
Encyclopedia of Algorithms

Ming-Yang Kao (Ed.)

Encyclopedia of Algorithms

With 183 Figures and 38 Tables
With 4075 References for Further Reading

123

MING-YANG KAO

Professor of Computer Science
Department of Electrical Engineering and Computer Science
McCormick School of Engineering and Applied Science
Northwestern University
Evanston, IL 60208
USA

Library of Congress Control Number: 2007933824

ISBN: 978-0-387-30162-4

This publication is available also as:
Print publication under ISBN: 978-0-387-30770-1 and
Print and electronic bundle under ISBN: 978-0-387-36061-4

© 2008 SpringerScience+BuisinessMedia, LLC.

All rights reserved. This workmay not be translated or copied in whole or in part without the written permission of the publisher (Springer
Science+Business Media, LLC., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or
by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

springer.com

Printed on acid free paper SPIN: 11563624 2109letex – 5 4 3 2 1 0

Preface

The Encyclopedia of Algorithms aims to provide the researchers, students, and practitioners of algorithmic research with
a mechanism to efficiently and accurately find the names, definitions, key results, and further readings of important
algorithmic problems.

The work covers a wide range of algorithmic areas, and each algorithmic area is covered by a collection of entries.
An encyclopedia entry is an in-depth mini-survey of an algorithmic problem and is written by an expert researcher. The
entries for an algorithmic area are compiled by an area editor to survey the representative results in that area and can
form the core materials of a course in the area.

The Encyclopedia does not use the format of a conventional long survey for several reasons. A conventional survey
takes a handful of individuals too much time to write and is difficult to update. An encyclopedia entry contains the
same kinds of information as in a conventional survey, but an encyclopedia entry is much shorter and is much easier
for readers to absorb and for editors to update. Furthermore, an algorithmic area is surveyed by a collection of entries
which together provide a considerable amount of up-to-date information about the area, while the writing and updating
of the entries is distributed among multiple authors to speed up the work.

This reference work will be updated on a regular basis and will evolve towards primarily an Internet-based medium
to allow timely updates and fast search. If you have feedback regarding a particular entry, please feel free to communicate
directly with the author or the area editor of that entry. If you are interested in authoring an entry, please contact
a suitable area editor. If you have suggestions on how to improve the Encyclopedia as a whole, please contact me at
kao@northwestern.edu.

The credit of the Encyclopedia goes to the area editors, the entry authors, the entry reviewers, and the project editors
at Springer, including Jennifer Evans and Jennifer Carlson.

Ming-Yang Kao
Editor-in-Chief

Table of Contents

Abelian Hidden Subgroup Problem . 1
1995; Kitaev

Adaptive Partitions . 4
1986; Du, Pan, Shing

Adwords Pricing . 7
2007; Bu, Deng, Qi

AlgorithmDC-Tree for k Servers on Trees . 9
1991; Chrobak, Larmore

Algorithmic Cooling . 11
1999; Schulman, Vazirani
2002; Boykin, Mor, Roychowdhury, Vatan, Vrijen

AlgorithmicMechanismDesign . 16
1999; Nisan, Ronen

Algorithms for Spanners inWeighted Graphs . 25
2003; Baswana, Sen

All Pairs Shortest Paths in Sparse Graphs . 28
2004; Pettie

All Pairs Shortest Paths viaMatrixMultiplication . 31
2002; Zwick

Alternative PerformanceMeasures in Online Algorithms . 34
2000; Koutsoupias, Papadimitriou

Analyzing CacheMisses . 37
2003; Mehlhorn, Sanders

Applications of Geometric Spanner Networks . 40
2002; Gudmundsson, Levcopoulos, Narasimhan, Smid

Approximate Dictionaries . 43
2002; Buhrman, Miltersen, Radhakrishnan, Venkatesh

Approximate Regular ExpressionMatching . 46
1995; Wu, Manber, Myers

VIII Table of Contents

Approximate Tandem Repeats . 48
2001; Landau, Schmidt, Sokol
2003; Kolpakov, Kucherov

ApproximatingMetric Spaces by Tree Metrics . 51
1996; Bartal, Fakcharoenphol, Rao, Talwar
2004; Bartal, Fakcharoenphol, Rao, Talwar

Approximations of Bimatrix Nash Equilibria . 53
2003; Lipton, Markakis, Mehta
2006; Daskalaskis, Mehta, Papadimitriou
2006; Kontogiannis, Panagopoulou, Spirakis

Approximation Schemes for Bin Packing . 57
1982; Karmarker, Karp

Approximation Schemes for Planar Graph Problems . 59
1983; Baker
1994; Baker

Arbitrage in Frictional Foreign ExchangeMarket . 62
2003; Cai, Deng

Arithmetic Coding for Data Compression . 65
1994; Howard, Vitter

Assignment Problem . 68
1955; Kuhn
1957; Munkres

Asynchronous Consensus Impossibility . 70
1985; Fischer, Lynch, Paterson

Atomic Broadcast . 73
1995; Cristian, Aghili, Strong, Dolev

Attribute-Efficient Learning . 77
1987; Littlestone

Automated Search Tree Generation . 78
2004; Gramm, Guo, Hüffner, Niedermeier

Backtracking Based k-SAT Algorithms . 83
2005; Paturi, Pudlák, Saks, Zane

Best Response Algorithms for Selfish Routing . 86
2005; Fotakis, Kontogiannis, Spirakis

Bidimensionality . 88
2004; Demaine, Fomin, Hajiaghayi, Thilikos

Binary Decision Graph . 90
1986; Bryant

Table of Contents IX

Bin Packing . 94
1997; Coffman, Garay, Johnson

Boosting Textual Compression . 97
2005; Ferragina, Giancarlo, Manzini, Sciortino

Branchwidth of Graphs . 101
2003; Fomin, Thilikos

Broadcasting in Geometric Radio Networks . 105
2001; Dessmark, Pelc

B-trees . 108
1972; Bayer, McCreight

Burrows–Wheeler Transform . 112
1994; Burrows, Wheeler

Byzantine Agreement . 116
1980; Pease, Shostak, Lamport

Cache-ObliviousB-Tree . 121
2005; Bender, Demaine, Farach-Colton

Cache-ObliviousModel . 123
1999; Frigo, Leiserson, Prokop, Ramachandran

Cache-Oblivious Sorting . 126
1999; Frigo, Leiserson, Prokop, Ramachandran

Causal Order, Logical Clocks, StateMachine Replication . 129
1978; Lamport

Certificate Complexity and Exact Learning . 131
1995; Hellerstein, Pilliapakkamnatt, Raghavan, Wilkins

Channel Assignment and Routing inMulti-RadioWirelessMesh Networks 134
2005; Alicherry, Bhatia, Li

Circuit Partitioning: A Network-Flow-BasedBalancedMin-Cut Approach . 138
1994; Yang, Wong

Circuit Placement . 143
2000; Caldwell, Kahng, Markov
2002; Kennings, Markov
2006; Kennings, Vorwerk

Circuit Retiming . 146
1991; Leiserson, Saxe

Circuit Retiming: An Incremental Approach . 149
2005; Zhou

X Table of Contents

Clock Synchronization . 152
1994; Patt-Shamir, Rajsbaum

Closest String and Substring Problems . 155
2002; Li, Ma, Wang

Closest Substring . 156
2005; Marx

Color Coding . 158
1995; Alon, Yuster, Zwick

Communication in Ad HocMobile Networks Using RandomWalks . 161
2003; Chatzigiannakis, Nikoletseas, Spirakis

Competitive Auction . 165
2001; Goldberg, Hartline, Wright
2002; Fiat, Goldberg, Hartline, Karlin

Complexity of Bimatrix Nash Equilibria . 166
2006; Chen, Deng

Complexity of Core . 168
2001; Fang, Zhu, Cai, Deng

Compressed PatternMatching . 171
2003; Kida, Matsumoto, Shibata, Takeda, Shinohara, Arikawa

Compressed Suffix Array . 174
2003; Grossi, Gupta, Vitter

Compressed Text Indexing . 176
2005; Ferragina, Manzini

Compressing Integer Sequences and Sets . 178
2000; Moffat, Stuiver

Computing Pure Equilibria in the Game of Parallel Links . 183
2002; Fotakis, Kontogiannis, Koutsoupias, Mavronicolas, Spirakis
2003; Even-Dar, Kesselman,Mansour
2003; Feldman, Gairing, Lücking, Monien, Rode

Concurrent Programming,Mutual Exclusion . 188
1965; Dijkstra

Connected Dominating Set . 191
2003; Cheng, Huang, Li, Wu, Du

Connectivity and Fault-Tolerance in RandomRegular Graphs . 195
2000; Nikoletseas, Palem, Spirakis, Yung

Consensus with Partial Synchrony . 198
1988; Dwork, Lynch, Stockmeyer

Table of Contents XI

Constructing a Galled Phylogenetic Network . 202
2006; Jansson, Nguyen, Sung

CPU Time Pricing . 205
2005; Deng, Huang, Li

Critical Range for Wireless Networks . 207
2004; Wan, Yi

Cryptographic Hardness of Learning . 210
1994; Kearns, Valiant

CuckooHashing . 212
2001; Pagh, Rodler

DataMigration . 217
2004; Khuller, Kim, Wan

Data Reduction for Domination in Graphs . 220
2004; Alber, Fellows, Niedermeier

Decoding Reed–SolomonCodes . 222
1999; Guruswami, Sudan

Decremental All-Pairs Shortest Paths . 226
2004; Demetrescu, Italiano

Degree-Bounded Planar Spanner with LowWeight . 228
2005; Song, Li, Wang

Degree-Bounded Trees . 231
1994; Fürer, Raghavachari

Deterministic Broadcasting in Radio Networks . 233
2000; Chrobak, Gąsieniec, Rytter

Deterministic Searching on the Line . 235
1988; Baeza-Yates, Culberson, Rawlins

Dictionary-BasedData Compression . 236
1977; Ziv, Lempel

DictionaryMatching and Indexing (Exact and with Errors) . 240
2004; Cole, Gottlieb, Lewenstein

Dilation of Geometric Networks . 244
2005; Ebbers-Baumann, Grüne, Karpinski, Klein, Kutz, Knauer, Lingas

Directed Perfect Phylogeny (Binary Characters) . 246
1991; Gusfield

Direct Routing Algorithms . 248
2006; Busch, Magdon-Ismail, Mavronicolas, Spirakis

XII Table of Contents

Distance-Based Phylogeny Reconstruction (Fast-Converging) . 251
2003; King, Zhang, Zhou

Distance-Based Phylogeny Reconstruction (Optimal Radius) . 253
1999; Atteson
2005; Elias, Lagergren

Distributed Algorithms forMinimum Spanning Trees . 256
1983; Gallager, Humblet, Spira

Distributed Vertex Coloring . 258
2004; Finocchi, Panconesi, Silvestri

Dynamic Trees . 260
2005; Tarjan, Werneck

Edit Distance Under BlockOperations . 265
2000; Cormode, Paterson, Sahinalp, Vishkin
2000; Muthukrishnan, Sahinalp

EfficientMethods forMultiple Sequence Alignment with Guaranteed Error Bounds 267
1993; Gusfield

Engineering Algorithms for Computational Biology . 270
2002; Bader, Moret, Warnow

Engineering Algorithms for Large Network Applications . 272
2002; Schulz, Wagner, Zaroliagis

Engineering Geometric Algorithms . 274
2004; Halperin

Equivalence Between Priority Queues and Sorting . 278
2002; Thorup

Euclidean Traveling Salesperson Problem . 281
1998; Arora

Exact Algorithms for Dominating Set . 284
2005; Fomin, Grandoni, Kratsch

Exact Algorithms for General CNF SAT . 286
1998; Hirsch
2003; Schuler

Exact Graph Coloring Using Inclusion–Exclusion . 289
2006; Björklund, Husfeldt

Experimental Methods for AlgorithmAnalysis . 290
2001; McGeoch

External Sorting and Permuting . 291
1988; Aggarwal, Vitter

Table of Contents XIII

Facility Location . 299
1997; Shmoys, Tardos, Aardal

Failure Detectors . 304
1996; Chandra, Toueg

False-Name-Proof Auction . 308
2004; Yokoo, Sakurai, Matsubara

Fast Minimal Triangulation . 310
2005; Heggernes, Telle, Villanger

Fault-Tolerant QuantumComputation . 313
1996; Shor, Aharonov, Ben-Or, Kitaev

Floorplan and Placement . 317
1994; Kajitani, Nakatake, Murata, Fujiyoshi

Flow TimeMinimization . 320
2001; Becchetti, Leonardi, Marchetti-Spaccamela, Pruhs

FPGA TechnologyMapping . 322
1992; Cong, Ding

Fractional Packing and Covering Problems . 326
1991; Plotkin, Shmoys, Tardos
1995; Plotkin, Shmoys, Tardos

Fully Dynamic All Pairs Shortest Paths . 329
2004; Demetrescu, Italiano

Fully Dynamic Connectivity . 331
2001; Holm, de Lichtenberg, Thorup

Fully Dynamic Connectivity: Upper and Lower Bounds . 332
2000; Thorup

Fully Dynamic Higher Connectivity . 335
1997; Eppstein, Galil, Italiano, Nissenzweig

Fully Dynamic Higher Connectivity for Planar Graphs . 337
1998; Eppstein, Galil, Italiano, Spencer

Fully DynamicMinimum Spanning Trees . 339
2000; Holm, de Lichtenberg, Thorup

Fully Dynamic Planarity Testing . 342
1999; Galil, Italiano, Sarnak

Fully Dynamic Transitive Closure . 343
1999; King

Gate Sizing . 345
2002; Sundararajan, Sapatnekar, Parhi

XIV Table of Contents

General Equilibrium . 347
2002; Deng, Papadimitriou, Safra

Generalized Steiner Network . 349
2001; Jain

Generalized Two-Server Problem . 351
2006; Sitters, Stougie

Generalized Vickrey Auction . 353
1995; Varian

Geographic Routing . 355
2003; Kuhn, Wattenhofer, Zollinger

Geometric Dilation of Geometric Networks . 358
2006; Dumitrescu, Ebbers-Baumann, Grüne, Klein, Knauer, Rote

Geometric Spanners . 360
2002; Gudmundsson, Levcopoulos, Narasimhan

Gomory–Hu Trees . 364
2007; Bhalgat, Hariharan, Kavitha, Panigrahi

Graph Bandwidth . 366
1998; Feige
2000; Feige

Graph Coloring . 368
1994; Karger, Motwani, Sudan
1998; Karger, Motwani, Sudan

Graph Connectivity . 371
1994; Khuller, Vishkin

Graph Isomorphism . 373
1980; McKay

Greedy ApproximationAlgorithms . 376
2004; Ruan, Du, Jia, Wu, Li, Ko

Greedy Set-Cover Algorithms . 379
1974–1979, Chvátal, Johnson, Lovász, Stein

Hamilton Cycles in Random Intersection Graphs . 383
2005; Efthymiou, Spirakis

Hardness of Proper Learning . 385
1988; Pitt, Valiant

High Performance Algorithm Engineering for Large-scale Problems . 387
2005; Bader

Table of Contents XV

Hospitals/Residents Problem . 390
1962; Gale, Shapley

Implementation Challenge for Shortest Paths . 395
2006; Demetrescu, Goldberg, Johnson

Implementation Challenge for TSP Heuristics . 398
2002; Johnson, McGeoch

Implementing Shared Registers in AsynchronousMessage-Passing Systems 400
1995; Attiya, Bar-Noy, Dolev

Incentive Compatible Selection . 403
2006; Chen, Deng, Liu

Independent Sets in Random Intersection Graphs . 405
2004; Nikoletseas, Raptopoulos, Spirakis

Indexed Approximate StringMatching . 408
2006; Chan, Lam, Sung, Tam, Wong

Inductive Inference . 411
1983; Case, Smith

I/O-model . 413
1988; Aggarwal, Vitter

Kinetic Data Structures . 417
1999; Basch, Guibas, Hershberger

Knapsack . 419
1975; Ibarra, Kim

Learning with the Aid of anOracle . 423
1996; Bshouty, Cleve, Gavaldà, Kannan, Tamon

Learning Automata . 425
2000; Beimel, Bergadano, Bshouty, Kushilevitz, Varricchio

Learning Constant-Depth Circuits . 429
1993; Linial, Mansour, Nisan

Learning DNF Formulas . 431
1997; Jackson

Learning Heavy Fourier Coefficients of Boolean Functions . 434
1989; Goldreich, Levin

Learning withMaliciousNoise . 436
1993; Kearns, Li

Learning Significant Fourier Coefficients over Finite AbelianGroups . 438
2003; Akavia, Goldwasser, Safra

XVI Table of Contents

LEDA: a Library of Efficient Algorithms . 442
1995; Mehlhorn, Näher

Leontief Economy Equilibrium . 444
2005; Codenotti, Saberi, Varadarajan, Ye
2005; Ye

Linearity Testing/Testing Hadamard Codes . 446
1990; Blum, Luby, Rubinfeld

Linearizability . 450
1990; Herlihy, Wing

List Decoding near Capacity: Folded RS Codes . 453
2006; Guruswami, Rudra

List Scheduling . 455
1966; Graham

Load Balancing . 457
1994; Azar, Broder, Karlin
1997; Azar, Kalyanasundaram, Plotkin, Pruhs, Waarts

Local Alignment (with Affine GapWeights) . 459
1986; Altschul, Erickson

Local Alignment (with Concave GapWeights) . 461
1988; Miller, Myers

Local Approximation of Covering and Packing Problems . 463
2003–2006; Kuhn, Moscibroda, Nieberg, Wattenhofer

Local Computation in Unstructured Radio Networks . 466
2005; Moscibroda, Wattenhofer

Local SearchAlgorithms for kSAT . 468
1999; Schöning

Local Search for K-medians and Facility Location . 470
2001; Arya, Garg, Khandekar, Meyerson, Munagala, Pandit

Lower Bounds for Dynamic Connectivity . 473
2004; Pătraşcu, Demaine

Low Stretch Spanning Trees . 477
2005; Elkin, Emek, Spielman, Teng

LP Decoding . 478
2002 and later; Feldman, Karger, Wainwright

Majority Equilibrium . 483
2003; Chen, Deng, Fang, Tian

Table of Contents XVII

Market Games and Content Distribution . 485
2005; Mirrokni

Max Cut . 489
1994; Goemans, Williamson
1995; Goemans, Williamson

MaximumAgreement Subtree (of 2 Binary Trees) . 492
1996; Cole, Hariharan

MaximumAgreement Subtree (of 3 orMore Trees) . 495
1995; Farach, Przytycka, Thorup

MaximumAgreement Supertree . 497
2005; Jansson, Ng, Sadakane, Sung

MaximumCompatible Tree . 499
2001; Ganapathy, Warnow

Maximum-Density Segment . 502
1994; Huang

MaximumMatching . 504
2004; Mucha, Sankowski

Maximum-scoring Segment with Length Restrictions . 506
2002; Lin, Jiang, Chao

MaximumTwo-Satisfiability . 507
2004; Williams

Max Leaf Spanning Tree . 511
2005; Estivill-Castro, Fellows, Langston, Rosamond

Metrical Task Systems . 514
1992; Borodin, Linial, Saks

Metric TSP . 517
1976; Christofides

MinimumBisection . 519
1999; Feige, Krauthgamer

MinimumCongestion Redundant Assignments . 522
2002; Fotakis, Spirakis

Minimum Energy Broadcasting inWireless Geometric Networks . 526
2005; Ambühl

Minimum Energy Cost Broadcasting inWireless Networks . 528
2001; Wan, Calinescu, Li, Frieder

Minimum Flow Time . 531
1997; Leonardi, Raz

XVIII Table of Contents

MinimumGeometric Spanning Trees . 533
1999; Krznaric, Levcopoulos, Nilsson

Minimum k-Connected Geometric Networks . 536
2000; Czumaj, Lingas

MinimumMakespan on UnrelatedMachines . 539
1990; Lenstra, Shmoys, Tardos

Minimum Spanning Trees . 541
2002; Pettie, Ramachandran

MinimumWeighted Completion Time . 544
1999; Afrati et al.

MinimumWeight Triangulation . 546
1998; Levcopoulos, Krznaric

Mobile Agents and Exploration . 548
1952; Shannon

Multicommodity Flow,Well-linked Terminals and Routing Problems . 551
2005; Chekuri, Khanna, Shepherd

Multicut . 554
1993; Garg, Vazirani, Yannakakis
1996; Garg, Vazirani, Yannakakis

Multidimensional Compressed PatternMatching . 556
2003; Amir, Landau, Sokol

Multidimensional StringMatching . 559
1999; Kärkkäinen, Ukkonen

Multi-level FeedbackQueues . 562
1968; Coffman, Kleinrock

Multiple Unit Auctions with Budget Constraint . 563
2005; Borgs, Chayes, Immorlica, Mahdian, Saberi
2006; Abrams

Multiplex PCR for Gap Closing (Whole-genomeAssembly) . 565
2002; Alon, Beigel, Kasif, Rudich, Sudakov

Multiway Cut . 567
1998; Calinescu, Karloff, Rabani

Nash Equilibria and Dominant Strategies in Routing . 571
2005; Wang, Li, Chu

Nearest Neighbor Interchange and RelatedDistances . 573
1999; DasGupta, He, Jiang, Li, Tromp, Zhang

Table of Contents XIX

Negative Cycles inWeighted Digraphs . 576
1994; Kavvadias, Pantziou, Spirakis, Zaroliagis

Non-approximability of Bimatrix Nash Equilibria . 578
2006; Chen, Deng, Teng

Non-shared Edges . 579
1985; Day

Nucleolus . 581
2006; Deng, Fang, Sun

Oblivious Routing . 585
2002; Räcke

Obstacle Avoidance Algorithms inWireless Sensor Networks . 588
2007; Powell, Nikoletseas

O(log logn)-competitive Binary Search Tree . 592
2004; Demaine, Harmon, Iacono, Patrascu

Online Interval Coloring . 594
1981; Kierstead, Trotter

Online List Update . 598
1985; Sleator, Tarjan

Online Paging and Caching . 601
1985–2002; multiple authors

Optimal Probabilistic Synchronous Byzantine Agreement . 604
1988; Feldman, Micali

Optimal StableMarriage . 606
1987; Irving, Leather, Gusfield

P2P . 611
2001; Stoica, Morris, Karger, Kaashoek, Balakrishnan

Packet Routing . 616
1988; Leighton, Maggs, Rao

Packet Switching inMulti-Queue Switches . 618
2004; Azar, Richter; Albers, Schmidt

Packet Switching in Single Buffer . 621
2003; Bansal, Fleischer, Kimbrel, Mahdian, Schieber, Sviridenko

PAC Learning . 622
1984; Valiant

PageRank Algorithm . 624
1998; Brin, Page

XX Table of Contents

Paging . 625
1985; Sleator, Tarjan, Fiat, Karp, Luby, McGeoch, Sleator, Young
1991; Sleator, Tarjan; Fiat, Karp, Luby, McGeoch, Sleator, Young

Parallel Algorithms for Two Processors Precedence Constraint Scheduling 627
2003; Jung, Serna, Spirakis

Parallel Connectivity andMinimum Spanning Trees . 629
2001; Chong, Han, Lam

ParameterizedAlgorithms for Drawing Graphs . 631
2004; Dujmovic, Whitesides

ParameterizedMatching . 635
1993; Baker

Parameterized SAT . 639
2003; Szeider

Peptide De Novo SequencingwithMS/MS . 640
2005; Ma, Zhang, Liang

Perceptron Algorithm . 642
1959; Rosenblatt

Perfect Phylogeny (Bounded Number of States) . 644
1997; Kannan, Warnow

Perfect Phylogeny Haplotyping . 647
2005; Ding, Filkov, Gusfield

Performance-DrivenClustering . 650
1993; Rajaraman, Wong

Phylogenetic Tree Construction from a DistanceMatrix . 651
1989; Hein

Planar Geometric Spanners . 653
2005; Bose, Smid, Gudmundsson

Planarity Testing . 656
1976; Booth, Lueker

Point PatternMatching . 657
2003; Ukkonen, Lemström, Mäkinen

Position Auction . 660
2005; Varian

Predecessor Search . 661
2006; Pătraşcu, Thorup

Price of Anarchy . 665
2005; Koutsoupias

Table of Contents XXI

Price of Anarchy for MachinesModels . 667
2002; Czumaj, Vöcking

Probabilistic Data Forwarding inWireless Sensor Networks . 671
2004; Chatzigiannakis, Dimitriou, Nikoletseas, Spirakis

Quantization ofMarkov Chains . 677
2004; Szegedy

QuantumAlgorithm for CheckingMatrix Identities . 680
2006; Buhrman, Spalek

QuantumAlgorithm for the Collision Problem . 682
1998; Brassard, Hoyer, Tapp

QuantumAlgorithm for the Discrete Logarithm Problem . 683
1994; Shor

QuantumAlgorithm for Element Distinctness . 686
2004; Ambainis

QuantumAlgorithm for Factoring . 689
1994; Shor

QuantumAlgorithm for Finding Triangles . 690
2005; Magniez, Santha, Szegedy

QuantumAlgorithm for the Parity Problem . 693
1985; Deutsch

QuantumAlgorithms for Class Group of a Number Field . 694
2005; Hallgren

QuantumAlgorithm for Search on Grids . 696
2005; Ambainis, Kempe, Rivosh

QuantumAlgorithm for Solving the Pell’s Equation . 698
2002; Hallgren

QuantumApproximation of the Jones Polynomial . 700
2005; Aharonov, Jones, Landau

QuantumDense Coding . 703
1992; Bennett, Wiesner

Quantum Error Correction . 705
1995; Shor

QuantumKey Distribution . 708
1984; Bennett, Brassard
1991; Ekert

Quantum Search . 712
1996; Grover

XXII Table of Contents

Quorums . 715
1985; Garcia-Molina, Barbara

Radiocoloring in Planar Graphs . 721
2005; Fotakis, Nikoletseas, Papadopoulou, Spirakis

Randomization in Distributed Computing . 723
1996; Chandra

Randomized Broadcasting in Radio Networks . 725
1992; Reuven Bar-Yehuda, Oded Goldreich, Alon Itai

Randomized Energy Balance Algorithms in Sensor Networks . 728
2005; Leone, Nikoletseas, Rolim

RandomizedGossiping in Radio Networks . 731
2001; Chrobak, Gąsieniec, Rytter

RandomizedMinimum Spanning Tree . 732
1995; Karger, Klein, Tarjan

Randomized Parallel Approximations toMax Flow . 734
1991; Serna, Spirakis

Randomized Rounding . 737
1987; Raghavan, Thompson

Randomized Searching on Rays or the Line . 740
1993; Kao, Reif, Tate

RandomPlanted 3-SAT . 742
2003; Flaxman

RankedMatching . 744
2005; Abraham, Irving, Kavitha, Mehlhorn

Rank and Select Operations on Binary Strings . 748
1974; Elias

Rate-Monotonic Scheduling . 751
1973; Liu, Layland

Rectilinear Spanning Tree . 754
2002; Zhou, Shenoy, Nicholls

Rectilinear Steiner Tree . 757
2004; Zhou

Registers . 761
1986; Lamport, Vitanyi, Awerbuch

Regular Expression Indexing . 764
2002; Chan, Garofalakis, Rastogi

Table of Contents XXIII

Regular ExpressionMatching . 768
2004; Navarro, Raffinot

Reinforcement Learning . 771
1992; Watkins

Renaming . 774
1990; Attiya, Bar-Noy, Dolev, Peleg, Reischuk

RNA Secondary Structure BoltzmannDistribution . 777
2005; Miklós, Meyer, Nagy

RNA Secondary Structure Prediction Including Pseudoknots . 780
2004; Lyngsø

RNA Secondary Structure Prediction byMinimum Free Energy . 782
2006; Ogurtsov, Shabalina, Kondrashov, Roytberg

Robotics . 785
1997; (Navigation) Blum, Raghavan, Schieber
1998; (Exploration) Deng, Kameda, Papadimitriou
2001; (Localization) Fleischer, Romanik, Schuierer, Trippen

Robust Geometric Computation . 788
2004; Li, Yap

Routing . 791
2003; Azar, Cohen, Fiat, Kaplan, Räcke

Routing in Geometric Networks . 793
2003; Kuhn, Wattenhofer, Zhang, Zollinger

Routing in Road Networks with Transit Nodes . 796
2007; Bast, Funke, Sanders, Schultes

R-Trees . 800
2004; Arge, de Berg, Haverkort, Yi

Schedulers for Optimistic Rate Based FlowControl . 803
2005; Fatourou, Mavronicolas, Spirakis

Schedulingwith Equipartition . 806
2000; Edmonds

Selfish Unsplittable Flows: Algorithms for Pure Equilibria . 810
2005; Fotakis, Kontogiannis, Spirakis

Self-Stabilization . 812
1974; Dijkstra

Separators in Graphs . 815
1998; Leighton, Rao
1999; Leighton, Rao

XXIV Table of Contents

Sequential Approximate StringMatching . 818
2003; Crochemore, Landau, Ziv-Ukelson
2004; Fredriksson, Navarro

Sequential Circuit TechnologyMapping . 820
1998; Pan, Liu

Sequential Exact StringMatching . 824
1994; Crochemore, Czumaj, Gąsieniec, Jarominek, Lecroq, Plandowski, Rytter

Sequential Multiple StringMatching . 826
1999; Crochemore, Czumaj, Ga̧sieniec, Lecroq, Plandowski, Rytter

Set Agreement . 829
1993; Chaudhuri

Set Cover with Almost Consecutive Ones . 832
2004; Mecke, Wagner

Shortest Elapsed Time First Scheduling . 834
2003; Bansal, Pruhs

Shortest Paths Approaches for Timetable Information . 837
2004; Pyrga, Schulz, Wagner, Zaroliagis

Shortest Paths in Planar Graphs with NegativeWeight Edges . 838
2001; Fakcharoenphol, Rao

Shortest Vector Problem . 841
1982; Lenstra, Lenstra, Lovasz

Similarity between Compressed Strings . 843
2005; Kim, Amir, Landau, Park

Single-Source Fully Dynamic Reachability . 846
2005; Demetrescu, Italiano

Single-Source Shortest Paths . 847
1999; Thorup

Ski Rental Problem . 849
1990; Karlin, Manasse, McGeogh, Owicki

Slicing FloorplanOrientation . 852
1983; Stockmeyer

Snapshots in SharedMemory . 855
1993; Afek, Attiya, Dolev, Gafni, Merritt, Shavit

Sorting Signed Permutations by Reversal (Reversal Distance) . 858
2001; Bader, Moret, Yan

Sorting Signed Permutations by Reversal (Reversal Sequence) . 860
2004; Tannier, Sagot

Table of Contents XXV

Sorting by Transpositions and Reversals (Approximate Ratio 1.5) . 863
2004; Hartman, Sharan

Sparse Graph Spanners . 867
2004; Elkin, Peleg

Sparsest Cut . 868
2004; Arora, Rao, Vazirani

Speed Scaling . 870
1995; Yao, Demers, Shenker

Sphere Packing Problem . 871
2001; Chen, Hu, Huang, Li, Xu

Squares and Repetitions . 874
1999; Kolpakov, Kucherov

StableMarriage . 877
1962; Gale, Shapley

StableMarriage and Discrete Convex Analysis . 880
2000; Eguchi, Fujishige, Tamura, Fleiner

StableMarriagewith Ties and Incomplete Lists . 883
2007; Iwama, Miyazaki, Yamauchi

Stable Partition Problem . 885
2002; Cechlárová, Hajduková

StackelbergGames: The Price of Optimum . 888
2006; Kaporis, Spirakis

StatisticalMultiple Alignment . 892
2003; Hein, Jensen, Pedersen

Statistical Query Learning . 894
1998; Kearns

Steiner Forest . 897
1995; Agrawal, Klein, Ravi

Steiner Trees . 900
2006; Du, Graham, Pardalos, Wan, Wu, Zhao

Stochastic Scheduling . 904
2001; Glazebrook, Nino-Mora

String Sorting . 907
1997; Bentley, Sedgewick

Substring Parsimony . 910
2001; Blanchette, Schwikowski, Tompa

XXVI Table of Contents

Succinct Data Structures for ParenthesesMatching . 912
2001; Munro, Raman

Succinct Encoding of Permutations: Applications to Text Indexing . 915
2003; Munro, Raman, Raman, Rao

Suffix Array Construction . 919
2006; Kärkkäinen, Sanders, Burkhardt

Suffix Tree Construction in HierarchicalMemory . 922
2000; Farach-Colton, Ferragina, Muthukrishnan

Suffix Tree Construction in RAM . 925
1997; Farach-Colton

Support VectorMachines . 928
1992; Boser, Guyon, Vapnik

SymbolicModel Checking . 932
1990; Burch, Clarke, McMillan, Dill

Synchronizers, Spanners . 935
1985; Awerbuch

Table Compression . 939
2003; Buchsbaum, Fowler, Giancarlo

Tail Bounds for Occupancy Problems . 942
1995; Kamath, Motwani, Palem, Spirakis

TechnologyMapping . 944
1987; Keutzer

Teleportation of Quantum States . 947
1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters

Text Indexing . 950
1993; Manber, Myers

Thresholds of Random k-SAT . 954
2002; Kaporis, Kirousis, Lalas

Topology Approach in Distributed Computing . 956
1999; Herlihy Shavit

Trade-Offs for Dynamic Graph Problems . 958
2005; Demetrescu, Italiano

Traveling Sales Personwith Few Inner Points . 961
2004; Deı̆neko, Hoffmann, Okamoto, Woeginger

Tree Compression and Indexing . 964
2005; Ferragina, Luccio, Manzini, Muthukrishnan

Table of Contents XXVII

Treewidth of Graphs . 968
1987; Arnborg, Corneil, Proskurowski

Truthful Mechanisms for One-Parameter Agents . 970
2001; Archer, Tardos

Truthful Multicast . 973
2004; Wang, Li, Wang

TSP-Based Curve Reconstruction . 976
2001; Althaus, Mehlhorn

Two-Dimensional Pattern Indexing . 979
2005; Na, Giancarlo, Park

Two-Dimensional Scaled PatternMatching . 982
2006; Amir, Chencinski

Two-Interval Pattern Problems . 985
2004; Vialette
2007; Cheng, Yang, Yuan

Two-Level BooleanMinimization . 989
1956; McCluskey

Undirected Feedback Vertex Set . 995
2005; Dehne, Fellows, Langston, Rosamond, Stevens;
2005; Guo, Gramm, Hüffner, Niedermeier,Wernicke

UtilitarianMechanismDesign for Single-Minded Agents . 997
2005; Briest, Krysta, Vöcking

Vertex Cover Kernelization .1003
2004; Abu-Khzam, Collins, Fellows, Langston, Suters, Symons

Vertex Cover Search Trees .1006
2001; Chen, Kanj, Jia

Visualization Techniques for Algorithm Engineering .1008
2002; Demetrescu, Finocchi, Italiano, Näher

Voltage Scheduling .1011
2005; Li, Yao

Wait-Free Synchronization .1015
1991; Herlihy

Weighted Connected Dominating Set .1020
2005; Wang, Wang, Li

Weighted PopularMatchings .1023
2006; Mestre

XXVIII Table of Contents

Weighted Random Sampling .1024
2005; Efraimidis, Spirakis

Well Separated Pair Decomposition .1027
2003; Gao, Zhang

Well Separated Pair Decomposition for Unit–Disk Graph .1030
1995; Callahan, Kosaraju

Wire Sizing .1032
1999; Chu, Wong

Work-FunctionAlgorithm for k Servers .1035
1994; Koutsoupias, Papadimitriou

Chronological Index . 1039

Bibliography . 1053

Index . 1157

About the Editor

Ming-Yang Kao is a Professor of Computer Science in the Department of Electrical Engineering and Computer Science
at Northwestern University. He has published extensively in the design, analysis, and applications of algorithms. His
current interests include discrete optimization, bioinformatics, computational economics, computational finance, and
nanotechnology. He serves as the Editor-in-Chief of Algorithmica.
He obtained a B.S. in Mathematics from National Taiwan University in 1978 and a Ph.D. in Computer Science from
Yale University in 1986. He previously taught at Indiana University at Bloomington, Duke University, Yale University,
and Tufts University. At Northwestern University, he has served as the Department Chair of Computer Science. He
has also co-founded the Program in Computational Biology and Bioinformatics and served as its Director. He currently
serves as the Head of the EECSDivision of Computing, Algorithms, and Applications and is amember of the Theoretical
Computer Science Group.
For more information please see: www.cs.northwestern.edu/~kao

Area Editors

Online Algorithms
Approximation Algorithms

ALBERS, SUSANNE
University of Freiburg
Freiburg
Germany

Quantum Computing

© University of Latvia
Press Center

AMBAINIS, ANDRIS
University of Latvia
Riga
Latvia

External Memory Algorithms and Data
Structures
Cache-Oblivious Algorithms and Data
Structures

ARGE, LARS
University of Aarhus
Aarhus
Denmark

Mechanism Design
Online Algorithms
Price of Anarchy

AZAR, YOSSI
Tel-Aviv University
Tel-Aviv
Israel

XXXII Area Editors

Approximation Algorithms

CHEKURI, CHANDRA
University of Illinois, Urbana-Champaign
Urbana, IL
USA

Online Algorithms
Radio Networks

CHROBAK, MAREK
University of California, Riverside
Riverside, CA
USA

Internet Algorithms
Network and Communication Protocols

COHEN, EDITH
AT&T Labs
Florham Park, NJ
USA

Bioinformatics

CSÜRÖS, MIKLÓS
University of Montreal
Montreal, QC
Canada

Computational Economics

DENG, XIAOTIE
University of Hong Kong
Hong Kong
China

Combinatorial Group Testing
Mathematical Optimization
Steiner Tree Algorithms

DU, DING-ZHU
University of Texas, Dallas
Richardson, TX
USA

Area Editors XXXIII

String Algorithms and Data Structures
Data Compression

FERRAGINA, PAOLO
University of Pisa
Pisa
Italy

Coding Algorithms

GURUSWAMI, VENKATESAN
University of Washington
Seattle, WA
USA

Algorithm Engineering
Dynamic Graph Algorithms

ITALIANO, GIUSEPPE
University of Rome
Rome
Italy

StableMarriage Problems
Exact Algorithms

IWAMA, KAZUO
Kyoto University
Kyoto
Japan

Approximation Algorithms

KHANNA, SANJEEV
University of Pennsylvania
Philadelphia, PA
USA

Graph Algorithms
Combinatorial Optimization
Approximation Algorithms

KHULLER, SAMIR
University of Maryland
College Park, MD
USA

XXXIV Area Editors

Compressed Text Indexing
Computational Biology

LAM, TAK-WAK
University of Hong Kong
Hong Kong
China

Mobile Computing

LI, XIANG-YANG
Illinois Institute of Technology
Chicago, IL
USA

Geometric Networks

LINGAS, ANDRZEJ
Lund University
Lund
Sweden

String Algorithms and Data Structures
Compression of Text
Data Structures

NAVARRO, GONZALO
University of Chile
Santiago
Chile

Parameterized and Exact Algorithms

NEIDERMEIER, ROLF
University of Jena
Jena
Germany

Probabilistic Algorithms
Average Case Analysis

NIKOLETSEAS, SOTIRIS
Patras University
Patras
Greece

Area Editors XXXV

Graph Algorithms

PETTIE, SETH
University of Michigan
Ann Arbor, MI
USA

Scheduling Algorithms

PRUHS, KIRK
University of Pittsburgh
Pittsburgh, PA
USA

Distributed Algorithms

RAJSBAUM, SERGIO
National Autonomous University of Mexico
Mexico City
Mexico

Graph Algorithms

RAMACHANDRAN, VIJAYA
University of Texas, Austin
Austin, TX
USA

Algorithm Engineering

RAMAN, RAJEEV
University of Leicester
Leicester
UK

Computational Learning Theory

SERVEDIO, ROCCO
Columbia University
New York, NY
USA

XXXVI Area Editors

Probabilistic Algorithms
Average Case Analysis

SPIRAKIS, PAVLOS (PAUL)
Patras University
Patras
Greece

Scheduling Algorithms

STEIN, CLIFFORD
Columbia University
New York, NY
USA

VLSI CAD Algorithms

ZHOU, HAI
Northwestern University
Evanston, IL
USA

List of Contributors

AARDAL, KAREN
CWI
Amsterdam
The Netherlands
Eindhoven University of Technology
Eindhoven
The Netherlands

AKAVIA, ADI
MIT
Cambridge, MA
USA

ALBERS, SUSANNE
University of Freiburg
Freiburg
Germany

ALICHERRY, MANSOOR
Bell Labs
Murray Hill, NJ
USA

ALON, NOGA
Tel-Aviv University
Tel-Aviv
Israel

ALTSCHUL, STEPHEN F.
The Rockefeller University
New York, NY
USA
MIT
Cambridge, MA
USA

ALURU, SRINIVAS
Iowa State University
Ames, IA
USA

AMBAINIS, ANDRIS
University of Latvia
Riga
Latvia

AMBÜHL, CHRISTOPH
University of Liverpool
Liverpool
UK

AMIR, AMIHOOD
Bar-Ilan University
Ramat-Gan
Israel

ASODI, VERA
California Institute of Technology
Pasadena, CA
USA

AUER, PETER
University of Leoben
Leoben
Austria

AZIZ, ADNAN
University of Texas
Austin, TX
USA

BABAIOFF, MOSHE
Microsoft Research, Silicon Valley
Mountain View, CA
USA

BADER, DAVID A.
Georgia Institute of Technology
Atlanta, GA
USA

BAEZA-YATES, RICARDO
University of Chile
Santiago
Chile

BANSAL, NIKHIL
IBM
Yorktown Heights, NY
USA

XXXVIII List of Contributors

BARBAY, JÉRÉMY
University of Chile
Santiago
Chile

BARUAH, SANJOY
University of North Carolina
Chapel Hill, NC
USA

BASWANA, SURENDER
IIT Kanpur
Kanpur
India

BECCHETTI, LUCA
University of Rome
Rome
Italy

BEIMEL, AMOS
Ben-Gurion University
Beer Sheva
Israel

BÉKÉSI, JÓZSEF
Juhász Gyula Teachers Training College
Szeged
Hungary

BERGADANO, FRANCESCO
University of Torino
Torino
Italy

BERRY, VINCENT
LIRMM, University of Montpellier
Montpellier
France

BHATIA, RANDEEP
Bell Labs
Murray Hill, NJ
USA

BJÖRKLUND, ANDREAS
Lund University
Lund
Sweden

BLANCHETTE, MATHIEU
McGill University
Montreal, QC
Canada

BLÄSER, MARKUS
Saarland University
Saarbrücken
Germany

BODLAENDER, HANS L.
University of Utrecht
Utrecht
The Netherlands

BORRADAILE, GLENCORA
Brown University
Providence, RI
USA

BSHOUTY, NADER H.
Technion
Haifa
Israel

BUCHSBAUM, ADAM L.
AT&T Labs, Inc.
Florham Park, NJ
USA

BUSCH, COSTAS
Lousiana State University
Baton Rouge, LA
USA

BU, TIAN-MING
Fudan University
Shanghai
China

BYRKA, JAROSLAW
CWI
Amsterdam
The Netherlands
Eindhoven University of Technology
Eindhoven
The Netherlands

CAI, MAO-CHENG
Chinese Academy of Sciences
Beijing
China

CALINESCU, GRUIA
Illinois Institute of Technology
Chicago, IL
USA

CECHLÁROVÁ, KATARÍNA
P.J. Šafárik University
Košice
Slovakia

List of Contributors XXXIX

CHAN, CHEE-YONG
National University of Singapore
Singapore
Singapore

CHANDRA, TUSHAR DEEPAK
IBMWatson Research Center
Yorktown Heights, NY
USA

CHAO, KUN-MAO
National Taiwan University
Taipei
Taiwan

CHARRON-BOST, BERNADETTE
The Polytechnic School
Palaiseau
France

CHATZIGIANNAKIS, IOANNIS
University of Patras and Computer Technology Institute
Patras
Greece

CHAWLA, SHUCHI
University of Wisconsin–Madison
Madison, WI
USA

CHEKURI, CHANDRA
University of Illinois, Urbana-Champaign
Urbana, IL
USA

CHEN, DANNY Z.
University of Notre Dame
Notre Dame, IN
USA

CHENG, XIUZHEN
The George Washington University
Washington, D.C.
USA

CHEN, JIANER
Texas A&M University
College Station, TX
USA

CHEN, XI
Tsinghua University
Beijing, Beijing
China

CHIN, FRANCIS
University of Hong Kong
Hong Kong
China

CHOWDHURY, REZAUL A.
University of Texas at Austin
Austin, TX
USA

CHRISTODOULOU, GEORGE
Max-Planck-Institute for Computer Science
Saarbruecken
Germany

CHROBAK, MAREK
University of California at Riverside
Riverside, CA
USA

CHU, CHRIS
Iowa State University
Ames, IA
USA

CHU, XIAOWEN
Hong Kong Baptist University
Hong Kong
China

CHUZHOY, JULIA
Toyota Technological Institute
Chicago, IL
USA

CONG, JASON
UCLA
Los Angeles, CA
USA

COWEN, LENORE J.
Tufts University
Medford, MA
USA

CRISTIANINI, NELLO
University of Bristol
Bristol
UK

CROCHEMORE, MAXIME
King’s College London
London
UK
University of Paris-East
Paris
France

XL List of Contributors

CSŰRÖS, MIKLÓS
University of Montreal
Montreal, QC
Canada

CZUMAJ, ARTUR
University of Warwick
Coventry
UK

DASGUPTA, BHASKAR
University of Illinois at Chicago
Chicago, IL
USA

DÉFAGO, XAVIER
Japan Advanced Institute of Science and Technology
(JAIST)
Ishikawa
Japan

DEMAINE, ERIK D.
MIT
Cambridge, MA
USA

DEMETRESCU, CAMIL
University of Rome
Rome
Italy

DENG, PING
University of Texas at Dallas
Richardson, TX
USA

DENG, XIAOTIE
City University of Hong Kong
Hong Kong
China

DESPER, RICHARD
University College London
London
UK

DICK, ROBERT
Northwestern University
Evanston, IL
USA

DING, YUZHENG
Synopsys Inc.
Mountain View, CA
USA

DOM, MICHAEL
University of Jena
Jena
Germany

DUBHASHI, DEVDATT
Chalmers University of Technology and Gothenburg
University
Gothenburg
Sweden

DU, DING-ZHU
University of Dallas at Texas
Richardson, TX
USA

EDMONDS, JEFF
York University
Toronto, ON
Canada

EFRAIMIDIS, PAVLOS
Democritus University of Thrace
Xanthi
Greece

EFTHYMIOU, CHARILAOS
University of Patras
Patras
Greece

ELKIN, MICHAEL
Ben-Gurion University
Beer-Sheva
Israel

EPSTEIN, LEAH
University of Haifa
Haifa
Israel

ERICKSON, BRUCE W.
The Rockefeller University
New York, NY
USA

EVEN-DAR, EYAL
University of Pennsylvania
Philadelphia, PA
USA

FAGERBERG, ROLF
University of Southern Denmark
Odense
Denmark

List of Contributors XLI

FAKCHAROENPHOL, JITTAT
Kasetsart University
Bangkok
Thailand

FANG, QIZHI
Ocean University of China
Qingdao
China

FATOUROU, PANAGIOTA
University of Ioannina
Ioannina
Greece

FELDMAN, JONATHAN
Google, Inc.
New York, NY
USA

FELDMAN, VITALY
Harvard University
Cambridge, MA
USA

FERNAU, HENNING
University of Trier
Trier
Germany

FERRAGINA, PAOLO
University of Pisa
Pisa
Italy

FEUERSTEIN, ESTEBAN
University of Buenos Aires
Buenos Aires
Argentina

FISHER, NATHAN
University of North Carolina
Chapel Hill, NC
USA

FLAXMAN, ABRAHAM
Microsoft Research
Redmond, WA
USA

FLEISCHER, RUDOLF
Fudan University
Shanghai
China

FOMIN, FEDOR
University of Bergen
Bergen
Norway

FOTAKIS, DIMITRIS
University of the Aegean
Samos
Greece

FRIEDER, OPHIR
Illinois Institute of Technology
Chicago, IL
USA

FÜRER, MARTIN
The Pennsylvania State University
University Park, PA
USA

GAGIE, TRAVIS
University of Eastern Piedmont
Alessandria
Italy

GALAMBOS, GÁBOR
Juhász Gyula Teachers Training College
Szeged
Hungary

GAO, JIE
Stony Brook University
Stony Brook, NY
USA

GARAY, JUAN
Bell Labs
Murray Hill, NJ
USA

GAROFALAKIS, MINOS
University of California – Berkeley
Berkeley, CA
USA

GASCUEL, OLIVIER
National Scientific Research Center
Montpellier
France

GĄSIENIEC, LESZEK
University of Liverpool
Liverpool
UK

XLII List of Contributors

GIANCARLO, RAFFAELE
University of Palermo
Palermo
Italy

GOLDBERG, ANDREW V.
Microsoft Research – Silicon Valley
Mountain View, CA
USA

GRAMM, JENS
Tübingen University
Tübingen
Germany

GROVER, LOV K.
Bell Labs
Murray Hill, NJ
USA

GUDMUNDSSON, JOACHIM
National ICT Australia Ltd
Alexandria
Australia

GUERRAOUI, RACHID
EPFL
Lausanne
Switzerland

GUO, JIONG
University of Jena
Jena
Germany

GURUSWAMI, VENKATESAN
University of Washington
Seattle, WA
USA

HAJIAGHAYI, MOHAMMADTAGHI
University of Pittsburgh
Pittsburgh, PA
USA

HALLGREN, SEAN
The Pennsylvania State University
University Park, PA
USA

HALPERIN, DAN
Tel-Aviv University
Tel Aviv
Israel

HARIHARAN, RAMESH
Strand Life Sciences
Bangalore
India

HELLERSTEIN, LISA
Polytechnic University
Brooklyn, NY
USA

HE, MENG
University of Waterloo
Waterloo, ON
Canada

HENZINGER, MONIKA
Google Switzerland & Ecole Polytechnique Federale de
Lausanne (EPFL)
Lausanne
Switzerland

HERLIHY, MAURICE
Brown University
Providence, RI
USA

HERMAN, TED
University of Iowa
Iowa City, IA
USA

HE, XIN
University at Buffalo The State University of New York
Buffalo, NY
USA

HIRSCH, EDWARD A.
Steklov Institute of Mathematics at St. Petersburg
St. Petersburg
Russia

HON, WING-KAI
National Tsing Hua University
Hsin Chu
Taiwan

HOWARD, PAUL G.
Microway, Inc.
Plymouth, MA
USA

HUANG, LI-SHA
Tsinghua University
Beijing, Beijing
China

List of Contributors XLIII

HUANG, YAOCUN
University of Texas at Dallas
Richardson, TX
USA

HÜFFNER, FALK
University of Jena
Jena
Germany

HUSFELDT, THORE
Lund University
Lund
Sweden

ILIE, LUCIAN
University of Western Ontario
London, ON
Canada

IRVING, ROBERT W.
University of Glasgow
Glasgow
UK

ITAI, ALON
Technion
Haifa
Israel

ITALIANO, GIUSEPPE F.
University of Rome
Rome
Italy

IWAMA, KAZUO
Kyoto University
Kyoto
Japan

JACKSON, JEFFREY C.
Duquesne University
Pittsburgh, PA
USA

JACOB, RIKO
Technical University of Munich
Munich
Germany

JAIN, RAHUL
University of Waterloo
Waterloo, ON
Canada

JANSSON, JESPER
Ochanomizu University
Tokyo
Japan

JIANG, TAO
University of California at Riverside
Riverside, CA
USA

JOHNSON, DAVID S.
AT&T Labs
Florham Park, NJ
USA

KAJITANI, YOJI
The University of Kitakyushu
Kitakyushu
Japan

KAPORIS, ALEXIS
University of Patras
Patras
Greece

KARAKOSTAS, GEORGE
McMaster University
Hamilton, ON
Canada

KÄRKKÄINEN, JUHA
University of Helsinki
Helsinki
Finland

KELLERER, HANS
University of Graz
Graz
Austria

KENNINGS, ANDREW A.
University of Waterloo
Waterloo, ON
Canada

KEUTZER, KURT
University of California at Berkeley
Berkeley, CA
USA

KHULLER, SAMIR
University of Maryland
College Park, MD
USA

XLIV List of Contributors

KIM, JIN WOOK
HM Research
Seoul
Korea

KIM, YOO-AH
University of Connecticut
Storrs, CT
USA

KING, VALERIE
University of Victoria
Victoria, BC
Canada

KIROUSIS, LEFTERIS
University of Patras
Patras
Greece

KIVINEN, JYRKI
University of Helsinki
Helsinki
Finland

KLEIN, ROLF
University of Bonn
Bonn
Germany

KLIVANS, ADAM
University of Texas at Austin
Austin, TX
USA

KONJEVOD, GORAN
Arizona State University
Tempe, AZ
USA

KONTOGIANNIS, SPYROS
University of Ioannina
Ioannina
Greece

KRANAKIS, EVANGELOS
Carleton
Ottawa, ON
Canada

KRATSCH, DIETER
Paul Verlaine University
Metz
France

KRAUTHGAMER, ROBERT
Weizmann Institute of Science
Rehovot
Israel
IBM Almaden Research Center
San Jose, CA
USA

KRIZANC, DANNY
Wesleyan University
Middletown, CT
USA

KRYSTA, PIOTR
University of Liverpool
Liverpool
UK

KUCHEROV, GREGORY
LIFL and INRIA
Villeneuve d’Ascq
France

KUHN, FABIAN
ETH Zurich
Zurich
Switzerland

KUMAR, V.S. ANIL
Virginia Tech
Blacksburg, VA
USA

KUSHILEVITZ, EYAL
Technion
Haifa
Israel

LAM, TAK-WAH
University of Hong Kong
Hong Kong
China

LANCIA, GIUSEPPE
University of Udine
Udine
Italy

LANDAU, GAD M.
University of Haifa
Haifa
Israel

LANDAU, ZEPH
City College of CUNY
New York, NY
USA

List of Contributors XLV

LANGBERG, MICHAEL
The Open University of Israel
Raanana
Israel

LAVI, RON
Technion
Haifa
Israel

LECROQ, THIERRY
University of Rouen
Rouen
France

LEE, JAMES R.
University of Washington
Seattle, WA
USA

LEONARDI, STEFANO
University of Rome
Rome
Italy

LEONE, PIERRE
University of Geneva
Geneva
Switzerland

LEUNG, HENRY
MIT
Cambridge, MA
USA

LEVCOPOULOS, CHRISTOS
Lund University
Lund
Sweden

LEWENSTEIN, MOSHE
Bar-Ilan University
Ramat-Gan
Israel

LI, LI (ERRAN)
Bell Labs
Murray Hill, NJ
USA

LI, MING
University of Waterloo
Waterloo, ON
Canada

LI, MINMING
City University of Hong Kong
Hong Kong
China

LINGAS, ANDRZEJ
Lund University
Lund
Sweden

LI, XIANG-YANG
Illinois Institue of Technology
Chicago, IL
USA

LU, CHIN LUNG
National Chiao Tung University
Hsinchu
Taiwan

LYNGSØ, RUNE B.
Oxford University
Oxford
UK

MA, BIN
University of Western Ontario
London, ON
Canada

MAHDIAN, MOHAMMAD
Yahoo! Research
Santa Clara, CA
USA

MÄKINEN, VELI
University of Helsinki
Helsinki
Finland

MALKHI, DAHLIA
Microsoft, Silicon Valley Campus
Mountain View, CA
USA

MANASSE, MARK S.
Microsoft Research
Mountain View, CA
USA

MANLOVE, DAVID F.
University of Glasgow
Glasgow
UK

XLVI List of Contributors

MANZINI, GIOVANNI
University of Eastern Piedmont
Alessandria
Italy

MARATHE, MADHAV V.
Virginia Tech
Blacksburg, VA
USA

MARCHETTI-SPACCAMELA, ALBERTO
University of Rome
Rome
Italy

MARKOV, IGOR L.
University of Michigan
Ann Arbor, MI
USA

MCGEOCH, CATHERINE C.
Amherst College
Amherst, MA
USA

MCGEOCH, LYLE A.
Amherst College
Amherst, MA
USA

MCKAY, BRENDAN D.
Australian National University
Canberra, ACT
Australia

MENDEL, MANOR
The Open University of Israel
Raanana
Israel

MESTRE, JULIÁN
University of Maryland
College Park, MD
USA

MICCIANCIO, DANIELE
University of California, San Diego
La Jolla, CA
USA

MIKLÓS, ISTVÁN
Eötvös Lóránd University
Budapest
Hungary

MIRROKNI, VAHAB S.
Microsoft Research
Redmond, WA
USA

MIYAZAKI, SHUICHI
Kyoto University
Kyoto
Japan

MOFFAT, ALISTAIR
University of Melbourne
Melbourne, VIC
Australia

MOIR, MARK
Sun Microsystems Laboratories
Burlington, MA
USA

MOR, TAL
Technion
Haifa
Israel

MOSCA, MICHELE
University of Waterloo
Waterloo, ON
Canada
St. Jerome’s University
Waterloo, ON
Canada

MOSCIBRODA, THOMAS
Microsoft Research
Redmond, WA
USA

MUCHA, MARCIN
Institute of Informatics
Warsaw
Poland

MUNAGALA, KAMESH
Duke University
Durham, NC
USA

MUNRO, J. IAN
University of Waterloo
Waterloo, ON
Canada

List of Contributors XLVII

NA, JOONG CHAE
Sejong University
Seoul
Korea

NARASIMHAN, GIRI
Florida International University
Miami, FL
USA

NAVARRO, GONZALO
University of Chile
Santiago
Chile

NAYAK, ASHWIN
University of Waterloo and Perimeter Institute for
Theoretical Physics
Waterloo, ON
Canada

NEWMAN, ALANTHA
Max-Planck Institute for Computer Science
Saarbrücken
Germany

NIEDERMEIER, ROLF
University of Jena
Jena
Germany

NIKOLETSEAS, SOTIRIS
University of Patras
Patras
Greece

OKAMOTO, YOSHIO
Toyohashi University of Technology
Toyohashi
Japan

OKUN, MICHAEL
Weizmann Institute of Science
Rehovot
Israel

PAGH, RASMUS
IT University of Copenhagen
Copenhagen
Denmark

PANAGOPOULOU, PANAGIOTA
Research Academic Computer Technology Institute
Patras
Greece

PANIGRAHI, DEBMALYA
MIT
Cambridge, MA
USA

PAN, PEICHEN
Magma Design Automation, Inc.
Los Angeles, CA
USA

PAPADOPOULOU, VICKY
University of Cyprus
Nicosia
Cyprus

PARK, KUNSOO
Seoul National University
Seoul
Korea

PARTHASARATHY, SRINIVASAN
IBM T.J. Watson Research Center
Hawthorne, NY
USA

PĂTRAŞCU, MIHAI
MIT
Cambridge, MA
USA

PATT-SHAMIR, BOAZ
Tel-Aviv University
Tel-Aviv
Israel

PATURI, RAMAMOHAN
University of California at San Diego
San Diego, CA
USA

PELC, ANDRZEJ
University of Québec-Ottawa
Gatineau, QC
Canada

PETTIE, SETH
University of Michigan
Ann Arbor, MI
USA

POWELL, OLIVIER
University of Geneva
Geneva
Switzerland

XLVIII List of Contributors

PRAKASH, AMIT
Microsoft, MSN
Redmond, WA
USA

PRUHS, KIRK
University of Pittsburgh
Pittsburgh, PA
USA

PRZYTYCKA, TERESA M.
NIH
Bethesda, MD
USA

PUDLÁK, PAVEL
Academy of Science of the Czech Republic
Prague
Czech Republic

RAGHAVACHARI, BALAJI
University of Texas at Dallas
Richardson, TX
USA

RAHMAN, NAILA
University of Leicester
Leicester
UK

RAJARAMAN, RAJMOHAN
Northeastern University
Boston, MA
USA

RAJSBAUM, SERGIO
National Autonomous University of Mexico
Mexico City
Mexico

RAMACHANDRAN, VIJAYA
University of Texas at Austin
Austin, TX
USA

RAMAN, RAJEEV
University of Leicester
Leicester
UK

RAMOS, EDGAR
National University of Colombia
Medellín
Colombia

RAO, SATISH
University of California at Berkeley
Berkeley, CA
USA

RAO, S. SRINIVASA
IT University of Copenhagen
Copenhagen
Denmark

RAPTOPOULOS, CHRISTOFOROS
University of Patras
Patras
Greece

RASTOGI, RAJEEV
Lucent Technologies
Murray Hill, NJ
USA

RATSABY, JOEL
Ariel University Center of Samaria
Ariel
Israel

RAVINDRAN, KAUSHIK
University of California at Berkeley
Berkeley, CA
USA

RAYNAL, MICHEL
University of Rennes 1
Rennes
France

REICHARDT, BEN W.
California Institute of Technology
Pasadena, CA
USA

RENNER, RENATO
Institute for Theoretical Physics
Zurich
Switzerland

RICCI, ELISA
University of Perugia
Perugia
Italy

RICHTER, PETER
Rutgers, The State University of New Jersey
Piscataway, NJ
USA

List of Contributors XLIX

ROLIM, JOSÉ
University of Geneva
Geneva
Switzerland

ROSAMOND, FRANCES
University of Newcastle
Callaghan, NSW
Australia

RÖTTELER, MARTIN
NEC Laboratories America
Princeton, NJ
USA

RUBINFELD, RONITT
MIT
Cambridge, MA
USA

RUDRA, ATRI
University at Buffalo, State University of New York
Buffalo, NY
USA

RUPPERT, ERIC
York University
Toronto, ON
Canada

RYTTER, WOJCIECH
Warsaw University
Warsaw
Poland

SAHINALP, S. CENK
Simon Fraser University
Burnaby, BC
USA

SAKS, MICHAEL
Rutgers, State University of New Jersey
Piscataway, NJ
USA

SCHÄFER, GUIDO
Technical University of Berlin
Berlin
Germany

SCHIPER, ANDRÉ
EPFL
Lausanne
Switzerland

SCHMIDT, MARKUS
University of Freiburg
Freiburg
Germany

SCHULTES, DOMINIK
University of Karlsruhe
Karlsruhe
Germany

SEN, PRANAB
Tata Institute of Fundamental Research
Mumbai
India

SEN, SANDEEP
IIT Delhi
New Delhi
India

SERNA, MARIA
Technical University of Catalonia
Barcelona
Spain

SERVEDIO, ROCCO
Columbia University
New York, NY
USA

SETHURAMAN, JAY
Columbia University
New York, NY
USA

SHALEV-SHWARTZ, SHAI
Toyota Technological Institute
Chicago, IL
USA

SHARMA, VIKRAM
New York University
New York, NY
USA

SHI, YAOYUN
University of Michigan
Ann Arbor, MI
USA

SHRAGOWITZ, EUGENE
University of Minnesota
Minneapolis, MN
USA

L List of Contributors

SITTERS, RENÉ A.
Eindhoven University of Technology
Eindhoven
The Netherlands

SMID, MICHIEL
Carleton University
Ottawa, ON
Canada

SOKOL, DINA
Brooklyn College of CUNY
Brooklyn, NY
USA

SONG, WEN-ZHAN
Washington State University
Vancouver, WA
USA

SPECKMANN, BETTINA
Technical University of Eindhoven
Eindhoven
The Netherlands

SPIRAKIS, PAUL
Patras University
Patras
Greece

SRINIVASAN, ARAVIND
University of Maryland
College Park, MD
USA

SRINIVASAN, VENKATESH
University of Victoria
Victoria, BC
Canada

STEE, ROB VAN
University of Karlsruhe
Karlsruhe
Germany

STØLTING BRODAL, GERTH
University of Aarhus
Århus
Denmark

STOYE, JENS
University of Bielefeld
Bielefeld
Germany

SU, CHANG
University of Liverpool
Liverpool
UK

SUN, ARIES WEI
City University of Hong Kong
Hong Kong
China

SUNDARARAJAN, VIJAY
Texas Instruments
Dallas, TX
USA

SUNG, WING-KIN
National University of Singapore
Singapore
Singapore

SVIRIDENKO, MAXIM
IBM
Yorktown Heights, NY
USA

SZEGEDY, MARIO
Rutgers, The State University of New Jersey
Piscataway, NJ
USA

SZEIDER, STEFAN
Durham University
Durham
UK

TAKAOKA, TADAO
University of Canterbury
Christchurch
New Zealand

TAKEDA, MASAYUKI
Kyushu University
Fukuoka
Japan

TALWAR, KUNAL
Microsoft Research, Silicon Valley Campus
Mountain View, CA
USA

TAMON, CHRISTINO
Clarkson University
Potsdam, NY
USA

List of Contributors LI

TAMURA, AKIHISA
Keio University
Yokohama
Japan

TANNIER, ERIC
University of Lyon
Lyon
France

TAPP, ALAIN
University of Montréal
Montreal, QC
Canada

TATE, STEPHEN R.
University of North Carolina at Greensboro
Greensboro, NC
USA

TAUBENFELD, GADI
Interdiciplinary Center Herzlia
Herzliya
Israel

TELIKEPALLI, KAVITHA
Indian Institute of Science
Bangalore
India

TERHAL, BARBARA M.
IBM Research
Yorktown Heights, NY
USA

THILIKOS, DIMITRIOS
National and Kapodistrian University of Athens
Athens
Greece

TREVISAN, LUCA
University of California at Berkeley
Berkeley, CA
USA

TROMP, JOHN
CWI
Amsterdam
Netherlands

UKKONEN, ESKO
University of Helsinki
Helsinki
Finland

VAHRENHOLD, JAN
Dortmund University of Technology
Dortmund
Germany

VARRICCHIO, STEFANO
University of Roma
Rome
Italy

VIALETTE, STÉPHANE
University of Paris-East
Descartes
France

VILLANGER, YNGVE
University of Bergen
Bergen
Norway

VITÁNYI, PAUL
CWI
Amsterdam
Netherlands

VITTER, JEFFREY SCOTT
Purdue University
West Lafayette, IN
USA

VÖCKING, BERTHOLD
RWTH Aachen University
Aachen
Germany

WANG, CHENGWEN CHRIS
Carnegie Mellon University
Pittsburgh, PA
USA

WANG, FENG
Arizona State University
Phoenix, AZ
USA

WANG, LUSHENG
City University of Hong Kong
Hong Kong
China

WANG, WEIZHAO
Google Inc.
Irvine, CA
USA

LII List of Contributors

WANG, YU
University of North Carolina at Charlotte
Charlotte, NC
USA

WAN, PENG-JUN
Illinois Institute of Technology
Chicago, IL
USA

WERNECK, RENATO F.
Microsoft Research Silicon Valley
La Avenida, CA
USA

WILLIAMS, RYAN
Carnegie Mellon University
Pittsburgh, PA
USA

WONG, MARTIN D. F.
University of Illinois at Urbana-Champaign
Urbana, IL
USA

WONG, PRUDENCE
University of Liverpool
Liverpool
UK

WU, WEILI
University of Texas at Dallas
Richardson, TX
USA

YANG, HONGHUA HANNAH
Intel Corporation
Hillsboro
USA

YAP, CHEE K.
New York University
New York, NY
USA

YE, YIN-YU
Stanford University
Stanford, CA
USA

YI, CHIH-WEI
National Chiao Tung University
Hsinchu City
Taiwan

YI, KE
Hong Kong University of Science and Technology
Hong Kong
China

YIU, S. M.
The University of Hong Kong
Hong Kong
China

YOKOO, MAKOTO
Kyushu University
Nishi-ku
Japan

YOUNG, EVANGELINE F. Y.
The Chinese University of Hong Kong
Hong Kong
China

YOUNG, NEAL E.
University of California at Riverside
Riverside, CA
USA

YUSTER, RAPHAEL
University of Haifa
Haifa
Israel

ZANE, FRANCIS
Lucent Technologies
Murray Hill, NJ
USA

ZAROLIAGIS, CHRISTOS
University of Patras
Patras
Greece

ZEH, NORBERT
Dalhousie University
Halifax, NS
Canada

ZHANG, LI
HP Labs
Palo Alto, CA
USA

ZHANG, LOUXIN
National University of Singapore
Singapore
Singapore

List of Contributors LIII

ZHOU, HAI
Northwestern University
Evanston, IL
USA

ZILLES, SANDRA
University of Alberta
Edmonton, AB
Canada

ZOLLINGER, AARON
University of California at Berkeley
Berkeley, CA
USA

ZWICK, URI
Tel-Aviv University
Tel-Aviv
Israel

Abelian Hidden Subgroup Problem A 1

A

Abelian Hidden Subgroup Problem
1995; Kitaev

MICHELE MOSCA1,2

1 Combinatorics and Optimization / Institute for
Quantum Computing, University of Waterloo,
Waterloo, ON, Canada

2 Perimeter Institute for Theoretical Physics,
St. Jerome’s University, Waterloo, ON, Canada

Keywords and Synonyms

Generalization of Abelian stabilizer problem; Generaliza-
tion of Simon’s problem

ProblemDefinition

The Abelian hidden subgroup problem is the problem
of finding generators for a subgroup K of an Abelian
group G, where this subgroup is defined implicitly by
a function f : G ! X, for some finite set X. In particu-
lar, f has the property that f (v) = f (w) if and only if the
cosets1 v + K andw + K are equal. In other words, f is con-
stant on the cosets of the subgroup K , and distinct on each
coset.

It is assumed that the group G is finitely generated and
that the elements of G and X have unique binary encod-
ings (the binary assumption is not so important, but it is
important to have unique encodings.) When using vari-
ables g and h (possibly with subscripts) multiplicative no-
tation is used for the group operations. Variables x and y
(possibly with subscripts) will denote integers with addi-
tion. The boldface versions x and y will denote tuples of
integers or binary strings.

By assumption, there is computational means of com-
puting the function f , typically a circuit or “black box” that
maps the encoding of a value g to the encoding of f (g). The

1Assuming additive notation for the group operation here.

theory of reversible computation implies that one can turn
a circuit for computing f (g) into a reversible circuit for
computing f (g) with a modest increase in the size of the
circuit. Thus it will be assumed that there is a reversible
circuit or black box that maps (g; z) 7! (g; z˚ f (g)),
where ˚ denotes the bitwise XOR (sum modulo 2), and
z is any binary string of the same length as the encoding of
f (g).

Quantum mechanics implies that any reversible gate
can be extended linearly to a unitary operation that can
be implemented in the model of quantum computation.
Thus, it is assumed that there is a quantum circuit or
black box that implements the unitary map Uf : jgijzi 7!
jgijz˚ f (g)i.

Although special cases of this problem have been con-
sidered in classical computer science, the general formu-
lation as the hidden subgroup problem seems to have
appeared in the context of quantum computing, since it
neatly encapsulates a family of “black-box” problems for
which quantum algorithms offer an exponential speed up
(in terms of query complexity) over classical algorithms.
For some explicit problems (i. e., where the black box
is replaced with a specific function, such as exponentia-
tion modulo N), there is a conjectured exponential speed
up.

Abelian Hidden Subgroup Problem

Input: Elements g1; g2; : : : ; gn 2 G that generate the
Abelian group G. A black box that implements Uf :
jm1;m2; : : : ;mnijyi 7! jm1;m2; : : : ;mnij f (g) ˚ yi,
where g = gm1

1 gm2
2 : : : gmn

n , and K is the hidden subgroup
corresponding to f .
Output: Elements h1; h2; : : : ; hl 2 G that generate K .

Here we use multiplicative notation for the group G in
order to be consistent with Kitaev’s formulation of the
Abelian stabilizer problem.Many of the applications of in-
terest typically use additive notation for the group G.

It is hard to trace the precise origin of this general for-
mulation of the problem, which simultaneously general-

2 A Abelian Hidden Subgroup Problem

izes “Simon’s problem” [16], the order-finding problem
(which is the quantum part of the quantum factoring al-
gorithm [14]) and the discrete logarithm problem.

One of the earliest generalizations of Simon’s prob-
lem, the order-finding problem, and the discrete logarithm
problem, which captures the essence of the Abelian hidden
subgroup problem is the Abelian stabilizer problem, which
was solved by Kitaev [11] using a quantum algorithm in
his 1995 paper (and the solution also appears in [12]).

Let G be a group acting on a finite set X. That is, each
element of G acts as a map from X to X in such a way that
for any two elements g; h 2 G, g(h(z)) = (gh)(z) for all
z 2 X. For a particular element z 2 X, the set of elements
that fix z (that is the elements g 2 G such that g(z) = z)
form a subgroup. This subgroup is called the stabilizer of z
in G, denoted StG(z).

Abelian Stabilizer Problem

Input: Elements g1; g2; : : : ; gn 2 G that generate the
group G. An element z 2 X. A black box that implements
U(G;X) : jm1;m2; : : : ;mnijzi 7! jm1;m2; : : : ;mnijg(z)i
where g = gm1

1 gm2
2 : : : gmn

n .
Output: Elements h1; h2; : : : ; hl 2 G that generate StG(z).

Let f z denote the function from G to X that maps g 2 G
to g(z). One can implement U fz using U(G;X). The hidden
subgroup corresponding to f z is StG(z). Thus, the Abelian
stabilizer problem is a special case of the Abelian hidden
subgroup problem.

One of the subtle differences (discussed in Appendix 6
of [10]) between the above formulation of the Abelian
stabilizer problem and the Abelian hidden subgroup
problem is that Kitaev’s formulation gives a black box
that for any g; h 2 G maps jm1; : : : ;mnij fz(g)i 7!
jm1; : : : ;mnij fz(hg)i, where g = gm1

1 gm2
2 : : : gmn

n and es-
timates eigenvalues of shift operations of the form
j fz(g)i 7! j fz(hg)i. In general, these shift operators are
not explicitly needed, and it suffices to be able to com-
pute a map of the form jyi 7! j fz(h)˚ yi for any binary
string y.

Generalizations of this form have been known since
shortly after Shor presented his factoring and discrete log-
arithm algorithms. For example, in [18] the hidden sub-
group problem was discussed for a large class of finite
Abelian groups, and more generally in [2] for any fi-
nite Abelian group presented as a product of finite cyclic
groups. In [13] the Abelian hidden subgroup algorithm
was related to eigenvalue estimation.

Other problems which can be formulated in this way
include the following.

Deutsch’s Problem

Input: A black box that implementsUf : jxijbi 7! jxijb˚
f (x)i, for some function f that maps Z2 = f0; 1g to f0; 1g.
Output: “Constant” if f (0) = f (1), “balanced” if f (0) ¤
f (1).
Note that f (x) = f (y) if and only if x � y 2 K, where K
is either {0} or Z2 = f0; 1g. If K = f0g then f is 1 � 1 or
“balanced” and if K = Z2 then f is constant [4,5].

Simon’s Problem

Input: A black box that implementsUf : jxijbi 7! jxijb˚
f (x)i for some function f from Zn

2 to some set X (which
is assumed to consist of binary strings of some fixed
length) with the property that f (x) = f (y) if and only if
x � y 2 K = f0; sg for some s 2 Zn

2 .
Output: The “hidden” string s.
The decision version allows K = f0g and asks whether K
is trivial. Simon [16] presented an efficient algorithm for
solving this problem, and an exponential lower bound on
the query complexity. The solution to the Abelian hid-
den subgroup problem is a generalization of Simon’s al-
gorithm (which deals with finite groups with many gener-
ators) and Shor’s algorithms [14,12] (which deal with an
infinite group with one generator, and a finite group with
two generators).

Key Results

Theorem (Abelian stabilizer problem) There exists
a quantum algorithm that, given an instance of the Abelian
stabilizer problem, makes n + O(1) queries to U(G;X), uses
poly(n) other elementary quantum and classical opera-
tions, and with probability at least 2/3 outputs values
h1; h2; : : : ; hl such that StG (z) = hh1i ˚ hh2i ˚ � � � hhl i.

Kitaev first solved this problem (with a slightly higher
query complexity, because his eigenvalue estimation pro-
cedure was not optimal). An eigenvalue estimation proce-
dure based on the quantumFourier transform achieves the
n + O(1) query complexity.

Theorem (Abelian hidden subgroup problem) There
exists a quantum algorithm that, given an instance of the
Abelian hidden subgroup problem, makes n + O(1) queries
to Uf , uses poly(n) other elementary quantum and classical
operations, and with probability at least 2/3 outputs values
h1; h2; : : : ; hl such that K = hh1i ˚ hh2i ˚ � � � hhl i.

In some cases, the success probability can be made 1 with
the same complexity, and in general the success probabil-
ity can be made 1 � � using n + O(log(1/�)) queries and

Abelian Hidden Subgroup Problem A 3

pol y(n; log(1/�)) other elementary quantum and classical
operations.

Applications

Most of these applications in fact were known before the
Abelian stabilizer problem or the Abelian hidden sub-
group problem were formulated.

Finding theOrder of anElement in aGroup Let a be an
element of a groupH (which does not need to be Abelian).
Consider the function f from G = Z to the groupH where
f (x) = ax for some element a of H. Then f (x) = f (y) if
and only if x � y 2 rZ. The hidden subgroup is K = rZ
and a generator for K gives the order r of a [14,12].

Discrete Logarithms Let a be an element of a group H
(which does not need to be Abelian), with ar = 1, and
suppose b = ak from some unknown k. The integer k
is called the discrete logarithm of b to the base a. Con-
sider the function f from G = Zr � Zr to H satisfying
f (x1; x2) = ax1bx2 . Then f (x1; x2) = f (y1; y2) if and only
if (x1; x2)� (y1; y2) 2 f(tk;�t); t = 0; 1; : : : ; r�1g, which
is the subgroup h(k;�1)i of Zr � Zr . Thus, finding a gen-
erator for the hidden subgroup K will give the discrete log-
arithm k. Note that this algorithmworks forH equal to the
multiplicative group of a finite field, or the additive group
of points on an elliptic curve, which are groups that are
used in public-key cryptography.

Hidden Linear Functions Let � be some permuta-
tion of ZN for some integer N. Let h be a function
from G = Z � Z to ZN , h(x; y) = x + ay mod N. Let
f = � ı h. The hidden subgroup of f is h(�a; 1)i. Boneh
and Lipton [1] showed that even if the linear structure of h
is hidden (by �), one can efficiently recover the parame-
ter a with a quantum algorithm.

Self-shift-equivalent Polynomials Given a polyno-
mial P in l variables X1; X2; : : : ; Xl over Fq , the function f
that maps (a1; a2; : : : ; al) 2 F l

q to P(X1� a1; X2� a2; : : : ;
Xl � al) is constant on cosets of a subgroup K of F l

q .
This subgroup K is the set of shift-self-equivalences of the
polynomial P. Grigoriev [8] showed how to compute this
subgroup.

Decomposition of a FinitelyGeneratedGroup LetG be
a group with a unique binary representation for each ele-
ment of G, and assume that the group operation, and rec-
ognizing if a binary string represents an element of G or
not, can be done efficiently.

Given a set of generators g1; g2; : : : ; gn for a group G,
output a set of elements h1; h2; : : : ; hl ; l � n, from the
group G such that G = hg1i ˚ hg2i ˚ � � � ˚ hgl i. Such
a generating set can be found efficiently [3] from gener-
ators of the hidden subgroup of the function that maps
(m1;m2; : : : ;mn) 7! gm1

1 gm2
2 : : : gmn

n .

Discussion: What About non-Abelian Groups?

The great success of quantum algorithms for solving the
Abelian hidden subgroup problem leads to the natural
question of whether it can solve the hidden subgroup
problem for non-Abelian groups. It has been shown that
a polynomial number of queries suffice [7]; however, in
general there is no bound on the overall computational
complexity (which includes other elementary quantum or
classical operations).

This question has been studied by many researchers,
and efficient quantum algorithms can be found for some
non-Abelian groups. However, at present, there is no effi-
cient algorithm for most non-Abelian groups. For exam-
ple, solving the hidden subgroup problem for the symmet-
ric group would directly solve the graph automorphism
problem.

Cross References

� Graph Isomorphism
� Quantum Algorithm for the Discrete Logarithm

Problem
� Quantum Algorithm for Factoring
� Quantum Algorithm for the Parity Problem
� Quantum Algorithm for Solving the Pell’s Equation

Recommended Reading
1. Boneh, D., Lipton, R.: Quantum Cryptanalysis of Hidden Linear

Functions (Extended Abstract) In: Proceedings of 15th Annual
International Cryptology Conference (CRYPTO’95), pp. 424–
437, Santa Barbara, 27–31 August 1995

2. Brassard, G., Høyer, P.: An exact quantum polynomial-time al-
gorithm for Simon’s problem. In: Proc. of Fifth Israeli Sympo-
sium on Theory of Computing ans Systems (ISTCS’97), pp. 12–
23 (1997) and in: Proceedings IEEE Computer Society, Ramat-
Gan, 17–19 June 1997

3. Cheung, K., Mosca, M.: Decomposing Finite Abelian Groups.
Quantum Inf. Comp. 1(2), 26–32 (2001)

4. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum Al-
gorithms Revisited. Proc. Royal Soc. London A 454, 339–354
(1998)

5. Deutsch, D.: Quantum theory, the Church-Turing principle and
the universal quantum computer. Proc. Royal Soc. London A
400, 97–117 (1985)

6. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum
computation. Proc. Royal Soc. London A 439, 553–558 (1992)

4 A Adaptive Partitions

7. Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity
of the hidden subgroup problem is polynomial. Inf. Process.
Lett. 91, 43–48 (2004)

8. Grigoriev, D.: Testing Shift-Equivalence of Polynomials by De-
terministic, Probabilistic and QuantumMachines. Theor. Com-
put. Sci. 180, 217–228 (1997)

9. Høyer, P.: Conjugated operators in quantum algorithms. Phys.
Rev. A 59(5), 3280–3289 (1999)

10. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum
Computation. Oxford University Press, Oxford (2007)

11. Kitaev, A.: Quantum measurements and the Abelian Stabilizer
Problem. quant-ph/9511026, http://arxiv.org/abs/quant-ph/
9511026 (1995) and in: Electronic Colloquium on Compu-
tational Complexity (ECCC) 3, Report TR96-003,http://eccc.
hpi-web.de/eccc-reports/1995/TR96-003/ (1996)

12. Kitaev, A.Y.: Quantum computations: algorithms and error cor-
rection. Russ. Math. Surv. 52(6), 1191–1249 (1997)

13. Mosca, M., Ekert, A.: The Hidden Subgroup Problem and Eigen-
value Estimation on a Quantum Computer. In: Proceedings
1st NASA International Conference on Quantum Computing
& Quantum Communications. Lecture Notes in Computer Sci-
ence, vol. 1509, pp. 174–188. Springer, London (1998)

14. Shor, P.: Algorithms for QuantumComputation: Discrete Loga-
rithms and Factoring. In: Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science, pp. 124–134,
Santa Fe, 20–22 November 1994

15. Shor, P.: Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM
J. Comp. 26, 1484–1509 (1997)

16. Simon, D.: On the power of quantum computation. In: Pro-
ceedings of the 35th IEEE Symposium on the Foundations
of Computer Science (FOCS), pp. 116–123, Santa Fe, 20–22
November 1994

17. Simon, D.: On the Power of Quantum Computation. SIAM
J. Comp. 26, 1474–1483 (1997)

18. Vazirani, U.: Berkeley Lecture Notes. Fall 1997. Lecture 8. http://
www.cs.berkeley.edu/~vazirani/qc.html (1997)

Adaptive Partitions
1986; Du, Pan, Shing

PING DENG1, WEILI WU1, EUGENE SHRAGOWITZ2
1 Department of Computer Science,
University of Texas at Dallas, Richardson, TX, USA

2 Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN, USA

Keywords and Synonyms

Technique for constructing approximation

ProblemDefinition

Adaptive partition is one of major techniques to de-
sign polynomial-time approximation algorithms, espe-
cially polynomial-time approximation schemes for ge-
ometric optimization problems. The framework of this

technique is to put the input data into a rectangle and par-
tition this rectangle into smaller rectangles by a sequence
of cuts so that the problem is also partitioned into smaller
ones. Associated with each adaptive partition, a feasible
solution can be constructed recursively from solutions
in smallest rectangles to bigger rectangles. With dynamic
programming, an optimal adaptive partition is computed
in polynomial time.

Historical Background

The adaptive partition was first introduced to the design of
an approximation algorithm by Du et al. [5] with a guillo-
tine cut while they studied the minimum edge length rect-
angular partition (MELRP) problem. They found that if
the partition is performed by a sequence of guillotine cuts,
then an optimal solution can be computed in polynomial
time with dynamic programming. Moreover, this optimal
solution can be used as a pretty good approximation solu-
tion for the original rectangular partition problem. Both
Arora [1] and Mitchell et al. [12,13] found that the cut
needs not to be completely guillotine. In other words, the
dynamic programming can still runs in polynomial time
if subproblems have some relations but the number of
relations is smaller. As the number of relations goes up,
the approximation solution obtained approaches the opti-
mal one, while the run time, of course, goes up. They also
found that this technique can be applied to many geomet-
ric optimization problems to obtain polynomial-time ap-
proximation schemes.

Key Results

The MELRP was proposed by Lingas et al. [9] as follows:
Given a rectilinear polygon possibly with some rectangular
holes, partition it into rectangles with minimum total edge
length. Each hole may be degenerated into a line segment
or a point.

There are several applications mentioned in [9] for
the background of the problem: process control (stock
cutting), automatic layout systems for integrated circuit
(channel definition), and architecture (internal partition-
ing into offices). The minimum edge length partition is
a natural goal for these problems since there is a certain
amount of waste (e. g., sawdust) or expense incurred (e. g.,
for dividingwalls in the office) which is proportional to the
sum of edge lengths drawn. For very large scale integra-
tion (VLSI) design, this criterion is used in the MIT Place-
ment and Interconnect (PI) System to divide the routing
region up into channels - one finds that this produces large
“natural-looking” channels with a minimum of channel-
to-channel interaction to consider.

http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
http://eccc.hpi-web.de/eccc-reports/1995/TR96-003/
http://eccc.hpi-web.de/eccc-reports/1995/TR96-003/
http://www.cs.berkeley.edu/~vazirani/qc.html
http://www.cs.berkeley.edu/~vazirani/qc.html

Adaptive Partitions A 5

They showed that while the MELRP in general is non-
deterministic polynomial-time (NP) hard, is can be solved
in time O(n4) in the hole-free case, where n is the num-
ber of vertices in the input rectilinear polygon. The poly-
nomial algorithm is essentially a dynamic programming
based on the fact that there always exists an optimal so-
lution satisfying the property that every cut line passes
through a vertex of the input polygon or holes (namely,
every maximal cut segment is incident to a vertex of input
or holes).

A naive idea to design an approximation algorithm for
the general case is to use a forest connecting all holes to the
boundary and then to solve the resulting hole-free case in
O(n4) time. With this idea, Lingas [10] gave the first con-
stant-bounded approximation; its performance ratio is 41.

Motivated by a work of Du et al. [4] on application
of dynamic programming to optimal routing trees, Du
et al. [5] initiated an idea of adaptive partition. They used
a sequence of guillotine cuts to do rectangular partition;
each guillotine cut breaks a connected area into at least
two parts. With dynamic programming, they were able to
show that a minimum-length guillotine rectangular parti-
tion (i. e., one withminimum total length among all guillo-
tine partitions) can be computed inO(n5) time. Therefore,
they suggested using the minimum-length guillotine rect-
angular partition to approximate the MELRP and tried to
analyze the performance ratio. Unfortunately, they failed
to get a constant ratio in general and only obtained a upper
bound of 2 for the performance ratio in a NP-hard special
case [7]. In this special case, the input is a rectangle with
some points inside. Those points are holes. The following
is a simple version of the proof obtained by Du et al. [6].

Theorem The minimum-length guillotine rectangular
partition is an approximation with performance ratio 2 for
the MELRP.

Proof Consider a rectangular partition P. Let projx(P) de-
note the total length of segments on a horizontal line cov-
ered by vertical projection of the partition P.

A rectangular partition is said to be covered by a guil-
lotine partition if each segment in the rectangular partition
is covered by a guillotine cut of the latter. Let guil(P) de-
note the minimum length of the guillotine partition cover-
ing P and length(P) denote the total length of rectangular
partition P. It will be proved by induction on the number
k of segments in P that

gui l(P) � 2 � l eng th(P) � pro jx (P) :

For k = 1, one has gui l(P) = l eng th(P). If the segment is
horizontal, then one has pro jx (P) = l eng th(P) and hence

gui l(P) = 2 � l eng th(P) � pro jx (P) :

If the segment is vertical, then pro jx (P) = 0 and hence

gui l(P) < 2 � l eng th(P) � pro jx (P) :

Now, consider k � 2. Suppose that the initial rectangle has
each vertical edge of length a and each horizontal edge of
length b. Consider two cases:
Case 1. There exists a vertical segment s having length
greater than or equal to 0:5a. Apply a guillotine cut along
this segment s. Then the remainder of P is divided into
two parts P1 and P2 which form rectangular partition of
two resulting small rectangles, respectively. By induction
hypothesis,

gui l(Pi) � 2 � l eng th(Pi) � pro jx (Pi)

for i = 1; 2. Note that

gui l(P) � gui l(P1) + gui l(P2) + a ;
l eng th(P) = l eng th(P1) + l eng th(P2) + l eng th(s) ;
pro jx (P) = pro jx (P1) + pro jx (P2) :

Therefore,

gui l(P) � 2 � l eng th(P) � pro jx (P) :

Case 2. No vertical segment in P has length greater than
or equal to 0:5a. Choose a horizontal guillotine cut which
partitions the rectangle into two equal parts. Let P1 and P2
denote rectangle partitions of the two parts, obtained from
P. By induction hypothesis,

gui l(Pi) � 2 � l eng th(Pi) � pro jx (Pi)

for i = 1; 2. Note that

gui l(P) = gui l(P1) + gui l(P2) + b ;
l eng th(P) � l eng th(P1) + l eng th(P2) ;
pro jx (P) = pro jx (P1) = pro jx (P2) = b :

Therefore,

gui l(P) � 2 � l eng th(P) � pro jx (P) :

Gonzalez and Zheng [8] improved this upper bound to
1.75 and conjectured that the performance ratio in this
case is 1.5.

Applications

In 1996, Arora [1] andMitchell et al. [12,13,14] found that
the cut does not necessarily have to be completely guillo-
tine in order to have a polynomial-time computable op-
timal solution for such a sequence of cuts. Of course, the

6 A Adaptive Partitions

number of connections left by an incomplete guillotine cut
should be limited. While Mitchell et al. developed the m-
guillotine subdivision technique, Arora employed a “por-
tal” technique. They also found that their techniques can
be used for not only the MELRP, but also for many geo-
metric optimization problems [1,2,3,12,13,14,15].

Open Problems

One current important submicron step of technology evo-
lution in electronics interconnects has become the domi-
nating factor in determining VLSI performance and reli-
ability. Historically a problem of interconnects design in
VLSI has been very tightly intertwined with the classi-
cal problem in computational geometry: Steiner minimum
tree generation. Some essential characteristics of VLSI are
roughly proportional to the length of the interconnects.
Such characteristics include chip area, yield, power con-
sumption, reliability and timing. For example, the area oc-
cupied by interconnects is proportional to their combined
length and directly impacts the chip size. Larger chip size
results in reduction of yield and increase in manufactur-
ing cost. The costs of other components required for man-
ufacturing also increase with increase of the wire length.
From the performance angle, longer interconnects cause
an increase in power dissipation, degradation of timing
and other undesirable consequences. That is why find-
ing the minimum length of interconnects consistent with
other goals and constraints is such an important problem
at this stage of VLSI technology.

The combined length of the interconnects on a chip is
the sum of the lengths of individual signal nets. Each sig-
nal net is a set of electrically connected terminals, where
one terminal acts as a driver and other terminals are re-
ceivers of electrical signals. Historically, for the purpose of
finding an optimal configuration of interconnects, termi-
nals were considered as points on the plane, and a rout-
ing problem for individual nets was formulated as a clas-
sical Steiner minimum tree problem. For a variety of rea-
sons VLSI technology implements only rectilinear wiring
on the set of parallel planes, and, consequently, with few
exceptions, only a rectilinear version of the Steiner tree
is being considered in the VLSI domain. This problem is
known as the RSMT.

Further progress in VLSI technology resulted in more
factors than just length of interconnects gaining impor-
tance in selection of routing topologies. For example, the
presence of obstacles led to reexamination of techniques
used in studies of the rectilinear Steiner tree, since many
classical techniques do not work in this new environment.
To clarify the statement made above, we will consider

the construction of a rectilinear Steiner minimum tree in
the presence of obstacles.

Let us start with a rectilinear plane with obstacles de-
fined as rectilinear polygons. Given n points on the plane,
the objective is to find the shortest rectilinear Steiner tree
that interconnects them. One already knows that a polyno-
mial-time approximation scheme for RSMT without ob-
stacles exists and can be constructed by adaptive parti-
tion with application of either the portal or the m-guil-
lotine subdivision technique. However, both the m-guil-
lotine cut and the portal techniques do not work in the
case that obstacles exists. The portal technique is not ap-
plicable because obstacles may block movement of the line
that crosses the cut at a portal. The m-guillotine cut could
not be constructed either, because obstacles may break
down the cut segment that makes the Steiner tree con-
nected.

In spite of the facts stated above, the RSMT with
obstacles may still have polynomial-time approxima-
tion schemes.Strong evidence was given by Min et
al. [11]. They constructed a polynomial-time approxima-
tion scheme for the problem with obstacles under the con-
dition that the ratio of the longest edge and the shortest
edge of the minimum spanning tree is bounded by a con-
stant. This design is based on the classical nonadaptive
partition approach. All of the above make us believe that
a new adaptive technique can be found for the case with
obstacles.

Cross References

�Metric TSP
� Rectilinear Steiner Tree
� Steiner Trees

Recommended Reading

1. Arora, S.: Polynomial-time approximation schemes for Eu-
clidean TSP and other geometric problems. In: Proc. 37th IEEE
Symp. on Foundations of Computer Science, 1996, pp. 2–12

2. Arora, S.: Nearly linear time approximation schemes for Eu-
clidean TSP and other geometric problems. In: Proc. 38th IEEE
Symp. on Foundations of Computer Science, 1997, pp. 554–
563

3. Arora, S.: Polynomial-time approximation schemes for Eu-
clidean TSP and other geometric problems. J. ACM 45, 753–
782 (1998)

4. Du, D.Z., Hwang, F.K., Shing, M.T., Witbold, T.: Optimal routing
trees. IEEE Trans. Circuits 35, 1335–1337 (1988)

5. Du, D.-Z., Pan, L.-Q., Shing, M.-T.: Minimum edge length guil-
lotine rectangular partition. Technical Report 0241886, Math.
Sci. Res. Inst., Univ. California, Berkeley (1986)

6. Du, D.-Z., Hsu, D.F., Xu, K.-J.: Bounds on guillotine ratio. Con-
gressus Numerantium 58, 313–318 (1987)

Adwords Pricing A 7

7. Gonzalez, T., Zheng, S.Q.: Bounds for partitioning rectilinear
polygons. In: Proc. 1st Symp. on Computational Geometry
(1985)

8. Gonzalez, T., Zheng, S.Q.: Improved bounds for rectangular
and guillotine partitions. J. Symb. Comput. 7, 591–610 (1989)

9. Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimum edge
length partitioning of rectilinear polygons. In: Proc. 20th Aller-
ton Conf. on Comm. Control and Compt., Illinos (1982)

10. Lingas, A.: Heuristics for minimum edge length rectangular
partitions of rectilinear figures. In: Proc. 6th GI-Conference,
Dortmund, January 1983. Springer

11. Min, M., Huang, S.C.-H., Liu, J., Shragowitz, E., Wu, W., Zhao, Y.,
Zhao, Y.: An Approximation Scheme for the Rectilinear Steiner
Minimum Tree in Presence of Obstructions. Fields Inst. Com-
mun. 37, 155–164 (2003)

12. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal
subdivisions: A simple new method for the geometric k-MST
problem. In: Proc. 7th ACM-SIAM Symposium on Discrete Al-
gorithms, 1996, pp. 402–408.

13. Mitchell, J.S.B., Blum, A., Chalasani, P., Vempala, S.: A constant-
factor approximation algorithm for the geometric k-MST prob-
lem in the plane. SIAM J. Comput. 28(3), 771–781 (1999)

14. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal
subdivisions: Part II – A simple polynomial-time approximation
scheme for geometric k-MST, TSP, and related problem. SIAM
J. Comput. 29(2), 515–544 (1999)

15. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal
subdivisions: Part III – Faster polynomial-time approximation
scheme for geometric network optimization,manuscript, State
University of New York, Stony Brook (1997)

Ad-Hoc Networks
� Channel Assignment and Routing in Multi-Radio

Wireless Mesh Networks

Adword Auction
� Position Auction

Adwords Pricing
2007; Bu, Deng, Qi

TIAN-MING BU
Department of Computer Science & Engineering,
Fudan University, Shanghai, China

ProblemDefinition

The model studied here is the same as that which was
first presented in [11] by Varian. For some keyword,
N = f1; 2; : : : ;Ng, advertisers bid K = f1; 2; : : : ;Kg ad-
vertisement slots (K < N) which will be displayed on the
search result page from top to bottom. The higher the

advertisement is positioned, the more conspicuous it is
and the more clicks it receives. Thus for any two slots
k1; k2 2K, if k1 < k2, then slot k1’s click-through rate
(CTR) ck1 is larger than ck2 . That is, c1 > c2 > : : : > cK ,
from top to bottom, respectively. Moreover, each bidder
i 2N has privately known information, vi, which repre-
sents the expected return per click to bidder i.

According to each bidder i’s submitted bid bi, the auc-
tioneer then decides how to distribute the advertisement
slots among the bidders and how much they should pay
per click. In particular, the auctioneer first sorts the bid-
ders in decreasing order according to their submitted bids.
Then the highest slot is allocated to the first bidder, the
second highest slot is allocated to the second bidder, and
so on. The last N � K bidders would lose and get nothing.
Finally, each winner would be charged on a per-click basis
for the next bid in the descending bid queue. The losers
would pay nothing.

Let bk denote the kth highest bid in the descending bid
queue and vk the true value of the kth bidder in the de-
scending queue. Thus if bidder i got slot k, i’s payment
would be bk+1 � ck . Otherwise, his payment would be zero.
Hence, for any bidder i 2N , if i were on slot k 2K, his
utility (payoff) could be represented as

ui
k = (vi � bk+1) � ck :

Unlike one-round sealed-bid auctions where each bid-
der has only one chance to bid, the adword auction al-
lows bidders to change their bids any time. Once bids
are changed, the system refreshes the ranking automati-
cally and instantaneously. Accordingly, all bidders’ pay-
ment and utility are also recalculated. As a result, other
bidders could then have an incentive to change their bids
to increase their utility, and so on.

Definition 1 (Adword Pricing)
INPUT: the CTR for each slot, each bidder’s expected re-
turn per click on his advertising.
OUTPUT: the stable states of this auction and whether any
of these stable states can be reached from any initial states.

Key Results

Let b represent the bid vector (b1; b2; : : : ; bN). 8i 2N ,
Oi (b) denotes bidder i’s place in the descending bid queue.
Let b�i = (b1; : : : ; bi�1; bi+1; : : : ; bN) denote the bids of
all other bidders except i.Mi (b�i) returns a set defined as

Mi (b�i) = arg max
b i2[0;v i]

n
ui
O i (b i ;b�i)

o
: (1)

Definition 2 (Forward-Looking Best-Response Func-
tion) Given b�i , suppose Oi (Mi (b�i); b�i) = k, then

8 A Adwords Pricing

bidder i’s forward-looking response function F i (b�i) is
defined as

F i (b�i) =

(
vi � ck

ck�1
(vi � bk+1) 2 � k � K ;

vi k = 1 or k > K :
(2)

Definition 3 (Forward-Looking Nash Equilibrium) A
forward-looking best-response-function-basedNash equi-
librium is a strategy profile b̂ such that

8i 2N ; b̂i 2 F i(b̂�i) :

Definition 4 (Output Truthful [7,9]) For any instance of
an adword auction and the corresponding equilibrium set
E, if 8e 2 E and 8i 2N , Oi (e) = Oi (v1; : : : ; vN), then
the adword auction is output truthful on E.
Theorem 5 An adword auction is output truthful on
Eforward-looking.

Corollary 6 An adword auction has a unique forward-
looking Nash equilibrium.

Corollary 7 Any bidder’s payment under the forward-
looking Nash equilibrium is equal to her payment under the
VCG mechanism for the auction.

Corollary 8 For adword auctions, the auctioneer’s revenue
in a forward-looking Nash equilibrium is equal to her rev-
enue under the VCG mechanism for the auction.

Definition 9 (Simultaneous Readjustment Scheme) In
a simultaneous readjustment scheme, all bidders par-
ticipating in the auction will use forward-looking best-
response function F to update their current bids simul-
taneously, which turns the current stage into a new stage.
Then, based on the new stage, all bidders may update their
bids again.

Theorem 10 An adword auction may not always converge
to a forward-looking Nash equilibrium under the simulta-
neous readjustment scheme even when the number of slots
is 3. But the protocol converges when the number of slots
is 2.

Definition 11 (Round-Robin Readjustment Scheme) In
the round-robin readjustment scheme, bidders update
their biddings one after the other, according to the order
of the bidder’s number or the order of the slots.

Theorem 12 An adword auction may not always converge
to a forward-looking Nash equilibrium under the round-
robin readjustment scheme even when the number of slots
is 4. But the protocol converges when the number of slots is 2
or 3.

1: if (j = 0) then
2: exit
3: end if
4: Let i be the ID of the bidder whose current bid is bj

(and equivalently, bi).
5: Let h = Oi (Mi (b�i); b�i).
6: LetF i (b�i) be the best response function value for

Bidder i.
7: Re-sort the bid sequence. (So h is the slot of the new

bidF i (b�i) of Bidder i.)
8: if (h < j) then
9: call Lowest-First(K; j; b1 ; b2; � � � ; bN),
10: else
11: call Lowest-First(K; h � 1; b1; b2; � � � ; bN)
12: end if

Adwords Pricing, Figure 1
Readjustment Scheme: Lowest-First(K; j;b1; b2; � � � ; bN)

Theorem13 Adword auctions converge to a forward-look-
ing Nash equilibrium in finite steps with a lowest-first ad-
justment scheme.

Theorem14 Adword auctions converge to a forward-look-
ing Nash equilibriumwith probability one under a random-
ized readjustment scheme.

Applications

Online adword auctions are the fastest growing form of
advertising on the Internet today. Many search engine
companies such as Google and Yahoo! make huge prof-
its on this kind of auction. Because advertisers can change
their bids any time, such auctions can reduce advertisers’
risk. Further, because the advertisement is only displayed
to those people who are really interested in it, such auc-
tions can reduce advertisers’ investment and increase their
return on investment.

For the same model, Varian [11] focuses on a subset
of Nash equilibrium called symmetric Nash equilibrium,
which can be formulated nicely and dealt with easily. Edel-
man et al. [8] study locally envy-free equilibrium, where
no player can improve her payoff by exchanging bid with
the player ranked one position above her. Coincidently,
locally envy-free equilibrium is equal to symmetric Nash
equilibrium proposed in [11]. Further, the revenue under
the forward-looking Nash equilibrium is the same as the
lower bound under Varian’s symmetric Nash equilibrium
and the lower bound under Edelman et al.’s locally envy-
free equilibrium. In [6], Cary et al. also study the dynamic

Algorithm DC-Tree for k Servers on Trees A 9

model’s equilibrium and convergence based on the bal-
anced bidding strategy, which is actually the same as the
forward-looking best-response function in [4]. Cary et al.
explore the convergence properties under two models, a
synchronousmodel, which is the same as the simultaneous
readjustment scheme in [4], and an asynchronous model,
which is the same as the randomized readjustment scheme
in [4].

In addition, there are other models for adword auc-
tions. [1] and [5] study themodel under which each bidder
can submit a daily budget, even the maximum number of
clicks per day, in addition to the price per click. Both [10]
and [3] study bidders’ behavior of bidding on several key-
words. [2] studies a model whereby the advertiser not only
submits a bid but additionally submits which positions he
is going to bid for.

Open Problems

The speed of convergence remains open. Does the dy-
namicmodel converge in polynomial time under random-
ized readjustment scheme? Even more, are there other
readjustment schemes that converge in polynomial time?

Cross References

�Multiple Unit Auctions with Budget Constraint
� Position Auction

Recommended Reading
1. Abrams, Z.: Revenue maximization when bidders have bud-

gets. In: Proceedings of the 17th Annual ACM–SIAM Sym-
posium on Discrete Algorithms (SODA-06), Miami, FL 2006,
pp. 1074–1082, ACM Press, New York (2006)

2. Aggarwal, G., Muthukrishnan, S., Feldman, J.: Bidding to the
top: Vcg and equilibria of position-based auctions. http://
www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
(2006)

3. Borgs, C., Chayes, J., Etesami, O., Immorlica, N., Jain, K., Mah-
dian, M.: Bid optimization in online advertisement auctions.
In: 2nd Workshop on Sponsored Search Auctions, in conjunc-
tion with the ACM Conference on Electronic Commerce (EC-
06), Ann Arbor, MI, 2006

4. Bu, T.-M., Deng, X., Qi, Q.: Dynamics of strategic manipulation
in ad-words auction. In: 3rd Workshop on Sponsored Search
Auctions, in conjunction with WWW2007, Banff, Canada, 2007

5. Bu, T.-M., Qi, Q., Sun, A.W.: Unconditional competitive auc-
tions with copy and budget constraints. In: Spirakis, P.G.,
Mavronicolas, M., Kontogiannis, S.C. (eds.) Internet and Net-
work Economics, 2nd InternationalWorkshop, WINE 2006. Lec-
ture Notes in Computer Science, vol. 4286, pp. 16–26, Patras,
Greece, December 15–17. Springer, Berlin (2006)

6. Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A.R.,
Mathieu, C., Schwarz, M.: Greedy bidding strategies for key-
word auctions. In: MacKie-Mason, J.K., Parkes, D.C., Resnick, P.

(eds.) Proceedings of the 8th ACM Conference on Electronic
Commerce (EC-2007), San Diego, California, USA, June 11–15
2007, pp. 262–271. ACM, New York (2007)

7. Chen, X., Deng, X., Liu, B.J.: On incentive compatible com-
petitive selection protocol. In: Computing and Combinatorics,
12th Annual International Conference, COCOON 2006, Taipei,
Taiwan, 15 August 2006. Lecture Notes in Computer Science,
vol. 4112, pp. 13–22. Springer, Berlin (2006)

8. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising
and the generalized second price auction: selling billions of
dollars worth of dollars worth of keywords. In: 2nd Workshop
on Sponsored Search Auctions, in conjunction with the ACM
Conference on Electronic Commerce (EC-06), Ann Arbor, MI,
June 2006

9. Kao, M.-Y., Li, X.-Y., Wang, W.: Output truthful versus input
truthful: a new concept for algorithmic mechanism design
(2006)

10. Kitts, B., Leblanc, B.: Optimal bidding on keyword auctions.
Electronic Markets, Special issue: Innovative Auction Markets
14(3), 186–201 (2004)

11. Varian, H.R.: Position auctions. Int. J. Ind. Organ. 25(6), 1163–
1178 (2007) http://www.sims.berkeley.edu/~hal/Papers/2006/
position.pdf. Accessed 29 March 2006

Agreement
� Asynchronous Consensus Impossibility
� Consensus with Partial Synchrony
� Randomization in Distributed Computing

AlgorithmDC-Tree
for k Servers on Trees
1991; Chrobak, Larmore

MAREK CHROBAK
Department of Computer Science,
University of California, Riverside, CA, USA

ProblemDefinition

In the k-server problem, one wishes to schedule the move-
ment of k servers in a metric space M, in response to
a sequence % = r1; r2; : : : ; rn of requests, where ri 2M for
each i. Initially, all the servers are located at some point
r0 2M. After each request ri is issued, one of the k servers
must move to ri. A schedule specifies which server moves
to each request. The cost of a schedule is the total distance
traveled by the servers, and our objective is to find a sched-
ule with minimum cost.

In the online version of the k-server problem the deci-
sion as to which server to move to each request ri must
be made before the next request ri+1 is issued. In other
words, the choice of this server is a function of requests

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
http://www.sims.berkeley.edu/~hal/Papers/2006/position.pdf
http://www.sims.berkeley.edu/~hal/Papers/2006/position.pdf

10 A Algorithm DC-Tree for k Servers on Trees

Algorithm DC-Tree for k Servers on Trees, Figure 1
Algorithm DC-TREE serving a request on r. The initial configuration is on the left; the configuration after the service is completed is
on the right. At first, all servers are active. When server 3 reaches point x, server 1 becomes inactive. When server 3 reaches point y,
server 2 becomes inactive

r1; r2; : : : ; ri . It is quite easy to see that in this online sce-
nario it is not possible to guarantee an optimal schedule.
The accuracy of online algorithms is often measured us-
ing competitive analysis. If A is an online k-server algo-
rithm, denote by costA(%) the cost of the schedule pro-
duced by A on a request sequence %, and by opt(%) the
cost of the optimal schedule. A is called R-competitive if
costA(%) � R � opt(%) + B, where B is a constant that may
depend onM and r0. The smallest suchR is called the com-
petitive ratio ofA. Of course, the smaller the R the better.

The k-server problemwas introduced byManasse,Mc-
Geoch, and Sleator [7,8], who proved that there is no on-
line R-competitive algorithm for R < k, for any metric
space with at least k + 1 points. They also gave a 2-com-
petitive algorithm for k = 2 and formulated what is now
known as the k-server conjecture, which postulates that
there exists a k-competitive online algorithm for all k.
Koutsoupias and Papadimitriou [5,6] proved that the so-
called work-function algorithm has competitive ratio at
most 2k � 1, which to date remains the best upper bound
known.

Efforts to prove the k-server conjecture led to dis-
coveries of k-competitive algorithms for some restricted
classes of metric spaces, including AlgorithmDC-TREE for
trees [4] presented in the next section. (See [1,2,3] for other
examples.) A tree is a metric space defined by a connected
acyclic graph whose edges are treated as line segments of
arbitrary positive lengths. This metric space includes both
the tree’s vertices and the points on the edges, and the dis-
tances are measured along the (unique) shortest paths.

Key Results

Let T be a tree, as defined above. Given the current server
configuration S = fs1; : : : ; skg, where sj denotes the loca-
tion of server j, and a request point r, the algorithm will
move several servers, with one of them ending up on r. For
two points x; y 2 T , let [x; y] be the unique path from x to
y in T . A server j is called active if there is no other server
in [s j ; r] �

˚
s j
�
, and j is theminimum-index server located

on sj (the last condition is needed only to break ties).

Algorithm DC-TREE

On a request r, move all active servers, continuously and
with the same speed, towards r, until one of them reaches
the request. Note that during this process some active
servers may become inactive, in which case they halt.
Clearly, the server that will arrive at r is the one that was
closest to r at the time when r was issued. Figure 1 shows
how DC-TREE serves a request r.

The competitive analysis of Algorithm DC-TREE is
based on a potential argument. The cost of Algorithm DC-
TREE is compared to that of an adversary who serves the
requests with her own servers. Denoting by A the con-
figuration of the adversary servers at a given step, define
the potential by ˚ = k � D(S;A) +

P
i< j d(si ; s j), where

D(S,A) is the cost of the minimum matching between S
and A. At each step, the adversary first moves one of her
servers to r. In this sub-step the potential increases by at
most k times the increase of the adversary’s cost. Then, Al-
gorithm DC-TREE serves the request. One can show that
then the sum of ˚ and DC-TREE’s cost does not increase.
These two facts, by amortization over the whole request
sequence, imply the following result [4]:

Theorem ([4]) Algorithm DC-TREE is k-competitive on
trees.

Applications

The k-server problem is an abstraction of various schedul-
ing problems, including emergency crew scheduling,
caching in multilevel memory systems, or scheduling head
movement in 2-headed disks. Nevertheless, due to its ab-
stract nature, the k-server problem is mainly of theoretical
interest.

Algorithm DC-TREE can be applied to other spaces
by “embedding” them into trees. For example, a uniform
metric space (with all distances equal 1) can be represented
by a star with arms of length 1/2, and thus Algorithm DC-
TREE can be applied to those spaces. This also immediately
gives a k-competitive algorithm for the caching problem,
where the objective is to manage a two-level memory sys-

Algorithmic Cooling A 11

tem consisting of a large main memory and a cache that
can store up to kmemory items. If an item is in the cache,
it can be accessed at cost 0, otherwise it costs 1 to read
it from the main memory. This caching problem can be
thought of as the k-server problem in a uniform metric
space where the server positions represent the items re-
siding in the cache. This idea can be extended further to
the weighted caching [3], which is a generalization of the
caching problem where different items may have different
costs. In fact, if one can embed ametric spaceM into a tree
with distortion bounded by ı, then Algorithm DC-TREE
yields a ık-competitive algorithm forM.

Open Problems

The k-server conjecture – whether there is a k-competi-
tive algorithm for k servers in any metric space – remains
open. It would be of interest to prove it for some natural
special cases, for example the plane, either with the Eu-
clidean or Manhattan metric. (A k-competitive algorithm
for the Manhattan plane for k = 2; 3 servers is known [1],
but not for k � 4.)

Very little is known about online randomized algo-
rithms for k-servers. In fact, even for k = 2 it is not known
if there is a randomized algorithm with competitive ratio
smaller than 2.

Cross References

� Deterministic Searching on the Line
� Generalized Two-Server Problem
�Metrical Task Systems
�Online Paging and Caching
� Paging
�Work-Function Algorithm for k Servers

Recommended Reading
1. Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in the

plane. Theor. Comput. Sci. 287, 387–391 (2002)
2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive

Analysis. Cambridge University Press, Cambridge (1998)
3. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New re-

sults on server problems. SIAM J. Discret. Math. 4, 172–181
(1991)

4. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k
servers on trees. SIAM J. Comput. 20, 144–148 (1991)

5. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture.
In: Proc. 26th Symp. Theory of Computing (STOC), pp. 507–511.
ACM (1994)

6. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture.
J. ACM 42, 971–983 (1995)

7. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms
for online problems. In: Proc. 20th Symp. Theory of Computing
(STOC), pp. 322–333. ACM (1988)

8. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms
for server problems. J. Algorithms 11, 208–230 (1990)

Algorithmic Cooling
1999; Schulman, Vazirani
2002; Boykin, Mor, Roychowdhury, Vatan, Vrijen

TAL MOR
Department of Computer Science, Technion, Haifa, Israel

Keywords and Synonyms

Algorithmic cooling of spins; Heat-bath algorithmic cool-
ing

ProblemDefinition

The fusion of concepts taken from the fields of quan-
tum computation, data compression, and thermodynam-
ics, has recently yielded novel algorithms that resolve
problems in nuclear magnetic resonance and potentially
in other areas as well; algorithms that “cool down” physi-
cal systems.
� A leading candidate technology for the construction

of quantum computers is Nuclear Magnetic Resonance
(NMR). This technology has the advantage of being
well-established for other purposes, such as chemistry
and medicine. Hence, it does not require new and ex-
otic equipment, in contrast to ion traps and optical lat-
tices, to name a few. However, when using standard
NMR techniques (not only for quantum computing
purposes) one has to live with the fact that the state can
only be initialized in a very noisy manner: The parti-
cles’ spins point inmostly random directions, with only
a tiny bias towards the desired state.
The key idea of Schulman and Vazirani [13] is to com-
bine the tools of both data compression and quan-
tum computation, to suggest a scalable state initializa-
tion process, a “molecular-scale heat engine”. Based
on Schulman and Vazirani’s method, Boykin, Mor,
Roychowdhury, Vatan, and Vrijen [2] then developed
a new process, “heat-bath algorithmic cooling”, to sig-
nificantly improve the state initialization process, by
opening the system to the environment. Strikingly, this
offered a way to put to good use the phenomenon of
decoherence, which is usually considered to be the vil-
lain in quantum computation. These two methods are
now sometimes called “closed-system” (or “reversible”)
algorithmic cooling, and “open-system” algorithmic
cooling, respectively.

12 A Algorithmic Cooling

� The far-reaching consequence of this research lies in
the possibility of reaching beyond the potential imple-
mentation of remote-future quantum computing de-
vices. An efficient technique to generate ensembles of
spins that are highly polarized by external magnetic
fields is considered to be a Holy Grail in NMR spec-
troscopy. Spin-half nuclei have steady-state polariza-
tion biases that increase inversely with temperature;
therefore, spins exhibiting polarization biases above
their thermal-equilibrium biases are considered cool.
Such cooled spins present an improved signal-to-noise
ratio if used in NMR spectroscopy or imaging.
Existing spin-cooling techniques are limited in their
efficiency and usefulness. Algorithmic cooling is
a promising new spin-cooling approach that employs
data compression methods in open systems. It reduces
the entropy of spins to a point far beyond Shannon’s
entropy bound on reversible entropy manipulations,
thus increasing their polarization biases. As a result, it
is conceivable that the open-system algorithmic cool-
ing technique could be harnessed to improve on cur-
rent uses of NMR in areas such as chemistry, material
science, and even medicine, since NMR is at the basis
of MRI – Magnetic Resonance Imaging.

Basic Concepts

Loss-Less in-Place Data Compression Given a bit-
string of length n, such that the probability distribution
is known and far enough from the uniform distribution,
one can use data compression to generate a shorter string,
say of m bits, such that the entropy of each bit is much
closer to one. As a simple example, consider a four-bit-
string which is distributed as follows; p0001 = p0010 =
p0100 = p1000 = 1/4, with pi the probability of the string
i. The probability of any other string value is exactly zero,
so the probabilities sum up to one. Then, the bit-string
can be compressed, via a loss-less compression algorithm,
into a 2-bit string that holds the binary description of the
location of “1” in the above four strings. As the proba-
bilities of all these strings are zero, one can also envision
a similar process that generates an output which is of the
same length n as the input, but such that the entropy is
compressed via a loss-less, in-place, data compression into
the last two bits. For instance, logical gates that operate
on the bits can perform the permutation 0001! 0000,
0010! 0001, 0100! 0010 and 1000! 0011, while the
other input strings transform to output strings in which
the two most significant bits are not zero; for instance
1100! 1010. One can easily see that the entropy is now
fully concentrated on the two least significant bits, which

are useful in data compression, while the two most signif-
icant bits have zero entropy.

In order to gain some intuition about the design of
logical gates that perform entropy manipulations, one can
look at a closely related scenario which was first considered
by von Neumann. He showed a method to extract fair coin
flips, given a biased coin; he suggested taking a pair of bi-
ased coin flips, with results a and b, and using the value of
a conditioned on a ¤ b. A simple calculation shows that
a = 0 and a = 1 are now obtained with equal probabili-
ties, and therefore the entropy of coin a is increased in this
case to 1. The opposite case, the probability distribution
of a given that a = b, results in a highly determined coin
flip; namely, a (conditioned) coin-flip with a higher bias or
lower entropy. A gate that flips the value of b if (and only
if) a = 1 is called a Controlled-NOT gate. If after applying
such a gate b = 1 is obtained, this means that a ¤ b prior
to the gate operation, thus now the entropy of a is 1. If,
on the other hand, after applying such a gate b = 0 is ob-
tained, this means that a = b prior to the gate operation,
thus the entropy of a is now lower than its initial value.

Spin Temperature, Polarization Bias, and Effective
Cooling In physics, two-level systems, namely systems
that possess only binary values, are useful in many ways.
Often it is important to initialize such systems to a pure
state ‘0’ or to a probability distribution which is as close
as possible to a pure state ‘0’. In these physical two-level
systems a data compression process that brings some of
them closer to a pure state can be considered as “cool-
ing”. For quantum two-level systems there is a simple
connection between temperature, entropy, and popula-
tion probability. The population-probability difference be-
tween these two levels is known as the polarization bias,
�. Consider a single spin-half particle – for instance a hy-
drogen nucleus – in a constant magnetic field. At equi-
librium with a thermal heat-bath the probability of this
spin to be up or down (i. e., parallel or anti-parallel to
the field direction) is given by: p" = 1+�

2 , and p# = 1��
2 .

The entropy H of the spin is H(single-bit) = H(1/2 + �/2)
with H(P) � �P log2 P � (1 � P) log2(1 � P) measured
in bits. The two pure states of a spin-half nucleus are com-
monly written as j "i �‘0’ and j #i �‘1’; the ji notation
will be clarified elsewhere1. The polarization bias of the
spin at thermal equilibrium is given by � = p" � p#. For
such a physical system the bias is obtained via a quantum
statistical mechanics argument, � = tanh

�
„�B
2KBT

�
, where

„ is Planck’s constant, B is the magnetic field, � is the

1Quantum Computing entries in this encyclopedia, e.g. � Quan-
tum Dense Coding

Algorithmic Cooling A 13

particle-dependent gyromagnetic constant2, KB is Boltz-
man’s coefficient, and T is the thermal heat-bath temper-
ature. For high temperatures or small biases � 	 „�B

2KBT ,
thus the bias is inversely proportional to the temperature.
Typical values of � for spin-half nuclei at room temper-
ature (and magnetic field of
 10 Tesla) are 10�5–10�6,
and therefore most of the analysis here is done under the
assumption that �� 1. The spin temperature at equi-
librium is thus T = Const

�
, and its (Shannon) entropy is

H = 1 � (�2/ ln 4).
A spin temperature out of thermal equilibrium is still

defined via the same formulas. Therefore, when a system is
moved away from thermal equilibrium, achieving a greater
polarization bias is equivalent to cooling the spins with-
out cooling the system, and to decreasing their entropy.
The process of increasing the bias (reducing the entropy)
without decreasing the temperature of the thermal-bath is
known as “effective cooling”. After a typical period of time,
termed the thermalization time or relaxation time, the bias
will gradually revert to its thermal equilibrium value; yet
during this process, typically in the order of seconds, the
effectively-cooled spin may be used for various purposes
as described in Sect. “Applications”.

Consider a molecule that contains n adjacent spin-half
nuclei arranged in a line; these form the bits of the string.
These spins are initially at thermal equilibrium due to their
interaction with the environment. At room temperature
the bits at thermal equilibrium are not correlated to their
neighbors on the same string: More precisely, the corre-
lation is very small and can be ignored. Furthermore, in
a liquid state one can also neglect the interaction between
strings (between molecules). It is convenient to write the
probability distribution of a single spin at thermal equilib-
rium using the “density matrix” notation

�� =
�
p" 0
0 p#

�
=
�
(1 + �)/2 0

0 (1 � �)/2

�
; (1)

since these two-level systems are of a quantum nature
(namely, these are quantum bits – qubits), and in general,
can also have states other than just a classical probability
distribution over ‘0’ and ‘1’. The classical case will now be
considered, where � contains only diagonal elements and
these describe a conventional probability distribution. At
thermal equilibrium, the state of n = 2 uncorrelated qubits
that have the same polarization bias is described by the
density matrix �fn=2ginit = �� ˝ �� , where ˝ means tensor

2This constant, � , is thus responsible for the difference in equi-
librium polarization bias [e. g., a hydrogen nucleus is 4 times more
polarized than a carbon isotope 13C nucleus, but about 103 less polar-
ized than an electron spin].

product. The probability of the state ‘00’, for instance, is
then (1 + �)/2 � (1 + �)/2 = (1 + �)2/4 (etc.). Similarly, the
initial state of an n-qubit system of this type, at thermal
equilibrium, is

�
fng
init = �� ˝ �� ˝ � � � ˝ �� : (2)

This state represents a thermal probability distribution,
such that the probability of the classical state ‘000...0’ is
P000:::0 = (1 + �0)n /2n , etc. In reality, the initial bias is not
the same on each qubit3, but as long as the differences be-
tween these biases are small (e. g., all qubits are of the same
nucleus), these differences can be ignored in a discussion
of an idealized scenario.

Key Results

Molecular Scale Heat Engines

Schulman and Vazirani (SV) [13] identified the impor-
tance of in-place loss-less data compression and of the
low-entropy bits created in that process: Physical two-level
systems (e. g., spin-half nuclei) may be similarly cooled
by data compression algorithms. SV analyzed the cool-
ing of such a system using various tools of data com-
pression. A loss-less compression of an n-bit binary string
distributed according to the thermal equilibrium distri-
bution, Eq. (2), is readily analyzed using information-
theoretical tools: In an ideal compression scheme (not
necessarily realizable), with sufficiently large n, all ran-
domness – and hence all the entropy – of the bit string
is transferred to n � m bits; the remainingm bits are thus
left, with extremely high probability, at a known determin-
istic state, say the string ‘000...0’. The entropy H of the en-
tire system is H(system) = nH(single � bit) = nH(1/2 +
�/2). Any compression scheme cannot decrease this en-
tropy, hence Shannon’s source coding entropy bound
yields m � n[1 � H(1/2 + �/2)]. A simple leading-order
calculation shows that m is bounded by (approximately)
�2

2 ln 2n for small values of the initial bias �. Therefore, with
typical �
 10�5, molecules containing an order of mag-
nitude of 1010 spins are required to cool a single spin close
to zero temperature.

Conventional methods for NMR quantum computing
are based on unscalable state-initialization schemes [5,9]
(e. g., the “pseudo-pure-state” approach) in which the
signal-to-noise ratio falls exponentially with n, the num-
ber of spins. Consequently, these methods are deemed in-
appropriate for future NMR quantum computers. SV [13]
were first to employ tools of information theory to address

3Furthermore, individual addressing of each spin during the algo-
rithm requires a slightly different bias for each.

14 A Algorithmic Cooling

the scaling problem; they presented a compression scheme
in which the number of cooled spins scales well (namely,
a constant times n). SV also demonstrated a scheme ap-
proaching Shannon’s entropy bound, for very large n.
They provided detailed analyses of three cooling algo-
rithms, each useful for a different regime of � values.

Some ideas of SV were already explored a few years
earlier by Sørensen [14], a physical chemist who ana-
lyzed effective cooling of spins. He considered the entropy
of several spin systems and the limits imposed on cool-
ing these systems by polarization transfer and more gen-
eral polarization manipulations. Furthermore, he consid-
ered spin-cooling processes in which only unitary oper-
ations were used, wherein unitary matrices are applied
to the density matrices; such operations are realizable, at
least from a conceptual point of view. Sørensen derived
a stricter bound on unitary cooling, which today bears his
name. Yet, unlike SV, he did not infer the connection to
data compression or advocate compression algorithms.

SV named their concept “molecular-scale heat en-
gine”. When combined with conventional polarization
transfer (which is partially similar to a SWAP gate between
two qubits), the term “reversible polarization compression
(RPC)” to be more descriptive.

Heat-Bath Algorithmic Cooling

The next significant development came when Boykin,
Mor, Roychowdhury, Vatan and Vrijen, (hereinafter re-
ferred to as BMRVV), invented a new spin-cooling tech-
nique, which they named Algorithmic cooling [2], or more
specifically, heat-bath algorithmic cooling in which the
use of controlled interactions with a heat bath enhances
the cooling techniques much further. Algorithmic Cool-
ing (AC) expands the effective cooling techniques by ex-
ploiting entropy manipulations in open systems. It com-
bines RPC steps4 with fast relaxation (namely, thermal-
ization) of the hotter spins, as a way of pumping entropy
outside the system and cooling the system much beyond
Shannon’s entropy bound. In order to pump entropy out
of the system, AC employs regular spins (here called com-
putation spins) together with rapidly relaxing spins. The
latter are auxiliary spins that return to their thermal equi-
librium state very rapidly. These spins have been termed
“reset spins”, or, equivalently, reset bits. The controlled in-
teractions with the heat bath are generated by polarization
transfer or by standard algorithmic techniques (of data
compression) that transfer the entropy onto the reset spins

4When the entire process is RPC, namely, any of the processes that
follow SV ideas, one can refer to it as reversible AC or closed-system
AC, rather than as RPC.

which then lose this excess entropy into the environment.
The ratio Rrelax�times, between the relaxation time of

the computation spins and the relaxation time of the reset
spins, must satisfy Rrelax�times � 1. This condition is vital
if one wishes to perform many cooling steps on the system
to obtain significant cooling.

From a pure information-theoretical point of view, it is
legitimate to assume that the only restriction on ideal RPC
steps is Shannon’s entropy bound; then the equivalent of
Shannon’s entropy bound, when an ideal open-system AC
is used, is that all computation spins can be cooled down to
zero temperature, that is to � = 1. Proof. – repeat the fol-
lowing till the entropy of all computation spins is exactly
zero: (i) push entropy from computation spins into reset
spins; (ii) let the reset spins cool back to room tempera-
ture. Clearly, each application of step (i), except the last
one, pushes the same amount of entropy onto the reset
spins, and then this entropy is removed from the system
in step (ii). Of course, a realistic scenario must take other
parameters into account such as finite relaxation-time ra-
tios, realistic environment, and physical operations on the
spins. Once this is done, cooling to zero temperature is no
longer attainable. While finite relaxation times and a real-
istic environment are system dependent, the constraint of
using physical operations is conceptual.

BMRVV therefore pursued an algorithm that follows
some physical rules, it is performed by unitary operations
and reset steps, and still bypass Shannon’s entropy bound,
by far. The BMRVV cooling algorithm obtains significant
cooling beyond that entropy bound by making use of very
long molecules bearing hundreds or even thousands of
spins, because its analysis relies on the law of large num-
bers.

Practicable Algorithmic Cooling

The concept of algorithmic cooling then led to practica-
ble algorithms [8] for cooling small molecules. In order to
see the impact of practicable algorithmic cooling, it is best
to use a different variant of the entropy bound. Consider
a system containing n spin-half particles with total entropy
higher than n � 1, so that there is no way to cool even one
spin to zero temperature. In this case, the entropy bound is
a result of the compression of the entropy into n � 1 fully-
random spins, so that the remaining entropy on the last
spin is minimal. The entropy of the remaining single spin
satisfies H(single) � 1 � n�2/ ln 4, thus, at most, its polar-
ization can be improved to

�final � �
p
n : (3)

Algorithmic Cooling A 15

The practicable algorithmic cooling (PAC), suggested by
Fernandez, Lloyd, Mor, and Roychowdhury in [8], indi-
cated potential for a near-future application to NMR spec-
troscopy. In particular, it presented an algorithm named
PAC2 which uses any (odd) number of spins n, such that
one of them is a reset spin, and (n � 1) are computation
spins. PAC2 cools the spins such that the coldest one can
(approximately) reach a bias amplification by a factor of
(3/2)(n�1)/2. The approximation is valid as long as the fi-
nal bias (3/2)(n�1)/2� is much smaller than 1. Otherwise,
a more precise treatment must be done. This proves an ex-
ponential advantage of AC over the best possible reversible
AC, as these reversible cooling techniques, e. g., of [13,14],
are limited to improve the bias by no more than a factor
of
p
n. PAC can be applied for small n (e. g., in the range

of 10–20), and therefore it is potentially suitable for near-
future applications [6,8,10] in chemical and biomedical us-
ages of NMR spectroscopy.

It is important to note that in typical scenarios the ini-
tial polarization bias of a reset spin is higher than that of
a computation spin. In this case, the bias amplification fac-
tor of (3/2)(n�1)/2 is relative to the larger bias, that of the
reset spin.

Exhaustive Algorithmic Cooling

Next, AC was analyzed, wherein the cooling steps (reset
and RPC) are repeated an arbitrary number of times. This
is actually an idealization where an unbounded number of
reset and logic steps can be applied without error or de-
coherence, while the computation qubits do not lose their
polarization biases. Fernandez [7] considered two compu-
tation spins and a single reset spin (the least significant
bit, namely the qubit at the right in the tensor-product
density-matrix notation) and analyzed optimal cooling of
this system. By repeating the reset and compression ex-
haustively, he realized that the bound on the final biases of
the three spins is approximately {2, 1, 1} in units of �, the
polarization bias of the reset spin.

Mor and Weinstein generalized this analysis further
and found that n � 1 computation spins and a single re-
set spin can be cooled (approximately) to biases accord-
ing to the Fibonacci series: {... 34, 21, 13, 8, 5, 3, 2, 1,
1}. The computation spin that is furthest from the reset
spin can be cooled up to the relevant Fibonacci number
Fn. That approximation is valid as long as the largest term
times � is still much smaller than 1. Schulman then sug-
gested the “partner pairing algorithm” (PPA) and proved
the optimality of the PPA among all classical and quan-
tum algorithms. These two algorithms, the Fibonacci AC
and the PPA, led to two joint papers [11,12], where up-

per and lower bounds on AC were also obtained. The PPA
is defined as follows; repeat these two steps until cooling
sufficiently close to the limit: (a) RESET – applied to a re-
set spin in a system containing n � 1 computation spins
and a single (the LSB) reset spin. (b) SORT – a permu-
tation that sorts the 2n diagonal elements of the density
matrix by decreasing order, so that the MSB spin becomes
the coldest. Two important theorems proven in [12] are:
1. Lower bound: When �2n � 1 (namely, for long enough
molecules), Theorem 3 in [12] promises that n � log(1/�)
cold qubits can be extracted. This case is relevant for scal-
able NMR quantum computing. 2. Upper bound: Section
4.2 in [12] proves the following theorem: No algorithmic
cooling method can increase the probability of any basis
state to above minf2�n e2n� ; 1g, wherein the initial config-
uration is the completely mixed state (the same is true if
the initial state is a thermal state).

More recently, Elias, Fernandez, Mor, and Wein-
stein [6] analyzed more closely the case of n < 15 (at
room temperature), where the coldest spin (at all stages)
still has a polarization bias much smaller than 1. This
case is most relevant for near-future applications in NMR
spectroscopy. They generalized the Fibonacci-AC to algo-
rithms yielding higher-term Fibonacci series, such as the
tri-bonacci (also known as 3-term Fibonacci series), {... 81,
44, 24, 13, 7, 4, 2, 1, 1}, etc. The ultimate limit of these
multi-term Fibonacci series is obtained when each term in
the series is the sum of all previous terms. The resulting
series is precisely the exponential series {... 128, 64, 32, 16,
8, 4, 2, 1, 1}, so the coldest spin is cooled by a factor of
2n�2. Furthermore, a leading order analysis of the upper
bound mentioned above (Section 4.2 in [12]) shows that
no spin can be cooled beyond a factor of 2n�1; see Corol-
lary 1 in [6].

Applications

The two major far-future and near-future applications are
already described in Sect. “Problem Definition”. It is im-
portant to add here that although the specific algorithms
analyzed so far for AC are usually classical, their practical
implementation via an NMR spectrometer must be done
through analysis of universal quantum computation, us-
ing the specific gates allowed in such systems. Therefore,
AC could yield the first near-future application of quan-
tum computing devices.

AC may also be useful for cooling various other physi-
cal systems, since state initialization is a common problem
in physics in general and in quantum computation in par-
ticular.

16 A Algorithmic Mechanism Design

Open Problems

Amain open problem in practical AC is technological; can
the ratio of relaxation times be increased so that many
cooling steps may be applied onto relevant NMR sys-
tems? Other methods, for instance a spin-diffusion mech-
anism [1], may also be useful for various applications.

Another interesting open problem is whether the ideas
developed during the design of AC can also lead to appli-
cations in classical information theory.

Experimental Results

Various ideas of AC had already led to several experiments
using 3–4 qubit quantum computing devices: 1. An experi-
ment [4] that implemented a single RPC step. 2. An exper-
iment [3] in which entropy-conservation bounds (which
apply in any closed system)were bypassed. 3. A full AC ex-
periment [1] that includes the initialization of three carbon
nuclei to the bias of a hydrogen spin, followed by a single
compression step on these three carbons.

Cross References

� Dictionary-Based Data Compression
� Quantum Algorithm for Factoring
� Quantum Algorithm for the Parity Problem
� Quantum Dense Coding
� Quantum Key Distribution

Recommended Reading

1. Baugh, J.,Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Exper-
imental implementation of heat-bath algorithmic cooling us-
ing solid-state nuclear magnetic resonance. Nature 438, 470–
473 (2005)

2. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.:
Algorithmic cooling and scalable NMR quantum computers.
Proc. Natl. Acad. Sci. 99, 3388–3393 (2002)

3. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A.,
Mor, T., Weinstein, Y., Xiao, L.: Experimental heat-bath cool-
ing of spins. Submitted to Proc. Natl. Acad. Sci. USA. See also
quant-ph/0511156 (2005)

4. Chang, D.E., Vandersypen, L.M.K., Steffen, M.: NMR implemen-
tation of a building block for scalable quantum computation.
Chem. Phys. Lett. 338, 337–344 (2001)

5. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum com-
puting by NMR spectroscopy. Proc. Natl. Acad. Sci. 94, 1634–
1639 (1997)

6. Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Optimal algo-
rithmic cooling of spins. Isr. J. Chem. 46, 371–391 (2006), also
in: Ekl, S. et al. (eds.) Lecture Notes in Computer Science, Vol-
ume 4618, pp. 2–26. Springer, Berlin (2007), Unconventional
Computation. Proceedings of the Sixth International Confer-
ence UC2007 Kingston, August 2007

7. Fernandez, J.M.: De computatione quantica. Dissertation, Uni-
versity of Montreal (2004)

8. Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury V.: Practica-
ble algorithmic cooling of spins. Int. J. Quant. Inf. 2, 461–477
(2004)

9. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum
computation. Science 275, 350–356 (1997)

10. Mor, T., Roychowdhury, V., Lloyd, S., Fernandez, J.M.,Weinstein,
Y.: Algorithmic cooling. US Patent 6,873,154 (2005)

11. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-
bath algorithmic cooling. Phys. Rev. Lett. 94, 120501, pp. 1–4
(2005)

12. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-
bath algorithmic cooling. SIAM J. Comput. 36, 1729–1747
(2007)

13. Schulman, L.J., Vazirani, U.: Molecular scale heat engines and
scalable quantum computation. Proc. 31st ACM STOC, Symp.
Theory of Computing,pp. 322–329 Atlanta, 01–04 May 1999

14. Sørensen, O.W.: Polarization transfer experiments in high-
resolution NMR spectroscopy. Prog. Nuc. Mag. Res. Spect. 21,
503–569 (1989)

AlgorithmicMechanism Design
1999; Nisan, Ronen

RON LAVI
Faculty of Industrial Engineering and Management,
Technion, Haifa, Israel

ProblemDefinition

Mechanism design is a sub-field of economics and game
theory that studies the construction of social mechanisms
in the presence of selfish agents. The nature of the agents
dictates a basic contrast between the social planner, that
aims to reach a socially desirable outcome, and the agents,
that care only about their own private utility. The underly-
ing question is how to incentivize the agents to cooperate,
in order to reach the desirable social outcomes.

In the Internet era, where computers act and interact
on behalf of selfish entities, the connection of the above
to algorithmic design suggests itself: suppose that the in-
put to an algorithm is kept by selfish agents, who aim to
maximize their own utility. How can one design the algo-
rithm so that the agents will find it in their best interest
to cooperate, and a close-to-optimal outcome will be out-
putted? This is different than classic distributed comput-
ing models, where agents are either “good” (meaning obe-
dient) or “bad” (meaning faulty, or malicious, depending
on the context). Here, no such partition is possible. It is
simply assumed that all agents are utility maximizers. To
illustrate this, let us describe a motivating example:

Algorithmic Mechanism Design A 17

AMotivating Example: Shortest Paths

Given a weighted graph, the goal is to find a shortest path
(with respect to the edge weights) between a given source
and target nodes. Each edge is controlled by a selfish en-
tity, and the weight of the edge, we is private information
of that edge. If an edge is chosen by the algorithm to be in-
cluded in the shortest path, it will incur a cost which is mi-
nus its weight (the cost of communication). Payments to
the edges are allowed, and the total utility of an edge that
participates in the shortest path and gets a payment pe is
assumed to be ue = pe � we. Notice that the shortest path
is with respect to the true weights of the agents, although
these are not known to the designer.

Assuming that each edge will act in order to maximize
its utility, how can one choose the path and the payments?
One option is to ignore the strategic issue all together, ask
the edges to simply report their weights, and compute the
shortest path. In this case, however, an edge dislikes be-
ing selected, and will therefore prefer to report a very high
weight (much higher than its true weight) in order to de-
crease the chances of being selected. Another option is to
pay each selected edge its reported weight, or its reported
weight plus a small fixed “bonus”. However in such a case
all edges will report lower weights, as being selected will
imply a positive gain.

Although this example is written in an algorithmic lan-
guage, it is actually a mechanism design problem, and the
solution, which is now a classic, was suggested in the 70’s.
The chapter continues as follows: First, the abstract formu-
lation for such problems is given, the classic solution from
economics is described, and its advantages and disadvan-
tages for algorithmic purposes are discussed. The next sec-
tion then describes the new results that algorithmic mech-
anism design offers.

Abstract Formulation

The framework consists of a set A of alternatives, or
outcomes, and n players, or agents. Each player i has
a valuation function vi : A! < that assigns a value to
each possible alternative. This valuation function belongs
to a domain Vi of all possible valuation functions. Let
V = V1 � � � � � Vn , and V�i =

Q
j¤i Vj . Observe that this

generalizes the shortest path example of above: A is all the
possible s � t paths in the given graph, ve(a) for some path
a 2 A is either�we (if e 2 a) or zero.

A social choice function f : V ! A assigns a socially
desirable alternative to any given profile of players’ valu-
ations. This parallels the notion of an algorithm. A mech-
anism is a tuple M = (f ; p1; : : : ; pn), where f is a social
choice function, and pi : V ! < (for i = 1; : : : ; n) is the

price charged from player i. The interpretation is that the
social planner asks the players to reveal their true val-
uations, chooses the alternative according to f as if the
players have indeed acted truthfully, and in addition re-
wards/punishes the players with the prices. These prices
should induce “truthfulness” in the following strong sense:
no matter what the other players declare, it is always in
the best interest of player i to reveal her true valuation,
as this will maximize her utility. Formally, this translates
to:

Definition 1 (Truthfulness) M is “truthful” (in domi-
nant strategies) if, for any player i, any profile of valuations
of the other players v�i 2 V�i , and any two valuations of
player ivi ; v0i 2 Vi ,

vi (a)� pi(vi ; v�i) � vi (b) � pi (v0i ; v�i)

where f (vi ; v�i) = a and f (v0i ; v�i) = b.

Truthfulness is quite strong: a player need not know any-
thing about the other players, even not that they are ra-
tional, and still determine the best strategy for her. Quite
remarkably, there exists a truthful mechanism, even under
the current level of abstraction. This mechanism suits all
problem domains, where the social goal is to maximize the
“social welfare”:

Definition 2 (Social welfare maximization) A social
choice function f : V ! Amaximizes the social welfare if
f (v) 2 argmaxa2A

P
i vi (a), for any v 2 V .

Notice that the social goal in the shortest path domain
is indeed welfare maximization, and, in general, this is
a natural and important economic goal. Quite remark-
ably, there exists a general technique to construct truthful
mechanisms that implement this goal:

Theorem 1 (Vickrey–Clarke–Groves (VCG)) Fix any
alternatives set A and any domain V, and suppose that
f : V ! A maximizes the social welfare. Then there exist
prices p such that the mechanism (f , p) is truthful.

This gives “for free” a solution to the shortest path prob-
lem, and to many other algorithmic problems. The great
advantage of the VCG scheme is its generality: it suits all
problem domains. The disadvantage, however, is that the
method is tailored to social welfare maximization. This
turns out to be restrictive, especially for algorithmic and
computational settings, due to several reasons: (i) dif-
ferent algorithmic goals: the algorithmic literature con-
siders a variety of goals, including many that cannot be
translated to welfare maximization. VCG does not help
us in such cases. (ii) computational complexity: even if

18 A Algorithmic Mechanism Design

the goal is welfare maximization, in many settings achiev-
ing exactly the optimum is computationally hard. The
CS discipline usually overcomes this by using approxima-
tion algorithms, but VCG will not work with such algo-
rithm – reaching exact optimality is a necessary require-
ment of VCG. (iii) different algorithmic models: common
CS models change “the basic setup”, hence cause unex-
pected difficulties when one tries to use VCG (for exam-
ple, an onlinemodel, where the input is revealed over time;
this is common in CS, but changes the implicit setting that
VCG requires). This is true even if welfare maximization
is still the goal.

Answering any one of these difficulties requires the
design of a non-VCG mechanism. What analysis tools
should be used for this purpose? In economics and clas-
sic mechanism design, average-case analysis, that relies on
the knowledge of the underlying distribution, is the stan-
dard. Computer science, on the other hand, usually prefers
to avoid strong distributional assumptions, and to use
worst-case analysis. This difference is another cause to the
uniqueness of the answers provided by algorithmic mech-
anism design. Some of the new results that have emerged
as a consequence of this integration between Computer
Science and Economics is next described. Many other re-
search topics that use the tools of algorithmic mechanism
design are described in the entries on Adword Pricing,
Competitive Auctions, False Name Proof Auctions, Gen-
eralized Vickrey Auction, Incentive Compatible Ranking,
Mechanism for One ParameterAgents Single Buyer/Seller,
Multiple Item Auctions, Position Auctions, and Truthful
Multicast.

There are two different but closely related research
topics that should be mentioned in the context of this en-
try. The first is the line of works that studies the “price of
anarchy” of a given system. These works analyze existing
systems, trying to quantify the loss of social efficiency due
to the selfish nature of the participants, while the approach
of algorithmic mechanism design is to understand how
new systems should be designed. For more details on this
topic the reader is referred to the entry on Price of Anar-
chy. The second topic regards the algorithmic study of var-
ious equilibria computation. These works bring computa-
tional aspects into economics and game theory, as they ask
what equilibria notions are reasonable to assume, if one re-
quires computational efficiency, while the works described
here bring game theory and economics into computer sci-
ence and algorithmic theory, as they ask what algorithms
are reasonable to design, if one requires the resilience to
selfish behavior. For more details on this topic the reader is
referred (for example) to the entry on Algorithms for Nash
Equilibrium and to the entry on General Equilibrium.

Key Results

Problem Domain 1: Job Scheduling

Job scheduling is a classic algorithmic setting: n jobs are
to be assigned to m machines, where job j requires pro-
cessing time pij on machine i. In the game-theoretic set-
ting, it is assumed that each machine i is a selfish en-
tity, that incurs a cost pij from processing job j. Note
that the payments in this setting (and in general) may
be negative, offsetting such costs. A popular algorithmic
goal is to assign jobs to machines in order to minimize
the “makespan”: maxi

P
j is assigned to i pi j . This is different

than welfare maximization, which translates in this setting
to the minimization of

P
i
P

j is assigned to i pi j , further il-
lustrating the problem of different algorithmic goals. Thus
the VCG scheme cannot be used, and new methods must
be developed.

Results for this problemdomain depend on the specific
assumptions about the structure of the processing time
vectors. In the related machines case, pi j = p j/si for any
i j, where the pj’s are public knowledge, and the only secret
parameter of player i is its speed, si.

Theorem 2 ([3,22]) For job scheduling on related ma-
chines, there exists a truthful exponential-time mecha-
nism that obtains the optimal makespan, and a truthful
polynomial-time mechanism that obtains a 3-approxima-
tion to the optimal makespan.

More details on this result are given in the entry onMecha-
nism for One Parameter Agents Single Buyer. The bottom
line conclusion is that, although the social goal is differ-
ent than welfare maximization, there still exists a truth-
ful mechanism for this goal. A non-trivial approximation
guarantee is achieved, even under the additional require-
ment of computational efficiency. However, this guarantee
does not match the best possible without the truthfulness
requirement, since in this case a PTAS is known.

Open Question 1 Is there a truthful PTAS for makespan
minimization in related machines?

If the number of machines is fixed then [2] give such
a truthful PTAS.

The above picture completely changes in the move to
the more general case of unrelated machines, where the
pij’s are allowed to be arbitrary:

Theorem 3 ([13,30]) Any truthful scheduling mechanism
for unrelated machines cannot approximate the optimal
makespan by a factor better than 1 +

p
2 (for deterministic

mechanisms) and 2 � 1/m (for randomized mechanisms).

Note that this holds regardless of computational consid-
erations. In this case, switching from welfare maximiza-

Algorithmic Mechanism Design A 19

tion to makespan minimization results in a strong im-
possibility. On the possibilities side, virtually nothing (!)
is known. The VCG mechanism (which minimizes the
total social cost) is an m-approximation of the optimal
makespan [32], and, in fact, nothing better is currently
known:

Open Question 2 What is the best possible approxima-
tion for truthful makespan minimization in unrelated ma-
chines?

What caused the switch from “mostly possibilities” to
“mostly impossibilities”? Related machines is a single-di-
mensional domain (players hold only one secret number),
for which truthfulness is characterized by a simple mono-
tonicity condition, that leaves ample flexibility for algo-
rithmic design. Unrelated machines, on the other hand,
are a multi-dimensional domain, and the algorithmic con-
ditions implied by truthfulness in such a case are harder
to work with. It is still unclear whether these conditions
imply real mathematical impossibilities, or perhaps just
pose harder obstacles that can be in principle solved. One
multi-dimensional scheduling domain for which possibil-
ity results are known is the case where pi j 2 fLj;Hjg,
where the “low” ’s and “high” ’s are fixed and known. This
case generalizes the classic multi-dimensional model of re-
stricted machines (pi j 2 fp j;1g), and admits a truthful
3-approximation [27].

Problem Domain 2: Digital Goods
and Revenue Maximization

In the E-commerce era, a new kind of “digital goods” have
evolved: goods with no marginal production cost, or, in
other words, goods with unlimited supply. One example
is songs being sold on the Internet. There is a sunk cost
of producing the song, but after that, additional electronic
copies incur no additional cost. How should such items
be sold? One possibility is to conduct an auction. An auc-
tion is a one-sided market, where a monopolistic entity
(the auctioneer) wishes to sell one or more items to a set of
buyers.

In this setting, each buyer has a privately known value
for obtaining one copy of the good. Welfare maximization
simply implies the allocation of one good to every buyer,
but a more interesting question is the question of revenue
maximization. How should the auctioneer design the auc-
tion in order to maximize his profit? Standard tools from
the study of revenue-maximizing auctions1 suggest to sim-
ply declare a price-per-buyer, determined by the probabil-

1This model was not explicitly studied in classic auction theory,
but standard results from there can be easily adjusted to this setting.

ity distribution of the buyer’s value, andmake a take-it-or-
leave-it offer. However, such a mechanism needs to know
the underlying distribution. Algorithmic mechanism de-
sign suggests an alternative, worst-case result, in the spirit
of CS-type models and analysis.

Suppose that the auctioneer is required to sell all items
in the same price, as is the case for many “real-life” mo-
nopolists, and denote by F(Ev) the maximal revenue from
a fixed-price sale to bidders with values Ev = v1; : : : vn , as-
suming that all values are known. Reordering indexes so
that v1 � v2 � � � � � vn , let F(Ev) = maxi i � vi . The prob-
lem is, of-course, that in fact nothing about the values is
known. Therefore, a truthful auction that extracts the play-
ers’ values is in place. Can such an auction obtain a profit
that is a constant fraction of F(Ev), for any Ev (i. e. in the
worst case)? Unfortunately, the answer is provably no [17].
The proof makes use of situations where the entire profit
comes from the highest bidder. Since there is no potential
for competition among bidders, a truthful auction cannot
force this single bidder to reveal her value.

Luckily, a small relaxation in the optimality crite-
ria significantly helps. Specifically, denote by F(2)(Ev) =
maxi�2 i � vi (i. e. the benchmark is the auction that sells
to at least two buyers).

Theorem 4 ([17,20]) There exists a truthful random-
ized auction that obtains an expected revenue of at least
F(2)/3:25, even in the worst-case. On the other hand, no
truthful auction can approximate F(2) within a factor better
than 2.42.

Several interesting formats of distribution-free revenue-
maximizing auctions have been considered in the litera-
ture. The common building block in all of them is the
random partitioning of the set of buyers to random sub-
sets, analyzing each set separately, and using the results on
the other sets. Each auction utilizes a different analysis on
the two subsets, which yields slightly different approxima-
tion guarantees. [1] describe an elegant method to deran-
domize these type of auctions, while losing another factor
of 4 in the approximation. More details on this problem
domain can be found in the entry on Competitive Auc-
tions.

Problem Domain 3: Combinatorial Auctions

Combinatorial auctions (CAs) are a central model with
theoretical importance and practical relevance. It gen-
eralizes many theoretical algorithmic settings, like job
scheduling and network routing, and is evident in many
real-life situations. This new model has various pure com-
putational aspects, and, additionally, exhibits interesting

20 A Algorithmic Mechanism Design

game theoretic challenges. While each aspect is important
on its own, obviously only the integration of the two pro-
vides an acceptable solution.

A combinatorial auction is a multi-item auction in
which players are interested in bundles of items. Such a val-
uation structure can represent substitutabilities among
items, complementarities among items, or a combination
of both. More formally, m items (˝) are to be allocated
to n players. Players value subsets of items, and vi(S) de-
notes i’s value of a bundle S
 ˝. Valuations additionally
satisfy: (i) monotonicity, i.e vi(S) � vi(T) for S
 T , and
(ii) normalization, i. e. vi (;) = 0. The literature has mostly
considered the goal of maximizing the social welfare: find
an allocation (S1; : : : ; Sn) that maximizes

P
i vi (Si).

Since a general valuation has size exponential in n and
m, the representation issue must be taken into account.
Two models are usually considered (see [11] for more de-
tails). In the bidding languages model, the bid of a player
represents his valuation is a concise way. For this model it
is NP-hard to approximate the social welfare within a ra-
tio of ˝(m1/2��), for any � > 0 (if “single-minded” bids
are allowed; the exact definition is given below). In the
query access model, the mechanism iteratively queries the
players in the course of computation. For this model, any
algorithm with polynomial communication cannot ob-
tain an approximation ratio of ˝(m1/2��) for any � > 0.
These bounds are tight, as there exist a deterministic

p
m-

approximation with polynomial computation and com-
munication. Thus, for the general valuation structure, the
computational status by itself is well-understood.

The basic incentives issue is again well-understood:
VCG obtains truthfulness. Since VCG requires the exact
optimum, which is NP-hard to compute, the two consider-
ations therefore clash, when attempting to use classic tech-
niques. Algorithmic mechanism design aims to develop
new techniques, to integrate these two desirable aspects.

The first positive result for this integration challenge
was given by [29], for the special case of “single-minded
bidders”: each bidder, i, is interested in a specific bundle
Si, for a value vi (any bundle that contains Si is worth vi,
and other bundles have zero value). Both vi ; Si are private
to the player i.

Theorem 5 ([29]) There exists a truthful and polynomial-
time deterministic combinatorial auction for single-minded
bidders, which obtains a

p
m-approximation to the optimal

social welfare.

A possible generalization of the basic model is to assume
that each item has B copies, and each player still desires at
most one copy from each item. This is termed “multi-unit
CA”. As B grows, the integrality constraint of the prob-

lem reduces, and so one could hope for better solutions.
Indeed, the next result exploits this idea:

Theorem 6 ([7]) There exists a truthful and polynomial-
time deterministic multi-unit CA, for B � 3 copies of each
item, that obtains O(B � m1/(B�2))-approximation to the
optimal social welfare.

This auction copes with the representation issue (since
general valuations are assumed) by accessing the valua-
tions through a “demand oracle”: given per-item prices
fpxgx2˝ , specify a bundle S that maximizes vi (S) �P

x2S px .
Two main drawbacks of this auction motivate further

research on the issue. First, as B gets larger it is reason-
able to expect the approximation to approach 1 (indeed
polynomial-time algorithms with such an approximation
guarantee do exist). However here the approximation ra-
tio does not decrease belowO(logm) (this ratio is achieved
for B = O(logm)). Second, this auction does not provide
a solution to the original setting, where B = 1, and, in gen-
eral for small B’s the approximation factor is rather high.
One way to cope with these problems is to introduce ran-
domness:

Theorem 7 ([26]) There exists a truthful-in-expecta-
tion and polynomial-time randomized multi-unit CA, for
any B � 1 copies of each item, that obtains O(m1/(B+1))-
approximation to the optimal social welfare.

Thus, by allowing randomness, the gap from the standard
computational status is being completely closed. The def-
inition of truthfulness-in-expectation is the natural exten-
sion of truthfulness to a randomized environment: the ex-
pected utility of a player is maximized by being truthful.

However, this notion is strictly weaker than the de-
terministic notion, as this implicitly implies that players
care only about the expectation of their utility (and not,
for example, about the variance). This is termed “the risk-
neutrality” assumption in the economics literature. An in-
termediate notion for randomized mechanisms is that of
“universal truthfulness”: the mechanism is truthful given
any fixed result of the coin toss. Here, risk-neutrality is
no longer needed. [15] give a universally truthful CA for
B = 1 that obtains an O(

p
m)-approximation. Universally

truthful mechanisms are still weaker than deterministic
truthful mechanisms, due to two reasons: (i) It is not
clear how to actually create the correct and exact proba-
bility distribution with a deterministic computer. The sit-
uation here is different than in “regular” algorithmic set-
tings, where various derandomization techniques can be
employed, since these in general does not carry through
the truthfulness property. (ii) Even if a natural random-

Algorithmic Mechanism Design A 21

ness source exists, one cannot improve the quality of the
actual output by repeating the computation several times
(using the the law of large numbers). Such a repetition
will again destroy truthfulness. Thus, exactly because the
game-theoretic issues are being considered in parallel to
the computational ones, the importance of determinism
increases.

Open Question 3 What is the best-possible approxima-
tion ratio that deterministic and truthful combinatorial
auctions can obtain, in polynomial-time?

There are many valuation classes, that restrict the pos-
sible valuations to some reasonable format (see [28]
for more details). For example, sub-additive valua-
tions are such that, for any two bundles S; T;
 ˝ ,
v(S [T) � v(S) + v(T). Such classes exhibit much better
approximation guarantees, e. g. for sub-additive valuation
a polynomial-time 2-approximation is known [16]. How-
ever, no polynomial-time truthful mechanism (be it ran-
domized, or deterministic) with a constant approximation
ratio, is known for any of these classes.

Open Question 4 Does there exist polynomial-time truth-
ful constant-factor approximations for special cases of CAs
that are NP-hard?

Revenuemaximization in CAs is of-course another impor-
tant goal. This topic is still mostly unexplored, with few ex-
ceptions. The mechanism [7] obtains the same guarantees
with respect to the optimal revenue. Improved approxi-
mations exist for multi-unit auctions (where all items are
identical) with budget constrained players [12], and for
unlimited-supply CAs with single-minded bidders [6].

The topic of Combinatorial Auctions is discussed also
in the entry on Multiple Item Auctions.

Problem Domain 4: Online Auctions

In the classic CS setting of “online computation”, the in-
put to an algorithm is not revealed all at once, before the
computation begins, but gradually, over time (for a de-
tailed discussion see the many entries on online problems
in this book). This structure suits the auction world, espe-
cially in the new electronic environments. What happens
when players arrive over time, and the auctioneer must
make decisions facing only a subset of the players at any
given time?

The integration of online settings, worst-case analysis,
and auction theory, was suggested by [24]. They consid-
ered the case where players arrive one at a time, and the
auctioneer must provide an answer to each player as it ar-
rives, without knowing the future bids. There are k iden-

tical items, and each bidder may have a distinct value for
every possible quantity of the item. These values are as-
sumed to be marginally decreasing, where each marginal
value lies in the interval [v; v̄]. The private information of
a bidder includes both her valuation function, and her ar-
rival time, and so a truthful auction need to incentivize the
players to arrive on time (and not later on), and to reveal
their true values. The most interesting result in this setting
is for a large k, so that in fact there is a continuum of items:

Theorem 8 ([24]) There exists a truthful online auc-
tion that simultaneously approximates, within a factor of
O(log(v̄/v)), the optimal offline welfare, and the offline rev-
enue of VCG. Furthermore, no truthful online auction can
obtain a better approximation ratio to either one of these
criteria (separately).

This auction has the interesting property of being
a “posted price” auction. Each bidder is not required to re-
veal his valuation function, but, rather, he is given a price
for each possible quantity, and then simply reports the de-
sired quantity under these prices.

Ideas from this construction were later used by [10] to
construct two-sided online auction markets, where multi-
ple sellers and buyers arrive online.

This approximation ratio can be dramatically im-
proved, to be a constant, 4, if one assumes that (i) there
is only one item, and (ii) player values are i.i.d from some
fixed distribution. No a–priori knowledge of this distribu-
tion is needed, as neither the mechanism nor the players
are required to make any use of it. This work, [19], ana-
lyzes this by making an interesting connection to the class
of “secretary problems”.

A general method to convert online algorithms to on-
line mechanisms is given by [4]. This is done for one item
auctions, and, more generally, for one parameter domains.
This method is competitive both with respect to the wel-
fare and the revenue.

The revenue that the online auction of Theorem 8
manages to raise is competitive only with respect to VCG’s
revenue, which may be far from optimal. A parallel line of
works is concerned with revenue maximizing auctions. To
achieve good results, two assumptions need to be made:
(i) there exists an unlimited supply of items (and recall
from Sect. “Problem Domain 2: Digital Goods and Rev-
enue Maximization” that F(v) is the offline optimal mo-
nopolistic fixed-price revenue), and (ii) players cannot lie
about their arrival time, only about their value. This last
assumption is very strong, but apparently needed. Such
auctions are termed here “value-truthful”, indicating that
“time-truthfulness” is missing.

22 A Algorithmic Mechanism Design

Theorem 9 ([9]) For any � > 0, there exists a value-
truthful online auction, for the unlimited supply case, with
expected revenue of at least (F(v))/(1 + �) � O(h/�2).

The construction exploits principles from learning the-
ory in an elegant way. Posted price auctions for this case
are also possible, in which case the additive loss increases
to O(h log log h). [19] consider fully-truthful online auc-
tions for revenuemaximization, butmanage to obtain only
very high (although fixed) competitive ratios. Construct-
ing fully-truthful online auctions with a close-to-optimal
revenue remains an open question. Another interesting
open question involves multi-dimensional valuations. The
work [24] remains the only work for players that may
demand multiple items. However their competitive guar-
antees are quite high, and achieving better approxima-
tion guarantees (especially with respect to the revenue) is
a challenging task.

Advanced Issues

Monotonicity What is the general way for designing
a truthful mechanism? The straight-forward way is to
check, for a given social choice function f , whether truthful
prices exist. If not, try to “fix” f . It turns out, however, that
there exists a more structured way, an algorithmic condi-
tion that will imply the existence of truthful prices. Such
a condition shifts the designer back to the familiar terri-
tory of algorithmic design. Luckily, such a condition do
exist, and is best described in the abstract social choice set-
ting of Sect. “Problem Definition”:

Definition 3 ([8,23]) A social choice function f : V ! A
is “weakly monotone” (W-MON) if for any i, v�i 2 V�i ,
and any vi ; v0i 2 Vi , the following holds. Suppose that
f (vi ; v�i) = a, and f (v0i ; v�i) = b. Then v0i (b) � vi (b) �
v0i (a)� vi (a).

In words, this condition states the following. Suppose that
player i changes her declaration from vi to v0i , and this
causes the social choice to change from a to b. Then it must
be the case that i’s value for b has increased in the transi-
tion from vi to v0i no-less than i’s value for a.

Theorem 10 ([35]) Fix a social choice function f : V !
A, where V is convex, and A is finite. Then there exist
prices p such that M = (f ; p) is truthful if and only if f
is weakly monotone.

Furthermore, given a weakly monotone f , there exists an
explicit way to determine the appropriate prices p (see [18]
for details).

Thus, the designer should aim for weakly monotone
algorithms, and need not worry about actual prices. But

how difficult is this? For single-dimensional domains, it
turns out that W-MON leaves ample flexibility for the al-
gorithm designer. Consider for example the case where ev-
ery alternative has a value of either 0 (the player “loses”) or
some vi 2 < (the player “wins” and obtains a value vi). In
such a case, it is not hard to show that W-MON reduces
to the following monotonicity condition: if a player wins
with vi, and increases her value to v0i > vi (while v�i re-
mains fixed), then she must win with v0i as well. Further-
more, in such a case, the price of a winning player must be
set to the infimum over all winning values.

Impossibilities of truthful design It is fairly simple to
construct algorithms that satisfy W-MON for single-di-
mensional domains, and a variety of positive results were
obtained for such domains, in classic mechanism design,
as well as in algorithmic mechanism design. But how hard
is it to satisfy W-MON for multi-dimensional domains?
This question is yet unclear, and seems to be one of the
challenges of algorithmic mechanism design. The contrast
between single-dimensionality and multi-dimensionality
appears in all problem domains that were surveyed here,
and seems to reflect some inherent difficulty that is not
exactly understood yet. Given a social choice function f ,
call f implementable (in dominant strategies) if there exist
prices p such that M = (f ; p) is truthful. The basic ques-
tion is then what forms of social choice functions are imple-
mentable.

As detailed in the beginning, the welfare maximiz-
ing social choice function is implementable. This specific
function can be slightly generalized to allow weights, in
the following way: fix some non-negative real constants
fwig

n
i=1 (not all are zero) and f�aga2A, and choose an al-

ternative that maximizes the weighted social welfare, i. e.
f (v) 2 argmaxa2A

P
i wivi(a)+�a . This class of functions

is sometimes termed “affine maximizers”. It turns out that
these functions are also implementable, with prices similar
in spirit to VCG. In the context of the above characteriza-
tion question, one sharp result stands out:

Theorem 11 ([34]) Fix a social choice function
f : V ! A, such that (i) A is finite, jAj � 3, and f is onto
A, and (ii) Vi = <A for all i. Then f is implementable (in
dominant strategies) if and only if it is an affine maximizer.

The domain V that satisfies Vi = <A for all i is term an
“unrestricted domain”. The theorem states that, if the do-
main is unrestricted, at least three alternatives are chosen,
and the set A of alternatives is finite, then nothing besides
affine maximizers can be implemented!

However, the assumption that the domain is unre-
stricted is very restrictive. All the above example do-

Algorithmic Mechanism Design A 23

mains exhibit some basic combinatorial structure, and are
therefore restricted in some way. And as discussed above,
for many restricted domains the theorem is simply not
true. So what is the possibilities – impossibilities border?
As mentioned above, this is an unsolved challenge. Lavi,
Mu’alem, and Nisan [23] explore this question for Com-
binatorial Auctions and similar restricted domains, and
reach partial answers. For example:

Theorem 12 ([23]) Any truthful combinatorial auction or
multi-unit auction among two players, that must always al-
locate all items, and that approximates the welfare by a fac-
tor better than 2, must be an affine maximizer.

Of-course, this is far from being a complete answer. What
happens if there aremore than two players? Andwhat hap-
pens if it is possible to “throw away” part of the items?
These questions, and the more general and abstract char-
acterization question, are all still open.

Alternative solution concepts In light of the conclu-
sions of the previous section, a natural thought would be to
re-examine the solution concept that is being used. Truth-
fulness relies on the strong concept of dominant strategies:
for each player there is a unique strategy that maximizes
her utility, nomatter what the other players are doing. This
is very strong, but it fits very well the worst-case way of
thinking in CS. What other solution concepts can be used?
As described above, randomization, and truthfulness-in-
expectation, can help. A related concept, again for ran-
domized mechanisms, is truthfulness with high probabil-
ity. Another direction is to consider mechanisms where
players cannot improve their utility too much by deviating
from the truth-telling strategy [21].

Algorithm designers do not care so much about actu-
ally reaching an equilibrium point, or finding out what will
the players play – themajor concern is to guarantee the op-
timality of the solution, taking into account the strategic
behavior of the players. Indeed, one way of doing this is to
guarantee a good equilibrium point. But there is no reason
to rule out mechanisms where several acceptable strategic
choices for the players exist, provided that the approxima-
tion will be achieved in each of these choices.

As a first attempt, one is tempted to simply let the play-
ers try and improve the basic result by allowing them to
lie. However, this can cause unexpected dynamics, as each
player chooses her lies under some assumptions about the
lies of the others, etc. etc. To avoid such an unpredictable
situation, it is important to insist on using rigorous game
theoretic reasoning to explain exactly why the outcome
will be satisfactory.

The work [31] suggests the notion of “feasibly domi-
nant” strategies, where players reveal the possible lies they
consider, and the mechanism takes this into account. By
assuming that the players are computationally bounded,
one can show that, instead of actually “lying”, the players
will prefer to reveal their true types plus all the lies they
might consider. In such a case, since the mechanism has
obtained the true types of the players, a close-to-optimal
outcome will be guaranteed.

Another definition tries to capture the initial intuition
by using the classic game-theoretic notion of undominated
strategies:

Definition 4 ([5]) A mechanism M is an “algorithmic
implementation of a c-approximation (in undominated
strategies)” if there exists a set of strategies, D, such that
(i) M obtains a c-approximation for any combination of
strategies from D, in polynomial time, and (ii) For any
strategy not in D, there exists a strategy in D that weakly
dominates it, and this transition is polynomial-time com-
putable.

By the second condition, it is reasonable to assume that
a player will indeed play some strategy in D, and, by the
first condition, it does not matter what tuple of strategies
inDwill actually be chosen, as any of these will provide the
approximation. This transfers some of the burden from
the game-theoretic design to the algorithmic design, since
now a guarantee on the approximation should bu provided
for a larger range of strategies. [5] exploit this notion to
design a deterministic CA for multi-dimensional players
that achieves a close-to-optimal approximation guarantee.
A similar-in-spirit notion, although a weaker one, is the
notion of “Set-Nash” [25].

Applications

One of the popular examples to a “real-life” combinato-
rial auction is the spectrum auction that the US govern-
ment conducts, in order to sell spectrum licenses. Typical
bids reflect values for different spectrum ranges, to accom-
modate different geographical and physical needs, where
different spectrum ranges may complement or substitute
one another. The US government invests research efforts
in order to determine the best format for such an auction,
and auction theory is heavily exploited. Interestingly, the
US law guides the authorities to allocate these spectrum
ranges in a way that will maximize the social welfare, thus
providing a good example for the usefulness of this goal.

Adword auctions are another new and fast-growing
application of auction theory in general, and of the new
algorithmic auctions in particular. These are auctions that

24 A Algorithmic Mechanism Design

determine the advertisements that web-search engines
place close to the search results they show, after the user
submits her search keywords. The interested companies
compete, for every given keyword, on the right to place
their ad on the results’ page, and this turns out to be the
main source of income for companies like Google. Several
entries in this book touch on this topic in more details, in-
cluding the entries on Adwords Pricing and on Position
Auctions.

A third example to a possible application, in the mean-
while implemented only in the academic research labs, is
the application of algorithmic mechanism design to pric-
ing and congestion control in communication networks.
The existing fixed pricing scheme hasmany disadvantages,
both with respect to the needs of efficiently allocating the
available resources, and with respect to the new oppor-
tunities of the Internet companies to raise more revenue
due to specific types of traffic. Theory suggests solutions to
both of these problems.

Cross References

� Adwords Pricing
� Competitive Auction
� False-Name-Proof Auction
� Generalized Vickrey Auction
� Incentive Compatible Selection
� Position Auction
� Truthful Multicast

Recommended Reading

The topics presented here are detailed in the textbook [33].
Section “Problem Definition” is based on the paper [32],
that also coined the term “algorithmicmechanism design”.
The book [14] covers the various aspects of combinatorial
auctions.

1. Aggarwal, G., Fiat, A., Goldberg, A., Immorlica, N., Sudan, M.:
Derandomization of auctions. In: Proc. of the 37th ACM Sym-
posium on Theory of Computing (STOC’05), 2005

2. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation
mechanisms for scheduling selfish related machines. In: Proc.
of the 22nd International Symposium on Theoretical Aspects
of Computer Science (STACS), 2005, pp. 69–82

3. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter
agents. In: Proc. 42nd Annual Symposium on Foundations of
Computer Science (FOCS), 2001, pp. 482–491

4. Awerbuch, B., Azar, Y., Meyerson, A.: Reducing truth-telling on-
line mechanisms to online optimization. In: Proc. of the 35th
ACM Symposium on Theory of Computing (STOC’03), 2003

5. Babaioff, M., Lavi, R., Pavlov, E.: Single-value combinatorial auc-
tions and implementation in undominated strategies. In: Proc.
of the 17th Symposium on Discrete Algorithms (SODA), 2006

6. Balcan, M., Blum, A., Hartline, J., Mansour, Y.: Mechanism de-
sign via machine learning. In: Proc. of the 46th Annual Sympo-
sium on Foundations of Computer Science (FOCS’05), 2005

7. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi-
unit combinatorial auctions. In: Proc. of the 9th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK’03),
2003

8. Bikhchandani, S., Chatterjee, S., Lavi, R., Mu’alem, A., Nisan, N.,
Sen, A.: Weak monotonicity characterizes deterministic dom-
inant-strategy implementation. Econometrica 74, 1109–1132
(2006)

9. Blum, A., Hartline, J.: Near-optimal online auctions. In: Proc. of
the 16th Symposium on Discrete Algorithms (SODA), 2005

10. Blum, A., Sandholm, T., Zinkevich, M.: Online algorithms for
market clearing. J. ACM 53(5), 845–879 (2006)

11. Blumrosen, L., Nisan, N.: On the computational power of itera-
tive auctions. In: Proc. of the 7th ACMConference on Electronic
Commerce (EC’05), 2005

12. Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.:
Multi-unit auctions with budget-constrained bidders. In: Proc.
of the 7th ACM Conference on Electronic Commerce (EC’05),
2005

13. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for
schedulingmechanisms. In: Proc. 18th Symposiumon Discrete
Algorithms (SODA), 2007

14. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions.
MIT Press (2005)

15. Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized
mechanisms for combinatorial auctions. In: Proc. of the 38th
ACM Symposium on Theory of Computing (STOC’06), 2006

16. Feige, U.: On maximizing welfare when utility functions are
subadditive. In: Proc. of the 38th ACM Symposium on Theory
of Computing (STOC’06), 2006

17. Goldberg, A., Hartline, J., Karlin, A., Saks, M., Wright, A.: Com-
petitive auctions. Games Econ. Behav. 55(2), 242–269 (2006)

18. Gui, H., Muller, R., Vohra, R.V.: Characterizing dominant strategy
mechanismswithmulti-dimensional types (2004).Working pa-
per

19. Hajiaghayi, M., Kleinberg, R., Parkes, D.: Adaptive limited-sup-
ply online auctions. In: Proc. of the 6th ACM Conference on
Electronic Commerce (EC’04), 2004

20. Hartline, J., McGrew, R.: From optimal limited to unlimited sup-
ply auctions. In: Proc. of the 7th ACM Conference on Electronic
Commerce (EC’05), 2005

21. Kothari, A., Parkes, D., Suri, S.: Approximately-strategyproof
and tractablemulti-unit auctions. Decis. Support Syst. 39, 105–
121 (2005)

22. Kovács, A.: Fast monotone 3-approximation algorithm for
scheduling related machines. In: Proc. 13th Annual European
Symposium on Algorithms (ESA), 2005, pp. 616–627

23. Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of
truthful combinatorial auctions. In: Proc. of the 44rd Annual
Symposium on Foundations of Computer Science (FOCS’03),
2003

24. Lavi, R., Nisan, N.: Competitive analysis of incentive compatible
on-line auctions. Theor. Comput. Sci. 310, 159–180 (2004)

25. Lavi, R., Nisan, N.: Online ascending auctions for gradually ex-
piring items. In: Proc. of the 16th Symposium onDiscrete Algo-
rithms (SODA), 2005

26. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism de-
sign via linear programming. In: Proc. 46th Annual Symposium

Algorithms for Spanners in Weighted Graphs A 25

on Foundations of Computer Science (FOCS), 2005, pp. 595–
604

27. Lavi, R., Swamy, C.: Truthful mechanism design for multi-di-
mensional scheduling via cycle monotonicity (2007). Working
paper

28. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions
with decreasing marginal utilities. Games Econom. Behav.
55(2), 270–296 (2006)

29. Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in
approximately efficient combinatorial auctions. J. ACM 49(5),
577–602 (2002)

30. Mu’alem, A., Schapira, M.: Setting lower bounds on truthful-
ness. In: Proc. 18th Symposiumon Discrete Algorithms (SODA),
2007

31. Nisan, N., Ronen, A.: Computationally feasible vcg mecha-
nisms. In: Proc. of the 2nd ACMConference on Electronic Com-
merce (EC’00), 2000

32. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games
Econom. Behav. 35, 166–196 (2001)

33. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic
Game Theory. Cambridge University Press (2007). (expected to
appear)

34. Roberts, K.: The characterization of implementable choice
rules. In: Laffont, J.J. (ed.) Aggregation and Revelation of Pref-
erences, pp. 321–349. North-Holland (1979)

35. Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on
convex domains. In: Proc. 6th ACM Conference on Electronic
Commerce (ACM-EC), 2005, pp. 286–293

Algorithms for Spanners
inWeighted Graphs
2003; Baswana, Sen

SURENDER BASWANA1, SANDEEP SEN2

1 Department of Computer Science and Engineering,
IIT Kanpur, Kanpur, India

2 Department of Computer Science and Engineering,
IIT Delhi, New Delhi, India

Keywords and Synonyms

Graph algorithms; Randomized algorithms; Shortest path;
Spanner

ProblemDefinition

A spanner is a sparse subgraph of a given undirected graph
that preserves approximate distance between each pair of
vertices. More precisely, a t-spanner of a graph G = (V ; E)
is a subgraph (V ; ES); ES
 E such that, for any pair of
vertices, their distance in the subgraph is at most t times
their distance in the original graph, where t is called the
stretch factor. The spanners were defined formally by Peleg

and Schäffer [14], though the associated notion was used
implicitly by Awerbuch [3] in the context of network syn-
chronizers.

Computing a t-spanner of smallest size for a given
graph is a well motivated combinatorial problem with
many applications. However, computing t-spanner of
smallest size for a graph is NP-hard. In fact, for t > 2, it
is NP-hard [10] even to approximate the smallest size of
a t-spanner of a graph with ratio O(2(1��) ln n) for any
� > 0. Having realized this fact, researchers have pursued
another direction which is quite interesting and useful. Let
StG be the size of the sparsest t-spanner of a graph G, and
let Stn be the maximum value of StG over all possible graphs
on n vertices. Does there exist a polynomial time algorithm
which computes, for any weighted graph and parameter t,
its t-spanner of size O(Stn)? Such an algorithm would be
the best one can hope for given the hardness of the orig-
inal t-spanner problem. Naturally the question arises as
to how large can Stn be? A 43-year old girth lower bound
conjecture by Erdös [12] implies that there are graphs on
n vertices whose 2k- as well as (2k � 1)-spanner will re-
quire˝(n1+1/k) edges. This conjecture has been proved for
k = 1; 2; 3 and 5. Note that a (2k � 1)-spanner is also a 2k-
spanner and the lower bound on the size is the same for
both a 2k-spanner and a (2k � 1)-spanner. So the objec-
tive is to design an algorithm that, for any weighted graph
on n vertices, computes a (2k � 1)-spanner of O(n1+1/k)
size. Needless to say, one would like to design the fastest
algorithm for this problem, and the most ambitious aim
would be to achieve the linear time complexity.

Key Results

The key results of this article are two very simple al-
gorithms which compute a (2k � 1)-spanner of a given
weighted graph G = (V ; E). Let n and m denote the num-
ber of vertices and edges of G, respectively. The first al-
gorithm, due to Althöfer et al. [2], is based on a greedy
strategy, and runs in O(mn1+1/k) time. The second al-
gorithm [6] is based on a very local approach and runs
in the expected O(km) time. To start with, consider the
following simple observation. Suppose there is a subset
ES � E that ensures the following proposition for every
edge (x; y) 2 EnES .

Pt(x; y): the vertices x and y are connected in the sub-
graph (V ; ES) by a path consisting of at most t edges,
and the weight of each edge on this path is not more
than that of the edge (x, y).

It follows easily that the sub graph (V ; ES) will be a t-span-
ner of G. The two algorithms for computing the (2k � 1)-

26 A Algorithms for Spanners in Weighted Graphs

spanner eventually compute the set ES based on two com-
pletely different approaches.

Algorithm I

This algorithm selects edges for its spanner in a greedy
fashion, and is similar to Kruskal’s algorithm for comput-
ing a minimum spanning tree. The edges of the graph are
processed in the increasing order of their weights. To be-
gin with, the spanner ES = ; and the algorithm adds edges
to it gradually. The decision as to whether an edge, say
(u, v), has to be added (or not) to ES is made as follows:

If the distance between u and v in the subgraph induced
by the current spanner edges ES is more than t �weight(u; v),
then add the edge (u, v) to ES, otherwise discard the edge.

It follows that Pt(x; y) would hold for each edge of E
missing in ES, and so at the end, the subgraph (V ; ES) will
be a t-spanner. A well known result in elementary graph
theory states that a graph with more than n1+1/k edges
must have a cycle of length at most 2k. It follows from the
above algorithm that the length of any cycle in the sub-
graph (V ; ES) has to be at least t + 1. Hence for t = 2k � 1,
the number of edges in the subgraph (V ; ES) will be
less than n1+1/k . Thus Algorithm I computes a (2k � 1)-
spanner of size O(n1+1/k), which is indeed optimal based
on the lower bound mentioned earlier.

A simple O(mn1+1/k) implementation of Algorithm
I follows based on Dijkstra’s algorithm. Cohen [9], and
later Thorup and Zwick [18] designed algorithms for
a (2k � 1)-spanner with an improved running time of
O(kmn1/k). These algorithms rely on several calls to Di-
jkstra’s single-source shortest-path algorithm for distance
computation and therefore were far from achieving linear
time. On the other hand, since a spanner must approxi-
mate all pairs distances in a graph, it appears difficult to
compute a spanner by avoiding explicit distance informa-
tion. Somewhat surprisingly, Algorithm II, described in
the following section, avoids any sort of distance compu-
tation and achieves expected linear time.

Algorithm II

This algorithm employs a novel clustering based on a very
local approach, and establishes the following result for the
spanner problem.

Given a weighted graph G = (V ; E), and an integer
k > 1, a spanner of (2k � 1)-stretch and O(kn1+1/k)
size can be computed in expected O(km) time.

The algorithm executes in O(k) rounds, and in each round
it essentially explores adjacency list of each vertex to prune
dispensable edges. As a testimony of its simplicity, we will

present the entire algorithm for a 3-spanner and its anal-
ysis in the following section. The algorithm can be eas-
ily adapted in other computational models (parallel, ex-
ternal memory, distributed) with nearly optimal perfor-
mance (see [6] for more details).

Computing a 3-Spanner in Linear Time To meet the
size constraint of a 3-spanner, a vertex should contribute
an average of

p
n edges to the spanner. So the vertices with

degree O(
p
n) are easy to handle since all their edges can

be selected in the spanner. For vertices with higher degree
a clustering (grouping) scheme is employed to tackle this
problem which has its basis in dominating sets.

To begin with, there is a set of edges E0 initialized to
E, and an empty spanner ES. The algorithm processes the
edges E0, moves some of them to the spanner ES and dis-
cards the remaining ones. It does so in the following two
phases.
1. Forming the clusters:

A sample R � V is chosen by picking each vertex in-
dependently with probability 1/

p
n. The clusters will

be formed around these sampled vertices. Initially the
clusters are ffugju 2 Rg. Each u 2 R is called the cen-
ter of its cluster. Each unsampled vertex v 2 V �R is
processed as follows.
(a) If v is not adjacent to any sampled vertex, then ev-

ery edge incident on v is moved to ES.
(b) If v is adjacent to one or more sampled vertices, let

N (v;R) be the sampled neighbor that is nearest1

to v. The edge (v;N (v;R)) along with every edge
that is incident on v with weight less than this edge
is moved to ES. The vertex v is added to the cluster
centered atN (v;R).

As a last step of the first phase, all those edges (u, v)
from E0 where u and v are not sampled and belong to
the same cluster are discarded.
Let V 0 be the set of vertices corresponding to the end-
points of the edges E0 left after the first phase. It fol-
lows that each vertex from V 0 is either a sampled vertex
or adjacent to some sampled vertex, and the step 1(b)
has partitioned V 0 into disjoint clusters, each centered
around some sampled vertex. Also note that, as a con-
sequence of the last step, each edge of the set E0 is an
inter-cluster edge. The graph (V 0; E0), and the corre-
sponding clustering of V 0 is passed onto the following
(second) phase.

2. Joining vertices with their neighboring clusters:
Each vertex v of graph (V 0; E0) is processed as follows.

1Ties can be broken arbitrarily. However, it helps conceptually to
assume that all weights are distinct.

Algorithms for Spanners in Weighted Graphs A 27

Let E0(v; c) be the edges from the set E0 incident on v
from a cluster c. For each cluster c that is a neighbor
of v, the least-weight edge from E0(v; c) is moved to ES
and the remaining edges are discarded.

The number of edges added to the spanner ES during
the algorithm described above can be bounded as follows.
Note that the sample setR is formed by picking each ver-
tex randomly and independently with probability 1/

p
n.

It thus follows from elementary probability that for each
vertex v 2 V , the expected number of incident edges with
weights less than that of (v;N (v;R)) is at most

p
n. Thus

the expected number of edges contributed to the span-
ner by each vertex in the first phase of the algorithm is at
most

p
n. The number of edges added to the spanner in

the second phase is O(njRj). Since the expected size of the
sampleR is

p
n, therefore, the expected number of edges

added to the spanner in the second phase is at most n3/2.
Hence the expected size of the spanner ES at the end of
Algorithm II as described above is at most 2n3/2. The algo-
rithm is repeated if the size of the spanner exceeds 3n3/2. It
follows using Markov’s inequality that the expected num-
ber of such repetitions will be O(1).

We now establish that ES is a 3-spanner. Note that for
every edge (u; v) … ES , the vertices u and v belong to some
cluster in the first phase. There are two cases now.

Case 1 : (u and v belong to same cluster)
Let u and v belong to the cluster centered at x 2 R. It
follows from the first phase of the algorithm that there
is a 2-edge path u � x � v in the spanner with each edge
not heavier than the edge (u, v). (This provides a justifica-
tion for discarding all intra-cluster edges at the end of first
phase).

Case 2 : (u and v belong to different clusters)
Clearly the edge (u, v) was removed from E0 during phase
2, and suppose it was removed while processing the vertex
u. Let v belong to the cluster centered at x 2 R.

In the beginning of the second phase let (u; v0) 2 E0 be
the least weight edge among all the edges incident on
u from the vertices of the cluster centered at x. So it
must be that weight(u; v0) � weight(u; v). The process-
ing of vertex u during the second phase of our algo-
rithm ensures that the edge (u; v0) gets added to ES. Hence
there is a path ˘uv = u � v0 � x � v between u and v
in the spanner ES, and its weight can be bounded as
weight(˘uv) = weight(u; v0)+weight(v0; x)+weight(x; v).
Since (v0; x) and (v; x) were chosen in the first phase, it fol-
lows that weight(v0; x) � weight(u; v0) and weight(x; v) �
weight(u; v). It follows that the spanner (V ; ES) has stretch
3. Moreover, both phases of the algorithm can be executed

in O(m) time using elementary data structures and bucket
sorting.

The algorithm for computing a (2k � 1)-spanner exe-
cutes k iterations where each iteration is similar to the first
phase of the 3-spanner algorithm. For details and formal
proofs, the reader may refer to [6].

Other Related Work

The notion of a spanner has been generalized in the past
by many researchers.
Additive spanners: A t-spanner as defined above approx-
imates pairwise distances with multiplicative error, and
can be called a multiplicative spanner. In an analogous
manner, one can define spanners that approximate pair-
wise distances with additive error. Such a spanner is called
an additive spanner and the corresponding error is called
a surplus. Aingworth et al. [1] presented the first additive
spanner of size O(n3/2 log n) with surplus 2. Baswana et
al. [7] presented a construction of O(n4/3) size additive
spanner with surplus 6. It is a major open problem if there
exists any sparser additive spanner.
(˛; ˇ)-spanner: Elkin and Peleg [11] introduced the no-
tion of an (˛; ˇ)-spanner for unweighted graphs, which
can be viewed as a hybrid of multiplicative and additive
spanners. An (˛; ˇ)-spanner is a subgraph such that the
distance between any pair of vertices u; v 2 V in this sub-
graph is bounded by ˛ı(u; v) + ˇ, where ı(u; v) is the dis-
tance between u and v in the original graph. Elkin and Pe-
leg showed that an (1 + �; ˇ)-spanner of size O(ˇn1+ı),
for arbitrarily small �; ı > 0, can be computed at the ex-
pense of a sufficiently large surplus ˇ. Recently Thorup
and Zwick [19] introduced a spanner where the additive
error is sublinear in terms of the distance being approxi-
mated.

Other interesting variants of spanners include the dis-
tance preserver proposed by Bollobás et al. [8] and the
Light-weight spanner proposed by Awerbuch et al. [4].
A subgraph is said to be a d-preserver if it preserves ex-
act distances for each pair of vertices which are separated
by distance at least d. A light-weight spanner tries to min-
imize the number of edges as well as the total edge weight.
A lightness parameter is defined for a subgraph as the ra-
tio of the total weight of all its edges and the weight of the
minimum spanning tree of the graph. Awerbuch et al. [4]
showed that for any weighted graph and integer k > 1,
there exists a polynomially constructable O(k)-spanner
with O(k�n1+1/k) edges and O(k�n1/k) lightness, where
� = log(Diameter).

In addition to the above work on the generalization of
spanners, a lot of work has also been done on computing

28 A All Pairs Shortest Paths in Sparse Graphs

spanners for special classes of graphs, e. g., chordal graphs,
unweighted graphs, and Euclidean graphs. For chordal
graphs, Peleg and Schäffer [14] designed an algorithm that
computes a 2-spanner of size O(n3/2), and a 3-spanner
of size O(n log n). For unweighted graphs Halperin and
Zwick [13] gave an O(m) time algorithm for this prob-
lem. Salowe [17] presented an algorithm for computing
a (1 + �)-spanner of a d-dimensional complete Euclidean
graph in O(n log n + n

�d
) time. However, none of the algo-

rithms for these special classes of graphs seem to extend to
general weighted undirected graphs.

Applications
Spanners are quite useful in various applications in the ar-
eas of distributed systems and communication networks.
In these applications, spanners appear as the underlying
graph structure. In order to build compact routing ta-
bles [16], many existing routing schemes use the edges
of a sparse spanner for routing messages. In distributed
systems, spanners play an important role in designing
synchronizers. Awerbuch [3], and Peleg and Ullman [15]
showed that the quality of a spanner (in terms of stretch
factor and the number of spanner edges) is very closely
related to the time and communication complexity of any
synchronizer for the network. The spanners have also been
used implicitly in a number of algorithms for comput-
ing all pairs of approximate shortest paths [5,9,18]. For
a number of other applications, please refer to the pa-
pers [2,3,14,16].

Open Problems
The running time as well as the size of the (2k � 1)-
spanner computed by the Algorithm II described above
are away from their respective worst case lower bounds by
a factor of k. For any constant value of k, both these pa-
rameters are optimal. However, for the extreme value of
k, that is, for k = log n, there is a deviation by a factor of
log n. Is it possible to get rid of this multiplicative factor of
k from the running time of the algorithm and/or the size
of the (2k � 1)-spanner computed? It seems that a more
careful analysis coupled with advanced probabilistic tools
might be useful in this direction.

Recommended Reading
1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estima-

tion of diameter and shortest paths (without matrix multipli-
cation). SIAM J. Comput. 28, 1167–1181 (1999)

2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares J.: On sparse
spanners of weighted graphs. Discret. Comput. Geom. 9, 81–
100 (1993)

3. Awerbuch, B.: Complexity of network synchronization. J. Assoc.
Comput. Mach. 32(4), 804–823 (1985)

4. Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light
weight spanners. Tech. Report CS92-22, Weizmann Institute of
Science (1992)

5. Awerbuch, B., Berger, B., Cowen, L., Peleg D.: Near-linear time
construction of sparse neighborhood covers. SIAM J. Comput.
28, 263–277 (1998)

6. Baswana, S., Sen, S.: A simple and linear time randomized al-
gorithm for computing sparse spanners in weighted graphs.
Random Struct. Algorithms 30, 532–563 (2007)

7. Baswana, S., Telikepalli, K., Mehlhorn, K., Pettie, S.: New con-
struction of (˛; ˇ)-spanners and purely additive spanners. In:
Proceedings of 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2005, pp. 672–681

8. Bollobás, B., Coppersmith, D., Elkin M.: Sparse distance pre-
serves and additive spanners. In: Proceedings of the 14th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2003, pp. 414–423

9. Cohen, E.: Fast algorithms for constructing t-spanners and
paths with stretch t. SIAM J. Comput. 28, 210–236 (1998)

10. Elkin, M., Peleg, D.: Strong inapproximability of the basic
k-spanner problem. In: Proc. of 27th International Colloquim
on Automata, Languages and Programming, 2000, pp. 636–
648

11. Elkin, M., Peleg, D.: (1 + �; ˇ)-spanner construction for general
graphs. SIAM J. Comput. 33, 608–631 (2004)

12. Erdös, P.: Extremal problems in graph theory. In: Theory of
Graphs and its Applications (Proc. Sympos. Smolenice, 1963),
pp. 29–36. Publ. House Czechoslovak Acad. Sci., Prague (1964)

13. Halperin, S., Zwick, U.: Linear time deterministic algorithm
for computing spanners for unweighted graphs. unpublished
manuscript (1996)

14. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13,
99–116 (1989)

15. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hyper-
cube. SIAM J. Comput. 18, 740–747 (1989)

16. Peleg, D., Upfal, E.: A trade-off between space and efficiency for
routing tables. J. Assoc. Comput Mach. 36(3), 510–530 (1989)

17. Salowe, J.D.: Construction of multidimensional spanner
graphs, with application to minimum spanning trees. In: ACM
Symposium on Computational Geometry, 1991, pp. 256–261

18. Thorup, M., Zwick, U.: Approximate distance oracles. J. Assoc.
Comput. Mach. 52, 1–24 (2005)

19. Thorup, M., Zwick, U.: Spanners and emulators with sublin-
ear distance errors. In: Proceedings of 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2006, pp. 802–809

All Pairs Shortest Paths
in Sparse Graphs
2004; Pettie

SETH PETTIE
Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI, USA

Keywords and Synonyms

Shortest route; Quickest route

All Pairs Shortest Paths in Sparse Graphs A 29

ProblemDefinition

Given a communications network or road network one
of the most natural algorithmic questions is how to de-
termine the shortest path from one point to another.
The all pairs shortest path problem (APSP) is, given
a directed graph G = (V ; E; `), to determine the dis-
tance and shortest path between every pair of vertices,
where jVj = n; jEj = m; and ` : E ! R is the edge length
(or weight) function. The output is in the form of two
n � n matrices: D(u, v) is the distance from u to v and
S(u; v) = w if (u,w) is the first edge on a shortest path
from u to v. TheAPSP problem is often contrasted with the
point-to-point and single source (SSSP) shortest path prob-
lems. They ask for, respectively, the shortest path from
a given source vertex to a given target vertex, and all short-
est paths from a given source vertex.

Definition of Distance

If ` assigns only non-negative edge lengths then the defi-
nition of distance is clear: D(u, v) is the length of the mini-
mum length path from u to v, where the length of a path is
the total length of its constituent edges. However, if ` can
assign negative lengths then there are several sensible no-
tations of distance that depend on how negative length cy-
cles are handled. Suppose that a cycle C has negative length
and that u; v 2 V are such thatC is reachable from u and v
reachable from C. Because C can be traversed an arbitrary
number of times when traveling from u to v, there is no
shortest path from u to v using a finite number of edges.
It is sometimes assumed a priori that G has no negative
length cycles; however it is cleaner to defineD(u; v) = �1
if there is no finite shortest path. If D(u, v) is defined to
be the length of the shortest simple path (no repetition of
vertices) then the problem becomes NP-hard.1 One could
also define distance to be the length of the shortest path
without repetition of edges.

Classic Algorithms

The Bellman-Ford algorithm solves SSSP in O(mn) time
and under the assumption that edge lengths are non-
negative, Dijkstra’s algorithm solves it in O(m + n log n)
time. There is a well knownO(mn)-time shortest path pre-
serving transformation that replaces any length function
with a non-negative length function. Using this transfor-
mation and n runs of Dijkstra’s algorithm gives an APSP
algorithm running in O(mn + n2 log n) = O(n3) time. The

1If all edges have length �1 then D(u;v) = �(n � 1) if and only
if G contains a Hamiltonian path [7] from u to v.

Floyd–Warshall algorithm computes APSP in a more di-
rect manner, in O(n3) time. Refer to [4] for a descrip-
tion of these algorithms. It is known that APSP on com-
plete graphs is asymptotically equivalent to (min;+) ma-
trix multiplication [1], which can be computed by a non-
uniform algorithm that performs O(n2:5) numerical oper-
ations [6].2

Integer-Weighted Graphs

Much recent work on shortest paths assume that edge
lengths are integers in the range f�C; : : : ;Cg or f0; : : : ;
Cg. One line of research reduces APSP to a series of stan-
dard matrix multiplications. These algorithms are limited
in their applicability because their running times scale lin-
early with C. There are faster SSSP algorithms for both
non-negative edge lengths and arbitrary edge lengths. The
former exploit the power of RAMs to sort in o(n log n)
time and the latter are based on the scaling technique. See
Zwick [19] for a survey of shortest path algorithms up to
2001.

Key Results

Pettie’s APSP algorithm [13] adapts the hierarchy ap-
proach of Thorup [17] (designed for undirected, inte-
ger-weighted graphs) to general real-weighted directed
graphs. Theorem 1 is the first improvement over the
O(mn + n2 log n) time bound of Dijkstra’s algorithm on
arbitrary real-weighted graphs.

Theorem 1 Given a real-weighted directed graph, all pairs
shortest paths can be solved in O(mn + n2 log log n) time.

This algorithm achieves a logarithmic speedup through
a trio of new techniques. The first is to exploit the nec-
essary similarity between the SSSP trees emanating from
nearby vertices. The second is a method for computing
discrete approximate distances in real-weighted graphs.
The third is a new hierarchy-type SSSP algorithm that runs
in O(m + n log log n) time when given suitably accurate
approximate distances.
Theorem 1 should be contrasted with the time bounds of
other hierarchy-type APSP algorithms [17,12,15].

Theorem 2 ([15], 2005) Given a real-weighted undirected
graph, APSP can be solved in O(mn log˛(m; n)) time.

