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Key to symbols in this book

This symbol means that you may want to discuss a point with your teacher. If
you are working on your own there are answers in the back of the book. It is
important, however, that you have a go at answering the questions before looking
up the answers if you are to understand the mathematics fully.

This symbol invites you to join in a discussion about proof. The answers to these
questions are given in the back of the book.
This is a warning sign. It is used where a common mistake, misunderstanding or

tricky point is being described.

This is the ICT icon. It indicates where you could use a graphic calculator or a

and computers are not permitted in any of the

puter. Graphic
examinations for the Cambridge International AS and A Level Mathematics 9709
syllabus, however, so these activities are optional.

This symbol and a dotted line down the right-hand side of the page indicate
material that you are likely to have met before. You need to be familiar with the
material before you move on to develop it further.

This symbol and a dotted line down the right-hand side of the page indicate
material which is beyond the syllabus for the unit but which is included for
completeness.



Introduction

This is part of a series of books for the University of Cambridge International
Examinations syllabus for Cambridge International AS and A Level Mathematics
9709. It follows on from Pure Mathematics 1 and completes the pure mathemati

required for AS and A level. The series also contains a book for each of mechanics

and statistics.

These books are based on the highly successful series for the Mathematics in
Education and Industry (MEI) syllabus in the UK but they have been redesigned
for Cambridge international students; where appropriate, new material has been
written and the exercises contain many past Cambridge examination questions.
An overview of the units making up the Cambridge international syllabus s given
in the diagram on the next page.

Throughout the series the emphasis is on understanding the mathematics
as well as routine calculations. The various exercises provide plenty of scope
for practising basic techniques; they also contain many typical examination
questions.

An important feature of this series is the electronic support. There is an
accompanying disc containing two types of Personal Tutor presentation:
examination-style questions, in which the solutions are written out, step by step,
with an accompanying verbal explanation, and test-yourself questions; these are
multiple-choice with explanations of the mistakes that lead to the wrong answers
as well as full solutions for the correct ones. In addition, extensive online support
is available via the MEI website, www.mei.org.uk.

The books are written on the assumption that students have covered and
understood the work in the Cambridge IGCSE® syllabus. However, some

of the early material is designed to provide an overlap and this is designated
‘Background’. There are also places where the books show how the ideas can be
taken further or where fundamental underpinning work is explored and such
work is marked as ‘Extension’.

The original MEI author team would like to thank Sophie Goldie who has carried
out the extensive task of presenting their work in a suitable form for Cambridge
international students and for her many original contributions. They would

also like to thank University of Cambridge International Examinations for their
detailed advice in preparing the books and for permission to use many past
examination questions.

Roger Porkess
Series Editor
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Algebra

Algebra

No, it [1729] is a very interesting number. It is the smallest number
expressible as the sum of two cubes in two different ways.
Srinivasa Ramanujan

Abrilliant mathematician, R jan was largely self-

ht, being too poor to

afford a university education. He left India at the age of 26 to work with G.H. Hardy
in Cambridge on number theory, but fell ll in the English climate and died six years
later in 1920. On one occasion when Hardy visited him in hospital, Ramanujan
asked about the registration number of the taxi he came in. Hardy replied that it was
1729, an uninteresting number; Ramanujan’s instant response is quoted above.

+0.08
0

7003’» 1 2 x

The photograph shows the Tamar Railway Bridge. The spans of this bridge,
drawn to the same horizontal and vertical scales, are illustrated on the graph as

two curves, one green, the other blue.

@ How would you set about trying to fit equations to these two curves?




You will already have met quadratic expressions, like x> — 5x+ 6, and solved
quadratic equations, such as x2 — 5x + 6 = 0. Quadratic expressions have the form
ax? + bx+ c where xis a variable, a, band c are constants and a is not equal to
zero. This work is covered in Pure Mathematics 1 Chapter 1.

An expression of the form ax? + bx? + cx + d, which includes a term in X% is
called a cubic in x. Examples of cubic expressions are

203 +3x2-2x+11, 3y°~1 and 42-2z

Similarly a quartic expression in x, like x* — 4x? + 6x% — 4x+ 1, contains a term in
x5 a quintic expression contains a term in x° and so on.

Al these expressions are called polynomials. The order of a polynomial is the
highest power of the variable it contains. So a quadratic is a polynomial of
order 2, a cubic is a polynomial of order 3 and 3x® + 5x* + 6xis a polynomial of
order 8 (an octic).

. . . . . 1
Notice that a polynomial does not contain terms involving v, 3, etc. Apart from
the constant term, all the others are multiples of x raised to a positive integer power.

Operations with polynomials

EXAMPLE 1.1

© Ad

ion of polynomials

Polynomials are added by adding like terms, for example, you add the coefficients
of x° together (i.e. the numbers multiplying x*), the coefficients of x? together,
the coefficients of x together and the numbers together. You may find it easiest to
set this out in columns.

Add (5x% —3x7 — 2x) to (7x4+ 52+ 352~ 2).

SOLUTION
2 —3x> —2x
+(7x* +5x° +3x2 -2)
12x4 +2x° +3x2 —2x ~2
Note

This may alternatively be set out as follows:

(5x* —3x%— 2X) + (Tx* +6x3+ 3x2—2) = (6 + 7)x* + (-3 + 5)x* + 3x2 - 2x — 2
=D DA DR — 26—

Subtraction of polynomials

Similarly polynomials are subtracted by subtracting like terms.

v
N
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Algebra

EXAMPLE 1.2

EXAMPLE 1.3

Simplify (5x4 — 33 — 2) — (744 + 527 + 352 - 2).

SOLUTION
5x4 -3 —2x
— (7 +52° +3x2 -2)
—2x¢ —8x° =352 =2x +2

Be careful of the signs when subtracting. You may find it easier to change the
signs on the bottom line and then go on as if you were adding.

Note

This, too, may be set out alternatively, as follows:

(5x*—3x—2x) — (Tx*+5x3+3x2 —2) = (6 — T)x* + (-3 —5)x* — 3x2— 2x + 2
=-2x*—8x—3x2—2x+2

Multiplication of polynomials

When you multiply two polynomials, you multiply each term of the one by each
term of the other, and all the resulting terms are added. Remember that when
you multiply powers of x, you add the indices: %X ¥’ = x12,

Multiply (x* + 3x — 2) by (- 2x— 4).

SOLUTION

Arranging this in columns, so that it looks like an arithmetical long
multiplication calculation you get:

i +3x -2
X 2 2x —4
Multiply top line by x> ® 430 22
Multiply top line by —2x —2xt —6x2  +Hix
Multiply top line by —4 —4x? —12x 48
Add © 2t - -8« —8x +8

Note

Alternatively:

(X34 3x—2) x (x? = 2x — 4) = x*(x2 — 2x — 4) + 3x(x2 — 2x — 4) — 2(x* — 2x — 4)
=5 —2x4 — 4x3+3x° —6x2 — 12X — 2X2 + 4x + 8
=X 2x4+ (A + 3+ (62X +(~12+ 4)x +8
=x5—2x4— X3 —8x2—8x+8




EXAMPLE 1.4

Division of polynomials

Division of polynomials is usually set out rather like arithmetical long division.

Divide 2x° - 3x% + x— 6 by x— 2.

If the dividend is missing a term,
leave a blank space. For example,

SOLUTION write x? +2¢+ 5 as B 245
_ o Another way to write itis x° + 02 + 2x +5.
etho
2% Found by dividing 2x* (the first term in
x—-Z)ZxJ P 263 =332 43— 6) by x (the first term in x—2).
2% — 4,

Now subtract 2x’ — 4x* from 2x* — 3x2 bring down the next term (i.e. x) and
repeat the method above:

222+ x

x=2)20° =32 +x-6
27 — 42 |
¥

Continuing gives:

‘This is the answer.
22+ x+3 Itis called the quotient.

x=2)2°-3x*+ x-6

25— 4x?
x4 x
x-2 | The final remainder of
v zero means that
3x—-6 x~2 divides exactly
3x-6 into 222~ 32 +x~ 6.

0
Thus (2 = 3x> + x—6) + (x—2) = (26> + x+ 3).
Method 2

Alternatively this may be set out as follows if you know that there is no remainder.

‘The polynomial here must
be of order 2 because 2x + x
will give an x? term.

Let (22> = 3x% + x—6) + (x—2) =ax* + bx+ ¢
Multiplying both sides by (x—2) gives

(2> =3x% + x— 6) = (ax® + bx+ ¢) (x— 2)

The identity sign is used
here to emphasise that this
is an identity and true for

Multiplying out the expression on the right
23 =32+ x—6=ax>+ (b—2a)x + (c—2b)x— 2¢

all values of x.

v
N
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Comparing coefficients of x*
2=a

Comparing coefficients of x*

Comparing coefficients of x

1=c-2b
1

Checking the constant term

=—2c (which agrees with ¢=3).
S0 ax?+ bx+ cis 2x2 + x+3

ie (26— 3x2 + x—6) + (x—2) =2+ x+3.
Method 3

With practice you may be able to do this method ‘by inspection’. The steps in this
would be as follows.

(2x7 =32+ x-6) = (x —2)(2 )
Needed to give the 2* term
when multiplied by the x.
This product gives —4x2.
Only -3 is needed.

3
e S

Introducing +x gives +x2
for this product and so the
% term is correct.

This product gives ~2v and
+xis on the left-hand side.

This +3x product then
gives the correct x term.
Check that the constant
term (~6) is correct.

So (2x3 —3x2+x—6) + (x—2) =2x?+ x+3.

g
=(x—2)(2x*+x+3)
s B

A quotient is the result of a division. So, in the example above the quotient is
23+ x+3.



EXERCISE 1A

1
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w
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©

©

°
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State the orders of the following polynomials.
i x*+3x%—4x i) x2 (i) 2+ 6x2+ 3x7 - 8x°
Add (x®+x2+3x—2) to (x> —x2 —3x—2).

Add (x* — x), (3x2+ 2x+ 1) and (x* + 3x% + 3x% + 3x).

Subtract (3x%+2x+ 1) from (x® + 5x + 7x+ 8).

Subtract (x> — 4x2 — 8x— 9) from (x> — 5x2+ 7x+9).

Subtract (x° — x* — 2x> — 2x% + 4x— 4) from (" + x* — 2> — 2% + 4x + 4).

Multiply (x*+ 32 + 3x+ 1) by (x+ 1).

Multiply (x* + 222 — x— 2) by (x—2).

Multiply (x? + 2x— 3) by (x2 - 2x— 3).

Multiply (%10 +x° + x® + 27+ x0 + X+ x* + x? + 22+ x! + 1) by (x—1).
Simplify (x2 + 1)(x— 1) — (x2 = 1)(x— 1).

Simplify (x2 + 1)(x2 4+ 4) — (x2 — 1) (x>~ 4).

Simplify (x+1)2+ (x+3)> = 2(x+ 1)(x +3).

Simplify (x2+ 1)(x +3) — (2 + 3)(x+ 1).

Simplify (x> = 2x+ 12— (x+ 1)%.

Divide (- 3x2 — x+3) by (x— 1).

Find the quotient when (x° + x% — 6x) is divided by (x—2).

Divide (257 — x2 - 5x+ 10) by (x+2).

Find the quotient when (x4 + x2— 2) is divided by (x— 1).

Divide (25 — 10x2+ 3x — 15) by (x—5).

Find the quotient when (x* + 5x°+ 6x% + 5x + 15) is divided by (x+ 3).
Divide (2x* + 5x% + 4x + x) by (2x+ 1).

Find the quotient when (4x* + 4x — x + 7x — 4) is divided by (2x— 1).
Divide (2x* +2x° + 5x? + 2x+ 3) by (x? +1).

Find the quotient when (x* + 3x® — 8x% — 27x — 9) is divided by (x?—9).
Divide (x* + x> + 4x2 + 4x) by (x?+ x).

Find the quotient when (2x* — 5x° — 16x? — 6x) is divided by (2x? + 3x).

Divide (x* + 3x%+ x? = 2) by (x> + x+ 1).

v
N
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Solution of polynomial equations

EXAMPLE 1.5

You have already met the formula

—b+ Vb? - dac

2a

for the solution of the quadratic equation ax?+ bx+ ¢=0.

Unfortunately there is no such simple formula for the solution of a cubic
equation, or indeed for any higher power polynomial equation. So you have to
use one (or more) of three possible methods.

@ Spotting one or more roots.
© Finding where the graph of the expression cuts the x axis.
® A numerical method.

Solve the equation 4x* — 8x> — x+2=0.

SOLUTION

Start by plotting the curve whose equation is y = 4x° — 8x% — x + 2. (You may also
find it helpful at this stage to display it on a graphic calculator or computer.)

©
w

x =it 0

y -9 +2 -3 0 35

Figure 1.1

Figure 1.1 shows that one root is x= 2 and that there are two others. One is
between x=—1 and x=0 and the other is between x=0 and x= 1.



Tryx=—1.

Substituting x =~ in y=4x° — 8x% — x + 2 gives
1 1 1
y=ax(~g)-8x-(-5)+2
y=0
So in fact the graph crosses the x axis at x =~ and this is a root also.
Similarly, substituting x=+3 in y = 4x> - 8x% — x+2 gives
y=4x3-8xi-1+2
y=0
and so the third root is x=1.
The solution is x=~},% or 2.
This example worked out nicely, but many equations do not have roots which are
whole numbers or simple fractions. In those cases you can find an approximate
answer by drawing a graph. To be more accurate, you will need to use a numerical
method, which will allow you to get progressively closer to the answer, homing in
on it. Such methods are covered in Chapter 6.

The factor theorem

The equation 4x” — 8x? — x+ 2 = 0 has roots that are whole numbers or fractions.
This means that it could, in fact, have been factorised.

4% —8x2— x+2=(2x+1)(2x—1)(x—2) =0
Few polynomial equations can be factorised, but when one can, the solution
follows immediately.
Since (2x+ 1)(2x— 1)(x—2) =0
it follows that either 2x+1=0

or 2x—1=0

or x—-2=0
andsox=—-3,1 or2
Iy -

This illustrates an important result, known as the factor theorem, which may be
stated as follows.

If (x— a) is a factor of the polynominal f(x), then f(a) = 0 and x=ais a root of the
equation f(x) = 0. Conversely if f(a) = 0, then (x— a) is a factor of f(x).

v
N
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EXAMPLE 1.6 Given that f(x) = x> — 6x2+ 11x— 6:

P2

@ find £(0), f(1), f(2), f(3) and £(4)

£ {iii) solve the equation x° — 6x2+ 11x— 6= 0

E

< (iv) sketch the curve whose equation is f(x) = x* — 6x2 + 11x— 6.
SOLUTION
i f(0) =0°—6x02+11x0—

f(1) =1P—6x 12+ 11x1—
£(2) =2°—6X22+11X2-6=0
£(3) =3°—6X32+11X3-6=0
f(4) =4 —6X42+11X4—-6=6
i) Since (1), f(2) and f(3) all equal 0, it follows that (x— 1), (x—2) and (x— 3)
are all factors. This tells you that
=622+ 11x— 6= (x— 1)(x— 2)(x— 3) X constant
By checking the coefficient of the term in x?, you can see that the constant

must be 1, and so

© =62+ 11x—6=(x— 1)(x—2)(x—3)

Giii) x=1,20r3
(iv) ),
0 1 Z 3 x
s
Figure 1.2

In the previous example, all three factors came out of the working, but this will
not always happen. If not, it is often possible to find one factor (or more) by
‘spotting it, or by sketching the curve. You can then make the job of searching
for further factors much easier by dividing the polynomial by the factor(s) you
have found: you will then be dealing with a lower order polynomial.



EXAMPLE 1.7

Given that f(x) = x> — x>~ 3x+2:
(i) show that (x— 2) isa factor

(i) solve the equation f(x) =0.

SOLUTION
(i) To show that (x—2) is a factor, it is necessary to show that f(2) = 0.

f2)=22-22-3x2+2
=8-4-6+2
=0

Therefore (x— 2) is a factor of x — x — 3x+ 2.

(i) Since (x—2) is a factor you divide f(x) by (x— 2).

x4+ x-1
3x+2
L

X2 3x

-2

A\
—x+2
—x+2

So f(x) = 0 becomes (x— 2)(x% +x— 1) =0,
= eitherx—2=0 or x*+x-1=0.

Using the quadratic formula on x* + x— 1= 0 gives
_ -1ty lmaxix(-])
2
_-1t45
2
=—1618 or 0618 (to3dp.)

So the complete solution is x=—1.618, 0.618 or 2.

Spotting a root of a polynomial equation

Most polynomial equations do not have integer (or fraction) solutions. It is only
a few special cases that work out nicely.

To check whether an integer root exists for any equation, look at the constant
term. Decide what whole numbers divide into it and test them.

v
N
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EXAMPLE 1.8

EXAMPLE 1.9

Spot an integer root of the equation x* — 3x? +2x— 6 =0.

SOLUTION

The constant term is —6 and this is divisible by 1, +1, -2, +2, -3, +3, -6 and +6.
So the only possible factors are (x + 1), (x* 2), (x+ 3) and (x+ 6). This limits
the search somewhat.

f(1)=—6 No; f(-1)=—-12 No;
f2)=—6 No; f(-2)=-30 Noj
f3)=0  Yes f(-3)=—66 Noj
f(6)=114 No; f(-6)=-342 No.

x=3 is an integer root of the equation.

Is there an integer root of the equation x* — 3x% + 2x— 5=0?

SOLUTION
The only possible factors are (x + 1) and (x £ 5).

f(1)=—=5 No; f(-1)=—11 Noj
f(5)=55 No; f(-5)=-215 No.

There is no integer root.

The remainder theorem

Using the long division method, any polynomial can be divided by another
polynomial of lesser order, but sometimes there will be a remainder.
Look at (x* +2x? —3x—7) + (x—2).

X’ +4x+ 5
x=2)+ 222 =3x— 7
w2 ||
A\
4 - 3x
4x? — 8x
\J
5x- 7 The quotient is
5x—10 2 +4x+ 5 and the
_ remainder is 3.
3

You can write this as
XB+2x2—3x—7=(x—2)(x>+4x+5)+3

At this point it is convenient to call the polynomial x* + 2x2 - 3x— 7 = f(x).



EXAMPLE 1.10

EXAMPLE 1.11

So f(x) = (x—2)(x2+4x+5) +3. @
Substituting x= 2 into both sides of @ gives £(2) =3.
So f(2) is the remainder when f(x) is divided by (x~2).

