecules near the surface
[a millimetre or so) to rotate.
These hit nearby molecules,
forcing them into faster, more
energetic motion, and the
molecular vibration is dispersed
into the centre of the food. This
process is quicker than
conventional conduction.

stick to metal surfaces, where one end of the polar molecule induces an
opposite charge in the metal, causing the molecule to be attracted to the
metal surface.

Most of the dielectric materials used to construct capacitors are solids,
and the atoms and molecules are fixed within the structure. But what
happens when the solid is replaced by a liquid (such as water) or a

gas, where the particles are free to move between the metal plates?

The electric field produced between the two plates of a capacitor will
cause the charged particles in a liquid or a gas to align themselves in
the direction of the field (Figure 6.10). The separated charge in a polar
molecule is particularly able to align itself with the field between two
capacitor plates.

If the electric field between the plates is suddenly reversed, the polar
molecule will rotate and align itself with the direction of the electric field
again (Figure 6.11). Alternating the electric field between the two plates will
cause a polar molecule, such as water, to continuously rotate between them
(called dipole rotation). This increases its kinetic energy, and causes it to
collide with other adjacent molecules and atoms. These then acquire more
kinetic energy and move in random directions, increasing their temperature
and so dissipating the energy as heat.

affects of the RF & MW flelds

molecules and ions

Figure 6.11 Polar molecules rotating in an alternating
microwave field.

The alternating field between the plates can be produced by

a microwave emitter, such as the magnetron inside a microwave oven.
The frequency of the microwaves is tuned so that it rotates water
molecules within food — causing the food to heat up rapidly. The
optimum frequency for the rotation of water molecules in food is about
10 GHz, but if the frequency of the microwaves was set to this value
then the water molecules in the outer layers of the food would absorb
all the microwave energy, leaving a cool uncooked inner region and an
outer superheated layer. As a result, domestic microwave ovens have a
frequency of 2.45 GHz, which allows the outer layers to heat up more
slowly and then conduct heat deeper into the food.



The energy stored by a capacitor

A When a capacitor is charged up, the p.d. from the electricity supply
(or the energy per unit charge) causes electrons to flow off one plate,
through the external circuit and onto the other plate. This separation
R g s of charge is kept steady provided that the p.d. is continuously applied,
and that there is no leakage of charge. Once the p.d. is removed, and a
AQ complete discharging circuit is connected to the capacitor, the electrical
energy stored by the separated charge can be released as the electrons flow
back off the negatively charged plate and back onto the positively charged
Gharge @ plate — this was shown in Figure 6.4. If the p.d. applied to the plates
Figure 6.12 Graph of Qversus Vfor a is increased, more charge and therefore energy is stored on the plates.
capacitor. A graph of potential difference against charge for a capacitor is shown in
Figure 6.12.

4 You will remember from the definition of potential difference that V =—,

O
©
5
g
A

potential difference
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where W is the amount of work done per unit charge, Q. In the context
of a capacitor, the potential difference V is the amount of work done in
g moving unit charge off one plate and onto another plate. At any potential
| difference V, the work done moving an amount of charge AQ is therefore
W = VAQ. This is represented by the shaded area in the graph in
Figure 6.12. The total energy E stored on the capacitor, charging the
» capacitor from empty up to a charge of Q at a potential difference V, is
calculated by adding up all the similar shaped areas from Q=0upto a
charge Q. In other words, this is the whole area under the graph up to Q.
Because the shape is a triangle (Figure 6.13), E=5QV . But Q = CV,

1 O2
50 E=-%-CV2 and E=—Q+.

2 &
TIP
Use the correct version of the capacitor-energy equation depending on
the question. Use the version containing the data given unless you are
told to do otherwise. If you use calculated values, you are more likely to

make an error.

potential difference

e e e L R

1
i

—_

charge @
Figure 6.13 The energy stored on a
capacitor is equivalent to the area under
a @ against V graph.

Calculate the energy stored in the capacitor. storing an energy of 0.12 J. =

e———————————————
=; TEST YOURSELF
§ 11 Explain what is meant by a "dielectric material’. 14 Calculate the capacitance of a capacitor that
: 12 Explain how a water molecule can be heated by stores 0.25J of electrical energy when a p.d. of
i an alternating electric field. 24V is connected across it. :
g 13 A 3300pF capacitor is charged by a 9.0V battery. 15 Calculate the charge on a 220 uF capacitor i
;
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16 The graphs X, Y and Z in Figure 6.14 show
possible relationships between electrical
quantities associated with a capacitor
discharging through a resistor.

X V‘. Y v“ Z
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: Figure 6.14

al Which graph shows the gradient equal to 15‘? 0.000 , | | | | |
0 2 4 5} a8 10 12
p.d/V
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bl Which graph could be used to determine the
total charge stored in the capacitor?

¢) Inwhich graph does the area under the line
represent the energy stored in the capacitor?

Figure 6.15

a) Use the graph to calculate the capacitance of
the capacitor.

b) Use the graph to calculate the energy stored on
the capacitor, when 8.0V is applied across it.

17 The graph in Figure 6.15 shows how the charge
stored on a capacitor varies with the p.d. applied
across it.
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Q Capacitor charge and discharge

The circuits in Figure 6.16 show a battery, a switch and a fixed resistor
(circuit A), and then the same battery, switch and resistor in series with a
capacitor (circuit B). The capacitor is initially uncharged.

The graphs underneath the circuit diagrams show how
—||—/— —||—/— the current varies with time from the moment that the
’ switches are closed. In the case of the resistor alone
@D @) (circuit A), the current immediately jumps to a value I,
where I = V/R, and stays at that value regardless of how
long it has been since the switch was closed. Time is not

R
a factor in this circuit. In the case of circuit B, where an
initially uncharged capacitor is connected in the circuit,

the current also immediately rises to the same value, I,
determined by I = V/R, but it then starts to decay away
clrcuit A clrcult B LR . ‘ ol ;
A A with time, eventually reaching zero. The series capacitor
limits the way that current flows through the resistor.

$]

E————
e v———

If the capacitor is initially uncharged, the amount of

AQ

charge that can be stored on it per second, =ul, is

initially determined by 1 =% . As the capacitor starts to

et > . .
t t store charge, so a p.d. is developed across the capacitor,

_Q :
Figure 6.16 Circuit diagrams for a battery, resistor and % =T As the e.m.f. of the battery, €, remains constant,

capacitor network. then the potential difference, Vi, across the fixed resistor,

R, reduces because



Reducing V, reduces the current, I, flowing. The initial current flowing onto

the capacitor gradually decays away as the capacitor stores more charge, o
increasing V. b
Graphs of charge @ stored on the capacitor with time are shown in %
Figure 6.17, one representing the capacitor charging, and one discharging. )
5]
S
= = =
g g &
% capacitor charging & capacitor discharging &
5 5 S
e} & S
% @ b
S » & -
time t time t
(a) (b)
Figure 6.17 Graph of Q against t for a capacitor (a) charging
and [b] discharging.
o." p The charging graph (Figure 6.17(a)) shows that, initially, the capacitor is

Remember that the gradient of a uncharged, and the gradient of the graph, i—Q (equal to the current, I),
charge-time graph is the electric F

2 : ; ; v, y
current. 1s at a maximum and is determined b}f I:T?* . As more cha'rge, is stored
1]

on the capacitor, so the gradient (and therefore the current) drops, until
the capacitor is fully charged and the gradient is zero. As the capacitor

Qor V QorV discharges (Figure 6.17(b)), the amount of charge is initially at a maximum,
as is the gradient (or current). The amount of charge then drops, as does the

. gradient of the graph. This is described by
f [ AQ

capacitor capacitor —xQ

charging discharging At

;A ,!‘“ The shape of the discharging graph is an exponential decay, meaning that
the rate of decay of the charge (or the gradient or the current) depends on
\ the amount of charge stored at any given time. For a discharging capacitor,
! " the current is directly proportional to the amount of charge stored on the
capacitor at time t.

Graphs of V (the p.d. across the capacitor) against t follow the same pattern
as the graph of Q against t, because Q e V (from Q = VC). When current—
Figure 6.18 Graphs of @ or Vand/ : grap Qa8 B - Q _ ( Q C) -
: . : : » time graphs are plotted, you should remember that current can change
againstt, for charging and discharging e , _ ; ,
capacitor. direction and will flow one way on charging the capacitor and in the other
direction when the capacitor is discharging. The size of the current is always
ot at a maximum immediately after the switch is closed in the charging or
discharging circuit, because the charging current will be highest when the
aiifront gt tire 1= AQ capacitor is empty of charge, and the discharging current will be highest
at when the capacitor is full of charge. This is shown in the graphs in
Figure 6.18.

The gradient of the Q against t graph, %, is the current, I, as shown in
Figure 6.19.
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Figure 6.19 Graph illustrating how the
gradient of a @ against t graph is the
current.



During discharge the area under an I against t graph, up to time, t, is the
charge transferred off the capacitor, as shown in Figure 6.20.

When the capacitor is discharging, during a small time interval At, the element
of charge transferred is AQ, and this is calculated by AQ = I'At. The total charge
transferred, Q, during the discharge from t = 0 to t = t' is the sum of all the
charge elements during this period — this is the area under the graph.

Discharging a capacitor
A charge gt * Consider the circuit shown in Figure 6.21. When switch S is closed, the
2 : 'K P | T " : » - V
Figure:é;20 Relstionship batwase ca;?amtor'c immediately charses to a maximum value given by Q 'C As
charge and the area under a graph of / switch S is opened, the capacitor starts to discharge through the resistor R
against . and the ammeter. At any time ¢, the p.d. V across the capacitor, the charge
stored on it and the current, I, flowing through the circuit and the ammeter
are all related to each other by two equations.

Applying Kirchhoff’s second circuit law around the capacitor—resistor loop:

Vv
" Il"il Ve+ Vg=0
/ 9, where V- and Vp are the p.d.; across the capacitor and the resistor,
” respectively. Substituting for both using Q = VC and V = IR gives
” g+IR =0
R : c
A But - AQ
Figure 6.21 A capacitor discharging %
circuit. SO A
L
G At
or Q
AQ=——At
Q RC

This is a differential equation and requires calculus to provide the solution
(for those interested, see the Maths box):

Q=Q,c' ™

As Q= VCand V = IR, at any time during the discharge, Q o« Vand V o< [,
so there are corresponding equations for the p.d. across the capacitor and
the current flowing in the circuit during discharge:

V= V'D E_fc

L
Q
=
E
o
z
&
0

and




MATHS BOX :

: This shows how to use calculus

to solve the cl(iszerential equation
AQ 7 At

When integrating a differential

: equation, such as the one here,

¢ we let At = 0, and then change

to calculus notation (A to d) and

i group like terms on each side.

: Here this gives

il .
FANRSSSTFEAFAREY

#Sasnna

d—(z. - .L. dt
: Q RC
: (showing a constant ratio), and
138 T Ly
PoQ, Q : RE

LA S TR S 23 20 ]

¢ Integrating gives

[
: t :
QI3 =- —l E
| %= [Re, |
: and so :
- t :
i InQ-InQ,=—— ;
: " RC z
. Then using the rules of logs :
i In .
: Q, RC s
i so finally,
Q=Qe ™ '
TIP

Remember that g = 0.893RC,

The time constant

The quantity RC is called the time constant of a capacitor circuit. The time
constant is related to the half-life of the decay of charge off the capacitor,
and is analogous to the half-life of radioactive decay. We define the half-
life of capacitor discharge as the time taken for the charge stored on the
capacitor (or the current or the voltage) to halve.

When t=t;, =22 | so
f 2

%@‘=Qoe—&£

Cancelling Q, from each side gives
Lol
2

and taking the natural logarithm of both sides of the equation leads to

Ly
In0.5=——-
RC

t, =0.693RC
Also when t = RC, we have

This means that one time constant, RC, is the time for the charge stored on
the capacitor to drop to 37% of the initial value, Q.

Graphical analysis

The equations of exponential decay can be rewritten in the form of a straight

line, so that a graph can be drawn and the gradient and y-intercept measured.

This allows you to calculate the time constant of the circuit, if it is unknown.

Consider the current—time equation:
1
I=le™

Rearranging and taking logarithms of both sides gives

In
So

0

l] =n (e'“%)

lnI—lnIU=—--R:?

or
Inl= lnIG—-L-t or Inl= —-l—t + Inl,
RC RC

A
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A This is the equation of a straight line of the form
yintercept = In &

)/ y=mx+c

where m is the gradient and ¢ is the y-axis intercept of the line. Plotting

, : , , 1
gradient = -1/RC InT on the y-axis against t on the x-axis produces a gradient of ~RC and a

In/

y-axis intercept equal to In I, as illustrated in Figure 6.22.

Figure 6,22
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: TEST YOURSELF

i 18 The flash unit on a small disposable camera consists f] Switch S is closed again and the variable
of a 2.0nF capacitor charged from a 1.5V battery, resistor is adjusted so that the resistance is
: discharging through a 3.9M( resistance flash bulb. now halved to a value of 4.0k(). Use the words
a) Calculate the energy stored in the CEPECitOI" halves doubles Stays the same
before discharge. reduces to zero

X T 12T 2 I

b) Calculate the time constant of the circuit. to determine what happens to the quantities

The capacitor needs to discharge by 75% [two below when switch S is opened:
half-lives) before it can be recharged from the
battery circuit.

dSfSGSARGEEENES

i) the initial charge stored on the capacitor

ii} the total initial energy stored in the capacitor

iiil the initial current flowing through the
variable resistor

iv] the time constant of the discharge circuit.

c)] Calculate the minimum recharge time for the
capacitor.
19 A 2800pF capacitor and a variable resistor are
used as part of the timing controls in a traffic light.
Part of the timing circuit is shown in Figure 6.23.

ASSFRERENS

dédtRthkEIna

20 A capacitor of capacitance C is fully charged
by connecting it directly to a 3.0V battery. The
12v capacitor is then disconnected from the battery
||__i| and connected to a 12k(] resistor in series with an
ammeter. The graph in Figure 6.24 shows how the
discharge current from the capacitor varies with

TR A ER RS LI I TR R R R LI LI PR RS I I PR R RN IR R R RS LA PR RS e eyl

L ErrTTETETY LY N

TR R L L

e
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circuit.

” C = 2800 uF time following its connection to the resistor. ,
: || 0‘30 e L L PEL L LI L BT ‘f"""_' I [ :':"_'_""""""; T :
wo R A
: —~ ; :
S i K ® :
E 5
= Figure 6.23 3
o : The initial value of the variable resistor K is set ;
8 to 8.0k(] and the timing circuit is controlled by :
: closing and opening switch S, which is initially _ SAEn s R NEREy, | HoH :
° i , y Vraiso. 19 0.00 : ; . | | :
: closed, completing the charging circuit. Calculate: 0 5 10 15 20 o5 i
: i : ; time, t/s :
120 a) the initial charge stored in the capacitor . o :
: bl the total energy stored by the capacitor Figure 6.24 i

: resistor R. area under the graph is the initial charge stored
: Switch S is then opened. on the capacitor.
i d) Explain why the current flowing through bl Use the graph to estimate the initial charge
i the variable resistor reverses and starts to stored on the capacitor. .
decrease. c] Calculate the capacitance of the capacitor. :
; e) Calculate the time constant of the discharge d) Calculate the initial energy stored on the capacitor. :

LL LR R
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Charging a capacitor

“ In many cases, the charging of a capacitor is designed to be as quick as %‘
fa possible, and so the resistance of the charging part of a capacitor circuit is ,ﬂl
||“"|| kept as low as possible (Figure 6.25). However, if the charging process is %‘

part of a circuit that requires a higher resistance, the charging time must -

be taken into account. There is no need for you to know how to derive g

6 the formula for charging a capacitor. The Maths box is included here for o

& ” interested mathematicians. §,
Summarising the equations for charging a capacitor (from the Maths box): S

4 ve Q=Qy(1-¢¥) g
®

Figure 6.25 Circuit for charging a and therefore

capacitor. V= Vn(l_e-ﬁ'f)

and

I

IEI‘)E—E-

You do not need to be able to derive these formulae, but you do need to
understand how to use them.
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: MATHS BOX
¢ Consider the circuit shown in Figure 6.25. Kirchhoff’s Integrating in a similar way to before gives
: second circuit law tells us that the sum of the em.f._in [=1 %
¢ the circuit equals the sum of the p.d., in the circuit, so i
7 s I Att=0, chﬁand;=!0=ﬁ,andsaatanytime, B
{ e we can write # !
: where V; is the e.m.f. of the source, V is the p.d. Ve _u :
i 8 . 5 [=2¢ X :
: across the resistor and V- is the p.d. across the R :
¢ capacitor. Using Ohms5 law and the basic capacitor or ;
equation, this becomes V, =V, e
A S Goinig back to Kirchhisffs second éireuit
: C oing back to Kirchhoff’s second circuit law, :
i During a small time interval At when the capacitor VooV ¥
is charging, Vs and C do not change, %—201 unlike I A
i and Q, which do change. So in the small time interval ~ and substituting for V;, gives
: we have Vsl
Al R. I AQ A
At C At Factorising this gives
i A V. =V,(1-¢ ¥
; Butﬁ—?=!,so ¢ = Vst ) :
Al 1 and then using the capacitor equation we obtain
. O==— R4+— il .
A8 Q=CVy(1-e ¥)
i or :
A But CV; is the maximum charge that can be stored on
g At RC the capacitor when it is fully charged. That is equal !
‘ Rearranging and replacing with calculus notation to Qg, the initial charge on the capacitor when it is ‘
: gives about to discharge. So finally we have :
. dI=— - dt Q=Q(1-e ™) :

s et 2 2L 8§
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EXAMPLE

Charging a capacitor Answer
A 3.0V battery charges an initially uncharged 10000 pF The charging voltage is given by
capacitor through a 10000Q) resistor, as shown by the V=V {138—#]
circuit diagram in Figure 6.26. Y
50

V =3.0V x[1-eTmamon)

C = 10000 yF =2.75V=28V (2s.f)
i i 2 Calculate the charging current after 15s.

- Answer

=0V The current is given by

== | I I

R= 1000 Q I=lge %
where |y is the initial charging current given by | =%
, S0
;:EQ_E“#E — 3.0V _mu::a.uu:'
Figure 6.26 R 1000 Q
| Calculate the voltage across the capacitor 255 after =6.7x107% A

the switch is closed to charge the capacitor, which
was initially uncharged.

[ T—

“REQUIRED PRACTICALY
. Investigating the charging and discharging of capacitors

Note: This is just one example of how you might tackle this required
¢ practical.

i . - : , X Y
i A student carries out an experiment to determine the capacitance of an < o

. unknown capacitor that she has recovered from a large stage amplifier. )

¢ She connects up the circuit in Figure 6.27 using a battery pack, a =
variable resistor, a two-way switch and a data logger set to measure the A

i current in mA as a function of time. Vs / R

L
Q
=
E
o
z
&
0

T
|

i She sets the battery pack to 6.0V and the variable resistor to 88010. /|
She ensures that the capacitor is completely discharged by earthing
i its connections before reconnecting into the circuit and moving the

i switch to position X. She then records the charging current (in mA]

i every 10s for 100s from the data logger, before moving the switch

i immediately to position Y and recording the discharging current every

Figure 6.27
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: 10s for a further 100s. Her results are shown in 1 Plota graph of the current [y-axis| against time _b.?
¢ Table 6.5. The data logger acting as an ammeter is [x-axis) - show the charging and discharging W
- able to measure the charging current as a positive phases on the same graph. §.~
current and the discharging current as a negative 2 Use your graph to estimate the total charge :
. current. stored on the capacitor when it is fully charged. =
| Table 6.5 [Remember, the currents are in mA.| %
. _ = 3 Use your graph to estimate a value for the time &
S0 Time, /s Current, //mA constant, RC, of the circuit. Hence make an a
i | Charge 0 6.81 estimate of the capacitance of the capacitor. &

10 3.97 4 Make a copy of the part of Table 6.5 showing the N -

20 2 31 capacitor discharging. Add a further column to : .;a:

30 T - your table showing the natural logarithm of the -

Lo modulus (magnitude] of the discharging current -

40 0.78 for example, the firstvalue, at 100s, is the natural !

50 0.44 logarithm of 6.81 [= 1.92], followed by n[3.50] = i

60 0.27 = D

= e 5 Plota second graph of n/ [y-axis) against t [x-axis]. :

. 6 Use your log graph to calculate a value for the

80 0.09 time constant, RC, of the circuit and hence another

90 0.05 value for C, the unknown capacitance. including an

100 0.03 estimate of the Uﬂﬂertaiﬂty of the value. :

T 0 i 7 Compare your values from parts 3 and 6.

110 =350

120 -2.20

130 ~1.40

140 -0.65

150 ~0.46

160 -0.30

170 -0.15

180 -0.08

190 -0.06

200 -0.03
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Practice questions

1 What is the charge stored on a 220 pF capacitor with a 6V p.d.

across it?
A 36.6mC € 1.32nC
B 2.70mC D 3.96mC
2 What is the energy stored in a 4200 pF capacitor with a 3V p.d.
across it?
A 13m] C 1.3m]
B 0.93m] D 19m]

3 A constant current of 208 pA is used to charge an initially uncharged
capacitor or with a capacitance of 24 pF How long will it take for the
p.d. across the capacitor to rise to 2600V?

A 54s C 166s
B 108s D 300s

4 Two capacitors, P and Q, are both charged by the same 12V battery. The
capacitance of P is 4200 pF, and the capacitance of Q is 420 pE Which
row of the table gives the correct ratios of energy and charge stored by
each capacitor?

energy stored in P charge stored in P
energy stored in Q charge stored in Q
A 1 1
B 10 1
C 10 10
D 1 10

5 A 2000 pF capacitor has been fully charged by a 6.0V battery, before
it is discharged through a 10 k(2 resistor. What is the charge stored by
the capacitor 20s after the discharge begins?

A 4.4mC C 88mC
B 22mC D 1.1mC

6 A capacitor of capacitance C is charged through a resistor of resistance R
to a p.d. of 10V, The capacitor is then allowed to discharge back through
the same resistor, R, as shown in Figure 6.28, until the p.d. across the
capacitor is 5V, before being recharged again back up to 10V,

:}\c
i R
T J

Figure 6.28




Which of the graphs in Figure 6.29 best shows how the p.d. across the

capacitor varies with time during the discharge and the subsequent §
recharging? =
™
10 - 10 - -:%
2
Q.
pd. B- pd. 5- a
0 | | 0 | |
0 t 0 t
A B
10 = 10 -
pd. 5 pd. 5
0 T | 0 I |
0 f 0 t
- D
Figure 6.29

7 An initially fully charged capacitor, C, discharges through
a resistor, R, and loses half its charge in 20s. The time constant,
RC, of the circuit 1s

A 19s C 39s
s
B 9s D 29s &
Ll
8 Figure 6.30 shows how the p.d. across a capacitor varies with g
the charge stored on it. &=
™
The table shows possible values of the capacitance and the =
energy stored by the capacitor when the p.d. across it is 12V, g
Which row gjives the correct values? |
Capacitance, C/mF Energy stored, E/mJ 2 0 5' 10 1i5 2'0 o5 910
A 2.5 70 charge, GYmC
B 2.5 180 Figure 6.30
C 0.4 70
D 0.4 180

O A 12V car battery is used to fully charge an 18 mF capacitor. The
capacitor then fully discharges through a small electric
motor, which lifts a 200 g mass stack. If the motor lifts the
mass stack with a 10% efficiency, through what height will
the mass stack be lifted?

A 3om C 30cm
B 6cm D 60cm



10 Figure 6.31 shows how the charge stored on a capacitor, of
capacitance C, varies with time as it discharges through a resistor, R.

What is the time constant RC of this circuit?
A 6.3s C 4.4s
B 4.2s D 3.0s

11 Figure 6.32 shows how the charge, O, stored on a capacitor varies
with the p.d. across it, V.

0.00 ARRREAREEERASAIRRSRN
Which of the following statements is not correct? 0 é "3 é é 1'0
A The energy stored on the capacitor can be calculated by time, ¥'s
measuring the area under the graph. Figure 6.31

B The gradient of the graph is numerically equivalent to the A A R R
capacitance of the capacitor. HARHR AR AR

C 1f the charge stored on the capacitor was doubled, the energy
stored would quadruple.

charge/Q, C

D Doubling the capacitance would halve the gradient of the
graph.

B 124 capacitor, C, is charged with a potential difference of 12.0V, and
then discharges through a resistor, R, where R = 50k(). A student

measured the p.d. across the capacitor every 5s using a data p.d./V
logger with graph-plotting software. The graph in Figure 6.33 Figure 6.32
shows his results.
el Tl et e e e o e
a) Use the graph to calculate: e ERaSREReS =X
i) the initial discharge current flowing through = NS EENENENENENEEEESEEESEEEEN
the resistor (1) 10_
ii) the time constant of the circuit, including the = B
correct unit 4) i.-
g o=
iii) the capacitance, C, of the capacitor (2)
: 4 —
o iv) the charge stored on the capacitor after 30s. (3)
b
2 =
i b) A garden automatic sprinkler system contains a time
= delay circuit using an identical capacitor to that used 0 S EEREEEEEREEE R S
% in part (a). The capacitor is charged using a 6V battery ¢ 10 20 30 4 50 60
& : i . : time, tfs
= and discharges through a similar 50 k() resistor. Figure 6.33
i) The smaller 6V p.d. from the battery changes the
energy stored by the capacitor. State and explain
126 how the energy stored on the capacitor changes
compared to the value calculated in a)iv). (2)
ii) State and explain the effect of this change in p.d.
on the time constant of the circuit. (1)

B 13 A resistor-capacitor circuit is used as a timing mechanism
for an experiment to measure the acceleration due to
gravity. The experimental set-up is shown in Figure 6.34.



Switch 1 is initially closed, keeping the capacitor C charged
at 6.0V. Switch 2 is also initially closed. The steel ball is ||__i|
dropped, opening switch 1, disconnecting the capacitor IE.D g Seeunl
from the battery. The capacitor then starts to discharge | switch 1
through resistor R. The ball falls, opening switch 2, O -
stopping the discharge through the resistor. |
a) Describe the measurements that need to be made in this @E
experiment, and explain how these measurements could
be used to calculate the acceleration due to gravity. The

quality of your written communication will also be
assessed in this question. (6) R

®
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b) In one such experiment, the value of C was 440 pF and - Y
R was 10k(). The p.d. of the battery was 6.0V and the Switch 2
distance between the switches was 1.0m. The voltmeter
reading was initially 6.0V and dropped to 5.4V. Using
this information, calculate the time for the ball to drop between
the two switches. (3)

Figure 6.34

¢) Use your answer to part b) to calculate the acceleration
cdue to gravity. (2)

o 14 Many tablet computers use a capacitor as well as a rechargeable
battery to store electrical energy. The rechargeable battery provides
most of this electrical energy, but the capacitor is used as an
emergency back-up, if the battery is suddenly removed or fails
during operation. The capacitor stores just enough electrical energy
to shut down the tablet safely.

a) Calculate the electrical energy stored in a capacitor of capacitance
12 800 pF found in a tablet computer

operating with a lithium-ion 3.6V battery. 2)
b) The 3.6V lithium-ion battery can deliver a steady current Qi
of 0.84 mA for 3 hours. Show that the battery can store . , . | |
about 400 times more electrical energy than the capacitor. (2) 80
¢) State two reasons why a capacitor would be unsuitable as @ 25 -
the main energy store for a tablet computer. 2 g
s 2=
™ 15 a) Explain what is meant by the ‘capacitance’ of a capacitor.  (2) E
_ 2 154
b) A capacitor of ‘capacitance’ C is charged from a 9V battery %:.
through a fixed resistor of resistance R. The graph in 5 1.0
Figure 6.35 shows how the charge © varies with time after
the capacitor and resistor are connected in series with the 0.5
battery.
ry 0.0 I | I l I | I
Using the maximum charge stored on the capacitor, as 0 10 20 30 40 50 80
determined from the graph, calculate the capacitance of e, 1

the capacitor. (3) Figure 6.35



c) The time constant for a capacitor-charging circuit is the time
taken for the charge to rise to 63% of its maximum value.

Use the graph to determine the time constant of this circuit. (2)
d) Calculate the resistance of the resistor. (2)
e) State what value is represented by the gradient of the graph. (1)

f) Calculate the initial current flowing through the resistor

during charging. (1)

g) Sketch a graph to show how the current flowing though the resistor
varies with time for the 50s following connection to the battery.  (2)

B 16 A 640yF capacitor is initially fully charged from a 12V battery.
The capacitor is then discharged through a 48 k(2 resistor.

a) Use this data to calculate:
i) the time constant of this circuit (1)
ii) the initial discharge current through the resistor (1)
iii) the initial charge stored by the capacitor (1)
iv) the initial energy stored by the capacitor. (1)

b) The capacitor is disconnected from the resistor after 40s.
Without losing any of its charge, it is connected to a second |

resistor of resistance 24 k(). Calculate: / |I"1I

3.0V

i) the charge stored by the capacitor at the start of the
discharge through the 24 k() resistor (2) H "

ii) the initial p.d. across the 24 k() resistor (1) (,?D

iii) the total energy transferred to the 24 k() resistor. (1) R

" 17 A physics technician finds an unlabelled capacitor in a drawer
and sets up the circuit shown in Figure 6.36 with a
data-logging ammeter probe together with graph plotting
software, to measure the capacitance of the capacitor.

Figure 6.36
30—

The technician closes the switch, which charges the capacitor.
She then opens the switch, allowing the capacitor to
discharge through the data-logging ammeter and the resistor.
The data logger records the current every 5s after she opens
the switch, and then draws a graph of the results, which is
shown in Figure 6.37.

& CAPACITANCE

a) Use the graph to show that the resistance of

128

Ris 120k(. 2)
b) Use the graph to determine the ‘half-time’ of the decay,
and hence calculate a value for the time constant of o | | i i |
the circuit. 2) 0 50 100 150 200 250
c¢) Calculate the capacitance, C, of the capacitor. (1) it

Figure 6.37



Stretch and challenge
The questions that follow are British Physics Olympiad questions.

18 A thundercloud has a horizontal lower surface area of 25.0km?, 750 m
above the surface of the Earth.

a) Using a capacitor as a model, calculate the electrical energy, E stored
when its potential is 1.00 x 107V above the earth potential (0V).

b) The cloud rises to 1250 m.
i) Explain whether the energy stored, has increased or decreased.
ii) What is the change in electrical energy, AE?
(BPhO R1-2012 Q1(h))

19 Two uncharged capacitors C, and C,, with capacitances C, and C,, are
connected in series with a battery and a switch S. When the switch is
closed there is a charge O, on C, and O, on C,.

a) What is the relation between Q, and O,?
b) Give an expression for the potential difference across each capacitor.

¢) Derive an expression for the capacitance C of a single capacitor
equivalent to C, in series with C,.

d) Calculate the total energy stored in the capacitors.
(BPhO R1-2007 Q5)

20 Two capacitors, of capacitance 2.0 pF and 4.0 pE are each given a charge
of 120pC. The positive plates are now connected together as are the
negative plates. Calculate:

a) the new p.d. between the plates of the capacitors
b) the change in energy. Explain this change.
(BPhO R1-2010 Q5)
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Magnetic fields
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

@ Magnets have two poles: a north-seeking pole [N, or north pole] and a
south-seeking pole (S, or south polel.

@ A magnetic field is a region where the magnet exerts a force on other
magnets or magnetic materials, even if they are not in contact.

® A magnet attracts magnetic materials [e.q. iron) placed in its
magnetic field provided the field is non-uniform. The magnet attracts
another magnet if unlike poles are facing [north-south), and repels
another magnet if like poles are facing [north-north or south-south).

@ A current-carrying wire creates a magnetic field, which encircles the
wire carrying the field.

@ An electromagnet can be made by making a coil of wire and passing a
current through it. The strength of an electromagnet increases if the
current in the wire increases, if more turns are added to the coil, and
if a magnetic core is placed inside the coil.

® Electromagnets made using a soft magnetic core [e.g. iron) lose their
magnetism if the current is turned off. If a hard magnetic material is
used [e.g. steel], the electromagnet retains its magnetism when the
current is turned off.
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TEST YOURSELF ON i’RIDR KNOWLEDGE

1 Magnetism causes a non-contact force. Give examples of two other
non-contact forces, and what these forces affect.

2 Describe how to make a strong, temporary magnet.

3 A compass needle is magnetic. Explain why the north pole of a
compass needle is attracted to the Earth’s geographic North Pole.