Theorem 3 ([17], 1999) Given an undirected graph
G(V ; E; `), where ` assigns integer edge lengths in the range
f�2w�1; : : : ; 2w�1 � 1g, APSP can be solved in O(mn) time
on a RAM with w-bit word length.

2The fastest known (min;+) matrix multiplier runs n O(n3(log
log n)3/(log n)2) time [3].

30 A All Pairs Shortest Paths in Sparse Graphs

Theorem 4 ([14], 2002) Given a real-weighted directed
graph, APSP can be solved in polynomial time by an algo-
rithm that performs O(mn log˛(m; n)) numerical opera-
tions, where ˛ is the inverse-Ackermann function.

A secondary result of [13,15] is that no hierarchy-type
shortest path algorithm can improve on the O(m+n log n)
running time of Dijkstra’s algorithm.

Theorem 5 Let G be an input graph such that the ra-
tio of the maximum to minimum edge length is r. Any
hierarchy-type SSSP algorithm performs ˝(m + minfn
log n; n log rg) numerical operations if G is directed and
˝(m + minfn log n; n log log rg) if G is undirected.

Applications

Shortest paths appear as a subproblem in other graph op-
timization problems; the minimum weight perfect match-
ing, minimum cost flow, and minimum mean-cycle prob-
lems are some examples. A well known commercial ap-
plication of shortest path algorithms is finding efficient
routes on road networks; see, for example, Google Maps,
MapQuest, or Yahoo Maps.

Open Problems

The longest standing open shortest path problems are to
improve the SSSP algorithms of Dijkstra’s and Bellman-
Ford on real-weighted graphs.

Problem 1 Is there an o(mn) time SSSP or point-to-point
shortest path algorithm for arbitrarily weighted graphs?

Problem 2 Is there an O(m) + o(n log n) time SSSP al-
gorithm for directed, non-negatively weighted graphs? For
undirected graphs?

A partial answer to Problem 2 appears in [15], which
considers undirected graphs. Perhaps the most surprising
open problem is whether there is any (asymptotic) dif-
ference between the complexities of the all pairs, single
source, and point-to-point shortest path problems on ar-
bitrarily weighted graphs.

Problem 3 Is point-to-point shortest paths easier than all
pairs shortest paths on arbitrarily weighted graphs?

Problem 4 Is there a genuinely subcubic APSP algorithm,
i. e., one running in time O(n3��)? Is there a subcubic APSP
algorithm for integer-weighted graphs with weak depen-
dence on the largest edge weight C, i. e., running in time
O(n3��polylog(C))?

Experimental Results

See [9,16,5] for recent experiments on SSSP algorithms.
On sparse graphs the best APSP algorithms use repeated
application of an SSSP algorithm, possibly with some pre-
computation [16]. On dense graphs cache-efficiency be-
comes a major issue. See [18] for a cache conscious im-
plementation of the Floyd–Warshall algorithm.

The trend in recent years is to construct a linear space
data structure that can quickly answer exact or approxi-
mate point-to-point shortest path queries; see [10,6,2,11].

Data Sets

See [5] for a number of U.S. and European road networks.

URL to Code

See [8] and [5].

Cross References

� All Pairs Shortest Paths via Matrix Multiplication
� Single-Source Shortest Paths

Recommended Reading

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis
of computer algorithms. Addison-Wesley, Reading (1975)

2. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In
transit to constant shortest-path queries in road networks.
In: Proc. 9th Workshop on Algorithm Engineering and Exper-
iments (ALENEX), 2007

3. Chan, T.: More algorithms for all-pairs shortest paths in
weighted graphs. In: Proc. 39th ACM Symposium on Theory of
Computing (STOC), 2007, pp. 590–598

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2001)

5. Demetrescu, C., Goldberg, A.V., Johnson, D.: 9th DIMACS
Implementation challenge – shortest paths. http://www.dis.
uniroma1.it/~challenge9/ (2006)

6. Fredman, M.L.: New bounds on the complexity of the shortest
path problem. SIAM J. Comput. 5(1), 83–89 (1976)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability:
a guide to NP-Completeness. Freeman, San Francisco (1979)

8. Goldberg, A.V.: AVG Lab. http://www.avglab.com/andrew/
9. Goldberg, A.V.: Shortest path algorithms: Engineering aspects.

In: Proc. 12th Int’l Symp. on Algorithms and Computation
(ISAAC). LNCS, vol. 2223, pp. 502–513. Springer, Berlin (2001)

10. Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A*: efficient
point-to-point shortest path algorithms. In: Proc. 8th Work-
shop on Algorithm Engineering and Experiments (ALENEX),
2006

11. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Com-
puting many-to-many shortest paths using highway hierar-
chies. In: Proc. 9th Workshop on Algorithm Engineering and
Experiments (ALENEX), 2007

http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://www.avglab.com/andrew/

All Pairs Shortest Paths via Matrix Multiplication A 31

12. Pettie, S.: On the comparison-addition complexity of all-pairs
shortest paths. In: Proc. 13th Int’l Symp. on Algorithms and
Computation (ISAAC), 2002, pp. 32–43

13. Pettie, S.: A new approach to all-pairs shortest paths on real-
weighted graphs. Theor. Comput. Sci. 312(1), 47–74 (2004)

14. Pettie, S., Ramachandran, V.: Minimizing randomness in mini-
mum spanning tree, parallel connectivity and set maxima al-
gorithms. In: Proc. 13th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA), 2002, pp. 713–722

15. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-
weighted undirected graphs. SIAM J. Comput. 34(6), 1398–
1431 (2005)

16. Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evalua-
tion of a new shortest path algorithm. In: Proc. 4th Workshop
on Algorithm Engineering and Experiments (ALENEX), 2002,
pp. 126–142

17. Thorup, M.: Undirected single-source shortest paths with pos-
itive integer weights in linear time. J. ACM 46(3), 362–394
(1999)

18. Venkataraman, G., Sahni, S., Mukhopadhyaya, S.: A blocked all-
pairs shortest paths algorithm. J. Exp. Algorithms 8 (2003)

19. Zwick, U.: Exact and approximate distances in graphs – a sur-
vey. In: Proc. 9th European Symposium on Algorithms (ESA),
2001, pp. 33–48. See updated version at http://www.cs.tau.ac.
il/~zwick/

All Pairs Shortest Paths
via Matrix Multiplication
2002; Zwick

TADAO TAKAOKA
Department of Computer Science
and Software Engineering, University of Canterbury,
Christchurch, New Zealand

Keywords and Synonyms

Shortest path problem; Algorithm analysis

ProblemDefinition

The all pairs shortest path (APSP) problem is to compute
shortest paths between all pairs of vertices of a directed
graph with non-negative real numbers as edge costs. Focus
is given on shortest distances between vertices, as shortest
paths can be obtained with a slight increase of cost. Clas-
sically, the APSP problem can be solved in cubic time of
O(n3). The problem here is to achieve a sub-cubic time for
a graph with small integer costs.

A directed graph is given by G = (V ; E), where
V = f1; : : : ; ng, the set of vertices, and E is the set of edges.
The cost of edge (i; j) 2 E is denoted by dij. The (n, n)-ma-
trix D is one whose (i, j) element is dij. It is assumed for

simplicity that di j > 0 and di i = 0 for all i ¤ j. If there
is no edge from i to j, let di j =1. The cost, or distance,
of a path is the sum of costs of the edges in the path.
The length of a path is the number of edges in the path.
The shortest distance from vertex i to vertex j is the min-
imum cost over all paths from i to j, denoted by d�i j . Let
D� = fd�i jg. The value of n is called the size of the matri-
ces.

Let A and B be (n, n)-matrices. The three products are
defined using the elements of A and B as follows: (1) Ordi-
nary matrix product over a ring C = AB, (2) Boolean ma-
trix product C = A � B, and (3) Distance matrix product
C = A� B, where

(1) ci j =
nX
k=1

aikbk j ; (2) ci j =
n_
k=1

aik ^ bk j ;

(3) ci j = min
1�k�n

faik + bk jg :

ThematrixC is called a product in each case; the computa-
tional process is calledmultiplication, such as distancema-
trix multiplication. In those three cases, k changes through
the entire set f1; : : : ; ng. A partial matrix product of A and
B is defined by taking k in a subset I of V . In other words,
a partial product is obtained by multiplying a vertically
rectangular matrix, A(�; I), whose columns are extracted
from A corresponding to the set I, and similarly a hori-
zontally rectangular matrix, B(I;�), extracted from B with
rows corresponding to I. Intuitively I is the set of check
points k, when going from i to j in the graph.

The best algorithm [3] computes (1) in O(n!)
time, where ! = 2:376. Three decimal points are carried
throughout this article. To compute (2), Boolean values
0 and 1 in A and B can be regarded as integers and
use the algorithm for (1), and convert non-zero elements
in the resulting matrix to 1. Therefore, this complexity
is O(n!). The witnesses of (2) are given in the witness
matrix W = fwi jg where wi j = k for some k such that
aik ^ bk j = 1. If there is no such k, wi j = 0. The wit-
ness matrix W = fwi jg for (3) is defined by wi j = k that
gives the minimum to cij. If there is an algorithm for
(3) with T(n) time, ignoring a polylog factor of n, the
APSP problem can be solved in Õ(T(n)) time by the re-
peated squaring method, described as the repeated use of
D D � D O(log n) times.

The definition here of computing shortest paths is to
give a witness matrix of size n by which a shortest path
from i to j can be given inO(`) timewhere ` is the length of
the path. More specifically, if wi j = k in the witness matrix
W = fwi jg, it means that the path from i to j goes through
k. Therefore, a recursive function path(i, j) is defined by

http://www.cs.tau.ac.il/~zwick
http://www.cs.tau.ac.il/~zwick

32 A All Pairs Shortest Paths via Matrix Multiplication

(path(i; k), k, path(k; j)) if wi j = k > 0 and nil if wi j = 0,
where a path is defined by a list of vertices excluding end-
points. In the following sections, k is recorded inwij when-
ever k is found such that a path from i to j is modified or
newly set up by paths from i to k and from k to j. Pre-
ceding results are introduced as a framework for the key
results.

Alon–Galil–Margalit Algorithm

The algorithm by Alon, Galil, andMargalit [1] is reviewed.
Let the costs of edges of the given graph be ones. Let D(`)

be the `th approximate matrix for D* defined by d(`)i j = d�i j
if d�i j � `, and d(`)i j =1 otherwise. Let A be the adjacency
matrix of G, that is, ai j = 1 if there is an edge (i, j), and
ai j = 0 otherwise. Let ai i = 1 for all i. The algorithm con-
sists of two phases. In the first phase, D(`) is computed for
` = 1; : : : ; r, by checking the (i, j)-element of A` = fa`i jg.
Note that if a`i j = 1, there is a path from i to j of length ` or
less. Since Booleanmutrix multiplication can be computed
in O(n!) time, the computing time of this part is O(rn!).

In the second phase, the algorithm computes D(`) for
` = r, d3/2 re, d3/2d3/2 ree, � � � , n0 by repeated squaring,
where n0 is the smallest integer in this sequence of `
such that ` � n. Let Ti˛ = f jjd(`)i j = ˛g, and Ii = Ti˛ such
that jTi˛j is minimum for d`/2e � ˛ � `. The key ob-
servation in the second phase is that it is only needed
to check k in Ii whose size is not larger than 2n/`,
since the correct distances between ` + 1 and d3`/2e can
be obtained as the sum d(`)i k + d(`)k j for some k satisfying

d`/2e � d(`)i k � `. The meaning of Ii is similar to I for par-
tial products except that I varies for each i. Hence the
computing time of one squaring is O(n3/`). Thus, the
time of the second phase is given with N = dlog3/2 n/re
by O

�PN
s=1 n

3/((3/2)s r)
�
= O(n3/r). Balancing the two

phases with rn! = n3/r yields O(n(!+3)/2) = O(n2:688)
time for the algorithm with r = O(n(3�!)/2).

Witnesses can be kept in the first phase in time polylog
of n by the method in [2]. The maintenance of witnesses
in the second phase is straightforward.

When a directed graph G whose edge costs are inte-
gers between 1 andM is given, whereM is a positive inte-
ger, the graph G can be converted to G0 by replacing each
edge by up toM edges with unit cost. Obviously the prob-
lem for G can be solved by applying the above algorithm
to G0, which takes O((Mn)(!+3)/2) time. This time is sub-
cubic whenM < n0:116. The maintenance of witnesses has
an extra polylog factor in each case.

For undirected graphs with unit edge costs, Õ(n!)
time is known in Seidel [7].

Takaoka algorithm

When the edge costs are bounded by a positive integerM,
a better algorithm can be designed than in the above as
shown in Takaoka [9]. Romani’s algorithm [6] for distance
matrix multiplication is reviewed briefly.

Let A and B be (n,m) and (m, n) distance matrices
whose elements are bounded by M or infinite. Let the di-
agonal elements be 0. A and B are converted into A0 and
B0 where a0i j = (m + 1)M�ai j , if ai j ¤ 1, 0 otherwise, and
b0i j = (m + 1)M�bi j , if bi j ¤ 1, 0 otherwise.

Let C0 = A0B0 be the product by ordinary matrix mul-
tiplication and C = A� B be that by distance matrix mul-
tiplication. Then it holds that

c0i j =
mX
k=1

(m + 1)2M�(aik+bk j); ci j = 2M � blogm+1 c
0
i jc:

This distance mutrix multiplication is called (n,m)-Ro-
mani. In this section the above multiplication is used with
square matrices, that is, (n, n)-Romani is used. In the next
section, the case where m < n is dealt with.

C can be computed with O(n!) arithmetic oper-
ations on integers up to (n + 1)M . Since these values
can be expressed by O(M log n) bits and Schönhage
and Strassen’s algorithm [8] for multiplying k-bit num-
bers takes O(k log k log log k) bit operations, C can be
computed in O(n!M log n log(M log n) log log(M log n))
time, or Õ(Mn!) time.

The first phase is replaced by the one based on (n, n)-
Romani, and modify the second phase based on path
lengths, not distances.

Note that the bound M is replaced by `M in the dis-
tance matrix multiplication in the first phase. Ignoring
polylog factors, the time for the first phase is given by
Õ(n! r2M). It is assumed that M is O(nk) for some con-
stant k. Balancing this complexity with that of the sec-
ond phase, O(n3/r), yields the total computing time of
Õ(n(6+!)/3M1/3) with the choice of r = O(n(3�!)/3M�1/3).
The value of M can be almost O(n0:624) to keep the com-
plexity within sub-cubic.

Key Results

Zwick improved the Alon–Galil–Margalit algorithm in
several ways. The most notable is an improvement of the
time for the APSP problem with unit edge costs from
O(n2:688) to O(n2:575). The main accelerating engine in
Alon–Galil–Margalit [1] was the fast Boolean matrix mul-
tiplication and that in Takaoka [9] was the fast distance
matrix multiplication by Romani, both powered by the fast
matrix multiplication of square matrices.

All Pairs Shortest Paths via Matrix Multiplication A 33

In this section, the engine is the fast distance ma-
trix multiplication by Romani powered by the fast ma-
trix multiplication of rectangular matrices given by Cop-
persmith [4], and Huang and Pan [5]. Let !(p; q; r)
be the exponent of time complexity for multiplying
(np ; nq) and (nq ; nr) matrices. Suppose the product of
(n,m) matrix and (m, n) matrix can be computed with
O(n!(1;�;1)) arithmetic operations, where m = n� with
0 � � � 1. Several facts such as O(n!(1;1;1)) = O(n2:376)
and O(n!(1;0:294;1)) = Õ(n2) are known. To compute the
product of (n, n) square matrices, n1�� matrix multipli-
cations are needed, resulting in O(n!(1;�;1)+1��) time,
which is reformulated as O(n2+�), where � satisfies the
equation !(1; �; 1) = 2� + 1. Currently the best-known
value for � is � = 0:575, so the time becomes O(n2:575),
which is not as good asO(n2:376). So the algorithm for rect-
angular matrices is used in the following.

The above algorithm is incorporated into (n,m)-Ro-
mani with m = n� and M = nt for some t > 0, and the
computing time of Õ(Mn!(1;�;1)). The next step is how
to incorporate (n,m)-Romani into the APSP algorithm.
The first algorithm is a mono-phase algorithm based on
repeated squaring, similar to the second phase of the algo-
rithm in [1]. To take advantage of rectangular matrices in
(n,m)-Romani, the following definition of the bridging set
is needed, which plays the role of the set I in the partial
distance matrix product in Sect. “Problem Definition”.

Let ı(i; j) be the shortest distance from i to j, and
�(i; j) be the minimum length of all shortest paths from
i to j. A subset I of V is an `-bridging set if it satis-
fies the condition that if �(i; j) � `, there exists k 2 I
such that ı(i; j) = ı(i; k) + ı(k; j). I is a strong
`-bridging set if it satisfies the condition that if �(i; j) � `,
there exists k 2 I such that ı(i; j) = ı(i; k) + ı(k; j) and
�(i; j) = �(i; k) + �(k; j). Note that those two sets are the
same for a graph with unit edge costs.

Note that if (2/3)` � �(i; j) � ` and I is a strong
`/3-bridging set, there is a k 2 I such that ı(i; j) = ı(i; k)+
ı(k; j) and �(i; j) = �(i; k) + �(k; j). With this property
of strong bridging sets, (n,m)-Romani can be used for the
APSP problem in the following way. By repeated squar-
ing in a similar way to Alon–Galil–Margalit, the algorithm
computes D(`) for ` = 1; d3/2e; d3/2d3/2ee; : : : ; n0, where
n0 is the first value of ` that exceeds n, using various types
of set I described below. To compute the bridging set, the
algorithm maintains the witness matrix with extra poly-
log factor in the complexity. In [10], there are three ways
for selecting the set I. Let jIj = nr for some r sucn that
0 � r � 1.

(1) Select 9n ln n/` vertices from V at random. In
this case, it can be shown that the algorithm solves the

APSP problem with high probability, i. e., with 1 � 1/nc

for some constant c > 0, which can be shown to be
3. In other words, I is a strong `/3-bridging set with
high probability. The time T is dominated by (n,m)-
Romani. It holds that T = Õ(`Mn!(1;r;1)), since the mag-
nitude of matrix elements can be up to `M. Since
m = O(n ln n/`) = nr , it holds that ` = Õ(n1�r), and thus
T = O(Mn1�r n!(1;r;1)). When M = 1, this bound on r is
� = 0:575, and thus T = O(n2:575). WhenM = nt � 1, the
time becomes O(n2+�(t)), where t � 3 � ! = 0:624 and
� = �(t) satisfies !(1; �; 1) = 1 + 2� � t. It is determined
from the best known !(1; �; 1) and the value of t. As the
result is correct with high probability, this is a randomized
algorithm.

(2) Consider the case of unit edge costs here. In (1), the
computation of witnesses is an extra thing, i. e., not neces-
sary if only shortest distances are needed. To achieve the
same complexity in the sense of an exact algorithm, not
a randomized one, the computation of witnesses is essen-
tial. As mentioned earlier, maintenance of witnesses, that
is, matrix W, can be done with an extra polylog factor,
meaning the analysis can be focused on Romani within the
Õ-notation. Specifically I is selected as an `/3-bridging set,
which is strong with unit edge costs. To compute I as an
O(`)-bridging set, obtain the vertices on the shortest path
from i to j for each i and j using the witness matrix W in
O(`) time. After obtaining those n2 sets spending O(`n2)
time, it is shown in [10] how to obtain a O(`)-bridging set
of O(n ln n/`) size within the same time complexity. The
process of obtaining the bridging set must stop at ` = n1/2

as the process is too expensive beyond this point, and thus
the same bridging set is used beyond this point. The time
before this point is the same as that in (1), and that af-
ter this point is Õ(n2:5). Thus, this is a two-phase algo-
rithm.

(3) When edge costs are positive and bounded by
M = nt > 0, a similar procedure can be used to compute
an O(`)-bridging set of O(n ln n/`) size in Õ(`n2) time.
Using the bridging set, the APSP problem can be solved in
Õ(n2+�(t)) time in a similar way to (1). The result can be
generalized into the case where edge costs are between�M
andM within the same time complexity by modifying the
procedure for computing an `-bridging set, provided there
is no negative cycle. The details are shown in [10].

Applications

The eccentricity of a vertex v of a graph is the greatest dis-
tance from v to any other vertices. The diameter of a graph
is the greatest eccentricity of any vertices. In other words,
the diameter is the greatest distance between any pair of

34 A Alternative Performance Measures in Online Algorithms

vertices. If the corresponding APSP problem is solved, the
maximum element of the resulting matrix is the diameter.

Open Problems

Two major challenges are stated here among others. The
first is to improve the complexity of Õ(n2:575) for the APSP
with unit edge costs. The other is to improve the bound of
M < O(n0:624) for the complexity of the APSP with inte-
ger costs up toM to be sub-cubic.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� Fully Dynamic All Pairs Shortest Paths

Recommended Reading
1. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs

shortest path problem. In: Proc. 32th IEEE FOCS, pp. 569–575.
IEEE Computer Society, Los Alamitos, USA (1991). Also JCSS54,
255–262 (1997)

2. Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for Boolean
matrix multiplication and for shortest paths. In: Proc. 33th IEEE
FOCS, pp. 417–426. IEEE Computer Society, Los Alamitos, USA
(1992)

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arith-
metic progressions. J. Symb. Comput. 9, 251–280 (1990)

4. Coppersmith, D.: Rectangular matrix multiplication revisited.
J. Complex. 13, 42–49 (1997)

5. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications
and applications. J. Complex. 14, 257–299 (1998)

6. Romani, F.: Shortest-path problem is not harder than matrix
multiplications. Info. Proc. Lett. 11, 134–136 (1980)

7. Seidel, R.: On the all-pairs-shortest-path problem. In: Proc. 24th
ACM STOC pp. 745–749. Association for Computing Machin-
ery, New York, USA (1992) Also JCSS 51, 400–403 (1995)

8. Schönhage, A., Strassen, V.: Schnelle Multiplikation Großer
Zahlen. Computing 7, 281–292 (1971)

9. Takaoka, T.: Sub-cubic time algorithms for the all pairs shortest
path problem. Algorithmica 20, 309–318 (1998)

10. Zwick, U.: All pairs shortest paths using bridging sets and rect-
angular matrix multiplication. J. ACM 49(3), 289–317 (2002)

Alternative PerformanceMeasures
in Online Algorithms
2000; Koutsoupias, Papadimitriou

ESTEBAN FEUERSTEIN
Department of Computing, University of Buenos Aires,
Buenos Aires, Argentina

Keywords and Synonyms

Diffuse adversary model for online algorithms; Compara-
tive analysis for online algorithms

ProblemDefinition

Even if online algorithms had been studied for around
thirty years, the explicit introduction of competitive anal-
ysis in the seminal papers by Sleator and Tarjan [8] and
Manasse, McGeoch and Sleator [6] sparked an extraordi-
nary boom in research about these class of problems and
algorithms, so both concepts (online algorithms and com-
petitive analysis) have been strongly related since. How-
ever, rather early in its development, some criticism arose
regarding the realism and practicality of the model mainly
because of its pessimism. That characteristic, in some
cases, attempts on the ability of the model to distinguish,
between good and bad algorithms. In a 1994 paper called
Beyond competitive analysis [3], Koutsoupias and Pa-
padimitriou proposed and explored two alternative per-
formance measures for on-line algorithms, both very
much related to competitive analysis and yet avoiding the
weaknesses that caused the aforementioned criticism. The
final version of that work appeared in 2000 [4].

In competitive analysis, the performance of an online
algorithm is compared against an all-powerful adversary
on a worst-case input. The competitive ratio of an algo-
rithm A is defined as the worst possible ratio

RA = max
x

A(x)
opt(x)

;

where x ranges over all possible inputs of the problem and
A(x) and opt(x) are respectively the costs of the solutions
obtained by algorithm A and the optimum offline algo-
rithm for input x1. This notion can be extended to define
the competitive ratio of a problem, as the minimum com-
petitive ratio of an algorithm for it, namely

R = min
A

RA = min
A

max
x

A(x)
opt(x)

:

The main criticism to this approach has been that,
with the characteristic pessimism common to all kinds of
worst-case analysis, it fails to discriminate between algo-
rithms that could have different performances under dif-
ferent conditions. Moreover, algorithms that “try” to per-
form well relative to this worst case measure many times
fail to behave well in front of many “typical” inputs. This
arguments can be more easily contested in the (rare) sce-
narios where the very strong assumption that nothing is
known about the distribution of the input holds. But, this
is rarely the case in practice.

1In this article all problems are assumed to be online minimiza-
tion problems, therefore the objective is to minimize costs. All the re-
sults presented here are valid for online maximization problems with
the proper adjustments to the definitions.

Alternative Performance Measures in Online Algorithms A 35

The paper by Koutsoupias and Papadimitriou pro-
poses and studies two refinements of competitive analy-
sis which try to overcome all these concerns. The first of
them is the diffuse adversary model, which points at the
cases where something is known about the input: its prob-
abilistic distribution. With this in mind, the performance
of an algorithm is evaluated comparing its expected cost
with the one of an optimal algorithm for inputs following
that distribution.

The second refinement is called comparative analy-
sis. This refinement is based on the notion of information
regimes. According to this, competitive analysis is inter-
preted as the comparison between two different informa-
tion regimes, the online and the offline ones. But this vi-
sion entails that those information regimes are just par-
ticular, extreme cases of a large set of possibilities, among
which, for example, the set of algorithms that know in ad-
vance some prefix of the awaiting input (finite lookahead
algorithms).

Key Results
Diffuse Adversaries
The competitive ratio of an algorithm A against a class �
of input distributions is the infimum c such that the al-
gorithm is c-competitive when the input is restricted to
that class. That happens whenever there exists a constant
d such that, for all distributions D 2 �,

ED(A(x)) � cED(opt(x)) + d ;

whereED stands for themathematical expectation over in-
puts following distribution D. The competitive ratio R(�)
of the class of distributions� is the minimum competitive
ratio achievable by an online algorithm against�.

The model is applied to the traditional Paging prob-
lem, for the class of distributions �� . �� is the class that
contains all probability distributions such that, given a re-
quest sequence and a page p, the probability that the next
requested page is p is not more than �. It is shown that
the well-known online algorithm LRU achieves the opti-
mal competitive ratio R(��) for all �, that is, it is optimal
against any adversary that uses a distribution in this class.

The proof of this result makes strong use of the work
function concept introduced in [5], that is used as a tool
to track the behavior of the optimal offline algorithm and
estimate the optimal cost for a sequence of requests, and
that of conservative adversaries, which are adversaries that
assign higher probabilities to pages that have been re-
questedmore recently. This kind of adversary is consistent
with locality of reference, a concept that has been always
connected to Paging algorithms and competitive analysis

(though in [1] another family of distributions is proposed,
and analyzed within this framework, which better captures
this notion).

The first result states that, for any adversary D 2 �� ,
there is a conservative adversary D̂ 2 �� such that the
competitive ratio of LRU against D̂ is at least the com-
petitive ratio of LRU against D. Then it is shown that for
any conservative adversary D 2 �� against LRU, there is
a conservative adversary D0 2 �� , against an on-line algo-
rithm A such that the competitive ratio of LRU against D
is at most the competitive ratio of A against D0. In other
words, for any �, LRU has the optimal competitive ratio
R(��) for the diffuse adversary model. This is the main
result in the first part of [4].

The last remaining point refers to the value of the op-
timal competitive ratio of LRU for the Paging problem.
As it is shown, that value is not easy to compute. For
the extreme values of � (the cases in which the adversary
has complete and almost no control of the input, respec-
tively), R(�1) = k, where k is the size of the cache, and also
lim�!0 R(��) = 1. Later work by Young [9] allowed to es-
timate R(��) within (almost) a factor of two. For values
of " around the threshold 1/k the optimal ratio is 	(ln k),
for values below that threshold the values tend rapidly to
O(1), and above it to	(k).

Comparative Analysis

Comparative analysis is a generalization of competitive
analysis that allows to compare classes of algorithms, and
not just individual algorithms. This new idea may be used
to contrast the behaviors of algorithms obeying to arbi-
trary information regimes. In a few words, an information
regime is a class of algorithms that acquire knowledge of
the input in the same way, or at similar “rates”, so both
classes of online and offline algorithms are particular in-
stances of this concept (the former know the input step by
step, the latter receive all the information before having to
produce any output).

The idea of comparative analysis is to measure the rel-
ative quality of two classes of algorithms by the maximum
possible quotient of the results obtained by algorithms in
each of the classes for the same input.

Formally, if A and B are classes of algorithms, the
comparative ratio R(A;B) is defined as

R(A;B) = max
B2B

min
A2A

max
x

A(x)
B(x)

:

With this definition, if B is the class of all algorithms,
andA is the class of on-line algorithms, then the compar-
ative ratio coincides with the competitive ratio.

36 A Alternative Performance Measures in Online Algorithms

The concept is illustrated determining how beneficial
it can be to allow some lookahead to algorithms for Met-
rical Task Systems (MTS). MTS are an abstract model that
has been introduced in [2], and generalizes a wide fam-
ily of on-line problems, among which Paging, the k-server
problem, list accessing, and many other more. In a Met-
rical Task System a server can travel through the points of
aMetric Space (states) while serving a sequence of requests
or Tasks. The cost of serving a task depends on the state in
which the server is, and the total cost for the sequence is
given by the sum of the distance traveled plus the cost of
servicing all the tasks. The meaning of the lookahead in
this context is that the server can decide where to serve the
next task based not only on the past movements and input
but also on some fixed number of future requests.

The main result here (apart from the definition of the
model itself) is that, for Metrical Task Systems, the Com-
parative Ratio for the class of online algorithms versus that
of algorithms with lookahead l (respectively L0 and Ll) is
not more than 2l + 1. That is, for this family of problems
the benefit obtainable from lookahead is never more than
two times the size of the lookahead plus one. The result is
completed showing particular cases in which the equality
holds.

Finally, for particular Metrical Task System the power
of lookahead is shown to be strictly less than that: the last
important result of this section shows that for the Paging
Problem, the comparative ratio is exactly minfl + 1; kg,
that is, the benefit of using lookahead l is the minimum
between the size of the cache and the size of the lookahead
window plus one.

Applications

As it is mentioned in the introduction of [4], the ideas pre-
sented therein are useful to have a better and more precise
analysis of the performance of online algorithms. Also, the
diffuse adversary model may prove useful to depict char-
acteristics of the input that are probabilistic in nature (e. g.
locality). An example in this direction is a paper by Bec-
chetti [1], that uses a diffuse adversary with the intention
of better modeling the locality of reference phenomenon
that characterizes practical applications of Paging. In the
distributions considered there the probability of request-
ing a page is also a function of the page’s age, and it is
shown that the competitive ratio of LRU becomes constant
as locality increases.

A different approach is taken however in [7]. There the
Paging problem with variable cache size is studied and it is
shown that the approach of the expected competitive ra-
tio in the diffuse adversary model can be misleading, while

they propose the use of the average performance ratio in-
stead.

Open Problems

It is an open problem to determine the exact competitive
ratio against a diffuse adversary of known algorithms, for
example FIFO, for the Paging problem. FIFO is known to
be worse in practice than LRU, so proving that the former
is suboptimal for some values of " would give more sup-
port to the model.

An open direction presented in the paper is to consider
what they call the Markov diffuse adversary, which as it is
suggested by the name, refers to an adversary that gener-
ates the sequence of requests following a Markov process
with output.

The last direction of research suggested is to use the
idea of comparative analysis to compare the efficiency of
agents or robots with different capabilities (for example
with different vision ranges) to perform some tasks (for
example construct a plan of the environment).

Cross References

� List Scheduling
� Load Balancing
�Metrical Task Systems
� Online Interval Coloring
� Online List Update
� Packet Switching in Multi-Queue Switches
� Packet Switching in Single Buffer
� Paging
� Robotics
� Routing
�Work-Function Algorithm for k Servers

Recommended Reading
1. Becchetti, L.: Modeling locality: A probabilistic analysis of LRU

and FWF. In: Proceeding 12th European Symposium on Algo-
rithms (ESA) (2004)

2. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm
for metrical task systems. J. ACM 39, 745–763 (1992)

3. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analy-
sis. In: Proceeding 35th Annual Symposium on Foundations of
Computer Science, pp. 394–400, Santa Fe, NM (1994)

4. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analy-
sis. SIAM J. Comput. 30(1), 300–317 (2000)

5. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture.
J. ACM 42(5), 971–983 (1995)

6. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algo-
rithms for on-line problems. In: Proceeding 20th Annual ACM
Symposiumon the Theory of Computing, pp. 322–333, Chicago,
IL (1988)

Analyzing Cache Misses A 37

7. Panagiotou, K., Souza, A.: On adequate performance measures
for paging. In: Proceeding 38th annual ACMsymposium on The-
ory of computing, STOC 2006

8. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and
paging rules. Comm. ACM. 28, 202–208 (1985)

9. Young, N.E.: On-Line Paging against Adversarially Biased Ran-
dom Inputs. J. Algorithms 37, 218 (2000)

Analyzing CacheMisses
2003; Mehlhorn, Sanders

NAILA RAHMAN
Department of Computer Science, University of Leicester,
Leicester, UK

Keywords and Synonyms

Cache analysis

ProblemDefinition

The problem considered here is multiple sequence access
via cache memory. Consider the following pattern of mem-
ory accesses. k sequences of data, which are stored in dis-
joint arrays and have a total length of N, are accessed as
follows:

for t := 1 to N do
select a sequence si 2 f1; : : : kg
work on the current element of sequence si
advance sequence si to the next element.

The aim is to obtain exact (not just asymptotic) closed
form upper and lower bounds for this problem. Concur-
rent accesses to multiple sequences of data are ubiquitous
in algorithms. Some examples of algorithms which use this
paradigm are distribution sorting, k-way merging, prior-
ity queues, permuting and FFT. This entry summarises the
analyses of this problem in [3,6].

Caches, Models and Cache Analysis

Modern computers have hierarchical memory which con-
sists of registers, one or more levels of caches, main mem-
ory and external memory devices such as disks and tapes.
Memory size increases but the speed decreases with dis-
tance from the CPU. Hierarchical memory is designed to
improve the performance of algorithms by exploiting tem-
poral and spatial locality in data accesses.

Caches are modeled as follows. A cache has m blocks
each of which holds B data elements. The capacity of the
cache is M = mB. Data is transferred between one level of
cache and the next larger and slower memory in blocks

of B elements. A cache is organized as s = m/a sets where
each set consists of a blocks. Memory at address xB, re-
ferred to as memory block x can only be placed in a block
in set xmod s. If a = 1 the cache is said to be direct mapped
and if a = s it is said to be fully associative.

If memory block x is accessed and it is not in cache
then a cache miss occurs and the data in memory block x
is brought into cache, incurring a performance penalty. In
order to accommodate block x, it is assumed that the least
recently used (LRU) or the first used (FIFO) block from
the cache set x mod s is evicted and this is referred to as
the replacement strategy. Note that a block may be evicted
from a set even though there may be unoccupied blocks in
other sets.

Cache analysis is performed for the number of cache
misses for a problem with N data elements. To read or
write N data elements an algorithm must incur ˝(N/B)
cache misses. These are the compulsory or first reference
misses. In the multiple sequence access via cache memory
problem, for given values ofM andB, one aim is to find the
largest k such that there are O(N/B) cache misses for the
N data accesses. It is interesting to analyze cache misses
for the important case of direct mapped cache and for the
general case of set-associative caches.

A large number of algorithms have been designed on
the ExternalMemoryModel [9] and these algorithms opti-
mize the number of data transfers between main memory
and disk. It seems natural to exploit these algorithms to
minimize cache misses, but due to the limited associativity
of caches this is not straightforward. In the external mem-
ory model data transfers are under programmer control
and the multiple sequence access problem has a trivial so-
lution. The algorithm simply chooses k � Me/Be , where
Be is the block size and Me is the capacity of the main
memory in the external memory model. For k � Me/Be
there are O(N/Be) accesses to external memory. Since
caches are hardware controlled the problem becomes non-
trivial. For example, consider the case where the starting
addresses of k > a equal length sequences map to the ith
element of the same set and the sequences are accessed in
a round-robin fashion. On a cache with an LRU or FIFO
replacement strategy all sequence accesses will result in
a cache miss. Such pathological cases can be overcome by
randomizing the starting addresses of the sequences.

Related Problems

A very closely related problem is where accesses to the se-
quences are interleaved with accesses to a small working
array. This occurs in applications such as distribution sort-
ing or matrix multiplication.

38 A Analyzing CacheMisses

Caches can emulate external memory with an optimal
replacement policy [1,8] however this requires some con-
stant factor morememory. Since the emulation techniques
are software controlled and require modification to the al-
gorithm, rather than selection of parameters, they work
well for fairly simple algorithms [4].

Key Results

Theorem 1 [3] Given an a-way set associative cache with
m cache blocks, s = m/a cache sets, cache blocks size B, and
LRU or FIFO replacement strategy. Let Ua denote the ex-
pected number of cache misses in any schedule of N sequen-
tial accesses to k sequences with starting addresses that are
at least (a + 1)-wise independent.

U1 � k +
N
B

�
1 + (B � 1)

k
m

�
; (1)

U1 �
N
B

�
1 + (B � 1)

k � 1
m + k � 1

�
; (2)

Ua �k +
N
B

�
1 + (B � 1)

�
k˛
m

�a
+

1
m/(k˛) � 1

+
k � 1
s � 1

�

for k �
m
˛
;

(3)

Ua � k +
N
B

�
1 + (B � 1)

�
kˇ
m

�a
+

1
m/(kˇ) � 1

�

for k �
m
2ˇ

;

(4)

Ua �
N
B

�
1 + (B � 1)Ptail

�
k � 1;

1
s
; a
��
� kM ; (5)

Ua �
N
B

1 + (B � 1)

�
(k � a)˛

m

�a �
1 �

1
s

�k
!
�kM ;

(6)

where ˛ = ˛(a) = a/(a!)1/a, Ptail(n; p; a) =
P

i�a
�n
i
�

pi (1 � p)n�i is the cumulative binomial probability and
ˇ := 1 + ˛(daxe) where x = x(a) = inff0 < z < 1 :
z + z/˛(daze) = 1g.

Here 1 � ˛ < e and ˇ(1) = 2; ˇ(1) = 1 + e 	 3:71. This
analysis assumes that an adversary schedules the accesses
to the sequences. For the lower bound the adversary

initially advances sequence si for i = 1 : : : k by Xi ele-
ments, where the Xi are chosen uniformly and indepen-
dently from f0;M � 1g. The adversary then accesses the
sequences in a round-robin manner.

The k in the upper bound accounts for a possible ex-
tra block that may be accessed due to randomization of
the starting addresses. The �kM term in the lower bound
accounts for the fact that cache misses can not be counted
when the adversary initially winds forwards the sequences.

The bounds are of the form pN + c, where c does not
depend onN and p is called the cache miss probability. Let-
ting r = k/m, the ratio between the number of sequences
and the number of cache blocks, the bounds for the cache
miss probabilities in Theorem 1 become [3]:

p1 � (1/B)(1 + (B � 1)r) ; (7)

p1 � (1/B)
�
1 + (B � 1)

r
1 + r

�
; (8)

pa � (1/B)(1 + (B � 1)(r˛)a + r˛ + ar) for r �
1
˛
; (9)

pa � (1/B)(1 + (B � 1)(rˇ)a + rˇ) for r �
1
2ˇ

; (10)

pa � (1/B)

1 + (B � 1)(r˛)a

�
1 �

1
s

�k
!
: (11)

The 1/B term accounts for the compulsory or first refer-
ence miss, which must be incurred in order to read a block
of data from a sequence. The remaining terms account for
conflict misses, which occur when a block of data is evicted
from cache before all its elements have been been scanned.
Conflict misses can be reduced by restricting the number
of sequences. As r approaches zero the cache miss proba-
bilities approach 1/B. In general, inequality (4) states that
the number of cache misses is O(N/B) if r � 1/(2ˇ) and
(B � 1)(rˇ)a = O(1). Both these conditions are satisfied if
k � m/max(B1/a; 2ˇ). So, there are O(N/B) cache misses
provided k = O(m/B1/a).

The analysis shows that for a direct-mapped cache,
where a = 1, the upper bound is a factor of r + 1 above
the lower bound. For a � 2, the upper bounds and lower
bounds are close if (1 � 1/s)k 	 and (˛ + a)r� 1 and
both these conditions are satisfied if k � s.

Rahman and Raman [6] obtain closer upper and lower
bounds for average case cache misses assuming the se-
quences are accessed uniformly randomly on a direct-

Analyzing Cache Misses A 39

mapped cache. Sen and Chatterjee [8] also obtain up-
per and lower bounds assuming the sequences are ran-
domly accessed. Ladner, Fix and LaMarca have analyzed
the problem on direct-mapped caches on the independent
reference model [2].

Multiple Sequence Access with Additional Working Set

As stated earlier in many applications accesses to se-
quences are interleaved with accesses to an additional data
structure, a working set, which determines how a sequence
element is to be treated. Assuming that the working set has
size at most sB and is stored in contiguous memory loca-
tions, the following is an upper bound on the number of
cache misses:

Theorem 2 [3] Let Ua denote the bound on the number
of cache misses in Theorem 1 and define U0 = N. With the
working set occupying w conflict free memory blocks, the ex-
pected number of cache misses arising in the N accesses to
the sequence data and any number of accesses to the work-
ing set, is bounded by w + (1 � w/s)Ua + 2(w/s)Ua�1.

On a direct mapped cache, for i = 1; : : : ; k, if sequence i
is accessed with probability pi independently of all previ-
ous accesses and is followed by an access to element i of
the working set then the following are upper and lower
bounds for the number of cache misses:

Theorem 3 [6] In a direct-mapped cache with m cache
blocks each of B elements, if sequence i, for i = 1; : : : ; k, is
accessed with probability pi and block j of the working set,
for j = 1; : : : ; k/B, is accessed with probability Pj then the
expected number of cache misses in N sequence accesses is
at most N(ps + pw) + k(1 + 1/B), where:

ps �
1
B
+

k
mB

+
B � 1
mB

kX
i=1

0
@

k/BX
j=1

piPj
pi + Pj

+
B � 1
B

kX
j=1

pi p j

pi + p j

1
A ;

pw �
k

B2m
+
B � 1
mB

k/BX
i=1

kX
j=1

Pi p j

Pi + p j
:

Theorem 4 [6] In a direct-mapped cache with m cache
blocks each of B elements, if sequence i, for i = 1; : : : ; k,
is accessed with probability pi � 1/m then the expected
number of cache misses in N sequence accesses is at least

Nps + k, where:

ps �
1
B
+
k(2m � k)

2m2 +
k(k � 3m)
2Bm2 �

1
2Bm

�
k

2B2m

+
B(k � m) + 2m � 3k

Bm2

kX
i=1

kX
j=1

(pi)2

pi + p j

+
(B � 1)2

B3m2

kX
i=1

pi

2
4

kX
j=1

pi (1 � pi � p j)
(pi + p j)2

�
B � 1
2

kX
j=1

kX
l=1

pi
pi + p j + pl � p j pl

3
5 � O

�
e�B

�
:

The lower bound ignores the interaction with the work-
ing set, since this can only increase the number of cache
misses.

In Theorem 3 and Theorem 4 ps is the probability of
a cache miss for a sequence access and in Theorem 3 pw is
the probability of a cache miss for an accesses to the work-
ing set.

If the sequences are accessed uniformly randomly,
then using Theorem 3 and Theorem 4, the ratio between
the upper and lower bound is 3/(3 � r), where r = k/m.
So for uniformly random data the lower bound is within
a factor of about 3/2 of the upper bound when k � m and
is much closer when k� m.

Applications

Numerous algorithms have been developed on the exter-
nal memory model which access multiple sequences of
data, such asmerge-sort, distribution sort, priority queues,
radix sorting. These analyzes are important as they allow
initial parameter choices to be made for cache memory al-
gorithms.

Open Problems

The analyzes assume that the starting addresses of the se-
quences are randomized and current approaches to allo-
cating random starting addresses waste a lot of virtual ad-
dress space [3]. An open problem is to find a good online
scheme to randomize the starting addresses of arbitrary
length sequences.

Experimental Results

The cache model is a powerful abstraction of real caches,
howevermodern computer architectures have complex in-
ternal memory hierarchies, with registers, multiple levels

40 A Applications of Geometric Spanner Networks

of caches and translation-lookaside-buffers (TLB). Cache
miss penalties are not of the same magnitude as the cost
of disk accesses, so an algorithm may perform better by
allowing conflict misses to increase in order to reduce
computation costs and compulsory misses, by reducing
the number of passes over the data. This means that in
practice cache analyzes is used to choose an initial value
of k which is then fine tuned for the platform and algo-
rithm [4,5,7,10].

For distribution sorting, in [4] a heuristic was consid-
ered for selecting k and equations for approximate cache
misses were obtained. These equations were shown to be
very accurate in practice.

Cross References

� Cache-Oblivious Model
� Cache-Oblivious Sorting
� External Sorting and Permuting
� I/O-model

Recommended Reading

1. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-
oblivious algorithms. In: Proc. of 40th Annual Symposium on
Foundations of Computer Science (FOCS’99), pp. 285–298 IEEE
Computer Society, Washington D.C. (1999)

2. Ladner, R.E., Fix, J.D., LaMarca, A.: Cache performance analy-
sis of traversals and random accesses. In: Proc. of 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1999),
pp. 613–622 Society for Industrial and Applied Mathematics,
Philadelphia (1999)

3. Mehlhorn, K., Sanders, P.: Scanning multiple sequences via
cache memory. Algorithmica 35, 75–93 (2003)

4. Rahman, N., Raman, R.: Adapting radix sort to the memory hi-
erarchy. ACM J. Exp. Algorithmics 6, Article 7 (2001)

5. Rahman, N., Raman, R.: Analysing cache effects in distribution
sorting. ACM J. Exp. Algorithmics 5, Article 14 (2000)

6. Rahman, N., Raman, R.: Cache analysis of non-uniform dis-
tribution sorting algorithms. (2007) http://www.citebase.org/
abstract?id=oai:arXiv.org:0706.2839 Accessed 13 August 2007
Preliminary version in: Proc. of 8th Annual European Sympo-
sium on Algorithms (ESA 2000). LNCS, vol. 1879, pp. 380–391.
Springer, Berlin Heidelberg (2000)

7. Sanders, P.: Fast priority queues for cached memory. ACM J.
Exp. Algorithmics 5, Article 7 (2000)

8. Sen, S., Chatterjee, S.: Towards a theory of cache-efficient al-
gorithms. In: Proc. of 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2000), pp. 829–838. Society for In-
dustrial and Applied Mathematics (2000)

9. Vitter, J.S.: External memory algorithms and data structures:
dealing with massive data. ACM Comput. Surv. 33, 209–271
(2001)

10. Wickremesinghe, R., Arge, L., Chase, J.S., Vitter, J.S.: Efficient
sorting using registers and caches. ACM J. Exp. Algorithmics
7, 9 (2002)

Applications of Geometric
Spanner Networks
2002; Gudmundsson, Levcopoulos,
Narasimhan, Smid

JOACHIM GUDMUNDSSON1, GIRI NARASIMHAN2,
MICHIEL SMID3

1 DMiST, National ICT Australia Ltd,
Alexandria, Australia

2 School of Computing and Information Science, Florida
International University, Miami, FL, USA

3 School of Computer Science, Carleton University,
Ottawa, ON, Canada

Keywords and Synonyms

Stretch factor

ProblemDefinition

Given a geometric graph in d-dimensional space, it is use-
ful to preprocess it so that distance queries, exact or ap-
proximate, can be answered efficiently. Algorithms that
can report distance queries in constant time are also re-
ferred to as “distance oracles”.With unlimited preprocess-
ing time and space, it is clear that exact distance oracles
can be easily designed. This entry sheds light on the design
of approximate distance oracles with limited preprocess-
ing time and space for the family of geometric graphs with
constant dilation.

Notation and Definitions

If p and q are points in Rd , then the notation |pq| is used
to denote the Euclidean distance between p and q; the no-
tation ıG (p; q) is used to denote the Euclidean length of
a shortest path between p and q in a geometric network G.
Given a constant t > 1, a graph G with vertex set S is a t-
spanner for S if ıG (p; q) � tjpqj for any two points p and
q of S. A t-spanner network is said to have dilation (or
stretch factor) t. A (1 + ")-approximate shortest path be-
tween p and q is defined to be any path in G between p and
q having length�, where ıG (p; q) � � � (1 + ")ıG (p; q).
For a comprehensive overview of geometric spanners, see
the book by Narasimhan and Smid [13].

All networks considered in this entry are simple and
undirected. The model of computation used is the tradi-
tional algebraic computation tree model with the added
power of indirect addressing. In particular, the algorithms
presented here do not use the non-algebraic floor function
as a unit-time operation. The problem is formalized below.

http://www.citebase.org/abstract?id=oai:arXiv.org:0706.2839
http://www.citebase.org/abstract?id=oai:arXiv.org:0706.2839

Applications of Geometric Spanner Networks A 41

Problem 1 (Distance Oracle) Given an arbitrary real
constant " > 0, and a geometric graph G in d-dimensional
Euclidean space with constant dilation t, design a data
structure that answers (1 + ")-approximate shortest path
length queries in constant time.

The data structure can also be applied to solve several
other problems. These include (a) the problem of report-
ing approximate distance queries between vertices in a pla-
nar polygonal domain with “rounded” obstacles, (b) query
versions of closest pair problems, and (c) the efficient com-
putation of the approximate dilations of geometric graphs.

Survey of Related Research

The design of efficient data structures for answering dis-
tance queries for general (non-geometric) networks was
considered by Thorup and Zwick [15] (unweighted gen-
eral graphs), Baswanna and Sen [3] (weighted general
graphs, i. e., arbitrary metrics), and Arikati et al. [2] and
Thorup [14] (weighted planar graphs).

For the geometric case, variants of the problem have
been considered in a number of papers (for a recent pa-
per see, for example, Chen et al. [5]). Work on the ap-
proximate version of these variants can also be found in
many articles (for a recent paper see, for example, Agarwal
et al. [1]). The focus of this entry are the results reported
in the work of Gudmundsson et al. [9,10,11,12].

Key Results

The main result of this entry is the existence of approx-
imate distance oracle data structures for geometric net-
works with constant dilation (see “Theorem 4” below). As
preprocessing, the network is “pruned” so that it only has
a linear number of edges. The data structure consists of
a series of “cluster graphs” of increasing coarseness each
of which helps answer approximate queries for pairs of
points with interpoint distances of different scales. In or-
der to pinpoint the appropriate cluster graph to search in
for a given query, the data structure uses the bucketing
tool described below. The idea of using cluster graphs to
speed up geometric algorithms was first introduced by Das
and Narasimhan [6] and later used by Gudmundsson et
al. [8] to design an efficient algorithm to compute (1 + ")-
spanners. Similar ideas were explored by Gao et al. [7] for
applications to the design of mobile networks.

Pruning

If the input geometric network has a superlinear number
of edges, then the preprocessing step for the distance or-
acle data structure involves efficiently “pruning” the net-

work so that it has only a linear number of edges. The
pruning may result in a small increase of the dilation of
the spanner. The following theorem was proved by Gud-
mundsson et al. [12].

Theorem 1 Let t > 1 and "0 > 0 be real constants. Let S
be a set of n points in Rd, and let G = (S; E) be a t-spanner
for S with m edges. There exists an algorithm to compute in
O(m + n log n) time, a (1 + "0)-spanner of G having O(n)
edges and whose weight is O(wt(MST(S))).

The pruning step requires the following technical theorem
proved by Gudmundsson et al. [12].

Theorem 2 Let S be a set of n points in Rd, and let c � 7
be an integer constant. In O(n log n) time, it is possible to
compute a data structure D(S) consisting of:
1. a sequence L1; L2; : : : ; L` of real numbers, where ` =

O(n), and
2. a sequence S1; S2; : : : ; S` of subsets of S satisfyingP`

i=1 jSi j = O(n),
such that the following holds. For any two distinct points

p and q of S, it is possible to compute in O(1) time an index i
with 1 � i � ` and two points x and y in Si such that
(a) Li /nc+1 � jxyj < Li , and (b) both |px| and |qy| are less
than jxyj/nc�2.

Despite its technical nature, the above theorem is of fun-
damental importance to this work. In particular, it helps
to deal with networks where the interpoint distances are
not confined to a polynomial range, i. e., there are pairs of
points that are very close to each other and very far from
each other.

Bucketing

Since the model of computation assumed here does not al-
low the use of floor functions, an important component
of the algorithm is a “bucketing tool” that allows (after
appropriate preprocessing) constant-time computation of
a quantity referred to as BINDEX, which is defined to be the
floor of the logarithm of the interpoint distance between
any pair of input points.

Theorem 3 Let S be a set of n points in Rd that are con-
tained in the hypercube (0; nk)d , for some positive integer
constant k, and let " be a positive real constant. The set S
can be preprocessed in O(n log n) time into a data struc-
ture of size O(n), such that for any two points p and q of S,
with jpqj � 1, it is possible to compute in constant time the
quantity BIndex"(p; q) = blog1+" jpqjc.

The constant-time computation mentioned in Theorem 3
is achieved by reducing the problem to one of answering

42 A Applications of Geometric Spanner Networks

least common ancestor queries for pairs of nodes in a tree,
a problem for which constant-time solutions were devised
most recently by Bender and Farach-Colton [4].

Main Results

Using the bucketing and the pruning tools, and using the
algorithms described by Gudmundsson et al. [11], the fol-
lowing theorem can be proved.

Theorem 4 Let t > 1 and " > 0 be real constants. Let S
be a set of n points in Rd, and let G = (S; E) be a t-spanner
for S with m edges. The graph G can be preprocessed into
a data structure of size O(n log n) in time O(m + n log n),
such that for any pair of query points p; q 2 S, it is possible
to compute a (1+")-approximation of the shortest-path dis-
tance in G between p and q in O(1) time. Note that all the
big-Oh notations hide constants that depend on d, t and ".

Additionally, if the traditional algebraic model of compu-
tation (without indirect addressing) is assumed, the fol-
lowing weaker result can be proved.

Theorem 5 Let S be a set of n points in Rd, and let
G = (S; E) be a t-spanner for S, for some real constant
t > 1, having m edges. Assuming the algebraic model of
computation, in O(m log log n + n log2 n) time, it is possi-
ble to preprocess G into a data structure of size O(n log n),
such that for any two points p and q in S, a (1 + ")-approx-
imation of the shortest-path distance in G between p and q
can be computed in O(log log n) time.

Applications

As mentioned earlier, the data structure described above
can be applied to several other problems. The first appli-
cation deals with reporting distance queries for a planar
domain with polygonal obstacles. The domain is further
constrained to be t-rounded, which means that the length
of the shortest obstacle-avoiding path between any two
points in the input point set is at most t times the Eu-
clidean distance between them. In other words, the visibil-
ity graph is required to be a t-spanner for the input point
set.

Theorem 6 Let F be a t-rounded collection of polygonal
obstacles in the plane of total complexity n, where t is a posi-
tive constant. One can preprocessF in O(n log n) time into
a data structure of size O(n log n) that can answer obstacle-
avoiding (1+")-approximate shortest path length queries in
time O(log n). If the query points are vertices ofF , then the
queries can be answered in O(1) time.

The next application of the distance oracle data structure
includes query versions of closest pair problems, where the

queries are confined to specified subset(s) of the input set.

Theorem 7 Let G = (S; E) be a geometric graph on n
points andm edges, such that G is a t-spanner for S, for some
constant t > 1. One can preprocess G in time O(m+n log n)
into a data structure of size O(n log n) such that given
a query subset S0 of S, a (1 + ")-approximate closest pair
in S0 (where distances are measured in G) can be computed
in time O(jS0j log jS0j).

Theorem 8 Let G = (S; E) be a geometric graph on n
points andm edges, such that G is a t-spanner for S, for some
constant t > 1. One can preprocess G in time O(m+n log n)
into a data structure of size O(n log n) such that given two
disjoint query subsets X and Y of S, a (1 + ")-approximate
bichromatic closest pair (where distances are measured in
G) can be computed in time O((jXj + jY j) log(jXj + jY j)).

The last application of the distance oracle data structure
includes the efficient computation of the approximate di-
lations of geometric graphs.

Theorem 9 Given a geometric graph on n vertices with
m edges, and given a constant C that is an upper bound
on the dilation t of G, it is possible to compute a (1 + ")-
approximation to t in time O(m + n log n).

Open Problems

Two open problems remain unanswered.
1. Improve the space utilization of the distance oracle data

structure from O(n log n) to O(n).
2. Extend the approximate distance oracle data structure

to report not only the approximate distance, but also
the approximate shortest path between the given query
points.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Geometric Spanners
� Planar Geometric Spanners
� Sparse Graph Spanners
� Synchronizers, Spanners

Recommended Reading
1. Agarwal, P.K., Har-Peled, S., Karia, M.: Computing approximate

shortest paths on convex polytopes. In: Proceedings of the
16th ACM Symposium on Computational Geometry, pp. 270–
279. ACM Press, New York (2000)

2. Arikati, S., Chen, D.Z., Chew, L.P., Das, G., Smid, M., Zaroliagis,
C.D.: Planar spanners and approximate shortest path queries
among obstacles in the plane. In: Proceedings of the 4th An-
nual European Symposium on Algorithms. Lecture Notes in

Approximate Dictionaries A 43

Computer Science, vol. 1136, Berlin, pp. 514–528. Springer,
London (1996)

3. Baswana, S., Sen, S.: Approximate distance oracles for un-
weighted graphs in Õ(n2) time. In: Proceedings of the 15th
ACM-SIAM Symposium on Discrete Algorithms, pp. 271–280.
ACM Press, New York (2004)

4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In:
Proceedings of the 4th Latin American Symposiumon Theoret-
ical Informatics. Lecture Notes in Computer Science, vol. 1776,
Berlin, pp. 88–94. Springer, London (2000)

5. Chen, D.Z., Daescu, O., Klenk, K.S.: On geometric path query
problems. Int. J. Comput. Geom. Appl. 11, 617–645 (2001)

6. Das, G., Narasimhan, G.: A fast algorithm for constructing
sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7, 297–
315 (1997)

7. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Discrete
mobile centers. Discrete Comput. Geom. 30, 45–63 (2003)

8. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy
algorithms for constructing sparse geometric spanners. SIAM
J. Comput. 31, 1479–1500 (2002)

9. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.:
Approximate distance oracles for geometric graphs. In: Pro-
ceedings of the 13th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 828–837. ACM Press, New York (2002)

10. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.:
Approximate distance oracles revisited. In: Proceedings of the
13th International Symposium on Algorithms and Computa-
tion. Lecture Notes in Computer Science, vol. 2518, Berlin, pp.
357–368. Springer, London (2002)

11. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.:
Approximate distance oracles for geometric spanners, ACM
Trans. Algorithms (2008). To Appear

12. Gudmundsson, J., Narasimhan, G., Smid, M.: Fast pruning of
geometric spanners. In: Proceedings of the 22nd Symposium
on Theoretical Aspects of Computer Science. Lecture Notes
in Computer Science, vol. 3404, Berlin, pp. 508–520. Springer,
London (2005)

13. Narasimhan, G., Smid, M.: Geometric Spanner Networks, Cam-
bridge University Press, Cambridge, UK (2007)

14. Thorup, M.: Compact oracles for reachability and approximate
distances in planar digraphs. J. ACM 51, 993–1024 (2004)

15. Thorup, M., Zwick, U.: Approximate distance oracles. In: Pro-
ceedings of the 33rd Annual ACM Symposium on the Theory
of Computing, pp. 183–192. ACM Press, New York (2001)

Approximate Dictionaries
2002; Buhrman, Miltersen, Radhakrishnan,
Venkatesh

VENKATESH SRINIVASAN
Department of Computer Science, University of Victoria,
Victoria, BC, Canada

Keywords and Synonyms

Static membership; Approximate membership

ProblemDefinition

The Problem and the Model

A static data structure problem consists of a set of data
D, a set of queries Q, a set of answers A, and a function
f : D � Q ! A. The goal is to store the data succinctly so
that any query can be answered with only a few probes
to the data structure. Static membership is a well-studied
problem in data structure design [1,4,7,8,12,13,16].

Definition 1 (Static Membership) In the static member-
ship problem, one is given a subset S of atmost n keys from
a universe U = f1; 2; : : : ;mg. The task is to store S so that
queries of the form “Is u in S?” can be answered by making
few accesses to the memory.

A natural and general model for studying any data struc-
ture problem is the cell probe model proposed by Yao [16].

Definition 2 (Cell Probe Model) An (s;w; t) cell probe
scheme for a static data structure problem f : D � Q ! A
has two components: a storage scheme and a query
scheme. The storage scheme stores the data d 2 D as a ta-
ble T[d] of s cells, each cell of word size w bits. The stor-
age scheme is deterministic. Given a query q 2 Q, the
query scheme computes f (d, q) bymaking atmost t probes
to T[d], where each probe reads one cell at a time, and
the probes can be adaptive. In a deterministic cell probe
scheme, the query scheme is deterministic. In a random-
ized cell probe scheme, the query scheme is randomized
and is allowed to err with a small probability.

Buhrman et al. [2] study the complexity of the static
membership problem in the bitprobemodel. The bitprobe
model is a variant of the cell probe model in which each
cell holds just a single bit. In other words, the word size w
is 1. Thus, in this model, the query algorithm is given bit-
wise access to the data structure. The study of themember-
ship problem in the bitprobe model was initiated by Min-
sky and Papert in their book Perceptrons [12]. However,
they were interested in average-case upper bounds for this
problem, while this work studiesworst-case bounds for the
membership problem.

Observe that if a scheme is required to store sets of size
at most n, then it must use at least dlog

P
i�n

�m
i
�
e number

of bits. If n � m1�˝(1), this implies that the scheme must
store ˝(n logm) bits (and therefore use ˝(n) cells). The
goal in [2] is to obtain a scheme that answers queries uses
only a constant number of bitprobes and at the same time
uses a table of O(n logm) bits.

44 A Approximate Dictionaries

Related Work

The static membership problem has been well studied in
the cell probe model, where each cell is capable of hold-
ing one element of the universe. That is, w = O(logm).
In a seminal paper, Fredman et al. [8] proposed a scheme
for the static membership problem in the cell probe model
with word size O(logm) that used a constant number of
probes and a table of size O(n). This scheme will be re-
ferred to as the FKS scheme. Thus, up to constant fac-
tors, the FKS scheme uses optimal space and number of
cell probes. In fact, Fiat et al. [7], Brodnik and Munro [1],
and Pagh [13] obtain schemes that use space (in bits) that
is within a small additive term of dlog

P
i�n

�m
i
�
e and yet

answer queries by reading at most a constant number of
cells. Despite all these fundamental results for the mem-
bership problem in the cell probe model, very little was
known about the bitprobe complexity of static member-
ship prior to the work in [2].

Key Results

Buhrman et al. investigate the complexity of the static
membership problem in the bitprobe model. They study
� Two-sided error randomized schemes that are allowed

to err on positive instances as well as negative instances
(that is, these schemes can say ‘No’ with a small proba-
bility when the query element u is in the set S and ‘Yes’
when it is not);

� One-sided error randomized schemes where the errors
are restricted to negative instances alone (that is, these
schemes never say ‘No’ when the query element u is in
the set S);

� Deterministic schemes in which no errors are allowed.
The main techniques used in [2] are based on two-color-
ings of special set systems that are related to the r-cover-
free family of sets considered in [3,5,9]. The reader is re-
ferred to [2] for further details.

Randomized Schemes with Two-Sided Error

The main result in [2] shows that there are randomized
schemes that use just one bitprobe and yet use space close
to the information theoretic lower bound of ˝(n logm)
bits.

Theorem 1 For any 0 < � � 1
4 , there is a scheme for stor-

ing subsets S of size at most n of a universe of size m using
O(n

�2
logm) bits so that any membership query “Is u 2 S?”

can be answered with an error probability of at most � by
a randomized algorithm that probes the memory at just one
location determined by its coin tosses and the query ele-
ment u.

Note that randomization is allowed only in the query algo-
rithm. It is still the case that for each set S, there is exactly
one associated data structure T(S). It can be shown that
deterministic schemes that answer queries using a single
bitprobe need m bits of storage (see the remarks follow-
ing Theorem 4). Theorem 1 shows that, by allowing ran-
domization, this bound (for constant �) can be reduced to
O(n logm) bits. This space is within a constant factor of
the information theoretic bound for n sufficiently small.
Yet the randomized scheme answers queries using a single
bitprobe.

Unfortunately, the construction above does not permit
us to have subconstant error probability and still use opti-
mal space. Is it possible to improve the result of Theorem 1
further and design such a scheme? [2] shows that this is not
possible: if � is made subconstant, then the scheme must
use more than n logm space.

Theorem 2 Suppose n
m1/3 � � �

1
4 . Then, any two-sided

�-error randomized scheme that answers queries using one
bitprobe must use space˝(n

� log(1/�) logm).

Randomized Schemes with One-Sided Error

Is it possible to have any savings in space if the query
scheme is expected to make only one-sided errors? The
following result shows it is possible if the error is allowed
only on negative instances.

Theorem 3 For any 0 < � � 1
4 , there is a scheme for stor-

ing subsets S of size at most n of a universe of size m us-
ing O((n

�
)2 logm) bits so that any membership query “Is

u 2 S?” can be answered with error probability at most �
by a randomized algorithm that makes a single bitprobe to
the data structure. Furthermore, if u 2 S, the probability of
error is 0.

Though this scheme does not operate with optimal space,
it still uses significantly less space than a bitvector. How-
ever, the dependence on n is quadratic, unlike in the
two-sided scheme where it was linear. [2] shows that
this scheme is essentially optimal: there is necessarily
a quadratic dependence on n

�
for any scheme with one-

sided error.

Theorem 4 Suppose n
m1/3 � � �

1
4 . Consider the static

membership problem for sets S of size at most n from a uni-
verse of size m. Then, any scheme with one-sided error
� that answers queries using at most one bitprobe must use
˝(n2

�2 log(n/�) logm) bits of storage.

Remark One could also consider one-probe, one-sided
error schemes that only make errors on positive instances.
That is, no error is made for query elementsnot in the set S.

Approximate Dictionaries A 45

In this case, [2] shows that randomness does not help at all:
such a scheme must usem bits of storage.

The following result shows that the space requirement can
be reduced further in one-sided error schemes if more
probes are allowed.

Theorem 5 Suppose 0 < ı < 1. There is a randomized
scheme with one-sided error n�ı that solves the static mem-
bership problem using O(n1+ı logm) bits of storage and
O(1

ı
) bitprobes.

Deterministic Schemes

In contrast to randomized schemes, Buhrman et al. show
that deterministic schemes exhibit a time-space tradeoff
behavior.

Theorem 6 Suppose a deterministic scheme stores subsets
of size n from a universe of size m using s bits of storage and
answers membership queries with t bitprobes to memory.
Then,

�m
n
�
� maxi�nt

�2s
i
�
.

This tradeoff result has an interesting consequence. Recall
that the FKS hashing scheme is a data structure for stor-
ing sets of size at most n from a universe of size m us-
ing O(n logm) bits, so that membership queries can be
answered using O(logm) bitprobes. As a corollary of the
tradeoff result, [2] shows that the FKS scheme makes an
optimal number of bitprobes, within a constant factor, for
this amount of space.

Corollary 1 Let � > 0; c � 1 be any constants. There is
a constant ı > 0 so that the following holds. Let n � m1��

and let a scheme for storing sets of size at most n of a uni-
verse of size m as data structures of at most cn logm bits be
given. Then, any deterministic algorithm answering mem-
bership queries using this structure must make at least
ı logm bitprobes in the worst case.

From Theorem 6 it also follows that any deterministic
scheme that answers queries using t bitprobes must use
space at least ntm˝(1/t) in the worst case. The final result
shows the existence of schemes which almost match the
lower bound.

Theorem 7
1. There is a nonadaptive scheme that stores sets of size at

most n from a universe of size m using O(ntm
2
t+1) bits

and answers queries using 2t + 1 bitprobes. This scheme
is nonexplicit.

2. There is an explicit adaptive scheme that stores sets
of size at most n from a universe of size m using
O(m1/t n logm) bits and answers queries using O(log n+
log logm) + t bitprobes.

Applications

The results in [2] have interesting connections to ques-
tions in coding theory and communication complexity.
In the framework of coding theory, the results in [2] can
be viewed as constructing locally decodable source codes,
analogous to the locally decodable channel codes of [10].
Theorems 1–4 can also be viewed as giving tight bounds
for the following communication complexity problem (as
pointed out in [11]): Alice gets u 2 f1; : : : ;mg, Bob gets
S
 f1; : : : ;mg of size at most n, and Alice sends a single
message to Bob after which Bob announces whether u 2 S.
See [2] for further details.

Recommended Reading

1. Brodnik, A., Munro, J.I.: Membership in constant time and min-
imum space. In: Lecture Notes in Computer Science, vol. 855,
pp. 72–81, Springer, Berlin (1994). Final version: Membership
in Constant Time and Almost-Minimum Space. SIAM J. Com-
put. 28(5), 1627–1640 (1999)

2. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.:
Are bitvectors optimal? SIAM J. Comput. 31(6), 1723–1744
(2002)

3. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunc-
tive codes. Problemy Peredachi Informatsii 18(3), 7–13 (1982)

4. Elias, P., Flower, R.A.: The complexity of some simple retrieval
problems. J. Assoc. Comput. Mach. 22, 367–379 (1975)

5. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no
set is covered by the union of r others. Isr. J. Math. 51, 79–89
(1985)

6. Fiat, A., Naor, M.: Implicit O(1) probe search. SIAM J. Comput.
22, 1–10 (1993)

7. Fiat, A., Naor, M., Schmidt, J.P., Siegel, A.: Non-oblivious hash-
ing. J. Assoc. Comput. Mach. 31, 764–782 (1992)

8. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse ta-
ble with O(1) worst case access time. J. Assoc. Comput. Mach.
31(3), 538–544 (1984)

9. Füredi, Z.: On r-cover-free families. J. Comb. Theory, Series A
73, 172–173 (1996)

10. Katz, J., Trevisan, L.: On the efficiency of local decoding proce-
dures for error-correcting codes. In: Proceedings of STOC’00,
pp. 80–86

11. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data struc-
tures and asymmetric communication complexity. J. Comput.
Syst. Sci. 57, 37–49 (1998)

12. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge
(1969)

13. Pagh, R.: Low redundancy in static dictionaries with O(1)
lookup time. In: Proceedings of ICALP ’99. LNCS, vol. 1644,
pp. 595–604. Springer, Berlin (1999)

14. Ruszinkó, M. On the upper bound of the size of r-cover-free
families. J. Comb. Theory, Ser. A 66, 302–310 (1984)

15. Ta-Shma, A.: Explicit one-probe storing schemes using univer-
sal extractors. Inf. Proc. Lett. 83(5), 267–274 (2002)

16. Yao, A.C.C.: Should tables be sorted? J. Assoc. Comput. Mach.
28(3), 615–628 (1981)

46 A Approximate Dictionary Matching

Approximate DictionaryMatching
� Dictionary Matching and Indexing (Exact and with

Errors)

ApproximateMaximum
Flow Construction
� Randomized Parallel Approximations to Max Flow

ApproximateMembership
� Approximate Dictionaries

Approximate Nash Equilibrium
� Non-approximability of Bimatrix Nash Equilibria

Approximate Periodicities
� Approximate Tandem Repeats

Approximate Regular
ExpressionMatching
1995; Wu, Manber, Myers

GONZALO NAVARRO
Department of Computer Science, University of Chile,
Santiago, Chile

Keywords and Synonyms

Regular expression matching allowing errors or differ-
ences

ProblemDefinition

Given a text string T = t1t2 : : : tn and a regular expres-
sion R of length m denoting language L(R), over an al-
phabet ˙ of size � , and given a distance function among
strings d and a threshold k, the approximate regular ex-
pression matching (AREM) problem is to find all the text
positions that finish a so-called approximate occurrence of
R in T, that is, compute the set f j; 9i; 1 � i � j; 9P 2
L(R); d(P; ti : : : t j) � kg. T, R, and k are given together,
whereas the algorithm can be tailored for a specific d.

This entry focuses on the so-called weighted edit dis-
tance, which is the minimum sum of weights of a se-
quence of operations converting one string into the other.
The operations are insertions, deletions, and substitutions
of characters. The weights are positive real values asso-
ciated to each operation and characters involved. The
weight of deleting a character c is written w(c ! �), that
of inserting c is written w(� ! c), and that of substi-
tuting c by c0 6= c is written w(c ! c0). It is assumed
w(c ! c) = 0 for all c 2 ˙ [� and the triangle inequal-
ity, that is, w(x ! y) + w(y ! z) � w(x ! z) for any
x; y; z 2 ˙ [f�g. As the distance may be asymmetric, it is
also fixed that that d(A; B) is the cost of converting A into
B. For simplicity and practicality m = o(n) is assumed in
this entry.

Key Results

The most versatile solution to the problem [3] is based on
a graph model of the distance computation process. As-
sume the regular expression R is converted into a nonde-
terministic finite automaton (NFA) with O(m) states and
transitions using Thompson’s method [8]. Take this au-
tomaton as a directed graph G(V ; E) where edges are la-
beled by elements in ˙ [f�g. A directed and weighted
graph G is built to solve the AREM problem. G is formed
by putting n + 1 copies ofG;G0;G1; : : : ;Gn , and connect-
ing them with weights so that the distance computation
reduces to finding shortest paths in G.

More formally, the nodes of G are fvi ; v 2 V ; 0 � i �
ng, so that vi is the copy of node v 2 V in graph Gi. For
each edge u

c
! v in E, c 2 ˙ [f�g, the following edges are

added to graph G:

ui ! vi ; with weight w(c ! �) ; 0 � i � n ;
ui ! ui+1 ; with weight w(� ! ti+1) ; 0 � i < n ;
ui ! vi+1 ; with weight w(c ! ti+1) ; 0 � i < n :

Assume for simplicity thatG has initial state s and a unique
final state f (this can always be arranged). As defined, the
shortest path in G from s0 to f n gives the smallest distance
betweenT and a string inL(R). In order to adapt the graph
to the AREM problem, the weights of the edges between si
and si+1 are modified to be zero.

Then, the AREM problem is reduced to computing
shortest paths. It is not hard to see that G can be topolog-
ically sorted so that all the paths to nodes in Gi are com-
puted before all those to Gi+1. This way, it is not hard to
solve this shortest path problem in O(mn logm) time and
O(m) space. Actually, if one restricts the problem to the
particular case of network expressions, which are regular

Approximate Regular Expression Matching A 47

expressions without Kleene closure, then G has no loops
and the shortest path computation can be done in O(mn)
time, and even better on average [2].

The most delicate part in achieving O(mn) time for
general regular expressions [3] is to prove that, given the
types of loops that arise in the NFAs of regular expressions,
it is possible to compute the distances correctly within
eachGi by (a) computing them in a topological order ofGi
without considering the back edges introduced by Kleene
closures; (b) updating path costs by using the back edges
once; (c) updating path costs once more in topological or-
der ignoring back edges again.

Theorem 1 (Myers and Miller 1989 [3]) There exists an
O(mn) worst-case time solution to the AREM problem un-
der weighted edit distance.

It is possible to do better when the weights are integer-
valued, by exploiting the unit-cost RAM model through
a four-Russian technique [10]. The idea is as follows. Take
a small subexpression of R, which produces an NFA that
will translate into a small subgraph of each Gi. At the time
of propagating path costs within this automaton, there will
be a counter associated to each node (telling the current
shortest path from s0). This counter can be reduced to
a number in [0; k + 1], where k + 1 means “more than k”.
If the small NFAhas r states, rdlog2(k + 2)e bits are needed
to fully describe the counters of the corresponding sub-
graph of Gi. Moreover, given an initial set of values for the
counters, it is possible to precompute all the propagation
that will occur within the same subgraph of Gi, in a table
having 2rdlog2(k+2)e entries, one per possible configuration
of counters. It is sufficient that r < ˛ logk+2 n for some
˛ < 1 to make the construction and storage cost of those
tables o(n). With the help of those tables, all the propa-
gation within the subgraph can be carried out in constant
time. Similarly, the propagation of costs to the same sub-
graph at Gi+1 can also be precomputed in tables, as it de-
pends only on the current counters in Gi and on text char-
acter ti+1, for which there are only � alternatives.

Now, take all the subtrees of R of maximum size
not exceeding r and preprocess them with the technique
above. Convert each such subtree into a leaf in R labeled
by a special character aA, associated to the corresponding
small NFAA. Unless there are consecutive Kleene closures
in R, which can be simplified as R�� = R�, the size of R af-
ter this transformation is O(m/r). Call R0 the transformed
regular expression. One essentially applies the technique
of Theorem 1 to R0, taking care of how to deal with the
special leaves that correspond to small NFAs. Those leaves
are converted by Thompson’s construction into two nodes
linked by an edge labeled aA. When the path cost propa-

gation process reaches the source node of an edge labeled
aA with cost c, one must update the counter of the initial
state of NFA A to c (or k + 1 if c > k). One then uses the
four-Russians table to do all the cost propagation within
A in constant time, and finally obtain, at the counter of
the final state of A, the new value for the target node of
the edge labeled aA in the top-level NFA. Therefore, all the
edges (normal and special) of the top-level NFA can be tra-
versed in constant time, so the costs at Gi can be obtained
in O(mn/r) time using Theorem 1. Now one propagates
the costs to Gi+1, using the four-Russians tables to obtain
the current counter values of each subgraph A in Gi+1.

Theorem 2 (Wu et al. 1995 [10]) There exists an
O(n + mn/ logk+2 n) worst-case time solution to the AREM
problem under weighted edit distance if the weights are in-
teger numbers.

Applications

The problem has applications in computational biology,
to find certain types of motifs in DNA and protein se-
quences. See [1] for a more detailed discussion. In par-
ticular, PROSITE patterns are limited regular expressions
rather popular to search protein sequences. PROSITE pat-
terns can be searched for with faster algorithms in prac-
tice [7]. The same occurs with other classes of complex
patterns [6] and network expressions [2].

Open Problems

The worst-case complexity of the AREM problem is not
fully understood. It is of course ˝(n), which has been
achieved for m log(k + 2) = O(log n), but it is not known
how much can this be improved.

Experimental Results

Some recent experiments are reported in [5]. For small
m and k, and assuming all the weights are 1 (except
w(c ! c) = 0), bit-parallel algorithms of worst-case com-
plexity O(kn(m/ log n)2) [4,9] are the fastest (the second
is able to skip some text characters, depending on R). For
arbitrary integer weights, the best choice is a more com-
plex bit-parallel algorithm [5]; or the four-Russians based
one [10] for larger m and k. The original algorithm [3] is
slower but it is the only one supporting arbitrary weights.

URL to Code

Well-known packages offering efficient AREM (for sim-
plified weight choices) are agrep [9] (http://webglimpse.
net/download.html, top-level subdirectory agrep/) and

http://webglimpse.net/download.html
http://webglimpse.net/download.html

48 A Approximate Repetitions

nrgrep [4] (http://www.dcc.uchile.cl/~gnavarro/software).
For biological applications, anrep [2] (http://www.cs.
arizona.edu/people/gene/CODE/anrep.tar.Z) matches se-
quences of approximate network expressions with arbi-
trary weights and a specified gap length between each net-
work expression and the next.

Cross References

� Regular Expression Matching is the simplified case
where exact matching with strings in L(R) is sought.

� Sequential Approximate String Matching is
a simplification of this problem, and the relation
between graph G here and matrix C there should be
apparent.

Recommended Reading
1. Gusfield, D.: Algorithms on strings, trees and sequences. Cam-

bridge University Press, Cambridge (1997)
2. Myers, E.W.: Approximate matching of network expressions

with spacers. J. Comput. Biol. 3(1), 33–51 (1996)
3. Myers, E.W., Miller, W.: Approximate matching of regular ex-

pressions. Bullet. Math. Biol. 51, 7–37 (1989)
4. Navarro, G.: Nr-grep: a fast and flexible pattern matching tool.

Softw. Pr. Exp. 31, 1265–1312 (2001)
5. Navarro, G.: Approximate regular expression searchingwith ar-

bitrary integerweights. Nord. J. Comput.11(4), 356–373 (2004)
6. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings

– Practical on-line search algorithms for texts and biological
sequences. Cambridge University Press, Cambridge (2002)

7. Navarro, G., Raffinot, M.: Fast and simple character classes and
bounded gaps pattern matching, with applications to protein
searching. J. Comput. Biol. 10(6), 903–923 (2003)

8. Thompson, K.: Regular expression search algorithm. Commun.
ACM 11(6), 419–422 (1968)

9. Wu, S., Manber, U.: Fast text searching allowing errors. Com-
mun. ACM 35(10), 83–91 (1992)

10. Wu, S., Manber, U., Myers, E.W.: A subquadratic algorithm for
approximate regular expressionmatching. J. Algorithms 19(3),
346–360 (1995)

Approximate Repetitions
� Approximate Tandem Repeats

Approximate Tandem Repeats
2001; Landau, Schmidt, Sokol
2003; Kolpakov, Kucherov

GREGORY KUCHEROV1, DINA SOKOL2
1 LIFL and INRIA, Villeneuve d’Ascq, France
2 Department of Computer and Information Science,
Brooklyn College of CUNY, Brooklyn, NY, USA

Keywords and Synonyms

Approximate repetitions; Approximate periodicities

ProblemDefinition

Identification of periodic structures in words (variants
of which are known as tandem repeats, repetitions, pow-
ers or runs) is a fundamental algorithmic task (see entry
� Squares and Repetitions). In many practical applica-
tions, such as DNA sequence analysis, considered repeti-
tions admit a certain variation between copies of the re-
peated pattern. In other words, repetitions under interest
are approximate tandem repeats and not necessarily exact
repeats only.

The simplest instance of an approximate tandem re-
peat is an approximate square. An approximate square
in a word w is a subword uv, where u and v are within
a given distance k according to some distance measure
between words, such as Hamming distance or edit (also
called Levenstein) distance. There are several ways to de-
fine approximate tandem repeats as successions of approx-
imate squares, i. e. to generalize to the approximate case
the notion of arbitrary periodicity (see entry � Squares
and Repetitions). In this entry, we discuss three different
definitions of approximate tandem repeats. The first two
are built upon the Hamming distance measure, and the
third one is built upon the edit distance.

Let h(�; �) denote the Hamming distance between two
words of equal length.

Definition 1 Aword r[1::n] is called a K-repetition of pe-
riod p, p � n/2, iff h(r[1::n � p]; r[p + 1::n]) � K.

Equivalently, a word r[1::n] is a K-repetition of pe-
riod p, if the number of mismatches, i. e. the number
of i such that r[i] ¤ r[i + p], is at most K . For ex-
ample, ataa atta ctta ct is a 2-repetition of period 4.
atc atc atc atg atg atg atg atg is a 1-repetition of period
3 but atc atc atc att atc atc atc att is not.

Definition 2 A word r[1::n] is called a K-run, of pe-
riod p, p � n/2, iff for every i 2 [1::n � 2p + 1], we have
h(r[i::i + p � 1]; r[i + p; i + 2p � 1]) � K.

A K-run can be seen as a sequence of approximate squares
uv such that juj = jvj = p and u and v differ by at most K
mismatches. The total number of mismatches in a K-run
is not bounded.

Let ed(�; �) denote the edit distance between two
strings.

Definition 3 A word r is a K-edit repeat if it can be par-
titioned into consecutive subwords, r = v0w1w2 : : :w`v00,

http://www.dcc.uchile.cl/~gnavarro/software
http://www.cs.arizona.edu/people/gene/CODE/anrep.tar.Z
http://www.cs.arizona.edu/people/gene/CODE/anrep.tar.Z

Approximate Tandem Repeats A 49

` � 2, such that

ed(v0;w01) +
`�1X
i=1

ed(wi ;wi+1) + ed(w00` ; v
00) � K ;

where w01 is some suffix of w1 and w00` is some prefix of w`.

A K-edit repeat is a sequence of “evolving” copies of a pat-
tern such that there are at most K insertions, deletions,
and mismatches, overall, between all consecutive copies of
the repeat. For example, the word r = caagct cagct ccgct
is a 2-edit repeat.

When looking for tandem repeats occurring in a word,
it is natural to consider maximal repeats. Those are the
repeats extended to the right and left as much as possi-
ble provided that the corresponding definition is still ver-
ified. Note that the notion of maximality applies to K-
repetitions, to K-runs, and to K-edit repeats.

Under the Hamming distance, K-runs provide the
weakest “reasonable” definition of approximate tandem
repeats, since it requires that every square it contains can-
not contain more than K mismatch errors, which seems to
be a minimal reasonable requirement. On the other hand,
K-repetition is the strongest such notion as it limits by K
the total number of mismatches. This provides an addi-
tional justification that finding these two types of repeats
is important as they “embrace” other intermediate types
of repeats. Several intermediate definitions have been dis-
cussed in [10, Section 5].

In general, each K-repetition is a part of a K-run of
the same period and every K-run is the union of all K-re-
petitions it contains. Observe that a K-run can contain as
many as a linear number of K-repetitions with the same
period. For example, the word (000 100)n of length 6n is
a 1-run of period 3, which contains (2n � 1) 1-repetitions.
In general, a K-run r contains (s � K + 1) K-repetitions of
the same period, where s is the number of mismatches in r.

Example 1 The following Fibonacci word contains three
3-runs of period 6. They are shown in regular font, in po-
sitions aligned with their occurrences. Two of them are
identical, and contain each four 3-repetitions, shown in
italic for the first run only. The third run is a 3-repetition
in itself.

010010 100100 101001 010010 010100 1001

10010 100100 101001
10010 100100 10
0010 100100 101
10 100100 10100
0 100100 101001

1001 010010 010100 1
10 010100 1001

Key Results

Given a word w of length n and an integer K , it is possible
to find allK-runs,K-repetitions, andK-edit repeats within
w in the following time and space bounds:

K-runs can be found in time O(nK logK + S) (S the out-
put size) and working space O(n) [10],

K-repetitions can be found in time O(nK logK + S) and
working space O(n) [10],

K-edit repeats can be found in time O(nK logK log(n/K)
+S) and working space O(n + K2) [14,19].

All three algorithms are based on similar algorithmic tools
that generalize corresponding techniques for the exact
case [4,15,16] (see [11] for a systematic presentation). The
first basic tool is a generalization of longest extension func-
tions [16] that, in the case of Hamming distance, can
be exemplified as follows. Given a word w, we want to
compute, for each position p and each k � K, the quan-
tity maxf jjh(w[1:: j];w[p::p + j � 1]) � kg. Computing
all those values can be done in time O(nK) using a method
based on the suffix tree and the computation of lowest com-
mon ancestor described in [7].

The second tool is the Lempel–Ziv factorization used
in the well-known compressionmethod.Different variants
of the Lempel–Ziv factorization of a word can be com-
puted in linear time [7,18].

The algorithm for computing K-repetitions from [10]
can be seen as a direct generalization of the algorithm
for computing maximal repetitions (runs) in the exact
case [8,15]. Although based on the same basic tools and
ideas, the algorithm [10] for computing K-runs is much
more involved and uses a complex “bootstrapping” tech-
nique for assembling runs from smaller parts.

The algorithm for finding the K-edit repeats uses both
the recursive framework and the idea of the longest exten-
sion functions of [16]. The longest common extensions, in
this case, allow up to K edit operations. Efficient methods
for computing these extensions are based upon a combi-
nation of the results of [12] and [13]. The K-edit repeats
are derived by combining the longest common extensions
computed in the forward direction with those computed
in the reverse direction.

Applications

Tandemly repeated patterns in DNA sequences are in-
volved in various biological functions and are used in dif-
ferent practical applications.

Tandem repeats are known to be involved in regula-
tory mechanisms, e. g. to act as binding sites for regulatory

50 A Approximate Tandem Repeats

proteins. Tandem repeats have been shown to be associ-
ated with recombination hot-spots in higher organisms. In
bacteria, a correlation has been observed between certain
tandem repeats and virulence and pathogenicity genes.

Tandem repeats are responsible for a number of inher-
ited diseases, especially those involving the central nervous
system. Fragile X syndrome, Kennedy disease, myotonic
dystrophy, and Huntington’s disease are among the dis-
eases that have been associated with triplet repeats.

Examples of different genetic studies illustrating
above-mentioned biological roles of tandem repeats can
be found in introductive sections of [1,6,9]. Even more
than just genomic elements associated with various bio-
logical functions, tandem repeats have been established to
be a fundamental mutational mechanism in genome evo-
lution [17].

A major practical application of short tandem repeats
is based on the inter-individual variability in copy number
of certain repeats occurring at a single loci. This feature
makes tandem repeats a convenient tool for genetic pro-
filing of individuals. The latter, in turn, is applied to pedi-
gree analysis and establishing phylogenetic relationships
between species, as well as to forensic medicine [3].

Open Problems

The definition of K-edit repeats is similar to that of K-re-
petitions (for the Hamming distance case). It would be in-
teresting to consider other definitions of maximal repeats
over the edit distance. For example, a definition similar to
the K-run would allow up to K edits between each pair of
neighboring periods in the repeat. Other possible defini-
tions would allow K errors between any pair of copies of
a repeat, or between all pairs of copies, or between some
consensus and each copy.

In general, aweighted edit distance scheme is necessary
for biological applications. Known algorithms for tandem
repeats based on a weighted edit distance scheme are not
feasible, and thus only heuristics are currently used.

URL to Code

The algorithms described in this entry have been imple-
mented for DNA sequences, and are publicly available.
The Hamming distance algorithms (K-runs and K-re-
petitions) are part of the mreps software package, avail-
able at http://bioinfo.lifl.fr/mreps/ [9]. The K-edit repeats
software, TRED, is available at http://www.sci.brooklyn.
cuny.edu/~sokol/tandem [19]. The implementations of
the algorithms are coupled with postprocessing filters,
necessary due to the nature of biological sequences.

In practice, software based on heuristic and statisti-
cal methods is largely used. Among them, TRF (http://
tandem.bu.edu/trf/trf.html) [1] is the most popular pro-
gram used by the bioinformatics community. Other pro-
grams include ATRHunter (http://bioinfo.cs.technion.ac.
il/atrhunter/) [20], TandemSWAN (http://strand.imb.ac.
ru/swan/) [2]. STAR (http://atgc.lirmm.fr/star/) [5] is an-
other software, based on an information-theoretic ap-
proach, for computing approximate tandem repeats of
a pre-specified pattern.

Cross References

� Squares and Repetitions

Acknowledgments

This work was supported in part by the National Science Foundation
Grant DB&I 0542751.

Recommended Reading
1. Benson, G.: Tandem Repeats Finder: a program to analyze DNA

sequences. Nucleic Acids Res. 27, 573–580 (1999)
2. Boeva, V.A., Régnier, M., Makeev, V.J.: SWAN: searching for

highly divergent tandem repeats in DNA sequences with
the evaluation of their statistical significance. Proceedings
of JOBIM 2004, Montreal, Canada, p. 40 (2004)

3. Butler, J.M.: Forensic DNA Typing: Biology and Technology Be-
hind STR Markers. Academic Press (2001)

4. Crochemore, M.: Recherche linéaire d’un carré dans un mot.
Comptes Rendus Acad. Sci. Paris Sér. I Math. 296, 781–784
(1983)

5. Delgrange, O., Rivals, E.: STAR – an algorithm to Search for Tan-
dem Approximate Repeats. Bioinform. 20, 2812–2820 (2004)

6. Gelfand, Y., Rodriguez, A., Benson, G.: TRDB – The Tandem Re-
peats Database. Nucl. Acids Res. 35(suppl. 1), D80–D87 (2007)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences.
Cambridge University Press (1997)

8. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in
a word in linear time. In: 40th Symp. Foundations of Com-
puter Science (FOCS), pp. 596–604. IEEE Computer Society
Press (1999)

9. Kolpakov, R., Bana, G., Kucherov, G.: mreps: efficient and flex-
ible detection of tandem repeats in DNA. Nucl. Acids Res.
31(13), 3672–3678 (2003)

10. Kolpakov, R., Kucherov, G.: Finding approximate repetitions
under Hamming distance. Theoret. Comput. Sci. 33(1), 135–
156, (2003)

11. Kolpakov, R., Kucherov, G.: Identification of periodic structures
in words. In: Berstel, J., Perrin, D. (eds.) Applied combinatorics
on words. Encyclopedia of Mathematics and its Applications.
Lothaire books, vol. 104, pp. 430–477. Cambridge University
Press (2005)

12. Landau, G.M., Vishkin, U.: Fast string matching with k differ-
ences. J. Comput. Syst. Sci. 37(1), 63–78 (1988)

13. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string
comparison. SIAM J. Comput. 27(2), 557–582 (1998)

http://bioinfo.lifl.fr/mreps/
http://www.sci.brooklyn.cuny.edu/~sokol/tandem
http://www.sci.brooklyn.cuny.edu/~sokol/tandem
http://tandem.bu.edu/trf/trf.html
http://tandem.bu.edu/trf/trf.html
http://bioinfo.cs.technion.ac.il/atrhunter/
http://bioinfo.cs.technion.ac.il/atrhunter/
http://strand.imb.ac.ru/swan/
http://strand.imb.ac.ru/swan/
http://atgc.lirmm.fr/star/

ApproximatingMetric Spaces by Tree Metrics A 51

14. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approx-
imate tandem repeats. J. Comput. Biol. 8, 1–18 (2001)

15. Main, M.: Detecting leftmost maximal periodicities. Discret.
Appl. Math. 25, 145–153 (1989)

16. Main, M., Lorentz, R.: AnO(n log n) algorithm for finding all rep-
etitions in a string. J. Algorithms 5(3), 422–432 (1984)

17. Messer, P.W., Arndt, P.F.: The majority of recent short DNA in-
sertions in the human genome are tandem duplications. Mol.
Biol. Evol. 24(5), 1190–7 (2007)

18. Rodeh,M., Pratt, V., Even, S.: Linear algorithm for data compres-
sion via string matching. J. Assoc. Comput. Mach. 28(1), 16–24
(1981)

19. Sokol, D., Benson, G., Tojeira, J.: Tandem repeats over the edit
distance. Bioinform. 23(2), e30–e35 (2006)

20. Wexler, Y., Yakhini, Z., Kashi, Y., Geiger, D.: Finding approximate
tandem repeats in genomic sequences. J. Comput. Biol. 12(7),
928–42 (2005)

ApproximatingMetric Spaces
by Tree Metrics
1996; Bartal, Fakcharoenphol, Rao, Talwar
2004; Bartal, Fakcharoenphol, Rao, Talwar

JITTAT FAKCHAROENPHOL1, SATISH RAO2,
KUNAL TALWAR3
1 Department of Computer Engineering, Kasetsart
University, Bangkok, Thailand

2 Computer Science Division, University of California at
Berkeley, Berkeley, CA, USA

3 Microsoft Research, Silicon Valley Campus, Mountain
View, CA, USA

Keywords and Synonyms

Embedding general metrics into tree metrics

ProblemDefinition

This problem is to construct a random tree metric that
probabilistically approximates a given arbitrary metric
well. A solution to this problem is useful as the first step
for numerous approximation algorithms because usually
solving problems on trees is easier than on general graphs.
It also finds applications in on-line and distributed com-
putation.

It is known that tree metrics approximate general
metrics badly, e. g., given a cycle Cn with n nodes, any
tree metric approximating this graph metric has distor-
tion ˝(n) [17]. However, Karp [15] noticed that a ran-
dom spanning tree of Cn approximates the distances be-
tween any two nodes in Cn well in expectation. Alon,
Karp, Peleg, and West [1] then proved a bound of
exp(O(

p
log n log log n)) on an average distortion for ap-

proximating any graph metric with its spanning tree.

Bartal [2] formally defined the notion of probabilistic
approximation.

Notations

A graph G = (V ; E) with an assignment of non-negative
weights to the edges of G defines a metric space (V ; dG)
where for each pair u; v 2 V , dG (u; v) is the shortest path
distance between u and v inG. Ametric (V , d) is a tree met-
ric if there exists some tree T = (V 0; E0) such that V
 V 0

and for all u; v 2 V , dT (u; v) = d(u; v). The metric (V , d)
is also called a metric induced by T.

Given a metric (V , d), a distribution D over tree
metrics over V ˛-probabilistically approximates d
if every tree metric dT 2 D, dT (u; v) � d(u; v) and
EdT2D[dT (u; v)] � ˛ � d(u; v), for every u; v 2 V . The
quantity ˛ is referred to as the distortion of the approxi-
mation.

Although the definition of probabilistic approximation
uses a distribution D over tree metrics, one is interested
in a procedure that constructs a random tree metric dis-
tributed according to D, i. e., an algorithm that produces
a random tree metric that probabilistically approximates
a given metric. The problem can be formally stated as fol-
lows.

Problem (APPROX-TREE)
INPUT: a metric (V, d)
OUTPUT: a tree metric (V ; dT) sampled from a distribution
D over tree metrics that ˛-probabilistically approximates
(V, d).

Bartal then defined a class of tree metrics, called hierarchi-
cally well-separated trees (HST), as follows. A k-hierarchi-
cally well-separated tree (k-HST) is a rooted weighted tree
satisfying two properties: the edge weight from any node
to each of its children is the same, and the edge weights
along any path from the root to a leaf are decreasing by
a factor of at least k. These properties are important to
many approximation algorithms.

Bartal showed that any metric on n points can
be probabilistically approximated by a set of k-HST’s
with O(log2 n) distortion, an improvement from
exp(O(

p
log n log log n)) in [1]. Later Bartal [3], follow-

ing the same approach as in Seymour’s analysis on the
Feedback Arc Set problem [18], improved the distortion
down to O(log n log log n). Using a rounding procedure of
Calinescu, Karloff, and Rabani [5], Fakcharoenphol, Rao,
and Talwar [9] devised an algorithm that, in expectation,
produces a tree with O(log n) distortion. This bound is
tight up to a constant factor.

52 A ApproximatingMetric Spaces by Tree Metrics

Key Results

A tree metric is closely related to graph decomposi-
tion. The randomized rounding procedure of Calinescu,
Karloff, and Rabani [5] for the 0-extension problem de-
composes a graph into pieces with bounded diameter, cut-
ting each edge with probability proportional to its length
and a ratio between the numbers of nodes at certain dis-
tances. Fakcharoenphol, Rao, and Talwar [9] used the
CKR rounding procedure to decompose the graph recur-
sively and obtained the following theorem.

Theorem 1 Given an n-point metric (V, d), there exists
a randomized algorithm, which runs in time O(n2), that
samples a tree metric from the distribution D over tree
metrics that O(log n)-probabilistically approximates (V, d).
The tree is also a 2-HST.

The bound in Theorem 1 is tight, as Alon et al. [1] proved
the bound of an˝(log n) distortion when (V , d) is induced
by a grid graph. Also note that it is known (as folklore)
that even embedding a line metric onto a 2-HST requires
distortion˝(log n).

If the tree is required to be a k-HST, one can apply
the result of Bartal, Charikar, and Raz [4] which states
that any 2-HST can be O(k/ log k)-probabilistically ap-
proximated by k-HST, to obtain an expected distortion of
O(k log n/ log k).

Finding a distribution of tree metrics that probabilis-
tically approximates a given metric has a dual problem
that is to find a single tree T with small average weighted
stretch. More specifically, given weight cuv on edges, find
a tree metric dT such that for all u; v 2 VdT (u; v) �
d(u; v) and

P
u;v2V cuv �dT (u; v) � ˛

P
u;v2V cuv �d(u; v).

Charikar, Chekuri, Goel, Guha, and Plotkin [6]
showed how to find a distribution of O(n log n) tree met-
rics that ˛-probabilistically approximates a given metric,
provided that one can solve the dual problem. The algo-
rithm in Theorem 1 can be derandomized by the method
of conditional expectation to find the required tree metric
with ˛ = O(log n). Another algorithm based on modified
region growing techniques is presented in [9], and inde-
pendently by Bartal.

Theorem 2 Given an n-point metric (V, d), there exists
a polynomial-time deterministic algorithm that finds a dis-
tribution D over O(n log n) tree metrics that O(log n)-
probabilistically approximates (V, d).

Note that the tree output by the algorithm contains Steiner
nodes, however Gupta [10] showed how to find another
tree metric without Steiner nodes while preserving all dis-
tances within a constant factor.

Applications

Metric approximation by random trees has applications
in on-line and distributed computation, since randomiza-
tion works well against oblivious adversaries, and trees are
easy to work with and maintain. Alon et al. [1] first used
tree embedding to give a competitive algorithm for the k-
server problem. Bartal [3] noted a few problems in his pa-
per: metrical task system, distributed paging, distributed
k-server problem, distributed queuing, and mobile user.

After the paper by Bartal in 1996, numerous applica-
tions in approximation algorithms have been found. Many
approximation algorithms work for problems on tree met-
rics or HST metrics. By approximating general metrics
with these metrics, one can turn them into algorithms
for general metrics, while, usually, losing only a factor
of O(log n) in the approximation factors. Sample prob-
lems are metric labeling, buy-at-bulk network design, and
group Steiner trees. Recent applications include an ap-
proximation algorithm to the Unique Games [12], infor-
mation network design [13], and oblivious network de-
sign [11].

The SIGACT News article [8] is a review of the metric
approximation by tree metrics with more detailed discus-
sion on developments and techniques. See also [3,9], for
other applications.

Open Problems

Given a metric induced by a graph, some application, e. g.,
solving a certain class of linear systems, does not only re-
quire a treemetric, but a treemetric induced by a spanning
tree of the graph. Elkin, Emek, Spielman, and Teng [7]
gave an algorithm for finding a spanning tree with aver-
age distortion of O(log2 n log log n). It remains open if this
bound is tight.

Cross References

�Metrical Task Systems
� Sparse Graph Spanners

Recommended Reading
1. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game

and its application to the k-server problem. SIAM J. Comput.
24, 78–100 (1995)

2. Bartal, Y.: Probabilistic approximation of metric spaces and
its algorithmic applications. In: FOCS ’96: Proceedings of the
37th Annual Symposium on Foundations of Computer Sci-
ence, Washington, DC, USA, IEEE Computer Society, pp. 184–
193 (1996)

3. Bartal, Y.: On approximating arbitrary metrices by tree metrics.
In: STOC ’98: Proceedings of the thirtieth annual ACM sympo-

Approximations of Bimatrix Nash Equilibria A 53

sium on Theory of computing, pp. 161–168. ACM Press, New
York (1998)

4. Bartal, Y., Charikar, M., Raz, D.: Approximating min-sum k-clus-
tering in metric spaces. In: STOC ’01: Proceedings of the thirty-
third annual ACMsymposiumon Theory of computing, pp. 11–
20. ACM Press, New York (2001)

5. Calinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms
for the 0-extension problem. In: SODA ’01: Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and AppliedMath-
ematics, pp. 8–16. (2001)

6. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees:
deterministic approximation algorithms for group steiner
trees and k-median. In: STOC ’98: Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pp. 114–
123. ACM Press, New York (1998)

7. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch
spanning trees. In: STOC ’05: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pp. 494–
503. ACM Press, New York (2005)

8. Fakcharoenphol, J., Rao, S., Talwar, K.: Approximating metrics
by tree metrics. SIGACT News 35, 60–70 (2004)

9. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight boundon approx-
imating arbitrary metrics by tree metrics. J. Comput. Syst. Sci.
69, 485–497 (2004)

10. Gupta, A.: Steiner points in tree metrics don’t (really) help. In:
SODA ’01: Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, Philadelphia, PA, USA, Society
for Industrial and Applied Mathematics, pp. 220–227. (2001)

11. Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network de-
sign. In: SODA ’06: Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pp. 970–979.
ACM Press, New York (2006)

12. Gupta, A., Talwar, K.: Approximating unique games. In: SODA
’06: Proceedings of the seventeenth annual ACM-SIAM sym-
posium on Discrete algorithm, New York, NY, USA, pp. 99–106.
ACM Press, New York (2006)

13. Hayrapetyan, A., Swamy, C., Tardos, É.: Network design for
information networks. In: SODA ’05: Proceedings of the six-
teenth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and AppliedMath-
ematics, pp. 933–942. (2005)

14. Indyk, P., Matousek, J.: Low-distortion embeddings of finite
metric spaces. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry. CRCPress, Inc.,
Chap. 8 (2004), To appear

15. Karp, R.: A 2k-competitive algorithm for the circle. Manuscript
(1989)

16. Matousek, J.: Lectures on Discrete Geometry. Springer, New
York (2002)

17. Rabinovich, Y., Raz, R.: Lower bounds on the distortion of
embedding finite metric spaces in graphs. Discret. Comput.
Geom. 19, 79–94 (1998)

18. Seymour, P.D.: Packing directed circuits fractionally. Combina-
torica 15, 281–288 (1995)

Approximation Algorithm
� Knapsack

Approximation AlgorithmDesign
� Steiner Trees

Approximation Algorithms
� Graph Bandwidth

Approximation Algorithms
in Planar Graphs
� Approximation Schemes for Planar Graph Problems

Approximations
of Bimatrix Nash Equilibria
2003; Lipton, Markakis, Mehta
2006; Daskalaskis, Mehta, Papadimitriou
2006; Kontogiannis, Panagopoulou, Spirakis

SPYROS KONTOGIANNIS1,
PANAGIOTA PANAGOPOULOU2, PAUL SPIRAKIS3
1 Computer Science Department, University of Ioannina,
Ioannina, Greece

2 Research Academic Computer Technology Institute,
Patras, Greece

3 Computer Engineering and Informatics Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

�-Nash equilibria; �-Well-supported Nash equilibria

ProblemDefinition

Nash [14] introduced the concept of Nash equilibria in
non-cooperative games and proved that any game pos-
sesses at least one such equilibrium. A well-known algo-
rithm for computing a Nash equilibrium of a 2-player
game is the Lemke-Howson algorithm [12], however it
has exponential worst-case running time in the number of
available pure strategies [16].

Recently, Daskalakis et al. [5] showed that the prob-
lem of computing a Nash equilibrium in a game with 4 or
more players is PPAD-complete; this result was later ex-
tended to games with 3 players [8]. Eventually, Chen and
Deng [3] proved that the problem is PPAD-complete for
2-player games as well.

54 A Approximations of Bimatrix Nash Equilibria

This fact emerged the computation of approximate
Nash equilibria. There are several versions of approximate
Nash equilibria that have been defined in the literature;
however the focus of this entry is on the notions of �-Nash
equilibrium and �-well-supported Nash equilibrium. An
�-Nash equilibrium is a strategy profile such that no de-
viating player could achieve a payoff higher than the one
that the specific profile gives her, plus �. A stronger no-
tion of approximate Nash equilibria is the �-well-supported
Nash equilibria; these are strategy profiles such that each
player plays only approximately best-response pure strate-
gies with non-zero probability.

Notation

For a n � 1 vector x denote by x1; : : : ; xn the components
of x and by xT the transpose of x. Denote by ei the column
vector with a 1 at the ith coordinate and 0 elsewhere. For
an n �m matrix A, denote aij the element in the i-th row
and j-th column of A. Let Pn be the set of all probability
vectors in n dimensions: P n =

˚
z 2 Rn

�0 :
Pn

i=1 zi = 1
�
.

Bimatrix Games

Bimatrix games [18] are a special case of 2-player games
such that the payoff functions can be described by two real
n � m matrices A and B. The n rows of A; B represent
the action set of the first player (the row player) and the
m columns represent the action set of the second player
(the column player). Then, when the row player chooses
action i and the column player chooses action j, the for-
mer gets payoff aij while the latter gets payoff bij. Based on
this, bimatrix games are denoted by
 = hA; Bi.

A strategy for a player is any probability distribution
on her set of actions. Therefore, a strategy for the row
player can be expressed as a probability vector x 2 P n

while a strategy for the column player can be expressed as
a probability vector y 2 Pm . Each extreme point ei 2 P n

(ej 2 Pm) that corresponds to the strategy assigning prob-
ability 1 to the i-th row (j-th column) is called a pure strat-
egy for the row (column) player. A strategy profile (x; y)
is a combination of (mixed in general) strategies, one for
each player. In a given strategy profile (x; y) the players
get expected payoffs xTAy (row player) and xTBy (column
player).

If both payoff matrices belong to [0; 1]m�n then the
game is called a [0; 1]-bimatrix (or else, positively normal-
ized) game. The special case of bimatrix games in which all
elements of the matrices belong to f0; 1g is called a f0; 1g-
bimatrix (or else, win-lose) game. A bimatrix game hA; Bi
is called zero sum if B = �A.

Approximate Nash Equilibria

Definition 1 (�-Nash equilibrium) For any � > 0 a strat-
egy profile (x; y) is an �-Nash equilibrium for the n �m
bimatrix game
 = hA; Bi if
1. For all pure strategies i 2 f1; : : : ; ng of the row player,

eTi Ay � xTAy + � and
2. For all pure strategies j 2 f1; : : : ;mg of the column

player, xTBej � xTBy + �.

Definition 2 (�-well-supported Nash equilibrium) For
any � > 0 a strategy profile (x; y) is an �-well-supported
Nash equilibrium for the n � m bimatrix game
 = hA; Bi
if
1. For all pure strategies i 2 f1; : : : ; ng of the row player,

xi > 0) eTi Ay � eTkAy � � 8k 2 f1; : : : ; ng

2. For all pure strategies j 2 f1; : : : ;mg of the column
player,

y j > 0) xTBej � xTBek � � 8k 2 f1; : : : ;mg :

Note that both notions of approximate equilibria are de-
fined with respect to an additive error term �. Although
(exact) Nash equilibria are known not to be affected by
any positive scaling, it is important to mention that ap-
proximate notions of Nash equilibria are indeed affected.
Therefore, the commonly used assumption in the litera-
ture when referring to approximate Nash equilibria is that
the bimatrix game is positively normalized, and this as-
sumption is adopted in the present entry.

Key Results

The work of Althöfer [1] shows that, for any proba-
bility vector p there exists a probability vector p̂ with
logarithmic supports, so that for a fixed matrix C,
max j

ˇ̌
pTCej � p̂TCej

ˇ̌
� �, for any constant � > 0. Ex-

ploiting this fact, the work of Lipton, Markakis and
Mehta [13], shows that, for any bimatrix game and for any
constant � > 0, there exists an �-Nash equilibrium with
only logarithmic support (in the number n of available
pure strategies). Consider a bimatrix game
 = hA; Bi and
let (x; y) be a Nash equilibrium for
 . Fix a positive integer
k and form a multiset S1 by sampling k times from the set
of pure strategies of the row player, independently at ran-
dom according to the distribution x. Similarly, form amul-
tiset S2 by sampling k times from set of pure strategies of
the column player according to y. Let x̂ be the mixed strat-
egy for the row player that assigns probability 1/k to each
member of S1 and 0 to all other pure strategies, and let ŷ

Approximations of Bimatrix Nash Equilibria A 55

be the mixed strategy for the column player that assigns
probability 1/k to each member of S2 and 0 to all other
pure strategies. Then x̂ and ŷ are called k-uniform [13] and
the following holds:

Theorem 1 ([13]) For any Nash equilibrium (x; y) of
a n � n bimatrix game and for every � > 0, there exists,
for every k � (12 ln n)/�2, a pair of k-uniform strategies x̂; ŷ
such that (x̂; ŷ) is an �-Nash equilibrium.

This result directly yields a quasi-polynomial (nO(ln n)) al-
gorithm for computing such an approximate equilibrium.
Moreover, as pointed out in [1], no algorithm that exam-
ines supports smaller than about ln n can achieve an ap-
proximation better than 1/4.

Theorem 2 ([4]) The problem of computing a 1/n�(1)-
Nash equilibrium of a n � n bimatrix game is PPAD-
complete.

Theorem 2 asserts that, unless PPAD
 P, there exists
no fully polynomial time approximation scheme for com-
puting equilibria in bimatrix games. However, this does
not rule out the existence of a polynomial approximation
scheme for computing an �-Nash equilibrium when � is
an absolute constant, or even when � = 	

�
1/pol y(ln n)

�
.

Furthermore, as observed in [4], if the problem of finding
an �-Nash equilibrium were PPAD-complete when � is an
absolute constant, then, due to Theorem 1, all PPAD prob-
lems would be solved in quasi-polynomial time, which is
unlikely to be the case.

Two concurrent and independent works [6,10] were
the first to make progress in providing �-Nash equilibria
and �-well-supported Nash equilibria for bimatrix games
and some constant 0 < � < 1. In particular, the work of
Kontogiannis, Panagopoulou and Spirakis [10] proposes
a simple linear-time algorithm for computing a 3/4-Nash
equilibrium for any bimatrix game:

Theorem 3 ([10]) Consider any n�m bimatrix game
 =
hA; Bi and let ai1; j1 = maxi; j ai j and bi2; j2 = maxi; j bi j .
Then the pair of strategies (x̂; ŷ) where x̂i1 = x̂i2 = ŷ j1 =
ŷ j2 = 1/2 is a 3/4-Nash equilibrium for
 .

The above technique can be extended so as to obtain
a parametrized, stronger approximation:

Theorem 4 ([10]) Consider a n � m bimatrix game

 = hA; Bi. Let ��1 (��2) be the minimum, among all Nash
equilibria of
 , expected payoff for the row (column) player
and let � = maxf��1 ; �

�
2 g. Then, there exists a (2 + �)/4-

Nash equilibrium that can be computed in time polynomial
in n and m.

The work of Daskalakis, Mehta and Papadimitriou [6]
provides a simple algorithm for computing a 1/2-Nash

equilibrium: Pick an arbitrary row for the row player, say
row i. Let j = argmax j0 bi j0 . Let k = argmaxk0 ak0 j . Thus,
j is a best-response column for the column player to the
row i, and k is a best-response row for the row player to
the column j. Let x̂ = 1/2ei + 1/2ek and ŷ = ej, i. e., the row
player plays row i or row kwith probability 1/2 each, while
the column player plays column jwith probability 1. Then:

Theorem 5 ([6]) The strategy profile (x̂; ŷ) is a 1/2-Nash
equilibrium.

A polynomial construction (based on Linear Program-
ming) of a 0.38-Nash equilibrium is presented in [7].

For the more demanding notion of well-supported
approximate Nash equilibrium, Daskalakis, Mehta and
Papadimitriou [6] propose an algorithm, which, under
a quite interesting and plausible graph theoretic conjec-
ture, constructs in polynomial time a 5/6-well-supported
Nash equilibrium. However, the status of this conjecture
is still unknown. In [6] it is also shown how to trans-
form a [0; 1]-bimatrix game to a f0; 1g-bimatrix game of
the same size, so that each �-well supported Nash equi-
librium of the resulting game is (1 + �)/2-well supported
Nash equilibrium of the original game.

The work of Kontogiannis and Spirakis [11] pro-
vides a polynomial algorithm that computes a 1/2-well-
supported Nash equilibrium for arbitrary win-lose games.
The idea behind this algorithm is to split evenly the di-
vergence from a zero sum game between the two players
and then solve this zero sum game in polynomial time
(using its direct connection to Linear Programming). The
computed Nash equilibrium of the zero sum game consid-
ered is indeed proved to be also a 1/2-well-supported Nash
equilibrium for the initial win-lose game. Therefore:

Theorem 6 ([11]) For any win-lose bimatrix game, there
is a polynomial time constructable profile that is a 1/2-well-
supported Nash equilibrium of the game.

In the same work, Kontogiannis and Spirakis [11]
parametrize the above methodology in order to apply it
to arbitrary bimatrix games. This new technique leads to
a weaker '-well-supported Nash equilibrium for win-lose
games, where � = (

p
5 � 1)/2 is the golden ratio. Nev-

ertheless, this parametrized technique extends nicely to
a technique for arbitrary bimatrix games, which assures
a 0.658-well-supported Nash equilibrium in polynomial
time:

Theorem 7 ([11]) For any bimatrix game, a
�p

11/2� 1
�
-

well-supportedNash equilibrium is constructable in polyno-
mial time.

Two very new results improved the approximation status
of �- Nash Equilibria:

56 A Approximations of Bimatrix Nash Equilibria

Theorem 8 ([2]) There is a polynomial time algorithm,
based on Linear Programming, that provides an 0.36392-
Nash Equilibrium.

The second result below is the best till now:

Theorem 9 ([17]) There exists a polynomial time algo-
rithm, based on the stationary points of a natural optimiza-
tion problem, that provides an 0.3393-Nash Equilibrium.

Kannan and Theobald [9] investigate a hierarchy of bi-
matrix games hA; Bi which results from restricting the
rank of the matrix A + B to be of fixed rank at most k.
They propose a new model of �-approximation for games
of rank k and, using results from quadratic optimization,
show that approximate Nash equilibria of constant rank
games can be computed deterministically in time polyno-
mial in 1/�. Moreover, [9] provides a randomized approxi-
mation algorithm for certain quadratic optimization prob-
lems, which yields a randomized approximation algorithm
for the Nash equilibrium problem. This randomized al-
gorithm has similar time complexity as the deterministic
one, but it has the possibility of finding an exact solution
in polynomial time if a conjecture is valid. Finally, they
present a polynomial time algorithm for relative approxi-
mation (with respect to the payoffs in an equilibrium) pro-
vided that the matrix A + B has a nonnegative decomposi-
tion.

Applications

Non-cooperative game theory and its main solution con-
cept, i. e. the Nash equilibrium, have been extensively used
to understand the phenomena observed when decision-
makers interact and have been applied in many diverse
academic fields, such as biology, economics, sociology and
artificial intelligence. Since however the computation of
a Nash equilibrium is in general PPAD-complete, it is im-
portant to provide efficient algorithms for approximating
a Nash equilibrium; the algorithms discussed in this entry
are a first step towards this direction.

Cross References

� Complexity of Bimatrix Nash Equilibria
� General Equilibrium
� Non-approximability of Bimatrix Nash Equilibria

Recommended Reading

1. Althöfer, I.: On sparse approximations to randomized strate-
gies and convex combinations. Linear Algebr. Appl. 199, 339–
355 (1994)

2. Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approxi-
mate Nash Equilibria in Bimatrix Games. In: LNCS Proceedings
of the 3rd International Workshop on Internet and Network
Economics (WINE 2007), San Diego, 12–14 December 2007

3. Chen, X., Deng, X.: Settling the complexity of 2-player Nash-
equilibrium. In: Proceedings of the 47th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’06). Berke-
ley, 21–24 October 2005

4. Chen, X., Deng, X., Teng, S.-H.: Computing Nash equilibria: Ap-
proximation and smoothed complexity. In: Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), Berkeley, 21–24 October 2006

5. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity
of computing a Nash equilibrium. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing (STOC’06),
pp. 71–78. Seattle, 21–23 May 2006

6. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approxi-
mate Nash equilibria. In: Proceedings of the 2nd Workshop on
Internet and Network Economics (WINE’06), pp. 297–306. Pa-
tras, 15–17 December 2006

7. Daskalakis, C., Mehta, A., Papadimitriou, C: Progress in approxi-
mate Nash equilibrium. In: Proceedings of the 8th ACMConfer-
ence on Electronic Commerce (EC07), San Diego, 11–15 June
2007

8. Daskalakis, C., Papadimitriou, C.: Three-player games are
hard. In: Electronic Colloquium on Computational Complexity
(ECCC) (2005)

9. Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of
bimatrix games. In: Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, New Orleans, 7–9 January 2007

10. Kontogiannis, S., Panagopoulou, P.N., Spirakis, P.G.: Polyno-
mial algorithms for approximating Nash equilibria of bimatrix
games. In: Proceedings of the 2nd Workshop on Internet and
Network Economics (WINE’06), pp. 286–296. Patras, 15–17 De-
cember 2006

11. Kontogiannis, S., Spirakis, P.G.: Efficient Algorithms for Con-
stant Well Supported Approximate Equilibria in Bimatrix
Games. In: Proceedings of the 34th International Colloquium
on Automata, Languages and Programming (ICALP’07, Track
A: Algorithms and Complexity), Wroclaw, 9–13 July 2007

12. Lemke, C.E., Howson, J.T.: Equilibrium points of bimatrix
games. J. Soc. Indust. Appl. Math. 12, 413–423 (1964)

13. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games us-
ing simple startegies. In: Proceedings of the 4th ACM Confer-
ence on Electronic Commerce (EC’03), pp. 36–41. San Diego,
9–13 June 2003

14. Nash, J.: Noncooperative games. Ann. Math. 54, 289–295
(1951)

15. Papadimitriou, C.H.: On inefficient proofs of existence and
complexity classes. In: Proceedings of the 4th Czechoslovakian
Symposium on Combinatorics 1990, Prachatice (1991)

16. Savani, R., von Stengel, B.: Exponentially many steps for find-
ing a nash equilibrium in a bimatrix game. In: Proceedings of
the 45th Annual IEEE Symposiumon Foundations of Computer
Science (FOCS’04), pp. 258–267. Rome, 17–19 October 2004

17. Tsaknakis, H., Spirakis, P.: An Optimization Approach for Ap-
proximate Nash Equilibria. In: LNCS Proceedings of the 3rd
International Workshop on Internet and Network Economics
(WINE 2007), also in the Electronic Colloquium on Computa-
tional Complexity, (ECCC), TR07-067 (Revision), San Diego, 12–
14 December 2007

Approximation Schemes for Bin Packing A 57

18. von Neumann, J., Morgenstern, O.: Theory of Games and
Economic Behavior. Princeton University Press, Princeton, NJ
(1944)

Approximation Schemes
for Bin Packing
1982; Karmarker, Karp

NIKHIL BANSAL
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Cutting stock problem

ProblemDefinition

In the bin packing problem, the input consists of a collec-
tion of items specified by their sizes. There are also identi-
cal bins, which without loss of generality can be assumed
to be of size 1, and the goal is to pack these items using the
minimum possible number of bins.

Bin packing is a classic optimization problem, and
hundreds of its variants have been defined and studied un-
der various settings such as average case analysis, worst-
case offline analysis, and worst-case online analysis. This
note considers the most basic variant mentioned above
under the offline model where all the items are given in
advance. The problem is easily seen to be NP-hard by a re-
duction from the partition problem. In fact, this reduction
implies that unless P = NP, it impossible to determine in
polynomial time whether the items can be packed into two
bins or whether they need three bins.

Notations

The input to the bin packing problem is a set of n items
I specified by their sizes s1; : : : ; sn , where each si is a real
number in the range (0; 1]. A subset of items S
 I can be
packed feasibly in a bin if the total size of items in S is at
most 1. The goal is to pack all items in I into the minimum
number of bins. Let OPT(I) denote the value of the opti-
mum solution and Size(I) the total size of all items in I.
Clearly, OPT(I) � dSize(I)e.

Strictly speaking, the problem does not admit a poly-
nomial-time algorithm with an approximation guarantee
better than 3/2. Interestingly, however, this does not rule
out an algorithm that requires, say, OPT(I) + 1 bins (un-
like other optimization problems, making several copies of
a small hard instance to obtain a larger hard instance does
not work for bin packing). It is more meaningful to con-
sider approximation guarantees in an asymptotic sense.

An algorithm is called an asymptotic � approximation if
the number of bins required by it is � �OPT(I) + O(1).

Key Results

During the 1960s and 1970s several algorithms with con-
stant factor asymptotic and absolute approximation guar-
antees and very efficient running times were designed
(see [1] for a survey). A breakthrough was achieved in
1981 by de la Vega and Lueker [3], who gave the first
polynomial-time asymptotic approximation scheme.

Theorem 1 ([3]) Given any arbitrary parameter � > 0,
there is an algorithm that uses (1 + �)OPT(I) + O(1) bins
to pack I. The running time of this algorithm is O(n log n)+
(1/�)O(1/�) .

The main insight of de la Vega and Lueker [3] was to
give a technique for approximating the original instance
by a simpler instance where large items have only O(1)
distinct sizes. Their idea was simple. First, it suffices to re-
strict attention to large items, say, with size greater than ".
These can be called Ib. Given an (almost) optimum pack-
ing of Ib, consider the solution obtained by greedily filling
up the bins with remaining small items, opening new bins
only if needed. Indeed, if no new bins are needed, then the
solution is still almost optimum since the packing for Ib
was almost optimum. If additional bins are needed, then
each bin, except possibly one, must be filled to an extent
(1 � �), which gives a packing using Size(I)/(1 � �) + 1 �
OPT(I)/(1 � �) + 1 bins. So it suffices to focus on solving
Ib almost optimally. To do this, the authors show how to
obtain another instance I0 with the following properties.
First, I0 has only O(1/�2) distinct sizes, and second, I0 is an
approximation of Ib in the sense that OPT(Ib) � OPT(I0)
and, moreover, any solution of I0 implies another solution
of Ib using O(� �OPT(I)) additional bins. As I0 has only
1/�2 distinct item sizes, and any bin can obtain at most 1/�
such items, there are atmost O(1/�2)1/� ways to pack a bin.
Thus, I0 can be solved optimally by exhaustive enumer-
ation (or more efficiently using an integer programming
formulation described below).

Later, Karmarkar and Karp [4] proved a substantially
stronger guarantee.

Theorem 2 ([4]) Given an instance I, there is an algorithm
that produces a packing of I using OPT(I)+O(log2 OPT(I))
bins. The running time of this algorithm is O(n8).

Observe that this guarantee is significantly stronger than
that of [3] as the additive term is O(log2 OPT) as op-
posed to O(� �OPT). Their algorithm also uses the ideas
of reducing the number of distinct item sizes and ignoring

58 A Approximation Schemes for Bin Packing

small items, but in a much more refined way. In partic-
ular, instead of obtaining a rounded instance in a single
step, their algorithm consists of a logarithmic number of
steps where in each step they round the instance “mildly”
and then solve it partially.

The starting point is an exponentially large linear pro-
gramming (LP) relaxation of the problem commonly re-
ferred to as the configuration LP. Here there is a variable xS
corresponding to each subset of items S that can be packed
feasibly in a bin. The objective is to minimize

P
S xS sub-

ject to the constraint that for each item i, the sum of xS
over all subsets S that contain i is at least 1. Clearly, this
is a relaxation as setting xS = 1 for each set S correspond-
ing to a bin in the optimum solution is a feasible integral
solution to the LP. Even though this formulation has expo-
nential size, the separation problem for the dual is a knap-
sack problem, and hence the LP can be solved in polyno-
mial time to any accuracy (in particular within an accuracy
of 1) using the ellipsoid method. Such a solution is called
a fractional packing. Observe that if there are ni items each
of size exactly si, then the constraints corresponding to i
can be “combined” to obtain the following LP:

min
X
S

xS

s:t:
X
S

aS;i xS �ni 8 item sizes i

xS �0 8 feasible sets S:

Here aS, i is the number of items of size si in the feasible S.
Let q(I) denote the number of distinct sizes in I. The num-
ber of nontrivial constraints in LP is equal to q(I), which
implies that there is a basic optimal solution to this LP that
has only q(I) variables set nonintegrally. Karmarkar and
Karp exploit this observation in a very clever way. The fol-
lowing lemma describes the main idea.

Lemma 3 Given any instance J, suppose there is an algo-
rithmic rounding procedure to obtain another instance J0

such that J0 has Size(J)/2 distinct item sizes and J and J0 are
related in the following sense: given any fractional packing
of J using ` bins gives a fractional packing of J0 with at most
` bins, and given any packing of J0 using `0 bins gives a pack-
ing of J using `0 + c bins, where c is some fixed parameter.
Then J can be packed using OPT(J) + c � log(OPT(J)) bins.

Proof Let I0 = I and let I1 be the instance obtained
by applying the rounding procedure to I0. By the prop-
erty of the rounding procedure, OPT(I) � OPT(I1) + c
and LP(I1) � LP(I). As I1 has Size(I0)/2 distinct sizes,
the LP solution for I1 has at most Size(I0)/2 fractionally
set variables. Remove the items packed integrally in the

LP solution and consider the residual instance I01. Note
that Size(I01) � Size(I0)/2. Now, again apply the round-
ing procedure to I01 to obtain I2 and solve the LP for I2.
Again, this solution has at most Size(I01)/2 � Size(I0)/4
fractionally set variables, and OPT(I01) � OPT(I2) + c and
LP(I2) � LP(I01). The above process is repeated for a few
steps. At each step, the size of the residual instance de-
creases by a factor of at least two, and the number of
bins required to pack I0 increases by additive c. After
log(Size(I0)) (log(OPT(I))) steps, the residual instance
has size O(1) and can be packed into O(1) additional
bins. �

It remains to describe the rounding procedure. Consider
the items in nondecreasing order s1 � s2 � : : : � sn and
group them as follows. Add items to current group un-
til its size first exceeds 2. At this point close the group
and start a new group. Let G1; : : : ;Gk denote the groups
formed and let ni = jGi j, setting n0 = 0 for convenience.
Define I0 as the instance obtained by rounding the size
of ni�1 largest items in Gi to the size of the largest item
in Gi for i = 1; : : : ; k. The procedure satisfies the proper-
ties of Lemma 3 with c = O(log nk) (left as an exercise to
the reader). To prove Theorem 2, it suffices to show that
nk = O(Size(I)). This is done easily by ignoring all items
smaller than 1/Size(I) and filling them in only in the end
(as in the algorithm of de la Vega and Lueker).

In the case when the item sizes are not too small, the
following corollary is obtained.

Corollary 1 If all the item sizes are at least ı, it is eas-
ily seen that c = O(log 1/ı), and the above algorithm im-
plies a guarantee of OPT + O(log(1/ı) � logOPT), which is
OPT + O(logOPT) if ı is a constant.

Applications

The bin packing problem is directly motivated from prac-
tice and has many natural applications such as packing
items into boxes subject to weight constraints, packing
files into CDs, packing television commercials into station
breaks, and so on. It is widely studied in operations re-
search and computer science. Other applications include
the so-called cutting-stock problems where some material
such as cloth or lumber is given in blocks of standard size
from which items of certain specified size must be cut.
Several variations of bin packing, such as generalizations
to higher dimensions, imposing additional constraints on
the algorithm and different optimization criteria, have also
been extensively studied. The reader is referred to [1,2] for
excellent surveys.

Approximation Schemes for Planar Graph Problems A 59

Open Problems

Except for the NP-hardness, no other hardness results are
known and it is possible that a polynomial-time algorithm
with guarantee OPT + 1 exists for the problem. Resolving
this is a key open question. A promising approach seems
to be via the configuration LP (considered above). In fact,
no instance is known for which the additive gap between
the optimum configuration LP solution and the optimum
integral solution is more than 1. It would be very interest-
ing to design an instance that has an additive integrality
gap of two or more.

The OPT + O(log2 OPT) guarantee of Karmarkar and
Karp has been the best known result for the last 25 years,
and any improvement to this would be an extremely inter-
esting result by itself.

Cross References

� Bin Packing
� Knapsack

Recommended Reading
1. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algo-

rithms for bin packing: a survey. In: Hochbaum, D. (ed.) Ap-
proximation Algorithms for NP-hard Problems, pp. 46–93. PWS,
Boston (1996)

2. Csirik, J., Woeginger, G.: On-line packing and covering problems.
In: Fiat, A., Woeginger, G. (eds.) Online Algorithms: The State of
the Art. LNCS, vol. 1442, pp. 147–177. Springer, Berlin (1998)

3. Fernandez de la Vega, W., Lueker, G.: Bin packing can be solved
within 1 + " in linear time. Combinatorica 1, 349–355 (1981)

4. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for
the one-dimensional bin-packing problem. In: Proceedings of
the 23rd IEEE Symposium on Foundations of Computer Science
(FOCS), 1982, pp. 312–320

Approximation Schemes
for Planar Graph Problems
1983; Baker
1994; Baker

ERIK D. DEMAINE1, MOHAMMADTAGHI HAJIAGHAYI2
1 Computer Science and Artifical Intelligence Laboratory,
MIT, Cambridge, MA, USA

2 Department of Computer Science,
University of Pittsburgh,
Pittsburgh, PA, USA

Keywords and Synonyms

Approximation algorithms in planar graphs; Baker’s ap-
proach; Lipton–Tarjan approach

ProblemDefinition

Many NP-hard graph problems become easier to approxi-
mate on planar graphs and their generalizations. (A graph
is planar if it can be drawn in the plane (or the sphere)
without crossings. For definitions of other related graph
classes, see the entry on � bidimensionality (2004; De-
maine, Fomin, Hajiaghayi, Thilikos).) For example, max-
imum independent set asks to find a maximum subset of
vertices in a graph that induce no edges. This problem
is inapproximable in general graphs within a factor of
n1�� for any � > 0 unless NP = ZPP (and inapproximable
within n1/2�� unless P =NP), while for planar graphs there
is a 4-approximation (or simple 5-approximation) by tak-
ing the largest color class in a vertex 4-coloring (or 5-color-
ing). Another is minimum dominating set, where the goal
is to find a minimum subset of vertices such that every
vertex is either in or adjacent to the subset. This prob-
lem is inapproximable in general graphs within � log n for
some � > 0 unless P = NP, but as we will see, for planar
graphs the problem admits a polynomial-time approxima-
tion scheme (PTAS): a collection of (1 + �)-approximation
algorithms for all � > 0.

There are two main general approaches to designing
PTASs for problems on planar graphs and their general-
izations: the separator approach and the Baker approach.

Lipton and Tarjan [15,16] introduced the first ap-
proach, which is based on planar separators. The first step
in this approach is to find a separator of O(

p
n) vertices

or edges, where n is the size of the graph, whose removal
splits the graph into two or more pieces each of which is
a constant fraction smaller than the original graph. Then
recurse in each piece, building a recursion tree of separa-
tors, and stop when the pieces have some constant size
such as 1/�. The problem can be solved on these pieces
by brute force, and then it remains to combine the solu-
tions up the recursion tree. The induced error can often be
bounded in terms of the total size of all separators, which
in turn can be bounded by � n. If the optimal solution is
at least some constant factor times n, this approach often
leads to a PTAS.

There are two limitations to this planar-separator ap-
proach. First, it requires that the optimal solution be at
least some constant factor times n; otherwise, the cost in-
curred by the separators can be far larger than the desired
optimal solution. Such a bound is possible in some prob-
lems after some graph pruning (linear kernelization), e. g.,
independent set, vertex cover, and forms of the traveling
salesman problem. But, for example, Grohe [12] states that
the dominating set is a problem “to which the technique
based on the separator theorem does not apply.” Second,

60 A Approximation Schemes for Planar Graph Problems

the approximation algorithms resulting from planar sepa-
rators are often impractical because of large constant fac-
tors. For example, to achieve an approximation ratio of
just 2, the base case requires exhaustive solution of graphs
of up to 22400 vertices.

Baker [1] introduced her approach to address the sec-
ond limitation, but it also addresses the first limitation to
a certain extent. This approach is based on decomposition
into overlapping subgraphs of bounded outerplanarity, as
described in the next section.

Key Results

Baker’s original result [1] is a PTAS for a maximum in-
dependent set (as defined above) on planar graphs, as
well as the following list of problems on planar graphs:
maximum tile salvage, partition into triangles, maximum
H-matching, minimum vertex cover, minimum dominat-
ing set, and minimum edge-dominating set.

Baker’s approach starts with a planar embedding of the
planar graph. Then it divides vertices into layers by iter-
atively removing vertices on the outer face of the graph:
layer j consists of the vertices removed at the jth iteration.
If one now removes the layers congruent to imodulo k, for
any choice of i, the graph separates into connected compo-
nents each with atmost k consecutive layers, and hence the
graph becomes k-outerplanar. Many NP-complete prob-
lems can be solved on k-outerplanar graphs for fixed k
using dynamic programming (in particular, such graphs
have bounded treewidth). Baker’s approximation algo-
rithm computes these optimal solutions for each choice i
of the congruence class of layers to remove and returns the
best solution among these k solutions. The key argument
for maximization problems considers the optimal solution
to the full graph and argues that the removal of one of the
k congruence classes of layers must remove at most a 1/k
fraction of the optimal solution, so the returned solution
must be within a 1 + 1/k factor of optimal. A more deli-
cate argument handlesminimization problems as well. For
many problems, such as maximum independent set, mini-
mum dominating set, and minimum vertex cover, Baker’s
approach obtains a (1 + �)-approximation algorithms with
a running time of 2O(1/�)nO(1) on planar graphs.

Eppstein [10] generalized Baker’s approach to
a broader class of graphs called graphs of bounded local
treewidth, i. e., where the treewidth of the subgraph in-
duced by the set of vertices at a distance of at most r from
any vertex is bounded above by some function f (r) inde-
pendent of n. The main differences in Eppstein’s approach
are replacing the concept of bounded outerplanarity with
the concept of bounded treewidth, where dynamic pro-

gramming can still solve many problems, and labeling
layers according to a simple breadth-first search. This
approach has led to PTASs for hereditary maximization
problems such as maximum independent set and max-
imum clique, maximum triangle matching, maximum
H-matching, maximum tile salvage, minimum vertex
cover, minimum dominating set, minimum edge-domi-
nating set, minimum color sum, and subgraph isomor-
phism for a fixed pattern [6,8,10]. Frick and Grohe [11]
also developed a general framework for deciding any prop-
erty expressible in first-order logic in graphs of bounded
local treewidth.

The foundation of these results is Eppstein’s character-
ization of minor-closed families of graphs with bounded
local treewidth [10]. Specifically, he showed that a minor-
closed family has bounded local treewidth if and only if
it excludes some apex graph, a graph with a vertex whose
removal leaves a planar graph. Unfortunately, the initial
proof of this result brought Eppstein’s approach back to
the realm of impracticality, because his bound on local
treewidth in a general apex-minor-free graph is doubly
exponential in r: 22O(r) . Fortunately, this bound could be
improved to 2O(r) [3] and even the optimal O(r) [4]. The
latter bound restores Baker’s 2O(1/�)nO(1) running time
for (1 + �)-approximation algorithms, now for all apex-
minor-free graphs.

Another way to view the necessary decomposition of
Baker’s and Eppstein’s approaches is that the vertices or
edges of the graph can be split into any number k of pieces
such that deleting any one of the pieces results in a graph
of bounded treewidth (where the bound depends on k).
Such decompositions in fact exist for arbitrary graphs ex-
cluding any fixed minor H [9], and they can be found in
polynomial time [6]. This approach generalizes the Baker–
Eppstein PTASs described above to handle general H-
minor-free graphs.

This decomposition approach is effectively limited to
deletion-closed problems, whose optimal solution only im-
proves when deleting edges or vertices from the graph. An-
other decomposition approach targets contraction-closed
problems, whose optimal solution only improves when
contracting edges. These problems include classic prob-
lems such as dominating set and its variations, the trav-
eling salesman problem, subset TSP, minimum Steiner
tree, and minimum-weight c-edge-connected submulti-
graph. PTASs have been obtained for these problems in
planar graphs [2,13,14] and in bounded-genus graphs [7]
by showing that the edges can be decomposed into any
number k of pieces such that contracting any one piece re-
sults in a bounded-treewidth graph (where the bound de-
pends on k).

Approximation Schemes for Planar Graph Problems A 61

Applications

Most applications of Baker’s approach have been limited
to optimization problems arising from “local” properties
(such as those definable in first-order logic). Intuitively,
such local properties can be decided by locally check-
ing every constant-size neighborhood. In [5], Baker’s ap-
proach is generalized to obtain PTASs for nonlocal prob-
lems, in particular, connected dominating set. This gen-
eralization requires the use of two different techniques.
The first technique is to use an "-fraction of a constant-
factor (or even logarithmic-factor) approximation to the
problem as a “backbone” for achieving the needed nonlo-
cal property. The second technique is to use subproblems
that overlap by	(log n) layers instead of the usual	(1) in
Baker’s approach.

Despite this advance in applying Baker’s approach to
more general problems, the planar-separator approach
can still handle some different problems. Recall, though,
that the planar-separator approach was limited to prob-
lems in which the optimal solution is at least some con-
stant factor times n. This limitation has been overcome
for a wide range of problems [5], in particular obtaining
a PTAS for feedback vertex set, to which neither Baker’s
approach nor the planar-separator approach could previ-
ously apply. This result is based on evenly dividing the op-
timum solution instead of the whole graph, using a rela-
tion between treewidth and the optimal solution value to
bound the treewidth of the graph, and thus obtaining an
O(
p
OPT) separator instead of an O(

p
n) separator. The

O(
p
OPT) bound on treewidth follows from the bidimen-

sionality theory described in the entry on � bidimension-
ality (2004; Demaine, Fomin, Hajiaghayi, Thilikos). We
can divide the optimum solution into roughly even pieces,
without knowing the optimum solution, by using exist-
ing constant-factor (or even logarithmic-factor) approx-
imations for the problem. At the base of the recursion,
pieces no longer have bounded size but do have bounded
treewidth, so fast fixed-parameter algorithms can be used
to construct optimal solutions.

Open Problems

An intriguing direction for future research is to build
a general theory for PTASs of subset problems. Although
PTASs for subset TSP and Steiner tree have recently been
obtained for planar graphs [2,14], there remain several
open problems of this kind, such as subset feedback ver-
tex set.

Another instructive problem is to understand the ex-
tent to which Baker’s approach can be applied to nonlo-
cal problems. Again there is an example of how to modify

the approach to handle the nonlocal problem of connected
dominating set [5], but for example the only known PTAS
for feedback vertex set in planar graphs follows the sepa-
rator approach.

Cross References

� Bidimensionality
� Separators in Graphs
� Treewidth of Graphs

Recommended Reading
1. Baker, B.S.: Approximation algorithms for NP-complete prob-

lems on planar graphs. J. Assoc. Comput. Mach. 41(1), 153–180
(1994)

2. Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: A polynomial-
time approximation scheme for Steiner tree in planar graphs.
In: Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007

3. Demaine, E.D., Hajiaghayi, M.: Diameter and treewidth in
minor-closed graph families, revisited. Algorithmica 40(3),
211–215 (2004)

4. Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth
and linear local treewidth and its algorithmic applications. In:
Proceedings of the 15th ACM-SIAMSymposiumonDiscrete Al-
gorithms (SODA’04), January 2004, pp. 833–842

5. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connec-
tions between FPT algorithms and PTASs. In: Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2005), Vancouver, January 2005, pp. 590–601

6. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-I.: Algorithmic
graph minor theory: Decomposition, approximation, and col-
oring. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, Pittsburgh, October 2005,
pp. 637–646

7. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algo-
rithms via contraction decomposition. In: Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, 7–9 January 2007, pp. 278–287

8. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thi-
likos, D.M.: Approximation algorithms for classes of graphs ex-
cluding single-crossing graphs as minors. J. Comput. Syst. Sci.
69(2), 166–195 (2004)

9. DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Sey-
mour, P., Vertigan, D.: Excluding any graph as a minor allows
a low tree-width 2-coloring. J. Comb. Theory Ser. B 91(1), 25–
41 (2004)

10. Eppstein, D.: Diameter and treewidth in minor-closed graph
families. Algorithmica 27(3–4), 275–291 (2000)

11. Frick, M., Grohe, M.: Deciding first-order properties of locally
tree-decomposable structures. J. ACM48(6), 1184–1206 (2001)

12. Grohe, M.: Local tree-width, excluded minors, and approxima-
tion algorithms. Combinatorica 23(4), 613–632 (2003)

13. Klein, P.N.: A linear-time approximation scheme for TSP for pla-
nar weighted graphs. In: Proceedings of the 46th IEEE Sympo-
sium on Foundations of Computer Science, 2005, pp. 146–155

14. Klein, P.N.: A subset spanner for planar graphs, with application
to subset TSP. In: Proceedings of the 38th ACM Symposium on
Theory of Computing, 2006, pp. 749–756

62 A Arbitrage in Frictional Foreign ExchangeMarket

15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs.
SIAM J. Appl. Math. 36(2), 177–189 (1979)

16. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator the-
orem. SIAM J. Comput. 9(3), 615–627 (1980)

Arbitrage in Frictional Foreign
ExchangeMarket
2003; Cai, Deng

MAO-CHENG CAI1, XIAOTIE DENG2

1 Institute of Systems Science, Chinese Academy
of Sciences, Beijing, China

2 Department of Computer Science, City University
of Hong Kong, Hong Kong, China

ProblemDefinition

The simultaneous purchase and sale of the same securities,
commodities, or foreign exchange in order to profit from
a differential in the price. This usually takes place on differ-
ent exchanges or marketplaces. Also known as a “Riskless
profit”.

Arbitrage is, arguably, the most fundamental concept
in finance. It is a state of the variables of financial instru-
ments such that a riskless profit can be made, which is gen-
erally believed not in existence. The economist’s argument
for its non-existence is that active investment agents will
exploit any arbitrage opportunity in a financial market and
thus will deplete it as soon as it may arise. Naturally, the
speed at which such an arbitrage opportunity can be lo-
cated and be taken advantage of is important for the profit-
seeking investigators, which falls in the realm of analysis of
algorithms and computational complexity.

The identification of arbitrage states is, at friction-
less foreign exchange market (a theoretical trading en-
vironment where all costs and restraints associated with
transactions are non-existent), not difficult at all and can
be reduced to existence of arbitrage on three currencies
(see [11]). In reality, friction does exist. Because of fric-
tion, it is possible that there exist arbitrage opportuni-
ties in the market but difficult to find it and to exploit it
to eliminate it. Experimental results in foreign exchange
markets showed that arbitrage does exist in reality. Exam-
ination of data from ten markets over a twelve day period
by Mavrides [11] revealed that a significant arbitrage op-
portunity exists. Some opportunities were observed to be
persistent for a long time. The problem become worse at
forward and futures markets (in which futures contracts
in commodities are traded) coupled with covered inter-
est rates, as observed by Abeysekera and Turtle [1], and
Clinton [4]. An obvious interpretation is that the arbitrage

opportunity was not immediately identified because of in-
formation asymmetry in the market. However, that is not
the only factor. Both the time necessary to collect the mar-
ket information (so that an arbitrage opportunity would
be identified) and the time people (or computer programs)
need to find the arbitrage transactions are important fac-
tors for eliminating arbitrage opportunities.

The computational complexity in identifying arbi-
trage, the level in difficulty measured by arithmetic op-
erations, is different in different models of exchange sys-
tems. Therefore, to approximate an ideal exchange mar-
ket, models with lower complexities should be preferred
to those with higher complexities.

To model an exchange system, consider n foreign cur-
rencies: N = f1; 2; : : : ; ng. For each ordered pair (i, j), one
may change one unit of currency i to rij units of currency
j. Rate rij is the exchange rate from i to j. In an ideal mar-
ket, the exchange rate holds for any amount that is ex-
changed. An arbitrage opportunity is a set of exchanges be-
tween pairs of currencies such that the net balance for each
involved currency is non-negative and there is at least one
currency for which the net balance is positive. Under ideal
market conditions, there is no arbitrage if and only if there
is no arbitrage among any three currencies (see [11]).

Various types of friction can be easily modeled in such
a system. Bid-offer spread may be expressed in the present
mathematical format as ri j r ji < 1 for some i; j 2 N . In
addition, usually the traded amount is required to be in
multiples of a fixed integer amount, hundreds, thousands
or millions. Moreover, different traders may bid or offer
at different rates, and each for a limited amount. A more
general model to describe these market imperfections will
include, for pairs i 6= j 2 N, lij different rates rki j of ex-
changes from currency i to j up to bki j units of currency i,
k = 1; : : : ; li j , where lij is the number of different exchange
rates from currency i to j.

A currency exchange market can be represented by
a digraph G = (V ; E) with vertex set V and arc set E such
that each vertex i 2 V represents currency i and each arc
aki j 2 E represents the currency exchange relation from i
to jwith rate rki j and bound b

k
i j . Note that parallel arcs may

occur for different exchange rates. Such a digraph is called
an exchange digraph. Let x = (xki j) denote a currency ex-
change vector.

Problem 1 The existence of arbitrage in a frictional ex-
change market can be formulated as follows.

X
j 6=i

l jiX
k=1

brkji x
k
jic �

X
j 6=i

l i jX
k=1

xki j � 0; i = 1; : : : ; n; ; (1)

Arbitrage in Frictional Foreign ExchangeMarket A 63

Arbitrage in Frictional Foreign ExchangeMarket, Figure 1
Digraph G1

at least one strict inequality holds

0 � xki j � bki j ; 1 � k � li j; 1 � i 6= j � n ; (2)

xki j is integer, 1 � k � li j; 1 � i 6= j � n: (3)

Note that the first term in the right hand side of (1) is the
revenue at currency i by selling other currencies and the
second term is the expense at currency i by buying other
currencies.

The corresponding optimization problem is

Problem 2 The maximum arbitrage problem in a fric-
tional foreign exchange market with bid-ask spreads, bound
and integrality constraints is the following integer linear
programming (P):

maximize
nX
i=1

wi
X
j 6=i

0
@

l jiX
k=1

brkji x
k
jic �

l i jX
k=1

xki j

1
A

subject to

X
j 6=i

0
@

l jiX
k=1

brkji x
k
jic �

l i jX
k=1

xki j

1
A � 0 ; i = 1; : : : ; n ; (4)

0 � xki j � bki j ; 1 � k � li j ; 1 � i 6= j � n ; (5)

xki j is integer ; 1 � k � li j ; 1 � i 6= j � n ; (6)

where wi � 0 is a given weight for currency i,
i = 1; 2; : : : ; n; with at least one wi > 0.

Finally consider another

Problem 3 In order to eliminate arbitrage, how many
transactions and arcs in a exchange digraph have to be used
for the currency exchange system?

Key Results

A decision problem is called nondeterministic polyno-
mial (NP for short) if its solution (if one exists) can be
guessed and verified in polynomial time; nondeterminis-
tic means that no particular rule is followed to make the
guess. If a problem is NP and all other NP problems are
polynomial-time reducible to it, the problem is NP-com-
plete. And a problem is calledNP-hard if every other prob-
lem in NP is polynomial-time reducible to it.

Theorem 1 It is NP-complete to determine whether there
exists arbitrage in a frictional foreign exchange market with
bid-ask spreads, bound and integrality constraints even if
all li j = 1.

Then a further inapproximability result is obtained.

Theorem 2 There exists fixed � > 0 such that approximat-
ing (P) within a factor of n� is NP-hard even for any of the
following two special cases:

(P1) all li j = 1 and wi = 1.
(P2) all li j = 1 and all but one wi = 0.

Now consider two polynomially solvable special cases
when the number of currencies is constant or the exchange
digraph is star-shaped (a digraph is star-shaped if all arcs
have a common vertex).

Theorem 3 There are polynomial time algorithms for (P)
when the number of currencies is constant.

Theorem 4 It is polynomially solvable to find the maxi-
mum revenue at the center currency of arbitrage in a fric-
tional foreign exchange market with bid-ask spread, bound

64 A Arbitrage in Frictional Foreign ExchangeMarket

Arbitrage in Frictional Foreign Exchange Market, Figure 2
Digraph G2

and integrality constraints when the exchange digraph is
star-shaped.

However, if the exchange digraph is the coalescence of
a star-shaped exchange digraph and its copy, shown by Di-
graph G1, then the problem becomes NP-complete.

Theorem 5 It is NP-complete to decide whether there ex-
ists arbitrage in a frictional foreign exchange market with
bid-ask spreads, bound and integrality constraints even if
its exchange digraph is coalescent.

Finally an answer to Problem 3 is as follows.

Theorem 6 There is an exchange digraph of order n
such that at least bn/2cdn/2e � 1 transactions and at least
n2/4 + n � 3 arcs are in need to bring the system back to
non-arbitrage states.

For instance, consider the currency exchange market cor-
responding to digraph G2 = (V ; E), where the number of
currencies is n = jVj, p = bn/2c and K = n2.

Set

C = fai j 2 E j 1 � i � p; p + 1 � j � ng
[fa1(p+1)g n fa(p+1)1g [fai(i�1) j 2 � i � pg
[fai(i+1) j p + 1 � i � n � 1g :

Then jCj = bn/2cdn/2e + n � 2 = jEj/2 > n2/4 + n � 3. It
follows easily from the rates and bounds that each arc in C
has to be used to eliminate arbitrage. And bn/2cdn/2e � 1
transactions corresponding to fai j 2 E j 1 � i � p; p +
1 � j � ng n fa(p+1)1g are in need to bring the system back
to non-arbitrage states.

Applications

The present results show that different foreign exchange
systems exhibit quite different computational complexi-
ties. They may shed new light on how monetary system
models are adopted and evolved in reality. In addition, it
provides with a computational complexity point of view to
the understanding of the now fast growing Internet elec-
tronic exchange markets.

Open Problems

The dynamic models involving in both spot markets (in
which goods are sold for cash and delivered immediately)
and futures markets are the most interesting ones. To
develop good approximation algorithms for such general
models would be important. In addition, it is also impor-
tant to identify special market models for which polyno-
mial time algorithms are possible even with future mar-
kets. Another interesting paradox in this line of study is
why friction constraints that make arbitrage difficult are
not always eliminated in reality.

Cross References

� General Equilibrium

Recommended Reading

1. Abeysekera, S.P., Turtle H.J.: Long-run relations in exchange
markets: a test of covered interest parity. J. Financial Res. 18(4),
431–447 (1995)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-
Spaccamela, A., Protasi, M.: Complexity and approximation:
combinatorial optimization problems and their approximabil-
ity properties. Springer, Berlin (1999)

Arithmetic Coding for Data Compression A 65

3. Cai, M., Deng, X.: Approximation and computation of arbitrage
in frictional foreign exchange market. Electron. Notes Theor.
Comput. Sci. 78, 1–10(2003)

4. Clinton, K.: Transactions costs and covered interest arbitrage:
theory and evidence. J. Politcal Econ. 96(2), 358–370 (1988)

5. Deng, X., Li, Z.F., Wang, S.: Computational complexity of arbi-
trage in frictional security market. Int. J. Found. Comput. Sci.
13(5), 681–684 (2002)

6. Deng, X., Papadimitriou, C.: On the complexity of coopera-
tive game solution concepts. Math. Oper. Res. 19(2), 257–266
(1994)

7. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price
equilibria. J. Comput. System Sci. 67(2), 311–324 (2003)

8. Garey, M.R., Johnson, D.S.: Computers and intractability:
a guide of the theory of NP-completeness. Freeman, San Fran-
cisco (1979)

9. Jones, C.K.: A network model for foreign exchange arbitrage,
hedging and speculation. Int. J. Theor. Appl. Finance 4(6), 837–
852 (2001)

10. Lenstra Jr., H.W.: Integer programming with a fixed number of
variables. Math. Oper. Res. 8(4), 538–548 (1983)

11. Mavrides, M.: Triangular arbitrage in the foreign exchange
market – inefficiencies, technology and investment opportu-
nities. Quorum Books, London (1992)

12. Megiddo, N.: Computational complexity and the game theory
approach to cost allocation for a tree. Math. Oper. Res. 3, 189–
196 (1978)

13. Mundell, R.A.: Currency areas, exchange rate systems, and
international monetary reform, paper delivered at Uni-
versidad del CEMA, Buenos Aires, Argentina. http://www.
robertmundell.net/pdf/Currency (2000). Accessed 17 Apr 2000

14. Mundell, R.A.: Gold Would Serve into the 21st Century. Wall
Street Journal, 30 September 1981, pp. 33

15. Zhang, S., Xu, C., Deng, X.: Dynamic arbitrage-free asset pricing
with proportional transaction costs. Math. Finance 12(1), 89–
97 (2002)

Arithmetic Coding
for Data Compression
1994; Howard, Vitter

PAUL G. HOWARD1, JEFFREY SCOTT VITTER2
1 Microway, Inc., Plymouth, MA, USA
2 Department of Computer Science, Purdue University,
West Lafayette, IN, USA

Keywords and Synonyms

Entropy coding; Statistical data compression

ProblemDefinition

Often it is desirable to encode a sequence of data efficiently
to minimize the number of bits required to transmit or
store the sequence. The sequence may be a file or message
consisting of symbols (or letters or characters) taken from
a fixed input alphabet, but more generally the sequence

can be thought of as consisting of events, each taken from
its own input set. Statistical data compression is concerned
with encoding the data in a way that makes use of prob-
ability estimates of the events. Lossless compression has
the property that the input sequence can be reconstructed
exactly from the encoded sequence. Arithmetic coding is
a nearly-optimal statistical coding technique that can pro-
duce a lossless encoding.

Problem (Statistical data compression)
INPUT: A sequence of m events a1; a2; : : : ; am. The ith
event ai is taken from a set of n distinct possible events
ei;1; ei;2; : : : ; ei;n, with an accurate assessment of the prob-
ability distribution Pi of the events. The distributions Pi
need not be the same for each event ai.
OUTPUT: A succinct encoding of the events that can be de-
coded to recover exactly the original sequence of events.

The goal is to achieve optimal or near-optimal encoding
length. Shannon [10] proved that the smallest possible ex-
pected number of bits needed to encode the ith event is the
entropy of Pi, denoted by

H(Pi) =
nX
k=1

�pi;k log2 pi;k

where pi, k is the probability that ek occurs as the ith event.
An optimal code outputs � log2 p bits to encode an event
whose probability of occurrence is p.

The well-known Huffman codes [6] are optimal only
among prefix (or instantaneous) codes, that is, those in
which the encoding of one event can be decoded before
encoding has begun for the next event. Hu–Tucker codes
are prefix codes similar to Huffman codes, and are de-
rived using a similar algorithm, with the added constraint
that codedmessages preserve the ordering of original mes-
sages.

When an instantaneous code is not needed, as is often
the case, arithmetic coding provides a number of benefits,
primarily by relaxing the constraint that the code lengths
must be integers: 1) The code length is optimal (� log2 p
bits for an event with probability p), even when proba-
bilities are not integer powers of 1

2 . 2) There is no loss
of coding efficiency even for events with probability close
to 1. 3) It is trivial to handle probability distributions that
change from event to event. 4) The input message to out-
put message ordering correspondence of Hu–Tucker cod-
ing can be obtained with minimal extra effort.

As an example, consider a 5-symbol input alphabet.
Symbol probabilities, codes, and code lengths are given in
Table 1.

The average code length is 2.13 bits per input symbol
for the Huffman code, 2.22 bits per symbol for the Hu–

http://www.robertmundell.net/pdf/Currency
http://www.robertmundell.net/pdf/Currency

66 A Arithmetic Coding for Data Compression

Arithmetic Coding for Data Compression, Table 1
Comparison of codes for Huffman coding, Hu-Tucker coding, and arithmetic coding for a sample 5-symbol alphabet

Symbol
ek

Prob. Huffman Hu–Tucker Arithmetic
pk � log2 pk Code Length Code Length Length

a 0.04 4.644 1111 4 000 3 4.644
b 0.18 2.474 110 3 001 3 2.474
c 0.43 1.218 0 1 01 2 1.218
d 0.15 2.737 1110 4 10 2 2.737
e 0.20 2.322 10 2 11 2 2.322

Tucker code, and 2.03 bits per symbol for arithmetic cod-
ing.

Key Results

In theory, arithmetic codes assign one “codeword” to each
possible input sequence. The codewords consist of half-
open subintervals of the half-open unit interval [0, 1), and
are expressed by specifying enough bits to distinguish the
subinterval corresponding to the actual sequence from
all other possible subintervals. Shorter codes correspond
to larger subintervals and thus more probable input se-
quences. In practice, the subinterval is refined incremen-
tally using the probabilities of the individual events, with
bits being output as soon as they are known. Arithmetic
codes almost always give better compression than prefix
codes, but they lack the direct correspondence between the
events in the input sequence and bits or groups of bits in
the coded output file.

The algorithm for encoding a file using arithmetic cod-
ing works conceptually as follows:
1. The “current interval” [L,H) is initialized to [0, 1).
2. For each event in the file, two steps are performed.

(a) Subdivide the current interval into subintervals,
one for each possible event. The size of a event’s
subinterval is proportional to the estimated proba-
bility that the event will be the next event in the file,
according to the model of the input.

(b) Select the subinterval corresponding to the event
that actually occurs next and make it the new cur-
rent interval.

3. Output enough bits to distinguish the final current in-
terval from all other possible final intervals.
The length of the final subinterval is clearly equal to the

product of the probabilities of the individual events, which
is the probability p of the particular overall sequence of
events. It can be shown that b� log2 pc + 2 bits are enough
to distinguish the file from all other possible files.

For finite-length files, it is necessary to indicate the end
of the file. In arithmetic coding this can be done easily

by introducing a special low-probability event that can be
be injected into the input stream at any point. This adds
only O(logm) bits to the encoded length of an m-symbol
file.

In step 2, one needs to compute only the subinterval
corresponding to the event ai that actually occurs. To do
this, it is convenient to use two “cumulative” probabilities:
the cumulative probability PC =

Pi�1
k=1 pk and the next-

cumulative probability PN = PC + pi =
Pi

k=1 pk . The new
subinterval is [L + PC (H � L); L + PN (H � L)). The need
to maintain and supply cumulative probabilities requires
the model to have a sophisticated data structure, such as
that of Moffat [7], especially when many more than two
events are possible.

Modeling

The goal of modeling for statistical data compression is to
provide probability information to the coder. The mod-
eling process consists of structural and probability esti-
mation components; each may be adaptive (starting from
a neutralmodel, gradually build up the structure and prob-
abilities based on the events encountered), semi-adaptive
(specify an initial model that describes the events to be en-
countered in the data, then modify the model during cod-
ing so that it describes only the events yet to be coded), or
static (specify an initial model, and use it without modifi-
cation during coding).

In addition there are two strategies for probability es-
timation. The first is to estimate each event’s probability
individually based on its frequency within the input se-
quence. The second is to estimate the probabilities collec-
tively, assuming a probability distribution of a particular
form and estimating the parameters of the distribution, ei-
ther directly or indirectly. For direct estimation, the data
can yield an estimate of the parameter (the variance, for
instance). For indirect estimation [5], one can start with
a small number of possible distributions and compute the
code length that would be obtained with each; the one with
the smallest code length is selected. This method is very

Arithmetic Coding for Data Compression A 67

general and can be used even for distributions from differ-
ent families, without common parameters.

Arithmetic coding is often applied to text compres-
sion. The events are the symbols in the text file, and the
model consists of the probabilities of the symbols consid-
ered in some context. The simplest model uses the overall
frequencies of the symbols in the file as the probabilities;
this is a zero-order Markov model, and its entropy is de-
noted H0. The probabilities can be estimated adaptively
starting with counts of 1 for all symbols and increment-
ing after each symbol is coded, or the symbol counts can
be coded before coding the file itself and either modified
during coding (a decrementing semi-adaptive code) or left
unchanged (a static code). In all cases, the code length is
independent of the order of the symbols in the file.

Theorem 1 For all input files, the code length LA of an
adaptive code with initial 1-weights is the same as the code
length LSD of the semi-adaptive decrementing code plus the
code length LM of the input model encoded assuming that
all symbol distributions are equally likely. This code length
is less than LS = mH0 + LM, the code length of a static code
with the same input model. In other words, LA = LSD +
LM < mH0 + LM = LS.

It is possible to obtain considerably better text compres-
sion by using higher order Markov models. Cleary and
Witten [2] were the first to do this with their PPMmethod.
PPM requires adaptive modeling and coding of probabili-
ties close to 1, and makes heavy use of arithmetic coding.

Implementation Issues

Incremental Output. The basic implementation of
arithmetic coding described above has two major difficul-
ties: the shrinking current interval requires the use of high
precision arithmetic, and no output is produced until the
entire file has been read. The most straightforward solu-
tion to both of these problems is to output each leading bit
as soon as it is known, and then to double the length of
the current interval so that it reflects only the unknown
part of the final interval. Witten, Neal, and Cleary [11]
add a clever mechanism for preventing the current inter-
val from shrinking too much when the endpoints are close
to 1

2 but straddle 1
2 . In that case one does not yet know

the next output bit, but whatever it is, the following bit
will have the opposite value; one can merely keep track
of that fact, and expand the current interval symmetri-
cally about 1

2 . This follow-on procedure may be repeated
any number of times, so the current interval size is always
strictly longer than 1

4 .

Before [11] other mechanisms for incremental trans-
mission and fixed precision arithmetic were developed
through the years by a number of researchers beginning
with Pasco [8]. The bit-stuffing idea of Langdon and oth-
ers at IBM [9] that limits the propagation of carries in the
additions serves a function similar to that of the follow-on
procedure described above.

Use of Integer Arithmetic. In practice, the arithmetic
can be done by storing the endpoints of the current in-
terval as sufficiently large integers rather than in floating
point or exact rational numbers. Instead of starting with
the real interval [0, 1), start with the integer interval [0,N),
N invariably being a power of 2. The subdivision pro-
cess involves selecting non-overlapping integer intervals
(of length at least 1) with lengths approximately propor-
tional to the counts.

Limited-Precision Arithmetic Coding. Arithmetic
coding as it is usually implemented is slow because of
the multiplications (and in some implementations, divi-
sions) required in subdividing the current interval accord-
ing to the probability information. Since small errors in
probability estimates cause very small increases in code
length, introducing approximations into the arithmetic
coding process in a controlled way can improve cod-
ing speed without significantly degrading compression
performance. In the Q-Coder work at IBM [9], the time-
consuming multiplications are replaced by additions and
shifts, and low-order bits are ignored.

Howard and Vitter [4] describe a different approach to
approximate arithmetic coding. The fractional bits charac-
teristic of arithmetic coding are stored as state information
in the coder. The idea, called quasi-arithmetic coding, is
to reduce the number of possible states and replace arith-
metic operations by table lookups; the lookup tables can
be precomputed.

The number of possible states (after applying the inter-
val expansion procedure) of an arithmetic coder using the
integer interval [0,N) is 3N2/16. The obvious way to re-
duce the number of states in order to make lookup tables
practicable is to reduce N. Binary quasi-arithmetic coding
causes an insignificant increase in the code length com-
pared with pure arithmetic coding.

Theorem 2 In a quasi-arithmetic coder based on full inter-
val [0, N), using correct probability estimates, and exclud-
ing very large and very small probabilities, the number of
bits per input event by which the average code length ob-
tained by the quasi-arithmetic coder exceeds that of an ex-

68 A Assignment Problem

act arithmetic coder is at most

4
ln 2

�
log2

2
e ln 2

�
1
N

+O
�

1
N2

�
	

0:497
N

+O
�

1
N2

�
;

and the fraction by which the average code length obtained
by the quasi-arithmetic coder exceeds that of an exact arith-
metic coder is at most

�
log2

2
e ln 2

�
1

log2 N
+ O

�
1

(logN)2

�

	
0:0861
log2 N

+ O
�

1
(logN)2

�
:

General-purpose algorithms for parallel encoding and de-
coding using both Huffman and quasi-arithmetic coding
are given in [3].

Applications

Arithmetic coding can be used inmost applications of data
compression. Its main usefulness is in obtaining maxi-
mum compression in conjunction with an adaptivemodel,
or when the probability of one event is close to 1. Arith-
metic coding has been used heavily in text compression. It
has also been used in image compression in the JPEG in-
ternational standards for image compression and is an es-
sential part of the JBIG international standards for bilevel
image compression. Many fast implementations of arith-
metic coding, especially for a two-symbol alphabet, are
covered by patents; considerable effort has been expended
in adjusting the basic algorithm to avoid infringing those
patents.

Open Problems

The technical problems with arithmetic coding itself have
been completely solved. The remaining unresolved issues
are concerned with modeling: decomposing an input data
set into a sequence of events, the set of events possible at
each point in the data set being described by a probability
distribution suitable for input into the coder. The model-
ing issues are entirely application-specific.

Experimental Results

Some experimental results for the Calgary and Canterbury
corpora are summarized in a report by Arnold and Bell [1].

Data Sets

Among the most widely used data sets suitable for re-
search in arithmetic coding are: the Calgary Corpus: (ftp://
ftp.cpsc.ucalgary.ca/pub/projects), the Canterbury Corpus

(corpus.canterbury.ac.nz), and the Pizza&Chili Corpus
(pizzachili.dcc.uchile.cl).

URL to Code

A number of implementations of arithmetic coding are
available on the Compression Links Info page, www.
compression-links.info/ArithmeticCoding. The code at
the ucalgary.ca FTP site, based on [11], is especially use-
ful for understanding arithmetic coding.

Cross References

� Boosting Textual Compression
� Burrows–Wheeler Transform

Recommended Reading
1. Arnold, R., Bell, T.: A corpus for the evaluation of lossless com-

pression algorithms. In: Proceedings of the IEEEData Compres-
sion Conference, Snowbird, Utah, March 1997, pp. 201–210

2. Cleary, J.G., Witten, I.H.: Data compression using adaptive cod-
ing and partial string matching. IEEE Transactions on Commu-
nications, COM–32, pp. 396–402 (1984)

3. Howard, P.G., Vitter, J.S.: Parallel lossless image compression
using Huffman and arithmetic coding. In: Proceedings of the
IEEE Data Compression Conference, Snowbird, Utah, March
1992, pp. 299–308

4. Howard, P.G., Vitter, J.S.: Practical implementations of arith-
metic coding. In: Storer, J.A. (ed.) Images and Text Com-
pression. Kluwer Academic Publishers, Norwell, Massachusetts
(1992)

5. Howard, P.G., Vitter, J.S.: Fast and efficient lossless image com-
pression. In: Proceedings of the IEEE Data Compression Con-
ference, Snowbird, Utah, March 1993, pp. 351–360

6. Huffman, D.A.: A method for the construction of minimum re-
dundancy codes. Proceedings of the Institute of Radio Engi-
neers, 40, pp. 1098–1101 (1952)

7. Moffat, A.: An improved data structure for cumulative proba-
bility tables. Softw. Prac. Exp. 29, 647–659 (1999)

8. Pasco, R.: Source Coding Algorithms for Fast Data Compres-
sion, Ph. D. thesis, Stanford University (1976)

9. Pennebaker, W.B., Mitchell, J.L., Langdon, G.G., Arps, R.B.: An
overview of the basic principles of the Q-coder adaptive binary
arithmetic coder. IBM J. Res. Develop. 32, 717–726 (1988)

10. Shannon, C.E.: A mathematical theory of communication. Bell
Syst. Tech. J. 27, 398–403 (1948)

11. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data
compression. Commun. ACM 30, 520–540 (1987)

Assignment Problem
1955; Kuhn
1957; Munkres

SAMIR KHULLER
Department of Computer Science,
University of Maryland, College Park, MD, USA

ftp://ftp.cpsc.ucalgary.ca/pub/projects
ftp://ftp.cpsc.ucalgary.ca/pub/projects
http://corpus.canterbury.ac.nz
http://pizzachili.dcc.uchile.cl
http://www.compression-links.info/ArithmeticCoding
http://www.compression-links.info/ArithmeticCoding

Assignment Problem A 69

Keywords and Synonyms

Weighted bipartite matching

ProblemDefinition

Assume that a complete bipartite graph, G(X;Y ; X � Y),
with weights w(x, y) assigned to every edge (x, y) is given.
A matching M is a subset of edges so that no two
edges in M have a common vertex. A perfect match-
ing is one in which all the nodes are matched. As-
sume that jXj = jY j = n. The weighted matching prob-
lem is to find a matching with the greatest total weight,
wherew(M) =

P
e2M w(e). SinceG is a complete bipartite

graph, it has a perfect matching. An algorithm that solves
the weighted matching problem is due to Kuhn [4] and
Munkres [6]. Assume that all edge weights are nonnega-
tive.

Key Results

Define a feasible vertex labeling ` as a mapping from the
set of vertices in G to the reals, where

`(x) + `(y) � w(x; y) :

Call `(x) the label of vertex x. It is easy to compute a feasi-
ble vertex labeling as follows:

8y 2 Y `(y) = 0

and

8x 2 X `(x) = max
y2Y

w(x; y) :

Define the equality subgraph, G`, to be the spanning sub-
graph of G, which includes all vertices of G but only those
edges (x, y) that have weights such that

w(x; y) = `(x) + `(y) :

The connection between equality subgraphs and maxi-
mum-weighted matchings is provided by the following
theorem.

Theorem 1 If the equality subgraph, G`, has a perfect
matching, M*, then M* is a maximum-weighted matching
in G.

In fact, note that the sum of the labels is an upper bound
on the weight of the maximum-weighted perfect match-
ing. The algorithm eventually finds a matching and a fea-
sible labeling such that the weight of the matching is equal
to the sum of all the labels.

High-Level Description

The above theorem is the basis of an algorithm for find-
ing a maximum-weighted matching in a complete bipar-
tite graph. Starting with a feasible labeling, compute the
equality subgraph and then find a maximum matching in
this subgraph (here one can ignore weights on edges). If
the matching found is perfect, the process is done. If it
is not perfect, more edges are added to the equality sub-
graph by revising the vertex labels. After adding edges to
the equality subgraph, either the size of the matching goes
up (an augmenting path is found) or the Hungarian tree
continues to grow.1 In the former case, the phase termi-
nates and a new phase starts (since the matching size has
gone up). In the latter case, the Hungarian tree, grows by
adding new nodes to it, and clearly this cannot happen
more than n times.

Let S be the set of free nodes in X. Grow Hungarian
trees from each node in S. Let T be the nodes in Y encoun-
tered in the search for an augmenting path from nodes in
S. Add all nodes from X that are encountered in the search
to S.

Note the following about this algorithm:

S = X n S :

T = Y n T :
jSj > jTj :

There are no edges from S to T since this would imply that
one did not grow the Hungarian trees completely. As the
Hungarian trees in are grown in G`, alternate nodes in the
search are placed into S and T. To revise the labels, take
the labels in S and start decreasing them uniformly (say,
by �), and at the same time increase the labels in T by �.
This ensures that the edges from S to T do not leave the
equality subgraph (Fig. 1).

As the labels in S are decreased, edges (in G) from S to
T will potentially enter the equality subgraph, G`. As we
increase �, at some point in time, an edge enters the equal-
ity subgraph. This is when one stops and updates the Hun-
garian tree. If the node from T added to T is matched to
a node in S, both these nodes are moved to S and T, which
yields a larger Hungarian tree. If the node from T is free,
an augmenting path is found and the phase is complete.
One phase consists of those steps taken between increases
in the size of the matching. There are at most n phases,
where n is the number of vertices in G (since in each phase

1This is the structure of explored edges when one starts BFS si-
multaneously from all free nodes in S. When one reaches a matched
node in T, one only explores the matched edge; however, all edges
incident to nodes in S are explored.

70 A Asynchronous Consensus Impossibility

Assignment Problem, Figure 1
Sets S and T as maintained by the algorithm

the size of the matching increases by 1).Within each phase
the size of the Hungarian tree is increased at most n times.
It is clear that in O(n2) time one can figure out which edge
from S to T is the first to enter the equality subgraph (one
simply scans all the edges). This yields an O(n4) bound on
the total running time. How to implement it in O(n3) time
is now shown.

More Efficient Implementation

Define the slack of an edge as follows:

slack(x; y) = `(x) + `(y) � w(x; y) :

Then

� = min
x2S;y2T

slack(x; y) :

Naively, the calculation of � requiresO(n2) time. For every
vertex y 2 T , keep track of the edge with the smallest slack,
i. e.,

slack[y] = min
x2S

slack(x; y) :

The computation of slack[y] (for all y 2 T) requiresO(n2)
time at the start of a phase. As the phase progresses, it is

easy to update all the slack values in O(n) time since all of
them change by the same amount (the labels of the ver-
tices in S are going down uniformly). Whenever a node u
is moved from S to S one must recompute the slacks of the
nodes in T , requiring O(n) time. But a node can be moved
from S to S at most n times.

Thus each phase can be implemented in O(n2) time.
Since there are n phases, this gives a running time ofO(n3).
For sparse graphs, there is a way to implement the algo-
rithm in O(n(m + n log n)) time using min cost flows [1],
wherem is the number of edges.

Applications

There are numerous applications of biparitite match-
ing, for example, scheduling unit-length jobs with inte-
ger release times and deadlines, even with time-dependent
penalties.

Open Problems

Obtaining a linear, or close to linear, time algorithm.

Recommended Reading

Several books on combinatorial optimization describe al-
gorithms for weighted bipartite matching (see [2,5]). See
also Gabow’s paper [3].

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algo-
rithms and Applications. Prentice Hall, Englewood Cliffs (1993)

2. Cook, W., Cunningham,W., Pulleyblank,W., Schrijver, A.: Combi-
natorial Optimization. Wiley, New York (1998)

3. Gabow, H.: Data structures for weighted matching and near-
est common ancestors with linking. In: Symp. on Discrete Algo-
rithms, 1990, pp. 434–443

4. Kuhn, H.: The Hungarian method for the assignment problem.
Naval Res. Logist. Quart. 2, 83–97 (1955)

5. Lawler, E.: Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart andWinston (1976)

6. Munkres, J.: Algorithms for the assignment and transportation
problems. J. Soc. Ind. Appl. Math. 5, 32–38 (1957)

Asynchronous Consensus
Impossibility
1985; Fischer, Lynch, Paterson

MAURICE HERLIHY
Department of Computer Science, Brown University,
Providence, RI, USA

Keywords and Synonyms

Wait-free consensus; Agreement

Asynchronous Consensus Impossibility A 71

ProblemDefinition

Consider a distributed system consisting of a set of pro-
cesses that communicate by sending and receiving mes-
sages. The network is a multiset of messages, where each
message is addressed to some process. A process is a state
machine that can take three kinds of steps.
� In a send step, a process places a message in the net-

work.
� In a receive step, a process A either reads and removes

from the network a message addressed to A, or it reads
a distinguished null value, leaving the network un-
changed. If a message addressed to A is placed in the
network, and if A subsequently performs an infinite
number of receive steps, then A will eventually receive
that message.

� In a computation state, a process changes state without
communicating with any other process.

Processes are asynchronous: there is no bound on their rel-
ative speeds. Processes can crash: they can simply halt and
take no more steps. This article considers executions in
which at most one process crashes.

In the consensus problem, each process starts with
a private input value, communicates with the others, and
then halts with a decision value. These values must satisfy
the following properties:
� Agreement: all processes’ decision values must agree.
� Validity: every decision valuemust be some process’ in-

put.
� Termination: every non-fault process must decide in

a finite number of steps.
Fischer, Lynch, and Paterson showed that there is no pro-
tocol that solves consensus in any asynchronous message-
passing system where even a single process can fail. This
result is one of the most influential results in Distributed
Computing, laying the foundations for a number of subse-
quent research efforts.

Terminology

Without loss of generality, one can restrict attention to bi-
nary consensus, where the inputs are 0 or 1. A protocol
state consists of the states of the processes and the multi-
set of messages in transit in the network. An initial state
is a protocol state before any process has moved, and a fi-
nal state is a protocol state after all processes have finished.
The decision value of any final state is the value decided by
all processes in that state.

Any terminating protocol’s set of possible states forms
a tree, where each node represents a possible protocol
state, and each edge represents a possible step by some
process. Because the protocol must terminate, the tree is

finite. Each leaf node represents a final protocol state with
decision value either 0 or 1.

A bivalent protocol state is one in which the eventual
decision value is not yet fixed. From any bivalent state,
there is an execution in which the eventual decision value
is 0, and another in which it is 1. A univalent protocol state
is one in which the outcome is fixed. Every execution start-
ing from a univalent state decides the same value. A 1-va-
lent protocol state is univalent with eventual decision value
1, and similarly for a 0-valent state.

A protocol state is critical if
� It is bivalent, and
� If any process takes a step, the protocol state becomes

univalent.

Key Results

Lemma 1 Every consensus protocol has a bivalent initial
state.

Proof Assume, by way of contradiction, that there ex-
ists a consensus protocol for (n + 1) threads A0; � � � ;An
in which every initial state is univalent. Let si be the ini-
tial state where processes Ai ; � � � ;An have input 0 and
A0; : : : ;Ai�1 have input 1. Clearly, s0 is 0-valent: all pro-
cesses have input 0, so all must decide 0 by the validity
condition. If si is 0-valent, so is si+1. These states differ
only in the input to process Ai : 0 in si, and 1 in si+1. Any
execution starting from si in which Ai halts before taking
any steps is indistinguishable from an execution starting
from si+1 in which Ai halts before taking any steps. Since
processes must decide 0 in the first execution, they must
decide 1 in the second. Since there is one execution start-
ing from si+1 that decides 0, and since si+1 is univalent by
hypothesis, si+1 is 0-valent. It follows that the state sn+1, in
which all processes start with input 1, is 0-valent, a contra-
diction. �
Lemma 2 Every consensus protocol has a critical state.

Proof by contradiction. By Lemma 1, the protocol has
a bivalent initial state. Start the protocol in this state. Re-
peatedly choose a process whose next step leaves the pro-
tocol in a bivalent state, and let that process take a step.
Either the protocol runs forever, violating the termination
condition, or the protocol eventually enters a critical state.

�
Theorem 3 There is no consensus protocol for an asyn-
chronous message-passing systemwhere a single process can
crash.

Proof Assume by way of contradiction that such a proto-
col exists. Run the protocol until it reaches a critical state

72 A Asynchronous Consensus Impossibility

s. There must be two processes A and B such that A’s next
step carries the protocol to a 0-valent state, and B’s next
step carries the protocol to a 1-valent state.

Starting from s, let sA be the state reached ifA takes the
first step, sB if B takes the first step, sAB if A takes a step
followed by B, and so on. States sA and sAB are 0-valent,
while sB and sBA are 1-valent. The rest is a case analysis.

Of all the possible pairs of stepsA and B could be about
to execute, most of them commute: states sAB and sBA are
identical, which is a contradiction because they have dif-
ferent valences.

The only pair of steps that do not commute occurs
when A is about to send a message to B (or vice versa).
Let sAB be the state resulting if A sends a message to B and
B then receives it, and let sBA be the state resulting if B re-
ceives a different message (or null) and then A sends its
message to B. Note that every process other than B has
the same local state in sAB and sBA. Consider an execu-
tion starting from sAB in which every process other than
B takes steps in round-robin order. Because sAB is 0-va-
lent, they will eventually decide 0. Next, consider an exe-
cution starting from sBA in which every process other than
B takes steps in round-robin order. Because sBA is 1-valent,
they will eventually decide 1. But all processes other than
B have the same local states at the end of each execution,
so they cannot decide different values, a contradiction. �

In the proof of this theorem, and in the proofs of the
preceding lemmas, we construct scenarios where at most
a single process is delayed. As a result, this impossibility
result holds for any system where a single process can fail
undetectably.

Applications

The consensus problem is a key tool for understanding the
power of various asynchronous models of computation.

Open Problems

There are many open problems concerning the solvabil-
ity of consensus in other models, or with restrictions on
inputs.

RelatedWork

The original paper by Fischer, Lynch, and Paterson [8] is
still a model of clarity.

Many researchers have examined alternative models
of computation in which consensus can be solved. Dolev,
Dwork, and Stockmeyer [5] examine a variety of alterna-
tive message-passing models, identifying the precise as-

sumptions needed to make consensus possible. Dwork,
Lynch, and Stockmeyer [6] derive upper and lower bounds
for a semi-synchronous model where there is an upper and
lower bound onmessage delivery time. Ben-Or [1] showed
that introducing randomization makes consensus possible
in an asynchronous message-passing system. Chandra and
Toueg [3] showed that consensus becomes possible if in
the presence of an oracle that can (unreliably) detect when
a process has crashed. Each of the papers cited here has in-
spired many follow-up papers. A good place to start is the
excellent survey by Fich and Ruppert [7].

A protocol is wait-free if it tolerates failures by all but
one of the participants. A concurrent object implementa-
tion is linearizable if each method call seems to take effect
instantaneously at some point between the method’s in-
vocation and response. Herlihy [9] showed that shared-
memory objects can each be assigned a consensus num-
ber, which is the maximum number of processes for which
there exists a wait-free consensus protocol using a com-
bination of read-write memory and the objects in ques-
tion. Consensus numbers induce an infinite hierarchy on
objects, where (simplifying somewhat) higher objects are
more powerful than lower objects. In a system of n ormore
concurrent processes, it is impossible to construct a lock-
free implementation of an object with consensus number
n from an object with a lower consensus number. On the
other hand, any object with consensus number n is uni-
versal in a system of n or fewer processes: it can be used to
construct a wait-free linearizable implementation of any
object.

In 1990, Chaudhuri [4] introduced the k-set agreement
problem (sometimes called k-set consensus, which gen-
eralizes consensus by allowing k or fewer distinct deci-
sion values to be chosen. In particular, 1-set agreement is
consensus. The question whether k-set agreement can be
solved in asynchronous message-passingmodels was open
for several years, until three independent groups [2,10,11]
showed that no protocol exists.

Cross References

� Linearizability
� Topology Approach in Distributed Computing

Recommended Reading

1. Ben-Or, M.: Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In:
PODC ’83: Proceedings of the second annual ACM symposium
on Principles of distributed computing, pp. 27–30. ACM Press,
New York (1983)

Atomic Broadcast A 73

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for
t-resilient asynchronous computations. In: Proceedings of the
1993 ACM Symposium on Theory of Computing, May 1993.
pp. 206–215

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

4. Chaudhuri, S.: Agreement is harder than consensus: Set con-
sensus problems in totally asynchronous systems. In: Proceed-
ings Of The Ninth Annual ACM Symposium On Principles of
Distributed Computing, August 1990. pp. 311–234

5. Chandhuri, S.: More Choices Allow More Faults: Set Consen-
sus Problems in Totally Asynchronous Systems. Inf. Comput.
105(1), 132–158, July 1993

6. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288–323 (1988)

7. Fich, F., Ruppert, E.: Hundreds of impossibility results for dis-
tributed computing. Distrib. Comput. 16(2–3), 121–163 (2003)

8. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed
consensus with one faulty process. J. ACM 32(2), 374–382
(1985)

9. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. (TOPLAS) 13(1), 124–149 (1991)

10. Herlihy, M., Shavit, N.: The topological structure of asyn-
chronous computability. J. ACM 46(6), 858–923 (1999)

11. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is im-
possible: The topology of public knowledge. SIAM J. Comput.
29(5), 1449–1483 (2000)

Atomic Broadcast
1995; Cristian, Aghili, Strong, Dolev

XAVIER DÉFAGO
School of Information Science, Japan Advanced Institute
of Science and Technology (JAIST),
Ishikawa, Japan

Keywords and Synonyms

Atomic multicast; Total order broadcast; Total order mul-
ticast

ProblemDefinition

The problem is concerned with allowing a set of processes
to concurrently broadcast messages while ensuring that all
destinations consistently deliver them in the exact same se-
quence, in spite of the possible presence of a number of
faulty processes.

The work of Cristian, Aghili, Strong, and Dolev [7]
considers the problem of atomic broadcast in a system
with approximately synchronized clocks and bounded
transmission and processing delays. They present suc-
cessive extensions of an algorithm to tolerate a bounded

number of omission, timing, or Byzantine failures, respec-
tively.

Related Work

The work presented in this entry originally appeared as
a widely distributed conference contribution [6], over
a decade before being published in a journal [7], at which
time the work was well-known in the research community.
Since there was no significant change in the algorithms, the
historical context considered here is hence with respect to
the earlier version.

Lamport [11] proposed one of the first published al-
gorithms to solve the problem of ordering broadcast mes-
sages in a distributed systems. That algorithm, presented
as the core of a mutual exclusion algorithm, operates
in a fully asynchronous system (i. e., a system in which
there are no bounds on processor speed or communi-
cation delays), but does not tolerate failures. Although
the algorithms presented here rely on physical clocks
rather than Lamport’s logical clocks, the principle used
for ordering messages is essentially the same: message
carry a timestamp of their sending time; messages are de-
livered in increasing order of the timestamp, using the
sending processor name for messages with equal times-
tamps.

At roughly the same period as the initial publication of
the work of Cristian et al. [6], Chang andMaxemchuck [3]
proposed an atomic broadcast protocol based on a token
passing protocol, and tolerant to crash failures of proces-
sors. Also, Carr [1] proposed the Tandem global update
protocol, tolerant to crash failures of processors.

Cristian [5] later proposed an extension to the
omission-tolerant algorithm presented here, under the as-
sumption that the communication system consists of f + 1
independent broadcast channels (where f is the maximal
number of faulty processors). Compared with the more
general protocol presented here, its extension generates
considerably fewer messages.

Since the work of Cristian, Aghili, Strong, and Do-
lev [7], much has been published on the problem of atomic
broadcast (and its numerous variants). For further read-
ing, Défago, Schiper, and Urbán [8] surveyed more than
sixty different algorithms to solve the problem, classifying
them into five different classes and twelve variants. That
survey also reviews many alternative definitions and ref-
erences about two hundred articles related to this subject.
This is still a very active research area, with many new re-
sults being published each year.

Hadzilacos and Toueg [10] provide a systematic clas-
sification of specifications for variants of atomic broadcast

74 A Atomic Broadcast

as well as other broadcast problems, such as reliable broad-
cast, FIFO broadcast, or causal broadcast.

Chandra and Toueg [2] proved the equivalence be-
tween atomic broadcast and the consensus problem. Thus,
any application solved by a consensus can also be solved
by atomic broadcast and vice-versa. Similarly, impossibil-
ity results apply equally to both problems. For instance, it
is well-known that consensus, thus atomic broadcast, can-
not be solved deterministically in an asynchronous system
with the presence of a faulty process [9].

Notations and Assumptions

The system G consists of n distributed processors and
m point-to-point communication links. A link does not
necessarily exists between every pair of processors, but it
is assumed that the communication network remains con-
nected even in the face of faults (whether processors or
links). All processors have distinct names and there exists
a total order on them (e. g., lexicographic order).

A component (link or processor) is said to be correct if
its behavior is consistent with its specification, and faulty
otherwise. The paper considers three classes of component
failures, namely, omission, timing, and Byzantine failures.
� An omission failure occurs when the faulty component

fails to provide the specified output (e. g., loss of a mes-
sage).

� A timing failure occurs when the faulty component
omits a specified output, or provides it either too early
or too late.

� A Byzantine failure [12] occurs when the component
does not behave according to its specification, for in-
stance, by providing output different from the one
specified. In particular, the paper considers authenti-
cation-detectable Byzantine failures, that is, ones that
are detectable using a message authentication proto-
col, such as error correction codes or digital signa-
tures.

Each processor p has access to a local clock Cp with the
properties that (1) two separate clock readings yield dif-
ferent values, and (2) clocks are "-synchronized, meaning
that, at any real time t, the deviation in readings of the
clocks of any two processors p and q is at most ".

In addition, transmission and processing delays, as
measured on the clock of a correct processor, are bounded
by a known constant ı. This bound accounts not only for
delays in transmission and processing, but also for delays
due to scheduling, overload, clock drift or adjustments.
This is called a synchronous system model.

The diffusion time dı is the time necessary to prop-
agate information to all correct processes, in a surviving

network of diameter d with the presence of a most
 pro-
cessor failures and � link failures.

Problem Definition

The problem of atomic broadcast is defined in a syn-
chronous systemmodel as a broadcast primitive which sat-
isfies the following three properties: atomicity, order, and
termination.

Problem 1 (Atomic broadcast)
Input: A stream of messages broadcast by n concurrent pro-
cessors, some of which may be faulty.
Output: The messages delivered in sequence, with the fol-
lowing properties:
1. Atomicity: if any correct processor delivers an update at

time U on its clock, then that update was initiated by
some processor and is delivered by each correct processor
at time U on its clock.

2. Order: all updates delivered by correct processors are de-
livered in the same order by each correct processor.

3. Termination: every update whose broadcast is initiated
by a correct processor at time T on its clock is delivered
at all correct processors at time T +� on their clock.

Nowadays, problem definitions for atomic broadcast that
do not explicitly refer to physical time are often preferred.
Many variants of time-free definitions are reviewed by
Hadzilacos and Toueg [10] and Défago et al. [8]. One such
alternate definition is presented below, with the terminol-
ogy adapted to the context of this entry.

Problem 2 (Total order broadcast)
Input: A stream of messages broadcast by n concurrent pro-
cessors, some of which may be faulty.
Output: The messages delivered in sequence, with the fol-
lowing properties:
1. Validity: if a correct processor broadcasts a message m,

then it eventually delivers m.
2. Uniform agreement: if a processor delivers a message m,

then all correct processors eventually deliver m.
3. Uniform integrity: for any message m, every processor

delivers m at most once, and only if m was previously
broadcast by its sending processor.

4. Gap-free uniform total order: if some processor delivers
message m0 after message m, then a processor delivers m0

only after it has delivered m.

Key Results

The paper presents three algorithms for solving the prob-
lem of atomic broadcast, each under an increasingly de-
manding failure model, namely, omission, timing, and

Atomic Broadcast A 75

Byzantine failures. Each protocol is actually an extension
of the previous one.

All three protocols are based on a classical flooding, or
information diffusion, algorithm [14]. Every message car-
ries its initiation timestamp T, the name of the initiating
processor s, and an update � . A message is then uniquely
identified by (s,T). Then, the basic protocol is simple. Each
processor logs every message it receives until it is deliv-
ered. When it receives a message that was never seen be-
fore, it forwards that message to all other neighbor proces-
sors.

Atomic Broadcast for Omission Failures

The first atomic broadcast protocol, supporting omission
failures, considers a termination time�o as follows.

�o =
ı + dı + " : (1)

The delivery deadline T +�o is the time by which a pro-
cessor can be sure that it has received copies of every mes-
sage with timestamp T (or earlier) that could have been
received by some correct process.

The protocol then works as follows. When a proces-
sor initiates an atomic broadcast, it propagates that mes-
sage, similar to the diffusion algorithm described above.
Themain exception is that everymessage received after the
local clock exceeds the delivery deadline of that message, is
discarded. Then, at local time T +�o , a processor delivers
all messages timestamped with T, in order of the name of
the sending processor. Finally, it discards all copies of the
messages from its logs.

Atomic Broadcast for Timing Failures

The second protocol extends the first one by introduc-
ing a hop count (i. e., a counter incremented each time
a message is relayed) to the messages. With this informa-
tion, each relaying processor can determine when a mes-
sage is timely, that is, if a message timestampedT with hop
count h is received at time U then the following condition
must hold.

T � h" < U < T + h(ı + ") : (2)

Before relaying a message, each processor checks the ac-
ceptance test above and discard the message if it does not
satisfy it. The termination time�t of the protocol for tim-
ing failures is as follows.

�t =
(ı + ") + dı + " : (3)

The authors point out that discarding earlymessages is not
necessary for correctness, but ensures that correct proces-
sors keep messages in their log for a bounded amount of
time.

Atomic Broadcast for Byzantine Failures

Given some text, every processor is assumed to be able to
generate a signature for it, that cannot be faked by other
processors. Furthermore, every processor knows the name
of every other processors in the network, and has the abil-
ity to verify the authenticity of their signature.

Under the above assumptions, the third protocol ex-
tends the second one by adding signatures to the messages.
To prevent a Byzantine processor (or link) from tamper-
ing with the hop count, a message is co-signed by every
processor that relays it. For instance, a message signed by
k processors p1; : : : ; pk is as follows.

�
relayed; : : :

�
relayed;

�
first; T; �; p1; s1

�
; p2; s2

�
;

: : : pk ; sk
�

Where � is the update, T the timestamp, p1 the message
source, and si the signature generated by processor pi. Any
message for which one of the signature cannot be authenti-
cated is simply discarded. Also, if several updates initiated
by the same processor p carry the same timestamp, this in-
dicates that p is faulty and the corresponding updates are
discarded. The remainder of the protocol is the same as
the second one, where the number of hops is given by the
number of signatures. The termination time �b is also as
follows.

�b =
(ı + ") + dı + " : (4)

The authors insist however that, in this case, the transmis-
sion time ı must be considerably larger than in the previ-
ous case, since it must account for the time spent in gen-
erating and verifying the digital signatures; usually a costly
operation.

Bounds

In addition to the three protocols presented above and
their correctness, Cristian et al. [7] prove the following two
lower bounds on the termination time of atomic broadcast
protocols.

Theorem 1 If the communication network G requires
x steps, then any atomic broadcast protocol tolerant of up
to
 processor and � link omission failures has a termina-
tion time of at least xı + ".

76 A Atomicity

Theorem 2 Any atomic broadcast protocol for a Hamil-
tonian network with n processors that tolerate n � 2
authentication-detectable Byzantine processor failures can-
not have a termination time smaller than (n � 1)(ı + ").

Applications

The main motivation for considering this problem is
its use as the cornerstone for ensuring fault-tolerance
through process replication. In particular, the authors con-
sider a synchronous replicated storage, which they define
as a distributed and resilient storage system that displays
the same content at every correct physical processor at
any clock time. Using atomic broadcast to deliver updates
ensures that all updates are applied at all correct proces-
sors in the same order. Thus, provided that the replicas
are initially consistent, they will remain consistent. This
technique, called state-machine replication [11,13] or also
active replication, is widely used in practice as a means of
supporting fault-tolerance in distributed systems.

In contrast, Cristian et al. [7] consider atomic broad-
cast in a synchronous system with bounded transmission
and processing delays. Their work was motivated by the
implementation of a highly-available replicated storage
system, with tightly coupled processors running a real-
time operating system.

Atomic broadcast has been used as a support for the
replication of running processes in real-time systems or,
with the problem reformulated to isolate explicit timing
requirements, has also been used as a support for fault-
tolerance and replication in many group communication
toolkits (see survey of Chockler et al. [4]).

In addition, atomic broadcast has been used for the
replication of database systems, as a means to reduce
the synchronization between the replicas. Wiesmann and
Schiper [15] have compared different database replication
and transaction processing approaches based on atomic
broadcast, showing interesting performance gains.

Cross References

� Asynchronous Consensus Impossibility
� Causal Order, Logical Clocks, State Machine

Replication
� Clock Synchronization
� Failure Detectors

Recommended Reading
1. Carr, R.: The Tandem global update protocol. Tandem Syst.

