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Get the most from this book 

Prior know ledge 
This is a short list of topics that 
V·OU should be familiar Vriith before 
J 

sta ttin g a chapu:r. The questions 
"''"ill help to test your understanding. 

Activities and Required 
practicals 
These practical-based activities 
wiH help consolidate your learning 
and test your practical skills. AQAs 
requin~.d practicals an: clearly 
highlighted!. 

T1est yo1urself questions 
Thes·e short questions, found 
throughout ,each chapter) are useful 
for checking yo,ur understanding as 
you progress through a topic . 

Welco:rne l o the AQA A-level Physics Year 2 Students Book This book 
cov,ers Year 2 of tl1e AQA A-level Physics specification. 

TI1e following features have be.en included to help you get the most fr·om 
this book. 
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trophysics 
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Tips 
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These highlight important facts) 
common misconceptions and signpost 
you tov.rards other relevant topics. 



Practice questions 
You will find. Practice questions 
at the end of ,every chapter. These 
f oHow the style of the dlifferent types 
of ·questions you might see in your 
examination., including tt1ultiple­
choice questionsl and are colour 
coded to, highHght the level of 
difficult}': Test your understanding 
even furth r with Stretch and 
eh all enge questions. 

ey terms and ormula 
These are highlighted in the text 
and definitions are given i.n tl1e 
n1a1·gi11 to help you pick out and 
learn these important concepts. 

t b 
Thes,e provide additional material 
for the more mathematical 
physicists. 

-xamples 
Exampl s of questi,ons and 
calculations feature fuU workings 
and sample ans,.,vers. 

I ; .. 

I 

Questions are colour-coded, to help target your practice: 

Green - Basic queslions that everyone should be able to ansvler 
without difficulty; 

Orange - Questions that are a regular feature of exarns and that all 
competent candidates should be able to handle. 

II Purple - More demanding questions which the best candidates should 
be able to do . 

I 
Ill a 

II Stretch and challenge - Questions for the mosl able candidates to test 
iheir full understanding and so1netimes their ability to use ideas i.n a 
novel situation. 
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AQ1A has provided five optional topics as part of the fuH A-level course so students can focus on their areas of 
interest: Astrophysics~ Me.dical physics, Engineering physics1 Turning po.ints in physics> and Electronics . 

A chapter cove1ing the first optional topic, Astrophysics, has been included in this book (Chapter 13), as well as 
a dedicated chapter for developing your Maths in physics (Chapter 14). Additional cl-1.apters covering the other 
optional topics can be accessed on.line; as well as fun:11.er chapters focusing on Developjng practical s~{iHs in physics, 
and Preparingfor ·written assessm.ent.s. More information on how to access these ca11 be found in the Free online 
resources section at the back of this book. 
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Circular motion 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• : . 
i PRIOR KNOWLEDGE i • • • I 

: Before you start mak.e sure that you are confident ~·n your knowledge and : 
: : i understanding of the following points: i 
• • 
• I 

: A l . change of vetodty : • cce era t1 on -- - • i tim e ! 
• • • • ~ . 
: • Resu lta nt fo rce -;;;; mass>< acce lerat1ion. : 
• • ! • You need to reca[l that a vec tor quantity has mag nitude a,nd direction: ! 
: fo rce~ ve loci,ty and a,cc:eleration a re vectors. : 
• • 
: • Reso lving a! vector 1nto co m po nents. : 
• • 
: • Circumference of a ccrcle = 2n x rad,us of circ le , c ,= 27lr. : 
• • 
: • Newton's fi r s t law of motio n: a body remain s at r est or continues : 
• • 
: t o move 1n a s t ra~g ht li ne at a constan t speed unless ac ted ori by an : 
• • 
: u n ba la11 ced fore e. : • • • • • .............................. ...................................................... ~ .................... .... 

~ -··························································································: 
: TEST YOURSELF ON PRIOR KNOWLED.GE i 
• • • • • • i 1 a] Ex plain the dHferen.ce betwee n speed and velocity. ! 
~ b] Explain why a cce Lera tio n is a vec tor q uant1ty. E 
" " : 2 The three diagrams 1in F~g ure 1 J s how three separa te examp les : 
• • : of how a vehi cle'5 ve loc~ty changes from v1 to v2 over a time of 10s. : .. 
• .. 
• • • • .. 
" " " .. 
• • • .. 

LJ h . V 2-V1 se t e equatron a= t 

to ea lc-ula te t he magnH,ude 
and direction of the 

: accelerat ion in each ca,se. ,. 
j 3 The vehic le jn question 2 has 
: a mass of 2 kg:. In each case 
• i shown in Figure 1.1. calc ulate 

(a) 

(b) 

.. 
• • • • • • 
" • • • • • • • .. 
• • • • ,. 
• ., 
• • • • • • • • • ! the everag e resutta n t force that 

s caused the acce lerat ion of the 
(C) 

v Q 3 m s·1 

] . 112 I:'!:! 4 m s·1 : 
• 

I h · t : ve ,,c :e. 
" " • .. 
• • • • : • 
i .. 
'"' 

4 An U'nbalanced force acts on a 
mov1ing, veh icle. Exp lain, three 
changes that cou 'ld occur to the Figure 1.1 
ven ic le's vetocity . 

i 5 You wa,lk a quarter of the way ro,urid a circlle of diameter 20 m. 
• : a) Ca lcutate th,e dista n,ce you have walliked. 
• : td Ca lculate your disp lacement if yo u started at the no rth of the drcle .. 
: and watliked to the eastern side of the ci r cle. .. .. 

I : 
• : 
• • • • • • • 
! 
"' I 
~ .. .. .. .. 
• : 
• • • • • .. .. 
• • • • • 

; ...... ................. ....................................................................................... lllllli 
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Figure 1.2 

i n Tlhe radian m1ea·sur,e of a1 <Cent rat 
angle of a cirde, 8, Its, defined as th~ rati·O· of 
the arc length, s, s.ubtended by the angle Br 
to the rad~us r: 

9 - .! - r 

n u a dis c _ men The G}Jngle 
{m·easured in radians) through whi,ch a Une 
rotates about a foc,e-d point. 

n ul r elo 1 Th@ rate of change of 
angular displ.a.cement (measured in radians 
per second). 

The 1big wheel' 
A ' big wheel' at a funfair takes 1its 
passengers for a r ide,, co,mplet~ng 
s ix comptete revolutions in 120 s. 

Ca kuitate the a ng,utar 
d,isp lacement of th e wheel. 

Answe,r 
f} ;;;,i 6 X 21r - 12,r rad - 3 7. 7 ra 0 

rL Ca· le uta te the avera,ge an g,u la· r 
velodty d,uri,r,g the r ide. 

Answer 
12 ·Jt 

m= --
120 s 

= 0. i 1t ·= D. 31, rad s _, 

You a1~ used to n1easuring angles in degrees) but in physics problen1S 
involving rotations we use a different 1neasure. 

In Figure 1.2. an a1t: AB is sho,~TI. The length of the a.re is s, and the r~dius 
of the circle is r. We define the angle f) as 

f} = .!. r 

TI1,e advantag ,o,f this measure is that 9 is a ratio of lengths, so it has no 
unit. Hovvever> to avoid th confusion that the angle n1ight be n""Leasured :in 
degrees, \\'·e give this measure the unit I adian , abbreviated to rad. 

Since the circu1nference of a circle is 2nr) it follows that 2rr radians is the 
e quivaJent of 3 60°: 

so 

2n rad = 3 60° 

360° 
1 rad ;:: --

2 TI 

= 57.3° 

Equations of ro1tation 
When so1nethi11g rotates about a fixed point we use the tem1 angular 
displ~ cetncnt to measure how far the object has rotated. For exa1nple, in 
Figure 1.2) vlhen an object rotates from A to B, its angular displacement is 
() radiilns. 

The term angular r-clt)cit~· , ru , is used to measure the rate of angular 
Tota.tion . Angular velocity has units of radians per second or rads-1: 

or 

NJ 
W= -

~ 

where il.B is the small angle tum,ed into a small tin1e L\t. 

In general, there is a useful i·elationship connecting the time period of one 
compl te rotation, T, and angular velocity~ ru~ because after one full rotation 
the angular displacement is 2n: 

or 

2n 
,(.r) = -

T 

co ~ 2rrJ 

where J is the frequency of rotation . There is a further useful equation, 
which connects angular velocity with the velocity of rotation. Since 

s = Or 



Figure L3 

an d 

Li s AO 
v= - = - r 

h. t 8 t 
then 

v = rur 

This equation shoVv-s that the rotational speed of something is faster further 
away fro1n the centre. For ,example. all the children on a roundabout in a 
playground have the. saine angular velocity co. but the ones near the ,edge 
are moving faster (Figur,e 1.3). 

~ ····················································································································································: f TEST YOURSELF i 
• I 
• I . ~ 

: 1 The Earth has a rad ius of 6400 km . Th e Shetland b] Ca lculate th e freqllein cy· of rotation of th e : 
: : : Isles a re at latitude of 60°. protons. : . ' i a] Ca.lcutaite the ang ular velocHy of th e Earth. c] Ca lcu'iate the proton's a1ngu la r veloc ~ty. i 
• • ! bJ Calculcl te the ve 'locity of rotat ion of a pofr~t orn 3 The Sun rotates around the centre of our Ga ~a xy. : 
• • 
: th e equator. the Miilky Way. once eve ry 220 m illion yea,rs " in a n : 
• • 
: c] Ca lculate t he ve loc ity of rotation of th e Shetland orbit of about 30 OO O tight years. : 
• • 
: Isles . a) Ca lculate t he an9utar velocity of the Su n ab out : 
• • i 2 A proton in a synchrotron t ravels round a drcu la,r path ttn e centre of the Milky Way. J 
; of radrus85 m,at a speed of closeto3.0 x 1,oHms-1 . Ca lculate the ve locity of t he Sun re lat ive to the ~ 

: a] Ca lc ula te the time taken for one revo luti on of centre of the Ga laxy. : • • 
: the synch rntrorn. [1 li gh t year = 9.47 x 1015 ·m: l year = 3.16 ;1' 107 s] : 
• • • • • • .......................................................................................................................................................................... 

o~-------------------c en tripe ta l acceleration 

Figure 1.4 A par ticle m1oving round a 
ci rc,ula,r path wi th a corista nt speed is 
a,lways accelerating. 

Figure 1.5 

In Figure 1. 4 a p article is moving round a circular path at a constant 
speed v > an d becau se it is con tinuaUy chan ging direction the particle is 
always acceleratin g. 

It is easier to understand the acceleration when you recall the formula: 

. change of velocity 
acc,elerat1on = ----------­

time 

Velocity is a vector quantity, so if the dir,ection of the motion changes, even 
though there is no change of speed, there must be an acceleration. 

Figure 1.5, sho\VS the direction of the acceleration. ln going fro1n position A 
to positi,on. C the particles velocity changes from v1 to v2. So the change in 
velocity, !iv, is the vector sum v2-v1. 

The diagram shows the change in velocity1 !J.v, which is directed along the 
line B0

1 
towards the centre of the circle. S01 as the particle movie .. s ar,ound 

the circular path 1 there is an acceleration to,va.rds the centre of the circle. 
This is caUed che L c nL ri pc ta I ccclt!: ra l inn. Because this acceleration is at 
right angles to the 1noti..on, there is n o speeding up of the particle) just a 
change of direction. 
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Centrlp tal cc ler ti When a 
p artide m aves in a c ircu la r path ,of r.adiu s 
r1 at a constant speed v; there must be a 
centripetal acceleration tovvards the oentre 
of th,e circle, given by 

vi 
a = ­

r 

.... ..---ball, 

--B 

Th,e size of the acceleration, a 1 is calculated using this formula: 
2 

V a~ -
r 

or because v = ror 

Here vis the constant speed ,of the particle, uJ is its angular velocity; and r is 

the radius of the path. 

;~·····~··•••t•••·················••••,,, ......... , ......... , ....... , .. , .. ,.,,,, .......•...... ,., .•.......... ff; 

I T o f 
• • 
~ You are not expected to be able to derive the formula for centripetal ~ .. 
t acc,eleration; but i'l is given here for those \vho· want to know where the : ,. 
: formula comes from. : 
~ ~ • • • • • 
: In Figure 1.4, the particle moves from A to Cin a small time flt. We no"r • 
• 
~ look at the instantaneous acceleration at the point B, by considertng 
; a very small angle /18. The distance travelled round the arc AC] 11s, is 
• : given by 
• • 
: 
: 
II 
II 

' C : so 
• 

' • • • 

I 

As =· V !it and /1s = r881 

and 89 = !/J.t 
r 

i In Figure 1. 5 the angle B i.s given by 
• ~ • 

• • • • .. .. 
• • • • • • • .. 
• • • t • • • 

(i) : 

' • ... 
• • • • • • : ... I • • 

Av 
fl(J =-

(ii) ~ 
• ~ 

• • • 
V 

.. p1:--ovided fi() is very sn:1all. Then by con1bining equations (i) and (ii) ) i t 
: follo,vs that 
• • • • • • • • • • .. 
• • • • 
It 
II 

: or • 
• • .. 

8. V V2 • • • II • • 
a - iiiiiiiiiiiiiii - iiiiiiiiiiiiiii 

- ~t - r 

• • • • • t 
• • • .. 
• 
' • • ... 
• • • • • • 
i • • • • • .. 
• : .. .. 
• . 
• • • • .,. 
• • • • • • • • ~~••••••••••~•••••••~~••••••••••••••••••P••••••••~•-••••~•~~••••••~-~~~••••••~~•8••••••P•~••••~•P~••••••••~••••-

~-i-- ball 
A 0 Centripetal force 

... - straight track 

Figure 1.6 A tr;i in c;rr i,a gei 
tu r ns a corner, but e1 b;LL on 
the floor of the ea rriage k6!eps 
on m,ovi,n·g in a st ra ight Li ne. 

Figure l. 6 illustrates the path of a rail~lay carriage as it turns round a 
corner (part of a circle) ) movil11g from A to Bat a constant speed v. The 
rails pr,ovide a force to change the direction of the carriage. H.owever) 
a. ball that is p]aced on the floor b ehaves differently. The baU carries on 
moving in a s'traight line until it meets the side of th e carriage. The ball 
experiences no force.) so, as predicted by Newton,s first law of m otion) it 
carries on m oving in a straight line at .a constant speed, until the side of 
the carriage exerts a force on it. 



(a) (b) (c) 

w 

w w 

Figure L7V iews of a ball suspended 
from the back of the tra in carriage 

R 

tooki ng forwards. [a,l Wtilen the train 
,moves alo,ng a str;;ight track, ths ba 'll 
hangis stra ight down. [b] When the tr; i n 
moves around the curved track, as in 
Figure 1.6. the ba lt is displaced to the 
r i,ght. [c)' There i!s a resultant unbalanced 
force Raicting ori the ba ll. 

en rl tat for When an obje,ct moves 
around a ci lieu far path, there must be a 
centrmpetai force acting tow.alidts the centire 
of the circle. Someth~ng must pliovide this 
force, such as ~ puU horn a :stliing Oli a push 
fliom th,e road. 

(a) (b) 
p 

w 

1Figure 1.8 

Now suppose that the ball is suspended fron1 the ceiling of the carriage and 
t'he experi1nent is repeated.. Figure 1. 7 illustrates what happens now as the 
carriage moves fron1 a straight track to a curved track. In Figure l .7(a) the 
carriage moves along a straig.ht track at a constant speed. TI1e ball hangs 
straight d,o,vn and the forces acting on it balance: the tension of the string, 
T, up\.vards, balances the baU's weight, W, do,vn,vards. 

In Figure 1. 7(b) the 'train lun-is the conier. The ball keeps moving in a straight 
Une until tension in the string acts to pull the ball round the cotner. No'v· tlte 
forces acting on the baU do not balance. The vector sum ,of the tension T and 
the \\-·eight W provides an unbalanced force R, \vhich acts towards the centre 
of the circle (Figure 1. 7c). 

This unbalanced force R provides the centripetal acceleration. So we can 
v'rrite 

mv2 

R.: -­
r 

where R is the unbalanced Lt:llLI ipeta] f< ref: , m is the mass of th,e b~1u, V 

ts the hall's forward speed, fn1d r is the radius of the (circular) bend it is 
going round. 

It is important to understand that a centripetal force does not exist 
because something is I11oving round a curved path. lt is the other \vay 

around. - aicco1~ding to Newtons second law of motion~ to make so1nething 
change direction :1 force is required to make tl1e object accelerate. ln 
the exan1ple you have seen here~ the tension in the string provides 
the centripetal force, \vhich is necessary to make the baU move in a 
circular path . Wnen a car turns a comer~ ihe [rictional force from the 
road provides the centripetal force to change the cars direction . vVhen a 
satellite orbits the Earth, the gravitational pull of the Earth provides the 
centripetal force to make the satellite orbit tl1e Earth - there is no force 

acting on the. satellite other than gravity. 

A co1n mon tnisunderstanding 
Figure 1.8 shoVi!S the same baU discussed earlier held hanging, at rest~ at 
an angle in the laboratory. No,"~ it is kept in place by the balance oJ three 
forces: the tension in the string, T, its weight, W, and a side,ways push" P, 
from a student~ finger. 

If the student removes lus finger> the ball "Will acce1erate and begtn moving 
to the left, because there is no,v an unbalanced force. acting on it, exactly .as 
there w-as in Figure 1. 7. 

Ho""~ev,er, the situations are different. In Figure 1.8 the ball is stationary 
until the. finger is ren1oved~ and it begins to accelerate and mo-ve in 
the direction of the unbalanced fo,rce. In Figure. l. 7 the ball is moving 
forwards and the action of the unbalanced force is to change lhe 
direction of the ball. 
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• • • ! 4 Expla in how a force can c han ge th e velocity of a 
E body wrth out in c r ea,si ng iit s speed. 
• 
: 5 The force of gravity makes th~ng s fall toward s the 
I ground . Explain why the Earth 's g,ravity does not 
: make the Moo n, fal l towa1rds the Earth . • • : 
; 
"' : • 'I' • • 'I' 

I 
• t • • • .. .. 
• : • : • • • .. 

6 A satellite i,s fn orb,it around the Earth , at a distance 
of 7000 km1 from the Earth's centre. The mass of 
the satellite is 560 kg and the g rav1itattonal fi e ld 
strength at that hei,ght is 8.2 N: kg-1. 
a) Dra,w a d~agram to show the direction and 

ma·g1nitude of the force [or forcesi that act'(sl on it. 
b) Calcu late th e centripetal acce leration of the 

sateUite. 
: e) Calcu late 
• f iJ the speed of th e s a·telU te 
• : ii ) tne tim e pe riod of its o rblt. 
• 
: 7 This questi1on refers to the suspended bailt in the trafr,, 
• : Hlustrated ,in Figure t7. The ball ha,s a mass of D. 15 kg. 
• 
: al The tra 1in accelerates forwards ou t of th e station 
• 
: a long a straight track at a rate of 2 m s-2• 
• • : i] Expta in why th e baU is dispilaced backwards. 
• 
: ii) Ca lc ulate th e resultant f orce on the ball. .. 

• • • 
ii i] Show that the angle at which the ball hang s f 

to the vertkal is a,bou t 1'1.5°. : 
• 

b) The tra1n reaches a speed of 55 m s-1 and i 
tra1vels tou.nd a curved pi,ece of tihe track. At i 
this mom.ent~ th e baH ris deflected sideways by i .. 
about 11 .5°. ; 

i 
iJ State and expla,in the direct ion and i 

" magn1itude of th e resu,ltant force on the ball. : 
ii) Exp la i1n why the ball is a cc ele rat'in g. 11 n wh1i eh I 

direction is the acceteration? Catcutate the i 

magnitude of th e acce leration. 
i ii] Exp la,in why the ball ·s speed rem,a ins 

constant. 
iv) Catculate th e rad iu s of the bend the train is 

g·oi n g rro U,nd . 

cl The tra~n carrjage that carries the balt lnas a 

mass of 40 tonn,es. 

i] Ca lcu late the cen triipeta l fore e that acts on 
the carr iage as it turns the earner. What 
provides this force? 

ii) Explain why t rains go round tight bends at 

reduced speeds . 
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Investigating centripetal forces 
Figure 1.9 snows a way in wh'ich you can investigate 
centr ipeta l forces. Th·e idea [s that you1 whirt a rubber 
bung around your head ,in a hoirizontal circle. The 
bung is attached by a thin str ing to a plastic tube, 

~ wh~ch is he:ld vertica lly. A wei'ght is hung on the 
E 

! botto ,m of the stdng . This causes the tens'ion to 
provide th e necessary ce ntripetal force to keep the 
bung mov~ng in 1ts circular path . 

-----..,. ----
( .... __ 

Figure 1. 9 

:-• r---•, 
I I 
L.. -- - -----: F - - - I rubber bung 

___ .,,. 01 mass m 
__ ... tall_ 

thin string 
p lasuc tube 

• Use a bung, of ma ss m. of about 50 g to 110(] g. 
• Wear safety glasses [useful to protect yoursellf 

• A.suitable ptast1c tube is an otd case from a plastic 
ba Hpa:i nt pen . 

• The time of rotat~on. Ti can be callc,u lated by 
measuring the time for 1:0 rotabons, 1 OT. 

• The radrus r can be mea5ur·ed a,Her you have 
f,inished 10 rotations by pinchirlg the strin9 wHh your 
fing er" then measurin,g the length from th e 
top of the tu be to th e centre of the b u1ng. 

• We assume that there is no fricti on between the 
plastic tube and th e s trin g. 

• It is assumed that the string fs horiizointall 
al though this wi,ll not be entirely possibile. so it i's 
im portaint to try to meet thi s condition as far as 
you ca·n. 

Table 1.1 shows so 1me data, measured by a stiude1nt 

doing thiis experimen,t. 

1 Copy an,d comp lete Table 1 .1, by filling in th e gaps. 
Comment on how well the results s1u,pport the 
nypothes~s that the we~ght on the end of the string 
ca uses the centrip eta l far ce to keep the bung in 
its circular pa1th . In th1is experimen t th e bung has a 
mass of 0.09 kg. 

. . . . . . . 

: firo ,m others doi1r1g the same ex perim end. et> ~ 
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h"able 1.1 
3 
; . . M/kg 10T/s 

OJ 18 .8 

0.2 111.5 

0.2 10 .2 

0.3 8.6 

0.3 7.9 

0.4 15.4 

E 
Round in circles 

I 
, .. 1 

w rad s"" .. , 

0.94 

0.78 

0.56 

0.611 

0.52 

mw2r/N 

A physics tea·cher. shown in Fi9u re 1.1 Of 
de,m,onstrrates a weU-known trick. She puts a beaker 
of water on a tray. suspended by four strings a t its 
corners. Then she whirls the tray round in a vertical 
circle. so that the beaker is upsi·de down at the top. 
She then asks why the water does not fall at the top 
of the swjng . A student (who has not been pay,ing 

attention] says 'th e pult of gravity is balanced by an 
outwards force' . Explain why this 1is not correct. 

Answer 
Th e teacher gives this explanation ~ At the top, the 
w.a ter and th e beaker a re falling to9ether. Look 
at F,ig;ure 1.10. At point A1 the beaker is traveUing 
along th e directroni AB. The s tring pulls the 
be.a ke r down in the dfrecUon BC so at the top it 
has fallen to po1i n t C. 

The teacher repeated the demonstration and 
asked the students to frme the revotutk)ns. The 
students determined that the tray co m pteted 1: 0 
revotuti,ons ~n 8 .3 s. They m,easure the radius of 
the c1ircte to be 0. 95 m. 
The speed of the tray is 

21t r 
v ---

T 
2Jt X 0.95 m -----

0.83s 

;;;; 7.2 m s-1 

So, while the beaker rotates, it has a centripetal 
a,ccetera tion of 

v2 
a;;;; ~ 

r 

(7.2 :m s-1)2 

= 
0.95 m 

=55 m s-2 

I 

' 
' . 

2 Di·5cuss th e 50LH'Ce5 of error f n thi5 experi'ment. 
SUiggest how the errors can be m1i1 ni,m ised . 

3 To improve the reliability of the data . i1t mjght be 
hetpf ul to plot a graph. 

' 

a) Plot a graph of F aga:inst mru2r. 
b] Explain why this should be a straight Urle. What 

gradient do you expect to get when you 1measure 1it? 

B 

• . . ' . . ..... . , , ... 1,_ .. C 1,,,~ . , , ...... 
·-•r, I 

···~ 
·. 

• 
' . 

E+,--~~~~~--
0.95m 

' 

' . . . . . . 

'• . 

... • 1 

D 

.. .. , .. . .. .. 
.·· ...... 

... -

. 

Fig ure 1JO 

Thi s t ells us that th e water is accelerating, all 
the t,ime at 55. m s-2 [more than five t imes th e 
gravitatrona l acce le ration)'. So th e wate r does 

not fall out ofth e beaker at the top. becaus e it :is 
already fa Hing wi,th an acceleratiofl greater than 
g rav t tat i on a. l a cc e le ratio n . 
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~ 
" A eye.list is cycling at 14.5 ms-1 in a 

velodrome where the track is bankedat 
an angle of 40° to the horizontal 
[ Fi g u re 1 . 11 1 ). The track is cwrv ed so 
that th.e cycUst is turnin,g1 in a horizontal 
circle of rad 1ius 25 m. The cycli st and 
bicycle tog ether have a mass of 111 0 kg. 

I Ca lculate the centripeta l force acting 
on the eye list. 

Answer 
mv2 

F - ................. 
r 

1 1' 0 kg X [ 1 4. 5 m S -
112 

25m 

= 930 N (2 sJ.) 

Figur e 1 ~11 

Callcula te th e contact force R from the track on 
the bi cycle. 

Answer 
Figure L 11 s hows the l\No forces act1ngi on the 
bicyc le and cycli,st: the contact force Rand the 
we ig nt W. The forces cam bf ne to produce the 
unba!Lan ced centdpetat forcej which keeps the 
cyctist movh,gi round her hodzontal ci rcular path . 

Force R 1may be resolved horizon.tally and vertka.Uy 
as follows : 

r-25m 

Rv = Reos 40° 
Rh ;;: R si1ri 40° 

w 

Uribalanced centripetal fo.rce 

The vertfr:al component Rv balances the weight, arid 
the horizonta,l component provides the unbalanced 
ce ntri,petal force. [It is f mporhrnt to reaUse that the 
cycl ist can on Ly Lean her brcycle as shown because 
she is a ccelerating towards the centre of the circle. 
She would f.all over tf she were statronary.J So 

R sf n 40° = 930N 

R= 930N 
sin 40° 

·=1440N 

······································ ······································· ················~························································ 
TEST YOURSELF 

8 Th,is questiion refers to th e teacher's demonstratiion 
w~th the beaker of water s hown ~n Fig,ure 1.lO; 
aJ The b,ea,ker and wa1ter have a corn bined mass 

of 0.11kg. Use this i1nformation. together with 
the informat~on i1 n the text to ca lcu late the 
centripeta l force requ ired to keep the beaker in 
the circu lar pa,th that the teacher used . 

bJ The only two forces that act on the beaker and 
water are their w·ef ght! W, and the contact force . 
R, from the tray. Catc 1ulate the size aind direction 
of Rat the fo llow ing po ints shown in Figure L10: 
iJ C iiJ D iii) E . 

cJ The water will fall out of the bea.ker at point C 
if the beaker moves so slowly that the required 
c en tripe ta l a, cc e le rat i O·n is le s 5 t ha 1n g, 

1 n a c fre'le of O. 9 5 m rad1us. ea lcu late the 
minimum speed at which the water does not 
fall out of the beaker at poi,.nt C . 

9 Formula 1 [Fl] racing cars are desi,g ned to enable 
them to corn·er at high speeds. Traction between 
the tyres a1n d the road surface is i1 n,c rea se d by 
usi1ng soft rubber tyres. wh ich provide a large 
frictiionat forcer and by usi1 ng wi1ngs to increase the 
down force on the car . 

The tyres of an F1 car can provide a max imu1m 
frict~onat force to resist sideways movement of 
15 500 N. The car's 1mass l1ncluc:Hng the dr1iverl ,is 
620 kg. 

• • • • • • • • ii 
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• + 
' : • I • I 
II • 
= ; 
• • ' " • • • II s • 
% 
i 
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!! 

' • • • • • 
Ca Leu late tn e maximum corn erLn g speed oft he ear j 

i Assuming. th e teacher str ll rota tes the beaker going round a bend of i 
• • : a) rad·ius 30 m h} radi us 120 m. : • • • • • • .................................................................................. .................. . ............................................................ ~ .................... ~ 



Practice questions 
I The orbit of an electi-on i.n a hydrogen atom n1ay be considered to be 

a circle of 1aclius S x 10-11 m. The period of rotation of the electron 
is 1.5 x 10-16 s. The speed of rotation of the electron is 

A 2 x l05 ms-1 C 2 x l06 ms-1 

2 From the information in question 11 the centripetal acceleration of 
the lectron is 

3 x l022 m.s-2 

B 9 x 1022 ms-2 

12 x I022ms-2 

D 30 x 1022 ms-2 

3 The Moon orbits the Earth once every 29 days with a radius o,f orbit of 
380 OOO km. The angular velocity of the Moon is 

A. 2.5 x 10F'0 rads-1 

B S.O x 10-6 111ds-1 

C 8.5 x 1 o--6 radl s-1 

D 25 x 10-6 rads-1 

4 From the information in question 3, the Moons centripetal acceleration is 

A 2.4mms-2 

B 4.0mrns-2 

C 7.6nllms-2 

D 24n1ms-2 

5 Tl1e cenuipetal accelera.tion of a car moving at a speed of 30n1s-1 round 
a bend of radius 0.45kn1 is 

A l.Oms-2 

B 2.0m.s-2 

C lOOn1s-2 

D 200ms-2 

6 A satellite i-s in orbit around the Earth in a circular orbit of radius 
10 000km. The angular velocity of the satellite is 6.4 x 10-4 rads-1. 

The iin"le of orbit of the satelli.te is 

A 4800s 

B 6800s 

C 8400s 

D 9800s 

7 From the information in question 6, the centripetal acceleration of 
the satellite is 

A 2 -2 ms 

B 3 -2 ms 

4ms-2 

D Bms-2 

8 A student SV/ings a. bucket of \Valer in a v,enical circle of radius 1. 3 m. The 
bucket and water have a. mass of 2.3kg. The bucket rotates once every 1.4s. 
When the bucket is upside down, the water does not fall out. Wnich of the 
following gives a correct explanation of v.,~hy the water stays in the bucket~ 

A The weight of the ;.vater is balanced by a centrifi.1gal force . 

B The centripetal force. an.d the weight of the Vlater balance. 

C The water and bucket are. falling at the same rate. 

D The 'bucket n1oves so fast that th,e ,vater has no time to fall 
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9 From the infonnation in question 8> the centripetal force on the 
swinging hue k et is 

A 6N 

B 36N 

C 52N 

D 65N 

l O Fron1- the information in question 8 ~ for the S\Vinging bucket, at the 
bottom of the s\ving the rope exerts a force ,on the student's hand of 

A 90N 

B 63N 

52N 

D 36N 

11 An astronaut undergoes some. training to test his tolerance to 
acceleration. He is placed in a rotor, which ·CZnTies hin1 ill a circle of 
radius 7.0 m . The rotor ,completes 10 revolutions h124.3 s m,oving 
al a constant speed. 

a) Eh1Jlain why the astronaut is accelerating 1 although his speed is 
constant. 

b) 1Cakulate the size of the astronaues .acceleration. 

12 (Synoptic question: you need to think about energy tra11.sfonnations 
to help solve this question.) 

(2) 

(3) 

A large steel ball of mass 2100kg is used to demolish buildings. The ball 
is suspended on a cable of length Bm~ and i.s pulled back to a height of 
4m above its lowesl point) before being released to hit a buildling. 

a) Calculate the maximum speed of the ball just prior to hitting 
the building. (3) 

b) Calculate the tension in the cable when ihe ball is at its 

lO'~vest point. 

13 Figure 1 .12 shows an aircraft propeller that is 
undergoing tests in a laboratory. 

The propeller is made out of high-strength , 
lo", -density car bon-fibre-reinfo reed plastic 
(CFRP). In a test, it is rotating at a rate of 960 
limes per minute. 

a) 1Calculate the angular velocity of the 
propeller. (2) 

b) Calculate the speed of the pro,peller blade at 
these t,vo positions. (2) 

i) A 

ii) B 

c) Explain w"hy lhe propeller blade is made. 
of CFRP. 

d) At ·which point is die blade more likely 
to fracture) A or B? Explain your answer. 
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Figure 1~ 12 
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e) Estimate the centri.petal force required to keep a propeller blade 
rotating at a rate of 960 tin1es per second> if its centre of 1nass is 

0.6m from the centre of rotation and the mass of the blade is 3.5kg. (3) 

Stretch and challenge 
14 This question is about apparent weight. Your v,.reight is the pull o f 

gravity on you. But what gives you the sensation ,of weight is the 
reaction fo,rce from the floor you are standing on. 

a) A 111an has a n1ass of 80 kg. Calculate his apparent weight 
(the reaction f ram the flo,or) when he is in a lift that is 

i) moving at a constant speed ,of 3 ms-1 

ii) accelerating upwards at l .5ms-2 

iii) accelerating do,rnwards at l .S ms-2• 

b) A designer plans the funfair ride shown in 
Figure 1.13 . A vehicle in an inverting 
roller coaster leaves point A with a very 
low speed before reaching point B, the 
bottom of the inverting circle. It then 
climbs to point C; 14m above B, before 

lea"ing the loop and travelling to point 
D. 

Assuming that no energy is transferred 
to other fonns due to frictional forces\ 
show that 

i) 0 the speed of the vehicle at B is 
20ms-1 

Figure 1.13 

ii) the speed of ihe vehicle at C is 11 ms-1. 

C 

B 

c) Use your answers to (b) to calculate the centripetal 
acceleration requi1-ed to ke·ep the vehicle in its circular path 

i) at B ii) at C. 

d) Now calculate the apparent weight of a passenger of n1ass 
?Oka t:) 

i) at B ii) at C. 

In the light of your answers1 discuss whethe1· ,or not this is a 
safe ride. 

e) Figure 1.14 shows the design. of a space station. It rotates so 
that it pr,oduces an artificial gravity. The reaction fot-ce from 
the outer surface provides a force to keep people in their 
circular path. 

Use the information in the diagram to calculate the ang1.1lar 
velocity required to provid.e an apparent gravity of 9. 81n s-2. 

A 

20m 

- ---- i20m-----

Figure 1~ 1.4 
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Simple harmonic 
motion 
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! P I R K OWL OGE f .. • • : Before you start make sure that you are confident in your knowledge and 
I, 

• 
• • .. = understanding of the following points: 

• • I 

.. 
~ 

: 
: • • • : • 
" • 
" • • . 
• • • • 
I • • • • • • • • • • • • • • • • 

D~s placem,ent, veloc ity, force a·nd accelera ti on are all vector 
qua n t1 ti es. 

A .i t· c h an g,e of vetoc,i ty ccth.era 10n ;;;;----.------­
t11me 

T ' . d 1 1me per10 = 
fr equ ency 

1Frequen cy = numher of oscillations per second . 
The rnatur.a!l measure of angle is the radian; 2rr rad 1ians = 360°. 
'Res·ultant fo rce= mass x acceleration . 

• • • • : • • • • • .. 
• • .. 
• • • .. .. 
• .. 
• i .. 
• • • • • • • • • • • • • 

=·················~································································· ............................ --.: 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ... • • • • • • • • • • • • • • • • .. • • • t 

.................................................................... .......................... 

TEST YOURSELF ON PRIOR KNOWLEDGE 
• • .. .. 
• • 

1 al An electro m ag,netk wave has a freq uency of 2.6 GHz. Ca lcu late t he i 
time per iod of the wave. i .. 

b] A boat that is a nchored a t sea lifts up six hmes in 30 s as waves : 
• 

pass i,t. Wha t is t he freqrue n cy of the waves? : 
• 2 A car ,s trave ll.in g' w i1th a ve locay of 20 m s- 1 due north. Two m,i1nutes : 
• 

later the car has travelled round a ta rge bend and ~s travelUng w ith a : 
• veloc ity of 15 .m s-1 due so u1th. Calcu lat e t he car' s aver.age acceteratiian : .. 

over th 1s time. : • • 
J Calculate t he values of these t rigonometr ic fu1rnc tion s, where the i 

• 
angle has been expressed in ra:dians. i 
aJ tain 0.01 i • • b] Sl'n 1t t 

• CJ COS1t : 
• • 

: ............................................................................................................... .. 

Simpl harmonic motion 
las'l year; ,~hen you studied wave moti·o,n~ you learnt 'tha.'t aH typ s of waves 
require a vibrating source to produce them. For exm1ple1 vibrating or 
osciHating electric and magnetic fields are responsible fo,r the production of 
electromagnetic wm~es. There are also many exam ples of 1nechanical \\!'aves -
sound Vh1ves, water \lii"aves~ \Vave~ on strings oi- wires, and shock waves from 
earthquakes. All these waves are caused by a vibrating source . 
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impl h rm i m i A rapetitive 
m,oition about an ,equilibrium posrtijon. The 
equattor~ that describes this motion JS 

F = -kx. 

In th is chapter, you are going to be studying oscillations about a fixed point. 
Figure 2 .1 sh ows thn:e examples of mechanical oscillations - a clamped 
ruler, a mass on a spring and a pendulum. In each of these examples, we 
observe that the moti.on is repetitive about. a fixed point. Il1e oscillating 
object is stationary at each end of the tnotion, and is n1oving ,~ith its 
maximun1 speed, in either direction~ at the midpoint. 

------------
Figure 2.1 

.,. _ ...... 
oscillations 

· clamped rule 

osdllations 

oso i 11 a.tions 

To a good approximalionl these objects have these featu1·es in cominon: 

• TI1e force acting on the body always acts towards the equilibriun1 
position. 

• The force acting on the body is proportional to its displacement fron1 the 
equilibrium position . 

An oscillating body that satisfies both these con ditions is said to be 1noving 
Virith sitnJ l · h rn1nni ~ 1110Liun or SHJ\,1. The t¥to features of the motion 
above may be sutnmarised in 1he equation: 

or 

or 

F=-kx 

ma= -kx 

k a=--x m (i) 

Here k is a. constant (~lhich can be called the spring constant O·r the force per 
unit displacement) . The signif1cance o{ the minus sign is that it shows that 
the forc,e (and acceleration) are in th.e opposite: direction to the displacement. 
Force, accele.ration and displacement are vectors; so ,ve must define the 
direction of the displacement and molion . 
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Figure 2.,3 

equ i l,i brium 
,pos1ition 

A 

Pulll down a distance 
A and release. 

equi1librium 
position 

tF X 
-----i-------
-----

Mass accelerates upwards 
due to resultant fore e F. 

Figure 2.2 A mass oni a spring i1s a simple harmonic oscillator. 

Figure 2.2 shows s.ome important features of a simple harmo·nic ,osc.illa.tor. 
When at rest, the mass hangs in its equilibriurn position. A is the· amp·litu.d-e 
of the oscillation -this is the. greatest displacement of the oscillator from 

its equilibrium position. \Vhen the mass is displaced downward5 by x) tl1e 
force acts up~lards on the mass towards the equtHbrtum position . 

U you investlgate the thne period of a simple hannonic oscillator) you lNiH 
discover that the time period does not depend on the a1npUtude of the 
oscillations~ provided the amplitude is Sl"!iaU. If you overstretch a sprin.g or swing 
a pendulum through a large angle, the motion ceases to be simple harmonic. 

o~~~~~~~-
M at hem at i c a L description of SHM 
The question we want to answer is this: How do the displacen1ent ~ velocity 
and acceleration of a simple harmonic oscillator vary ,vitl1 tin1e? 

Figure 2.3 gives us some insight. Here a n1ass is oscillating up and down on 
a spring. The mass has been s troboscopically photographed by a camera> 
moving horizontaHy at a constant speed. The shape of the curve we see is 
sinusoidal. Figure 2.4 sho,vs ho"r the displacem ent of the mass varies "With 
tin1e if it is released fron1 rest ,vith an an1plitude A. 

--=iA 
L 

Figure 2~l. 

- - - -----,--t--t-·1---1 
- -,-,-~---1---i----i--,----



NOTE 
In the AQA specifi cation th,e 

sy mbol co 1s used to represent 

2x f or 2{ , so you will also 
meet equati ons in this form : 

X A cos cot 

a c-ro2x 

vmnx roA 

a max . ro2 .4. 

v .. :l:(OJA2-x2 

The graph has the sl1ape of a cosine function, \vhilch can be \vritten as 

x =Acos8 

But the value of .f) is 271 after one con1plete cycle so, at the end of the cycle, 

x = Ac,os(2rr.) 

However> we know that the oscillation is a function oft. The function that 
fits the equation is 

x = A cos ( 
2;t ) 

or 

x = A cos(2rtft) (ii) 

where T is the time pertod for one oscillation. Remember that T = j where f 
is the frequency of the oscillation. This function solves the equation because 
after .one oscillation t ~ T> so the inside of the bracket has the value 2rr. 

Once Vile J1ave. an equation that connects displacement with tinre, we 
can also produce equations that link velocity 'with time , and then also 
acceleration with time. These are sh o\Vll below: 

x = A cos(2rrft) 

v = ~2nfA sin(2rrft) 

a = - (2nj)2 A cos(2n:Jt) 

and since x = A cos(2nft) 

We derive this assuming x = A ,vl1en t ·= 0. However~ the san1e equation 
"\Vould have been obtained what.ever the starting C·Ondition. 

(iii) 

(iv) 

(v) 

(Mathematicians will see that the velocity equation is the derivative of the 
displacen1et1lt equation, and that the acceleration equation is the detiva.tiv,e 
of the v,elocity ,equation.) 

Since the 111axin1um value ,of a sine or cosine function is 1, vte can write the 
tnaxin1um values for x, v and a as foU,ov.rs: 

(vi) 

Vma."lfl = 2njA (vii) 

(viii) 

V..,7e. also Vv"lile do\Vll one further useful equation no,w; vlhich .aUo,vs us to 
calculate the velocity v of an oscillating particle at any displac.ement x: 

v = :z2n 1.J Ai - xi (ix) 

This ,vill be proved later vlhen ~'"e consider the energy of an oscillating system. 

Figure 2.5 shows graphically the relationship between x) v and a. These 
graphs are related to each other. 
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2 3 4 5 6 7 

SHM of a mass on a spring 

8 time 

A m,ass hanging on a spdngi oscillates with simple 
harmonic mot1on . The ampliitude of the oscillation is 
4.0 cm. and the frequency of the oscillation b 0.5 Hz. 
The sprr ng 1s relea-s ed from rest at its lowest pas Hi on, 
4 cm below i·ts equilibrium posi1 bo11 [Figure 2.61. 

Equlillbrlum 
position 

................. l.t .. 
4om 

___ ... __ -~ -- -·-~-l. 
m 

Figure 2.6 

• TI1e graph of velocity v against titne t links to the 
g1c1di.ent of the displace1.nent-tim,e (x-t) graph because 

d x 
v= -

dt 
For ,exatnple, at time O (in Figure 2.5), the gradient of 
the x-t graph (a) is zero, so the velocity is zero. At time 
l , the gradient o.f the x-.t graph (a) is at its highest 
and is negative, so the velocity is at its mn.imum 
negative value. 

• The graph of acceleration a against time t (c) links 
to the gradient of the velocity-tin1e (v-t) graph (b) 
b ecause 

,6,v 
a=-

& 
For exaimplei at time 1 (in Figur,e 2.5t the gradient of 
the v- t graph. (b) is zero) so the acceleration is zero. 
At time 2 1 the gradient of the v-t graph (b) is positive 
and at its largest value so the acceleration has its 
largest value. 

Calculate the max1mu ·m, veilocity of the mass. 

Answer 
Vmax =: 2xf A 

= 21t x 0.5 s-1 x 0.04 m 

=0.13ms-1 

2 Calculate the m,aximum acceteratron of the mass. 

Answer 
2 

a .::! ~21tf I A 
max 

= (21t x 0.5 s-11
2 

x 0.04 mi 

~ 0.39 m s-2 

Calcutate the acce leration of the mass 1'.2 s after 
release. 

Answer 
We need to define a, direction before a,pptying our 
formulae. In Figure 2.6 we define posibve as our 
downwards dli1rection . [This is arbrtrary. You w ill get the 
sa,me answer j,f you choo·se this direction to be nega,tive.J 

2 
a ;;:: - {21tfl A cos i(2n: fijl 

-:::;; - (2n: x 0.5 s- 1
]2 x 0.04 mxcos[21tx 0.5 x 1.2! 

= - 9.9 s-2 x 0.04 ,m x [~0.81] 

= 0.32 m s- 2 

Since this js positive~ th e a cce lera tion is downwards. 
~ 



~ 
Catculate the velocity of the m ass w hen it is 
disp laced 2 c m1 from ~tsequHib r ium p·ositton. v = :i,21tf JA2 

x
2 

l 
- =1 2 2 2 

= ± 21tX 0.5 s [0.04 - OJJ2 ) mi 

~ ± Jt s -1 XO. 03 5 m 

~ :1:0. ii 1 m s_, 

··················· ••++i••••••···;·································································;··········••t•+•••••••················· ··········· • : TEST YOURSELF II 

• • "' • 
i 1 • 
' • • • • .. • : • : 
• • • • .. 
• : • • • • • • 
Ill .. .. .. • • • • • • • 

A pend ulum is released from :po int A in Fig.ure 2.7. It sw i1ngs from 
A to C and bac k w~th SHM. The distance AC 1is 24cm, and tlhe time 
taken to travel from A to 8 is 0.8 s. 
al State th e frequency of th e osciUatiori. 
b] State th e ampUtude of t he osc~ltation . 
cl ii Calcu late the speed of th e pend,ul,u·m as it passes B . 

ii] Calcu late th e vetoc: ity of the pendulum when it ~s displaced 
4 cm from B. 

i .. 
• • • • "' • : 
• .. • • • .. .. .. 
• • .. • • • • • • .. .. 
• • • d] Ca lculate the accelerati on of th e pen dulum, w hen it is displaced : 
• 

6 cm to th e r1ight of iB . : .. .. 
i 2 A rule r is c lam ped to a be nch. W hen th e f ree end rs dis placed, th e J 
~ r ule r oscillates with SH1M, at a frequency of 100 Hz. Th e ampUtude ~ 
: of th e osd llations is 1.8 .mm . : .. . 
! aJ Calculate th e hi·ghest ve lo ca y of the ruler. ; 
• • 

b] Ca lculate the hi ghest acce leration of the r uler. State w her e : • • • • .. .. .. • • • • • • • .. .. .. • + • .. 

.. 
thrs is. : 

• cl State th e point i:n th e osciHat~on where : 
• 

i] the acce lera tto n of the rule r is zer o : 
• 

HJ the veloc ity of the r uler is ze r o. ; 
A B C • : 3 A 'ma rker buoy is osdtlating: in a verti1cat l~ne with SHM . The buoy : 

i takes 2.8 s fo r on e osc illatk, n an d 1is seen to faU a dis ta nce of t8 m Figure 2·7 i 
+ • 

: fro:m i1ts hi ghes t to its lowest poJnt. : 
• • i al Ca lcu late t he buoy's m ax1imum veiloc ity. I 
i b] Ca lculate th e bu1oy's accele rat1ion w hen it is 1.4 m, betow tts ! : . 
: highes t poiint. : 
i 4 Fi1gure 2.8 shows the di.s pla,cement of a particle osciHatiirig W1ith i I 
! SHM. To represent its motion,~ the equat]on x ~ Asin(21tft] is used~ time t i 
ii • 

: w here x ~ 0 w hen t = 0. : 
• • i Copy the diag:ram and add sketch es. using th e same t~m e axi s, to J 
! show the variat ion,s of v aind a with t im e. : 
: P:igure 2.8 : 
I "' • i 

! ....••••••••..... i·············································· ·····························•••t••••••••••• +ti···························•••••4llllllllllllllllllllllllllllllllili 

Time period of o cillation 
We can co1nbin t: t'INO of the -equations lhal v,.re used in the previous 
sections to p roduce a. fun her equation that links th e time period of 
oscillation 1 T, to th e mass of th e oscillating p an icle , m, 2n1d the force p er 
unit d isp.Jacem en t ., Jc 



Calculating the· time period 

A ;mass of 400 g hang s on 
a steels pringi wh k h has a. 
spr1ing co nstant of 0.20 N cm-1. 

Cailculate the tim e period for 
one oscillat ion. 

Answer 

r~2n f; VT 
- 2n 

0.li. kg 

20 N ,m-1 

;;;; 0.89 s ~ 0.9s 

The t \vo equations that define the 1notion of a silnple hannonic osciUator 
that we need from the earlier sections are equations (i) and (v): 

k 2. a= - - x and a= -(211.f) x m 

Combining these gives 

fi. = (2rc f)2 m. 

or 

£= (!! J Hl T 

or 

T=2n{f k (x) 

I Once you recognise that a particle is oscillating wit.h SHM~ you can u se this 
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Figure 2.9 

2 In Figure 2.9,, a Ught ruler 
i.s c lamped to a desk .and a 
mass of 250 g is attached 
5ecurely to the free end . When 
a riewtonmeter rs attached to 
th e end of th e ru ler , a force 
of l .4 N displaces the ruler by 
3 cm1. Calculate th e time period 
of th e osci.llations~ stating any 
assu m pti,ons you make. 

-en Answer 
N 

The force per unit displacement 

so 

k a 
1 ·4 N .. 4 7 N m-1 

0.03, m 

·= 2n 
0.25 kgi 

47Nm-1 

= 0.46 s ~ 0. 5 s 

general solution to calculate th e time period of any oscillator. 

The simple pendulum 
Figure 2. lO(a) s hows a pendulum held at rest by a sn1all sideways force F. 
Figure 2. lO(b) sl1ows the d1ree forces acting oi:--1 the pendulum bob to keep 
it in equilibrium. 

mg 
Figure 2.1 Ola) Figure 2.10 lb) 

mg 

Figure 2.1 O {cJ 

TI1e forc,e F = mg sin 8. For small angles \Ve have 8 ~ sin &, and therefo,re 

F= mgfl (xi) 

Figure 2.IO(c) sh0Vi1S that x can be 1--elated to the length of the pendulum, l, by 

x = l tan B. 



For s1nall angles , we also l1ave (J "' tan8) and therefore 

X = UJ 

and 

fJ-X-- T 
Combining equations (xi) and (xii) gives 

F X =mgT 

When the pendulum is r,eleased. the resto,rtng force n ow acts in the 
opposite dir ctio11.. So 

X 
ma= -n1gT 

and 

X g a~-gT ;;;-TX 

This is the defining eqllation for SHM because. the accelerati.on is 
p roportional to) and in t.he opposite direction to; ihe displacemen't. 

Therefore 

{2rrJ}2 =f 
(Tr~f 

(xii) 

(xiii) 
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REQUIRED PRA TI AL 7 I . . 
: 
' 

Investigation into simple harmonic motion 
using a mass-spring system and a simple 
pendulumi 

lnvestigate whether the time per iod of th e 1 
• pendulum depends on ·the amplitude of the swings. , 

11nvesti,gate how the tlm e per i,od, Ti of the pendu,tu,m 
varies with leng,th between 1.5 m an d 0.2 m. 

Note: This is just one exa,mple of how you might Plot a su itable straight Un-e graph to investi,gate 
tackle thi s required practkat. whether: r2 al. Use th e grad1ient of the graph to find 

Make a simple pendulu 'm u.s1ing a simall mass hang1~ng a val,ue for g. 
: on a pi'ece of striing about 1.5 m long. ! 
; . 
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f ACTIVITY 
I Oscillation of a tethered trolley 
~ The purpose of thi1s acti,vity is to inves tigate how 
~ th e tim e period of a teth ered troHey depen ds on its 
~ mass. Th e mass of th e troHey 1s chang ed by putting­
~ a ddit~ona l weights on top of it . . . . . 

In Ff9ure 2.11 , the i,denti1ca l sp,r in gs A and 8 are both 
under tensio n, but in th e trolley's -equili'bdum position 
the forces from the two s pdrngs ba1larnce. 

I . . . 
' ' : 

• 
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Figure 2.11 A tethered trolley osdUates with SHM. Each 
spir·ing ha1s a spring constant k . 

Each spring has a1 spring con sta,nt k. What is th e 
resuttant force acting on th e trotley wh en 1it is 
displa ced a di sta,nce x to th e r ,ight? 

• Spring A exerts an extra force of kx to th e 'left. 
• Spring B exerts a force reduced by kx to th e right. 

So th e res ultant force on the troUey is 2kx to the left. 

1 Explain why th e time period of the t ethered trolley 
is gi:ven by 

T = 2n (;; V2k 

2 In an experiment, a student determines the spr·ing 
con s ta n t of h er .s ,p r i n g s to lb e 1 7. 8 N m-1. S h e t h en 
recorded the set of data shown in Ta,ble 2.1 for the 

oscillation of her trolley~ as she varied its mass. 

Table 2.1 

~ .0 1. 5 2.0 2.5 3.0 4.0 

5.3 6.4 7.4 8.3 9J 10.5 

Pilot a g,raph of r2 against m. 
a) Discuss whether or not yo ur graph is con si1steint 

with tin e formula quoted iri pa r t 1. 
b) Determ1in e the gradient of your 91raph. Comment 

on thi s r es ult. 
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~ ACTIVITY . . . 
: Other systems that might show SHM 
: . 
: Figure 2.12 shows two systems to investigate. 1t f s suggested that both are 

simple harm o niic os d Llato rs . 

1 A U~tube i1s p.arUy fi:lled with water. as shown in [a] . The total length of 
the water in the tube i1s L. 
a) lnvesbgate whether or not the a1mplitude of the osci.llahon s affects 

their t1me period. 

b) Check to s·ee if the time period of the oscitlat~ons agrees w~th the 
formula,: 

T =21t {I v·2g 
2 A weigihted boiUn9 tub e ris allowed to oscillate up and down in a large 

beaker of water [b). In its equiliibrium posit,ion, a length L of the tube ~s 
submerged. 
a) linvest,igate whether or not th e amplitude of th e ·Ose i Uati ons affec ts 

th eir tim e peri od. 
bi Check to see i1f the t,im,e period of the osc illations agrees with the 

formula: 

T = 211: ~ 

x ---- .. - .. 

' \ 
• ... 

L 

!Both formulae for the frm e periods a re de rived rn the on-Une m,ate ria l.) Figure 2.12 
Note : Make s ur e to was h your hand s after handl1ng lead s hot 

.. ......... ---- X 

. . 

--- -~-- - - f' - - - -- equlMbrium : 
I • 

I' 

(a} 

: position ~ 
I : 
I ; 
I 

I 
I 

• # 
t 

___ --- equlllbrlum 
position 

(b) 

. . .. ........ ... . ..... .. - · •• •••••••11 ...... . . . . ....... .. ...... .. . ..... . ..... . ....... ., . . ... ... ......... . ...... ... . .... ..... ... .......... . . . .. ........ ............. . ........... ....... . ....... .... . . . ....... ................. .. --- .. . ..... ......... ........ · - .. ...... .. ............... ......... .... . 



•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 
: TESTYOURSELF -----~ : 
• • • ... 
I 5 A pendulum has. a length of 2 m. Calculate its time period of os ciUation 
: ,in ea eh of these places: 

• • • • • • • etasuc ropss : 
• 

i 
suspended· from : 

• 
: a] on Ea· rth a door lintel : .. 
! b) on th e Moon~ where g ~ L6 N kg -1 

i c] on a com et. wh ere g - 0 .OOO 6 N :kg-1• 
• 
; 6 A 'baby bounce r· is a !harn ess that can be used to amuse and exerc ise 
! a baby before the baby can watk. Figure 2. 13 shows a1 baby e nj oy rng 
! th iis experi,ence. Th·is 1is a s i1mplified model 1 tn fac t~ the baby's feet will 
: touch the floor. : 

i 
• i 
• • 
' : • • ' ii I • • : 
i : • I 
I 
I • • 
' • i 

"" "' • 

• 
The suspension rop es for a· boun cer a,re 1. 301m tong, and stretch to ! 

• • : 
t 

1.48 m wh en a, baby of ma,ss 9.5 kg is put ,in it. -----o1 ; 
a) i) Determine th e spdng con stant for the baby bouncer. -F-ig-u-re-

2
-.,-

3
---------.......... ! 

i ii] Determi,ne th e tim e period of the baby·s simple harmonic motion. i 
i iiil Determine th e ba:by·s maximum speed, wh en released fro1m 10 cm j 
i above the eqt.dUbriu·m position. i 
• • i b] When the baby wa s bounoing three months tater, the : .. . 
: baby 's father noticed that the tiime peri,od of : 
• • : the osci llations nad increased to 1 J] s. He 11s : • • i detighted that h.is baby has put on weight ~or mass, ~ .. . 
: a,s baby's m,other correctly points out]. What 1is : 
• • 
: baby's mass riow? : 
• • 
: c) Explain what ts meant by the terms : 
• • 
~ i) weight ~ 
i iil mass. ~ .. . 
: 7 Figure 2.14 shows a graph of di1sp lacement against time : 
• • 
: for a mass of 0.5 kg, osd llati ng on a spring,. : 
• • i a,J Use the graph to estimate the speed of the mass i 
• • : between pornts A and B. : 
• • 
: b] Use your knowledge of SH ,M equabons to calculate : .. . 
i the theoreti:cal max i mum s peed from th e graph. : 
i using the informati,on shown on the axes. Figure 2.14 ~ 
• • : cl Calculate the spring constant of the spring . : : : • • 
··~··············~·························~·························~·························~·························~····················· ......................... llllli 

n r in imple harmonic motion 
Figure 2 .15 sh o,vs a pendulu1n swinging back,vards and for\\rards from A 
to B to C, and then back to B and A. l\s the p endulum m oves there. is a 
continuing transfer of energy from one form to another. 

• At A, the velocity of the pendulum bob is zero. H·ere the kinetic energy, 
Ek, is zero, but the bob has its maximum potential energy, EP. 

• At B,, th e velocity of the p endu lum is at ils ma}i.imum value, an d the· 
bob is at its lowest h eight. Therefo re , Ek is at its maximum, and EP is 
.at its minimum value. This can be defined as the systems zero point of 
p otentia] et1ergy. 
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V ~ Q, 

Eic ~ 0 
E"p c rmax 

Figure 2~15 

-A 
Figure 2.16 

' \ 
' ' \ 

-
V c ma)( 

~~max 
Ep c 1min 

energy 

0 

' \ \ 
\. 

' ' \ \ 
\ C 

' ,-....... ) 

v~o 
Sic~ a 
Ep c:; ma.x 

total energy 

>,. 

A 

• At C) the velocity is once 1no1~e zero. So the bob has 
zero kinetic ene:rgy and its n1.axinTum value of potential 
energy. 

The potential energy can be calculated as foUo'\VS. The force 
acting on the pendulun1. along its line of n1otion is -h when 
it has been displaced by x (where l< is 'the force per unit 
displac,ement) . 

The \vork done to take the n1ass to x is 

W = averZJl ge force x distance 

= - lkx x (-x) 
2 

=!kx2 
2 

or the potential energy is given by 

So the nlaximum p otentia] energy of any simple harmonic 
oscillator is ! kA 2 

1 where A is the an1plitude of the 
displacement. 

The kinetic energy of the oscillator at a velocity vis 

E 1 2 k = - mv 
2 

Figure 2 .16 shows how the potential energy EP and the 
kinetic energy Ek cl1ange with displacen1.ent for a snnple 
ham1onic oscillator. The tot.al energy of the systetn 
remains constant (assun1ing there are no energy transfers 
out of the system.) 

Figure 2.17 shovvs how the potential , kinetic and total 
energies change \Vith tim e as the pendulum oscillates. 
In one oscillation, the potential energy and the kinetic 

energy both reach a n1axi1num t"'ice. TI1e total energy 
ren1ains constant. 

PE 

KE 

Tota1I 
energy 

e ----w~-t----414---+~tt-----i--~ ,,.----t---l-~--i-----tt- ----

~ 
Q;l 

T -4 

Figure2.17 

3T 
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tlme 

T oT 
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3T 
2 



vVe can no,v write an equation to link these three energies at a displacement x: 

So 

and 

total eneTgy = kinetic energy + p oten1iaJ energy 

lk l 1 . 2 lk l ~ rA = -- mv +~ '"X 
2 2 2 

mv2 = .l<(A2 - x2) 

(Reme1nbeJ that when y·ou take the square root of a function, there is a 
positive and a n egative root.) But 

Im T=.2nVk 

or 

and so 

2nf - ~ 

(XV') 

(xvii) 

When equation (J!..~i) is substituted into equation (A·1ri)~ we get the fan1iHar 
equation for velocity: 

or 

2 2 J. 
v = ±21iCf(A -x )1 

(xv iii) 

~ ·····················································································································································: : TEST YOURSELF i 
t : 
! S A s~mple modet of a d:ia·tomi c gas motecuile cl Ca lculate th e tota l energy of vibrati on of the two ! 
• • i treats the two aitoms as smaH masses, whiic'h are atoms: i 
f co nn,ec ted by an atom~c bond that behaves Uke a iJ in joules UJ I 
: t iny spring. The atoms 1in a particular m olecule iiJ in elec tronvolts [eVL : 
! vjbrate with SHM, at a freq uen,cy of 1'013

' Hz and 9 Orarw a sketch to show how t he potentia·l energy. i 
~ amplitude 2 x l 0-12 m,, The mass of each ato m is kinetk; energy and total energy of a parti cle, ! 
i a bout 10-25 kg. osc illating with SHIM, vary with th e particle's i 
i ail What fra ction of a typ1ica ~ atom,iic separaUor, dis pla ce me nt. f 
+ • i does thi s a mplitude represent? 10 A pendulum wiU1 a mass of 0.1 kg osci llates wrth an i 
i b) Ca lcuilate the approximate force co ,nstai nt of th e amp~itud e of 0.2 m . When the displ.acement of t he f 
i ]nteratomlc bond. pendulum is at its ·maximum from th e equ~lib rrum i 
: ~ : 
4 ~ • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
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i point, th e pendulum has a potent ral -energy of i] 0 ii] 0 .1 m . ! 
• • i 0.08Jj and when the di spl.ace m ent is (L1 1ml the b] i] Use the maxtmu1m speed of the pendulum f 
f potenti,al energy i:s 0.02J. and the amplitude of t he swing to calculate f 
f a) Ca Leu late the speed of the pendu lu m at th e time period of the pe nd ulum. ! 
i disp'lacements of iii Now ca,lcutate the length of th e pe nd ulum . ~ . .. .. . 
: .... , ............................................................................................................................................... ........................ .... 

C)r--==r =e=.=c=La=m==p==d=a=n=d=f=o=rc==d==o=c=_i=Ll=a=ti=o=n=s ==~ 
So far~ \Ve have only de-alt with free oscillati,ons. Th s are oscillations 
that (in theory) carry on indefinitely because there are no forces acting 
to, stop the oscillation. A close appro""i'mation to a. free oscillator is a very 
heavy pendulum supported by a very fine wire; which is atte,1ched to a 
rigid st\ppon. Under these circumstances~ the energy transfers from the 
pendulum are very low; and the pendulum keeps swinging for a long tim,e. 
Of ,c.,ourse, in the endl any pendulum stops s,vinging because frictional forces 
transfer tl1e pendulum~s energy to the surroundings as heat. A pendulum 
clock can n1n for a Vv~eek

1 
because energy from a slowly falling weight gives 

the pendulum a little energy every time it swings. 

................................................................................ In practice, all mechanical oscillations are d, rnpcd o -c illaLio ns . In such 
oscillations~ the oscilla1or transfers energy to tb.e surroundings. When 
the dan1ping is light 1 energy is tra1i.sfe.n·e.dl slo,vly. ~en the damping is 

mp sclll t io1 A damped oscmati,on 
occurs when frictton or w~nd res~~tance 
takes ,en.e~gy out ,of the osciUati on. 

(a) 

Figure 2~18 

card 
motion 

heavy) energy is transferred more. ,quickly and the oscillations stop after a 
few £Mrings. The best way for you to investigate the effects of dampit1g on 
a.n oscillator is to use a n1otion sensor and a data logger. In this way, small 
c·ha.nges in amplitude can be re.corded, which you could 11.ot do by eye. 

(b} 

computer 

Interface/data logger 

interface/ 
da.ta logger 

rotary motion 
sensor 

Figure 2.18 shows experimental set-ups to investigate damping in two 
oscillating systems. In Figure 2.18,(a) the motion sensor records the 
displacement against time for a mass on a spring. The card on the bottom 
l1as two funclions: first

1 
to act as a good reflector for the motion sensor: 

second~ to act as a 'dampee. It ec"luses drag to dampen the oscillations. 
Increasing the size of the card will increase the damping of the oscillator. 

In Figure 2. 18(b) a rotary sensor records the 1noti.on of a pendulum. TI1e 
co1nputer records how the angle of rotation varies with time. By attaching 



(a) 

,light damping 

(b) 

medium damping 

(c) 

heavy damping 

cards to the p endulum, the motion of the pendulun1 can be dai:nped. 
Figure 2.19 shows how the angular displacen1en t of a pendulun1 varies 
with time, for different amounts of damping. 
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Figure 2 .19 Graphs ,of t he a ngu l~r d isp'lacement of a, pen,d ulu m agai n1st time tor different levels of damping: 
[a,)1 L1ight damping. !b] med',um, dampi·ng and kl he,avier damping. Data provided by Data Harvest Group Ltd. 

You ma:y be able to use data logging equip111ent to investigate damping 
for yourself . 
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~ A damped oscillator 2 To investigate [f the amplitude decays exponentfaHy, 
we can ptot a graph of tf'1ie? naturat logarithm of the 
a m1plitu,de against th e numbe r of swings. Slnce ft [s 
su1ggested that thie a'mplitude obeys the taw 

j A teacher suggests that the amptitud-e of a damped 
! osc illator decays exponentially with tim e. Th ts means 
j tha:t th e ampUtude can be described by th e following 
j equation: A ~ A

0 
e-.u (wher e t is th e number of swings) 

1 A A - it i ::s 0e then C 

~ wh ere A is th e amplitude at time t and A0 is the 
j amplitude at t • 0 [the s tart of th e swings]. 

lnA ln A.0 - lt 
a I Us .j n g you ir data,~ p lot a g ra p h of I n A a g a 1 n s t t h e 

n,umber of swi1ng s. 1 
i 1 
I 
i 
I 
! 
i 
! 
C 

i 
' 

lrivestig,ate thi s rela,tionshi,p. using the graph s in 
Figure 2.19. Work in t-eaims of three, so that each 
person can a,na'lyse one of th e graph s. Rat~ er than 
w orking lri secon,ds~ wor k rn ·swing s·. Then copy 
and co rn ptete Table 2.2. Measure the amplitude 
a ft er each co;mplete swing . 

Table 2.2 

Number Amplitude of Amplitude o.f Amplitude of' 
of swings graph . graph graph 

2 .. 19[al/d~grees 2.19(b]/deg rees 2.19(c)/deg rees 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

bJ Di sc uss wh eth er or not your data fottows an 
exponen,tiat la.w. 

c) Determfne the 'half- life' T; for you·r pen du,luim 
usi1ng the exp ress ion • 

T ::;; ln2 
1 A 

where yo,u determ 1ne l fro·m your graph. 
lYou w[U find a si:mi tar exp r essi on derived iin 

Chapter 1 ll Here TJ.. [s the number of swi ngs [t ., 
takes your pen.dulu~m's am.plltude to reduce by a 
half. 

. 
: . . • • : 
: 
~ 
" ! 
! . . 
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o~~~~~~~-
o r c d o cillati n 

When you let a pen dulum S"1ing freely; it s~ings at its natural frequencj: 
which is determined by its length . ,Gradually the pendulum transfers its 
e.n,ergy and slo"'rs down. It is also possible to force a pendulum. to osciHate 
at a different frequency by pushing it at regular tim·e intervals. This is 
demonstrated in Figure 2.20. In Figure 2.20(a) a pendulum is driven by 
hand at a frequency be.lo"" its nan1ral frequency. The ampHtude of the 
oscillations is l ow> and the pendulum bob m,oves in phase with the hand. ln 
Figure 2 .20(b) the hand moves backwards and fon.vards at a high frequency, 
ab ove the natural freqlicncy of the p endulum. Now the pendulum bob 
moves out of pl1ase with the hand, an d th e amplitude of the oscillations 
is still small. ln Figure 2.20(c) the pendulum is given a push at its natural 



(a) (b) (c) 

Figure 2.20 

frequency. Just as the pendulum stops n1oving, the 
hand gives i t a s1naU nudge. Now the oscillations of th.e 

pendulum become very large. The pendulum is said to 
be driven at its resonant frc.:qucncy. When you push a 
child on a swing, you push at the resonant frequency. 
Just as the child reaches the nla.Ximum displacement 
fron1 the centre, the s\.Ving mon1entarily stops. After that 
point, y,ou give the S'wing a push and the amplitude of 
the S\\ii ng builds up. 

The idea of re, on~ n ·c. is demonstrated by Bartons 
pendulums (see Figure 2 .21) . Here , a number of light 
pendulums (A-E) are suspended from a string. Also 
attached to the string is one heavy pendulum (X), 
which is the 'driving' pendulum. When the driving 
pendulum is released, it pushes the string as it swings. 

• • •• .... ••• •• .... • •• .... .,, ,_ .. .. ••• ii..i .,.,. ltoll -••"'"•Ill,."'"•• •'" 1,.1 ••• ...... , ..... •Ill ·• 1,-.1 ... ~ .... •••II - "".,a,.• 

nan fr qu n The resonant 
freqm;.ncy of a structure (or oscmartor) is, 
the same a; its natural frequency. When ,an 
os,cillator i·s dr~v,en or pushed .at it5 natur;i1I 
frequency, the arnpUitude of the oscmatrons 
grows larg,e. 

These pushes then begin to dri.ve the other pendulums. Most of them swing 
\vith lov.r amplitude! but the pendulum that ll!as the same length (L) as the 
driver swings ,vith a large ampli tude. This 15 because its natural [Tequ ency is 
the same as the driving frequency: 

~ nan An osciUator uod,erg,aes high­
ampl~tude oscillations (resonance) when the 
dr~ving frequency i:s the same as the natural 
frequency. 

E 
D 

X 

Figure 2 .21 Ba rton·s pend ullum s. 

l 
L 

! 
C 

B 

~ .......................................... , ..................................................................................................................................................................................... , 
. ~ ACTIVITY ~ 

i l 
i Investigating resona nee i 

I YoU' can use th e ap paratus in Figu,re 2.22 to help you natural 
~ understa,n,d how th e a,mpl1itu,de of a driven oscHlator f.requency 
~ cha.nges with the ddving frequency. The oscillator : fo c:i t 
~ pu lls th e string up and down. The stri1ng ls attached o 

to a mass on a spring~ whi ch osc illates up an,d down forced 

at th e same frequency as th e dr1ivrng osc i,tlator. , osciUations 

Proceed as follows. 

• Choose a spring (or spring s) and masses so that 
th e natura,l frequency of th e syste,m is abo,ut 1:- 2 Hz. 
M ea sure th ~s frequency. 

• Vary the fr equency of the osc illa tor ~n s ma ll s tep.s 
fro1m about a third of th e natural fr equency to about 
three tim,es the nah.Jra,l fr e que ncy. Record th e 
ampHtude of the osci llat ,ions 1n each case. 

to vari9ble 
frequency 

signal l 
gen,erator ---

Figure 2.22 

la1rgEHamp I itud e 
oscillations 
when frequency 
of signal 
generator= f0 

oscll lat or 
( d:rivi ng farce) 
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/ iThis ea n be d1fficu llt because the oscHLations do • Repeat the experiment with a piece of card ~ 
~ not always settle into a steady pattern .] atta ched to the masses to increase damprng . 
J • Plot a graph of the amplrtude of th e osdllations 

against frequency. . . . . 
~ : 
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amplitude 

Figure 2.23 

reso na.un g al r 
column 

Figure 2.25 

Figure 2.23 sho··w·s an idealised n?.s.onance curve that 
you might get \Vhen you 'try the activity. The a1Lnplitude 
·Of 'the driven ,o,scillations peaks sharply at the natura] 
frequency of the system. The sha11:>ness of the peak 
depends on the amount of damping. When a systen1 
is hea,,,ily damped, the peak is not so sharp because 
energy is being lost from the system and the amplitude 
d oes not build up so far. 

Figure 2.24 shows the effect of increasing damping on .a 
resonance curve: t app I ied freq ue nc y 

amplitude resonance when • the peak of the amplitude. is lower 
applied frequency ;;; na tu ra..1 • the peak is broader 
frequency of osdllating, body • the peak of the amplitude occurs at a frequency 

slightly lower than the natural frequency of the 
system. 

tu ndn g fork forc:1n g a. lr 
column l1nto resonance 

amplitude 

t 
natural frequ·ency 
of oscUlating body 

Figure 2~24 

Examples of resonance 
Musical instruments provide a good example of resonance . If the air in a 
~ind instrument oscillates at the natura] frequency of the ins'trument~ a 
loud note is produc,ed. In a stringed 11nstrum·ent, when a string is plucked it 
vibrates at its natural frequency. 

Figure 2.2.5 shows how you can deinonstmite resonance in the laboratory. 
H,ere a tuning fo,rk is held above a c,olumn of air. TI1,e length o,f die column 
cau be adjusted by mo·ving the reservoir of water on the right~ up or down. 
When the tuning fork is 1na.de to vibrate, the column of air vibrales. Ho\vever, 
the amplitude of the oscillations is s1naU ~ .. h en the driving frequency does 
not 1natch the natural frequency of oscillations in the air colu1nn. When the 
length of the column is adjusted so that its natural foequency is the same as 
the tuning fork's frequency) a loud sound is heard as the ·air resonates. 



A n1icrowave oven takes advantage of the 1~esonance of water n1olecules. 
The frequency of the m icrowaves is matched to the natural frequency 
of oscillation of water m olecul,es. So when something is cooked in the 
micro,vave oven, water n1olecules absorb en ergy frotn the 1nicrowaves. The 
water tnolecules statt to vibrate. This energy is tl1en d.issi.pated as randon1 
vibrati,onal energy among all 'the molecules in the food. Random vibrational 
energy is heat energy. 

Resonance can cause setio·us problems in any mechanical structure~ because 
all structures have a natural frequency ,of oscillation. Ev- n a large structure 
such as a chimney or a brtdge can be set oscillating by eddies ,o,f ,vind. And 
if the ~dnd causes vonices ,o,f just the right frequency, large o,sciUations 
can build up. Famous examples of bridges being made to oscillat . by the 
'Wind include the Millennium Bridge in London in 2000 1 and the Tacoma 
NarroVv"'S Bridge in the USA in 1940. The decks or large boats c.an also be 
made to, oscillate if the boat hits wav'es with the same frequency as the 
natural frequency of part of the deck. The Broughton Suspension Bridge 
vtas an iron suspension bridge built in 1826 to span the River Invell in 
Manchester. In 1831 ~ the bridge collapsed due to ihe 1nechanical resonance 
caused by a troop of soldiers marching in step . Unfortunately [or them~ 
the frequency of their steps caused the bridge t o oscHllate so much d1at it 
collapsed. As a result of the accident) the British. Am1y issued an order that 
troops should break step' wl.1en cro&sing any bridge. 

Reducing resonance 
The best ,vay to avoid :resonance in structures is to design them so that their 
natural frequencies lie Vlell outside the range of frequencies likely to be 
caused by wind blo,ving across thetn. However~ if that is not possible then 
the amplitude of oscillations can be reduced by dan1ping the motion .. ln the 
case of the Millennium Bridge> the oscillations were reduced by applying 
fluid dampers (see Figure 2.26). 

Figure 2.26 Fl1uid dampers were, used to redu ce the lateral 
osciUa,tions of the IMiUennium Bridge . 

• 
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Figure 2~27 The sprin,g and the 
piston-cylinder on a shock abso rber 
for m the suspension syste,m for a wheel 
in a ea r. 

Pistons are able to move inside a cylinder containing fluid an d this 
causes th e en ergy to b,e d issip ated rapidly. Car suspen sion syste1ns use 
th e sam e idea. A car u ses springs and sh ock absorbers to make the ride 
more c011nf0Ttable for p assengers. When a car goes in to a p othole. (for 
example) a strong spring aUows the ·\vheel to drop into th e h ole. With no 
shock absorber., the car would then oscillate up and down. -aut th e shock 
absorber removes the energy. lt consists o.f a piston that moves inside an 
oil-filled cylinder. The shock absorbers are critically damped. This means 
that the \\,.heel only oscillates once before retu rning to its normal position 
relative to the car (see Figure 2 .2 7). 

~ ·····················································································································································: : TEST YOURSELF f 
• I • ! 11 F19 u re 2 .28 s hows a system of pen d utums suspe n dedl fro m, E 
: a st r 1in g. A heavy pendulum on the rig ht is set in moti,on. E 

w hich then sets th e other pe ndulumrs in matron too. T hese £ 
Ug.ht pe ndlJlums are m ade us ing sma H pa per co nes. ! 

• • a) Descri be the motions of the eight Ught pendulums. : 
+ • 

: b] The s ma lll c on es a re re placed by larger paper co nes. : 
+ • 

: Describe the chan ges yo u see in t he m oti on of th e : 
• • i pendulums. i 
i 12 a] Explain w hat is m eant by the te rm 'resonance·. ! 
• • 
: b] Give and ex pla·in an example of how resona nce can be : 
+ • 

: ,useful in a mechan ic a~ system. : 
: heavy pendulum • i cl Gi1ve and ex pla 1n an example of how resona nce ca n f 
i cau se prob le m s in a m,echa nka t syste,m . £ 
• • • • • • • • • • • • 
: Fig u re 2 ~ 28 : 
+ • 
• • + ~ 

···· ··························~··· ··········· ························· ·· ··· ········ ··· ··· ··········· ························ ··· ·· ······· ··· ··••<111111 ........................ .. 



Pr c ice questions 
I A meta] ruler is clamped to the desk and a mass of 80g is fixed 

securely to the end (Figure 2.29). A force o,f 12 N is applied to 
displace the end of the ruler by 3mn1 up,,rards. When the ruler is 
released, it osciUates ·"vith simple harn1onic motion. 

The frequency of the oscillation is 

1 Hz 

B 12Hz 

36Hz 

D 360Hz 

2 The ma1dmu1n spe,ed ·of the ruler in Figure 2.29 when released 
\vith an amplitude of 3mtn is 

A 0.36ms-1 C 3.6ms-1 

B 0.67ms-1 D 6.7ms-1 

3 In FiguJre 2.30(a.) a mass n1 oscillates v,ertically on. a spring vrith 
t.ime period T. The same mass is now attached t.o two springs, as 
shown in Figure 2.30{b). AU lhe springs are identical. 

The 1nass nov.r oscillates wid1 tim,e period 

A 2T C T 
Ji_ 

B Ji.r D !. 
2 

4 A pendulum of length 12 m is suspended froin the ceiling of 
a tall room. The time period of the pendulun1 is 

A 2s C 7s 

B Ss D 12s 

5 A n-rass m· hangs on a spring Mth spring con.slant k. The mass 
osciUate.s mth sin1ple hann1onic n1otion. The an1plitude of the 
oscillations is A. The highest speedl of the mass is 

A [k.A C _!_ /TA 
~-; 21t~-;;· 

6 An .astr,onaut lands on a planet and decides to calculate 'the 
gravitadona] field strength 1 g1 using a pendulum ,of length 1.5 m. 
For his pendulum, he discovers that the time period is 1.4 s. The 
gra'vitational fi.eld strength is 

A 15Nkg-1 C 45Nkg-1 

B 30Nkg-1 D 60Nkg-1 

7 A c.opper atom in a lattice can be modelled as a mass 1 m, lethered 
by t\vo springs) k, as shov.rn in Figure 2 .31, ,vhere m is 10-25 kg 
and k for each spring is 40 N in-1. 