This result can be generalised to give the remainder theorem.
It states that for a polynomial, f(x),

f(a) is the remainder when f(x) is divided by (x— a).

f(x) = (x— a)g(x) +f(a) (the remainder theorem)

Find the remainder when 2x* — 3x+ 5 is divided by x+ 1.

SOLUTION
The remainder is found by substituting x=—1 in 2x* - 3x+ 5.

2X (1P =3%(-1)+5
2+3+5

So the remainder is 6.

‘When x2 — 6x+ a is divided by x — 3, the remainder is 2. Find the value of a.

SOLUTION

The remainder s found by substituting x=3 in x> 6x+ a.

32-6X3+a
9-18+a=2
—9+a=2

a=11

When you are dividing by a linear expression any remainder will be a constant;
dividing by a quadratic expression may give a linear remainder.

A polynomial is divided by another of degree 1.

What can you say about the remainder?

v
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EXAMPLE 1.12

EXERCISE 1B

When dividing by polynomials of order 2 or more, the remainder is usually
found most easily by actually doing the long division.

Find the remainder when 2x* — 3x° + 4 is divided by x>+ 1.

SOLUTION

22 -3x-2

x2+1)2x* +4
ot +2x2
—=3x%— 22

=3 =i3% ‘

-2 +3x+4

-2 =2

3x+6

The remainder is 3x+ 6.

In a division such as the one in Example 1.12, it is important to keep a separate
column for each power of xand this means that sometimes it is necessary to leave
gaps, as in the example above. In arithmetic, zeros are placed in the gaps. For
example, 2 thousand and 3 is written 2003.

1 Given that f(x) = x* + 2x> — 9x— 18:
Gi) find f(-3), f(~2), f(~1), £(0), (1), f(2) and £(3)
i) factorise f(x)
{iii) solve the equation f(x) = 0
liv) sketch the curve with the equation y = f(x).
2 The polynomial p(x) is given by p(x) = x* — 4x.
(i) Find the values of p(~3), p(~2), p(~1), p(0), p(1), p(2) and p(3).
il Factorise p(x).

[t
(iv) Sketch the curve with the equation y = p(x).

i) Solve the equation p(x) = 0.

3 You are given that f(x) = x> — 19x+ 30.
(i) Calculate f(0) and f(3). Hence write down a factor of f(x).
il Find pand q such that f(x) = (x—2)(x* + px+ ).

Solve the equation x> — 19x+ 30 =0.
(iv) Without further calculation draw a sketch of y = f(x).

[MEI]
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(i) Show that x— 3 is a factor of x> — 5x2 — 2x+ 24.
(i) Solve the equation x* — 5x% — 2x+24=0.

P2

(iii) Sketch the curve with the equation y=x*— 5x> — 2x+24.

(i) Show that x =2 is a root of the equation x* — 5x? + 2x =0 and write down
another integer root.

Find the other two roots of the equation x* — 5x2 + 2x=0.

Sketch the curve with the equation y= x4 — 542 + 2x.

a1 espiex3

(il The polynomial p(x) = x* — 6x? + 9x + khas a factor x— 4.
Find the value of k
i) Find the other factors of the polynomial.

Sketch the curve with the equation y = p(x).
The diagram shows the curve with

the equation y= (x+ a)(x— b)?

where aand b are positive

integers.

(i) Write down the values of a L L

and b, and also of  given that
the curve crosses the y axis at
(0, 0).

(i) Solve the equation (x+ a)(x— b)2 = cusing the values of @, band ¢
you found in part (i).

The function (x) is given by f(x) = x* — 3x* — 4 for real values of x.

m

By treating f(x) as a quadratic in x? factorise it in the form
(€728 )8 )

Complete the factorisation as far as possible.

How many real roots has the equation f(x) = 02 What are they?

(i) Show that x— 2 is not a factor of 2x® + 5x* — 7x—3.
Find the quotient and the remainder when 2x° + 5x% — 7x— 3
is divided by x— 2.

The equation f(x) = x* — 4x? + x+ 6 = 0 has three integer roots.

(il List the eight values of a for which it is sensible to check whether f(a) = 0
and check each of them.
(i) Solve f(x) = 0.

Factorise, as far as possible, the following expressions.

(i) x>—x?—4x+4 given that (x— 1) is a factor.

i) x°+ 1 given that (x+ 1) is a factor.

%% +x— 10 given that (x—2) is a factor.

(iv) x>+ x% + x+ 6 given that (x + 2) is a factor. |:
15
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(i) Show that neither x=1 nor x=—1is a root of x* — 2x’ + 3x> — 8 =0.

(i) Find the quotient and the remainder when x* — 2x> + 3x2 — 8 is divided by
fa) (x—1) (b) (x+1) (e) (x2-1).

‘When 2x* + 3x? + kx — 6 is divided by x + 1 the remainder is 7.

Find the value of k.

When x* + px? + p2x - 36 is divided by x— 3 the remainder is 21.
Find a possible value of p.
When x* + ax? +bx + 8 is divided by x— 3 the remainder is 2 and when it is

divided by x+ 1 the remainder is —2.
Find a and b and hence obtain the remainder on dividing by x— 2.

‘When f(x) =2x% + ax? + bx + 6 is divided by x — 1 there is no remainder and
when f(x) is divided by x+ 1 the remainder is 10.
Find a and b and hence solve the equation f(x) = 0.
The cubic polynomial ax? + bx? — 3x— 2, where a and b are constants, is
denoted by p(x). It is given that (x— 1) and (x-+ 2) are factors of p(x).
(i) Find the values of aand b.
(iil. When aand b have these values, find the other linear factor of p(x).

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2006]
The polynomial 2x* + 7x* + ax+ b, where a and b are constants, is denoted by
P(x). It is given that (x+ 1) is a factor of p(x), and that when p(x) is divided
by (x+2) the remainder is 5. Find the values of aand b.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2008]
The polynomial 2x° — x? + ax — 6, where ais a constant, is denoted by p(x).
Tt is given that (x+2) is a factor of p(x).
(i) Find the value of a.
(il When a has this value, factorise p(x) completely.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2008]

The polynomial x* + ax? + bx + 6, where aand bare constants, is denoted by

P(x). Tt is given that (x— 2) is a factor of p(x), and that when p(x) is divided

by (x— 1) the remainder is 4.

(i) Find the values of aand b.

(i) When aand b have these values, find the other two linear factors of p(x).
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2009]

The polynomial «° — 2x + a, where ais a constant, is denoted by p(x).

Tt is given that (x+2) is a factor of p(x).

(i) Find the value of a.

(ii): When a has this value, find the quadratic factor of p(x).
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2007]
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Look at the graph of = f(x), where f(x) = x.

y=fe)=x

uopouny sninpow ey i

Figure 1.3

The function f(x) is positive when x is positive and negative when x is negative.

Now look at the graph of y=g(x), where g(x) = |x.

y=g@=Nk

Figure 1.4

The function g(x) is called the modulus of x. g(x) always takes the positive
numerical value of x. For example, when x=—2, g(x) = 2, o g(x) is always
positive. The modulus is also called the magnitude of the quantity.

Another way of writing the modulus function g(x) is

gx)=x forx=0
gx)=—x  forx<o.

@ Whatis the value of g(3) and g(-3)?
8 i
‘What is the value of |3 +3 |,| 3-3|,|3| +| 3 |and | 3]+ |-3 ]2

The graph of y = g(x) can be obtained from the graph of y = f(x) by replacing
values where f(x) is negative by the equivalent positive values. This is the
equivalent of reflecting that part of the line in the x axis. 17



EXAMPLE 1.13 Sketch the graphs of the following on separate axes.

P2 i
M y=1-x
| i e

i) y=2+|1—x|

Algebra

SOLUTION
(i) y=1-xis the straightline through (0, 1) and (1, 0).

Y,

Figure 1.5

(i) y=|1-x]is obtained by reflecting the part of the line for x > 1 in the x axis.

¥

1 y=l-a

Figure 1.6

(iii) y=2+]1 - x| is obtained from the previous graph by applying the

. 0

jl Figure 1.7



EXAMPLE 1.14

ities i ing the

You will often meet inequalities involving the modulus sign.

Look back at the graph of y=| x| in figure 1.4.

How does this show that | x| < 2 is equivalent to —2 < x < 27

Here is a summary of some useful rules.

Rule Example
lxl=]-x] 131=1-31
la—bl=1b—al 18-51=I5-8|=+3
Ixl2=22 1-312= (-3

lal=lbl & &=p

1-31=13] & (3p2=3

Ixl<a & -asx<a

IxI<3 & -3sx<3

Ix|>a & x<-aorx>a

Ix|>3 & x<-3orx>3

Solve the following.

M |x+3] <4
|2x—1] >9

i) 5—]x—2] >1

SOLUTION

M |x+3|<4 © 4sx+3<4
o 7sxs1

) [2x—1] >9 o 2x-1<-9 or 2x—1>9
o 2x<-8 or 2x>10
o x<-4 or x>5

Gii) 5—x—2] >1 o 4>|x-2]
o |x-2]<4
o 4<x-2<4
£ —F< <t

Note

The solution to part (i) represents two separate intervals on the number line, so

cannot be written as a single inequality.

v
N
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EXAMPLE 1.15 Express the inequality —2 < x < 6 in the form | x— a| < b, where aand bare to

P2 be found.

m SOLUTION

|x—al <b & —b<x-a<b
& a-b<x<a+b

Algebra

Comparing this with 2 < x < 6 gives

a-b=-2
a+b=6.

Solving these simultaneously gives a=2, b=4,s0 | x—2| < 4.
EXAMPLE 1.16 Solve 2x < |x—3].

SOLUTION

It helps to sketch a graph of y=2xand y=|x— 3.

Figure 1.8

You can see that the graph of y=2x s below y=|x— 3| forx < c.

cis at the intersection
ofthe lines y = 2v and
y=—(x=3).

You can find the critical region by solving 2x < —(x— 3).

2x < —(x-3)

2x<-—x+3

3x<3
x<1




EXAMPLE 1.17

EXERCISE 1C

W

Solve |2x—1|=]x—2].

(i) Solve |2x—1]|<|x-2].

SOLUTION

(i) Sketching a graph of y= |2x— 1] and y=|x— 2| shows that the equation is

true for two values of x.

Figure 1.9

You can find these values by solving | 2x— 1]=|x—2].

One method is to use the fact that |a| = | b| < a2 = b2

|2x—1]=]x-2]
Squaring: (2x—1)2=(x—2)
Expanding:  4x?—4x+1=x’—4x+4
Rearranging: 3x2-3=0
= x*-1=0

Factorising:  (x—1)(x+1)=0

So the solution is x= —1 or x=1.

(i) When [2x—1]<|x~2|, y=|2x— 1] (drawn in red) is below y=|x~2|

1

N

(drawn in blue) on the graph. So the solution to the inequality is —1 < x < 1.

Solve the following equations.

M |x+4|=5 i) | x-3|=4
i) | 3-x|=4 liv) |[4x—1]=7
W | 2x+1]=5 wi) | 8-2x|=6
(i) | 2x+1]=| x+5] (iil] 4x—1]=]9-x|

(i) | 3x—2|=| 4—x|

Solve the following inequalities.

M |x+3]<5 i) | x-2|<2
(i) | x=5]>6 i) |x+1]=>2
W |2x-3]<7 wi) | 3x-2]|<4

v
N

T i
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Express each of the following inequalities in the form | x—a| < b, where
aand bare to be found.

i) 2<x<8

livi-1<x<6

W 9.9<x<101 Wil 0.5<x<75

Sketch each of the following graphs on a separate set of axes.

[t

i) y=|x+2| i) y=|2x-3|

y=lx+2]-2 (iv) y=|x|+1
W) y=|2x+5|-4 i) y=3+[x-2]
Solve the following inequalities.
W [x+3]<|x—4]| (i) [x—5]>]x-2]
|2x—1]<|2x+3]| Giv) | 2¢| <|x+3]
W [2x]>]x+3] il [ 2x+5]=[x—1]

Solve the inequality | x| > | 3x 2.

(Cambridge International AS & A Level Mathematics 9709, Paper 2 Q1 June 2005]

Solve the inequality 2> | x— 1.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2006]

Given that ais a positive constant, solve the inequality | x—3a| > | x—al.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 November 2005]

A polynomial in x has terms in positive integer powers of xand may also
have a constant term.

The order of a polynomial in x is the highest power of x which appears in
the polynomial.

The factor theorem states that if (x— a) is a factor ofa polynomial (x) then
f(a)=0and x= aisa root of the equation f(x) = 0.
Conversely if f(a) = 0, then x— ais a factor of ().

The remainder theorem states that f(a) is the remainder when the
polynomial f(x) is divided by (x— a).

The modulus of x, written | x|, means the positive value of x.
The modulus function is

lxl = forx=0
|x| =—x, forx<o.
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Logarithms and
exponentials

- i

Normally speaking it may be said that the forces of a capitalist
society, if left unchecked, tend to make the rich richer and the poor
poorer and thus increase the gap between them.

Jawaharlal Nehru

This cube has volume of 500cm?>.

How would you calculate the length of its side, correct to the nearest millimetre,
without using the cube root button on your calculator?

You can think of multiplication in two ways. Lok, for example, at 81 X 243,
which is 34 3. You can work out the product using the numbers or you can
work it out by adding the powers of a common base — in this case base 3.

Multiplying the numbers: 81%243=19683
Adding the powers of the base 3: 4+ 5=9and 3°= 19683

Another name for a power is a logarithm. Since 81 = 3%, you can say that the
logarithm to the base 3 of 81 is 4. The word logarithm is often abbreviated to log
and the statement would be written log, 81 = 4. In general:

y=a" = logy=x
Notice that since 3*=81, 3'°3* =81. This is an example of a general result:

Aotax = x



P2

Logarithms and exponentials

24

EXAMPLE 2.1

INVESTIGATION

(il Find the logarithm to the base 2 of each of these numbers.
(a) 64 (T © 1 @ 2

(i) Show that 2108264 = 64,

SOLUTION
i (@ 64=2%andso log,64=6

=2"andsolog, 5 =1

(b)

e/ 1=2%andsolog,1=0
1
@ V2=2andsolog,V2=1

(i) 298254 = 26 = 64 as required

Logarithms to the base 10

Any positive number can be expressed as a power of 10. Before the days
of calculators, logarithms to the base 10 were used extensively as an aid to
calculation. There is no need for that nowadays but the logarithm function
remains an important part of mathematics, particularly the natural logarithm
which you will meet later in this chapter. Base 10 logarithms continue to be a
standard feature on calculators, and occur in some specialised contexts: the pH
value of a liquid, for example, is a measure of its acidity or alkalinity and is given
by log,(1/the concentration of H* ions).

Since 1000 = 10%,  log,, 1000 =

Similarly log,, 100=2
log,, 10= 1
log,y 1= 0

logyqff) = log, (10°) =-1
10g,(1lg) =10g,, (10)

and so on.

There are several everyday situations in which quantities are measured on
logarithmic scales.

‘What are the relationships between the following?

@ An earthquake of intensity 7 on the Richter Scale and one of intensity 8.
(i) The frequency of the musical note middle C and that of the C above it.
(iii) The intensity of an 85 dB noise level and one of 86 dB.



EXAMPLE 2.2

The laws of logarithms

o
N

The laws of logarithms follow from those for indices.

Multiplication

Writing xy= x X y in the form of powers (or logarithms) to the base a and using
the result that x = a'°8* gives

- i

a8 = glogax ¢ glogay
and so aloga® = glogzx+logsy,
Consequently log xy=log x +log,y.
Division
Similarly 1ogn(§) =log,x~log,.

Power zero

Since =1, log,1=0.

However, it is more usual to state such laws without reference to the base of the
logarithms except where necessary, and this convention is adopted in the key

points at the end of this chapter. As well as the laws given above, others may be
derived from them, as follows.

Indices

Since x"=xXxXXxX...Xx (ntimes)

it follows that log x" =log x+log x+log x+ ... +log x (n times),

and so log x" = nlog x.

This result is also true for non-integer values of # and is particularly useful
because it allows you to solve equations in which the unknown quantity is the
power, as in the next example.

Solve the equation 2= 1000.

SOLUTION
2"=1000
Taking logarithms to the base 10 of both sides (since these can be found ona
calculator),
log,, (2") = log,, 1000
nlog,, 2= log,, 1000

108y 1000_ g 7 1 3 significant figures

log, 2 25
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Note

Most calculators just have ‘log’ and not ‘log,,’ on their keys.

EXAMPLE 2.3 A geometric sequence begins 0.2, 1. 5, ... .
The kth term is the first term in the sequence that is greater than 500000.
Find the value of k.

SOLUTION
The kth term of a geometric sequence is given by a, = ax r*-L.
In this case a = 0.2 and r = 5, so:

0.2 551>500000

500000
kel >
5 0.2

551 > 2500000
Taking logarithms to the base 10 of both sides:

log,,5%"! > log,, 2500000
= (k- 1)log,)5> log,, 2500000

log,, 2500000
= ooy o BT
log,, 5
= k-1>9.15
= k>10.15

Since kis an integer, then k= 11.
So the 11th term is the first term greater than 500000.

Check:  10th term = 0.2 X 51 = 390 625 (< 500000) v
11th term =0.2 X 5111 = 1953 125 (> 500000) v'
Roots
A similar line of reasoning leads to the conclusion that:
log¥x = Llogx
The logic runs as follows:
Since Y x ¥ x Ux x..x Yz =x
n times
it follows that nlog ¥x =log x
and so log¥x = Liogx



ACTIVITY 2.1

The logarithm of a number to its own base

Since 5! =5, it follows that log; 5= 1.

Clearly the same is true for any number, and in general,
log,a=1

Reciprocals

Another useful result is that, for any base,

105(%) —ogy

This is a direct consequence of the division law

1ogu(§) =log, x~log,y
with xset equal to 1:
103(%) = log1 - logy
= 0-logy
= —logy
1f the number y is greater than 1, it follows that % lies between 0 and 1 and log G)
is negative. So for any base (>1), the logarithm of a number between 0 and 1 is
negative. You saw an example of this on page 24: 1og,o( ) =~1.
The result 103(%) = —logy is often useful in simplifying expressions involving

logarithms.

Draw the graph of y =1log, x, taking values of xlike 1, 1, 1,1,2,4,8, 16.
Use your graph to estimate the value of v2.

Graphs of logarithms

Whatever the value, a, of the base (a >1), the graph of y=log, x has the same
general shape (shown in figure 2.1).