Rev. 1, 74–85 (1985)
2. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable

distributed systems. J. ACM 43, 225–267 (1996)

3. Chang, J.-M., Maxemchuk, N.F.: Reliable broadcast protocols.
ACM Trans. Comput. Syst. 2, 251–273 (1984)

4. Chockler, G., Keidar, I., Vitenberg, R.: Group communication
specifications: A comprehensive study. ACMComput. Surv. 33,
427–469 (2001)

5. Cristian, F.: Synchronous atomic broadcast for redundant
broadcast channels. Real-Time Syst. 2, 195–212 (1990)

6. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic Broadcast:
From simple message diffusion to Byzantine agreement. In:
Proc. 15th Intl. Symp. on Fault-Tolerant Computing (FTCS-15),
Ann Arbor, June 1985 pp. 200–206. IEEE Computer Society
Press

7. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast:
From simple message diffusion to Byzantine agreement. In-
form. Comput. 118, 158–179 (1995)

8. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Comput.
Surveys 36, 372–421 (2004)

9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32,
374–382 (1985)

10. Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and re-
lated problems. In: Mullender, S. (ed.) Distributed Systems, 2nd
edn., pp. 97–146. ACMPress Books, Addison-Wesley (1993). Ex-
tended version appeared as Cornell Univ. TR 94-1425

11. Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Comm. ACM 21, 558–565 (1978)

12. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals
problem. ACM Trans. Prog. Lang. Syst. 4, 382–401 (1982)

13. Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. Surveys 22,
299–319 (1990)

14. Segall, A.: Distributed network protocols. IEEE Trans. Inform.
Theory 29, 23–35 (1983)

15. Wiesmann, M., Schiper, A.: Comparison of database replication
techniques based on total order broadcast. IEEE Trans. Knowl.
Data Eng. 17, 551–566 (2005)

Atomicity
� Best Response Algorithms for Selfish Routing
� Linearizability
� Selfish Unsplittable Flows: Algorithms for Pure

Equilibria
� Snapshots in Shared Memory

AtomicMulticast
� Atomic Broadcast

Atomic Network Congestion Games
� Selfish Unsplittable Flows: Algorithms for Pure

Equilibria

Attribute-Efficient Learning A 77

Atomic Scan
� Snapshots in Shared Memory

Atomic Selfish Flows
� Best Response Algorithms for Selfish Routing

Attribute-Efficient Learning
1987; Littlestone

JYRKI KIVINEN
Department of Computer Science, University of Helsinki,
Helsinki, Finland

Keywords and Synonyms

Learning with irrelevant attributes

ProblemDefinition

Given here is a basic formulation using the online mistake
boundmodel, which was used by Littlestone [9] in his sem-
inal work.

Fix a class C of Boolean functions over n variables. To
start a learning scenario, a target function f� 2 C is cho-
sen but not revealed to the learning algorithm. Learning
then proceeds in a sequence of trials. At trial t, an input
x t 2 f0; 1gn is first given to the learning algorithm. The
learning algorithm then produces its prediction ŷt , which
is its guess as to the unknown value f�(xt). The correct
value yt = f�(xt) is then revealed to the learner. If yt ¤ ŷt ,
the learning algorithm made amistake. The learning algo-
rithm learns C with mistake bound m, if the number of
mistakes never exceeds m, no matter how many trials are
made and how f � and x1; x2; : : : are chosen.

Variable (or attribute) Xi is relevant for func-
tion f : f0; 1gn ! f0; 1g if f (x1; : : : ; xi ; : : : ; xn) ¤

f (x1; : : : ; 1 � xi ; : : : ; xn) holds for some Ex 2 0; 1 n . Sup-
pose now that for some k� n, every function f 2 C has
at most k relevant variables. It is said that a learning algo-
rithm learns class C attribute-efficiently, if it learns C with
a mistake bound polynomial in k and log n. Additionally,
the computation time for each trial is usually required to
be polynomial in n.

Key Results

The main part of current research of attribute-efficient
learning stems from Littlestones Winnow algorithm [9].

The basic version of Winnow maintains a weight vec-
tor w t = (wt;1; : : : ;wt;n) 2 Rn . The prediction for input
x t 2 f0; 1gn is given by

ŷt = sign

 nX
i=1

wt;i xt;i � �

!

where � is a parameter of the algorithm. Initially w1 =
(1; : : : ; 1), and after trial t each component wt, i is updated
according to

wt+1;i =

8
<
:

˛wt;i if yt = 1, ŷt = 0 and xt;i = 1
wt;i /˛ if yt = 0, ŷt = 1 and xt;i = 1
wt;i otherwise

(1)

where ˛ > 1 is a learning rate parameter.
Littlestone’s basic result is that with a suitable choice

of � and ˛, Winnow learns the class of monotone k-literal
disjunctions with mistake bound O(k log n). Since the al-
gorithm changes its weights only when a mistake occurs,
this bound also guarantees that the weights remain small
enough for computation times to remain polynomial in
n. With simple transformations, Winnow also yields at-
tribute-efficient learning algorithms for general disjunc-
tions and conjunctions. Various subclasses of DNF formu-
las and decision lists [8] can be learned, too.

Winnow is quite robust against noise, i. e., errors in in-
put data. This is extremely important for practical applica-
tions. Remove now the assumption about a target func-
tion f� 2 C satisfying yt = f�(xt) for all t. Define attribute
error of a pair (x; y) with respect to a function f as the
minimum Hamming distance between x and x0 such that
f (x0) = y. The attribute error of a sequence of trials with
respect to f is the sum of attribute errors of the individual
pairs (x t ; yt). Assuming the sequence of trials has attribute
error at most A with respect to some k-literal disjunc-
tion, Auer and Warmuth [1] show that Winnow makes
O(A + k log n) mistakes. The noisy scenario can also be
analyzed in terms of hinge loss [5].

The update rule (1) has served as a model for a whole
family of multiplicative update algorithms. For example,
Kivinen and Warmuth [7] introduce the Exponentiated
Gradient algorithm, which is essentiallyWinnowmodified
for continuous-valued prediction, and show how it can be
motivated by a relative entropy minimization principle.

Consider a function class C where each function can
be encoded using O(p(k) log n) bits for some polynomial
p. An example would be Boolean formulas with k rele-
vant variables, when the size of the formula is restricted
to p(k) ignoring the size taken by the variables. The cardi-
nality of C is then jCj = 2O(p(k) log n). The classical Halving

78 A Automated Search Tree Generation

Algorithm (see [9] for discussion and references) learns
any class consisting of m Boolean functions with mistake
bound log2 m, and would thus provide an attribute-effi-
cient algorithm for such a class C. However, the running
time would not be polynomial. Another serious drawback
would be that the Halving Algorithm does not tolerate any
noise. Interestingly, a multiplicative update similar to (1)
has been used in Littlestone and Warmuth’s Weighted
Majority Algorithm [10], and also Vovk’s Aggregating Al-
gorithm [14], to produce a noise-tolerant generalization of
the Halving Algorithm.

Attribute-efficient learning has also been studied in
other learningmodels than themistake boundmodel, such
as Probably Approximately Correct learning [4], learning
with uniform distribution [12], and learning with mem-
bership queries [3]. The idea has been further developed
into learning with a potentially infinite number of at-
tributes [2].

Applications

Attribute-efficient algorithms for simple function classes
have a potentially interesting application as a component
in learning more complex function classes. For exam-
ple, any monotone k-term DNF formula over variables
x1,: : :,xn can be represented as a monotone k-literal dis-
junction over 2n variables zA, where zA =

Q
i2A xi for A

f1; : : : ; ng is defined. Running Winnow with the trans-
formed inputs z 2 f0; 1g2

n
would give a mistake bound

O(k log 2n) = O(kn). Unfortunately the running time
would be linear in 2n, at least for a naive implementa-
tion. Khardon et al. [6] provide discouraging computa-
tional hardness results for this potential application.

Online learning algorithms have a natural application
domain in signal processing. In this setting, the sender
emits a true signal yt at time t, for t = 1; 2; 3; : : :. At some
later time (t + d), a receiver receives a signal zt , which is
a sum of the original signal yt and various echoes of earlier
signals yt0 , t0 < t, all distorted by random noise. The task
is to recover the true signal yt based on received signals
zt ; zt�1; : : : ; zt�l over some time window l. Currently at-
tribute-efficient algorithms are not used for such tasks, but
see [11] for preliminary results.

Attribute-efficient learning algorithms are similar in
spirit to statistical methods that find sparsemodels. In par-
ticular, statistical algorithms that use L1 regularization are
closely related to multiplicative algorithms such as Win-
now and Exponentiated Gradient. In contrast, more clas-
sical L2 regularization leads to algorithms that are not at-
tribute-efficient [13].

Cross References

� Boosting Textual Compression
� Learning DNF Formulas

Recommended Reading
1. Auer, P., Warmuth, M.K.: Tracking the best disjunction. Mach.

Learn. 32(2), 127–150 (1998)
2. Blum, A., Hellerstein, L., Littlestone, N.: Learning in the pres-

ence of finitely or infinitelymany irrelevant attributes. J. Comp.
Syst. Sci. 50(1), 32–40 (1995)

3. Bshouty, N., Hellerstein, L.: Attribute-efficient learning in query
and mistake-bound models. J. Comp. Syst. Sci. 56(3), 310–319
(1998)

4. Dhagat, A., Hellerstein, L.: PAC learning with irrelevant at-
tributes. In: Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, pp 64–74. IEEE
Computer Society, Los Alamitos (1994)

5. Gentile, C., Warmuth, M.K.: Linear hinge loss and average mar-
gin. In: Kearns, M.J., Solla, S.A., Cohn, D.A. (eds.) Advances in
neural information processing systems 11, p. 225–231. MIT
Press, Cambridge (1999)

6. Khardon, R., Roth, D., Servedio, R.A.: Efficiency versus conver-
gence of boolean kernels for on-line learning algorithms. J. Ar-
tif. Intell. Res. 24, 341–356 (2005)

7. Kivinen, J., Warmuth, M.K.: Exponentiated gradient versus gra-
dient descent for linear predictors. Inf. Comp. 132(1), 1–64
(1997)

8. Klivans, A.R. Servedio, R.A.: Toward attribute efficient learning
of decision lists and parities. J. Mach. Learn. Res. 7(Apr), 587–
602 (2006)

9. Littlestone, N.: Learning quickly when irrelevant attributes
abound: A new linear threshold algorithm. Mach. Learn. 2(4),
285–318 (1988)

10. Littlestone, N., Warmuth, M.K.: The weighted majority algo-
rithm. Inf. Comp. 108(2), 212–261 (1994)

11. Martin, R.K., Sethares, W.A., Williamson, R.C., Johnson, Jr., C.R.:
Exploiting sparsity in adaptive filters. IEEE Trans. Signal Pro-
cess. 50(8), 1883–1894 (2002)

12. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of
k relevant variables. J. Comp. Syst. Sci. 69(3), 421–434 (2004)

13. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rota-
tional invariance. In: Greiner, R., Schuurmans, D. (eds.) Proceed-
ings of the 21st International Conference on Machine Learn-
ing, pp 615–622. The International Machine Learning Society,
Princeton (2004)

14. Vovk, V.: Aggregating strategies. In: Fulk, M., Case, J. (eds.)
Proceedings of the 3rd Annual Workshop on Computational
Learning Theory, p. 371–383. Morgan Kaufmann, San Mateo
(1990)

Automated Search Tree Generation
2004; Gramm, Guo, Hüffner, Niedermeier

FALK HÜFFNER
Department of Math and Computer Science,
University of Jena, Jena, Germany

Automated Search Tree Generation A 79

Keywords and Synonyms

Automated proofs of upper bounds on the running time
of splitting algorithms

ProblemDefinition

This problem is concerned with the automated develop-
ment and analysis of search tree algorithms. Search tree
algorithms are a popular way to find optimal solutions to
NP-complete problems.1 The idea is to recursively solve
several smaller instances in such a way that at least one
branch is a yes-instance if and only if the original instance
is. Typically, this is done by trying all possibilities to con-
tribute to a solution certificate for a small part of the input,
yielding a small local modification of the instance in each
branch.

For example, consider the NP-complete CLUSTER
EDITING problem: can a given graph be modified by
adding or deleting up to k edges such that the resulting
graph is a cluster graph, that is, a graph that is a disjoint
union of cliques? To give a search tree algorithm for CLUS-
TER EDITING, one can use the fact that cluster graphs are
exactly the graphs that do not contain a P3 (a path of
3 vertices) as an induced subgraph. One can thus solve
CLUSTER EDITING by finding a P3 and splitting it into
3 branches: delete the first edge, delete the second edge,
or add the missing edge. By this characterization, when-
ever there is no P3 found, one already has a cluster graph.
The original instance has a solution with kmodifications if
and only if at least one of the branches has a solution with
k � 1 modifications.

Analysis

For NP-complete problems, the running time of a search
tree algorithm only depends on the size of the search tree
up to a polynomial factor , which depends on the num-
ber of branches and the reduction in size of each branch.
If the algorithm solves a problem of size s and calls it-
self recursively for problems of sizes s � d1; : : : ; s � di ,
then (d1; : : : ; di) is called the branching vector of this re-
cursion. It is known that the size of the search tree is
thenO(˛s), where the branching number ˛ is the only pos-
itive real root of the characteristic polynomial

zd � zd�d1 � � � � � zd�di ; (1)

where d = maxfd1; : : : ; di g. For the simple CLUSTER
EDITING search tree algorithm and the size measure k, the

1For ease of presentation, only decision problems are considered;
adaption to optimization problems is straightforward.

branching vector is (1, 1, 1) and the branching number is 3,
meaning that the running time is up to a polynomial fac-
tor O(3k).

Case Distinction

Often, one can obtain better running times by distinguish-
ing a number of cases of instances, and giving a specialized
branching for each case. The overall running time is then
determined by the branching number of the worst case.
Several publications obtain such algorithms by hand (e. g.,
a search tree of size O(2.27k) for CLUSTER EDITING [4]);
the topic of this work is how to automate this. That is, the
problem is the following:

Problem 1 (Fast Search Tree Algorithm)
INPUT: An NP-hard problem P and a size measure s(I) of
an instance I of P where instances I with s(I) = 0 can be
solved in polynomial time.
OUTPUT: A partition of the instance set ofP into cases, and
for each case a branching such that the maximum branch-
ing number over all branchings is as small as possible.

Note that this problem definition is somewhat vague; in
particular, to be useful, the case an instance belongs to
must be recognizable quickly. It is also not clear whether
an optimal search tree algorithm exists; conceivably, the
branching number can be continuously reduced by in-
creasingly complicated case distinctions.

Key Results

Gramm et al. [3] describe a method to obtain fast search
tree algorithms for CLUSTER EDITING and related prob-
lems, where the size measure is the number of editing op-
erations k. To get a case distinction, a number of subgraphs
are enumerated such that each instance is known to con-
tain at least one of these subgraphs. It is next described
how to obtain a branching for a particular case.

A standard way of systematically obtaining specialized
branchings for instance cases is to use a combination of
basic branching and data reduction rules. Basic branching
is typically a very simple branching technique, and data re-
duction rules replace an instance with a smaller, solution-
equivalent instance in polynomial time. Applying this to
CLUSTER EDITING first requires a small modification of
the problem: one considers an annotated version, where
an edge can be marked as permanent and a non-edge can
be marked as forbidden. Any such annotated vertex pair
cannot be edited anymore. For a pair of vertices, the basic
branching then branches into two cases: permanent or for-
bidden (one of these options will require an editing opera-
tion). The reduction rules are: if two permanent edges are

80 A Automated Search Tree Generation

Automated Search Tree Generation, Figure 1
Branching for a CLUSTER EDITING case using only basic branch-
ing on vertex pairs (double circles), and applications of the re-
duction rules (asterisks). Permanent edges are marked bold,
forbidden edges dashed. The numbers next to the subgraphs
state the change of the problem size k. The branching vector
is (1, 2, 3, 3, 2), corresponding to a search tree size of O(2.27k)

adjacent, the third edge of the triangle they induce must
also be permanent; and if a permanent and a forbidden
edge are adjacent, the third edge of the triangle they in-
duce must be forbidden.

Figure 1 shows an example branching derived in this
way.

Using a refined method of searching the space for all
possible cases and to distinguish all branchings for a case,
Gramm et al. [3] derive a number of search tree algorithms
for graph modification problems.

Applications

Gramm et al. [3] apply the automated generation of search
tree algorithms to several graph modification problems
(see also Table 1). Further, Hüffner [5] demonstrates an
application of DOMINATING SET on graphs with maxi-
mum degree 4, where the size measure is the size of the
dominating set.

Fedin and Kulikov [2] examine variants of SAT; how-
ever, their framework is limited in that it only proves up-
per bounds for a fixed algorithm instead of generating al-
gorithms.

Skjernaa [6] also presents results on variants of SAT.
His framework does not require user-provided data reduc-
tion rules, but determines reductions automatically.

Automated Search Tree Generation, Table 1
Summary of search tree sizes where automation gave improve-
ments. “Known” is the size of the best previously published
“hand-made” search tree. For the satisfiability problems,m is the
number of clauses and l is the length of the formula

Problem Trivial Known New
CLUSTER EDITING 3 2.27 1.92 [3]
CLUSTER DELETION 2 1.77 1.53 [3]
CLUSTER VERTEX DELETION 3 2.27 2.26 [3]
BOUNDED DEGREE DOMINATING SET 4 3.71 [5]
X3SAT, size measurem 3 1.1939 1.1586 [6]
(n, 3)-MAXSAT, size measurem 2 1.341 1.2366 [2]
(n, 3)-MAXSAT, size measure l 2 1.1058 1.0983 [2]

Open Problems

The analysis of search tree algorithms can be much
improved by describing the “size” of an instance by
more than one variable, resulting in multivariate recur-
rences [1]. It is open to introduce this technique into an
automation framework.

It has frequently been reported that better running
time bounds obtained by distinguishing a large number
of cases do not necessarily speed up, but in fact can slow
down, a program. A careful investigation of the tradeoffs
involved and a corresponding adaption of the automation
frameworks is an open task.

Experimental Results

Gramm et al. [3] and Hüffner [5] report search tree sizes
for severalNP-complete problems. Further, Fedin and Ku-
likov [2] and Skjernaa [6] report on variants of satisfiabil-
ity. Table 1 summarizes the results.

Cross References

� Vertex Cover Search Trees

Acknowledgments

Partially supported by the Deutsche Forschungsgemeinschaft, Emmy
Noether research group PIAF (fixed-parameter algorithms), NI
369/4.

Recommended Reading

1. Eppstein, D.: Quasiconvex analysis of backtracking algorithms.
In: Proc. 15th SODA, ACM/SIAM, pp. 788–797 (2004)

2. Fedin, S.S., Kulikov, A.S.: Automated proofs of upper bounds
on the running time of splitting algorithms. J. Math. Sci. 134,
2383–2391 (2006). Improved results at http://logic.pdmi.ras.ru/
~kulikov/autoproofs.html

http://logic.pdmi.ras.ru/~kulikov/autoproofs.html
http://logic.pdmi.ras.ru/~kulikov/autoproofs.html

Automated Search Tree Generation A 81

3. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated gen-
eration of search tree algorithms for hard graph modification
problems. Algorithmica 39, 321–347 (2004)

4. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled
data clustering: Exact algorithms for clique generation. Theor.
Comput. Syst. 38, 373–392 (2005)

5. Hüffner, F.: Graph Modification Problems and Automated
Search Tree Generation. Diplomarbeit, Wilhelm-Schickard-Insti-
tut für Informatik, Universität Tübingen (2003)

6. Skjernaa, B.: Exact Algorithms for Variants of Satisfiability and
Colouring Problems. Ph. D. thesis, University of Aarhus, Depart-
ment of Computer Science (2004)

Backtracking Based k-SAT Algorithms B 83

B

Backtracking Based k-SAT
Algorithms
2005; Paturi, Pudlák, Saks, Zane

RAMAMOHAN PATURI1, PAVEL PUDLÁK2,
MICHAEL SAKS3, FRANCIS ZANE4
1 Department of Computer Science and Engineering,
University of California at San Diego,
San Diego, CA, USA

2 Mathematical Institute, Academy of Science
of the Czech Republic, Prague, Czech Republic

3 Department of Mathematics, Rutgers, State University
of New Jersey, Piscataway, NJ, USA

4 Bell Laboraties, Lucent Technologies,
Murray Hill, NJ, USA

ProblemDefinition

Determination of the complexity of k-CNF satisfiability is
a celebrated open problem: given a Boolean formula in
conjunctive normal form with at most k literals per clause,
find an assignment to the variables that satisfies each of the
clauses or declare none exists. It is well-known that the de-
cision problem of k–CNF satisfiability is NP-complete for
k � 3. This entry is concerned with algorithms that signif-
icantly improve the worst case running time of the naive
exhaustive search algorithm, which is poly(n)2n for a for-
mula on n variables. Monien and Speckenmeyer [8] gave
the first real improvement by giving a simple algorithm
whose running time is O(2(1�"k)n), with "k > 0 for all k.
In a sequence of results [1,3,5,6,7,9,10,11,12], algorithms
with increasingly better running times (larger values of "k)
have been proposed and analyzed.

These algorithms usually follow one of two lines of at-
tack to find a satisfying solution. Backtrack search algo-
rithms make up one class of algorithms. These algorithms
were originally proposed by Davis, Logemann and Love-
land [4] and are sometimes called Davis–Putnam proce-
dures. Such algorithms search for a satisfying assignment

by assigning values to variables one by one (in some or-
der), backtracking if a clause is made false. The other class
of algorithms is based on local searches (the first guaran-
teed performance results were obtained by Schöning [12]).
One starts with a randomly (or strategically) selected as-
signment, and searches locally for a satisfying assignment
guided by the unsatisfied clauses.

This entry presents ResolveSat, a randomized algo-
rithm for k-CNF satisfiability which achieves some of the
best known upper bounds. ResolveSat is based on an ear-
lier algorithm of Paturi, Pudlák and Zane [10], which is es-
sentially a backtrack search algorithm where the variables
are examined in a randomly chosen order. An analysis of
the algorithm is based on the observation that as long as
the formula has a satisfying assignment which is isolated
from other satisfying assignments, a third of the variables
are expected to occur as unit clauses as the variables are
assigned in a random order. Thus, the algorithm needs to
correctly guess the values of at most 2/3 of the variables.
This analysis is extended to the general case by observing
that there either exists an isolated satisfying assignment, or
there aremany solutions so the probability of guessing one
correctly is sufficiently high.

ResolveSat combines these ideas with resolution to
obtain significantly improved bounds [9]. In fact, Re-
solveSat obtains the best known upper bounds for k-
CNF satisfiability for all k � 5. For k = 3 and 4, Iwama
and Takami [6] obtained the best known upper bound
with their randomized algorithm which combines the
ideas from Schöning’s local search algorithm and Re-
solveSat. Furthermore, for the promise problem of unique
k-CNF satisfiability whose instances are conjectured to be
among the hardest instances of k-CNF satisfiability [2],
ResolveSat holds the best record for all k � 3. Bounds ob-
tained by ResolveSat for unique k-SAT and k-SAT, for
k = 3; 4; 5; 6 are shown in Table 1. Here, these bounds are
compared with those of of Schöning [12], subsequently
improved results based on local search [1,5,11], and the
most recent improvements due to Iwama and Takami [6].
The upper bounds obtained by these algorithms are ex-

84 B Backtracking Based k-SAT Algorithms

pressed in the form 2cn�o(n) and the numbers in the table
represent the exponent c. This comparison focuses only on
the best bounds irrespective of the type of the algorithm
(randomized versus deterministic).

Notation In this entry, a CNF boolean formula F(x1;
x2; : : : ; xn) is viewed as both a boolean function and a set
of clauses. A boolean formula F is a k-CNF if all the clauses
have size at most k. For a clause C, write var(C) for the set
of variables appearing in C. If v 2 var(C), the orientation
of v is positive if the literal v is in C and is negative if v̄
is in C. Recall that if F is a CNF boolean formula on vari-
ables (x1; x2; : : : ; xn) and a is a partial assignment of the
variables, the restriction of F by a is defined to be the for-
mula F 0 = Fda on the set of variables that are not set by
a, obtained by treating each clause C of F as follows: if C
is set to 1 by a then delete C, and otherwise replace C by
the clause C0 obtained by deleting any literals of C that are
set to 0 by a. Finally, a unit clause is a clause that contains
exactly one literal.

Key Results

ResolveSat Algorithm

The ResolveSat algorithm is very simple. Given a k-CNF
formula, it first generates clauses that can be obtained by
resolution without exceeding a certain clause length. Then
it takes a random order of variables and gradually assigns
values to them in this order. If the currently considered
variable occurs in a unit clause, it is assigned the only value
that satisfies the clause. If it occurs in contradictory unit
clauses, the algorithm starts over. At each step, the algo-
rithm also checks if the formula is satisfied. If the formula
is satisfied, then the input is accepted. This subroutine is
repeated until either a satisfying assignment is found or
a given time limit is exceeded.

The ResolveSat algorithm uses the following subrou-
tine, which takes an arbitrary assignment y, a CNF formula
F, and a permutation
 as input, and produces an assign-
ment u. The assignment u is obtained by considering the
variables of y in the order given by
 and modifying their
values in an attempt to satisfy F.

FunctionModify(CNF formula G(x1; x2; : : : ; xn), permu-
tation
 of f1; 2; : : : ; ng, assignment y) �! (assignment
u)

G0 = G.
for i = 1 to n

if Gi�1 contains the unit clause x�(i)
then u�(i) = 1

else if Gi�1 contains the unit clause x̄�(i)
then u�(i) = 0

else u�(i) = y�(i)
Gi = Gi�1dx�(i)=u�(i)

end /* end for loop */
return u;

The algorithm Search is obtained by running Modi-
fy(G;
; y) on many pairs (
; y), where
 is a random
permutation and y is a random assignment.

Search(CNF-formula F, integer I)
repeat I times

 = uniformly random permutation of 1; : : : ; n
y = uniformly random vector 2 f0; 1gn

u =Modify(F;
; y);
if u satisfies F

then output(u); exit;
end/* end repeat loop */
output(‘Unsatisfiable’);

The ResolveSat algorithm is obtained by combining
Search with a preprocessing step consisting of bounded
resolution. For the clauses C1 and C2, C1 and C2 conflict
on variable v if one of them contains v and the other
contains v̄. C1 and C2 is a resolvable pair if they conflict
on exactly one variable v. For such a pair, their resolvent,
denoted R(C1;C2), is the clause C = D1 _ D2 where D1
and D2 are obtained by deleting v and v̄ from C1 and C2.
It is easy to see that any assignment satisfying C1 and C2
also satisfies C. Hence, if F is a satisfiable CNF formula
containing the resolvable pair C1;C2 then the formula
F 0 = F ^ R(C1;C2) has the same satisfying assignments as
F. The resolvable pair C1;C2 is s-bounded if jC1j; jC2j � s
and jR(C1;C2)j � s. The following subroutine extends
a formula F to a formula Fs by applying as many steps of
s-bounded resolution as possible.

Resolve(CNF Formula F, integer s)
Fs = F .
while Fs has an s-bounded resolvable pair C1;C2

with R(C1;C2) 62 Fs
Fs = Fs ^ R(C1;C2).

return (Fs).

The algorithm for k-SAT is the following simple combina-
tion of Resolve and Search:

ResolveSat(CNF-formula F, integer s, positive integer I)
Fs = Resolve(F; s).
Search(Fs ; I).

Backtracking Based k-SAT Algorithms B 85

Backtracking Based k-SAT Algorithms, Table 1
This table shows the exponent c in the bound 2cn�o(n) for the unique k-SAT and k-SAT from the ResolveSat algorithm, the bounds
for k-SAT from Schöning’s algorithm [12], its improved versions for 3-SAT [1,5,11], and the hybrid version of [6]

k unique k-SAT [9] k-SAT [9] k-SAT [12] k-SAT [1,5,11] k-SAT [6]
3 0.386 . . . 0.521 . . . 0.415 . . . 0.409 . . . 0.404 . . .
4 0.554 . . . 0.562 . . . 0.584 . . . 0.559 . . .
5 0.650 . . . 0.678 . . .
6 0.711 . . . 0.736 . . .

Analysis of ResolveSat

The running time of ResolveSat(F; s; I) can be bounded
as follows. Resolve(F; s) adds at most O(ns) clauses to F
by comparing pairs of clauses, so a naive implementation
runs in time n3spoly(n) (this time bound can be improved,
but this will not affect the asymptotics of the main re-
sults). Search(Fs ; I) runs in time I(jFj + ns)poly(n). Hence
the overall running time of ResolveSat(F; s; I) is crudely
bounded from above by (n3s + I(jFj + ns))poly(n). If
s = O(n/ log n), the overall running time can be bounded
by IjFj2O(n) since ns = 2O(n). It will be sufficient to choose
s either to be some large constant or to be a slowly growing
function of n. That is, s(n) tends to infinity with n but is
O(log n).

The algorithm Search(F; I) always answers “unsatis-
fiable” if F is unsatisfiable. Thus the only problem is to
place an upper bound on the error probability in the case
that F is satisfiable. Define �(F) to be the probability that
Modify(F;
; y) finds some satisfying assignment. Then
for a satisfiable F the error probability of Search(F; I) is
equal to (1 � �(F))I � e�I�(F) , which is at most e�n pro-
vided that I � n/�(F). Hence, it suffices to give good upper
bounds on �(F).

Complexity analysis of ResolveSat requires certain
constants �k for k � 2:

�k =
1X
j=1

1
j(j + 1

k�1)
:

It is straightforward to show that �3 = 4 � 4 ln 2 > 1:226
using Taylor’s series expansion of ln 2. Using standard
facts, it is easy to show that �k is an increasing function
of k with the limit

P1
j=1(1/ j

2) = (
2/6) = 1:644 : : :
The results on the algorithm ResolveSat are summa-

rized in the following three theorems.

Theorem 1 (i) Let k � 5, and let s(n) be a function going
to infinity. Then for any satisfiable k-CNF formula F on n
variables,

�(Fs) � 2�(1�
�k
k�1)n�o(n) :

Hence, ResolveSat(F; s; I) with I = 2(1��k /(k�1))n+O(n)

has error probability O(1) and running time
2(1��k /(k�1))n+O(n) on any satisfiable k-CNF formula, pro-
vided that s(n) goes to infinity sufficiently slowly.

(ii) For k � 3, the same bounds are obtained provided
that F is uniquely satisfiable.

Theorem 1 is proved by first considering the uniquely
satisfiable case and then relating the general case to the
uniquely satisfiable case. When k � 5, the analysis reveals
that the asymptotics of the general case is no worse than
that of the uniquely satisfiable case. When k = 3 or k = 4,
it gives somewhat worse bounds for the general case than
for the uniquely satisfiable case.

Theorem 2 Let s = s(n) be a slowly growing function. For
any satisfiable n-variable 3-CNF formula, �(Fs) � 2�0:521n

and so ResolveSat(F; s; I)with I = n20:521n has error prob-
ability O(1) and running time 20:521n+O(n).

Theorem 3 Let s = s(n) be a slowly growing function.
For any satisfiable n-variable 4-CNF formula, �(Fs) �
2�0:5625n, and so ResolveSat(F; s; I) with I = n20:5625n has
error probability O(1) and running time 20:5625n+O(n).

Applications

Various heuristics have been employed to produce imple-
mentations of 3-CNF satisfiability algorithms which are
considerably more efficient than exhaustive search algo-
rithms. The ResolveSat algorithm and its analysis provide
a rigorous explanation for this efficiency and identify the
structural parameters (for example, the width of clauses
and the number of solutions), influencing the complexity.

Open Problems

The gap between the bounds for the general case and the
uniquely satisfiable case when k 2 f3; 4g is due to a weak-
ness in analysis, and it is conjectured that the asymptotic
bounds for the uniquely satisfiable case hold in general for
all k. If true, the conjecture would imply that ResolveSat
is also faster than any other known algorithm in the k = 3
case.

86 B Best Response Algorithms for Selfish Routing

Another interesting problem is to better understand
the connection between the number of satisfying assign-
ments and the complexity of finding a satisfying assign-
ment [2]. A strong conjecture is that satisfiability for for-
mulas with many satisfying assignments is strictly easier
than for formulas with fewer solutions.

Finally, an important open problem is to design an
improved k-SAT algorithm which runs faster than the
bounds presented in here for the unique k-SAT case.

Cross References

� Local Search Algorithms for kSAT
�Maximum Two-Satisfiability
� Parameterized SAT
� Thresholds of Random k-SAT

Recommended Reading

1. Baumer, S., Schuler, R.: Improving a Probabilistic 3-SAT Algo-
rithm by Dynamic Search and Independent Clause Pairs. In:
SAT 2003, pp. 150–161

2. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The Com-
plexity of Unique k-SAT: An Isolation Lemma for k-CNFs. In:
Proceedings of the Eighteenth IEEE Conference on Computa-
tional Complexity, 2003

3. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J.,
Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic
(2� 2

k+1)
n algorithm for k-SAT based on local search. Theor.

Comp. Sci. 289(1), 69–83 (2002)
4. Davis, M., Logemann, G., Loveland, D.: A machine program for

theorem proving. Commun. ACM 5, 394–397 (1962)
5. Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: A prob-

abilistic 3–SAT algorithm further improved. In: STACS 2002.
LNCS, vol. 2285, pp. 192–202. Springer, Berlin (2002)

6. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In:
Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms, 2004, pp. 328–329

7. Kullmann, O.: Newmethods for 3-SAT decision and worst-case
analysis. Theor. Comp. Sci. 223(1–2), 1–72 (1999)

8. Monien, B., Speckenmeyer, E.: Solving Satisfiability In Less Than
2n Steps. Discret. Appl. Math. 10, 287–295 (1985)

9. Paturi, R., Pudlák, P., Saks, M., Zane, F.: An Improved Exponen-
tial-time Algorithm for k-SAT. J. ACM52(3), 337–364 (2005) (An
earlier version presented in Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science, 1998,
pp. 628–637)

10. Paturi, R., Pudlák, P., Zane, F.: Satisfiability Coding Lemma. In:
Proceedings of the 38th Annual IEEE Symposium on Foun-
dations of Computer Science, 1997, pp. 566–574. Chicago J.
Theor. Comput. Sci. (1999), http://cjtcs.cs.uchicago.edu/

11. Rolf, D.: 3-SAT2 RTIME(1:32971n). In: ECCC TR03-054, 2003
12. Schöning, U.: A probabilistic algorithm for k-SAT based on lim-

ited local search and restart. Algorithmica 32, 615–623 (2002)
(An earlier version appeared in 40th Annual Symposium on
Foundations of Computer Science (FOCS ’99), pp. 410–414)

Best Response Algorithms
for Selfish Routing
2005; Fotakis, Kontogiannis, Spirakis

PAUL SPIRAKIS
Computer Engineering and Informatics, Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

Atomic selfish flows

ProblemDefinition

A setting is assumed in which n selfish users compete for
routing their loads in a network. The network is an s � t
directed graph with a single source vertex s and a single
destination vertex t. The users are ordered sequentially.
It is assumed that each user plays after the user before
her in the ordering, and the desired end result is a Pure
Nash Equilibrium (PNE for short). It is assumed that, when
a user plays (i. e. when she selects an s � t path to route
her load), the play is a best response (i. e. minimum de-
lay), given the paths and loads of users currently in the net.
The problem then is to find the class of directed graphs for
which such an ordering exists so that the implied sequence
of best responses leads indeed to a Pure Nash Equilibrium.

The Model

A network congestion game is a tuple ((wi)i2N ;G; (de)e2E)
where N = f1; : : : ; ng is the set of users where user i con-
trols wi units of traffic demand. In unweighted conges-
tion games wi = 1 for i = 1; : : : ; n. G(V ,E) is a directed
graph representing the communications network and de
is the latency function associated with edge e 2 E. It is as-
sumed that the de’s are non-negative and non-decreasing
functions of the edge loads. The edges are called identi-
cal if de (x) = x; 8e 2 E. The model is further restricted
to single-commodity network congestion games, where G
has a single source s and destination t and the set of users’
strategies is the set of s � t paths, denoted P. Without loss
of generality it is assumed that G is connected and that ev-
ery vertex of G lies on a directed s � t path.

A vector P = (p1; : : : ; pn) consisting of an s � t
path pi for each user i is a pure strategies profile. Let
le(P) =

P
i :e2pi wi be the load of edge e in P. The authors

define the cost �ip(P) for user i routing her demand on

http://cjtcs.cs.uchicago.edu/

Best Response Algorithms for Selfish Routing B 87

path p in the profile P to be

�ip(P) =
X

e2p\pi

de (le(P)) +
X

e2pXpi

de (le(P) + wi) :

The cost �i (P) of user i in P is just �ip i (P), i. e. the total
delay along her path.

A pure strategies profile P is a Pure Nash Equilibrium
(PNE) iff no user can reduce her total delay by unilaterally
deviating i. e. by selecting another s � t path for her load,
while all other users keep their paths.

Best Response

Let pi be the path of user i and Pi =
�
p1; : : : ; pi

�
be the

pure strategies profile for users 1; : : : ; i. Then the best re-
sponse of user i + 1 is a path pi+1 so that

pi+1 = avg min
p2P i

8
<
:
X
e2p

�
de
�
le
�
Pi
�
+ wi+1

��
9
=
; :

Flows and Common Best Response

A (feasible) flow on the set P of s � t paths of G is a func-
tion f : P! <�0 so that

X
p2P

fp =
nX
i=1

wi :

The single-commodity network congestion game
((wi)i2N ;G; (de)e2E) has the Common Best Response
property if for every initial flow f (not necessarily feasible),
all users have the same set of best responses with respect
to f. That is, if a path p is a best response with respect to f
for some user, then for all users j and all paths p0

X
e2p0

de
�
fe + wj

�
�
X
e2p

de
�
fe + wj

�
:

Furthermore, every segment
 of a best response
path p is a best response for routing the demand of any
user between
 ’s endpoints. It is allowed here that some
users may already have contributed to the initial flow f.

Layered and Series-Parallel Graphs

A directed (multi)graph G(V , E) with a distinguished
source s and destination t is layered iff all directed s � t
paths have exactly the same length and each vertex lies on
some directed s � t path.

A multigraph is series-parallelwith terminals (s, t) if
1. it is a single edge (s, t) or

2. it is obtained from two series-parallel graphs G1;G2
with terminals (s1; t1) and (s2; t2) by connecting them
either in series or in parallel. In a series connection, t1
is identified with s2 and s1 becomes s and t2 becomes t.
In a parallel connection, s1 = s2 = s and t1 = t2 = t.

Key Results

The Greedy Best Response Algorithm (GBR)
GBR considers the users one-by-one in non-increasing or-
der of weight (i. e. w1 � w2 � � � � � wn). Each user adopts
her best response strategy on the set of (already adopted
in the net) best responses of previous users. No user can
change her strategy in the future. Formally, GBR succeeds
if the eventual profile P is a Pure Nash Equilibrium (PNE).

The Characterization
In [3] it is shown:

Theorem 1 If G is an (s � t) series-parallel graph and the
game ((wi)i2N ;G; (de)e2E) has the common best response
property, then GBR succeeds.

Theorem 2 Aweighted single-commodity network conges-
tion game in a layered network with identical edges has the
common best response property for any set of user weights.

Theorem 3 For any single-commodity network congestion
game in series-parallel networks, GBR succeeds if
1. The users are identical (if wi = 1 for all i) and the edge-

delays are arbitrary but non-decreasing or
2. The graph is layered and the edges are identical (for ar-

bitrary user weights)

Theorem 4 If the network consists of bunches of parallel-
links connected in series, then a PNE is obtained by applying
GBR to each bunch.

Theorem 5
1. If the network is not series-parallel then there exist games

where GBR fails, even for 2 identical users and identical
edges.

2. If the network does not have the common best response
property (and is not a sequence of parallel links graphs
connected in series) then there exist games where GBR
fails, even for 2-layered series-parallel graphs.

Examples of such games are provided in [3].

Applications

GBR has a natural distributed implementation based on
a leader election algorithm. Each player is now represented
by a process. It is assumed that processes know the net-
work and the edge latency functions. The existence of

88 B Bidimensionality

a message passing subsystem and an underlying synchro-
nization mechanism (e. g. logical timestamps) is assumed,
that allows a distributed protocol to proceed in logical
rounds.

Initially all processes are active. In each round they run
a leader election algorithm and determine the process of
largest weight (among the active ones). This process routes
its demand on its best response path, announces its strat-
egy to all active processes, and becomes passive. Notice
that each process can compute its best response locally.

Open Problems

What is the class of networks where (identical) users can
achieve a PNE by a k-round repetition of a best responses
sequence? What happens to weighted users? In general,
how the network topology affects best response sequences?
Such open problems are a subject of current research.

Cross References

� General Equilibrium

Recommended Reading
1. Awerbuch, B., Azar, Y., Epstein, A.: The price of Routing Unsplit-

table Flows. In: Proc. ACM Symposium on Theory of Comput-
ing (STOC) 2005, pp. 57-66. ACM, New York (2005)

2. Duffin, R.J.: Topology of Series-Parallel Networks. J. Math. Anal.
Appl. 10, 303–318 (1965)

3. Fotakis, D., Kontogiannis, S., Spirakis, P.: Symmetry in Net-
work Congestion Games: Pure Equilibria and Anarchy Cost. In:
Proc. of the 3rd Workshop of Approximate and On-line Al-
gorithms (WAOA 2005). Lecture Notes in Computer Science
(LNCS), vol. 3879, pp. 161–175. Springer, Berlin Heidelberg
(2006)

4. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish Unsplittable
Flows. J. Theor. Comput. Sci. 348, 226–239 (2005)

5. Libman, L., Orda, A.: Atomic Resource Sharing in Noncoopera-
tive Networks. Telecommun. Syst. 17(4), 385-409 (2001)

Bidimensionality
2004; Demaine, Fomin, Hajiaghayi, Thilikos

ERIK D. DEMAINE1, MOHAMMADTAGHI HAJIAGHAYI2
1 Computer Science and Artifical Intelligence Laboratory,
MIT, Cambridge, MA, USA

2 Department of Computer Science,
University of Pittsburgh, Pittsburgh, PA, USA

ProblemDefinition

The theory of bidimensionality provides general tech-
niques for designing efficient fixed-parameter algorithms

and approximation algorithms for a broad range of NP-
hard graph problems in a broad range of graphs. This the-
ory applies to graph problems that are “bidimensional”
in the sense that (1) the solution value for the k � k grid
graph and similar graphs grows with k, typically as˝(k2),
and (2) the solution value goes down when contracting
edges and optionally when deleting edges in the graph.
Many problems are bidimensional; a few classic examples
are vertex cover, dominating set, and feedback vertex set.

Graph Classes

Results about bidimensional problems have been devel-
oped for increasingly general families of graphs, all gen-
eralizing planar graphs.

The first two classes of graphs relate to embeddings
on surfaces. A graph is planar if it can be drawn in the
plane (or the sphere) without crossings. A graph has (Eu-
ler) genus at most g if it can be drawn in a surface of Euler
characteristic g. A class of graphs has bounded genus if ev-
ery graph in the class has genus at most g for a fixed g.

The next three classes of graphs relate to excludingmi-
nors. Given an edge e = fv;wg in a graph G, the contrac-
tion of e in G is the result of identifying vertices v and w in
G and removing all loops and duplicate edges. A graph H
obtained by a sequence of such edge contractions start-
ing from G is said to be a contraction of G. A graph H is
a minor of G if H is a subgraph of some contraction of G.
A graph class C is minor-closed if any minor of any graph
in C is also a member of C. A minor-closed graph class
C is H-minor-free if H … C. More generally, the term “H-
minor-free” refers to anyminor-closed graph class that ex-
cludes some fixed graphH. A single-crossing graph is a mi-
nor of a graph that can be drawn in the plane with at most
one pair of edges crossing. A minor-closed graph class
is single-crossing-minor-free if it excludes a fixed single-
crossing graph. An apex graph is a graph in which the re-
moval of some vertex leaves a planar graph. A graph class
is apex-minor-free if it excludes some fixed apex graph.

Bidimensional Parameters

Although implicitly hinted at in [2,5,10,11], the first use of
the term “bidimensional” was in [3].

First, “parameters” are an alternative view on opti-
mization problems. A parameter P is a function mapping
graphs to nonnegative integers. The decision problem asso-
ciated with P asks, for a given graphG and nonnegative in-
teger k, whether P(G) � k. Many optimization problems
can be phrased as such a decision problem about a graph
parameter P.

Bidimensionality B 89

Now, a parameter is g(r)-bidimensional (or just bidi-
mensional) if it is at least g(r) in an r � r “grid-like
graph” and if the parameter does not increase when tak-
ing either minors g(r)(-minor-bidimensional) or contrac-
tions (g(r)-contraction-bidimensional). The exact defini-
tion of “grid-like graph” depends on the class of graphs
allowed and whether one considersminor- or contraction-
bidimensionality. For minor-bidimensionality and for any
H-minor-free graph class, the notion of a “grid-like graph”
is defined to be the r � r grid, i. e., the planar graph with
r2 vertices arranged on a square grid and with edges con-
necting horizontally and vertically adjacent vertices. For
contraction-bidimensionality, the notion of a “grid-like
graph” is as follows:
1. For planar graphs and single-crossing-minor-free

graphs, a “grid-like graph” is an r � r grid partially tri-
angulated by additional edges that preserve planarity.

2. For bounded-genus graphs, a “grid-like graph” is such
a partially triangulated r � r grid with up to genus(G)
additional edges (“handles”).

3. For apex-minor-free graphs, a “grid-like graph” is an
r � r grid augmented with additional edges such that
each vertex is incident to O(1) edges to nonboundary
vertices of the grid. (HereO(1) depends on the excluded
apex graph.)

Contraction-bidimensionality is so far undefined for H-
minor-free graphs (or general graphs).

Examples of bidimensional parameters include the
number of vertices, the diameter, and the size of various
structures such as feedback vertex set, vertex cover, min-
imum maximal matching, face cover, a series of vertex-
removal parameters, dominating set, edge dominating set,
R-dominating set, connected dominating set, connected
edge dominating set, connected R-dominating set, un-
weighted TSP tour (a walk in the graph visiting all ver-
tices), and chordal completion (fill-in). For example, feed-
back vertex set is ˝(r2)-minor-bidimensional (and thus
also contraction-bidimensional) because (1) deleting or
contracting an edge preserves existing feedback vertex sets,
and (2) any vertex in the feedback vertex set destroys at
most four squares in the r � r grid, and there are (r � 1)2

squares, so any feedback vertex set must have ˝(r2) ver-
tices. See [1,3] for arguments of either contraction- or
minor-bidimensionality for the other parameters.

Key Results

Bidimensionality builds on the seminal GraphMinor The-
ory of Robertson and Seymour, by extending some math-
ematical results and building new algorithmic tools. The
foundation for several results in bidimensionality are the

following two combinatorial results. The first relates any
bidimensional parameter to treewidth, while the second
relates treewidth to grid minors.

Theorem 1 ([1,8]) If the parameter P is g(r)-
bidimensional, then for every graph G in the family as-
sociated with the parameter P, tw(G) = O(g�1(P(G))).
In particular, if g(r) = 	(r2), then the bound becomes
tw(G) = O(

p
P(G)).

Theorem 2 ([8]) For any fixed graph H, every H-minor-
free graph of treewidthw has an˝(w) �˝(w) grid as ami-
nor.

The two major algorithmic results in bidimensionality are
general subexponential fixed-parameter algorithm, and
general polynomial-time approximation scheme (PTASs):

Theorem 3 ([1,8]) Consider a g(r)-bidimensional pa-
rameter P that can be computed on a graph G in
h(w)nO(1) time given a tree decomposition of G of width
at most w. Then there is an algorithm computing P on
any graph G in P’s corresponding graph class, with run-
ning time [h(O(g�1(k))) + 2O(g�1(k))]nO(1). In particular,
if g(r) = 	(r2) and h(w) = 2o(w2), then this running time is
subexponential in k.

Theorem 4 ([7]) Consider a bidimensional problem sat-
isfying the “separation property” defined in [4,7]. Suppose
that the problem can be solved on a graph G with n ver-
tices in f (n; tw(G)) time. Suppose also that the problem
can be approximated within a factor of ˛ in g(n) time.
For contraction-bidimensional problems, suppose further
that both of these algorithms also apply to the “general-
ized form” of the problem defined in [4,7]. Then there is
a (1 + �)-approximation algorithm whose running time is
O(n f (n;O(˛2/�)) + n3g(n)) for the corresponding graph
class of the bidimensional problem.

Applications

The theorems above have many combinatorial and algo-
rithmic applications.

Applying the parameter-treewidth bound of Theo-
rem 1 to the parameter of the number of vertices in the
graph proves that every H-minor-free graph on n vertices
has treewidth O(

p
n), thus (re)proving the separator the-

orem for H-minor-free graphs. Applying the parameter-
treewidth bound of Theorem 1 to the parameter of the
diameter of the graph proves a stronger form of Epp-
stein’s diameter-treewidth relation for apex-minor-free
graphs. (Further work shows how to further strengthen the
diameter-treewidth relation to linear [6].) The treewidth-
grid relation of Theorem 2 can be used to bound the

90 B Binary Decision Graph

gap between half-integral multicommodity flow and frac-
tional multicommodity flow in H-minor-free graphs. It
also yields an O(1)-approximation for treewidth in H-
minor-free graphs. The subexponential fixed-parameter
algorithms of Theorem 3 subsume or strengthen all pre-
vious such results. These results can also be generalized
to obtain fixed-parameter algorithms in arbitrary graphs.
The PTASs of Theorem 4 in particular establish the first
PTASs for connected dominating set and feedback vertex
set even for planar graphs. For details of all of these results,
see [4].

Open Problems

Several combinatorial and algorithmic open problems re-
main in the theory of bidimensionality and related con-
cepts.

Can the grid-minor theorem for H-minor-free graphs,
Theorem 2, be generalized to arbitrary graphs with
a polynomial relation between treewidth and the largest
grid minor? (The best relation so far is exponential.)
Such polynomial generalizations have been obtained for
the cases of “map graphs” and “power graphs” [9].
Good grid-treewidth bounds have applications to minor-
bidimensional problems.

Can the algorithmic results (Theorem 3 and Theo-
rem 4) be generalized to solve contraction-bidimensional
problems beyond apex-minor-free graphs? It is known
that the basis for these results, Theorem 1, does not gen-
eralize [1]. Nonetheless, Theorem 3 has been generalized
for one specific contraction-bidimensional problem, dom-
inating set [3].

Can the polynomial-time approximation schemes of
Theorem 4 be generalized to more general algorithmic
problems that do not correspond directly to bidimensional
parameters? One general family of such problems arises
when adding weights to vertices and/or edges, and the goal
is e. g. to find the minimum-weight dominating set. An-
other family of such problems arises when placing con-
straints (e. g., on coverage or domination) only on subsets
of vertices and/or edges. Examples of such problems in-
clude Steiner tree and subset feedback vertex set.

For additional open problems and details about the
problems above, see [4].

Cross References

� Approximation Schemes for Planar Graph Problems
� Branchwidth of Graphs
� Treewidth of Graphs

Recommended Reading
1. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidi-

mensional parameters and local treewidth. SIAM J. Discret.
Math. 18(3), 501–511 (2004)

2. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-
parameter algorithms for (k, r)-center in planar graphs and
map graphs. ACM Trans. Algorithms 1(1), 33–47 (2005)

3. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subex-
ponential parametrized algorithms on graphs of bounded
genus and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)

4. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and
its algorithmic applications. Comput. J. To appear

5. Demaine, E.D., Hajiaghayi, M.: Diameter and treewidth in
minor-closed graph families, revisited. Algorithmica 40(3),
211–215 (2004)

6. Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth
and linear local treewidth and its algorithmic applications. In:
Proceedings of the 15th ACM-SIAM SymposiumonDiscrete Al-
gorithms (SODA’04), January 2004, pp. 833–842 (2004)

7. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connec-
tions between FPT algorithms and PTASs. In: Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2005), pp. 590–601. Vancouver, January (2005)

8. Demaine, E.D., Hajiaghayi, M.: Graphs excluding a fixed minor
have grids as large as treewidth, with combinatorial and algo-
rithmic applications through bidimensionality. In: Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2005), pp. 682–689. Vancouver, January (2005)

9. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic
graph minor theory: Improved grid minor bounds and Wag-
ner’s contraction. In: Proceedings of the 17th Annual Interna-
tional Symposium on Algorithms and Computation, Calcutta,
India, December 2006. Lecture Notes in Computer Science,
vol. 4288, pp. 3–15 (2006)

10. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thi-
likos, D.M.: Approximation algorithms for classes of graphs ex-
cluding single-crossing graphs as minors. J. Comput. Syst. Sci.
69(2), 166–195 (2004)

11. Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: Exponential
speedup of fixed-parameter algorithms for classes of graphs
excluding single-crossing graphs as minors. Algorithmica
41(4), 245–267 (2005)

12. Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional
theory of bounded-genus graphs. SIAM J. Discret. Math. 20(2),
357–371 (2006)

Binary Decision Graph
1986; Bryant

AMIT PRAKASH1, ADNAN AZIZ2
1 Microsoft, MSN, Redmond, WA, USA
2 Department of Electrical and Computer Engineering,
University of Texas, Austin, TX, USA

Keywords and Synonyms

BDDs; Binary decision diagrams

Binary Decision Graph B 91

ProblemDefinition

Boolean Functions

The concept of a Boolean function – a function whose do-
main is {0,1}n and range is {0,1} – is central to comput-
ing. Boolean functions are used in foundational studies of
complexity [7,9], as well as the design and analysis of logic
circuits [4,13]. A Boolean function can be represented us-
ing a truth table – an enumeration of the values taken by
the function on each element of {0,1}n. Since the truth ta-
ble representation requires memory exponential in n, it is
impractical for most applications. Consequently, there is
a need for data structures and associated algorithms for
efficiently representing and manipulating Boolean func-
tions.

Boolean Circuits

Boolean functions can be represented in many ways. One
natural representation is a Boolean combinational circuit,
or circuit for short [6, Chapter 34]. A circuit consists of
Boolean combinational elements connected by wires. The
Boolean combinational elements are gates and primary in-
puts. Gates come in three types: NOT, AND, and OR. The
NOT gate functions as follows: it takes a single Boolean-
valued input, and produces a single Boolean-valued out-
put which takes value 0 if the input is 1, and 1 if the input
is 0. The AND gate takes two Boolean-valued inputs and
produce a single output; the output is 1 if both inputs are
1, and 0 otherwise. The OR gate is similar to AND, except
that its output is 1 if one or both inputs are 1, and 0 other-
wise.

Circuits are required to be acyclic. The absence of cy-
cles implies that a Boolean-assignment to the primary in-
puts can be unambiguously propagated through the gates
in topological order. It follows that a circuit on n ordered
primary inputs with a designated gate called the primary
output corresponds to a Boolean function on {0,1}n. Every
Boolean function can be represented by a circuit, e. g., by
building a circuit that mimics the truth table.

The circuit representation is very general – any deci-
sion problem that is computable in polynomial-time on
a Turing machine can be computed by circuits polynomial
in the instance size, and the circuits can be constructed ef-
ficiently from the Turingmachine program [15]. However,
the key analysis problems on circuits, namely satisfiability
and equivalence, are NP-hard [7].

Boolean Formulas

A Boolean formula is defined recursively: a Boolean vari-
able xi is a Boolean formula, and if ' and are Boolean

formulas, then so are (:�); (�^); (�_); (� !), and
(� $). The operators :;_;^;!;$ are referred to as
connectives; parentheses are often dropped for notational
convenience. Boolean formulas also can be used to repre-
sent arbitrary Boolean functions; however, formula satisfi-
ability and equivalence are also NP-hard. Boolean formu-
las are not as succinct as Boolean circuits: for example, the
parity function has linear sized circuits, but formula repre-
sentations of parity are super-polynomial. More precisely,
XORn : f0; 1gn 7! f0; 1g is defined to take the value 1
on exactly those elements of f0; 1gn which contain an odd
number of 1s. Define the size of a formula to be the num-
ber of connectives appearing in it. Then for any sequence
of formulas �1; �2; : : : such that �k represents XORk, the
size of �k is˝(kc) for all c 2 Z+ [14, Chapters 11,12].

A disjunct is a Boolean formula in which ^ and : are
the only connectives, and : is applied only to variables;
for example, x1 ^ :x3 ^ :x5 is a disjunct. A Boolean for-
mula is said to be in Disjunctive Normal Form (DNF) if
it is of the form D0 _ D1 _ � � � _ Dk�1, where each Di is
a disjunct. DNF formulas can represent arbitrary Boolean
functions, e. g., by identifying each input on which the for-
mula takes the value 1 with a disjunct. DNF formulas are
useful in logic design, because it can be translated directly
into a PLA implementation [4].While satisfiability of DNF
formulas is trivial, equivalence is NP-hard. In addition,
given DNF formulas ' and , the formulas:� and �^
are not DNF formulas, and the translation of these formu-
las to DNF formulas representing the same function can
lead to exponential growth in the size of the formula.

Shannon Trees

Let f be a Boolean function on domain {0,1}n. Associate
the n dimensions with variables x0; : : : ; xn�1. Then the
positive cofactor of f with respect to xi, denoted by fxi , is
the function on domain {0,1}n, which is defined by

fxi (˛0; : : : ; ˛i�1; ai ; ˛i+1; : : : ; ˛n�1)
= f (˛0; : : : ; ˛i�1; 1; ˛i+1; : : : ; ˛n�1) :

The negative cofactor of f with respect to xi, denoted by
fxi 0 is defined similarly, with 0 taking the place of 1 in the
right-hand side.

Every Boolean function can be decomposed using
Shannon’s expansion theorem:

f (x1; : : : ; xn) = xi � fxi + x0i � fx0i :

This observation can be used to represent f by a Shan-
non tree – a full binary tree [6, Appendix B.5] of height n,
where each path to a leaf node defines a complete assign-
ment to the n variables that f is defined over, and the leaf

92 B Binary Decision Graph

node holds a 0 or a 1, based on the value f takes for the
assignment.

The Shannon tree is not a particularly useful repre-
sentation, since the height of the tree representing every
Boolean function on {0,1}n is n, and the tree has 2n leaves.
The Shannon tree can be made smaller by merging iso-
morphic subtrees, and bypassing nodes which have identi-
cal children. At first glance the reduced Shannon tree rep-
resentation is not particularly useful, since it entails creat-
ing the full binary tree in the first place. Furthermore, it is
not clear how to efficiently perform computations on the
reduced Shannon tree representation, such as equivalence
checking or computing the conjunction of functions pre-
sented as reduced Shannon trees.

Bryant [5] recognized that adding the restriction that
variables appear in fixed order from root to leaves greatly
reduced the complexity of manipulating reduced Shannon
trees. He referred to this representation as a Binary Deci-
sion Diagram (BDD).

Key Results

Definitions

Technically, a BDD is a directed acyclic graph (DAG), with
a designated root, and at most two sinks – one labeled 0,
the other labeled 1. Nonsink nodes are labeled with a vari-
able. Each nonsink node has two outgoing edges – one la-
beled with a 1 leading to the 1-child, the other is a 0, lead-
ing to the 0-child. Variables must be ordered – that is if the
variable label xi appears before the label xj on some path
from the root to a sink, then the label xj is precluded from
appearing before xi on any path from the root to a sink.
Two nodes are isomorphic if both are equi-labeled sinks, or
they are both nonsink nodes, with the same variable label,
and their 0- and 1-children are isomorphic. For the DAG
to be a valid BDD, it is required that there are no isomor-
phic nodes, and for no nodes are its 0- and 1-children the
same.

A key result in the theory of BDDs is that given a fixed
variable ordering, the representation is unique upto iso-
morphism, i. e., if F and G are both BDDs representing
f : f0; 1gn 7! f0; 1g under the variable ordering x1 � x2 �
� � � xn , then F and G are isomorphic.

The definition of isomorphism directly yields a re-
cursive algorithm for checking isomorphism. However,
the resulting complexity is exponential in the number of
nodes – this is illustrated for example by checking the iso-
morphism of the BDD for the parity function against itself.
On inspection, the exponential complexity arises from re-
peated checking of isomorphism between pairs of nodes –
this naturally suggest dynamic programming. Caching iso-

morphism checks reduces the complexity of isomorphism
checking to O(jFj � jGj), where |B| denotes the number of
nodes in the BDD B.

BDD Operations

Many logical operations can be implemented in polyno-
mial time using BDDs: bdd_and which computes a BDD
representing the logical AND of the functions represented
by two BDDs, bdd_or and bdd_not which are defined sim-
ilarly, and bdd_compose which takes a BDD representing
a function f , a variable v, and a BDD representing a func-
tion g and returns the BDD for f where v is substituted by g
are examples.

The example of bdd_and is instructive – it is based on
the identity f � g = x � (fx � gx) + x0 � (fx0 � gx0). The recur-
sion can be implemented directly: the base cases are when
either f or g are 0, and when one or both are 1. The recur-
sion chooses the variable v labeling either the root of the
BDD for f or g, depending on which is earlier in the vari-
able ordering, and recursively computes BDDs for fv � gv
and fv 0 �gv 0 ; these aremerged if isomorphic. Given a BDD F
for f , if v is the variable labeling the root of F, the BDDs for
fv 0 and f v respectively are simply the 0-child and 1-child
of F’s root.

The implementation of bdd_and as described has ex-
ponential complexity because of repeated subproblems
arising. Dynamic programming again provides a solu-
tion – caching the intermediate results of bdd_and re-
duced the complexity to O(jFj � jGj).

Variable Ordering

All symmetric functions on {0,1}n, have a BDD that is
polynomial in n, independent of the variable ordering.
Other useful functions such as comparators, multiplexers,
adders, and subtracters can also be efficiently represented,
if the variable ordering is selected correctly. Heuristics
for ordering selection are presented in [1,2,11]. There are
functions which do not have a polynomial-sized BDD un-
der any variable ordering – the function representing the
n-th bit of the output of a multiplier taking two n-bit
unsigned integer inputs is an example [5]. Wegener [17]
presents manymore examples of the impact of variable or-
dering.

Applications

BDDs have beenmost commonly applied in the context of
formal verification of digital hardware [8]. Digital hard-
ware extends the notion of circuit described above by

Binary Decision Graph B 93

adding state elements which hold a Boolean value between
updates, and are updated on a clock signal.

The gates comprising a design are often updated based
on performance requirements; these changes typically are
not supposed to change the logical functionality of the de-
sign. BDD-based approaches have been used for checking
the equivalence of digital hardware designs [10].

BDDs have also been used for checking properties of
digital hardware. A typical formulation is that a set of
“good” states and a set of “initial” states are specified us-
ing Boolean formulas over the state elements; the prop-
erty holds iff there is no sequence of inputs which leads
a state in the initial state to a state not in the set of good
states. Given a design with n registers, a set of states A
in the design can be characterized by a formula 'A over
n Boolean variables: 'A evaluates to true on an assignment
to the variables iff the corresponding state is in A. The
formula 'A represents a Boolean function, and so BDDs
can be used to represent sets of states. The key opera-
tion of computing the image of a set of states A, i. e., the
set of states that can be reached on application of a sin-
gle input from states in A, can also be implemented using
BDDs [12].

BDDs have been used for test generation. One ap-
proach to test generation is to specify legal inputs us-
ing constraints, in essence Boolean formulas over the the
primary input and state variables. Yuan et al. [18] have
demonstrated that BDDs can be used to solve these con-
straints very efficiently.

Logic synthesis is the discipline of realizing hardware
designs specified as logic equations using gates. Mapping
equations to gates is straightforward; however, in prac-
tice a direct mapping leads to implementations that are
not acceptable from a performance perspective, where per-
formance is measured by gate area or timing delay. Ma-
nipulating logic equations in order to reduce area (e. g.,
through constant propagation, identifying common sub-
expressions, etc.), and delay (e. g., through propagating
late arriving signals closer to the outputs), is conveniently
done using BDDs.

Experimental Results

Bryant reported results on verifying two qualitatively dis-
tinct circuits for addition. He was able to verify on a VAX
11/780 (a 1 MIP machine) that two 64-bit adders were
equivalent in 95.8 minutes. He used an ordering that he
derived manually.

Normalizing for technology, modern BDD packages
are two orders of magnitude faster than Bryant’s original
implementation. A large source the improvement comes

from the use of the strong canonical form, wherein a global
database of BDD nodes is maintained, and no new node is
addedwithout checking to see if a node with the same label
and 0- and 1-children exists in the database [3]. (For this
approach to work, it is also required that the children of
any node being added be in strong canonical form.) Other
improvements stem from the use of complement point-
ers (if a pointer has its least-significant bit set, it refers to
the complement of the function), better memory manage-
ment (garbage collection based on reference counts, keep-
ing nodes that are commonly accessed together close in
memory), better hash functions, and better organization
of the computed table (which keeps track of sub-problems
that have already been encountered) [16].

Data Sets

The SIS (http://embedded.eecs.berkeley.edu/pubs/down
loads/sis/) system from UC Berkeley is used for logic syn-
thesis. It comes with a number of combinational and se-
quential circuits that have been used for benchmarking
BDD packages.

The VIS (http://embedded.eecs.berkeley.edu/pubs/
downloads/vis) system from UC Berkeley and UC Boul-
der is used for design verification; it uses BDDs to perform
checks. The distribution includes a large collection of veri-
fication problems, ranging from simple hardware circuits,
to complex multiprocessor cache systems.

URL to Code

A number of BDD packages exist today, but the pack-
age of choice is CUDD (http://vlsi.colorado.edu/~fabio/
CUDD/). CUDD implements all the core features for ma-
nipulating BDDs, as well as variants. It is written in C++,
and has extensive user and programmer documentation.

Cross References

� Symbolic Model Checking

Recommended Reading
1. Aziz, A., Tasiran, S., Brayton, R.: BDD Variable Ordering for Inter-

acting Finite State Machines. In: ACMDesign Automation Con-
ference, pp. 283–288. (1994)

2. Berman, C.L.: Ordered Binary Decision Diagrams and Circuit
Structure. In: IEEE International Conference on Computer De-
sign. (1989)

3. Brace, K., Rudell, R., Bryant, R.: Efficient Implementation of
a BDD Package. In: ACM Design Automation Conference.
(1990)

4. Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli,
A.: Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers (1984)

http://embedded.eecs.berkeley.edu/pubs/downloads/sis/
http://embedded.eecs.berkeley.edu/pubs/downloads/sis/
http://embedded.eecs.berkeley.edu/pubs/downloads/vis
http://embedded.eecs.berkeley.edu/pubs/downloads/vis
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

94 B Bin Packing

5. Bryant, R.: Graph-based Algorithms for Boolean Function Ma-
nipulation. IEEE Transac. Comp. C-35, 677–691 (1986)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.H., Stein, C.: Introduction
to Algorithms. MIT Press (2001)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H.
Freeman and Co. (1979)

8. Gupta, A.: Formal Hardware Verification Methods: A Survey.
Formal Method Syst. Des. 1, 151–238 (1993)

9. Karchmer, M.: Communication Complexity: A New Approach
to Circuit Depth. MIT Press (1989)

10. Kuehlmann, A., Krohm, F.: Equivalence Checking Using Cuts
and Heaps. In: ACM Design Automation Conference (1997)

11. Malik, S., Wang, A.R., Brayton, R.K., Sangiovanni-Vincentelli, A.:
Logic Verification using Binary Decision Diagrams in a Logic
Synthesis Environment. In: IEEE International Conference on
Computer-Aided Design, pp. 6–9. (1988)

12. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic
Publishers (1993)

13. De Micheli, G.: Synthesis and Optimization of Digital Circuits.
McGraw Hill (1994)

14. Schoning, U., Pruim, R.: Gems of Theoretical Computer Science.
Springer (1998)

15. Sipser, M.: Introduction to the Theory of Computation, 2nd
edn. Course Technology (2005)

16. Somenzi, F.: Colorado University Decision Diagram Package.
http://vlsi.colorado.edu/~fabio/

17. Wegener, I.: Branching Programs and Binary Decision Dia-
grams. SIAM (2000)

18. Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verfication.
Springer (2006)

Bin Packing
1997; Coffman, Garay, Johnson

DAVID S. JOHNSON
Algorithms and Optimization Research Department,
AT&T Labs, Florham Park, NJ, USA

Keywords and Synonyms

Cutting stock problem

ProblemDefinition

In the one-dimensional bin packing problem, one is given
a list L = (a1; a2; : : : ; an) of items, each item ai having
a size s(ai) 2 (0; 1]. The goal is to pack the items into
a minimum number of unit-capacity bins, that is, to parti-
tion the items into a minimum number of sets, each hav-
ing total size of at most 1. This problem is NP-hard, and
so much of the research on it has concerned the design
and analysis of approximation algorithms, which will be
the subject of this article.

Although bin packing has many applications, it is per-
haps most important for the role it has played as a prov-
ing ground for new algorithmic and analytical techniques.

Some of the first worst- and average-case results for ap-
proximation algorithms were proved in this domain, as
well as the first lower bounds on the competitive ratios of
online algorithms. Readers interested in a more detailed
coverage than is possible here are directed to two relatively
recent surveys [4,11].

Key Results

Worst-Case Behavior

Asymptotic Worst-Case Ratios For most minimization
problems, the standard worst-case metric for an approxi-
mation algorithm A is the maximum, over all instances I,
of the ratio A(I)/OPT(I), where A(I) is the value of the so-
lution generated by A and OPT(I) is the optimal solution
value. In the case of bin packing, however, there are lim-
itations to this “absolute worst-case ratio” metric. Here it
is already NP-hard to determine whether OPT(I) = 2, and
hence no polynomial-time approximation algorithm can
have an absolute worst-case ratio better than 1.5 unless P
= NP. To better understand the behavior of bin packing al-
gorithms in the typical situation where the given list L re-
quires a large number of bins, researchers thus use a more
refined metric for bin packing, the asymptotic worst-case
ratio R1A . This is defined in two steps as follows.

Rn
A = max fA(L)/OPT(L) : L is a list with OPT(L) = ng

R1A = lim sup
n!1

Rn
A

The first algorithm whose behavior was analyzed in these
terms was First Fit (FF). This algorithm envisions an infi-
nite sequence of empty bins B1; B2; : : : and, starting with
the first item in the input list L, places each item in turn
into the first bin which still has room for it. In a technical
report from 1971 which was one of the very first papers
in which worst-case performance ratios were studied, Ull-
man [22] proved the following.

Theorem 1 ([22]) R1FF = 17/10.

In addition to FF, five other simple heuristics received
early study and have served as the inspiration for later re-
search. Best Fit (BF) is the variant of FF in which each
item is placed in the bin into which it will fit with the
least space left over, with ties broken in favor of the ear-
liest such bin. Both FF and BF can be implemented to run
in time O(n log n) [12]. Next Fit (NF) is a still simpler and
linear-time algorithm in which the first item is placed in
the first bin, and thereafter each item is placed in the last
nonempty bin if it will fit, otherwise a new bin is started.
First Fit Decreasing (FFD) and Best Fit Decreasing (BFD)
are the variants of those algorithms in which the input list

http://vlsi.colorado.edu/~fabio/

Bin Packing B 95

is first sorted into nonincreasing order by size and then
the corresponding packing rule is applied. The results for
these algorithms are as follows.

Theorem 2 ([12]) R1NF = 2.

Theorem 3 ([13]) R1BF = 17/10.

Theorem 4 ([12,13]) R1FFD = R1BFD = 11/9 = 1:222 : : :

The abovementioned algorithms are relatively simple and
intuitive. If one is willing to consider more complicated
algorithms, one can do substantially better. The current
best polynomial-time bin packing algorithm is very good
indeed. This is the 1982 algorithm of Karmarkar and
Karp [15], denoted here as “KK.” It exploits the ellip-
soid algorithm, approximation algorithms for the knap-
sack problem, and a clever rounding scheme to obtain the
following guarantees.

Theorem 5 ([15]) R1KK = 1 and there is a constant c such
that for all lists L,

KK(L) � OPT(L) + c log2(OPT(L)) :

Unfortunately, the running time for KK appears to be
worse than O(n8), and BFD and FFD remain much more
practical alternatives.

Online Algorithms Three of the abovementioned algo-
rithms (FF, BF, and NF) are online algorithms, in that they
pack items in the order given, without reference to the
sizes or number of later items. As was subsequently ob-
served in many contexts, the online restriction can seri-
ously limit the ability of an algorithm to produce good
solutions. Perhaps the first limitation of this type to be
proved was Yao’s theorem [24] that no online algorithm A
for bin packing can have R1A < 1:5. The bound has since
been improved to the following.

Theorem 6 ([23]) If A is an online algorithm for bin pack-
ing, then R1A � 1:540 : : :

Here the exact value of the lower bound is the solution to
a complicated linear program.

Yao’s paper also presented an online algorithm Revised
First Fit (RFF) that had R1RFF = 5/3 = 1:666 : : : and hence
got closer to this lower bound than FF and BF. This algo-
rithm worked by dividing the items into four classes based
on size and index, and then using different packing rules
(and packings) for each class. Subsequent algorithms im-
proved on this by going tomore andmore classes. The cur-
rent champion is the onlineHarmonic++ algorithm (H++)
of [21]:

Theorem 7 ([21]) R1H++ � 1:58889.

Bounded-Space Algorithms The NF algorithm, in ad-
dition to being online, has another property worth noting:
no more than a constant number of partially filled bins re-
main open to receive additional items at any given time.
In the case of NF, the constant is 1 – only the last partially
filled bin can receive additional items. Bounding the num-
ber of open bins may be necessary in some applications,
such as packing trucks on loading docks. The bounded-
space constraint imposes additional limits on algorithmic
behavior however.

Theorem 8 ([17]) For any online bounded-space algo-
rithm A, R1A � 1:691 : : :.

The constant 1:691 : : : arises in many other bin pack-
ing contexts. It is commonly denoted by h1 and equalsP1

i=1(1/ti), where t1 = 1 and, for i > 1, ti = ti�1(ti�1 +1).
The lower bound in Theorem 8 is tight, owing to the

existence of the Harmonick algorithms (Hk) of [17]. Hk is
a class-based algorithm in which the items are divided into
classes Ch, 1 � h � k, with Ck consisting of all items with
size 1/k or smaller, and Ch, 1 � h < k, consisting of all ai
with 1/(h + 1) < s(ai) � 1/h. The items in each class are
then packed by NF into a separate packing devoted just to
that class. Thus, at most k bins are open at any time. In [17]
it was shown that limk!1 R1Hk

= h1 = 1:691 : : :. This is
even better than the asymptotic worst-case ratio of 1.7 for
the unbounded-space algorithms FF and BF, although it
should be noted that the bounded-space variant of BF in
which all but the two most-full bins are closed also has
R1A = 1:7 [8].

Average-Case Behavior

ContinuousDistributions Bin packing also served as an
early test bed for studying the average-case behavior of
approximation algorithms. Suppose F is a distribution on
(0; 1] and Ln is a list of n items with item sizes chosen inde-
pendently according to F. For any list L, let s(L) denote the
lower bound on OPT(L) obtained by summing the sizes of
all the items in L. Then define

ERn
A(F) = E

	
A(Ln)/OPT(Ln)

;

ER1A (F) = lim sup
n!1

ERn
A

EWn
A(F) = E

	
A(Ln) � s(Ln)

The last definition is included since ER1A (F) = 1 occurs
frequently enough that finer distinctions are meaningful.
For example, in the early 1980s, it was observed that for the
distribution F = U(0; 1] in which item sizes are uniformly
distributed on the interval (0; 1], ER1FFD(F) = ER1BFD(F) =
1, as a consequence of the following more-detailed results.

96 B Bin Packing

Theorem 9 ([16,20]) For A 2 fFFD;BFD;OPTg,
EWn

A(U(0; 1]) = 	(
p
n).

Somewhat surprisingly, it was later discovered that the on-
line FF and BF algorithms also had sublinear expected
waste, and hence ER1A (U(0; 1]) = 1.

Theorem 10 ([5,19])

EWn
FF (U(0; 1]) = 	(n2/3)

EWn
BF (U(0; 1]) = 	(n1/2 log3/4 n)

This good behavior does not, however, extend to the
bounded-space algorithms NF and Hk:

Theorem 11 ([6,18])

ER1NF (U(0; 1]) = 4/3 = 1:333 : : :

lim
k!1

ERHk (U(0; 1]) =
2/3 � 2 = 1:2899 : : :

All the above results except the last two exploit the fact
that the distribution U(0; 1] is symmetric about 1/2; and
hence an optimal packing consists primarily of two-item
bins, with items of size s > 1/2 matched with smaller
items of size very close to 1� s. The proofs essentially
show that the algorithms in question do good jobs of
constructing such matchings. In practice, however, there
will clearly be situations where more than matching is re-
quired. To model such situations, researchers first turned
to the distributions U(0; b], 0 < b < 1, where item sizes
are chosen uniformly from the interval (0; b]. Simula-
tions suggest that such distributions make things worse
for the online algorithms FF and BF, which appear to
have ER1A (U(0; b]) > 1 for all b 2 (0; 1). Surprisingly,
they make things better for FFD and BFD (and the opti-
mal packing).

Theorem 12 ([2,14])
1. For 0 < b � 1/2 and A 2 fFFD;BFDg,

EWn
A(U(0; b]) = O(1).

2. For 1/2 < b < 1 and A 2 fFFD;BFDg,
EWn

A(U(0; b]) = 	(n1/3).
3. For 0 < b < 1, EWn

OPT(U(0; b]) = O(1).

Discrete Distributions In many applications, the item
sizes come from a finite set, rather than a continuous dis-
tribution like those discussed above. Thus, recently the
study of average-case behavior for bin packing has turned
to discrete distributions. Such a distribution is specified by
a finite list s1; s2; : : : ; sd of rational sizes and for each si
a corresponding rational probability pi. A remarkable re-
sult of Courcoubetis and Weber [7] says the following.

Theorem 13 ([7]) For any discrete distribution F,
EWn

OPT(F) is either	(n),	(
p
n), or O(1).

The discrete analogue of the continuous distribution
U(0; b] is the distribution Uf j; kg, where the sizes are
1/k; 2/k; : : : ; j/k and all the probabilities equal 1/j. Sim-
ulations suggest that the behavior of FF and BF in the dis-
crete case are qualitatively similar to the behavior in the
continuous case, whereas the behavior of FFD and BFD
is considerably more bizarre [3]. Of particular note is the
distribution F = Uf6; 13g, for which ER1FFD(F) is strictly
greater than ER1FF (F), in contrast to all the previously im-
plied comparisons between the two algorithms.

For discrete distributions, however, the standard algo-
rithms are all dominated by a new online algorithm called
the Sum-of-Squares (SS) algorithm. Note that since the
item sizes are all rational, they can be scaled so that they
(and the bin size B) are all integral. Then at any given point
in the operation of an online algorithm, the current pack-
ing can be summarized by giving, for each h, 1 � h � B,
the number nh of bins containing items of total size h. In
SS, one packs each item so as to minimize

PB�1
h=1 n2h .

Theorem 14 ([9]) For any discrete distribution F, the fol-
lowing hold.
1. If EWn

OPT(F) = 	(
p
n), then EWn

SS(F) = 	(
p
n).

2. If EWn
OPT(F) = O(1),

then EWn
SS(F) 2 fO(1); 	(log n)g.

In addition, a simple modification to SS can eliminate the
	(log n) case of condition 2.

Applications

There are many potential applications of one-dimensional
bin packing, from packing bandwidth requests into fixed-
capacity channels to packing commercials into station
breaks. In practice, simple heuristics like FFD and BFD are
commonly used.

Open Problems

Perhaps the most fundamental open problem related to
bin packing is the following. As observed above, there
is a polynomial-time algorithm (KK) whose packings are
within O(log2(OPT)) bins of optimal. Is it possible to do
better? As far as is currently known, there could still be
a polynomial-time algorithm that always gets within one
bin of optimal, even if P 6= NP.

Experimental Results

Bin packing has been a fertile ground for experimental
analysis, andmany of the theoremsmentioned above were

Boosting Textual Compression B 97

first conjectured on the basis of experimental results. For
example, the experiments reported in [1] inspired Theo-
rems 10 and 12, and the experiments in [10] inspired The-
orem 14.

Cross References

� Approximation Schemes for Bin Packing

Recommended Reading
1. Bentley, J.L., Johnson, D.S., Leighton, F.T., McGeoch, C.C.: An ex-

perimental study of bin packing. In: Proc. of the 21st Annual
Allerton Conference on Communication, Control, and Com-
puting, Urbana, University of Illinois, 1983 pp. 51–60

2. Bentley, J.L., Johnson, D.S., Leighton, F.T., McGeoch, C.C., Mc-
Geoch, L.A.: Some unexpected expected behavior results for
bin packing. In: Proc. of the 16th Annual ACM Symposium on
Theory of Computing, pp. 279–288. ACM, New York (1984)

3. Coffman Jr, E.G., Courcoubetis, C., Garey, M.R., Johnson, D.S.,
McGeoch, L.A., Shor, P.W., Weber, R.R., Yannakakis, M.: Fun-
damental discrepancies between average-case analyses under
discrete and continuous distributions. In: Proc. of the 23rd An-
nual ACM Symposium on Theory of Computing, New York,
1991, pp. 230–240. ACM Press, New York (1991)

4. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation al-
gorithms for bin-packing: A survey. In: Hochbaum, D. (ed.) Ap-
proximation Algorithms for NP-Hard Problems, pp. 46–93. PWS
Publishing, Boston (1997)

5. Coffman Jr., E.G., Johnson, D.S., Shor, P.W., Weber, R.R.: Bin
packing with discrete item sizes, part II: Tight bounds on first
fit. Random Struct. Algorithms 10, 69–101 (1997)

6. Coffman Jr., E.G., So, K., Hofri, M., Yao, A.C.: A stochastic model
of bin-packing. Inf. Cont. 44, 105–115 (1980)

7. Courcoubetis, C., Weber, R.R.: Necessary and sufficient condi-
tions for stability of a bin packing system. J. Appl. Prob. 23,
989–999 (1986)

8. Csirik, J., Johnson, D.S.: Bounded space on-line bin packing:
Best is better than first. Algorithmica 31, 115–138 (2001)

9. Csirik, J., Johnson, D.S., Kenyon, C., Orlin, J.B., Shor, P.W., Weber,
R.R.: On the sum-of-squares algorithm for bin packing. J. ACM
53, 1–65 (2006)

10. Csirik, J., Johnson, D.S., Kenyon, C., Shor, P.W.,Weber, R.R.: A self
organizing bin packing heuristic. In: Proc. of the 1999 Work-
shop on Algorithm Engineering and Experimentation. LNCS,
vol. 1619, pp. 246–265. Springer, Berlin (1999)

11. Galambos, G., Woeginger, G.J.: Online bin packing – a re-
stricted survey. ZOR Math. Methods Oper. Res. 42, 25–45
(1995)

12. Johnson, D.S.: Near-Optimal Bin Packing Algorithms. Ph. D.
thesis, Massachusetts Institute of Technology, Department of
Mathematics, Cambridge (1973)

13. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham,
R.L.: Worst-case performance bounds for simple one-dimen-
sional packing algorithms. SIAM J. Comput. 3, 299–325 (1974)

14. Johnson, D.S., Leighton, F.T., Shor, P.W., Weber, R.R.: The ex-
pected behavior of FFD, BFD, and optimal bin packing under
U(0; ˛]) distributions (in preparation)

15. Karmarkar, N., Karp, R.M.: An efficient approximation scheme
for the one-dimensional bin packing problem. In: Proc. of the

23rd Annual Symposium on Foundations of Computer Sci-
ence, pp. 312–320. IEEE Computer Soc, Los Alamitos, CA (1982)

16. Knödel, W.: A bin packing algorithm with complexity O(nlogn)
in the stochastic limit. In: Proc. 10th Symp. on Mathematical
Foundations of Computer Science. LNCS, vol. 118, pp. 369–
378. Springer, Berlin (1981)

17. Lee, C.C., Lee, D.T.: A simple on-line packing algorithm. J. ACM
32, 562–572 (1985)

18. Lee, C.C., Lee, D.T.: Robust on-line bin packing algorithms.
Tech. Rep. Department of Electrical Engineering andComputer
Science, Northwestern University, Evanston, IL (1987)

19. Leighton, T., Shor, P.: Tight bounds for minimax grid matching
with applications to the average case analysis of algorithms.
Combinatorica 9 161–187 (1989)

20. Lueker, G.S.: An average-case analysis of bin packing with uni-
formly distributed item sizes. Tech. Rep. Report No 181, Dept.
of Information and Computer Science, University of California,
Irvine, CA (1982)

21. Seiden, S.S.: On the online bin packing problem. J. ACM 49,
640–671 (2002)

22. Ullman, J.D.: The performance of a memory allocation al-
gorithm. Tech. Rep. 100, Princeton University, Princeton, NJ
(1971)

23. van Vliet, A.: An improved lower bound for on-line bin packing
algorithms. Inf. Proc. Lett. 43, 277–284 (1992)

24. Yao, A.C.: New algorithms for bin packing. J. ACM 27, 207–227
(1980)

Block Edit Distance
� Edit Distance Under Block Operations

Block-Sorting Data Compression
� Burrows–Wheeler Transform

Boolean Formulas
� Learning Automata

Boolean Satisfiability
� Exact Algorithms for General CNF SAT

Boosting Textual Compression
2005; Ferragina, Giancarlo, Manzini, Sciortino

PAOLO FERRAGINA1, GIOVANNI MANZINI2
1 Department of Computer Science, University of Pisa,
Pisa, Italy

2 Department of Computer Science,
University of Eastern Piedmont, Alessandria, Italy

98 B Boosting Textual Compression

Keywords and Synonyms

High-order compression models; Context-aware com-
pression

ProblemDefinition

Informally, a boosting technique is a method that, when
applied to a particular class of algorithms, yields improved
algorithms. The improvement must be provable and well
defined in terms of one or more of the parameters charac-
terizing the algorithmic performance. Examples of boost-
ers can be found in the context of Randomized Algorithms
(here, a booster allows one to turn a BPP algorithm into
an RP one [6]) and Computational Learning Theory (here,
a booster allows one to improve the prediction accuracy
of a weak learning algorithm [10]). The problem of Com-
pression Boosting consists of designing a technique that
improves the compression performance of a wide class of
algorithms. In particular, the results of Ferragina et al. pro-
vide a general technique for turning a compressor that uses
no context information into one that always uses the best
possible context.

The classic Huffman and Arithmetic coding algo-
rithms [1] are examples of statistical compressors which
typically encode an input symbol according to its overall
frequency in the data to be compressed.1 This approach
is efficient and easy to implement but achieves poor com-
pression. The compression performance of statistical com-
pressors can be improved by adopting higher-order mod-
els that obtain better estimates for the frequencies of the
input symbols. The PPM compressor [9] implements this
idea by collecting (the frequency of) all symbols which
follow any k-long context, and by compressing them via
Arithmetic coding. The length k of the context is a param-
eter of the algorithm that depends on the data to be com-
pressed: it is different if one is compressing English text,
a DNA sequence, or an XML document. There exist other
examples of sophisticated compressors that use context in-
formation in an implicitway, such as Lempel–Ziv and Bur-
rows–Wheeler compressors [9]. All these context-aware
algorithms are effective in terms of compression perfor-
mance, but are usually rather complex to implement and
difficult to analyze.

Applying the boosting technique of Ferragina et al. to
Huffman or Arithmetic Coding yields a new compression
algorithm with the following features: (i) the new algo-
rithm uses the boosted compressor as a black box, (ii) the
new algorithm compresses in a PPM-like style, automat-

1In their dynamic versions these algorithms consider the fre-
quency of a symbol in the already scanned portion of the input.

ically choosing the optimal value of k, (iii) the new algo-
rithm has essentially the same time/space asymptotic per-
formance of the boosted compressor. The following sec-
tions give a precise and formal treatment of the three prop-
erties (i)–(iii) outlined above.

Key Results

Notation: The Empirical Entropy

Let s be a string over the alphabet ˙ = fa1; : : : ; ahg and,
for each ai 2 ˙ , let ni be the number of occurrences of
ai in s. The 0th order empirical entropy of the string s is
defined as H0(s) = �

Ph
i=1(ni /jsj) log(ni /jsj), where it is

assumed that all logarithms are taken to the base 2 and
0 log 0 = 0. It is well known that H0 is the maximum com-
pression one can achieve using a uniquely decodable code
in which a fixed codeword is assigned to each alphabet
symbol. Greater compression is achievable if the codeword
of a symbol depends on the k symbols following it (namely,
its context).2 Let us definews as the string of single symbols
immediately preceding the occurrences of w in s. For ex-
ample, for s = bcabcabdca it is cas = bbd. The value

Hk(s) =
1
jsj

X

w2˙ k

jwsj H0(ws) (1)

is the k-th order empirical entropy of s and is a lower
bound to the compression one can achieve using code-
words which only depend on the k symbols immediately
following the one to be encoded.

Example 1 Let s = mississippi. For k = 1 it is
is = mssp, ss = isis, ps = ip. Hence,

H1(s) =
4
11

H0(mssp) +
4
11

H0(isis) +
2
11

H0(ip)

=
6
11

+
4
11

+
2
11

=
12
11
:

Note that the empirical entropy is defined for any string
and can be used to measure the performance of com-
pression algorithms without any assumption on the in-
put source. Unfortunately, for some (highly compress-
ible) strings, the empirical entropy provides a lower bound
that is too conservative. For example, for s = an it is
jsj Hk(s) = 0 for any k � 0. To better deal with highly

2In data compression it is customary to define the context looking
at the symbols preceding the one to be encoded. The present entry
uses the non-standard “forward” contexts to simplify the notation of
the following sections. Note that working with “forward” contexts is
equivalent to working with the traditional “backward” contexts on the
string s reversed (see [3] for details).

Boosting Textual Compression B 99

compressible strings [7] introduced the notion of 0th order
modified empirical entropy H�0 (s) whose property is that
jsjH�0 (s) is at least equal to the number of bits needed to
write down the length of s in binary. The kth order modi-
fied empirical entropy H�k is then defined in terms of H�0 as
the maximum compression one can achieve by looking at
no more than k symbols following the one to be encoded.

The Burrows–Wheeler Transform

Given a string s, the Burrows–Wheeler transform [2]
(bwt) consists of three basic steps: (1) append to the end
of s a special symbol $ smaller than any other symbol
in ˙ ; (2) form a conceptual matrix M whose rows are
the cyclic shifts of the string s$, sorted in lexicographic or-
der; (3) construct the transformed text ŝ = bwt(s) by tak-
ing the last column ofM (see Fig. 1). In [2] Burrows and
Wheeler proved that ŝ is a permutation of s, and that from
ŝ it is possible to recover s in O(jsj) time.

To see the power of the bwt the reader should reason
in terms of empirical entropy. Fix a positive integer k. The
first k columns of the bwt matrix contain, lexicographi-
cally ordered, all length-k substrings of s (and k substrings
containing the symbol $). For any length-k substring w
of s, the symbols immediately preceding every occurrence
of w in s are grouped together in a set of consecutive posi-
tions of ŝ since they are the last symbols of the rows ofM
prefixed by w. Using the notation introduced for defining
Hk, it is possible to rephrase this property by saying that
the symbols ofws are consecutive within ŝ, or equivalently,
that ŝ contains, as a substring, a permutation
w (ws) of the
string ws.

Example 2 Let s = mississippi and k = 1. Figure 1
shows that ŝ[1; 4] = pssm is a permutation of is = mssp.
In addition, ŝ[6; 7] = pi is a permutation of ps = ip, and
ŝ[8; 11] = ssii is a permutation of ss = isis.

Since permuting a string does not change its (modi-
fied) 0th order empirical entropy (that is, H0(
w (ws)) =
H0(ws)), the Burrows–Wheeler transform can be seen as
a tool for reducing the problem of compressing s up to its
kth order entropy to the problem of compressing distinct
portions of ŝ up to their 0th order entropy. To see this, as-
sume partitioning of ŝ into the substrings
w (ws) by vary-
ing w over ˙ k . It follows that ŝ =

F
w2˙ k
w (ws) whereF

denotes the concatenation operator among strings.3

3In addition totw2˙ k�w(ws), the string ŝ also contains the last k
symbols of s (which do not belong to anyws) and the special symbol $.
For simplicity these symbols will be ignored in the following part of
the entry.

By (1) it follows that
X

w2˙ k

j
w (ws)jH0(
w (ws)) =
X

w2˙ k

jwsjH0(ws) = jsjHk(s):

Hence, to compress s up to jsj Hk(s) it suffices to com-
press each substring
w (ws) up to its 0th order empirical
entropy. Note, however, that in the above scheme the pa-
rameter k must be chosen in advance. Moreover, a sim-
ilar scheme cannot be applied to H�k which is defined in
terms of contexts of length at most k. As a result, no effi-
cient procedure is known for computing the partition of
ŝ corresponding to H�k (s). The compression booster [3] is
a natural complement to the bwt and allows one to com-
press any string s up to Hk(s) (or H�k (s)) simultaneously
for all k � 0.

The Compression Boosting Algorithm

A crucial ingredient of compression boosting is the rela-
tionship between the bwt matrix and the suffix tree data
structure. Let T denote the suffix tree of the string s$. T
has jsj + 1 leaves, one per suffix of s$, and edges labeled
with substrings of s$ (see Fig. 1). Any node u of T has im-
plicitly associated a substring of s$, given by the concate-
nation of the edge labels on the downward path from the
root ofT to u. In that implicit association, the leaves ofT
correspond to the suffixes of s$. Assume that the suffix tree
edges are sorted lexicographically. Since each row of the
bwtmatrix is prefixed by one suffix of s$ and rows are lexi-
cographically sorted, the ith leaf (counting from the left) of
the suffix tree corresponds to the ith row of the bwtmatrix.
Associate to the ith leaf of T the ith symbol of ŝ = bwt(s).
In Fig. 1 these symbols are represented inside circles.

For any suffix tree node u, let ŝhui denote the substring
of ŝ obtained by concatenating, from left to right, the sym-
bols associated to the leaves descending from node u. Of
course ŝhroot(T)i = ŝ. A subset L of T ’s nodes is called
a leaf cover if every leaf of the suffix tree has a unique ances-
tor inL. Any leaf coverL = fu1; : : : ; upg naturally induces
a partition of the leaves of T . Because of the relationship
between T and the bwtmatrix this is also a partition of ŝ,
namely fŝhu1i; : : : ; ŝhupig.

Example 3 Consider the suffix tree in Fig. 1. A leaf cover
consists of all nodes of depth one. The partition of ŝ in-
duced by this leaf cover is fi;pssm;$;pi;ssiig.

Let C denote a function that associates to every string x
over˙ [f$g a positive real value C(x). For any leaf cover
L, define its cost as C(L) =Pu2L C(ŝhui). In other words,
the cost of the leaf cover L is equal to the sum of the costs
of the strings in the partition induced by L. A leaf cover

100 B Boosting Textual Compression

Boosting Textual Compression, Figure 1
The bwtmatrix (left) and the suffix tree (right) for the string s = mississippi$. The output of the bwt is the last column of the bwt
matrix, i. e., ŝ = bwt(s) = ipssm$pissii

Lmin is called optimalwith respect toC if C(Lmin) � C(L),
for any leaf cover L.

Let A be a compressor such that, for any string x,
its output size is bounded by jxjH0(x) + �jxj + � bits,
where � and � are constants. Define the cost function
CA(x) = jxjH0(x) + �jxj + �. In [3] Ferragina et al. exhibit
a linear-time greedy algorithm that computes the optimal
leaf cover Lmin with respect to CA. The authors of [3] also
show that, for any k � 0, there exists a leaf cover Lk of
cost CA(Lk) = jsj Hk(s) + �jsj + O(j˙ jk). These two cru-
cial observations show that, if one uses A to compress each
substring in the partition induced by the optimal leaf cover
Lmin, the total output size is bounded in terms of jsj Hk(s),
for any k � 0. In fact,

X
u2Lmin

CA(ŝhui) =CA(Lmin) � CA(Lk)

=jsj Hk(s) + �jsj + O(j˙ jk)

In summary, boosting the compressor A over the string s
consists of three main steps:
1. Compute ŝ = bwt(s);
2. Compute the optimal leaf cover Lmin with respect to

CA, and partition ŝ according to Lmin;
3. Compress each substring of the partition using the al-

gorithm A.
So the boosting paradigm reduces the design of effective
compressors that use context information, to the (usually
easier) design of 0th order compressors. The performance
of this paradigm is summarized by the following theorem.

Theorem 1 (Ferragina et al. 2005) Let A be a compressor
that squeezes any string x in atmost jxjH0(x)+�jxj+� bits.

The compression booster applied to A produces an output
whose size is bounded by jsjHk(s) + log jsj+�jsj+O(j˙ jk)
bits simultaneously for all k � 0. With respect to A, the
booster introduces a space overhead of O(jsj log jsj) bits and
no asymptotic time overhead in the compression process.�

A similar result holds for the modified entropy H�k as well
(but it is much harder to prove): Given a compressor A
that squeezes any string x in at most �jxj H�0 (x) + � bits,
the compression booster produces an output whose size
is bounded by �jsj H�k (s) + log jsj + O(j˙ jk) bits, simulta-
neously for all k � 0. In [3] the authors also show that no
compression algorithm, satisfying some mild assumptions
on its inner working, can achieve a similar bound in which
both the multiplicative factor � and the additive logarith-
mic term are dropped simultaneously. Furthermore [3]
proposes an instantiation of the booster which compresses
any string s in at most 2:5jsjH�k (s) + log jsj + O(j˙ jk) bits.
This bound is analytically superior to the bounds proven
for the best existing compressors including Lempel–Ziv,
Burrows–Wheeler, and PPM compressors.

Applications

Apart from the natural application in data compression,
compressor boosting has been used also to design Com-
pressed Full-text Indexes [8].

Open Problems

The boosting paradigm may be generalized as follows:
Given a compressor A, find a permutation P for the sym-
bols of the string s and a partitioning strategy such that the

Branchwidth of Graphs B 101

boosting approach, applied to them, minimizes the out-
put size. These pages have provided convincing evidence
that the Burrows–Wheeler Transform is an elegant and
efficient permutation P. Surprisingly enough, other clas-
sic Data Compression problems fall into this framework:
Shortest Common Superstring (which is MAX-SNP hard),
Run Length Encoding for a Set of Strings (which is polyno-
mially solvable), LZ77 and minimum number of phrases
(which is MAX-SNP-Hard). Therefore, the boosting ap-
proach is general enough to deserve further theoretical and
practical attention [5].

Experimental Results

An investigation of several compression algorithms based
on boosting, and a comparison with other state-of-the-art
compressors is presented in [4]. The experiments show
that the boosting technique is more robust than other bwt-
based approaches, and works well even with less effective
0th order compressors. However, these positive features
are achieved using more (time and space) resources.

Data Sets

The data sets used in [4] are available from http://www.
mfn.unipmn.it/~manzini/boosting. Other data sets for
compression and indexing are available at the Pizza&Chili
site http://pizzachili.di.unipi.it/.

URL to Code

The Compression Boosting page (http://www.mfn.
unipmn.it/~manzini/boosting) contains the source code
of all the algorithms tested in [4]. The code is organized
in a highly modular library that can be used to boost any
compressor evenwithout knowing the bwt or the boosting
procedure.

Cross References

� Arithmetic Coding for Data Compression
� Burrows–Wheeler Transform
� Compressed Text Indexing
� Table Compression
� Tree Compression and Indexing

Recommended Reading
1. Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice

Hall, NJ (1990)
2. Burrows, M.Wheeler, D.: A block sorting lossless data compres-

sion algorithm. Tech. Report 124, Digital Equipment Corpora-
tion (1994)

3. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting
textual compression in optimal linear time. J. ACM52, 688–713
(2005)

4. Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of
a compression boosting library: Theory vs practice in bwt com-
pression. In: Proc. 14th European Symposium on Algorithms
(ESA). LNCS, vol. 4168, pp. 756–767. Springer, Berlin (2006)

5. Giancarlo, R., Restivo, A., Sciortino, M.: From first principles to
the Burrows andWheeler transform and beyond, via combina-
torial optimization. Theor. Comput. Sci. 387(3):236-248 (2007)

6. Karp, R., Pippenger, N., Sipser, M.: A Time-Randomness trade-
off. In: Proc. Conference on Probabilistic Computational Com-
plexity, AMS, 1985, pp. 150–159

7. Manzini, G.: An analysis of the Burrows-Wheeler transform.
J. ACM 48, 407–430 (2001)

8. Navarro, G., Mäkinen, V.: Compressed full text indexes. ACM
Comput. Surv. 39(1) (2007)

9. Salomon, D.: Data Compression: the Complete Reference, 4th
edn. Springer, London (2004)

10. Schapire, R.E.: The strength of weak learnability. Mach. Learn.
2, 197–227 (1990)

Branchwidth of Graphs
2003; Fomin, Thilikos

FEDOR FOMIN1, DIMITRIOS THILIKOS2
1 Department of Informatics, University of Bergen,
Bergen, Norway

2 Department of Mathematics, National and Kapodistrian
University of Athens, Athens, Greece

Keywords and Synonyms

Tangle Number

ProblemDefinition

Branchwidth, along with its better-known counterpart,
treewidth, are measures of the “global connectivity” of
a graph.

Definition

Let G be a graph on n vertices. A branch decomposition of
G is a pair (T; �), where T is a tree with vertices of degree
1 or 3 and � is a bijection from the set of leaves of T to the
edges of G. The order, we denote it as ˛(e), of an edge e in
T is the number of vertices v ofG such that there are leaves
t1; t2 in T in different components of T(V (T); E(T) � e)
with �(t1) and �(t2) both containing v as an endpoint.

The width of (T; �) is equal to maxe2E(T)f˛(e)g, i. e. is
the maximum order over all edges of T. The branchwidth
ofG is theminimumwidth over all the branch decomposi-
tions ofG (in the case where jE(G)j � 1, thenwe define the
branchwidth to be 0; if jE(G)j = 0, then G has no branch

http://www.mfn.unipmn.it/~manzini/boosting
http://www.mfn.unipmn.it/~manzini/boosting
http://pizzachili.di.unipi.it/
http://www.mfn.unipmn.it/~manzini/boosting
http://www.mfn.unipmn.it/~manzini/boosting

102 B Branchwidth of Graphs

decomposition; if jE(G)j = 1, then G has a branch decom-
position consisting of a tree with one vertex – the width of
this branch decomposition is considered to be 0).

The above definition can be directly extended to hy-
pergraphs where � is a bijection from the leaves of T to
the hyperedges of G. The same definition can easily be ex-
tended to matroids.

Branchwidth was first defined by Robertson and Sey-
mour in [25] and served as a main tool for their proof of
Wagner’s Conjecture in their Graph Minors series of pa-
pers. There, branchwidth was used as an alternative to the
parameter of treewidth as it appeared easier to handle for
the purposes of the proof. The relation between branch-
width and treewidth is given by the following result.

Theorem 1 ([25]) If G is a graph, then branchwidth(G) �
treewidth(G) + 1 � b3/2 branchwidth(G)c.

The algorithmic problems related to branchwidth are of
two kinds: first find fast algorithms computing its value
and, second, use it in order to design fast dynamic pro-
gramming algorithms for other problems.

Key Results

Algorithms for Branchwidth

Computing branchwidth is an NP-hard problem ([29]).
Moreover, the problem remains NP-hard even if we re-
strict its input graphs to the class of split graphs or bipartite
graphs [20].

On the positive side, branchwidth is computable in
polynomial time on interval graphs [20,24], and circular
arc graphs [21]. Perhaps themost celebrated positive result
on branchwidth is anO(n2) algorithm for the branchwidth
of planar graphs, given by Seymour and Thomas in [29]. In
the same paper they also give an O(n4) algorithm to com-
pute an optimal branch decomposition. (The running time
of this algorithm has been improved to O(n3) in [18].) The
algorithm in [29] is basically an algorithm for a parame-
ter called carving width, related to telephone routing and
the result for branchwidth follows from the fact that the
branch width of a planar graph is half of the carving-width
of its medial graph.

The algorithm for planar graphs [29] can be used to
construct an approximation algorithm for branchwidth of
some non-planar graphs. On graph classes excluding a sin-
gle crossing graph as a minor branchwidth can be approx-
imated within a factor of 2.25 [7] (a graph H is a minor of
a graph G if H can be obtained by a subgraph of G after
applying edge contractions). Finally, it follows from [13]
that for every minor closed graph class, branchwidth can
be approximated by a constant factor.

Branchwidth cannot increase when applying edge con-
tractions or removals. According to the Graph Minors
theory, this implies that, for any fixed k, there is a finite
number of minor minimal graphs of branchwidth more
than k and we denote this set of graphs by Bk . Checking
whether a graphG contains a fixed graph as a minor can be
done in polynomial time [27]. Therefore, the knowledge
of Bk implies the construction of a polynomial time algo-
rithm for deciding whether branchwidth(G) � k, for any
fixed k. Unfortunately Bk is known only for small values
of k. In particular, B0 = fP2g; B1 = fP4;K3g;B2 = fK4g

and B3 = fK5;V8;M6;Q3g (here Kr is a clique on r ver-
tices, Pr is a path on r edges, V8 is the graph obtained
by a cycle on 8 vertices if we connect all pairs of ver-
tices with cyclic distance 4, M6 is the octahedron, and
Q3 is the 3-dimensional cube). However, for any fixed
k, one can construct a linear, on n = jV(G)j, algorithm
that decides whether an input graph G has branchwidth
� k and, if so, outputs the corresponding branch de-
composition (see [3]). In technical terms, this implies
that the problem of asking, for a given graph G, whether
branchwidth(G) � k, parameterized by k is fixed parame-
ter tractable (i. e. belongs in the parameterized complexity
class FPT). (See [12] for further references on parameter-
ized algorithms and complexity.) The algorithm in [3] is
complicated and uses the technique of characteristic se-
quences, which was also used in order to prove the anal-
ogous result for treewidth. For the particular cases where
k � 3, simpler algorithms exist that use the “reduction
rule” technique (see [4]). We stress that B4 remains un-
known while several elements of it have been detected
so far (including the dodecahedron and the icosahedron
graphs). There is a number of algorithms that for a given k
in time 2O(k) � nO(1) either decide that the branchwidth of
a given graph is at least k, or construct a branch decompo-
sition of width O(k) (see [26]). These results can be gener-
alized to compute the branchwidth of matroids and even
more general parameters.

An exact algorithm for branchwidth appeared in [14].
Its complexity is O((2 �

p
3)n � nO(1)). The algorithm ex-

ploits special properties of branchwidth (see also [24]).
In contrast to treewidth, edge maximal graphs of given

branchwidth are not so easy to characterize (for treewidth
there are just k-trees, i. e. chordal graphs with all maximal
cliques of size k + 1). An algorithm for generating such
graphs has been given in [23] and reveals several structural
issues on this parameter.

It is known that a large number of graph theoretical
problems can be solved in linear time when their inputs
are restricted to graphs of small (i. e. fixed) treewidth or
branchwidth (see [2]).

Branchwidth of Graphs B 103

Branchwidth of Graphs, Figure 1
Example of a graph and its branch decomposition of width 3

Branchwidth appeared to be a useful tool in the design
of exact subexponential algorithms on planar graphs and
their generalizations. The basic idea behind this approach
is very simple: Let P be a problem on graphs and G be
a class of graphs such that
� For every graph G 2 G of branchwidth at most `, the

problem P can be solved in time 2c�` � nO(1), where c is
a constant, and;

� For every graph G 2 G on n vertices a branch decom-
position (not necessarily optimal) ofG of width at most
h(n) can be constructed in polynomial time, where h(n)
is a function.

Then for every graph G 2 G, the problem P can be solved
in time 2c�h(n) � nO(1). Thus, everything boils down to com-
putations of constants c and functions h(n). These compu-
tations can be quite involved. For example, as was shown
in [17], for every planar graphG on n vertices, the branch-
width of G is at most

p
4:5n < 2:1214

p
n. For extensions

of this bound to graphs embeddable on a surface of genus
g, see [15].

Dorn [9] used fast matrix multiplication in dynamic
programming to estimate the constants c for a number
of problems. For example, for the MAXIMUM INDEPEN-
DENT SET problem, c � !/2, where ! < 2:376 is the ma-
trix product exponent over a ring, which implies that the
INDEPENDENT SET problem on planar graphs is solv-
able in time O(22:52

p
n). For the MINIMUM DOMINAT-

ING SET problem, c � 4, thus implying that the branch de-
composition method runs in time O(23:99

p
n). It appears

that algorithms of running time 2O(
p
n) can be designed

even for some of the “non-local” problems, such as the
HAMILTONIAN CYCLE, CONNECTED DOMINATING SET,
and STEINER TREE, for which no time 2O(`) � nO(1) algo-

rithm on general graphs of branchwidth ` is known [11].
Here one needs special properties of some optimal planar
branch decompositions, roughly speaking that every edge
of T corresponds to a disk on a plane such that all edges
of G corresponding to one component of T � e are inside
the disk and all other edges are outside. Some of the subex-
ponential algorithms on planar graphs can be generalized
for graphs embedded on surfaces [10] and, more gener-
ally, to graph classes that are closed under taking of mi-
nors [8].

A similar approach can be used for parameterized
problems on planar graphs. For example, a parameter-
ized algorithm that finds a dominating set of size � k (or
reports that no such set exists) in time 2O(

p
k)nO(1) can

be obtained based on the following observations: there
is a constant c such that every planar graph of branch-
width at least c

p
k does not contain a dominating set of

size at most k. Then for a given k the algorithm com-
putes an optimal branch decomposition of a palanar graph
G and if its width is more than c

p
k concludes that G

has no dominating set of size k. Otherwise, find an opti-
mal dominating set by performing dynamic programming
in time 2O(

p
k)nO(1). There are several ways of bound-

ing a parameter of a planar graph in terms of its branch-
width or treewidth including techniques similar to Baker’s
approach from approximation algorithms [1], the use
of separators, or by some combinatorial arguments, as
shown in [16]. Another general approach of bounding the
branchwidth of a planar graph by parameters, is based on
the results of Robertson et al. [28] regarding quickly ex-
cluding a planar graph. This brings us to the notion of
bidimensionality [6]. Parameterized algorithms based on
branch decompositions can be generalized from planar

104 B Branchwidth of Graphs

graphs to graphs embedded on surfaces and to graphs ex-
cluding a fixed graph as a minor.

Applications

See [5] for using branchwidth for solving TSP.

Open Problems

1. It is known that any planar graphG has branchwidth at
most

p
4:5 �

p
jV(G)j (or at most 3

2 �
p
jE(G)j+2) [17].

Is it possible to improver this upper bound? Any possi-
ble improvement would accelerate many of the known
exact or parameterized algorithms on planar graphs
that use dynamic programming on branch decompo-
sitions.

2. In contrast to treewidth, very few graph classes are
known where branchwidth is computable in polyno-
mial time. Find graphs classes where branchwidth can
be computed or approximated in polynomial time.

3. Find Bk for values of k bigger than 3. The only struc-
tural result on Bk is that its planar elements will be ei-
ther self-dual or pairwise-dual. This follows from the
fact that dual planar graphs have the same branch-
width [29,16].

4. Find an exact algorithm for branchwidth of complexity
O�(2n) (the notation O�() assumes that we drop the
non-exponential terms in the classic O() notation).

5. The dependence on k of the linear time algorithm for
branchwidth in [3] is huge. Find an 2O(k) � nO(1) step
algorithm, deciding whether the branchwidth of an
n-vertex input graph is at most k.

Cross References

� Bidimensionality
� Treewidth of Graphs

Recommended Reading
1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier,

R.: Fixed parameter algorithms for dominating set and related
problems on planar graphs. Algorithmica 33, 461–493 (2002)

2. Arnborg, S.: Efficient algorithms for combinatorial problems on
graphswith bounded decomposability – A survey. BIT 25, 2–23
(1985)

3. Bodlaender, H.L., Thilikos, D.M.: Constructive linear time al-
gorithms for branchwidth. In: Automata, languages and pro-
gramming (Bologna, 1997). Lecture Notes in Computer Sci-
ence, vol. 1256, pp. 627–637. Springer, Berlin (1997)

4. Bodlaender, H.L., Thilikos, D.M.: Graphs with branchwidth at
most three. J. Algorithms 32, 167–194 (1999)

5. Cook, W., Seymour, P.D.: Tour merging via branch-decomposi-
tion. Inf. J. Comput. 15, 233–248 (2003)

6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidi-
mensional parameters and local treewidth. SIAM J. Discret.
Math. 18, 501–511 (2004)

7. Demaine, E.D., Hajiaghayi, M.T., Nishimura, N., Ragde, P., Thi-
likos, D. M.: Approximation algorithms for classes of graphs ex-
cluding single-crossing graphs as minors. J. Comput. Syst. Sci.
69, 166–195 (2004)

8. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential algorithms
for non-local problems on H-minor-free graphs. In: Proceed-
ings of the nineteenth annual ACM-SIAM symposium on Dis-
crete algorithms (SODA 2008). pp. 631–640. Society for Indus-
trial and AppliedMathematics, Philadelphia (2006)

9. Dorn, F.: Dynamic programming and fast matrixmultiplication.
In: Proceedings of the 14th Annual European Symposium on
Algorithms (ESA 2006). Lecture Notes in Computer Science,
vol. 4168 , pp. 280–291. Springer, Berlin (2006)

10. Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast subexponential algo-
rithm for non-local problems on graphs of bounded genus.
In: Proceedings of the 10th Scandinavian Workshop on Algo-
rithmTheory (SWAT 2006). LectureNotes in Computer Science.
Springer, Berlin (2005)

11. Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.V.: Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut branch
decompositions. In: Proceedings of the 13th Annual European
Symposium on Algorithms (ESA 2005). Lecture Notes in Com-
puter Science, vol. 3669, pp. 95–106. Springer, Berlin (2005)

12. Downey, R.G., Fellows, M.R.: Parameterized complexity. In:
Monographs in Computer Science. Springer, New York (1999)

13. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation al-
gorithms for minimum-weight vertex separators. In: Proceed-
ings of the 37th annual ACM Symposium on Theory of com-
puting (STOC 2005), pp. 563–572. ACM Press, New York (2005)

14. Fomin, F.V., Mazoit, F., Todinca, I.: Computing branchwidth
via efficient triangulations and blocks. In: Proceedings of the
31st Workshop on Graph Theoretic Concepts in Computer Sci-
ence (WG 2005). Lecture Notes Computer Science, vol. 3787,
pp. 374–384. Springer, Berlin (2005)

15. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for
graphs on surfaces: Linear kernel and exponential speed-up.
In: Proceedings of the 31st International Colloquium on Au-
tomata, Languages and Programming (ICALP 2004). Lecture
Notes Computer Science, vol. 3142, pp. 581–592. Springer,
Berlin (2004)

16. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs:
Branch-width and exponential speed-up. SIAM J. Comput. 36,
281–309 (2006)

17. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decom-
posability of planar graphs. J. Graph Theor. 51, 53–81 (2006)

18. Gu, Q.P., Tamaki, H.: Optimal branch-decomposition of pla-
nar graphs in O(n3) time. In: Proceedings of the 32nd Inter-
national Colloquium on Automata, Languages and Program-
ming (ICALP 2005). LectureNotes Computer Science, vol. 3580,
pp. 373–384. Springer, Berlin (2005)

19. Gu, Q.P., Tamaki, H.: Branch-width, parse trees, and monadic
second-order logic for matroids. J. Combin. Theor. Ser. B 96,
325–351 (2006)

20. Kloks, T., Kratochvíl, J., Müller, H.: Computing the branchwidth
of interval graphs. Discret. Appl. Math. 145, 266–275 (2005)

21. Mazoit, F.: The branch-width of circular-arc graphs. In: 7th Latin
American Symposiumon Theoretical Informatics (LATIN 2006),
2006, pp. 727–736

Broadcasting in Geometric Radio Networks B 105

22. Oum, S.I., Seymour, P.: Approximating clique-width and
branch-width. J. Combin. Theor. Ser. B 96, 514–528 (2006)

23. Paul, C., Proskurowski, A., Telle, J.A.: Generating graphs of
bounded branchwidth. In: Proceedings of the 32nd Work-
shop on Graph Theoretic Concepts in Computer Science (WG
2006). Lecture Notes Computer Science, vol. 4271, pp. 205–
216. Springer, Berlin (2006)

24. Paul, C., Telle, J.A.: New tools and simpler algorithms for
branchwidth. In: Proceedings of the 13th Annual European
Symposium on Algorithms (ESA 2005), 2005 pp. 379–390

25. Robertson, N. Seymour, P.D.: Graph minors. X. Obstructions
to tree-decomposition J. Combin. Theor. Ser. B 52, 153–190
(1991)

26. Robertson, N. Seymour, P.D.: Graph minors. XII. Distance on
a surface. J. Combin. Theor. Ser. B 64, 240–272 (1995)

27. Robertson, N. Seymour, P.D.: Graph minors. XIII. The disjoint
paths problem. J. Combin. Theor. Ser. B 63, 65–110 (1995)

28. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding
a planar graph. J. Combin. Theor. Ser. B 62, 323–348 (1994)

29. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher.
Combinatorica 14, 217–241 (1994)

Broadcasting
in Geometric Radio Networks
2001; Dessmark, Pelc

ANDRZEJ PELC
Department of Computer Science,
University of Québec-Ottawa, Gatineau, QC, Canada

Keywords and Synonyms

Wireless information dissemination in geometric net-
works

ProblemDefinition

TheModel Overview

Consider a set of stations (nodes) modeled as points in
the plane, labeled by natural numbers, and equipped with
transmitting and receiving capabilities. Every node u has
a range ru depending on the power of its transmitter, and
it can reach all nodes at distance at most ru from it. The
collection of nodes equipped with ranges determines a di-
rected graph on the set of nodes, called a geometric ra-
dio network (GRN), in which a directed edge (uv) exists
if node v can be reached from u. In this case u is called
a neighbor of v. If the power of all transmitters is the same
then all ranges are equal and the corresponding GRN is
symmetric.

Nodes send messages in synchronous rounds. In every
round every node acts either as a transmitter or as a re-
ceiver. A node gets a message in a given round, if and only
if, it acts as a receiver and exactly one of its neighbors

transmits in this round. The message received in this case
is the one that was transmitted. If at least two neighbors
of a receiving node u transmit simultaneously in a given
round, none of the messages is received by u in this round.
In this case it is said that a collision occurred at u.

The Problem

Broadcasting is one of the fundamental network commu-
nication primitives. One node of the network, called the
source, has to transmit a message to all other nodes. Re-
mote nodes are informed via intermediate nodes, along di-
rected paths in the network. One of the basic performance
measures of a broadcasting scheme is the total time, i. e.,
the number of rounds it uses to inform all the nodes of the
network.

For a fixed real s � 0, called the knowledge radius, it
is assumed that each node knows the part of the network
within the circle of radius s centered at it, i. e., it knows the
positions, labels and ranges of all nodes at distance at most
s. The following problem is considered:

How the size of the knowledge radius influences deter-
ministic broadcasting time in GRN?

Terminology and Notation

Fix a finite set R = fr1; : : : ; r�g of positive reals such that
r1 < � � � < r�. Reals ri are called ranges. A node v is a triple
[l ; (x; y); ri], where l is a binary sequence called the label
of v, (x, y) are coordinates of a point in the plane, called
the position of v, and ri 2 R is called the range of v. It is
assumed that labels are consecutive integers 1 to n, where
n is the number of nodes, but all the results hold if labels
are integers in the set f1; : : : ;Mg, whereM 2 O(n). More-
over, it is assumed that all nodes know an upper bound

on n, where
 is polynomial in n. One of the nodes is dis-
tinguished and called the source. Any set of nodes C with
a distinguished source, such that positions and labels of
distinct nodes are different is called a configuration.

With any configuration C the following directed graph
G(C) is associated. Nodes of the graph are nodes of the
configuration and a directed edge (uv) exists in the graph,
if and only if the distance between u and v does not ex-
ceed the range of u. (The word “distance” always means
the geometric distance in the plane and not the distance in
a graph.) In this case u is called a neighbor of v. Graphs of
the form G(C) for some configuration C are called geomet-
ric radio networks (GRN). In what follows, only configura-
tions C such that in G(C) there exists a directed path from
the source to any other node, are considered. If the size
of the set R of ranges is �, a resulting configuration and
the corresponding GRN are called a �-configuration and

106 B Broadcasting in Geometric Radio Networks

�-GRN, respectively. Clearly, all 1-GRN are symmetric
graphs. D denotes the eccentricity of the source in a GRN,
i. e., the maximum length of all shortest paths in this graph
from the source to all other nodes. D is of order of the di-
ameter if the graph is symmetric but may be much smaller
in general.˝(D) is an obvious lower bound on broadcast-
ing time.

Given any configuration, fix a non-negative real s,
called the knowledge radius, and assume that every node of
C has initial input consisting of all nodes whose positions
are at distance at most s from its own. Thus it is assumed
that every node knows a priori labels, positions and ranges
of all nodes within a circle of radius s centered at it. All
nodes also know the set R of available ranges.

It is not assumed that nodes know any global parame-
ters of the network, such as its size or diameter. The only
global information that nodes have about the network is
a polynomial upper bound on its size. Consequently, the
broadcast process may be finished but no node needs to be
aware of this fact. Hence the adopted definition of broad-
casting time is the same as in [3]. An algorithm accom-
plishes broadcasting in t rounds, if all nodes know the
source message after round t, and no messages are sent
after round t.

Only deterministic algorithms are considered. Nodes
can transmit messages even before getting the source mes-
sage, which enables preprocessing in some cases. The al-
gorithms are adaptive, i. e., nodes can schedule their ac-
tions based on their local history. A node can obviously
gain knowledge from previously obtainedmessages. There
is, however, another potential way of acquiring informa-
tion during the communication process. The availability
of this method depends on what happens during a colli-
sion, i. e., when u acts as a receiver and two or more neigh-
bors of u transmit simultaneously. As mentioned above,
u does not get any of the messages in this case. However,
two scenarios are possible. Node u may either hear noth-
ing (except for the background noise), or it may receive in-
terference noise different from any message received prop-
erly but also different from background noise. In the first
case it is said that there is no collision detection, and in
the second case – that collision detection is available (cf.,
e. g., [1]). A discussion justifying both scenarios can be
found in [1,7].

Related Work

Broadcasting in geometric radio networks and some of
their variations was considered, e. g., in [6,8,10,11]. In [11]
the authors proved that scheduling optimal broadcasting
is NP-hard even when restricted to such graphs, and gave

an O(n log n) algorithm to schedule an optimal broadcast
when nodes are situated on a line. In [10] broadcasting was
considered in networks with nodes randomly placed on
a line. In [8] the authors discussed fault-tolerant broad-
casting in radio networks arising from regular locations of
nodes on the line and in the plane, with reachability re-
gions being squares and hexagons, rather than circles. Fi-
nally, in [6] broadcasting with restricted knowledge was
considered but the authors studied only the special case of
nodes situated on the line.

Key Results

The results summarized below are based on the paper [5]
of which [4] is a preliminary version.

Arbitrary GRN in the Model
Without Collision Detection

Clearly all upper bounds and algorithms are valid in the
model with collision detection as well.

Large Knowledge Radius
Theorem 1 The minimum time to perform broadcasting
in an arbitrary GRN with source eccentricity D and knowl-
edge radius s > r� (or with global knowledge of the net-
work) is	(D).

This result yields a centralized O(D) broadcasting algo-
rithmwhen global knowledge of the GRN is available. This
is in sharp contrast with broadcasting in arbitrary graphs,
as witnessed by the graph from [9] which has bounded di-
ameter but requires time˝(log n) for broadcasting.

Knowledge Radius Zero Next consider the case when
knowledge radius s = 0, i. e., when every node knows only
its own label, position and range. In this case it is possi-
ble to broadcast in time O(n) for arbitrary GRN. It should
be stressed that this upper bound is valid for arbitrary
GRN, not only symmetric, unlike the algorithm from [3]
designed for arbitrary symmetric graphs.

Theorem 2 It is possible to broadcast in arbitrary n-node
GRN with knowledge radius zero in time O(n).

The above upper bound for GRN should be contrasted
with the lower bound from [2,3] showing that some graphs
require broadcasting time ˝(n log n). Indeed, the graphs
constructed in [2,3] and witnessing to this lower bound
are not GRN. Surprisingly, this sharper lower bound does
not require very unusual graphs. While counterexamples
from [2,3] are not GRN, it turns out that the reason for
a longer broadcasting time is really not the topology of the
graph but the difference in knowledge available to nodes.

Broadcasting in Geometric Radio Networks B 107

Recall that in GRN with knowledge radius 0 it is assumed
that each node knows its own position (apart from its la-
bel and range): the upper bound O(n) uses this geometric
information extensively.

If this knowledge is not available to nodes (i. e., each
node knows only its label and range) then there exists
a family of GRN requiring broadcasting time ˝(n log n).
Moreover it is possible to show such GRN resulting from
configurations with only 2 distinct ranges. (Obviously for
1-configurations this lower bound does not hold, as these
configurations yield symmetric GRN and in [3] the au-
thors showed an O(n) algorithm working for arbitrary
symmetric graphs).

Theorem 3 If every node knows only its own label and
range (and does not know its position) then there exist n-
node GRN requiring broadcasting time˝(n log n).

Symmetric GRN

The Model with Collision Detection In the model with
collision detection and knowledge radius zero optimal
broadcast time is established by the following pair of re-
sults.

Theorem 4 In the model with collision detection and
knowledge radius zero it is possible to broadcast in any n-
node symmetric GRN of diameter D in time O(D + log n).

The next result is the lower bound ˝(log n) for broad-
casting time, holding for some GRN of diameter 2. To-
gether with the obvious bound˝(D) this matches the up-
per bound from Theorem 4.

Theorem 5 For any broadcasting algorithm with colli-
sion detection and knowledge radius zero, there exist n-node
symmetric GRN of diameter 2 for which this algorithm re-
quires time˝(log n).

TheModelWithout Collision Detection For the model
without collision detection. it is possible to maintain com-
plexity O(D + log n) of broadcasting. However, a stronger
assumption concerning knowledge radius is needed: it is
no longer 0, but positive, although arbitrarily small.

Theorem 6 In the model without collision detection, it is
possible to broadcast in any n-node symmetric GRN of di-
ameter D in time O(D + log n), for any positive knowledge
radius.

Applications

The radio network model is applicable to wireless net-
works using a single frequency. The specific model of ge-

ometric radio networks described in Sect. “Problem Def-
inition” is applicable to wireless networks where stations
are located in a relatively flat region without large obsta-
cles (natural or human made), e. g., in the sea or a desert,
as opposed to a large city or a mountain region. In such
a terrain, the signal of a transmitter reaches receivers at
the same distance in all directions, i. e., the set of potential
receivers of a transmitter is a disc.

Open Problems

1. Is it possible to broadcast in time o(n) in arbitrary
n-node GRN with eccentricity D sublinear in n, for
knowledge radius zero?
Note: in view of Theorem 2 it is possible to broadcast in
time O(n).

2. Is it possible to broadcast in time O(D + log n) in all
symmetric n-node GRN with eccentricity D, without
collision detection, when knowledge radius is zero?
Note: in view of Theorems 4 and 6, the answer is posi-
tive if either collision detection or a positive (even arbi-
trarily small) knowledge radius is assumed.

Cross References

� Deterministic Broadcasting in Radio Networks
� Randomized Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks
� Routing in Geometric Networks

Acknowledgments

Research partially supported by NSERC discovery grant and by
the Research Chair in Distributed Computing at the Université du
Québec en Outaouais.

Recommended Reading

1. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time complexity
of broadcast in radio networks: an exponential gap between
determinism and randomization. J. Comput. Syst. Sci. 45, 104–
126 (1992)

2. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast
problem in mobile radio networks. Distrib. Comput. 10, 129–
135 (1997)

3. Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.:
Deterministic broadcasting in ad hoc radio networks. Distrib.
Comput. 15, 27–38 (2002)

4. Dessmark, A., Pelc, A.: Tradeoffs between knowledge and time
of communication in geometric radio networks. Proc. 13th
Ann. ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pp. 59–66, Crete Greece, July 3–6, 2001

5. Dessmark, A., Pelc, A.: Broadcasting in geometric radio net-
works. J. Discret. Algorithms 5, 187–201 (2007)

108 B B-trees

6. Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of knowl-
edge on broadcasting time in linear radio networks. Theor.
Comput. Sci. 287, 449–471 (2002)

7. Gallager, R.: A Perspective onMultiaccess Channels. IEEE Trans.
Inf. Theory 31, 124–142 (1985)

8. Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in
radio networks. J. Algorithms 39, 47–67 (2001)

9. Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting
with random transmission failures. Proc. 24th Ann. ACM Sym-
posium on Principles of Distributed Computing (PODC), pp.
334–341, Las Vegas, July 17–20 2005

10. Ravishankar, K., Singh, S.: Broadcasting on [0; L]. Discret. Appl.
Math. 53, 299–319 (1994)

11. Sen, A., Huson, M. L.: A New Model for Scheduling Packet Ra-
dio Networks. Proc. 15th Annual Joint Conference of the IEEE
Computer and Communication Societies (IEEE INFOCOM’96),
pp. 1116–1124, San Francisco, 24–28 March, 1996

B-trees
1972; Bayer, McCreight

JAN VAHRENHOLD
Faculty of Computer Science,
Dortmund University of Technology,
Dortmund, Germany

Keywords and Synonyms

Multiway Search Trees

ProblemDefinition

This problem is concerned with storing a linearly ordered
set of elements such that the DICTIONARY operations
FIND, INSERT, and DELETE can be performed efficiently.

In 1972, Bayer and McCreight introduced the class of
B-trees as a possible way of implementing an “index for
a dynamically changing random access file” [6, p. 173].
B-trees have received considerable attention both in the
database and in the algorithms community ever since;
a prominent witness to their immediate and widespread
acceptance is the fact that the authoritative survey on B-
trees authored by Comer [9] appeared as soon as 1979 and,
already at that time, referred to the B-tree data structure as
the “ubiquitous B-tree”.

Notations

A B-tree is a multiway search tree defined as follows (the
definition of Bayer and McCreight [6] is restated accord-
ing to Knuth [16, Sect. 6.2.4] and Cormen et al. [10, Chap.
18.1]):

Definition 1 Let m � 3 be a positive integer. A tree T is
a B-tree of degree m if it is either empty or fulfills the fol-
lowing properties:
1. All leaves of T appear on the same level of T.
2. Every node of T has at mostm children.
3. Every node of T, except for the root and the leaves, has

at leastm/2 children.
4. The root of T is either a leaf or has at least two children.
5. An internal node with k children c1[�]; : : : ; ck [�] stores

k� 1 keys, and a leaf stores betweenm/2� 1 andm� 1
keys. The keys keyi[�], 1 � i � k � 1, of a node � 2 T
are maintained in sorted order, i. e. key1[�] � � � � �
keyk�1[�].

6. If � is an internal node of T with k children c1[�]; : : : ;
ck[�], the k � 1 keys key1[�]; : : : ; keyk�1[�] of � sep-
arate the range of keys stored in the subtrees rooted at
the children of �. If xi is any key stored in the subtree
rooted at ci [�], the following holds:

x1 � key1[�] � x2 � key2[�] � : : :
� xk�1 � keyk�1[�] � xk :

To search a B-tree for a given key x, the algorithm starts
with the root of the tree being the current node. If x
matches one of the current node’s keys, the search termi-
nates successfully. Otherwise, if the current node is a leaf,
the search terminates unsuccessfully. If the current node’s
keys do not contain x and if the current node is not a leaf,
the algorithm identifies the unique subtree rooted at child
of the current node that may contain x and recurses on this
subtree. Since the keys of a node guide the search process,
they are also referred to as routing elements.

Variants and Extensions

Knuth [16] defines a B�-tree to be a B-tree where Prop-
erty 3 in Definition 1 is modified such that every node (ex-
cept for the root) contains at least 2m/3 keys.

A B+-tree is a leaf-oriented B-tree, i. e. a B-tree that
stores the keys in the leaves only. Additionally, the leaves
are linked in left-to-right order to allow for fast sequential
traversal of the keys stored in the tree. In a leaf-oriented
tree, the routing elements usually are copies of certain keys
stored in the leaves (keyi[�] can be set to be the largest key
stored in the subtree rooted at ci [�]), but any set of rout-
ing elements that fulfills Properties 5 and 6 of Definition 1
can do as well.

Huddleston and Mehlhorn [13] extended Definition 1
to describe a more general class of multiway search trees
that includes the class of B-trees as a special case. Their
class of so-called (a, b)-trees is parametrized by two inte-
gers a and b with a � 2 and 2a � 1 � b. Property 2 of

B-trees B 109

Definition 1 is modified to allow each node to have up to
b children and Property 3 is modified to require that, ex-
cept for the root and the leaves, every node of an (a; b)-tree
has at least a children. All other properties of Definition 1
remain unchanged for (a, b)-trees. Usually, (a, b)-trees are
implemented as leaf-oriented trees.

By the above definitions, a B-tree is a (b/2; b)-tree (if
b is even) or an (a; 2a � 1)-tree (if b is odd). The sub-
tle difference between even and odd maximum degree be-
comes relevant in an important amortization argument of
Huddleston and Mehlhorn (see below) where the inequal-
ity b � 2a is required to hold. This amortization argument
actually caused (a, b)-trees with b � 2a to be given a spe-
cial name: weak B-trees [13].

Update Operations

An INSERT operation on an (a; b)-tree first tries to locate
the key x to be inserted. After an unsuccessful search that
stops at some leaf `, x is inserted into `’s set of keys. If
` becomes too full, i. e. contains more than b elements, two
approaches are possible to resolve this overflow situation:
(1) the node ` can be split around its median key into two
nodes with at least a keys each or (2) the node ` can have
some of its keys be distributed to its left or right siblings
(if this sibling has enough space to accommodate the new
keys). In the first case, a new routing element separating
the keys in the two new subtrees of `’s parent � has to
be inserted into the key set of �, and in the second case,
the routing element in � separating the keys in the sub-
tree rooted at ` from the keys rooted at `’s relevant sibling
needs to be updated. If ` was split, the node � needs to
be checked for a potential overflow due to the insertion of
a new routing element, and the split may propagate all the
way up to the root.

A DELETE operation also first locates the key x to be
deleted. If (in a non-leaf-oriented tree) x resides in an in-
ternal node, x is replaced by the largest key in the left sub-
tree of x (or the smallest key in the right subtree of x)
which resides in a leaf and is deleted from there. In a leaf-
oriented tree, keys are deleted from leaves only (the cor-
rectness of a routing element on a higher levels is not af-
fected by this deletion). In any case, a DELETE operation
may result in a leaf node ` containing less than a elements.
Again, there are two approaches to resolve this underflow
situation: (1) the node ` is merged with its left or right
sibling node or (2) keys from `’s left or right sibling node
are moved to ` (unless the sibling node would underflow
as a result of this). Both underflow handling strategies re-
quire updating the routing information stored in the par-
ent of ` which (in the case of merging) may underflow it-

self. As with overflow handling, this process may propa-
gate up to the root of the tree.

Note that the root of the tree can be split as a result of
an INSERT operation and that it may disappear if the only
two children of the root are merged to form the new root.
This implies that B-trees grow and shrink at the top, and
thus all leaves a guaranteed to appear on the same level of
the tree (Property 1 of Definition 1).

Key Results

Since B-trees are the premier index structure for exter-
nal storage, the results given in this section are stated not
only in the RAM-model of computation but also in the
I/O-model of computation introduced by Aggarwal and
Vitter [1]. In the I/O-model, not only the number N of
elements in the problem instance, but also the number
M of elements that simultaneously can be kept in main
memory and the number B of elements that fit into one
disk block are (non-constant) parameters, and the com-
plexity measure is the number of I/O-operations needed
to solve a given problem instance. If B-trees are used in
an external-memory setting, the degree m of the B-tree is
usually chosen such that one node fits into one disk block,
i. e., m 2 	(B), and this is assumed implicitly whenever
the I/O-complexity of B-trees is discussed.

Theorem 1 The height of an N-key B-tree of degree m � 3
is bounded by logdm/2e((N + 1)/2).

Theorem 2 ([18]) The storage utilization for large B-trees
of high order under random insertions and deletions is ap-
proximately ln 2 	 69%.

Theorem 3 A B-tree may be used to implement the ab-
stract data type Dictionary such that the operations Find,
Insert, and Delete on a set of N elements from a linearly
ordered domain can be performed in O(log N) time (with
O(logB N) I/O-operations) in the worst case.

Remark 1 By threading the nodes of a B-tree, i. e. by link-
ing the nodes according to their in-order traversal num-
ber, the operations PREV and NEXT can be performed in
constant time (with a constant number of I/O-operations).

A (one-dimensional) range query asks for all keys that fall
within a given query range (interval).

Lemma 1 A B-tree supports (one-dimensional) range
queries with O(logN + K) time complexity (O(logB N +
K/B) I/O-complexity) in the worst case where K is the num-
ber of keys reported.

Under the convention that each update to a B-tree results
in a new “version” of the B-tree, a multiversion B-tree is

110 B B-trees

a B-tree that allows for updates of the current version but
also supports queries in earlier versions.

Theorem 4 ([8]) Amultiversion B-tree can be constructed
from a B-tree such that it is optimal with respect to the
worst-case complexity of the Find, Insert, and Delete oper-
ations as well as to the worst-case complexity of answering
range queries.

Applications

Databases

One of the main reasons for the success of the B-tree lies
in its close connection to databases: any implementation
of Codd’s relational data model (introduced incidentally
in the same year as B-trees were invented) requires an effi-
cient indexing mechanism to search and traverse relations
that are kept on secondary storage. If this index is realized
as a B+-tree, all keys are stored in a linked list of leaves
which is indexed by the top levels of the B+-tree, and thus
both efficient logarithmic searching and sequential scan-
ning of the set of keys is possible.

Due to the importance of this indexing mechanism,
a wide number of results on how to incorporate B-
trees and their variants into database systems and how
to formulate algorithms using these structures have be
published in the database community. Comer [9] and
Graefe [12] summarize early and recent results but due to
the bulk of results even these summaries cannot be fully
comprehensive. Also, B-trees have been shown to work
well in the presence of concurrent operations [7], and
Mehlhorn [17, p. 212] notes that they perform especially
well if a top-down splitting approach is used. The details
of this splitting approach may be found, e. g., in the text-
book of Cormen et al. [10, Chap. 18.2].

Priority Queues

A B-tree may be used to serve as an implementation of the
abstract data type PRIORITYQUEUE since the smallest key
always resides in the first slot of the leftmost leaf.

Lemma 2 An implementation of a priority queue that uses
a B-tree supports the Min operation in O(1) time (with
O(1) I/O-operations). All other operations (including De-
creaseKey) have a time complexity of O(log N) (an I/O-
complexity of O(logB N)) in the worst case.

Mehlhorn [17, Sect. III, 5.3.1] examined B-trees (and,
more general, (a, b)-trees with a � 2 and b � 2a � 1) in
the context of mergeable priority queues.Mergeable prior-
ity queues are priority queues that additionally allow for

concatenating and splitting priority queues. Concatenat-
ing priority queues for a set S1 ¤ ; and a set S2 ¤ ; is only
defined if maxfx j x 2 S1g < minfx j x 2 S2g and results
in a single priority queue for S1 [S2. Splitting a priority
queue for a set S3 ¤ ; according to some y 2 dom(S3) re-
sults in a priority queue for the set S4 := fx 2 S3 j x � yg
and a priority queue for the set S5 := fx 2 S3 j x > yg (one
of these sets may be empty). Mehlhorn’s result restated in
the context of B-trees is as follows:

Theorem 5 (Theorem 6, Sect. III, 5.3.1 in [7]) If
sets S1 ¤ ; and S2 ¤ ; are represented by a B-tree
each then operation Concatenate(S1; S2) takes time
O(logmaxfjS1j; jS2jg) (has an I/O-complexity of
O(logB maxfjS1j; jS2jg)) and operation Split(S1; y) takes
time O(log jS1j) (has an I/O-complexity of O(logB jS1j)).
All bounds hold in the worst case.

Buffered Data Structures

Many applications (including sorting) that involve mas-
sive data sets allow for batched data processing. A variant
of B-trees that exploits this relaxed problem setting is the
so-called buffer tree proposed by Arge [3]. A buffer tree is
a B-trees of degree m 2 	(M/B) (instead of m 2 	(B))
where each node is assigned a buffer of size 	(M). These
buffers are used to collect updates and query requests that
are passed further down the tree only if the buffer gets full
enough to allow for cost amortization.

Theorem 6 (Theorem 1 in [3]) The total cost of
an arbitrary sequence of N intermixed Insert and
Delete operations on an initially empty buffer tree is
O(N/B logM/B N/B) I/O operations, that is the amortized
I/O-cost of an operation isO(1/B logM/B N/B).

As a consequence, N elements can be sorted spending
an optimal number ofO(N/B logM/B N/B) I/O-operations
by inserting them into a (leaf-oriented) buffer tree in
a batched manner and then traversing the leaves. By the
preceding discussion, buffer trees can also be used to im-
plement (batched) priority queues in the external mem-
ory setting. Arge [3] extended his analysis of buffer trees to
show that they also support DELETEMIN operations with
an amortized I/O-cost of O(1/B logM/B N/B).

Since the degree of a buffer tree is too large to allow for
efficient single-shot, i. e. non-batched operations, Arge et
al. [4] discussed how buffers can be attached to (and later
detached from) a multiway tree while at the same time
keeping the degree of the base structure in 	(B). Their
discussion uses the R-tree index structure as a running ex-
ample, the techniques presented, however, carry over to
the B-tree. The resulting data structure is accessed through

B-trees B 111

standard methods and additionally allows for batched up-
date operations, e. g. bulk loading, and queries. The amor-
tized I/O-complexity of all operations is analogous to the
complexity of the buffer tree operations.

B-trees as Base Structures

Several external memory data structures are derived from
B-trees or use a B-tree as their base structure—see the sur-
vey by Arge [2] for a detailed discussion. One of these
structures, the so-called weight-balanced B-tree is partic-
ularly useful as a base tree for building dynamic external
data structures that have secondary structures attached to
all (or some) of their nodes. The weight-balanced B-tree,
developed by Arge and Vitter [5], is a variant of the B-tree
that requires all subtrees of a node to have approximately,
i. e., up to a small constant factor, the same number of
leaves. Weight-balanced B-trees can be shown to have the
following property:

Theorem 7 ([5]) In a weight-balanced B-tree, rebal-
ancing after an update operation is performed by splitting
or merging nodes. When a rebalancing operation involves
a node � that is the root of a subtree with w(�) leaves, at
least 	(w(�)) update operations involving leaves below �
have to be performed before � itself has to be rebalanced
again.

Using the above theorem, amortized bounds for maintain-
ing secondary data structures attached to nodes of the base
tree can be obtained—as long as each such structure can
be updated with an I/O-complexity linear in the number
of elements stored below the node it is attached to [2,5].

Amortized Analysis

Most of the amortization arguments used for (a, b)-trees,
buffer trees, and their relatives are based upon a theo-
rem due to Huddleston and Mehlhorn [13, Theorem 3].
This theorem states that the total number of rebalancing
operations in any sequence of N intermixed insert and
delete operations performed on an initially empty weak
B-tree, i. e. an (a; b)-tree with b � 2a, is at most linear
in N. This result carries over to buffer trees since they
are (M/4B;M/B)-trees. Since B-trees are (a, b)-trees with
b = 2a � 1 (if b is odd), the result in its full generality is not
valid for B-trees, and Huddleston and Mehlhorn present
a simple counterexample for (2; 3)-trees.

A crucial fact used in the proof of the above amorti-
zation argument is that the sequence of operations to be
analyzed is performed on an initially empty data structure.
Jacobsen et al. [14] proved the existence of non-extreme
(a, b)-trees, i. e. (a, b)-trees where only few nodes have

a degree of a or b. Based upon this, they re-established the
above result that the rebalancing cost in a sequence of op-
erations is amortized constant (and thus the related result
for buffer trees) also for operations on initially non-empty
data structures.

In connection with concurrent operations in database
systems, it should be noted that the analysis of Huddleston
and Mehlhorn actually requires b � 2a + 2 if a top-down
splitting approach is used. In can be shown, though, that
even in the general case, few node splits (in an amortized
sense) happen close to the root.

URL to Code

There is a variety of (commercial and free) implemen-
tations of B-trees and (a, b)-trees available for down-
load. Representatives are the C++-based implementa-
tions that are part of the LEDA-library (http://www.
algorithmic-solutions.com), the STXXL-library (http://
stxxl.sourceforge.net), and the TPIE-library (http://www.
cs.duke.edu/TPIE) as well as the Java-based implemen-
tation that is part of the javaxxl-library (http://www.
xxl-library.de). Furthermore, (pseudo-code) implementa-
tions can be found in almost every textbook on database
systems or on algorithms and data structures—see,
e. g., [10,11]. Since textbooks almost always leave develop-
ing the implementation details of the DELETE operation as
an exercise to the reader, the discussion by Jannink [15] is
especially helpful.

Cross References

� Cache-Oblivious B-Tree
� I/O-model
� R-Trees

Recommended Reading
1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sort-

ing and related problems. Commun. ACM 31, 1116–1127
(1988)

2. Arge, L.A.: External memory data structures. In: Abello, J.,
Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive
Data Sets, pp. 313–357. Kluwer, Dordrecht (2002)

3. Arge, L.A.: The Buffer Tree: A technique for designing batched
external data structures. Algorithmica 37, 1–24 (2003)

4. Arge, L.A., Hinrichs, K.H., Vahrenhold, J., Vitter, J.S.: Efficient
bulk operations on dynamic R-trees. Algorithmica 33, 104–128
(2002)

5. Arge, L.A., Vitter, J.S.: Optimal external interval management.
SIAM J. Comput. 32, 1488–1508 (2003)

6. Bayer, R., McCreight, E.M.: Organization and maintenance of
large ordered indexes. Acta Inform. 1, 173–189 (1972)

7. Bayer, R., Schkolnick, M.: Concurrency of operations on B-trees.
Acta Inform. 9, 1–21 (1977)

http://www.algorithmic-solutions.com
http://www.algorithmic-solutions.com
http://stxxl.sourceforge.net
http://stxxl.sourceforge.net
http://www.cs.duke.edu/TPIE
http://www.cs.duke.edu/TPIE
http://www.xxl-library.de
http://www.xxl-library.de

112 B Buffering

8. Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An
asymptotically optimal multiversion B-tree. VLDB J. 5, 264–275
(1996)

9. Comer, D.E.: The ubiquitous B-tree. ACM Comput. Surv. 11,
121–137 (1979)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. The MIT Electrical Engineering and Computer
Science Series, 2nd edn. MIT Press, Cambridge (2001)

11. Elmasri, R., Navanthe, S.B.: Fundamentals of Database Systems,
5th edn. Addison-Wesley, Boston (2007)

12. Graefe, G.: B-tree indexes for high update rates. SIGMOD
RECORD 35, 39–44 (2006)

13. Huddleston, S., Mehlhorn, K.: A new data structure for repre-
senting sorted lists. Acta Inform. 17, 157–184 (1982)

14. Jacobsen, L., Larsen, K.S., Nielsen, M.N.: On the existence
of non-extreme (a,b)-trees. Inform. Process. Lett. 84, 69–73
(2002)

15. Jannink, J.: Implementing deletions in B+-trees. SIGMOD
RECORD 24, 33–38 (1995)

16. Knuth, D.E.: Sorting and Searching. The Art of Computer Pro-
gramming, vol. 3, 2nd edn. Addison-Wesley, Reading (1998)

17. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and
Searching. EATCS Monographs on Theoretical Computer Sci-
ence, vol. 1. Springer, Berlin (1984)

18. Yao, A.C.-C.: On random 2–3 trees. Acta Inform. 9, 159–170
(1978)

Buffering
� Direct Routing Algorithms
� Packet Switching in Single Buffer

Burrows–Wheeler Transform
1994; Burrows, Wheeler

PAOLO FERRAGINA1, GIOVANNI MANZINI2
1 Department of Computer Science, University of Pisa,
Pisa, Italy

2 Department of Computer Science, University of Eastern
Piedmont, Alessandria, Italy

Keywords and Synonyms

Block-sorting data compression

ProblemDefinition

The Burrows–Wheeler transform is a technique used for
the lossless compression of data. It is the algorithmic core
of the tool bzip2 which has become a standard for the cre-
ation and distribution of compressed archives.

Before the introduction of the Burrows–Wheeler
transform, the field of lossless data compression was dom-
inated by two approaches (see [1,15] for comprehensive

surveys). The first approach dates back to the pioneering
works of Shannon andHuffman, and it is based on the idea
of using shorter codewords for the more frequent sym-
bols. This idea has originated the techniques of Huffman
andArithmetic Coding, and, more recently, the PPM (Pre-
diction by Partial Matching) family of compression algo-
rithms. The second approach originated from the works
of Lempel and Ziv and is based on the idea of adaptively
building a dictionary and representing the input string
as a concatenation of dictionary words. The best-known
compressors based on this approach form the so-called
ZIP-family; they have been the standard for several years
and are available on essentially any computing platform
(e. g. gzip, zip, winzip, just to cite a few).

The Burrows–Wheeler transform introduced a com-
pletely new approach to lossless data compression based
on the idea of transforming the input to make it easier to
compress. In the authors’ words: “(this) technique [: : :]
works by applying a reversible transformation to a block
of text to make redundancy in the input more accessible to
simple coding schemes” [3, Sect. 7]. Not only has this tech-
nique produced some state-of-the-art compressors, but it
also originated the field of compressed indexes [14] and
it has been successfully extended to compress (and index)
structured data such as XML files [7] and tables [16].

Key Results

Notation

Let s be a string of length n drawn from an alphabet˙ . For
i = 0; : : : ; n � 1; s[i] denotes the i-th character of s, and
s[i; n � 1] denotes the suffix of s starting at position i (that
is, starting with the character s[i]). Given two strings s and
t, the notation s � t is used to denote that s lexicographi-
cally precedes t.

The Burrows–Wheeler Transform

In [3] Burrows and Wheeler introduced a new com-
pression algorithm based on a reversible transformation,
now called the Burrows–Wheeler Transform (bwt). Given
a string s, the computation of bwt(s) consists of three basic
steps (see Fig. 1):
1. Append to the end of s a special symbol $ smaller than

any other symbol in˙ ;
2. Form a conceptualmatrixM whose rows are the cyclic

shifts of the string s$ sorted in lexicographic order;
3. Construct the transformed text ŝ = bwt(s) by taking the

last column ofM.
Notice that every column of M, hence also the trans-
formed text ŝ, is a permutation of s$. As an example

Burrows–Wheeler Transform B 113

mississippi$
ississippi$m
ssissippi$mi
sissippi$mis
issippi$miss
ssippi$missi
sippi$missis
ippi$mississ
ppi$mississi
pi$mississip
i$mississipp
$mississippi

H)

$ mississipp i
i $mississip p
i ppi$missis s
i ssippi$mis s
i ssissippi$ m
m ississippi $
p i$mississi p
p pi$mississ i
s ippi$missi s
s issippi$mi s
s sippi$miss i
s sissippi$m i

Burrows–Wheeler Transform, Figure 1
Example of Burrows–Wheeler transform for the string
s=mississippi. The matrix on the right has the rows
sorted in lexicographic order. The output of the bwt is the
last column of the sorted matrix; in this example the output is
ŝ = bwt(s) = ipssm$pissii

F, the first column of the bwt matrix M, consists of
all characters of s alphabetically sorted. In Fig. 1 it is
F = $iiiimppssss.

Although it is not obvious from its definition, the bwt
is an invertible transformation and both the bwt and its
inverse can be computed in O(n) optimal time. To be con-
sistent with the more recent literature, the following no-
tation and proof techniques will be slightly different from
the ones in [3].

Definition 1 For 1 � i � n, let s[ki ; n � 1] denote the
suffix of s prefixing row i ofM, and define � (i) as the in-
dex of the row prefixed by s[ki + 1; n � 1].

For example, in Fig. 1 it is � (2) = 7 since row 2 of M is
prefixed by ippi and row 7 is prefixed by ppi. Note that
� (i) is not defined for i = 0 since row 0 is not prefixed by
a proper suffix of s.1

Lemma 1 For i = 1; : : : ; n, it is F[i] = ŝ[� (i)].

Proof Since each row contains a cyclic shift of s$, the
last character of the row prefixed by s[ki + 1; n � 1] is
s[ki]. Definition 1 then implies ŝ[� (i)] = s[ki] = F[i] as
claimed. �

Lemma 2 If 1 � i < j � n and F[i] = F[j] then
� (i) < � (j).

Proof Let s[ki ; n � 1] (resp. s[k j; n � 1]) denote the
suffix of s prefixing row i (resp. row j). The hypothe-

1In [3] instead of 	 the authors make use of a map which is es-
sentially the inverse of 	 . The use of 	 has been introduced in the
literature of compressed indexes where 	 and its inverse play an im-
portant role (see [14]).

sis i < j implies that s[ki ; n � 1] � s[k j; n � 1]. The hy-
pothesis F[i] = F[j] implies s[ki] = s[k j] hence it must
be s[ki + 1; n � 1] � s[k j + 1; n � 1]. The thesis follows
since by construction � (i) (resp. � (j)) is the lexico-
graphic position of the row prefixed by s[ki + 1; n � 1]
(resp. s[k j + 1; n � 1]). �

Lemma 3 For any character c 2 ˙ , if F[j] is the `-th
occurrence of c in F, then ŝ[� (j)] is the `-th occurrence
of c in ŝ.

Proof Take an index h such that h < j and F[h] =
F[j] = c (the case h > j is symmetric). Lemma 2 implies
� (h) < � (j) and Lemma 1 implies ŝ[� (h)] = ŝ[� (j)] = c.
Consequently, the number of c’s preceding (resp. follow-
ing) F[j] in F coincides with the number of c’s preceding
(resp. following) ŝ[� (j)] in ŝ and the lemma follows. �

In Fig. 1 it is � (2) = 7 and both F[2] and ŝ[7] are the sec-
ond i in their respective strings. This property is usually
expressed by saying that corresponding characters main-
tain the same relative order in both strings F and ŝ.

Lemma 4 For any i, � (i) can be computed from ŝ =
bwt(s).

Proof Retrieve F simply by sorting alphabetically the
symbols of ŝ. Then compute � (i) as follows: (1) set
c = F[i], (2) compute ` such that F[i] is the `-th occur-
rence of c in F, (3) return the index of the `-th occurrence
of c in ŝ. �

Referring again to Fig. 1, to compute � (10) it suffices to
set c = F[10] = s and observe that F[10] is the second s in
F. Then it suffices to locate the index j of the second s in ŝ,
namely j = 4. Hence � (10) = 4, and in fact row 10 is pre-
fixed by sissippi and row 4 is prefixed by issippi.

Theorem 5 The original string s can be recovered from
bwt(s).

Proof Lemma 4 implies that the column F and the map
� can be retrieved from bwt(s). Let j0 denote the in-
dex of the special character $ in ŝ. By construction, the
row j0 of the bwt matrix is prefixed by s[0; n � 1], hence
s[0] = F[j0]. Let j1 = � (j0). By Definition 1 row j1 is
prefixed by s[1; n � 1] hence s[1] = F[j1]. Continuing in
this way it is straightforward to prove by induction that
s[i] = F[� i (j0)], for i = 1; : : : ; n � 1. �

Algorithmic Issues

A remarkable property of the bwt is that both the direct
and the inverse transform admit efficient algorithms that
are extremely simple and elegant.

114 B Burrows–Wheeler Transform

Procedure sa2bwt
1. bwt[0]=s[n-1];
2. for(i=1;i<=n;i++)
3. if(sa[i] == 1)
4. bwt[i]=’$’;
5. else
6. bwt[i]=s[sa[i]-1];

Procedure bwt2psi
7.1. for(i=0;i<=n;i++)
2. c = bwt[i];
3. if(c == ’$’)
4. j0 = i;
5. else
6. h = count[c]++;
7. psi[h]=i;

Procedure psi2text
8.9.1. k = j0; i=0;
2. do
3. k = psi[k];
4. s[i++] = bwt[k];

while(i<n);

Burrows–Wheeler Transform, Figure 2
Algorithms for computing and inverting the Burrows–Wheeler Transform. Procedure sa2bwt computes bwt(s) given s and its suffix
array sa. Procedure bwt2psi takes bwt(s) as input and computes the � map storing it in the array psi. bwt2psi also stores in j0 the
index of the row prefixed by s[0; n � 1]. bwt2psi uses the auxiliary array count[1; j˙ j] which initially contains in count[i] the
number of occurrences in bwt(s) of the symbols 1; : : : ; i � 1. Finally, procedure psi2text recovers the string s given bwt(s), the array
psi, and the value j0

Theorem 6 Let s[1; n] be a string over a constant size al-
phabet˙ . String ŝ = bwt(s) can be computed in O(n) time
using O(n log n) bits of working space.

Proof The SuffixArray of s can be computed in O(n) time
and O(n log n) bits of working space by using, for exam-
ple, the algorithm in [11]. The Suffix Array is an array of
integers sa[1; n] such that for i = 1; : : : ; n; s[sa[i]; n � 1]
is the i-th suffix of s in the lexicographic order. Since each
row of M is prefixed by a unique suffix of s followed by
the special symbol $, the Suffix Array provides the order-
ing of the rows inM. Consequently, bwt(s) can be com-
puted from sa in linear time using the procedure sa2bwt
of Fig. 2. �
Theorem 7 Let s[1; n] be a string over a constant size al-
phabet ˙ . Given bwt(s), the string s can be retrieved in
O(n) time using O(n log n) bits of working space.

Proof The algorithm for retrieving s follows almost ver-
batim the procedure outlined in the proof of Theorem 5.
The only difference is that, for efficiency reasons, all the
values of themap� are computed in one shot. This is done
by the procedure bwt2psi in Fig. 2. In bwt2psi instead of
working with the column F, it uses the array count which
is a “compact” representation of F. At the beginning of
the procedure, for any character c 2 ˙; count[c] provides
the index of the first row of M prefixed by c. For exam-
ple, in Fig. 1 count[i] = 1, count[m] = 5, and so on. In the
main for loop of bwt2psi the array bwt is scanned and
count[c] is increased every time an occurrence of char-
acter c is encountered (line 6). Line 6 also assigns to h
the index of the `-th occurrence of c in F. By Lemma 3,
line 7 stores correctly in psi[h] the value i = � (h). After
the computation of array psi, s is retrieved by using the

procedure psi2text of Fig. 2, whose correctness immedi-
ately follows from Theorem 5.

Clearly, the procedures bwt2psi and psi2text in Fig. 2
run in O(n) time. Their working space is dominated by the
cost of storing the array psi which takes O(n log n) bits.�

The Burrows–Wheeler Compression Algorithm

The rationale for using the bwt for data compression
is the following. Consider a string w that appears k
times within s. In the bwt matrix of s there will be k
consecutive rows prefixed by w, say rows rw + 1; rw +
2; : : : ; rw + k. Hence, the positions rw + 1; : : : ; rw + k
of ŝ = bwt(s) will contain precisely the symbols that
immediately precede w in s. If in s certain patterns are
more frequent than others, then for many substrings
w the corresponding positions rw + 1; : : : ; rw + k of ŝ
will contain only a few distinct symbols. For example, if
s is an English text andw is the stringhis, the correspond-
ing portion of ŝ will likely contain many t’s and blanks
and only a few other symbols. Hence ŝ is a permutation
of s that is usually locally homogeneous, in that its “short”
substrings usually contain only a few distinct symbols.2

To take advantage of this property, Burrows and
Wheeler proposed to process the string ŝ using move-to-
front encoding [2] (mtf). mtf encodes each symbol with
the number of distinct symbols encountered since its pre-
vious occurrence. To this end, mtf maintains a list of the
symbols ordered by recency of occurrence; when the next
symbol arrives the encoder outputs its current rank and
moves it to the front of the list. Note that mtf produces

2Obviously this is true only if s has some regularity: if s is a random
string ŝ will be random as well!

Burrows–Wheeler Transform B 115

a string which has the same length as ŝ and, if ŝ is lo-
cally homogeneous, the string mtf(ŝ) will mainly consist
of small integers.3 Given this skewed distribution, mtf(ŝ)
can be easily compressed: Burrows andWheeler proposed
to compress it using Huffman or Arithmetic coding, pos-
sibly preceded by the run-length encoding of runs of equal
integers.

Burrows and Wheeler were mainly interested in
proposing an algorithm with good practical performance.
Indeed their simple implementation outperformed, in
terms of compression ratio, the tool gzip that was the cur-
rent standard for lossless compression. A few years after
the introduction of the bwt, [9,12] have shown that the
compression ratio of the Burrows–Wheeler compression
algorithm can be bounded in terms of the k-th order em-
pirical entropy of the input string for any k � 0. For ex-
ample, Kaplan et al. [9] showed that for any input string
s and real � > 1, the length of the compressed string is
bounded by �nHk (s) + n log(�(�)) + �gk + O(log n) bits,
where �(�) is the standard Zeta function and gk is a func-
tion depending only on k and the size of ˙ . This bound
holds pointwise for any string s, simultaneously for any
k � 0 and� > 1, and it is remarkable since similar bounds
have not been proven for any other known compressor.
The theoretical study on the performance of bwt-based
compressors is currently a very active area of research. The
reader is referred to the recommended readings for further
information.

Applications

After the seminal paper of Burrows and Wheeler, many
researchers have proposed compression algorithms based
on the bwt (see [4,5] and references therein). Of particular
theoretical interest are the results in [6] showing that the
bwt can be used to design a “compression booster”, that
is, a tool for improving the performance of other compres-
sors in a well-defined and measurable way.

Another important area of application of the bwt is
the design of Compressed Full-text Indexes [14]. These in-
dexes take advantage of the relationship between the bwt
and the Suffix Array to provide a compressed representa-
tion of a string supporting the efficient search and retrieval
of the occurrences of an arbitrary pattern.

Open Problems

In addition to the investigation on the performance of
bwt-based compressors, an open problem of great prac-

3If s is an English text, mtf(ŝ) usually contains more that 50% ze-
roes.

tical significance is the space efficient computation of the
bwt. Given a string s of length n over an alphabet˙ , both
s and ŝ = bwt(s) take O(n log j˙ j) bits. Unfortunately, the
linear time algorithms shown in Fig. 2 make use of auxil-
iary arrays (i. e. sa and psi) whose storage takes	(n log n)
bits. This poses a serious limitation to the size of the largest
bwt that can be computed inmainmemory. Space efficient
algorithms for inverting the bwt have been obtained in the
compressed indexing literature [14], while the problem of
space- and time-efficient computation of the bwt is still
open even if interesting preliminary results are reported
in [8,10,13].

Experimental Results

An experimental study of the performance of several com-
pression algorithms based on the bwt and a comparison
with other state-of-the-art compressors is presented in [4].

Data Sets

The data sets used in [4] are available from http://www.
mfn.unipmn.it/~manzini/boosting. Other data sets rele-
vant for compression and compressed indexing are avail-
able at the Pizza&Chili site http://pizzachili.di.unipi.it/.

URL to Code

The Compression Boosting page (http://www.mfn.
unipmn.it/~manzini/boosting) contains the source code
of the algorithms tested in [4]. A more “lightweight” code
for the computation of the bwt and its inverse (without
compression) is available at http://www.mfn.unipmn.it/
~manzini/lightweight. The code of bzip2 is available at
http://www.bzip.org.

Cross References

� Arithmetic Coding for Data Compression
� Boosting Textual Compression
� Compressed Suffix Array
� Compressed Text Indexing
� Suffix Array Construction
� Table Compression
� Tree Compression and Indexing

Recommended Reading

1. Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice
Hall, NJ (1990)

2. Bentley, J., Sleator, D., Tarjan, R.,Wei, V.: A locally adaptive com-
pression scheme. Commun. ACM 29, 320–330 (1986)

http://www.mfn.unipmn.it/~manzini/boosting
http://www.mfn.unipmn.it/~manzini/boosting
http://pizzachili.di.unipi.it/
http://www.mfn.unipmn.it/~manzini/boosting
http://www.mfn.unipmn.it/~manzini/boosting
http://www.mfn.unipmn.it/~manzini/lightweight
http://www.mfn.unipmn.it/~manzini/lightweight
http://www.bzip.org

116 B Byzantine Agreement

3. Burrows, M., Wheeler, D.: A block sorting lossless data com-
pression algorithm. Tech. Report 124, Digital Equipment Cor-
poration (1994)

4. Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of
a compression boosting library: Theory vs practice in bwt com-
pression. In: Proc. 14th European Symposium on Algorithms
(ESA). LNCS, vol. 4168, pp. 756–767. Springer, Berlin (2006)

5. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of
wavelet trees. In: Proc. 33th International Colloquium on Au-
tomata and Languages (ICALP), pp. 561–572. LNCS n. 4051.
Springer, Berlin, Heidelberg (2006)

6. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting
textual compression in optimal linear time. J. ACM 52, 688–
713 (2005)

7. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Struc-
turing labeled trees for optimal succinctness, and beyond. In:
Proc. 46th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 184–193, Pittsburgh, PA (2005)

8. Hon, W., Sadakane, K., Sung, W.: Breaking a time-and-space
barrier in constructing full-text indices. In: Proc. of the 44th
IEEE Symposium on Foundations of Computer Science (FOCS),
251–260, Cambridge, MA (2003)

9. Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of Burrows-
Wheeler-based compression. Theoretical Computer Science
387(3): 220–235 (2007)

10. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sort-
ing. Theoretical Computer Science 387(3): 249–257 (2007)

11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix ar-
ray construction. J. ACM 53(6), 918–936 (2006)

12. Manzini, G.: An analysis of the Burrows-Wheeler transform. J.
ACM 48, 407–430 (2001)

13. Na, J.: Linear-time construction of compressed suffix arrays us-
ing o(n log n)-bit working space for large alphabets. In: Proc.
16th Symposium on Combinatorial Pattern Matching (CPM).
LNCS, vol. 3537, pp. 57–67. Springer, Berlin (2005)

14. Navarro, G., Mäkinen, V.: Compressed full text indexes. ACM
Comput. Surv. 39(1) (2007)

15. Salomon, D.: Data Compression: the Complete Reference, 3rd
edn. Springer, New York (2004)

16. Vo, B.D., Vo, K.P.: Using column dependency to compress ta-
bles. In: Proc. of IEEE Data Compression Conference (DCC),
pp. 92–101, IEEE Computer Society Press (2004)

Byzantine Agreement
1980; Pease, Shostak, Lamport

MICHAEL OKUN
Weizmann Institute of Science, Rehovot, Israel

Keywords and Synonyms

Consensus; Byzantine generals; Interactive consistency

ProblemDefinition

The study of Pease, Shostak and Lamport was among the
first to consider the problem of achieving a coordinated

behavior between processors of a distributed system in the
presence of failures [21]. Since the paper was published,
this subject has grown into an extensive research area. Be-
low is a presentation of the main findings regarding the
specific questions addressed in their paper. In some cases
this entry uses the currently accepted terminology in this
subject, rather than the original terminology used by the
authors.

SystemModel

A distributed system is considered to have n independent
processors, p1, ... ,pn, each modeled as a (possibly infinite)
state machine. The processors are linked by a communi-
cation network that supports direct communication be-
tween every pair of processors. The processors can com-
municate only by exchanging messages, where the sender
of every message can be identified by the receiver. While
the processors may fail, it is assumed that the communi-
cation subsystem is fail-safe. It is not known in advance
which processors will not fail (remain correct) and which
ones will fail. The types of processor failures are classified
according to the following hierarchy.

Crash failure A crash failure means that the processor no
longer operates (ad infinitum, starting from the failure
point). In particular, other processors will not receive
messages from a faulty processor after it crashes.

Omission failure A processor fails to send and receive an
arbitrary subset of its messages.

Byzantine failure A faulty processor behaves arbitrarily.

The Byzantine failure is further subdivided into two cases,
according to the ability of the processors to create unfal-
sifiable signatures for their messages. In the authenticated
Byzantine failure model it is assumed that each message
is signed by its sender and that no other processor can
fake a signature of a correct processor. Thus, even if such
a message is forwarded by other processors, its authentic-
ity can be verified. If the processors represent malevolent
(human) users of a distributed system, a Public Key In-
frastructure (PKI) is typically used to sign the messages
(which involves cryptography related issues [17], not dis-
cussed here). Practically, in systems where processors are
just “processors”, a simple signature, such as CRC (cyclic
redundancy check), might be sufficient [13]. In the unau-
thenticated Byzantine failure model there are no message
signatures.

Definition of the Byzantine Agreement Problem

In the beginning, each processor pi has an externally pro-
vided input value vi, from some setV (of at least size 2). In

Byzantine Agreement B 117

the Byzantine Agreement (BA) problem, every correct pro-
cessor pi is required to decide on an output value di 2 V
such that the following conditions hold:

Termination Eventually, pi decides, i. e., the algorithm
cannot run indefinitely.

Validity If the input value of all the processors is v, then
the correct processors decide v.

Agreement All the correct processors decide on the same
value.

For crash failures and omission failures there exists
a stronger agreement condition:

Uniform Agreement No two processors (either correct
or faulty) decide differently.

The termination condition has the following stronger ver-
sion.

Simultaneous Termination All the correct processors
decide in the same round (see definition below).

Timing Model

The BA problem was originally defined for synchronous
distributed systems [18,21]. In this timing model the pro-
cessors are assumed to operate in lockstep, which allows
to partition the execution of a protocol to rounds. Each
round consists of a send phase, during which a processor
can send a (different) message to each processor directly
connected to it, followed by a receive phase, in which it
receives messages sent by these processors in the current
round. Unlimited local computations (state transitions)
are allowed in both phases, which models the typical situ-
ation in real distributed systems, where computation steps
are faster than the communication steps by several orders
of magnitude.

Overview

This entry deals only with deterministic algorithms for
the BA problem in the synchronous model. For algo-
rithms involving randomization see the � Probabilistic
Synchronous Byzantine Agreement entry in this volume.
For results on BA in other models of synchrony, see
� Asynchronous Consensus Impossibility, � Failure De-
tectors,�Consensus with Partial Synchrony entries in this
volume.

Key Results

The maximum possible number of faulty processors is as-
sumed to be bounded by an a priori specified number t

(e. g., estimated from the failure probability of individual
processor and the requirements on the failure probability
of the system as a whole). The number of processors that
actually become faulty in a given execution is denoted by
f , where f � t.

The complexity of synchronous distributed algorithms
is measured by three complementary parameters. The first
is the round complexity, which measures the number of
rounds required by the algorithm. The second is the mes-
sage complexity, i. e., the total number of messages (and
sometimes also their size in bits) sent by all the proces-
sors (in case of Byzantine failures, only messages sent by
correct processors are counted). The third complexity pa-
rameter measures the number of local operations, as in se-
quential algorithms.

All the algorithms presented bellow are efficient, i. e.,
the number of rounds, the number of messages and their
size, and the local operations performed by each processor
are polynomial in n. In most of the algorithms, both the
exchanged messages and the local computations involve
only the basic data structures (e. g., arrays, lists, queues).
Thus, the discussion is restricted only to the round and
the message complexities of the algorithms.

The network is assumed to be fully connected, unless
explicitly stated otherwise.

Crash Failures

A simple BA algorithm which runs in t + 1 rounds and
sends O(n2) messages, together with a proof that this
number of rounds is optimal, can be found in textbooks
on distributed computing [19]. Algorithms for deciding
in f + 1 rounds, which is the best possible, are presented
in [7,23] (one additional round is necessary before the
processors can stop [11]). Simultaneous termination re-
quires t + 1 rounds, even if no failures actually occur [11],
however there exists an algorithm that in any given exe-
cution stops in the earliest possible round [14]. For uni-
form agreement, decision can bemade inmin(f + 2; t + 1)
rounds, which is tight [7].

In case of crash failures it is possible to solve the
BA problem with O(n) messages, which is also the lower
bound. However, all known message-optimal BA algo-
rithms require a superlinear time. An algorithm that runs
in O(f + 1) rounds and uses only O(n polylog n) mes-
sages, is presented in [8], along with an overview of other
results on BA message complexity.

Omission Failures

The basic algorithm used to solve the crash failure BA
problem works for omission failures as well, which al-

118 B Byzantine Agreement

lows to solve the problem in t + 1 rounds [23]. An algo-
rithm which terminates in min(f + 2; t + 1) rounds was
presented in [22]. Uniform agreement is impossible for
t � n/2 [23]. For t < n/2, there is an algorithm that
achieves uniform agreement in min(f + 2; t + 1) rounds
(and O(n2 f) message complexity) [20].

Byzantine Failures with Authentication

A (t + 1)-round BA algorithm is presented in [12]. An al-
gorithm which terminates in min(f + 2; t + 1) rounds can
be found in [24]. The message complexity of the problem
is analyzed in [10], where it is shown that the number of
signatures and the number of messages in any authenti-
cated BA algorithm are˝(nt) and˝(n + t2), respectively.
In addition, it is shown that ˝(nt) is the bound on the
number of messages for the unauthenticated BA.

Byzantine Failures Without Authentication

In the unauthenticated case, the BA problem can be solved
if and only if n > 3t. The proof can be found in [1,19].
An algorithm that decides in min(f + 3; t + 1) rounds (it
might require two additional rounds to stop) is presented
in [16]. Unfortunately, this algorithm is complicated.
Simpler algorithms, that run in min(2 f + 4; 2t + 1) and
3min(f + 2; t + 1) rounds, are presented in [24] and [5],
respectively. In these algorithms the number of sent mes-
sages is O(n3), moreover, in the latter algorithm the mes-
sages are of constant size (2 bits). Both algorithms assume
V = f0; 1g. To solve the BA problem for a larger V , sev-
eral instances of a binary algorithm can be run in paral-
lel. Alternatively, there exists a simple 2-round protocol
that reduces a BA problem with arbitrary initial values to
the binary case, e. g., see Sect. 6.3.3 in [19]. For algorithms
with optimalO(nt) message complexity and t + o(t) round
complexity see [4,9].

Arbitrary Network Topologies

When the network is not fully connected, BA can be solved
for crash, omission and authenticated Byzantine failures if
and only if it is (t + 1)-connected [12]. In case of Byzantine
failures without authentication, BA has a solution if and
only if the network is (2t + 1)-connected and n > 3t [19].
In both cases the BA problem can be solved by simulat-
ing the algorithms for the fully connected network, using
the fact that the number of disjoint communication paths
between any pair of non-adjacent processors exceeds the
number of faulty nodes by an amount that is sufficient for
reliable communication.

Interactive Consistency and Byzantine Generals

The BA (consensus) problem can be stated in several simi-
lar ways. Two widely used variants are the Byzantine Gen-
erals (BG) problem and the Interactive Consistency (IC)
problem. In the BG case there is a designated processor,
say p1, which is the only one to have an input value. The
termination and agreement requirements of the BG prob-
lem are exactly as in BA, while the validity condition re-
quires that if the input value of p1 is v and p1 is correct,
then the correct processors decide v. The IC problem is
an extension of BG, where every processor is “designated”,
so that each processor has to decide on a vector of n val-
ues, where the conditions for the i-th entry are as in BG,
with pi as the designated processor. For deterministic syn-
chronous algorithms BA, BG and IC problems are essen-
tially equivalent, e. g., see the discussion in [15].

Firing Squad

The above algorithms assume that the processors share
a “global time”, i. e., all the processors start in the same
(first) round, so that their round counters are equal
throughout the execution of the algorithm.However, there
are cases in which the processors run in a synchronous
network, yet each processor has its own notion of time
(e. g., when each processor starts on its own, the round
counter values are distinct among the processors). In these
cases, it is desirable to have a protocol that allows the
processors to agree on some specific round, thus creating
a common round which synchronizes all the correct pro-
cessors. This synchronization task, known as the Byzan-
tine firing squad problem [6], is tightly realted to BA.

General Translation Techniques

One particular direction that was pursued as part of the
research on the BA problem is the development of meth-
ods that automatically translate any protocol that tolerates
a more benign failure type into one which tolerates more
severe failures [24]. Efficient translations spanning the en-
tire failure hierarchy, starting from crash failures all the
way to unauthenticated Byzantine failures, can be found
in [3] and in Ch. 12 of [1].

Applications

Due to the very tight synchronization assumptions made
in the algorithms presented above, they are used mainly in
real-time, safety-critical systems, e. g., aircraft control [13].
In fact, the original interest of Pease, Shostak and Lamport
in this problem was raised by such an application [21]. In

Byzantine Agreement B 119

addition, BA protocols for the Byzantine failure case serve
as a basic building block in many cryptographic proto-
cols, e. g., secure multi-party computation [17], by provid-
ing a broadcast channel on top of pairwise communication
channels.

Cross References

� Asynchronous Consensus Impossibility
� Atomic Broadcast
� Consensus with Partial Synchrony
� Failure Detectors
�Optimal Probabilistic Synchronous Byzantine

Agreement
� Randomization in Distributed Computing
� Renaming
� Set Agreement

Recommended Reading
1. Attiya, H., Welch, J.L.: Distributed Computing: Fundamentals,

Simulations and Advanced Topics. McGraw-Hill, UK (1998)
2. Barborak, M., Dahbura, A., Malek, M.: The Consensus Prob-

lem in Fault-Tolerant Computing. ACM Comput. Surv. 25(2),
171–220 (1993)

3. Bazzi, R.A., Neiger, G.: Simplifying Fault-tolerance: Providing
the Abstraction of Crash Failures. J. ACM 48(3), 499–554 (2001)

4. Berman, P., Garay, J.A., Perry, K.J.: Bit Optimal Distributed Con-
sensus. In: Yaeza-Bates, R., Manber, U. (eds.) Computer Science
Research, pp. 313–322. Plenum Publishing Corporation, New
York (1992)

5. Berman, P., Garay, J.A., Perry, K.J.: Optimal Early Stopping in
DistributedConsensus. In: Proc. 6th InternationalWorkshop on
Distributed Algorithms (WDAG), pp. 221–237, Israel, Novem-
ber 1992

6. Burns, J.E., Lynch, N.A.: The Byzantine Firing Squad problem.
Adv. Comput. Res. 4, 147–161 (1987)

7. Charron-Bost, B., Schiper, A.: UniformConsensus is Harder than
Consensus. J. Algorithms 51(1), 15–37 (2004)

8. Chlebus, B.S., Kowalski, D.R.: Time and Communication
Efficient Consensus for Crash Failures. In: Proc. 20th Inter-

national Symposium on Distributed Computing (DISC),
pp. 314–328, Sweden, September 2006

9. Coan, B.A., Welch, J.L.: Modular construction of a Byzantine
agreement protocol with optimal message bit complexity. Inf.
Comput. 97(1), 61–85 (1992)

10. Dolev, D., Reischuk, R.: Bounds on Information Exchange for
Byzantine Agreement. J. ACM 32(1), 191–204 (1985)

11. Dolev, D., Reischuk, R., Strong, H.R.: Early Stopping in Byzantine
Agreement. J. ACM 37(4), 720–741 (1990)

12. Dolev, D., Strong, H.R.: Authenticated Algorithms for Byzantine
Agreement. SIAM J. Comput. 12(4), 656–666 (1983)

13. Driscoll, K., Hall, B., Sivencrona, H., Zumsteg, P.: Byzantine
Fault Tolerance, from Theory to Reality. In: Proc. 22nd Interna-
tional Conference on Computer Safety, Reliability, and Security
(SAFECOMP), pp. 235–248, UK, September 2003

14. Dwork, C., Moses, Y.: Knowledge and Common Knowledge in
a Byzantine Environment: Crash Failures. Inf. Comput. 88(2),
156–186 (1990)

15. Fischer, M.J.: The Consensus Problem in Unreliable Distributed
Systems (A Brief Survey). Research Report, YALEU/DCS/RR-273,
Yale University, New Heaven (1983)

16. Garay, J.A., Moses, Y.: Fully Polynomial Byzantine Agreement
for n > 3t Processors in t + 1 Rounds. SIAM J. Comput. 27(1),
247–290 (1998)

17. Goldreich, O.: Foundations of Cryptography, vol. 1-2. Cam-
bridge University Press, UK (2001) (2004)

18. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine Generals
Problem. ACMTrans. Program. Lang. Syst. 4(3), 382–401 (1982)

19. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, CA
(1996)

20. Parvédy, P.R., Raynal, M.: Optimal Early Stopping Uniform Con-
sensus in Synchronous Systems with Process Omission Fail-
ures. In: Proc. 16th Annual ACM Symposium on Parallel Algo-
rithms (SPAA), pp. 302–310, Spain, June 2004

21. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching Agreement in
the Presence of Faults. J. ACM 27(2), 228–234 (1980)

22. Perry, K.J., Toueg, S.: Distributed Agreement in the Presence of
Processor and Communication Faults. IEEE Trans. Softw. Eng.
12(3), 477–482 (1986)

23. Raynal, M.: Consensus in Synchronous Systems: A Concise
Guided Tour. In: Proc. 9th Pacific Rim International Symposium
on Dependable Computing (PRDC), pp. 221–228, Japan, De-
cember 2002

24. Toueg, S., Perry, K.J., Srikanth, T.K.: Fast Distributed Agreement.
SIAM J. Comput. 16(3), 445–457 (1987)

Cache-Oblivious B-Tree C 121

C

Cache-Oblivious B-Tree
2005; Bender, Demaine, Farach-Colton

ROLF FAGERBERG
Department of Mathematics and Computer Science,
University of Southern Denmark,
Odense, Denmark

Keywords and Synonyms

Cache-oblivious search tree; Cache-oblivious dictionary

ProblemDefinition

Computers contain a hierarchy of memory levels, with
vastly differing access times. Hence, the time for a mem-
ory access depends strongly on what is the innermost level
containing the data accessed. In analysis of algorithms, the
standard RAM (or von Neumann) model cannot capture
this effect, and external memory models were introduced
to better model the situation. The most widely used of
these models is the two-level I/O-model [1], also called the
External Memory model or the Disk Access model. The
I/O-model approximates the memory hierarchy by mod-
eling two levels, with the inner level having size M, the
outer level having infinite size, and transfers between the
levels taking place in blocks of B consecutive elements. The
cost of an algorithm is the number of memory transfers it
makes.

The cache-oblivious model, introduced by Frigo
et al. [18], elegantly generalizes the I/O-model to a multi-
level memory model by a simple measure: the algorithm is
not allowed to know the value of B andM. More precisely,
a cache-oblivious algorithm is an algorithm formulated in
the RAM model, but analyzed in the I/O-model, with an
analysis valid for any value of B and M. Cache replace-
ment is assumed to take place automatically by an opti-
mal off-line cache replacement strategy. Since the analysis

holds for any B and M, it holds for all levels simultane-
ously.

The subject here is that of efficient cache-oblivious
data structures for the ordered dictionary problem, i. e.,
the problem of storing elements with keys from an ordered
universe while supporting searches, insertions, deletions,
and range searches. In full generality, searches are prede-
cessor searches, returning the element with the largest key
smaller than or equal to the key searched for.

Key Results

The first cache-oblivious dictionary was given by Pro-
kop [21], who showed how to lay out a static binary
tree in memory such that searches take O(logB n) mem-
ory transfers. This layout, often called the van Emde Boas
layout because it is reminiscent of the classic van Emde
Boas data structure, also ensures that range searches take
O(logB n + k/B) memory transfers [2], where k is the size
of the output. Both bounds are optimal for comparison-
based searching.

The first dynamic, cache-oblivious dictionary was
given by Bender et al. [10]. Making use of a variant of the
van Emde Boas layout, a densitymaintenance algorithm of
the type invented by Itai et al. [19], and weight-balanced
B-trees [5], they arrived at the following results:

Theorem 1 ([10]) There is a cache-oblivious dictionary
structure supporting searches in O(logB n) memory trans-
fers, and insertions and deletions in amortized O(logB n)
memory transfers.

Theorem 2 ([10]) There is a cache-oblivious dictionary
structure supporting searches in O(logB n) memory trans-
fers, insertions and deletions in amortized O(logB n +
(log2 n)/B) memory transfers, and range searches in
O(logB n + k/B) memory transfers, where k is the size of
the output.

Later, Bender et al. [7] developed a cache-oblivious struc-
ture for maintaining linked lists which supports inser-
tion and deletion of elements in O(1) memory trans-

122 C Cache-Oblivious B-Tree

fers and scanning of k consecutive elements in amortized
O(k/B) memory transfers. Combining this structure with
the structure of the first theorem above, the following re-
sult can be achieved.

Theorem 3 ([7,10]) There is a cache-oblivious dictio-
nary structure supporting searches in O(logB n) memory
transfers, insertions and deletions in amortized O(logB n)
memory transfers, and range searches in amortized
O(logB n + k/B)memory transfers, where k is the size of the
output.

A long list of extensions of these basic cache-oblivious dic-
tionary results has been given. We now survey these.

Bender et al. [11] and Brodal et al. [16] gave very sim-
ilar proposals for reproducing the result of Theorem 2,
but with significantly simpler structures (avoiding the use
of weight-balanced B-trees). On the basis of exponen-
tial trees, Bender et al.[8] gave a proposal with O(logB n)
worst-case queries and updates. They also gave a solu-
tion with partial persistence, where searches (in all ver-
sions of the structure) and updates (in the latest version of
the structure) require amortized O(logB(m + n)) memory
transfers, where m is the number of versions and n is the
number of elements in the version operated on. Bender et
al. [14] extended the cache-oblivious model to a concur-
rent setting, and gave three proposals for cache-oblivious
B-trees in this setting. Bender et al. [12] gave cache-obliv-
ious dictionary structures exploring trade-offs between
faster insertion costs and slower search cost. Franceschini
and Grossi [17] showed how to achieve O(logB n) worst-
case queries and updates while using O(1) space besides
the space for the n elements stored. Extensions to dictio-
naries on other data types such as strings [13,15] and geo-
metric data [3,4,6] have been given.

It has been shown [9] that the best-possible multiplica-
tive constant in the 	(logB n) search bound for compari-
son-based searching is different in the I/O-model and in
the cache-oblivious model.

Applications

Dictionaries solve a fundamental data structuring prob-
lem which is part of solutions for a very high number of
computational problems. Dictionaries for external mem-
ory are useful in settings where memory accesses are dom-
inating the running time, and cache-oblivious dictionaries
in particular stand out by their ability to optimize the ac-
cess to all levels of an unknown memory hierarchy. This is
an asset e. g. when developing programs to be run on di-
verse or unknown architectures (such as software libraries
or programs for heterogeneous distributed computing like

grid computing and projects such as SETI@home). Even
on a single, known architecture, the memory parameters
available to a computational process may be non-con-
stant if several processes compete for the same memory
resources. Since cache-oblivious algorithms are optimized
for all parameter values, they have the potential to adapt
more gracefully to these changes, and also to varying in-
put sizes forcing different memory levels to be in use.

Open Problems

For the one-dimensional ordered dictionary problem dis-
cussed here, one notable open problem is to find a data
structure achieving worst case versions of all the bounds
in Theorem 3.

Experimental Results

Cache-oblivious dictionaries have been evaluated empir-
ically in [11,13,16,20,22]. The overall conclusion of these
investigations is that cache-oblivious methods easily can
outperform RAM algorithms, although sometimes not as
much as algorithms tuned to the specific memory hier-
archy and problem size in question. On the other hand,
cache-oblivious algorithms seem to perform well on all
levels of the memory hierarchy, and to be more robust to
changing problem sizes.

Cross References

� B-trees
� Cache-Oblivious Model
� Cache-Oblivious Sorting
� I/O-model

Recommended Reading
1. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sort-

ing and related problems. Commun. ACM 31(9), 1116–1127
(1988)

2. Arge, L., Brodal, G.S., Fagerberg, R.: Cache-oblivious data struc-
tures. In: Mehta, D., Sahni, S. (eds.) Handbook on Data Struc-
tures and Applications. CRC Press, Boca Raton (2005)

3. Arge, L., Brodal, G.S., Fagerberg, R., Laustsen, M.: Cache-oblivi-
ous planar orthogonal range searching and counting. In: Proc.
21st ACM Symposium on Computational Geometry, pp. 160–
169. ACM, New York (2005)

4. Arge, L., de Berg, M., Haverkort, H.J.: Cache-oblivious R-trees.
In: Proc. 21st ACM Symposium on Computational Geometry,
pp. 170–179. ACM, New York (2005)

5. Arge, L., Vitter, J.S.: Optimal external memory interval manage-
ment. SIAM J. Comput. 32(6), 1488–1508 (2003)

6. Arge, L., Zeh, N.: Simple and semi-dynamic structures for
cache-oblivious planar orthogonal range searching. In: Proc.
22nd ACM Symposium on Computational Geometry, pp. 158–
166. ACM, New York (2006)

Cache-ObliviousModel C 123

7. Bender, M., Cole, R., Demaine, E., Farach-Colton, M.: Scan-
ning and traversing: Maintaining data for traversals in a mem-
ory hierarchy. In: Proc. 10th Annual European Symposium
on Algorithms. LNCS, vol. 2461, pp. 139–151. Springer, Berlin
(2002)

8. Bender, M., Cole, R., Raman, R.: Exponential structures for
cache-oblivious algorithms. In: Proc. 29th International Col-
loquium on Automata, Languages, and Programming. LNCS,
vol. 2380, pp. 195–207. Springer, Berlin (2002)

9. Bender, M.A., Brodal, G.S., Fagerberg, R., Ge, D., He, S., Hu, H.,
Iacono, J., Lopez-Ortiz, A.: The cost of cache-oblivious search-
ing. In: Proc. 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 271–282. IEEE Computer Society Press,
Los Alamitos (2003)

10. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivi-
ous B-trees. SIAM J. Comput. 35(2), 341–358 (2005). Confer-
ence version appeared at FOCS (2000)

11. Bender, M.A., Duan, Z., Iacono, J., Wu, J.: A locality-preserving
cache-oblivious dynamic dictionary. J. Algorithms 53(2), 115–
136 (2004). Conference version appeared at SODA (2002)

12. Bender, M.A., Farach-Colton, M., Fineman, J.T., Fogel, Y.R., Kusz-
maul, B.C., Nelson, J.: Cache-oblivious streaming B-trees. In:
Proc. 19th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 81–92. ACM, New York (2007)

13. Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: Cache-oblivi-
ous string B-trees. In: Proc. 25th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 233–242.
ACM, New York (2006)

14. Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concur-
rent cache-oblivious B-trees. In: Proc. 17th Annual ACM Sym-
posium on Parallel Algorithms, pp. 228–237. ACM, New York
(2005)

15. Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionar-
ies. In: SODA: ACM-SIAM Symposium on Discrete Algorithms,
pp. 581–590. ACM Press, New York (2006)

16. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache-oblivious search
trees via binary trees of small height. In: Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 39–48
ACM, New York (2002)

17. Franceschini, G., Grossi, R.: Optimal worst-case operations for
implicit cache-oblivious search trees. In: Proc. Algorithms and
Data Structures, 8th International Workshop, WADS. LNCS,
vol. 2748, pp. 114–126. Springer, Berlin (2003)

18. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-
oblivious algorithms. In: 40th Annual IEEE Symposium on
Foundations of Computer Science, pp. 285–298. IEEE Com-
puter Society Press, Los Alamitos (1999)

19. Itai, A., Konheim, A.G., Rodeh, M.: A sparse table implementa-
tion of priority queues. In: Automata, Languages and Program-
ming, 8th Colloquium. LNCS, vol. 115, pp. 417–431. Springer,
Berlin (1981)

20. Ladner, R.E., Fortna, R., B.-Nguyen, H.: A comparison of cache
aware and cache oblivious static search trees using pro-
gram instrumentation. In: Experimental Algorithmics. LNCS,
vol. 2547, pp. 78–92. Springer, Berlin (2000)

21. Prokop, H.: Cache-oblivious algorithms. Master’s thesis, Mas-
sachusetts Institute of Technology (1999)

22. Rahman, N., Cole, R., Raman, R.: Optimised predecessor data
structures for internal memory. In: Proc. Algorithm Engineer-
ing, 5th International Workshop, WAE. LNCS, vol. 2141, pp. 67–
78. Springer, Berlin (2001)

Cache-ObliviousModel
1999; Frigo, Leiserson, Prokop, Ramachandran

ROLF FAGERBERG
Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Model Definition

The memory system of contemporary computers consists
of a hierarchy of memory levels, with each level acting as
a cache for the next; a typical hierarchy may consist of
registers, level 1 cache, level 2 cache, level 3 cache, main
memory, and disk (Fig. 1). One characteristic of the hier-
archy is that the memory levels get larger and slower the
further they get from the processor, with the access time
increasing most dramatically between RAM memory and
disk. Another characteristic is that data is moved between
levels in blocks.

As a consequence of the differences in access time be-
tween the levels, the cost of a memory access depends
highly on what is the current lowest memory level hold-
ing the element accessed. Hence, the memory access pat-
tern of an algorithm has a major influence on its practi-
cal running time. Unfortunately, the RAM model (Fig. 2)
traditionally used to design and analyze algorithms is not

Cache-Oblivious Model, Figure 1
The memory hierarchy

Cache-Oblivious Model, Figure 2
The RAMmodel

124 C Cache-Oblivious Model

Cache-Oblivious Model, Figure 3
The I/O-model

capable of capturing this, as it assumes that all memory ac-
cesses take equal time.

To better account for the effects of the memory hier-
archy, a number of computational models have been pro-
posed. The simplest and most successful is the two-level
I/O-model introduced by Aggarwal and Vitter [2] (Fig. 3).
In this model a two-level memory hierarchy is assumed,
consisting of a fast memory of size M and a slower mem-
ory of infinite size, with data transferred between the lev-
els in blocks of B consecutive elements. Computation can
only be performed on data in the fast memory, and algo-
rithms are assumed to have complete control over trans-
fers of blocks between the two levels. Such a block trans-
fer is denoted a memory transfer. The complexity mea-
sure is the number of memory transfers performed. The
strength of the I/O-model is that it captures part of the
memory hierarchy, while being sufficiently simple tomake
design and analysis of algorithms feasible. Over the last
two decades, a large body of results for the I/O-model has
been produced, covering most areas of algorithmics. For
an overview, see the surveys [3,24,26,27].

More elaborate models of multi-level memory have
been proposed (see e. g. [26] for an overview) but these
models have been less successful than the I/O-model,
mainly because of their complexity which makes analy-
sis of algorithms harder. All these models, including the
I/O-model, assume that the characteristics of the memory
hierarchy (the level and block sizes) are known.

In 1999 the cache-oblivious model (Fig. 4) was intro-
duced by Frigo et al. [22]. A cache-oblivious algorithm is
an algorithm formulated in the RAM model but analyzed
in the I/O-model, with the analysis required to hold for
any block size B and memory size M. Memory transfers
are assumed to take place automatically by an optimal off-
line cache replacement strategy.

The crux of the cache-oblivious model is that because
the I/O-model analysis holds for any block and memory

Cache-Oblivious Model, Figure 4
The cache-oblivious model

size, it holds for all levels of a multi-level memory hier-
archy (see [22,25] for detailed versions of this statement).
Put differently, by optimizing an algorithm to one un-
known level of the memory hierarchy, it is optimized to all
levels simultaneously. Thus, the cache-oblivious model el-
egantly generalizes the I/O-model to a multi-levelmemory
model by one simplemeasure: the algorithm is not allowed
to know the value of B andM. The challenge, of course, is
to develop algorithms having good memory transfer ana-
lyzes under these conditions.

Besides capturing the entire memory hierarchy in
a conceptually simple way, the cache-oblivious model has
other benefits: Algorithms developed in the model do not
rely on knowing the parameters of the memory hierarchy,
which is an asset when developing programs to be run on
diverse or unknown architectures (e. g. software libraries
or programs for heterogeneous distributed computing
such as grid computing and projects like SETI@home).
Even on a single, known architecture, the memory param-
eters available to a computational process may be non-
constant if several processes compete for the same mem-
ory resources. Since cache-oblivious algorithms are opti-
mized for all parameter values, they have the potential to
adapt more gracefully to these changes. Also, the same
code will adapt to varying input sizes forcing different
memory levels to be in use. Finally, cache-oblivious algo-
rithms automatically are optimizing the use of translation
lookaside buffers (a cache holding recently accessed parts
of the page table used for virtual memory) of the CPU,
which may be seen as a second memory hierarchy paral-
lel to the one mentioned in the introduction.

Possible weak points of the cache-oblivious model are
the assumption of optimal off-line cache replacement, and
the lack of modeling of the limited associativity of many of
the levels of the hierarchy. The first point is mitigated by

Cache-ObliviousModel C 125

the fact that normally, the provided analysis of a proposed
cache-oblivious algorithm will work just as well assuming
a Least-Recently-Used cache replacement policy, which is
closer to actual replacement strategies of computers. The
second point is also a weak point of most other memory
models.

Key Results

This section surveys a number of the known results in
the cache-oblivious model. Other surveys available in-
clude [5,14,20,24].

First of all, note that scanning an array of N elements
takesO(N/B) memory transfers for any values of B andM,
and hence is an optimal cache-oblivious algorithm. Thus,
standard RAM algorithms based on scanning may already
possess good analysis in the cache-oblivious model – for
instance, the classic deterministic selection algorithm has
complexity O(N/B) [20].

For sorting, a fundamental fact in the I/O-model is that
comparison-based sorting ofN elements takes	(Sort(N))
memory transfers [2], where Sort(N) = N

B logM/B
N
M . Also

in the cache-oblivious model, sorting can be carried out in
	(Sort(N)) memory transfer, if one makes the so-called
tall cache assumption M � B1+" [15,22]. Such an assump-
tion has been shown to be necessary [16], which proves
a separation in power between cache-oblivious algorithms
and algorithms in the I/O-model (where this assumption
is not needed for the sorting bound).

For searching, B-trees have cost O(logB N), which is
optimal in the I/O-model for comparison-based searching.
This cost is also attainable in the cache-oblivious model,
as shown for the static case in [25] and for the dynamic
case in [13]. A number of later variants of cache-oblivious
search trees have appeared. Also for searching, a separa-
tion between cache-oblivious algorithms and algorithms
in the I/O-model has been shown [12] in the sense that the
constants attainable in the O(logB N) bound are provably
different.

Permuting in the I/O-model has complexity 	(minf
Sort(N);Ng), assuming that elements are indivisible [2]. It
has been proven [16] that this asymptotic complexity can-
not be attained in the cache-oblivious model, hence also
for this problem, a separation exists.

Cache-oblivious priority queues supporting opera-
tions in O(1/B logM/B N/M) memory transfers amortized
have been given.

Currently known cache-oblivious algorithms also in-
clude algorithms for problems in computational geom-
etry [1,6,7,8,10,15], for graph problems [4,17,18,23], for
scanning dynamic sets [9], for layout of static trees [11],

for search problems on multi-sets [21], for dynamic pro-
gramming [19], for partial persistence [10], for matrix op-
erations [22], and for the Fast Fourier Transform [22].

Applications

The cache-oblivious model is a means for design and anal-
ysis of algorithms that use the memory hierarchy of com-
puters efficiently.

Experimental Results

Cache-oblivious algorithms have been evaluated empiri-
cally in a number of areas, including sorting, searching,
matrix algorithms [22], and dynamic programming [19].
The overall conclusion of these investigations is that
cache-oblivious methods often outperform RAM algo-
rithms, but not always exactly as much as do algorithms
tuned to the specific memory hierarchy and problem size.
On the other hand, cache-oblivious algorithms seem to
perform well on all levels of the memory hierarchy, and
to be more robust to changing problem sizes.