4 Iron can be magnetised if it is stroked repeatedly in one direction
using a magnet. Iron atoms behave like mini-magnets. Magnetic
domains are regions where groups of atoms line up in one direction.
Explain how iron can be magnetised in terms of magnetic domains.
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Experiments using radiation up to 10 billion times brighter than sunlight are
carried out at the Diamond Light Source facility in Oxfordshire (Figure 7.1).
Diamond is a synchrotron which accelerates beams of electrons to the speed
of light. Very strong magnets direct the electrons through a pipe 56 Zm
circumsference and under ultra-high vacuum. The electrons lose energy,
emitted as synchrotron light, as they change direction in the magnetic field.
Synchrotron light ranges from infrared radiation to x-rays.

Electrons also travel through magnets set out in arrays called insertion devices.
These are even stronger magnets, some of which are super-conducting. Since



fleld lines around a bar magnet

Figure 7.2 Flux lines for a bar magnet.
The flux density is highest at the poles,
where the field is strongest.

two bar magnets. Neutral points are
marked X.

the direction of the magnetic field repeatedly changes, the electrons are forced
to wiggle through the device. The electrons release energy when they change
directions, either as extremely intense electromagnetic radiation turned into
specific frequencies, or a broad spectrum of radiation, depending on the
arrangements of the magnets.

Figure 7.1 Diamond in Oxfordshire.

Magnetic flux lines

Magnets have a north pole and a south pole, so we call magnets dipoles.

A magnetic field is the region where a magnet exerts a force on objects made
from magnetic materials, or on other magnets. We represent the magnetic
field using arrows, or flux lines, to indicate the direction and strength of the
field in the region surrounding the magnet. The rules for drawing magnetic
flux lines, electric field lines and gravitational field lines are similar. For
magnets, these rules are as follows:

® Flux lines represent the direction of the force experienced by the north
pole of a magnet at any point in the magnetic field. They run from the
north pole to the south pole.

® A magnetic field is strongest where its flux density is highest, and this is
shown as flux lines closest together (Figure 7.2).

® A magnetic field with twice the strength is drawn with twice the number
of flux lines per unit area in the same region.

® The magnetic field of more than one magnet is the combined field of the
individual magnets.

@ Flux lines never cross.

® If there is more than one magnet, the magnetic fields cancel out in some
places and there is a neutral point (Figure 7.3).

A magnet freely suspended in a magnetic field will align itself with the field.
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Magnetic flux density The number of
magnetic flux lines that pass through
an area of 1Tm?

Tesla The flux density that causes a force of
1N on a 1m wire carrying a current of 1A at
right angles to the flux.

(a) (b)

Figure 7.4 The magnetic flux of a
current-carrying wire: [a) with the
current flowing into the page and [b]
with the current coming out of the page.

Figure 7.6 The magnetic field for a
current-carrying loop of wire.,
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Figure 7.7 The magnetic field for a
solenoid.

The strength of a magnetic field

The strength, or intensity, of a magnetic field is its magnetic [lux density,
B, also known as a B-field. Magnetic flux density is measured in teslas (T).
Magnetic field or flux lines are a model that helps us to visualise the field.
You will learn more about magnetic flux, ¢, in Chapter 8.

If you look at a diagram of a magnetic field, you can see that the flux lines
are closer together in places (for example, at the poles of a bar magnet as
shown in Figure 7.2). You can tell that the magnetic field and the force
produced by the magnet are stronger at the poles because this is where the
flux lines are closer together.

Magnetic fields from current-carrying wires

Moving charges cause a magnetic field, which we describe using flux lines.
The magnetic flux around a current-carrying wire is shown as concentric
circles, indicating the magnitude and direction of the flux pattern. Moving
away from the wire, flux lines are further apart because the field gets weaker.
If you look at the wire with the conventional current flowing away from you,
the flux lines circle the wire in a clockwise direction. Symbols inside the wire
indicate the current direction: ® indicates a current flowing away from you
(Figure 7.4a) and ® indicates a current flowing towards you (Figure 7.4b).
The combination of flux lines for a loop of wire is shown in Figure 7.5.

Figure 7.5 A magnetic field circles a current-carrying
wire.

A solenoid is a current-carrying coil of wire that produces magnetic flux
(Figure 7.7) — this is also described as an electromagnet formed from a coil
of wire. The magnetic flux outside a solenoid is similar to the magnetic flux
for a bar magnet, with the north pole at one end of the coil and the south
pole at the other end, depending on the current direction.

A current-carrying wire in a magnetic field moves because a force acts on
it. The magnetic field making the wire move is called a catapult field. The
catapult field is due to the combined effect of the current-carrying wire's
flux and the static flux. Figure 7.8 shows the separate fluxes, and how they
combine to form a catapult field.



Measuring magnetic field strength

A magnetic field runs through a coil of wire as well as outside it, as shown
in Figures 7.6 and 7.7. You can measure the flux density of the field using
a magnetic field sensor called a Hall probe. The probe contains a slice of
semiconducting material. If a current flows in the semiconductor when it
is perpendicular to the magnetic flux, a potential difference is generated
across the sides of the semiconductor. This potential difference is directly
proportional to the flux density.
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(b) Forces on current-carrying wires

You need to know how to calculate the size and direction of a force on a
current-carrying wire in a magnetic field.

Calculating the direction of the force

Magnetic flux density is a vector quantity. When the directions of the
magnetic flux, the current in the conductor and the force are all at
right angles to each other, Fleming’s left-hand motor rule, shown in
Figure 7.9, helps you see the three-dimensional arrangement of these
vectors.

= FORCE

(c) |

Hold your thumb, first finger and second finger of your left hand

at right angles to each other. The thuMb represents the direction of
the force (Motion), the First finger represents the direction of the
magnetic Field, and the seCond finger represents the direction of the

Current.
: — i (A
Figure 7.8 (a) A uniform magnetic field. EXAMPLE

(b] The field around a current-carrying P
wire. [c] The catapult field. The force is Fleming’s left-hand rule

from the strong to the weak field. A current-carrying wire is held so that the current is into the page,

and the magnetic field direction is from the bottom to the top of the
page. Use Fleming's left-hand rule to find the direction of the force on

force, £ the wire.
A .
Answer
f With your second finger [current) pointing into the page, and your first
)—_/_\ finger [field) pointing from bottom to top of the page, you should find that
z the direction of the force is from left to right.
ﬁ.:laQnEﬂC —_—
flelds, B
current, /

left hand
Figure 7.9 Fleming's left-hand rule.
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MATHS BOX

If the wire is at an angle Oto
the flux, the force on the wire
is calculated using F = Bllsin 8,
where 0 is the angle between :
the wire, carrying the current, |
and the flux lines (Figure 7.10).
When the wire lies parallel to
the flux lines (@ = 0), there is no
force on the wire,

L 2= ]

FLXGBEP RN 0 S L FORRRV GG I PSP DG
(S F ISt AR

becomes

F=BIl

Rl L

 ES EEERE N

size of the force.

FRPEh N b

[T R

(R4S T La 2 R R

: Figure 7.10 :
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Calculating the size of the force

We can measure the flux density at any point by measuring the force
exerted on a current-carrying wire at that point. The tesla is defined as the
flux density that causes a force of 1 N on 1 m of a wire carrying a current

¢ of 1A at right angles to the magnetic field. Written as an equation, this

where F is force (N), B is magnetic flux density (T), I is current (A) and [ is
the length of the conductor in the field (m)

For the interested student, the Maths box gives more information about the

EXAMPLE
Horseshoe magnet
Figure 7.11 shows a current-carrying wire held

perpendicular to the field between the two poles of a

horseshoe magnet. Assume there is Zcm of the wire in
the field.

Figure 7.11

1 Calculate the magnetic flux density (B-field] for the
wire if the current is 2.1A and it experiences an
upward force of 0.03 N,

Answer
The length of the wire in the field is 0.02 m.
Substitute known values into the equation:

g_F__ 003N
T 2.1A%0.02m

=071

2 What current is required for the wire to experience
an upward force of 0.09 N7

Answer
Rearrange the same equation to give | on the left-
hand side, and substitute for the flux density, B,
from the answer to part [a):

F 0.09N

=B T i Em oA

3 The current flows into the page. State whether the
direction of the magnetic field is from left to right, or
right to left.

Answer
Using Fleming's left-hand rule, the field is from the
right side to the left side of the page.
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TEST YOURSELF i @
: o
1 AB0cm wire carries a current of 0.2A. Calculate Figure 7.12 shows a current balance formed i 8
the force due to the magnetic field on the wire if from a rectangular frame balanced on two pivots -
itis placed: halfway along the sides AD and BC. Part of side : 'R
a) perpendicular to the Earth's magnetic field of AB lies at right angles to a uniform magnetic ﬁ
flux density 50T field. Sides AD and BC are 240mm long. There is ' 3
b) perpendicular to the magnetic field of an a small gap in side CD a small weight hangs on é
electromagnet of flux density 1.5T. the wire hear the gap. : 35
2 Awire is placed at right angles to a magnetic The frame balances when there is no current in S
field of flux density 6 mT. the circuit. When a current of 3.2 A flows through =
a) If the force per metre of wire is 0.03N, the circuit, the weight must be moved 25mm =
calculate the current in the wire. closer to the pivot to balance the frame. 3
b) State the value of the angle, 8, if the b) Calculate the change in the moment of the :
magnitude of the force is zero. copper wire when the current is off, and :
3 Copper has a density of 8960kgm™3, when the current is on. :
a) Calculate the mass of an insulated piece of ¢) Use your answer to part (b to calculate the
copper wire, 10em long with a cross-sectional force on side AB when the current is on. :
area of 2 x 10-m?Z. Ignore the mass of the d) The length of the wire frame in the field is
insulation. Two such pieces of wire are used as 10cm. Calculate the flux density.
weights in Figure 7.12. 4 Use Fleming's left-hand rule to find the direction :
magnadur of the force, magnetic field or current in the four '
magnets on yoke situations shown in Figure 7.13. :

[y I Xl

stiff copper

thin copper disc

wire frame
free to rotate :
small weight bush ¢ } :
Figure 7.12 h E
TF brush contact
. i
: () :
Figure 7.13 :
5 Part of a circuit, VWXY, lies in the same i

horizontal plane as a uniform magnetic field

of flux density B. Two sides of the circuit are

W " v parallel to the flux, as shown in Figure 7.14.
Y/ magnetic fleld '
:
X - y :

Figure 7.14 )
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a) When the current/ flows through the wire, the
side WX is forced upwards. State the direction

of the magnetic field. S P . o
L vl i S N | in Figure 7.15. Explain how the magnitude of
Bl The Lot wirs, WL inthe isidis 8 0em the force varies in different sections of the

and this stem, expgriences a force of 0.241N circuit, VW, WX, XY and YV.
when the current/is 4.6A.

c) An extra twist of wire is made so that the wire
loops and now leaves the field at X, as shown

ddsss4aanmn

Calculate the flux density of the field, B, giving
your answer to an appropriate number of
significant figures.

| ic fl
Y/ i magnetic fleld
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Figure 7.15

C

' The force on a current-carrying conductor
Note: this is just one example of

: how you might tackle this required
: practical.
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: A sensitive electronic balance can be
. used to investigate how magnetic flux
. density, current and length of wire
are related.

U-magnet

. A current-carrying conductor

- experiences a force when it is
perpendicular to a magnetic field.

: When magnets and a conductor are
. set up as shown in Figure 7.16, the

: electronic balance reading changes =
: _ : . electronic
: when current flows in the wire. Balenss

: Newton's third law means that the

. magnetic force on the wire is equal in

Circuit for varying the current

7))
(]
wd
—
(18
=
=
i
-
(L]
<
=
e~

Figure 7.16 Experimental set-up for the activity, including the circuit.

. size but acts in the opposite direction
136 : to the magnetic force on the magnet. The change of reading of the m ;
: balance shows the magnetic force on the magnet. : TIP

. If this experiment is actually

. Two ceramic magnets are fixed inside a steel yoke to create a uniform field. performed, remember that the

. The yoke is placed on the electronic balance. The circuit is set up as shownin : ' . ! =

P , o : | : wire will heat up, so turn the
: Figure 7.16, and the copper wire is supported horizontally between the  circuit off between readings

- magnets, perpendicular to the field. The balance is zeroed, and then the circuit ! e Qduty e alséa
. is switched on. Readings are taken of the current [in amps) and electronic . Yd |
. balance reading lin grams). At least six sets of readings are taken for different reqmre
. current values. The effect of changing the length of wire in the field can be

: measured by adding an extra magnet and then re-zeroing the balance before :
taking readings. :D
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You are investigating the relationship §
£ F=51 g
Force F is calculated by converting readings in grams from the electronic :
. balance to force. The magnetic flux density 8 [T] is constant if you use the same o
: magnets and same arrangement. The length of wire between the magnets m g
i is(, measured in metres. Some sample results are shown in Table 7.1. The : s |
. length of the magnets is 4.5cm. - TIP : |8
= : Tare [zero] the balance between  : o
8 Current/A Reading from Force/N readings as necessary. : §'
f . _balaice!g :;—.....ﬁ..m.....,..............m....m....—é E‘
1.0 0.46 o -
: 3.0 1.35 S
4.0 1.83 =
' Y

5.0 2.30 3

; Q
: 1 Copy and complete the table by filling in the missing values in the force column. i
: 2 Explain why it is acceptable to have a different number of decimal places .5'_.
. forthe calculations of force. ®
Q

3 Explain why it is acceptable to have a different number of significant
i figures for the balance readings.
: 4 Using a graph, or otherwise, show that the magnetic flux density B is 100mT.

O Forces on a charged particle moving in
a magnetic field

Charged particles moving in a magnetic field also experience a force. Old-style
televisions and computer monitors use electron guns to produce beams of
rapidly moving electrons in evacuated tubes, and their direction is controlled
using a varying magnetic field. You can calculate the force on a single charge,
Q, travelling perpendicular to a magnetic field, with flux density B.

If charge Q travels a distance | in t seconds, then the charge has a velocity

V- -%- But I= -?— and we can substitute for [ in

F=BIl

This gives
_ BQI
.

Since the velocity of the charge is v= -E-, this gives
F=BQv

As before, you can use your left hand to predict the direction of the force.
The thumb represents force, the first finger represents the magnetic field
and the second finger represents the direction of a moving positive charge.
The sign of the charge is important — a positively charged particle and a
negatively charged particle will move in opposite directions in the same field.
This is because if a negative charge moves to the left (for example), the
conventional current flows to the right.
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TIP

Conventional current - in many circuits the charge carriers are electrons
but this is not always the case. In an electrolyte, for example, positive and
negative ions move in opposite directions when a current flows.

By convention, we always who the direction of movement of positive
charge carries and so, in a simple wire circuit, this is in the opposite
direction to electron flow.

Work done

When a charged particle moves at right angles to a uniform flux, the
charged particle moves in a circle (Figure 7.17), because the force is always
perpendicular to the motion, provided no energy is lost (for example, when
the charge is in a vacuum). Work is force multiplied by distance moved in
the direction of the force. Since the force is perpendicular to the motion, no
work is done by the magnetic field on the charge, so the kinetic energy of
the charge does not change.

(a) electron (b) path of electron
XX X X X X X X X X X
XX X X X X X X X X X
(=] W
XX X X X X X X X X X
Hgx X X X X X X X X X
XFX X X X X X X X X X
X X X X X X X X X X X
X X X X X X X X X X X
X X X X X X X X X X X
magnetic flux density B into the page B into the page

Figure 7.17 An electron travels in a circuit path when it moves perpendiculartoa
magnetic field because the force is perpendicular to its motion.

Applying ideas about circular motion

You can link the ideas of circular motion covered in Chapter 1 with the
motion of a charged particle in a magnetic field.

Since the charged particle follows a circular path in a magnetic field
(Figure 7.17), we know it experiences a centripetal force. For circular
motion, the centripetal force must equal the force exerted by the magnetic
field. If we link the equations for centripetal force and the movement of a
particle in the magnetic field, we find that

W
a
f
—
™
o
-
L
-
$
B~

2
T LN
F==——i=30N
Dividing both sides by v gives
mv
Lo

This equation has many applications. For situations where B and Q are
constant, the radius is proportional to the momentum of the particle:

mv = BOr
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EXAMPLE

Paths of ionising radiation

Figure 7.18 shows ionising radiation travelling through
a uniform magnetic field in a vacuum, at right angles
to the lines of magnetic flux.

magnatic field
X b 4 X

X
—{Z/'.. gamma rays

X
X X x
x b

beta particles

alpha particles

Figure 7.18

| Compare the directions of motion of an alpha
particle, a beta particle and a gamma ray if they
move through the magnetic field as shown.

Answer
Using Fleming's left-hand rule, the magnetic field
is into the page. The alpha particle is positively
charged, so the force on it is upwards, and the alpha
particle travels in a circular path and clockwise.

The gamma ray has no charge, so it continues to
move in a straight line.

The beta particle has a negative charge, so the
force on it is initially downwards, and it follows a
clockwise circular path.

2 The diagram in Figure 7.18 is not to scale. Assuming
the particles travel at the same speed, calculate the
ratio of the radius of the paths for alpha particles
and beta particles.

Answer

From the text,
mv
i

Butv and B are constant, so ris proportional to
m/Q. The alpha particle has a charge of 2e, and a
mass of 8000me. The beta particle is an electron,
with charge e and mass me. So the ratio is

radiuslalphal _ mlalphal Qlbetal
radius|beta]  Qlalpha) mibetal
_ 8000m, e
2 m

= 4000

&

In reality, beta particles travel much faster than
alpha particles, and relativistic effects increase
the mass of beta particles. This means that the
observed ratio is likely to be smaller. However, it
shows that it is extremely difficult to deflect alpha
particles using a typical school magnet.

3 Describe how the path will be different if the
radiation travels in air, rather than in a vacuum.

Answer
In @ vacuum, the charged particles travel in a
circle. In air, charged particles in a magnetic field
travel in a spiral, because they lose energy and
slow down. Because ris proportional tov, as v
decreases so does r.
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You can also use the equation to find the radius r of the circle in which
the charged particle travels, since r-_-?-. This idea is used in mass
spectrometers, since charged particles with different mass/charge ratios
travelling at the same speed will follow different paths.
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TEST YOURSELF

6 Describe two situations in which a charged
particle experiences no magnetic force when it is
in a magnetic field.

7 An alpha particle travelling at 1% of the speed
of light enters a field of flux density 1x 107%T.
Calculate the force experienced by the particle
if it travels
a) parallel to the direction of the magnetic flux
b) perpendicular to the direction of the magnetic

flux.
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8 Calculate the flux density when an electron,
travelling at right angles to the field direction,
at avelocity of 1 x 107ms™!, experiences a force
of 1 x 107N,

9 Anelectron enters a uniform magnetic field of
flux density 0.036 T, travelling at right angles
to the lines of flux. Calculate the speed of the
electron if the radius of its path is 20mm.

10 Figure 7.19 shows the paths of three particles in a

magnetic field coming out of the page.
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Compare the relative charges and speeds of the a) Write down an expression for the centripetal
different particles Aand B. force acting on the electron.
@ & B @ 8 bl Show that the electron’s speed is 5.6 x 106ms-.
a source

c)] How does the radius of its path change if
i) the kinetic energy of the electron doubles
ii) allowance is made for the relativistic mass

HEFFPFINY SRS FFFENYEEF S A FENNE RS S FFFANN RS FFFAN

» of the electron? E

12 The mass of positively charged particles can be 3

slow anergy) measured using a mass spectrometer. Charged 3

® (lower ] <] @ particles are accelerated in a vacuum, and a §

: energy) velocity selector is used to select particles
travelling at a specific velocity. These particles 3

:  psource ~ é & & & pass into a magnetic field applied perpendicular ‘
: to their path and their position on a detector is
b s ! undeflected ,-, recorded. :
al Explain why particles of the same charge but  }
® ® ® ® i different masses le.g. M, 2M and 3M] have
' Figure 7.19 different paths in a magnetic field. g
: b) Explain how the paths would be different for 3
: 11 An electron travels in a circular path of radius the following three particles travelling in the £
74 mm at right angles to a uniform magnetic field same field: mass M and charge Q; mass 2M §
: of flux density 0.43 ml. and charge 2Q; mass 3M and charge 20Q. :
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O Cyclotrons

cyclotron A particle accelerator that A cyclotron is used to force charged particles into a circular path that

accelerates charged particles through a accelerates them to very high speeds. Cyclotrons are often used with heavier
spiral path using a fixed magnetic fieldand  particles like alpha particles and protons. Experiments using particle
an alternating potential difference. accelerators investigate the structures of complex molecules like proteins, as

well as sub-nuclear structures.

The cyclotron is formed from two semi-circular “dees’,
separated by a small gap and connected to a high-
proten  frequency alternating potential difference (Figure 7.20). A

W
o
=l :
L :
-l 1
T E N PEAM  strong magnetic field is applied perpendicular to the dees.
= - X | % The perpendicular magnetic field forces charged particles
17 S i : : ‘s
= =S ; to move in a circular path inside the dees.
© ‘x-"-‘\x % i
= X R\ ‘R x| | The particles experience a potential difference when
i b/ A ' E
R, X , they travel across the gap, and gain energy equal to OV
S proon of fx /% 7% ] x N Ax A | Bere 1t he pareci s alarss in Gesliombeyand Vi
Sl b > Pk | (where Q is the particle’s charge in coulombs, and V is
Fosipied x‘\ el f‘ }" (] the potential difference in volts). Since the particles have
‘t,x ‘\x \*-\x W | x| x /% /% ,f x | more kinetic energy, they move faster and accelerate to the
L} N ~ -._,,._,.-"" o ’F
- xTx £ ¥ of/x next dee.
W o f o i . . ‘ -
X % | % s X x The ac voltage is timed to change direction every time the
~=- T particles reach the gap between the dees. It must alternate
X x| x s X g : |
Bl o to accelerate the particles each time they reach a gap. If
" » - - the voltage did not alternate, the particles would follow a
D, cycle of accelerate—decelerate—accelerate.

Particles spend the same time inside each dee, but the

high-frequency voltage supply radius of their path increases after each gap and they
Figure 7.20 Structure of a cyclotron, a proton accelerator. travel further in the same time.



Remember that the centripetal force acting on the charged particle equals

the magnetic force on the charged particle, so ,.g
m\v’z g'

= BQv S

v o

-

A

or

B
= “‘nQiE (i)

Because the radius is proportional to the speed of the charged particle, the
particles spiral outwards as they accelerate through the cyclotron.

The time, t, spent in each dee is given by

nr

e

(i1)
because nr is half the circumference of the circle. Substituting for v in
equation (ii) using equation (i) gives t, the time spent in one dee:

mr

- BOrim

_mm
BQ

which does not depend on either radius or speed.

t

The effect of special relativity limits a particle’s speed in a cyclotron.
Particles get more massive as they travel close to the speed of light. As
synchrotron A particle accelerator that ~ Particles move faster and their mass increases, the time spent in each dee
accelerates -charge.d partir;les through a3 increases and the more massive partidﬂs get out of step with the al[ematmg
circular path using a varying magnetic field.  potential difference. A synchrotron overcomes this problem by increasing
the magnetic field as the speed of the particles increases. The radius of their
path remains constant even though the particles travel faster.

—

EXAMPLE

Alpha particles in a cyclotron
Alpha particles are accelerating in a cyclotron. The So
magnetic flux density is 0.8T and the voltage across ¢ 08Tx32x107"¢C
the gaps bgbw?en the dee;szés 20 kV. ‘The mass pf an T ox % 6.64 %102 kg
alpha particle is 6.64 x 107"kg and its charge is ;
3.2 x 1077 C. Ignore relativistic effects. =6.14x10" Hz
1 Show that the frequency needed for the voltage 2 How many circles should the alpha particles make
supply to synchronise with the arrival of protons at to reach an energy of 10MeV?
the gaps is 6.14 MHz.
Answer
Answer The energy gained when an alpha particle [charge
The time spent in one dee is f=% ; the period T for Ze] ;‘jffsses the Qb?f is 2 x 20 keV 740 kef;’, The alpha
_ l : T - b lis 2t particle crosses two gaps per cycle, so it gains
one complete circle [circling through two ?eesg]{;s 2t BOkeV. 1800 108 eW] per cycls. To reach:an enargy st
The frequency for a complete circle is f=5=7— 10MeV [10 x 10%eV), the alpha particle must make
10x10° - :
. circles, which is 125 circles.
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: TEST YOURSELF

13 In a cyclotron, explain the role of
a) alternating electric fields
b) fixed flux density.

14 Charged particles move at constant speed as they travel around a
single dee. These particles are also accelerating. Explain how these
two statements can both be true.

15 Protons are accelerated in a cyclotron. If the voltage supply
alternates at a frequency of 4MHz, calculate the magnetic flux

density required.
The mass of a proton is 1.67 x 10727 kg.

16 Explainwhy identical particles with different energies can be
accelerated in a cyclotron together.

17 Find an expression for the maximum kinetic energy for a protonin a
cyclotron of radius R,
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Practice questions

1 Charged particles enter a magnetic field of flux density T at right angles
to the field. Which one of these would decrease the radius of the circular
path of the charged particles?

A decrease in charge O

®
Y]
™
ﬁ
a-
]

0
o
3
Q-r
P |
A

B decrease in mass m
C increase in velocity v
D decrease in flux density B

2 A positively charged particle travels north at a steady speed, v. A
magnetic field is applied in the horizontal plane in which the particle is
travelling, The flux is directed from east to west. Which of the following
describes the motion of the particle after it enters the field?

A The particle accelerates upwards in the vertical plane.

B The particle’s motion is unchanged.

C The particle accelerates downwards in the vertical plane.
D The particle accelerates in the westerly direction.

3 An electron enters a uniform magnetic field, travelling at a steady speed
at right angles to the field. The shape of the electron’ path in the field is

A acircle
B astraight line
C aparabola
D an ellipse
4 The speed of an electron of charge ¢ and mass m travelling in a circular
path of radius r in a magnetic field B is given by

A Bemr

g Bem
2nr

C mer
B

p Ber
m

5 A 50cm wire carries a current of 1.2 A. The force the wire experiences if
it is placed in a flux density 0.3 mT is

A 0.18N

B 1.8x10*N
C 18N

D 0.018N



6 A wire carrying a current is placed parallel to a magnetic field. When
the wire is gradually turned so it is perpendicular to the field, the force
experienced by the wire

A stays at a constant value

B decreases to zero from a maximum value
C increases from zero to a maximum value
D remains zero

7 A magnetic field is from south to north. A current-carrying wire in the
field experiences an upwards force. The direction of the current is

A into the page

B from east to west
C from west to east
D downwards

8 When a proton in a cyclotron travels through a dee, which of these
statements is true?

A The proton is constantly accelerating and its speed is increasing.
B The proton travels at a constant speed and is not accelerating.

C The proton travels at a constant velocity and is constantly
accelerating.

D The proton travels at a constant speed but is constantly accelerating.
9 The magnetic field of a cyclotron is

A constant in magnitude and applied perpendicular to the plane of the
dees

B varying in magnitude and applied perpendicular to the plane of the

dees
C constant in magnitude and applied parallel to the plane of the dees
D varying in magnitude and applied parallel to the plane of the dees

10 A beta particle travels from east to west across a magnetic field of strength
0.6mT, which is directed northwards. The beta particle travels at
4 x 10°ms~L. The force the beta particle experiences in the field is

A 3.8 x 10-'*N downwards
B 3.8 x 10-'"N downwards
C 3.8 x 101*N upwards

D 3.8 x 10-'"N upwards Figure 7.21
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11 A current-carrying wire of length 10cm is placed in a magnetic
field as shown in Figure 7.21.

a) Predict the direction of the force acting on the wire. (1)

b) Calculate the flux density if the force on the wire is 2 mN when
the current is 0.4 A. (3)



c) A student wants to use the magnetic field to lift the wire up. The

wire’s mass per unit length is 0.5 gcm‘l. Calculate the minimum §
current required to allow this piece of wire to lift. (4) g

d) Explain why a larger current would be needed in reality. (1) -E
e) Explain what happens if an alternating current is used instead. 4) ?‘:’.j.
5

-

L

© 12 A hospital cyclotron uses magnetic fields to accelerate protons around a
circular path. The diameter of the cyclotron is 2.0m.

a) If the field is in a suitable direction, the protons move in a circular
path of constant radius. By referring to the force acting on the
protons, explain how this happens. (4)

b) Calculate the centripetal force acting on a proton when travelling
around the cyclotron at a speed of 6 x 10"ms-L. (3)

¢) Calculate the flux density of the magnetic field needed to produce
this force. (3)

d) A cyclotron accelerates the protons to their final speed by applying
a varying potential difference at the gaps between the two dees in
which the protons travel. Explain how the potential difference is used
to accelerate the protons. (4)

"0 13 Electrons travel around a tube placed in a magnetic field of flux density
0.3mT (see Figure 7.22).

path of
electrons

a) State and explain the direction of the magnetic field that

forces the electrons to travel in this path. (2) 5 X\
A _ evacuated tube
b) If the radius of the orbit is 15cm, calculate the flux density centre of

in tha plane

producing this motion. (4) Clrclefor of the paper
path of the
¢) Explain why the electrons are accelerating without electrons
speeding up. (2) Figure 7.22

d) Predict the approximate speed required for protons to travel in the
same orbit in the same flux density. (3)

14 An experiment is set up in which particles travel from left to right
across a uniform magnetic field, directed into the plane of the page. The
particles are travelling at the same speed. Describe in detail how their
path through the magnetic field could be used to identify 8

a) the sign of the charge of electrons, protons, alpha particles and
neutrons

b) the relative masses of electrons, protons and alpha particles.

Stretch and challenge

15 A stream of charged particles is originally moving at velocity v and
directed perpendicular to a uniform magnetic field. The particles follow
a circular path in a plane perpendicular to the field and the original
motion,

a) Describe how this path changes if the magnetic field varies
continuously, becoming weaker then stronger.
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The Aurora Borealis is the appearance of coloured lights in the sky
usually seen near the poles of the Earth. This is caused by charged
particles that spiral along the Earth’s magnetic field lines, and are
channelled to the poles (Figure 7.23). As the particles interact with gases
in the atmosphere, they cause coloured light with the emission

of electron transitions.

field lines

Figure 7.23

b) Describe how spiral motion is caused when a charged particle travels
close to, but not quite parallel to a magnetic field line, by explaining;

i) what is meant by ‘spiral motion’

ii) how the field affects components of velocity that are parallel and

perpendicular to it
iii) how these components of velocity combine.
Use a diagram if this is helptul.

¢) A charged particle is travelling at speed v at an angle € to a magnetic
field B.

i) State the components of velocity perpendicular and parallel to
the field B.

ii) Calculate the radius of the spiral for a particle of charge O, and
the forward distance travelled while the particle circles the field
once.

iii) Prove that these expressions are consistent with the expression
tan§ = 2L,

d
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

® Magnetic flux density B is measured in teslas [T].

® The force on a current-carrying wire perpendicular to a magnetic
field is given by F = BIl, where / is the current [A] and L is the length of
wire in the field [m)].

® The force on a charged particle moving perpendicular to a magnetic
field is given by F = BQv, where Q is the charge [C] and v is its velocity
(ms-1].

® Fleming's left-hand rule is used to determine the directions of force,
magnetic field and current or velocity.

® The angular speed @ also called angular frequency) is calculated as
@ = 2af, where f is the frequency (Hz].
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 a) Work out the direction of the force acting on the current-carrying
wire shown in Figure 8.1.

b) If 3cm of the wire is in the field 3 ™
and experiences a force of |
2mN when the current flowing A
in the wire is 2A, calculate the ¥ 7
magnetic flux density in teslas. 4 @0
A proton travels at 1% of the — =Ye)
speed of light perpendicular to |
a magnetic field of flux density
1 mT. Calculate the force acting
on the proton. % )
How does the force change if 7
it is travelling parallel to the
field?
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In this chapter, you will learn how we create an e.m.f. using electromagnetic
induction. We use electromagnetic induction frequently, for example when
generating mains electricity in power stations. Electromagnetic induction

is also used in induction loops, for example to detect vehicles approaching
traffic lights. A conducting loop buried under the road surface carries

an alternating current, creating an alternating magnetic field, which is
monitored constantly When ferromagnetic material, such as a car, passes or
remains over the loop, the change of flux causes a change in current, so the
presence of a car is detected.
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magnetic
field B

Figure 8.2

Magnetic flux Magnetic flux ¢ is magnetic
flux density x cross-sectional area
perpendicular to field direction (measured
in webers).