I 

12 N t 
mass 80g: --• 

- ~~~~~---~u.::": •• :: ••••....••• 1 g mm 

Figure 2.29 

(a) (b) 

m 

Figure 2 .. 30 
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Tl1e frequency of the oscillations of the aton1 is given 

l {TI 
by f ~ 2n ~m . The frequency of the oscillations is 

A 3.5xl011 Hz 

B 6.6 x 1011 Hz 

C 4.5 x 1012 Hz 

D 8.5 x 1012 Hz 

8 The o,scillating copper atom in Figure 2.31 has oscillatio,ns '\Vith 
an amplitude of 5 x 10-11 m. The energy of the oscillations is 

Figure 2.31 

O.leV 

B 0.3eV 

0.5eV 

D 0.6eV 

9 A pendulum swings with an amplitude .of 10cm. The time period 
of the ~rings is 0.8 s. When the pendulum is displaced 6 cm from its 
equilibrium position, its speed is 

A 0.6ms- 1 C l .0m.S""1 

B 0.8ms-1 

10 A particle oscillates Mth simple harmonic motion. Its displace1nent 
is given by the equation x = Acos(2-reft), ,vhere A is the amplitude 
of the oscillation, 2.5 cm, and f is the frequency of d1e oscillation, 
l O Hz. At a time of O. 02 5 s, the displacement of the oscillator is 

A - 2.Sc1.n C 0 

B -l.25cn1 D +l .25cm 

11 a) What condition is necessary for a body to exist with simple 
harmonic motion? (1) 

b) A b,uoy of n1ass 65kg osciUa'tes up and do\Vll in the sea with 
sm1ple harmonic motion (Figure 2 .32). It takes an additional 
downwards force of 28 N to push the buoy an extra 5cm into 
the Vlater. 

Calculate the force per unit displacen1ent k, in N n1-1, 

for the buoy. (1) 

c) The time period of the oscillation is given by T = 2n:N . 
\Vhere m is the mass of the buoy and 1" is the £orce per unit Figure 2 .. 32 

displacement. 

Use. the equation above to calculate the time period 
of oscillations. (2) 

d) At t = 0 the buoy is at rest. 1Copy the axes of the graph in 
Figure 2.33 and sketch how the hinetic ene1-gy of the 
buoy changes over one complete oscillation, time T. (2) 

12 A girl sits on a S\vi11g. Sh,e 'takes 39 s to complet,e 14 S\vings. 
The girl has a mass of 4 2 kg. 

0 

Figure 2.33 

m 

T 
2 

T 

tlms 



a) Calculate the distance between the girls centre of gravity 
and the suspension point of the swing. (3) 

The gitl is travelling ,vith a speed of 3.5 ms-] at the lowest 
point of her s,vin.g. 

b) Calculate the height bet\lleen the lowest and highest points 
of he.1· swing. Assume that she is swinging freely. (2) 

c) i) Calculate the centripetal force that acts on the girl at 
the bouo,m ,of her sv.ring '\\"hen she is travelling at 
3.5ms-1• (2) 

ii) Calculate the total upw-ards force exerted on her by 
the sMng at this point. (1) 

13 h1 Figure 2.34, a trolley of inass 0. 7 kg is moving to the le.ft vtith velocity 
0. l 1n s-1. A stiff comp ressible spring is attach ed to the t rolle1s ,;.r hich 
acts as a buffer. The trolley collides 'With a. solid barrier and rebounds 
elastically. The spring obeys Hookes law and has a spring 
constant k. 

a) Write an equation to describe how the force~ FI that the spring 
exerts on the trolley changes with the compression of the 
spri.ng1 x. Hence explain why the motion of the trolley; while 
the spring is in contact with the b lock1 is simple harmonic. Figure 2.31. 

(2) 

Figure 2.35 shows graphs of l:1ow (i) the velocity and (ii) the 
acceleratio11 of the trolley change with tin1e while the trolley is in 

contact ,vith the block. 

b) Use your kno,vledge of the equalions ,of motion to ehl'lain 
the relationship· betv.reen graphs (i).and (ii). (3) 

c) The trolley has a mass of 0. 7 kg and the spring has a spring 
constan t of 25 Nm-1. Calculate the time, t, that tl1e trolley i5 
in contact \Vith the block. (3) 

d) i.) Calculate the maxin1um compression of the spring. (2) 

......... - 0 .i m~r1 

mass 0.7kg 



z 
0 -..... 
0 
X 
u -z 
0 
X 
et! 

i 
w 
..I 
Q.. 
:I -U'.I 

N 

ii) Calculate the n1axitnum acceleration of the trolley. (2) 

e) The trolley no\V approaches the block \vith a speed of 0.2 m s~1. 
Descri.be what effect t'his has on the foUoiwing: (2) 

i) the nuurimum acceleration ,of the trolley 

ii) the time of contact \Vith the block. 

0 Explain \Vhat WOUld happen tO the 'time of contact, t, if the 
trolley was no,w made 1no massive by adding weight to it. (2) 

14 De-scribe how y1ou ~10,uld design and set up s,ome mechanical 
apparatus to demonstrate resonance. (6) 

5 retch and challenge 
15 A partic]e of mass m is connected by t\vo pieces of elastic ,each ,of 

unextended length .!) to two fixed points A and B,~ one venicaUy 
above the ,other, aind separated by a distance 3L 

a) If the elastic is such that ~ force F causes an extension e given by 

F=ke 
. l 

find the equU.ibri:um position of the particle. 

b) The particle is now depressed a sinall distance z:0 from its 
equilibriun1 position, and then released. Assuming that it can 
1nove only vertically up or dov.-111, and that damping effects can 
be neglected, derive an equation describing its subsequent 
motion. Then solve the equation to find the vertical m otion z: 
of the particle as a function of time. Find the time period of the 
subsequent oscillations , and the maximum velocity of d1e particle. 

c) A piece of graph paper has x and y coordinates drawn on it. On 
these ax,es is plotted a point whose x coordinate is the vertical 
displacement of the particle at tin1,e t dudng its n1otion, and ,vhose 
y coortlinate is the vertical velocity at the same instant. Explain 
what would be seen if a whole series of points weice dlrawn 
corresponding to positions .and velocities of the particle over an 
extended time period. 

d) Describe qualitatively the effects on the n1otion of the particle in 
the following separate situado11S: 

i) the initial displacement Zo is not small 

ii) the damping effects cannot be neglected. 



Gravitation 

a84~-•~•••~~•••••P~•••••••••~•*•·-~~•••w••••• ~-••••••4~•••• •~• aa~•~••~••Raa•4~••••~·~~•••••••~•••Waa •••~••~•• - . ! P IOR KNOWL DG - ~ 
: . 
! Before you start make sure that you are confident in your knowledge and ~ 
' . : understanding of the following points: : 
~ . . . . . i The Earth , oth er planets and sta rs ,produce g.rav'itationa'l fie lds , which ~ 

i ·exert a force on other ·massive objects. : 
i A gravrtet1ional field exerts a, 'non- contact' force, wh1ch acts over very ! 

long dlsta n ce s. ~ .. 
G ravHa t iona t fi:e ld s trength, g. iis defined as t he farce that acts O!n a ~ 

mass of 1 kg. On the Earth, g ... 9.81 N kg_,. : 
• 

: A planers or star's gravi1tat.ional f ield s tre ngth . at i·ts surfa,cer depends : 
• • 
: on its. mass a rid radius . i 
• • 

The grav·ita t iona l potentijat energy. EP ,(in Jl gained by a, mass m [in kg)1 . i • • • • • • • • • 
I • • • • • • • • • • • 

lifted th rough a hetght h [1n m ]I i'n a un ifor m1 girav itati onal fl eld g :(in N kg-11] : 
• 

1s g·iven by A~P = mgh. i 
The kine tic energy [Ekl of an objec t with ma,ss m [1n kg] and ve[oc1ty v j 
!in rm s-1

JJ 1s given by Ek = ±mv2. ! 
=··········································~········································· ......................... .... 

~ ···························································································: : TEST YOURSELF ON PRIOR KNOWLEDGE "! 
• • • • 
: 1 Li,s ted below are four bodies ~n our Solar Sy.stem. and four possib le : 
• • 
: values of g rav1tati o na l field strength s at th e1 r surf a;ces. Match the : 
• • 
: fi eld s treng th s to the bodies. exp tai n ingi your cho,ices . ; 
• • • • : Four bod1ies Jn our So lar Sys tem : : 
• • 
: Su n~ Earth, Mercury. Ceres [a dwa,rf planet] . : . .. 
~ . 
; Po ssi1ble va lues of surface gravity: : 
• • : 0.3 N kg-- 1• 3.7 N kg-1 • 9.8 N kgi- \ 270 N kg-1 . : : : 
• • i 2 Olympus Mons ~s the taHest m.ounta·in on Mar s and stands a height i 
• • i of 22 .0 km above th e Martian plain. Mount Everest sta nds at a i 
! height of 8.8 .km a.bove sea level. Compare th e ene rgy expe,nded by : . ... 
! a mounta,ineer climbin g these tw o ·mount a ins. The gra,vi ta,tional i 
I fi eld strength on the surrface of Mars is 3.7 N kgi-'1. lAs su.me that i 
i the mo,u ntajneer has a mass of 120 kg, 1in eludin g equ ipment and/or I 
: spaces,uits. ] i 
I + 

: 3 a ) An object is dropped on Eairth from a heig,ht of 51m. Calcu late its : 
: : i speed when it hits th e g1rou nd. : 
i b) An object is dropped from a height of 31 m on th e Moo:n. and it ! 
! reaches a speed of 10 m s-1 when it l,,it s the sur fa ce of th e 1Mo·on . ; 
: • • • • 
I • • 
I • • • • • • • 

Ca lcu late the Moon's grav itabonal f iietd strength . f ,. 
cl Ori a planet. an object is drop ped from a heigiht hand it hirts the : 

• 
g:round with a speed of 10 ,m s -1. Ca lcula te th e object's speed when : 

• 
it hits the ground if it is dropped from a height of 2h. : .. 

=············· ············~·······················~·································· .......................... ~ 
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N e wt on' s law of gravity 
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V·le Hve in an age in vthich humans have travelled to the Moon and. space 
probes hav,e been sent to investigate all the planets in our Solar System. 
From ou-r o,vn experience and this exploration of space, we knov;., that, on 
Earth, gra·vity ,ex,erts a larger force on n10ire n1assiv,e objects. We hav·e learnt 
that the Moon has a smaller surface gravity than the Earth because i t is a 
less massive body. We have understood that a planet's pull of gravity gets 
w,eaker funher away from that planet~ surface. 

These facts seem obvious to us now~ but that is because we have seen 
experimental pr,oof of them. It is a mark of Isaac N,ewton's g nius that he 

F 

. I 

I 
I 
I 
1 

had enough insight to pro,duce a law of gravitation based 
on the observations of astronomers before him. 

N,emons ll.aiiv of gravitation states that the gravitational 
foroe of anra.ction bet,A"een t"vo point masses m.1 and mi 
(measured in kg) separated by a distance r (in m) is given by 

Gm1m2 F= -
r2 

where G is the universal co1.1stant of gravitation: 

G = 6.67 x 10-11 N m2 kg-2 

This constant can only be accurately measured by 
careful laboratory experiment. 

Altl1ough Newtons law only applies to point masses) 

--------· f --------

F F 

m1 

Figure 3.1 In, ea eh of these, exam pLes~ Newton·s law ea n be 
used to calculate th e gravitabonal force of attractjon that 
the objects exert o,n each other. 

it can also be use:d to calculate the fo:n:e of attraction 
b etween large sphericaI objects (such as planets and 
stars) because a sphere behaves as if all the mass were 
concentrated at its centre. So NeV;rtons law can be 
con,ectly used to calculate th e force of attraction in each 
of the cases in Figu1'"'e 3 .1: ( a) the force bet\veen two point 
n1asses; (b) the force bet\,veen a planet and a small mass; 
and (c) the force bet\ve,en t\·vo planets or stars. Newtons 
law cann ot be use d to, calculate the force between 
t,v,o irregularly shaped objects, unless a complicated 
sun1mation of the forces is made. 

E 

Gravit,atio na l force 
Ca lcu:laite the gravitational force betvveen the Sun~ ma,ss 
2 x lQ30'kg1 and Halley's comet. mass 3 x 1 Q1Akg:, when 
separated by a distance of 5 )( 109km. Thi1s is its furthest 
dista nce from the Sun, which ,it willl reach i,n 2023. 

Answer 

F = Gm1mi 
. 2 

r 
[6.67 X 1' cr11N,m2kg-2) X [2 X 1 o30kg] 1 X .(3 X 101~kg] -

(5 x 1012m]2 

;;; 2 x 1r09N [1 s. f .] 



It Ls ~mporta.nt to rem·ember to co nvert the distance 
in to metres in the calculation . 

Thii.s is what you would expect when you reimember 
that th is is your weight, whkh ca n also be 

Calculate th·e gravitational a,tt ra.cti on between you 
[a ssU1me you have a mass of 65 kg] an,d' the Earthj 
whrch has a ·mass of 6.0 x 1 Q24 kg . The Earth's rachus 
is 6400 km . 

ea lcu tated us,in g: 

W = 1mg == 65 kg, x 9.8 N kg-1 == 637 N 

Yoll should atso reme·mber, from Newton's thijrdl 
law of motion. that you exert a. grav itat,ional force of 
637 N on the Earth too. Answer 

F= Gm,1m2 
r2 

= (6 .67 X 1 o-11 N m2rkgi 2} X ~6 .0 X 1024 kg] X (6S.kg] 

[6.4 X 1· 06m]2 

= 637N 

llg,ht source 

·Figure J.2 The· intensity of light 2 m away from 
a light souirce is a, quarter of the intensity 
1 m away fro·m the source. beca use the li·ght 
sprQads across four ttmes thra e1.rea. 

The inverse square law 
When NeVlton formulated his law of gravity~ he imagined that the 
force of gravity spreads out in the same v,.ray as light spreads out 
from a candle. 

Figure 3. 2 sho,vs his idea. When you hold a card at a distance of 
1 n1 from the candle, you see a particular intensity of light) I. When 
you 1nov,e a distance of 2 m fron1 the candle; the same atnount of 
light now spreads out over four cards of the sa1ne area. So 'the lig.ht 

intensity is now a quarter of its original value, tI. 
Light intensity obeys a.n inverse square law: 

L 
I=--

2 4nr 

Here I is the intensity of light in W m-2, L is the luminosity of 
the light source (the amount of energy emitted per second) in 
W, and r is the distance avlay from the source in m. The factor 
4rr comes into the equatio,n because the light spreads ·Out into a 
sphere, and the. surfac area of a s1:>here of radius r is 4nr2. 



~ ·····················································································································································: 
: TEST·YOURSELF E 
• • • • : 1 An ast ronaut of mass 1 OD kg On eludin g hi1s a mass app rox f mate ly 300 times larger tha·n : 
• • 
: spacesu it) s tand s on a pla net of mass 4 x 1025kg~ t hat of the Ear th. How many times larger 'is th e : 
• • 
: w·it h a. radi,us of 8400 km . Sun·s gravitat1onal pull on Jup iter than the Sun's : 
i • i a) Ca·lcula,te hi s w ei'ght. gtavitationa,l pu ll on the Earth? i 
i bi Calculate t he gra:vftat iona,l fl eld stren9th at th e 4 a) A sph er ica'l ligiht bulb 'is fitted in a darkened i 
: surfa·ce of t he planet. room. The tight intensity at a dlsta·nce 1 mi away ! 
i 2 a) Make an es tii mate of the gravitat ional a ttraict,io n f ram it is 0. 2 W m-2

. Ca le ullate tn e U g,ht i nten si·ty ! 
j bet\Neen two peopte, each of mass 80 kg , at a distance of 3 m, away from it I 
i stan dii,ng about 1 O m apar t. What assum,ption do b) Ca:lcu late th e electrica t power of the light bu lb i 
i you make i1n this ca lculation? ass u,mi ng it ,is 20°/o effi cient in t ran sfer r ing ! 
i bi Explain why w e do not n,otice gravitatf ona l elec trrca t energy i,nto Ught energ,y. : 
! forces between objec ts on the Earth . 5 Esti mate th e gravitational attracti on between our j 
i c) You can, charg e a baUoon, by rubbing it, an d get Galaxy, th e M1 ilky Wa1y, and the Andromeda Galaxy. : 
! it to st 1i ck to a, wa tl. What d O es th i 5 tell you. ab oiu t The g.a lax 1 es a.re se pa ra.ted by a di s tance of about ! 
i th e s ize of elec trostat ic forces compared! with 2.4 x 10

19 k1m and eac h g:alaxy has a mass of about i 
• g.ravi.tait iona l 'for ce5? 7 x 10 11 s olar mass,es. The m ass of the Sun : 

3 Ju piter is approximately five t f mes further fo ne s ola r ma ss~ j5 2 x 10
30 

kg. i 
from the Sun than the Earth is , and Jupiter has i 

: ••••••••••••••••••••••••• •• • •••••••••••• ••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• • •••••••••••••••••• •••• •••••••••••••••• 411111!1 ........................ • 

C)~G-ra_v_i-ta-t-io_n_a_L_fi_e_Ld-s~~~~~~~~-

Ora i a • n l fi _ l A region in spaoe 
in wMch ;i massmve object experfem:es a 
gravitaUonail force. 

Fl d tr n Th,e strength of the 
gravitational field measured in N kg-1• F~eld 
Un es. repr,esent t he d mrecUon and str,ength of 
tbe f~eld. 

(a ) 

\~ I ~ I ~ I> ,, 
~ ,~ 1 I II \~ g = 16 N kg-1 

(b) 

Figure 3.3 [a1): F1ield iLi nes of equal sipacin g 
in the same di rection show a uniform 
gravita t~o nal f.ie Ld. (b] Th~s shows another 
uin:iform t:ie Ld with a Low.er strength. 

A graYitation·1l field is a region in ,vhlcl1 a massive obj ect experiences a 
gravitational force. Any object "With mass p roduces a gravitational field ~ 
but we usually use [he term to describe the region of space around large 
celestial objects such as galaxies) stars 1 plan ets and moons. 

Tl1e gravitational Ii~ld strengtl in a region of space is defined by 

F 
g=­

m 

,vhere g is the field strength n1easured in Nkg-1 and F is the gravitational 
force in N acting on a nrass m in kg. 

U1niform1 fields 
Near the surface of a planet, the gravitational field is very nearly uniform, 
which. means that the field is of the same stt·ength and direction every-where. 
Figure 3.3(a) illustrates a ·unifonn field. The fi ld lines show the di ction 
o( the gravitaitional force on an object , an d the spacing of the Hnes giv s 
a measure of the strength of the fitJcl Figure 3.3(b) shows another 
grav._itational field~ which is half the strength of the field in Figure 3.3(a). 
You sh ould remember that ihe spacing of the lines is chosen just for 
illustnnii.re purposes - another p rson might have represented th field 
strengths in these diagrains ··wi th a different separation o[ the field lines. 

Radial fields 
Figure 3 .-4 sho,vs the shape of a gravitational field near to Eanh; this is a 
radial field. Here the field lines aU point towards the centre of the planet. 
Th is is why we can u se Ne,vt on's Law of gravity to calculate the gravitational 
forces betvleen two planets . TI1e field is exactly the same shape as it would 
have been if all of the mass of d ie planet were concei-l.trated at its cent re C. 



Figure 3~4 The rad ial g rav itationa l fietd 
decreases with distance away from 
a p La n,,et. 

5 10 15 20 
distance from the. centre 

of the Earth/km x 1 D3 

You can also see fron1 Figure 3.4 that the gravitational field decreases in 
strengt'h with in.creasing distance fron1 the centre o.f the planet. The field 
lines at a. distance of 2r fron1 the centre of the planet are further apart than 
they are at distanc,e r, whicl1 is the planets sur[ace. (Remember that the 
planet is a sphere, s,o that the Hnes spread out in three. dhnensions. The 
diagram shov,s the fie]d lines in just one plane.) 

We can also produce a fo1mula to descti be the field strength close to a 
1:,lanet. F1·om N,ewton~ law ,of gm;,.ity, we knov,.,~ that 

Gtn1mi_ 
F= ---

ri 

Also if m2 is the mass of a small object c.lose to the surface ,of the planet~ 
we know that 

Therefore 

25 

Gm 1 
g = 2 

r 

30 

Note that ,ve. often use a capital M to describe the 1:nass of a 
large object such as a star or planet . So using Mas the 1nass of a 
p lanet, and r as the distance away from the centre of the planet~ 
we have 

GM 
g=-

r2. 

F igu1'e 3. 5 sho"\VS how the gravitational field strength Vilries with 
height above the Earth. 

Figure 3.5 A graph of g as a function of distance 
from the Earth ·s ce ntre. 

For 1nost planets~ treating them as uniform spheres works as a 
good approxiniation. For most objects ,vith a m ass la1~ger than 
1oi1 kg, the forces of gravity oven:om,e the n1assive forces of the 
rocks to turn the planet into a sphere. However, s1naller moons 
and n1inor planets can have irregular shapes~ so N'e"\i\rton '.s lav;,r of 
gravity ,cannot be used to sin1ply predict fields ne~r them, but it 
can be used accurately at large distances. 

Planets and stars 
A minor planet has a mass of 2 x 1022 kg, and it has 
a: rad ius of l 200 km. Ca lcu rlate th e gravi1tationa,l fi eld 
strength at its surface. 

Answer 
GM 

gr.1 2 
r 
(6.67 X 10-11N m2kg-2] X [2 X 1022 kg] 

;;;; 

[ 1 . 2 X 1' 06 m )2 

= 0.9 N kg- 1 

• 



A s tar has. a 9ravita ti onal fie ld stre ngth .a t its surface 
of 300 N k;f 1. Anoth er star has th e sa m1e miass but 
10 tim es t he radius of the first star. Calculate ·the 
gravitafi ona l f ield stre ngth at the s urface of the 
second star. 

TIP 

So 

92 = 91 [' s..J
2 

= 3(10 N kg_, X [-2-]
2 

= 3 N kg-1 

.~ 10 

Show that the grav itat ional Held strength near to 
th e surface of a iplla,net or sta r is given by g ~ ~Gprl 
wh ere p i:s the densi ty of the body and r its ra1dlius. 

Answer 
GM 

g- ­
r2 

G X 4 1tpr3 

-----r2 

4 - 3nGpr 

The vo tume V of a sphere of ra d ~us r is V = ; x r3. 

~ ·····················································································································································: 
: TEST YOURSELF i 
• • 
~ h1 these q· uestions use G = 6.7 x 10-11 N m 2 kg-2. and at the top of Mount Everest. The Earth's radius ! 
• • ! 6 A planet has a mass of 4.6 x 1023 kg and a radius at sea l evel is about 6400 km, and the he i, giht of £ 
: of 3200 km. Mount Everest 1s 8.8 km . The mass of the Earth is : 

: a) Ca Leu late the g ravi tat io nal fi·etd st:re ngith at the 6.0 x 10
24 

kg. i 
planet's surface. 9 Th ,is question requires you to thin k about f 

• • • • • • • 
b) Calculate the gravitat1onat fie ld at a height of gravitatronal fields and also to recall last year's ~ 

6400 km above th e planet's surface. work on V- t and s-t 9 raphs. I 
... 

• • • • • • • • • 
A s tar has a gravitahonat fi e ld strengith of A spacecraft 1is flyi,ng away from the centre of ! • 7 • • • 
400 N kg-1 and a radius of 8.4 x 105 km . At the end the Earth . at a heigiht of 10 OOO km . However, it is i 
of its Ufe1 assume that jt colla

1
pses to becom e a travelling too s lowly to escape from th e Ear th . A t I 

• • • • • • • • 
neutron s tar1 of the same mass but with a radius a height of 20000km above the Ea·r th's sur faced [t i • • 

= • • • of 1.4 km . stops moving and beg,irns to fa ll back to Earth. Use : 
• • 
i a) Calculate th e ra,tio of the s ta r's initial radius Figure 3.5 to help you to sketch: : 
i to the radius of th e neutron star it eventually al a velocity- tim e graph for the spacecraft i 
I becomes. bi a displacem ent- t im e graph for the spacec raft. i 
I b) C a,tcu late th e g ravi ta,t ion a,t fi eld strength on In both cases, start th e g ra:p h from th e in itial f 
i th e s1urface of th e neutron star. hei,ght of 20 OOO km~ and fii nish the grap hs as th e : 
: 8 Show that th ere is a negli gible difference betvveen spacecraft cras hes into the Ea rth . i 
i the Ea rth 's gravitational fi eld strength at sea level 10 Express the unit for G in SI base un its. ! 
~ . 
I ~ 

; ...... , ......... t•••t••········ ················································ ······························································•t fllllll ........................ . 

C)~~~~~~-nt-1·a-l~~~~~~ 
Gravita ional pot 
'You will be familiar with the equation that v.re use to calculate the increase 
in gravitational potential energy ,vh.en a mass is l ifted in a gravitation al 
field. We calculate 1h e change of gravitational potentia] energy, /1EP, u sing 
the equation. 



ra'"it~ i n • ot nti l lff renc The 
gravitational potentjal energy diUerence 
per k~lagram. GraviitaUonal. potent~aL, and 
potential difference, have u irn it.s of J k,g-1• 

A p 

Gravitational potential 
difference 
The equation in the main text 
ea n be used to ea lcutate the 
magnitude of potential chan9es. 
In Figure 3.6, what 1is the 
g raviitabonal potenti·a l d iff eren ce 
between bein1g on th e ground and 
being' at a hei.g ht of 80 m? 

Answer 
~V- glih - 5N kg- T x 80m 
- 4 0 0 J kg-1 

.................... , ............. ·~· . .......... ..... " • • .... •• • ••••• , •• J •• ··~ •• ••<1 •••• 

ar" ·1t I na fl ld A gravitational field g is 
Unked to th,e gravitationa1t po.tentmal gradient 
by the ,equaUon 

& 
g=- -

Ah 

where m is the mass lifted in kg> g is the g1~avitational field str,ength in 
Nkg-1, and flh is the increase in height. 

Figure 3.6 shows the gravitational field Hnes (in green) close to the surface 
of a planet, where the gravitational field stren@th is 5 Nkg-1. When a 1 kg 
1nass is lifted through a heig11.t of 20m in this field~ 'the ·equation above teUs 
us tha.t the increase in gr:avitational potential energy of the n1ass is l 00 J 
(Mp = l kg x 5 N kg- 1 x 20 nt = 100 J). When 'lhe n1ass is lifted through 
4,0m, the increase in potential energy becomes 200]. 

Grav I tat Iona I 
potent,lal: 

400 J kg-, -------

300 J kg- 1 -------

200 J kg- 1 -------

Planet's surfaca 

B 

E 
---- so m 

---- 60 m 

---- AO m g-5 N:Kg- 1 
D 

--- - -- - - -- 20 m 

Figure 3.6 Gravitation at fiield L1 n es and e qu i potent1als close to the surface of a 
planet, where g = 5 N kg-1. 

These calculations lead us to the idea of gravilali n l potential cliffl"rc-ncc- , 
"\Vhich can be define d as the change in gra1titational potential energy per kg. 

Gra\ritational potential is given the syrnbol V) and gra,ritational potential 
difference is given the symbol /1V. Since liEP == mg.6.h, it Eollo;..vs that 

8E 
8 V ;:.; P := gli h 

m 

so 

LlV = ghh 

Gra;vitational potential has un~ts of J kg-1. 

Equipotential lines 
Figure 3.6 also shows , quipotentials close to the surface of the tJlainet. ln 
the diagram these loo·k like lines, but in three dlitnensions they are surfaces. 
On the diagram, equipotential surfac shave been dravvn at intervals of 
OOJkg-1. When an object n1.oves along an equipotential, it means that the 

potential (and th refore the potential energy) stays the same. 

Equipotential surfaces are alvvays at right angles to the gravitational field. 
When somet1ting moves at right angles to the field (and hence along an 
ec[Uipotential), no work is done by or against the gravitational fi,eld, so there 
is 110 potential energy change. When s,omething moves along a fi.eld line 
there is a change of gravitational potential ·energy. 

To be exact) in the link between . ravitaLionn l fie ld and p otential; we 
should link them. with. this equation: 

AV 
g= - -

~h 



The. significance of tl1e minus sign is that the potential gradient :: is in 

a p ositive direction up;..vards, because the potential increases as the hei.ght 
above the planet increases. The gravitational field direction is downwards. 

!;.......~~~~~~~ ......... ~ ······· ························ ····· ···· ··········· ······· · · ················· · · ········ · · · ·: 

: TEST YOURSELF ! 
Gravitational potential 
energy change 
Refer to Fig1ure 3.6. 
I What is t he gravitat iona·l 

potentia:l energy chang,e in 
movin g a 2 kg mess fro,m A to 18? 

Answer 
The mass moves alongi an 
equ i potent,ia l, so the change is 0. 

2 What is the g ravitatirona l 
pote ntial energy cha nge in 
m ovin gi a 2 kg m ass f rom A to C? 

Answer 
a does not matter w hich path the 
mass takes, the pote ntial change 
from A t o C is 1 OOJ kg-1. So the 
pote11tiat energy chang:e ts 

F 

ll EP = mti V = 2 kg x 1 0 0 J kg- 1 

= ·200 J 

~ Ar '2 
distance from centre ot planet;m 

• • ~ ~ 

i 11 a I Exp la i n the t er m ·g r av i ta t i1 o n a l potent j a it d t ff ere n c e ·. i 
! bi G1ve the unit of gravitational potential. I 
• • 
; c] Explain the term equlpotenti,at f 
s 12- : t · . Refer to F1igure 3.6. Ca lculate the work done in movh19 a1 5 'kg mass : 
! through these djstances : ! 
: a] A to D : 
" " " J • i b C to D : 
• • i cl B to E. ! 
i 13 Ca lcu late the grav~teti,ona l potentia.l gradient in1 Frg.ure 3 .6. Comment ! . " " . : on yo ur answer. : 
• • 
: ............. . ......... ..... ...... . .... ..... ........... . ............. ......... . . . . . . .......................... IIIIIIIIIJ 

Gravitatio,nal potential in radial fields 
ln 1his section Vle cakulate gravitational p oten tial energy 
changes over large distances in gravitational fields) which change in 
strength. Figure 3. 7 shows hovl the gravitational force on an object of mass 
m changes n.ear lo a planet of 11.1ass M. (Note the co1nmon use of M for the 
planet and m for a small mass near 
the planet). 

The graph sho,vs that a force; F) acts on the object at a distance 
r fron1 the cenn~e of the planet. If the object is n1ov.ed a small 
distance,, llr further aw.ay from the planet~ '°'1e can calculate the 
in crease in the olojects gravitational potential energy as 

L\.EP = ·,vork done = F!J.r 

F 8r is n1.ore usually written as mgllh because the force acting on 
the mass is equal to its ~1eight , mg. 

Ho,v do we calculate the increase in gi·avitational potential energy 
if the mass is moved from ,,1 to r2? This is more can1plicated 
because the force changes as v.re move from r1 to r2. 

In the earlier calculati,on, F8r represents a small area under 

Figure 3~7 Grap 1h of gJav itationa l force actin,g on a1n 
object ~n th·e vici1ni,ty of a 'planet. 

the graph .. So the "'rork done on the mass (or the increase in 
gravitational potential energy} in movmg fvom r1 to r2 is the area 
under the graph. 

The formula to 'Calculate lhe increase in potential energy is 
given as ,equation (i) (the lv1aths hox shows ho\\1 the formula is 
derived): 

(i) 

From this~ we can also derive .a formula for the increase in potential 11 V1 because 

m , .. 
l (ii) 



~···~······••t••······································ • • .. H . . ' . 
• t 

: : 
• • : Using ·Newton's la,v of : 
: : 
; gravitation the work done on rn ! 
• • • • • • lS • : : 
• • ' . • • 
: - GMm : 
• work done= F!J.r = a,,- i 
i r 2 ! 
: t 
• • • • • • 
: So the increase in gravitational : 
j potential energy in moving m 1· 

: from r1 to r2 is • . ~ 

• • • • • • : r2 : 

i a E = J GMm dr ! 
! P r 2 i 
: rl : 
• • . 
• • • • • • • • • • • • • • • • 
i 
• • .. 
• 

1 l 
:::; GMm - - -

.. 
• • • 
"' • • 
it • • ~ • • • • • 

i 
t e 

• • • • 
····~~-··············~···············-······~-·-··~··· 

Posit ion 

A 
8 

C 
D 
E 
1F 
G 

Potential (V) J kg.- 1 

-2 X 101 

-3 X 107 

-4 X 107 

-5 X 107 

-6 X 107 

-7 X 107 

-8 X 107 

Equation (ii) allows u.s to think .about defining gravitational potential close 
to a planet. We can calculate the potential cl1ange in moving from a distance 

r1 to a point infinitely far away from the planet. vVhen r·2 = oo,l= Q. So the 
potential change in moving fro1u r 1 to oo is r2 

ilV= GM 

'1 
(iii) 

However, \Ve ,choose to defme oo as the point 1of zero potential for all plan ts 
and stars. Ii vu:. chose ny other point as zero, such as the surface of the 
Earth, v..re. would get a more co1nplicated set of equations when ,ve. deal ,\ith 
potentials near to other planets. 

So·~ since "'·e define th potential as zero at infinity~ it means the potential 
near to any planet is a negative quantity, because potenlial e11ergy decreases 
as sotnething falls towards a planet. TI1is leads to the toUowin.g dcfiniti,on .af 
potential Vat a distance 1,. from the centre of a planet of mass M: 

GM 
V=- ­

r 

Figure 3.8 shows the gravitational field lines andl equipotentials near to 
a planet. The equipotentials ay;e sho,vn in equal sleps of 1 x 107 Jkg-1 

from the. surlace ,G, where the potential is - 8 x 107Jkg-1, to A, ":-here the 
potential is - 2 x 101 Jkg-1. 

rad,lus of planet;;;; 10000 krn 

Figure 3.8 This diagram s hows grav,itational filetd l i1nes and equipotenUals in ear to a planet. 



P 1 1 P'I • • • r•1 r1 '1 P'I r •1 P•'I r1 f'l''I r•1 f''l 'I P1 P f''I r•11'1 1 f' 'I r•'I r• . . 

Equipote,ntials and 
v,a riation of potential with 
distance 
Usi,ng the iinformation in 
Fi,giure 3.8, copy and complete 
Tab le 3.11 li n ktn g potent1ial and 
di stan ce f rem the centre of th e 
IP la,netYo U1 wilt need a ru1 ler to 
measure th e dis ta·nce of the 
equip oteritia,ls from th e plan et 
centre. 

Table 3J 

" . . . 

This diagra n1 shows two important linked points: 

• The p otential gradient is steeper close to the planets surface, because the 
equipotentials are closer together. 

• The field lines a_r,e closer together near the surface, because the 
gravitational field strength g is stronger. 

U1ese tvlo statements are linked through the equation you met earlier: 

ti. V 

or 

g=- --
~h 

.6. V 
g=-

ti. r 

These equations are exactly the same, except that ilh has been used for a 
change in height, and fir has be,en used for a change in distance from the 
centre of a plan.et . 

• 
I • 

-8 1.00 

.1., 
r 
10-7rn-1 

1.00 

a.=~~~~~~~­
Escape velocity 

-7 1 . .14 0.88 

-6 1.33 0.75 

-5 

-4 

-3 

-2 

Pilot a graph of paten tia l 
against r. 

2 Use the gradient of the graph 
to determine the planet's 
gravitational fi e ld at a dJs tance 
of 
a I 20 00 0 ,krm from th e centre 
b] 40 OOO km from the centre. 

3 Plot a graph of potential 

aga in st f . Use the graph to 

determ~ne the m,ass of the 
planet. 

• ii ••• , .... , .. ,. •• ,. .... ,.Iii.,..... .................. I ..... "• . . .. M ......... ,. ·~ .. ,.. • • •• , ,. •• • .. . 

E c c t , Tlhe. minim1u1m v,~locity an 
object m11Jst have at the surface of a planet 
to ,escap e the pu ~l of gravity using rts own 
kinetic energy. 

Th e Earth has its :atmosphere because the molecules of gas, moving in our 
atmosphere, do n ot have enough kinetic energy to escape fTom the puU of 
gravity at the Eanh1s surface. So how fast does something have to move to 
escape from tl1e Eanh~ surface? 

¥/hen a fast-n1oving object leaves th e surface of a planet~ \Ve can \vri.te th at: 

decrease in kinetic energy = inc1"ease in gravitational potential energy 

LlEk = n~ 
This assun1es that the object is n ot affected by an atmosphere> and is in .free 
fall - dlis is n ot a spacecraft ·with a rocket. 

Th e equation above can be \vritten as 

1 l l 2 

2 mv1 - 2 mv2 = mllV 

lf the object is to just escape the pull of the planet, its spe-ed, v2, \Vill just 
reac·h zero at an infinite distance from the planet. This leads to the idea of 

~( apl: v · locitJ , ,vhich is the minimu11n velocity that an object must have 
at the surface of a planet in order to escape the pull of gravity of the planet 
using its own kinetic energ;~ 

TI1e gravitational potential at the surface of a planet is given by 

V =- GM 
r 

so the change in potential is 

~V = GM 
r 

So the escape velocity for a planet can be calculated using 

] 1 . GMm 
- rnv = m~V = --
2 r 



or 

1 2GM 
V =-- (iv) 

r 
For the Earth> M = 6 x 1024 kg an d r = 6400km, so 

2 2 X (6.67 X 10-11 N n 1
2 kg-2

) X (6 X 1024 kg) 
V = ~~~~~~~~~~~~~~~~--

v= l l200m s-1 

6 6.4 x l0 m 

Since air molecules travel at approximately 500ms-1 on the sui{ace of the 
Earth 1 they trav l well below th~ Earth)s escape velocit}': 

tt+••························· ······················································································································,, . TEST YOURSELF ! 
~ I 
• I i 14 Explai1n why w e choose to defin e the zer o point of 17· Th e radiu s of th e ptanet shown 1n Figure 3.8 ! 
i g,r avitationall potenti,al a,t an infinite d~stance from i·s 10 OOO km. Either by es t im ating t ne di stance I 
: any p'la,net. between th e eq,ui1pot entia ls neair the pla nef s 
~ 

! 15 Calculate the grav~tationa l p ot ential at th e surface, or oth erw}se, ca lc ula te th e value of g 
f surfa,ce of Jup,iter. The mass of the pL.an,et is nea rr the planet's surfa ce. 

~ 1.9 x 1027 kg and lts radiu s j.s 7Qi000 km. 18 Wh en a large sta r co llapses at the e nd of Its 
i 16 Thi1s quest~on is based on the infor·matiori in life, i t can co llapse into a bilac k hole . T he putt 

• • • • • • • • • • • • • • • • 

.. 
: Fi1g ure 3.8 . of gravity at its s urfa ce is so s trong that not : 

• • • • • • 
+ • 

: aJ Cailt: u late th e work done in taking a 1'200 kg even Ught can escape. E~nstein's theory of : 
i s pa c e c raft fro m gen e ra l re la tiv i ty pre d j c t s t h a t black ho ile s a re ! 
i ii point 1 to poi,nt 2 'singuladttes·. wn rich means they nave collapsed j 
• • : iii po,int 2 to point 3 into a tiny space. However, we ca n use Newton's ! 
f iii) point 3 to point 4 theory to ca'lculate the max1;mum size of s uch ~ 
: iv) po,int 4 to point 5. a hole. ~ 
£ J ) a) Use the equation for escape velocity [·marked : 
: b. Use your answer to part [a : to explain why a l iv] 1n the text] to calculate the ma xi mu m i 
: spa cecraft ca:n stay in a circular o rbit round a : 
: r adius for a bla ck hole form,ed by a st ar of : 
i planet indefinitely. mas s 1031 kgi . Th e speed of lig ht is 3, x 108 m s- 1• f 
: cJ The s pacecraft returns t o the planet. 1,t pa sses b) Calculate: : 
~ point 5 travelling at a s p,eed of 5200 m s- \ a nd U the grav1ta tiona l f ie ld at th1s surface ~ 
• faHs freely to po,int 2. How fast rs ~t traveUing as l : 
: ii the grav·itat1 onal potentia l at th 1s surface. : 
~ it ,passes point 2? : 
• i 

: ••••• ~· ································ · ········~················· · ·························~··· · ·········· · ·················· · ·············· • ... llllllllllllllllllllllllliiii.:
1 

Figure 3.9 

()-0- r-b-it_s ____________________ ~ 

111 Figure 3. 9 a plane ,of mass m is in a circular o,rbit around a star of 
1nass M. You have already studied circular motion. Now ,ve can combine 
the equations of circular m otion and gravitation to link the speed or tune 
p eriod of a planets orbit to its distance from the Su11. 

The pull of gravity provides the necessary centripetal (orce to keep the 
planet in ,orbit. So v.re can write 

m GMm mv2 
- ..... ) ..... _ _ !!!!!!I!! 

,., ... r 

GM v2 

l = ­
r r 

2 GM 
V = ­

r 



Frotn this, you can see that the speed of the orbit is faster for SJ:naU orbits. 
Figur,e 3.10 shovls the link between orbital speed and the distance of our 
eight. planets from the Sun. 
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Figure 3 .. 10 

We can also link the time period of the orbit (1 year for the Earth) to the 
radius of the orbit. The speed of fl1e 01~bit is linked to the ciocumferenoe1 

2rrr, and ihe lime period of rhe orbit, T, through th.e .equation 

50 

2nr 
v=ror= -

T 

2 1 GM 2 4n r 
V = = -

T2 r 
3 r GM - =--yl 4-rrl 

r2 =( ;~ ),; 

Figure 3. 10 also sho\VS the relati,onship betwetn ti1ne petiod and o,rbital 
radius of the planet -the green curve. 

Elliptical orbits 
In the previous sectton. we 'treated all orbits as if they were circular - this 
is because it is re1ativ,ely easy to cope with the mathematics of circular 
orbits. In practice, very fevv· orbits are circular - n-iost orbits have an 
ellilptica] shape. Figure 3.1] show~ a. possible elliptical orbit for a come.t 
(black dot) travelling round the Sun. Most p lanetary orbits are nearly 
circular. For e.xample; the Earth's closest approach t o the Sun (perihelion) 
is 147 x 106 km and its furthest distance (apl1ehon) is 152 x 10°km. 
Ho1hrever) comets and some minor planets have e]ongated (or eccentric) 
elliptical orbits. 
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Figure 3.11 Comets move in elongated or eccentri,c 
elUpti ca l orbits round the Su n. Note that the Sun's soila r 
wind alwa,ys blows t h.e comet's tai'L away from the Sun,. 

You should note that the relationship derived in. the last section linking the 
time p eriod of an orbit to the radius of the orbit is still valid for elliptical 
orbits ) provided r is taken to be half the major axi.s of the ellipse. The major 
axis in Figure 3.11 is the distance AC and th e minor axis is the distance 
BD. So; for the elliptical orbits we can write 

2 [4n:2] 3 T = GM (rsiua) 

\\?"here P'sma is the serni-1najor axis) equal to AO or OC. 

When a planet or comet moves in a11 elliptical orbit~ its speed changes~ but 
the total energy of the body s tays the same. 

At point A in Figure 3 .11) the comet is movin g a t its fastest orbital speed, 
but it has the sn1allest gravita.tioiull potential energy; because it is closest 
to the Sun. 

At point B, there is a component of the Suns gravitational pull on the 
comet , which slo,vs it down. 

When the comet reaches point C, it is at its funhest point fron1 the Sun. 
It has its lo\\tes't kinetic energy at this point, but its highest gravitational 
po ten tlia l energy. 

At point D, th co,met is £aUin.g back towards the Sun. There is a component 
of the Sun1s gravitational pull, which speeds it up. The comets potential 
energy is being transferred into kinetic energ}'1 and the comet reaches its 
maximum speed again at A. 

Satellite o,rbits 
There are many satellites in orbit round the Earth, which are used for 
a range of purposes. Two of the most com1non uses o,f satellites are 
co1nmunications and observation. 

Satellites placed in lov..· orbits are able to take photographs of the world 
below. We: are u sed to seeing images of mountain ranges; lakes and cities 
taken from space, and ·we use weatheT images on a daily basis. 

~ 
tf'--· ~ 



Figure 3.,12 

o rblt ove:r the 
equator 

,low polar orb.It 

Satellites placed in hlghe-r orbits are useful [or con1munications> because 
messages may be sent from one part of the world to another via tl1e satellite. 
Different types of orbit are illustrated in Figure 3.12. 

10ne of the tnost useful orbits for satellites is the geosynchronous orbit. 
In this case the satellite is placed in an orbit above tl1e Earth~ equator, at 
such a heig]1t that it takes exactly one day to complete .an orbit. The orbit is 
synchron ised "'ith the Earth>s rotation, so that it remains in the smne place 
above the Earths surface. This n1eans that our satellite dishes, for example, 
can be aligned with a satellite, ,~hich always Hes in the same position 
r,el ative to Earth. 

Geosynchronous satellite 
Calculate the height of a, geosynchronous sa tellite in orb~t above the 
Ea r th "s s urface . 

Answer 
We can use th e equa tio n we de rived ea r lie r in this cba,pter: 

or 

r3 =(:x~ JT2 

3 [6.67 X 10-11 Ni m2 kg-3 ]x (6.0 X 1024 kg] X !(24 X 3 600 s)2 
r =~~~~~~~~~~~~~~~~~~~~~-

4n:2 

r = 42.4 x 106 m 

S1nce the radius of th e Earth is 6.4 x 1 Q.6 m. the heigh t of the orbit 1is 
about 36 x 106 m or 36 OOO km. 

When a sa tellite is laun,ched, It requires ·more energy to place It in a 
htgiher orb1it1 even though it travets 'more slowly. Th is is because we 
have to 1increase the potentia l energy of th e satelli te more to place it in 
a hi·g1h orbit. 

·•-••++•t•••••••••f•••················~·····•·••t•t•••····~·········~····················~·•••+••••••••••••••t••····································•t+tt+t••··~··••+•••••~ .. ... 
~ . ox 
1 

Ho,v much.en.er~ has to~~ suppli~d to a ~ateUite of 
: mass m to hft 1t into an orbu of radius r2 above the 
· Earth? 

. Answer 
~ 

· At the Earth)s surface) radius r1~ the satellite's 
• 

' · ; I · l · GMm d · k. · • graVJ.tattona I potent1a energy 1s - ,, an I its ~1neuc 
. . 1 
.. energy 1S zero. 

• • .. 
• .. 

ln its orbit of radius r2, the satellite's potential energy i .. 
: 

is - G~m. The satellites kinetic energy in orbit may be ~ 
2 ; 

• • 
calculated as follows. : 

ln a circular orbit \'\7e can write 

2 mv GMm -----

• • ,.. 
• 
• : • • • • • • • 

r l : 
2 ; 

I : . ~ : . ~ . 
• • 
·········································································4·····························~··········4························································ 



·~·······················································~····································································································~············ · c:;> • . - . 
• • • • : so So th e 1..vork done to put a satellite in orbit is the : 
t • ! difference b et"vv•e,en its energy in its orbit and its i 
! Ek = l.mv1 = GMm energy on the Earths surface: ~ 
i - 2 2r2 I l i 
:.: work done = - GMm - - GMm _ ~ 

The satellite's total enermy is the sum of its kinetic 2 : 
~ ~ ~ : 

: energy~ and potential energy: : 

•
; 1 I i.· : GMrn GMrn GMm = GMm - - - . 
: Ek + EP = = - r1 2 r2 : 

I 
2r2 r2 2ti : 

i 
This shows us that the total energy approaches zero 
as r 2 tends to infinity, and it is n1ore negati ~te for 

• • !I 
~ 

' "' 4 

• 

"' · small value of r2• Ybu '"'ill remember tha t ivve chose to 

In practice. the kinetic energy ,of the satellite at the 
Ea1ths surface is not zero; as the Earth is rotating. This 
kine.tic energy reduces the work done neoessa1y to put 
a satellite in orbil and is ,one reason \vhy launch sites are 
near the_ equator where the speed ,of rotation is greatest. 

• • • • 
-• : : define the z.ero point of potcntia] energy at infinity. ~ 
~ • • • 

~ 

' 
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The moons of Saturn 
Sa turn is thought to nave 62 moons 1n orbit around 
1t Tabte 3.2 shows in-formation about six of Saturn 's 
r 

lnner moons. 

Table 3.2 

Moon Orbit~_L 0 rbital ·period/ 
rad ius/ 103-km days 

Atlas 137 0.6 

Mi mas 185 0.9 

Meth one 194 

Ence ladus 238 1.4 

Tethys 29 5 1.9 

D~one 377 2.7 

Th e orbita l period and orb1ta'l ra,dius are linked by the 
equat~on~ 

r2 BI [ 47t2 ]r3 
GM 

1 D raw u p a ta b le of T2 a n1 d r3 v a llu e s 1

( T s h o u ld be 
ea lculated i1n second s, and r in metres]. Plot a 
graph of r2 ag.ainst .r3. Fro m your graph ~ determine; 

I Meth one· s o rhital period 
b) Saturn' s 1mess . 

2 Dione has the same orb·ita l ra,diu,s about Saturn as 
our Moon does about Earth . Our Moon has an orbi,tat 
period of a bout 27 days, whi,ch ,is 10 tim es long·er 

than Dione· s. Use the ex pr ess i o n1 above to deduce 
the rat~o of Sa turn's mass to the Earth's mass. 

3 You could also check the relat~onshi1p between T 
and r by plott1ng a graph of tog10 T against log 10 r. 

T2 = [ 41t2 ]r3 
GM . 

By taking the log of both sides we get 

logT · = log - r 2 [41t2 l 3 -- - GM 

The refo re 

2 (4i2 l 3 logT = Log GM + tog r 

and then 

[
4n

2
] 2 logT log GM + 3 logr 

1· [41t2 l 3 logT • -log - +-logr 
2 GM 2 -

When you plot a graph of log T against log,r. you 
sho 1uld find 

that its gradient is! whfch confirms the relationship 
- 2 

th a,t T2 is proporti,onat to r3, 

i . , 

. . 
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TEST YOURSELF 
• • • • • • • • • • : 19 A sate llite ~s in a, low orb it over th e polle s of the 21 A sateUite takes 120 ,minutes to c rbi t the Earth . • • ! Ea,rth . It is 300 km .above the s·urface of the Earth . a) Calculate the satelUte's angular velocity. 1 

i The gravitational fi etd strength at the surfa1C·e of b] Ca lcu late the rad h.Js of t he satellite's orbit. i 
! the Earth is 9.8 N kg-\ a,nd the radius of the :Ea·rth Take GME to equal ~ 
! is 6400 km. 4.0 >< HJ14 N kg-1 m2. i 
i al ii Exp lain how th~s sate ltite might be used. 22 The Sun has a maiss of 2 x 1 Q30 kg; the radius of i 
i iil Sta·te another use of sateHites~ and expla1in the Earth's orbi1t is L5 x 11 09km; the Earth's 1mass i 
! what orbit you would use for the sate llite is 6 x 1024 kg . i 
f you have chosen. a] ii Catcutate the angular veloc~ty of the Earth. i 
i b) ii Ca lcu late the gravi,tational fiield s trengtih at ii) Calculate the Ea.rth 's orbital speed. ; 
i a h e1igh t of 300 km . b] i J Ca lcu late the ceritr ip eta il force on the Earth . i 
I ii] Calcu late th e orbital period of the satellite. ii ) Show that th e centriipetal force ori the Earth j 
! 20 a) Expla:in the difference between a planet's orbit is equa l to the Sun·s gravitatiio,nal puill on i 
i and a comet's orb it. the Earth. ! + I 

+ J J I : b Expla in why a co.met' s orbital speed cha nges e Ca.lcuilate the Stini 's gra1v 1itational field strength ! 
• • : t h ro u g h out :its orb ft. at a dis tau, ce e qua t to t n e Ea rt h · s orbit ro 1U n d i t. : : : • • ...................................................................................................................................................................... ~ 



Practice questions, 
I The gravitational £ield strength a£ the surface of a planet, of radius 

8000km, is IS Nkg-1. The gravitational fieldl strength at a height of 
4000km. above the planet is 

A lONkg-1 C 6.7Nkg-1 

B 8.0Nkg-1 D 4 .4Nkg-1 

2 The gravitational field strength ,on the surface of the Ea1th is g. The 
gravitational field strength on a planet "'·ith twice the mass of the Earth 
andl twice the radius of the Eanh is 

g/8 

B g/4 

g/2 

D g 

3 The gravitational potential on the surface o,f a planet with mass Mand 
radius R is --V. The potential on a second planet with mass 2M and 

di R./
..., • ra us .· .::, lS 

A - 2V/3 

B ~3V/2 

C - 2V 

D - 6V 

+ A satellite is in a circular orbit round a planet of radius 5200 km, at 
a height o.f 1800 kn1-. At this height the gravitational field strength is 
4.2 N kg-1. The speed of the satellite is 

A 5.4kms-1 C 2.4kms-1 

B 4 .5 kn1s-1 D 0.2ktns- 1 

5 The centres o.f t\\70 planets, each of mass M, are separated by 
a distance r. 

Whi.ch of the folloi.ving correctly gives the gl:-avitational field 
strength and the gravitational potential, at a point halfway between. 
the centres of the planets? 

Gravitational field Gravitational potential 

A 8 f3M/r2 a 
8 4GM/r2 -2GM/r 

C 0 0 

D 0 - 4GM/r 

6 The gravitational field strength at the surface of th Earth is 9.8- Nkg-1. 

At the surface of the Mo,on the field strength is l .7Nkg-1. The Earth has 
a mass 81 times that of the Mo,on. The ratio of the farths radius to, the 
Moons radius is 

A 2.9 

B 3.7 

C 4.9 

D 7.6 



7 Two stars of 1nass M and 4M are a di.stance r apart (Figure 3.13 ). 

Star A Star E3 

X 
M 

4M 

r 
Figure 3.13 

The resultant gr-avitational field strength is zero aLong the lh1e betvleen their 
centres at a distance x from the centre of 'the star with mass M. The ratio of 
x/ris 

3/4 

B 2/3 

1/2 

D 1/3 

8 The diameter of the Earth is t,;vice that of 1'vlars and the mass of the Eanh is 
10 times that of Mars. The gra.viia.donal pot:ential at the suilface of Mars is 
- 13 MJkg-1. The gravitational potential at the surface of Earth is 

A -290MJkg-1 

B -120.MJ kg-1 

C ....,i6SMJkg-1 

D -28 Jvljkg-1 

9 A satellite is in orbit above the Earth at a distance of 9000km fron1 the 
Earths centre. At this l1eight 'the gravitational field strength is 5.0Nkg-1. 

The 1in1e period of the orbit of the satellite is 

A 90 minutes C 180 minutes 

B 140 n1inutes D 270 nlinutes 

10 The tin1e period, T, of a body orbiting the Sun is given by the formula 
3 

T'" ~ 4rrR 
GM 

,vher,e M is the mass of the Sun and R is the radius of the 
orbit. HaUey's comet takes 76 years to orbit the Sun. The ratio 

average 1-adius of Halleys con1et orbit . 
average radius of the Earth1s oTbit 15 

A 9 

B 18 

C 76 

D 660 

11 a) Work out the correct unit, expressed in Sl base units , for lfl. 
b) The grav'itational field strength at the surface of the Earth is six 

times the gravitational fie]d strength on the surface of the Moon. 
The mean density .of the ?v1oon is 0.6 time-S the mean density 

. . radius of Earth] 
of the Earth. Calculate the rauo: radius o,f Tvloon · 

(2) 

(3) 



12 In Figure 3.1 +, the gravitational potential at A is -16 Mj kg-1 and the 
gravitational field strength at A is 4 Nkg-1. 

planet 

A 
I 
I 
I 
I 
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I 

B 
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Figure 3.14 

a) Calculat,e the work done in taking a 120 kg mass from A to B. (3) 

h) Calculate the gravitational field strength at B. (2) 

13 The gi-avitational field strength at the surface of the Sun is 
270 N kg-1. Betelgeuse is a red giant star, which has a density of 
approximately 0.01 times that of the Sun and a ·radius about 
1000 times that of the Sim. 

Calculate the gravitational field strength on the surface of Betelgeuse. (3) 

14 At point P in Figure 3.15., the gra;..ritational field strength is zero~ 
and the gravitational potential is - 8.0 x 107Jkg-1 . 

pJanet A 
planet B 

·""9-'-~ ~~~- 3r~~~~~~··~ 
p 

Figure 3.15 

a) Calculate the work done to remove a spacecraft of mass 600 kg 
to a point infinitely far away from these planets. 

b) 1. l h ._ . .. n1ass of planet A 
Ca cu ate l e 1atlo. . f 

1 
B . 

mass 0 1 p anet 

15 lo is a n1oon of Jupiter. lo rotates aroundjupiteT once every 
42 hours, in an orbit of radius of 420000km. 

(3) 

(3) 

a) Calculate the angular velocity of lo. (3) 

b) Use the data above to calculate the mass of the planet Jupiter. (3) 

c) The radius of 'lhe orbit of a moon is proportional to· T , "rhere 
T is the time period of the orbit. Ganyn1.ede is another moon of 
Jupiler that takes 168 hours t,o rotate around the planet. 

Calculate the radius ,of 1Ganymede,s orbit. (4) 

16 Two identical spheres exert a gravi1ati-onal force Fon each other. 

a) What gravitational force do two spheres 1 each twice the mass 
of the original spheres; exert on each other ~then the separ.ario11 
of the-ir centres is four times the origin.al separation? (2) 

b) The gravitational force between iwo uniform sp.heres is 
3 . 7 x 1 o-9 N when the distance between their centres is 



200mn1. The n1ass of one sphere is 3 .0kg; calculate the n1ass 
of the second sphere. (3) 

c) The gravitational potential difference betwee;n the surfac,e o[ 
a planet and a point 20m above the surface is BOOJkg-ll. 
Calculate the gravitational field strength in the r,egion close 
to, the p bnet's surface. (3) 

17 a) Calculate the time period of the Earths r,otation, if you were to 
be made to feel weightless at the equator. The radius of the Earth 
is 6.4 x 106 m. (3) 

b) A satellite is in ,orbit~ of radius r, around a planet of mass M. 
Wtite dov;,,n ex-pressions for 

i) hs orbital spe,ed (2) 

ii) the time period of its orbit (2) 

II 18 Figure 3.16 shows a sketch of the Earth-Moon systein. The 
gr~vitational potential at the surface of the Eanh is - 6.2.8 J\.1]kg-1· 

the gravitational potential at the surface of the Moon is - 2.3 MJ kg- 1~ the 
gravitational pate11.tial at point N is - 1.3 Ivl]kg-1

. Poini N is the neutral 
point between the Eanh and Moon where the gravitational field Ls zero. 

Earth 

N - - -- - - -- - -- - . - - - ·- ·- - - -- - -- -- - .,. - - - - -- - . 
I 
I 

Moon 

I 
I 
I 

.....----- f1 -------·...-- r2 _____.,... 

!figure 3 .. 16 

a) The Eanh is 81 times as massive as the Moon. Calculate 
'h . r 1 t e I"atlo r

2 
. 

b) i) Calcula·te the n1ininrum amount of energy required to 
n1ove a space probe of 1nass 2.0 x 104kg fron1 th e Earth 

(2) 

to point N. (3) 

ii) Explain why no n1oi-e fu.el is required to take the space 
probe from p,oint N to the Moon. (1) 

c) The amount of fuel required to take a spacecraft to the Moon 
is much higher than that required to relum it to, Earth. Explain 
why this is so referring to the forces involved - gravitational 
field strength and gravitational potential. (6) 

Stretch and challenge 
19 M87 (Messier Catalogue number 87), is a giant galaxy~ and is about 

6 x 1012 times as massive as our Sun. The gravitational pull of this 
galaxy keeps star clusters in orbit around it. In the centre of ihis 
galaxy is a giant black hole of about S x 109 solar masses. 



a) The event horizon of the black hole is the maximum radius fron1 
,vhich son1ething can just escape. the black hole travelling at the 
speed of light. 

i) Write dov.11.1t an expression for the gravitational potential at this 
point, in tenns of the mass of the black hole> M and the radius 
of the event horizon, r. 

ii) Write an expression fot the kinetic energy of a kilogra1n n1ass 
trav.elling at the speed of light~ c. 

iii) Calculate th radius of the event horizon. Take th 1nass ,of the 
Sun to be 2 x l 030 kg) the speed of light to be 3 x 1081n s-1, and 
G = 6.7 x 10-11 Nkg-2m2. 

b) i) A globular ,cluster ,of stars orhits M87 at a distance of 300000 
1igh1 years. Calculate the time pertod of the orbit. 

[I light year= 9.5 x 1015 m] 

ii.) What happens to any stars or clusters of s tars near ihe galaxy if 
the.y rotate too slowly to stay in an orbit? 

20 Figure 3.1 7 shovilS the orbit of a comet as it falls in tovvards the 
Sun and then leaves the inner Solar System again. The gravitational 
potential due to the Sun has the following values at these distances 
frotn 1he Sun: at Satums orbit, -93 MJkg-1; at Jupiters orbit, 
-172 MJ kg-\ at the Earths orbit, -B93 MJ kg-1. 

a) Fron1 this information calculate this ratio: 

radius of Saturns orbit 
radius ofJupiters orbit 

b) As the comet moves from point A to point B1 it increases its 
speed. Explain why. 

c) i) The comet has a mass m. At point A its speed is v A and 
at point Bits speed is v8. Write an equation to link the 
-co·mefs increase in ltinetic energy to its decrease in 
gravitational potential energy. 

ii) At point A the comees speed is 3 x 104 ms-1. Calculate the 
comet's speed at point B. 

iii) State the c,omets speed at points C and D. 

A 

Figure 3.17 

D comers orb It 
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Thermal physics 

=················~······~················································~·~······~··~·· ...................... . 
i P ID K D DG ! 
: : 
= Before you start. make sure that you are confident in your knowledge and : 
~ understanding of the following points: : 
• • • • • • i Th e 'k~netiic th eo ry model of soUd s. Uqu,id s and gases assumes that f 
: particles are jncomp ressible sph eres . : 
• • 
: Solids have a close-packed_ reg,utar parti cle stru cture - the part iiciles : 
• • 
: v~brate a,bout f ixed points. : 
• • 
: • Liquids have a close- packed , random . irregular partic le s tructure- l 
• • 
: the particles a.re free to move. : 
• • 
: • Ga:s es have a w,idely spacedr irreg ular pa rtiic le s tructu re - tne : 
• • 
: part ic les move a t hrgh speed in random directions. : 
• • 
= • Th er mat energy c an be transferred from somewhere hot ,(at a h,igh : 
~ te ,mperat urei to somewher e cooler [at towe r temperaturel by the ~ 
• • 
: processes of conduc ti on, co nvect ion , radia tiori a nd evap oration . i 
• • • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4!1111 .................... ~ 

~ -··························································································: : TEST YOURSELF ON PRIOR KNOWLEDGE ~ .. . 
" . " . i 1 Draw s imple d iagrams showing the arrang ement s of pa r ticles inside ! 
~ a soUd . a li quid and a gas. ~ 
• • 
: 2 Ex pta in the d iJfe re nc e between the t ran sf er of therma t energy j f ro'm a : 
f hot bo dy to a co ld body, th ro ug: h co ndu ction and throug h convectio n,. ! 
• • 
: 3 Exp!La 1in how evapo ration t ransfers t he r ma l energy a,way from a hot : 
• • 
i c up of tea . : 
" . 
=········· ·· ····· ·~·································································· .......................... llllllllli 

Thermodynamics 
During th late ] 8th and early 19th cen tu ries s,cientistsi inventors and 
engineers began to dev lop steam engin technoloro~ such as the giant 
steam-powered beam-engine pumps used to pump water ,out of deep 
Comish tin tnines. 

Development of the, engines required a systematic and fundamental 
understanding of the nature of heal energy; i.ts relationship to the behaviour 
of steam and the other materials 1na.l .... -ing up the engines~ a.nd the work done 
by the engin e. This study became known as thermodynamics and Britain 
led the ""''"orld , not only in the development of the new engines, but also in 
the fundamental p hysics of thermodynamics. 

Th em1odyn ru11ics deals with the m ac roscopic (large-scale) behavtour of 

a system; bul it is complemented by the kinetic theory of matter, v,{hich. 
deals with the microscopic; particle-scale behaviou r of matter. Some~ 



• "'• •• •11t.11i-. •• ltil• li'I .ICil 1-. l• ll J:;t •• • lict l ~tP 111""1• t'il • 1 •S•t'.11 tall •11 a,'1 s•s111 ••••"'I"' Ii.II t:il I~ ll 11 

lnt rn I r The sum o,f th·e randomty 
d~strfbuted kinetlc and po,tenual ,en,ergies of 
the part ides in a bod~. 

~ ...... kinetic 
energy 

- potential: 
energy 

Figure t..1 Glass of wate r. showing 
i in te rna .L e n e rgy. 

••••• , ,. ...... ,. ..... ,.. ,. ... ,..,.,.., ,.,.,..,Y""i ,..,., ,., ......... ,. .... , ,.., ... ., ,.,,. .... , ,.., ... , ••• , •• ,.., • 

Lu, A substance that can flow- i.e. a gas 
or a Uq1u~d. 

cyllnder frlctlonless piston 

F=-pA 
pressure, p "" 

piston area a A 

p~ston moves 
through a 
distance~ 
causing an 
Increasing 
volume av 

Figure l..2 A gas expanding in a cyli nder. 

aspects of thermal physics are best explained in terms of 1nacroscopic 
t'hem1odynamics, such as the behaviour of en gines> but other aspects 
are best explained using n11icroscopic kinetic theoryi~ such as Bro,vnian 
motion (the tiny random motion of pollen or smoke particles seen under 
a microscope). 

Internal energy 
One of the most fundamental propetties o[ thermodynamics is the concept 
of int rnal -n "r~y U which is the sum (s,01netin1es called an nsemble in 
thennodyna1nics) of the randomly distributed kinetic energies and potential 
energies of the particl sin a body: 

U = i:(kinetic energi,es) + E(potential energies) 

Consider a glass of v,,rat r (Figure 4 .1) . The water ·particles have two types 
of energy- kinetic energy associated v.rith their mo·vement (the faster they 
move) or vibrate or rotate) the higher their kinetic energy) and potential 
energy associated wi.th any forces or interactions betiveen the pa.nicles (such 
~s any electrostatic attraction or repuls ion). 

The kinetic e.nergies of the partic!e.s depend on 1he.ir temperature, and 
the potential energies depend on any intermolecular forces bet,veen the 
particles. For ideal gases) in which there are no intermolecular forces) t.he 
in ternal energy is dependent on only the kinetic energies. 

The first law of thermodynamics 
The physicists v,rorking on tl1e theories of how engines ,vorked quickly 
realised that there was a11 interplay between the changes in heat energy and 
the 1Nork being done on or by the fluid - in Ehe engines. This ,vas formalised 
by the first law of ther1nodynamics) written by Rudolf Clausius in 1850. 
A m oden1 version of his law can be stated as follows: 

Th·e increase in internal energy of a system is ,equal to lhe heat added to 
the system minus the ,vo1·k done 1Jy the system. 

In terms of syrnbols, this can be wtitten: 

,vhere l!:i.U is the increase in inten1al ,energy of the system (usually a gas), 6.Q 
is the therma] energy added to the system and 8 W is the work done by the 
system. 

W1ork don1e by an expanding gas 
Vlhen a gas expands~ it exerts a force on the sun·oundings, causing them to 
move - the gas does work on the surroundings. We can use the first la"'r o,f 
thermodynamics to determine the work done 1 b.'W, by an e"-"Panding gas at 
constant temperature (called a.n isothermal c11ange.) . Consider a gas enc]osed 
in a cylinder by a frictionless piston., as shown in Figure 4.2. 

The gas of volume V ,exerts a pressure p on the walls of the. cylinder. This in 
turn exerts a force Fon the frictionless piston of area A ~ \vher,e. 

This causes an increase in the volutne. 11 V. W-re assutne that 11 Vis very small 
and that the force moves the pisto11 at a slow but steady rate such that the 
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TEST YOURSELF • • • • • • • • • • • • • • 1 W hat is ther'mody n a 1m i cs? • • • • • • • • 
2 State tw o ways in w hi ch th e 

• 
' • • • • • • rnternal energy of a gas rn side • • • • • • • • a bicycle tyre pump can be • • • i • • • i 

increased. 
i 

i i 
• • I • I • • 3, Ca lc,ulate the work done on a1 • • : 

= ; 
: gas w hen iits internal energy t 

' = I i'ncrea.ses by 18 64 kJ as it i,s • I I 
I I 
I I 
I heated. causing its therm,al I 
I I 
I II 

' : • energy to i'ncrea.se by 11247 kJ . • • • " • • 
:iii••••••················· 

external force exerted on the piston is equal to the for,c,e exerted by the 
pressure p of the gas u.1. the cylinder. This effectively makes the pressure 
exerted by the gas constant during the expansion. The gas does work, and 
so /j,W is pos1tive. The fo1,ce on the piston inoves it through a distance, !:oc, 
such that: 

D.W = -F/JJ.r: 

substituting for F = pA gives 

/J. W = pA!J.x 

But Af!ix = !1V, the change in volume of the gas 1 so 

/Ji.W = pl1V 

a ing up sub tanc 
of sta e 

and change 

When substances are heated, thennal energy is supplied to the panicles of 
the substance~ incre'tlsing '£heir internal energy U, and the.refore the average 
kinetic energy of the particles. Increasing the average kinetic energy of 
the particles causes the temperature of the particlies to rise. The size of 

temperature change 1 f:l(), is dictated by several macroscopic, measurable 
factors: the an1ount of thermal heat energy supplied~ Q~ the mass of 
the substance, m; and a quantity called the specific l1eat capacity of the 
substance, c~ wl1.ich is unique to each substance~ and its state. These factors 
are related to each other by the equation: 

Q - mcllB 

The thennal energy Q is me,asured in joules 0)) the mass m is measured in 
kilograms (kg) and the te.mperatuTe change fl(} is measured in kelvin (K), 
so the units of specific heat capacity, c ! are J kg-1 K-1. 

The specific heat capacity of a mate1ial is a fundamental property of the 
matetial and is particularly itnportant to en.gineers and scientists designing 
engines and insulation systems. A specific heat capacity dictates how ,easy it 
is £0:r a nu1.terial to change its temperature. Mate1ials \vith V·ery- high specific 
heat ca.pacities 1 such as \Vater, 'w = 4186] kg-1 I(-1 (usually rounded up 
to 4200Jkg-1 K-1), require a gre-at deal of ihetmal energy to increase the 
temperature of 1 kg of the material by 1 K, whereas matetials such as gold 
-with quite low specific heat capacides. cAu = 126Jkg-1 K-1 require only a 
small quantity of thermal energy to increase the 'tetnpe.rature of l kg of the 
malelial by 11(. 

Water has a partictllarly high specific heat capacity. 10ther common 
materials on Earth have substantially lo"rer values: granite r,ock, for 
e-xample, has a specific heat capacity of 790Jkg-1 K-1, less than one fifth 
that of water. Without this propertyl life. may n ot have been possible on 
Eanh, because water v.rould almost alway be in the gaseous state . 

The specific heal capacity of a material enables us 'to measure the change in 
temperature of a n1.aterial following a change in thermal energy. 



Warming water Thermal energy supplied to the water is 

An aluminium saucepan is used to warm 1 .50 kg 
of tap water lat 18°C) for a hot-water bottle 
by heating it on a 3 .0 kW ,electric hob for 4.0 
minutes. Assuming that 60°/o of the electrical 
energy is absorbed by the water, and that there 
ar,e no subsequent h1eat losses, calc ulat,e the 
final temperature o'f the warm wat,er. The specific 
heat ea pacity of wat,er is Cw= 4186 J kg-1 K-1• 

An·s.wer 
Total e lectrica l energy produ,ced by the electric 
hob ,is 

Q 60 7 - -5 
, = 

1 
QO x . 2 x 10 J 

!:!! 4.32 X 105 J 

But Q !:!! mcll0 so 

8;9- JL 
me 

4.32 X 105 J a----------------1, .50 kg X 4186 J kg-1 K"1 

- 68.8 K- 69 'K [2 s. f J 
E- 3.0 x 103W x 4.0 )( 60 s 

;;; 7.2 x HJSJ 
Beca 1use a temperature cha nge of 1 IK i,s equa l to a 
temperature cha.nge of 1 QC. the fina,rl te:mrperature of the 
water in the saucepan I'S 1i 8°C + 69°C =. 87°C. 

Falling lead shot 
The spedfi c heat ca pacity of Lead ca.n be deter1mi:ned by leH1ngi 

lead shot fall inside a long tube. The [ead shot heats up as 
g ravritationa L potential energy i,s transferred to thermal energiy 
of the shot The experiment 1s shovvn in Figiu re 4.3. 

A student tipped some lead shot up aind down irn the tu1be and 
found that after 20 turn s the temperature of the lead had risen 
by l .5°C. Estiimate the specific heat capac ity of lead. You may 
assum·e that the tube itself does not warm up. 

Note : If yo u are har1d [in g Lead shot1 make sure ta wash yoti1r 

hands afterwards. 

Answer 
Th e gra.vitatjonal potentfal energy of the faltingi lead is 
transferred to heat in the lead. So 
mgh - mcl\9 
and [beca,use a1 temperatu1re chang,e of 1 °C rs equa l to a 
temp·era,tu re change of 1 'K] we obta i 11 

gh 
c - -

d9 

9.8 iN kg- t X 20 m --------1.5 K 

- 130 J kg-1 K-1 

measure 
temperature 
before and 
after fa'lls 

stopper 

lead shot 

falls down 
tube 

c·1osed 
tubs 

stopper 

Figure &.3 Lead shot experiment. 

J 

a 1110w shot to 
fall 20 times 
(turn tube 
over and 
over) 

dlstance = 1 m 
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Mixin1g hot with cold 
If a hot liquid or a solid is placed into a cold liquid> the inte1nal energy 
transferred from the ho't object ,vhen it cools do\\'n is ,equal to the thermal 
energy gained by the cold liquid and its container, plus the th.ermal energy 
lost to its surroundings. In the example shown in Figure 4. 4 > the thermal 
energy lost to the SUtToundings is assumed to be negligible. 

Mass m1 of I lq u Id 11 

at temperature 71 

Mass ~ of liquid 2 
at temperature T2 

Test tubes 

Mi,xed 
Mass m1 ;.- m2 of mixture 
of li,quids 1 and 2 and 
test tube at 
temperature T~ 

Figure 4.4 Specific heat ca,padty and mixtures. 

Mixing hot and cold liquids 
In an ex per1m1ent, 20.0 g of hot seawater at 65°C 
is m,ixed wah 80.0 g of tap water at 112.0°c i1nsrde a1 
copper calorimeter of m1a,ss 75.0 g also at 12°C. If the 
th ermal energiy lost to the surround ings is negligible! 
ca lculate the new temperature of the mixture an.d the 
ca torii 1meter. The specii fj c iheat capac~ties of seawater. 
tap water and copper are 3991) J kg-1 K-1. Li.200 J kg-1 K-1 

and 386 J kg- 1 K-1• respectively. 

Answer 
The new [unknown ] final temperature of the water 
mi1xture a.nd the ca,lo:ri,meter we will caU T [°C). So 
[because a temperature change in °C 1is equal to a 
temperature change fin K} the thermal energiy Q lest by 
th e hot seawater is; 

= 20.0 x 1 o-3 kg x 3990 J k9-1 K- 1 x 165 - TJ K 

= .[5187 - 79.BT) J 

This is equal to the thermal energy Q gained by the tap 
water and the copper calorimete r : 

Q = [80. 0 x 1 0~ kg x 420 0 J kg 1 K-1 x ~T - 12] K] J 
+ [75.o )( 1 o-3kg x 386 J kg-1 K- , x IT - 121 KJ J 

I:! [336 T - 40321 J + [28. 95T - 34 7.4] J 

D (364. 95T - 43 79 .4] J 

Equa ting these tvvo values and rearranging, gives 

518 7 - 79 .8T 3 64. 9 5T - 43 79 .4 

444. 75T .. 956 6.4 

T-21.5°C 
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Measuring the specific heat capacity of 
a metal block 
The specifi c heat capacity of a so lfd materiial can be 
mea5ured [with reasona·ble certainty ,in the laboratory] 
by hea,tirng a known m,ass of the material wirth a known 
quantity of thermal energy. usually supplired via an 
electrical heater. One such exper ,iment 1involvf ng a 
copper block is shown in Figure 4.5. 

In thi s experiment. th·e ma ss of th e copp·er block was 
m easured with an elec tronic balan ce and was found 
to be 0.8 1' 4ikg. The block is heated using a stabili sed 
1:2.0V de power supply delive:rrng, 4.0A of current to 
th e electric heater in. th e block. The temperature 
of the block was measured every 20 s for 2 minutes 

~ whir le all the apparatus came to thermal equilibrium, 
C 

~ After 2 minutes tn e hea ter was switched on a nd 

. . 

the temperatu,re recorded every 20 s again for a, 
furth er 3 minutes. before it was switched off. The 
te 1mperature of the block contrnued to be measured 

every 20s ·for a further 2 minutes. duringr whtch t1me 
the b'loc k started to coot down . 

The results of the experiment a re shown in Table 4.1. 

Table 4.1 

Time, t/s Temperature. T/°C 

0 1,6.4 

20 1,6.5 

40 16.4 

60 116.4 

80 1'6.3 

100 16.4 

1,20 16.4 

140 1 '1.1 

1-60 211 .9 

180 24.6 

200 27.4 

220 30. 1 

240 32.9 

260 35.6 

280 38.4 

300 41' .1 

320 40.8. 

340 40.5 

360 40.2 

380 39.9 

400 39.6 

420 39.3 

...--1hermal insul'ation 
(e.g. plastic bubble wrap) ; 

l 

A 

12Vdc 

Ni,,-.....--........ """'-------- i 2 V de electric heater 
I 

Li;,,,,,-...,- thermometer 

_._.....,,......._ matenia l under test 
------ (e.g . copper block) 

Figure 4. 5 Experimen t to measrnre the sped fi e heat 
capacity of a metal block. 

1 Plot a graph of the results and draw a smooth best­
fHtingi line tn rough the points . 

2 A calorirmetric technique is used to determrine t he 
temperature change of the block. The coo ling part of 
the graph is used to take into account the heat stHl 
present in the electric heater when it w.as turned off 

but had not tran sferred tnto the block. A sketch of 
how to use thi1s technique is shown ;in F~gure 4.6. 

-
~ 
j:::' 

~ 
::, 
'!I ... 
<J) 

-- ..... --
AT 

c. § 1-~ -

--..... ---

time t/s 

Figure ,,,6 Grap h showirng how to ca lculate 
the tempera ture cha ng,e. 

The chang e in temperature of the block~ /j.f, 
w ill always be slightly hig.her than the hjghes t 
temperature reached m inus the start ing 
te mpe rature- thi s eccou nts fo r the extrar thermal 
ene rgy left i·n th e heate r when it is swi:tched off. In 
other words. /J.T gives th e temperature the block 
would have reac hed if a ll th e energy cou ld be 
t ra ns ferred 1nsta ntly to the block, w~thout any heat 
bei n9 Lost Use this giraphica l ca lodmetric 

• 
I 
I 
t 

. . ............................................................................................................. -............................................ -.......................................................................................................................... . 
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~ c;> 
: techn1que to determine the te·m peratu re chang-e of 5 Explain how repeat ing the exp·er iment woulld lead 

to determining the uncerta inty in the m,ea sur ement 
of the spec ifi,c heat capa,city of copper us~ng this 
technique. 

. . 

; t he copper block [ n this experiment. 

: 3 Us e the rest of the da,ta to ca:lcula te the s.peci,fic 
heat capacity of the copper 1n t he block. 

4 The given spec ifi c heat capa dty of copper at 
room temp era.tu re :is about 386 J kg,-1 K_.,. Sug,gest 
r·easons why your calcu,tated value ·m,ay be different 
from th e given valu e. 

6 Tn is experim ent suffers fr om a co llecbo n of 
random and system,a,tic e rro rs . Ident ify th ese : 

• errors, sta,te wh eth e r they are ra nd om or ; 
systemati,c in n,atu re. and suggest ways i,n wh ich ; 

~ 
they co,uld be minimised. ~ 

. ! 
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: TEST YOURSELF i 
I • 
I • ll ., 

i 4 A student u,ses a mi,crowave oven to wa,rm up a cu.p effici ent. how long w iitl it ta.ke for the hea,ters to i 
! of cold tea . warm th e ai:r up in the do me to 16°C ? i 
t • 

! a) Therma l ein ergy i:s siupp'U ed to th e tea at a ra·te d] Exp lain w hy the actual ene rgy va lue requ ired ! 
; of 750W. The tea has a m ass of D. 42 kg and an to heat up the dome will be large r than that £ 
: ir,H.iail tempera ture of l 7°C. Ca lculate the frna l ca lculat ed ~n ~bL : . ... • • 
: tern pe ratu re of the tea. Assum e that t he s pec [f ,j c 6 A large tro pica il fish t.a.nk ha1s dtm eri sions of : 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • I 
• • • • • • • • • • • • • • • • • • II • • • • • • • • ii 
• i 
• • • • • • • + 
t 
I 
I 
i 
• I 
I • • • : 
; 
' I 
I 
I 
I 
I 
ll 

: 
: 
• • i 
ll 
I • 
I 
I • • • • • • • t 

' • • • • • • • • • • • 

heat capa d ty of the te a is 4200 J kg -1 K-1. 240 cm x 60 cm, x 60 cm. f 
b) In rea lity, same of th e therm a l ener 9y goes into a] If the densHy of wate r is 1.0 g c m-:\ ca lculate t he i ... 

the cup and som,e is u sed by [w ater) part ic les to mass of w ater in th e tank lin kg). : 
• 

evaporate. What is th e effec t of th,is evaporaHon b] The tank is set up usi ng w ater fro·m an outsi'de f 
on th e fi nal temperature of th e tea? w ater butt with a tem perature of 9.5°C. The i 

cl FoUowin g re-heating t he tea. the student ded des th erm ostat on the heater- is set to 25.5°C. f 
that the te a is too strong and adds m.i'lk fro m Calcu[ate th e th erm a l energy needed to ~ 

the frid ge at a temperature of 5.5°C. and the w arm up the w ater in th e tank to the desi1red f 
temperature of the tea drops to 71.0°C. Durf ng t emperature. The specl fi c heat capad ty of wat er ! 
this t~m.e the s tudent assurmes that no thermal ts 4200J kg-1 K-1. ~ 
energy ,is lost to the surround1in.gs. Ca lc ulate the c] Th e tank is kept at its optiimum te·mperature of j 
decrease rn th ermal e nergy of th e tea. 25.5°C by a. 1 OOW heater and thermos tat. If the i 

... 
di If a ll th e therm al energy transfe rred by th e tea is heater shou,ld develop a fault a nd fa i l~ show th at : 

• 
used to heat up the m ilk. ea lcu ta,te the mass of the in i,tia l ra te of faU of te,m pe ratu re rn the tank : 

• th e mitk added by th e student to the tea . Tc;3:ke the w ill be abou t 0.1 °C per hou r. : 
spec ific hea t capadty of milk to be 4D00 J kg-1 K-1. d) The rate of fa ll of tem.p,erature of the w ater i,n i 

5 A college s ports dome has a n fnternal air vo lume of th e fi sh ta n,k. !J.fJ/8( can he descri bed us1n9 : 
24000 m3. New ton's law of coo ling : i 
a) If the air inside the dome has a density of i._ 

AtJ 1.2 kg m-3 ~ calculate the mess of a 1r ins ide the - ii!!! -k(9 - 9 ] ! 
dome. At w s ! 

* 
b) During. w inter. th e dome is kept inflated w i,th wh ere r,~ is th e te,miper atu re of the water i 

air pumped in from, outside w ith a temperature rn the tank and ,9
5 

i:s the temper a,ture of the i 
of 5.0°C. Overn :ight, the hea,ter in the dome is surround'ings. If the tem perature of the water i 
tu:rn ed of( and th e averag,e temper ature of t he wh en the hea ter fa i,led was 25 .5oc an d the I 
air in the dome faUs to 5.0°C . Calculate the : temperatu,re of th e ,room ~t was in, was 15.0°C, i 
tnerma l energy required to heat the air 'in th e 
dom·e to a more pleasant 16°C in the morn ing . 
The specific heat capadty of air i1s l OOO J kg-1 K-1 . 

c] Th e do,me contatn s four industr ial s pace heaters 
rated at ~4.7 kW. If the s pa ce heater s a,re 100°/o 

use your answ er to ic] t o determ ine t he va lu e of f 
th e const ant k. i 

e,I Use your value of K to determine the rate of 
cooli ng of th e water in th e fl sh tan k if th e 
tem perat ure of the room was to fa.ll to 8°C . 

" • • • • 
,t 
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Continuous flow method 
Work out the spec ifi c heat 
capadty of wa,ter 1usi1ng the 
following data measured dur,ing 
one such experiment i nvolv~ng 
wa,ter jn a continuous How 
method : 

t~me of each experiment. 
t = 60s 
te 1mperature difference in both 
expe dime nts~ I:!,.(}= 1 0. 0°C 
p. d. across the heater, 
V1 = V2 = 12.0V 
current th rough heater ·in 
experi'me nt 1. l 1 = 6. 0 A 
current th rough heater in 
experiment 2. 12 = 2. 0 A 
mass of water flowfng in 
experirme nt 1 for 6(] s. 
m1 = 126.0 g 
mass of water flowing in 
experf me nt 2 for 60 sj 
m2 ?!!! 56.0g 

Answer 
The specifk heat capacity i,s wo·rked 
out by substituting values i1n the 
eq uation : 

[ 11\'1 - l2V2} t 
C 

[m, - m2Lll9 

((6 Ax 12 Vl - [2A x 12 Vll x 60 s 
;;; 

[0.126 'kg- 0.056 kg] x l O 1K 

- 4 1, 1 4 J k g;-1 K-1 

Measuring the specific heat capacity of water using 
a continuous fl 1ow method 
The specific heat capacity of a fluid can be measured using a continuous 
flow meth,od (Figure 4 . 7)) where the fluid n1oves over an electric heater 
at a con stant rat,e. It is assun1e d that the thermal energy transferred 
fro,m the apparatus to the surroundings is constant. The experiment is 
carried out and th en the flow rate of the fluid is changed, and a second 
set of readings is taken. The heat loss can then be elitnina't,ed from the 
calculations. 

etectr1,c 
therm om ete r 

i:lquld In 12V 

e1ectr tc 
thermometer 

Figure 4.7 Measure,m.ent of specific heat cap~city by the, cont in uous flow method. 

A fluid flo\vs through an insulated tube containing an elect1ic l1eating 
'Wire~ as sho~rn in Figure ·4 .8. The rise in temperatu1-e of the fluid is 
measured by the tvlo electronic thennometers and calculated by fl{) = 
I 2 - · T1. The mass of the fluid that flows through the apparatus in a time 
t 1 is m1, and is measured using a b,eaker -0n a balance and a stopwatch. 
The flow rate of d~e fluid is then altered to give another value> m2 ) and 
the heater controls are changed to give the same ten1.per-ature differenoe 
f:J.81

• The specific heat capacity of the fluid can then be deteI1.nined by 
assuming that the thermal losses to the surroundings are constant for 
both flow rates. 

For the first flo\'\!~ rate) the ele,ctrical energy supplied to the lluid in time t1 
is given by 

(i) 

vvhere f 1 and V1 are the initial current and p .d. of the beater and Eiost is the 
thermal ·energy lost to the surroundings. For the second flow rate: 

I2 V 2t2 = m2c!J.8 + E1ost (ii) 

E1ost can be assutned to be the san1e in e eh experin1ent , so subtracting 
equation (ii) from quation (i) gives 

I1 V1t1 - I2 V2t2 = m1c89- ,n2c6.8 

= c~fJ (n-11 - m2) 

If the experiments are both n1n for the sam e time t, then 

c :; ( I1 v1 - Ii v2 ) t 
(m1-m

2
)A e 
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S ec if I lat nt hea The s.peciUc latent 
heat of a1 m ateri ail is. the am o,unt of the nnal 
,energy required to change the state of 
1 kg of matenal without a change in 
temperature, at a specified amb•ent pressure 
(normaHy atmospheric pr,essure, p = 1 atm):. 

Changing state 
When liquids are heated up to their boiling point, the thennal energy is 
used to increase the internal energy of the molecules of the liquid. We 
measure this as a temperature change. However, at tl1e boiling point, the 
temperature change stops and all the thermal en ergy inpu t is used t,o 
oveICome t1'1e intern1olecular forces be1ween the panicles of the liquid , 
converting it into a gas. 

TI1e amount ,of the1mal energy requir,ed to change the state of a substance, 
"\\i.thout a change in temperature, Q (inJ) is given by 

Q= ml 

latent heat of vaporisation 
iitq uld + gas 

,vhere m is the mass of the substance (in kg) and l is 
the pL·~ i ( ic l·lfl· n l h ·· t ('latent' means 'hidden>) ,of 
the substance (injkg-1) . This ,equat·on applies t,o all 
the phase ,change,s involved vdth changes of slate. 
So w~ter> for example has a specific latent he.at of 
vaporisation\ 1v, which deals ,vith the phase change 
from liquid to gas (and vice versa}1 and a 5pecific 

0 
.,.._ con dens Ing gas 

Tb ---l·atentheaf effusion ___ 1bol'llng ..... 
§ solld + 1Uquld 

0 0 

i:e ..... 
Cl} 
0.. 
E 7" 
(l), I-f 
+--' 

....- treezlng 

me lting-... 

time 

Figure 1..8 .Kinetic theory g-raph. 

Pl 
Evaporating water 
A Bunsen burner delivers heat 
energ,y a t a rat e of 900W to water 
1ins ide a g lass beaker. The water rs 
at i,ts boiling po1 nt~ and th e 900W 
of the r,m al energy is used to 
tu rn 0.50 kg of water in to steam. 
Calcu late how tong it wHt take for 
the water to turn to steam,. The 
spedfi c latent heat of va porisatlon 
of water 1i s 2260 kJ kg-1. 

Answer 

11,quld 

]a.tent heat of fusion.~ lr, which deals with the phase 
change from solid to liquid (and vice versa) . 

The relationship between the kinetic theory models 
of solids 1 liquids and gases and the concept of latent 
heat is illustrated by Figure 4.8. Thermal energy 
supplied to a substance that is changing state is 

used to loosen the intem1olecular bonds holding the panicles together 
(completely in the case of a liquid tun1ing into a gas) . The tl1ennal 
energy is called a latent heat because during the change of state the 
temperature does not change> despite ther1nal energy being supplied to 
the substance. 

TI1·e values of ly and lf for a few selected materials are sho\Vll in Table 4 .2. 
Once again, the high values for ,vater n--iean that a h.ig·h proportion of the 
\\'ater on planet Eanh is in the liquid state, and our ambi-ent temperature is 
kept ,~rithin a. relatively stnall range . 

Table 4.2 

~ Usin,g th e equ,ation from the main Water 2260 334 

text 
Q m~ i;;i 0.50 kg)( 2260 X 

1 Q3 J kg-1 i.. 1. 11 3 X 1 Q 6 j 

If the power suppUed as therma!l 
hea:t to the water is 900W~ th e 
time requ ired to boH the water is= 

Q 1. i 3 x 106 J 
t= - =----

p 900W 
;;;; 1256 s ~ 21m.friutes 

Car·bon dioxide 

N·itrogen 

Oxygen 

Lead 

574 1184 

200 26 

213 14 

871 23 
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• TEST YOURSELF .. .. 
• : 7 A 12.5 g i·ce cube melts in the sunshine. Ca lcu late 
! the therma,l energy from the Sun absorbed by the 
• 
: ice during melting . The speci fi c latent heat of fusion 
i of water i,s 334 kJ kg-1. 
• 
: 8 Lead is a major component of th e so lde r used to 
• 
: co nstruct integrated circu:its. A soldering i1ron delivers .. 
; 18W of thermal energy to a s mall 4.2 g block of tea1d. 
; Calculate the time taken for all the lead to m,elt. The 
'ii 

: spec 1fic latent heat of f u sf on of lea d is 23 kJ kg -1. 
• i 9 A range oven rated at 3 kW actu ally delivers 
I 2.7kW of thermal power to 1.5 kg of water in side a 
i whistUng 'kettle. The specific heat capaci ty of water~ 
j c. is 4200J kg-1 K-1. and the specific latent hea t of 
! vapor1isation: of water, lv. is 2260 J kg-1. 
= • • • • • • 
~ .. • • • : 
• .. 
• • • • • .. .. 
• • • • • • • • • • • • .. • 
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al How much thermal energy is required to heat 
the water from 8°C to 1100°C? 

hi How long does it take th e kettle to hea t the 
w.ater from 8°C to l 00°C? 

cJ The wa ter starts to boil and the whi1stte on the 
kettle star ts to blow and keeps blowing for 25s 
until the kettte is removed fr om the heat. What 
,mass of water ~s converted into steam during· 
the 25s of boi1~ing? 

The specific latent heat of vaporjsation of a liquid 
(such as water) ca n be measured ustng the 
apparatus shown ~n Figure 4.9. 

electrical, 
- --I 

con nection s 

con.denser ---t-+ 

n 
~ ~ I 

~~~ 
II ~ 

water 

Figure 4.9 Apparatus for 1measuringi the 
s pecific latent heat of va po risat,io n of water . 

Th e heat supp Ued to th e water i.s gi1ven by 

V1lit = m1tv + E 

where V1 is the p .d. across the heater. 11 is the 
current su pp:U ed to the heater~ t is the tiiime that the 
experim1en,t i1s left to run, boiling a mass of water 
m1 in the time t~ l11 is the spec i,flc latent heat of 
vapori,satio n of water a,nd' E i1s th e th erma l energy 
1lost to the surroundings. The exper iment ~s then 
repeated with a di.fferent p.d.,, V2, across the heater 
and a different current, 12~ flow1ng througih it~ 
boiling a different mass of water, m2, i,n the same 
tim,e t. In this case : 

V2l2t:::. m2lv + E 

[The thermal energy tost in eac h experiment, E~ will 
be th e same.I 
a) Use both equations to deriive an express,ion foir 

the spedfk latent heat of vaporisation of water . 

b) t:n one such experiment, the follow1ing data was 
obtained f n t = 600s. 

- -

Quant.it:y Value Quantity Value 

V1 8.00V V 2 12.00V 

,, 2.41 A I 2 3.00V 

m, 5.8 g m2 10.3g 

Use thjs data and your answer to [a] to ca.~culate a 
value for the specifi c heat capacity of water. 

11 Steadc add , a com,mon chemical found 1in soapsj 
is freque nHy used to s haw the phase change of a 
matedal. A student set up an experiment usi ngi 
a test tube with 4 g of in it1a lly lrqujd stearic acid 
contained in a smaU water bath containtng 25 g of 
water 5et at 9.5°C. S he puts thermom,eter probes 
co nn·ectecl to a data logger fnto the stearfc acid and 
the water ,in the water bath and then she turns off 
th e temperature control. The data logger measures 
and records th e tempera tures over t he course of 
ten .m1inutes as the water and the steari,c a1cid cool 
down. H'er resu lts a,re shown i,n Figure 4.10 . 
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: q) : 
"' . 
; a) cl ~ ; Draw a d1agra1m of th e ex pedm,enta l set-up . Use th e graph and the ra te of therm1al heat ; 
• • i b) The spec ific heat ca pacity of water is t r a in s fer to estimate: i 
: 42 00 J kg-1 K-1. Neg lect~n g th e effec t of the glass i] the spec i f,i c heat capac i,ty of solid stea r ic acid : 
• • 
; test tube. esHmate the rate of therma l energy iii the spedfi c latent heat of fuston of stec1 rfc ; 
: transfer fro·m the wate r :[and th e stea ri c ac i'd)!. acid. : 
• • • • • i ......... ................................... .................................................. ......................... ................................................ ~ 
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Between 1662 and 1802 three laws \\1ere discovered by a collection of 
European physicists that seemed to describe the behaviour of gases in 
response to changes in their pressure, volume and temperature. The laws 
themselves are all empirical, ,vhich means that they describ the mathematical 
relationships: bet,veen the three ·variables purely based on ·experiments. 

Boyle's law 
Th e first gas law to be discovered wa.s Boyle's law, the relationship between 
the pressure and volume of a gas. The experiments were carried ou t by 
Robert Boyle and his research student Robert Hooke i.n 166.2, involving 
] -sh aped tub es o[ se-:1led glass and n1e-rcury. Boyle quickly realised that 
there was a relationship b etween th e volume of the air trapped behind the 
mercury and the ,veigh t of the ·m ercury acting across the cross-sectional area 
of the tube causing increased pressure. 

Boyle r.ealised that the pressure acting on tl1e gas and the volun1e occupied by 
the gas ·wen:. inversely proportional to each other. Boyle would have obtained 
results snnilar to those shown in Figure 4 .11. A modlem version of 1'1is law states: 

Figure 4.11 Boyle's law graph . For a fixed n1ass of an. ideal gas .at constant len1perature1 the pressure 
of the gas is inversely pTop orti.onal to its volume. 

Writing this n1athe1naticaHy: 

l V . t poc - or px = consran 
V 

where p is the pressure acting on a gas of volume V. A more usefu] version 
of this equation involves the san1·e mass of gas at the san1e. ten1peratu1e, but 
different pressures and volun1:es, where 
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RACT CALS 
Investigating Boyle's (constant tempe,ratureJ law 
Note: This is just one exa mple of h,ow you might tackle th·is required 
practica l. 

A student uses the s tandard Boy le~s law apparatus 
shown in Figure 4.1 2 to determine th e vatue of th e 
constant 1nvo:lved in the equati on 

pV ;;; constant 

In the expedm ent, perform ed a t 1:7°C. th e foot pump 

15 used to pressur ise the oH f nside the cy Hnd er~ whf ch 
compress e, the ai1r column above it.reducing its volume. : 
Th e pump va lve is closed when the pressure 1s at a ~ 

... : :~i.:~.:..:~.~-·~~.~.~.'.~.::.~~-=-~.~.~~~-=·: .. '.~.:~.~-· :i.~.1• =~-=: ..................................................... }{~;;~~ ~::~~ f ;;~~ ~;;.~.~ ~~ .~.~ ...... ~J 



The apparatus is then leH to come to [ther·m,a L] 
equ,itlbrium as the of L drains back down the 
srdes of the column . The pressu,re and th e volume of 
the afr cotumn then 
measured a:nd recorded. The s tU"dent then opens the 
pump valve very slightly and the pre.ssure is reduced 
sUghtly, ex,pa nd,ng the arr in the column . The valve 
is shut. the appa·ratus is allowed to come to th erm,al 
equ ilibr1u,m a,gaiin and the pressure and volume are 
measured a·n d recorded. Th is process ~s repeated 
u.ntil th e pressure returns fully to its atmospheric 
value. The studenfs results are shown in Table 4.3. 

Table 4.3 
. - '· 

Pr essu.re, p/105 Pa ·¥ 9lu·111,e!· .. r,~rn3 l(;O •. ~;t._i:n~..J 
( t0 .. 01 x 106 Pa) 

-

3.5 9,0 

3.0 10.0 

2.5 12.0 

2.0 15.5 

1.5 20.0 

1.0 30.5 

The student estimates that she can measure the 
pressure readings from the pressure gauge with an 
uncerta 1nty of ±0 .01 x 105 Pa,, and the volume fro,m the 
measuring scate with an uncertainty of ±0.5 c,m3. 

1 M:ake a copy of the table and add two further 
columns: 1/V [i.n cm-3) and p x V l in 1:os Pa crr,3) -
calcutate the values arid enter them in the table. 

2 Plot graphs of the following: 
V aga~nst p 
1/V a·g,atnst p. 

3 For each graph. include error bars and a best­
ff tti n g li n e. 

4 Use your g ra,phs to measure a, value for the 
constan,t~ where pV rs consta:nt. Use your gra:ph 
to est imate an uncerta·inty in the value of tn e 
constant. 

Exptain why the student allowed the ex per·iment to 
come to tblermat equHfbrf um before 1measurirtg the 
pressure and vo1lume in the appara,tus. 
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Figure 4.13 Amonton's law ~pre.ss 1ure·­
tem perature Law]. 

The pressure-temperature law (Amonton·s law) 
and absolute zero1 temperature 
In 1702 Guillaume Arnonton discovered the empirical 1-ehtionship bet\veen 
the pressure and ten1perature o[ a gas as a :result of his ef[orts to design and 
build arr thermometers. A111onton realised e1npiricall y tl1at there ,vas a linear 
relationship between. the h\'o varialbles, provided that the mass and the 
volutne of the gas were kept constant. Amonton struggled to build accurate 
thermonieters and, although his ide,as were published, they lacked basic 
quantitative data. A modem version of his graph is showrlL in Figure 4.13. 

A modem version of Amonton~s law can be vtritten n1o~e fonnaUy as: 

The pressure of a fixed tnass and fixed volun1:e of gas is directly 
p·roportional to tbte absolute temperature of the gas. 

Writing this mathematically: 

poc. T 

or 

! = constant 
r 

Thls relationship has .a third) more useJi.d, form that is used to compare the 
same gas under different pressures and temperatures. This cau. be iNritten as : 

h.=fl 
T1 T2 

Amonton realised at tJ1e time of his e>..~eriments that if he extrapolated 
his data back through lo\ver and lower temperatures th ere vvould be 
a temperature ,vhere the pressure of a gas dropped to zero . At this 
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b nlut ern The temperature when an 
mofecularr motion ceases, aind the pressure 
of a gas drops to zero. The ~Kce pted value is 
the zero of the Kelvin temperature scale and 
is defined as -273.15 °C. 

absolute zero 

! ,,,. ,. 
,,,.,""""' 

OK 273.15 K temperature, T 
-273.15 °C O °C 

Figure 4.11. Absolute zero. 

Atways use the abso'lute [Kelvinl 
temperature sca le when do~ng 
pro ble m,s and ca'lcu la tf ons 

involv~ng the .gas laws. 

~ 
E 
:s:' 1~-.-,..,------ ~~~--.-,.----1 
~ 
E 
::, 
0 
> 

temperature T/K 

Figure 4.15 Charles· Law. 

temperature> the Inolecules would stop n1oving and so th ey could not 
exert a pressure by hitting anything else.. This te·mpeTature became 
kno\\:rn as hsol utc Z""ro and An1onton calculated it lo be -240°C, 
,vhicb, considering the thern101neter technology available to hin1 at tl1.e 
tin1,e (air thermometers), was a pretty re1narkable achievement - he was 
only abo·ut 35°C out. In 1848 WiUiam Thomson (Lord Kelvin) used the 
concept of absolute zero to, construct a temperature scale with absolute 
zero as the ~zero~ o.f his scale. Using the better thenno meter tee hno I o,;,; 
of the day Kelvin predicted that absolute zero· would be at a t,emperature 
of -2 73°C or OK - only O. l 5°C away from today'.s defined value of 
-2 73. l 5°C (Figure 4 .14). 

l(elvin~ absolute scale o,f temperature became the S[ unit of temp rature! 
and is defined in terms of two fixed temperature points - absolute zero 
(0 K) and ·the triple point ,of ·water (0.01 °C or 273.16K -the temperature 
andl pr,essure values where ice~ liquid water and water vapour can coexist). 
Converting a temperature from °C into an absolute temperature measured 
in K involves using the equation: 

T (in K) ..... T (in °C) + 273. 15 

You must note that the magnitude (size) of l °C is equivalent to 1 K. In other 
words: 11 °CI = ~l K!I. 

Charles' law 
ln 1802, the French chemist Joseph Gay-Lussac published a. paper 
sho\ving the experimental link beti:veen the volume and the ten1perature 
for a gas. Gay-Lussac named the law after his balloonist friend\ Jacques 
Cl1arles, who produced an unpublished version of the law following his 
observations of the behaviour of balloons. The empirical lav-' is illustrated 
by the graph in Figure 4 .15. 

A 1nodem version of Charles' law states: 

At constant pressure the volu1ne of a fixed IMS$ of an ideal gas is 
directly proportional to its absolute ten1perature. 

\Vii ting this mat henrati caUy: 

Oi' 

Voc T 

V 
- = constant r 

Once again, the temperature T is an absolute. temperature using the Kelvin 
scale (T/K = T/°C + 273.15). Another useful fo1m of this relationship 
(shnilar to th other gas laws) is 

v1 v2 
~ ~~ 
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REQUIRED PRACTICAL 8 
Investigation of Charles" law for a gas 
Note: This i,s just one example of haw you might tackle thrs 
requ1 red p ra ct ica L 

........... - thermometer 

Chartes· law can be useo. to make an esti1mate for the value of 
absolute zero, Thts can be achieved by measuring the volume of 
a g,as at different temperatu,res and then extrapo labng the graph 
back to a votume of zero. In reaUty1 non -'ideal gases do not end 
up w[th zero volu1me but for the purposes of th~s exper·iment, the 
di1fference js so s:m,aH that it will not affect the outcome. 

l'n this experiment. two smatl seated g,as syringes, one with a 
total volume of 10 cm3 and the second with a volume of 3,0 c,m3~ 
are put one at a1 time, in.to a freezer cab i,net at - 15°C, and 

- --- wate,r bath 

stopper 

then 1nto a beaker of iced water at 0°C IF~gure 4_. 16L The ic:ed 
water is then gradualty warmed us.ing a Bunsen bur n,er. The 
votume of th e alr trapped in siide th e gas syringes 1is recorded 
at tempera tures of -15, 0, .20, 40 and 8D°C. The resu lts of the 
experiment are shown in Table 4.4. F1gure '" 16 Measuring aJbs.otute zero. 
Table 4.4 

. - . 

10 cm3 syringe 30 cm3 syringe 

-15 4.3 13 .5 

0 4.6 14.2 

20 4.9 15.1: 

40 5.2 16 .4 

80 5.9 18.3 

1 Plot a graph of th iis data. r1nclude error bars an the volume measurements 
and best-fitting lines . 

2 Extrapolate each best-fitHng Line back so that rt cr·osses the tem perature 
ax.is. Use the temiperatur-e-ax is intercepts to determjne a range o·t values 
for th e absolute zero temperature ~n °C. 

'" ••· ..... •• ·•· •• ... ...... •• .... ., ... ••• .. ,, ••• ••· •• ,..o1 ,. ru ..... •Ii••"•• ·••••· ••,. ... ,.,.._.._. .. •'- .... .. •• ..... .. .. .. ._ .. ·•"' ,.,. ... .... ..... ... .,.••••· ·• .. ._. · •o1 ,. ••• .... ..... •• ,. •• •'-· •• ... .. •• •1'• . ... •• ,. ... .... r ,u, .-. .. .. ..... .. •· .. ,. •• ,. .... ,., ... .... ... .,. •Ii"'•• .. _. ..... ·•· ••,. ... ,. ... -~ ..... •'-"•· .... ,••••"••,. . .. ,.,.._."" .i. "•"•••••••· 

Combining th 1e gas laws 
The thr,ee gas la\VS -namely Boyles la,1,,..~ Amonton's la,v and Charles' 
law- can be combined into one el\.Fression lin1.;.ng the pressure , volume 
and temperature of a gas, in a combined gas lav.r which is expressed 
mathematically as: 

E = ·constant 
T 

A m nre useful f onn of this equation. can be written as 

Pt Vj P2 V2 -
1j T2 

where p1, V1 and T 1 describe the initial pressure1 volume ~nd temperature 
of a gas, and p21 V2 and T2 describe ·the final pressure, volume and 
temperature of the same gas after a change ·has been applied to it. 
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Rem ember that~ w hen us in g 
t he com bfned 91as taw~ abso lute 
t em peratu re must be used and 
tem peratu res in degrees Celstus 
must be co·nverted to ke lvins . 

In questions on 1he combined gas law, pressure is usually measured in 
pascals (Pa) or kilopascals (kPa)> where a pressure of 1 Pa is equivalent 
to a force of l N acting over an area of l m 2. Pressure is also measured in 
atmosphei-:es (aun), where one standard attnosphere is defin ed as a pressure 
equivalent to 101 325 Pa, and is the av·erage value for atn1ospheric pressure 
at sea level. The v,olu1ne of a gas is norn1aUy n1easured in m 3, but cm3, litres 
and ml are also con1morily used. Ten1pemtures n1ay be given in kelvin or 
degrees Celsius. The latter must be converted to kelvin. 

"t ,. ... ,. ... 1"• •"'l •r'" ,.,. "'lo!"•• ... ,.•• •p,. •• ,. •• •• .. . .. •• •I! P • _. • • ..... •• '-•'t .. ~ .,. .. ,.,. ko~• •• ••• •• ,.,. .,,.,. •• ,.,. 

\Vhich o( tl1ese units should you use in your \vork? The ans,ver is generally 
to use the units included in the question, converting ten1peratures to kelvin . 
State any calculated values using the units from the question. n d rt:1 111 t I n ~ , , Th is 

ref,ers to 0°C (273.15 K) and t01 x 105 Pa 
{1 atm). Also, you should be a\vru:e that questions sometimes refer to s ta nd~ nl 

r. m m r 1r n r ur TMs 
ref,ers to 2s0c (278. 1 s IK) and 1 .01 >: 105 Pa 
{1 atm). 

Lc111p ·raLt 1..- ·uul 1 r ·s un: (SIP), vlhich are 0°C (273.15K) and 1.01 x 105Pa 
( atm), and 1 < un 1 · n1pc r·n1u 1 : n I I r(' Hrl (RTP)l which are 25°C 
(278. 15K) and 1.01 >< 105Pa (1 atm). 

+ • ~ 
+ • • • : 
• • • • -. • • .. • : • • • .. .. 
• .. • • • 
! • .. .. 
• .. 
• • • • • • • • • • • 

Changing volume of a balloon 
The volume of a party baH001n at a room temperature 
of 15°C and an atmospheric pressur,e 1of 1 .0 atm at sea 
level is 2400 cm3. The balloon is taken up ,a mountain. 
where the t,emperature is 1.4QC and the atmos,pheric 
pressure has dropped to a v,alue of 0.80 at m. Calcu lat,e 
the new volume of the balloon at the top of the 
mountain. 

Answer 
Use 

p,V, P2V2 
- = ........... ---

Substi tuti ng numb ers : 

1 atm x 2400 cm3 0.80 atm x V2 
= 

[ l 5 + 2 73. 1 5) K [ 1. 4 + 2 73 .. 1 5 ): iK 

V = 1 atm x 2400 cm3 x (1 .4+ 273. 15)1 iK 
2 

1( 1 5 + 273.151 K x O.BO atm 

= 2858.4 cm3 ~ 2900 c m3 (2 s. f.] 

ii•••••····················••i••••·········iill•••••································••iill••••··················································iill•• • 
TEST YOURSELF : 

12 A small patio heater gas bottle has a volume of bi Why will this trick work better if you put some I 
6.0 Utres (6.0 x 1 o-3m,3) and conta ins butane g.as a,t w ater in the ti n? I 
a temper ature of 5~0°C a nd a pressure of 2.5 MPa. 15 A large ca r tyre has a volume of 22 >< 1 o-3 ,m3~ and f 
What would be the volume of the gas if it were let out the a ir ins,id e is pumped to a, pressure of 2.5 a·tm : 
of the ca nister i,nito an inflating ba lloon on a wa1rm above at1mospheric press,ure (1 atm). Ca1lcutate the ! 
day a,t 20°C and atmosph er ic pressure (0.1 MPa)!? volume that th e air inside th e tyre wo,uld occupy i 

13 A closed gas syringe conta ins a fixed mass of at atimospheric pressure. Yo u should assum1e that ! 
air at 24°C. To what te ,m per ature must th e gas the tem,pe rature r em,ai,ns constant ! 

• 
be heated so that its volu me doubles ,, w hen the 16 A steam cileaner has a, steam tank with a : 
press ure rema1in s co nstant? volu me of 150 cm3 i1n which the s tea m is kept f 

14 An em pty t,reacle tin conta ins air at a temperatu re at a temperature of l 00°C and a pressure of ~ 
i of 16°C and a pre ss ure of 1.5 x 1 os Pa . The Ud wi ll 1.5 x 106 Pa. l'f t he s team cleaner i1s used to clean i 
• • ; blow off the ti n rf the pressure in side the tin r i1ses w ~ndows ou ts ide on a cold day where th e air is : 
! beyond 2.4 x 105 Pa. · at at1mospherrc pressure and the temperature is ! . .. 
: a, J At w hat t e:m p era tu re w [ ll t he top blow o H H the 6. 5 ° C. ea le u la te the vo l u me o if steam generated if : 
• • 
: a i:r is hea ted evenly w ith a Bunsen burn er? a ll the s tea m Is let out of th e t ank. : 
• • : ........................................................................................................................................................................ ~· 



0 Avogadro·s Law, the ideal gas equation 
and moles 
A fourth experimental gas law vtas hypothesised and published by An1adeo 

Avogadro in 1811. 1n this law 11e suggested fl1at equal volun1es of gases at the 
sanre temperature and pressure contained the satne nu1nbe.r of molecules. 

l\1athenu.ticaUy, this means that: 
V . 

V cc n or - = constant 
n 

where n is the number of moles of th gas. Once again, as with the ,other gas 
La~rs, this is mo,re usefully "\VtiUen as: 

~=5. 
n n 

i_ ,2 

In 1834~ the French physicist Emile Cla.peyron combined aU four gas laws 
and produced ·rhe ideal gas equation: 

pV;:: nRT 

where Risa constant nov,l known as the 1.nolar gas constant~ R = 

8.31 J moI-1 K-1. The ideal gas equation is a tremendously po,vem.11 equation 
that models the behaviour of gases extremely v.,rell, particularly when the 
gases are at relatively lov.,~ pressures and high temperatures. At conditions 
close to liquefacrion) it works less well because the gases behave much less 
like ideal gases. 