Cross References

� Cache-Oblivious B-Tree
� Cache-Oblivious Sorting
� I/O-model

Recommended Reading

1. Agarwal, P.K., Arge, L., Danner, A., Holland-Minkley, B.: Cache-
oblivious data structures for orthogonal range searching. In:
Proc. 19th ACM Symposium on Computational Geometry,
pp. 237–245. ACM, New York (2003)

2. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sort-
ing and related problems. Commun. ACM 31(9), 1116–1127
(1988)

3. Arge, L.: External memory data structures. In: Abello, J., Parda-
los, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data
Sets, pp. 313–358. Kluwer Academic Publishers, Boston (2002)

4. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B.,
Munro, J.I.: Cache-oblivious priority queue and graph algo-
rithm applications. In: Proc. 34th Annual ACM Symposium on
Theory of Computing, pp. 268–276. ACM, New York (2002)

5. Arge, L., Brodal, G.S., Fagerberg, R.: Cache-oblivious data struc-
tures. In: Mehta, D., Sahni, S. (eds.) Handbook on Data Struc-
tures and Applications. CRC Press, Boca Raton (2005)

6. Arge, L., Brodal, G.S., Fagerberg, R., Laustsen, M.: Cache-oblivi-
ous planar orthogonal range searching and counting. In: Proc.
21st Annual ACM Symposium on Computational Geometry,
pp. 160–169. ACM, New York (2005)

7. Arge, L., de Berg,M., Haverkort, H.J.: Cache-oblivious R-trees. In:
Symposium on Computational Geometry, pp. 170–179. ACM,
New York (2005)

126 C Cache-Oblivious Sorting

8. Arge, L., Zeh, N.: Simple and semi-dynamic structures for
cache-oblivious planar orthogonal range searching. In: Sym-
posium on Computational Geometry, pp. 158–166. ACM, New
York (2006)

9. Bender, M., Cole, R., Demaine, E., Farach-Colton, M.: Scan-
ning and traversing: Maintaining data for traversals in a mem-
ory hierarchy. In: Proc. 10th Annual European Symposium
on Algorithms. LNCS, vol. 2461, pp. 139–151. Springer, Berlin
(2002)

10. Bender, M., Cole, R., Raman, R.: Exponential structures for
cache-oblivious algorithms. In: Proc. 29th International Col-
loquium on Automata, Languages, and Programming. LNCS,
vol. 2380, pp. 195–207. Springer, Berlin (2002)

11. Bender, M., Demaine, E., Farach-Colton, M.: Efficient tree layout
in a multilevel memory hierarchy. In: Proc. 10th Annual Euro-
pean Symposium on Algorithms. LNCS, vol. 2461, pp. 165–173.
Springer, Berlin (2002). Full version at http://arxiv.org/abs/cs/
0211010

12. Bender, M.A., Brodal, G.S., Fagerberg, R., Ge, D., He, S., Hu, H.,
Iacono, J., López-Ortiz, A.: The cost of cache-oblivious search-
ing. In: Proc. 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 271–282. IEEE Computer Society Press,
Los Alamitos (2003)

13. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-obliv-
ious B-trees. In: 41st Annual Symposium on Foundations of
Computer Science, pp. 399–409. IEEE Computer Society Press,
Los Alamitos (2000)

14. Brodal, G.S.: Cache-oblivious algorithms and data structures.
In: Proc. 9th Scandinavian Workshop on Algorithm Theory.
LNCS, vol. 3111, pp. 3–13. Springer, Berlin (2004)

15. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweep-
ing. In: Proc. 29th International Colloquium on Automata,
Languages, and Programming. LNCS, vol. 2380, pp. 426–438.
Springer, Berlin (2002)

16. Brodal, G.S., Fagerberg, R.: On the limits of cache-oblivious-
ness. In: Proc. 35th Annual ACMSymposiumon Theory of Com-
puting, pp. 307–315. ACM, New York (2003)

17. Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivi-
ous data structures and algorithms for undirected breadth-
first search and shortest paths. In: Proc. 9th Scandinavian
Workshop on Algorithm Theory. LNCS, vol. 3111, pp. 480–492.
Springer, Berlin (2004)

18. Chowdhury, R.A., Ramachandran, V.: Cache-oblivious shortest
paths in graphs using buffer heap. In: Proc. 16th Annual ACM
Symposium on Parallelism in Algorithms and Architectures.
ACM, New York (2004)

19. Chowdhury, R.A., Ramachandran, V.: Cache-oblivious dynamic
programming. In: Proc. 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 591–600. ACM-SIAM, New York (2006)

20. Demaine, E.D.: Cache-oblivious algorithms and data struc-
tures. In: Proc. EFF summer school on massive data sets, LNCS.
Springer, Berlin. To appear. Online version at http://theory.
csail.mit.edu/edemaine/papers/BRICS2002/

21. Farzan, A., Ferragina, P., Franceschini, G., Munro, J.I.: Cache-
oblivious comparison-based algorithms on multisets. In: Proc.
13th Annual European Symposium on Algorithms. LNCS,
vol. 3669, pp. 305–316. Springer, Berlin (2005)

22. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache
oblivious algorithms. In: 40th Annual IEEE Symposium on
Foundations of Computer Science, pp. 285–298. IEEE Com-
puter Society Press, Los Alamitos (1999)

23. Jampala, H., Zeh, N.: Cache-oblivious planar shortest paths. In:
Proc. 32nd International ColloquiumonAutomata, Languages,
and Programming. LNCS, vol. 3580, pp. 563–575. Springer,
Berlin (2005)

24. Meyer, U., Sanders, P., Sibeyn, J.F. (eds.): Algorithms for Mem-
ory Hierarchies. LNCS, vol. 2625. Springer, Berlin (2003)

25. Prokop, H.: Cache-oblivious algorithms. Master’s thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engi-
neering and Computer Science (1999)

26. Vitter, J.S.: External memory algorithms and data structures:
Dealing with MASSIVE data. ACM Comput. Surv. 33(2), 209–
271 (2001)

27. Vitter, J.S.: Geometric and spatial data structures in external
memory. In: Mehta, D., Sahni, S. (eds.) Handbook onData Struc-
tures and Applications. CRC Press, Boca Raton (2005)

Cache-Oblivious Sorting
1999; Frigo, Leiserson, Prokop, Ramachandran

GERTH STØLTING BRODAL
Department of Computer Science, University of Aarhus,
Århus, Denmark

Keywords and Synonyms

Funnel sort

ProblemDefinition

Sorting a set of elements is one of the most well-studied
computational problems. In the cache-oblivious setting
the first study of sorting was presented in 1999 in the sem-
inal paper by Frigo et al. [8] that introduced the cache-
oblivious framework for developing algorithms aimed at
machines with (unknown) hierarchical memory.

Model

In the cache-oblivious setting the computational model
is a machine with two levels of memory: a cache of lim-
ited capacity and a secondary memory of infinite capac-
ity. The capacity of the cache is assumed to beM elements
and data is moved between the two levels of memory in
blocks of B consecutive elements. Computations can only
be performed on elements stored in cache, i. e. elements
from secondary memory need to be moved to the cache
before operations can access the elements. Programs are
written as acting directly on one unbounded memory, i. e.
programs are like standard RAM programs. The necessary
block transfers between cache and secondary memory are
handled automatically by the model, assuming an optimal
offline cache replacement strategy. The core assumption of
the cache-oblivious model is thatM and B are unknown to

http://arxiv.org/abs/cs/0211010
http://arxiv.org/abs/cs/0211010
http://theory.csail.mit.edu/edemaine/papers/BRICS2002/
http://theory.csail.mit.edu/edemaine/papers/BRICS2002/

Cache-Oblivious Sorting C 127

the algorithmwhereas in the related I/O model introduced
by Aggarwal and Vitter [1] the algorithms know M and
B and the algorithms perform the block transfers explic-
itly. A thorough discussion of the cache-oblivious model
and its relation to multi-level memory hierarchies is given
in [8].

Sorting

For the sorting problem the input is an array ofN elements
residing in secondary memory, and the output is required
to be an array in secondary memory storing the input ele-
ments in sorted order.

Key Results

In the I/O model tight upper and lower bounds were
proved for the sorting problem and the problem of
permuting an array [1]. In particular it was proved
that sorting requires 	(NB logM/B

N
B) block transfers and

permuting an array requires 	(minfN; NB logM/B
N
B g)

block transfers. Since lower bounds for the I/O model
also hold for the cache-oblivious model, the lower
bounds from [1] immediately give a lower bound of
˝(NB logM/B

N
B) block transfers for cache-oblivious sort-

ing and ˝(minfN; NB logM/B
N
B g) block transfers for

cache-oblivious permuting. The upper bounds from [1]
can not be applied to the cache-oblivious setting since
these algorithms make explicit use of B andM.

Binary Mergesort performs O(N log2 N) comparisons,
but analyzed in the cache-oblivious model it performs
O(NB log2

N
M) block transfers which is a factor 	(log M

B)
from the lower bound (assuming a recursive implemen-
tation of binary Mergesort, in order to get M in the de-
nominator in the logN/M part of the bound on the block
transfers). Another comparison-based sorting algorithm
is the classical Quicksort sorting algorithm from 1962
by Hoare [9], that performs expected O(N log2 N) com-
parisons and expected O(NB log2

N
M) block transfers. Both

these algorithms achieve their relatively good performance
for the number of block transfers from the fact that they
are based on repeated scanning of arrays—a property not
shared with e. g. Heapsort [10] that has a very poor perfor-
mance of 	(N log2

N
M) block transfers. In the I/O model

the optimal performance of O(NB logM/B
N
B) is achieved

by generalizing binary Mergesort to 	(MB)-way Merge-
sort [1].

Frigo et al. in [8] presented two cache-oblivious sort-
ing algorithms (which can also be used to permute an ar-
ray of elements). The first algorithm [8, Section 4] is de-
noted Funnelsort and is a reminiscent of classical binary
Mergesort, whereas the second algorithm [8, Section 5]

is a distribution-based sorting algorithm. Both algorithms
perform optimal O(NB logM/B

N
B) block transfers – pro-

vided a tall cache assumption M = ˝(B2) is satisfied.

Funnelsort

The basic idea of Funnelsort is to rearrange the sorting
process performed by binary Mergesort, such that the pro-
cessed data is stored “locally.” This is achieved by two ba-
sic ideas: (1) A top-level recursion that partitions the in-
put into N1/3 sequences of size N2/3, Funnelsort these se-
quences recursively, and merge the resulting sorted sub-
sequences using an N1/3-merger. (2) A k-merger is recur-
sively defined to perform binary merging of k input se-
quences in a clever schedule with an appropriate recur-
sive layout of data in memory using buffers to hold sus-
pended merging processes (see Fig. 1). Subsequently two
simplifications were made, without sacrificing the asymp-
totic number of block transfers performed. In [3] it was
proved that the binary merging could be performed lazily,
simplifying the scheduling of merging. In [5] it was fur-
ther observed that the recursive layout of k-mergers is not
necessary. It is sufficient that a k-merger is stored in a con-
secutive array, i. e. the buffers can be laid out in arbitrary
order which simplifies the construction algorithm for the
k-merger.

Implicit Cache-Oblivious Sorting

Franceschini in [7] showed how to perform optimal cache-
oblivious sorting implicitly using only O(1) space, i. e. all
data is stored in the input array except for O(1) additional
words of information. In particular the output array is just
a permutation of the input array.

The Role of the Tall Cache Assumption

The role of the tall cache assumption on cache-oblivious
sorting was studied by Brodal and Fagerberg in [4]. If no
tall cache assumption is made, they proved the following
theorem:

Theorem 1 ([4], Corollary 3) Let B1 = 1 and B2 = M/2.
For any cache-oblivious comparison-based sorting algo-
rithm, let t1 and t2 be upper bounds on the number of I/Os
performed for block sizes B1 and B2. If for a real num-
ber d � 0 it is satisfied that t2 = d � N

B2
logM/B2

N
B2

then
t1 > 1/8 � N log2 N/M.

The theorem shows cache-oblivious comparison-based
sorting without a tall cache assumption cannot match the
performance of algorithms in the I/O model whereM and

128 C Cache-Oblivious Sorting

Cache-Oblivious Sorting, Figure 1
The overall recursion of Funnelsort (left) and a 16-merger (right)

B are known to the algorithm. It also has the natural inter-
pretation that if a cache-oblivious algorithm is required to
be I/O-optimal for the case B = M/2, then binary Merge-
sort is best possible –any other algorithm will be the same
factor of 	(logM) worse than the optimal block transfer
bound for the case M � B.

For the related problem of permuting an array the fol-
lowing theorem states that for all possible tall cache as-
sumptions B � Mı , no cache-oblivious permuting algo-
rithm exists with a block transfer bound (even only in the
average case sense) matching the worst case bound in the
I/O model.

Theorem 2 ([4], Theorem 2) For all ı > 0, there
exists no cache-oblivious algorithm for permuting that
for all M � 2B and 1 � B � Mı achieves O(minfN; NB
logM/B

N
B g) I/Os averaged over all possible permutations of

size N.

Applications

Many problems can be reduced to cache-oblivious sort-
ing. In particular Arge et al. [2] developed a cache-obliv-
ious priority queue based on a reduction to sorting. They
furthermore showed how a cache-oblivious priority queue
can be applied to solve a sequence of graph problems, in-
cluding list ranking, BFS, DFS, and minimum spanning
trees.

Brodal and Fagerberg in [3] showed how to modify
the cache-oblivious lazy Funnelsort algorithm to solve sev-
eral problems within computational geometry, including
orthogonal line segment intersection reporting, all near-
est neighbors, 3D maxima problem, and batched orthog-
onal range queries. All these problems can be solved by

a computation process very similarly to binary Mergesort
with an additional problem dependent twist. This general
framework to solve computational geometry problems is
denoted distribution sweeping.

Open Problems

Since the seminal paper by Frigo et al. [8] introducing the
cache-oblivious framework there has been a lot of work
on developing algorithms with a good theoretical perfor-
mance, but only a limited amount of work has been done
on implementing these algorithms. An important issue for
future work is to get further experimental results consol-
idating the cache-oblivious model as a relevant model for
dealing efficiently with hierarchical memory.

Experimental Results

A detailed experimental study of the cache-oblivious sort-
ing algorithm Funnelsort was performed in [5]. The main
result of [5] is that a carefully implemented cache-obliv-
ious sorting algorithm can be faster than a tuned imple-
mentation of Quicksort already for input sizes well within
the limits of RAM. The implementation is also at least as
fast as the recent cache-aware implementations included
in the test. On disk the difference is even more pro-
nounced regarding Quicksort and the cache-aware algo-
rithms, whereas the algorithm is slower than a careful im-
plementation of multiway Mergesort optimized for exter-
nal memory such as in TPIE [6].

URL to Code

http://kristoffer.vinther.name/projects/funnelsort/

http://kristoffer.vinther.name/projects/funnelsort/

Causal Order, Logical Clocks, State Machine Replication C 129

Cross References

� Cache-Oblivious Model
� External Sorting and Permuting
� I/O-model

Recommended Reading

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sort-
ing and related problems. Commun. ACM 31(9), 1116–1127
(1988)

2. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B.,
Munro, J.I.: Cache-oblivious priority queue and graph algo-
rithm applications. In: Proc. 34th Annual ACM Symposium
on Theory of Computing, pp. 268–276. ACM Press, New York
(2002)

3. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweep-
ing. In: Proc. 29th International Colloquium on Automata, Lan-
guages, and Programming. Lecture Notes in Computer Sci-
ence, vol. 2380, pp. 426–438. Springer, Berlin (2002)

4. Brodal, G.S., Fagerberg, R.: On the limits of cache-oblivious-
ness. In: Proc. 35th Annual ACMSymposiumon Theory of Com-
puting, pp. 307–315. ACM Press, New York (2003)

5. Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-
oblivious sorting algorithm. ACM J. Exp. Algoritmics (Special Is-
sue of ALENEX 2004) 12(2.2), 23 (2007)

6. Department of Computer Science, Duke University. TPIE:
a transparent parallel I/O environment. http://www.cs.duke.
edu/TPIE/. Accessed 2002

7. Franceschini, G.: Proximity mergesort: Optimal in-place sort-
ing in the cache-oblivious model. In: Proceedings of the 15th
Annual ACM-SIAMSymposiumonDiscrete Algorithms (SODA),
SIAM, p. 291. Philadelphia, 2004

8. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-
oblivious algorithms. In: Proc. 40th Annual Symposium on
Foundations of Computer Science, pp. 285–297. IEEE Com-
puter Society Press, Los Alamitos (1999)

9. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962)
10. Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6),

347–348 (1964)

Caching
�Online Paging and Caching
� Paging

Causal Order, Logical Clocks,
State Machine Replication
1978; Lamport

XAVIER DÉFAGO
School of Information Science, Japan Advanced Institute
of Science and Technology (JAIST),
Ishikawa, Japan

Keywords and Synonyms

State-machine replication: active replication

ProblemDefinition

This entry covers several problems, related with each
other. The first problem is concerned withmaintaining the
causal relationship between events in a distributed system.
The motivation is to allow distributed systems to reason
about time with no explicit access to a physical clock. Lam-
port [5] defines a notion of logical clocks that can be used
to generate timestamps that are consistent with causal re-
lationships (in a conservative sense). He illustrates logical
clocks (also called Lamport clocks) with a distributed mu-
tual exclusion algorithm. The algorithm turns out to be
an illustration of state-machine replication. Basically, the
algorithm generates a total ordering of the events that is
consistent across processes. With all processes starting in
the same state, they evolve consistently with no need for
further synchronization.

SystemModel

The system consists of a collection of processes. Each pro-
cess consists of a sequence of events. Processes have no
shared memory and communicate only by exchanging
messages. The exact definition of an event depends on
the system actually considered and the abstraction level
at which it is considered. One distinguishes between three
kinds of events: internal (affects only the process executing
it), send, and receive events.

Causal Order

Causal order is concerned with the problem that the oc-
currence of some events may affect other events in the
future, while other events may not influence each other.
With processes that do not measure time, the notion of
simultaneity must be redefined in such a way that simul-
taneous events are those that cannot possibly affect each
other. For this reason, it is necessary to define what it
means for an event to happen before another event.

The following “happened before” relation is defined as
an irreflexive partial ordering on the set of all events in the
system [5].

Definition 1 The relation “!” on the set of events of
a system is the smallest relation satisfying the following
three conditions:
1. If a and b are events in the same process, and a comes

before b, then a! b.

http://www.cs.duke.edu/TPIE/
http://www.cs.duke.edu/TPIE/

130 C Causal Order, Logical Clocks, State Machine Replication

2. If a is the sending of a message by one process and b
is the receipt of the same message by another process,
then a! b.

3. If a! b and b! c then a! c.

Definition 2 Two distinct events a and b are said to be
concurrent if a 6! b and b 6! a.

Logical Clocks

Lamport also defines clocks in a generic way, as follows.

Definition 3 A clock Ci for a process pi is a function
which assigns a number Ci hai to any event a on that
process. The entire system of clocks is represented by the
function C which assigns to any event b the number Chbi,
where Chbi = Cjhbi if b is an event in process pj. The sys-
tem of clocks must meet the following clock condition.
� For any events a and b, if a! b then Chai < Chbi.

Assuming that there is some arbitrary total ordering �
of the processes (e. g., unique names ordered lexicograph-
ically), Lamport extends the “happened before” relation
and defines a relation “)” as a total ordering on the set
of all events in the system.

Definition 4 The total order relation) is defined as fol-
lows. If a is an event in process pi and b is an event in pro-
cess pj, then a) b if and only if either one of the follow-
ing conditions is satisfied.
1. Ci hai < Cjhbi
2. Ci hai = Cjhbi and pi � p j .

In fact, Lamport [5] also discusses an adaptation of these
conditions to physical clocks, and provides a simple clock
synchronization algorithm. This is however not discussed
further here.

State Machine Replication

The problem of state-machine replication was originally
presented by Lamport [4,5]. In a later review of the prob-
lem, Schneider [8] defines the problem as follows (formu-
lation adapted to the context of the entry).

Problem 1 (State-machine replication)
INPUT: A set of concurrent requests.
OUTPUT: A sequence of the requests processed at each pro-
cess, such that:
1. Replica coordination: all replicas receive and process the

same sequence of requests.
2. Agreement: every non-faulty state-machine replica re-

ceives every request.
3. Order: every non-faulty state-machine replica processes

the requests it receives in the same relative order.

In his paper on logical time [5] and discussed in this entry,
Lamport does not consider failures. He does however con-
sider them in another paper on state-machine replication
for fault-tolerance [4], which he published the same year.

Key Results

Lamport [5] proposed many key results related to the
problems described above.

Logical Clocks

Lamport [5] defines an elegant system of logical clocks that
meets the clock condition presented in Definition 3. The
clock of a process pi is represented by a register Ci, such
that Ci hai is the value held byCi when a occurs. Eachmes-
sage m carries a timestamp Tm, which equals the time at
which m was sent. The clock system can be described in
terms of the following rules.
1. Each process pi increments Ci between any two succes-

sive events.
2. If event a is the sending of a message m by process pi,

then the messagem contains a timestamp Tm = Ci hai.
3. Upon receiving a message m, process pj sets Cj to

max(Cj ; Tm + 1) (before actually executing the receive
event).

State Machine Replication

As an illustration for the use of logical clocks, Lamport [5]
describes a mutual exclusion algorithm. He also mentions
that the approach is more general and discusses the con-
cept of state-machine replication that he refines in a differ-
ent paper [4].

The mutual exclusion algorithm is based on the idea
that every process maintains a copy of a request queue,
and the algorithm ensures that the copies remain consis-
tent across the processes. This is done by generating a total
ordering of the request messages, according to timestamps
obtained from the logical clocks of the sending processes.

The algorithm described works under the following
simplifying assumptions:
� Every message that is sent is eventually received.
� For any processes pi and pj, messages from pi to pj are

received in the same order as they are sent.
� A process can send messages directly to every other

processes.
The algorithm requires that each process maintains its
own request queue, and ensures that the request queues
of different processes always remain consistent. Initially,
request queues contain a single message (T0; p0; request),
where p0 is the process that holds the resource and the

Certificate Complexity and Exact Learning C 131

timestamp T0 is smaller than the initial value of every
clock. Then, the algorithm works as follows.
1. When a process pi requests the resource, it sends a re-

quest message (Tm ; pi ; request) to all other processes
and puts the message in its request queue.

2. When a process pj receives a message (Tm ; pi ; request),
it puts that message in its request queue and sends an
acknowledgment (Tm0; p j; ack) to pi.

3. When a process pi releases the resource, it removes all
instances of messages (�; pi ; request) from its queue,
and sends a message (Tm0; pi ; release) to all other pro-
cesses.

4. When a process pj receives a release message from
process pi, it removes all instances of messages
(�; pi ; request) from its queue, and sends a times-
tamped acknowledgment to pi.

5. Messages in the queue are sorted according to the to-
tal order relation) of Definition 4. A process pi can
use the resource when (a) a message (Tm ; pi ; request)
appears first in the queue, and (b) pi has received from
all other processes a message with a timestamp greater
than Tm (or equal from any process pj where pi � p j).

Applications

A brief overview of some applications of the concepts pre-
sented in this entry has been provided.

First of all, the notion of causality in distributed sys-
tems (or lack thereof) leads to a famous problem in which
a user may potentially see an answer before she can see the
relevant question. The time-independent characterization
of causality of Lamport lead to the development of effi-
cient solutions to enforce causal order in communication.
In his later work, Lamport [3] gives a more general defi-
nition to the “happened before” relation, so that a system
can be characterized at various abstraction levels.

About a decade after Lamport’s work on logical clock,
Fidge [2] and Mattern [6] have developed the notion of
vector clocks, with the advantage of a complete charac-
terization of causal order. Indeed, the clock condition en-
forced by Lamport’s logical clocks is only a one-way im-
plication (see Definition 3). In contrast, vector clocks ex-
tend Lamport clocks by ensuring that, for any events a and
b, if Chai < Chbi, then a! b. This is for instance useful
for choosing a set of checkpoints after recovery of a dis-
tributed system, for distributed debugging, or for deadlock
detection. Other extensions of logical time have been pro-
posed, that have been surveyed by Raynal and Singhal [7].

The state-machine replication also has many applica-
tions. In particular, it is often used for replicating a dis-
tributed service over several processors, so that the service

can continue to operate even in spite of the failure of some
of the processors. State-machine replication ensures that
the different replicas remain consistent.

The mutual exclusion algorithm proposed by Lam-
port [5] and described in this entry is actually one of
the first known solution to the atomic broadcast problem
(see relevant entry). Briefly, in a system with several pro-
cesses that broadcast messages concurrently, the problem
requires that all processes deliver (and process) all mes-
sage in the same order. Nowadays, there exist several ap-
proaches to solving the problem. Surveying many algo-
rithms, Défago et al. [1] have classified Lamport’s algo-
rithm as communication history algorithms, because of the
way the ordering is generated.

Cross References

� Atomic Broadcast
� Clock Synchronization
� Concurrent Programming, Mutual Exclusion
� Linearizability
� Quorums

Recommended Reading

1. Défago, X., Schiper, A., Urbán, P.: Total order broadcast andmul-
ticast algorithms: Taxonomy and survey. ACMComput. Surv.36,
372–421 (2004)

2. Fidge, C. J.: Logical time in distributed computing systems. IEEE
Comput. 24, 28–33 (1991)

3. Lamport, L.: On interprocess communication. Part I: Basic for-
malism. Distrib. Comput. 1, 77–85 (1986)

4. Lamport, L.: The implementation of reliable distributed multi-
process systems. Comput. Netw. 2, 95–114 (1978)

5. Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21, 558–565 (1978)

6. Mattern, F.: Virtual time and global states of distributed systems.
In: Cosnard, M., Quinton, P. (eds.) Parallel and Distributed Algo-
rithms, pp.215–226. North-Holland, Amsterdam (1989)

7. Raynal, M., Singhal, M.: Capturing causality in distributed sys-
tems. IEEE Comput. 29, 49–56 (1996)

8. Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: a tutorial. ACMComput. Surv. 22, 299–
319 (1990)

Certificate Complexity
and Exact Learning
1995; Hellerstein, Pilliapakkamnatt, Raghavan,
Wilkins

LISA HELLERSTEIN
Department of Computer and Information Science,
Polytechnic University, Brooklyn, NY, USA

132 C Certificate Complexity and Exact Learning

ProblemDefinition

This problem concerns the query complexity of proper
learning in a widely studied learning model: exact learn-
ing with membership and equivalence queries. Hellerstein
et al. [8] showed that the number of (polynomially sized)
queries required to learn a concept class in this model
is closely related to the size of certain certificates associ-
ated with that class. This relationship gives a combina-
torial characterization of the concept classes that can be
learned with polynomial query complexity. (Similar re-
sults were shown by Hegedüs[7], based on the work of
Moshkov [11].)

The Exact Learning Model

Concepts are functions f : X ! Y where X is an arbitrary
domain, and Y = f0; 1g. In exact learning, there is a hid-
den concept f from a known class of concepts C, and the
problem is to exactly identify the function f .

Algorithms in the exact learning model obtain infor-
mation about f , the target concept, by querying two or-
acles, a membership oracle and an equivalence oracle.
A membership oracle for f answers membership queries,
which are of the form “What is f (x)?” where x 2 X (point
evaluation queries). Themembership oracle responds with
the value f (x). An equivalence oracle for f answers equiv-
alence queries, which are of the form “Is h � f ?” where h
is a representation of a concept defined on the domain X.
Representation h is called a hypothesis. The equivalence
oracle responds “yes” if h(x) = f (x) for all x 2 X. Other-
wise, it returns a counterexample, a value x 2 X such that
f (x) ¤ h(x).

The exact learning model is due to Angluin [2].
Angluin viewed the combination of membership and
equivalence oracles as constituting a “minimally adequate
teacher.” Equivalence queries can be simulated both in
Valiant’s well-known PAC model, and in the on-line
mistake-bound learning model.

Let R be a set of representations of concepts, and let
CR be the associated set of concepts. For example, if R
were a set of DNF formulas, then CR would be the set of
Boolean functions (concepts) represented by those formu-
las. An exact learning algorithm is said to learn R if, given
access to membership and equivalence oracles for any f in
CR, it ends by outputing a hypothesis h that is a represen-
tation of f .

Query Complexity of Exact Learning

There are two aspects to the complexity of exact learning,
query complexity and computational complexity. The re-
sults of Hellerstein et al. concern query complexity.

The query complexity of an exact learning algorithm
measures the number of queries it asks and the size of the
hypotheses it uses in those queries (and as the final out-
put). We assume that each representation class R has an
associated size function that assigns a non-negative num-
ber to each r 2 R. The size of a concept cwith respect to R,
denoted by jcjR , is the size of the smallest representation of
c in R; if c 62 cR , jcjR =1. Ideally, the query complexity of
an exact learning algorithm will be polynomial in the size
of the target and other relevant parameters of the problem.

Many exact learning results concern learning repre-
sentations of Boolean functions. Algorithms for learning
such classes R are said to have polynomial query com-
plexity if the number of hypotheses used, and the size of
those hypotheses, is bounded by some polynomial p(m, n),
where n is the number of variables on which the target f
is defined, and m = j f jR. We assume that algorithms for
learning Boolean representation classes are given the value
of n as input.

Since the number and size of queries used by an al-
gorithm is a lower bound on the time taken by that al-
gorithm, query complexity lower bounds imply computa-
tional complexity lower bounds.

Improper Learning and the Halving Algorithm

An algorithm for learning a representation classR is said to
be proper if all hypotheses used in its equivalence queries
are from RC, and it outputs a representation from RC. Oth-
erwise, the algorithm is said to be improper.

When RC is a finite concept class, defined on a finite
domain X, a simple, generic algorithm called the halving
algorithm can be used to exactly learn R using log jRC j

equivalence queries and nomembership queries. The halv-
ing algorithm is based on the following idea. For any
V
 RC , define the majority hypothesis MAJV to be the
concept defined onX such that for all x 2 X, MAJV (x) = 1
if g(x) = 1 for more than half the concepts g in V , and
MAJV (x) = 0 otherwise. The halving algorithm begins by
setting V = RC . It then repeats the following:
1. Ask an equivalence query with the hypothesis MAJV .
2. If the answer is yes, then output MAJV .
3. Otherwise, the answer is a counterexample x. Remove

from V all g such that g(x) = MAJV (x).
Each counterexample eliminates the majority of the el-

ements currently in V , so the size of V is reduced by a fac-
tor of at least 2 with each equivalence query. It follows that
the algorithm cannot ask more than log2 jRC j queries.

The halving algorithm cannot necessarily be imple-
mented as a proper algorithm, since the majority hypothe-
ses may not be representable in RC. Even when they are

Certificate Complexity and Exact Learning C 133

representable in RC, the representations may be exponen-
tially larger than the target concept.

Proper Learning and Certificates

In the exact model, the query complexity of proper learn-
ing is closely related to the size of certain certificates.

For any concept f defined on a domain X, a certificate
that f has property P is a subset S
 X such that for all
concepts g defined on X, if g(x) = f (x) for all x 2 X, then
g has property P. The size of the certificate S is jSj, the
number of elements in it.

We are interested in properties of the form “g is
not a member of the concept class C”. To take a sim-
ple example, let D be the class of constant-valued n-
variable Boolean functions, i. e.D consists of the two func-
tions f1(x1; : : : ; xn) = 1 and f2(x1; : : : ; xn) = 0. Then if
g is an n-variable Boolean function that is not a mem-
ber of D, a certificate that g is not in C could be just
a pair a 2 f0; 1gn and b 2 f0; 1gn such that g(a) = 1 and
g(b) = 0.

For C a class of concepts defined on X, define the ex-
clusion dimension of C to be the maximum, over all con-
cepts g not in C, of the size of the smallest certificate that g
is not in C. Let XD(C) denote the exclusion dimension of
C. In the above example, XD(C) = 2.

Key Results

Theorem 1 Let R be a finite class of representations. Then
there exists a proper learning algorithm in the exact model
that learns C using at most XD(C) log jCj queries. Fur-
ther, any such algorithm for C must make at least XD(C)
queries.

Independently, Hegedüs proved a theorem that is essen-
tially identical to the above theorem. The algorithm in the
theorem is a variant of the ordinary halving algorithm.
As noted by Hegedüs, a similar result to Theorem 1 was
proved earlier by Moshkov, and Moshkov’s techniques
can be used to improve the upper bound by a factor of
1/XD(C).

An extension of the above result characterizes the rep-
resentation classes that have polynomial query complex-
ity. The following theorem presents the extended result
as it applies to representation classes of Boolean func-
tions.

Theorem 2 Let R be a class of representations of Boolean
functions. Then there exists a proper exact learning algo-
rithm for R with polynomial query complexity iff there ex-
ists a polynomial p(m, n) such that for all m; n > 0, and

all n-variable Boolean functions g, if the size of g is greater
than m, then there exists a certificate of size at most p(m, n)
proving that jgjR > m.

A concept class having certificates of the type specified in
this theorem is said to have polynomial certificates.

The algorithm in the above theorem does not run in
polynomial time. Hellerstein et al. give a more complex al-
gorithm that runs in polynomial time using a ˙ P

4 oracle,
provided R satisfies certain technical conditions. Köbler
and Lindner subsequently gave an algorithm using a ˙ P

2
oracle [10].

Theorem 2 and its generalization give a technique for
proving bounds on proper learning in the exact model.
Proving upper bounds on the size of the appropriate cer-
tificates yields upper bounds on query complexity. Proving
lower bounds on the size of appropriate certificates yields
lower bounds on query complexity and hence also on
time complexity. Moreover, unlike many computational
hardness results in learning, computational hardness re-
sults achieved in this way do not rely on any unproven
complexity theoretic or cryptographic hardness assump-
tions.

One of the most widely studied problems in compu-
tational learning theory has been the question of whether
DNF formulas can be learned in polynomial time in com-
mon learning models. The following result on learning
DNF formulas was proved using Theorem 2, by bounding
the size of the relevant certificates.

Theorem 3 There is a proper algorithm that learns DNF
formulas in the exact model with query complexity bounded
above by a polynomial p(m; r; n), where m is the size of
the smallest DNF representing the target function f , n is the
number of variables on which f is defined, and r is the size
of the smallest CNF representing f .

The size of a DNF is the number of its terms; the size of
a CNF is the number of its clauses. The above theorem
does not imply polynomial-time learnability of arbitrary
DNF formulas, since the running time of the algorithm de-
pends not just on the size of the smallest DNF representing
the target, but also on the size of the smallest CNF.

Building on results of Alekhnovich et al., Feldman
showed that if NP 6= RP, DNF formulas cannot be learned
in polynomial time in the PAC model augmented with
membership queries. The same negative result then fol-
lows immediately for the exact model [1,6]. Hellerstein
and Raghavan used certificate size lower bounds and The-
orem 1 to prove that DNF formulas cannot be learned by
a proper exact algorithm with polynomial query complex-

134 C Channel Assignment and Routing in Multi-Radio Wireless Mesh Networks

ity, if the algorithm is restricted to using DNF hypotheses
that are only slightly larger than the target [9].

The main results of Hellerstein et al. apply to learn-
ing with membership and equivalence queries. Hellerstein
et al. also considered the model of exact learning with
membership queries alone, and showed that in this model,
a projection-closed Boolean function class is polynomial
query learnable iff it has polynomial teaching dimension.
Teaching dimension was previously defined by Goldman
and Kearns. Hegedüs defined the extended teaching di-
mension, and showed that all classes are polynomially
query learnable with membership queries alone iff they
have polynomial extended teaching dimension.

Balcázar et al. introduced the strong consistency di-
mension to characterize polynomial query learnability
with equivalence queries alone [5]. The abstract identi-
fication dimension of Balcázar, Castro, and Guijarro is
a very general measure that can be used to characterize
polynomial query learnability for any set of example-based
queries [4].

Applications

None

Open Problems

It remains open whether DNF formulas can be learned in
polynomial time in the exact model, using hypotheses that
are not DNF formulas.

Feldman’s results show the computational hardness of
proper learning of DNF in the exact learning model based
on complexity theoretic assumptions. However, it is un-
clear whether the hardness of proper learning of DNF is
a result of computational barriers, or whether query com-
plexity is also a barrier to efficient learning. It is still open
whether the class of DNF formulas has polynomial cer-
tificates; showing they do not have polynomial certificates
would give a hardness result for proper learning of DNF
based only on query complexity, with no complexity theo-
retic assumptions (and without the hypothesis-size restric-
tions used by Hellerstein and Raghavan). It is also open
whether the class of Boolean decision trees has polynomial
certificates.

Certificate techniques are used to prove lower bounds
on learning when we restrict the type of hypotheses
used by the learning algorithm. These types of results
are called representation dependent, since they depend
on the restriction of the representations used as hy-
potheses. Although there are some techniques for prov-
ing representation-independent hardness results, there is
a need for more powerful techniques.

Recommended Reading
1. Alekhnovich, M., Braverman, M., Feldman, V., Klivans, A.R.,

Pitassi, T.: Learnability and automatizability. In: FOCS ’04 Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’04), pp. 621–630. IEEE Computer
Society, Washington (2004)

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4),
319–342 (1987)

3. Angluin, D.: Queries Revisited. Theor. Comput. Sci. 313(2),
175–194 (2004)

4. Balcázar, J.L., Castro, J., Guijarro, D.: A new abstract combina-
torial dimension for exact learning via queries. J. Comput. Syst.
Sci. 64(1), 2–21 (2002)

5. Balcázar, J.L., Castro, J., Guijarro, D., Simon, H.-U.: The con-
sistency dimension and distribution-dependent learning from
queries. Theor. Comput. Sci. 288(2), 197–215 (2002)

6. Feldman, V.: Hardness of approximate two-level logic mini-
mization and pac learning with membership queries. In: STOC
’06 Proceedings of the 38th Annual ACM Symposium on The-
ory of Computing, pp. 363–372. ACM Press, New York (2006)

7. Hegedüs, T.: Generalized teaching dimensions and the query
complexity of learning. In: COLT ’95 Proceedings of the 8th An-
nual Conference on Computational Learning Theory, pp. 108–
117 (1995)

8. Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., Wilkins, D.:
How many queries are needed to learn? J. ACM. 43(5), 840–
862 (1996)

9. Hellerstein, L., Raghavan, V.: Exact learning of dnf formulas us-
ing dnf hypotheses. J Comput. Syst. Sci. 70(4), 435–470 (2005)

10. Köbler, J., Lindner, W.: Oracles in sp2 are sufficient for exact
learning. Int. J. Found. Comput. Sci. 11(4), 615–632 (2000)

11. Moshkov, M.Y.: Conditional tests. Probl. Kibern. (in Russian) 40,
131–170 (1983)

Channel Assignment
and Routing inMulti-Radio
WirelessMesh Networks
2005; Alicherry, Bhatia, Li

MANSOOR ALICHERRY, RANDEEP BHATIA,
LI (ERRAN) LI
Bell Labs, Alcatel-Lucent, Murray Hill, NJ, USA

Keywords and Synonyms

Graph coloring, Ad-hoc networks

ProblemDefinition

One of the major problems facing wireless networks is
the capacity reduction due to interference among multiple
simultaneous transmissions. In wireless mesh networks
providing mesh routers with multiple-radios can greatly
alleviate this problem. With multiple-radios, nodes can
transmit and receive simultaneously or can transmit on

Channel Assignment and Routing in Multi-Radio Wireless Mesh Networks C 135

multiple channels simultaneously. However, due to the
limited number of channels available the interference can-
not be completely eliminated and in addition careful chan-
nel assignment must be carried out to mitigate the ef-
fects of interference. Channel assignment and routing
are inter-dependent. This is because channel assignments
have an impact on link bandwidths and the extent to
which link transmissions interfere. This clearly impacts
the routing used to satisfy traffic demands. In the same
way traffic routing determines the traffic flows for each
link which certainly affects channel assignments. Chan-
nel assignments need to be done in a way such that the
communication requirements for the links can be met.
Thus, the problem of throughput maximization of wire-
less mesh networks must be solved through channel as-
signment, routing, and scheduling.

Formally, given a wireless mesh backbone network
modeled as a graph (V , E): The node t 2 V represents the
wired network. An edge e = (u; v) exists in E iff u and v
are within communication range RT . The set VG
 V rep-
resents the set of gateway nodes. The system has a total
of K channels. Each node u 2 V has I(u) network inter-
face cards, and has an aggregated demand l(u) from its as-
sociated users. For each edge e the set I(e) � E denotes
the set of edges that it interferes with. A pair of nodes that
use the same channel and are within interference range RIx
may interfere with each other’s communication, even if
they cannot directly communicate. Node pairs using dif-
ferent channels can transmit packets simultaneously with-
out interference. The problem is to maximize � where at
least �l(u) amount of throughput can be routed from each
node u to the Internet (represented by a node t). The �l(u)
throughput for each node u is achieved by computing g(1)
a network flow that associates with each edge e = (u; v)
values f (e(i)); 1 � i � K where f (e(i)) is the rate at which
traffic is transmitted by node u for node v on channel i; (2)
a feasible channel assignment F(u) (F(u) is an ordered set
where the ith interface of u operates on the ith channel
in F(u)) such that, whenever f (e(i)) > 0, i 2 F(u) \ F(v);
(3) a feasible schedule S that decides the set of edge chan-
nel pair (e, i) (edge e using channel, i. e. f (e(i)) > 0 sched-
uled at time slot � , for � = 1; 2; : : : ; T where T is the pe-
riod of the schedule. A schedule is feasible if the edges
of no two edge pairs (e1; i); (e2; i) scheduled in the same
time slot for a common channel i interfere with each other
(e1 … I(e2) and e2 … I(e1)). Thus, a feasible schedule is also
referred to as an interference free edge schedule. An in-
dicator variable Xe;i;� ; e 2 E; i 2 F(e); � � 1 is used. It is
assigned 1 if and only if link e is active in slot � on chan-
nel i. Note that 1/T

P
1���T Xe;i;� c(e) = f (e(i)). This is

because communication at rate c(e) happens in every slot

that link e is active on channel i and since f (e(i)) is the
average rate attained on link e for channel i. This implies
1/T

P
1���T Xe;i;� =

f (e(i))
c(e) .

Joint Routing, Channel Assignment,
and Link SchedulingAlgorithm

Even the interference free edge scheduling sub-problem
given the edge flows is NP-hard [5]. An approximation al-
gorithm called RCL for the joint routing, channel assign-
ment, and link scheduling problem has been developed.
The algorithm performs the following steps in the given
order:
1. Solve LP: First optimally solve a LP relaxation of the

problem. This results in a flow on the flow graph along
with a not necessarily feasible channel assignment for
the node radios. Specifically, a node may be assigned
more channels than the number of its radios. However,
this channel assignment is “optimal” in terms of ensur-
ing that the interference for each channel is minimum.
This step also yields a lower bound on the � value which
is used in establishing the worst case performance guar-
antee of the overall algorithm.

2. Channel Assignment: This step presents a channel as-
signment algorithm which is used to adjust the flow on
the flow graph (routing changes) to ensure a feasible
channel assignment. This flow adjustment also strives
to keep the increase in interference for each channel to
a minimum.

3. Interference Free Link Scheduling: This step obtains
an interference free link schedule for the edge flows cor-
responding to the flow on the flow graph.

Each of these steps is described in the following subsec-
tions.

A Linear Programming-Based Routing Algorithm

A linear program LP (1) to find a flow that maximizes � is
given below:

max� (1)

Subject to

�l(v) +
X

e=(u;v)2E

KX
i=1

f (e(i)) =
X

e=(v;u)2E

KX
i=1

f (e(i)) ;

8v 2 V � VG (2)

f (e(i)) � c(e) ; 8e 2 E (3)

136 C Channel Assignment and Routing in Multi-Radio Wireless Mesh Networks

X
1�i�K

0
@ X

e=(u;v)2E

f (e(i))
c(e)

+
X

e=(v;u)2E

f (e(i))
c(e)

1
A � I(v) ;

v 2 V (4)

f (e(i))
c(e)

+
X

e02I(e)

f (e0(i))
c(e0)

� c(q) ;

8e 2 E ; 1 � i � K : (5)

The first two constraints are flow constraints. The first
one is the flow conservation constraint; the second one
ensures no link capacity is violated. The third constraint
is the node radio constraints. Recall that a IWMN node
v 2 V has I(v) radios and hence can be assigned at most
I(v) channels from 1 � i � K. One way to model this con-
straint is to observe that due to interference constraints v
can be involved in at most I(v) simultaneous communica-
tions (with different one hop neighbors). In other words
this constraint follows from

P
1�i�K

P
e=(u;v)2E Xe;i;� +P

1�i�K
P

e=(v;u)2E Xe;i;� � I(v): The fourth constraint
is the link congestion constraints which are discussed in
detail in Sect. “Link Flow Scheduling”. Note that all the
constraints listed above are necessary conditions for any
feasible solution. However, these constraints are not nec-
essarily sufficient. Hence if a solution is found that satisfies
these constraints it may not be a feasible solution. The ap-
proach is to start with a “good” but not necessarily feasible
solution that satisfies all of these constraints and use it to
construct a feasible solution without impacting the quality
of the solution.

A solution to this LP can be viewed as a flow on a flow
graph H = (V ; EH) where EH = fe(i)j8e 2 E; 1 � i �
Kg. Although the optimal solution to this LP yields the best
possible � (say ��) from a practical point of view more
improvements may be possible:
� The flow may have directed cycles. This may be the

case since the LP does not try to minimize the amount
of interference directly. By removing the flow on the
directed cycle (equal amount off each edge) flow con-
servation is maintained and in addition since there are
fewer transmissions the amount of interference is re-
duced.

� The flow may be using a long path when shorter paths
are available. Note that longer paths imply more link
transmissions. In this case it is often the case that by
moving the flow to shorter paths, system interference
may be reduced.

The above arguments suggest that it would be practical to
find among all solutions that attain the optimal � value
of �� the one for which the total value of the following

quantity is minimized:

X
1�i�K

X
e=(v;u)2E

f (e(i))
c(e)

:

The LP is then re-solved with this objective function and
with � fixed at ��.

Channel Assignment

The solution to the LP (1) is a set of flow values f (e(i))
for edge e and channel i that maximize the value �. Let
�� denote the optimal value of �. The flow f (e(i)) implies
a channel assignment where the two end nodes of edge e
are both assigned channel i if and only if f (e(i)) > 0. Note
that for the flow f (e(i)) the implied channel assignment
may not be feasible (it may require more than I(v) chan-
nels at node v). The channel assignment algorithm trans-
forms the given flow to fix this infeasibility. Below only
a sketch of the algorithm is given. More details can be
found in [1].

First observe that in an idle scenario, where all nodes v
have the same number of interfaces I (i. e. I = I(v)) and
where the number of available channels K is also I, the
channel assignment implied by the LP (1) is feasible. This
is because even the trivial channel assignment where all
nodes are assigned all the channels 1 to I is feasible. The
main idea behind the algorithm is to first transform the
LP (1) solution to a new flow in which every edge e has
flow f (e(i)) > 0 only for the channels 1 � i � I. The ba-
sic operation that the algorithm uses for this is to equally
distribute, for every edge e, the flow f (e(i)), for I < i � K
to the edges e(j), for 1 � i � I. This ensures that all
f (e(i)) = 0 , for I < i � K after the operation. This op-
eration is called Phase I of the Algorithm. Note that the
Phase I operation does not violate the flow conservation
constraints or the node radio constraints (5) in the LP
(1). It can be shown that in the resulting solution the flow
f (e(i)) may exceed the capacity of edge e by at most a fac-
tor � = K/I. This is called the “inflation factor” of Phase I.
Likewise in the new flow, the link congestion constraints (5)
may also be violated for edge e and channel i by no more
than the inflation factor '. In other words in the resulting
flow

f (e(i))
c(e)

+
X

e02I(e)

f (e0(i))
c(e0)

� �c(q) :

This implies that if the new flow is scaled by a fraction
1/� than it is feasible for the LP (1). Note that the im-

Channel Assignment and Routing in Multi-Radio Wireless Mesh Networks C 137

plied channel assignment (assign channels 1 to I to ev-
ery node) is also feasible. Thus, the above algorithm finds
a feasible channel assignment with a � value of at least
��/�.

One shortcoming of the channel assignment algorithm
(Phase I) described so far is that it only uses I of the K
available channels. By using more channels the interfer-
ence may be further reduced thus allowing for more flow
to be pushed in the system. The channel assignment algo-
rithm uses an additional heuristic for this improvement.
This is called Phase II of the algorithm.

Now define an operation called “channel switch op-
eration.” Let A be a maximal connected component (the
vertices in A are not connected to vertices outside A) in
the graph formed by the edges e for a given channel i for
which f (e(i)) > 0. The main observation to use is that for
a given channel j, the operation of completely moving flow
f (e(i)) to flow f (e(j)) for every edge e in A, does not im-
pact the feasibility of the implied channel assignment. This
is because there is no increase in the number of channels
assigned per node after the flow transformation: the end
nodes of edges e in Awhich were earlier assigned channel i
are now assigned channel j instead. Thus, the transforma-
tion is equivalent to switching the channel assignment of
nodes in A so that channel i is discarded and channel j is
gained if not already assigned.

The Phase II heuristic attempts to re-transform the un-
scaled Phase I flows f (e(i)) so that there are multiple con-
nected components in the graphs G(e, i) formed by the
edges e for each channel 1 � i � I. This re-transformation
is done so that the LP constraints are kept satisfied with an
inflation factor of at most ', as is the case for the unscaled
flow after Phase I of the algorithm.

Next in Phase III of the algorithm the connected com-
ponents within each graph G(e, i) are grouped such that
there are as close to K (but no more than) groups over-
all and such that the maximum interference within each
group is minimized. Next the nodes within the lth group
are assigned channel l, by using the channel switch oper-
ation to do the corresponding flow transformation. It can
be shown that the channel assignment implied by the flow
in Phase III is feasible. In addition the underlying flows
f (e(i)) satisfy the LP (1) constraints with an inflation fac-
tor of at most � = K/I.

Next the algorithm scales the flow by the largest pos-
sible fraction (at least 1/�) such that the resulting flow is
a feasible solution to the LP (1) and also implies a feasible
channel assignment solution to the channel assignment.
Thus, the overall algorithm finds a feasible channel assign-
ment (by not necessarily restricting to channels 1 to I only)
with a � value of at least ��/� .

Link Flow Scheduling

The results in this section are obtained by extending those
of [4] for the single channel case and for the Protocol
Model of interference [2]. Recall that the time slotted
schedule S is assumed to be periodic (with period T) where
the indicator variable Xe;i;� ; e 2 E; i 2 F(e); � � 1 is 1 if
and only if link e is active in slot � on channel i and i is
a channel in common among the set of channels assigned
to the end-nodes of edge e.

Directly applying the result (Claim 2) in [4] it fol-
lows that a necessary condition for interference free link
scheduling is that for every e 2 E; i 2 F(e); � � 1 : Xe;i;�+P

e02I(e) Xe0;i;� � c(q). Here c(q) is a constant that only
depends on the interference model. In the interference
model this constant is a function of the fixed value q, the
ratio of the interference range RI to the transmission range
RT , and an intuition for its derivation for a particular value
q = 2 is given below.

Lemma 1 c(q) = 8 for q = 2.

Proof Recall that an edge e0 2 I(e) if there exist two nodes
x; y 2 V which are at most 2RT apart and such that edge e
is incident on node x and edge e0 is incident on node y. Let
e = (u; v). Note that u and v are at most RT apart. Con-
sider the region C formed by the union of two circles Cu
and Cv of radius 2RT each, centered at node u and node v,
respectively. Then e0 = (u0; v0) 2 I(e) if an only if at least
one of the two nodes u0; v0 is in C; Denote such a node by
C(e0). Given two edges e1; e2 2 I(e) that do not interfere
with each other it must be the case that the nodes C(e1)
and C(e2) are at least 2RT apart. Thus, an upper bound
on how many edges in I(e) do not pair-wise interfere with
each other can be obtained by computing how may nodes
can be put in C that are pair-wise at least 2RT apart. It can
be shown [1] that this number is at most 8. Thus, in sched-
ule S in a given slot only one of the two possibilities exist:
either edge e is scheduled or an “independent” set of edges
in I(e) of size at most 8 is scheduled implying the claimed
bound.�

A necessary condition: (Link Congestion Constraint) Re-
call that 1

T
P

1���T Xe;i;� =
f (e(i))
c(e) . Thus: Any valid “in-

terference free” edge flows must satisfy for every link e and
every channel i the Link Congestion Constraint:

f (e(i))
c(e)

+
X

e02I(e)

f (e0(i))
c(e0)

� c(q): (6)

A matching sufficient condition can also established [1].
A sufficient condition: (Link Congestion Constraint)

If the edge flows satisfy for every link e and every channel i

138 C Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach

the following Link Schedulability Constraint than an inter-
ference free edge communication schedule can be found
using an algorithm given in [1].

f (e(i))
c(e)

+
X

e02I(e)

f (e0(i))
c(e0)

� 1: (7)

The above implies that if a flow f (e(i)) satisfies the
Link Congestion Constraint then by scaling the flow by
a fraction 1/c(q) it can be scheduled free of interference.

Key Results

Theorem The RCL algorithm is a Kc(q)/I approximation
algorithm for the Joint Routing and Channel Assignment
with Interference Free Edge Scheduling problem.

Proof Note that the flow f (e(i)) returned by the chan-
nel assignment algorithm in Sect. “Channel Assignment”
satisfies the Link Congestion Constraint. Thus, from the
result of Sect. “Link Flow Scheduling” it follows that by
scaling the flow by an additional factor of 1/c(q) the flow
can be realized by an interference free link schedule. This
implies a feasible solution to the joint routing, channel as-
signment and scheduling problem with a � value of at least
��/�c(q). Thus, the RCL algorithm is a �c(q) = Kc(q)/I
approximation algorithm. �

Applications

Infrastructure mesh networks are increasingly been de-
ployed for commercial use and law enforcement. These
deployment settings place stringent requirements on the
performance of the underlying IWMNs. Bandwidth guar-
antee is one of the most important requirements of ap-
plications in these settings. For these IWMNs, topology
change is infrequent and the variability of aggregate traffic
demand from each mesh router (client traffic aggregation
point) is small. These characteristics admit periodic opti-
mization of the network which may be done by a system
management software based on traffic demand estimation.
This work can be directly applied to IWMNs. It can also
be used as a benchmark to compare against heuristic algo-
rithms in multi-hop wireless networks.

Open Problems

For future work, it will be interesting to investigate
the problem when routing solutions can be enforced by
changing link weights of a distributed routing protocol
such as OSPF. Also, can the worst case bounds of the al-
gorithm be improved (e. g. a constant factor independent
of K and I)?

Cross References

� Graph Coloring
� Stochastic Scheduling

Recommended Reading

1. Alicherry, M., Bhatia, R., Li, L.E.: Joint channel assignment and
routing for throughput optimization in multi-radio wireless
mesh networks. In: Proc. ACMMOBICOM 2005, pp. 58–72

2. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE
Trans. Inf. Theory, IT-46(2), 388–404 (2000)

3. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of inter-
ference on multi-hop wireless network performance. In: Proc.
ACMMOBICOM 2003, pp. 66–80

4. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.:
Algorithmic aspects of capacity in wireless networks. In: Proc.
ACM SIGMETRICS 2005, pp. 133–144

5. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.:
End-to-end packet-scheduling in wireless ad-hoc networks.
In: Proc. ACM-SIAM symposium on Discrete algorithms 2004,
pp. 1021–1030

6. Kyasanur, P., Vaidya, N.: Capacity of multi-channel wireless net-
works: Impact of number of channels and interfaces. In: Proc.
ACMMOBICOM, pp. 43–57. 2005

Circuit Partitioning:
A Network-Flow-Based
BalancedMin-Cut Approach
1994; Yang, Wong

HONGHUA HANNAH YANG1, MARTIN D. F. WONG2

1 Strategic CAD Labs, Intel Corporation, Hillsboro, USA
2 Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Keywords and Synonyms

Hypergraph partitioning; Netlist partitioning

ProblemDefinition

Circuit partitioning is a fundamental problem in many ar-
eas of VLSI layout and design. Min-cut balanced biparti-
tion is the problem of partitioning a circuit into two dis-
joint components with equal weights such that the number
of nets connecting the two components is minimized. The
min-cut balanced bipartition problem was shown to be
NP-complete [5]. The problem has been solved by heuris-
tic algorithms, e. g., Kernighan and Lin type (K&L) iter-
ative improvement methods [4,11], simulated annealing

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach C 139

Algorithm: Flow-Balanced-Bipartition (FBB)
1. Pick a pair of nodes s and t in N ;
2. Find a min-net-cut C in N ;
Let X be the subcircuit reachable from s through
augmenting paths in the flow network, and X̄
the rest;

3. if (1 � �)rW � w(X) � (1 + �)rW
return C as the answer;

4. if w(X) < (1 � �)rW
4.1. Collapse all nodes in X to s;
4.2. Pick a node v 2 X̄ adjacent to C and collapse it to s;
4.3. Goto 1;
5. if w(X) > (1 + �)rW
5.1. Collapse all nodes in X̄ to t;
5.2. Pick a node v 2 X adjacent to C and collapse it to t;
5.3. Goto 1;

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut
Approach, Figure 1
FBB algorithm

Procedure: Incremental Flow Computation
1. while 9 an additional augmenting path from s to t

increase flow value along the augmenting
path;

2. Mark all nodes u s.t. 9 an augmenting path from s
to u;

3. Let C0 be the set of bridging edges whose starting
nodes are marked and ending nodes are not
marked;

4. Return the nets corresponding to the bridging edges
in C0 as the min-net-cut C, and the marked
nodes as X.

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut
Approach, Figure 2
Incremental max-flow computation

approaches [10], and analytical methods for the ratio-cut
objective [2,7,13,15]. Although it is a natural method for
finding a min-cut, the network max-flow min-cut tech-
nique [6,8] has been overlooked as a viable approach for
circuit partitioning. In [16], a method was proposed for
exactlymodeling a circuit netlist (or, equivalently, a hyper-
graph) by a flow network, and an algorithm for balanced
bipartition based on repeated applications of the max-flow
min-cut technique was proposed as well. Our algorithm
has the same asymptotic time complexity as one max-flow
computation.

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut
Approach, Figure 3
A circuit netlist with two net-cuts

A circuit netlist is defined as a digraph N = (V ; E),
where V is a set of nodes representing logic gates and
registers and E is a set of edges representing wires be-
tween gates and registers. Each node v 2 V has a weight
w(v) 2 R+. The total weight of a subset U
 V is denoted
byw(U) = ˙v2Uw(v).W = w(V) denotes the total weight
of the circuit. A net n = (v; v1; : : : ; vl) is a set of outgoing
edges from node v in N. Given two nodes s and t in N,
an s � t cut (or cut for short) (X; X̄) of N is a bipartition
of the nodes in V such that s 2 X and t 2 X̄. The net-cut
net(X; X̄) of the cut is the set of nets inN that are incident
to nodes in both X and X̄. A cut (X; X̄) is a min-net-cut
if jnet(X; X̄)j is minimum among all s � t cuts of N. In
Fig. 3, net a = (r1; g1; g2), net cuts net(X; X̄) = fb; eg and
net(Y ; Ȳ) = fc; a; b; eg, and (X; X̄) is a min-net-cut.

Formally, given an aspect ratio r and a deviation fac-
tor �, min-cut r-balanced bipartition is the problem of
finding a bipartition (X; X̄) of the netlist N such that
(1) (1 � �)rW � W(X) � (1 + �)rW and (2) the size of
the cut net(X; X̄) is minimum among all bipartitions satis-
fying (1). When r = 1/2, this becomes a min-cut balanced-
bipartition problem.

Key Results

Optimal-Network-Flow-Based Min-Net-Cut
Bipartition

The problem of finding a min-net-cut in N = (V ; E) is re-
duced to the problem of finding a cut of minimum capac-
ity. Then the latter problem is solved using the max-flow
min-cut technique. A flow network N 0 = (V 0; E0) is con-
structed from N = (V ; E) as follows (see Figs. 4 and 5):
1. V 0 contains all nodes in V .
2. For each net n = (v; v1; : : : ; vl) in N, add two nodes n1

and n2 in V 0 and a bridging edge bridge(n) = (n1; n2)
in E0.

140 C Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach

Circuit Partitioning: A Network-Flow-Based BalancedMin-Cut Approach, Figure 4
Modeling a net in N in the flow network N0

Circuit Partitioning: A Network-Flow-Based BalancedMin-Cut Approach, Figure 5
The flow network for Fig. 3

Circuit Partitioning: A Network-Flow-Based BalancedMin-Cut Approach, Figure 6
FBB on the example in Fig. 5 for r = 1/2, � = 0:15 and unit weight for each node. The algorithm terminates after finding cut (X2; X̄2).
A small solid node indicates that the bridging edge corresponding to the net is saturated with flow

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach C 141

Circuit Partitioning: A Network-Flow-Based BalancedMin-Cut Approach, Table 1
Comparison of SN, PFM3, and FBB (r = 1/2; � = 0:1)

Circuit Avg. net-cut size FBB bipart.
ratio

Improve. %
Name Gates and latches Nets Avg. deg SN PFM3 FBB Over SN Over PFM3
C1355 514 523 3.0 38.9 29.1 26.0 1:1.08 33.2 10.7
C2670 1161 1254 2.6 51.9 46.0 37.1 1:1.15 28.5 19.3
C3540 1667 1695 2.7 90.3 71.0 79.8 1:1.11 11.6 �12.4
C7552 3466 3565 2.7 44.3 81.8 42.9 1:1.08 3.2 47.6
S838 478 511 2.6 27.1 21.0 14.7 1:1.04 45.8 30.0

Ave 1:1.10 24.5 19.0

Circuit Partitioning: A Network-Flow-Based BalancedMin-Cut Approach, Table 2
Comparison of EIG1, PB, and FBB (r = 1/2, � = 0:1). All allow � 10% deviation

Circuit Best net-cut size Improve. % over FBB elaps.
sec.Name Gates and latches Nets Avg. deg EIG1 PB FBB EIG1 PB

S1423 731 743 2.7 23 16 13 43.5 18.8 1.7
S9234 5808 5805 2.4 227 74 70 69.2 5.4 55.7
S13207 8696 8606 2.4 241 91 74 69.3 18.9 100.0
S15850 10310 10310 2.4 215 91 67 68.8 26.4 96.5
S35932 18081 17796 2.7 105 62 49 53.3 21.0 2808
S38584 20859 20593 2.7 76 55 47 38.2 14.5 1130
S38417 24033 23955 2.4 121 49 58 52.1 �18.4 2736

Average 58.5 11.3

3. For each node u 2 fv; v1; : : : ; vl g incident on net n, add
two edges (u; n1) and (n2; u) in E0.

4. Let s be the source of N 0 and t the sink of N 0.
5. Assign unit capacity to all bridging edges and infinite

capacity to all other edges in E0.
6. For a node v 2 V 0 corresponding to a node inV ,w(v) is

the weight of v inN. For a node u 2 V 0 split from a net,
w(u) = 0.

Note that all nodes incident on net n are connected to
n1 and are connected from n2 in N 0. Hence the flow net-
work construction is symmetric with respect to all nodes
incident on a net. This construction also works when the
netlist is represented as a hypergraph.

It is clear that N 0 is a strongly connected digraph.
This property is the key to reducing the bidirectional min-
net-cut problem to a minimum-capacity cut problem that
counts the capacity of the forward edges only.

Theorem 1 N has a cut of net-cut size at most C if and
only if N 0 has a cut of capacity at most C.

Corollary 1 Let (X 0; X̄ 0) be a cut of minimum capac-
ity C in N 0. Let Ncut = fn j bridge(n) 2 (X 0; X̄ 0)g. Then
Ncut = (X; X̄) is a min-net-cut in N and jNcutj = C.

Corollary 2 A min-net-cut in a circuit N = (V ; E) can be
found in O(jV jjEj) time.

Min-Cut Balanced-Bipartition Heuristic

First, a repeated max-flow min-cut heuristic algorithm,
flow-balanced bipartition (FBB), is developed for finding
an r-balanced bipartition that minimizes the number of
crossing nets. Then, an efficient implementation of FBB is
developed that has the same asymptotic time complexity as
one max-flow computation. For ease of presentation, the
FBB algorithm is described on the original circuit rather
than the flow network constructed from the circuit. The
heuristic algorithm is described in Fig. 1. Figure 6 shows
an example.

Table 2 compares the best bipartition net-cut sizes
of FBB with those produced by the analytical-method-
based partitioners EIG1 (Hagen and Kahng [7]) and
PARABOLI (PB) (Riess et al. [13]). The results produced
by PARABOLI were the best previously known results re-
ported on the benchmark circuits. The results for FBB
were the best of ten runs. On average, FBB outperformed
EIG1 and PARABOLI by 58.1% and 11.3% respectively.
For circuit S38417, the suboptimal result from FBB can
be improved by (1) running more times and (2) applying
clustering techniques to the circuit based on connectivity
before partitioning.

In the FBB algorithm, the node-collapsing method is
chosen instead of a more gradual method (e. g., [9]) to en-

142 C Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach

sure that the capacity of a cut always reflects the real net-
cut size. To pick a node at steps 4.2 and 5.2, a threshold R
is given for the number of nodes in the uncollapsed subcir-
cuit. A node is randomly picked if the number of nodes is
larger than R. Otherwise, all nodes adjacent to C are tried
and the one whose collapse induces a min-net-cut with the
smallest size is picked. A naive implementation of step 2
by computing the max-flow from the zero flow would in-
cur a high time complexity. Instead, the flow value in the
flow network is retained, and additional flow is explored
to saturate the bridging edges of the min-net-cut from one
iteration to the next. The procedure is shown in Fig. 2.
Initially, the flow network retains the flow function com-
puted in the previous iteration. Since the max-flow com-
putation using the augmenting-path method is insensitive
to the initial flow values in the flow network and the order
in which the augmenting paths are found, the above proce-
dure correctly finds amax-flowwith the same flow value as
a max-flow computed in the collapsed flow network from
the zero flow.

Theorem 2 FBB has time complexity O(jV jjEj) for a con-
nected circuit N = (V ; E).

Theorem 3 The number of iterations and the final net-cut
size are nonincreasing functions of �.

In practice, FBB terminates much faster than this worst-
case time complexity as shown in the Sect. “Experimental
Results”. Theorem 3 allows us to improve the efficiency of
FBB and the partition quality for a larger �. This is not true
for other partitioning approaches such as the K&L heuris-
tics.

Applications

Circuit partitioning is a fundamental problem in many ar-
eas of VLSI layout and design automation. The FBB algo-
rithm provides the first efficient predictable solution to the
min-cut balanced-circuit-partitioning problem. It directly
relates the efficiency and the quality of the solution pro-
duced by the algorithm to the deviation factor �. The al-
gorithm can be easily extended to handle nets with differ-
ent weights by simply assigning the weight of a net to its
bridging edge in the flow network. K-way min-cut parti-
tioning for K > 2 can be accomplished by recursively ap-
plying FBB or by setting r = 1/K and then using FBB to
find one partition at a time. A flow-based method for di-
rectly solving the problem can be found in [12]. Preparti-
tioning circuit clustering according to the connectivity or
the timing information of the circuit can be easily incor-
porated into FBB by treating a cluster as a node. Heuristic

solutions based on K&L heuristics or simulated annealing
with low temperature can be used to further fine-tune the
solution.

Experimental Results

The FBB algorithm was implemented in SIS/MISII [1] and
tested on a set of large ISCAS and MCNC benchmark cir-
cuits on a SPARC 10 workstation with 36-MHz CPU and
32 MB memory.

Table 1 compares the average bipartition results of
FBBwith those reported byDasdan andAykanat in [3]. SN
is based on the K&L heuristic algorithm in Sanchis [14].
PFM3 is based on the K&L heuristic with free moves as
described in [3]. For each circuit, SN was run 20 times and
PFM3 10 times from different randomly generated initial
partitions. FBB was run 10 times from different randomly
selected s and t. With only one exception, FBB outper-
formed both SN and PFM3 on the five circuits. On average,
FBB found a bipartition with 24.5% and 19.0% fewer cross-
ing nets than SN and PFM3 respectively. The runtimes of
SN, PFM3, and FBB were not compared since they were
run on different workstations.

Cross References

� Approximate Maximum Flow Construction
� Circuit Placement
� Circuit Retiming
�Max Cut
�Minimum Bisection
�Multiway Cut
� Separators in Graphs

Recommended Reading

1. Brayton, R.K., Rudell, R., Sangiovanni-Vincentelli, A.L.: MIS:
A Multiple-Level Logic Optimization. IEEE Trans. CAD 6(6),
1061–1081 (1987)

2. Cong, J., Hagen, L., Kahng, A.: Net Partitions Yield Better Mod-
ule Partitions. In: Proc. 29th ACM/IEEE Design Automation
Conf., 1992, pp. 47–52

3. Dasdan, A., Aykanat, C.: Improved Multiple-Way Circuit Parti-
tioningAlgorithms. In: Int. ACM/SIGDAWorkshop on Field Pro-
grammable Gate Arrays, Feb. 1994

4. Fiduccia, C.M., Mattheyses, R.M.: A Linear Time Heuristic for
Improving Network Partitions. In: Proc. ACM/IEEE Design Au-
tomation Conf., 1982, pp. 175–181

5. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, Gordonsville
(1979)

6. Goldberg, A.W., Tarjan, R.E.: A New Approach to the Maximum
Flow Problem. J. SIAM 35, 921–940 (1988)

Circuit Placement C 143

7. Hagen, L., Kahng, A.B.: Fast Spectral Methods for Ratio Cut Par-
titioning and Clustering. In: Proc. IEEE Int. Conf. on Computer-
Aided Design, November 1991, pp. 10–13

8. Hu, T.C., Moerder, K.: Multiterminal Flows in a Hypergraph. In:
Hu, T.C., Kuh, E.S. (eds.) VLSI Circuit Layout: Theory and Design,
pp. 87–93. IEEE Press (1985)

9. Iman, S., Pedram, M., Fabian, C., Cong, J.: Finding Uni-Direc-
tional Cuts Based on Physical Partitioning and Logic Restruc-
turing. In: 4th ACM/SIGDA Physical Design Workshop, April
1993

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simu-
lated Annealing. Science 4598, 671–680 (1983)

11. Kernighan, B., Lin, S.: An Efficient Heuristic Procedure for Parti-
tioning of Electrical Circuits. Bell Syst. Tech. J., 291–307 (1970)

12. Liu, H., Wong, D.F.: Network-Flow-based Multiway Partitioning
with Area and Pin Constraints. IEEE Trans. CAD Integr. Circuits
Syst. 17(1), 50–59 (1998)

13. Riess, B.M., Doll, K., Frank, M.J.: Partitioning Very Large Cir-
cuits Using Analytical Placement Techniques. In: Proc. 31th
ACM/IEEE Design Automation Conf., 1994, pp. 646–651

14. Sanchis, L.A.: Multiway Network Partitioning. IEEE Trans. Com-
put. 38(1), 62–81 (1989)

15. Wei, Y.C., Cheng, C.K.: Towards Efficient Hierarchical Designs
by Ratio Cut Partitioning. In: Proc. IEEE Int. Conf. on Computer-
Aided Design, November 1989, pp. 298–301

16. Yang, H., Wong, D.F.: Efficient Network FlowBasedMin-Cut Bal-
anced Partitioning. In: Proc. IEEE Int. Conf. on Computer-Aided
Design, 1994, pp. 50–55

Circuit Placement
2000; Caldwell, Kahng, Markov
2002; Kennings, Markov
2006; Kennings, Vorwerk

ANDREW A. KENNINGS1, IGOR L. MARKOV2

1 Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada

2 Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI, USA

Keywords and Synonyms

EDA; Netlist; Layout; Min-cut placement; Min-cost max-
flow; Analytical placement; Mathematical programming

ProblemDefinition

This problem is concerned with efficiently determining
constrained positions of objects while minimizing a mea-
sure of interconnect between the objects, as in physical
layout of integrated circuits, commonly done in 2-dimen-
sions. While most formulations are NP-hard, modern cir-
cuits are so large that practical algorithms for placement
must have near-linear runtime andmemory requirements,

but not necessarily produce optimal solutions. While early
software for circuit placementwas based on SimulatedAn-
nealing, research in algorithms identified more scalable
techniques which are now being adopted in the Electronic
Design Automation industry.

One models a circuit by a hypergraph Gh(Vh,Eh) with
(i) vertices Vh = fv1; : : : ; vng representing logic gates,
standard cells, larger modules, or fixed I/O pads and (ii)
hyperedges Eh = fe1; : : : ; emg representing connections
betweenmodules. Every incident pair of a vertex and a hy-
peredge connect through a pin for a total of P pins in the
hypergraph. Each vertex vi 2 Vh has width wi, height
hi and area Ai. Hyperedges may also be weighted. Given
Gh, circuit placement seeks center positions (xi,yi) for ver-
tices that optimize a hypergraph-based objective subject
to constraints (see below). A placement is captured by
x = (x1; � � � ; xn) and y = (y1; � � � ; yn).

Objective Let Ck be the index set of the hyper-
graph vertices incident to hyperedge ek. The total half-
perimeter wirelength (HPWL) of the circuit hyper-
graph is given by HPWL(Gh) =

P
ek2Eh

HPWL(ek) =P
ek2Eh

	
maxi; j2Ck jxi � x jj + maxi; j2Ck jyi � y jj

.

HPWL is piece-wise linear, separable in the x and y di-
rections, convex, but not strictly convex. Among many
objectives for circuit placement, it is the simplest and
most common.

Constraints
1. No overlap. The area occupied by any two vertices can-

not overlap; i. e., either jxi � x jj � 1
2 (wi + wj) or

jyi � y jj � 1
2 (hi + hj);8vi ; v j 2 Vh .

2. Fixed outline. Each vertex vi 2 Vh must be placed en-
tirely within a specified rectangular region bounded by
xmin(ymin) and xmax(ymax) which denote the left (bot-
tom) and right (top) boundaries of the specified region.

3. Discrete slots. There is only a finite number of discrete
positions, typically on a grid. However, in large-scale
circuit layout, slot constraints are often ignored during
global placement, and enforced only during legalization
and detail placement.

Other constraints may include alignment, minimum and
maximum spacing, etc. Many placement techniques tem-
porarily relax overlap constraints into density constraints
to avoid vertices clustered in small regions. A m � n reg-
ular bin structure B is superimposed over the fixed outline
and vertex area is assigned to bins based on the positions
of vertices. Let Dij denote the density of bin Bi j 2 B, de-
fined as the total cell area assigned to bin Bij divided by
its capacity. Vertex overlap is limited implicitly by Di j �

K;8Bi j 2 B; for some K � 1 (density target).

144 C Circuit Placement

Problem 1 (Circuit Placement)
INPUT: Circuit hypergraph Gh(Vh,Eh) and a fixed outline
for the placement area.
OUTPUT: Positions for each vertex vi 2 Vh such that
(1) wirelength is minimized and (2) the area-density con-
straints Di j � K are satisfied for all Bi j 2 B.

Key Results

An unconstrained optimal position of a single placeable
vertex connected to fixed vertices can be found in lin-
ear time as the median of adjacent positions [8]. Uncon-
strained HPWL minimization for multiple placeable ver-
tices can be formulated as a linear program [7,10]. For each
ek 2 Eh , upper and lower bound variables Uk and Lk are
added. The cost of ek (x-direction only) is the difference
between Uk and Lk. Each Uk(Lk) comes with pk inequal-
ity constraints that restricts its value to be larger (smaller)
than the position of every vertex i 2 Ck . A hypergraph
with n vertices and m hyperedges is represented by a lin-
ear program with n + 2m variables and 2P constraints.

Linear programming has poor scalability, and inte-
grating constraint-tracking into optimization is difficult.
Other approaches include non-linear optimization and
partitioning-based methods.

Combinatorial Techniques
for Wirelength Minimization

The no-overlap constraints are not convex and cannot be
directly added to the linear program for HPWLminimiza-
tion. Such a program is first solved directly or by casting its
dual as an instance of themin-costmax-flow problem [12].
Vertices often cluster in small regions of high density. One
can lower-bound the distance between closely-placed ver-
tices with a single linear constraint that depends on the rel-
ative placement of these vertices [10]. The resulting opti-
mization problem is incrementally re-solved, and the pro-
cess repeats until the desired density is achieved.

Themin-cut placement technique is based on balanced
min-cut partitioning of hypergraphs and is more focused
on density constraints [11]. Vertices of the initial hyper-
graph are first partitioned in two similar-sized groups. One
of them is assigned to the left half of the placement region,
and the other one to the right half. Partitioning is per-
formed by the Multi-level Fiduccia–Mattheyses (MLFM)
heuristic [9] to minimize connections between the two
groups of vertices (the net-cut objective). Each half is par-
titioned again, but takes into account the connections to
the other half [11]. At the large scale, ensuring the simi-
lar sizes of bi-partitions corresponds to density constraints
and cut minimization corresponds to HPWL minimiza-

tion. When regions become small and contain < 10 ver-
tices, optimal positions can be found with respect to dis-
crete slot constraints by branch-and-bound [2]. Balanced
hypergaph partitioning is NP-hard [4], but the MLFM
heuristic takes O((V + E) logV) time. The entire min-cut
placement procedure takes O((V + E)(log V)2) time and
can process hypergraphs with millions of vertices in sev-
eral hours.

A special case of interest is that of one-dimensional
placement. When all vertices have identical width and
none of them are fixed, one obtains the NP-hard MIN-
IMUM LINEAR ARRANGEMENT problem [4] which can
be approximated in polynomial time within O(logV)
and solved exactly for trees in O(V 3) time as shown by
Yannakakis. The min-cut technique described above also
works well for the related NP-hard MINIMUM-CUT LIN-
EAR ARRANGEMENT problem [4].

Nonlinear Optimization

Quadratic and generic non-linear optimization may be
faster than linear programming, while reasonably approx-
imating the original formulation. The hypergraph is rep-
resented by a weighted graph where wij represents the
weight on the 2-pin edge connecting vertices vi and vj in
the weighted graph. When an edge is absent, wi j = 0, and
in general wii = �˙i¤ jwi j .

Quadratic Placement A quadratic placement (x-direc-
tion only) is given by

˚(x) =
X
i; j

wi j
	
(xi � x j)2

=
1
2
xTQx+ cTx+const: (1)

The global minimumof˚(x) is found by solvingQx+c = 0
which is a sparse, symmetric, positive-definite system of
linear equations (assuming � 1 fixed vertex), efficiently
solved to sufficient accuracy using any number of itera-
tive solvers. Quadratic placement may have different op-
tima depending on the model (clique or star) used to rep-
resent hyperedges. However, for a k-pin hyperedge, if the
weight on the 2-pin edges introduced is set to Wc in the
clique mode and kWc in the star model, then the models
are equivalent in quadratic placement [7].

Linearized Quadratic Placement Quadratic placement
can produce lower quality placements. To approximate the
linear objective, one can iteratively solve Eq. (1) with wi j =
1/jxi � x jj computed at every iteration. Alternatively, one
can solve a single ˇ-regularized optimization problem

given by ˚ˇ (x) = minx
P

i; j wi j

q
(xi � x j)2 + ˇ; ˇ > 0,

Circuit Placement C 145

e. g., using a Primal-Dual Newton method with quadratic
convergence [1].

Half-Perimeter Wirelength Placement HPWL can be
provably approximated by strictly convex and differen-
tiable functions. For 2-pin hyperedges, ˇ-regularization
can be used [1]. For an m-pin hyperedge (m � 3), one
can rewrite HPWL as the maximum (l1-norm) of all
m(m � 1)/2 pairwise distances jxi � x jj and approximate
the l1-norm by the lp-norm (p-th root of the sum of p-
th powers). This removes all non-differentiabilities except
at 0 which is then removed with ˇ-regularization. The re-
sulting HPWL approximation is given by

HPWLp�ˇ�reg(Gh) =
X
ek2Eh

� X
i; j2Ck

jxi � x jjp + ˇ
�1/p

(2)

which overestimates HPWL with arbitrarily small relative
error as p!1 and ˇ ! 0 [7]. Alternatively, HPWL can
be approximated via the log-sum-exp formula given by

HPWLlog-sum-exp(Gh) =

˛
X
ek2Eh

h
ln
� X

i2Ck

exp
� xi
˛

��
+ ln

� X
v i2Ck

exp
��xi
˛

��i

(3)

where ˛ > 0 is a smoothing parameter [6]. Both approxi-
mations can be optimized using conjugate gradient meth-
ods.

Analytic Techniques for Target Density Constraints

The target density constraints are non-differentiable and
are typically handled by approximation.

Force-Based Spreading The key idea is to add constant
forces f that pull vertices always from overlaps, and recom-
pute the forces over multiple iterations to reflect changes
in vertex distribution. For quadratic placement, the new
optimality conditions are Qx + c + f = 0 [8]. The constant
force can perturb a placement in any number of ways to
satisfy the target density constraints. The force f is com-
puted using a discrete version of Poisson’s equation.

Fixed-Point Spreading A fixed point f is a pseudo-
vertex with zero area, fixed at (xf ,yf), and connected to
one vertex H(f) in the hypergraph through the use of
a pseudo-edge with weight wf ,H(f). Quadratic placement
with fixed points is given by ˚(x) =

P
i; j wi; j(xi � x j)2 +

P
f w f ;H(f)(xH(f) � x f)2. Each each fixed point f intro-

duces a quadratic termwf ;H(f)(xH(f)�x f)2. Bymanipulat-
ing the positions of fixed points, one can perturb a place-
ment to satisfy the target density constraints. Compared
to constant forces, fixed points improve the controllability
and stability of placement iterations [5].

Generalized Force-Directed Spreading The Helmholtz
equation models a diffusion process and makes it ideal for
spreading vertices [3]. The Helmholtz equation is given by

@2�(x; y)
@x2

+
@2�(x; y)
@y2

� ��(x; y) = D(x; y) ;

(x; y) 2 R
@�

@v
= 0 ;

(x; y) on the boundary of R (4)

where � > 0, v is an outer unit normal, R represents the
fixed outline, and D(x,y) represents the continuous den-
sity function. The boundary conditions, @�/@v = 0, spec-
ify that forces pointing outside of the fixed outline be set
to zero – this is a key difference with the Poisson method
which assumes that forces become zero at infinity. The
value � ij at the center of each bin Bij is found by discretiza-
tion of Eq. (4) using finite differences. The density con-
straints are replaced by �i j = K̂;8Bi j 2 B where K̂ is
a scaled representative of the density target K . Wirelength
minimization subject to the smoothed density constraints
can be solved via Uzawa’s algorithm. For quadratic wire-
length, this algorithm is a generalization of force-based
spreading.

Potential Function Spreading Target density con-
straints can also be satisfied via a penalty function. The
area assigned to bin Bij by vertex vi is represented by
Potential(vi ; Bi j) which is a bell-shaped function. The use
of piecewise quadratic functions make the potential func-
tion non-convex, but smooth and differentiable [6]. The
penalty term given by

Penalty =
X
Bi j2B

� X
v i2Vh

Potential(vi ; Bi j) � K
�2

(5)

can be combined with a wirelength approximation to ar-
rive at an unconstrained optimization problem which is
solved using an efficient conjugate gradient method [6].

Applications

Practical applications involve more sophisticated inter-
connect objectives, such as circuit delay, routing conges-
tion, power dissipation, power density, and maximum

146 C Circuit Retiming

thermal gradient. The above techniques are adapted to
handle multi-objective optimization. Many such exten-
sions are based on heuristic assignment of net weights that
encourage the shortening of some (e. g., timing-critical
and frequently-switching) connections at the expense of
other connections. To moderate routing congestion, pre-
dictive congestion maps are used to decrease the maximal
density constraint for placement in congested regions. An-
other application is in physical synthesis, where incremen-
tal placement is used to evaluate changes in circuit topol-
ogy.

Experimental Results

Circuit placement has been actively studied for the past
30 years and a wealth of experimental results are reported
throughout the literature. A 2003 result demonstrated that
placement tools could produce results as much as 1:41�
to 2:09� known optimal wirelengths on average (advances
have been made since this study). A 2005 placement con-
test found that a set of tools produced placements with
wirelengths that differed by as much as 1:84� on average.
A 2006 placement contest found that a set of tools pro-
duced placements that differed by as much as 1:39� on av-
erage when the objective was the simultaneous minimiza-
tion of wirelength, routability and run time. Placement run
times range from minutes for smaller instances to hours
for larger instances, with several millions of variables.

Data Sets

Benchmarks include the ICCAD ‘04 suite (http://vlsicad.
eecs.umich.edu/BK/ICCAD04bench/), the ISPD ‘05 suite
(http://www.sigda.org/ispd2005/contest.htm) and the
ISPD ‘06 suite (http://www.sigda.org/ispd2006/contest.
htm). Instances in these benchmark suites contain be-
tween 10K to 2.5M placeable objects. Other common
suites can be found, including large-scale placement in-
stances problems with known optimal solutions (http://
cadlab.cs.ucla.edu/~pubbench).

Cross References

� Performance-Driven Clustering

Recommended Reading
1. Alpert, C.J., Chan, T., Kahng, A.B., Markov, I.L., Mulet, P.: Faster

minimization of linear wirelength for global placement. IEEE
Trans. CAD 17(1), 3–13 (1998)

2. Caldwell, A.E., Kahng, A.B., Markov, I.L.: Optimal partitioners
and end-case placers for standard-cell layout. IEEE Trans. CAD
19(11), 1304–1314 (2000)

3. Chan, T., Cong, J., Sze, K.: Multilevel generalized force-directed
method for circuit placement. Proc. Intl. Symp. Physical De-
sign. ACM Press, San Francisco, 3–5 Apr 2005. pp. 185–192
(2005)

4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-
Spaccamela, A., Protasi, M.: Complexity and Approximation:
Combinatorial optimization problems and their approximabil-
ity properties. Springer (1998)

5. Hu, B., Marek-Sadowska, M.: Multilevel fixed-point-addition-
based VLSI placement. IEEE Trans. CAD 24(8), 1188–1203
(2005)

6. Kahng, A.B., Wang, Q.: Implementation and extensibility of an
analytic placer. IEEE Trans. CAD 24(5), 734–747 (2005)

7. Kennings, A., Markov, I.L.: Smoothingmax-terms and analytical
minimization of half-perimeter wirelength. VLSI Design 14(3),
229–237 (2002)

8. Kennings, A., Vorwerk, K.: Force-directed methods for generic
placement. IEEE Trans. CAD 25(10), 2076–2087 (2006)

9. Papa, D.A., Markov, I.L.: Hypergraph partitioning and cluster-
ing. In: Gonzalez, T. (ed.) Handbook of algorithms. Taylor &
Francis Group, Boca Raton, CRC Press, pp. 61–1 (2007)

10. Reda, S., Chowdhary, A.: Effective linear programming based
placement methods. In: ACM Press, San Jose, 9–12 Apr
2006

11. Roy, J.A., Adya, S.N., Papa, D.A., Markov, I.L.: Min-cut floorplace-
ment. IEEE Trans. CAD 25(7), 1313–1326 (2006)

12. Tang, X., Tian, R., Wong, M.D.F.: Optimal redistribution of white
space for wirelength minimization. In: Tang, T.-A. (ed.) Proc.
Asia South Pac. Design Autom. Conf., ACM Press, 18–21 Jan
2005, Shanghai. pp. 412–417 (2005)

Circuit Retiming
1991; Leiserson, Saxe

HAI ZHOU
Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL, USA

Keywords and Synonyms

Min-period retiming; Min-area retiming

ProblemDefinition

Circuit retiming is one of the most effective structural
optimization techniques for sequential circuits. It moves
the registers within a circuit without changing its func-
tion. Besides clock period, retiming can be used to mini-
mize the number of registers in the circuit. It is also called
minimum area retiming problem. Leiserson and Saxe [3]
started the research on retiming and proposed algorithms
for both minimum period and minimum area retiming.
Both their algorithms for minimum area and minimum
period will be presented here.

http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/
http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/
http://www.sigda.org/ispd2005/contest.htm
http://www.sigda.org/ispd2006/contest.htm
http://www.sigda.org/ispd2006/contest.htm
http://cadlab.cs.ucla.edu/~pubbench
http://cadlab.cs.ucla.edu/~pubbench

Circuit Retiming C 147

The problems can be formally described as follows.
Given a directed graph G = (V ; E) representing a cir-
cuit—each node v 2 V represents a gate and each edge
e 2 E represents a signal passing from one gate to an-
other—with gate delays d : V ! R+ and register numbers
w : E ! N , the minimum area problem asks for a relo-
cation of registers w0 : E ! N such that the number of
registers in the circuit is minimum under a given clock pe-
riod '. The minimum period problem asks for a solution
with the minimum clock period.

Notations

To guarantee that the new registers are actually a reloca-
tion of the old ones, a label r : V ! Z is used to represent
how many registers are moved from the outgoing edges
to the incoming edges of each node. Using this notation,
the new number of registers on an edge (u; v) can be com-
puted as

w0[u; v] = w[u; v] + r[v] � r[u] :

The same notation can be extended from edges to paths.
However, between any two nodes u and v, there may be
more than one path. Among these paths, the ones with
the minimum number of registers will decide how many
registers can be moved outside of u and v. The number is
denoted byW[u; v] for any u; v 2 V , that is,

W[u; v] , min
p : uÝv

X
(x;y)2p

w[x; y]

The maximal delay among all the paths from u to v
with the minimum number of registers is also denoted by
D[u; v], that is,

D[u; v] , max
w[p : uÝv]=W[u;v]

X
x2p

d[x]

Constraints

Based on the notations, a valid retiming r should not have
any negative number of registers on any edge. Such a va-
lidity condition is given as

P0(r) , 8(u; v) 2 E : w[u; v] + r[v] � r[u] � 0

On the other hand, given a retiming r, the minimum
number of registers between any two nodes u and v is
W[u; v]� r[u]+ r[v]. This number will not be negative be-
cause of the previous constraint. However, when it is zero,
there will be a path of delayD[u; v] without any register on

it. Therefore, to have a retimed circuit working for clock
period ', the following constraint must be satisfied.

P1(r) , 8u; v 2 V : D[u; v] > �
) W[u; v] + r[v] � r[u] � 1

Key Results

The object of the minimum area retiming is to minimize
the total number of registers in the circuit, which is given
by
P

(u;v)2E w
0[u; v]. Expressing w0[u; v] in terms of r, the

objective becomes
X
v2V

(in[v] � out[v]) � r[v] +
X

(u;v)2E

w[u; v]

where in[v] is the in-degree and out[v] is the out-degree of
node v. Since the second term is a constant, the problem
can be formulated as the following integer linear program.

Minimize
X
v2V

(in[v] � out[v]) � r[v]

s:t: w[u; v] + r[v] � r[u] � 0 8(u; v) 2 E
W[u; v] + r[v] � r[u] � 1 8u; v 2 V : D[u; v] > �
r[v] 2 Z 8v 2 V

Since the constraints have only difference inequalities with
integer constant terms, solving the relaxed linear program
(without the integer constraint) will only give integer solu-
tions. Even better, it can be shown that the problem is the
dual of a minimum cost network flow problem, and thus
can be solved efficiently.

Theorem 1 The integer linear program for the minimum
area retiming problem is the dual of the following minimum
cost network flow problem.

Minimize
X

(u;v)2E

w[u; v] � f [u; v]

+
X

D[u;v]>

(W[u; v] � 1) � f [u; v]

s:t: in[v] +
X

(v;w)2E_D[v;w]>

f [v;w] = out[v]

+
X

(u;v)2ED[u;v]>

f [u; v] 8v 2 V

f [u; v] � 0 8(u; v) 2 ED[u; v] > �

From the theorem, it can be seen that the network graph
is a dense graph where a new edge (u; v) needs to be in-
troduced for any node pair u; v such that D[u; v] > � .

148 C Circuit Retiming

There may be redundant constraints in the system. For ex-
ample, if W[u;w] = W[u; v] + w[v;w] and D[u; v] > �

then the constraint W[u;w] + r[w] � r[u] � 1 is redun-
dant, since there are alreadyW[u; v] + r[v]� r[u] � 1 and
w[v;w] + r[w] � r[v] � 0. However, it may not be easy to
check and remove all redundancy in the constraints.

In order to build the minimum cost flow network, it
is needed to first compute both matrices W and D. Since
W[u; v] is the shortest path from u to v in terms of w,
the computation of W can be done by an all-pair shortest
paths algorithm such as Floyd–Warshall’s algorithm [1].
Furthermore, if the ordered pair (w[x; y];�d[x]) is used
as the edge weight for each (x; y) 2 E, an all-pair short-
est paths algorithm can also be used to compute both W
andD. The algorithmwill add weights by component-wise
addition and will compare weights by lexicographic order-
ing.

Leiserson and Saxe [3]’s first algorithm for the mini-
mum period retiming was also based on the matrices W
and D. The idea was that the constraints in the integer
linear program for the minimum area retiming can be
checked efficiently by Bellman–Ford’s shortest paths algo-
rithm [1], since they are just difference inequalities. This
gives a feasibility checking for any given clock period '.
Then the optimal clock period can be found by a binary
search on a range of possible periods. The feasibility check-
ing can be done in O(jV j3) time, thus the runtime of such
an algorithm is O(jV j3 log jV j).

Their second algorithm got rid of the construction of
the matricesW and D. It still used a clock period feasibil-
ity checking within a binary search. However, the feasibil-
ity checking was done by incremental retiming. It works
as follows. Starting with r = 0, the algorithm computes the
arrival time of each node by the longest paths computation
on a DAG (Directed Acyclic Graph). For each node v with
an arrival time larger than the given period ', the r[v] will
be increased by one. The process of the arrival time com-
putation and r increasing will be repeated jVj � 1 times.
After that, if there is still arrival time that is larger than ',
then the period is infeasible. Since the feasibility checking
is done in O(jV jjEj) time, the runtime for the minimum
period retiming is O(jV jjEj log jV j).

Applications

Shenoy and Rudell [7] implemented Leiserson and Saxe’s
minimum period and minimum area retiming algorithms
with some efficiency improvements. For minimum period
retiming, they implemented the second algorithm and,
in order to find out infeasibility earlier, they introduced
a pointer from one node to another where at least one

register is required between them. A cycle formed by the
pointers indicates the infeasibility of the given period. For
minimum area retiming, they removed some of the redun-
dancy in the constraints and used the cost-scaling algo-
rithm of Goldberg and Tarjan [2] for the minimum cost
flow computation.

Open Problems

As can be seen from the second minimum period retim-
ing algorithm here and Zhou’s algorithm [8] in another
entry (�Circuit Retiming: An Incremental Approach), in-
cremental computation of the longest combinational paths
(i. e. those without register on them) is more efficient than
constructing the dense graph (via matrices W and D).
However, the minimum area retiming algorithm is still
based on a minimum cost network flow on the dense
graph. An interesting open question is to see whether
a more efficient algorithm based on incremental retiming
can be designed for the minimum area problem.

Experimental Results

Sapatnekar and Deokar [6] and Pan [5] proposed con-
tinuous retiming as an efficient approximation for mini-
mum period retiming, and reported the experimental re-
sults. Maheshwari and Sapatnekar [4] also proposed some
efficiency improvements to theminimum area retiming al-
gorithm and reported their experimental results.

Cross References

� Circuit Retiming: An Incremental Approach

Recommended Reading
1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction

to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
2. Goldberg, A.V., Tarjan, R.E.: Solvingminimum cost flow problem

by successive approximation. In: Proc. ACM Symposium on the
Theory of Computing, pp. 7–18 (1987). Full paper in:Math. Oper.
Res. 15, 430–466 (1990)

3. Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. Algo-
rithmica 6, 5–35 (1991)

4. Maheshwari, N., Sapatnekar, S.S.: Efficient retiming of large cir-
cuits, IEEE Transactions on Very Large-Scale Integrated Systems.
6, 74–83 (1998)

5. Pan, P.: Continuous retiming: Algorithms and applications. In:
Proc. Intl. Conf. Comput. Design, pp. 116–121. IEEE Press, Los
Almitos (1997)

6. Sapatnekar, S.S., Deokar, R.B.: Utilizing the retiming-skew equiv-
alence in a practical algorithm for retiming large circuits. IEEE
Trans. Comput. Aided Des. 15, 1237–1248 (1996)

7. Shenoy, N., Rudell, R.: Efficient implementation of retiming.
In Proc. Intl. Conf. Computer-Aided Design, pp. 226–233. IEEE
Press, Los Almitos (1994)

Circuit Retiming: An Incremental Approach C 149

8. Zhou, H.: Deriving a new efficient algorithm for min-period re-
timing. In Asia and South Pacific Design Automation Confer-
ence, Shanghai, China, Jan. ACM Press, New York (2005)

Circuit Retiming:
An Incremental Approach
2005; Zhou

HAI ZHOU
Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL, USA

Keywords and Synonyms

Minimum period retiming; Min-period retiming

ProblemDefinition

Circuit retiming is one of the most effective structural op-
timization techniques for sequential circuits. It moves the
registers within a circuit without changing its function.
The minimal period retiming problem needs to minimize
the longest delay between any two consecutive registers,
which decides the clock period.

The problem can be formally described as follows.
Given a directed graph G = (V ; E) representing a cir-
cuit – each node v 2 V represents a gate and each edge
e 2 E represents a signal passing from one gate to an-
other – with gate delays d : V ! R+ and register numbers
w : E ! N , it asks for a relocation of registers w0 : E ! N
such that the maximal delay between two consecutive reg-
isters is minimized.

Notations To guarantee that the new registers are ac-
tually a relocation of the old ones, a label r : V ! Z is
used to represent how many registers are moved from the
outgoing edges to the incoming edges of each node. Using
this notation, the new number of registers on an edge (u,v)
can be computed as

w0[u; v] = w[u; v] + r[v] � r[u] :

Furthermore, to avoid explicitly enumerating the paths in
finding the longest path, another label t : V ! R+ is in-
troduced to represent the output arrival time of each gate,
that is, themaximal delay of a gate from any preceding reg-
ister. The condition for t to be at least the combinational
delays is

8(u; v) 2 E : w0[u; v] = 0) t[v] � t[u] + d[v] :

Constraints andObjective Based on the notations, a valid
retiming r should not have any negative number of regis-

ters on any edge. Such a validity condition is given as

P0(r) , 8(u; v) 2 E : w[u; v] + r[v] � r[u] � 0 :

As already stated, the conditions for t to be valid arrival
time is given by the following two predicates.

P1(t) ,8v 2 V : t[v] � d[v]

P2(r; t) ,8(u; v) 2 E : r[u] � r[v] = w[u; v]
) t[v] � t[u] � d[v] :

A predicate P is used to denote the conjunction of the
above conditions:

P(r; t) , P0(r) ^ P1(t) ^ P2(r; t) :

Aminimal period retiming is a solution hr; ti satisfying the
following optimality condition:

P3 , 8r0; t0 : P(r0; t0)) max(t) � max(t0) ;

where

max(t) , max
v2V

t[v] :

Since only a valid retiming (r0; t0) will be discussed in the
sequel, to simplify the presentation, the range condition
P(r0; t0) will often be omitted; the meaning shall be clear
from the context.

Key Results

This section will show how an efficient algorithm is de-
signed for the minimal period retiming problem. Contrary
to the usual way of only presenting the final product, i. e.
the algorithm, but not the ideas on its design, a step-by-
step design process will be shown to finally arrive at the
algorithm.

To design an algorithm is to construct a procedure
such that it will terminate in finite steps and will sat-
isfy a given predicate when it terminates. In the minimal
period retiming problem, the predicate to be satisfied is
P0 ^ P1 ^ P2 ^ P3. The predicate is also called the post-
condition. It can be argued that any non-trivial algorithm
will have at least one loop, otherwise, the processing length
is only proportional to the text length. Therefore, some
part of the post-condition will be iteratively satisfied by the
loop, while the remaining part will be initially satisfied by
an initialization and made invariant during the loop.

The first decision needed to make is to partition
the post-condition into possible invariant and loop goal.
Among the four conjuncts, the predicate P3 gives the op-
timality condition and is themost complex one. Therefore,

150 C Circuit Retiming: An Incremental Approach

it will be used as a loop goal. On the other hand, the pred-
icates P0 and P1 can be easily satisfied by the following
simple initialization.

r; t := 0; d :

Based on these, the plan is to design an algorithm with the
following scheme.

r; t := 0; d
dofP0 ^ P1g
:P2! update t
:P3! update r

odfP0 ^ P1 ^ P2 ^ P3g :

The first command in the loop can be refined as

9(u; v) 2 E : r[u]� r[v] = w[u; v]^ t[v]� t[u] < d[v]
! t[v] := t[u] + d[v] :

This is simply the Bellman–Ford relaxations for comput-
ing the longest paths.

The second command is more difficult to refine. If
:P3, that is, there exists another valid retiming hr0; t0i
such that max(t) > max(t0), then on any node v such that
t[v] = max(t) it must have t0[v] < t[v]. One property
known on these nodes is

8v 2 V : t0[v] < t[v]
) (9u 2 V : r[u] � r[v] > r0[u] � r0[v]) ;

which means that if the arrival time of v is smaller in an-
other retiming hr0; t0i, then there must be a node u such
that r0 gives more registers between u and v. In fact, one
such a u is the starting node of the longest combinational
path to v that gives the delay of t[v].

To reduce the clock period, the variable r needs to be
updated to make it closer to r0. It should be noted that it
is not the absolute values of r but their differences that are
relevant in the retiming. If hr; ti is a solution to a retiming
problem, then hr + c; ti, where c 2 Z is an arbitrary con-
stant, is also a solution. Therefore r can bemade “closer” to
r0 by allocating more registers between u and v, that is, by
either decreasing r[u] or increasing r[v]. Notice that v can
be easily identified by t[v] = max(t). No matter whether
r[v] or r[u] is selected to change, the amount of change
should be only one since r should not be over-adjusted.
Thus, after the adjustment, it is still true that r[v]� r[u] �
r0[v] � r0[u], or equivalently r[v] � r0[v] � r[u] � r0[u].
Since v is easy to identify, r[v] is selected to increase. The

arrival time t[v] can be immediately reduced to d[v]. This
gives a refinement of the second commend:

:P3 ^ P2 ^ 9v 2 V : t[v] = max(t)
! r[v]; t[v] := r[v] + 1; d[v] :

Since registers are moved in the above operation, the pred-
icate P2 may be violated. However, the first command will
take care of it. That command will increase t on some
nodes; some may even become larger than max(t) before
the register move. The same reasoning using hr0; t0i shows
that their r values shall be increased, too. Therefore, to im-
plement this As-Soon-As-Possible (ASAP) increase of r,
a snapshot of max(t) needs to be taken when P2 is valid.
Physically, such a snapshot records one feasible clock pe-
riod � , and can be implemented by adding one more com-
mand in the loop:

P2 ^ � > max(t)! � := max(t) :

However, such an ASAP operation may increase r[u] even
when w[u; v] � r[u] + r[v] = 0 for an edge (u,v). It means
that P0 may no longer be an invariant. But moving P0
from invariant to loop goal will not cause a problem since
one more command can be added in the loop to take care
of it:

9(u; v) 2 E : r[u] � r[v] > w[u; v]
! r[v] := r[u] � w[u; v] :

Putting all things together, the algorithm now has the
following form.

r; t;� := 0; d;1;
dofP1g
9(u; v) 2 E : r[u] � r[v] = w[u; v]
^ t[v] � t[u] < d[v]! t[v] := t[u] + d[v]

:P3 ^ 9v 2 V : t[v] � �
! r[v]; t[v] := r[v] + 1; d[v]

P0 ^ P2 ^ � > max(t)! � := max(t)
9(u; v) 2 E : r[u] � r[v] > w[u; v]
! r[v] := r[u] � w[u; v]

odfP0 ^ P1 ^ P2 ^ P3g :

The remaining task to complete the algorithm is how
to check :P3. From previous discussion, it is already
known that :P3 implies that there is a node u such that
r[u]�r0[u] � r[v]�r0[v] every time after r[v] is increased.
This means that maxv2V r[v] � r0[v] will not increase. In

Circuit Retiming: An Incremental Approach C 151

Circuit Retiming: An Incremental Approach, Table 1
Experimental Results

name #gates clock period
P

r #updates time(s) ASTRA
before after A(s) B(s)

s1423 490 166 127 808 7619 0.02 0.03 0.02
s1494 558 89 88 628 7765 0.02 0.01 0.01
s9234 2027 89 81 2215 76943 0.12 0.11 0.09
s9234.1 2027 89 81 2164 77644 0.16 0.11 0.10
s13207 2573 143 82 4086 28395 0.12 0.38 0.12
s15850 3448 186 77 12038 99314 0.36 0.43 0.17
s35932 12204 109 100 16373 108459 0.28 0.24 0.65
s38417 8709 110 56 9834 155489 0.58 0.89 0.64
s38584 11448 191 163 19692 155637 0.41 0.50 0.67
s38584.1 11448 191 183 9416 114940 0.48 0.55 0.78

other words, there is at least one node vwhose r[v] will not
change. Before r[v] is increased, it also has wuÝv � r[u] +
r[v] � 0, where wuÝv � 0 is the original number of reg-
isters on one path from u to v, which gives r[v] � r[u] � 1
even after the increase of r[v]. This implies that there will
be at least i + 1 nodes whose r is at most i for 0 � i < jV j.
In other words, the algorithm can keep increasing r and
when there is any r reaching jV j it shows that P3 is sat-
isfied. Therefore, the complete algorithm will have the
following form.
r; t; � := 0; d;1;
dofP1g
9(u; v) 2 E : r[u] � r[v] = w[u; v]
^ t[v] � t[u] < d[v]! t[v] := t[u] + d[v]

(8v 2 V : r[v] < jV j)
^ 9v 2 V : t[v] � � ! r[v]; t[v] := r[v] + 1; d[v]

(9v 2 V : r[v] � jV j)
^ 9v 2 V : t[v] > � ! r[v]; t[v] := r[v] + 1; d[v]

P0 ^ P2 ^ � > max(t)! � := max(t)
9(u; v) 2 E : r[u] � r[v] > w[u; v]
! r[v] := r[u] � w[u; v]

odfP0 ^ P1 ^ P2 ^ P3g :

The correctness of the algorithm can be proved easily by
showing that the invariant P1 is maintained and the nega-
tion of the guards implies P0 ^ P2 ^ P3. The termination
is guaranteed by the monotonic increase of r and an upper
bound on it. In fact, the following theorem gives its worst
case runtime.

Theorem 1 The worst case running time of the given re-
timing algorithm is upper bounded by O(jV j2jEj).

The runtime bound of the retiming algorithm is got under
the worst case assumption that each increase on r will trig-

ger a timing propagation on the whole circuit (jEj edges).
This is only true when the r increase moves all registers in
the circuit. However, in such a case, the r is upper bounded
by 1, thus the running time is not larger than O(jV jjEj).
On the other hand, when the r value is large, the circuit is
partitioned by the registers into many small parts, thus the
timing propagation triggered by one r increase is limited
within a small tree.

Applications

In the basic algorithm, the optimality P3 is verified by an
r[v] � jV j. However, in most cases, the optimality condi-
tion can be discovered much earlier. Since each time r[v]
is increased, there must be a “safe-guard” node u such that
r[u]� r0[u] � r[v]� r0[v] after the operation. Therefore, if
a pointer is introduced from v to u when r[v] is increased,
the pointers cannot form a cycle under :P3. In fact, the
pointers will form a forest where the roots have r = 0 and
a child can have an r at most one larger than its parent. Us-
ing a cycle by the pointers as an indication of P3, instead of
an r[v] � jV j, the algorithm can have much better practi-
cal performance.

Open Problems

Retiming is usually used to optimize either the clock pe-
riod or the number of registers in the circuit. The discussed
algorithm solves only the minimal period retiming prob-
lem. The retiming problem for minimizing the number of
registers under a given period has been solved by Leiserson
and Saxe [1] and is presented in another entry in this ency-
clopedia. Their algorithm reduces the problem to the dual
of a minimal cost network problem on a denser graph. An
interesting open question is to see whether an efficient it-
erative algorithm similar to Zhou’s algorithm can be de-
signed for the minimal register problem.

152 C Clock Synchronization

Experimental Results

Experimental results are reported by Zhou [3] which
compared the runtime of the algorithm with an efficient
heuristic called ASTRA [2]. The results on the ISCAS89
benchmarks are reproduced here in Table 1 from [3],
where columns A and B are the running time of the two
stages in ASTRA.

Cross References

� Circuit Retiming

Recommended Reading

1. Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. Algo-
rithmica 6, 5–35 (1991)

2. Sapatnekar, S.S., Deokar, R.B.: Utilizing the retiming-skew equiv-
alence in a practical algorithm for retiming large circuits. IEEE
Transactions on Computer Aided Design 15, 1237–1248 (1996)

3. Zhou, H.: Deriving a new efficient algorithm for min-period re-
timing. In: Asia and South Pacific Design Automation Confer-
ence, Shanghai, China, January 2005

Clock Synchronization
1994; Patt-Shamir, Rajsbaum

BOAZ PATT-SHAMIR
Department of Electrical Engineering,
Tel-Aviv University, Tel-Aviv, Israel

ProblemDefinition

Background and Overview

Coordinating processors located in different places is one
of the fundamental problems in distributed computing. In
his seminal work, Lamport [4,5] studied the model where
the only source of coordination is message exchange be-
tween the processors; the time that elapses between succes-
sive steps at the same processor, as well as the time spent by
amessage in transit, may be arbitrarily large or small. Lam-
port observed that in this model, called the asynchronous
model, temporal concepts such as “past” and “future” are
derivatives of causal dependence, a notion with a simple
algorithmic interpretation. The work of Patt-Shamir and
Rajsbaum [10] can be viewed as extending Lamport’s qual-
itative treatment with quantitative concepts. For example,
a statement like “event a happened before event b” may be
refined to a statement like “event a happened at least 2 time
units and at most 5 time units before event b”. This is in
contrast to most previous theoretical work, which focused

on the linear-programming aspects of clock synchroniza-
tion (see below).

The basic idea in [10] is as follows. First, the frame-
work is extended to allow for upper and lower bounds on
the time that elapses between pairs of events, using the
system’s real-time specification. The notion of real-time
specification is a very natural one. For example, most pro-
cessors have local clocks, whose rate of progress is typi-
cally bounded with respect to real time (these bounds are
usually referred to as the clock’s “drift bounds”). Another
example is send and receive events of a given message:
It is always true that the receive event occurs before the
send event, and in many cases, tighter lower and upper
bounds are available. Having defined real-time specifica-
tion, [10] proceeds to show how to combine these local
bounds global bounds in the best possible way using sim-
ple graph-theoretic concepts. This allows one to derive op-
timal protocols that say, for example, what is the current
reading of a remote clock. If that remote clock is the stan-
dard clock, then the result is optimal clock synchroniza-
tion in the common sense (this concept is called “external
synchronization” below).

Formal Model

The system consists of a fixed set of interconnected pro-
cessors. Each processor has a local clock. An execution of
the system is a sequence of events, where each event is ei-
ther a send event, a receive event, or an internal event. Re-
garding communication, it is only assumed that each re-
ceive event of a message m has a unique corresponding
send event of m. This means that messages may be ar-
bitrarily lost, duplicated or reordered, but not corrupted.
Each event e occurs at a single specified processor, and has
two real numbers associated with it: its local time, denoted
LT(e), and its real time, denoted RT(e). The local time of
an event models the reading of the local clock when that
event occurs, and the local processor may use this value,
e. g., for calculations, or by sending it over to another pro-
cessor. By contrast, the real time of an event is not observ-
able by processors: it is an abstract concept that exists only
in the analysis.

Finally, the real-time properties of the system aremod-
eled by a pair of functions that map each pair of events
to R [f�1;1g: given two events e and e0, L(e; e0) = `
means that RT(e0) � RT(e) � `, and H(e; e0) = h means
that RT(e0)� RT(e) � h, i. e., that the number of (real)
time units since the occurrence of event e until the occur-
rence of e0 is at least ` and atmost h. Without loss of gener-
ality, it is assumed that L(e; e0) = �H(e0; e) for all events
e; e0 (just use the smaller of them). Henceforth, only the

Clock Synchronization C 153

upper bounds functionH is used to represent the real-time
specification.

Some special cases of real time properties are partic-
ularly important. In a completely asynchronous system,
H(e0; e) = 0 if either e occurs before e0 in the same proces-
sor, or if e and e0 are the send and receive events, respec-
tively, of the same message. (For simplicity, it is assumed
that two ordered eventsmay have the same real time of oc-
currence.) In all other casesH(e; e0) =1. On the other ex-
treme of the model spectrum, there is the drift-free clocks
model, where all local clocks run at exactly the rate of real
time. Formally, in this case H(e; e0) = LT(e0) � LT(e) for
any two events e and e0 occurring at the same processor.
Obviously, it may be the case that only some of the clocks
in the system are drift-free.

Algorithms

In this work, message generation and delivery is com-
pletely decoupled from message information. Formally,
messages are assumed to be generated by some “sendmod-
ule”, and delivered by the “communication system”. The
task of algorithms is to add contents in messages and state
variables in each node. (The idea of decoupling synchro-
nization information from message generation was intro-
duced in [1].) The algorithm only has local information,
i. e., contents of the local state variables and the local clock,
as well as the contents of the incoming message, if we are
dealing with a receive event. It is also assumed that the real
time specification is known to the algorithm. The conjunc-
tion of the events, their and their local times (but not their
real times) is called as the view of the given execution. Al-
gorithms, therefore, can only use as input the view of an
execution and its real time specification.

Problem Statement

The simplest variant of clock synchronization is external
synchronization, where one of the processors, called the
source, has a drift-free clock, and the task of all proces-
sors is to maintain the tightest possible estimate on the
current reading of the source clock. This formulation cor-
responds to the Newtonian model, where the processors
reside in a well-defined time coordinate system, and the
source clock is reading the standard time. Formally, in ex-
ternal synchronization each processor v has two output
variables �v and "v ; the estimate of v of the source time
at a given state is LTv +�v , where LTv is the current lo-
cal time at v. The algorithm is required to guarantee that
the difference between the source time and it estimate is at
most "v (note that �v, as well as "v , may change dynami-
cally during the execution). The performance of the algo-

rithm is judged by the value of the "v variables: the smaller,
the better.

In another variant of the problem, called internal syn-
chronization, there is no distinguished processor, and the
requirement is essentially that all clocks will have values
which are close to each other. Defining this variant is not
as straightforward, because trivial solutions (e. g., “set all
clocks to 0 all the time”) must be disqualified.

Key Results

The key construct used in [10] is the synchronization graph
of an execution, defined by combining the concepts of lo-
cal times and real-time specification as follows.

Definition 1 Let ˇ be a view of an execution of the sys-
tem, and let H be a real time specification for ˇ. The syn-
chronization graph generated by ˇ and H is a directed
weighted graph
ˇH = (V ; E;w), where V is the set of
events in ˇ, and for each ordered pair of events p q in ˇ
such that H(p; q) <1, there is a directed edge (p; q) 2 E.

Theweight of an edge (p, q) isw(p; q) def= H(p; q)�LT(p)+
LT(q).

The natural concept of distance from an event p to an event
q in a synchronization graph
 , denoted d� (p; q), is de-
fined by the length of the shortest weight path from p to q,
or infinity if q is not reachable from p. Since weights may
be negative, one has to prove that the concept is well de-
fined: indeed, it is shown that if
ˇH is derived from an
execution with view ˇ that satisfies real time specification
H, then
ˇH does not contain directed cycles of negative
weight.

The main algorithmic result concerning synchroniza-
tion graphs is summarized in the following theorem.

Theorem 1 Let ˛ be an execution with view ˇ. Then ˛
satisfies the real time specification H if and only if RT(p) �
RT(q) � d� (p; q) + LT(p) � LT(q) for any two events p
and q in
ˇH.

Note that all quantities in the r.h.s. of the inequality are
available to the synchronization algorithm, which can
therefore determine upper bounds on the real time that
elapses between events. Moreover, these bounds are the
best possible, as implied by the next theorem.

Theorem 2 Let
ˇH = (V ; E;w) be a synchronization
graph obtained from a view ˇ satisfying real time specifica-
tion H. Then for any given event p0 2 V, and for any finite
number N > 0, there exist executions ˛0 and ˛1 with view
ˇ, both satisfying H, and such that the following real time
assignments hold.

154 C Clock Synchronization

� In ˛0, for all q 2 V with d� (q; p0) < 1, RT˛0 (q) =
LT(q) + d� (q; p0), and for all q 2 V with d� (q; p0) =
1, RT˛0 (q) > LT(q) + N.

� In ˛1, for all q 2 V with d� (p0; q) < 1, RT˛1 (q) =
LT(q) � d� (p0; q), and for all q 2 V with d� (p0; q) =
1, RT˛1 (q) < LT(q) � N.

From the algorithmic viewpoint, one important drawback
of results of Theorems 1 and 2 is that they depend on the
view of an execution, which may grow without bound.
Is it really necessary? The last general result in [10] an-
swers this question in the affirmative. Specifically, it is
shown that in some variant of the branching program
computational model, the space complexity of any syn-
chronization algorithm that works with arbitrary real time
specifications cannot be bounded by a function of the
system size. The result is proved by considering multi-
ple scenarios on a simple system of four processors on
a line.

Later Developments

Based on the concept of synchronization graph, Ostrovsky
and Patt-Shamir present a refined general optimal algo-
rithm for clock synchronization [9]. The idea in [9] is to
discard parts of the synchronization graphs that are no
longer relevant. Roughly speaking, the complexity of the
algorithm is bounded by a polynomial in the system size
and the ratio of processors speeds.

Much theoretical work was invested in the internal
synchronization variant of the problem. For example,
Lundelius and Lynch [7] proved that in a system of n pro-
cessors with full connectivity, if message delays can take
arbitrary values in [0; 1] and local clocks are drift-free,
then the best synchronization that can be guaranteed is
1 � 1

n . Helpern et al. [3] extended their result to general
graphs using linear-programming techniques. This work,
in turn, was extended by Attiya et al. [1] to analyze any
given execution (rather than only the worst case for a given
topology), but the analysis is performed off-line and in
a centralized fashion. The work of Patt-Shamir and Rajs-
baum [11] extended the “per execution” viewpoint to on-
line distributed algorithms, and shifted the focus of the
problem to external synchronization.

Recently, Fan and Lynch [2] proved that in a line of
n processors whose clocks may drift, no algorithm can
guarantee that the difference between the clock readings
of all pairs of neighbors is o(log n/ log log n).

Clock synchronization is very useful in practice. See,
for example, Liskov [6] for some motivation. It is worth
noting that the Internet provides a protocol for external
clock synchronization called NTP [8].

Applications

Theorem 1 immediately gives rise to an algorithm for
clock synchronization: every processor maintains a rep-
resentation of the synchronization graph portion known
to it. This can be done using a full information protocol:
In each outgoing message this graph is sent, and whenever
a message arrives, the graph is extended to include the new
information from the graph in the arriving message. By
Theorem 2, the synchronization graph obtained this way
represents at any point in time all information available
required for optimal synchronization. For example, con-
sider external synchronization. Directly from definitions
it follows that all events associated with a drift-free clock
(such as events in the source node) are at distance 0 from
each other in the synchronization graph, and can therefore
be considered, for distance computations, as a single node
s. Now, assuming that the source clock actually shows real
time, it is easy to see that for any event p,

RT(p) 2 [LT(p) � d(s; p); LT(p) + d(p; s)] ;

and furthermore, no better bounds can be obtained by any
correct algorithm.

The general algorithm described above (maintaining
the complete synchronization graph) can be used also to
obtain optimal results for internal synchronization; details
are omitted.

An interesting special case is where all clocks are drift
free. In this case, the size of the synchronization graph re-
mains fixed: similarly to a source node in external synchro-
nization, all events occurring at the same processor can be
mapped to a single node; parallel edges can be replaced by
a single new edge whose weight is minimal among all old
edges. This way one can obtain a particularly efficient dis-
tributed algorithm solving external clock synchronization,
based on the distributed Bellman�Ford algorithm for dis-
tance computation.

Finally, note that the asynchronous model may also
be viewed as a special case of this general theory, where
an event p “happens before” an event q if and only if
d(p; q) � 0.

Open Problems

One central issue in clock synchronization is faulty exe-
cutions, where the real time specification is violated. Syn-
chronization graphs detect any detectable error: views
which do not have an execution that conforms with
the real time specification will result in synchronization
graphs with negative cycles. However, it is desirable to
overcome such faults, say by removing from the synchro-

Closest String and Substring Problems C 155

nization graph some edges so as to break all negative-
weight cycles. The natural objective in this case is to re-
move the least number of edges. This problem is APX-
hard as it generalizes the Feedback Arc Set problem. Un-
fortunately, no non-trivial approximation algorithms for
it are known.

Cross References
� Causal Order, Logical Clocks, State Machine

Replication

Recommended Reading
1. Attiya, H., Herzberg, A., Rajsbaum, S.: Optimal clock synchro-

nization under different delay assumptions. SIAM J. Comput.
25(2), 369–389 (1996)

2. Fan, R., Lynch, N.A.: Gradient clock synchronization. Distrib.
Comput. 18(4), 255–266 (2006)

3. Halpern, J.Y., Megiddo, N., Munshi, A.A.: Optimal precision in
the presence of uncertainty. J. Complex. 1, 170–196 (1985)

4. Lamport, L.: Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM 21(7), 558–565 (1978)

5. Lamport, L.: The mutual exclusion problem. Part I: A theory of
interprocess communication. J. ACM 33(2), 313–326 (1986)

6. Liskov, B.: Practical uses of synchronized clocks in distributed
systems. Distrib. Comput. 6, 211–219 (1993). Invited talk at the
9th Annual ACM Symposium on Principles of Distributed Com-
puting, Quebec City 22–24 August 1990

7. Lundelius, J., Lynch, N.: A new fault-tolerant algorithm for clock
synchronization. Inf. Comput. 77, 1–36 (1988)

8. Mills, D.L.: Computer Network Time Synchronization: The Net-
work Time Protocol. CRC Press, Boca Raton (2006)

9. Ostrovsky, R., Patt-Shamir, B.: Optimal and efficient clock syn-
chronization under drifting clocks. In: Proceedings of the 18th
Annual Symposium on Principles of Distributed Computing,
pp. 3–12, Atlanta, May (1999)

10. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchroniza-
tion. In: Proceedings of the 26th Annual ACM Symposium on
Theory of Computing, pp. 810–819, Montreal, May (1994)

11. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchroniza-
tion. In: Proceedings of the 26th Annual ACM Symposium on
Theory of Computing, pp. 810–819, Montreal 23–25 May 1994

Closest String
and Substring Problems
2002; Li, Ma, Wang

LUSHENG WANG
Department of Computer Science,
City University of Hong Kong, Hong Kong, China

ProblemDefinition

The problem of finding a center string that is “close” to
every given string arises and has applications in computa-
tional molecular biology and coding theory.

This problem has two versions: The first problem
comes from coding theory when we are looking for a code
not too far away from a given set of codes.

Problem 1 (The closest string problem)
INPUT: a set of strings S = fs1; s2; : : : ; sng, each of lengthm.
OUTPUT: the smallest d and a string s of length m which is
within Hamming distance d to each si 2 S.

The second problem is much more elusive than the Clos-
est String problem. The problem is formulated from appli-
cations in finding conserved regions, genetic drug target
identification, and genetic probes in molecular biology.

Problem 2 (The closest substring problem)
INPUT: an integer L and a set of strings S = fs1; s2; : : : ; sng,
each of length m.
OUTPUT: the smallest d and a string s, of length L, which is
within Hamming distance d away from a length L substring
ti of si for i = 1; 2; : : : n.

Key Results

The following results are from [1].

Theorem 1 There is a polynomial time approximation
scheme for the closest string problem.

Theorem 2 There is a polynomial time approximation
scheme for the closest substring problem.

Results for other measures can be found in [10,11,12].

Applications

Many problems in molecular biology involve finding sim-
ilar regions common to each sequence in a given set
of DNA, RNA, or protein sequences. These problems
find applications in locating binding sites and finding
conserved regions in unaligned sequences [2,7,9,13,14],
genetic drug target identification [8], designing genetic
probes [8], universal PCR primer design [4,8], and, out-
side computational biology, in coding theory [5,6]. Such
problems may be considered to be various generaliza-
tions of the common substring problem, allowing errors.
Many measures have been proposed for finding such re-
gions common to every given string. A popular and one of
the most fundamental measures is the Hamming distance.
Moreover, two popular objective functions are used in
these areas. One is the total sum of distances between the
center string (common substring) and each of the given
strings. The other is the maximum distance between the
center string and a given string. For more details, see [8].

156 C Closest Substring

Amore General Problem

The distinguishing substring selection problem has as input
two sets of strings, B and G. It is required to find a sub-
string of unspecified length (denoted by L) such that it is,
informally, close to a substring of every string in B and far
away from every length L substring of strings in G. How-
ever, we can go through all the possible L and we may as-
sume that every string in G has the same length L since G
can be reconstructed to contain all substrings of length L
in each of the good strings.

The problem is formally defined as follows: Given a set
B = fs1; s2; : : : ; sn1g of n1 (bad) strings of length at least L,
and a setG = fg1; g2; : : : gn2g of n2 (good) strings of length
exactly L, as well as two integers db and dg (db � dg), the
distinguishing substring selection problem (DSSP) is to
find a string s such that for each string si 2 B there ex-
ists a length-L substring ti of si with d(s; ti) � db and for
any string gi 2 G, d(s; gi) � dg . Here d(;) represents the
Hamming distance between two strings. If all strings in B
are also of the same length L, the problem is called the dis-
tinguishing string problem (DSP).

The distinguishing string problem was first proposed
in [8] for generic drug target design. The following results
are from [3].

Theorem 3 There is a polynomial time approximation
scheme for the distinguishing substring selection problem.
That is, for any constant � > 0, the algorithm finds a string s
of length L such that for every si 2 B, there is a length-L
substring ti of si with d(ti ; s) � (1 + �)db and for every sub-
string ui of length L of every gi 2 G, d(ui ; s) � (1 � �)dg , if
a solution to the original pair (db � dg) exists. Since there
are a polynomial number of such pairs (db ; dg), we can ex-
haust all the possibilities in polynomial time to find a good
approximation required by the corresponding application
problems.

Open Problems

The PTAS’s designed here use linear programming and
randomized rounding technique to solve some cases for
the problem. Thus, the running time complexity of the al-
gorithms for both the closest string and closest substring is
very high. An interesting open problem is to design more
efficient PTAS’s for both problems.

Cross References

� Closest Substring
� Efficient Methods for Multiple Sequence Alignment

with Guaranteed Error Bounds
� Engineering Algorithms for Computational Biology

�Multiplex PCR for Gap Closing (Whole-genome
Assembly)

Recommended Reading
1. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing bias from

consensus sequences. In: Proc. 8th Ann. Combinatorial Pattern
Matching Conf., pp. 247–261. (1997)

2. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic Design of
DrugsWithout Side-Effects. SIAM. J. Comput. 32(4), 1073–1090
(2003)

3. Dopazo, J., Rodríguez, A., Sáiz, J.C., Sobrino, F.: Design of
primers for PCR amplification of highly variable genomes.
CABIOS 9, 123–125 (1993)

4. Frances, M., Litman, A.: On covering problems of codes. Theor.
Comput. Syst. 30, 113–119 (1997)

5. Gąsieniec, L., Jansson, J., Lingas, A.: Efficient approximation al-
gorithms for the hamming center problem. In: Proc. 10th ACM-
SIAM Symp. on Discrete Algorithms., pp. 135–S906. (1999)

6. Hertz, G., Stormo, G.: Identification of consensus patterns in un-
aligned DNA and protein sequences: a large-deviation statisti-
cal basis for penalizing gaps. In: Proc. 3rd Int’l Conf. Bioinfor-
matics and Genome Research, pp. 201–216. (1995)

7. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing
string selection problems. In: Proc. 10th ACM-SIAM Symp. on
Discrete Algorithms, pp. 633–642. (1999)

8. Lawrence, C., Reilly, A.: An expectation maximization (EM) al-
gorithm for the identification and characterization of common
sites in unaligned biopolymer sequences. Proteins 7, 41–51
(1990)

9. Li, M., Ma, B., Wang, L.: On the closest string and substring
problems. J. ACM 49(2), 157–171 (2002)

10. Li, M., Ma, B., Wang, L.: Finding similar regions in many se-
quences. J. Comput. Syst. Sci. (1999)

11. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings.
In: Proceedings of the Thirty-first Annual ACM Symposium on
Theory of Computing, pp. 473–482. Atlanta (1999)

12. Ma, B.: A polynomial time approximation scheme for the clos-
est substring problem. In: Proc. 11th Annual Symposium on
Combinatorial Pattern Matching, Montreal, pp. 99–107. (2000)

13. Stormo, G.: Consensus patterns in DNA. In: Doolittle, R.F. (ed.)
Molecular evolution: computer analysis of protein and nucleic
acid sequences. Methods in Enzymology, vol. 183, pp. 211–221
(1990)

14. Stormo, G., Hartzell III, G.W.: Identifying protein-binding sites
from unaligned DNA fragments. Proc. Natl. Acad. Sci. USA. 88,
5699–5703 (1991)

Closest Substring
2005; Marx

JENS GRAMM
WSI Institute of Theoretical Computer Science,
Tübingen University, Tübingen, Germany

Keywords and Synonyms

Common approximate substring

Closest Substring C 157

ProblemDefinition

CLOSEST SUBSTRING is a core problem in the field of con-
sensus string analysis with, in particular, applications in
computational biology. Its decision version is defined as
follows.

CLOSEST SUBSTRING
Input: k strings s1; s2; : : : ; sk over alphabet ˙ and non-
negative integers d and L.
Question: Is there a string s of length L and, for all
i = 1; : : : ; k, a length-L substring s0i of si such that
dH(s; s0i) � d?

Here dH(s; s0i) denotes the Hamming distance between s
and si0, i. e., the number of positions in which s and si0 dif-
fer. Following the notation used in [7],m is used to denote
the average length of the input strings and n to denote the
total size of the problem input.

The optimization version of CLOSEST SUBSTRING asks
for the minimum value of the distance parameter d for
which the input strings still allow a solution.

Key Results

The classical complexity of CLOSEST SUBSTRING is given
by

Theorem 1 ([4,5]) CLOSEST SUBSTRING is NP-complete,
and remains so for the special case of the CLOSEST STRING
problem, where the requested solution string s has to be of
same length as the input strings. CLOSEST STRING is NP-
complete even for the further restriction to a binary alpha-
bet.

The following theorem gives the central statement con-
cerning the problem’s approximability:

Theorem 2 ([6]) CLOSEST SUBSTRING (as well as
CLOSEST STRING) admit polynomial time approximation
schemes (PTAS’s), where the objective function is the mini-
mum Hamming distance d.

In its randomized version, the PTAS cited by Theorem 2
computes, with high probability, a solution with Ham-
ming distance (1 + �)dopt for an optimum value dopt in
(k2m)O(log j˙ j/�4) running time.With additional overhead,
this randomized PTAS can be derandomized. A straight-
forward and efficient factor-2 approximation for CLOSEST
STRING is obtained by trying all length-L substrings of one
of the input strings.

The following two statements address the problem’s
parametrized complexity, with respect to both obvious
problem parameters d and k:

Theorem 3 ([3]) CLOSEST SUBSTRING is W[1]-hard with
respect to the parameter k, even for binary alphabet.

Theorem 4 ([7]) CLOSEST SUBSTRING is W[1]-hard with
respect to the parameter d, even for binary alphabet.

For non-binary alphabet the statement of Theorem 3 has
been shown independently by Evans et al. [2]. Theo-
rems 3 and 4 show that an exact algorithm for CLOSEST
SUBSTRING with polynomial running time is unlikely for
a constant value of d as well as for a constant value of k,
i. e. such an algorithm does not exist unless 3-SAT can be
solved in subexponential time.

Theorem 4 also allows additional insights into the
problem’s approximability: In the PTAS for CLOSEST
SUBSTRING, the exponent of the polynomial bounding the
running time depends on the approximation factor. These
are not “efficient” PTAS’s (EPTAS’s), i. e. PTAS’s with
a f (�) � nc running time for some function f and some
constant c, and therefore are probably not useful in prac-
tice. Theorem 4 implies that most likely the PTAS with the
nO(1/�4) running time presented in [6] cannot be improved
to an EPTAS. More precisely, there is no f (�) � no(log 1/�)

time PTAS for CLOSEST SUBSTRING unless 3-SAT can
be solved in subexponential time. Moreover, the proof of
Theorem 4 also yields

Theorem 5 ([7]) There are no f (d; k) � no(log d) time and
no g(d; k) � no(log log k) exact algorithms solving CLOSEST
SUBSTRING for some functions f and g unless 3-SAT can
be solved in subexponential time.

For unbounded alphabet the bounds have been strength-
ened by showing that Closest Substring has no PTAS with
running time f (�) � no(1/�) for any function f unless 3-SAT
can be solved in subexponential time [10]. The follow-
ing statements provide exact algorithms for CLOSEST SUB-
STRING with small fixed values of d and k, matching the
bounds given in Theorem 5:

Theorem 6 ([7]) CLOSEST SUBSTRING can be solved in
time f (d) � nO(log d) for some function f , where, more pre-
cisely, f (d) = j˙ jd(log d+2).

Theorem 7 ([7]) CLOSEST SUBSTRING can be solved in
time g(d; k) � nO(log log k) for some function g, where, more
precisely, g(d; k) = (j˙ jd)O(kd).

With regard to problem parameter L, CLOSEST SUB-
STRING can be trivially solved in O(j˙ jL � n) time by try-
ing all possible strings over alphabet˙ .

158 C Clustering

Applications

An application of CLOSEST SUBSTRING lies in the analy-
sis of biological sequences. In motif discovery, a goal is to
search “signals” common to a set of selected strings repre-
senting DNA or protein sequences. One way to represent
these signals are approximately preserved substrings oc-
curring in each of the input strings. Employing Hamming
distance as a biologically meaningful distance measure re-
sults in the problem formulation of CLOSEST SUBSTRING.

For example, Sagot [9] studies motif discovery by solv-
ing CLOSEST SUBSTRING (and generalizations thereof) us-
ing suffix trees; this approach has a worst-case running
time of O(k2m � Ld � j˙ jd). In the context of motif dis-
covery, also heuristics applicable to CLOSEST SUBSTRING
were proposed, e. g., Pevzner and Sze [8] present an algo-
rithm calledWINNOWER and Buhler and Tompa [1] use
a technique called random projections.

Open Problems

It is open [7] whether the nO(1/�4) running time of the ap-
proximation scheme presented in [6] can be improved to
nO(log 1/�), matching the bound derived from Theorem 4.

Cross References

The following problems are close relatives of CLOSEST
SUBSTRING:
� � Closest String is the special case of CLOSEST SUB-

STRING, where the requested solution string s has to be
of same length as the input strings.

� Distinguishing Substring Selection is the generalization
of CLOSEST SUBSTRING, where a second set of input
strings and an additional integer d0 are given and where
the requested solution string s has – in addition to the
requirements posed by CLOSEST SUBSTRING – Ham-
ming distance at least d0 with every length-L substring
from the second set of strings.

� Consensus Patterns is the problem obtained by replac-
ing, in the definition of CLOSEST SUBSTRING, the max-
imum of Hamming distances by the sum of Hamming
distances. The resulting modified question of CONSEN-
SUS PATTERNS is: Is there a string s of length L with

X
i=1;:::;m

dH(s; s0i) � d?

CONSENSUS PATTERNS is the special case of SUB-
STRING PARSIMONY in which the phylogenetic tree
provided in the definition of SUBSTRING PARSIMONY
is a star phylogeny.

Recommended Reading
1. Buhler, J., Tompa, M.: Findingmotifs using randomprojections.

J. Comput. Biol. 9(2), 225–242 (2002)
2. Evans, P.A., Smith, A.D., Wareham, H.T.: On the complexity of

finding common approximate substrings. Theor. Comput. Sci.
306(1–3), 407–430 (2003)

3. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameter-
ized intractability of motif search problems. Combinatorica
26(2), 141–167 (2006)

4. Frances, M., Litman, A.: On covering problems of codes. Theor.
Comput. Syst. 30, 113–119 (1997)

5. Lanctot, J.K.: Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing
String Search Problems. Inf. Comput. 185, 41–55 (2003)

6. Li, M., Ma, B., Wang, L.: On the Closest String and Substring
Problems. J. ACM 49(2), 157–171 (2002)

7. Marx, D.: The Closest Substring problem with small distances.
In: Proceedings of the 46th FOCS, pp 63–72. IEEE Press, (2005)

8. Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding
subtle signals in DNA sequences. In: Proc. of 8th ISMB, pp. 269–
278. AAAI Press, (2000)

9. Sagot, M.F.: Spelling approximate repeated or common motifs
using a suffix tree. In: Proc. of the 3rd LATIN, vol. 1380 in LNCS,
pp. 111–127. Springer (1998)

10. Wang, J., Huang, M., Cheng, J.: A Lower Bound on Approxima-
tion Algorithms for the Closest SubstringProblem. In: Proceed-
ings COCOA 2007, vol. 4616 in LNCS, pp. 291–300 (2007)

Clustering
� Local Search for K-medians and Facility Location
�Well Separated Pair Decomposition for Unit–Disk

Graph

Color Coding
1995; Alon, Yuster, Zwick

NOGA ALON1, RAPHAEL YUSTER2, URI ZWICK3
1 Department of Mathematics and Computer Science,
Tel-Aviv University, Tel-Aviv, Israel

2 Department of Mathematics, University of Haifa, Haifa,
Israel

3 Department of Mathematics and Computer Science,
Tel-Aviv University, Tel-Aviv, Israel

Keywords and Synonyms

Finding small subgraphs within large graphs

ProblemDefinition

Color coding [2] is a novel method used for solving, in
polynomial time, various subcases of the generally NP-
Hard subgraph isomorphism problem. The input for the

Color Coding C 159

subgraph isomorphism problem is an ordered pair of (pos-
sibly directed) graphs (G,H). The output is either a map-
ping showing thatH is isomorphic to a (possibly induced)
subgraph ofG, or false if no such subgraph exists. The sub-
graph isomorphism problem includes, as special cases, the
HAMILTON-PATH, CLIQUE, and INDEPENDENT SET
problems, as well as many others. The problem is also in-
teresting when H is fixed. The goal, in this case, is to de-
sign algorithms whose running times are significantly bet-
ter than the running time of the naïve algorithm.

Method Description

The color coding method is a randomized method. The
vertices of the graph G = (V ; E) in which a subgraph iso-
morphic to H = (VH ; EH) is sought are randomly colored
by k = jVH j colors. If jVH j = O(log jV j), then with a small
probability, but only polynomially small (i. e., one over
a polynomial), all the vertices of a subgraph of G which
is isomorphic to H, if there is such a subgraph, will be
colored by distinct colors. Such a subgraph is called color
coded. The color coding method exploits the fact that, in
many cases, it is easier to detect color coded subgraphs
than uncolored ones.

Perhaps the simplest interesting subcases of the sub-
graph isomorphism problem are the following: Given a di-
rected or undirected graph G = (V ; E) and a number k,
does G contain a simple (directed) path of length k?
Does G contain a simple (directed) cycle of length ex-
actly k? The following describes a 2O(k) � jEj time algo-
rithm that receives as input the graph G = (V ; E), a color-
ing c : V ! f1; : : : ; kg and a vertex s 2 V , and finds a col-
orful path of length k � 1 that starts at s, if one exists. To
find a colorful path of length k � 1 in G that starts some-
where, just add a new vertex s0 to V , color it with a new
color 0 and connect it with edges to all the vertices of V .
Now look for a colorful path of length k that starts at s0.

A colorful path of length k � 1 that starts at some
specified vertex s is found using a dynamic programming
approach. Suppose one is already given, for each vertex
v 2 V , the possible sets of colors on colorful paths of
length i that connect s and v. Note that there is no need
to record all colorful paths connecting s and v. Instead,
record the color sets appearing on such paths. For each
vertex v there is a collection of at most

�k
i
�
color sets.

Now, inspect every subset C that belongs to the collection
of v, and every edge (v; u) 2 E. If c(u) 62 C, add the set
C [fc(u)g to the collection of u that corresponds to col-
orful paths of length i + 1. The graph G contains a colorful
path of length k � 1 with respect to the coloring c if and
only if the final collection, that corresponding to paths of

length k � 1, of at least one vertex is non-empty. The num-
ber of operations performed by the algorithm outlined is at
most O(

Pk
i=0 i

�k
i
�
� jEj) which is clearly O(k2k � jEj).

Derandomization

The randomized algorithms obtained using the color cod-
ingmethod are derandomizedwith only a small loss in effi-
ciency. All that is needed to derandomize them is a family
of colorings of G = (V ; E) so that every subset of k ver-
tices of G is assigned distinct colors by at least one of these
colorings. Such a family is also called a family of perfect
hash functions from f1; 2; : : : ; jV jg to f1; 2; : : : ; kg. Such
a family is explicitly constructed by combining the meth-
ods of [1,9,12,16]. For a derandomization technique yield-
ing a constant factor improvement see [5].

Key Results

Lemma 1 Let G = (V ; E) be a directed or undirected graph
and let c : V ! f1; : : : ; kg be a coloring of its vertices with k
colors. A colorful path of length k � 1 in G, if one exists, can
be found in 2O(k) � jEj worst-case time.

Lemma 2 Let G = (V ; E) be a directed or undirected graph
and let c : V ! f1; : : : ; kg be a coloring of its vertices with k
colors. All pairs of vertices connected by colorful paths of
length k � 1 in G can be found in either 2O(k) � jV jjEj or
2O(k) � jV j! worst-case time (here ! < 2:376 denotes the
matrix multiplication exponent).

Using the above lemmata the following results are ob-
tained.

Theorem 3 A simple directed or undirected path of
length k � 1 in a (directed or undirected) graph G = (V ; E)
that contains such a path can be found in 2O(k) � jV j ex-
pected time in the undirected case and in 2O(k) � jEj ex-
pected time in the directed case.

Theorem 4 A simple directed or undirected cycle of size k
in a (directed or undirected) graph G = (V ; E) that con-
tains such a cycle can be found in either 2O(k) � jV jjEj or
2O(k) � jV j! expected time.

A cycle of length k in minor-closed families of graphs
can be found, using color coding, even faster (for planar
graphs, a slightly faster algorithm appears in [6]).

Theorem 5 Let C be a non-trivial minor-closed family
of graphs and let k � 3 be a fixed integer. Then, there ex-
ists a randomized algorithm that given a graph G = (V ; E)
fromC, finds a Ck (a simple cycle of size k) in G, if one exists,
in O(|V|) expected time.

160 C Color Coding

As mentioned above, all these theorems can be derandom-
ized at the price of a log |V| factor. The algorithms are also
easily to parallelize.

Applications

The initial goal was to obtain efficient algorithms for find-
ing simple paths and cycles in graphs. The color cod-
ing method turned out, however, to have a much wider
range of applicability. The linear time (i. e., 2O(k) � jEj
for directed graphs and 2O(k) � jV j for undirected graphs)
bounds for simple paths apply in fact to any forest on k
vertices. The 2O(k) � jV j! bound for simple cycles applies
in fact to any series-parallel graph on k vertices. More
generally, if G = (V ; E) contains a subgraph isomorphic
to a graph H = (VH ; EH) whose tree-width is at most
t, then such a subgraph can be found in 2O(k) � jV jt+1

expected time, where k = jVH j. This improves an algo-
rithm of Plehn and Voigt [14] that has a running time
of kO(k) � jV jt+1. As a very special case, it follows that the
LOG PATH problem is in P. This resolves in the affirma-
tive a conjecture of Papadimitriou and Yannakakis [13].
The exponential dependence on k in the above bounds is
probably unavoidable as the problem is NP-complete if k
is part of the input.

The color coding method has been a fruitful method
in the study of parametrized algorithms and parametrized
complexity [7,8]. Recently, the method has found inter-
esting applications in computational biology, specifically
in detecting signaling pathways within protein interaction
networks, see [10,17,18,19].

Open Problems

Several problems, listed below, remain open.
� Is there a polynomial time (deterministic or random-

ized) algorithm for deciding if a given graphG = (V ; E)
contains a path of length, say, log2 jV j? (This is un-
likely, as it will imply the existence of an algorithm that
decides in time 2O(

p
n) whether a given graph on n ver-

tices is Hamiltonian.)
� Can the log jV j factor appearing in the derandomiza-

tion be omitted?
� Is the problem of deciding whether a given graph

G = (V ; E) contains a triangle as difficult as the
Boolean multiplication of two jV j � jV jmatrices?

Experimental Results

Results of running the basic algorithm on biological data
have been reported in [17,19].

Cross References

� Approximation Schemes for Planar Graph Problems
� Graph Isomorphism
� Treewidth of Graphs

Recommended Reading

1. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construc-
tions of almost k-wise independent randomvariables. Random
Struct. Algorithms 3(3), 289–304 (1992)

2. Alon, N., Yuster, R., Zwick, U.: Color coding. J. ACM 42, 844–856
(1995)

3. Alon, N., Yuster, R., Zwick, U.: Finding and counting given
length cycles. Algorithmica 17(3), 209–223 (1997)

4. Björklund, A., Husfeldt, T.: Finding a path of superlogarithmic
length. SIAM J. Comput. 32(6), 1395–1402 (2003)

5. Chen, J., Lu, S., Sze, S., Zhang, F.: Improved algorithms for
path, matching, and packing problems. Proceedings of the
18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 298–307 (2007)

6. Eppstein, D.: Subgraph isomorphism in planar graphs and re-
lated problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999)

7. Fellows, M.R.: New Directions and new challenges in algorithm
design and complexity, parameterized. In: Lecture Notes in
Computer Science, vol. 2748, p. 505–519 (2003)

8. Flum, J., Grohe, M.: The Parameterized complexity of counting
problems. SIAM J. Comput. 33(4), 892–922 (2004)

9. Fredman, M.L., J.Komlós, Szemerédi, E.: Storing a sparse ta-
ble with O(1) worst case access time. J. ACM 31, 538–544
(1984)

10. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering
for Color Coding to facilitate Signaling Pathway Detection. In:
Proceedings of the 5th Asia-Pacific Bioinformatics Conference
(APBC), pp. 277–286 (2007)

11. Monien, B.: How to find long paths efficiently. Ann. Discret.
Math. 25, 239–254 (1985)

12. Naor, J., Naor, M.: Small-bias probability spaces: efficient con-
structions and applications. SIAM J. Comput. Comput. 22(4),
838–856 (1993)

13. Papadimitriou, C.H., Yannakakis, M.: On limited nondetermin-
ism and the complexity of the V-C dimension. J. Comput. Syst.
Sci. 53(2), 161–170 (1996)

14. Plehn, J., Voigt, B.: Finding minimally weighted subgraphs.
Lect. Notes Comput. Sci. 484, 18–29 (1990)

15. Robertson, N., Seymour, P.: Graph minors. II. Algorithmic as-
pects of tree-width. J. Algorithms 7, 309–322 (1986)

16. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivi-
ous k-probe hash functions. SIAM J. Comput. 19(5), 775–786
(1990)

17. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient Algorithms
for Detecting Signaling Pathways in Protein Interaction Net-
works. J. Comput. Biol. 13(2), 133–144 (2006)

18. Sharan, R., Ideker, T.: Modeling cellular machinery through bi-
ological network comparison. Nat. Biotechnol. 24, 427–433
(2006)

19. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for
querying pathways in a protein-protein interaction network.
BMC Bioinform. 7, 199 (2006)

Communication in Ad Hoc Mobile Networks Using RandomWalks C 161

Communication in Ad Hoc Mobile
Networks Using RandomWalks
2003; Chatzigiannakis, Nikoletseas, Spirakis

IOANNIS CHATZIGIANNAKIS
Department of Computer Engineering and Informatics,
University of Patras and Computer Technology Institute,
Patras, Greece

Keywords and Synonyms

Disconnected ad hoc networks; Delay-tolerant networks;
Message Ferrying; Message relays; Data mules; Sink mo-
bility

ProblemDefinition

A mobile ad hoc network is a temporary dynamic in-
terconnection network of wireless mobile nodes without
any established infrastructure or centralized administra-
tion. A basic communication problem, in ad hoc mobile
networks, is to send information from a sender node, A,
to another designated receiver node, B. If mobile nodes A
and B come within wireless range of each other, then they
are able to communicate. However, if they do not, they
can communicate if other network nodes of the network
are willing to forward their packets. One way to solve this
problem is the protocol of notifying every node that the
sender A meets and provide it with all the information
hoping that some of them will eventually meet the re-
ceiver B.

Is there a more efficient technique (other than noti-
fying every node that the sender meets, in the hope
that some of them will then eventually meet the re-
ceiver) that will effectively solve the communication
establishment problem without flooding the network
and exhausting the battery and computational power
of the nodes?

The problem of communication among mobile nodes is
one of the most fundamental problems in ad hoc mo-
bile networks and is at the core of many algorithms, such
as for counting the number of nodes, electing a leader,
data processing etc. For an exposition of several important
problems in ad hoc mobile networks see [13]. The work
of Chatzigiannakis, Nikoletseas and Spirakis [5] focuses
on wireless mobile networks that are subject to highly
dynamic structural changes created by mobility, channel
fluctuations and device failures. These changes affect topo-
logical connectivity, occur with high frequency and may
not be predictable in advance. Therefore, the environment

where the nodes move (in three-dimensional space with
possible obstacles) as well as the motion that the nodes
perform are input to any distributed algorithm.

The Motion Space

The space of possible motions of the mobile nodes is com-
binatorially abstracted by amotion-graph, i. e. the detailed
geometric characteristics of themotion are neglected. Each
mobile node is assumed to have a transmission range
represented by a sphere tr centered by itself. Any other
node inside tr can receive any message broadcast by this
node. This sphere is approximated by a cube tc with vol-
ume V (tc), where V (tc) < V (tr). The size of tc can be
chosen in such a way that its volume V (tc) is the maxi-
mum that preserves V (tc) < V (tr), and if a mobile node
inside tc broadcasts a message, this message is received by
any other node in tc. Given that the mobile nodes aremov-
ing in the space S;S is divided into consecutive cubes of
volumeV (tc).

Definition 1 The motion graph G(V ; E), (jV j = n; jEj =
m), which corresponds to a quantization of S is con-
structed in the following way: a vertex u 2 G represents
a cube of volume V (tc) and an edge (u; v) 2 G exists if
the corresponding cubes are adjacent.

The number of vertices n, actually approximates the ratio
between the volumeV (S) of space S, and the space occu-
pied by the transmission range of a mobile nodeV (tr). In
the extreme case where V (S) 	 V (tr), the transmission
range of the nodes approximates the space where they are
moving and n = 1. Given the transmission range tr, n de-
pends linearly on the volume of space S regardless of the
choice of tc, and n = O(V (S)/V (tr)). The ratioV (S)/V (tr)
is the relative motion space size and is denoted by �. Since
the edges of G represent neighboring polyhedra each ver-
tex is connected with a constant number of neighbors,
which yields that m = 	(n). In this example where tc is
a cube, G has maximum degree of six and m � 6n. Thus
motion graph G is (usually) a bounded degree graph as it
is derived from a regular graph of small degree by delet-
ing parts of it corresponding to motion or communication
obstacles. Let� be the maximum vertex degree of G.

The Motion of the Nodes-Adversaries

In the general case, the motions of the nodes are decided
by an oblivious adversary: The adversary determines mo-
tion patterns in any possible way but independently of the
distributed algorithm. In other words, the case where some
of the nodes are deliberately trying tomaliciously affect the
protocol, e. g. avoid certain nodes, are excluded. This is

162 C Communication in Ad Hoc Mobile Networks Using RandomWalks

a pragmatic assumption usually followed by applications.
Such kind of motion adversaries are called restricted mo-
tion adversaries.

For purposes of studying efficiency of distributed al-
gorithms for ad hoc networks on the average, the mo-
tions of the nodes are modeled by concurrent and indepen-
dent random walks. The assumption that the mobile nodes
move randomly, either according to uniformly distributed
changes in their directions and velocities or according to
the random waypoint mobility model by picking random
destinations, has been used extensively by other research.

Key Results

The key idea is to take advantage of the mobile nodes nat-
ural movement by exchanging information whenever mo-
bile nodes meet incidentally. It is evident, however, that
if the nodes are spread in remote areas and they do not
move beyond these areas, there is no way for informa-
tion to reach them, unless the protocol takes special care of
such situations. The work of Chatzigiannakis, Nikoletseas
and Spirakis [5] proposes the idea of forcing only a small
subset of the deployed nodes to move as per the needs of
the protocol; they call this subset of nodes the support of
the network. Assuming the availability of such nodes, they
are used to provide a simple, correct and efficient strategy
for communication between any pair of nodes of the net-
work that avoids message flooding.

Let k nodes be a predefined set of nodes that become
the nodes of the support. These nodes move randomly and
fast enough so that they visit in sufficiently short time the
entire motion graph. When some node of the support is
within transmission range of a sender, it notifies the sender
that it may send its message(s). The messages are then
stored “somewhere within the support structure”. When
a receiver comes within transmission range of a node of
the support, the receiver is notified that a message is “wait-
ing” for him and the message is then forwarded to the re-
ceiver.

Protocol 1 (The “Snake” Support Motion Coordina-
tion Protocol) Let S0; S1; : : : ; Sk�1 be the members of
the support and let S0 denote the leader node (possibly
elected). The protocol forces S0 to perform a random walk
on themotion graph and each of the other nodes Si execute
the simple protocol “move where Si� 1 was before”. When
S0 is about to move, it sends a message to S1 that states the
new direction of movement. S1 will change its direction as
per instructions of S0 and will propagate the message to S2.
In analogy, Si will follow the orders of Si� 1 after transmit-
ting the new directions to Si + 1. Movement orders received
by Si are positioned in a queue Qi for sequential process-

ing. The very first move of Si, 8i 2 f1; 2; : : : ; k � 1g is de-
layed by a ı period of time.

The purpose of the randomwalk of the head S0 is to ensure
a cover, within some finite time, of the whole graphGwith-
out knowledge and memory, other than local, of topol-
ogy details. This memoryless motion also ensures fair-
ness, low-overhead and inherent robustness to structural
changes.

Consider the case where any sender or receiver is al-
lowed a general, unknownmotion strategy, but its strategy
is provided by a restricted motion adversary. This means
that each node not in the support either (a) executes a de-
terministic motion which either stops at a vertex or cycles
forever after some initial part or (b) it executes a stochas-
tic strategy which however is independent of the motion of
the support. The authors in [5] prove the following cor-
rectness and efficiency results. The reader can refer to the
excellent book by Aldous and Fill [1] for a nice introduc-
tion on Makrov Chains and RandomWalks.

Theorem 1 The support and the “snake” motion coordi-
nation protocol guarantee reliable communication between
any sender-receiver (A, B) pair in finite time, whose ex-
pected value is bounded only by a function of the relative
motion space size � and does not depend on the number of
nodes, and is also independent of how MHS, MHR move,
provided that the mobile nodes not in the support do not
deliberately try to avoid the support.

Theorem 2 The expected communication time of the
support and the “snake” motion coordination protocol is
bounded above by 	(

p
mc) when the (optimal) support

size k =
p
2mc and c is e/(e � 1)u, u being the “separation

threshold time” of the random walk on G.

Theorem 3 By having the support’s head move on a reg-
ular spanning subgraph of G, there is an absolute constant
� > 0 such that the expected meeting time of A (or B) and
the support is bounded above by �n2/k. Thus the protocol
guarantees a total expected communication time of 	(�),
independent of the total number of mobile nodes, and their
movement.

The analysis assumes that the head S0 moves according to
a continuous time random walk of total rate 1 (rate of exit
out of a node of G). If S0 moves times faster than the
rest of the nodes, all the estimated times, except the inter-
support time, will be divided by . Thus the expected to-
tal communication time can be made to be as small as
	(��/

p
) where � is an absolute constant. In cases where

S0 can take advantage of the network topology, all the esti-
mated times, except the inter-support time are improved:

Communication in Ad Hoc Mobile Networks Using RandomWalks C 163

Communication in Ad Hoc Mobile Networks Using RandomWalks, Figure 1
The original network area S (a), how it is divided in consecutive cubes of volumeV (tc) (b) and the resultingmotion graphG (c)

Theorem 4 When the support’s head moves on a regular
spanning subgraph of G the expected meeting time of A (or
B) and the support cannot be less than (n � 1)2/2m. Since
m = 	(n), the lower bound for the expected communica-
tion time is 	(n). In this sense, the “snake” protocol’s ex-
pected communication time is optimal, for a support size
which is	(n).

The “on-the-average” analysis of the time-efficiency of the
protocol assumes that the motion of the mobile nodes not
in the support is a random walk on the motion graph G.
The random walk of each mobile node is performed inde-
pendently of the other nodes.

Theorem 5 The expected communication time of the
support and the “snake” motion coordination protocol is
bounded above by the formula

E(T) �
2

�2(G)
	
�n
k

�
+	(k) :

The upper bound is minimized when k =
p
2n/�2(G),

where �2 is the second eigenvalue of the motion graph’s ad-
jacency matrix.

The way the support nodes move and communicate is ro-
bust, in the sense that it can tolerate failures of the sup-
port nodes. The types of failures of nodes considered are
permanent, i. e. stop failures. Once such a fault happens,
the support node of the fault does not participate in the
ad hoc mobile network anymore. A communication pro-
tocol is ˇ-faults tolerant, if it still allows the members of
the network to communicate correctly, under the presence
of at most ˇ permanent faults of the nodes in the support
(ˇ � 1). [5] shows that:

Theorem 6 The support and the “snake” motion coordi-
nation protocol is 1-fault tolerant.

Applications

Ad hoc mobile networks are rapidly deployable and self-
configuring networks that have important applications in

many critical areas such as disaster relief, ambient in-
telligence, wide area sensing and surveillance. The abil-
ity to network anywhere, anytime enables teleconferenc-
ing, home networking, sensor networks, personal area net-
works, and embedded computing applications [13].

Related Work

The most common way to establish communication is to
form paths of intermediate nodes that lie within one an-
other’s transmission range and can directly communicate
with each other. The mobile nodes act as hosts and routers
at the same time in order to propagate packets along these
paths. This approach of maintaining a global structure
with respect to the temporary network is a difficult prob-
lem. Since nodes are moving, the underlying communi-
cation graph is changing, and the nodes have to adapt
quickly to such changes and reestablish their routes. Busch
and Tirthapura [2] provide the first analysis of the perfor-
mance of some characteristic protocols [8,13] and show
that in some cases they require˝(u2) time, where u is the
number of nodes, to stabilize, i. e. be able to provide com-
munication.

The work of Chatzigiannakis, Nikoletseas and Spi-
rakis [5] focuses on networks where topological connectiv-
ity is subject to frequent, unpredictable change and stud-
ies the problem of efficient data delivery in sparse net-
works where network partitions can last for a significant
period of time. In such cases, it is possible to have a small
team of fast moving and versatile vehicles, to implement
the support. These vehicles can be cars, motorcycles, heli-
copters or a collection of independently controlled mobile
modules, i. e. robots. This specific approach is inspired by
the work of Walter, Welch and Amato [14] that study the
problem of motion co-ordination in distributed systems
consisting of such robots, which can connect, disconnect
and move around.

The use of mobility to improve performance in ad hoc
mobile networks has been considered in different contexts
in [6,9,11,15]. The primary objective has been to provide
intermittent connectivity in a disconnected ad hoc net-

164 C Communication in Ad Hoc Mobile Networks Using RandomWalks

work. Each solution achieves certain properties of end-to-
end connectivity, such as delay and message loss among
the nodes of the network. Some of them require long-
range wireless transmission, other require that all nodes
move pro-actively under the control of the protocol and
collaborate so that they meet more often. The key idea of
forcing only a subset of the nodes to facilitate communica-
tion is used in a similar way in [10,15]. However, [15] fo-
cuses in cases where only one node is available. Recently,
the application of mobility to the domain of wireless sen-
sor networks has been addressed in [3,10,12].

Open Problems

A number of problems related to the work of Chatzigian-
nakis, Nikoletseas and Spirakis [5] remain open. It is clear
that the size of the support, k, the shape and the way the
support moves affects the performance of end-to-end con-
nectivity. An open issue is to investigate alternative struc-
tures for the support, differentmotion coordination strate-
gies and comparatively study the corresponding effects on
communication times. To this end, the support idea is ex-
tended to hierarchical and highly changing motion graphs
in [4]. The idea of cooperative routing based on the ex-
istence of support nodes may also improve security and
trust.

An important issue for the case where the network
is sparsely populated or where the rate of motion is too
high is to study the performance of path construction and
maintenance protocols. Some work has be done in this di-
rection in [2] that can be also used to investigate the end-
to-end communication in wireless sensor networks. It is
still unknown if there exist impossibility results for dis-
tributed algorithms that attempt to maintain structural in-
formation of the implied fragile network of virtual links.

Another open research area is to analyze the proper-
ties of end-to-end communication given certain support
motion strategies. There are cases where the mobile nodes
interactions may behave in a similar way to the Physics
paradigm of interacting particles and their modeling. Stud-
ies of interaction times and propagation times in various
graphs are reported in [7] and are still important to fur-
ther research in this direction.

Experimental Results

In [5] an experimental evaluation is conducted via simu-
lation in order to model the different possible situations
regarding the geographical area covered by an ad-hoc mo-
bile network. A number of experiments were carried out
for grid-graphs (2D, 3D), random graphs (Gn, p model),
bipartite multi-stage graphs and two-level motion graphs.

All results verify the theoretical analysis and provide useful
insight on how to further exploit the support idea. In [4]
the model of hierarchical and highly changing ad-hoc net-
works is investigated. The experiments indicate that, the
pattern of the “snake” algorithm’s performance remains
the same even in such type of networks.

URL to Code

http://ru1.cti.gr

Cross References

�Mobile Agents and Exploration

Recommended Reading

1. Aldous, D., Fill, J.: Reversible markov chains and random walks
on graphs. http://stat-www.berkeley.edu/users/aldous/book.
html (1999). Accessed 1999

2. Busch, C., Tirthapura, S.: Analysis of link reversal routing algo-
rithms. SIAM J. Comput. 35(2):305–326 (2005)

3. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Sink mobility
protocols for data collection in wireless sensor networks. In:
Zomaya, A.Y., Bononi, L. (eds.) 4th International Mobility and
Wireless Access Workshop (MOBIWAC 2006), Terromolinos,
pp 52–59

4. Chatzigiannakis, I., Nikoletseas, S.: Design and analysis of an
efficient communication strategy for hierarchical and highly
changing ad-hoc mobile networks. J. Mobile Netw. Appl. 9(4),
319–332 (2004). Special Issue on Parallel Processing Issues in
Mobile Computing

5. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Distributed com-
munication algorithms for ad hoc mobile networks. J. Paral-
lel Distrib. Comput. (JPDC) 63(1), 58–74 (2003). Special Issue
on Wireless and Mobile Ad-hoc Networking and Computing,
edited by Boukerche A

6. Diggavi, S.N., Grossglauser, M., Tse, D.N.C.: Even one-dimen-
sional mobility increases the capacity of wireless networks.
IEEE Trans. Inf. Theory 51(11), 3947–3954 (2005)

7. Dimitriou, T., Nikoletseas, S.E., Spirakis, P.G.: Analysis of the
information propagation time among mobile hosts. In: Niko-
laidis, I., Barbeau, M., Kranakis, E. (eds.) 3rd International Con-
ference on Ad-Hoc, Mobile, and Wireless Networks (ADHOC-
NOW 2004), pp 122–134. Lecture Notes in Computer Science
(LNCS), vol. 3158. Springer, Berlin (2004)

8. Gafni, E., Bertsekas, D.P.: Distributed algorithms for generating
loop-free routes in networks with frequently changing topol-
ogy. IEEE Trans. Commun. 29(1), 11–18 (1981)

9. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of
ad hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–
486 (2002)

10. Jain, S., Shah, R., Brunette, W., Borriello, G., Roy, S.: Exploiting
mobility for energy efficient data collection in wireless sensor
networks. J. Mobile Netw. Appl. 11(3), 327–339 (2006)

11. Li, Q., Rus, D.: Communication in disconnected ad hoc net-
works using message relay. Journal of Parallel and Distributed
Computing (JPDC) 63(1), 75–86 (2003). Special Issue on Wire-

http://ru1.cti.gr
http://stat-www.berkeley.edu/users/aldous/book.html
http://stat-www.berkeley.edu/users/aldous/book.html

Competitive Auction C 165

less andMobile Ad-hoc Networking and Computing, edited by
A Boukerche

12. Luo, J., Panchard, J., Piórkowski, M., Grossglauser, M., Hubaux,
J.P.: Mobiroute: Routing towards a mobile sink for improving
lifetime in sensor networks. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) 2nd IEEE/ACM International Confer-
ence on Distributed Computing in Sensor Systems (DCOSS
2005). Lecture Notes in Computer Science (LNCS), vol. 4026,
pp 480–497. Springer, Berlin (2006)

13. Perkins, C.E.: Ad Hoc Networking. Addison-Wesley, Boston
(2001)

14. Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfigura-
tion of metamorphic robot chains. J. Distrib. Comput. 17(2),
171–189 (2004)

15. Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach
for data delivery in sparse mobile ad hoc networks. In: Murai,
J., Perkins, C., Tassiulas, L. (eds.) 5th ACM international sympo-
sium on Mobile ad hoc networking and computing (MobiHoc
2004), pp 187–198. ACM Press, Roppongi Hills, Tokyo (2004)

Competitive Auction
2001; Goldberg, Hartline,Wright
2002; Fiat, Goldberg, Hartline, Karlin

TIAN-MING BU
Department of Computer Science and Engineering,
Fudan University, Shanghai, China

ProblemDefinition

This problem studies the one round, sealed-bid auction
model where an auctioneer would like to sell an idiosyn-
cratic commodity with unlimited copies to n bidders and
each bidder i 2 f1; : : : ; ng will get at most one item.

First, for any i, bidder i bids a value bi representing
the price he is willing to pay for the item. They submit
the bids simultaneously. After receiving the bidding vector
b = (b1; : : : ; bn), the auctioneer computes and outputs the
allocation vector x = (x1; : : : ; xn) 2 f0; 1gn and the price
vector p = (p1; : : : ; pn). If for any i, xi = 1, then bidder i
gets the item and pays pi for it. Otherwise, bidder i loses
and pays nothing. In the auction, the auctioneer’s revenue
is
Pn

i=1 xp
T.

Definition 1 (Optimal Single Price Omniscient
Auction F) Given a bidding vector b sorted in decreas-
ing order,

F(b) = max
1�i�n

i � bi :

Further,

F (m)(b) = max
m�i�n

i � bi :

Obviously, F maximizes the auctioneer’s revenue if only
uniform price is allowed.

However, in this problem each bidder i is associated
with a private value vi representing the item’s value in his
opinion. So if bidder i gets the item, his payoff should be
vi � pi. Otherwise, his payoff is 0. So for any bidder i, his
payoff function can be formulated as (vi � pi)xi. Further-
more, free will is allowed in the model. In other words,
each bidderwould bid some bi different from his true value
vi, to maximize his payoff.

The objective of the problem is to design a truthful
auction which could still maximize the auctioneer’s rev-
enue. An auction is truthful if for every bidder i, bidding
his true value would maximize his payoff, regardless of the
bids submitted by the other bidders [11,12].

Definition 2 (Competitive Auctions)
INPUT: the submitted bidding vector b.
OUTPUT: the allocation vector x and the price vector p.
CONSTRAINTS:
(a) Truthful
(b) The auctioneer’s revenue is within a constant factor of

the optimal single pricing for all inputs.

Key Results

Let b�i = (b1; : : : ; bi�1; bi+1; : : : ; bn). f is any function
from b�i to the price.

1: for i = 1 to n do
2: if f (b�i) � bi then
3: xi = 1 and pi = f (bi)
4: else
5: xi = 0
6: end if
7: end for

Competitive Auction, Algorithm 1
Bid-independent Auction:Af (b)

Theorem 1 ([6]) An auction is truthful if and only if it is
equivalent to a bid-independent auction.

Definition 3 A truthful auction A is ˇ-competitive
againstF (m) if for all bidding vectors b, the expected profit
ofA on b satisfies

E(A(b)) �
F (m)(b)
ˇ

:

Definition 4 (CostShareC) ([10]) Given bids b, this
mechanism finds the largest k such that the highest k bid-

166 C Complexity of Bimatrix Nash Equilibria

ders’ bids are at least C/k. Charge each of such k bidders
C/k.

1: Partition bidding vector b uniformly at random into
two sets b0 and b00.

2: ComputerF 0 = F(b0) andF 00 = F(b00).
3: Running CostShareF 00 on b0 andCostShareF 0 on b00.

Competitive Auction, Algorithm 2
Sampling Cost Sharing Auction (SCS)

Theorem 2 ([6]) SCS is 4-competitive against F (2), and
the bound is tight.

Theorem 3 ([9]) LetA be any truthful randomized auc-
tion. There exists an input bidding vector b on which
E(A(b)) � F (2)(b)

2:42 .

Applications

As the Internet becomes more popular, more and more
auctions are beginning to appear. Further, the items on
sale in the auctions vary from antiques, paintings to digital
goods such asmp3, licenses and network resources. Truth-
ful auctions can reduce the bidders’ cost of investigating
the competitors’ strategies, since truthful auctions encour-
age bidders to bid their true values. On the other hand,
competitive auctions can also guarantee the auctioneer’s
profit. So this problem is very practical and significant.
Over the last two years, designing and analyzing compet-
itive auctions under various auction models have become
a hot topic [1,2,3,4,5,7,8].

Cross References

� CPU Time Pricing
�Multiple Unit Auctions with Budget Constraint

Recommended Reading
1. Abrams, Z.: Revenue maximization when bidders have bud-

gets. In: Proceedings of the seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-06), Miami, FL, 22–
26 January 2006, pp. 1074–1082. ACM Press, New York (2006)

2. Bar-Yossef, Z., Hildrum, K., Wu, F.: Incentive-compatible online
auctions for digital goods. In: Proceedings of the 13th Annual
ACM-SIAM Symposium On Discrete Mathematics (SODA-02),
New York, 6–8 January 2002, pp. 964–970. ACM Press, New
York (2002)

3. Borgs, C., Chayes, J.T., Immorlica, N., Mahdian, M., Saberi, A.:
Multi-unit auctions with budget-constrained bidders. In: ACM
Conference on Electronic Commerce (EC-05), 2005, pp. 44–51

4. Bu, T.-M., Qi, Q., Sun, A.W.: Unconditional competitive auc-
tions with copy and budget constraints. In: Spirakis, P.G.,

Mavronicolas, M., Kontogiannis, S.C. (eds.) Internet and Net-
work Economics, 2nd International Workshop, WINE 2006, Pa-
tras, Greece, 15–17 Dec 2006. Lecture Notes in Computer Sci-
ence, vol. 4286, pp. 16–26. Springer, Berlin (2006)

5. Deshmukh, K., Goldberg, A.V., Hartline, J.D., Karlin, A.R.: Truth-
ful and competitive double auctions. In: Möhring, R.H., Raman,
R. (eds.) Algorithms–ESA 2002, 10th Annual European Sympo-
sium, Rome, Italy, 17–21 Sept 2002. Lecture Notes in Computer
Science, vol. 2461, pp. 361–373. Springer, Berlin (2002)

6. Fiat, A., Goldberg, A.V., Hartline, J.D., Karlin, A.R.: Competitive
generalized auctions. In: Proceedings of the 34th Annual ACM
Symposiumon Theory of Computing (STOC-02), NewYork, 19–
21 May 2002, pp. 72–81. ACM Press, New York (2002)

7. Goldberg, A.V., Hartline, J.D.: Competitive auctions for multi-
ple digital goods. In: auf der Heide, F.M. (ed.) Algorithms – ESA
2001, 9th Annual European Symposium, Aarhus, Denmark, 28–
31 Aug 2001. Lecture Notes in Computer Science, vol. 2161,
pp. 416–427. Springer, Berlin (2001)

8. Goldberg, A.V. Hartline, J.D.: Envy-free auctions for digital
goods. In: Proceedings of the 4th ACM Conference on Elec-
tronic Commerce (EC-03), New York, 9–12 June 2003, pp. 29–
35. ACM Press, New York (2003)

9. Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions
and digital goods. In: Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA-01), New
York, 7–9 January 2001, pp. 735–744. ACM Press, New York
(2001)

10. Moulin, H.: Incremental cost sharing: Characterization by coali-
tion strategy-proofness. Social Choice and Welfare, 16, 279–
320 (1999)

11. Nisan, N.andRonen, A.: Algorithmicmechanismdesign. In: Pro-
ceedings of the 31st Annual ACM Symposium on Theory of
Computing (STOC-99), New York, May 1999, pp. 129–140. As-
sociation for Computing Machinery, New York (1999)

12. Parkes, D.C.: Chapter 2: Iterative Combinatorial Auctions. Ph. D.
thesis, University of Pennsylvania (2004)

Complexity
of Bimatrix Nash Equilibria
2006; Chen, Deng

XI CHEN1, XIAOTIE DENG2

1 Computer Science and Technology, Tsinghua
University, Beijing, China

2 Department of Computer Science, City University
of Hong Kong, Hong Kong, China

Keywords and Synonyms

Two-player nash; Two-player game; Two-person game;
Bimatrix game

ProblemDefinition

In the middle of the last century, Nash [8] studied general
non-cooperative games and proved that there exists a set

Complexity of Bimatrix Nash Equilibria C 167

of mixed strategies, now commonly referred to as a Nash
equilibrium, one for each player, such that no player can
benefit if it changes its own strategy unilaterally. Since the
development of Nash’s theorem, researchers have worked
on how to compute Nash equilibria efficiently. Despite
much effort in the last half century, no significant progress
has been made on characterizing its algorithmic complex-
ity, though both hardness results and algorithms have been
developed for various modified versions.

An exciting breakthrough, which shows that com-
puting Nash equilibria is possibly hard, was made by
Daskalakis, Goldberg, and Papadimitriou [4], for games
among four players or more. The problem was proven
to be complete in PPAD (polynomial parity argument,
directed version), a complexity class introduced by Pa-
padimitriou in [9]. The work of [4] is based on the tech-
niques developed in [6]. This hardness result was then im-
proved to the three-player case by Chen and Deng [1],
Daskalakis and Papadimitriou [5], independently, and
with different proofs. Finally, Chen and Deng [2] proved
that NASH, the problem of finding a Nash equilibrium
in a bimatrix game (or two-player game), is PPAD-com-
plete.

A bimatrix game is a non-cooperative game between
two players in which the players have m and n choices
of actions (or pure strategies), respectively. Such a game
can be specified by two m � n matrices A =

�
ai; j

�
and

B =
�
bi; j

�
. If the first player chooses action i and the sec-

ond player chooses action j, then their payoffs are ai, j and
bi, j, respectively. Amixed strategy of a player is a probabil-
ity distribution over its choices. Let Pn denote the set of all
probability vectors inRn, i. e., non-negative vectors whose
entries sum to 1. Nash’s equilibrium theorem on non-
cooperative games, when specialized to bimatrix games,
states that, for every bimatrix game G = (A;B), there ex-
ists a pair of mixed strategies (x� 2 Pm ; y� 2 P n), called
a Nash equilibrium, such that for all x 2 Pm and y 2 P n ,

(x�)TAy� � xTAy� and (x�)TBy� � (x�)TBy:

Computationally, one might settle with an approximate
Nash equilibrium. Let Ai denote the ith row vector of
A, and Bi denote the ith column vector of B. An �-well-
supported Nash equilibrium of game (A;B) is a pair of
mixed strategies (x�; y�) such that,

Aiy� > A jy� + � H) x�j = 0; 8 i; j : 1 � i; j � m;

(x�)TBi > (x�)TB j + � H) y�j = 0; 8 i; j : 1 � i; j � n:

Definition 1 (2-NASH and NASH) The input instance of
problem 2-NASH is a pair (G; 0k) where G is a bimatrix

game, and the output is a 2�k-well-supported Nash equi-
librium of G. The input of problem NASH is a bimatrix
game G and the output is an exact Nash equilibrium of G.

Key Results

A binary relation R � f0; 1g� � f0; 1g� is polynomially
balanced if there exists a polynomial p such that for all
pairs (x; y) 2 R, jyj � p(jxj). It is a polynomial-time com-
putable relation if for each pair (x, y), one can decide
whether or not (x; y) 2 R in time polynomial in jxj + jyj.
TheNP search problemQR specified by R is defined as fol-
lows: Given x 2 f0; 1g�, if there exists y such that (x; y) 2
R, return y, otherwise, return a special string “no”.

Relation R is total if for every x 2 f0; 1g�, there ex-
ists a y such that (x; y) 2 R. Following [7], let TFNP
denote the class of all NP search problems specified
by total relations. A search problem QR1 2 TFNP is
polynomial-time reducible to problem QR2 2 TFNP if
there exists a pair of polynomial-time computable func-
tions (f , g) such that for every x of R1, if y satisfies that
(f (x); y) 2 R2, then (x; g(y)) 2 R1. Furthermore, QR1 and
QR2 are polynomial-time equivalent if QR2 is also re-
ducible to QR1 .

The complexity class PPAD is a sub-class of TFNP,
containing all the search problems which are polynomial-
time reducible to:

Definition 2 (Problem LEAFD) The input instance of
LEAFD is a pair (M; 0n) where M defines a polynomial-
time Turing machine satisfying:
1. for every v 2 f0; 1gn , M(v) is an ordered pair (u1; u2)

with u1; u2 2 f0; 1gn [f"no"g;
2. M(0n) = ("no"; 1n) and the first component ofM(1n) is

0n.
This instance defines a directed graph G = (V ; E) with
V = f0; 1gn . Edge (u; v) 2 E iff v is the second component
ofM(u) and u is the first component ofM(v).

The output of problem LEAFD is a directed leaf of G
other than 0n. Here a vertex is called a directed leaf if its
out-degree plus in-degree equals one.

A search problem in PPAD is said to be complete in PPAD
(or PPAD-complete), if there exists a polynomial-time re-
duction from LEAFD to it.

Theorem ([2]) 2-Nash and Nash are PPAD-complete.

Applications

The concept of Nash equilibria has traditionally been one
of the most influential tools in the study of many disci-
plines involved with strategies, such as political science

168 C Complexity of Core

and economic theory. The rise of the Internet and the
study of its anarchical environment have made the Nash
equilibrium an indispensable part of computer science.
Over the past decades, the computer science community
have contributed a lot to the design of efficient algorithms
for related problems. This sequence of results [1,2,3,4,5,6],
for the first time, provide some evidence that the problem
of finding a Nash equilibrium is possibly hard for P. These
results are very important to the emerging discipline, Al-
gorithmic Game Theory.

Open Problems

This sequence of works show that (r + 1)-player games
are polynomial-time reducible to r-player games for ev-
ery r � 2, but the reduction is carried out by first reduc-
ing (r + 1)-player games to a fixed point problem, and then
further to r-player games. Is there a natural reduction that
goes directly from (r + 1)-player games to r-player games?
Such a reduction could provide a better understanding for
the behavior of multi-player games.

Although many people believe that PPAD is hard for
P, there is no strong evidence for this belief or intuition.
The natural open problem is: Can one rigorously prove
that class PPAD is hard, under one of those generally be-
lieved assumptions in theoretical computer science, like
“NP is not in P” or “one way function exists”? Such a re-
sult would be extremely important to both Computational
Complexity Theory and Algorithmic Game Theory.

Cross References

� General Equilibrium
� Leontief Economy Equilibrium
� Non-approximability of Bimatrix Nash Equilibria

Recommended Reading
1. Chen, X., Deng, X.: 3-Nash is ppad-complete. ECCC, TR05–134

(2005)
2. Chen, X., Deng, X.: Settling the complexity of two-player Nash-

equilibrium. In: FOCS’06, Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science, 2006,
pp. 261–272

3. Chen, X., Deng, X., Teng, S.H.: Computing Nash equilibria: ap-
proximation and smoothed complexity. In: FOCS’06, Proceed-
ings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, 2006, pp. 603–612

4. Daskalakis, C., Goldberg, P.W. Papadimitriou, C.H.: The com-
plexity of computing a Nash equilibrium. In: STOC’06, Proceed-
ings of the 38th ACM Symposium on Theory of Computing,
2006, pp. 71–78

5. Daskalakis, C., Papadimitriou, C.H.: Three-player games are
hard. ECCC, TR05–139 (2005)

6. Goldberg, P.W., Papadimitriou, C.H.: Reducibility among equi-
librium problems. In: STOC’06, Proceedings of the 38th ACM
Symposium on Theory of Computing, 2006, pp. 61–70

7. Megiddo, N., Papadimitriou, C.H.: On total functions, existence
theorems and computational complexity. Theor. Comp. Sci.
81, 317–324 (1991)

8. Nash, J.F.: Equilibrium point in n-person games. In: Proceed-
ings of the National Academy of the USA, vol. 36, issue 1,
pp. 48–49 (1950)

9. Papadimitriou, C.H.: On the complexity of the parity argument
and other inefficient proofs of existence. J. Comp. Syst. Sci. 48,
498–532 (1994)

Complexity of Core
2001; Fang, Zhu, Cai, Deng

QIZHI FANG
Department of Mathematics,
Ocean University of China,
Qingdao, China

Keywords and Synonyms

Balanced; Least-core

ProblemDefinition

The core is the most important solution concept in coop-
erative game theory, which is based on the coalition ratio-
nality condition: no subgroup of the players will do better
if they break away from the joint decision of all players to
form their own coalition. The principle behind this con-
dition is very similar and can be seen as an extension to
that of the Nash Equilibrium. The problem of determining
the core of a cooperative game naturally brings in issues of
algorithms and complexity. The work of Fang, Zhu, Cai,
and Deng [4] discusses the computational complexity is-
sues related to the cores of some cooperative gamemodels,
such as, flow games and Steiner tree games.

A cooperative game with side payments is given by
the pair (N; v), where N = f1; 2; � � � ; ng is the player set
and v : 2N ! R is the characteristic function. For each
coalition S
 N, the value v(S) is interpreted as the profit
or cost achieved by the collective action of players in S
without any assistance of players in N n S. A game is
called a profit (cost) game if v(S) measures the profit
(cost) achieved by the coalition S. Here, the definitions
are only given for profit games, symmetric statements
hold for cost games. A vector x = fx1; x2; � � � ; xng is
called an imputation if it satisfies

P
i2N xi = v(N) and

8i 2 N : xi � v(fig). The core of the game (N; v) is de-

Complexity of Core C 169

fined as:

C(v) =fx 2 Rn : x(N) = v(N)
and x(S) � v(S); 8S
 Ng;

where x(S) =
P

i2S xi for S
 N. A game is called bal-
anced, if its core is non-empty; and totally balanced, if
every subgame (i. e., the game obtained by restricting the
player set to a coalition and the characteristic function to
the power set of that coalition) is balanced.

It is a challenge for the algorithmic study of the core,
since there are an exponential number of constraints im-
posed on its definition. The following computational com-
plexity questions have attracted much attention from re-
searchers:

(1)Testing balancedness: Can it be tested in polyno-
mial time whether a given instance of the game has a non-
empty core?

(2)Checking membership:Can it be checked in polyno-
mial time whether a given imputation belongs to the core?

(3)Finding a core member: Is it possible to find an im-
putation in the core in polynomial time?

In reality, however, there is an important case in which
the characteristic function value of a coalition can usu-
ally be evaluated via a combinatorial optimization prob-
lem, subject to constraints of resources controlled by the
players of this coalition. In such circumstances, the in-
put size of a game is the same as that of the related
optimization problem, which is usually polynomial in
the number of players. Therefore, this class of games,
called combinatorial optimization games, fits well into the
framework of algorithm theory. Flow games and Steiner
tree games discussed in Fang et al. [4] fall within this
scope.
FLOW GAME Let D = (V ; E;!; s; t) be a directed flow
network, where V is the vertex set, E is the arc set,
! : E ! R+ is the arc capacity function, s and t are the
source and the sink of the network, respectively. Assume
that each player controls one arc in the network. The
value of a maximum flow can be viewed as the profit
achieved by the players in cooperation. Then the flow
game
 f = (E; �) associated with the network D is defined
as follows:

(i) The player set is E;
(ii) 8S
 E, �(S) is the value of a maximum flow from

s to t in the subnetwork of D consisting only of arcs
belonging to S.

In Kailai and Zemel [6] and Deng et al. [2], it was shown
that the flow game is totally balanced and finding a core
member can be done in polynomial time.

Problem 1 (Checking membership for flow game)
INSTANCE: A flow network D = (V ; E;!; s; t) and x :
E ! R+.
QUESTION: Is it true that x(E) = �(E) and x(S) � �(S)
for all subsets S � E?

STEINER TREE GAME Let G = (V ; E;!) be an
edge-weighted graph with V = fv0g [N [M, where
N;M
 V n fv0g are disjoint. v0 represents a central sup-
plier, N represents the consumer set, M represents the
switch set, and !(e) denotes the cost of connecting the
two endpoints of edge e directly. It is required to connect
all the consumers in N to the central supplier v0. The con-
nection is not limited to using direct links between two
consumers or a consumer and the central supplier, it may
pass through some switches in M. The aim is to construct
the cheapest connection and distribute the connection
cost among the consumers fairly. Then the associated
Steiner tree game
s = (N; �) is defined as follows:

(i) The player set is N;
(ii) 8 S
 N , � (S) is the weight of a minimum Steiner

tree on G w.r.t. the set S [fv0g, that is, � (S) =
minf

P
e2ES

!(e) : TS = (VS ; ES) is a subtree of G
with VS � S [fv0gg.

Different from flow games, the core of a Steiner tree
game may be empty. An example with an empty core was
given in Megiddo [9].

Problem 2 (Testing balancedness for a Steiner tree game)
INSTANCE: An edge-weighted graph G = (V ; E;!) with
V = fv0g [N [M.
QUESTION: Does there exist a vector x : N ! R+ such
that x(N) = � (N) and x(S) � � (S) for all subsets S � N?

Problem 3 (Checkingmembership for a Steiner tree game)
INSTANCE: An edge-weighted graph G = (V ; E;!) with
V = fv0g [N [M and x : N ! R+.
QUESTION: Is it true that x(N) = � (N) and x(S) � � (S)
for all subsets S � N?

Key Results

Theorem 1 It isNP-complete to show that, given a flow
game
 f = (E; �) defined on network D = (V ; E;!; s; t)
and a vector x : E ! R+ with x(E) = �(E), whether there
exists a coalition S � N such that x(S) < �(S). That is,
checking membership of the core for flow games is co-NP-
complete.

The proof of Theorem 1 yields directly the same conclu-
sion for linear production games. In Owen’s linear pro-
duction game [10], each player j (j 2 N) is in possession

170 C Complexity of Core

of an individual resource vector b j . For a coalition S of
players, the profit obtained by S is the optimum value of
the following linear program:

maxfct y : Ay �
X
j2S

b j; y � 0g:

That is, the characteristic function value is what the coali-
tion can achieve in the linear production model with the
resources under their control. Owen showed that one im-
putation in the core can also be constructed through an
optimal dual solution to the linear program which deter-
mines the value of N. However, there are in general some
imputations in the core which cannot be obtained in this
way.

Theorem 2 Checking membership of the core for linear
production games is co-NP-complete.

The problem of finding a minimum Steiner tree in a net-
work is NP-hard, therefore, in a Steiner tree game, the
value � (S) of each coalition Smay not be obtained in poly-
nomial time. It implies that the complement problem of
checking membership of the core for Steiner tree games
may not be inNP.
Theorem 3 It is NP-hard to show that, given a Steiner
tree game
s = (N; �) defined on network G = (V ; E;!)
and a vector x : N ! R+ with x(N) = � (N), whether there
exists a coalition S � N such that x(S) > � (S). That is,
checking membership of the core for Steiner tree games is
NP-hard.
Theorem 4 Testing balancedness for Steiner tree games is
NP-hard.
Given a Steiner tree game
s = (N; �) defined on net-
work G = (V ; E;!) and a subset S
 N, in the subgame
(S; �S), the value � (S0) (S0
 S) is the weight of a mini-
mum Steiner tree of G w.r.t. the subset S0 [fv0g, where all
the vertices in N n S are treated as switches but not con-
sumers. It is further proved in Fang et al. [4] that deter-
mining whether a Steiner tree game is totally balanced is
alsoNP-hard. This is the first example ofNP-hardness
for the totally balanced condition.

Theorem 5 Testing total balancedness for Steiner tree
games isNP-hard.

Applications

The computational complexity results on the cores of
combinatorial optimization games have been as diverse as
the corresponding combinatorial optimization problems.
For example:

(1) In matching games [1], testing balancedness,
checking membership, and finding a core member can all
be done in polynomial time;

(2) In flow games and minimum-cost spanning tree
games [3,4], although their cores are always non-empty
and a core member can be found in polynomial time, the
problem of checking membership is co-NP-complete;

(3) In facility location games [5], the problem of test-
ing balancedness is in generalNP-hard, however, given
the information that the core is non-empty, both finding
a core member and checking membership can be solved
efficiently;

(4) In a game of sum of edge weight defined on
a graph [2], all the problems of testing balancedness,
checking membership, and finding a core member are
NP-hard.

To make the study of complexity and algorithms for
cooperative games meaningful to corresponding applica-
tion areas, it is suggested that computational complexity
be taken as an important factor in considering rational-
ity and fairness of a solution concept, in a way derived
from the concept of bounded rationality [3,8]. That is, the
players are not willing to spend super-polynomial time to
search for the most suitable solution. In the case when the
solutions of a game do not exist or are difficult to com-
pute or check, it may not be simple to dismiss the problem
as hopeless, especially when the game arises from impor-
tant applications. Hence, various conceptual approaches
are proposed to resolve this problem.

When the core of a game is empty, it motivates con-
ditions ensuring non-emptiness of approximate cores.
A natural way to approximate the core is the least core.
Let (N; v) be a profit cooperative game. Given a real num-
ber ", the "-core is defined to contain the allocations such
that x(S) � v(S) � " for each non-empty proper subset S
of N. The least core is the intersection of all non-empty
"-cores. Let "� be the minimum value of " such that the
"-core is empty, then the least core is the same as the "�-
core.

The concept of the least core poses new challenges in
regard to algorithmic issues. The most natural problem is
how to efficiently compute the value "� for a given co-
operative game. The catch is that the computation of "�

requires solving of a linear program with an exponential
number of constrains. Though there are cases where this
value can be computed in polynomial time [7], it is in gen-
eral very hard. If the value of "� is considered to represent
some subsidies given by the central authority to ensure the
existence of the cooperation, then it is significant to give
the approximate value of it even when its computation is
NP-hard.

Compressed Pattern Matching C 171

Another possible approach is to interpret approxima-
tion as bounded rationality. For example, it would be in-
teresting to know if there is any game with a property that
for any " > 0, checking membership in the "-core can be
done in polynomial time but it is N P-hard to tell if an
imputation is in the core. In such cases, the restoration of
cooperation would be a result of bounded rationality. That
is to say, the players would not care an extra gain or loss
of " as the expense of another order of degree of computa-
tional resources. Thismethodologymay be further applied
to other solution concepts.

Cross References

� General Equilibrium
�Nucleolus
� Routing

Recommended Reading

1. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic Aspects of the
Core of Combinatorial Optimization Games. Math. Oper. Res.
24, 751–766 (1999)

2. Deng, X., Papadimitriou, C.: On the Complexity of Cooperative
Game Solution Concepts. Math. Oper. Res. 19, 257–266 (1994)

3. Faigle, U., Fekete, S., Hochstättler, W., Kern, W.: On the Com-
plexity of Testing Membership in the Core of Min-Cost Span-
ning Tree Games. Int. J. Game. Theor. 26, 361–366 (1997)

4. Fang, Q., Zhu, S., Cai, M., Deng, X.: Membership for core of LP
games and other games. COCOON2001 Lecture Notes in Com-
puter Science, vol. 2108, pp 247–246. Springer-Verlag, Berlin
Heidelberg (2001)

5. Goemans, M.X., Skutella, M.: Cooperative Facility Location
Games. J. Algorithms 50, 194–214 (2004)

6. Kalai, E., Zemel, E.: Generalized Network Problems Yielding To-
tally Balanced Games. Oper. Res. 30, 998–1008 (1982)

7. Kern, W., Paulusma, D.: Matching Games: The Least Core and
the Nucleolus. Math. Oper. Res. 28, 294–308 (2003)

8. Megiddo, N.: Computational Complexity and the Game The-
ory Approach to Cost Allocation for a Tree. Math. Oper. Res. 3,
189–196 (1978)

9. Megiddo, N.: Cost Allocation for Steiner Trees. Netw. 8, 1–6
(1978)

10. Owen, G.: On the Core of Linear Production Games. Math. Pro-
gram. 9, 358–370 (1975)

Compressed PatternMatching
2003; Kida, Matsumoto, Shibata, Takeda,
Shinohara, Arikawa

MASAYUKI TAKEDA
Department of Informatics, Kyushu University,
Fukuoka, Japan

Keywords and Synonyms

String matching over compressed text; Compressed string
search

ProblemDefinition

Let c be a given compression algorithm, and let c(A) de-
note the result of c compressing a string A. Given a pattern
string P and a compressed text string c(T), the compressed
pattern matching (CPM) problem is to find all occurrences
of P in T without decompressing T. The goal is to per-
form the task in less time compared with a decompres-
sion followed by a simple search, which takes O(jPj + jTj)
time (assuming O(|T|) time is enough for decompres-
sion). A CPM algorithm is said to be optimal if it runs in
O(jPj + jc(T)j) time. The CPM problem was first defined
in the work of Amir and Benson [1], and many studies
have been made over different compression formats.

Collage Systems

Collage systems are useful CPM-oriented abstractions of
compression formats, introduced by Kida et al. [9]. Algo-
rithms designed for collage systems can be implemented
for many different compression formats. In the same paper
they designed a general Knuth–Morris–Pratt (KMP) algo-
rithm for collage systems. A general Boyer–Moore (BM)
algorithm for collage systems was also designed by almost
the same authors [18].

A collage system is a pair hD;Si defined as follows.
D is a sequence of assignments X1 = expr1; X2 =
expr2; : : : ; Xn = exprn ; where, for each k = 1; : : : ; n, Xk
is a variable and exprk is any of the form:

a for a 2 ˙ [f"g ; (primitive assignment)
XiX j for i; j < k ; (concatenation)
[j]Xi for i < k and a positive integer j ;

(j length prefix truncation)

X[j]
i for i < k and a positive integer j ;

(j length suffix truncation)

(Xi) j for i < k and a positive integer j :
(j times repetition)

By the j length prefix (resp. suffix) truncation we mean an
operation on strings which takes a string w and returns
the string obtained from w by removing its prefix (resp.
suffix) of length j. The variables Xk represent the strings
Xk obtained by evaluating their expressions. The size of
D is the number n of assignments and denoted by jDj.
Let height(D) denote the maximum dependence inD. S is
a sequence Xi1 � � � Xi` of variables defined inD. The length

172 C Compressed Pattern Matching

Compressed Pattern Matching, Figure 1
Hierarchy of collage systems

of S is the number ` of variables in S and denoted by jSj.
It can thus be considered that jc(T)j = jDj + jSj.

A collage system hD;Si represents the string obtained
by concatenating the strings Xi1 ; : : : ; Xi` represented by
variables Xi1 ; : : : ; Xi` of S. It should be noted that any
collage system can be converted into the one with jSj = 1,
by adding a series of assignments with concatenation op-
erations into D. This may imply S is unnecessary. How-
ever, a variety of compression schemes can be captured
naturally by separating D (defining phrases) from S (giv-
ing a factorization of text T into phrases). How to ex-
press compressed texts for existing compression schemes
is found in [9].

A collage system is said to be truncation-free ifD con-
tains no truncation operation, and regular if D contains
neither repetition nor truncation operation. A regular col-
lage system is simple if jY j = 1 or jZj = 1 for every assign-
ment X = YZ. Figure 1 gives the hierarchy of collage sys-
tems. The collage systems for RE-PAIR, SEQUITUR, Byte-
Pair-Encoding (BPE), and the grammar-transform based
compression scheme are regular. In the Lempel–Ziv fam-
ily, the collage systems for LZ78/LZW are simple, while
those for LZ77/LZSS are not truncation-free.

Key Results

It is straightforward to design an optimal solution for run-
length encoding. For the two-dimensional run-length en-
coding, used by FAX transmission, an optimal solution
was given by Amir, Benson, and Farach [3].

Theorem 1 (Amir et al. [3]) There exists an optimal so-
lution to the CPM problem for two-dimensional run-length
encoding scheme.

The same authors showed in [2] an almost optimal solu-
tion for LZW compression.

Theorem 2 (Amir et al. [2]) The first-occurrence ver-
sion of the CPM problem for LZW can be solved in
O(jPj2 + jc(T)j) time and space.

An extension of [2] to the multi-pattern matching (dictio-
nary matching) problem was presented by Kida et al. [10],
together with the first experimental results in this area.

For LZ77 compression scheme, Farach and Thorup [6]
presented the following result.

Theorem 3 (Farach and Thorup [6]) Given an LZ77
compressed string Z of a text T, and given a pattern P, there
is a randomized algorithm to decide if P occurs in T which
runs in O(jZj log2(jTj/jZj) + jPj) time.

Lempel–Ziv factorization is a version of LZ77 compres-
sion without self-referencing. The following relation is
present between Lempel–Ziv factorizations and collage
systems.

Theorem 4 (Gąsieniec et al. [7]; Rytter [16]) The Lem-
pel–Ziv factorization Z of T can be transformed into
a collage system of size O(jZj � log jZj) generating T in
O(jZj � log jZj) time, and into a regular collage system of
size O(jZj � log jTj) generating T in O(jZj � log jTj) time.

The result of Amir et al. [2] was generalized in the work of
Kida et al. [9] via the unified framework of collage systems.

Theorem 5 (Kida et al. [9]) The CPM problem for collage
systems can be solved in O

�
(jDj+jSj)�height(D)+jPj2+occ

�
time using O(jDj + jPj2) space, where occ is the number
of pattern occurrences. The factor height(D) is dropped for
truncation-free collage systems.