Weber The weber (Wb) is the unit of
magnetic flux, equal to 1 tesla metrez (1Tm?)

area A area Acos @

Figure 8.3 Acos @ is the area
perpendicular to the flux lines.

Figure 8.4 Awire ‘cuts’ field lines when
it moves perpendicular to them.

Magnetic flux linkage Magnetic flux linked
by a coil, calculated as magnetic flux ¢ x
number of turns N of the coil (measured in
weber-turns).

Weber-turns The unit of magnetic flux
linkage.

Magnetic flux

In Chapter 7, we came across the idea of magnetic flux density, which
measures the strength of a magnetic field B, or B-field, in teslas (T). A
diagram of a magnetic field indicates the density of magnetic flux by
showing the number of flux lines per square metre (Figure 8.2).

Magnetic [ux is defined as magnetic flux density B (in teslas, T) multiplied
by the area of the surface, A (in m?), where the area A is perpendicular to
the lines of flux (Figure 8.2). Written as an equation, this becomes ¢ = BA.
Magnetic flux is measured in webers (Wh), where 1 Wb equals 1 Tm?,

When an area is not perpendicular to the lines of magnetic flux, as shown
in Figure 8.3, the flux through the area A is now the component

¢ = BAcos@

Figure 8.3 shows the area of a loop perpendicular to a field if the loop itself
is at angle 6 to the flux lines.

Cutting flux lines

When an object passes through a magnetic field, we can say that it ‘cuts’ the
magnetic flux lines. Figure 8.4 shows a wire of length | moving downwards
in a magnetic field with horizontal field lines. You can see that the wire cuts
across the flux lines as long as it moves perpendicular to them. The wire
cuts through more flux lines each second if

® length [ is longer
® the wire moves faster
@ the magnetic flux density is stronger.

If a conductor moves perpendicular to field lines, it ‘cuts’ the flux lines.
But if the conductor moves parallel to field lines, they are not cut.
Magnetic flux linkage

Magnetic [lux linkage is defined as N¢, where ¢ is the number of flux lines
that pass through , or link, with each of the tumns of a coil of N turns. Since
flux ¢ = BA for a single loop of wire, then the flux linkage is N¢ = BAN if
the coil of wire has N turns that are perpendicular to the lines of flux. Flux
linkage is measured in weber-turns.

Flux linkage depends on several factors, as shown in Figure 8.5:
(a) the flux density

(b) the orientation of the coil and flux lines

(c) the coil’s cross-sectional area

(d) the number of turns on the coil.

Flux linkage is important because an e.m.f. is induced in a coil, in
which the flux linkage changes. You will learn more about this in the
next section.

Figure 8.6 shows a coil being turned in a magnetic field. As the coil turns in
the magnetic field, the area of the coil perpendicular to the field is given by
Acos@, and the magnetic flux linkage is given as

N¢ = BANcos 8



where N is the number of turns on the coil, ¢ is the magnetic flux

- (in Wh), B is the magnetic flux density (in T), A is the cross-sectional =
= area of the coil (in m?) and @ is the angle between the axis of the coil it
and the flux lines. The flux linkage changes as shown in Figure 8.7. B
(a) The flux through an area is proportional ﬁ
to the flux density. h
N
e .
__ 7 s |
S A - |
V74 4 . B |
- |
(b) Flux varles depending on the relationship 0 | |
between the boundary faces and the 9 180° a60° @
direction of flux. :
|
Figure 8.6 The magnetic flux linkage
—) changes as a coil of cross-sectional

Y

—

area A and with N turns rotates in a
flux density B.

Figure 8.7 How flux linkage changes
when a coil of Nturns rotates in a field.

(c) Flux Is proportional to the area within the
boundary.

Figure 8.5

TEXAMPLE
Magnetic flux linkage through a coil

Figure 8.8 shows a coil of wire formed as a 60° triangle with sides of -
length 30 cm. The coil has 50 turns. Calculate the magnetic flux linkage
with the coil when it is placed with the axis at 40° to a vertical in a ‘ -
uniform horizontal flux of 0.02T.

Answer
The area of the coil is = -

(5 % base x height] = x 0.30m x 0.30m x sin 60° = 0.039 m? ¥

The flux linkage is
BAN cos@=0.02T x 0.039m?Z x 50 x cos40°
= 0.03Wb turns
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TEST YOURSELF

Figure 8.8

1 Calculate the magnetic flux through the face of a
magnet, if the face measures 2.0cm by 6.0cm and
the magnetic flux density of the magnet is 0.03T,

2 Calculate the flux through the horizontal surface
of the British Isles. The average flux density in the
region is 53 pT at 20° to the vertical and the area of
the British Isles is 3.0 x 10" m?,

3 al Calculate the magnetic flux passing through a
copper sphere of radius 3.0m placed in a region
of uniform magnetic flux density 2.0T.

b) Explain whether or not the amount of magnetic
flux changes if the sphere is sliced in half, along
the axis perpendicular to the field.
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4 A square coil of wire has sides 12cm long, and 250
turns. Calculate the magnetic flux linkage when:
a) the cross-sectional area of the coil is

perpendicular to a field of flux density 0.08T.

b) the face of the coil makes an angle of 60° to the
magnetic flux lines.

c) Sketch a diagram showing how the flux linkage
changes if the coil is initially perpendicular to
the field and is turned until it is parallel and
then perpendicular again.
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8 MAGNETIC FLUX

microammeter

many turns

Figure 8.9 Using a moving magnet to
induce an e.m.f,

o | microammeter

wire

Figure 8.10 Moving a wire into a
magnetic field induces an e.m.f.

Faraday's law The induced e.m.f. equals the
rate of change of (magnetic) flux.

downward flux increases

Figure 8.11 Flux linkage in the coil
increases as the coil moves closer to
the magnet.

Electromagnetic induction

Our lives would be completely different without Michael Faraday’s
discovery of electromagnetic induction in 1831 using insulated coils of
wire and changing magnetic fields.

You can easily demonstrate electromagnetic induction using a coil of wire
connected to a microammeter, as shown in Figure 8.9. The microammeter
flicks one way when a bar magnet is moved into the coil, and the other way
when the magnet is pulled out. It is zero when the magnet is stationary inside
the coil. An e.m.f. is induced if there is relative movement between the coil
and a magnetic field (either the magnet or the coil moves) or the magnetic
flux linkage changes (for example, the strength of an electromagnet changes).

Figure 8,10 shows electromagnetic induction caused by a length of wire
moving between two magnets. The wire is connected to the microammeter,
which flicks one way when the wire moves down, and flicks in the opposite
direction when the wire moves up.

An e.m.f. is induced in the wire because an electric charge moving
perpendicular to a magnetic field experiences a force, BQv (see Chapter 7).
Using Flemings left-hand rule, you can see that electrons in a wire move
towards one end of the wire when the wire moves perpendicular to the
magnetic field. This leaves one end of the wire negatively charged overall
and the other end positively charged, creating a potential difference across
the wire. A current can flow if the wire is part of a complete circuit — for
example, when the wire is connected to a microammeter.

Faraday's law

We can calculate the magnitude of the induced e.m.f. in a coil using
Faraday’s law. This states that the magnitude of the induced e.m.f.
equals the rate of change of magnetic flux linkage, and is written as

_A(Ng)

At
where A(N@) is the change in flux linkage and At is the time over which
that changes takes place. Since a coil of wire has a fixed number of turns,
this becomes

A¢
Eel e

We can use this law to help us to understand some earlier observations:

£

@ Relative movement between a magnet and a coil changes the flux linkage
in the coil (Figure 8.11). This generates an e.m.{.

® Rotating a coil in the plane perpendicular to the field changes the cross-
sectional area through which the flux passes. This changes the flux linkage,
and generates an e.m.f.

® I[ncreasing the relative motion, or the speed at which the coil rotates, increases
the rate of change of the flux linkage, which increases the induced e.m.f.

® If there is no relative movement or rotation, the flux linkage does not
change, so no e.m.f. is generated.

Lenz's law

Faradays law calculates the magnitude of the induced e.m.f. and is often
combined with Lenzs law, which indicates the direction of the induced
e.m.f. Lenz’s law states that the direction of the induced e.m.f. opposes
the changes causing it.



Lenz's law The direction of the induced
e.m.f. causes effects that oppose the change
producing it.

Pushing a magnet's south pole into the coil
induces a south pole — this repels the magnet

F’UHIT‘IQ a south FJOIQ out of the coll induces a
north pole - this attracts the magnet

Figure 8.12 A magnet being pushed
into, or pulled out of, a coil of wire.
Lenz's law determines the direction
of the induced e.m.f.

O

Figure 8.12 shows the south pole of a magnet moving into a coil. This
induces an e.m.f. when there is a complete circuit, a current flows and the
coil behaves as an electromagnet, with its south pole facing the magnet’s
south pole, repelling the magnet.

Pulling the magnet out of the coil induces an e.m.f. such that the same end
of the coil becomes a north pole, which attracts the magnet.

We can combine Lenzs law with Faraday’s law and write
A(N¢)
At
where A(N@) is the change in flux linkage and At is the time over which that

changes takes place. Since a coil of wire has a fixed number of turns, this
becomes

£ =—

Ag
At

Lenz’s law is the result of conservation of energy. When the south pole of

a magnet is pushed into the coil, a current is induced in the wire, which
becomes an electromagnet. If the south pole of the electromagnet faces the
moving magnet, the poles repel and work must be done to keep pushing
the magnet into the coil of wire. If you try this with a very strong magnet in
a large coil, you may feel the force you are working against.

If Lenz’s law did not apply and, instead, the north pole of the coil faced the
magnets south pole, the magnet would be attracted. This would make the
magnet accelerate into the coil, increasing the induced e.m.f. This would
start a process in which increasing the e.m.f. increased the acceleration,
which increased the e.m.f., and so on. That would imply that energy can be
created without doing any work. This, of course, cannot happen.

EXAMPLE

Answer
Maximum flux linkage is

N¢ = BAN

Magnitude of an induced e.m.f.

Calculate the magnitude of the induced e.m.f. when
a flat coil of radius 2.0cm, with 200 turns, is placed
at right angles to a varying magnetic field. The field
strength is increased from O to 3.0mT in 0.30s.

=3x 1037 x 21 x (0.02)2m? x 200
=75x 107%Wb turns

Minimum flux linkage = 0Wb turns
Magnitude of induced e.m.f. is
_AINg)
At
_7.5x10 Whturns
0.30s

=25%x10° V

£

Eddy currents

A metal sheet moving into (or out of) a magnetic field can become very hot.
This happens if very large currents, called eddy currents, are set up in the
metal sheet. Eddy currents are circulating electric currents flowing in the
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Figure 8.13 [a] Eddy currents form in
an aluminium pendulum, slowing it
down as it moves in to and out of a fixed
magnetic field unless [b) slits are cutin
the pendulum.

plane of the metal. They are caused by the change of flux linkage when the
metal moves perpendicular to the field, and the currents flow in a direction
to oppose the motion creating them.

Eddy currents can become very large because metals have a low resistance.
Eddy currents are put to good use in induction cookers. Here a high-
frequency alternating current in the cooker produces a rapidly changing
magnetic field, which induces a large alternating current in the base of a
saucepan causing it to heat up.

Eddy currents can also cause magnetic braking. A pendulum swinging
between two magnets slows down quickly because eddy currents are set
up in the metal when it enters and leaves the field (Figure 8.13a). Magnetic
fields created by these eddy currents interact with the fixed magnetic field,
opposing the motion and stopping the pendulum. Cutting slits in the
pendulum prevents eddy currents forming and the pendulum continues to
swing (Figure 8.13b).

- Using a search coil to investigate
. changes in magnetic flux density
- Note: This is just one example of how you might tackle

this required practical.

. A search coil is a small flat coil made from 500-2000
. turns of insulated wire mounted on a handle

¢ [Figure 8.14). An e.m.f. is induced in the coil when

' the coil is placed in a magnetic field thatvaries. The

- amplitude of induced e.m.f. is directly proportional to
. the amplitude of the varying flux density of the field.

: search coll

leads

: plastic handle
: Figure 8.14 A search coil.

* You can calibrate the search coil by connecting it

to an oscilloscope. When the search coil is placed

. perpendicular to a known flux density that varies, the
trace on the oscilloscope is used to find the amplitude

. of the e.m.f. induced in the coil.

ac supply

oscllloscope

slinky spring

search coil

Figure 8.15

To investigate the effect of changing the angle of a
coil in a flux density, the calibrated search coil is
placed in a known magnetic field that varies. The
amplitude of the induced e.m.f. is measured by |
connecting the search coil to an oscilloscope with the :
timebase turned off, so the e.m.f. is displayed as a :
vertical line on the screen. Measurements are taken
when the search coil is held at different angles in the
magnetic field. The area of the coil is given by A cosé,
where @ is the angle between the axis of the coil and
the flux lines and A is the cross-sectional area of the
coil. We find that the amplitude of the induced e.m.f.

: A calibrated search coil can be used with the
oscilloscope to measure the strength of an unknown
. flux density, or the effect of changing the angle of a

. coil in a known flux density [Figure 8.15).

also varies with cos @ which is consistent with flux
linkage given by BANcosé.

Note: The slinky spring will heat up - don’t leave the
current on for only longer than necessary.



T EXAMPLE

An experiment with a search coil

A student places a search coil of radius 8 mm and

500 turns in a varying magnetic field of maximum flux
density 0.4 T. The search coil is then connected to an
oscilloscope and placed in the magnetic field with

its face perpendicular to the flux lines. It is turned
through 3607 taking 0.2s.

| Calculate the maximum flux linkage.

Answer
Maximum flux linkage is

BAN = 0.4T x m x (0.008 m)2 x 500
= 0.040Wb turns

2 Sketch a graph showing how the maximum flux
linkage varies as the coil is rotated through 340°.
Include as much detail as possible.

Answer

The graph is shown in Figure 8.16. Make sure you
sketch a cosine curve with the peak values and the
x-axis labelled.

3 Explain at least two additional steps the student
could take to reduce errors.

Answer

Ng

Figure 8.16

Use a data logger to record changes of e.m.f. with
time precisely and permanently [i.e. so the data can
be processed).

Use a calibrated motor to rotate the search coil at a
steady rate to improve repeatability and accuracy.
Repeat measurements of data to prepare mean values
for different angles to reduce the impact of random
errars.

Reduce systematic errors by calibrating the search
coil using a known magnetic field and oscilloscope.
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TEST YOURSELF

9 The north pole of @ magnet is pushed into a coil of
wire.
al Describe what happens to the coil as the
magnet moves into the coil, rests inside the coil
and is pulled back out again.

b] Sketch a diagram showing how the induced
e.m.f. changes with time.

6 The magnetic flux density between the poles of
an electromagnet is 0.20T. A coil, with 500 turns
and cross-sectional area 2.0 x 1074m?, is placed in
the field perpendicular to the flux lines. The field
increases steadily to 0.60T in 10ms.

a) Calculate the initial magnetic flux linkage, and
the flux linkage at 10 ms.

bl Calculate the e.m.f. induced in the coil.

cl Calculate the e.m.f. induced in the coil if it was
held with its axis at 30° to the field while the
field changed.

7 A search coil with a cross-sectional area of 1.0cm?
and 2500 turns is placed between the poles of a
magnet. If the coil is pulled out of the magnetic
field in 5ms, and the average induced e.m.f. is 0.9V,
calculate the strength of the magnetic field.

8 a) Explainwhy a copper ring heats up if it is placed

in a region with an alternating magnetic field.
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bl You have two coils of insulated wire, both have
the same circumference. One coil is made up
of just one loop, but the wire in the other coil is
three times as long and has been twisted into
three loops. Explain why the current induced by
passing a magnet through each of the two coils
of insulated wire is the same.

c) Explain why a magnet dropped through a
vertical copper pipe falls more slowly than the
same magnet falling through a vertical plastic
pipe.

Figure 8.17 shows a seismometer made from

a bar magnet suspended on a spring, which is

attached to a metal rod that transmits vibrations

from the Earth. Use the diagram to explain how the
seismometer detects waves from an earthquake.
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O Applications of electromagnetic induction

s

=
' string
(o) ) ;: coll wound
alternating SE=———x onapoleofa
emf F=————1 permanent
o = magnet
4mm
Figure 8.1B A guitar pick-up.
flexible
diaphragm
: moving coll
— wound onto
{ff;ﬂg i | aformer

electrical electrical
leads {\l signal

output
Figure 8.19 A microphone uses
electromagnetic induction to change
sound into electrical signals.

Figure B8.20 A wire moving at right
angles to flux lines.

Changing magnetic field

Electric guitar strings are made of magnetised steel. When the strings

are plucked, they vibrate directly above pick-ups, which are fixed on the
guitars neck. The pick-ups are bar magnets wrapped in up to 7000 coils of
very fine wire (Figure 8.18). The vibrating string causes vibrations in the
magnetic field surrounding the coil of the pick-up. This change is converted
into an e.m.f. and amplified. The distinctive electric guitar sounds come
from deliberate distortion when the note is amplified.

Some microphones uses electromagnetic induction to change a sound wave
into an electrical signal. The microphone has a lightweight coil suspended
in a circular groove between the poles of a permanent magnet (Figure 8.19).
The coil is attached to a diaphragm that vibrates when a sound wave reaches
it. Since the coil and magnetic field are perpendicular, an e.m.f. is induced
in the vibrating coil, which depends on the frequency and amplitude of
sound waves. The induced e.m.f. is amplified, and a loudspeaker changes
these signals back to audible sound.

Conductor moving in a straight line

An induced e.m.f. can be caused by a conductor moving in a magnetic field.
For example, a straight wire may be dropped through a uniform magnetic field,
or a plane may fly at a constant height and speed in the Earths magnetic field.

A credit card includes information stored on a magnetic strip. The credit
card reader has a small coil in it, and when the credit card is swiped
through the reader, an e.m.f. is induced in the coil. It is important to
swipe the card quickly enough so that the induced e.m.f. is large enough
to be interpreted.

When a conductor moves at a velocity v perpendicular to the flux lines,
Faraday’s law applies and an e.m.f. is generated. For a conductor of length
[ travelling in a flux density B, the area swept out per second is length x
velocity. The induced e.m.f. equals the rate of change of flux linkage, so

dA
£=B—
dt
Because the area swept out per second is lv, this becomes

£ = Blv

where B is the magnetic flux density (in T), | is the length of the conductor (in
m) and v is the velocity of the conductor perpendicular to the field (in ms™),

Electrical power

Power is the rate of doing work, and we can show that the expression for
electrical power when a wire cuts flux lines (Figure 8.20) is consistent with this.

You already know that P = VI in a circuit, where P is power (W), V is
potential difference (V) and I is current (A). When power is generated by
electromagnetic induction, we write

P=EI

where € is the e.m.f. generated (V).



You also know that work done is F x d, where d is the distance travelled in
the direction of the force E, so the rate of doing work is F x v, where F is
force (N) and v is velocity in the direction of the force (ms™1).

Each second, the change of flux linkage for a wire moving through a
magnetic field is BA, or Blv, where | is the length of the wire perpendicular
to the field. Substituting in P = EI gives

P = (BIv)I = (BIl)v

Since Bll is the force on a conductor in a field, BIl x v is consistent with the
rate of doing work, or power generated, F x v.

EXAMPLE
Induced e.m.f. between wing tips A¢ _Biv

Calculate the magnitude of the induced e.m.f. At p g 4
generated between the wing tips of an aircraft flying at =41 x107Tx6600m" s
220 m 57! at a constant height. A‘ssume thgt t!'we average -0.27Wb s

vertical component of the Earth’s magnetic field is

4.1 x 107°T. The wing tips measure 30m from tip to tip.

Answer
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Since

The area swept out by the wing tips each second is o i¢
lv=30m x 220ms1 = 6600 mZs™! t

o s the induced e.m.f. is 0.27V.

O Calculating an induced e.m.f. for a
rotating coil

When a coil rotates in a magnetic field (Figure 8.21), an a.c. voltage is
induced in the coil.

-
-
=
e
=

To calculate the value of the induced e.m.f. at time t, you can use the
following equation for a plane coil in a uniform magnetic field so long as
the axis of rotation is at right angles to the field:

VYYYVYVYY

£ = BAN® sin ot

where £ is the induced e.m.f. (in V), B is the magnetic flux density (in T), A is
the cross-sectional are a of the coil (in m?), N is the number of turns on the coil,
@ is the angular speed of the rotating coil (which can also be expressed as @ =
2nif, where f is the frequency of rotation current) and ¢ is the time (in s).

i 5 Since the maximum value of sin®t is 1, the maximum induced e.m.f. is

L A Sl A

ot ~
, Tl E ey = BAN
Figure 8.21 Remember to specify the axis
of rotation for a coil in a magnetic field, Figure 8.22 shows how the magnetic flux linkage and the induced e.m.f.
which is shown here as the black dot. are linked:
d(N
® At A, N¢ is a maximum, gradient (N9) 1s0,s0€=0.
® At B, N¢is 0, gradient d(gt@ is a maximum and negative, so € is a
maximum positive. N
o e . dNg).
@ At C, N¢ is a minimum, gradient I s 0,s0&=0.
d(N¢) .

® AtD, N¢is O, gradient T maximum and positive, so € is a
minimum negative.
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{ MATHS BOX
- We can deduce an expression

for the induced e.m.f. by
substituting

6 = 2nft
into the equation

N¢ = BANcos#

AL E L ERE R RS T Ll RS LR

LA SRS R

: to give
N¢ = BAN cos 2mft

edsbbRQR Ry

However,

@ = 21f

dDF e

LR L L]

SO
N¢ = BANcos ot

But since

(E XTI LR

dt

SR EEGFRodeen

we hind

£ = BANw sin mt

(XL T2 T LR

and the magnitude of the emf is
given by

LA LR LD L LR

£ = BANw sin mt

¢ You have come across a similar
! situation in Chapter 2 (simple
¢ harmonic motion).
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TEST YOURSELF

e.m.f. in the wire.

the flux lines.
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10 A wire of length 15¢cm is moved perpendicular to
a magnetic field of flux density 1.2 T. If the wire
moves at a speed of 5em s, calculate the induced

11 A wire of length 8.0cm, and negligible cross-
sectional area, is dropped through a uniform
magnetic field of strength 5.0 mT so that it cuts

a) The wire is dropped horizontally. Explain why the
e.m.f. induced in the wire increases as it falls.
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Figure 8,22

time

EXAMPLE

Induced e.m.f. in a rotating
coil

A coil of 500 turns and cross-
sectional area 0.18 m? rotates at a

frequency of 5Hz in a uniform flux
density of strength 0.04T.

1 Calculate the angular frequency
of the coil.
Answer

Angular frequency = 2naf
= 2nx 5Hz = 10nrads.
2 Calculate the maximum value of
induced e.m.f. for the coil.
Answer

Since the maximum value of
sinwt is 1,

E = BAN®@sinot= BAN®

=0.04T x 0.18m? x 500 x 10
=36mnV =113V

4 Calculate the value of the e.m.f.

when t=0.20s and 0.215s if the

e.m.f. is zerowhent = 0.
Answer

Whent=0.20s,
E=BAN®sin ot

=0.04T x 0.18m? x 500 %
10msin[10m x 0.20]

= 3é6msin 2w
=0V
Whent=0.21s,

E = BAN®msin ot

=0.04T x 0.18m? x 500 x
10msin{10m = 0.21]

= 3émsinl2.1x)

=11.2aV =35V

the wire is 3.2ms™".
12 A dynamo has a coil of wire of 800 turns. When it

bl Calculate the induced e.m.f. when the speed of

1

Is used, the coil spins three times a second in a

region of uniform flux density 2.4 T.
al Calculate the angular frequency of the coil.
bl The radius of the coil is 5mm. Calculate the

maximum value of the induced e.m.f.

cl The e.m.f. is given by &€ = BANwsinwt. Calculate
the e.m.f. at time 0.36s.
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Practice questions

1 A coil rotates in a plane perpendicular to flux lines in a magnetic field.
The flux linkage and induced e.m.f. vary during the cycle. Which one of
the following is always true?

A When the flux linkage is a maximum, the induced e.m.f. has a
maximum value.
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B When the flux linkage is zero, the induced e.m.f. is zero.

C When the flux linkage is a maximum, the induced e.m. f. is zero.

D When the flux linkage is increasing, the induced e.m.f. is increasing,
2 The unit of magnetic flux is

A weber C volt metre?

B weber-turns D tesla metre

3 A metal sheet is pulled through a magnetic field, with its plane
perpendicular to the flux lines. Once the sheet is moving at a
steady speed, the force needed to pull the sheet at a constant speed

A increases C is zero

B decreases D is constant (a) t

4 A coil of wire is moved at right angles into,

through and out of a uniform magnetic field at ®) L o i ™ ] . ;
R i . )

a steady speed. Which diagram in Figure 8.23 W

shows how the induced e.m.{. varies in the coil as

it enters, moves through and leaves the field? (©) > i N ¢

5 A large square coil of insulated copper placed in a
storeroom has 50 turns. Each of its sides measures
80cm. The coil is leaning at 45° to the vertical (d)
against a wall. The Earth’s vertical magnetic
flux density, B, at that point is 50pT. Calculate the  Eigyre 8.23
magnetic flux linkage of the coil.

enters field leaves field

A 1.4l mWb C 1.13kWb
B 1.13mWb D 1.13Wb Neg

6 Figure 8.24 shows how the flux linkage, N¢, changes when a
coil moves into a magnetic field.

>

The induced e.m.f. in the coil — time

i
&

0 t,
A increases until t; and then is constant between t; and t, Figure 8.24

B is constant between t; and t, and then decreases to zero at t,
C decreases and then is zero between t, and t,

D is zero between t; and t, and is constant between t, and t,



7 A small magnet is dropped through a narrow copper tube and then
through a plastic tube of the same diameter and length. Which one of
the following statements is true?

A The magnet falls at the same speed in both tubes.

B The magnet falls slower in the copper tube because copper
1s magnetic.

C The magnet falls slower in the copper tube because of eddy currents
in the copper tube.

D The magnet falls faster in the copper tube because of eddy currents in
the magnet.

8 A coil of 100 turns has a cross-sectional area of 3.5 x 10~ m?2 It is
placed in a uniform magnetic field of flux density 4.9mT, making
an angle of 40° to the flux lines (Figure 8.25).

magnetic
eld 8

. il A

The change in flux linkage when the coil is rotated
anticlockwise until 8 = 90° is:

Figure 8.25
A an increase of 0.4 mWb turns

B a decrease of 0.4 mWhb turns
C an increase of 0.6 mWb turns
D adecrease of 0.6 mWhb turns

9 A dynamo spins with its axis perpendicular to the tlux lines in a
magnetic field. The period of rotation is 0.01s. If the period doubles,
which of the following changes will occur?

A The maximum e.m.f. and number of cycles per second

will double.

B The maximum e.m.f. and number of cycles per second

will halve.

C The maximum e.m.f. will double and the number of cycles
per second will halve.

D The maximum e.m.f. will halve and the number of cycles
per second will double.

10 Calculate the time taken for a search coil to be pulled out of a magnetic
field if the maximum e.m.f. generated is 0.6 V. The search coil has an
area 0.001 m? and 2000 turns and is perpendicular to the magnetic flux.
The magnetic flux density is 400mT.
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A 3.0s C 1l.3s
B 0.48s D 800s
B 11 a) Describe the function of a simple ac generator. (2)

A generator with 600 turns and a cross-sectional area of
3.0 x 10>m? is placed so it can spin in a horizontal magnetic
field of flux density 0.049 T. The coil spins about a vertical axis.

b) Calculate the maximum magnetic flux linkage for the coil. (3)



Figure 8.26 shows how the magnitude of the

flux linkage varies as the coil turns. §
¢) Explain why the flux linkage changes in this %
way as the coil turns. 3 B <
=
d) Calculate the maximum e.m.f. generated g ?‘:’.j.
when the coil spins in the field. (4} 9 g'
9_ LA
e) Use the graph to state when the e.m.f. has its *
maximum value. (1)
f) Explain how the maximum e.m.f. generated
changes when the coil spins at half the speed
in the field. (2) Figure 8.26
12a) State the SI unit of magnetic flux. (1)
Two wire coils A and B are placed next to each soft Iron core

other (Figure 8.27). Coil A is connected to a
switch and a battery Coil B forms a circuit with
a millivoltmeter.

b) Describe and explain what is seen on the

millivoltmeter when circuit A is switched on

S
and off. 5) “ N @
¢) Explain how the readings would change if
circuit A contained a second cell. (2) Figure 8.27

13 a) Explain the difference between magnetic
flux and magnetic flux linkage. (1)

b) A straight wire of length 12.4cm is held horizontally, then
released so that it falls through magnetic flux density of 0.3mT. If the
e.m.f. generated across the wire at time t is 14.0 1V, calculate the speed
of the wire at this time. (3)

o 14 A metal rod of length 2.3 m is pivoted at one end. It is moved in a
circle making a complete circuit in 4s.

a) Calculate the area swept out by the rod in 1s. (1)

b) If the rod is orientated so that it is always perpendicular to a magnetic
field of strength 1.2 T, calculate the maximum e.m.f. generated by this
movement. 2)

15 A coil of 600 turns rotates at a frequency of 4 Hz perpendicular
to a field of flux density 30mT. The area of the coil is 15cm?,

a) Calculate the magnitude of the maximum flux linkage. #

b) Calculate the maximum induced e.m.f. (2)

c¢) If the flux linkage has its maximum value at time ¢ = 0, calculate
when the induced e.m.{. first has its maximum value. 2)



B 16 Figure 8.28 shows a way to measure the flow of oil through a pipeline.
A small turbine is placed in the pipe so that the oil flow turns the blades
around. Some magnets have been placed in the rim of the turbine so that
they move past a solenoid.

leads to an oscilloscope T

solenoid

magnets In the
rim of the wheel

_ turbine blades
Figure 8.28

These moving magnets induce a voltage in the solenoid, which can
be measured using an oscilloscope. Figure 8.29 shows the trace

obtained. The faster the turbine rotates, the larger is the voltage

induced in the solenoid. By measuring this voltage, an engineer can [ \

tell at what rate the oil is flowing. /

a) The poles on the magnet rim are arranged alternately with a

north then a south pole facing outwards. Use this fact to explain
the oscilloscope trace. (1) \ j

b) Sketch the trace on the oscilloscope for the following

(separate) changes.

i) The number of turns on the solenoid is made Figure 8.29
1.5 times larger. (1)
ii) The flow of oil is increased so that the turbine
rotates twice as quickly: (1)
= c) i)  Use the trace in Figure 8.29 to show that there is a time
™ of 0.08s between each magnet passing the solenoid. 2
)
E ii) How long does it take for the turbine to rotate once? (1)
é iii) How often does the turbine rotate each second? (1)
=
o

Stretch and challenge

17 An electrodynamic tether is a cable used to control the motion of a
satellite as it is taken into orbit. A tether of 20km in length is used
to connect a satellite to a space shuttle. The strength of the Earth’s
magnetic field at this altitude has a flux density of 50uT.

a) If the satellite is travelling at an orbital speed of 8.0kms™!
perpendicular to the Earth’s field, calculate the e.m.f. generated
across the tether.

b) Explain why this figure is likely to be inaccurate, and suggest a
more accurate value.



18 A copper ring falls through a region of horizontal magnetic field

of flux density B (Figure 8.30). Describe how the flux linkage, the §
induced e.m.f. and the current in the ring change as it enters the =
field, passes through and leaves it. 2
£
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19 Figure 8.31 shows three coils connected in series to a data logger.
A magnet is dropped through the three coils.

The graph in Figure 8.32 shows the voltage measured by the data
logger as the magnet falls.

“ A —
7 data logger
Figure 8.30 A ring falling through a magnetic field. PR

Explain the shape of the graph by commenting on the height of Figure 8.31
the peaks, the width of the peaks, the gaps between the peaks and
the direction of the peaks.

Comment on the area under the peaks.

- |

i A% ik

voltage/mv

) _ time/ms
Figure 8.32




Alternating currents
and transformers
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

@ Electric current, /, is the rate of flow of charge.%. measured in

amperes [A].
@ Potential difference [voltagel, V, is the amount of electrical work done

per unit charge, -'g-. Potential difference is measured in volts [V].

@ Electric current, /, potential difference, V, and resistance, R, in a circuit
are related to each other through the equation V= IR. 9
@ Electrical power is the rate of doing electrical work, P=W =I2i:?=""F

T TR FF AN R TS F EE NN RSO S EFFERFE R RS 4 F+ P INTE N # ¢ d S 0N

@ The frequency, f, of a waveform is the number of complete waves per
second and is measured in hertz [Hz].