The Avogadro constant, ]\TA~ was proposed by Jean Baptiste Penin in 1909) 
to represent the number of particles (usually 1nolecules or atotns) present 
in one tnole (l 1nol) of a substance. Perri11 na1ned it in honour of A1nadeo 
Avogadro. Perrin went on to ,vin the Nobel Prize in P]1ysics for his atte1npts 
to measure the Avogadro constant accurately. The Avogadro constant is 
today de.fined as 6 .022 14129 x 1023mol-1 (rounded to 6. 02 x 1023 n101-1 

on the AQA Physics D1ataslieet). 

Dividing the n1olar gas constant~ R, by the Avogadro constant, f\TA, yields 
another fundan1-ental constant in physics, the Bohzn1ainn constant, k : 

R 
k=-­

NA 
and it has the va]ue: 

k = .!_ = 8.31 J mo1-• K-
1 = l.3S x 10-,23 J K-1 

NA 6.02 x 1023 mot-1 

The Boltzmann constant is the fundamental constant that links the 
macroscopic meastlrements ,of pressure 1 v,olume and temperature to the 
microscopic behaviour of particles in a. gas~ and l1as a fundamental position 
in tl1e model of an ideal gas. The constant enables the microscopic model to 
make predictions about the v1ray that ideal gases behave on a macroscopic 
scale where they can be measured e.1npirically by the gas laws. 

The above equation can be rearranged. to give: 

R -k_NT 
- · A 

which can be substituted into the ideal gas equation) giving: 

pV= nNAkT 
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Propane gas cylinder 

But n"J\TA is the number of particles in the gas and is given the syn1bol , "f\T, so : 

pV = J\TkT 

(This impJies that the pressure of an ideal gas is independent of the 1nass of 
the particles.) 

Molar mass and molecular mass 
Counting particles is no'l a good Vv~Y to gauge the amount of substance 
present in a gas (01· liquid ,or solid). It is incredibly difficult to observ"e 
individual atoms or molecules, ]et alont: to co,unt them. A b tter ,vary to work 
out the amount ,of matter in a substance is to use the mass of panicles and 
w,eigh large collections of them using an electro,nic balance. If the mass of one 
particle is kno,v11, then a 'lneasurement of the mass of a large number of thetn 
,,ill yie]d the number of particles present. We therefore defin,e two quantities: 
the molecular mass, m, which is the mass of one molecule of substance; and 
the molar mass> Mm, vvhich is the mass of one mole (NA) of m,o,lecules o.f the 
subsrance. These tVv"'O· quantities a.re related to each other by: 

Mm;::: NAm 

lf the ·mass of a known gas is measured, M~;, then dividing this value by the 
molar mass gives tl1e number of moles, n, and dividing it by the molecular 
mass, m > gives the nun1ber of 1nolecules~ N: 

Mg Mg 
n =- and N =-

M rn 
m 

Both of these can then be substituted into the ideal gas equation ) allo,ving 
aU quantitie.s to be measured macroscopically: 

M s p V :::. RT and 
Mm 

M 
pV= - skT 

m 

A propane ga.s cylinder has a volume of 0.14 m3 and the 
pressure of the gas inside the cylinder is 2.0 :i< 1106 Pa 
above atmospheric pressure at 300 K. 

tot at rn umber of motecuiles of g,a s in the co-n1 ta in er is 
the,refore 6.02 x 1023 x 11 8 ~ 7.1 >< 1 Q25 molecu les. 

1 Cailculate the m,ass of gas ~nside th e cylinder if the 
molar mass of propane is 44. 1' 91 mol-1. Ca,'lcutate the number of m.oles of propane gas 

inside the cylind er. 
Answer 
Us1ing the ideat g.as eq,uat ion, pV - nRT: 

pV n '1:1 -

RT 

_ (2. 0 x 106 
+ LO x 1'05

] Pa.x 0. 14 m3
.;;; 11,8 mot 

8.31 J mol-1 ·K-1 X 300 K 

L Calcu late the number of propane molecules i nsi·de 
the cylind er. 
Answer 
0 -n e m o le of a n 1 d ea l 9a s cont a i. n s 6. 0 2 x 1 0 2~ 

molecules of gas [the Avogadro constant 1, NA!. The 

Answer 
~f the molar mass of propan e is 44.1 g, m,ol-1., a1nd 
the re a,re 118 mo l of gas. th en the mass of propane 
in side the cyUnder is 44. 1 g mol-1 >< 118 • 5204 g -
5. 2 kg [2 s.f.]. 

Calculate th e m1ass of on e motecu te of propane. 

Answer 
Th e mass of one molecule of propane is 

molar mass 
m ;;;; -----

NA 

_ 44. 1X10-
3 

kg mol- l - ?.3 X Uf26 kg 
6.02 x 1023 mor1 
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: volume of a fi xed m ass of the gas [y-axis] : ! 11 1.5 moles of an ideal gas at a temperature of 312 K at co ns tant temp era tu re with th e pressure j 
! is kept at a pressure of L7 x 105Pa . :c.a lcu late th e [x-axrs] of th e gas? i 
i volume of the gas under these cond1t1ons. bi Which graph shows the variation in pressure j 
i 18 A weather balloon co ntains helium gas_ and' ly-ax isl of a fixed mass of gas at co nstan_t _ j 
! occupies a volume of 0.85 m3

. At a pa rt1 cula r volume with abso lute temperature Ix-axis)? ! 
i weather station, the pressu re is 1.2 x _10

5 
Pa: nd cl Which graph shows th e variation of the product ! i the temperature of th e surroun chng a1~r 1s 18 C. Ip x vJi of a fixed mass of th e ga,s (y -axis] at : 

! Assuming that helium behaves a,s an ideal gas, constant temperature with the pressure ! 
i show that the balloon conta ins about 42 mol of [x-axis ! of the gas? i 
! helium gas. . . . 21 This question is about the two standard conditions of j j 19 A tyre on a cycle in the Tour de France contains an ideal gas - standard temperature and pressure j 
! O. 15 1mol of a~r at a te,m1 perature of 293 Kand ha~ a ,(STP] and room temperature and pressure [RTPL ; 
! volume of 8.2 x 10-

4 
m

3
. It is assumed that the air The table below gives some data for 1 mol of an ideal ! 

f behaves as an ideal gas. . . . gas under each of these conditions. I 
: a,] Catculate th e pressure of the a11r :1n s1de th e tyre. ; 
t, 

: b) At the end of a stage. the pressure in th e ty:re ! 
~ has ri se n to 5.45 )( 105 Pa. Use thi s information j 
f to estimate the temperature of the air in the tyre j 
f at the end of the stage. !Assume that the volume l • 
~ does not change.] Temperature. 273 ~ 
f 20 look at the graphs !Labelled A, B. C and D) in T/K j 
i Figure 4.17 showing the behaviour of an ideal gas. Pressure, 1.01 1.01 l 
... p/105 Pa : 
• • • • • • .. .. .. 
• • ... ... ... 
• • • 

y 

: o~--------­
: 0 .. .. .. 
• • ... ... 

X 

A 

: Figure l.~ 17 

y 

X 

B 

• 
Volume. V/1m3 2.45 x 10-1 : 
L_~~~~---1~~~~~~_L_~~~~~~---' : y 
Co py and complete the table . 

X X 

C D 

: ...........•......... ....•.......•......................................•.....................•............ .....•.....................•..•.... 

• • • • • • • • • • • • • • • • • • • • • 

~ ACTIVITY 
•• ••• •• ••• •• ••• •• ••• •• ••• ·-•••••••••••••••••••••• ,. ........................................................................ ·-••••••••••••••••• -· ............................ !I.a ................................... . .................... ·; 

~ The ideal gas equation and 
~ Mount Kilimanjaro 
i Mount Kili'manjairo ~s the high·est mountain in Africa1 

! !Figure 4J8), and scientists have found' that a~out half 
= of a,ll the climbers who attempt to sca le its height 
~ suffer from alt itude sickness before th ey reach the 
~ summi t as a res ult of ascend in1g the mountain too 
I qui ckly. Every year appro:dmatety 1000 clim bers are 
i evacuated from, th e mountain suffer1ng from acute ! 
~ att itude sickn ess, and on average 1,0 climbers d1ie. 
i KH1imanjaro is a deceptively dangerous place. 
c 
~ 
= : 

. 
c . 

. 
: 
: 
I 
l . . 
: . . 

Figure l..1B Mt KiUmanj!aro, the hi91h,Lst mountain ; 
in Africa. 9 ! . . L ............................................................................................... ... ............................................................................................................................................ .............. . 
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1,,111• •
Her e i,s so m e data ab out Mount Kitimanij,aro on the 

m ou ntaj n ~t self and on the pla ~n s be low: 

1 Use this data t o calculate t he den sity of a ir a t the 

su m1m it of M CHJ nt Ki li1m,a n jia,ro. 

, 
: 

• sum1mit e leva,ti on 5895 m ab ove sea level 
• su rn ,mit a.fr pr·essure 50 kPa 
• summit average a ir tempera.tu re -6.8°C 

plains e levati on 1018 m a,bove sea tevet 
• plains air pressure 90 kPa 
• plairns average air temperature 30QC 
• plains air density 1'.03 kg m- 3 

2 Th e proportions of oxygen and n it rogen in t he 
a ir on the s urroundi1ng plai ns and the summit 
is con stant (21 % oxygen and 79% nHrogenL The 
average ad ult lun,g capacity ,js about 6 li tres. 
Ca lcu tate the nu mlb er of oxygen m olecu,les in a 
person;s lungs 
a) on the surround ing plai1ns 
bl at the su 'm m it of Mo·unt Kilimanjaro . 

. 
: 
: . . 
: 
; 
: 
~ 
~ 
• 
~ . . 
= ; 
~ 
: . . 
! 
~ 
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Ideal gases 
There are many occasions in physics where we use a simplified model to explain 
the beha\.iour of a system. ·:rvtodels use basic first principles and then usually 
add in more complexity to fine-tune the behaviour of the model so thal it better 
reflects reaht1~ One good example of a simple model is the model of an ideal gas) 
which is used to u'Plain the behaviour of gases subject to the changes in their 
te.mperature1 pressure and volume. Real gases do not behave exactly like ideal 
gases but their geneTal behaviour is sufficiently close that the n1odel predicts and 
explahis most of ihe co1nmon patterns in the behaviour of the real tli:ing. 

The ideal gas 1nodel assumes the follov.ring: 

• An ideal gas consists of a large number of identical, small, l1a:rd spherical 
1:nolecules. 

• The volume of the 1nolecules is very n1uch smaller than t'he volume of 
the container. 

• All the collisions between the n1olecules then1Selves and the containe1· are 
elastic and aU 1notion is frictionless (i. e. no energy loss in motion or collision). 

• The movements of the n1olecules obey Nev,.rtons la,vs of motion. 
• The aver-age distance bet\veen n1olecules is very n1uch larger than the size 

of the n1olecules. 
• Tl1,e molecules are constantly moving in ran do1u directions ,vi.th a 

distribution of velocities about a m ean velocity. 

• There a.re no attractive or repulsive intermolecular forces apart fron--i 

those that ·occur du1ing their coUisions. 
• The only forces betw·een the gas n1olecules and the su1·roundings ate 

those that determine the collisions of the molecules ~i.th the walls. 
• There are no long-range forces between the gas molecules and their 

surroundings. 
• The time spent betw,een collisions ts very much larger than the time 

spent colliding. 

Molecular motion 
One of the n1ost important propenies of an ideal gas is the idea that they 
move in random directions. This is important because if this \Vas not tnle 
then gas,es would exen more pressure. on one surface of their container rhan 
they would on another~ i.e. the direction that the panicles travel in would 
be important~ and the theories ,~lould be different in different directions. 

The fact that gases (and all fluid particles) have a random 1nolecular inotion was 
first obsen"ed and described by the botanist Rohen Brown in ]827 1 as a result of 
his observations of pollen grains floating on ,vater. Brown sa,v the grains n1oving 



Figure 1..19 A modern version of Jean 
Baptiste Perrin·s plot of the 18 rownia 11 

motion of carbon pa rtictes. 

in randon1 directions as he observed then1 through a light microscope but he 
,vas unalJle to explain why they tnoved - this \Vas left to Albert Einstein during 
his 'annus mirabilis' (miracle year) of 1905) during which he published his 
ideas about 'the photoelectric effect special relativil)~ mass-energy equivalence. 

(E = m2') as well as Brovtruan motion. Einstein explained that the pollen gr~ins 
\Vere n1oving in randon1 directions as the result 1of the cumulative effect of the 
·water n1olecules randon11y hitting the pollen grains. At different times the pollen 
gnuns are hit by vrater molecules m,ore on one side than they are on the other 
sides, resulting in a m otion in that direction that appears random in nature. 
Einsteins theory of Bro\vnian motion VvaS confirmed eA-perimentally in 1908 
by Jean Baptiste Penin (of Avogadro constant fame). Perlin produced as ries ,of 
positional plots shei~ring this random motion by observing the motion ,of O .5 µm 
carbon patticles on a grid of 3µm x 3µm squares and recording their po,.silions 
every 30s. His plots v.rould have [ooktd like the modem version in Figure 4.19. 

Perrin analysed the motion of the particles and concluded that the moti,on. 
was truly random, in line Vvi.th Eins1ein>s theory. Both Perrin and Einstein 
were (separately) awarded Nobel Prizes partly because o f their work on 
B,rovvni.an motion. 

Pressure, volume, temperature andl 
molecular motion 
The impo,nanoe of Bro,vnian m otion and the properties of an ideal gas 
should not be under,esthnated. TI1e observation of the randnm 1notion of 
fluid particles and the subsequent theo1y proposed by Einstein provide a 
·\vay of explaining the macroscopic gas law quantities> and hence the gas 
laws themselves in tenns of a microscopic molecular tnodel . 

Pressure 
Macroscopic pressure is defined in terms of a force acting over a given 
area. The kinetic theory 1nodel of an ideal gas shows us th at the force is 
due lo the collisions of the molecules with the walls of the contain er. The 
molecules an: n1oving in random. directions \\iith a mean average velocity. 
The particles hit the ,vaUs of the container and rebound off at the san1e 

speed (all the collisions are elastic). This produc,es a change of n1on1entum, 
and the cun1ula.tive effect of all the parti,cles colliding over the total inside 
surface area of the container per second causes a force per unit area, which 
exerts a p·ressure acting in all directions (as the inotion is random). 

Vo Lum 
The motion of molecules inside a container is random in direction. This 
means that there is no preferred direction. so the molecules v.111 spread out 
throughout the container filling its volume. Gases take the volume of their 
container. lf the dtmensi,ons of the container are changed~ the motion of the 
molecules v.rill react to the change and vtiU continue to fiU the available volurne. 
The behaviour of real gases is closest to that of an ideal gas tit low pressures, 
"veU away from their phase boundary where they change into a Hquid_ 

Temperature 
For an ideal gas, b ecause there. are no h1tennolecular forces; increasing the 
temperature of the gas only increases the kineiic .energy of the particles. 
This increases tl1e average velocity of the particles. The particles still m ove 
in randon1 direc tions, and they fill the container. lncreasing the lemperature 



U1 
(..) -
~ :c 
CL 
..I 

i 
0:: 
LLI :c 
1-

"'4' 

z 

for a. fixed volume increases the pr.essur,e because the particles' average 
speed is higher and therefo1~e the change of mon1entum du1ing oollisions 
with the ,¥alls is greater, and tl1e particles hit the waUs n1ore often. This 
leads to higher forces and therefore higher pressures. AUo-wi.ng tl1e p1essure 
to remain constant requires the volun1e to c·hange. 

0 A molecular kinetic theory model 
Alltho,ugh the gas laws are empirical in nature (they \Vere developed as a result 
of analysis of -expeti·mental data), the kinetic theory model is derived from 
theoretical first principles. Ho,veve.r. they both produce the same results when 
observing the macroscopic b haviou.r of gases but only the kinetic theory 

~L::----..., version can e""rplain the behaviour of gases on a microscopic, 1nolecular scale. 

0~ 
y 

X 

Figure 4.20 Parti,cle ,j n a box. 

t ln 1860 James Clerk Maxwell and Lud'Wig Boltzmann both (independently) 
I used the assumptions o.f the ideal gas model to link the pressure and 
L density ,of a gas, conne-cting fror the first time the molecular behaviour of 

J 
a gas to one of its mechanical properties. Their theories started vrith the 
1notion of one gas patticle inside a cubic box (Figu.re 4.20). 

TI1e gas h.as a volume V and density p a11d is enclosed inside a cubic box 
of side L. Inside the box 1here are N identical particles vtith 1he same n1ass 1 

in\ and the gas particles have a range of different velocities c1, c2) ~ . .. cN. 

lt is assumed that the volume of the panicles is negligible co1npared ro the 
volume of the box. 

Consider one particle moviI1g p{lrallel to the x-axis lhritl1 a velocity c1. The 
particle co Uides \Vith the shaded wall in the diagram. The ide:al gas theory 
assumes that the collision is totally elastic and so the particle re-bounds back 
off the wall ,vith a velocity of -c:1. The particle therefore experiences a total 
change in n1tomentun1. equal to 2mc1, during the collision. If the totally 
elastic collision assumption ,vas untrue then the particles would gf'adually 
loose -energy during the collisions and the average velocity of the particles 
in the box ,vould decrease, resulting in a drop in overall gas pressure~ 
Experimental evidence teUs us that this does not happen. 

The particle lhen tra-vels back a.cross the box~ c,ollides ,vith the opposit,e face 

before retutning to the shaded wall in a titne interval at !!!I¥,. This n1eans 
l 

that in the time interva] llt 1 the particle makes one collision °\\'i.th the wall and 
exerts a force. on it. If the particle. obeys Newt,ons Second law of motion then, 

F = change in n1ornentu.rt1 = 2mc1 

trme' for change (2L/c1) 

The shaded ~~u has an area> A = L 1 so the pressure exerted by the one particle is: 
2 F mc1 

p=A= L3 

There are N panicles in the box.1 and. if they were all travelling parallel to 
the x-axis: total pressure on the shaded '1vall would be 

(m)·x( 2 2 2. 2.) = L:, . c l + cl + C3 + . . . + C N 

but in reality, particles are moving in random directions) with a veloci ty; 
c~ ,comprising components at right angles to each other in the x) y, and z 



directions (ex, ? and c.z). Using three din1ensional Pythaporas Theoren1, 
c2 = c; + c; + ex , but as on aveTage, c; - c; = c} > so c; := 3c2. As there a.re N 
particles in the box, the pr,essure1 P, parallel £,o tae x axis is therefore 

1 (rn) 2 2 l 2) =3 X "i3" X (cl +c2 +c:3 + ... +cN 

We now define a quantity caUed the root mean square velocity, ( c;mJ, 
(the square root of the average of the square ·velocities) ·y;rhere: 

Substituting andl replacing L3 = V, gives: 

Pv = l ~Tm(c )2 
3 rms-

Nm is the total mass of the gas inside the box. so the density of the gas 
inside th.e box is giv,en by: 

so: 

Nm 
P' =- ­ v 

1 ( )1 p =- pc 3 mJS 

0---------------C o m paring two models of the behaviour 
of gases 
We now have two models that describe t11e behaviour of a gas. The first 
model, the ideal gas equation, describes the experime-ntal , macroscopic 
bel1aviou1· of the gas: 

pV= nRI 

The second model, involving the kinetic theory n1.odel, describes the 
bel1aviour fron1 a theoretical point of view in terms of a microscopic~ 
mechanical tnodel of the particles: 

_ l _ 2 1 Nm 2 
P = 3 p'(crms) = 3 V (cnm) 

If the average molecular kinetic energy is r,;' (the bar above the quantity 
n'leans ·mean average;, then Ek= !m(crms)2 and so 

P=1xli x!m(c )2 ,or pV=1xl\rxE 
3 V 2 rrns 3 k 

If this e,quation is compared to, the id al gas e·quation then 

2 - - 3 t1 
nRT = - X N >< Ek or Et = - X - X RT 

3 2 ~r 

Because n is tl1e number of moles of the gas and N' is the number of 
particles of the gas; then 

n 1 
"J\T=n X N or --=-

A N 1'\\ 

Substituting this for n/N gives 

- 3 R 
Ek=-. x-xT 

2 NA 
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Molecules in a gas syringe 

But RINA has already been defined as equal to k, the Boltz1nann constant , 
which effectively is the gas constant per partide of gas. So 

3 
Ek= 

2 
kT 

where Ek is the kinetic energy of one pa1ticle of d1e gas. This is truly a 
remarkable end point. V1le started with three tnacroscopic easily nieasureable 
propetties of a gas, and we end ut:, \Vith a si.lnple equation that allo,~ts us to 
merJsure tl1e ldnetic energy of a pa.tticle of gas by 1neasuting 011lyits ten1perature. 

A colle,ction of 50 idea l gas molecules are observed in.side a gas syring,e. At a particutar time, the distribution of 
their molecular speeds is~ 

Answer 
·:~peed. c/km s-1 

Number of particles 

1.BO 

6 

1.90 

8 

2.00 2JO 2.20 

12 10 7 

Ca Lcutate the root mean square speed of the particles. 

Answer 

2.30 2.40 

4 3 

The first step Ls t o catcu late the square speeds of th e partk les: 

Sp.~e~:~ c/km s· 1 

c2/km.2s-2 

Number of particles 

l .80 

3.2.4 

6 

1'.90 2.00 

3.611 4.00 

8 12 

2.10 2.20 2.30 2.40 

4.41 4.84 5.29 5.76 

Hl 7 4 3 

The next step is to calcu late the mean square speed . whf ch Js the average 
of alt the square speeds: 

2 (3 .24 x 6)+ (3.61 x 8) + (4.00 x 112J + (4.411 X 1 o, + [4.84x7l + [5.29 x 4) + (5. 76 x3J 
C = ~~~~~~~~~~~~~~~~~~~~~~~~~-

50 

= 4.25 km2 s-2 

To ca lcu late the root mean square [r:m.s.) s peed crms.1 we need to ta,ke 
the .square root of t~·vis nu,mber: 

!crrnsl ~ C2 ~ J4.25 km2 s-2 

:=i 2.06 k1m s-1 

Air part:icles in a room 
Ca lcutate the r.m.s. speed of the air particles i,n a 
room. The density of ak is 1.3 k91 ,m-3 and the 
room pressure of th e air is 1.01 >< 1105 Pa . 

Answer 
We start with 

,. . 2 
P = 3P[CrmsJ 

Rearrange to ma,ke crms the subject : 

c ~ fi'i.= 3x 1.01x 10
5

Pa 
rms VP . 1.3 kg m- 3 

= 482.8 m s-1 = 480 m s-1 [2 s.f.] 



Neon particles in a bulb 
A neon- fiHedl lamp bulb used in adverti,singi signs 
·co ntains neon pa,rti cles a t a pressure of 11 .03 x. 1 05 Pa 
and a temperature of 60°C. The molar mass of neon 
is 20. 2 gi m o l-1. Ca'lcu late t'h e density of the n,eon1 in the 
butb. 

Answer 
First ca lcu late th e :kinetic energiy of the indiv idual neon 
particles: 

Ek -f kr- f x ua x 10-23 J K-1 x !273 + 60l K 

- 6.89 X 1 0-21 J 

This can then be used to ca lculate th e value of krms~2• 

We have 

E;: .1. [ 11
2 

k 2 m crm s 

50 

r )2 = 2Ek = 2E~. =' 2 EkNA 
icrms rn M,m/NA Mm 

2 X 6.89 X 1 o-21 Jx 6.02 X 1028 mol-1 
!!! 

20.2 X 10-3 kg im,ot-1 

~ 40,8648 m2 s-2 4.1x 105 m2 s-2 (2 s.f. I 
Su bstitut:in g 1in to 

p ~ jp [crms J2 

' gives 

3p p;;.; 2 
(crms) -

3 x L 03 x 1 05 Pa, 
= 408648 m2 s-2-

= D. 756 kgi m-3 = 0. 76 kg m-3 1(2 sJ.] 

~ ·····················································································································································; 
: TEST YOURSELF . i 
j 22 The sea led gas syringe shown in Figure 4.21 is 24 At STP, 3 m ol of an id ea l gas occ upy a volume of ! 
! filled w ith argon gas. 0.067 m3• The Avogadro constan t, NA - 6. 02 x Hl23. j 
: Ca Le utate: : 
i argon gas al a value for the molar gas constant , R ! 
• • 
: bi a value for the Boltzma nn const an t , k : • • 
i c] t he average kinebc: energy of one ,molecule of f • • 
: the id eal gias . : 
• • 
: p lunger area~ 7.1, x 110-4 m2 25 An ideal gas can be modeUed as many m,olecules i 
i in cont,inuous motion enclosed ,jn a· container. Use : 
! Figure 

4
·
21 

the ideas of the kinetic theory to exp lain why the ! 
i When an argon atom makes an elastic coll ision pressure of a fixed mass of an ideal gas at constant ! 
i with th e pt:un9er. it un1dergoes a tota l momentu,m vo lu me increases as the temperature of the gas ! 
i change of 1.33 x 10-

22 
kg m s-

1
. rises. State any assumptions that you need to make. I ! al If w e assume that, every second, 2.6 x 1I0

24 
2& A cyHnder of heli um gas, used to inflate party . i 

i argon atoms co llide perpend icularly w ith the balloons~ ha:s a vo lume of 3.0 x 1Q-3 m3 and conta in,s i 
; plung,er, ca,lcu'late t he force exerted by th e 42g of helium gas at a room temperat1ure of 20°C . i 
! argon on the plunger. The molar mass of helium is 4.0gmol-1. Calcu late: ! 
: b) Ca lculate the pressure of the argon gias i,r,side a) the pressure inside the cy linder I 
I th e syringe. bi the number of helium atoms inside the cylinder ! 
: 23 An official FIFA size 5 football has a circumference of cl th e root mean square speed of the helium ! 
! 70 cm and an i,nternal air pressure of atoms inside the cylinder. l 
i 6.9 )< ,as Pa at 300 K. The molar mass of air is The cy linder is now stored outside, where the I 
j 2 9 g mol-

1
• temperatu re is close to 0°C. l 

i a) Ca,lculate the mass of a ir ins ide the footba ll. dJ State and expla in [w~thout the a id of ca[culabor1s) ~ 
~ b) Ca,l cu iaite t he root mean s quare ve loc ity of t1i e the effect 0(this temperature change on the values ~ 
i air pa rbcles ins ide t he footbatL that you have calculated in parts (a]. [bland [d. f • : ............................................................................................................................................. . 



Practice questions 
I Thennal ene1~gy is supplied at the rate of 2.5 kW for 140s to 0.8kg 

of sunflower oil inside a saucepan ~rith negligible heat capacity. This 
produces a temperature change of 219 K. The s-pecific heat capacity of 
sunflower oil, inJkg-1 K-1) is 

A 1500 

B l800 

C 2000 

D 2200 

2 An ice sculpture of mass 25 kg at 0°C absorbs them1al energy from its 
surroundings at an average rate of 45 W. The specific la.tent heat of fusion 
of ice is 334 kjkg-1. The time, in days 1 for the sculptur. to melt is 

A 1.8 

B 2.1 

3.3 

D 4.9 

3 A 0.010kg ice: cube at 0°C is dropped tnt,o a glass containing 0 .10kg of 
lemonade at l:5°C. The ice cube melts, cooling the lemonade. Wh.at is 
the new temperature of the drink in °C? The specific latent heat of fusion 
of ice is 334 kjkg-1) and the specific heat capacity of "vater (letnonade) is 
4 200] kg-1 K-1. 

A 6 C 10 

B 8 D 12 

4 A deep-sea diver is working at a depth ,vhere tl1e pressure is 3.2 atn1. She 
is breathing out air bubbles. The volu1:ne of ·each bubble is 1.9 cm3. Sl1e 
decompresses at a depth of lOn1 where the: pressure is 2.1 atn1. What is 
the volu1ne of each bubble at this depth in cm31 

A. 0.6 

B 3.6 

C 1.9 

D 2.9 

5 The helium i.n a sealed ,veathe.r balloon at a tei11perature of 283 K has a 
volun1e of l .4m3 and a pressure of 1.01 x 105 Pa. The balloon rises to a 
height of 300m, where the tempet-ature is 274 Kand the pr·essure is 
0.98 x 105Pa. The volume of the air in the balloon at 300n1L in m3 

> is 

A l.! 

B 1.5 

C 1.9 

D 2.4 

6 A mb«.ure of helium and argon is used in a fire 'tinguisher system. 
The molar masses are 4.0 gmol-1 and 40 gmol-1 respective}~ and the 
extinguisher contains one mole of each gas. The ratio of the pressure e1i.--erted 
by the helium and the arg,on; respeclively, on the inside ,of the extil1guisher is 

A l : l 

B 100: l 

C l :10 

D 10 : l 

7 A deodorant can \Vith a volume of 330cm3 at 18°C contains deodorant 
panicles that exen a pressure of 3.2 x 105 Pa on the inside of lhe can. 
The number of moles of deodorant particles in the can is 

A 0.04 

B 4 

C 400 

D 40000 



8 The density of air at l5°C and 1.01 x 105Pa is l.225kgni.-3. TI1e r.m .s . 
velocity of air particles, in ms- 1, is 

A 604 

B 603 

C 498 

D 497 

9 Five nitrogen gas n1olecules have the fol1owing velocities, in ms-1: 300, 
450 675 700~ BOO. The 1-0,ot mean square velocity of the particles, in 
ms-1 is 

' 
413 

B 513 

613 

D 713 

10 Carbon panicles of mass 2.0 x 10-26 kg in the· hottest part ,of a Bunsen 
burner flame have a temperature ·Of 1200°C. The r.m.s. velocity of these 
particles; in m s-1 is 

A 823 

B 1235 

C 1746 

D 2143 

11 A je"'\.veUeiy maker is 1naking a gold pendant . She prepares a 3.0kg iron 
mould and then pours in 25.0g o[ mol ten gold at a temperature of 
1064°C. The mould~ temperature rises from 31 °C up to 35°C when it is 
then in thermal equilibrium Vlith the solid gold. 

He1~e is tl1e thermal data about the gold and the iron: 

• mass of iron mould = 3.0kg 

• specific heat capacity of iron = 440 Jkg-1 K-1 

• specific latent heat of fusion of gold == 63 x 103 J kg-1 

a) Calculate the tl1ennal energy absorbed by the iron mould. (2) 

b) Calculate the thermal energy given out by the gold as it 
changes state fron1 a liquid to a solid. (1 ) 

c) Use the data to detem1ine the specific heat capacity (c) of go]d. (3) 

d) State one assumption that you have n1ade for your ,calculation of c. (1) 

II 12 A student is n1aking iced tea lollies using her familys freezer. She 
initially pours O .050 kg of luke\va.m1 tea at a ·t,emperature of 40.0°C 
into a 0.12 kg aluminium mould at a temperature of 5,.0P1C. The specific 
heat capacity of tea i.s 4250Jkg-1 K-1 and the specific heat capacity of 
aluminium is 900 J kg-1 K-1. 

a) Calculate the equilibrium temperature of the tea and the mould. (3) 

b) The tea and the mould are then put into the freezer~ which removes 
tbenna] heat from the tea and the mould at a rate of 3,2 W 

Calcu]ate ho"' long it takes for the tea to frreze> if the specific latent 
heat of fusion of ·tea is 3.38 x 105Jkg-1, stating any assumptions 
that you make. (4) 

13 A gas combi-boiler can heat water Vv"ith a power of l5kW Cold Vlater 
\Vith a te1nperature of 5°C flo,vs into the heater at a rate of 0.24 kgs-l . 
The specific heat capacity of water is 4200Jkg-1 K-1. 



a) Combi-boilers are highly efficient and you can assun1e that all 
the the1i11.a1 ,energy· from the heater is transferred to the water. 
Calculate lhe oulput ten1perature of the water. (2) 

b) The water supply to the heater rails and 0.24kg of ,vater is trapped 
inside the heating coinpart1nent of the heater. The ,vater inside the 
compartment has an average ten1perature of 35°C and the heater 
continues t,o heat the v.--ater. H,o\v' long will it take before the v.-~ter 
reaches 80°C, vthen the emergency cut-.out valve turns off the 
gas supply? (2) 

14 Formula 1 tyres have a volume of 0.09m3 and are filled with 
niu~ogen to a pressure of . 4 >e l 05 Pa at 285 K. 

a) Calculate the number of ni,oles of nitrogen in the tyre. (1) 

b) Fl tyre-S .are designed to work at an optimum racing temperature 
of 363 K . Calculate the racing pressure in the tyre. You can 
assume that the tyre does not expand when he-ated. (2) 

c) Calculate the root mean s,quare (r.m.s.) velocity of the nitrogen 
molecules in the tyre when it is at racing pressure. The molar 
mass of nitrogen is 0.028 kg mol-1. (3) 

d) D1escribe one similarity and one dillerenc,e in the V./ay d1at the 
nitrogen molecules behave in the tyre at the different pressu~es. (2) 

15 A fixed mass of helium gas is enclosed in a container with a volmne of 
O.OS5m3. The gas is cooled and a student measures and records the 
pressure of the gas) in atm, for different temperatures. Tl1e table shows 
the results: 

Temperature, T/K 320 300 280 260 240 

Pressure, p/atm 1.30 1.22 11.17 1.08 0.95 

a) Use the data to plot a graph of the results, with te111.perature 
on the x-axis and pressure on the y-axis. Start both axes .at zero. (3) 

b) ·us,e your graph to calculate the nuniber of m oles of helium gas 
present in the container. (3) 

c) The pressure inside the container is reduced to 0.50atm by 
cooling the contahter. ·use your graph to determine the 
te1nperature of the gas at 'this pr,essure.. (1) 

d) Use your answ,er to (c) to calculate the average kinetic energy 
of a helium atom at a pressure of 0 .5 atm. (2) 

e) Hence calculate the total internal energy, Vi of the helium. (2) 

16 This question is about ideal gases. 

a) State \vhat is meant by an 'ideal gas ~. (2) 

b) An idea] gas at 300 K is enclosed inside a gas canister of 
volume 3 .3 x I0-4m3 at a pressure of 2. 02 x 105 Pa. Cakulate 
the number of moles of gas enclosed inside the canister. (2) 

c) The. molar mass of the gas is 0.084 kgmol-1. Calculate lhe 
density of the gas inside the canister. (J) 



d) The ,canister is taken to the top of Mount Kilimanjaro, wl1ere it is 
used to inflate an air-mat.. lf the temperature at th.e top of the 
mountain is 266K and the air pressure is 0.50 x 10-5 Pa, what 
is the combined volume of the canister and air-mat that ,could 

be inflated by the gas in the canister at this pressure. (1) 

Stretch and challenge 
The questions that follow here are British Physics Olyinpiad questions. 

17 a) State Boyle1s lavt. 

Figure 4.23(a) shows a length of capillary tubing in which 
a column of air is trapped by a mercury column of length 
100mm. The length of the air c-0lumn is 400mm. The bottom 
of the tubing is sealed and the top is open to the atmosphere. 

b) The tt\bing is no·\v inverted, as shown in Figure 4.23(b)) 1:00 mm 
and the air c,olumn is seen to inci-ease in ]ength to 
520mtn. Use this observation. to calculate a value for 

atmospheric pressure~ expressed in mm of mercury. 

c) A typical value for atmospheric pressure, expressed in 
SI lU1its, is 101 kPa. The surface area) A; of the Earth is 
rela1ed to its mean radius by the expression; A= 4rrR2

; 

where R has the value 6400km. Calculate: 

i) the suirn of the magnitudes of the forces exerted by 

400mm 

• 

the atmosphere on the surface of the Earth Figure 4.22 

ii) the mass of the Earths atmosphere, assuming that g 
does n ot vary vrid1 h eight above the Earth's surface 

iii) the number of tnolecules in the atmosphere, assun1ing that 
the tnolar tnass of air is 30 gmoJ- 1 

iv) the height of tl1_,e atmosphere if d1e density p = 1 .2 kg 1:n-3. 

d) The h,eight of the atmosphere calculated in c) iv) is less than the 
height at which n1a.ny airer.aft fly. Explain why our ,calculation 
gives a lo\V result fo,r the height. 

e) The height of the atn1,osphere is typicaUy given as 200kn1. Does 
this mean that our calculation of the n1ass is con1.pletely wrong 
(by a significant factor)? 

(BPhO A2-2005 Q12; and A2-201 l Q4) 

18 An accurat thennotn t r, of heat capacity 20.0JK-1, reads 18.0°C. 
It is then placed in 0 .250kg of ,vater and both reach the sam· final 
temperature of 50PC. Ca]cula'le the temperature of the water before 
the thermome'ler was placed in it . The specific heat capacity of 
water is 4200Jkg-1 K- l_ 

(BPhO Rl-2005 Ql(a)) 

19 Wet clothing at 0° 1C is hung out to dry. The air 'temperature is 0°C 
and there is a dry iwind blowing. After some lime it is found that 
some oft.he water has evaporated and the water ren1aining on the 
clothes has frozen . The specific heat of fusion of ice is 333 kJ kg~1 

and the specific latent heat. of evaporation of v,at,er is 2500kJkg-1. 

(a) (b) 

520mm 

-

-
1'00 mm 

- ·· 



a) What is the source of energy required to evaporate the water? Explain 
the mechanisn1 of evaporation. 

b) Estimate the fraction, by n1aSs , of ,vater originally in the clothes that 
freezes. 

(BPhO Rl-2005 Ql(e)) 

20 A lead bullet at 320 K ts sto·pped by a sheet ,of steel SO· that it reaches 
its n1.elting point of 600 K and cotnpletely melts. If 80% of the kinetic 
energy of the bullet is convened into internal energy, calculate the speed 
with which th bullet hit th stc,el sheet. Th specific heat capacity of 
lead is 0.12 kJ kg-1 K-1 and its specific latent heat of fusion is 21 kj kg-1. 

21 a) Water in an electric ketde is brought to 
the boH in 180 s by raising its temperature 
from 20°C to I0~1C. It then laltes a further 
1200 s to boil the kettle dry. Calculate the 
specific latent heat of vaporisatio11- of water, 

(BPhO, Rl-2007 Ql(f)) 

t l•l' at 100°C> stating an.y assumptions 1nade. 
0.2m 

i 
--steam 

--constant temperature 
oath at -i OJ°C 

b) A cylinder, Vvith a weigl1tless piston) has an 
inten1al diameter of O .2 4 m . The cylinder 
contains water and steam at 100°C. It is 
situated in a constant-temperature water 
b-ath at 100°C, as shown in Figure 4.24. 

--water 

Annospheric pressure is l .O 1 x 105 Pa. The 
stea1n in the cylinder occupies a length of 
0.20m and has a 1nass of 0.37 g. 

Figure 4.23 

i) What is the pressure p of the steam in the cylinde1~? 

ii) If 1he piston moves very slowly do\vn a distance 0.10m, ho,v 
n1uch work~ V/1 v.iill be done in reducing the volu1ne of the 
steam? 

iii) What is the final temperature~ Tf, in the cylinder? 

iv) D,etenuine the heat, Qc, produced in the cylinder. 

c) A molecule of Oh'"ygett near the. surface of the Earth has a velocity 
v,ei-tically upwards equal in n1agnitude to the root mean square 
(r.n1.s.) value. lf it does not encounter anothet molecule, calculate: 

i) the height H reached if ithe surface temperature is 283 l{ 

ii) the surface temperature, T5 , required for the tn,olecule to scap 
from the Earths gravitational field if the potential energy per unit 

mass at the EanhS surface is [-u ~:} The oxygen molecule has a 

molar mass of 0.032 kgm·ol-1. 

(BPl~O Rl-2002 Q2) 



Electric fields 
......... ~ ...................................................................................................... . 
• • 
i PRIOR KNOWLEDGE 
• 
J Before you start. make sure that you are confident ~·n your knowledge and 
"' : un derstan djng of the followjng points: 
l!o 

• • • • ; 
• .. • • • • .. 

J • Atoms and molecules contain protons and electrons~ which carry j 
; pos it ive and neg.atiive charges, respectively. These charges are equal : 
• • 
: ,in size. An atom is neutral because there are as many pos itive ly ! 
• • I charged protons as th ere are n,egatrvely charged electrons . J 
: • Some mater ials, s uch as plastic, can become charged by rubbing with : . ~ i a cloth. If the plastic is charged posit ive ly, the.n electrons have been ! 
: .. .. removed from the plastic and transferred to the cloth, which now : 
• • • • • 

1' 

carriies a. neg.at ive chargie. Another type of plast,ic might be charged : 
• 

: • • • .. 
neg1atiively w hen rubbed by a cloth - etectron,s have been transferred : .. 
to the plastic and the cloth wi ll be charged posit ive. : 

• • : • Like charges repel each other, an d unlike charges attract each other 
• 
: [Figure 5.1). 
• • • • "' • • • • • .. • • ~ • • • • • • • .. .. • ,;, 

• .. .. 
• • • • • .. • • • • .. 
• • • • • • .. • • • • .. 
• • • • .. 

support __ 

thre ad 
F 

positively 
charged rod 

Figure 5.1 

n egativeily 
__ charged md 

negative ly 
charged :rod 

.. 
: • Electric charges ex-ert a force on each other over a dtstance. For 
f exa,m plei a charged cO·,mb ca n pick up piec~s of paper ,Figure 5.2)1

• 

• • • • • 
i 
• • J .. 
" . • • .. 
• • : 
Ii .. 
• • 
-­Iii 

i 

tl 
• : • .. 

rising ~ 
paper 

wooden surface 

: Figure 5.2 

\ 

• • • • • .. .. .. • • • • • • ... ... 
• .. .. .. • • • • • • .. 
• • .. .. • • • • • • • • • .. .. .. • • • • • • • • • .. .. • • • • • • • • .. 
• .. • • • • • • 
" • .. 
• .. .. .. 
• • • • " . 
" • .. 
i 
: • • • • .. • • : • • • • • ,p 
~ • • : • • • • .. .. 
• . . 

• • . .. 

: • Charges produce an elec tric field. : 
• • 
: • An electr ic Held is a rregi,on i111 space where a, charged obj,ect : 
• • 
: expedences a force. : 
.. .. 

: • Forces between charges are str onger w hen1 th ey are c loser together. : 
• • 
: The forces a re wea ke r when the charges a re furt her apart . : 
• • 
: ............................................................................................................ 11111111· 
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: TEST YOURSELF ON PRIOR KNOWLEDGE .. 
• • 
: 1 
• • • .. .. 
• i 2 
i 3 • • • .. .. ,. 

Expta~n w hy a n atom of mag nesium, whic h has 
12 protons in its n u1cleus, is n eu tra L 
Explain how ions are formed . 
Exptain what ~s m·ea nt by t he term 'electric fietd· . 
Name two other types of force fi eld. 

4 Draw a diagra1m to expla in how a comb, whic h is 
posihvely charged. ca n lift up a piece of pa pee 
w h~·ch j,s neutra l . (Th is takes some exp lain1i1 n91, 
in terms of electron movement r n the :paper a1nd 
attract,:ve and reputsi1ve forces. ] 

• • • • .. .. 
• • • • • • • • .. .. 
• .. • • : • • • • • .. 
t 

, .... ......... . . .................... ... ..... . ...... . .. . . ...... . .. .. .... . ... . . ..... .... ........ ........... . . ......... ..... . . . .. . ... ..................................... llllllli 

Volcanic ash thrust into the atmosphere produces ideal conditions for 
lightning. The eno1mous quanthy ,of pulverised material and gases ejected 
into the atmosph re creates a dense plume of charged particles. The friction 
of pa1licles moving past each other transfers charge in the satne way as a 
balloon can be charged by nibbing. Potential d 'fferences of millions of volts 
exist vrithin the plume, whicl1 are sufficient to dri,.,.e large currents~ v.."hich 
discharge the e]ouds of ash. 

0 Coulomb's Law 

(a) 
01 Oa 
••••--- r ___ ....... 
+ + 

(b) 

Figure 5.3 

The star ting point fo r ivork in electrostatics is Coulornb·s la,;..v> which .states 
that the force between two point cbarges Q1 and Q2 sepa1-ated ·by a distance 
r (Figure 5. 3a) is given by 

F = Q1Q1 
4n.£0 r2 

H·ere Fis n1easured in ne~rtons (N)) r is m easured in n1etres (m)> Q1

1 and 
Q1

2 are n1e-asured in coulombs (C)) and s0 is a constant, the permittivity of 
free space: .t:0 = 8.85 x 10- 12 F1n- 1. (The Maths box on p. 87 sho,vs how fl1e 
units are derived> foT the interested reader.) 

Sometimes you vAU find the constant (4-~o) quoted as 9.0 x 109 F 1 m. You 

might also1 see Coulon1bs law written in the fom1 

F - kQlQ2_ 
- 2 

r 
l 

where k= . 
( 41t£0) 

The value of t 0 quot d refers to the pe1miuivity of free space -which means 
a vacuum. The value of p ermittivity varies from one medium to another. 
However, the permittivity of air is very close to that of a va.cuum 1 so v.re 
shall use the value of s0 quoted in those calculations. 

The e,quati.on £or Coulombs law is very similar to that for Newton~s law of 
gravitation~ except ihai the force between t"'O charges c~n be repulsive if 
the l,vo charges hav,e the same sign, or ~Uractive H the two charges h ave 
the opposite sign. The force between two masses is alv,lays attractive. 

1Coulombs law may also be used to cilclilate the electrostatic force 
between two charged spheres carrying ch arges Q1 and Q2. l n thls case the 
distance ·used is the separation of the centres of the two spheres 1 as sh o"rn 
in. Figure 5.3(b). 



............................................................................................................................................................................ 
• • • • : TH : • • • • 
~ \Vhere does the: unit of pem1itti.vity, t 0, quoted as However) a joule= newtoJl x metre, an d ~ . ] . 
l Fm- or farads per metre, come from? The reasoning volt = jolule b. Ther~fore the units of so are l 
~ belovl explains this. cou Offil ~ 
• • 

i Coulomb,~s la"t states that [e ] ~ [~] x [C] ; 
: 0 r11 r J j : . u X m : 

i F = Q1Q2 [CJ i 
: +n£

0
r 2 ~ [V] x [m) i 

~ . 
: $,0, h d r:: f 11 h : : Butt e e1mition o · capaci1ance te s us t at ; 

! e
0 

= QI~ farad= coulJ.mb . Therefore s0 has units Fm-1. • 
~ 4nFr2 v.o t ~ . ' : : 
l The units of e O are there fo,re : 
• • 
~ [ ]' [C]x{C] ~ • e I - ~ 
: - 0 - r1x T] [ ' ] : • tJ."" 1X m ""' : ! : 
~ rcJ x rcJ ~ . ~ . 
~ [N 1n) X [ m] ! 
• • • • ................................................................................................ ~ ................... ~ .............................................................. . 

PlE 
Coulomb's law 

Calculate the force of attraction between 1:v!/o pof nt chargies A and (a} 
B separated' by a distance of 0.2 m. The charge at A is +Z pC and 
the charge at 1B iis -1 pC. 

Answer 

F= a,a2 
4n:e0r

2 

[ 2 X 11 0-6 C ] X ~- 1, 0-6 C] -------------~41t X 8.85 X 10-12 F m-1] X 1(0.2 ,m)2 

~ -0.45 N 

The si9n,iff ca nce of th e miiir~us sign ts to rermin,d us that the force 
is attractiive~ but it is not really necessary to 1include it. ..... 3 cm .,....,.3 cm ..... 

2 Figure 5.4!a~ shows t\Nc l1ight polystyrene sph,erest whrch have been Figure !1i.4 
coated in a conducting metallrc pa'int. Each has been charged positively 
by a high-voltarg:e supply to about 3 kV. They a,re suspended by pieces of cotton 
1' 5cm, long, and they are pushed apart by the repulsive electrostatic force 
behiveen them. The ma,ss of each sphere is 0.08g. 
Use the information in the diagram to calculla,te the charge on ea.eh sphere. 

Answer 
l=1igure 5.4[b] shows th e forces actiing1 on th e rrght - hand sph ere. The tension 
in the cotton. Tf is balan ced by th·e electrostatjc force~ F, and the wejght of 
the ba ll. mg. Fram1 th e tri,a,n g le of forces we ea n see th ait 

F ta nO= -
mg 

(b) 

mg 

F 
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~ 
Fro.m the trfangle showing the displacement of the 
two spheres we car, see that 

. l} 3 cm O 2 5!nu = = i_ . 

15 cm 

1H1owever, when e is s mall, sine :::: tan e. Therefore 

tain .9 ~sine and L!!!! 0.2. So 
mg 

F• 0.2 mg 

- 0.2 x [o.oa x 1 o-3 kgJ, x 9 .a N kg/'91 

- 1.6 x 1 o-~ N 

From1 Coulomb's law. 

F.= DP2 = a2 -
4n:e0r

2 4n:£0r 2 

s~nce 01 = 02. Therefore 

Q2 ~ 4ne0r2 x F 

Q2 
es 4n x [8.85 x 10-12 F m-1 J x [0.06 ml2 x 1.6 x 1 o-4 :N 

a - a. o x 1 o-9 c 

~ ········ ... ······· ............................ ·•· .......... ········ .. ········ ............... ····•· ....... ·•· ······· ............. ········ ........ ....................... ·•···•· ................................................. ; 
l ACTIVITY ~ 
: r . . 

Testing Coulomb's law 
Fi1g:ure 5.5 shows an experimenta[ 
arra.n g ement for i nvestrgaHn g 
Coulomb's .law. The two 
polystyrene spheres are charged 
by a high-voltage supply. 

j S plhe re A is 1h eld. In a ffx ed . 
· position and sphere B is free 

to m,ove. A Ug ht butb i,s used to 
cast a shadow of the spheres 
on.to graph paper; so that 

thefir separation. and also the 
~ deflection of sphere B j can1 be 
: m easured m,ore easily. 

: 
' l 
' . 
' . . 
} 

= 
~ 
! . . 

Table 5.1 shows the results for six 
different s·eparatf ons of the 
spheres· s hadows. Between each 
set of measure:ments the spheres 
were recharged. 

Table 5.1 

EHT (<5KV­
current llmlted 
to <5mA) 

lnsu~atlng 
nandle 

Figure 5.5 

lnsu1latlng 
SrLJ spe l')S I Ofl 

threads 

support rodl 

graph paper 

char·geCI sphere of 
meta111sed expanded, 
:polystyrene 

V'3rtlcal· board 
for s t1adows 

1 Plot a. g~aph ·Of the deflection of sphere 1s·s shadow aga inst ;r, where r is the sepa,ration of the centres of the 
sph eres shadows. 

Discuss wheth er or n,ot your graph supports Cou lomb's law. 
2 Expilafn why the defl ectrion of sph er e 8 f s proporti,ona l to the force between th e balls. 
3 Discuss the source:s of error rin thi s experiment. You s hou ld co ns id er both systematic and ra n.dom errors. 
4 Discuss how you coutd ca lcu'late the real separaUon of the sph eres. ra·ther than their shadows . 

: 

. ........ ....... ......................... ............. ....... . .. . ............ ••••• •• a. •• .......... .......... . ............... . .......... -· ......................................... ..... . ................. ......................... . ....................... ........ . 
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: TEST YOURSELF • • • • • • • • • 

.. 
: For th ese questiions~ use the to llowiing values: m ass .. 4 Two charges, one three ttm es th e s1ze of t he other; 

exped enc·e a re puls rve force of 80 m N when they ~ 
ar e sepa,rated by a di stan ce of 10 cm. Calcu late the i 
slze of t he larger charge. ! 

: of an ei ec trori = 9.1: x 1 o-3J kg , cha rg,e on a ri electron = 
i 1.6 X 10-19 C, to= 8.85 X 10-12 F m-1• .. .. .. 
: 1 
• • 
i .. .. • • • • • .. 
i 
! • • .. 
• .. 

I • • • • • • • • • • .. .. .. .. ... 

The centre of a small s phe re ca rryin g a cha rge of 
+2.0 nC is ptaced at a dista nce of 240 mm fro1m th e 
centre of a seco nd small sp here carry ing a charge 
of -S. O nC . 
a,] Catc ulate the force of a,ttractjon between them. 
b) Calculate th e size of the force between the 

spheres when th ey are separated by each of the 
following dis tances: 

i] 120 mm 
ii) 80 mm 

iii] 60 mm 
iv] 48 mm . 

• 5 A smiall polystyrene spher e of m,ass 1 g i's : 
suspended near to another la1rger sphere so that i 
th eir centres li e along the saime horizontal Un e. : 

I 

180th spheres are cha,rged negatively. The sma ll : 
sphere is now deflected so that the thread holdi ng t ; 
it is deflected to an an g,le of 36° to th e vertk at : 

I 

a) Draw a free-body d iagra1m to show the forces ! 
actin g, on the sphere. I 

b)' Ca,lcu late the si,ze of the repuls ive force : 
betwee1n the spheres. ! 

6 a) The aver a 91e di stance of electrons from the i 
i 2 The electron and proton in a hydrogen atom a1re 
i on avera.ge a bout a d·istance of 5 x 10- 11 m a par t. .. 

nucleus. i,n the lowest energy state of a go ld ; 
atom ,, ~s 7 x 1 o-13m. Ca lcu la.te the force between ~ 

• such an electron and t he gokJ nucleus. Gold ha·s : 
: Ca lculate th e force th e proton exerts on th e an ato miic: num ber of 79. • • • • • • 
.. 
: e lectron . How bi,g a force does the e lectro n, exert b)1 By ma king the assumpti on that the electro n 

m oves in a c~rrcular o rbit of r ad1u s 7 x 10-13 m. 
calculate the speed of th e e lectro n. How does 
thrs speed co.mpare w ith t he speed of light ? 

-• .. 
: on th e proton? .. 
: 3 A uranium nu cle us corita~ns 92 protons: the 
~ nucteus has a r adius of 8.0 ~ 1 o-15m . Calcutate 

• • • • • • • • • • .. 
: the for ce o:n an alpha parti cle at the stJ rface of .. 

• • • • • • • • • • • • 

: the uranium nucleus. Com1m·ent on th e size of this • .. 
: for ce. .. .. • • • • 
=··························~··················································································································· ~ .................... lllllllllli 

o~~~~~~~-
E Le c t r i c field strength 
In th e last section you n1et the idea of two point charges exert ing a foroe 
on each other. A charge produces a11. elect1ic field around it, which exerts 
a fon:e on another charged object. This idea is sinrilar to a magnetic field 
clos,e to a magnet , or a gravitational field around a planet. 

An electric fieldl sttength is defined by the equation 

£ ;;: E.. 
Q 

where Fis the f.orce, in ne1Arto,ns which acts on a charge, Q, in coulombs. 
So electric fie]d strength is measured in nevrtons per coulomb, N c-1. 

The direction of the elect1ic field is defined as the direction of the force 
on a po,shive charge. Electric field is a vector quantity b cause it has hoth 
magnitude and direction. 

We represent electric fields by drawing Unes. Figure 5.6 shows t,vo uniform 
electric fields . The stron ger field in Figure 5.6(a) is represented by faeld 
lines thar are closer togeth er. The fields are uniform because in all places the 
field has the sam,c strength a11d the same direction . Note that the field lines 

start on. a positive charge an d end on a negative charge. The positive charge 
in Figure 5.6(a) experiences an electrostatic force do~nwards. 
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Figure 5.7 

PLE 

Force on a small ch,arge 
A s:ma ll cha rge of +2µC rs 
placed in th e e lectdc held Jn 
Figiur e 5.7,a] . What force does 1t 
experi,ence? 

Answer 

£=L 
Q 

So 

F=EO 

= 40 a N c-1 x 2 x 1 0-0 c 
= 8 x 1 o-' N dGWnwards 

+ + + a + + 

r +Q 

t ~EO d 

1 
- A -

Figure 5.8 

+ 

r 
V 

1 

(a) 
+ 

+ + + + + 

400 Nc-1 r 

(b) + 

+ + + 

L 

Figure 5.6 

Electric field lines are a model to help us visualise a field ) but a direct ,vay 
of showing an electric field is shown in Figure 5. 7. In this photograph~ a 
potential difference has been applied to two tnetal plates) whicl1 have been 
placed into an insulating liquid. Th-en short pieces of a fine thread have 
been sprinkled on top of the liquid. When the electric field is applied 'the 
pieces of thread line up along the field lines~ i.11 the same way that iron 
filings follow magnetic field lines. 

Electric field strength and potential gradient 
Figure 5.8 sho,vs a charge +Q placed in an elecrric field between t\~lo 

parallel plates. The plates have a potenlia] difference o[ V bet\\reen then1> 
and their separation is d (in m). How much vi;7ork is done if the charge is 
n1oved from A to B? This question can be anS\vered in two ways. 

First., the ,vork done = F x d, but the force to move the charge 1nust be equal 
in magnitude to the £orce on the charge, due to the ,electric field, E x Q. So 

,vork done = EQd 

Secondly> the ,vork done is also equal to the energy gained by the charge 
in n1oving through a potential differenc V. This is VQ-you should 
remember that a volt is defined as a joule per coulomb. Th refore 

EQd=VQ 

and 

E-V 
d 

This equation allows us to calculate the magnitude of a unifonn electric 
field between tv;.ro parallel plates. Note that the electric field strength can 
also be measured in Vm-1. 

Figure 5. 9 allows us to produce a more general forn1ula to link electric 
field and potential gradient. In the formula above 1 we just concentrated 
on the magnitude of the field, but strictly speaking v.:re should have 
included its direction. 



. F=. -EQ 

+O 

increasing1 
pot,ent~al 

Figure 5.9 

Figure 5.10 

El ctric fi ld str n th is defined by 

E :.:L 
Q 

In a u 11 if o rm netd 

E=~ 
d 

and gener.atty 

dV 
E=--

dr 

Units of ele,ctric field strength are N c-11 or 
vm-1• 

Tbe a1r,ea under an E against r ~raph is AV, 
the change in potential. 

+ 

.6. V 

In Figure 5. 9 the chm~e Q is moved tlrrough a potential 
Ii V through a small distance fir by the :force F = -EQ. (This 
is marked in blue in the diagram and. is in the opposit,e 
direction to the force fron.1 the electric field) 

So we TIO\nl get 

\\-"ork done= -EQLlr = !Ji.VQ 

or 
~v 

E - --

So the · lccl rk fit.· Id s t n:: ng1 h is equal in 1nagnitude to 
the potential gradient , but it is in the opposite direction. 

Figure 5.10 shows a graph of ·electric field strength 
in a region. The area under the graph may be used to 
calculate the potential difference bet\veen two, points. 
A shaded section (green) under the graph has an area 
E t!ir, ,vh ich has a value l1 V. 

In general, the area under a g1--aph of E against r gives 
the change of potential 8. V. 

Change in electric potential 
Use Fig,,ure 5.10 to ca.tculate th e change in potentia l in movingi from 
positlon1 r = 0 tor = 0.2 m. 

Answer 
8V= area under th e graph 

= ¥2ooov m-1 + 1500 V m- 11 x 0. 2 m 

=350V 

Deflection of charged particles by electric fields 
Any charged particle experiences a force in an electric fi,eLd. So Vv~hen a 
n1oving ,charged panicle enters an elecnic field, it vnll change direcdon. 
(Only when a charged particle moves parallel to an electric field does it 
keep mov;ng in the sa.mc direction.) Figure 5.1 1 ~hows a photograph of an 
electron beam lube) which can be used to deflect electrons. 

Figure 5.12 sho,vs the principle behind the electron beam tube. 
Electrons are accelerated by an (electron gunl on the left-hand side. They 



en 
C 
...J 
LI.I -LI. 
c.., -0:: 
I--­
(.) 
w 
...I w 
Ln 

then travel across a fluorescent screen, "rhich sl10-\.vs the electron path. 
The electrons travel from P t o Q. Th e electrons are deflected by applying 
a potential difference bet,veen A and B. When a potential differenc,e 
is applied so that the top plate is positi v,e, the electrons are deflected 
upwards along a path such as PR. 

Figure 5 .. 11 Electr ons can be deflected and 
observed inside this evacuated tube. 

Electron gun 

+ v, 
Figure 5.12 

1metal p ~ate 

+ 
A 

fluorescent screen marked 
With squares 1: cm x 1 cm 

n ~~~~~R 1 
path of 

P ~~~~=i:::~-4--4-----~4----~·e I Qile ctron 
10eam 

I 

~ 

metal plate 

The p~th PR is a parabola.I which can be explained as follows. Th electrons are 
travelling in a vacuum~ so their velocity in the direction PQ retnains unchanged. 
\\7hile the electrons are in the electric field 1 they expedence a cn1istan1t 

acceleration up;,vards due to the electric field. This is ra.ther like throwing a ball 
sideways -the bal& horlzonta] velocity remains constant; but gravity gives the 
baH a constant do\Vllw~rds acceleration. The ball falls along a parabolic path. 



Electron beam tube 
Thiis example refers to Figure 5.12 . In an experlmenti 
a bea,·m of electro ns is directed along the line PQ. Th e 
electrons arrive at P w :ith a velocity of 4.0 x 1071m, s-1 

travetUng in the direc tion PQ. The squares on the gri·d 
measure 1 cm x 1 cm. 

Ca lculate th e tim e taken for th e electron s to traveil 
from P to Q. 

Answer 
dr::av x t 

t ~ rt. 
V 

D. 11m ;;;; ----
4.0x 107 5 

:::; 2.s x, 0-9 s 

Now a potential driffe re nee of 220 0 V [ s applied bel\.vee n 
A and B, so that the beam deHects upwards. 

, Calculate the acceleration of an electron ijn this 
electric field . 

Answer 
The electric field strength 1s 

V E=-
d 

2200V ----
0.06 m 

= 36.6 kV m- 1 

The accelerat1on is given by 

F a~­m 
EQ 

wh ere Q is th e charge on a,n electron and m is its 
m,ass. This gives 

a 
3.66 x1 o' V m-1X1.6x10-19 C 

9 .1x1, o-3"1 kg 

- 6.4x 1015 m, s-2 

Show that the e lectron beam is deflected upwards 
to point 1R. which is about 2 cm, a.bove point Q_ 

Answer 
To calculate the upwards displacement of the beam. 
we use the equation of motion : 

1 2 1 2 s = ut + -at = - at 
2 2 

sirice the ini·ti'at upward velocity u = 0. So 

s = [ f x 6.4x 1015 m s-
2 J x {2.5x 10-9 5) 2 

=0.02 m or2 cm 

~ -····················································································································································: 
i TEST YOURSELF i 
• • • • 
I 7 The strength of an electr ic fi1eld may be expressed e'lec tr'iC fi eld l of 1.5 x 10-7N in th e direction ! 
j in un,its of e,ith·er Ni c-1 or V m-1. By considering shown . Ca lculate th e charge on the partic le. f 
! the deHnitions of the volt and the joule1 show that c] Calcuitate the wo rk done by the elec trk field j 
: these two quantities a re the same. o.n1 the part icle in takrng i1t from th e top plate to : 
j B Figure 5.13 shows a charged part icle placed the bottom place. i 
. i i between t\No char9ed paraUel plates . The 9 Thi:s question refers to the deflec tion of electron,s : 
6 I 

: potentia,l difference between th e pilates is 1500V shown in Figure 5.12. Explain what w iU happen to i 
j and their separation 1is 7.5 cm. tlhe path of the etectrons when, separately~ ! 
: a] th e potent1ial difference betweeni A and B is : 
... . 
: increased : • • • • i b) th e potent~at difference V1 is i1ncreased so tha·t i 
E th e electrons t ravel fa ster as they enter the ~ 
i d ef tect~ n g ar ea. : 
• Figure 5.13 : 
: 10 A smaH polystyrene balt is dropped between a pa ir : 
• • 
: a] Ca lcullate the magnitude o·f the etec tri c f ielld of pa1ra llel pla1tes as snQVi/n in Figure 5.14. As H : 
• • : s trength between the plates. enters th e plates" it has reached rts te rm!nal speed, : 
i b), A partic le P exp eriences a force, ·from the which is 1.0,m s-1. ln1t ra lly, the plates a re un charged. ! 
• • : c{): 
• • 
····································································9································ ······································································ 
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Figure 5.16 

I+ 
312 V 6mm 

1-
Figure 5.15 

Figure 5.16 she¥.-~ a photograph of the shape of an electric field close to 
a sn1al1 point charge. This photograph is obtained in the same way as that 
sho\Vll in Figure 5. 7. The electric field has a symm trical radial shape near 
to· a sn1aU point charge. 

Figure 5.17 sho\\'~ how ,ve can represent the electrtc field lines close to a 
positiv,ely charged sphere. The lines p,oint out~lards syrnmeuically from 
the sphere as if they had come from tbe c.entre of the sphere. You can also 
sec that the lines spread ,out . This means tha't the field gets Vleaker as the 
distanc,e increas,es fr,om the sphere. This is very similar to the shape of the 
gravitational field nearr to a planet; e.~cept th at the gravitational field lines 
must always point lowards the planet (Under ,"v-1'1al circu mstances do the 
field lines poin t towards a chaTged sphere?) 



We can produce a formula for the. electric field close to a sphere as foUoV\75. 

We know fron1 Coulombs lav.r rhat the force b etween a sphere.~ can.ying 
charge Q', and a small charge q at a dislance r from the centre is 

........ 7"+q F = Qq 
4nE

0
r2 

We also know that F= Eq. It foHows that the ·electric field close to the 
sphere is given by the formula 

E - Q 
- ' l 

4nE
0

11' 

l=ig ure 5 .. 17 
So the strength of the electric field obeys an inverse S·quare law. 

As you can see frotn Figure 5.17) the electric fi ld is a vector quantit}~ So 
when we c,onsider the fi.eld close to two or more point charges 1 we must 
take account of the direction of th ·electric field. 

Resultant electric· fields 
Figure 5. 18 s h,ows two small charges. one wi th 
a charge of +4Q. the other with charge +Q. The 
magnitLJ1de of the e lect.de fietd at C due to the char9e 
+4Q rs 40 N c-1• 

... 6om-----... ~. 6cm ... 
+40 +Q . , • • A C B 

Figure 5.18 

Ca lcu late the magn itude of the electric fre ld at C 
due ta the cha rg e +Q alone. 

Ans,wer 
Th e field at C due to the charge +iQ is 10 N c-\ 
becalJse th e charge ~sf. But th e field is in the 
op pos:ite direct! o ni [right to left) . 
Ca lcu·late the magnitude of the electric freld at C 
due to the two c h.arges together. 

Answer 
The resultant field 1. s 40 N c-1 - 1 D N c-1 = 30 N c-1 to 
the right. 
Show that the posrbon. of point D. w here the electric 
fiield is zero along the line AB. Ues 4cm from B. 

Answer 
Th e field due to A is 

E = k x 4Q - kQ where k = 
1 

A O .082 0.0[) l 6 4nEo 

The f,i e td d u e to 18 is 

E 
l<Q .l<Q 

. B = ,Q. 04 2 = 0. 0 0 116 

So at a poijnt 4 c:m1 from 18 the two fie lds cancel each 
other out. 

~ ..................................................................................................................... ............................... . 
-: TEST YOURSELF i 
• • i 13 a] The elec tr1c fi eld due to a point cha rg e is 300 N c-1 at a distan ce i 
~ of 100 mm a,way fro·m ft. Ca lcu late the strength of tl,e fleld at ; 
: di stances of : • • i ii 50 m·m i 
t • 

: ii] 200 mm : 
• • 
: i i iJ 2 5 0 mm. : 
+ + 

; b] ; j Sketch a graph to show how the fi eld strength varies with distance away from -the charge. ~ j 
• • ••••••••••••••••••••••••••••••• •• •••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••• ••• •••••••••••••••••••••••••••••••••••••••••••••••••••• 
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i~····································································································································································i 
! 14 Figure 5.19 shows a grid marked with s quares. A pos itive charg:e ! 
£ placed at O produces an electric fiie l d of strength 360 0 N c-11 at potint A . J K £ 
• • • • • • 
: Calculate the 1m,agnHude o·f the electric fiield str.ength for each of the : 
i points B to K . (You witl need to 1use a combination of Pythagoras·s £ 
i theorem a1nd the fnv erse square law.) ; 
• • ! 15 a] Fi'gure 5.20 shows two cha,rged spheres, X an d Z. Calculate the ; 
i electrj c field strength at poifit Y, which li.es along th e lineXZ j oinin g f 
: the centres of th·e two charged spheres . Sphere X has a charge of : 
! +5 x 10-9C, and sphere Z a charge of - io-ec. ; 
i i 
! 0.3 m • 1 O A B C D i 
• I • I I Figure !i.19 i 
• y • 
• • • • • • 
i Fi gu~e 5~20 f 
t t .. " Ca lculate the fie ld strength, at Y, if the charge of-1 o-8c on sphere Z is i 

rep taced with a c harge of+ 1,0- 8 C. i 
• 

• b) i J • • • .. • : • ii) • .. • Ca lculate the fo rce between the s pheres in this case. Is th·e 'force : 
• • 
: attiracUve or repuls ive? : 
• • : ........................................ .................................................................................. ........................................... ~· 

-- Insulating thread 
srupportlng sphere 

+O 

Figure 5.21 

o~~~~~~~-
E le c t r i c al potential 
Figure 5.21 shows a small cha1~ged isolated sphere. In. theol}~ an isolated 
sphere should be in contact ,vith nothing and infinitely far a,vay from 
anything else. In practice~ iit a laboratory, the best ,~le can do is to suspend a 
sphe1·e by a fine) insulating thread and make su1·e the sphere is a fe"'r metres 
from everything else. 

Th·e potential at a distance r front th e centre of a sphe1--e carrying a charge Q 
is given by 

V= Q 
·411~\,r 

N ote that if the charge is negative, th en the potential near to the charged 
sph ere is also negatiV·e. 

These formulae ar very similar to the fo·m1ula for gravitatio,nal potential -
except that gravitational potential must always be n gative, whereas an 
electrical potential, close to a charge, can be positive or negative. In the 
case of gravitational potential the zero point of potential is defined as a 
point infinitely a1Nay from any planet or star. In a similar \vay, the zer,o 
point of electrical potential is defined as a point infinitely fa1: a,way from 
the ch.arged sphere . In practice, the surface of the Earth is our reference 
point of zero potential1 and. by suspending our sphere a long "vay from 
anything else~ the Ea11h can be treated as being infinhe]y far a~~ay. The 
lvlaths box shows how the formula for potential can be derived fro1n the 
formula for electric field. 



........................................................... ._. ............................................................. . 

~ M THS ~ 
i The electric field at a distance r from the centre of an isolated charged 
' J sphere carrying a charge +Q is 
" . • • .. .. .. 
i .. 
• • • 
• 
= But 
• 
i • • • • .. . . 
~ .. .. 
• 

.. .. .. 
• .. • l 
~ 
• . 
• • . 
• .. 

so 

dV 
E=-­

dr 

r. V= -1 Q dr 
4ne rt 

~ 0 

IQ 
-

Note that the limits of the integration set the potential as zero at an 
! infinite distance. 

• • 

= • • • • • • • • • • • • • • ' • 
! • • • • • : 
i 
: • • • ~ 

' ' 
= • • 
z 
• • • • • . 
• • .. • • • 
i • • • • • • 
J 
• • • : 
• • • • • ••••• .... •••••••••~••••••••••+•~••••••••~••••••••••••••••••••••••••••~······~········-~••••••••••~AA••••••~••••••• 

bsolut _t_ rlc t ent i The pot,ential 
dmffer,ence between a paint and a po~nt at 
zero potential, which is tnfinitely far away. 

The fonnula V = Q helps us to define absolu te- electric potent ial. The 
4neor 

absolute electric potential at a point r fl·om a charge +Q is the work done 
per unit positive charge in moving i t from oo to that point. Note that if that 
cl1arge is -Qj lhen the potential is negative and the electric field does \York 
in moving a positive ,charge closer to the point r. 

Electric field near a charg1ed sphere 
Figur·e 5.22 shows a metall sphere of radius 10 cm, 
charged to a potentiia l of 1 OOOV. The e lectri c fi e[d 
strength at C is 10 OOOV m-1. 

Sketch g-raplhs to show how 

the potential 
the field strength 

vary allo ng the llne A to B and then from 
C to D. 

Answer 
Figure 5.23 shows the answer. These are 
the points to note. 
• V :is a sca lar and is a1lways positive. 

• V obeys a f law and f.a,Us from 11 OOOV 

at 1 Dc.m to 200V at a distance of 50 c,m 

from the sphere. 
• E is a vector, so must c hange direction . 
• E is conn ected to the potentira.l by th e 

~ v~1ooov 

~~•~~~-~ \-~~~-·~ 
A 8 C D 

-50cm 

Figure 5.22 

- to cm ,a ,o cm 50cm 

equ ation E=- !!.Y. . On th e rfght-hand 
dr Figure 5.23 



en 
C 
...J 
LI.I -LI. 
c.., -0:: 
I--­
(.) 
w 
...I w 
Ln 

~ 
side of the sphere, the potenti:a l giradient 1s negative, sphere. because a posrtive charge is always repelled 

by it.) so Eis a positive quantity. On the left-hand side of 
th e sphere 1 th e potential gractient is positive, so !Ei s 
a negat iive q1uantity. 

• E obeys a -} law and faHs from 10 OOOV m-1 at 
r . 

10 cm to 400V m- 1 a,t a di1sta nce [M ore simply. the etectri c f ietd m uis t be in opposi te 
d'irections on either side of the of 50 cm from the sphere. 

' .......... ' .... , .... " ..... ~· ., ........ , ............. .,, ............... .......................... ., ...... .. 
n i l If r n The work done, 

a1ga~nst a1n el,ectrlc fletd i in moving unit 
charge from ,an e point to a sec,o nd point 
at a highe1r potential. If a charge mov,es 
horn a po~nt of higher potential to a1 lower 
poteintialj work is done by the el,ectriic fielld. 

Potential differenc,e 
Electric p '- 1 t r 11 t i: d d i ITi r l' n is the difference in electrical potential between 
two points. When the pot ntial differenc, is 6, V the work don~ in moving a 
,charge Q betwe n the two points is 

11W= QdV 

Work done in moving a charge 
How much work is done in, ta,king a cha:rge of 1.00 x HJ-'9C from the posiitioi, r2 
to r1, in Frgiure 5.24? 

+ too x -i10-1 c r1 
...,..__ -i .o m~ 

....._------4.0 m---------

Figure 5.24 

Answer 

The potent~a l at a point is 

V= a 
41te0r 

.so th e potential difference between r1 and r2 ~s 

AV a [ 1 1 ] 
u. = 4n:ea ~- r2 

1.00 x 1 o-7 C [ 1 1: l 
= 41tX 8.85x 10- 12 F m-1 1 m -z;-
= 675V 

So the work don e is 

liW=08V 

= 1 . oo x 1 0-9 c x 61 s v 
= 675 nJ 

Equi pot1ential surf aces 
Figure 5.25 shows a. 1netal sph ere th at is charged to a potential of 1000V. 
The red circles dra\T!,111 round the sphen~· show equipotential .surfaces, where 
the potential is ihe same) e.g. 900V and 800V. Although the diagra1n sh o\vs 
circles) this is because the diagran1. can only be drawn in two dimensions. 
TI1e sphere is surrounded by spherical equipotential surfaces. 



Posit ion I Potentia l 
a 200V 
b 30)V 
C 400V 
d 500V 
e 600V 
f 700V 

1 g 800V • • • • D 10 cm 2} c.m 3(l cm 
h 900V 
I 1000V 

Figure 5.25 

The equipotential surfaces may be linked to the electric field strength 
through the equation 

AV E:=!!- -
Ar 

Figure 5 .25 shows that , near 1he surface of the sphere, 1he ,eqt1ipatential 
surfaces a re closer together. This 1nea.ns that both the potential gradient and 
the electd c field strength are l1igher near the sph ere's surfa c,e than they are 
fu·rther away. TI1e green lines in the diagram ·represent electric field lines, 
\vhich po,int radially a\\ray from the positive sphere. These lines get further 
apart \Vith distance from the sphere, which also shows a field diminishing 
\\rith distance away from the sphere~ centre. 

The field lines are always at 1ight angles to the equipotential surfaces. So, 
when a charg dl panicle moves along an ectuipotential .surface~ no work is 
done by the electric field. This ca.n be eAi,lained usi.ng t,vo ideas. 

First ~ work done is defined by 

or\ in words, the work do11e on a charge is the cb~nge in potential 
multi.plied by the charge. When /iV = 0 (moving along an equipotential 
surface) the work dlon e is zero. 
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• V= 2'5V 
0 

Second}~ work is also defined by 

or) in words , the work don e on an object is the force acting on the object 
n1tultiplied by the distance u1oved in th e direction of the force . \\Then a chtffge 
is moved along an equipotential, it does n.ot move in the ditection of the 
force air the electric field, which acts on it, but at right angles to the force. 

Moving a charge on equipotenti,al surfaces 
l'n Figure 5.25, a charge of 1.0 x 1 o-6 C is moved fi rst from point 1 to poin t 2, 
a1nd then fro,m point 2 to po1nt 3. How much work is done 1in each case? 

Answer 
No work is done ir, moving the charge from poi1nt 1 to point 2,. that is 6V - 0, 

111 moving from point 2 to po~ nt 3 

tiW =O i\V 

= 1.0x 10-6 Cx [300V -20[] V] 

= L0x10-ii J 

Further exampl,es of field and potential 
Figure 5.26 shows a square ABCD. At point A there is a charge +Q; the 
potential at point O (the centre of the square) due to this charge is 25V. 
What is the potential at 10 when a charge of + Q is placed at each of the 
points A 1 B, C and D ? 

Th·e ansvter to this is l OOV. To move a positive charge to point 0) ,vork has 
to b e dlone against each of the four charges. Ther,efore the potential at O is 
four tin1.es larger. (The potential at a point is the V{ork done per unit charge 
to take it fron1 infinity to that point.) 

Since electric potential is a scalar quan tity) we can calculate th e potential 
at a point close to t,vo 01: more charges by adding the potentia] due to 
each charge. Figure 5.27 shows the electric potential (calculated by 
comput,er) near to a positiv,e and negative ion~ \vhich are separated by a 
distance of 10-9m. 



+1 .0 V 

Figure 5.27 

~ -····················································································································································: 
: TEST YOURSELF i 
• • • • f 16 An isolated meta l sphere ts charged with a 
! posaive cha·rge of 

l.5x 10-7c . • .. • .. .. .. • • • • • • • • • .. .. ... • • • 
i 
# 

a) i] Ca'Lcutate the potent~at at point A, a di1stance 
of 0.25 m from the sphere·s centre . 

ii) Calculate the potential at pojnt 8, a distance 
of 0.75 m from the sphere's centre. 

b] Calcutate the work done 1n movrng a charge of 
2.0 x 1 o-sc from B to A. i i 17 Th is question refers to Fjgu re 5.25. Calculate the 

! wor:k dorle in moving a positive charge of 2.0 x 

! 1 Qi 7 C from .. 
f a] poi.nt 3 to point 4 
! b) poiir1t 4 to po int 5 
• i c] point 3 to po int 6. .. 
: 1B Th is questi1on refers to possible arrangements of .. 
i cha1rges in Figure 5.26 . 
: J : a Calculate the paten tiat at 0, for each of the 
• 
: fotlowing arrange1ments of charges: 
• • .. 

il A, +Q: B. +Q: c~ ~a~ D. +Q 

ii) A, +Q; Bi -Q~ C. +Q ; D. -Q 
iii) A. +2Q ; B, ~3Q; C~ +Q ; D, -Q . 

b) For whkh of the above arrange.ments is tne 
etectr'ic field strength zero at O? Explain your 
answer. 

19 An ~so lated charg,e of +Q is placed at point A in 
Fi·9ure 5.28. The potential at po int B is 11 20V. 

--~--~---,.~~---~--F 

A C D E 

Figure 5.28 
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~ a) Ca'lcu lat e the potenha l at points 20 This questjon refe rs to the equ1poten ha l surfaces ~ 
: i] C s h own n ea r to the 1 ons f n Fr g u re 5. 2 7. : 
• • 
; iil D a] Which of the fo llow ing s tate ments is/ are true? ! 
• • : i ii] E Exptain your reason ing,. : 
i : f ivl F. iJ The di r ec t1i on of the elec t r ic f ie ld at po f n t A ! 
i b] A second cha,rg e of +Q is now placed at E. is correc tly drawn. ! 
j Calculate the :potenbat at points ii] The strength of the elec tr ic fi etd rs i 
: i] 8 stron,ger at D than at E. f 
i ii] c b) Ca lculate th e ga in 1in etec triical potentia l I 
!.· iiil D energy when an electron is moved from i 
: J i] B to C t • iv.· F. : 
i c.J Th h E · l d · h h ii] B to F. : • _ e C1 arge at 1 11s now rep ace I wit a c a rg e • i of - Q. Ca1lcula,te the potential a,t po~ nts Express your answers rin eV. j 
i i] rg c) Sketch the sha1pe of th e electri c field close to ! 
: •

1
;] c th e l\No (on s. : 

: I : 

~ iii] D i • • • • 
: iv) F. : 
• • 
=··················································································································-·························· ......................... .... 

o~~~~~~~-s im ila rities between electricity and 
gravitation 
A cotnparison bet\veen N evtton,s la\v of gravitation and Coulomb's lav.t 
shows that there are many similarities b etween the action.s of the two types 
of force. There are also som e in1.portant differences. 

Th e tnain similarities are as follows: 

• Both electric and gravitational forc,e.s are non -contact; forces a.1-e exerted 
over a distance -without direct oontact. 

• Both forces are of infinit,e range. 
• Both forces obey inverse square laws. 

The n1ain differences are as follows: 

• Gravitational forces bet\veen masses are ahvays attra,ctive~ electric forces 
can be attractive or repulsive. 

• An electtic force is much stronger than the g1·avitational force . 
• It is possible to shield an electric force, but the gravitational force acts on 

an objects. 
• A 1 elecuic force only acts ,on charged objects; the gravitational force acts 

on all ,objects. 



Table 5.2 shows a useful summary of the sitnilarities and differences. 

Table 5.2 

Acts on 

Force (N] 

relative strength 

Field 

tl ni1ts 

radial f ie'ld 

Pote ntja l difference 

units 

Pote ntlal g ra dtent 

Potential in ra dra l fields 

Potential energy 

Mass (positi,ve on Ly) 

F=GMm 
,.2 

attractive only 

i'nfi nae range 

1 

F g=;;; 

N kg-1 

GM g~­. r2 

j kg-1 

~.V 
g=--

6, r 

GM 
V=-­ r 

V=OatOQ 

-6Mm 
Ep=--­

r 

Electr-ici ty 

Charge (positive or negative} 

01~ 
F= 2 

4ff"e0r 

attractive or rep1u lsive 

i nf i:n ite range 

1 Q36 

N C-1 orV m-1 

0 
E= --'!""' 

4m:or2 

. ~ 
L\.V~­

Q 

J c-1 

V=Oatoo 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • • • t 
t 

Ca lcu la,te the g ravi tat ,ion al force between two protons s epair ated ~ 
by a distance of 1 o-10 m. : 

• 
b) Calcuta,te th e e lec trostatic force between the protons separaited i 

by a di s tance O·f 10-10 m. ; 
I 

c) Calcullate th e ratio of the two forces ca lculated above. ; • 
di] What wHl the ratio of the forces be when, the protons are i 

• 
se,parated by 10-12 m? i 

!Look up data for these calculati1ons.] i 
22. The s trong nuctear force binds nucleons toget her in a nucleus. It is i 

thoug1ht that the fo rce a,cts over a range of a bout 11 Q- 15 m11 aind that the i 
• force is 137 tim,es strong,er th an the electric force. Comm.ent on the ! 

'inforimati,on in the prev,io,us sentence. Does it make sense? 
2:3 IEx pla in how 1it is possible to s hi eld a iregi on from an e lee trk field . 

• 
! • • • • • 
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Practice· questions 
I A proton andl an electron a.re sep arated by a distance of 5 x 10-11 tn. 

The size of the electrostatic foice between 'them is 

A 18 x 10-8 N 

B 9 x 10-8 N 

C 6xl0/"'8 N 

D 1.8 x 10...sN 

,2. The potential energy of a proton-electron pair separated 
by 5 x 10-111n is 

- 288eV 

B 92.2eV 

28.BeV 

D 5.6e.'\T 

An. lectron starts at rest and is accelerated through a potentia] difference 
of 1200V The speed of the clectr,011 after it has accelerated tl1ough this 
p.d. is 

A 8 x 106ms-1 

B 2 x 1061n s-1 

C 4 x 101 ms-1 

D 2 x 107ms-1 

+ 4- On a dry day the electric field near the surface o[ the 
Earth is 140 V m-1 do'Wllwards. A drop of water of 
mass 4.2 tng is suspended in the electric field. The 
charge that the drop carries is 

A B 

7 B - 3 >< 10- C 

c 6 x 10-1 c 

D - 3 x: 10-4 C 

Use this information to an s,ver question s 5 and 6: 

Figure 5.29 sho,vs tvlo equal positive charges that are 
placed at Band C~ along a line AD. Four graphs sliow the 
possible varialion of quantities along r·he line AD. 

A 

B 

B 

5 vV11ich graph sho~rs the variation of electric field 
along AD? 

Figure 5.29 
6 vVhich graph shows the variation of electric potentiaJ along AD? 

Use tl1is inform ation to ans,ver quest ions 7 and 8: 

The charge at C is now replaced with a negative charge of the same size. 

7 \\lhich gniph now shoi.vs the variation of electric field 
along AD? 

8 VJhich graph now sho""--s the variati,on ,of elec'tric potential 
along AD? 

C D 

D 

9 Figure 5.30 shows a series of equipotentials. Which of th,e 
folloi.ving statements is not true? 

Figure 5.30 
A The work done in taking a. charge of 0.1 C from A to Bis zero. 

B The work done in taking a c·harge 10,f 0.1 C from A to C is 4 J. 

C The elecuic field at Dis stronger than the electric field at B. 

D The direction of the electric field is do"Wl'lwards. 

C D 

c · 

D 

160V 

120V 

80V 
C 

40V 
A 18 

ov 



I O The electric field strength at a distance of l O cn1 from the surface of a tnetal 
sphere is 900 N c-1. The sphere has a radius of 20 cn1. What is the electiic 
field strength at a distance of 70cm from the sui-face of the sphere? 

A 450NC-1 

B 225NC-1 

C lOON ,c-1 

D SO N C-1 

11 ln Figure S.31(a) an ,ellectron is placed at Pin an electric field, vthich is 
represented by the field lines sho~. 

a) i) In " rhich direction will the ,electron accelerate? (1) (a) -----~ ------

ii) Describe how the ,electron~ acceleration changes 
with its position in lhe fi.eld. Explain your a11S\ver. (2) 

b) An electron is no\v placed in another electric field, at Q1 

as shown in Figur 5.3l(b) . 

i) D1escribe ho"\v the electron~ acceleration changes 
with its po,shion in the field no·\V, (1) 

ii) The electron; at Q; is replaced by a proton. Compare the 
protons accelerati.011. ·with the electron~s acceleration. (3) 

12 Figure 5 .32 shows t\\70 parallel p lates; i..vhich are connected to 
a low-voltage supply. The plates are in a region where there is a 
vacuum. A small polystyrene sphere is placed at X between the 
plates. The sphere carries an electric cha1·ge of +4.0 x 10-18 C~ 
and it has a 1nass of 2.6 x 10-15 kg. 

a) Calculate the size of tl-te electric force acting on the sphere. (J) 

b) Draw a free-body diagra:n1 to sl1ow the forces acting on 
the sphere. (2) 

c) 1Calculate the magnitude and direction of th e spheres 
acceleration after its re le.as e. ( 4) 

d) A different sphen: is TIO'-V introduced into the field at point X. 
It carries twice as muc·h charge as the first sphere, and it is 

(b) 

Figure 5.31 

+ 
300V 

+ 

rwice as masstve. Compare the magnitude and direction of Figure 5.32 
tltis second SJ.Jhere~ acceleration \vith the first sphere. (2) 

13 A Sinall plastic ball is suspended on a fine glass spring as sho"rn in 
Figure 5.33. It ,earlies a negative electric charge. "v'Vhen a potential 
difference of 500V is appli,ed t,o the plates, the ball moves upwards by 
a defl.ectio,n of 9mm. Th spring c,onstant o( the spring is 0.12 N m-1. 

+ 
20cm ---- Q - soov 

Figure 5 .. 33 

a) Use the deflection of the baU to calculate the electrostatic the 
force acting on it . (2) 

b) Use the information ii.n the di a gram to calcu l.at e the electric 

fi~s~~ili. ~ 

p 

.,... 6cm 

X ov 
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c) Deduce the charge on the sphere. (2) 

d) The electric field is no,v switched off. Explain why the sphere 
oscillates with simple harmonic motion. Calculate the tnne 
period of the motion; the mass of the sphere is 15 g. (3) 

(You v.riU only be able to do this pa11 of the question if you 
have studied simple harmonic motion in Chapter 2 .) 

14 A stnall sphere ,of mass 2 .4 g is charged andl suspended in an electric 
field (Figure S.34). It is deflected from the vertical at an angle ,of 10°. 

a) Use the information in Figure 5.34 to, calculate the 
strength of the electric field bet,veen the plates. 

b) Sho,w that the force due to the electric fielcll acting ·On 

the sphere is about 4 x 10-l N. 

(1) 

(3) 

ov 

Figure S.34 

c) Calculate the charge on the sphere. (2) + 

A 

+ +600V 

12 cm 

+ 
• 
C 6 15 Figure 5. 35 shows the anangeme11t of t,vo protons that fonn. a 

hydrogen molecule. They a.re separated by a distance o[ 3.0 x 10- 10·m '4-11-~- 3.0 X 10-10 m ___ ...,,.. 

a) What is the electric field str,ength at a point C, midway 
between die tvlo protons? 

Figure 5.35 
(1) 

b) i) Sl1ow that the electric potential at point C, due to the 
proton at A only; is 9. 6 V. (3) 

ii) Sta:te lhe potential at point C due to both protons at A and B. (1) 

c) An electron, in its ground state, has 3.7 eV of kinetic energy at point 
C. Show that the total energy of the electron at 

this point is -15.SeV. (2) 

d) State the ionisation ,energy of the hydrogen 
tnolect1le. (1) 

16 In Figure 5.36 two charges are placed at points A 
and B, which are I .Orn apart. At A there is a charge 
of +6 nC, and at B, a charge of -6 nC. 

A • 
+6nC 

.o 

C • 

a) Calculate the strength of the electric field at 
.. 0.5 m --...., ..... ..,.-4---- 0.5 m ---

point C, Vilhich is l1at~~ay beti,veen the charges. (3) Figure 5.36 

b) i) Dra\v a vector diagram to show the l\\"O electric 
fields due to the charges A and Bat point D1

• 

ii) Use the diagram to show ihe direction of 
the ele:ctrtc field at D. 

17 Figure 5.37 shoVvS equipotendals around a positive charge. 

a) Explain how the equipotentials sho,w that the electric 

(2) 

(1) 

field is stronger at point A than it is at point 1C. (2) 

b) .A charge of -2.0nC is rnoved from 

i) B to C 

ii) 1C to D. 

Calculate the work done against the electric field in each case. (3) Figure 5.37 



II 18 \Vhen the electric field strength reaches about 3. 0 x 106 V m-1 
i 

air can becon1e ionised. 111 strong electric fields, free electrons 
gain sufficient energy to ionise air 1nolecu1es. 

Figure 5.38 sho,ws electric potentials close to an isolated tree. 

a) Explain why the electric field strength is stronger over the 
top of the 'tree. (2) 

b) A free electron can ionise a molecule if it has sufficient Figure 5.38 
energy to dislodg an electron that is attached to an. ato,m 
or molecule. In air, at atmospheric pressure! an electron ti-avels an 
arverage distance of 0.Sptn between collisions (this is caUcd th mean 
[ree path). 

i) Calculate the energy gained by an electron that accelerates a 
distance of 0.5µm through an ele,ctric field of strength 46 MVm-1• 

Express your answer in eV (3) 

ii) Explain why gases n1ay be ionised with ,veaker electric field v,lhen 
the gas pressure is low. (2) 

c) A thundercloud at a height of 300m above the ground is charged to a 
potential of-7 x 108V relative to the Earth. 

i) Sketch. a diagram to sbow the electric field 
betwee11 the cloud and the ground. 

ii) Calculate the field sttength under the cloud. 

(I) 

(2) 

The cloud is discl1arged by a flash of lightning, v;,-rhich carries a cl1arge 
of 4 .S C-, in a tin1e. of 0.02is. 

iii) Calculate the average current during the discharge. (2) 

iv) Calculate the energy dissipated du1ing the lightning strike. (2) 

Stretch a·nd challen·ge 
19 Figure 5.39 sho,vs two positiv,e charges, +q, sepa1·ated. by a 

distance 2a. 

a) Sho,,v that the magnitude of d1e electric field, Ee, at C is given by 

E = qx 
c 21te:a (x2 + a2) t 

and that the direction ,of the field. is along the line OC. 
a 

b) Sho"' that the electric field is a maximum for x = ± k . 
'\/2 

r 

20 This question also refers to Figure 5.39 . A particle v.rith charge +q 
(the same size as the two ,charg€s at A and B) is directed along the 

Figure 5,.39 

line CO. The particle starts a very long way from the charges. VJhat is the 
minimum initial speed the particle must have if it is just to reach point 10 ,? 

C 

r 



Capacitance 
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! PRIOR KNOWLEDGE ! 
: ! 
: Before you start. make sure that you are confident in your knowledge and i 
I • 

: understanding of the following points: : 
' . • • i • Electri c current. lr is th e rate of flow of charge. I~~. £----
: At : 
I • Poteritial difference [p .d.L V. 1is the amount of elec t r ical work done per f 
i un it charge. V-~. i 
i • Etectri c al r es ist~ n ce, R~ ts def ined by R.;; 't· i 
! e E_lectr! cal powe r, P, is u ,e rate of doin g e l~c tr ica l work, p;v/; r2R= ~. I 
i • Etect r1 cal energy I E ;;; Vlt ! 
~ • IK1rchhoffs s eco nd circuit law states th at ~in a complete loop of the ~ 
i drc.u it}I sum of e.m.f.s = sum of p.d.6 • i 
• • : ....... ................................................. ................................................... ~ 

~ ···························································································: : TEST YOURSELF ON PRIOR KNOWLEDGE j 
• • • • 
• • 
~ 1 A cur rent of 25 mA flows through a fixed resistor for 1 m rnute. 
i Calcula te the tota l charge tha t flows throug h the resis tor. 
• : 2 Catc ulate the work do ne ~n accelera ting e,lectrons wHh a char g,e of 
i - 1.6 >< 10-19 C th roug h a p.d. of 4800V. 
• 
: 3 Calculate the cu rrent flowing thro ugh a 1'.1 kn res fstorwith a p.d. of 
• 
: 7. 7 V a C r O s s rt. 
• 

4' 
4' 
4' 

• • • • • • • • • • • • • • • • • • 4' 
4' 
4' 

• • • • • • : 4 Calcuflate the e lec trical energy s up plied to a 39 0 heati1ng element if a i 
• • • • • • • • • 

current of 1. 2A flows t h ro u 9 h it for 3 m1in utes. i 
• 5 A 112 V car batte ry s u ppUes potent[ al d iffer ences ac ro.s s a f rxed 5. 7V : 
• 

: GPS unit and a rmobile pho ne charger connected 1n seri es . Calculate i 
• • : th e p.d. across the charger. : 
• • . .,. 
•••••61•••••••••••••••1•~M •••••••~••• ••~~ ••••••••••• l•••••• •••••••~• ••••••• ••••••••• •otiiii .................... llllllii 

Capacitors 
Capacitors are components of electrical circuits tha:t temporarily store 
electric charge. The ddition of a capacitor into a circuit has tl\i·o 
possible effects: either introdllcing a time delay into the circuit; or 
storing ·electrica] energy for a short period of time. Capacit,ors are used 
extensively in electri,cal and electronic liming circuits, in po~"er circuits, 
for smoothing electrical signals and as part of the signal-receiving 
circuils found in radios. 

Modern capacitors consist of tvto paralle] conducting plates (usually made 
of metal foils~ films or coatings) separated by a thin insulating layer known 
as a dielectric (generaUy made from thin plastic films, electrolytes, cennnics 



Figure 6. 1 Different types ·Of ea paci,tor 

ap- i n The capacitance of a capacitor 
.s. the ability of th,e ,capa(Jtor to store charge 
per unit potential differeneie. 
F-r r he unit of ,capac~tance is the farad 
(f), where 1 F ~s equal to 1 CV--1 (on,e 
coullomb per volt). 

electron now 

_[ 
electron flow 

Figure 6.4 Capadtor plates d'ischarg ing. 

or n1etal oxides). Most capacitors are then encased in a 1netal or p lastic 
housing. Figure 6.1 sho,vs a selection of different capacitors. 

There are several different circuit syn1bols [or capacitors depending on 
theit type, altho,ugh tl1ley are all based on the same simple pattern shown 
in Figure 6.2. 

__l 
T 

fixed non-electrotytJc 

1= 
T 

fixed ele ctrolytlc 

Figure 6.2 The main circui,t symbols for 
ea pacitors. 

electron flow 

+O 

-0 

electron flow 

Fig u re 6 .3 Ca pa c i tor plates . 