The algorithm of [9] has two stages: First it preprocessesD
and P, and second it processes the variables of S. In the
second stage, it simulates the move of a KMP automa-
ton running on uncompressed text, by using two func-
tions Jump and Output. Both these functions take a state
q and a variable X as input. The former is used to sub-
stitute just one state transition for the consecutive state
transitions of the KMP automaton for the string X for
each variable X of S. The latter is used to report all pat-
tern occurrences found during the state transitions. Let
ı be the state-transition function of the KMP automa-
ton. Then Jump(q; X) = ı(q; X) and Output(q,X) is the
set of lengths jwj of non-empty prefixes w of X such that
ı(q,w) is the final state. A naive two-dimensional array im-
plementation of the two functions requires ˝(jDj � jPj)
space. The data structures of [9] use only O(jDj + jPj2)
space, are built in O(jDj � height(D) + jPj2) time, and en-
able us to compute Jump(q,X) in O(1) time and enumer-
ate the set Output(q,X) in O(height(D) + `) time where
` = jOutput(q; X)j. The factor height(D) is dropped for
truncation-free collage systems.

Another criterion of CPM algorithms is focused on the
amount of extra space [4]. A CPM algorithm is inplace if

Compressed Pattern Matching C 173

the amount of extra space is proportional to the input size
of P.

Theorem 6 (Amir et al. [4]) There exists an inplace
CPM algorithm for a two-dimensional run-length encoding
scheme which runs in O(jc(T)j + jPj log �) time using ex-
tra O(c(P)) space, where � is the minimum of jPj and the
alphabet size.

Many variants of the CPM problem exist. In what follows,
some of them are briefly sketched. Fully-compressed pat-
tern matching (FCPM) is the complicated version where
both T and P are given in a compressed format. A straight-
line program is a regular collage system with jSj = 1.

Theorem 7 (Miyazaki et al. [13]) The FCPM problem for
straight-line programs is solved in O(jc(T)j2 � jc(P)j2) time
using O(jc(T)j � jc(P)j) space.

Approximate compressed pattern matching (ACPM) refers
to the case where errors are allowed.

Theorem 8 (Kärkkäinen et al. [8]) Under the Levenshtein
distance model, the ACPM problem can be solved in O(k �
jPj � jc(T)j + occ) time for LZ78/LZW, and in O(jPj � (k2 �
jDj+ k � jSj)+ occ) time for regular collage systems, where k
is the given error threshold.

Theorem 9 (Makinen et al. [11]) Under a weighted edit
distance model, the ACPM problem for run-length encoding
can be solved in O(jPj � jc(P)j � jc(T)j) time.

Regular expression compressed pattern matching (RCPM)
refers to the case where P can be a regular expression.

Theorem 10 (Navarro [14]) The RCPM problem can
be solved in O(2jPj + jPj � jc(T)j + occ � jPj � log jPj) time,
where occ is the number of occurrences of P in T.

Applications

CPM techniques enable us to search directly in com-
pressed text databases. One interesting application is
searching over compressed text databases on handheld de-
vices, such as PDAs, in which memory, storage, and CPU
power are limited.

Experimental Results

One important goal of the CPM problem is to per-
form a CPM task faster than a decompression followed
by a simple search. Kida et al. [10] showed experimen-
tally that their algorithms achieve the goal. Navarro and
Tarhio [15] presented BM type algorithms for LZ78/LZW
compression schemes, and showed they are twice as fast
as a decompression followed by a search using the best

algorithms. (The code is available at: www.dcc.uchile.cl/
gnavarro/software.)

Another challenging goal is to perform a CPM task
faster than a simple search over original files in the uncom-
pressed format. The goal is achieved by Manber [12] (with
his own compression scheme), and by Shibata et al. [17]
(with BPE). Their search time reduction ratios are nearly
the same as their compression ratios. Unfortunately the
compression ratios are not very high. Moura et al. [5]
achieved the goal by using a bytewise Huffman code on
words. The compression ratio is relatively high, but only
searching for whole words and phrases is allowed.

Cross References

� Multidimensional compressed pattern matching is the
complex version of CPMwhere the text and the pattern are
multidimensional strings in a compressed format. � Se-
quential exact string matching, � sequential approximate
string matching, � regular expression matching, respec-
tively, refer to the simplified versions of CPM, ACPM,
RCPM where the text and the pattern are given as uncom-
pressed strings.

Recommended Reading

1. Amir, A., Benson, G.: Efficient two-dimensional compressed
matching. In: Proc. Data Compression Conference ’92 (DCC’92),
pp. 279 (1992)

2. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: Pattern
matching in Z-compressed files. J. Comput. Syst. Sci. 52(2),
299–307 (1996)

3. Amir, A., Benson, G., Farach,M.: Optimal two-dimensional com-
pressed matching. J. Algorithms 24(2), 354–379 (1997)

4. Amir, A., Landau, G.M., Sokol, D.: Inplace run-length 2d com-
pressed search. Theor. Comput. Sci. 290(3), 1361–1383 (2003)

5. de Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and
flexible word searching on compressed text. ACM Trans. Inf.
Syst. 18(2), 113–139 (2000)

6. Farach, M., Thorup, M.: String-matching in Lempel–Ziv com-
pressed strings. Algorithmica 20(4), 388–404 (1998)

7. Gąsieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Effi-
cient algorithms for Lempel–Ziv encoding. In: Proc. 5th Scan-
dinavian Workshop on Algorithm Theory (SWAT’96). LNCS,
vol. 1097, pp. 392–403 (1996)

8. Kärkkäinen, J., Navarro, G., Ukkonen, E.: Approximate string
matching on Ziv–Lempel compressed text. J. Discret. Algo-
rithms 1(3–4), 313–338 (2003)

9. Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A.,
Arikawa, S.: Collage systems: a unifying framework for com-
pressed pattern matching. Theor. Comput. Sci. 298(1), 253–
272 (2003)

10. Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., Arikawa, S.:
Multiple pattern matching in LZW compressed text. J. Discret.
Algorithms 1(1), 133–158 (2000)

http://www.dcc.uchile.cl/gnavarro/software
http://www.dcc.uchile.cl/gnavarro/software

174 C Compressed Suffix Array

11. Makinen, V., Navarro, G., Ukkonen, E.: Approximate matching
of run-length compressed strings. Algorithmica 35(4), 347–369
(2003)

12. Manber, U.: A text compression scheme that allows fast search-
ing directly in the compressed file. ACM Trans. Inf. Syst. 15(2),
124–136 (1997)

13. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern
matching algorithm for strings in terms of straight-line pro-
grams. J. Discret. Algorithms 1(1), 187–204 (2000)

14. Navarro, G.: Regular expression searching on compressed text.
J. Discret. Algorithms 1(5–6), 423–443 (2003)

15. Navarro, G., Tarhio, J.: LZgrep: A Boyer–Moore stringmatching
tool for Ziv–Lempel compressed text. Softw. Pract. Exp. 35(12),
1107–1130 (2005)

16. Rytter, W.: Application of Lempel–Ziv factorization to the ap-
proximation of grammar-based compression. Theor. Comput.
Sci. 302(1–3), 211–222 (2003)

17. Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A.,
Shinohara, T., Arikawa, S.: Speeding up pattern matching by
text compression. In: Proc. 4th Italian Conference on Algo-
rithms and Complexity (CIAC’00). LNCS, vol. 1767, pp. 306–315.
Springer, Heidelberg (2000)

18. Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A., Arikawa,
S.: A Boyer–Moore type algorithm for compressed pattern
matching. In: Proc. 11th Annual Symposium on Combinato-
rial Pattern Matching (CPM’00). LNCS, vol. 1848, pp. 181–194.
Springer, Heidelberg (2000)

Compressed Suffix Array
2003; Grossi, Gupta, Vitter

VELI MÄKINEN
Department of Computer Science,
University of Helsinki, Helsinki, Finland

Keywords and Synonyms

Compressed full-text indexing; Compressed suffix tree

ProblemDefinition

Given a text string T = t1t2 : : : tn over an alphabet ˙ of
size � , the compressed full-text indexing (CFTI) problem
asks to create a space-efficient data structure capable of ef-
ficiently simulating the functionalities of a full-text index
build on T.

A simple example of a full-text index is suffix array
A[1; n] that contains a permutation of the interval [1; n],
such that T[A[i]; n] < T[A[i + 1]; n] for all 1 � i < n,
where “<” between strings is the lexicographical order.
Using suffix array, the occurrences of a given pattern
P = p1p2 : : : pm in T can be found using two binary
searches in O(m log n) time.

The CFTI problem related to suffix arrays is easily
stated; find a space-efficient data structure supporting the

retrieval of value A[i] for any i efficiently. Such a solution
is called compressed suffix array. Usually compressed suffix
arrays support, as well, retrieving of the inverse A�1[j] = i
for any given j.

If the compressed full-text index functions without
the text and contains enough information to retrieve any
substring of T, then this index is called self-index, as
it can be used as a representation of T. See the entry
Compressed Text Indexing for another approach to self-
indexing, and [9] for a comprehensive survey on the topic.

The CFTI problem can be stated on any full-text index,
as long as the set of operations the data structure should
support is rigorously defined. For example, a compressed
suffix tree should simulate all the operations of classical
suffix trees.

The classical full-text indexes occupy O(n log n) bits,
typically with large constant factors. The typical goals in
CFTI can be characterized by the degree of ambition; find
a structure whose space-requirement is:
(i) proportional to the text size, i. e. O(n log �) bits;
(ii) asymptotically optimal in the text size, i. e. n log �(1+

o(1)) bits;
(iii) proportional to the compressed text size, i. e. O(nHk)

bits, where Hk is the (empirical) k-th order entropy of
T1; or even

(iv) asymptotically optimal in the compressed text size,
i. e. nHk + o(n log �) bits.

Key Results

The first solution to the problem is by Grossi and Vit-
ter [3] who exploit the regularities of suffix array via the
� -function:

Definition 1 Given suffix array A[1; n], function
� : [1; n]! [1; n] is defined so that, for all 1 � i � n,
A[� (i)] = A[i] + 1. The exception is A[1] = n, in which
case the requirement is that A[� (1)] = 1 so that� is a per-
mutation.

Grossi and Vitter use a hierarchical decomposition of A
based on � 2. Let us focus on the first level of that hier-
archical decomposition. Let A0 = A be the original suffix
array. A bit vector B0[1; n] is defined so that B0[i] = 1 iff
A[i] is even. Let also �0[1; dn/2e] contain the sequence of
values � (i) for arguments i where B0[i] = 0. Finally, let
A1[1; bn/2c] be the subsequence of A0[1; n] formed by the
even A0[i] values, divided by 2.

1Hk is the minimum average number of bits needed to code one
symbol using any compressor that fixes the code word based on the
k-symbol context following the the symbol to be coded. See [6] for
more formal definition.

2The description below follows closely the one given in [9]

Compressed Suffix Array C 175

Then, A = A0 can be represented using only � 0, B0,
and A1. To retrieve A[i], first see if B0[i] = 1. If it is, then
A[i] is (divided by 2) somewhere in A1. The exact position
depends on how many 1’s are there in B0 up to position
i, denoted rank(B0; i); that is, A[i] = 2 � A1[rank1(B0; i)].
If B0[i] = 0, then A[i] is odd and not represented in A1.
However, A[i] + 1 = A[� (i)] has to be even and thus rep-
resented in A1. Since � 0 collects only the � values where
B0[i] = 0, it holds that A[� (i)] = A[�0[rank0(B0; i)]].
Once computing A[� (i)] (for even � (i)), one simply ob-
tains A[i] = A[� (i)] � 1.

The idea can be used recursively: Instead of represent-
ing A1, replace it with B2, � 2, and A2. This is continued
until Ah is small enough to be represented explicitly. The
complexity is O(h) assuming constant-time rank; one can
attach o(n) bits data structures to a bit vector of length
n such that rank-queries can be be answered in constant
time [4,7].

It is convenient to use h = dlog log ne, so that the n/2h

entries of Ah, each of which requires O(log n) bits, take
overall O(n) bits. All the B` arrays add up at most 2n bits
(as their length is halved from each level to the next), and
their additional rank structures add o(n) extra bits. The
only remaining problem is how to represent the �` arrays.
The following regularity due to lexicographic order can be
exploited:

Lemma 1 Given a text T[1; n], its suffix array A[1; n],
and the corresponding function � , it holds� (i) < � (i + 1)
whenever TA[i] = TA[i+1].

This piecewise increasing property of � can be used to
represent each level of � in 1

2n log � bits [3]. Other trade-
offs are possible using different amount of levels:

Theorem 2 (Grossi and Vitter 2005 [3]) The Com-
pressed Suffix Array of Grossi and Vitter supports retriev-
ing A[i] in (i) O(log log n) time using n log � log log n +
O(n log log �) bits of space, or (ii) O(log� n) time using
1
�
n log � + O(n log log �) bits of space, for any 0 < � < 1.

As a consequence, simulating the classical binary
searches [5] to find the range of suffix array containing all
the occurrences of a pattern P[1;m] in T[1; n], can then
be done in O(m log1+� n) time using space proportional to
the text size. Reporting the occ occurrence positions takes
occ � log� n time. This can be sped up when m is large
enough [3].

Grossi and Vitter also show how to modify a space-
efficient suffix tree [8] so as to obtain O(m/ log� n+log� n)
search time, for any constant 0 < � < 1, using O(n log �)
bits of space.

Sadakane [10] shows how the above compressed suffix
array can be converted into a self-index, and at the same
time optimized in several ways. He does not give direct
access to A[i], but rather to any prefix of T[A[i]; n]. This
still suffices to use the binary search algorithm to locate the
pattern occurrences.

Sadakane represents both A and T using the full func-
tion � , and a few extra structures. Imagine one wishes to
compare P against T[A[i]; n]. For the binary search, one
needs to extract enough characters from T[A[i]; n] so that
its lexicographical relation to P is clear. Retrieving char-
acter T[A[i]] is easy; Use a bit vector F[1; n] marking the
suffixes of A[i] where the first character changes from that
of A[i � 1]. After preprocessing F for rank-queries, com-
puting j = rank1(F; i) tells us that T[A[i]] = c j , where cj
is the j-th smallest alphabet character. Once T[A[i]] = c j
is determined this way, one needs to obtain the next char-
acter, T[A[i] + 1]. But T[A[i] + 1] = T[A[� (i)]], so one
can simply move to i0 = � (i) and keep extracting charac-
ters with the same method, as long as necessary. Note that
at most jPj = m characters suffice to decide a comparison
with P. Thus the binary search is simulated in O(m log n)
time.

Up to now the space used is n + o(n) + � log � bits for
F and˙ . Sadakane [10] gives an improved representation
for � using nH0 + O(n log log �) bits, where H0 is the ze-
roth order entropy of T.

Sadakane also shows how A[i] can be retrieved, by
plugging in the hierarchical scheme of Grossi and Vitter.
He adds to the scheme the retrieval of the inverse A�1[j].
This is used in order to retrieve arbitrary text substrings
T[p; r], by first applying i = A�1[p] and then continu-
ing as before to retrieve r � p + 1 first characters of suf-
fix T[A[i]; n]. This capability turns the compressed suffix
array into self-index:

Theorem 3 (Sadakane [10]) The Compressed Suf-
fix Array of Sadakane is a self-index occupying
1
�
nH0 + O(n log log �) bits, and supporting retrieval of

values A[i] and A�1[j] in O(log� n) time, counting of
pattern occurrences in O(m log n) time, and displaying
any substring of T of length ` in O(` + log� n) time. Here
0 < � � 1 is an arbitrary constant.

Grossi, Gupta, and Vitter [1,2] have improved the space-
requirement of compressed suffix arrays to depend on the
k-th order entropy of T. The idea behind this improve-
ment is a more careful analysis of regularities captured by
the� -function when combined with the indexing capabil-
ities of their new elegant data structure, wavelet tree. They
obtain, among other results, the following tradeoff:

176 C Compressed Text Indexing

Theorem 4 (Grossi, Gupta, and Vitter 2003 [2]) The
Compressed Suffix Array of Grossi, Gupta, and Vitter is
a self-index occupying 1

�
nHk + o(n log �) bits, and support-

ing retrieval of values A[i] and A�1[j] in O(log1+� n) time,
counting of pattern occurrences in O(m log � + log2+� n)
time, and displaying any substring of T of length ` in
O(`/ log� n + log1+� n) time. Here 0 < � � 1 is an arbi-
trary constant, k � ˛ log� n for some constant 0 < ˛ < 1.

In the above, value kmust be fixed before building the in-
dex. Later, they notice that a simple coding of � -values
yields the same nHk bound without the need of fixing k
beforehand [1].

Finally, compressed suffix arrays work as building
blocks to solve other CFTI problems. For example,
Sadakane [11] has created a fully functional compressed
suffix tree by plugging in the compressed suffix array
and the space-efficient suffix tree of Munro, Raman, and
Rao [8]. This compressed suffix tree occupies O(n log �)
bits of space, simulating all suffix tree operations with at
most O(log n) slowdown.

Applications

The application domains are the same as for the classi-
cal suffix arrays and trees, with the additional advantage
of scaling up to significantly larger data sets.

URL to Code

See the corresponding Compressed Text Indexing entry
for references to compressed suffix array implementations
and http://www.cs.helsinki.fi/group/suds/cst for an imple-
mentation of Sadakane’s compressed suffix tree.

Cross References

� Compressed Text Indexing
� Sequential Exact String Matching
� Text Indexing

Recommended Reading
1. Foschini, L., Grossi, R., Gupta, A., Vitter, J.S.: When indexing

equals compression: Experiments with compressing suffix ar-
rays and applications. ACM Trans. Algorithms 2(4), 611–639
(2006)

2. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed
text indexes. In: Proc. 14th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), Baltimore, 12–14 January,
pp. 841–850 (2003)

3. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM
J. Comput. 35(2), 378–407 (2006)

4. Jacobson, G.: Space-efficient static trees and graphs. In: Proc.
30th IEEE Symposium on Foundations of Computer Science
(FOCS), Research Triangle Park, 30 October – 1 November,
pp. 549–554 (1989)

5. Manber, U., Myers, G.: Suffix arrays: a new method for on-line
string searches. SIAM J. Comput. 22(5), 935–948 (1993)

6. Manzini, G.: An analysis of the Burrows-Wheeler transform.
J. ACM 48(3), 407–430 (2001)

7. Munro, I.: Tables. In: Proc. 16th Conference on Founda-
tions of Software Technology and Theoretical Computer Sci-
ence (FSTTCS). LNCS, vol. 1180, Hyderabad, 18–20 December,
pp. 37–42 (1996)

8. Munro, I., Raman, V., Rao, S.: Space efficient suffix trees. J. Algo-
rithms 39(2), 205–222 (2001)

9. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM
Comput. Surv. 39(1), Article 2 (2007)

10. Sadakane, K.: New text indexing functionalities of the com-
pressed suffix arrays. J. Algorithms 48(2), 294–313 (2003)

11. Sadakane, K.: Compressed suffix trees with full functionality.
Theor. Comput. Syst. 41, 589–607 (2007)

Compressed Text Indexing
2005; Ferragina,Manzini

VELI MÄKINEN1, GONZALO NAVARRO2

1 Department of Computer Science,
University of Helsinki, Helsinki, Finland

2 Department of Computer Science,
University of Chile, Santiago, Chile

Keywords and Synonyms

Space-efficient text indexing; Compressed full-text index-
ing; Self-indexing

ProblemDefinition

Given a text string T = t1t2 : : : tn over an alphabet ˙ of
size � , the compressed text indexing (CTI) problem asks to
replace T with a space-efficient data structure capable of
efficiently answering basic string matching and substring
queries on T. Typical queries required from such an index
are the following:
� count(P): count how many times a given pattern string

P = p1p2 : : : pm occurs in T.
� locate(P): return the locations where P occurs in T.
� display(i, j): return T[i; j].

Key Results

An elegant solution to the problem is obtained by ex-
ploiting the connection of Burrows-Wheeler Transform
(BWT) [1] and Suffix Array data structure [9]. The suf-
fix array SA[1; n] of T is the permutation of text posi-
tions (1 : : : n) listing the suffixes T[i; n] in lexicographic

http://www.cs.helsinki.fi/group/suds/cst

Compressed Text Indexing C 177

order. That is, T[SA[i]; n] is the ith smallest suffix. The
BWT is formed by (1) a permutation Tbwt of T defined
as Tbwt[i] = T[SA[i] � 1], where T[0] = T[n], and (2) the
number i� = SA�1[1].

A property of the BWT is that symbols having the same
context (i. e., string following them inT) are consecutive in
Tbwt. This makes it easy to compress Tbwt achieving space
close to high-order empirical entropies [10]. On the other
hand, the suffix array is a versatile text index, allowing for
example O(m log n) time counting queries (using two bi-
nary searches on SA) after which one can locate the occur-
rences in optimal time.

Ferragina and Manzini [3] discovered a way to com-
bine the compressibility of the BWT and the indexing
properties of the suffix array. The structure is essentially
a compressed representation of the BWT plus some small
additional structures to make it searchable.

We first focus on retrieving arbitrary substrings from
this compressed text representation, and later consider
searching capabilities. To retrieve the whole text from the
structure (that is, to support display(1; n)), it is enough
to invert the BWT. For this purpose, let us consider a table
LF[1; n] defined such that if T[i] is permuted to Tbwt[j]
and T[i � 1] to Tbwt[j0] then LF[j] = j0. It is then im-
mediate that T can be retrieved backwards by printing
Tbwt[i�] � Tbwt[LF[i�]] � Tbwt[LF[LF[i�]]] : : : (by defini-
tion Tbwt[i�] corresponds to T[n]).

To represent array LF space-efficiently, Ferragina and
Manzini noticed that each LF[i] can be expressed as fol-
lows:

Lemma 1 (Ferragina and Manzini 2005 [3]) LF[i] =
C(c) + rankc(i), where c = Tbwt[i], C(c) tells how many
times symbols smaller than c appear in Tbwt and rankc(i)
tells how many times symbol c appears in Tbwt[1; i].

General display(i, j) queries rely on a regular sampling
of the text. Every text position of the form j0 � s, being s
the sampling rate, is stored together with SA�1[j0 � s], the
suffix array position pointing to it. To solve display(i, j)
we start from the smallest sampled text position j0 � s > j
and apply the BWT inversion procedure starting with
SA�1[j0 � s] instead of i*. This gives the characters in re-
verse order from j0 � s � 1 to i, requiring at most j � i + s
steps.

It also happens that the very same two-part ex-
pression of LF[i] enables efficient count(P) queries.
The idea is that if one knows the range of the
suffix array, say SA[spi ; epi], such that the suffixes
T[SA[spi]; n]; T[SA[spi + 1]; n]; : : : ; T[SA[epi]; n] are
the only ones containing P[i;m] as a prefix, then one
can compute the new range SA[spi�1; epi�1] where

the suffixes contain P[i � 1;m] as a prefix, as fol-
lows: spi�1 = C(P[i � 1]) + rankP[i�1](spi � 1) + 1 and
epi�1 = C(P[i � 1]) + rankP[i�1](epi). It is then enough
to scan the pattern backwards and compute values C() and
rankc() 2m times to find out the (possibly empty) range
of the suffix array where all the suffixes start with the com-
plete P. Returning ep1 � sp1 + 1 solves the count(P) query
without the need of having the suffix array available at all.

For locating each such occurrence SA[i], sp1 � i �
ep1, one can compute the sequence i, LF[i], LF[LF[i]],
: : :, until LFk[i] is a sampled suffix array position and thus
it is explicitly stored in the sampling structure designed for
display(i, j) queries. Then SA[i] = SA[LFk[i]] + k. As we
are virtually moving sequentially on the text, we cannot do
more than s steps in this process.

Now consider the space requirement. Values C() can
be stored trivially in a table of � log2 n bits. Tbwt[i] can
be computed in O(�) time by checking for which c is
rankc(i) 6= rankc(i � 1). The sampling rate can be cho-
sen as s = 	(log1+� n) so that the samples require o(n)
bits. The only real challenge is to preprocess the text for
rankc() queries. This has been a subject of intensive re-
search in recent years and many solutions have been pro-
posed. The original proposal builds several small partial
sum data structures on top of the compressed BWT, and
achieves the following result:

Theorem 2 (Ferragina and Manzini 2005 [3]) The
CTI problem can be solved using a so-called FM-
Index (FMI), of size 5nHk + o(n log �) bits, that supports
count(P) in O(m) time, locate(P) in O(� log1+� n) time
per occurrence, and display(i, j) in O(�(j � i + log1+� n))
time. Here Hk is the kth order empirical entropy of
T, � = o(log n/ log log n), k � log� (n/ log n) � !(1), and
� > 0 is an arbitrary constant.

The original FM-Index has a severe restriction on the al-
phabet size. This has been removed in follow-up works.
Conceptually, the easiest way to achieve a more alphabet-
friendly instance of the FM-index is to build a wavelet
tree [5] on Tbwt. This is a binary tree on ˙ such that
each node v handles a subset S(v) of the alphabet, which
is split among its children. The root handles ˙ and each
leaf handles a single symbol. Each node v encodes those
positions i so that Tbwt[i] 2 S(v). For those positions,
node v only stores a bit vector telling which go to the left,
which to the right. The node bit vectors are preprocessed
for constant time rank1() queries using o(n)-bit data struc-
tures [6, 12]. Grossi et al. [4] show that the wavelet tree
built using the encoding of [12] occupies nH0 + o(n log �)
bits. It is then easy to simulate a single rankc() query by
log2 � rank1() queries. With the same cost one can obtain

178 C Compressing Integer Sequences and Sets

Tbwt[i]. Some later enhancements have improved the time
requirement, so as to obtain, for example, the following re-
sult:

Theorem 3 (Mäkinen and Navarro 2005 [7]) The CTI
problem can be solved using a so-called Succinct Suffix
Array (SSA), of size nH0 + o(n log �) bits, that supports
count(P) in O(m(1 + log � / log log n)) time, locate(P) in
O(log1+� n log � / log log n) time per occurrence, and dis-
play(i, j) in O((j � i + log1+� n) log � / log log n) time. Here
H0 is the zero-order entropy of T, � = o(n), and � > 0 is an
arbitrary constant.

Ferragina et al. [2] developed a technique called compres-
sion boosting that finds an optimal partitioning of Tbwt

such that, when one compresses each piece separately us-
ing its zero-order model, the result is proportional to the
kth order entropy. This can be combined with the idea of
SSA by building a wavelet tree separately for each piece
and some additional structures in order to solve global
rankc() queries from the individual wavelet trees:

Theorem 4 (Ferragina et al. [4]) The CTI problem can
be solved using a so-called Alphabet-Friendly FM-Index
(AF-FMI), of size nHk + o(n log �) bits, with the same time
complexities and restrictions of SSA with k � ˛ log� n, for
any constant 0 < ˛ < 1.

A very recent analysis [8] reveals that the space of the plain
SSA is bounded by the same nHk + o(n log �) bits, making
the boosting approach to achieve the same result unneces-
sary in theory. In practice, implementations of [4, 7] are
superior by far to those building directly on this simplify-
ing idea.

Applications

Sequence analysis in Bioinformatics, search and re-
trieval on oriental and agglutinating languages, multime-
dia streams, and even structured and traditional database
scenarios.

URL to Code and Data Sets

Site Pizza-Chili http://pizzachili.dcc.uchile.cl or http://
pizzachili.di.unipi.it contains a collection of standardized
library implementations as well as data sets and experi-
mental comparisons.

Cross References

� Burrows–Wheeler Transform
� Compressed Suffix Array
� Sequential Exact String Matching
� Text Indexing

Recommended Reading
1. Burrows, M., Wheeler, D.: A block sorting lossless data com-

pression algorithm. Technical Report 124, Digital Equipment
Corporation (1994)

2. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boost-
ing textual compression in optimal linear time. J. ACM 52(4),
688–713 (2005)

3. Ferragina, P. Manzini, G.: Indexing compressed texts. J. ACM
52(4), 552–581 (2005)

4. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed
representation of sequences and full-text indexes. ACM Trans.
Algorithms 3(2) Article 20 (2007)

5. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed
text indexes. In: Proc. 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 841–850 (2003)

6. Jacobson, G.: Space-efficient static trees and graphs. In: Proc.
30th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 549–554 (1989)

7. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-
length encoding. Nord. J. Comput. 12(1), 40–66 (2005)

8. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed se-
quences and full-text indexes. In: Proc. 17th Annual Sym-
posium on Combinatorial Pattern Matching (CPM). LNCS,
vol. 4009, pp. 307–318 (2006) Extended version as TR/DCC-
2006-10, Department of Computer Science, University of Chile,
July 2006

9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line
string searches. SIAM J. Comput. 22(5), 935–948 (1993)

10. Manzini, G.: An analysis of the Burrows-Wheeler transform.
J. ACM 48(3), 407–430 (2001)

11. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM
Comput. Surv. 39(1) Article 2 (2007)

12. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In:
Proc. 13th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 233–242 (2002)

Compressing Integer Sequences
and Sets
2000; Moffat, Stuiver

ALISTAIR MOFFAT
Department of Computer Science and Software
Engineering, University of Melbourne,
Melbourne, VIC, Australia

ProblemDefinition

Suppose that a message M = hs1; s2; : : : ; sni of length
n = jMj symbols is to be represented, where each symbol
si is an integer in the range 1 � si � U , for some upper
limit U that may or may not be known, and may or may
not be finite. Messages in this form are commonly the out-
put of some kind of modeling step in a data compression
system. The objective is to represent the message over a bi-
nary output alphabet f0;1g using as few as possible output

http://pizzachili.dcc.uchile.cl
http://pizzachili.di.unipi.it
http://pizzachili.di.unipi.it

Compressing Integer Sequences and Sets C 179

bits. A special case of the problem arises when the elements
of themessage are strictly increasing, si < si+1. In this case
the message M can be thought of as identifying a subset
of f1; 2; : : : ;Ug. Examples include storing sets of IP ad-
dresses or product codes, and recording the destinations
of hyperlinks in the graph representation of the world wide
web.

A key restriction in this problem is that it may not be
assumed that n� U . That is, it must be assumed thatM is
too short (relative to the universeU) to warrant the calcu-
lation of anM-specific code. Indeed, in the strictly increas-
ing case, n � U is guaranteed. Amessage used as an exam-
ple below isM1 = h1; 3; 1; 1; 1; 10; 8; 2; 1; 1i. Note that any
messageM can be converted to another message M0 over
the alphabetU 0 = Un by taking prefix sums. The transfor-
mation is reversible, with the inverse operation known as
“taking gaps”.

Key Results

A key limit on static codes is expressed by the Kraft–
McMillan inequality (see [13]): if the codeword for a sym-
bol x is of length `x, then

PU
x=1 2

�`x � 1 is required if
the code is to be left-to-right decodeable, with no code-
word a prefix of any other codeword. Another key bound
is the combinatorial cost of describing a set. If an n-
subset of 1 : : :U is chosen at random, then a total of
log2

�U
n
�
	 n log2(U/n) bits are required to describe that

subset.

Unary and Binary Codes

As a first example method, consider Unary coding, in
which the symbol x is represented as x � 1 bits that are
1, followed by a single 0-bit. For example, the first three
symbols of message M1 would be coded by “0-110-0”,
where the dashes are purely illustrative and do not form
part of the coded representation. Because the Unary code
for x is exactly x bits long, this code strongly favors small
integers, and has a corresponding ideal symbol probabil-
ity distribution (the distribution for which this particular
pattern of codeword lengths yields the minimal message
length) given by Prob(x) = 2�x .

Unary has the useful attribute of being an infinite code.
But unless the message M is dominated by small inte-
gers, Unary is a relatively expensive code. In particular, the
Unary-coded representation of a message M = hs1 : : : sni
requires

P
i si bits, and when M is a gapped representa-

tion of a subset of 1 : : :U , can be as long as U bits in total.
The best-known code in computing is Binary.

If 2k�1 < U � 2k for some integer k, then symbols
1 � si � U can be represented in k � log2 U bits each. In

this case, the code is finite, and the ideal probability distri-
bution is given by Prob(x) = 2�k . When U = 2k , this then
implies that Prob(x) = 2� log2 n = 1/n.

WhenU is known precisely, and is not a power of two,
2k � U of the codewords can be shortened to k � 1 bits
long, in aMinimal Binary code. It is conventional to assign
the short codewords to symbols 1 � � � 2k � U . The code-
words for the remaining symbols, (2k � U + 1) � � �U , re-
main k bits long.

Golomb Codes

In 1966 Solomon Golomb provided an elegant hybrid be-
tween Unary and Binary codes (see [15]). He observed
that if a random n-subset of the items 1 � � �U was selected,
then the gaps between consecutive members of the sub-
set were defined by a geometric probability distribution
Prob(x) = p(1 � p)x�1, where p = n/U is the probability
that any selected item is a member of the subset.

If b is chosen such that (1 � p)b = 0:5, this proba-
bility distribution suggests that the codeword for x + b
should be one bit longer than the codeword for x. The so-
lution b = log 0:5/ log(1 � p) 	 0:69/p 	 0:69U/n spec-
ifies a parameter b that defines the Golomb code. To
then represent integer x, calculate 1 + ((x � 1) div b) as
a quotient, and code that part in Unary; and calculate
1 + ((x � 1) mod b) as a remainder part, and code it in
Minimal Binary, against a maximum bound of b. When
concatenated, the two parts form the codeword for integer
x. As an example, suppose that b = 5 is specified. Then the
fiveMinimal Binary codewords for the five possible binary
suffix parts of the codewords are “00”, “01”, “10”, “110”,
and “111”. The number 8 is thus coded as a Unary prefix
of “10” to indicate a quotient part of 2, followed by a Min-
imal Binary remainder of “10” representing 3, to make an
overall codeword of “10-10”.

Like Unary, the Golomb code is infinite; but by design
is adjustable to different probability distributions. When
b = 2k for integer k a special case of the Golomb code
arises, usually called a Rice code.

Elias Codes

Peter Elias (again, see [15]) provided further hybrids be-
tween Unary and Binary codes in work published in 1975.
This family of codes are defined recursively, with Unary
being the simplest member.

To move from one member of the family to the next,
the previous member is used to specify the number of bits
in the standard binary representation of the value x being
coded (that is, the value 1 + blog2 xc); then, once the length

180 C Compressing Integer Sequences and Sets

has been specified, the trailing bits of x, with the top bit
suppressed, are coded in Binary.

For example, the second member of the Elias family is
C� , and can be thought of as a Unary-Binary code: Unary
to indicate the prefix part, being the magnitude of x; and
then Binary to indicate the value of x within the range
specified by the prefix part. The first few C� codewords are
thus “0”, “10-0”, “10-1”, “110-00”, and so on, where
the dashes are again purely illustrative. In general, the C�
codeword for a value x requires 1 + blog2 xc bits for the
Unary prefix part, and a further blog2 xc for the binary suf-
fix part, and the ideal probability distribution is thus given
by Prob(x) � 1/(2x2).

After C� , the next member of the Elias family is Cı .
The only difference between C� codewords and the corre-
sponding Cı codewords is that in the latter C� is used to
store the prefix part, rather than Unary. Further members
of the family of Elias codes can be generated by applying
the same process recursively, but for practical purposes Cı
is the last useful member of the family, even for relatively
large values of x. To see why, note that jC� (x)j � jCı (x)j
whenever x � 31, meaning that Cı is longer than the next
Elias code only for values x � 232.

Fibonacci-Based Codes

Another interesting code is derived from the Fibonacci
sequence described (for this purpose) as F1 = 1, F2 = 2,
F3 = 3, F4 = 5, F5 = 8, and so on. The Zeckendorf repre-
sentation of a natural number is a list of Fibonacci values
that add up to that number, with the restriction that no
two adjacent Fibonacci numbers may be used. For exam-
ple, the number 10 is the sum of 2 + 8 = F2 + F5.

The simplest Fibonacci code is derived directly from
the ordered Zeckendorf representation of the target value,
and consists of a “0” bit in the ith position (counting from
the left) of the codeword if Fi does not appear in the sum,
and a “1” bit in that position if it does, with indices con-
sidered in increasing order. Because it is not possible for
both Fi and Fi+1 to be part of the sum, the last two bits
of this string must be “01”. An appended “1” bit is thus
sufficient to signal the end of each codeword. As always,
the assumption of monotonically decreasing symbol prob-
abilities means that short codes are assigned to small val-
ues. The code for integer one is “1-1”, and the next few
codewords are “01-1”, “001-1”, “101-1”, “0001-1”,
“1001-1”, where, as before, the embedded dash is purely
illustrative.

Because Fn 	 �n where ' is the golden ratio
� = (1 +

p
5)/2 	 1:61803, the codeword for x is ap-

proximately 1 + log
 x 	 1 + 1:44 log2 x bits long, and is

shorter than C� for all values except x = 1. It is also as
good as, or better than, Cı over a wide range of prac-
tical values between 2 and F19 = 6;765. Higher-order Fi-
bonacci codes are also possible, with increased minimum
codeword lengths, and decreased coefficients on the loga-
rithmic term. Fenwick [8] provides good coverage of Fi-
bonacci codes.

Byte Aligned Codes

Performing the necessary bit-packing and bit-unpacking
operations to extract unrestricted bit sequences can be
costly in terms of decoding throughput rates, and a whole
class of codes that operate on units of bytes rather then bits
have been developed – the Byte Aligned codes.

The simplest Byte Aligned code is an interleaved eight-
bit analog of the Elias C� mechanism. The top bit in each
byte is reserved for a flag that indicates (when “0”) that
“this is the last byte of this codeword” and (when “1”) that
“this is not the last byte of this codeword, take another
one as well”. The other seven bits in each byte are used for
data bits. For example, the number 1;234 is coded into two
bytes, “209-008”, and is reconstructed via the calcula-
tion (209 � 128 + 1) � 1280 + (008 + 1) � 1281 = 1; 234.

In this simplest byte aligned code, a total of
8d(log2 x)/7e bits are used, which makes it more effective
asymptotically than the 1 + 2blog2 xc bits required by the
Elias C� code. However, the minimum codeword length
of eight bits means that Byte Aligned codes are expensive
on messages dominated by small values.

Byte Aligned codes are fast to decode. They also pro-
vide another useful feature – the facility to quickly “seek”
forwards in the compressed stream over a given number
of codewords. A third key advantage of byte codes is that if
the compressed message is to be searched, the search pat-
tern can be rendered into a sequence of bytes using the
same code, and then any byte-based patternmatching util-
ity be invoked [7]. The zero top bit in all final bytes means
that false matches are identified with a single additional
test.

An improvement to the simple Byte Aligned coding
mechanism arises from the observation that there is noth-
ing special about the value 128 as the separating value
between the stopper and continuer bytes, and that dif-
ferent values lead to different tradeoffs in overall code-
word lengths [3]. In these (S,C)-Byte Aligned codes, val-
ues of S and C such that S + C = 256 are chosen, and each
codeword consists of a sequence of zero or more con-
tinuer bytes with values greater than or equal to S, and
ends with a final stopper byte with a value less than S.
Other variants include methods that use bytes as the cod-

Compressing Integer Sequences and Sets C 181

ing units to form Huffman codes, either using eight-bit
coding symbols or tagged seven-bit units [7]; and meth-
ods that partially permute the alphabet, but avoid the need
for a complete mapping [6]. Culpepper andMoffat [6] also
describe a byte aligned coding method that creates a set of
byte-based codewords with the property that the first byte
uniquely identifies the length of the codeword. Similarly,
Nibble codes can be designed as a 4-bit analog of the Byte
Aligned approach, where one bit is reserved for a stopper-
continuer flag, and three bits are used for data.

Other Static Codes

There have been a wide range of other variants described
in the literature. Several of these adjust the code by alter-
ing the boundaries of the set of buckets that define the
code, and coding a value x as a Unary bucket identifier,
followed by a Minimal Binary offset within the specified
bucket (see [15]).

For example, the Elias C� code can be regarded as be-
ing a Unary-Binary combination relative to a vector of
bucket sizes h20; 21; 22; 23; 24; : : : i. Teuhola (see [15]) pro-
posed a hybrid in which a parameter k is chosen, and the
vector of bucket sizes is given by h2k ; 2k+1; 2k+2; 2k+3; : : : i.
One way of setting the parameter k is to take it to be
the length in bits of the median sequence value, so that
the first bit of each codeword approximately halves the
range of observed symbol values. Another variant method
is described by Boldi and Vigna [2], who use a vector
h2k � 1; (2k � 1)2k ; (2k � 1)22k ; (2k � 1)23k ; : : : i to ob-
tain a family of codes that are analytically and empirically
well-suited to power-law probability distributions, espe-
cially those associated with web-graph compression. In
this method k is typically in the range 2 to 4, and aMinimal
Binary code is used for the suffix part.

Fenwick [8] provides detailed coverage of a wide range
of static coding methods. Chen et al. [4] have also recently
considered the problem of coding messages over sparse al-
phabets.

A Context Sensitive Code

The static codes described in the previous sections use the
same set of codeword assignments throughout the encod-
ing of the message. Better compression can be achieved in
situations in which the symbol probability distribution is
locally homogeneous, but not globally homogeneous.

Moffat and Stuiver [12] provided an off-line method
that processes the message holisticly, in this case not be-
cause a parameter is computed (as is the case for the Bi-
nary code), but because the symbols are coded in a non-
sequential manner. Their Interpolative code is a recursive

coding method that is capable of achieving very compact
representations, especially when the gaps are not indepen-
dent of each other.

To explain the method, consider the subset form of the
example message, as shown by sequence M2 in Table 1.
Suppose that the decoder is aware that the largest value in
the subset does not exceed 29. Then every item in M is
greater than or equal to lo = 1 and less than or equal to
hi = 29, and the 29 different possibilities could be coded
using Binary in fewer than dlog2(29 � 1 + 1)e = 5 bits
each. In particular, the mid-value in M2, in this example
the value s5 = 7 (it doesn’t matter which mid-value is cho-
sen), can certainly be transmitted to the decoder using five
bits. Then, once the middle number is pinned down, all
of the remaining values can be coded within more precise
ranges, and might require fewer than five bits each.

Now consider in more detail the range of values that
the mid-value can span. Since there are n = 10 numbers
in the list overall, there are four distinct values that pre-
cede s5, and another five that follow it. From this argument
a more restricted range for s5 can be inferred: lo0 = lo + 4
and hi0 = hi � 5, meaning that the fifth value of M2 (the
number 7) can be Minimal Binary coded as a value within
the range [5; 24] using just 4 bits. The first row of Table 1
shows this process.

Now there are two recursive subproblems – transmit-
ting the left part, h1; 4; 5; 6i, against the knowledge that
every value is greater than lo = 1 and hi = 7 � 1 = 6; and
transmitting the right part, h17; 25; 27; 28; 29i, against the
knowledge that every value is greater than lo = 7 + 1 = 8
and less than or equal to hi = 29. These two sublists are
processed recursively in the order shown in the remain-
der of Table 1, again with tighter ranges [lo0; hi0] calculated
and Minimal Binary codes emitted

One key aspect of the Interpolative code is that the sit-
uation can arise in which codewords that are zero bits long
are called for, indicated when lo0 = hi0. No bits need to be
emitted in this case, since only one value is within the in-
dicated range and the decoder can infer it. Four of the
symbols in M2 benefit from this possibility. This feature
means that the Interpolative code is particularly effective
when the subset contains clusters of consecutive items, or
localized subset regions where there is a high density. In
the limit, if the subset contains every element in the uni-
versal set, no bits at all are required onceU is known.More
generally, it is possible for dense sets to be represented in
fewer than one bit per symbol.

Table 1 presents the Interpolative code using (in the
final column) Minimal Binary for each value within its
bounded range. A refinement is to use a Centered Mini-
mal Binary code so that the short codewords are assigned

182 C Compressing Integer Sequences and Sets

Compressing Integer Sequences and Sets, Table 1
Example encodings of message M2 = h1; 4;5;6;7;17;25;27;28;29i using the Interpolative code. When a Minimal Binary code is
used, a total of 20 bits are required. When lo0 = hi0, no bits are output

Index i Value si lo hi lo0 hi0 {si � lo0; hi0 � lo0} Binary MinBin
5 7 1 29 5 24 2,19 00010 0010

2 4 1 6 2 4 2,2 10 11

1 1 1 3 1 3 0,2 00 0

3 5 5 6 5 5 0,0 - -

4 6 6 6 6 6 0,0 - -

8 27 8 29 10 27 17,17 01111 11111

6 17 8 26 8 25 9,17 01001 1001

7 25 18 26 18 26 7,8 0111 1110

9 28 28 29 28 28 0,0 - -

10 29 29 29 29 29 0,0 - -

in the middle of the range rather than at the beginning,
recognizing that the mid value in a set is more likely to be
near the middle of the range spanned by those items than
it is to the ends of the range. Adding this enhancement re-
quires a trivial restructure of Minimal Binary coding, and
tends to be beneficial in practice. But improvement is not
guaranteed, and, as it turns out, on sequenceM2 the use of
a CenteredMinimal Binary code adds one bit to the length
of the compressed representation compared to the Mini-
mal Binary code shown in Table 1.

Cheng et al. [5] describe in detail techniques for fast
decoding of Interpolative codes.

Hybrid Methods

It was noted above that the message must be assumed
to be short relative to the total possible universe of sym-
bols, and that n� U . Fraenkel and Klein [9] observed
that the sequence of symbol magnitudes (that is, the se-
quence of values dlog2 sie) in the message must be over
a much more compact and dense range than the message
itself, and it can be effective to use a principled code for
the prefix parts that indicate the magnitudes, in conjunc-
tion with straightforward Binary codes for the suffix parts.
That is, rather than using Unary for the prefix part, a Huff-
man (minimum-redundancy) code can be used.

In 1996 Peter Fenwick (see [13]) described a simi-
lar mechanism using Arithmetic coding, and as well in-
corporated an additional benefit. His Structured Arith-
metic coder makes use of adaptive probability estimation
and two-part codes, being a magnitude and a suffix part,
with both calculated adaptively. The magnitude parts have
a small range, and that code is allowed to adapt its inferred
probability distribution quickly, to account for volatile lo-
cal probability changes. The resultant two-stage coding

process has the unique benefit of “smearing” probabil-
ity changes across ranges of values, rather than confining
them to the actual values recently processed.

Other Coding Methods

Other recent context sensitive codes include the Binary
Adaptive Sequential code of Moffat and Anh [11]; and the
Packed Binary codes of Anh and Moffat [1]. More gener-
ally, Witten et al. [15] andMoffat and Turpin [13] provide
details of the Huffman and Arithmetic coding techniques
that are likely to yield better compression when the length
of the messageM is large relative to the size of the source
alphabet U.

Applications

A key application of compressed set representation tech-
niques is to the storage of inverted indexes in large full-
text retrieval systems of the kind operated by web search
companies [15].

Open Problems

There has been recent work on compressed set representa-
tions that support operations such as rank and select, with-
out requiring that the set be decompressed (see, for exam-
ple, Gupta et al. [10] and Raman et al. [14]). Improvements
to these methods, and balancing the requirements of ef-
fective compression versus efficient data access, are active
areas of research.

Experimental Results

Comparisons based on typical data sets of a realistic size,
reporting both compression effectiveness and decoding ef-
ficiency are the norm in this area of work. Witten et al.[15]

Computing Pure Equilibria in the Game of Parallel Links C 183

give details of actual compression performance, as do the
majority of published papers.

URL to Code

The page at http://www.csse.unimelb.edu.au/~alistair/
codes/ provides a simple text-based “compression” system
that allows exploration of the various codes described here.

Cross References

� Arithmetic Coding for Data Compression
� Compressed Text Indexing
� Rank and Select Operations on Binary Strings

Recommended Reading
1. Anh, V.N., Moffat, A.: Improved word-aligned binary compres-

sion for text indexing. IEEE Trans. Knowl. Data Eng. 18(6), 857–
861 (2006)

2. Boldi, P., Vigna, S.: Codes for the world-wide web. Internet
Math. 2(4), 405–427 (2005)

3. Brisaboa, N.R., Fariña, A., Navarro, G., Esteller, M.F.: (S;C)-dense
coding: An optimized compression code for natural language
text databases. In: Nascimento, M.A. (ed.) Proc. Symp. String
Processing and Information Retrieval. LNCS, vol. 2857, pp. 122–
136, Manaus, Brazil, October 2003

4. Chen, D., Chiang, Y.J., Memon, N., Wu, X.: Optimal alphabet
partitioning for semi-adaptive coding of sources of unknown
sparse distributions. In: Storer, J.A., Cohn, M. (eds.) Proc. 2003
IEEE Data Compression Conference, pp. 372–381, IEEE Com-
puter Society Press, Los Alamitos, California, March 2003

5. Cheng, C.S., Shann, J.J.J., Chung, C.P.: Unique-order interpola-
tive coding for fast querying and space-efficient indexing in
information retrieval systems. Inf. Process. Manag. 42(2), 407–
428 (2006)

6. Culpepper, J.S.,Moffat, A.: Enhancedbyte codes with restricted
prefix properties. In: Consens, M.P., Navarro, G. (eds.) Proc.
Symp. String Processing and Information Retrieval. LNCS Vol-
ume 3772, pp. 1–12, Buenos Aires, November 2005

7. de Moura, E.S., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and
flexible word searching on compressed text. ACM Trans. Inf.
Syst. 18(2), 113–139 (2000)

8. Fenwick, P.: Universal codes. In: Sayood, K. (ed.) Lossless Com-
pression Handbook, pp. 55–78, Academic Press, Boston (2003)

9. Fraenkel, A.S., Klein, S.T.: Novel compression of sparse bit-
strings –Preliminary report. In: Apostolico, A., Galil, Z. (eds)
Combinatorial Algorithms onWords, NATOASI Series F, vol. 12,
pp. 169–183. Springer, Berlin (1985)

10. Gupta, A., Hon, W.K., Shah, R., Vitter, J.S.: Compressed data
structures: Dictionaries and data-aware measures. In: Storer,
J.A., Cohn, M. (eds) Proc. 16th IEEE Data Compression Con-
ference, pp. 213–222, IEEE, Snowbird, Utah, March 2006 Com-
puter Society, Los Alamitos, CA

11. Moffat, A., Anh, V.N.: Binary codes for locally homogeneous
sequences. Inf. Process. Lett. 99(5), 75–80 (2006) Source code
available from www.cs.mu.oz.au/~alistair/rbuc/

12. Moffat, A., Stuiver, L.: Binary interpolative coding for effective
index compression. Inf. Retr. 3(1), 25–47 (2000)

13. Moffat, A., Turpin, A.: Compression and Coding Algorithms.
Kluwer Academic Publishers, Boston (2002)

14. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dic-
tionaries with applications to encoding k-ary trees and mul-
tisets. In: Proc. 13th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 233–242, San Francisco, CA, January 2002, SIAM,
Philadelphia, PA

15. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Com-
pressing and Indexing Documents and Images, 2nd edn. Mor-
gan Kaufmann, San Francisco, (1999)

Compression
� Compressed Suffix Array
� Compressed Text Indexing
� Rank and Select Operations on Binary Strings
� Similarity between Compressed Strings
� Table Compression

Computational Learning
� Learning Automata

Computing Pure Equilibria
in the Game of Parallel Links
2002; Fotakis, Kontogiannis, Koutsoupias,
Mavronicolas, Spirakis
2003; Even-Dar, Kesselman, Mansour
2003; Feldman, Gairing, Lücking, Monien, Rode

SPYROS KONTOGIANNIS
Department of Computer Science, University
of Ioannina, Ioannina, Greece

Keywords and Synonyms

Load balancing game; Incentive compatible algorithms;
Nashification; Convergence of Nash dynamics

ProblemDefinition

This problem concerns the construction of pure Nash
equilibria (PNE) in a special class of atomic congestion
games, known as the Parallel Links Game (PLG). The pur-
pose of this note is to gather recent advances in the exis-
tence and tractability of PNE in PLG.

THE PURE PARALLEL LINKS GAME. Let N � [n]1 be
a set of (selfish) players, each of them willing to have her

18k 2 N; [k]� f1; 2; : : : ; kg.

http://www.csse.unimelb.edu.au/~alistair/codes/
http://www.csse.unimelb.edu.au/~alistair/codes/
http://www.cs.mu.oz.au/~alistair/rbuc/

184 C Computing Pure Equilibria in the Game of Parallel Links

good served by a unique shared resource (link) of a sys-
tem. Let E = [m] be the set of all these links. For each
link e 2 E, and each player i 2 N ,let Di;e(�) : R�0 7! R�0
be the charging mechanism according to which link e
charges player i for using it. Each player i 2 [n] comes
with a service requirement (e. g. , traffic demand, or pro-
cessing time) W[i; e] > 0, if she is to be served by link
e 2 E. A service requirementW[i; e] is allowed to get the
value1, to denote the fact that player i would never want
to be assigned to link e. The charging mechanisms are
functions of each link’s cumulative congestion.

Any element � 2 E is called a pure strategy for
a player. Then, this player is assumed to assign her own
good to link e. A collection of pure strategies for all the
players is called a pure strategies profile, or a configura-
tion of the players, or a state of the game.

The individual cost of player i wrt the profile �
is: ICi(�) = Di;�i (

P
j2[n]:� j=�i W[j; � j]). Thus, the Pure

Parallel Links Game (PLG) is the game in strategic
form defined as
 = hN; (˙i = E)i2N ; (ICi)i2Ni, whose
acceptable solutions are only PNE. Clearly, an arbi-
trary instance of PLG can be described by the tuple
hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei.

DEALING WITH SELFISH BEHAVIOR. The dominant
solution concept for finite games in strategic form, is the
Nash Equlibrium [14]. The definition of pure Nash Equi-
libria for PLG is the following:

Definition 1 (Pure Nash Equilibrium) For any instance
hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei of PLG, a pure
strategies profile � 2 En is a Pure Nash Equilibrium
(PNE in short), iff:
8i 2 N;8e 2 E;ICi (�) = Di;�i

�P
j2[n]:� j=�i W[j; �i]

�

� Di;e

�
W[i; e] +

P
j2[n]nfig:� j=e W[j; e]

�
.

A refinement of PNE are the k-robust PNE, for
n � k � 1 [9]. These are pure profiles for which no subset
of at most k players may concurrently change their strate-
gies in such a way that the worst possible individual cost
among the movers is strictly decreased.

QUALITY OF PURE EQUILIBRIA. In order to deter-
mine the quality of a PNE, a social cost function that
measures it must be specified. The typical assumption
in the literature of PLG, is that the social cost func-
tion is the worst individual cost paid by the players:
8� 2 En ; SC(�) = maxi2NfICi (�)g and 8p 2 (�m)n ;
SC(p) =

P
�2En (

Q
i2N pi(�i))�maxi2NfICi (�)g. Observe

that, for mixed profiles, the social cost is the expectation of
the maximum individual cost among the players.

The measure of the quality of an instance of PLG wrt
PNE, is measured by the Pure Price of Anarchy (PPoA in

short) [12]: PPoA = max f(SC(�))/OPT : � 2 En is PNEg
where OPT � min�2En fSC(�)g.

DISCRETE DYNAMICS. Crucial concepts of strategic
games are the best and better responses. Given a config-
uration � 2 En , an improvement step, or selfish step,
or better response of player i 2 N is the choice by i
of a pure strategy ˛ 2 E n f�ig, so that player i would
have a positive gain by this unilateral change (i. e., pro-
vided that the other players maintain the same strate-
gies). That is, ICi (�) > ICi (� ˚i ˛) where, � ˚i ˛ �

(�1; : : : ; �i�1; ˛; �i+1; : : : ; �n). A best response, or greedy
selfish step of player i, is any change from the current link
� i to an element ˛� 2 argmaxa2EfICi (� ˚i ˛)g. An im-
provement path (aka a sequence of selfish steps [6], or
an elementary step system [3]) is a sequence of configu-
rations
 = h�(1); : : : ; �(k)i such that

82 � r � k; 9ir 2 N; 9˛r 2 E :
[�(r) = �(r�1)˚i r˛r]^[ICi r (�(r)) < ICi r (�(r�1))]:

A game has the Finite Improvement Property (FIP) iff
any improvement path has finite length. A game has the
Finite Best Response Property (FBRP) iff any improve-
ment path, each step of whose is a best response of some
player, has finite length.

An alternative trend is to, rather than consider sequen-
tial improvement paths, let the players conduct selfish im-
provement steps concurrently. Nevertheless, the selfish de-
cisions are no longer deterministic, but rather distribu-
tions over the links, in order to have some notion of a pri-
ori Nash property that justifies these moves. The selfish
players try to minimize their expected individual costs this
time. Rounds of concurrent moves occur until a posteriori
Nash Property is achieved. This is called a selfish rerout-
ing policy [4].

Subclasses of PLG

[PLG1] Monotone PLG: The charging mechanism of each
pair of a link and a player, is a non–decreasing function of
the resource’s cumulative congestion.

[PLG2] Resource Specific Weights PLG (RSPLG):
Each player may have a different service demand from ev-
ery link.

[PLG3] Player Specific Delays PLG (PSPLG): Each
link may have a different charging mechanism for each
player. Some special cases of PSPLG are the following:

[PLG3:1] Linear Delays PSPLG: Every link has
a (player specific) affine charging mechanism: 8i 2 N;
8e 2 E;Di;e(x) = ai;ex + bi;e for some ai;e > 0 and
bi;e � 0.

Computing Pure Equilibria in the Game of Parallel Links C 185

[PLG3:1:1] Related Delays PSPLG: Every link has
a (player specific) non–uniformly related charging mech-
anism: 8i 2 N;8e 2 E;W[i; e] = wi andDi;e(x) = ai;ex
for some ai;e > 0.

[PLG4] Resource Uniform Weights PLG (RUPLG):
Each player has a unique service demand from all the re-
sources. Ie, 8i 2 N;8e 2 E;W[i; e] = we > 0. A special
case of RUPLG is:

[PLG4:1] Unweighted PLG: All the players have iden-
tical demands from all the links: 8i 2 N;8e 2 E;
W[i; e] = 1.

[PLG5] Player Uniform Delays PLG (PUPLG): Each
resource adopts a unique charging mechanism, for all the
players. That is, 8i 2 N;8e 2 E;Di;e(x) = de (x).

[PLG5:1] Unrelated Parallel Machines, or Load Bal-
ancing PLG (LBPLG): The links behave as parallel ma-
chines. That is, they charge each of the players for the
cumulative load assigned to their hosts. One may think
(wlog) that all the machines have as charging mecha-
nisms the identity function. That is, 8i 2 N;8e 2 E;
Di;e(x) = x.

[PLG5:1:1] Uniformly Related Machines LBPLG:
Each player has the same demand at every link, and each
link serves players at a fixed rate. That is: 8i 2 N;8e 2
E;W[i; e] = wi and Di;e(x) = x

se . Equivalently, ser-
vice demands proportional to the capacities of the ma-
chines are allowed, but the identity function is required
as the charging mechanism: 8i 2 N;8e 2 E;W[i; e] =
wi
se andDi;e(x) = x.

[PLG5:1:1:1] Identical Machines LBPLG: Each player
has the same demand at every link, and all the delay
mechanisms are the identity function: 8i 2 N;8e 2 E;
W[i; e] = wi andDi;e(x) = x.

[PLG5:1:2] Restricted Assignment LBPLG: Each traf-
fic demand is either of unit or infinite size. The machines
are identical. Ie, 8i 2 N;8e 2 E;W[i; e] 2 f1;1g and
Di;e(x) = x.

Algorithmic Questions concerning PLG

The following algorithmic questions are considered:

Problem 1 (PNEExistsInPLG(E;N;W;D))
INPUT:
An instance hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei of
PLG
OUTPUT: Is there a configuration � 2 En of the players to
the links, which is a PNE?

Problem 2 (PNEConstructionInPLG(E;N;W;D))
INPUT:
An instance hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei of
PLG

OUTPUT: An assignment � 2 En of the players to the links,
which is a PNE.

Problem 3 (BestPNEInPLG(E;N;W;D))
INPUT:
An instance hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei of
PLG. A social cost function SC : (R�0)m 7! R�0 that
characterizes the quality of any configuration � 2 EN .
OUTPUT: An assignment � 2 En of the players to the links,
which is a PNE and minimizes the value of the social cost,
compared to other PNE of PLG.

Problem 4 (WorstPNEInPLG(E;N;W;D))
INPUT:
An instance hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei of
PLG. A social cost function SC : (R�0)m 7! R�0 that
characterizes the quality of any configuration � 2 EN .
OUTPUT: An assignment � 2 En of the players to the links,
which is a PNE and maximizes the value of the social cost,
compared to other PNE of PLG.

Problem 5 (DynamicsConvergeInPLG(E;N;W;D))
INPUT:
An instance hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei of
PLG
OUTPUT: Does FIP (or FBRP) hold? How long does it take
then to reach a PNE?

Problem 6 (ReroutingConvergeInPLG(E;N;W;D))
INPUT:
An instance hN; E; (W[i; e])i2N;e2E ; (Di;e(�))i2N;e2Ei of
PLG
OUTPUT: Compute (if any) a selfish rerouting policy that
converges to a PNE.

Status of Problem 1

Player uniform, unweighted atomic congestion games al-
ways possess a PNE [15], with no assumption on mono-
tonicity of the charging mechanisms. Thus, Problem 1 is
already answered for all unweighted PUPLG. Neverthe-
less, this is not necessarily the case for weighted versions
of PLG:

Theorem 1 ([13]) There is an instance of (monotone)
PSPLG with only three players and three strategies per
player, possessing no PNE. On the other hand, any un-
weighted instance of monotone PSPLG possesses at least one
PNE.

Similar (positive) results were given for LBPLG. The key
observation that lead to these results, is the fact that the
lexicographically minimum vector of machine loads is al-
ways a PNE of the game.

186 C Computing Pure Equilibria in the Game of Parallel Links

Theorem 2 There is always a PNE for any instance of Uni-
formly Related LBPLG [7], and actually for any instance of
LBPLG [3]. Indeed, there is a k�robust PNE for any in-
stance of LBPLG, and any 1 � k � n [9].

Status of Problems 2, 5 and 6

[13] gave a constructive proof of existence for PNE in un-
weighted, monotone PSPLG, and thus implies a path of
length atmost n that leads to a PNE. Although this is a very
efficient construction of PNE, it is not necessarily an im-
provement path, when all players are considered to coex-
ist all the time, and therefore there is no justification for
the adoption of such a path by the players. Milchtaich [13]
proved that from an arbitrary initial configuration and al-
lowing only best reply defections, there is a best reply im-
provement path of length at most m �

�n+1
2
�
. Finally, [11]

proved for unweighted, Related PSPLG that it possesses
FIP. Nevertheless, the convergence time is poor.

For LBPLG, the implicit connection of PNE construc-
tion to classical scheduling problems, has lead to quite in-
teresting results.

Theorem 3 ([7]) The LPT algorithm of Graham, yields
a PNE for the case of Uniformly Related LBPLG, in time
O(m logm).

The drawback of the LPT algorithm is that it is central-
ized and not selfishly motivated. An alternative approach,
called Nashification, is to start from an arbitrary initial
configuration � 2 En and then try to construct a PNE of at
most the same maximum individual cost among the play-
ers.

Theorem 4 ([6]) There is an O(nm2) time Nashification
algorithm for any instance of Uniformly Related PLG.

An alternative style of Nashification, is to let the players
follow an arbitrary improvement path. Nevertheless, it is
not always the case that this leads to a polynomial time
construction of a PNE, as the following theorem states:

Theorem 5 For Identical Machines LBPLG:
� There exist best response improvement paths of length
˝
�
max

n
2
p

n ;
� n
m2

�mo� [3,6].
� Any best response improvement path is of length O(2n)

[6].
� Any best response improvement path, which gives prior-

ity to players of maximum weight among those willing
to defect in each improvement step, is of length at most n
[3].

� If all the service demands are integers, then any im-
provement path which gives priority to unilateral im-

provement steps, and otherwise allows only selfish 2-flips
(ie, swapping of hosting machines between two goods)
converges to a 2-robust PNE in at most 1

2 (
P

i2N wi)2

steps [9].

The following result concerns selfish rerouting policies:

Theorem 6 ([4])
� For unweighted Identical Machines LBPLG, a simple

policy (BALANCE) forcing all the players of overloaded
links to migrate to a new (random) link with probability
proportional to the load of the link, converges to a PNE
inO(log log n + logm) rounds of concurrent moves. The
same convergence time holds also for a simple Nash
Rerouting Policy, in which each mover actually has an
incentive to move.

� For unweighted Uniformly Related LBPLG, BALANCE
has the same convergence time, but the Nash Rerouting
Policy may converge in˝

�p
n
�
rounds.

Finally, a generic result of [5] is mentioned, that computes
a PNE for arbitrary unweighted, player uniform symmetric
network congestion games in polynomial time, by a nice
exploitation of Rosenthal’s potential and the solution of
a proper minimum cost flow problem. Therefore, for PLG
the following result is implied:

Theorem 7 ([5]) For unweighted, monotone PUPLG,
a PNE can be constructed in polynomial time.

Of course, this result provides no answer, e. g., for Re-
stricted Assignment LBPLG, for which it is still not known
how to efficiently compute PNE.

Status of Problems 3 and 4

The proposed LPT algorithm of [7] for constructing PNE
in Uniformly Related LBPLG, actually provides a solution
which is at most 1:52 < PPoA(LPT) < 1:67 times worse
than the optimum PNE (which is indeed the allocation of
the goods to the links that minimizes the make-span). The
construction of the optimum, as well as the worst PNE
are hard problems, which nevertheless admits a PTAS (in
some cases):

Theorem 8 For LBPLG with a social cost function as de-
fined in the QUALITY OF PURE EQUILIBRIA paragraph:
� For Identical Machines, constructing the optimum or the

worst PNE isNP�hard [7].
� For Uniformly RelatedMachines, there is a PTAS for the

optimum PNE [6].

Computing Pure Equilibria in the Game of Parallel Links C 187

� For Uniformly Related Machines, it holds that
PPoA = 	

�
min f(logm)/(log logm); log(smax)/(smin)g

�
[2].

� For the Restricted Assignments, PPoA = ˝((logm)/
(log logm)) [10].

� For a generalization of the Restricted Assignments,
where the players have goods of any positive, otherwise
infinite service demands from the links (and not only
elements of f1;1g), it holds that m � 1 � PPoA < m
[10].

It is finally mentioned that a recent result [1] for un-
weighted, single commodity network congestion games
with linear delays, is translated to the following result for
PLG:

Theorem 9 ([1]) For unweighted PUPLG with linear
charging mechanisms for the links, the worst case PNE may
be a factor of PPoA = 5/2 away from the optimum solution,
wrt the social cost defined in the QUALITY OF PURE EQUI-
LIBRIA paragraph.

Key Results

None

Applications

Congestion games in general have attracted much atten-
tion from many disciplines, partly because they capture
a large class of routing and resource allocation scenarios.

PLG in particular, is the most elementary (non–trivial)
atomic congestion game among a large number of players.
Despite its simplicity, it was proved ([8] that it is asymp-
totically the worst case instance wrt the maximum individ-
ual cost measure, for a large class atomic congestion games
involving the so called layered networks. Therefore, PLG is
considered an excellent starting point for studying conges-
tion games in large scale networks.

The importance of seeking for PNE, rather than arbi-
trary (mixed in general) NE, is quite obvious in sciences
like the economics, ecology, and biology. It is also impor-
tant for computer scientists, since it enforces deterministic
costs to the players, and both the players and the network
designer may feel safer in this case about what they will
actually have to pay.

The question whether the Nash Dynamics converge to
a PNE in a reasonable amount of time, is also quite im-
portant, since (in case of a positive answer) it justifies the
selfish, decentralized, local dynamics that appear in large
scale communications systems. Additionally, the selfish
rerouting schemes are of great importance, since this is

what should actually be expected from selfish, decentral-
ized computing environments.

Open Problems

Open Question 1 Determine the (in)existence of PNE for
all the instances of PLG that do not belong in LBPLG, or in
monotone PSPLG.

Open Question 2 Determine the (in)existence of
k�robust PNE for all the instances of PLG that do not
belong in LBPLG.

Open Question 3 Is there a polynomial time algorithm
for constructing k�robust PNE, even for the Identical Ma-
chines LBPLG and k � 1 being a constant?

Open Question 4 Do the improvement paths of instances
of PLG other than PSPLG and LBPLG converge to a PNE?

Open Question 5 Are there selfish rerouting policies of in-
stances of PLG other than Identical Machines LBPLG con-
verge to a PNE? How long much time would they need, in
case of a positive answer?

Cross References

� Best Response Algorithms for Selfish Routing
� Price of Anarchy
� Selfish Unsplittable Flows: Algorithms for Pure

Equilibria

Recommended Reading
1. Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Fi-

nite Congestion Games. In: Proc. of the 37th ACMSymp. on Th.
of Comp. (STOC ’05), pp. 67–73. ACM, Baltimore (2005)

2. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria.
In: Proc. of the 13th ACM-SIAM Symp. on Discr. Alg. (SODA ’02),
pp. 413–420. SIAM, San Francisco (2002)

3. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to
nash equilibria. In: Proc. of the 30th Int. Col. on Aut., Lang.
and Progr. (ICALP ’03). LNCS, pp. 502–513. Springer, Eindhoven
(2003)

4. Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting.
In: Proc. of the 16th ACM-SIAM Symp. on Discr. Alg. (SODA ’05),
SIAM, pp. 772–781. SIAM, Vancouver (2005)

5. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of
pure nash equilibria. In: Proc. of the 36th ACM Symp. on Th. of
Comp. (STOC ’04). ACM, Chicago (2004)

6. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.:
Nashification and the coordination ratio for a selfish routing
game. In: Proc. of the 30th Int. Col. on Aut., Lang. and Progr.
(ICALP ’03). LNCS, pp. 514–526. Springer, Eindhoven (2003)

7. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M.,
Spirakis, P.: The structure and complexity of nash equilibria

188 C Concurrent Programming, Mutual Exclusion

for a selfish routing game. In: Proc. of the 29th Int. Col. on
Aut., Lang. and Progr. (ICALP ’02). LNCS, pp. 123–134. Springer,
Málaga (2002)

8. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable
flows. Theor. Comput. Sci. 348, 226–239 (2005) Special Issue
dedicated to ICALP (2004) (TRACK-A)

9. Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic congestion
games among coalitions. In: Proc. of the 33rd Int. Col. on Aut.,
Lang. and Progr. (ICALP ’06). LNCS, vol. 4051, pp. 572–583.
Springer, Venice (2006)

10. Gairing, M., Luecking, T., Mavronicolas, M., Monien, B.: The
price of anarchy for restricted parallel links. Parallel Process.
Lett. 16, 117–131 (2006) Preliminary version appeared in STOC
2004

11. Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable
flow in games with player specific linear latency functions. In:
Proc. of the 33rd Int. Col. on Aut., Lang. and Progr. (ICALP ’06).
LNCS, pp. 501–512. Springer, Venice (2006)

12. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In:
Proc. of the 16th Annual Symp. on Theor. Aspects of Comp. Sci.
(STACS ’99), pp. 404–413. Springer, Trier (1999)

13. Milchtaich, I.: Congestion games with player-specific payoff
functions. Games Econ. Behav. 13, 111–124 (1996)

14. Nash, J.: Noncooperative games. Annals Math. 54, 289–295
(1951)

15. Rosenthal, R.: A class of games possessing pure-strategy nash
equilibria. Int. J. Game Theory 2, 65–67 (1973)

Concurrent Programming,
Mutual Exclusion
1965; Dijkstra

GADI TAUBENFELD
Department of Computer Science, Interdiciplinary
Center Herzlia, Herzliya, Israel

Keywords and Synonyms

Critical section problem

ProblemDefinition

Concurrency, Synchronization and Resource
Allocation

A concurrent system is a collection of processors that com-
municate by reading and writing from a shared memory.
A distributed system is a collection of processors that com-
municate by sendingmessages over a communication net-
work. Such systems are used for various reasons: to allow
a large number of processors to solve a problem together
much faster than any processor can do alone, to allow the
distribution of data in several locations, to allow different
processors to share resources such as data items, printers
or discs, or simply to enable users to send electronic mail.

A process corresponds to a given computation. That is,
given some program, its execution is a process. Sometimes,
it is convenient to refer to the program code itself as a pro-
cess. A process runs on a processor, which is the physical
hardware. Several processes can run on the same processor
although in such a case only one of them may be active at
any given time. Real concurrency is achieved when several
processes are running simultaneously on several proces-
sors.

Processes in a concurrent system often need to syn-
chronize their actions. Synchronization between processes
is classified as either cooperation or contention. A typical
example for cooperation is the case in which there are two
sets of processes, called the producers and the consumers,
where the producers produce data items which the con-
sumers then consume.

Contention arises when several processes compete for
exclusive use of shared resources, such as data items, files,
discs, printers, etc. For example, the integrity of the data
may be destroyed if two processes update a common file at
the same time, and as a result, deposits and withdrawals
could be lost, confirmed reservations might have disap-
peared, etc. In such cases it is sometimes essential to allow
at most one process to use a given resource at any given
time.

Resource allocation is about interactions between pro-
cesses that involve contention. The problem is, how to re-
solve conflicts resulting when several processes are trying
to use shared resources. Put another way, how to allocate
shared resources to competing processes. A special case of
a general resource allocation problem is the mutual exclu-
sion problem where only a single resource is available.

The Mutual Exclusion Problem

Themutual exclusion problem, which was first introduced
by EdsgerW. Dijkstra in 1965, is the guarantee of mutually
exclusive access to a single shared resource when there are
several competing processes [6]. The problem arises in op-
erating systems, database systems, parallel supercomput-
ers, and computer networks, where it is necessary to re-
solve conflicts resulting when several processes are trying
to use shared resources. The problem is of great signifi-
cance, since it lies at the heart of many interprocess syn-
chronization problems.

The problem is formally defined as follows: it is as-
sumed that each process is executing a sequence of in-
structions in an infinite loop. The instructions are divided
into four continuous sections of code: the remainder, en-
try, critical section and exit. Thus, the structure of a mutual
exclusion solution looks as follows:

Concurrent Programming, Mutual Exclusion C 189

loop forever
remainder code;
entry code;
critical section;
exit code

end loop

A process starts by executing the remainder code. At some
point the process might need to execute some code in its
critical section. In order to access its critical section a pro-
cess has to go through an entry code which guarantees that
while it is executing its critical section, no other process
is allowed to execute its critical section. In addition, once
a process finishes its critical section, the process executes
its exit code in which it notifies other processes that it is no
longer in its critical section. After executing the exit code
the process returns to the remainder.

The Mutual exclusion problem is to write the code for
the entry code and the exit code in such a way that the fol-
lowing two basic requirements are satisfied.

Mutual exclusion: No two processes are in their critical
sections at the same time.

Deadlock-freedom: If a process is trying to enter its criti-
cal section, then some process, not necessarily the same one,
eventually enters its critical section.
The deadlock-freedom property guarantees that the sys-
tem as a whole can always continue to make progress.
However deadlock-freedommay still allow “starvation” of
individual processes. That is, a process that is trying to en-
ter its critical section, may never get to enter its critical
section, and wait forever in its entry code. A stronger re-
quirement, which does not allow starvation, is defined as
follows.

Starvation-freedom: If a process is trying to enter its crit-
ical section, then this process must eventually enter its criti-
cal section.
Although starvation-freedom is strictly stronger than
deadlock-freedom, it still allows processes to execute their
critical sections arbitrarily many times before some trying
process can execute its critical section. Such a behavior is
prevented by the following fairness requirement.

First-in-first-out (FIFO): No beginning process can enter
its critical section before a process that is already waiting for
its turn to enter its critical section.
The first two properties, mutual exclusion and deadlock
freedom, were required in the original statement of the
problem by Dijkstra. They are the minimal requirements

that one might want to impose. In solving the problem,
it is assumed that once a process starts executing its crit-
ical section the process always finishes it regardless of the
activity of the other processes. Of all the problems in inter-
process synchronization, the mutual exclusion problem is
the one studied most extensively. This is a deceptive prob-
lem, and at first glance it seems very simple to solve.

Key Results

Numerous solutions for the problem have been proposed
since it was first introduced by Edsger W. Dijkstra in
1965 [6]. Because of its importance and as a result of new
hardware and software developments, new solutions to the
problem are still being designed. Before the results are dis-
cussed, few models for interprocess communication are
mentioned.

Atomic Operations

Most concurrent solutions to the problem assumes an
architecture in which n processes communicate asyn-
chronously via a shared objects. All architectures sup-
port atomic registers, which are shared objects that sup-
port atomic reads and writes operations. A weaker no-
tion than an atomic register, called a safe register, is also
considered in the literature. In a safe register, a read not
concurrent with any writes must obtain the correct value,
however, a read that is concurrent with some write, may
return an arbitrary value. Most modern architectures sup-
port also some form of atomicity which is stronger than
simple reads and writes. Common atomic operations have
special names. Few examples are,
� Test-and-set: takes a shared registers r and a value val.

The value val is assigned to r, and the old value of r is
returned.

� Swap: takes a shared registers r and a local register `,
and atomically exchange their values.

� Fetch-and-increment: takes a register r. The value of r is
incremented by 1, and the old value of r is returned.

� Compare-and-swap: takes a register r, and two values:
new and old. If the current value of the register r is equal
to old, then the value of r is set to new and the value true
is returned; otherwise r is left unchanged and the value
false is returned.

Modern operating systems (such as Unix and Win-
dows) implement synchronization mechanisms, such as
semaphores, that simplify the implementation of mutual
exclusion locks and hence the design of concurrent ap-
plications. Also, modern programming languages (such as
Modula and Java) implement the monitor concept which

190 C Concurrent Programming, Mutual Exclusion

is a programmodule that is used to ensure exclusive access
to resources.

Algorithms and Lower Bounds

There are hundreds of beautiful algorithms for solving the
problem some of which are also very efficient. Only few are
mentioned below. First algorithms that use only atomic
registers, or even safe registers, are discussed.

The Bakery Algorithm. The Bakery algorithm is one of
the most known and elegant mutual exclusion algorithms
using only safe registers [9]. The algorithm satisfies the
FIFO requirement, however it uses unbounded size reg-
isters. A modified version, called the Black-White Bak-
ery algorithm, satisfies FIFO and uses bounded number of
bounded size atomic registers [14].

Lower bounds.A space lower bound for solving mutual
exclusion using only atomic registers is that: any deadlock-
free mutual exclusion algorithm for n processes must use
at least n shared registers [5]. It was also shown in [5] that
this bound is tight. A time lower bound for any mutual ex-
clusion algorithm using atomic registers is that: there is no
a priori bound on the number of steps taken by a process
in its entry code until it enters its critical section (counting
steps only when no other process is in its critical section or
exit code) [2]. Many other interesting lower bounds exist
for solving mutual exclusion.

A Fast Algorithm. A fast mutual exclusion algorithm,
is an algorithm in which in the absence of contention
only a constant number of shared memory accesses to the
shared registers are needed in order to enter and exit a crit-
ical section. In [10], a fast algorithm using atomic registers
is described, however, in the presence of contention, the
winning process may have to check the status of all other
n processes before it is allowed to enter its critical section.
A natural question to ask is whether this algorithm can be
improved for the case where there is contention.

Adaptive Algorithms. Since the other contending pro-
cesses are waiting for the winner, it is particularly impor-
tant to speed their entry to the critical section, by the de-
sign of an adaptive mutual exclusion algorithm in which
the time complexity is independent of the total number of
processes and is governed only by the current degree of
contention. Several (rather complex) adaptive algorithms
using atomic registers are known [1,3,14]. (Notice that, the
time lower bound mention earlier implies that no adaptive
algorithm using only atomic registers exists when time is
measured by counting all steps.)

Local-spinning Algorithms. Many algorithms include
busy-waiting loops. The idea is that in order to wait, a pro-
cess spins on a flag register, until some other process ter-

minates the spin with a single write operation. Unfortu-
nately, under contention, such spinning may generate lots
of traffic on the interconnection network between the pro-
cess and thememory. An algorithm satisfies local spinning
if the only type of spinning required is local spinning. Lo-
cal Spinning is the situation where a process is spinning on
locally-accessible registers. Shared registersmay be locally-
accessible as a result of either coherent caching or when
using distributed shared memory where shared memory is
physically distributed among the processors.

Three local-spinning algorithms are presented
in [4,8,11]. These algorithms use strong atomic operations
(i. e., fetch-and-increment, swap, compare-and-swap),
and are also called scalable algorithms since they are both
local-spinning and adaptive. Performance studies done,
have shown that these algorithms scale very well as con-
tention increases. Local spinning algorithms using only
atomic registers are presented in [1,3,14].

Only few representative results have been mentioned.
There are dozens of other very interesting algorithms and
lower bounds. All the results discussed above, and many
more, are described details in [15]. There are also many
results for solving mutual exclusion in distributedmessage
passing systems [13].

Applications

Synchronization is a fundamental challenge in computer
science. It is fast becoming a major performance and de-
sign issue for concurrent programming on modern archi-
tectures, and for the design of distributed and concurrent
systems.

Concurrent access to resources shared among several
processes must be synchronized in order to avoid inter-
ference between conflicting operations. Mutual exclusion
locks (i. e., algorithms) are the de facto mechanism for
concurrency control on concurrent applications: a pro-
cess accesses the resource only inside a critical section
code, within which the process is guaranteed exclusive ac-
cess. The popularity of this approach is largely due the
apparently simple programming model of such locks and
the availability of implementations which are efficient and
scalable. Essentially all concurrent programs (including
operating systems) use various types of mutual exclusion
locks for synchronization.

When using locks to protect access to a resource which
is a large data structure (or a database), the granularity of
synchronization is important. Using a single lock to pro-
tect the whole data structure, allowing only one process at
a time to access it, is an example of coarse-grained synchro-
nization. In contrast, fine-grained synchronization enables

Connected Dominating Set C 191

to lock “small pieces” of a data structure, allowing several
processes with non-interfering operations to access it con-
currently. Coarse-grained synchronization is easier to pro-
gram but is less efficient and is not fault-tolerant compared
to fine-grained synchronization. Using locks may degrade
performance as it enforces processes to wait for a lock to
be released. In few cases of simple data structures, such as
queues, stacks and counters, locking may be avoided by
using lock-free data structures.

Cross References

� Registers
� Self-Stabilization

Recommended Reading

In 1968, Edsger Wybe Dijkstra has published his famous
paper “Co-operating sequential processes” [7], that orig-
inated the field of concurrent programming. The mutual
exclusion problem was first stated and solved by Dijkstra
in [6], where the first solution for two processes, due to
Dekker, and the first solution for n processes, due to Di-
jkstra, have appeared. In [12], a collection of some early
algorithms for mutual exclusion are described. In [15],
dozens of algorithms for solving the mutual exclusion
problems and wide variety of other synchronization prob-
lems are presented, and their performance is analyzed ac-
cording to precise complexity measures.

1. Afek, Y., Stupp, G., Touitou, D.: Long lived adaptive splitter and
applications. Distrib. Comput. 30, 67–86 (2002)

2. Alur, R., Taubenfeld, G.: Results about fast mutual exclusion. In:
Proceedings of the 13th IEEE Real-Time Systems Symposium,
December 1992, pp. 12–21

3. Anderson, J.H., Kim, Y.-J.: Adaptive mutual exclusion with lo-
cal spinning. In: Proceedings of the 14th international sympo-
siumon distributed computing. Lect. Notes Comput. Sci.1914,
29–43, (2000)

4. Anderson, T.E.: The performance of spin lock alternatives for
shared-memory multiprocessor. IEEE Trans. Parallel Distrib.
Syst. 1(1), 6–16 (1990)

5. Burns, J.N., Lynch, N.A.: Bounds on shared-memory for mutual
exclusion. Inform. Comput. 107(2), 171–184 (1993)

6. Dijkstra, E.W.: Solution of a problem in concurrent program-
ming control. Commun. ACM 8(9), 569 (1965)

7. Dijkstra, E.W.: Co-operating sequential processes. In: Genuys,
F. (ed.) Programming Languages, pp. 43–112. Academic Press,
New York (1968). Reprinted from: Technical Report EWD-123,
Technological University, Eindhoven (1965)

8. Graunke, G., Thakkar, S.: Synchronization algorithms for
shared-memory multiprocessors. IEEE Comput. 28(6), 69–69
(1990)

9. Lamport, L.: A new solution of Dijkstra’s concurrent program-
ming problem. Commun. ACM 17(8), 453–455 (1974)

10. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans.
Comput. Syst. 5(1), 1–11 (1987)

11. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Trans.
Comput. Syst. 9(1), 21–65 (1991)

12. Raynal, M.: Algorithms for mutual exclusion. MIT Press, Cam-
bridge (1986). Translation of: Algorithmique du parallélisme,
(1984)

13. Singhal, M.: A taxonomy of distributedmutual exclusion. J. Par-
allel Distrib. Comput. 18(1), 94–101 (1993)

14. Taubenfeld, G.: The black-white bakery algorithm. In: 18th
international symposium on distributed computing, October
(2004). LNCS, vol. 3274, pp. 56–70. Springer, Berlin (2004)

15. Taubenfeld, G.: Synchronization algorithms and concurrent
programming. Pearson Education – Prentice-Hall, Upper Sad-
dle River (2006) ISBN: 0131972596

Connected Dominating Set
2003; Cheng, Huang, Li, Wu, Du

XIUZHEN CHENG1, FENG WANG2, DING-ZHU DU3

1 Department of Computer Science, The George
Washington University, Washington, D.C., USA

2 Mathematical Science and Applied Computing, Arizona
State University at the West Capmus, Phoenix, AZ, USA

3 Department of Computer Science, University of Dallas
at Texas, Richardson, TX, USA

Keywords and Synonyms

Techniques for partition

ProblemDefinition

Consider a graph G = (V ; E). A subset C of V is called
a dominating set if every vertex is either in C or adjacent
to a vertex in C. If, furthermore, the subgraph induced by
C is connected, thenC is called a connected dominating set.
A connected dominating set with a minimum cardinality
is called a minimum connected dominating set (MCDS).
Computing a MCDS is an NP-hard problem and there
is no polynomial-time approximation with performance
ratio �H(�) for � < 1 unless NP
 DTIME(nO(ln ln n))
where H is the harmonic function and� is the maximum
degree of the input graph [10].

A unit disk is a disk with radius one. A unit disk graph
(UDG) is associated with a set of unit disks in the Eu-
clidean plane. Each node is at the center of a unit disk.
An edge exists between two nodes u and v if and only if
juvj � 1 where juvj is the Euclidean distance between u
and v. This means that two nodes u and v are connected

192 C Connected Dominating Set

with an edge if and only if u’s disk covers v and v’s disk
covers u.

Computing an MCDS in a unit disk graph is still NP-
hard. How hard is it to construct a good approximation for
MCDS in unit disk graphs? Cheng et al. [5] answered this
question by presenting a polynomial-time approximation
scheme.

Historical Background

The connected dominating set problem has been studied
in graph theory for many years [22]. However, recently
it becomes a hot topic due to its application in wireless
networks for virtual backbone construction [4]. Guha and
Khuller [10] gave a two-stage greedy approximation for
the minimum connected dominating set in general graphs
and showed that its performance ratio is 3 + ln� where
� is the maximum node degree in the graph. To design
a one-step greedy approximation to reach a similar per-
formance ratio, the difficulty is to find a submodular po-
tential function. In [21], Ruan et al. successfully designed
a one step greedy approximation that reaches a better per-
formance ratio c + ln� for any c > 2. Du et al. [6] showed
that there exits a polynomial-time approximation with
a performance ratio a(1 + ln�) for any a > 1. The impor-
tance of those works is that the potential functions used
in their greedy algorithm are non-submodular and they
managed to complete its theoretical performance evalua-
tion with fresh ideas.

Guha and Khuller [10] also gave a negative result
that there is no polynomial-time approximation with
a performance ratio � ln� for � < 1 unless NP

DTIME(nO(ln ln n)). As indicated by [8], dominating sets
cannot be approximated arbitrarily well, unless P almost
equal to NP. These results move ones’ attention from gen-
eral graphs to unit disk graphs because the unit disk graph
is the model for wireless sensor networks and in unit disk
graphs, MCDS has a polynomial-time approximation with
a constant performance ratio. While this constant ratio is
getting improved step by step [1,2,19,24], Cheng et al. [5]
closed this story by showing the existence of a polynomial-
time approximation scheme (PTAS) for the MCDS in unit
disk graphs. This means that theoretically, the perfor-
mance ratio for polynomial-time approximation can be as
small as 1 + " for any positive number ".

Dubhashi et al. [7] showed that once a dominating set
is constructed, a connected dominating set can be eas-
ily computed in a distributed fashion. Most centralized
results for dominating sets are available at [18]. In par-
ticular, a simple constant approximation for dominating
sets in unit disk graphs was presented in [18]. Constant-

factor approximation for minimum-weight (connected)
dominating sets in UDGs was studied in [3]. A PTAS
for the minimum dominating set problem in UDGs was
proposed in [20]. Kuhn et al. [14] proved that a max-
imal independent set (MIS) (and hence also a domi-
nating set) can be computed in asymptotically optimal
time O(log n) in UDGs and a large class of bounded in-
dependence graphs. Luby [17] reported an elegant lo-
cal O(log n) algorithm for MIS on general graphs. Jia
et al. [11] proposed a fast O(log n) distributed approx-
imation for dominating set in general graphs. The first
constant-time distributed algorithm for dominating sets
that achieves a non-trivial approximation ratio for gen-
eral graphs was reported in [15]. The matching ˝(log n)
lower bound is considered to be a classic result in dis-
tributed computing [16]. For UDGs a PTAS is achiev-
able in a distributed fashion [13]. The fastest determinis-
tic distributed algorithm for dominating sets in UDGs was
reported in [12], and the fastest randomized distributed
algorithm for dominating sets in UDGs was presented
in [9].

Key Results

The construction of PTAS for MCDS is based on the fact
that there is a polynomial-time approximation with a con-
stant performance ratio. Actually, this fact is quite easy to
see. First, note that a unit disk contains at most five inde-
pendent vertices [2]. This implies that everymaximal inde-
pendent set has a size at most 1 + 4opt where opt is the size
of an MCDS. Moreover, every maximal independent set is
a dominating set and it is easy to construct a maximal in-
dependent set with a spanning tree of all edges with length
two. All vertices in this spanning tree form a connected
dominating set of a size at most 1 + 8opt. By improving
the upper bound for the size of a maximal independent
set [25] and the way to interconnecting a maximal inde-
pendent set [19], the constant ratio has been improved to
6.8 with a distributed implementation.

The basic techniques in this construction is nonadap-
tive partition and shifting. Its general picture is as fol-
lows: First, the square containing all vertices of the in-
put unit-disk graph is divided into a grid of small cells.
Each small cell is further divided into two areas, the cen-
tral area and the boundary area. The central area con-
sists of points h distance away from the cell boundary.
The boundary area consists of points within distance
h + 1 from the boundary. Therefore, two areas are over-
lapping. Then a minimum union of connected dominat-
ing sets is computed in each cell for connected compo-
nents of the central area of the cell. The key lemma is to

Connected Dominating Set C 193

Connected Dominating Set, Figure 1
SquaresQ and Q̄

prove that the union of all such minimum unions is no
more than the minimum connected dominating set for
the whole graph. For vertices not in central areas, just
use the part of an 8-approximation lying in boundary ar-
eas to dominate them. This part together with the above
union forms a connected dominating set for the whole
input unit-disk graph. By shifting the grid around to get
partitions at different coordinates, a partition having the
boundary part with a very small upper bound can be ob-
tained.

The following details the construction.
Given an input connected unit-disk graph G = (V ; E)

residing in a square Q = f(x; y) j 0 � x � q; 0 � y � qg
where q � jV j. To construct an approximation with
a performance ratio 1 + " for " > 0, choose an inte-
ger m = O((1/") ln(1/")). Let p = bq/mc + 1. Consider
the square Q̄ = f(x; y) j �m � x � mp;�m � y � mpg.
Partition Q̄ into (p + 1) � (p + 1) grids so that each cell
is an m � m square excluding the top and the right
boundaries and hence no two cells are overlapping each
other. This partition of Q̄ is denoted by P(0) (Fig. 1).
In general, the partition P(a) is obtained from P(0) by
shifting the bottom-left corner of Q̄ from (�m;�m) to
(�m + a;�m + a). Note that shifting from P(0) to P(a) for
0 � a � m keeps Q covered by the partition.

For each cell e (an m � m square), Ce(d) denotes
the set of points in e away from the boundary by dis-
tance at least d, e. g., Ce (0) is the cell e itself. Denote
Be(d) = Ce (0) � Ce (d). Fix a positive integer h =
7 + 3blog2(4m

2/
)c. Call Ce(h) the central area of e and
Be(h + 1) the boundary area of e. Hence the boundary area
and the central area of each cell are overlapping with width
one.

Central Area

Let Ge(d) denote the part of input graph G lying in area
Ce(d). In particular, Ge(h) is the part of graph G lying in
the central area of e. Ge(h) may consist of several con-
nected components. Let Ke be a subset of vertices in Ge(0)
with a minimum cardinality such that for each connected
component H of Ge(h), Ke contains a connected compo-
nent dominating H. In other words, Ke is a minimum
union of connected dominating sets in G(0) for the con-
nected components of Ge(h).

Now, denote by K(a) the union of Ke for e over all cells
in partition P(a). K(a) has two important properties:

Lemma 1 K(a) can be computed in time nO(m2).

Lemma 2 jKaj � opt for 0 � a � m � 1.

Lemma 1 is not hard to see. Note that in a square with
edge length

p
2/2, all vertices induce a complete subgraph

in which any vertexmust dominate all other vertices. It fol-
lows that the minimum dominating set for the vertices of
Ge (0) has size at most (d

p
2me)2. Hence, the size of Ke is

at most 3(d
p
2me)2 because any dominating set in a con-

nected graph has a spanning tree with an edge length at
most three. Suppose cell Ge(0) has ne vertices. Then the
number of candidates for Ke is at most

3(d
p
2me)2X

k=0

ne
k

!
= nO(m2)

e :

Hence, computing K(a) can be done in time

X
e

nO(m2)
e �

 X
e

ne

!O(m2)

= nO(m2) :

However, the proof of Lemma 2 is quite tedious. The
reader who is interested in it may find it in [5].

Boundary Area

Let F be a connected dominating set of G satisfying
jFj � 8opt + 1. Denote by F(a) the subset of F lying in
the boundary area Ba(h + 1). Since F is constructed in
polynomial-time, only the size of F(a) needs to be studied.

Lemma 3 Suppose h = 7 + 3blog2(4m
2/
)c and bm/(h +

1)c � 32/". Then there is at least half of i = 0; 1; :::; bm/(h+
1)c � 1 such that jF(i(h + 1))j � " � opt.

Proof Let FH(a) (FV(a)) denote the subset of ver-
tices in F(a) each with distance < h + 1 from the hor-
izontal (vertical) boundary of some cell in P(a). Then

194 C Connected Dominating Set

F(a) = FH(a)[FV (a). Moreover, all FH(i(h + 1)) for
i = 0; 1; :::; bm/(h + 1)c � 1 are disjoint. Hence,

bm/(h+1)c�1X
i=0

jFH(i(h + 1))j � jFj � 8opt:

Similarly, all FV (i(h + 1)) for i = 0; 1; :::; bm/(h + 1)c � 1
are disjoint and

bm/(h+1)c�1X
i=0

jFV (i(h + 1))j � jFj � 8opt :

Thus

bm/(h+1)c�1X
i=0

jF(i(h + 1))j

�

bm/(h+1)c�1X
i=0

(jFH(i(h + 1))j + jFV (i(h + 1))j)

� 16opt :

That is,

1
bm/(h + 1)c

bm/(h+1)c�1X
i=0

jF(i(h + 1))j � ("/2)opt:

This means that there are at least half of F(i(h + 1)) for
i = 0; 1; bm/(h + 1)c � 1 satisfying

jF(i(h + 1))j � " � opt : �

Putting Together

Now put K(a) and F(a). By Lemmas 2 and 3, there exists
a 2 f0; h + 1; :::; (bm/(h + 1)c � 1)(h + 1)g such that

jK(a)[F(a)j � (1 + ")opt:

Lemma 4 For 0 � a � m � 1, K(a)[F(a) is a connected
dominating for input connected graph G.

Proof K(a)[F(a) is clearly a dominating set for input
graph G. Its connectivity can be shown as follows. Note
that the central area and the boundary area are overlap-
ping with an area of width one. Thus, for any connected
component H of the subgraph Ge(h), F(a) has a vertex
in H. Hence, F(a) must connect to any connected dom-
inating set for H, especially, the one DH in K(a). This
means that DH has making up the connections of F lost
from cutting a part in H. Therefore, the connectivity of
K(a) [F(a) follows from the connectivity of F. �

By summarizing the above results, the following result is
obtained:

Theorem 1 There is a (1 + ")-approximation for
MCDS in connected unit-disk graphs, running in time
nO((1/") log(1/")2).

Applications

An important application of connected dominating sets is
to construct virtual backbones for wireless networks, espe-
cially, wireless sensor networks [4]. The topology of a wire-
less sensor network is often a unit disk graph.

Open Problems

In general, the topology of a wireless network is a disk
graph, that is, each vertex is associated with a disk. Differ-
ent disks may have different sizes. There is an edge from
vertex u to vertex v if and only if the disk at u covers
v. A virtual backbone in disk graphs is a subset of ver-
tices, which induces a strongly connected subgraph, such
that every vertex not in the subset has an in-edge coming
from a vertex in the subset and also has an out-edge go-
ing into a vertex in the subset. Such a virtual backbone can
be considered as a connected dominating set in disk graph.
Is there a polynomial-time approximation with a constant
performance ratio? It is open right now. Thai et al. [23] has
made some effort towards this direction.

Cross References

� Dominating Set
� Exact Algorithms for Dominating Set
� Greedy Set-Cover Algorithms
�Max Leaf Spanning Tree

Recommended Reading
1. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Message-optimal con-

nected dominating sets in mobile ad hoc networks. In: ACM
MOBIHOC, Lausanne, Switzerland, 09–11 June 2002

2. Alzoubi, K.M., P.-J.Wan, Frieder, O.: New Distributed Algorithm
for Connected Dominating Set in Wireless Ad Hoc Networks.
In: HICSS35, Hawaii, January 2002

3. Ambuhl, C., Erlebach, T., Mihalak, M., Nunkesser, M.: Con-
stant-Factor Approximation for Minimum-Weight (Connected)
Dominating Sets in Unit Disk Graphs. In: LNCS, vol. 4110, pp 3–
14. Springer, Berlin (2006)

4. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Applications of Con-
nected Dominating Sets in Wireless Networks. In: Du, D.-Z.,
Pardalos, P. (eds.) Handbook of Combinatorial Optimization,
pp. 329–369. Kluwer Academic (2004)

5. Cheng, X., Huang, X., Li, D., Wu,W., Du, D.-Z.: A polynomial-time
approximation scheme for minimum connected dominating
set in ad hoc wireless networks. Networks 42, 202–208 (2003)

Connectivity and Fault-Tolerance in Random Regular Graphs C 195

6. Du, D.-Z., Graham, R.L., Pardalos, P.M., Wan, P.-J., Wu, W., Zhao,
W.: Analysis of greedy approximations with nonsubmodular
potential functions. In: Proceedings of the 19th annual ACM-
SIAM Symposium on Discrete Algorithms (SODA) pp. 167–175.
January 2008

7. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srini-
vasan, A.: Fast Distributed Algorithms for (Weakly) Connected
Dominating Sets and Linear-Size Skeletons. In: SODA, 2003,
pp. 717–724

8. Feige, U.: A Threshold of lnn for Approximating Set Cover.
J. ACM 45(4) 634–652 (1998)

9. Gfeller, B., Vicari, E.: A Randomized Distributed Algorithm for
the Maximal Independent Set Problem in Growth-Bounded
Graphs. In: PODC 2007

10. Guha, S., Khuller, S.: Approximation algorithms for connected
dominating sets. Algorithmica 20, 374–387 (1998)

11. Jia, L., Rajaraman, R., Suel, R.: An Efficient DistributedAlgorithm
for Constructing Small Dominating Sets. In: PODC, Newport,
Rhode Island, USA, August 2001

12. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast De-
terministic Distributed Maximal Independent Set Computa-
tion on Growth-Bounded Graphs. In: DISC, Cracow, Poland,
September 2005

13. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local Ap-
proximation Schemes for Ad Hoc and Sensor Networks. In:
DIALM-POMC, Cologne, Germany, September 2005

14. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the Locality of
Bounded Growth. In: PODC, Las Vegas, Nevada, USA, July 2005

15. Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominat-
ing Set Approximation. In: PODC, Boston, Massachusetts, USA,
July 2003

16. Linial, N.: Locality in distributedgraph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

17. Luby, M.: A Simple Parallel Algorithm for theMaximal Indepen-
dent Set Problem. SIAM J. Comput. 15, 1036–1053 (1986)

18. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz,
D.J.: Simple Heuristics for Unit Disk Graphs. Networks 25, 59–
68 (1995)

19. Min, M., Du, H., Jia, X., Huang, X., Huang, C.-H., Wu, W.: Improv-
ing construction for connected dominating set with Steiner
tree in wireless sensor networks. J. Glob. Optim. 35, 111–119
(2006)

20. Nieberg, T., Hurink, J.L.: A PTAS for the Minimum Dominating
Set Problem in Unit Disk Graphs. LNCS, vol. 3879, pp. 296–306.
Springer, Berlin (2006)

21. Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.-I.: A greedy approx-
imation for minimum connected dominating set. Theor. Com-
put. Sci. 329, 325–330 (2004)

22. Sampathkumar, E., Walikar, H.B.: The Connected Domination
Number of a Graph. J. Math. Phys. Sci. 13, 607–613 (1979)

23. Thai, M.T., Wang F., Liu, D., Zhu, S., Du, D.-Z.: Connected Dom-
inating Sets in Wireless Networks with Different Transmission
Range. IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)

24. Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed Construction
of Connected Dominating Set in Wireless Ad Hoc Networks. In:
IEEE INFOCOM 2002

25. Wu, W., Du, H., Jia, X., Li, Y., Huang, C.-H.: Minimum Connected
Dominating Sets and Maximal Independent Sets in Unit Disk
Graphs. Theor. Comput. Sci. 352, 1–7 (2006)

Connectivity and Fault-Tolerance
in Random Regular Graphs
2000; Nikoletseas, Palem, Spirakis, Yung

SOTIRIS NIKOLETSEAS
Department of Computer Engineering and Informatics,
Computer Technology Institute, University of Patras
and CTI, Patras, Greece

Keywords and Synonyms

Robustness

ProblemDefinition

Anewmodel of random graphs was introduced in [7], that
of random regular graphs with edge faults (denoted here-
after byGr

n;p), obtained by selecting the edges of a random
member of the set of all regular graphs of degree r indepen-
dently and with probability p. Such graphs can represent
a communication network in which the links fail indepen-
dently and with probability f = 1 � p. A formal definition
of the probability space Gr

n;p follows.

Definition 1 (the Gr
n, p probability space) Let Gr

n be the
probability space of all random regular graphs with n ver-
tices where the degree of each vertex is r. The probability
space Gr

n;p of random regular graphs with edge faults is
constructed by the following two subsequent random ex-
periments: first, a random regular graph is chosen from the
spaceGr

n and, second, each edge is randomly and indepen-
dently deleted from this graph with probability f = 1 � p.

Important connectivity properties of Gr
n;p are investigated

in this entry by estimating the ranges of r; f for which,
with high probability, Gr

n;p graphs a) are highly connected
b) become disconnected and c) admit a giant (i. e. of	(n)
size) connected component of small diameter.

Notation The terms “almost certainly” (a.c.) and “with
high probability” (w.h.p.) will be frequently usedwith their
standard meaning for random graph properties. A prop-
erty defined in a random graph holds almost certainly
when its probability tends to 1 as the independent vari-
able (usually the number of vertices in the graph) tends
to infinity. “With high probability” means that the prob-
ability of a property of the random graph (or the success
probability of a randomized algorithm) is at least 1� n�˛ ,
where ˛ > 0 is a constant and n is the number of vertices
in the graph.

The interested reader can further study [1] for an ex-
cellent exposition of the Probabilistic Method and its ap-
plications, [2] for a classic book on random graphs, as well

196 C Connectivity and Fault-Tolerance in Random Regular Graphs

as [6], an excellent book on the design and analysis of ran-
domized algorithms.

Key Results

Summary This entry studies several important connec-
tivity properties of random regular graphs with edge faults.
In order to deal with the Gr

n;p model, [7] first extends the
notion of configurations and the translation lemma be-
tween configurations and random regular graphs provided
by B. Bollobás [2,3], by introducing the concept of ran-
dom configurations to account for edge faults, and by also
providing an extended translation lemma between ran-
dom configurations and random regular graphs with edge
faults.

For this new model of random regular graphs with
edge faults [7] shows that:
1. For all failure probabilities f = 1 � p � n�� (� � 3

2r
fixed) and any r � 3 the biggest part of Gr

n;p (i. e. the
whole graph except ofO(1) vertices) remains connected
and this connected part can not be separated, almost
certainly, unlessmore than r vertices are removed.Note
interestingly that the situation for this range of f and r
is very similar, despite the faults, to the properties ofGr

n
which is r-connected for r � 3.

2. Gr
n;p is disconnected a.c. for constant f and any r =

o(log n), but is highly connected, almost certainly, when
r � ˛ log n, where ˛ > 0 an appropriate constant.

3. Even when Gr
n;p becomes disconnected, it still has a gi-

ant component of small diameter, even when r = O(1).
An O(n log n)-time algorithm to construct a giant com-
ponent is provided.

Configurations and Translation Lemmata

Note that it is not as easy (from the technical point of view)
as in the Gn;p case to argue about random regular graphs,
because of the stochastic dependencies on the existence of
the edges due to regularity. The following notion of con-
figurations was introduced by B. Bollobás [2,3] to trans-
late statements for random regular graphs to statements
for the corresponding configurations which avoid the edge
dependencies due to regularity and thus aremuch easier to
deal with:

Definition 2 (Bollobás, [3]) Letw = [n
j=1wj be a fixed set

of 2m =
Pn

j=1 dj labeled vertices where jwjj = dj . A con-
figuration F is a partition of w into m pairs of vertices,
called edges of F.

Given a configuration F, let �(F) be the (multi)graph with
vertex set V in which (i, j) is an edge if and only if F has

a pair (edge) with one element in wi and the other in wj.
Note that every regular graph G 2 Gr

n is of the form �(F)
for exactly (r!)n configurations. However not every con-
figuration F with dj = r for all j corresponds to a G 2 Gr

n
since F may have an edge entirely in some wj or parallel
edges joining wi and wj.

Let ' be the set of all configurations F and letGr
n be the

set of all regular graphs. Given a property (set) Q
 Gr
n let

Q�
 � such that Q� \ ��1(Gr
n) = ��1(Q). By estimat-

ing the probability of possible cycles of length one (self-
loops) and two (loops) among pairs wi ;wj in �(F), The
following important lemma follows:

Lemma 1 (Bollobás, [2]) If r � 2 is fixed and property
Q� holds for a.e. configuration, then property Q holds for
a.e. r�regular graph.

The main importance of the above lemma is that when
studying random regular graphs, instead of considering
the set of all random regular graphs, one can study the
(much more easier to deal with) set of configurations.

In order to deal with edge failures, [7] introduces here
the following extension of the notion of configurations:

Definition 3 (random configurations) Let w = [n
j=1wj

be a fixed set of 2m =
Pn

j=1 dj labeled “vertices” where
jwjj = dj . Let F be any configuration of the set '. For each
edge of F, remove it with probability 1 � p, independently.
Let �̂ be the new set of objects and F̂ the outcome of the
experiment. F̂ is called a random configuration.

By introducing probability p in every edge, an extension
of the proof of Lemma 1 leads (since in both Q̄ and Q̂
each edge has the same probability and independence to
be deleted, thus the modified spaces follow the properties
of Q and Q�) to the following extension to random con-
figurations.

Lemma 2 (extended translation lemma) Let r � 2 fixed
and Q̄ be a property for Gr

n;p graphs. If Q̂ holds for a.e.
random configuration, then the corresponding property Q̄
holds for a.e. graph in Gr

n;p.

Multiconnectivity Properties of Gr
n;p

The case of constant link failure probability f is studied,
which represents a worst case for connectivity preserva-
tion. Still, [7] shows that logarithmic degrees suffice to
guarantee that Gr

n;p remains w.h.p. highly connected, de-
spite these constant edge failures. More specifically:

Theorem 3 Let G be an instance of Gr
n;p where p = 	(1)

and r � ˛ log n, where ˛ > 0 an appropriate constant.

Connectivity and Fault-Tolerance in Random Regular Graphs C 197

Then G is almost certainly k-connected, where

k = O
�

log n
log log n

�
:

The proof of the above Theorem uses Chernoff bounds
to estimate the vertex degrees in Gr

n;p , and “similarity” of
Gr
n;p andGn;p0 (whose properties are known) for a suitably

chosen p0.
Now the (more practical) case in which f = 1 � p =

o(1) is considered and it is proved that the desired con-
nectivity properties of random regular graphs are almost
preserved despite the link failures. More specifically:

Theorem4 Let r � 3 and f = 1 � p = O(n��) for � � 3
2r .

Then the biggest part of Gr
n;p (i. e. the whole graph except of

O(1) vertices) remains connected and this connected part
(excluding the vertices that were originally neighbors of the
O(1)-sized disconnected set) can not be separated unless
more than r vertices are removed, with probability tending
to 1 as n tends to +1.

The proof is carefully extending, in the case of faults,
a known technique for random regular graphs about not
admitting small separators.

Gr
n;p Becomes Disconnected

Next remark that a constant link failure probability dra-
matically alters the connectivity structure of the regular
graph in the case of low degrees. In particular, by using the
notion of random configurations, [7] proves the following
theorem:

Theorem 5 When 2 � r �
p

log n
2 and p = 	(1) then

Gr
n;p has at least one isolated node with probability at least

1 � n�k ; k � 2.

The regime for disconnection is in fact larger, since [7]
shows that Gr

n;p is a.c. disconnected even for any
r = o(log n) and constant f . The proof of this last claim is
complicated by the fact that due to the range for r one has
to avoid using the extended translation lemma.

Existence of a Giant Component in Gr
n;p

Since Gr
n;p is a.c. disconnected for r = o(log n) and

1 � p = f = 	(1), it would be interesting to knowwhether
at least a large part of the network represented by Gr

n;p is
still connected, i. e. whether the biggest connected compo-
nent of Gr

n;p is large. In particular, [7] shows that:

Theorem 6 When f < 1 � 32
r then Gr

n;p admits a gi-
ant (i. e. 	(n)-sized) connected component for any r � 64

with probability at least 1 � O(log2 n)/(n˛/3), where ˛ > 0
a constant that can be selected.

In fact, the proof of the existence of the component in-
cludes first proving the existence (w.h.p.) of a sufficiently
long (of logarithmic size) path as a basis for a BFS pro-
cess starting from the vertices of that path that creates the
component. The proof is quite complex: occupancy ar-
guments are used (bins correspond to the vertices of the
graphs while balls correspond to its edges); however, the
random variables involved are not independent, and in or-
der to use Chernoff-Hoeffding bounds for concentration
one must prove that these random variables, although not
independent, are negatively associated. Furthermore, the
evaluation of the success of the BFS process uses a careful,
detailed average case analysis.

The path construction and the BFS process can be
viewed as an algorithm that (in case of no failures) actu-
ally reveals a giant connected component. This algorithm
is very efficient, as shown by the following result:

Theorem 7 A giant component of Gr
n;p can be con-

structed in O(n log n) time, with probability at least
1 � O(log2 n)/(n˛/3), where ˛ > 0 a constant that can be
selected.

Applications

In recent years the development and use of distributed sys-
tems and communication networks has increased dramat-
ically. In addition, state-of-the-art multiprocessor archi-
tectures compute over structured, regular interconnection
networks. In such environments, several applications may
share the samenetwork while executing concurrently. This
may lead to unavailability of certain network resources
(e. g. links) for certain applications. Similarly, faults may
cause unavailability of links or nodes. The aspect of reli-
able distributed computing (which means computing with
the available resources and resisting faults) adds value to
applications developed in such environments.

When computing in the presence of faults, one cannot
assume that the actual structure of the computing environ-
ment is known. Faults may happen even in execution time.
In addition, what is a “faulty” or “unavailable” link for one
application may in fact be the de-allocation of that link be-
cause it is assigned (e. g. by the network operation system)
to another application. The problem of analyzing allocated
computation or communication in a network over a ran-
domly assigned subnetwork and in the presence of faults
has a nature different from fault analysis of special, well-
structured networks (e. g. hypercube), which does not deal
with network aspects. The work presented in this entry

198 C Consensus with Partial Synchrony

addresses this interesting issue, i. e. analyzing the average
case taken over a set of possible topologies and focuses on
multiconnectivity and existence of giant component prop-
erties, required for reliable distributed computing in such
randomly allocated unreliable environments.

The following important application of this work
should be noted: multitasking in distributed memorymul-
tiprocessors is usually performed by assigning an arbitrary
subnetwork (of the interconnection network) to each task
(called the computation graph). Each parallel programmay
then be expressed as communicating processors over the
computation graph. Note that a multiconnectivity value k
of the computation graph means also that the execution of
the application can tolerate up to k � 1 on-line additional
faults.

Open Problems

The ideas presented in [7] inspired already further inter-
esting research. Andreas Goerdt [4] continued the work
presented in a preliminary version [8] of [7] and showed
the following results: if the degree r is fixed then p = 1

r�1
is a threshold probability for the existence of a linear sized
component in the faulty version of almost all random reg-
ular graphs. In fact, he further shows that if each edge of an
arbitrary graph G with maximum degree bounded above
by r is present with probability p =

r�1 , when � < 1,
then the faulty version of G has only components whose
size is at most logarithmic in the number of nodes, with
high probability. His result implies some kind of optimal-
ity of random regular graphs with edge faults. Further-
more, [5,10] investigates important expansion properties
of random regular graphs with edge faults, as well as [9]
does in the case of fat-trees, a common type of intercon-
nection networks. It would be also interesting to further
pursue this line of research, by also investigating other
combinatorial properties (and also provide efficient algo-
rithms) for random regular graphs with edge faults.

Cross References

� Hamilton Cycles in Random Intersection Graphs
� Independent Sets in Random Intersection Graphs
�Minimum k-Connected Geometric Networks

Recommended Reading

1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley (1992)
2. Bollobás, B.: Random Graphs. Academic Press (1985)
3. Bollobás, B.: A probabilistic proof of an asymptotic formula for

the number of labeled regular graphs. Eur. J. Comb. 1, 311–316
(1980)

4. Goerdt, A.: The giant component threshold for random regu-
lar graphs with edge faults. In: Proceedings of Mathematical
Foundations of Computer Science ’97 (MFCS’97), pp. 279–288.
(1997)

5. Goerdt, A.: Random regular graphswith edge faults: Expansion
through cores. Theor. Comput. Sci. 264(1), 91–125 (2001)

6. Motwani, R., Raghavan, P.: Randomized Algorithms. Cam-
bridge University Press (1995)

7. Nikoletseas, S., Palem, K., Spirakis, P., Yung, M.: Connectivity
Properties in Random Regular Graphs with Edge Faults. In:
Special Issue on Randomized Computing of the International
Journal of Foundations of Computer Science (IJFCS), vol. 11
no. 2, pp. 247–262, World Scientific Publishing Company
(2000)

8. Nikoletseas, S., Palem, K., Spirakis, P., Yung, M.: Short Vertex
Disjoint Paths and Multiconnectivity in Random Graphs: Re-
liable Network Computing. In: Proc. 21st International Collo-
quium on Automata, Languages and Programming (ICALP),
pp. 508–515. Jerusalem (1994)

9. Nikoletseas, S., Pantziou, G., Psycharis, P., Spirakis, P.: On the
reliability of fat-trees. In: Proc. 3rd International European Con-
ference on Parallel Processing (Euro-Par), pp. 208–217, Passau,
Germany (1997)

10. Nikoletseas, S., Spirakis, P.: Expander Properties in Random
Regular Graphs with Edge Faults. In: Proc. 12th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS),
pp.421–432, München (1995)

Consensus with Partial Synchrony
1988; Dwork, Lynch, Stockmeyer

BERNADETTE CHARRON-BOST1, ANDRÉ SCHIPER2
1 Laboratory for Informatics, The Polytechnic School,
Palaiseau, France

2 EPFL, Lausanne, Switzerland

Keywords and Synonyms

Agreement problem

ProblemDefinition

Reaching agreement is one of the central issues in fault
tolerant distributed computing. One version of this prob-
lem, called Consensus, is defined over a fixed set ˘ =
fp1; : : : ; png of n processes that communicate by ex-
changing messages along channels. Messages are cor-
rectly transmitted (no duplication, no corruption), but
some of them may be lost. Processes may fail by pre-
maturely stopping (crash), may omit to send or receive
some messages (omission), or may compute erroneous
values (Byzantine faults). Such processes are said to be
faulty. Every process p 2 ˘ has an initial value vp and

Consensus with Partial Synchrony C 199

non-faulty processes must decide irrevocably on a com-
mon value v. Moreover, if the initial values are all equal
to the same value v, then the common decision value
is v. The properties that define Consensus can be split
into safety properties (processes decide on the same value;
the decision value must be consistent with initial values)
and a liveness property (processes must eventually de-
cide).

Various Consensus algorithms have been de-
scribed [6,12] to cope with any type of process failures if
there is a known1 bound on the transmission delay of mes-
sages (communication is synchronous) and a known bound
on process relative speeds (processes are synchronous). In
completely asynchronous systems, where there exists no
bound on transmission delays and no bound on process
relative speeds, Fischer, Lynch, and Paterson [8] have
proved that there is no Consensus algorithm resilient
to even one crash failure. The paper by Dwork, Lynch,
and Stockmeyer [7] introduces the concept of partial
synchrony, in the sense it lies between the completely syn-
chronous and completely asynchronous cases, and shows
that partial synchrony makes it possible to solve Consen-
sus in the presence of process failures, whatever the type
of failure is.

For this purpose, the paper examines the quite realistic
case of asynchronous systems that behave synchronously
during some “good” periods of time. Consensus algo-
rithms designed for synchronous systems do not work in
such systems since they may violate the safety properties
of Consensus during a bad period, that is when the sys-
tem behaves asynchronously. This leads to the following
question: is it possible to design a Consensus algorithm
that never violates safety conditions in an asynchronous
system, while ensuring the liveness condition when some
additional conditions are met?

Key Results

The paper has been the first to provide a positive and
comprehensive answer to the above question. More pre-
cisely, the paper (1) defines various types of partial syn-
chrony and introduces a new round based computational
model for partially synchronous systems, (2) gives vari-
ous Consensus algorithms according to the severity of fail-
ures (crash, omission, Byzantine faults with or without au-
thentication), and (3) shows how to implement the round
based computational model in each type of partial syn-
chrony.

1Intuitively, “known bound” means that the bound can be “built
into” the algorithm. A formal definition is given in the next section.

Partial Synchrony

Partial synchrony applies both to communications and to
processes. Two definitions for partially synchronous com-
munications are given: (1) for each run, there exists an up-
per bound� on communication delays, but� is unknown
in the sense it depends on the run; (2) there exists an up-
per bound � on communication delays that is common
for all runs (� is known), but holds only after some time
T, called the Global Stabilization Time (GST) that may de-
pend on the run (GST is unknown). Similarly, partially
synchronous processes are defined by replacing “transmis-
sion delay of messages” by “relative process speeds” in
(1) and (2) above. That is, the upper bound on relative pro-
cess speed ˚ is unknown, or ˚ is known but holds only
after some unknown time.

Basic RoundModel

The paper considers a round based model: computation is
divided into rounds of message exchange. Each round con-
sists of a send step, a receive step, and then a computation
step. In a send step, each process sends messages to any
subset of processes. In a receive step, some subset of the
messages sent to the process during the send step at the
same round is received. In a computation step, each pro-
cess executes a state transition based on its current state
and the set of messages just received.

Some of the messages that are sent may not be re-
ceived, i.e, some can be lost. However, the basic round
model assumes that there is some round GSR, such that
all messages sent from non faulty processes to non faulty
processes at round GSR or afterward are received.

Consensus Algorithm
for Benign Faults (requires f < n/2)

In the paper, the algorithm is only described informally
(textual form). A formal expression is given by Algo-
rithm 1: the code of each process is given round by round,
and each round is specified by the send and the com-
putation steps (the receive step is implicit). The con-
stant f denotes the maximum number of processes that
may be faulty (crash or omission). The algorithm requires
f < n/2.

Rounds are grouped into phases, where each phase
consists in four consecutive rounds. The algorithm in-
cludes the rotating coordinator strategy: each phase k is
led by a unique coordinator—denoted by coordk—defined
as process pi for phase k = i(mod n). Each process p
maintains a set Properp of values that p has heard of
(proper values), initialized to fvpg where vp is p’s ini-

200 C Consensus with Partial Synchrony

1: Initialization:
2: Acce ptabl ep := fvpg {vp is the initial value of p }
3: Properp := fvpg {All the lines for maintaining Properp are trivial to write, and so are omitted}
4: votep := ?
5: Lockp := ;

6: Round r = 4k � 3 :
7: Send:
8: send hAcce ptabl epi to coordk

9: Compute:
10: if p = coordk and p receives at least� n � f messages containing a common value then
11: votep := select one of these common acceptable values

12: Round r = 4k � 2 :
13: Send:
14: if p = coordk and votep ¤ ? then
15: send hvotepi to all processes

16: Compute:
17: if received hvi from coordk then
18: Lockp := Lockp n fv;�g; Lockp := Lockp [f(v; k)g;

19: Round r = 4k � 1 :
20: Send:
21: if 9v s.t. (v ; k) 2 Lockp then
22: send hacki to coordk

23: Compute:
24: if p = coordk then
25: if received at least� f + 1 ack messages then
26: DECIDE(votep);
27: votep := ?

28: Round r = 4k :
29: Send:
30: send hLockpi to all processes

31: Compute:
32: for all (v; �) 2 Lockp do
33: if received (w; �) s.t. w ¤ v and � � � then {release lock on v}
34: Lockp := Lockp [f(w; �)g n f(v; �)g;
35: if jLockp j = 1 then
36: Acce ptabl ep := v where (v;�) 2 Lockp
37: else
38: if Lockp = ; then Acce ptabl ep := Properp else Acce ptabl ep := ;

Consensus with Partial Synchrony, Algorithm 1
Consensus algorithm in the basic roundmodel for benign faults (f < n/2)

tial value. Process p attaches Properp to each message it
sends.

Process p may lock value v when p thinks that some
process might decide v. Thus value v is an acceptable value
to p if (1) v is a proper value to p, and (2) p does not have
a lock on any value except possibly v (lines 35 to 38).

At the first round of phase k (round 4k � 3), each pro-
cess sends the list of its acceptable values to coordk. If co-
ordk receives at least n � f sets of acceptable values that
all contain some value v, then coordk votes for v (line 11),
and sends its vote to all at second round 4k � 2. Upon
receiving a vote for v, any process locks v in the current
phase (line 18), releases any earlier lock on v, and sends
an acknowledgment to coordk at the next round 4k � 1. If
the latter process receives acknowledgments from at least
f + 1 processes, then it decides (line 26). Finally locks are

released at round 4k—for any value v, only the lock from
the most recent phase is kept, see line 34—and the set of
values acceptable to p is updated (lines 35 to 38).

Consensus Algorithm
for Byzantine Faults (requires f < n/3)

Two algorithms for Byzantine faults are given. The first
algorithm assumes signed messages, which means that
any process can verify the origin of all messages. This
fault model is called Byzantine faults with authentica-
tion. The algorithm has the same phase structure as Al-
gorithm 1. The difference is that (1) messages are signed,
and (2) “proofs” are carried by some messages. A proof
carried by message m sent by some process pi in phase
k consists of a set of signed messages sgn j(m0; k), prov-

Consensus with Partial Synchrony C 201

ing that pi received message (m0; k) in phase k from pj be-
fore sending m. A proof is carried by the message send at
line 16 and line 30 (Algorithm 1). Any process receiving
a message carrying a proof accepts the message and be-
haves accordingly if—and only if the proof is found valid.
The algorithm requires f < n/3 (less than a third of the
processes are faulty).

The second algorithm does not assume a mechanism
for signing messages. Compared to Algorithm 1, the struc-
ture of a phase is slightly changed. The problem is related
to the vote sent by the coordinator (line 15). Can a Byzan-
tine coordinator fool other processes by not sending the
right vote? With signed messages, such a behavior can be
detected thanks to the “proofs” carried by messages. A dif-
ferent mechanism is needed in the absence of signature.

The mechanism is a small variation of the Con-
sistent Broadcast primitive introduced by Srikanth and
Toueg [15]. The broadcast primitive ensures that (1) if
a non faulty process broadcasts m, then every non faulty
process delivers m, and (2) if some non faulty pro-
cess delivers m, then all non faulty processes also even-
tually deliver m. The implementation of this broad-
cast primitive requires two rounds, which define a su-
perround. A phase of the algorithm consists now of
three superrounds. The superrounds 3k � 2, 3k � 1,
3k mimic rounds 4k � 3, 4k � 2, and 4k � 1 of Algo-
rithm 1, respectively. Lock-release of phase k occurs at the
end of superround 3k, i. e., does not require an additional
round, as it does in the two previous algorithms. The algo-
rithm also requires f < n/3.

The Special Case of Synchronous Communication

By strengthening the round based computational model,
the authors show that synchronous communication allow
higher resiliency. More precisely, the paper introduces the
model called the basic round model with signals, in which
upon receiving a signal at round r, every process knows
that all the non faulty processes have received the mes-
sages that it has sent during round r. At each round af-
ter GSR, each non faulty process is guaranteed to receive
a signal. In this computational model, the authors present
three new algorithms tolerating less than n benign faults,
n/2 Byzantine faults with authentication, and n/3 Byzan-
tine faults respectively.

Implementation of the Basic RoundModel

The last part of the paper consists of algorithms that sim-
ulate the basic round model under various synchrony as-
sumption, for crash faults and Byzantine faults: first with
partially synchronous communication and synchronous

processes (case 1), second with partially synchronous
communication and processes (case 2), and finally with
partially synchronous processes and synchronous com-
munication (case 3).

In case 1, the paper first assumes the basic case ˚ = 1,
i. e., all non faulty process progress exactly at the same
speed, which means that they have a common notion of
time. Simulating the basic round model is simple in this
case. In case 2 processes do not have a common notion of
time. The authors handle this case by designing an algo-
rithm for clock synchronization. Then each process uses
its private clock to determine its current round. So pro-
cesses alternate between steps of the clock synchroniza-
tion algorithm and steps simulating rounds of the basic
round model.With synchronous communication (case 3),
the authors show that for any type of faults, the so-called
basic round model with signals is implementable.

Note that, from the very definition of partial syn-
chrony, the six algorithms share the fundamental property
of tolerating message losses, provided they occur during
a finite period of time.

Upper Bound for Resiliency

In parallel, the authors exhibit upper bounds for the re-
siliency degree of Consensus algorithms in each partially
synchronous model, according to the type of faults. They
show that their Consensus algorithms achieve these upper
bounds, and so are optimal with respect to their resiliency
degree. These results are summarized in Table 1.

Applications

Availability is one of the key features of critical systems,
and is defined as the ratio of the time the system is oper-
ational over the total elapsed time. Availability of a sys-
tem can be increased by replicating its critical compo-
nents. Two main classes of replication techniques have
been considered: active replication and passive replica-
tion. The Consensus problem is at the heart of the im-
plementation of these replication techniques. For exam-
ple, active replication, also called state machine replica-
tion [10,14], can be implemented using the group commu-
nication primitive called Atomic Broadcast, which can be
reduced to Consensus [3].

Agreement needs also to be reached in the context of
distributed transactions. Indeed, all participants of a dis-
tributed transaction need to agree on the output commit or
abort of the transaction. This agreement problem, called
Atomic Commitment, differs from Consensus in the va-
lidity property that connects decision values (commit or
abort) to the initial values (favorable to commit, or de-

202 C Constructing a Galled Phylogenetic Network

Consensus with Partial Synchrony, Table 1
Tight resiliency upper bounds (P stands for “process”, C for “communication”; 0 means “asynchronous”, 1/2 means “partially syn-
chronous”, and 1means “synchronous”)

P = 0 C = 0 P = 1/2 C = 1/2 P = 1 C = 1/2 P = 1/2 C = 1 P = 1 C = 1
Benign 0 d(n� 1)/2e d(n� 1)/2e n� 1 n� 1
Authenticated Byzantine 0 d(n� 1)/3e d(n� 1)/3e d(n� 1)/2e n� 1
Byzantine 0 d(n� 1)/3e d(n� 1)/3e d(n� 1)/3e d(n� 1)/3e

manding abort) [9]. In the case decisions are required in
all executions, the problem can be reduced to Consensus if
the abort decision is acceptable although all processes were
favorable to commit, in some restricted failure cases.

Open Problems

A slight modification to each of the algorithms given in the
paper is to force a process repeatedly to broadcast the mes-
sage “Decide v” after it decides v. Then the resulting algo-
rithms share the property that all non faulty processes def-
initely make a decision within O(f) rounds after GSR, and
the constant factor varies between 4 (benign faults) and 12
(Byzantine faults). A question raised by the authors at the
end of the paper is whether this constant can be reduced.
Interestingly, a positive answer has been given later, in the
case of benign faults and f < n/3, with a constant factor
of 2 instead of 4. This can be achieved with deterministic
algorithms, see [4], based on the communication schema
of the Rabin randomized Consensus algorithm [13].

The second problem left open is the generalization
of this algorithmic approach—namely, the design of al-
gorithms that are always safe and that terminate when
a sufficiently long good period occurs—to other fault tol-
erant distributed problems in partially synchronous sys-
tems. The latter point has been addressed for the Atomic
Commitment and Atomic Broadcast problems (see Sect.
“Applications”).

Cross References

� Asynchronous Consensus Impossibility
� Failure Detectors
� Randomization in Distributed Computing

Recommended Reading
1. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: Shifting Gears:

Changing Algorithms on the Fly To Expedite Byzantine Agree-
ment. In: PODC, 1987, pp. 42–51

2. Chandra, T.D., Hadzilacos, V., Toueg, S.: The Weakest Failure
Detector for Solving Consensus. J. ACM 43(4), 685–722 (1996)

3. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

4. Charron-Bost, B., Schiper A.: The “Heard-Of”model: Computing
in distributed systems with benign failures. Technical Report,
EPFL (2007)

5. Dolev, D., Dwork, C., Stockmeyer, L.: On theminimal synchrony
needed for distributed consensus. J. ACM 34(1), 77–97 (1987)

6. Dolev, D., Strong, H.R.: Authenticated Algorithms for Byzantine
Agreement. SIAM J. Comput. 12(4), 656–666 (1983)

7. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288–323 (1988)

8. Fischer, M., Lynch, N., Paterson, M.: Impossibility of Distributed
Consensuswith One Faulty Process. J. ACM 32, 374–382 (1985)

9. Gray, J.: A Comparison of the Byzantine Agreement Problem
and the Transaction Commit Problem. In: Fault-Tolerant Dis-
tributedComputing [AsilomarWorkshop 1986]. LNCS, vol. 448,
pp. 10–17. Springer, Berlin (1990)

10. Lamport, L.: Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Commun. ACM 21(7), 558–565 (1978)

11. Lamport, L.: The Part-Time Parliament. ACM Trans. on Com-
puter Systems 16(2), 133–169 (1998)

12. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching Agreement in
the Presence of Faults. J. ACM 27(2), 228–234 (1980)

13. Rabin, M.: Randomized Byzantine Generals. In: Proc. 24th An-
nual ACM Symposium on Foundations of Computer Science,
1983, pp. 403–409

14. Schneider, F.B.: Replication Management using the State-
Machine Approach. In Sape Mullender, editor, Distributed Sys-
tems, pp. 169–197. ACM Press (1993)

15. Srikanth, T.K., Toueg, S.: Simulating Authenticated Broadcasts
to Derive Simple Fault-Tolerant Algorithms. Distrib. Comp.
2(2), 80–94 (1987)

Constructing a Galled
Phylogenetic Network
2006; Jansson, Nguyen, Sung

WING-KIN SUNG
Department of Computer Science, National University
of Singapore, Singapore, Singapore

Keywords and Synonyms

Topology with independent recombination events;
Galled-tree; Gt-network; Level-1 phylogenetic network

Constructing a Galled Phylogenetic Network C 203

ProblemDefinition

A phylogenetic tree is a binary, rooted, unordered tree
whose leaves are distinctly labeled. A phylogenetic network
is a generalization of a phylogenetic tree formally defined
as a rooted, connected, directed acyclic graph in which:
(1) each node has outdegree at most 2; (2) each node has
indegree 1 or 2, except the root node, which has inde-
gree 0; (3) no node has both indegree 1 and outdegree 1;
and (4) all nodes with outdegree 0 are labeled by elements
from a finite set L in such a way that no two nodes are as-
signed the same label. Nodes of outdegree 0 are referred to
as leaves and identified with their corresponding elements
in L. For any phylogenetic network N, let U(N) be the
undirected graph obtained from N by replacing each di-
rected edge by an undirected edge. N is said to be a galled
phylogenetic network (galled network for short) if all cy-
cles in U(N) are node-disjoint. Galled networks are also
known in the literature as topologies with independent re-
combination events [17], galled trees [3], gt-networks [13],
and level-1 phylogenetic networks [2,7].

A phylogenetic tree with exactly three leaves is called
a rooted triplet. The unique rooted triplet on a leaf set
fx; y; zg in which the lowest common ancestor of x and
y is a proper descendant of the lowest common ancestor
of x and z (or, equivalently, where the lowest common an-
cestor of x and y is a proper descendant of the lowest com-
mon ancestor of y and z) is denoted by (fx; yg; z). For any
phylogenetic networkN, a rooted triplet t is said to be con-
sistent withN if t is an induced subgraph ofN, and a setT
of rooted triplets is consistent withN if every rooted triplet
in T is consistent with N.

Denote the set of leaves in any phylogenetic networkN
by �(N), and for any set T of rooted triplets, define
�(T) =

S
t i2T �(ti). A set T of rooted triplets is dense

if for each fx; y; zg
 �(T) at least one of the three pos-
sible rooted triplets (fx; yg; z), (fx; zg; y), and (fy; zg; x)
belongs to T . If T is dense, then jT j = 	(j�(T)j3). Fur-
thermore, for any setT of rooted triplets and L0
 �(T),
define T j L0 as the subset of T consisting of all rooted
triplets t with�(t)
 L0. The problem [8] considered here
is as follows.

Problem 1 Given a setT of rooted triplets, output a galled
network N with �(N) = �(T) such that N and T are
consistent, if such a network exists; otherwise, output null.
(See Fig. 1 for an example.)

Another related problem is the forbidden triplet prob-
lem [4]. It is defined as follows.

Problem 2 Given two sets T and F of rooted triplets,
a galled network N �(N) = �(T) such that (1) N and T

Constructing a Galled Phylogenetic Network, Figure 1
A dense set T of rooted triplets with leaf set fa; b; c;dg and
a galled phylogenetic network which is consistent withT . Note
that this solution is not unique

are consistent and (2) every rooted triplet inF is not consis-
tent with N. If such a network N exists, it is to be reported;
otherwise, output null.

Below, write L = �(T) and n = jLj.

Key Results

Theorem 1 Given a dense setT of rooted triplets with leaf
set L, a galled network consistent with T in O(n3) time can
be reported, where n = jLj.

Theorem 2 Given a nondense setT of rooted triplets, it is
NP-hard to determine if there exists a galled network that
is consistent with T . Also, it is NP-hard to determine if
there exists a simple phylogenetic network that is consistent
with T .

Below, the problem of returning a galled network N con-
sistent with the maximum number of rooted triplets in
T for any (not necessarily dense) T is considered. Since
Theorem 2 implies that this problem is NP-hard, approx-
imation algorithms are studied. An algorithm is called k-
approximable if it always returns a galled network N such
that N(T)/jT j � k, where N(T) is the number of rooted
triplets in T that are consistent with N.

Theorem 3 Given a set of rooted tripletsT , there is no ap-
proximation algorithm that infers a galled network N such
that N(T)/jT j � 0:4883.

Theorem 4 Given a set of rooted triplets T , there exists
an approximation algorithm for inferring a galled network
N such that N(T)/jT j � 5/12. The running time of the
algorithm is O(j�(T)jjT j3).

The next theorem considers the forbidden triplet problem.

204 C Constructing a Galled Phylogenetic Network

Theorem 5 Given two sets of rooted triplets T and F ,
there exists an O(jLj2jT j(jT j + jF j))-time algorithm for
inferring a galled network N that guarantees jN(T)j �
jN(F)j � 5/12(jT j � jF j).

Applications

Phylogenetic networks are used by scientists to describe
evolutionary relationships that do not fit the traditional
models in which evolution is assumed to be treelike (see,
e. g., [12,16]). Evolutionary events such as horizontal gene
transfer or hybrid speciation (often referred to as recom-
bination events) that suggest convergence between objects
cannot be represented in a single tree [3,5,13,15,17] but
can be modeled in a phylogenetic network as internal
nodes having more than one parent. Galled networks are
an important type of phylogenetic network that have at-
tracted special attention in the literature [2,3,13,17] due
to their biological significance (see [3]) and their simple,
almost treelike, structure. When the number of recombi-
nation events is limited and most of the recombination
events have occurred recently, a galled network may suf-
fice to accurately describe the evolutionary process un-
der study [3].

An open challenge in the field of phylogenetics is to de-
velop efficient and reliable methods for constructing and
comparing phylogenetic networks. For example, to con-
struct a meaningful phylogenetic network for a large sub-
set of the human population (which may subsequently be
used to help locate regions in the genome associated with
some observable trait indicating a particular disease) in the
future, efficient algorithms are crucial because the input
can be expected to be very large.

The motivation behind the rooted triplet approach
taken in this paper is that a highly accurate tree for
each cardinality three subset of a leaf set can be obtained
through maximum-likelihood-based methods such as [1]
or Sibley–Ahlquist-style DNA–DNA hybridization exper-
iments (see [10]). Hence, the algorithms presented in [7]
and here can be used as the merging step in a divide-
and-conquer approach to constructing phylogenetic net-
works analogous to the quartet method paradigm for in-
ferring unrooted phylogenetic trees [9,11] and other su-
pertree methods (see [6,14] and references therein). Dense
input sets in particular are considered since this case can
be solved in polynomial time.

Open Problems

For the rooted triplet problem, the current approxima-
tion ratio is not tight (0:4883 � N(T)/jT j � 5/12). It is
open if a tight approximation ratio can be found for this

problem. Similarly, a tight approximation ratio needs to
be found for the forbidden triplet problem.

Another direction is to work on a fixed-parameter
polynomial-time algorithm. Assume the number of hybrid
nodes is bounded by h. Can an algorithm that is polyno-
mial in jT j while exponential in h be given?

Cross References

� Directed Perfect Phylogeny (Binary Characters)
� Distance-Based Phylogeny Reconstruction

(Fast-Converging)
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)
� Perfect Phylogeny (Bounded Number of States)
� Phylogenetic Tree Construction from a Distance

Matrix

Recommended Reading
1. Chor, B., Hendy, M., Penny, D.: Analytic solutions for three-

taxon MLMC trees with variable rates across sites. In: Proc. 1st
Workshop on Algorithms in Bioinformatics (WABI 2001). LNCS,
vol. 2149, pp. 204–213. Springer, Berlin (2001)

2. Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the
maximumagreement of phylogenetic networks. In: Proc. Com-
puting: the 10th Australasian Theory Symposium (CATS 2004),
2004, pp. 33–45

3. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction
of phylogenetic networks with constrained recombination.
In: Proc. of Computational Systems Bioinformatics (CSB2003),
2003 pp. 363–374

4. He, Y.-J., Huynh, T.N.D., Jannson, J., Sung, W.-K.: Inferring
phylogenetic relationships avoiding forbidden rooted triplets.
J Bioinform. Comput. Biol. 4(1), 59–74 (2006)

5. Hein, J.: Reconstructing evolution of sequences subject to re-
combination using parsimony. Math. Biosci. 98(2), 185–200
(1990)

6. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from
homeomorphic subtrees, with applications to computational
evolutionary biology. Algorithmica 24(1), 1–13 (1999)

7. Jansson, J., Sung, W.-K.: Inferring a level-1 phylogenetic net-
work from a dense set of rooted triplets. In: Proc. 10th In-
ternational Computing and Combinatorics Conference (CO-
COON 2004), 2004

8. Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for combin-
ing rooted triplets into a galled phylogenetic network. SIAM J.
Comput. 35(5), 1098–1121 (2006)

9. Jiang, T., Kearney, P., Li, M.: A polynomial time approximation
scheme for inferring evolutionary trees from quartet topolo-
gies and its application. SIAM J. Comput. 30(6), 1942–1961
(2001)

10. Kannan, S., Lawler, E., Warnow, T.: Determining the evolution-
ary tree using experiments. J. Algorithms 21(1), 26–50 (1996)

11. Kearney, P.: Phylogenetics and the quartet method. In: Jiang,
T., Xu, Y., and Zhang, M.Q. (eds.) Current Topics in Computa-
tional Molecular Biology, pp. 111–133. MIT Press, Cambridge
(2002)

CPU Time Pricing C 205

12. Li., W.-H.: Molecular Evolution. Sinauer, Sunderland (1997)
13. Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate

evolution in species – theory and practice. In: Proc. 8th An-
nual International Conference on Research in Computational
Molecular Biology (RECOMB 2004), 2004, pp. 337–346

14. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from
subtrees. Discrete Appl. Math. 69(1–2), 19–31 (1996)

15. Posada, D., Crandall, K.A.: Intraspecific gene genealogies: trees
grafting into networks. TRENDS Ecol. Evol. 16(1), 37–45 (2001)

16. Setubal, J.C., Meidanis, J.: Introduction to Computational
Molecular Biology. PWS, Boston (1997)

17. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks
with recombination. J. Comput. Biol. 8(1), 69–78 (2001)

Coordination Ratio
� Price of Anarchy
� Selfish Unsplittable Flows: Algorithms for Pure

Equilibria
� Stackelberg Games: The Price of Optimum

CPU Time Pricing
2005; Deng, Huang, Li

LI-SHA HUANG
Department of Compurter Science, Tsinghua University,
Beijing, China

Keywords and Synonyms

Competitive auction; Market equilibrium; Resource
scheduling

ProblemDefinition

This problem is concerned with a Walrasian equilibrium
model to determine the prices of CPU time. In a market
model of a CPU job scheduling problem, the owner of the
CPU processing time sells time slots to customers and the
prices of each time slot depends on the seller’s strategy
and the customers’ bids (valuation functions). In a Wal-
rasian equilibrium, the market is clear and each customer
is most satisfied according to its valuation function and
current prices. The work of Deng, Huang, and Li [1] estab-
lishes the existence conditions of Walrasion equilibrium,
and obtains complexity results to determine the existence
of equilibrium. It also discusses the issues of excessive sup-
ply of CPU time and price dynamics.

Notations

Consider a combinatorial auction (˝; I;V):

� Commodities: The seller sells m kinds of indivisible
commodities. Let ˝ = f!1 � ı1; : : : ; !m � ımg denote
the set of commodities, where ıj is the available quan-
tity of the item ! j.

� Agents: There are n agents in the market acting as buy-
ers, denoted by I = f1; 2; : : : ; ng.

� Valuation functions: Each buyer i 2 I has a valua-
tion function vi : 2˝ ! R+ to submit the maximum
amount of money he is willing to pay for a certain bun-
dle of items. Let V = fv1; v2; : : : ; vng.

An XOR combination of two valuation functions v1 and v2
is defined by:

(v1 XOR v2)(S) = max fv1(S); v2(S)g

An atomic bid is a valuation function v denoted by a pair
(S, q), where S � ˝ and q 2 R+:

v(T) =

(
q ; if S � T
0 ; otherwise

Any valuation function vi can be expressed by an XOR
combination of atomic bids,

vi = (Si1; qi1) XOR (Si2; qi2) : : : XOR (Sin ; qin)

Given (˝; I;V) as the input, the seller will determine an
allocation and a price vector as the output:
� An allocation X = fX0; X1; X2; : : : ; Xng is a partition

of ˝ , in which Xi is the bundle of commodities as-
signed to buyer i and X0 is the set of unallocated com-
modities.

� A price vector p is a non-negative vector in Rm , whose
jth entry is the price of good ! j 2 ˝.

For any subset T = f!1 � �1; : : : ; !m � �mg � ˝, define
p(T) by p(T) =

Pm
j=1 � j p j . If buyer i is assigned to a bun-

dle Xi, his utility is ui (Xi ; p) = vi (Xi)� p(Xi).

Definition A Walrasian equilibrium for a combinatorial
auction (˝; I;V) is a tuple (X, p), where X = fX0; X1; : : : ;

Xng is an allocation and p is a price vector, satisfying that:

(1) p(X0) = 0;

(2) ui (Xi ; p) � ui (B; p); 8B � ˝; 81 � i � n

Such a price vector is also called a market clearing price, or
Walrasian price, or equilibrium price.

The CPU Job-Scheduling Problem

There are two types of players in a market-driven CPU re-
source allocation model: a resource provider and n con-
sumers. The provider sells to the consumers CPU time

206 C CPU Time Pricing

slots and the consumers each have a job that requires
a fixed number of CPU time, and its valuation function
depends on the time slots assigned to the job, usually the
last assigned CPU time slot. Assume that all jobs are re-
leased at time t = 0 and the ith job needs si time units. The
jobs are interruptible without preemption cost, as is often
modeled for CPU jobs.

Translating into the language of combinatorial auc-
tions, there arem commodities (time units),˝ = f!1; : : : ;

!mg, and n buyers (jobs) , I = f1; 2; : : : ; ng, in the mar-
ket. Each buyer has a valuation function vi, which only
depends on the completion time. Moreover, if not ex-
plicitly mentioned, every job’s valuation function is non-
increasing w.r.t. the completion time.

Key Results

Consider the following linear programming problem:

max
nX
i=1

kiX
j=1

qi jxi j

s.t.
X

i; jj!k2Si j

xi j � ık ; 8!k 2 ˝

r iX
j=1

xi j � 1 ; 81 � i � n

0 � xi j � 1 ; 8i; j

Denote the problem by LPR and its integer restriction by
IP. The following theorem shows that a non-zero gap be-
tween the integer programming problem IP and its lin-
ear relaxation implies the non-existence of the Walrasian
equilibrium.

Theorem 1 In a combinatorial auction, the Walrasian
equilibrium exists if and only if the optimum of IP equals
the optimum of LPR. The size of the LP problem is linear to
the total number of XOR bids.

Theorem 2 Determination of the existence of Walrasian
equilibrium in a CPU job scheduling problem is strong NP-
hard.

Now consider a job scheduling problem in which the cus-
tomers’ valuation functions are all linear. Assume n jobs
are released at the time t = 0 for a single machine, the jth
job’s time span is s j 2 N+ and weight wj � 0. The goal
of the scheduling is to minimize the weighted completion
time:

Pn
i=1 wi ti , where ti is the completion time of job i.

Such a problem is called an MWCT (Minimal Weighted
Completion Time) problem.

Theorem 3 In a single-machine MWCT job schedul-
ing problem, Walrasian equilibrium always exists when
m � EM +�, where m is the total number of processor
time, EM =

Pn
i=1 si and � = maxk fskg. The equilibrium

can be computed in polynomial time.

The following theorem shows the existence of a non-
increasing price sequence if Walrasian equilibrium exists.

Theorem 4 If there exists aWalrasian equilibrium in a job
scheduling problem, it can be adjusted to an equilibrium
with consecutive allocation and a non-increasing equilib-
rium price vector.

Applications

Information technology has changed people’s lifestyles
with the creation of many digital goods, such as word
processing software, computer games, search engines, and
online communities. Such a new economy has already
demanded many theoretical tools (new and old, of eco-
nomics and other related disciplines) be applied to their
development and production, marketing, and pricing. The
lack of a full understanding of the new economy is mainly
due to the fact that digital goods can often be re-produced
at no additional cost, thoughmulti-fold other factors could
also be part of the difficulty. The work of Deng, Huang,
and Li [1] focuses on CPU time as a product for sale in
the market, through the Walrasian pricing model in eco-
nomics. CPU time as a commercial product is extensively
studied in grid computing. Singling out CPU time pricing
will help us to set aside other complicated issues caused by
secondary factors, and a complete understanding of this
special digital product (or service) may shed some light on
the study of other goods in the digital economy.

The utilization of CPU time by multiple customers has
been a crucial issue in the development of operating sys-
tem concept. The rise of grid computing proposes to fully
utilize computational resources, e. g. CPU time, disk space,
bandwidth. Market-oriented schemes have been proposed
for efficient allocation of computational grid recourses,
by [2,5]. Later, various practical and simulation systems
have emerged in grid resource management. Besides the
resource allocation in grids, an economic mechanism has
also been introduced to TCP congestion control problems,
see Kelly [4].

Cross References

� Adwords Pricing
� Competitive Auction
� Incentive Compatible Selection
� Price of Anarchy

Critical Range for Wireless Networks C 207

Recommended Reading

1. Deng, X., Huang, L.-S., Li, M.: On Walrasian Price of CPU time.
In: Proceedings of COCOON’05, Knming, 16–19 August 2005,
pp. 586–595. Algorithmica 48(2), 159–172 (2007)

2. Ferguson, D., Yemini, Y., Nikolaou, C.: Microeconomic Algo-
rithms for Load Balancing in Distributed Computer Systems. In:
Proceedings of DCS’88, pp. 419–499. San Jose, 13–17 June 1988,

3. Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive Auctions
and Digital Goods. In: Proceedings of SODA’01, pp. 735–744.
Washington D.C., 7–9 January 2001

4. Kelly, F.P.: Charging and rate control for elastic traffic. Eur. Trans.
Telecommun. 8, 33–37 (1997)

5. Kurose, J.F., Simha, R.: A Microeconomic Approach to Opti-
mal Resource Allocation in Distributed Computer Systems. IEEE
Trans. Comput. 38(5), 705–717 (1989)

6. Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In:
Proceedings of EC’00, pp. 1–12. Minneapolis, 17–20 October
2000

Critical Range for Wireless Networks
2004; Wan, Yi

CHIH-WEI YI
Department of Computer Science,
National Chiao Tung University, Hsinchu City, Taiwan

Keywords and Synonyms

Random geometric graphs; Monotonic properties; Iso-
lated nodes; Connectivity; Gabriel graphs; Delaunay trian-
gulations; Greedy forward routing

ProblemDefinition

Given a point set V , a graph of the vertex set V in which
two vertices have an edge if and only if the distance be-
tween them is at most r for some positive real number
r is called a r-disk graph over the vertex set V and de-
noted by Gr (V). If r1 � r2, obviously Gr1 (V)
 Gr2 (V).
A graph property is monotonic (increasing) if a graph is
with the property, then every supergraph with the same
vertex set also has the property. The critical-range problem
(or critical-radius problem) is concerned with theminimal
range r such thatGr (V) is with somemonotonic property.
For example, graph connectivity is monotonic and crucial
to many applications. It is interesting to know whether
Gr (V) is connected or not. Let �con (V) denote the min-
imal range r such that Gr (V) is connected. Then, Gr (V)
is connected if r � �con (V), and otherwise not connected.
Here �con (V) is called the critical range for connectivity of
V . Formally, the critical-range problem is defined as fol-
lows.

Definition 1 The critical range for a monotonic graph
property
 over a point set V , denoted by �� (V), is the
smallest range r such that Gr (V) has property
 .

From another aspect, for a given geometric property,
a corresponding geometric structure is usually embedded.
In many cases, the critical-range problem for graph prop-
erties is related or equivalent to the longest-edge prob-
lem of corresponding geometric structures. For exam-
ple, if Gr (V) is connected, it contains a Euclidean min-
imal spanning tree (EMST), and �con (V) is equal to the
largest edge length of the EMST. So the critical range
for connectivity problem is equivalent to the longest edge
of the EMST problem, and the critical range for con-
nectivity is the smallest r such that Gr (V) contains the
EMST.

In most cases, given an instance, the critical range can
be calculated by polynomial time algorithms. So it is not
a hard problem to decide the critical range. Researchers are
interested in the probabilistic analysis of the critical range,
especially asymptotic behaviors of r-disk graphs over ran-
dom point sets. Random geometric graphs [8] is a general
term for the theory about r-disk graphs over random point
sets.

Key Results

In the following, problems are discussed in a 2D plane.
Let X1; X2; � � � be independent and uniformly distributed
random points on a bounded region A. Given a posi-
tive integer n, the point process fX1; X2; : : : ; Xng is re-
ferred to as the uniform n-point process on A, and
is denoted by Xn (A). Given a positive number �, let
Po (�) be a Poisson random variable with parameter
�, independent of fX1; X2; : : : g. Then the point process˚
X1; X2; : : : ; XPo(n)

�
is referred to as the Poisson point

process with mean n on A, and is denoted by Pn (A). A is
called a deployment region. An event is said to be asymp-
totic almost sure if it occurs with a probability that con-
verges to 1 as n!1.

In a graph, a node is “isolated” if it has no neighbor.
If a graph is connected, there exists no isolated node in
the graph. The asymptotic distribution of the number of
isolated nodes is given by the following theorem [2,6,14].

Theorem 1 Let rn =
q

ln n+�
�n and ˝ be a unit-area disk

or square. The number of isolated nodes in Gr (Xn(˝)) or
Gr (Pn(˝)) is asymptotically Poisson with mean e�� .

According to the theorem, the probability of the event
that there is no isolated node is asymptotically equal to
exp

�
�e��

�
. In the theory of random geometric graphs, if

208 C Critical Range for Wireless Networks

a graph has no isolated node, it is almost surely connected.
Thus, the next theorem follows [6,8,9].

Theorem 2 Let rn =
q

ln n+�
�n and˝ be a unit-area disk or

square. Then,

Pr
	
Gr (Xn(˝)) is connected

! exp

�
�e��

�
; and

Pr
	
Gr (Pn(˝)) is connected

! exp

�
�e��

�
:

In wireless sensor networks, the deployment region is
k-covered if every point in the deployment region is within
the coverage ranges of at least k sensors (vertices). Assume
the coverage ranges are disks of radius r centered at the
vertices. Let k be a fixed non-negative integer, and˝ be the
unit-area square or disk centered at the origin o. For any
real number t, let t˝ denote the set ftx : x 2 ˝g, i. e., the
square or disk of area t2 centered at the origin. LetCn;r (re-
spectively,C0n;r) denote the event that˝ is (k + 1)-covered
by the (open or closed) disks of radius r centered at the
points in Pn(˝) (respectively, Xn(˝)). Let Ks;n (respec-
tively, K0s;n) denote the event that

p
s˝ is (k + 1)-covered

by the unit-area (closed or open) disks centered at the
points in Pn(

p
s˝) (respectively,Xn(

p
s˝)). To simplify

the presentation, let � denote the peripheral of ˝ , which
is equal to 4 (respectively, 2

p

) if ˝ is a square (respec-

tively, disk). For any � 2 R, let

˛ (�) =

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�
p

��

2 +e�
�
2

�2

16
�
2
p
��+e�

�
2

� e�
�
2 ; if k = 0 ;

p
��

2k+6(k+2)! e
�
�
2 ; if k � 1 :

and

ˇ (�) =

8
<̂
:̂

4e�� + 2
�p

 + 1p
�

�
�e�

�
2 ; if k = 0 ;

p
�+ 1
p

�

2k�1k! �e
� �2 ; if k � 1 :

The asymptotics of Pr
	
Cn;r

and Pr

	
C0n;r

as n ap-

proaches infinity, and the asymptotics of Pr
	
Ks;n

and

Pr
	
K0s;n

as s approaches infinity are given in the following

two theorems [4,10,16].

Theorem 3 Let rn =
q

ln n+(2k+1) ln ln n+�n
�n .

If limn!1 �n = � for some � 2 R , then

1 � ˇ (�) � lim
n!1

Pr
	
Cn;rn

�

1
1 + ˛ (�)

; and

1 � ˇ (�) � lim
n!1

Pr
	
C0n;rn

�

1
1 + ˛ (�)

:

If limn!1 �n =1, then

lim
n!1

Pr
	
Cn;rn

= lim

n!1
Pr
	
C0n;rn

= 1 :

If limn!1 �n = �1;then

lim
n!1

Pr
	
Cn;rn

= lim

n!1
Pr
	
C0n;rn

= 0 :

Theorem 4 Let � (s) = ln s + 2 (k + 1) ln ln s + � (s). If
lims!1 � (s) = � for some � 2 R, then

1 � ˇ (�) � lim
s!1

Pr
	
Ks;�(s)s

�

1
1 + ˛ (�)

; and

1 � ˇ (�) � lim
s!1

Pr
h
K0s;�(s)s

i
�

1
1 + ˛ (�)

:

If lims!1 � (s) =1; then

lim
s!1

Pr
	
Ks;�(s)s

= lim

s!1
Pr
h
K0s;�(s)s

i
= 1 :

If lims!1 � (s) = �1; then

lim
s!1

Pr
	
Ks;�(s)s

= lim

s!1
Pr
h
K0s;�(s)s

i
= 0 :

In Gabriel graphs (GG), two nodes have an edge if and
only if there is no other node in the disk using the segment
of these two nodes as its diameter. If V is a point set and
l is a positive real number, we use �GG (V) to denote the
largest edge length of the GG overV , and N (V ; l) denotes
the number of GG edges over V whose length is at least l.
Wan and Yi (2007) [11] gave the following theorem.

Theorem 5 Let ˝ be a unit-area disk. For any constant

� , N
�
Pn(˝); 2

q
ln n+�
�n

�
is asymptotically Poisson with

mean 2e�� , and

lim
n!1

Pr

"
�GG (Pn(˝)) < 2

r
ln n + �

n

#
= exp

�
�2e��

�
:

Let �Del (V) denote the largest edge length of the Delaunay
triangulation over a point set V . The following theorem is
given by Kozma et al. [3].

Theorem 6 Let˝ be a unit-area disk. Then,

�Del (Xn(˝)) = O

3

r
ln n
n

!
:

In wireless networks with greedy forward routing (GFR),
each node discards a packet if none of its neighbors is

Critical Range for Wireless Networks C 209

closer to the destination of the packet than itself, or oth-
erwise forwards the packet to the neighbor that is the clos-
est to the destination. Since each node only needs to main-
tain the locations of its one-hop neighbors and each packet
should contain the location of the destination node, GFR
can be implemented in a localized and memoryless man-
ner. Because of the existence of local minima where none
of the neighbors is closer to the destination than the cur-
rent node, a packet may be discarded before it reaches its
destination. To ensure that every packet can reach its des-
tination, all nodes should have sufficiently large transmis-
sion radii to avoid the existence of local minima. Apply-
ing the r-disk model, we assume every node has the same
transmission radius r, and each pair of nodes with distance
at most r has a link. For a point setV , the critical transmis-
sion radius for GFR is given by

�GFR (V) = max
(u;v)2V 2;u¤v

�
min

kw�vk<ku�vk
kw � uk

�
:

In the definition, (u; v) is a source–destination pair and
w is a node that is closer to v than u. If every node
is with a transmission radius not less than �GFR (V),
GFR can guarantee the deliverability between any source–
destination pair [12].

Theorem 7 Let ˝ be a unit-area convex compact region
with bounded curvature, and ˇ0 = 1/

�
2/3 �

p
3/2

�
	

1:62. Suppose that n
r2n = (ˇ + o (1)) ln n for some ˇ > 0.
Then,
1. If ˇ > ˇ0, then �GFR (Pn(˝)) � rn is asymptotically al-

most sure.
2. If ˇ < ˇ0, then �GFR (Pn(˝)) > rn is asymptotically al-

most sure.

Applications

In the literature, r-disk graphs (or unit disk graphs by
proper scaling) are widely used to model homogeneous
wireless networks in which each node is equipped with
an omnidirectional antenna. According to the path loss of
radio frequency, the transmission ranges (radii) of wire-
less devices depend on transmission powers. For simplic-
ity, the power assignment problem usually is modeled by
a corresponding transmission range assignment problem.
Recently, wireless ad-hoc networks have attracted atten-
tion from a lot of researchers because of various possible
applications. In many of the possible applications, since
wireless devices are powered by batteries, transmission
range assignment has become one of the most important
tools for prolonging system lifetime. By applying the the-
ory of critical ranges, a randomly deployedwireless ad-hoc

network may have good properties in high probability if
the transmission range is larger than some critical value.

One application of critical ranges is to connectivity of
networks. A network is k-vertex-connected if there exist
k node-disjoint paths between any pair of nodes. With
such a property, at least k distinct communication paths
exist between any pair of nodes, and the network is con-
nected even if k � 1 nodes fail. Thus, with a higher de-
gree of connectivity, a network may have larger bandwidth
and higher fault tolerance capacity. In addition, in [9,14],
and [15], networks with node or link failures were consid-
ered.

Another application is in topology control. To effi-
ciently operate wireless ad-hoc networks, subsets of net-
work topology will be constructed andmaintained. The re-
lated topics are called topology control. A spanner is a sub-
set of the network topology in which theminimal total cost
of a path between any pair of nodes, e. g. distance or en-
ergy consumption, is only a constant fact larger than the
minimal total cost in the original network topology. Hence
spanners are good candidates for virtual backbones. Geo-
metric structures, including Euclidean minimal spanning
trees, relative neighbor graphs, Gabriel graphs, Delaunay
triangulations, Yao’s graphs, etc., are widely used ingredi-
ents to construct spanners [1,5,13]. By applying the knowl-
edge of critical ranges, the complexity of algorithm design
can be reduced, e. g. [3,11].

Open Problems

A number of problems related to critical ranges remain
open. Most problems discussed here apply 2-D plane ge-
ometry. In other words, the point set is in the plane. The
first direction for future work is to study those problems in
high-dimension spaces. Another open research area is on
the longest-edge problems for other geometric structures,
e. g. relative neighbor graphs and Yao’s graphs. A third
direction for future work involves considering relations
between graph properties. A well-known result in ran-
dom geometric graphs is that vanishment of isolated nodes
asymptotically implies connectivity of networks. But for
the wireless networks with unreliable links, this property
is still open. In addition, in wireless sensor networks, the
relations between connectivity and coverage are also inter-
esting.

Cross References

� Applications of Geometric Spanner Networks
� Connected Dominating Set
� Dilation of Geometric Networks
� Geometric Spanners

210 C Cryptographic Hardness of Learning

�Minimum Geometric Spanning Trees
�Minimum k-Connected Geometric Networks
� Randomized Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks

Recommended Reading

1. Cartigny, J., Ingelrest, F., Simplot-Ryl, D., Stojmenovic, I.: Local-
ized LMST and RNG based minimum-energy broadcast proto-
cols in ad hoc networks. Ad Hoc Netw. 3(1), 1–16 (2004)

2. Dette, H., Henze, N.: The limit distribution of the largest near-
est-neighbour link in the unit d-cube. J. Appl. Probab. 26, 67–
80 (1989)

3. Kozma, G., Lotker, Z., Sharir, M., Stupp, G.: Geometrically aware
communication in random wireless networks. In: Proceedings
of the twenty-third annual ACM symposium on Principles of
distributed computing, 25–28 July 2004, pp. 310–319

4. Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleep-
ing sensor network. In: Proceedings of the 10th Annual Inter-
national Conference on Mobile Computing and Networking
(MobiCom’04), 26 Sept–1 Oct 2004

5. Li, N., Hou, J.C., Sha, L.: Design and analysis of a MST-based dis-
tributed topology control algorithm for wireless ad-hoc net-
works. In: 22nd Annual Joint ConferenceOf The IEEEComputer
And Communications Societies (INFOCOM 2003), vol. 3, 1–3
April 2003, pp. 1702–1712

6. Penrose, M.: The longest edge of the random minimal span-
ning tree. Ann. Appl. Probab. 7(2), 340–361 (1997)

7. Penrose, M.: On k-connectivity for a geometric random graph.
Random. Struct. Algorithms 15(2), 145–164 (1999)

8. Penrose, M.: Random Geometric Graphs. Oxford University
Press, Oxford (2003)

9. Wan, P.-J., Yi, C.-W.: Asymptotic critical transmission ranges for
connectivity in wireless ad hoc networks with Bernoulli nodes.
In: IEEEWireless Communications and Networking Conference
(WCNC 2005), 13–17 March 2005

10. Wan, P.-J., Yi, C.-W.: Coverage by randomly deployed wireless
sensor networks. In: Proceedings of the 4th IEEE International
Symposium on Network Computing and Applications (NCA
2005), 27–29 July 2005

11. Wan, P.-J., Yi, C.-W.: On the longest edge of Gabriel graphs in
wireless ad hoc networks. Trans. Parallel Distrib. Syst. 18(1), 1–
16 (2007)

12. Wan, P.-J., Yi, C.-W., Yao, F., Jia, X.: Asymptotic critical trans-
mission radius for greedy forward routing in wireless ad hoc
networks. In: Proceedings of the 7th ACM International Sym-
posium on Mobile Ad Hoc Networking and Computing, 22–25
May 2006, pp. 25–36

13. Wang, Y., Li, X.-Y.: Localized construction of bounded degree
and planar spanner for wireless ad hoc networks, In: Proceed-
ings of the 2003 joint workshop on Foundations of mobile
computing (DIALM-POMC’03), 19 Sept 2003, pp. 59–68

14. Yi, C.-W., Wan, P.-J., Li, X.-Y., Frieder, O.: Asymptotic distribu-
tion of the number of isolated nodes in wireless ad hoc net-
works with Bernoulli nodes. In: IEEE Wireless Communications
and Networking Conference (WCNC 2003), March 2003

15. Yi, C.-W., Wan, P.-J., Lin, K.-W., Huang, C.-H.: Asymptotic distri-
bution of the Number of isolated nodes in wireless ad hoc net-
works with unreliable nodes and links. In: the 49th Annual IEEE

GLOBECOMTechnical Conference (GLOBECOM2006), 27 Nov–
1 Dec 2006

16. Zhang, H., Hou, J.: On deriving the upper bound of ˛-lifetime
for large sensor networks. In: Proceedings of the 5th ACM In-
ternational Symposium onMobile Ad Hoc Networking & Com-
puting (MobiHoc 2004), 24–26 March 2004

Cryptographic Hardness of Learning
1994; Kearns, Valiant

ADAM KLIVANS
Department of Computer Science, University of Texas
at Austin, Austin, TX, USA

Keywords and Synonyms

Representation-independent hardness for learning

ProblemDefinition

This paper deals with proving negative results for distribu-
tion-free PAC learning. The crux of the problem is prov-
ing that a polynomial-time algorithm for learning various
concept classes in the PACmodel implies that several well-
known cryptosystems are insecure. Thus, if we assume
a particular cryptosystem is secure we can conclude that
it is impossible to efficiently learn a corresponding set of
concept classes.

PAC Learning

We recall here the PAC learningmodel. Let C be a concept
class (a set of functions over n variables), and letD be a dis-
tribution over the input space f0; 1gn . With C we associate
a size function size that measures the complexity of each
c 2 C. For example if C is a class of Boolean circuits then
size(c) is equal to the number of gates in c. Let A be a ran-
domized algorithm that has access to an oracle which re-
turns labeled examples (x; c(x)) for some unknown c 2 C;
the examples x are drawn according to D. Algorithm A
PAC-learns concept class C by hypothesis class H if for
any c 2 C, for any distributionD over the input space, and
any �; ı > 0, A runs in time pol y(n; 1/�; 1/ı; size(c)) and
produces a hypothesis h 2 H such that with probability
at least (1 � ı), PrD[c(x) ¤ h(x)] < �. This probability is
taken over the random coin tosses of A as well as over the
random labeled examples seen from distribution D. When
H = C (the hypothesis must be some concept in C) then
A is a proper PAC learning algorithm. In this article is not
assumed H = C, i. e. hardness results for representation-
independent learning algorithms are discussed. The only

Cryptographic Hardness of Learning C 211

assumption made on H is that for each h 2 H, h can be
evaluated in polynomial time for every input of length n.

Cryptographic Primitives

Also required is knowledge of various cryptographic prim-
itives such as public-key cryptosystems, one-way func-
tions, and one-way trapdoor functions. For a formal treat-
ment of these primitives refer to Goldreich [3].

Informally, a function f is one-way if, after choosing
a random x of length n and giving an adversaryA only f (x),
it is computationally intractable for A to find y such that
f (y) = f (x). Furthermore, given x, f (x) can be evaluated
in polynomial time. That is, f is easy to compute one-way,
but there is no polynomial-time algorithm for finding pre-
images of f on randomly chosen inputs. Say a function f
is trapdoor if f is one-way, but if an adversary A is given
access to a secret “trapdoor” d, then A can efficiently find
random pre-images of f .

Trapdoor functions that are permutations are closely
related to public-key cryptosystems: imagine a person Alice
who wants to allow others to secretly communicate with
her. She publishes a one-way trapdoor permutation f so
that it is publicly available to everyone, but keeps the “trap-
door” d to herself. Then Bob can send Alice a secret mes-
sage x by sending her f (x). Only Alice is able to invert f
(recall f is a permutation) and recover x because only she
knows d.

Key Results

The main insight in Kearns and Valiant’s work is the fol-
lowing: if f is a trapdoor one-way function, and C is a cir-
cuit class containing the set of functions capable of invert-
ing f given access to the trap-door, then C is not efficiently
PAC learnable. I. e., assuming the difficulty of inverting
trap-door function f , there is a distribution on f0; 1gn

where no learning algorithm can succeed in learning f ’s
associated decryption function.

The following theorem is stated in the (closely related)
language of public-key cryptosystems:

Theorem 1 (cryptography and learning; cf. Kearns &
Valiant[4]) Consider a public-key cryptosystem for en-
crypting individual bits into n-bit strings. Let C be a concept
class that contains all the decryption functions f0; 1gn !
f0; 1g of the cryptosystem. If C is PAC-learnable in poly-
nomial time then there is a polynomial-time distinguisher
between the encryptions of 0 and 1.

The intuition behind the proof is as follows: fix an encryp-
tion function f , associated secret key d, and let C be a class
of functions such that the problem of inverting f (x) given d

can be computed by an element c of C; notice that knowl-
edge of d is not necessary to generate a polynomial-size
sample of (x; f (x)) pairs.

If C is PAC learnable, then given a relatively small
number of encrypted messages (x; f (x)), a learning algo-
rithm A can find a hypothesis h that will approximate c
and thus have a non-negligible advantage for decrypting
future randomly encrypted messages. This violates the se-
curity properties of the cryptosystem.

A natural question follows: “what is the simplest con-
cept class that can compute the decryption function for se-
cure public-key cryptosystems?” For example, if a public-
key cryptosystem is proven to be secure, and encrypted
messages can be decrypted (given the secret key) by
polynomial-size DNF formulas, then, by Theorem 1, one
could conclude that polynomial-size DNF formulas can-
not be learned in the PAC model.

Kearns and Valiant do not obtain such a hardness re-
sult for learning DNF formulas (it is still an outstanding
open problem), but they do obtain a variety of hardness re-
sults assuming the security of various well-known public-
key cryptosystems based on the hardness of number-theo-
retic problems such as factoring.

The following list summarizes their main results:
� Let C be the class of polynomial-size Boolean for-

mulas (not necessarily DNF formulas) or polynomial-
size circuits of logarithmic depth. Assuming that the
RSA cryptosystem is secure, or recognizing quadratic
residues is intractable, or factoring Blum integers is in-
tractable, C is not PAC learnable.

� Let C be the class of polynomial-size deterministic fi-
nite automata. Under the same assumptions as above,
C is not PAC learnable.

� LetC be the class of constant depth threshold circuits of
polynomial size. Under the same assumptions as above,
C is not PAC learnable. The depth of the circuit class is
not specified but it can be seen to be at most 4.

Kearns and Valiant also prove the intractability of finding
optimal solutions to related coloring problems assuming
the security of the above cryptographic primitives (break-
ing RSA, for example).

Relationship to Hardness Results for Proper Learning

The key results above should not be confused with the ex-
tensive literature regarding hardness results for properly
PAC learning concept classes. For example, it is known [1]
that, unless RP=NP, it is impossible to properly PAC learn
polynomial-size DNF formulas (i. e., require the learner
to learn DNF formulas by outputting a DNF formula as
its hypothesis). Such results are incomparable to the work

212 C Cuckoo Hashing

of Kearns and Valiant, as they require something much
stronger from the learner but take a much weaker assump-
tion (RP=NP is a weaker assumption than the assumption
that RSA is secure).

Applications and RelatedWork

Valiant [10] was the first to observe that the existence of
a particular cryptographic primitive (pseudorandom func-
tions) implies hardness results for PAC learning concept
classes. The work of Kearns and Valiant has subsequently
found many applications. Klivans and Sherstov have re-
cently shown [7] that the problem of PAC learning in-
tersections of halfspaces (a very simple depth-2 thresh-
old circuit) is intractable unless certain lattice-based cryp-
tosystems due to Regev [9] are not secure. Their result
makes use of the Kearns and Valiant approach. Angluin
and Kharitonov [2] have extended the Kearns and Valiant
paradigm to give cryptographic hardness results for learn-
ing concept classes even if the learner has query access to
the unknown concept. Kharitonov [6] has given hardness
results for learning polynomial-size, constant depth cir-
cuits that assumes the existence of secure pseudorandom
generators rather than the existence of public-key cryp-
tosystems.

Open Problems

The major open problem in this line of research is to
prove a cryptographic hardness result for PAC learning
polynomial-size DNF formulas. Currently, polynomial-
size DNF formulas seem far too weak to compute cryp-
tographic primitives such as the decryption function for
a well-known cryptosystem. The fastest known algorithm
for PAC learning DNF formulas runs in time 2Õ(n1/3) [8].

Cross References

� PAC Learning

Recommended Reading
1. Alekhnovich, M., Braverman, M., Feldman, V., Klivans, A. R.,

Pitassi, T.: Learnability and automatizability. In: Proceedings of
the 45th Symposium on Foundations of Computer Science,
2004

2. Angluin, D., Kharitonov, M.: When Won’t Membership Queries
Help? J. Comput. Syst. Sci. 50, (1995)

3. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cam-
bridge University Press (2001)

4. Kearns, M., Valiant, L.: Cryptographic limitations on learning
Boolean formulae and finite automata. J. ACM 41(1), 67–95
(1994)

5. Kearns, M., Vazirani, U.: An introduction to computational
learning theory. MIT Press, Cambridge (1994)

6. Kharitonov, M.: Cryptographic hardness of distribution-spe-
cific learning. In: Proceedings of the Twenty-Fifth Annual Sym-
posium on Theory of Computing, 1993, pp. 372–381

7. Klivans, A. , Sherstov, A. A.: Cryptographic Hardness for Learn-
ing Intersections of Halfspaces. In: Proceedings of the 47th
Symposium on Foundations of Computer Science, 2006

8. Klivans, A., Servedio, R.: Learning DNF in time 2Õ(n
1/3). In: Pro-

ceedings of the 33rd Annual Symposium on Theory of Com-
puting, 2001

9. Regev, O.: New Lattice-Based Cryptographic Constructions.
J. ACM 51, 899–942 (2004)

10. Valiant, L.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

Cuckoo Hashing
2001; Pagh, Rodler

RASMUS PAGH
Computational Logic and Algorithms Group,
IT University of Copenhagen, Copenhagen, Denmark

ProblemDefinition

A dictionary (also known as an associative array) is an
abstract data structure capable of storing a set S of ele-
ments, referred to as keys, and information associated with
each key. The operations supported by a dictionary are in-
sertion of a key (and associated information), deletion of
a key, and lookup of a key (retrieving the associated infor-
mation). In case a lookup is made on a key that is not in S,
this must be reported by the data structure.

Hash tables is a class of data structures used for imple-
menting dictionaries in the RAM model of computation.
Open addressing hash tables is a particularly simple type of
hash tables, where the data structure is an array such that
each entry either contains a key of S or is marked “empty”.
Cuckoo hashing addresses the problem of implementing
an open addressing hash table with worst case constant
lookup time. Specifically, a constant number of entries in
the hash table should be associated with each key x, such
that x is present in one of these entries if x 2 S.

In the following it is assumed that a key as well as
the information associated with a key are single machine
words. This is essentially without loss of generality: If
more associated data is wanted, it can be referred to using
a pointer. If keys are longer than one machine word, they
can be mapped down to a single (or a few) machine words
using universal hashing [3], and the described method
used on the hash values (which are unique to each key with
high probability). The original key must then be stored as
associated data. Let n denote an upper bound on the size

Cuckoo Hashing C 213

of S. To allow the size of the set to grow beyond n, global
rebuilding can be used.

Key Results

Prehistory

It has been known since the advent of universal hashing [3]
that if the hash table has r � n2 entries, a lookup can be
implemented by retrieving just a single entry in the hash
table. This is done by storing a key x in entry h(x) of the
hash table, where h is a function from the set of machine
words to f1; : : : ; n2g. If h is chosen at random from a uni-
versal family of hash functions [3] then with probability
at least 1/2 every key in S is assigned a unique entry. The
same behavior would be seen if h was a random func-
tion, but in contrast to random functions there are univer-
sal families that allow efficient storage and evaluation of h
(constant number of machine words, and constant evalu-
ation time).

This overview concentrates on the case where the
space used by the hash table is linear, r = O(n). It was
shown by Azar et al. [1] that it is possible to combine lin-
ear space with worst case constant lookup time. It was not
considered how to construct the data structure. Since ran-
domization is used, all schemes discussed have a probabil-
ity of error. However, this probability is small, O(1/n) or
less for all schemes, and an error can be handled by rehash-
ing (changing the hash functions and rebuilding the hash
table). The result of [1] was shown under the assumption
that the algorithm is given free access to a number of truly
random hash functions. In many of the subsequent papers
it is shown how to achieve the bounds using explicitly de-
fined hash functions. However, no attempt is made here to
cover these constructions.

In the following, let " denote an arbitrary positive con-
stant. Pagh [9] showed that retrieving two entries from the
hash table suffices when r � (2 + ")n. Specifically, lookup
of a key x can be done by retrieving entries h1(x) and h2(x)
of the hash table, where h1 and h2 are random hash func-
tions mapping machine words to f1; : : : ; rg. The same re-
sult holds if h1 has range f1; : : : ; r/2g and h2 has range
fr/2 + 1; : : : ; rg, that is, if the two lookups are done in dis-
joint parts of memory.

It follows from [9] that it is not possible to perform
lookup by retrieving a single entry in the worst case unless
the hash table is of size n2�o(1).

Cuckoo Hashing

Pagh and Rodler [10] showed how to maintain the data
structure of Pagh [9] under insertions. They considered

the variant in which the lookups are done in disjoint parts
of the hash table. It will be convenient to think of these
as separate arrays, T1 and T2. Let ? denote the contents
of an empty hash table entry, and let x $ y express that
the values of variables x and y are swapped. The proposed
dynamic algorithm, called cuckoo hashing, performs inser-
tions by the following procedure:

procedure insert(x)
i := 1;
repeat
x $ Ti[hi (x)]; i := 3 � i;

until x = ?
end

At any time the variable x holds a key that needs to be in-
serted in the table, or ?. The value of i changes between 1
and 2 in each iteration, so the algorithm is alternately ex-
changing the contents of x with a key from Table 1 and
Table 2. Conceptually, what happens is that the algorithm
moves a sequence of zero or more keys from one table
to the other to make room for the new key. This is done
in a greedy fashion, by kicking out any key that may be
present in the location where a key is being moved. The
similarity of the insertion procedure and the nesting habits
of the European cuckoo is the reason for the name of the
algorithm.

The pseudocode above is slightly simplified. In general
the algorithm needs to make sure not to insert the same
key twice, and handle the possibility that the insertionmay
not succeed (by rehashing if the loop takes too long).

Theorem 1 Assuming that r � (2 + ")n the expected time
for the cuckoo hashing insertion procedure is O(1).

Generalizations of Cuckoo Hashing

Cuckoo hashing has been generalized in two directions.
First of all, consider the case of k hash functions, for k > 2.
Second, the hash table may be divided into “buckets” of
size b, such that the lookup procedure searches an entire
bucket for each hash function. Let (k, b)-cuckoo denote
a scheme with k hash functions and buckets of size b.What
was described above is a (2; 1)-cuckoo scheme. Already in
1999, (4; 1)-cuckoo was described in a patent application
by DavidA. Brown (US patent 6,775,281). Fotakis et al. de-
scribed and analyzed a (k; 1)-cuckoo scheme in [7], and
a (2; b)-cuckoo scheme was described and analyzed by Di-
etzfelbinger and Weidling [4]. In both cases, it was shown
that space utilization arbitrarily close to 100% is possible,
and that the necessary fraction of unused space decreases
exponentially with k and b. The insertion procedure con-

214 C Cuckoo Hashing

sidered in [4,7] is a breadth first search for the shortest
sequence of key moves that can be made to accommo-
date the new key. Panigrahy [11] studied (2; 2)-cuckoo
schemes in detail, showing that a space utilization of 83%
can be achieved dynamically, still supporting constant
time insertions using breadth first search. Independently,
Fernholz and Ramachandran [6] and Cain, Sanders, and
Wormald [2] determined the highest possible space uti-
lization for (2; k)-cuckoo hashing in a static setting with
no insertions. For k = 2; 3; 4; 5 the maximum space uti-
lization is roughly 90%, 96%, 98%, and 99%, respectively.

Applications

Dictionaries have a wide range of uses in computer sci-
ence and engineering. For example, dictionaries arise in
many applications in string algorithms and data struc-
tures, database systems, data compression, and various in-
formation retrieval applications. No attempt is made to
survey these further here.

Open Problems

The results above provide a good understanding of the
properties of open addressing schemes with worst case
constant lookup time.However, several aspects are still not
understood satisfactorily.

First of all, there is no practical class of hash functions
for which the above results can be shown. The only ex-
plicit classes of hash functions that are known to make the
methods work either have evaluation time	(log n) or use
space n˝(1). It is an intriguing open problem to construct
a class having constant evaluation time and space usage.

For the generalizations of cuckoo hashing the use of
breadth first search is not so attractive in practice, due to
the associated overhead in storage. A simpler approach
that does not require any storage is to perform a ran-
dom walk where keys are moved to a random, alternative
position. (This generalizes the cuckoo hashing insertion
procedure, where there is only one alternative position to
choose.) Panigrahy [11] showed that this works for (2; 2)-
cuckoo when the space utilization is low. However, it is
unknown whether this approach works well as the space
utilization approaches 100%.

Finally, many of the analyzes that have been given
are not tight. In contrast, most classical open addressing
schemes have been analyzed very precisely. It seems likely
that precise analysis of cuckoo hashing and its generaliza-
tions is possible using techniques from analysis of algo-
rithms, and tools from the theory of random graphs. In
particular, the relationship between space utilization and
insertion time is not well understood. A precise analysis of

the probability that cuckoo hashing fails has been given by
Kutzelnigg [8].

Experimental Results

All experiments on cuckoo hashing and its generaliza-
tions so far presented in the literature have been done us-
ing simple, heuristic hash functions. Pagh and Rodler [10]
presented experiments showing that, for space utilization
1/3, cuckoo hashing is competitive with open addressing
schemes that do not give a worst case guarantee. Zukowski
et al. [12] showed how to implement cuckoo hashing such
that it runs very efficiently on pipelined processors with
the capability of processing several instructions in paral-
lel. For hash tables that are small enough to fit in cache,
cuckoo hashing was 2 to 4 times faster than chained hash-
ing in their experiments. Erlingsson et al. [5] considered
(k, b)-cuckoo schemes for various combinations of small
values of k and b, showing that very high space utiliza-
tion is possible even for modestly small values of k and
b. For example, a space utilization of 99.9% is possible
for k = b = 4. It was further found that the resulting algo-
rithms were very robust. Experiments in [7] indicate that
the random walk insertion procedure performs as well as
one could hope for.

Cross References

� Dictionary Matching and Indexing (Exact and with
Errors)

� Load Balancing

Recommended Reading
1. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations.

SIAM J. Comput. 29(1), 180–200 (1999)
2. Cain, J.A., Sanders, P., Wormald, N.: The random graph thresh-

old for k-orientability and a fast algorithm for optimalmultiple-
choice allocation. In: Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’07), pp. 469–
476. ACM Press, New Orleans, Louisiana, USA, 7–9 December
2007

3. Carter, J.L., Wegman, M.N.: Universal classes of hash functions.
J. Comput. Syst. Sci. 18(2), 143–154 (1979)

4. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictio-
naries with tightly packed constant size bins. In: ICALP. Lecture
Notes in Computer Science, vol. 3580, pp. 166–178. Springer,
Berlin (2005)

5. Erlingsson, Ú., Manasse, M., McSherry, F.: A cool and practical
alternative to traditional hash tables. In: Proceedings of the
7th Workshop on Distributed Data and Structures (WDAS ’06),
Santa Clara, CA, USA, 4–6 January 2006

6. Fernholz, D., Ramachandran, V.: The k-orientability thresholds
for gn; p. In: Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’07), pp. 459–468. ACM
Press, New Orleans, Louisiana, USA, 7–9 December 2007

Cuckoo Hashing C 215

7. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient
hash tables with worst case constant access time. Theor. Com-
put. Syst. 38(2), 229–248 (2005)

8. Kutzelnigg, R.: Bipartite Random Graphs and Cuckoo Hashing.
In: Proc. Fourth Colloquium on Mathematics and Computer
Science, Nancy, France, 18–22 September 2006

9. Pagh, R.: On the cell probe complexity of membership and per-
fect hashing. In: Proceedings of the 33rd Annual ACM Sympo-
sium on Theory of Computing (STOC ’01), pp. 425–432. ACM
Press, New York (2001)

10. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51, 122–
144 (2004)

11. Panigrahy, R.: Efficient hashing with lookups in two memory
accesses. In: Proceedings of the 16th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’05), pp. 830–839. SIAM,
Vancouver, 23–25 January 2005

12. Zukowski, M., Heman, S., Boncz, P.A.: Architecture-conscious
hashing. In: Proceedings of the International Workshop on
Data Management on New Hardware (DaMoN), Article No. 6.
ACM Press, Chicago, Illinois, USA, 25 June 2006

Data Migration D 217

D

DataMigration
2004; Khuller, Kim, Wan

YOO-AH KIM
Computer Science and Engineering Department,
University of Connecticut, Storrs, CT, USA

Keywords and Synonyms

File transfers; Data movements

ProblemDefinition

The problem is motivated by the need to manage data
on a set of storage devices to handle dynamically chang-
ing demand. To maximize utilization, the data layout (i. e.,
a mapping that specifies the subset of data items stored on
each disk) needs to be computed based on disk capacities
as well as the demand for data. Over time as the demand
for data changes, the system needs to create new data lay-
out. The datamigration problem is to compute an efficient
schedule for the set of disks to convert an initial layout to
a target layout.

The problem is defined as follows. Suppose that there
are N disks and � data items, and an initial layout and a
target layout are given (see Fig. 1a for an example). For
each item i, source disks Si is defined to be a subset of
disks which have item i in the initial layout. Destination
disks Di is a subset of disks that want to receive item i. In
other words, disks in Di have to store item i in the target
layout but do not have to store it in the initial layout. Fig-
ure 1b shows the corresponding Si and Di. It is assumed
that Si ¤ ; and Di ¤ ; for each item i. Data migration is
the transfer of data to have all Di receive data item i re-
siding in Si initially, and the goal is to minimize the total
amount of time required for the transfers.

Assume that the underlying network is fully connected
and the data items are all the same size. In other words, it
takes the same amount of time to migrate an item from
one disk to another. Therefore, migrations are performed

Data Migration, Figure 1
Left An example of initial and target layout and right their corre-
sponding Si’s and Di’s

in rounds. Consider the half-duplex model, where each
disk can participate in the transfer of only one item – either
as a sender or as a receiver. The objective is to find a mi-
gration schedule using the minimum number of rounds.
No bypass nodes1 can be used and therefore all data items
are sent only to disks that desire them.

Key Results

Khuller et al. [11] developed a 9.5-approximation for the
data migration problem, which was later improved to
6:5 + o(1). In the next subsection, the lower bounds of the
problem are first examined.

Notations and Lower Bounds

1. Maximum in-degree (ˇ): Let ˇj be the number of
data items that a disk j has to receive. In other words,
ˇ j = jfij j 2 Digj. Then ˇ = max j ˇ j is a lower bound
on the optimal as a disk can receive only one data item
in one round.

2. Maximum number of items that a disk may be
a source or destination for (˛): For each item i, at
least one disk in Si should be used as a source for the
item, and this disk is called a primary source. A unique
primary source si 2 Si for each item i that minimizes

1A bypass node is a node that is not the target of amove operation,
but is used as an intermediate holding point for a data item.

218 D Data Migration

˛ = max j=1;:::;N (jfij j = sigj + ˇ j) can be found using
a network flow. Note that ˛ � ˇ, and ˛ is also a lower
bound on the optimal solution.

3. Minimum time required for cloning (M): Let a disk j
make a copy of item i at the kth round. At the end of
the mth round, the number of copies that can be cre-
ated from the copy is at most 2m - k as in each round
the number of copies can only be doubled. Also note
that each disk can make a copy of only one item in one
round. Since at least |Di| copies of item i need to be cre-
ated, the minimumm that satisfies the following linear
program gives a lower bound on the optimal solution:
L(m):

X
j

mX
k=1

2m�kxi jk � jDi j for all i (1)

X
i

xi jk � 1 for all j; k (2)

0 � xi jk � 1 (3)

Data Migration Algorithm

A 9.5-approximation can be obtained as follows. The algo-
rithm first computes representative sets for each item and
sends the item to the representative sets first, which in turn
send the item to the remaining set. Representative sets are
computed differently depending on the size of Di.

Representatives for Big Sets For sets with size at least
ˇ, a disjoint collection of representative sets Ri ; i = 1 : : : �
has to satisfy the following properties: Each Ri should be
a subset of Di and jRi j = bjDi j/ˇc. The representative sets
can be found using a network flow.

Representatives for Small Sets For each item i, let
�i = jDi jmod k. A secondary representative ri inDi for the
items with �i ¤ 0 needs to be computed. A disk j can be
a secondary representative ri for several items as long asP

i2I j �i � 2ˇ � 1, where Ij is a set of items for which j
is a secondary representative. This can be done by apply-
ing the Shmoys–Tardos algorithm [17] for the generalized
assignment problem.

Scheduling Migrations Given representatives for all
data items, migrations can be done in three steps as fol-
lows:
1. Migration toRi: Each item i is first sent to the set Ri. By

converting a fractional solution given in L(M), one can
find a migration schedule from si to Ri and it requires
at most 2M + ˛ rounds.

2. Migration to ri: Item i is sent from primary source si
to ri. The migrations can be done in 1:5˛ rounds, using
an algorithm for edge coloring [16].

3. Migration to the remaining disks: A transfer graph
from representatives to the remaining disks can now be
created as follows. For each item i, add directed edges
from disks in Ri to (ˇ � 1)b jDi j

ˇ
c disks in Di n Ri such

that the out-degree of each node in Ri is at most ˇ � 1
and the in-degree of each node in Di n Ri from Ri is
1. A directed edge is also added from the secondary
representative ri of item i to the remaining disks in Di
which do not have an edge coming from Ri. It has been
shown that the maximum degree of the transfer graph
is at most 4ˇ � 5 and the multiplicity is ˇ + 2. There-
fore, migration for the transfer graph can be done in
5ˇ � 3 rounds using an algorithm for multigraph edge
coloring [18].

Analysis Note that the total number of rounds required
in the algorithm described in “DataMigration Algorithm”
is at most 2M + 2:5˛ + 5ˇ � 3. As ˛, ˇ and M are lower
bounds on the optimal number of rounds, the abovemen-
tioned algorithm gives a 9.5-approximation.

Theorem 1 ([11]) There is a 9.5-approximation algorithm
for the data migration problem.

Khuller et al. [10] later improved the algorithm and ob-
tained a (6:5 + o(1))-approximation.

Theorem 2 ([10]) There is a (6.5 + o(1))-approximation
algorithm for the data migration problem.

Applications

Data Migration in Storage Systems

Typically, a large storage server consists of several disks
connected using a dedicated network, called a storage area
network. To handle high demand, especially for multime-
dia data, a common approach is to replicate data objects
within the storage system. Disks typically have constraints
on storage as well as the number of clients that can ac-
cess data from a single disk simultaneously. Approxima-
tion algorithms have been developed to map known de-
mand for data to a specific data layout pattern to maxi-
mize utilization2 [4,8,14,15]. In the layout, they compute
not only how many copies of each item need to be created,
but also a layout pattern that specifies the precise subset of
items on each disk. The problem is NP-hard, but there are
polynomial-time approximation schemes [4,8,14]. Given

2The utilization is the total number of clients that can be assigned
to a disk that contains the data they want.

Data Migration D 219

the relative demand for data, the algorithm computes an
almost optimal layout.

Over time as the demand for data changes, the system
needs to create new data layouts. To handle high demand
for popular objects, new copies may have to be dynami-
cally created and stored on different disks. The data mi-
gration problem is to compute a specific schedule for the
set of disks to convert an initial layout to a target layout.
Migration should be done as quickly as possible since the
performance of the system will be suboptimal during mi-
gration.

Gossiping and Broadcasting

The data migration problem can be considered as a gen-
eralization of gossiping and broadcasting. The problems
of gossiping and broadcasting play an important role in
the design of communication protocols in various kinds of
networks and have been extensively studied (see for exam-
ple [6,7] and the references therein). The gossip problem is
defined as follows. There are n individuals and each indi-
vidual has an item of gossip that he/she wish to communi-
cate to everyone else. Communication is typically done in
rounds, where in each round an individual may commu-
nicate with at most one other individual. Some commu-
nication models allow for the full exchange of all items of
gossip known to each individual in a single round. In ad-
dition, there may be a communication graph whose edge
indicates which pairs of individuals are allowed to com-
municate directly in each round. In the broadcast problem,
one individual needs to convey an item of gossip to every
other individual. The data migration problem generalizes
the gossiping and broadcasting in three ways: (1) each item
of gossip needs to be communicated to only a subset of in-
dividuals; (2) several items of gossip may be known to an
individual; (3) a single item of gossip can initially be shared
by several individuals.

Open Problems

The datamigration problem is NP-hard by reduction from
the edge coloring problem. However, no inapproximabil-
ity results are known for the problem. As the current best
approximation factor is relatively high (6:5 + o(1)), it is an
interesting open problem to narrow the gap between the
approximation guarantee and the inapproximability.

Another open problem is to combine data placement
and migration problems. This question was studied by
Khuller et al. [9]. Given the initial layout and the new de-
mand pattern, their goal was to find a set of data migra-
tions that can be performed in a specific number of rounds
and gives the best possible layout to the current demand

pattern. They showed that even one-round migration is
NP-hard and presented a heuristic algorithm for the one-
round migration problem. The experiments showed that
performing a few rounds of one-round migration consec-
utively works well in practice. Obtaining nontrivial ap-
proximation algorithms for this problem would be inter-
esting future work.

Data migration in a heterogeneous storage system is
another interesting direction for future research. Most re-
search on data migration has focused mainly on homo-
geneous storage systems, assuming that disks have the
same fixed capabilities and the network connections are
of the same fixed bandwidth. In practice, however, large-
scale storage systems may be heterogenous. For instance,
disks tend to have heterogeneous capabilities as they are
added over time owing to increasing demand for storage
capacity. Lu et al. [13] studied the case when disks have
variable bandwidth owing to the loads on different disks.
They used a control-theoretic approach to generate adap-
tive rates of data migrations which minimize the degrada-
tion of the quality of the service. The algorithm reduces the
latency experienced by clients significantly compared with
the previous schemes. However, no theoretical bounds on
the efficiency of data migrations were provided. Coffman
et al. [2] studied the case when each disk i can handle pi
transfers simultaneously and provided approximation al-
gorithms. Some papers [2,12] considered the case when
the lengths of data items are heterogenous (but the system
is homogeneous), and present approximation algorithms
for the problem.

Experimental Results

Golubchik et al. [3] conducted an extensive study of the
performance of data migration algorithms under differ-
ent changes in user-access patterns. They compared the
9.5-approximation [11] and several other heuristic algo-
rithms. Some of these heuristic algorithms cannot provide
constant approximation guarantees, while for some of the
algorithms no approximation guarantees are known. Al-
though the worst-case performance of the algorithm by
Khuller et al. [11] is 9.5, in the experiments the num-
ber of rounds required was less than 3.25 times the lower
bound.

They also introduced the correspondence problem, in
which a matching between disks in the initial layout with
disks in the target layout is computed so as to minimize
changes. A good solution to the correspondence problem
can improve the performance of the data migration algo-
rithms by a factor of 4.4 in their experiments, relative to
a bad solution.

220 D Data Reduction for Domination in Graphs

URL to Code

http://www.cs.umd.edu/projects/smart/data-migration/

Cross References

� Broadcasting in Geometric Radio Networks
� Deterministic Broadcasting in Radio Networks

Recommended Reading

A special case of the data migration problem was studied
by Anderson et al. [1] and Hall et al. [5]. They assumed
that a data transfer graph is given, in which a node cor-
responds to each disk and a directed edge corresponds
to each move operation that is specified (the creation
of new copies of data items is not allowed). Computing
a data movement schedule is exactly the problem of edge-
coloring the transfer graph. Algorithms for edge-coloring
multigraphs can now be applied to produce a migration
schedule since each color class represents a matching in
the graph that can be scheduled simultaneously. Comput-
ing a solution with the minimum number of rounds is
NP-hard, but several good approximation algorithms are
available for edge coloring. With space constraints on the
disk, the problem becomesmore challenging. Hall et al. [5]
showed that with the assumption that each disk has one
spare unit of storage, very good constant factor approx-
imations can be developed. The algorithms use at most
4d�/4e colors with at most n/3 bypass nodes, or at most
6d�/4e colors without bypass nodes.