¥, y=log,x

| O

Figure 2.1

o
N

- i

27



v
N

Logarithms and exponentials

The graph has the following properties.

© The curve crosses the xaxis at (1,0).

© The curve only exists for positive values of x.

© The line x=0 is an asymptote and for values of x between 0 and 1 the curve

lies below the x axis.

@ There is no limit to the height of the curve for large values of x, but its gradient

progressively decreases.

© The curve passes through the point (a, 1).

@  Eachof the points above can be justified by work that you have already covered.

How?

Exponential functions

The relationship y=1log, x may be rewritten as x= a’, and so the graph of x= a”
is exactly the same as that of y=1log, x. Interchanging x and y has the effect of
reflecting the graph in the line y = x, and changing the relationship into y= a*,

as shown in figure 2.2,

Figure 2.2

4 y=logx

The function y=a* xR is called an exponential function. Notice that while
the domain of y= a* s all real numbers (x < R), the range is strictly the positive
real numbers. = a* s the inverse of the logarithm function so the domain of the
logarithm function s strictly the positive real numbers and its range is all real
numbers. Remember the effect of applying a function followed by it inverse s to
bring you back to where you started.

Thus log, (a) = x and a9 = x.



EXERCISE 2A

T =82 &5 w=log32

Write similar logarithmic equivalents of these equations. In each case find also
the value of x, using your knowledge of indices and not using your calculator.

M 3*=9
e
(iii) 2‘—4
v 7*=1

N

(i) 4*=64
i =1
(iv) 5*= 5
(vi) 16¥=2

Write the equivalent of these equations in exponential form. Without using

your calculator, find also the value of in each case.

i) y=log,9
(iii) y=log, 16
v y=log,8

W

Gii) y=log,125
(iv) y=log1

i) y=log L
wi y=log L

Write down the values of the following without using a calculator. Use your

calculator to check your answers for those questions which use base 10.

(il log,, 10000
(i) log,y V10
) log, 81
wiillog, V27

(ix) log, 2

IS

() log5+log2
i) 2log6
1
W Llogo
(il log5 +3log2—log 10
i logV16+ Zlog(%)

@

Express the following in terms of log x.

(i) logx?
(i log vx

(v) 3log x+logx*

o

Solve these inequalities.

M 28<128

(i) 4546 = 70
W 04%-01=03
Wil 2<5:<8
(i) |25 -4] <2

(i) logm(m)
i) log,1
i) logj(ﬁ)
wiii) log, 43

) logg (%)

Write the following expressions in the form log x where x is a number.

(i) log6-log3

(iv) -log7

i) }log16+log2

(viii) log 12~ 2log2 - log 9
) 2log4+log9~1log 144

(i) log x>~ 2log x
i) log «f +1log Ix

(vi) log (\/; )

i) 3*+5=32
(v 0.6°<0.8
057+02<1
1=7*<5
|55-7]|<4

o
N

o i
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<~

Express the following as a single logarithm.
2log,x—log,e7
Hence solve

2log,,x~log,,7 =log,,63.

©

Use logarithms to the base 10 to solve the following equations.
(i) 2¥*=1000000
(i) 1.08%*=2 (iv) 1.1¥=100
v) 0.99*=0.000001

©

A geometric sequence has first term 5 and common ratio 7.
The kth term is 28824 005.

Use logarithms to find the value of k.
10 Find how many terms there are in these geometric sequences.

W -1,2,4,8,...,-16777216
(i) 0.1,03,09,2.7, ..., 4304672.1

@ Solve the inequality | y— 5] < 1.
Hence solve the inequality | 3* 5| < 1, giving 3 significant figures in

your answer.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 November 2007

12 Given that x=4(37), express yin terms of x.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2006]

13 Using the substitution u = 3% or otherwise, solve, correct to 3 significant
figures, the equation
3*=2+37%
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2007]

Modelling curves

When you obtain experimental data, you are often hoping to establish a
mathematical relationship between the variables in question. Should the data
fall on a straight line, you can do this easily because you know that a straight line
with gradient m and intercept ¢ has equation y = mx+ c.



EXAMPLE 2.4 In an experiment the temperature § (in °C) was measured at different times f (in
seconds), in the early stages of a chemical reaction.
The results are shown in the table below.

(il Plota graph of @ against .

seAIns Buyjjepopy )
N

(il What is the relationship between 6 and 1?

SOLUTION
0} 0¢0)
35
25
15
0 20 40 60 80 100 120
t (seconds)
Figure 2.3

(i) Figure 2.3 shows that the points lie reasonably close to a straight line and so
it is possible to estimate its gradient and intercept.

Intercept:  c=12.3
o _363-163
Gradient:  m=22=183-02
In this case the equation is not y = mx + cbut 6= mt+ ¢, and so is given by
6=02t+123
Itis often the case, however, that your results do not end up lying on a straight
line but on a curve, so that this straightforward technique cannot be applied. The

appropriate use of logarithms can convert some curved graphs into straight lines.
This is the case if the relationship has one of two forms, y= kx" or y = ka*. 21
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EXAMPLE 2.5

The techniques used in these two cases are illustrated in the following examples.
In theory, logarithms to any base may be used, but in practice you would only
use those available on your calculator: logarithms to the base 10 and natural
logarithms. The base of natural logarithms is a number, 2.718 28..., and is
denoted by e. In the next section you will see how this apparently unnatural
number arises naturally; for the moment what is important is that you can apply
the techniques using base 10.

Relationships of the form y = kx"

A water pipe is going to be laid between two points and an investigation is carried
out as to how, for a given pressure difference, the rate of flow Rlitres per second
varies with the diameter of the pipe d cm. The following data are collected.

el o [ 2] 2[5 [w]
| R |0.02 | 0.32 | 1.62 | 12.53 | 199.80|

Ttis suspected that the relationship between R and d may be of the form R=kd"

where kis a constant.

(il Explain how a graph of log d against log R tells you whether this is a good
model for the relationship.

(i) Make out a table of values of log, d against log,, R and plot these on a graph.

{iif) If appropriate, use your graph to estimate the values of 71 and k.

SOLUTION

(il If the relationship is of the form R= kd", then taking logarithms gives
log R =log k+ log d"
or logR=nlogd+logk.
This is in the form y= mx+ cas n and log k are constants (so can replace m
and ¢) and log R and log d are variables (so can replace y and x).

logR = nlogd + logk
)
y = max + ¢

SologR = nlogd+log kis the equation of a straight line.

Consequently if the graph of log R against log d is a straight line, the model
R=kd"is appropriate for the relationship and # is given by the gradient of
the graph. The value of k is found from the intercept, log k, of the graph with
the vertical axis.

log ok = intercept = k= 10inercept



EXAMPLE 2.6

(i) Working to 2 decimal places (you would find it hard to draw the graph to
greater accuracy) the logarithmic data are as follows.

o
N

|lngmd| 0 | 030 ‘ 0.48 | 0.70 | 1.00 | _
|lnng | -1.70 | -0.49 ‘ 021 | 110 | 230 | H
g
log;oR a
3 T 2
T <
! 8
g !
T
T
1
E ‘md
B
-2

Figure 2.4

(i) In this case the graph in figure 2.4 is indeed a straight line, with gradient 4
and intercept ~1.70, so 1= 4 and k= 10"70=0.020 (to 2 significant figures).

The proposed equation linking Rand d is a good model for their
relationship, and may be written as:

R=0.02d*

Exponential relationships

The temperature in °C, 6, of a cup of coffee at time ¢ minutes after it is made is
recorded as follows.

i

Plot the graph of 6 against .

(i) Show how it is possible, by drawing a suitable graph, to test whether the
relationship between @ and tis of the form 6= ka’, where kand a are constants.

(iii) Carry out the procedure.
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SOLUTION

[0} 0¢0)

0 2 4 6 8 10 12 14
#(minutes)

Figure 2.5
(i) If the relationship is of the form 6 = ka!, taking logarithms of both sides gives

log 6= log k+log a*
or  logh=tloga+logk.

This is in the form y= mx+ cas loga and log k are constants (so can replace
mand ¢) and log@ and fare variable (so can replace yand x).

logf = loga t + logk
y = m x + ¢

Sologh = tloga + logk is the equation of a straight line.
Consequently if the graph of log 6 against tis a straight line, the model

6= ka'is appropriate for the relationship, and log a is given by the gradient
of the graph. The value of a s therefore found as a = 108%™, Similarly, the

value of kis found from the intercept, log,, , of the line with the vertical
axis: k= 10intercept,

(i) The table gives values of log, 6 for the given values of f.

D =] <[ s [+ [w][=]
| log,,0 | 1.908 | 1.845 | 1.785 | 1716 | 1.653 | 1.580 |

The graph of log 6 against ¢ is as shown in figure 2.6.



EXERCISE 2B

log; 6 1974
20

o
N

- i

Figure 2.6

The graph is indeed a straight line so the proposed model is appropriate.
The gradient is —0.033 and so a= 10709 = 0,927.
The intercept is 1.974 and so k= 1074 =94.2.

The relationship between ¢ and # is given by:
6=94.2x0.927*
Note

Because the base of the exponential function, 0.927, is less than 1, the function’s
value decreases rather than increases with t.

1 The planet Saturn has many moons. The table below gives the mean radius
of orbit and the time taken to complete one orbit for five of the best-known
of them.

Moon Tethys | Dione | Rhea | Titan | Iapetus
Radius R (x 105 km) 29 3.8 53 122 356
Period T (days) 19 2.7 45 159 793

It is believed that the relationship between Rand T'is of the form R= kT".

(il How can this be tested by plotting log R against log T?
(i) Make out a table of values of log R and log T and draw the graph.
(iii) Use your graph to estimate the values of kand r.

In 1980 a Voyager sp
oots of Satirn, Orie of these, named 1980 .27, hasa et orbital radiis
of 1.4 10° km.

d several previ unknown

(iv) Estimate how many days it takes this moon to orbit Saturn.
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2 The table below shows the area, A cm?, occupied by a patch of mould at time
t days since measurements were started.

It is believed that A may be modelled by a relationship of the form A= kb".

(il Show that the model may be written as log A= tlog b + log k.

(i) What graph must be plotted to test this model?

{iii) Plot the graph and use it to estimate the values of band k.

(iv) (a)  Estimate the time when the area of mould was 2 cm”
(b) Estimate the area of the mould after 3.5 days.

v) How is this sort of growth pattern described?

3 The inhabitants of an island are worried about the rate of deforestation taking
place. A research worker uses records over the last 200 years to estimate the
number of trees at different dates.

It is suggested that the number of trees N'has been decreasing exponentially
with the number of years, 1, since 1930, so that N may be modelled by
the equation

N=ka'
where kand a are constants.
(il Show that the model may be written as log N= tloga + log k.
The diagram shows the graph of log N against f.

log N
66

64

0 20 40 60 80 100 ¢

(i) Estimate the values of kand a.
‘What is the significance of &



4 The time after a train leaves a station is recorded in minutes as # and the
distance that it has travelled in metres as s. It is suggested that the relationship
between s and t s of the form s= k" where kand  are constants.

(i) Show that the graph of log s against log  produces a straight line.
The diagram shows the graph of log s against log f.

log S

04 02 0 02 04 06 logt

(i) Estimate the values of k and n.

(iii) Estimate how far the train travelled in its first 100 seconds.

(iv) Explain why you would be wrong to use your results to estimate the
distance the train has travelled after 10 minutes.

@

The variables tand A satisfy the equation A = kb’, where band kare constants.
(i) Show that the graph of log A against ¢ produces a straight line.
The graph of log A against  passes through the points (0, 0.2) and (4, 0.75).

log4

(i) Find the values of band k.

& All but one of the following pairs of readings satisfy, to 3 significant figures, a
formula of the type y=A x x%.

| x | 1.51 | 213 | 3.50 | 4.62 | 5.07 | 7.21 |

| y | 2.09 | 275 | 4.09 | 510 | 6.21 | 7.28 |

Find the values of A and B, explaining your method. If the values of xare correct,
state which value of y appears to be wrong and estimate what the value should be.
[MEI]

o
N

- i
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7 An experimenter takes observations of a quantity y for various values of a
variable x. He wishes to test whether these observations conform to a formula
y=AxxPand, if so, to find the values of the constants A and B.

Take logarithms of both sides of the formula. Use the result to explain what he
should do, what will happen if there is no relationship, and if there is one, how
to find A and B.

Carry this out accurately on graph paper for the observations in the table, and
record clearly the resulting formula if there is one.

| x | 4 | 7 | 10 | 13 | 20 |

| ¥y | 3 | 3.97 | 4.74 | 5.41 | 6.71 |

®©

It is believed that the relationship between the variables x and y is of the form
y=Ax". In an experiment the data in the table are obtained.

| X | 3 | 6 | 10 | 15 | 20 |
| y | 10.4 | 294 | 63.2 | 116.2 |178.19|

In order to estimate the constants A and #, log,, is plotted against log ,x.

@@ Draw the graph oflog,, y against log, x.
(i) Explain and justify how the shape of your graph enables you to decide
whether the relationship is indeed of the form y= Ax".
(i) Estimate the values of A and n.
[MEI]

©

In a spectacular experiment on cell growth the following data were obtained,
where N is the number of cells at a time  minutes after the start of the growth.

| t | L5 | 27 | 3.4 | 8.1 | 10 |

| N | 9 | 19 | 32 | 820 | 3100 |

At t=10 a chemical was introduced which killed off the culture.

The relationship between N and # was thought to be modelled by N'=ab',
where aand bare constants.

(il Show that the relationship is equivalent to log N= tlog b+ log a.

(i) Plot the values of log N against #and say how they confirm the supposition
that the relationship is of the form N= ab'.

(iii) Find the values of a and b.

(iv) If the growth had not been stopped at = 10 and had continued according

to your model, how many cells would there have been after 20 minutes?
[MEI]



10 Itis believed that two quantities, zand d, are connected by a relationship
of the form z=kd", where kand nare constants, provided that d does not
exceed some fixed (but unknown) value, D.

An experiment produced the following data.

| d | 780 | 810 | 870 | 930 | 990 | 1050 | 1110 | 1170 ‘

| z|Z.l|ZAG|3.2|4.0|4.8|5.6|5.9|6.1‘

i Explain why, if 2= kd", then plotting log,,zagainst log,,d should
produce a straight-line graph.
(i) Draw up a table and plot the values of log,,z against log, ,d.

Use these points to suggest a value for D.
(iv) It is known that, for d < D, n is a whole number.
Use your graph to find the value of .
Show also that k=5 x 10,
(v) Use your value for nand the estimate k=5 X 10~ to find the value of
dfor which z=3.0.
[MEI]
11 The variables x and y satisfy the relation 3/ =42,

(il By taking logarithms, show that the graph of y against xis a straight line.
Find the exact value of the gradient of this line.
(i) Calculate the x co-ordinate of the point of intersection of this line with
the line y = 2x, giving your answer correct to 2 decimal places.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 June 2007]

The natural logarithm function

The shaded region in figure 2.7 is bounded by the x axis, the lines x=1and x=3,

.
and the curve y= 1. The area of this region may be represented by [ L dx.

Figure 2.7

o
N
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@  Explain why you cannot apply the rule

INVESTIGATION

1
[orarela™
n+l

to this integral.

However, the area in the diagram clearly has a definite value, and so we need to
find ways to express and calculate it.

Estimate, using numerical integration (for example by dividing the area up into a
number of strips), the areas represented by these integrals.

3 2 5
(i) jwflcdx (i) ‘..Uflcdx (i) j]%dx

What relationship can you see between your answers?

The arca under the curve y= 1 between x= 1 and x=a, thati | '~ d, depends

on the value . For every value of a (greater than 1) there is a definite value of the
area. Consequently, the area is a function of a.

To investigate this function you need to give it a name, say L, so that L(a) is the
area from 1 to aand L(x) is the area from 1 to x. Then look at the properties of L(x)
to see ifits behaviour is like that of any other function with which you are familiar.

The investigation you have just done should have suggested to you that

[paes] e[ lan
This can now be written as
L(3) +1(2) =L(6).
This suggests a possible law, that
L(a) + L(b) = L(ab).

At this stage this is just a conjecture, based on one particular example. To prove
it, you need to take the general case and this is done in the activity below. (At
first reading you may prefer to leave the activity, accepting that the result can
be proved.)



ACTIVITY 2.2

Prove that L(a) + L(b) =L(ab), by following the steps below.

© ) Explain, with the aid of a diagram, why

ACTIVITY 2.3

L(a) +j':b)17 LB,

(i) Now call x= az, so that dx can be replaced by adz. Show that

Notice that the limits of the lefi-hand integral, ab and a, are
values for x but those for the right-hand integral, b and 1,

are values for z. So, to find the new limits for the right-hand
integral, you should find z when x =  (the lower limit) and
when x = ab (the upper limit). Remember az = .

(iii) Use the results from parts (i) and (i) to show that
L(a) + L(b) = L(ab).
What function has this property? For all logarithms
log(a) + log(b) = log(ab).
Could it be that this is a logarithmic function?

Satisfy yourselfthat the function has the following properties of logarithms.
@ L(1)=0

i) L(a)=L(b) = L(g)

i) L(a") = niL(a)

The base of the logarithm function L(x)

Having accepted that L(x) is indeed a logarithmic function (for x > 0), the
remaining problem is to find the base of the logarithm. By convention this is
denoted by the letter e. A further property of logarithms is that for any base p

log,p=1 (p>1).
So to find the base ¢, you need to find the point such that the area L(e) under the
graph is 1. See figure 2.8.

Figure 2.8

You have already estimated the value of L(2) to be about 0.7 and that of L(3) to
be about 1.1 so the value of e is between 2 and 3.

o
N
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ACTIVITY 2.4

You will need a calculator with an area-finding facility, or other suitable
technology, to do this. If you do not have this, read on.

e
Use the fact that L%dx: 1 to find the value of e, knowing that it lies between 2
and 3, to 2 decimal places.

The value of e is given to 9 decimal places in the key points on page 50. Like T,
e is a number which occurs naturally within mathematics. It is irrational: when
written as a decimal, it never terminates and has no recurring pattern.

The function L(x) is thus the logarithm of x to the base ¢, log, x. This is often
called the natural logarithm of x, and written as In x.

Values of x between 0 and 1

So far it has been assumed that the domain of the function Inx is the real
numbers greater than 1 (x& R, x> 1). However, the domain of In xalso includes
values of x between 0 and 1. As an example of a value of x between 0 and 1, look
1
atlnj.
a

Since ln(g):lnu—lnl:

= ln(%):lnlAanZ—an (since In 1=0)
In the same way, you can show that for any value of x between 0 and 1, the value

of In.x is negative.