A potential difference from a battery -or a po~~er supply connect:ed across 
the metal plates causes electrons to flov.;, off one plate, back through the. 
hattery and onto the second plate (Figu r,e 6. 3). 

One plate beco1nes positively charged (Vv~here electrons arc remove.cl),, 
while tl1e pL11te ·\vith the ~cess of electrons becomes negatively charged. 
If the capacitor i.s then disconnected from th e source of potential 

difference) the charge ,vill stay on tl1e plates until a cond.ucting path\-vay 
allows the excess electrons to flow off the negatively charged plate and 
back onto the positive plate., until the two plates have equal charge again 
(Figure 6.4). The conducting path,vay could be a diffeJ",ent part of the 
circuit (controlledl by a switch) or the char-ge could gradually leak away 
to the surroundings. 

The ability of any object to store cl1arge is called ca pac itancc. 
Capacitance is given the symbol C, and the SI unit is the fa r·1d (F). The 
capacitance of a capacitor depends ou the area of the metal plates> the 
distance bet\v,een the p lates and the electrical properties of the n1aterial 
separating the plates. 

The a.1nount of c·harge, Q, that can be stored on a capacitor depends on 
th,e size of the capacitance~ C, and the potential difference~ V, across the 
capacitor ,causing the separation of the charge: 

Q=VC 

The capacitance of a capacitor can then defined by 

Q C=-
V 

So one farad is equal to one coulomb per volt. Actually l Fis ,quite a large 
capa.citance1 and useful ~real-]ife~ capacitors have ,capacitances measured in 
n1.icrofarads (µF)~ nanofarads (nF) o,r picofarads (pF) . 
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A capacitance of 1, F w itl st ore a charge of 1 C w i1th a potentia l d,iffe rence of 1 V ac ross it. 

....................................... ••1 ..................... ....... ............................................... f; •••• 1 ............................ - ,. ••••••••••••••••• '11 ................ ....... ...................... - ............... ·: 

Measuring the capacitance of a capacitor 
A fuHy discharged capa·citor ·is connected to a 
variab le dl .c. power supply and ·is then gradua lly 
c h a rg e d to d riff ere n t po ten t.i at d i ff ere n c e s. A dig, it a l 
cou lo!m,bmeter is then, used to measure the cha,rge 

stored on the capacitor at each potential dHference 
[Figure 6.5}. 

V 1 
C 

coulomb 
mgter 

Figur e 6.5 Digi1tal coulomb meter measuri ng· cha rge. 

The data f r om thi s experim ent is s hmN 11 1n Tab:le 6.'1. 

Table 6.1 

Potential difference, V/V Charge.stored, Q/nC 

0.0 0 

1.0 331 
2.0 664 

3.0 1023 

4.0 1328 

5.0 1670 
6.0 1996 

The data sheet supplied w rth th e ·Cou lomb meter states 
t:hat the to lerance of the charge readings is± 10°/o. 

1 Plot a grap h of Q aga inst V. 
2 Plot s1uitab le error bars on1 your data points . 
3 Use your graph to show that Q is proportiona l to \t'. 
4 Calcu'late a va lue for C. the capac itan ce of th e 

ca.paci1tor, where Q ~ CV, and use th e error bars to 
determ·ine a,n uncerta inty i·n th i,s vallu e. 

5 Another capadtor,. w[th a capadtance of 2C, ~s 
connected into the sam1e drcuit i,n place of the first 
ca·pacitor. Sketch a line o.n yo·ur graph Htustrat ing t he 
varra tion of Q w ith V for th is new capac:itor. 

. . . 

: 
: ........... ·- ·- ••• "'" ............................ .,_ 11,,t_ -·- -"• -""" ................ ._ ...... 11,if_ .... -· ........ .,. ............. ............ ._ .................. ._ ••• -"• ................... •.w.11 ...................... ·- ... ·- . . ............... !I ..... JI ............... -· ..................... -"• 111•.11 .......... ........... ._ ••• -"•• ............ ., ....... J 

~ ~ ····················································································································································i f i TEST YOURSELF ! 
-""" ~ ~ 
""'Ii : : 
0 : 1 Defin e what is meant by the 'capac.i t ance· of a 3 list three factors tha t dictate the abi Uty of a : 

f capac itor. capacitor to store charge. j 
: 2 Copy th is tab le and correctly match th e un1its in the 4 A 4200 µ1F capa,c:itor is connected to a 6.0V battery. : 
i fi.rst row to the quant,it f es in the second row. Calculate the charge stored on the capa1citor. i 
• i 

: 5 A capac itor stores a charge of 3.2 mC at a· p.d. of : 
• • i 6.0V. Ca lculate the va lue of the capacita,nce, I 
:: ~ t • • • • • • •••••••f•+••••••••tt••••t••••tt••••t•••••••••••••••t••••••••••t••••••••••t••····························································•t•••••··················•·•t•••f• 



12rmi ti · y The permittiv~ty of c1 material 
~s Uie resistance of th,e m,ateria1L to an 
electric fiefd passing through it. 

1 ctnr nstant Anodler term1 for the 
relative permittivity of an insulating mater11aL It 
describes th-e relative resistance of the maternial 
to the propagation of electric field through 
it and describes the a1bsolute permittivity 
of the mat,erial in terms of mumptes ,of the 
penm~ttivity of free space, Er&0• 

Parallel-plate capacitors 
The capacitance of a parallel-plate capacitor depends on c·he area of the 
p lates, 1hcir distance apart and d1e ability of the insulating n1aterial benveen 
the plates to separate the charge, a property known as pc11.nittivily . 

TI1e pennittivity of a n1aterial is the resiS1La1t1ce of the n1.aterial lo an electric 

field passing through it. If the permittivity is high> then a larger charge can 
be stored on the plates for any given potential difference across them. The 
permittivity of capacitor insulating ntalerials is al,vays measured relative 
to the permittivity of &ee space (vacuun1)~ s0) using a relative pemiittivil)~ 
~l"' son1etinlles called the di ~I ·ctr1c con anl of the material. The total 
absolute permittivity of an insulato1· is therefore ghr,en by the product Sr6o. 

The permittivity of free space s:0 = 8.85"1- x l 0-12 F m-1. Table 6. 2 gives 
the r,elative permittivity of a selection of 1nat,erials comn1only used in the 
construction of capacitors. 

The permittivity of a material to an electric fi eld is analogous to the 
resistance of a material to electri1c current flowing through it. In the case o·f 
perm1ittivity, current 1is replaced by electric field. 



Table 6.2 

Mater ial Relative permittivity (.dielectric c1onstant) 

Cera mh: IZn Mg] Ti 0 2 32 

Polyester 2.8-4.'5 

Polys ty nen e 2.5-2 .7 

A Lu mi n ium a)( ide [electro Ly te~ 9.8 

The capacitance of a parallel-plate capacitor is given by 

C= 8rBoA 

d 

"vhere A is the area of the plates and d is their separation. Since the 
capacitance is also given by C = QN) it follo,vs du.t 

Q _ ErEoA Q _ E1.E0 V 
- - or - - --
V d A d 

V 
so the charge density on each plat,e is pr,oponional to -:- -which is the 
electric fieldl E. id 

' .••.............•........•...........•................•.....••.......•............•....•.......••.•.....•....•.........••.............•......•.•..•.•. 

: TEST YOURSELF 
• • • i 8 A ca.pac1tor is constructed fr om two sheets of 
: alum,inrum foit 45 cm x 95 cm , separated by a thin 
• 
: layer of p o l y then e c l i n g -f i l m , 1 2. 5 µ m t hi ck. Th e 
• 
J relative permittiv:ity of po'lythene is 2.25 and the 
: permittivrty of free spa ce ea= 8.854 x 10-12 F m-1 . 
II 

: Ca lculate the ca pacita nee of th e ca pacitor. 
• • : 9 A 6.0V battery is connected to .a 20 nF capacitor: 
i The area of the capaci,tor plates is OJ)016 m2 and 
! they are separated by a cera m ~c di1electdc layer 
! 5 ~m thick. 
' i a) Calculate the char9e s tored on the capac,itor. 
• 
: b] Calculate the relative permittivity of the ceramic 
• 
: d'i elect r ic. • • 
~ 10 A 29-520 pF air-filled vadable capac i:tor 1s shown i1n 

a] Calculate the maximum area of overlap of the 
plates. 

• • • • • • • • • • .. 
• • • • .. 

b) Calculate the m1in 1mum a rea of overlap between ~ 
• the plates . : 

~~..,......--- movi,119 

fixed plates 
pl'ates 

• • • • • • • • • • • • • • • .. 
• • • • • • • • • • • • • • • • • • : • • • • • 

i Figure 6.7. : 
• • ! The five moving capa,citor pilates behave a·s five increase i 
! .ind epend ent ca p.ac itors arrang ed in paraHel,1 capacitance ! 
I effectively mu ltiply in g the capedtan ce of on e set of i 
; pilates by 5. Each moving plate is separated fro,m it s ! 
I stati c plate by an a,ir ga p 0.5 mm w i1 de. The re!lative : 
! permittiv ity of af r at room temperat,ure is 1.00. I 
i Figure 6 .. 7 An a ir-f.iUe d va r,ia ble ea pa citor. : 
I • • • • • 
! ............ , •••••••· .,, .......... ,, .......... ,,,. +,, ...... ,,,,., ........ ,., ........... , .......... ,,It, ............. +., ....... ,, ••• , ........... , ....... ,, •• ,. JC noon; e, n c aecnuucsei 
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Measuring the r elative permittivity of a 
dielectric material 
Figure 6.8 shows a dig ital multi,m,eter be in g 
used to meaisure th e capa cttan ce of a pair of 
square capa citor ,plates separa:ted by a thin 
layer of m,atedai l from a supermarket shopping 
bag. Som.e digita l mu ltimete irs can m ea,sure 
ca pac itance d irec tlly by charg ing and disc harg 1 ng 
the ca pacitor under tes t with a known current and 
t hen measuring. the rate of r ise of th e subse qu ent 
potential differe nce. The faste r th e ra1te of rise. th e 
s ma lle r is th e capaciitance. 

The X and Yd imensions of th e plates are m easured 
us ing, a s tandard ru!ler to be 30.0 ± IJ.1 cm x 30,0 
± 0.1 cm. The thickness of th e shoppi ng bag1 
dielectr ic be tw een th e plates fs meas ured random ly 
across th e die lec tric 10 ti me.s u s Jn g a micrometer. 
The res ults are shown (in mm ) 1n Tabte 6.3. 

Table 6.3 

Th e area of overlap of the ptates is var ied by m oving 
th e top plate dia,gonally re la tive to t he bottom plate. 
Th e plates can be posi1tioned w i1th an unce rta~nty 
of 2 mm lX dim ension] x 2 1m m [Y di mensio n) and th e 
di gi ital multim,ete r ca n m,easure a capaci ta nce to ±50/o. 

1 Use th e data given and the data in Tabte 6.4 to 
d eterrm in e th e r elative per ·m ittlv ity of the shopping 
b agi materia l with a suitable va l·u e of un ce rtainty. 

Figure 6. B D~g ita.il mu Lt i meter mee1s·u ring 
ea padta nee . 

Table 6.4 

X dimensi on of 
plates in 
overl ap/en-. 
[±0.2cm] 

30.Qr 

28.3 

2.6.5 

24.5 

2.2.4 

20.0 

1,7.3 

14.1 

110.0 

Ydimen.sion of 
plates i n 
overlap/cm 
(:!:0.2cm) 

3,0 .0 

28.3 

26 .5 

2.4 .5 

22.4 

20.0 

17.3 

14.1 

10.0 

Capacit ance, C/ 
nF (±51~) 

14.1 

12.5 

11.0 

9.4 

7.9 

6.3 

4.7 

3.1 

1.6 

' . 

: ~ 
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Figure 6.9 Water mo lecules aire po lar 
molecules.. 

Dielectric heating 
Some molecules, such as ,~later, are called polar molecu1es because the 
opp osite ends of the mol,ecule have opposite charges (Figure 6 . 9). \Vhen 
water molecules form, the hydrogen atoms become slighdy positively 
charged , and the oxygen atom becomes slightly negatively charged . 
(Th,ere is a covalen t bond b etv.reen the hydrogen and oxygen atoms in a 
water m olecule, but the sh ared electrons in the hond are. attracted m.ore 
towards the oxygen a tom than rh,ey are to,vards the hydr,ogen atoms .) In 
a polar m olecu le; the ove:raU charge of the molecule is ze.ro) b ut differen t 
·ends' of th e m olecule 1nay h ave opp osite ch arges . Polar molecules easily 



le t r'i m t rl l An i nsu iatmng mate ir~al 
where the mol,e:cu ~es that make ru p, the 
1ma teiria i ea n be potanised inside an elec tr~c 
field. Electric charges do, not move thiro~h 
the materjat but the polar molecules aUgn 
themtSe~ves with the field. 

charge 
+Q 

electric 
Hel:d E 

p~ate 
separation d 

pla.te 
area A 

Figure 6.10 The polar molecules 'in a 
dielectric material a Lig n themselves 
w ith the etectri c field . 

There is a common misco nception 
that microwave ovens cook food 
from the 'inside ouf . This is not 
the case. The microwaves cause 
water molecules near the surface 
la 1milli metre or so] to rotate. 
These hit nearby motecules. 
fore i ng them into faster~ more 
energ,et ic motion, aind the 
mo lecu la r vibration is d i,spe rsed 
f nto the centre of the food. Th is 
process is qu,kker than 
co nveri tional co ndu ction. 

stick to n1e ta.l surfaces, where one end of the p olar molecule induces an 
opposite charge in the m etal ) causing the m olecule to be attracted to the 
metal surface. 

Most of ihe Ii -- le ~1 ri~ n1a t rial used to construct capacitors are solids, 
·and the aton1s and n1olecule:s are fixed within the structure. But ,vhat 
happens when the solid is replaced by a liquid (such as water) 01~ a 
gas, 1,1there the particles are free to m,ove bet,veen. the metal plates? 
The electtic Held 1:,roduced bet\v,een the two plates of a capacitor "'rill 
cause the charged particles in a Hquid or a gas to· align then1selves in 
the direction of he field (Figure 6.10). The separated charge in a polar 
molecu]e is panicularly able to align itself v.rith the field between t,~lo 
capacitor plat s. 

If the electric field between the plates is suddenly reversed, the polar 
molecule will rotate and align its.elf with the direction of the ,elecuic field 
again (Figure 6.11). Alternating the electric field betv,le·en the. t.wo plat,e-S will 
cause a polar molecule~ such as water) to con'tinuously rotate bet~reen them 
(called dipole rotation). This increases its kinetic energy; and c~uses it to 
collide ,vith other adjacent molecules and atoms. These then acquire more 
kinetic eneTgy .. and move in rando1n directions, increasing their ten1perature 
and. so dissipating the energy as heat. 

.. 
molecules and Ions 

........ --
+ 
~ --
eMects of the RF & MW flelds 

Figure 6.11 Polar molec ules rotating in an aUern~tin,g 
m,icrowave frelld. 

The alternating field between tlie plates can be produced by 
a microwave en1itter, such as the ni.agnetron inside a micr,owave oven. 
The frequency of the micro'W·aves is tuned so that it rotates vrater 
molecules "'rithin (ood - causing the f cod to heat up rapidl)~ The 
optimum frequency for the rotation of ~lat,ei- n1olecules in food is about 
10 1GHz, but if the. frequency of the microvlaves was set to this value 
then the water m,olecules in the ,outer layers of the food ·\vould absorb 
all the micro"'rave ,energy~ leaving a cool uncooked inner region and an 
outer superheated layer. As a result 1 domestic microv.,·ave ovens have a 
frequency of 2 .45 GHz, which allov..·s the outer layers to heat up more 
slowly and then conduct h ,ea t deeper into the food. 



The energy stored by a cap1acitor 
Wh,en a capacitor is charged up ) the p .d . from the electricity supply 
(or the energy per unit charge) causes ,electrons t o flow off one plate, 
thTough th:e external circuit and onto the oth,er plate. This separation 
of charge is kept steady p ro1vided that the p .d. is continuously applied, 
and that t'here is no leakage of c]1arge. Once the. p.d . is removed, and a 
con1plete discharging circuit i.s connected ·to th e capacitor, the eJecttical 
energy s'lored by the separated charge can be released as the electrons flow 

w:;...... _____ _..~------ back off the negatively charged plate and back ont,o the poshively charrged 
charge o 

~igure &.12 Graph of Q versus Vfor a 
capadtor. 

plate - this vvas sho,vn in Figure 6.4. If the p.cll. applied to the plates 
is increased, tnore charge and there ore energy is stored on the plates . 
A graph of potential differenc,e against charge for a capacitor is shown in 
Figure 6.12. 

w 
You "'rill remember fro1n the definition of potential difference that V = ........... 

Q 
"'rhere Wis the amoun t of \\i .. ork done per unit charge Q. In the context 
of a capacitor\ the potential differ,ence Vis the am,o,u11t of work done in 

, moving unit charge off one plate and onto another plate. At any potential 
: difference V; the work done mo·ving an amount of charge 6.Q is therefore 
I 

I \.V =· V!:iQ . This is 1-epresented by the shaded area in the graph in 
I 

;;; Y2 OV : Figure 6.12. The total energy E stored on th e capacitor~ cha1l~ing the 
IIC..---------J'"-------.... cap acitor frotn empty up to a charge of Q at a potential difference V\ is 

charge Q calculated by adding up aU the similar shaped areas from Q = 0 up to a 
Figure 6.13 The ener,gy s tored on a charge Q. In other words, this is the wl10le area under the graph up to Q. 
capacitor ,is equivalent to the area under 1 Because the shape is a triangle (Figure 6 Ll3), E = -2 QV. But Q = CV1 a Q aga:inst V graph . 

1 Q2 
so E = ,tCV2 and E = -- . 

2 C 

Use the co rrect ver sion of the capacito r- energy equatlon depend ing on 
the qu estron. Use the ve rs io n co ntaining the data given unless you are 
told to do oth erw,ise. If you u.se ca lculated va,lues, you a re more Like ly to 
ma ke an e rror . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
i TEST YOURSELF 

I 
I 
I 
,i 

i. 
: T ! 11 Ex plai,n what i·s meant by a. · di electr iic materia l'. 14 Calculate the ea pac itance of a ca pac ~tor tha,t : 
f 12 Expla 1in now a water molecute ca n be heated by sto·res 0.25 J of electrical energy whe n a .p. d. of ; 
i an alternatin g, electric fi eld. 24 V ts connected aicross i1t. j 
i 13 A 3300 µF capadtor is cha,rged by a 9.0V battery. 15 Calcu late the charge on a 220 µF capac.itor i 
• • i Calculate th e energy stored in the ca padtor. stodng an energy of 0.112 J. -" i . ~ . 
• f 

: ........................ ~···············································································································································= 



X V 

• t Q 
: : Figure 6.14 
" 

V z 

t 

§ 0.020 

~ 

12) 0.015 ! 
c.:) 

0.010 

0.005 

j a I W h ic h graph shows the gr ad i en t equal to -C1 
? o .ooo ~ ....;......;....;..__,;,.......;....;___;,,......;..,,_;....__~~.;...;.......;...,;....;....;.._, 

0 2 4 8 8 10 12 ! bJ Wh ic ln gra1ph c-01u ld be used to determin e th e : 
~ tota.l cha rge s tored in the capacitor? p.d./V E 
· Figure 6.15 • 
: c] In which graph do es th e a rea1 under th e Urie : 
• • j re prese nt the energy s tored In the ea pa·c rtor? f 
: al Use the graph to ea lc utate th e capacitan ce of : 
! 17 The graph in Figure 6.15 show s how the charge the capa·c itor. i 
i stored on a capacitorvaries wfth th e p.d . applied b] Use the g·raph to calcu late the energy stored on i 
• acros s it. • : the capacitor, when 8.0V i1s a pplied across It. : 
• • 
• • • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

' A , 

R 

t 

I 
A 

I 

o~~~~~~~-c a pa c it or charge and d ischar·ge 
T]1e circuits in FiguTe 6 .16 show a battef}~ a switch and a fbred resistor 
( circuit A) i au d then the sam e battel)~ s,vitch and resistor in series -with a 
capacitor (circuit B). The cap acitor is initially uncharged. 

C 
R 

cl,rcult s 

t 

The graphs underneath the circuit d iagrams show how 
the current varies with time from the moment that tl-te 

switches .a1e closed. In the case of the resistor alone 
(ci.n:uit A), the curren t immediately jumps to a value 1, 

°"''"here l = VIR, and stays at that value regardless of how 
long it has been since the switch was closed . Tin1e is not 
a factor in this circuit. In the case of circuit B, where an 
initiaUy uncharged capacitor is connected in the circuit, 
the current also immediately rises to, the silme value, I, 
determined by 1 = V!R but it then starts to decay a,vay 
,;.,.rith time. eventually reaching zer,o. The series capacttor 
limits the v._ray that current flo"w~s through the resistor. 

lf the capacitor is initiaUy uncharged the amount of 

charge lhat can be stored on it per s,econd, /J Q =J • is 
. . ' 11 d . d b V As h ' at .· ln1ua y etenmne _ y I = - . t c capacitor starts to 

R 
store ch arge so a p.d. is developed across the capacitor\ 

Q . . . 
Figure 6.16 Circuit diag re1 ms for a· battery. res istor and 
ea pa.citor network. 

Ve~ --- . As the e.m . .f. of th e battery, f'., Te1nams constant, 
C 

then the potential difference) VR, across the fixed resist.or\ 

R1 reduces because 



Remember that the gradient of a 
charge-tim e giraph is the e lectdc 
current 

Qor V Qor V 

I 

capacl·tor 
charg:lng 

t 

t 

capacitor 
dlscha.rglng 

Figure 6.18 Graphs of Q or Vand I 
aga in st t_ for cha rg:rng and' disch1a rg'i ng 
capac~tor. 
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I 
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,d 
- I 

cu,rrent at tlme t' .. ~Q 
at 

I 
I t'i f ! 
'- - ·----+ --- --- -
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Figure 6.19 Graph iUus tr@ ting how the 
gradient of a Q ag,ainst t graph i·s the 
current 

Reducing VR reduces the current, I) flo"\Ving. The initial current Hawing onto 
the capacitor gradually decays ,nvay as the capacitor stores more charge> 
increasing V c· 

Graphs of charge (2 stored on the capacitor -with time are shovrn in 
Figure 6.17 > one representing the capacitor charging, and one discharging. 

0 Q 
..... t, i -[ u a 
8 ti capacitor discharging, 
C 6 0 

~ 
Q) 
0) 

~ tij 
.c: {j () 

time t ttme t· 
(a) (b) 

Figure 6.17 Gra,ph of Q against t for a ca p~dtor [eil che1rging 
and (b] dis eh a rgi ngi. 

The charging graph (Figure 6. l 7(a)) shows that) initially; the capacitor is 

uncharged, and the gradient of the graph, !~ (equal to the current, 1), 

is at a maxin1u1n and is detem1ined by I = VR . As n1ore charge is stored 
R 

on the capacitor, so the gradient (and therefore the current) drops> until 
the capacitor is fully charged and the g:radient is zero. As the capacitor 
discha1~es (Figure 6.l 7(b)), the ainount of charge is in~tially at a maxin1u1n, 
as is the gradient ( or current). The amount of charge flllen drops) as does the. 
gradient of lhe graph. This is described by 

h.Q . 
--ocQ 
~t 

The shape of the discharging graph i.s an exponential decay, meaning tluu 
the rate of decay of the charge (or d1e gradient or the current) depends on 
the an1ount of clu1.Tge stored at any given ti1ne. For a discharging capacitor~ 
the current is directly proportional to the amount of charge s'tored on the 

ea pacitor at time t. 

Graphs of V (the p.d. across the capacitor) against t follow the same pattern 
as the graph of Q against t .. because Q oc V (fro111 Q = VC). When current­
time graphs are plotted, you should remen1.be.r that current can change 
direction and will Bo,v one Vlay on charging the capacitor and in the other 
direction when the capacitor is discharging. The size of the cun·ent is always 
at a ma.2Li111u1n immediately after the s\vitch is closed in the charging or 
discharging cir:cuit, because the charging current will be highest when the 
capacitor is empty of charge and the discharging current v,ill be highest 
when the capacitor is full of charge.. This is shown in the graphs in 
Figure 6.18. 

The gra.dient of the Q against t graph ~ ~Q) is the current1 r, as shown in 
• .Ll t 

Figure 6.19. 
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r t 
charge- stored1 

Figure 6.20 'R'elati onsh lp between 
cha rg'e and the area under a g,ra p h of I 
ag,ainst t. 

V 

--1--~- -
s 

C 

R 
----- A _ I____. 

Figure 6.21 A capadtor d1ischarging 
circuit. 

During discl~arge th,e area under an I against t graph) up to time1 t, is the 
charge transferred off the capacitor, as shoVilll in. Figure 6 .20. 

·when the capacitor is discharging~ during a sni.all tin1e intervaill !!it, the element 
of charge transferred is liQ, and this is calculated by tJ.Q = I'L!t. The total charge 
transferred 1 Q, during the discharge from t = 0 tot= tr is the su111 of all the 
charge elen1ents during this period - this is the area under the graph. 

Discharging a capacitor 
Consider the ci'rcuit shown in Figure 6.21. \Vhen s~itch Sis closed, the 
capacttor C immediately charges to a maximum value given by Q = CV. As 
SVlitch Sis openedi the capacitor starts to discharge through th · resistor R 
and the ammeter. At any tim·e t, the p.d. Vacross the capacitor, the charge 
stored on it ~nd the ,current, 11 flo,ving through the circuit and the ammeter 
ar,e all related to each other by two ,equations. 

Applying KirchhofPs second circuit laiw around the capacitor-r,esistor loop : 

Vc+VR=O 

where V can.cl. YR a1·e the p.d.s across the capacitor and the resistor, 
respectively. Substituting for both using Q = VC and V = IR gives 

Q -+IR=O 
C 

But I = AQ 
llt 

so Q AQ 
-=- R 
C 8t 

or ~Q· ==- Q &t 
. RC 

This is a differential equation and requires calculus to pro"\'ide- thee solution 
(for those interested, see the Maths box) : 

- _.J... 
Q=Qoe Re 

.As Q = V,C and V = IR, at any time during the discharge 1 Q oc V and V oc. I, 
so there are corresponding equations for the p .d. across tl1e capacitor and 
the current flo\Ving in the circuit during discharge: 

-_J,___ 

V = V0 e 1r 

and 

l= 1
0 
e-r 



~··•~t•••••••t••···················••t••·············· • • • H • : . = 
• • • • i This shows 110w to use calculus ~ 
i to solve the d~fferential equation ! 
: (2 ~ 
=., L\Q=-- 8J : 
: RC i 
~ When integrating a differential l 
• • ! equation, .sue h as the one here, i 
j "re let /:J. t ~ 0 , and then change : 
~ to calculus notation (fl 'lo d) and ~ 
j group like tenns on each side. I 
~ I-Jere this gives : 
~ . 
i dQ l ~ . - =-- dt i ' . 
= Q RC ! 
~ (shovving a constant ratio) 1 and ~ 

! <t d Q ... -J1 

_!_ dt I 
: J Q RC : i Qo O - t 
: lntegrating gives I : [ l t : : : ' t : ! [lnQJS. ;=: - RC . 

0 
~ 

: and so : • • : t : 
: 1nQ- lnQ0 =-- t 
: R1C i 
: ~ 

~ Then using the rules of logs : 

= Q t I : ln-=-- . 
i Qo RC 
i so finally, 
: _ _ t 

: Q= Qo e Re 

• • 

• • • 
t t 
• 
i • • • • ......................................................... 

Re·me m ber that t.i ~ 0.693RC. 
2 

The time constant 
The quantity RC is called ihe time constant of a capacitor circuh. The time 
constant is related to the half-life o[ the de,cary of charge off the capacitor> 
and is analogous to the hall-life of radioactive decay. We define the half­
life or capacitor discbarge as the tune taken for the charge stored on the 
capacitor (or 'the curren1 or the voltage) to halve. 

When t= t1. 
1 

Q= Qo , so 
l 2 

Qo - Q. ~-~ 
2 - o· .... 

Canc,elling Q0 from ea.eh side gives 

1 _!m.. 
-=e-~ 
2 

and taking the natural logarithm of both sides of the equation leads to 

t1 
ln0.5~- 1-

RC 

t1 = 0.693RC 

Also when t = RC, \Ve have 
_IC 

Q =Qoe ;c 

-Q e-1 
- 0 

= 0.37Q0 

This means that one time consrnntl RC1 is the 'time for the charge stored on 
the capacitor lo drop to 37% of the initial value) Q0 . 

Graphical analysis 
The equations of n~onential decay can be te\"\rritten in ihe form of a straight 
line, so that a grapl1 can be drawn and the gradient andy-intercept measured. 
This aUO¥t~ you to calculate the thne ,constant of the cin:uit1 if it is unknown. 

Consider the current-time equation: 

C 

1= 1
0 
e-r 

ReatTanging and taking logarithn1s of both sides gives 

So 

or 

ln(t) = ln(e"Y) 

t 
lnI-lnI0 =--

RC 



w 
CJ 
z 
~ -C,J 

f 
<t 
(J 

..,0 

In I 

/ 
y-intercept = In J0 

t 

Tlris is the equation of a straight line of the forrn 

y=rnx +c 

,;,.vhere m is the gradient and , is the y-axis inten:ept of tl1e line. Plotting 
I 

lnI on the y-axis against t <0n 'th e x-axis produc,es a gradient of - - and a 
RC 

y-axis intercept equal to In I0, as iUustrated in Figure 6. 22. 

Figure 6.22 

• ' • • • • • • • 
~ • • • • • 

TEST YOURSELF 

19 The flash unit on a sma ll di,sposab'le camera consists 
of a 2.0nF capacitor charged fro ,m, a 1.5V battery, 
discharging through a. 3.9 M:n resistance flash bulb. 
al Catculate the energy stored in th e capac itor 

before disc harge. 
b) Calculate th e time co nsta,nt of the ctrcutt. 

The ca pacitor needs to diischa rge by 75% ltvvo 
half- livesj before H can be recharg.ed from the 
battery circuit. 

cl Calculate the minim1um recharge time for the 
capac itor. 

• • : 19 A 2800 µF ea pacitor and a var1iable resi stor are 
i used as part of the Umi ng cont rots 1n a trafflc lig ht. 
• : Part of the ttming circu It 1s shown in Fi9u re 6.23. 
• • • • • • 

= • • ' • • • • • • ; 
• 
' ' • 'i • • • • 
i • • • • ' I • • 
' • • ; 
' • • • I 

s • • 

12V -------·--~ ---. 
s 

C ~ 2800 ~F 

I 
i----........... A ........ -

Figure 6"'23 

The initial va lu e of th e va1rhable res~stor R is set 
to 8.0 kn and the t1m1ing ci,rcuit ls controlled by 
clos ing and opening switch S, which is initially 
closed, co mpteting th e charging drcu it. Ca lc,ulate~ 

al the in it,ial charge stored in th e cap,a·citor 
b] the total energy stored by the capacitor 
cJ the lnitiat current flowi,ng througrh variable 

res istor R. 
Switch S is then opened. 

d] Expta1n why th e current flowing tn rough 
the vari~1b le resi stor reverses and starts to 
dec rease. 

e) Catcula te th e time co nstanit of the discharge 
circuit. 

f) Sw itch S js closed a,gain a,nd the va,ria ble 
res istor is adjusted so that the res istan ce is 
now halved to a valu e of 4.0 kO. Use th e words 

hatves doubles 
redu ces to zero 

ta determine what happens ta the qua,nt•ttes 
below when switch S is opened: 

• • • • • • .. 
• • .. 
• .. 
• • • il the 1niti,al charge stored on the capacitor : 
• 

iii} the total ·in itlal energry stored 1n th e capac itor : .. 
iii) the ,in iHa,l c urrent Howi·ng throug h the i 

varia,ble resis tor 

iv] the time con.stant of the d:1scharge circuit. 

20 A capacitor of capacitance C is fully charg ed 
by connecting 1i t d~recUy to a 3.0V battery. The 
capacitor is then disconnected from the battery 
and connected to a 12 kO resi.stor in series wi,th an 
ammeter. The graph in Fi,91 .. iire 6.24 shows how the 
discharge current frorm the capacitor vades wi,th 
t1me follow ing its connect 1ion to the resistor: 

0.30 

0.25 

g: 0.20 
t 
1=~ 0. 115 
~ 
9 0.10 -1~-..J-..i-'\, .......... i-i....~~~ ................ 4.i.....-1-4-~ 
C) 

0.05 

0,00 ..L..1.ill.L--i-llli~l!J:I]::~~~ ill.Ll.--! 
0 5 10 15 20 25 

time, vs 
Figure 6.24 
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" al Explain why th.e quantity rep r esented by the ! 
• a re a u n de r t h e g r a p 1h i s the 1i n i ba l c ha r g e s tored ; 

on th e ca,pacf tor. : 
,jl, 

bl Use th e graph to estimate th e ,initial charge : 
• 

stored on th e capac itor. : .. 
cl Ca lcula te th e capa:c ita nce: of the capa,c ritor. 

+ .. 
• • • 

d) Calcu'Late th e initiat energy stored on the ca pa.citor. : 
• • .. 
• • • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 



.---Vs---. 

.-----______._--tl-1 _______.,..__ _ ___, 

R 
C 

Ve 

Figure 6.25 Circuit for charging a 
capacitor. 

Charging a capacitor 
In many cases, the charging of a capacitor is designed 10 be as quick as 
po,ssible, and so the resistance of the charging part of a capacitor circuit is 
kept as low as possible (Figure 6. 25). However> if the charging process is 
part of a circuit that requires a higher resistance, ihe charging time n1ust 
be taken into acc,ount. U1ere is no need for you to know how to deriv,e 
the formula for charging a capacitor. The 1vlaths box is included here for 
interest,ed mathematicians. 

Summarising the ,equations for charging a capacitor (from the Maths box): 

Q= Q0 (]-e-ic) 

and there-fore 
[ 

' ( -1?) V= V0 1-e 

and 

You do not need to be able to dlerive these formulae~ but you do need to 
understand how to use them. 

·······~··········~········~·,········~·········~··········~··········~·························~·~+••••••••••*············~··········~···························••+••••• ! : : H BO, i 
• • ! Consider the circuit shown in Figure 6.25. Kirchhoff's Integrating in a similaI' way to be.fore gives i 
• • 
~ second ciTCuit law tells us that tl1e sum of the e.n1.f.5 in I = Io e -k i 
i the ci1uuit equals the sutn of the p .d.s. in the circuit, so i 
~ v: V, + v At t = 0) Ve= 0 and l = lo =!§.> and so at any tim e) t) ~ 
: s = R C . R • 
• \Ve can ,vnte t 
~ ~ 

• • 
: "rhere V5 is the e.m.f. of the souTce> VR is the p .d. v. c ~ 
• I:.....: ..2..e -lr' 
~ across the resistor and V c is the p.d. across the R i 
+ ~ 

: capacitor. Using 10hnll's law and t'he basic capacitor or : - . 
:. equation, this becomes V, v· -~ : 
• R= Se : 

I Vs =m+~ ! : C Going back to Khcllhoff's second circuit la\V, ~ 

i Duting a sn1all time interval Li.t when the capacitor i 
• IJV Ve == Vs - V R • 
~ is charging, V 5 and C do not change~ 

8
: ~ o unlike I ~ 

~ and Q, ,vhich do change. So in the small time interval and substituting for VR gives i 
• • : -~ ; 
: ,ve have Ve = V5 - Vs e Re : 

: O=~R~I h.Q : 
f 6t C 8 t Factorising this gives i 
• • 
~ LlQ Ve= V5(1-e-k) ; 
• But at = I~ so i 
I Ll J 1 and then using the capacitor equation we obtain ! 
: 0=- R+- . . -.Js. : 
: llt C Q = CV5 (1- ·e "" ) : 
1 or ! 
~ t:J, I But CV5 is the. maximum ,charge that can be stored on ~ 
4 - :==: - ~ .. 
~ 8.t RC the capacitor when it is fully charged. That i\s equal J 

i Rearranging and replacing with calculus notation to 'Qo; the initial charge on the capacitor when it is ; 
~ gives about to discharge. So finally vte have ; 
: dI I t : i - =-- dt Q= Qo(l - e-r) : 
: I RC : 
• • + • • • .................................................................................................................................................. ~······························· 



Charging a capacitor 
A 3.0V battery cha rgi·es an init~aHy uncharged 10 OOO µF 
capac itor through a 1 OOO O resistor, as shown by the 
ckcu,,it dlagra 1m 'in Figure 6.26. 

-I 1 v~ a.ov 

Figure 6 .. 26 

C- 10000 ~F 

R ... 1000 n 

1 Calculate the voltage across the capadtor 25 s after 
the switch is c losed to c.harge the capacitor, which 
was 1:n i1tia lly u nc ha rged . 

Answer 
The eh a, rg rn g vo lta g:e ts giive n by 

r 

V = Va(1- e - ~ l 
so 

l!i ~ V = 3.0 V x ~1 - e- mtio )(([b'i"'r: ~ 

= 2. 7 5 V = 2. 8 V [ 2 s.f.) 

2 Catculate the charging curre,nt after 15 s. 

Answer 
Th e current is given by 

C 

l=loe- ic 

where 10 is the ~n,itial charg:i'ng current given, by lo;;;;;~ 

fso · 

15, 

I == !:Q_ e -ic" ~ 3. 0 V e I OOO Ox0.D1~ 

R 1000 Q 

= 6. 7x10-4 A 

.. ...... ... ..... ..... ... .... ......... ............ ..... .... ....... .,. ...... ., .. ., .............. ,., ........... _ ............................................ -······ .. .,. .......................................................................................................................... ·""" ..... ...... _ ................................................ _,, ................. ...... .. 

PR I AL 

Investigating the charging and discharging of .capacitors 
Note: This is ju1st one exa1,mpLe of how yo'u might tackle this required 
practical. 
A student cardes out an exper,iment to determi1ne the capadta,nce of an 
unknown capacitor that she has recovered from a la,rg e 5tage amptifier. 
She connect s ,up th e c i,rcuit ,in Figure 6.27 using· a battery pack~ a, 
variable resi:stor. a two-way switch and a data togger set to measure the 
current in 'mA as a fu·nctiori of ti'me. 

She sets the battery pack to 6.0V and th e var,iab le resistor to 880 0 . 
She ensures that the c.apacitor ,is co mpletely d ischa,rg.ed by earthing 
its connections before reconnect ing ,into the circui,t and moving the 
switch to pos,ition X. She then records the charging cu,rrent (,in m,A)i 
every 1'0 s for 1 OOs from th e data logger. before mov1ing the switch 
im:mediately to posibon Y and recording the discharging cu rren,t every 

X. y 

C 

Figure 6.27 
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~~ 
~ 10 s for a further 11 00 s. Her results are shown in 
i Table 6.5. The data logger acting as an ammeter j5 

; able to measure the charging current as a posit1ve 

. . . . . . . . . . . . . . 

. . 
• . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . 
L . . . . . . . 
. . 
: . . 
i 
: 
~ 

. . 

current and the d'i schargrng current as a negat:ive 
current. 

Table 6.5 

~~f1~~ mNFgffs:·; _-,-"-~Gr:r:e:n~t;~flrflA : --~ 
Charge 0 6.81 

10 3.97 

20 2.31 

30 1.34 

40 0.78 

50 0.46 

60 0.27 

70 0.15 

80 0.09 

9() 0.05 

100 0.03 

D.ischa1rge, 100 -6.81 

no -3.50 

120 -2.20 

130 -1.40 

140 -0.65 

150 -0.46 

160 -0.30 

170 -0.15 

180 -[l.08 

190 -0.06 

200 - 0.03 

1 Plot a graph of the current [y-ax·is) against ti ,m.e 
(x-axis~ - show the charging and d1.scharging 
phases on the sa ime graph . 

2 Use your g.rap h to estimate the tota t c h,a.rge 
stored on the capacitor when it is fully charged. 
{Remember, the ciu rrents are in m1A.] 

3 Use your graph1 to estimate a value for the time 
constant~ RC. of the circuit Hence make an 
estimate of the capacitance of the ea paci1tor. 

4 'Make a copy of the part of Table 6.5 showtng the 
capac,itor di,scharging. Add a further co·lumn to 
your table show[ ng. the natural Logarithm of the 
modulus [magnitude, of the dischargrng current -
for example, the fi.rstvatue, at 100s, is the naturat 
togadth ,m of 6.81 (- 1.92). followed by ln{3.50) -
1'.25. 

5 Plot a se.cond g'raph of ln I [y -axis) aga,fnst t fx-axi s1. 
6 Use your log gra,ph to calcula,te a vatue for the 

tlm,e con.sta nt~ RC~ of the c i1rcuit a·,nd hence another 
val'ue for C, the 1unknown capadtance. including an 
estimate of the u n cert a In ty of the value. 

7 Co:mpare your values from parts 3 and 6 . 

~ 
•• 1111_a •• ltl!II ••• All L•II 1111 11 1111111111111111111111111 • 111111111111111111111111..1111!! 1<11111!1111111 11 t.11111111111111111111 111111 j9 •'!II.I•• 1.•11!199 111!11!1 ...... _. 11!11!1 a.••••••• I.I!• 11111191!1 •• _. 1!11!111j11 •• _. •• 1.•• ••• 1111 Ll!I. •• t.1!19 ••• •• ••• ll!ll!llf all Ml!l il 111!11!1 1!111!1 ... _. 1!111111!11!111!1111!111!11!1 ..Lll ll!I 11119 •• 11 11!1.t 11!19 ••• ••.a 11 1!1 Ml!III 11!11!1.t !!Ill Ll!l9 1!11!1_. Ill! 111!11!1j111191!111,,.11• 1!1111111• 1!11!11!111!11!1 ••• 119 ... 11!11!1 ••• 1!11!1 Ll!l l!I .... 1!11!1 • •• 



Practice questions 
I vVhat is the charge stored on a 220µF capacitor with a 6V p .d . 

across it? 

A 36.omC 

B 2.70mC 

C l.32mC 

D 3.96mC 

2 What is the energy stored in a 4 200µF capacitor with a 3 V p.d. 
across it? 

A 131nj 

B 0.93mJ 

l .3mJ 

D 19mJ 

A c1onstant current of 208 µA is used to charge an initially uncharged 
capacitor or with a ·capacitance of 24 µF. Hoi,v long Vvill it take for the 
p.d. across the capacitor to rtse to 2600V? 

A 54s 

B 108s 

C 166s 

D 300s 

4 Two capacitors\ P and QI are boih charged by the $ame 12 V battery. The 
capacitance of P is 4200pF) an d the capacitance of Q is 420µF. Wl~ich 
row of the table gives the correct ratios of energy and. charge stored by 
each cap~acitor? 

energy· stored in P charge stored in IP 

energy stored in Q charge stored in Q1 

A 1 1 

B 10 1 

C 10 lO 

D 1 10 

5 A 2000 µF capacitor has been fuUy charged h)r a 6.0 V batte~ before 
it is discharged th1-uugh a I Okn resistor. What is the charge stored by 
the capacitor 20s after the discharge begins? 

A 4.4mC 

B 2.2 n1.1C 

C 8.8m1C 

D l .lm1C 

6 A capacitor of capacitance C is charged through a resistor of resistance R 
to a p .d . of lOV. The capacitor is then allowed to discharge back through 
the same resistor, R, as sho\VO in Figure 6.28, until th p.d. across the 
capacito,r is 5V, before being recharged again back up to · OV. 

- ... 
I 1n v 

--c 

R 

Figure 6 .. 28 



\Nhich of the graphs in Figu1-e 6.29 best sho~ls how the p.d. across the 
capacitor varies \"Vith time during the discharge and the subsequent 
recharging? 

10 

p .dl. 5 p.d. 5 

o---- --- o---- ---
0 f 0 t 

A B 

10 10 

p.d. 5 - p.d. 5 

0 -+-------r------, 

0 t 0 t 

C D 

Figure 6~29 

7 An initially fully charged capacitor~ C) discharges through 
a re._.-;;istor, R) and loses half its charge in 20s. TI1e time constant , 
RC, of the circuit is 

A 19s 

B 9s 

C 39s 

D 29s 

8 Figure 6.30 shows how the p.d. across a capacitor varies mth 
the charge stored on it. 

The table shows possible values of the capacitance and the 
energy stoTed by the capacitor wl1en the p .d . across it is 12 v~ 
\Vhich r,o,\\t gives the correct values? 

Capacitance, C/mF Energy st:ored, E/mJ 

A 2.5 90 

Q-i--~---~---~;--~~--.-~--+ 
0 5 ,o 15 20 25 30 

charge. Q/mC 

'8 2.5 180 Figure 6~30 

C 0.4 90 

D 0.4 180 

19 A 12 V car battery is used to fully charge an 18mF capacitor. The 
capacitor then fully discharges through a smaU electric 
motor which lifts a 200 g mass stack. lf the motor lifts the 
rnass stack with a 10°/b efficiency, through ,vhat height "'ill 
the mass stack be lifted? 

A 3 cm 

B 6cm 

C 30cm 

D 60 cm 



I O Figure 6 .3 l shn~,vs how the c·harge stored on a capacitor) of 
capacitance C, varies with time as it discharges througl1 a resistor) R 

What is the time constant RC of fl1is circuit? 

A 6.3s 

B 4.2s 

C 4 .4 s 

D 3.0s 

0.25 

0.20 

(.) 
~ 0.15 
Q) 

!? 
! 0.10 
u 

11 Figure 6.32 shows ho,w the charge, ,Q, stored on a capacitor varies o.os 
Vlrith the p.cll. across it, V. 

Which of the following statements is not co,rrect? 

The energy stored on the capacitor can be calculated by 
m·east,ring the area under the graph. 

B The gradient of the graph is numerically equivalent to the 
capacitance of the capacitor. 

C lf the charge stored on the capacitor was doubled 1 the -energy 
stored ,vould quadruple. 

D Doubling the capacitance \voukl halve the gradient of the 
graph. 

12 A capacitor\ C) is c}iarged with a potential difference of 12.0~ and 
then discharges through a resistor, R, ,.vhere R = SOkO. A student 

0.00 -+----....-------4 
0 2 4 e 8 10 

time. ~s 

Figure 6.31 

measured the p.d. across the capacitor every Ss using a data p.d./V 

logger with graph-plotting software. The graph in Figure 6 .33 Figure 6.32 

shows his results. 

a) Use the graph to calculate: 

i) t.he initial discharge current flowing through 
the resistor 

ii) the time constant of the circuit ) ll!1cluding the 
co n-ect unit 

iii) the capacitance, C, of the capacitor 

iv) the charge stored ,on the- capacitor after 30 s. 

b) A garden auto1uati1: sprinkler system contains a time 
delay circuit using an identical capacitor to tl1at used 
in part (a). The capacitor is charged using a 6V batte1y 
and discharges through a similar 50k0 resist,or. 

i) The smaUer 6 V p .d. from the battery changes the 
energy stored by the cap·a.citor. State and xplain 
ho\V the energy stored on the capacitor changes 
compared to the value calculated in a)iv) . 

ii) State and e:x11lain the effect of this change in p.d. 
on the time constant of the circuit. 

13 A resistor-capacitor circuit is used as a timing 1nechanism 
for an experiment to measure the acceleration due to 

gravity. The experi1nental set-11p is sho\Vn in Figur.e 6.34. 

(1) 

(4) 

(2) 

(3) 

10 

2 

0-+--.....-----,-------------. 
0 10 20 30 40 50 60 

,Figure 6.33 
time, us 

(2) 

(l) 