Most of the results on the data migration problem deal
with the half-duplex model. Another interesting commu-
nication model is the full-duplex model where each disk
can act as a sender and a receiver in each round for a sin-
gle item. There is a (4 + o(1))-approximation algorithm
for the full-duplex model [10].
1. Anderson, E., Hall, J., Hartline, J., Hobbes, M., Karlin, A., Saia,

J., Swaminathan, R., Wilkes, J.: An experimental study of data
migration algorithms. In: Workshop on Algorithm Engineering
(2001)

2. Coffman, E., Garey, M., Jr., Johnson, D., Lapaugh, A.: Scheduling
file transfers. SIAM J. Comput. 14(3), 744–780 (1985)

3. Golubchik, L., Khuller, S., Kim, Y., Shargorodskaya, S., Wan., Y.:
Data migration on parallel disks. In: 12th Annual European
Symposium on Algorithms (ESA) (2004)

4. Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Ap-
proximation algorithms for data placement on parallel disks.
In: Symposium on Discrete Algorithms, pp. 223–232. Society
for Industrial and AppliedMathematics, Philadelphia (2000)

5. Hall, J., Hartline, J., Karlin, A., Saia, J., Wilkes, J.: On algorithms
for efficient data migration. In: SODA, pp. 620–629. Society for
Industrial and AppliedMathematics, Philadelphia (2001)

6. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.: A survey of
gossiping and broadcasting in communication networks. Net-
works 18, 129–134 (1988)

7. Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination
of information in interconnection networks (broadcasting and
gossiping). In: Du, D.Z., Hsu, F. (eds.) Combinatorial Network
Theory, pp. 125–212. Kluwer Academic Publishers, Dordrecht
(1996)

8. Kashyap, S., Khuller, S.: Algorithms for non-uniform size data
placement on parallel disks. In: Conference on FST&TCS Con-
ference. LNCS, vol. 2914, pp. 265–276. Springer, Heidelberg
(2003)

9. Kashyap, S., Khuller, S., Wan, Y-C., Golubchik, L.: Fast reconfigu-
ration of data placement in parallel disks. In: Workshop on Al-
gorithm Engineering and Experiments (2006)

10. Khuller, S., Kim, Y., Malekian, A.: Improved algorithms for data
migration. In: 9th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (2006)

11. Khuller, S., Kim, Y., Wan, Y.-C.: Algorithms for data migration
with cloning. SIAM J. Comput. 33(2), 448–461 (2004)

12. Yoo-Ah Kim. Data migration to minimize the average comple-
tion time. J. Algorithms 55, 42–57 (2005)

13. Lu, C., Alvarez, G.A., Wilkes, J.: Aqueduct:online data migration
with performance guarantees. In: Proceedings of the Confer-
ence on File and Storage Technologies (2002)

14. Shachnai, H., Tamir, T.: Polynomial time approximation
schemes for class-constrained packing problems. J. Sched. 4(6)
313–338 (2001)

15. Shachnai, H., Tamir, T.: On two class-constrained versions of
the multiple knapsack problem. Algorithmica 29(3), 442–467
(2001)

16. Shannon, C.E.: A theorem on colouring lines of a network.
J. Math. Phys. 28, 148–151 (1949)

17. Shmoys, D.B., Tardos, E.: An approximation algorithm for
the generalized assignment problem. Math. Program. 62(3),
461–474 (1993)

18. Vizing, V.G.: On an estimate of the chromatic class of a p-graph
(Russian). Diskret. Analiz. 3, 25–30 (1964)

Data Reduction for Domination
in Graphs
2004; Alber, Fellows, Niedermeier

ROLF NIEDERMEIER
Department of Math and Computer Science,
University of Jena, Jena, Germany

Keywords and Synonyms

Dominating set; Reduction to a problem kernel; Kernel-
ization

ProblemDefinition

The NP-complete DOMINATING SET problem is a notori-
ously hard problem:

Problem 1 (Dominating Set)
INPUT: An undirected graph G = (V ; E) and an inte-
ger k � 0.

http://www.cs.umd.edu/projects/smart/data-migration/

Data Reduction for Domination in Graphs D 221

Data Reduction for Domination in Graphs, Figure 1
The left-hand side shows the partitioning of the neighborhood of a single vertex v. The right-hand side shows the result of applying
the presented data reduction rule to this particular (sub)graph

QUESTION: Is there an S
 V with jSj � k such that every
vertex v 2 V is contained in S or has at least one neighbor
in S?

For instance, for an n-vertex graph its optimization ver-
sion is known to be polynomial-time approximable only
up to a factor of 	(log n) unless some standard complex-
ity-theoretic assumptions fail [9]. In terms of parametrized
complexity, the problem is shown to be W[2]-com-
plete [8]. Although still NP-complete when restricted to
planar graphs, the situation much improves here. In her
seminal work, Baker showed that there is an efficient
polynomial-time approximation scheme (PTAS) [6], and
the problem also becomes fixed-parameter tractable [2,4]
when restricted to planar graphs. In particular, the prob-
lem becomes accessible to fairly effective data reduction
rules and a kernelization result (see [16] for a general
description of data reduction and kernelization) can be
proven. This is the subject of this entry.

Key Results

The key idea behind the data reduction is preprocessing
based on locally acting simplification rules. Exemplary,
here we describe a rule where the local neighborhood of
each graph vertex is considered. To this end, we need the
following definitions.

We partition the neighborhood N(v) of an arbitrary
vertex v 2 V in the input graph into three disjoint sets
N1(v), N2(v), andN3(v) depending on local neighborhood
structure. More specifically, we define
� N1(v) to contain all neighbors of v that have edges to

vertices that are not neighbors of v;
� N2(v) to contain all vertices from N(v) n N1(v) that

have edges to at least one vertex from N1(v);
� N3(v) to contain all neighbors of v that are neither

in N1(v) nor in N2(v).
An example which illustrates such a partitioning is given
in Fig. 1 (left-hand side). A helpful and intuitive interpre-
tation of the partition is to see vertices in N1(v) as exits

because they have direct connections to the world outside
the closed neighborhood of v, vertices in N2(v) as guards
because they have direct connections to exits, and vertices
inN3(v) as prisoners because they do not see the world out-
side fvg [N(v).

Now consider a vertex w 2 N3(v). Such a vertex only
has neighbors in fvg [N2(v) [N3(v). Hence, to domi-
nate w, at least one vertex of fvg [N2(v) [N3(v) must be
contained in a dominating set for the input graph. Since v
can dominate all vertices that would be dominated by
choosing a vertex from N2(v) [N3(v) into the dominat-
ing set, we obtain the following data reduction rule.

If N3(v) 6= ; for some vertex v, then remove N2(v)
and N3(v) from G
and add a new vertex v0

with the edge fv; v0g to G.

Note that the new vertex v0 can be considered as a “gadget
vertex” that “enforces” v to be chosen into the dominat-
ing set. It is not hard to verify the correctness of this rule,
that is, the original graph has a dominating set of size k iff
the reduced graph has a dominating set of size k. Clearly,
the data reduction can be executed in polynomial time [5].
Note, however, that there are particular “diamond” struc-
tures that are not amenable to this reduction rule. Hence,
a second, somewhat more complicated rule based on con-
sidering the joint neighborhood of two vertices has been
introduced [5].

Altogether, the following core result could be
shown [5].

Theorem 1 A planar graph G = (V ; E) can be reduced in
polynomial time to a planar graph G0 = (V 0; E0) such that
G has a dominating set of size k iff G0 has a dominating set
of size k and jV 0j = O(k).

In other words, the theorem states that the DOMINATING
SET in planar graphs has a linear-size problem kernel. The
upper bound on |V 0| was first shown to be 335k [5] and

222 D Decoding

was then further improved to 67k [7]. Moreover, the re-
sults can be extended to graphs of bounded genus [10]. In
addition, similar results (linear kernelization) have been
recently obtained for the FULL-DEGREE SPANNING TREE
problem in planar graphs [13]. Very recently, these re-
sults have been generalized into a methodological frame-
work [12].

Applications

DOMINATING SET is considered to be one of themost cen-
tral graph problems [14,15]. Its applications range from
facility location to bioinformatics.

Open Problems

The best lower bound for the size of a problem kernel for
DOMINATING SET in planar graphs is 2k [7]. Thus, there
is quite a gap between known upper and lower bounds. In
addition, there have been some considerations concern-
ing a generalization of the above-discussed data reduction
rules [3]. To what extent such extensions are of practical
use remains to be explored. Finally, a study of deeper con-
nections between Baker’s PTAS results [6] and linear ker-
nelization results for DOMINATING SET in planar graphs
seems to be worthwhile for future research. Links concern-
ing the class of problems amenable to both approaches
have been detected recently [12]. The research field of data
reduction and problem kernelization as a whole together
with its challenges is discussed in a recent survey [11].

Experimental Results

The above-described theoretical work has been accompa-
nied by experimental investigations on synthetic as well
as real-world data [1]. The results have been encourag-
ing in general. However, note that grid structures seem to
be a hard case where the data reduction rules remained
largely ineffective.

Cross References

� Connected Dominating Set

Recommended Reading
1. Alber, J., Betzler, N., Niedermeier, R.: Experiments on data re-

duction for optimal domination in networks. Ann. Oper. Res.
146(1), 105–117 (2006)

2. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier,
R.: Fixed parameter algorithms for Dominating Set and re-
lated problems on planar graphs. Algorithmica 33(4), 461–493
(2002)

3. Alber, J., Dorn, B., Niedermeier, R.: A general data reduction
scheme for domination in graphs. In: Proc. 32nd SOFSEM.
LNCS, vol. 3831, pp. 137–147. Springer, Berlin (2006)

4. Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R.,
Rosamond, F., Stege, U.: A refined search tree technique for
Dominating Set on planar graphs. J. Comput. Syst. Sci. 71(4),
385–405 (2005)

5. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial time data
reduction for Dominating Set. J. ACM 51(3), 363–384 (2004)

6. Baker, B.S.: Approximation algorithms for NP-complete prob-
lems on planar graphs. J. ACM 41(1), 153–180 (1994)

7. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and
kernelization: lower bounds and upper bounds on kernel size.
SIAM J. Comput. 37(4), 1077–1106 (2007)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity.
Springer, New York (1999)

9. Feige, U.: A threshold of lnn for approximating set cover.
J. ACM 45(4), 634–652 (1998)

10. Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for
graphs on surfaces: Linear kernel and exponential speed-up.
In: Proc. 31st ICALP. LNCS, vol. 3142, pp. 581–592. Springer,
Berlin (2004)

11. Guo, J., Niedermeier, R.: Invitation to data reduction and prob-
lem kernelization. ACM SIGACT News 38(1), 31–45 (2007)

12. Guo, J., Niedermeier, R.: Linear problem kernels for NP-
hard problems on planar graphs. In: Proc. 34th ICALP. LNCS,
vol. 4596, pp. 375–386. Springer, Berlin (2007)

13. Guo, J., Niedermeier, R., Wernicke, S.: Fixed-parameter
tractability results for full-degree spanning tree and its dual.
In: Proc. 2nd IWPEC. LNCS, vol. 4196, pp. 203–214. Springer,
Berlin (2006)

14. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in
Graphs: Advanced Topics. Pure and Applied Mathematics,
vol. 209. Marcel Dekker, New York (1998)

15. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals
of Domination in Graphs. Pure and Applied Mathematics,
vol. 208. Marcel Dekker, New York (1998)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Ox-
ford University Press, New York (2006)

Decoding
� Decoding Reed–Solomon Codes
� List Decoding near Capacity: Folded RS Codes

Decoding Reed–Solomon Codes
1999; Guruswami, Sudan

VENKATESAN GURUSWAMI
Department of Computer Science and Engineering,
University of Washington, Seattle, WA, USA

Keywords and Synonyms

Decoding; Error correction

Decoding Reed–Solomon Codes D 223

ProblemDefinition

In order to ensure the integrity of data in the presence of
errors, an error-correcting code is used to encode data into
a redundant form (called a codeword). It is natural to view
both the original data (ormessage) as well as the associated
codeword as strings over a finite alphabet. Therefore, an
error-correcting code C is defined by an injective encoding
map E : ˙ k ! ˙ n , where k is called the message length,
and n the block length. The codeword, being a redundant
form of the message, will be longer than the message. The
rate of an error-correcting code is defined as the ratio k/n
of the length of the message to the length of the codeword.
The rate is a quantity in the interval (0; 1], and is ameasure
of the redundancy introduced by the code. LetR(C) denote
the rate of a code C.

The redundancy built into a codeword enables detec-
tion and hopefully also correction of any errors intro-
duced, since only a small fraction of all possible strings will
be legitimate codewords. Ideally, the codewords encoding
different messages should be “far-off” from each other, so
that one can recover the original codeword even when it
is distorted by moderate levels of noise. A natural measure
of distance between strings is the Hamming distance. The
Hamming distance between strings x; y 2 ˙� of the same
length, denoted dist(x; y), is defined to be the number of
positions i for which xi ¤ yi .

Theminimumdistance, or simply distance, of an error-
correcting code C, denoted d(C), is defined to be the
smallest Hamming distance between the encodings of two
distinct messages. The relative distance of a code C of
block length n, denoted ı(C), is the ratio between its
distance and n. Note that arbitrary corruption of any
b(d(C) � 1)/2c of locations of a codeword of C cannot
take it closer (in Hamming distance) to any other code-
word ofC. Thus in principle (i. e., efficiency considerations
apart) error patterns of at most b(d(C) � 1)/2c errors can
be corrected. This task is called unique decoding or decod-
ing up to half-the-distance. Of course, it is also possible,
and will often be the case, that error patterns with more
than d(C)/2 errors can also be corrected by decoding the
string to the closest codeword in Hamming distance. The
latter task is called Nearest-Codeword decoding or Maxi-
mum Likelihood Decoding (MLD).

One of the fundamental trade-offs in the theory of
error-correcting codes, and in fact one could say all of
combinatorics, is the one between rate R(C) and distance
d(C) of a code. Naturally, as one increases the rate and
thus number of codewords in a code, some two code-
words must come closer together thereby lowering the
distance. More qualitatively, this represents the tension

between the redundancy of a code and its error-resilience.
To correct more errors requires greater redundancy, and
thus lower rate.

A code defined by encoding map E : ˙ k ! ˙ n with
minimum distance d is said to be an (n; k; d) code. Since
there are j˙ jk codewords and only j˙ k�1j possible pro-
jections onto the first k = 1 coordinates, some two code-
words must agree on the first k � 1 positions, implying
that the distance d of the code must obey d � n � k + 1
(this is called the Singleton bound). Quite surprisingly,
over large alphabets ˙ there are well-known codes called
Reed–Solomon codes which meet this bound exactly and
have the optimal distance d = n � k + 1 for any given rate
k/n. (In contrast, for small alphabets, such as ˙ = f0; 1g,
the optimal trade-off between rate and relative distance for
an asymptotic family of codes is unknown and is a major
open question in combinatorics.)

This article will describe the best known algorith-
mic results for error-correction of Reed–Solomon codes.
These are of central theoretical and practical interest given
the above-mentioned optimal trade-off achieved by Reed–
Solomon codes, and their ubiquitous use in our every-
day lives ranging from compact disc players to deep-space
communication.

Reed–Solomon Codes

Definition 1 A Reed–Solomon code (or RS code),
RSF ;S [n; k], is parametrized by integers n; k satisfying
1 � k � n, a finite field F of size at least n, and a tuple
S = (˛1; ˛2; : : : ; ˛n) of n distinct elements from F . The
code is described as a subset of Fn as:

RSF ;S [n; k] = f(p(˛1); p(˛2); : : : ; p(˛n))jp(X) 2 F[X]
is a polynomial of degree � k � 1g :

In other words, the message is viewed as a polynomial, and
it is encoded by evaluating the polynomial at n distinct
field elements ˛1; : : : ; ˛n . The resulting code is linear of
dimension k, and its minimum distance equals n � k + 1,
which matches the Singleton bound.

The distance property of RS codes follows from the fact
that the evaluations of two distinct polynomials of degree
less than k can agree on at most k � 1 field elements. Note
that in the absence of errors, given a codeword y 2 F n , one
can recover its corresponding message by polynomial in-
terpolation on any k out of the n codeword positions. In
fact, this also gives an erasure decoding algorithm when
all but the information-theoretically bare minimum nec-
essary k symbols are erased from the codeword (but the

224 D Decoding Reed–Solomon Codes

receiver knows which symbols have been erased and the
correct values of the rest of the symbols). The RS decoding
problem, therefore, amounts to a noisy polynomial inter-
polation problem when some of the evaluation values are
incorrect.

The holy grail in decoding RS codes would be to find
the polynomial p(X) whose RS encoding is closest in Ham-
ming distance to a noisy string y 2 F n . One could then
decode y to this message p(X) as the maximum likelihood
choice. No efficient algorithm for such nearest-codeword
decoding is known for RS codes (or for that matter any
family of “good” or non-trivial codes), and it is believed
that the problem is NP-hard. Guruswami and Vardy [6]
proved the problem to NP-hard over exponentially large
fields, but this is a weak negative result since normally one
considers Reed–Solomon codes over fields of size at most
O(n).

Given the intractability of nearest-codeword decoding
in its extreme generality, lot of attention has been devoted
to the bounded distance decoding problem, where one as-
sumes that the string y 2 F n to be decoded has at most
e errors, and the goal is to find the Reed–Solomon code-
word(s) within Hamming distance e from y.

When e < (n � k)/2, this corresponds to decoding up
to half the distance. This is a classical problem for which
a polynomial time algorithm was first given by Peter-
son [8]. (It is notable that this even before the notion of
polynomial time was put forth as the metric of theoret-
ical efficiency.) The focus of this article is on a list decod-
ing algorithm for Reed–Solomon codes due to Guruswami
and Sudan [5] that decode beyond half the minimum dis-
tance. The formal problem and the key results are stated
next.

Key Results

In this section, the main result of focus concerning de-
coding Reed–Solomon codes is stated. Given the target
of decoding errors beyond half-the-minimum distance,
one needs to deal with inputs where there may be more
than one codeword within the radius e specified in the
bounded distance decoding problem. This is achieved by
a relaxation of decoding called list decoding where the de-
coder outputs a list of all codewords (or the corresponding
messages) within Hamming distance e from the received
word. If one wishes, one can choose the closest codeword
among the list as the “most likely” answer, but there are
many applications of Reed–Solomon decoding, for exam-
ple to decoding concatenated codes and several applica-
tions in complexity theory and cryptography, where hav-
ing the entire list of codewords adds to the power of the

decoding primitive. The main result of Guruswami and
Sudan [5], building upon the work of Sudan [9], is the fol-
lowing:

Theorem 1 ([5]) Let C = RSF ;S[n; k] be a Reed–Solomon
code over a field F of size q � n with S = (˛1; ˛2; : : : ; ˛n).
There is a deterministic algorithm running in time poly-
nomial in q that on input y 2 F n

q outputs a list of
all polynomials p(X) 2 F[X] of degree less than k for
which p(˛i) ¤ yi for less than n �

p
(k � 1)n positions

i 2 f1; 2; : : : ; ng. Further, at most O(n2) polynomials will
be output by the algorithm in the worst-case.

Alternatively, one can correct a RS code of block length
n and rate R = k/n up to n �

p
(k � 1) errors, or equiva-

lently a fraction 1�
p
R of errors.

The Reed–Solomon decoding algorithm is based on
the solution to the following more general polynomial re-
construction problem which seems like a natural algebraic
question in itself. (The problem is more general than RS
decoding since the ˛i ’s need not be distinct.)

Problem 1 (Polynomial Reconstruction)
Input: Integers k; t � n and n distinct pairs f(˛i ; yi)gni=1
where ˛i ; yi 2 F .
Output: A list of all polynomials p(X) 2 F[X] of degree
less than k which satisfy p(˛i) = yi for at least t values of
i 2 [n].

Theorem 2 The polynomial reconstruction problem
can be solved in time polynomial in n; jF j, provided
t >
p
(k � 1)n.

The reader is referred to the original papers [5,9], or
a recent survey [1], for details on the above algorithm.
A quick, high level peek into the main ideas is given below.
The first step in the algorithm consists of an interpolation
step where a nonzero bivariate polynomial Q(X,Y) is “fit”
through the n pairs (˛i ; yi), so that Q(˛i ; yi) = 0 for every
i. The key is to do this with relatively low degree; in partic-
ular one can find such a Q(X,Y) with so-called (1; k � 1)-
weighted degree at most D 	

p
2(k � 1)n. This degree

budget on Q implies that for any polynomial p(X) of de-
gree less than k, Q(X; p(X)) will have degree at most D.
Now whenever p(˛i) = yi , Q(˛i ; p(˛)i)) = Q(˛i ; yi) = 0.
Therefore, if a polynomial p(X) satisfies p(˛i) = yi for
at least t values of i, then Q(X; p(X)) has at least t
roots. On the other hand the polynomial Q(X; p(X)) has
degree at most D. Therefore, if t > D, one must have
Q(X; p(X)) = 0, or in other words Y � p(X) is a fac-
tor of Q(X,Y). The second step of the algorithm factor-
ized the polynomial Q(X,Y), and all polynomials p(X)
that must be output will be found as factors Y � p(X) of
Q(X,Y).

Decoding Reed–Solomon Codes D 225

Note that since D 	
p
2(k � 1)n this gives an algo-

rithm for polynomial reconstruction provided the agree-
ment parameter t satisfies t >

p
2(k � 1)n [9]. To get an

algorithm for t >
p
(k � 1)n, and thus decode beyond half

the minimum distance (n � k)/2 for all parameter choices
for k, n, Guruswami and Sudan [5] use the crucial idea of
allowing “multiple roots” in the interpolation step. Specif-
ically, the polynomial Q is required to have r � 1 roots
at each pair (˛i ; yi) for some integer multiplicity param-
eter r (the notion needs to be formalized properly, see [5]
for details). This necessitates an increase in the (1; k � 1)-
weighted degree of a factor of about r/

p
2, but the gain

is that one gets a factor r more roots for the polynomial
Q(X; p(X)). These facts together lead to an algorithm that
works as long as t >

p
(k � 1)n.

There is an additional significant benefit offered by the
multiplicity based decoder. The multiplicities of the inter-
polation points need not all be equal and they can picked
in proportion to the reliability of different received sym-
bols. This gives a powerful way to exploit “soft” informa-
tion in the decoding stage, leading to impressive coding
gains in practice. The reader is referred to the paper by
Koetter and Vardy [7] for further details on using mul-
tiplicities to encode symbol level reliability information
from the channel.

Applications

Reed–Solomon codes have been extensively studied and
are widely used in practice. The above decoding algorithm
corrects more errors beyond the traditional half the dis-
tance limit and therefore directly advances the state of the
art on this important algorithmic task. The RS list decod-
ing algorithm has also been the backbone for many fur-
ther developments in algorithmic coding theory. In partic-
ular, using this algorithm in concatenation schemes leads
to good binary list-decodable codes. A variant of RS codes
called folded RS codes have been used to achieve the opti-
mal trade-off between error-correction radius and rate [3]
(see the companion encyclopedia entry by Rudra on folded
RS codes).

The RS list decoding algorithm has also found many
surprising applications beyond coding theory. In partic-
ular, it plays a key role in several results in cryptogra-
phy and complexity theory (such as constructions of ran-
domness extractors and pseudorandom generators, hard-
ness amplification, constructions to hardcore predicates,
traitor tracing, reductions connecting worst-case hardness
to average-case hardness, etc.); more information can be
found, for instance, in [10] or Chap. 12 in [2].

Open Problems

The most natural open question is whether one can im-
prove the algorithm further and correct more than a frac-
tion 1 �

p
R of errors for RS codes of rate R. It is important

to note that there is a combinatorial limitation to the num-
ber of errors one can list decode from. One can only list de-
code in polynomial time from a fraction � of errors if for
every received word y the number of RS codewords within
distance e = �n of y is bounded by a polynomial function
of the block length n. The largest � for which this holds
as a function of the rate R is called the list decoding ra-
dius �LD = �LD(R) of RS codes. The RS list decoding algo-
rithm discussed here implies that �LD(R) � 1 �

p
R, and

it is trivial to see than �LD(R) � 1 � R. Are there RS codes
(perhaps based on specially structured evaluation points)
for which �LD(R) > 1 �

p
R? Are there RS codes for which

the 1 �
p
R radius (the so-called “Johnson bound”) is ac-

tually tight for list decoding? For the more general poly-
nomial reconstruction problem the

p
(k � 1)n agreement

cannot be improved upon [4], but this is not known for RS
list decoding.

Improving the NP-hardness result of [6] to hold for RS
codes over polynomial sized fields and for smaller decod-
ing radii remains an important challenge.

Cross References

� Learning Heavy Fourier Coefficients of Boolean
Functions

� List Decoding near Capacity: Folded RS Codes
� LP Decoding

Recommended Reading
1. Guruswami, V.: Algorithmic Results in List Decoding. In: Foun-

dations and Trends in Theoretical Computer Science, vol. 2, is-
sue 2, NOWpublishers, Hanover (2007)

2. Guruswami, V.: List Decoding of Error-Correcting Codes. Lec-
ture Notes in Computer Science, vol. 3282. Springer, Berlin
(2004)

3. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding
capacity: Error-correctionwith optimal redundancy. IEEE Trans.
Inform. Theor. 54(1), 135–150 (2008)

4. Guruswami, V., Rudra, A.: Limits to list decoding Reed–
Solomon codes. IEEE Trans. Inf. Theory. 52(8), 3642–3649
(2006)

5. Guruswami, V., Sudan, M.: Improved decoding of Reed–
Solomon and algebraic-geometric codes. IEEE Trans. Inf. The-
ory. 45(6), 1757–1767 (1999)

6. Guruswami, V., Vardy A.: Maximum Likelihood Decoding of
Reed–Solomon codes is NP-hard. IEEE Trans. Inf. Theory. 51(7),
2249–2256 (2005)

7. Koetter, R., Vardy, A.: Algebraic soft-decision decoding of
Reed–Solomon codes. IEEE Trans. Inf. Theory. 49(11), 2809–
2825 (2003)

226 D Decremental All-Pairs Shortest Paths

8. Peterson, W.W.: Encoding and error-correction procedures for
Bose-Chaudhuri codes. IEEE Trans. Inf. Theory. 6, 459–470
(1960)

9. Sudan, M.: Decoding of Reed–Solomon codes beyond the
error-correction bound. J. Complex. 13(1), 180–193 (1997)

10. Sudan, M.: List decoding: Algorithms and applications. SIGACT
News. 31(1), 16–27 (2000)

Decremental All-Pairs Shortest Paths
2004; Demetrescu, Italiano

CAMIL DEMETRESCU, GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Deletions-only dynamic all-pairs shortest paths

ProblemDefinition

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on property
P quickly, and perform update operations faster than re-
computing from scratch, as carried out by the fastest static
algorithm. An algorithm is fully dynamic if it can handle
both edge insertions and edge deletions. A partially dy-
namic algorithm can handle either edge insertions or edge
deletions, but not both: it is incremental if it supports in-
sertions only, and decremental if it supports deletions only.

This entry addressed the decremental version of the
all-pairs shortest paths problem (APSP), which consists
of maintaining a directed graph with real-valued edge
weights under an intermixed sequence of the following op-
erations:

delete(u, v): delete edge (u ,v) from the graph.
distance(x, y): return the distance from vertex x to

vertex y.
path(x, y): report a shortest path from vertex x to ver-

tex y, if any.

A natural variant of this problem supports a general-
ized delete operation that removes a vertex and all edges
incident to it. The algorithms addressed in this entry
can deal with this generalized operation within the same
bounds.

History of the Problem

A simple-minded solution to this problem would be to re-
build shortest paths from scratch after each deletion using
the best static APSP algorithm so that distance and path
queries can be reported in optimal time. The fastest known
static APSP algorithm for arbitrary real weights has a run-
ning time of O(mn + n2 log log n), wherem is the number
of edges and n is the number of vertices in the graph [13].
This is ˝(n3) in the worst case. Fredman [6] and later
Takaoka [19] showed how to break this cubic barrier: the
best asymptotic bound is by Takaoka, who showed how to
solve APSP in O(n3

p
log log n/ log n) time.

Another simple-minded solution would be to answer
queries by running a point-to-point shortest paths com-
putation, without the need to update shortest paths at each
deletion. This can be done with Dijkstra’s algorithm [3] in
O(m+n log n) time using the Fibonacci heaps of Fredman
and Tarjan [5]. With this approach, queries are answered
in O(m + n log n) worst-case time and updates require op-
timal time.

The dynamic maintenance of shortest paths has a long
history, and the first papers date back to 1967 [11,12,17].
In 1985 Even and Gazit [4] presented algorithms for
maintaining shortest paths on directed graphs with arbi-
trary real weights. The worst-case bounds of their algo-
rithm for edge deletions were comparable to recomputing
APSP from scratch. Also Ramalingam and Reps [15,16]
and Frigioni et al. [7,8] considered dynamic shortest path
algorithms with real weights, but in a different model.
Namely, the running time of their algorithm is ana-
lyzed in terms of the output change rather than the in-
put size (output bounded complexity). Again, in the worst
case the running times of output-bounded dynamic al-
gorithms are comparable to recomputing APSP from
scratch.

The first decremental algorithm that was provably
faster than recomputing from scratch was devised by King
for the special case of graphs with integer edge weights less
than C: her algorithm can update shortest paths in a graph
subject to a sequence of ˝(n2) deletions in O(C � n2)
amortized time per deletion [9]. Later, Demetrescu and
Italiano showed how to deal with graphs with real non-
negative edge weights in O(n2 log n) amortized time per
deletion [2] in a sequence of ˝(m/n) operations. Both
algorithms work in the more general case where edges
are not deleted from the graph, but their weight is in-
creased at each update. Moreover, since they update short-
est paths explicitly after each deletion, queries are an-
swered in optimal time at any time during a sequence of
operations.

Decremental All-Pairs Shortest Paths D 227

Key Results

The decremental APSP algorithm by Demetrescu and Ital-
iano hinges upon the notion of locally shortest paths [2].

Definition 1 A path is locally shortest in a graph if all of
its proper subpaths are shortest paths.

Notice that by the optimal-substructure property, a short-
est path is locally shortest. The main idea of the algo-
rithm is to keep information about locally shortest paths
in a graph subject to edge deletions. The following theo-
rem derived from [2] bounds the number of changes in
the set of locally shortest paths due to an edge deletion:

Theorem 1 If shortest paths are unique in the graph, then
the number of paths that start or stop being shortest at each
deletion is O(n2) amortized over ˝(m/n) update opera-
tions.

The result of Theorem 1 is purely combinatorial and as-
sumes that shortest paths are unique in the graph. The lat-
ter can be easily achieved using any consistent tie-breaking
strategy (see, e. g., [2]). It is possible to design a deletions-
only algorithm that pays only O(log n) time per change in
the set of locally shortest paths, using a simple modifica-
tion of Dijkstra’s algorithm [3]. Since by Theorem 1 the
amortized number of changes is bounded by O(n2), this
yields the following result:

Theorem 2 Consider a graph with n vertices and an ini-
tial number of m edges subject to a sequence of ˝(m/n)
edge deletions. If shortest paths are unique and edge weights
are non-negative, it is possible to support each delete op-
eration in O(n2 log n) amortized time, each distance
query in O(1) worst-case time, and each path query in
O(`) worst-case time, where ` is the number of vertices in
the reported shortest path. The space used is O(mn).

Applications

Application scenarios of dynamic shortest paths include
network optimization [1], document formatting [10],
routing in communication systems, robotics, incremen-
tal compilation, traffic information systems [18], and
dataflow analysis. A comprehensive review of real-world
applications of dynamic shortest path problems appears
in [14].

URL to Code

An efficient C language implementation of the decremen-
tal algorithm addressed in Section “Key Results” is avail-
able at the URL: http://www.dis.uniroma1.it/~demetres/
experim/dsp.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Fully Dynamic All Pairs Shortest Paths

Recommended Reading

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Al-
gorithms and Applications. Prentice Hall, Englewood Cliffs, NJ
(1993)

2. Demetrescu, C., Italiano, G.: A new approach to dynamic all
pairs shortest paths. J. Assoc. Comp. Mach. 51, 968–992 (2004)

3. Dijkstra, E.: A note on two problems in connexion with graphs.
Numerische Mathematik 1, 269–271 (1959)

4. Even, S., Gazit, H.: Updating distances in dynamic graphs.Meth.
Op. Res. 49, 371–387 (1985)

5. Fredman, M., Tarjan, R.: Fibonacci heaps and their use in im-
proved network optimization algorithms. J. ACM 34, 596–615
(1987)

6. Fredman, M.L.: New bounds on the complexity of the shortest
path problems. SIAM J. Comp. 5(1), 87–89 (1976)

7. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semi-dynamic
algorithms for maintaining single source shortest paths trees.
Algorithmica 22, 250–274 (1998)

8. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic
algorithms for maintaining shortest paths trees. J. Algorithm
34, 351–381 (2000)

9. King, V.: Fully dynamic algorithms for maintaining all-pairs
shortest paths and transitive closure in digraphs. In: Proc.
40th IEEE Symposium on Foundations of Computer Science
(FOCS’99), pp. 81–99. IEEE Computer Society, New York, USA
(1999)

10. Knuth, D., Plass, M.: Breaking paragraphs into lines. Software-
Practice Exp. 11, 1119–1184 (1981)

11. Loubal, P.: A network evaluation procedure. Highway Res. Rec.
205, 96–109 (1967)

12. Murchland, J.: The effect of increasing or decreasing the length
of a single arc on all shortest distances in a graph, tech. rep.,
LBS-TNT-26, London Business School. Transport Network The-
ory Unit, London, UK (1967)

13. Pettie, S.: A new approach to all-pairs shortest paths on real-
weighted graphs. Theor. Comp. Sci. 312, 47–74 (2003) special
issue of selected papers from ICALP (2002)

14. Ramalingam, G.: Bounded incremental computation. Lect.
Note Comp. Sci. 1089 (1996)

15. Ramalingam, G., Reps, T.: An incremental algorithm for a gen-
eralization of the shortest path problem. J. Algorithm 21, 267–
305 (1996)

16. Ramalingam, G., Reps, T.: On the computational complexity
of dynamic graph problems. Theor. Comp. Sci. 158, 233–277
(1996)

17. Rodionov, V.: The parametric problem of shortest distances.
USSR Comp. Math. Math. Phys. 8, 336–343 (1968)

18. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line:
an empirical case study from public railroad transport. In: Proc.
3rd Workshop on Algorithm Engineering (WAE’99), pp. 110–
123. Notes in Computer Science 1668. London, UK (1999)

19. Takaoka, T.: A new upper bound on the complexity of the all
pairs shortest path problem. Inf. Proc. Lett. 43, 195–199 (1992)

http://www.dis.uniroma1.it/~demetres/experim/dsp
http://www.dis.uniroma1.it/~demetres/experim/dsp

228 D Degree-Bounded Planar Spanner with Low Weight

Degree-Bounded Planar Spanner
with LowWeight
2005; Song, Li, Wang

WEN-ZHAN SONG1, XIANG-YANG LI2 ,
WEIZHAO WANG3

1 School of Engineering and Computer Science,
Washington State University, Vancouver, WA, USA

2 Department of Computer Science, Illinois Institute
of Technology, Chicago, IL, USA

3 Google Inc, Irvine, CA, USA

Keywords and Synonyms

Unified energy-efficient unicast and broadcast topology
control

ProblemDefinition

An important requirement of wireless ad hoc networks
is that they should be self-organizing, and transmission
ranges and data paths may need to be dynamically re-
structured with changing topology. Energy conservation
and network performance are probably the most critical
issues in wireless ad hoc networks, because wireless de-
vices are usually powered by batteries only and have lim-
ited computing capability and memory. Hence, in such
a dynamic and resource-limited environment, each wire-
less node needs to locally select communication neighbors
and adjust its transmission power accordingly, such that
all nodes together self-form a topology that is energy effi-
cient for both unicast and broadcast communications.

To support energy-efficient unicast, the topology is
preferred to have the following features in the literature:
1. POWER SPANNER: [1,9,13,16,17] Formally speaking,

a subgraph H is called a power spanner of a graph G
if there is a positive real constant � such that for any
two nodes, the power consumption of the shortest path
in H is at most � times of the power consumption of
the shortest path inG. Here � is called the power stretch
factor or spanning ratio.

2. DEGREE BOUNDED: [1,9,11,13,16,17] It is also desir-
able that the logical node degree in the constructed
topology is bounded from above by a small constant.
Bounded logical degree structures find applications in
Bluetooth wireless networks since a master node can
have only seven active slaves simultaneously. A struc-
ture with small logical node degree will save the cost
of updating the routing table when nodes are mobile.
A structure with a small degree and using shorter links
could improve the overall network throughout [6].

3. PLANAR:[1,4,13,14,16] A network topology is also pre-
ferred to be planar (no two edges crossing each other in
the graph) to enable some localized routing algorithms
to work correctly and efficiently, such as Greedy Face
Routing (GFG) [2], Greedy Perimeter Stateless Rout-
ing (GPSR) [5], Adaptive Face Routing (AFR) [7], and
Greedy Other Adaptive Face Routing (GOAFR) [8]. No-
tice that with planar network topology as the underly-
ing routing structure, these localized routing protocols
guarantee the message delivery without using a routing
table: each intermediate node can decide which logical
neighboring node to forward the packet to using only
local information and the position of the source and the
destination.

To support energy-efficient broadcast [15], the locally con-
structed topology is preferred to be low-weighted [10,12]:
the total link length of the final topology is within a con-
stant factor of that of EMST. Recently, several localized
algorithms [10,12] have been proposed to construct low-
weighted structures, which indeed approximate the energy
efficiency of EMST as the network density increases. How-
ever, none of them is power efficient for unicast routing.

Before this work, all known topology control algo-
rithms could not support power efficient unicast and
broadcast in the same structure. It is indeed challenging
to design a unified topology, especially due to the trade off
between spanner and low weight property. The main con-
tribution of this algorithm is to address this issue.

Key Results

This algorithm is the first localized topology control al-
gorithm for all nodes to maintain a unified energy-effi-
cient topology for unicast and broadcast in wireless ad
hoc/sensor networks. In one single structure, the follow-
ing network properties are guaranteed:
1. Power efficient unicast: given any two nodes, there

is a path connecting them in the structure with total
power cost no more than 2� + 1 times the power cost
of any path connecting them in the original network.
Here � > 1 is some constant that will be specified later
in this algorithm. It assumes that each node u can ad-
just its power sufficiently to cover its next-hop v on any
selected path for unicast.

2. Power efficient broadcast: the power consumption for
broadcast is within a constant factor of the optimum
among all locally constructed structures. As proved in
[10], to prove this, it equals to prove that the structure is
low-weighted. Here we called a structure low-weigthed,
if its total edge length is within a constant factor of
the total length of the Euclidean Minimum Spanning

Degree-Bounded Planar Spanner with Low Weight D 229

1: First, each node self-constructs the Gabriel graphGG locally. The algorithm to constructGG locally is well-known,
and a possible implementation may refer to [13]. Initially, all nodes mark themselvesWHITE, i. e., unprocessed.

2: Once a WHITE node u has the smallest ID among all its WHITE neighbors in N(u), it uses the following strategy
to select neighbors:
1. Node u first sorts all its BLACK neighbors (if available) in N(u) in the distance-increasing order, then sorts

all its WHITE neighbors (if available) in N(u) similarly. The sorted results are then restored to N(u), by first
writing the sorted list of BLACK neighbors then appending the sorted list of WHITE neighbors.

2. Node u scans the sorted list N(u) from left to right. In each step, it keeps the current pointed neighborw in the
list, while deletes every conflicted node v in the remainder of the list. Here a node v is conflicted with w means
that node v is in the �-dominating region of node w. Here � = 2
/k (k � 9) is an adjustable parameter.

Node u thenmarks itself BLACK, i. e. processed, and notifies each deleted neighboring node v in N(u) by a broad-
casting message UPDATEN.

3: Once a node v receives the message UPDATEN from a neighbor u in N(v), it checks whether itself is in the nodes
set for deleting: if so, it deletes the sending node u from list N(v), otherwise, marks u as BLACK in N(v).

4: When all nodes are processed, all selected links fuvjv 2 N(u);8v 2 GGg form the final network topology,
denoted by S	GG. Each node can shrink its transmission range as long as it sufficiently reaches its farthest
neighbor in the final topology.

Degree-Bounded Planar Spanner with LowWeight, Algorithm 1
S�GG: Power-Efficient Unicast Topology

Tree (EMST). For broadcast or generally multicast, it
assumes that each node u can adjust its power suffi-
ciently to cover its farthest down-stream node on any
selected structure (typically a tree) for multicast.

3. Bounded logical node degree: each node has to com-
municate with at most k � 1 logical neighbors, where
k � 9 is an adjustable parameter.

4. Bounded average physical node degree: the expected
average physical node degree is at most a small con-
stant. Here the physical degree of a node u in a struc-
tureH is defined as the number of nodes inside the disk
centered at u with radius maxuv2H kuvk.

5. Planar: there are no edges crossing each other. This
enables several localized routing algorithms, such
as [2,5,7,8], to be performed on top of this structure and
guarantee the packet delivery without using the routing
table.

6. Neighbors �-separated: the directions between any
two logical neighbors of any node are separated by at
least an angle � , which reduces the communication in-
terferences.

It is the first known localized topology control strategy for
all nodes together to maintain such a single structure with
these desired properties. Previously, only a centralized al-
gorithm was reported in [1]. The first step is Algorithm 1
that can construct a power-efficient topology for unicast,
then it extends to the final algorithm (Algorithm 2) that
can support power-efficient broadcast at the same time.

Definition 1 (� -Dominating Region) For each neighbor
node v of a node u, the � -dominating region of v is the
2�-cone emanated from u, with the edge uv as its axis.

Let NUDG(u) be the set of neighbors of node u in UDG,
and let N(u) be the set of neighbors of node u in the final
topology, which is initialized as the set of neighbor nodes
in GG.

Algorithm 1 constructs a degree-(k � 1) planar power
spanner.

Lemma 1 Graph S	GG is connected if the underlying
graph GG is connected. Furthermore, given any two nodes u
and v, there exists a path fu; t1; : : : ; tr ; vg connecting them
such that all edges have length less than

p
2kuvk.

Theorem 2 The structure S	GG has node degree at most
k � 1 and is planar power spanner with neighbors 	-sep-
arated. Its power stretch factor is at most � =

p
2ˇ /

(1 � (2
p
2 sin �k)

ˇ), where k � 9 is an adjustable parame-
ter.

Obviously, the construction is consistent for two end-
points of each edge: if an edge uv is kept by node u, then
it is also kept by node v. It is worth mentioning that, the
number 3 in criterion kxyk > max(kuvk; 3kuxk; 3kvyk)
is carefully selected.

Theorem 3 The structure LS	GG is a degree-bounded
planar spanner. It has a constant power spanning ratio

230 D Degree-Bounded Planar Spanner with Low Weight

1: All nodes together construct the graph S	GG in a localized manner, as described in Algorithm 1. Then, each
node marks its incident edges in S	GG unprocessed.

2: Each node u locally broadcasts its incident edges in S	GG to its one-hop neighbors and listens to its neighbors.
Then, each node x can learn the existence of the set of 2-hop links E2(x), which is defined as follows: E2(x) =
fuv 2 S	GG j u or v 2 NUDG(x)g. In other words, E2(x) represents the set of edges in S	GG with at least one
endpoint in the transmission range of node x.

3: Once a node x learns that its unprocessed incident edge xy has the smallest ID among all unprocessed links in
E2(x), it will delete edge xy if there exists an edge uv 2 E2(x) (here both u and v are different from x and y),
such that kxyk > max(kuvk; 3kuxk; 3kvyk); otherwise it simply marks edge xy processed. Here assume that
uvyx is the convex hull of u, v, x and y. Then the link status is broadcasted to all neighbors through a message
UPDATESTATUS(XY).

4: Once a node u receives a message UPDATESTATUS(XY), it records the status of link xy at E2(u).
5: Each node repeats the above two steps until all edges have been processed. Let LS	GG be the final structure

formed by all remaining edges in S	GG.

Degree-Bounded Planar Spanner with LowWeight, Algorithm 2
Construct LS�GG: Planar Spanner with Bounded Degree and LowWeight

2� + 1, where � is the power spanning ratio of S	GG. The
node degree is bounded by k � 1where k � 9 is a customiz-
able parameter in S	GG.

Theorem 4 The structure LS	GG is low-weighted.

Theorem 5 Assuming that both the ID and the geome-
try position can be represented by log n bits each, the to-
tal number of messages during constructing the structure
LS	GG is in the range of [5n; 13n], where each message
has at most O(log n) bits.

Compared with previous known low-weighted struc-
tures [10,12], LS	GG not only achieves more desirable
properties, but also costs much less messages during con-
struction. To construct LS	GG, each node only needs
to collect the information E2(x) which costs at most 6n
messages for n nodes. The Algorithm 2 can be gener-
ally applied to any known degree-bounded planar span-
ner to make it low-weighted while keeping all its previous
properties, except increasing the spanning ratio from � to
2� + 1 theoretically.

In addition, the expected average node interference in
the structure is bounded by a small constant. This is signif-
icant on its own due to the following reasons: it has been
taken for granted that “a network topology with small logi-
cal node degree will guarantee a small interference” and re-
cently Burkhart et al. [3] showed that this is not true gener-
ally. This work also shows that, although generally a small
logical node degree cannot guarantee a small interference,
the expected average interference is indeed small if the log-
ical communication neighbors are chosen carefully.

Theorem 6 For a set of nodes produced by a Poisson
point process with density n, the expected maximum node
interferences of EMST, GG, RNG, and Yao are at least
	(log n).

Theorem 7 For a set of nodes produced by a Poisson point
process with density n, the expected average node interfer-
ences of EMST are bounded from above by a constant.

This result also holds for nodes deployed with uniform
random distribution.

Applications

Localized topology control in wireless ad hoc networks
are critical mechanisms to maintain network connectiv-
ity and provide feedback to communication protocols.
Themajor traffic in networks are unicast communications.
There is a compelling need to conserve energy and im-
prove network performance by maintaining an energy-ef-
ficient topology in localized ways. This algorithm achieves
this by choosing relatively smaller power levels and size
of communication neighbors for each node (e. g., reduc-
ing interference). Also, broadcasting is often necessary
in MANET routing protocols. For example, many uni-
cast routing protocols such as Dynamic Source Routing
(DSR), Ad Hoc On Demand Distance Vector (AODV),
Zone Routing Protocol (ZRP), and Location Aided Rout-
ing (LAR) use broadcasting or a derivation of it to establish
routes. It is highly important to use power-efficient broad-
cast algorithms for such networks since wireless devices
are often powered by batteries only.

Degree-Bounded Trees D 231

Cross References

� Applications of Geometric Spanner Networks
� Geometric Spanners
� Planar Geometric Spanners
� Sparse Graph Spanners

Recommended Reading

1. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane span-
ners of bounded degree and low weight. In: Proceedings of
European Symposium of Algorithms, University of Rome, 17–
21 September 2002

2. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with
guaranteed delivery in ad hoc wireless networks. ACM/Kluwer
Wireless Networks 7(6), 609–616 (2001). 3rd int. Workshop on
Discrete Algorithms and methods for mobile computing and
communications, 48–55 (1999)

3. Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.:
Does topology control reduce interference. In: ACM Int. Sym-
posium on Mobile Ad-Hoc Networking and Computing (Mobi-
Hoc), Tokyo, 24–26 May 2004

4. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geo-
graphic variation analysis. Syst. Zool. 18, 259–278 (1969)

5. Karp, B., Kung, H.T.: Gpsr: Greedy perimeter stateless rout-
ing for wireless networks. In: Proc. of the ACM/IEEE Interna-
tional Conference onMobile Computing and Networking (Mo-
biCom), Boston, 6–11 August 2000

6. Kleinrock, L., Silvester, J.: Optimum transmission radii for
packet radio networks or why six is a magic number. In: Pro-
ceedings of the IEEE National Telecommunications Confer-
ence, pp. 431–435, Birmingham, 4–6 December 1978

7. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal
geometric mobile ad-hoc routing. In: International Workshop
on Discrete Algorithms and Methods for Mobile Computing
and Communications (DIALM), Atlanta, 28 September 2002

8. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-case optimal and
average-case efficient geometric ad-hoc routing. In: ACM Int.
Symposium on Mobile Ad-Hoc Networking and Computing
(MobiHoc) Anapolis, 1–3 June 2003

9. Li, L., Halpern, J.Y., Bahl, P., Wang, Y.-M., Wattenhofer, R.: Anal-
ysis of a cone-based distributed topology control algorithms
forwirelessmulti-hop networks. In: PODC: ACMSymposiumon
Principle of Distributed Computing, Newport, 26–29 August
2001

10. Li, X.-Y.: Approximate MST for UDG locally. In: COCOON, Big
Sky, 25–28 July 2003

11. Li, X.-Y., Wan, P.-J., Wang, Y., Frieder, O.: Sparse power efficient
topology for wireless networks. In: IEEE Hawaii Int. Conf. on
System Sciences (HICSS), Big Island, 7–10 January 2002

12. Li, X.-Y., Wang, Y., Song, W.-Z., Wan, P.-J., Frieder, O.: Localized
minimum spanning tree and its applications in wireless ad hoc
networks. In: IEEE INFOCOM, Hong Kong, 7–11 March 2004

13. Song, W.-Z., Wang, Y., Li, X.-Y. Frieder, O.: Localized algorithms
for energy efficient topology in wireless ad hoc networks. In:
ACM Int. Symposium onMobile Ad-Hoc Networking and Com-
puting (MobiHoc), Tokyo, 24–26 May 2004

14. Toussaint, G.T.: The relative neighborhood graph of a finite pla-
nar set. Pattern Recognit. 12(4), 261–268 (1980)

15. Wan, P.-J., Calinescu, G., Li, X.-Y., Frieder, O.: Minimum-energy
broadcast routing in static ad hoc wireless networks. ACM
Wireless Networks (2002), To appear, Preliminary version ap-
peared in IEEE INFOCOM, Anchorage, 22–26 April 2001

16. Wang, Y., Li, X.-Y.: Efficient construction of bounded degree
and planar spanner for wireless networks. In: ACM DIALM-
POMC Joint Workshop on Foundations of Mobile Computing,
San Diego, 19 September 2003

17. Yao, A.C.-C.: On constructing minimum spanning trees in k-di-
mensional spaces and related problems. SIAM J. Comput. 11,
721–736 (1982)

Degree-Bounded Trees
1994; Fürer, Raghavachari

MARTIN FÜRER
Department of Computer Science and Engineering, The
Pennsylvania State University, University Park, PA, USA

Keywords and Synonyms

Bounded degree spanning trees; Bounded degree Steiner
trees

ProblemDefinition

The problem is to construct a spanning tree of small
degree for a connected undirected graph G = (V ; E). In
the Steiner version of the problem, a set of distinguished
vertices D
 V is given along with the input graph G.
A Steiner tree is a tree in G which spans at least the set D.

As finding a spanning or Steiner tree of the smallest
possible degree�� isNP-hard, one is interested in approx-
imating this minimization problem. For many such com-
binatorial optimization problems, the goal is to find an ap-
proximation in polynomial time (a constant or larger fac-
tor). For the spanning and Steiner tree problems, the iter-
ative polynomial time approximation algorithms of Fürer
and Raghavachari [8] (see also [14]) findmuch better solu-
tions. The degree� of the solution tree is at most�� + 1.

There are very few natural NP-hard optimization
problems for which the optimum can be achieved up
to an additive term of 1. One such problem is coloring
a planar graph, where coloring with four colors can be
done in polynomial time. On the other hand, 3-coloring is
NP-complete even for planar graphs. An other such prob-
lem is edge coloring a graph of degree �. While coloring
with� + 1 colors is always possible in polynomial time,�
edge coloring is NP-complete.

Chvátal [3] has defined the toughness �(G) of a graph
as the minimum ratio jXj/c(X) such that the subgraph
of G induced by VnX has c(X) � 2 connected compo-

232 D Degree-Bounded Trees

nents. The inequality 1/�(G) � �� immediately follows.
Win [17] has shown that �� < 1

�(G) + 3; i. e., the inverse
of the toughness is actually a good approximation of��.

A set X, such that the ratio jXj/c(X) is the tough-
ness �(G), can be viewed as witnessing the upper
bound jXj/c(X) on �(G) and therefore the lower bound
c(X)/jXj on ��. Strengthening this notion, Fürer and
Raghavachari [8] define X to be a witness set for �� � d
if d is the smallest integer greater or equal to (jXj+ c(X)�
1)/jXj. Their algorithm not only outputs a spanning tree,
but also a witness set X, proving that its degree is at most
�� + 1.

Key Results

The minimum degree spanning tree and Steiner tree
problems are easily seen to be NP-hard, as they contain
the Hamiltonian path problem. Hence, we cannot expect
a polynomial time algorithm to find a solution of minimal
possible degree ��. The same argument also shows that
an approximation by a factor less than 3/2 is impossible in
polynomial time unless P = NP.

Initial approximation algorithms obtained solutions of
degree O(�� log n) [6], where n = jV j is the number of
vertices. The optimal result for the spanning tree case has
been obtained by Fürer and Raghavachari [7, 8].

Theorem 1 Let�� be the degree of an unknownminimum
degree spanning tree of an input graph G = (V ; E). There is
a polynomial time approximation algorithm for the mini-
mum degree spanning tree problem that finds a spanning
tree of degree at most�� + 1.

Later this result has been extended to the Steiner tree
case [8].

Theorem 2 Assume a Steiner tree problem is defined by
a graph G = (V ; E) and an arbitrary subset D of vertices
V. Let �� be the degree of an unknown minimum degree
Steiner tree of G spanning at least the set D. There is a poly-
nomial time approximation algorithm for the minimumde-
gree Steiner tree problem that finds a Steiner tree of degree
at most�� + 1.

Both approximation algorithms run in time O(mn �
log n ˛(m; n)), where m is the number of edges and ˛ is
the inverse Ackermann function.

Applications

Some possible direct applications are in networks for non-
critical broadcasting, where it might be desirable to bound
the load per node, and in designing power grids, where the

cost of splitting increases with the degree. Another major
benefit of a small degree network is limiting the effect of
node failure.

Furthermore, the main results on approximating the
minimumdegree spanning and Steiner tree problems have
been the basis for approximating various network design
problems, sometimes involving additional parameters.

Klein, Krishnan, Raghavachari and Ravi [11] find
2-connected subgraphs of approximately minimal degree
in 2-connected graphs, as well as approximately mini-
mal degree spanning trees (branchings) in directed graphs.
Their algorithms run in quasi-polynomial time, and ap-
proximate the degree�� by (1 + �)�� + O(log1+� n).

Often the goal is to find a spanning tree that simulta-
neously has a small degree and a small weight. For a graph
having an minimum weight spanning tree (MST) of de-
gree �� and weight w, Fischer [5] finds a spanning tree
with degree O(�� + log n) and weight w, (i. e., an MST of
small weight) in polynomial time.

Könemann and Ravi [12,13] provide a bi-criteria ap-
proximation. For a given B� � ��, let w be the minimum
weight of any spanning tree of degree at most B�. The
polynomial time algorithm finds a spanning tree of degree
O(B� + log n) and weight O(w). In the second paper, the
algorithm adapts to the case of a different degree bound
on each vertex. Chaudhuri et al. [2] further improved this
result to approximate both the degree B� and the weight w
by a constant factor.

In another extension of the minimumdegree spanning
tree problem, Ravi and Singh [15] have obtained a strict
generalization of the �� + 1 spanning tree approxima-
tion [8]. Their polynomial time algorithm finds an MST
of degree �� + k for the case of a graph with k distinct
weights on the edges.

Recently, there have been some drastic improvements.
Again, let w be the minimum cost of a spanning tree of
given degree B�. Goemans [9] obtains a spanning tree of
cost w and degree B� + 2. Finally, Singh and Lau [16] de-
crease the degree to B� + 1 and also handle individual de-
gree bounds��v for each vertex v in the same way.

Interesting approximation algorithms are also known
for the 2-dimensional Euclidian minimum weight
bounded degree spanning tree problem, where the ver-
tices are points in the plane and edge weights are the
Euclidian distances. Khuller, Raghavachari, and Young
[10] show factor 1.5 and 1.25 approximations for degree
bounds 3 and 4 respectively. These bounds have later been
improved slightly by Chan [1]. Slightly weaker results are
obtained by Fekete et al. [4], using flow-based methods,
for the more general case where the weight function just
satisfies the triangle inequality.

Deterministic Broadcasting in Radio Networks D 233

Open Problems

The time complexity of the minimum degree spanning
and Steiner tree algorithms [8] is O(mn ˛(m; n) log n).
Can it be improved to O(mn)? In particular, what can
be gained by initially selecting a reasonable Steiner tree
with some greedy technique instead of starting the itera-
tion with an arbitrary Steiner tree?

Is there an efficient parallel algorithm that can obtain
a �� + 1 approximation in poly-logarithmic time? Fürer
and Raghavachari [6] have obtained such an NC-algo-
rithm, but only with a factor O(log n) approximation of
the degree.

Cross References

� Fully Dynamic Connectivity
� Graph Connectivity
�Minimum Energy Cost Broadcasting in Wireless

Networks
�Minimum Spanning Trees
� Steiner Forest
� Steiner Trees

Recommended Reading

1. Chan, T.M.: Euclidean bounded-degree spanning tree ratios.
Discret. Comput. Geom. 32(2), 177–194 (2004)

2. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A push-relabel
algorithm for approximating degree bounded MSTs. In: Pro-
ceedings of the 33rd International Colloquium on Automata,
Languages and Programming (ICALP 2006), Part I. LNCS,
vol. 4051, pp. 191–201. Springer, Berlin (2006)

3. Chvátal, V.: Tough graphs and Hamiltonian circuits. Discret.
Math. 5, 215–228 (1973)

4. Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B.,
Young, N.: A network-flow technique for finding low-weight-
bounded-degree spanning trees. In: Proceedings of the 5th In-
teger Programming and Combinatorial Optimization Confer-
ence (IPCO 1996) and J. Algorithms 24(2), 310–324 (1997)

5. Fischer, T.: Optimizing the degree of minimum weight span-
ning trees, Technical Report TR93–1338. Cornell University,
Computer Science Department (1993)

6. Fürer, M., Raghavachari, B.: An NC approximation algorithm for
the minimum-degree spanning tree problem. In: Proceedings
of the 28th Annual Allerton Conference on Communication,
Control and Computing, 1990, pp. 174–281

7. Fürer, M., Raghavachari, B.: Approximating the minimum de-
gree spanning tree to within one from the optimal degree.
In: Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 1992), 1992, pp. 317–324

8. Fürer, M., Raghavachari, B.: Approximating the minimum-de-
gree Steiner tree to within one of optimal. J. Algorithms 17(3),
409–423 (1994)

9. Goemans, M.X.: Minimum bounded degree spanning trees. In:
Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2006), 2006, pp. 273–282

10. Khuller, S., Raghavachari, B., Young, N.: Low-degree spanning
trees of small weight. SIAM J. Comput. 25(2), 355–368 (1996)

11. Klein, P.N., Krishnan, R., Raghavachari, B., Ravi, R.: Approxima-
tion algorithms for finding low-degree subgraphs. Networks
44(3), 203–215 (2004)

12. Könemann, J., Ravi, R.: A matter of degree: Improved approx-
imation algorithms for degree-bounded minimum spanning
trees. SIAM J. Comput. 31(6), 1783–1793 (2002)

13. Könemann, J., Ravi, R.: Primal-dual meets local search: Approx-
imating MSTs with nonuniform degree bounds. SIAM J. Com-
put. 34(3), 763–773 (2005)

14. Raghavachari, B.: Algorithms for finding low degree struc-
tures. In: Hochbaum, D.S. (ed.) Approximation Algorithms for
NP-Hard Problems. pp. 266–295. PWS Publishing Company,
Boston (1995)

15. Ravi, R., Singh,M.: Delegate and conquer: An LP-based approx-
imation algorithm for minimum degree MSTs. In: Proceedings
of the 33rd International Colloquiumon Automata, Languages
andProgramming (ICALP 2006) Part I. LNCS, vol. 4051, pp. 169–
180. Springer, Berlin (2006)

16. Singh, M., Lau, L.C.: Approximatingminimumbounded degree
spanning trees to within one of optimal. In: Proceedings of the
thirty-ninth Annual ACM Symposium on Theory of Computing
(STOC 2007), New York, NY, 2007, pp. 661–670

17. Win, S.: On a connection between the existence of k-trees
and the toughness of a graph. Graphs Comb. 5(1), 201–205
(1989)

Deterministic Broadcasting
in Radio Networks
2000; Chrobak, Gąsieniec, Rytter

LESZEK GĄSIENIEC
Department of Computer Science,
University of Liverpool, Liverpool, UK

Keywords and Synonyms

Wireless networks; Dissemination of information; One-
to-all communication

ProblemDefinition

One of the most fundamental communication problems in
wired as well as wireless networks is broadcasting, where
one distinguished source node has a message that needs to
be sent to all other nodes in the network.

The radio network abstraction captures the features
of distributed communication networks with multi-access
channels, with minimal assumptions on the channel
model and processors’ knowledge. Directed edges model
uni-directional links, including situations in which one
of two adjacent transmitters is more powerful than the

234 D Deterministic Broadcasting in Radio Networks

other. In particular, there is no feedback mechanism (see,
for example, [13]). In some applications, collisions may
be difficult to distinguish from the noise that is normally
present on the channel, justifying the need for protocols
that do not depend on the reliability of the collision de-
tection mechanism (see [9,10]). Some network configura-
tions are subject to frequent changes. In other networks,
topologies could be unstable or dynamic; for example,
when mobile users are present. In such situations, algo-
rithms that do not assume any specific topology are more
desirable.

More formally a radio network is a directed graph
where by n we denote the number of nodes in this graph.
If there is an edge from u to v, then we say that v is an
out-neighbor of u and u is an in-neighbor of v. Each node
is assigned a unique identifier from the set f1; 2; : : : ; ng.
In the broadcast problem, one node, for example node 1,
is distinguished as the source node. Initially, the nodes do
not possess any other information. In particular, they do
not know the network topology.

The time is divided into discrete time steps. All nodes
start simultaneously, have access to a common clock, and
work synchronously. A broadcasting algorithm is a pro-
tocol that for each identifier id, given all past messages
received by id, specifies, for each time step t, whether id
will transmit a message at time t, and if so, it also speci-
fies the message. A messageM transmitted at time t from
a node u is sent instantly to all its out-neighbors. An out-
neighbor v of u receives M at time step t only if no col-
lision occurred, that is, if the other in-neighbors of v do
not transmit at time t at all. Further, collisions cannot be
distinguished from background noise. If v does not receive
any message at time t, it knows that either none of its in-
neighbors transmitted at time t, or that at least two did, but
it does not know which of these two events occurred. The
running time of a broadcasting algorithm is the smallest t
such that for any network topology, and any assignment of
identifiers to the nodes, all nodes receive the source mes-
sage no later than at step t.

All efficient radio broadcasting algorithms are based
on the following purely combinatorial concept of selectors.

Selectors Consider subsets of f1; : : : ; ng. We say that
a set S hits a set X iff jS \ Xj = 1, and that S avoids Y iff
S \ Y = ;. A family S of sets is aw-selector if it satisfies the
following property:

(�) For any two disjoint sets X, Y with w/2 � jXj � w,
jY j � w, there is a set in S which hits X and avoids Y .

A complete layered network is a graph consisting
of layers L0; : : : ; Lm�1; in which each node in layer Li

is directly connected to every node in layer Li+1; for all
i = 0; : : : ;m � 1: The layer L0 contains only the source
node s.

Key Results

Theorem 1 ([5]) For all positive integers w and n; s.t.,
w � n there exists a w-selector S̄ with O(w log n) sets.

Theorem 2 ([5]) There exists a deterministic O(n log2 n)-
time algorithm for broadcasting in radio networks with ar-
bitrary topology.

Theorem 3 ([5]) There exists a deterministic O(n log n)-
time algorithm for broadcasting in complete layered radio
networks.

Applications

Prior to this work, Bruschi and Del Pinto showed in [1]
that radio broadcasting requires time ˝(n logD) in the
worst case. In [2], Chlebus et al. presented a broadcasting
algorithm with time complexity O(n11/6) – the first sub-
quadratic upper bound. This upper bound was later im-
proved to O(n5/3 log3 n) by De Marco and Pelc [8], and by
Chlebus et al. [3] to O(n3/2) by application of finite geome-
tries.

Recently, Kowalski and Pelc in [12] proposed a faster
O(n log n logD)�time radio broadcasting algorithm,
where D is the eccentricity of the network. Later, Czu-
maj and Rytter showed in [6] how to reduce this bound
to O(n log2 D). The results presented in [5], see Theo-
rems 1, 2, and 3, as well as further improvements in [6,12]
are existential (non-constructive). The proofs are based
on the probabilistic method. A discussion on efficient
explicit construction of selectors was initiated by Indyk
in [11], and then continued by Chlebus and Kowalski
in [4].

More careful analysis and further discussion on selec-
tors in the context of combinatorial group testing can be
found in [7], where DeBonis et al. proved that the size of
selectors is	(w log n

w):

Open Problems

The exact complexity of radio broadcasting remains an
open problem, although the gap between the lower and
upper bounds ˝(n logD) and O(n log2 D) is now only
a factor of logD. Another promising direction for further
studies is improvement of efficient explicit construction of
selectors.

Deterministic Searching on the Line D 235

Recommended Reading

1. Bruschi, D., Del Pinto,M.: Lower Bounds for the Broadcast Prob-
lem inMobile Radio Networks. Distrib. Comput. 10(3), 129–135
(1997)

2. Chlebus, B.S., Gąsieniec, L., Gibbons, A.M., Pelc, A., Rytter, W.:
Deterministic broadcasting in unknown radio networks. Dis-
trib. Comput. 15(1), 27–38 (2002)

3. Chlebus, M., Gąsieniec, L., Östlin, A., Robson, J.M.: Determinis-
tic broadcasting in radio networks. In: Proc. 27th International
ColloquiumonAutomata, Languages andProgramming.LNCS,
vol. 1853, pp. 717–728, Geneva, Switzerland (2000)

4. Chlebus, B.S., Kowalski, D.R.: Almost Optimal Explicit Selectors.
In: Proc. 15th International Symposium on Fundamentals of
Computation Theory, pp. 270–280, Lübeck, Germany (2005)

5. Chrobak, M., Gąsieniec, L., Rytter, W.: Fast Broadcasting and
Gossiping in RadioNetworks,. In: Proc. 41st Annual Symposium
on Foundations of Computer Science, pp. 575–581, Redondo
Beach, USA (2000) Full version in J. Algorithms 43(2) 177–189
(2002)

6. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio net-
works with unknown topology. J. Algorithms 60(2), 115–143
(2006)

7. De Bonis, A., Gąsieniec, L., Vaccaro, U.: Optimal Two-Stage Al-
gorithms for Group Testing Problems. SIAM J. Comput. 34(5),
1253–1270 (2005)

8. De Marco, G., Pelc, A.: Faster broadcasting in unknown radio
networks. Inf. Process. Lett. 79(2), 53–56 (2001)

9. Ephremides, A., Hajek, B.: Information theory and communi-
cation networks: an unconsummated union. IEEE Trans. Inf.
Theor. 44, 2416–2434 (1998)

10. Gallager, R.: A perspective on multiaccess communications.
IEEE Trans. Inf. Theor. 31, 124–142 (1985)

11. Indyk, P.: Explicit constructions of selectors and related com-
binatorial structures, with applications. In: Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 697–704,
San Francisco, USA (2002)

12. Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio
networks. Distr. Comput. 18(1), 43–57 (2005)

13. Massey, J.L., Mathys, P.: The collision channel without feed-
back. IEEE Trans. Inf. Theor. 31, 192–204 (1985)

Deterministic Searching on the Line
1988; Baeza-Yates, Culberson, Rawlins

RICARDO BAEZA-YATES
Department of Computer Science,
University of Chile,
Santiago, Chile

Keywords and Synonyms

Searching for a point in a line; Searching in one dimen-
sion; Searching for a line (or a plane) of known slope in
the plane (or a 3D space)

ProblemDefinition

The problem is to design a strategy for a searcher (or
a number of searchers) located initially at some start point
on a line to reach an unknown target point. The target
point is detected only when a searcher is located on it.
There are several variations depending on the informa-
tion about the target point, how many parallel searchers
are available and how they can communicate, and the type
of algorithm. The cost of the search algorithm is defined as
the distance traveled until finding the point relative to the
distance of the starting point to the target. This entry only
covers deterministic algorithms.

Key Results

Consider just one searcher. If one knows the direction to
the target, the solution is trivial and the relative cost is 1.
If one knows the distance to the target, the solution is also
simple. Walk that distance to one side and if the target is
not found, go back and travel to the other side until the
target is found. In the worst case the cost of this algorithm
is 3.

If no information is known about the target, the so-
lution is not trivial. The optimal algorithm follows a lin-
ear logarithmic spiral with exponent 2 and has cost 9 plus
lower order terms. That is, one takes 1, 2, 4, 8, ..., 2i, ... steps
to each side in an alternating fashion, each time return-
ing to the origin, until the target is found. This result was
first discovered by Gal and rediscovered independently by
Baeza-Yates et al.

If one has more searchers, saym, the solution is trivial
if they have instantaneous communication. Two searchers
walk in opposite directions and the rest stay at the origin.
The searcher that finds the target communicates this to all
the others. Hence, the cost for all searchers is m+ 2, as-
suming that all of them must reach the target. If they do
not have communication the solution is more complicated
and the optimal algorithm is still an open problem.

The searching setting can also be changed, like finding
a point in a set of r rays, where the optimal algorithm has
cost 1 + 2rr /(r � 1)r�1, which tends to 1 + 2e	 6.44.

Other variations are possible. For example, if one is in-
terested in the average case one can have a probability dis-
tribution for finding the target point, obtaining paradoxi-
cal results, as an optimal finite distance algorithm with an
infinite number of turning points. On the other hand, in
the worst case, if there is a cost d associated with each turn,
the optimal distance is 9 OPT+ 2d, where OPT is the dis-
tance between the origin and the target. This last case has
also been solved for r rays.

236 D Detour

The same ideas of doubling in each step can be ex-
tended to find a target point in an unknown simple poly-
gon or to find a line with known slope in the plane. The
same spiral search can also be used to find an arbitrary line
in the plane with cost 13.81. The optimality of this result is
still an open problem.

Applications

This problem is a basic element for robot navigation in un-
known environments. For example, it arises when a robot
needs to find where a wall ends, if the robot can only sense
the wall but not see it.

Cross References

� Randomized Searching on Rays or the Line

Recommended Reading
1. Alpern, S., Gal, S.: The Theory of Search Games and Rendevouz.

Kluwer Academic Publishers, Dordrecht (2003)
2. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the

Plane. Inf. Comput. 106(2), 234–252 (1993) Preliminary version
as Searching with uncertainty. In: Karlsson, R., Lingas, A. (eds.)
Proceedings SWAT 88, First Scandinavian Workshop on Algo-
rithm Theory. Lecture Notes in Computer Science, vol. 318,
pp. 176–189. Halmstad, Sweden (1988)

3. Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Com-
put. Geom. Theor. Appl. 5, 143–154 (1995)

4. Blum, A., Raghavan, P., Schieber, B.: Navigating in Unfamiliar
Geometric Terrain. In: On Line Algorithms, pp. 151–155, DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, American Mathematical Society, Providence RI
(1992) Preliminary Version in STOC 1991, pp. 494–504

5. Demaine, E., Fekete, S., Gal, S.: Online searching with turn cost.
Theor. Comput. Sci. 361, 342–355 (2006)

6. Gal, S.: Minimax solutions for linear search problems. SIAM
J. Appl. Math. 27, 17–30 (1974)

7. Gal, S.: Search Games, pp. 109–115, 137–151, 189–195. Aca-
demic Press, New York (1980)

8. Hipke, C., Icking, C., Klein, R., Langetepe, E.: How to Find a point
on a linewithin a Fixed distance. Discret. Appl. Math. 93, 67–73
(1999)

9. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown envi-
ronment: an optimal randomized algorithm for the cow-path
problem. Inf. Comput. 131(1), 63–79 (1996) Preliminary version
in SODA ’93, pp. 441–447

10. Lopez-Ortiz, A.: On-Line Target Searching in Bounded and Un-
bounded Domains: Ph. D. Thesis, Technical Report CS-96-25,
Dept. of Computer Sci., Univ. of Waterloo (1996)

11. Lopez-Ortiz, A., Schuierer, S.: The Ultimate Strategy to Search
on m Rays? Theor. Comput. Sci. 261(2), 267–295 (2001)

12. Papadimitriou, C.H., Yannakakis, M.: Shortest Paths without
a Map. Theor. Comput. Sci. 84, 127–150 (1991) Preliminary ver-
sion in ICALP ’89

13. Schuierer, S.: Lower bounds in on-line geometric searching.
Comput. Geom. 18, 37–53 (2001)

Detour
� Dilation of Geometric Networks
� Geometric Dilation of Geometric Networks
� Planar Geometric Spanners

Dictionary-Based Data Compression
1977; Ziv, Lempel

TRAVIS GAGIE, GIOVANNI MANZINI
Department of Computer Science,
University of Eastern Piedmont, Alessandria, Italy

Keywords and Synonyms
LZ compression; Ziv–Lempel compression; Parsing-based
compression

ProblemDefinition
The problem of lossless data compression is the problem
of compactly representing data in a format that admits the
faithful recovery of the original information. Lossless data
compression is achieved by taking advantage of the redun-
dancy which is often present in the data generated by ei-
ther humans or machines.

Dictionary-based data compression has been “the so-
lution” to the problem of lossless data compression for
nearly 15 years. This technique originated in two theoret-
ical papers of Ziv and Lempel [15,16] and gained popu-
larity in the “80s” with the introduction of the Unix tool
compress (1986) and of the gif image format (1987). Al-
though today there are alternative solutions to the problem
of lossless data compression (e. g., Burrows-Wheeler com-
pression and Prediction by Partial Matching), dictionary-
based compression is still widely used in everyday appli-
cations: consider for example the zip utility and its vari-
ants, the modem compression standards V.42bis and V.44,
and the transparent compression of pdf documents. The
main reason for the success of dictionary-based compres-
sion is its unique combination of compression power and
compression/decompression speed. The reader should re-
fer to [13] for a review of several dictionary-based com-
pression algorithms and of their main features.

Key Results
Let T be a string drawn from an alphabet ˙ . Dictionary-
based compression algorithms work by parsing the in-
put into a sequence of substrings (also called words)
T1; T2; : : : ; Td and by encoding a compact representation
of these substrings. The parsing is usually done incremen-
tally and on-line with the following iterative procedure.

Dictionary-Based Data Compression D 237

Assume the encoder has already parsed the substrings
T1; T2; : : : ; Ti�1. To proceed, the encoder maintains a dic-
tionary of potential candidates for the next word Ti and
associates a unique codeword with each of them. Then,
it looks at the incoming data, selects one of the candi-
dates, and emits the corresponding codeword. Different
algorithms use different strategies for establishing which
words are in the dictionary and for choosing the next word
Ti. A larger dictionary implies a greater flexibility for the
choice of the next word, but also longer codewords. Note
that for efficiency reasons the dictionary is usually not built
explicitly: the whole process is carried out implicitly using
appropriate data structures.

Dictionary-based algorithms are usually classified into
two families whose respective ancestors are two parsing
strategies, both proposed by Ziv and Lempel and today
universally known as LZ78 [16] and LZ77 [15].

The LZ78 Algorithm

Assume the encoder has already parsed the words
T1; T2; : : : ; Ti�1, that is, T = T1T2 � � � Ti�1T̂i for some text
suffix T̂i . The LZ78 dictionary is defined as the set of
strings obtained by adding a single character to one of the
words T1; : : : ; Ti�1 or to the empty word. The next word
Ti is defined as the longest prefix of T̂i which is a dictio-
nary word. For example, for T = aabbaaabaabaabba the
LZ78 parsing is: a, ab, b, aa, aba, abaa, bb, a. It is easy to see
that all words in the parsing are distinct, with the possible
exception of the last one (in the example the word a). Let
T0 denote the empty word. If Ti = Tj˛, with 0 � j < i and
˛ 2 ˙ , the codeword emitted by LZ78 for Ti will be the
pair (j,˛). Thus, if LZ78 parses the string T into t words,
its output will be bounded by t log t + t log j˙ j +	(t) bits.

The LZ77 Algorithm

Assume the encoder has already parsed the words
T1; T2; : : : ; Ti�1, that is, T = T1T2 � � � Ti�1T̂i for some text
suffix T̂i . The LZ77 dictionary is defined as the set of
strings of the form w˛ where ˛ 2 ˙ and w is a substring
of T starting in the already parsed portion of T. The next
word Ti is defined as the longest prefix of T̂i which is a dic-
tionary word. For example, for T = aabbaaabaabaabba
the LZ77 parsing is: a, ab, ba, aaba, abaabb, a. Note that, in
some sense, T5 = abaabb is defined in terms of itself: it is
a copy of the dictionary wordw˛ withw starting at the sec-
ond a of T4 and extending into T5! It is easy to see that all
words in the parsing are distinct, with the possible excep-
tion of the last one (in the example the word a), and that
the number of words in the LZ77 parsing is smaller than
in the LZ78 parsing. If Ti = w˛ with ˛ 2 ˙ , the codeword

for Ti is the triplet (si ; `i ; ˛) where si is the distance from
the start of Ti to the last occurrence of w in T1T2 � � � Ti�1,
and `i = jwj.

Entropy Bounds

The performance of dictionary-based compressors has
been extensively investigated since their introduction.
In [15] it is shown that LZ77 is optimal for a certain fam-
ily of sources, and in [16] it is shown that LZ78 achieves
asymptotically the best compression ratio attainable by
a finite-state compressor. This implies that, when the in-
put string is generated by an ergodic source, the compres-
sion ratio achieved by LZ78 approaches the entropy of the
source. More recent work has established similar results
for other Ziv–Lempel compressors and has investigated
the rate of convergence of the compression ratio to the en-
tropy of the source (see [14] and references therein).

It is possible to prove compression bounds without
probabilistic assumptions on the input, using the notion
of empirical entropy. For any string T, the order k em-
pirical entropy Hk(T) is the maximum compression one
can achieve using a uniquely decodable code in which the
codeword for each character may depend on the k char-
acters immediately preceding it [6]. The following lemma
is a useful tool for establishing upper bounds on the com-
pression ratio of dictionary-based algorithms which hold
pointwise on every string T.

Lemma 1 ([6, Lemma 2.3]) Let T = T1T2 � � � Td be a pars-
ing of T such that each word Ti appears at most M times.
Then, for any k � 0

d log d � jTjHk(T)+d log(jTj/d)+d logM+	(kd+d);

where Hk(T) is the k-th order empirical entropy of T. �

Consider, for example, the algorithm LZ78. It parses the
input T into t distinct words (ignoring the last word
in the parsing) and produces an output bounded by
t log t + t log j˙ j +	(t) bits. Using Lemma 1 and the fact
that t = O(jTj/ log T), one can prove that LZ780s output is
at most jTjHk(T) + o(jTj) bits. Note that the bound holds
for any k � 0: this means that LZ78 is essentially “as pow-
erful” as any compressor that encodes the next character
on the basis of a finite context.

Algorithmic Issues

One of the reasons for the popularity of dictionary-based
compressors is that they admit linear-time, space-efficient
implementations. These implementations sometimes re-
quire non-trivial data structures: the reader is referred

238 D Dictionary-Based Data Compression

to [12] and references therein for further reading on this
topic.

Greedy vs. Non-Greedy Parsing

Both LZ78 and LZ77 use a greedy parsing strategy in the
sense that, at each step, they select the longest prefix of the
unparsed portion which is in the dictionary. It is easy to see
that for LZ77 the greedy strategy yields an optimal pars-
ing; that is, a parsing with the minimum number of words.
Conversely, greedy parsing is not optimal for LZ78: for any
sufficiently large integerm there exists a string that can be
parsed to O(m) words and that the greedy strategy parses
in ˝(m3/2) words. In [9] the authors describe an efficient
algorithm for computing an optimal parsing for the LZ78
dictionary and, indeed, for any dictionary with the prefix-
completeness property (a dictionary is prefix-complete if
any prefix of a dictionary word is also in the dictionary).
Interestingly, the algorithm in [9] is a one-step lookahead
greedy algorithm: rather than choosing the longest possi-
ble prefix of the unparsed portion of the text, it chooses the
prefix that results in the longest advancement in the next
iteration.

Applications

The natural application field of dictionary-based compres-
sors is lossless data compression (see, for example [13]).
However, because of their deep mathematical properties,
the Ziv–Lempel parsing rules have also found applications
in other algorithmic domains.

Prefetching

Krishnan and Vitter [7] considered the problem of
prefetching pages from disk into memory to anticipate
users’ requests. They combined LZ78 with a pre-existing
prefetcher P1 that is asymptotically at least as good as the
best memoryless prefetcher, to obtain a new algorithm P
that is asymptotically at least as good as the best finite-
state prefetcher. LZ780s dictionary can be viewed as a trie:
parsing a string means starting at the root, descending one
level for each character in the parsed string and, finally,
adding a new leaf. Algorithm P runs LZ78 on the string of
page requests as it receives them, and keeps a copy of the
simple prefetcher P1 for each node in the trie; at each step,
P prefetches the page requested by the copy of P1 associ-
ated with the node LZ78 is currently visiting.

String Alignment

Crochemore, Landau and Ziv-Ukelson [4] applied LZ78
to the problem of sequence alignment, i. e., finding the

cheapest sequence of character insertions, deletions and
substitutions that transforms one string T into another
T0 (the cost of an operation may depend on the charac-
ter or characters involved). Assume, for simplicity, that
jTj = jT 0j = n. In 1980 Masek and Paterson proposed an
O(n2/ log n)-time algorithm with the restriction that the
costs be rational; Crochemore et al.’s algorithm allows
real-valued costs, has the same asymptotic cost in the
worst case, and is asymptotically faster for compressible
texts.

The idea behind both algorithms is to break into
blocks the matrix A[1 : : : n; 1 : : : n] used by the obvi-
ous O(n2)-time dynamic programming algorithm. Masek
and Paterson break it into uniform-sized blocks, whereas
Crochemore et al. break it according to the LZ78 pars-
ing of T and T0. The rationale is that, by the nature
of LZ78 parsing, whenever they come to solve a block
A[i : : : i0; j : : : j0], they can solve it in O(i0 � i + j0 � j)
time because they have already solved blocks identical
to A[i : : : i0 � 1; j : : : j0] and A[i : : : i0; j : : : j0 � 1] [8]. Lif-
shits, Mozes, Weimann and Ziv-Ukelson [8 recently used
a similar approach to speed up the decoding and training
of hidden Markov models.

Compressed Full-Text Indexing

Given a text T, the problem of compressed full-text in-
dexing is defined as the task of building an index for T
that takes space proportional to the entropy of T and that
supports the efficient retrieval of the occurrences of any
pattern P in T. In [10] Navarro proposed a compressed
full-text index based on the LZ78 dictionary. The basic
idea is to keep two copies of the dictionary as tries: one
storing the dictionary words, the other storing their re-
versal. The rationale behind this scheme is the follow-
ing. Since any non-empty prefix of a dictionary word
is also in the dictionary, if the sought pattern P occurs
within a dictionary word, then P is a suffix of some word
and easy to find in the second dictionary. If P overlaps
two words, then some prefix of P is a suffix of the first
word—and easy to find in the second dictionary—and
the remainder of P is a prefix of the second word—and
easy to find in the first dictionary. The case when P over-
laps three or more words is a generalization of the case
with two words. Recently, Arroyuelo et al. [1] improved
the original data structure in [10]. For any text T, the
improved index uses (2 + �)jTjHk(T) + o(jTj log j˙ j) bits
of space, where Hk(T) is the k-th order empirical en-
tropy of T, and reports all occ occurrences of P in T in
O(jPj2 log jPj + (jPj + occ) log jTj) time.

Dictionary-Based Data Compression D 239

Independently of [10], in [5] the LZ78 parsing was
used together with the Burrows-Wheeler compression
algorithm to design the first full-text index that uses
o(jTj log jTj) bits of space and reports the occ occurrences
of P in T in O(jPj + occ) time. If T = T1T2 � � � Td is the
LZ78 parsing of T, in [5] the authors consider the string
T$ = T1$T2$ � � � Td where $ is a new character not be-
longing to ˙ . The string T$ is then compressed using the
Burrows-Wheeler transform. The $’s play the role of an-
chor points: their positions in T$ are stored explicitly so
that, to determine the position in T of any occurrence of P,
it suffices to determine the position with respect to any of
the $’s. The properties of the LZ78 parsing ensure that the
overhead of introducing the $’s is small, but at the same
time the way they are distributed within T$ guarantees the
efficient location of the pattern occurrences.

Related to the problem of compressed full-text index-
ing is the compressed matching problem in which text
and pattern are given together (so the former cannot be
preprocessed). Here the task consists in performing string
matching in a compressed text without decompressing it.
For dictionary-based compressors this problem was first
raised in 1994 by A. Amir, G. Benson, and M. Farach, and
has received considerable attention since then. The reader
is referred to [11] for a recent review of the many theoret-
ical and practical results obtained on this topic.

Substring Compression Problems

Substring compression problems involve preprocessing T
to be able to efficiently answer queries about compress-
ing substrings: e. g., how compressible is a given sub-
string s in T? what is s’s compressed representation? or,
what is the least compressible substring of a given length
`? These are important problems in bioinformatics be-
cause the compressibility of a DNA sequence may give
hints as to its function, and because some clustering al-
gorithms use compressibility to measure similarity. The
solutions to these problems are often trivial for sim-
ple compressors, such as Huffman coding or run-length
encoding, but they are open for more powerful algo-
rithms, such as dictionary-based compressors, BWT com-
pressors, and PPM compressors. Recently, Cormode and
Muthukrishnan [3] gave some preliminary solutions for
LZ77. For any string s, let C(s) denote the number of
words in the LZ77-parsing of s, and let LZ77(s) denote
the LZ77-compressed representation of s. In [3] the au-
thors show that, with O(|T| polylog(|T|)) time preprocess-
ing, for any substring s of T they can: a) compute LZ77(s)
in O(C(s) log jTj log log jTj) time, b) compute an approx-
imation of C(s) within a factor O(log jTj log� jTj) in O(1)

time, c) find a substring of length ` that is close to being the
least compressible in O(jTj`/ log `) time. These bounds
also apply to general versions of these problems, in which
queries specify another substring t in T as context and ask
about compressing substrings when LZ77 starts with a dic-
tionary already containing the words in the LZ77 parsing
of t.

Grammar Generation

Charikar et al. [2] considered LZ78 as an approximation
algorithm for the NP-hard problem of finding the small-
est context-free grammar that generates only the string
T. The LZ78 parsing of T can be viewed as a context-
free grammar in which for each dictionary word Ti = Tj˛

there is a production Xi ! Xj˛. For example, for T =
aabbaaabaabaabba the LZ78 parsing is: a, ab, b, aa, aba,
abaa, bb, a, and the corresponding grammar is: S !
X1 : : : X7X1; X1 ! a; X2 ! X1b; X3 ! b; X4 ! X1a;
X5 ! X2a; X6 ! X5a; X7 ! X3b. Charikar et al. showed
LZ78’s approximation ratio is in O((jTj/ log jTj)2/3) \
˝(jTj2/3 log jTj); i. e., the grammar it produces has size at
most f (jTj) � m�, where f (|T|) is a function in this inter-
section and m� is the size of the smallest grammar. They
also showed m� is at least the number of words output by
LZ77 on T, and used LZ77 as the basis of a new algorithm
with approximation ratio O(log(jTj/m�)).

URL to Code

The source code of the gzip tool (based on LZ77) is
available at the page http://www.gzip.org/. An LZ77-based
compression library zlib is available from http://www.zlib.
net/. A more recent, and more efficient, dictionary-based
compressor is LZMA (Lempel–Ziv Markov chain Algo-
rithm), whose source code is available from http://www.
7-zip.org/sdk.html.

Cross References

� Arithmetic Coding for Data Compression
� Boosting Textual Compression
� Burrows–Wheeler Transform
� Compressed Text Indexing

Recommended Reading
1. Arroyuelo, D., Navarro, G., Sadakane, K.: Reducing the space

requirement of LZ-index. In: Proc. 17th Combinatorial Pat-
tern Matching conference (CPM), LNCS no. 4009, pp. 318–329,
Springer (2006)

2. Charikar, M., Lehman, E., Liu, D., Panigraphy, R., Prabhakaran,
M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE
Trans. Inf. Theor. 51, 2554–2576 (2005)

http://www.gzip.org/
http://www.zlib.net/
http://www.zlib.net/
http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html

240 D Dictionary Matching and Indexing (Exact and with Errors)

3. Cormode, G., Muthukrishnan, S.: Substring compression prob-
lems. In: Proc. 16th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA ’05), pp. 321–330 (2005)

4. Crochemore, M., Landau, G., Ziv-Ukelson, M.: A subquadratic
sequence alignment algorithm for unrestricted scoring matri-
ces. SIAM J. Comput. 32, 1654–1673 (2003)

5. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM52,
552–581 (2005)

6. Kosaraju, R., Manzini, G.: Compression of low entropy strings
with Lempel–Ziv algorithms. SIAM J. Comput. 29, 893–911
(1999)

7. Krishnan, P., Vitter, J.: Optimal prediction for prefetching in the
worst case. SIAM J. Comput. 27, 1617–1636 (1998)

8. Lifshits, Y., Mozes, S., Weimann, O., Ziv-Ukelson, M.: Speeding
up HMMdecoding and training by exploiting sequence repeti-
tions. Algorithmica to appear doi:10.1007/s00453-007-9128-0

9. Matias, Y., Şahinalp, C.: On the optimality of parsing in dynamic
dictionary based data compression. In: Proceedings 10th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA
’99), pp. 943–944 (1999)

10. Navarro, G.: Indexing text using the Ziv–Lempel trie. J. Discret.
Algorithms 2, 87–114 (2004)

11. Navarro, G., Tarhio, J.: LZgrep: A Boyer-Moore string match-
ing tool for Ziv–Lempel compressed text. Softw. Pract. Exp. 35,
1107–1130 (2005)

12. Şahinalp, C., Rajpoot, N.: Dictionary-based data compression:
An algorithmic perspective. In: Sayood, K. (ed.) Lossless Com-
pression Handbook, pp. 153–167. Academic Press, USA (2003)

13. Salomon, D.: Data Compression: the Complete Reference, 4th
edn. Springer, London (2007)

14. Savari, S.: Redundancy of the Lempel–Ziv incremental parsing
rule. IEEE Trans. Inf. Theor. 43, 9–21 (1997)

15. Ziv, J., Lempel, A.: A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theor. 23, 337–343 (1977)

16. Ziv, J., Lempel, A.: Compression of individual sequences via
variable-length coding. IEEE Trans. Inf. Theor. 24, 530–536
(1978)

DictionaryMatching and Indexing
(Exact and with Errors)
2004; Cole, Gottlieb, Lewenstein

MOSHE LEWENSTEIN
Department of Computer Science, Bar Ilan University,
Ramat-Gan, Israel

Keywords and Synonyms

Approximate dictionary matching; Approximate text in-
dexing

ProblemDefinition

Indexing and dictionary matching are generalized models
of pattern matching. These models have attained impor-
tance with the explosive growth of multimedia, digital li-
braries, and the Internet.

1. Text Indexing: In text indexing one desires to prepro-
cess a text t, of length n, and to answer where subse-
quent queries p, of lengthm, appear in the text t.

2. Dictionary Matching: In dictionary matching one is
given a dictionary D of strings p1; : : : ; pd to be prepro-
cessed. Subsequent queries provide a query string t, of
length n, and ask for each location in t at which patterns
of the dictionary appear.

Key Results

Text Indexing

The indexing problem assumes a large text that is to be
preprocessed in a way that will allow the following efficient
future queries. Given a query pattern, one wants to find all
text locations that match the pattern in time proportional
to the pattern length and to the number of occurrences.

To solve the indexing problem, Weiner [14] invented
the suffix tree data structure (originally called a posi-
tion tree), which can be constructed in linear time, and
subsequent queries of length m are answered in time
O(m log j˙ j + tocc), where tocc is the number of pattern
occurrences in the text.

Weiner’s suffix tree in effect solved the indexing prob-
lem for exactmatching of fixed texts. The construction was
simplified by the algorithms of McCreight and, later, Chen
and Seiferas. Ukkonen presented an online construction
of the suffix tree. Farach presented a linear time construc-
tion for large alphabets (specifically, when the alphabet is
f1; : : : ; ncg, where n is the text size and c is some fixed
constant). All results, besides the latter, work by handling
one suffix at a time. The latter algorithm uses a divide
and conquer approach, dividing the suffixes to be sorted
to even-position suffixes and odd-position suffixes. See the
entry on Suffix Tree Construction for full details. The stan-
dard query time for finding a pattern p in a suffix tree is
O(m log j˙ j). By slightly adjusting the suffix tree one can
obtain a query time of O(m + log n), see [12].

Another popular data structure for indexing is suf-
fix arrays. Suffix arrays were introduced by Manber and
Myers. Others proposed linear time constructions for lin-
early bounded alphabets. All three extend the divide and
conquer approach presented by Farach. The construction
in [11] is especially elegant and significantly simplifies the
divide and conquer approach, by dividing the suffix set
into three groups instead of two. See the entry on Suffix
Array Construction for full details. The query time for suf-
fix arrays is O(m + log n) achievable by embedding addi-
tional lcp (longest common prefix) information into the
data structure. See [11] for reference to other solutions.
Suffix Trayswere introduced in [5] as amerge between suf-

Dictionary Matching and Indexing (Exact and with Errors) D 241

fix trees and suffix arrays. The construction time of suffix
trays is the same as for suffix trees and suffix arrays. The
query time is O(m + log j˙ j).

Solutions for the indexing problem in dynamic texts,
where insertions and deletions (of single characters or
entire substrings) are allowed, appear in several papers,
see [2] and references therein.

Dictionary Matching

Dictionary matching is, in some sense, the “inverse” of text
indexing. The large body to be preprocessed is a set of pat-
terns, called the dictionary. The queries are texts whose
length is typically significantly smaller than the dictionary
size. It is desired to find all (exact) occurrences of dictio-
nary patterns in the text in time proportional to the text
length and to the number of occurrences.

Aho and Corasick [1] suggested an automaton-based
algorithm that preprocesses the dictionary in time O(d)
and answers a query in time O(n + docc), where docc is
the number of occurrences of patterns within the text. An-
other approach to solving this problem is to use a gener-
alized suffix tree. A generalized suffix tree is a suffix tree
for a collection of strings. Dictionary matching is done for
the dictionary of patterns. Specifically, a suffix tree is cre-
ated for the generalized string p1$1p2$2 � � � pdd , where
the $i’s are not in the alphabet. A randomized solution us-
ing a fingerprint scheme was proposed in [3]. In [7] a par-
allel work-optimal algorithm for dictionary matching was
presented. Ferragina and Luccio [8] considered the prob-
lem in the external memory model and suggested a solu-
tion based upon the String B-tree data structure along with
the notion of a certificate for dictionary matching. Two
Dimensional Dictionary Matching is another fascinating
topic which appears as a separate entry. See also the entry
on Multidimensional String Matching.

Dynamic Dictionary Matching: Here one allows in-
sertion and deletion of patterns from the dictionary D.
The first solution to the problem was a suffix tree-based
method for solving the dynamic dictionary matching
problem. Idury and Schäffer [10] showed that the failure
function (function mapping from one longest matching
prefix to the next longest matching prefix, see [1]) ap-
proach and basic scanning loop of the Aho–Corasick al-
gorithm can be adapted to dynamic dictionary matching
for improved initial dictionary preprocessing time. They
also showed that faster search time can be achieved at the
expense of slower dictionary update time.

A further improvement was later achieved by reducing
the problem to maintaining a sequence of well-balanced
parentheses under certain operations. In [13] an optimal

method was achieved based on a labeling paradigm, where
labels are given to, sometimes overlapping, substrings of
different lengths. The running times are: O(jDj) prepro-
cessing time, O(m) update time, and O(n + docc) time for
search. See [13] for other references.

Text Indexing and Dictionary Matching with Errors

In most real-life systems there is a need to allow errors.
With the maturity of the solutions for exact indexing and
exact dictionary matching, the quest for approximate so-
lutions began. Two of the classical measures for approx-
imating closeness of strings, Hamming distance and Edit
distance, were the first natural measures to be considered.

ApproximateText Indexing: For approximate text in-
dexing, given a distance k, one preprocesses a specified
text t. The goal is to find all locations ` of t within dis-
tance k of the query p, i. e. for the Hamming distance all
locations ` such that the length m substring of t begin-
ning at that location can be made equal to p with at most k
character substitutions. (An analogous statement applies
for the edit distance.) For k = 1 [4] one can preprocess
in time O(n log2 n) and answer subsequent queries p in
time O(m

p
log n log log n + occ). For small k � 2, the fol-

lowing naive solutions can be achieved. The first possi-
ble solution is to traverse a suffix tree checking all pos-
sible configurations of k, or less, mismatches in the pat-
tern. However, while the preprocessing needed to build
a suffix tree is cheap, the search is expensive, namely,
O(mk+1j˙ jk + occ). Another possible solution, for the
Hamming distance measure only, leads to data structures
of size approximately O(nk+1) embedding all mismatch
possibilities into the tree. This can be slightly improved by
using the data structures for k = 1, which reduce the size
to approximately O(nk).

Approximate Dictionary Matching: The goal is to
preprocess the dictionary along with a threshold parame-
ter k in order to support the following subsequent queries:
Given a query text, seek all pairs of patterns (from the dic-
tionary) and text locations which match within distance k.
Here once again there are several algorithms for the case
where k = 1 [4,9]. The best solution for this problem has
query time O(m log log n + occ); the data structure uses
space O(n log n) and can be built in time O(n log n):

The solutions for k = 1 in both problems (Approxi-
mate Text Indexing and Approximate Dictionary Match-
ing) are based on the following, elegant idea, presented
in Indexing terminology. Say a pattern p matches a text t
at location i with one error at location j of p (and at lo-
cation i + j � 1 of t). Obviously, the j � 1-length prefix
of p matches the aligned substring of t and so does the

242 D Dictionary Matching and Indexing (Exact and with Errors)

m � j � 1 length suffix. If t and p are reversed then the
j � 1-th length prefix of p becomes a j � 1-th length suf-
fix of pR (that is p reverse). Notice that there is a match
with, at most one error, if (1) the suffix of p starting at
location j + 1 matches the (prefix of the) suffix of t start-
ing at location i + j and (2) the suffix of pR starting at lo-
cation m � j + 1 (the reverse of the j � 1-th length pre-
fix of p) matches the (prefix of the) suffix of tR starting
at location m � i � j + 3. So, the problem now becomes
a search for locations j which satisfy the above. To do so,
the above-mentioned solutions, naturally, use two suffix
trees, one for the text and one for its reverse (with addi-
tional data structure tricks to answer the query fast). In
dictionary matching the suffix trees are defined on the dic-
tionary. The problem is that this solution does not carry
over for k � 2. See the introduction of [6] for a full list of
references.

Text Indexing and Dictionary Matching
within (Small) Distance k

Cole et al. [6] proposed a new method that yields a unified
solution for approximate text indexing, approximate dic-
tionary matching, and other related problems. However,
since the solution is somewhat involved it will be simpler
to explain the ideas on the following problem. The desire is
to index a text t to allow fast searching for all occurrences
of a pattern containing, at most, k don’t cares (don’t cares
are special characters which match all characters).

Once again, there are two possible, relatively straight-
forward, solutions to be elaborated. The first is to use a suf-
fix tree, which is cheap to preprocess, but causes the search
to be expensive, namely, O(mj˙ jk + occ) (if considering
k mismatches this would increase to O(mk+1j˙ jk + occ).
To be more specific, imagine traversing a path in a suffix
tree. Consider the point where a don’t care is reached. If
in the middle of an edge the only text suffixes (represent-
ing substrings) that can match the pattern with this don’t
care must also go through this edge. So simply continue
traversing. However, if at a node, then all the paths leaving
this node must be explored. This explains the mentioned
time bound.

The second solution is to create a tree that contains all
strings that are at Hamming distance k from a suffix. This
allows fast search but leads to trees of size exponential in
k, namely, O(nk+1) size trees. To elaborate, the tree, called
a k-error-trie, is constructed as follows. First, consider the
case for one don’t care, i. e. a 1-error-trie, and then extend
it. At any node v a don’t care may need to be evaluated.
Therefore, create a special subtree branching off this node
that represents a don’t care at this node. To understand

this subtree, note that the subtree (of the suffix tree) rooted
at v is actually a compressed trie of (some of the) suffixes
of the text. Denote the collection of suffixes Sv. The first
character of all these suffixes have to be removed (or, per-
haps better imagined as a replacement with a don’t care
character). Each will be a new suffix of the text. Denote the
new collection as S0v . Now, create a new compressed trie
of suffixes for S0v , calling this new subtree an error tree. Do
so for every v. The suffix tree along with its error trees is
a 1-error-trie. Turning to queries in the 1-error-trie, when
traversing the 1-error-trie, do so with the suffix tree up till
the don’t care at node v. Move into the error tree at node v
and continue the traversal of the pattern.

To create a 2-error-trie, simply take each error tree and
construct an error tree for each node within. A (k+1)-error
trie is created recursively from a k-error trie. Clearly the 1-
error trie is of size O(n2), since any node u in the original
suffix tree will appear in all the new subtrees of the 1-error
trie created for each of the nodes v which are ancestors of
u. Likewise, the k-error-trie is of size O(nk+1).

The method introduced in Cole et al. [6] uses the idea
of the error trees to form a new data structure, which is
called a k-errata trie. The k-errata triewill bemuch smaller
than O(nk+1). However, it comes at the cost of a some-
what slower search time. To understand the k-errata tries
it is useful to first consider the 1-errata-tries and to ex-
tend. The 1-errata-trie is constructed as follows. The suffix
tree is first decomposed with a centroid path decomposi-
tion (which is a decomposition of the nodes into paths,
where all nodes along a path have their subtree sizes within
a range 2r and 2r+1, for some integer r). Then, as before,
error trees are created for each node v of the suffix tree
with the following difference. Namely, consider the sub-
tree, Tv, at node v and consider the edge (v; x) going from
v to child x on the centroid path. Tv can be partitioned into
two subtrees, Tx [(v; x), and T 0v all the rest of Tv. An er-
ror tree is created for the suffixes in T 0v . The 1-errata-trie is
the suffix tree with all of its error trees. Likewise, a (k+1)-
errata trie is created recursively from a k-errata trie. The
contents of a k-errata trie should be viewed as a collec-
tion of error trees, k levels deep, where error trees at each
level are constructed on the error trees of the previous level
(at level 0 there is the original suffix tree). The following
lemma helps in obtaining a bound on the size of the k-er-
rata trie.

Lemma 1 Let C be a centroid decomposition of a tree T.
Let u be an arbitrary node of T and
 be the path from the
root to u. There are at most log n nodes v on
 for which v
and v’s parent on
 are on different centroid paths.

Dictionary Matching and Indexing (Exact and with Errors) D 243

The implication is that every node u in the original suffix
tree will only appear in log n error trees of the 1-errata trie
because each ancestor v of u is on the path
 from the root
to u and only log n such nodes are on different centroid
paths than their children (on
). Hence, u appears in only
logk n error trees in the k-errata trie. Therefore, the size of
the k-errata trie is O(n logk n). Creating the k-errata tries
in O(n logk+1 n) can be done. To answer queries on a k-er-
rata trie, given the pattern with (at most) k don’t cares, the
0th level of the k-errata trie, i. e. the suffix tree, needs to
be traversed. This is to be done until the first don’t care,
at location j, in the pattern is reached. If at node v in the
0th level of the k-errata trie, enter the (1st level) error tree
hanging off of v and traverse this error tree from location
j + 2 of the pattern (until the next don’t care is met). How-
ever, the error tree hanging off of node v does not contain
the subtree hanging off of v that is along the centroid path.
Hence, continue traversing the pattern in the 0th level of
the k-errata trie, starting along the edge on the centroid
path leaving v (until the next don’t care is met). The search
is done recursively for k don’t cares and, hence, yields an
O(2km) time search.

Recall that a solution for indexing text that supports
queries of a pattern with k don’t cares has been de-
scribed. Unfortunately, when indexing to support k mis-
match queries, not to mention k edit operation queries, the
traversal down a k-errata trie can be very time consuming
as frequent branching is required since an error may occur
at any location of the pattern. To circumvent this problem
search many error trees in parallel. In order to do so, the
error trees have to be grouped together. This needs to be
done carefully, see [6] for the full details. Moreover, edit
distance needs even more careful handling. The time and
space of the algorithms achieved in [6] are as follows:

Approximate Text Indexing: The data structure
for mismatches uses space O(n logk n), takes time
O(n logk+1 n) to build, and answers queries in time
O((logk n) log log n + m + occ). For edit distance, the
query time becomesO((logk n) log log n + m + 3k � occ). It
must be pointed out that this result is mostly effective for
constant k.

Approximate Dictionary Matching: For k mis-
matches the data structure uses space O(n + d logk d), is
built in time O(n + d logk+1 d), and has a query time of
O((m + logkd) � log log n + occ). The bounds for edit dis-
tance are modified as in the indexing problem.

Applications

Approximate Indexing has a wide array of applications
in signal processing, computational biology, and text re-

trieval among others. Approximate Dictionary Matching
is important in digital libraries and text retrieval systems.

Cross References

� Compressed Text Indexing
� Indexed Approximate String Matching
�Multidimensional String Matching
� Sequential Multiple String Matching
� Suffix Array Construction
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM
� Text Indexing
� Two-Dimensional Pattern Indexing

Recommended Reading
1. Aho, A.V., Corasick, M.J.: Efficient string matching. Commun.

ACM 18(6), 333–340 (1975)
2. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic

texts. In: Proc. of Symposium on Discrete Algorithms (SODA),
2000, pp. 819–828

3. Amir, A., Farach, M., Matias, Y.: Efficient randomized dictionary
matching algorithms. In: Proc. of SymposiumonCombinatorial
Pattern Matching (CPM), 1992, pp. 259–272

4. Amir, A., Keselman, D., Landau, G.M., Lewenstein, N., Lewen-
stein, M., Rodeh, M.: Indexing and dictionary matching with
one error. In: Proc. of Workshop on Algorithms and Data Struc-
tures (WADS), 1999, pp. 181–192

5. Cole, R., Kopelowitz, T., Lewenstein, M.: Suffix trays and suffix
trists: Structures for faster text indexing. In: Proc. of Interna-
tional ColloquiumonAutomata, Languages and Programming
(ICALP), 2006, pp. 358–369

6. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and
indexing with errors and don’t cares. In: Proc. of the Sympo-
sium on Theory of Computing (STOC), 2004, pp. 91–100

7. Farach, M., Muthukrishnan, S.: Optimal parallel dictionary
matching and compression. In: Symposium on Parallel Algo-
rithms and Architecture (SPAA), 1995, pp. 244–253

8. Ferragina, P., Luccio, F.: Dynamic dictionary matching in exter-
nal memory. Inf. Comput. 146(2), 85–99 (1998)

9. Ferragina, P., Muthukrishnan, S., deBerg, M.: Multi-method dis-
patching: a geometric approach with applications to string
matching. In: Proc. of the Symposium on the Theory of Com-
puting (STOC), 1999, pp. 483–491

10. Idury, R.M., Schäffer, A.A.: Dynamic dictionary matching with
failure functions. In: Proc. 3rd Annual Symposium on Combi-
natorial Pattern Matching, 1992, pp. 273–284

11. Karkkainen, J., Sanders, P., Burkhardt, S.: Linear work suffix ar-
ray construction. J. ACM 53(6), 918–936 (2006)

12. Mehlhorn, K.: Dynamic binary search. SIAM J. Comput. 8(2),
175–198 (1979)

13. Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic
matching of patterns using a labeling paradigm. In: Proc. of the
Foundations of Computer Science (FOCS), 1996, pp. 320–328

14. Weiner, P.: Linear pattern matching algorithm. In: Proc. of
the Symposium on Switching and Automata Theory, 1973,
pp. 1–11

244 D Dilation

Dilation
� Geometric Spanners
� Planar Geometric Spanners

Dilation of Geometric Networks
2005; Ebbers-Baumann, Grüne, Karpinski, Klein,
Kutz, Knauer, Lingas

ROLF KLEIN
Institute for Computer Science, University of Bonn,
Bonn, Germany

Keywords and Synonyms

Detour; Spanning ratio; Stretch factor

ProblemDefinition

Notations

Let G = (V ; E) be a plane geometric network, whose ver-
tex setV is a finite set of point sites inR2, connected by an
edge set E of non-crossing straight line segments with end-
points in V . For two points p 6= q 2 V let �G(p; q) denote
a shortest path from p to q in G. Then

�(p; q) :=
j�G(p; q)j
jpqj

(1)

is the detour one encounters when using networkG, in or-
der to get from p to q, instead of walking straight. Here, j:j
denotes the Euclidean length.

The dilation of G is defined by

�(G) := max
p 6=q2V

�(p; q) : (2)

This value is also known as the spanning ratio or the
stretch factor of G. It should, however, not be confused
with the geometric dilation of a network, where the points
on the edges are also being considered, in addition to the
vertices.

Given a finite set S of points in the plane, one would
like to find a plane geometric network G = (V ; E) whose
dilation �(G) is as small as possible, such that S is con-
tained in V . The value of

˙(S) := inff �(G); G = (V ; E) finite plane
geometric network where S � V g

is called the dilation of point set S. The problem is in com-
puting, or bounding,˙(S) for a given set S.

Related Work

If edge crossings were allowed one could use spanners
whose stretch can be made arbitrarily close to 1; see
the monographs by Eppstein [6] or Narasimhan and
Smid [12]. Different types of triangulations of S are known
to have their stretch factors bounded from above by small
constants, among them the Delaunay triangulation of
stretch� 2:42; see Dobkin et al. [3], Keil and Gutwin [10],
and Das and Joseph [2]. Eppstein [5] has characterized
all triangulations T of dilation �(T) = 1; these triangula-
tions are shown in Fig. 1. Trivially,˙(S) = 1 holds for each
point set S contained in the vertex set of such a triangula-
tion T.

Key Results

The previous remark’s converse turns also out to be true.

Theorem 1 ([11]) If S is not contained in one of the vertex
sets depicted in Fig. 1 then˙(S) > 1.

That is, if a point set S is not one of these special sets then
each plane network including S in its vertex set has a dila-
tion larger than some lower bound 1 + �(S). The proof of
Theorem 1 uses the following density result. Suppose one
connects each pair of points of S with a straight line seg-
ment. Let S0 be the union of S and the resulting crossing
points. Now the same construction is applied to S0, and
repeated. For the limit point set S1 the following theorem
holds. It generalizes work by Hillar and Rhea [8] and by
Ismailescu and Radoičić [9] on the intersections of lines.

Theorem 2 ([11]) If S is not contained in one of the vertex
sets depicted in Fig. 1 then S1 lies dense in some polygonal
part of the plane.

For certain infinite structures can concrete lower bounds
be proven.

Theorem 3 ([4]) Let N be an infinite plane network all of
whose faces have a diameter bounded from above by some
constant. Then �(N) > 1:00156 holds.

Dilation of Geometric Networks, Figure 1
The triangulations of dilation 1

Dilation of Geometric Networks D 245

Dilation of Geometric Networks, Figure 2
A network of dilation ~ 1.1247

Theorem 4 ([4]) Let C denote the (infinite) set of all points
on a closed convex curve. Then˙(C) > 1:00157 holds.

Theorem 5 ([4]) Given n families Fi ; 2 � i � n, each
consisting of infinitely many equidistant parallel lines. Sup-
pose that these families are in general position. Then their
intersection graph G is of dilation at least 2/

p
3.

The proof of Theorem 5 makes use of Kronecker’s the-
orem on simultaneous approximation. The bound is at-
tained by the packing of equiangular triangles.

Finally, there is a general upper bound to the dilation
of finite point sets.

Theorem 6 ([4]) Each finite point set S is of dilation
˙(S) < 1:1247.

To prove this upper bound one can embed any given fi-
nite point set S in the vertex set of a scaled, and slightly
deformed, finite part of the network depicted in Fig. 2. It
results from a packing of equilateral triangles by replacing
each vertex with a small triangle, and by connecting neigh-
boring triangles as indicated.

Applications

A typical university campus contains facilities like lecture
halls, dorms, library, mensa, and supermarkets, which are
connected by some path system. Students in a hurry are
tempted to walk straight across the lawn, if the shortcut
seems worth it. After a while, this causes new paths to ap-
pear. Since their intersections are frequented bymany peo-
ple, they attract coffee shops or other new facilities. Now,

Dilation of Geometric Networks, Figure 3
The best known embedding for S5

people will walk across the lawn to get quickly to a coffee
shop, and so on.

D. Eppstein [5] has asked what happens to the lawn
if this process continues. The above results show that (1)
part of the lawn will be completely destroyed, and (2) the
temptation to walk across the lawn cannot, in general, be
made arbitrarily small by a clever path design.

Open Problems

For practical applications, upper bounds to the weight
(= total edge length) of a geometric network would be
valuable, in addition to upper dilation bounds. Some theo-
retical questions require further investigation, too. Is˙(S)
always attained by a finite network? How to compute, or
approximate, ˙(S) for a given finite set S? Even for a set
as simple as S5, the corners of a regular 5-gon, is the di-
lation unknown. The smallest dilation value known, for
a triangulation containing S5 among its vertices, equals
1.0204; see Fig. 3. Finally, what is the precise value of
supf˙(S); S finiteg?

Cross References

� Geometric Dilation of Geometric Networks

Recommended Reading
1. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J.,

Haverkort, H., Vigneron, A.: Sparse Geometric Graphs with
Small Dilation. 16th International Symposium ISAAC 2005,
Sanya. In: Deng, X., Du, D. (eds.) Algorithms and Computation,
Proceedings. LNCS, vol. 3827, pp. 50–59. Springer, Berlin (2005)

2. Das, G., Joseph, D.: Which Triangulations Approximate the
Complete Graph? In: Proc. Int. Symp. Optimal Algorithms.
LNCS 401, pp. 168–192. Springer, Berlin (1989)

3. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay GraphsAre
Almost as Good as Complete Graphs. Discret. Comput. Geom.
5, 399–407 (1990)

246 D Directed Perfect Phylogeny (Binary Characters)

4. Ebbers-Baumann, A., Gruene, A., Karpinski,M., Klein, R., Knauer,
C., Lingas, A.: Embedding Point Sets into Plane Graphs of Small
Dilation. Int. J. Comput. Geom. Appl. 17(3), 201–230 (2007)

5. Eppstein, D.: The Geometry Junkyard. http://www.ics.uci.edu/
~eppstein/junkyard/dilation-free/

6. Eppstein, D.: Spanning Trees and Spanners. In: Sack, J.-R., Ur-
rutia, J. (eds.) Handbook of Computational Geometry, pp. 425–
461. Elsevier, Amsterdam (1999)

7. Eppstein, D., Wortman, K.A.: Minimum Dilation Stars. In: Proc.
21st ACM Symp. Comp. Geom. (SoCG), Pisa, 2005, pp. 321–326

8. Hillar, C.J., Rhea, D.L. A Result about the Density of Iterated
Line Intersections. Comput. Geom.: Theory Appl. 33(3), 106–
114 (2006)

9. Ismailescu, D., Radoičić, R.: A Dense Planar Point Set from It-
erated Line Intersections. Comput. Geom. Theory Appl. 27(3),
257–267 (2004)

10. Keil, J.M., Gutwin, C.A.: The Delaunay Triangulation Closely Ap-
proximates the Complete Euclidean Graph. Discret. Comput.
Geom. 7, 13–28 (1992)

11. Klein, R., Kutz, M.: The Density of Iterated Plane Intersection
Graphs and a Gap Result for Triangulations of Finite Point Sets.
In: Proc. 22nd ACM Symp. Comp. Geom. (SoCG), Sedona (AZ),
2006, pp. 264–272

12. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cam-
bridge University Press (2007)

Directed Perfect Phylogeny
(Binary Characters)
1991; Gusfield

JESPER JANSSON
Ochanomizu University, Tokyo, Japan

Keywords and Synonyms

Directed binary character compatibility

ProblemDefinition

Let S = fs1; s2; : : : ; sng be a set of elements called objects,
and let C = fc1; c2; : : : ; cmg be a set of functions from S
to f0; 1g called characters. For each object si 2 S and char-
acter c j 2 C, it is said that si has cj if c j(si) = 1 or that si
does not have cj if c j(si) = 0, respectively (in this sense,
characters are binary). Then the set S and its relation to C
can be naturally represented by a matrixM of size (n � m)
satisfying M[i; j] = c j(si) for every i 2 f1; 2; : : : ; ng and
j 2 f1; 2; : : : ;mg. Such a matrixM is called a binary char-
acter state matrix.

Next, for each si 2 S, define the set Csi = fc j 2
C : si has c jg. A phylogeny for S is a tree whose leaves are
bijectively labeled by S, and a directed perfect phylogeny for
(S, C) (if one exists) is a rooted phylogeny T for S in which
each c j 2 C is associated with exactly one edge of T in such
a way that for any si 2 S, the set of all characters associated

with the edges on the path in T from the root to leaf si is
equal to Csi . See Figs. 1 and 2 for two examples.

Now, define the following problem.

Problem 1 (TheDirected Perfect Phylogeny Problem for
Binary Characters)
INPUT: A binary character statematrixM for some S andC.
OUTPUT: A directed perfect phylogeny for (S, C), if one ex-
ists; otherwise, null.

Key Results
For the presentation below, for each c j 2 C, define a set
Sc j = fsi 2 S : si has c jg. The next lemma is the key to
solving The Directed Perfect Phylogeny Problem for Bi-
nary Characters efficiently. It was first proved by Es-
tabrook, Johnson, and McMorris [2,3], and is also known
in the literature as the pairwise compatibility theorem.
A constructive proof of the lemma can be found in,
e. g., [7,11].

Lemma 1([2,3]) There exists a directed perfect phylogeny
for (S, C) if and only if for all c j; ck 2 C it holds that
Sc j \ Sck = ;, Sc j
 Sck , or Sck
 Sc j .

Using Lemma 1, it is straightforward to construct a top-
down algorithm for the problem that runs in O(nm2)
time. However, a faster algorithm is possible. Gusfield [6]
observed that after sorting the columns of M in non-
increasing order all duplicate copies of a column appear in
a consecutive block of columns and column j is to the right
of column k if Sc j is a proper subset of Sck , and exploited
this fact together with Lemma 1 to obtain the following
result:

Theorem 2 ([6]) The Directed Perfect Phylogeny Problem
for Binary Characters can be solved in O(nm) time.

For a detailed description of the original algorithm and
a proof of its correctness, see [6] or [11]. A conceptually
simplified version of the algorithm based on keyword trees
can be found in [7]. Gusfield [6] also gave an adversary ar-
gument to prove a corresponding lower bound of ˝(nm)
on the running time, showing that his algorithm is time
optimal:

Theorem 3 ([6]) Any algorithm that decides if a given
binary character state matrix M admits a directed perfect
phylogeny must, in the worst case, examine all entries of M.

Agarwala, Fernández-Baca, and Slutzki [1] noted that the
input binary character state matrix is often sparse, i. e., in
general, most of the objects will not have most of the char-
acters. In addition, they noted that for the sparse case, it
is more efficient to represent the input (S,C) by all the
sets Sc j for j 2 f1; 2; : : : ;mg, where each set Sc j is defined

http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/
http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/

Directed Perfect Phylogeny (Binary Characters) D 247

Directed Perfect Phylogeny (Binary Characters), Figure 1
a A (5 × 8)-binary character state matrixM. b A directed perfect phylogeny for (S,C)

M c1 c2

s1 1 0
s2 1 1
s3 0 1

Directed Perfect Phylogeny (Binary Characters), Figure 2
This binary character state matrix admits no directed perfect
phylogeny

as above and each Sc j is specified as a linked list, than by
using a binary character state matrix. Agarwala et al. [1]
proved that with this alternative representation of S and C,
the algorithm of Gusfield can be modified to run in time
proportional to the total number of 1’s in the correspond-
ing binary character state matrix1:

Theorem 4 ([1]) The variant of The Directed Perfect Phy-
logeny Problem for Binary Characters in which the in-
put is given as linked lists representing all the sets Sc j
for j 2 f1; 2; : : : ;mg can be solved in O(h) time, where
h =

Pm
j=1 jSc j j.

For a description of the algorithm, refer to [1] or [5].

Applications

Directed perfect phylogenies for binary characters are used
to describe the evolutionary history for a set of objects that
share some observable traits and that have evolved from
a “blank” ancestral object which has none of the traits.
Intuitively, the root of a directed perfect phylogeny cor-
responds to the blank ancestral object and each directed
edge e = (u; v) corresponds to an evolutionary event in
which the hypothesized ancestor represented by u gains
the characters associated with e, transforming it into the
hypothesized ancestor or object represented by v. It is as-

1Note that Theorem 4 does not contradict Theorem 3; in fact,
Gusfield’s lower bound argument considers an input matrix consist-
ing mostly of 1’s.

sumed that each character can emerge once only during
the evolutionary history and is never lost after it has been
gained2, so a leaf si is a descendant of the edge associated
with a character cj if and only if si has cj.

Binary characters are commonly used by biologists and
linguists. Traditionally, morphological traits or directly
observable features of species were employed by biolo-
gists as binary characters, and recently, binary characters
based on genomic information such as substrings in DNA
or protein sequences, protein regulation data, and shared
gaps in a given multiple alignment have become more and
more prevalent. Section 17.3.2 in [7] mentions several ex-
amples where phylogenetic trees have been successfully
constructed based on such types of binary character data.
In the context of reconstructing the evolutionary history
of natural languages, linguists often use phonological and
morphological characters with just two states [9].

The Directed Perfect Phylogeny Problem for Binary
Characters is closely related to The Perfect Phylogeny Prob-
lem, a fundamental problem in computational evolution-
ary biology and phylogenetic reconstruction [4,5,11]. This
problem (also described in more detail in entry � Per-
fect Phylogeny (Bounded Number of States)) introduces
non-binary characters so that each character c j 2 C has
a set of allowed states f0; 1; : : : ; r j � 1g for some in-
teger rj, and for each si 2 S, character cj is in one of
its allowed states. Generalizing the notation used above,
define the set Sc j;˛ for every ˛ 2 f0; 1; : : : ; r j � 1g by
Sc j;˛ = fsi 2 S : the state of si on c j is ˛g. Then, the ob-
jective of The Perfect Phylogeny Problem is to construct (if
possible) an unrooted phylogeny T for S such that the fol-
lowing holds: for each c j 2 C and distinct states ˛; ˇ of cj,

2When this requirement is too strict, one can relax it to permit
errors; for example, let characters be associated with more than one
edge in the phylogeny (i. e., allow each character to emerge many
times) but minimize the total number of associations (Camin–Sokal
optimization), or keep the requirement that each character emerges
only once but allow it to be lost multiple times (Dollo parsimony) [4,5]

248 D Direct Routing Algorithms

the minimal subtree of T that connects Sc j;˛ and the min-
imal subtree of T that connects Sc j;ˇ are vertex-disjoint.
McMorris [10] showed that the special case with r j = 2
for all c j 2 C can be reduced to The Directed Perfect
Phylogeny Problem for Binary Characters in O(nm) time
(for each c j 2 C, if the number of 1’s in column j of M
is greater than the number of 0’s then set entry M[i; j] to
1�M[i; j] for all i 2 f1; 2; : : : ; ng). Therefore, another ap-
plication of Gusfield’s algorithm [6] is as a subroutine for
solving The Perfect Phylogeny Problem when r j = 2 for
all c j 2 C in O(nm) time. Even more generally, The Per-
fect Phylogeny Problem for directed as well as undirected
cladistic characters can be solved in polynomial time by
a similar reduction to The Directed Perfect Phylogeny
Problem for Binary Characters (see [5]).

In addition to the above, it is possible to apply Gus-
field’s algorithm to determine whether two given trees de-
scribe compatible evolutionary history, and if so, merge
them into a single tree so that no branching information
is lost (see [6] for details). Finally, Gusfield’s algorithm has
also been used by Hanisch, Zimmer, and Lengauer [8] to
implement a particular operation on documents defined
in their Protein Markup Language (ProML) specification.

Cross References

� Perfect Phylogeny (Bounded Number of States)
� Perfect Phylogeny Haplotyping

Acknowledgments

Supported in part by Kyushu University, JSPS (Japan Society for the
Promotion of Science), and INRIA Lille - Nord Europe.

Recommended Reading

1. Agarwala, R., Fernández-Baca, D., Slutzki, G.: Fast algorithms for
inferring evolutionary trees. J. Comput. Biol. 2, 397–407 (1995)

2. Estabrook, G.F., Johnson, C.S., Jr., McMorris, F.R.: An algebraic
analysis of cladistic characters. Discret. Math. 16, 141–147
(1976)

3. Estabrook, G.F., Johnson, C.S., Jr., McMorris, F.R.: A mathemat-
ical foundation for the analysis of cladistic character compati-
bility. Math. Biosci. 29, 181–187 (1976)

4. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc.,
Sunderland (2004)

5. Fernández-Baca, D.: The Perfect Phylogeny Problem. In: Cheng,
X., Du, D.-Z. (eds.) Steiner Trees in Industry, pp. 203–234.
Kluwer Academic Publishers, Dordrecht (2001)

6. Gusfield, D.M.: Efficient algorithms for inferring evolutionary
trees. Networks 21, 19–28 (1991)

7. Gusfield, D.M.: Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, New York (1997)

8. Hanisch, D., Zimmer, R., Lengauer, T.: ProML – the Protein
Markup Language for specification of protein sequences,
structures and families. In: Silico Biol. 2, 0029 (2002). http://
www.bioinfo.de/isb/2002/02/0029/

9. Kanj, I.A., Nakhleh, L., Xia, G.: Reconstructing evolution of nat-
ural languages: Complexity and parametrized algorithms. In:
Proceedings of the 12th Annual International Computing and
Combinatorics Conference (COCOON 2006). Lecture Notes in
Computer Science, vol. 4112, pp. 299–308. Springer, Berlin
(2006)

10. McMorris, F.R.: On the compatibility of binary qualitative taxo-
nomic characters. Bull. Math. Biol. 39, 133–138 (1977)

11. Setubal, J.C., Meidanis, J.: Introduction to Computational
Molecular Biology. PWS Publishing Company, Boston (1997)

Direct Routing Algorithms
2006; Busch, Magdon-Ismail, Mavronicolas,
Spirakis

COSTAS BUSCH
Department of Computer Science,
Lousiana State University, Baton Rouge, LA, USA

Keywords and Synonyms

Hot-potato routing; Bufferless packet switching; Colli-
sion-free packet scheduling

ProblemDefinition

The performance of a communication network is affected
by the packet collisions which occur when two or more
packets appear simultaneously in the same network node
(router) and all these packets wish to follow the same out-
going link from the node. Since network links have limited
available bandwidth, the collided packets wait on buffers
until the collisions are resolved. Collisions cause delays in
the packet delivery time and also contribute to the network
performance degradation.

Direct routing is a packet delivery method which
avoids packet collisions in the network. In direct routing,
after a packet is injected into the network it follows a path
to its destination without colliding with other packets, and
thus without delays due to buffering, until the packet is ab-
sorbed at its destination node. The only delay that a packet
experiences is at the source node while it waits to be in-
jected into the network.

In order to formulate the direct routing problem, the
network is modeled as a graph where all the network nodes
are synchronized with a common time clock. Network
links are bidirectional, and at each time step any link can
be crossed by at most two packets, one packet in each di-
rection. Given a set of packets, the routing time is defined
to be the time duration between the first packet injection
and the last packet absorbtion.

Consider a set of N packets, where each packet has
its own source and destination node. In the direct rout-

http://www.bioinfo.de/isb/2002/02/0029/
http://www.bioinfo.de/isb/2002/02/0029/

Direct Routing Algorithms D 249

ing problem, the goal is first to find a set of paths for the
packets in the network, and second, to find appropriate
injection times for the packets, so that if the packets are
injected at the prescribed times and follow their paths they
will be delivered to their destinations without collisions.
The direct scheduling problem is a variation of the above
problem, where the paths for the packets are given a pri-
ori, and the only task is to compute the injection times for
the packets.

A direct routing algorithm solves the direct routing
problem (similarly, a direct scheduling algorithm solves the
direct scheduling problem). The objective of any direct al-
gorithm is to minimize the routing time for the packets.
Typically, direct algorithms are offline, that is, the paths
and the injection schedule are computed ahead of time,
before the packets are injected into the network, since the
involved computation requires knowledge about all pack-
ets in order to guarantee the absence of collisions between
them.

Key Results

Busch, Magdon-Ismail, Mavronicolas, and Spirakis,
present in [6] a comprehensive study of direct algorithms.
They study several aspects of direct routing such as the
computational complexity of direct problems and also the
design of efficient direct algorithms. The main results of
their work are described below.

Hardness of Direct Routing

It is shown in [Sect. 4 in 6] that the optimal direct schedul-
ing problem, where the paths are given and the objective is
to compute an optimal injection schedule (that minimizes
the routing time) is an NP-complete problem. This result
is obtained with a reduction from vertex coloring, where
vertex coloring problems are transformed to appropriate
direct scheduling problems in a 2-dimensional grid. In ad-
dition, it is shown in [6] that approximations to the direct
scheduling problem are as hard to obtain as approxima-
tions to vertex coloring. A natural question is what kinds
of approximations can be obtained in polynomial time.
This question is explored in [6] for general and specific
kinds of graphs, as described below.

Direct Routing in General Graphs

A direct algorithm is given in [Section 3 in 6] that solves
approximately the optimal direct scheduling problem in
general network topologies. Suppose that a set of packets
and respective paths are given. The injection schedule is
computed in polynomial time with respect to the size of
the graph and the number of packets. The routing time is

measured with respect to the congestion C of the packet
paths (the maximum number of paths that use an edge),
and the dilation D (the maximum length of any path).

The result in [6] establishes the existence of a sim-
ple greedy direct scheduling algorithm with routing time
rt = O(C � D). In this algorithm, the packets are pro-
cessed in an arbitrary order and each packet is assigned
the smallest available injection time. The resulting routing
time is worst-case optimal, since there exist instances of
direct scheduling problems for which no direct schedul-
ing algorithm can achieve a better routing time. A trivial
lower bound on the routing time of any direct scheduling
problem is ˝(C + D), since no algorithm can deliver the
packets faster than the congestion or dilation of the paths.
Thus, in the general case, the algorithm in [6] has routing
time rt = O((rt�)2), where rt� is the optimal routing time.

Direct Routing in Specific Graphs
Several direct algorithms are presented in [6] for spe-
cialized network topologies. The algorithms solve the di-
rect routing problem where first good paths are con-
structed and then an efficient injection schedule is com-
puted. Given a set of packets, let C* and D* denote the op-
timal congestion and dilation, respectively, for all possible
sets of paths for the packets. Clearly, the optimal routing
time is rt� = ˝(C� + D�). The upper bounds in the di-
rect algorithm in [6] are expressed in terms of this lower
bound. All the algorithms run in time polynomial to the
size of the input.

Tree The graph G is an arbitrary tree. A direct routing
algorithm is given in [Section 3.1 in 6], where each packet
follows the shortest path from its source to the destina-
tion. The injection schedule is obtained using the greedy
algorithm with a particular ordering of the packets. The
routing time of the algorithm is asymptotically optimal:
rt � 2C� + D� � 2 < 3 � rt�.

Mesh The graphG is a d-dimensional mesh (grid) with n
nodes [10]. A direct routing algorithm is proposed in [Sec-
tion 3.2 in 6], which first constructs efficient paths for the
packets with congestion C = O(d log n � C�) and dilation
D = O(d2 � D�) (the congestion is guaranteed with high
probability). Then, using these paths the injection sched-
ule is computed giving a direct algorithm with the routing
time:

rt = O(d2 log2 n � C� + d2 � D�) = O(d2 log2 n � rt�) :

This result follows from a more general result which
is shown in [6], that says that if the paths contain at
most b “bends”, i. e. at most b dimension changes, then

250 D Direct Routing Algorithms

there is a direct scheduling algorithm with routing time
O(b � C + D). The result follows because the constructed
paths have b = O(d log n) bends.

Butterfly The graph G is a butterfly network with n in-
put and n output nodes [10]. In [Section 3.3 in 6] the au-
thors examine permutation routing problems in the but-
terfly, where each input (output) node is the source (des-
tination) of exactly one packet. An efficient direct rout-
ing algorithm is presented in [6] which first computes
good paths for the packets using Valiant’s method [14,15]:
two butterflies are connected back to back, and each path
is formed by choosing a random intermediate node in
the output of the first butterfly. The chosen paths have
congestion C = O(lg n) (with high probability) and dila-
tion D = 2 lg n = O(D�). Given the paths, there is a di-
rect schedule with routing time very close to optimal:
rt � 5 lg n = O(rt�).

Hypercube The graph G is a hypercube with n
nodes [10]. A direct routing algorithm is given in [Sec-
tion 3.4 in 6] for permutation routing problems. The al-
gorithm first computes good paths for the packets by se-
lecting a single random intermediate node for each packet.
Then an appropriate injection schedule gives routing time
rt < 14 lg n, which is worst-case optimal since there exist
permutations for which D� = ˝(lg n).

Lower Bound for Buffering

In [Section 5 in 6] an additional problem has been stud-
ied about the amount of buffering required to provide
small routing times. It is shown in [6] that there is a di-
rect scheduling problem for which every direct algo-
rithm requires routing time ˝(C � D); at the same time,
C + D = 	(

p
C � D) = o(C � D). If buffering of packets is

allowed, then it is well known that there exist packet
scheduling algorithms ([11,12]) with routing time very
close to the optimal O(C + D). In [6] it is shown that for
the particular packet problem, in order to convert a direct
injection schedule of routing time O(C � D) to a packet
schedule with routing time O(C + D), it is necessary to
buffer packets in the network nodes in total˝(N4/3) times,
where a packet buffering corresponds to keeping a packet
in an intermediate node buffer for a time step, andN is the
number of packets.

Related Work

The only previous work which specifically addresses di-
rect routing is for permutation problems on trees [3,13]. In
these papers, the resulting routing time isO(n) for any tree
with n nodes. This is worst-case optimal, while the result

in [6] is asymptotically optimal for all routing problems in
trees.

Cypher et al. [7] study an online version of direct
routing in which a worm (packet of length L) can be re-
transmitted if it is dropped (they also allow the links to
have bandwidth B � 1). Adler et al. [1] study time con-
strained direct routing, where the task is to schedule as
many packets as possible within a given time frame.They
show that the time constrained version of the problem is
NP-complete, and also study approximation algorithms on
trees and meshes. Further, they discuss how much buffer-
ing could help in this setting.

Other models of bufferless routing are matching rout-
ing [2] where packets move to their destinations by swap-
ping packets in adjacent nodes, and hot-potato rout-
ing [4,5,8,9] in which packets follow links that bring them
closer to the destination, and if they cannot move closer
(due to collisions) they are deflected toward alternative di-
rections.

Applications

Direct routing represent collision-free communication
protocols, in which packets spend the smallest amount of
time possible time in the network once they are injected.
This type of routing is appealing in power or resource con-
strained environments, such as optical networks, where
packet buffering is expensive, or sensor networks where
energy resources are limited. Direct routing is also impor-
tant for providing quality of service in networks. There
exist applications where it is desirable to provide guaran-
tees on the delivery time of the packets after they are in-
jected into the network, for example in streaming audio
and video. Direct routing is suitable for such applications.

Cross References

� Oblivious Routing
� Packet Routing

Recommended Reading
1. Adler, M., Khanna, S., Rajaraman, R., Rosén, A.: Time-

constrained scheduling of weighted packets on trees and
meshes. Algorithmica 36, 123–152 (2003)

2. Alon, N., Chung, F., Graham, R.: Routing permutations on
graphs via matching. SIAM J. Discret. Math. 7(3), 513–530
(1994)

3. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Direct rout-
ing on trees. In: Proceedings of the Ninth Annual ACM-SIAM,
Symposium on Discrete Algorithms (SODA 98), pp. 342–349.
San Francisco, California, United States (1998)

4. Ben-Dor, A., Halevi, S., Schuster, A.: Potential function analy-
sis of greedy hot-potato routing. Theor. Comput. Syst. 31(1),
41–61 (1998)

Distance-Based Phylogeny Reconstruction (Fast-Converging) D 251

5. Busch, C., Herlihy, M., Wattenhofer, R.: Hard-potato routing. In:
Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, pp. 278–285. Portland, Oregon, United States
(2000)

6. Busch, C., Magdon-Ismail, M., Mavronicolas, M., Spirakis, P.: Di-
rect routing: Algorithms and Complexity. Algorithmica 45(1),
45–68 (2006)

7. Cypher, R., Meyer auf der Heide, F., Scheideler, C., Vöcking,
B.: Universal algorithms for store-and-forward and wormhole
routing. In: Proceedings of the 28th ACM Symposium on The-
ory of Computing, pp. 356–365. Philadelphia, Pennsylvania,
USA (1996)

8. Feige, U., Raghavan, P.: Exact analysis of hot-potato routing.
In: IEEE (ed.) Proceedings of the 33rd Annual, Symposium on
Foundations of Computer Science, pp. 553–562, Pittsburgh
(1992)

9. Kaklamanis, C., Krizanc, D., Rao, S.: Hot-potato routing on pro-
cessor arrays. In: Proceedings of the 5th Annual ACM, Sympo-
sium on Parallel Algorithms and Architectures, pp. 273–282,
Velen (1993)

10. Leighton, F.T.: Introduction to Parallel Algorithms and Archi-
tectures: Arrays – Trees – Hypercubes. Morgan Kaufmann, San
Mateo (1992)

11. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-
scheduling in O(congestion+dilation) steps. Combinatorica
14, 167–186 (1994)

12. Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding
O(congestion + dilation) packet routing schedules. Combina-
torica 19, 375–401 (1999)

13. Symvonis, A.: Routing on trees. Inf. Process. Lett. 57(4), 215–
223 (1996)

14. Valiant, L.G.: A scheme for fast parallel communication. SIAM
J. Comput. 11, 350–361 (1982)

15. Valiant, L.G., Brebner, G.J.: Universal schemes for parallel com-
munication. In: Proceedings of the 13th Annual ACM, Sympo-
sium on Theory of Computing, pp. 263–277. Milwaukee, Wis-
consin, United States (1981)

Distance-Based Phylogeny
Reconstruction (Fast-Converging)
2003; King, Zhang, Zhou

MIKLÓS CSŰRÖS
Department of Computer Science, University
of Montreal, Montreal, QC, Canada

Keywords and Synonyms

Learning an evolutionary tree

ProblemDefinition

Introduction

From a mathematical point of view, a phylogeny defines
a probability space for random sequences observed at the
leaves of a binary tree T. The tree T represents the un-
known hierarchy of common ancestors to the sequences.

It is assumed that (unobserved) ancestral sequences are
associated with the inner nodes. The tree along with the
associated sequences models the evolution of a molecular
sequence, such as the protein sequence of a gene. In the
conceptually simplest case, each tree node corresponds to
a species, and the gene evolves within the organismal lin-
eages by vertical descent.

Phylogeny reconstruction consists of finding T from
observed sequences. The possibility of such reconstruction
is implied by fundamental principles of molecular evolu-
tion, namely, that random mutations within individuals
at the genetic level spreading to an entire mating popu-
lation are not uncommon, since often they hardly influ-
ence evolutionary fitness [15]. Such mutations slowly ac-
cumulate, and, thus, differences between sequences indi-
cate their evolutionary relatedness.

The reconstruction is theoretically feasible in several
known situations. In some cases, distances can be com-
puted between the sequences, and used in a distance-based
algorithm. Such an algorithm is fast-converging if it al-
most surely recovers T, using sequences that are polyno-
mially long in the size of T. Fast-converging algorithms
exploit statistical concentration properties of distance es-
timation.

Formal Definitions

An evolutionary topology U(X) is an unrooted binary tree
in which leaves are bijectively mapped to a set of speciesX.
A rooted topology T is obtained by rooting a topologyU on
one of the edges uv: a new node � is added (the root), the
edge uv is replaced by two edges �v and �u, and the edges
are directed outwards on paths from � to the leaves. The
edges, vertices, and leaves of a rooted or unrooted topol-
ogy T are denoted by E(T),V (T) and L(T), respectively.

The edges of an unrooted topology U may be
equipped with a a positive edge length function
d : E(U) 7! (0;1). Edge lengths induce a tree met-
ric d : V (U) �V (U) 7! [0;1) by the extension
d(u; v) =

P
e2u v d(e), where u v denotes the unique

path from u to v. The value d(u, v) is called the distance
between u and v. The pairwise distances between leaves
form a distance matrix.

An additive treemetric is a function ı : X�X 7! [0;1)
that is equivalent to the distance matrix induced by some
topology U(X) and edge lengths. In certain random mod-
els, it is possible to define an additive tree metric that can
be estimated from dissimilarities between sequences ob-
served at the leaves.

In aMarkov model of character evolution over a rooted
topology T, each node u has an associated state, which

252 D Distance-Based Phylogeny Reconstruction (Fast-Converging)

is a random variable �(u) taking values over a fixed al-
phabet A = f1; 2; : : : rg. The vector of leaf states consti-
tutes the character � =

�
�(u) : u 2 L(T)

�
. The states form

a first-order Markov chain along every path. The joint dis-
tribution of the node states is specified by the marginal
distribution of the root state, and the conditional proba-
bilities Pf�(v) = bj�(u) = ag = pe(a! b) on each edge e,
called edge transition probabilities.

A sample of length ` consists of independent and iden-
tically distributed characters � =

�
�i : i = 1; : : : `

�
. The

random sequence associated with the leaf u is the vector
�(u) =

�
�i(u) : i = 1; : : : `

�
.

A phylogeny reconstruction algorithm is a function F
mapping samples to unrooted topologies. The success
probability is the probability that F(�) equals the true
topology.

Popular RandomModels

Neyman Model [14] The edge transition probabilities
are

pe(a! b) =

(
1 � �e if a = b ;
�e
r�1 if a ¤ b

with some edge-specific mutation probability 0 < �e <

1� 1/r. The root state is uniformly distributed. A distance
is usually defined by

d(u; v) = �
r � 1
r

ln
�
1 �

r
r � 1

Pf�(u) ¤ �(v)g
�
:

General Markov Model There are no restrictions on
the edge transition probabilities in the general Markov
model. For identifiability [1,16], however, it is usually
assumed that 0 < detPe < 1, where Pe is the stochas-
tic matrix of edge transition probabilities. Possible dis-
tances in this model include the paralinear distance [12,1]
and the LogDet distance [13,16]. This latter is defined by
d(u; v) = � ln det Juv , where Juv is thematrix of joint prob-
abilities for �(u) and �(v).

It is often assumed in practice that sequence evolu-
tion is effected by a continuous-time Markov process op-
erating on the edges. Accordingly, the edge length directly
measures time. In particular, Pe = eQ�d(e) on every edge e,
whereQ is the instantaneous rate matrix of the underlying
process.

Key Results

It turns out that the hardness of reconstructing an un-
rooted topologyU from distances is determined by its edge
depth �(U). Edge depth is defined as the smallest integer k

for which the following holds. From each endpoint of ev-
ery edge e 2 E(U), there is a path leading to a leaf, which
does not include e and has at most k edges.

Theorem 1 (Erdős, Steel, Székely, Warnow [6]) If U
has n leaves, then �(U) � 1 + log2(n � 1). Moreover, for
almost all random n-leaf topologies under the uniform or
Yule-Harding distributions, �(U) 2 O(log log n)

Theorem 2 (Erdős, Steel, Székely, Warnow [6]) For the
Neyman model, there exists a polynomial-time algorithm
that has a success probability (1 � ı) for random samples of
length

` = O
� log n + log 1

ı

f 2(1 � 2g)4�+6
�
; (1)

where 0 < f = mine �e and g = maxe �e < 1/2 are ex-
tremal edge mutation probabilities, and � is the edge depth
of the true topology.

Theorem 2 can be extended to the general Markov model
with analogous success rates for LogDet distances [7], as
well as to a number of other Markov models [2].

Equation (1) shows that phylogenies can be recon-
structed with high probability from polynomially long se-
quences. Algorithms with such sample size requirements
were dubbed fast-converging [9]. Fast convergence was
proven for the short quartet methods of Erdős et al. [6,7],
and for certain variants [11] of the so-called disk-covering
methods introduced by Huson et al. [9]. All these al-
gorithms run in ˝(n5) time. Csürös and Kao [3] initi-
ated the study of computationally efficient fast-converging
algorithms, with a cubic-time solution. Csürös [2] gave
a quadratic-time algorithm. King et al. [10] designed an
algorithm with an optimal running time of O(n log n) for
producing a phylogeny from a matrix of estimated dis-
tances.

The short quartet methods were revisited recently: [4]
described an O(n4)-time method that aims at succeeding
even if only a short sample is available. In such a case, the
algorithm constructs a forest of “trustworthy” edges that
match the true topology with high probability.

All known fast-converging distance-based algorithms
have essentially the same sample bound as in (1), but
Daskalakis et al. [5] recently gave a twist to the notion of
fast convergence. They described a polynomial-time algo-
rithm, which outputs the true topology almost surely from
a sample of size O(log n), given that edge lengths are not
too large. Such a bound is asymptotically optimal [6]. In-
terestingly, the sample size bound does not involve expo-
nential dependence on the edge depth: the algorithm does
not rely on a distance matrix.

Distance-Based Phylogeny Reconstruction (Optimal Radius) D 253

Applications

Phylogenies are often constructed in molecular evolution
studies, from aligned DNA or protein sequences. Fast-
converging algorithms have mostly a theoretical appeal
at this point. Fast convergence promises a way to han-
dle the increasingly important issue of constructing large-
scale phylogenies: see, for example, the CIPRES project
(http://www.phylo.org/).

Cross References

Similar algorithmic problems are discussed under the
heading � Distance-based phylogeny reconstruction (op-
timal radius).

Recommended Reading

Joseph Felsenstein wrote a definitive guide [8] to the
methodology of phylogenetic reconstruction.

1. Chang, J.T.: Full reconstruction of Markov models on evolu-
tionary trees: identifiability and consistency. Math. Biosci. 137,
51–73 (1996)

2. Csürös, M.: Fast recovery of evolutionary trees with thousands
of nodes. J. Comput. Biol. 9(2), 277–297 (2002) Conference ver-
sion at RECOMB 2001

3. Csürös, M., Kao, M.-Y.: Provably fast and accurate recovery of
evolutionary trees through Harmonic Greedy Triplets. SIAM
J. Comput. 31(1), 306–322 (2001) Conference version at SODA
(1999)

4. Daskalakis, C., Hill, C., Jaffe, A., Mihaescu, R., Mossel, E., Rao,
S.: Maximal accurate forests from distance matrices. In: Proc.
Research in Computational Biology (RECOMB), pp. 281–295
(2006)

5. Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic recon-
struction. In: Proc. ACM Symposium on Theory of Computing
(STOC), pp. 159–168 (2006)

6. Erdős, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs
suffice to build (almost) all trees (I). Random Struct. Algorithm
14, 153–184 (1999) Preliminary version as DIMACS TR97-71

7. Erdős, P.L., Steel, M.A., Székely, L. A., Warnow, T.J.: A few logs
suffice to build (almost) all trees (II). Theor. Comput. Sci. 221,
77–118 (1999) Preliminary version as DIMACS TR97-72

8. Felsenstein, J.: Inferring Pylogenies. Sinauer Associates, Sun-
derland, Massachusetts (2004)

9. Huson, D., Nettles, S., Warnow, T.: Disk-covering, a fast con-
verging method of phylogenetic reconstruction. J. Comput.
Biol. 6(3–4) 369–386 (1999) Conference version at RECOMB
(1999)

10. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-
based evolutionary tree reconstruction. In: Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 444–453
(2003)

11. Lagergren, J.: Combining polynomial running time and fast
convergence for the disk-covering method. J. Comput. Syst.
Sci. 65(3), 481–493 (2002)

12. Lake, J.A.: Reconstructing evolutionary trees from DNA and
protein sequences: paralinear distances. Proc. Natl. Acad. Sci.
USA 91, 1455–1459 (1994)

13. Lockhart, P.J., Steel, M.A., Hendy, M.D., Penny, D.: Recovering
evolutionary trees under a more realistic model of sequence
evolution. Mol. Biol. Evol. 11, 605–612 (1994)

14. Neyman, J.: Molecular studies of evolution: a source of novel
statistical problems. In: Gupta, S.S., Yackel, J. (eds) Statistical
Decision Theory and Related Topics, pp. 1–27. Academic Press,
New York (1971)

15. Ohta, T.: Near-neutrality in evolution of genes and gene regu-
lation. Proc. Natl. Acad. Sci. USA 99, 16134–16137 (2002)

16. Steel, M.A.: Recovering a tree from the leaf colourations it gen-
erates under aMarkov model. Appl. Math. Lett. 7, 19–24 (1994)

Distance-Based Phylogeny
Reconstruction (Optimal Radius)
1999; Atteson
2005; Elias, Lagergren

RICHARD DESPER1, OLIVIER GASCUEL2
1 Department of Biology, University College London,
London, UK

2 LIRMM, National Scientific Research Center,
Montpellier, France

Keywords and Synonyms

Phylogeny reconstruction; Distance methods; Perfor-
mance analysis; Robustness; Safety radius approach; Op-
timal radius

ProblemDefinition

A phylogeny is an evolutionary tree tracing the shared
history, including common ancestors, of a set of extant
taxa. Phylogenies have been historically reconstructed us-
ing character-based (parsimony) methods, but in recent
years the advent of DNA sequencing, along with the de-
velopment of large databases of molecular data, has led
to more involved methods. Sophisticated techniques such
as likelihood and Bayesian methods are used to estimate
phylogenies with sound statistical justifications. However,
these statistical techniques suffer from the discrete nature
of tree topology space. Since the number of tree topolo-
gies increases exponentially as a function of the number of
taxa, and each topology requires separate likelihood cal-
culation, it is important to restrict the search space and
to design efficient heuristics. Distance methods for phy-
logeny reconstruction serve this purpose by inferring trees
in a fraction of the time required for the more statisti-
cally rigorous methods. They allow dealingwith thousands
of taxa, while the current implementations of statistical
approaches are limited to a few hundreds, and distance
methods also provide fairly accurate starting trees to be
further refined by more sophisticated methods. Moreover,

254 D Distance-Based Phylogeny Reconstruction (Optimal Radius)

the input of distance methods is the matrix of pairwise
evolutionary distances among taxa, which are estimated by
maximum likelihood, so that distance methods also have
sound statistical justifications.

Mathematically, a phylogenetic tree is a triple
T = (V ; E; l) where V is the set of nodes representing
extant taxa and ancestral species, E is the set of edges
(branches), and l is a function that assigns positive lengths
to each edge in E. Evolution proceeds through the tree
structure as a stochastic process with a finite state space
corresponding to the DNA bases or amino acids present
in the DNA or protein sequences, respectively.

Any phylogenetic tree T defines a metric DT on its
leaf set L(T) : let PT (u; v) define the unique path through
T from u to v, then the distance from u to v is set to
DT (u; v) =

P
e2PT (u;v) l(e).

Distance methods for phylogeny reconstruction rely
on the observation [13] that the map T ! DT is re-
versible; i. e., a tree T can be reconstructed from its tree
metric. While in practice DT is not known, by using mod-
els of evolution (e. g. [10], reviewed in [5]) one can use
molecular sequence data to estimate a distance matrix D
that approximatesDT . As the amount of sequence data in-
creases, the consistency of the various models of sequence
evolution implies that D should converge to DT . Thus for
a distance method to be consistent, it is necessary that for
any tree T, and for distance matrices D “close enough” to
DT , the algorithm will output T.

The present chapter deals with the question of when
any distance algorithm for phylogeny reconstruction can
be guaranteed to output the correct phylogeny as a func-
tion of the divergence between the metric underlying the
true phylogeny and themetric estimated from the data. At-
teson [1] demonstrated that this consistency can be shown
for Neighbor Joining (NJ) [11], the most popular distance
method, and a number of NJ’s variants.

The Neighbor Joining (NJ) Algorithm
of Saitou and Nei (1987)
NJ is agglomerative: it works by using the input matrixD to
identify a pair of taxa x; y 2 L that are neighbors in T, i. e.
there exists a node u 2 V such that f(u; x); (u; y)g � E.
The algorithm creates a node c that is connected to x and y,
extends the distance matrix to c, and then solves the re-
duced problem on L [fcgnfx; yg. The pair (x; y) is cho-
sen to minimize the following sum:

SD(x; y) = (jLj � 2) �D(x; y)�
X
z2L

�
D(z; x) + D(z; y)

�
:

The soundness of NJ is based on the observation that, if
D = DT for a tree T, the value SD(x; y) will be minimized

for a pair (x; y) that are neighbors in T. A number of pa-
pers (reviewed in [8]) have been dedicated to the various
interpretations and properties of the SD criterion.

The Fast Neighbor Joining (FNJ) Algorithm
of Elias and Lagergren (2005)

NJ requires ˝(n3) computations, where n is the number
of taxa in the data set. Since a distance matrix only has n2

entries, many attempts have been made to construct a dis-
tance algorithm that would only require O(n2) computa-
tions while retaining the accuracy of NJ. To this end, the
best result so far is the Fast Neighbor Joining (FNJ) algo-
rithm of Elias and Lagergren [4].

Most of the computation of NJ is used in the re-
calculations of the sums SD(x; y) after each agglomera-
tion step. Although each recalculation can be performed
in constant time, the number of such pairs is˝(k2) when
k nodes are left to agglomerate, and thus, summing over k,
˝(n3) computations are required in all.

Elias and Lagergren take a related approach to agglom-
eration, which does not exhaustively seek the minimum
value of SD(x; y) at each step, but instead uses a heuris-
tic to maintain a list of candidates of “visible pairs” (x; y)
for agglomeration. At the (n � k)th step, when two neigh-
bors are agglomerated from a k-taxa tree to form a (k-
1)-taxa tree, FNJ has a list of O(k) visible pairs for which
SD(x; y) is calculated. The pair joined is selected from this
list. By trimming the number of pairs considered, Elias
and Lagergren achieved an algorithm which requires only
O(n2) computations.

Safety Radius-Based Performance Analysis
(Atteson 1999)

Short branches in a phylogeny are difficult to resolve, espe-
cially when they are nested deep within a tree, because rel-
atively few mutations occurring on a short branch as op-
posed to on much longer pendant branches, which hides
phylogenetic signal. One is faced with the choice between
leaving certain evolutionary relationships unresolved (i. e.,
having an internal node with degree > 3), or examining
when confidence can be had in the resolution of a short
internal edge.

A natural formulation [9] of this question is: how long
must be molecular sequences before one can have con-
fidence in an algorithm’s ability to reconstruct T accu-
rately? An alternative formulation [1] appropriate for dis-
tance methods: if D is a distance matrix that approximates
a tree metric DT , can one have some confidence in an al-
gorithm’s ability to reconstruct T given D, based on some
measure of the distance betweenD andDT? For twomatri-

Distance-Based Phylogeny Reconstruction (Optimal Radius) D 255

ces, D1 and D2, the L1 distance between them is defined
by kD1 � D2k1 = maxi; j jD1(i; j) � D2(i; j)j. Moreover,
let �(T) denote the length of the shortest internal edge of
a tree T.

The latter formulation leads to a definition: The safety
radius of an algorithm A is the greatest value of r with
the property that: given any phylogeny T, and any distance
matrixD satisfying kD � DTk1 < r � �(T);A will return
the tree T.

Key Results

Atteson [1] answered the second question affirmatively,
with two theorems.

Theorem 1 The safety radius of NJ is 1/2.

Theorem 2 For no distance algorithmA is the safety ra-
dius ofA greater than 1/2.

Indeed, given any �, one can find two different trees
T1; T2and a distancematrixD such that� = �(T1) = �(T2)
and kD � DT1k1 = �/2 = kD � DT2k1. Since D is
equidistant from two distinct tree metrics, no algorithm
could assign it to the “closest” tree.

In their presentation of an optimally fast version of the
NJ algorithm, Elias and Lagergren updated Atteson’s re-
sults for the FNJ algorithm. They showed

Theorem 3 The safety radius of FNJ is 1/2.

Elias and Lagergren showed that if D is a distance matrix
and DT is a tree metric with kD � DTk1 < �(T)/2, then
FNJ will output the same tree (T) as NJ.

Applications

Phylogeny is a quite active field within evolutionary biol-
ogy and bioinformatics. As more proteins and DNA se-
quences become available, the need for fast and accurate
phylogeny estimation algorithms is ever increasing as phy-
logeny not only serves to reconstruct species history but
also to decipher genomes. To date, NJ remains one of the
most popular algorithms for phylogeny building, and is by
far the most popular of the distance methods, with well
over 1000 citations per year.

Open Problems

With increasing amounts of sequence data becoming
available for an increasing number of species, distance al-
gorithms such as NJ should be useful for quite some time.
Currently, the bottleneck in the process of building phy-
logenies is not the problem of searching topology space,
but rather the problem of building distance matrices. The

brute force method to build a distance matrix on n taxa
from sequences with l positions requires ˝(ln2) compu-
tations, and typically l � n. Elias and Lagergren proposed
an ˝(ln1:376) algorithm based on Hamming distance and
matrix calculations. However, this algorithm only applies
to over-simple distance estimators [10]. Extending this re-
sult to more realistic models would be a great advance.

A number of distance-based tree building algorithms
have been analyzed in the safety radius framework. Atte-
son [1] dealt with a large class of neighbor joining-like al-
gorithms, andGascuel andMcKenzie [7] studied the ultra-
metric setting where the correct treeT is rooted and all tree
leaves are at the same distance from the root. Such trees
are very common; they are called “molecular clock” trees
in phylogenetics and “indexed hierarchies” in data analy-
sis. In this setting, the optimal safety radius is equal to 1
(instead of 1/2) and a number of standard algorithms (e. g.
UPGMA, with time complexity in O(n2)) have a safety
radius of 1. However, experimental studies (see below)
showed that not all algorithms with optimal safety radius
achieve the same accuracy, indicating that the safety radius
approach should be sharpened to provide better theoreti-
cal analysis of method performance.

Experimental Results

Computer simulation is the most standard way to assess
algorithm accuracy in phylogenetics. A tree is randomly
generated as well as a sequence at tree root, whose evo-
lution is simulated along the tree edges. A reconstruction
algorithm is tested using the sequences observed at the
tree leaves, thus mimicking the phylogenetic task. Vari-
ous measures exist to compare the correct and the inferred
trees, and algorithm performance is assessed as the aver-
age measure over repeated experiments. Elias and Lager-
gren [4] showed that FNJ (in O(n2)) is just slightly out-
performed by NJ (in O(n3)), while numerous simulations
(e. g. [3,12]) indicated that NJ is beaten by more recent al-
gorithms (all inO(n3) or less), namely BioNJ [6], WEIGH-
BOR [2], FastME [3] and STC [12].

Data Sets

A large number of data sets is stored by the TreeBASE
project, at http://www.treebase.org.

URL to Code

For a list of leading phylogeny packages, see Joseph Felsen-
stein’s website at http://evolution.genetics.washington.
edu/phylip/software.html

http://www.treebase.org
http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html

256 D Distributed Algorithms for Minimum Spanning Trees

Cross References

� Approximating Metric Spaces by Tree Metrics
� Directed Perfect Phylogeny (Binary Characters)
� Distance-Based Phylogeny Reconstruction

(Fast-Converging)
� Perfect Phylogeny (Bounded Number of States)
� Perfect Phylogeny Haplotyping
� Phylogenetic Tree Construction from a Distance

Matrix

Recommended Reading

1. Atteson, K.: The performance of neighbor-joining methods of
phylogenetic reconstruction. Algorithmica 25, 251–278 (1999)

2. Bruno, W.J., Socci, N.D., Halpern, A.L.: Weighted Neighbor
Joining: A Likelihood-Based Approach to Distance-Based Phy-
logeny Reconstruction. Mol. Biol. Evol. 17, 189–197 (2000)

3. Desper, R., Gascuel, O.: Fast and Accurate Phylogeny Recon-
struction Algorithms Based on the Minimum – Evolution Prin-
ciple. J. Comput. Biol. 9, 687–706 (2002)

4. Elias, I. Lagergren, J.: Fast Neighbor Joining. In: Proceedings of
the 32nd International Colloquium on Automata, Languages,
and Programming (ICALP), pp. 1263–1274 (2005)

5. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sun-
derland, Massachusetts (2004)

6. Gascuel, O.: BIONJ: an Improved Version of the NJ Algorithm
Based on a SimpleModel of Sequence Data. Mol. Biol. Evol. 14,
685–695 (1997)

7. Gascuel, O. McKenzie, A.: Performance Analysis of Hierarchical
Clustering Algorithms. J. Classif. 21, 3–18 (2004)

8. Gascuel, O., Steel, M.: Neighbor-Joining Revealed. Mol. Biol.
Evol. 23, 1997–2000 (2006)

9. Huson, D.H., Nettles, S., Warnow, T.: Disk-covering, a fast-
converging method for phylogenetic tree reconstruction.
J. Comput. Biol. 6, 369–386 (1999)

10. Jukes, T.H., Cantor, C.R.: Evolution of Protein Molecules. In:
Munro, H.N. (ed.), Mammalian ProteinMetabolism, pp. 21–132,
Academic Press, New York (1969)

11. Saitou, N., Nei, M.: The Neighbor-joining Method: A New
Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol.
4, 406–425 (1987)

12. Vinh, L.S., von Haeseler, A.: Shortest triplet clustering: recon-
structing large phylogenies using representative sets. BMC
Bioinformatics 6, 92 (2005)

13. Zarestkii, K.: Reconstructing a tree from the distances between
its leaves. Uspehi Mathematicheskikh Nauk 20, 90–92 (1965)
(in russian)

Distributed Algorithms
for Minimum Spanning Trees
1983; Gallager, Humblet, Spira

SERGIO RAJSBAUM
Math Institute, National Autonomous University
of Mexico, Mexico City, Mexico

Keywords and Synonyms

Minimum weight spanning tree

ProblemDefinition

Consider a communication network, modeled by an
undirected weighted graph G = (V ; E), where jVj = n,
jEj = m. Each vertex of V represents a processor of un-
limited computational power; the processors have unique
identity numbers (ids), and they communicate via the
edges of E by sending messages to each other. Also, each
edge e 2 E has associated a weight w(e), known to the
processors at the endpoints of e. Thus, a processor knows
which edges are incident to it, and their weights, but it
does not know any other information about G. The net-
work is asynchronous: each processor runs at an arbitrary
speed, which is independent of the speed of other proces-
sors. A processor may wake up spontaneously, or when
it receives a message from another processor. There are
no failures in the network. Each message sent arrives at
its destination within a finite but arbitrary delay. A dis-
tributed algorithm A for G is a set of local algorithms, one
for each processor of G, that include instructions for send-
ing and receivingmessages along the edges of the network.
Assuming that A terminates (i. e. all the local algorithms
eventually terminate), its message complexity is the total
number of messages sent over any execution of the algo-
rithm, in the worst case. Its time complexity is the worst
case execution time, assuming processor steps take neg-
ligible time, and message delays are normalized to be at
most 1 unit.

A minimum spanning tree (MST) of G is a subset E0

of E such that the graph T = (V ; E0) is a tree (connected
and acyclic) and its total weight, w(E0) =

P
e2E0 w(e) is as

small as possible. The computation of an MST is a central
problem in combinatorial optimization, with a rich history
dating back to 1926 [2], and up to now; the book [12] col-
lects properties, classical results, applications, and recent
research developments.

In the distributed MST problem the goal is to design
a distributed algorithmA that terminates always, and com-
putes anMST T ofG. At the end of an execution, each pro-
cessor knows which of its incident edges belong to the tree
T and which not (i. e. the processor writes in a local output
register the corresponding incident edges). It is remark-
able that in the distributed version of the MST problem,
a communication network is solving a problem where the
input is the network itself. This is one of the fundamental
starting points of network algorithms.

It is not hard to see that if all edge weights are dif-
ferent, the MST is unique. Due to the assumption that

Distributed Algorithms for Minimum Spanning Trees D 257

processors have unique ids, it is possible to assume that
all edge weights are different: whenever two edge weights
are equal, ties are broken using the processor ids of the
edge endpoints. Having a unique MST facilitates the de-
sign of distributed algorithms, as processors can locally se-
lect edges that belong to the unique MST. Notice that if
processors do not have unique ids, and edge weights are
not different, there is no deterministicMST (nor any span-
ning tree) distributed algorithm, because it may be impos-
sible to break the symmetry of the graph, for example, in
the case it is a cycle with all edge weights equal.

Key Results

The distributedMST problem has been studied since 1977,
and dozens of papers have been written on the subject. In
1983, the fundamental distributed GHS algorithm in [5]
was published, the first to solve the MST problem with
O(m + n log n) message complexity. The paper has had
a very significant impact on research in distributed com-
puting and won the 2004 Edsger W. Dijkstra Prize in Dis-
tributed Computing.

It is not hard to see that any distributedMST algorithm
must have˝(m) message complexity (intuitivelly, at least
onemessagemust traverse each edge). Also, results in [3,4]
imply an ˝(n log n) message complexity lower bound for
the problem. Thus, the GHS algorithm is optimal in terms
of message complexity.

The ˝(m + n log n) message complexity lower bound
for the construction of anMST applies also to the problem
of finding an arbitrary spanning tree of the graph. How-
ever, for specific graph topologies, it may be easier to find
an arbitrary spanning tree than to find anMST. In the case
of a complete graph,˝(n2) messages are necessary to con-
struct an MST [8], while an arbitrary spanning tree can be
constructed in O(n log n) messages [7].

The time complexity of the GHS algorithm is
O(n log n). In [1] it is described how to improve its time
complexity to O(n), while keeping the optimal O(m +
n log n) message complexity. It is clear that ˝(D) time is
necessary for the construction of a spanning tree, where
D is the diameter of the graph. And in the case of an
MST the time complexity may depend on other param-
eters of the graph. For example, due to the need for in-
formation flow among processors residing on a common
cycle, as in an MST construction, at least one edge of
the cycle must be excluded from the MST. If messages of
unbounded size are allowed, an MST can be easily con-
structed in O(D) time, by collecting the graph topology
and edge weights in a root processor. The problem be-
comes interesting in the more realistic model where mes-

sages are of sizeO(log n), and an edge weight can be sent in
a single message.When the number of messages is not im-
portant, one can assume without loss of generality that the
model is synchronous. For near time optimal algorithms
and lower bounds see [10] and references herein.

Applications

The distributed MST problem is important to solve, both
theoretically and practically, as anMST can be used to save
on communication, in various tasks such as broadcast and
leader election, by sending the messages of such applica-
tions over the edges of the MST.

Also, research on the MST problem, and in particu-
lar the MST algorithm of [5], has motivated a lot of work.
Most notably, the algorithm of [5], introduced various
techniques that have been in widespread use for multi-
casting, query and reply, cluster coordination and routing,
protocols for handshake, synchronization, and distributed
phases. Although the algorithm is intuitive and is easy to
comprehend, it is sufficiently complicated and interesting
that it has become a challenge problem for formal verifica-
tion methods e. g. [11].

Open Problems

There are many open problems in this area, only a few sig-
nificant ones arementioned. As far asmessage complexity,
although the asymptotically tight bound of O(m + n log n)
for the MST problem in general graphs is known, finding
the actual constants remains an open problem. There are
smaller constants known for general spanning trees than
for MST though [6].

As mentioned above, near time optimal algorithms
and lower bounds appear in [10] and references herein.
The optimal time complexity remains an open problem.
Also, in a synchronous model for overlay networks, where
all processors are directly connected to each other, an
MST can be constructed in sublogarithmic time, namely
O(log log n) communication rounds [9], and no corre-
sponding lower bound is known.

Cross References

� Synchronizers, Spanners

Recommended Reading
1. Awerbuch, B.: Optimal distributed algorithms for minimum

weight spanning tree, counting, leader election and related
problems (detailed summary). In: Proc. of the 19th Annual ACM
Symposium on Theory of Computing, pp. 230–240. ACM, USA
(1987)

258 D Distributed Computing

2. Borůvka, O.: Otakar Borůvka on minimum spanning tree prob-
lem (translation of both the 1926 papers, comments, history).
Disc. Math. 233, 3–36 (2001)

3. Burns, J.E.: A formal model for message-passing systems. Indi-
ana University, Bloomington, TR-91, USA (1980)

4. Frederickson, G., Lynch, N.: The impact of synchronous com-
munication on the problem of electing a leader in a ring. In:
Proc. of the 16th Annual ACM Symposium on Theory of Com-
puting, pp. 493–503. ACM, USA (1984)

5. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algo-
rithm for minimum-weight spanning trees. ACM Trans. Prog.
Lang. Systems 5(1), 66–77 (1983)

6. Johansen, K.E., Jorgensen, U.L., Nielsen, S.H.: A distributed
spanning tree algorithm. In: Proc. 2nd Int. Workshop on Dis-
tributed Algorithms (DISC). Lecture Notes in Computer Sci-
ence, vol. 312, pp. 1–12. Springer, Berlin Heidelberg (1987)

7. Korach, E., Moran, S., Zaks, S.: Tight upper and lower bounds for
some distributed algorithms for a complete network of proces-
sors. In: Proc. 3rd Symp. on Principles of Distributed Comput-
ing (PODC), pp. 199–207. ACM, USA (1984)

8. Korach, E., Moran, S., Zaks, S.: The optimality of distributive con-
structions of minimumweight and degree restricted spanning
trees in a complete network of processors. In: Proc. 4th Symp.
on Principles of Distributed Computing (PODC), pp. 277–286.
ACM, USA (1985)

9. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-
weight spanning tree construction inO(log log n) communica-
tion rounds. SIAM J. Comput. 35(1), 120–131 (2005)

10. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for con-
stant diameter graphs. Distrib. Comput. 18(6), 453–460 (2006)

11. Moses, Y., Shimony, B.: A new proof of the GHSminimum span-
ning tree algorithm. In: DistributedComputing, 20th Int. Symp.
(DISC), Stockholm, Sweden, September 18–20, 2006. Lecture
Notes in Computer Science, vol. 4167, pp. 120–135. Springer,
Berlin Heidelberg (2006)

12. Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Prob-
lems (Discrete Mathematics and Its Applications). Chapman
Hall, USA (2004)

Distributed Computing
� Distributed Vertex Coloring
� Failure Detectors
�Mobile Agents and Exploration
� Optimal Probabilistic Synchronous Byzantine

Agreement
� P2P
� Set Agreement

Distributed Vertex Coloring
2004; Finocchi, Panconesi, Silvestri

DEVDATT DUBHASHI
Department of Computer Science, Chalmers University
of Technology and Gothenburg University,
Gothenburg, Sweden

Keywords and Synonyms

Vertex coloring; Distributed computation

ProblemDefinition

The vertex coloring problem takes as input an undirected
graph G := (V ; E) and computes a vertex coloring, i. e.
a function, c : V ! [k] for some positive integer k such
that adjacent vertices are assigned different colors (that is,
c(u) 6= c(v) for all (u; v) 2 E). In the (� + 1) vertex color-
ing problem, k is set equal to � + 1 where � is the maxi-
mum degree of the input graph G. In general, (� + 1) col-
ors could be necessary as the example of a clique shows.
However, if the graph satisfies certain properties, it may
be possible to find colorings with far fewer colors. Finding
the minimum number of colors possible is a computation-
ally hard problem: the corresponding decision problems
are NP-complete [5]. In Brooks–Vizing colorings, the goal
is to try to find colorings that are near optimal.

In this paper, the model of computation used is the
synchronous, message passing framework as used in stan-
dard distributed computing [11]. The goal is then to de-
scribe very simple algorithms that can be implemented
easily in this distributed model that simultaneously are ef-
ficient as measured by the number of rounds required and
have good performance quality as measured by the num-
ber of colors used. For efficiency, the number of rounds is
require to be poly-logarithmic in n, the number of vertices
in the graph and for performance quality, the number of
colors used is should be near-optimal.

Key Results

Key theoretical results related to distributed (� + 1)-
vertex coloring are due to Luby [9] and Johansson [7].
Both show how to compute a (� + 1)-coloring in O(log n)
rounds with high probability. For Brooks–Vizing color-
ings, Kim [8] showed that if the graph is square or triangle
free, then it is possible to color it with O(�/ log�) colors.
If, moreover, the graph is regular of sufficiently high de-
gree (�� lg n), then Grable and Panconesi [6] show how
to color it with O(�/ log�) colors in O(log n) rounds.
See [10] for a comprehensive discussion of probabilistic
techniques to achieve such colorings.

The present paper makes a comprehensive experimen-
tal analysis of distributed vertex coloring algorithms of the
kind analyzed in these papers on various classes of graphs.
The results are reported in Sect. “Experimental Results”
below and the data sets used are described in Sect. “Data
Sets”.

Distributed Vertex Coloring D 259

Applications

Vertex coloring is a basic primitive in many applications:
classical applications are scheduling problems involving
a number of pairwise restrictions on which jobs can be
done simultaneously. For instance, in attempting to sched-
ule classes at a university, two courses taught by the same
faculty member cannot be scheduled for the same time
slot. Similarly, two course that are required by the same
group of students also should not conflict. The problem of
determining the minimum number of time slots needed
subject to these restrictions can be cast as a vertex color-
ing problem. One very active application for vertex color-
ing is register allocation. The register allocation problem is
to assign variables to a limited number of hardware regis-
ters during program execution. Variables in registers can
be accessed much quicker than those not in registers. Typ-
ically, however, there are far more variables than registers
so it is necessary to assign multiple variables to registers.
Variables conflict with each other if one is used both be-
fore and after the other within a short period of time (for
instance, within a subroutine). The goal is to assign vari-
ables that do not conflict so as to minimize the use of non-
register memory. A simple approach to this is to create
a graph where the nodes represent variables and an edge
represents conflict between its nodes. A coloring is then
a conflict-free assignment. If the number of colors used is
less than the number of registers then a conflict-free reg-
ister assignment is possible. Modern applications include
assigning frequencies to mobile radios and other users of
the electro-magnetic spectrum. In the simplest case, two
customers that are sufficiently close must be assigned dif-
ferent frequencies, while those that are distant can share
frequencies. The problem of minimizing the number of
frequencies is then a vertex coloring problem For more
applications and references, see Michael Trick’s coloring
page [12].

Open Problems

The experimental analysis shows convincingly and rather
surprisingly that the simplest, trivial, version of the al-
gorithm actually performs best uniformly! In particular,it
significantly outperforms the algorithms which have been
analyzed rigorously. The authors give some heuristic re-
currences that describe the performance of the trivial algo-
rithm. It is a challenging and interesting open problem to
give a rigorous justification of these recurrences. Alterna-
tively, and less appealing, a rigorous argument that shows
that the trivial algorithm dominates the ones analyzed by
Luby and Johansson is called for. Other issues about how
local structure of the graph impacts on the performance of

such algorithms (which is hinted at in the paper) is worth
subjecting to further experimental and theoretical analysis.

Experimental Results

All the algorithms analyzed start by assigning an initial
palette of colors to each vertex, and then repeating the fol-
lowing simple iteration round:
1. Wake up!: Each vertex independently of the others

wakes up with a certain probability to participate in the
coloring in this round.

2. Try!: Each vertex independently of the others, selects
a tentative color from its palette of colors at this round.

3. Resolve conflicts!: If no neighbor of a vertex selects the
same tentative color, then this color becomes final. Such
a vertex exits the algorithm, and the remaining vertices
update their palettes accordingly. If there is a conflict,
then it is resolved in one of two ways: Either all con-
flicting vertices are deemed unsuccessful and proceed
to the next round, or an independent set is computed,
using the so-called Hungarian heuristic, amongst all the
vertices that chose the same color. The vertices in the
independent set receive their final colors and exit. The
Hungarian heuristic for independent set is to consider
the vertices in random order, deleting all neighbors of
an encountered vertex which itself is added to the in-
dependent set, see [1, p. 91] for a cute analysis of this
heuristic to prove Turan’s Theorem.

4. Feed the Hungry!: If a vertex runs out of colors in its
palette, then fresh new colors are given to it.
Several parameters can be varied in this basic scheme:

the wake up probability, the conflict resolution and the size
of the initial palette are the most important ones.

In (� + 1)-coloring, the initial palette for a vertex v is
set to [�] := f1; � � � ; � + 1g (global setting) or [d(v) + 1]
(where d(v) is the degree of vertex v) (local setting). The
experimental results indicate that (a) the best wake-up
probability is 1, (b) the local palette version is as good as
the global one in running time, but can achieve significant
color savings and (c) the Hungarian heuristic can be used
with vertex identities rather than random numbers giving
good results.

In the Brooks–Vizing colorings, the initial palette is set
to [d(v)/s] where s is a shrinking factor. The experimental
results indicate that uniformly, the best algorithm is the
one where the wake-up probability is 1, and conflicts are
resolved by the Hungarian heuristic. This is both with re-
spect to the running time, as well as the number of colors
used. Realistically useful values of s are between 4 and 6
resulting in�/s-colorings. The running time performance
is excellent, with even graphs with a thousand vertices col-

260 D Dominating Set

ored within 20–30 rounds. When compared to the best se-
quential algorithms, these algorithms use between twice or
thrice as many colors, but are much faster.

Data Sets

Test data was both generated synthetically using various
random graph models, and benchmark real life test sets
from the second DIMACS implementation challenge [3]
and Joe Culberson’s web-site [2] were also used.

Cross References

� Graph Coloring
� Randomization in Distributed Computing
� Randomized Gossiping in Radio Networks

Recommended Reading
1. Alon, N., Spencer, J.: The Probabilistic Method. Wiley (2000)
2. Culberson, J.C.: http://web.cs.ualberta.ca/~joe/Coloring/

index.html
3. Ftp site of DIMACS implementation challenges, ftp://dimacs.

rutgers.edu/pub/challenge/
4. Finocchi, I., Panconesi, A., Silvestri, R.: An experimental Analy-

sis of Simple Distributed Vertex Coloring Algorithms. Algorith-
mica 41, 1–23 (2004)

5. Garey, M., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-completeness. W.H. Freeman (1979)

6. Grable, D.A., Panconesi, A.: Fast distributed algorithms for
Brooks–Vizing colorings. J. Algorithms 37, 85–120 (2000)

7. Johansson, Ö.: Simple distributed (� + 1)-coloring of graphs.
Inf. Process. Lett. 70, 229–232 (1999)

8. Kim, J.-H.: On Brook’s Theorem for sparse graphs. Combin.
Probab. Comput. 4, 97–132 (1995)

9. Luby, M.: Removing randomness in parallel without processor
penalty. J. Comput. Syst. Sci. 47(2), 250–286 (1993)

10. Molly, M., Reed, B.: Graph Coloring and the Probabilistic
method. Springer (2002)

11. Peleg, D.: Distributed Computing: A Locality-Sensitive Ap-
proach. In: SIAM Monographs on Discrete Mathematics and
Applications 5 (2000)

12. Trick, M.: Michael Trick’s coloring page: http://mat.gsia.cmu.
edu/COLOR/color.html

Dominating Set
� Data Reduction for Domination in Graphs
� Greedy Set-Cover Algorithms

Dynamic Problems
� Fully Dynamic Connectivity
� Robust Geometric Computation
� Voltage Scheduling

Dynamic Trees
2005; Tarjan, Werneck

RENATO F. WERNECK
Microsoft Research Silicon Valley, La Avenida, CA, USA

Keywords and Synonyms

Link-cut trees

ProblemDefinition

The dynamic tree problem is that of maintaining an ar-
bitrary n-vertex forest that changes over time through
edge insertions (links) and deletions (cuts). Depending on
the application, one associates information with vertices,
edges, or both. Queries and updates can deal with indi-
vidual vertices or edges, but more commonly they refer
to entire paths or trees. Typical operations include find-
ing the minimum-cost edge along a path, determining the
minimum-cost vertex in a tree, or adding a constant value
to the cost of each edge on a path (or of each vertex of
a tree). Each of these operations, as well as links and cuts,
can be performed in O(log n) time with appropriate data
structures.

Key Results

The obvious solution to the dynamic tree problem is to
represent the forest explicitly. This, however, is inefficient
for queries dealingwith entire paths or trees, since it would
require actually traversing them. Achieving O(log n) time
per operation requires mapping each (possibly unbal-
anced) input tree into a balanced tree, which is better
suited tomaintaining information about paths or trees im-
plicitly. There are three main approaches to perform the
mapping: path decomposition, tree contraction, and lin-
earization.

Path Decomposition

The first efficient dynamic tree data structure was Sleator
and Tarjan’s ST-trees [13,14], also known as link-cut trees
or simply dynamic trees. They are meant to represent
rooted trees, but the user can change the root with the ev-
ert operation. The data structure partitions each input tree
into vertex-disjoint paths, and each path is represented as
a binary search tree in which vertices appear in symmet-
ric order. The binary trees are then connected according
to how the paths are related in the forest. More precisely,
the root of a binary tree becomes a middle child (in the
data structure) of the parent (in the forest) of the topmost

http://web.cs.ualberta.ca/~joe/Coloring/index.html
http://web.cs.ualberta.ca/~joe/Coloring/index.html
ftp://dimacs.rutgers.edu/pub/challenge/
ftp://dimacs.rutgers.edu/pub/challenge/
http://mat.gsia.cmu.edu/COLOR/color.html
http://mat.gsia.cmu.edu/COLOR/color.html

Dynamic Trees D 261

Dynamic Trees, Figure 1
An ST-tree (adapted from [14]). On the left, the original tree, rooted at a and already partitioned into paths; on the right, the actual
data structure. Solid edges connect nodes on the same path; dashed edges connect different paths

vertex of the corresponding path. Although a node has no
more than two children (left and right) within its own bi-
nary tree, it may have arbitrarily many middle children.
See Fig. 1. The path containing the root (qlifcba in the ex-
ample) is said to be exposed, and is represented as the top-
most binary tree. All path-related queries will refer to this
path. The expose operation can be used to make any vertex
part of the exposed path.

With standard balanced binary search trees (such as
red-black trees), ST-trees support each dynamic tree op-
eration in O(log2 n) amortized time. This bound can be
improved to O(log n) amortized with locally biased search
trees, and toO(log n) in the worst case with globally biased
search trees. Biased search trees (described in [5]), how-
ever, are notoriously complicated. Amore practical imple-
mentation of ST-trees uses splay trees, a self-adjusting type
of binary search trees, to support all dynamic tree opera-
tions in O(log n) amortized time [14].

Tree Contraction

Unlike ST-trees, which represent the input trees directly,
Frederickson’s topology trees [6,7,8] represent a contrac-
tion of each tree. The original vertices constitute level 0
of the contraction. Level 1 represents a partition of these
vertices into clusters: a degree-one vertex can be combined
with its only neighbor; vertices of degree two that are adja-
cent to each other can be clustered together; other vertices
are kept as singletons. The end result will be a smaller tree,
whose own partition into clusters yields level 2. The pro-
cess is repeated until a single cluster remains. The topology

tree is a representation of the contraction, with each clus-
ter having as children its constituent clusters on the level
below. See Fig. 2.

With appropriate pieces of information stored in each
cluster, the data structure can be used to answer queries
about the entire tree or individual paths. After a link or
cut, the affected topology trees can be rebuilt in O(log n)
time.

The notion of tree contraction was developed inde-
pendently by Miller and Reif [11] in the context of par-
allel algorithms. They propose two basic operations, rake
(which eliminates vertices of degree one) and compress
(which eliminates vertices of degree two). They show that
O(log n) rounds of these operations are sufficient to con-
tract any tree to a single cluster. Acar et al. translated
a variant of their algorithm into a dynamic tree data struc-
ture, RC-trees [1], which can also be seen as a randomized
(and simpler) version of topology trees.

A drawback of topology trees and RC-trees is that
they require the underlying forest to have vertices with
bounded (constant) degree in order to ensure O(log n)
time per operation. Similarly, although ST-trees do not
have this limitation when aggregating information over
paths, they require bounded degrees to aggregate over
trees. Degree restrictions can be addressed by “ternariz-
ing” the input forest (replacing high-degree vertices with
a series of low-degree ones [9]), but this introduces a host
of special cases.

Alstrup et al.’s top trees [3,4] have no such limitation,
which makes them more generic than all data structures
previously discussed. Although also based on tree con-

262 D Dynamic Trees

Dynamic Trees, Figure 2
A topology tree (adapted from [7]). On the left, the original tree and its multilevel partition; on the right, a corresponding topology
tree

traction, their clusters behave not like vertices, but like
edges. A compress cluster combines two edges that share
a degree-two vertex, while a rake cluster combines an edge
with a degree-one endpoint with a second edge adjacent to
its other endpoint. See Fig. 3.

Top trees are designed so as to completely hide from
the user the inner workings of the data structure. The user
only specifies what pieces of information to store in each
cluster, and (through call-back functions) how to update
them after a cluster is created or destroyed when the tree
changes. As long as the operations are properly defined,
applications that use top trees are completely independent
of how the data structure is actually implemented, i. e., of
the order in which rakes and compresses are performed.

In fact, top trees were not even proposed as stand-
alone data structures, but rather as an interface on top of
topology trees. For efficiency reasons, however, one would
rather have a more direct implementation. Holm, Tar-
jan, Thorup and Werneck have presented a conceptually
simple stand-alone algorithm to update a top tree after
a link or cut in O(log n) time in the worst case [17]. Tarjan
and Werneck [16] have also introduced self-adjusting top
trees, a more efficient implementation of top trees based
on path decomposition: it partitions the input forest into
edge-disjoint paths, represents these paths as splay trees,

Dynamic Trees, Figure 3
The rake and compress operations, as used by top trees
(from [16]))

and connects these trees appropriately. Internally, the data
structure is very similar to ST-trees, but the paths are edge-
disjoint (instead of vertex-disjoint) and the ternarization
step is incorporated into the data structure itself. All the
user sees, however, are the rakes and compresses that char-
acterize tree contraction.

Linearization

ET-trees, originally proposed by Henzinger and King [10]
and later slightly simplified by Tarjan [15], use yet an-
other approach to represent dynamic trees: linearization.
It maintains an Euler tour of the each input tree, i. e.,
a closed path that traverses each edge twice—once in each
direction. The tour induces a linear order among the ver-
tices and arcs, and therefore can be represented as a bal-
anced binary search tree. Linking and cutting edges from
the forest corresponds to joining and splitting the af-
fected binary trees, which can be done in O(log n) time.
While linearization is arguably the simplest of the three
approaches, it has a crucial drawback: because each edge
appears twice, the data structure can only aggregate infor-
mation over trees, not paths.

Lower Bounds

Dynamic tree data structures are capable of solving the
dynamic connectivity problem on acyclic graphs: given
two vertices v and w, decide whether they belong to the
same tree or not. P ătraşcu and Demaine [12] have proven
a lower bound of ˝(log n) for this problem, which is
matched by the data structures presented here.

Applications

Sleator and Tarjan’s original application for dynamic trees
was Dinic’s blocking flow algorithm [13]. Dynamic trees

Dynamic Trees D 263

are used to maintain a forest of arcs with positive resid-
ual capacity. As soon as the source s and the sink t be-
come part of the same tree, the algorithm sends as much
flow as possible along the s-t path; this reduces to zero
the residual capacity of at least one arc, which is then cut
from the tree. Several maximum flow and minimum-cost
flow algorithms incorporating dynamic trees have been
proposed ever since (some examples are [9,15]). Dynamic
tree data structures, especially those based on tree contrac-
tion, are also commonly used within dynamic graph algo-
rithms, such as the dynamic versions of minimum span-
ning trees [6,10], connectivity [10], biconnectivity [6], and
bipartiteness [10]. Other applications include the evalua-
tion of dynamic expression trees [8] and standard graph
algorithms [13].

Experimental Results

Several studies have compared the performance of differ-
ent dynamic-tree data structures; in most cases, ST-trees
implemented with splay trees are the fastest alternative.
Frederickson, for example, found that topology trees take
almost 50%more time than splay-based ST-trees when ex-
ecuting dynamic tree operations within a maximum flow
algorithm [8]. Acar et al. [2] have shown that RC-trees are
significantly slower than splay-based ST-trees when most
operations are links and cuts (such as in network flow al-
gorithms), but faster when queries and value updates are
dominant. The reason is that splaying changes the struc-
ture of ST-trees even during queries, while RC-trees re-
main unchanged.

Tarjan and Werneck [17] have presented an exper-
imental comparison of several dynamic tree data struc-
tures. For random sequences of links and cuts, splay-based
ST-trees are the fastest alternative, followed by splay-based
ET-trees, self-adjusting top trees, worst-case top trees,
and RC-trees. Similar relative performance was observed
in more realistic sequences of operations, except when
queries far outnumber structural operations; in this case,
the self-adjusting data structures are slower than RC-trees
and worst-case top trees. The same experimental study
also considered the “obvious” implementation of ST-trees,
which represents the forest explicitly and require linear
time per operation in the worst case. Its simplicity makes it
significantly faster than the O(log n)-time data structures
for path-related queries and updates, unless paths are hun-
dred nodes long. The sophisticated solutions aremore use-
ful when the underlying forest has high diameter or there
is a need to aggregate information over trees (and not only
paths).

Cross References

� Fully Dynamic Connectivity
� Fully Dynamic Connectivity: Upper and Lower Bounds
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Lower Bounds for Dynamic Connectivity
� Routing

Recommended Reading

1. Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.: Dy-
namizing static algorithms, with applications to dynamic trees
and history independence. In: Proceedings of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 524–533. SIAM (2004)

2. Acar, U.A., Blelloch, G.E., Vittes, J.L.: An experimental analysis
of change propagation in dynamic trees. In: Proceedings of
the 7th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 41–54 (2005)

3. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Minimiz-
ing diameters of dynamic trees. In: Proceedings of the 24th
International Colloquium on Automata, Languages and Pro-
gramming (ICALP), Bologna, Italy, 7–11 July 1997. Lecture
Notes in Computer Science, vol. 1256, pp. 270–280. Springer
(1997)

4. Alstrup, S., Holm, J., Thorup,M., de Lichtenberg, K.: Maintaining
information in fully dynamic trees with top trees. ACM Trans.
Algorithms 1(2), 243–264 (2005)

5. Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM
J. Comput. 14(3), 545–568 (1985)

6. Frederickson, G.N.: Data structures for on-line update of mini-
mum spanning trees, with applications. SIAM J. Comput. 14(4),
781–798 (1985)

7. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. SIAM J. Com-
put. 26(2), 484–538 (1997)

8. Frederickson, G.N.: A data structure for dynamically maintain-
ing rooted trees. J. Algorithms 24(1), 37–65 (1997)

9. Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E.: Use of dynamic
trees in a network simplex algorithm for the maximum flow
problem. Math. Progr. 50, 277–290 (1991)

10. Henzinger, M.R., King, V.: Randomized fully dynamic graph al-
gorithms with polylogarihmic time per operation. In: Proceed-
ings of the 27th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 519–527 (1997)

11. Miller, G.L., Reif, J.H.: Parallel tree contraction and its appli-
cations. In: Proceedings of the 26th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 478–489
(1985)

12. Pătraşcu, M., Demaine, E.D.: Lower bounds for dynamic con-
nectivity. In: Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC), pp. 546–553 (2004)

13. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees.
J. Comput. Syst. Sci. 26(3), 362–391 (1983)

14. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees.
J. ACM 32(3), 652–686 (1985)

264 D Dynamic Trees

15. Tarjan, R.E.: Dynamic trees as search trees via Euler tours,
applied to the network simplex algorithm. Math. Prog. 78,
169–177 (1997)

16. Tarjan, R.E., Werneck, R.F.: Self-adjusting top trees. In: Proceed-
ings of the 16th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pp. 813–822 (2005)

17. Tarjan, R.E., Werneck, R.F.: Dynamic trees in practice. In: Pro-
ceedings of the 6th Workshop on Experimental Algorithms
(WEA). Lecture Notes in Computer Science, vol. 4525, pp. 80–
93 (2007)

18. Werneck, R.F.: Design and Analysis of Data Structures for Dy-
namic Trees. Ph. D. thesis, Princeton University (2006)

Edit Distance Under Block Operations E 265

E

Edit Distance
Under Block Operations
2000; Cormode, Paterson, Sahinalp, Vishkin
2000; Muthukrishnan, Sahinalp

S. CENK SAHINALP
Lab for Computational Biology, Simon Fraser University,
Burnaby, BC, USA

Keywords and Synonyms

Block edit distance

ProblemDefinition

Given two strings S = s1s2 : : : sn and R = r1r2 : : : rm
(wlog let n � m) over an alphabet � = f�1; �2; : : : �`g,
the standard edit distance between S and R, denoted
ED(S,R) is the minimum number of single character edits,
specifically insertions, deletions and replacements, to trans-
form S into R (equivalently R into S).

If the input strings S and R are permutations of the al-
phabet � (so that jSj = jRj = j� j) then an analogous per-
mutation edit distance between S andR, denoted PED(S,R)
can be defined as theminimumnumber of single character
moves, to transform S into R (or vice versa).

A generalization of the standard edit distance is edit
distance with moves, which, for input strings S and R is
denoted EDM(S,R), and is defined as the minimum num-
ber of character edits and substring (block) moves to trans-
form one of the strings into the other. A move of block
s[j, k] to position h transforms S = s1s2 : : : sn into S0 =
s1 : : : s j�1sk+1sk+2 : : : sh�1s j : : : sk sh : : : sn [4].

If the input strings S and R are permutations of the
alphabet � (so that jSj = jRj = j� j) then EDM(S,R) is
also called as the transposition distance and is denoted
TED(S,R) [1].

Perhaps themost general form of the standard edit dis-
tance that involves edit operations on blocks/substrings
is the block edit distance, denoted BED(S,R). It is de-

fined as the minimum number of single character edits,
block moves, as well as block copies and block uncopies
to transform one of the strings into the other. Copying
of a block s[j, k] to position h transforms S = s1s2 : : : sn
into S0 = s1 : : : s j s j+1 : : : sk : : : sh�1s j : : : sksh : : : sn .
A block uncopy is the inverse of a block copy: it deletes
a block s[j, k] provided there exists s[j0; k0] = s[j; k] which
does not overlap with s[j, k] and transforms S into S0 =
s1 : : : s j�1sk+1 : : : sn .

Throughout this discussion all edit operations have
unit cost and they may overlap; i. e. a character can be
edited on multiple times.

Key Results

There are exact and approximate solutions to comput-
ing the edit distances described above with varying per-
formance guarantees. As can be expected, the best avail-
able running times as well as the approximation factors for
computing these edit distances vary considerably with the
edit operations allowed.

Exact Computation of the Standard
and Permutation Edit Distance

The fastest algorithms for exactly computing the standard
edit distance have been available for more than 25 years.

Theorem 1 (Levenshtein [9]) The standard edit distance
ED(S, R) can be computed exactly in time O(n � m) via dy-
namic programming.

Theorem 2 (Masek-Paterson [11]) The standard edit dis-
tance ED(S, R) can be computed exactly in time O(n +
n � m/log2j� j n) via the “four-Russians trick”.

Theorem 3 (Landau-Vishkin [8]) It is possible to com-
pute ED(S, R) in time O(n � ED(S; R)).

Finally, note that if S and R are permutations of the al-
phabet � , PED(S,R) can be computed much faster than
the standard edit distance for general strings: Observe

266 E Edit Distance Under Block Operations

that PED(S; R) = n � LCS(S; R) where LCS(S,R) repre-
sents the longest common subsequence of S and R. For
permutations S, R, LCS(S,R) can be computed in time
O(n � log log n) [3].

Approximate Computation
of the Standard Edit Distance

If some approximation can be tolerated, it is possible to
considerably improve the Õ(n �m) time (Õ notation hides
polylogarithmic factors) available by the techniques above.
The fastest algorithm that approximately computes the
standard edit distance works by embedding strings S and R
from alphabet � into shorter strings S0 and R0 from a larger
alphabet � 0 [2]. The embedding is achieved by applying
a general version of the Locally Consistent Parsing [13,14]
to partition the strings R and S into consistent blocks of
size c to 2c � 1; the partitioning is consistent in the sense
that identical (long) substrings are partitioned identically.
Each block is then replaced with a label such that identi-
cal blocks are identically labeled. The resulting strings S0

and R0 preserve the edit distance between S and R approx-
imately as stated below.

Theorem 4(Batu-Ergun-Sahinalp [2]) ED(S, R) can be
computed in time Õ(n1+�) within an approximation factor
ofminfn

1��
3 +o(1); (ED(S; R)/n�)

1
2 +o(1)g.

For the case of � = 0, the above result provides an Õ(n)
time algorithm for approximating ED(S,R) within a factor
of minfn

1
3 +o(1); ED(S; R)

1
2 +o(1)g.

Approximate Computation
of Edit Distances Involving Block Edits

For all edit distance variants described above which in-
volve blocks, there are no known polynomial time algo-
rithms; in fact it is NP-hard to compute TED(S,R) [1],
EDM(S,R) and BED(S,R) [10]. However, in case S and
R are permutations of � , there are polynomial time al-
gorithms that approximate transposition distance within
a constant factor:

Theorem 5 (Bafna-Pevzner [1]) TED(S, R) can be ap-
proximated within a factor of 1.5 in O(n2) time.

Furthermore, even if S and R are arbitrary strings from
� , it is possible to approximately compute both BED(S,R)
and EDM(S,R) in near linear time. More specifically ob-
tain an embedding of S and R to binary vectors f (S) and
f (R) such that:

Theorem 6 (Muthukrishnan-Sahinalp [12])
jj f (S)� f (R)jj1

log� n � BED(S; R) � jj f (S)� f (R)jj1 � log n:

In other words, the Hamming distance between f (S) and
f (R) approximates BED(S,R) within a factor of log n �
log� n. Similarly for EDM(S,R), it is possible to embed S
and R to integer valued vectors F(S) and F(R) such that:

Theorem 7 (Cormode-Muthukrishnan [4])
jjF(S)�F(R)jj1

log� n � EDM(S; R) � jjF(S)� F(R)jj1 � log n:

In other words, the L1 distance between F(S) and F(R) ap-
proximates EDM(S,R) within a factor of log n � log� n.