When the value of xis very close to zero, the value of Inx is a large negative
number.

S P =
ln(lOOOOOO) =-In1000000=-13.8

S0 as x— 0, Inx — oo (for positive values of x).

The graph of the natural logarithm function

The graph of the natural logarithm function (shown in figure 2.9) has the
characteristic shape of all logarithmic functions and like other such functions it
is only defined for x > 0. The value of In.x increases without limit, but ever more
slowly: it has been described as ‘the slowest way to get to infinity’.

Figure 2.9



Historical note

Logarithms were discovered independently by John Napier (15650-1617), who lived
at Merchiston Castle in Edinburgh, and Jolst Biirgi (1552-1632) from Switzerland.
It is generally believed that Napier had the idea first, and so he is credited with

o
N

their discovery. Natural logarithms are also called Naperian logarithms but there is
no basis for this since Napier's logarithms were definitely not the same as natural
logarithms. Napier was deeply involved in the political and religious events of his
day and mathematics and science were little more than hobbies for him. He was a
man of remarkable ingenuity and imagination and also drew plans for war chariots
that look very like modern tanks, and for submarines.

[ —— i

1 function

Making x the subject of y=Inx, using
the theory of logarithms you obtain
Ry

Interchanging x and y, which has the
effect of reflecting the graph in the line
y=x, gives the exponential function
y=e%

The graphs of the natural logarithm
function and its inverse are shown in

figure 2.10. Figure 2.10

You saw in Pure Mathematics 1 Chapter 4 that reflecting in the line y= x gives an
inverse function, so it follows that e*and In x are each the inverse of the other.

Notice that e!"*= x, using the definition of logarithms, and In(e*) = xIne=x.

Although the function e* s called the exponential function, in fact any function
of the form a* is exponential. Figure 2.11 shows several exponential curves.

Figure 2.11

The exponential function y= e* increases at an ever-increasing rate. This is
described as exponential growth.
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EXAMPLE 2.7

By contrast, the graph of y= e, shown in figure 2.12, approaches the x axis ever
more slowly as x increases. This is called exponential decay.

)

Figure 2.12

You will meet e*and In x again later in this book. In Chapter 4 you learn how to
differentiate these functions and in Chapter 5 you learn how to integrate them. In
this secion you focus on practical applications which require you to use the
key on your calculator.

The number, N, of insects in a colony is given by N = 2000 ¢®!* where tis the
number of days after observations have begun.

(il Sketch the graph of Nagainst f.
(i) What is the population of the colony after 20 days?
(iit) How long does it take the colony to reach a population of 100002

SOLUTION

[0} #

When ¢ =0, N =2000¢" = 2000

Figure 2.13

(i) When r=20, N=2000e"*2=14778
The population is 14778 insects.

‘When N=10000, 10000 =2000¢%!
5=l

Taking natural logarithms of both sides,

In5 =In(e™) Remember
In(e)=x.
In5=0.1¢

and so t=101In5
t=16.09...

It takes just over 16 days for the population to reach 10000,



EXAWPLE 2.8 The radioactive mass, Mgrams in a lump of material is given by M= 25¢-00012¢
where t s the time in seconds since the first observation.

(il Sketch the graph of Magainst f.

(i) What is the initial size of the mass?

What is the mass after 1 hour?

(iv) The half-life of a radioactive substance is the time it takes to decay to half of
its mass. What is the half-life of this material?

SOLUTION
[0} %
25
o t
Figure 2.14

(i), When =0, M=25¢"
M=25

The initial mass is 25g.

(iii) After 1 hour, +=3600
M = 25600012 3600
M=0.3324...

The mass after 1 hour is 0.33g (to 2 decimal places).
(iv) The initial mass is 25g, so after one half-life,
M=1x25-125¢
At this point the value of ¢ is given by
12.5=25¢-00012¢
050002
Taking logarithms of both sides:
1n0.5 = Ine-00012¢
1n 0.5 =-0.0012¢

In0.5
—-0.0012

t=577.6 (to 1 decimal place).

The half-life is 577.6 seconds. (This is just under 10 minutes,
so the substance is highly radioactive.)

o
N
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EXAMPLE 2.9

EXAMPLE 2.10

Make p the subject of In(p) - In(1-p) = 1.
SOLUTION

i)

Writing both sides as powers of ¢ gives

e
R

Using log a— log b= log (%)

=
p=e(1-p)
p=e'=pe'
ptpef=e'
pl+e)=e
&
Tt

Solve these equations.
i In(x-4)=Inx—4
(i) e*+e*=6
SOLUTION

0] In(x—4)=Inx—4

Rearrange to get all the x terms on one side:

x—xet=4
*(1-et)=4




EXERCISE 2C

(i) e?*+e*=6 is a quadratic equation in e*,
Substituting u=e%
wu=6
So W+u—6=0
Pactorising: (u—2)(u+3) =0

Sou=2oru=-3.

Since u=e*thene*=2 ore*
€*=-3 has no solution.
€=2=x=In2

So x=0.693

1 Make x the subject of Inx —Inx, = kt.
2 Make t the subject of s = s,e7.

3 Make p the subject of In p=—0.02¢.

4 Make x the subject of y— 5= (y, - 5)e*.
5 Solve these equations.

i In(3-x)=4+Inx
In(x+5)=5+Inx
(i) In(2 — x)=2 +Inx

liv) e¥= =

(v) e¥*—8e*+16=0
(vi) e +e¥=12

& A colony of humans settles on a previously uninhabited planet. After tyears,
005t

their population, P, is given by P= 100¢
(i) Sketch the graph of Pagainst 1.

(i) How many settlers land on the planet initially?
(
(iv) How long does it take the population to reach 1 million?

What is the population after 50 years?

o
N

o i



7 The height h metres of a species of pine tree years after planting is modelled by
the equation /=20 - 19 X 0.9"

)
N

() Whatis the height of the trees when they are planted?
(i) Calculate the height of the trees after 2 years, and the time taken for the

é height to reach 10 metres.
£ The relationship between the market value $y of the timber from the tree and
£ the height h metres of the tree is modelled by the equation y=ah’, where
H and bare constants.
5
H The diagram shows the graph of Iny plotted against In .
a ¥
K} 5
4
3
2
1
0
L Inh
-1
-2

(i) Use the graph to calculate the values of aand b.
(iv) Calculate how long it takes to grow trees worth $100.
[MEL adapted]

& Ttisgiven that In(y-+ 5) — Iny=2 Inx. Express y in terms of x, in a form not
involving logarithms.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2009]

9 Given that (1.25)* = (2.5)", use logarithms to find the value of% correct to
3 significant figures.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q1 June 2009]
10 Solve, correct to 3 significant figures, the equation

ef+ e =g,
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2008]



11 The variables x and y satisfy the equation y= A(b~), where A and bare
constants. The graph of In y against x s a straight line passing through the
points (0, 1.3) and (1.6, 0.9), as shown in the diagram. Find the values of A
and b, correct to 2 decimal places.

Iny

(0.13)

(16,09

of x

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 November 2008]

8

Solve the equation In(2 + &™) = 2, giving your answer correct to 2 decimal
places.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2009]

13 Two variable quantities x and yare related by the equation y = Ax", where A and
nare constants. The diagram shows the result of plotting Inyagainst In x for four
pairs of values of xand y. Use the diagram to estimate the values of Aand 1.

Iny
2

1
o 1 2 3 Inx

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 November 2005]

o
N

o i




v
N

Logarithms and exponentials

1 A function of the form a* is described as exponential.
2 y=log x& @=x.

3 Logarithms to any base

Multiplication: log xy=log x+log y
Division: log G) =logx—logy
Logarithm of 1: log1=0

Powers: log x" = nlog x
Reciprocals: log G) =—logy
Roots: log ¥x = Llog x

Logarithm to its own base: log, a= 1

'S

Logarithms may be used to discover the relationship between the variables
in two types of situation.

y=kx" & log y=log k+ nlog x
Plot log y against log x: this relationship gives a straight line where ris the
gradient and log k is the intercept.

y=ka* & log y=log k+ xlog a
Plot log y against x: this relationship gives a straight line where log a is the
gradient and log k is the intercept.

5 H dx=log,Ixl+c

& logxis called the natural logarithm of xand denoted by In x.

7 e=2.7182818284... is the base of natural logarithms.

2 e*and Inx are inverse functions: e!*= x and In(e*) = x.



Trigonometry

o
N

Music, when soft voices die,

Vibrates in the memory —

P.B. Shelley

AnowiouoByy i

Both of these photographs show forms of waves. In each case, estimate the
wavelength and the amplitude in metres (see figure 3.1).

Use your measurements to suggest, for each curve, values of a and b which would
make y= asin bxa suitable model for the curve.

¥,
L y=asinbx
amplitude
o o 2 3 x
3 b b
—al

Figure 3.1 51
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Reciprocal trigonometrical functions

As well as the three main trigonometrical functions, there are three more which
are commonly used. These are their reciprocals — cosecant (cosec), secant (sec)
and cotangent (cot), defined by

L, - il
cosech= g5 secf=p  cotf=pa (=500

o coss)

Each of these is undefined for certain values of 6. For example, cosec 6 is
undefined for 6 = 0°, 180°, 360°, ... since sin 6 is zero for these values of 6.

Figure 3.2 shows the graphs of these functions. Notice how all three of the
functions have asymptotes at intervals of 180°. Each of the graphs shows one
of the main trigonometrical functions as a red line and the related reciprocal
function as a blue line.

I L
1 0 X B NIEL 3600 %

—360° 180 0 3 x

Figure 3.2



EXAMPLE 3.1

EXAMPLE 3.2

Using the definitions of the reciprocal functions two alternative trigonometrical

forms of Pythagoras’ theorem can be obtained.

(i) sin26 + cos?6

sin’6 | cos”) 1
cos?f  cos’f  cos’f
= tan?0 + 1 =sec?f).

Dividing both sides by cos?6:

This identity is sometimes used in mechanics.

(i) sin?6 + cos?6 = 1

2. s§n28+c95207 : 1
sin6  sin?6  sin’6

= 1+ cot?f = cosec?f.

Dividing both sides by sin

Questions concerning reciprocal functions are usually most easily solved by
considering the related function, as in the following examples.

Find cosec 120° leaving your answer in surd form.

SOLUTION

cosec120°= —L.

sin120°

Find values of § in the interval 0° < 6 < 360° for which sec?6/ =4 + 2 tan#.

SOLUTION

First you need to obtain an equation containing only one trigonometrical function.

sec’0=4+2tan6
= tan?0 + 1=4+ 2 tan6
= tan?f — 2 tanf —3=0
= (tanf-3)(tanf +1)=0
= tanf=3ortanf=-1

tanf=3 =  6=716° (calculator)
or  §=71.6°+180°=251.6° (sce figure 3.3, overleaf)

o
N
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EXERCISE 3A

tanf=-1 = 0=—45° (notin the required range)

or  B=—45+180°=135° (sce figure 3.3)

or  6=135°+180°=315°

Figure 3.3

The values of 6 are 71.6° 135°, 251.6°, 315°.

N

@

IS

Solve the following equations for 0° < x < 360°.

(i) cosecx=1 (i) secx=2 (iii) cotx=4

(iv) secx=-3 (v) cotx=-1 (vi) cosecx=-2

Find the following giving your answers as fractions or in surd form.
You should not need your calculator.

(i) cot135° (i) sec150° (iii) cosec240°
(iv) sec210° ) cot270° (vi) cosec225°
In triangle ABC, angle A =90° and sec B=2.

(i) Find the angles Band C.

Find tan B.

(iii) Show that 1 + tan? B=sec?B.

In triangle LMN, angle M= 90°and cot N=1.

(i) Find the angles L and N.
(i) Find secL, cosecL, and tan L.
(iii) Show that 1 + tan? L=sec? L.



5 Maliniis 1.5m tall.
At 8 pm one evening her shadow is 6m long.
Given that the angle of elevation of the sun at that moment is &

o
N

(i) show that cota =4
(i) finda.

(i) For what values of , where 0° < =< 360°, are secc, coseca and cota all

o

positive?

(i) Are there any values of & for which seca, coseca and cotct are all negative?
Explain your answer.

(iii) Are there any values of & for which seccz, cosecar and cotar are all equal?

[ ——— i

Explain your answer.

7 Solve the following equations for 0° < x < 360°.

(i) cosx=secx i) cosecx=secx
(i) 2sinx=3 cot x (iv) cosec®x+ cot?x=2
(v) 3sec’x —10 tanx=0 (vi) 1+ cot’x=2 tan’x

Compound-angle formulae

ACTIVITY 3.1

The photographs at the start of this chapter show just two of the countless
examples of waves and oscillations that are part of the world around us.

Because such ph are modelled by tr ical (and especially sine
and cosine) functions, trigonometry has an importance in mathematics far
beyond its origins in right-angled triangles.

Find an acute angle 6 so that sin(6 + 60°) = cos(6) - 60°).

Hint: Try drawing graphs and searching for a numerical solution.

You should be able to find the solution using either of these methods, but
replacing 60° by, for example, 35° would make both of these methods rather
tedious. In this chapter you will meet some formulae which help you to solve
such equations more efficiently.

It is tempting to think that sin(6 + 60°) should equal sin + sin60°, but this
is not so, as you can see by substituting a numerical value of 0. For example,
putting 6 = 30° gives sin(0 + 60°) = 1, but sinf + sin 60° = 1.366.
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To find an expression for sin(6 + 60°), you would use the compound-angle formula
sin(0 + ¢) = sind cosg + cos O sinp.

This is proved below in the case when 6 and ¢ are acute angles. It is, however,
true for all values of the angles. It is an identity.

B
g
£
8 ©  Asyou work through this proof make a list of all the results you are assuming.
£

C

4B

B a
h
= B

Figure 3.4

Using the trigonometrical formula for the area of a triangle (see figure 3.4):
area ABC = area ADC + area DBC

Labsin(6 + ¢) =L bhsin6 + Lahsing

h=bcosf
from AADC

= absin(6+@) = absinOcosg + abcosOsing

which gives
sin(0 + ¢) = sinOcos + cosOsing [0}

This is the first of the compound-angle formula (or expansions), and it can be
used to prove several more. These are true for all values of § and ¢.

Replacing ¢ by —¢ in @ gives
sin(0 — ) = sin O cos(—p) + cosOsin(—p)

= sin(0-¢)=sinOcosg— cosOsing €]




ACTIVITY 3.2

Derive the rest of these formulae.

i) To find an expansion for cos(6 — ¢) replace & by (90° - 0) in the expansion of
sin(0 + ).
Hint: sin(90° - 6) = cos and cos(90° — ) = sinf)

(i) To find an expansion for cos(0 + ¢) replace ¢ by (~¢) in the expansion of
cos(0— ).

: s _sin(0+¢)
(iii) To find an expansion for tan(f) + ¢), write tan(6 + ¢) = C05(0+ ¢),
Hint: After using the expansions of sin(6 + ¢) and cos(0 + ¢), divide the
numerator and the denominator of the resulting fraction by cos@cos¢ to

give an expansion in terms of tan6 and tang.

(iv) To find an expansion for tan(f @) in terms of tan@ and tang, replace ¢ by
(~¢) in the expansion of tan(6 + ¢).

Are your results valid for all values of 6 and ¢?

Test your results with 6 = 60°, ¢ = 30°.

The four results obtained in Activity 3.2, together with the two previous results,
form the set of compound-angle formulae.

sin(0 + ¢) =sinfcosg + cosOsing
sin(0 =) =sinfcosg — cosOsing
cos(0 + ¢) = cosOcos - sinOsing
cos(0— §) = cosOcos + sinfsing

tan 6+ tan ¢

wn@+¢) = oS (0+¢) = 90°, 270°, ..

mme-:p):% (6-9) = 90°, 270",

Youare now in a position to solve the earlier problem more easily. To find an
acute angle 0 such that sin(6 + 60°) = cos(6 - 60°), you expand each side using
the compound-angle formulae.

sin(0 + 60°) = sinfcos 60° + cosfsin60°

= %sin0+§cosﬂ @

cos(0— 60°) = cosf cos60° + sinfsin60°

1 NE) ®

Jeost+ 735in0

o
N

[ ——— i
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58|

From @ and @

1 o B 3

3 gt NEP
Esm0+7c050— 2c050+ 5 sin 6

sin0+/3cos 0= cos6 +/3sin 6

Collect like terms:

= (V3-1)cost=(V3-1)sin6

cos=sin6
aw Tl
Divide by cos6: I=tanf R
6=45°

Since an acute angle was required, this is the only root.

Uses of the compound-angle formulae

You have already seen compound-angle formulae used in solving a
trigonometrical equation and this is quite a common application of them.
However, their significance goes well beyond that since they form the basis for a
number of important techniques. Those covered in this book are as follows.

.

The derivation of double-angle formulae
The derivation and uses of these are covered on pages 61 to 63.

°

The addition of different sine and cosine functions

This is covered on pages 66 to 70. It is included here because the basic
wave form is a sine curve. It has many applications, for example in applied
mathematics, physics and chemistry.

Calculus of trigonometrical functions

This is covered in Chapters 4 and 5 and also in Chapter 8 if you are studying
Pure Mathematics 3. Proofs of the results depend on using either the compound-
angle formulae or the factor formulae which are derived from them.

You will see from this that the compound-angle formulae are important in the
development of the subject. Some people learn them by heart, others think it is
safer to look them up when they are needed. Whichever policy you adopt, you
should understand these formulae and recognise their form. Without that you
will be unable to do the next example, which uses one of them in reverse.



EXAMPLE 3.3

EXERCISE 3B

Simplify cosfcos 30 — sinfsin 36.

o
N

SOLUTION

The formula which has the same pattern of coscos — sinsin is

cos(0 + ¢) = cosOcos¢p — sinOsing

- i

Using this, and replacing ¢ by 30, gives
cos0cos 30 — sinfsin 30 = cos(0 + 36)
= cos40
1 Use the compound-angle formulae to write the following as surds.

(i) sin75°=sin(45° + 30°) (i) cos 135° = cos(90° + 45°)
(i) tan 15° = tan(45° - 30°) (iv) tan75° = tan(45° + 30°)

N

Expand each of the following expressions.

(i) sin(0 + 45°) (i) cos(6—30°) (i) sin(60° - 6)
(iv) cos(20 + 45°) W tan(0 + 45°) (vi) tan(0 - 45°)

w

Simplify each of the following expressions.