Switch l is initially closed, keeping tl1e capacitor C charged 
at 6.0\~ Switch 2 is also initially closed. The steel ball is 
dropped, opening switch 1, disconnecting the capacitor 
from the battery. The capacitor then starts to discharge 
thr,ough resistor R. The ball falls, opening S\Vitch 2, 
stopping the discharge 'through the resistor. 

~~~--l--~--s-te-e-lb_a_ll~ 

a) Describe the measurements that need to be made in this 
experiment, and explain how these measurements could 
be used to calculate the accele.ratio,11. due to gravity. TI1e 
quality of your written communication ,vill also be 
a.ssessed in this question. 

b) ln ,one such experiment~ the value of C was 440µF and 
R was l O kn. The p. d. of the battery was 6 .0 V and the 
distance between the s\Vitches vn1.s 1.0 m. The voltmeter 
reading was initially 6.0V and dropped to 5.4 V. Using 

(6) 

this infonnationl calculate the. time for the ball to d.r,o,p between 
the two, switche-S. (3) 

c) Use your anS'irer to pan b) to calculate the acceleration 
due to gravity. (2) 

1 4 Many tablet computers use a capacitor as weU as a rechargeable 
battery to store electrical energy. The rechargeable battery provides 
most of this electrical ene~ but the capacitor is used as an 
emergency back-up, if the battery is suddenly reinoved or fails 
du1iug operation. The capacitor stores just enough electrical energy 
to shut dmvn the tablet safely. 

a) Calculate the ,electrical energy stored in a capacitor of capacitance 
12 800 µF found in a tablet con1pute1~ 
operating "\vith a lithiun1-ion 3.6 V battery. (2) 

b) The 3.6 V lithiun1-ion battery can deliver a steady current 3.5 

of 0.84 nIA for 3 hours. Show that the battery car1 store 
about 400 times more electrical ,energy than the capacitor. (2) 3.0 

c) State t\Vo reasons why a capacitor would be unsuitable as 
the main energy store for a tablet cotnputer. (2) 

15 a) Explain what is meant by the ~capacitance~ of a capackor. (2) 

~ 2.5 
a-
'O 2.0 
Q) 

i a, 1,.5 
C'} 

~ 
-6 1.0 

0.5 

6.0V • 

R 

Switch 1 

SWltch 2 

b) A capacitor o,f 'capacitance, C is charged from a 9V battery 
through a fixed resistor oJ resistance R. The graph in 
Figure 6.35 shov,ls hov.,,~ thie charge Ovaries ""'ith time a£ter 
the capacitor and r,esistor ar,e connected in series Mth the 
battery. 0.0 .....,__..,_ ____ _, ___ _ 

Using the maAimum charge stored on the capacitor; as 
determined from the graph, calculate the capacitance of 
the capacitor. (3) 

0 10 20 20 40 50 8J 
time, Us 

Figure 6.35 



c) The ti.n1e constant for a capacitor-charging circuit is the time 
taken for the charge to rise to 63% of its maximum value. 
Use th.e graph to determine the time constant of this circuit. (2) 

d) Calculate the resistance of the resistor. (2) 

e) State \\rhat value is represented by tl1e gradient of the graph. (1) 

0 Calculate the initial current flowing through the resist,o,r 
during cl1.arging. (1) 

g) Sketch a graph to show how the current flo\ving though the resistor 
varies with tim,e for the 50s follo,wing connection to the battery. (2) 

II 16 A 640µF ·capacitor is inhia.Uy fully charged from a 12 V battery. 
The capacitor is then discharged through a 48k0 resistor. 

a) Us,e tb.is data to calculate: 

·> l the time constant of this circuit 

ii) the initial discharge current through the resistor 

iii) the initial charge stored by the capacitor 

iv) the initial .energy stored by the capacitor. 

b) The capacitor is disconnected from the resistor after 40s. 
Without losing any of its charge~ i t is co:nneoted to a second 
resistor of resistance 2 4 kO. Calculate: 

i) the ch arge stored by the capacitor at the start of the 
discharge through tl1e 24 kO resistor 

ii) the initial p .d. across the 24 kO resistor 

iii) the total energy transfen~ d to the 24 kn resistor. 

(2) 

(1) 

(l) 

(1) 

(1) 

(1) 

(l) 

17 A physics technician finds an unlabelled capacitor in a drawer 
and se ts up the circuit shown in Figur:e 6. 3 6 -wrth a 
data-logging ammeter probe together ,vith graph plotting 
soft\Wre~ to measure the capacitance of the capacitor. 

Figure 6.36 

The technician closes the switch~ which charges the capacitor. 
She then opens the s\Vitch, aUo~ing the capacitor to 
discharge through the data-togging ammeter and the resistor. 
The data logger records the current ev,ery 5 s after- she opens 
the s'Witch~ and th n dravts a graph of 1he results~ which is 
shown in Figure 6.3 7. 

a) Us,e the graph to show that the resistance of 
R is 120kn. 

b) Use the graph to detennine 'the 'half-time~ of the decay, 
and hence calculate a value for the time constant of 
the circuit. 

c) Calculate the c-ap,acitance~ C, of the capacitor. 

(2) 

(2) 

(1) 

25 

20 

i. 
:::.::..: 

~ 

; 15 
t::: a 

10 

5 

0 
0 

Figure 6.37 
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Stretch and challenge 
The questions that follow a-re British Physics 10 lympiad questions. 

18 A thundercloud has a horizontal lower surface. area of 25.0km2 , 750m 
above the surfac,e of tlie Earth. 

a) Using a capacitor as a model, calculate the electrical energy, E stored 
when its potentia] is 1.00 x ]05V above the earth potential (OV) . 

b) The ,cloud rises to 1250 m. 

i) Explain whether the energy sto,red, has increased or decreased. 

ii) What is the change in electrical en ergy, ~E? 

(BPhO R -2012 Ql(h)) 

19 Two, uncharged capacitors C1 and C2, "'rith capaci'tances C1 and C2 , arc 
connected in series 'With a battery and a s"'itch S. Vlhe11 the s,.,vitch is 
closed there is a charge Q1 on C1 and Q2 on C2. 

a) What is the ·relation between Q1 and Q2? 

b) Give an expression for the potential difference across each ca.pacitor. 

c) Derive an expression for tl1e capacitance C of a single capacitor 
equivalent to C1 in s,eries with C2. 

d) Calculate the total energy stored in the capacitors. 

(BPhO Rl-2007 1Q5) 

20 Two cap1acitors, of capacitance 2 .0µF and 4 .0µE are each given a charge 
of l20µC . The positive plates are now connected together as are the 
negative plates. Calculate: 

a) the n ew p .d . beh~leen the plates of the capacitors 

b) the change in energy. Explain this change. 

(BPhO Rl-2010 1Q5) 



Magnetic fields 

······················································································~~························ ! PRIOR KNOWLEDGE i 
l • 
: Before you start. make sure that you are confident in your knowledge and : 
• • : understanding of the following points: : 
• • • • 
! • !Magnets have two poles: a north -seeking pote (N . or north pole] a1nd a1 i 
• • 
: south-seek ing pole (S~ or south pole]. ; 
I • 

: • A magnetic fietd ris a reg11on where th e 1magn et exerts a force on other i . : 
: magnets or mag1net1c ima:terials , even ~f they are not i.n contact. : 
! • A magniet attracts magrnetic materials [e.g . iron)r placed in its i 
• • 
: magnetic field provided the field ris non-uni1form . The magnet aittracts : 
i another magnet if unlike poles are fadng [north- so uth). and repels ! 
• • 
: another magnet if like poles .are fadng [north-north or south-south]. : 
• • 
: • A current-carry~ ng wfre creates ar magnetic freLd, whtch encircles the : 
• • 
: wire carrying the field . : 
• • 
: • An electromag:net can be made by ,making a corit of w~re and passing a i 
• • 
: current through it. The strength of an electromagnet increaises H the : 
• • 
: current i1n the w ,ire ~111creases. if more turns are added to the cofl, and : 
• • 
: if a magneti c core is placed inside the co1l. : 
• • 
: • Etectromagiriets made using a soft magnetiic core [e.g . fr on) lose their : 
• • 
: maginetjsm ~f the current is turned off. If a hard mag.netic miaterial fs : 

f used [e.g . steetl. the erlectromagnet retains its magnetism when the i 
• • 
: c·urrent is turned off. : • • • • • • 
·················~·································································· ........................ ...., 

....-~~ li:~~~~~~~~~~ ~ -------····························-·-·············-···························-············ 
~I;;;;;. : TEST YOURSELF ON PRIOR KNO.WLEDGE i 

• • • • 
: 1 Magneti sm ea.uses a. non-contact force. Give examples of two other i 
: i 
: non - co ntact forces, and w hat th ese forces affect. : 
• • 
~ 2 Desc:rrbe how to m,ake a strong , temporary ·magnet. i 
I 3 A compass need le is magn·etic . Explain why the north pole of a, i 
• • : com,pass needle is attracted to the Earth 's geog rap hie North Pole. : 
• 6 ! 4 ~ron can be magneti1 sed if it is stroked repeartedly in one directi on j 
: using a magnet 1lron· atoms behave like miini -ma1gi nets. Maginetic : 
• • i domains are regions where groups of atoms [~ne up in one direct ion . j 
! Exp lain how iron can be magneti·sed in terms of mag:netic domains. i 
• • • ~•••••11••~~~·······•~1•••~~········· ~1• ••~~·········•1••~~ ~······••11•• •~~········•~!!111111 .................... ..... 

E">..1Jeriments using radiation up ~o 10 billion tilnes brighter than sunlight are 
carried out at the Diamo,nd Light Source facility in Oxfordshire (Figure 7 .l). 
Diamond is a synchro·tron which accelerates beams of ,electrons to the speed 
of hght. \ lery strong magnets direct the electrons through a pipe 56 Zm 
ciircumsference and under ultra-high vacuum. The electrons lose energy, 
emitted as synchrotron light; as they change direction in the magnetic field. 
Synchrotron light ranges from infrared radiation to x-rays. 

Electrons also travel 'througl1 magnets set out in arrays called insenioi-1 devices. 
These are even stronger 1nagnets; som e of " rhic.h are super-conducting. Since 



the direction of the 1nagnetic field repeatedly changes, the electrons are forced 
to wiggle through the device. The electTons rdease ener-gy when they change 
directions, either as extremely intense electromagnetic radiation turned into 
specific frequencies> or a broad spectrutn of radiation , depending on the 
arrangements of the n1agnets. 

Figure 7.1 Diamond in Oxfordshi1re. 

o~~~~~~~-
M a g net i c flux lines 

field illnes around a bar magnet 

Figure 7.2 Flll>: tines far a bar m1a g net. 
The flux dens ity is highest at th.e pates; 
where the fie ld is strong,est. 

1Figure 7.3 The co mb.ined fi eld from 
two bar magnets. Neutral poi,nts are 
marked X. 

Magnets have a nonJl pole and a sou tl1t pole, so ,v,e caU magnets dipoles. 
A magnetic field is the region "•here a magnet exerts a force on objects n1ade 
from magnetic materials~ or on other magnets. vVe represent the magnetic 
Held using arrows, or flux Hnes > to indicate the direction and strength of the 
field in the region surrounding the n1-agnet. The rules for dra\\•ing fftagnetic 
flux lines, electric field lines and gravitational field lines are sitnila.r. For 
magnets, these 1ules are as foUom: 

• F]ux lines represent the direction of the force expetienced by the no·rth 
pole of a n1agnet at any point in the magnetic field. They run from the 
north pole to the south pole. 

• A n1agnetic field is strongest where its flux density is highest, and. this is 
shown as flux lines closest together (Figure 7. 2). 

• A magnetic field \Vith twice the strength is dl'a"'rn with 'twice the number 
of flux lines per unit area in the sa1ne reg11on. 

• The magnetic field of more than one magnet is th.e combined field of the 
indhri.dua! magnets. 

• Fllux hnes never cross. 
• If there is more than one magnet_ the magnetic fields cancel out in some 

places and there is a neutral point (Figure 7 .3). 

A magnet freely suspended in. a magnetic field \Vi.U align itself with 1he field. 
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M n t ic fl , nsi Th,e number of 
magnetic flux I ~nes that pass through 
an area Qf 1 m2 

Tl sl The flW( den s.rty that ca,us es a force o,f 
1 N on a 1 m wire carry~ng a current of 1 A at 
right angl,es t,o the flwc . 

(a) (b) 

Figure 7.1. The ma,g netic filux of a 
current-carryin,g wire : !al wHh the 
current flowing i'nto the page and [b] 
w ith tihe current com,ing out of the page. 

Figure 7.6 Tihe ma,gnetlc field for a1 
current-carryingi lloop of wire. 

Figure 7.7 The magnetic fle·ld for a 
so lenoid. 

The strength of a magnetic field 
The strength, or intensity, of a m~gnetic field is i ts n1 gn ~ tic flux d ·nsil y, 
B, also kno,vn as a B-field. Magnetic flux density is measured in lt's l·~s (T). 
Magnetic field or flux lines are a n1odel that helps us to -visualise the field. 
You \vill lean'l m ore about n1agnetic Rux, cf,, in Chapter 8. 

lf you look at a diagra1n of a n1agnetic field, you can see that the flux lines 
are closer together in places (fo,r example, at the poles of a bar n1agnet as 
shown in Figure 7 .2). You can tell that the 11.nagnetic field and the force 
produced by the 1nagn tare stronger at the poles becaus,e this is v.rhere the 
flux lines are ,closer together. 

Magnetic fields from current-carrying wires 
lvloving charges cause a magnetic field. which ""e desctibe using flux lines. 
The magnetic flux around a current-carrying wire is shov.l'l1 as concentric 
ctrcles 1 indicating the magnitude and direction of the flux pattern. Moving 
a\vay from the wire.\ flux lines are further .apart because the field gets weaker. 
lf you look at the wire 'With the conventional current flo,..ving a,vay fr,om yotl ~ 
the .Hux lines circle the wire in a clockwise direction. Symbols inside the wire 
i.rlldicate the current direction: ® indicates a current flowing avlay from you 
(Figure 7. 4a) and ® indicates a current flo\ving to,va rds you (Figure 7. 4b). 
The combination of flux lines for a loop of wire is shown in Figure 7.5. 

Figure 7,.5 A ma·g rl·etic field cjrc les a current-ea rryin·g 
• w11,re. 

A solenoid is a current-carrying coil of wire that produc,e.s magnetic flux 
(Figure 7. 7) - this is also described as an electromagnet formed fl·o,m a coil 
of \vire. Th inagnetic flux outside a s,ol noid is similar to the magnetic flux 
for a bar 1nagnet, with the north pole at one end o.f the coil and the south 
pole at the other end~ depending on the current direction . 

A current-,carrying wire in a magnelic field moves because a force acts on 
it. The magnedc fteld making the 'Wire move is caHed a catapt'lt field . The 
catapult field is due to the combined effect of the current-ca.rrying ,vires 
flux and the static flux. Figure 7.8 shows the separate fluxes, and ho\v they 
combine to form a catapult field. 
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Measuring magnetic field strength 
A niagnetic field runs through a coil of wire as well as outside it, as shown 
in FiguTes 7 .6 and 7 .7 . You can n1,easure the flux density of the field using 
a magnetic field sensor called a Hall probe. The probe contains a slice of 
semiconducting material. If a current flows in the se1niconductor \.\rhen it 
is perpendicular to the magnetic flux, a potential differenc,e is generated 
across lhe sidles of the se1niconductor. This pocentiaJ difference is direcdy 
proportional to the flux density. 

(b) o~-------------F or c e son current-carrying wires 

;= FORCE 

(c) 

N 

Figure 7.8 {a] A uni form magnetic field . 
[bl The field a round a cur rent-carrying 
wire. [c] The catapult f1ietd . The force is 
from1 the strong to the weak field . 

force, F 

!'raft hand 

mag.neuc 
Oelds, B 

Figure 7.9 Fle mi ng1's teft-na n d ru ls. 

You need t,o kno,v ho,v to ,cakulate the size and direction of a (o,rc,e on a 
current-carrying \vire in a magnetic field. 

Calculating the direction of the force 
Magnetic flux density is a vector quantity. When the directions of the 
magnetic flux, the current in the conductor and the force are all at 

right angles to each other, Fleming>s left-hand m otor rule, shown in 
Figure 7. 9, helps you see the tl1ree-dimensional arrangement of these 
vectors. 

Hold your thumb 1 first finger and second finger of your left hand 
at right angles to each other. The 1h uMb represents the direction of 
the force (M otion) 1 the First finger represents the dh·ection of the 
tnagnetic Field, and the seCond finger represents the direction of the 
Current . 

Fleming ·s left-hand rule 
A current-carry~ ng wi1re is held so· that the cu rrent is into the page. 
and the magnetic frieild diTection is from the bottom to the top of the 
page. Use Fleming·s left-hand rute to fi,nd the direction of the force on 
the wire. 

Answer 
With your second finger [current] pointing into the page. an1d your first 
flngier [field] poi.nt~ng from bottom to top of the page~ you should flnd that 
th e direction of th e force ,is from left to rigiht. 
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Calculating the size of the force 
. . l ; If the ·wire is at an angle e to ; We can measure fie flux density at any point by n1easuri.ng the force 
: • d : the flux, the force on the ·wire ! exerte on a cun-ent-carrying wi1e at tha.t point. The tesla is defined as the 
a is calculated using F = Bllsin a, ~ flux density that causes a force of l N on 1 m of a \Vire carrying a current 
i ;,vhere fJ i.s the angle bet"reen : of l A at right angles t:o the 1nagnetic field. Written as an equation, this 

~ the wire, carrying the current, ! becomes .. i and 'the flux lines (Figure 7 .10) . i F = Bll 
: When the wire lies pa.ran l to ! 
; the flux lines (81 = O) , there is no ; wl1ere Fis force (N), Bis magnetic Rux densi y (n, 1 is current (A) and l is 
i force on the \.Vire . j the length of the conductor- in the field (in) 
• . ' • 
• .. 
: 
• .. 

. .. 
: • : • • 

For the interest~d student the Maths box gives mor,e inf,o rmati-on about the 
size of the force . 

.. 
• .. . 
• • • • 
• • • • .. • 

B 

.. • • • 
= : 
i • • • • 
~ . ~ 

i i 
: i 
: Fig u re 7. 1 0 : 
• • 
~·····~·~············································· 

PL 

Horseshoe magnet 
F·igure 7. 11 shows a cu rren t-carryi n 9 wire he Ld 
perpe n di c u [a r to U1e f ie ld between the two poles of a 

horseshoe magnet. Assume there is 2 e:m of the wire i1n 
the fie ld . 

force 

c~t!i j 

Figure 7.11 

Cale u late the magnetic flux dens rty 18-fteld) for th e 
wire if th e current is 2.1 A and it experiences an 
u pwa,rd force of (J.03 N. 

Answer· 
The length of the wire in the fi eld is 0.02 m. 
Substitute known values into the equation : 

8 = ~ = 0.03 'N = D. 71 T 
ll 2. 1A X 0.02. m 

£ What current r s requ 1 red for the wire to expederice 
an upward force of 0.09 N? 

Answer 
Rearrange the same equatfon, to give I oin the Left­
hand sideJ and substitute for the flux denslty, B. 
from the answer ta part fa) : 

I = .f._ = 0. 0 9 N - = 6 .3 A 
BI 0.71 T x 0.02 m 

The current flows into the page. State whether the 
direc tion1 of the magnetic field is from left to right1 or 
r ight to 'left. 

Answer 
Using Fleming's left- hand rule~ the field is from th e 
right side to the left s i,de of the pag,e. 
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1 A 50 cm w ire ea rries a current o f 0.2A. Calculate 
th e for ce due to the magnetic Held on the wi,re 1if 
it hs pla,ced: 
a) perpend'i·c,uta:r to the Earth 's m,agnetic fi etd of 

flux density 50 µT 
bJ perpendic,ula r to the 1m,agnetic fleld of an 

electromagnet of flux density 1.ST. 
2 A wire j,5 placed at r1ght angles to a m.agnetic 

field of flux densi,ty 6 mT. 
al If the force per metre of wi1re 1is 0.03 Ni 

calcu laite the current in the wire . 
bJ State the value of the ang le, 8. if the 

magnitude of tine force is zero. 
3 Copper has a density of 8960 kg m-3 • 

al Calculate the mass of ain jn sulated piece of 
copper wire. 10 cm long with a cross-sectiona l 
area of 2 x 10-6 m2. l'g,niore the mass of the 
1nsula.t~cn . Two such pieces of wire are used as 
weights t n i: i g u re 7.1 2 . 

smal I wetgiht 

Figure 7 .. 12 

magnadL:ir 
magnets on yoke 

A --.... ,------~ 

h / 

C 

stiff cop pe:r 
w,lre frame 

B 

F,igure 7.12 shows a current balance formed 
from a rectangutar frame balanced on two pi.vats 
halfway atong the si.des AD and BC. Part of srde 
AB lies at rig:ht angles to a uniiform 1magnetk 
field. Sides AD and BC are 240 mm long. There j,s 
a smaH gap 1n side CD a smaU weight hang,s on 
the wire hear the gap. 

The frame bala:nces when there i1s no current in 
the circuit. When a current of 3.2A flows through 
the C'ircuit. the weight must be moved 25 mm 
closer to the pivot to balance th e frame . 
bi Ca lcu late the change in the :mo,ment of the 

copper wi1re wnen the cu'rrent is off~ a,nd 
whe1n the c,urrent ~s on . 

c ) Use your answer to part [b] to ea lculate the 
force on s1i de A B when the cu rr,en t irs on. 

d i l he length of the wrre fra 1me in the fleld is 
110cm. Ca lcuta,te the flux density. 

4 Use Fleming's left-hand ru le to find the direction 
of th e 'force" magnetic field or current in the four 
situations shown in Figure 7.13. 

(a} 

tnin. copper cHsc 
bush (free to rotate) 

brush! contact 

(c) (d) 
Figure 7,.13 

m agnetlc fie.Id 

I 
X 

!5 Part of a drcuit. VWXY~ Ues in the saime 
horizontat plane as a un iform 'magnetic fi eld 
of flux density 8. Two sides of th e circuit are 
paraVlel to the fl 1ux. as shown in Figur-e 7.14 . 

• • • • • • • " • • • • • • • : • • : 
' I I 
i 
i • s 
% 
• : .. 
I 
I 
I 
I • I 

i • • I 
II 
II 

: • : : 
• 
II • 
!I • • • ' • • • " " • • • • • 
~ • ' • • • " " • • • • • • • • • • • " " • • • • • • • • • • " " • • • • • • • • • • • " " • • • • • • • • • • • " " • • • • • ,i 

• • • • • " ' i i 
i 
• I 

i 
! • • I 
I 
I 
I • s 
: 
" : 
' I 
I • II • : 
' • • : 
II 
!! • I • • • • • • • " • • .,. . 

• !I 

: Figure 7.1 & ~ : .. . • • .. . ............................................................................................................................................................................. 
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i a] When the current I flows through the w ire~ the cl An extra. twist of w 1ire is made so that the wire i 
: slde WX is forced upwards. State the d[rect,]on : 
~ of the magnetic fie Ld. loo ps and now leaves the f,ietd at X~ as shown : 
: in F1guTe 7.15. Explain how the 1ma1gnrtude of ! 
: b] The leng,th of wire. WX~ in the tietd is 8.0 cm th,e fo rce va.ries in different sections of the : 
i and th1is stem, experiences a force of 0.241 N ; 
i when the current I 1is 4.6A . circu~t~ VW. WXj XY and YV. i 
i : 
i Catcu late the flux densi,ty of the fietd4 81 giving ; 
; your answer to an ap:propr~a.te number of ; 
" : : s i g,n if ic a,nt figures. : 
• I • • 
I I .. . .. ' • l!I 

: V : 

i i 
W, -, '~ -.. . 

• I • • • • 
: Id i 
! = 

I, I 
I ' I 

magn etlc ft e 
• • • • • • • t! 

I it -• • • • X 
..._ y ,-• • • • .. . 

• • • • . " "' . • • • • 
: Figure 7.15 : .. . 
• • 
···············~···················································~········································~··········~······················· ........................ .... 
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REQUIRED PRACTICAL 10 
The force on a current-carrying conductor 

. 

Note: thrs rs just one exam,pbe of 
how you m~ght tackle thio requfred 
practical. 

~ A sensitive elec:tronrc bah,,nce can be 
~ used to investrg-ate how magnetic flux 
~ densityj cu,rrent and length of w'ire 
~ are related. 
' . 
~ A currrent-carryjng conductor 
~ exper,iences a force when it 'is 
C 

! perpendicular to a mag,n~t~c field . 
~ When magnets and a conductor are 
~ set up as shown in Figure 7.16. the 
i electronic balance reacHng changes 

T2 
supported _ __,o 
terminals 

--thJek 
copper 
wire 

___ U-magnet 

-r 
I 
I 

C:ircuit for varying the current 

. . 
~ 

[ 

' . 
t 

~ . 
' . . 
t 
' . . . 
i 
t . . 

~ 
: 
; 
i 
; 
• 
i i w hen current flows in th e w1re. balance 

r Newton's third law means that the Figure 7.16 Expe,rimental set-u,p for the activity. iincludtng the circuit. 
m,a,g,netk force on th e wire is equal f n 

t 
i 
~ 
; 

s,ize but acts in the opposite direction 
to the magnetic force on the mag net. The change of reading of the 
balance s hows the 'm1agnet ic force or, the m1agnet. 

. . . • - ............... , .•. . , ................ .. ..... ........ ~ ~ • 1 

~ TIP H : ;: 

; lf th :is exper~ment is actualty H 
; Two ceramic magn·ets are fixed inside a steel yoke to create a uniform field. · ·· 
f The yoke is placed on the electronic balance. The circuit is set up as shown in ! p~rfor~et remember tha~ the jj 
~ Fi'g,ure 7.16. a,nd the copper wire fS supporte d horiizontaUy between the ~ w,rewf~t · eat up, so tu rn t .e H 

- : circuit off betvvee,n readings. H 
· m1agnets, perpend~cular to the field. The balance is ze roed. and then the ci rcuit ; ·· 
[ is sw,itched on. Readrngs are taken of the cu.rrent [1in amps} and electronk i A heavy- duty rhreosta.t 15 also n 
: , ) req uire d. H 
~ balance read ~n 9 tin gra,ms , At tea.st s,ix sets of read1ngs a re ta ken for d1 fferent :........................................ :i 
i current values. The effect of changing the length of wire in tfle field can be ~ 
~ m eas ured by adding an ext ra m,agriet and the n re-zeroing the ba la nce before -"·~ 
~ takf n g· readings. "-t/ ~ 
' . ••••••••••••••• .,•••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••• ••••••••••••••• •••••••••••••••••••••••••••••••••• r•••••••••••••••••••••••••••• ••••••••••••••••••P•••••••••••••••••••• •••••••••••••••••••••••••• •••••••••••••,.••••• 





: ~ 
2 

You are inves tiga,tin.g the relatfonshf p 

F= Bfl 

Force F rs calculated by converting, readings ~n gr,am,s from the etectronic 
balance to force. The magnetrc flux dens~ty B [T] ~s consta·nt if you use the same : 

~~gnets and.Js~me arrang
5
ement. Thel length

1
tof wjre hbetvv~enTthbel m

7
a
1
gnTehts ~ .................................................. J 

1s t, measureu 1n m~tres. ,ome samp e resu~ s are s own in a, e ·. . 1 e ~ ~ 
length of the magnets is 4.5 cm. ; = 

J Ta re (zero) the balance bet\Neen a 
:I 

= readings as necessary. ! 
i ~ Unr.f ~,£4.:i • 

·~- - --

~ ng_,1r:c1m, · Force/N 
..... • ,j ... .-r' . ' • • • .,.,!, .. , ....... ' - l • --l'o-7-"'., . ~.~ ,9; -;hPi•Uh• PI" • • •1111,o,11111"' • HtiJli•111111.,1 .. . ,-------= 

1.0 0.46 
2.0' 0.91 
3.0 1.35 
4.0 1.83 

-

5.0 2.30 

~ 
: 

1 Copy and complete th e table by filling in the missi1n,g va,lues in the force column. 
2 Explain why it 1s acceptable to have a d[fferent number of decj,mat places 

. . 

. . . 
for the ca lculations of force. 

3 Exp lafA w hy it is ecceptabte to have a different nu 'm ber of s.ig'n'ifica,nt 

. 
; 
~ 

~ figures for the balance readings. 
~ 4 Using a giraph, or otherwjse, show that the magnetic flux density B rs 1 DO m T. ': 
. . .. . 
• ..... 1.• ••• 1.•,11.4 ..... 11• .......... 1.,1 ~ ... _. .......... •• ••• ... ._ .. _,., ..... 1,,1 ..._.. 1.•<1 .............. _.. ._ •• 1.• ••• 1.•• 1.4 ••• ...................... •• . ... 1.•• 1...1.1, • ., ..... •• ..... .._ .. ._ ....... 1.4 ••• 1...1 ••• ..... 1.4 ..... 1.• ._ • ., -.a 1.4 ..... 1.•o1 1,,11,•4 "" 1,a,1 ... ., 1.4 lo&,,I • • ••• ••• 1.4 ..... Ila I • ., 1.•,11.4 ~ 1.•111 ........ .. 1,,11,a4 .._ ... "-" 1.•• • ., .... 1.•• 1.4 ..... 1.a• ... • •• 1...1 1.•• a.a,1 • 

Q i---F-o-rc_e_s_o_n_a_c_h_a_rg_e_d_p_a_r_t_i c-le_m_o_v_i _n g-i n-­

a magnetic field 
Charged particles moving in a magnetic field also experience a force. 10ld-style 
televisions and cotnputer monitors use electron guns lo produce beams of 
rapidly moving electrons in evacuated tubes, and their direction is controlled 
using a varyin.g magnetic field . You can calculate the fore;e on a single charge, 
Q, travelling petpendicular to a magnetic field, with Rux density B. 

If charge Q' travels a distance lint seconds, then the charge has .a velocity 

Y ~f. But I= !f and we can substitute for I in 

F=Bil 

This gives 

BQl 
P= t 

Since the velocity of the charge -is v = t, this gives 

F : BQv 

As bef:ore, you can u se your left hand to pTedic.t the direction of the force. 
The thumb represents force, the first finger represents the magnetic field 
and the second finger represents the direction of a m ov""ing p ositive charge. 
The s11gn of the charge is imponant - a positively charged paritic le and a 
negatively charged particle ,vill move in opposite directions in the sai-n e field. 
This is because if a negative charge moves to the left (for example); lhe 
conventional current flows to the right. 
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Conven t iona:l cur rent- in 1m.a ny c·ircuits the c harge ca rriers are e lectrons 

hut thrs [snot atways the case. In an elect rolyte. f-or example, rposit,ive and 
neg,ative i·on.s m ave f n o ppos;te di rectiion s when a cu rren t flows. 

By convent ionj we always who the direction of movement of pos itive 

charge carri es a,nd so. tn a s1imple wire circu it. th ~s ts in the oppos ite 
d f rect~on to electro n flow. 

Wo1rk done 
When a charged particle 1noves at tight angles to a uniform flux, the 
charged panicle moves in. a circle (Figure 7. l 7) because the force is ahvays 
perpendicular to the motion, provided no energy is lost (for exa1nple, when 
the charge is in a vacuum). Work is force multiplied by distance inoved in 
the direction a,f the force , Since the force is perpendicular to the motion, no 
work is done by the tnagnetic field on the charge, .so the kinetic energy of 
the charg€ does not c}u1nge. 

(a) elect rem (b) path of e1e ct,on 

X X X X X X X X X X X X X 

X X X X X X X X X X X )( X 
e 1' 

X X X X X X X X X X X X 

X X X X X X X X X X X v X 

X X X )( )( X X X X X X X 

X X X X )( X X X X X X )( X 

)( X X X X X X X X X X )( .x 

X )( X X X X X X X X X )( V X X X 

magnetic flux d ensity B i·nto the page B into the page 

Figure 7~ 17 A n e lectroin trave-Ls ~n a circuit path w hen it m aves perpend1c ular to a 
magnG!tic fi eld because the force is perpe ndicular to its mot,ion . 

Applying ideas about circular moti 1on 
You can link the ideas of circular motion covered in Chapter l \Vith the 
motion of a charged particle in a 1nagnetic field. 

Since the charged particle follo"rs a circular path in a magnetic field 
(Figure 7 .1 7) 1 V·-le know it experiences a -cent1ipetal force. F,or circular 
motion, th centripetal force must -equal the force exerted by the magnetic 
fie]d. If we Unk the equations for centripetal for,ce and th 1novement of a 
particle in the magnetic field. we find that 

mv2 

F= r = .BQv 

Dividing both sides by v gives 

n;_v = BQ 

This equation has many applications. For situations where.Band Qare 
constant, the radius is proportional to the momentum of the particle: 

mv =BOr ....... 



PL 
Paths of ionising radiation 
Figure 7. 18 s hows ionijsing radiati on trave lling through 
a uniform rna,gnet ,ic fietd in a1 vacuum, at dgiht angles 
to th e lines of ma g n·et ic flux. 

magnetic field alpha pairt~cl'es 
X X X 

beta partic les 

Figure 7.18 

Compare the directions of moti on of an alpha 
parti·cle. a beta particle and a gamma ray if they 
move through the magneti c fi eld as shown. 

Answer 
Using Flemijng ·s teft-hand rule. the magJietic field 
is into the page. The alpha. particle i:s positively 
charged

1 
so the force on it i1s upwards, and the alpha 

particle travels ·in a ci,rcular path and clockw,ise. 

The gamma ray has no charge. s o it continues to 
move ~n a straight line. 

The beta particte has a negative charge, so the 
force on it is init,iatty downwards j and it follows a 
clockwise drcular path . 
The diagram 1in Figure 7.18 ts not to scate. Assuming 
the particles travel at the same speed. calculate the 
rat~o of the rad~us of the paths for alpha partic les 
and beta particles. 

Answer 

From the text. 

";v = BO' 

'But v and B are cons ta nt j so r is proportiona l to 
m/ Q. The alpha pa,rtk le has a cha r9e of 2e, and a 
mass of 8000me. The beta parti cle is an eilectronl 
w:ith charg e e and mass 1me. So the ratio is 

rad~us[alphal _ m 1[allpha) Q[beta] 

rad ius'[beta) - Q(a lpha) m[beta! 

= BOOOm~ e = 4000 
2e me 

In rea lity. beta pa rticles travel m,uch faster than 
alpha pa,rtkles. and relativi s tic effects increase 
the mass of beta partkle5. This means that the 
observed ratio j5 li:kety to be s maller. However, it 
shows that it is extremely diffi cult to deflect ailpha 
parti c les us~ng a: typical school magnet. 
Describe how the path wiH be dHfere,nt if the 
radiation travels tn air·, r ather than in a vacuum. 

Answer 
Jn a vacuum 1 the charged particles travel in a 
ci1rcle . In air~ charged parti1c tes in a magnettc field 
travel in a sp1ral , because they lose energy and 
slow down . Because r rs proportional to v, as v 
decreases so does r. 

'{ ou can also use the equation to find the radius r of the ,circle in wltlch 
the ,charged particle travels, since r!: ;nQ. This idea is used in inass 

spect1ometers, since charged particles \vith different mass/charge ratios 
travelling at the same speed \Vill follow differ,ent paths. 

~ ·························································~····························· ····························~· ································: 
: TEST YOURSELF i * • ~ . ' : i 6 Describe two situation s in whi ch a cha rged 8 Calculate the flux density when an etectron i ! 
! parti cle experiiences no magneti c force wh en it is traiveUing at right angles to th e field d~rect,ion, i 
! in a, magneti c field. at a veloc ity of 1 x 1 Q7 ms-\ experiences a force ; 
i 7 An alpha pa,rticte travelUng at 1°/o of th e speed of 1 x 10-15 N. i 
j of light enter s a fi eld of flux densiity 1 :x 10-3T. 9 An elec tron enters a unifo r m magnetic fi eld of j 
: Calculate th e force experienced by th e parti cle flux density 0.036 T, t ravel l in g at r~g;h t angles : 
• • i iif it travels to th e lines of flux . Ca le utate the speed of the : 
• • i aJ parallel to the drrec bon of th e magnetic f'lux electron if th e radtus of :it s path is 20 m m. : 
~ . i b) perpen d I c ula r to the di r ectro n of the ma g,netk: 10 Fi gure 7.19 show s the paths of th ree pa r t iic les in a i 
~ flux. m.agnet1c fie lld corning out of the pa ge. : 
: ~ ! 
• • •••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••• •••••••••••••••••••••••••••••• •• •• •• •••••••• ••••••••••••••••••• 
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()~Cy-c-Lo-t-ro_n_s~~~~~~~~~~-
•• r•"I •• r•'I •• ..... •• r• ..... r• r• .. •• rll, •• r•, •• ••• - ,. ... "" r• r•• •• ,. ... •• ,. • .,. •• r•• •• r•'I •• .. -.. •• 

..... ' o r n A paritid.e acce1leir.ator that 
accelerates charg,ed pa rtrdes through a 
.spira I path usi 11g a fixed magnetic fi:e[d and 
an alte111nating potential dmtfer;enr:e. 

A cyclotro n is used to force charged particles into a circular path tl1at 
accelerates them to vei-1, ]1igh speeds. Cyclotrons are often used with heavier 
particles like alpha particles and protons. Experiments using particle 
accele1'ators investigate the structures of complex molecules like proteins , as 
well as sub-nuclear structures. 
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high-frequency voltage supply 

Figure 7.20 Structure, of a eye Lotro n. a proton accelerator. 

The cyclotron is fo1n1ed Eron1 tVlo sen1i-circular 'dees', 
separated by a small gap and connected to a high­
frequency alternating potential difference (Figure 7 .20). A 
strong magnetic field is applied perpendi,cular to the. dees. 
The perpendicular n1agnetic field forces charged particles 
to n1ove in a circular path inside the de,es. 

The particles experience a potential difference Vlhen 
they travel across the gap and gain energy equal to, QV 
(where O is the particle's charge in coulombs~ and Vis 
th potential dHi rence in volts) . Since th particles have 
mor kinetic energy, they move faster and accelerat,e to the 
n.ext dee. 

The ,ac voltage is timed. to change direction every· time the 
particles reach the gap between the dees. It must alternate 
to accelerate the particles eaeh dme they reach a gap. If 
the voh a.ge did not alternale, the particles would foUow a 
cycle of a cce lerate-d.ecele rate-accelerate. 

Panicles spend the sa1ne rime inside each dee, but the 
radius of their path increases after eacl1 gap and th.ey 
t ravel fu rt.her in 'the same tune. 



Remen1ber that the centripetal force acting on the charged particle equals 
t'he n1agnetic force: on the charged particle) so 

or 

rnv2 

-=BOv ._ 
r 

BOr 
V = 1rr6sa m (i) 

Because the radius is proportional to the speed of the charged particl , the 
particles spiral out'\.vards as th y accelerate tl1rough the cyclotron. 

The time, t, spent in each dee is given by 

,t = n,· 
V 

because nr is half the circu·mfer,ence· of the ci'J;c}e. Substituting for v in 
e,quation (ii) using equ~tion (i) give.s t; the time spent in one dee:: 

11r 
t~ ---

BQrlm 

rrm. 
=-

BQ 

which does not depend on either radius or speed. 

(ii) 

....................... -..................................... ~ ........................... . 
1 nchr ron A partide accelerator that 

accelerates charged part~des through a 
circular path using a vary~ng magnetic field. 

The effect of special relativity lh-nits a particle's speed in a cyclotron. 
Particles get more massive as they travel close to the speed of ligl1t. As 
particles n1ove faster and their niass increases> fl1e time spent in each dee 
increases and the more massive particles get out of step with the alternating 
potential difference. A svi1 h rotron oven:omes this problem by increasing 
the magnetic field as the speed of the panicles increases. The radius of their 
path remains constant even though the particles travel faster. 

PL 

Alpha particles in a cyclotron 
Al.p ha parti c Les a re accelerati'ng i, n a cyclotron. T'h e 
magnetk ·flux density is 0.8T and the voltage across 
the gaps bet\iveen the dees is 20 kV. The mass of an 
alpha pa,rticle is 6.64 x 1 o-27 kg a,nd its cha,rge is 
3.2 >< 1 o-19 C. Ilg no-re relativi stic effects. 

Show that the frequency needed for the voltage 
supply to syn,ch ron ise w1th the airriva,l of protons a,t 
the gaps is 6.14 1MHz. 

Answer 
The time s pent in one dee is t ~ ;; ; the peri:od T for 

one complete drcte ,(circUng through l\No dees] is 2t. 
, . . 1 BQ 

The frequency for a comp let e circle 1s f = 2!= 211:m 

So 
f _ o. s r x 3. 2 x 1 0-19 c 
- 21t X 6.64 X 1 o-Z7 kg 

= 6.14 x 106 Hz 

How 1many circtes shou ld the alpha particles 1ma'ke 
to reaich an energy of 10 MeV? 

Answer 
The en,ergy gajned when an alpha part icle [charge 
2ei crosses th e gap is 2 x 20 keV ... 40 keV. The alpha 
parti cle crosses two gaps per cyc le, so it gains 
80 keV (8() x 103 eV] per cycle, To reach an energy of 
10 MeV f 10 x 1 o" eVL the alpha parti,c'Le must make 

10 X 106 , . , , 
aox 103 c1 rc les. wh1·ch rs 125 c1rciles. 
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~··························································································: : TEST YOURSELF E 
• • ' . • • : 1 J In a cyc lotron. exp la,in the role of ·: 
• • 
: a) aHer nat i n19 e lee trl c fietd s : 
• • i b] fixed flux den 5j ty. ~ 

! 14 Charged parti1cles m,ove at consta,nt speed as they trave l around a i 
i single dee. These particles a re also accellerating. Expla,in how these i 
i • 

: two statements can both be true. : • • 
!.··. 15 Protons are accelerated in a cyc lotron. If the vottage supply i 
• altern,ates at a f req,uency of 4,M,Hz~ ca,lculate the mag,netrc flux : 
I • 

; den si1ty required . i 
! The ,mass of a proton, is 1.67 >< 1 Q-27 kg . i 
i 16 Explain why 1dentfcat particles wi th different energ ies can be ! 
; accelerated in a cyclotron together. ! 
: . 
: 17 Find an expression for the maxim um kinetk energy for a proton in a : 
i eye lotro n of rad ~us R. i 
• • 
: ••••••••••••••••••••••••••••••••••••••••••••••• , •••••••••••••••••••••••••••••••• , ........................... llllllllliJ 



Practice questions 
I Charged particles enter a n1a gneti c field of flux density T at right angles 

to the field. Which one of tl1ese ,vould decrease the radius of the circular 
path of the charged particles? 

A decrease in charge Q 

B decrease in mass m 

increase in velocity v 

D deer ;ase in flux density B 

.2 A positively charged particle travels nonh at a steady speed 1 v. A 
magn tic field is applied in th · horizontal plane in which the particle is 
traveHing. The flux is directed from east to west. \Vl1ich of the following 
describes the motion of the particle after il enters the field? 

A The particle accelerates upwards in the vertical plane. 

B The particles moti.on is unchanged. 

C The particle accelerates downwards in the vertical plar.1e. 

D The p1-lrticle accelerates in the westerly direction. 

3 An electron enters a uniform magnetic field 1 travellin g at a steady speed 
at right angles to the field. The shape of the electron's path in the field is 

A a circle 

B a straight line 

C a parabola 

D an ellipse 

4 The speed of an electron of charge e and mass m travelling in a circular 
path of radius r in a magnetic field B is given by 

A Bemr 

Bem B 
2rcr 

mer 
B 

D Ber 
m 

5 A 50cm wire cani·e-S a current of 1.2A. The force the wire expe1iences if 
it is plac,ed in a flux density 0.3 mT is 

A 0.18N 

B 1.8 x 10...4N 

C 18N 

D 0.018N 
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6 A wire carrying a current is placed parallel to a magnetic field. When 
the wire is gradually turned so it is perpendicular to the field) the force 
experienced by the 'Wire. 

A stays at a constant value 

B decreases to zero from a maxin1un1 value 

increases [rom zero to a maximum value 

D remains zero 

7 A magnetic field is from south to north. A curr,ent-carrying Vvire in the 
field ,e1i..i,eriences an upwards force . The direction of the curr,ent is 

A into the page 

B from east to "?est 

C from west to east 

D dov,n vvards 

8 \~lhen a proton in a cyclotron travels through a dee~ which of these 
statements is true? 

A The proton is constantly accelerating and its speed is increasing. 

B The proton travels at a constant speed and is not accelerating. 

C The proton travels at a constant velocity and is constantly 
accelerating. 

D The proton travels at a constant speed but is constantly accele1--ating. 

9 T1-1e magnetic field of a cyclotron is 

A constant in magnitude and applied perpendicular to the plane of the 
dees 

B varying in n1agni.tude and applied perpendicular to the plane of the 
dees 

C constant in magnitude and applied parallel to the plane of the dees 

D varying in n1agnitude and applied parallel to the plane iof the dees 

I O A beta particle travels fro1n east to ,vest across a tnagnetic field of strength 
0.6mT, ,vhlch is directed nonhwards. The beta pa1ticle travels at 
4 x 105ms-1. The force th beta pa11icle experiences in the fi ld is 

A 3.8 x 10-14 N downwards 

B 3.8 x 10- 17 N downwards 

3.8 x I0-14 N upwards 

D 3.8 x I0-17 N upwards 

11 A current-carrying wire of length l O cm is placed in a magnetic 
field as sho,vn in Figure 7. 21. 

Figure 7.21 

a) Predict the direction of the force a.cling on the ,vire. (1) 

b) Calculate the flux density if the force on the wire is 2 mN wl1en 
the current is 0.4 A. (J) 



c) A student wants to use the magnetic field to lift the wire up. The 
wire's mass per unit length is 0.5 gcm-1. Calculate the minimum 
cun·ent required to allo\v this piece o:f wire 'lo lift (4) 

d) EJ\.1Jlain v.rhy a larger current ?lould be needed in reality. ()) 

e) Explain what ha1,pens if an ahen1ating current is used instead. (4) 

12 A hospital cyclotron uses magnetic fields to acceler-ate protons around a 
circular p-ath. The dian1eter o,£ the cyclotron is 2. 0 in. 

a) If the field is in a suitable direction, the protons move in a circular 
path ,o,f constant radius. By referring to the force acting on the 
protons] explain ho~r this happens. (4) 

b) ,Calculate the centripetal force acting on a pro'ton when travelling 
around the eye lotron at a speed of 6 x l O 1 m s-1• (3) 

c) Calculate the flux density of the magnetic field needed ta, produce 
this force . (3) 

d) A cyclotron accelerates the protons to their final speed by applying 
a varying potential difference at the gaps between die t\~lo dees itn 
which the protons travel. Explain how the potential difference is used 
to accelerate the protons. (4) 

13 Electrons lravel around a tube placed in a magnetic field of flux density 
0.3n1T (see Figure 7.22). 

a) State and explain the direction of the magnetic field that 
forces the electro11S to travel in this path. (2) 

centre of b) lf the radius of the orbit is 15 c1n~ calculate the tlux density 
producing this motion. (4) circ le for 

path of the 
e llectr ons c) Explain why the electrons are accelerating v.ithout 

speeding up. (2) Figure 7.22 

d) Predict the approxin1ate speed required for protons to travel in the 
sa.n1e orbit in the san1.e flux density. (J) 

II 14 An experin1ent is s,et up, in which particles travel frotn left to 1ight 
across a u11if om-i n1agnetic field directed into the plane of the page. The 
particles are travelling at the same speed. Desctibe in detai] ho~l theit 
path thr,ough lhe magnetic fi ld could be used to identify (8) 

a) th sign oJ the charge ,of el ctr,ons) protons, alpha particles and 
neutrons 

b) the i lative 1nasses of lectrons, protons and alpha particl s. 

Stretch and challenge 
15 A stream of charged panicles is originally moving at velocity v and 

directed perpendicular to a uniform magnetic field. The particles follow 
a circular path in a plane perpendicular to, the field and the original 
motion. 

a) Describe how this path cha11ge.s if the magn,etic field varies 
continuously) becoming weaker then stronger. 

evacuated, tube 
in the plane 
of the paper 
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Tl1e Aurora Borealis is the appearance of coloured lights in the sky 
usuaUy seen near the p oles of the Ea.1ith. This is caused by charged 
particles that spiral along th.e Earth1s magnetic field li11.es, and are 
channelled to the poles (Figure 7.23). As the particles interact with gases 
in the atmosphere, they cause coloured light with the emission 
of electron transitions. 

Figure 7.23 

South 
magnetfc 
fjetd lines 

b) Describe how spiral inotion is caused ,vhe1:1 a charged particle travels 
close to) but not quite parallel to a magnetic field line, by explaining: 

i) ,vhat is meant by 'spinal motion' 

ii) how the field affects components of velocity that are parallel and 
perpendicular to it 

iii) how these components of velocity combine. 

Use a diagra1n if this is helpfu 1. 

c) A cl1arged particle is travelling at speed vat an angle{} to a niagne1iie 
field B. 

i) State the con1ponents of velocity perpendicular and parallel to 
the field B. 

ii) Calculate the radius of the spiral for a particle of charge Q; and 
the forn"ard distance travelled whi.l the particle circles the field 
once. 

iii) Pro,ve that these expressions are consistent with the expression 
tan f) = 2rrr . 

a 



Magnetic flux 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
! PRIOR KNOW LEDGE i 
i Before you start. make sure that you are confident ~·n your knowledge and I 
• • : understanding of the following points: : 
~ . 
• • i • Mag neti c Hu,x density B is measured in teslas (TI. j 
: • Tine force on a current-ca r ry ing wire perpenid icular to a magnetk : 
i field 1is given by F= BJ( wh ere I is the current [A~ and l is the length o'f i 
! wire in the fi.e ld (ml. i 
• • ! • The force on a char ged pa rtic le moving perpendicu lar ta a magnetic : 
• • i field is given by F:;;;;; BQv, where Q is t he charge [C] and v [s Hs ve loc i,ty : 
• • 
: [m s-1L : 
• • 
: • Flem ing·s Left-hand rulers used to determine the directions of force, : 
• • 
: mag netic fi eld and cu rren it or ve tocity. : 
• • 
; • The a ngular speed m ~a lso ca lled angular frequency) is calculated as : 
~ . 
i ro = 2rr.f. whe re f is t he frequency '( Hz]. : 
• • • • ............................................................................................................ ~ 

~ ···························································································: i TEST YOURSELF ON PRIOR KNOWLEDGE i . .. . .. 
! 1 al Wo rk out the di-rect ion of the force acfrng on the curr ent- car ry~ng ! 

wire shown rn Fi:9u re 8.1. ; 
• 

• • • • • • • • • • 

b) If 3 cm of the w ire is ~n the fi,eld : • .. 
• • • • • • • • • • • • • • • 
: 2 aJ 
+ • • • : 
: 
: • • • 

and experi:ences a force of : 
• 

2 mN w hen the current flow ing, : 
• 1n the wire ls 2A, ca lculla te th e : 

mag net 1ic flux density in teslas. @ i 
• 

A pro tan travel s at 1 o/o of the e : 
• 

speed of Ught perpe ndicu lar to S ; 
a magnetic f i etd of flux density ! 

• 1 mT. Calculate the force acting : 
• 

: on the proton . : . .. 
i bJ How does t he force change if !:.· ,. ,Figure 8.1 i I it is travetUng para Uel to th e 
: fletd? : • • • • • • 
··········· · ·········· · ·······~···············~··································••

11

1111111111111111111111111111111111i 

1n this chapter1 you will learn how ""'··e create an e.m.f. using electromagnetic 
induction. We u se electromagnetic induction frequently; for example when 
generating mains electricity in pov,ler stations. Electromagnedc induction 
is also used in induction loops~ for example to detect vehicles approac.hing 
traffic lights. A conducting loop bu1ied unde·r the road surface carrie-S 
an ahemating current ; creating an alternating magn,etic field 1 which is 
monitored constantly. When ferromagnetic material ; such as a car1 passes or 
ren1ains over the loop ; the chan ge of flux causes a change in curren t> so the 
p resen ce. of a car is detected. 
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Figure 8,.2 
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n tic fh Magnetic nux '1> is m1agnetic 
flux densjity X crossmsecUo,naL area 
perpeindl•-cHlar to fie~d directmon (meaS1ured 
in webers). 

eb The weber (Wb) is the unit of 
magnet~c f~u1X1 equal to 1 tes ~a metre2 (1 T m2

) 

' 

area A area. A cos IJ 

Figure 8.,3 A cos(} is the area 
perpe ndku Lair to the Hux lin es. 

Figure 8~4A wire 'cuts· field lines when 
it m,oves perpendicular to them. 

1 .. ,.,o.,~ ...... 1,..,i..o11-.1,1,1 ..... 1t•••• .. 1 .. 1.1••11 .. 011..-,1+, •• 1 1..i..•.,., , 01 .... ,..,1,o • ., • .; .. 4+.,.1+or i.+01, .. 

M n Jc fl ·· Un Magnetic flux linked 
by a c,oit ,calculated ais magnettt flu~ tp, x 
nurmber of turns N of the ,coil ~measured in 
webe r-tums}. 

.ber-tu 1 ~ The unit of magnetic flux 
Unkage. 

In Chapter 7 , we can1e across the idea of magnetic flux density, v.rhich 
measures the strength of a n1agnetic field B, or B-field 1 in teslas (T). A 
diagram o[ a magnetic field indicates the density of magnetic flux by 
sho,ving the number of Rux lines p er square m etre (Figure 8.2) . 

[\-le gn ;. l i ~ llu .. is defined as magnedc flux densi.ty B (in t,eslas, T) multiplied 
by the area of the surface, A (in m 2) , where the area A is perpendicular to 
the lines of Ilux (Figure 8.2). Written as an ,equation, this becomes q, = BA. 
Magnetic flux. is measured in b r - (\VI:,), where 1 Wb equals 1 Tm2. 

W"hen an area is no't perpendicular to, the lines of tnagnetic flux. as shown 
in Figure 8.3, the flux through the are~ A is no,,,. the component 

q, ·= BAcos B 

Figure 8.3 shows the area of a loop perpendicular to a field if the loop its,elf 
is at angle 6' to the flux lines. 

Cutting fl1ux l ines 
When an object passes through a magnetic field we can say that it 'cuts~ the 
1nagnetic flux lines. Figure 8. 4 sho\VS a wire of length 1 moving dovln\vards 
in a magnetic field with horizontal field lines. You can see that the "\\rire cuts 
across the. flux lines as long as it moves perpendicular to them. The \Vl.re 
cuts througl1 more flux lines each second if 

• leng)th 1 is longer 
• the wire mov,es faster 
• the magnetic Rux density is stronger. 

If a conductor 1nov,es perpendicular to field lines, it 'cuts ' th e flux lines. 
But if the conductor moves paraHel to field lines, they are not cut . 

Magnetic flux linkage 
~l:1~11 ·tic flu .. · linkngc is defined as ilq>) 1,vhere. tp is. the nun1ber o[ flux lines 
that pass througl1 , or link) with each of the tun1s of a coil of N turns. Since 
flux tfJ = BA for a single loop of wire> then the flux Hnkage is l\Ttp = BAJ\T if 
the coH of vm-e has l\T turns that are perpendicular to the lines of flux. Flux 
linkage is tneasu.red in ,v 1 er-tu rns. 

Flux linkage depends on several factors~ as s ho,1'rn t n Figure 8. 5: 

(a) the flux density 

(b) 'the orientation oJ the coil and flux lines 

( ) the coirs cross-sectional area 

(d) the number of turns on 'the ,coil 

Flux linkage is important b,ecau se an e.m .f. is induced in a coil , i11 
which the fl.ux li11kage changes. You will tearn more about this in t·he 
next section. 

Figutre 8.6 shows a coH being iume.d in a magnetic field . As the coil turns in 
rhe m~gnetic fieldL d1e area of the coil perpendicular to the .field is given by 
_A cos 8 ,, and the magnetic llux linkage is given as 

Nq, = BAJ\Tcos () 



(a) Th.9 Jlux through an area Is proportional 
to ths t,lux density. 

,vl1ere N is th,e number of tu1~ns on the coil, <p is the magnetic flux 
(in Wb), Bis the n1agnetic Ilux density (in T) A is the cross-sectional 
area of the coil (in m2) and 8 is the angle between the axis of the coil 
and the flux lines. Tne flux linkage changes as shown in Figure 8.7 . 

(b) Flux varies depending on the rel,atlonshlp 
between the boundary faces and the 
direction of flux. 

3600 e 

(c) Flux rs proportional to thg ar;a within the 
boundary. 

Figure 8~5 

PLE 

Figure 8.6 The ma,g neti c flu,x linkage 
changes as a co il of cross-sectional 
area· A and w 1ith N tuirn,s rotates in a 
flux d9ns:ity B. 

Magnetic flux linkage through a coil 
Figure 8.8 shows a coil of wi,re for,med as a 60° triangle with s~des of 
Length 30 c,m. The coil has 50 turns . Calcutate the magnet1c flux linkage 
wlth the coi,L when it 1is placed with the axis at 40° to a verbcal in a 
uniform1 hor[zontal flux of 0.02 T. 

Answer 
The area of the coit is 

( ~ ~ base x height) = ! x 0.30 m :i< 0.30 m :x sf n 60° = 0.039 m2 

The flux Un ka:g-e is 

BAN cosfJ ~ 0.02 T x OJJ39 m2 x 50 x cos40° 

~ 0.03Wb turn s 

Figure 8.7 HOV1J fl.ux L(nkage chang,es 
when. a co il of N turns rotates in a fi;ld . 

40° 

____ ____..a 

Figure 8.8 

••+iit••••••••••••i•·············································································································,···················· : TEST YOURSELF 
• • • 
: 1 Ca lcu late the magnetk flux through the face of a 
i • magnet, 1if the face 1measu1 res 2.0 cm by 6.0 cm, and 
! ! the magnetic flux density of the magnet i,s 0.03T. 
: 2 Ca lcu late the flux through th.e horizontat surface 
• : of the British Jsles. The average flux density in the 
ilt 

i regio :n is 53 µTat 20° to the vertica·l a:nd the area of 
: the Brit~sh Isles i1s 3.0 x 1011 m2. • • ! 3 a) Ca lc: 1ulate th e magnetic Hux pass in g through a 
: copper sphere of radius 3. 0 m placed i 11 a region 
• ! of uri1iform ,magnetic Hux density 2.0T. 

i b) Explain whether o r not the amount of magnet ic 
• : flux c hanges if the s ph ere is s li ced in haH,, a lo ng 
• : the axis perpendicu llar to the fletd. 
• 

4 A squa,re coil of w ire has sid es 12 cm long~ and 250 
turns. Ca·lculate the ma9netiic flux linkage when, : 
a) the cross-sect iona l area of the coH is 

perpendicula,r to a field of flux density 0.08T. 
bl the face of the coH makes an ang le of 60° to the 

magnetk flux lii nes . 
c] Sketch a di1ag,ra:m showing how th e Hux linkage 

chang,es [f the cof Lis initi ally ,perpendi cular to 
tne fie~d and is tu rn,ed u ntH it 1s para ltel arid 
then perpendicular aga in . 

• • • • • • • • .. ... 

i • : 
i • 41' ... • • .. 
• 
111 .. 
: • • • • s 
! 
• • • • • • • • • • • • • • • • • • • • • • • ............................................... ................................................................................................ ............................... 
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E le c t r o magnetic induction 

·coM of 
many turns 

Figure 8.9 Using a moving mag,net to 
induce an e.m,.f. 

mic roammeter 

wire 

Figure 8.10 Moving a w ire into a 
magneti c field induces an e.m.f. 

r ,' l I Th@ induced ,e.m.f. ·@qua~5 the 
rate of change of (magniriuc) Uux. 

N 

Our lives ,vould be completely different VYithout Michael Faradays 
discovery of electT01nagnetic induction in 1831 using insulated coils of 
wire and changing magnetic fields. 

You can easily demonstrate electro,magnetic induction using a coil of vJi..r,e 
connected t,o a nlicroa1.nmeter as shown in Figure 8.9. The micro.amm,ete:r 
flicks one ,va:y "'~hen a bar tnagnet is moved into the coil, and the other way 
,Nhen the magnet is pulled out. lt is zero when the magnet is stationary insid 
the coil An e.m.f. is induced if th r is relativ, moveni,ent between the coil 
and a magnelic lield (either the magnet ,or the coil moves) ,or the magnetic 
flux linkage changes (for example) the strength of an electromagnet changes). 

Figur·e 8.10 shows ele,ctromagnetic induction caused by a length of wire 
moving bet\veen t~lo magnets. The wire is connected to the microamn1eter1 

which flicks one \va.y i.vhen the. wire moves down, and flicks in the opposite 
direction when the v.."'ire moves up·. 

An e.m.f. is induced i1.1 the wire because an electric charge moving 
perpendicular to a magnetic field experiences a force; BQv (see Chapter 7). 
Using Flemings left-hand n1le) you can see that electrons in a wire move 
to\vards one end of the ¥lire when the ,\lire moves perpendicular to the 
magnetic field. This leaves one end of the wire negatively charged overall 
and the other end positively cl1.arged, creati.ng a potential difference across 

the ,vire. A current can. flow if the wire is pan of a c.0111.plele ci1--cuit - for 
example 1 i..vhen the wi.re is connected to a tnicroarnmeter. 

Faraday's law 
We can calculate the magnitude of the induced e.m.f. in a coil using 
Farada.1s la\.v. This states that the n1agnitude of the induced e.m.f. 
equals the rate of change of magnetic flux li.t1.bge, and is ,vritten as 

e = /:J. (N4') 
Li t 

i.vhere !J.(N cp) is the change in flux linkage and /J.t is the time over which 
that changes 'takes place. Since a coil of wire has a fixed number of turns~ 
this becomes 

ll. ft, 
e=N-­

~ t 
We can use this la"'' to help us to understand son1,e earlier observati,ons: 

• Relative movem,ent between a magnet and a coH changes the flux linkage 
in the coil (Figure 8.11). This generates an e.m.f. 

• Rotating a coil in the plane perpendicular to the field changes th cr,oss­
sectional area d1sough which the flux passes. This changes the fl.ux. linkage, 
and generates an ·e.1n. f. 

• lncrea.qng the relative motion, or the speed at which the coil rotates increases 
the rate of change of the flux linkage, which i:ncrea.tSes the induced e.m.f. 

downward flux .Increases • If there is no r,d.advc movement or rotation, the flux linkage does not 
Figure B.11 Flux li n'k.;l ge in the coi L 
i1ncreases e1s the co il moves c la~er ta 
t he magnet 

change, so no e.m.f. is generated. 

Lenz's law 
Faraday~ law calculates the niagnitude of the induced e.m. f. and is often 
co1nbi.ned with l.enzs law, which indicates the direction of the induced 
e.m.f. lenzs law states that the direction of the induced e.m.f. opposes 
the changes causing it. 



n-' l w The directjon of the induced 
e.m.f. causes effects that oppose the change 
prod lJCing it. 

Figure 8.12 shows the south pole of a magnet moving into a coil. This 
induces an e.m.f. when there is a complete circuit, a. cun~ent flows and the 
coil behaves as an electromagnet, \Vith its south pole facing the magnet's 
south pole, repeHing the 1nagnet. 

Pushing a magnet's south pole Into the coH 
Induces a soutn pole-this repels the magnet Pulling the magnet out of the coil induoes an e.m.f. such that the san1e end 

_ _.,..... of the coil be .. co,mes a north pole~ which attracts the magnet. 

Pullrlng a south pole out of the coll Induces a 
north pole - this attracts the magnet 

Figure 8.12 A magnet be~ng pushed 
into. or pulled out of. a coil of wi,re. 
Lenz·s law dGtermi,nes the dinacti,on 
of trie induced e.m.f. 

Magnitude of an induced e.m.f. 

We can combine Lenz~ law Vlith Faraday,s law and write 

B =- fl (N(/)) 
. f!. t 

vthere 8.(Nq,) is the change in flux linkage and 8.t is the time o,v,er which that 
changes takes place. Since a coil of wire has a fixed number of turns, this 
becomes 

. I!(/) 
E=-N-­

d t 

Lenz)s laVv'" is the result of oonserv.ation of energy. When tbe south pole of 
a magnet is pushed into the coil

1 
a current is induce.cl in the 'Wire~ which 

becomes an electrorr1agnet. If the south pole. of the electromagnet faces the 
moving magnet, the poles repel and work must be done to keep pushing 
the magnet into the coil of wire. If you try this 'With a very strong n1agnet in 
a large coit you may feel the force you are working against. 

If Lenz's lavl did not apply and, instead, the north pole of the coil faced the 
magnets south pole; the 1nagnet would be attracted. This ,vould niake the 
tnagnet accelerate into the coil, increasing the induced e.tn.f. This v.rould 
start a process ui which increasing the e.In.f. increased the acceleration) 
·\vhich increased the e.m.f.> and so on . That would i1.nply that eneTgy can be 
created Vvi.thout doing any ·work. This) of course, can.not happen. 

= 3 x 10-3-T x 2Jt x [0.02l 2 m2 x 200 

= 7.5 )( 1' a~4 Wb turns 

Catculate the magnitude of the ~nduced e.m.f. when 
a Hat co il of rad1u5 2.0 crnl with 200 turns. is ptaced 
at right angles to a varying m.agneti-c fi.eld . The fietd 
strength is increased from Oto 3..0 mT in 0.30 s. 

Minimum, flux Unkage ~ OWb turns 
Magnitude of ,induced e.m.f. is 

Answer 
1Maximu,m ftux linkage is 

Nq, - BAN 

7. 5 x 10·4 Wb tu,rns - 0.30 s 

g 2.5x10~ V 

Eddy currents 
A mct~l sheet moving into (or out of) a magnetic field can become very hot. 
This happens if very large currents, called eddy currents, are set up in the 
1netal she.et. Eddy currents are circulating electric currents flowing in the 
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Figure 8.13 [a] Eddy currents form in 
a,n atum1in1iu m pendulum, slowing i,t 
dovvn as it mov,es in to and o,ut of a f Jxed 
magnetic fietd unless (b] sUts are cut in 
the pgndu'lum. 

plane of the metaL They are caused by the change of flux linkage when the 
metal moves perpendicular to the field, and the currents flow in a direction 
to oppose the motion creating the1n. 

Eddy curfents can beco1ne very large because metals have a low resistanc,e. 
Eddy curren:ts are put to good u se in induction cookers. Here a high­
frequency altemating current in 'the cooker produces a rapidly changing 
magnetic field, vthich induces a large alternating current in the base of a 
saucepan causing i t to heat up. 

Eddy curre111s can also cause magnetic braki ng. A penduhum swinging 
bet,veen two magnets s]ov;s dm~.rn quickly because eddy currents are set 
up in the metal when it enters and leaves the field (Figure 8.1 3a). l\1agnetic 
fi lds created by these eddy currents interact v.ith the fixed magnetic field , 
opposing the motion and stopping the pendulum. Cuttin g slits in the 
pendulum prevents eddy currents forming and the pendu]um continues to 
swing (Figt1re 8. l3b). 
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REQUIRED PRACTICAL 11 
Using a search coil to investigate 
changes in magnetic flux density 
Note: Thls rs just one example of how you mi,ght tackile 
this requfred practical. 

t A search coil i,s a small Hat coH made from 500-2000 . . 
: turns of i·nsulated wire mounted on a handte 
~ [F19ure 8.14]. An e .m.f. rs induced i:n the coH when, 
i the co il is place_d tn a ,magnetic field that varies . The 
~ ampUtude of ,induced e.m.f. is drirectly proporttonal to 
~ the amplitude of tne va:ryin9 flux den5ity of the fletd. 
t . 
' f . . 
t 
~ 
' : . 
: 
t 
E 
i plastic hand1le 

' ~ Figure 8.1 t. A search ,coil. 
: 
t 

search coll, 

~ You can ea Ubraite the search co il by connecting it 
~ i to an osc illoscope. When the search coH i,s placed 
i perpendicu lar to a known flux dens ity that varies~ the 
~ trace on the oscHloscope is used to find the amplitude 
i of the e.m .f. induced in the coil. 
c 

[ A caUbrated s earch coil ca1n be used with the 
~ oscilloscope to m eas ure the s trength of an unknown 
I 

i flux dens ity~ or the effect of cheng i,ng the angle of a 
~ co~ l ~n a known Hux densi'ty f Figure 8.11 5) . 
! 
~ 

ac supply 

ose:11 lbscope 

Figure 8.15 

To investtg,ate the effect of chang ing the ang'le of a 
coil in a Hux density, the caliibrated search corl is 
placed ~n a known, magneUc field that var ies. The 
ampl itude of the induced e.m.f. is measured by 
co nnecting th e seairch coil to an osciitloscope with the 
tiimebase turned off~ so the e.m.f. is disp layed as a, 
ver ti cat li1r,e on the screen. Meas,urements are taken ~ 

~ 

when the search co it is held at different ang les in the ij 

mag,neti:c field . The area of the C·Oi,,l is given by A cos e, 
where 8 is the angl,e between the ax 1is of the coH and 
the flux lines and A is the cross-sect1o:nal area of the 
co il. We Hnd that the amplitude of the induced e.m.f. 
also var~es with cos8~ which fs cons,istent wah Hux 
linkage given by BAN cos 8. 

N,ote: The slinky spring, will heat up - don't leave the 
current on for on ly longer t han necessa,ry. 
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An experiment with a search coil 
A student places a S·earcn coil of ra1dius 8 m:m1 and 

500 turns in a varying magnetic fi 1 etd of maximum 'flux 
den s,ity 0.4 T. The sea rch co it i's then connected to an 
oscilloscope and placed in the magnetic fi e ld wijth 
its fa ce perpen d icuta, r to th·e flux Unes. It is turn ed 
through 360° taking 0.2 s. 

Ca lculate th e maximum, flux linka,ge. 

Answer 

Maxi mum flux linkage is 

BAN~ 0 .4 T x 1t x [0.008 1m}2 >< 500 
;;;; 0.040 Wb turn s 

Sketch a graph showing how the maximum nux 
linka,ge varies as the co il i1s rotated through 360°. 

lnclude as 1much deta>tl as possible. 

Answer 

The graph i,s shown ~,n Ftgure 8.16. Make sure you 
sketch a cosine c: 1urve with the peak values and the 
x-ax,s ta belled . 
Explain at least two addition.al steps the student 
could take to reduce errors. 

36Cf fJ 

Figure 8 .. 16 

Answer 

Use a data logger to record cha,nges of e.m.f. with 
time precisely and permanently ti .e. so the data can 
be processed] . 

Use a1 catibrated motor to rota te the search co il at a 
s teady rate to im,prove repeatab Hity and accuracy. 
Repeat measurements of data to prepare m ea:n values 
for different angles to reduce the impact of random 
errors. 

Reduce systematic errors by calib rating the search 
coH usi,n,g a known magnetic field and osc,illloscope. 

~ -····················································································································· ·······························: 
: TEST YOURSELF i 
• • • • • • 

• • • • • • .. 
• • • • 

5 The north pole of a magnet is pushed into a co il of 
wire. 

al Describe what happens to the coil as the 
magnet moves into the coil. rests inside the co1it 
and is pulled ba,ck out agiain . 

b) Sketch a diagram showing how the 1induced 
i e.m.f. changes with time. 
! 6 The magnetic flux density between th e poles of 
: a.n etectromag1net is 0.20 T. A coil, with 500 turns ! 
: and cross-sectional area 2.0 x 10- 4 m2~ is placed in, 
i th e fi eld perpendi cular to the flu1x Un es. The fietd 
i increases s tea dily to 0.60T in 10 ms. 
= i aJ Calculate the initiiat magnetic ftux linkage~ and 
: t h e flux li n ka g e at 1 0 ms. 
I 

i b) Calculate the e. m.f. i'nduced ,in the coil. 
" i c.J Calculate the e.m.f. ~nduced in the coil if i,t was 
• ~ held wi tn it s ax 1is at 30° to the field white th e : 
; fi e ld changed. 
• : 7 A sea:rch co il with a, c r oss-sectiona,t area1 of LO cm2 
• 
i : • • • • • • • 
I' • • • • 

and 2500 turn s ts placed between th e poiles of a 
m aginet. If th e co il is pulled out of the m,agnetk 
field f ri 5 ms. and th,e average ,induced e. :mi.f. is 0.9V. 

ca lcula te the streng,th of th e magnetic fle ld . 

! B al Explai,n why a copper dng heats up iif rt fs placed 
i f n, a region wfth an alter natfng magnet1c fleld. 
• • 

b) You have two co its of insulated wire~ both have : • 
the same d rcu mferen ce. One coi l is made up ~ 
of just one lo a P1 but the wi:re ,in the oth er co1 l is ~ 

three times as long and ha s been twi1s ted into f 
three loops. Exp la,i n why the current ,j,n du ced by i 
passing a magnet througih each of the two coHs • • • • • I of insutated wire is the same. • • 

cl Expla~n1 why a1 magnet dropp ed through a 
vertical copper pip·e fall s more s lowly than the 
saim,e magnet falling through a verti cal plastic 

: • • • • • • • ii • • • • I pipe. : 
• 

9 Fig ure 8.17 shows a se:ismom eter ·made from !.·., 

a bar magnet suspended on a s,prin g, wh1ich is 
attached to a metal rod that tran smits vibra,tio n,s ! 

I 

fro 'm the Earth . Use the diagram to explain how the i 
se ism,ometer detects w aves fro,m an earthq,ua,ke. ! 

A : 
metal rod 

Ftgure 8.17 

+1 
voHage/v .. ~~-

..r· .. · 0 
.• . /', 

B . 
• 

/, i 
• • 
!! 
!! • • • • • • • • • • • • • • • • • • • • • • • • • • • : ........................................................ ............ ............................... ........................................................................ . 
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0 Applications of electromagnetic induction 

0-- --w~-- --:1 · 0011 W'OUnd 
on a pole 01 a 

'wt-:----- · permanent 
magnet 

4mm 

Figure 8.1SA gu1itar p1ck-up. 

sound 
waves 

f.lexJbfe 
dfaphragm 

d'laphragm 
support 

m ovln g· coll 
J._J....J,.....J....J=:t-----r wound onto -

electrical 
leads 

a former 

(\ _ e lsctri ea.I 
- V slgnal 

output 

Figure B .. 19 A m rcrophone uses 
electromag netic inductiion to change 
sound into electr icail signals. 

Figure 8~20 Aw1ire mov ing at r ight 
angles to flux Lines. 

Changing magnetic field 
Electric guitar strings a.re n1a.de of magnetised steel. When the strings 
are plucked, they vibrate directly above pick-ups , which are fixed on the 
guitars neck. The pick-ups are bar magnets vvtapped in up to 7000 coils of 
very fine wire (Figui-e 8.18). n1,e vibrating suing causes ·vibrations in the 
magnetic field surrounding the coil of the pick-up. This change is converted 
into an e.m. f. and amplified. The distinctive electtic guitar sounds con1e 
from deliberate distortion "rhen the not is amplified. 

Som,e mic~ophones uses e.lectro1nagne'lic induction to change a sound wave 
into an electrical signal. The micropho,ne has a lightweight coil suspended 
in a circular groov.e between the poles of a permanent magn, t (Figure 8.19). 
The coil is attached to a diaphragm that Yibrates vlhen a sound wave reacl1es 
it. Since the coil t:tnd magne.tk field ar,e perpendicular) an e.1n.f. is induced 
in the ·vibrating coil, which depends on the frequency and amplitude of 
sound waves. The induced e.m.f. is ampHfied; and a loudspeaker changes 
these signals back to audible sound. 

Conductor moving in a straight line 
An induced e.m.f. can be caused by a conductor Ino:ving in a 1nagnetic field. 
For example) a straight wire n,ay be dropped through a uniform magnetic field , 
or a plane may fly at a constant height and speed in the Earth's magnetic field. 

A credit card includes information stored on a niagnetic strip. The credit 
card reader has a small coil in it, and ~·hen the credit card is swiped 
thTough the reader, an e.1n.f. is induced in the coil. It is important to 
swipe the caffd quickly enough so that the induced e.m.f. is large ·enough 
to be interpreted. 

When a conductor moves at a velocity v perpendicular to the flux lines, 
Faradays la;,v applies and an e.m.f. is generated. For a conductor of length 
l travelling in a flux densi ty B, the area swept out per second is length x 
velocity. The induc,ed e.n1..f. equals the tale of change of flux linkage> so 

dA 
E=B­

,dt 
Because the area swept out per .sec,ond is ,v, this becomes 

8 = Blv 

where B is the magnetic flux density (in T), f is the length of the conductor (in 
m) and vis the velocity of the conductor peq,endicular to the field (in tns-1) . 

Electrical power 
Power is th.e rate ,of doing work) and we can show that the e,,,.pression, for 
electrical power when a wire cuts flux lines (Figure 8.20) is consistent with this. 

Yo:u already kno,v that P = VI in a circuit, '\Vhere P is pow.er (Yi/)) Vis 
potential difference CV) a:nd I is current (A). \¥hen po\\rer is generated by 
electromagnetic induction ~ we write 

P=E1 

w l1ere e is the e.m.f. generated (V). 



You also know that work done is F x d, wher,e dis the distance travelled in 
t'he: direction of the force~ so the rate of doing work is F xv, \Vhere Fis 
force (N) andl v is velocity in the direction of the force (1n s-1 ). 

Each second, the change of flux linkage for a \vire inoviug through a 
1nagnetic field is BA, or Blv > vrhere , is the length of 'the 'Wire perpendilcular 
to the field. Substituting in P = El gives 

P = (Blv )I = (Bll)v 

Since BI[ is the force on a conductor in a field, Bn x vis consistent with the 
rate of doing wo,rk or power generat d, F x v. 

Induced e,~m~t between wing tips a"' F =Blv 
Ca lcutate the magn~tude of the indu,ced e.m.f. 
ge nerated between the w i,ng t ips of an a ircra ft flyi ng at 
220 m s- 1 at a co1nsta1nt ihe~ght. Assume that the average 
vertica l co mpo,nent of the Eartn·s magneti c field is 

= 4.1 x 10·5 Tx 6600 m2 s·1 

= 0.27 Wb ~f1 

4. 1 x 10-5T. The w ing trips measure 30 m fro 1m t1p to tip. Sinc·e 
Answer 

Th e area swept out by th e w ing tiip s ea eh second is 

lv= 30 m x 220 m s-1 = 66 00 ,m 2s-1 

Th en we obta in th e induced e. m.f. ~s 0.27V. 

o~~~~~~~-c a L c u Latin g an induced e.m.f. for a 
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Figure 8.21 Rem,ember to specify the ax is 
of rotation for a coiil in a magnetiic f~e ld~ 
w h~ch Js shown here as the black dot 

rotating coi L 

\Vhen a. coil rotates in a magnetic field (Figu1--e 8.2 lt an a.c. voltage is 
induced in the coil. 

To calculate the value of the induced e.n1.f. at time t~ you can use the 
following equation for a plane coil in a unifonn magnetic field so long as 
the axis of rotation is at right angles to the field: 

e = BA1'l ro sin cot 

\.Vhere Sis the induced e.m.f. (in V), Bis the 1nagnetic flux density (in T), A is 
the cross-sectional are a of the coil (in m2), 1>,r is the number of turns on the coil, 
,o is the angular speed of the rotating coil (v,lhich can also be expressed as tt) = 
2 rr.f, where f is the frequency of rotation current) and t is the time (in s). 

Since the maximum value of sin rot is 1, the maximum induced ·e.m.f. i.s 

ema:c = BAX\T 

Figure 8.22 sho,'\-"'S ho1-v the magnetic flux linkage a11d the induced e.m.f. 
a·re link,e.d: 

A A NA ' . .J.!. d(l\Ttp) . 0 Q 
• t . , '+' 1s cl ma..iamum > graruent dt 1s , ; so 8 = . 

• At. B, Nq} is 0, gradient d(f 'P) is a maximum and negative, so E is a 
. . . t 

1nruamum pos1nve. 

A C NA. • . - · d. d(Nq,) . 0 ("'" 0 
• t ; '+" 1.5 a mm1mum1 gra 1ent dt 1s I so c.. = . . 

• A D ""'- TA!; • 0 di d(Nq,) . . . d . . (!' • 

... t , 1~'¥ IS , gra ent dt lS a mruamum an posinve; so c. 1s a 

mi11imun1 negative. 
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+ "' ! ¥le can deduce an. ,expression ~ 
J for the induced e. n1.f. by i 
: substituting i . . • • • • i B = 21eft : 
: : 
: a into the equation : 
. .. 
: • • 

l\T tf> = BAN cos 8 
: 
• to giv,e 
. 
• • • : • 
. . • : 
• 

l\T cf> = BAN cos 2 rrjt 

ru = 21tf 

: so . 
I. 

• 

' i . 
• • • • • • ! 

But shtce, 

d~· 
£=-N -

dt ! 
: we find + • • 

i & = BAN ru sin 01t 

! and the mag:nitudle of the e1nf is . 
• 

I 
t • 

given by 

£ = BAJ\T co sin cat 

• --• 
" • 
i 
"' : 
-' I • • 
= 
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"' ' i 
i 
~ 
~ 

= s 
i 
• 
= • 
~ • s • • • i 
~ .. 
• : , 
: 
i .. • • .. 
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i You have co1ne across a similar ~ 
J situation in Chapter 2 (sin1p le i 
• • 
: ham1onic 1notion). : 
• • ...... +•4···············~···········~··············· 

- £ma:x. 

'bi ( B S la 

Figu re 8.22 

Induced e.m.f.. in a rotating 
coil 
A coit of 500 tu rns a1nd c.ross­
sectii on.al area CL 18 m2 rot ates at a 
frequency of 5 Hz in a uni,form Hux 
den sity of st rength 0.04 T . 

Catcutate the a ngular frequency 

of th e coil. 
Answ,er 

An gular frequency = 2nf 
= 2n x 5 Hz = 1 On rad s-1• 

..._ Ca lcuta te th e maxi,mu m va lue of 
induced e .m.f. fo r th e coi l. 

Answer 

Sin ce th e max iim um vat,ue of 
s~n cot js 1 , 
E = BA Nro s1in mt = BAN@ 

Ume 

;:;; 0. 04 T )(" 0 . 1 8 m 2 x 5 00 x 1 On 
... 36'JT.V= 113V 

Catc uLa te the value of the e.m.f . 
whe n t = 0.20 sand 0.21 s if the 
e.m.f. i.s zero whe n t = 0. 

Answer 

When t = [l 20 s. 
!E = BAN m s.i n cot 

= [)JJ4 T x 0.18 m2 x 5D0 x 
10Jr sin{1 Un x 0. 20] 

= 361r sin 2rc 
= ov 

When t = 0.21 sj 

E = BANro s in rot 
= [L 04 T x 0. 18 m 2 x 5 0 0 x 

1 O-n;sin1(1 On x 0.21 ] 
= 36xsi n1(2.1x] 
= 1 1 . 2n: V = 3 5 V 

~ ~ -·················· ············································································ ······················································= • : TEST YOURSELF i 
::&: • • • • : : 
co : 10 A wire of length l 5 cm 1s moved perp endicular to b) Ca lculate the i1nduced e.m.f. when the speed of ' 

i a magnetic fie ld of ftux density 1.2 T. If the w ir e th e wire is 3.2 ,m s- 1• i 
! moves at a sip e,ed o.f 5 cm s- \ calcula·te the induced 1.2 A dynamo ha,s a coH of wire of 800 tur ns. When it i 
! e.m.f. in the wi1re. is used. the co il spins three t imes a s·econd in a ! 
• I 

: 11 A wire of length 8.0 cm~ and negligjble cross- reg~on of uni1form ftux dens'ity 2.4 T. i 
! sectional area~ js dropped t hrough a u n i1for,m a) Ca le u late tlhe a n,g u,la r freq u ein cy of th e c oi l . ! 
: magnetic f ield of s'treng,th 5.0 mT so t hat it cuts b) The radius of t he co il is 5 mm . C.a lc·ula,te th e : ! : 
! t h e flux li n e s. m a x i mu m v a tu e of t h e i n d u c e d e .1m. f. : 
~ . 
~ aJ The w ire is dro pped horizo nta lly. Exptain why the c) Th e e.m.f. is 91iven by ,S = BANm sl n wt. Ca1lcu late ~ 
! e. m.f. induced in th e w ire inc reases as iit fa lls. the e.m.f. at ttme 0.36s . ~ 
• • . . --------............................................................................................................................................... .._ 



Practice questions 
I A coil rotates in a plane p erpendicular to flux lines in a magnetic field. 

The flux linkage and induced e.m .f. vary during the cycle. \\lhich one of 
the following is al\vays true? 

A When the flux linkage is a maximum, the induced e.m.f. has a 
1naximum value. 

B When the flux linkage is Z·ero, the induc cl e.1n.f. is zero. 

When the flux linkage is a maximum, the induced e.m.f. is zero. 

D When the flux linkage is increasing) the induced ·e.m.f. is increasing. 

l The unit of magnetic flux is 

A weber volt metre2 

B weber-tums D tesla metre 

3 A metal sheet is pulled through a magnetic field; \.Vith its pla11e 
perpendicular to the flux lines. Once the sheet is n1oving at a 
steady speed, the force needed to pull the sheet at a constant speed 

A increases C is zero 

B decreases D is constant (a) 

4- A coil of wire is moved at right angles into, 
through and out of a uniform magnetic field at ~ (b) ta-===___,£__ _ ____::..__~===----'7------=-- f 
a steady speed. \rVhich diagrarn in Figure 8.23 
sho1Ns how the induced! ·e.m.f. varies in the coil as 
it enters, 1noves through and leaves the field? 

(c) 

5 A large square coil of insulat,ed copper placed in a 
storeroon1 has 50 turns. Each of its sides 1neasures 
80 cm. The coil is leaning at 45° to the vertical 
against a wall. The Earths vertical magnetic 

(d) 1--- --------- --- t 
enters fie ld feaves tie!ld 

flux density, B, at that point is 50 ·µT. Calculate the 
magnetic flux linkage of the coil. 

A l .4lmWb 

B l .13n1cvVb 

C l .13kWb 

D l .13vVb 

Figure 8.23 

Figure 8.24 sho,vs how the fiux linkage, l\Tq,, changes when a 
coil moves into a magnetic field. 

The induced e.m.f. in the ,coil 

A increases until t1 and then is constant between t1 and t2 

B is constant between t1 and t2 and then decreases to zero, at t3 

C decreases and then is zero, between t1 and t2 

D is zero between t1 ,and t2 and is constant bet,veen t2 and t3 

0 t1 
l=ig ure 8.24 
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7 A stnall n1.agne t is dropped through a narrow copper tube andl then 
through a plastic tube of the same dian1eter and length. Which one of 
the following statements is true? 

A The magnet falls a.t the same speed in both tubes. 

B Tille magr1et faHs slow,er in die copper tube because copper 
is magnetic. 

The magnet fans slower in the coppe1· tube because oJ ,eddy currents 
in the copper tube. 

D The magnet falls faster in the copper tube because of eddy currents in 
the magnet. 

B A coil of 100 turns has a cross-sectional area of 3.5 x 10-3m 2. It is 
plac,ed. in a uniform magnetic field nf flux density 4.9 mT~ making 
an angle of 401:1 t,o the flux lines (Figure 8.25) . 

The change in flux linkage wh£"n the coil is rotated 
anticlock,.vise untill fJ = 90° is: 

A an increase of 0.4mWb turns 

B a, decrease of 0.41nWb turns 

C an increase. of 0.61nWb turns 

D a decrease of 0.6mWb turns 

- - -- ~~--.... ma_gm~tlc 
____;;......;;;~.....-""'-'-;....._--iilo>- fie Id B 

Figure 8.25 

9 A dynamo spins with its axis perpendicular to the ilux lines in a 
magnetic field. The period of rotation is 0.01 s. If the period doubles, 
,vhich of the foUowing changes will occur? 

A The maxi.n1um e.m.f. and number of cycles per second 
\\rill double. 

B The n1axi.n1um e.m .. f. and number of cycles per second 
will halve. 

C The maxin1um e.m.f. \.\rill double and th e number of cycles 
per second will halve. 

D The maximum e.m.f. \,rill halve and the number of cycles 
per second 'Will double. 

10 1Calculate the time taken for a search coil to be pulled out of a magnelic 
field if the maximum e.m.f. g nerated is 0.6V. The search coil ha.s an 
area 0 .001 m 2 and 2000 turns and is perpendicular to the magnetic flux. 
The magnetic flux density is 400mT. 

A 3.0 s 

B 0.48s 

C L3s 

D 800s 

11 a) Describe the function ·Of a simple ac generator. 

A generator with 600 turns and a cross-sectional area ,of 
3.0 x 10-31n2 is placed so it can spin in a horizontal :magnetic 
field of flux density 0.049 T. The coil spins about a vertical axis. 

(2) 

b) Calculate the maximum magnetic flux linkage for die coil. (J) 



Figure 8 .26 sho\vs hoVil the n1agnitude of the 
flux linkage varies as the coil tu1ns . 

c) Explain why the flux linkage changes in this 
way as the coil turns. (3) 

d) Calculate the n1aximun1 e.n1.f. generated 
when the coH spins in the field. (4) 

) Use the graph to state when the e.m.f. has its 
maximum va]ue. (1) 

f) Explain ho,v the maximutn .m.f. generated 
changes when the coil spins at half the sp ed 
in the field. (2) 

12 a) State the Sl unit of magnetic flux. (1) 

Two, wire coils A and B are placed no..1 t,o e-ach 
other (Figure 8.27). Coil A is c,o,nnected to a 
switch and a battery. Coil B forms a circuit with 
a millivoltn1eler. 

b) Describe and explain \\rh.at is seen on the 
millivoltmeter when circuit A is switched on 
and off. (5) 

c) Explain ho\\7 the ·readings ,vould change if 
circuit A co ntai.ned a second cell. (2) 

13 a) Explain the difference between magnetic 
flux and n1agnetic flux linkage. (l) 

10 
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A 

Figure 8.27 

b) A straight "\.Vir e of length 12.4cm is held horizontall)~ theu. 

s 

released so that it falls through magn.etic flux density of 0.3mT. If the 
e.m.f. generated aciuss the wire at tune t is 14.0µ\ ~ calculate the speed 
of the wil~e at this time. 0) 

14 A metal rod of length 2.3tn is pivoted at one end. It is moved in a 
circle n1aking a complete circuit in 4 s. 

a) Calculate the ar,ea swept out by the rod in 1 s. (1) 

b) If the rod is orientaied so that it is always perpendicular to a n1agnetic 
field of stf ngth 1.2 T, calculate the n1nimum e .m .f. generated by this 
moven1ent. (2) 

1 5 A coil of 600 turns rotates at a frequ ncy of 4 Hz petpendicular 
to a field o,f flux density 30 m T. The area of the coil is 15 cm2. 

a) Calculate the magnitude of the maximum flux linkage. (4) 

b) Calculate th maxi.mum induced e.m.f. (2) 

c) lf the flux ]inkage ha.s its mal..'imu1n value at time t ~ 0; calculate 
,vhen the induced e.m.f. first has its ma~i.1num "Value. (2) 
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II 16 Figure 8.28 shows a way to 1neasure the flo~.r of oil through a pipeline. 
A sn1all turbine is placed in the pipe so that the oil flovl turns the blades 
.around. Some u1agnets have been placed in th e rin1 ,of the turbine so that 
they move past a solenoid. 

1ead1s to an oscUloscope t 

magnets l·n the --="I OH 

1rlm Of the Wheel1 

turbine bi ad es 
Figure 8.28 

These moving magnets induce a. voltage in the solenoid, which can 
be measured using .an oscilloscope. Figure 8.29 shows the trace 
obtained. The faster the turbine rotates, the larger is 1he voltage. 
induced in the solenoid. By 1:neasu1ing this voltage, an engineer can 
tell at what rate the oU is flo,ving. 

a) The poles on the magnet rim are arranged alternately ,virl1 a 
n o1th tlllen a south pole facin g out\vards. Use this fact 10 explain 
the oscilloscope trace. (l) 

b) Sketch the trace on tl1e oscilloscope for the follo\vin g 
(separate) changes. 

I~ 
f 

\ 
\J 

i) The number of tun1s on the solenoid is made 
1.5 tin1es larger. 

Figure 8.29 

ii) The flow of oil is in creased so th at the turbine 
ro tates 'l \\rice as quickl)~ 

c) i) Use the trace in Figure 8.29 to sho-vv that there is a tune 
of 0.08 s bet\Veen each n,agnet passing the solen oid. 

ii) How long does it take for the turbine to rotate once? 

iii) How often does the turbine rotate each second? 

Stre eh and challenge 
17 An electrodynainic tether is a cable used to co,ntrol the motion ,of a 

satellite as it is taken into ,orbit. A tether of 20km in length is used 
to, co·nnect a satellite to a space shuttle. The strength of the Ear1hs 
magnetic field at this altitude has a flux density ,of 50µT. 

a) If the satellite is travelling at an orbital speed ·Of 8.0 kms-1 

perpendicular to the Earth's field; calculate the e.m .f. generated 
across the teth er. 

b) Explain \~rhy this figure is likely to be inaccurate, and suggest a 
more accurate value. 

(1) 

(1) 

(2) 

(1) 

(1) 

{\, 
f I 

-

\ 
\1 



18 A copper ring falls through a region of horizontal n1agnetic field 
of flux density B (Figure 8 .30). Describe hov;r the flux linkage, the 
induced e.m .f. and the current in the ring c·hange as it enters the 
field , passes through and leaves it. 

1amng i {:. A 

X X X X 

X X X )( X 

X X X X 
magnetic tleld going 

X X X X X Into page 

X X X X 

X X X X X X 

{_1,E 

Figure 8.30 A ri:'ng falling, throug,h a magnetic fi.Qld . 

19 Figure 8 .31 shows three coils connected in series to a data logger. 
A magnet is dropped through the three coils. 

The graph in Figure 8 .32 shows the voltage measured by the data 
logger as the niagnet falls . 

Explain the shape of the gra.ph by conunenting on tl1e height of 
t.11.e peaks, the Vtlidth of the peaks, the gaps ben,veen tl1e peaks and 
the direction of the peaks. 

Comment on the are-a under the peaks. 

Figu re 8.32 
time/ms 

s 

N 

data logg·er 

Figure 8.31 



Alternating currents 
and transformers 
········-·····~ ~·· -~ .. ~ ········ ········§···· .... ···············~··-···~· ~-· ·············· ..... . • t 

' P I K OWL DG : • ~ 

: Before you start. make sure that you are confident in your knowledge and 
• 

.. 
it 

"" "" , i understanding of the following points: • • 
• 
! Electric current. J. i·s the rate of How of charge.~, m,easured i,n 
~ amperes [AL ll t 

• 
• • • • t 

f Potenbal differ ence ~v oltag,eL V: is the amount of e'lectrica l work done : 
"" .. 

( per unit charge. 't . Potentia l differ ence is measured in volts !VI. 
• • 

.. 
• • • • • • 

• • w 

• • • • • • • • • • • • • • • • • • • ' • • • • • 
' • • • • t 

• • • • • • • • • : 
• • • • • • • • 

Electric cur rent. I, potential di ff ere n ce, V. and r es1s ta n ce. R, in a c i rcu,it 
are related to each other through the equ1at1on V = IR. 2 
Electrical power is the rate of do1rtg electricat w ork. P=Vl =l2R= ~ 

• • .. .. .. 
• • • • ... 
• • .. • .. 

The frequency. f, of a1 waveform is the number of complete waves per : 
• 

second and is measu red i1n hertz [Hz). : 
• 

The time pedod, I: of a waveform. measured in seconds :[sL is related to : 
• 

the frequency of the waveform . f. by t =;. i 
• 

The e.m.f. rnduced in a earl 1is e = -Nd(J,/ dt~ where e rs the induced : 
• 

e.m.f. iV)I. N is the nurnber of turns on the coil. q, is the magnetic flux : .. 
[ W b l a n d t is ti me ~ s]. : 
Eddy currents are generated Jn metal sheets by cha nges ~n m,aginetk 
Hux . Eddy currents transfer electdcat energy to heat energy . 

• .. 
• • • .. 
• • • :t .................................................................................... Allll .................... 11111111 

1~ ......................... . . .......... . . . .... . ......... . .................. . ...... ............. . ~ . 
: TEST YOURSELF ON PRIOR KNOWLEDGE ~ 
• • • 

• .. 
• i 1 An ac voltage has a tim e period of 0.004s. Wha,t i,s th e frequency of the i 

: VO lta ge SU ppty? : . .. . .. 
: 2 A current of 13A flows through an electric fire elerment. w hi,ch 'ha,s a : 
• • 
: resis tance of 14 0 . Calculate the power dissi1pated by th e fire in kW. i . : 
: 3 Abair magnet , wh ich has poles measur ing 1.5 cm )( 1.5 cm~ ~s ! 
'i .. 

: pulled out of a co il in a tim,e of 0.2 s. The co il has 10 OOO tu rns and a : 
I rres~s tance of 50 0. The average current flowing rn the co iil whHe th e I 
i 1magnet is mov,in g1 is about 35 mA. Esti mate the flux denisity near the i 
' . : pote of th e magnet : 
• • 
; ii f't•••t't't 'll t 'll 1' it ft f f'f'4't+1'.,1' t 'll 4' 1' 1' ilf f' t ••••-t,.'t 'll • ++ff ii f'tt+tt1'1' Iii It t + 1' ff f' f'•t+ill,..t !t!t + • f f• H•++••· ------· 

ain lectrici 
Electricity is generated and transmitted around the country in the form of 
alternating currents (ac) and voltages. These are used because they can be 
transfonn.ed to high voltages and very lo"\\r currents in order to m initn.ise th e 
thermal energy lost as ihe current travels through the 'Wi res of the National 
Grid (Figure 9.1) . Only about 2-3% of the -elecni cal energy frotn tl1e 

generators is lost as heat 1 saving ener~ carb on emissions and money. 



Figure 9.1 Elgctricity !iU pply py Lons -
part of thQ National Grid. 

•• •• ••• •• •• • •• •• r•• •• ••• •• ••• •• ••• •• •• • •• •• ril• •• ••• •• ••• •• ••• •• •• • .-. ••• •• •• ••• •• • 

1 0 lt is hal·f the peak-to-peak 
voltage, and is equmvalent to tbe a1mpUtude 
of the waiv,efor1m. 

t peak 

t 
peaK..,to-

pea.k 
voltage. 2 V0 

voJtageJ V0 

Figure 9.2 An atternat1ing electri,cal 
wavefo.rm. 

Figure 9.3 Alternating voltage. 

Ake mating cun-ent is delivered by the National Grid to consun1ers .as a 
sinusoidally varying supply with a frequency of SOHz, and a range of different 
voltages~ depending on the custon1ler. Household mains has a non1inal voltage 
of 230-V, although this value varies th1uughout the day depending on the 
den1and :rnd supply of electricity. The maxitnu1n cun·ent that can be dravn1 
by a single don1estk supply is about 65A. The electrical socket ring main in 
your ho.use bas a maximu1.n current of 13A protected by a fuse or a circuit 
breaker. Ho,,·vever, it is ,only la1nps heaters, cookers and devices such as 
vacuum cleaners and mowers, -with large electric motors~ that use ac clirecdy 
,off the n1ains. lv!ost other devices w,ork at 1nuch lower voltages and as direct 
currents (de). This means that devi.ces such as t,elevisions, con1.puters and 
games consoles an requir-e a separate (oT built-in) step-dow11, transfonner that 
convetts 230Vac into (for example) 12 V de. 

Al _ rnating curren and volta e 
Alternating currents and voltages move in one direction for half of their 
cycle and in the opposite direction for the other half. lvlaitns ele-erricity 
comes in a sinusoidally changing pattern, with the magnitude of the 
current or the voltage continuously varying betvleen maxi.mum positive and 
negative. values. The peak value of the voltage (or potential difference) is 
the maxin1um value in either the positive or negative direction, 'With respect 
to zero. The peak-to-peak value of the voltage is measured from one peak 
in the positive direction to the other peak (called a trough) in the negative 
direct.ion (see Figure 9 .2). 

The peal- ·o ltagc , V0 , of the alternating wavefom1 is half the peak~to-peak 
voltage1 and is equivalent to the anllplitude of the waveform. For a given 
component such as a resistor, the peak current I0 and peak voltage V0 are 
related to each other through the equati.011 

·v0 = I0R 

Comparing ac a1nd de equivalents 
As altenrating cu1rents and voltages vary continuously, ,vhat value is used in 
calculations that gives the sarne effect as the equivalent direct current or voltage? 

The average values cannot be used, because the average values are both 
zero- - there is the san1e amount of signal above zero as there is below zero. 
The values chosen are the ·root mean squar,e (r.m.s.) voltage and current. 
Wnen multiplied together, these quantities produce the sa111ce power in a 
resistor as would be produced by the same de ,·alues. This can be expressed 
more easily in the fo·rm of the equation: 

P = V dJdc = V nnJrms 

A sinusoidal alternating voltage V, vatying ,vith time, t, can be represe:nted 
by the equation 

V = V0 sin(2n.ft) 

where V0 is the peak voltage, andf is the frequency of the supply. This is 

shown on the graph. in Figure 9. 3. 

If this voltage is applied across a fixed resistor, R; then tl~e power dissipated 
by the resistor is equal to 



Figure 9.4 The sin 2 g.raph. 

. V2 v; sin2 (2n _ft) 
P=-=-----

R R 

Th·e av,erage po-,;,ver is the po\vei- v..re. ne,ed to compare to an equivalent 
v;l 

constant de value , but aJS ; -- is constant in this equation, we only n eed to 

find the average value of sin2(2m't). This can be done by analysing the g1·aph 
of the function in Figure 9. 4. 

It can be seen from Figure 9.4 that the av""erage value of sin2(2xft) = 0.5, so 

1 v.2 
P= ! o 

R 

This °"'ill be the same po,ver as that for an equiv-alent constant de value ·of 
voltage~ V de: 

P= tV5 = vfc 
R R 

H e-nee Vi"e obtain 

vt 1 
-= Vck 
2 

and 

vd = c-

v; 
V - v: - 0 

de - --
mis Fi 

As the al ternating current varies in phase ,vith the voltage, using a similar 
reasoning yields 

I = lo 
nns .../2. 

As a result, the mean alternating power, Pmean, which is equivalent to the de 
power, is given by 

p me.an = V m~slrms 

and the peak alternating po\\··er, Ppeak, is given by 

P peak = v'"oio 

Hence finaU y "'·e have 

~ Io p =- x­
~an .JI Ji 

~ Volo 
2 

PFCak 
~ 

1 

ln other words) the mean po"rer d issipated through a fixed resistor ·by an 

alternating current and voltage is equal to half the peak power dissipated. 
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Mains power 
The given UK main s voltage is 230V ac- this ts an r.m.s. 
value. The largest power that ca n usually be drawn from 
a local grid is 115 kW - this is the m·ean value~ equ iva,lent 
to a de supply. 

1 What is the rr: m. s. c1u rrent? 

Answer 
Use the equation for Pma.an from the tex t : 

P mean = Vrm!Jms 

I· - !:r'O.-'ue ,, 
rms - V 

rms 

15kW ---230V 

- 65.2 A~ 65 A {2 s.-f.) 

What are the peak power, peak vo ltage and peak 
current? 

Answer 
Ccm,bin·e the eq,uattons for V0 and 10 from the text to 
give the eq uati,on far P peak: 

Vo = Vrms x J2. 
= 230 V xfi. 
= 325.3 V = 330 V 12 s.f.J 

lo = 1rms X J2. 
= 65.2 A x.J2 

= 9 2. 2 A = 92 A [2 s. fJ 

Pr,eak = Volo 

= 325.3 V x 92.2 A 
= 29993 W = 30 kW (2 s.f.l 

We c.an then use these values to calculate the pea1k~to­
peak values of p.d. and current: 

V peak-to~peak = 2Vo = 650 V 12 5. f.) 
[peak-to-peak = 21 o = 180 A [2 s.f . )1 

~ ·····················································································································································: 
: TEST YOURSELF i .. 
• ! 1 What is meant by tlhe "root mean square· [r.m,.s .J 
• 
: voltage? 
• : 2 An ac power supply delivers Vrms = 6.0V to a fixed 
• 
: resis tor of res~stan ce R = 2.5 D. Calcu late: • ! a] the r.m .s. current through the res1 sto r 
i b] the mea n power deUvered to th e resistor 
! cl th e peak power det~vered to the resistor. 
• 
: 3 In th e USA. the nomi1nall r.m . .s. vo ltaige is 120V. 
J tt the mean power delivered to a US domestic 
• 

house is the same as that ta a UK house [~ 5 kWL 
ca lculate: 
a] th e r. m. s . current de Livered 
b) the peak vollta9e delivered 
cl the peak power d el'tvered . 

4 l he ac motor for a (U Kl m aiins washing maic lh ine 
works writlh a peaik IP ower of 400 W. Calculate: 
a] th e m ean power drawn by the m.otor 
b] th e r.m.s . current tn rougi h th e motor. 

• :-• • • • • • • • • • • • • • • • • • • Ii 
• • 
' • • • • • • • 
' • • • • ii 

: ... ... ..........• .•.......... ii•i••·················· ····· ········· ·························•••i••··········· ········ ·· ······················ .......................... 11111111: 

U_ s_ ·1 n _ · ll d · L an osc1 oscop _ to 1sp ay a eforms 
Analysing alternating ,\lavefomlS is best done by displaying tl1e waveform 
using an oscilloscope. Oscilloscopes are a form of visual , calibrated 
voltm,eter1 ,vhere the operator is able to alter how the ~ravefoim is 
displayed. First, it is possible to control the time taken for the signal to 
m,ove across the screen by adjusting the timeba.se - often labelled tim.e/div. 
Sec,ondly1 the amplitude of the signal displayed on the calibrated screen 
cZ1n be contr,olled by adjusting the y-sen.sitivity - this is also kno"rn as the 
venical sensitivity, y-gain or simply volts/div. The tunebase (in seconds) 
provides a scale for the x-axis ,of the screen and. indicates the time taken 
for the signal to move h orizontally acro,ss one square on the screen . 
Usu.1.g the square gri.d on the screen to measure the nu1nber of h orizontal 
squares between t"\vo ruccessive peaks (or t roughs) aUows the period of 
the waveform to be determh1ed and hence the frequency. The oscilloscope 
also makes it very easy 'to measure the peak~to-peak value of the wave by 
counting vertical squares and then using the y-sensitivity (usually calibrated 
in volts, millivolts or microvolts) to apply a scale. 



PL calil brat.eel screen timebase 

Oscilloscope with a de signal 
The osciHoscope in F1igure 9.5 is displaying a de signal [from, a 
battery for example]. Oescriibe the s~gnaL 

Answe·r 
The Umebase 1s set to 20 ms/dlvl so. because there are 10 horizontal 
divisiorns on the screen grid. the signal takes 200 ms [0.2 s] to travel 
from one side of the screen to· the other: The y-sensitlvizy ~s set to 
1 V/di,v~ and the signal is 2.4 divisions vertically up from the centre y-sens1ltlvltly 

lin e. This ·makes the voltage of the s,ignal 2.4V. Figure 9.5 Oscilloscope displayrng, a de stgnal. 

Oscilloscope with .an ac waveform 
The oscHloscope in ~i:gure 9.6 illus trates an ac wa,veform 
from a signat generator. Descliibe the waveform. 

Answer 
In this case the t[mebase and y-sensitivities ha:ve not changed. ~ .. ' I , , 

' 
., 

There are five horizonta~ djvi1 sions between the two successive 
peaks or troughs, and th~s corresponds to a time pedod of 

l 

.. ' 
~ 

J ·r .. 
I 

' ·~ ' .. .. 

' ' 1 DO ms. The frequency of the signal is therefore 
,, 1 

frequency = = 10 Hz 
ti1me pe rtod 1 [)0 X 10-3 5 

: 
'I : I ' 

i I 

The peak-to-peak voltage measured from the bottom of a trough 
to the top of a peal< on the screen [s s·ix divisions. correspondi.ng Figure 9.6 DsciUoscope displaying an ac waveform . 

to 6 V. This corresponds to a peak voltage of 3V and Vrm• = 3;. =2.fV . 

..-............................................................. ..-........................ II! .................................. ............................................................ ............................................................... 1,IIP:,1 ........................ .. 

Virtu.al oscilloscopes and signal generators 
There are m,any excellent virtual oscilloscope and 
signal generator simulations and apps availabte on­
line. Using the keywords in itali cs as search terms in, 
a sea,rc h e ng in e wHl take you to a ra 119 e of d iffe rent 
versionsj although they aH operate using the sa m,e 
principles as the reat thi,ng illustraited i1n Frgures 9.5 
and9.6. 

Some simulations are just osc illoscopes, and these 
rely on an externa l s1gnal being ge·nerated and fed 
through th e computer's sound card or m.icrophone. 
8 e ca.r,ef u t when do rng th[s - use an ex ternal device 
that does not exceed th e sound ea rd's input voltage 
(a tab'let ~s idea l for this] . 

Other s imulation s have a built-in s rgnal generaitor 

that aHows you to generate an altern.aiting s igna.l 
d;irectly for djsplay on the oscilloscope screen. 

Use one of these simulations to fa.m.Hiadse yourself 
with the controls of the oscilloscope, so that when you 
come to use the real thing you will be a1ble to ana lyse 
atternating waveform,s a·nd extract the retevant key 
1informati,on, such as the frequen cy an1d the peak­
to-peak valu es. You could also use your S'i1mulation 
to anatyse the voltage si1g nals com11 ng off dJfferen t 
1music tracks4 although the rapidly va ry rn g voltag es 
1may be tricky to measure unless the s[1mulation has 
a · Hold'' or "Freeze' function . Alternatiively you co uld 
speak or s[n g' dlrectty into th e so und card and use 
the oscilloscope and your voice to a,riatyse some 

atternati.ng s1ignats. 
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Many devices use transfonnei---s to increase or reduce the 
voltage of an alternating voltage. supply. Transformers 
are used by the National Giid to increase the voltage 
generated in power stations up to 400000\,; so tha:t 
energy can be saved as electricity is transmitted around 
the countl')~ Then trans[ormers are· used to reduce this 
high voltage (or safe use in the ho1ne. Figure 9. 7 shovits 
the transforrners used to step up the voltage in a power 
station. 

Structure of a transformer 
The structure ,of a transformer is sitnple. lt consists of 
t\VO coils of wire linked by a soft iro·n core as sho\l.rn in 
Figure 9.8. 

Figure 9.7 Step-up transformers increase th,e generated 
vottag,e from 25000V to 400000V. 

An ailtemaiing current h1 the primary coil creates a 
changing magneiic field in the core, ,vhich is made o[ 

a soft magnetic 1naterial such as iron. The secondary 
coil is also wound round the core. As the 1nagnetic 
flux in the core changes, the magnetic flux linkage to 

the secondary coi.l changes and an e .n-1..f. is induced 
in the secondary coil. Because transformers use 
electromagnetic induction , they only work with an 

ac supply. 

ac input 

ac ouitput 

magnetic field In core 

Figure 9.8 The structure of a, 
transform er. 

from AQA paper Jan 201 i 

Figure 9.9 

Th,e turns rule 
For an ideal transformer, mth n o po,ver loss·es> the ratio of the turns on 

·each coil equals the ratio of the priinary and secondary voltages. That is 

Vs - ']\Ts ---v,, l\T p 

,vhere V5 = secondary voltage M, VP= prin1._ary voltage (V)> N5 = turns on 
the secon dal)r coil and NP= turns on th e pti1nary ,coil. 

A step-up trans[o-nner is a transforn1er that inc.reases voltage, so 1'.1/l\TP 
is 1n,o·re titan 1. A step-do~ 'transformer is a transfotmer that decreas·es 
v,oltage) so ~T/Np is less than 1. Figure 9.9 shows a sin1ple circuit diagram 
for a transformer ~ith the symbols for an ac supply, a step-up transforn--ier 
and a bulb. 

You already know that E depends ·On the number of turns on 
the coil. The induc d e.m.f. is giV'en by 

The rate of fiux change dq> in the core of the transformer is the same for -- - dt - -

both coils, but t.hc number of turns N is different; so the induced e.m.f. is 

different in the secondary coil} and depends on the ratio of Ns to NP. 



Transformers cann ot incr,ease the povver output of the supply. 1n an ideal 
transformer1 'With no power losses~ the poweT input to the trans·Com1:er must 
be equal to the po,v-er output. Therefore ,ve can \Vrile the follo\\iing equation: 

VPJP = Vis 

where Vs = secondaty voltage (V), VP = p,rimary voltage (V), l5 = current in 
the secondaty coil (A) and Ip= cutTent in the primary coil (A) . 

This means that a transforn1er that reduces the output voltage compared to 
the input voltage has a larger current in the seconda1y coil compared to the 

primary coil. 

Step-down transformer 
A step-down trainsformer ha .. s 2500 turn s on the primary 
coil. It transforms marris vottage, 230V ac. into a 12V ac 
supp ly. 

1 Calculate the number of turns oin th e secondary 
co il. 

Answer 

R . th t ' Vs Ns . earrang rng ·: e equa 10n ....;....=- gives 
V Vp Np 

Ns =Np x ~ 
VP 

12V 
= 2500 x--

230V 

= 130 turns 

When the current 1n, the secondary coil is 1.5A,. what 

is the current i,n th e pri1mary co il? Assume th at the 
tra nsfo rim er is 1 Q,0°/o effi dent. 

Answer 
Rearranging the equation VPIP = Vs Is gives 

V 
:1 :::;: ~ x J 
P V s 

p 

= 12 
V x 1 .5 A 

230V 

= 0.078A 

Transformer efficiency 
Transformers can be very efficient, but they are never 100% efficient. The 
efHci. ency of a transformer is calculated using this equation: 

ff
. - Vsf s 

e 1c1ency ;;;; -
VPIP 

where V5 = secondary voltage M, VP= primary voltage (V), I$= current in 
the secondary coil (A) and IP = current in the primary coH (A). 

E 

Efficiency of a transformer 
The efficiency of a mai1ns transformer is 90%. The ma~n,s 
supply is 230V ac and the output of th e transformer 
rs 12V ac . Ca lculate the current 1in th e secondary co il 
when the current in the pr,imary coil is 0.5A. 

Answer 
Usa the eq:uaHon for efficiency and subst:itute the 
values kn own: 

ff
. . Vt"ls 

e 1c1ency =~ 
VPIP 

O. 9 = 1
1 

2 V X Is 
230 Vx0.5 A 

Rearra,ng1 ing to 1make ls the subject gi ives 

I = 0.9 x230 V x 0.5 A 
5 12 V 

= B~6 A 
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Figure 9._10 Eddy currents are reduced 
by bujtdi1ng the core fr om1 th·in , ins ulated 
rlaye rs of i ron. 

Energy losses in transformers 
·Energy losses in transformers occur because of the foUn\ving effects: 

• Heat is produced in the copper wires of th e p rimary coil and secondary 
coil ;,.vhen a current flo,vs. Using low-resistance mre reduces tl1ese losses. 

This is particularly in~ponant for the secondary coil of a step-do\Vl1 
tr-ansfom1.er> because th e cun·ent is larier in the secondary coil compar·ed 
to the primeny coil. A thicker ~ire is often used in the secondary coil of 
a step-do\\rn transformer. 

• S0n1e magnetic flux produc,ed by the p1imary coil does not pass through 
the iron core, ;,,rhich means the flux linkage to the seco,ndary coi] is not 
100%. This can be reduced by designing the transfom1er vtith coils close to 
each other or \Vound on top of each other, v.1hich improves the flux linkage. 

• There is an effect called h.ysten:si.s. Some energy is lost as heat every time 
the direction of the inagnetic field changes becaus,e energy is need d 
to realign the magnetic. domains in the ·Core. This is reduced by using a 
soft magnetic material sucl1 as iron) rather than steel which needs more 
,energy to demagnetise and magnetise. 

• Eddy currents form. in the iron core due to the continuously changing flux. 

These currents heat the core up~ increasing energy losses. Eddy currents 
are reduced by niaking the core using laminated sheets separated by thin 
layers of insulation . Eddy currents are discussed in more detail belov!l. 

Eddy currents in transformers 
In Chapter 8 1 you lean1t that eddy currents are created in 1netal sheets "'hen 

there is a chaar1ge in magnetic flux. In the core of a trausfonner" the alteni.ating 
supply creates alten1ating n1.agi--ietic ftux changes, and these create eddy currents. 
Eddy currents flow in loops, in a direotion that opposes the niagnetic flux 

changes that cause them The result is that eddy currents in the u--on core will 
reduce the e. n1. f. induced in the secondary coil. In a. core made from solid nun, 
eddy cutTents couldl become large ·enough to n1elt the core, because the resistance 

of the nun core is very lo-\~: To prevent these problems> lhe core is built from very 
thin lanlinations or layers, of metal (Figure 9 .10). The eddy currents are smaller 

when there are thin laminations, because the induc,ed voltage drives the cun-ent 
round longer paths - so the resistance to fto"'r increases. The la1ninatious are 
b1Stllate d from each other, for exan1ple using layers of insulating varnish. 

-ransmis ~ ion of electrical pow r 
Energy losses due to the heating of transmission lines in the Nati,onal 
Grld can be very significan't because electrical energy can be transmitted 
very long distances from the power stations to the end users. Electricity is 
transmitt cl throughout the UK (Figure 9.11)~ and also bet,v,e,en European 
countri·es - fo-r example, betvleen the UK, France and the Netherlands. 

Transformers are us,ed lo step up the voltage generated in power stations. 
Since po,ver transmitted is equal to the product V x I, stepping up the 
voltage in transmission lines reduces the current. Smaller currents have 
a. smaller heating effect on the power lines) so reducing the current in 
transmission lines reduces en ergy losses to the surroundings. 



Po,Ner s tations generate electrical ,energy at a potential of a.bout 25kV. This 
voltage is stepped up using transfo1111ers shortly after it leaves the po"rer 
station and is t ransn'litted using transmission lines operating at 275 kV 
and 400kV. Overhead t1--anstnis.sion lines are supported using the fainiliar 
large steel pylons. Transfon ners in sub stations step down the voltage for 
distribution of electricity t,o the ,end user. Disttibution lines operate at 
132 kV, with cables supported on smaller steel pylons. vVooden poles are 
used to, supp,ort po~ter lines operating at 11 kV and 33 kV. 

Calculating1 power losses in transmission lines 
Power loss sin the National Grid total about 3% of demand~ and mainly 
occur in the generator transformers, o,verhead lines underground cables and 
giid supply transfo1mers. Two-thirds ·Of the Losses in the National Grid occur 
in the overhead lines of the transmission system. How ver, the percentage 
losses in power lines in the distribution system are bigger than in transr:nission 
lines be,caJuse the voltage is stepped cllo,wn~ so currents in the power lines are 
larger. Losses in the distti.bution system can reach as mu.eh as 1.5%. 

Power losses are calculated using P = I2R. Because 1he power losses are 
proportional to the square of the current ) doubling the current quadruple..s 
th e po\ver losses. Power cables are made from alun1inium supported. by 
steel cores> and the lo,v resistance of th e.se cables reduces losses in power 
lines) since losses are proportional to R. 

Step-dovtn transformers in distribu tion systems are tnade more efficient 
by using thicker ,vire in the secondary coil. The current is higher in the 
secondary coil of step-do\Vl.l. transformers, so I2R losses due to th e heating 
of the secondary coil can be significant. Reducing the resistance of the 
secon dary coil reduces I2 R losses. 

Transmission line 
A power tra,nsmiss ion Un e in a factory operates ai t 25 kV. Th e power in put 
to the ea ble is 750 kW. 

Calculate the current in the tra nsmission lr.n e. 

Answer 
Rearrang,ing the equation P ~ VI for power gives 

P 750x l03 W 
11= - = . - ~ 

V 25 x 10 V 
= 3,0A 

" The res ista,nce of the cable is 40 0. Calculate the power supplied by the 
cable. 

Answer 
Use the ·equa ti on power supptied = input power - power losses 

power tosses ;;; l12R = !30A)2 x 40Q = 36 :kW 
power supptied = 750 kW - · 36 kW = 714 kW (710 kW 2sf} 

Catculate th e effi,ciency of the t ra nsm 1ssi,on Une. 
Use the equation for effi ciency an d substttute the values k nown: 

efficiency = pout ~ 714 kW x 100 = 95.2°/o [95% 2sf~ 
R 750 kW 1n 
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5 Expta~n why: 
a] transformers do not work usrng de 
b) the iron cote of a tra,nsf:orm.er is Laminated 
c:J a thicker wire 1is u.sed in the secondary coll of a 

step-down transform-er. 

Ca lculate the turns ratio 1for a tran,sformer that 
steps up a 25 kV jnput to an output of 132 kV. 

b] The transformer ·in part [aJ is 900/o effkient, 
and it has a current of 40A flowing i1n the 
prim·a·ry co il. Cailcuilate the power outp,ut in the 
secondary co il. 
Ca le u tat e th e c ,u r rent in t h e s e con d a ry co i l. 

7 A step-up transformer transfarm.s the input 
voltage, 12V ac ~ frnto a 48Vac: su:pply. 
a) If the primary coi l ha s 200 turns, catculate the 

nu1 mber of turns on the secondary co il. 
bJ When the current in th e prima,ry coil is 2.4A, 

what is the cu,rrenit in, the secondary coit? 
Assum-e that the trainsformer j,s l 00% effic ient. 

8 A transfo-rmer is 95.0/o effi1cien1t. The transfor ·mer 
,uses mains voltage~ 230V ac, and the output 
voltage is 6V ac. Calculate th-e current in the 
prima·ry coil if the current i1 n the secondary coil 
!iS 4.8A. 

• • • • • • • • • • • : • • .. 
• • • ... .. • • 
i • .. 
• • .. 
: • I • • • • 
i • • • • • • • • • • 
i 
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Prac ice questi ns 
I The T.m .s. voltage from a power supply ,vith a peak voltage 

o[ 6 Vis: 

A 3.0V 

B 0.12V 

C 4.2V 

D 0.85V 

Us the in£ r1nation in - igur 9.12 about the voltage wav form 
from an ac p wer upply to an "'-. r qu stions 2 3 and 4. 

2 The peak-to-peak voltage shov.rn in 
Figure 9.12 is: 

A 128V 90.5,V 

B 64V D 45.3V 

3 The r.m.s. voltage of the signal shov.rn 
in Figure 9.12 is: 

A 128V 

B 64V 

C 90.SV 

D 45.3 V 

4 The frequency of the ac power supply shown 
in Figure 9.12 is: 

A 0.2Hz 

B 200Hz 

C O.lHz 

D lOOHz 

5 Which of the \vavefonns in Figure 9.13 shows 
a 4.24 V r.m.s. voltage? 

y--galn: 2V d,lv 
I 

I y-~a,ln : 1 V/dirv --

A B 

I Y-Qaln:! 2V d.lv 

C D 

Figure 9 .. 13 
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Figure 9.12 



6 A transformer has 1500 turns on the primary coil and 600 turns on the 
secondary coil. The transfonncr uses 230V ac mains supply, and dra"\VS 

a cu1Te.nt of 0.4' A in normal use. If the efficiency of the transfom1er is 
85% what is the current in the secondary coil, ,vhen the secondary 
voltage is 92 V? 

A 0.65A 

B l.OOA 

0.85A 

D 0.14A 

7 The primary coil ,of a step-dovm transformer uses an ac mab.1s supply~ 
The secondary coil is connected to a phone charger. Which line A-Din 
the table correctly describes the potential difference and current in the 
seconda1y coil in relation to the primary coil? 

Secondary c:u rrent/pr imary current Secondary· p.d../primary p.d. 

A >1 >1 

8 >11 <1' 

C <1 >1 

D ..... ,1 ..._ I <1 

8 Wnich of these doe.snot reduce the efficiency of a transformer? 

A. heating of the primary and secondary coils 

B eddy currents in the iron core 

C leakage of Inagnetic flux from the primary cuH 

D insulation between tl1e primary and secondary coils 

-

9 Tl1e National 1Grid tra:nsntlts electrical power from power stations using 
tl~nsn1ission lines. Substations link tranSinission lines to distribution 
systems tl1.at distribute electrical power to the final users. Which line 
A-Din the table correcdy describes the arrangeni.ent of step-up and 
step-down transfom1ers in the National Grid? 

Transformers in power stations Tra nstormers in substations 

A Step-uip Step-down 

B Step-up Step·- Up 

C Step-down Step-down 

D Step-down Step-up 

10 A cable~ 4 cm2 in cro,ss-s,ection and of resistivity 5 x 10-S nm, 
carries a current of 2500A. The power loss per km is: 

391 W 39lkW 

B 781W D 78lkW 

11 An alternating vo]tage from a signal generator is displayed 
on an oscilloscope screen with the follo\\'ing settings: timebase, 
2 5 ms per division: and y -sensitivity, 3 V per dh-rision. The 
vilaveform of the voltage signal is s'hovm in Figure 9 .14. 

Figure 9.14 
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Calculate: 

a) the peak-to-peak voltage of the signal (I) 

b) the r.m.s. voltage (1) 

c) the time period of the signal (l) 

d) the frequency of the signal. (2) 

Make a sketch copy of the trace on the oscilloscope screen. 

) On your ,copYi sketcb the de voltage signal that ·,vould produce 
the same pow,er dissipation in a resistor of resis'tance R 
equ i vale.nt t ,o, that pr,o·duced by the signa] generator. (2) 

12 Domestic ,electricity in the USA is delivered ,;,,vith a peak value of 
170V and a frequency of 60Hz. 

a) State vtbat is meant by the ·peak value/ and show how this 
value is related to the roolL m,ean square (r.m.s.) value. (2) 

b) Calculate the r.m.s. voltage. (2) 

c) A light bulb is connec~ed to the mains supply in the USA and 
d1-a.ws an r.m .s. current of 0.50A. Calculate the mean power 
of the bulb. (1) 

d) lJsing a suitable set of axes, sketch the voltage waveform 
of n1ains elect1i.city in the USA. Include suitable nun1erical 

scales on your sketch graph. 

13 A student is using an oscilloscope to measure the voltage from 
a range of different voltage sources. She connects the voltage 
sources to they-input of the oscilloscope. They-gain of the 
oscilloscope is set to O.SV/dh~ and the timebase is set to 
4nis/div. The scr,een of the oscilloscope is divided into 
a 10 x 10 g1id as sho"WTI in Figure 9.15. 

a) Copy the diagram l"rice and draw sketch es of the 
oscilloscope screen illustra.ti11g the voltage wavefom1s 
of the following sources: 

(4) 

I 

i) 1.5 \t cell (battery') 
Figure 9.15 

(1) 

ii) UK mains ]ow-voltage ac power supply1 2 V (peak) . 

b) Calculate the r.m .s. voltage of the ac povt,er supply. 

14 a) Describ how you ~vould use an oscilloscope to compare the 
output from an ac, 12Vrms, 15 Hz wind turbine and a 12 V de 
car battery. You ne,e.d to consider the quality of your written 

(2) 

(2) 

communication in your ans,v,cr. (6) 

b) The car battery is connected to a car 1,eadlight bulb and the 
cu1Tent is measured to be 2.SA. Calculate the power of the bulb. (1) 

c) Calculate the peak power dra"'rn from the Vilind turbine if i t was 
connected to the same car headlamp, vn.th the same mean power. (1) 

d) Calculate the peak voltage p1·oduced by the wind tuJ"bine. (2) 

I 

-

- ,~ - ,~ -



II 15 High-voltage transmission of electrical power in the National Grid 
can cause large energy losses. Explain how energy losses are 
1ninimised when t1-ansmitting ac voltage in the National Grid!. (6) 

II 16 A transformer is used inside a 12 V, 60W heater, to step down 
the mains voltage of 230V. 

a) Calculate the turns ratio for the heat,e.r~ transformer if the 
output voltage is 12 V r.ni.s. "rhen the heater is connected 
to a mains supply of 230V r.1n.s . State any assumptions 
you make. (3) 

b) Calculate th cu1-rent in the supply lead when the heater 
is connected to the mains supply and turned ,on. (3) 

c) Tbe r. m .s. current flo'h·ing in the primary coil is O. 2 6 A. 
Calculate the efficiency of the heaters transformer if ihe r.m.s. 
output voltage is 11.8 V, and an r.m.s. cun·ent of 4.5A flows 
in the secondary coiL (3) 

II 17 A factory uses a transfomr1er to step doVim the voltage from 
11 kV to 415 V. 

a) Calculate the number of turns on the secondary coil if there 
are 3000 turns on the prin1ary coil. (3) 

b) A crane with maximutn power of 60k\rV uses the 41 SV ac 
supply. Calculate the current drawu from the 11 k\l supply 
when the crane ,vorks at n1.axin1um po\.ve1) at whic·h point 
the efficiency of the transf om1er is 85 % . ( 3) 

c) State tv,lo important causes of energy loss in th,e transformer 
and describe ho"' the tra1.1.Sfom1.er is designed to reduce these 
losses. (4) 

Stretch and challenge 
The first question that foUo,vs here is a B1itish Physics 10lympiad question. 

18 A 20 [l resistor is connected to an ac power supply 1rvith a voltage 
output that varies from 4 V to -2 '\/ at equal titn1.e intervals. as 
shown in Figure 9.16. \Vhat is the me.an heating po\v,er 
dissipated in the r,esistor? 

A 0.2W 

B 0.5W 

O.SW 

D l .OW 

(BPhO AS Challenge - 2007 Q4) 

19 A 'savl tooth, "iA~av,efo,nn voltage rises from Oto a maximum value 

4-- ---, 

Figure 9.16 

V0 in a tim,e t, at which point it immediately fa.Us to O again, before rising 
once more t,o the value V0. Show that the power generated 
by this voltage through a resistance R is the same· as would be 

Vo 
generated by a de voltage of Ji . 



The evidence for 
the nucleus 
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: Before you start. make sure that you are confident in your knowledge and 
• : understanding of the following points: 
• • 

• • • .. .. ... ... 
• • • • • • • • 
~ 

" ~ 

~ • • • • • • • 
" • • • • • • • • • • • • • • • • • • • • • • .. 
• • • • • • • • • • 

An, atom has a1 small, mass ive. posi tiively cha1rged nuclleus . 
Rutherford scattering gives evidence for th e nuclea r modet of the ato,m. : 

• 
The ato1m i,s neutral: the positiively charged nu1cleus i s balanced by : 

• ne·gat1ively charged electrons 4 wh i:ch orbit the nucleus. i 
Uns table nuc le,i emit rad,ioactive partic les. f .. 
Oi:fferent i1so.topes of an e lem,ent have the same num,ber of protons : .. 
bu t different r,um bers of neu trons. : 

• 
Atpha par ticles are heUu m nuclei. : .. 
Beta .part~ctes are fast-movrng electrons . : 

• 
Ga,m ma rays are e lectromagnet ic photonsr w hiich carry energy aw.ay : 

• 
f rom an uns table nucleus. ! 

• Atphai beta a nd ga tTi im a radia t ions may be identified by th eh· differrng : 
• 

powers of penetration. : 
• 

=·~·························································~······················· ........................ llllllllli 

~ ........................................................................................... . 
~RSELF ON PRIOR KNOWLEDGE -~ 

• • • • • • 
: 1 Descdbe the nuclear mode l of th e a to·m. : 
• • • • : 2 Ou tHne br1iefly t he penetra t ing powers of alp ha~ beta and gamma : 
• • : radia tions. : • • 
! 3 Nobe lium-254; ~~ No, emi t s an a lpha ,p ar t icle to become a n isoto pe of i 
• • 
: the e le1ment ferm1ium 1 Fm . : 
• • I a) Exp lain the m eanfng of th e wo rd "i.sotop·e·. j 
i b) Write a be,lanced equation to describe the a1 lpha, decay of I 
: nobeUum-254. : • • i 4 Krypton -85. ~~Kr~ decays by em1itt1in9 a ~-part tcle to become an isotope i 
i of rubid iu1m~ Rb. Write a ba la need equation to describe th is decay. j 
: 
~······················ ················································ ···· ········•• illllllll!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~ 

We use radioactive s,ourc,e.s for many purposes in 1nedicine~ industry and 
agriculture. Imagine that a pati-ent is about to receiv,e a dose of gamma 
radiation to help cure a cancerous tumour. Such doses must be carefully 
calculated and directed accurately at the ca11cerot,s area of the body. The 
differing ionising and penetrating powers ,of a.lpha ~ beta and gamma rays 
aUow them to be used in various v.-71ys to invesdgate the body and then treat 
the patient. 

Rutherford scattering 
Figure l 0.1 sh ows a plan view of the sort of apparatus that Geiger and 
Marsden used in 191 1 to investigate the scattering of alpha particles by a 
thin foil of gold. Gold ,vas chosen because it can be hamtn ered into very 
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Figure 10..1 A plan view of Geig,12r ;nd Marsd; rfs apparatus . 

alpha particJes 
go'ld foili 

this pa·rticl'e has 
.met a nucleus, 
and has been 
.repelled by fts 
pas itiV'e charge 
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Figure 10.2 Only alpha partkles that ha,ve a very close 
encounter with a go,ld n ucle,us a.re deftected th roug1h larg1e 
angles. 

thin sheets. An alpha source was placed in a long thin 
lead con tainer to produc,e a well-directed beam of 
alpha particles. The \\7hole apparatus was evacuated 
so that the alpha ·particles could trave] ,vithout being 
st,opped by the air. 

Over a period of months, Geiger and Marsden 
,counted the nutnbet of alpha particles deflect,ed at 
differ,ent angles e, shown in Figure 10.2. The altJha 
particles w,ere detected by a Ouorescen·t screen. Ea.eh 
time an alpha particle hh the screen a small flash 
of light was emitted, \.vhich was seen through the 
microscope. Geig rand Marsden counted hundreds 
of tho,usa.nds ,of such flashes of light. The vas't 
majority of the alpha particles were deflected through 
very small angles. But a very small number of 
particles were deflected through large angles of ab·out 
150° or more. Figure 10.2 illtlstrates some typical 
path5 of deflected alpha particles. 

Rutherford drew the follov.-ing conclusions from this 
expemnent. 

• The aton1 has a very smaU positively charged 
nucleus. Rutherford suggested that the positive 
charge on the nucleus is responsible for the 
repulsive force on the positively charged alpl1a 
pfirlicle, which causes i t to cl1ange direction . The 
fact that only a very s·maU number of particles 
undergo a large deflection tells us that the 
nucleus is much stualler in diameter tl1an the 
atom. 

• The second in1po1"1:ant conclusion about the 
nucleus is that it contains nearly all the n1ass of 
the atom. Considerations of the conservation of 
tnomentun1 tell us that the alplu1 particle would 
knock a small nucleus out of the v.ray. but tha.t the 
alpha particle VviU bounce back aft.er an encounter 
with a nucleus heavier than itself. 

Using our kno'\>\,ledge of electro.static th.eo1~ it 
is possible to calculate the maxim u 1n size of the 
gold nucleus. If an alpha particle is tun1 d round 
by 1800; it must have encountered a gold nucleus 
head-on and there 1nust have be,en a moment when 
the alpha particle stopped moving. Then all of th,e 
alpha particl s kinetic energy has been transferred to 
,electrical p,o ten tial energy. 
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Figure 10.3 An alpha pa·rticte at its 
ctosest d,ist;ncQ of approach to a gold 
nuch~u~. 

Fem om ·tr Nudeali liadH and d~ameters 
are measured in fe1mtom1etres, 10- 15 m. The 
unit ms abb r,evnated to ·f m. 

In Figure 10.3 an alpha panicle has been stopped by the gold nucleus and 
1~eached its closesl distance of approach. 

Th e kinetic energy of the alpha particles 1 used in the original Geiger and 
Marsden experin1ent, was abo,ut 5 ·MeV or 
5 x 106 x 1 .6 x 10-19 J = 8 x 10-13]. So ,ve can \-Vrite 

8X!0- t3 j =_Q&2 

4rte0r 

The expression on the right-hand side ,o,f the equalion gives the electrical 
potential energy ,of t~lo ,charges, Q1 and Q2, separated by a distanc r. The 
charge ,on the gold nucleus is 79e and that on the alpha particle is 2e. The 
permittivity of free spac,e is 8. 85 x l o-12 F m-1. 

S X 10".13 J = (79 X 1.6 X 10- lO C) X (2 X 1.6 X 10-u C) 
. 41t x 8.85 x 10- 12 Fm- 1 x r 

Th erefore 

(79 X 1.6 X 10- 19 C) X (2 X 1.6 X ]0-19 C) 
r = -----------------------------------------------------------------( 4n x 8.85 X 10-U Fm-1

) X (8 x 10- 13 J) 

= 4 .5 x 10-14 1n or 45 fm 

By carrying out scattering experiments on lighter nuclei~ Ru therford was 
able to deduce d1at th,e nucleus was even stnaller than 45 fm (wh ere frn is 
the abbreviation for fe111L 1nctrc). But he had established lhe nuclear 1nodel 
of the atom. 

··~···· ... ····~·······~··· .. ············~······ .... ·····~······~··~·······_.. ........................ ~·············· • • 
: B. X : • • • • • • 
: Anothe1· way to make an estuuat e of th e nuclear size is to consider the . : 

• : nun-iber of alpha. particles scattered through large angles. For example, ! 
• • i in a scatt,e1ing expetimcnt, 1 in 8'000 alpha particles is scattered by an i 
: angle larger than 150° - this counts as a ~direct hit' . Measurement of the- J 
• • 
: gold foH tells us that it is about 2000 atoms thick. : 
• • 
~ . • • 
~ So, i'lad the foil been only one atom thick! we can deduce that only 1 in ! 
j 16000 OOO alph a particles would have ha d a 'direct hit' . Therefore, we. i 
: deduce that: : 
t • 

~ cross-sectional area of the atom = rrr; = 16 OOO OOO 
cross-sectional area of the nucleus rrr.2 

n 

• • • 
i .. 
~ 

and • • 
• • • • II • • • 

atomic radius r: 
--- --= ....!.. = 4000 
nuclear radius r l-l 

.. .. 
i .. 
~ . . 
• .. ,. .. 
• .. 
• "' • 
~ 

• • 
"' • 

: Because the radius of a gold a.tom is 1.35 x 10-10m 1 the nu-clear radius is f 
• • • • 
i 1.35 X 10- lO ID - 14 £ 
: r = = 3 x 10 m. or 30 fm : 
: n 4000 : 
• • • • • • .......•....••.......•.•.......•••............•......•.••.......••.••..•...•.... , ........•••.•.......•.••....... 
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: TEST YOURSELF .. .. .. 
• • • • • • • • • .. 

1 Give an accou nt of the ev idenc·e th at led to 
Rutherford proposing th e nu clear model of the 
atom. tYou sho uld write you r an:iwer to sec u re six 

i marks in an ex tended writ ing exercise.] 

.. 
• 4, 

! 2 Th1,s questfon ref.ers to the design of th e Ru1therford 
! sc atte rin g ex per i me nt Hlust rated ~ n Figure 1 O. li. 
! a) Exp lain why th e appa,ratus must be eva cuated . 
j b) Ex pla in why th e gold foil must be extremely 
: thrin , about 10-7 m, thi ck. I cJ Ex pla in how th e desig1n of th e lh otder fo r the 
~ 

£ alpha source produces a, weU-directed beam of 
: radiabon. 
f 3 Figure 10.4 shows the path of an alph a particle 
• .. 
• .. 
• • .. .. • • • .. .. 
• .. 
• • • .. • • • .. .. .. 
• • • • • • • • • .. .. 
• • • • • • • • • .. 

be,ng deflected by a heavy n·ucleus wiith charg.e +Ze. 

.+ze 

Figure 10.4 

a)' Sketch diag r ams to show possible paths of an 
a Lp ha par ti,c le a pp roac h i·n g the same nucleus if 
the a lpha pa rticle h,as 
ii] less k inet ic energy 
ii ] more kinet ic energy. 

bJ Sketch diag ramis to show possib le paiths of 
th e a,lph a parti cte w ith i1ts o,r igina l energ1y 
approac hin g nu1cleJ that have 
ii a charge gr ea.ter than Z 
ii ] a charge less th an Z. 

4 An alpha pa·rticle wi th energy 7.7 M:eV is scattered 
back through an angle of 180° by a th:in sheet of 
atuimin ium foH. 
a) Ca lcutate the ctlosest d1is tance of approach of 

th e a l p h a pa rt i c te to the a lu m i 11 i ·u m nu c le u, s . 
The atomic number of a.lu m in1um 15 13; 
Eo = 8.85 X 10- 12 ~m-1_ 

b] iJ Ca lculate the force tha t th e a lpha pa rt icle 
and nucleus exert on ea c.h othe r at t hek 
c losest approa ch. 

ii] Calcu late tn e max im um a cc etera.ti on of 
the a lpha part~c le . Them.ass of the alpha 
par t icle f s 6.8 x 10-21kg. 

• • • • • • • • • • • • • • : • • • • • • f • • : 
' • • • • • ! 
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" • : 
: • I 
I • I 
~ • • • • ;, 
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Nuclear radius and density 
Figure 10.5 shows a diffraction pattern p roduced by slrining gi-een laser 
light through a thin film of lycopodium powder~ which contains very S1naU 
p articles of about 30µ1n in diameter. The photograph shmvs a series of 
circular diffraction rings, caused by the scatterin g and interference of the 
light off the p0articles. 

Figure 10.5 Diffraction pattern produced by th e scattering of green Lig ht oH 
Lycopodium powder. 
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Diffraction theory predicts that the angle, ,0, of the fir--st diffraction minilnum 
is given by 

l 
sine= 1.22-

d 

Vlhere A is the "\N·avelength of tl1e light and dis the diameter of the pa1·ticles. 

This diffraction theory , nabled nuclear scientists to inv,estigate accurately 
the dia.n1eter -of the nucleus ,of ato1ns. The ptinciple behind the expetitne.nt 
i.s illustrated in Figure 10.6. 

eleictrons 

Figure 10,.6 

target nu cJe l 
diameter d 

detector 

f~rst minimum 

etectron d,lffractio n 
pattern 

High-eneTgy electrons are directed at thin targets of an element> and the 
nuclei act to scatter electrons in the san1e way that the lycopodium powder 
scatters light. You will r.ecall that we can calculate the wavelength, A, of the 
electrons using the fom1ula 

h .a ;___. -
p 

where his the Planck constant, 6.6 x 10-~4 J s) andl p is the electrons 
momentum. Such high-energy electrons are travelHng close to the speed of 
ligl1t> and we n1ust calculate their mo111entum using the equation 

E 
p=­

c 

where Eis the electron energy and c is the speed of light. 



Electron scattering 
A becrm, of electrons with energy 420 MeV is scattered 
off a target of carbon. The frrst diffrac:t~on mi ntmu m 
occurs at a n a ngle of 52°. 

.. C alcu late the radius o.f a carbon n ucleu,s. 

Answ·er 
Th e diarmeter of the nuc leus is ca lcu lated from the 

equation 

1 Ca lcu late the momentu rm of the electrons. sin0 = 1.22'J 

Answer 
The mo,mentum of th e electron,s ris given by 

E 

d = 1.22A 
sine 

1. 22 X 2. 94 X 10-15 m p= -
c 
42 0 x 1 06 x t 6 x 1 0- 19 J 

3 X 108 mi s- 1 

:: 2.24 X 1 (T19 lkg m s- 1 

=--------sin52° 

= 4. 6 X 1 o-1 S m 

So the nruclea1r ra,di,us is 2.3 x 1 o-15 m. 

Ca lculate the wavelenigth of the electrons. 

Answer 
The wavelength of the electrons fs 

A.= !2_= 6.6 X 110-
34 

J 5 

p 2.24 x 10-19 kgm s-1 

= 2.94 X 10-15 m 

1 
Emplrl al The ,equation r = r0A'1 is an 
empirical equation. The w,ord ·empirical' 
means that the equation 1s based purely 
on exp-er1mental results. It rs n,ot exact, but 
ii t gives an ap prox,m ate v~Lu e for a nuclear 
radius. 

omic m s uni ,one atomrc. mass unit 
(1 u) is ,e:qual to 1.67 x 10- 27 kg. 

Experiments to determine the radius of nuclei allowed scientists to produce 
an approxnnate c1npirical formula for the radius of a nucleus~ which is 

l 

r :;: r0A1 

-v-rheTe r is the radius of the nucleus, r0 = 1.2 &n and A is the mass numbeI" 
or nucleon nun1ber of the nucleus. Figure 10. 7 shows how the nuclear 
radius depends on tl)e nucleon n umber of the nucleus. 

We ,often use the expression u~ which is an abbrevia'tion for a loin i - n1ass 
uni . A prolon and neutron each have a n1ass approxin1ately equal 'lo 
1.67 x 10-27kg, and this is l u . So, in the exatt1ple, the n1ass of a zinc 
nucleus is 66 u . 

1©0 I 150 ---- ;-- ~-r­
nuc l~on umper }4 

Figure 10.7 Th1s graph shows thQ re lationship 
between nuc~ear rad1ius and nrucleon number. 
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lE 
Empirical formula for nuclear radius 

Calcu late the nuc lear radius of th e isotope ~8Zn . 
l 

r = r0A3 

= 1.2 fm x66' 
= 4.8 fm1 

~ Calculate the density of a zin c nucteu1s, given that 
1 u ha,s a mass of 1.67 x 10-21 kg . 

Answer 
Mass of nucleus f1rpr3~ where p is the nuclear 
density. So 

3 
P- 3 x m 

4nr 

_ 3x (66 x 1.67 x 10- 27kg} 

4ff X (4.8 X 10-15 mfl 

: : 2.4 X 1017 kg m-3 

Th is ca lcu lation shows us that the nuclear density 
is Immense - over 100 million mHlion1 timies more 
dense than water. 

~ ·····················································································································································: 
: TEST YOURSELF ~ 
• • • • : 5 al Use Frgure 10.7 to det erm,in e th e n ucle a r radius : 
• • : of ura nium-238. : 
• • .. 
• • 
• b] Calculate the density of a uranium nuc[eus; : 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • .. 
• • • • • • • • • • • • • • • • • ~ 
• • • • • • • • • • • .. 
• • • .. .. 
• • • • • .. 
• • ; 
• ; .. 
• • • • 

• 1 U is 1. 6 7 X 1 0- 27 kg . i 
• 6 a] Exptaini the pr1ncipte behind usf ng e lectron c:- : 
• drif fr ac tion to determ11n e th e rad rus of a nucleus. : 
• • bi Explain one advantage that electro n dtff ra cti on : 
• has over Ruther ford se a tte ring as a ,means of : 
• determin ing nu clear radi1us. : 
• 7 The element liverm orT um is a s hort-lived "tJ) : 

• 
t ra nsurani c eleme nt, w hich has been produced in : 
nu clear reactors . 
al i) Explain w hat ·tra nsurani c· means . 

iiJ Why air e t r ainsura ni1 c e:le ments s hort -t ived? 

b] One isotope of l,iverrmorium is ~~Lv. Use th e 
e·m1pirica l for m ula to pred ict the rad ius of a, 
livermoriu m nu cleus. 

8 An ·electron bea:m w ,ith energy 890 MeV ,is used to 
invest igate th e radii1 of some elements. Figure 11 0.8 
shows how the intensity of sca t tered elec trons 
va ri es for two i1sotopesl gia,do linium- 160 and 
ea lciu m-40. 

Figure 10.8 

• • • • • • • • • • • • • Iii 

• • • • • • • i 

b] Calculate the waveteng,th of the etectro·ns i:n the ! 
bea m. Planck's consta nt - 6.6 x 1 o-34 J s. i 

i 
c:] Use the informat1on in Figure 10.8, aind ! 

I 

th e info r mat i on i n t h e t ex t a b o u t e ,le c t ro n : 
diffr action, to calcu late the nuclear radius for I 
i) gadoli ntum : 

I! 

• • • .. aJ Use the express ion p .. !. to show that the 
C 

ii] ca!lc1ium. : 
di Check your answers for part (cl w ith the ! • • s 

• • • • .. 
• 

mome ntum of each electro n in the beam is 
abo ut 4..7 )( 10-19 kg m s-·1, 

pred icti ons for n ,u dle a r rad ius shown i n i 
'Figure 10.7. ! 

• =·••t••tt•••••••••tt••••••••••t••t•••••••t••tt••••••••t•t••••••••••t••tt•••••••••tt••••••••••t••t••••••tt••tt••••••••t•t••····················· ......................... .... 
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11 r I The actWity of a radioactive 
sou irce ,s eq ua t to the number of particles 
em itt&d per second. Tl'Hi unit of acuv lty is 
the becquerel (Bq): 1 b!cquerel (1 Bq) = an 
emiss~on of one parrtEde per se,cond. 

r I I 

' 11 -I r11 I 
I r l 1 I bl ... ...rk bag-

pho r'6nhi ~ 'I ~ I r Jl1U filll\tog,~, ~ '' t ~, . - -

radioactive partio\es pass 
through a Hg11tproot bag 

to expose a photograph.c film 

Figure 10 .. 9 

Henry'" Becquerel discovered radioactivity in 1896. H·e placed sotne uranium 
salts ne)..1: to a photographic plate, which had been sealed in a thick black 
bag lo prevent light exposing the plate (Figure 10.9). When the p,late was 
later developed it had been affected as if it had been exposed to light 
(Figure 10.10). Becquerel realised that a nevv fonn of energy was being 
emitted from the uranium salts. In 11.is honour, the a ·t i ·1 Ly of a radi,ocactive 
source is measured in he qu~ r .. , . 

'" - ,~ ... "I ,, • '" fJf-... 9~( ~~' ", .. 1t1 
P-,_·w AN. t-,;, ,. A-•.., ,._~ ... -
E, 1-· • - µ t & ?· "' • .. , .d-.... J..ji I.'. , 

, ,,,~' 4 ,~ ,-.. ,. 
-

Figure 10 .. 10 

o~~~~~~~-
T he natur of alpha ( · J, beta (p) and 

--- -+--n1JCleus 

.___..£..;-- electro,n 
-1-- attractive force, bet"Ween 

+-• dharges rpu Us tne a lect ro n 
alpha part1Jc le out of 1he atom 

Figure 10.11 The strong e Lectric fie Ld 
of the a lip ha pa rbc'les pulls or knocks 
etectron s out of ato,ms to crea,te posit~ve 
and negative ions. 

qamma (y) radiations 
Unstable nuclei en1it various types of radiation, the most co1nmon of ;,vhich 
aTe alpha, beta and gamn1a radiation. Their nature and properties ar.e 

summarised belo·w. 

Alpha parlicl 
Alpha particles are the nuclei of helium atoms. So they are made up o,f two 
protons and t\VO neutrons. They have a mass of 4u and a charge of +2e. 

Alpha particles are str,ongly ionising. The strong charge on the alpha panicle 
pulls e]ectrons out of atoms, creating pairs of positive a.nd negativ,e ions 
along the particle~ path (Figure 10.11). An alpha panicle produces about 
10 OOO ion-pairs per millimetre ,of path in. air. 

Alpl1a particles travel a few centimetres in air, and can be stopped by a thick 
piece of paper (Figur,e 10.12). 

Alpha particles are deflected slightly in strong electric and magnetic fields . 
Typically> alpl1a particles bave kinetic energies of a few MeV as they leave 
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the parent nucleus. An alpha pa.11icle with an energy of 5 Me V travels at 
about 5% of the speed of light (Table 10.1) . 

Beta particles 
Beta particles are fast-moving electrons, which travel at just less than the 
speed of light. Typicalli beta particles l1ave kinetic energies of a fe,v MeV. 

Beta particles are much less ionising than alpha particles, producing about 
100 ion-pairs per millimetre of path travelled in air. 

B ta particles may travel several metres in air~ and they are absorbed by 
a.lu11.nnium a_ few millimetres thick (Figure 10.12). 

=• • 
I .. =9 

aluminium 
2 om tMdk lead 
r,educes the 
intensity of gamma 
rays 

GM tube 

Figure 10.12 The penetrating powers of alpha. beta a11d ,gamma radfations. 

Beta particles rnay be defl.ected through large angles by electric and 
n1agi1etic fields (Table 10.1). 

Ga1n1na rays 
Gatn1na rays aTe ·electrically neutral ·e1nissions, "rhlch are photons Gust like 
any other type of electro1nagnetic radiation). Typically, a gamma-ray photon 
might have an energy of aJbout l Me~ vlhich corresponds to a Vlavelength of 
about 10-121n. 

Ga1nma rays are not deflected in n1.agnetic and electric fields be,cause they 
are not charged (Table 10.1). 

Table 10.1 Properties of alpha~ beta and gamma radi:ations. 

Nature 

Charge 

Mass 

Speed 

Ions per mm of ~ir for~ 
p; rticte of 3. M eV 

DetQctio n 

Helium nu cleus 

+2e 

6.6 x 10-27 kg [4 a·mu] 

51% of C 

HJ OOO 

SU gnt deHection i,n e lectri,c 
~nd magnetic fie~ds 

Affects photographic fitm 

Faist electron 

-e 
9. 1 X 1 Q- 31 kg, 

98- 99°/o of C 

100 

S ig,ni fi ea nt deflection in eLe ctric 
and magn et ic fields 

Affects photographic fHm 

Electro ma gn eti c photon 

0 

0 

c [speed of Lig ht] 

11 

iNo deflection tn el~ctric ~H'ld 

mag netic fields 

Affects photog ra phk fi Lm1 



(a) 

(b) 

Figure 10.13 

gold lleaf 
s,ticksout 

~- (,like charges 
repel1) 

Gamma rays are very v;.reakly ionising, producing about one ion-pair p er 
n1illimetre of path travelled in air. Gan11na rays are very penetrating, 
and their intensity is reduc,ed by a fe,v c,entimetres thickn ess of lead 
(Figure 10.12). Gannna rays can transfer tl1eir energy to electrons in 
m,etals (rath er like a photoelectric effect); the n the n1oving electrons 
create i,0I1-pai.rs. 

Ionisation 
Figure 10.13 sho"''S hovt a charged gold leaf electro,scope can be used 10 

illustrate the strong ionisin g p o~ler ,of alpha radiation. An allpha source is 
held above a positi:ve]y charged electroscope. The alpha panicles produce 
positive and negative ions. The positive ions are repelled from the positively 
charged ele,ctros,co,pe. but the negative ions are attracted to the electroscope 
and it is discharged. 

We make use of the io,nising properties of alpha\ beta and gamma radiadon 
to detect them. This is done u sing a Geige.r-Muller (GM) tube. Figure l 0.14 
shows how· the tube vlorks. Although GM rubes are still used in. schools, 
soHd-state detectors (,vorking on a similar principle) are more widely used 
elsewhere. 

G)anode, 
on radlafl 

Gcathode 

very thin 
mtcawindow 

Figure 10.14 

t • - tons 
+" ~ 

+! t • - tons 

450V 
I I I I 
I I I 

: amplifier 

l l 
to counter 

A metal tube is filled with argon gas at lo,v pressure. A vol tage of about 
450Vis applied betiveen a central anode and 'the outside of the tube. 
vVhen radiation enters the tube through a. narro,¥ vrind,o,,v at th e front of 
the tube, atoins are ionised and a small current fl.ovls. Each. current pulse 
i.s amplified and counted, so that we ca.n record the rate at which particles 
enter the to.be. 

It is in1portant that "'"e can detect and then und rstand the effects o.f 
ionising radiation. W"hen ionising particles enter the body, the ions that 
are produced can damage or destroy cells in ,our bodies, "With s rious 
consequences for our health. This is discussed at greater length later. 
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radioactivity 
in the a;r 

Background radiation 
Thei·e are a lot of rocks in the Earth thal contain radioactive uraniun1, 
thorium~ radon and potassium~ and so we are ah~,1ays exposed to sotne 
ionising pa1ticles. Radon is a gas that en1its alpha pa1ticles. Because we 
can inhale this gas> it is dangerous as radiation can get inside our lungs. 

Figure 10.15 Sources o,f radiation in 
Britain . 

In addition, the Sun emits lots ,of protons ,vhich can also create ions in o,ur 
a'tmosphere. These are two of the sources that n-uJke up background radiation. 
Figure 10.15 sho\VS the contrtbution to the total background radiation fro1n 
all places in Britain. Fo1rtunately the level o( background radiation is quite 
low, and in most places it does not cause a serious health 1isk. 

ln some jobs ,vorkers are at a higher risk. X-rays used in hospitals also 
cause ionisation. Radiographers make sure that their exposure to X-rays is 
as smaU as possible. In nuclear pow·er stati,ons , neutrons a.re produced in. 
nuclear reactol's. The da1nage caused by neutrons is a source of danger for 
workers in that industry. 

~ ·········································· ···································································································· ·····~· ~ . 
TEST YOURSELF ! 

• 

"' • 

9 Refer to Figure 10.13. The plate on the 
electrosco pe is charg,ed neg,at,vely. Ex pta in 
whether or not the g,old leaf elec troscope 
would sti!Ll be discharged by an alpha 
radiation source. 

10 al Explarn what ~s meant by the term 
"back9round radiabon·. What are the 
sources of backg-round rad,iatjon? 

b) Oesig'n an experiment to rnvesbgate 
what the background count is i1n your 
school.. 

: ,, 
• • • ,I 

To answer this question i you may need to 
rev tse the work cover ed in Chapter 7. • • • • • : 

"' + • • • • • • • • • ,i 

: 
: 
: • ' • I 
Ii 
;I 

• ii 

! 
! 
l!I • " I • I! • • : 
i • • • !I • .. • 
"' • 

!=igu re liO. l61(aJ shows an ,ex p,eriment in 
which some be ta partic les are deflecte d 
by a magnetic fieild . 
aJ Explaliiln how the direction of the beta 

pa,r ti cle de flee tron confirm s that th ey 
a re neg at'ive ly chargied. 

Fiigu re 1:0.16(b] shows how the count rate 
of th e deflected beta particles vari es with 
angle. 

bJ Expla:in which beta particles have the 
higher energy. those deftec te d tn rougih 
20° or those defl ected through 40°. 

~-source 

(a) 

(b) 

'E a 
CJ 

r:igure 1DJ6 

N 

angle of defl'ectlon 

fl-p artloles are 
defrected perpendlcular 
to the magnet held In a 
hoirtzontaJ p 1,a n e 

50' 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • + 
i : • • • • • • • • 
! 
i • • • • • • • • • 
i 
z • .. 
• • .. • • • • 
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ldentif ication of radiations 
Figure 10.17 shows an experi1menta L arra ng.em,ent 
to i.dentify the radia1tions emHted by a radroactive 
s ource. 

rad I oactlve 
source /. 

,- ~ .. ~"' 
I 

" 

2cm 

absorber 

GM tube 

1 First, the GM tube is left wHhout a source nearby 
to establisn the back9round count. Over a period 
of 15 m1nutes . the GM tube recorded a background 
count of 3 3 0 . 

Determine the background count rn counts per 
m,f:nute. 

2 Then a source A is placed 1n front of the counter 
at a fixed distance of 2 cm·. Varijous absorbers are 
placed between the source and the G M1 tub e. Tab le 
10.2 shows a su1m mary of the results obtained . 

Determrin e the radiation [s] emitted by sou rce A . 

Table 10.2 

Absorber Thickness/mm Count rate/mi n-1 

None 5054 

Paper 0.3 3294 

Alumini,um, 0. 1 3084 

Aluminru1m 0.5 1954 

Al,umini,um 1.0 244 -Lead, 1.0 21 

Lead 2.0 24 

3 A second source B is pla ced ~n front of th e G:M tub e 
at a fix ed d~stan ce of 2 c1m, and the abso rbers are 
pta,ced bet\Neen the source and the GM' tube as 
befo r e. The results are shown in Ta1ble 10.3. 

Determine the type(s] of rad i, ation emjtted from 
source B. 

Table 10.3 

Absorber Thickness/ mm Count rate/min-1 

None 2084 

Paper 0.3 2079 

Alumjn ~u ,m, 0 .1 1954 

Al,u m in ~um, 0.5 112S1 

Aliuminrum 1.0 1246 

Lead 2.0 ,068 

Lead 5.0 641 

Lead 10.0 355 

. . . . 
'" """ ,.,.,.,.,. ,.,.,i,.,.,.,,. ,.,. ,.,.,. ,.,.,. ,,.,.,. .. ,.,. ,.,..,. .... ,. .. ,.,. .. ,.,. .. ,.,. ,.p,. '" """ .. ,.,. ,. ,,..,,. ,. ... ,. .. ,. ... ,.,. ,. ,.,.,. .. .. .-1 """ "'" "" ,. ... ,. .. ,., .. ritit , .,. ,.,.,. ,. .. .. ,.,. ,..,. ,.,. _,. ..... , ,.,. ,. .. '"" r1 ..... ,. .. ,.,. .. ,.,. .. ,.,. ,. ;.,. ,.,.,. ri ..... ,. .. ,..,,. ,._ "" "'" """ ,.,. ,. ... ,. .. ,i .. ,.,.,,.,. .. _,.,.,.,. .... """,.,.,.,.,.,., ,. ,.,.,.,. .. """"" ..... , .. ,.,. .. '"""'""'" ,.,.,.,. .. ,. ... ,. .. " " """""" ,i,. ,. ,.4 

If the above ex peri mien t is 
actually perform,ed, remember 
the t the a pp rop riate source 
mu st be handled safely I in Une 
with agreed standard operatin g 
pro cedures. These should be 
a:g reed wrth a s,u ita ble R PA 
(Radiation Protection Advi:serL 

Inverse square law for y-radiation 
Gan1ma radiatton behaves like any other electromagnetic radiation, in that it 
spreads ,out symmetricaHy in all directions fron1 its source. Th,e intensity of 
a light source obeys an inverse square la.Vii~. 

This idea was discussed befor,e in Chapter 3, and Figure 3.2 shows you the 
reasoning behind the la"¥": So for gamma radiation we can Mite 

k 
l = 2 

X 

""here I is th e intensity of the radiation ( which can be measured in W m-2) 1 

x is the distance frotn the sou rc.e and k is a constant. v 
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Radioactivity and inverse square law 
1 The count rate measured bye GM tube at a 

distance of 15 cm from a garmm·a source l s 2800 Bq . 
Th e source is then moved furth er away from tih e 
GM tube. 

a What wi1 ll th e count rate be at 30 cm? 

Answer 

This problem is rela,tivety easy to solve, using I• ~ 

, because x is doubled, x2 is quadrupled and j" i~ a 
X 

quarter of its prev1ious va,l,ue. 

Thu s th e corrected co unt ra,te is t x 2800 Bq -
700Bq. 

Wha:t wi1 ll the corrected count rate be at 50 c 1m? 

Because 'I~ { , ,it follows that k = ,lx2 or 11x? = l2X~ • 
So x 

112 X 502 = 2 800 Bq X 152 

(15J i2 = 2800 Bq x -
50 

=2508q 

A Geiger-M,uller tuibe w 1indow ha1s an area of 

2.8 cm2. A gamma sou rce is placed a di,stance of 
0.1 m from th e win dO\iV an di the cou nite r detects a, 
co rrec ted co,u nt rate of 1 50 Bq. 

Assu m,ing that th e r -source emits radla,tion 
uniformly 1in alil directions. cakutate th e tota l 
n,u mber of emissions per second from the source. 
State any assu 1mpti1ons in the calcu tat1on . 

First we ass,u,me that all y- rays ere detected at the 
G1M tube window 
[as you w~H see later, this rs not actua,Uy t ne case)1

• 

The 1-rad jation ~s sprea d over an a,rea, of 4rcR2~ 
where R is the d'istan ce from th e source ~4xR2 is the 
surrace area of a sphere]. So the count detected is: 

C - C 2.8cm
2 

' - ' T 4,t'R2 

where Cr ,is the tota t ccu'n t So 
2 

C 
C x 4n:R 

T -
- 2.8 cm2 

_ 150 B q x 41t x [10 cm)2 

- 2.8 om2 

= 67 OOO Bq 

................................................................................................................................................................................................................................ ·: 
REQUIRED PRACTICAL 12 
Inverse square law for r-radiation 
Note: This is just one example of how you might 
tackle th1s r,equf red practical. 

Fi,gure 110J8 shows an experimental~ a,rrang em ent 
to investigate the relations hip between th e ,intensity 
of radiation ·from a, ga,mm1a source and its dis tance 

from a Geiger-Muller tube. 

gamma 
source 

igure 10.18 

In Figure 10.18, x has been defined as th e d,istance 
between th e edg e of the source co ntainer an,d the 

w:indow of the GM' tuoe. However. th·ere i's a difficulty 
wiith thi:s definition. The source itself ~s jnside th e 
contain er. aind the radiatJon1 i s not all detected at th e 
w 1indow of the tu be. So th e true dis tance between th e 
source and the pla,ce where th e rad•artion is d etecte d 

is x + c. This is caUed the co rrected distance. So we 
wdte 

f= k 
[x+c)2 

[x +c)2 = k 
I 

x+c=(TJ 
Therefore, if we ptot a graph of x ag;ai:nst rl , we 
would expect to see a s tra,ight l ine. 

In an experiment. the resu lts s hown in Table 
1U.4 were obtained. The background count wa s 
deter,m~ned to be an average of 11 8 cou 'nts per ,minute. 

Table 10.4 
. . , .. 

xJc:m· 
.;; __ .,,L '. :: ..__·, 

GM count 
over ·tos 

1.0 2.0 3.0 4.0 5.{) 6 .0 7.0 8.0 

431 2601 195 1!38 1 Hl B1 73 61 

: . 

~ : 
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' ..-r...... : '-y : 

1 Copy th e table and add two furth er rows ta it. 
2 a) Make a s,uHable correction aHowingi for 

backgir ou nd cou nt and add to your table. 
b Add a furthe r ravv to s how (count rate)-f. 

3 a) Plot a s u~table graph to lnvestigate w hether 
tne intensity of the gamma radiatio n obeys an 
inverse square law. 

b] Use your graph to estf mate the value of c 
shown in Figure 10.18. 

! 
: 
: • : 
! 
! 
! 
: 
i 
i 
! 

.. : 
"I P•,.., f pf'e lll r• ,.., i"• 4 ••f'•••'" ,. ... f' • ,. • ., ,..,. . .. I•••",. • ., •1 jll•f•• ••1 f' 't f•li ,_ . ,. • ., , . t- •'I -"••.-i ..... ,._, , . 1 ,. .. re't r • fo • 'i t-• ,. • ., " •• •'I f' • -1 elll re1 r'il' e 4 ... r • • • • f • 'i ,. • ., •• ,. .,. •ltf'e -1 f''I ii'•• •• f a t ... r•'t r • • •• r- 11• e't f •III r'I , ., r• ••• 1• , . .. f' • 1' et r • li • ., ,. ...... Pl e 'I r e r • -1 r• fll'•• • •1 . .. felt • ••• • •1 t- •'I ' " ,.. -i r • r •1 r • • •• r •'t ... .. • ••• 
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nl in r di tl is dangerous because 
i,ons ar,e produced in ,ollJr bodies, whtch 
damage cellls arnd the fiunctions of enzymes 
are ,changed. 

• ,.."' •• f'11''41 •"' r• ••"i r• r•'I •• r•"'I •• f'.!ll't •• ,..,. • 1 ••" ... .," ••• •• ~• •!I,. • .,•• • •• r• • •~ r • 1 •• 1 • ,. • ., • 

The energy abso,rbed per 11::.mLo,gram o,f 
a body. 
Gr , The unit of dose is J k~\ which is 
catted one gray ( Gy ). 

The biological effects of radiat ion 
In the early 1900s, scientists \v,orking with radioactive mine1ials did not 
und rstand the dangers of radiation ~ and consequently many p eople 
suffered injury and in some cases death. 

Our bodie-s ar,e made up of many cliff rent types ·Of ,complicated molecules. 
If an electron is removed or added 'to a m.olecule~ it has been changed 
chemicaUy and ,viU therefore behave. differendy in any interaction 'With 
another molecule. Typically it reciuir,es a few eV of energy to remove an 
electron from a molecule. Such energy is carried by photons of ultraviolet 
light. Alpha and beta particles, and gamma-ray photons all carry energy 
tneasured in MeV. Such radiations cause ionisation) and ionisi n 1 di, ti ) 11 

i.s dangerous to us because it can change t.he chemistry of our bodies. The 
functions of enzymes can be akered, ,cells can be damaged and mutations 
can occur to our DNA

1 
which can lead to cancer. 

It is also kno,vn that the irradiation of Vlater produces free radicals (see H2o+ 
and H30 + and OH- below)~ which are highly 1-eactive. These free radicals 
change the structure of surrounding molecules with biologica] itnplications. 
Such reactions include 

Radiation dose 
An absorbed dnst: of radiation is define,d as the energy absorbed per 
kilogram of a body: 

D= E 
m 

The unit of dose is J kg-1 and this is given the name • r· y ( 1Gy). 

Clearly, if we receive a high dos~ of radiation. we are at a higher risk 
of becoming ill due to, 'the damage caused 'to our bodies. Ho" rever, the 
impact ,o,f the radiatio,n on our bodies also depends ,on how the dose is 
administered, and this dep ends on the type of radiation '\Ve are exposed to. 

From our earlier ·work ,on the penetration of radiations, you ~rill recall that 
alpha panicles are easily st:opped by 5 cm of air, o,r by a sheet of paper. The 
lack of penetration of alpha particles is e}rplained by their very high ionising 
po,ver. Alpha panicles lose energy over a shorter range than beta p.ani.cles 
and gamma rays; because alpha particles are relatively slow-m,oving and. 
they cany a l1igh charge . By ,contrast > beta and gamma rays lose their ene1wgy 
over much longer distances. 1Con se,queJ1tly, alpha particles are much more 
damaging to our bodies because 1nany ions are produced in a sn1all volume. 
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" e eq u, The m1easure of the 
damage done by radi at,,o n. 

We measure the damage d one by radiation in dose e quivale nts , which is 
defined as 

1 -t The unfit of dose equivalent is also 
j kg-1, but for dose equivalent th,e unit is 
caUed the srevert (SV). 

1Nhere W~ is the radiation weightin g [actor> ,vhich is a dimensionless 
nun1bet that depends on th e type of radiation -see ·r able 10 .5. Dose 
equivalent has the same units as dose, namely J kg-1, but to distinguish dose 
from dose equivalent, the latter is giv·en tl1e unit ~i · , rt (Sv). 
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Table 10.5 

X-raysf 9amma rays. ~-particles 

Protons 2 

Alpha pa r ti ctes. nuclea r fi SS!iO n products 20 

When we handle radioactive sources) we ·must take care to minimise 
the risk . Firstl a radioactive source sh ould be en closed in a container 
that is leak -proof to avoid th e escape of any radioactive liq uid or gases . 
l n schools, radioactive sources are of low intensity, but we adopt these 
pre-cautions: 

• Sou.roes are kept in lead-lined boxes and locked a\vay in i-netal 
cupboards. 

• W l-1en :in use) sou1~es are used for a short period of time. 
• Sources are k ept away from our bodies and are handled 'With long 

tongs. 

There are strict 1·egulation s for the handling of radioactive m aterials in 
labo ratories > h ospitals and industry: A leak of a radioactive gas or liquid 
is particularly hazardou s because w·e can inhale a gas or swallow a liquid, 
,vhich could then allo,v radiation to be e1nitted inside our b odies. 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
TEST YOURSELF 

12 Describe an experiment tha:t would enable you to 
detect th e type of radfation s bein g emitted f ram 
a rad·ioactive source. [Remember to descrfbe th e 
a ppa ratu s you wouild use a1n d what m ea su rem en ts 
you would ta,ke.) 

13 A source of gamma ra1diati1on i1s placed a di stance 
of 0.2 im aw ay from a small radiation detector. The 
detector records a corrected' count rate of 200 Sq 
from the gamma so urce. 

Ca lculate wh at count rate would be recorded 
wh en the detector is ,moved a di stance o·f 0.5 m 

15 al Expla,in what i.s meant by th e te r,m ·~onising 
radiation·. 

• • • • .. .. • • • • • • • • • .. 
b] Why are loni1sjng radiati,ons dangero,us to us? ! 

16 A teac her leaves two rad ,ioac tiive sources on a f 
'laboratory bench. One so 1urce emits y-rays. and it : .. 
is kept in a, lea d- Uned box. The second sou rce is : 

If 

an a,lpha source, which i,s left out of i ts box . £ 
al Explain which source is potentiatty more f 

dangerous to pup its 2 m away in the cla·ss. i 
• 

b) iJ Rad·on is a r adioactive gas that em~ts alpha : 
l i partic es. The gas is e,m 1tted by gran.ite ; 

ro cks. Explain why radon mi ght be a hazard i 
• 

• ! away from th e so,urce. 
• 
~ i 14 al Ca ku1la.te the energy of an ultraviotet ,photon with 
: a wavelength of 2 x 10-7 m. Express your answer 
• ! in electro nvolts [·eV] . [You m.ay need to refe r back 
• 
: to th e work in C ha pte r 3 of book 1.) 
• 
: b) Explain why sun,bath,i,ng for too long can cau se 
• : sk1in .can cer. • 

to hea lth to those who Uve i'n an area w ith i 
gra·ni1te ro cks. 

iiJ Exp lain why ga m ma rays emitted by roc ks 
are less dangero us than r adon's a lpha 
partic les . 

... • • • • .. 
: 
• • • .. .. .. 
• • • • • • • • • • • • . ........................... . ......... ................................................................................................................................. lllllllllli 



Prac ic questions 
I A radioactive source is placed 2 cm from the Ylindow of a Geiger-Muller 

(GM) tube. A count rate o[ 220Bq is recorded. The table shows the 
corrected count rate after some sheets of materials are placed bet\veen 
the source and the GM tube. 

Count rate/Bq 220 180 1:0 

Material No material Sheet of paper Aluminiu,m 
1: mm thi,ck 

TI1e s,o,urce emits which of the foHomng radiation(s)? 
alpha and gamma alpha and beta 

B beta only D alpha] beta and gamma 

Use the follo,ving information to answer questions 2 ., 3 and 4. 

Below are listed four radioactive s,ourc,es~ together ·with their emitted 
radia.tions . 

12 

Lead 1 cm1 thick 

A rone:ricium:-2 4· I 

B strontium-90 

C cobalt-60 

D fl uorine-18 

alpha (a) 

beta 1ninus (p-) 

beta minus and gamma cp- and y) 

beta plus cp+) 

2 Which isotope is suitable for the purpose of sterilising hospital 
equipment sealed insi.de plastic bags? 

3 Vvhich isotope is suitable foT the purposes of discharging static electricity 
that has built up in the n1anufacture of polythene? 

4 vVhich isotope is suitable for 1nonitoring the thickness of thin. n1etal 
being produced in a factory? 

5 An alpha partic]e of energy 7.9MeV is fired towards the nucleus of a 
gadoliniun1 aton--i, 1~~Gd . The closest possible distance of approach of the 
alpha particle to the gadolinium nucleus is 

A 23fm 

B 14fnt 

C 7fm 

D 2 fin 

A ga1nma source is placed 2.0 m away from a Geiger-Muller (GM) 
tube. A count rate of l50Bq is recorded. The source is now moved to a 
distanc of 3.0m from the ,GM tube. TI1e count rate observ·ed is now 

A 225Bq 

B lOOBq 

85Bq 

D 67Bq 

7 A gamma ray has an eJtergy of 1.2 MeV. Its ·wavelength is 

A 2 x I0-121n 

B 1 x 10""12 m 

C 5 x I0-13m 

D 3 x 10'913 m 
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Use the following information to answer questions 8, 9 and 10. 

The table below contains information about four types of radiation A, B~ 
C andD1

• 

Characteristic A B C 

Penetrating power Many cm of Lead 
A few mm, of 

Many cm of Lead 
meta.L 

IMass/kg 1.67 X 1 Q-27 9J X 1 Q-31 

!Deflection in a magnetic 
0 Large 

field 

!Ionisation Very weak Weak 

8 Vlhich radiation is made up of alpha particles? 

9 Which radiation is gamma rays? 

I O Which radiatio11 is made up of neutrons? 

11 The radius of an atomic nucleus is given by 
1 

R = 1.2 X 10- lj x Al 

where A is the 1nass number of the nucleus. 

,Q 

0 

Very weak 

a) Calculate the density of a nucleus of barium (1~~Ba) in kgm-3. (3) 

b) Calculate 1he radius of a star that has the same density as barium, 
if the star has a mass of 4 x 1030kg. (3) 

12 Describe an experiment you would carry out to investigate ,vl1ether or 
not the intensity o.f gan1ma radiation crnitted from a source obeys an 
i11verse square law. 

13 A strong sou1·ce of ga1nma radiation is used in a hospital 'to treat 

a patient suffering fron1 cancer. 

Describe precautions that should be taken to safeguard the health of 

a) the patient 

b) the radiographer Vlho is adn-iinistering the dose of radiation. 

14 The graph in Figure 10.19 shows how many ion-
pairs are produced per n1iUin1etre by an alpha 
patticle at each point of its track. 

a) Suggest why the alpha paiticle produces more 
io,ns per millimetr,e tOVv"ards the end of its track, 
just before it stops moving. (2) 

b) Estimate the toud number of ion-pairs pr,oduced 
by the alpha particle a]o11g its 50mm track. (2) 

E 
E ... 6000 
~ 
"C 

~ 4000 .... .s 
r:2 
~ 2000 

I 

C: 
.2 

(6) 

(2) 

(2) 

1:0 

D 

A few cm in air 

6.64 X 1 Q-27 

S·maH 

Strong 

20 30 AO 50 c) Each ion-pair requires ab,out 30eV ,of ,energy to 
form. Use this information to estimate the initial 

0 
Q'nd of/ 
track 

distance 1,rom the end of track rn air/mm 

energy o:f the alp ha panicle. (1) 
Figure 10.19 

60 



II 15 A source of gaintna radiation is placed 0.15 m a,vay from the 
\vindo1,y of a GeigeT-MuUer tube, w·hich has an f;Uea of 3.2 x 10-4 m 2. 
The GM tube records a corrected count rate of 38 Bq. 

a) Assuming that the gamn1a rays are emitted uniformly in all 
directions, estimate the total number of gatnma rays en1itted per 
second by the source, if the GM tube only detects l in 500 of the 
gamma ray--s that enter tlte tu be. ( 4) 

b) The gamma rays have an energy ,of 1.2 MeV. Calculate the energy 
emitted by the soui·ce each second. Express your ans\v,er in joules. (2) 

c) Estimate. the count rat,e measured by the GM tube if th s,our,ce is 
tnoved to a distance 0.10m a,vay from the w·11clow. (2) 

16 Figure l 0. 20 shows the paths of two alpha 
panicles th~t are deflected by a. nucleus N. At 
its closest point, alpha particle A is a distance 
r away from the nucleus and particle B is a 
distance 2r away from the nucleus. 

a) The forces on the t"\VO part~cles are electrical 
How~ do the size of the two fo1·ces compare 
at positions A and B. (2) 

b) Explain.) by looking at the shape of the tracks; 
Figure 10.20 

whicl~ panicle is moving faster. (2) 

17 The nuclei of atotns may be produced artificially in panicle 
accelerators by firing high-energy alpha particles at a target nucleus. 
The equation belo,v gives an example of such a reaction: 

f~Al + iHe -4 ~~P + ? 

a) 1Copy and complete the equation to identify a particle that is 
produced in the reaction. (1) 

b) It is discovered that the r-eaction only takes place if the alpha 
pai·ticles have energies in excess of about 10-12 J. Use this 
inf o,m1ation to calculate the closest di.stance of approach of 
the alp ha particle and aluminium nucleus ,vith out it reacting. (3) 

c) Explain why the reaction d,oes 1:lO't occur for the lower energy 
alpha particle. (1) 

Stretch and challenge 
18 An upper Hmil for the diame~er o[ a carbo1111ucleus may be ,obtained 

from data similar to Geiger and Ma1"Sdens. In an alpha-particle scattering 
experim-ent, about 1 i11 20 OOO alpha pa1ticles were scattered by more 
than 150°. This is taken to mean thaJt the particle had scored a ·direct hit, 
on the nucleus. The thickness of the carbon foil is 2 µm . 

a) Given that the diameter of a carbon atom is 1.5 x 10""10 ml calculate 
how many atoms thick the foil is. 
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b) Assu1ning that the probability of an alpha particle 1naking a direct 
l1it on the nucleus is prnportional to the thickness of the foH) deduce 
what fraction of the alpha particles \\1ould l1ave been scattered by an 
angle of 150° or more, had the foil been one atom thick . 

c) Now calculate the ratio of the cross-sectional area of the uuc]e-us to 
the cross-sectional area o,f the at,om. 

d) Hence work ,out th~ upper limit ,of the diameter of a carbon nucleus. 
Explain ""·hy the nucleus is likely to be smaller than this ·estimate. 



Radioactive decay 
•••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••w••••••••••••••••••• • • • • : PRIOR K OWLEDG : 
.. 
: Before you start make sure that you a,re conf;dent in your knowledge and .. 
; understanding of the following points: 
... 

1 • • • 
z • " "' • • • : • Unstable nuc lei de.cay to more stable nuclei, by the em isston of alpha , i 

• • beta or ga·m m·a radiations. : 
= : • An alpha particle is a heliu,m nucleus. = 

- . : • Abeta particle is a fast electron. : 
i • A gamma ra,y is a h,igh-energy photon, of electrom,a,g,net ic radiat~on. i 
• • 
! The a,tomk number of the nucleus is the number of protons in the : 
• • 
: nucleus. This is also known as the proton number. ; 
• f 

: The mass n.u·mber of a nu.cleu:s is the s,um of the numbers of protons i 
• • 
; and neutrons in the nucleus. This is also known as the nucleon : 
• : number. • .. 
: • Radioactive decay is a random pro cess. We ea nnot pred ict that 
... 
: a particular nucleus will decay. but we can pred1ict tha.t a certai1n 
• : f ra c:ti on of nuclei will decay i rt a given ti m.e. 
• 
: • Rad ioacttve decay ·is descr,ibed by th e term )iatf- life·. In one ha lf-life , 
... 
: half of a sample of radioacti,ve nu.cle~ wi ll decay: tn anothe r half- Uf.e. 
#: 

: ha lf of the remaining nuclei wi ll decay. 
• 
: Radioactive ~sotopes have a w~de variety of uses 1n indus try. 
• 
; agriculture and medicine. 
... 

• • • • • • • • • • • • .. 
• • • • • • • • • • • • t 
• • • • • • • • • • • : ........................................................................................................... ~ 

. ~ ....................................................................... ................... . 

: TEST YOURSELF ON PRIOR KNOWLEDGE . . 
• • i 11 Explain the .meaning of each of the folllowing terms: 

: al nalf-lif e • • 
: b] random 
• i c) ra cHoa ctive isotope . 
• • • • • : • • • : 
: • • I • • I • • • 
i • 

2 The radioactive i.sotope niobium-89 ha·s a haU-life of 2.0 h. At 6 .p. m . 
a scientist has a sampte of 1.6 g of nioibiu,m-89. How much of th is 
isotope will be left at mrdn ig'ht? 

3 Copy a.nd co1mplete the following equations that describe radioactive 
decays~ 

a) 
2~!Po ~ ~Pb+ ~He 

i b) 1~!Ba ~ lLa+ -~e +? s 
' ! , Name and exp lain one practical use of a rad ,ioactive isotope. 
I 

• • • • • 

• 
% 

I • • I 
I 
I 
I 
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Spontaneous and random nature of 
radioactive decay 
The e1nission of radiation from a nucleus is both .spontaneous and random. 
This means that we cannot tell ~rh en a particular nucleus will decay. 
A nucleus could re1tnain unchanged for millions of yea1-s before suddenly 



..... , ........................................ , ........ ~ •• ' •• , ......... f; ............ , .... .., 

D J n t n The decay constant it ~s 
the probalbiliity of a nucleus deca;Y ing per 
unit tmm2. 

....... , ........ . .. .................. "'! .... ,. .. , ••••• , ....... ~ j ...... , ..... ~ ···· ••• ,. . ...... ., • ., ..... ,.,.. . 

t , i ... The actiWity of a radioactiVe source 
is the number ·Of disintegrations per second: 

A = ).}J 

it decays by emitting a radioactive particle. Nuclei decay independently of 
each other~ and their behaviour is n ot affected by the proximity of other 
nuclei or external factors such as temperature and pressure. 

A good n1odel to help us ·understand radioactive decay is to throw lots of 
dice. Imagine you have a tray Mth 600 dice on it and you thro\.V them all 
on to 1he floor. Each die has six faces, so there is a probability oft for each 
die 'to land up as a 6. Therefore, on .average, vte e.2q:,ect 100 dice to turn up 
as a 6. H.ov,lev r, because i t is a randoln process, that number '\ViU rarely be 
exactly 100. If v;re repeated the proc ss of throwing 600 dice lo·ts of times, 
we would see quite a variation around that average of 100 dice turning u.p 
"'with a 6 ·On top. 

When we consider the decay of a sample of radioactive mate-rial, w,e can 
apply statistical processes effectively because there is a v , ry large nun1ber 
of nuclei .involved in th·e pr,ocess. 'VAle use a I :\ L1n ~1 t 11 l it to describe 
nuclear decay: A is defined as the probability of one. nucleus decaying per . .. unn ume. 

This definition. of A leads to 1he equation: 

or 

)., = fractional change in the number of nuclei ., ~':, per unit time 8.t 

A=_ ANIN 
Lit 

The significance of the minus sign is that the number of radioactive nuclei 
in a sa.1np le of 1naterial decreases \vith time. The unit of A is s-1. Considering 
the dice model again h elps you to 1.1.nderstarnd the tneaning of A. In the dice 
'decay', A is .~ p er th.ro\v - every tim e the dice are- throVITI> (on average) ~ of 
the11n tum up a 6. 

The equation above may be ~Uen in this fom1: 
.6.N 
-=-AN 
8,,t 

In words, we can say that: 

nun1ber of nuclei decaying per second= decay c,onstant x number of 
nuclei 

This leads to the definition of the ~ ivi t I of a radioactive source, "'"'hich is 
the number of emissions per second (of alp,ha~ beta or gam1na radiations) : 

where A is the activity of the source. The unit ,of acti\>ity is the becquerel 
(Bq), v.rhich is a rate of decay of one disintegration per second. 



The activity of lanthanum 
The element lanthanum has t\ivo natura lly occurr1ing 
isotopes. La nthaini um- 139 is the imore ab u1nda n,t 
isotope and makes up 99.911 °/o of natura Uy occurring 
la1n,tha num. The irema ini1 ng O.Cl89°/o is the rad ioisotope 
la,nitha num-1'38i wh,ich decays by the em1ssion of 

, Ca lculate the actl,vlty of a 40 g sa mpte of lanthanu m. 
Answer 
The number of a toms in 40g o.f lanthanum is 

6 >< 1 023 X 
4
0 = 1 . 73 X 1 023 

139 
However; only 0.089°/o of these are lanthanum -138. 
So the nu.mber of tanthanuim- 138 nuc lei' ,is beta particles. Lanthanum- 138 has a1 decay consta.nt 

of 2.0 x 10-19 s- 1; and 139 g of lanthan um conta~n 
6 >< 1023 atoms. 

N'= l 73 X 1023 X O.OS9 

Use the information above, and your pri'or knowledg,e~ 
to answer these questions. 

. 100 

= 1.54 X 1020 

What is the d1ifference betviteen a nucleus of 
lantha num-139 and a nucleus of lanthanum-138. 

50 

Answer A= '1..N 
Lan thanum.- 139 has one more neutron in the nucleus. 
! Lanth anum- 139 has 57 prot ons and 8.2 neutrons. 
Lar1th anum -138 has 57 prnto n.s an,d 81 neutrons.] 

:. 2. 0 X 1 0-19 5 = 1 X 1 . 54 X l 020 

:= 31 Bq 

Reme,mbe r, 1 mole has about 6 >< 1023 atoms 'in rt If the atomic mass of 
an atom 1s 30 [for exa mpile]. the n 3Q g contains 6 x 1023: atoims. 

o~~~~~~~-o e cay constant and half-Life ••••••••••r••••••••••••••••••••••••~••••••••••••••••••• • • • • • • • • : ~ 

! A dille1--ential equation is solved t . i i by separating the variables and : 
• • 
~ integrating both sides. So doing ~ 
: this gives ! 
.. "' • • • • 
: dl\T 1 : 
: - =-A'f\T : • dt • • • • , + 

: i : JN d.l\T Jt : : -= -1'.dt : 
: No N O : • • . .. . .. 
! Note that the limits of the = .. " . . . 
: integration are from N0 to N for : 
• • 
~ the nuclei and from O to, t fo,r the : 
I : 

: time. Then working through th,e ~ 
; maths gives ~ .. . • • 
: N : 
: [ln N]N = [- At]~ : 
: 0 : 
" ' 

i In ( N J= -1t l 
: l>lo : 
• • . ' 
: N -b ! 
: - =e • • • 
: 1'-lo : 
• • • • • . -lt • 
: N = J\To ·e : 
• + • • 
··································~···················· 

Earlier you 1net the ,equation 

AN 
-=-XN 
lit 

,vhere N is the nun1ber of nuclei in a radioactiv,e sample, A is the dlecay 
constant for a nucleus 1 and ~N is the change in the number of nuclei in 
tin1e bi.t. When both quantities ~N and 6.t tend towards z,ero, this equation 
can be \Vritten in the differential form: 

dN 
-=-AZ\T 
dt 

This differential e,quation has the s,olution 

1'J =]\TO e-J.t 

where N is the number of nuclei in the radioactive samp]e at time c, 
and N0 is the number of nuclei at time t = 0, which is the time that we. 
start to observe the sample 1of nuclei. You do not need to know hov.. .. to 
reach the solution to the equation (but the Maths box shows interested 
mathematicians ho"' to d o it). Hov.rever) you do need to be able to use 
the equation "J\T;;;;;: N0 e-Ai to b e able to pr,edict the number of nuclei at 
any ti1ne. 



Using the radioactive decay equation So there will be about 9 x 11 013 rnuclej le ft aifter 10 s . 

2 Draw up a table of the numher of nu clei a,t l nterva[s 
of 2 0 s u p to a t1 me of 1 6 0 s. 

1 A sample of rad.ioa ctive rm ateria l co nta,i n s 1 DO x 1012 
n ucte'i. The nuclei 
have a decay constant of 0.01 s-1. Predict the number 
of nuclei rema ini,ng a,fter 10 s. Answer 

The numbers are shown rn Ta bile 11 L 1. Ch eck th em 
for you rse tf. 

Answer 

N = N
0 

e - ).t 

= 1100 x 1012 x e-0·01 x 10 

= 1014 X e-0·1 

= 9 X 11013 

Su.m.mary of useful eq uati ons~ 

dN Rate of decay - =-IIN 
dt 

Act1v ity A= dN = )..N 
d:t 

Decay equation N =Noe-Ai 

Ha lf-Ufe TJ. = Ln 2 
1 l 

" .. ,.4 ... r!t'" ~· .... •'" r•"" i.•,..,"'"' ...... ""•,. .... ••"'"" r,. i.•..i ... ••• ,. ...... ,..,. •-" ... , •, .. ,. .... , ........ '"•'" ..... ,. 

-i lf- I One half-life is the Ume taken 
for half ,of a sam1ple of radioactiVe nuclei to 
decay. 

Table 11.1 

,f/s . 

e'."'.lt 

N/1012 

100 

80 

C:-.1 a Go 
r­..._ 
"a> 
() A1Q ::, .., 
C 

20 

0 
-

1 

100 

20 

0.818 

StS 

40 60 80 100 12D 

0.6 70 0.548 0.449 0.367 0.301 

67.0 54.8 44.9 36.7 30.1 

2J 40 00 80 100 ~20 140 160, 180 

tlme/s 

140 160 

0.246 0.201 

24.6 20.1 
- - -

Figure 11.1 The graph shows the exponential decay of a sample, of radioactive nucle1i. 

The numbers in Table 11 . l have b een used ta plot a graph of the nutnber 
of nuclei against tin1e~ this is sh own in Figui-e 11.1. This graph sh o,\.\ts an 
exponential d.ecay ~ and it has the follo,wing important qualities. 

• The nuinber of nuclei decreases by the sanie fraction in the same time 
interval. In particular, in this case. th.e hull-Ii I"· ~ r.,. , is 69 s. This means 
that in 69 s the number of radioactive nuclei decreases from 100 x 1012 

to 50 x 1012. ln a second half-life of 69 s that numb r haJv,es again to 
25 X 1012. 

• The gra.di nt of th graph a't any point is -A}l. In the graph, the gradient 
is dra~ (blue line) at time t· = 0: 

100 X lQtl 
gradient = - """""""'--"""""""' 

100s 

= - 1012 s-1 

This is the same as 

-A.l'•l == -0~01 s~1 
X 100 X 1012 

= -1012 s- t (Bq) 

or the activity A. 



• • • • 
i N- N.r -it : - o e ... 
• • .. 
• 
; After one half~Hfe rl , there wiU 
; b Nn 1 . l f 2 
: e ~ nuc 1e1 e t so 
: 2 • • • : • • .. .. 
• .. 
-• i 
• .. .. 
• .. .. • • • • • • • • • .. . ., 
• • • .. 
• .. • • • • " • • • • • • • 

N - i..T 
~ =No .. 
2 
l - i..T.!. 
~ =e 3 

2 

ln.!. = -1T,t 
2 .. 

1112 = lT1 
'I 

• • • • • • • • • ~ . 
• • .. 
f .. • .. 
• .. . . 
• • • : • • . 
Ill .. .. .. 
• • z .. 
• 
" .. .. • • • z • . 
• • . 
IP 

~··········~················~························· 

• The third point "re can note its that the half-life is connected to the decay 
constant by 

Ti= 0.69 
2 A, 

Since l = 0.01 s-1. You can see that 

T = 0.69 = 0.69 = 69 5 
' ;t O.Ols-

1 

Mor,e generaU}r, ·v.re connect r~ md A by 
ln2 E 

T.1.= -
i 1 

The lv1aths box shows the theoretilcal de1ivation of this result. (You are not 
expected to be able to derive this, but it sho,~ls interested mathematicians 
how it is done.) 

The decay of strontium-90 
StronHum-90 is a radioactive nuclide that emfts beta pertictes. It has a 
half-Ufe of about 29 years. A school source of stront,ium-90 conta ins about 
0. 1 

1
µ g of t h ~s radioisotope. 

Catculate the decay const ant of stronti'uim-90. 
Answer 

A = ln2 
T, 

0.693 
---------

29 X 365 X 24 X 3,600 s 

= 7.6 X 10-10 s-1 

2 How much of this 0.11 µg sa1m ple rema.in.s after 
70 yea rs? 

Answer 
The fra cti:on left af te r 70 years fs found usin g, 

N - At -=e 
No 

A t1i me of 70 years j,5 t !:I 70 x 365 >< 24 x 360 0 
- 2. 2 x 109 s. So 

l!_ = e- 17.6 x ,a-•0 x 2.2 x 10'°l 

No 
_, 68 =e . 

= 0.1' 9 
So th e mass left after 70 years is 0.119 x 0.1 µg. that 1is~ 0.0 l 9 µg. 
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~ ACTIVITY Electronlc counter ~ 
• . - . . ' 2 H Lf r f f · · Gleg'er-Mlll1er Tube and! data logger ~ a . .... 1 e o protact1n1um leak-proof ~ 

Figure 1' 1. 2 sh1ows an plasttc oottJe 
ex perimental arrangement organic layer 
for determrinin g th·e half- Life with protactlnilum 

of a prota,ct iin i u,m isotope in a aqueous l1aysr 
school laboratory. Protac tinium wltn uranium salt 

OJJO TI ~ 

l• •• •J 
0 

0 

. . • 
~ 
~ 
~ 

is produced i,n the decay of 
urani1um,, which is dissolved into 
the tower aqueous Layer shown 

Figure 11 .2 The a p pa rat us for dete rm in j,ng' the h alf-Ufe of protactini um. 
~ 
i • 
~ 

in the bottl,e. 

By shalk~ n g the bottle vi 91orou sly, p rotac ti'n1iu m is 
extracted from the aqueous layer and dissotved inito 
the organic layer. The organ ic layer rap idly separates 
out as a layer on top of the aqueous layer. The 
prrota et in i ILJim in th e organi c layer decays . 

Th e decay of prota.ct i1n i1J m cain then be detected by th e 
Geiger-Muller tube pla ced near to the organ ic layer at 

i 
~ th e t op of the bott Le. 
' . . . . . . . . . . . . . . . . . 
~ . 
E 

The results in Tab le 11 .2, for determi1nf ng the half-Life 
of pro ta ctin 1u m . show the count rate measured by the 

Table 11. 2 

Time/s I Count rate/Bq 

0 8.8 

10 7.3 

20 6.3, 

30 6.2 

40 5.8 

50 4.8 

60 4.6 

70 4.3 

a.a 4.2 

90 4.0i 

100 3.1 

11 0 2.8 

120 2.5 

130 2.6 

140 2.4 

150 1.9 

160 2.0 

170 1.8 

: 
data logger over a per iod of time. For safety rea,sons, ~ 
th e count rate fro,m tine protactinium i,s low. This cau,ses~ 
us some problem1s, because a tow count rate is subj'ect ~ 

to random fluctuat ions, whi,ch can make it difficu lt to ~ 
determine the half- Ufe a,cc,urately. Th e backgro u,nd 
count was measured to be 20 cou nts per minute. 

1 Copy the ta.bile an d add another colu m,n of va lu es 
for the c,au nt ra,te car rec tedl for the ba ckg ro und 
count. 

2 Plot a graph of corrected count rate against 
time and use it to determ1ine the ha l f-Life of the 
prota:ctinmum i,sotope. Comment on the accura cy of 
your answer. 

The act]vity of pro ta ctiniu m can be wrHten rn the form 

A=.t\Je-M 

where A ~s th e activity at time t, and A0 is the act jv ity 
at f = 0, the sta rt of the exper~ment. By takj ng the 
natural toga rtthm of both sides of the equation; 
we get 

lnA ~ ln.t\J -lt 

So H we plot a graph wi,th lnA on the y-axis a9atnst t 
on th e X-axis. the grad ient of the graph f s -J. 

3 Constru ct a tabte of lnA [tn of the cou nt rate) and 
time. 

4 Plot a graph of ln A against t and use rt to 
determine the decay cons tan t and ha lf- li fe of 
protaictinium. Comment on the accura·cy of your 
a·nswer. 

e 
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: TEST YOURSELF 

• • ~ 

• • • • • • • • 
: 1 W hen a qua,ntity decays exp onenti1a lly~ it decreases 4 A rad,ioactive sourcei emitting y-rays, is pla ced : 
• • 
: by a constant fr a,ct ;ion :i,n a chosen t jm e ,inte rva l. 5 cm, fro m a, r ad1iation detector, w hich has an area : 
• • 
: Use the data, in Tab le 11.11 to s how that the of 0.4 cm?. The detecto r reco rds a count ra te ot ! 
• • f fraction.al decrease every 20 s is the sa me. 70 counts per S·econd. The radionu clide contains i 
! 2 Cadmfu m-109 is a radiofsotope that emits low- 4 x 1010 atomis. ; 
j energy ga m m,a r ays. The dlf fe riin g, pen et ration of a] Ca tcu late th e tot at numb er of em iss i o n,s pe r ! 
: these gamma rays through 1m,etal aHoys aHows th e second 1from th e sou1rce. ~ 
! 1metals to be sorted' into different types . Th e ha,lf- b) Cal·culate th e 1half-Ufe of th e ra dionuclide. ; 
·1 li fe of cadm ium -109 1is 453 days. 5 The activrty of 2N atoms of elem en, t P is four t i m,es I 
: a,I Calculate the decay con stant for cad m ium-109. the ac tivity of N atoms of element Q. Element Q has ! 
: b) A source of cadm 1ium -11 09 has a mass of 80,µg. a half- li fe of 100 years. ; 
i i) Ca lculate the numb er of atoms in th e a] Calculate th e ha,tf- tife of elem,ent P. : 
. = 
• ) I i samp le. b Calculate how much of eac h element will i 
i ii ) Ca tcutaite the activity of the sa mple. remain after ! 
! i i i] Ca lcula,te th e activ,ty of the sample two j) 200 years ! 
• • 
j yea rs after Hs p urcha1s e. ii) 5 0 years. ; 

! cl Di scuss th e sa,fety precautions necessary w hen 6 Describe how you would determine the half-Hfe. of a i 
! t his s ource is used in, an rndustria l s ite. nucUde [which is of th e order of a few minutesl in a ~ 
i 3 The activity of a rad ioactive so urce fa lls from school La boratory. Crediit wi ll be gi1ven for th e cla,rrity i 
! 6 x 104 Bq to 2 x 104 Bq in 45 mi1nutes. of you r ex ptan aition and the cor rect use of Engillsh. j 
• • 
: a] i] Calc ulate th e decay const ant of thi s nucli de. : 
• • 
: ii) Calculate th e half-Life of this nu clide. : 
• t . ) . : b How m any atoms were there in the o rf g f n at : 
• • 
: s ource? : • • • • • t 

···························~··········································~···································································································· 

o~~~~~~~-
R ad i a is atop e s. their half-lives and their 
uses 
Radioisotopes h ave many applications. They are used widely in the fields of 
n1edicine 1 ag1icultu1-e and industry Carbon-14 is used to date archaeological 
remains~ and argon-4-0 is u sed co date rocks. Radioisotopes n1.ay also be 
u sed as a small source of p o\1,ter. You are n ot expected to knov-r all the 
p ossible uses ,of radioisotopes, bu t you do need ta understand the p rinciples 
behind thetn. The Test yourself questions pro,1.iide some exainples. 

Importance of half-l ife and radiations 
\Vhen choosing a radioisot,ope for a particular purpose, careful 
c,onsideration must be given to its half-life and the radiations it emits. 
Carbon-14, with a hali-li{e of 5,700 years~ is well matched to dat'ng 
human settl"m,ents a few thousand years old. Argon-40, Vvith a half-life of 
1.3 biUi.on years 1 is well suited to dating igneous rocks. Hov,,~,ever1 many 
isotopes "'ith short half-li.ves .are also useful because they produce a high 
activity, rrom a smaH quantity of material, over a shon period of time. 

Becat\se 

the activiiy A is high if the. half-life is short. lf 1he half-life iis lon g 1 more 
atonis (larger N) are needed to produce a h igh activity. 

• 



Figure 1L3 

Radiotherapy 
In the UK, because we now live longer (our Hfe expectancy is aroun d 80 
years), cancer has become the second biggest cause of death. There[or,e, 
considerable re.search has been canied oul into the use of radioisotopes to 
cure cancer. 

Figur,e 1 1.3 shows how beams o! gamma rays from a source of cobalt-60 
can be directed tO\.'\tards a tumour. The hazard of directing gatnma rays 
fron, outside the body is that the rays also pass thr,ough healthy tissues, 
which could be damaged by th,e radiation. To reduce the impact ,of the 
gamma rays on healthy tissues, the source is rotated around the body~ but 
always directed towards the tumour. In this way the tumour receives a 
high dose, and healthy tissues receive a low dose, from which the healthy 
tissues can recover. 

Tumours are also, treated by shon-range internal :radiotherapy (Figure 11. 4 ). 
Under an anaesthetic 1 a surgeon can place a small needle or wire of 
a radioisotope into the lumour itself. The re.dtoisot-ope emits beta 
particles, ~rhich are stro1'lgly ionising and short-ranged. No,:v tl1e 
radiation is directed st raight in to the tumour; and the beta particles 
do not penetrat e as far as any healthy tissue. Wh:en. the correct dose 

.i.~ ~ 1--- tumor 
~~~ ~ -seeds. 