@ The time period, T, of a waveform, measured in seconds [s], is related to

the frequency of the waveform, f, by f=%.

IS¢ FENER

® The e.m.f. induced in a coil is e = -Nd@/dt, where e is the induced
e.m.f. [V], N is the number of turns on the coil, ¢ is the magnetic flux
(Wb] and tis time [s].

® Eddy currents are generated in metal sheets by changes in magnetic
flux. Eddy currents transfer electrical energy to heat energy.
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 Anacvoltage has a time period of 0.004s. What is the frequency of the
voltage supply?

2 A current of 13A flows through an electric fire element, which has a
resistance of 14 (). Calculate the power dissipated by the fire in kW.

3 A bar magnet, which has poles measuring 1.5em x 1.5¢em), is
pulled out of a coil in a time of 0.2s. The coil has 10000 turns and a
resistance of 50(). The average current flowing in the coil while the
magnet is moving is about 35 mA. Estimate the flux density near the
pole of the magnet.
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Mains electricity

Electricity is generated and transmitted around the country in the form of
alternating currents (ac) and voltages. These are used because they can be
transformed to high voltages and very low currents in order to minimise the
thermal energy lost as the current travels through the wires of the National
Grid (Figure 9.1). Only about 2-3% of the electrical energy from the
generators is lost as heat, saving energy, carbon emissions and money.




Alternating current is delivered by the National Grid to consumers as a
sinusoidally varying supply with a frequency of 50Hz, and a range of different
voltages, depending on the customer. Household mains has a nominal voltage
of 230V, although this value varies throughout the day depending on the
demand and supply of electricity. The maximum current that can be drawn
by a single domestic supply is about 65 A. The electrical socket ring main in
your house has a maximum current of 13 A protected by a fuse or a circuit
breaker. However, it is only lamps, heaters, cookers and devices such as
vacuum cleaners and mowers, with large electric motors, that use ac directly
off the mains. Most other devices work at much lower voltages and as direct
currents (dc). This means that devices such as televisions, computers and
games consoles all require a separate (or built-in) step-down transformer that
converts 230V ac into (for example) 12V dc.
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Alternating current and voltage

Bigure W/E Elaiicly supsii plons= Alte:'rnaling currents an.d vc:ltag?s move in one direction l;or half GF t-hair

part of the National Grid. cycle and in the opposite direction for the other half. Mains electricity
comes in a sinusoidally changing pattern, with the magnitude of the
current or the voltage continuously varying between maximum positive and
negative values. The peak value of the voltage (or potential difference) is
the maximum value in either the positive or negative direction, with respect
to zero. The peak-to-peak value of the voltage is measured from one peak
in the positive direction to the other peak (called a trough) in the negative
direction (see Figure 9.2).

The peak voltage, Vy, of the alternating waveform is half the peak-to-peak

Peak voltage is half the peak-to-peak e _ .

voltage, and is equivalent to the amplitude voltage, and is equivalent to the amplitude of the waveform. For a given

of the waveform. component such as a resistor, the peak current I, and peak voltage V;, are
related to each other through the equation

¥ Vy=1IR

peak-to- , _
peak Comparing ac and dc equivalents
ltage, 2V, : : ; .
| As alternating currents and voltages vary continuously, what value is used in
f calculations that gives the same effect as the equivalent direct current or voltage?
eak
uglfagg, v, The average values cannot be used, because the average values are both
l zero — there is the same amount of signal above zero as there is below zero.
Y
The values chosen are the root mean square (r.m.s.) voltage and current.
Figure 9.2 An alternating electrical When multiplied together, these quantities produce the same power in a
waveform. resistor as would be produced by the same dc values. This can be expressed
more easily in the form of the equation:
P = Viclde = Vimslims
A sinusoidal alternating voltage, V, varying with time, t, can be represented
by the equation
sin(2rf) V = Vysin(2nft)
A2 TR TAN here V, is the peak vol dfis the f f th ly. This i
a7 |/\ where V,, is the peak voltage, and f is the frequency of the supply. This is

0 m;\j T UQT "t shown on the graph in Figure 9.3.
INATE NS
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If this voltage is applied across a fixed resistor, R, then the power dissipated
Figure 9.3 Alternating voltage. by the resistor is equal to



sin¥{2aerff) |

: -
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Figure 9.4 The sin? graph.
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V2 Vg‘ sin’(2n ft)
R R

P=

The average power is the power we need to compare to an equivalent
2
Vs . . .
constant dc value, but as — is constant in this equation, we only need to
find the average value of sin*(2xft). This can be done by analysing the graph

of the function in Figure 9.4.

It can be seen from Figure 9.4 that the average value of sin?(2nft) = 0.5, so
_3Ve

R
This will be the same power as that for an equivalent constant dc value of
voltage, Vy.:

2 2
P= .__']2" Vo _Vae
R R

Hence we obtain

il B .5
7 de
V2
s
and
V.

As the alternating current varies in phase with the voltage, using a similar
reasoning vields

f =

™ 2
As a result, the mean alternating power, Py, which is equivalent to the dc
power, is given by

P Vel

mean ~ ¥ rms’ rms
and the peak alternating power, Py, is given by

Hence, finally we have

In other words, the mean power dissipated through a fixed resistor by an
alternating current and voltage is equal to half the peak power dissipated.
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EXAMPLE

Mains power

The given UK mains voltage is 230V ac - this is an rm.s.
value. The largest power that can usually be drawn from
a local grid is 15 kW - this is the mean value, equivalent
to a dc supply.

| What is the rm.s. current?
Answer
Use the equation for P, from the text:

rmslrrns
=
e = 880

I

Il*"rl'l"l"l 5

_15KW
230V

=65.2 A=65A (2sf)

2 What are the peak power, peak voltage and peak
current?

Answer
Combine the equations for Vg and g from the text to
give the equation for Ppeg:
Vo =V X J2
=230V x~2
=3253V=330V (2sf)

lo = lrms X2
= 65.2 AX~2
=922A=92A [25.f)
Ppeak = Volg
= 3253V x92.2A
= 29993 W =30 kW (2s.f)

We can then use these values to calculate the peak-to-
peak values of p.d. and current:

Vpeak—tn-peak = EVU = 65DV [2 Sf]
lpeak-tu-paak = 2|[| = 180A [2 Sf]

mili"li'i!ii!#‘ EERE LY L LR LR LI I T I RN R R R I P P RN N L

TEST YOURSELF

1 What is meant by the ‘root mean square’ [r.m.s.]
voltage?

2 An ac power supply delivers V.. = 6.0V to a fixed
resistor of resistance R = 2.5(1. Calculate:
a) the rm.s. current through the resistor
b] the mean power delivered to the resistor
c) the peak power delivered to the resistor.

3 In the USA, the nominal nm.s. voltage is 120V.
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house is the same as that to a UK house [15 kW],
calculate:
al the r.m.s. current delivered
b) the peak voltage delivered
c] the peak power delivered.
4 The ac motor for a [UK| mains washing machine
works with a peak power of 400W. Calculate:
a) the mean power drawn by the motor
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bl the rnm.s. current through the motor.
....... W e oo 00—

If the mean power delivered to a US domestic
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Using an oscilloscope to display waveforms

Analysing alternating waveforms is best done by displaying the waveform
using an oscilloscope. Oscilloscopes are a form of visual, calibrated
voltmeter, where the operator is able to alter how the waveform is
displayed. First, it is possible to control the time taken for the signal to
move across the screen by adjusting the timebase — often labelled time/div.
Secondly, the amplitude of the signal displayed on the calibrated screen
can be controlled by adjusting the y-sensitivity — this is also known as the
vertical sensitivity, y-gain or simply volts/div. The timebase (in seconds)
provides a scale for the x-axis of the screen and indicates the time taken
for the signal to move horizontally across one square on the screen.

Using the square grid on the screen to measure the number of horizontal
squares between two successive peaks (or troughs) allows the period of
the waveform to be determined and hence the frequency. The oscilloscope
also makes it very easy to measure the peak-to-peak value of the wave by
counting vertical squares and then using the y-sensitivity (usually calibrated
in volts, millivolts or microvolts) to apply a scale.




EXAMPLE

Oscilloscope with a dc signal

The oscilloscope in Figure 9.5 is displaying a dc signal [from a
battery for example). Describe the signal.

Answer

The timebase is set to 20ms/div, so, because there are 10 horizontal
divisions on the screen grid, the signal takes 200ms (0.2 s] to travel
from one side of the screen to the other. The y-sensitivity is set to -
1V/div, and the signal is 2.4 divisions vertically up from the centre y-sensitivitly

line. This makes the voltage of the signal 2.4V. Figure 9.5 Oscilloscope displaying a dc signal.

EXAMPLE

Oscilloscope with an ac waveform

The oscilloscope in Figure 9.6 illustrates an ac waveform
from a signal generator. Describe the waveform.

Answer

In this case the timebase and y-sensitivities have not changed.
There are five horizontal divisions between the two successive
peaks or troughs, and this corresponds to a time period of
100 ms. The frequency of the signal is therefore
] 1
frequency = =10Hz
RS time permd 100 x 107 s

calibrated screen timebase

The peak-to-peak voltage measured from the bottom of a trough

to the top of a peak on the screen is six divisions, corresponding ~ F1gure 9.6 Oscilloscope displaying an ac waveform.

to 6V. This corresponds to a peak voltage of 3V and Vi = 3 —=2.1V,

: ACTIVITY

. Virtual oscilloscopes and signal generators  that allows you to generate an alternating signal
. There are many excellent virtual oscilloscope and Hiracty for dinplay on the peciliascapn screen, E
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i signal generator simulations and apps available on- Use one of these simulations to familiarise yourself
lme Using the keywords in italics as search terms in with the controls of the oscilloscope, so that when you ,

i a search engine will take you to a range of different come to use the real thing you will be able to analyse

. versions, although they all operate using the same alternating waveforms and extract the relevant key

. principles as the real thing illustrated in Figures 9.5 information, such as the frequency and the peak-

i and 9.6. to-peak values. You could also use your simulation

to analyse the voltage signals coming off different
music tracks, although the rapidly varying voltages
may be tricky to measure unless the simulation has
a Hold" or 'Freeze function. Alternatively you could
speak or sing directly into the sound card and use
the oscilloscope and your voice to analyse some
alternating signals.

Some simulations are just oscilloscopes, and these

. rely on an external signal being generated and fed

: i through the computer’'s sound card or microphone.
i Be careful when doing this - use an external device
. that does not exceed the sound card’s input voltage

. (atabletis ideal for this).

Other simulations have a built-in signal generator
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Figure 9.7 Step-up transformers increase the generated

voltage from 25000V to 400000V.

ac input

ac output

magnetic field in core

Figure 9.8 The structure of a
transformer.
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Transformers

Many devices use transformers to increase or reduce the
voltage of an alternating voltage supply. Transformers
are used by the National Grid to increase the voltage
generated in power stations up to 400000V, so that
energy can be saved as electricity is transmitted around
the country. Then transformers are used to reduce this
high voltage for safe use in the home. Figure 9.7 shows
the transformers used to step up the voltage in a power
station.

1| s

LT Structure of a transformer

The structure of a transformer is simple. It consists of
two coils of wire linked by a soft iron core as shown in
Figure 9.8,

An alternating current in the primary coil creates a
changing magnetic field in the core, which is made of
a soft magnetic material such as iron. The secondary
coil is also wound round the core. As the magnetic
flux in the core changes, the magnetic flux linkage to
the secondary coil changes and an e.m.f. is induced
in the secondary coil. Because transformers use
electromagnetic induction, they only work with an

ac suppl}r.
The turns rule

For an ideal transtormer, with no power losses, the ratio of the turns on
each coil equals the ratio of the primary and secondary voltages. That is

Vs_Ns

Ve Ny

where V, = secondary voltage (V), Vp = primary voltage (V), N, = turns on
the secondary coil and N, = turns on the primary coil.

A step-up transformer is a transformer that increases voltage, so NJ/N,,

is more than 1. A step-down transformer is a transformer that decreases
voltage, so N/N,, is less than 1. Figure 9.9 shows a simple circuit diagram
for a transformer, with the symbols for an ac supply, a step-up transformer
and a bulb.

S

You already know that E depends on the number of turns on
® the coil. The induced e.m.f. is given by

E

from AQA paper Jan 201ﬁ
Figure 9.9

=
d¢.
dt

both coils, but the number of turns N is different, so the induced e.m f. is

The rate of flux change = in the core of the transformer is the same for

different in the secondary coil, and depends on the ratio of N, to N,,.

S
g
3
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Transformers cannot increase the power output of the supply. In an ideal
transformer, with no power losses, the power input to the transformer must
be equal to the power output. Therefore we can write the following equation:

V1=V,

where V, = secondary voltage (V), V,, = primary voltage (V), I, = current in
the secondary coil (A) and I, = current in the primary coil (A).

This means that a transformer that reduces the output voltage compared to
the input voltage has a larger current in the secondary coil compared to the

primary coil.
EXAMPLE
Step-down transformer 2 When the current in the secondary coil is 1.5A, what
CeEapEanNT ImnEIIIBCOSS Q0L Lins an Fiag ) Rty is the current in the primary coil? Assume that the
coil. It transforms mains voltage, 230V ac, into a 12V ac vrimalaricer- s 10D sficant
supply. |
1 Calculate th ber of t th d i
c:ilc.:u ate the number ot trns on the secondary Rearranging the equation V|, = V.|, gives
V; |
Answer S
-
Rearranging the equation LB - gives 12V
v Voo Np =—x15A
N, =N, x—= 230V
Y =0.078A
12V
= 2500 x
230V
=130turns

Transformer efficiency

Transformers can be very efficient, but they are never 100% efficient. The
efficiency of a transformer is calculated using this equation:
_ V./
efficiency = —
VPIF
where V, = secondary voltage (V), V,, = primary voltage (V), I, = current in
the secondary coil (A) and [, = current in the primary coil (A).

wn
o
L
=
(1 o
o
(18
wn
-
-
Q
Z
=T
o
=
(18]
o
o
=
(&)
O
=
<{
=z
e
-
-
<
o~

(O

EXAMPLE

Efficiency of a transformer o Vel

The efficiency of a mains transformer is 90%. The mains i I.F;T;

supply is 230V ac and the output of the transformer 12V x|

is 12V ac. Calculate the current in the secondary coil 0.9=- -
230 Vx0.5A

when the current in the primary coil is 0.5A.
Rearranging to make |, the subject gives

Answer

Use the equation for efficiency and substitute the e 0.9x230Vx0.5A

values known: ) 12V
=8.6A




solid core

larminated core

N e

s,

with no laminations
high eddy currents

with laminations
low eddy currents

Figure 9.10 Eddy currents are reduced
by building the core from thin, insulated

layers of iron.

Energy losses in transformers

Energy losses in transformers occur because of the following effects:

@ Heat is produced in the copper wires of the primary coil and secondary
coil when a current flows. Using low-resistance wire reduces these losses.
This is particularly important for the secondary coil of a step-down
transformer, because the current is larger in the secondary coil compared
to the primary coil. A thicker wire is often used in the secondary coil of
a step-down transformer.

® Some magnetic flux produced by the primary coil does not pass through
the iron core, which means the flux linkage to the secondary coil is not
100%. This can be reduced by designing the transformer with coils close to
each other or wound on top of each other, which improves the flux linkage.

® There is an effect called hysteresis. Some energy is lost as heat every time
the direction of the magnetic field changes because energy is needed
to realign the magnetic domains in the core. This is reduced by using a
soft magnetic material such as iron, rather than steel which needs more
energy to demagnetise and magnetise.

@ Eddy currents form in the iron core due to the continuously changing flux.
These currents heat the core up, increasing energy losses. Eddy currents
are reduced by making the core using laminated sheets separated by thin
layers of insulation. Eddy currents are discussed in more detail below.

Eddy currents in transformers

In Chapter 8, you learnt that eddy currents are created in metal sheets when
there is a change in magnetic flux. In the core of a transtormer, the alternating
supply creates alternating magnetic flux changes, and these create eddy currents.
Eddy currents flow in loops, in a direction that opposes the magnetic flux
changes that cause them. The result is that eddy currents in the iron core will
reduce the e.m.f. induced in the secondary coil. In a core made from solid iron,
eddy currents could become large enough to melt the core, because the resistance
of the iron core is very low: To prevent these problems, the core is built from very
thin laminations, or layers, of metal (Figure 9.10). The eddy currents are smaller
when there are thin laminations, because the induced voltage drives the current
round longer paths — so the resistance to flow increases. The laminations are

insulated from each other, for example using layers of insulating varnish.

O

Transmission of electrical power

Energy losses due to the heating of transmission lines in the National
Grid can be very significant because electrical energy can be transmitted
very long distances from the power stations to the end users. Electricity is
transmitted throughout the UK (Figure 9.11), and also between European
countries — for example, between the UK, France and the Netherlands.

Transformers are used to step up the voltage generated in power stations.
Since power transmitted is equal to the product V x I, stepping up the
voltage in transmission lines reduces the current. Smaller currents have
a smaller heating effect on the power lines, so reducing the current in
transmission lines reduces energy losses to the surroundings.
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Power stations generate electrical energy at a potential of about 25kV. This
voltage is stepped up using transformers shortly after it leaves the power
station and is transmitted using transmission lines operating at 275kV
and 400kV. Overhead transmission lines are supported using the familiar
large steel pylons. Transformers in substations step down the voltage for
distribution of electricity to the end user. Distribution lines operate at

132 kV, with cables supported on smaller steel pylons. Wooden poles are
used to support power lines operating at 11 kV and 33kV.

Calculating power losses in transmission lines

Power losses in the National Grid total about 3% of demand, and mainly
occur in the generator transformers, overhead lines, underground cables and
grid supply transformers. Two-thirds of the losses in the National Grid occur
in the overhead lines of the transmission system. However, the percentage
losses in power lines in the distribution system are bigger than in transmission
lines because the voltage is stepped down, so currents in the power lines are
larger. Losses in the distribution system can reach as much as 15%.

Power losses are calculated using P = [°R. Because the power losses are
proportional to the square of the current, doubling the current quadruples
the power losses. Power cables are made from aluminium supported by
steel cores, and the low resistance of these cables reduces losses in power
lines, since losses are proportional to R.

Step-down transformers in distribution systems are made more efficient
by using thicker wire in the secondary coil. The current is higher in the
secondary coil of step-down transformers, so I°R losses due to the heating
of the secondary coil can be significant. Reducing the resistance of the
secondary coil reduces I°R losses.

(O

EXAMPLE

Transmission line

A power transmission line in a factory operates at 25 kV. The power input
to the cable is 750 KW.

1 Calculate the current in the transmission line.

Answer
Rearranging the equation P = VI for power gives
=P _750x10° W
V' 25x10° V
=30A
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2 The resistance of the cable is 40(). Calculate the power supplied by the
cable.

Answer
Use the equation power supplied = input power - power losses
power losses = |?R = [30A)% x 400 = 36 kW
power supplied = 750kW - 36 kW = 714 kW (710 kW 2sf)

3 Calculate the efficiency of the transmission line.
Use the equation for efficiency and substitute the values known:

Pyt _ 714 kW
P 750 kW

efficiency = %100 = 95.2% (95% 2sf]
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¢] Calculate the current in the secondary coil.
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: TEST YOURSELF o
g 9 Explainwhy: 7 A step-up transformer transforms the input §
i al transformers do not work using dc voltage, 12V ac, into a 48V ac supply. ¢ B
i b) the iron core of a transformer is laminated a) Ifthe primary coil has 200 turns, calculate the § &
i ¢ athicker wire is used in the secondary coil of a number of turns on the secondary coil. a
step-down transformer. b) When the currentin the primary coil is 2.4A, : &
i what is the current in the secondary coil? 2 =
i 6 al Calculate the turns ratio for a transformer that Assume that the transformer is 100% efficient. &
3 steps up a 25kV input to an output of 132 kV. &
i b) The transformer in part (a) is 90% efficient, 8 A transformer is 95% efficient. The transformer _-i;i.
g and it has a current of 40A flowing in the uses maluins voltage, 230V ac, and the output § S
: primary coil. Calculate the power output in the voltage is 6V ac. Calculate the current in the : 5
secondary coil. primary coil if the current in the secondary coil

; is 4.8A. :

I




Practice questions

1 The r.m.s. voltage from a power supply with a peak voltage

of 6V is:
A 3.0V C 4.2V
B 0.12V D 0.85V

Use the information in Figure 9.12 about the voltage waveform
from an ac power supply to answer questions 2, 3 and 4.

2 The peak-to-peak voltage shown in
Figure 9.12 is:

A 128V C 90.5V

B 64V D 453V

3 The rm.s. voltage of the signal shown
in Figure 9.12 is:

A 128V C 905V
B 64V D 453V
4 The frequency of the ac power supply shown Figure 9.12
in Figure 9.12 1s:
A 0.2Hz C 0.1Hz
B 200Hz D 100H:z

5 Which of the waveforms in Figure 9.13 shows
a4.24V rm.s. voltage?

|y~galn:fEVﬁdiv‘ ' ' ‘y-galn:f‘lwgdlvi
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Figure 9.13



10 A cable, 4cm? in cross-section and of resistivity 5 x 104 0m,

© 11 An alternating voltage from a signal generator is displayed

6 A transformer has 1500 turns on the primary coil and 600 turns on the
secondary coil. The transformer uses 230V ac mains supply, and draws
a current of 0.4 A in normal use. If the efliciency of the transformer is
85%), what is the current in the secondary coil, when the secondary
voltage is 92V?

A 0.65A C 0.85A
B 1.00A D 0.14A

7 The primary coil of a step-down transformer uses an ac mains supply.
The secondary coil is connected to a phone charger. Which line A-D in
the table correctly describes the potential difference and current in the
secondary coil in relation to the primary coil?

Secondary current/primary current | Secondary p.d./primary p.d.
A |[>1 =1
B [=1 <1
G [=] =1
D < <1

8 Which of these does not reduce the efficiency of a transformer?
A heating of the primary and secondary coils

B eddy currents in the iron core

C leakage of magnetic flux from the primary coil

D insulation between the primary and secondary coils

9 The National Grid transmits electrical power from power stations using
transmission lines. Substations link transmission lines to distribution
systems that distribute electrical power to the final users. Which line
A-D in the table correctly describes the arrangement of step-up and
step-down transformers in the National Grid?

Transformers in power stations | Transformers in substations
A Step-up Step-down
B Step-up Step-up
C Step-down Step-down
D Step-down Step-up

carries a current of 2500A. The power loss per km is:
A 391W C 391kW

B 781W D 781 kW

on an oscilloscope screen with the following settings: timebase,
25ms per division; and y-sensitivity, 3V per division. The
waveform of the voltage signal is shown in Figure 9.14.

Figure 9.14
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Calculate:

a) the peak-to-peak voltage of the signal

b) the r.m.s. voltage

c¢) the time period of the signal

d) the frequency of the signal.

Make a sketch copy of the trace on the oscilloscope screen.

e) On your copy, sketch the dc voltage signal that would produce
the same power dissipation in a resistor, of resistance R,
equivalent to that produced by the signal generator.

© 12 Domestic electricity in the USA is delivered with a peak value of

170V and a frequency of 60 Hz.

a) State what is meant by the ‘peak value’ and show how this
value is related to the root mean square (rm.s.) value.

b) Calculate the rm.s. voltage.

c) A light bulb is connected to the mains supply in the USA and
draws an rm.s. current of 0.50 A, Calculate the mean power

of the bulb.

d) Using a suitable set of axes, sketch the voltage waveform
of mains electricity in the USA. Include suitable numerical

scales on your sketch graph.

" 13 A student is using an oscilloscope to measure the voltage from

a range of different voltage sources. She connects the voltage

sources to the y-input of the oscilloscope. The y-gain of the

oscilloscope is set to 0.5V/div, and the timebase is set to
4ms/div. The screen of the oscilloscope is divided into
a 10 x 10 grid as shown in Figure 9.15.

a) Copy the diagram twice and draw sketches of the
oscilloscope screen illustrating the voltage waveforms
of the following sources:

i) 1.5V cell (battery)
ii) UK mains low-voltage ac power supply, 2V (peak).

b) Calculate the r.m.s. voltage of the ac power supply

" 14 a) Describe how you would use an oscilloscope to compare the

output from an ac, 12V, 1 5Hz wind turbine and a 12V dc
car battery. You need to consider the quality of your written
communication in your answer,

b) The car battery is connected to a car headlight bulb and the
current is measured to be 2.5A. Calculate the power of the bulb.

c¢) Calculate the peak power drawn from the wind turbine if it was
connected to the same car headlamp, with the same mean power.

d) Calculate the peak voltage produced by the wind turbine.

(1)
(1)
(D
2

(2)

@
@

(1)

)

(D
(2)
(2

(6)

(1)

(1)
@

Figure 9.15




B 15 High-voltage transmission of electrical power in the National Grid
can cause large energy losses. Explain how energy losses are
minimised when transmitting ac voltage in the National Grid. (6)

™ 16 A transformer is used inside a 12V, 60 W heater, to step down
the mains voltage of 230V

N
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a) Calculate the turns ratio for the heaters transformer if the
output voltage is 12V r.m.s. when the heater is connected
to a mains supply of 230V r.m.s. State any assumptions
you make. (3)

b) Calculate the current in the supply lead when the heater
is connected to the mains supply and turned on. (3)

¢) The rm.s. current flowing in the primary coil is 0.26 A.
Calculate the efficiency of the heaters transformer if the rm.s.
output voltage is 11.8V, and an rm.s. current of 4.5 A flows
in the secondary coil. (3)

B 17 A factory uses a transformer to step down the voltage from
11kVto 415V,

a) Calculate the number of turns on the secondary coil if there
are 3000 turns on the primary coil. (3)

b) A crane with maximum power of 60 kW uses the 415V ac
supply. Calculate the current drawn from the 11 kV supply
when the crane works at maximum power, at which point
the efficiency of the transformer is 85%. (3)

¢) State two important causes of energy loss in the transformer
and describe how the transformer is designed to reduce these

losses. (4)

Stretch and challenge
The first question that follows here is a British Physics Olympiad question.

18 A 20() resistor is connected to an ac power supply with a voltage 4
output that varies from 4V to -2V at equal time intervals, as o
shown in Figure 9.16. What is the mean heating power % i -
dissipated in the resistor? &g . 3.0 01 G2 O3 04 timefs
A 02W C 0.8W < g
B 0.5W D 1.OW Figure 9.16

(BPhO AS Challenge — 2007 Q4)

19 A ‘saw tooth’ waveform voltage rises from O to a maximum value
Vp in a time ¢, at which point it immediately falls to 0 again, before rising
once more to the value V. Show that the power generated
by this voltage through a resistance R is the same as would be

V.
generated by a dc voltage of —v%- :
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Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

-
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@ An atom has a small, massive, positively charged nucleus.

@ Rutherford scattering gives evidence for the nuclear model of the atom.

@ The atom is neutral; the positively charged nucleus is balanced by
negatively charged electrons, which orbit the nucleus.

® Unstable nuclei emit radioactive particles.

® Different isotopes of an element have the same number of protons
but different numbers of neutrons.

@ Alpha particles are helium nuclei.

® Beta particles are fast-moving electrons.

@ Gamma rays are electromagnetic photons, which carry energy away
from an unstable nucleus.

® Alpha, beta and gamma radiations may be identified by their differing
powers of penetration. &
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 Describe the nuclear model of the atom.
2 Outline briefly the penetrating powers of alpha, beta and gamma
radiations.

3 Nobelium-254, ?g%No, emits an alpha particle to become an isotope of
the element fermium, Fm.
a) Explain the meaning of the word ‘isatope’.
b) Write a balanced equation to describe the alpha decay of
nobelium-254.

4 Krypton-85, giKr, decays by emitting a B-particle to become an isotope

of rubidium, Rb. Write a balanced equation to describe this decay.
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We use radioactive sources for many purposes in medicine, industry and
agriculture. Imagine that a patient is about to receive a dose of gamma
radiation to help cure a cancerous tumour. Such doses must be carefully
calculated and directed accurately at the cancerous area of the body The
differing ionising and penetrating powers of alpha, beta and gamma rays
allow them to be used in various ways to investigate the body and then treat
the patient.

Rutherford scattering

Figure 10.1 shows a plan view of the sort of apparatus that Geiger and
Marsden used in 1911 to investigate the scattering of alpha particles by a
thin foil of gold. Gold was chosen because it can be hammered into very
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Figure 10.1 A plan view of Geiger and Marsden's apparatus.

alpha particles goli foil

f A}

this particle has
met a nucleus,
and has been
repelled by its
positive charge

Figure 10.2 Only alpha particles that have a very close
encounter with a gold nucleus are deflected through large
angles.

thin sheets. An alpha source was placed in a long thin
lead container to produce a well-directed beam of
alpha particles. The whole apparatus was evacuated
so that the alpha particles could travel without being
stopped by the air.

Over a period of months, Geiger and Marsden
counted the number of alpha particles deflected at
different angles &, shown in Figure 10.2. The alpha
particles were detected by a fluorescent screen. Each
time an alpha particle hit the screen, a small flash

of light was emitted, which was seen through the
microscope. Geiger and Marsden counted hundreds
of thousands of such flashes of light. The vast
majority of the alpha particles were deflected through
very small angles. But a very small number of
particles were deflected through large angles of about
150 or more. Figure 10.2 illustrates some typical
paths of deflected alpha particles.

Rutherford drew the following conclusions from this
experiment.

® The atom has a very small positively charged
nucleus. Rutherford suggested that the positive
charge on the nucleus is responsible for the
repulsive force on the positively charged alpha
particle, which causes it to change direction. The
fact that only a very small number of particles
undergo a large deflection tells us that the
nucleus is much smaller in diameter than the
atom.

® The second important conclusion about the
nucleus is that it contains nearly all the mass of
the atom. Considerations of the conservation of
momentum tell us that the alpha particle would
knock a small nucleus out of the way, but that the
alpha particle will bounce back after an encounter
with a nucleus heavier than itself.

Using our knowledge of electrostatic theory, it

is possible to calculate the maximum size of the

gold nucleus. If an alpha particle is turned round

by 1807, it must have encountered a gold nucleus

head-on, and there must have been a moment when

the alpha particle stopped moving, Then all of the

alpha particles kinetic energy has been transferred to

electrical potential energy.
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In Figure 10.3 an alpha particle has been stopped by the gold nucleus and

4 reached its closest distance of approach.

. R i
alpha particl
e The kinetic energy of the alpha particles, used in the original Geiger and
Marsden experiment, was about 5MeV or
5x 10°x 1.6 x 10-19] =8 x 10-13]. So we can write

8x 107 J= 4%
4mE,r

The expression on the right-hand side of the equation gives the electrical
potential energy of two charges, Q, and Q,, separated by a distance r. The
charge on the gold nucleus is 79¢ and that on the alpha particle is 2¢. The
permittivity of free space is 8.85 x 10-*2 Fm-L,

(79%1.6x10°7°C)x(2x1.6x107"° Q)

8x 1072 = —
gold nucleus nx885x10 "Fm Xxr
Figure 10.3 An alpha particle at its
closest distance of approach toagold ~ Therefore
nucleus.

Jras (79x1.6x10°C)x(2x1.6x107°C)
(47 x 8.85x 107 Fm ™' )x (8 x 1077 ])

=45%x 10" m or 45fm

By carrying out scattering experiments on lighter nuclei, Rutherford was
able to deduce that the nucleus was even smaller than 45 fm (where fm is

Fermtometre Nuclear radii and diameters the abbreviation for lemtometre). But he had established the nuclear model
are measured in femtometres, 107*m. The . f the atom.
unit is abbreviated to fm.

: MATHS BOX
Another way to make an estimate of the nuclear size is to consider the
number of alpha particles scattered through large angles. For example,
in a scattering experiment, 1 in 8000 alpha particles is scattered by an
angle larger than 150° — this counts as a ‘direct hit’. Measurement of the
gold foil tells us that it is about 2000 atoms thick.