(i) sin20 cosg - cos20sin6
(i) cosgpcos7¢) — singsin7¢p
(i) sin 120° cos 60° + cos 120°sin 60°

(iv) cosfcosb —sinfsind

&

Solve the following equations for values of @ in the range 0° < 6 < 180°.
(i) cos(60°+6) = sin6

(i) sin(45°—6) = cos®

(i) tan(45° + ) = tan(45° - )

(iv) 2sin6 = 3 cos(6 - 60°)

) sin6 = cos(6 + 120°)

il

Solve the following equations for values of @ in the range 0 < 6 < 1.
(When the range is given in radians, the solutions should be in radians, using
multiples of T where appropriate.)

) sin(0+ %) = cosf

(i) Zcos(ﬂ =

cos(ﬂ + %)
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& Calculators are not to be used in this question.
The diagram shows three points L(-2, 1), M(0, 2) and N(3, ~2) joined to form
a triangle. The angles & and § and the point P are shown in the diagram.

g NG,-2)

@ Show that sin = % and write down the value of cosa.
(i) Find the values of sin 3 and cos 3.
(iii) Show that sin ZLMN = %
(iv) Show that tan ZLNM = %
[MEI]
7 (i) Show that the equation
sin(x+ 30°) = 2 cos(x+ 60°)
can be written in the form
(3V3)sinx=cosx.
(i) Hence solve the equation
sin(x+ 30°) = 2cos(x + 60°),

for —180° < x =< 180°.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 November 2008]



8 (i) Show that the equation

o
N

tan(45° + x) — tanx=2

can be written in the form
tan’x+2 tanx—1=0.
(i) Hence solve the equation
tan(45° +x) — tanx =2,

giving all solutions in the interval 0° < x < 180°,

e — i

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 November 2007]
9 The angles ¢ and f3 lie in the interval 0° < x < 180° and are such that
tana=2tanf and tan(a+pf)=3.

Find the possible values of ¢ and 3.
[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q4 November 2009]

10 (i) Show that the equation tan(30° + 6) = 2 tan(60° — 6) can be written in
the form

tan26) + (6V3) tanf — 5=0.
(i) Hence, or otherwise, solve the equation
tan(30° +6) = 2tan(60° - 6),

for 0° < 6 < 180°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2008]

Double-angle formulae

@  As you work through these proofs, think how you can check the results.

Is a check the same as a proof?

d-angle formulae leads i diatel

Substituting ¢ = 6 in the relevant
to expressions for sin 26, cos 26 and tan 26, as follows.

i sin(0+¢) =sinOcosep + cosOsing
When ¢ =6, this becomes
sin(0 +6) = sinfcosd + cosOsin6

giving sin26 = 2sinfcosf.




v
N

Trigonometry

i) cos(® + ) = cosfcosg — sinBsing
When ¢ =6, this becomes
cos(0+ 0) = cosOcos0 — sinBsin0
giving cos 20 = cos? 0 — sin26.
Using the Pythagorean identity cos? + sin>0 = 1, two other forms for cos20 can
be obtained.
cos20=(1-sin20) —sin?0 =  cos20=1-2sin?0
0520 =cos?0— (1-cos?6) =  cos20=2cos?6—1

These alternative forms are often more useful since they contain only one
trigonometrical function.

tanf + tan¢

i) tan(9+¢):m

(0+) = 90°,270°, ..

When ¢ =6, this becomes

tan 6 + tan 6
an(@+6) =1 Gngune

gving tan20= 2R 6 = 45°, 135°, ...

—tan’6)

Uses of the double-angle formulae

In modelling situations

You will meet situations, such as that below, where using a double-angle formula |
not only allows you to write an expression more neatly but also thereby allows
you to interpret its meaning more clearly.

ground horizontal distance

Figure 3.5



EXAMPLE 3.4

When an object is projected, such as a golf ball being hit as in figure 3.5, with
speed u at an angle  to the horizontal over level ground, the horizontal distance
it travels before striking the ground, called its range, R, is given by the product of
2usina
==

P2

the horizontal component of the velocity u cosc and its time of flight
.
R = 2uisinacosa
g
Using the double-angle formula, sin2a = 2sin & cos ¢ allows this to be written as

R=#sinka

e — H

Since the maximum value of sin2¢t is 1, it follows that the greatest value of the
range Ris % and that this occurs when 2c = 90° and so & = 45°. Thus an angle of

projection of 45° will give the maximum range of the projectile over level ground.

(This assumes that air resistance may be ignored.)
In this example, the double-angle formula enabled the expression for R to be
written tidily. However, it did more than that because it made it possible to find
the maximum value of R by inspection and without using calculus.

In calculus

The double-angle formulae allow a number of functions to be integrated and you
will meet some of these later (see page 125).

The formulac for cos 26 are particularly useful in this respect since
cos20=1-2sin6 = sin?6 =3(1 - cos20)

and
c0s20=2cos* -1 = cos20=1(1 + cos26)

and these identities allow you to integrate sin’6 and cos?6.

In solving equations

You will sometimes need to solve equations involving both single and double
angles as shown by the next two examples.

Solve the equation sin 260 =sin® for 0° < 6 < 360°.

SOLUTION Be careful here: don’t
sin20 =sin® g e g
= 25infcos =sind
= 2sinfcos6—sin6 =0
= sinf(2c0s0-1)=0
= sinf=0 or cos6=1 LA



The principal value is the
one which comes from
your calculator.
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sinf=0 = 6=0° (principal value) or 180° or 360° (see figure 3.6)

z
8
g
2
2
£

Figure 3.6

cosf=1 = 6=60° (principal value) or 300° (see figure 3.7)

Y,
1 y=cos@
1
: : §
o 60° 300° 360° (]
gk

Figure 3.7
The full set of roots for 0° < § < 360° is 6 = 0°, 60°, 180°, 300°, 360°.

When an equation contains cos 26, you will save time if you take care to choose
the most suitable expansion.

EXAMPLE 3.5 Solve 2 + cos 26 =sin for 0 < 6 < 2. (Notice that the request for 0 < 6 < 2,
i.e. in radians, is an invitation to give the answer in radians.)

This is the most
suitable expansion since
the right-hand side

contains sinf.

SOLUTION

Using cos 260 = 1 2 sin?0 gives
24 (1-25in%6) =sinf

= 25in0 + sinf -3 =0

= (25in6 +3)(sinf—1)=0

= sinf=—3 (not valid since -1 <sinf < 1)

or sinf=1




EXERCISE 3C

Figure 3.8 shows that the principal value 6= is the only root for 0 < 6 < 2.

y=sinf

Figure 3.8

1 Solve the following equations for 0° < 6 < 360°.

(i) 2sin26 =cosf (ii) tan26 =4tanf
(i) cos26 + sinf =0 (iv) tanftan26 =1
(v) 2cos260=1+cos6

2 Solve the following equations for -t < 0 < .
(i) sin26 =2sin® tan26 =2 tan6
(iii) cos26 —cosf=0 (iv) 1+ cos26=2sin’6

(v) sin46 = cos26

Hint: Write the expression in part (v) as an equation in 26.

w

By first writing sin 36 as sin(26 + 0), express sin 36 in terms of sinf.
Hence solve the equation sin 30 = sin0 for 0 < 0 < 2.

Solve cos30 =1 —3cos6 for 0° < 6 < 360°.

'S

Sl it cs® 1 + cos zﬂ

il

o

Express tan 30 in terms of tan®.

1-tan’f

Show that 3 = 26.

~

(i) Show that tan (%+ H)mn(%‘ - 0) =1

®

(i) Given that tan 26.6° = 0.5, solve tan6 = 2 without using your calculator.
Give 6 to 1 decimal place, where 0° < 6 < 90°.

©

(i) Sketch on the same axes the graphs of
y=cos2x and y=3sinx-1 for 0<x<2m
(i) Show that these curves meet at points whose x co-ordinates are solutions
of the equation 2sin?x + 3sinx—2=0.

(iiii) Solve this equation to find the values of xin terms of T for 0 < x < 2m.
[MEL]

o
N

o i
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10 (i) Prove the identity

cos46 + 4 cos 20 = 8 cos*O — 3.

Hence solve the equation
cos40 + 4cos20=2,

for 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2005]
11 (i) Prove the identity cosec 26 + cot 26 = cotf).

Hence solve the equation cosec 26 + cot 26 =2, for 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2009]

12 Ttis given that cosa =2, where 0° < a < 90°. Showing your working and
without using a calculator to evaluate a,

(i find the exact value of sin(a— 30)°,

find the exact value of tan 24, and hence find the exact value of tan 3a.

[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q3 June 2010]

The forms rcos(@ = a), rsin(@ * a)

Another modification of the compound-angle formulae allows you to simplify
expressions such as 4sin + 3 cosd and hence solve equations of the form

asing + beos = c.
To find a single expression for 4sin6 + 3 cos6, you match it to the expression
rsin(6 + ) = r(sinfcosa + cosf sina).

This is because the expansion of rsin(6 + ) has sin® in the first term, cos@ in
the second term and a plus sign in between them. It is then possible to choose
appropriate values of rand .

4sin6 + 3cos0 = r(sinB cosa + cosHsina)
Coefficients of sinf: 4= rcosa
Coefficients of cos#: 3 =rsinc.

Looking at the right-angled triangle in figure 3.9 gives the values for rand .

5
3

Figure 3.9

The sides, 4 and 3, come
from the expression
4sinf+3cos6.




In this triangle, the hypotenuse is V4% + 3% = 5, which corresponds to r in the
expression above.

The angle « is given by
sine=2 and cosa=f = =369

So the expression becomes
45inf + 3cos=5sin(6 + 36.9°).

The steps involved in this procedure can be generalised to write
asind + beos 6= rsin(6 + )

where

r=Nat+1?

The same expression may also be written as a cosine function. In this case,
rewrite 4sin6 + 3 cos as 3 cos + 4sin and notice that:

(i) The expansion of cos(6 —8) starts with cos 0 ... just like the expression
3cos 0+ 4sin.

(i) The expansion of cos(6 —8) has + in the middle, just like the expression
3cos 0 +4sin.

The expansion of rcos(6) - ) is given by
rcos(6—B) = r(cos6 cosff + sinf sinf).
To compare this with 3 cos 6 + 4sin6, look at the triangle in figure 3.10 in which

r=NR+42=5 cosﬁ:% sinﬂzg = B=53.1°

% 4

/Y4

3
Figure 3.10
This means that you can write 3 cos) + 4sin@ in the form

rcos(6—B) = 5cos(6 - 53.19).

P2

(9% guis 4 ‘(0 ¥ g)s00 1 SuL0} By L.
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The procedure used here can be generalised to give the result

acos 0+ bsin® = rcos(6 —a)

where
r=Na+b?  cosa=% sina:%
Note

The value of r will always be positive, but cos« and sina may be positive or
negative, depending on the values of a and b. In all cases, it is possible to find an
angle a for which ~180° < < 180°.

You can derive alternative expressions of this type based on other compound-

angle formulae if you wish ¢ to be an acute angle, as is done in the next example.

EXAMPLE 3.6 fil Express 3sin0 — cos in the form rsin(0 - ), where >0 and 0 <@ < 2.
(i) State the maximum and minimum values of v/3sinf — cos6.

Sketch the graph of y=/3sinf - cosf for 0 < 6 < 2.

v Solve the equation v/3sin6 - cos6 = 1 for 0 < 6 < 2.

SOLUTION

(i) rsin(0—a) = r(sinfcosa — cosOsina)
= (rcosa)sinf — (rsina)cosd

Comparing this with +/3sin6 — cosf), the two expressions are identical if
reosa =3 and rsina = 1.
From the triangle in figure 3.11

r=V1+3=2 and xanafi = a=1
3 6 i

so ﬁsina-cosazzm(a-%) Figure 3.11

(il The sine function oscillates between 1 and -1, so 2sin(0 - ") oscillates
between 2 and 2.

Maximum value =2

Minimum value =



, notice that

To sketch the curve y= zm(a

@ itisasine curve
e i 5

?(s y values go fro.rn 2to 2 P 1B
@ it crosses the horizontal axis where 6 = 66" 6

The curve is shown in Figure 3.12.

y,

2

ol
el
ES
g
B

%

Figure 3.12
(iv) The equation v/3sin6 - cos6 = 1 is equivalent to
sz(e - 5) =1
. m_1
= sm(0 _E) =5
Letx= (0 -E) and solve sinx="1.
6 2

Solving sin x=1 gives x = (principal value)

or x:n-%:%(fmm the graph in figure 3.13)
21z _smm_
giving or 076+6 LS
5
..
o
Figure 3.13

Theroo(sinOSGSZnareG:%andn,

o
N

E
3
g
|
H
2
8
8
3
b
3
%
8
F
53
b
3
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EXERCISE 3D

A\ Always check (for example by reference to a sketch graph) that the number

of roots you have found is consistent with the number you are expecting.
When solving equations of the form sin(6 - &) = ¢ by considering sinx= g, it is
sometimes necessary to go outside the range specified for 6 since, for example,
0<6f<2misthesameas—a < x<2n-a.

Using these forms

There are many situations which produce expressions which can be tidied
up using these forms. They are also particularly useful for solving equations
involving both the sine and cosine of the same angle.

The fact that acosé + bsin® can be written as rcos(f — ) is an illustration of the
can be

fact that any two waves of the same freq whatever their amplitud

added together to give a single combined wave, also of the same frequency.
1 Express each of the following in the form rcos(6 - &), where r > 0 and
0°<a < 90f

@ cosO +sind (i) 20cos6 +21sin
(i) cos0 + \/3sinf (iv) V/5cos0 + 25inf

N

Express each of the following in the form rcos(é + @), where r> 0 and
0<a< %

(i) cosf—sin6 (i) V3cos0 —sind

®

Express each of the following in the form rsin(f + &), where r > 0 and
0°<a<90°.

@ sin6 +2cos (i) 2sin0 + V5cosd
4 Express each of the following in the form rsin(6 — ), where r > 0 and
n
0<a<l
(il sinf—cos6 i) V7sin0-v2cos

@«

Express each of the following in the form rcos(6 — &), where r > 0 and
—180° < a < 180°.

@ cos6—3sin6 i) 2v/2cos6 - 2v/2sin6
(i) sinf + V3 cos6 (iv) 5sin6 + 12cos6
W) sin —V3cosd wil V25in6 - V2cos6



©

(il Express 5cos0 — 12sin in the form rcos(6 + ), where r > 0 and
0°<a <90°

State the maximum and minimum values of 5 cos6 — 12sinf.
Sketch the graph of y=5cos0 - 12sin for 0° < 0 < 360°.

(iv) Solve the equation 5cos — 125in6 = 4 for 0° < 0 < 360°.

(il Express 3sinf —V3cos6 in the form rsin(— ), where r > 0 and
0<a< g

(i) State the maximum and minimum values of 3sinf — v3cosf and the
smallest positive values of6 for which they occur.

(iii) Sketch the graph of y=3sin6 — 3 cos0 for 0 < 6 < 2.

(iv) Solve the equation 3sin6— v3cos0 = /3 for 0 < 0 < 2.

(i) Express 2sin26 + 3 cos 26 in the form rsin(260 + &), where r > 0 and
0°<a <90°.

(i) State the maximum and minimum values of 25in 26 + 3 cos 26 and the
smallest positive values of @ for which they occur.

{iii) Sketch the graph of y=2sin 26 + 3 cos 20 for 0° < 6 < 360°.

{iv) Solve the equation 2sin 26 + 3 cos26 = 1 for 0° < 6 < 360°.

(il Express cos® + v/2sin in the form rcos(6 - ), where r > 0 and
0°<a<90°
(i) State the maximum and minimum values of cos + v/2sinf and the
smallest positive values of6 for which they occur.
{iii) Sketch the graph of y = cosf + \/2sinf for 0° < 6 < 360°.
(iv) State the maximum and minimum values of
[ S
34 cos +\/2sin0
and the smallest positive values of § for which they occur.
The diagram shows a table jammed in a cotridor. The table is 120cm long
and 80 cm wide, and the width of the corridor is 130 cm.
(il Show that 12sinf + 8cosf = 13.

(i) Hence find the angle 0. (There are two answers.)

80cm.

130cm

120em

o
N

o H

7
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11 (i) Use atrigonometrical formula to expand cos(x + a).
i) Express y=2cosx— 5sinxin the form rcos(x + ), giving the positive
value of rand the smallest positive value of cz.
{iii) State the maximum and minimum values of y and the corresponding
values of x for 0° < x < 360°.

(i) Solve the equation

2cosx—5sinx=3, for0°< x =< 360°
[MEI]

12 () Find the value of the acute angle & for which
5cosx— 3sinx=/34cos(x + )
forall x.

Giving your answers correct to 1 decimal place,
(i) solve the equa(ion 5cosx—3sinx =4 for 0° < x < 360°

(iii) solve the equation 5cos 2x — 3 sin2x =4 for 0° < x < 360°.
[MEI]

13 (i) Find the positive value of R and the acute angle & for which
6cosx+ 8sinx= Reos(x—-a).
(i) Sketch the curve with equation
y=6cosx +8sinx, for 0° < x< 360°
Mark your axes carefully and indicate the angle @ on the x axis.
(i) Solve the equation
6cosx+8sinx=4, for0° < x =< 360°
(iv) Solve the equation

8cosf + 6sinf =4, for 0° <6 < 360°
[MEI]

14 In the diagram below, angle QPT = angle SQR = 6, angle QPR =, PQ = a,
QR = b, PR = ¢, angle QSR = angle QTP = 90°, SR = TU.

(i) Show that angle PQR = 90°, and write down the length of cin terms of
aand b.

(ii) Show that PU may be written as acos6 + bsin6 and as ccos(6 — ).
‘Write down the value of tan« in terms of a and b.



In the case when a=4, b=3, find the acute angle cz.
(iv) Solve the equation P2

4cosf +3sinf =2 for 0° <6 < 360° m
[MEI]

15 (i) Express 3cosx -+ 4sinx in the form Reos(x— @), where R > 0 and
0° <@ < 90°, stating the exact value of R and giving the value of &
correct to 2 decimal places.

Qe espaexy

(i) Hence solve the equation
3cosx+dsinx=4.5,
giving all solutions in the interval 0° < x < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q6 November 2009]

16 (i) Express 5cosf— sinf in the form Rcos(6 + ), where R > 0 and
0° <@ < 90°, giving the exact value of Rand the value of & correct to
2 decimal places.