The embedding of strings S and R into binary vectors
f (S) and f (R) is introduced in [5] and is based on the Lo-
cally Consistent Parsing described above. To obtain the
embedding, one needs to hierarchically partition S and R
into growing size core blocks. Given an alphabet � , Locally
Consistent Parsing can identify only a limited number of
substrings as core blocks. Consider the lexicographic or-
dering of these core blocks. Each dimension i of the em-
bedding f (S) simply indicates (by setting f (S)[i] = 1)
whether S includes the ith core block corresponding to the
alphabet � as a substring. Note that if a core block exists in
S as a substring, Locally Consistent Parsing will identify it.

Although the embedding above is exponential in size,
the resulting binary vector f (S) is very sparse. A simple
representation of f (S) and f (R), exploiting their sparseness
can be computed in time O(n log� n) and the Hamming
distance between f (S) and f (R) can be computed in linear
time by the use of this representation [12].

The embedding of S and R into integer valued vectors
F(S) and F(R) are based on similar techniques. Again, the
total time needed to approximate EDM(S,R) within a fac-
tor of log n � log� n is O(n log� n).

Applications

Edit distances have important uses in computational evo-
lutionary biology, in estimating the evolutionary distance
between pairs of genome sequences under various edit op-
erations. There are also several applications to the docu-
ment exchange problem or document reconciliation prob-
lem where two copies of a text string S have been subject
to edit operations (both single character and block edits)
by two parties resulting in two versions S1 and S2, and the
parties communicate to reconcile the differences between
the two versions. An information theoretic lower bound
on the number of bits to communicate between the two
parties is then ˝(BED(S; R)) � log n. The embedding of
S and R to binary strings f (S) and f (R) provides a sim-
ple protocol [5] which gives a near-optimal tradeoff be-
tween the number of rounds of communication and the
total number of bits exchanged and works with high prob-
ability.

Efficient Methods for Multiple Sequence Alignment with Guaranteed Error Bounds E 267

Another important application is to the Sequence
Nearest Neighbors (SNN) problem, which asks to prepro-
cess a set of strings S1, . . . , Sk so that given an on-line query
string R, the string Si which has the lowest distance of
choice to R can be computed in time polynomial with |R|
and polylogarithmic with

Pk
j=1 jS jj. There are no known

exact solutions for the SNN problem under any edit dis-
tance considered here. However, in [12], the embedding
of strings Si into binary vectors f (Si), combined with the
Approximate Nearest Neighbors results given in [6] for
Hamming Distance, provides an approximate solution to
the SNN problem under block edit distance as follows.

Theorem 8 (Muthukrishnan-Sahinalp [12]) It is possi-
ble to preprocess a set of strings S1, . . . , Sk from a given
alphabet � in O(pol y(

Pk
j=1 jS jj)) time such that for any

on-line query string R from � one can compute a string Si
in time O(pol ylog(

Pk
j=1 jS jj) � pol y(jRj)) which guaran-

tees that for all h 2 [1; k]; BED(Si ; R) � BED(Sh ; R) �
log(max j jS jj) � log�(max j jS jj).

Open Problems

It is interesting to note that when dealing with permuta-
tions of the alphabet � the problem of computing both
character edit distances and block edit distances become
much easier; one can compute PED(S,R) exactly and
TED(S,R) within an approximation factor of 1.5 in Õ(n)
time. For arbitrary strings, it is an open question whether
one can approximate TED(S,R) or BED(S,R) within a fac-
tor of o(log n) in polynomial time. One recent result in this
direction shows that it is not possible to obtain a polylog-
arithmic approximation to TED(S,R) via a greedy strat-
egy [7]. Furthermore, although there is a lower bound of
˝(n

1
3) on the approximation factor that can be achieved

for computing the standard edit distance in Õ(n) time by
the use of string embeddings, there is no general lower
bound on how closely one can approximate ED(S,R) in
near linear time.

Cross References

� Sequential Approximate String Matching

Recommended Reading
1. Bafna, V., Pevzner, P.A.: Sorting by Transpositions. SIAM J. Dis-

cret. Math. 11(2), 224–240 (1998)
2. Batu, T., Ergün, F., Sahinalp, S.C.: Oblivious string embeddings

and edit distance approximations. Proc. ACM-SIAMSODA792–
801 (2006)

3. Besmaphyatnikh, S., Segal, M.: Enumerating longest increasing
subsequences and patience sorting. Inform. Proc. Lett. 76(1–
2), 7–11 (2000)

4. Cormode, G., Muthukrishnan, S.: The string edit distance
matching problem with moves. Proc. ACM-SIAM SODA 667–
676 (2002)

5. Cormode, G., Paterson, M., Sahinalp, S.C., Vishkin, U.: Commu-
nication complexity of document exchange. Proc. ACM-SIAM
SODA 197–206 (2000)

6. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: To-
wards Removing the Curse of Dimensionality. Proc. ACM STOC
604–613 (1998)

7. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest super-
strings. Inform. Proc. Lett. 93(1), 13–17 (2005)

8. Landau, G., Vishkin, U.: Fast parallel and serial approximate
string matching. J. Algorithms 10, 157–169 (1989)

9. Levenshtein, V.I.: Binary codes capable of correcting dele-
tions, insertions, and reversals. Doklady Akademii Nauk SSSR
163(4):845–848 (1965) (Russian). Soviet Physics Doklady 10(8),
707–710 (1966) (English translation)

10. Lopresti, D.P., Tomkins, A.: Block Edit Models for Approximate
String Matching. Theoretical. Comput. Sci. 181(1), 159–179
(1997)

11. Masek, W., Paterson, M.: A faster algorithm for computing
string edit distances. J. Comput. Syst. Sci. 20, 18–31 (1980)

12. Muthukrishnan, S., Sahinalp, S.C.: Approximate nearest neigh-
bors and sequence comparison with block operations. Proc.
ACM STOC 416–424 (2000)

13. Sahinalp, S.C., Vishkin, U.: Symmetry breaking for suffix tree
construction. ACM STOC 300–309 (1994)

14. Sahinalp, S.C., Vishkin, U.: Efficient Approximate and Dynamic
Matching of Patterns Using a Labeling Paradigm. Proc. IEEE
FOCS 320–328 (1996)

EfficientMethods
for Multiple Sequence Alignment
with Guaranteed Error Bounds
1993; Gusfield

FRANCIS CHIN, S. M. YIU
Department of Computer Science,
University of Hong Kong, Hong Kong, China

Keywords and Synonyms

Multiple string alignment; Multiple global alignment

ProblemDefinition

Multiple sequence alignment is an important problem
in computational biology. Applications include finding
highly conserved subregions in a given set of biological
sequences and inferring the evolutionary history of a set
of taxa from their associated biological sequences (e. g.,
see [6]). There are a number of measures proposed for
evaluating the goodness of a multiple alignment, but prior
to this work, no efficient methods are known for comput-
ing the optimal alignment for any of these measures. The

268 E Efficient Methods for Multiple Sequence Alignment with Guaranteed Error Bounds

work of Gusfield [5] gives two computationally efficient
multiple alignment approximation algorithms for two of
the measures with approximation ratio of less than 2. For
one of the measures, they also derived a randomized al-
gorithm, which is much faster and with high probability,
reports a multiple alignment with small error bounds. To
the best knowledge of the entry authors, this work is the
first to provide approximation algorithms (with guarantee
error bounds) for this problem.

Notations and Definitions

Let X and Y be two strings of alphabet ˙ . The pair-
wise alignment of X and Y maps X and Y into strings
X 0 and Y 0 that may contain spaces, denoted by ‘_’, where
(1) jX 0j = jY 0j = `; and (2) removing spaces from X 0 and
Y 0 returns X and Y , respectively. The score of the align-
ment is defined as d(X 0;Y 0) =

P`
i=1 s(X

0(i);Y 0(i)) where
X 0(i) (and Y 0(i)) denotes the ith character in X 0 (and Y 0)
and s(a; b) with a; b 2 ˙ [‘_0 is the distance-based scor-
ing scheme that satisfies the following assumptions.
1. s(‘_0; ‘_0) = 0;
2. triangular inequality: for any three characters, x, y, z,

s(x; z) � s(x; y) + s(y; z)).
Let � = X1; X2; : : : ; Xk be a set of k > 2 strings of alpha-
bet ˙ . A multiple alignment A of these k strings maps
X1; X2; : : : ; Xk to X 01; X

0
2; : : : ; Xk ’ that may contain spaces

such that (1) jX 01j = jX
0
2j = � � � = jX

0
kj = `; and (2) remov-

ing spaces from Xi’ returns Xi for all 1 � i � k. The mul-
tiple alignment A can be represented as a k � `matrix.

The Sum of Pairs (SP) Measure

The score of a multiple alignment A, denoted by SP(A),
is defined as the sum of the scores of pairwise alignments
induced by A, that is,

P
i< j d(X

0
i ; X
0
j) =P

i< j
P`

p=1 s(X
0
i [p]; X

0
j[p]) where 1 � i < j � k.

Problem 1 Multiple Sequence Alignment with Minimum
SP score
INPUT: A set of k strings, a scoring scheme s.
OUTPUT: A multiple alignment A of these k strings with
minimum SP(A).

The Tree Alignment (TA) Measure

In this measure, the multiple alignment is derived from
an evolutionary tree. For a given set � of k strings, let
�0 � �. An evolutionary tree T�0 for � is a tree with at
least k nodes, where there is a one-to-one correspondence
between the nodes and the strings in �’. Let X 0u 2 �’ be the
string for node u. The score of T�0 , denoted by TA(T�0),

is defined as
P

e=(u;v) D(X
0
u; X 0v) where e is an edge in

T�0 and D(X 0u; X 0v) denotes the score of the optimal pair-
wise alignment for X 0u and X 0v . Analogously, the multiple
alignment of � under the TA measure can also be repre-
sented by a j�0j � ` matrix, where j�0j � k, with a score
defined as

P
e=(u;v) d(X

0
u ; X 0v)(e is an edge in T�0), sim-

ilar to the multiple alignment under the SP measure in
which the score is the summation of the alignment scores
of all pairs of strings. Under the TA measure, since it is
always possible to construct the j�0j � ` matrix such that
d(X 0u ; X 0v) = D(X 0u; X 0v) for all e = (u; v) in T�0 and we are
usually interested in finding the multiple alignment with
the minimum TA value, so D(X 0u ; X 0v) is used instead of
d(X 0u ; X 0v) in the definition of TA(T�0).

Problem 2 Multiple Sequence Alignment with Minimum
TA score
INPUT: A set of k strings, a scoring scheme s.
OUTPUT: An evolutionary tree T for these k strings with
minimum TA(T).

Key Results

Theorem 1 Let A* be the optimal multiple align-
ment of the given k strings with minimum SP score.
They provide an approximation algorithm (the center star
method) that gives a multiple alignment A such that
SP(A)
SP(A�) �

2(k�1)
k = 2 � 2

k .

The center star method is to derive a multiple align-
ment which is consistent with the optimal pairwise align-
ments of a center string with all the other strings. The
bound is derived based on the triangular inequality of
the score function. The time complexity of this method is
O(k2`2), where `2 is the time to solve the pairwise align-
ment by dynamic programming and k2 is needed to find
the center string, Xc, which gives the minimum value ofP

i¤c D(Xc ; Xi).

Theorem 2 Let A* be the optimal multiple alignment
of the given k strings with minimum SP score. They pro-
vide a randomized algorithm that gives a multiple align-
ment A such that SP(A)

SP(A�) � 2 + 1
r�1 with probability at least

1 �
� r�1

r
�pfor any r > 1 and p � 1.

Instead of computing
�k
2
�
optimal pairwise alignments to

find the best center string, the randomized algorithm only
considers p randomly selected strings to be candidates for
the best center string, thus this method needs to x compute
only (k � 1)p optimal pairwise alignments in O(kp`2)
time where 1 � p � k.

Theorem 3 Let T* be the optimal evolutionary tree of the
given k strings with minimum TA score. They provide an

Efficient Methods for Multiple Sequence Alignment with Guaranteed Error Bounds E 269

approximation algorithm that gives an evolutionary tree T
such that TA(T)

TA(T�) �
2(k�1)

k = 2 � 2
k .

In the algorithm, they first compute all the
�k
2
�
optimal

pairwise alignments to construct a graph with every node
representing a distinct string Xi and the weight of each
edge (Xi ; Xj) as D(Xi ; Xj). This step determines the over-
all time complexity O(k2`2). Then, they find a minimum
spanning tree from the graph. The multiple alignment has
to be consistent with the optimal pairwise alignments rep-
resented by the edges of this minimum spanning tree.

Applications

Multiple sequence alignment is a fundamental problem in
computational biology. In particular, multiple sequence
alignment is useful in identifying those common struc-
tures, which may only be weakly reflected in the sequence
and not easily revealed by pairwise alignment. These com-
mon structures may carry important information for their
evolutionary history, critical conserved motifs, common
3D molecular structure, as well as biological functions.

More recently, multiple sequence alignment is also
used in revealing non-coding RNAs (ncRNAs) [3]. In this
type of multiple alignment, we are not only align the un-
derlying sequences, but also the secondary structures (re-
fer to chap. 16 of [10] for a brief introduction of secondary
structure of a RNA) of the RNAs. Researchers believe that
ncRNAs that belong to the same family should have com-
mon components giving a similar secondary structure.
The multiple alignment can help to locate and identify
these common components.

Open Problems

A number of open problems related to the work of Gus-
field remain open. For the SP measure, the center star
method can be extended to the q-star method (q > 2) with
approximation ratio of 2 � q/k ([1,7], sect. 7.5 of [8]).
Whether there exists an approximation algorithm with
better approximation ratio or with better time complex-
ity is still unknown. For the TA measure, to be the best
knowledge of the entry authors, the approximation ratio
in Theorem 3 is currently the best result.

Another interesting direction related to this problem is
the constrained multiple sequence alignment problem [9]
which requires the multiple alignment to contain certain
aligned characters with respect to a given constrained se-
quence. The best known result [2] is an approximation
algorithm (also follows the idea of center star method)
which gives an alignment with approximation ratio of
2 � 2/k for k strings.

For the complexity of the problem, Wang and
Jiang [11] were the first to prove the NP-hardness of the
problem with SP score under a non-metric distance mea-
sure over a 4 symbol alphabet. More recently, in [4], the
multiple alignment problem with SP score, star alignment,
and TA score have been proved to be NP-hard for all bi-
nary or larger alphabets under any metric. Developing effi-
cient approximation algorithms with good bounds for any
of these measures is desirable.

Experimental Results

Two experiments have been reported in the paper showing
that the worst case error bounds in Theorems 1 and 2 (for
the SP measure) are pessimistic compared to the typical
situation arising in practice.

The scoring scheme used in the experiments is:
s(a; b) = 0 if a = b; s(a; b) = 1 if either a or b is a space;
otherwise s(a; b) = 2. Since computing the optimal mul-
tiple alignment with minimum SP score has been shown
to be NP-hard, they evaluate the performance of their al-
gorithms using the lower bound of

P
i< j D(Xi ; Xj) (recall

that D(Xi ; Xj) is the score of the optimal pairwise align-
ment of Xi and Xj). They have aligned 19 similar amino
acid sequences with average length of 60 of homeoboxs
from different species. The ratio of the scores of reported
alignment by the center star method to the lower bound
is only 1.018 which is far from the worst case error bound
given in Theorem 1. They also aligned 10 not-so-similar
sequences near the homeoboxs, the ratio of the reported
alignment to the lower bound is 1.162. Results also show
that the alignment obtained by the randomized algorithm
is usually not far away from the lower bound.

Data Sets

The exact sequences used in the experiments are not pro-
vided.

Cross References

� Statistical Multiple Alignment

Recommended Reading
1. Bafna, V., Lawler, E.L., Pevzner, P.A.: Approximation algorithms

for multiple sequence alignment. Theor. Comput. Sci. 182,
233–244 (1997)

2. Francis, Y.L., Chin, N.L.H., Lam, T.W., Prudence, W.H.W.: Efficient
constrained multiple sequence alignment with performance
guarantee. J. Bioinform. Comput. Biol. 3(1), 1–18 (2005)

3. Dalli, D., Wilm, A., Mainz, I., Stegar, G.: STRAL: progressive align-
ment of non-coding RNA using base pairing probability vec-
tors in quadratic time. Bioinformatics22(13), 1593–1599 (2006)

270 E Engineering Algorithms for Computational Biology

4. Elias, I.: Setting the intractabilityofmultiple alignment. In: Proc.
of the 14th Annual International Symposium on Algorithms
and Computation (ISAAC 2003), 2003, pp. 352–363

5. Gusfield, D.: Efficient methods for multiple sequence align-
ment with guaranteed error bounds. Bull. Math. Biol. 55(1),
141–154 (1993)

6. Pevsner, J.: Bioinformatics and functional genomics. Wiley,
New York (2003)

7. Pevzner, P.A.: Multiple alignment, communication cost, and
graph matching. SIAM J. Appl. Math. 52, 1763–1779 (1992)

8. Pevzner, P.A.: Computational molecular biology: an algorith-
mic approach. MIT Press, Cambridge, MA (2000)

9. Tang, C.Y., Lu, C.L., Chang,M.D.T., Tsai, Y.T., Sun, Y.J., Chao, K.M.,
Chang, J.M., Chiou, Y.H., Wu, C.M., Chang, H.T., Chou, W.I.: Con-
strained multiple sequence alignment tool development and
its application to RNase family alignment. In: Proc. of the First
IEEE Computer Society Bioinformatics Conference (CSB 2002),
2002, pp. 127–137

10. Tompa, M.: Lecture notes. Department of Computer Sci-
ence & Engineering, University of Washington. http://www.cs.
washington.edu/education/courses/527/00wi/. (2000)

11. Wang, L. Jiang, T.: On the complexity of multiple sequence
alignment. J. Comp. Biol. 1, 337–48 (1994)

Engineering Algorithms
for Computational Biology
2002; Bader, Moret, Warnow

DAVID A. BADER
College of Computing, Georgia Institute of Technology,
Atlanta, GA, USA

Keywords and Synonyms

High-performance computational biology

ProblemDefinition

In the 50 years since the discovery of the structure of DNA,
and with new techniques for sequencing the entire genome
of organisms, biology is rapidly moving towards a data-
intensive, computational science. Many of the newly faced
challenges require high-performance computing, either
due to the massive-parallelism required by the problem, or
the difficult optimization problems that are often combi-
natoric and NP-hard. Unlike the traditional uses of super-
computers for regular, numerical computing, many prob-
lems in biology are irregular in structure, significantly
more challenging to parallelize, and integer-based using
abstract data structures.

Biologists are in search of biomolecular sequence data,
for its comparison with other genomes, and because its
structure determines function and leads to the under-
standing of biochemical pathways, disease prevention and
cure, and the mechanisms of life itself. Computational bi-

ology has been aided by recent advances in both technol-
ogy and algorithms; for instance, the ability to sequence
short contiguous strings of DNA and from these recon-
struct the whole genome and the proliferation of high-
speed microarray, gene, and protein chips for the study of
gene expression and function determination. These high-
throughput techniques have led to an exponential growth
of available genomic data.

Algorithms for solving problems from computational
biology often require parallel processing techniques due
to the data- and compute-intensive nature of the compu-
tations. Many problems use polynomial time algorithms
(e. g., all-to-all comparisons) but have long running times
due to the large number of items in the input; for ex-
ample, the assembly of an entire genome or the all-to-all
comparison of gene sequence data. Other problems are
compute-intensive due to their inherent algorithmic com-
plexity, such as protein folding and reconstructing evolu-
tionary histories from molecular data, that are known to
be NP-hard (or harder) and often require approximations
that are also complex.

Key Results

None

Applications

Phylogeny Reconstruction: A phylogeny is a represen-
tation of the evolutionary history of a collection of or-
ganisms or genes (known as taxa). The basic assumption
of process necessary to phylogenetic reconstruction is re-
peated divergence within species or genes. A phylogenetic
reconstruction is usually depicted as a tree, in which mod-
ern taxa are depicted at the leaves and ancestral taxa oc-
cupy internal nodes, with the edges of the tree denoting
evolutionary relationships among the taxa. Reconstruct-
ing phylogenies is a major component of modern research
programs in biology and medicine (as well as linguistics).
Naturally, scientists are interested in phylogenies for the
sake of knowledge, but such analyses also have many uses
in applied research and in the commercial arena. Existing
phylogenetic reconstruction techniques suffer from seri-
ous problems of running time (or, when fast, of accuracy).
The problem is particularly serious for large data sets: even
though data sets comprised of sequence from a single gene
continue to pose challenges (e. g., some analyses are still
running after two years of computation on medium-sized
clusters), using whole-genome data (such as gene content
and gene order) gives rise to even more formidable com-
putational problems, particularly in data sets with large
numbers of genes and highly-rearranged genomes.

http://www.cs.washington.edu/education/courses/527/00wi/.
http://www.cs.washington.edu/education/courses/527/00wi/.

Engineering Algorithms for Computational Biology E 271

To date, almost every model of speciation and ge-
nomic evolution used in phylogenetic reconstruction has
given rise to NP-hard optimization problems. Three ma-
jor classes of methods are in common use. Heuristics
(a natural consequence of the NP-hardness of the prob-
lems) run quickly, but may offer no quality guarantees and
may not even have a well-defined optimization criterion,
such as the popular neighbor-joining heuristic [9]. Opti-
mization based on the criterion of maximum parsimony
(MP) [4] seeks the phylogeny with the least total amount
of change needed to explain modern data. Finally, opti-
mization based on the criterion of maximum likelihood
(ML) [5] seeks the phylogeny that is the most likely to have
given rise to the modern data.

Heuristics are fast and often rival the optimization
methods in terms of accuracy, at least on datasets of mod-
erate size. Parsimony-based methods may take exponen-
tial time, but, at least for DNA and amino acid data, can
often be run to completion on datasets of moderate size.
Methods based on maximum likelihood are very slow (the
point estimation problem alone appears intractable) and
thus restricted to very small instances, and also require
many more assumptions than parsimony-based methods,
but appear capable of outperforming the others in terms of
the quality of solutions when these assumptions are met.
Both MP- and ML-based analyses are often run with vari-
ous heuristics to ensure timely termination of the compu-
tation, with mostly unquantified effects on the quality of
the answers returned.

Thus there is ample scope for the application of high-
performance algorithm engineering in the area. As in all
scientific computing areas, biologists want to study a par-
ticular dataset and are willing to spend months and even
years in the process: accurate branch prediction is the
main goal. However, since all exact algorithms scale expo-
nentially (or worse, in the case of ML approaches) with the
number of taxa, speed remains a crucial parameter – oth-
erwise few datasets of more than a few dozen taxa could
ever be analyzed.

Experimental Results

As an illustration, this entry briefly describes a high-per-
formance software suite, GRAPPA (Genome Rearrange-
ment Analysis through Parsimony and other Phyloge-
netic Algorithms) developed by Bader et al. GRAPPA ex-
tends Sankoff and Blanchette’s breakpoint phylogeny al-
gorithm [10] into the more biologically-meaningful inver-
sion phylogeny and provides a highly-optimized code that
can make use of distributed- and shared-memory parallel
systems (see [1,2,6,7,8,11] for details). In [3], Bader et al.

gives the first linear-time algorithm and fast implementa-
tion for computing inversion distance between two signed
permutations. GRAPPA was run on a 512-processor IBM
Linux cluster with Myrinet and obtained a 512-fold speed-
up (linear speedup with respect to the number of pro-
cessors): a complete breakpoint analysis (with the more
demanding inversion distance used in lieu of breakpoint
distance) for the 13 genomes in the Campanulaceae data
set ran in less than 1.5 hours in an October 2000 run,
for a million-fold speedup over the original implemen-
tation. The latest version features significantly improved
bounds and new distance correction methods and, on the
same dataset, exhibits a speedup factor of over one billion.
GRAPPA achieves this speedup through a combination of
parallelism and high-performance algorithm engineering.
Although such spectacular speedups will not always be re-
alized, many algorithmic approaches now in use in the bi-
ological, pharmaceutical, and medical communities may
benefit tremendously from such an application of high-
performance techniques and platforms.

This example indicates the potential of applying high-
performance algorithm engineering techniques to appli-
cations in computational biology, especially in areas that
involve complex optimizations: Bader’s reimplementation
did not require new algorithms or entirely new techniques,
yet achieved gains that turned an impractical approach
into a usable one.

Cross References

� Distance-Based Phylogeny Reconstruction
(Fast-Converging)

� Distance-Based Phylogeny Reconstruction (Optimal
Radius)

� Efficient Methods for Multiple Sequence Alignment
with Guaranteed Error Bounds

� High Performance Algorithm Engineering for
Large-scale Problems

� Local Alignment (with Affine Gap Weights)
� Local Alignment (with Concave Gap Weights)
�Multiplex PCR for Gap Closing (Whole-genome

Assembly)
� Peptide De Novo Sequencing with MS/MS
� Perfect Phylogeny Haplotyping
� Phylogenetic Tree Construction from a Distance

Matrix
� Phylogeny Reconstruction
� Sorting Signed Permutations by Reversal (Reversal

Distance)
� Sorting Signed Permutations by Reversal (Reversal

Sequence)

272 E Engineering Algorithms for Large Network Applications

� Sorting by Transpositions and Reversals (Approx Ratio
1.5)

� Substring Parsimony

Recommended Reading
1. Bader, D.A., Moret, B.M.E., Warnow, T., Wyman, S.K., Yan, M.:

High-performance algorithm engineering for gene-order phy-
logenies. In: DIMACS Workshop on Whole Genome Compari-
son, Rutgers University, Piscataway, NJ (2001)

2. Bader, D.A., Moret, B.M.E., Vawter, L.: Industrial applications of
high-performance computing for phylogeny reconstruction.
In: Siegel, H.J. (ed.) Proc. SPIE Commercial Applications for
High-Performance Computing, vol. 4528, pp. 159–168, Denver,
CO (2001)

3. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for
computing inversion distance between signed permutations
with an experimental study. J. Comp. Biol. 8(5), 483–491 (2001)

4. Farris, J.S.: The logical basis of phylogenetic analysis. In: Plat-
nick, N.I., Funk, V.A. (eds.) Advances in Cladistics, pp. 1–36.
Columbia Univ. Press, New York (1983)

5. Felsenstein, J.: Evolutionary trees from DNA sequences: a max-
imum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

6. Moret, B.M.E., Bader, D.A., Warnow, T., Wyman, S.K., Yan,
M.: GRAPPA: a highperformance computational tool for phy-
logeny reconstruction from gene-order data. In: Proc. Botany,
Albuquerque, August 2001

7. Moret, B.M.E., Bader, D.A., Warnow, T.: High-performance algo-
rithm engineering for computational phylogenetics. J. Super-
comp. 22, 99–111 (2002) Special issue on the best papers from
ICCS’01

8. Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., Yan, M.:
A new implementation and detailed study of breakpoint anal-
ysis. In: Proc. 6th Pacific Symp. Biocomputing (PSB 2001),
pp. 583–594, Hawaii, January 2001

9. Saitou, N., Nei, M.: The neighbor-joining method: A new
method for reconstruction of phylogenetic trees. Mol. Biol.
Evol. 4, 406–425 (1987)

10. Sankoff, D., Blanchette, M.: Multiple genome rearrangement
and breakpoint phylogeny. J. Comp. Biol. 5, 555–570 (1998)

11. Yan, M.: High Performance Algorithms for Phylogeny Recon-
struction with Maximum Parsimony. Ph. D. thesis, Electrical
and Computer Engineering Department, University of New
Mexico, Albuquerque, January 2004

Engineering Algorithms
for Large Network Applications
2002; Schulz, Wagner, Zaroliagis

CHRISTOS ZAROLIAGIS
Department of Computer Engineering & Informatics,
University of Patras, Patras, Greece

ProblemDefinition

Dealing effectively with applications in large networks, it
typically requires the efficient solution of one ore more un-

derlying algorithmic problems. Due to the size of the net-
work, a considerable effort is inevitable in order to achieve
the desired efficiency in the algorithm.

One of the primary tasks in large network applications
is to answer queries for finding best routes or paths as effi-
ciently as possible. Quite often, the challenge is to process
a vast number of such queries on-line: a typical situation
encountered in several real-time applications (e. g., traffic
information systems, public transportation systems) con-
cerns a query-intensive scenario, where a central server has
to answer a huge number of on-line customer queries ask-
ing for their best routes (or optimal itineraries). The main
goal in such an application is to reduce the (average) re-
sponse time for a query.

Answering a best route (or optimal itinerary) query
translates in computing a minimum cost (shortest) path
on a suitably defined directed graph (digraph) with non-
negative edge costs. This in turn implies that the core
algorithmic problem underlying the efficient answering
of queries is the single-source single-target shortest path
problem.

Although the straightforward approach of pre-com-
puting and storing shortest paths for all pairs of vertices
would enabling the optimal answering of shortest path
queries, the quadratic space requirements for digraphs
with more than 105 vertices makes such an approach pro-
hibitive for large and very large networks. For this reason,
the main goal of almost all known approaches is to keep
the space requirements as small as possible. This in turn
implies that one can afford a heavy (in time) preprocess-
ing, which does not blow up space, in order to speed-up
the query time.

The most commonly used approach for answering
shortest path queries employs Dijkstra’s algorithm and/or
variants of it. Consequently, the main challenge is how to
reduce the algorithm’s search-space (number of vertices
visited), as this would immediately yield a better query
time.

Key Results

All results discussed concern answering of optimal (or ex-
act or distance-preserving) shortest paths under the afore-
mentioned query-intensive scenario, and are all based on
the following generic approach. A preprocessing of the in-
put network G = (V ; E) takes place that results in a data
structure of size O(jV j + jEj) (i. e., linear to the size of G).
The data structure contains additional information re-
garding certain shortest paths that can be used later during
querying.

Engineering Algorithms for Large Network Applications E 273

Depending on the pre-computed additional informa-
tion as well as on the way a shortest path query is answered,
two approaches can be distinguished. In the first approach,
graph annotation, the additional information is attached to
vertices or edges of the graph. Then, speed-up techniques
to Dijkstra’s algorithm are employed that, based on this
information, decide quickly which part of the graph does
not need to be searched. In the second approach, an auxil-
iary graph G0 is constructed hierarchically. A shortest path
query is then answered by searching only a small part of
G0, using Dijkstra’s algorithm enhanced with heuristics to
further speed-up the query time.

In the following, the key results of the first [3,4,9,11]
and the second approach [1,2,5,7,8,10] are discussed, as
well as results concerning modeling issues.

First Approach – Graph Annotation

The first work under this approach concerns the study
in [9] on large railway networks. In that paper, two new
heuristics are introduced: the angle-restriction (that tries
to reduce the search space by taking advantage of the ge-
ometric layout of the vertices) and the selection of sta-
tions (a subset of vertices is selected among which all pairs
shortest paths are pre-computed). These two heuristics
along with a combination of the classical goal-directed or
A* search turned out to be rather efficient. Moreover, they
motivated two important generalizations [10,11] that gave
further improvements to shortest path query times.

The full exploitation of geometry-based heuristics was
investigated in [11], where both street and railway net-
works are considered. In that paper, it is shown that the
search space of Dijkstra’s algorithm can be significantly re-
duced (to 5%–10% of the initial graph size) by extracting
geometric information from a given layout of the graph
and by encapsulating pre-computed shortest path infor-
mation in resulted geometric objects, called containers.
Moreover, the dynamic case of the problem was investi-
gated, where edge costs are subject to change and the geo-
metric containers have to be updated.

A powerful modification to the classical Dijkstra’s al-
gorithm, called reach-based routing, was presented in [4].
Every vertex is assigned a so-called reach value that deter-
mines whether a particular vertex will be considered dur-
ing Dijkstra’s algorithm. A vertex is excluded from con-
sideration if its reach value is small; that is, if it does not
contribute to any path long enough to be of use for the
current query.

A considerable enhancement of the classical A* search
algorithm using landmarks (selected vertices like in [9,10])
and the triangle inequality with respect to the shortest path

distances was shown in [3]. Landmarks and triangle in-
equality help to provide better lower bounds and hence
boost A* search.

Second Approach – Auxiliary Graph

The first work under this approach concerns the study
in [10], where a new hierarchical decomposition tech-
nique is introduced called multi-level graph. A multi-level
graphM is a digraph which is determined by a sequence of
subsets ofV and which extends E by addingmultiple levels
of edges. This allows to efficiently construct, during query-
ing, a subgraph ofMwhich is substantially smaller thanG
and in which the shortest path distance between any of its
vertices is equal to the shortest path distance between the
same vertices inG. Further improvements of this approach
have been presented recently in [1]. A refinement of the
above idea was introduced in [5], where the multi-level
overlay graphs are introduced. In such a graph, the de-
composition hierarchy is not determined by application-
specific information as it happens in [9,10].

An alternative hierarchical decomposition technique,
called highway hierarchies, was presented in [7]. The ap-
proach takes advantage of the inherent hierarchy pos-
sessed by real-world road networks and computes a hierar-
chy of coarser views of the input graph. Then, the shortest
path query algorithm considers mainly the (much smaller
in size) coarser views, thus achieving dramatic speed-ups
in query time. A revision and improvement of this method
was given in [8]. A powerful combination of the highway
hierarchies with the ideas in [3] was reported in [2].

Modeling Issues

The modeling of the original best route (or optimal
itinerary) problem on a large network to a shortest path
problem in a suitably defined directed graph with appro-
priate edge costs also plays a significant role in reducing
the query time. Modeling issues are thoroughly investi-
gated in [6]. In that paper, the first experimental compar-
ison of two important approaches (time-expanded versus
time-dependent) is carried out, along with new extensions
of them towards realistic modeling. In addition, several
new heuristics are introduced to speed-up query time.

Applications

Answering shortest path queries in large graphs has a mul-
titude of applications, especially in traffic information sys-
tems under the aforementioned scenario; that is, a central
server has to answer, as fast as possible, a huge number
of on-line customer queries asking for their best routes
or itineraries. Other applications of the above scenario

274 E Engineering Geometric Algorithms

involve route planning systems for cars, bikes and hik-
ers, public transport systems for itinerary information of
scheduled vehicles (like trains or buses), answering queries
in spatial databases, and web searching. All the above ap-
plications concern real-time systems in which users con-
tinuously enter their requests for finding their best con-
nections or routes. Hence, the main goal is to reduce the
(average) response time for answering a query.

Open Problems

Real-world networks increase constantly in size either as
a result of accumulation of more and more information
on them, or as a result of the digital convergence of me-
dia services, communication networks, and devices. This
scaling-up of networks makes the scalability of the under-
lying algorithms questionable. As the networks continue
to grow, there will be a constant need for designing faster
algorithms to support core algorithmic problems.

Experimental Results

All papers discussed in Sect. “Key Results” contain impor-
tant experimental studies on the various techniques they
investigate.

Data Sets

The data sets used in [6,11] are available from http://
lso-compendium.cti.gr/ under problems 26 and 20, re-
spectively.

The data sets used in [1,2] are available from http://
www.dis.uniroma1.it/~challenge9/.

URL to Code

The code used in [9] is available from http://doi.acm.org/
10.1145/351827.384254.

The code used in [6,11] is available from http://
lso-compendium.cti.gr/ under problems 26 and 20, re-
spectively.

The code used in [3] is available from http://www.
avglab.com/andrew/soft.html.

Cross References

� Implementation Challenge for Shortest Paths
� Shortest Paths Approaches for Timetable Information

Recommended Reading
1. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-

Performance Multi-Level Graphs. In: 9th DIMACS Challenge on
Shortest Paths, Nov 2006. Rutgers University, USA (2006)

2. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hier-
archies Star. In: 9th DIMACS Challenge on Shortest Paths, Nov
2006 Rutgers University, USA (2006)

3. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A*

Search Meets Graph Theory. In: Proc. 16th ACM-SIAM Sympo-
sium on Discrete Algorithms – SODA, pp. 156–165. ACM, New
York and SIAM, Philadelphia (2005)

4. Gutman, R.: Reach-based Routing: ANewApproach to Shortest
Path Algorithms Optimized for Road Networks. In: Algorithm
Engineering and Experiments – ALENEX (SIAM, 2004), pp. 100–
111. SIAM, Philadelphia (2004)

5. Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level
Overlay Graphs for Shortest-Path Queries. In: Algorithm Engi-
neering and Experiments – ALENEX (SIAM, 2006), pp. 156–170.
SIAM, Philadelphia (2006)

6. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Mod-
els for Timetable Information in Public Transportation Systems.
ACM J. Exp. Algorithmic 12(2.4), 1–39 (2007)

7. Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact
Shortest Path Queries. In: Algorithms – ESA 2005. Lect. Note
Comp. Sci. 3669, 568–579 (2005)

8. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In:
Algorithms – ESA 2006. Lect. Note Comp. Sci. 4168, 804–816
(2006)

9. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line:
An Empirical Case Study from Public Railroad Transport. ACM
J. Exp. Algorithmics 5(12), 1–23 (2000)

10. Schulz, F., Wagner, D., Zaroliagis, C.: Using Multi-Level Graphs
for Timetable Information in Railway Systems. In: Algorithm
Engineering and Experiments – ALENEX 2002. Lect. Note
Comp. Sci. 2409, 43–59 (2002)

11. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers
for Efficient Shortest Path Computation. ACM J. Exp. Algorith-
mics 10(1.3), 1–30 (2005)

Engineering Geometric Algorithms
2004; Halperin

DAN HALPERIN
School of Computer Science,
Tel-Aviv University, Tel Aviv, Israel

Keywords and Synonyms

Certified and efficient implementation of geometric algo-
rithms; Geometric computing with certified numerics and
topology

ProblemDefinition

Transforming a theoretical geometric algorithm into an
effective computer program abounds with hurdles. Over-
coming these difficulties is the concern of engineering ge-
ometric algorithms, which deals, more generally, with the
design and implementation of certified and efficient solu-
tions to algorithmic problems of geometric nature. Typ-

http://lso-compendium.cti.gr/
http://lso-compendium.cti.gr/
http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://doi.acm.org/10.1145/351827.384254
http://doi.acm.org/10.1145/351827.384254
http://lso-compendium.cti.gr/
http://lso-compendium.cti.gr/
http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html

Engineering Geometric Algorithms E 275

ical problems in this family include the construction of
Voronoi diagrams, triangulations, arrangements of curves
and surfaces (namely, space subdivisions), two- or higher-
dimensional search structures, convex hulls and more.

Geometric algorithms strongly couple topologi-
cal/combinatorial structures (e. g., a graph describing the
triangulation of a set of points) on the one hand, with
numerical information (e. g., the coordinates of the ver-
tices of the triangulation) on the other. Slight errors in the
numerical calculations, which in many areas of science
and engineering can be tolerated, may lead to detrimental
mistakes in the topological structure, causing the com-
puter program to crash, to loop infinitely, or plainly to
give wrong results.

Straightforward implementation of geometric algo-
rithms as they appear in a textbook, using standard ma-
chine arithmetic, is most likely to fail. This entry is con-
cerned only with certified solutions, namely, solutions that
are guaranteed to construct the exact desired structure or
a good approximation of it; such solutions are often re-
ferred to as robust.

The goal of engineering geometric algorithms can be
restated as follows: Design and implement geometric algo-
rithms that are at once robust and efficient in practice.

Much of the difficulty in adapting in practice the ex-
isting vast algorithmic literature in computational geome-
try comes from the assumptions that are typically made in
the theoretical study of geometric algorithms that (1) the
input is in general position, namely, degenerate input is
precluded, (2) computation is performed on an ideal com-
puter that can carry out real arithmetic to infinite preci-
sion (so-called real RAM), and (3) the cost of operating on
a small number of simple geometric objects is “unit” time
(e. g., equal cost is assigned to intersecting three spheres
and to comparing two integer numbers).

Now, in real life, geometric input is quite often de-
generate, machine precision is limited, and operations on
a small number of simple geometric objects within the
same algorithm may differ hundredfold and more in the
time they take to execute (when aiming for certified re-
sults). Just implementing an algorithm carefully may not
suffice and often redesign is called for.

Key Results

Tremendous efforts have been invested in the design and
implementation of robust computational-geometry soft-
ware in recent years. Two notable large-scale efforts are
the CGAL library [1] and the geometric part of the LEDA li-
brary [14]. These are jointly reviewed in the survey by Ket-
tner and Näher [13]. Numerous other relevant projects,

which for space constraints are not reviewed here, are sur-
veyed by Joswig [12] with extensive references to papers
andWeb sites.

A fundamental engineering decision to take when
coming to implement a geometric algorithm is what will
the underlying arithmetic be, that is, whether to opt for ex-
act computation or use the machine floating-point arith-
metic. (Other less commonly used options exist as well.)
To date, the CGAL and LEDA libraries are almost exclu-
sively based on exact computation. One of the reasons
for this exclusivity is that exact computation emulates the
ideal computer (for restricted problems) and makes the
adaptation of algorithms from theory to software easier.
This is facilitated by major headway in developing tools
for efficient computation with rational or algebraic num-
bers (GMP [3], LEDA [14], CORE [2] and more). On top of
these tools, clever techniques for reducing the amount of
exact computation were developed, such as floating-point
filters and the higher- level geometric filtering.

The alternative is to use the machine floating-point
arithmetic, having the advantage of being very fast. How-
ever, it is nowhere near the ideal infinite precision arith-
metic assumed in the theoretical study of geometric algo-
rithms and algorithms have to be carefully redesigned. See,
for example, the discussion about imprecision in the man-
ual of QHULL, the convex hull program by Barber et al. [5].
Over the years a variety of specially tailored floating-point
variants of algorithms have been proposed, for example,
the carefully crafted VRONI package by Held [11], which
computes the Voronoi diagram of points and line seg-
ments using standard floating-point arithmetic, based on
the topology-oriented approach of Sugihara and Iri. While
VRONI works very well in practice, it is not theoretically
certified. Controlled perturbation [9] emerges as a system-
atic method to produce certified approximations of com-
plex geometric constructs while using floating-point arith-
metic: the input is perturbed such that all predicates are
computed accurately even with the limited-precision ma-
chine arithmetic, and a method is given to bound the nec-
essary magnitude of perturbation that will guarantee the
successful completion of the computation.

Another decision to take is how to represent the output
of the algorithm, where the major issue is typically how to
represent the coordinates of vertices of the output struc-
ture(s). Interestingly, this question is crucial when using
exact computation since there the output coordinates can
be prohibitively large or simply impossible to finitely enu-
merate. (One should note though that many geometric al-
gorithms are selective only, namely, they do not produce
new geometric entities but just select and order subsets of
the input coordinates. For example, the output of an al-

276 E Engineering Geometric Algorithms

gorithm for computing the convex hull of a set of points
in the plane is an ordering of a subset of the input points.
No new point is computed. The discussion in this para-
graph mostly applies to algorithms that output new ge-
ometric constructs, such as the intersection point of two
lines.) But even when using floating-point arithmetic, one
may prefer to have a more compact bit-size representation
than, say, machine doubles. In this direction there is an ef-
fective, well-studied solution for the case of polygonal ob-
jects in the plane, called snap rounding, where vertices and
intersection points are snapped to grid vertices while re-
taining certain topological properties of the exact desired
structure. Rounding with guarantees is in general a very
difficult problem, and already for polyhedral objects in 3-
space the current attempts at generalizing snap rounding
are very costly (increasing the complexity of the rounded
objects to the third, or even higher, power).

Then there are a variety of engineering issues depend-
ing on the problem at hand. Following are two examples
of engineering studies where the experience in practice is
different from what the asymptotic resource measures im-
ply. The examples relate to fundamental steps in many ge-
ometric algorithms: decomposition and point location.

Decomposition

A basic step in many geometric algorithms is to decom-
pose a (possibly complex) geometric object into simpler
subobjects, where each subobject typically has constant de-
scriptive complexity. A well-known example is the trian-
gulation of a polygon. The choice of decomposition may
have a significant effect on the efficiency in practice of vari-
ous algorithms that rely on decomposition. Such is the case
when constructing Minkowski sums of polygons in the
plane. TheMinkowski sum of two setsA and B inRd is the
vector sum of the two sets A˚ B = fa + bja 2 A; b 2 Bg.
The simplest approach to computing Minkowski sums of
two polygons in the plane proceeds in three steps: triangu-
late each polygon, then compute the sum of each triangle
of one polygon with each triangle of the other, and finally
take the union of all the subsums. In asymptotic measures,
the choice of triangulation (over alternative decomposi-
tions) has no effect. In practice though, triangulation is
probably the worst choice compared with other convex de-
compositions, even fairly simple heuristic ones (not neces-
sarily optimal), as shown by experiments on a dozen dif-
ferent decomposition methods [4]. The explanation is that
triangulation increases the overall complexity of the sub-
sums and in turn makes the union stage more complex–-
indeed by a constant factor, but a noticeable factor in prac-
tice. Similar phenomena were observed in other situations

as well. For example, when using the prevalent vertical de-
composition of arrangements–-often it is too costly com-
pared with sparser decompositions (i. e., decompositions
that add fewer extra features).

Point Location

A recurring problem in geometric computing is to pro-
cess given planar subdivision (planar map), so as to effi-
ciently answer point-location queries: Given a point q in
the plane, which face of the map contains q? Over the years
a variety of point-location algorithms for planar maps
were implemented in CGAL, in particular, a hierarchical
search structure that guarantees logarithmic query time af-
ter expected O(n log n) preprocessing time of a map with
n edges. This algorithm is referred to in CGAL as the RIC
point-location algorithm after the preprocessing method
which uses randomized incremental construction. Several
simpler, easier-to-program algorithms for point location
were also implemented. None of the latter beats the RIC
algorithm in query time. However, the RIC is by far the
slowest of all the implemented algorithms in terms of pre-
processing, which in many scenarios renders it less effec-
tive. One of the simpler methods devised is a variant of
the well-known jump-and-walk approach to point loca-
tion. The algorithm scatters points (so-called landmarks)
in the map and maintains the landmarks (together with
their containing faces) in a nearest-neighbor search struc-
ture. Once a query q is issued it finds the nearest landmark
` to q, and “walks” in the map from ` toward q along the
straight line segment connecting them. This landmark ap-
proach offers query time that is only slightly more expen-
sive than the RIC method while being very efficient in pre-
processing. The full details can be found in [10]. This is yet
another consideration when designing (geometric) algo-
rithms: the cost of preprocessing (and storage) versus the
cost of a query. Quite often the effective (practical) tradeoff
between these costs needs to be deduced experimentally.

Applications

Geometric algorithms are useful in many areas. Triangu-
lations and arrangements are examples of basic constructs
that have been intensively studied in computational ge-
ometry, carefully implemented and experimented with, as
well as used in diverse applications.

Triangulations

Triangulations in two and three dimensions are imple-
mented in CGAL [7]. In fact, CGAL offers many variants of
triangulations useful for different applications. Among the
applications where CGAL triangulations are employed are

Engineering Geometric Algorithms E 277

meshing, molecular modeling, meteorology, photogram-
metry, and geographic information systems (GIS). For
other available triangulation packages, see the survey by
Joswig [12].

Arrangements

Arrangements of curves in the plane are supported by
CGAL [15], as well as envelopes of surfaces in three-
dimensional space. Forthcoming is support also for ar-
rangements of curves on surfaces. CGAL arrangements
have been used in motion planning algorithms, computer-
aided design and manufacturing, GIS, computer graphics,
and more (see Chap. 1 in [6]).

Open Problems

In spite of the significant progress in certified implemen-
tation of effective geometric algorithms, the existing theo-
retical algorithmic solutions for many problems still need
adaptation or redesign to be useful in practice. One ex-
ample where progress can have wide repercussions is de-
vising effective decompositions for curved geometric ob-
jects (e. g., arrangements) in the plane and for higher-
dimensional objects. As mentioned earlier, suitable de-
compositions can have a significant effect on the perfor-
mance of geometric algorithms in practice.

Certified fixed-precision geometric computing lags be-
hind the exact computing paradigm in terms of avail-
able robust software, and moving forward in this direc-
tion is a major challenge. For example, creating a certi-
fied floating-point counterpart to CGAL is a desirable (and
highly intricate) task.

Another important tool that is largely missing is
consistent and efficient rounding of geometric objects.
As mentioned earlier, a fairly satisfactory solution exists
for polygonal objects in the plane. Good techniques are
missing for curved objects in the plane and for higher-
dimensional objects (both linear and curved).

URL to Code

http://www.cgal.org

Cross References

� LEDA: a Library of Efficient Algorithms
� Robust Geometric Computation

Recommended Reading

Conferences publishing papers on the topic include the
ACM Symposium on Computational Geometry (SoCG),

the Workshop on Algorithm Engineering and Exper-
iments (ALENEX), the Engineering and Applications
Track of the European Symposium on Algorithms (ESA),
its predecessor and the Workshop on Experimental Al-
gorithms (WEA). Relevant journals include the ACM
Journal on Experimental Algorithmics, Computational Ge-
ometry: Theory and Applications and the International
Journal of Computational Geometry and Applications.
A wide range of relevant aspects are discussed in the re-
cent book edited by Boissonnat and Teillaud [6], titled
Effective Computational Geometry for Curves and Sur-
faces.

1. The CGAL project homepage. http://www.cgal.org/. Accessed
6 Apr 2008

2. The CORE library homepage. http://www.cs.nyu.edu/exact/
core/. Accessed 6 Apr 2008

3. The GMP webpage. http://gmplib.org/. Accessed 6 Apr 2008
4. Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition

for efficient construction of Minkowski sums. Comput. Geom.
Theor. Appl. 21(1–2), 39–61 (2002)

5. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: Imprecision in
QHULL. http://www.qhull.org/html/qh-impre.htm. Accessed 6
Apr 2008

6. Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational
Geometry for Curves and Surfaces. Springer, Berlin (2006)

7. Boissonat, J.-D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.:
Triangulations in CGAL. Comput. Geom. Theor. Appl. 22(1–3),
5-19 (2002)

8. Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.:
On the design of CGAL a computational geometry algorithms
library. Softw. Pract. Experience 30(11), 1167–1202 (2000)

9. Halperin, D., Leiserowitz, E.: Controlled perturbation for ar-
rangements of circles. Int. J. Comput. Geom. Appl. 14(4–5),
277–310 (2004)

10. Haran, I., Halperin, D.: An experimental study of point location
in general planar arrangements. In: Proceedings of 8th Work-
shop on Algorithm Engineering and Experiments, pp. 16–25
(2006)

11. Held, M.: VRONI: An engineering approach to the reliable
and efficient computation of Voronoi diagrams of points and
line segments. Comput. Geom. Theor. Appl. 18(2), 95–123
(2001)

12. Joswig, M.: Software. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, 2nd edn.,
chap. 64, pp. 1415–1433. Chapman & Hall/CRC, Boca Raton
(2004)

13. Kettner, L., Näher, S.: Two computational geometry libraries:
LEDA and CGAL. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, Chapter 65,
pp. 1435–1463, 2nd edn. Chapman & Hall/CRC, Boca Raton
(2004)

14. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press, Cam-
bridge (2000)

15. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced pro-
gramming techniques applied to CGAL’s arrangement pack-
age. Comput. Geom. Theor. Appl. 36(1–2), 37–63 (2007)

http://www.cgal.org
http://www.cgal.org/
http://www.cs.nyu.edu/exact/core/
http://www.cs.nyu.edu/exact/core/
http://gmplib.org/
http://www.qhull.org/html/qh-impre.htm

278 E Equivalence Between Priority Queues and Sorting

Equivalence Between
Priority Queues and Sorting
2002; Thorup

REZAUL A. CHOWDHURY
Department of Computer Sciences,
University of Texas at Austin,
Austin, TX, USA

Keywords and Synonyms

Heap

ProblemDefinition

A priority queue is an abstract data structure that main-
tains a set Q of elements, each with an associated value
called a key, under the following set of operations [4,7].

insert(Q; x; k): Inserts element x with key k into Q.
find-min(Q): Returns an element ofQwith the minimum

key, but does not change Q.
delete(Q; x; k): Deletes element x with key k from Q.

Additionally, the following operations are often sup-
ported.

delete-min(Q): Deletes an element with the minimum
key value from Q, and returns it.

decrease-key(Q; x; k): Decreases the current key k0 of x to
k assuming k < k0.

meld(Q1;Q2): Given priority queues Q1 and Q2, returns
the priority queue Q1 [Q2.

Observe that a delete-min can be implemented as a find-
min followed by a delete, a decrease-key as a delete fol-
lowed by an insert, and ameld as a series of find-min, delete
and insert. However, more efficient implementations of
decrease-key andmeld often exist [4,7].

Priority queues have many practical applications
including event-driven simulation, job scheduling on
a shared computer, and computation of shortest paths,
minimum spanning forests, minimum cost matching, op-
timum branching, etc. [4,7].

A priority queue can trivially be used for sorting by
first inserting all keys to be sorted into the priority queue
and then by repeatedly extracting the current minimum.
The major contribution in [15] is a reduction showing that
the converse is also true. The results in [15] imply that
priority queues are computationally equivalent to sorting,

that is, asymptotically, the per key cost of sorting is the up-
date time of a priority queue.

A result similar to those in [15] was presented in [14]
which resulted in monotone priority queues (i. e., mean-
ing that the extracted minimums are non-decreasing) with
amortized time bounds only. In contrast, general priority
queues with worst-case bounds are constructed in [15].

In addition to establishing the equivalence between
priority queues and sorting, the reductions in [15] are also
used to translate several known sorting results into new
results on priority queues.

Background

Some relevant background information is summarized be-
low which will be useful in understanding the key results
in Sect. “Key Results”.
� A standard word RAM models what one programs in

a standard programming language such as C. In addi-
tion to direct and indirect addressing and conditional
jumps, there are functions, such as addition and mul-
tiplication, operating on a constant number of words.
The memory is divided into words, addressed linearly
starting from 0. The running time of a program is
the number of instructions executed and the space is
the maximal address used. The word-length is a ma-
chine dependent parameterwhich is big enough to hold
a key, and at least logarithmic in the number of input
keys so that they can be addressed.

� A pointer machine is like the word RAM except that
addresses cannot be manipulated.

� The AC0 complexity class consists of constant-depth
circuits with unlimited fan-in [18]. Standard AC0 oper-
ations refer to the operations available via C, but where
the functions on words are in AC0. For example, this
includes addition but not multiplication.

� Integer keys will refer to non-negative integers. How-
ever, if the input keys are signed integers, the correct
ordering of the keys is obtained by flipping their sign
bits and interpreting them as unsigned integers. Simi-
lar tricks work for floating point numbers and integer
fractions [14].

� The atomic heaps of Fredman andWillard [6] are used
in one of the reductions in [15]. These heaps can sup-
port updates and searches in sets of O(log2 n) keys in
O(1) worst-case time [19]. However, atomic heaps use
multiplication operations which are not in AC0.

Key Results

The main results in this paper are two reductions from
priority queues to sorting. The stronger of the two, stated

Equivalence Between Priority Queues and Sorting E 279

in Theorem 1, is for integer priority queues running on
a standard word RAM.

Theorem 1 If for some non-decreasing function S, up to
n integer keys can be sorted in S(n) time per key, an in-
teger priority queue can be implemented supporting find-
min in constant time, and updates, i. e., insert and delete,
in S(n) + O(1) time. Here n is the current number of keys
in the queue. The reduction uses linear space. The reduction
runs on a standard word RAM assuming that each integer
key is contained in a single word.

The reduction above provides the following new bounds
for linear space integer priority queues improving previ-
ous bounds in [8,14] and [5], respectively.
1. (Deterministic) O(log log n) update time using a sort-

ing algorithm in [9].
2. (Randomized) O

�p
log log n

�
expected update time

using the sorting algorithm in [10].
3. (Randomized with O(1) decrease-key)

O
�
(log n)

1
(2��)

�
expected update time for word

length � log n and any constant � > 0, using the sort-
ing algorithm in [3].

The reduction in Theorem 1 employs atomic heaps [6]
which in addition to being very complicated, use non-AC0

operations. The following slightly weaker recursive reduc-
tion which does not restrict the domain of the keys is com-
pletely combinatorial.

Theorem 2 Given a sorter that sorts up to n keys in S(n)
time per key, a priority queue can be implemented support-
ing find-min in constant time, and updates in T(n) time
where n is the current number of keys in the queue and T(n)
satisfies the recurrence:

T(n) = O
�
S(n) + T(log2 n)

�
:

The reduction runs on a pointer machine in linear space
using only standard AC0 operations. Key values are only
accessed by the sorter.

This reduction implies the following new priority queue
bounds not implied by Theorem 1, where the first two
bounds improve previous bounds in [13] and [16], respec-
tively.
1. (Deterministic in Standard AC0) O

�
(log log n)1+�

�
update time for any constant � > 0 using a standard
AC0 integer sorting algorithm in [10].

2. (Randomized in Standard AC0) O
�
log log n

�
ex-

pected update time using a standard AC0 integer sort-
ing algorithm in [16].

3. (String of l Words) O(l + log log n) deterministic and
O
�
l +
p
log log n

�
randomized expected update time

using the string sorting results in [10].

The Reduction in Theorem 1

Given a sorting routine that can sort up to n keys in S(n)
time per key, the priority queue is constructed as follows.

The data structure has twomajor components: a sorted
list of keys and a set of update buffers. The key list is parti-
tioned into small segments, each of which is maintained in
an atomic heap allowing constant time update and search
operations on that segment. Each update buffer has a dif-
ferent capacity and accumulates updates (insert/delete)
with key values in a different range. Smaller update buffers
accept updates with smaller keys. An atomic heap is used
to determine in constant time which update buffer col-
lects a new update. When an update buffer accumulates
enough updates, they first enter a sorting phase and then
a merging phase. In the merging phase each update is ap-
plied on the proper segment in the key list, and invari-
ants on segment size and ranges of update buffers are
fixed. These phases are not executed immediately, instead
they are executed in fixed time increments over a period
of time. An update buffer continues to accept new up-
dates while some updates accepted by it earlier are still
in the sorting phase, and some even older updates are in
the merging phase. Every time it accepts a new update,
S(n) time is spent on the sorting phase associated with
it, and O(1) time on its merging phase. This strategy al-
lows the sorting and merging phases to complete execu-
tion by the time the update buffer becomes full again, and
thus keeping the movement of updates through different
phases smooth while maintaining an S(n) + O(1) worst-
case time bound per update. Moreover, the size and ca-
pacity constraints ensure that the smallest key in the data
structure is available in O(1) time. More details are given
below.

The Sorted Key List: The sorted key list contains most
of the keys in the data structure including the minimum
key, and is known as the base list. This list is partitioned
into base segments containing 	((log n)2) keys each. Keys
in each segment are maintained in an atomic heap so that
if a new update is known to apply to a particular segment
it can be applied in O(1) time. If a base segment becomes
too large or too small, it is split or joined with an adjacent
segment.

Update Buffers: The base segments are separated by
base splitters, and O(log n) of them are chosen to become
top splitters so that the number of keys in the base list be-

280 E Equivalence Between Priority Queues and Sorting

low the ith (i > 0) top splitter si is 	
�
4i(log n)2

�
. These

splitters are placed in an atomic heap. As the base list
changes the top splitters are moved, as needed, in order
to maintain their exponential distribution.

Associated with each top splitter si, i > 1, are three
buffers: an entrance, a sorter, and a merger, each with ca-
pacity for 4i keys. Top splitter si works in a cycle of 4i

steps. The cycle starts with an empty entrance, at most
4i updates in the sorter, and a sorted list of at most 4i

updates in the merger. In each step one may accept an
update for the entrance, spend O(4i) = S(n) time in the
sorter, and O(1) time in merging the sorted list in the
merger with the O(4i) base splitters in [si�2; si+1) (assum-
ing s0 = 0, s�1 = �1) and scanning for a new si among
them. The implementation guarantees that all keys in the
buffers of si lie in [si�2; si+1). Therefore, after 4i such steps,
the sorted list is correctly merged with the base list, a new
si is found, and a new sorted list is produced. The sorter
then takes the role of the merger, the entrance becomes
the sorter, and the empty merger becomes the new en-
trance.

Handling Updates: When a new update key k (in-
sert/delete) is received, the atomic heap of top splitters is
used to find in O(1) time the si such that k 2 [si�1; si). If
k 2 [s0; s1), its position is identified among the O(1) base
splitters below s1, and the corresponding base segment is
updated in O(1) time using the atomic heap over the keys
of that segment. If k 2 [si�1; si) for some i > 1, the up-
date is placed in the entrance of si, performing one step
of the cycle of si in S(n) + O(1) time. Additionally, during
each update another splitter sr is chosen in a round-robin
fashion, and a fraction 1/ log n of a step of a cycle of sr is
executed in O(1) time. The work on sr ensures that after
every O((log n)2) updates some progress is made on mov-
ing each top splitter.

A find-min returns the minimum element of the base
list which is available in O(1) time.

The Reduction in Theorem 2

This reduction follows from the previous reduction by re-
placing all atomic heaps by the buffer systems developed
for the top splitters.

Further Improvement

In [1] Alstrup et al. present a general reduction that trans-
forms a priority queue to support insert inO(1) time while
keeping the other bounds unchanged. This reduction can
be used to reduce the cost of insertion to a constant in The-
orems 1 and 2.

Applications

The equivalence results in [15] can be used to translate
known sorting results into new results on priority queues
for integers and strings in different computational models
(see Sect. “Key Results”). These results can also be viewed
as a new means of proving lower bounds for sorting via
priority queues.

A new RAM priority queue that matches the bounds
in Theorem 1 and also supports decrease-key in O(1) time
is presented in [17]. This construction combines Anders-
son’s exponential search trees [2] with the priority queues
implied by Theorem 1. The reduction in Theorem 1 is also
used in [12] in order to develop an adaptive integer sorting
algorithm for the word RAM. Reductions from meldable
priority queues to sorting presented in [11] use the reduc-
tions from non-meldable priority queues to sorting given
in [15].

Open Problems

As noted before, the combinatorial reduction for pointer
machines given in Theorem 2 is weaker than the word
RAM reduction. For example, for a hypothetical linear
time sorting algorithm, Theorem 1 implies a priority
queue with an update time of O(1) while Theorem 2 im-
plies 2O(log

� n)-time updates. Whether this gap can be re-
duced or removed is still an open question.

Cross References

� Cache-Oblivious Sorting
� External Sorting and Permuting
� String Sorting
� Suffix Tree Construction in RAM

Recommended Reading

1. Alstrup, S., Husfeldt, T., Rauhe, T., Thorup, M.: Black box for
constant-time insertion in priority queues (note). ACM TALG
1(1), 102–106 (2005)

2. Andersson, A.: Faster deterministic sorting and searching in lin-
ear space. In: Proc. 37th FOCS, 1998, pp. 135–141

3. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in lin-
ear time? J. Comp. Syst. Sci. 57, 74–93 (1998). Announced at
STOC’95

4. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Al-
gorithms. MIT Press, Cambridge, MA (2001)

5. Fredman, M., Willard, D.: Surpassing the information theoretic
bound with fusion trees. J. Comput. Syst. Sci. 47, 424–436
(1993). Announced at STOC’90

6. Fredman, M., Willard, D.: Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. J. Comput. Syst.
Sci. 48, 533–551 (1994)

Euclidean Traveling Salesperson Problem E 281

7. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in im-
proved network optimization algorithms. J. ACM 34(3), 596–
615 (1987)

8. Han, Y.: Improved fast integer sorting in linear space. Inf.
Comput. 170(8), 81–94 (2001). Announced at STACS’00 and
SODA’01

9. Han, Y.: Deterministic sorting in O(n log log n) time and lin-
ear space. J. Algorithms 50(1), 96–105 (2004). Announced at
STOC’02

10. Han, Y., Thorup, M.: Integer sorting inO(n
p
log log n) expected

time and linear space. In: Proc. 43rd FOCS, 2002, pp. 135–144
11. Mendelson, R., Tarjan, R., Thorup, M., Zwick, U.: Melding pri-

ority queues. ACM TALG 2(4), 535–556 (2006). Announced at
SODA’04

12. Pagh, A., Pagh, R., Thorup, M.: On adaptive integer sorting. In:
Proc. 12th ESA, 2004, pp. 556–579

13. Thorup, M.: Faster deterministic sorting and priority queues in
linear space. In: Proc. 9th SODA, 1998, pp. 550–555

14. Thorup, M.: On RAM priority queues. SIAM J. Comput. 30(1),
86–109 (2000). Announced at SODA’96

15. Thorup, M.: Equivalence between priority queues and sorting.
In: Proc. 43rd FOCS, 2002, pp. 125–134

16. Thorup, M.: Randomized sorting in O(n log log n) time and
linear space using addition, shift, and bit-wise boolean op-
erations. J. Algorithms 42(2), 205–230 (2002). Announced at
SODA’97

17. Thorup, M.: Integer priority queues with decrease key in con-
stant time and the single source shortest paths problem.
J. Comput. Syst. Sci. (special issue on STOC’03) 69(3), 330–353
(2004)

18. Vollmer, H.: Introduction to circuit complexity: a uniform ap-
proach. Springer, New York (1999)

19. Willard, D.: Examining computational geometry, van Emde
Boas trees, and hashing from the perspective of the fusion
tree. SIAM J. Comput. 29(3), 1030–1049 (2000). Announced at
SODA’92

Error-Control Codes,
Reed–Muller Code
� Learning Heavy Fourier Coefficients of Boolean

Functions

Error Correction
� Decoding Reed–Solomon Codes
� List Decoding near Capacity: Folded RS Codes
� LP Decoding

Euclidean Graphs and Trees
�Minimum Geometric Spanning Trees
�Minimum k-Connected Geometric Networks

Euclidean Traveling
Salesperson Problem
1998; Arora

ARTUR CZUMAJ
DIMAP and Computer Science, University of Warwick,
Coventry, UK

Keywords and Synonyms

Euclidean TSP; Geometric TSP; Geometric traveling sales-
man problem

ProblemDefinition

This entry considers geometric optimization NP-hard
problems like the Euclidean Traveling Salesperson prob-
lem and the Euclidean Steiner Tree problem. These prob-
lems are geometric variants of standard graph optimiza-
tion problems, and the restriction of the input instances
to geometric or Euclidean case arise in numerous appli-
cations (see [1,2]). The main focus of this chapter is the
Euclidean Traveling Salesperson problem.

Notation

The Euclidean Traveling Salesperson Problem (TSP): For
a given set S of n points in the Euclidean space Rd , find
a path of minimum length that visits each point exactly
once.

The cost ı(x; y) of an edge connecting a pair of points
x; y 2 Rd is equal to the Euclidean distance between

points x and y. That is, ı(x; y) =
qPd

i=1(xi � yi)2, where
x = (x1; : : : ; xd) and y = (y1; : : : ; yd). More generally, the
distance can be defined using other norms, such as `p

norms for any p > 1, ı(x; y) =
�Pd

i=1(xi � yi)p
�1/p

.
For a given set S of points in the Euclidean space

Rd , for an integer d, d � 2, an Euclidean graph (network)
is a graph G = (S; E), where E is the set of straight-line
segments connecting pairs of points in S. If all pairs of
points in S are connected by edges in E, then G is called
a complete Euclidean graph on S. The cost of the graph is
equal to the sum of the costs of the edges of the graph:
cost(G) =

P
(x;y)2E ı(x; y).

A polynomial-time approximation scheme (PTAS) is
a family of algorithms fA"g such that, for each fixed " > 0,
A" runs in a time which is a polynomial of the size of the
input, and produces a (1 + ")-approximation.

282 E Euclidean Traveling Salesperson Problem

Related work

The classical book by Lawler et al. [12] provides extensive
information about the TSP. Also, the survey exposition of
Bern and Eppstein [7] presents state of the art research
done on the geometric TSP up to 1995, and the survey of
Arora [2] discusses the research done after 1995.

Key Results

In general graphs the TSP graph problem is well known to
beNP-hard, and the same claim holds for the Euclidean
TSP problem [11], [14].

Theorem 1 The Euclidean TSP problem isNP-hard.
Perhaps rather surprisingly, it is still not known if the de-
cision version of the problem isNP-complete [11]. (The
decision version of the Euclidean TSP problem is for a
given point set in the Euclidean space Rd and a number
t, verify if there is a simple path of length smaller than t
that visits each point exactly once.)

The approximability of TSP has been studied exten-
sively over the last few decades. It is not hard to see
that TSP is not approximable in polynomial-time (unless
P =NP) for arbitrary graphs with arbitrary edge costs.
When the weights satisfy the triangle inequality (the so
calledmetric TSP), there is a polynomial-time 3/2-approx-
imation algorithm due to Christofides [8], and it is known
that no PTAS exists (unless P =NP). This result has
been strengthened by Trevisan [17] to include Euclidean
graphs in high-dimensions (the same result holds also for
any `p metric).

Theorem 2 (Trevisan [17]) If d � log n, then there exists
a constant � > 0 such that the Euclidean TSP problem in
Rd isNP-hard to approximate within a factor of 1 + �.

In particular, this result implies that if d � log n, then
the Euclidean TSP problem in Rd has no PTAS unless
P =NP.

The same result also holds for any `p metric. Further-
more, Theorem 2 implies that the Euclidean TSP in Rlog n

is APXPB-hard under E-reductions andAPX-complete un-
der AP-reductions.

It was believed that Theorem 2 might hold for smaller
values of d, in particular even for d = 2, but this has been
disproved independently by Arora [1] and Mitchell [13].

Theorem 3 (Arora [1],Mitchell [13]) The Euclidean TSP
on the plane has a PTAS.

The main idea of the algorithms of Arora and Mitchell is
rather simple, but the details of the analysis are quite com-
plicated. Both algorithms follow the same approach. First,

one proves a so-called Structure Theorem. This demon-
strates that there is a (1 + �)-approximation that has some
local properties. In the case of the Euclidean TSP problem,
there is a quadtree partition of the space containing all the
points, such that each cell of the quadtree is crossed by the
tour at most a constant number of times, and only in some
pre-specified locations. After proving the Structure The-
orem, one uses dynamic programming to find an optimal
(or almost optimal) solution that obeys the local properties
specified in the Structure Theorem.

The original algorithms presented in the first confer-
ence version of [1] and in the early version of [13] have
running times of the form O(n1/�) to obtain a (1 + �)-ap-
proximation, but this has been subsequently improved.
In particular, Arora’s randomized algorithm in [1] runs
in time O(n(log n)1/�), and it can be derandomized with
a slow-down of O(n). The result from Theorem 3 can be
also extended to higher dimensions. Arora shows the fol-
lowing result.

Theorem 4 (Arora [1]) For every constant d, the Eu-
clidean TSP in Rd has a PTAS.

For every fixed c > 1 and given any n nodes in Rd ,
there is a randomized algorithm that finds a (1 + 1/c)-ap-
proximation of the optimum traveling salesman tour in
O(n (log n)(O(

p
dc))d�1) time. In particular, for any con-

stant d and c, the running time isO(n (log n)O(1)). The algo-
rithm can be derandomized by increasing the running time
by a factor of O(nd).

This was later extended by Rao and Smith [15], who
proved the following theorem.

Theorem 5 (Rao and Smith [15]) There is a determin-
istic algorithm that computes a (1 + 1/c)-approximation
of the optimum traveling salesman tour in O(2(cd)O(d) n +
(cd)O(d) n log n) time.

There is also a randomized Monte Carlo algorithm
that succeeds with probability at least 1/2 and that com-
putes a (1 + 1/c)-approximation of the optimum travel-
ing salesman tour in the expected (c

p
d)O(d(c

p
d)d�1) n +

O(d n log n) time.

In the special and most interesting case, when d = 2, Rao
and Smith show the following.

Theorem 6 (Rao and Smith [15]) There is a de-
terministic algorithm that computes a (1 + 1/c)-approx-
imation of the optimum traveling salesman tour in
O(n 2cO(1) + cO(1) n log n) time.

There is a randomized Monte Carlo algorithm (which
fails with probability smaller than 1/2) that computes

Euclidean Traveling Salesperson Problem E 283

a (1 + 1/c)-approximation of the optimum traveling sales-
man tour in the expectedO(n 2cO(1) + n log n) time.

Applications

The techniques developed by Arora [1] and Mitchell [13]
found numerous applications in the design of polynomial-
time approximation schemes for geometric optimization
problems.

EuclideanMinimum Steiner Tree Problem For a given
set S of n points in the Euclidean space Rd , find the min-
imum cost network connecting all the points in S (where
the cost of a network is equal to the sum of the lengths of
the edges defining it).

Theorem 7 ([1], [15]) For every constant d, the Euclidean
Minimum Steiner tree problem inRd has a PTAS.

Euclidean k-median Problem For a given set S of n
points in the Euclidean space Rd and an integer k, find
k medians among the points in S so that the sum of the
distances from each point in S to its closest median is min-
imized.

Theorem 8 ([5]) For every constant d, the Euclidean k-
median problem inRd has a PTAS.

Euclidean k-TSP Problem For a given set S of n points
in the Euclidean spaceRd and an integer k, find the short-
est tour that visits at least k points in S.

Euclidean k-MST Problem For a given set S of n points
in the Euclidean spaceRd and an integer k, find the short-
est tree that contains at least k points from S.

Theorem 9 ([1]) For every constant d, the Euclidean
k-TSP and the Euclidean k-MST problems in Rd have
a PTAS.

Euclidean Minimum-cost k-connected Subgraph Prob-
lem For a given set S of n points in the Euclidean space
Rd and an integer k, find the minimum-cost subgraph (of
the complete graph on S) that is k-connected

Theorem 10 ([9]) For every constant d and constant k, the
Euclidean minimum-cost k-connected subgraph problem in
Rd has a PTAS.

The technique developed by Arora [1] and Mitchell [13]
also led to some quasi-polynomial-time approximation
schemes, that is, the algorithms with the running time
of nO(log n). For example, Arora and Karokostas [4] gave
a quasi-polynomial-time approximation scheme for the

Euclidean minimum latency problem, and Remy and
Steger [16] gave a quasi-polynomial-time approximation
scheme for the minimum-weight triangulation problem.

For more discussion, see the survey by Arora [2]
and [10].

Extensions to Planar Graphs

The dynamic programming approach used by Arora [1]
and Mitchell [13] is also related to the recent advances
for a number of optimization problems for planar graphs.
For example, Arora et al. [3] designed a PTAS for the TSP
problem in weighted planar graphs, and there is a PTAS
for the problem of finding a minimum-cost spanning 2-
connected subgraph of a planar graph [6].

Open Problems

One interesting open problem is if the quasi-polynomial-
time approximation schemes mentioned above (for the
minimum latency and the minimum-weight triangula-
tion problems) can be extended to obtain polynomial-
time approximation schemes. For more open problems,
see Arora [2].

Cross References

�Metric TSP
�Minimum k-Connected Geometric Networks
�MinimumWeight Triangulation

Recommended Reading
1. Arora, S.: Polynomial time approximation schemes for Eu-

clidean traveling salesman and other geometric problems.
J. ACM 45(5), 753–782 (1998)

2. Arora, S.: Approximation schemes forNP-hard geometric op-
timization problems: A survey. Math. Program. Ser. B 97, 43–69
(2003)

3. Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A..: A poly-
nomial time approximation scheme for weighted planar graph
TSP. In: Proc. 9th Annual ACM-SIAMSymposiumonDiscrete Al-
gorithms, 1998, pp. 33–41

4. Arora, S., Karakostas, G.: Approximation schemes for minimum
latency problems. In: Proc. 31st Annual ACM Symposium on
Theory of Computing, 1999, pp. 688–693

5. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Eu-
clidean k-medians and related problems. In: Proc. 30th Annual
ACM Symposium on Theory of Computing, 1998, pp. 106–113

6. Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation
schemes for minimum 2-connected spanning subgraphs in
weighted planar graphs. In: Proc. 13th Annual European Sym-
posium on Algorithms, 2005, pp. 472–483

7. Bern,M., Eppstein, D.: Approximation algorithms for geometric
problems. In: Hochbaum, D. (ed.) Approximation Algorithms
for NP-hard problems. PWS Publishing, Boston (1996)

284 E Exact Algorithms for Dominating Set

8. Christofides, N.: Worst-case analysis of a new heuristic for the
traveling salesman problem. In: Technical report, Graduate
School of Industrial Administration. Carnegie-Mellon Univer-
sity, Pittsburgh (1976)

9. Czumaj, A., Lingas, A.: On approximability of the minimum-
cost k-connected spanning subgraph problem. In: Proc. 10th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1999,
pp. 281–290

10. Czumaj, A., Lingas, A.: Approximation schemes for minimum-
cost k-connectivity problems in geometric graphs. In: Gon-
zalez, T.F. (eds.) Handbook of Approximation Algorithms and
Metaheuristics. CRC Press, Boca Raton (2007)

11. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete
geometric problems. In: Proc. 8th Annual ACM Symposium on
Theory of Computing, 1976, pp. 10–22

12. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The
Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. Wiley, Chichester (1985)

13. Mitchell, J.S.B.: Guillotine subdivisions approximate polygo-
nal subdivisions: A simple polynomial-time approximation
scheme for geometric TSP, k-MST, and related problems. SIAM
J. Comput. 28(4), 1298–1309 (1999)

14. Papadimitriou, C.H.: Euclidean TSP is NP-complete. Theor.
Comput. Sci. 4, 237–244 (1977)

15. Rao, S.B., Smith, W.D.: Approximating geometrical graphs via
“spanners” and “banyans”. In: Proc. 30th Annual ACM Sympo-
sium on Theory of Computing, 1998, pp. 540–550

16. Remy, J., Steger, A.: A quasi-polynomial time approximation
scheme for minimum weight triangulation. In: Proc. 38th An-
nual ACM Symposium on Theory of Computing, 2006

17. Trevisan, L.: When Hammingmeets Euclid: the approximability
of geometric TSP and Steiner Tree. SIAM J. Comput. 30(2), 475–
485 (2000)

Exact Algorithms for Dominating Set
2005; Fomin, Grandoni, Kratsch

DIETER KRATSCH
UFMMIM – LITA, Paul Verlaine University,
Metz, France

Keywords and Synonyms

Connected dominating set

ProblemDefinition

The dominating set problem is a classical NP-hard opti-
mization problem which fits into the broader class of cov-
ering problems. Hundreds of papers have been written on
this problem that has a natural motivation in facility loca-
tion.

Definition 1 For a given undirected, simple graph
G = (V ; E) a subset of vertices D
 V is called a dominat-
ing set if every vertex u 2 V � D has a neighbor in D. The

minimum dominating set (MDS) problem is to find amin-
imum dominating set of G, i. e. a dominating set of G of
minimum cardinality.

Problem 1 (MDS)
Input: Undirected simple graph G = (V ; E).
Output: A minimum dominating set D of G.

Various modifications of the dominating set problem are
of interest, some of them obtained by putting additional
constraints on the dominating set such as, for example, re-
questing it to be an independent set or to be connected.
In graph theory there is a huge literature on domination
dealing with the problem and its many modifications (see
e. g.[9]). In graph algorithms the MDS problem and some
of its modifications like Independent Dominating Set and
Connected Dominating Set have been studied as bench-
mark problems for attacking NP-hard problems under
various algorithmic approaches.

Known Results

The algorithmic complexity of MDS and its modifications
when restricted to inputs from a particular graph class has
been studied extensively (see e. g. [10]). Among others, it
is known that MDS remains NP-hard on bipartite graphs,
split graphs, planar graphs and graphs of maximum de-
gree three. Polynomial time algorithms to compute a min-
imum dominating set are known, for example, for permu-
tation, interval and k-polygon graphs. There is also a O(4k

nO(1)) time algorithm to solveMDS on graphs of treewidth
at most k.

The dominating set problem is one of the basic prob-
lems in parameterized complexity [3]; it is W[2]-com-
plete and thus it is unlikely that the problem is fixed
parameter tractable. On the other hand, the problem
is fixed parameter tractable on planar graphs. Concern-
ing approximation, MDS is equivalent to MINIMUM SET
COVER under L-reductions. There is an approximation al-
gorithm solving MDS within a factor of 1 + ln jV j and it
cannot be approximated within a factor of (1 � �) ln jV j
for any � > 0, unless NP� DTIME(nlog log n) [1].

Moderately Exponential Time Algorithms

If P ¤ NP then no polynomial time algorithm can solve
MDS. Even worse, it has been observed in [7] that un-
less SNP
 SUBEXP (which is considered to be highly un-
likely), there is not even a subexponential time algorithm
solving the dominating set problem.

The trivial O(2n (n+m)) algorithm, which simply
checks all the 2n vertex subsets as to whether they are
dominating, clearly solves MDS. Three faster algorithms

Exact Algorithms for Dominating Set E 285

were established in 2004. The algorithm of Fomin et al. [7]
uses a deep graph-theoretic result due to B. Reed, stat-
ing that every graph on n vertices with minimum degree
at least three has a dominating set of size at most 3n/8,
to establish an O(20.955n) time algorithm solving MDS.
The O(20.919n) time algorithm of Randerath and Schier-
meyer [11] uses very nice ideas including matching tech-
niques to restrict the search space. Finally, Grandoni [8]
established an O(20.850n) time algorithm to solve MDS.

The work of Fomin, Grandoni, and Kratsch [5]
presents a simple and easy to implement recursive branch
& reduce algorithm to solve MDS. The running time of
the algorithm is significantly faster than the ones stated
for previous algorithms. This is heavily based on the anal-
ysis of the running time by measure & conquer, which is
a method to analyze the worst case running time of (sim-
ple) branch & reduce algorithms based on a sophisticated
choice of the measure of a problem instance.

Key Results

Theorem 1 There is a branch & reduce algorithm solving
MDS in time O(20:610n) using polynomial space.

Theorem 2 There is an algorithm solving MDS in time
O(20:598n using exponential space.

The algorithms of Theorem 1 and 2 are simple conse-
quences of a transformation from MDS to MINIMUM SET
COVER (MSC) combined with new moderately exponen-
tial time algorithms for MSC.

Problem 2 (MSC)
Input: Finite setU and a collection S of subsets S1,S2,. . . St
ofU.
Output: Aminimum set cover S0, where S0
 S is a set cover
of (U;S) ifSSi2S0 Si = U.

Theorem 3 There is a branch & reduce algorithm solving
MSC in time O(20:305(jUj+jSj)) using polynomial space.

Applying memorization to the polynomial space algo-
rithm of Theorem 3 the running time can be improved as
follows.

Theorem 4 There is an algorithm solving MSC in time
O(20:299(jSj+jUj)) using exponential space.

The analysis of the worst case running time of the simple
branch & reduce algorithm solving MSC (of Theorem 3)
is done by a careful choice of the measure of a problem
instance which allows one to obtain an upper bound that
is significantly smaller than the one that could be obtained
using the standard measure. The refined analysis leads to

a collection of recurrences. Then random local search is
used to compute the weights, used in the definition of the
measure, aiming at the best achievable upper bound of the
worst-case running time.

Since current tools to analyze the worst-case running
time of branch & reduce algorithms do not seem to pro-
duce tight upper bounds, exponential lower bounds of the
worst-case running time of the algorithm are of interest.

Theorem 5 The worst-case running time of the branch &
reduce algorithm solvingMDS (see Theorem 1) is˝(2n/3).

Applications

There are various other NP-hard domination-type prob-
lems that can be solved by a moderately exponential time
algorithm based on an algorithm solving MINIMUM SET
COVER: any instance of the initial problem is transformed
to an instance of MSC (preferably with jUj = jSj), and
then the algorithm of Theorem 3 or 4 is used to solve MSC
and thus the initial problem. Examples of such problems
are TOTAL DOMINATING SET, k-DOMINATING SET, k-
CENTER and MDS on split graphs.

Measure & Conquer and the strongly related quasi-
convex analysis of Eppstein [4] have been used to design
and analyze a variety of moderately exponential time algo-
rithms for NP-hard problems: optimization, counting and
enumeration problems. See for example [2,6].

Open Problems

A number of problems related to the work of Fomin,
Grandoni, and Kratsch remain open. Although for vari-
ous graph classes there are algorithms to solve MDS which
are faster than the one for general graphs (of Theorem 1
and 2), no such algorithm is known for solving MDS on
bipartite graphs.

The worst-case running times of simple branch & re-
duce algorithms like those solving MDS and MSC remain
unknown. In the case of the polynomial space algorithm
solving MDS there is a large gap between the O(20.610n)
upper bound and the ˝(2n/3) lower bound. The situation
is similar for other branch & reduce algorithms. Conse-
quently, there is a strong need for new and better tools to
analyze the worst-case running time of branch & reduce
algorithms.

Cross References

� Connected Dominating Set
� Data Reduction for Domination in Graphs
� Vertex Cover Search Trees

286 E Exact Algorithms for General CNF SAT

Recommended Reading
1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-

Spaccalema, A., Protasi, M.: Complexity and Approximation.
Springer, Berlin (1999)

2. Byskov, J.M.: Exact algorithms for graph colouring and ex-
act satisfiability. Ph. D. thesis, University of Aarhus, Denmark
(2004)

3. Downey, R.G., Fellows, M.R.: Parameterized complexity.
Springer, New York (1999)

4. Eppstein, D.: Quasiconvex analysis of backtracking algorithms.
In: Proceedings of SODA 2004, pp. 781–790

5. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer:
Domination – A case study. In: Proceedings of ICALP 2005.
LNCS, vol. 3380, pp. 192–203. Springer, Berlin (2005)

6. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and Con-
quer: A simple O(20.288n) Independent Set Algorithm. In: Pro-
ceedings of SODA 2006, pp. 18–25

7. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) al-
gorithms for the dominating set problem. In: Proceedings of
WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Berlin (2004)

8. Grandoni, F.: Exact Algorithms for Hard Graph Problems. Ph. D.
thesis, Università di Roma “Tor Vergata”, Roma, Italy (2004)

9. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of
domination in graphs. Marcel Dekker, New York (1998)

10. Kratsch, D.: Algorithms. In: Haynes, T., Hedetniemi, S., Slater, P.
(eds.) Domination in Graphs: Advanced Topics, pp. 191–231.
Marcel Dekker, New York (1998)

11. Randerath, B., Schiermeyer, I.: Exact algorithms for MINIMUM
DOMINATING SET. Technical Report, zaik-469, Zentrum für
Angewandte Informatik Köln (2004)

12. Woeginger, G.J.: Exact algorithms for NP-hard problems: A sur-
vey. In: Combinatorial Optimization – Eureka, You Shrink.
LNCS, vol. 2570, pp. 185–207. Springer, Berlin (2003)

Exact Algorithms
for General CNF SAT
1998; Hirsch
2003; Schuler

EDWARD A. HIRSCH
Laboratory of Mathematical Logic, Steklov Institute
of Mathematics at St. Petersburg, St. Petersburg, Russia

Keywords and Synonyms

SAT; Boolean satisfiability

ProblemDefinition

The satisfiability problem (SAT) for Boolean formulas in
conjunctive normal form (CNF) is one of the first NP-
complete problems [2,13]. Since itsNP-completeness cur-
rently leaves no hope for polynomial-time algorithms, the
progress goes by decreasing the exponent. There are sev-
eral versions of this parametrized problem that differ in
the parameter used for the estimation of the running time.

Problem 1 (SAT) INPUT: Formula F in CNF containing
n variables, m clauses, and l literals in total.

OUTPUT: “Yes” if F has a satisfying assignment, i. e.,
a substitution of Boolean values for the variables that makes
F true. “No” otherwise.

The bounds on the running time of SAT algorithms can
be thus given in the form jFjO(1) � ˛n ; jFjO(1) � ˇm , or
jFjO(1) �� l , where |F| is the length of a reasonable bit repre-
sentation of F (i. e., the formal input to the algorithm). In
fact, for the present algorithms the bases ˇ and � are con-
stants while ˛ is a function ˛(n;m) of the formula param-
eters (because no better constant than ˛ = 2 is known).

Notation

A formula in conjunctive normal form is a set of clauses
(understood as the conjunction of these clauses), a clause
is a set of literals (understood as the disjunction of these
literals), and a literal is either a Boolean variable or the
negation of a Boolean variable. A truth assignment as-
signs Boolean values (false or true) to one or more
variables. An assignment is abbreviated as the list of liter-
als that are made true under this assignment (for exam-
ple, assigning false to x and true to y is denoted by
:x; y). The result of the application of an assignment A
to a formula F (denoted F[A]) is the formula obtained
by removing the clauses containing the true literals from
F and removing the falsified literals from the remaining
clauses. For example, if F = (x _:y _ z)^ (y _:z), then
F[:x; y] = (z). A satisfying assignment for F is an assign-
ment A such that F[A] = true. If such an assignment
exists, F is called satisfiable.

Key Results

Bounds for ˇ and �

General Approach and a Bound for ˇ The trivial brute-
force algorithm enumerating all possible assignments to
the n variables runs in 2n polynomial-time steps. Thus
˛ � 2, and by trivial reasons also ˇ; � � 2. In the early
1980s Monien and Speckenmeyer noticed that ˇ could be
made smaller1. Then Kullmann and Luckhardt [12] set
up a framework for divide-and-conquer2 algorithms for
SAT that split the original problem into several (yet usu-

1They and other researchers also noticed that ˛ could be made
smaller for a special case of the problem where the length of each
clause is bounded by a constant; the reader is referred to another entry
(Local search algorithms for k-SAT) of the Encyclopedia for relevant
references and algorithms.

2Also called DPLL due to the papers of Davis and Putnam [7] and
Davis, Logemann, and Loveland [6].

Exact Algorithms for General CNF SAT E 287

ally a constant number of) subproblems by substituting the
values of some variables and simplifying the obtained for-
mulas. This line of research resulted in the following upper
bounds for ˇ and � :

Theorem 1 (Hirsch [8]) SAT can be solved in time
1. jFjO(1) � 20:30897m;
2. jFjO(1) � 20:10299l .

A typical divide-and-conquer algorithm for SAT consists
of two phases: splitting of the original problem into several
subproblems (for example, reducing SAT(F) to SAT(F[x])
and SAT(F[:x])) and simplification of the obtained sub-
problems using polynomial-time transformation rules that
do not affect the satisfiability of the subproblems (i. e., they
replace a formula by an equi-satisfiable one). The subprob-
lems F1; : : : ; Fk for splitting are chosen so that the corre-
sponding recurrent inequality using the simplified prob-
lems F 01; : : : ; F

0
k ,

T(F) �
kX
i=1

T(F 0i) + const ;

gives a desired upper bound on the number of leaves
in the recurrence tree and, hence, on the running time
of the algorithm. In particular, in order to obtain the
bound jFjO(1) � 20:30897m one takes either two subproblems
F[x]; F[:x] with recurrent inequality

tm � tm�3 + tm�4

or four subproblems F[x; y]; F[x;:y]; F[:x; y]; F[:x;
:y] with recurrent inequality

tm � 2tm�6 + 2tm�7

where ti = maxm(G)�i T(G). The simplification rules used
in the jFjO(1) �20:30897m-time and the jFjO(1) �20:10299l -time
algorithms are as follows.

Simplification Rules

Elimination of 1-clauses If F contains a 1-clause (a), re-
place F by F[a].

Subsumption If F contains two clausesC andD such that
C
 D, replace F by F n fDg.

Resolution with Subsumption Suppose a literal a and
clauses C andD are such that a is the only literal satisfying
both conditions a 2 C and:a 2 D. In this case, the clause
(C [D) n fa;:ag is called the resolvent by the literal a of
the clauses C and D and denoted by R(C;D).

The rule is: if R(C;D)
 D, replace F by (F n fDg) [
fR(C;D)g.

Elimination of a Variable by Resolution [7] Given a lit-
eral a, construct the formula DPa(F) by
1. adding to F all resolvents by a;
2. removing from F all clauses containing a or :a.

The rule is: if DPa(F) is not larger inm (resp., in l) than
F, then replace F by DPa(F).

Elimination of Blocked Clauses A clause C is blocked for
a literal a w.r.t. F if C contains the literal a, and the literal
:a occurs only in the clauses of F that contain the nega-
tion of at least one of the literals occurring in C n fag. For
a CNF-formula F and a literal a occurring in it, the assign-
ment I(a; F) is defined as

fag [fliterals x … fa;:agj the clause f:a; xg
is blocked for :a w:r:t: Fg :

Lemma 2 (Kullmann [11])

(1) If a clause C is blocked for a literal a w.r.t. F, then F and
F n fCg are equi-satisfiable.

(2) Given a literal a, the formula F is satisfiable iff at least
one of the formulas F[:a] and F[I(a; F)] is satisfiable.

The first claim of the lemma is employed as a simplifica-
tion rule.

Application of the Black and White Literals Principle Let
P be a binary relation between literals and formulas in
CNF such that for a variable v and a formula F, at most
one of P(v; F) and P(:v; F) holds.

Lemma 3 Suppose that each clause of F that contains a lit-
eral w satisfying P(w; F) contains also at least one literal b
satisfying P(:b; F). Then F and F[fl jP(:l ; F)g] are equi-
satisfiable.

A Bound for � To obtain the bound jFjO(1) � 20:10299l , it
is enough to use a pair F[:a]; F[I(a; F)] of subproblems
(see Lemma 2(2)) achieving the desired recurrent inequal-
ity tl � tl�5 + tl�17 and to switch to the jFjO(1) � 20:30897m-
time algorithm if there are none. A recent (much more
technically involved) improvement to this algorithm [16]
achieves the bound jFjO(1) � 20:0926l .

A Bound for ˛

Currently, no non-trivial constant upper bound for ˛ is
known. However, starting with [14] there was an interest
to non-constant bounds. A series of randomized and de-
terministic algorithms showing successive improvements
was developed, and at the moment the best possible bound

288 E Exact Algorithms for General CNF SAT

is achieved by a deterministic divide-and-conquer algo-
rithm employing the following recursive procedure. The
idea behind it is a dichotomy: either each clause of the in-
put formula can be shortened to its first k literals (then a k-
CNF algorithm can be applied), or all these literals in one
of the clauses can be assumed false. (This clause-shorten-
ing approach can be attributed to Schuler [15] who used
it in a randomized fashion. The following version of the
deterministic algorithm achieving the best known bound
both for deterministic and randomized algorithms appears
in [5].)

Procedure S
Input: a CNF formula F and a positive integer k.

1. Assume F consists of clauses C1; : : : ;Cm . Change each
clause Ci to a clause Di as follows: If jCi j > k then
choose any k literals in Ci and drop the other literals;
otherwise leave Ci as is, i. e., Di = Ci . Let F0 denote the
resulting formula.

2. Test satisfiability of F0 using them � poly(n) � (2� 2/(k +
1))n-time k-CNF algorithm defined in [3].

3. If F0 is satisfiable, output “satisfiable” and halt. Other-
wise, for each i, do the following:
(a) Convert F to Fi as follows:

i. Replace Cj by Dj for all j < i;
ii. Assign false to all literals in Di.

(b) Recursively invoke Procedure S on (Fi ; k).
4. Return “unsatisfiable”.

The algorithm just invokes Procedure S on the
original formula and the integer parameter k = k � (m; n).
The most accurate analysis of this family of algorithms by
Calabro, Impagliazzo, and Paturi [1] implies that, assum-
ing that m > n, one can obtain the following bound by
taking k(m; n) = 2 log(m/n) + const. (This explicit bound
is not stated in [1] and is inferred in [4].)

Theorem 4 (Dantsin, Hirsch [4]) Assuming m > n, SAT
can be solved in time

jFjO(1) � 2n
�
1� 1

O(log(m/n))

�
:

Applications

While SAT has numerous applications, the presented al-
gorithms have no direct effect on them.

Open Problems

Proving a constant upper bound on ˛ < 2 remains amajor
open problem in the field, as well as the hypothetic exis-
tence of (1 + ")l -time algorithms for arbitrary small " > 0.

It is possible to perform the analysis of a divide-and-
conquer algorithm and even to generate simplification

rules automatically [10]. However, this approach so far led
to new bounds only for the (NP-complete) optimization
version of 2-SAT [9].

Experimental Results

Jun Wang has implemented the algorithm yielding the
bound on ˇ and collected some statistics regarding the
number of applications of the simplification rules [17].

Cross References

� Local Search Algorithms for kSAT
� Parameterized SAT

Recommended Reading

1. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause
width and clause density for SAT. In: Proceedings of the 21st
Annual IEEE Conference on Computational Complexity (CCC
2006), pp. 252–260. IEEE Computer Society (2006)

2. Cook, S.A.: The Complexity of Theorem Proving Procedures.
Proceedings of the Third Annual ACM Symposium on Theory
of Computing, May 1971, pp. 151–158. ACM (2006)

3. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Pa-
padimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2–
2/(k+ 1))n algorithm for k-SAT based on local search. Theor.
Comput. Sci. 289(1), 69–83 (2002)

4. Dantsin, E., Hirsch, E.A.: Worst-Case Upper Bounds. In: Biere, A.,
van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS
Press (2008) To appear

5. Dantsin, E., Hirsch, E.A., Wolpert, A.: Clause shortening com-
binedwith pruning yields a newupper bound for deterministic
SAT algorithms. In: Proceedings of CIAC-2006. Lecture Notes in
Computer Science, vol. 3998, pp. 60–68. Springer, Berlin (2006)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for
theorem-proving. Commun. ACM 5, 394–397 (1962)

7. Davis, M., Putnam, H.: A computing procedure for quantifica-
tion theory. J. ACM 7, 201–215 (1960)

8. Hirsch, E.A.: New worst-case upper bounds for SAT. J. Autom.
Reason. 24(4), 397–420 (2000)

9. Kojevnikov, A., Kulikov, A.: A New Approach to Proving Up-
per Bounds for MAX-2-SAT. Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2006), pp. 11–17. ACM, SIAM (2006)

10. Kulikov, A.: Automated Generation of Simplification Rules for
SAT and MAXSAT. Proceedings of the Eighth International
Conference on Theory and Applications of Satisfiability Test-
ing (SAT 2005). Lecture Notes in Computer Science, vol. 3569,
pp. 430–436. Springer, Berlin (2005)

11. Kullmann, O.: New methods for 3-{SAT} decision and worst-
case analysis. Theor. Comput. Sci. 223(1–2):1–72 (1999)

12. Kullmann, O., Luckhardt, H.: Algorithms for SAT/TAUT decision
based on various measures, preprint, 71 pages, http://cs-svr1.
swan.ac.uk/csoliver/papers.html (1998)

13. Levin, L.A.: Universal Search Problems. Проблемы передачи
информации 9(3), 265–266, (1973). In Russian. English trans-
lation in: Trakhtenbrot, B.A.: A Survey of Russian Approaches to

http://cs-svr1.swan.ac.uk/csoliver/papers.html
http://cs-svr1.swan.ac.uk/csoliver/papers.html

Exact Graph Coloring Using Inclusion–Exclusion E 289

Perebor (Brute-force Search) Algorithms. Annals of the History
of Computing 6(4), 384–400 (1984)

14. Pudlák, P.: Satisfiability – algorithms and logic. In: Proceedings
of the 23rd International Symposium on Mathematical Foun-
dations of Computer Science, MFCS’98. Lecture Notes in Com-
puter Science, vol. 1450, pp. 129–141. Springer, Berlin (1998)

15. Schuler, R.: An algorithm for the satisfiability problem of for-
mulas in conjunctive normal form. J. Algorithms 54(1), 40–44
(2005)

16. Wahlström, M.: An algorithm for the SAT problem for formulae
of linear length. In: Proceedings of the 13th Annual European
Symposium on Algorithms, ESA 2005. Lecture Notes in Com-
puter Science, vol. 3669, pp. 107–118. Springer, Berlin (2005)

17. Wang, J.: Generating and solving 3-SAT, MSc Thesis. Rochester
Institute of Technology, Rochester (2002)

Exact Graph Coloring Using
Inclusion–Exclusion
2006; Björklund, Husfeldt

ANDREAS BJÖRKLUND, THORE HUSFELDT
Department of Computer Science, Lund University,
Lund, Sweden

Keywords and Synonyms

Vertex coloring

ProblemDefinition

A k-coloring of a graph G = (V ; E) assigns one of k colors
to each vertex such that neighboring vertices have different
colors. This is sometimes called vertex coloring.

The smallest integer k for which the graph G admits
a k-coloring is denoted �(G) and called the chromatic
number. The number of k-colorings ofG is denoted P(G;k)
and called the chromatic polynomial.

Key Results

The central observation is that �(G) and P(G;k) can be ex-
pressed by an inclusion–exclusion formula whose terms
are determined by the number of independent sets of
induced subgraphs of G. For X
 V , let s(X) denote
the number of nonempty independent vertex subsets dis-
joint from X, and let sr(X) denote the number of ways to
choose r nonempty independent vertex subsets S1; : : : ; Sr
(possibly overlapping and with repetitions), all disjoint
from X, such that jS1j + � � � + jSr j = jV j.

Theorem 1 Let G be a graph on n vertices.
1.
�(G) = min

k2f1;:::;ng

n
k :

X
X	V

(�1)jXjs(X)k > 0
o
:

2. For k = 1; : : : ; k,

P(G; k) =
kX
r=1

k
r

!� X
X	V

(�1)jXjsr(X)
�
;

(k = 1; 2; : : : ; n) :

The time needed to evaluate these expressions is dom-
inated by the 2n evaluations of s(X) and sr(X), respec-
tively. These values can be pre-computed in time and space
within a polynomial factor of 2n because they satisfy

s(X) =
(
0; if X = V ;

s
�
X [fvg

�
+ s
�
X [fvg [N(v)

�
+ 1; for v … X ;

where N(v) are the neighbors of v in G. Alterna-
tively, the values can be computed using exponential-time,
polynomial-space algorithms from the literature.

This leads to the following bounds:

Theorem 2 For a graph G on n vertices, �(G) and P(G;k)
can be computed in
1. time and space 2nnO(1).
2. time O(2:2461n) and polynomial space

An optimal coloring that achieves �(G) can be found
within the same bounds.

The techniques generalize to arbitrary families of sub-
sets over a universe of size n, provided membership in the
family can be decided in polynomial time.

Applications

In addition to being a fundamental problem in combina-
torial optimization, graph coloring also arises in many ap-
plications, including register allocation and scheduling.

Cross References

Recommended Reading

1. Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfia-
bility and number of perfect matchings. In: Proc. 33rd ICALP.
LNCS, vol. 4051, pp. 548–1559. Springer (2006). Algorithmica,
doi:10.1007/s00453-007-9149-8

2. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclu-
sion–exclusion. SIAM J. Comput.

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets
Möbius: fast subset convolution. In: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing (STOC), San
Diego, CA, June 11–13, 2007. Association for Computing Ma-
chinery, pp. 67–74. New York (2007)

290 E Experimental Methods for Algorithm Analysis

Experimental Methods
for AlgorithmAnalysis
2001; McGeoch

CATHERINE C. MCGEOCH
Department of Mathematics and Computer Science,
Amherst College, Amherst, MA, USA

Keywords and Synonyms

Experimental algorithmics; Empirical algorithmics; Em-
pirical analysis of algorithms; Algorithm engineering

ProblemDefinition

Experimental analysis of algorithms describes not a spe-
cific algorithmic problem, but rather an approach to al-
gorithm design and analysis. It complements, and forms
a bridge between, traditional theoretical analysis, and the
application-driven methodology used in empirical analy-
sis.

The traditional theoretical approach to algorithm anal-
ysis defines algorithm efficiency in terms of counts of dom-
inant operations, under some abstract model of compu-
tation such as a RAM; the input model is typically either
worst-case or average-case. Theoretical results are usually
expressed in terms of asymptotic bounds on the function
relating input size to number of dominant operations per-
formed.

This contrasts with the tradition of empirical analysis
that has developed primarily in fields such as operations
research, scientific computing, and artificial intelligence.
In this tradition, the efficiency of implemented programs is
typically evaluated according to CPU or wall-clock times;
inputs are drawn from real-world applications or collec-
tions of benchmark test sets, and experimental results are
usually expressed in comparative terms using tables and
charts.

Experimental analysis of algorithms spans these two
approaches by combining the sensibilities of the theoreti-
cian with the tools of the empiricist. Algorithm and pro-
gram performance can be measured experimentally ac-
cording to a wide variety of performance indicators, in-
cluding the dominant cost traditional to theory, bottleneck
operations that tend to dominate running time, data struc-
ture updates, instruction counts, andmemory access costs.
A researcher in experimental analysis selects performance
indicators most appropriate to the scale and scope of the
specific research question at hand. (Of course time is not
the only metric of interest in algorithm studies; this ap-

proach can be used to analyze other properties such as so-
lution quality or space use.)

Input instances for experimental algorithm analysis
may be randomly generated or derived from application
instances. In either case, they typically are described in
terms of a small- to medium-sized collection of controlled
parameters. A primary goal of experimentation is to inves-
tigate the cause-and-effect relationship between input pa-
rameters and algorithm/program performance indicators.

Research goals of experimental algorithmics may in-
clude discovering functions (not necessarily asymptotic)
that describe the relationship between input and perfor-
mance, assessing the strengths and weaknesses of dif-
ferent algorithm/data structures/programming strategies,
and finding best algorithmic strategies for different input
categories. Results are typically presented and illustrated
with graphs showing comparisons and trends discovered
in the data.

The two terms “empirical” and “experimental”, are of-
ten used interchangeably in the literature. Sometimes the
terms “old style” and “new style” are used to describe, re-
spectively, the empirical and experimental approaches to
this type of research. The related term “algorithm engi-
neering” refers to a systematic design process that takes
an abstract algorithm all the way to an implemented pro-
gram, with an emphasis on program efficiency. Experi-
mental and empirical analysis is often used to guide the
algorithm engineering process. The general term algorith-
mics can refer to both design and analysis in algorithm re-
search.

Key Results

None

Applications

Experimental analysis of algorithms has been used to
investigate research problems originating in theoretical
computer science. One example arises in the average-case
analysis of algorithms for the One-Dimensional Bin Pack-
ing problem. Experimental analyses have led to new the-
orems about the performance of the optimal algorithm;
new asymptotic bounds on average-case performance of
approximation algorithms; extensions of theoretical re-
sults to new models of inputs; and to new algorithms
with tighter approximation guarantees. Another example
is the experimental discovery of a type of phase-transition
behavior for random instances of the 3CNF-Satisfiabilty
problem, which has led to new ways to characterize the
difficulty of problem instances.

External Sorting and Permuting E 291

A second application of experimental algorithmics is
to find more realistic models of computation, and to de-
sign new algorithms that perform better on these mod-
els. One example is found in the development of new
memory-based models of computation that give more ac-
curate time predictions than traditional unit-cost models.
Using these models, researchers have found new cache-ef-
ficient and I/O-efficient algorithms that exploit properties
of the memory hierarchy to achieve significant reductions
in running time.

Experimental analysis is also used to design and select
algorithms that work best in practice, algorithms that work
best on specific categories of inputs, and algorithms that
are most robust with respect to bad inputs.

Data Sets

Many repositories for data sets and instance generators to
support experimental research are available on the Inter-
net. They are usually organized according to specific com-
binatorial problems or classes of problems.

URL to Code

Many code repositories to support experimental research
are available on the Internet. They are usually organized
according to specific combinatorial problems or classes
of problems. Skiena’s Stony Brook Algorithm Repository
(www.cs.sunysb.edu/~algorith/) provides a comprehen-
sive collection of problem definitions and algorithm de-
scriptions, with numerous links to implemented algo-
rithms.

Recommended Reading

The algorithmic literature containing examples of experi-
mental research is much too large to list here. Some arti-
cles containing advice and commentary on experimental
methodology in the context of algorithm research appear
in the list below.

The workshops and journals listed below are specifi-
cally intended to support research in experimental anal-
ysis of algorithms. Experimental work also appears in
more general algorithm research venues such as SODA
(ACM/IEEE Symposium on Data Structures and Algo-
rithms), Algorithmica, and ACM Transactions on Algo-
rithms.

1. ACMJournal of Experimental Algorithmics. Launched in 1996, this
journal publishes contributed articles as well as special sections
containing selected papers from ALENEX and WEA. Visit www.
jea.acm.org, or visit portal.acm.org and click on ACM Digital Li-
brary/Journals/Journal of Experimental Algorithmics

2. ALENEX. Beginning in 1999, the annual workshop on Algo-
rithm Engineering and Experimentation is sponsored by SIAM
and ACM. It is co-located with SODA, the SIAM Symposium
on Data Structures and Algorithms. Workshop proceedings are
published in the Springer LNCS series. Visit www.siam.org/
meetings/ for more information

3. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.:
Designing and reporting on computational experiments with
heuristic methods. J. Heuristic 1(1), 9–32 (1995)

4. Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT
Press, Cambridge (1995)

5. DIMACS Implementation Challenges. Each DIMACS Implemen-
tation Challenge is a year-long cooperative research event in
which researchers cooperate to find the most efficient algo-
rithms and strategies for selected algorithmic problems. The
DIMACS Challenges since 1991 have targeted a variety of op-
timization problems on graphs; advanced data structures; and
scientific application areas involving computational biology
and parallel computation. The DIMACS Challenge proceedings
are published by AMS as part of the DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. Visit dimacs.
rutgers.edu/Challenges for more information

6. Johnson, D.S.: A theoretician’s guide to the experimental anal-
ysis of algorithms. In: Goodrich, M.H., Johnson, D.S., McGeoch,
C.C. (eds.) Data Structures, Near Neighbors Searches, and
Methodology: Fifth and Sixth DIMACS Implementation Chal-
lenges, DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, vol. 59. American Mathematical Society,
Providence (2002)

7. McGeoch, C.C.: Toward an experimental method for algorithm
simulation. INFORMS J. Comp. 1(1), 1–15 (1996)

8. WEA. Beginning in 2001, the annual Workshop on Experimen-
tal and Efficient Algorithms is sponsored by EATCS. Workshop
proceedings are published in the Springer LNCS series

External Memory
� I/O-model
� R-Trees

External Sorting and Permuting
1988; Aggarwal, Vitter

JEFFREY SCOTT VITTER
Department of Computer Science, Purdue University,
West Lafayette, IN, USA

Keywords and Synonyms

Out-of-core sorting

ProblemDefinition

Notations The main properties of magnetic disks and
multiple disk systems can be captured by the commonly
used parallel disk model (PDM), which is summarized

http://www.cs.sunysb.edu/~algorith/
http://www.jea.acm.org
http://www.jea.acm.org
http://portal.acm.org
http://www.siam.org/meetings/
http://www.siam.org/meetings/
http://dimacs.rutgers.edu/Challenges
http://dimacs.rutgers.edu/Challenges

292 E External Sorting and Permuting

below in its current form as developed by Vitter and
Shriver [16]:

N = problem size (in units of data items) ;
M = internal memory size (in units of data items) ;
B = block transfer size (in units of data items) ;
D = number of independent disk drives ;
P = number of CPUs ;

where M < N , and 1 � DB � M/2. The data items are
assumed to be of fixed length. In a single I/O, each of
the D disks can simultaneously transfer a block of B con-
tiguous data items. (In the original 1988 article [2], the D
blocks per I/O were allowed to come from the same disk,
which is not realistic.) If P � D, each of the P processors
can drive about D/P disks; if D < P, each disk is shared by
about P/D processors. The internal memory size is M/P
per processor, and the P processors are connected by an
interconnection network.

It is convenient to refer to some of the above PDM pa-
rameters in units of disk blocks rather than in units of data
items; the resulting formulas are often simplified. We de-
fine the lowercase notation

n =
N
B
; m =

M
B
; q =

Q
B
; z =

Z
B

(1)

to be the problem input size, internal memory size, query
specification size, and query output size, respectively, in
units of disk blocks.

The primary measures of performance in PDM are
1. the number of I/O operations performed,
2. the amount of disk space used, and
3. the internal (sequential or parallel) computation time.
For reasons of brevity in this survey, focus is restricted to
only the first two measures. Most of the algorithms run in
optimal CPU time, at least for the single-processor case.
Ideally algorithms and data structures should use linear
space, which means O(N/B) = O(n) disk blocks of stor-
age.

Problem 1 (External sorting) INPUT: The input data
records R0, R1, R2, . . . are initially “striped” across the D
disks, in units of blocks, so that record Ri is in block bi/Bc,
and block j is stored on disk j mod D.

OUTPUT: A striped representation of a permuted or-
dering R�(0), R�(1), R�(2), . . . of the input records with the
property that key(R�(i)) � key(R�(i+1)) for all i � 0.

Permuting is the special case of sorting in which the per-
mutation that describes the final position of the records is
given explicitly and does not have to be discovered, for ex-
ample, by comparing keys.

Problem 2 (Permuting) INPUT: Same input assumptions
as in external sorting. In addition, a permutation � of the
integers f0; 1; 2; : : : ;N � 1g is specified.

OUTPUT: A striped representation of a permuted order-
ing R�(0); R�(1); R�(2); : : : of the input records.

Key Results

Theorem 1 ([2,12]) The average-case and worst-case
number of I/Os required for sorting N = nB data items us-
ing D disks is

Sort(N) = 	
� n
D

logm n
�
: (2)

Theorem 2 ([2]) The average-case and worst-case number
of I/Os required for permuting N data items using D disks
is

	

�
min

�
N
D
; Sort(N)

��
: (3)

Matrix transposition is the special case of permuting in
which the permutation can be represented as a transposi-
tion of a matrix from row-major order into column-major
order.

Theorem 3 ([2]) With D disks, the number of I/Os re-
quired to transpose a p � q matrix from row-major order
to column-major order is

	
� n
D

logm minfM; p; q; ng
�
; (4)

where N = pq and n = N/B.

Matrix transposition is a special case of a more gen-
eral class of permutations called bit-permute/complement
(BPC) permutations, which in turn is a subset of the class
of bit-matrix-multiply/complement (BMMC) permuta-
tions. BMMC permutations are defined by a log N � logN
nonsingular 0-1 matrix A and a (log N)-length 0-1 vec-
tor c. An item with binary address x is mapped by the per-
mutation to the binary address given by Ax ˚ c, where
˚ denotes bitwise exclusive-or. BPC permutations are
the special case of BMMC permutations in which A is
a permutation matrix, that is, each row and each column
of A contain a single 1. BPC permutations include ma-
trix transposition, bit-reversal permutations (which arise
in the FFT), vector-reversal permutations, hypercube per-
mutations, and matrix reblocking. Cormen et al. [6] char-

External Sorting and Permuting E 293

acterize the optimal number of I/Os needed to perform
any given BMMC permutation solely as a function of the
associated matrix A, and they give an optimal algorithm
for implementing it.

Theorem 4 ([6]) With D disks, the number of I/Os re-
quired to perform the BMMC permutation defined by ma-
trix A and vector c is

	

�
n
D

�
1 +

rank(�)
logm

��
; (5)

where � is the lower-left log n � log B submatrix of A.

The two main paradigms for external sorting are distribu-
tion andmerging, which are discussed in the following sec-
tions for the PDMmodel.

Sorting by Distribution

Distribution sort [9] is a recursive process that uses a set
of S � 1 partitioning elements to partition the items into
S disjoint buckets. All the items in one bucket precede all
the items in the next bucket. The sort is completed by re-
cursively sorting the individual buckets and concatenating
them together to form a single fully sorted list.

One requirement is to choose the S � 1 partitioning
elements so that the buckets are of roughly equal size.
When that is the case, the bucket sizes decrease from one
level of recursion to the next by a relative factor of 	(S),
and thus there are O(logS n) levels of recursion. During
each level of recursion, the data are scanned. As the items
stream through internal memory, they are partitioned into
S buckets in an online manner. When a buffer of size B
fills for one of the buckets, its block is written to the disks
in the next I/O, and another buffer is used to store the
next set of incoming items for the bucket. Therefore, the
maximum number of buckets (and partitioning elements)
is S = 	(M/B) = 	(m), and the resulting number of levels
of recursion is	(logm n). How to perform each level of re-
cursion in a linear number of I/Os is discussed in [2,11,16].

An even better way to do distribution sort, and deter-
ministically at that, is the BalanceSort method developed
by Nodine and Vitter [11]. During the partitioning pro-
cess, the algorithm keeps track of how evenly each bucket
has been distributed so far among the disks. It maintains
an invariant that guarantees good distribution across the
disks for each bucket.

The distribution sort methods mentioned above for
parallel disks performwrite operations in complete stripes,
which make it easy to write parity information for use in
error correction and recovery. But since the blocks writ-
ten in each stripe typically belong to multiple buckets, the

buckets themselves will not be striped on the disks, and
thus the disks must be used independently during read op-
erations. In the write phase, each bucket must therefore
keep track of the last block written to each disk so that the
blocks for the bucket can be linked together.

An orthogonal approach is to stripe the contents of
each bucket across the disks so that read operations can
be done in a striped manner. As a result, the write op-
erations must use disks independently, since during each
write, multiple buckets will be writing to multiple stripes.
Error correction and recovery can still be handled effi-
ciently by devoting to each bucket one block-sized buffer
in internal memory. The buffer is continuously updated to
contain the exclusive-or (parity) of the blocks written to
the current stripe, and after D � 1 blocks have been writ-
ten, the parity information in the buffer can be written to
the final (Dth) block in the stripe.

Under this new scenario, the basic loop of the distribu-
tion sort algorithm is, as before, to read one memoryload
at a time and partition the items into S buckets. However,
unlike before, the blocks for each individual bucket will re-
side on the disks in contiguous stripes. Each block there-
fore has a predefined place where it must be written. With
the normal round-robin ordering for the stripes (name-
ly, : : : ; 1; 2; 3; : : : ;D; 1; 2; 3; : : : ;D; : : :), the blocks of dif-
ferent buckets may “collide,” meaning that they need to be
written to the same disk, and subsequent blocks in those
same buckets will also tend to collide. Vitter and Hutchin-
son [15] solve this problem by the technique of random-
ized cycling. For each of the S buckets, they determine the
ordering of the disks in the stripe for that bucket via a ran-
dom permutation of f1; 2; : : : ;Dg. The S random permu-
tations are chosen independently. If two blocks (from dif-
ferent buckets) happen to collide during a write to the
same disk, one block is written to the disk and the other
is kept on a write queue. With high probability, subse-
quent blocks in those two buckets will be written to dif-
ferent disks and thus will not collide. As long as there is
a small pool of available buffer space to temporarily cache
the blocks in the write queues, Vitter and Hutchinson [15]
show that with high probability the writing proceeds opti-
mally.

The randomized cycling method or the related merge
sort methods discussed at the end of Section Sorting by
Merging are the methods of choice for sorting with paral-
lel disks. Distribution sort algorithms may have an advan-
tage over the merge approaches presented in Section Sort-
ing by Merging in that they typically make better use of
lower levels of cache in the memory hierarchy of real sys-
tems, based upon analysis of distribution sort and merge
sort algorithms on models of hierarchical memory.

294 E External Sorting and Permuting

Sorting by Merging

Themerge paradigm is somewhat orthogonal to the distri-
bution paradigm of the previous section. A typical merge
sort algorithmworks as follows [9]: In the “run formation”
phase, the n blocks of data are scanned, one memoryload
at a time; each memoryload is sorted into a single “run,”
which is then output onto a series of stripes on the disks. At
the end of the run formation phase, there are N/M = n/m
(sorted) runs, each striped across the disks. (In actual im-
plementations, “replacement-selection” can be used to get
runs of 2M data items, on the average, when M � B [9].)
After the initial runs are formed, the merging phase be-
gins. In each pass of the merging phase, R runs are merged
at a time. For each merge, the R runs are scanned and its
items merged in an online manner as they stream through
internal memory. Double buffering is used to overlap I/O
and computation. At most R = 	(m) runs can be merged
at a time, and the resulting number of passes is O(logm n).

To achieve the optimal sorting bound (2), each merg-
ing pass must be done in O(n/D) I/Os, which is easy to do
for the single-disk case. In the more general multiple-disk
case, each parallel read operation during the mergingmust
on the average bring in the next 	(D) blocks needed for
the merging. The challenge is to ensure that those blocks
reside on different disks so that they can be read in a sin-
gle I/O (or a small constant number of I/Os). The difficulty
lies in the fact that the runs being merged were themselves
formed during the previous merge pass. Their blocks were
written to the disks in the previous pass without knowl-
edge of how they would interact with other runs in later
merges.

The Greed Sort method of Nodine and Vitter [12] was
the first optimal deterministic EM algorithm for sorting
with multiple disks. It works by relaxing the merging pro-
cess with a final pass to fix the merging. Aggarwal and
Plaxton [1] developed an optimal deterministic merge sort
based upon the Sharesort hypercube parallel sorting algo-
rithm. To guarantee even distribution during the merging,
it employs two high-level merging schemes in which the
scheduling is almost oblivious. Like Greed Sort, the Share-
sort algorithm is theoretically optimal (i. e., within a con-
stant factor of optimal), but the constant factor is larger
than the distribution sort methods.

One of the most practical methods for sorting is based
upon the simple randomized merge sort (SRM) algorithm
of Barve et al. [5], referred to as “randomized striping” by
Knuth [9]. Each run is striped across the disks, but with
a random starting point (the only place in the algorithm
where randomness is utilized). During the merging pro-
cess, the next block needed from each disk is read into

memory, and if there is not enough room, the least needed
blocks are “flushed” (without any I/Os required) to free up
space.

Further improvements in merge sort are possible by
a more careful prefetching schedule for the runs. Barve et
al. [4], Kallahalla andVarman [8], Shah et al. [13], and oth-
ers have developed competitive and optimal methods for
prefetching blocks in parallel I/O systems. Hutchinson et
al. [7] have demonstrated a powerful duality between par-
allel writing and parallel prefetching, which gives an easy
way to compute optimal prefetching and caching sched-
ules for multiple disks. More significantly, they show that
the same duality exists between distribution and merg-
ing, which they exploit to get a provably optimal and very
practical parallel disk merge sort. Rather than use ran-
dom starting points and round-robin stripes as in SRM,
Hutchinson et al. [7] order the stripes for each run in-
dependently, based upon the randomized cycling strategy
discussed in Section Sorting by Distribution for distribu-
tion sort.

Handling Duplicates: Bundle Sorting

For the problem of duplicate removal, in which there are
a total of K distinct items among the N items, Arge et
al. [3] use a modification of merge sort to solve the prob-
lem in O

�
nmax

˚
1; logm(K/B)

��
I/Os, which is optimal in

the comparison model. When duplicates get grouped to-
gether during a merge, they are replaced by a single copy
of the item and a count of the occurrences. The algorithm
can be used to sort the file, assuming that a group of equal
items can be represented by a single item and a count.

A harder instance of sorting called bundle sorting
arises when there are K distinct key values among the N
items, but all the items have different secondary informa-
tion that must be maintained, and therefore items cannot
be aggregated with a count. Matias et al. [10] develop op-
timal distribution sort algorithms for bundle sorting using

O
�
nmax

˚
1; logm minfK; ng

��
(6)

I/Os and prove the matching lower bound. They also show
how to do bundle sorting (and sorting in general) in place
(i. e., without extra disk space).

Permuting and Transposition

Permuting is the special case of sorting in which the
key values of the N data items form a permutation of
f1; 2; : : : ;Ng. The I/O bound (3) for permuting can be re-
alized by one of the optimal sorting algorithms except in
the extreme case B logm = o(log n), where it is faster to

External Sorting and Permuting E 295

move the data items one by one in a nonblocked way. The
one-by-one method is trivial if D = 1, but with multiple
disks there may be bottlenecks on individual disks; one so-
lution for doing the permuting in O(N/D) I/Os is to apply
the randomized balancing strategies of [16].

Matrix transposition can be as hard as general permut-
ing when B is relatively large (say, 1/2M) and N is O(M2),
but for smaller B, the special structure of the transposition
permutation makes transposition easier. In particular, the
matrix can be broken up into square submatrices of B2 el-
ements such that each submatrix contains B blocks of the
matrix in row-major order and also B blocks of the matrix
in column-major order. Thus, if B2 < M, the transposi-
tions can be done in a simple one-pass operation by trans-
posing the submatrices one at a time in internal memory.

Fast Fourier Transform and Permutation Networks

Computing the fast Fourier transform (FFT) in external
memory consists of a series of I/Os that permit each com-
putation implied by the FFT directed graph (or butterfly)
to be done while its arguments are in internal memory.
A permutation network computation consists of an obliv-
ious (fixed) pattern of I/Os such that any of the N! possi-
ble permutations can be realized; data items can only be
reordered when they are in internal memory. A permuta-
tion network can be realized by a series of three FFTs.

The algorithms for FFT are faster and simpler than
for sorting because the computation is nonadaptive in na-
ture, and thus the communication pattern is fixed in ad-
vance [16].

Lower Bounds on I/O

The following proof of the permutation lower bound (3)
of Theorem 2 is due to Aggarwal and Vitter [2]. The idea
of the proof is to calculate, for each t � 0, the number of
distinct orderings that are realizable by sequences of t I/Os.
The value of t for which the number of distinct orderings
first exceeds N!/2 is a lower bound on the average number
of I/Os (and hence the worst-case number of I/Os) needed
for permuting.

Assuming for the moment that there is only one disk,
D = 1, consider how the number of realizable orderings
can change as a result of an I/O. In terms of increas-
ing the number of realizable orderings, the effect of read-
ing a disk block is considerably more than that of writ-
ing a disk block, so it suffices to consider only the effect
of read operations. During a read operation, there are at
most B data items in the read block, and they can be in-
terspersed among the M items in internal memory in at

most
�M
B
�
ways, so the number of realizable orderings in-

creases by a factor of
�M
B
�
. If the block has never before

resided in internal memory, the number of realizable or-
derings increases by an extra B! factor, since the items in
the block can be permuted among themselves. (This extra
contribution of B! can only happen once for each of the
N/B original blocks.) There are at most n + t � N logN
ways to choose which disk block is involved in the tth I/O
(allowing an arbitrary amount of disk space). Hence, the
number of distinct orderings that can be realized by all
possible sequences of t I/Os is at most

(B!)N/B

N(logN)

M
B

!!t

: (7)

Setting the expression in (7) to be at least N!/2, and sim-
plifying by taking the logarithm, the result is

N log B + t
�
log N + B log

M
B

�
= ˝(N logN) : (8)

Solving for t gives the matching lower bound˝(n logm n)
for permuting for the case D = 1. The general lower
bound (3) of Theorem 2 follows by dividing by D.

A stronger lower bound follows from a more re-
fined argument that counts input operations separately
from output operations [7]. For the typical case in which
B logm = !(logN), the I/O lower bound, up to lower or-
der terms, is 2n logm n. For the pathological in which
B logm = o(logN), the I/O lower bound, up to lower or-
der terms, is N/D.

Permuting is a special case of sorting, and hence, the
permuting lower bound applies also to sorting. In the un-
likely case that B logm = o(log n), the permuting bound
is only ˝(N/D), and in that case the comparison model
must be used to get the full lower bound (2) of Theo-
rem 1 [2]. In the typical case in which B logm = ˝(log n),
the comparison model is not needed to prove the sorting
lower bound; the difficulty of sorting in that case arises not
from determining the order of the data but from permut-
ing (or routing) the data.

The proof used above for permuting also works for
permutation networks, in which the communication pat-
tern is oblivious (fixed). Since the choice of disk block
is fixed for each t, there is no N logN term as there is
in (7), and correspondingly there is no additive logN term
in the inner expression as there is in (8). Hence, solving
for t gives the lower bound (2) rather than (3). The lower
bound follows directly from the counting argument; un-
like the sorting derivation, it does not require the com-

296 E External Sorting and Permuting

parison model for the case B logm = o(log n). The lower
bound also applies directly to FFT, since permutation net-
works can be formed from three FFTs in sequence. The
transposition lower bound involves a potential argument
based upon a togetherness relation [2].

For the problem of bundle sorting, in which the N
items have a total of K distinct key values (but the sec-
ondary information of each item is different), Matias et
al. [10] derive the matching lower bound.

The lower bounds mentioned above assume that the
data items are in some sense “indivisible,” in that they are
not split up and reassembled in some magic way to get
the desired output. It is conjectured that the sorting lower
bound (2) remains valid even if the indivisibility assump-
tion is lifted. However, for an artificial problem related to
transposition, removing the indivisibility assumption can
lead to faster algorithms. Whether the conjecture is true is
a challenging theoretical open problem.

Applications

Sorting and sorting-like operations account for a signif-
icant percentage of computer use [9], with numerous
database applications. In addition, sorting is an impor-
tant paradigm in the design of efficient EM algorithms, as
shown in [14], where several applications can be found.
With some technical qualifications, many problems that
can be solved easily in linear time in internal memory,
such as permuting, list ranking, expression tree evaluation,
and finding connected components in a sparse graph, re-
quire the same number of I/Os in PDM as does sorting.

Open Problems

Several interesting challenges remain. One difficult theo-
retical problem is to prove lower bounds for permuting
and sorting without the indivisibility assumption. Another
question is to determine the I/O cost for each individual
permutation, as a function of some simple characteriza-
tion of the permutation, such as number of inversions.
A continuing goal is to develop optimal EM algorithms
and to translate theoretical gains into observable improve-
ments in practice. Many interesting challenges and oppor-
tunities in algorithm design and analysis arise from new
architectures being developed, such as networks of work-
stations, hierarchical storage devices, disk drives with pro-
cessing capabilities, and storage devices based upon mi-
croelectromechanical systems (MEMS). Active (or intelli-
gent) disks, in which disk drives have some processing ca-
pability and can filter information sent to the host, have
recently been proposed to further reduce the I/O bot-

tleneck, especially in large database applications. MEMS-
based nonvolatile storage has the potential to serve as
an intermediate level in the memory hierarchy between
DRAM and disks. It could ultimately provide better la-
tency and bandwidth than disks, at less cost per bit than
DRAM.

URL to Code

Two systems for developing external memory algo-
rithms are TPIE and STXXL, which can be down-
loaded from http://www.cs.duke.edu/TPIE/ and http://
sttxl.sourceforge.net/, respectively. Both systems include
subroutines for sorting and permuting and facilitate de-
velopment of more advanced algorithms.

Cross References

� I/O-model

Recommended Reading

1. Aggarwal, A., Plaxton, C.G.: Optimal parallel sorting in multi-
level storage. In: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, vol. 5, pp. 659–668. ACM Press, New York
(1994)

2. Aggarwal, A., Vitter, J.S.: The Input/Output complexity of sort-
ing and related problems. In: Communications of the ACM, 31
(1988), pp. 1116–1127. ACM Press, New York (1988)

3. Arge, L., Knudsen, M., Larsen, K.: A general lower bound on the
I/O-complexity of comparison-based algorithms. In: Proceed-
ings of theWorkshop on Algorithms and Data Structures. Lect.
Notes Comput. Sci. 709, 83–94 (1993)

4. Barve, R.D., Kallahalla, M., Varman, P.J., Vitter, J.S.: Competitive
analysis of buffer management algorithms. J. Algorithms 36,
152–181 (2000)

5. Barve, R.D., Vitter, J.S.: A simple and efficient parallel disk
mergesort. ACM Trans. Comput. Syst. 35, 189–215 (2002)

6. Cormen, T.H., Sundquist, T., Wisniewski, L.F.: Asymptotically
tight bounds for performing BMMC permutations on parallel
disk systems. SIAM J. Comput. 28, 105–136 (1999)

7. Hutchinson, D.A., Sanders, P., Vitter, J.S.: Duality between
prefetching and queued writing with parallel disks. SIAM J.
Comput. 34, 1443–1463 (2005)

8. Kallahalla, M., Varman, P.J.: Optimal read-once parallel disk
scheduling. Algorithmica 43, 309–343 (2005)

9. Knuth, D.E.: Sorting and Searching. The Art of Computer Pro-
gramming, vol. 3, 2nd edn. Addison-Wesley, Reading (1998)

10. Matias, Y., Segal, E., Vitter, J.S.: Efficient bundle sorting. SIAM J.
Comput. 36(2), 394–410 (2006)

11. Nodine, M.H., Vitter, J.S.: Deterministic distribution sort in
shared and distributed memory multiprocessors. In: Proceed-
ings of the ACM Symposium on Parallel Algorithms and Archi-
tectures, June–July 1993, vol. 5, pp. 120–129, ACM Press, New
York (1993)

12. Nodine, M.H., Vitter, J.S.: Greed Sort: An optimal sorting algo-
rithm for multiple disks. J. ACM 42, 919–933 (1995)

http://www.cs.duke.edu/TPIE/
http://sttxl.sourceforge.net/
http://sttxl.sourceforge.net/

Extremal Problems E 297

13. Shah, R., Varman, P.J., Vitter, J.S.: Online algorithms for
prefetching and caching on parallel disks. In: Proceedings of
the ACMSymposiumon Parallel Algorithms and Architectures,
pp. 255–264. ACM Press, New York (2004)

14. Vitter, J.S.: External memory algorithms and data structures:
Dealing withMassive Data. ACM Comput. Surv. 33(2), 209–271
(2001) Revised version available at http://www.cs.purdue.edu/
homes/jsv/Papers/Vit.IO_survey.pdf

15. Vitter, J.S., Hutchinson, D.A.: Distribution sort with randomized
cycling. J. ACM. 53 (2006)

16. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I:
Two-level memories. Algorithmica 12, 110–147 (1994)

Extremal Problems
�Max Leaf Spanning Tree
� Online Interval Coloring

http://www.cs.purdue.edu/homes/jsv/Papers/Vit.IO_survey.pdf
http://www.cs.purdue.edu/homes/jsv/Papers/Vit.IO_survey.pdf

Facility Location F 299

F

Facility Location
1997; Shmoys, Tardos, Aardal

KAREN AARDAL1,2, JAROSLAW BYRKA1,2,
MOHAMMAD MAHDIAN3

1 CWI, Amsterdam, The Netherlands
2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven,
The Netherlands

3 Yahoo! Research, Santa Clara, CA, USA

Keywords and Synonyms

Plant location; Warehouse location

ProblemDefinition

Facility location problems concern situations where
a planner needs to determine the location of facilities in-
tended to serve a given set of clients. The objective is usu-
ally to minimize the sum of the cost of opening the fa-
cilities and the cost of serving the clients by the facilities,
subject to various constraints, such as the number and the
type of clients a facility can serve. There are many vari-
ants of the facility location problem, depending on the
structure of the cost function and the constraints imposed
on the solution. Early references on facility location prob-
lems include Kuehn and Hamburger [35], Balinski and
Wolfe [8], Manne [40], and Balinski [7]. Review works in-
clude Krarup and Pruzan [34] andMirchandani and Fran-
cis [42]. It is interesting to notice that the algorithm that is
probably one of the most effective ones to solve the un-
capacitated facility location problem to optimality is the
primal-dual algorithm combined with branch-and-bound
due to Erlenkotter [16] dating back to 1978. His primal-
dual scheme is similar to techniques used in the modern
literature on approximation algorithms.

More recently, extensive research into approximation
algorithms for facility location problems has been carried
out. Review articles on this topic include Shmoys [49,50]

and Vygen [55]. Besides its theoretical and practical im-
portance, facility location problems provide a showcase
of common techniques in the field of approximation al-
gorithms, as many of these techniques such as linear
programming rounding, primal-dual methods, and local
search have been applied successfully to this family of
problems. This entry defines several facility location prob-
lems, gives a few historical pointers, and lists approxima-
tion algorithms with an emphasis on the results derived in
the paper by Shmoys, Tardos, and Aardal [51]. The tech-
niques applied to the uncapacitated facility location (UFL)
problem are discussed in some more detail.

In the UFL problem, a set F of nf facilities and a set
C of nc clients (also known as cities, or demand points) are
given. For every facility i 2 F , the facility opening cost is
equal to f i. Furthermore, for every facility i 2 F and client
j 2 C, there is a connection cost cij. The objective is to open
a subset of the facilities and connect each client to an open
facility so that the total cost is minimized. Notice that once
the set of open facilities is specified, it is optimal to con-
nect each client to the open facility that yields smallest
connection cost. Therefore, the objective is to find a set
S
 F that minimizes

P
i2S fi +

P
j2C mini2Sfci jg. This

definition and the definitions of other variants of the fa-
cility location problem in this entry assume unit demand
at each client. It is straightforward to generalize these def-
initions to the case where each client has a given demand.
The UFL problem can be formulated as the following inte-
ger program due to Balinski [7]. Let yi ; i 2 F be equal
to 1 if facility i is open, and equal to 0 otherwise. Let
xi j; i 2 F ; j 2 C be the fraction of client j assigned to fa-
cility i.

min
X
i2F

fi yi +
X
i2F

X
j2C

ci j xi j (1)

subject to
X
i2F

xi j = 1; for all j 2 C; (2)

xi j � yi � 0; for all i 2 F ; j 2 C (3)

x � 0; y 2 f0; 1gn f (4)

300 F Facility Location

In the linear programming (LP) relaxation of UFL the
constraint y 2 f0; 1gn f is substituted by the constraint
y 2 [0; 1]n f . Notice that in the uncapacitated case, it is
not necessary to require xi j 2 f0; 1g; i 2 F ; j 2 C if each
client has to be serviced by precisely one facility, as
0 � xi j � 1 by constraints (2) and (4). Moreover, if xij is
not integer, then it is always possible to create an integer
solution with the same cost by assigning client j completely
to one of the facilities currently servicing j.

A �-approximation algorithm is a polynomial algo-
rithm that, in case of minimization, is guaranteed to pro-
duce a feasible solution having value atmost �z�, where z�

is the value of an optimal solution, and � � 1. If � = 1 the
algorithm produces an optimal solution. In case of maxi-
mization, the algorithm produces a solution having value
at least �z�, where 0 � � � 1.

Hochbaum [25] developed an O(log n)-approxima-
tion algorithm for UFL. By a straightforward reduction
from the Set Cover problem, it can be shown that this
cannot be improved unless NP
 DTIME[nO(log log n)]
due to a result by Feige [17]. However, if the connec-
tion costs are restricted to come from distances in a met-
ric space, namely ci j = c ji � 0 for all i 2 F ; j 2 C (non-
negativity and symmetry) and ci j + c ji 0 + ci 0 j0 � ci j0 for
all i; i0 2 F ; j; j0 2 C (triangle inequality), then constant
approximation guarantees can be obtained. In all results
mentioned below, except for the maximization objectives,
it is assumed that the costs satisfy these restrictions. If the
distances between facilities and clients are Euclidean, then
for some location problems approximation schemes have
been obtained [5].

Variants and Related Problems

A variant of the uncapacitated facility location problem
is obtained by considering the objective coefficients cij as
the per unit profit of servicing client j from facility i. The
maximization version of UFL, max-UFL is obtained by
maximizing the profit minus the facility opening cost, i. e.,
max

P
i2F

P
j2C ci j xi j �

P
i2F fi yi . This variant was in-

troduced by Cornuéjols, Fisher, and Nemhauser [15].
In the k-median problem the facility opening cost

is removed from the objective function (1) to obtain
min

P
i2M

P
j2N ci jxi j , and the constraint that no more

than k facilities may be opened,
P

i2M yi � k, is added. In
the k-center problem the constraint

P
i2M yi � k is again

included, and the objective function here is to minimize
the maximum distance used on a link between an open fa-
cility and a client.

In the capacitated facility location problem a capacity
constraint

P
j2C xi j � ui yi is added for all i 2 F . Here it

is important to distinguish between the splittable and the
unsplittable case, and also between hard capacities and soft
capacities. In the splittable case one has x � 0, allowing
for a client to be serviced by multiple depots, and in the
unsplittable case one requires x 2 f0; 1gn f�nc . If each fa-
cility can be opened at most once (i. e., yi 2 f0; 1g), the ca-
pacities are called hard; otherwise, if the problem allows
a facility i to be opened any number r of times to serve rui
clients, the capacities are called soft.

In the k-level facility location problem, the following
are given: a set C of clients, k disjoint sets F1; : : : ;Fk of
facilities, an opening cost for each facility, and connec-
tion costs between clients and facilities. The goal is to con-
nect each client j through a path i1,. . . ,ik of open facili-
ties, with i` 2 F`. The connection cost for this client is
c ji1 + ci1 i2 + � � � + cik�1 ik . The goal is to minimize the sum
of connection costs and facility opening costs.

The problems mentioned above have all been consid-
ered by Shmoys, Tardos, and Aardal [51], with the excep-
tions of max-UFL, and the k-center and k-median prob-
lems. The max-UFL variant is included for historical rea-
sons, and k-center and k-median are included since they
have a rich history and since they are closely related to
UFL. Results on the capacitated facility location problem
with hard capacities arementioned as this, at least from the
application point of view, is a more realistic model than
the soft capacity version, which was treated in [51]. For
k-level facility location, Shmoys et al. considered the case
k = 2. Here, the problem for general k is considered.

There are many other variants of the facility location
problem that are not discussed here. Examples include
K-facility location [33], universal facility location [24,38],
online facility location [3,18,41], fault tolerant facility lo-
cation [28,30,54], facility location with outliers [12,28],
multicommodity facility location [48], priority facility lo-
cation [37,48], facility location with hierarchical facil-
ity costs [52], stochastic facility location [23,37,46], con-
nected facility location [53], load-balanced facility loca-
tion [22,32,37], concave-cost facility location [24], and
capacitated-cable facility location [37,47].

Key Results

Many algorithms have been proposed for location prob-
lems. To begin with, a brief description of the algorithms
of Shmoys, Tardos, and Aardal [51] is given. Then, a quick
overview of some key results is presented. Some of the al-
gorithms giving the best values of the approximation guar-
antee � are based on solving the LP-relaxation by a poly-
nomial algorithm, which can actually be quite time con-
suming, whereas some authors have suggested fast combi-

Facility Location F 301

natorial algorithms for facility location problems with less
competitive �-values.Due to space restrictions the focus of
this entry is on the algorithms that yield the best approxi-
mation guarantees. For more references the survey papers
by Shmoys [49,50] and by Vygen [55] are recommended.

The Algorithms of Shmoys, Tardos, and Aardal

First the algorithm for UFL is described, and then the re-
sults that can be obtained by adaptations of the algorithm
to other problems are mentioned.

The algorithm solves the LP relaxation and then, in
two stages, modifies the obtained fractional solution. The
first stage is called filtering and it is designed to bound the
connection cost of each client to the most distant facil-
ity fractionally serving him. To do so, the facility opening
variables yi are scaled up by a constant and then the con-
nection variables xij are adjusted to use the closest possible
facilities.

To describe the second stage, the notion of cluster-
ing, formalized later by Chudak and Shmoys [13] is used.
Based on the fractional solution, the instance is cut into
pieces called clusters. Each cluster has a distinct client
called the cluster center. This is done by iteratively choos-
ing a client, not covered by the previous clusters, as the
next cluster center, and adding to this cluster the facili-
ties that serve the cluster center in the fractional solution,
along with other clients served by these facilities. This con-
struction of clusters guarantees that the facilities in each
cluster are open to a total extent of one, and therefore af-
ter opening the facility with the smallest opening cost in
each cluster, the total facility opening cost that is paid does
not exceed the facility opening cost of the fractional so-
lution. Moreover, by choosing clients for the cluster cen-
ters in a greedy fashion, the algorithm makes each cluster
center the minimizer of a certain cost function among the
clients in the cluster. The remaining clients in the cluster
are also connected to the opened facility. The triangle in-
equality for connection costs is now used to bound the cost
of this connection. For UFL, this filtering and rounding al-
gorithm is a 4-approximation algorithm. Shmoys et al. also
show that if the filtering step is substituted by randomized
filtering, an approximation guarantee of 3.16 is obtained.

In the same paper, adaptations of the algorithm, with
and without randomized filtering, was made to yield ap-
proximation algorithms for the soft-capacitated facility lo-
cation problem, and for the 2-level uncapacitated problem.
Here, the results obtained using randomized filtering are
discussed.

For the problem with soft capacities two versions of
the problem were considered. Both have equal capacities,

i. e., ui = u for all i 2 F . In the first version, a solution is
“feasible” if the y-variables either take value 0, or a value
between 1 and � 0 � 1. Note that � 0 is not required to
be integer, so the constructed solution is not necessarily
integer. This can be interpreted as allowing for each fa-
cility i to expand to have capacity � 0u at a cost of � 0 fi .
A (�; � 0)-approximation algorithm is a polynomial algo-
rithm that produces such a feasible solution having a to-
tal cost within a factor of � of the true optimal cost, i. e.,
with y 2 f0; 1gn f . Shmoys et al. developed a (5:69; 4:24)-
approximation algorithm for the splittable case of this
problem, and a (7:62; 4:29)-approximation algorithm for
the unsplittable case.

In the second soft-capacitated model, the original
problem is changed to allow for the y-variables to take
nonnegative integer values, which can be interpreted as al-
lowing multiple facilities of capacity u to be opened at each
location. The approximation algorithms in this case pro-
duces a solution that is feasible with respect to this modi-
fied model. It is easy to show that the approximation guar-
antees obtained for the previous model also hold in this
case, i. e., Shmoys et al. obtained a 5.69-approximation al-
gorithm for splittable demands and a 7.62-approximation
algorithm for unsplittable demands. This latter model is
the one considered in most later papers, so this is the
model that is referred to in the paragraph on soft capac-
ity results below.

UFL

The first algorithm with constant performance guarantee
was the 3.16-approximation algorithm by Shmoys, Tar-
dos, and Aardal, see above. Since then numerous improve-
ments have been made. Guha and Khuller [19,20] proved
a lower bound on approximability of 1.463, and intro-
duced a greedy augmentation procedure. A series of ap-
proximation algorithms based on LP-rounding was then
developed (see e. g. [10,13]). There are also greedy algo-
rithms that only use the LP-relaxation implicitly to ob-
tain a lower bound for a primal-dual analysis. An exam-
ple is the JMS 1.61-approximation algorithm developed
by Jain, Mahdian, and Saberi [29]. Some algorithms com-
bine several techniques, like the 1.52-approximation algo-
rithm ofMahdian, Ye, and Zhang [39], which uses the JMS
algorithm and the greedy augmentation procedure. Cur-
rently, the best known approximation guarantee is 1.5 re-
ported by Byrka [10]. It is obtained by combining a ran-
domized LP-rounding algorithm with the greedy JMS al-
gorithm.

302 F Facility Location

max-UFL

The first constant factor approximation algorithm was de-
rived in 1977 by Cornuéjols et al. [15] for max-UFL. They
showed that opening one facility at a time in a greedy
fashion, choosing the facility to open as the one with
highest marginal profit, until no facility with positive
marginal profit can be found, yields a (1 � 1/e) 	 0:632-
approximation algorithm. The current best approximation
factor is 0.828 by Ageev and Sviridenko [2].

k-median, k-center

The first constant factor approximation algorithm for the
k-median problem is due to Charikar, Guha, Tardos, and
Shmoys [11]. This LP-rounding algorithm has the approx-
imation ratio of 6 2

3 . The currently best known approxima-
tion ratio is 3 + � achieved by a local search heuristic of
Arya, et al. [6] (see also a separate entry k-median and Fa-
cility Location).

The first constant factor approximation algorithm
for the k-center problem was given by Hochbaum and
Shmoys [26], who developed a 2-approximation algo-
rithm. This performance guarantee is the best possible un-
less P = NP.

Capacitated Facility Location

For the soft-capacitated problem with equal capacities, the
first constant factor approximation algorithms are due to
Shmoys et al. [51] for both the splittable and unsplittable
demand cases, see above. Recently, a 2-approximation al-
gorithm for the soft capacitated facility location problem
with unsplittable unit demands was proposed by Mahdian
et al. [39]. The integrality gap of the LP relaxation for the
problem is also 2. Hence, to improve the approximation
guarantee one would have to develop a better lower bound
on the optimal solution.

In the hard capacities version it is important to al-
low for splitting the demands, as otherwise even the fea-
sibility problem becomes difficult. Suppose demands are
splittable, then we may to distinguish between the equal
capacity case, where ui = u for all i 2 F , and the gen-
eral case. For the problem with equal capacities, a 5.83-
approximation algorithm was given by Chudak and Wil-
iamson [14]. The first constant factor approximation al-
gorithm, with � = 8:53 + �, for general capacities was
given by Pál, Tardos, and Wexler [44]. This was later
improved by Zhang, Chen, and Ye [57] who obtained
a 5.83-approximation algorithm also for general capaci-
ties.

k-level Problem

The first constant factor approximation algorithm for
k = 2 is due to Shmoys et al. [51], with � = 3:16. For
general k, the first algorithm, having � = 3, was pro-
posed by Aardal, Chudak, and Shmoys [1]. For k = 2,
Zhang [56] developed a 1.77-approximation algorithm.He
also showed that the problem for k = 3 and k = 4 can be
approximated by � = 2:523 1 and � = 2:81 respectively.

Applications

Facility location has numerous applications in the field
of operations research. See the book edited by Mirchan-
dani and Francis [42] or the book by Nemhauser and
Wolsey [43] for a survey and a description of applica-
tions of facility location in problems such as plant loca-
tion and locating bank accounts. Recently, the problem
has found new applications in network design problems
such as placement of routers and caches [22,36], agglom-
eration of traffic or data [4,21], and web server replications
in a content distribution network [31,45].

Open Problems

A major open question is to determine the exact approx-
imability threshold of UFL and close the gap between the
upper bound of 1.5 [10] and the lower bound of 1.463 [20].
Another important question is to find better approxima-
tion algorithms for k-median. In particular, it would be in-
teresting to find an LP-based 2-approximation algorithm
for k-median. Such an algorithm would determine the in-
tegrality gap of the natural LP relaxation of this problem,
as there are simple examples that show that this gap is at
least 2.

Experimental Results

Jain et al. [28] published experimental results comparing
various primal-dual algorithms. A more comprehensive
experimental study of several primal-dual, local search,
and heuristic algorithms is performed by Hoefer [27].
A collection of data sets for UFL and several other loca-
tion problems can be found in the OR-library maintained
by Beasley [9].

Cross References

� Assignment Problem
� Bin Packing (hardness of Capacitated Facility Location

with unsplittable demands)

1This value of � deviates slightly from the value 2.51 given in the
paper. The original argument contained a minor calculation error.

Facility Location F 303

� Circuit Placement
� Greedy Set-Cover Algorithms (hardness of a variant of

UFL, where facilities may be built at all locations with
the same cost)

� Local Approximation of Covering and Packing
Problems

� Local Search for K-medians and Facility Location

Recommended Reading

1. Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algo-
rithm for the k-level uncapacitated facility location problem.
Inf. Process. Lett. 72, 161–167 (1999)

2. Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algo-
rithm for the uncapacitated facility location problem. Discret.
Appl. Math. 93, 149–156 (1999)

3. Anagnostopoulos, A., Bent, R., Upfal, E., van Hentenryck, P.:
A simple and deterministic competitive algorithm for online
facility location. Inf. Comput. 194(2), 175–202 (2004)

4. Andrews, M., Zhang, L.: The access network design problem. In:
Proceedings of the 39th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 40–49. IEEE Computer
Society, Los Alamitos, CA, USA (1998)

5. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Eu-
clidean k-medians and related problems. In: Proceedings of
the 30th Annual ACM Symposium on Theory of Computing
(STOC), pp. 106–113. ACM, New York (1998)

6. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K.,
Pandit, V.: Local search heuristics for k-median and facility lo-
cation problems. In: Proceedings of the 33rd Annual ACMSym-
posium on Theory of Computing (STOC), pp. 21–29. ACM, New
York (2001)

7. Balinski, M.L.: On finding integer solutions to linear programs.
In: Proceedings of the IBM Scientific Computing Symposium
on Combinatorial Problems, pp. 225–248 IBM, White Plains, NY
(1966)

8. Balinski, M.L., Wolfe, P.: On Benders decomposition and a plant
location problem. In ARO-27. Mathematica Inc. Princeton
(1963)

9. Beasley, J.E.: Operations research library. http://people.brunel.
ac.uk/~mastjjb/jeb/info.html. Accessed 2008

10. Byrka, J.: An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. In: Proceed-
ings of the 10th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX),
Lecture Notes in Computer Science, vol. 4627, pp. 29–43.
Springer, Berlin (2007)

11. Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-
factor approximation algorithm for the k-median problem. In:
Proceedings of the 31st Annual ACM Symposium on Theory of
Computing (STOC), pp. 1–10. ACM, New York (1999)

12. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Facility lo-
cation with outliers. In: Proceedings of the 12th Annual ACM-
SIAMSymposiumonDiscrete Algorithms (SODA), pp. 642–651.
SIAM, Philadelphia (2001)

13. Chudak, F.A., Shmoys, D.B.: Improved approximation algo-
rithms for the uncapacitated facility location problem. SIAM
J Comput. 33(1), 1–25 (2003)

14. Chudak, F.A., Wiliamson, D.P.: Improved approximation algo-
rithms for capacitated facility location problems. In: Proceed-

ings of the 7th Conference on Integer Programing and Com-
binatorial Optimization (IPCO). Lecture Notes in Computer Sci-
ence, vol. 1610, pp. 99–113. Springer, Berlin (1999)

15. Cornuéjols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank
accounts to optimize float: An analytic study of exact and ap-
proximate algorithms. Manag. Sci. 8, 789–810 (1977)

16. Erlenkotter, D.: A dual-based procedure for uncapacitated fa-
cility location problems. Oper. Res. 26, 992–1009 (1978)

17. Feige, U.: A threshold of ln n for approximating set cover.
J. ACM 45, 634–652 (1998)

18. Fotakis, D.: On the competitive ratio for online facility location.
In: Proceedings of the 30th International Colloquium on Au-
tomata, Languages and Programming (ICALP). Lecture Notes
in Computer Science, vol. 2719, pp. 637–652. Springer, Berlin
(2003)

19. Guha, S., Khuller, S.: Greedy strikes back: Improved facility lo-
cation algorithms. In: Proceedings of the 9th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 228–248. SIAM,
Philadelphia (1998)

20. Guha, S., Khuller, S.: Greedy strikes back: Improved facility loca-
tion algorithms. J. Algorithms 31, 228–248 (1999)

21. Guha, S., Meyerson, A., Munagala, K.: A constant factor approx-
imation for the single sink edge installation problem. In: Pro-
ceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC), pp. 383–388. ACM Press, New York (2001)

22. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement
and network design problems. In: Proceedings of the 41st An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 603–612. IEEE Computer Society, Los Alamitos, CA,
USA (2000)

23. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approxi-
mation algorithms for stochastic optimization. In: Proceedings
of the 36st Annual ACM Symposium on Theory of Computing
(STOC), pp. 417–426. ACM, New York (2004)

24. Hajiaghayi, M., Mahdian, M., Mirrokni, V.S.: The facility location
problemwith general cost functions. Netw. 42(1), 42–47 (2003)

25. Hochbaum, D.S.: Heuristics for the fixed cost median problem.
Math. Program. 22(2), 148–162 (1982)

26. Hochbaum, D.S., Shmoys, D.B.: A best possible approximation
algorithm for the k-center problem. Math. Oper. Res. 10, 180–
184 (1985)

27. Hoefer, M.: Experimental comparison of heuristic and approx-
imation algorithms for uncapacitated facility location. In: Pro-
ceedings of the 2nd International Workshop on Experimental
and EfficientAlgorithms (WEA). LectureNotes in Computer Sci-
ence, vol. 2647, pp. 165–178. Springer, Berlin (2003)

28. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Ap-
proximation algorithms for facility location via dual fittingwith
factor-revealing LP. J. ACM 50(6), 795–824 (2003)

29. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for
facility location problems. In: Proceedings of the 34st Annual
ACM Symposium on Theory of Computing (STOC) pp. 731–
740, ACM Press, New York (2002)

30. Jain, K., Vazirani, V.V.: An approximation algorithm for the fault
tolerant metric facility location problem. In: Approximation Al-
gorithms for Combinatorial Optimization, Proceedings of AP-
PROX (2000), vol. (1913) of Lecture Notes in Computer Science,
pp. 177–183. Springer, Berlin (2000)

31. Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: On the
placement of internet instrumentations. In: Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Com-

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

304 F Failure Detectors

munications Societies (INFOCOM), vol. 1, pp. 295–304. IEEE
Computer Society, Los Alamitos, CA, USA (2000)

32. Karger, D., Minkoff, M.: Building Steiner trees with incomplete
global knowledge. In: Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, pp. 613–623. Los Alamitos (2000)

33. Krarup, J., Pruzan, P.M.: Ingredients of locational analysis. In:
Mirchandani, P., Francis, R. (eds.) Discrete Location Theory,
pp. 1–54. Wiley, New York (1990)

34. Krarup, J., Pruzan, P.M.: The simple plant location problem: Sur-
vey and synthesis. Eur. J. Oper. Res. 12, 38–81 (1983)

35. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating
warehouses. Manag. Sci. 9, 643–666 (1963)

36. Li, B., Golin, M., Italiano, G., Deng, X., Sohraby, K.: On the op-
timal placement of web proxies in the internet. In: Proceed-
ings of the 18th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM), pp. 1282–
1290. IEEE Computer Society, Los Alamitos (1999)

37. Mahdian, M.: Facility Location and the Analysis of Algorithms
through Factor-Revealing Programs. Ph. D. thesis, MIT, Cam-
bridge (2004)

38. Mahdian, M., Pál, M.: Universal facility location. In: Proceedings
of the 11th Annual European Symposium on Algorithms (ESA).
Lecture Notes in Computer Science, vol. 2832, pp. 409–421.
Springer, Berlin (2003)

39. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for
metric facility location problems. SIAM J. Comput. 36(2), 411–
432 (2006)

40. Manne, A.S.: Plant location under economies-of-scale – decen-
tralization and computation. Manag. Sci. 11, 213–235 (1964)

41. Meyerson, A.: Online facility location. In: Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 426–431. IEEE Computer Society, Los
Alamitos (2001)

42. Mirchandani, P.B., Francis, R.L.: Discrete Location Theory. Wiley,
New York (1990)

43. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Opti-
mization. Wiley, New York (1990)

44. Pál, M., Tardos, E., Wexler, T.: Facility location with nonuniform
hard capacities. In: Proceedings of the 42nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 329–
338. IEEE Computer Society, Los Alamitos (2001)

45. Qiu, L., Padmanabhan, V.N., Voelker, G.: On the placement of
web server replicas. In: Proceedings of the 20th Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties (INFOCOM), pp. 1587–1596. IEEE Computer Society, Los
Alamitos (2001)

46. Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algo-
rithms for stochastic optimization problems. Math. Program.
108(1), 97–114 (2006)

47. Ravi, R., Sinha, A.: Integrated logistics: Approximation algo-
rithms combining facility location and network design. In:
Proceedings of the 9th Conference on Integer Programming
and Combinatorial Optimization (IPCO). Lecture Notes in Com-
puter Science, vol. 2337, pp. 212–229. Springer, Berlin (2002)

48. Ravi, R., Sinha, A.: Multicommodity facility location. In: Pro-
ceedings of the 15th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 342–349. SIAM, Philadelphia
(2004)

49. Shmoys, D.B.: Approximation algorithms for facility location
problems. In: Jansen, K., Khuller, S. (eds.) Approximation Algo-

rithms for Combinatorial Optimization. Lecture Notes in Com-
puter Science, vol. 1913, pp. 27–33. Springer, Berlin (2000)

50. Shmoys, D.B.: The design and analysis of approximation al-
gorithms: Facility location as a case study. In: Thomas, R.R.,
Hosten, S., Lee, J. (eds) Proceedings of Symposia in Appl. Math-
ematics, vol. 61, pp. 85–97. AMS, Providence, RI, USA (2004)

51. Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms
for facility location problems. In: Proceedings of the 29th
Annual ACM Symposium on Theory of Computing (STOC),
pp. 265–274. ACM Press, New York (1997)

52. Svitkina, Z., Tardos, E.: Facility location with hierarchical facil-
ity costs. In: Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithm (SODA), pp. 153–161. SIAM,
Philadelphia, PA, USA (2006)

53. Swamy, C., Kumar, A.: Primal-dual algorithms for connected fa-
cility location problems. Algorithmica 40(4), 245–269 (2004)

54. Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. In:
Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 735–736. SIAM, Philadelphia
(2003)

55. Vygen, J.: Approximation algorithms for facility location prob-
lems (lecture notes). Technical report No. 05950-OR, Research
Institute for Discrete Mathematics, University of Bonn (2005)
http://www.or.uni-bonn.de/~vygen/fl.pdf

56. Zhang, J.: Approximating the two-level facility location prob-
lem via a quasi-greedy approach. In: Proceedings of the 15th
AnnualACM-SIAMSymposiumonDiscrete Algorithms (SODA),
pp. 808–817. SIAM, Philadelphia (2004). Also, Math. Program.
108, 159–176 (2006)

57. Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algo-
rithm for the capacitated facility location problem. Math. Oper.
Res. 30(2), 389–403 (2005)

Failure Detectors
1996; Chandra, Toueg

RACHID GUERRAOUI
School of Computer and Communication Sciences,
EPFL, Lausanne, Switzerland

Keywords and Synonyms

Partial synchrony; Time-outs; Failure information; Dis-
tributed oracles

ProblemDefinition

A distributed system is comprised of a collection of pro-
cesses. The processes typically seek to achieve some com-
mon task by communicating through message passing or
shared memory. Most interesting tasks require, at least at
certain points of the computation, some form of agree-
ment between the processes. An abstract form of such
agreement is consensus where processes need to agree on
a single value among a set of proposed values. Solving this
seemingly elementary problem is at the heart of reliable

http://www.or.uni-bonn.de/~vygen/fl.pdf

Failure Detectors F 305

distributed computing and, in particular, of distributed
database commitment, total ordering of messages, and
emulations of many shared object types.

Fischer, Lynch, and Paterson’s seminal result in the
theory of distributed computing [13] says that consensus
cannot be deterministically solved in an asynchronous dis-
tributed system that is prone to process failures. This im-
possibility holds consequently for all distributed comput-
ing problems which themselves rely on consensus.

Failures and asynchrony are fundamental ingredients
in the consensus impossibility. The impossibility holds
even if only one process fails, and it does so only by crash-
ing, i. e., stopping its activities. Tolerating crashes is the
least one would expect from a distributed system for the
goal of distribution is in general to avoid single points of
failures in centralized architectures. Usually, actual dis-
tributed applications exhibit more severe failures where
processes could deviate arbitrarily from the protocol as-
signed to them.

Asynchrony refers to the absence of assumptions on
process speeds and communication delays. This absence
prevents any process from distinguishing a crashed pro-
cess from a correct one and this inability is precisely what
leads to the consensus impossibility. In practice, however,
distributed systems are not completely asynchronous:
some timing assumptions can typically be made. In the
best case, if precise lower and upper bounds on commu-
nication delays and process speeds are assumed, then it is
easy to show that consensus and related impossibilities can
be circumvented despite the crash of any number of pro-
cesses [20].

Intuitively, the way that such timing assumptions
circumvent asynchronous impossibilities is by provid-
ing processes with information about failures, typically
through time-out (or heart-beat) mechanisms, usually un-
derlying actual distributed applications. Whereas certain
information about failures can indeed be obtained in dis-
tributed systems, the accuracy of such information might
vary from a system to another, depending on the under-
lying network, the load of the application, and the mech-
anisms used to detect failures. A crucial problem in this
context is to characterize such information, in an abstract
and precise way.

Key Results

The Failure Detector Abstraction

Chandra and Toueg [5] defined the failure detector ab-
straction as a simple way to capture failure information
that is needed to circumvent asynchronous impossibilities,

in particular the consensus impossibility. The model con-
sidered in [5] is a message passing one where processes
can fail by crashing. Processes that crash stop their activ-
ities and do not recover. Processes that do not crash are
said to be correct. At least one process is supposed to be
correct in every execution of the system.

Roughly speaking, a failure detector is an oracle that
provides processes with information about failures. The
oracle is accessed in each computation step of a process
and it provides the process with a value conveying some
failure information. The value is picked from some set of
values, called the range of the failure detector. For instance,
the range could be the set of subsets of processes in the
system, and each subset could depict the set of processes
detected to have crashed, or considered to be correct. This
would correspond to the situation where the failure detec-
tor is implemented using a time-out: every process q that
does not communicate within some time period with some
process p, would be included in subset of processes sus-
pected of having crashed by p.

More specifically, a failure detector is a function, D,
that associates to each failure pattern, F, a set of failure de-
tector histories fHig = D(F). Both the failure pattern and
the failure detector history are themselves functions.
� A failure pattern F is a function that associates to each

time t, the set of processes F(t) that have indeed crashed
by time t. This notion assumes the existence of a global
clock, outside the control of the processes, as well as
a specific concept of crash event associated with time.
A set of failure pattern is called an environment.

� A failure detector history H is also a function, which
associates to each process p and time t, some value v
from the range of failure detector values. (The range of
a failure detector D is denoted RD.) This value v is said
to be output by the failure detector D at process p and
time t.

Two observations are in order.
� By construction, the output of a failure detector does

not depend on the computation, i. e., on the actual steps
performed by the processes, on their algorithm or the
input of such algorithm. The output of the failure de-
tector depends solely on the failure pattern, namely on
whether and when processes crashed.

� A failure detector might associate several histories to
each failure pattern. Each history represents a suite
of possible combinations of outputs for the same
given failure pattern. This captures the inherent non-
determinism of a failure detection mechanism. Such
a mechanism is typically itself implemented as a dis-
tributed algorithm and the variations in communica-
tion delays for instance could lead the samemechanism

306 F Failure Detectors

to output (even slightly) different information for the
same failure pattern.

To illustrate these concepts, consider two classical exam-
ples of failure detectors.
1. The perfect failure detector outputs a subset of pro-

cesses, i. e., the range of the failure detector is the set
of subsets of processes in the system. When a process q
is output at some time t at a process p, then q is said to
be detected (of having crashed) by p. The perfect failure
detector guarantees the two following properties:
� Every process that crashes is eventually permanently

detected;
� No correct process is ever detected.

2. The eventually strong failure detector outputs a subset
of processes: when a process q is output at some time t
at a process p, then q is said to be suspected (of having
crashed) by p. An eventually strong failure detector en-
sures the two following properties:
� Every process that crashes is eventually suspected;
� Eventually, some correct process is never suspected.

The perfect failure detector is reliable: if a process q is de-
tected, then q has crashed. An eventually strong failure de-
tector is unreliable: there never is any guarantee that the
information that is output is accurate. The use of the the
term suspected conveys that idea. The distinction between
unreliability and reliability was precisely captured in [14]
for the general context where the range of the failure de-
tector can be arbitrary.

Consensus Algorithms

Two important results were established in [5].

Theorem 1 (Chandra-Toueg [5]) There is an algorithm
that solves consensus with a perfect failure detector.

The theorem above implicitly says that if the distributed
system provides means to implement perfect failure de-
tection, then the consensus impossibility can be circum-
vented, even if all but one process crashes. In fact, the re-
sult holds for any failure pattern, i. e., in any environment.

The second theorem below relates the existence of
a consensus algorithm to a resilience assumption. More
specifically, the theorem holds in the majority environ-
ment, which is the set of failure patterns where more than
half of the processes are correct.

Theorem 2 (Chandra-Toueg [5]) There is an algorithm
that implements consensus with an eventually strong failure
detector in the majority environment.

The algorithm underlying the result above is similar to
eventually synchronous consensus algorithms [10] and
share also some similarities with the Paxos algorithm [18].

It is shown in [5] that no algorithm using solely the even-
tually strong failure detector can solve consensus without
the majority assumption. (This result is generalized to any
unreliable failure detector in [14].) This resilience lower
bound is intuitively due to the possibility of partitions
in a message passing system where at least half of the
processes can crash and failure detection is unreliable.
In shared memory for example, no such possibility exists
and consensus can be solved with the eventually strong
failure [19].

Failure Detector Reductions

Failure detectors can be compared. A failure detector D2
is said to be weaker than a failure detector D1 if there is
an asynchronous algorithm, called a reduction algorithm,
which, using D1, can emulate D2. Three remarks are im-
portant here.
� The fact that the reduction algorithm is asynchronous

means that it does not use any other source of failure
information, besidesD1.

� Emulating failure detector D2 means implementing
a distributed variable that mimics the output that could
be provided by D2.

� The existence of a reduction algorithm depends on en-
vironment. Hence, strictly speaking, the fact that a fail-
ure detector is weaker than another one depends on the
environment under consideration.

If failure detector D1 is weaker than D2, and vice et versa,
then D1 and D2 are said to be equivalent. Else, if D1 is
weaker than D2 and D2 is not weaker than D1, then D1 is
said to be strictly weaker than D2. Again, strictly speaking,
these notions depend on the considered environment.

The ability to compare failure detectors help define
a notion ofweakest failure detector to solve a problem. Ba-
sically, a failure detector D is the weakest to solve a prob-
lem P if the two following properties are satisfied:
� There is an algorithm that solves P using D.
� If there is an algorithm that solves P using some failure

detector D0, then D is weaker than D0.

Theorem 3 (Chandra-Hadzilacos-Toueg [4]) The even-
tually strong failure detector is the weakest to solve consen-
sus in the majority environment.

The weakest failure detector to implement consensus in
any environment was later established in [8].

Applications

A Practical Perspective

The identification of the failure detector concept had an
impact on the design of reliable distributed architectures.

Failure Detectors F 307

Basically, a failure detector can be viewed as a first class
service of a distributed system, at the same level as a name
service or a file service. Time-out and heartbeat mecha-
nisms can thus be hidden under the failure detector ab-
straction, which can then export a unified interface to
higher level applications, including consensus and state
machine replication algorithms [2,11,21].

Maybe more importantly, a failure detector service can
encapsulate synchrony assumptions: these can be changed
without impact on the rest of the applications. Minimal
synchrony assumptions to devise specific failure detectors
could be explored leading to interesting theoretical re-
sults [1,7,12].

A Theoretical Perspective

A second application of the failure detector concept is
a theory of distributed computability. Failure detectors en-
able to classify problems. A problem A is harder (resp.
strictly harder) than problem B if the weakest failure de-
tector to solve B is weaker (resp. strictly weaker) than
the weakest failure detector to solve A. (This notion is of
course parametrized by a specific environment.)

Maybe surprisingly, the induced failure detection re-
duction between problems does not exactly match the
classical black-box reduction notion. For instance, it is
well known that there is no asynchronous distributed al-
gorithm that can use a Queue abstraction to implement
a Compare-Swap abstraction in a system of n > 2 pro-
cesses where n � 1 can fail by crashing [15]. In this sense,
a Compare-Swap abstraction is strictly more powerful (in
a black-box sense) than a Queue abstraction. It turns out
that:

Theorem 4 (Delporte-Fauconnier-Guerraoui [9]) The
weakest failure detector to solve the Queue problem is also
the weakest to solve the Compare-Swap problem in a system
of n > 2 processes where n � 1 can fail by crashing.

In a sense, this theorem indicates that reducibility as in-
duced by the failure detector notion is different from the
traditional black-box reduction.

Open Problems

Several issues underlying the failure detector notion are
still open. One such issue consists in identifying the weak-
est failure detector to solve the seminal set-agreement
problem [6]: a decision task where processes need to agree
on up to k values, instead of a single value as in con-
sensus. Three independent groups of researchers [3,16,22]
proved the impossibility of solving this problem in an

asynchronous system with k failures, generalizing the con-
sensus impossibility [13]. Determining the weakest fail-
ure detector to circumvent this impossibility would clearly
help understand the fundamentals of failure detection re-
ducibility.

Another interesting research direction is to relate the
complexity of distributed algorithm with the underlying
failure detector [17]. Clearly, failure detectors circum-
vents asynchronous impossibilities, but to what extend do
they boost the complexity of distributed algorithms? One
would of course expect the complexity of a solution to
a problem to be higher if the failure detector is weaker. But
to what extend?

Cross References

� Asynchronous Consensus Impossibility
� Atomic Broadcast
� Causal Order, Logical Clocks, State Machine

Replication
� Linearizability

Recommended Reading

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
On implementing Omega with weak reliability and synchrony
assumptions. In: 22th ACM Symposium on Principles of Dis-
tributed Computing, pp. 306–314 (2003)

2. Bertier, M., Marin, O., Sens, P.: Performance analysis of a hier-
archical failure detector. In: International Conference on De-
pendable Systems and Networks (DSN 2003), San Francisco,
CA, USA, Proceedings, pp. 635–644. 22–25 June 2003

3. Boroswsky, E., Gafni E.: Generalized FLP impossibility result for
t-resilient asynchronous computations. In: Proceedings of the
25th ACM Symposium on Theory of Computing, pp. 91–100,
ACM Press

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure de-
tector for solving consensus. J. ACM 43(4), 685–722 (1996)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

6. Chauduri, S.: More choices allow more faults: Set consen-
sus problems in totally asynchronous systems. Inf. Comput.
105(1), 132–158 (1993)

7. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of
failure detectors. IEEE Trans. Comput. 51(1), 13–32 (2002)

8. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Failure detec-
tion lower bounds on registers and consensus. In: Proceedings
of the 16th International Symposium on Distributed Comput-
ing, LNCS 2508 (2002)

9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Implement-
ing atomic objects in a message passing system. Technical re-
port, EPFL Lausanne (2005)

10. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the pres-
ence of partial synchrony. J. ACM 35(2), 288–323 (1988)

11. Felber, P., Guerraoui, R., Fayad, M.: Putting oo distributed pro-
gramming to work. Commun. ACM 42(11), 97–101 (1999)

308 F False-Name-Proof Auction

12. Fernández, A., Jiménez, E., Raynal, M.: Eventual leader election
with weak assumptions on initial knowledge, communication
reliability and synchrony. In: Proc International Symposium on
Dependable Systems and Networks (DSN), pp. 166–178 (2006)

13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–
382 (1985)

14. Guerraoui, R.: Indulgent algorithms. In: Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Comput-
ing, Portland, Oregon, USA, pp. 289–297, ACM, July 2000

15. Herlihy, M.: Wait-free synchronization. ACM Trans. Programm.
Lang. Syst. 13(1), 123–149 (1991)

16. Herlihy, M., Shavit, N.: The asynchronous computability theo-
rem for t-resilient tasks. In: Proceedings of the 25th ACM Sym-
posium on Theory of Computing, pp. 111–120, May 1993

17. Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus
when there are no faults-a tutorial. In: Tutorial 21th ACM Sym-
posium on Principles of Distributed Computing, July 2002

18. Lamport, L.: The Part-Time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998)

19. Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve con-
sensus in asynchronous shared memory systems. In: Proceed-
ings of the 8th International Workshop on Distributed Algo-
rithms, LNCS 857, pp. 280–295, September 1994

20. Lynch, N.: Distributed Algorithms. Morgan Kauffman (1996)
21. Michel, R., Corentin, T.: In search of the holy grail: Looking for

the weakest failure detector for wait-free set agreement. Tech-
nical Report TR 06-1811, INRIA, August 2006

22. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossi-
ble: The topology of public knowledge. In: Proceedings of the
25th ACM Symposium on Theory of Computing, pp. 101–110,
ACM Press, May 1993

False-Name-Proof Auction
2004; Yokoo, Sakurai, Matsubara

MAKOTO YOKOO
Information Science and Electrical Engineering,
Kyushu University,
Fukuoka, Japan

Keywords and Synonyms

False-name-proof auctions; Pseudonymous bidding; Ro-
bustness against false-name bids

ProblemDefinition

In Internet auctions, it is easy for a bidder to submit
multiple bids under multiple identifiers (e. g., multiple
e-mail addresses). If only one item/good is sold, a bid-
der cannot make any additional profit by using multiple
bids. However, in combinatorial auctions, where multiple
items/goods are sold simultaneously, submitting multiple

bids under fictitious names can be profitable. A bid made
under a fictitious name is called a false-name bid.

Here, use the samemodel as the GVA section. In addi-
tion, false-name bids are modeled as follows.
� Each bidder can use multiple identifiers.
� Each identifier is unique and cannot be impersonated.
� Nobody (except the owner) knows whether two identi-

fiers belongs to the same bidder or not.
The goal is to design a false-name-proof protocol, i. e.,
a protocol in which using false-names is useless, thus bid-
ders voluntarily refrain from using false-names.

The problems resulting from collusion have been dis-
cussed by many researchers. Compared with collusion,
a false-name bid is easier to execute on the Internet since
obtaining additional identifiers, such as another e-mail ad-
dress, is cheap. False-name bids can be considered as a very
restricted subclass of collusion.

Key Results

The Generalized Vickrey Auction (GVA) protocol is
(dominant strategy) incentive compatible, i. e., for each
bidder, truth-telling is a dominant strategy (a best strategy
regardless of the action of other bidders) if there exists no
false-name bids. However, when false-name bids are pos-
sible, truth-telling is no longer a dominant strategy, i. e.,
the GVA is not false-name-proof.

Here is an example, which is identical to Example 1 in
the GVA section.

Example 1 Assume there are two goods a and b, and three
bidders, bidder 1, 2, and 3, whose types are �1, �2, and �3,
respectively. The evaluation value for a bundle v(B; �i) is
determined as follows.

fag fbg fa; bg
�1 $6 $0 $6
�2 $0 $0 $8
�3 $0 $5 $5

As shown in the GVA section, good a is allocated to bid-
der 1, and b is allocated to bidder 3. Bidder 1 pays $3 and
bidder 3 pays $2.

Now consider another example.

Example 2 Assume there are only two bidders, bidder 1
and 2, whose types are �1 and �2, respectively. The evalu-
ation value for a bundle v(B; �i) is determined as follows.

fag fbg fa; bg
�1 $6 $5 $11
�2 $0 $0 $8

False-Name-Proof Auction F 309

In this case, the bidder 1 can obtains both goods, but
he/she requires to pay $8, since if bidder 1 does not par-
ticipate, the social surplus would have been $8. When bid-
der 1 does participate, bidder 1 takes everything and the
social surplus except bidder 1 becomes 0. Thus, bidder 1
needs to pay the decreased amount of the social surplus,
i. e., $8.

However, bidder 1 can use another identifier, namely,
bidder 3 and creates a situation identical to Example 1.
Then, good a is allocated to bidder 1, and b is allocated to
bidder 3. Bidder 1 pays $3 and bidder 3 pays $2. Since bid-
der 3 is a false-name of bidder 1, bidder 1 can obtain both
goods by paying $3 + $2 = $5. Thus, using a false-name is
profitable for bidder 1.

The effects of false-name bids on combinatorial auc-
tions are analyzed in [4]. The obtained results can be sum-
marized as follows.
� As shown in the above example, the GVA protocol is

not false-name-proof.
� There exists no false-name-proof combinatorial auc-

tion protocol that satisfies Pareto efficiency.
� If a surplus function of bidders satisfies a condition

called concavity, then the GVA is guaranteed to be
false-name-proof.

Also, a series of protocols that are false-name-proof in var-
ious settings have been developed: combinatorial auction
protocols [2,3], multi-unit auction protocols [1], and dou-
ble auction protocols [5].

Furthermore, in [2], a distinctive class of combinato-
rial auction protocols called a Price-oriented, Rationing-
free (PORF) protocol is identified. The description of
a PORF protocol can be used as a guideline for develop-
ing strategy/false-name proof protocols.

The outline of a PORF protocol is as follows:
1. For each bidder, the price of each bundle of goods is

determined independently of his/her own declaration,
while it depends on the declarations of other bidders.
More specifically, the price of bundle (a set of goods)
B for bidder i is determined by a function p(B; 	X),
where	X is a set of declared types by other bidders X.

2. Each bidder is allocated a bundle that maximizes
his/her utility independently of the allocations of other
bidders (i. e., rationing-free). The prices of bundles
must be determined so that allocation feasibility is sat-
isfied, i. e., no two bidders want the same item.

Although a PORF protocol appears to be quite different
from traditional protocol descriptions, surprisingly, it is
a sufficient and necessary condition for a protocol to be
strategy-proof. Furthermore, if a PORF protocol satisfies
the following additional condition, it is guaranteed to be
false-name-proof.

Definition 1 (No Super-Additive price increase (NSA))
For any subset of bidders S
 N and N 0 = N n S, and for
i 2 S, denote Bi as a bundle that maximizes i’s utility, thenP

i2S p(Bi ;
S

j2Snfigf� jg [N 0) � p(
S

i2S Bi ; 	N 0).

An intuitive description of this condition is that the price
of buying a combination of bundles (the right side of the
inequality) must be smaller than or equal to the sum of the
prices for buying these bundles separately (the left side).
This condition is also a necessary condition for a protocol
to be false-name-proof, i. e., any false-name-proof proto-
col can be described as a PORF protocol that satisfies the
NSA condition.

Here is a simple example of a PORF protocol that
is false-name-proof. This protocol is called the Max
Minimal-Bundle (M-MB) protocol [2]. To simplify the
protocol description, a concept called a minimal bundle
is introduced.

Definition 2 (minimal bundle) Bundle B is called
minimal for bidder i, if for all B0 � B and B0 ¤ B,
v(B0; �i) < v(B; �i) holds.

In this new protocol, the price of bundle B for bidder i is
defined as follows:
� p(B; 	X) = maxB j	M; j2X v(Bj ; � j), where B \ Bj ¤ ;

and Bj is minimal for bidder j.
How this protocol works using Example 1 is described

here. The prices for each bidder is determined as follows.

fag fbg fa; bg
bidder 1 $8 $8 $8
bidder 2 $6 $5 $6
bidder 3 $8 $8 $8

The minimal bundle for bidder 1 is {a}, the minimal
bundle for bidder 2 is {a, b}, and the minimal bundle for
bidder 3 is {b}. The price of bundle {a} for bidder 1 is equal
to the largest evaluation value of conflicting bundles. In
this case, the price is $8, i. e., the evaluation value of bid-
der 2 for bundle {a, b}. Similarly, the price of bidder 2 for
bundle {a, b} is 6, i. e., the evaluation value of bidder 1 for
bundle {a}. As a result, bundle {a, b} is allocated to bid-
der 2.

It is clear that this protocol satisfies the allocation fea-
sibility. For each good l, choose bidder j* and bundle B�j
that maximize v(Bj ; � j) where l 2 Bj and Bj is minimal
for bidder j. Then, only bidder j* is willing to obtain a bun-
dle that contains good l. For all other bidders, the price of
a bundle that contains l is higher than (or equal to) his/her
evaluation value.

Furthermore, it is clear that this protocol satisfies the
NSA condition. In this pricing scheme, p(B [B0; 	X) =

310 F Fast Minimal Triangulation

max(p(B; 	X); p(B0; 	X)) holds for all B; B0, and 	X .
Therefore, the following formula holds

p

 [
i2S

Bi ; 	X

!
= max

i2S
p(Bi ; 	X) �

X
i2S

p(Bi ; 	X) :

Furthermore, in this pricing scheme, prices increase
monotonically by adding opponents, i. e., for all X 0 �
X, p(B; 	X0) � p(B; 	X) holds. Therefore, for each i,
p(Bi ;

S
j2Snfigf� jg[N 0) � p(Bi ; 	N 0) holds. Therefore,

the NSA condition, i. e.,
P

i2S p(Bi ;
S

j2Snfigf� jg[N 0)�
p(
S

i2S Bi ; 	N 0) holds.

Applications

In Internet auctions, using multiple identifiers (e. g., mul-
tiple e-mail addresses) is quite easy and identifying each
participant on the Internet is virtually impossible. Combi-
natorial auctions have lately attracted considerable atten-
tion. When combinatorial auctions become widely used
in Internet auctions, false-name-bids could be a serious
problem.

Open Problems

It is shown that there exists no false-name-proof protocol
that is Pareto efficient. Thus, it is inevitable to give up the
efficiency to some extent. However, the theoretical lower-
bound of the efficieny loss, i. e., the amount of the effi-
ciency loss that is inevitabe for any false-name-proof pro-
tocol, is not identified yet. Also, the efficiency loss of ex-
isting false-name-proof protocols can be quite large. More
efficient false-name-proof protocols in various settings are
needed.

Cross References

� Generalized Vickrey Auction

Recommended Reading
1. Iwasaki, A., Yokoo, M., Terada, K.: A robust open ascending-price

multi-unit auction protocol against false-name bids. Decis. Sup-
port. Syst. 39, 23–39 (2005)

2. Yokoo, M.: The characterization of strategy/false-name proof
combinatorial auction protocols: Price-oriented, rationing-free
protocol. In: Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pp. 733–739 (2003)

3. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust combinatorial auc-
tion protocol against false-name bids. Artif. Intell. 130, 167–181
(2001)

4. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name
bids in combinatorial auctions: New fraud in Internet auctions.
Games Econ. Behav. 46, 174–188 (2004)

5. Yokoo, M., Sakurai, Y., Matsubara, S.: Robust double auction pro-
tocol against false-name bids. Decis. Support. Syst. 39, 23–39
(2005)

Fast Minimal Triangulation
2005; Heggernes, Telle, Villanger

YNGVE VILLANGER
Department of Informatics,
University of Bergen,
Bergen, Norway

Keywords and Synonyms

Minimal fill problem

ProblemDefinition

Minimal triangulation is the addition of an inclusion min-
imal set of edges to an arbitrary undirected graph, such
that a chordal graph is obtained. A graph is chordal if ev-
ery cycle of length at least 4 contains an edge between two
nonconsecutive vertices of the cycle.

More formally, Let G = (V ; E) be a simple and
undirected graph, where n = jV j and m = jEj. A graph
H = (V ; E [F), where E \ F = ; is a triangulation of G
if H is chordal, and H is a minimal triangulation if there
exists no F 0 � F, such that H0 = (V ; E [F 0) is chordal.
Edges in F are called fill edges, and a triangulation is mini-
mal if and only if the removal of any single fill edge results
in a chordless four cycle [10].

Since minimal triangulations were first described in
the mid-1970s, a variety of algorithms have been pub-
lished. A complete overview of these along with different
characterizations of chordal graphs and minimal triangu-
lations can be found in the survey of Heggernes et al. [5] on
minimal triangulations. Minimal triangulation algorithms
can roughly be partitioned into algorithms that obtain
the triangulation through elimination orderings, and those
that obtain it through vertex separators. Most of these al-
gorithms have an O(nm) running time, which becomes
O(n3) for dense graphs. Among those that use elimina-
tion orderings, Kratsch and Spinrad’s O(n2:69)-time algo-
rithm [8] is currently the fastest one. The fastest algorithm
is an o(n2:376)-time algorithm by Heggernes et al. [5]. This
algorithm is based on vertex separators, and will be dis-
cussed further in the next section. Both the algorithm of
Kratsch and Spinrad [8] and the algorithm of Heggernes
et al. [5] use the matrix multiplication algorithm of Cop-

Fast Minimal Triangulation F 311

Algorithm FMT - Fast Minimal Triangulation
Input: An arbitrary graph G = (V ; E).
Output: Aminimal triangulation G0 of G.

Let Q1;Q2 and Q3 be empty queues; Insert G into Q1; G0 = G;
repeat

Construct a zero matrix M with a row for each vertex in V (columns are added later);
while Q1 is nonempty do

Pop a graph H = (U;D) from Q1;
Call Algorithm Partition(H) which returns a vertex subset A � U ;
Push vertex set A onto Q3;
for each connected component C of H[U n A] do

Add a column in M such that M(v;C) = 1 for all vertices v 2 NH(C);
if there exists a non-edge uv in H[NH[C]] with u 2 C then

Push HC = (NH[C];DC) onto Q2, where uv 62 DC if u 2 C and uv 62 D;
Compute MMT ;
Add to G0 the edges indicated by the nonzero elements of MMT ;
while Q3 is nonempty do

Pop a vertex set A from Q3;
if G0[A] is not complete then Push G0[A] onto Q2;

Swap names of Q1 and Q2;
until Q1 is empty

Fast Minimal Triangulation, Figure 1
Fast minimal triangulation algorithm

persmith and Winograd [3] to obtain an o(n3)-time algo-
rithm.

Key Results

For a vertex set A � V , the subgraph of G induced by A is
G[A] = (A;W), where uv 2 W if u; v 2 A and uv 2 Eg).
The closed neighborhood of A is N[A] = U , where u; v 2
U for every uv 2 E; where u 2 Ag and N(A) = N[A] n A.
A is called a clique if G[A] is a complete graph. A vertex
set S � V is called a separator if G[V n S] is disconnected,
and S is called a minimal separator if there exists a pair of
vertices a; b 2 V n S such that a, b are contained in differ-
ent connected components of G[V n S], and in the same
connected component of G[V n S0] for any S0 � S. A ver-
tex set ˝
 V is a potential maximal clique if there ex-
ists no connected component of G[V n˝] that contains
˝ in its neighborhood, and for every vertex pair u; v 2 ˝ ,
uv is an edge or there exists a connected component of
G[V n˝] that contains both u and v in its neighborhood.

From the results in [1,7], the following recursive min-
imal triangulation algorithm is obtained. Find a vertex set
A which is either a minimal separator or a potential max-

imal clique. Complete G[A] into a clique. Recursively for
each connected componentC ofG[V n A] whereG[N[C]]
is not a clique, find a minimal triangulation of G[N[C]].
An important property here is that the set of connected
components of G[V n A] defines independent minimal
triangulation problems.

The recursive algorithm just described defines a tree,
where the given input graph G is the root node, and where
each connected component of G[V n A] becomes a child
of the root node defined by G. Now continue recursively
for each of the subproblems defined by these connected
components. A node H which is actually a subproblem of
the algorithm is defined to be at level i, if the distance from
H to the root in the tree is i. Notice that all subproblems
at the same level can be triangulated independently. Let
k be the number of levels. If this recursive algorithm can
be completed for every subgraph at each level in O(f (n))
time, then this trivially provides an O(f (n) � k)-time algo-
rithm.

The algorithm in Fig. 1 uses queues to obtain this level-
by-level approach, and matrix multiplication to complete
all the vertex separators at a given level in O(n˛) time,
where ˛ < 2:376 [3]. In contrast to the previously de-

312 F Fast Minimal Triangulation

Algorithm Partition
Input: A graph H = (U;D) (a subproblem popped from Q1).
Output: A subset A of U such that either A = N[K] for some connected H[K]

or A is a potential maximal clique of H (and G0).

Part I: defining P
Unmark all vertices of H; k = 1;
while there exists an unmarked vertex u do

if E H̄(U n NH[u]) < 2
5 jĒ(H)j thenMark u as an s-vertex (stop vertex);

else
Ck = fug; Mark u as a c-vertex (component vertex);
while there exists a vertex v 2 NH[Ck] which is unmarked or marked as an s-vertex do

if EH̄(U n NH[Ck [fvg]) � 2
5 jĒ(H)j then

Ck = Ck [fvg; Mark v as a c-vertex (component vertex);
else

Mark v as a p-vertex (potential maximal clique vertex); Associate v with Ck ;
k = k + 1;

P = the set of all p-vertices and s-vertices;

Part II: defining A
if H[U n P] has a full component C then A = NH[C];
else if there exist two non-adjacent vertices u; v such that u is an s-vertex

and v is an s-vertex or a p-vertex then A = NH[u];
else if there exist two non-adjacent p-vertices u and v, where u is associated with Ci

and v is associated with Cj and u 62 NH(Cj) and v 62 NH(Ci) then A = NH[Ci [fug];
else A = P;

Fast Minimal Triangulation, Figure 2
Partitioning algorithm. Let Ē(H) = W, where uv 2 W if uv 62 D be the set of nonedges of H. Define EH̄(S) to be the sum of degrees in
H̄ = (U; Ē) of vertices in S � U = V(H)

scribed recursive algorithm, the algorithm in Fig. 1 uses
a partitioning subroutine that either returns a set of mini-
mal separators or a potential maximal clique.

Even though all subproblems at the same level can be
solved independently they may share vertices and edges,
but no nonedges (i. e., pair of vertices that are not adja-
cent). Since triangulation involves edge addition, the num-
ber of nonedges will decrease for each level, and the sum of
nonedges for all subproblems at the same level will never
exceed n2. The partitioning algorithm in Fig. 2 exploits this
fact and has an O(n2 � m) running time, which sums up
to O(n2) for each level. Thus, each level in the fast min-
imal triangulation algorithm given in Fig. 1 can be com-
pleted in O(n2 + n˛) time, whereO(n˛) is the time needed
to computeMMT . The partitioning algorithm in Fig. 2 ac-
tually finds a setA that defines a set of minimal separators,
such that no subproblem contains more than four fifths
of the nonedges in the input graph. As a result, the num-
ber of levels in the fast minimal triangulation algorithm

is at most log4/5(n
2) = 2 log4/5(n), and the running time

O(n˛ log n) is obtained.

Applications

The first minimal triangulation algorithms weremotivated
by the need to find good pivotal orderings for Gaussian
elimination. Finding an optimal ordering is equivalent
to solving the minimum triangulation problem, which is
a nondeterministic polynomial-time hard problem. Since
any minimum triangulation is also a minimal triangula-
tion, and minimal triangulations can be found in polyno-
mial time, then the set of minimal triangulations can be
a good place to search for a pivotal ordering.

Probably because of the desired goal, the first mini-
mal triangulation algorithms were based on orderings, and
produced an ordering called a minimal elimination order-
ing. The problem of computing a minimal triangulation
has received increasing attention since then, and several

Fault-Tolerant Quantum Computation F 313

new applications and characterizations related to the ver-
tex separator properties have been published. Two of the
new applications are computing the tree-width of a graph,
and reconstructing evolutionary history through phyloge-
netic trees [6]. The new separator-based characterizations
of minimal triangulations have increased the knowledge of
minimal triangulations [1,7,9]. One result based on these
characterizations is an algorithm that computes the tree-
width of a graph in polynomial time if the number of min-
imal separators is polynomially bounded [2]. A second ap-
plication is faster exact (exponential-time) algorithms for
computing the tree-width of a graph [4].

Open Problems

The algorithm described shows that a minimal triangu-
lation can be found in O((n2 + n˛) log n) time, where
O(n˛) is the time required to preform an n � n binary
matrix multiplication. As a result, any improved binary
matrix multiplication algorithm will result in a faster al-
gorithm for computing a minimal triangulation. An in-
teresting question is whether or not this relation goes the
other way as well. Does there exist an O((n2 + nˇ) f (n))
algorithm for binary matrix multiplication, where O(nˇ)
is the time required to find a minimal triangulation and
f (n) = o(n˛�2) or at least f (n) = O(n). A possibly sim-
pler and related question previously asked in [8] is: Is it
at least as hard to compute a minimal triangulation as
to determine whether a graph contains at least one tri-
angle? A more algorithmic question is if there exists an
O(n2 + n˛)-time algorithm for computing a minimal tri-
angulation.

Cross References

� Treewidth of Graphs

Recommended Reading
1. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in:

Grouping the minimal separators. SIAM J. Comput. 31, 212–
232 (2001)

2. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques
of a graph. Theor. Comput. Sci. 276(1–2), 17–32 (2002)

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arith-
metic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

4. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algo-
rithms for treewidth and minimum fill-in. In: ICALP of LNCS,
vol. 3142, pp. 568–580. Springer, Berlin (2004)

5. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal
triangulations in time O(n˛ log n) = o(n2:376). SIAM J. Discret.
Math. 19(4), 900–913 (2005)

6. Huson, D.H., Nettles, S., Warnow, T.: Obtaining highly accurate
topology estimates of evolutionary trees from very short se-
quences. In: RECOMB, 1999, pp. 198–207

7. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum
fill-in of asteroidal triple-free graphs. Theor. Comput. Sci. 175,
309–335 (1997)

8. Kratsch, D., Spinrad, J.: Minimal fill in O(n2:69) time. Discret.
Math. 306(3), 366–371 (2006)

9. Parra, A., Scheffler, P.: Characterizations and algorithmic appli-
cations of chordal graph embeddings. Discret. Appl. Math. 79,
171–188 (1997)

10. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)

Fault-Tolerant
Quantum Computation
1996; Shor, Aharonov, Ben-Or, Kitaev

BEN W. REICHARDT
Department of Computer Science,
University of California, Berkeley, CA, USA

Keywords and Synonyms

Quantum noise threshold

ProblemDefinition

Fault tolerance is the study of reliable computation us-
ing unreliable components. With a given noise model, can
one still reliably compute? For example, one can run many
copies of a classical calculation in parallel, periodically us-
ing majority gates to catch and correct faults. Von Neu-
mann showed in 1956 that if each gate fails independently
with probability p, flipping its output bit 0$ 1, then such
a fault-tolerance scheme still allows for arbitrarily reliable
computation provided p is below some constant threshold
(whose value depends on the model details) [10].

In a quantum computer, the basic gates aremuchmore
vulnerable to noise than classical transistors – after all,
depending on the implementation, they are manipulating
single electron spins, photon polarizations and similarly
fragile subatomic particles. It might not be possible to en-
gineer systems with noise rates less than 10�2, or perhaps
10�3, per gate. Additionally, the phenomenon of entan-
glement makes quantum systems inherently fragile. For
example, in Schrödinger’s cat state – an equal superposi-
tion between a living cat and a dead cat, often idealized as
1/
p
2(j0ni + j1ni) – an interaction with just one quantum

bit (“qubit”) can collapse, or decohere, the entire system.
Fault-tolerance techniques will therefore be essential for
achieving the considerable potential of quantum comput-
ers. Practical fault-tolerance techniques will need to con-
trol high noise rates and do so with low overhead, since
qubits are expensive.

314 F Fault-Tolerant Quantum Computation

Fault-Tolerant Quantum Computation, Figure 1
Bit-flip X errors flip 0 and 1. In a qubit, j0i and j1i might be rep-
resented by horizontal and vertical polarization of a photon, re-
spectively. Phase-flip Z errors flip the ˙45ı polarized states j+i
and j�i

Quantum systems are continuous, not discrete, so
there are many possible noise models. However, the essen-
tial features of quantum noise for fault-tolerance results
can be captured by a simple discrete model similar to the
one Von Neumann used. The main difference is that, in
addition to bit-flip X errors which swap 0 and 1, there can
also be phase-flip Z errors which swap j+i � 1/

p
2(j0i +

j1i) and j�i � 1/
p
2(j0i � j1i) (Fig. 1). A noisy gate is

modeled as a perfect gate followed by independent intro-
duction of X, Z, or Y (which is both X and Z) errors with
respective probabilities pX, pZ, pY. One popular model is
independent depolarizing noise (pX = pZ = pY � p/3);
a depolarized qubit is completely randomized.

Faulty measurements and preparations of single-qubit
states must additionally be modeled, and there can be
memory noise on resting qubits. It is often assumed that
measurement results can be fed into a classical computer
that works perfectly and dynamically adjusts the quan-
tum gates, although such control is not necessary. Another
common, though unnecessary, assumption is that any pair
of qubits in the computer can interact; this is called a non-
local gate. In many proposed quantum computer imple-
mentations, however, qubit mobility is limited so gates can
be applied only locally, between physically nearby qubits.

Key Results

The key result in fault tolerance is the existence of a noise
threshold, for certain noise and computational models.

The noise threshold is a positive, constant noise rate (or set
of model parameters) such that with noise below this rate,
reliable computation is possible. That is, given an input-
less quantum circuit C of perfect gates, there exists a “sim-
ulating” circuit FTC of faulty gates such that with proba-
bility at least 2/3, say, themeasured output ofC agrees with
that of FTC. Moreover, FTC should be only polynomially
larger than C.