TseveOoFRERASSFSETNEN

aTesEd+eSTEIN

So, had the foil been only one atom thick, we can deduce that only 1 in
16000000 alpha particles would have had a ‘direct hit’. Therefore, we
deduce that:

: 2
cross-sectional area of the atom

TRAAETAGERAN I PR PR RN A AR F DR R R A AFF R RSP FSHED
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10 THE EVIDENCE FOR THE NUCLEUS

: : ==16 000 000 :
E cross-sectional area of the nucleus :
: and
atomic radius
: — = %= 4000 :
178 : nuclear radius g

: Because the radius of a gold atom is 1.35 x 10-'%m, the nuclear radius is

1355 1071 m
P T 4000

L3
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=3%x 10" m or 30fm
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TEST YOURSELF
1 Give an account of the evidence that led to al Sketch diagrams to show possible paths of an _
Rutherford proposing the nuclear model of the alpha particle approaching the same nucleus if
atom. [You should write your answer to secure six the alpha particle has :
marks in an extended writing exercise.] i) less kinetic energy

2 This question refers to the design of the Rutherford ii) more kinetic energy. :
scattering experiment illustrated in Figure 10.1. b) Sketch diagrams to show possible paths of :
a) Explain why the apparatus must be evacuated. the alpha particle with its original energy :
b) Explain why the gold foil must be extremely approaching nuclei that have
thin, about 10" m thick. i) acharge greater than Z

¢} Explain how the design of the holder for the ii} a charge less than Z.
alpha source produces awell-directed beam of 4 An alpha particle with energy 7.7 MeV is scattered
radiation. back through an angle of 180° by a thin sheet of

3 Figure 10.4 shows the path of an alpha particle aluminium foil.
bE‘iﬁg deflected bya hEBV}‘ nucleus with char’ge +28. a] CEII.CLI[EItE‘ the closest distance gfapproach of E
the alpha particle to the aluminium nucleus. :

The atomic number of aluminium is 13: :

gg=8.85x 1072Fm.

b) i] Calculate the force that the alpha particle :

and nucleus exert on each other at their *

5 closest approach. :

ii} Calculate the maximum acceleration of '

78 the alpha particle. The mass of the alpha

particle is 6.8 x 10-27kqg. :

Figure 10.4

Nuclear radius and density

Figure 10.5 shows a diffraction pattern produced b}-‘ Shining green laser
light thmugh a thin film of l}-’CQdeiun‘l pc:m-'der. which contains VETY small
particles of about 30 pm in diameter. The photograph shows a series of
circular diffraction rings, caused b}r the scatterin g and interference of the
light off the parti::l::s.

Figure 10.5 Diffraction pattern produced by the scattering of green light off
lycopodium powder.
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Diffraction theory predicts that the angle, 8, of the first diffraction minimum
is given by

si1:19=1.22i
d

where 4 is the wavelength of the light and d is the diameter of the particles.

This diffraction theory enabled nuclear scientists to investigate accurately
the diameter of the nucleus of atoms. The principle behind the experiment
is illustrated in Figure 10.6.

detector

first minimurm

target nuclei
diameter d electron diffraction
pattern

Figure 10.6

High-energy electrons are directed at thin targets of an element, and the
nuclei act to scatter electrons in the same way that the lycopodium powder
scatters light. You will recall that we can calculate the wavelength, 4, of the
electrons using the formula

1=t
p

where h is the Planck constant, 6.6 x 10-**]s, and p is the electron’s
momentum. Such high-energy electrons are travelling close to the speed of
light, and we must calculate their momentum using the equation

E
P=—
c

U
=
L
-l
O
=
=
E
(14
o
L.
L
Q
=
(1]
=
w
I
[
o
L

where E is the electron energy and ¢ is the speed of light.
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EXAMPLE
Electron scattering 3 Calculate the radius of a carbon nucleus.
A beam of electrons with energy 420 MeV is scattered Answer
off a target of carbon. The first diffraction minimum The diameter of the nucleus is calculated from the
occurs at an angle of 52°. equation
1 Calculate the momentum of the electrons. sin@ = 1.22-;t
Answer 4 122
The momentum of the electrons is given by " sin®
E
P _1.22%2.94 %10 m
_ 420% 10°% 1.6% 107" ) s
- Sxﬂlngms-l =&.6x10‘15m
=224 10 kgms™! So the nuclear radius is 2.3 x 1075 m,
2 Calculate the wavelength of the electrons.
Answer
The wavelength of the electrons is
aoh__ 66x10%Js
p 2.24x10"kgms™
=2.94x 107" m

Empn ncalTheequatmnr—rA!";s o Experiments to determine the radius of nuclei allowed scientists to produce
=IpA i o : : i
empirical equation. The word 'empirical’ an approximate empirical formula for the radius of a nucleus, which is
means that the equation is based purely
on experimental results. It is not exact, but

it gives an approximate value for a nuclear
radius.

1
¥ = 3
r=rnA

where r is the radius of the nucleus, ry = 1.2fm and A is the mass number
or nucleon number of the nucleus. Figure 10.7 shows how the nuclear
radius depends on the nucleon number of the nucleus.

P 4 e We often use the expression u, which is an abbreviation for atomic mass

(1u) is equal to 1.67 x 10-Z kg, unit. A proton and neutron each have a mass approximately equal to
1.67 x 107%"kg, and this is 1 u. So, in the example, the mass of a zinc
nucleus is 66,
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Figure 10.7 This graph shows the relationship
between nuclear radius and nucleon number.

edspJofeyiny

13

S
&




©

'EXAMPLE
Empirical formula for nuclear radius i3
I Calculate the nuclear radius of the isotope $5Zn. == 4re® o
r=rAf _3x (66 x 1.67x 107kg)
= 1.2fmx 66} iad "215”“’3
=4 8%m =2.4x 10" kgm

2 Calculate the density of a zinc nucleus, given that

1 u has a mass of 1.67 x 10-27kg. This calculation shows us that the nuclear density

is immense = over 100 million million times more
Answer dense than water,

Mass of nucleus = %Ttptj. where p is the nuclear
density. So

m IIIIIIIIIIIIIIIIIIIIIIIIIIIIII FEEES S FF P FE SR T RN R FFF PSS S FF FFI I TR 44 F PP PSS Y 4 FFF FEE NI TS R FFFFESR YRS FFFFESETa ST+ FFFFrEs

: TEST YOURSELF

5 a) Use Figure 10.7 to determine the nuclear radius | i EanSRaRAEReaYRNArSRSRiREAs|EaeatSRuSiNEAiRSasiEnSEiaEesy
§ GfUFEHiUI‘T‘I—QSBi
: b) Calculate the density of a uranium nucleus; B N e e e e e e ]
T la: 1% 10 kg, -
: 6 al Explain the principle behind using electron E S
; diffraction to determine the radius of a nucleus. e e
; b] Explain one advantage that electron diffraction e HEE HENCHEEH .
<o 2 has over Rutherford scattering as a means of .E EEEHE NG N AL
= 3 determining nuclear radius. 2| gadoimum-160N\ PR
S i 7 The element livermorium is a short-lived o] ey s R s e e, 2 SRy gy e s e
5 i transuranic element, which has been produced in e
= nuclear reactors. s D O
o i alil Explainwhat transuranic’ means. ASEEiSEStincas. Seifice | liRifate SNigsir viSEiRcer Stinier ISIGEcH N
o i)} Why are transuranic elements short-lived? .. angleofdifiractiorydegrees
W i  b) One isotope of livermorium is #3Lv. Use the Figure 10.8 §
&= : empirical formula to predict the radius of a :
= 3 livermorium nucleus. b) Calculate the wavelength of the electrons in the i
M 8 Anelectron beam with energy 890 MeV is used to beam. Planck's constant = 6.6 x 10734 Js. :
= investigate the radii of some elements. Figure 10.8 c) Use the information in Figure 10.8, and :
= : shows how the intensity of scattered electrons the information in the text about electron :
e varies for two isotopes, gadolinium-160 and diffraction, to calculate the nuclear radius for
: calcium-40. i) gadolinium :
' . . B i) calcium.
al Use the expression p"% to:show that the d) Checkyour answers for part [c] with the
: momentum of each electron in the beam is predictions for nuclear radius shown in :
about 4.7 x 107 kgm s, Figure 10.7.
Y LTIt L TS TTIN Ty |




O Radioactive emissions

Henry Becquerel discovered radioactivity in 1896. He placed some uranium
salts next to a photographic plate, which had been sealed in a thick black
bag to prevent light exposing the plate (Figure 10.9). When the plate was
later developed, it had been affected as if it had been exposed to light

Becquerel The activity of a radioactive
source is equal to the number of particles

emitted per second. The unit of activity is (Figure 10.10). Becquerel realised that a new form of energy was being
the becquerel (Bq): 1 becquerel (1Bq) =an  emitted from the uranium salts. In his honour, the activity of a radioactive
emission of one particle per second. source is measured in becquerels.

o it b Slfol, Dbl Yo d D St
F‘f-’# hons . Gy Be Gotvm Innea o 3

radicactive
source
LI black
photographic | FITE ]/ i
film |
radicactive particles pass
through a lightproof bag
to expose a photographic film

Figure 10.9 Figure 10.10
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The nature of alpha (a), beta (p) and
gamma [y) radiations

Unstable nuclei emit various types of radiation, the most common of which
are alpha, beta and gamma radiation. Their nature and properties are

summarised below:
nucleus

.- Alpha particles
. alactron . . 8
. /——— awactive force between  Alpha particles are the nuclei of helium atoms. So they are made up of two

® charges pulls the electron ; ;
ahs BT ok A protons and two neutrons. They have a mass of 4u and a charge of +2e.
Figure 10.11 The strong electric field Alpha particles are strongly ionisit}g. Th‘e strong c'h_arge on the a%pha? particle
of the alpha particles pulls or knocks pulls electrons out of atoms, creating pairs of positive and negative ions
electrons out of atoms to create positive  along the particle’s path (Figure 10.11). An alpha particle produces about
and negative ions. 10000 ion-pairs per millimetre of path in air.

Alpha particles travel a few centimetres in air, and can be stopped by a thick
piece of paper (Figure 10.12).

Alpha particles are deflected slightly in strong electric and magnetic fields.
Typically, alpha particles have kinetic energies of a few MeV as they leave
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the parent nucleus. An alpha particle with an energy of 5MeV travels at
about 5% of the speed of light (Table 10.1).

Beta particles
Beta particles are fast-moving electrons, which travel at just less than the
speed of light. Typically, beta particles have kinetic energies of a few MeV.

Beta particles are much less ionising than alpha particles, producing about
100 ion-pairs per millimetre of path travelled in air.

Beta particles may travel several metres in air, and they are absorbed by
aluminium a few millimetres thick (Figure 10.12).

-
—

alpha particlés__
beta particles
- =8
—®

gamma rays
2 em thick lead
reduces the
intensity of gamma
rays

Figure 10.12 The penetrating powers of alpha, beta and gamma radiations.

Beta particles may be deflected through large angles by electric and
magnetic fields (Table 10.1).

Gamma rays

Gamma rays are electrically neutral emissions, which are photons (just like
any other type of electromagnetic radiation). Typically, a gamma-ray photon
might have an energy of about 1 MeV, which corresponds to a wavelength of
about 10-12m.

Gamma rays are not deflected in magnetic and electric fields because they
are not charged (Table 10.1).
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= Table 10.1 Properties of alpha, beta and gamma radiations.
o

Radiation Alpha particle | Beta particle

Nature Helium nucleus Fast electron Electromagnetic photon

Charge +2e -8 0

Mass 6.6 x 107¥7kg [4amu] 9.1 x 10-3kg 0

Speed 5% of ¢ 98-99% of ¢ ¢ [speed of light]

lons per mm of air for a 10000 100 1

particle of 3MeV

Detection Slight deflection in electric | Significant deflection in electric | No deflection in electric and
and magnetic fields and magnetic fields magnetic fields
Affects photographic film Affects photographic film Affects photographic film




(a) Gamma rays are very weakly ionising, producing about one ion-pair per
millimetre of path travelled in air. Gamma rays are very penetrating,

=1 ] gold leaf and their intensity is reduced by a few centimetres thickness of lead
1| | sticks out (Figure 10.12). Gamma rays can transfer their energy to electrons in
+HE+ 4 r{ggﬁharges metals (rather like a photoelectric effect); then the moving electrons
g;ﬁ"' @l create ion-pairs.
% lonisation

Figure 10.13 shows how a charged gold leaf electroscope can be used to
illustrate the strong ionising power of alpha radiation. An alpha source is
T held above a positively charged electroscope. The alpha particles produce
radium o fepelled positive and negative ions. The positive ions are repelled from the positively
*t/  negative ions charged electroscope, but the negative ions are attracted to the electroscope

® s — Move towards T
- electroscope and it is discharged.

We make use of the ionising properties of alpha, beta and gamma radiation
to detect them. This is done using a Geiger—Muller (GM) tube. Figure 10.14
shows how the tube works. Although GM tubes are still used in schools,
solid-state detectors (working on a similar principle) are more widely used
elsewhere.
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Figure 10.13 450 V
radiation I 1]
‘ amplifier
very thin J t
mica window
to counter
Figure 10.14

A metal tube is filled with argon gas at low pressure. A voltage of about
450V is applied between a central anode and the outside of the tube.
When radiation enters the tube through a narrow window at the front of
the tube, atoms are ionised and a small current flows. Each current pulse
is amplified and counted, so that we can record the rate at which particles
enter the tube.

[t is important that we can detect and then understand the effects of
ionising radiation. When ionising particles enter the body, the ions that
are produced can damage or destroy cells in our bodies, with serious
consequences for our health. This is discussed at greater length later.




Background radiation

There are a lot of rocks in the Earth that contain radioactive uranium,
thorium, radon and potassium, and so we are always exposed to some
ionising particles. Radon is a gas that emits alpha particles. Because we

can inhale this gas, it is dangerous as radiation can get inside our lungs.

In addition, the Sun emits lots of protons, which can also create ions in our
atmosphere. These are two of the sources that make up background radiation.
Figure 10.15 shows the contribution to the total background radiation from
[ nuctear power all places in Britain. Fortunately the level of background radiation is quite
low, and in most places it does not cause a serious health risk.

Figure 10.15 Sources of radiation in

Britain. In some jobs workers are at a higher risk. X-rays used in hospitals also

cause ionisation. Radiographers make sure that their exposure to X-rays is
as small as possible. In nuclear power stations, neutrons are produced in
nuclear reactors. The damage caused by neutrons is a source of danger for
workers in that industry.
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: TEST YOURSELF

? Referto Figure 10.13. The plate on the
electroscope is charged negatively. Explain
whether or not the gold leaf electroscope
would still be discharged by an alpha
radiation source.

10 a) Explainwhat is meant by the term
‘background radiation’. What are the
sources of background radiation? p-source

b) Design an experiment to investigate
what the background count is in your (@)
school.

11 To answer this question, you may need to

: revise the work covered in Chapter 7.

magnet

p-particles are
deflected perpendicular
to the magnet held in a
horizontal plane

Figure 10.16(al] shows an experiment in

which some beta particles are deflected

by a magnetic field.

a) Explain how the direction of the beta
particle deflection confirms that they (0)
are negatively charged.

Figure 10.16(b] shows how the count rate
of the deflected beta particles varies with
angle.

10 THE EVIDENCE FOR THE NUCLEUS

count rate

bl Explain which beta particles have the
higher energy, those deflected through | ,

I I
20° or those deflected through 40°. 100 200 30° 40¢ (P
angle of deflection

Figure 10.16
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Identification of radiations

: Figure 10.17

rEERETAREER ER

(@

Table 10.2

| Figure 10.17 shows an experimental arrangement Thickness/mm

i to identify the radiations emitted by a radioactive None 5054 i
FEREES Paper 0.3 3294 |
Aluminium 0.1 3084

radioactive / Atuminium 0.5 1954 =
source  f absorber a
,—% Aluminium 1.0 244

i Lead 1.0 21

" / /. GMtube Lead 2.0 24

3 A second source B is placed in front of the GM tube
at a fixed distance of 2cm, and the absorbers are |
placed between the source and the GM tube as

to counter before. The results are shown in Table 10.3.

Determine the typels] of radiation emitted from

source B.

' ‘ ' Table 10.3

1 First, the GM tube is left without a source nearby s / =

to establish the background count. Over a period FRIRRE eileidibl b GUIYE FRES/ O

of 15 minutes, the GM tube recorded a background None 2084

S0t Paper 0.3 2079

Determine the background count in counts per Aluminium 0.1 1954 ‘

minute. Aluminium 0.5 1251

2 Then a source A is placed in front of the counter Aluminium 1.0 1246

at a fixed distance of 2Zcm. Various absorbers are | G5dd 20 1048

placed between the source and the GM tube. Table i 50 44
10.2 shows a summary of the results obtained. '

Lead 10.0 355

Determine the radiation(s) emitted by source A.

TIP

If the above experiment is
actually performed, remember
that the appropriate source
must be handled safely, in line
with agreed standard operating
procedures. These should be
agreed with a suitable RPA
[Radiation Protection Adviser).

Inverse square law for y-radiation

Gamma radiation behaves like any other electromagnetic radiation, in that it
spreads out symmetrically in all directions from its source. The intensity of
a light source obeys an inverse square law:

This idea was discussed before in Chapter 3, and Figure 3.2 shows you the
reasoning behind the law. So for gamma radiation we can write
k

I==
xl

where [ is the intensity of the radiation (which can be measured in Wm-2),
x is the distance from the source and k is a constant.v
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EXAMPLE

Radioactivity and inverse square law

I The count rate measured by a GM tube at a
distance of 15¢cm from a gamma source is 2800 Bq.
The source is then moved further away from the

GM tube,
alWhat will the count rate be at 30cm?

Answer
This problem is relatively easy to solve, using |-i2

k8
. because x is doubled, x? is quadrupled and -1§- s a
X

quarter of its previous value.

Thus the corrected count rate is %x 2800Bq =
700 Baq.

bIWhat will the corrected count rate be at 50em?

Because 1=-k5 it follows that k = Ix% or I =3 .

So A

|, x 50% = 2800 Bq x 15°

15
l, =2800Bg x| —
? QK[EDT

— 2508q

2 A Geiger-Muller tube window has an area of
2.8cm?. A gamma source is placed a distance of
0.1m from the window and the counter detects a
corrected count rate of 150 Bq.

Assuming that the y-source emits radiation
uniformly in all directions, calculate the total
number of emissions per second from the source.
State any assumptions in the calculation.

First, we assume that all y-rays are detected at the
GM tube window
[as you will see later, this is not actually the case).

The y-radiation is spread over an area of 4nR?,
where R is the distance from the source [4nR? is the
surface area of a sphere]. So the count detected is:

2.8 cm?
4TR?
where Cy is the total count. So
_Cx 4mR?
~ 28cm?

_ 150Bq x 4m x (10 cm)?
2.8 cm?
= 67 000 Bq

C"_"CT

T

TR,

Inverse square law for y-radiation

Note: This is just one example of how you might
. tackle this required practical.

Figure 10.18 shows an experimental arrangement

: to investigate the relationship between the intensity
. of radiation from a gamma source and its distance
. from a Geiger-Muller tube.

- X+cC
x

: gamma
source

: Figure 10.18

In Figure 10.18, x has been defined as the distance

. between the edge of the source container and the

. window of the GM tube. However, there is a difficulty

© with this definition. The source itself is inside the

! container, and the radiation is not all detected at the

. window of the tube. So the true distance between the
source and the place where the radiation is detected

is X + C. This is called the corrected distance. Sowe
write
Kk

| =
lx +c)?

[x +c)? =$

X+c= £1
/

Therefore, if we plot a graph of x against 7, we
would expect to see a straight line.

In an experiment, the results shown in Table
10.4 were obtained. The background count was :
determined to be an average of 18 counts per minute.

Table 10.4

1.0 |20 [3.0 |40 |50 |60 |70 |80

GM count
over 10s

431 [ 260 [ 195 (138 [ 110 |81 |73 | &1
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: 1 Copy the table and add two further rows to it. 3 a) Plot a suitable graph to investigate whether
i 2 a) Make a suitable correction allowing for the intensity of the gamma radiation obeysan
background count and add to your table. inverse square law.

b) Add a further row to show (count rate] =, bl Useyour graph to estimate the value of ¢ :

shown in Figure 10.18.

.
T el ey gy

The biological effects of radiation

In the early 1900s, scientists working with radioactive materials did not
understand the dangers of radiation, and consequently many people
suffered injury and in some cases death.

lonising radiation is dangerous because ~ Qur bodies are made up of many different types of complicated molecules.
ions are produced in our bodies, which If an electron is removed or added to a molecule, it has been changed
damage cells and the functions of enzymes  chemically and will therefore behave differently in any interaction with

are changed. another molecule. Typically it requires a few eV of energy to remove an

electron from a molecule. Such energy is carried by photons of ultraviolet
light. Alpha and beta particles, and gamma-ray photons all carry energy
measured in MeV. Such radiations cause ionisation, and ionising radiation
is dangerous to us because it can change the chemistry of our bodies. The
functions of enzymes can be altered, cells can be damaged and mutations
can occur to our DNA, which can lead to cancer.
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It is also known that the irradiation of water produces free radicals (see H,O*
and H,0* and OH~ below), which are highly reactive. These free radicals
change the structure of surrounding molecules with biological implications.
Such reactions include

HEO —, H20+ 4+ e
H,0* + H,0 — H;0* + OH
Radiation dose

DoseTheenergyabsorbedp-erkllogram of An absorbed dose of radiation is defined as the energy absorbed per

a body. kilogram of a body:
Gray The unit of dose is | kg=!, which is E
called one gray (Gy). D= o

The unit of dose is Jkg~! and this is given the name gray (Gy).

Clearly, if we receive a high dose of radiation, we are at a higher risk

of becoming ill due to the damage caused to our bodies. However, the
impact of the radiation on our bodies also depends on how the dose is
administered, and this depends on the type of radiation we are exposed to.

From our earlier work on the penetration of radiations, you will recall that
alpha particles are easily stopped by 5cm of air, or by a sheet of paper. The
lack of penetration of alpha particles is explained by their very high ionising
power. Alpha particles lose energy over a shorter range than beta particles
and gamma rays, because alpha particles are relatively slow-moving and
they carry a high charge. By contrast, beta and gamma rays lose their energy
over much longer distances. Consequently, alpha particles are much more
damaging to our bodies because many ions are produced in a small volume.



Dose equivalent The measure of the ‘We measure the damage done by radiation in dose equivalents, which is

damage done by radiation. defined as
Sievert The unit of dose equivalent is also |
Jkg™', but for dose equivalent the unit is H=WyD
called the sievert (Sv).

where Wy, is the radiation weighting factor, which is a dimensionless
number that depends on the type of radiation —see Table 10.5. Dose
equivalent has the same units as dose, namely Jkg™!, but to distinguish dose
from dose equivalent, the latter is given the unit sievert (Sv).

Table 10.5
T
X-rays, gamma rays, p-particles 1
Protons | 2
Alpha particles, nuclear fission products 20

When we handle radioactive sources, we must take care to minimise
the risk. First, a radioactive source should be enclosed in a container
that is leak-proof to avoid the escape of any radioactive liquid or gases.
In schools, radioactive sources are of low intensity, but we adopt these
precautions:

® Sources are kept in lead-lined boxes and locked away in metal
cupboards.

® When in use, sources are used for a short period of time.

® Sources are kept away from our bodies and are handled with long
tongs.

There are strict regulations for the handling of radioactive materials in
laboratories, hospitals and industry. A leak of a radioactive gas or liquid
is particularly hazardous because we can inhale a gas or swallow a liquid,
which could then allow radiation to be emitted inside our bodies.
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12 Describe an experiment that would enable you to 15 a) Explain what is meant by the term ‘ionising
detect the type of radiations being emitted from radiation’.

a radioactive source. [Remember to describe the b) Why are ionising radiations dangerous to us?

i  apparatus you would use and what measurements 16 A teacher leaves two radioactive sources on a

i you would take.] laboratory bench. One source emits y-rays, and it
i 13 A source of gamma radiation is placed a distance is kept in a lead-lined box. The second source is
§ of 0.2 m away from a small radiation detector. The an alpha source, which is left out of its box.

: detector records a corrected count rate of 200 Bq a) Explain which source is potentially more

from the gamma source. dangerous to pupils 2m away in the class.

i Calculate what count rate would be recorded b) i} Radon is a radioactive gas that emits alpha
i when the detector is moved a distance of 0.5m particles. The gas is emitted by granite

: away from the source. rocks. Explain why radon might be a hazard

14 a) Calculate the energy of an ultraviolet photon with WL RERIER Ahose WG, Eive I Bi areRiwilh

awavelength of 2 x 107" m. Express your answer granite rocks.

: in electronvolts (eV). [You may need to refer back ii) Explain why gamma rays emitted by rocks
: to the work in Chapter 3 of book 1.) are less dangerous than radon’s alpha
' particles,

b] Explain why sunbathing for too long can cause
: skin cancer.
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Practice questions

R

™

1 A radioactive source is placed 2 cm from the window of a Geiger—Muller %

(GM) tube. A count rate of 220 Bq is recorded. The table shows the ™

corrected count rate after some sheets of materials are placed between =

the source and the GM tube. a

3

Count rate/Bq 220 180 10 12 -
1. : Aluminium .
Material No material Sheet of paper ——v Lead 1cm thick

The source emits which of the following radiation(s)?
A alpha and gamma C alpha and beta

B beta only D alpha, beta and gamma
Use the following information to answer questions 2, 3 and 4.

Below are listed four radioactive sources, together with their emitted

radiations.
A americium-241 alpha (a)
B strontium-90 beta minus ()
C cobalt-60 beta minus and gamma (B~ and y)
D fluorine-18 beta plus (B*)

2 Which isotope is suitable for the purpose of sterilising hospital
equipment sealed inside plastic bags?

3 Which isotope is suitable for the purposes of discharging static electricity
that has built up in the manufacture of polythene?

4 Which isotope is suitable for monitoring the thickness of thin metal
being produced in a factory?

5 An alpha particle of energy 7.9 MeV is fired towards the nucleus of a
gadolinium atom, 127Gd. The closest possible distance of approach of the
alpha particle to the gadolinium nucleus is

A 23fm C 7fm

B 14fm D 2fm

6 A gamma source is placed 2.0 m away from a Geiger—Muller (GM)
tube. A count rate of 150Bq is recorded. The source is now moved to a
distance of 3.0m from the GM tube. The count rate observed is now

A 225Bq C 85Bq
B 100Bq D 67Bq

7 A gamma ray has an energy of 1.2 MeV. Its wavelength is
A 2x10"2m C5x10Pm
B 1x10"%m D 3x10"m



Use the following information to answer questions 8, 9 and 10.

The table below contains information about four types of radiation A, B,

C and D.
Characteristic A B C D
Penetrating power Many cm of lead fnz-;mm oL Many cm of lead | A few cm in air
Mass/kg 1.67 % 10-27 9.1 x 10-%1 0 b.64x 10-27
g:::’ectiun in a magnetic 0 Large 0 Small
lonisation Very weak Weak Very weak Strong

8 Which radiation is made up of alpha particles?
9 Which radiation is gamma rays?
10 Which radiation is made up of neutrons?
© 11 The radius of an atomic nucleus is given by

=15 :
X A°

R=12X10
where A is the mass number of the nucleus.
a) Calculate the density of a nucleus of barium ('3§Ba) in kgm=. (3)

b) Calculate the radius of a star that has the same density as barium,
if the star has a mass of 4 x 10 kg. (3)

B 12 Describe an experiment you would carry out to investigate whether or
not the intensity of gamma radiation emitted from a source obeys an
inverse square law. (6)

B 13 A strong source of gamma radiation is used in a hospital to treat
a patient suffering from cancer.

Describe precautions that should be taken to safeguard the health of
a) the patient (2)
b) the radiographer who is administering the dose of radiation. (2)

" 14 The graph in Figure 10.19 shows how many ion-
pairs are produced per millimetre by an alpha
particle at each point of its track.

10 THE EVIDENCE FOR THE NUCLEUS

a) Suggest why the alpha particle produces more
ions per millimetre towards the end of its track,
just before it stops moving. 2)

192

b) Estimate the total number of ion-pairs produced
by the alpha particle along its 50 mm track.  (2)

lon-pairs formed per mm

JRERESES e e s
c¢) Each ion-pair requires about 30eV of energy to /D 10 20 30 40 50 60
form. Use this information to estimate the initial  endof distance from the end of track In alr/mm

energy of the alpha particle. (1) ek
Figure 10.19




1 15 A source of gamma radiation is placed 0.15 m away from the
window of a Geiger—Muller tube, which has an area of 3.2 x 10~*m?.

The GM tube records a corrected count rate of 38 Bq.

a) Assuming that the gamma rays are emitted uniformly in all
directions, estimate the total number of gamma rays emitted per
second by the source, if the GM tube only detects 1 in 500 of the
gamma rays that enter the tube. 4

N
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b) The gamma rays have an energy of 1.2 MeV. Calculate the energy
emitted by the source each second. Express your answer in joules. (2)

¢) Estimate the count rate measured by the GM tube if the source is
moved to a distance 0.10m away from the window. (2)

© 16 Figure 10.20 shows the paths of two alpha
particles that are deflected by a nucleus N. At
its closest point, alpha particle A is a distance
r away from the nucleus and particle B is a
distance 2r away from the nucleus.

a) The forces on the two particles are electrical.
How do the size of the two forces compare

at positions A and B. (2)
Figure 10.20
b) Explain, by looking at the shape of the tracks,
which particle is moving faster. (2)

17 The nuclei of atoms may be produced artificially in particle
accelerators by firing high-energy alpha particles at a target nucleus.
The equation below gives an example of such a reaction:

27 + 30

a) Copy and complete the equation to identify a particle that is
produced in the reaction. (1)

b) It is discovered that the reaction only takes place if the alpha
particles have energies in excess of about 10-12]. Use this
information to calculate the closest distance of approach of
the alpha particle and aluminium nucleus without it reacting. 3)

¢) Explain why the reaction does not occur for the lower energy
alpha particle. (1)

Stretch and challenge

18 An upper limit for the diameter of a carbon nucleus may be obtained
from data similar to Geiger and Marsden’. In an alpha-particle scattering
experiment, about 1 in 20000 alpha particles were scattered by more
than 150°. This is taken to mean that the particle had scored a ‘direct hit’
on the nucleus. The thickness of the carbon foil is 2 pm.

a) Given that the diameter of a carbon atom is 1.5 x 10-1%m, calculate
how many atoms thick the foil is.
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b) Assuming that the probability of an alpha particle making a direct
hit on the nucleus is proportional to the thickness of the foil, deduce
what fraction of the alpha particles would have been scattered by an
angle of 150° or more, had the foil been one atom thick.

¢) Now calculate the ratio of the cross-sectional area of the nucleus to
the cross-sectional area of the atom.

d) Hence work out the upper limit of the diameter of a carbon nucleus.
Explain why the nucleus is likely to be smaller than this estimate.



PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

® Unstable nuclei decay to more stable nuclei by the emission of alpha,
beta or gamma radiations. :

® An alpha particle is a helium nucleus.

® A beta particle is a fast electron.

® A gamma ray is a high-energy photon of electromagnetic radiation.

® The atomic number of the nucleus is the number of protons in the
nucleus. This is also known as the proton number.

® The mass number of a nucleus is the sum of the numbers of protons
and neutrons in the nucleus. This is also known as the nucleon ‘
number.

@ Radioactive decay is a random process. We cannot predict that
a particular nucleus will decay, but we can predict that a certain
fraction of nuclei will decay in a given time.

@ Radioactive decay is described by the term "half-life". In one half-life,
half of a sample of radioactive nuclei will decay; in another half-life,
half of the remaining nuclei will decay.

@ Radioactive isotopes have a wide variety of uses in industry,
agriculture and medicine.

@
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 Explain the meaning of each of the following terms:
al half-life
b) random
c] radioactive isotope.
2 The radioactive isotope niobium-89 has a half-life of 2.0h. At 6 p.m.

a sclentist has a sample of 1.6g of niobium-89. How much of this
isotope will be left at midnight?

3 Copy and complete the following equations that describe radicactive
decays:

- ;
a) %%Po — iPb+ 5He

1T*reE+¢FE+SFFsrFANEEN
dssdvtttatansann

IR RTIERTEL+FAFFSIFANAENDN

b) '¥Ba - La+ fe+?
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4 Name and explain one practical use of a radioactive isotope.
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Spontaneous and random nature of
radioactive decay

The emission of radiation from a nucleus is both spontaneous and random.
This means that we cannot tell when a particular nucleus will deca}-*.
A nucleus could remain unr:hanged for millions of years before suddenl}r



it decays by emitting a radioactive particle. Nuclei decay independently of
each other, and their behaviour is not affected by the proximity of other
nuclei or external factors such as temperature and pressure.