(i) Hence solve the equation
5cosf) —sinf =4,

giving all solutions in the interval 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 QS June 2008]

17 (i) Express7cos+ 24sin® in the form Rcos(6 — ), where R> 0 and
0° <@ < 90°, giving the exact value of Rand the value of & correct to
2 decimal places.

(i) Hence solve the equation
7cosf +24sin6=15,

giving all solutions in the interval 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2006]

18 By expressing 8sin6 — 6cos6 in the form Rsin(6 — ), solve the equation
8sin6 - 6cos6 =7,

for 0° < 6 < 360°.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 November 2005]
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Trigonometry

The simplest alternating current is one
which varies with time  according to

I= Asin2nft,

where fis the frequency and A is the
‘maximum value. The frequency of
the public AC supply is 50 hertz
(cycles per second).

Investigate what happens when

two alternating currents
A,sin2nftand A, sin(2nft + ) with
the same frequency fbut a phase
difference of & are added together.

The previous exercises have each concentrated on just one of the many
trigonometrical techniques which you will need to apply confidently. The
following exercise requires you to identify which technique is the correct one.

EXERCISE 3E 1 Simplify the following.
(i) 2sin36cos 360 (i) cos?30 —sin?36
(i) o230 + sin?30 W) 1-2sin? (%’)

(v) sin(f —a)cosa + cos(f —a)sina  (vi) 3sinf cos®

(viii) cos20 —2 cos?6

N

Express

(cosx—sinx)? in terms of sin 2x

cos* x—sin?x in terms of cos2x

(iii) 2cos?x—3sin® x in terms of cos2x.

Prove that

@

W 1=cos20 29
1+cos260

(i) cosec26 + cot 26 = cot&

4t(1-1)

(i) t’:mlwzl_ prEET where t=tanf.



4 Solve the following equations.

) sin(6+40°)=07 0° <6 <360°
(i) 3cos?0 +5sinf—1=0 0° <6 =< 360°
(i) Zcos(ﬂ—%)ZI n<b<n

(iv) cos(45°—6) = 2sin(30° +6) —-180° <0 < 180°
(v) cos260 +3sinf=2 0=s6#=2n

(vi) cosf + 3sinfl =2 0° <6 =< 360°
(vii) tan®f — 3tanf — 4 =0 0°<6=<180°

@ The general solutions of trigonometrical equations

The equation tan® = 1 has infinitely many roots:

L —135°, 45°, 225°, 405°.

B 3R ISR (i radians).
4 4 4 4 4

(in degrees)

Only one of these roots, namely 45° or ., is denoted by the function tan~!1.

This is the value which your calculator will give you. It is called the principal value. |

The principal value for any inverse trigonometrical function is unique and lies
within a specified range:

T 1
——<tanlx<
2 2
T <sinlx<T
“Lssinlxs<T
2 2

0<cos'x=m.

It is possible to deduce all other roots from the principal value and this is shown
below.

To solve the equation tan6 = ¢, notice how all possible values of & occur at
intervals of 180° or 7 radians (see figure 3.14). So the general solution is

O=talc+m nez (in radians).

y=tand

2100/}

2 fanle
Figure 3.14 principal value

o
N
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Trigonometry

The cosine graph (see figure 3.15) has the y axis as a line of symmetry. Notice
how the values +cos™ ¢ generate all the other roots at intervals of 360° or 21. So
the general solution is

O=tcosc+2nm  nEZ (inradians).

y
y=cosd
o/ L I \2r0e o0 \450” 630/ |
[ 5m 3 [ zAO sm In [
2 2 2 2 2
Figure 3.15

Now look at the sine graph (sce figure 3.16). As for the cosine graph, there are
two raots located symmetrically. The line of symmetry for the sine graph is 6= %,

which generates all the other possible roots. This gives rise to the slightly more
complicated expressions

0= gi(gqhﬂc)unn
or 0:(2n+%)7(i(%—sin"r) nez.

You may, however, find it easier to remember these as two separate formulae:

6=2nm+sinlc  or  @=Qn+n-sinc
Y,
y=sin@
A e il s i e
| \-540° -360°/ | i \-180° I | \180° 360°/ | 1\ 540°
—3m 2m - k4 pid 3 2]
Figure 3.16 =

ACTIVITY 3.3

sinle

(180°—sinl )
or (n—sinl¢)

Show that the general solution of the equation sin® = ¢ may also be written

principal value

0=nm+ (=1)"sinc.



1 sech=——; cosecl=

cost’

2 tan?6 + 1 =sec?6; 1 + cot?f = cosec?6

2 Compound-angle formulae

S

sin(0 + ¢) = sinfcosgp + cosOsing
sin(0 — ¢) = sinBcos ¢ — cosBsing
cos(0+ ¢) = cosOcosp — sinBsingp
cos(0— ) = cosOcosgh + sinOsingp

tanf + tang

(R STt

1

i .
e e

(6 +¢) #90° 270°, ...

tan(6—¢) = 200=100 5y o0 2708, .

1+ tanftang

Double-angle and related formulae

sin26 = 2sinfcos 6

c0s26 = cos? —sin?6 = 1 — 2sin? @ = 2cos? 6 — 1

2tanf

tn2g— = 0 458 15 L
an 1-tan*6

7
sin?6 = (1 - cos26)

€050 =1(1 + cos 26)

5 The r,@ formulae

asing + beos® = rsin(0 + )
asing — beost = rsin(6 - )
acosf + bsin6 = rcos(6 - )

acosf — bsinf = rcos(6 + @)

where r=+a?+b*

a
cosa =

sina =

=
b
T

o
N
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The product

Differentiation

A mathematician, like a painter or poet, is a maker of patterns. If his
is because they are made

patterns are more permanent than their:

with ideas.
G.H. Hardy

rule
Figure 4.1 shows a sketch of the curve of y = 20x(x— 1)°.

o

Figure 4.1

Ifyou wanted to find the gradient function, jl, for the curve, you could expand
x

the right-hand side then differentiate it term by term — a long and cumbersome
process!
There are other functions like this, made up of the product of two or more
simpler functions, which are not just time-consuming to expand — they are
impossible to expand. One such function is

y=(x—1x+1°  (forx>1).

Clearly you need a technique for differentiating functions that are products of
simpler ones, and a suitable notation with which to express it.

The most commonly used notation involves writing
y=uy
where the variables # and vare both functions of x. Using this notation, jl is
x

given by

This is called the product ruleand it is derived from first principles in the next
section.



EXAMPLE 4.1

The product rule from first principles

A small increase 8xin xleads to corresponding small increases 3, 8vand 8 in 1,
vand y. And so

y+38y = (u+3u)(v+dv)
=uv+vdu+ udv+ Sudv.

Since y= uy, the increase in y is given by

By=vdu+ udv+dudv.

Dividing both sides by 8,
By _ bu, Ov, 5.0
e e Pl =

In the limit, as 8x —0, so do &u, 6vand 8y, and
Su_ydu  dv_, dv Sy  dy
8= Ve 82 Tdx " 5z Ve

The expression becomes

av
T

Notice that since 8u — 0 the last term on the right-hand side has disappeared.

Given that y = (2x + 3)(x? - 5), find ? using the product rule.
x

SOLUTION
y=(2x+3)(x2-5)
Let u=2x+3and v=x?—5.
du dv
Then £ =2 and £* =2.
en G =2and §¥ =2x

Using the product rule, 4 — ,du |, dv
dx dx  dx
=(x®—5) X2+ (2x+3) X 2x
=2(x2—5+2x%+ 3x)

=2(3x%+3x—5)

Note
In this case you could have multiplied out the expression for y.
y =2x3+3x2— 10x— 15
Y gyt 6x-10
ax
=23x2+3x—5)

o
N
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EXAMPLE 4.2

Differentiate y=20x(x— 1)°.

SOLUTION

Let u=20xand v=(x— 1)°.

Then 9% =20 and 9¥ = 6(x— 1)° (using the chain rule).

dx dx

dy

dr~ Vdx T dx
=(x—1)*X 20 +20xX 6(x— 1)°
=20(x— 1) X (x— 1) + 20(x— 1) X 6x
=20(x— 1)°[(x— 1)+ 6x]
=20(x—1)(7x—1)

Using the product rule,

The factorised result is the most useful form for the solution, as it allows you to
find stationary points easily. You should always try to factorise your answer as
much as possible. Once you have used the product rule, look for factors straight
away and do not be tempted to multiply out.

The quotient rule

In the last section, you met a technique for differentiating the product of two
functions. In this section you will see how to differentiate a function which is the
quotient of two simpler functions.

As before, you start by identifying the simpler functions. For example, the function

y= % (for x# 2)
can be written as =% where u=3x+1 and v=x— 2. Using this notation, % is
given by v

This is called the quotient rule and it is derived from first principles in the
next section.



I ACTIVITY 4.1

EXAMPLE 4.3

The quotient rule from first principles

A small increase, 8x in x results in corresponding small increases 31, 8v and 8y in
u, vand y. The new value of y is given by

u+du
+8y=
y:Hidy v+3v
and since y= 7, you can rearrange this to obtain an expression for 8y in terms of
wand v.

_ v(ut8u) —u(v+3v)

v(v+3v)

_ uv+ vu—uv—udy
- v(v+38v)

_ Wu—udy
T v(v+3dv)

Dividing both sides by dx gives

To divide the right-hand.

5 JOu_ v Sideby 8y dnly divide
5% f(i - 8?; the numerator by .

In the limit as 8x —0, this is written in the form you met on the previous page.

Verify that the quotient rule gives :l correctly when = x'and v=x7.
x

Given that y= 31 find & ysing the quotient rule.
x-2 " qe

SOLUTION

Letting u=3x+ 1 and v=x— 2 gives

Gy g B

: 3 dy _
Using the quotient rule, Fr

x—2)X3-(B3x+1)x1

(x-27
_3x—6-3x—1
T 2y

-7
(-2

o
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EXAMPLE 4.4

EXERCISE 4A

Given that y= X+ 1 find 97 using the quotient rule.
3x—1 dx

SOLUTION

Letting u= x>+ 1and v=3x— 1 gives
G_gy gy By

} ) dy
Using the quotient rule, 7
_G )X 2x—(x*+1)x 3

(3x—1)
_6x2—2x-3x2-3
(Bx—1
_32-2x-3
(B3x-1)

1 Differentiate the following using the product rule or the quotient rule.

W y=(2- 1) +3) lii)  y=x°(3x? +4x~7)
(i) y=x*(2x+1)* W y=z2

W y= Til Wil y=(2x+1)2(3x2-4)
Wil y = 22;‘1131 twiii) y = ﬁ

fix) y = (et IVx—1

The diagram shows the graph of y=

N

i Find 4.
dx
(ii) Find the gradient of the
curve at (0, 0), and the
equation of the tangent
at (0,0).
(iii) Find the gradient of the 1
curveat (2, 2), and the
equation of the tangent

at (2,2). ° 1 x
(iv) What can you deduce
about the two tangents?




3 Given that y=(x+1)(x—2)?

@ find &
dx

(i) find any stationary points and determine their nature

(i) sketch the curve.

Given that y= Li
p

a

G find &
dx

(i) find the equation of the tangent to the curve at the point (6, 1.5)
(iii) find the equation of the normal to the curve at the point (5, 2)
(iv) use your answer from part (i) to deduce that the curve has no stationary

points, and sketch the graph.

@

The diagram shows the graph of y =

x= 1. P is a minimum point.

—2% _ which is undefined for x <0 and
1

T=

@ Find ¥,
ax

(i) Find the gradient of the curve at (9, 9), and show that the equation of the

normal at (9, 9) is y = —4x+45.

(iii) Find the co-ordinates of P and verify that it is a minimum point.
(i) Write down the equation of the tangent and the normal to the curve at P.

(v) Write down the point of intersection of the normal found in part (ii) and

(a) the tangent found in part (iv), call it Q

(b) the normal found in part (iv), call it R.
(vi) Show that the area of the triangle PQR is 4.

o
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@ Find Y,

ax
(i) Use your answer from part (i) to find any stationary points of the curve.
(i) Classify each of the stationary points and use calculus to justify your answer.

=
2x+1

7 A curve has the equation y=
i Find 92
dx
Hence find the co-ordinates of the stationary points on the curve.
dy__ 2
dx? (2x+1)7°
Use this information to determine the nature of the stationary points in
part (il

il You are given that

[MEI]

& The diagram shows part of the graph with the equation y= xv/9 — 2x2.
It crosses the xaxis at (a, 0).

v

o (@0) x

@ Find the value of a, giving your answer as a multiple of v/2.



=2%

(i) Show that the result of differentiating V9 — 2x* is —
920

P2

Hence show that if y=x /9 — 2x? then
dy_ 9-42
T o
(i) Find the x co-ordinate of the maximum point on the graph of y=x/9 — 242,
Write down the gradient of the curve at the origin.
What can you say about the gradient at the point (a, 0)?

F
3
g
EA
Differentiating natural logarithms and exponentials

In Chapter 2 you learnt that the integral of L is Inx. It follows, therefore, that the
x s
differential of Inx is 1, H

x

S0 y=lnx = %:%

The differential of the inverse function, y= ¢, may be found by interchanging
yand x.

x=Iny =

=

D-‘D- o
=
11
&=
I
e
Il
o
s

Therefore Le* = &%,
ax

The differential of e* is itself *. This may at first seem rather surprising.

) The function f(x) (x € R) is a polynomial in x of order .
So
f(x)=ax"+a, x"+..+ax+a,

where a,, a

1> - 8 are all constants and at least a, is not zero.

How can you prove that dif(x) cannot equal f(x)?
x

Since the differential of e*is ¢, it follows that the integral of e*is also e*.
Je" de=e"+c

This may be summarised as in the following table.
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Differentiation

EXAMPLE 4.5

EXAMPLE 4.6

Differentiation Integration
y—> dy y—> [ydx
dx
1 1
Inx—L S
x *
e e e—ettc

These results allow you to extend very considerably the range of functions which

you are able to differentiate and integrate.

Differentiate y=e>%.

SOLUTION

Make the substitution 1= 5x to give y=e".

Nowd —ev=e5 and du=s,
du dx
By the chain rule,
dy_dy du
dx " du”dx
=e*x5
=565

This result can be generalised as follows.
ymem = :l = ae®  where ais any constant.
x

This is an important standard result, and you would normally use it
automatically, without recourse to the chain rule.

w4
Differentiate y=3..
SOLUTION
4 e
y=gm=4%

d .
= i:‘ix(—zﬂ 2%)

=—ge2



EXAMPLE 4.7

EXAMPLE 4.8

Differentiate y= 3e(*+1),

SOLUTION

Let u=x?+ 1, then y=3e".

= D2 se3dn ang 8oy
du dx

By the chain rule,

dy_dy du
dx  du” dx

Jeameu

=3e0M % 2%

= 6l

Differentiate the following.

pue

il y=2lnx (i) y=In(3x)

SOLUTION

5 1
W X_oyxl
i e

i) Let u=3x, then y=Inu

dy_1_1 du _
il e Ul

By the chain rule,
dy_dy du
de = dudx

1
=Llx3
3x

Note
An alternative solution to part (il is

y=In@x)=In3+Inx = —-=0+

The gradient function found in part (ii) above for y = In(3x) is the same as that for
y=In(x). What does this tell you about the shapes of the two curves? For what
values of x is it valid?




EXAMPLE 4.9 Differentiate the following.

i y=In(x*) (i) y=In(x2+1)

SOLUTION

(il By the properties of logarithms

y=ln(x)
=4l

dy_4

= &k

(i) Let u=x?+1,then y=Inu

dr_1__1 du _
Z o @waTEa M onTE
By the chain rule,
dy _dy du
dx du”dx
1
eI
P e
2
e

Ifyou need to differentiate expressions similar to those in the examples above,
follow exactly the same steps. The results can be generalised as follows.

- b _a ity

yfulnx:>dx * y=at= g =ae

= dy_1 _ Ay _ e

yfl.n(uxjﬁaf; yfe"‘:dxfﬂe

_ dy _fx) _ &y

y=In(f(x)) = 3 =) y=ef) = é = f'(x)ef™
Inx

EXAMPLE 4.10 Differentiate y= S
SOLUTION

Here y is of the form % where u=Inxand v=x

du_1 4 dv_
% and dxil‘



By the quotient rule,

o
N
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EXERCISE 4B 1 Differentiate the following.
@ y=3Inx (i) y=In(4x)
(i) y=1In(x?) iv) y=In(x2+1)
w y:ln(’l—() Wil y=xlnx
il y= 2 In(4x) y:ln(Lﬂ)
x
(i) y=Invx? 1 g e
x
2 Differentiate the following.
i) y=e*
Gv) y=e?
i) y=2x%"*
y=(+1)

3 Knowing how much rain has fallen in a river basin, hydrologists are often able
to give forecasts of what will happen to a river level over the next few hours.
In one case it s predicted that the height %, in metres, of a river above its
normal level during the next 3 hours will be 0.12¢®%, where tis the time
elapsed, in hours, after the prediction.

(il Find %, the rate at which the river is rising.
(i) At what rate will the river be rising after 0, 1, 2 and 3 hours?

4 The graph of y= xe*is shown below.

¥,

o x
P

o Find Y ana 42
0 Find ¥ and 7.

(i) Find the co-ordinates of the minimum point P. E



5 The graph of f(x) = xIn(x?) is shown below.

x).

Describe, giving a reason, any symmetries of the graph.
Find '(x) and £ (x).

(iii) Find the co-ordinates of any stationary points.

6 Given that y= &

x
(i) find gTi

(i) find the co-ordinates of any stationary points on the curve
(il sketch the curve.

7 (i) Differentiate In xand xInx with respect to x.

The sketch shows the graph of y=xInxfor 0 <x < 3.

(i) Show that the curve has a stationary point (l, = l).
e
[MEI]
& The diagram shows the graph of y=xe~.
(i) Differentiate xe™.

(i) Find the co-ordinates of the point A,
the maximum point on the curve.

[MEI]



9 The diagram shows a sketch of the graph of y = f(x), where
Inx
=" (x>0).

2 Q

The graph crosses the x axis at the point P and has a turning point at Q.

(il Write down the x co-ordinate of P.
(i) Find the first and second derivatives, '(x) and £"(x), simplifying your
answers as far as possible.

Hence show that the x co-ordinate of Q is e.
Find the y co-ordinate of Q in terms of e.
Find f"(e), and use this result to verify that Q is a maximum point.
[MEL part]

10 Find the exact co-ordinates of the point on the curve y = xe *" at
2
which 42—,
[Cambridge International AS & A Level Mathematics 9709, Paper2 Q6 November 2008]

Itis given that the curve y= (x— 2)e* has one stationary point.