has been administered~ the wire is removed . Alpha 
radiation is also used in largeted alp ha therapy (TAT) . 
For ·~""'JCa1nple, leukaemia (,-vhich is cancer of the blood) 
can be treated in this way: bismnth-213 ~ an alpha 
emitter, is attached to an organic compoundl which 
th en adh eres to cancerous ceUs. 

Figure 11.4 Thes.e s 1m,alt implants emit beta rad iat ion 
directly i,nto ea nee rou s tu m,ours. 

Short~half-life alpha emitters can be used as a source 
of energy. Alpha particles th at are emitted inside a 
solid material are s,elf-absorbed - this tneans that the 
alpha particles canno t escape through the solid. The 
particles release their en ergy to the n1ate1ial and it 
heats up. 

The power emitted by polonium-210 
lns1ide a lunar landi1 ng veh1iclef 1 g of po lo·n,ium -2110 was 

1used as a heat source to keep the components wa,rm. 
Poloni.um- 210 has a half-Ufe of 13:9 days and em its 
alpha particles of energy 5·.3 MeV. 

Calcu late the acti,v1ity of 1 g of poilon:i1um1-210. 
Answer 

1 
Number of a to.ms;;; - x 6 x 1023 ;;; 2.86 x 1021. 

211 0 - -

So 
A • AN 

• 
0
·
693 

X 2.86 X 1021 

13 9 X 24 X 360 0 

.:. 1.65 x 1 o14Bq 

.... Ca lculate the power. in watts, emitted by th,is mater.ia L 
A1nswe:r 

Power= Ax energy of 1each particle 
;;; L65, x 101Lis- 1 x 5.3 x 106 x 11.6 x 10-19 J 
= 140W 



i TEST VO u R SEL·F···· ................................................. ······;j .. ;; ;;:~~-: ;;·;~;~·~:~;~·;:·~:·· ................................ ·1 
I 7 Tab le 11 .3 gives i nformat;on abou t som e ii most effective for the patient ! 
i rad ioisotopes. Use your knowledge of radioactiv ity ii] safe for the surgeon once the isotope is ; 
! to answer the questions that fo llow about nuclear insrde tMe pa,tient"s body. i 
I medicine. bi A surgeon implants a 0.02mg sample of ! 
! Table 1 l~J rutheni.um -1106 into a pat,ient. The surg·eon i 
i has ca lculated that the pat,ient's tumour must : 
i rece ive a total of 2" 1012 beta particles from the ! 
i so urce. Ca llculate for how long the implant must i 
i be left insi,de the tumour. ! 
~ : 
: 10 The Haraldskaer woman is the body of a : I woman that was found in an exce llent state ! 
: of preservation in a bog in Juttand, Denmark. ! 
i Rad 1i o c a. r b on d at in g rev ea led that she was ; 
i bu ri1 ed a, long time ago. A O. l g sample of i 
! m o d e .r n c a r b o n h a, s a n a c t iv i ty of 9 0 c o u n t s ; 

i Rad iation is used in hosp,itals for many purposes. per hour. O. lg of a sample of carbon from the j 
i Choose ain isotope from the table for each of the Ha ratdskaer woman ha,s a count rate of 66 i 
! p u r pose s s h ow n below, ex ,p la i n i n g y Ou r c h O i c e. I n c o u n t s p er h o u r. T h e h a, lf-U f e o f c a r b o n - 14 is ~ 
i your answer. explain why the rad~atio,n fis effective 5730 years. ! 
£ and how your choice protects patients and hospitat a)1 Calculate the age of the Haraldskaer woman. ! 
~ wo rkers. b)1 Exp lain why radioca rb on dat ,in g· is only ~ 
i a] To sterilise plastic syringes in a sea led plastfc accurate for objects no older than about ! 
~ bag . 60 OOO yea rs . ~ 
E b] To use as a medica l tra cer that is injected into 11 Voyager 1 is a spacecraft that was taunched to ~ 
! the body and the n detected outside the body. exp lore the outer So lar Syste,m on 5 September ! 
~ cl To be used ij n the form, of a w~ re impla nt to treat 11 977. It i,s powered by t hree radioisotope ~ 
: prostate ca ncer. thermoelectric generators, whk h in total : 
i d) To be used 1in a chemicail to treat leukaemia . produced about 470W of electrical power when i 
! 8 Chromium- 511 has a haH-t ife of 27. 7 days. ilt the spacecraft was launched. ~ 
£ can be used rn th e form a·f sodf u1m c hromate Energy from the rad 'ioisotope is conve rted to ! 
! to meas·u re the volume of blood in a pa ti,e nt. A electricity wHh an effi c~e ncy of 35°/o. The isotope ! 
~ sample of 10 ml of the pabenfs blood i,s "labelled' 1in use is pluton ·ium -23,8~ wh ich has a half-life of ! 
i w1ith this t race r and injected back into th e 87.7 years. It emits a:lpha particles with an energy ! 
i patient's lb toodst rea m . The a,cbv ity of the injected of 5.5 MeV. ~ 
: s a m p le is 7. 4 0 M 8 q:. a] Ca l c 1U :la t e t he en e r g y of a n a l p h a 1p~ a rt ,i cl e i n ; : ~ 

! a) T we n ty m i nut e s ta t er 1, 0 m l of b lo o d is j o u Les· i 
i r·emioved from the patient and its acti1v ity i1s b) il Calculla te the acti,v ity of ptutonium-238 a,t the ; 
i found to be 1,5.7kBq. Determine the vo lume of start of Voyager·s misslon. i 
f the patient's blood . State a1ny assumpt,ions yo 1u ii] Calculate th e m.ass of ptutoniu,m-238 at the i 
: have ma de. start of Voyager's m~ssion,. i 
i b) Forty-eight hours later a further 10 ml sa m pte cl Voyager's instrum,ents wiU stop working, when i 
i of blood is taken from the patient. · the ·electrica l power fa Us to 320W. Ca lculate ! 
: ) h I : i Pred ict what activity you expect to mea,sure. t e da1te when Voyager wiH no longer be able to i I iii In fact, the doctors measure an activity of co ntact Earth. ! 
i 14.5 kBq. What conclusion can you draw? di Americ ium-241 is a radioisotope with a half- life ! 
.. i 9 The rad,io1isotope rutheniu m-1,06 is a beta emitter of 432 years. Why was this i,sotope not chosen to i : 
i wfth a half-Ufe of 367 days. l1t is used 1n short - range power Voyager 1? : 
i 'internal rad iotherapy. i 
~ . 
• • 
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o~~~~~~~-
N u clear instability 

20 

Eveiy elernent in t11e periodic table has many different isotopes. When aU 
these isotopes ar,e added together) they provide a total of several thousand 
different nuclei. Hovlever~ mo,st of these isotopes are unstable and they 
decay by the emission of radiations to become n1ore stable. In total, there 
are only 253 stable nuclides. All other nuclides decay, and their half-lives 
vary fro1n billions of years to &-actions of a 1nicr0isecond. 

Figure 11 .5 sho,,;.rs a chart of nuclei and the.it· stability. 
The neutron number J\T is plotted on the y-axis, against 
atomic (or proton) number Z on th x-axis. Th least stable 
nuclei, with very short half-lives, are shown in blue, then 
the colours green 1 yello'"" and red show increasingly stable 
nuclei. The stable nuclei form the black line down the centre 
of tl1e chart. 

The highest atomi,c number for a stable nucleus is 82 - this 
is the element lead. The element above lead h1- the periodic 
table is bismuth. Its isotope bismuth-209 is nearly stable~ 
but it decays by alpha emission vvith a very long half-life of 
2 x 1019 years - the age of the Universe is 1.37 x l 010 years. 
Uranium-238 has the highest naturally occurring atomic 
number of 92. The isotope uranium-238 decays with a half­
H.fe of 4 .5 billion yea1--s, \vhlch is about the same as the age of 
our Solar System . 

The chart in Figure l 1.5 sho\·vs thal, for small values o[ N and 
Z., stable nuclei have roughly equal nu11.1.bers ofprolons and 
neutrons. Examples of nuclei with equal numbers of protons 
and neutrons include 1He, ~c> 1"}N) 1go, ~Si and !8cai. 
However, as Z incr,eases, tl1ie chart sho~"'S that the number 
of neutrons becomes higher th an the number of protons. 

N __ ~,__---~--__._~.___.____.-......--_____.---_.____.___. A uraniun1-238 nucleus has 92 protons andl 146 neutrons. 
The physical reason for this is that the electrostatic repulsion 
of the protons becom,es more significant as the nucleus gi·ows. 
This repulsive ·effect is balanced in a stable nucleus by exti-a 
neutrons, \1i! hich provide extra attractive nuclear interactions. 

z 20 40 60 80 100 

Figure 11.5 A plat of me utron rn,u m ber. N. aga inst ato rn ic 
number. Z. The stable nuclei form the black Lin,e down 
the centre of the 11ucti·des. Nuclei above the stable tine 
decay by 1~- decay; n:ucle i below the stablle Lin e can decay 
by((~ ~ ... de cay a r K& ca1pture. 

o~~~~~~~-o e cay modes of unstable nuclei 

,.~.,. .. ... fill "II',.. ........... , .......... . ,"',. ............. ••IJo "' ..... , ..... ··-· ... ""' ... jl ,,. ••!O' ill•-~-~· ... . 

n u hter n \.l . The product of the decay 
o,f a rad ro active f parent') nu deus. 

You 1N'ill recan from earlier ~·ork that ~·,e describe a nucleus in terms ,o,f 
its atomic number 2, \vhich is the nuntber of protons in it, and its mass 
number A, ~lhich is the sum of the protons and n utrons inside the 
nucleus. This is written as foUo\\'~: 

mass or nucleon number ~ AX f- syinbo1 for the element 
atomic or proton number ~ Z ~ 

When an unstable nucleus decays, it emits radiations, vvhich change the 
nucleus. So the numbel'.'5 A and Z may change. \\Then Z changes, the syn1bol 
X changes too> a.s a new element has been formed. This product of the 
decay is called a d · ughtl·r nuc lcus. 
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Figure 11.6 A graph1call representation 
of alpha decay: A dee reases by 4 and Z 
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Figure 11.8 A graphi·ca l representa:tion 
of P"" decay. 

41 

Ar K Ca - -

K...cabture eC ecay 
I 
I 

A 40 

39 
17 18 19 20 21 

z 
Figure 11.9 A gr@ ph1ce1 t representation 
of th e two m ode·s of decay of 
potass i u m- 40. 

Alpha emission 
An alpha particle, a , is a h eliu1n nucleus, so it has the syinbol 1He. A typical 
alpha decay is described b elo¥l for the a-en1itter an1:ericium-24 l : 

2.41 Am ~ 2.11Np + -1He 
9!5 9.3 l 

Both the mass number and the atomic number must be conserv·ed. The 
new element formed has 93 protons, which is neptunium. Alpha decay is 
ve1y rare for ele1ne11ts \\rith Zless than 82. If you refer to Figure 11.5, you 
can see tlwt a decay occurs in heavy nuclei that are rich i11 protons (which 
means they are to the right of the curve). 

The process of alpha emission may be represented ,on a plot of nucleon 
number, A 1 against atomic number, Z (see Figure] 1.6). 

Beta emission 
A beta particleJ ~; is a fast-mo·ving electron_ It has a charge of -1, and it 
is very small in comparison with a prolon or neutro,n_ A beta pa1ticle is 
described by the symbol -~e- (The electron mass is about 1~ - times that of 
a proton or n eutron, so this has a negligible effect on the mass of an atom.) 

The 'isotope nickel-63 is a beta etnitter and its decay is described below You 
\\rill recall from last year's wo1·k that an antineutrino~ v > is also emitted with 
the beta particle . This panicle has virtuaUyno n1ass but it does have energy: 

o3N- o3C o -
28 · l --t 29 U + -1 e + V 

\\!hen the electron leaves the nucleus, i ts aton1ic nutnbe-r increases by l 1 

and copper-63 is formed . Figure l 1.7 sho,vs the change graphicaUy. 

If you refer lo Figure 11 .5, you will see that~ decay occurs in elements to the 
left of rhe line of stability. These ele1nents have too fe,v protons to b e stable. 
Each of the. decays tends to move th e nucleus towards the line of stabilit1~ 

Positron emission and K-capture 
Nuclei that a1-e rich in protons1 \.vith an atomic number less than 82 1 tend to 

decay by positron , ~\ ernission or by K-captu-re. A posiitron is ithe antiparticle 
of an electron. A positron ha.s the san1e mass as an ,electron but has a positive 
charge. A nucleus that de,cays by positron decay is iodine-124 : 

1;;1-> 12,'iTe+ ~,e+· v 

In positron decay, the atomic number de,creases by 1. This is shown 
graphically in Figure 1] .8. A neutrino, which is the antiparti-cle of the 
antineutrino 1 is emitted together ·vrirth the positron. 

However, iodine-124 al so decays by K-ca.pture. ln an atom, electrons that 
orbit 1he nucleus in 'the lowest level a1~e in the (K shen~. These electrons are 
very tighdy bound. to the nucleus and actually spend some time inside the 
nucleus itself. The nucleus can capture such an electr,on so that a pro,ton is 
turned into a ne11tron. K-capture in icdine-124 can be de.scribed as foUovvs: 

1~j l+ -~e--+ 
11~Te + v 

Another nucleus that has two modles of decay is potassium-40 ~ this isotope 
can decay by !(-capture or by ~-decay (Figure 11 .9 ). 
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M Wh,en an atom or nucleus 
is in a metasta1ble state. it .exi·sts for an 
QX'tindtd time in a state .other than the 
system's state o,f least energy. 

Gamma emission 
\Vhen a nucleus decays by a, p- or p+ entlssion or by K-capture, it is o£ten left 
in an excited s tate. This is sinrilar to an aton:1 being in an excited state~ when an 
electron is in a higher energy level. \Vhen an electron drops to a lower energy 
level, a photon is emitt,ed Such a photon has an energy of a fe\v eV or perhaps 
ke V in heavy atonis. Protons and neutrons can be left in a higher energy lev.el 
after 21 nucleus en1its a radioactive particle. When the nucleon dtops back to a 
loVt~r level, a photon is emitted. TI1e ,energy of these pho,'tons is often measured 
in MeV, and these high-energy photons are the ganmia rays that we detect. 

In most examples of radioactive deca~ thic excited nucleus releases its enetg}" 
very quickly~ and gamma rays are emitted shortly after an a,~- or I~+ paiticle 
(with a half-life short·er lhan l O..Q s) . When the half-life for gamma emission is 
1nuch more than l 0-9 s, we say that the nucleus is left in a 111 · Las Lal I c 1 a t c.: . 

The half-Ufe for metastable states varies from seconds to many years. 

To distinguisl1 a metastable state fi-:om a stable state, we use the letter ~m'. 
For ,example, silver-107m is the metastable state of the common isotope 
silver-107. These slates are also distinguished as shown below, ,vhen ·we use 
atomic and mass numbers: 

• silver-107 in its ground (stable) state 

• silver-107 in its metastable state 

Metastable technetium-99m 

101A 
47 g 

1ormA· 
47 g 

On e metastable radioisotop e is worth a separate comment. Technetiun1-
99m is a decay product of n1olybdenutn-99~ ,vhich can be produced in 
nuclear reactors. Th e relevant nuclea:r equation s are as follo,vs: 

99M 99mT o -
42 O ---t 43 C + -1 e + V 01alf-1ife 66 hours) 

9943Tc -4 ~Tc + y (half-Hfe 6 hours) 

The half-life of molyb denutn-99 is long enough for it to be transported 
to hospitals, where it is then put to good use. The technetium-99m is 
chetnicaHy separated frorn the molybdenutn and it is used as a diagnostic 
tracer. U1.e short half-life of 6 l1ours tnakes technetium-991n ideal; it 
produces a relatively high activity but for a sho,n lime . 
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i TEST YOURSELF 
" ! 12 al 
• • • 

Ex plain what is m eant by a nuclear metastable 
state. : 

: : .. 
: 13 • • • • 
= : 
,p 

• • • • .. 
• • • • : 
• • • • .. 
• • • • • • • • • • .. 
• • • • • • • • • 

bJ Ex plain th e t erm "K-ca,pture·. 

Com ptet e the fo-How ing nuclea,r equations~ 

aJ 25~Lr ~ ,o1Md + ;He 

d J 1961. ? Pt o -
77 .r ~ ? + _1e + v 

i 

' : 
i 

14 Th is question refers to the plot of neutron i 

15 

nu m ber aga1nst proton number shown in i 
Figure 11.5. i 

al Ex:plai:n why heavy nuc'le1i have more neutro ns ! 
I 

than protons . i 
b] Exp lain why so me nuclei a,re p- emitters i 

I 

wh er eas others are~· em it te rs. i 
' 

Neptun ium- 237, ~;Np 1 for ms par t of a decay i 
series. By a, seri es of a a,nd p- dee ay s. the : 

• 
stabt-e isotope 2~~B i is pro duced. In thi,s series of ~ 
dec ays . a decay occ u rs seven t imes and p,- decay j 
occ urs n tiimes. Ca lcula te n. : 

• • • • • • • • • • • • : ........................................................................................................................................................................... . 



Practice questions 
I Samarium-14 7, 1iism, decays by alpha e111ission. In to ,vhich of the 

foHomng isotopes does it decay? 

A l~p 
,i;i r 

14, 
,nPm 

B 1:Nd D 141Eu 
63 

l The half-bfe of mag11esiun1-28 is 21 hours. The d cay constant for this 
isotope is 

A 4 x 1~3s-1 

3 Iodine-123 has a half-life of 13.2 hours. A solution o,f sodium iodide is 
pi7epare·d for the investigation of a patients thyroid gland. The solution 
is to have an initial activity of 200 kBq. The number of iodide ions in the 
solution. is 

A 7.9 X 109 

B 9.6 x 109 

C 1.4 X 1010 

D 2.3 x 1011 

4 Acc1..1rat,e radiocarbon dating can be done using a mass spectrom eter. 
This allo,vs d ie ratio 140 12C to be determined with great precision. 
In a modem sample of wood, the 14CJ12C ratio is 1.25 x 10-12. In an 
ancient piece of wood, the ratio is 0.4 7 x 10-12

. The half-life of 14C is 
5 700 years. The age of the wood is 

A 650 ye-a1--s C 7500 years 

B 7000 years D 8000 years 

Use the following informatio n to ans,ver questions S and 6. 

Tellurium-128 is a. beta emitter, with the longest half-life knO'w11. measured 
at 2.2 x 1024 years. 

5 The nu1nber of atoms of teUuriuni-128 in a 1 g sample is 

A 9.7 x 1020 4 . 7 x 1021 

B 3.4 X 1021 D 6.0 x 1022 

6 The activity of a 1 g sample. of tellurium-128 is 

A 5 x 10-11 Bq 0.2 Bq 

B 4 x 10-7B,q D 24Bq 

1 The isotope plutonium-238 is lo be used as the energy source for a space 
satellit ~. This isotope emits alpha particles of energy 5 .5 Me V. The power 
required for the .energy SOl~rce is 18W The minimum activity necessary 
for the plutonium source is 

A 7 x 109 Bq 

B 4 x 1010Bq 

C 6 x I012 Bc1 

D 2 X 1013 Bq 



U sc the fo llowing information to answer question s 8 and 9 . 

Jvlagnesium-27 is a beta emitter that decays to 
alun1iniu1n-27.Figure 11.10 sho\vs the energy 
levels ·within the nucleus for this p rocess. There 
are two paths possible for this decay; "rith 
different energies associated with the beta decay. 
After the beta decay, the alun1iniutn nucleus is ]eft 
in an excited state. TI1e nucleus reaches its ground 
state by the emission ,of gamma rays. The ,energy 
le\rels in the aluminium nucl us are also sho\\rn in 
the diagram. 

The magnesium-2 7 energy leitel lies above the 
ground state ,of aluminium-27 by 

A 5.22 lvleV 2.61 MeV 

B 2.78MeV D 2.44MeV 

Mg-27 

Figure 11.10 

9 The wavelength of the gamma ray emitted when the nucleus faUs from 
its second ex.cited level to the first excited level (path 1) is 

A 6.6 x 10- 13m C B.4 x 10~11 m 

B 7.3 x 10- 12 m 

10 J\.1olybdenum-99 decays by beta decay to 
techne:tium-99 (Figure 11.11). The isotope 
technetium-99 is a metaslable state~ 1..1.rhich decays to 
its ground state by the enrission of a ganuna photon> 
Vvith a half-life of 6 hours. 

The wavelength of the ganima photon is 9 x 10-12 n1. 

The energy difference E1 .... E0 is 

A 0.05MeV 

B 0.14MeV 

C 0.18MeV 

D l .2MeV 

Mo-99 

Fig u re 11. 11 

11 The isotope of uranium 2!~U, decays into a stable isotope of lead, 
1~~ Pb~ by n1eans ,of a series of a and ~- decays. 

a) In this S·eries, a decay occurs eight times and~- decay occurs 
x times. Calculate x. 

b) The haU-life of uranium-238 is 4.5 x 109' years, which is much 
longer than an ·Other ha.lf-li ves in the seri s. 

A reek sample when formed contained 6.0 x 1022 atoms of ~~U 

(1) 

and no 2:Pb atoms. At any gi. V· n tim·e, most of the atoms are ,either 

~~·u or 2~Pb ~ with a negligible number of atoms in other fonns in the 
decay series. 

i) Calculate the activity of the uranium ,,then the rock was first 
formed. (2) 

ii) Sketch a graph to show how the nun1ber of atoms of 2: U 
rnnd the number of ~~Pb atoms vary with time over a 
period of 10 x 109 years after the rock's formation. (2) 

A~-27 
----------;.........-- 1.01 MeV 

·1 

-----------0.84MeV 
3 

2 

-ground .......... ..................................................................... state 

y-photon 

ground ---------Eo state 



iii) At a time t, there are three thnes as many ~~U atoins as 
there are ~Pb ato1ns. Use this infonnation to calculate 
the age of the rock. 

12 The age of a bone found in a burial site can be calculated by 
comparing the radioactive decay of 1-:c from living bone ,vith 
that ,of bone fron1 the burial she. 

a) 1~C decays by~- e1nission to an isotope of nitrogen. Write a 
nuclear equation for this decay. 

b) A sample ,of 2.0 x 1022 atoms of modern bone was prepar, d for 
investigation. In modem bone, l in 1012 o,f the carbon atoms 
is the radioactive isotope 1;c, \vhich has a decay constant of 
3.8 X },Q-ll s-1. 

0) 

(1) 

i) Explain what is meant by 'decay constant\ (1) 

ii) Calculate the half-Hfe of 1:c. (J) 

iii) Show that the activity of the 1:c in the modem bo11e is 
about 0.08 Bq. (3) 

c) A sample of 2.0 x 1022 atoms of the bone from the burial site 
was found 10 have an activity of 0. 051 Bq. Calculate the age 
,of tl1e bone. (3) 

13 Radioisolopes are frequently used to treat patients v.rho are ill. 
1,o,dine-131 is a p-and y en1itteT, ,vhich can be used to t1-eat overnctive 
thyroid glands. When a patient sv.raUov.rs a dose of 1~jL it is absorbed 
into the b]ood1 then concentrated in the thyroid gland. The isotope then 
begins lo destroy some cells in the thyroid gland. 

a) Write a nuclear equation for the decay of iodin·e-1 31 to 
xenon (Xe). (1) 

b) Explain ho"v~ the iodine destroys ceUs in the thyroid gland. (2) 

c) Radiation from the iodine can b e detected outside the body. 
EA-plain ho,v this is possible. (2) 

d) The. half-life of 1;;] is 8 days. What fraction of the original 
nun1ber of atoms \vill have decayed after 32 days? (2) 

e) A dose is prepared for a patient 48 hours before it is swaUo,~ed. 
The doctors have calculated that an activity of 900 kBq is the 
con·ect dose for the patient at the start of the treatment. 
Calculate the activity of the sample \vhen it is prepared. (3) 

14 Chromium-48, i!Cr; is a sh on-Uved isotope~ w·hich decays by K-capture 
and the emission of a ''f-r, y to form an isotope of vanadium, V. 

a) Write a nuclear equation for the decay of ;:er. (1) 

b) A car manufacturer wants to n1.n tests to rneasure the wear 
,on a cylinder vntU due to the piston m ovem.ent. A sample of 

chromium-48, which l1as a half-life of 22 hours, is used. A very thin 
layer of the radioactive source is placed mi. the inside wall of the 
cylinder and the engine is run continuously. A delector is p laced 
outside the cylinder to n1easure the count rate. 



i) Explain why it is possible to monitor the count 1--ate outside 
the cylinder. (l) 

ii) Explain why an isotope "With a short half-life is suitable for 
this ttia l. (2) 

iii) The count rate "\\ras measured to be 450 counts per n1inute 
al the start of the trial. Calculate vlhat co,unt rate you would 
exp\:ct after 40 hours. (3) 

c) TI1e. count rate was actually measured to be 115 counts per 
minute. Calculate th fractio,n of th chromium won1 away 
during the trial. (2) 

15 Curium-244~ 2:~c1n> decays by 'the emission of an n-panicle to 
plutonium, Pu . The radioisotope has a half-life of 18 years. 

a) Write a nuclear equatio,n to describe the decay process. (1) 

b) To generate eJe,ctricity in a subrnersed vessel; 20 g of 2: Cm is to be 
used as a heat source. 

i) Calculate the number of atoms o[ curhnn-244 in a 
sample of 20 g. (2) 

ii) Calculate the activity of a 20g sample of curium-244. (2) 

iii) Calculate the n1axi1nun1 power available from 20g of 
curiun1-244. It emits alpha particles with energy 5.8 MeV. (3) 

ilT) Calculate the n1aximun1 power available afr.er 36 years. (l) 

16 Tllle table lists so1ne of the isotopes of argon> their half-lives and the 
mode of radioactive decay. 

l,sotope ~Ar 35A 
18 T 36Ar 

18 
37 Ar 
18 

37 A 
18 r 

Half- Life 0.85 1.8s s table 35d s table 

Decay p+ ~- K 

a) Explain what is tneant by the following: 
i) isotope 

ii) half-life. 

b) Calculate the decay constant of f: Ar. 

39 Ar 
18 

.4aA 
18 r 41Ar 

18 

269y sta bte t8h 

p- p-

c) Suggest why some isotopes decay by~+ emission and others by 
~- emission. 

d) Atoms that ar,e close to, one anoth er in the periodic table include 

42A 
18 r 

33y 

p-

(1) 

(1) 

(1) 

(2) 

15P 165 17Cl 10K and 20Ca. Write nuclear equations for the following 
decays. (3) 

i) ~ 

18 Ar 

ii) 37 Ar 
18 

iii) 41Ar 
18 



17 The isotope 2~~ U has a half-life of 4 .5 x 1 O; years. Explain how i t 
is possible to calculate the half-life of such an isotope by m,easuring 
its activity~ (6) 

Stretch and challenge 
18 A nuclear scientist is investigating the a,ctivity o.f two samples of 

material, P and Q. Sample P has N atoms in it and a half-lif of 
300 days. Samp]e Q has 2N aton1s in it and a haU-Hfe of 150 days. 

a) Compare the activiti,es of P and Q. 

b) Calculate how long it ,vill be befor P and Q have tbe same activity. 

19 A radioactive sample is kno,,~ to contain two different radioactive 
elements. The sample was placed in front of a. GM tube and counter~ 
and the results shown in the table v.,~,ere obtained. The results have 
been corrected for background radiation. 

Time/min Count rate/s-1 

0 800 

2 511 

4 352 

6 261 

8 205 

10 166 

15 109 

20 75 

25 53 

30 37 

35 27 

40 19 

By plotting a graph of ln(count rate) against time, deduce the 
half-life of each of the elen1ents pre.sent in the san,ple.. 

20 A radioisolope ,vith a half-life of 24 his used as a tracer in th·e hu1nan 
body. The body excretes the tr-acer v.rith a half-life of 36 h. A doctor 
monitoring the activity of the tracer at a point close to the bo,dy records 
an activity of lOOBq when the tracer is first injected. Ho,v many hours 
later does she recordl an activity of 25 'Bq? 



Nuclear energy 
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! PRIOR KNOWLEDGE 
: 
: Before you start. make sure that you are confident in your knowledge and 
I 

: understanding of the following points: 
• ii 
• • .. 
• • • • ,. 
• 
" 

• The atom tncludes a central positive'!¥ charged nu.cleus orbited by 
electrons , Figure 12.1). 

II 
Ii 

• 
I! 

-• • : 
* • • • • • • • • • • • : • • • • '* • 

·....,__ orbits 

etgctron~ 
proton - - ___,,,,,;,;,.;,....a. 

neutron----

Figure 12.1 

~ • The radl,us of a nucleus is proportf.onal to Ai I w here A is the nucleon 
• 
: in umber. • t 

: • Fission occurs when a nucleus spti'ts rnto two or m,ore smaller parts. 
• : • Fus~on occurs w hen two nucle~ jo'in to form. a nueileus of a dIHerent 
• 
: element. • 

: 
I 
; 
• "' • • • • • • • • 
i 
: .. 
• • • • • • • • • • • • • • .. 
• • • • • • • • • • • • • • .. 
• • • • • • • • • • • • • • .. 
• • • • • • 

: • lln an elastic collisionj kinetk energy is conserved. In a non-etast,c : 
• • 
: co ll rs 1o n, kine tic energy is not ea n served. : 
• • 
: • .Momentu,m ~s conserved in elastic and non-elastiic collisions . : • • 
; • In a nuclear reaction, mass number and atomic number are conserved . ~ 
! • One etectronvo lt 1 eV = 1.6 x 10-19 J. i 
• • : ................................................................................... ~ .................... ~ 

~···························································································: : TEST YOURSELF ON PRIOR KNOWLEDGE ~ 
• • • 
: 1 Describe the s imilarities and differences betwee n the structures of 
• i oxygen a.toms for the isotopes 110 and 1to. .. 
i 2 Wdte down one exa.m,ple of nuc lea r fu,sion. and two examples of 
"' ; n uc lea r fiss i,on. 
i 3 Co 1mpare th e radi ri of tlhes·e nucle·i: zin c (64 nucleons] an,d iodin e 
i (1 27 nucleons). 
I 4 Write down the missing values rn this equat·ion : 1ic ~· }N + _~e +v. 
• i 5 Wrrte down the numbers of protons a,nd neutrons in 2~!u, 
! 6 Convert 2.34 MeV into joule·s. 

• • • • • • • • • : 
• • • • • • • ; 
~ 
~ 

I • • • • • • • • • • 
= ! 

: 
~····~·~·••11,, ......... ,,111,11•····~·· ••r11•11••••••······· ·····~··········,········tlll- 1!!!!!!111 ................ 1111!!!!1!!!11 

Since the fonnation of Solar System 1 energy from fusion processes in the Suns 
oore has driven life on Earth. Our understanding of how the Sun generated 
energy developed only in the last century. When Pierre Curie announced rhat 
radium salts rel ease. heat continuaU)~ physicists at the time suggested that 
radioactive decay migln be a source of energy in the Sun. Calculations and 
analysis of elements present in the Sun proved this theory was wro11.g. Albert 
Einslein proposed his f an1ous equation; E = nic2, at the beginning of the 



twentieth century; but it was nearly 't\vo decades later that Arthur Eddington 
linked this equation with the generation of ,energy in the Sun. lt took another 
t'Vlo decades for the main nuclear cycle in the Sun and the tnechanism o[ 
nuclear fusion to be described in detail, involving work by 1nany physicists 
including George Gamor..,v and Hans Bethe. 

o--~~~~~~-
E inst e in. mass and energy 
Einstein:S work on special relativity led him to publish a paper in 1905. This 
paper suggested that nergy and mass were different ways of ex-pr,ess'ing 
the same thing- that energy and niass were interchangeable and linked 
using the equation, E = mc2 1 where Eis energy (J), m is change in mass (kg) 
and c is the spe,ed of light~ 3 x 108 m s-1. By 1932 his ideas ""·ere proved 
ni,erimentally by Cockcroft and Walton. 

So v.rha·t does this equation m,ean? If we use a heltum nucleus as an 
example, the helium nucleus ,c,ontains four nucleons -two protons and 
two neutrons. The mass of the heHu1n nucleus is very slighdy smaller that 
the mass of its separate nucleons. 

As the helium nucleus fonns; some mass is ,converted lo energy and 
released. Calculating the energy released when an alpha particle is formed 
is straightforward: 

• n1ass of a proton is 1.6726 x 10-27 kg 
• mass of a neun~on is 1.6749 x 10-27 kg 
• mass of nvo protons and two neutrons is 6 .6950 x 10-27 kg 
• measured niass of a l1elium nucleus is 6.6337 x 10- 27 kg 
• u1ass difference is 6.13 x I0-29kg 

Using E = mc2~ the energy released \vhen a single alpha particle is formed is 
5.5 x I0-12], or 34 MeV. 

You can see t"hat~ in Einstein)s o,vn 1.ovords1 'a very small amount of n1ass may 
be convened into a very large ani.ount of ene1-gy and vice versa '. 

Work n1ust be done to overcon1.e the very strong nuclear forces that b·ind 

the nucleons together and pull a helium nucleus apart. The energy put in to 
do this creates the extra n1ass. 

A nucleus of Z protons and J\i neutrons has a mass that is less than the 
mass of the protons and neutrons that n1ake i t up. This difference in 1nass 
is called the mass defect, where n1ass defect Jim= Ztnp + l:\1mn - Mn1.\cleus 

measured in kg or atomic mass units (u). 

Since mass and energy are interchangeable; we can als,o ,express mass as 
energy. Binding en,ergy is the en,ergy that corresponds to the mass defect, and 
is related to the mass defect using binding energy= mass defect x c2. 

Binding energy is the ene.rgy that would have ta be suppJi.ed to the nucleus 
to separate it back into its constituent protons and neutrons. The binding 
energy can be expressed in J or in l'vte V: 

Atomic mass unit 
Single nuclei have such. small masses that calculations are simpler if we u5e 
a unit of 1nass called the atomic m.ass unit (u). An atomic n,ass unit is 1/12 of 
the n1ass of an aton1. of 12C) or 1.661 x 10-27kg. Using .E = nu2 ) a mass 
of 1.661 x 10-11kg is equivalent to 1.495 x 10-10] ) or 931.SMeV 



Be carefu l! M,ass defect is the 
dHfere n ce i,n mass betvveen 
i1ndividual nucleons, and 
their ma1 ss when they form a 
nucleus. If you compare tvvo 
nuclei~ you are catcu lating a 
mass difference [Mori9inal ~udeus 

- Mtinat nucleus!. whrch i1 s not the 
sa ,me as mass defect. 

LE 

Table 12 .1 gives so1ne panicle masses in atomic mass units. These are quoted 

to a large nutnber of significant figures because their diffe.rence:s a.re sn1all. 

Table 12~1 

Particle I Mass/u I M~]Ss/10~21·J<g 

1Proton 1.00728 1.673, 

Neutron 1: .00867 1.675 

Helium, nu cleus 4.00151 6.647 -

Pl 
Mass defect for oxygen 
Calculate the ma,ss defect [1ini ul and bindi1ng energy !in MeV] for an oxyg·en 
n·ucteusf 160. The mass of an oxyg.en nucleus is 15.9949 u. 

Answer 
The oxygen nucteus has Z;;;; 8 protons and N ;;;; 8 neutrons, so the mass of 
th e partjc:les that make up th e 160 nucleus is 

Zmp + Nmn = 8 x 1 .00728 u + (.S x 1.00867 u)1 = 16. l 276 u 
So th e mass defect fo r oxyg.en is 

L\m = [Zmp + Nmn) - Mlnucleus 

= 16.1276u -15.9949u 

= 0. 1327 u 

The mass defect i.s 0.132 7 u. 

Si1nce 1 u = 931.5 MeV. the bindin g energy is 123.6 MeV to four 
s;i g n i fi' can t f i giu res. 

Mass differenc.e between thorium and 
radium 

The difference in binding energy in J for the two 
nuclei is gi'iven by 

Ailpha pa rt ides a re released d uiri n 9i the decay of thorium 
to rad~um. Ca lculate the mass difference lin kg) and the 
d·ifference in binding energy for both nu clei Hn J)!. The 
atomk mass of th orium is 232.03.Su and the maiss of 
ra:d1ium i1s 228.03,1 u. Remember that an alpha1 particle ts 
a hetium nucleus. 

Answer 
The mass di ffe re nee is 

232,038 U - [ 228.031 'Ui + 4.00 151 U)1 

a;; 5, 4 9 X 11 o-3 U 

-:= 9 .1 2 x 11 o-30 kg 13 s. f .l 

·mc.2 = 9 .12 X 1 o-3D kg X f 3 X 108 ffi 5-l ~2 

·= 8.21 x 10- 13 J [3 s.f.) 
Thi1s energy fS t ransferred in the kinetic energy 
o·f the alpha, particte and t!he daughter nuc leu1s. 
Considerat 1ions of mo.mentum conservation 
show th at the sma:'Ll alpha partkle has much 
m,ore kinetic energy than the recoH1ng nucleus. 



Binding energy per nucleon 
By m .easuremen tr it was found that binding energy is different for different 
nuclei. The binding energy per nucleon for stable nuclei is shown in Figure 
12.2. We use the follo~ng equation to calculate the average binding energy 
per nucleon: 

. -. total binding energy 
bmdtng energy per nucleon=----.......... - ................ 

number of nucleons 

Experimental data sho\vs that nuclei \vilh a high binding energy per nucleon 
are most stable. Mor energy per nucleon is needed to pull the nucl ,o,ns apait. 
This infonnation allows us to predict the stability of 11uclei of cliff rent n1asses. 
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Figure 12.2 

The graph in Figure 12.2 shows that: 

• Binding energy per nucleon increases rapidly 'Vith nucleon number for 
lighter elements and is about 8 MeV per nucleon for heliurn and elements 
heavier than lithiun1. 

• Heliun1 nuclei eue very stable relative ta other low-mass nuclei) "rhich 
explains vlhy alpha decay is more com1non than pi-oton emission~ 

• Binding energy per nucleon has its highest va]ue for 56Fe. at 8. 79 MeV 
per nucleon and decreases with increasing nucleon number 6or any 
stable nucleus heavier than 56Fe. 

Figure 12.2 shoiNS that binding energy has a positive value. However~ stable 
nuclei have less nuclear potential energy than the free nucleons, so, you may 
see binding energy quoted v.rith a negativ,e value. In this chapter, we use 
the convention that binding energy is the ene,rgy that has to be supplied to 
break the nucleus apart, so it is a positive quantity. 

O· ~-------------------------
Nuclear reactions 
Some nuclei can release energy from nuclear fission or nucle.ar fusion. Almost 
all nuclear reactions that occur naturally result in nuclei that are more stable. 
This increases the binding energy per nucleon compa1wed wid1 the original 
nuclei. The mass difference ben.veen the original nuclei and the nuclei of the 



mass number (A} 

Figure 12.3 Lig1hter elements release 
energy by fusion. and heavier elements 
releas.e ene,rgy by fi ssion. 

tritium 3H herlum 4He 

fusion 

/ 
deuterium 2H neutron 

Figure 12~4 The fusion reaicti on 
betwee n tr itium and deuterium. 

products con-esp-on ds to the am ount of energy released. Figure 12.3 shows 
that > to incre-ase the binding en ergy p er nucleon , ligltter elen1,ents tend to 
fuse an d heavier elemen ts tend to undergo radioactive decay or fission. 

ln. all nuclear reaction s) total proton nutnber Zand mass number A are 

conserved, and the reaction ofoen results in more than one product. 
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Use th e fo llow in~ data t o answ er these questions : 
11 u - L661: X , 0-2 kg - 931.5 MeV 

mass of proton - 1.00728 u 
ma,ss of neutron, g 1. 00867 u 

1 Sug,g,est, with an exp tana,tion. how the mass of a 1jC nu.cleus is 
d·iffeirent from the tota l mass of its protons a,nd neutrons wh e.n 
sepa,rated. 

i 2 56Fe hes 26 p roto nis a,nd 30 in eu,trons. The m,as s 
• : of an iron nu cteus ~5 55.935 u. Calculate • • • • • • • • • • 

a) th e m ass defect in u 

b) th e bi nd·ing energy for 56Fe rin M.eV 
• 
: cl t he b indin9 e nergy pe r nu cleon i.n iron-56 . 
• 
: 3 Uranium underg oes alpha decay~ fo rm 11 ng t hodum. Catcu tate t he 
• 
: difference in bi niding energy for the nu clei rn MeV. Ura n rum has 
• • • • • • • • • 

92 pro tons and 146 neutrons . The mass of a uranium n ucteus is 
238.050Bu, and that of a th ori um nu cle us is 234.0426 u . 