A good model to help us understand radioactive decay is to throw lots of
dice. Imagine you have a tray with 600 dice on it and you throw them all
on to the floor. Each die has six faces, so there is a probability of & for each
die to land up as a 6. Therefore, on average, we expect 100 dice to turn up
as a 6. However, because it is a random process, that number will rarely be
exactly 100. If we repeated the process of throwing 600 dice lots of times,
we would see quite a variation around that average of 100 dice turning up
with a 6 on top.

When we consider the decay of a sample of radioactive material, we can
apply statistical processes effectively because there is a very large number

.................................................................................

Decay constant The decay constant A is

the probability of a nucleus decaying per of nuclei involved in the process. We use a decay constant A to describe
unit time. nuclear decay: A is defined as the probability of one nucleus decaying per
unit time.

This definition of A leads to the equation:

A = fractional change in the number of nuclei, ——, per unit time Af

or
AN/N
At

}I.=

The significance of the minus sign is that the number of radioactive nuclei
in a sample of material decreases with time. The unit of 4 is sl Considering
the dice model again helps you to understand the meaning of 4. In the dice
‘decay’, 4 is £ per throw — every time the dice are thrown, (on average) < of
them turn up a 6.

The equation above may be written in this form:

In words, we can say that:
number of nuclei decaying per second = decay constant x number of
nuclei

This leads to the definition of the activity of a radioactive source, which is
the number of emissions per second (of alpha, beta or gamma radiations):
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Activity The activity of a radioactive source
is the number of disintegrations per second:
A=AN
A=IN
where A is the activity of the source. The unit of activity is the becquerel

(Bq), which is a rate of decay of one disintegration per second.
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EXAMPLE
The activity of lanthanum 2 Calculate the activity of a 40 g sample of lanthanum.
| : Answer
The el t lanthanum has two naturall
e e e g g g The number of atoms in 40g of lanthanum is

isotopes. Lanthanum-139 is the more abundant
isotope and makes up 99.911% of naturally occurring 40 .

| W . i 6x 108 x — =173 x 107
lanthanum. The remaining 0.089% is the radioisotope 139
lanthanum-138, which decays by the emission of
beta particles. Lanthanum-138 has a decay constant
of 2.0x 10-"%s1: and 139 g of lanthanum contain

However, only 0.089% of these are lanthanum-138.
So the number of lanthanum-138 nuclei is

%
&
S
&
=
a
5
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S

6 x 10% atoms. |
| | | N=1.73 x 102 x 2007

Use the information above, and your prior knowledge, 100
to answer these questions. =154 % 10%°
| What is the difference between a nucleus of 50

lanthanum-13% and a nucleus of lanthanum-138.
Answer A= AN
Lanthanum-139 has one more neutron in the nucleus. =2.0x%x107" 571 % 1.54 % 10%

[Lanthanum-139 has 57 protons and 82 neutrons.

Lanthanum-138 has 57 protons and 81 neutrons.] =31Bg

TIP

Remember, 1 mole has about 6 x 1023 atoms in it. If the atomic mass of
an atom is 30 [for examplel, then 30g contains 6 x 1023 atoms.

O

s JECAY CcONStant and half-life
i MATHS BOX

Earlier you met the equation
A differential equation is solved

L L2 2 L L3 |
¥+ EIEEAS

: by separating the variables and ~ ay —AN

: integrating both sides. So doing At

¢ this gives : where N is the number of nuclei in a radioactive sample, 4 is the decay

: constant for a nucleus, and AN is the change in the number of nuclei in
d_N. = AN time Af. When both quantities AN and At tend towards zero, this equation
e can be written in the differential form:

e | aw

f en W L

¢ Note that the limits of the

£ ; This differential equation has the solution
- integration are from N, to N for

i the nuclei and from O to ¢ for the N=N, &M
: time. Then working through the
i maths gives : where N is the number of nuclei in the radioactive sample at time ¢,
i W r ¢ and N, is the number of nuclei at time t = 0, which is the time that we
[In N ]Na =[-At], : start to observe the sample of nuclei. You do not need to know how to
N : reach the solution to the equation (but the Maths box shows interested
ln[—]= —At i mathematicians how to do it). However, you do need to be able to use
Ny i the equation N =N, e™ to be able to predict the number of nuclei at
{ N _a { any time.
N, :
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EXAMPLE

Using the radioactive decay equation So there will be about 9 x 10" nuclei left after 10s.

1 A sample of radioactive material contains 100 x 1012 2 Draw up a table of the number of nuclei at intervals
nuclei. The nuclei of 205 up to a time of 160s.

have a decay constant of 0.01s7". Predict the number

of nuclei remaining after 10s. e :
Answer The numbers are shown in Table 11.1. Check them
for yourself.
N= NDE'_M

=100 x 1012 o e_um % 10 Table 11.1

— 10 x &0 20 40 60 80 100 120 | 140 | 140
—9x10" 0.818 | 0.670 | 0.548 | 0.449 | 0.347 | 0.301 | 0.244 | 0.201

181.8 | 8670 |54.8 |449 |387 (300 |24.6 |20

TIP

Summary of useful equations:

— — et 1o e e e84 et {8 St e e -y St e 4 At
il oll S84 | H | 1 | 1 1
A e ! i ] } | } | 1 i |
e 1 i 1 H { 1 1 | 1
M3, RUEEEEAMMEIMEEER N B | I }
1 § |
T ' ¥
| 1 I | 1
' i t t H i i i 1 i | H
| 4 1 1 1 1
1 | I
1

Rate of decay %=—AN

nuclei/1012

Activity A= 1_N= AN
t

Decay equation N =Nye ™
ln2 li I‘;, ; 588

T
‘ - | | | | |
Half-life == 20 40 80 80 100 120 140 160 180

Figure 11.1 The graph shows the exponential decay of a sample of radicactive nuclei.

The numbers in Table 11.1 have been used to plot a graph of the number

of nuclei against time; this is shown in Figure 11.1. This graph shows an

exponential decay, and it has the following important qualities.
. @ The number of fluclei gecremasgs by the same tjraction' in the s time
for half of a sample of radioactive nuclei to mter‘j.fal. In particular, in this case, Fhe hal [-I'llﬁ‘, Ty, 15 69s. This means
decay. that in 69s the number of radioactive nuclei decréeases from 100 x 1012

to 50 x 10'2, In a second half-life of 69s that number halves again to
25 % 1032,

® The gradient of the graph at any point is —~AN. In the graph, the gradient
is drawn (blue line) at time t = 0:

100 x 10"
100s

= INAE

This is the same as
~AN=-001s"x%100x 10"

=-10" s'(Bg)
or the activity A.
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E'““"“”""”H”H'""HH""“””“"HHHE ® The third poin.t we can note is that the half-life is connected to the deca}?
::?ATHSY BkOX N— constant by E
: Ve can linK T, and 4 as tollows.
i We have . 1, =? &
3 8
N=N,e™ Since 4 = 0.01 s}, You can see that g
0.69  0.69 v
¢ After one half-life 1, , there will | T T=069s 32
' N . 2 : A 0.01s v
i be =2 nuclei left, so : =
: . More generall nect dib
: : g y we connect 1 and /4 by 3
| e In2 &
H NJ = I\‘Tﬂ @ * . T+ o~ n_ .
P2 : A ®
g 1 AL, ¢ The Maths box shows the theoretical derivation of this result. (You are not
= I :  expected to be able to derive this, but it shows interested mathematicians
! ¢ how it is done.)
2 :
In2=AT, _
In2 : [ EXAMPLE
S . | The decay of strontium-90

Strontium-90 is a radioactive nuclide that emits beta particles. It has a
half-life of about 29 years. A school source of strontium-90 contains about
0.1pg of this radicisotope.

L] =
BEFFRag i i s FdF iR b b @ o@dF 3R bR @A &P P e Mo RPRAdPFReRb R an

1 Calculate the decay constant of strontium-90.
Answer
o2
g
B 0.693
29 x 365 X 24 x 3600 s

=76x1010 57

2 How much of this 0.1 pg sample remains after
70 years?
Answer

The fraction left after 70 years is found using
N _ _a
No

A time of 70yearsis t= 70 x 365 x 24 x 3600

=2.2x10%s. So
N _ A76x107 x 22 x10)
No
=e—1.£9
=0.172
So the mass left after 70 years is 0.19 x 0.1 g, that is, 0.019 pg.
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Electronic counter

Half-life of protac tinium Igak-pmf7.\ Gleger-Muller Tube and data logger

: Figure 11.2 shows an plastic bottle ' & o,
experimental arrangement organic layer —-
for determining the half-Life L
of a protactinium isotope in a aqueous layer —— i
school laboratory. Protactinium with uranium salt n@__..-

Is produced in the decay of
uranium, which is dissolved into
the lower aqueous layer shown
in the bottle.

By shaking the bottle vigorously, protactinium is
extracted from the aqueous layer and dissolved into
the organic layer. The organic layer rapidly separates
out as a layer on top of the aqueous layer. The
protactinium in the organic layer decays.

: The decay of protactinium can then be detected by the
: Geiger-Muller tube placed near to the organic layer at
i the top of the bottle.

The results in Table 11.2, for determining the half-life
i of protactinium, show the count rate measured by the

Table 11.2

0 8.8
10 7.3
20 6.3
30 6.2
40 5.8
50 48
40 4.6
70 4.3
80 4.2
90 4.0
100 3.
110 2.8
120 2.5
130 2.4
140 2.4
150 1.9
160 2.0
170 1.8

Figure 11.2 The apparatus for determining the half-life of protactinium.

data logger over a period of time. For safety reasons,
the count rate from the protactinium is low. This causes
us some problems, because a low count rate is subject !
to random fluctuations, which can make it difficult to i
determine the half-life accurately. The background
count was measured to be 20 counts per minute.

1 Copy the table and add another column of values
for the count rate corrected for the background
count,

2 Plot a graph of corrected count rate against ;
time and use it to determine the half-life of the i
protactinium isotope. Comment on the accuracy of |
your answer.

The activity of protactinium can be written in the form

A=At
where A is the activity at time t, and Aj is the activity
at t =0, the start of the experiment. By taking the
natural logarithm of both sides of the equation,
we get

InA=1lndy;— At

So if we plot a graph with InA on the y-axis against t
on the x-axis, the gradient of the graph is -4.

3 Construct a table of lnA (ln of the count rate) and
time.

4 Plot a graph of InA against t, and use it to
determine the decay constant and half-life of
protactinium. Comment on the accuracy of your
answer,
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al il Calculate the decay constant of this nuclide.
ii) Calculate the half-life of this nuclide.

b) How many atorns were there in the original
source?

! TEST YOURSELF P g
E 1 When a quantity decays exponentially, it decreases 4 A radioactive source, emitting y-rays, is placed : g
: by aconstant fraction in a chosen time interval. 5cm from a radiation detector, which has an area 2
: Usethe datain Table 11.1 to show that the of 0.4 cm?. The detector records a count rate of S
i fractional decrease every 20s is the same. 70 counts per second. The radionuclide contains o
: 2 Cadmium-109 is a radioisotope that emits low- 4 x 10" atoms. -
: energy gamma rays. The differing penetration of al Calculate the total number of emissions per : 2
! these gamma rays through metal alloys allows the second from the source. =
i metals to be sorted into different types. The half- b] Calculate the half-life of the radionuclide. P
; life of cadmium-109 is 453 days. 5 The activity of 2N atoms of element P is four times §{ 3¢
: al Calculate the decay constant for cadmium-109. the activity of N atoms of element Q. Element Q has : Q
: bl Asource of cadmium-109 has a mass of 80 pg. a half-life of 100 years. g
: i} Calculate the number of atoms in the al Calculate the half-life of element P. P =
sample. b) Calculate how much of each element will P R
‘ ii} Calculate the activity of the sample. remain after : g
iii) Calculate the activity of the sample two i} 200years - E
§ years after its purchase. ii) 50 years. i

§ cl Discuss the safety precautions necessary when 6 Describe how you would determine the half-life of a §

3 this source is used in an industrial site. nuclide [which is of the order of a few minutes)ina i

¢ 3 The activity of a radioactive source falls from school laboratory. Credit will be given for the clarity

E 6 x 104Bq to 2 x 104Bq in 45 minutes. of your explanation and the correct use of English.
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O Radioisotopes, their half-lives and their
uses

Radioisotopes have many applications. They are used widely in the fields of
medicine, agriculture and industry. Carbon-14 is used to date archaeological
remains, and argon-40 is used to date rocks. Radioisotopes may also be
used as a small source of power. You are not expected to know all the
possible uses of radioisotopes, but you do need to understand the principles
behind them. The Test yourself questions provide some examples.

Importance of half-life and radiations

When choosing a radioisotope for a particular purpose, careful
consideration must be given to its half-life and the radiations it emits.
Carbon-14, with a half-life of 5700 years, is well matched to dating
human settlements a few thousand years old. Argon-40, with a half-life of 201
1.3 billion years, is well suited to dating igneous rocks. However, many
isotopes with short half-lives are also useful because they produce a high
activity, from a small quantity of material, over a short period of time.

Because
0.693N

A=AN=

X
)

the activity A is high if the half-life is short. If the half-life is long, more
atoms (larger N) are needed to produce a high activity.
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Radiotherapy

In the UK, because we now live longer (our life expectancy is around 80
years), cancer has become the second biggest cause of death. Therefore,
considerable research has been carried out into the use of radioisotopes to
cure cancer.

Figure 11.3 shows how beams of gamma rays from a source of cobalt-60
can be directed towards a tumour. The hazard of directing gamma rays
from outside the body is that the rays also pass through healthy tissues,
which could be damaged by the radiation. To reduce the impact of the
gamma rays on healthy tissues, the source is rotated around the body, but
always directed towards the tumour. In this way the tumour receives a
high dose, and healthy tissues receive a low dose, from which the healthy
tissues can recover.

Tumours are also treated by short-range internal radiotherapy (Figure 11.4).
Under an anaesthetic, a surgeon can place a small needle or wire of

a radioisotope into the tumour itself. The radioisotope emits beta
particles, which are strongly ionising and short-ranged. Now the
radiation is directed straight into the tumour, and the beta particles

do not penetrate as far as any healthy tissue. When the correct dose
has been administered, the wire is removed. Alpha
radiation is also used in targeted alpha therapy (TAT).
For example, leukaemia (which is cancer of the blood)
can be treated in this way: bismuth-213, an alpha
emitter, is attached to an organic compound, which
then adheres to cancerous cells.

Short-half-life alpha emitters can be used as a source
of energy. Alpha particles that are emitted inside a
solid material are self-absorbed — this means that the
alpha particles cannot escape through the solid. The
particles release their energy to the material and it

Figure 11.4 These small implants emit beta radiation heats up.

directly into cancerous tumours.

Number of atoms = 5%5 % 6% 102 = 2.86 x 102",

EXAMPLE

The power emitted by polonium-210 S0

Inside a lunar landing vehicle, 1g of polonium-210 was A=AN

used as a heat source to keep the components warm. . 0.693 % 2.86 x 102"

Polonium-210 has a half-life of 139 days and emits 139 x 24 %3600

alpha particles of energy 5.3 MeV. = 1.5 x ‘FUMBq

| Calculate the activity of 1g of polonium-210. 2 Calculate the power, in watts, emitted by this material.
Answer Answer

Power = A x energy of each particle
=1.65x 1051 x 53 x 104 x 1.6 x 10717
= 140W
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al Explain why this isotope is
i} most effective for the patient
ii} safe for the surgeon once the isotope is

inside the patient’s body.

b] A surgeon implants a 0.02mg sample of
ruthenium-106 into a patient. The surgeon
has calculated that the patient’s tumour must
receive a total of 2 x 10'? beta particles from the
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TEST YOURSELF

7 Table 11.3 gives information about some
radioisotopes. Use your knowledge of radioactivity
to answer the questions that follow about nuclear

medicine,

Table 11.3

Isotope

RIEENFSFFFFAREERE A &

| Radiatinn emitted

Bismuth-213 alpha 45 minutes source, Calculate for how long the implant must
FITET ' be left inside the tumour. :
Iridium-192 beta, gamma 74 days : , :
_ 3 y. 10 The Haraldskaer woman is the body of a
wobat-s0 gamms 5 jears woman that was found in an excellent state
Uranium-233 alpha 150000 years of preservation in a bog in Jutland, Denmark.
Radon-224 beta 6 minutes Radiocarbon dating revealed that she was
Technetium-99 | gamma L Riube buried a long time ago. A 0.1g sample of =

modern carbon has an activity of 90 counts
per hour. 0.1g of a sample of carbon from the
Haraldskaer woman has a count rate of 66
counts per hour. The half-life of carbon-14 is
5730 years.
a) Calculate the age of the Haraldskaer woman.
b} Explain why radiocarbon dating is only
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Radiation is used in hospitals for many purposes.
Choose an isotope from the table for each of the
purposes shown below, explaining your choice. In
your answer, explain why the radiation is effective
and how your choice protects patients and hospital
workers.
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a) To sterilise plastic syringes in a sealed plastic
bag.

b) To use as a medical tracer that is injected into
the body and then detected outside the body.

¢l To be used in the form of a wire implant to treat
prostate cancer.

d] To be used in a chemical to treat leukaemia.

8 Chromium-51 has a half-life of 27.7 days. It

can be used in the form of sodium chromate

to measure the volume of blood in a patient. A

sample of 10ml of the patient’s blood is labelled’

with this tracer and injected back into the
patient’s bloodstream. The activity of the injected
sample is 7.40MBq.

a] Twenty minutes later 10 ml of blood is
removed from the patient and its activity is
found to be 15.7kBq. Determine the volume of
the patient’'s blood. State any assumptions you
have made.

b) Forty-eight hours later a further 10ml sample
of blood is taken from the patient.

i) Predict what activity you expect to measure.
ii) In fact, the doctors measure an activity of
14.5kBg. What conclusion can you draw?

The radioisotope ruthenium-106 is a beta emitter

with a half-life of 367 days. It is used in short-range

internal radiotherapy.

accurate for objects no older than about
60000 years.

11 Voyager 1 is a spacecraft that was launched to

explore the outer Solar System on 5 September
1977. It is powered by three radioisotope
thermoelectric generators, which in total
produced about 470W of electrical power when
the spacecraft was launched.

Energy from the radioisotope is converted to
electricity with an efficiency of 35%. The isotope
in use is plutonium-238, which has a half-life of
87.7 years. It emits alpha particles with an energy
of 5.5 MeV.

a) Calculate the energy of an alpha particle in
joules.

b) i} Calculate the activity of plutonium-238 at the

start of Voyager's mission.,
ii) Calculate the mass of plutonium-238 at the
start of Voyager's mission.

c] Voyager's instruments will stop working when
the electrical power falls to 320W. Calculate
the date when Voyager will no longer be able to
contact Earth.

dl Americium-241 is a radioisotope with a half-life
of 432 years. Why was this isotope not chosen to
power Voyager 17
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Nuclear instability

Every element in the periodic table has many different isotopes. When all
these isotopes are added together, they provide a total of several thousand
different nuclei. However, most of these isotopes are unstable, and they
decay by the emission of radiations to become more stable. In total, there
are only 253 stable nuclides. All other nuclides decay, and their half-lives
vary from billions of years to fractions of a microsecond.

160 - . - e e e L.

140 ~ : :

IS
120 5

Figure 11.5 shows a chart of nuclei and their stability.
I The neutron number N is plotted on the y-axis, against
atomic (or proton) number Z on the x-axis. The least stable
nuclei, with very short half-lives, are shown in blue, then
the colours green, yellow and red show increasingly stable
nuclei. The stable nuclei form the black line down the centre
of the chart.

l-lt

The highest atomic number for a stable nucleus is 82 — this
is the element lead. The element above lead in the periodic

table is bismuth. Its isotope bismuth-209 is nearly stable,

100

but it decays by alpha emission with a very long half-life of

2 x 10'? years — the age of the Universe is 1.37 x 10'°years.

a0 1

Uranium-238 has the highest naturally occurring atomic
number of 92. The isotope uranium-238 decays with a half-

life of 4.5 billion years, which is about the same as the age of

&0

our Solar System.

40

The chart in Figure 11.5 shows that, for small values of N and

Z, stable nuclei have roughly equal numbers of protons and

20—

neutrons. Examples of nuclei with equal numbers of protons
and neutrons include 3He, 'iC, YN, 'S0, {3si and $)ca.

However, as Z increases, the chart shows that the number

N

of neutrons becomes higher than the number of protons.

Z 20 40 60 80

Figure 11.5 A plot of neutron number, N, against atomic
number, Z. The stable nuclei form the black line down
the centre of the nuclides. Nuclei above the stable line

A uranium-238 nucleus has 92 protons and 146 neutrons.
The physical reason for this is that the electrostatic repulsion
of the protons becomes more significant as the nucleus grows.
This repulsive effect is balanced in a stable nucleus by extra

100

decay by B- dgcay: nuclei below the stable line can de cay neutrons, which p‘rov'lde extra attractive nuclear interactions.

by o, B* decay or K- capture.

O Decay modes of unstable nuclei

Daughter nucleus The product of the decay
of a radioactive (‘parent’) nucleus.

You will recall from earlier work that we describe a nucleus in terms of
its atomic number Z, which is the number of protons in it, and its mass
number A, which is the sum of the protons and neutrons inside the
nucleus. This is written as follows:

Inass or nucleon number — A X ¢ symbol for the element
atomic or proton number — Z

When an unstable nucleus decays, it emits radiations, which change the
nucleus. So the numbers A and Z may change. When Z changes, the symbol
X changes too, as a new element has been formed. This product of the
decay is called a daughter nucleus.
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Alpha emission
An alpha particle, a, is a helium nucleus, so it has the symbol 1He. A typical
alpha decay is described below for the a-emitter americium-241:

241 237 ¥
osAm — “SNp + ,He

Both the mass number and the atomic number must be conserved. The
new element formed has 93 protons, which is neptunium. Alpha decay is
very rare for elements with Z less than 82. If you refer to Figure 11.5, you
can see that a decay occurs in heavy nuclei that are rich in protons (which
means they are to the right of the curve).

The process of alpha emission may be represented on a plot of nucleon
number, A, against atomic number, Z (see Figure 11.6).

Beta emission
A beta particle, B, is a fast-moving electron. It has a charge of -1, and it
is very small in comparison with a proton or neutron. A beta particle is

described by the symbol _e. (The electron mass is about 53 times that of
a proton or neutron, so this has a negligible effect on the mass of an atom.)

The isotope nickel-63 is a beta emitter and its decay is described below. You
will recall from last year’s work that an antineutrino, ¥, is also emitted with
the beta particle. This particle has virtually no mass but it does have energy:

630y _ 63 0., =
sgNL— oCu+ _e+V

When the electron leaves the nucleus, its atomic number increases by 1,
and copper-63 is formed. Figure 11.7 shows the change graphically.

If you refer to Figure 11.5, you will see that p decay occurs in elements to the
left of the line of stability. These elements have too few protons to be stable.
Each of the decays tends to move the nucleus towards the line of stability:

Positron emission and K-capture

Nuclei that are rich in protons, with an atomic number less than 82, tend to
decay by positron, *, emission or by K-capture. A positron is the antiparticle
of an electron. A positron has the same mass as an electron, but has a positive
charge. A nucleus that decays by positron decay is iodine-124:

1247 _ 124 0,
s31—> " let+ ety

In positron decay, the atomic number decreases by 1. This is shown

graphically in Figure 11.8. A neutrino, which is the antiparticle of the

antineutrino, is emitted together with the positron.

However, iodine-124 also decays by K-capture. In an atom, electrons that
orbit the nucleus in the lowest level are in the 'K shell’. These electrons are
very tightly bound to the nucleus and actually spend some time inside the
nucleus itself. The nucleus can capture such an electron, so that a proton is
turned into a neutron. K-capture in iodine-124 can be described as follows:

124 0 124
salt e — le+v

Another nucleus that has two modes of decay is potassium-40; this isotope
can decay by K-capture or by B-decay (Figure 11.9).
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Gamma emission

When a nucleus decays by a, f~ or B* emission or by K-capture, it is often left
in an excited state. This is similar to an atom being in an excited state, when an
electron is in a higher energy level. When an electron drops to a lower energy
level, a photon is emitted. Such a photon has an energy of a few eV or perhaps
keV in heavy atoms. Protons and neutrons can be left in a higher energy level
after a nucleus emits a radioactive particle. When the nucleon drops back to a
lower level, a photon is emitted. The energy of these photons is often measured
in MeV, and these high-energy photons are the gamma rays that we detect.

In most examples of radioactive decay, the excited nucleus releases its ener
Metastable state When an atom or nucleus P ¥ gy

is in a metastable state. it exists for an very quickly, and gamma rays are emitted shortly after an @, p~ or p* particle
extended time in a state other than the (with a half-life shorter than 10~°s). When the half-life for gamma emission is
system’s state of least energy. much more than 105, we say that the nucleus is left in a metastable state.

The half-life for metastable states varies from seconds to many years.

To distinguish a metastable state from a stable state, we use the letter ‘'m’,
For example, silver-107m is the metastable state of the common isotope
silver-107. These states are also distinguished as shown below, when we use
atomic and mass numbers:

@ silver-107 in its ground (stable) state  '37 Ag

® silver-107 in its metastable state = Ag

Metastable technetium-99m

One metastable radioisotope is worth a separate comment. Technetium-
99m is a decay product of molybdenum-99, which can be produced in
nuclear reactors. The relevant nuclear equations are as follows:

oMo — PRTc + Je +v (half-life 66 hours)

mTe — Ulc+ ¥ (half-life 6 hours)

= The half-life of molybdenum-99 is long enough for it to be transported

o to hospitals, where it is then put to good use. The technetium-99m is

= chemically separated from the molybdenum and it is used as a diagnostic

E tracer. The short half-life of 6 hours makes technetium-99m ideal; it

< produces a relatively high activity but for a short time.

=

< g TEST YOURSELF

= : 12 a) Explain what is meant by a nuclear metastable 14 This question refers to the plot of neutron

el s state. number against proton number shown in -
b) Explain the term "K-capture'. Figure 11.5.

:E 13 Cgmplete the fot[awing nuclear equaticns; a) Explain Why heavy nuclei have more neutrons :
1 256 7 4 than protons.

a) ?LF —h 1U1Md + ?HE bl

Explain why some nuclei are B~ emitters
whereas others are B* emitters.

Neptunium-237, %INp, forms part of a decay
series. By a series of a and B~ decays, the

stable isotope EggBi is produced. In this series of
decays, a decay occurs seven times and B~ decay
occurs n times. Calculate n.

bl \iiFm — 2t + JHe 15
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c) zégﬁut s ;Pn -+ E%e-r-v

d) %r > Pt + le+V
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Practice questions

1 Samarium-147, '¥Sm, decays by alpha emission. Into which of the
following isotopes does it decay?

A P C 'GPm
B 'LNd D 'YEu
2 The half-life of magnesium-28 is 21 hours. The decay constant for this
isotope is
A 4x107s! C 9x 10!
B 6x 10-*s! D 5% 10~ &

3 lodine-123 has a half-life of 13.2 hours. A solution of sodium iodide is
prepared for the investigation of a patient’s thyroid gland. The solution
is to have an initial activity of 200kBq. The number of iodide ions in the
solution is

A 7.9x10° C 14x10Y
B 9.6 x 10° D 23x10Y

4 Accurate radiocarbon dating can be done using a mass spectrometer.
This allows the ratio **C/**C to be determined with great precision.
In a modern sample of wood, the M/ 12C ratiois 1.25 x 1072, In an
ancient piece of wood, the ratio is 0.47 x 10712, The half-life of *C is
5700 years. The age of the wood is

A 650 years C 7500 years
B 7000 years D 8000 years
Use the following information to answer questions 5 and 6.

Tellurium-128 is a beta emitter, with the longest half-life known, measured
at 2.2 x 10%* years.

5 The number of atoms of tellurium-128 in a 1 g sample is

A 9.7 x 102 C 4.7 x 10%
B 3.4 x10% D 6.0 x 10%2
6 The activity of a 1 g sample of tellurium-128 is
A 5x 101 Bq C 0.2Bq
B 4x 10-Bq D 24Bq

7 The isotope plutonium-238 is to be used as the energy source for a space
satellite. This isotope emits alpha particles of energy 5.5 MeV. The power
required for the energy source is 18 W, The minimum activity necessary
for the plutonium source is

A 7x10°Bq C 6x10"Bq
B 4x 101°Bq D 2x10"*Bq
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Use the following information to answer questions 8 and 9.

Magnesium-27 is a beta emitter that decays to
aluminium-27.Figure 11.10 shows the energy
levels within the nucleus for this process. There
are two paths possible for this decay, with
different energjes associated with the beta decay.
After the beta decay, the aluminium nucleus is left
in an excited state. The nucleus reaches its ground
state by the emission of gamma rays. The energy

levels in the aluminium nucleus are also shown in

the diagram. ground
state

Mg-27

1.01MeV

0.84MeV

8 The magnesium-27 energy level lies above the  Figure 11.10
ground state of aluminium-27 by

A 522 MeV C 2.61MeV
B 2.78 MeV D 2.44MeV

9 The wavelength of the gamma ray emitted when the nucleus falls from
its second excited level to the first excited level (path 1) is

=13 =11
A 66x 107" m C84x10™"*m Mo-00

B 7.3x10°2m D 78x10'!m

10 Molybdenum-99 decays by beta decay to
technetium-99 (Figure 11.11). The isotope Tc-99 E
technetium-99 is a metastable state, which decays to
its ground state by the emission of a gamma photon, Y v-photon

with a half-hife of 6 hours. ground
Eg state

The wavelength of the gamma photon is 9 x 1012 m. Figure 11.11
The energy difference E; — Ej is

A 0.05MeV C 0.18MeV
B 0.14 MeV D 1.2MeV

8 11 The isotope of uranium s, decays into a stable isotope of lead,
2o Pb, by means of a series of o and B~ decays.
a) In this series, o decay occurs eight times and p~ decay occurs
x times. Calculate x. (1)

b) The half-life of uranium-238 is 4.5 x 10 years, which is much
longer than all other half-lives in the series.

>
S
Ll
(]
w
=
-
a
&
o
<
o
F
F

A rock sample when formed contained 6.0 x 102 atoms of %3 U

and no g, Pb atoms, At any given time, most of the atoms are either

25U or “ P, with a negligible number of atoms in other forms in the
decay series.

i) Calculate the activity of the uranium when the rock was first
formed. (2)

ii) Sketch a graph to show how the number of atoms of 23.£U
and the number of *3Pb atoms vary with time over a
period of 10 x 109 years after the rock’s formation. )



iii) At atime t, there are three times as many 33U atoms as
there are “33 Pb atoms. Use this information to calculate

the age of the rock. 3)

™ 12 The age of a bone found in a burial site can be calculated by
comparing the radioactive decay of '¢C from living bone with
that of bone from the burial site.
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a) '¢C decays by p- emission to an isotope of nitrogen. Write a
nuclear equation for this decay. (1)

b) A sample of 2.0 x 10?2 atoms of modern bone was prepared for
investigation. In modern bone, 1 in 10'? of the carbon atoms
is the radioactive isotope '+C, which has a decay constant of

BRI
i) Explain what is meant by ‘decay constant’, (1)
ii) Calculate the half-life of 1§C. (3)

iii) Show that the activity of the '} C in the modern bone is
about 0.08 Bq. (3)

¢) A sample of 2.0 x 10% atoms of the bone from the burial site
was found to have an activity of 0.051 Bq. Calculate the age

of the bone. (3)

" 13 Radioisotopes are frequently used to treat patients who are ill.
Iodine-131 is a B~ and y emitter, which can be used to treat overactive
thyroid glands. When a patient swallows a dose of '.]1, it is absorbed
into the blood, then concentrated in the thyroid gland. The isotope then
begins to destroy some cells in the thyroid gland.

a) Write a nuclear equation for the decay of iodine-131 to

xenon (Xe). (1)
b) Explain how the iodine destroys cells in the thyroid gland. (2)
¢) Radiation from the iodine can be detected outside the body:

Explain how this is possible. 2)
d) The half-life of }11 is 8 days. What fraction of the original

number of atoms will have decayed after 32 days? 2

e) A dose is prepared for a patient 48 hours before it is swallowed.
The doctors have calculated that an activity of 900kBq is the
correct dose for the patient at the start of the treatment.
Calculate the activity of the sample when it is prepared. 3)

B 14 Chromium-48, 3,Cr, is a short-lived isotope, which decays by K-capture
and the emission of a y-ray to form an isotope of vanadium, V.

a) Write a nuclear equation for the decay of 3, Cr. (1)

b) A car manufacturer wants to run tests to measure the wear
on a cylinder wall due to the piston movement. A sample of
chromium-48, which has a half-life of 22 hours, is used. A very thin
layer of the radioactive source is placed on the inside wall of the
cylinder and the engine is run continuously. A detector is placed
outside the cylinder to measure the count rate.



i) Explain why it is possible to monitor the count rate outside

the cylinder. (1)

ii) Explain why an isotope with a short half-life is suitable for
this trial. 2)

iii) The count rate was measured to be 450 counts per minute
at the start of the trial. Calculate what count rate you would
expect after 40 hours. (3)

¢) The count rate was actually measured to be 115 counts per
minute. Calculate the fraction of the chromium worn away
during the trial. (2)

B 15 Curium-244, **Cm, decays by the emission of an a-particle to
06 ye Y P
plutonium, Pu. The radioisotope has a half-life of 18 years.

a) Write a nuclear equation to describe the decay process. (1)

b) To generate electricity in a submersed vessel, 20g of >3 Cm is to be
used as a heat source.

i) Calculate the number of atoms of curium-244 in a
sample of 20 g. (2)

ii) Calculate the activity of a 20 g sample of curium-244. (2)

iii) Calculate the maximum power available from 20 g of
curium-244. It emits alpha particles with energy 5.8 MeV. (3)

iv) Calculate the maximum power available after 36 years. (1)

' 16 The table lists some of the isotopes of argon, their half-lives and the
mode of radioactive decay:.