(i) Find the exact co-ordinates of this point.

Determine whether this point is a maximum or a minimum point.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2008]

s

The equation of a curve is y = x%e.

(il Show that the curve has a stationary point where x = 3.
i

Find the equation of the tangent to the curve at the point where x= 1.

[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q5 June 2010]




Differentiating trigonometrical functions

ACTIVITY 4.2

Figure 4.2 shows the graph of y= sin, with x measured in radians, together with
the graph of y = x. You are going to sketch the graph of the gradient function for
the graph of y=sinx.

EA o x

ol

b
§
S
ot

Figure 4.2

Draw a horizontal axis for the angles, marked from —21 to 2, and a vertical axis
for the gradient, marked from —1 to 1, as shown in Figure 4.3.
d
@
1

X

Figure 4.3

First, look for the angles for which the gradient of y= sin xis zero. Mark zeros at
these angles on your gradient graph.

Decide which parts of y=sin x have a positive gradient and which have a negative
gradient. This will tell you whether your gradient graph should be above or below
the x axis at any point.

Look at the part of the graph of y = sin x near x= 0 and compare it with the graph

of y=x. What do you think the gradient of y=sinx is at this point? Mark this
point on your gradient graph. Also mark on any other points with plus or minus

the same gradient.

Now, by considering whether the gradient of y = sin x is increasing or
decreasing at any particular point, sketch in the rest of the gradient graph.



ACTIVITY 4.3

The gradient graph that you have drawn should look like a familiar graph. What
graph do you think it is?

Sketch the graph of y = cos x, with x measured in radians, and use it as above to
obtain a sketch of the graph of the gradient function of y = cosx.

Is y = xstill a tangent of y= sin x if x is measured in degrees?

Activity 4.2 showed you that the graph of the gradient function of y=sinx
resembled the graph of y=cos x. You will also have found that the graph of the
gradient function of y = cos x looks like the graph of y=sin x reflected in the
xaxis to become y=—sinx.

Both of these results are in fact true but the work above does not amount to a
proof. Explain why.

Summary of results

%(sin %) =cosx %(cos %) =—sinx

Remember that these results are only valid when the angle is measured in radians,
so when you are using any of the derivatives of trigonometrical functions you
need to work in radians.

sinx
cosx

By writing tanx= 2% yse the quotient rule to show that

%(tanx) = sec’x where xis measured in radians.
You can use the three results met so far to differentiate a variety of functions

involving trigonometrical functions, by using the chain rule, product rule or
quotient rule, as in the following examples.

o
N

suopouny jeaLewoUOB s BueRUL I i



EXAMPLE 4.11 Differentiate y = cos 2x.

SOLUTION

As cos2x is a function of a function, you may use the chain rule.

Let wu=2x = 37“:2
x
_ gy
y=cosu = g =—sinu
dy_dy, du
dx du” dx
=-—sinux2
=-2sin2x

With practice it should be possible to do this in your head, without needing to
write down the substitution.

Tiisreseltmaybegenesdised.
_ Y i
ymcoske = S sinks.
Similarly
yedinke = Padle
ax
i

s [
ytanks = =ksectkr.

EXAMPLE 4.12 Differentiate y = x?sin x.

SOLUTION

x2sinx is of the form u, so the product rule can be used with #=x? and v =sinx.

du_ dv_
Ge=2x Y=cosx
Using the product rule
dy_ du, dv
O VA
dy ; 2
- —==2xsinx+ x?cosx
dx



EXAMPLE 4.13

EXAMPLE 4.14

Differentiate y

SOLUTION
€% {s a function of a function, so the chain rule may be used.
Let u=tanx = —gecy
dx
d
i ooy S
r=e du” ¢
Using the chain rule
dy _dy du
A~ du”dx
=elsec’x
=efaixsecx

Differentiate y= L+ sinx,
!

X
SOLUTION

L45I0% 56 of the form % 0 the quotient rule can be used, with
cosx

u=1+sinx and v=cosx
= du_ and - gnx
dx dx
The quotient rule is
du_ dv
dy _ Ve "dx

dx v’
Substituting for uand v and their derivatives gives
dy _ (cosx)(cosx) - (1+ sinx)(=sinx
dx (cosx)?
_ cos’x +sinx +sin’x
cos?x
_ L+sinx

— B
using sin? x + cos?x = 1
cosix (using )

= (sec?x)(1 + sinx)

o
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EXERCISE 4C

1 Differentiate each of the following.

tanx+5 (i) sinx— cosx

(i) 2cosx+sinx
2 Use the product rule to differentiate each of the following.
(i) xtanx (i) sinxcosx (iii) e*sinx

3 Use the quotient rule to differentiate each of the following.

i x+cosx

sinx i)
sinx

(0] S
% osx

4 Use the chain rule to differentiate each of the following.

() tan(x?+1) sin2x ) In(sin x)

5 Usean appropriate method to differentiate each of the following.

i Veosx e*tanx (i) sin4x?
(iv) e52% W Treex (vi) In(tanx)
6 (i) Differentiate y = x cos x.

Find the gradient of the curve y=x cos x at the point where x=1.

Find the equation of the tangent to the curve y = xcos x at the point
where x=m.
(iv) Find the equation of the normal to the curve y= xcos xat the point
where x=m.

7 Ify=

:
s, Bl S and T and hencs shiow that
ax e
2
dJZ - zgl +10y=0.
dx x [MEI]
8 Consider the function y = e-*sin x, where — < x <.

@ Find %

i) Show that, at stationary points, tanx

Determine the co-ordinates of the stationary points, correct to
2 significant figures.
(iv) Explain how you could determine whether your stationary points are
maxima or minima. You are not required to do any calculations. -
[MEI
9 The equation of a curve is y=x + 2 cos x. Find the x co-ordinates of the
stationary points of the curve for 0 < x < 2m, and determine the nature of
each of these stationary points.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2006]



10 The equation of a curve is y = x+ cos 2x. Find the x co-ordinates of the
stationary points of the curve for which 0 < x < 1, and determine the nature
of each of these stationary points.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2005]

11 The curve with equation = ¢™sin x has one stationary point for which
0=sx=m

(i) Find the x co-ordinate of this point.

Determine whether this point is a maximum or a minimum point.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 November 2007]

12 The curve y=__—, for ——1: <x< 1:, has one stationary point. Find the

cos x’ 2
xco-ordinate of this point.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2008]

Differentiating functions defined implicitly

Al the functions you have differentiated so far have been of the form y=f(x).
However, many functions cannot be arranged in this way at all, for example
%7+ > = xy, and others can look clumsy when you try to make y the subject.

An example of this is the semi-circle x? + y* =4, y = 0, illustrated in figure 4.4.

s

By Pythagoras’ theorem,
2o

Figure 4.4

Because of Pythagoras’ theorem, the curve is much more easily recognised in this
form than in the equivalent y=/4 - x2.

When a function is specified by an equation connecting x and y which does not
have y as the subject it s called an implicit function.

dy dy kil du

2 and the product rule 7(.”) = u7+ L

The chain rule 0

used extenswely to help in Lhe differentiation of implicit funcuons,

o
N
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EXAMPLE 4.15 Differentiate each of the following with respect to x.

Wy i) xy i) 3%y (iv) siny
SOLUTION
5 Ly don), W i
i 30M= dy(y )% o (chain rule)
_Y
“Yix
i L= 4y (product rule)
dx dx
4 32,9 = (zg 34 4 2)
L =320+ P e (product rule)
d
= 3(x2 x 3y2d{;+ WX Zx) (chain rule)
23,
—3xy (3x L Zy)
) £ (siny) :d%(siny) x% hbnils)
— dy
(cosy)'

EXAMPLE 4.16 The equation of a curve is given by y* + xy=2.
(il Find an expression for % in terms of xand y.

i) Hence find the gradient of the curve at (1, 1) and the equation of the tangent
to the curve at that point.

SOLUTION
W yP+xy=2
LV
39, v ol o
= 3ydx+(xdx+y)70
= (3y2+x>dl =y
dx
4y
= dx 3% +x
o dy 1
i At(1,1), 3 =—7

Substitute x = 1, y= 1 into the expression for %.

= Using y—y, = m(x~x,) the equation of the tangentis (y— 1) =—+(x— 1)
= x+4y-5=0



EXAMPLE 4.17

@ Figure 4.5 shows the graph of the curve with the equation y? + xy=2.

Figure 4.5

‘Why is this not a function?

Stationary points

As before these occur where % =0.

Putting gx =0 will not usually give values of x directly, but will give a

relationship between x and y. This needs to be solved simultaneously with the
equation of the curve to find the co-ordinates.

(i) Differentiate x° + y* = 3xy with respect to x.
(i) Hence find the co-ordinates of any stationary points.

SOLUTION

i

L+ L=y

& dr
= +3yP g = 3(xa+y)

(i) At stationary points, g—i =0

Notice how it is not
necessary to find an

= 3x*=3y expression for < unless

= x=y youare told to,

o
N
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EXAMPLE 4.18

To find the co-ordinates of the stationary points, solve
*=y )
simultaneously
X+y=3xy
Substituting for y gives

0+ (x2)° = 3x(x2)

= O+x0=3x
= x8=250
= P(x*-2)=0

= x=0 or x= 3/3
y=x%s0 the stationary points are (0, 0) and (3/2, ¥4).
The stationary points are A and B in figure 4.6.

¥y

2

Figure 4.6

Types of stationary points
As with explicit functions, the nature of a stationary point can be determined by

considering the sign of % cither side of the stationary point.
x

The curve with equation sinx + siny= 1 for 0 < x < 1,0 < y < 7 is shown in

figure 4.7.

Figure 4.7



(i) Differentiate the equation of the curve with respect to x and hence find the
co-ordinates of any stationary points.

il ints [E, ) (% 5T) (5T ) Sm ST i
(i) Show that the Pom“(s’s)’(s’ 6)’( )and(s, )all lie on the curve.

6’6,
Find the gradient at each of these points.
What can you conclude about the natures of the stationary points?

SOLUTION
(0] sinx+siny=1
dy _
= cosx+(cosy)dx—0 [©]
- dy __cosx
dx cosy

At any stationary point % =0 = cosx=0
= x= % (only solution in range)
Substitute in sinx+siny= 1.
When x= % sinx=1 = siny=0
= y=0ory=m
= stationary points at (g 0) and (% ).

(i) sin’s—‘ = % sin2E=1

6 2

So, for each of the four given points, sin x+sin y=5+

Therefore they all lie on the curve.

The gradient of the curve is given by

dy __cosx

dx~ Tcosy

o
N

Apoyduiy pauyep suogoun; Bupenueseyia i



v
N

Differentiation

EXERCISE 4D

These results show that

(% 0) is a minimum (% n) is a maximum
Y, o
=

£, \

ol /

ol

algt N\

These points are confirmed by considering the sketch in figure 4.7 on page 100.

1 Differentiate each of the following with respect to x.

W y* (i) x2+y*-5 xy+x+y

(iv) cosy W) e+ (i) xp?

(vii) 2x%° (viii) x+Iny—3 (ix) xe¥—cosy

x) x2Iny (xi) xesny (xii) x tany — y tanx
2 Find the gradient of the curve xy° = 51n y at the point (0, 1).
3 Find the gradient of the curve " * + e/ = ¢ + 1 at the point (% %)

4 (i) Find the gradient of the curve x? + 3xy + y> = x+ 3y at the point (2, -1).
(i) Hence find the equation of the tangent to the curve at this point.

5 Find the co-ordinates of all the stationary points on the curve x> + y? + xy=3.
6 A curve has the equation (x—6)(y+4) =2.

@ Find an expression for “% in terms of xand y.

Find the equation of the normal to the curve at the point (7, —2).

) Find the co-ordinates of the point where the normal meets the curve again.
identify any asymptotes

(iv) By rewriting the equation in the form y— a=
and sketch the curve.

%




7 A curve has the equation y = x* for x> 0.

"

Take logarithms to base e of both sides of the equation.

Differentiate the resulting equation with respect to x.

Find the co-ordinates of the stationary point, giving your answer to
3 decimal places.
(iv) Sketch the curve for x> 0.

©

The equation of a curve is 3x% + 2xy+ y* =6. It is given that there are two
points on the curve where the tangent is parallel to the x axis.

(il Show by differentiation that, at these points, y=~3x.

Hence find the co-ordinates of the two points.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2006]

9 The equation of a curve is x* + y° = 9xy.

e
[0 Showtha(glrszuA
x” YT 3x

(

Find the equation of the tangent to the curve at the point (2, 4), giving
your answer in the form ax+ by=rc.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 November 2005

10 The equation of a curve is x2 + y — 4xy+ 3 =0.
: dy'_ Byen
() Show that o= ~"—5".

Find the co-ordinates of each of the points on the curve where the
tangent is parallel to the x axis.
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2008]

The equation of a curve is x* — x%y —y? = 3.

(i) Find % in terms of x and y.
(i) Find the equation of the tangent to the curve at the point (2, 1), giving
your answer in the form ax+ by +c=0.
[Cambridge International AS & A Level Mathematics 9709, Paper 32 Q3 November 2009]

8

The equation of a curve is xy(x + y) = 24, where a is a non-zero constant.
Show that there is only one point on the curve at which the tangent is parallel
to the x axis, and find the co-ordinates of this point.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2008]
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Differentiation

Parametric equations

When you go on a ride like the one in the picture, your body follows a very
unnatural path and this gives rise to sensations which you may find exhilarating
or frightening,

Youare d to expressing curves as mathematical equations. How would

you do so in a case like this?

Figure 4.8 shows a simplified version of such a ride.

L (B (AP has in total
turned through
angle 30,
o 4m A 2m P
Atthe start Some time later
Figure 4.8

The passenger’s chair is on the end of a rod AP of length 2 m which is rotating
about A. The rod OA is 4m long and is itself rotating about O. The gearing of the
mechanism ensures that the rod AP rotates twice as fast relative to OA as the rod
OA does. This is illustrated by the angles marked on figure 4.8(b), at a time when OA
has rotated through an angle 6. N
At this time, the co-ordinates

of the point P, taking O as the

origin, are given by

x=4cosf + 2cos36
y=4sinf+2sin36

of 4cosh o

(see figure 4.9). Fioure 66



These two equations are called p ic equations of the curve. They do not
give the relationship between xand y directly in the form y = f(x) but use a third
variable, 6, to do so. This third variable is called the parameter.
To plot the curve, you need to substitute values of 0 and find the corresponding
values of x and .
Thus 0=0° = x=4+2=6

y=040=0 Point (6, 0)

6=30° = x=4X0.866+0=3.464
y=4x05+2x1=4 Point (3.46, 4)

and so on.

Joining points found in this way reveals the curve to have the shape shown in
figure 4.10.

Figure 4.10

At what points of the curve would you feel the greatest sensations?

Graphs from parametric equations

Parametric equations are very useful in situations such as this, where an
otherwise complicated equation may be expressed reasonably simply in

terms of a parameter. Indeed, there are some curves which can be given by
parametric equations but cannot be written as cartesian equations (in terms of
xand yonly).

The next example is based on a simpler curve. Make sure that you can follow the
solution completely before going on to the rest of the chapter.

P2
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Differentiation

EXAMPLE 4.19

EXAMPLE 4.20

A curve has the parametric equations x=2f, y= %.
Find the co-ordinates of the points corresponding to = 1,2, 3,1, 2 and —3.
Plot the points you have found and join them to give the curve.

Explain what happens as £ —0.

SOLUTION
N EERE 1 2 3
x | 6| 4 | 2 2 | 4 6
y 4 9 | 36 | 3 | 9 4

The points required are (=6, 4), (~4, 9), (=2, 36), (2, 36), (4,9) and (6, 4).
(i) The curve is shown in figure 4.11.

Figure 4.11

As 150, x—0 and y — 0. The  axis is an asymptote for the curve.

A curve has the parametric equations x= 12, y=1>— 1.

(i) Find the co-ordinates of the points corresponding to values of tfrom —2 to
42 at half-unit intervals.

Sketch the curve for 2 < < 2.

Are there any values of x for which the curve is undefined?

SOLUTION

@ t -2 [-15 -1 [-05 0 0.5 1 15 2
x 4 225 1 0.25 0 0.25 1 225 4
¥y -6 [-1.875 0 0.375 0 |-0375 0 1.875 6




=]

() Finding the ion by eliminati

EXAMPLE 4.21

(i) ¥

Figure 4.12

The curve in figure 4.12 is undefined for x < 0.

Graphic calculators can be used to sketch parametric curves but, as with cartesian
curves, you need to be careful when choosing the range.

the

For some pairs of parametric equations, it is possible to eliminate the parameter
and obtain the cartesian equation for the curve. This is usually done by making
the parameter the subject of one of the equations, and substituting this expression
into the other.

Eliminate t from the equations x= £~ 21 y=1.

SOLUTION
t
== = t=2y.
e .
Substituting this in the equation x= > — 2¢2 gives

x=(22 22 or  x=8>-8%

o
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Parametric differentiation

P2

To differentiate a function which is defined in terms of a parameter #, you need
to use the chain rule:

dy_dy, dt
c _dy dr
£ dx - drfax
£ Since
£ dr_1
H de dx

dr

it follows that

d
4 i
dx
dat

ided that 94 2 0.
provided that 4

EXAMPLE 4.22 A curve has the parametric equations x=t2, y=2t.

@ Find 9 in terms of the parameter £,

x
Find the equation of the tangent to the curve at the general point (2, 2f).
Find the equation of the tangent at the point where = 3.

Eliminate the parameter, and hence sketch the curve and the tangent at the

[l

point where £=3.

SOLUTION

W x=£

Using y— y, = m(x— x,) and taking the point (x,, y,) as (2, 2¢), the equation
of the tangent at the point (£2, 21) is

yfzt:%(xftz)

This equation still contains the
parameter, and is called the equation
of the tangent at the general point.

= fy—2=x—1

= x—ty+£2=0

Substituting #=3 into this equation gives the equation of the tangent at the

point where £=3.

The tangent is x— 3y +9=0.



(iv) Eliminating ¢ from x= 12, y=2t gives

.
x= (g) or  p=dx

This is a parabola with the x axis as its line of symmetry.

o
N

The point where ¢ = 3 has co-ordinates (9, 6).
The tangent x— 3y + 9 = 0 crosses the axes at (0, 3) and (=9, 0).
The curve is shown in figure 4.13.