• 
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Fusion 
Light nuclei can join together by nuclear fusion , fonn. a n e\\1 eleu1,ent and 
release en ergy. Nuclear fusion occurs naturally in stars, "rhich is: h ow 
stars can release ·energy for billion s of years. Scientists have successfuHy 
achieved fusion reactions on Earth too , but very large amounts of 
energy are need ed to create su itable conditions for fusion , sin1i1ar to lhe 
con dition s in the cores of stars. 

The temperature in a star,s core is several million kelvin and the density is 
in the region of 150000kgm-3. These very high tetnp eratures give nuclei 
enough kinetic energy to overcorne the electrostatic repulsion betvtee11 
p i·,otons in the nucleus. The high density inside the star s core forces nuclei 
so close to,gether that the strong fo,rce becomes inv,olved . This attractive 
force acts over very short distances. 

,Q,ne fusion reaction that releases nergy in s'tars like the Sun is the fusion 
of deuterium and tritium to form helium and 3. neutron. Th is is shown in 
Figure 12.4. The equatio,n is 



2 3 4 l 
1H+ 1H ----t 2 He+ 0 n 

The mass difference for this reaction is th e difference between the mass of 
the original nuclei (de:uterium and tritium) and the n1.ass of the products 
(h,elium nucleus and neutron): 

n1ass difference= (2.0 l 3553u + 3.015500u) 
- (4.001505 u + l.00866Su) 

= 0.018883u 

Th ,energy released is 0.018883 u x 931 .S MeV = 17.59 MeV: 

The fusion reactions tha occur in different types o.f stars dlepend on the 
stars 1nass, core temperature and density. A chain of reacti,o,ns which 
1nay include steps that s e1n impossible in te1ms of energy, can happen if 
conditions are slllilable. For exa1nple 1 the triple alpha cycle occurs1 but only 
in red giants and red supergiants) where the core temperatures are greater 
than I 00 million kelvins: 

~ ·····················································································································································: 
: TEST YOURSELF i . .. 
• • • • . .. 
: Use th e following data to answer these questi on.s : 5 Explain why a star·s core m ust be at a high : .. . 
i 1 u = l .6611 x 11 o-27 kg= 931.5 M eV tern perature for fus~on to be possi.ble. i 
• • 
J mass of pr oto n= 1.673 x 1 o-27 kg 6 The rea ction 1~c+ ~He~ 1~o is one t hat occurs i 
.. . 
: ·mass of neutron= 1.675 x 10-21 kg in s tars much hotter than the Sunj releas ,in g : 
• • 
i f 3 5 00 6 1 0 'l.7 k 7.162 M'eV. Compare this w ith the energy re leased : : mass o 2H e = , . , . x ,, ' - · · g : 
: in o ne of the fusion rea ct io ns that ta kes pla ce in : i mass of ~He= 6.645 X 10-27 kg 3 4 1 ! 
• our Sun: 2 2He ~ · 2He+ 21p. .. 
! mass of ~H = 3.3 43 x 10-21 kg i .. . . .. . .. 
• • : 4 A source of ener gy in some s ta rs is t he r ·eaction ; 

~ 1H+ 1H --4 ~He;-Jnr. Ca llcula te th e energy r eleased [in ! 
• • 
: J) dudn 9 this r eaction . : . .. 
i ........................................ ... . ................................... .... ........................................ . .................. ........................ 1111111 

Fission 
Nuclear fission is when a nucl us splits into two or more smaller parts, 
releasing energy. 

Nuclear power 
Nuclear power stations generate about 20% of the UK~s energy using controlled 
nuclear fission reactions to produce heat used to generate ,electricity. Nuclear 
fission can be induced in s.ome isot,o,pes, including those of uranium and 
plutonium, by making the nucleus unstable when it .absorbs a neutron. 

The nuclear fuel used :in most nuclear power stations contains an isotope 
of uranium, U-235. The nucleus of U-235 coJttains 92 protons and 14 3 
neutiwons. One problem ~ith using uranium is that U-235 makes up only 
0 .7% of mined uranium, and most natural uranium is U-238, ,vhich does 
not undergo fission. The 1nined uranium must be enriched until the U -235 



uranlum-235 nucleus 

Figure 12.5 U-235 nucleus is very 
unstable if it absorbs a the rim a~ neutron. 

Figure 12.7 A ch,a1n reaction grows if 
more neutrons are produced at each 
stage than a reabsorbed. 

content is about 3 % before it can be used as a nuclear fuel - although enriched 
fuel rods still contain a high proportion ofU-238, which is not ·involved in 
fission. Son11e reactors use isotopes of plutonium or thorium instead. 

Nuclear fission to generate power 
Fission reactions are established in the nuclear ·rue] using neutrons travelling 
slowly enough to be captured when they are fired at U-235 nuclei. A U-235 
nucleus that captur,es a neutron beco,m,es very unstable, and splits into two 
or more smaller pieces, and r,eleases energy in the form of heat. 

\Alhen it has absorbed the neutron, son1e people think of the nucleus as being 
lik- a wobbly jell)4 ""hich splits if it is wobbled too much (Figur 12.5). 

Each fission reaction produces two, three or so1nethnes four neutrons wruch 
may be absorbed by other U-235 nuclei if the neutrons are made to travel 
slowly ,enough. There are several possible reactions (Figure 12.6), for example: 

2~iU+5n ~ 1;~Ba+~~Kr+35n 

fl s sion fragments 

neutron 
• a 

, . ... / . 

-··· ' uranlum-235 uranlum-236 

Figure 12.6 Stages in the fiss~on of lJ-235. 

Nuclear fission reactions can only continue in a reactor if the nun1.ber o[ nuclei 
involved in the fission reaction stays constant or increases. This o ccu.1~ if, on 
average, one or more neutrons is produced and ah...~med per fission :reaction. 

This type of self-sustaining reaction is called a chain reactio,1 (Figure 12.7). 
Chain reactions are only sustainable v.rith a minin-ium ainount of fu,el, called 
the criticaf rnass. This is because. neutrons lost fran1 the surface are no longer 
involved in the chain reactio11s. The shape as well as the. mass of the san1ple 
affect the critical mass. 

4t = uranium nueleus O = fission p roduets • = neutrons 



Figure 12.B N uclei in the moderator 
absorb e-nergy from neutro ns th rough 
e[astk collisions , slow1in.g the neutrons 
down. 

-

~ : ~ ~ 
Figure 12.9 Moving control rods dgQper 
jnto the reactor co.re abs orbs more 
neutrons and stows down t he fiss ion 
reac t jons. 

Role of neutrons in nuclear power stations 
Neutrons that induce fission reactions in nuclea1· reactors are called thermal 
neutrons. Their mean kinetic ,energy is -equivalent to fkT~ ,vhere k is the 
Boltzniann constant and T is the absolute. temperature of the re-actor core. 
Typically, the1n1al neutrons travel at betw,een 2.5 and 3-.0kms-1 

> relating to 

a reactor core tempe1~atures of about 290-3 50 K. 

tvlod ration of n u t11 tts 
Neutrons produced by nuclear fission n10,ve so fast that they are unHkely t.o 
be absorbed in uranium nuclei, s,o they must be slovled down. The role ,of 
the n1,oderato1· is to slo;,v do\Vl'l. fast neutrons as they pass through mat,eria]s 
like graphite or water (Figure 12. 8). Fast neutrons repeatedly ,collide "1ith 
nuclei in th e n1oderacor, exciting the nuclei to higher energy levels. The fast 
neutrons lose energr during these collisions, and further collisions between 
neutrons and nuclei are elastic) slowing the. neutron do·\\'11 even more. The 
slow,er neutrons are called thermal neutrons. 

The excited nuclei lose their surplus energy as gamma radiation when they 
return to the ground level. 

1 n 
0 

1 n 
0 

hJg h neutron 
veiloolty 

moderator 
(water) 

fow neutron 
ve~oclty 

l 11 
0 

Graphite and heavy water ar,e suitable n1atetials for the ni.o deratoT because 
they do not absorb neutrons. Also energy iis transfen·ed more efficiently 
during elastic collisions if 'the n1-ass of the nucleus is close to the n1-ass 
of a neutron. 1Cor1si.der a s11ooker ball colliding head-on ,i.rtth a second ~ 
stationary baU. One ball stops as its energy is transfet-red to the other ball, 
"'rhich carries on at the same spi:::ed. A inuch Hghte·r table tennis baU vtiU 
hounce off a snooker ball, which ke,eps most of its energy. 

onlr l rod 
Control rods control the rate of reactions in the reaclor. Materials such .as 
boron. steeJ and cadn1ium absorb rieutrons \Vithout undergoing f sslro11. 
Other materials such as silver\ are also suitable but are· rare and expensive. 
Boron. is p·articularly useful because about 20% of the boron in control rods 
is boron-10, \\rhich absorbs n eutrons to become boron- I 1. When a control 
rod is lo\.vered il-ito 1he reactor (Figure 12. 9) 

1 
the control rods absorb 

neutron s> so the rate of d:~1:e reaction slows down because (ev.. .. er n eutrons are 

aivailable to trigger fission reactions. The position of the control rods can 
be adjusted to maintain the chain reaction. at a steady rate; or t o shut the 
react 01~ doVvn completely. 



The coolant 
Coolants are fluids tl1at absorb heat from the reactor, and transfer this l1eat 

away to dtive the turbines that generat,e 'the electricity and to prevent the 
reactor from overheating. Most of the UK's nuclear reactors use. carbon 
dioxide as a coolant, but son1e use p ressurised water. 

U1e coolant circulates through tubes inside the reactor core, absorbing heat 
frotn the re.actor. This hot coolant then passes through a heat exchanger or 
boi]er ,vhere its heat is transfen·ed to water in a secondary cooling systen1. 
(Figure 12.10). 

As the ,vater in the secondary cooling syste1n heats up, it changes to high­
pressure stea1n and is used to drive the turbines and generator. Any S'team 
remaining in the secondary co,oling syste,m is condensed back into water 
before it circulates through the heat exchanger again. To achieve- this, the 
steam. passes through pipes in a ,c,ondensing unit, which is another heat 
exchanger that uses cold """'ater-fille.d pipes. The ,~later in the condensing 
unit is usually taken from a. nearby sea .or river. 

contalnmQnt 
structure 

contra I _,_ _ ___.. 
rods 

reactor--
vessel 

pump 

steam llne 

pump 

generator coollng 

turbine 

cond,enser 
cooling water 

tower 

Figure 12 .. 10 Schematic system i'n a nuclear power statro11. 

o~~~~~~~-
s a f et y aspects of nuclear power 
Nuclear fuel 
Nuclear fuel, in particular the spent fu, 1 rods, and the nuclear reactor are 
highly radioactive . \Vorkers and the community must be pro,tected fr,o,m 
exposure to radioactiv·e materials to reduce the damage caused by ionising 
radiation. Exposure to, ionising radiation can damage DNA in ceUs, and 
increase the long-tenn lisk of cancer. The risk of harm is higher if people 
are ·e"-"Po,sed to higher doses of radiation; or if the time or intensity of 
e:,\."posure increase. Work rs involved in a nuclear accident 1nay receiv,e very 
high doses> causing radiation sickriess which ,c.an be fatal in a fe\v days. 
Many steps ar,e taken to reduce or prevent ,exposure. 

The reactor is surrounded by shielding> which protects vlorkers fr,om 
exposure to radiation . ln many nuclear power stations; this is a sleel 
pressure container that also contatns the high-pressure coolant. Tl1is 
container is surrounded by Sm of concrete to absorb 11eut1nn.s and gamma 

radiation) and this is surrounded by a steel andl concrete building) designed 

to contain radiation even if the1·e is an accident. 



Cost and ,effectiveness are i1nportant factors to consider \.Vhen choosing 
a mate1ial :for the shield. Common n1ate1ials used for shielding are lead, 
concrete, steel and ,vater. Concrete is one of the most cost-effective 
materials us·ed in nuclear p,ower stations. 

In an emergency, nuclear power stations are designed to shut down 
autotnaticaUy. During a shutdo\vn, the control rods drop into d1e reactor 
core, absorb the neutrons and slow do\ti.rn or sto,p the nuclear fission 
reactions. In many nuclear power stations , the control rods are held 
vettically above the reactor core using electron1agnets. If there is a pow,er 
failure, the rods drop automa'tically iluo the react,or. 

Nuclear waste 
Nuclear vvaste is produced from nuclear power stations. It is grouped into 
three categories - lo'\.v- intennediate- and high-level wastes, Nuclear v;.. .. aste 
is handled remotely to protect workers from ·e.J\.'-pOSure to radiation. This 
includes tele-operation, where ·w·orkers manipulate ·equipment remotely; 
and the use of robotic macl1inel)~ 

Low-level waste 
Lo\v-level waste, including clothing worn by workers

1 
paper and rags, 

accounts for 90% of the volume of nuclear \Vaste~ but only l % of the 
radioactivity:. l ow-level waste is cotnpacted and encased in cement. and 
stored on licensed sites until the radioactivity decays away and it can be 
disposed of in 11onn.:1.l waste. Isotopes in low~~Ievel ,vaste have different half­
lives and activities, so their exact disposal procedures vary. 

Intermediate-level ,vaste 
InteTmediate-level \Vasle is mainly produce,d when a nuclear power 
station is decomn1issioned, and occurs in chemical sludges .and resins. 
Intennediate-level waste accounts for 7% of the volume of nuclear waste, 
and 4% of the radioactivity. Intermediate-level waste with long half-lives 
is encased in ce1nent in steel drums and stored securely uncl.erground, for 
exa1nple ir1 cav,erns or in near-surface facilities. A near-surface facility holdls 
drums containing isotopes with half-lives of less than a. few years. \vhich are 

t:>laced in deep trenches and then cove1"ed by several metres of soil. 

High-1 v l wa 
Th · main sourc ,of high-level waste is spent fuel rods. High-level waste 
accounts for 3% of 'the v,olume of nuclear wast,e~ but 95% of its radioactivity. 
The spent fuel rods are so radioactiv,e that they continue to emit heat and 
have to be cooled as ,vell as stored. Initially, spent fuel rods are stored under 
vntter which acts as a coolant as well as a shield fr,on1 ionising radiation. 
For long-term storage) high-level \\~aste is mixed \Vith 111ohe11 glass, then 
solidified inside stainless-steel containers. This p,rocess is called vitrification. 
These stainless-steel cases arc stored in specia.Uy designed facilities 1 either 
above or below ground. The half-Ufe of high-level radioacdve waste 
depends on the isotopes present\ but several ·fission products have half-lives 
of several thousand years. 



Spent fuel rods must be handled and stored much more ca:refully than 
unused fuel rods because of the form of d1e ionising radiation. that they emit. 
The fission reactions that occur inside th.e spent fuel rods initially emit beta 
radiation, then gamma and neutron radiation. These fon11S of ionising radiation 
are more peue·tI"ating than the alpha radiation emiued by unused fue[ rods. 

Risks and ben,efits 
Nuclear pow r stations generate electricity using fission reactt.ons . 
No sn1.oke particles or greenhouse gases are released 1 so generating 
electri.city by nuclear po\\rer does not contribu'te to acid rain or to global 
warming. By using nucl,ear po"'·er, many countries have reduced the 
amount o( coal and oil burned to generate electricity, which reduces 
their greenhouse gas emissions. 

The death rate in coal mining and in the oil and gas extraction indusuie-S 
is high, panly because the regulation and safety legislation of mining in 
different countries varies. For example, many thous2lnds of coal miners ruive 
died woddv.,ride since 2000. Oil extraction has one of the. highest death rates 
for workers; even with the improv,ed safety measure-5 introduced in recent 
decades. Hydroelectricity also kills: when the Banqiao hydroelectric dam 
(China) collapsed in 1975; ilie accident killed thousands of people directly; 
and more also died as a. resuh or the fa1nine and epidetnics caused by the 
resulting displacen1ent of people. 

The quantity of ,vaste produced during nuclear power gene1-ation is s1nall 
in co1nparison. to the a1nounts fron~ other n1ethods of generating e.lectricit~ 
because the energy soun:e~ uranium> is very concentrated. 

N11clear po,ver is a veiy reliable way of generating electricit}; and the output frotn 
many nuclear power statiotl\S can be controlled. to n1atch clianges in de1nand. 

Howe·ver1 there are significant drawbacks to our use of nuclear po,ver. As 
with any natural Tesource~ theTe are li1nited supplies of uranium> although 
supplies a:re likely to last for thousands of years, especially if fast br,eede1· 
reacto,rs are used to clumge: U-238 into Pu-239> another nuclear fuel. 

Although 1he ·quantities of uranium n1ined are small compared to the 
quantities of coal n1ined uranium n1iners ate at increased risk of developing 
lung cancer fron1 their exposur,e to the radon gas found in the 1nines. 
Ura:niun1 ore is c,o,nsidered to be only weakly radioactive. 

The radioactive ,vast products need to be stored securely fo·r n1any decades 
or centuries~ even though the quantities of ~~aste pr,oduced are relatively 
small and some radioactive vvaste ea 1 be recycled. Storage of radioactive 
waste underground is considered safe if the geological conditions are suitable. 
Som,e evidence for the safety came from studies of ~ocks that contained 
U-235 isotopes in the Oklo· mine in the Gabon, West Africa. Self-sustaining 
nuclear f15sion took place in these rock formations for billions o.f years. The 
waste products from this natural fission have remained close ta their original 
site) held in place by the rocks surroundhtg it. 

New nuclear power stations are extremely expensive to build as a l'esult of 
the safety features lhat need to be included. 

Decommissioning nuclear power stations is also expensive , with the safe 
disposal of in.tennediate-level waste adding to ongoing costs. 



There is a risk of nuclear accidents> and these have occurred at > for 
exan1ple> Fukushima Qapan 2011) and Che1uobyl (Ukraine> 1986). In 
both cases> significant sa[ety issues were not addressed when building, 
maintaining or running the plants. Large-scale nuclear accidents ea.use 
massive disruption to the local population, and long-tem1 health concerns. 
It is likely that the Fukushin1a nuclear accident (see belo,v) will cause 
about 200 additional cases of cancer. The Chernobyl nuclear accident 
killed about 40 people from direct radiation ~1?osure, and potentiaUy 
4000 from cancers induced by exposure to the faU-out although, more 
than 30 years afoer the accident, these figures stiU are unclear. Many of the 
thyroid cancer cases that developed in Russia after the accident c,ould have 
been prevented by vacuating residents promptly and issu ing iodine tablets 
s,o that people could not abs·orb radioactive iodine isotopes released in the 
fa.H-out. 

Fukushima nuclear acci 1dent 
The Fukushima nuclear power plant was hit by a massive tsuruuni in 
M'1ffch 2011; and 14m waves breached the lOm high protect ive walls 
sun~ounding the plant. Emergency generators were· overeome by flooding > 
and the electrica] supply maintaining the cooling systems stopped ~l,orking. 
Although the reactors shut down .automatically; fission products in the fuel 
cot1tinued to release heat; so the reactor stiU needed constant cooling. The 
cooling systerr15 stopped working> so the reactor started to overheat and 
after a [ew days there \Vere several explosions caused by chemical reactions 
(rather than nuclear reactions) . Radioactive material was released to the 
surrounding environtnent, including the sea, where it dispersed. Sea water 
"'ras used to cool the reactors after ihe cooling systenlS failed. People living 
nearby were evacuated quickly and it is thougl1t that they ,ve1--e not exposed 
to significant anlloun'ts of radiation . . A more significant health ·risk was 
due to the dan1age caused by the tsunanri and the upheaval caused by the 
evacuation. The surrounding countryside is likely to be sealed off for several 
decades> although this tnay change as different t echnique:s in cleaning up 

contamination are developed. 

~ ·····················································································································································: : TEST YOURSELF ! 
• • • i 7 Thi1 s questrron i:s abou t nuclea,r power sta t~ons. 

I a] Ex plai.n how controt rods are used to reduce th e 
i power output from a, nuc lear reactor. 
I b) Explai1n now spent nuclea·r fuel rods are 
ii 

: handled. 
II 

I • II 
II 
II 
I .. 
i 
' !I • 
II 
!I! 
I .. • • ; 

cJ Exp larn how the energy of fast neutrons ,is 
reduced . 

e al A f i ssi,on rea et ion ri nvorlv in 9 u ran j,u,m releases 
3·. 2 >< 1 o-11 J. H the p OVi1 e ir o u t put of t h e re a c tor i s 
6 GW, ca lcu la,te the number of fission reactions 
oc.curdrig rn the reactor each day. 

b) Expla in why th e power output of the reactor is • • • • : not th e same as th e output of the power station . 
• 
: 9 A reattor has 1700 fuet rods~ each of mass 14 kg. 
• 
: a nd 3o/a of eac h fuel rod :is U-235. The e lect r ica l .. .. 

power output of the station i·s 840 MW. The power 
sta,tii on converts nuclear energy to electricat 
energy with an eff iciency of 350/o . 
al Calcu late the power output of the reactor core. 

bi Ca lcu late the ,mass of U-235 avaHable to 
generate power. 

cJ Assume that a ftssion rear·ct ion releases 
215 rMeV. Ca lculate the mass converted to 
energy per fissio-n reactiron. 

d) How long does the fuel last? 
[Of cou,rse, runn ing the staboin is a Uttte more 
com,p li ca ted tha1r, th is, because as the u rainium 
depletes the f ission process wi Lt become lless 
eff[de,nt.J 

• • • • • • • • • I 
I 
I 
I 

i • • I 
I 
I 
I 
I 

: 
: 
• ' I 
I 
II • • • • ' • • !I 
!I 
I 
I • • • : • • • 
!I • .. • • • • • • • • • • .. • : .... ...................................................... ......................................... ........................................... ........................ ~ 
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Practice questions-
I The graph in Figure 12.11 .shows binding energy per nucleon against 

atomic mass. 

.... 
CD 
Q. 

BE 
A 

Cu 4 
c:i 

0 50 

Kr Mr.:o~--n-e ---._ 
~ -~LU~-....-.__ 

Hg 

100 150 2JO 
A, atomic mass 

vVh.ich of lhe four nuclei shown belo~v is the most stable? 

A heliu1n (He) 

B magnesium ()v[g) 

C calcium (Ca) 

D meTcury (Hg) 

2. The mass defect for a carbon-12 nucleus is 0.0990u. The average 
binding energy per nucleon is 

A 8.0lMeV 

B 1.l9MeV· 

C 92.2 J\1eV· 

D 7.68Me\r 

3 What is the energy released in the alpha particle during this reaction? 

12.o.... 222- 4 
88t<.a ~ 661tn + {.L 

The nuclear mass s are 225. 977 u for radium-226~ 221. 9703 u (or 
radon-222 and 4.0015 u for alpha panicle. 

A 3.23M,e\' 4.93MeV 

B l.23M,eV D 4.93J 

4 A deuterium nucleus and a tritium nucleus fuse together, forming 
helium and releasing a p'1rticle, Z, as shown in this equation: 

Vvbat is the particle Z? 

A neutron 

B p1uton 

~H + ~ ~ ;t-re+ ~. 

C beta particle 

D alpha particle 

Figure 12.11 



5 In a nuclear reactor) fast neutrons are slo\ved do"rn by 

A cooling them using a coolant system 

B elaslic and inelastic coUisions ·mth atoms in the moderator 

C loi..vering control rods 

D inelastic collisions only, with atoms in the moderator 

6 The purpose of lo\\r,e.ring contro,l rods in a nuclear react:or is to 

absorb· neutrons and slo,v do,"u the chain reaction 

B slo,v down fast neutrons producing thermal n,eutro·ns 

produce thermal neutrons and increase the rate of fission 

D cool the rea,ctor 

7 Heat is generat,ed in a nuclear rcact,or by 

A. absorption. of neutrons in ll-235 atoms 

B nuclear fusion. processes 

C co1.nbustion of nucJ.ear fuels such as uranium 

D fission of U-235 by neutrons 

8 Thermal neutrons travel at a spee,d of about 

A. 2.5 x 103 tns-1 

B 2.5 >< 107 ms-1 

C 2 5 -1 -. 1ns 

D 2.5 x 105m.s-1 

9 A suitable 1naterial to use as a moderator is 

A carbon dioxide C boron steel 

B graphite D cadmiun1. 

10 1Critical 1nass is the 

A nlinimun1 mass of fissile material used in a react,or 

B maximun1 mass of fissile materia] that can safely be used in a reactor 

n1tinimun1 u1ass of fissile material required for fission to occur 

D n1inimum mass of fissile materials for a chain reacti,on to occur 

11 a) Copy the axes sho\vn in Figure 12.12. On your copy, sketch 
a graph of binding · nergy against nucl on number. Add values 
and a unit to the J "'\3.Ais. (3) 

§ 
a) 

u 
::, 
C: 

a3 a. 
65 
b. 
CD 
C: 
CD 

~ 
"O 
i:::: 

n O -+-~-'-------..~~~--~~--.,,,,~~~.--~~~ 

0 50 100 i 50 250 
n ucteon n umber 

Figure 12.12 
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b) Use your sketch graph to explain why fission is more likely 

for l1e-avier nuclei andl fusion is more likely for lighter nuclei. (4) 

12 Each fission reaction insi:de a thermal nuclear reactor releillses two 

or three neutrons. Explain how a constant rate of fission is ntaintained 
in the reactor) describing the nuclear processes that occur. (6) 

l The atomic mass of iron, ~:re, is 55.93493. The mass of a neutron is 
1.00867 u, the mass ,of a proton is .00728 u and the mass ,of an 
electron is O .000549u. 

a) State what is meant by mass defecf for iron. (1) 

b) Calculate the binding energy p r nucleon for iron in MeV. (4) 

c) The most commonly f,o,undl isotope of iron is Fe-56. EA-plain 
whether the binding energy per nucleon for other isotopes of 
iron is larger or smaller than thal for Fe-56. (2) 

14 a) Figure 12.13 shows a simplified sketch of a graph of binding 
energy per nucleon against atomic mass number. Copy the 
grapl~. On your copy, adld labels stating where fl1sion is more 
likely lo occur and where fission is more likely. (2) 

Figure 12.13 

b) EAl)lain the conditions rec1uired for nuclear fusion to take place. (4) 

c) Explain why the heaviest element produced during fusion 
reactions in stars is iron. (2) 



Stretch and challenge 
TI1e question that follows is a British Physics Olympiad question. 

15 A uranium atom undergo,es fission as shown in this equation: 

235.. L l41. 9~/"- l 
91,U + on ~ :,Jfa + 3ef'-l + 3 gil 

Use 'the data in the table. belo,v to calculate 

a) the mass difference in u 

b) the energy released per fission reaction in MeV 

) the energy released if 10 kg of uranium undergoes thi.s fission reacti,on 
in. MeV 

Nucleus Mass/u 

U-235 235.04 

8e1 -141 140. 91, 

Kr-92 91.91 

n 1.01 f BPhO R1-20,06 Q1j 



Optional topic: 
Astrophysics 

. . 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • • 
! PRIOR KNOWLEDGE ! 
l ! 
i Before you start. make sure that you are confident in your knowledge and i 
I • 

: understanding of the following points: : 
' . • • I • 

: • Light is an e'lec tromagneti c w ave, wh i,ch travels at a spee d :----
i of 3.0 x 11 08 m s- 1 in a vacuu.m. : : ! 
; • Ligh t is a wave, wh1ch shows th e wave proper ties of reHect1on. : 
• • 
: re fract io,n. diffract1on and interference. : 
• • 
! • A lens ca:111 be used to refract light : 
• • 
: • L ens,es are used t o fo cu s lig,ht and to produce 1l'mages of : 
• • 
: va rrous ob j.ect s. : 
• • 
: • Th e Unive rse is m ade up of billi ons of s tars a n1d garlaxies. : 
' . 
: • Th e d~ s tance between galaxres fS measured in m illi ons of lig ht yea rs. : 
• • 
: • The Universe fs about 13.8 billion years old. : 
• • : .................................................................. ................. ~ .................... ~ 

~ -··························································································: : TEST YOURSELF ON PRIOR KNOWLEDGE ! 
• • • • " . i 1 A ray of light rs fncident on one face of a paraUel-sided block of g tass. ! 
• • : at an angrle of 30° to the normal. Draw a sketch to s how the path of 
• 

. : the ray as H pass es into and then out of the btock at glass . 
" : 2 Describe how you would use a laser and an adjusta b le small sUt to 
• 
J de1monstrate the diffraction of [ight fn a taboratory. 
• : 3 a] A lrg ht year i1s the distance that light travels fn one yea r. Ca le u late 
• • • .; this distance in metres . 
" • • " • ii 

b) A di st ant ga laxy 1is 2 bHlion Light year5 from Earth . Calculate this 
• • • 
" i 4 a] 
• • • • • 
= • ! • • • 
i b] 
' • ' II 
II • • Ii 

: 
= • • • 
II 
Ii • ! 
i • 

d·ista·nce in metres . 
Astronomer s es bmate thait our Galaxy1 the Miilky Way~ conta ins 

a·bout 300 bitti on stars. Th ey also estimate that th,e Universe 
con ta.in s a ppr ox.i1mat ely 2 00 bi lllo:n g,a la X1ies. Ca lculate th e number 
of stairs in th e Universe, statin,g any assu,m,ptions you make . 
Our Suri has a m1a.ss of 2 x 1030 kg and Jts m,a.ss by composition is 
750/o hydro gien and 25°/o heUu·m. Make an esti mate of the number 
of hydrogien ato m,s (or nuclei] in the Un1ive rse~ assum1ing tha,t 
.nearly a ll th e Universe's hyd rogen is 1in stars. State any other 
assumpti ons you ma.ke. The mass of a hydrogen atom 
1is 11. 67 )( 1 o- 27 kg. 

• • • • • • • • • ... 
• • • • • • • • • • ... 
• • • • • • • .. 
• • .. .. .. .. • • • • ... • .. 
• : • : • • • 
i • • • • • .. • : 
i • • • • jl, 

: 
t 

: •••••••••••• ,, . , ••••••••• , ••• , •••••••••••• ,,11,•••······~·· •,. ,, ••••••••• ,,. , •• , .............................. 1111111 



If yo,u have studied le nses in 
your GCSE co u rsei you might be 
able to move on to th e section 
on t etesco pes. lihi s secban hs 
provided as background for those 
wh,o are u nfa m1iUar vvith lenses. 

Figure 13.1 The pirin C1iplQ behjn d a 
convergin9 Lens. 

••••••••••••••••••r••••r••••r•••••••••••••••••••••,.••••r•"'••••••••••••r•••••••••• 

Con ·ergin le , A converging lens refracts 
rays of Ud1t to a point. 

The Milky Way is the natn e V\re give ou1~ Galaxy. Our Sun is one of about 
300 billion stars in the 1Galaxy. On a dark night the Milky Way is an awe­
inspiring sight, which Ji.as caused people to wonder v..ith amazement at 

our world. Babylonian astronomers developed geonietry and trigonometry; 
son1e four thousand years ago, so that they could tneasure and plot 'the 
positions of the sta1-s that th.ey observed. It is an interesting thought that if 
\v·e lived on a planet that was covered in dense clouds, and where clear skies 
and stars were never seen , we might not have trigono,metry on the school 
curriculum and we. would have little idea about the origi11 of our Universe. 

Lenses 
A convex ·Or c nv · r • i 11 "' le ns is designed so that it can focus light rays to a 
point. For exatnple, you may have used a converging lens to focus the Sun~ 
rays 011 to a piece of paper, so that it stans to bu1n. The principle behind 
a. converging lens is illustrated in Figure 13.1. A ray of light is incident 011. 

the lens at an angle i to the normal ·with an angle of refraction r. As the ray 
leaves the ]ens, i t bends away from 1he normal, as shovm. 

Figure 13.2 shows more about the nature of ,converging lenses. A lens 
is constructed to that it is symmetrical about its p r · n~i p'" ] a . ·is . A ray 
that passes along the principal axis passes through the lens undeviared, 
because it is parallel to the normals on both faces . Rays that are para.He] to 
the principa] rods come to a focus at tl1e ]ens's fucal p i l. There are ti..vo 

focal points > one on either side of the lens. The focal lenoth of a 
converging lens is the distance between the centre of the lens and the 

focal poh1t. 

t pr~nolpa,I 
axis 

The lens in Figure 13.2 has a short focal length because i ts surfaces 
have smaU radii of curvature, and d1e light is refracted through 
relatively large angles. The ]e.ns in Figure 13.3 is thinner tlllan the 

Figure 13~2 Rays pa ra lle L to the 
principal a_x i.s meet at the focal point. 

principal 
axl-s 

Figure 13.3 The focal lens is ton,ger in a 
lens that is thinner and less curved. 

Figure 13 .. 4 

converging 
lens 

]ens in Figure 13.2. It is less curved and its focal length is longer. 

1Constructio,n 01f ray diagrams, 
There are three classes of light ray that are used to predict the 
position of an image form,ed by a converging lens. These are 
illustrated in Figure 13.4. (N,ote that, v.rhen vve draw a my diagram 
£or a lens, we sin1p,Hfy .. the process of refraction by assun1h1g tha'l it 
happens in just one part of the lens. So tl1e lens is dra'\Vll as a thin 
vertical line. The atTO~ls pointing out (rom the centre of the lens, 

at the top and bottom. indicate that this lens is a 
converging lens. (If the arro,vs po·int the other vray, it 
is a di v"t rging lens.) 

1 A ray parallel to the principal axis (on the left side 
of the lens) is re.fract,ed so that it passes through the 
focal point on the right side o,f the lens. 

2 A ray that passes through the optical cent re of the lens 
is undeviated. 

3 A ray that passes through the focal point on the lefl 
side of the lens is refracted so that it travels on a 
line parallel to the principal axis on the right side 
of the lens. 
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Figure 13.5 
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Prin i i The pr,ncipal axis of a lens is, 
an imaginary line that passes through the 
centre of a llins and through the centres of 
curvature of the faces of the lens. 

...... ,.. .......... " .............................. ~ .... ,., ... , .... .,. ....... , .. , .. -·~··· ,.~ .................... ,. ....... ,. 
F I point The focal polnt of a lens is the 
po tnt at which rays paraUel to the pnl 11c1i pal 
ax~s o,f the lens ar,e lbro,ug~t to a f,ocus. 
J /l!P;•••'I il!Jt•lll • ili•'l 'fll • •• !lit tlll41 •• !It 1!11 Ja., •11 !II ~a., 111• lt•if lt'I ,.a~111t 19~ •• ••• tlll•<A•!I• •t ~•• 11 .. • 

l n h The focal length of a lens ~s 
the distance b etwe,en the centre of the lens 
aod the point at which rays parallel to the 
princip!e axi1s an~ brought to a focus . 

(a) 

(b) 

object 

t 

Projecting an image 

prlnclpal' axis 

1lmage: real. Inverted, 
magn'lfled, 
beyond tne 
focal point 

Figure 13.5 shows how you can use two of the construction rays t,o predict 
where an ·image will be fo,i,ned by a converging lens. Provided the object lies 
outside ihe foca1l .length of lhe llens, a real image ""111 be formed. The image is real 
,..vhen the rays converge at a point.. This image can be focused on to a screen. 

Figures 13.6(a) and (b) sho,v how two different converging lenses can be 
used to project an image of a distant object. Light rays from the same point 
on a distant object arrive at the lens very nearly parallel to each other. So, 
for example~ rays from the top of a distant object arrive at. the lens parallel 
to each other and rays from the bottom of tl1e same object also arrive 
pa1-allel to each other. 1..ens B produces a larger image d1an lens A, because it 
l1as a longer foe-al length. This idea \Vilt be used later when \Ve consider the 
design. of an astronomical telescope. 

llght from 
the top 

of a 
distant 
object 

llght from 
the bottom 

ot a distant ob JQ et 

llght from 
the top 

of a 
distant 
object 

A 

focal 
plane 

Image: real. Inverted, 
diminished 

B 

focal 
plane 

f prJnclpa 1I 
axis 

light from 
the bottom 

of a d lstant ob Je et Image : rgal,lnverted 1 

dlmlnl,shQd 

Figure 13.6 A lens wi,t h long err focal length proj'e cts a Large,r image of a di,stant obj,ect; 
t he i,mage projected by Lens 8 1is la1r9er t han the image proj.ected by lens A. 
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Figure 13.7 [al An ·O·bject viewed inside 
the focal leng1th of a tens produces a 
virtuat mag,nifi ed imag e. lb] Without a 
lens. you ca,n o·nly focus on an object at 
yo ur n:ear 1poi nt of vision.. 

The magnifying glass 
Figure 13.7(a) sl-1ows what happens ,vhen an object is placed inside the focal 

length of a conve1w.ng lens. Rays from the top of tl1e object now diverge and 
do not come to a focus. lf your ,eye is pLaced behind the lens , the object appears 
·to be bigger a11d further behind the lens. This is a ,.,ii.1.Ual image. It cannot be 
projected on to a screen and it appears oruy to the eye on the other side of the 
lens. When the lens is used like this, it is called a magnifying glass. The object 
appears bigger because the let1S produces .a magnified in1age at your near point. 
Without the lens, you can only focus on the object at your near point of ·vision -
perhaps 25cm a.Vrray, as shO\vn in Figure 13. 7(b). The lens causes magnification 
because the angle Bin Figure 13. 7(a) is bigger than the angl tf, in Figure 13. 701). 

Figures 13.S(a) and (b) show· ho,v.-· two lenses can be used to view an object 
situated at the focal point of a lens. In both cases, a vhtual image is seen at 
infinity1 be.hind the lens. H,o,wever, the magnification of lens Dis larger than the 
magnification of lens C because angle /J is ]arger tban angle a. So a converging 
lens ,vith a short focal length is a more pow-erful magnifying g]ass than a 
converging lens with a longer focal length. This idea is also in1portant ·when 
designing an astronomical telescope. 

o--~~~~~~-
T he astronomical telescope 

(a) 

Image at ... ..... .... 
infinity ...... .... c 

......... ..., ... 

f 

(b) Image at ,, 
Infinity ', D 

' .... ' ' 

eye 

Figure 13.9 shows the principle behind the astronomical refracting 
telescope. The objective lens (the lens pointing towards the distant object) 
projects a Teal u:nage of a distant object such as the Moon. This image is 
larger for a longer focal length of th e objective lens> f

0
• TI1e eyepiece is no,v 

used to rnagnify this image. A shon focal. length ,eyepiece produces a larger 
magnification of the telescope. 

object at 
lntlnlty 

Figure 13.9 

objective 
lens 

focal point of 
both lenses 

t0 and '" 

rea l 

eye 
piece 

.- , 
.;, .;, ,,.. ., , ,,,. ,,,. 

Image at *""" 
Infinity 

eye 

Using uigono,metry, we can write 
prlnclpal 
axis h ---~,..-~~-_.......,.____ tan a= -

Figure 13.8 A shorter foca L Le·ngth 
converging Lens is a m,ore powerful 
magn,ifyi ng gtass. 

f, 

/3 
h 

tan = -
fe 

"'rhere h. is the height of the real hnage, f0 is the focal lengd1 of the objectiv,e 
lens and fe is the focal len gth of the eyepiece lens. But for small angles 
( expressed in radians) 
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The angle subtended by ari object 
is the angle between th e rays 
co rning from the extremi1ties 
of th e object to the eyes or 
telescope Lens. 

The magnification, of an 
ast ronom i1ca.l telescope ,in 110 r1m1al 
d. t ~' &. a JU S ,men·i. ISM;;;;; -

fe 

tan ,a ~ a and tan{J ~ f3, 
so 

and /3 h 
= -

le 
The angular n1agnification M , of the telescope is defined as: 

_ angle subtended by image at eye· 
M = angle subtendled by object at unaided eye 

_ /3 h fo fo 
- ~=~X ~=~ 

tX fe h fe 

A telescope is described .as being in nonnal adjustment when the real image) 
pta;oduced by the objective lens , is viewed at the focall point of the eyepi,ec,e. 
Under these circumstances] a magnified vinual image is viewed at infinity. 

Sa(ety: NEVER look direcdy at. the Sun through a telescope -you will burn 
your eye. 

i ACTIVITY 
• 

j A simple model telescope 
Select two convergrngi tenses w ith different fo ca l len9ths - for examp!le, 
50 c1m, and 1 D cm. Use modell.ing putty to st1ck them on to a metre r ule 
60 c m, apart. You have just made a s1mpte modet telescope. 

1 look th rough t he 1:0 crn lens towa rds the 50 cm lens and describe 
w hat you see. 

2 Loo k at a brick wall through your telescope w ith one eye. and use the 
other eye to look d,irect ly at the wall . Ca lculate the 1:elescope'·s angular 
ma g,n ~f i cation. 

3 Draw a ray diagra:m to show the passagie of tight through your tetescope. . 
' : 

• i ,.,. 1.•• 1,,1 1.1..1..-.1,1 •• a,.11,,1,1 •••,1.1 1,,1 ••• ••• 1,,11,11,11,,1,11,,11,1,,11.•• 1,,1 .. ,._.,. 1,1,,1 ••• 1,,11,1,111,1,,1,11,,1 a.a,1 • • 1,1,,11.a.1,1 •• •"'°• 1,,1,11.-a.•L• ......... 11•• •• 1,w.1 lli.1• 1,,11,1,,1 ••• 1, ,1 1.1.•••• 1,,1 ••• 1,,11.1.I.1.,1.11,,11.•• 1,.1,11,,11.11,111;.a,11,,11.•• 1,111,1,1,a 

-
l!5 ~ ·········································································· ······················· ····················································: ~ : TEST YOURSELF i 
.A 'Ill .. 
~ . . 
! = 1 a) A man of hei,ght t 7 m stan1ds a d1sta nee of 10 m 4 The great r·efrac tor in the Vienna Observatory ha,s : 
wr j t !;: = away from you. Ca.lculate th e aing le he subtends an objective lens w,ith a. foe a l length 11 0.S m. i 
o i at your eye. Give your answer in radians. a) Expla jn why this telescope has an objective lens : 

: bl The ma:n now moves to a, distance of 120 m w:ith this la,rge focal length. i 
j away. Ca lculate. in radians, the angle he now bi The telescope is used with an eyepiece of ! 
! subtends at your eye. focal length 50 m,m .. Calculate the angular i 
• fl i c) Is the smaH-angle approx i1mation, tan a= ,a, va lid mag:nification of th e telescope. j 
; iin case [al or case (b)' or both ca,ses? 5 Two stars are separated by an angle of 0.05° when. ! 
I 2 Exp lain, why an astronomica l telescope s hould have viewe d d,irectly by eye. What angile do the i!ma.ges ! 
i a] a·n objective tens of long1 focal length of the sta1 rs su.btend when viewed throug,lh an ! 
• 11 i b) a1n eyep~ec·e with a short foe a[ length . astronomica l tetescope w ith an objective lens of : 
! 3 What is the length of an astronomica l telesc-ope jn foca ll llength 2.4 m arid an eyep iece of foca l length ! 
~ nor.mat adjus tment. when it has a n obj ec t~ve lens of 40 mm? E 

i foca,l leng,th 2.50 m and an eyepiece of foca,l length i 
i 40 m1m. i 
• • : ...................................................................................................................................................................... ~ 



O· --~~~~~~-
Lens aberrations 

A---.......,-----:,i,,,... 

Although refracting .astrono1nical telescopes are vei--y useful instru1nents , 
their effectiveness is reduced to soine extent by the 1in1i tations of their 
lenses. Glass lenses have tVlO main rype.s o[ aberration, ~,hich lin1it the 
sharpness of the in1age that v.re see. 

8 --""lli----+---L_ 

------+----+--~~=""" Sp he ri ea l a be r ration 

Figure 13.10 Spherical aberration: rays 
fro.,m a distant object are not brou:ght to 
a focus at a si ngite poi.nt. 

Figure 13.11 Ch romatk a be rratf on: 
d~fferent colours of light are refracted 
by di Here nt amounts. 

Most lenses are ground into, a spherical shape1 but this is not quite the ideal 
shape for a lens. Figure 13.10 shows two rays, parallel to the piincipal axis of a 
lens, vthich come from the same distant object. The tv,ro rays refract at different 
angles, but they do not pass through the sa1ne focal point - the ray at the top of 
the lens, A. comes to a focal point clos-er to the lens than the ]0Vr""e1· ray, B. As a. 
restllt of this there is a slight bluning of th image that \Ve see. 

Spherical aberration can be demonstnned easily in the laborat,o,l)~ A lens is 
u.sed to project an iinage of a lamp filament on to a screen. If a card with a 
small hole is placed in front of the lens, you wiH see that the image b ecorn:es 
sharper. This is because rays pass through only a small pan of the lens. 

It is possible to reduce spherical aberration by using a lens with a parabolic 
shape. However; such lenses are very expensive; and they produce some 
distonion o f the image) except tor hght exactly parallel to the principal axis. 

Chromatic aberration 
Figu~e 13 .11 shows two rays of white light ben1g refracted by a lens. The 
speed of light through glass depends on its wavelength. Blue light has a 
shorter wavelength than red light> and it travels n1ore slovily than red light 
thi--ough glass. 1Consequently, blue light is refracted more than red light, and 
there are different points of focus for the two colours . This is called chromatic 
aberration. It is possible to reduce the. effects of chrotnatic aberration; but not 
to ren1ove it en tirely; by constructing a lens using two different types of glass. 

o~~~~~~~-
R e f le c ting telescope 

Figure 13.12 Principle of the Gassegra in 
ireRect1i n g tete sco pe. 

Figure 13.12 sh o\vs the principle behind the Cassegr.ain reflecting telescop e. 
Light froin a distant object strikes the ptitnary concave nlirror, where the 
light is reflected t,OVr-"ards the focal poin:t at E Ho\vever, a secondary convex 
mirror reflects the hght again, so that it is [ocused at F', \vhere a real image 
is fo.m1ed. The observer can then see a magnified image through the 
eyepiece, which is placed behind a hole in the prin1a1y n1irror. 

llg,ht trom 
a d,lstant 
object 

secondary 
convex 
mirror 

side of tel1escope 

pnlmary 
concave 

mirror 
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r lle ti n is, a measure- of the Light 
i11te11stty gathered by a t~fescope. This is 
proportional to th,e square of the telescope's 
diameter. 

A reflecting telescope has several advantages over a refracting telescope. 

• A good astrononlical telescope requires a diaineter of about 15cm or m ore, so 
that sufficient light is gatl1ered. It is v,e.ry difficult to nu1ke a high-quality lens 
of diameter 15 cn1~ but much easier to n1ake a concave nrirror of that size. 

• A reflecting mirror has no chromatic aberration) because light is reHected 
over a metal surface ~ithout passing through glass. 

• Spherical aben·ation can be reduced more easily in a reflecting t,elescope by 
nID.king the concave mirror parabolic in shape. A pa-rabolic n1hTor focuses 
light that is paraUel to the principal axis accurately at the focal point. 

• It is possible to make reflecting telescopes with larger diameters han 
refncting telescopes. The worlds largest refracting telesco,pe, at the 
Yerkes Obser,,atory~ has a diameter of 1.0 m . There are several reflecting 
telescopes that have diameters over Sm - for example, the Subaru 
Telescope in Ha\vail has a mirror of dian1eter 8.2 m. A glass lens w i.th 
a diameter of o,ver l m begins to, sag u.nder Hs nwn weight~ whereas a 
mirror can be suppon,ed by a stJong struclure behind it. 

The collect in p .. ., rc-r of a t~lescope is proponional to its area. Since the area 

of the telescope. mirror is ~; where d is its diameter1 the coUecting power is 
proportional to the diamet:r squared> d2. Larger telescopes are able to show 
fainter objects; because more light is collected. Images in large telescopes are 

also less affected by diffraction - this is dealt with in detail in the next section. 

PLE 

Comparison of collecting powers 
Compare the light gathered by two tetesco pes - a reflecti,ng telescope 
that has a 1mirror with a diameter of 3.6 cm,; and a refracting tefesco pe that 
has an object~ve lens wi1th a dlam,eter of 1 IJ cm. 

L1ight gathered by a telescope is measured by the coHecting powerj which 
1s proportional to the telescope·s d]a:meter squared . So: 

co llecHn,g. power of the reftecto r - · [36)2 

c0Uectin9 power of the re tracto r (10)2 

= 13 [2 s.f.] 

A refracting telescope does have some advantages over a reflecting t,elescope. 

• The lenses in a ref-ractor ate held in place by a metal tube. So little 
maintenance is requified. The mirror in a reflecting telescope is eJ\.i,osed 
to the air, and might need recoating. 

• The mirrors in a small reflector can get out of alignm,ent if the telescope 
gets knocked. So sometimes the mirrors ne,ed adjustment. The suung 
constntction of the refracting telescope makes such misalignment less likely. 

• The secondary mirror in a reflecting telescope has the disadvantage. of 
bloc.king some light from ent,ering the primary mirror. 

• The secondary mi.n·or and its supports will cause some diffraction ,vhich 
';Vil} degrade the image. 



~ -····················································································································································: 
: TEST YOURSELF : • • • • • • • • .. . 
; 6 Explain th e m eaning of th e terms : its m oons. He f inds that he ne·eds to expose his ~ 

: a] chro mati,c a berratjon photogr aph for 16 s to get a clea1r photograph . : 
• • 
: b] spheri ca l aber ration. He vis its a fr i,end to take a photograph :using her i 
f 7 Exp lai n four adva ntages that reflecting telescopes reHect in g telescope, w hi ch has a diameter of 28 cm. j 
j have over refr acting telesco pes. Wha t expos 1ure time would yo u1 advi·se for the : 
: 8 A n amateur astronom,er uses hJs 12 cm d,,iameter photograph using th e 28 cm reflecto r? Th ey i 
• i i refl ector to taike a photogra1ph of Jup:iter and use th e sam.e photograp hic equipment. i 
i ••••• •• ••••••••••••••••••••••••••••••••••••••••••••••••••. •••••••••••••••••.•••••••••••• +t t••······ ··········································· .... 11111111111111111111111111 

• • .. 
• .. 
: When light passes through a 
: circular apetture of dia1neter 
: D\ the first n,inimum occurs at 
: 
: angle e gi v,en by 
• • 
: . () 1.22A. i s1n · =---
~ D • 

+ • " • • • Ill • ' • 
= • .. 

I 
E 
• • • .. 
• • • • • • • • • 

: Ho~rever) Vle shall ,vork ,vith : 
~ the approximation that the f 
• • i ntlnimun1 occurs for srnall. angles i 
~ ~ 

: at ! 
• • • • 
! .t i 
: {}= - i • D • • • • • • • • • • • • • • • .......................... ~·······~·····••t••··········· 

(a)1 

(b) 

Figure 13.11. 

An1gular resolution of teles,cope 
You met the idea of the diffraction of light in Chapter 6 of Book 1 . 
To demonstrate th diffraction of light in a. laboratory~ it is necessary to 
direct a. beam of light through .a very narrow slit - ithe.n v.rc can see the 
Hght spread out. Ho1Arev,er1 the effects of diffraction are apparent when light 
enters a ·tel.escope aipertur:e, even though the lelescope h as a diameter o f 

many centimetres or even metres . 

Figure 13.13 shows how the intensity of light ,vith wavelength I, varies 
after i t has been diffracted through a slit of vvidth D. There is an area of l1igh 
intensity - the central n1aximum - and the light inte1:1sity falls to :z:ero \"\7hen: 

- 3.1 
D 

. 0 l 
S1!.TI = -

D 

Figure 13.13 

intensity 

0 ..! 
D 

B cause the angles of diffraction that we shall be de-aHng with are very 
small we can work in the small-angle appro"-imation and say that the· £irst 
diffraction minimum ,occurs at an angle of: 

,t 
9=-

D 
So ,vhen light from a star passes through a 1elescope, the image of the- star has 
a measurable Mdlth due to diffraction as the light passes thr,ough the lens or 

min·or apetture. 

Diffraction affects how well a telesco:pe can resolve fine detail. Figure 13. 14 
shov.ls the idea. Figure 13. l 4(a) s·hows the diffraction pattern due to two 
small sources of light, after passing through a narrow aperture. The patterns 
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/ slit width D 

,..._x--., , 
L1 ~ 

Figure 13.15 

{a) 

I 
I 

~D 

y 

two sources cleanly resolved' 

Figure 13.16 

overlap, but we can see t,vo sep-arate, distinct patterns. In Figure 13. l 4(b) 

the sources have been moved closer together. Now the patterns merge in.to 
each other, but we can stiH see that the.re are t,vo sources. We say we can just 
resolve the two sources. In Figure 13.l 4(c) the sources are so close together 

that ,ve cannot distinguish bet,veen them- the sources are not 1·esolved. 

Rayleigh's criterion 
Figure 13.15 shows an arrangement you can use in the laboratory~ to 
investigate the resolution of 'two smaU filament lamp·s. The two filaments are 
arranged so that they are about l cm a.pan (the distance x in the diagram) . 
They are then viewed through a narr,ov.r slit, which can be adjusted to be 
about 0.2 m1n (2 x 10-41n) wide. What do ,,re s,ee when v,re look at th,· 
hnnps as we vary their distance, y, fro1n the slit? 

Figure 13.16 sho1,vs ho\\-· the intensity will appear :for different vab.tes of y. 
In Figure 13.16(a) the lamps are close to the slit, so their angular separation 
is relatively large and we see two separate patterns of intensity (t.his is 
similar to the photographs in Fig,xr.e 13.J 4) . In Figure l 3. l6(b) the lamps 
are funher away; so that they are just re.solved~ and in Figure 13.16(c) the 
lamps are so far a\vay that the eye cannot see any smaH dip in intensity 
betvleen the ]a1nps - so they cannot b e resolved. 

Figure 13.16(b) sho,vs the Rayleigh criterion for resolution. When the first 

n1inimum of one of the sources coincides with the maximum of the second 
source, \.Ve can just see (resolve) the t,vo separate sources. This rule is only a 
guide because som e peoples eyes ar·e better than others. 

(b) (c) 

com,bined iinte nslty----... ___ J 

two sources just resolved, 
cy thie Ral'elg·n Cr,1ter1lon 

of two sources 

two sources too close 
to oe resoh1ed by eye 

Rayleigh! criteiion for resolution can be written as foUo,vs -when two 
sources emitting light of ·wat"·elength A, have an angular separation (J 

and are viewed through an apenure of diameter D: 

;t 
• If 9 >- the sources can be resolved. 

D 

,l 
• If fJ ~ D the sources can just be resolved. 

,l 
• I f()< - the sources cannot be resolved. 

D 



Angular separation of two lamps 
Two lamps a re separated by a distan ce of 1.2 cm, and they are ptaced 
4.0 m away from a narrow s lit of width 2 x 110-4 m. Th ey are vi,ewed through, 
a blu e f itt er, which allows li'ght of wave-Length 4.8 >< 10- 7 m to pass. Wilt an 
observer be a,ble to resolve t he tvvo lamps? 

Answer 
We use tn e smaU-angle a pprox imatron to ca lcula te the ang 'le between 
the lamps: 

tan9 - sin 9 Qc~ 
y 

where x is th e sepalia tiion of the la,mps. and y i1s their distance from the sUt 
So the angular separation of th e lamps is 

0 x 1.2cm 3 1, n,..-3 d' = - = = X ' u ra 
- y 400 cm 

The s mallest angle tha,t the observer wiH be abile to resolve i,s 

~ = 4·8 
X 

10-
7 

= 2.4 x10~ rad 
D 2 X 11 0--4 --

l 
Because 9 > - the tamps may be resolved . 

D 

~ ,·····················································································································································: 
: TEST.YOURSELF i 
• • • • • • 
~ 9 Two smaU la mps, each with a thin wi re filamen t, a) The An dro meda g,a laxy 1s a distance of 2.2 i 
: are set up w~th th e fila me nts 1.5 cm a part. Th ey millio n li ght yea rs away from Earth. It is : 
• • ! are placed 6.0 m away from a s Ut of w,dth 0.22 mm. possib le to see blue giant s ta rs at thi s dis tan ce. i 
i Ex plain what a student sees w hen she vrews the which emit li g,ht of wave leng,th a roun d 4~0 ~ I 
i tamps th roug h the slft w he n the foltowJ ng filters 1 o-7 m. What is the mh1imum separatron of two i 
i are placed in fro nt of the la mps : blu e giants for the Subaru Te lescope to be able i 
i a] a red fitte r passin g Ught of wavelength to resolve the,m? ! 
i 6.5 x 10-7 m b] The Hubble Space Te lescop·e has th e advantag1e i 
~ b] a green fi tter pass ing light of wavelength of be~ng above th e Ear th's atmosph ere. It ha s a ! 
i 5.4 )( 10-7 m m,ir r or dic.rmeter of 2.4 rn . Repeat the calcu,latf on i 
i c] a

4 
b
7

lue
1 

filt r passing light of wavelength in part la) for th e Hubble Space Telescope. f .. 
: · . x o- m,. 11 A stud ent dr aws two bla,ck Unes 1 m m apart on a • 
• • 
; 10 The presence of turbulence in the atm os,ph er e piece of paper. She w alks away fro m th em until. at : 
f reduces th e reso lv ing power of any te lescope a di stance of 5 m, she can no longi·er see them as i 
: by about a factor of 10. What th,is 'm ea ns is that two separ ate Unes. Anoth er s tudent measures the : 
• • 
: a large reflecting telescope such as th e S,ubaru d,iameter of th e pupi,l of th e eye of the firs t student, ; t • 
i Te lescope, w ith a diameter of 8.2 m, i,s only as and f inds :it to be abo·ut 3 mm. Ma'ke an esti1mate of ! 
; t 
: effec t i1ve as a telescope w ith a diameter of 0.82 m th e w aveteng,th of li ght. : 
i in perfect con,d itjons ,in space. for exam pte]. i 
• • • •• • • • • ••••••••••••••••• ••••••••••• ••••••••••••••••••• , •••• ••••••••••••••••••••• • •••••• •••••••••••••••••• • ••••••••••• , •••••••••••••••••• ••••••• • tlllll .................... ~ 

o~~~~~~~-s e e in g stars 
In the days of m odem technology) it is easy to think of microscopes~ 

telescopes an d cameras all as excellen t optical instnlm ents. However, 
vut must never underestimate the brilliance of our owt1 two eyes. ,Our 

eyes an d brain process vast a1noun ts of information every second. We 
can judge depth wid1 binocular vision 1 and by rapidly looking around we 
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build up an understanding of our surroundings that even the best cameras 
cannot match. Howev,er~ optical instruments give us fresh insight into our 
surroundings, and this is panicularly so in the field of astronomy. 

ll1-e first Vv~y "'"e look at stars is to use our eyes, but we see more when ¥.re 
use binoculars or a. small telescope. A telescope gathers 1nor-e light than 
our ,eyes, so ·we see fainter objects, and the larger aperture ,o,f the telescope 
a.Uo,ws us to resolve more detail. However, astronon1.ers realised, around the 
start of the twentieth century, that even tnore informa:tion could be gather-ed 
by using a cam ra together 'With a telescope. 

By 'd1iving' a telescope so that it rotates al the same rate as the Earth, it is 
possible to, track stars ,exactly over a long period ,of tim,e. Then a veiy long­
expo,sure photograph can be taken, and 'the· film developed later. 

No·\V, aU telesco,pes used by professional astronomers use cameras v.,1.th 
charge-coupled devic,es (CCDs) to detect the light from stars and galaxies. 
A ( ,CD is a slice of silicon that stores -electrons freed by the energy- ,o,f 
incoming photons. The charge on the -elec1r,ons builds up an image as a 
pattern of pixels. CCDs are ·much more sensitive to light than photographic 
filn1, and they have the advantage that information can be slored in digital 
form and processed by con1puters . Now cameras using CCDs are readily 
available to us all, and astronoulers use high-quality CCDs v.rith. hundreds 
of megapixels to lake long-exposure photographs of deep space. 

A 1CCD has a very high quantum efficiency. What this means is that a very 
high percentage of photons that strike the CCD produce charge carriers, 
which are then detected. Quantum efficiency is defined: 

ff
. . ( E) number of electrons produced per second 

quantum e 1c1ency· 1Q = ----------------
number of photons absorbed per second 

The quantutn ,efficiency depends on the frequency of the light incident on the 
CCD. In Table 13.1 "re ,c,on1pare the- 1QEs of ou1~ eye, some film and a CCD. 

Table 13.1 

~D • 
V.IC_e/ 

Eye 1-4 

Film 4-10 

CCD 70-90 

As Table 13.l shows, a CCD has a very high quantum efficiency, so a large 
telescope equipped with millions of pixels easily outperforms thee.ye. 
CCDs can also be designed to be sensitive to other types of electromagnetic 
radiation; including infra.red; ultraviolet and X-mys. So t,elesc,opes -can be used 
to investigate \r..ra:ves emitt,e.d from stars that lie outside visible ,vav·elengths. 

Q Telescopes beyond the visible range 
When astronomers observe the sky~ they are not just interested in visible light, 
because stars and galaxies e1nit the whole range of electromagnetic radiation 
fro1n radio v..raves to X-rays andl gamma rays. For example; hot stars emit 

radiation "rell into the ultraviolet ra11ge, matter close to black holes e1nits 
X-rays and oolder objects emit infra.red radiation and rad..io waves. 



Telescopes that can detect radiations outside the visible range 
have many similarities to optica] telescopes, but also some 
important differences. The tnost obvious difference is that there 
is no eyepiece because~ of course, the eye cannot see inf-rare.d, 
ultraviol,et or other radiations. However, for radio ;Naves, 

infrared and ultraviolet radiationst a Cassegrain reflecting 
secondary --~- ==========--1 mirror :1 focal plane telescope is ,oken used as sho,'Wn in Figure 13.17. The ¥/aves 

Figure 13.17 Cassegra in reflecting 
arrange,ment of m,irrors for ultravi.olet 
and infra·red radi,ations. and rad io­
wcwes. 

are focused behind the primary mirror: infrared and ultraviolet 
radiations are detected by CCDs, and aetials can detect radio 
waves in a radio telescope. Then elecni,ca] signals, produced 
by detectors in the focal plane, are sent to computers ,,..·hich 
buiJd up colour-coded pictures so that we can ·se.e1 the vatious 
intensides of 1·adia.tions. 

Radi,o telescopes 
Figure 13.18 sho,vs a photograph of a radio telescope "With its large primary 
mirror and its secondary mirror, which focuses the waJ·ves on to a detec.tor 
behind the primary mirror. The siring of a re.din telesc-0pe is not cri'tical 

because radio waves are not affected by atmospheric conditions - radio 
'\vaves will still reach the telescope on a cloudy day. 

The mirrors or dishes for radio telescopes are very large. To detect radio 
waves \Vith wavelengths in. the range 3 0 cn1 lo 3 n11 dishes are usually larger 
than 100m in diameter1 but smaller dishes can be effective fo1· shorter:.. 

Vlavelength. radio waves. The large-diameter radio 
dishes mean that the collecting ·power of the telescope 
is very high. Often radio telescopes do not have-a 
secondary n1in~or but poshiou the detector directly at 
the focal point of the pri1nary mirror. 

The reason for building such large telescopes is to 
ensure that it is possible to resolve two close radio 
sources. You vdll recall frotu the ,vork on optical 

telescopes that the criterion for resohing two sou:ti-ces 
separated by an angle () is 

Figure 13.18 A photo.graph of a1 radio telescope 
where A is the ,vavelength ,of the radiation, and Dis 
the telescope diameter. 

PLE 

Resolving two radio sources 
What is the s mallest angular separat,fon of t\No radio 
sources em i1Hing radi,o waves of wavele ngth 0,3 m that 
ca n be resolved by a, telescope of diameter 60 m? 

Answer 
Using the expression from th e text 

).. 0.3 ,m 3 9 = - : - = 5 X 10- rad 
D 60 m 

optrca l telescopes are ab le to resolve 1much s maHer 
angle than thi s. 
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a) Ultraviolet radiaUon 

b) Visible light 

~, X-ray 

Figure 13.19 Thr,ee photographs taken at 
different waveleng1ths show the remnants 
of a supernova explosion seen in 1054. 
This is kn,own as the Cra b nebula . 

mirror mirror 
surfaces surfaces 

X-rays 

Ultraviolet and infrared telescopes 
The construction of u ltraviolet and infrared telescop es is fairly similar to 
that of an optical telescope, because the wavelengths of the two radiations 
lie at either end of the visible spectrutn. However, careful consideration 

of the position of these telescopes is essential because of the effect of 
the atmosphere on ultra\'iolet a11d infra.red radiations . The majority of 
ubraviolet radiation is abso,rbed by the atmosphere. so ultraviolet telescopes 

are usually in o-rbi around the Earth in a satellite. So1ne infrared radiation 
p netrates the atmosphere, so, it is possibl to position s,otne infrared 
telescopes on mountain tops to vie,v specific Vlavelengths of radiation. 
Other infra.red telescopes are in orbtt around the Earth .. so that they can 
detect infra.red radiations ihat do not penetrat·e the aunosphere. 

The coUecting pov.-~r of infrar cl and ultravi,olel telescopes is similar to the 
that of an optical telescope, because their diameters are similar. Ho·wever, 
the resolving power of an ultrai,,iolet telescope is beuer than for a11 optical 
telescope of the same diameter - this is because ukr.avi,olet hght has a 
shorter wavelength than visible light. By con trast, an infrared telescope of 
the same diameter as an optical 'teles,cope does not resolve objecls as well as 
an optical telescope) because the Vlavelength of infrared radiation is longer 
than that of visible light. Some telescopes are able to receive near-infrared, 
visible and ne.ar-uhraviolet vravelengtbs by using a range of CCDs. 

Figure 13.19 sho,vs [hree images o f du~ Crab nebula, taken 1hrough 
different telescopes> detecting th1-ee different Vlavelen.gths of radiation. TJ1e 
X-ray photograph is able to look through the other layers of the nebula, to 
detect energy bei11.g emitted fro1n a pulsar (a rapidly rota ting neutron star) 
at the centre of the nebula. 

X--ray telescopes 
X-ray telescop es are also usually si.tu a te.d in space because the atmosphere 
prevents the majority o f X-radiation reaching the Earth's surfa.c,e. 

Figure 13.20 sho,vs the design of an X-ray telescope> "vhi:ch is considerably 
different from the reflecting telescopes discussed above . 

X-rays are very penetrating and they ar,e not easily reflected off m etal 
surfaces. You are used to the idea of ligh t being incident ,on a glass surface . 
S0n1e light is reflected and son1e is transn1iued by the glass. X-rays behave 
in this \\ray when incident on a metal surface. 1-lowever, if X-rays are 

incident at a \r,ery shallo"r angle; on a highly reflective 
n1J tal such as iridium, they are all reflected. This is rathe,· 
like skimming a stone along the surface of ~later. 

focal In Figure 13 .20 X-rays are refl.ect d ·off .a series of 
~-..._...._~p1olnt mirrors and brought to a focus so,me 10m away from 

the mirrors. Since X-rays have very short \\'cjJvelengths, 
10,-0 or 10-10 m~ U is possible to make X-ray telescopes 
~lith a small diameter and stiU p roduce ~'"ell-r,esolved 

Figure 13.20 X- r ily telescopes focus X- rays wit'h ve ry 
s hallow re flec tions . 

images. The design of telescope shoW11 in Figure 13.20 
can also be used to focus some short-wTavelen.gth 
ultraviolet radiations) which are difficult to focus ·with a 
conven.tionail telescope. 



~ ····················································································································································: : TEST YOURSELF ~ 
• • . ~ . ~ f 12 Expla,i n w hy rad 1io telescopes have dishes wi th a) Expla in w hy the Herschel te lescop e has a lar9er i 
! di a mete rs a .s la· rg e as 1 0 0 m. d j a ,me te r th a: n th e WISE te le s co ,p e. ~ 

i 13 al Descri,be how the des,ign of an X-ray reflecting b) Ca lculate t he rati o of the collec ting powers of i 
i telescope d~ffers from that of an opti'cal ref lecti.n g the two telescopes. ! 
• • : telescope. Accou,nt for the differences i1 n design. cl Calculate t h-e s,mallest an,gular separat jon that = 

i b)1 Exptaiin why X- ray telescopes ar e in orbit around ea,ch telescope ca n res olve for i 
: ; 
: th e Earth r ath er than on th e Earth's surface. [] th e shortest wavelength it detec t s : 
+ I i 14 The ta,ble below shows ~nformait ion about two ii] th e longes t w avelength it detec ts. ! 
: infra red te les co pes. i : . • • 
• I + I 
• I • • .: : • i Wide-field 1lnfra·red 40 3-25 i 
i Survey Explorer [WISE] ! . ' • • : H ersche[ 3 S.O 50-670 : 
t : 
=··~~•··~~·••••··~~~··~··~··~·~··•··~·•··~··•··~·•••••~•··~··~·~~·•··~·~~·~••+••~••••••••••r·~~·~•••·~·~···~·•~•••••~••••~·•·~·~·~·••••·~~·••• ......................... lllllii• 

O·--~~~~~~-
Classification of stars 

Brl tn The brightness of a stair is a 
measure ,o,f how much visible l~ght frrom the 
star reaches our eyes. 

Luminosi The luminosity of a .st ar is 
the energy it ,emits per second, 1i 111 aU 
wave~engths. 

• 11•• •••It-"•••• ••i! el!I ••• •4 11!1~ ,. ••111 •• ••11t 1114 111•• • •• •P• • 111•• 111!• ••• •• •• ._ •• IIIHI •• •-.- •1111 ,.. •II• I 

. r , r n m ni I A stats apparent 
magnitude is ai measur,e of its brJghtness as 
it appears in the sky. 

\ \ lhen you go ou tside on a dark m oonless night) i t is a wonderful sight 
to see the sky iUun1inated by thousands of stars. In total , there are about 
6000 stars 1hat it is p ossible to see ,vith the unaided eye. However~ with 
binoculars or a telescope) the nu1nber of stars vte can see rises into the 
n1illions. The bcightncss of the stars we see varies considerably, and this is 
affected by a stars lu1uinosiLy and ho,v far a'i~lay it is. The luminosity of a 
star is the an1ount of .ene.Tgy it emits per second. 

Classification by brightness 
Hip pa-rchus \vas a Greek astrono1ner w110 lived sotne 2200 years ago. He 
\.\i'as the. first person to begin to categorise star-s according to their visual 
brightness in the sky. Hipparcl1us began by cataloguing all the b1ightest 
stars, and these he called first-magnitude stars. Then he listed the next 
brightest, and called them secon d-m agnitude stars, and so on un til he 
reached sixth-n1agnitude stars. The sixth-magnitude stars ,vere the fain-tes't 
stars that Hipparchus could see by eye. 

T\1.r,o th ousand years later 1-nodem astronon1ers looked at t'he Hipparchus 
scale of brightness and realised that he had produced a logarithmic scale. 
A first-magnitude star turns out to be about 2t times the brightness of a 
second-magnitude st~r; and a second-magnitude star is about 2t 'times the. 
brightness of a third-magnitude star. 

Astronomers setded on the convention that a first-magnitude star is 100 
limes brighter than a sixth-magnitude star. This led to a modem , 1nore 
precise, classification of a star~ brightness 1 nr pp, n:."nl nH n ituck\ given 
the symbol m. The modern scale extends belo\v 1 for the ·very bright slars, 
an d above 6 for duU stars, which we can sec 11sing b in oculars or telescopes. 

Table 13.2 sh ows a list of some bright stars, seen in the nigl1t sky. 
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Table 13.2Appare·nt magni,tudes of some 
br,ig:ht stars v1isi1ble in then irght sky. 

Co1mparing brightness of stars 
Table 13.2 lists tl1e apparent magnitudes of some bright stars. But \vhal do 
these magnitudes tnean in terms of the brightness ( or intensity) of light that 
w,e se,e fron1 different stars? 

Sta.r 

Siriu s 

Ca nop us 

Vega 

Rigel 

Betelgeuse 

Sp,ica 

Aritares 

Bellatirix 

Polaris [Pole 
Star)' 

Acrab 

Apparent 
magnitude (2 sJ.) 
-11 .5 

- 0.7 

D.O 

0.1 

o .. 4 

1.0 

1:.1 

1,.6 

2.0 

2.5 

Earlier~ you learnt that the ratio of the brightness of a first-magnitude star to 
a sixth-n1agnttude star is 100, and that there ts a constant ratio (which we 
shaU caH r) between each succ ssive tnagnitude of b1ightness (about 2t). 
TI1.is leads to t'hi·o, equations: 

!1.= 00 
lo 

defining the ratio tn btightness betwe .. en first- a11d sixth-magnitude· stars, and 

r' = 100 

Therefore, the ratio of brightness bet,veen stars that are one magnitude 
apart in brightness is 

l 

r = 100? = 2.31 

Referring to Table 13.2, you can see that Vega has an apparent magnitude of 
0.0 an d Spica au apparent magnitude of 1.0. This means that Vega is 2.51 
tilnes bright,er than Spica. Since Polaris has an apparent magnitude of 2.0~ it 
1neans that \ lega is 2.51 x 2.51 $i.:$ 6.3 times brighter than Polaris. 

l t is relatively easy to con1pare the b·rightness of stars ,vhen their apparent 
1nagnitudes are whole numbers apart. It is a little more complicated when 

their apparent Jnagnitudes are not whole nu1nbers. 

Comparison of apparent magnitude,s brightness of Sid us := [2. 5114 =- 3 9. 8 ~ 4 0 
bd9htness of Ac rab Use Table 13.2 to compare the apparent m ag nitudes of 

th e following- pairs of stars: Si1r1us and Acrab. Ca,nopus 
and BeUatdx. 

Answer 
1 Siriu s a n d Ac ra b 

The difference in appa:rent m1ag1nitudes between 
Acra,b and S1ir iu s i1s 
2 . 5 - i[- 1. 5) • 4. So 

Can opus and 'Bellaitriix 
The d:iifference in apparent m.a9nitudes betvveen 
BeUatriix and Cano pus is 1.6 - (-0. 7) ~ 2.3. So 

b ri gihtness of Can opus = 12 51)2.3 = 8 3 
b riig htness of IBe llatr1ix · · 

~ -····················································································································································: 
! TEST YOURSELF ; 
I I 

: : 
: 15 a) Exp lain what is meant by the term ··apparent 1£ Use Table 13.2 to ca1lculate the rat io of the i 

• • • • • • • • • • • • • 

megn itude', brightness of the foltowi,11g pa irs o·f stars~ i 
bi Sta·r A has an apparent magnHude of 2. 0 and a]' Rigel to A ntares ~ 

star 8 an apparent 1m,ag:n ftu de ,of 8.0. Which star b] Sidus to Bellatr ix. i 
is brighter? ! 

c] Ga [culate th e rela tive brightness of star A to ~ 
st ar 8 . : 

• • : .............................................................................................................................................. ~ .................... .... 
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magnitude 

Pilralla N,earby objects appear to mov,e 
relative to fali .... away objects, when viewed 
fliom a diUerent ang,le. 

not drawn to scale 

July 

~ .. ·-~- __ .. 

parallax angle 

Figure 13.21 

l'lne to very 
d I slant star 

Distance measurement 
You are. used to using n1,etres or kilon1etres to n1easure distances. Ho'\!\:--ever, 
the distances in space ar~ so huge tliat we use dHier,ent units to make the 
numbers easier to handle 1 and to ,enable a tnore straightforward comparison 
of distances. 

A tr non1i ·al unit 
The ave.rage distance from the Earth to the Sun is called an astronomical 
unit (AU). This distance is 1. 5 x 1011 m to- two sigr'd.ficant figures. Some 
exa1-npks of average distances in ast ~on,o,mical units are: 

• the average Earth-Sun distance is l.OAU 
• the av,erage distance from the Sun to Jupiter is 5.2 AU 
•

1 the ave·rage distance from. the Sun to Sedna (a minor planet) is 532 AU. 

l ight year (ly) 
A light year is the distance travelled by light in one year. So 

d 

l ligl1.t year = speed of light x number of seconds in 1 year 

= 3.0 X 108 ms-l X 3 .155 X 107 S 

= 9 .46 :x 1015 m 

Some examples of average distances in light years are: 

• the distance to th e star Sirius from die Sun is 8 .6 light years 
• the distance t,o the Andromeda galaxy from the Sun is 2. 5 1nillion 
light yea.I'S. 

Parsec (pc) 

\\!hen you walk do,v.n a stre,et and look at a nearby object such as a 
latrrp post, you wil] notice that as you n1ove, the lamp post appears 
to move relativ,e to more distant objects. This is called 1 4, r a Jla, ·. We 
can ·tell that son1.e stars are closer to us than others because they 
appear to 111.ove slightly as ,ve view them at different time.s of year. 
Figure 13.21 (not drawn to scal e) sh ows th.,e idea. h1January for 
exan1ple~ " re look at a nearby star, then six months later we look at it 
again. The star appears t,o have moved relative to more distant s·tars, 
\vbich are very far away. The angle sho,vvn in the diagram is called the 
p arallax angle. Because even these 'nearby) stars ar,e actuaUy sever~l 

Hght years a~~a~ this parallax a11g]e is v,ery small. 

We can calcuhne the distance from the Eanh to a star: 

lAU 
tan (} ;:;; --

d 

or because()' is very sin,aU: 

fJ=lAU 
d 

d= IAU 
() 
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i THS BOX 
• l Here is a summary ,of the units 
i used in astronomy and their SI 
· units: 

! lAU= l.50x 1011 m 
• 

. . 
l ]y = 9.46 X 101'm 

~ lpc = 3.26 ly 

• • : 
• • -• 

• 
" ~ 

I 
• • • • • • : 
" 
~ 
i • ' 
= • • • ..................................................... , 

Remember that () must be Ineasu.Ted in radians. This relationsl1ip le-ads to a 
new n1,easure of distance) which is directly related to the angle 0. Vvhen (} is 
l second of arc, we say that the dis tance is 1 parsec. 

I second of arc= 
1 

degree= 4 .BSx lO~fi rad 
360 -

Therefor,e 

lAU 
l pars c = 6 4.85xl0-

.5xl0u m 

- 4.85x .li0-6 

10 =3.09x l 0 m 

= 3 .2 6 light years 

lf the measured parallax angle is smaller) then the distance to, the star is further. 

The distances to galaxies are often expressed i111 megaparsec (Mpc). 

~ -····················································································································································: 
: TEST YOURSELF i 

• 

17 This question is about converting astronom,ical 
distances expressed in metres i,nto light years and 

parsecs. 

a) The d11stance from Earth to the star Alpha 
Centauri is 4.13 x 1016 ,m and the di1stance to 
Beta C entauri is 3.3 1 x 1018 im . Ex press these 
di stances 1 n 

i) light years 
i i] parsecs . 

b] The d1stance from Earth to t he Virgo cluster 
of galax ri es is 5.0 x 1023 m and the dis ta nce 
to the Corona Borealis cluster of galax1'es 
is 1.1 x 1025 1m. Express these dii stances in 
m egaparse cs. 

• .. .. .. 
• • • i> • • • • • • • • .. .. .. 
• • • • • • • • • • • • .. 

. ............... ....................... ................... . . ... ............ ............................ .... . ....... ...................................................... lllllllli 

light source Absolute magnitu1de 
Figure 13.22 shows light spreading out from a light source. You can 
see 'that, as the light travels further from a source, it spreads over a 
larger area, so its inlensity dect·eases. When the distance from the 

source doubles, the intensity of the Hght reduces by a factor of 4, 
because the light spreads over four times the area. This is called the 
inverse s,quare law for intensity: 

TI1is idea is hnponant when it. comes to ,comparing the brightness of 
stars. Earlier you met the idea of apparent magnitude- th 's measures 
how bright a star appears to be. Ho\\rever~ stars appear b1ighter if they 
are close to us. So, to compare the brightneS-s of 'tVlO stars, vtc need to 
consider how bright they \'lOU ld appear to be if they were exactly the 
same distance from us. The distance that is chosen for comparison is 
lO parsecs. A staes ~ b .... tut n al"lnitud...: is the apparent magnitude it 
would have if it were placed 10 parsecs av.1ay from us. In applying the 
inve1--se square la,,t for stars> \Ve assume that no light is absorbed by 

interstellar n.1.aterial such as gas or dust. 



s lute n,a nl u A star''s absolute 
magnitude is the apparent magnRtude the 
star w,ouid have if it were 1 o pc away. 

The appa1~ent magutitude, m , and the absolute magnitude, M, aie linked 
by the following fonnula ~ in whi,d1 d is the distan ce of the star fron1 us, 
measured in p a.rsecs: 

m-M=5log10 (fo-) 
This formula coinbines the idea of tl1e inverse square la,·v for Hg1'1t and the 
standard reference distance of 10pc. You do n:ot need to be able to delive 
this formula (it is very hard to d o), but fo r interested mathematicians the 
derh··'.ation is shown online Vvith our fre-e r sources. 

Calculation of absolute magnitude we obta in 

Alpha Centaur i he·s an apparent magn1itude of 0.0 
and is 1.34 pc f ro m th e Sun. Calcu Late t he abs olu te 
mag nHud e of Alpha Centauri. 

Answer 
Using the formula f ro rm1 the text 

[ 
d ) m - M = 5to9, 0 10 

M = m- 5log10 ( 1~] 

= 0.0- 5log10 (\~
4

) 

~ 0.0- 5 X [-0,87] 

=+4.4 

~ ·····················································································································································: :· TEST YOURSELF ~ 
• • • f 18 a] P Cygn1 is a s tar w~th an appare nt 1magn ,tude 
i of 4.8. It Ls a distance of 1800 pc from Ea rth . 
f Ca ilculate P Cyg n'i"s abso lute m ag.n itu de. 

i b) Th e Sun has an a ppa re nt magn~tude of -26.7. ~t 
i ,s 4.8 x 1 o-6 pc from Earth. Ca,lculate th e Su n·s 
i a,bs o lute ma gn:i t U'de. 
• : 19 Can opus has an absolute m·a-g;n i,tu de of -5.0 and 
• : is a distance of 70 pc fro-m Earth . Ca lcula,te th e 
• 
: apparent meg nHude of Ca nopu·s. 
• 

20 Capella an d Vega are two bright s tars . clear ly 
visfb le ~n th e rn f ght sky. Ca pe lla has an appa rent 
magni·tud e of 0.11 and Vega has an a pparent 

magnftu de of (lO. Ca pe lla is 42 lig ht years fr om 
Ea rth and Vega 25 is light years fr om E.arth. 
a) Calculate th e abso lute m,agni tu de of each 

star. 
b] Sho-w that Capella em its approx imately twice 

as much visible li ght as Ve9a1 per second . 

• • • • • • • • • • • 

• • • • • • • 
'" • • • • I 
• • , .............................................................................. ........................................................................................ .... 

O ,...._.........c_la-s-s-if-i c-a-t i-o-n-o-f-s-ta-r-s-b-y-t-e-m-p-_ e-r-a-t u-r-e--

1Fig u re 13.23 This star c luster is ca tled 
the Jewet Box. Most of the bri1ghtest 
stars you can see are btue, but there 
are also some bright red s tars. 

suirs can b put into different categories a.cco,rding to th eir temperature , 
co]our and the total amount of radiation they emit per second. Blue stars 
are very" hot and bright, s,o, w,e can see a lot of these by eye (Figure 13. 2 3). 
Red stars are cooler than blue stars 1 bu t some red stars appear bright in the 
sky because they a fe very large. These ideas are explained fu rther below. 

Black-body radiation 
Black-body radiation is the type of electro rnagn etic radiation that is etni tted 
by a black or a n on-reflective b ody; wl1ich is held at a constant uniform 
temperature. 

Black-body nidiation lk'1S a cha1-acteristic ,vavelength spectrum, which 
depends only on the absolute ten1perature of the body. The spectnnu p eaks 
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. 4000 K 

at a wavelength. that shifts to shorter wave]engths at higher 
ten1peratu1~es. Figur~ 13.24 shows some spectra for black 
bodies at. diffefent temperatures. 

The curves in Figure 13.24 show these two impo1tant trends. 

• As the body gets hotter, more radiation 'is emitted. The 
total po\ver emitted by the body is proportional to the area 
under the graph. So you can see that at 60001( a black 
body radiates much more energy~ than the body at 4000K . 

3000 K 1e The intensi'ty of radiation peaks at a shoner VlBN·elength at 
highe1· temperatures. You can S·ee thal the peak wavelength 
corresponds to red light ,vhen the temperature of the 
black body is 4000 K. At 5000 I< the peak co1Tesponds 1 OOO i 500 2000 2500 

wave1:ength/n m 

Figure 13 .. 21. 
to gr,een-yeUow light. At 6000 K the peak corresponds to 
blue-gr·een light. 

U1e term 1bla.ck-body radiati-011' was originally used to describe the 
spectrum of infrared radiation emitted by hot bodies on the Earth. However, 
the term also applies to hot bodies such as &ars, whiclt emit visible li.gbt 
and also ultraviolet and X-radiation . The shape of 1he black-body spectra 
illustrated in Figure 13.24 applies to the starsl and enables us to understand 
why t}1ey have differing absolute magnitudes. 

Laws 1of black-body radiati 1on 
Th ere a:re two la,vs that summarise the information shown in Figure 13.24. 

Stefan's law 
Stefans law states that the total power1 P, radiated by a black body of surface A is 

P - aAT4 

1,vhe1e I is d1e su1iace temperature of the body (absolute. te1nperature 1 in 
K), and u is th e Stefan constant> \\rbich is equal to 5 .7 x 10-8Wm-2 K-4. The 
total power radiated by a star is called its luminosity, L. 

,vien's la"'· 
\Viens law states that, for a black-body spectrum, the product oft.he peak 
,vavelength ~ Amax' and the absolute temperature of the body, T, is a constant: 

Sun's luminosity and peak wavelength Cakutate the peak wavelengt h of the radiations 
emf tted. The surface te1mperatu·re of the Sun is 5780 K and its 

rad 1i'Us is 7.0 x 105km. 

Ca lcullate the Sun·s t-um i·nos~ty. 

Answer 
Lumin osiity = aAT~ 
:;; 5. 7 X 110-8w m-2 K-4 X 4n X [7.0 X , 08 m12 X !5780 Kl' 
;;.; 3. 9 x 1 a26w 
:::; 4 X 1026W to 1 S.f. 

Answer 

h. max T = 2. 9 x 1 0-3 m K 

A _ 2.9x 11 0-3 m K 
rnax- 5780 K 

~· 5 .CJ X 1 o-7 m 

= 500 rim 

Th is wavelengi th is r n the b lu e- 9reen a rea of the 
v1 Sible spectrum,. 



1Giant stars 

Althou gh th·e pea k wavelength 
of Li ght from, th e su,n is in th e 

blu e-g reen area1 of the .s pectrum. 
Fig:u1re 13.26 shows that a ll 
vi.sible wave lengths are emi tted 

The constellation of Orion has two very luminous stars. Rigel is a blue giant 
,vith a su.1-face ten1perature of about l l BOOK an d a radius of 54 x 106km. 
Betelgeuse is a red gian t Vlith a surface temperature of about 3300K and 

a n,d so the light fro'm the sun rs 
a mfxture of all co lours and is 
actua lly white. 

a radius of 7. 7 x l os km. We can use this inf otmat1lon t,o co·mpare the 
brightness o[ these stars 'Witl1 the Sun~ brightness. 

Rig I 
P = uAT4 

= 5.7 x 10..svlm-2 K--4 x 4rr x (5.4 x 1010 m)2 x(11 800K)4 

= 4.0 )( 1031 w 
~ 10' times mo,re luminous than the Sun 

Bet lg u s 

P = uAI4 

~ 5.7 x lO~Wn1-2 k..-4 x 4n x (7.7 x 10 11 m)2 x (3300K)4 

= 5.0 X 1031 \V 

~ 1.3 x 105 times more luminous than the. Su11 

Although Betelgeuse is a relatively cool star-~ its radius is over 1000 times 
larger than that of the Sun. lt is because its .surface area is so large that 
Betelgeuse is on e of the m ost luminous stars in tl1e sky: 

Luminosity and brightness 
It is in1p ortan t not lo confuse luminosity and brtghh1ess. 

• Luminosity is the total power ,e1nit ted by a s tar in all ,vavele11gths. 
• Brightness is a measure of ,~lhat vte c,,an see, and therefore is a me-asure of 

the visible light emitted by a star. 

For exan1ple, a star ,vith a surface temperature of 20000K has a peak 
wavelength,~' of ab out l SOnu1, whicl1 is well into the ultraviolet 
spectrurn. Such a hot star emits much more of its power outside the visible 
spectrum. 

~ ·····················································································································································: : TEST YOURSELF : • • I • • i 21 What are th e two factors that affect the l 1u m inosity 
: of a star? 
• i 22 al Po lar.is has a sur face temperature of 6015 K~ 
: and a radi1us of 3.2 x 1,07 km. Catculate its • : 
: 
I 
I 
I 

' • • • • 
' !I • 
" • • • • • • • • 

lu1m in os ity. 
b) !Mint.aka is .a star w:ith a tuminosjty of 3.6 x 

1,031 W. Its rad iu s i1s 1.1 x 1071k1m. Ca lcuitate its 
surface temperatu r e. 

cl 61 Cyg ni is a star w i:th a surface te mperat·ure of 
3900 K, and a l,um inosity of 4 X. 1025W. Ca lcu la·te 

: th e star's rad[us. 
• • : 23 A sta r h as a surface tem perature th ree t[mes tha,t 
• • • • • 

of th e Sun. and its radius is four Umes that of the 

Sun. Ca lcu late how many tf mes bigger the star's 
lumi111osity is than the Sun·s. 

24 Ba,rna,rd's star fs a red dwarf star about 6 light 
yea,rs away from the Sun. The star's surface 
temperature is 3100 K and its lum~nosity is 1.4 ;ic 

102Liw. 
al Ca tculate the r adj us of Barnard's star. 
bi Ca tc1u late th e peak wavelength of the ra,d:iati on 

fro m Barnard 's sta r. In what par t of the 
spectrum does this wavelength Lie? 

c l Expla1 n w hy this sta r has a very Low vi,sua l 
brr ghtness. 

• : 
! • • • • : • " .. 
• • • : • : .. • • i' • : 
t 
'It • • • • • • • • • • • • • • • • • • • • • • • : ....................................................................................................................................................................... .... 
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o~~~~~~~-s tell a r spectra 

o.o ev 
n;; 4 -----.----- - 0.B ev 
n ;;: 3 - - 1.5 ev 

n ;;;; 2 -~----~=-·~---- - 3.4 ev 
electron 

n !!!:!! 1 ---1......._ _______ - 1'3,6 ev 
electron 

Figure 13.26 

• t !'I•••• •• ••• P"' •••••I'••~••• •111• •• 1'1'11 .. . ••• •• ~- • •!" tll• ••• l'I" "'!!!~••I •II••••'!"'"'••••• ... •• •• • 

b r lrn1 r 1m Thi'S spectrum is 
seen as a serles of dark Unes ,n a continuous 
spectrum, when some elements absorb 
specatc wavelengths of lig~t. 

Tu.e n"Lagnitude of a star and its colour have proved useful for learning about 
the luminosity an d temperature of the star. We can also le-arn about a star 
by observing the spectrum of the light that it en1its. 

Figure 13.25 sho,ws a spectrum of the light emitted from the Sun, wl1en it 
is vie,·vedl 'through a diffraction grating. The continu,ous spectrum of Ught is 
crossed by dark absorption lines, called Fraunhofer lines. Such abso,rption 
lines are produced when light pass,es through the cooler gases in the ,o,uter 
atmosphere of the Sun. 
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Figure 13.25 

Figure 13.26 helps ta. explain hovl d1e process \Vorks. The diagram shovls 
an energy level diagram for a hydrogen atom. \Vhen a photon has an energy 
exactly equal to the energy difference between levels 1 and 2\ E2 - E1 ~ the 
photon can be absorbed by an electron in energy leve] 1) which is promoted 
to level 2. Similarly; if there is an electron in level 2) i t can mnve to level 3 
if it absorbs a photon of energy E3 - E2. W hen light is absorbed in this way, 
the intensity of these v;,ravelengths is reduced> so black lines appear across 
the spectrum. 

Each element or compound has a unique set of energy levels. These energy 
levels lead to a unique a1 scarp tio n sp cclrunL Therefore, it is possible to see 

1;vhich elements are present in a stars atmosplllere by analysing the ab,sorption 
lines in its spectrum.. 

Spectral classes 
W hen the spectra. of a large number of stars were studied> it vvas realised that 
stars c,ould be divid.ed into a nun1-ber of spect,·al, druses. These classes ,vere 
based on which elements ~·ere most prominent in the spe:ctm of stars - and 
these elements varied considerably from star to star. 

Originally it vvas thought that the observation of prominent elements related 
closely to the chemical composition ,of the star. However. although there 
are differences in steUar chemical composition. the most important factor in 
spectral classes is the stars temp rature. 

The. r,eas,on why temperature· is very important in detennining the spectral 
class of a star is as foHov.rs. For a panicular absorption line to be observed, 
there must be atotns present with a:n .electron i11 the correct energy lcv,el. 
Hydrogen is the most abundant eJe.ment in all stars. It is therefore no 
surprise that we see hydrogen absorption lines itn stellar spectra~ but we see 
different patterns of absorption at diffierent temperatures. 

When a hydrogen atom is relatively cold, its one electron will lie in its ground 
state) n = 1\ nearest the nucle.us. Therefore; this electron can be excited to 
then- = 2 level by a photon of the correct energy. Sucl1 photons lie in the 



ultraviolet part of the spectrum, so ;;ve do not see these lines when a star is 
viewed in visible light. These ultraviolet lines are n1ore visible in a star with a 
surface temperature of about 8000 K than in a star vrith a lovver temperatu1.·e 
o( for exatnple) SOOOK, because the hotteT star emits more ultraviolet Hght. 
Ho,,1ever, hydrogen lines are not the n1osl prominent lines seen in cooler 
stats, because other elements absorb n1ore light than hydrogen. 

Table 13.3 lists the vatious spectral classes of stars , v..i th theh- m ,ost 

pron1inent absorption lines. 

Table 13 .. 3 

8 111 OIJ0- 25 OOO He, H 

A blue-white 7500'""" 11 OOO H lstrong,Qst) ion ised m,etals 

F white 6000-7500 !on1sed :meta ls 

G ye. l low-w h :i te '5 000- 60100 l1on ised and neu tra L metals 

K orange 3500-5000 Neutral meta Ls. 

M red <3'500 Neutral atoms. TiO 

At higl1er ten1peratures) some electrons in atoms move into higher states. 
At temperatures beh,veen about 7500K and 25 OOOK, hydrogen has 
a significant nutnber of atoms ,vi.Jth electrons in then= 2 state. These 
temperatures correspond to the A and B sp ectral types. Jn these stars, we 
see pronunent hydrogen absorption lines in the visible p~art of tl1e spectm1n. 
The electron in the n = 2 level is able to absorb photons to lift it to the n 

~ 3 ~ n = 4) n = 5 levels and so on. This series of lines is a1lled the Balm.er 

series > after the scientist "'ho discovered them. 

In the hottest stars, the most prominent absorption lines come fTom He 
and He+. In the cooler stars~ absotp,tion lines are seen from ionised and 
n ,eutral n1etals. In the coolest stars, with Stlrface temperatures b elow 35 00 K, 
titaniun1 oxide produces pronunent abso1ption lines. 

~ ~~·~~·~·········································································································································1 
+ ' • • • I 
• i i 25 What 'is meant by the ·ground stat e~ of an ato:m? b) Ca,lcu late the waveleng,th of a photon tha:t is i 
; 26 Exp lain how an absorption spect ru,m ,is ,produced absorbed when, an, e'lectron is excited from the ; I in a starr·s continuous spectrum. n a 2 ton • 4 level. l1 n what part of the spectr,um I 
i 27 What ifs the Ba lmer ser ies? does this wavelength lie? i 
: 28 Th is question refers to Fig.ure 13.26. [Yo,u ma,y need to refer back to Chapter 3 of Book : 
I al Ca lculate the wavelength of 8 photon, that is 1 to remind you of how to do these ca lcu lationsJ i 
i a,bsorbed when an electron is excited from the 29 Explain why d1ifferent absorption lines are seen in ! 
i .n - 1 level to then - 2 leve l. 1111 what part of the stars with dif ferent temperatures. i 
II I . ~ 

: spectr,um does this wave length Li e? : 
• • + • ............................................................................................................................................... ......................... ~ 

o~· ~~~~~~~ 
The Hertzsprung Russell diagram 
In common 'With all stars~ our Sun was fonned from a giant cloud of gas. 
Figure 13.27 shows part of the Orion nebula~ in v.rhich stars are b eing fann ed 

This nebula is made 1nostly of cold hydrogen gas. Over millions of years, 
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Figure 13.27 Tine Orion nebula is a 
large cloud of ,hydrogen gas. whi ch i1s 
co llapsing to form new stars. 