Isotope %Ar ?’gﬁkr ?gﬁxr ?;Ar ?;Ar ?gAr ﬁg.ﬂ.r ngr ‘{%Ar

Q Half-life | 0.8s | 1.8s | stable | 35d stable | 269y |stable | 1.8h |33y
fd Decay |[B* |B° K B BB

"

E a) ‘.Explgin what is meant by the following:

é i) isotope (1)
E ii) half-life. (1)
f b) Calculate the decay constant of 73 Ar. (1)

¢) Suggest why some isotopes decay by B* emission and others by
B~ emission. (2)

d) Atoms that are close to one another in the periodic table include
155 165, 17Cl, 1gK and 53Ca. Write nuclear equations for the following

decays. (3)
i) i’gAr

1) lAr

fii) 1Ar



B 17 The isotope *3, U has a half-life of 4.5 x 10° years. Explain how it
is possible to calculate the half-life of such an isotope by measuring
its activity. (6)

Stretch and challenge

18 A nuclear scientist is investigating the activity of two samples of
material, P and Q. Sample P has N atoms in it and a half-life of
300 days. Sample Q has 2N atoms in it and a half-life of 150 days.
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a) Compare the activities of P and Q.
b) Calculate how long it will be before P and Q have the same activity.

19 A radioactive sample is known to contain two different radioactive
elements. The sample was placed in front of a GM tube and counter,
and the results shown in the table were obtained. The results have
been corrected for background radiation.

Time/min Count rate/s™
0 800
2 511
4 352
b 261
8 205
10 166
15 109
20 79
25 23
30 37
35 27
40 19

By plotting a graph of In(count rate) against time, deduce the
half-life of each of the elements present in the sample.

20 A radioisotope with a half-life of 24 h is used as a tracer in the human
body The body excretes the tracer with a half-life of 36 h. A doctor
monitoring the activity of the tracer at a point close to the body records
an activity of 100 Bq when the tracer is first injected. How many hours
later does she record an activity of 25Bq?




Nuclear energy
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PRIOR KNOWLEDGE

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

@ The atorn includes a central positively charged nucleus orbited by
electrons [Figure 12.1).

orbits
alectron —s«¢ =
proton Q.C[;— nucleus
neutron €
e
Figure 12.1

@ The radius of a nucleus is proportional to A7, where A is the nucleon
number.

® Fission occurs when a nucleus splits into two or more smaller parts.

® Fusion occurswhen two nuclei join to form a nucleus of a different
element.

@ In an elastic collision, kinetic energy is conserved. In a non-elastic
collision, kinetic energy is not conserved.

@ Momentum is conserved in elastic and non-elastic collisions.

® |n a nuclear reaction, mass number and atomic number are conserved.

® One electronvolt 1eV=1.6x 10717 J,
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 Describe the similarities and differences between the structures of
oxygen atoms for the isotopes 1;0 and 130.

2 Write down one example of nuclear fusion, and two examples of
nuclear fission.

3 Compare the radii of these nuclei: zinc (64 nucleons| and iodine
(127 nucleons).

: o e _— ~
4 Write down the missing values in this equation: &C— YN+ Qe +7.
5 Write down the numbers of protons and neutrons in %33U.

& Convert 2.34MeV into joules.
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Since the formation of Solar System, energy from fusion processes in the Sun’s
core has driven life on Earth. Our understanding of how the Sun generated
energy developed only in the last century. When Pierre Curie announced that
radium salts release heat continually, physicists at the time suggested that
radioactive decay might be a source of energy in the Sun. Calculations and
analysis of elements present in the Sun proved this theory was wrong. Albert
Einstein proposed his famous equation, E = mc?, at the beginning of the



twentieth century, but it was nearly two decades later that Arthur Eddington
linked this equation with the generation of energy in the Sun. It took another
two decades for the main nuclear cycle in the Sun and the mechanism of
nuclear fusion to be described in detail, involving work by many physicists
including George Gamow and Hans Bethe.

Einstein, mass and energy

Einstein’s work on special relativity led him to publish a paper in 1905. This
paper suggested that energy and mass were different ways of expressing

the same thing — that energy and mass were interchangeable and linked
using the equation, E = m¢?, where E is energy (J), m is change in mass (kg)
and c is the speed of light, 3 x 1089ms~!. By 1932 his ideas were proved
experimentally by Cockeroft and Walton.
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So what does this equation mean? If we use a helium nucleus as an
example, the helium nucleus contains four nucleons — two protons and
two neutrons. The mass of the helium nucleus is very slightly smaller that
the mass of its separate nucleons.

As the helium nucleus forms, some mass is converted to energy and
released. Calculating the energy released when an alpha particle is formed
is straightforward:

® mass of a proton is 1.6726 x 10-27 kg
mass of a neutron is 1.6749 x 10-*"kg
mass of two protons and two neutrons is 6.6950 x 10-27 kg

measured mass of a helium nucleus is 6.6337 x 10-*"kg
mass difference is 6.13 x 10~*kg

Using E = mec2, the energy released when a single alpha particle is formed is
5.5 x 10712], or 34 MeV.

You can see that, in Einsteins own words, ‘a very small amount of mass may
be converted into a very large amount of energy and vice versa’.

Work must be done to overcome the very strong nuclear forces that bind
the nucleons together and pull a helium nucleus apart. The energy put in to
do this creates the extra mass.

A nucleus of Z protons and N neutrons has a mass that is less than the
mass of the protons and neutrons that make it up. This difference in mass
is called the mass defect, where mass defect Am = Zm, + Nm;, — My eus
measured in kg or atomic mass units (u).

Since mass and energy are interchangeable, we can also express mass as

energy. Binding energy is the energy that corresponds to the mass defect, and

is related to the mass defect using binding energy = mass defect x ¢%.

Binding energy is the energy that would have to be supplied to the nucleus
to separate it back into its constituent protons and neutrons. The binding
energy can be expressed in ] or in MeV.

Atomic mass unit

Single nuclei have such small masses that calculations are simpler if we use
a unit of mass called the atomic mass unit (u). An atomic mass unit is 1/12 of
the mass of an atom of 12C, or 1.661 x 10-%7 kg. Using E = mc?, a mass

of 1.661 x 10~*"kg is equivalent to 1.495 x 10-1°], or 931.5MeV.



Table 12.1 gives some particle masses in atomic mass units. These are quoted
to a large number of significant figures because their differences are small.

Table 12.1
Particle Mass/u | Mass/10-?7kg
Proton 1.00728 1.673
Neutron 1.00867 1,675
Helium nucleus 400151 6.647

O

TIP EXAMPLE
Be careful! Mass defect is the

. . ‘ Mass defect for oxygen
difference in mass between . - ‘
individual nucleons, and Calculate the mass defect (in u] and binding energy [in MeV) for an oxygen
their mass when they form a nucleus, ®0. The mass of an oxygen nucleus is 15.9949 u.
nucleus. If you compare two Answer

nuclei, you are calculating & The oxygen nucleus has Z = 8 protons and N = 8 neutrons, so the mass of

mass difference (Moiginal nuctous thie pavhicios thal Taks ke ™ aliclois s
I IM‘fir'lallnUI:lualus]. which is not the

same as mass defect. Zmg + Nmg =8 x 1.00728 u + [8x 1.00867u)=16.1276u
So the mass defect for oxygen is
Am = {Zmp s Nmn] =Mt
=16.1276u - 15.994%9u
=0.1327u

The mass defect is 0.1327 u.

Since 1u=931.5MeV, the binding energy is 123.6 MeV to four
significant figures.

S,
EXAMPLE
Mass difference between thorium and The difference in binding energy in J for the two
> radium nuch:'i IS gi?en _by . :
i Alpha particles are released during the decay of thorium mc? = 9.12x 10" kg x (3 x 10°m 571}
o to radium. Calculate the mass difference [in kg and the =8.21x 1073 (3 s.f)
- difference in binding energy for both nuclei [in J]. The This energy is transferred in the kinetic energy
L atomic mass of thorium is 232.038u and the mass of of the alpha particle and the daughter nucleus.
g radium is 228.031 u. Remember that an alpha particle is Considerations of momentum conservation
= a helium nucleus. show that the small alpha particle has much
o Answer more kinetic energy than the recoiling nucleus.
The mass difference is
232.038u - (228.031u + 4.00151 u]
=5.49 x 107%u
=9.12x 107%%gq (3 s.f.)
I=—————————




Binding energy per nucleon

By measurement, it was found that binding energy is different for different 5

nuclei. The binding energy per nucleon for stable nuclei is shown in Figure o
12.2. We use the following equation to calculate the average binding energy g
per nucleon: é',;
binding energy per nucleon= Lot Dincin g enevRY §'
number of nucleons @

Experimental data shows that nuclei with a high binding energy per nucleon
are most stable. More energy per nucleon is needed to pull the nucleons apart.
This information allows us to predict the stability of nuclei of different masses.
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Figure 12.2

The graph in Figure 12.2 shows that:

® Binding energy per nucleon increases rapidly with nucleon number for
lighter elements and is about 8 MeV per nucleon for helium and elements
heavier than lithium.

® Helium nuclei are very stable relative to other low-mass nuclei, which
explains why alpha decay is more common than proton emission.

@ Binding energy per nucleon has its highest value for *°Fe, at 8.79 MeV
per nucleon, and decreases with increasing nucleon number for any
stable nucleus heavier than *°Fe.

Figure 12.2 shows that binding energy has a positive value. However, stable
nuclei have less nuclear potential energy than the free nucleons, so you may
see binding energy quoted with a negative value. In this chapter, we use

the convention that binding energy is the energy that has to be supplied to 215
break the nucleus apart, so it is a positive quantity.

Nuclear reactions

Some nuclei can release energy from nuclear fission or nuclear fusion. Almost
all nuclear reactions that occur naturally result in nuclei that are more stable.
This increases the binding energy per nucleon compared with the original
nuclei. The mass difference between the original nuclei and the nuclei of the



products corresponds to the amount of energy released. Figure 12.3 shows
" —— that, to increase the binding energy per nucleon, lighter elements tend to

Jl cnergy released [l fuse and heavier elements tend to undergo radioactive decay or fission.
by flssion '

oo w0
|

|

In all nuclear reactions, total proton number Z and mass number A are
conserved, and the reaction often results in more than one product.
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TEST YOURSELF

Use the following data to answer these questions:
Tu=1.661x 10"%"kg = 931.5MeV
mass of proton = 1.00728 u
mass of neutron = 1.00867 u

binding energy per
nucleon (MaV)
O = W~

D4l L 1 1|

Figure 12.3 Lighter elements release
energy by fusion, and heavier elements
release energy by fission.
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1 Suggest, with an explanation, how the mass of a '2C nucleus is
different from the total mass of its protons and neutrons when
separated,

2 %%Fe has 26 protons and 30 neutrons. The mass
of an iron nucleus is 55.935u. Calculate
a) the mass defect in u
b) the binding energy for **Fe in MeV
c] the binding energy per nucleon in iron-5é.

3 Uranium undergoes alpha decay, forming thorium. Calculate the
difference in binding energy for the nuclei in MeV. Uranium has

92 protons and 146 neutrons. The mass of a uranium nucleus is
¢ 238.0508u, and that of a thorium nucleus is 234.0426 u.
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Fusion
Light nuclei can join together by nuclear fusion, form a new element and
release energy. Nuclear fusion occurs naturally in stars, which is how

© A » e Lo
X -' / © stars can release energy for billions of years. Scientists have successfully
 fusion achieved fusion reactions on Earth too, but very large amounts of

tritium *H helium 4He

> energy are needed to create suitable conditions for fusion, similar to the
o o conditions in the cores of stars.

E deuterium 24 neutron The temperature in a star’s core is several million kelvin and the density is
=, Figure 12.4 The fusion reaction in the region of 150000kgm=>. These very high temperatures give nuclei
B Bitvieon bitkimand dugtas do: enough kinetic energy to overcome the electrostatic repulsion between

S protons in the nucleus. The high density inside the star’s core forces nuclei
= so close together that the strong force becomes involved. This attractive

= force acts over very short distances.

One fusion reaction that releases energy in stars like the Sun is the fusion
of deuterium and tritium to form helium and a neutron. This is shown in
Figure 12.4. The equation is
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: TEST YOURSELF

E Use the following data to answer these questions: 5 Explain why a star’s core must be at a high

‘ Tu=1.661x10"%"kg=931.5MeV temperature for fusion to be possible.

g mass of proton = 1.673 x 10727 kg 6 The reaction '2c+ $He — 80 is one that occurs

: mass of neutron = 1.675 x 1027 kg in stars much hotter than the Sun, releasing

' mass of $He = 5.006 x 1072kg 7.162 MeV. Compare this with the energy released

dgsSFAanuEn

A EndsstFaLEEEN

J] during this reaction.
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mass of 2He = 6.645 x 10-
mass uf%H= 3.343 x 10°

4 A source of energy in some stars is the reaction
2H+%H = 3He+ Jn. Calculate the energy released [in

H+ H— 3He+4n

The mass difference for this reaction is the difference between the mass of
the original nuclei (deuterium and tritium) and the mass of the products
(helium nucleus and neutron):

mass difference = (2.013553u + 3.015500u)
- (4.001505u + 1.008665u)

=0.018883u
The energy released is 0.018883u x 931.5MeV = 17.59 MeV.

The fusion reactions that occur in different types of stars depend on the
star’s mass, core temperature and density. A chain of reactions, which

may include steps that seem impossible in terms of energy, can happen if
conditions are suitable. For example, the triple alpha cycle occurs, but only
in red giants and red supergiants, where the core temperatures are greater
than 100 million kelvins:

THe+ 1He — $Be—93.7 keV

Be+ THe — '2C+7.367 MeV

27, in one of the fusion reactions that takes place in
g

our Sun: EgHe—:r %He+2}p.
27 kg

BEAREAFF RS RRRA I FF R R AR AR A PR RN R R R R P I PR R R R R A PR F R R R R A A P A

l

Fission
Nuclear fission is when a nucleus splits into two or more smaller parts,
releasing energy.

O

Nuclear power

Nuclear power stations generate about 20% of the UK’ energy using controlled
nuclear fission reactions to produce heat used to generate electricity. Nuclear
fission can be induced in some isotopes, including those of uranium and
plutonium, by making the nucleus unstable when it absorbs a neutron.

The nuclear fuel used in most nuclear power stations contains an isotope
of uranium, U-235. The nucleus of U-235 contains 92 protons and 143
neutrons. One problem with using uranium is that U-235 makes up only
0.7% of mined uranium, and most natural uranium is U-238, which does
not undergo fission. The mined uranium must be enriched until the U-235
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uranium-235 nucleus

neutron

By

Figure 12.5 U-235 nucleus is very

unstable if it absorbs a thermal neutron.

Figure 12.7 A chain reaction grows if
more neutrons are produced at each
stage than are absorbed.

content is about 3% before it can be used as a nuclear fuel — although enriched
fuel rods still contain a high proportion of U-238, which is not involved in
fission. Some reactors use isotopes of plutonium or thorium instead.

Nuclear fission to generate power

Fission reactions are established in the nuclear fuel using neutrons travelling
slowly enough to be captured when they are fired at U-235 nuclei. A U-235
nucleus that captures a neutron becomes very unstable, and splits into two
or more smaller pieces, and releases energy in the form of heat.

When it has absorbed the neutron, some people think of the nucleus as being
like a wobbly jelly, which splits if it is wobbled too much (Figure 12.5).

Each fission reaction produces two, three or sometimes four neutrons, which
may be absorbed by other U-235 nuclei if the neutrons are made to travel

slowly enough. There are several possible reactions (Figure 12.6), for example:
U+ on — aBa+ {Kr+3gn

233 1 144 o0 ¢ 1
okt =% CGREY L SFFE N

234 1 140 e dl
2+ ono—¥ GCat oRb+4:n

._..

uranium-235 uranium-236

fisslon fragments

.d'.-"".
" @

"“.
neutrons

neutron
D ==

Figure 12.6 Stages in the fission of U-235.

Nuclear fission reactions can only continue in a reactor if the number of nuclei
involved in the fission reaction stays constant or increases. This occurs if, on
average, one or more neutrons is procduced and absorbed per fission reaction.

This type of self-sustaining reaction is called a chain reaction (Figure 12.7).
Chain reactions are only sustainable with a minimum amount of fuel, called
the critical mass. This is because neutrons lost from the surface are no longer
involved in the chain reactions. The shape as well as the mass of the sample
affect the critical mass.

@ = uranium nucleus @ = fission prodlucts @ = neutrons



Figure 12.8 Nuclei in the moderator
absorb energy from neutrons through
elastic collisions, slowing the neutrons
down.

Figure 12.9 Moving control rods deeper
into the reactor core absorbs more
neutrons and slows down the fission
reactions.

Role of neutrons in nuclear power stations

Neutrons that induce fission reactions in nuclear reactors are called thermal
neutrons. Their mean kinetic energy is equivalent to 2kT, where k is the
Boltzmann constant and T is the absolute temperature of the reactor core.
Typically, thermal neutrons travel at between 2.5 and 3.0kms~!, relating to

a reactor core temperatures of about 290-350K.

Moderation ol neutrons

Neutrons produced by nuclear fission move so fast that they are unlikely to
be absorbed in uranium nuclei, so they must be slowed down. The role of
the moderator is to slow down fast neutrons as they pass through materials
like graphite or water (Figure 12.8). Fast neutrons repeatedly collide with
nuclei in the moderator, exciting the nuclei to higher energy levels. The fast
neutrons lose energy during these collisions, and further collisions between
neutrons and nuclei are elastic, slowing the neutron down even more. The
slower neutrons are called thermal neutrons.

The excited nuclei lose their surplus energy as gamma radiation when they
return to the ground level.
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Graphite and heavy water are suitable materials for the moderator because
they do not absorb neutrons. Also energy is transferred more efficiently
during elastic collisions if the mass of the nucleus is close to the mass

of a neutron. Consider a snooker ball colliding head-on with a second,
stationary ball. One ball stops as its energy is transferred to the other ball,
which carries on at the same speed. A much lighter table tennis ball will
bounce off a snooker ball, which keeps most of its energy.

Control rods

Control rods control the rate of reactions in the reactor. Materials such as
boron steel and cadmium absorb neutrons without undergoing fission.
Other materials such as silver, are also suitable but are rare and expensive.
Boron is particularly useful because about 20% of the boron in control rods
is boron-10, which absorbs neutrons to become boron-11. When a control
rod is lowered into the reactor (Figure 12.9), the control rods absorb
neutrons, so the rate of the reaction slows down because fewer neutrons are
available to trigger fission reactions. The position of the control rods can
be adjusted to maintain the chain reaction at a steady rate, or to shut the
reactor down completely.
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The coolant

Coolants are fluids that absorb heat from the reactor, and transfer this heat
away to drive the turbines that generate the electricity and to prevent the
reactor from overheating. Most of the UK’ nuclear reactors use carbon
dioxide as a coolant, but some use pressurised water.

The coolant circulates through tubes inside the reactor core, absorbing heat
from the reactor. This hot coolant then passes through a heat exchanger or
boiler where its heat is transferred to water in a secondary cooling system

(Figure 12.10).

As the water in the secondary cooling system heats up, it changes to high-
pressure steam and is used to drive the turbines and generator. Any steam
remaining in the secondary cooling system is condensed back into water
before it circulates through the heat exchanger again. To achieve this, the
steam passes through pipes in a condensing unit, which is another heat
exchanger that uses cold water-filled pipes. The water in the condensing
unit is usually taken from a nearby sea or river.

contalnment
steam lin
steam structure t | .
Qenerator

generator  cooling
tower

control
rods

reactor -
vesse|

pump condenser
cooling water

Figure 12.10 Schematic system in a nuclear power station.

Safety aspects of nuclear power

Nuclear fuel

Nuclear fuel, in particular the spent fuel rods, and the nuclear reactor are
highly radioactive. Workers and the community must be protected from
exposure to radioactive materials to reduce the damage caused by ionising
radiation. Exposure to ionising radiation can damage DNA in cells, and
increase the long-term risk of cancer. The risk of harm is higher if people
are exposed to higher doses of radiation, or if the time or intensity of
exposure increase. Workers involved in a nuclear accident may receive very
high doses, causing radiation sickness which can be fatal in a few days.
Many steps are taken to reduce or prevent exposure.

The reactor is surrounded by shielding, which protects workers from
exposure to radiation. In many nuclear power stations, this is a steel
pressure container that also contains the high-pressure coolant. This
container is surrounded by 5m of concrete to absorb neutrons and gamma
radiation, and this is surrounded by a steel and concrete building, designed
to contain radiation even if there is an accident.



Cost and effectiveness are important factors to consider when choosing
a material for the shield. Common materials used for shielding are lead,
concrete, steel and water. Concrete is one of the most cost-effective
materials used in nuclear power stations.

In an emergency, nuclear power stations are designed to shut down
automatically. During a shutdown, the control rods drop into the reactor
core, absorb the neutrons and slow down or stop the nuclear fission
reactions. In many nuclear power stations, the control rods are held
vertically above the reactor core using electromagnets. If there is a power
failure, the rods drop automatically into the reactor.

Nuclear waste

Nugclear waste is produced from nuclear power stations. It is grouped into
three categories — low-, intermediate- and high-level wastes. Nuclear waste
is handled remotely to protect workers from exposure to radiation. This
includes tele-operation, where workers manipulate equipment remotely;
and the use of robotic machinery.
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Low-level waste

Low-level waste, including clothing worn by workers, paper and rags,
accounts for 90% of the volume of nuclear waste, but only 1% of the
radioactivity. Low-level waste is compacted and encased in cement and
stored on licensed sites until the radioactivity decays away and it can be
disposed of in normal waste. Isotopes in low-level waste have different half-
lives and activities, so their exact disposal procedures vary

Intermediate-level waste

Intermediate-level waste is mainly produced when a nuclear power

station is decommissioned, and occurs in chemical sludges and resins.
Intermediate-level waste accounts for 7% of the volume of nuclear waste,
and 4% of the radioactivity. Intermediate-level waste with long half-lives

is encased in cement in steel drums and stored securely underground, for
example in caverns or in near-surface facilities. A near-surface facility holds
drums containing isotopes with half-lives of less than a few years, which are

placed in deep trenches and then covered by several metres of soil.

High-level waste

The main source of high-level waste is spent fuel rods. High-level waste
accounts for 3% of the volume of nuclear waste, but 95% of its radioactivity:
The spent fuel rods are so radioactive that they continue to emit heat and
have to be cooled as well as stored. Initially, spent fuel rods are stored under
water which acts as a coolant as well as a shield from ionising radiation.

For long-term storage, high-level waste is mixed with molten glass, then
solidified inside stainless-steel containers. This process is called vitrification.
These stainless-steel cases are stored in specially designed facilities, either
above or below ground. The half-life of high-level radioactive waste
depends on the isotopes present, but several fission products have half-lives
of several thousand years.
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Spent fuel rods must be handled and stored much more carefully than

unused fuel rods because of the form of the ionising radiation that they emit.
The fission reactions that occur inside the spent fuel rods initially emit beta
radliation, then gamma and neutron radiation. These forms of ionising radiation
are more penetrating than the alpha radiation emitted by unused fuel rods.

Risks and benefits

Nuclear power stations generate electricity using fission reactions.

No smoke particles or greenhouse gases are released, so generating
electricity by nuclear power does not contribute to acid rain or to global
warming. By using nuclear power, many countries have reduced the
amount of coal and oil burned to generate electricity, which reduces
their greenhouse gas emissions.

The death rate in coal mining and in the oil and gas extraction industries

is high, partly because the regulation and safety legislation of mining in
different countries varies. For example, many thousands of coal miners have
died worldwide since 2000. Oil extraction has one of the highest death rates
for workers, even with the improved safety measures introduced in recent
decades. Hydroelectricity also kills: when the Bangiao hydroelectric dam
(China) collapsed in 1975, the accident killed thousands of people directly,
and more also died as a result of the famine and epidemics caused by the

resulting displacement of people.

The quantity of waste produced during nuclear power generation is small
in comparison to the amounts from other methods of generating electricity,
because the energy source, uranium, is very concentrated.

Nuclear power is a very reliable way of generating electricity, and the output from
many nuclear power stations can be controlled to match changes in demand.

However, there are significant drawbacks to our use of nuclear power. As
with any natural resource, there are limited supplies of uranium, although
supplies are likely to last for thousands of years, especially if fast breeder
reactors are used to change U-238 into Pu-239, another nuclear fuel.

Although the quantities of uranium mined are small compared to the
quantities of coal mined, uranium miners are at increased risk of developing
lung cancer from their exposure to the radon gas found in the mines.
Uranium ore is considered to be only weakly radioactive.

The radioactive waste products need to be stored securely for many decades
or centuries, even though the quantities of waste produced are relatively
small and some radioactive waste can be recycled. Storage of radioactive
waste underground is considered safe if the geological conditions are suitable.
Some evidence for the safety came from studies of rocks that contained
U-235 isotopes in the Oklo mine in the Gabon, West Africa. Self-sustaining
nuclear fission took place in these rock formations for billions of years. The
waste products from this natural fission have remained close to their original
site, held in place by the rocks surrounding it.

New nuclear power stations are extremely expensive to build as a result of
the safety features that need to be included.

Decommissioning nuclear power stations is also expensive, with the safe
disposal of intermediate-level waste adding to ongoing costs.



There is a risk of nuclear accidents, and these have occurred at, for
example, Fukushima (Japan, 2011) and Chernobyl (Ukraine, 1986). In
both cases, significant safety issues were not addressed when building,
maintaining or running the plants. Large-scale nuclear accidents cause
massive disruption to the local population, and long-term health concerns.
It is likely that the Fukushima nuclear accident (see below) will cause
about 200 additional cases of cancer. The Chernobyl nuclear accident
killed about 40 people from direct radiation exposure, and potentially
4000 from cancers induced by exposure to the fall-out, although, more
than 30 years after the accident, these figures still are unclear. Many of the
thyroid cancer cases that developed in Russia after the accident could have
been prevented by evacuating residents promptly and issuing iodine tablets
so that people could not absorb radioactive iodine isotopes released in the
fall-out.
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Fukushima nuclear accident

The Fukushima nuclear power plant was hit by a massive tsunami in
March 2011, and 14 m waves breached the 10m high protective walls
surrounding the plant. Emergency generators were overcome by flooding,
and the electrical supply maintaining the cooling systems stopped working.
Although the reactors shut down automatically, fission products in the fuel
continued to release heat, so the reactor still needed constant cooling, The
cooling systems stopped working, so the reactor started to overheat and
after a few days there were several explosions caused by chemical reactions
(rather than nuclear reactions). Radioactive material was released to the
surrounding environment, including the sea, where it dispersed. Sea water
was used to cool the reactors after the cooling systems failed. People living
nearby were evacuated quickly and it is thought that they were not exposed
to significant amounts of radiation. A more significant health risk was

due to the damage caused by the tsunami and the upheaval caused by the
evacuation. The surrounding countryside is likely to be sealed off for several
decades, although this may change as different techniques in cleaning up

contamination are developed.
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¥ TEST YOURSELF :
. 7 This question is about nuclear power stations. power output of the station is 840 MW, The power '
: a) Explain how control rods are used to reduce the station converts nuclear energy to electrical
: power output from a nuclear reactor. energy with an efficiency of 35%. :
i b] Explain how spent nuclear fuel rods are a) Calculate the power output of the reactor core. |
handled. b) Calculate the mass of U-235 available to
§ cl Explain how the energy of fast neutrons is generate power. '
: reduced. c) Assume that a fission reaction releases :
i 8 a) A fission reaction involving uranium releases 215 MeV. Calculate the mass converted to

: 3.2 x 1071 J. If the power output of the reactor is energy per fission reaction. _
6 GW, calculate the number of fission reactions d] How long does the fuel last?
occurring in the reactor each day. |Of course, running the station is a little more

; b} Ex_p{ain why the power output of the reactor is ccmplicated than this, because as the uranium :
not the same as the output of the power station. d;galgte?]the fission process will become less :
: efficient.

9 A reactor has 1700 fuel rods, each of mass 14 kg,
and 3% of each fuel rod is U-235. The electrical
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Practice questions

1 The graph in Figure 12.11 shows binding energy per nucleon against
atomic mass.

Figure 12.11
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Which of the four nuclei shown below is the most stable?
A helium (He) C calcium (Ca)
B magnesium (Mg) D mercury (Hg)

2 The mass defect for a carbon-12 nucleus is 0.0990u. The average
binding energy per nucleon is

A 8.01 MeV C 92.2MeV
B 1.19MeV D 7.68 MeV
3 What is the energy released in the alpha particle during this reaction?

2%a— 2Ra+ o

The nuclear masses are 225.9771 u for radium-226, 221.9703 u for

radon-222 and 4.0015u for alpha particle.

A 3.23MeV C 4.93MeV

B 1.23MeV D 493]
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4 A deuterium nucleus and a tritium nucleus fuse together, forming
helium and releasing a particle, Z, as shown in this equation:

H + jH— He+:
What is the particle Z?
A neutron C beta particle

B proton D alpha particle



5 In a nuclear reactor, fast neutrons are slowed down by
A cooling them using a coolant system
B elastic and inelastic collisions with atoms in the moderator
C lowering control rods

D inelastic collisions only, with atoms in the moderator
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6 The purpose of lowering control rods in a nuclear reactor is to
A absorb neutrons and slow down the chain reaction
B slow down fast neutrons, producing thermal neutrons
C produce thermal neutrons and increase the rate of fission
D cool the reactor

7 Heat is generated in a nuclear reactor by
A absorption of neutrons in U-235 atoms
B nuclear fusion processes
C combustion of nuclear fuels such as uranium
D fission of U-235 by neutrons

8 Thermal neutrons travel at a speed of about
A 25x10°ms™! C 2.5ms"
B 2.5x 10"ms"! D 2.5x10°ms™

9 A suitable material to use as a moderator is
A carbon dioxide C boron steel
B graphite D cadmium

10 Critical mass is the

A minimum mass of fissile material used in a reactor
B maximum mass of fissile material that can safely be used in a reactor
C minimum mass of fissile material required for fission to occur

D minimum mass of fissile materials for a chain reaction to occur

11 a) Copy the axes shown in Figure 12.12. On your copy, sketch
a graph of binding energy against nucleon number. Add values

and a unit to the y-axis. (3)
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b) Use your sketch graph to explain why fission is more likely
for heavier nuclei and fusion is more likely for lighter nuclei. “)

12 Each fission reaction inside a thermal nuclear reactor releases two
or three neutrons. Explain how a constant rate of fission is maintained
in the reactor, describing the nuclear processes that occur. ()

13 The atomic mass of iron, JgFe, is 55.93493. The mass of a neutron is
1.00867 u, the mass of a proton is 1.00728 u and the mass of an
electron is 0.000549u.

a) State what is meant by ‘mass defect’ for iron. (1)
b) Calculate the binding energy per nucleon for iron in MeV. 4)

¢) The most commonly found isotope of iron is Fe-56. Explain
whether the binding energy per nucleon for other isotopes of
iron is larger or smaller than that for Fe-56. 2)

14 a) Figure 12.13 shows a simplified sketch of a graph of binding
energy per nucleon against atomic mass number. Copy the
graph. On your copy, add labels stating where fusion is more
likely to occur and where fission is more likely. 2)

A

\

Figure 12.13

b) Explain the conditions required for nuclear fusion to take place. (4)

c¢) Explain why the heaviest element produced during fusion
reactions in stars is iron. (2)



Stretch and challenge
The question that follows is a British Physics Olympiad question.