¥
6

©.6)

uogenuelelp omeueIEy i

=] 0 9 x

Figure 4.13

EXAMPLE 4.23 A curve has parametric equations x = 4cos#, y=3sin6.
@ Find jl at the point with parameter 6.
x
(il Find the equation of the normal at the general point (4cosf), 3 sin6).

Find the equation of the normal at the point where 6 =Z.

(iv) Find the co-ordinates of the point where 6=,

() Show the curve and the normal on a sketch,
SOLUTION
i) x=4dcosd = % ——4sin0
y=3sin = Y =3c050
a6

dx  dx
a9

d
dy _d




(i) The tangent and normal are perpendicular, so the gradient of the normal is

il ichi 4sin6

hich -
5 whichis; 42" o
dx

Using y— y, = m(x - x,) and taking the point (x,, ,) as (4 cos6, 3sin6), the
equation of the normal at the point (4cos6, 3sin6) is

= 3ycosf—9sinfcosd = 4xsin6 — 16sinOcosO
= 4xsind—3ycosf—7sinOcosd =

(iii) When =", cosf) = — and sin = -, so the equation of the normal is
4 2 V2

1 1 11
axxL_gyxL_7xLxL-g
2 V2 T2
= #2x-3V2y-7=0
= 4x-3y-495=0 (to2decimal places)

(iv) The co-ordinates of the point where 6 = % are

. 1 il
4msl,3sm5):(4x L 3% )
( ! V2’

=(2.83,2.12)
) P
This curve
an ellip: 3
(283,2.12)
4 o 4 x
=3
Figure 4.14



EXAMPLE 4.24

Stationary points

When the equation of a curve is given parametrically, the easiest way m

distinguish between stationary points is usually to consider the sign of

use this method, you must be careful to ensure that you take points wl-uch are to
the left and right of the stationary point, i.e. have x co-ordinates smaller and
larger than those at the stationary point. These will not necessarily be points
whose parameters are smaller and larger than those at the stationary point.

Find the stationary points of the curve with parametric equations x =21+ 1,

y=3t— £, and distinguish between them.

SOLUTION
dx
=241 = Lo
% ar
y=3t-f = YPo3_3p
ar
&
dy_dr_3-32_3(1-1)
&=TeT 2
v

Stationary points occur when jl =0:
x

= £=1 = t=1 or

Att=1: x=3,y=2

At£=09: x=2.8 (to the left); ‘LY = 0.285 (positive)

Att=11: x=32(to the right); dy =-0.315 (negative)

There is a maximum at (3, 2).

Att=—1: x=-1,y=2

Att=—1.1: x=-12 (to the left); dY =-0.315 (negative)

Att=-0.9: x=—-0.8 (to the right); dl =0.285 (positive)
x

There is a minimum at (~1,-2).

An alternative method
d

; & ; : ;
Alternatively, to find TZ when §Z is expressed in terms of a parameter requires a
x

further use of the chain rule:

&y _dfdy)_d(dy) dr
@~ alax) T arlax) Cax

2 Ifyou

o
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Differentiation

EXERCISE 4E

@«

®

For each of the following curves, find gl in terms of the parameter.
x
W x=38 (i) x=6—cosf
y=28 y=0+sin0
(i) x:t+% (iv) x=3cosf
1 y=2sin6
y=t=5
W x=(t+1)? i) x=0sinf + cosO
y=(t-1y y=0cos0 —sind
wiii) x=—E—
+t
e 1
1

A curve has the parametric equations x= tan 6, y= tan 26. Find

@) the value of & when 6 =T
ax 6

(i) the equation of the tangent to the curve at the point where 6 =

n
6
(iii) the equation of the normal to the curve at the point where 6= %
A curve has the parametric equations x= 2, y=1— % for t> 0. Find

(i) the co-ordinates of the point P where the curve cuts the x axis

i) the gradient of the curve at this point

the equation of the tangent to the curve at P

(iv) the co-ordinates of the point where the tangent cuts the y axis.
A curve has parametric equations x = at?, y= 2at, where a is constant. Find

(i) the equation of the tangent to the curve at the point with parameter +
(i) the equation of the normal to the curve at the point with parameter

the co-ordinates of the points where the normal cuts the xand y axes.
A curve has parametric equations x = cos6, y = cos 26.

@ Show that & = 4cos6.
dx R

i) By writing & in terms of x, show that SX —4=0,
dx dx’

The parametric equations of a curve are x = at, y= %, where a and bare
constant. Find in terms of @, band ¢
dy
W ==
Y oax

(i) the equation of the tangent to the curve at the general point ( at, %)

the co-ordinates of the points X and Y where the tangent cuts the xand y axes.

(iv) Show that the area of triangle OXY is constant, where O is the origin.



7 The diagram shows a sketch of the curve given parametrically in terms of t by
the equations x = 4 and y= 212 where f takes positive and negative values.

o
N

y

o i

of x

P is the point on the curve with parameter .
(i) Show that the gradient at P is t.
(i) Find and simplify the equation of the tangent at P.
The tangents at two points Q (with parameter ,) and R (with parameter ,)
meet at S.
(i) Find the co-ordinates of S.
(iv) In the case when , + #, =2 show that $ lies on a straight line.
Give the equation of the line.
[MEL, adapted]
8 The diagram shows a sketch of the curve given parametrically in terms of by
the equations x=1— 12, y=2t+ 1.

Not to scale

(i) Show that the point Q(0, 3) lies on the curve, stating the value of
corresponding to this point.
(i) Show that, at the point with parameter #,

9 1

dx

(i) Find the equation of the tangent at Q.
(i) Verify that the tangent at Q passes through the point R(4, —1).
(v) The other tangent from R to the curve touches the curve at the point S and

has equation 3y — x+7 = 0. Find the co-ordinates of S.
[MEI] 113
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9 The diagram shows a sketch of the curve with parametic equations x= 1 - 2t,
y= 2. The tangent and normal at P are also shown.

Show that the point P(5, 4) lies on the curve by stating the value of #
corresponding to this point.

(0]

Show that, at the point with parameter #, % =—t

Find the equation of the tangent at P.
(iv) The normal at P cuts the curve again at Q. Find the co-ordinates of Q.
[MEI]

°

A particle P moves in a plane so that at time tits co-ordinates are given by
x=4cost, y=3sint. Find

i) % in terms of £

i) the equation of the tangent to its path at time ¢

{iii) the values of f for which the particle is travelling parallel to the line x+ y=0.

i By differentiating L, show that if y = secf then % = sechtan6.

(ii) The parametric equations of a curve are
x=1+tanf, y=sech,
for—Lr < 0 < L. Show that & = sing.
d&x

(i) Find the co-ordinates of the point on the curve at which the gradient of
the curveis .
[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2005]

R

The parametric equations of a curve are
x=3t+In(t—1), y=£+1, fort>1

- dy.
@) Express o¥ in terms of 7.
Find the co-ordinates of the only point on the curve at which the

gradient of the curve is equal to 1.

[t

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2007
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The parametric equations of a curve are

o
N

x=4sinf, y=3-2cos20,

where ~ln <60 <1n. Express% in terms of 6, simplifying your answer as
Taravpossible;

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2009]

3 espiexy

The parametric equations of a curve are
>

x=1-¢, y=e'te

26

@ Show that &Y =
&

(i) Hence find the exact value of t at the point on the curve at which the
gradient is 2.
[Cambridge International AS & A Level Mathematics 9709, Paper 22 Q4 November 2009]

The parametric equations of a curve are
x=20+5sin20, y=1-cos26.
d
Show that & = tan6.
dx
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2006]
The parametric equations of a curve are
x=acos’t, y=asin’t,
where ais a positive constant and 0 < # <
dy

(i) Express T in terms of £.

(i) Show that the equation of the tangent to the curve at the point with

parameter t is
xsint+ ycost=asintcost.

(iii) Hence show that, if this tangent meets the x axis at X and the y axis at Y,
then the length of XY is always equal to a.
[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2009]
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o

®

©

B

y=hkx"=> < = knx where kand nare real constants.
dx
inrule Y - &y du
Chain rule: 7% = T x g

Product rule (for y=uv): l = VaJ, u%

d el

=

L=

A (sinks) = keoske

ax

A (coskx) = —ksinkx

ax

d e

& (tank) = secthe

An implicit function is one connecting x and y where yis not the subject.
When you differentiate an implicit function:

o differentiating 2 with respect to xgives 2y‘%

o differentiating 4x°)” with respect to x gives 12x% X y? + 4x° X Zy:%
The derivative of any constant is 0.

In parametric equations the relationship between two variables is
expressed by writing both of them in terms of a third variable or
parameter.

To draw a graph from parametric equations, plot the points on the curve
given by different values of the parameter.

dy
:l =& providedthatd2 2 0.
dr



Integration

Every picture is worth a thousand words.
Traditional Chinese proverb

Integrals involving the exponential function
Since you know that
% (e®+b) = getst
you can see that
flemos gL s

This increases the number of functions which you are able to integrate, as in the
following example,

EXAMPLE 5.1 Find the following integrals.

W e dx i [Peerdx

SOLUTION

i) JeZH dx={e*3+c
3x]5

i) [P6edx = [%L

= 3x]3

==,

=2(e"-¢)

=6.54x10° (to 3 significant figures)

Integrals involving the natural logarithm function
You have already seen that
j' Lax=lnx+c
x

There are many other integrals that can be reduced to this form.

)
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Integration

EXAMPLE 5.2

EXAMPLE 5.3

5

1
Evaluate L Lax

SOLUTION

[t

=
=ln5-n2)
=0458  (to 3 significant figures)

2

In this example the % was taken outside the integral, allowing the standard result

for L to be used.
x

Since
y=ln(ax+bh) = -_a
dx ax+b
So
J uxu+ pdr=In@x+b)+c ¢ mean ‘an arbitrary constant’and so.
does ot necessarily have the same
and value from one equation to another.
1 =1
Jaﬁ sdx =i + D)+
%y
Find L e
SOLUTION
2 2
L [t
[osx L = [Sln(Sx + 3)]0
= Hisis
=ln13- 113
~ 0293 (to 3 significant figures)

Extending the domain for logarithmic integrals

The use of.(ldx =In x+ chas so far been restricted to cases where x > 0, since
x
logarithms are undefined for negative numbers.

Look, however, at the area between b and —a on the left-hand branch
of the curve y= % in figure 5.1. You can see that it is a real area, and that it must

be possible to evaluate it.



ACTIVITY 5.1

(]

Figure 5.1

1 What can you say about the areas of the two shaded regions?

2 Try to prove your answer to part 1 before reading on.

Proof
g
Let A= j —dx.
—bX

Now write the integral in terms of a new variable, 1, where u=—x.
This gives new limits: x=—b = u=b
x=—a = u=a.

LR
dx

So the integral becomes
a
B
A= j = ()
= j gy
bu
= [lna—Inb]

= —[Inb-Ina] =-area B

So the area has the same size as that obtained if no notice is taken of the fact that
the limits a and b have minus signs. However it has the opposite sign, as you

would expect because the area is below the axis.

Consequently the restriction that x > 0 may be dropped, and the integral is written

]‘ldx:1n|x|+a
x

CW

) Inlf(x)|+c

similary,

)
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m SoLuTIon

To make the top line into the differential of the bottom line, you write the

g 5 4

€ integral in one of two ways.

g Ll A WO O T Y

& sd—x s sx—4 5
=—{(inl-31)~ (tn | -1)] =—(In3-1In1]
=—[In3-1In1] =-1.10 (to 3s.f)

=-1.10 (to 3s.£)

A\ incethe curve y=L is not defined at
the discontinuity at x=0 (see figure
5.2), itis not possible to integrate across
this point.

q
Consequently in the integral J L dxboth
P
the limits p and g must have the same
sign, either + or —. The integral is invalid
otherwise.
Figure 5.2

€ The equation of a curve is y= % where p, (x) and p, (x) are polynominals.
(%
How can you tell from the equation whether the curve has a discontinuity?

How can you prove y=x? — 2x+ 3 has no discontinuities?

EXERCISE 5A 1 Find the following indefinite integrals.
o 12 i L
W dex (i) j4xdx (iv) sz ng

2 Find the following indefinite integrals.

W [erdx i) [etdx

i |42, e +4
) Lsx dx w IeT dx



3 Find the following definite integrals.
Where appropriate give your answers to 3 significant figures.
5 Pl L4
0 [raedx i Jm tde
i) ! (ex+ e dx i) [ e de

4 Thegraph of y=x+ % is shown below.

(i) Find the co-ordinates of the minimum point, P, and the maximum point, Q.
(i) Find the area of each shaded region.

5 The diagram illustrates the graph of y= e%. The point A has co-ordinates
(In5, 0), B has co-ordinates (In5, 5) and C has co-ordinates (0, 5).

y

c B(ns,5)

(i) Find the area of the region OABE enclosed by the curve y= ¢, the x axis,
the y axis and the line AB. Hence find the area of the shaded region EBC.

)
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N

®

(i) The graph of y = e¥is transformed into the graph of y=Inx.
Describe this transformation geometrically.

) Using your answers to parts (i) and (ii), or otherwise, show that
[fInxdx=5mn5-4.
(iv) Deduce the values of
@ [In() dx
®) ['In(3x) dx
[MEL adapted]

(i) Differentiate In(2x+3).
(i) Hence, or otherwise, show that

T L ge=1n3
.[42”3 x=nd

Find the quotient and remainder when 4x? + 8x is divided by 2x+ 3.

(iv) Hence show that

3 AP+ 8x gy 1o
L 2488 gy = 12- 3103,

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2006]

A curve is such that % = &2~ 2¢% The point (0, 1) lies on the curve.

@ Find the equation of the curve.
(i) The curve has one stationary point. Find the x co-ordinate of this point
and determine whether it is a maximum or a minimum point.

[Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 November 2005]

(i) Find the equation of the tangent to the curve y = In(3x— 2) at the point
where x=1.
(i) (a) Find the value of the constant A such that
6. A
R-2- Vo7

6_6x
23x—2
(Cambridge International AS & A Level Mathematics 9709, Paper 2 Q8 June 2009]
1

Find the exact value of the constant k for which |\ 5-2dx = 1.

() Hence show that'[ dx=8+3m2.

[Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 November 2007]
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A series for e*

The exponential function can be written as the infinite series
X 2 3 4
e*=qg t+ax+taxtax’+taxt+t..  (forx€R)

where ay, a,,, ... are numbers.

[ — H

You can find the value of a; by substituting the value zero for x.

Since e” =1, it follows that 1=a,+ 0+0+0+...,and so ;= 1.
You can now write: e*=1+a,x+ a,x’ +a x>+ a,x* + ...

Now differentiate both sides: e*= a, + 2a,x+ 3a,x> + 4a,x>+ ...,

and substitute x=0again: 1=a, +0+0+0+... ,andso a, = l also.

Now differentiate a second time, and again substitute x = 0. This time you find
a,. Continue this procedure until you can see the pattern in the values of a,, a,,
aya.

‘When you have the series for e%, substitute x = 1. The left-hand side is e! or e, and
s0 by adding the terms on the right-hand side you obtain the value of e. You will
find that the terms become small quite quickly, so you will not need to use very
many to obtain the value of e correct to several decimal places.

If you are also studying statistics you will meet this series expansion of e*in
connection with the Poisson distribution.

Compound interest

You win $100000 in a prize draw and are offered two investment options.
A You are paid 100% interest at the end of 10 years, or

B You are paid 10% compound interest year by year for 10 years.

Under which scheme are you better off?

final money _,  $200000
original money -~ $100 000

Clearly in scheme A, the ratio R=

‘What is the value of the ratio R in scheme B?

Suppose that you asked for the interest to be paid in 20 half-yearly instalments of
5% each (scheme C). What would be the value of R in this case?

Continue this process, investigating what happens to the ratio R when the
interest is paid at increasingly frequent intervals.

Is there a limit to R as the time interval between interest payments tends to zero?



Integrals involving trigonometrical functions

P2

;
m Since &(sin(ux +b)) = acos(ax+b)

it follows that Jcos(ax+bydx= %sin(ax +h)+e

[~asin(ax + b)dx = cos(ax + b) ¥ ¢

it also follows that [sin(ax + b)dx = -%cos(ax +b)+c

Integration

Similarly, since i(cos(ﬂx L) sl )

Also i((an(ﬂx+ b)) = asec(ax +b)
and so [seckax +b)dx = i(an(ner b+c
EXAMPLE 5.5 Find
W [sectxdx i [sin2vdx i) [cos(3x—m)dx.
SOLUTION

@ fsectxdx = tanx+c
) [sin2cdy = ~Lcos2x+ ¢

Gii) [cos(3x —m)dx = sin(3x —m)+ ¢

i
EXAMPLE 5.6 Find the exact value ofJ:’(sian — cosdx) dx.

SOLUTION

S

5
J?(sinlx — cosdx)dx

i
—

cos2s— Lsindx |




EXAMPLE 5.7

EXAMPLE 5.8

Using

Sometimes, when it is not immediately obvious how to integrate a function
involving trigonometrical functions, it may help to rewrite the function using
one of the trigonometrical identities.

Find [sin”x dx.
SOLUTION
Use the identity
cos2x=1—2sin2x.
(Remember that this is just one of the three expressions for cos2x.)
This identity may be rewritten as
sin®x=3(1 - cos 2x).
By putting sin’ in this form, you will be able to perform the integration.
Jsin?xde=1{ (1~ cos 20 dx
=4(x—3sin2x) + ¢
=1x—lsin2x+c

You can integrate cos?x in the same way, by using cos?x =1 (cos 2x+ 1). Other
even powers of sin x or cos x can also be integrated in a similar way, but you have
to use the identity twice or more.

Find [ costx dx.

SOLUTION
First express cosx as (cos? x)%
cosx = [4(cos 2+ 1)]°
=1(cos?2x+2cos2x+1)
Next, apply the same identity to cos?2x:
cos2x=1(cos4x+1)

1

Hence costx=1(3cosdx+5+2c0s2x+1)
11 3
=1(Jcosdx+2cos2x+3)

=4 1 3
=g Cos4x+3cos2x+

)
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This can now be integrated.
4 =[(2 1 3
Jcos xdxe= J(a cos4x+ 5 cos2x+ 5) dx

e L 3
=g;sindx+ gsin2x+ Jx+ ¢

EXERCISE 5B 1 Integrate the following with respect to x.
(i) sinx—2cosx 3cosx+2sinx (iii) 5sinx+4cosx
(iv) 4sec’x (v sin(2x+1) (vi) cos(5x—m)
(vii) 6sec?2x (viii) 3sec?3x—sin2x  (ix) 4sec’x