I u nc I A star in whfrc:h 
hydrogen 'burning' takes plac,e. This is the 
the rmon ud,ear fusion of hy drrogen n ud,ei 
into helium nudei. 

15 OOO OOOK 
_ ..,....,""' core • _.,.._ 

temperature 

Figure 13 .. 28 

gravity acts to coalesce the gas. This collapse wanns th.e gas. As the atoms fall 
towards ,each other potential energy is transferred into kinetic energy, '•which 
is then transferred to h eat energy as the atoms crash into eac·h other. Because 
the mass of all the hydrogen atoins is so great, and the distances fallen by the 
atoms so eno1mous , the temperature in the ntlddle of such a ball of gas rises 
to about 15000000K. At this temperature, thern1onuclear fusion takes place 
and hydrogen nuclei (protons) fuse together into heliun1 nuclei, and a star is 
born. The ,energy releas-ed in the fusion process is emitted as electromagnetic 
radiation fron--i the stars surlace. 

A star is a battleground in ,vhich competing forces a.et, as sl1own in Figure 
13.28. TI1e pull of gravity acting inwards is balanced by the outward 
pressure from the hot core. The pressure at th centre of a star can be 
billions of times larger than atmospheric pressure on th,e Earth. 

When a cloud of gas collapses, the stars that are formed may be of 
cons-iderably different masses (Figure 13.29). Stars range in mass from 
about 100 times the Suns mass~ do,vn to about 0.1 of the Sun's mass. Stars 
much above 100 solar m~sses are ·unstable, .and stars below .about 0.1 solar 
masses are too small to start the thermonuclear fusion of hydrogen nuclei. 

Most stars are 1n·tin sequence s tars.) which mean.s that the sl.ar is f11eUed by 
the fusion of hydrogen. The 1nore massive stars are much 1nore luminous 
than the smaller stars. This is because the gravitational forces th9t tend to 
collapse a star increase Vi.1tth mass. So for the star to be in in. equilibrium, it 
1neans that the outward pressure from the core m ust be larger. Therefore the 
nuclear reactions must run at a hi.gher rate generating more power, which 

leads to the star havn--ig a higher luminosity: 

Stars vary in luminosity from being a.bout 106 times 1nore luminous than the 
Sun (absolute n1agnitude about - 10) to being about 1 a4 times less luminous 
than the Sun (absolute magnitude about +15). The variation. in the lumi.n.osity 

of stairs is displayed in th.e Hertzsprung- Russell d iagram, as sho\vn in Figure 
13.30. The main sequence of stars runs in a diagonal line Erom the top left­
hand oorn,er. At the top left of the diagram are the brigl1t O class stars vdth 
absolute magnitudes of -10 and su1face te1nperatu:re.s of 50000K; at tl1e 
bottom right of the diagram! are dull M class stars with absolute magnitudes 
of +15 and surface temperatures of about 2500K . 

Our Sun is a G class star with a surface temperature of about 5780K and an 
absolute magnitude of +4.6. The Sun is a significant star in that it is more 
luniinous than 95% of all stars. The best-knovvn stars ar:e tb1e brightest ones, but 
there a.re billions ,of very small 1 du U stars that cannot b seen by the unaided ,eye. 

The H,ertzsprung-RusseU diagram also contains further types of stars in lhe 
giant and dwarf branches, w~hich \\ill be discussed later on. 

The Ufetim1es of stars 
The bright O class stars are very rare because they only live for a short tim,e. 
Our Sun will exist f,or a total of about 1010 years. his about ·4.6 billion 
yeE:lrs old, so ·the Sun is about l1aHway through its life. A star that is .about 
100 times more massive tl1an the Sun is about 106 times more luminous. 
So althougl1 it has more nuclear fuel, il uses it very quickly. So the brightest 
stars have lifethnes of the order of a few million yearsl ,vhercas the dlullest 

stars can live for 1012 years or more (\,vhich is about 100 times longer than 
the Universe has been in existence). 



Figure 13.29 Star s come jn all siz,es. 

~·································: 
: TEST YOURSELF i 
• • • • • • • • : 310 Ex pl ffi n what i1s m eant by : 
: each of th ese t er ·m1s: : 
• • 
: a) ma in sequence s tar : • • • • 
: b) red giant star : 
• • 
: c] w hite dwar f s tar. : 
: ,,, E I, • h t . h i 
: ,.J x p ll a I n w , y s a rs w 11 t v et y : 
• • : hi1gh lum inos ities a,re short- : 
+ I 

: lived. : : ; 
i 3 2 Si1du s B 1s the closest wh jte = 
• • 
: dwarf to us. l1t has a ,lum~nos ity : 
: of 7. 6 ~ 102sw1 and its su rface : 
i temnerature ~s 25 200 K. i 
= r' = : a) Use Stefan·s law to : 
+ I 

: ca lculate the surface : 
i = • area of the star [the i : . 
t St e fa n con s ta n t i s : 
• I i 5.7 x 1 o-8wm-2 K- .\tl. i 
: b) Ce lcu late the ra dius of : • • : Sir iu s B. .. ... 
: 33 S1r1us B has app r ox imately 
• 
: the same m,ass as the Sun,, 
• 
: 2 x 11 030 kg. Calculate th e 
• 
: densay of Sirf us B. using 
• 
: the result from quest~o n 32. • 
• • 
: Co mme nt on yo ur answer. : 
• • • • .......................................................... 
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The red line ABCD in figure 13.30 shows the evolutionary patl1 of a star~ 
sinular to the Sun; on ihe Hertzsprung-Russell diagram. As described 
earlier~ the star collapses from a cold cloud of gas and reaches its 
p osition on 'the main se,quence, v;.,"here it ren1ains for about 10 billion 
years, path A to B. AfteT that tin1e the star " rill have exl1au sted i ts 
supply of hydrogen , ,vhich will 11-ave b een turned into helium. At that 
point the process of nuclear fusion stops, the pressure inside the core 
of the star reduces, and th e gravitational forces b e.gin to collapse the 
star. The collapse of the star causes the core to heat up even further, to 
temp,eratures in the region of 100 million kelvin (108 K). 

At that temperature the h liutn nuclei have ,enough energy to O'lercome 
the repulsive electrostatic forces betwe n them, and to co·me into contact. 
Once th helium nuclei g t into contact> some of them \Vill fuse into more 
massive nuclei such as beryllium~ carbon and oxygen. 

This further nuclear reaction reignites the star. Ho\vev,er, the m assive 
temper~ture causes the star to expand into, a red giant, ,vhich could be 100 
times the current diameter of the Sun. Although the star~ surface temperature 
'WiH be lo"iA7e.r, at about 30001(1 the giant's C"1..1.reme surface area cau ses it to be 
much more lunu.nous. The star moves along the pa1l.h B to C into the giant 
branch of the stars . 
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Th~s .section is not requi-red by the 
spec ifiication , so you could skip 
It. But we hope it provides so me 
ba ckg round rma teria l for 
the interested reader. 

(a) 

Funher nuclear reactions can occur in stars n1uch larger than the Sun, 
which takes then1 into the supergiant bi---anch on the Hertzsprung-Russell 
diagram. Ho,vever, the Sun is 1101 massive enough to move into the 
supergiant branch. 

There comes a time when the supply of helium ·runs out in ·the star. At this 
point in a star of the Sun's n1ass nuclear fusion stops and the star collapses 
into a dv:arf. Calculations suggest 'that white dwarfs of the Sun)s mass have 
about the sam,e volutne as the Earth. So a ·white d\.v~tf is extremely d.ense·. 
The surface temperature of a ~·bite d,~larf can be 10000 I<) ,vhich is much 
hotter than the Suns sutface. Ho\vever, because the d\van star has such a 
small surface area, it has a. lo,v luminosity. The dwarf star is po·~Ne.red by the 
gra"Vitational potential ·energy released as it slo~lly contracts. After a very 
long time·. this energy will run out and the star will become a black d,varf. It 
is thought that no black dwarfs exist yet becaus-e the process takes a ]onger 
time than the current age of the Universe. 

C)--N-u-c-le_a_r_f_u_s_io_n_i_n_L_a-rg-e--st_a_r_s--------~ 
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Figure 13.31 (al At !low temperatures 
[less than 15 m tUion ketv i1nl. two 
protons re pet ea eh other. lb] At h igih 
temperatures, t\ivo protons have 
enough kineti c energy to overcome the 
electrostatic repu lsi orn of their charges. 
c1nd frusion tc1kes place. 
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~ ; TESTYOURSELF i 
c. ' • 
Q • • : : : 34 a) Exp laii1n why rtuc lea r fu,sio n : 
M I I '"""' i only occurs at very high i 

: temperatures. ! . ' i b) Why is a h~gher ; 
! tem,perature required to ; 
: fuse two heUum nuclei : 
~ . i than two hydrogen nuclei? i 
: c) Exp la1i n why the fusion of : 
I • 

: a heilri um nucleu s with a : • • 
= sHicon nucleus is much : 
• • 
! more Uke~y to happen than ! 
• • 
: the fusion of two si,licon : 
• • 
: nuclei d1recHy. : 
• • : .......................... _.. .................... .... 

Nuclear fusion between nuclei only happens at high temperattn·es, when the. 
average kinetic energy of particles is very high. Figure 13.31 explains wl1y. 
ln Figure 13.3l(a), two protons approach each other at a low temperatur,e 
and they repel eacl1 other and do not c.ollide. In Figure 13.3 l (b), at a highe·r 
temperature, the protons get close enough. for the strong nuclear force to 
act, and the two protons fuse to fon.n deuterium and a positron. 

ln stars that have cores m.uch hotter than the Sun, the fusion of larger 
nuclei can take place. Higher temperatures are necessary for such fusi.ons to 
occur because the larger posithre charges 0 11. their nuclei result in stronger 
electrostatic repulsions. 

Our Sun will expand into a red giant at the end of its life (in about 5 billion 
years' time). The Sun is not large enough to progress beyond the helium 
fusion stage~ in which heliun1 fuses to form carbon mid oxygen. However, 
very large s tars (about 8 thnes the n1ass of the Sun) can progress as far as 
fusing silicon into larger elements. While a large star lives for millions of 
years, the silicon fusion stage of its life lasts a 1natter of only a few days. 
ln a large star there is a lot oJ heliu1n and larger elements are built up ·by a 
process of fusion vvith helium as follovvs: 

f!Si+ 4He 2 --+ 325 
10 

325+ 
lei 

4H 2 e --+ Jo A 1s r 

36 · . • 4He --+ ~Ca isAt + 2 

40,Ca+ 
20 1He --;\, .... r · 

22. - l 

44 - iHe 4acr 22.It. + ~ 2.4 - -

+sc r+ 4 ~2.F iHe ~ 20 e 24 

~Fe+ iHe 4" 
joN, 
28 ·· 1. 



H + He 

He 

C + O 

SI 

The nucleus ~! Ni is the end point of nuclear fusion because the fusion into 
larger nuclei does n ot release energy. Rather\ lai;§er amounts of energy ·must 
be supplied to create heavie1~ nuclei. Ho,vever) 28 Ni decays by posihun 
decay as follows: 

haH-life 6 days 

haU-life 77 days 

The nucleus ilFe is one of the most stable nuclei, which is "'rhy it is p,resent 
inside very large stars. 

(a) o ~--------------------­
{a]A large star. morathan eight solar Supernovae - glorious endings 
masses. has a layered structure. with As explained in the previous section

1 
nuclear fusi,on does not continue 

i ro n at its co re . 

(b) 

[b) The core begins to coUapse as the 
11uclear fuel runs out. 

(c) 

neutron 
star 

{c) Th e rapid collapse pr,od uces a core 
of neut,rons. 

(d) 

neutron 
star 

[d) A shock wave rebo unds off the 
neutron core. 
iFig u re 13.32 

beyond the elements iron and nickel. Figure l3.32(a) shows a large star 
towards th,e end ,o( its life . Owing to the variou s stages of nuclear fusion 
the star is lavered like an onion with shells of different nuclei- iron in the 

J 

centre , "With helium and hydrogen in the ,outer layers . 

1n Figure 13.3.2 (b ), which sho,vs the core of the star; che nuclear fuel 
has just ·been exhausted> and without the ou tv,.rard pressure from the 
them1onuclear fusion process, the puU of gravity begins to collapse the 
star. 1Jnder the intense gravitational forces, the core collapses in a 1natter of 
seconds. The outer part of the core C:1n reach speeds as high as 20- 30% of 
the speed of ligl1t, and the centre of the core rises to 'temperatures as l1igh as 
100 billion kelvin (1011 K). Al these temperatures, the iron nuclei begin to 
dissociate into heliu1n nuclei, protons and neutTons. 

In such l1igh temperatures and pressu~es) protons and electrons can 
combine, in a reverse beta decay, to form neutrons and neutrinos: 

1 + 0 - i 
1P + - 1e ~ on+ V 

In tbis vvay the centre of the core 'turns into a ball of neutrons> ,vhich '\Vi.11 
becotne a neutron s'la.r > Figure 13 .32(c). At this point the core collapses no 
further and the infaUing matter r,ebounds~ producing a shack wave~ whic·h 
spreads outwards as shown in Figure 13.32(d). 

The exu·emely high temperature in the centre of the star restarts the nuclear 
reactions in the outer ]a.ye.rs of the star and a huge amount of energy 
perhaps 1046 J, is produced in a fev.r seconds. The shock '\-"av,e moving ,out 
from the centre of the star blo;,vs the outer layers apart, and ,energy mov s 
out into space at an enormous rate . This is a supen1ova (a type 2 supernova). 

Supernovae are amongst the brightest objects in the sky. They outshine an 
entire gal3A'Y and in a matter of a fevv seconds emit more energy than the 
Sun d oes in its entire lifetime. S1lpemovae are colossal events and highly 
significant for our existence. Th e. energy produced in a supernova explosion 
produces hea,;.'Y elements beyond iron; and it is from the remnants of a 
supemov~ that our Sun and our Solar System. formed. 

In 1987 astronon1ers saw a supernova eJi..-plosion in the large MageUanic 
Cloud, which is a small galaxy (visible from the southern h en1isphere) 
about 170 OOO light years froin us. Some 20 hours prior lo the supernova 
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N utron t A coUapsed s.tar made of 
neutrons.. It has a1 very high density. 
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L A highly ·Condens,ed stat,e of 
1matter that has an es·cape veloc~ty higher 
than the spe-~d of Ught. 

being seen) scientists detected a burst of neutrinos that had con1e fa-om the 
star. These neutrinos were produced in the co1·e as protons and electrons 
form,ed neutrons. The neutrinos were ab]e to pass through the outer layers 
of the star) before the shock "rave blew it apart. The supernova was visible 
to the naked eye, with an apparent magnitude of about +3. Supernovae 
are characterised by a ·rapid increase m absolute magnitude~ follo,ved by a 
decay in luminosity ovei- a petio·d of months. 

PLE 

Calculation of absolute visual magnitude 
Us.ing the i,nformation given in th e text_ catcuilate the absolute vis,ual 
magni,tude of SN 1987A at ,its peak brig1htness. 

Answer 
SN 1987A is a·bout 170 OOO lig,ht yea,rs fr.om Ea,rth , which is 170 000/3.26 ;;;; 
52 OOO pc. So 

M=m-5log(~] 
= 3 _ 5log[52000] 

H) 

= 3-5 X 3.71 

=-15.5 

The apparent magnitude of a full Moon js about-12. 7, so a supernova 
placed a di1stance of 10 pc from us wou Ldl appea r about 3 magn th.1des 
brrgihter than the fuU Moon. which 1s about [2.5]3 or ahout 16 times br·ighter: 
Sa a supernova at that distance would cast very strong shadows at nf ght. 

Neutron stars an 1d black holes 
After a niassive star has blo,vn itself apart in a supernova. e..xplosion > a 
n ~utron s .. r :is often left at the stal"'s core. Neutron stars are ev·en inore 
dense than \Vhite dwarfs~ as they are made only from highly dense nuclear 
mate1ial. A neutron star of mass about 1. S times that of the Sun has a radius 
of only about 12km. 

S0n1.e ve1y massive stars (in the region of 20 solru~ 1nasses) collapse at the 
end of their lives in an even more spectacular fashion . As their nuclear fuel 
runs out the speed of that collapse is S·O fast that the gravitational tide even 
manages to collapse the neutrons at its core. Under these circumstances 
a l ttLI h IL is formed. A black hole is s,o dense that not even ]ight can 
ese-ap from it, becaus its escape, velocity is higher than the speed of light. 

amma-ray bu t 
Neutron stars spin very rapidly on their axes. Many such stars spin round 
.several hundred times a second. These rapidly spinni11g stars are kno,\>n as 
pulsars because they emit radiation along their axes o[ rotation. 



,.J mma-r I b 1r A br1ief intense emission 
of gamma rays from a co l!apsi ng supergi ant 
star. 

Figure 13.33 A rapidly collapsing 
supergiant e,mits high-powered short 
bursts of 9amma rays. 
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~eh , r, ch1L, r iu The radiius of a btack 
ho,te·s event horizon. Ught cannot ,escape 
from inside a1 bllack hole~s event horizon. 

As supergiant stars coUapse into neutron stars or black holes, t11ey etnit 
gnnuna-ray bursts . As 1natter collapses into the centre of a very tnassive 
star) collisions betv.,een particles produce very ,energetic gamma rays) 
,vhich are emitted along d1e axis of rotation of the star (FiguTe 13.33). It 
is thought that the n1ost energetic gam1na-ray bursts are produced Virhen 

a supermassive star (of some 50 s,olar masses) collapses into a black hole. 
The fact that gannna-1-ay bursts last for a [ew seconds (,or at the mo,st a fe\v 
tninutes) indicates hovv rapidly larger stars coUapse. 

A gamma-ray burst produced by a supergiant star1 close to the Eanh, c,ould 
have catastrophic consequences. The radiation dose, on the side o.f the 
Eanh facing the star could be lethal for aU animals. The fossil record shovi,,~ 
that there ,vas a mass extinction ,of animals on the Eanh some 450 million 
years ago. One possible ,~-planatiion is that this was caused by a gamma-ray 
burst. 

S hwarzschild radius 
The event horizon for a black hole can be described as 4the point of no 
return'; that is the boundary ·beyond which the gravitational puH becomes 
so big that escape becomes i1npossi.ble. So if you are in a spacecraft just 
outside the event horizon of a black hole you could escape \vith very 
powerful rockets. However\ once inside the event horizon the escape 

velocity is higher than the speed of light~ and a spacecraft would be trapped 
(and of course torn apart by the imnllense gravitational. forces) . 

We can calculate the approximate radius of the event horizoi-1 using Ne,vton~s 
law of gravitation. The gravitational potential energy of a spacecraft} of mass 
m> at a distance R from the centre of a black hole of n1ass M> is given by 

E =- GMm 
P R 

If the spacecraft is to escape> its kinetic ener;gJ> t mv2
~ n1ust satisfy the 

relationship 

or 

1 2 GMm O -mv - > 
2 R 

1 2 GMm 
-mv >--
2 R 

The radius of the event horizon is known as the Sch "'' r::~eli i Id rad i u ~ Rs~ 
at vthich point the escape velocity is the speed of light~ c. So 

1 . 2 GMm -me=--
2 Rs 

and 

R - 2GM 
s - 2 

C 
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Figure 13.34 

nicke11 decay 

0 1, 00 200 :300 
time 

Figure 13.35 All type 1a supernovae 
produce light curves of a characteristic 
s ha pe. 

......................................................... ~ .............................. -... . 

n rd n I A star or supernova of 
known brightness that can be used to 
caicu late galactic distances. 

Radius of event horizon 
Calculate the rad'i,us of th e event horizo n for a black hole of mass 20 solar 
masses. [A so lair ma ss ·is 2 x 1 Q30 kg.) 

Using the formu la f n the text 

Ri = 2 x6.7x 10- 11 N m2 kg-2 x 40 x 1030 kg 
,3 x 10~ m s- 112 

=6x l04 m 

=60km 

Observations of stars at t he centre of our Ga laxy~ th e Milky Way, suggests 
that 1mHlioins of stars are contsdn ed In a very smalll vo lume. Astronomers 
calculate that there :is a supermass,ive black hole at t he ga·lactic centre. 
with a1 mass of about four million times that of the s,u n. 

Type 1a supernovae 
Many stars exisi as binary stars) which means that two 
stars rotate about a common centre of gravity. Such 
stars can coexist in stable orbits for millions of years. 
Hov,..-rever1 if the stars are of diffe1~nt masse.s; they evolve 

at different rates. 

Figure 13.34 sl1ows a pair of stars that are a little more 
massive than the Sun . The star A has passed through the 
main sequence and red giant stages and is no\v a white 

dwarf. Later~ star B moves into the red giant stage) and as 
it expands matter is pulled into the Vlhite dwarf. 

If the mass of the white dwarf gi,n,vs to be larger than 1.4 

solar n-iasses, the star collapses. At this point carbon and 
oxygen in the white d\varf suddenly begin to undergo 

nuclear fusion. Such a tapid collapse, followed by the re-ignition of nucle-ar 
fusion, can trigger a supernova explosion. 

Type la supenwvae ar-e easily identified by astronomers for two reasons. First. 
they have approximately the sanie absolute magnitude, because they a]"'1ays 
occur in stars "rith about 1.4 solar masses. Seoondly; the rapid onset of (usion 
in the collapsing star produces the nuclear isotope ~~NL As eAl)lained earlier~ 
this isotope decays to cobalt-56 vnth a half-Ufe ,of 6 days! and then coba.lt-56 
decays to i ·on-56 with a half-life of 77 days. So type la supernovae have 
a characteristic light curve (Figure 13.35), which decays on a time sea.le 
govem-ed by the haU-Hve-s -of the isotopes i~Ni and ~Co. As the two isotopes 
decay; massive numbers ,of high-energy photons are emiued 1 which povler the 
light e1nined by the remnants of the e'h,~anding supernova. 

Because type l a supen1ovae have a characteristic absolute magnitude > they 
are used as s t~ ndard c- ndlc . . This means that astronomer!i can calcu]ate 
the distance of a galaxy from. Earth by measuring the apparent magnitude of 
a type la supernova in the galaxy. 

The use of type la supen1ovae has led to a controversial result. Measuring 



the distance to very distant galaxies has led cosmologists to the conclusion 
that the Universe -was expanding more slowly in the past. For a long time 
it ,va.s assumed that the action of gravity v.,~ould cause tl1e expansion of the 

Universe to sl,ow dovtn. The idea of a Unive1-se Vvith accelera.ting ~pansi.on 
is a most controversial idea. There is no firm explanation for this th eoty yet, 
bu t cosmologists suggest tl1at some 'dark ,energy in the Universe may be 
responsible for an accelerating expansion. 

~ ·····················································································································································: i TEST YOURSELF I 
i 35 Catcu,tate th e density of a neutron sta r w ith mass 38 Exptain why type 1a supernovae a,lways have ! 
i 4 x 1030 ·kg and a rad,ius of 14 km. al si1mi lar sha pes of light curves ! 
! 36 The supermassive btack hote at th e centre of a b] sf1mi1lar abso lute ,magni1tudes. i 
! ga laxy has a, 1mass of 100 m1i:lli o11 solar masses . 39 A type 1a supernova is seen in a, d'istant ga laxy ! 
: Calcutate its Schwarzschild ra di1us. The m,ass of by an as tronomer who measures. 1its app.arent i 
: 30 S : t h e S u n is 2 x 1 0 kg . ma g n it u de to be + 11 at its p ea k of b 6 g h t n e s s. It is : 
i 37 Ex plafrt the mea ni,ngis of the follow~ng term s! known that a type t a s uper nova has -an a bsolute ! 
• • : a) neutron star magnitude of a bout -1 9. at its peak. Show that : 
• • : b] black hote the galaxy is about 10 Mpc away : . .. 
: cl standard cand!le : • • • • : dJ gamma-ray bu rst : . . .. 
: e] su.pernova. : • • • • : . ......................................................................................................................................................................... ~ 

o-------~~~~~~-c o s m o lag y 
Cos1nology is the stu dy of the origin\ evolution and eventual fate of the 
Universe. A detailed u nderstanding of the Unive1--se has been gained by 
mapping the positions and relative motion of the many groups of galaxies 
that lie in deep space. You Learnt in the previou s section that the distance 
from Earth to galaxies can be e.stin1aled using the light seen fro1n type la 
supemo\7ae. Belo,v, you v~ri.11 leam how the D1oppler shift in the 1igl1t seen 
fron1 galaxies can be used to n1e.asure their velocity- and then also deduce 
the distanc,e of galaxies that are very far away. 

Doppler ef f1ect 
You 'Will be famiHar ,vith the Doppler effect. This is the name given to the 
apparent change in the frequency, or "''avelength, of a moving source of 
sound (or other type of wave). When you hear the siren from a fire engine 
as you stand in a street) you hear one pitch (frequency) of sound as tl1 fire 
engine approaches you, and a lo·vler pitch of sound after the fire engine 
passes you and goes aV1ay in the opposite direction. Figure 13.36 helps y,ou 
to understand why the sound changes pitch. 

In Figure l 3.36(ZJJ) a stationary source of .sound is emitting v..11ves, v..·hich 
are heard by the obsen'",er, who is a distance c inetres aVv"aY from the source1 

where c is the speed of sound in ms-1
. So a Is burst of sound stretches from 

the source to the observer. In Figu1-e 13.36(b) the source is moving towards 
the obse:rver "'Arith a velocity v. Now the l s burst of sound is squashed into 

a length c - v metres. This me.ans that the wavelength is reduced (from J to 
A~> and the observer hears a higher frequency. If the source moves away fro1n 
the observer) the \WVes are stretched. out into a length of c + v metres. The. 
wavelength is increase:d and the observer hears a lower frequency. 



-VJ 
> :c 
0.. 
0 
o= 
1-
u, 
<C 
•• 

(J -a.. 
Q 
1-
..J 
<[ 
z 
Q -I-
C. 
Q 

M 
lfiiliii 

Figure 13.36 (a) 

Figure 13 .37 

----------c----------

observer 

(b) 

-. A ..... 

stationary 
source 

otsound 

4--------c- v--------t~-4-.i- v ... 1 . I 

observer 

From Figure 13.36 you can see that 

A#' c- v 
- --

A C 

I 
I 

source of sou nd1 

moving with 
velocJty v 

but J.' = A - tJ.) \vhe.re 1.lA is the change in wavelength. So 

C- V 

C 

8.4 A f v ------- ·-
A f C 

Note that if tJ~,e source n1.oves a,vay from the ob server then the wavelength 
increases , a1ro the frequency decreases. 

light also sho~~ a Doppler effect or shift vvhen. a source is moving. 'This 
has proved to be a veiy successful \Vay of investigating the 01-bits of binary 
stars. Figure 13.37 shows a pair of staTs that orbit around a conllll:on centre 
of gr-avity. When a star is moving to\Vards the Earth, the '\vavelength of 
the Hght decreases, and it is shifted to\vards tl1e blue end of the spectrum . 
When a star is n1oving away fro1n the Earth, the light it e-n-iits appears to be 
shifted to,vards the red end of the spectrum. The spectru1n of light emitted 
from stars are crossed with absorpdon lines (see Figure 13.25). The shift of 
these absorption lines towards the red or blue end of the spectrum enables 
astronomers to· calculat the velocity of the stars. 

(a) (b) (c} 

JI----~ ,.~---.... 
I' "' .. 

, 
I ' 

... 

' \ I 
\ 

... . ....... ---~" 

to Earth 
spectrum 

b!ue ~ red 

-

spectra:111,lne spectral Hne of A 
of fj d lspl.aced d1lsplaced to red 
to 1b tue ( compon€;mt A 
(component B receding f:rom us) 
approaot11,ng us) 

blue 

to Earth 
s.pQctrurn 

red 

spectral1 lfnes of A and 
B not dlsplaced to red 
(components A and B 
nelthe r approach tng nor 
recedilng from us) 

• I 
.. ' ' ... l " .. . , ... ~ - ~·r 

.. 
' \ 

Bs , ' J. ... ,. ' 
...... _ --

to Earth 
spQctrum 

blue~red 

spectra1I Hn Q spectral Hn e 
of A displaced of f3 d lspl!aced 
to 1blue to red 
( corn pon ent A (component B 
approaching us) receding from us) 



The Dop pler shift has also shown that galaxies a.re n1ovi ng away fron1 us. The 
redshift in the spectral lines emitted from galaxies has proved an invaluable: 
tool in nmpping the Universe. TI1e redlshift of a spectral line is sometim ,es 
expressed as a fraction. For ,example, H the redshilt is 0. 1, it means th e 
wav,elen gth has shifted by 10 °/b. Since 

~A V -- --A C 

we can see that the gala.'1..~ is ieceecling at 10% of the spe,ed of light. 

~ ········································· ············································································································= ! TEST YOURSELF i 
! i 
i 40 An absorption li ne in the hydrrogen spectrum ha s a 41 A spectral lin e in a galaxy i1s observed to be shifted i 
j wavelength of 656.3 nm. In the s :p ectru m of a star. fro:m 486 nm to 541 nm. Catcuta te the velocity of I 
i wh ich is one of a binary pair. the wavelength of the the gala·xy. I 
i abs orption line chang es between 655.9 nm and 42 A motorist is in court having been accused of ; 
i 656.7 n,m. dr iv,ing through a red Ug.ht. In his defence he ! 
i a) Explain w hy the wavele ng th of th e spectr at li ne explai ·ns to th e m,ag1strate that the light loo ked i 
i app ea,rs to cha nge. g1reen as he went past it because he w a,s m ov ing. ~ 
j b] Calcula te the max imum ve loc ity of the s tar away Disc uss whether or not t his is a good de'fen ce. The ~ 
i from t he Eart h. wavele n g,t k or n,ot of red l ight i,s 6fr0 n m . and the i 
• • : wavelength of green Ught is 530 nm. : 
• • : ............................................................................................................................................................................. . 

()-H- u_b_b-le-,s~la-w~~~~~~~~~-

ephei ·an A bright starwh05e 
intensjty varies over a matter of days. The 
period of the var1aUon of intens~ty is Un ked 
d~rectty to tihe absolute m·agn 1tude of the star. 

Our Ga~ the lvtilky Way, is n ot alone in space. It is part of a. group of 
soJn e 50 galaxies that we call the Local GToup. The largest two galaxies in 
the Local Group are the Milky vVay and the Andromeda galaxy. Our Local 
Group of galaxies is a very small group and one of 'billions of suc·h groups. 
Figure 13. 38 sh o1-'ts the distribution of groups or galaxies within 600 
m illion light year s of us. 

In the 1920s the An1e1ican astronon1:er Ed,vin 
Hubble began to plot the positions and distances 
of galaxi es frcn1 Earth. He c.alcula.t ed the distance 
of galn.ies using standard c-andles called C .. phcid 
,·a ri: hl stars. Hubble used Cepheids as l'lis 
standard candles, in the same way as type 1 a 
supernovae ar·e used today. Hubble compared 
tl1e distances of galn"ies \vi h their redsl1ifts and 
established that the. distance a galaxy is away from 
us is pr,oponional to its redshift or its v locity 
o[ recession. Figure 13.39 shows this linear 
relationship ,;,vhich leads to Iiubbles law: 

11 =Hd 

Figure 13.38 This m~p show groups of ·g~Laxies in the vicinity of our 
Locd l Group of gd' le1xies. 

where vis the speed of recession of a gala1t..11> dis its 
distance away from us and His Hubble~ constant; 
v,lhich is 67.8 km~r 1 Mpc-1 or 20. 7 kms-1 lvfir1. 
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Figure 13.39 

Hubble's data (1929) 

1 
dlstemce/M pc 

The Hubble co nsta·nt is not we ll 
known and va·'lues glve n ~n da1ta 
an d qu estiorns ca n vary. Ofte n a 

2 

fi g·u re of 70 kms _, Ml pc-1 1s used. 
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H ubble's constant tells us that if a galaxy is I Mpc away froull us its velocity 
is abou t 70kms-1, and if .a gala1...ry is lOMp c away from us then its 
velocity is about 700kms-1. 

The Hubble constant 
Ex press the HI u bb le constant in u n ~ts of s-1 . 

Answer 
From earlier in th is chapter! 1 pc - 3.26 Ly, so 

1 IMpc • 3.26 M·ty 

So 

3. 2 6 )( 1 Q 6 X 3 X 1 08 mi 5-, X 3 6 5 )( 24 X 3 6 00 5 

g 3. 1 x 1 022 m 

1H _ 6 7 .8 X 1 03 m S-l 

~ 3. 1 X 11 022 m 

= 2.2 X 10-18 s-1 

The Big Bang theory 
Hubbles law led to the idea of the Big Bang theory: Figure 13~ 40 shows a region 
of space1 ,vith an observer Oat its centre. The observer sees galaxies in every 

direction. Galaxies that are a distance -r fro1n O travel vvith a speed v. Galaxies 
that are a distance 2r from O travel V1¥11.th a speed 2v. Therefore, it is argued1 at 

son1e p oint in the past all 1rhe galaxies n1ust have been at the san1e point. 

' , 
' I 

-

I 

• t 
I ,. , 

2-V 

Cos1nologists now accept the Big Bang tl1eory, 
V1lhich suggests that the Universe originated about 

13. 8 billion years ago. All tl1e n1atter we see in 
the Universe exploded at one point and has been 
travelling o u t,vardls ever since. 1 n the first few 

seconds after the Big Hang, the Universe was 
extre111ely hot, ~ith ten1peratures in excess of 
l 01l K. As the Universe cooled, aton--is of hydrogen 
and helium were formed. Over billions o,f years, 
the force of gravity acted on this mauer to pull 
it together into th,e stars and galaxies that ,ve see 
t,oday . 

2r .,' Calculations on the e-arly st te of the Univ,~rse lead 
us to think that, in the time bet,v,een 10 seconds 
and 20 minutes after th Big Bang, the te·mperature 
of the Universe was hot enough to fuse hydrogen .. ri!~ 

\_,./ 
-- f ,,, 

" 

into helium 1 in the same way that fusion takes place 
in stars. These calculations suggest that the early 
Universe vn1s composed of about 75% hydrogen and 
25°k helium; together with traces of other elements; 
such as deut,eriu1:n, tH, and h t hium) ~ 1.i. Observation 

of so1ne of the Universe's older objects have confirmed that hydrogen and 

helium are p1-esen1t. in the ratio of 75% to 25%, providing support fror the Big 
Bang theory. 



4 

Figure 13.41 

Cosn1ic 1n icrowave background radiation 
A [u11:_her piece of evidenoe to support the Big Bang theory was p1'0Yid ed 

by the discovery of background radiation > \\7hich con1es uniformly frotn 
all directions. After about 350000 years the Universe had cooled to a 
tempennure of ab out 3000 K. So the Universe was fuU of black-body 
radiation associated with matter at that temperature. J-4..s the Universe 

expanded ~ it cooled, and the wav,elength of that background radiation has 
shifted to much longer wa""elengths. The 1Jiackground radiation pec1ks at a 
"'rav,elength of 1.8 mm; which corresponds to a background temperature of 
spac of about 2.7 K. 

f lh Univ 

If we assun1,e 1hat the Universe has been expanding at a constant rate, we 
can use Hubbles constant to estimate its age. The distance a galax;'" has 
travelled since the O·rigin of the Universe is given by 

distance ~ speed x time 

or 

(assuming that the sp eed has been constant). But Hubble's law says that 

V = Hd 

or 

l 
d = vx­

H 

So the age of the Univ~rse is approximately t = ~ ­
Because H ~ 2 .2 x 10-18 s-1 , the age of the Universe is 

l l 
t -- - -----

- H - 2 .2 X 10- 18 s 

= 4.Sx 1017s 

= 14. 46 billion years 

The accepted value of th e Universes age is 13.8 billion years. 

The e"-i,ansion of the Universe is not in question but the rate 
of ,expansion is still uncertain and depends on the amount 
of n--iatter present in the Universe. Observations seem to 

suggest that while the rate ·Of expansion of the early Universe 
was slo" red because of gravity\ th rat,e of expausion nov,l 
and in the future is uncertain. If there is enough matter in 
the Univers,e it "'~ill reach a maximum size. slow down and 
reverse.) sho\vn by the. yellow ctu·ve in Figure 13.41. Recent 
observations indicate lhis is not the cas·e. If the denstty of 
the Universe is a critical density then the rate of expan sion 
v.rill gradually slow" down until 'the expansion s·tops. In 
Figur,e 13.41 the blue curve shov..~ing this will gradually 

NOV!.r 10 20 30 get ever closer lo horizontal. Slightly less than the critical 
density and the rate of expansion of the l Jniverse will slow b 11 Hons of years 

down over a longer period of time and 1nay never stop. This 
is sho'A7n by the red curve in Figure 13.41. Ho,vever) as 
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suggest,ed previously, sonie of the n1ost recent n1easuretnenls sho\v that the 
rate of expansion of the Universe is increasing and it is suggest,ed that s01ne 
fottn of energy, known as Da1-k Energy, that is part of tl1.e fabric of space, 
is responsible. This is sho\Vn by ihe gr,een curve in Figure 13.il. As yet we 
do not know the forn1. of this Dark Energy or, indeed, if it eJdsts. What,ever 
the future expansion of the Unive1'Se, the Figure 13. 41 sho\\-~ why the value 
for the age of the Univers,e obtained from the Hubble constant is not quite 
accurate because the calculation using the Hubble constant assumes a steady 
rate of expansion. 

~ -····················································································································································: : TEST YOURSELF i 
= : i .. i 43 Out lin e the ev idence for the B,g, iBan,g theory. d1istance of the grou,p from Earth . i 
I 44 aJ A group of galaxies Ues at a distance of 45 A gro,up of galax,ies has a redsh;ft of 0.22 . I 
i 200 Mpc from the Earth. Ca lculate the speed al Ca1lculate the speed of recess:ion of the g'roup. i 
i of recession of the group. H1ubb le·s constant - bJ Ca1lcuiate the distance of the group awa1y fro:m i 
j 67.8 km, s-1 M,pc-1. Earth using the valu1,e of H,ubble's constant= ! 
i bJ A group of gatax~es ,is receding from Earth 20 .7 km s-11Mly-1

• i 
i at a speed of 120 O!J O km s-1• Ca lcutate the I 
: : • • • • • • .................................................................. ....................................................................................................... ~ 

O~~~~~~~-Q u as a r s 

u ar A smal~ v,ery distant object, whijch 
emits. as much power as a large galaxy. 

Figure 13.42 Qu,asar 3C 273 li es a 
dista,nce of 1000 Mpc dway from IEd rth. 
yet it outsh,in es g:a,taxies the1t Ue about 
20 M pc f rom E;irth. w hich you ea 11 see in 
thQ sam,e photograph . 

In the 1960s astronomers discovered a ne,v type of object in th.e sky: It was 
given the nan1e quasar~ ,vhich is short for quasi-stellar radio sou1·oes. The 
first quasars we were first discove1·cd because they were veiy intense sources 
of radio waves. Quasars puzzled astronomers because they appeared to be 
very luminous indeed and among the most distant objects in the Universe 
(because large redshift.s ,vere measured in their spectra)~ yet they appeared 
to b e points of light - just Hke a star. Figure 13.42 shows a photograph 
of the nearest kno,vn quasar, JC 273, ta.ken through the Hubble Space 
Telescope. Although the quasar looks like a point when vie\ved directly 
through a telescope, its brightness causes a large image to be formed ,vhen a 
photograph i.s taken. 

The lines in the photograph are caused by diffraction effe,cts. The 
photograph also reveals a jel from the quasar pointing t,o,wards the bottom 
right hand corner. 

Quasars are the m,ost luminous objects s,een in the sky. The 
apparent magnitude of 3C 2 7 3 is +13 yet its absolute magnitude 
is -27. This means that if 31C 273 were at a distance of l Opc from 
us~ it would appear about as bright as the Sun. 3C 2 73 emits much 
more light than a large galaxy such as the 1'1ilky Way; which contains 
200-4,00 bi Uion stars . 

Although the nature of quasars ""as a mystery for a number of years> 
astrono111:ers are now convinced that they are caused by massive black 
holes as large as l 08 or l 09 solar masses. The radius of the event h orizon 
of such a massive: black hole is the same order of 1nagnitude as our 
Solar System. Some quasars are so distant (right at the ]imit of the visible 



Universe) that we are seeing thetn as th ey ,ve1--e shortly after the Big Bang. 
They are young galaxies in th e making. The density of matter in a quasar is 
so high that a black hole has fom1ed> and the gravitational pull is so strong 
that ma tter is being sw allowed u p at a great rate. It is calculated d1at the 
brightest quasars are s\~laUov,,in g 1n ass equivalent to 110 solar 1nasses 
per year. As stellar matter falls i n to the black hol e., the gravilatto,nal 
potential energy of the matter is transferred into electron1agnetic Vlaves. 
A black hole tearing up matter releases energy into electromagnetic 
waves at a much faster rate than th ermonu clear fusio·n does in stars . 
Quasars are strong en1i'tters of all ,~lavel ngths of ,electromagnetic waves, 
frotn radi-o waves through to X-rays and gamma rays. 

Quasars do not live for long - -vv·e S·ee quasars as they were billions of 
years ago. Once a quasar has devoured most of the matter in its vicinity~ 
i t then acts a.s a stable c,entre o,f an ordinary galaxy. The Milky Way has 
an enormous black h ole at its centre; which provides a central massive 
area of gravitational att raction ; ,vhich helps to keep stars such as our Sun 
in its stable orbit around the galactic centre. 

~ .................................................................................................................................................... . 
~RSELF - ~ 

• • • • • • i 46 Expla,iin the origin of th e name 'quasar· . Show that the gr avitatio na l potent ia l c lose to : 
the event horrzon is -2 x 1016 J kg-1. i 

a) i] 
• : 47 L ist th ree charac teri sti cs of qua sars . • 

ii] Now show that when a st ar w i't:h the mass of : • 
: 49. al Th e quasar 3C 273 has an appa ren t maginitud e 
• • 

the Sun , 2 x 1030 kg. falls into the quasar from : : of+ 13 and js 11000 Mp c from th e Earth . Use th e 
• • 

a large d,is tan ce, the gr av itation at potential : : equ a.t1on 
• • energy lost :is about 4 x 1046 J. i • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

to confi r m that the ab solute magniitude of 

3C 273 'is - 27 . 
b] The abso lute ·ma gni1tu de of a la rge gailaxy such 

a5 th e Andromeda ga laxy. which conta1n s 
over 11012 s tarst is abou:t-22. Co.mpa re 
th e luminosity of 3C 273 w,ith that of th e 
And rome da gataxy . 

• 
On averag,e, 1matter equiva lent to 20 sola r : 

• 
b) i] 

m.as ses falls into th e qua sar each year. : 
• 

A ssum1ing that 30°/o of the ,p otent ia l en er g,y of : 
• 

th e ,ma tte r Js tra nsfe rred into e lect romagnetic : 
• 

waves, c alculate the lum,in osity of th·e quasar : 
• 

i·n watts . : 
• 

ii] The Sun h6s a luminosiity of 4 x 1Q26W. : 
• 

Co·mpare th e luminosity of th e guasar with i 
that of th e Sun . • • • Ii 

Ii 

i 49 A large quasa r has a m.as.s of 1039 kg and an event 
: horrzon of rad ius 3 x 1012 m. 

• • • • • • • • • • • • 
: .. . ...... .................. .. 

···················i··········i••••····························i···························································· ·················• ... 

Exoplanets - are we alone' 
lt is difficult to know exactly how many galaxies tbe.re are in the Universe 1 

b ut current ,estimates put that number at about 100 to 200 billion. Because 
each galaA"Y bas hundreds o.f billions of stars) it is likely that d1e Universe 
contains more than 10000 billion bHHon1 or 1022 , stars. There are many 
stars like our Sun and h is estimated that there are billions of planetary 
systems shnilar to ours. Since the la,vs of physics h old everyv.rhere in the 
Universe1 it is highly p robable th at so1newhere there is another Earth-like 
planet - but 1,1.rl1ether tJiere are any life forms there is an other question, to 
,v·hich we shaH never know the answer. 



Ul 
u -VJ 
> :c 
0.. 
0 
o= 
1-
u, 
<C 
•• 

(J -a.. 
Q 
1-
..J 
<[ 
z 
Q -I-
C. 
Q 

M 
lfiiliii 

Ex pl n t A planet outside our Sollar 
system) in orbit around another star. 
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Discovery of exaiplanets 
Exop lanct is the nan1e given to a planet that lies outside our Solar 
Systein. An exoplanet is i.n orbit around another star. In recent years I new 
technologies have enabled the discovery of thousands of planets in orb~t 
around other nearby stars. However1 only a very s·mall n un1ber of giant 
planets (of Jupiters siz,e or n1ore) have been observed directly~ because 
planets are much less bright than the stars they orbit. Most exoplanets that 
have been discovered have been detected by indirect m·eans. 

~ giant 
: blue i "'-. : planet Variati n in Doppl r hift 
\ shift centre ! Figure 13.43 shows (not to scale) a giant planet and a star. We usually say 
\ of gravny / 
\ / chat plane·rs orbit stars, but it is more accurate to say thaiE a giant planet and 

',~ .. ~-;.-, a sta1; orbit around a common c·entre of gravity. If a giant planet has a mass 
• .... ·· - -----~-

2
- ........ ' of about 0.001 times the mass of the star., the centre of gravity is likely to lie 

' I 

• 
I 
• 

I 
I 
~ 

~ 
; , 

' ' • \ .. .. 
\ ... 

Figure 13 .. l.3 
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Figure 13. 44 A light curve f.o r a typical 
exo·p'Lanet trans·it across the surface of 
its pa rent star. 

outside the star. Then there are times when the star will be 1noving towards 
the Earth, and times when the star vrHl be moving away from the Earth. So 
there will be: small changes to the spectrum of the star~ '-""'hich \ViU be seen as 
a smaU red.shirt or a snwll blueshift . 

This n1ethod detects the pre-sence of large planets near to stars; but it does 
not enable the mass of the planet to be calculated) as we do nol know ils 

distance from the star. 

Plane'lary transits 

lf an exoplanet crosses in front of a. stal.l"ls surface 1 then the brightness we see 
-will drop by a small atnount (Figure 13.4,4). For exan1ple, if a planet covers 
an area of 5% of th.e stars disc> then_ rhe light intensity would drop by 5%. A 
planetary transit is the m ost con1mon method for an astron otner to detect a 
ne,v exoplane't. 

Th e light curve aUol/\rs a rough estimate to be made of the planets radius, 
and then the planet's niass -if ,ve n1ake some assu1np tions about its likely 
composition and density~ 

Direct imaging of exopla11ets 

HR 8799 is a young (30 million years old) main se·quence star1 located 
about 39 pc away- fron1 the Earth. l't is about 1.5 'tin-1es as massive. as the 
Sun and 5 times as luminous. Figur-e 13.45 shows a direct image of an 
exo,planetary"' system-you can see four planets in orbit around the star. The 
light from the star has been digitally removed to enhance our view ,o,f the 
planets. All four planets in view"" are huge gas giants with approximately 10 
times the mass ·of Jupiter. TI1e inner planet, RR 8799e, takes about 45 Earth 
years lo orbit the star .and the outer one~ HR 8799b, tak s about 460 
Earth years tr0 orbit the star. 



Figure 13.45 A rare direct 1image of exop la nets. 

~ ·····················································································································································: : TEST YOURSELF : • • • • • • .. . i 50 a] Give an account of three ways ·in wh .ich 52 The ,inner ptanet HR 8799e of the H,R 8799 system i 
; exoplanets can be detected. orbi ts the star at a distance approx rmatety 15 i 
~ b] Explain why th e exop lanets detected are trmes th e radius of Eartn ·s orbit around the Sun. ~ 
: usuaUy larg.er than the planet Jupiter. Dtscuss wha t other types of planet may yet be : 
1" • 

i 51 When an exoplanet crosses 1n front of a star, the d1scovered in thrs system. J 
• • ! s tar 's Ugh t i ntensiity ta Us to 96°/o of i.ts peak value. : 
• • 
: Cailcu late the ratio : .. . .. . 
1" • 

: radius of exoplanet : • • • • 
: radi1uis of star : 
• • • • ................................................................................................................................................................................ 
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Practice questions 
I A reflecting telescope has an objective lens of focal length 120 cm and a 

dian1et,er of 24 cn1. The telescope eyepiece has a focal lengfl1 of 2.4 cn1 
and a diame'ter of 1.2 cn1.. The n1agnilication o,f the telescope is 

A 5 

B 10 

20 

D 50 

2 Deneb is a bright star that is 800 pc fr.cm Earth. It has an appar,ent 
magnitude of 1.2 . Its absolute magnitude is 

A -13.3 

B -8.3 

-4.3 

D -1 .3 

3 Mcrak. and Ankaa are t\\ro stars that have the same black-body 
luminosities. Ankaa has a surface temperature of 4500 K and a radius 
16~] where~ is the radius of the Sun. Merak has a surface te1nperature 
of 9000 K. Vlhat is Merak~ radius in terms of R/ 

A 2~ 

B 3~ 

C 4R8 

D 6Rs 

4 A crater on the Moon has a dia1neter of SOO m. The Moon is 400 OOO km 
distant from Earth. What is the smallest telescope that will be able 
to resolve 1his crater, when ,dewed with light of wavelength SOO nm? 
Assutne perfect vie,¥ing conditions. 

A ·4 .0n1 C 0.40m 

B 2.4n1 D 0.024n1 

.5 A star has a surface ten1perature of 2800K. The peak intensity of the 
radiation emitted from the stais surface will be in which part of the 
spectrum? 

A infrared 

B r d light 

C green ligh t 

D ultraviolet 

6 A galaxy has a redshift of 0.18.5. Hubble's constant is 6 7. 8 knis-1 Mpc-1. 

The distance of the star away from us is 

A 1200 I\1pc 

B 950Mpc 

820Mpc 

D 570Mpc 

7 Radio telescope A has a diameter of 64 in, and radio t lesco,pe 'B has a 
gathe1ing p O'\\'"e.r of A 

dia1neter of 45m. The ratio h . f . is 

A, 1.2 

B 1 .4 

gat ~enng power o · B 

C 2.0 

D 24 - __ '! 

Use the following information to answer questions 8, 9 and 10. 

The table gives the surface ten1perature: and luminosity of five stars; the 
ltu:ninosity listed is given in units relative to the Suns luminosity. 



Surface temperature/K L . ar uminos1ty i--
Sun 

A 22000 O.D26 

B 40000 2 X 105 

C 10000 90 

D 3500 4000 

E 2500 0.05, 

8 \Vhiich star has the smallest diameter? 

9 Which star has the largest diameter? 

10 Which star has an O class spectrum? 

11 A refracting telescope is made from two lenses, an objective 
lens and an e.yepiec . 

a) Figure 13.46(a) shows light arriving at the objective 
lens of a refracting telescope. Copy and complete the 
diagram to sho,v ho,v a real image is fanned in 
the focal plane of the lens. (2) 

(a) 

(b) 

llght from 1:tre top of 
a distant object 

llght from the bottom 
ot a distant object 

Figure 13 .. 46 

F 

F 

b) Figure 13.46(b) shows a. real image in front ,of the eyepiece 
of the refracting telescope. C·opy and complete this ray 
.diagram to sh,o,v how· a virtual image is seen at infinity. 
Mark in the position of the ,eye to see this image. (3) 

c) The telescope has a length of 2 .28 m. 1Calculate the focal 
length of the eyepiece that wo,uld give the telescope 
a magnificati,o,n of 75. (2) 

d) Refracting telescopes tend to be affected by chromatic 
aberration. Explain \vhat causes chromatic a·berration . (2) 

12 a) Draw the ray diagram. for a. Cassegrain telescope. Your diagram 
should show the paths of two rays 1 initially parallel to t11e 
principal axis~ as [ar as the eyepiece. (2) 
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b) i) Chromatic aberration can be a problem when you use 
a refracting telescope. Why does a reflecting telescope 
1"educe problems from chroma.tic aberration? (l) 

ii) Spherical aberration can be a problen1 if a reflecting 
telescope has a concave sphe1ical mirror. Draw a diagram 
to illustrate sphedcal aberration caused by a spherical mirror. 

iii) Explain ho,v telescope mak:ers avoid the problem 

(1) 

of sphedcal aberration. (1) 

) A r,eRecting telescope has a prhnary nlirror with a diam,eter o,f 
0.30m. Calculat,e the minimum angular separation that 
could b resolved by this telesc,ope ,vhen observing point 
sources of light of wavelength 670nm. (2) 

d) This is a gap between the A and B rings in Satums ring systetn. 
This is called the 1Cassini division after its discoverer. The division 
is 4800 km W"ide, and Saturn is about 1400 x 106 Ian from Earth. 
What .minimum diameter of telescope do you need t,o see the 
1Cassini division clearly? (J) 

a) Copy the axes in Figui:e 13.47 and add to them a sketch of ihe 

Hert2spnn1g- Russell diagram. ln your sketch show the main 
sequence stars1 giant stars and white dwarf stars. On the y-axis 
mark in an appropriate scale for the absolute magnitude of stars. (3) g 

b) i) Afioth is a bright star in the constellation. Ursa Major. The black­
body radiation curve for Alioth sho,vs a peak at a -wavelength of 
2.7 x 10-7 n1. Calculate Alioths black-body temperature. (2) 

ii) Alioth has a lun1inosity 110 thnes fl1.at of tl1e Sun. Calculate 
the radius of Alioth. The Suns surface temperature is 5800 K> 
and the Sun's radius is 6.96 x 108 m. (3) 

+-' 
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c) The spectrum of A.Hoth contains hydrogen Bahner absorption 
lines. D1escribe how hydrogen Balmer lines are pr,oduced in 
the spectrum of a star. 

Figure 13.47 

(6) 

14 Some galaxies, kno,vn as Seyfert galaxi.es, have very active centres. 
These are very sin1ilar to, ·quasars, because astronomers think that th,ey 
have. supermassive biac]~ holes at their centres. 

a) Explain what is meant by the 'event ·horizon, of a black hole. (1) 

b) i) A black hole has a mass 8 x 101 'tin1es that of the Sun. 
Calculate the radius of the event horizon. (2) 

ii) Calculate the average density of matter inside the event horizon. (2) 

15 Alnilam and Betelgeuse are b1ight stars in the ,c,onsteUation of 10lio11. 
Some properties are summarised in the table belov,1, 

Star Alnilam Betelgeuse 

Absolute magnitude - 6.4 - 6.1 

Apparent magnitude· 1.7 0.4 

Bla1ck- bodly te1mperaiture/K 26200 3300 

A F K M 



a) Explain what is me-ant by the t e1nis 

i) apparent magnitude 

ii) absolute magnitude. 

b) Which of the two stars is ,closer to Eai1.1h? Explain your ans\ver. 

) i) Calculate the wavelength of the peak intensity in the 
black-body radiation curve o[ Alnilam. 

ii) Sketch the black-body curve fo·r Alnilam using relative 
intensity ,on the y-axis and wavel ngth in ntn on th 
x-axis. Label the x-axis ;,vith a suitable seal . 

d) Analysis of the light from both stars shows prominent 
absorption lines in their spectra. 

(1) 

(1) 

(1) 

(2) 

(3) 

i) To ,vhich spectral cllass does Alnilam belong? (1) 

ii) The spectnlm of Alnilrun sho,vs prominent Balmer absorption U.nes 
due to hydrogen. State the other element responsible for prominent 
absorption lines in the spectrum for Alnilam. (1) 

iii) Explain ,;,vhy Betelgeuse does not show Bahner lines 
in its spectrum. 

e) Betelgeuse and Alnilan1 have very similar absolute visual 
magnitudes~ as shown in the table above. However~ Alnilan1 

(1) 

has a luminosity (power) 375000 rin1es that of the Sun 1 in oompa1ison 
,vith Betelgeuses lunnnosity; ,vhich is 120000 
titnes that of the Sun. Account for the differences between the 
luminosities and visual magnitudes of the stars. (2) 

16 ReHecting telescopes are 110w more conunonly used by professional 
astronon1ers than refracting telescopes. Explain what advantages 
reflecting telesoopes have ov,er refracting telescopes. (6) 

I 7 Different types of telescope a re used to detect different parts of th e 
,electromagnetic spectrum, from radio ,vave.s to X-rays. Discuss -with 
reference t,o three parts of the electromagnetic spectrun1 the factors 
'that should be taken into account 'hrhen deciding where to position the 
telescope and "'~hen deciding on the size of the telescope. (6) 

18 3C 48 is a quasar that lies in the const,ellation of Triangulum. 

a) 3 1C 48 has a redshift of 0.36 7. Calculat the distance ,of 3C 48 fTon1 
Earth. stating an appropriat,e unit. Hubbles constant is 65k:ms-1 Mpc-1• 

(4) 

b) i) The first quasars ~"ere discovered in the 1960s. What 
property of quasars led to their discovery? (1) 

ii) Quasars are the most luminous objects in the Universe. 
Explain the nantre of quasars and why they are so luminous. (3) 

19 A group of galaxies seen in the constellation of Hydra sho,vs 
a redshifr of 0.048. 

a) i) Explain what is meant by 'redshift~. 

ii) Calculate the velocity of the galaxies in Hydra. 

(1) 

(2) 
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iii) Estimate the distance from Earth. of the galaxies usilng 
Hubble's lav.r. (l) 

b) A type la supernova was detected recently in one of the galaxies. 
Figure 13.48 shows the typical light curve for a type la supen1ova. 
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Figure 13 .. .48 
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i ) With reference to Figure 13.48, explain \vby type la supernovae 
may be used as standard candles to determine distances. (2) 

ii) TI1e peak value for the apparent magnitude of the 
supernova \Vas 17.3. Use this information to calculate the 
distance to the galaxies fron1 Earth. (J) 

a) Draw a ray diagratn for an astronomical refracting telescope in 
n ormal adjustn1ent. Your diagra1n must show the paths of three 
non-axial rays through both len.s e.s. (J) 

b) A refracting t,elescope has a length of 2.05m and an angular 
magr1ification of 40. Calculate the focal lengths of the eyepiece 
and of the objective lens. (2) 

c) Jupiter has a diameter of 7.0 x 104 km and is a distance of 
7.8 x 108km fron.1. the Earth. Calculate the angle subtended by 
Jupiter when viewed through this telescope. (2) 

d ) Refracting telescopes can suffer from chromatic aberration. 
Draw a ray diagram to sho~· ho·w chromatic aben·ation can 
occur when lighl passes through a lens. (2) 

Albireo A and Allbireo B fo,rm a bright double star in the constellation 
Cygnus. Allbireo A is a red giant star and Albireo Bis a green-blue main 
sequence star. Th tabk below summarises some of the proptnies of die stars. 

Star Albireo A Albireo B 

Absolute magnitude - 2,5 - 0.3 

App a rent magnitude 3.1 5.3 

Dia meter/ 103 km 50000 .2000 

Black-body 4300 12900 
temperature/K 



a) Explain the tenns 'n1ain sequence sta1.,J and 'red giant'. 

b) Calc·ulate 'the distance frotn Earth to Albireo, giving an 
appro·priate unit. 

c) By using Ste[ans law, show that the ratio belo,v is a.bout 8. 

lumino~ of Albireo A 

luminosity of Albireo B 

d) Show tha't your ansv.rer to (c) is consislent Vlith the stated absolute 

(2) 

(3) 

(3) 

magnitudes of the stars. (2) 

22 Figure 13. 49 sho~"s a computer-coloured image o,f radto emissions 
from Cygnus A, which is one of the strongest radio sources in the· 
sky. li.vo jets emerge from either side of a giant black hole at die 
centre of the galaxy. These jets probably extend beyond the ,,vidth 
of the host galaxy. When material from the jets is s1ovved dovrn by 
the surrounding medium, ra.dio vtaves are em.i.ued. The strongest 
areas of emission are seen .as the bright lobes on eithe-r side of the 
image. The radio telescopes truu recorded this image detected waves 
with a wavelength of 0 .15 m . 

a) Use the scale on the dia.gra:rn to detennine the sm.a]lest distance dun 
you can resolve in tl1e image. Express your ans\ver in 1v1ly: (1) 

b) The galaxy is about 600 Jvlly from Earth. Use your ru:1.S\v.er to part ( a) to 

dete1,:nine the smallest angle that the radio telescope can resolve at this 
,Nave length. (2) 

c) The reso luti.011 of radio telescopes can be in1lproved by connecting 
together t,vo or more telescopes sep~r1rated by a large distanc-e. Use 
your ans,ver to part (b) to estimate the effective diameter of the radio 
telescopes used to produce this image. (2) 

0 0.1 0.2 0.3 
dlstancQ I ml,y 

Figure 13 .. 49 Radio, Qm1ss[ons from Cygr~us A. 
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Stretch and challenge 
23 A red giant has a radius 200 tunes that of the Sun, and a surface ten1perature 

half that of the Sun. 

a) Use Stefans law to show that the lun1inosity of the red giant is 2500 titn es 
that of the Sun. 

b) The absolute n1agnitude ,of the Sun is +4.6. Calculate the absolut,e 
magnitude of the red giant. 

24 When a galaxy is moving away from us close to the speed of light, the 
waYelength of light, tt0, that we observe is given by 

( l+~J 
Ao=As C 1 -

[1-~)2 
c2 

,vhere As is the wavelength of the light emitted by the galaxy; vis the 5peed of 
the galaxy and c is the speed of light. 

Show that the redshift z = 1A is given by 
s 

z= (i+~l -1 
(1-~J 

The lai-gest redshift seen for a quasar is about 7. Calculate the speed of 
recession of such a quasar . 
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Maths in physics 

By now you should be familiar 'With the maths skills you used in Book 1. 
Some of these are covered here b,riefl1~ but most of this chapter concen15 
maths 5kills covered in Book 2. Vle "'iU look again at the following: 

• arithmetic skills 
• handling data 
• e1rponential and logarithmic fr1nchons 
• overvie,v of graphs 

• trigonometr)~ 

Arithmetic skills 
Standard prefixes for units 
Pn~:fixes are used for very small or very large measuretnents. Table 14.1 is a 
reminder of these standard prefixes. 

Table 1 &.1 Standard prefixes. 

I • Symbol 

1 o-15 femto f fm f.emtometre 

10-12 pico p ps pi,cosecond 

1 o·-9 nano n nm nanometre 
10-6 micro µ1 µ9 microgra1m 

10-3 miUi m mm1 mi llimetre 

10-2 ceinti C et cen,ti litre 

103 kilo k kg ki logram 
1 Q6 mega M MJ megajoule 

109 giga G ·GW giga,watt 

1012 tere T TW terawatt 

Ratios and proportion 
Ratios co1npare one ql\antity vtith. another. Ratios are shoVilll as two 
quan.thies separated by a colon. For example) a ra tio of 10 neu trons 
to 12 protons in. a nucleu!; is shown as 10: 12, or simplified to 5: 6. 
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You can u se ratios to estimate the effect of changing variables on your 
m easuren1ents or calculations. For example, using an equation you can 
decide how d oubling or l1alving one factor affects things. 

\iVhen two variables are in proportion to each oth er, the ratios of the t,vo 
quantities are always the san1,e. For exam ple> if .Y is p roportional to x, then 
if x is doubled) so is y . The ratios are the same, that is y :x and ly : 2x. 

Using ratios 
Ca lcutate th e ra ti o of th e period o'f two pen dulu ms, 
one of ilength 1.5 m and one of length 2.5 m. 

Derive an express ion reta.tlng t he orbital per,jod 

Answer 
The equati on linking period and length is T = 21t fi . 
where T is the per,iod and l f s th e length of the ~g 

of one ptanet to its orb~ ta·l radius, and the orb ita,l 
p-eriod an d orb ital radii ,us of another planet orb it~ng 
th e same star. 

y 

Answer 
pendutum. So for the two pendutum s: Kep'ler's third larw states that [period of orbi t)2 is 

proporttonal ·to (ra d·ius of orb1iU3, or T2 
oe r3

• So 
dividing the relations for pla nets 1 and 2 we ea n write T, 5 = 21r.P, = 21t~-J[s Iii 

and T? r? 
-=-

/IT IT ~ 
12s = 2x..;g = 211:Vi"2.s liil 

Tj r? 

Dividing equation [i) by equation [ii) eliminates 2,r, [, 
and gives V9 

w here r1 arid r 2 are the radji of the orbits of planets 
11 and 2, and T1 and 1 2 a re th e orbital ti me periods of 
the two pla nets. To caLc,u[ate the orb1tarL period, y ou 

would rearrange this equation. giving 

Ti .s = ~ =0.77 
Ti.5 .J'Fs 

T2 3 
T 2 _ 12 q 
,1, - 3 

r2 

Th r s. ea 11 be w r mtt en as a- ra h O I T 1. 5 : T 2 .5 = 0. 7 7 : 11 • 

10 

9 

8 

7 

6 

5 

,4 

3 

2 

1 

1 2 3 4 5 6 7 8 
X 

Inverse square law 
The inverse square law applies when y == ~ • Inverse square relationships 
include the following: x 

• the gravitational force acting on two masses m and M separa.ted by a 
distance r 

F=GMm 
,2. 

• the gravitational field str ngth g at a distance r from a mass M 
GM 

g= ? 
r-

• the electrostatic force a!cting on two charges q and Q separated by a 
distance r in a vacuum 

F= Qq 
. 2 

4 1t:Eor 

• the intensity of light at a distance x fTom a light source 
k 

Figure 14.1 Graph of y = -~ w here 
x2 I= .!_ 

x2 
. k 

The gn1p}1 in Figure 14. 1 shows the relationship y = - 2 . 
X 

k is a co ns tea n t in this ease k = 11 • 



Figure 14"'2 Graph of y = kx2
• 

where k is a co !)St ant in this 
case. k = 1. 

Centripetal acceleration 

Gravitational farce 
What happen,s to the gravitational force :betv./een t\No masses. Mand m. 
when the distance. r. separa tin g them ~s doubled? 

Answer 
Usi,ng the equation given in the text, for the two masses 

F, GMm d c. G'M'm 
- an i'2 --~ - r2 ' - [2rl2 

So 

The relationship y= kx2 

Another important relationship is y = kx2. Examples of this relationship 
include 1he following: 

• the kinetic energy of mass m traveUing at speed v 

1 
KE= - mv2 

2 

• the centripetal force on 111.ass m travelling at veloci ty v in a circular path 
of radius r 

mv2 

F= --
r 

The graph in Figure 14.2 sl10,vs the relationship y = kx2• 

Compare the centripetal acceleraitions experienced 
by a person on a roundabout~ sitt in g. 2.2 m from the 
centre. when the roundabout increases its rotational 
speed from, 4 to 10 revolut~ons per minute. 

~ How does the centrip etal acceleration of a person 
s,ittiin g l .1 'm from1 the cent re compare with that of a 
person si ttin g: 2.2 m from the centre? 

Answer 
Answer 

Because centripeta l accelerat ion is giiven by a -
[2rtfl 2r. a ccete ration is pro po rtrona l to f2• This means 
that the person·s centripetal accelerat ion increases 
by a factor of 102/42,, or 6.25 times. 

Centripeta l acceleration is found using a l!I ru2rj 

so i's directly pro po rtiona l to r. lf r is halved. the 
acceleration halves. The person sitting at a distance 
of 1.1 m from the centre exper.ien,ces half the 
centr ipeta l a cce le ration. 
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Inverse proportion 
Anoth er important type of relationship is where one factor is inversely 

proporti onal to an oth er, y = k. Exan1ples of this include: 
X 

• the gravitation al p otential in a radial field V is inversely proportional to 
the distance r fvom mass Z...i 

GM. 
V=-­

r 

Figure 1t..3 Graph of y =!~ wh ere k is 
a constant. x 

• the electri,c p otential in a radial field Vis inversely proportional to the 
distance r from charge Q 

Q V = _ _...__ 
41tBur 

• the pressure P is inversely proportional to the volume V for a fixed mass 
of ideal gas at a constant temperature (Boyle's law) 

PV ;;;;;; constant 
k 

The graph in Figure 14 .3 shows the relationship y;;;;;;; -. 
X 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • 
-: TEST YOURSELF • .. • • .. • • • 

.. 
i 1 Ca lc u late th e vo lum e of a s phere, wrth ra di,us b) the eh a rge of each part1c,le is doub led 

• • • • • • • • • • .. 
• 
f 3.4 mm [the votume of a s phere ~s .! xr3]. 
: 3 

c] the cha rge of each pa rt~cle 1s halved and thei r 
separ ati on is ha ~ved. .. .. • • 

: 2 A tra ns former ha s 60 turn s on the pr~m ary co it a nd 4 Com,pa re the ratro of electrost atic force to 
g rav itabonal fo rce on two prot ons as thetr 

• • • • • • • • • 
• ·: 240 tur ns on th e secondary coil. 
t 
• • • • • • • • • • • t 
• • • • • • • • • • • • t 
• • • • • • • • • • • t 
• • i 
• 

a] C alculate the ratiio of primary turn s to s epa ration dou bles . .. .. .. 
• 

secondary turn s. 

b) Use yo ur a nswer to pa rt [a ] to estim ate t he 
secondary p.d. w hen th e prima ry p.d. rs 3.2V . 

cl If th e prLm,ary current 1is 30 m1A1 ca lc ulate the 
seconda ry current assuming no los ses i n the 
transform er. 

5 Two plla net s are orbit1ng sta. r X. Planet A has a mass i 
of 1 x 1024 kg and ·is 5 x 108 krn from th e centre of the : 

• 
s ta r. Pla n et B has ar mass of 11 x 1022 kg a nd i.s 5 x ~ 
106 km f rom the centre of the star. : 

• 
a) Calcu late the rabi o of th e gravitational fo rce f 

• exper ie nced bet Y.1een ea ch ,planet arid the st ar. : 

d] Wrthout ca lcula ti oni de5cribe how you r 
answers to par ts [b) a nd (c] wo utd change it the 
trans form er had 1000 turns on the seco ndary 
co iil and 40 00 turns on the primary coil . 

b) Kepler· s Law states that r2 is pto por tio n al to r3. i 
Carlculate t he rati o of the planets · time perjod s. f 

• 
6 5.ketc h a g ra1p h ~ la b-etltn gi the axes, of ~ 

3 Com pare the etectrosta,tk force between two 
cha.rged partictes w hen 

a] t he separation of the charg ed particles is tripled 

a) Q ~ CV (w ith Von the x-axi1s and Q on th e y-axis) 

b) F - G~m !wi th r on th e x-axis and F on th e y-ax,is}. , .. 

• • • "' : : .. 
• .. .. 
• 
! 

0---------------H and ling data 
Ordeir of magnitude 
We can make r,ough predictions or check an answer by using simple tricks. 
For example> the mass of an electron is about 2000 times smaller than the 
mass o( a p rnlon (.or 103 times smaller to the n,earest order of magnitude). 
Ho,veve.r, for acc11rate calculati,on s) we must use exact values. For an order­
of-magniiude calculation , you sh ould d o or n ote the following: 

• Express values in stan dard form .. For exatnple, the radiu s of a l1ydrogen 
atom is about 53 pn1> which ca11 b e 'Written as 5.3 x 10-11m (or as 
10-10 n1 to the n earest order of m agnitude). 



• Add (or subtract) powers of 10 when 1nultiplying (or d ividing). 

For example 10' x 109 = 1014 and l cfS = 10-4 . 
' 1~ 

• Some values can be approximated easily. For ,exan1ple, n2 is about 10. 

Order-of-magnitude calculation So u1si n g the formula: , 
Use an order-of-ma gni 1itude ea lC'u lation to cailcu late 
the radi us of a ,lead nucileus~ which has 207 nu cleons. 

R = 1 Q- 15 ,m X 1 0 0 3 

Answer 
= 5 X 1 Q- 15m 

The radius 'R of a nucleus ca n be estimated using th e 
following form ula: 

1 o-1'm [to nearestorder of ma,gnitude! 

The meaisured rad:iu s of a lead nu cleus is 6.66 fm = 
10 fm or 10-1~ m to nea rest order of magn itude. 
lhus th e order of magnf tude ea lcu latr,on gives 

1 

R= RoA3 

where Ro.:. 1.2 x 110- 15 m,. This is 10-15 as an order of 
magn~tude and 207 is 102 ais an order of magnitude. 

a value of the sa ,me order of magnitude ais the 
rmeasured value. 

Significant figures 
Significant figures (s .f.) are n u m bers that tell you something useful. 
For exan1ple, the 1nass of an electron has been Jneasured to be 
9.10938291 x 10-31 kg, but is usually quoted as 9.11 x 10-31 kg 
(3 s.f.). Son1e values used in nuclear calculations may be giYen to six 
significant figures , but tnost con stants you use are quoted to three 
significant figures. 

\\(hen you do a calculation, do not round the ans,ver down to a small 
nu111ber of significant figures too early. Comple'te the calculatioTt~ then 
express th e answer to the app1opriate number of significant figures. 

To ,vork out the number of significant figures in a number~ count up the 
nu1nber o[ digits, and Temen1ber the following points: 

• Zeros betw,ee.n non-z,ero nuni.bers are significant (e.g. 3405 ha.s four 
significant figures). 

• Zeros after the decimal point > or with the decin11al point shown, are 
significant (e.g. 34.50, 3450 and 34.05 all have four significant figures) . 

• Leading z,eros a.re not significant (e.g. 034.5 has thre,e significant figures, 
and 0.00136 has thre·e significant figures) . 

• Trailing zeros '\\>ith no decimal point sho'Wll are significant (e.g. 345,0 has 
four significant figures. and 0.04500 has four significant figures) . 

• It may be unclear if numbers like 6500 have been rounded to th nearest 
hundred. Use standard f onn ( .g. 6. 5 x l 03) or just write 6500 (to 2 s.f.) . 

Your final ans\ver should hav,e the same nu1nber of silgnlficant figures as the data 

values used. For example]~ = 3.73. The answer has three significant figures 
3.2 

but the data has on]y two signifiicant figures. So the answer should have tv.ro 
significant fig1t1re.s, 3.8. Too many significant figures ovel'states the accuracy. 

Probab•lity and decay 
Probabili1t.y often measures the cl1ance of son1ething happening in a 
particular lime. It does not mean this "Will definitely happen in that tin1,e. 
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Nuclear physicists say the probability of a nucleus decaying per unit tin1e is 
a constan t. The decay con stant ) ... is ,vritten as 

;t = l:l.NIN 
Lit 

where N is the nun1ber of nuclei and t is tin1e. The tinie constant has units 
of s-1. 

U -in Lh d cay on tant 

The activity A is the number of undecayed nuclei J:\T times the pr,obability A 
o.£ one nucleus decaying per unit tilne. This is written as 

A =AN 

The number of nuclei decaying per unit Hm,e is vtritten as 

$ 
- =-il.N 
&t 

(the minus sign indicates that the number of nuclei reduces), where !J.'f:,..,T is 
the change in the number of nuclei and At is th e change in t im,e. 

Tl'le equation 

Al\T =- 8N 
At 

is used to p red ict a change in the number of nuclet or the time taken for 
ihis change. Hut) b ecause of random fluctuations, the equation cannol state 
exactly how 1nany nuclei ,vill decay~ OT w hich nucleus will decay. Ho,veve:1\ 
when N is very large 1 the prediction s are more accurate because as the 
errors are of the order of ±../N· For example, if a radiologist gives a dose of 
1012 particles> the error is ±106~ which is very sn1aU in percen tage t,enns . 

.......................... ................ .............................. ...................... ...... ............... ................ . .. . ....... . . .............. ................ 

TEST YOURSELF 

7 How ma,ny significant figures have these 
number s got? 
al 5.67 x 1 o-a 
b] 939.551 
cl 0.510 999 
d] 3.00 X 108 

8 Calcula te th e pr obabili ty l for a nuclear decay if the 
o:rigina,l sample has 1000 u,ndecayed nuclei and: after 
3 minutes th e nu,mber of u.ndecayed nuclei i,s 960. 

9 Make order-of- m,a1gni,tude ca lcu lations for: 

a) th e volume of the Earth , whk h has a rad iu s of 

6378 km !the volum e of a sphere is[1nr3] 

'b) th e mass of the Earth~ w hich has an average 
dens.ity of 5540 kg m- 3 . 

10 Ca lculate these quantrti es to the approp rf a,te 
number of si,gnfficant fi gures: 
al th e cross-sec tional area of the Earth~ rad ius 

6378km 
b] th e cross-sec ti ona l ar ea of a ha,ir of diam.eter 

90 µm, 
cl th e surface area of a sph edca l Ug ht bulb of 

di.ameter 5 cm. 

.. 
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o~~~~~~~-
E x pone n t i a Land logarithmic functions 
We usually express nu1nbers using b.ase 10. The logarithm of a 11.umber 
(in base 10) is the nu1nber to which we have to raise 10 to get that number. 



For example since 100 = 102, ,ve say that 100 is 10 to the po\ver of 2 . The 
log of 100 is 2 because l O to the pov.rer of 2 is 100. We write this as 

Iog10 100 = 2 

Logs are rarely integers - for example, log10(23.4) = 1.369. 

You ·,"iU also coine across logs in base ,e, called natural logarith1ns. The 
number e is an irrational nutnber approximately equal to 2.718. Logs in 
base e are "'i;-itten as 1n or lo & . 

Natun1l loga1ithms are used i.n calculations involving capacitot"s and 
radio.active decay. 

Logarithm rules 
Use these rules when u sing logarithms: 

• log(a x b) = loga ~ logb 
F,or ,example 
log 2000 = log(SO x 40) = log 50 + log 40 

• log(ab) ;::;; b log a 
For example 
log 81 = log(34) = 4 log 3 

• log(a/b) = loga - logb 
Fo-r example 
log 3 = log(l2/4) = log 12 - log 4 

Exponentials or inverse logarithms 
Logarithn1.S and exponential tem1s are connected. The inverse of laking a 
loga1i thm is finding the exponential tem1. 

If 

x= 10.Y 

th,en 

loglOX = J 

For exrunple1 103 = 1000, so log10 1000 = 3. This fits \Vith. the rules of logs: 

log 101 = y log 10 

Since ]og 10 = 1, this m,eans that 

loglOY = y 

lf 

eY =X 

then 

mx=y 

For example, e6·91 ;.: 1000~ so ln 1000:: 6.91. 

Exponential terms are used in. ·capacitor equations. For example, the charge 
Q on a capacitor a1i. time t is given by 

t 

Q = Qoe Re 

where Q0 is the original charge, .R is th:e resistance and C is the capacitance. 
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Figure 1,.1,, G ra.ph of y = N0 e-lu. 
where N and k a re constants. 

For radioactive decay, the activity can be calculated from 

A = A0e-..lt 

,vhere A0 is the 01iginal activity and ). is the decay constant. 

Tne gr-aph in Figure 14.4 shows the exponential relationship y = N
0

e.-kt. 

Using the exponential rules ·vtith equations can be a v,ery helpful way t ,o 

analyse data. Consider the capacito,r equation given above: 

-t 

Q = QoeRC 

If w,e take natural logs of both s1ld.es "w~e get 
- t -In Q = ln(Q0eRC ) 

-t 

= ln Q0 + ln(,eRc) 

--L . t. 
But ln(e RC) = -~1 so 

RC 

ln ·Q = ln Qo- _£._ 
RC 

When 111 Q is plotted against t, the values sh ould give a straight line vvith 
a gradient of - 1/RC and y-intercept of lnQ0. This can be far more useful 
than plotting an exponential function because: as it is easier t,o see errors or 
anon1alies on a straight~line graph. 

Logarithms using calculators 
The log button is for calculations to base 10~ and the ln button is for 
calculations to base e. 

To calculate logs using calculators: 

• select the log or ln button 
e1 type in the nun1ber 
• ·press= 

To calculate exponentials using calculators: 

e1 p,ress shift 
• select the log (for l 0'') o,r ln button (( or eX) 
• type in the number 
• press= 

Finding half-life 
The half-life, T!, of a decay process has elapsed when, for example, the 

l 
acth11ty of (or the number of nuclei in) a radioactive isotope falls to half its 
original value during that time period T.!.. 

' We can link Tl and the decay conslant i. (defined above) as follows. Since 
2 



after one half-life T1 there "rill be.!_ "l\f0 nuclei left. So 
- 2 

No -ir 
- =Ne .l 2 0 2 

l -lT1 
- = e ,-
2 

~·hich gives 

1 ln 2 = -AT.!. 
2 

ln2 = AT1 -2 

ln 2 r, =-
'i A 

2 

····~·~···········~·····,···~······-···~8··············~·········1······~········~···········~············,•§••··~·······•4••••··~···~·,···········~··· 
. EST YOURSELF 

• • • • • • t 
t 

i 1·1 Use yo ur ca lcula tor to find 12 A ra di oac tive isotope has a decay co ns ta nt of j 
~ a] lo g

1 
12 0 . 0 3 s-1 . At t = D , 1 t s a et iv i ty is 4 8 B q. Cal c u l a,t.e t h e ~ 

i b) ln 45 activity 35 s la ter. i : . 
: cl e-3.4. 13 Calcu late the h.aJf- Ufe of a samp.le If the decay : 
i d] 102.1 co nstant 1 = 3.4 x 1 o-2s . i 
• • • • : .............................................................................................................................................. ............................. . 
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o~-------------------------------0 v er view of graphs 
Using straight-line graphs 
A straight-line graph has the formy = mx + c, where m is the g1~adient 
of tl1e graph and c is a constant, which is the inteTcept of the line on the 

f:!J 1 
gr acuent == tiF = k 

Intercept ~ ~ 

y-axis. If the line goes through the origin~ then c is zero. 

Where possible, we manipulate equations into the f orn1 
y = mx + c so that a straight-line graph can be dta"'111 and 
anoinalous points are n1ore obvious. 

For ·example~ in Figure 14. 5, the length, l of a sp1i ng of 
unstretched length, lo, .and spring constant k is given by 

'f = .!_ X F + ,o 
k 

which when compared with 

Figure 11.J; You sho,utd always use a large 
triangle when ea lcutat,ing the grad1ient of a 
straight- line graph . 

y=ntx+c 

shows hat a g1~aph ·O·f 1 against F ~ill have a gradient ,of.!. and 
an intercept on the y axis at 10 . k 

Using curved graphs 
Examples of curved graphs include a discharge curve for a capacitor. A 
curve of best fit should be smooth~ \Vith equal numbers of points abo,ve and 
below the line. 
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To calculate the gradient at a point, dra"\i\1 a large triangle with the 
hypotenuse as the tangent to the curve at that point. The tangent 
to a curved line is paraUel to the line at that point. The gradie11Jt 

is given by m"' !~ . If time t is plotted on th.e x-axis, the gradient 

represents rate of change) ,vith time , at that Foint. 

Figur 14 .6 sho'\<~ts an example of how to find the gradient at a 
patticular point of a curved graph. Again, you should always use 
a large triangle t,o do this. 

Remember ·tha't a curved graph shows a non-linear re]ationship., 
so the gradient changes. For example, th gradient at time t 

Figure 11..6 The gradient at a point on a curved giraph. on a non-Hnear charge-time graph sho,vs the current at that 
particular time. 

(a) I/A 

Exp1onential and l1ogarithmic graphs 
Sometimes exponential relationships can be hard. to plot on nonnal 
graph paper, becau5e they can cover very Vii.de ranges of values. Also, 
an exponential graph is curved; and therefore it can be more difficult tQ 

identify anomalous results. Plotting a log graph of an exponential function 
aUows a straight-line graph to be produced~ which sho\vs errors 1nore 
clearly and enables a linear relationship to be identified. 

The two graphs in Figure 14. 7 show current readings for a discharging 
ca.pacitor. vVhen I is plotted against t) as in Figure l 4.7(a), the line is an 
exponential curve because 

[ 

I= loe Re 

taking natural logs of both sides gives 

t 
h1I= ln10 --

RC 

When the natural logaritlun of I is planed against t, as in Figure l 4.7(b), 
the result is a straight line vvith gradient -1/RC (and the y-int,erc,ept is enI0). 

(b) In I 

gradient m ;c In fo 
grad lent - ;c 

t/S 
-I 

l=igure 14&7 [aJ Th,e grapih for a, disc harging capacitor is an expone,ntial curve I - foe r . .[bi using natural logs g,iv,es 
~ stra~ght- li ne graph 1ln/ = 11 nlo -k. 

You can also plot logs directly onto logarithmic or log-linear graph 
paper. Lines on logarithmic paper are not eve11ly spaced because they are 
proponional to the logarith111 of each 11u1nber. You plot data directly onto 
the log graph paper ·without converting to logs first. If a data point lies 
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between increment 6 and 7) the value of the nm11ber 
you plot will also lie b etween 6 and 7 on the scale. You 
should get a straight-Hue graph if you ha.ve been asked to 
use log paper. 

The graph in Figure 14.8 shows an example for radioactive 
decay, vthich is exponential, plotted directly onto, log-Jin ear 
graph pa.per. This gives a straight-line graph. 

Calculations using 1graphs 
The area under certain graphs has a specific physical 
meaning: 

• The area under a graph of gra,i.tational field strength 
g, against distance from a planet; r~ is equal to the 
,change in gravitational poten'tial, 6. V, when moving 
from one p o,int t ,o, another. 

• The area under a graph of electric field st~ngth, 
E, against distance from a planet i r, is equal to the 
change in electric potential; !Ji. V; when moving from 
,one point to another. 

Figure 14.8 Data for rad inactive decay p lotted on Log-Linea r 
paper g:ives a straight- tine graph . 

• The area under tl1e graph of charge Q\ against p .d. 1 V 1 

gives the en:ergy stored in a capacitor, 1hQV. The shaded 
area in Figure 14 .9 sho\\1s the extra energy stored) fiQ, 
\vhen fl1e charge increases from Q to Q + !1Q. 

y 

Figure 14.10 For a grE1,ph of r= f [xl. 
w hen x= a, then y= f [a] ~nd the 
gradi·ent at that poJnt is df[a ]/dx. 

~ 

~ 
C: 
~ V 
~ 
'C 
ctl 
p 
i::: 

.Sl 
0 
Q. 

Figure 14.9 

Remember to use the units sho\'\rn 01:1 the axes 1 taking 
special care with prefixes. 

charge 0/C 

Calculus and graphs 
Calculus is a branch of mathematics that studies change. Differentiation is a 
technique used to, '\.v,orkoul a rate of change) and the main aim is to find the 
gradi,ent of a graph at a particular point. You do not need to know ho~l to 
differ,entiate

1 
but it is useful to kno,v how some functions are Hnked when 

differentiated. 

The function that describes the shape of the- curve can be differentiated. 
Substituting in a particular value of x allovls you to calculate the gradient 
at that point. Figure 14.10 shows an exan1ple. 
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Gradient of graph using calculus 
Ca lcula te th e grad ient of the foltowing graph when x = 2: 

y ~ 4x3 + 3x 

Answer 
D iffe ren tL3tj, n g with respect to· x gives 

.s}!. = 11 2x2 + 3 
dx 

When x • 2 this gives 

~ = 11 2 X 22 + 3 = 51 
dx 

Integral calculus involves calci1lating the area under curved graphs by 
treating this area as a se.ries of infinitely narro,.v s trips that aire summed 
together. The function that describes the. shape of th e curve can be 
integrate,d . Substituting two values of x between th.e Hmits of the 
integration calculation allows you to calculate the area under the graph 
betY.re,en those points. 

Area under graph using calculus 
Ca lculate th e a rea under the graph y = x2 - 4x + 5 
1between the po:ints x = 2 and x = 5 f F·igure 14.111 ~-

Answer 
The functiion s hou ld be 1ntegrated and evaluated 
between th e Li m tts 2 and 5: y 

0 2 5 X 

Figure 1&.11 

J yclx = [.!.x3 
- 2x2 + 5x]

5 

2 3 2 

= [i15J3 
- 21512 

+ 5[51]-[ir213 
- 2r212 

+ 5[2 1] 

= (41.67-50 + 25)-(2.67-8+1:0J 

=16.67-4.67 

= 12.0 

As an alternative to calculus, y,ou can use a different graphs or 
spreadsheet modelling to investigate graphs. For examp]e) the tangent to 
a displacement-dme graph is equal to velocity (v;;;;;; &s/11t). So if you have 
a displa.cement-thne graph for a falling object, you could calculate the 
velocity at a pani.cular time by measuring the gradient at that time. 
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TEST YOURSELF 

j 14 Copy th e blank table below. Read the x and y 
! vatu es of the qu a,nti ties plotted ~n Figure 14.12, 
i as accura,tely as possible~ and write them in your 
! t ab le. • iii • .. • .. 
• t 

i • • : • • • • ... .. 
i 
i 
i .. 
• • • .. 
• : .. • t • .. 
• • • • • .. 
• • • • • : .. 
• • • • .. ... • • • • • .. .. .. 
• • • • .. .. 
• • • • • .. 

5 

3 

- _J_ 
- - -

-

15 Explain what to plot s o that eac h of th e following 
data sets produ.ces a straight- Lin e graph . Explain 
the signiifiica nce of the gradient and y -1intercept in 
each case. 
a] A graph to show a Unear relationship 

1 

co nn ec th,g Rand A, where R= R0A3° [r0 is 
con sta, nt] . 

b] A gra,ph to show a l1inear relati,onship 
t 

connec ting J a nd t~ where I - 10e - RE (10 , R. C 

a,re constant] . 
c] A gra,ph to show a lin ear re'latf onshlp 

connecti ng T and C where T2 
= 41r2 (tJ {g 1is 

cons ta,nt). 

16 La:belling the axes, sketch a graph. of N~;; 
BAN cos 0, w ith 8 on the x-ax11s and Ntp on the 
y-axi,s) 
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Figure 14.12 

~ 
.,,r"' 

_-,,r 

I 
0.2 0.4 

0.3 

I 

I I I I I 
0.6 0.8 1 2 4 

o.s 0.7 0,9 
length. Um 

6 

5 

·- -
-

·- ,_ 

I I 
8 1 0 

7 9 

• • .. .. .. .. • • • • • • • • • • .. .. .. .. • • • • • • • • • • .. .. : 
: 
i • • • • • .. .. • : 
i • .. 
• • • • • • : • • : .. .. 
• • • .. .. .. .. • • • • .. 
• • • • • .. ... .. • • • • • • • • • • • .. .. .. • • • • • • • • • • • .. .. .. • • • • • • • • • • • .. .. .. • • • • • • • .. 
• • • .. .. .. 
• • • • • • • • • • • .. 
i • : • • • • .. ... 

i 
:. ; • •, •••••• • • • •, •••••• • • • • ....... .,. • • • • • •••••• • • • • • ..... .,.; • • • ••••••.,. u,•, ., ••• .,.,.. • • • •••••.,. • • • • • •••••.,. • • • •"' ••••• • • • • • •••••• • • • • • ••••• • • • •••••••• u• "4111. -------

Trigonometry 
Rigl1t-a1.1gled triangles are used to define three functio11rs: sine, cosine and 
tangent. The sides of a right-angled triangle are labelled in relation to the angle 
as sho\Vn in Figure l 4.13: opposite (O)l adjacent (A) and hypotenuse (H). 

You can calcu late an u11kn0 Vi!l1 v.alue for a rigl1t-angled triangle u sing: 

• sin8'= 01H 
• cos O = .AIH 
• tanO = 0 /A 
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aaJacent (A) 

Figure 14.13 

oppos lte {O) 

A useful rule involving sine and cosine is: cos28 1 + sm.26 = I. 

For ihe vector triangle in Figure l i .13, ,vhere His th.e 1engfl)l of the hypotenuse: 

H2 = H2 cos2 tJ.+ H2 sin2 8 

Differentiating sine and cosine functions 
If we differentiate a function, f(t), that depends on time t, ,ve write the 

differential of the functi,on as dfd~J •. Tilis is a quick way of writing lbe rate of 

change in function f with time t. 

For ,example, v,elocity is rate of change of displacem,ent x ,vtth time t, or 

dx(t) 
v=--

dt 
Acceleration is the rate of change of velocity ,vith time: 

dv(t) 
a=--

dt 
When studying simple harmonic motion, you ,fvi!l. meet sine and cosine 
functions that depend on time. We can differentiate the sine and cosine 
functions to get expressions for displacement~ velocity and acceleration. 

,One solution for the displacement x
1 
at time l is 

x = Acos(2nft) 

This assumes that tl1e initial displacement is A at lime t =: 0. So A is the 
amplitude of the oscillation, and f is tl1e frequency - these are both constants. 

If we differentiate we get 

dx{t) d(Acos (2xft) 
v= =-----

dt dt 
= - 2n-JA sin(21l" ft) 

This is a solution for the velocity at titne t . 

lf w e differentiale again, '\Ve get an expr-ession for the acceleration: 

_ dv _ d(-2HjAsin(2n:ft) 
a ----------

dt dt 

= -(2n f) 2 Acos(2.n: ft) 

,a = -(2 n f )2 x 

Using calculators: sin, cos and tan functions 
If you want to calculat,e the sine; cosine or tangent function for a known 
angle1 select the sin; cos ·Or tan button: 

• type in the anglt: as a. number 
• press= 

To calc.ulaitc an angle if you know the sint\ cosine or tangent functions: 

• press shift 
• select the sin, cos or tan button 
• type in. the number 

• press= 



e.m.f.N 
BANro 

To change between radians and degrees: 

• p1-ess shift set-up 
• select DEG for degrees or RAD for radians 

If in doubt, read ·the instructions to your calculator, as there can be sn1aU 
differences between machines. 

Sine and cosine graphs 
The graph in Figure 14.14 sho\vs the relationship for the e.n1.f. induced in 
a rota ting coil: 

e = BAl\T ru sin ,rot 

tlme/S where OJ is the angular frequency. t is the time, B is the magnetic flux 
de11sity (T) i A is area (1n2) and N is th nuinber of turns ,0,11 the coil. 

Figure 11.J I. Graph of E = BANOJ si1n (l)t 
for the induced e.m.f. in a rota,tf.ng co il. 

Q.m.t.N 

~Jme/s 

Figure 14~15 Gra ph of 8= BANCrJCOSCdt 
for the induced e.m.f. in a rotating coi:l 
with i n Its axis i n 11 ti. a Uy per pe· nd k u La r to 
the fieild. 

Fig u re 11. .16 

We could also use the Jelationship 

E ;a: BANrocosrut 

to describe the variation of the induced e.m.f. ·\vith time~ it is really just a 
case of ,;vhere v..re choose to define our starting point in tim,e. The shape of 
this cosine function is shown in Figure 14.15. 

Similar shaped graphs .are used to describe other sinusoidal functions) 
that vary with tim·e; such as the displacement> velocity or acceleration of a 
simple harmonic oscil1Lator. 

Degrees and radians 
Degrees and radians are botl1 used to describe angles. Degrees are calculated 
as 1/360 of the angle turned through a co1nple.te revolution. An angle in 
radians is the length of an arc, s, divided by the radius of the circle> r (see 
Figure 1-4.16). This relationship may be express,ed by 

5 
0=-

r 
In Figure 14.16, the angle 19 in radians is 

5 
. To go round the circle once, the. 

r 
arc length is 2nr. so the angle £or a complete revolution in radians is 

21rr _ . --== 2n: 
r 

You must be able to conv·ert between th e two units and to recognise. some 
key values: 

• 360 degr,ees (3600) = ln radians (2rr rad) or one full revolution 
• 180 d grees (1800) = 1t radians (rt rad) or half a rev,olution 

Small ... angle a1pproximations 
For very small angles, you can approximate values for the sin, ) cosine 
or tangent. This is useful ,vhen calculating the fringe separations in 
in terference patteni.s. When 8 is measur,ed in radians) vle can use the 
following smaU-a.ngle approximations: 

• sin8 ~ tanO ~ lJ 
• cos 8 ~ l 

To convert rut angle in radiH.ns to an angle h-1 degrees, remember that one 

radian (1 rad) is 1800 =57°. 
1t 
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Catcula te th e foUow,n g, in deg rees: 
a) sin 32° 
b] ta1n 163° 
cl cos-1 0.92 
Calcu laite the following~ in radi,an,s: 
a) sin 11:/8 
b] tan n/3 
c) cos-1 0.92 
Convert t hese ang les from deg,rees to radJanis: 
al 40° 
b) 1175° 
c] 270° 
Convert t hese angiles from radians to degrees: 
a] 1r/4 radian,s 
b] 0.3 ra1dia n1s 
cl 1i. 6 ra,dla,n s 

Use the sm,aU-an gle ruile t o wrr te down close approxi1mations to the 
va lu·es of the fo llowing· tr·igoino metrica l functrons: 
a] ta, n (l O 1 :ra d 
b] cos 0.05 rad 
cl s in 0.03 raid 
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