15 A uranium atom undergaes fission as shown in this equation:

23 1 141 Q 1
U+ gn — ‘seBa+ 2Kr+3 gn
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Use the data in the table below to calculate
a) the mass difference in u
b) the energy released per fission reaction in MeV

c¢) the energy released if 10kg of uranium undergoes this fission reaction

in MeV.
Nucleus Mass/u
U235 235.04
Ba-141 140.91
T 9191
n 1.01 [BPhO R1-2004 Q1]




Optional topic:
Astrophysics
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PRIOR KNOWLEDG

Before you start, make sure that you are confident in your knowledge and
understanding of the following points:

"
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® Light is an electromagnetic wave, which travels at a speed
of 3.0 x 108ms™" in a vacuum.
® Light is a wave, which shows the wave properties of reflection,
refraction, diffraction and interference.
® A lens can be used to refract light.
® Lenses are used to focus light and to produce images of
various objects.
® The Universe is made up of billions of stars and galaxies.
@ The distance between galaxies is measured in millions of light years.
® The Universe is about 13.8 billion years old.
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TEST YOURSELF ON PRIOR KNOWLEDGE

1 A ray of light is incident on one face of a parallel-sided block of glass,
at an angle of 30° to the normal. Draw a sketch to show the path of
the ray as it passes into and then out of the block of glass.

2 Describe how you would use a laser and an adjustable small slit to
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demonstrate the diffraction of light in a laboratory.
3 a) Alight year is the distance that light travels in one year. Calculate

désssaannna

this distance in metres.
bl A distant galaxy is 2 billion light years from Earth. Calculate this
distance in metres.

4 a) Astronomers estimate that our Galaxy, the Milky Way, contains
about 300 billion stars. They also estimate that the Universe
contains approximately 200 billion galaxies. Calculate the number
of stars in the Universe, stating any assumptions you make.

bl Our Sun has a mass of 2 x 103%kg and its mass by composition is
75% hydrogen and 25% helium. Make an estimate of the number
of hydrogen atoms [or nuclei] in the Universe, assuming that
nearly all the Universe’'s hydrogen is in stars. State any other
assumptions you make. The mass of a hydrogen atom
is 1.67 x 10727 kg.
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_ The Milky Way is the name we give our Galaxy. Our Sun is one of about

TIP 300 billion stars in the Galaxy. On a dark night the Milky Way is an awe- =
Ifyou have studied lenses in inspiring sight, which has caused people to wonder with amazement at 2
your GCSE course, you might be our world. Babylonian astronomers developed geometry and trigonometry; &
able to move on to the section some four thousand years ago, so that they could measure and plot the

on telescopes. This section is positions of the stars that they observed. It is an interesting thought that if
provided as background for those we lived on a planet that was covered in dense clouds, and where clear skies

who are unfamiliar with lenses. and stars were never seen, we might not have trigonometry on the school

— curriculum and we would have little idea about the origin of our Universe.

O Lenses

A convex or converging lens is designed so that it can focus light rays to a
point. For example, you may have used a converging lens to focus the Sun’s
rays on to a piece of paper, so that it starts to burn. The principle behind

a converging lens is illustrated in Figure 13.1. A ray of light is incident on

normal

Incident ‘l
ray \ / ray

/ the lens at an angle i to the normal, with an angle of refraction r. As the ray
\/ leaves the lens, it bends away from the normal, as shown.
Figure 1.3'1 The principle behind a Figure 13.2 shows more about the nature of converging lenses. A lens
converging lens. is constructed to that it is symmetrical about its principal axis. A ray

e that passes along the principal axis passes through the lens undeviated,
Converging lens A converging lens refracts ~ because it is parallel to the normals on both faces. Rays that are parallel to
rays of light to a point. the principal axis come to a focus at the lens’s focal point. There are two
focal points, one on either side of the lens. The focal length of a
converging lens is the distance between the centre of the lens and the

focal point.

-1‘.

il The lens in Figure 13.2 has a short focal length because its surfaces
axis have small radii of curvature, and the light is refracted through
relatively large angles. The lens in Figure 13.3 is thinner than the
lens in Figure 13.2. It is less curved and its focal length is longer.

Figure 13.2 Rays parallel to the g _
principal axis meet at the focal point. Construction of ray diagrams

There are three classes of light ray that are used to predict the
position of an image formed by a converging lens. These are
illustrated in Figure 13.4. (Note that, when we draw a ray diagram

for a lens, we simplify the process of refraction by assuming that it
prlg;tfal happens in just one part of the lens. So the lens is drawn as a thin
Figure 13.3 The focallens is longerina vertical line. The arrows pointing out from the centre of the lens,
lens thatis thinner and less curved. at the top and bottom, indicate that this lens is a

" converging lens. (If the arrows point the other way, it

con;.;:'sglng is a diverging lens.)

1 I A ray parallel to the principal axis (on the left side 229
of the lens) is refracted so that it passes through the
focal point on the right side of the lens.

f

N

3 principal
axls

f ! 2 Aray that passes through the optical centre of the lens
is undeviated.

3 A ray that passes through the focal point on the left
side of the lens is refracted so that it travels on a

¥ line parallel to the principal axis on the right side

Figure 13.4 of the lens.




Figure 13.5

Principal axis The principal axis of a lens is

an imaginary line that passes through the
centre of a lens and through the centres of

curvature of the faces of the lens.

Focal point The focal point of a lens is the

point at which rays parallel to the principal
axis of the lens are brought to a focus.

Focal length The focal length of a lens is

the distance between the centre of the lens
and the point at which rays parallel to the
principle axis are brought to a focus.
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7 principal axis
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magnified,
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Projecting an image

Figure 13.5 shows how you can use two of the construction rays to predict
where an image will be formed by a converging lens. Provided the object lies
outside the focal length of the lens, a real image will be formed. The image is real

when the rays converge at a point. This image can be focused on to a screen.

Figures 13.6(a) and (b) show how two different converging lenses can be
used to project an image of a distant object. Light rays from the same point
on a distant object arrive at the lens very nearly parallel to each other. So,
for example, rays from the top of a distant object arrive at the lens parallel
to each other and rays from the bottom of the same object also arrive
parallel to each other. Lens B produces a larger image than lens A, because it
has a longer focal length. This idea will be used later when we consider the
design of an astronomical telescope.
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Figure 13.6 A lens with longer focal length projects a larger image of a distant object;
the image projected by lens B is larger than the image projected by lens A.
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Figure 13.7 (a] An object viewed inside
the focal length of a lens produces a
virtual magnified image. (b] Without a
lens, you can only focus on an object at

your near point of vision.
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The magnifying glass

Figure 13.7(a) shows what happens when an object is placed inside the focal
length of a converging lens. Rays from the top of the object now diverge, and

do not come to a focus. If your eye is placed behind the lens, the object appears
to be bigger and further behind the lens. This is a virtual image. It cannot be
projected on to a screen and it appears only to the eye on the other side of the
lens. When the lens is used like this, it is called a magnifying glass. The object
appears bigger because the lens produces a magnified image at your near point.
Without the lens, you can only focus on the object at your near point of vision —
perhaps 25cm away, as shown in Figure 13.7(b). The lens causes magnification

because the angle € in Figure 13.7(a) is bigger than the angle ¢ in Figure 13.7(b).

Figures 13.8(a) and (b) show how two lenses can be used to view an object
situated at the focal point of a lens. In both cases, a virtual image is seen at
infinity, behind the lens. However, the magnification of lens D is larger than the
magnification of lens C, because angle £ is larger than angle a. So a converging
lens with a short focal length is a more powerful magnifying glass than a
converging lens with a longer focal length, This idea is also important when
designing an astronomical telescope.
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Figure 13.8 A shorter focal length
converging lens is a more powerful

magnifying glass.

The astronomical telescope

Figure 13.9 shows the principle behind the astronomical refracting
telescope. The objective lens (the lens pointing towards the distant object)
projects a real image of a distant object such as the Moon. This image is
larger for a longer focal length of the objective lens, f,. The eyepiece is now
used to magnify this image. A short focal length eyepiece produces a larger
magnification of the telescope.

4
objective aye
lens lece
object at real 4 _. eye
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¥ foand fg infinity
Figure 13.9

Using trigonometry, we can write

tan o = =—
[ 4

tan B = i3
where h is the height of the real image, f, is the focal length of the objective
lens and f, is the focal length of the eyepiece lens. But for small angles
(expressed in radians)
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_ tank=¢ and tanf=f8

TIP 50

The angle subtended by an object b h
Is the angle between the rays =— and 8 =—
coming from the extremities o fe

of the object to the eyes or

The angular magnification, M, of the telescope is defined as:
telescope lens.

A — angle subtended by image at eye
M= angle subtended by object at unaided eye

_B_h f_L
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TIP A telescope is described as being in normal adjustment when the real image,
The magnification of an produced by the objective lens, is viewed at the focal point of the eyepiece.
astronomical telescope in normal Under these circumstances, a magnified virtual image is viewed at infinity.

o SR
ACRARLEIRM fo Safety: NEVER look directly at the Sun through a telescope — you will burn

OO

A simple model telescope

Select two converging lenses with different focal lengths - for example,
[ 50cm and 10cm. Use modelling putty to stick them on to a metre rule
. 60cm apart. You have just made a simple model telescope.

1 Look through the 10cm lens towards the 50cm lens and describe
- what you see.

. 2 Look at a brick wall through your telescope with one eye, and use the
. other eye to look directly at the wall. Calculate the telescope’s angular
. magnification.
3 Draw a ray diagram to show the passage of light through your telescope.
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OPTIONALTOPIC: ASTROPHYSICS

¥ TEST YOURSELF :
: 1 al A man of height 1.7m stands a distance of 10m 4 The great refractor in the Vienna Observatory has ,
H away from you. Calculate the angle he subtends an objective lens with a focal length 10.5m. $
at your eye. Give your answer in radians. a) Explainwhy this telescope has an objective lens 3
i : b] The man now moves to a distance of 120m with this large focal length. :
away. Calculate, in radians, the angle he now b) The telescope is used with an eyepiece of :
‘ subtends at your eye, focal length 50mm. Calculate the angular :
: ¢l Isthe small-angle approximation, tana = &, valid magnification of the telescope.
% in case [a] or case [b] or both cases? 5 Two stars are separated by an angle of 0.05° when }
i 2 Explain why an astronomical telescope should have viewed directly by eye. What angle do the images i
i a) an objective lens of long focal length of the stars subtend when viewed through an
b) an eyepiece with a short focal length. astronomical telescope with an objective lens of
i 3 What is the length of an astronomical telescope in focal length 2.4m and an eyepiece of focal length 3
: normal adjustment, when it has an objective lens of 40rmm?
: focallength 2.50 m and an eyepiece of focal length :
i 40mm. :
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Figure 13.10 Spherical aberration: rays
from a distant object are not brought to
a focus at a single point.

Figure 13.11 Chromatic aberration:
different colours of light are refracted
by different amounts.

Lens aberrations

Although refracting astronomical telescopes are very useful instruments,
their effectiveness is reduced to some extent by the limitations of their
lenses. Glass lenses have two main types of aberration, which limit the
sharpness of the image that we see.

Spherical aberration

Most lenses are ground into a spherical shape, but this is not quite the ideal
shape for a lens. Figure 13.10 shows two rays, parallel to the principal axis of a
lens, which come from the same distant object. The two rays refract at different
angles, but they do not pass through the same focal point — the ray at the top of
the lens, A, comes to a focal point closer to the lens than the lower ray, B. As a
result of this there is a slight blurring of the image that we see.
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Spherical aberration can be demonstrated easily in the laboratory. A lens is
used to project an image of a lamp filament on to a screen. If a card with a
small hole is placed in front of the lens, you will see that the image becomes
sharper. This is because rays pass through only a small part of the lens.

It is possible to reduce spherical aberration by using a lens with a parabolic
shape. However, such lenses are very expensive, and they produce some
distortion of the image, except for light exactly parallel to the principal axis.

Chromatic aberration

Figure 13.11 shows two rays of white light being refracted by a lens. The
speed of light through glass depends on its wavelength. Blue light has a
shorter wavelength than red light, and it travels more slowly than red light
through glass. Consequently, blue light is refracted more than red light, and
there are different points of focus for the two colours. This is called chromatic
aberration. It is possible to reduce the effects of chromatic aberration, but not
to remove it entirely, by constructing a lens using two different types of glass.

O

Figure 13.12 Principle of the Cassegrain
reflecting telescope.

Reflecting telescope

Figure 13.12 shows the principle behind the Cassegrain reflecting telescope.
Light from a distant object strikes the primary concave mirror, where the
light is reflected towards the focal point at E However, a secondary convex
mirror reflects the light again, so that it is focused at F', where a real image
is formed. The observer can then see a magnified image through the
eyepiece, which is placed behind a hole in the primary mirror.
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A reﬂecting telescope has several advantages over a refracting telescope.

® A good astronomical telescope requires a diameter of about 15cm or more, so
that sufficient light is gathered. It is very difficult to make a high-quality lens
of diameter 15cm, but much easier to make a concave mirror of that size.

@ A reflecting mirror has no chromatic aberration, because light is reflected
over a metal surface without passing through glass.

® Spherical aberration can be reduced more easily in a reflecting telescope by
making the concave mirror parabolic in shape. A parabolic mirror focuses
light that is parallel to the principal axis accurately at the focal point.

® It is possible to make reflecting telescopes with larger diameters than
refracting telescopes. The world’s largest refracting telescope, at the
Yerkes Observatory, has a diameter of 1.0m. There are several reflecting
telescopes that have diameters over 8 m — for example, the Subaru
Telescope in Hawaii has a mirror of diameter 8.2m. A glass lens with
a diameter of over 1 m begins to sag under its own weight, whereas a
mirror can be supported by a strong structure behind it.

The collecting power of a telescope is proportional to its area. Since the area

Collecting power is a measure of the light ~ of the telescope mirror is —, where d is its diameter, the collecting power is
intensity gathered by a telescope. This is proportional to the diameter squared, d*. Larger telescopes are able to show
proportional to the square of the telescope’s  fainter objects, because more light is collected. Images in large telescopes are

diameter. ; . s = aw G jo .
' also less affected by diffraction — this is dealt with in detail in the next section.

(-

EXAMPLE

Comparison of collecting powers

Compare the light gathered by two telescopes - a reflecting telescope
that has a mirror with a diameter of 36 cm, and a refracting telescope that

has an objective lens with a diameter of 10cm.

Light gathered by a telescope is measured by the collecting power, which
is proportional to the telescope’s diameter squared. So:

collecting power of the reflector _ (36
collecting power of the refractor (10}

=13 (2 5.1.]

A refracting telescope does have some advantages over a reflecting telescope.
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@ The lenses in a refractor are held in place by a metal tube. So little
maintenance is required. The mirror in a reflecting telescope is exposed
to the air, and might need recoating,

@ The mirrors in a small reflector can get out of alignment if the telescope
gets knocked. So sometimes the mirrors need adjustment. The strong
construction of the refracting telescope makes such misalignment less likely.

® The secondary mirror in a reflecting telescope has the disadvantage of
blocking some light from entering the primary mirror.

® The secondary mirror and its supports will cause some diffraction which
will degrade the image.
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: TEST YOURSELF z':
é 6 Explain the meaning of the terms: Its moons. He finds that he needs to expose his : D
:  a) chromatic aberration photograph for 165 to get a clear photograph. ?.l-
i b spherical aberration. He visits a friend to take a photograph using her ; IE
£ 7 Explain four advantages that reflecting telescopes reflecting telescope, which has a diameter of 28cm.  § '@
:  have over refracting telescopes. What exposure time would you advise for the -?u;
: 8 An amateur astronomer uses his 12cm diameter photograph using the 28cm reflector? They P
i reflector to take a photograph of Jupiter and use the same photographic equipment. o -
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Angular resolution of telescope

greessssesrsssrsssnanirssssensrassssnnansensissssessy  You met the idea of the diffraction of light in Chapter 6 of Book 1.
i MATHS BOX i To demonstrate the diffraction of light in a laboratory, it is necessary to
: When light passes through a . direct a beam of light through a very narrow slit — then we can see the
: circular aperture of diameter ¢ light spread out. However, the effects of diffraction are apparent when light
: D, the first minimum occursat  : enters a telescope aperture, even though the telescope has a diameter of
angle 6 given by many centimetres or even metres.
. T 1.224 i Figure 13.13 shows how the intensity of light, with wavelength A, varies
D i after it has been diffracted through a slit of width D. There is an area of high
However, we shall work with intensity — the central maximum — and the light intensity falls to zero when:
the approximation that the : A
: minimum occurs for small angles : s = E
P g intensity
(a) \

P I |MI“ sin &

=34 =24 =i 0 A 2k 34

D D D D D D

Figure 13.13

Because the angles of diffraction that we shall be dealing with are very
small, we can work in the small-angle approximation and say that the first
diffraction minimum occurs at an angle of:

A

D

So when light from a star passes through a telescope, the image of the star has
a measurable width due to diffraction as the light passes through the lens or

mirror aperture.

Diffraction affects how well a telescope can resolve fine detail. Figure 13.14
shows the idea. Figure 13.14(a) shows the diffraction pattern due to two
small sources of light, after passing through a narrow aperture. The patterns

Figure 13.14



T overlap, but we can see two separate, distinct patterns. In Figure 13.14(b)
the sources have been moved closer together. Now the patterns merge into

8 each other, but we can still see that there are two sources. We say we can just

/ siit widtth D resolve the two sources. In Figure 13.14(c) the sources are so close together

\ " that we cannot distinguish between them — the sources are not resolved.

Rayleigh’s criterion

Figure 13.15 shows an arrangement you can use in the laboratory to
investigate the resolution of two small filament lamps. The two filaments are
arranged so that they are about 1 cm apart (the distance x in the diagram).
They are then viewed through a narrow slit, which can be adjusted to be
about 0.2mm (2 x 10~*m) wide. What do we see when we look at the
lamps as we vary their distance, y, from the slit?

Figure 13.16 shows how the intensity will appear for different values of y.
In Figure 13.16(a) the lamps are close to the slit, so their angular separation
is relatively large and we see two separate patterns of intensity (this is
similar to the photographs in Figure 13.14). In Figure 13.16(b) the lamps
are further away, so that they are just resolved, and in Figure 13.16(c) the
lamps are so far away that the eye cannot see any small dip in intensity
between the lamps — so they cannot be resolved.

Figure 13.16(b) shows the Rayleigh criterion for resolution. When the first
Y minimum of one of the sources coincides with the maximum of the second

source, we can just see (resolve) the two separate sources. This rule is only a
Figure 13.15 guide because some peoples eyes are better than others.

(a) (b) (c)

combined |HTEHSiTY
/\A,\ T T f X of two sources
I
|
=D

two sources clearly resolved two sources Just resolved two sources too close
by the Raleigh Criterion to be resolved by eye

Figure 13.16
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Rayleigh’s criterion for resolution can be written as follows — when two
sources, emitting light of wavelength 4, have an angular separation #
and are viewed through an aperture of diameter D:

e lf0> B the sources can be resolved.

o IfO= ) the sources can just be resolved.

e IfO< E the sources cannot be resolved.



EXAMPLE

Angular separation of two lamps

Two lamps are separated by a distance of 1.2cm, and they are placed

4.0 m away from a narrow slit of width 2 x 10%m. They are viewed through
a blue filter, which allows light of wavelength 4.8 x 1077 m to pass. Will an
observer be able to resolve the two lamps?

L
1)
"Im;-
A
E.
A

Answer

We use the small-angle approximation to calculate the angle between
the lamps:

tan® = sin@ =~ 6 = ~
y
where x is the separation of the lamps, and y is their distance from the slit

So the anqular separation of the lamps is

X 1.2em
=—=———=3x10"rad
y  400cm . -
The smallest angle that the observer will be able to resolve is
7
A _SBXITT _ 5dixiDY rad
D 2x10%

Because 8 }% the lamps may be resolved.

—l

D TEST YOURSELF
' ? Two small lamps, each with a thin wire filament, a) The Andromeda galaxy is a distance of 2.2 ;
i are set up with the filaments 1.5 cm apart. They million light years away from Earth. It is :
: are placed 6.0m away from a slit of width 0.22mm. possible to see blue giant stars at this distance,
Explain what a student sees when she views the which emit light of wavelength around 4.0 x §
: lamps through the slit when the following filters 10-"m. What is the minimum separation of two  §
i are placed in front of the lamps: blue giants for the Subaru Telescope to be able
: a) aredfilter passing light of wavelength to resolve them? 3
6.5x10"7m b) The Hubble Space Telescope has the advantage
: bl agreen filter passing light of wavelength of being above the Earth's atmosphere. It hasa 3
5.4x 107 m mirror diameter of 2.4 m. Repeat the calculation 3
i ¢] ablue filter passing light of wavelength in part [a) for the Hubble Space Telescope. $
4.7 %1077 m. 11 A student draws two black lines 1 mm apartona #
i 10 The presence of turbulence in the atmosphere piece of paper. She walks away from them until, at 3
; reduces the resolving power of any telescope a distance of m, she can no longer see them as :
by about a factor of 10. What this means is that two separate lines. Another student measures the i
a large reflecting telescope such as the Subaru diameter of the pupil of the eye of the first student, 3
i Telescope, with a diameter of 8.2m, is only as and finds it to be about 3mm. Make an estimate of 3
:  effective as a telescope with a diameter of 0.82m the wavelength of light. :
in perfect conditions lin space, for example).
B RO Ir P I P et e s et e st e st a sttt ss ittt atbntan ittt it tattatsd st isatotsttstisstetstteiisretuetonttstetssennsanttissiasttttndssssssseessssssss s

In the days of modern technology, it is easy to think of microscopes,
telescopes and cameras, all as excellent optical instruments. However,
we must never underestimate the brilliance of our own two eyes. Our

eyes and brain process vast amounts of information every second. We
can judge depth with binocular vision, and by rapidly looking around we
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build up an understanding of our surroundings that even the best cameras
cannot match. However, optical instruments give us fresh insight into our
surroundings, and this is particularly so in the field of astronomy:.

The first way we look at stars is to use our eyes, but we see more when we
use binoculars or a small telescope. A telescope gathers more light than

our eyes, so we see fainter objects, and the larger aperture of the telescope
allows us to resolve more detail. However, astronomers realised, around the
start of the twentieth century, that even more information could be gathered
by using a camera together with a telescope.

By ‘driving’ a telescope so that it rotates at the same rate as the Earth, it is
possible to track stars exactly over a long period of time. Then a very long-
exposure photograph can be taken, and the film developed later.

Now, all telescopes used by professional astronomers use cameras with
charge-coupled devices (CCDs) to detect the light from stars and galaxies.
A CCD is a slice of silicon that stores electrons freed by the energy of
incoming photons. The charge on the electrons builds up an image as a
pattern of pixels. CCDs are much more sensitive to light than photographic
film, and they have the advantage that information can be stored in digital
form and processed by computers. Now cameras using CCDs are readily
available to us all, and astronomers use high-quality CCDs with hundreds
of megapixels to take long-exposure photographs of deep space.

A CCD has a very high quantum efficiency. What this means is that a very
high percentage of photons that strike the CCD produce charge carriers,
which are then detected. Quantum efficiency is defined:

number of electrons produced per second

quantum efficiency (QE) =

number of photons absorbed per second

The quantum efficiency depends on the frequency of the light incident on the
CCD. In Table 13.1 we compare the QEs of our eye, some film and a CCD.

Table 13.1
Eye -4
Film 4=10
CCD 70-90

As Table 13.1 shows, a CCD has a very high quantum efficiency, so a large
telescope equipped with millions of pixels easily outperforms the eye.

CCDs can also be designed to be sensitive to other types of electromagnetic
radiation, including infrared, ultraviolet and X-rays. So telescopes can be used
to investigate waves emitted from stars that lie outside visible wavelengths.

Telescopes beyond the visible range

When astronomers observe the sky, they are not just interested in visible light,
because stars and galaxies emit the whole range of electromagnetic radiation
from radio waves to X-rays and gamma rays. For example, hot stars emit
radiation well into the ultraviolet range, matter close to black holes emits
X-rays and colder objects emit infrared radiation and radio waves.



Telescopes that can detect radiations outside the visible range

(s, mirror have many similarities to optical telescopes, but also some

important differences. The most obvious difference is that there

, is no eyepiece because, of course, the eye cannot see infrared,

2 ultraviolet or other radiations. However, for radio waves,

= infrared and ultraviolet radiations, a Cassegrain reflecting
3‘|"'~‘-"‘3@LI plane  telescope is often used as shown in Figure 13.17. The waves

secondary 2
mirror

= are focused behind the primary mirror: infrared and ultraviolet
/_L radiations are detected by CCDs, and aerials can detect radio
3 waves in a radio telescope. Then electrical signals, produced

> by detectors in the focal plane, are sent to computers which
< build up colour-coded pictures so that we can ‘see’ the various
Figure 13.17 Cassegrain reflecting intensities of radiations.
arrangement of mirrors for ultraviolet
and infrared radiations, and radio Radio telescopes

waves. Figure 13,18 shows a photograph of a radio telescope with its large primary

mirror and its secondary mirror, which focuses the waves on to a detector
behind the primary mirror. The siting of a radio telescope is not critical
because radio waves are not affected by atmospheric conditions — radio
waves will still reach the telescope on a cloudy day.

The mirrors or dishes for radio telescopes are very large. To detect radio
waves with wavelengths in the range 30cm to 3m, dishes are usually larger
than 100 m in diameter, but smaller dishes can be effective for shorter-
wavelength radio waves. The large-diameter radio
dishes mean that the collecting power of the telescope
is very high. Often radio telescopes do not have a
secondary mirror but position the detector directly at
the focal point of the primary mirror.

The reason for building such large telescopes is to
ensure that it is possible to resolve two close radio
sources. You will recall from the work on optical
telescopes that the criterion for resolving two sources
separated by an angle @ is

A

6 =—

D
where A is the wavelength of the radiation, and D is
the telescope diameter.

Figure 13.18 A photograph of a radio telescope

© o r—

EXAMPLE

Resolving two radio sources

What is the smallest angular separation of two radio A 03m _ 5% 102 rad
sources emitting radio waves of wavelength 0.3 m that "D &0m w

can be resolved by a telescope of diameter 60 m?
optical telescopes are able to resolve much smaller
Answer angle than this.

Using the expression from the text
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a) Ultraviolet radiation Ultraviolet and infrared telescopes

The construction of ultraviolet and infrared telescopes is fairly similar to
that of an optical telescope, because the wavelengths of the two radiations
lie at either end of the visible spectrum. However, careful consideration
of the position of these telescopes is essential because of the effect of

the atmosphere on ultraviolet and infrared radiations. The majority of
ultraviolet radiation is absorbed by the atmosphere, so ultraviolet telescopes
are usually in orbit around the Earth in a satellite. Some infrared radiation
penetrates the atmosphere, so it is possible to position some infrared
telescopes on mountain tops to view specific wavelengths of radiation.
Other infrared telescopes are in orbit around the Earth, so that they can
detect infrared radiations that do not penetrate the atmosphere.

b) Visible light

The collecting power of infrared and ultraviolet telescopes is similar to the
that of an optical telescope, because their diameters are similar. However,
the resolving power of an ultraviolet telescope is better than for an optical
telescope of the same diameter — this is because ultraviolet light has a
shorter wavelength than visible light. By contrast, an infrared telescope of
the same diameter as an optical telescope does not resolve objects as well as
an optical telescope, because the wavelength of infrared radiation is longer
than that of visible light. Some telescopes are able to receive near-infrared,
visible and near-ultraviolet wavelengths by using a range of CCDs.

Figure 13.19 shows three images of the Crab nebula, taken through
different telescopes, detecting three different wavelengths of radiation. The
X-ray photograph is able to look through the other layers of the nebula, to
detect energy being emitted from a pulsar (a rapidly rotating neutron star)
at the centre of the nebula.

X-ray telescopes

X-ray tele.scopes are also usuaﬂ}f situated in space because the atmcasphere

Fi 13.19 Th Fa Tk g prevents the majority of X-radiation reaching the Earth’s surface.

igure 13. ree photographs taken a : ; i WL |
difgfergnt Wavelengtr?s 5ho?.u tEe cemnants  Ligure 13.20 shows the design ot an X-ray telescope, which is considerably
of a supernova explosion seen in 1054. different from the reflecting telescopes discussed above.

Thisis known as the Crab nebula. X-rays are very penetrating and they are not easily reflected off metal

surfaces. You are used to the idea of light being incident on a glass surface.
Some light is reflected and some is transmitted by the glass. X-rays behave
in this way when incident on a metal surface. However, if X-rays are

i a very allow angl . £ T F T : 117,
mTOr  rrirror incident at a very shallow angle, on a highly reflective
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surfaces syrfaces metal such as iridium, they are all reflected. This is rather
;:T — like skimming a stone along the surface of water.
X-rays g ocal 0 Figure 13.20 X-rays are reflected off a series of
= ~ point  mirrors and brought to a focus some 10m away from
__ the mirrors. Since X-rays have very short wavelengths,
o 10-° or 10-1%m, it is possible to make X-ray telescopes
———— with a small diameter and still produce well-resolved
f —a— images. The design of telescope shown in Figure 13.20
A-ays 3 om i can also be used to focus some short-wavelength
Figure 13.20 X-ray telescopes focus X-rays with very ultraviolet radiations, which are difficult to focus with a

shallow reflections. conventional telesmpe.
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infrared telescopes.

TEST YOURSELF g
12 Explain why radio telescopes have dishes with a) Explain why the Herschel telescope has a larger =
diameters as large as 100 m. diameter than the WISE telescope. E
13 a) Describe how the design of an X-ray reflecting b) Calculate the ratio of the collecting powers of § &
telescope differs from that of an optical reflecting the two telescopes. g
telescope. Account for the differences in design. c] Calculate the smallest angular separation that o
b Explain why X-ray telescopes are in orbit around each telescope can resolve for : g
the Earth rather than on the Earth's surface. i] the shortest wavelength it detects ! I
14 The table below shows information about two ii) the longest wavelength it detects. :
:

Telescope Diameter of primary mirror/cm | Wavelength of radiation detected/pm
Wide-field Infrared 40 3-25

Survey Explorer (WISE] 7

Herschel 350 50-670
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O Classification of stars

s s e s WHETL YOU g0 outside on a dark moonless night, it is a wonderful sight
Brightness The b'fight““fsf* of astarise to see the sky illuminated by thousands of stars. In total, there are about
measure of how much visible light fromthe 00 crars that it is possible to see with the unaided eye. However, with

star reaches our eyes. ; oo oo
binoculars or a telescope, the number of stars we can see rises into the

Luminosity The luminosity of a star is millions. The brightness of the stars we see varies considerably, and this is
the energyhit emits per second, in all affected by a star’s luminosity and how far away it is. The luminosity of a
wavelengths.

star is the amount of energy it emits per second.

Classification by brightness

Hipparchus was a Greek astronomer who lived some 2200 years ago. He
was the first person to begin to categorise stars according to their visual
brightness in the sky. Hipparchus began by cataloguing all the brightest
stars, and these he called first-magnitude stars. Then he listed the next
brightest, and called them second-magnitude stars, and so on until he
reached sixth-magnitude stars. The sixth-magnitude stars were the faintest
stars that Hipparchus could see by eye.

Two thousand years later modern astronomers looked at the Hipparchus
scale of brightness and realised that he had produced a logarithmic scale.
A first-magnitude star turns out to be about 2% times the brightness of a
second-magnitude star; and a second-magnitude star is about 25 times the

brightness of a third-magnitude star.

ApparentmagnntudeAstarsapparent &stronm:ners settled on the cc:nv-e?nticn that a f'irst-mag,nitude star is 100

magnitude is a measure of its brightness as  times brighter than a sixth-magnitude star. This led to a modern, more

it appears in the sky. precise, classification of a stars brightness, or apparent magnitude, given
the symbol m. The modern scale extends below 1 for the very bright stars,
and above 6 for dull stars, which we can see using binoculars or telescopes.

Table 13.2 shows a list of some bright stars, seen in the night sky



Table 13.2 Apparent magnitudes of some Cnmparing brightness of stars
bright stars visible in the night sky.

Table 13.2 lists the apparent magnitudes of some bright stars. But <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>