A quantum circuit with N gates can a priori tolerate
only O(1/N) error per gate, since a single failure might
randomize the entire output. In 1996, Shor showed how to
tolerate O(1/poly(logN)) error per gate by encoding each
qubit into a poly(log N)-sized quantum error-correcting
code; and then implementing each gate of the desired cir-
cuit directly on the encoded qubits, alternating compu-
tation and error-correction steps (similar to Von Neu-
mann’s scheme) [8]. Shor’s result has two main technical
pieces:
1. The discovery of quantum error-correcting codes

(QECCs) was a major result. Remarkably, even though
quantum errors can be continuous, codes that cor-
rect discrete errors suffice. (Measuring the syndrome of
a code block projects into a discrete error event.) The
first quantum code, discovered by Shor, was a nine-
qubit code consisting of the concatenation of the three-
qubit repetition code j0i 7! j000i; j1i 7! j111i to
protect against bit-flip errors, with its dual j+i 7! j +
++i; j�i 7! j���i to protect against phase-flip er-
rors. Since then, many other QECCs have been dis-
covered. Codes like the nine-qubit code that can cor-
rect bit- and phase-flip errors separately are known as
Calderbank-Shor-Steane (CSS) codes, and have quan-
tum codewords which are simultaneously superposi-
tions over codewords of classical codes in both the j0/1i
and j + /�i bases.

2. QECCs allow for quantum memory or for communi-
cating over a noisy channel. For computation, however,
it must be possible to compute on encoded states with-
out first decoding. An operation is said to be fault tol-
erant if it cannot cause correlated errors within a code
block. With the n-bit majority code, all classical gates
can be applied transversely – an encoded gate can be
implemented by applying the unencoded gate to bits
i of each code block, 1 � i � n. This is fault toler-
ant because a single failure affects at most one bit
in each block, thus failures can’t spread too quickly.
For CSS quantum codes, the controlled-NOT gate
CNOT: ja; bi 7! ja; a˚ bi can similarly be applied
transversely. However, the CNOT gate by itself is not
universal, so Shor also gave a fault-tolerant implemen-
tation of the Toffoli gate ja; b; ci 7! ja; b; c ˚ (a ^ b)i.

Fault-Tolerant Quantum Computation F 315

Procedures are additionally needed for error correction
using faulty gates, and for the initial preparation step.
The encoding of j0iwill be a highly entangled state and
difficult to prepare (unlike 0n for the classical majority
code).

However, Shor did not prove the existence of a constant
tolerable noise rate, a noise threshold. Several groups –
Aharonov/Ben-Or, Kitaev, and Knill/Laflamme/Zurek –
each had the idea of using smaller codes, and concatenat-
ing the procedure repeatedly on top of itself. Intuitively,
with a distance-three code (i. e., code that corrects any one
error), one expects the “effective” logical error rate of an
encoded gate to be at most c p2 for some constant c, be-
cause one error can be corrected but two errors cannot.
The effective error rate for a twice-encoded gate should
then be at most c(cp2)2; and since the effective error rate is
dropping doubly-exponentially fast in the number of lev-
els of concatenation, the overhead in achieving a 1/N error
rate is only poly(logN). The threshold for improvement,
cp2 < p, is p < 1/c. However, this rough argument is not
rigorous, because the effective error rate is ill defined, and
logical errors need not fit the same model as physical er-
rors (for example, they will not be independent).

Aharonov and Ben-Or, and Kitaev gave independent
rigorous proofs of the existence of a positive constant noise
threshold, in 1997 [1,5].

Broadly, there has since been progress on two fronts of
the fault-tolerance problem:
1. First, work has proceeded on extending the set of noise

and computation models in which a fault-tolerance
threshold is known to exist. For example, correlated or
even adversarial noise, leakage errors (where a qubit
leaves the j0i; j1i subspace), and non-Markovian noise
(in which the environment has amemory) have all been
shown to be tolerable in theory, even with only local
gates.

2. Threshold existence proofs establish that building
a working quantum computer is possible in principle.
Physicists need only engineer quantum systems with
a low enough constant noise rate. But realizing the po-
tential of a quantum computer will require practical
fault-tolerance schemes. Schemes will have to tolerate
a high noise rate (not just some constant) and do so
with low overhead (not just polylogarithmic). However,
rough estimates of the noise rate tolerated by the orig-
inal existence proofs are not promising – below 10�6

noise per gate. If the true threshold is only 10�6, then
building a quantum computer will be next to impossi-
ble. Therefore, second, there has been substantial work
on optimizing fault-tolerance schemes primarily in or-
der to improve the tolerable noise rate. These opti-

mizations are typically evaluated with simulations and
heuristic analytical models. Recently, though, Aliferis,
Gottesman and Preskill have developed a method to
prove reasonably good threshold lower bounds, up to
2 � 10�4, based on counting “malignant” sets of error
locations [3].

In a breakthrough, Knill has constructed a novel fault-
tolerance scheme based on very efficient distance-two
codes [6]. His codes cannot correct any errors and the
scheme uses extensive postselection on no detected er-
rors – i. e., on detecting an error, the enclosing subrou-
tine is restarted. He has estimated a threshold above 3%
per gate, an order of magnitude higher than previous es-
timates. Reichardt has proved a threshold lower bound
of 10�3 for a similar scheme [7], somewhat supporting
Knill’s high estimate. However, reliance on postselection
leads to an enormous overhead at high error rates, greatly
limiting practicality. (A classical fault-tolerance scheme
based on error detection could not be efficient, but quan-
tum teleportation allows Knill’s scheme to be at least theo-
retically efficient.) There seems to be tradeoff between the
tolerable noise rate and the overhead required to achieve it.

There are several complementary approaches to quan-
tum fault tolerance. For maximum efficiency, it is wise
to exploit any known noise structure before switching
to general fault-tolerance procedures. Specialized tech-
niques include careful quantum engineering, techniques
from nuclear magnetic resonance (NMR) such as dy-
namical decoupling and composite pulse sequences, and
decoherence-free subspaces. For very small quantum com-
puters, such techniques may give sufficient noise protec-
tion.

It is possible that an inherently reliable quantum-
computing device will be engineered or discovered, like
the transistor for classical computing, and this is the goal
of topological quantum computing [4].

Applications

As quantum systems are noisy and entanglement-fragile,
fault-tolerance techniques will probably be essential in im-
plementing any quantum algorithms – including, e. g., ef-
ficient factoring and quantum simulation.

The quantum error-correcting codes originally devel-
oped for fault-tolerance have many other applications, in-
cluding for example quantum key distribution.

Open Problems

Dealing with noise may turn out to be the most daunt-
ing task in building a quantum computer. Currently,
physicists’ low-end estimates of achievable noise rates are

316 F File Caching and Sharing

only slightly below theorists’ high-end (mostly simulation-
based) estimates of tolerable noise rates, at reasonable lev-
els of overhead. However these estimates are made with
different noise models – most simulations are based on
the simple independent depolarizing noise model, and
threshold lower bounds for more general noise are much
lower. Also, both communities may be being too op-
timistic. Unanticipated noise sources may well appear
as experiments progress. The probabilistic noise mod-
els used by theorists in simulations may not match re-
ality closely enough, or the overhead/threshold tradeoff
may be impractical. It is not clear if fault-tolerant quan-
tum computing will work in practice, unless inefficien-
cies are wrung out of the system. Developing more effi-
cient fault-tolerance techniques is a major open problem.
Quantum system engineering, with more realistic simula-
tions, will be required to understand better various trade-
offs and strategies for working with gate locality restric-
tions.

The gaps between threshold upper bounds, threshold
estimates and rigorously proven threshold lower bounds
are closing, at least for simple noise models. Our un-
derstanding of what to expect with more realistic noise
models is less developed, though. One current line of re-
search is in extending threshold proofs to more realis-
tic noise models – e. g., [2]. A major open question here
is whether a noise threshold can be shown to even exist
where the bath Hamiltonian is unbounded – e. g., where
system qubits are coupled to a non-Markovian, harmonic
oscillator bath. Even when a threshold is known to ex-
ist, rigorous threshold lower bounds in more general noise
models may still be far too conservative (according to ar-
guments, mostly intuitive, known as “twirling”) and, since
simulations of general noise models are impractical, new
ideas are needed for more efficient analyzes.

Theoretically, it is of interest what is the best asymp-
totic overhead in the simulating circuit FTC versus C?
Overhead can be measured in terms of size N and depth/
time T. With concatenated coding, the size and depth
of FTC are O(Npoly logN) and O(Tpoly logN), respec-
tively. For classical circuits C, however, the depth can be
only O(T). It is not known if the quantum depth overhead
can be improved.

Experimental Results

Fault-tolerance schemes have been simulated for large
quantum systems, in order to obtain threshold estimates.
For example, extensive simulations including geometric
locality constraints have been run by Thaker et al. [9].

Error correction using very small codes has been ex-
perimentally verified in the lab.

URL to Code

Andrew Cross has written and distributes code for giv-
ing Monte Carlo estimates of and rigorous lower bounds
on fault-tolerance thresholds: http://web.mit.edu/awcross/
www/qasm-tools/. Emanuel Knill has releasedMathemat-
ica code for estimating fault-tolerance thresholds for cer-
tain postselection-based schemes: http://arxiv.org/e-print/
quant-ph/0404104.

Cross References

� Quantum Error Correction

Recommended Readings

1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantumcomputation
with constant error rate. In: Proc. 29th ACMSymp. on Theory of
Computing (STOC), pp. 176–188, (1997). quant-ph/9906129

2. Aharonov, D., Kitaev, A.Y., Preskill, J.: Fault-tolerant quantum
computation with long-range correlated noise. Phys. Rev. Lett.
96, 050504 (2006). quant-ph/0510231

3. Aliferis, P., Gottesman, D., Preskill, J.: Quantumaccuracy thresh-
old for concatenated distance-3 codes. Quant. Inf. Comput. 6,
97–165 (2006). quant-ph/0504218

4. Freedman, M.H., Kitaev, A.Y., Larsen, M.J., Wang, Z.: Topological
quantum computation. Bull. AMS 40(1), 31–38 (2002)

5. Kitaev, A.Y.: Quantum computations: algorithms and error cor-
rection. Russ. Math. Surv. 52, 1191–1249 (1997)

6. Knill, E.: Quantum computing with realistically noisy devices.
Nature 434, 39–44 (2005)

7. Reichardt, B.W.: Error-detection-based quantum fault toler-
ance against discrete Pauli noise. Ph. D. thesis, University of
California, Berkeley (2006). quant-ph/0612004

8. Shor, P.W.: Fault-tolerant quantum computation. In: Proc. 37th
Symp. on Foundations of Computer Science (FOCS) (1996).
quant-ph/9605011

9. Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.:
Quantummemory hierarchies: Efficient designs tomatch avail-
able parallelism in quantum computing. In: Proc. 33rd. Int.
Symp. on Computer Architecture (ISCA), pp. 378–390 (2006)
quant-ph/0604070

10. von Neumann, J.: Probabilistic logic and the synthesis of reli-
able organisms from unreliable components. In: Shannon, C.E.,
McCarthy, J. (eds.) Automata Studies, pp. 43–98. PrincetonUni-
versity Press, Princeton (1956)

File Caching and Sharing
� Data Migration
� Online Paging and Caching
� P2P

http://web.mit.edu/awcross/www/qasm-tools/
http://web.mit.edu/awcross/www/qasm-tools/
http://arxiv.org/e-print/quant-ph/0404104
http://arxiv.org/e-print/quant-ph/0404104

Floorplan and Placement F 317

Floorplan and Placement
1994; Kajitani, Nakatake, Murata, Fujiyoshi

YOJI KAJITANI
Department of Information and Media Sciences,
The University of Kitakyushu, Kitakyushu, Japan

Keywords and Synonyms

Layout; Alignment; Packing; Dissection

ProblemDefinition

The problem is concerned with efficient coding of the con-
straint that defines the placement of objects on a plane
without mutual overlapping. This has numerous motiva-
tions, especially in the design automation of integrated
semiconductor chips, where almost hundreds of millions
of rectangular modules shall be placed within a small rect-
angular area (chip). Until 1994, the only known coding ef-
ficient in computer aided design was Polish-Expression [1].
However, this can only handle a limited class of place-
ments of the slicing structure. In 1994 Nakatake, Fujiyoshi,
Murata, and Kajitani [2], andMurata, Fujiyoshi, Nakatake,
and Kajitani [3] were finally successful to answer this long-
standing problem in two contrasting ways. Their code
names are Bounded-Sliceline-Grid (BSG) for floorplanning
and Sequence-Pair (SP) for placement.

Notations

1. Floorplanning, placement, compaction, packing, layout:
Often they are used as exchangeable terms. However, they
have their own implications to be used in the following
context. Floorplanning concerns the design of the plane by
restricting and partitioning a given area on which objects
are able to be properly placed. Packing tries a placement
with an intention to reduce the area occupied by the ob-
jects. Compaction supports packing by pushing objects to
the center of the placement. The result, including other en-
vironments, is the layout. BSG and SP are paired concepts,
the former for “floorplanning”, the latter for “placement”.

2.ABLR-relation:The objects to be placed are assumed
rectangles in this entry though they could be more general
depending on the problem. For two objects p and q, p is
said to be above q (denoted as pAq) if the bottom edge
(boundary) of p is above the top edge of q. Other relations
with respect to “below” (pBq), “left-of ” (pLq), and “right-
of ” (pRq) are analogously defined. These four relations are
generally calledABLR-relations. A placement without mu-
tual overlapping of objects is said to be feasible. Trivially,
a placement is feasible if and only if every pair of objects is

in one of ABLR-relations. The example in Fig. 1 will help
these definitions.

It must be noted that a pair of objects may satisfy two
ABLR-relations simultaneously, but not three. Further-
more, an arbitrary set of ABLR-relations is not necessarily
consistent for any feasible placement. For example, any set
of ABLR-relations including relations (pAq), (qAr), and
(rAp) is not consistent.

3. Compaction: Given a placement, its bounding-box
is the minimum rectangle that encloses all the objects.
A placement of objects is evaluated by the smallness of
the bounding box’s area, abbreviated as the bb-area. An
ABLR-relation set is also evaluated by the minimum bb-
area of all the placements that satisfy the set. However,
given a consistent ABLR-relation set, the corresponding
placement is not unique in general. Still, the minimum bb-
area is easily obtained by a common technique called the
“Longest-Path Algorithm”. (See for example [4].)

Consider the placementwhose objects are all inside the
1st quadrant of the xy-coordinate system, without loss of
generality with respect to minimizing the bb-area. It is evi-
dent that if a given ABLR-relation set is feasible, there is an
object that has no object left or below it. Place it such that
its left-bottom corner is at the origin. From the remain-
ing objects, take one that has no object left of or below it.
Place it as leftward and downward as long as any ABLR-
relation with already fixed objects is not violated. See Fig. 1
to catch the concept, where the ABLR-relation set is the
one obtained the placement in (a) (so that it is trivially fea-
sible). It is possible to obtain different ABLR-relation sets,
according to which compaction would produce different
placements.

4. Slice-line: If it is possible to draw a straight hori-
zontal line or vertical line to separate the objects into two
groups, the line is said a slice-line. If each group again has
a slice-line, and so does recursively, the placement is said
to be a slicing structure. Figure 2 shows placements of slic-
ing and non-slicing structures.

5. Spiral: Two structures each consisting of four line
segments connected by a T-junction as shown in Fig. 3a
are spirals. Their regular alignment in the 1st quadrant as
shown in (b) is the Bounded-Sliceline-Grid or BSG. A BSG
is a floorplan, or a T-junction dissection, of the rectangular
area into rectangular regions called rooms. It is denoted
as an n � m BSG if the numbers of rows and columns of
its rooms are n and m, respectively. According to the left-
bottom room being p-type or q-type, the BSG is said to be
p-type or q-type, respectively.

In a BSG, take two rooms x and y. The ABLR-relations
between them are all that is defined by the rule: If the bot-
tom segment of x is the top segment of y (Fig. 3), room x

318 F Floorplan and Placement

Floorplan and Placement, Figure 1
a A feasible placement whose ABLR-relations could be observed differently. b Compacted placement if ABLR-relations are (qLr),
(sAp), Its Sequence-Pair is SP= (qspr,pqrs) and Single-Sequence is SS = (2413). c Compacted placement for (qLr), (sRp),
SP = (qpsr,pqrs). SS = (2143). d Compacted placement if (qAr), (sAp), SP = (qspr,prqs). SS = (3412)

Floorplan and Placement, Figure 2
a A placement with a slice-line. b A slicing structure since a slice-line can be found in each ith hierachy No. k(k = 1;2;3;4). c A place-
ment that has no slice-line

Floorplan and Placement, Figure 3
a Two types of the spiral structure (2) 5 � 5p-type Bounded-
Sliceline-Grid (BSG)

is above room y. Furthermore, Transitive-Law is assumed:
If “x is above y” and “z is above x”, then “z is above y”.

Other relations are analogously defined.

Lemma 1 A room is in a unique ABLR-relation with every
other room.

An n � n BSG has n2 rooms. A BSG-assignment is a one-
to-one mapping of n objects into the rooms of n � n BSG.
(n2 � n rooms remain vacant.)

After a BSG-assignment, a pair of two objects inher-
its the same ABLR-relation as the ABLR-relation defined
between corresponding rooms. In Fig. 3, if x, y, and z are

the names of objects, are ABLR-relations among them as
f(xAy); (xRz); (yBx); (yBz); (zLx); (zAy)g.

Key Results

The input is n objects that are rectangles of arbitrary sizes.
The main concern is the solution space, the collection of
distinct consistent ABLR-relation sets, to be generated by
BSG or SP.

Theorem 2 ([4,5])
1) For any feasible ABLR-relation set, there is a BSG-as-

signment into n � n BSG of any type that generates the
same ABLR-relation set.

2) The size n � n is a minimum: if the number of rows or
columns is less than n, there is a feasible ABLR-relation
set that is not obtained by any BSG-assignment.

The proof to 1) is not trivial [5](Appendix). The number
of solutions is n2Cn . A remarkable feature of an n � n BSG
is that any ABLR-relation set of n objects is generated by
a proper BSG-assignment. By this property, BSG is said to
be universal [11].

In contrast to the BSG-based generation of consistent
ABLR-relation sets, SP directly imposes the ABLR-rela-
tions on objects.

Floorplan and Placement F 319

A pair of permutations of object names, represented as
(
 +,
 �), is called the Sequence-Pair, or SP. See Fig. 1.
An SP is decoded to a unique ABLR-relation set by the
rule:

Consider a pair (x, y) of names such that x is before y
in
 �. Then (xLy) or (xAy) if x is before or after y in
 +,
respectively. ABLR-relations “B” and “R” can be derived as
the inverse of “A” and “L”. Examples are given in Fig. 1.

A remarkable feature of Sequence-Pair is that its gen-
eration and decoding are both possible by simple opera-
tions. The question is what the solution space of all SP’s
is

Theorem 3 Any feasible placement has a corresponding SP
that generates an ABLR-relation set satisfied by the place-
ment. On the other hand, any SP has a corresponding place-
ment that satisfies the ABLR-relation set derived from the
SP.

Using SP, a common compaction technique mentioned
before is described in a very simple way:

Minimum Area Placement from SP = (� +,� �)

1. Relabel the objects such that
 � = (1; 2; : : : ; n). Then

 + = (p1; p2; : : : ; pn) will be a permutation of num-
bers 1; 2; : : : ; n. It is simply a kind of normalization
of SP [10]. But Kajitani [11] considers it a concept de-
rived from Q-sequence [9] and studies its implication
by the name of Single-Sequence or SS. In the example in
Fig. 1b, p, q, r, and s are labeled as 1, 2, 3, and 4 so that
SS = (2413).

2. Take object 1 and place it at the left-bottom corner in
the 1st quadrant.

3. For k = 2; 3; : : : ; n, place k such that its left edge is at
the rightmost edge of the objects with smaller numbers
than k and lie before k in SS, and its bottom edge is at
the topmost edge of the objects with smaller numbers
than k and lie after k in SS.

Applications

Many ideas followed after BSG and SP [2,3,4,5] as seen in
the reference. They all applied a common methodology of
a stochastic heuristic search, called Simulated Annealing,
to generate feasible placements one after another based
on some evaluation (with respect to the smallness of the
bb-area), and to keep the best-so-far as the output. This
methodology has become practical by the speed achieved
due to their simple data structure. The first and naive im-
plementation of BSG [2] could output the layout of suffi-
ciently small area placement of five hundred rectangles in
several minutes. (Finding a placement with the minimum

bb-area is NP-hard [3].) Since then many ideas followed,
including currently widely used codes such as O-tree [6],
B*-tree [8], Corner–Block–List [7], Q-sequence [9], Sin-
gle-Sequence [11], and others. Their common feature is
in coding the nonoverlapping constraint along horizontal
and vertical directions, which is the inheritant property of
rectangles.

As long as applications are concerned with the rectan-
gle placement in the minimum area, and do not mind mu-
tual interconnection, the problem can be solved practically
enough by BSG, SP, and those related ideas. However, in
an integrated circuit layout problem, mutual connection
is a major concern. Objects are not restricted to rectan-
gles, even soft objects are used for performance. Many ef-
forts have been devoted with a certain degree of success.
For example, techniques concerned with rectilinear ob-
jects, rectilinear chip, insertion of small but numerous ele-
ments like buffers and decoupling capacitors, replacement
for design change, symmetric placement for analog cir-
cuit design, 3-dimensional placement, etc. have been de-
veloped. Here few of them is cited but it is recommended
to look at proceedings of ICCAD, DAC, ASPDAC, DATE,
and journals TCAD, TCAS, particularly those that cover
VLSI physical design.

Open Problems

BSG

The claim of Theorem 2 that a BSG needs n rows to pro-
vide any feasible ABLR-relation set is reasonable if consid-
ering a placement of all objects aligned vertically. This is
due to the rectangular framework of a BSG. However, ex-
periments have been suggesting a question if from the be-
ginning [5] if we need such big BSGs. The octagonal BSG is
defined in Fig. 4. It is believed to hold the following claim
expecting a drastic reduction of the solution space.

Floorplan and Placement, Figure 4
Octagonal BSG of size n, p-type: a If n is odd, it has (n2 + 1)/2
rooms. b If n is even, it has (n2 + 2n)/2 rooms

320 F Flow Time Minimization

Conjecture (BSG): For any feasible ABLR-relation set,
there is an assignment of n objects into octagonal BSG of
size n, any type, that generates the sameABLR-relation set.

If this is true, then the size of the solution space needed
by a BSG reduces to (n2+1)/2Cn or (n2+2n)/2Cn .

SP or SS

It is possible to define the universality of SP or SS in
the same manner as defined for BSG. In general, two
sequences of arbitrary k numbers P = (p1; p2; : : : ; pk)
and Q=(q1; q2; : : : ; qk) are said similar with each other
if ord(pi) = ord(qi) for every i where ord(pi) = j implies
that pi is the jth smallest in the sequence. If they are single-
sequences, two similar sequences generate the same set of
ABLR-relations under the natural one-to-one correspon-
dence between numbers.

An SS of lengthm (necessarily� n) is said universal of
order n if SS has a subsequence (a sequence obtained from
SS by deleting some of the numbers) that is similar to any
sequence of length n. Since rooms of a BSG are considered
n2 objects, Theorem 2 implies that there is a universal SS of
order n whose length is n2. The known facts about smaller
universal SS are:
1. For n = 2; 132; 231; 213, and 312 are the shortest uni-

versal SS. Note that 123 and 321 are not universal.
2. For n = 3; SS = 41352 is the shortest universal SP.
3. For n = 4, the shortest length of universal SS 10 or less.
4. The size of universal SS is˝(n2) [12].

Open Problem (SP)

It is still an open problem to characterize the universal SP.
For example, give a way to 1) certify a sequence as uni-
versal and 2) generate a minimum universal sequence for
general n.

Cross References

� Bin Packing
� Circuit Placement
� Slicing Floorplan Orientation
� Sphere Packing Problem

Recommended Reading
1. Wong, D.F., Liu, C.L.: A new algorithm for floorplan design. In:

ACM/IEEE Design Automation Conference (DAC), November
1985, 23rd, pp. 101–107

2. Nakatake, S., Murata, H., Fujiyoshi, K., Kajitani, Y.: Bounded
Sliceline Grid (BSG) for module packing. IEICE Technical Re-
port, October 1994, VLD94-66, vol. 94, no. 313, pp. 19–24 (in
Japanese)

3. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: A solu-
tion space of size (n!)2 for optimal rectangle packing. In: 8th
Karuizawa Workshop on Circuits and Systems, April 1995,
pp. 109–114

4. Murata, H., Nakatake, S., Fujiyoshi, K., Kajitani, Y.: VLSI Module
placement based on rectangle-packing by Sequence-Pair. IEEE
Trans. Comput. AidedDesign (TCAD) 15(12), 1518–1524 (1996)

5. Nakatake, S., Fujiyoshi, K., Murata, H., Kajitani, Y.: Module pack-
ing based on the BSG-structure and IC layout applications. IEEE
TCAD 17(6), 519–530 (1998)

6. Guo, P.N., Cheng, C.K., Yoshimura, T.: An O-tree representation
of non-slicing floorplan and its applications. In: 36thDAC., June
1998, pp. 268–273

7. Hong, X., Dong, S., Ma, Y., Cai, Y., Cheng, C.K., Gu, J.: Cor-
ner Block List: An efficient topological representation of non-
slicing floorplan. In: International Computer Aided Design (IC-
CAD) ’00, November 2000, pp. 8–12,

8. Chang, Y.-C., Chang, Y.-W., Wu, G.-M.,Wu, S.-W.: B*-trees: A new
representation for non-slicing floorplans. In: 37th DAC, June
2000, pp. 458–463

9. Sakanushi, K., Kajitani, Y., Mehta, D.: The quarter-state-
sequence floorplan representation. In: IEEE TCAS-I: 50(3), 376–
386 (2003)

10. Kodama, C., Fujiyoshi, K.: Selected Sequence-Pair: An effi-
cient decodable packing representation in linear time using
Sequence-Pair. In: Proc. ASP-DAC 2003, pp. 331–337

11. Kajitani, Y.: Theory of placement by Single-Sequence Realted
with DAG, SP, BSG, and O-tree. In: International Symposium on
Circuts and Systems, May 2006

12. Imahori, S.: Privatre communication, December 2005

Flow TimeMinimization
2001; Becchetti, Leonardi,
Marchetti-Spaccamela, Pruhs

LUCA BECCHETTI1, STEFANO LEONARDI1,
ALBERTO MARCHETTI-SPACCAMELA1, KIRK PRUHS2
1 Department of Information and Computer Systems,
University of Rome, Rome, Italy

2 Computer Science, University of Pittsburgh,
Pittsburgh, PA, USA

Keywords and Synonyms

Flow time: response time

ProblemDefinition

Shortest-job-first heuristics arise in sequencing problems,
when the goal is minimizing the perceived latency of users
of a multiuser or multitasking system. In this problem, the
algorithm has to schedule a set of jobs on a pool ofm iden-
tical machines. Each job has a release date and a processing
time, and the goal is to minimize the average time spent by
jobs in the system. This is normally considered a suitable
measure of the quality of service provided by a system to

Flow Time Minimization F 321

interactive users. This optimization problem can be more
formally described as follows:

Input A set of m identical machines and a set of n jobs
1; 2; : : : ; n. Every job j has a release date rj and a processing
time pj. In the sequel, I denotes the set of feasible input
instances.

Goal The goal is minimizing the average flow (also
known as average response) time of the jobs. Let Cj de-
note the time at which job j is completed by the system.
The flow time or response time Fj of job j is defined by
Fj = Cj � r j . The goal is thus minimizing

min
1
n

nX
j=1

Fj :

Since n is part of the input, this is equivalent to minimizing
the total flow time, i. e.

Pn
j=1 Fj .

Off-line versus on-line In the off-line setting, the algo-
rithm has full knowledge of the input instance. In particu-
lar, for every j = 1; : : : ; n, the algorithm knows rj and pj.

Conversely, in the on-line setting, at any time t, the
algorithm is only aware of the set of jobs released up to
time t.

In the sequel, A and OPT denote, respectively, the al-
gorithm under consideration and the optimal, off-line pol-
icy for the problem.A(I) andOPT(I) denote the respective
costs on a specific input instance I.

Further assumptions in the on-line case Further as-
sumptions can be made as to the algorithm’s knowledge
of processing times of jobs. In particular, in this survey
an important case is considered, realistic in many appli-
cations, i. e. that pj is completely unknown to the on-line
algorithms until the job eventually completes (non-clair-
voyance) [1,3].

Performance metric In all cases, as is common in com-
binatorial optimization, the performance of the algorithm
is measured with respect to its optimal, off-line counter-
part. In a minimization problem such as those considered
in this survey, the competitive ratio �A is defined as:

�A = max
I2I

A(I)
OPT(I)

:

In the off-line case, �A is the approximation ratio of
the algorithm. In the on-line setting, �A is known as the
competitive ratio of A.

Preemption When preemption is allowed, a job that is
being processed may be interrupted and resumed later af-
ter processing other jobs in the interim. As shown further,
preemption is necessary to design efficient algorithms in
the framework considered in this survey [5,6].

Key Results

Algorithms

Consider any job j in the instance and a time t inA’s sched-
ule, and denote by wj(t) the amount of time spent by A
on job j until t. Denote by x j(t) = p j � wj(t) its remaining
processing time at t.

The best known heuristic for minimizing the average
flow time when preemption is allowed is shortest remain-
ing processing time (SRPT). At any time t, SRPT executes
a pending job j such that xj(t) is minimum.When preemp-
tion is not allowed, this heuristic translates to shortest job
first (SJF): at the beginning of the schedule, or when a job
completes, the algorithm chooses a pending job with the
shortest processing time and runs it to completion.

Complexity

The problem under consideration is polynomially solvable
on a single machine when preemption is allowed [9,10].
When preemption is allowed, SRPT is optimal for the
single-machine case. On parallel machines, the best
known upper bound for the preemptive case is achieved
by SRPT, which was proven to be O(logmin n/m; P)-
approximate [6], P being the ratio between the largest
and smallest processing times of the instance. Notice that
SRPT is an on-line algorithm, so the previous result holds
for the on-line case as well. The authors of [6] also prove
that this lower bound is tight in the on-line case. In the
off-line case, no non-constant lower bound is known when
preemption is allowed.

In the non-preemptive case, no off-line algorithm can
be better than˝(n1/3��)-approximate, for every � > 0, the
best upper bound being O(

p
n/m log(n/m)) [6]. The up-

per and lower bound become O(
p
n) and ˝(n1/2��) for

the single machine case [5].

Extensions Many extensions have been proposed to the
scenarios described above, in particular for the preemp-
tive, on-line case. Most proposals concern the power of the
algorithm or the knowledge of the input instance. For the
former aspect, one interesting case is the one in which the
algorithm is equipped with faster machines than its opti-
mal counterpart. This aspect has been considered in [4].
There the authors prove that even a moderate increase

322 F Formal Methods

in speed makes some very simple heuristics have perfor-
mances that can be very close to the optimum.

As to the algorithm’s knowledge of the input instance,
an interesting case in the on-line setting, consistent with
many real applications, is the non-clairvoyant case de-
scribed above. This aspect has been considered in [1,3].
In particular, the authors of [1] proved that a random-
ized variant of the MLF heuristic described above achieves
a competitive ratio that in the average is at most a polylog-
arithmic factor away from the optimum.

Applications

The first and traditional field of application for schedul-
ing policies is resource assignment to processes in mul-
titasking operating systems [11]. In particular, the use of
shortest-job-like heuristics, notably the MLF heuristic, is
documented in operating systems of wide use, such as
UNIX and WINDOWS NT [8,11]. Their application to
other domains, such as access to Web resources, has been
considered more recently [2].

Open Problems

Shortest-job-first-based heuristics such as those consid-
ered in this survey have been studied in depth in the re-
cent past. Still, some questions remain open. One concerns
the off-line, parallel-machine case, where no non-constant
lower bound on the approximation is known yet. As to
the on-line case, there still is no tight lower bound for
the non-clairvoyant case on parallel machines. The cur-
rent ˝(log n) lower bound was achieved for the single-
machine case [7], and there are reasons to believe that it
is below the one for the parallel case by a logarithmic fac-
tor.

Cross References

�Minimum Flow Time
�MinimumWeighted Completion Time
�Multi-level Feedback Queues
� Shortest Elapsed Time First Scheduling

Recommended Reading
1. Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to min-

imize the total flow time on single and parallel machines.
J. ACM 51(4), 517–539 (2004)

2. Crovella, M.E., Frangioso, R., Harchal-Balter, M.: Connection
scheduling in web servers. In: Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems (USITS-99),
1999 pp. 243–254

3. Kalyanasundaram, B., Pruhs, K.: Minimizing flow time nonclair-
voyantly. J. ACM 50(4), 551–567 (2003)

4. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clair-
voyance. J. ACM 47(4), 617–643 (2000)

5. Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximability
and nonapproximability results for minimizing total flow time
on a singlemachine. In: Proceedings of 28th Annual ACM Sym-
posiumon the Theory of Computing (STOC ’96), 1996, pp. 418–
426

6. Leonardi, S., Raz, D.: Approximating total flow time on parallel
machines. In: Proceedings of the Annual ACM Symposium on
the Theory of Computing STOC, 1997, pp. 110–119

7. Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling.
Theor. Comput. Sci. 130(1), 17–47 (1994)

8. Nutt, G.: Operating System Projects Using Windows NT. Addi-
son-Wesley, Reading (1999)

9. Schrage, L.: A proof of the optimality of the shortest remaining
processing time discipline. Oper. Res. 16(1), 687–690 (1968)

10. Smith, D.R.: A new proof of the optimality of the shortest re-
maining processing time discipline. Oper. Res. 26(1), 197–199
(1976)

11. Tanenbaum, A.S.: Modern Operating Systems. Prentice-Hall,
Englewood Cliffs (1992)

Formal Methods
� Learning Automata
� Symbolic Model Checking

FPGA Technology Mapping
1992; Cong, Ding

JASON CONG1, YUZHENG DING2

1 Department of Computer Science, UCLA,
Los Angeles, CA, USA

2 Synopsys Inc., Mountain View, CA, USA

Keywords and Synonyms

Lookup-Table Mapping; LUT Mapping; FlowMap

ProblemDefinition

Introduction

Field Programmable Gate Array (FPGA) is a type of inte-
grated circuit (IC) device that can be (re)programmed to
implement custom logic functions. A majority of FPGA
devices use lookup-table (LUT) as the basic logic element,
where a LUT of K logic inputs (K-LUT) can implement
any Boolean function of up to K variables. An FPGA
also contains other logic elements, such as registers, pro-
grammable interconnect resources, and input/output re-
sources [5].

FPGA Technology Mapping F 323

The programming of an FPGA involves the transfor-
mation of a logic design into a form suitable for imple-
mentation on the target FPGA device. This generally takes
multiple steps. For LUT based FPGAs, technology map-
ping is to transform a general Boolean logic network (ob-
tained from the design specification through earlier trans-
formations) into a functional equivalent K-LUT network
that can be implemented by the target FPGA device. The
objective of a technology mapping algorithm is to gener-
ate, among many possible solutions, an optimized one ac-
cording to certain criteria, some of which are: timing opti-
mization, which is to make the resultant implementation
operable at faster speed; area minimization, which is to
make the resultant implementation compact in size; power
minimization, which is to make the resultant implementa-
tion low in power consumption. The algorithm presented
here, named FlowMap [2], is for timing optimization; it
was the first provably optimal polynomial time algorithm
for technology mapping problems on general Boolean net-
works, and the concepts and approach it introduced has
since generated numerous useful derivations and applica-
tions.

Data Representation and Preliminaries

The input data to a technology mapping algorithm for
LUT based FPGA is a general Boolean network, which can
be modeled as a direct acyclic graph N = (V , E). A node
v 2 V can either represent a logic signal source from out-
side of the network, in which case it has no incoming edge
and is called a primary input (PI) node; or it can represent
a logic gate, in which case it has incoming edge(s) from PIs
and/or other gates, which are its logic input(s). If the logic
output of the gate is also used outside of the network, its
node is a primary output (PO), which can have no outgo-
ing edge if it is only used outside.

If hu; vi 2 E; u is said to be a fanin of v, and v a fanout
of u. For a node v, input(v) denotes the set of its fanins;
similarly for a subgraph H, input(H) denotes the set of
distinct nodes outside of H that are fanins of nodes in H.
If there is a direct path in N from a node u to a node v,
u is said to be a predecessor of v and v a successor of u.
The input network of a node v, denoted Nv, is the sub-
graph containing v and all of its predecessors. A cone of
a non-PI node v, denoted Cv, is a subgraph of Nv contain-
ing v and possibly some of its non-PI predecessors, such
that for any node u 2 Cv , there is a path from u to v in Cv.
If jinput(Cv)j � K, Cv is called a K-feasible cone. The net-
workN isK-bounded if every non-PI node has aK-feasible
cone. A cut of a non-PI node v is a bipartition (X, X0) of
nodes in Nv such that X0 is a cone of v; input(X0) is called

the cut-set of (X, X0), and n(X; X 0) = jinput(X 0)j the size
of the cut. If n(X; X 0) � K, (X, X0) is a K-feasible cut. The
volume of (X, X0) is vol(X; X 0) = jX 0j.

A topological order of the nodes in the network N is
a linear ordering of the nodes in which each node appears
after all of its predecessors and before any of its successors.
Such an order is always possible for an acyclic graph.

Problem Formulation

A K-cover of a given Boolean network N is a network
NM = (VM ; EM), where VM consists of the PI nodes of N
and some K-feasible cones of nodes in N, such that for
each PO node v of N, VM contains a cone Cv of v; and
if Cu 2 VM , then for each non-PI node v 2 input(Cu), VM
also contains a cone Cv of v. edge hu;Cv i 2 EM if and only
if PI node u 2 input(Cv); edge hCu ;Cv i 2 EM if and only
if non-PI node u 2 input(Cv). Since each K-feasible cone
can be implemented by a K-LUT, a K-cover can be im-
plemented by a network of K-LUTs. Therefore, the tech-
nology mapping problem for K-LUT based FPGA, which
is to transform N into a network of K-LUTs, is to find
a K-cover NM of N.

The depth of a network is the number of edges in its
longest path. A technology mapping solution NM is depth
optimal if among all possible mapping solutions of N it
has the minimum depth. If each level of K-LUT logic is
assumed to contribute a constant amount of logic delay
(known as the unit delaymodel), the minimum depth cor-
responds to the smallest logic propagation delay through
themapping solution, or in other words, the fastestK-LUT
implementation of the network N. The problem solved by
the FlowMap algorithm is depth optimal technology map-
ping for K-LUT based FPGAs.

A Boolean network that is not K-bounded may not
have a mapping solution as defined above. To make a net-
work K-bounded, gate decompositionmay be used to break
larger gates into smaller ones. The FlowMap algorithm ap-
plies, as pre-processing, an algorithm named DMIG [3]
that converts all gates into 2-input ones in a depth op-
timal fashion, thus making the network K-bounded for
K � 2. Different decomposition schemesmay result in dif-
ferent K-bounded networks, and consequently different
mapping solutions; the optimality of FlowMap is with re-
spect to a given K-bounded network.

Figure 1 illustrates a Boolean network, its DAG, a cov-
ering with 3-feasible cones, and the resultant 3-LUT net-
work. As illustrated, the cones in the coveringmay overlap;
this is allowed and often beneficial. (When the mapped
network is implemented, the overlapped portion of logic
will be replicated into each of the K-LUTs that contain it.)

324 F FPGA Technology Mapping

FPGA Technology Mapping, Figure 1

Key Results

The FlowMap algorithm takes a two-phase approach. In
the first phase, it determines for each non-PI node a pre-
ferred K-feasible cone as a candidate for the covering;
the cones are computed such that if used, they will yield
a depth optimal mapping solution. This is the central piece
of the algorithm. In the second phase the cones necessary
to form a cover are chosen to generate a mapping solution.

Structure of Depth Optimal K-covers

Let M(v) denote a K-cover (or equivalently, K-LUT map-
ping solution) of the input network Nv of v. If v is a PI,
M(v) consists of v itself. (For simplicity, in the rest of the
article M(v) shall be referred as a K-cover of v.) With that
defined, first there is

Lemma 1 If Cv is the K-feasible cone of v in a K-cover
M(v), then M(v) = fCv g+

S
fM(u) : u 2 input(Cv)g where

M(u) is a certain K-cover of u. Conversely, if Cv is a K-
feasible cone of v, and for each u 2 input(Cv), M(u) a K-
cover of u, then M(v) = fCvg +

S
fM(u) : u 2 input(Cv)g

is a K-cover of v.

In other words, a K-cover consists of a K-feasible cone
and a K-cover of each input of the cone. Note that for
u1 2 input(Cv), u2 2 input(Cv), M(u1) and M(u2) may
overlap, and an overlapped portion may or may not be
covered the same way; the union above includes all dis-
tinct cones from all parts. Also note that for a given Cv,
there can be different K-covers of v containing Cv, varying
by the choice ofM(u) for each u 2 input(Cv).

Let d(M(v)) denote the depth ofM(v). Then

Lemma 2 For K-cover M(v) = fCvg +
S
fM(u) : u 2

input(Cv)g, d(M(v)) = maxfd(M(u)) : u 2 input(Cv)g+1.

In particular, let M�(u) denote a K-cover of u with min-
imum depth, then d(M(v)) � maxfd(M�(u)) : u 2
input(Cv)g+1; the equality holds when everyM(u) inM(v)
is of minimum depth.

Recall that Cv defines a K-feasible cut (X, X0) where
X 0 = Cv , X = Nv � Cv . Let H(X, X0) denote the height of
the cut (X, X0), defined as H(X; X 0) = maxfd(M�(u)) :
u 2 input(X 0)g + 1. Clearly, H(X, X0) gives the minimum
depth of any K-cover of v containing Cv = X 0. Moreover,
by properly choosing the cut, H(X; X 0) height can be min-
imized, which leads to a K-cover with minimum depth:

Theorem 1 If K-feasible cut (X; X 0) of v has the min-
imum height among all K-feasible cuts of v, then the
K-cover M�(v) = fX 0g +

S
fM�(u) : u 2 input(X 0)g, is of

minimum depth among all K-covers of v.

That is, a minimum height K-feasible cut defines a mini-
mum depth K-cover. So the central task for depth optimal
technology mapping becomes the computation of a mini-
mum height K-feasible cut for each PO node.

By definition, the height of a cut depends on the
(depths of) minimumdepthK-covers of nodes in Nv�fvg.
This suggests a dynamic programming procedure that fol-
lows topological order, so that when the minimum depth
K-cover of v is to be determined, a minimum depth K-
cover of each node in Nv � fvg is already known and the
height of a cut can be readily determined. This is how the
first phase of the FlowMap algorithm is carried out.

FPGA Technology Mapping F 325

MinimumHeight K-feasible Cut Computation

The first phase of FlowMap was originally called the la-
beling phase, as it involves the computation of a label for
each node in the K-bounded graph. The label of a non-PI
node v, denoted l(v), is defined as the minimum height of
any cut of v. For convenience, the labels of PI nodes are
defined to be 0.

The so defined label has an importantmonotonic prop-
erty.

Lemma 3 Let p = maxfl(u) : u 2 input(v)g, then p �
l(v) � p + 1.

Note that this also implies that for any node u 2 Nv � fvg,
l(u) � p. Based on this, in order to find a minimumheight
K-feasible cut, it is sufficient to check if there is one of
height p; if not, then anyK-feasible cut will be of minimum
height (p + 1), and one always exists for a K-bounded
graph.

The search for a K-feasible cut of a height p (p > 0;
p = 0 is trivial) in FlowMap is done by transforming Nv
into a flow network Fv and computing a network flow [4]
on it (hence the name). The transformation is as follows.
For each node u 2 Nv � fvg, l(u) < p, Fv has two nodes
u1 and u2, linked by a bridge edge hu1; u2i; Fv has a single
sink node t for all other nodes in Nv, and a single source
node s. For each PI node u of Nv, which corresponds to
a bridge edge hu1; u2i in Fv, Fv contains edge hs; u1i; for
each edge hu;wi in Nv, if both u and w have bridge edges
in Fv, then Fv contains edge hu2;w1i; if u has a bridge edge
butw does not, Fv contains edge hu2; ti; otherwise (neither
has bridge) no corresponding edge is in Fv. The bridging
edges have unit capacity; all others have infinite capacity.
Noting that each edge in Fv with finite (unit) capacity cor-
responds to a node u 2 Nv with l(u) < p and vice versa,
and according to the Max-Flow Min-Cut Theorem [4], it
can be shown

Lemma 4 Node v has a K-feasible cut of height p if and
only if Fv has a maximum network flow of size no more
than K.

On the flow network Fv, a maximum flow can be com-
puted by running the augmenting path algorithm [4].
Once a maximum flow is obtained, the residual graph of
the flow network is disconnected, and the corresponding
min-cut (X, X0) can be identified as follows: v 2 X 0; for
u 2 Nv � fvg, if it is bridged in Fv, and u1 can be reached
in a depth-first search of the residual graph from s, then
u 2 X; otherwise u 2 X 0.

Note that as soon as the flow size exceeds K , the com-
putation can stop, knowing there will not be a desired K-
feasible cut. In this case, one can modify the flow network

by bridging all node in Nv � fvg allowing the inclusion of
nodes u with l(u) = p in the cut computation, and find
a K-feasible cut with height p+1 the same way.

An augmenting path is found in linear time to the
number of edges, and there are at most K augmentations
for each cut computation. Applying the algorithm to every
node in topological order, one would have

Theorem 2 In a K-bounded Boolean network of n nodes
and m edges, the computation of a minimum height K-
feasible cut for every node can be completed in O(Kmn)
time.

The cut found by the algorithm has another property:

Lemma 5 The cut (X, X0) computed as above is the unique
maximum volume min-cut; moreover, if (Y, Y0) is another
min-cut, then Y 0
 X 0.

Intuitively a cut of larger volume defines a larger cone
which covers more logic, therefore a cut of larger volume
is preferred. Note however Lemma 5 only claims maxi-
mum amongmin-cuts; if n(X; X 0) < K, there can be other
cuts that are still K-feasible, but with larger cut size and
larger cut volume. A post-processing algorithm used by
FlowMap tries to grow (X, X0) by collapsing all nodes in
X0, plus one or more in the cut-set, into the sink, and re-
peat the flow computation; this will force a cut of larger
volume, an improvement if it is still K-feasible.

K-cover Construction

Once minimum height K-feasible cuts have been com-
puted for all nodes, each node v has a K-feasible cone Cv
defined by its cut, which has minimum depth. From here,
constructing the K-cover NM = (VM ; EM) is straight-
forward. First, the cones of all PO nodes are included
in VM . Then, for any cone Cv 2 VM , cone Cu for each
non-PI node u 2 input(v) is also include in VM ; so is ev-
ery PI node u 2 input(v). Similarly, an hCu ;Cv i 2 EM for
each non-PI node u 2 input(Cv); hu;Cv i 2 EM for each PI
node u 2 input(Cv).

Lemma 6 The K-cover constructed as above is depth opti-
mal.

This is a linear time procedure, therefore

Theorem 3 The problem of depth optimal technology
mapping for K-LUT based FPGAs on a Boolean network of
n nodes and m edges can be solved in O(Kmn) time.

Applications

The FlowMap algorithm has been used as a center piece or
a framework for more complicated FPGA logic synthesis

326 F Fractional Packing and Covering Problems

and technology mapping algorithms. There are many pos-
sible variations that can address various needs in its ap-
plications. Some are briefed below; details of such varia-
tions/applications can be found in [1,3].

Complicated Delay Models

With minimal change the algorithm can be applied where
non-unit delay model is used, allowing delay of the nodes
and/or the edges to vary, as long as they are static. Dy-
namic delaymodels, where the delay of a net is determined
by its post-mapping structure, cannot be applied to the al-
gorithm; In fact, delay optimal mapping under dynamic
delay models is NP-hard [3].

Complicated Architectures

The algorithm can be adapted to FPGA architectures that
are more sophisticated than homogeneous K-LUT arrays.
For example, mapping for FPGA with two LUT sizes can
be carried out by computing a cone for each size and dy-
namically choosing the best one.

Multiple Optimization Objectives

While the algorithm is for delay minimization, area mini-
mization (in terms of the number of cones selected) as well
as other objectives can also be incorporated, by adapting
the criteria for cut selection. The original algorithm con-
siders area minimization by maximizing the volume of the
cuts; substantially more minimization can be achieved by
considering more K-feasible cuts, and make smart choices
to e. g. increase sharing among input networks, allow cuts
of larger heights along no-critical paths, etc. Achieving
area optimality, however, is NP-hard.

Integration with Other Optimizations

The algorithm can be combined with other types of opti-
mizations, including retiming, logic resynthesis, and phys-
ical synthesis.

Cross References

� Circuit Partitioning: A Network-Flow-Based Balanced
Min-Cut Approach

� Performance-Driven Clustering
� Sequential Circuit Technology Mapping

Recommended Reading

The FlowMap algorithm, with more details and experi-
mental results, was published in [2]. General information

about FPGA can be found in [5]. A good source of con-
cepts and algorithms of network flow is [4]. Comprehen-
sive surveys of FPGA design automation, including many
variations and applications of the FlowMap algorithm, as
well as other algorithms, are presented in [1,3].

1. Chen, D., Cong, J., Pan, P.: FPGA design automation: a survey.
Foundations and Trends in Electronic Design Automation, vol 1,
no 3. Now Publishers, Hanover, USA (2006)

2. Cong, J., Ding, Y.: An optimal technology mapping algorithm
for delay optimization in lookup-table based FPGA designs,
Proc. IEEE/ACM International Conference on Computer-Aided
Design, pp. 48–53. San Jose, USA (1992)

3. Cong, J., Ding, Y.: Combinational logic synthesis for LUT based
field programmable gate arrays. ACM Trans. Design Autom.
Electron. Sys. 1(2): 145–204 (1996)

4. Tarjan, R.: Data Structures and Network Algorithms. SIAM.
Philadelphia, USA (1983)

5. Trimberger, S.: Field-Programmable Gate Array Technology.
Springer, Boston, USA (1994)

Fractional Packing
and Covering Problems
1991; Plotkin, Shmoys, Tardos
1995; Plotkin, Shmoys, Tardos

GEORGE KARAKOSTAS
Department of Computing & Software,
McMaster University, Hamilton, ON, Canada

ProblemDefinition

This entry presents results on fast algorithms that pro-
duce approximate solutions to problems which can be for-
mulated as Linear Programs (LP), and therefore can be
solved exactly, albeit with slower running times. The gen-
eral format of the family of these problems is the follow-
ing: Given a set of m inequalities on n variables, and an
oracle that produces the solution of an appropriate opti-
mization problem over a convex set P 2 Rn , find a solu-
tion x 2 P that satisfies the inequalities, or detect that no
such x exists. The basic idea of the algorithm will always be
to start from an infeasible solution x, and use the optimiza-
tion oracle to find a direction in which the violation of the
inequalities can be decreased; this is done by calculating
a vector y that is a dual solution corresponding to x. Then
x is carefully updated towards that direction, and the pro-
cess is repeated until x becomes ‘approximately’ feasible.
In what follows, the particular problems tackled, together
with the corresponding optimization oracle, as well as the
different notions of ‘approximation’ used are defined.

Fractional Packing and Covering Problems F 327

� The fractional packing problem and its oracle are de-
fined as follows:

PACKING:Given anm � nmatrixA, b > 0, and a con-
vex set P in Rn such that Ax � 0; 8x 2 P, is there
x 2 P such that Ax� b?

PACK_ORACLE:Given m-dimensional vector y � 0
and P as above, return x̄ := argminfyTAx : x 2 Pg:

� The relaxed fractional packing problem and its oracle
are defined as follows:

RELAXED PACKING:Given " > 0, an m � n matrix
A, b > 0, and convex sets P and P̂ in Rn such
that P
 P̂ and Ax � 0; 8x 2 P̂, find x 2 P̂ such
that Ax � (1 + ")b, or show that 6 9x 2 P such that
Ax� b.

REL_PACK_ORACLE:Given m-dimensional vector
y � 0 and P; P̂ as above, return x̄ 2 P̂ such that
yTAx̄ � minfyTAx : x 2 Pg.

� The fractional covering problem and its oracle are de-
fined as follows:

COVERING:Given an m � n matrix A, b > 0, and
a convex set P in Rn such that Ax � 0; 8x 2 P, is
there x 2 P such that Ax � b?

COVER_ORACLE:Given m-dimensional vector y � 0
and P as above, return x̄ := argmaxfyTAx : x 2 Pg:

� The simultaneous packing and covering problem and
its oracle are defined as follows:

SIMULTANEOUS PACKING AND COVERING:Given
m̂ � n and (m � m̂) � n matrices Â;A respectively,
b > 0 and b̂ > 0, and a convex set P in Rn such that
Ax � 0 andÂx � 0; 8x 2 P, is there x 2 P such
that Ax� b, and Âx � b̂?

SIM_ORACLE:Given P as above, a constant � and
a dual solution (y; ŷ), return x̄ 2 P such that

Ax̄ � �b; and

yTAx̄ �
X

i2I(�;x̄)

ŷ i âi x̄ = minfyTAx

�
X

i2I(�;x)

ŷ i âi x : x a vertex of P such that Ax � �bg;

where I(�; x) := fi : âi x � �big:

� The general problem and its oracle are defined as fol-
lows:

GENERAL:Given an m � n matrix A, an arbitrary vec-
tor b, and a convex set P in Rn , is there x 2 P such
that Ax� b,?

GEN_ORACLE:Given m-dimensional vector y � 0
and P as above, return x̄ := argminfyTAx : x 2 Pg:

Definitions and Notation

For an error parameter " > x0, a point x 2 P is an "-ap-
proximation solution for the fractional packing (or cover-
ing) problem if Ax � (1 + ")b (or Ax � (1 � ")b). On the
other hand, if x 2 P satisfies Ax� b (or Ax � b), then x
is an exact solution. For the GENERAL problem, given an
error parameter " > 0 and a positive tolerance vector d,
x 2 P is an "-approximation solution if Ax � b + "d, and
an exact solution ifAx� b. An "-relaxed decision procedure
for these problems either finds an "-approximation solu-
tion, or correctly reports that no exact solution exists. In
general, for a minimization (maximization) problem, an
(1 + ")-approximation ((1 � ")-approximation) algorithm
returns a solution at most (1 + ") (at least (1 � ")) times
the optimal.

The algorithms developed work within time that de-
pends polynomially on "�1, for any error parameter " > 0.
Their running time will also depend on the width � of the
convex set P relative to the set of inequalities Ax� b or
Ax � b defining the problem at hand. More specifically
the width � is defined as follows for each one of the prob-
lems considered here:
� PACKING: � := maxi maxx2P ai x

bi :

� RELAXED PACKING: �̂ := maxi maxx2P̂
a i x
b i :

� COVERING: � := maxi maxx2P ai x
bi :

� SIMULTANEOUS PACKING AND COVERING: � :=
maxx2P
maxfmaxi a i x

b i ;maxi â i x
b̂ i
g:

� GENERAL: � := maxi maxx2P jai x�bi jdi + 1, where d is
the tolerance vector defined above.

Key Results

Many of the results below were presented in [7] by assum-
ing a model of computation with exact arithmetic on real
numbers and exponentiation in a single step. But, as the
authors mention [7], they can be converted to run on the
RAM model by using approximate exponentiation, a ver-
sion of the oracle that produces a nearly optimal solution,
and a limit on the numbers used that is polynomial in the
input length similar to the size of numbers used in exact
linear programming algorithms. However they leave as an
open problem the construction of "-approximate solutions
using polylogarithmic precision for the general case of the
problems they consider (as can be done, for example, in
the multicommodity flow case [4]).

Theorem 1 For 0 < " � 1, there is a deterministic "-re-
laxed decision procedure for the fractional packing problem
that uses O("�2� log(m"�1)) calls to PACK_ORACLE, plus

328 F Fractional Packing and Covering Problems

the time to compute Ax for the current iterate x between
consecutive calls.

For the case of P being written as a product of smaller-
dimension polytopes, i. e., P = P1 � � � � � Pk , each Pl

with width �l (obviously � �
P

l �
l), and a separate

PACK_ORACLE for each Pl ;Al , then randomization can
be used to potentially speed up the algorithm. By using the
notation PACK_ORACLE l for the Pl ;Al oracle, the follow-
ing holds:

Theorem 2 For 0 < " � 1, there is a randomized "-re-
laxed decision procedure for the fractional packing prob-
lem that is expected to use O("�2(

P
l �

l) log(m"�1) +
k log(�"�1)) calls to PACK_ORACLE l for some l 2

f1; : : : ; kg (possibly a different l in every call), plus the
time to compute

P
l A

l x l for the current iterate x =
(x1; x2; : : : ; xk) between consecutive calls.

Theorem 2 holds for RELAXED PACKING as well, if � is re-
placed by �̂ and PACK_ORACLE by REL_PACK_ORACLE.

In fact, one needs only an approximate version of
PACK_ORACLE. Let CP(y) be the minimum cost yTAx
achieved by PACK_ORACLE for a given y.

Theorem 3 Let PACK_ORACLE be replaced by an ora-
cle that given vector y � 0, finds a point x̄ 2 P such that
yTAx̄ � (1 + "/2)CP (y) + ("/2)�yTb, where � is minimum
so that Ax � �b is satisfied by the current iterate x. Then
Theorems 1 and 2 still hold.

Theorem 3 shows that even if no efficient implementation
exists for an oracle, as in, e. g., the case when this oracle
solves an NP-hard problem, a fully polynomial approxi-
mation scheme for it suffices.

Similar results can be proven for the fractional cov-
ering problem (COVER_ORACLE l is defined similarly to
PACK_ORACLE l above):

Theorem 4 For 0 < " < 1, there is a deterministic "-re-
laxed decision procedure for the fractional covering prob-
lem that uses O(m + � log2 m + "�2� log(m"�1)) calls to
COVER_ORACLE, plus the time to compute Ax for the cur-
rent iterate x between consecutive calls.

Theorem 5 For 0 < " < 1, there is a randomized "-re-
laxed decision procedure for the fractional packing problem
that is expected to use O(mk + (

P
l �

l) log2 m + k log "�1 +
"�2(

P
l �

l) log(m"�1)) calls to COVER_ ORACLEl for
some l 2 f1; : : : ; kg (possibly a different l in every call),
plus the time to compute

P
l A

l x l for the current iterate
x = (x1; x2; : : : ; xk) between consecutive calls.

Let CC(y) be the maximum cost yTAx achieved by
COVER_ORACLE for a given y.

Theorem 6 Let COVER_ORACLE be replaced by an ora-
cle that given vector y � 0, finds a point x̄ 2 P such that
yTAx̄ � (1 � "/2)CC(y) � ("/2)�yTb, where � is maxi-
mum so that Ax � �b is satisfied by the current iterate x.
Then Theorems 4 and 5 still hold.

For the simultaneous packing and covering problem, the
following is proven:

Theorem 7 For 0 < " � 1, there is a randomized "-re-
laxed decision procedure for the simultaneous pack-
ing and covering problem that is expected to use
O(m2(log2 �)"�2 log("�1m log �)) calls to SIM_ORACLE,
and a deterministic version that uses a factor of log � more
calls, plus the time to compute Âx for the current iterate x
between consecutive calls.

For the GENERAL problem, the following is shown:

Theorem 8 For 0 < " < 1, there is a deterministic "-re-
laxed decision procedure for the GENERAL problem that
uses O("�2�2 log(m�"�1)) calls to GEN_ORACLE, plus the
time to compute Ax for the current iterate x between con-
secutive calls.

The running times of these algorithms are proportional
to the width �, and the authors devise techniques to
reduce this width for many special cases of the prob-
lems considered. One example of the results obtained
by these techniques is the following: If a packing prob-
lem is defined by a convex set that is a product of k
smaller-dimension convex sets, i. e., P = P1 � � � � � Pk ,
and the inequalities

P
l A

l x l � b, then there is a ran-
domized "-relaxed decision procedure that is expected to
use O("�2k log(m"�1) + k log k) calls to a subroutine that
finds a minimum-cost point in P̂l = fxl 2 Pl : Al x l �
bg; l = 1; : : : ; k, and a deterministic version that uses
O("�2k2 log(m"�1)) such calls, plus the time to compute
Ax for the current iterate x between consecutive calls. This
result can be applied to themulticommodity flow problem,
but the required subroutine is a single-source minimum-
cost flow computation, instead of a shortest-path calcula-
tion needed for the original algorithm.

Applications

The results presented above can be used in order to ob-
tain fast approximate solutions to linear programs, even
if these can be solved exactly by LP algorithms. Many ap-
proximation algorithms are based on the rounding of the
solution of such programs, and hence one might want to
solve them approximately (with the overall approxima-
tion factor absorbing the LP solution approximation fac-

Fully Dynamic All Pairs Shortest Paths F 329

tor), but more efficiently. Two such examples, that appear
in [7], are mentioned here.

Theorems 1, 2 can be applied for the improvement
of the running time of the algorithm by Lenstra, Shmoys,
and Tardos [5] for the scheduling of unrelated paral-
lel machines without preemption (RjjCmax): N jobs are
to be scheduled on M machines, with each job i sched-
uled on exactly one machine j with processing time pij,
so that the maximum total processing time over all ma-
chines is minimized. Then, for any fixed r > 1, there
is a deterministic (1 + r)-approximation algorithm that
runs in O(M2N log2 N logM) time, and a randomized
version that runs in O(MN logM log N) expected time.
For the version of the problem with preemption, there
are polynomial-time approximation schemes that run in
O(MN2 log2 N) time and O(MN logN logM) expected
time in the deterministic and randomized case respec-
tively.

A well-known lower bound for the metric Traveling
Salesman Problem (metric TSP) on N nodes is the Held-
Karp bound [2], that can be formulated as the optimum
of a linear program over the subtour elimination poly-
tope. By using a randomized minimum-cut algorithm by
Karger and Stein [3], one can obtain a randomized ap-
proximation scheme that computes the Held-Karp bound
in O(N4 log6 N) expected time.

Open Problems

The main open problem is the further reduction of the
running time for the approximate solution of the vari-
ous fractional problems. One direction would be to im-
prove the bounds for specific problems, as has been done
very successfully for the multicommodity flow problem
in a series of papers starting with Shahrokhi and Mat-
ula [8]. This same starting point also led to a series of re-
sults by Grigoriadis and Khachiyan developed indepen-
dently to [7], starting with [1] which presents an algo-
rithm with a number of calls smaller than the one in The-
orem 1 by a factor of log(m"�1)/ logm. Considerable ef-
fort has been dedicated to the reduction of the dependence
of the running time on the width of the problem or the
reduction of the width itself (for example, see [9] for se-
quential and parallel algorithms for mixed packing and
covering), so this can be another direction of improve-
ment.

A problem left open by [7] is the development of ap-
proximation schemes for the RAM model, that use only
polylogarithmic in the input length precision and work for
the general case of the problems considered.

Cross References

�MinimumMakespan on Unrelated Machines

Recommended Reading

1. Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes
for convex programs with many blocks and coupling con-
straints. SIAM J. Optim. 4, 86–107 (1994)

2. Held, M., Karp, R.M.: The traveling-salesman problem and min-
imum cost spanning trees. Oper. Res. 18, 1138–1162 (1970)

3. Karger, D.R., Stein, C.: An Õ(n2) algorithm for minimum cut.
In: Proceeding of 25th Annual ACM Symposium on Theory of
Computing (STOC), 1993, pp. 757–765

4. Leighton, F.T., Makedon, F., Plotkin, S.A., Stein, C., Tardos, É.,
Tragoudas, S.: Fast approximation algorithms for multicom-
modity flow problems. J. Comp. Syst. Sci. 50(2), 228–243 (1995)

5. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algo-
rithms for scheduling unrelated parallel machines. Math. Pro-
gram. Ser. A 24, 259–272 (1990)

6. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algo-
rithms for fractional packing and covering problems. In: Pro-
ceedings of 32nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1991, pp. 495–504

7. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation al-
gorithms for fractional packing and covering problems. Math.
Oper. Res. 20(2) 257–301 (1995). Preliminary version appeared
in [6]

8. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow
problem. J. ACM 37, 318–334 (1990)

9. Young, N.E.: Sequential and parallel algorithms formixed pack-
ing and covering. In: Proceedings of 42nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), 2001,
pp. 538–546

Full-Text Index Construction
� Suffix Array Construction
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM

Fully Dynamic All Pairs
Shortest Paths
2004; Demetrescu, Italiano

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

ProblemDefinition

The problem is concerned with efficiently maintaining in-
formation about all-pairs shortest paths in a dynamically
changing graph. This problem has been investigated since

330 F Fully Dynamic All Pairs Shortest Paths

the 60s [17,18,20], and plays a crucial role in many appli-
cations, including network optimization and routing, traf-
fic information systems, databases, compilers, garbage col-
lection, interactive verification systems, robotics, dataflow
analysis, and document formatting.

A dynamic graph algorithm maintains a given prop-
ertyP on a graph subject to dynamic changes, such as edge
insertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than
recomputing from scratch, as carried out by the fastest
static algorithm. An algorithm is said to be fully dynamic
if it can handle both edge insertions and edge deletions.
A partially dynamic algorithm can handle either edge in-
sertions or edge deletions, but not both: it is incremental if
it supports insertions only, and decremental if it supports
deletions only. In this entry, fully dynamic algorithms for
maintaining shortest paths on general directed graphs are
presented.

In the fully dynamic All Pairs Shortest Path (APSP)
problem one wishes to maintain a directed graph G =
(V ; E) with real-valued edge weights under an intermixed
sequence of the following operations:

Update(x, y,w): update the weight of edge (x, y) to the
real value w; this includes as a special
case both edge insertion (if the weight is
set from +1 tow < +1) and edge dele-
tion (if the weight is set to w = +1);

Distance(x, y): output the shortest distance from x to y.
Path(x, y): report a shortest path from x to y, if any.

More formally, the problem can be defined as follows.

Problem 1 (Fully Dynamic All-Pairs Shortest Paths)
INPUT: A weighted directed graph G = (V ; E), and a se-
quence � of operations as defined above.

OUTPUT: A matrix D such entry D[x; y] stores the dis-
tance from vertex x to vertex y throughout the sequence � of
operations.

Throughout this entry, m and n denotes respectively the
number of edges and vertices in G.

Demetrescu and Italiano [3] proposed a new approach
to dynamic path problems based on maintaining classes
of paths characterized by local properties, i. e., properties
that hold for all proper subpaths, even if theymay not hold
for the entire paths. They showed that this approach can
play a crucial role in the dynamic maintenance of shortest
paths.

Key Results

Theorem 1 The fully dynamic shoretest path problem can
be solved in O(n2 log3 n) amortized time per update during
any intermixed sequence of operations. The space required
is O(mn).

Using the same approach, Thorup [22] has shown how to
slightly improve the running times:

Theorem 2 The fully dynamic shoretest path problem can
be solved in O(n2(log n + log2(m/n))) amortized time per
update during any intermixed sequence of operations. The
space required is O(mn).

Applications

Dynamic shortest paths find applications in many ar-
eas, including network optimization and routing, trans-
portation networks, traffic information systems, databases,
compilers, garbage collection, interactive verification sys-
tems, robotics, dataflow analysis, and document format-
ting.

Open Problems

The recent work on dynamic shortest paths has raised
some new and perhaps intriguing questions. First, can
one reduce the space usage for dynamic shortest paths to
O(n2)? Second, and perhaps more importantly, can one
solve efficiently fully dynamic single-source reachability
and shortest paths on general graphs? Finally, are there any
general techniques for making increase-only algorithms
fully dynamic? Similar techniques have been widely ex-
ploited in the case of fully dynamic algorithms on undi-
rected graphs [11,12,13].

Experimental Results

A thorough empirical study of the algorithms described in
this entry is carried out in [4].

Data Sets

Data sets are described in [4].

Cross References

� Dynamic Trees
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Fully Dynamic Connectivity F 331

Recommended Reading

1. Ausiello, G., Italiano, G.F., Marchetti-Spaccamela, A., Nanni, U.:
Incremental algorithms for minimal length paths. J. Algorithm
12(4), 615–38 (1991)

2. Demetrescu, C.: Fully Dynamic Algorithms for Path Problems
on Directed Graphs. Ph. D. thesis, Department of Computer
and Systems Science, University of Rome “La Sapienza”, Rome
(2001)

3. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all
pairs shortest paths. J. Assoc. Comp. Mach. 51(6), 968–992
(2004)

4. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic
all pairs shortest path algorithms. ACM Trans. Algorithms 2(4),
578–601 (2006)

5. Demetrescu, C., Italiano, G.F.: Trade-offs for fully dynamic
reachability on dags: Breaking through the O(n2) barrier. J. As-
soc. Comp. Mach. 52(2), 147–156 (2005)

6. Demetrescu, C., Italiano, G.F.: Fully Dynamic All Pairs Shortest
Paths with Real Edge Weights. J. Comp. Syst. Sci. 72(5), 813–
837 (2006)

7. Even, S., Gazit, H.: Updating distances in dynamic graphs.
Method. Oper. Res. 49, 371–387 (1985)

8. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semi-dynamic
algorithms for maintaining single source shortest paths trees.
Algorithmica 22(3), 250–274 (1998)

9. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic
algorithms for maintaining shortest paths trees. J. Algorithm
34, 351–381 (2000)

10. Henzinger, M., King, V.: Fully dynamic biconnectivity and tran-
sitive closure. In: Proc. 36th IEEE Symposiumon Foundations of
Computer Science (FOCS’95). IEEE Computer Society, pp. 664–
672. Los Alamos (1995)

11. Henzinger, M., King, V.: Maintainingminimumspanning forests
in dynamic graphs. SIAM J. Comp. 31(2), 364–374 (2001)

12. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

13. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

14. King, V.: Fully dynamic algorithms for maintaining all-pairs
shortest paths and transitive closure in digraphs. In: Proc.
40th IEEE Symposium on Foundations of Computer Science
(FOCS’99). IEEE Computer Society pp. 81–99. Los Alamos
(1999)

15. King, V., Sagert, G.: A fully dynamic algorithm for maintain-
ing the transitive closure. J. Comp. Syst. Sci. 65(1), 150–167
(2002)

16. King, V., Thorup, M.: A space saving trick for directed dynamic
transitive closure and shortest path algorithms. In: Proceed-
ings of the 7th Annual International Computing and Combi-
natorics Conference (COCOON). LNCS, vol. 2108, pp. 268–277.
Springer, Berlin (2001)

17. Loubal, P.: A network evaluation procedure. Highway Res. Rec.
205, 96–109 (1967)

18. Murchland, J.: The effect of increasing or decreasing the length
of a single arc on all shortest distances in a graph. Technical re-
port, LBS-TNT-26, London Business School, Transport Network
Theory Unit, London (1967)

19. Ramalingam, G., Reps, T.: An incremental algorithm for a gen-
eralization of the shortest path problem. J. Algorithm 21, 267–
305 (1996)

20. Rodionov, V.: The parametric problem of shortest distances.
USSR Comp. Math. Math. Phys. 8(5), 336–343 (1968)

21. Rohnert, H.: A dynamization of the all-pairs least cost prob-
lem. In: Proc. 2nd Annual Symposium on Theoretical Aspects
of Computer Science, (STACS’85). LNCS, vol. 182, pp. 279–286.
Springer, Berlin (1985)

22. Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and
allowing negative cycles. In: Proceedings of the 9th Scandina-
vian Workshop on Algorithm Theory (SWAT’04), pp. 384–396.
Springer, Berlin (2004)

23. Thorup, M.: Worst-case update times for fully-dynamic all-pairs
shortest paths. In: Proceedings of the 37th ACMSymposiumon
Theory of Computing (STOC 2005), ACM. New York (2005)

Fully Dynamic Connectivity
2001; Holm, de Lichtenberg, Thorup

VALERIE KING
Department of Computer Science, University of Victoria,
Victoria, BC, Canada

Keywords and Synonyms

Incremental algorithms for graphs; Fully dynamic graph
algorithm for maintaining connectivity

ProblemDefinition

Design a data structure for an undirected graph with
a fixed set of nodes which can process queries of the form
“Are nodes i and j connected?” and updates of the form
“Insert edge fi; jg”; “Delete edge fi; jg.” The goal is to
minimize update and query times, over the worst-case se-
quence of queries and updates. Algorithms to solve this
problem are called “fully dynamic” as opposed to “partially
dynamic” since both insertions and deletions are allowed.

Key Results

Holm et al. [4] gave the first deterministic fully dynamic
graph algorithm for maintaining connectivity in an undi-
rected graph with polylogarithmic amortized time per op-
eration, specifically, O(log2 n) amortized cost per update
operation and O(log n/ log log n) worst-case per query,
where n is the number of nodes. The basic technique is ex-
tended to maintain minimum spanning trees in O(log4 n)
amortized cost per update operation, and 2-edge connec-
tivity and biconnectivity in O(log5 n) amortized time per
operation.

The algorithm relies on a simple novel technique for
maintaining a spanning forest in a graph which enables

332 F Fully Dynamic Connectivity: Upper and Lower Bounds

efficient search for a replacement edge when a tree edge is
deleted. This technique ensures that each nontree edge is
examined no more than log2 n times. The algorithm relies
on previously known tree data structures, such as top trees
or ET-trees to store and quickly retrieve information about
the spanning trees and the nontree edges incident to them.

Algorithms to achieve a query time O(log n/
log log log n) and expected amortized update time O(log n
(log log n)3) for connectivity and O(log3 n log log n) ex-
pected amortized update time for 2-edge and biconnectiv-
ity were given in [6]. Lower bounds showing a continuum
of tradeoffs for connectivity between query and update
times in the cell probe model which match the known
upper bounds were proved in [5]. Specifically, if tu and
tq are the amortized update and query time, respectively,
then tq � lg(tu /tq) = ˝(lg n) and tu � lg(tq/tu) = ˝(lg n).

A previously known, somewhat different random-
ized method for computing dynamic connectivity with
O(log3 n) amortized expected update time can be found
in [2], improved to O(log2 n) in [3]. Amethod which min-
imizes worst-case rather than amortized update time is
given in [1]: O(

p
n) time per update for connectivity, as

well as 2-edge connectivity and bipartiteness.

Open Problems

Can the worst-case update time be reduced to o(n1/2), with
polylogarithmic query time?

Can the lower bounds on the tradeoffs in [6] be
matched for all possible query costs?

Applications

Dynamic connectivity has been used as a subroutine for
several static graph algorithms, such as the maximum flow
problem in a static graph [7], and for speeding up numer-
ical studies of the Potts spin model.

URL to Code

See http://www.mpi-sb.mpg.de/LEDA/friends/dyngraph.
html for software which implements the algorithm in [2]
and other older methods.

Cross References

� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Transitive Closure

Recommended Reading
1. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.:. Sparsifica-

tion–a technique for speeding up dynamic graph algorithms.
J. ACM 44(5), 669–696.1 (1997)

2. Henzinger, M.R., King, V.: Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. J. ACM 46(4),
502–536 (1999) (presented at ACM STOC 1995)

3. Henzinger, M.R., Thorup, M.: Sampling to provide or to bound:
With applications to fully dynamic graph algorithms. Random
Struct. Algorithms 11(4), 369–379 (1997) (presented at ICALP
1996)

4. Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic Deter-
ministic Fully-Dynamic Algorithms for Connectivity, Minimum
Spanning Tree, 2-Edge, and Biconnectivity. J. ACM 48(4), 723–
760 (2001) (presented at ACM STOC 1998)

5. Iyer, R., Karger, D., Rahul, H., Thorup, M.: An experimen-
tal study of poly-logarithmic fully-dynamic connectivity algo-
rithms. J. Exp. Algorithmics 6(4) (2001) (presented at ALENEX
2000)

6. Pătraşcu,M., Demaine, E.: Logarithmic Lower Bounds in the Cell-
ProbeModel. SIAM J. Comput. 35(4), 932–963 (2006) (presented
at ACM STOC 2004)

7. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
Proceedings of the 32th ACM Symposium on Theory of Com-
puting pp. 343–350. ACM STOC (2000)

8. Thorup, M.: Dynamic Graph Algorithms with Applications. In:
Halldórsson, M.M. (ed) 7th Scandinavian Workshop on Algo-
rithm Theory (SWAT), Norway, 5–7 July 2000, pp. 1–9

9. Zaroliagis, C.D.: Implementations and experimental studies
of dynamic graph algorithms. In: Experimental Algorithmics,
Dagstuhl seminar, September 2000, Lecture Notes in Computer
Science, vol. 2547. Springer (2002), Journal Article: J. Exp. Algo-
rithmics 229–278 (2000)

Fully Dynamic Connectivity:
Upper and Lower Bounds
2000; Thorup

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Dynamic connected components; Dynamic spanning for-
ests

ProblemDefinition

The problem is concerned with efficiently maintaining
information about connectivity in a dynamically chang-
ing graph. A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic changes, such
as edge insertions, edge deletions and edge weight up-
dates. A dynamic graph algorithm should process queries
on property P quickly, and perform update operations
faster than recomputing from scratch, as carried out by
the fastest static algorithm. An algorithm is said to be fully
dynamic if it can handle both edge insertions and edge

http://www.mpi-sb.mpg.de/LEDA/friends/dyngraph.html
http://www.mpi-sb.mpg.de/LEDA/friends/dyngraph.html

Fully Dynamic Connectivity: Upper and Lower Bounds F 333

deletions. A partially dynamic algorithm can handle either
edge insertions or edge deletions, but not both: it is incre-
mental if it supports insertions only, and decremental if it
supports deletions only.

In the fully dynamic connectivity problem, one wishes
to maintain an undirected graph G = (V ; E) under an in-
termixed sequence of the following operations:

Connected(u, v): Return true if vertices u and v are in the
same connected component of the graph. Return false
otherwise.

Insert(x, y): Insert a new edge between the two vertices x
and y.

Delete(x, y): Delete the edge between the two vertices x
and y.

Key Results

In this section, a high level description of the algorithm
for the fully dynamic connectivity problem in undirected
graphs described in [11] is presented: the algorithm, due
to Holm, de Lichtenberg and Thorup, answers connec-
tivity queries in O(log n/ log log n) worst-case running
time while supporting edge insertions and deletions in
O(log2 n) amortized time.

The algorithmmaintains a spanning forest F of the dy-
namically changing graph G. Edges in F are referred to as
tree edges. Let e be a tree edge of forest F, and let T be the
tree of F containing it. When e is deleted, the two trees T1
and T2 obtained from T after the deletion of e can be re-
connected if and only if there is a non-tree edge in G with
one endpoint in T1 and the other endpoint in T2. Such
an edge is called a replacement edge for e. In other words,
if there is a replacement edge for e, T is reconnected via
this replacement edge; otherwise, the deletion of e creates
a new connected component in G.

To accommodate systematic search for replacement
edges, the algorithm associates to each edge e a level `(e)
and, based on edge levels, maintains a set of sub-forests of
the spanning forest F: for each level i, forest Fi is the sub-
forest induced by tree edges of level � i. Denoting by L
denotes the maximum edge level, it follows that:

F = F0 � F1 � F2 � � � � � FL :

Initially, all edges have level 0; levels are then progressively
increased, but never decreased. The changes of edge levels
are accomplished so as to maintain the following invari-
ants, which obviously hold at the beginning.

Invariant (1): F is a maximum spanning forest of G if
edge levels are interpreted as weights.

Invariant (2): The number of nodes in each tree of Fi is at
most n/2i .

Invariant (1) should be interpreted as follows. Let (u, v) be
a non-tree edge of level `(u, v) and let u � � � v be the unique
path between u and v in F (such a path exists since F is
a spanning forest of G). Let e be any edge in u � � � v and
let `(e) be its level. Due to (1), `(e) � `(u; v). Since this
holds for each edge in the path, and by construction F`(u;v)
contains all the tree edges of level� `(u; v), the entire path
is contained in F`(u;v), i. e., u and v are connected in F`(u;v).

Invariant (2) implies that the maximum number of
levels is L � blog2 nc.

Note that when a new edge is inserted, it is given level
0. Its level can be then increased at most blog2 nc times
as a consequence of edge deletions. When a tree edge e =
(v;w) of level `(e) is deleted, the algorithm looks for a re-
placement edge at the highest possible level, if any. Due to
invariant (1), such a replacement edge has level ` � `(e).
Hence, a replacement subroutine Replace((u, w),`(e))
is called with parameters e and `(e). The operations per-
formed by this subroutine are now sketched.

Replace((u,w), `) finds a replacement edge of the high-
est level� `, if any. If such a replacement does not exist
in level `, there are two cases: if ` > 0, the algorithm
recurses on level ` � 1; otherwise, ` = 0, and the dele-
tion of (v,w) disconnects v and w in G.

During the search at level `, suitably chosen tree and non-
tree edges may be promoted at higher levels as follows. Let
Tv and Tw be the trees of forest F` obtained after deleting
(v,w) and let, w.l.o.g., Tv be smaller than Tw. ThenTv con-
tains at most n/2`+1 vertices, since Tv [Tw [f(v;w)g was
a tree at level ` and due to invariant (2). Thus, edges in Tv
of level ` can be promoted at level `+1 by maintaining the
invariants. Non-tree edges incident to Tv are finally visited
one by one: if an edge does connect Tv and Tw, a replace-
ment edge has been found and the search stops, otherwise
its level is increased by 1.

Trees of each forest are maintained so that the basic
operations needed to implement edge insertions and dele-
tions can be supported in O(log n) time. There are few
variants of basic data structures that can accomplish this
task, and one could use the Euler Tour trees (in short ET-
tree), first introduced in [17], for this purpose.

In addition to inserting and deleting edges from a for-
est, ET-trees must also support operations such as finding
the tree of a forest that contains a given vertex, comput-
ing the size of a tree, and, more importantly, finding tree
edges of level ` in Tv and non-tree edges of level ` incident
to Tv. This can be done by augmenting the ET-trees with

334 F Fully Dynamic Connectivity: Upper and Lower Bounds

a constant amount of information per node: the interested
reader is referred to [11] for details.

Using an amortization argument based on level
changes, the claimed O(log2 n) bound on the update time
can be proved. Namely, inserting an edge costs O(log n), as
well as increasing its level. Since this can happen O(log n)
times, the total amortized insertion cost, inclusive of level
increases, is O(log2 n). With respect to edge deletions, cut-
ting and linking O(log n) forest has a total cost O(log2 n);
moreover, there are O(log n) recursive calls to Replace,
each of cost O(log n) plus the cost amortized over level in-
creases. The ET-trees over F0 = F allows it to answer con-
nectivity queries in O(log n) worst-case time. As shown
in [11], this can be reduced to O(log n/ log log n) by using
a	(log n)-ary version of ET-trees.

Theorem 1 A dynamic graph G with n vertices can be
maintained upon insertions and deletions of edges using
O(log2 n) amortized time per update and answering con-
nectivity queries in O(log n/ log log n) worst-case running
time.

Later on, Thorup [18] gave another data structure which
achieves slightly different time bounds:

Theorem 2 A dynamic graph G with n vertices can be
maintained upon insertions and deletions of edges using
O(log n � (log log n)3) amortized time per update and an-
swering connectivity queries in O(log n/ log log log n) time.

The bounds given in Theorems 1 and 2 are not directly
comparable, because each sacrifices the running time of
one operation (either query or update) in order to improve
the other.

The best known lower bound for the dynamic connec-
tivity problem holds in the bit-probe model of computa-
tion and is due to Pǎtraşcu and Tarni̧tǎ [16]. The bit-probe
model is an instantiation of the cell-probe model with one-
bit cells. In this model, memory is organized in cells, and
the algorithms may read or write a cell in constant time.
The number of cell probes is taken as the measure of com-
plexity. For formal definitions of this model, the interested
reader is referred to [13].

Theorem 3 Consider a bit-probe implementation for
dynamic connectivity, in which updates take expected
amortized time tu, and queries take expected time tq.
Then, in the average case of an input distribution, tu =
˝
�
log2n/log2(tu + tq)

�
. In particular

maxftu ; tqg = ˝

 �
log n

log log n

�2
!
:

In the bit-probe model, the best upper bound per oper-
ation is given by the algorithm of Theorem 2, namely it
is O(log2 n/ log log log n). Consequently, the gap between
upper and lower bound appears to be limited essentially to
doubly logarithmic factors only.

Applications

Dynamic graph connectivity appears as a basic subprob-
lem of many other important problems, such as the dy-
namic maintenance of minimum spanning trees and dy-
namic edge and vertex connectivity problems. Further-
more, there are several applications of dynamic graph con-
nectivity in other disciplines, ranging from Computational
Biology, where dynamic graph connectivity proved to be
useful for the dynamic maintenance of protein molec-
ular surfaces as the molecules undergo conformational
changes [6], to Image Processing, when one is interested
in maintaining the connected components of a bitmap im-
age [3].

Open Problems

The work on dynamic connectivity raises some open
and perhaps intruiguing questions. The first natural open
problem is whether the gap between upper and lower
bounds can be closed. Note that the lower bound of The-
orem 3 seems to imply that different trade-offs between
queries and updates could be possible: can we design a data
structure with o(log n) time per update andO(poly(log n))
per query? This would be particulary interesting in appli-
cations where the total number of queries is substantially
larger than the number of updates.

Finally, is it possible to design an algorithm with
matching O(log n) update and query bounds for general
graphs? Note that this is possible in the special case of
plane graphs [5].

Experimental Results

A thorough empirical study of dynamic connectivity algo-
rithms has been carried out in [1,12].

Data Sets

Data sets are described in [1,12].

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs

Fully Dynamic Higher Connectivity F 335

� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading

1. Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dy-
namic graph algorithms. ACM J. Exp. Algorithmics 2 (1997)

2. Beame, P., Fich, F.E.: Optimal bounds for the predecessor prob-
lem and related problems. J. Comp. Syst. Sci. 65(1), 38–72
(2002)

3. Eppstein, D.: Dynamic Connectivity in Digital Images. Inf. Pro-
cess. Lett. 62(3), 121–126 (1997)

4. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comp. Mach. 44(5), 669–696 (1997)

5. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

6. Eyal, E., Halperin, D.: Improved Maintenance of Molecular Sur-
faces Using Dynamic Graph Connectivity. in: Proc. 5th Interna-
tional Workshop on Algorithms in Bioinformatics (WABI 2005),
Mallorca, Spain, 2005, pp. 401–413

7. Frederickson, G.N.: Data structures for on-line updating ofmin-
imum spanning trees. SIAM J. Comp. 14, 781–798 (1985)

8. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. In: Proc. 32nd
Symp. Foundations of Computer Science, 1991, pp. 632–641

9. Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dy-
namic connectivity problems in graphs. Algorithmica 22(3),
351–362 (1998)

10. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

11. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

12. Iyer, R., Karger, D., Rahul, H., Thorup,M.: An Experimental Study
of Polylogarithmic, Fully Dynamic, Connectivity Algorithms.
ACM J. Exp. Algorithmics 6 (2001)

13. Miltersen, P.B.: Cell probe complexity – a survey. In: 19th Con-
ference on the Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), Advances in Data Struc-
tures Workshop, 1999

14. Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Com-
plexity models for incremental computation. In: Ausiello, G.,
Italiano, G.F. (eds.) Special Issue on Dynamic and On-line Al-
gorithms. Theor. Comp. Sci. 130(1), 203–236 (1994)

15. Pǎtraşcu, M., Demain, E.D.: Lower Bounds for Dynamic Connec-
tivity. In: Proc. 36th ACM Symposium on Theory of Computing
(STOC), 2004, pp. 546–553

16. Pǎtraşcu, M., Tarniţǎ, C.: On Dynamic Bit-Probe Complexity,
Theoretical Computer Science, Special Issue on ICALP’05. In:
Italiano, G.F., Palamidessi, C. (eds.) vol. 380, pp. 127–142 (2007)
A preliminary version in Proc. 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), 2005,
pp. 969–981

17. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity al-
gorithm. SIAM J. Comp. 14, 862–874 (1985)

18. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
Proc. 32nd ACM Symposium on Theory of Computing (STOC),
2000, pp. 343–350

Fully Dynamic Higher Connectivity
1997; Eppstein, Galil, Italiano, Nissenzweig

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Fully dynamic edge connectivity; Fully dynamic vertex
connectivity

ProblemDefinition

The problem is concerned with efficiently maintaining in-
formation about edge and vertex connectivity in a dynam-
ically changing graph. Before defining formally the prob-
lems, a few preliminary definitions follow.

Given an undirected graph G = (V ; E), and an integer
k � 2, a pair of vertices hu; vi is said to be k-edge-connected
if the removal of any (k � 1) edges inG leaves u and v con-
nected. It is not difficult to see that this is an equivalence
relationship: the vertices of a graph G are partitioned by
this relationship into equivalence classes called k-edge-con-
nected components. G is said to be k-edge-connected if the
removal of any (k � 1) edges leaves G connected. As a re-
sult of these definitions, G is k-edge-connected if and only
if any two vertices of G are k-edge-connected. An edge set
E0
 E is an edge-cut for vertices x and y if the removal of
all the edges in E0 disconnects G into two graphs, one con-
taining x and the other containing y. An edge set E0
 E is
an edge-cut for G if the removal of all the edges in E0 dis-
connects G into two graphs. An edge-cut E0 for G (for x
and y, respectively) is minimal if removing any edge from
E0 reconnects G (for x and y, respectively). The cardinality
of an edge-cut E0, denoted by jE0j, is given by the number
of edges in E0. An edge-cut E0 for G (for x and y, respec-
tively) is said to be a minimum cardinality edge-cut or in
short a connectivity edge-cut if there is no other edge-cut
E00 for G (for x and y respectively) such that jE00j < jE0j.
Connectivity edge-cuts are of course minimal edge-cuts.
Note that G is k-edge-connected if and only if a connec-
tivity edge-cut for G contains at least k edges, and vertices
x and y are k-edge-connected if and only if a connectivity
edge-cut for x and y contains at least k edges. A connectiv-
ity edge-cut of cardinality 1 is called a bridge.

336 F Fully Dynamic Higher Connectivity

The following theoremdue to Ford and Fulkerson, and
Elias, Feinstein and Shannon (see [7]) gives another char-
acterization of k-edge connectivity.

Theorem 1 (Ford and Fulkerson, Elias, Feinstein and
Shannon) Given a graph G and two vertices x and y in
G, x and y are k-edge-connected if and only if there are at
least k edge-disjoint paths between x and y.

In a similar fashion, a vertex set V 0
 V � fx; yg is said
to be a vertex-cut for vertices x and y if the removal of all
the vertices in V 0 disconnects x and y. V 0 � V is a vertex-
cut for vertices G if the removal of all the vertices in V 0

disconnects G.
The cardinality of a vertex-cut V 0, denoted by jV 0j, is

given by the number of vertices in V 0. A vertex-cut V 0 for
x and y is said to be a minimum cardinality vertex-cut or
in short a connectivity vertex-cut if there is no other vertex-
cut V 00 for x and y such that jV 00j < jV 0j. Then x and y are
k-vertex-connected if and only if a connectivity vertex-cut
for x and y contains at least k vertices. A graph G is said
to be k-vertex-connected if all its pairs of vertices are k-ver-
tex-connected. A connectivity vertex-cut of cardinality 1
is called an articulation point, while a connectivity vertex-
cut of cardinality 2 is called a separation pair. Note that for
vertex connectivity it is no longer true that the removal of
a connectivity vertex-cut splits G into two sets of vertices.

The following theorem due to Menger (see [7]) gives
another characterization of k-vertex connectivity.

Theorem (Menger) 2 Given a graph G and two vertices
x and y in G, x and y are k-vertex-connected if and only if
there are at least k vertex-disjoint paths between x and y.

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on property
P quickly, and perform update operations faster than re-
computing from scratch, as carried out by the fastest static
algorithm. An algorithm is fully dynamic if it can handle
both edge insertions and edge deletions. A partially dy-
namic algorithm can handle either edge insertions or edge
deletions, but not both: it is incremental if it supports in-
sertions only, and decremental if it supports deletions only.

In the fully dynamic k-edge connectivity problem one
wishes to maintain an undirected graph G = (V ; E) under
an intermixed sequence of the following operations:
� k-EdgeConnected(u, v): Return true if vertices u and v

are in the same k-edge-connected component. Return
false otherwise.

� Insert(x, y): Insert a new edge between the two vertices
x and y.

� Delete(x, y): Delete the edge between the two vertices x
and y.
In the fully dynamic k-vertex connectivity problem one

wishes to maintain an undirected graph G = (V ; E) under
an intermixed sequence of the following operations:
� k-VertexConnected(u, v): Return true if vertices u and v

are k-vertex-connected. Return false otherwise.
� Insert(x, y): Insert a new edge between the two vertices

x and y.
� Delete(x, y): Delete the edge between the two vertices x

and y.

Key Results

To the best knowledge of the author, the most efficient
fully dynamic algorithms for k-edge and k-vertex connec-
tivity were proposed in [3,12]. Their running times are
characterized by the following theorems.

Theorem 3 The fully dynamic k-edge connectivity prob-
lem can be solved in:
1. O(log4 n) time per update and O(log3 n) time per query,

for k = 2
2. O(n2/3) time per update and query, for k = 3
3. O(n˛(n)) time per update and query, for k = 4
4. O(n log n) time per update and query, for k � 5 :

Theorem 4 The fully dynamic k-vertex connectivity prob-
lem can be solved in:
1. O(log4 n) time per update and O(log3 n) time per query,

for k = 2
2. O(n) time per update and query, for k = 3
3. O(n˛(n)) time per update and query, for k = 4 :

Applications

Vertex and edge connectivity problems arise often in is-
sues related to network reliability and survivability. In
computer networks, the vertex connectivity of the under-
lying graph is related to the smallest number of nodes that
might fail before disconnecting the whole network. Simi-
larly, the edge connectivity is related to the smallest num-
ber of links that might fail before disconnecting the en-
tire network. Analogously, if two nodes are k-vertex-con-
nected then they can remain connected even after the fail-
ure of up to (k � 1) other nodes, and if they are k-edge-
connected then they can survive the failure of up to (k � 1)
links. It is important to investigate the dynamic versions
of those problems in contexts where the networks are dy-
namically evolving, say, when links may go up and down
because of failures and repairs.

Fully Dynamic Higher Connectivity for Planar Graphs F 337

Open Problems

The work of Eppstein et al. [3] and Holm et al. [12] raises
some intriguing questions. First, while efficient dynamic
algorithms for k-edge connectivity are known for gen-
eral k, no efficient fully dynamic k-vertex connectivity is
known for k � 5. To the best of the author’s knowledge, in
this case even no static algorithm is known. Second, fully
dynamic 2-edge and 2-vertex connectivity can be solved
in polylogarithmic time per update, while the best known
update bounds for higher edge and vertex connectivity are
polynomial: Can this gap be reduced, i. e., can one design
polylogarithnmic algorithms for fully dynamic 3-edge and
3-vertex connectivity?

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading
1. Dinitz, E.A.: Maintaining the 4-edge-connected components of

a graph on-line. In: Proc. 2nd Israel Symp. Theory of Computing
and Systems, 1993, pp. 88–99

2. Dinitz, E.A., Karzanov A.V., Lomonosov M.V.: On the structure
of the system of minimal edge cuts in a graph. In: Fridman,
A.A. (ed) Studies in Discrete Optimization, pp. 290–306. Nauka,
Moscow (1990). In Russian

3. Eppstein, D., Galil Z., Italiano G.F., Nissenzweig A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comput. Mach. 44(5), 669–696 (1997)

4. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. SIAM J. Com-
put. 26(2), 484–538 (1997)

5. Galil, Z., Italiano, G. F.: Fully dynamic algorithms for 2-edge-
connectivity. SIAM J. Comput. 21, 1047–1069 (1992)

6. Galil, Z., Italiano, G.F.: Maintaining the 3-edge-connected com-
ponents of a graph on-line. SIAM J. Comput. 22, 11–28 (1993)

7. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
8. Henzinger, M.R.: Fully dynamic biconnectivity in graphs. Algo-

rithmica 13(6), 503–538 (1995)
9. Henzinger, M.R.: Improved data structures for fully dynamic bi-

connectivity. SIAM J. Comput. 29(6), 1761–1815 (2000)
10. Henzinger, M., King V.: Fully dynamic biconnectivity and tran-

sitive closure. In: Proc. 36th IEEE Symposium on Foundations
of Computer Science (FOCS’95), 1995, pp. 664–672

11. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

12. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum

spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

13. Karzanov, A.V., Timofeev, E. A.: Efficient algorithm for finding
all minimal edge cuts of a nonoriented graph. Cybernetics 22,
156–162 (1986)

14. La Poutré, J.A.: Maintenance of triconnected components of
graphs. In: Proc. 19th Int. Colloquium on Automata, Lan-
guages and Programming. Lecture Notes in Computer Sci-
ence, vol. 623, pp. 354–365. Springer, Berlin (1992)

15. La Poutré, J.A.: Maintenance of 2- and 3-edge-connected com-
ponents of graphs II. SIAM J. Comput. 29(5), 1521–1549 (2000)

16. La Poutré, J.A., van Leeuwen, J., Overmars, M.H.: Maintenance
of 2- and 3-connected components of graphs, part I: 2- and
3-edge-connected components. Discret. Math. 114, 329–359
(1993)

17. La Poutré, J.A., Westbrook, J.: Dynamic two-connectivity with
backtracking. In: Proc. 5th ACM-SIAM Symp. Discrete Algo-
rithms, 1994, pp. 204–212

18. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and
biconnected components on-line. Algorithmica 7, 433–464
(1992)

Fully Dynamic Higher Connectivity
for Planar Graphs
1998; Eppstein, Galil, Italiano, Spencer

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Fully dynamic edge connectivity; Fully dynamic vertex
connectivity

ProblemDefinition

In this entry, the problem ofmaintaining a dynamic planar
graph subject to edge insertions and edge deletions that
preserve planarity but that can change the embedding is
considered. In particular, in this problem one is concerned
with the problem of efficiently maintaining information
about edge and vertex connectivity in such a dynamically
changing planar graph. The algorithms to solve this prob-
lem must handle insertions that keep the graph planar
without regard to any particular embedding of the graph.
The interested reader is referred to the chapter “Fully Dy-
namic Planarity Testing” of this encyclopedia for algo-
rithms to learn how to check efficiently whether a graph
subject to edge insertions and deletions remains planar
(without regard to any particular embedding).

Before defining formally the problems considered
here, a few preliminary definitions follow.

338 F Fully Dynamic Higher Connectivity for Planar Graphs

Given an undirected graph G = (V ; E), and an integer
k � 2, a pair of vertices hu; vi is said to be k-edge-connected
if the removal of any (k � 1) edges inG leaves u and v con-
nected. It is not difficult to see that this is an equivalence
relationship: the vertices of a graph G are partitioned by
this relationship into equivalence classes called k-edge-con-
nected components. G is said to be k-edge-connected if the
removal of any (k � 1) edges leaves G connected. As a re-
sult of these definitions, G is k-edge-connected if and only
if any two vertices of G are k-edge-connected. An edge set
E0
 E is an edge-cut for vertices x and y if the removal of
all the edges in E0 disconnects G into two graphs, one con-
taining x and the other containing y. An edge set E0
 E is
an edge-cut for G if the removal of all the edges in E0 dis-
connects G into two graphs. An edge-cut E0 for G (for x
and y, respectively) is minimal if removing any edge from
E0 reconnects G (for x and y, respectively). The cardinality
of an edge-cut E0, denoted by jE0j, is given by the number
of edges in E0. An edge-cut E0 for G (for x and y, respec-
tively) is said to be a minimum cardinality edge-cut or in
short a connectivity edge-cut if there is no other edge-cut
E00 for G (for x and y, respectively) such that jE00j < jE0j.
Connectivity edge-cuts are of course minimal edge-cuts.
Note that G is k-edge-connected if and only if a connec-
tivity edge-cut for G contains at least k edges, and vertices
x and y are k-edge-connected if and only if a connectivity
edge-cut for x and y contains at least k edges. A connectiv-
ity edge-cut of cardinality 1 is called a bridge.

In a similar fashion, a vertex set V 0
 V � fx; yg is
said to be a vertex-cut for vertices x and y if the removal
of all the vertices in V 0 disconnects x and y. V 0 � V is
a vertex-cut for vertices G if the removal of all the vertices
in V 0 disconnects G.

The cardinality of a vertex-cut V 0, denoted by jV 0j, is
given by the number of vertices in V 0. A vertex-cut V 0 for
x and y is said to be a minimum cardinality vertex-cut or
in short a connectivity vertex-cut if there is no other vertex-
cut V 00 for x and y such that jV 00j < jV 0j. Then x and y are
k-vertex-connected if and only if a connectivity vertex-cut
for x and y contains at least k vertices. A graph G is said
to be k-vertex-connected if all its pairs of vertices are k-ver-
tex-connected. A connectivity vertex-cut of cardinality 1
is called an articulation point, while a connectivity vertex-
cut of cardinality 2 is called a separation pair. Note that for
vertex connectivity it is no longer true that the removal of
a connectivity vertex-cut splits G into two sets of vertices.

A dynamic graph algorithm maintains a given prop-
ertyP on a graph subject to dynamic changes, such as edge
insertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than

recomputing from scratch, as carried out by the fastest
static algorithm. An algorithm is fully dynamic if it can
handle both edge insertions and edge deletions. A par-
tially dynamic algorithm can handle either edge insertions
or edge deletions, but not both: it is incremental if it sup-
ports insertions only, and decremental if it supports dele-
tions only.

In the fully dynamic k-edge connectivity problem for
a planar graph one wishes to maintain an undirected
planar graph G = (V ; E) under an intermixed sequence
of edge insertions, edge deletions and queries about the
k-edge connectivity of the underlying planar graph. Sim-
ilarly, in thefully dynamic k-vertex connectivity problem
for a planar graph one wishes to maintain an undirected
planar graph G = (V ; E) under an intermixed sequence
of edge insertions, edge deletions and queries about the
k-vertex connectivity of the underlying planar graph.

Key Results

The algorithms in [2,3] solve efficiently the above prob-
lems for small values of k:

Theorem 1 One can maintain a planar graph, subject
to insertions and deletions that preserve planarity, and al-
low queries that test the 2-edge connectivity of the graph,
or test whether two vertices belong to the same 2-edge-con-
nected component, in O(log n) amortized time per insertion
or query, and O(log2 n) per deletion.

Theorem 2 One can maintain a planar graph, subject to
insertions and deletions that preserve planarity, and allow
testing of the 3-edge and 4-edge connectivity of the graph in
O(n1/2) time per update, or testing of whether two vertices
are 3- or 4-edge-connected, in O(n1/2) time per update or
query.

Theorem 3 One can maintain a planar graph, subject to
insertions and deletions that preserve planarity, and allow
queries that test the 3-vertex connectivity of the graph, or
test whether two vertices belong to the same 3-vertex-con-
nected component, in O(n1/2) amortized time per update or
query.

Note that these theorems improve on the bounds known
for the same problems on general graphs, reported in the
chapter “Fully Dynamic Higher Connectivity.”

Applications

The interest reader is referred to the chapter “Fully Dy-
namic Higher Connectivity” for applications of dynamic
edge and vertex connectivity. The case of planar graphs

Fully Dynamic Minimum Spanning Trees F 339

is especially important, as these graphs arise frequently in
applications.

Open Problems

A number of problems related to the work of Eppstein
et al. [2,3] remain open. First, can the running times per
operation be improved? Second, as in the case of general
graphs, also for planar graphs fully dynamic 2-edge con-
nectivity can be solved in polylogarithmic time per up-
date, while the best known update bounds for higher edge
and vertex connectivity are polynomial: Can this gap be re-
duced, i. e., can one design polylogarithnmic algorithms at
least for fully dynamic 3-edge and 3-vertex connectivity?
Third, in the special case of planar graphs can one solve
fully dynamic k-vertex connectivity for general k?

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading
1. Galil Z., Italiano G.F., Sarnak N.: Fully dynamic planarity testing

with applications. J. ACM 48, 28–91 (1999)
2. Eppstein D., Galil Z., Italiano G.F., Spencer T.H.: Separator based

sparsification I: planarity testing and minimum spanning trees.
J. Comput. Syst. Sci., Special issue of STOC 93 52(1), 3–27 (1996)

3. Eppstein D., Galil Z., Italiano G.F., Spencer T.H.: Separator based
sparsification II: edge and vertex connectivity. SIAM J. Comput.
28, 341–381 (1999)

4. Giammarresi D., ItalianoG.F.: Decremental 2- and 3-connectivity
on planar graphs. Algorithmica 16(3), 263–287 (1996)

5. Hershberger J., M.R., Suri S.: Data structures for two-edge con-
nectivity in planar graphs. Theor. Comput. Sci. 130(1), 139–161
(1994)

Fully Dynamic Minimum
Spanning Trees
2000; Holm, de Lichtenberg, Thorup

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

Keywords and Synonyms

Dynamic minimum spanning forests

ProblemDefinition

Let G = (V ; E) be an undirected weighted graph. The
problem considered here is concerned with maintaining
efficiently information about a minimum spanning tree of
G (or minimum spanning forest if G is not connected),
when G is subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. One ex-
pects from the dynamic algorithm to perform update oper-
ations faster than recomputing the entire minimum span-
ning tree from scratch.

Throughout, an algorithm is said to be fully dynamic
if it can handle both edge insertions and edge deletions.
A partially dynamic algorithm can handle either edge in-
sertions or edge deletions, but not both: it is incremental if
it supports insertions only, and decremental if it supports
deletions only.

Key Results

The dynamic minimum spanning forest algorithm pre-
sented in this section builds upon the dynamic connectiv-
ity algorithm described in the entry “Fully Dynamic Con-
nectivity”. In particular, a few simple changes to that al-
gorithm are sufficient to maintain a minimum spanning
forest of a weighted undirected graph upon deletions of
edges [13]. A general reduction from [11] can then be ap-
plied to make the deletions-only algorithm fully dynamic.

This section starts by describing a decremental algo-
rithm for maintaining a minimum spanning forest under
deletions only. Throughout the sequence of deletions, the
algorithm maintains a minimum spanning forest F of the
dynamically changing graphG. The edges in F are referred
to as tree edges and the other edges (in G � F) are referred
to as non-tree edges. Let e be an edge being deleted. If e is
a non-tree edge, then the minimum spanning forest does
not need to change, so the interesting case is when e is
a tree edge of forest F. Let T be the tree of F containing
e. In this case, the deletion of e disconnects the tree T into
two treesT1 and T2: to update theminimum spanning for-
est, one has to look for the minimum weight edge having
one endpoint in T1 and the other endpoint in T2. Such an
edge is called a replacement edge for e.

As for the dynamic connectivity algorithm, to search
for replacement edges, the algorithm associates to each
edge e a level `(e) and, based on edge levels,maintains a set
of sub-forests of the minimum spanning forest F: for each
level i, forest Fi is the sub-forest induced by tree edges of
level � i. Denoting by L the maximum edge level, it fol-
lows that:

F = F0 � F1 � F2 � � � � � FL :

340 F Fully Dynamic Minimum Spanning Trees

Initially, all edges have level 0; levels are then progres-
sively increased, but never decreased. The changes of edge
levels are accomplished so as to maintain the following in-
variants, which obviously hold at the beginning.

Invariant (1): F is a maximum spanning forest of G if
edge levels are interpreted as weights.

Invariant (2): The number of nodes in each tree of Fi is at
most n/2i .

Invariant (3): Every cycle C has a non-tree edge of max-
imum weight and minimum level among all the edges
in C.

Invariant (1) should be interpreted as follows. Let (u,v) be
a non-tree edge of level `(u, v) and let u � � � v be the unique
path between u and v in F (such a path exists since F is
a spanning forest of G). Let e be any edge in u � � � v and
let `(e) be its level. Due to (1), `(e) � `(u; v). Since this
holds for each edge in the path, and by construction F`(u;v)
contains all the tree edges of level � `(u; v), the entire
path is contained in F`(u;v), i. e., u and v are connected in
F`(u;v).

Invariant (2) implies that the maximum number of
levels is L � blog2 nc.

Invariant (3) can be used to prove that, among all the
replacement edges, the lightest edge is on the maximum
level. Let e1 and e2 be two replacement edges withw(e1) <
w(e2), and let Ci be the cycle induced by ei in F, i = 1; 2.
Since F is a minimum spanning forest, ei has maximum
weight among all the edges in Ci . In particular, since by
hypothesis w(e1) < w(e2), e2 is also the heaviest edge in
cycle C = (C1[C2)n (C1\C2). Thanks to Invariant (3), e2
has minimum level in C, proving that `(e2) � `(e1). Thus,
considering non-tree edges from higher to lower levels is
correct.

Note that initially, an edge is is given level 0. Its level
can be then increased at most blog2 nc times as a conse-
quence of edge deletions. When a tree edge e = (v;w) of
level `(e) is deleted, the algorithm looks for a replacement
edge at the highest possible level, if any. Due to invariant
(1), such a replacement edge has level ` � `(e). Hence,
a replacement subroutine Replace((u;w); `(e)) is called
with parameters e and `(e). The operations performed by
this subroutine are now sketched.

Replace((u;w); `) finds a replacement edge of the high-
est level � `, if any, considering edges in order of in-
creasing weight. If such a replacement does not exist in
level `, there are two cases: if ` > 0, the algorithm re-
curses on level `� 1; otherwise, ` = 0, and the deletion
of (v,w) disconnects v and w in G.

It is possible to show that Replace returns a replacement
edge of minimum weight on the highest possible level,
yielding the following lemma:

Lemma 1 There exists a deletions-only minimum span-
ning forest algorithm that can be initialized on a graph with
n vertices and m edges and supports any sequence of edge
deletions in O(m log2 n) total time.

The description of a fully dynamic algorithm which per-
forms updates in O(log4 n) time now follows. The reduc-
tion used to obtain a fully dynamic algorithm is a slight
generalization of the construction proposed by Henzinger
and King [11] and works as follows.

Lemma 2 Suppose there is a deletions-only minimum
spanning tree algorithm that, for any k and `, can be initial-
ized on a graph with k vertices and ` edges and supports any
sequence of˝(`) deletions in total time O(` � t(k; `)), where
t is a non-decreasing function. Then there exists a fully-
dynamic minimum spanning tree algorithm for a graph
with n nodes starting with no edges, that, for m edges, sup-
ports updates in time

O

0
@log3 n +

3+log2 mX
i=1

iX
j=1

t
�
minfn; 2 jg; 2 j

�
1
A :

The interested reader is referred to references [11]
and [13] for the description of the construction that proves
Lemma 2. From Lemma 1 one gets t(k; `) = O(log2 k).
Hence, combining Lemmas 1 and 2, the claimed result fol-
lows:

Theorem 3 There exists a fully-dynamic minimum span-
ning forest algorithm that, for a graph with n vertices, start-
ing with no edges, maintains a minimum spanning forest in
O(log4 n) amortized time per edge insertion or deletion.

There is a lower bound of˝(log n) for dynamicminimum
spanning tree, given by Eppstein et al. [6], which uses the
following argument. Let A be an algorithm for maintain-
ing a minimum spanning tree of an arbitrary (multi)graph
G. Let A be such that change weight(e; �) returns the
edge f that replace e in the minimum spanning tree, if e
is replaced. Clearly, any dynamic spanning tree algorithm
can be modified to return f . One can use algorithm A to
sort n positive numbers x1, x2, : : :, xn, as follows. Con-
struct a multigraph G consisting of two nodes connected
by (n + 1) edges e0, e1, : : :, en, such that edge e0 has weight
0 and edge ei has weight xi. The initial spanning tree is e0.
Increase the weight of e0 to +1. Whichever edge replaces
e0, say ei, is the edge of minimum weight. Now increase
the weight of ei to +1: the replacement of ei gives the
second smallest weight. Continuing in this fashion gives

Fully Dynamic Minimum Spanning Trees F 341

the numbers sorted in increasing order. A similar argu-
ment applies when only edge decreases are allowed. Since
Paul and Simon [14] have shown that any sorting algo-
rithm needs˝(n log n) time to sort n numbers on a unit-
cost random access machine whose repertoire of opera-
tions include additions, subtractions, multiplications and
comparisons with 0, but not divisions or bit-wise Boolean
operations, the following theorem follows.

Theorem 4 Any unit-cost random access algorithm that
performs additions, subtractions, multiplications and com-
parisons with 0, but not divisions or bit-wise Boolean oper-
ations, requires ˝(log n) amortized time per operation to
maintain a minimum spanning tree dynamically.

Applications

Minimum spanning trees have applications in many areas,
including network design, VLSI, and geometric optimiza-
tion, and the problem of maintaining minimum spanning
trees dynamically arises in such applications.

Algorithms for maintaining a minimum spanning for-
est of a graph can be used also for maintaining informa-
tion about the connected components of a graph. There
are also other applications of dynamic minimum span-
ning trees algorithms, which include finding the k smallest
spanning trees [3,4,5,8,9], sampling spanning trees [7] and
dynamicmatroid intersection problems [10]. Note that the
first two problems are not necessarily dynamic: however,
efficient solutions for these problems need dynamic data
structures.

Open Problems

The first natural open question is to ask whether the gap
between upper and lower bounds for the dynamic mini-
mum spanning tree problem can be closed. Note that this
is possible in the special case of plane graphs [6].

Second, the techniques for dynamic minimum span-
ning trees can be extended to dynamic 2-edge and 2-vertex
connectivity, which indeed can be solved in polylogarith-
mic time per update. Can one extend the same technique
also to higher forms of connectivity? This is particularly
important, since the best known update bounds for higher
edge and vertex connectivity are polynomial, and it would
be useful to design polylogarithnmic algorithms at least for
fully dynamic 3-edge and 3-vertex connectivity.

Experimental Results

A thorough empirical study on the performance evalua-
tion of dynamic minimum spanning trees algorithms has
been carried out in [1,2].

Data Sets

Data sets are described in [1,2].

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Planarity Testing
� Fully Dynamic Transitive Closure

Recommended Reading

1. Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dy-
namic graph algorithms. ACM. J. Exp. Algorithm 2, (1997)

2. Cattaneo, G., Faruolo, P., Ferraro Petrillo, U., Italiano, G.F.: Main-
taining Dynamic Minimum Spanning Trees: An Experimental
Study. In: Proceeding 4thWorkshop on Algorithm Engineering
and Experiments (ALENEX 02), 6–8 Jan 2002. pp. 111–125

3. Eppstein, D.: Finding the k smallest spanning trees. BIT. 32,
237–248 (1992)

4. Eppstein, D.: Tree-weighted neighbors and geometric k small-
est spanning trees. Int. J. Comput. Geom. Appl. 4, 229–238
(1994)

5. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comput. Mach. 44(5), 669–696 (1997)

6. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

7. Feder, T., Mihail, M.: Balanced matroids. In: Proceeding 24th
ACM Symp. Theory of Computing, pp 26–38, Victoria, British
Columbia, Canada, May 04–06 1992

8. Frederickson, G.N.: Data structures for on-line updating of min-
imum spanning trees. SIAM. J. Comput. 14, 781–798 (1985)

9. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. In: Proceed-
ing 32nd Symp. Foundations of Computer Science, pp 632–
641, San Juan, Puerto Rico, October 01–04 1991

10. Frederickson, G.N., Srinivas, M.A.: Algorithms and data struc-
tures for an expanded family of matroid intersection problems.
SIAM. J. Comput. 18, 112–138 (1989)

11. Henzinger, M.R., King, V.: Maintaining minimum spanning
forests in dynamic graphs. SIAM. J. Comput. 31(2), 364–374
(2001)

12. Henzinger, M.R., King, V.: Randomized fully dynamic graph
algorithms with polylogarithmic time per operation. J. ACM
46(4), 502–516 (1999)

13. Holm, J., de Lichtenberg, K., Thorup,M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

14. Paul, J., Simon, W.: Decision trees and random access ma-
chines. In: Symposium über Logik und Algorithmik. (1980) See
also Mehlhorn, K.: Sorting and Searching, pp. 85–97. Springer,
Berlin (1984)

342 F Fully Dynamic Planarity Testing

15. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity al-
gorithm. SIAM. J. Comput. 14, 862–874 (1985)

Fully Dynamic Planarity Testing
1999; Galil, Italiano, Sarnak

GIUSEPPE F. ITALIANO
Department of Information and Computer Systems,
University of Rome, Rome, Italy

ProblemDefinition

In this entry, the problem ofmaintaining a dynamic planar
graph subject to edge insertions and edge deletions that
preserve planarity but that can change the embedding is
considered. Before formally defining the problem, few pre-
liminary definitions follow.

A graph is planar if it can be embedded in the plane
so that no two edges intersect. In a dynamic framework,
a planar graph that is committed to an embedding is called
plane, and the general term planar is used only when
changes in the embedding are allowed. An edge insertion
that preserves the embedding is called embedding-preserv-
ing, whereas it is called planarity-preserving if it keeps the
graph planar, even though its embedding can change; fi-
nally, an edge insertion is called arbitrary if it is not known
to preserve planarity. Extensive work on dynamic graph
algorithms has used ad hoc techniques to solve a number
of problems such as minimum spanning forests, 2-edge-
connectivity and planarity testing for plane graphs (with
embedding-preserving insertions) [5,6,7,9,10,11,12]: this
entry is concerned with more general planarity-preserving
updates.

The work of Galil et al. [8] and of Eppstein et al. [3]
provides a general technique for dynamic planar graph
problems, including those mentioned above: in all these
problems, one can deal with either arbitrary or planarity-
preserving insertions and therefore allow changes of the
embedding.

The fully dynamic planarity testing problem can be de-
fined as follows. One wishes to maintain a (not necessar-
ily planar) graph subject to arbitrary edge insertions and
deletions, and allow queries that test whether the graph is
currently planar, or whether a potential new edge would
violate planarity.

Key Results

Eppstein et al. [3] provided a way to apply the sparsifica-
tion technique [2] to families of graphs that are already
sparse, such as planar graphs.

The new ideas behind this technique are the following.
The notion of a certificate can be expanded to a definition
for graphs in which a subset of the vertices are denoted
as interesting; these compressed certificatesmay reduce the
size of the graph by removing uninteresting vertices. Using
this notion, one can define a type of sparsification based on
separators, small sets of vertices the removal of which splits
the graph into roughly equal size components. Recursively
finding separators in these components gives a separator
tree which can also be used as a sparsification tree; the in-
teresting vertices in each certificate will be those vertices
used in separators at higher levels of the tree. The notion
of a balanced separator tree, which also partitions the inter-
esting vertices evenly in the tree, is introduced: such a tree
can be computed in linear time, and can bemaintained dy-
namically. Using this technique, the following results can
be achieved.

Theorem 1 One can maintain a planar graph, subject
to insertions and deletions that preserve planarity, and al-
low queries that test whether a new edge would violate pla-
narity, in amortized time O(n1/2) per update or query.

This result can be improved, in order to allow arbitrary
insertions or deletions, even if they might let the graph be-
come nonplanar, using the following approach. The data
structure above can be used to maintain a planar sub-
graph of the given graph. Whenever one attempts to in-
sert a new edge, and the resulting graph would be non-
planar, the algorithm does not actually perform the inser-
tion, but instead adds the edge to a list of nonplanar edges.
Whenever a query is performed, and the list of nonplanar
edges is nonempty, the algorithm attempts once more to
add those edges one at a time to the planar subgraph. The
time for each successful addition can be charged to the
insertion operation that put that edge in the list of non-
planar edges. As soon as the algorithm finds some edge
in the list that can not be added, it stops trying to add
the other edges in the list. The time for this failed inser-
tion can be charged to the query the algorithm is currently
performing. In this way the list of nonplanar edges will
be empty if and only if the graph is planar, and the al-
gorithm can test planarity even for updates in nonplanar
graphs.

Theorem 2 One canmaintain a graph, subject to arbitrary
insertions and deletions, and allow queries that test whether
the graph is presently planar or whether a new edge would
violate planarity, in amortized time O(n1/2) per update or
query.

Fully Dynamic Transitive Closure F 343

Applications

Planar graphs are perhaps one of themost important inter-
esting subclasses of graphs which combine beautiful struc-
tural results with relevance in applications. In particular,
planarity testing is a basic problem, which appears natu-
rally in many applications, such as VLSI layout, graphics,
and computer aided design. In all these applications, there
seems to be a need for dealing with dynamic updates.

Open Problems

The O(n1/2) bound for planarity testing is amortized. Can
we improve this bound or make it worst-case?

Finally, the complexity of the algorithms presented
here, and the large constant factors involved in some of the
asymptotic time bounds, make some of the results unsuit-
able for practical applications. Can one simplify the meth-
ods while retaining similar theoretical bounds?

Cross References

� Dynamic Trees
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity
� Fully Dynamic Higher Connectivity
� Fully Dynamic Higher Connectivity for Planar Graphs
� Fully Dynamic Minimum Spanning Trees
� Fully Dynamic Transitive Closure

Recommended Reading

1. Cimikowski, R.: Branch-and-bound techniques for the maxi-
mum planar subgraph problem. Int. J. Computer Math. 53,
135–147 (1994)

2. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsifica-
tion – a technique for speeding up dynamic graph algorithms.
J. Assoc. Comput. Mach. 44(5), 669–696 (1997)

3. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator
based sparsification I: planarity testing and minimum span-
ning trees. J. Comput. Syst. Sci. Special issue of STOC 93 52(1),
3–27 (1996)

4. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator
based sparsification II: edge and vertex connectivity. SIAM J.
Comput. 28, 341–381 (1999)

5. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

6. Frederickson, G.N.: Data structures for on-line updating ofmin-
imum spanning trees, with applications. SIAM J. Comput. 14,
781–798 (1985)

7. Frederickson, G.N.: Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees. SIAM J. Com-
put. 26(2), 484–538 (1997)

8. Galil, Z., Italiano, G.F., Sarnak, N.: Fully dynamic planarity test-
ing with applications. J. ACM 48, 28–91 (1999)

9. Giammarresi, D., Italiano, G.F.: Decremental 2- and 3-connec-
tivity on planar graphs. Algorithmica 16(3):263–287 (1996)

10. Hershberger, J., Suri, M.R., Suri, S.: Data structures for two-edge
connectivity in planar graphs. Theor. Comput. Sci.130(1), 139–
161 (1994)

11. Italiano, G.F., La Poutré, J.A., Rauch, M.: Fully dynamic planarity
testing inplanar embedded graphs. 1st Annual European Sym-
posium on Algorithms, Bad Honnef, Germany, 30 September–
2 October 1993

12. Tamassia, R.: A dynamic data structure for planar graph em-
bedding. 15th Int. Colloq. Automata, Languages, and Program-
ming. LNCS, vol. 317, pp. 576–590. Springer, Berlin (1988)

Fully Dynamic Transitive Closure
1999; King

VALERIE KING
Department of Computer Science Department,
University of Victoria,
Victoria, BC, Canada

Keywords and Synonyms

Incremental algorithms for digraphs; Fully dynamic graph
algorithm for maintaining transitive closure; All-pairs dy-
namic reachability

ProblemDefinition

Design a data structure for a directed graph with a fixed
set of node which can process queries of the form “Is there
a path from i to j ?” and updates of the form: “Insert edge
(i, j)”; “Delete edge (i, j)”. The goal is to minimize update
and query times, over the worst case sequence of queries
and updates. Algorithms to solve this problem are called
“fully dynamic” as opposed to “partially dynamic” since
both insertions and deletions are allowed.

Key Results

This work [4] gives the first deterministic fully dynamic
graph algorithm for maintaining the transitive closure in
a directed graph. It uses O(n2 log n) amortized time per
update and O(1) worst case query time where n is number
of nodes in the graph. The basic technique is extended to
give fully dynamic algorithms for approximate and exact
all-pairs shortest paths problems.

The basic building block of these algorithms is
a method of maintaining all-pairs shortest paths with in-

344 F Fully Dynamic Transitive Closure

sertions and deletions for distances up to d. For each ver-
tex v, a single-source shortest path tree of depth d which
reach v (“Inv”) and another tree of vertices which are
reached by v (“Outv”) are maintained during any sequence
of deletions. Each insert of a set of edges incident to v re-
sults in the rebuilding of Inv and OutvI. For each pair of
vertices x, y and each length, a count is kept of the number
of v such that there is a path from x in Inv to y in Outv of
that length.

To maintain transitive closure, lg n levels of these trees
are maintained for trees of depth 2, where the edges used
to construct a forest on one level depend on the paths in
the forest of the previous level.

Space required was reduced from O(n3) to O(n2)
in [6]. A log n factor was shaved off [7,10]. Other tradeoffs
between update and query time are given in [1,7,8,9,10].
A deletions only randomized transitive closure algorithm
running in O(mn) time overall is given by [8] where m is
the initial number of edges in the graph. A simple monte
carlo transitive closure algorithm for acyclic graphs is pre-
sented in [5]. Dynamic single source reachability in a di-
graph is presented in [8,9]. All-pairs shortest paths can be
maintained with nearly the same update time [2].

Applications

None

Open Problems

Can reachability from a single source in a directed graph
be maintained in o(mn) time over a worst case sequence
of m deletions?

Can strongly connected components be maintained in
o(mn) time over a worst case sequence ofm deletions?

Experimental Results

Experimental results on older techniques can be found
in [3].

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Connectivity

Recommended Reading
1. Demestrescu, C., Italiano, G.F.: Trade-offs for fully dynamic

transitive closure on DAG’s: breaking through the O(n2) bar-
rier, (presented in FOCS 2000). J. ACM 52(2), 147–156 (2005)

2. Demestrescu, C., Italiano, G.F.: A new approach to dynamic all
pairs shortest paths, (presented in STOC 2003). J. ACM 51(6),
968–992 (2004)

3. Frigioni, D., Miller, T., Nanni, U., Zaroliagis, C.D.: An experimen-
tal study of dynamic algorithms for transitive closure. ACM J
Exp. Algorithms 6(9) (2001)

4. King, V.: Fully dynamic algorithms for maintaining all-pairs
shortest paths and transitive closure in digraphs. In: Proceed-
ings of the 40th Annual IEEE Symposium on Foundation of
Computer Science. ComiIEEE FOCS pp. 81–91. IEEE Computer
Society, New York (1999)

5. King, V., Sagert, G.: A fully dynamic algorithm for maintaining
the transitive closure, (presented in FOCS 1999). JCCS 65(1),
150–167 (2002)

6. King, V., Thorup, M.: A space saving trick for dynamic transitive
closure and shortest path algorithms. In: Proceedings of the
7th Annual International Conference of Computing and Com-
inatorics, vol. 2108/2001, pp. 269–277. Lect. Notes Comp. Sci.
COCOON Springer, Heidelberg (2001)

7. Roditty, L.: A faster and simpler fully dynamic transitive closure.
In: Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms. ACM IEEE SODA, pp. 404–412. ACM, Balti-
more (2003)

8. Roditty, L., Zwick, U.: Improved dynamic reachability algo-
rithms for directed graphs. In: Proceedings of the 43rd Annual
Symposium on Foundation of Computer Science. IEEE FOCS,
pp. 679–688 IEEEComputer Society, Vancouver, Canada (2002)

9. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for
directedgraphswith an almost linear update time. In: Proceed-
ings of the 36th ACM Symposium on Theory of Computing.
ACM STOC, pp. 184–191 ACM, Chicago (2004)

10. Sankowski, S.: Dynamic transitive closure via dynamic matrix
inverse. In: Proceedings of the 45th Annual Symposium on
Foundations of Computer Science. IEEE FOCS, 509–517, IEEE
Computer Society, Rome, Italy (2004)

Gate Sizing G 345

G

Gate Sizing
2002; Sundararajan, Sapatnekar, Parhi

VIJAY SUNDARARAJAN
Texas Instruments, Dallas, TX, USA

Keywords and Synonyms

Fast and exact transistor sizing

ProblemDefinition

For a detailed exposition of the solution approach pre-
sented in this article please refer to [15]. As evidenced by
the successive announcement of ever faster computer sys-
tems in the past decade, increasing the speed of VLSI sys-
tems continues to be one of the major requirements for
VLSI system designers today. Faster integrated circuits are
making possible newer applications that were tradition-
ally considered difficult to implement in hardware. In this
scenario of increasing circuit complexity, reduction of cir-
cuit delay in integrated circuits is an important design ob-
jective. Transistor sizing is one such task that has been
employed for speeding up circuits for quite some time
now [6]. Given the circuit topology, the delay of a com-
binational circuit can be controlled by varying the sizes
of transistors in the circuit. Here, the size of a transis-
tor is measured in terms of its channel width, since the
channel lengths of MOS transistors in a digital circuit are
generally uniform. In any case, what really matters is the
ratio of channel width to channel length, and if channel
lengths are not uniform, this ratio can be considered as
the size. In coarse terms, the circuit delay can usually be
reduced by increasing the sizes of certain transistors in
the circuit from the minimum size. Hence, making the
circuit faster usually entails the penalty of increased cir-
cuit area relative to a minimum-sized circuit and the area-
delay trade-off involved here is the problem of transistor
size optimization. A related problem to transistor sizing is
called gate sizing, where a logic gate in a circuit is mod-

eled as an equivalent inverter and the sizing optimization
is carried out on this modified circuit with equivalent in-
verters in place of more complex gates. There is, there-
fore, a reduction in the number of size parameters cor-
responding to every gate in the circuit. Needless to say,
this is an easier problem to solve than the general transis-
tor sizing problem. Note that gate sizing mentioned here
is distinct from library specific gate sizing that is a dis-
crete optimization problem targeted to selecting appropri-
ate gate sizes from an underlying cell library. The gate siz-
ing problem targeted here is one of continuous gate sizing
where the gate sizes are allowed to vary in a continuous
manner between a minimum and a maximum size. There
has been a large amount of work done on transistor siz-
ing [1,2,3,5,6,9,10,12,13], that underlines the importance
of this optimization technique. Starting from a minimum-
sized circuit, TILOS, [6], uses a greedy strategy for tran-
sistor sizing by iteratively sizing transistors in the critical
path. A sensitivity factor is calculated for every transistor
in the critical path to quantify the gain in circuit speed
achieved by a unit upsizing of the transistor. The most
sensitive transistor is then bumped up in size by a small
constant factor to speed up the circuit. This process is re-
peated iteratively until the timing requirements are met.
The technique is extremely simple to implement and has
run-time behavior proportional to the size of the circuit.
Its chief drawback is that it does not have guaranteed con-
vergence properties and hence is not an exact optimization
technique.

Key Results

The solution presented in the article heretofore referred
to as MINFLOTRANSIT was a novel way of solving the
transistor sizing problem exactly and in an extremely fast
manner. Even though the article treats transistor sizing, in
the description, the results apply as well to the less general
problem of continuous gate sizing as described earlier. The
proposed approach has some similarity in form to [2,5,8]
which will be subsequently explained, but the similarity in

346 G Gate Sizing

Gate Sizing, Table 1
Comparison of TILOS and MINFLOTRANSIT on a Sun Ultrasparc 10 workstation for ISCAS85 and MCNC91 benchmarks for 0.13 um
technology. The delay specs. are with respect to aminimum-sized circuit. The optimization approach followed here was gate sizing

Circuit # Gates Area Saved over TILOS Delay Specs. CPU TIME (TILOS) CPU TIME (OURS)
Adder32 480 � 1% 0.5Dmin 2.2 s 5 s
Adder256 3840 � 1% 0.5Dmin 262 s 608 s
Cm163a 65 2:1% 0.55Dmin 0.13 s 0.32 s
Cm162a 71 10:4% 0.5Dmin 0.23 s 0.96 s
Parity8 89 37% 0.45Dmin 0.68 s 2.15 s
Frg1 177 1:9% 0.7Dmin 0.55 s 1.49 s
population 518 6:7% 0.4Dmin 57 s 179 s
Pmult8 1431 5% 0.5Dmin 637 s 1476 s
Alu2 826 2:6% 0.6Dmin 28 s 71 s
C432 160 9:4% 0.4Dmin 0.5 s 4.8 s
C499 202 7:2% 0.57Dmin 1.47 s 11.26 s
C880 383 4% 0.4Dmin 2.7 s 8,2 s
C1355 546 9:5% 0.4Dmin 29 s 76 s
C1908 880 4:6% 0.4Dmin 36 s 84 s
C2670 1193 9:1% 0.4Dmin 27 s 69 s
C3540 1669 7:7% 0.4Dmin 226 s 651 s
C5315 2307 2% 0.4Dmin 90 s 201 s
C6288 2416 16:5% 0.4Dmin 1677 s 4138 s
C7552 3512 3:3% 0.4Dmin 320 s 683 s

content is minimal and the details of implementation are
vastly different.

In essence, the proposed technique and the techniques
in [2,5,8] are iterative relaxation approaches that involve
a two-step optimization strategy. The first-step involves
a delay budgeting step where optimal delays are com-
puted for transistors/gates. The second step involves sizing
transistors optimally under this “constant delay” model to
achieve these delay budgets. The two steps are iteratively
alternated until the solution converges, i. e., until the delay
budgets calculated in the first step are exactly satisfied by
the transistor sizes determined by the second step.

The primary features of the proposed approach are:
� It is computationally fast and is comparable to TILOS

in its run-time behavior.
� It can be used for true transistor sizing as well as the

relaxed problem of gate sizing. Additionally, the ap-
proach can easily incorporate wire-sizing [15].

� It can be adapted for more general delay models than
the Elmore delay model [15].

The starting point for the proposed approach is a fast
guess solution. This could be obtained, for example, from
a circuit that has been optimized using TILOS to meet
the given delay requirements. The proposed approach,
as outlined earlier, is an iterative relaxation procedure

that involves an alternating two-phase relaxed optimiza-
tion sequence that is repeated iteratively until convergence
is achieved. The two-phases in the proposed approach
are:
� The D-phase where transistor sizes are assumed fixed

and transistor delays are regarded as variable param-
eters. Irrespective of the delay model employed, this
phase can be formulated as the dual of a min-cost net-
work flow problem. Using jV j to denote the number of
transistors and jEj the number of wires in the circuit,
this step in our application has worst-case complexity
of O(jV j jEj log(log jV j)) [7].

� TheW-phase where transistor/gate delays are assumed
fixed and their sizes are regarded as variable parame-
ters. As long as the gate delay can be expressed as a sep-
arable function of the transistor sizes, this step can be
solved as a Simple Monotonic Program (SMP) [11].
The complexity of SMP is similar to an all-pairs short-
est path algorithm in a directed graph, [4,11], i. e.,
O(jV j jEj).

The objective function for the problem is theminimization
of circuit area. In the W-phase, this objective is addressed
directly, and in the D-phase the objective is chosen to fa-
cilitate a move in the solution space in a direction that is
known to lead to a reduction in the circuit area.

General Equilibrium G 347

Applications

The primary application of the solution provided here is
circuit and system optimization in automated VLSI de-
sign. The solution provided here can enable Electronic De-
sign Automation (EDA) tools that take a holistic approach
towards transistor sizing. This will in turn enable mak-
ing custom circuit design flows more realizable in prac-
tice. The mechanics of some of the elements of the solu-
tion provided here especially the D-phase have been used
to address other circuit optimization problems [14].

Open Problems

The related problem of Discrete gate sizing optimization
matching gate sized to available gate sizes from a standard
cell library is a provably hard optimization problem which
could be aided by the development of efficient heuristics
and probabilistic algorithms.

Experimental Results

A relative comparison of MINFLOTRANSIT with TILOS
is provided in Table 1 for gate sizing of ISACS85 and
mcnc91 benchmark circuits. As can be seen a significant
performance improvement is observed with a tolerable
loss in execution time.

Cross References

� Circuit Retiming
�Wire Sizing

Recommended Reading
1. Chen, C.P., Chu, C.N, Wong, D.F.: Fast and Exact Simultane-

ous Gate and Wire Sizing by Lagrangian Relax-ation. In: Pro-
ceedings of the 1998 IEEE/ACM International Conference on
Computer-Aided Design, pp. 617–624. November 1998

2. Chen, H.Y., Kang, S.M.: icoach: A circuit optimiza-tion aid for
cmos high-performance circuits. Intergr. VLSI. J.10(2), 185–212
(1991)

3. Conn, A.R., Coulman, P.K., Haring, R.A., Morrill, G.L., Viswesh-
wariah, C., Wu, C.W.: JiffyTune: Circuit Optimization Using
Time-Domain Sensitivities. IEEE Trans. Comput. Aided. Des. In-
tegr. Circuits. Syst.17(12), 1292–1309 (1998)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algo-
rithms. McGraw-Hill, New York (1990)

5. Dai, Z., Asada, K.: MOSIZ: A Two-Step Transistor Sizing Algo-
rithm based on Optimal Timing Assignment Method for Multi-
Stage Complex Gates. In: Proceedings of the 1989 Custom In-
tegrated Circuits Conference, pp. 17.3.1–17.3.4. May 1989

6. Fishburn, J.P., Dunlop, A. E.: TILOS: A Posynomial Programming
Approach to Transistor Sizing. In: Proceedings of the 1985 In-
ternational Conference on Computer-Aided Design, pp. 326–
328. Santa Clara, CA, November 1985

7. Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E.: Use of Dynamic
Trees in a Network Simplex Algorithm for the Maximum Flow
Problem. Math. Program. 50(3), 277–290 (1991)

8. Grodstein, J., Lehman, E., Harkness, H., Grundmann, B., Watan-
abe, Y.: A delay model for logic synthesis of continuously
sized networks. In: Proceedings of the 1995 International Con-
ference on Computer-Aided Design, pp. 458–462. November
1995

9. Marple, D.P.: Performance Optimization of Digital VLSI Circuits.
Technical Report CSL-TR-86-308, Stanford University, October
1986

10. Marple, D.P.: Transistor Size Optimization in the Tailor Layout
System. In: Proceedings of the 26th ACM/IEEEDesign Automa-
tion Conference, pp. 43–48. June 1989

11. Papaefthymiou, M.C.: Asymptotically Efficient Retiming under
Setup and Hold Constraints. In: Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
pp. 288–295, November 1998

12. Sapatnekar, S.S., Rao, V.B., Vaidya, P.M., Kang, S.M.: An Exact So-
lution to the Transistor Sizing Problem for CMOS CircuitsUsing
Convex Optimization. IEEE Trans. Comput. Aided. Des. 12(11),
1621–1634 (1993)

13. Shyu, J.M., Sangiovanni-Vincentelli, A.L., Fishburn, J.P., Dunlop,
A.E.: Optimization-based Transistor Sizing. IEEE J. Solid. State.
Circuits. 23(2), 400–409 (1988)

14. Sundararajan, V., Parhi, K.: LowPower Synthesis of Dual Thresh-
old Voltage CMOS VLSI Circuits. In: Proceedings of the Inter-
national Symposium on Low Power Electronics and Design.
pp. 139-144 (1999)

15. Sundararajan, V., Sapatnekar, S.S., Parhi, K.K.: Fast and ex-
act transistor sizing based on iterative relaxation. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Trans.
21(5),568–581 (2002)

General Equilibrium
2002; Deng, Papadimitriou, Safra

LI-SHA HUANG
Department of Computer Science and Technology,
Tsinghua University, Beijing, Beijing, China

Keywords and Synonyms

Competitive market equilibrium

ProblemDefinition

This problem is concerned with the computational com-
plexity of finding an exchange market equilibrium. The
exchange market model consists of a set of agents, each
with an initial endowment of commodities, interacting
through a market, trying to maximize each’s utility func-
tion. The equilibrium prices are determined by a clear-
ance condition. That is, all commodities are bought, col-

348 G General Equilibrium

lectively, by all the utility maximizing agents, subject to
their budget constraints (determined by the values of their
initial endowments of commodities at the market price).
The work of Deng, Papadimitriou and Safra [3] studies
the complexity, approximability, inapproximability, and
communication complexity of finding equilibrium prices.
The work shows the NP-hardness of approximating the
equilibrium in a market with indivisible goods. For mar-
kets with divisible goods and linear utility functions, it
develops a pseudo-polynomial time algorithm for com-
puting an �-equilibrium. It also gives a communication
complexity lower bound for computing Pareto alloca-
tions in markets with non-strictly concave utility func-
tions.

Market Model

In a pure exchange economy, there are m traders, labeled
by i = 1; 2; :::;m, and n types of commodities, labeled by
j = 1; 2; :::; n. The commodities could be divisible or indi-
visible. Each trader i comes to the market with initial en-
dowment of commodities, denoted by a vector wi 2 Rn

+,
whose j-th entry is the amount of commodity j held by
trader i.

Associate each trader i a consumption set Xi to rep-
resents the set of possible commodity bundles for him.
For example, when there are n1 divisible commodities and
(n � n1) indivisible commodities, Xi can beRn1

+ � Zn�n1
+ .

Each trader has a utility function Xi 7! R+ to present his
utility for a bundle of commodities. Usually, the utility
function is required to be concave and nondecreasing.

In the market, each trader acts as both a buyer and
a seller to maximize his utility. At a certain price p 2 Rn

+,
trader i is is solving the following optimization problem,
under his budget constraint:

max ui (xi) s:t: xi 2 Xi and hp; xi i � hp;wi i:

Definition 1 An equilibrium in a pure exchange econ-
omy is a price vector p̄ 2 Rn

+ and bundles of commodities
fx̄i 2 Rn

+; i = 1; :::;mg, such that

x̄i 2 argmaxfui (xi)jxi 2 Xi and hxi ; p̄i � hwi ; p̄ig;
81 � i � m

mX
i=1

x̄i j �
mX
i=1

wi j;81 � j � n:

The concept of approximate equilibrium was introduced
in [3]:

Definition 2 ([3]) An �-approximate equilibrium in an
exchange market is a price vector p̄ 2 Rn

+ and bundles of
goods fx̄i 2 Rn

+; i = 1; :::;mg, such that

ui (x̄i) �
1

1 + �
maxfui (xi)jxi 2 Xi ; hxi ; p̄i � hwi ; p̄ig;8i

(1)

hx̄i ; p̄i � (1 + �)hwi ; p̄i;8i (2)

mX
i=1

x̄i j � (1 + �)
mX
i=1

wi j;8 j : (3)

Key Results

A linear market is a market in which all the agents have
linear utility functions. The deficiency of a market is the
smallest � � 0 for which an �-approximate equilibrium
exists.

Theorem 1 The deficiency of a linear market with indi-
visible goods is NP-hard to compute, even if the number of
agents is two. The deficiency is alsoNP-hard to approximate
within 1/3.

Theorem 2 There is a polynomial-time algorithm for find-
ing an equilibrium in linear markets with bounded number
of divisible goods. Ditto for a polynomial number of agents.

Theorem 3 If the number of goods is bounded, there is
a polynomial-time algorithm which, for any linear indivisi-
ble market for which a price equilibrium exists, and for any
� > 0, finds an �-approximate equilibrium.

If the utility functions are strictly concave and the equi-
librium prices are broadcasted to all agents, the equi-
librium allocation can be computed distributely without
any communication, since each agent’s basket of goods
is uniquely determined. However, if the utility functions
are not strictly concave, e. g. linear functions, communica-
tions are needed to coordinate the agents’ behaviors.

Theorem 4 Any protocol with binary domains for com-
puting Pareto allocations of m agents and n divisible com-
modities with concave utility functions (resp. �-Pareto al-
locations for indivisible commodities, for any � < 1) must
have market communication complexity ˝(m log(m + n))
bits.

Generalized Steiner Network G 349

Applications

This concept of market equilibrium is the outcome of a se-
quence of efforts trying to fully understand the laws that
govern human commercial activities, starting with the “in-
visible hand” of Adam Smith, and finally, the mathemati-
cal conclusion of Arrow and Debreu [1] that there exists
a set of prices that bring supply and demand into equilib-
rium, under quite general conditions on the agent utility
functions and their optimization behavior.

The work of Deng, Papadimitriou and Safra [3] explic-
itly called for an algorithmic complexity study of the prob-
lem, and developed interesting complexity results and ap-
proximation algorithms for several classes of utility func-
tions. There has since been a surge of algorithmic study
for the computation of the price equilibrium problem with
continuous variables, discovering and rediscovering poly-
nomial time algorithms for many classes of utility func-
tions, see [2,4,5,6,7,8,9].

Significant progress has been made in the above di-
rections but only as a first step. New ideas and methods
have already been invented and applied in reality. The
next significant step will soon manifest itself with many
active studies in microeconomic behavior analysis for E-
commercial markets. Nevertheless the algorithmic ana-
lytic foundation in [3] will be an indispensable tool for fur-
ther development in this reincarnated exciting field.

Open Problems

The most important open problem is what is the compu-
tational complexity for finding the equilibrium price, as
guaranteed by the Arrow–Debreu theorem. To the best
of the author’s knowledge, only the markets whose set of
equilibria is convex can be solved in polynomial time with
current techniques. And approximating equilibria in some
markets with disconnected set of equilibria, e. g. Leontief
economies, are shown to be PPAD-hard. Is the convexity
or (weakly) gross substitutability a necessary condition for
a market to be polynomial-time solvable?

Second, how to handle the dynamic case is especially
interesting in theory, mathematical modeling, and algo-
rithmic complexity as bounded rationality. Great progress
must be made in those directions for any theoretical work
to be meaningful in practice.

Third, incentive compatible mechanism design proto-
cols for the auction models have been most actively stud-
ied recently, especially with the rise of E-Commerce. Es-
pecially at this level, a proper approximate version of the
equilibrium concept handling price dynamics should be
especially important.

Cross References

� Complexity of Core
� Leontief Economy Equilibrium
� Non-approximability of Bimatrix Nash Equilibria

Recommended Reading
1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a compet-

itive economy. Econometrica 22(3), 265–290 (1954)
2. Codenotti, B., McCune, B., Varadarajan, K.: Market equilibrium

via the excess demand function. In: Proceedings STOC’05,
pp. 74–83. ACM, Baltimore (2005)

3. Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price
equilibria. J. Comput. Syst. Sci. 67(2), 311–324 (2002)

4. Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Mar-
ket equilibria via a primal-dual-type algorithm. In: Proceedings
of FOCS’02, pp. 389–395. IEEE Computer Society, Vancouver
(2002)

5. Eaves, B.C.: Finite solution for pure trade markets with Cobb-
Douglas utilities, Math. Program. Study 23, 226–239 (1985)

6. Garg, R., Kapoor, S.: Auction algorithms for market equilibrium,
In: Proceedings of STOC’04, pp. 511–518. ACM, Chicago (2004)

7. Jain, K.: A polynomial time algorithm for computing the Arrow-
Debreu market equilibrium for linear utilities. In: Proceeding of
FOCS’04, pp. 286–294. IEEE Computer Society, Rome (2004)

8. Nenakhov, E., Primak, M.: About one algorithm for finding the
solution of the Arrow-Debreu Model. Kibernetica 3, 127–128
(1983)

9. Ye, Y.: A path to the Arrow-Debreu competitive market equilib-
rium, Math. Program. 111(1–2), 315–348 (2008)

Generalized Steiner Network
2001; Jain

JULIA CHUZHOY
Toyota Technological Institute, Chicago, IL, USA

Keywords and Synonyms

Survivable network design

ProblemDefinition

The generalized Steiner network problem is a network de-
sign problem, where the input consists of a graph together
with a collection of connectivity requirements, and the
goal is to find the cheapest subgraph meeting these re-
quirements.

Formally, the input to the generalized Steiner network
problem is an undirected multigraph G = (V ; E), where
each edge e 2 E has a non-negative cost c(e), and for each
pair of vertices i; j 2 V , there is a connectivity require-
ment ri; j 2 Z. A feasible solution is a subset E0
 E of
edges, such that every pair i; j 2 V of vertices is connected
by at least ri; j edge-disjoint path in graph G0 = (V ; E0).

350 G Generalized Steiner Network

The generalized Steiner network problem asks to find a so-
lution E0 of minimum cost

P
e2E0 c(e).

This problem generalizes several classical network de-
sign problems. Some examples include minimum span-
ning tree, Steiner tree and Steiner forest. The most general
special case for which a 2-approximation was previously
known is the Steiner forest problem [1,4].

Williamson et al. [8] were the first to show a non-
trivial approximation algorithm for the generalized Steiner
network problem, achieving a 2k-approximation, where
k = maxi; j2V fri; jg. This result was improved to O(log k)-
approximation by Goemans et al. [3].

Key Results

The main result of [6] is a factor-2 approximation algo-
rithm for the generalized Steiner network problem. The
techniques used in the design and the analysis of the algo-
rithm seem to be of independent interest.

The 2-approximation is achieved for a more general
problem, defined as follows. The input is a multigraph
G = (V ; E) with costs c(�) on edges, and connectivity re-
quirement function f : 2V ! Z. Function f is weakly sub-
modular, i. e., it has the following properties:
1. f (V) = 0.
2. For all A; B
 V , at least one of the following two con-

ditions holds:
� f (A) + f (B) � f (A n B) + f (B n A).
� f (A) + f (B) � f (A\ B) + f (A[B).
For any subset S
 V of vertices, let ı(S) denote the

set of edges with exactly one endpoint in S. The goal is to
find a minimum-cost subset of edges E0
 E, such that for
every subset S
 V of vertices, jı(S) \ E0j � f (S).

This problem can be equivalently expressed as an inte-
ger program. For each edge e 2 E, let xe be the indicator
variable of whether e belongs to the solution.

(IP) min
X
e2E

c(e)xe

subject to:
X

e2ı(S)

xe � f (S) 8S
 V (1)

xe 2 f0; 1g 8e 2 E (2)

It is easy to see that the generalized Steiner network
problem is a special case of (IP), where for each S
 V ,
f (S) = maxi2S; j 62Sfri; jg.

Techniques

The approximation algorithm uses the LP-rounding tech-
nique. The initial linear program (LP) is obtained from

(IP) by replacing the integrality constraint (2) with:

0 � xe � 1 8e 2 E (3)

It is assumed that there is a separation oracle for (LP). It
is easy to see that such an oracle exists if (LP) is obtained
from the generalized Steiner network problem. The key re-
sult used in the design and the analysis of the algorithm is
summarized in the following theorem.

Theorem 1 In any basic solution of (LP), there is at least
one edge e 2 E with xe � 1/2.

The approximation algorithm works by iterative LP-
rounding. Given a basic optimal solution of (LP), let
E�
 E be the subset of edges e with xe � 1/2. The edges
of E� are removed from the graph (and are eventually
added to the solution), and the problem is then solved
recursively on the residual graph, by solving (LP) on
G� = (V ; E n E�), where for each subset S
 V , the new
requirement is f (S)� jı(S) \ E�j. The main observation
that leads to factor-2 approximation is the following: if
E0 is a 2-approximation for the residual problem, then
E0 [E� is a 2-approximation for the original problem.

Given any solution to (LP), set S
 V is called tight
iff constraint (1) holds with equality for S. The proof of
Theorem 1 involves constructing a large laminar family of
tight sets (a family where for every pair of sets, either one
set contains the other, or the two sets are disjoint). After
that a clever accounting scheme that charges edges to the
sets of the laminar family is used to show that there is at
least one edge e 2 E with xe � 1/2.

Applications

Generalized Steiner network is a very basic and natural
network design problem that has many applications in dif-
ferent areas, including the design of communication net-
works, VLSI design and vehicle routing. One example is
the design of survivable communication networks, which
remain functional even after the failure of some network
components (see [5] for more details).

Open Problems

The 2-approximation algorithm of Jain [6] for generalized
Steiner network is based on LP-rounding, and it has high
running time. It would be interesting to design a combina-
torial approximation algorithm for this problem.

It is not known whether a better approximation is pos-
sible for generalized Steiner network. Very few hardness of
approximation results are known for this type of problems.
The best current hardness factor stands on 1:01063 [2],

Generalized Two-Server Problem G 351

and this result is valid even for the special case of Steiner
tree.

Cross References

� Steiner Forest
� Steiner Trees

Recommended Reading
1. Agrawal A., Klein P., Ravi R.: When Trees Collide: An Approxi-

mation Algorithm for the Generalized Steiner Problem on Net-
works. J. SIAM Comput. 24(3), 440–456 (1995)

2. Chlebik M., Chlebikova J.: Approximation Hardness of the
Steiner Tree Problem on Graphs. In: 8th Scandinavian Work-
shop on Algorithm Theory. Number 2368 in LNCS, pp. 170–179,
(2002)

3. Goemans M.X., Goldberg A.V., Plotkin S.A., Shmoys D.B., Tar-
dos É., Williamson D.P.: Improved Approximation Algorithms
for Network Design Problems. In: Proceedings of the Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 223–232. (1994)

4. Goemans M.X., Williamson D.P.: A General Approximation Tech-
nique for Constrained Forest Problems. SIAM J. Comput. 24(2),
296–317 (1995)

5. Grötschel M., Monma C.L., Stoer M.: Design of Survivable Net-
works. In: Network Models, Handbooks in Operations Research
and Management Science. North Holland Press, Amsterdam,
(1995)

6. Jain K.: A Factor 2 Approximation Algorithm for the Generalized
Steiner Network Problem. Combinatorica 21(1), 39–60 (2001)

7. Vazirani V.V.: Approximation Algorithms. Springer, Berlin (2001)
8. WilliamsonD.P., GoemansM.X.,Mihail M., Vazirani V.V.: A Primal-

Dual Approximation Algorithm for Generalized Steiner Network
Problems. Combinatorica 15(3), 435–454 (1995)

Generalized Two-Server Problem
2006; Sitters, Stougie

RENÉ A. SITTERS
Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The
Netherlands

Keywords and Synonyms

CNN-problem

ProblemDefinition

In the generalized two-server problem we are given two
servers: one moving in a metric space X and one moving
in a metric space Y . They are to serve requests r 2 X � Y
which arrive one by one. A request r = (x; y) is served by
moving either the X-server to point x or the Y -server to
point y. The decision as to which server to move to the

next request is irrevocable and has to be taken without any
knowledge about future requests. The objective is to min-
imize the total distance traveled by the two servers.

On-line Routing Problems

The generalized two-server problem belongs to a class of
routing problems called metrical service systems [5,10].
Such a system is defined by a metric space M of all possi-
ble system configurations, an initial configuration C0, and
a set R of possible requests, where each request r 2 R is
a subset ofM. Given a sequence, r1; r2 : : : ; rn , of requests,
a feasible solution is a sequence, C1;C2; : : : ;Cn , of config-
urations such that Ci 2 ri for all i 2 f1; : : : ; ng.

When we model the generalized two-server prob-
lem as a metrical service system we have M = X � Y
and R = ffx � Yg [fX � ygjx 2 X; y 2 Yg. In the clas-
sical two-server problem both servers move in the same
space and receive the same requests, i. e., M = X �X and
R = ffx �Xg [fX � xgjx 2 Xg.

The performance of algorithms for on-line optimiza-
tion problems is often measured using competitive analy-
sis. We say that an algorithm is ˛-competitive (˛ � 1) for
some minimization problem if for every possible instance
the cost of the algorithm’s solution is at most ˛ times the
cost of an optimal solution for the instance.

A standard algorithm that performs provably well for
several elementary routing problems is the so-called work
function algorithm [2,6,8]; after each request the algorithm
moves to a configuration with low cost and which is not
too far from the current configuration. More precisely: If
the system’s configuration after serving a sequence � is C
and r
M is the next request, then the work function al-
gorithm with parameter � � 1 moves to a configuration
C0 2 r that minimizes

�W�;r (C0) + d(C;C0) ;

where d(C;C0) is the distance between configurations C
and C0, andW�;r (C0) is the cost of an optimal solution that

Generalized Two-Server Problem, Figure 1
In this example both servers move in the plane and start from
the configuration (x0; y0). TheX-servermoves through requests
1 and 3, and theY -server takes care of requests 2 and 4. The cost
of this solution is the sum of the path-lengths

352 G Generalized Two-Server Problem

serves all requests (in order) in � plus request r with the
restriction that it ends in configuration C0.

Key Results

The main result in [11] is a sufficient condition for a met-
rical service system to have a constant-competitive algo-
rithm. Additionally, the authors show that this condition
holds for the generalized two-server problem.

For a fixed metrical service system S with metric space
M, denote by A(C; �) the cost of algorithm A on input se-
quence � , starting in configuration C. Let OPT(C; �) be
the cost of the corresponding optimal solution. We say
that a path T in M serves a sequence � if it visits all re-
quests in order. Hence, a feasible path is a path that serves
the sequence and starts in the initial configuration.

Paths T1 and T2 are said to be independent if they are
far apart in the following way: jT1j + jT2j < d(Cs

1;C t
2) +

d(Cs
2;C t

1), where Cs
i and C t

i are, respectively, the start and
end point of path Ti (i 2 f1; 2g). Notice, for example, that
two intersecting paths are not independent.

Theorem 1 Let S be a metrical service system with metric
spaceM. Suppose there exists an algorithmA and constants
˛ � 1; ˇ � 0 and m � 2 such that for any point C 2M,
sequence � and pairwise independent paths T1; T2; : : : ; Tm
that serve �

A(C; �) � ˛OPT(C; �) + ˇ
mX
i=1

jTi j : (1)

Then there exists an algorithm B that is constant competi-
tive for S.
The proof in [11] of the theorem above provides an explicit
formulation of B. This algorithm combines algorithm A
with the work function algorithm and operates in phases.
In each phase, it applies algorithm A until its cost becomes
too large compared to the optimal cost. Then, it makes one
step of the work function algorithm and a newphase starts.
In each phase algorithm Amakes a restart, i. e., it takes the
final configuration of the previous phase as the initial con-
figuration, whereas the work function algorithm remem-
bers the whole request sequence.

For the generalized two-server problem the so-called
balance algorithm satisfies condition (1). This algorithm
stores the cumulative costs of the two servers and with
each request it moves the server that minimizes the max-
imum of the two new values. The balance algorithm itself
is not constant competitive but Theorem 1 says that, if we
combine it in a clever way with the work function algo-
rithm, then we get an algorithm that is constant competi-
tive.

Applications

A set of metrical service systems can be combined to get
what is called in [9] the sum system. A request of the sum
system consists of one request for each system and to serve
it we need to serve at least one of the individual requests.
The generalized two-server problem should be considered
as one of the simplest sum systems since the two individ-
ual problems are completely trivial: there is one server and
each request consists of a single point.

Sum systems are particularly interesting to model sys-
tems for information storage and retrieval. To increase sta-
bility or efficiency one may store copies of the same infor-
mation inmultiple systems (e. g. databases, hard disks). To
retrieve one piece of information we may read it from any
system. However, to read information it may be necessary
to change the configuration of the system. For example, if
the database is stored in a binary search tree, then it is effi-
cient to make on-line changes to the structure of the tree,
i. e., to use dynamic search trees [12].

Open Problems

A proof that the work function algorithm is competitive
for the generalized two-server problem (as conjectured
in [9] and [11]) is still lacking. Also, a randomized algo-
rithm with a smaller competitive ratio than that of [11]
is not known. No results (except for a lower bound) are
known for the generalized problem with more than two
servers. It is not even clear if the work function algorithm
may be competitive here.

There are systems for which the work function algo-
rithm is not competitive. It would be interesting to have
a non-trivial property that implies competitiveness of the
work function algorithm.

Cross References

� Algorithm DC-Tree for k Servers on Trees
�Metrical Task Systems
� Online Paging and Caching
�Work-Function Algorithm for k Servers

Recommended Reading
1. Borodin, A., El-Yaniv, R.: Online computation and competitive

analysis. Cambridge University Press, Cambridge (1998)
2. Burley,W.R.: Traversing layeredgraphs using thework function

algorithm. J. Algorithms 20, 479–511 (1996)
3. Chrobak, M.: Sigact news online algorithms column 1. ACM

SIGACT News 34, 68–77 (2003)
4. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New re-

sults on server problems. SIAM J. Discret. Math. 4, 172–181
(1991)

Generalized Vickrey Auction G 353

5. Chrobak, M., Larmore, L.L.: Metrical service systems: Determin-
istic strategies. Tech. Rep. UCR-CS-93-1, Department of Com-
puter Science, Univ. of California at Riverside (1992)

6. Chrobak, M., Sgall, J.: The weighted 2-server problem. Theor.
Comput. Sci. 324, 289–312 (2004)

7. Fiat, A., Ricklin, M.: Competitive algorithms for the weighted
server problem. Theor. Comput. Sci. 130, 85–99 (1994)

8. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjec-
ture. J. ACM 42, 971–983 (1995)

9. Koutsoupias, E., Taylor, D.S.: The CNN problem and other k-
server variants. Theor. Comput. Sci. 324, 347–359 (2004)

10. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algo-
rithms for server problems. J. Algorithms 11, 208–230 (1990)

11. Sitters, R.A., Stougie, L.: The generalized two-server problem.
J. ACM 53, 437–458 (2006)

12. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees.
J. ACM 32, 652–686 (1985)

Generalized Vickrey Auction
1995; Varian

MAKOTO YOKOO
Department of Information Science and Electrical
Engineering, Kyushu University, Nishi-ku, Japan

Keywords and Synonyms

Generalized Vickrey auction; GVA;
Vickrey–Clarke–Groves mechanism; VCG

ProblemDefinition

Auctions are used for allocating goods, tasks, resources,
etc. Participants in an auction include an auctioneer (usu-
ally a seller) and bidders (usually buyers). An auction has
well-defined rules that enforce an agreement between the
auctioneer and the winning bidder. Auctions are often
used when a seller has difficulty in estimating the value of
an auctioned good for buyers.

The Generalized Vickrey Auction protocol (GVA) [5]
is an auction protocol that can be used for combinatorial
auctions [3] in which multiple items/goods are sold si-
multaneously. Although conventional auctions sell a sin-
gle item at a time, combinatorial auctions sell multiple
items/goods. These goods may have interdependent val-
ues, e. g., these goods are complementary/substitutable
and bidders can bid on any combination of goods. In
a combinatorial auction, a bidder can express comple-
mentary/substitutable preferences over multiple bids. By
taking into account complementary/substitutable prefer-
ences, the participants’ utilities and the revenue of the
seller can be increased. The GVA is one instance of the
Clarke mechanism [2,4]. It is also called the Vickrey–

Clarke–Groves mechanism (VCG). As its name suggests,
it is a generalized version of the well-known Vickrey (or
second-price) auction protocol [6], proposed by an Amer-
ican economist W. Vickrey, a 1996 Nobel Prize winner.

Assume there is a set of bidders N = f1; 2; : : : ; ng and
a set of goodsM = f1; 2; : : : ;mg. Each bidder i has his/her
preferences over a bundle, i. e., a subset of goods B
 M.
Formally, this can be modeled by supposing that bidder i
privately observes a parameter, or signal, �i , which deter-
mines his/her preferences. The parameter �i is called the
type of bidder i. A bidder is assumed to have a quasilinear,
private value defined as follows.

Definition 1 (Utility of a Bidder) The utility of bid-
der i, when i obtains B
 M and pays pi, is represented
as v (B; �i) � pi .

Here, the valuation of a bidder is determined indepen-
dently of other bidders’ valuations. Also, the utility of
a bidder is linear in terms of the payment. Thus, this model
is called a quasilinear, private value model.

Definition 2 (Incentive Compatibility) An auction
protocol is (dominant-strategy) incentive compatible (or
strategy-proof) if declaring the true type/evaluation val-
ues is a dominant strategy for each bidder, i. e., an optimal
strategy regardless of the actions of other bidders.

A combination of dominant strategies of all bidders is
called a dominant-strategy equilibrium.

Definition 3 (Individual Rationality) An auction pro-
tocol is individually rational if no participant suffers any
loss in a dominant-strategy equilibrium, i. e., the payment
never exceeds the evaluation value of the obtained goods.

Definition 4 (Pareto Efficiency) An auction protocol is
Pareto efficient when the sum of all participants’ utilities
(including that of the auctioneer), i. e., the social surplus,
is maximized in a dominant-strategy equilibrium.

The goal is to design an auction protocol that is incen-
tive compatible, individually rational, and Pareto efficient.
It is clear that individual rationality and Pareto efficiency
are desirable. Regarding the incentive compatibility, the
revelation principle states that in the design of an auction
protocol, it is possible to restrict attention only to incen-
tive compatible protocols without loss of generality [4]. In
other words, if a certain property (e. g., Pareto efficiency)
can be achieved using some auction protocol in a domi-
nant-strategy equilibrium, then the property can also be
achieved using an incentive-compatible auction protocol.

354 G Generalized Vickrey Auction

Key Results

A feasible allocation is defined as a vector of n bun-
dles EB = hB1; : : : ; Bni, where

S
j2N Bj
 M and for all

j ¤ j0; Bj \ Bj0 = ; hold.
The GVA protocol can be described as follows.

1. Each bidder i declares his/her type �̂i , which can be dif-
ferent from his/her true type �i .

2. The auctioneer chooses an optimal allocation EB� ac-
cording to the declared types. More precisely, the auc-
tioneer chooses EB� defined as follows:

EB� = argmax
EB

X
j2N

v
�
Bj; �̂ j

�
:

3. Each bidder i pays pi, which is defined as follows (B
i
j

and B�j are the jth element of EB
i and EB�, respectively):

pi =
X

j2Nnfig

v
�
B
i
j ; �̂ j

�
�

X
j2Nnfig

v
�
B�j ; �̂ j

�
;

where EB
i = argmax
EB

X
j2Nnfig

v
�
Bj; �̂ j

�
:

(1)

The first term in Eq. (1) is the social surplus when bidder i
does not participate. The second term is the social surplus
except bidder i when i does participate. In the GVA, the
payment of bidder i can be considered as the decreased
amount of the other bidders’ social surplus resulting from
his/her participation.

A description of how this protocol works is given be-
low.

Example 1 Assume there are two goods a and b, and three
bidders, 1, 2, and 3, whose types are �1; �2, and �3, respec-
tively. The evaluation value for a bundle v(B; �i) is deter-
mined as follows.

fag fbg fa; bg
�1 $6 $0 $6
�2 $0 $0 $8
�3 $0 $5 $5

Here, bidder 1 wants good a only, and bidder 3 wants
good b only. Bidder 2’s utility is all-or-nothing, i. e., he/she
wants both goods at the same time and having only one
good is useless.

Assume each bidder i declares his/her true type �i . The op-
timal allocation is to allocate good a to bidder 1 and b to
bidder 3, i. e., EB� = hfag; fg; fbgi. The payment of bidder 1
is calculated as follows. If bidder 1 does not participate, the
optimal allocation would have been allocating both items

to bidder 2, i. e., EB
1 = hfg; fa; bg; fgi and the social sur-
plus, i. e.,

P
j2Nnf1g v

�
B
1j ; �̂ j

�
is equal to $8. When bid-

der 1 does participate, bidder 3 obtains {b}, and the social
surplus except for bidder 1, i. e.,

P
j2Nnf1g v

�
B�j ; �̂ j

�
, is 5.

Therefore, bidder 1 pays the difference $8� $5 = $3. The
obtained utility of bidder 1 is $6 � $3 = $3. The payment
of bidder 3 is calculated as $8� $6 = $2.

The intuitive explanation of why truth telling is the
dominant strategy in the GVA is as follows. In the GVA,
goods are allocated so that the social surplus is maximized.
In general, the utility of society as a whole does not nec-
essarily mean maximizing the utility of each participant.
Therefore, each participant might have an incentive for ly-
ing if the group decision is made so that the social surplus
is maximized.

However, the payment of each bidder in the GVA is
cleverly determined so that the utility of each bidder is
maximized when the social surplus is maximized. Figure 1
illustrates the relationship between the payment and util-
ity of bidder 1 in Example 1. The payment of bidder 1 is
defined as the difference between the social surplus when
bidder 1 does not participate (i. e., the length of the upper
shaded bar) and the social surplus except bidder 1 when
bidder 1 does participate (the length of the lower black
bar), i. e., $8� $5 = $3.

On the other hand, the utility of bidder 1 is the dif-
ference between the evaluation value of the obtained item
and the payment, which equals $6� $3 = $3. This amount
is equal to the difference between the total length of the
lower bar and the upper bar. Since the length of the upper
bar is determined independently of bidder 1’s declaration,
bidder 1 can maximize his/her utility by maximizing the
length of the lower bar. However, the length of the lower
bar represents the social surplus. Thus, bidder 1 can max-
imize his/her utility when the social surplus is maximized.

Generalized Vickrey Auction, Figure 1
Utilities and Payments in the GVA

Geographic Routing G 355

Therefore, bidder 1 does not have an incentive for lying
since the group decision is made so that the social surplus
is maximized.

Theorem 1 The GVA is incentive compatible.

Proof Since the utility of bidder i is assumed to be quasi-
linear, it can be represented as

v (Bi ; �i) � pi = v (Bi ; �i)

�

2
4 X

j2Nnfig

v
�
B
i
j ; �̂ j

�
�
X

j2Nnfig

v
�
B�j ; �̂ j

�
3
5

=

2
4v (Bi ; �i) +

X
j2Nnfig

v
�
B�j ; �̂ j

�
3
5

�
X

j2Nnfig

v
�
B
i
j ; �̂ j

�

(2)

The second term in Eq. (2) is determined independently of
bidder i’s declaration. Thus, bidder 1 canmaximize his/her
utility bymaximizing the first term.However, EB� is chosen
so that

P
j2N v

�
Bj; �̂ j

�
is maximized. Therefore, bidder i

can maximize his/her utility by declaring �̂i = �i , i. e., by
declaring his/her true type. �

Theorem 2 The GVA is individually rational.

Proof This is clear from Eq. (2), since the first term is
always larger than (or at least equal to) the second term.�

Theorem 3 The GVA is Pareto efficient.

Proof From Theorem 1, truth telling is a dominant-strat-
egy equilibrium. From the way of choosing the allocation,
the social surplus is maximized if all bidders declare their
true types. �

Applications

The GVA can be applied to combinatorial auctions, which
have lately attracted considerable attention [3]. The US
Federal Communications Commission has been conduct-
ing auctions for allocating spectrum rights. Clearly, there
exist interdependencies among the values of spectrum
rights. For example, a bidder may desire licenses for ad-
joining regions simultaneously, i. e., these licenses are
complementary. Thus, the spectrum auctions is a promis-
ing application field of combinatorial auctions and have
been a major driving force for activating the research on
combinatorial auctions.

Open Problems

Although the GVA has these good characteristics (Pareto
efficiency, incentive compatibility, and individual rational-
ity), these characteristics cannot be guaranteed when bid-
ders can submit false-name bids. Furthermore, [1] pointed
out several other limitations such as vulnerability to the
collusion of the auctioneer and/or losers.

Also, to execute the GVA, the auctioneer must solve
a complicated optimization problem. Various studies have
been conducted to introduce search techniques, which
were developed in the artificial intelligence literature, for
solving this optimization problem [3].

Cross References

� False-Name-Proof Auction

Recommended Reading
1. Ausubel, L.M., Milgrom, P.R.: Ascending auctions with package

bidding. Front. Theor. Econ. 1(1) Article 1 (2002)
2. Clarke, E.H., Multipart pricing of public goods. Publ. Choice 2,

19–33 (1971)
3. Cramton, P., Steinberg, R., Shoham, Y. (eds.): Combinatorial Auc-

tions. MIT Press, Cambridge (2005)
4. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic The-

ory. Oxford University Press, Oxford (1995)
5. Varian, H.R.: Economic mechanism design for computerized

agents. In: Proceedings of the 1st Usenix Workshop on Elec-
tronic Commerce, 1995

6. Vickrey, W.: Counter speculation, auctions, and competitive
sealed tenders. J. Financ. 16, 8–37 (1961)

Geographic Routing
2003; Kuhn, Wattenhofer, Zollinger

AARON ZOLLINGER
Department of Electrical Engineering and Computer
Science, University of California at Berkeley,
Berkeley, CA, USA

Keywords and Synonyms

Directional routing; Geometric routing; Location-based
routing; Position-based routing

ProblemDefinition

Geographic routing is a type of routing particularly well
suited for dynamic ad hoc networks. Sometimes also called
directional, geometric, location-based, or position-based
routing, it is based on two principal assumptions. First, it
is assumed that every node knows its own and its network

356 G Geographic Routing

neighbors’ positions. Second, the source of a message is
assumed to be informed about the position of the destina-
tion. Geographic routing is defined on a Euclidean graph,
that is a graph whose nodes are embedded in the Euclidean
plane. Formally, geographic ad hoc routing algorithms can
be defined as follows:

Definition 1 (Geographic Ad Hoc Routing Algorithm)
Let G = (V ; E) be a Euclidean graph. The task of a geo-
graphic ad hoc routing algorithmA is to transmit a mes-
sage from a source s 2 V to a destination t 2 V by sending
packets over the edges of G while complying with the fol-
lowing conditions:
� All nodes v 2 V know their geographic positions as

well as the geographic positions of all their neighbors
in G.

� The source s is informed about the position of the des-
tination t.

� The control information which can be stored in
a packet is limited by O(log n) bits, that is, only infor-
mation about a constant number of nodes is allowed.

� Except for the temporary storage of packets before for-
warding, a node is not allowed to maintain any infor-
mation.

Geographic routing is particularly interesting, as it oper-
ates without any routing tables whatsoever. Furthermore,
once the position of the destination is known, all opera-
tions are strictly local, that is, every node is required to
keep track only of its direct neighbors. These two fac-
tors—absence of necessity to keep routing tables up to
date and independence of remotely occurring topology
changes—are among the foremost reasons why geographic
routing is exceptionally suitable for operation in ad hoc
networks. Furthermore, in a sense, geographic routing can
be considered a lean version of source routing appropri-
ate for dynamic networks: While in source routing the
complete hop-by-hop route to be followed by the mes-
sage is specified by the source, in geographic routing the
source simply addresses the message with the position of
the destination. As the destination can generally be ex-
pected tomove slowly compared to the frequency of topol-
ogy changes between the source and the destination, it
makes sense to keep track of the position of the destination
instead of maintaining network topology information up
to date; if the destination does not move too fast, the mes-
sage is delivered regardless of possible topology changes
among intermediate nodes.

The cost bounds presented in this entry are achieved
on unit disk graphs. A unit disk graph is defined as follows:

Definition 2 (Unit Disk Graph) Let V � R2 be a set of
points in the 2-dimensional plane. The graph with edges

between all nodes with distance at most 1 is called the unit
disk graph of V .

Unit disk graphs are often employed to model wireless ad
hoc networks.

The routing algorithms considered in this entry oper-
ate on planar graphs, graphs that contain no two intersect-
ing edges. There exist strictly local algorithms construct-
ing such planar graphs given a unit disk graph. The edges
of planar graphs partition the Euclidean plane into con-
tiguous areas, so-called faces. The algorithms cited in this
entry are based on these faces.

Key Results

The first geographic routing algorithm shown to always
reach the destination was Face Routing introduced in [14].

Theorem 1 If the source and the destination are con-
nected, Face Routing executed on an arbitrary planar graph
always finds a path to the destination. It thereby takes at
most O(n) steps, where n is the total number of nodes in the
network.

There exists however a geographic routing algorithm
whose cost is bounded not only with respect to the to-
tal number of nodes, but in relation to the shortest path
between the source and the destination: The GOAFR+

algorithm [15,16,18,24] (pronounced as “gopher-plus”)
combines greedy routing—where every intermediate node
relays the message to be routed to its neighbor located
nearest to the destination—with face routing. Together
with the locally computable Gabriel Graph planarization
technique, the effort expended by the GOAFR+ algorithm
is bounded as follows:

Theorem 2 Let c be the cost of an optimal path from s to
t in a given unit disk graph. GOAFR+ reaches t with cost
O(c2) if s and t are connected. If s and t are not connected,
GOAFR+ reports so to the source.

On the other hand it can be shown that—on certain
worst-case graphs—no geographic routing algorithm op-
erating in compliance with the above definition can per-
form asymptotically better than GOAFR+:

Theorem 3 There exist graphs where any deterministic
(randomized) geographic ad hoc routing algorithm has (ex-
pected) cost˝(c2).

This leads to the following conclusion:

Theorem 4 The cost expended by GOAFR+ to reach the
destination on a unit disk graph is asymptotically optimal.

In addition, it has been shown that the GOAFR+ algorithm
is not only guaranteed to have low worst-case cost but that

Geographic Routing G 357

it also performs well in average-case networks with nodes
randomly placed in the plane [15,24].

Applications

By its strictly local nature geographic routing is particu-
larly well suited for application in potentially highly dy-
namic wireless ad hoc networks. However, also its employ-
ment in dynamic networks in general is conceivable.

Open Problems

A number of problems related to geographic routing re-
main open. This is true above all with respect to the dis-
semination within the network of information about the
destination position and on the other hand in the context
of node mobility as well as network dynamics. Various
approaches to these problems have been described in [7]
as well as in chapters 11 and 12 of [24]. More generally,
taking geographic routing one step further towards its ap-
plication in practical wireless ad hoc networks [12,13] is
a field yet largely open. A more specific open problem is
finally posed by the question whether geographic routing
can be adapted to networks with nodes embedded in three-
dimensional space.

Experimental Results

First experiences with geographic and in particular face
routing in practical networks have been made [12,13].
More specifically, problems in connection with graph pla-
narization that can occur in practice were observed, docu-
mented, and tackled.

Cross References

� Local Computation in Unstructured Radio Networks
� Planar Geometric Spanners
� Routing in Geometric Networks

Recommended Reading

1. Barrière, L., Fraigniaud, P., Narayanan, L.: Robust Position-
Based Routing in Wireless Ad Hoc Networks with Unstable
Transmission Ranges. In: Proc. of the 5th International Work-
shop on Discrete Algorithms andMethods for Mobile Comput-
ing and Communications (DIAL-M), pp 19–27. ACM Press, New
York (2001)

2. Bose, P., Brodnik, A., Carlsson, S., Demaine, E., Fleischer R.,
López-Ortiz, A., Morin, P., Munro, J.: Online Routing in Con-
vex Subdivisions. In: International Symposium on Algorithms
and Computation (ISAAC). LNCS, vol. 1969, pp 47–59. Springer,
Berlin/New York (2000)

3. Bose, P., Morin, P.: Online Routing in Triangulations. In: Proc.
10th Int. Symposium on Algorithms and Computation (ISAAC).
LNCS, vol. 1741, pp 113–122. Springer, Berlin (1999)

4. Bose, P.,Morin, P., Stojmenovic, I., Urrutia J.: Routingwith Guar-
anteed Delivery in Ad Hoc Wireless Networks. In: Proc. of the
3rd International Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communications (DIAL-M),
1999, pp 48–55

5. Datta, S., Stojmenovic, I., Wu J.: Internal Node and Shortcut
Based Routingwith Guaranteed Delivery inWireless Networks.
In: Cluster Computing 5, pp 169–178. Kluwer Academic Pub-
lishers, Dordrecht (2002)

6. Finn G.: Routing and Addressing Problems in Large Metropoli-
tan-scale Internetworks. Tech. Report ISI/RR-87–180, USC/ISI,
March (1987)

7. Flury, R., Wattenhofer, R.: MLS: An Efficient Location Service
for Mobile Ad Hoc Networks. In: Proceedings of the 7th ACM
Int. Symposium on Mobile Ad-Hoc Networking and Comput-
ing (MobiHoc), Florence, Italy, May 2006

8. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker,
S., Stoica, I.: Beacon Vector Routing: Scalable Point-to-Point
Routing in Wireless Sensornets. In: 2nd Symposium on Net-
worked Systems Design & Implementation (NSDI), Boston,
Massachusetts, USA, May 2005

9. Gao, J., Guibas, L., Hershberger, J., Zhang, L., Zhu, A.: Geomet-
ric Spanner for Routing in Mobile Networks. In: Proc. 2nd ACM
Int. Symposium on Mobile Ad-Hoc Networking and Comput-
ing (MobiHoc), Long Beach, CA, USA, October 2001

10. Hou, T., Li, V.: Transmission Range Control in Multihop Packet
Radio Networks. IEEE Tran. Commun. 34, 38–44 (1986)

11. Karp, B., Kung, H.: GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks. In: Proc. 6th Annual Int. Conf. on Mobile
Computing and Networking (MobiCom), 2000, pp 243–254

12. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Geographic Rout-
ingMade Practical. In: Proceedings of the SecondUSENIX/ACM
Symposium on Networked System Design and Implementa-
tion (NSDI 2005), Boston, Massachusetts, USA, May 2005

13. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: On the Pitfalls of
Geographic Face Routing. In: Proc. of the ACM Joint Work-
shop on Foundations of Mobile Computing (DIALM-POMC),
Cologne, Germany, September 2005

14. Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geomet-
ric Networks. In: Proc. 11th Canadian Conference on Computa-
tional Geometry, Vancouver, August 1999, pp 51–54

15. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geomet-
ric Routing: Of Theory and Practice. In: Proc. of the 22nd
ACM Symposium on the Principles of Distributed Computing
(PODC), 2003

16. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically Optimal
Geometric Mobile Ad-Hoc Routing. In: Proc. 6th Int. Workshop
on Discrete Algorithms and Methods for Mobile Computing
and Communications (Dial-M), pp 24–33. ACMPress, New York
(2002)

17. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-Hoc Networks Be-
yond Unit Disk Graphs. In: 1st ACM Joint Workshop on Foun-
dations of Mobile Computing (DIALM-POMC), San Diego, Cali-
fornia, USA, September 2003

18. Kuhn, F., Wattenhofer, R., Zollinger, A.:Worst-Case Optimal and
Average-Case Efficient Geometric Ad-Hoc Routing. In: Proc. 4th
ACM Int. Symposium on Mobile Ad-Hoc Networking and Com-
puting (MobiHoc), 2003

358 G Geometric Computing

19. Leong, B., Liskov, B., Morris, R.: Geographic Routing without
Planarization. In: 3rd Symposium on Networked Systems De-
sign & Implementation (NSDI), San Jose, California, USA, May
2006

20. Leong, B., Mitra, S., Liskov, B.: Path Vector Face Routing: Geo-
graphic Routing with Local Face Information. In: 13th IEEE In-
ternational Conference on Network Protocols (ICNP), Boston,
Massachusetts, USA, November 2005

21. Takagi, H., Kleinrock, L.: Optimal Transmission Ranges for Ran-
domly Distributed Packet Radio Terminals. IEEE Trans. Com-
mun. 32, 246–257 (1984)

22. Urrutia, J.: Routingwith Guaranteed Delivery in Geometric and
Wireless Networks. In: Stojmenovic, I. (ed.) Handbook of Wire-
less Networks and Mobile Computing, ch. 18 pp. 393–406. Wi-
ley, Hoboken (2002)

23. Wattenhofer, M., Wattenhofer, R., Widmayer, P.: Geometric
Routing without Geometry. In: 12th Colloquium on Structural
Information and Communication Complexity (SIROCCO), Le
Mont Saint-Michel, France, May 2005

24. Zollinger, A.: Networking Unleashed: Geographic Routing and
Topology Control in AdHoc and Sensor Networks, Ph. D. thesis,
ETH Zurich, Switzerland Diss. ETH 16025 (2005)

Geometric Computing
� Engineering Geometric Algorithms
� Euclidean Traveling Salesperson Problem
� Geographic Routing
�Minimum k-Connected Geometric Networks
� Planar Geometric Spanners
� Point Pattern Matching
� Routing in Geometric Networks

Geometric Dilation
of Geometric Networks
2006; Dumitrescu, Ebbers-Baumann, Grüne,
Klein, Knauer, Rote

ROLF KLEIN
Institute for Computer Science I, University of Bonn,
Bonn, Germany

Keywords and Synonyms

Detour; Spanning ratio; Stretch factor

ProblemDefinition

Urban street systems can be modeled by plane geomet-
ric networks G = (V ; E) whose edges e 2 E are piece-
wise smooth curves that connect the vertices v 2 V � R2.

Edges do not intersect, except at common endpoints in
V . Since streets are lined with houses, the quality of such
a network can be measured by the length of the connec-
tions it provides between two arbitrary points p and q
on G.

Let �G(p; q) denote a shortest path from p to q in G.
Then

ı(p; q) :=
j�G(p; q)j
jpqj

(1)

is the detour one encounters when using networkG, in or-
der to get from p to q, instead of walking straight. Here,
|.| denotes the Euclidean length. The geometric dilation of
network G is defined by

ı(G) := sup
p 6=q2G

ı(p; q): (2)

This definition differs from the notion of stretch fac-
tor (or: spanning ratio) used in the context of spanners;
see the monographs by Eppstein [6] or Narasimhan and
Smid [11]. In the latter, only the paths between the ver-
tices p; q 2 V are considered, whereas the geometric dila-
tion involves all points on the edges as well. As a conse-
quence, the stretch factor of a triangle T equals 1, but its
geometric dilation is given by ı(T) =

p
2/(1 � cos˛) � 2,

where ˛ � 60ı is the most acute angle of T.
Presented with a finite set S of points in the plane, one

would like to find a finite geometric network containing S
whose geometric dilation is as small as possible. The value
of

�(S) := inffı(G);G finite plane geometric
network containing Sg

is called the geometric dilation of point set S. The problem
is in computing, or bounding,�(S) for a given set S.

Key Results

Theorem 1 [4] Let Sn denote the set of corners of
a regular n-gon. Then, �(S3) = 2/

p
3; �(S4) =

p
2, and

�(Sn) =
/2 for all n � 5.

The networks realizing these minimum values are shown
in Fig. 1. The proof of minimality uses the following
two lemmata that may be interesting in their own right.
Lemma 1 was independently obtained by Aronov et al. [1].

Lemma 1 Let T be a tree containing Sn. Then ı(T) � n/
 .

Lemma 2 follows from a result of Gromov’s [7]. It can
more easily be proven by applying Cauchy’s surface area
formula, see [4].

Geometric Dilation of Geometric Networks G 359

Geometric Dilation of Geometric Networks, Figure 1
Minimum dilation embeddings of regular point sets

Lemma 2 Let C denote a simple closed curve in the plane.
Then ı(C) �
/2.

Clearly, Lemma 2 is tight for the circle. The next lemma
implies that the circle is the only closed curve attaining the
minimum geometric dilation of
/2.

Lemma 3 [3] Let C be a simple closed curve of geometric
dilation <
/2 + �(ı). Then C is contained in an annulus
of width ı.

For points in general position, computing their geo-
metric dilation seems quite complicated. Only for sets
S = fA; B;Cg of size three is the solution completely
known.

Theorem 2 [5] The plane geometric network of minimum
geometric dilation containing three given points fA; B;Cg is
either a line segment, or a Steiner tree as depicted in Fig. 1,
or a simple path consisting of two line segments and one
segment of an exponential spiral; see Fig. 2.

The optimum path shown in Fig. 2 contains a degree two
Steiner vertex,P, situated at distance |AB| from B. The path
runs straight between A; B and B; P. From P toC it follows
an exponential spiral centered at A.

The next results provide upper and lower bounds to
�(S).

Theorem 3 [4] For each finite point set S the estimate
�(S) < 1:678 holds.

Geometric Dilation of Geometric Networks, Figure 2
The minimum dilation embedding of points A, B, and C

To prove this general upper bound one can replace each
vertex of the hexagonal tiling of R2 with a certain closed
Zindler curve (by definition, all point pairs bisecting the
perimeter of a Zindler curve have identical distance). This
results in a networkGF of geometric dilation	 1:6778; see
Fig. 3. Given a finite point set S, one applies a slight defor-
mation to a scaled version of GF , such that all points of S
lie on a finite part, G, of the deformed net. By Dirichlet’s
result on simultaneous approximation of real numbers by
rationals, a deformation small as compared to the cell size
is sufficient, so that the dilation is not affected. See [8] for
the history and properties of Zindler curves.

Theorem 4 [3] There exists a finite point set S such that
�(S) > (1 + 10�11)
/2.

Theorem 4 holds for the set S of 19 � 19 vertices of the in-
teger grid. Roughly, if Swere contained in a geometric net-
work G of dilation close to
/2, the boundaries of the faces
of G must be contained in small annuli, by Lemma 3. To
the inner and outer circles of these annuli, one can now ap-
ply a result by Kuperberg et al. [9] stating that an enlarge-

Geometric Dilation of Geometric Networks, Figure 3
A network of geometric dilation � 1,6778

360 G Geometric Spanners

ment, by a certain factor, of a packing of disks of radius
� 1 cannot cover a square of size 4.

Applications

The geometric dilation has applications in the theory of
knots, see, e. g., Kusner and Sullivan [10] and Denne and
Sullivan [2]. With respect to urban planning, the above
results highlight principal dilation bounds for connecting
given sites with plane geometric networks.

Open Problems

For practical applications, one would welcome upper
bounds to the weight (= total edge length) of a geomet-
ric network, in addition to upper bounds on its geometric
dilation. Some theoretical questions require further inves-
tigation, too. Is �(S) always attained by a finite network?
How to compute, or approximate, �(S) for a given finite
set S? What is the precise value of sup{�(S); S finite}?

Cross References

� Dilation of Geometric Networks

Recommended Reading
1. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Ha-

verkort, H., Vigneron, A.: Sparse Geometric Graphs with Small
Dilation. 16th International Symposium ISAAC 2005, Sanya. In:
Deng, X., Du, D. (eds.) Algorithms and Computation, Proceed-
ings. LNCS, vol. 3827, pp. 50–59. Springer, Berlin (2005)

2. Denne, E., Sullivan, J.M.: The Distortion of a Knotted Curve.
http://www.arxiv.org/abs/math.GT/0409438 (2004)

3. Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote,
G.: On the Geometric Dilation of Closed Curves, Graphs, and
Point Sets. Comput. Geom. Theory Appl. 36(1), 16–38 (2006)

4. Ebbers-Baumann, A., Grüne, A., Klein, R.: On the Geometric Di-
lation of Finite Point Sets. Algorithmica 44(2), 137–149 (2006)

5. Ebbers-Baumann, A., Klein, R., Knauer, C., Rote, G.: TheGeomet-
ric Dilation of Three Points. Manuscript (2006)

6. Eppstein, D.: Spanning Trees and Spanners. In: Sack, J.-R.,
Urrutia, J. (eds.) Handbook of Computational Geometry,
pp. 425–461. Elsevier, Amsterdam (1999)

7. Gromov, M.: StructuresMétriques des Variétés Riemanniennes.
Textes Math. CEDIX, vol. 1. F. Nathan, Paris (1981)

8. Grüne, A.: Geometric Dilation and Halving Distance. Ph. D. the-
sis, Institut für Informatik I, Universität Bonn (2006)

9. Kuperberg, K., Kuperberg, W., Matousek, J., Valtr, P.: Almost
Tiling the Plane with Ellipses. Discrete Comput. Geom. 22(3),
367–375 (1999)

10. Kusner, R.B., Sullivan, J.M.: On Distortion and Thickness of
Knots. In:Whittington, S.G. et al. (eds.) Topology and Geometry
in Polymer Science. IMA Volumes inMath. and its Applications,
vol. 103, pp. 67–78. Springer, New York (1998)

11. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cam-
bridge University Press(2007)

Geometric Spanners
2002; Gudmundsson, Levcopoulos, Narasimhan

JOACHIM GUDMUNDSSON1, GIRI NARASIMHAN2,
MICHIEL SMID3

1 DMiST, National ICT Australia Ltd,
Alexandria, NSW, Australia

2 Department of Computer Science, Florida
International University, Miami, FL, USA

3 School of Computer Science, Carleton University,
Ottawa, ON, Canada

Keywords and Synonyms

Dilation; t-spanners

ProblemDefinition

Consider a set S of n points in d-dimensional Euclidean
space. A network on S can be modeled as an undirected
graph G with vertex set S of size n and an edge set E where
every edge (u, v) has a weight. A geometric (Euclidean)
network is a network where the weight of the edge (u, v) is
the Euclidean distance |uv| between its endpoints. Given
a real number t > 1 we say that G is a t-spanner for S, if
for each pair of points u; v 2 S, there exists a path in G of
weight at most t times the Euclidean distance between u
and v. The minimum t such that G is a t-spanner for S is
called the stretch factor, or dilation, of G. For a more de-
tailed description of the construction of t-spanners see the
book by Narasimhan and Smid [18]. The problem consid-
ered is the construction of t-spanners given a set S of n
points in Rd and a positive real value t > 1, where d is
a constant. The aim is to compute a good t-spanner for S
with respect to the following quality measures:

size: the number of edges in the graph.
degree: the maximum number of edges incident on a ver-

tex.
weight: the sum of the edge weights.
spanner diameter: the smallest integer k such that for any

pair of vertices u and v in S, there is a path in the graph
of length at most t � juvj between u and v containing at
most k edges.

fault-tolerance: the resilience of the graph to edge, vertex
or region failures.

Thus, good t-spanners require large fault-tolerance and
small size, degree, weight and spanner diameter.

http://www.arxiv.org/abs/math.GT/0409438

Geometric Spanners G 361

Key Results

This section contains a description of the three most com-
mon approaches for constructing a t-spanner of a set of
points in Euclidean space. It also contains a description
of the construction of fault-tolerant spanners, spanners
among polygonal obstacles and, finally, a short note on dy-
namic and kinetic spanners.

Spanners of Points in Euclidean Space

The most well-known classes of t-spanner networks for
points in Euclidean space include: 	-graphs, WSPD-
graphs and Greedy-spanners. In the following sections the
main idea of each of these classes is given, together with
the known bounds on the quality measures.

The �-Graph The 	-graph was discovered indepen-
dently by Clarkson and Keil in the late 80’s. The general
idea is to process each point p 2 S independently as fol-
lows. Partition Rd into k simplicial cones of angular di-
ameter at most � and apex at p, where k = O(1/� d�1).
For each non-empty cone C, an edge is added between p
and the point inC whose orthogonal projection onto some
fixed ray in C emanating from p is closest to p, see Fig. 1a.
The resulting graph is called the	-graph on S.

Theorem 1 The 	-graph is a t-spanner of S for t = 1/
(cos � � sin �)with O(n/� d�1) edges, and can be computed
in O((n/� d�1) logd�1 n) time using O(n/� d�1+n logd�2 n)
space.

The following variants of the	-graph also give bounds on
the degree, diameter and weight.

Skip-List Spanners The idea is to generalize skip-lists and
apply them to the construction of spanners. Construct
a sequence of h subsets, S1; : : : ; Sh , where S1 = S and Si is
constructed from Si� 1 as follows (reminiscent of the lev-
els in a skip list). For each point in Si� 1, flip a fair coin.
The set Si is the set of all points of Si� 1 whose coin flip
produced heads. The construction stops if Si = ;. For each

Geometric Spanners, Figure 1
a Illustrating the � -graph. b A graph with a region-fault

subset a	-graph is constructed. The union of the graphs is
the skip-list spanner of Swith dilation t, havingO(n/� d�1)
edges and O(log n) spanner diameter with high probabil-
ity [3].

Gap-Greedy A set of directed edges is said to satisfy the
gap property if the sources of any two distinct edges in the
set are separated by a distance that is at least proportional
to the length of the shorter of the two edges. Arya and
Smid [5] proposed an algorithm that uses the gap prop-
erty to decide whether or not an edge should be added
to the t-spanner graph. Using the gap property the con-
structed spanner can be shown to have degree O(1/� d�1)
and weight O(log n � wt(MST(S))), where wt(MST(S)) is
the weight of the minimum spanning tree of S.

The WSPD-Graph Let A and B be two finite sets of
points inRd . We say that A and B are well-separated with
respect to a real value s > 0, if there are two disjoint balls
CA and CB, having the same radius, such that CA contains
A, CB contains B, and the distance between CA and CB is
at least equal to s times the radius of CA . The value s is
denoted the separation ratio.

Definition 1 ([6]) Let S be a set of points in Rd , and let
s > 0 be a real number. A well-separated pair decomposi-
tion (WSPD) for S with respect to s is a sequence fAi ; Big,
1 � i � m, of pairs of non-empty subsets of S, such that
(1) Ai \ Bi = ; for all i = 1; 2; : : : ;m, (2) for each un-
ordered pair fp; qg of distinct points of S, there is exactly
one pair fAi ; Big in the sequence, such that p 2 Ai and
q 2 Bi , or p 2 Bi and q 2 Ai , and (3) Ai and Bi are well-
separated with respect to s, for all i = 1; 2; : : : ;m.

The well-separated pair decomposition (WSPD) was de-
veloped by Callahan and Kosaraju [6]. The construction
of a t-spanner using the well-separated pair decomposi-
tion is done by first constructing aWSPD of Swith respect
to a separation constant s = (4(t + 1))/(t � 1). Initially set
the spanner graph G = (S;;) and add edges iteratively as
follows. For each well-separated pair fA; Bg in the decom-
position, an edge (a, b) is added to the graph, where a and b
are arbitrary points in A and B, respectively. The resulting
graph is called the WSPD-graph on S.

Theorem 2 The WSPD-graph is a t-spanner for S with
O(sd � n) edges and can be constructed in time O(sd n +
n log n), where s = 4(t + 1)/(t � 1).

There are modifications that can be made to obtain
bounded diameter or bounded degree.

362 G Geometric Spanners

Bounded Diameter Arya, Mount and Smid [3] showed
how to modify the construction algorithm such that the
diameter of the graph is bounded by 2 log n. Instead of se-
lecting an arbitrary point in each well-separated set, their
algorithm carefully chooses a specially selected point for
each set.

Bounded Degree A single point v can be part of many
well-separated pairs and each of these pairs may generate
an edge with an endpoint at v. Arya et al. [2] suggested
an algorithm that retains only the shortest edge for each
cone direction, thus combining the 	-graph approach
with the WSPD-graph. By adding a post-processing step
that handles all high-degree vertices, a t-spanner of degree
O(1/(t � 1)2d�1) is obtained.

The Greedy-Spanner The greedy algorithm was first
presented in 1989 by Bern (see also Levcopoulos and Lin-
gas [15]) and since then the greedy algorithm has been
subject to considerable research. The graph constructed
using the greedy algorithm is called a Greedy-spanner,
and the general idea is that the algorithm iteratively builds
a graph G. The edges in the complete graph are processed
in order of increasing edge length. Testing an edge (u, v)
entails a shortest path query in the partial spanner graphG.
If the shortest path in G between u and v is at most t � juvj
then the edge (u, v) is discarded, otherwise it is added to
the partial spanner graph G.

Das, Narasimhan and Salowe [11] proved that the
greedy-spanner fulfills the so-called leapfrog property.
A set of undirected edges E is said to satisfy the t-leapfrog
property, if for every k � 2, and for every possible se-
quence f(p1; q1); : : : ; (pk ; qk)g of pairwise distinct edges
of E,

t � jp1q1j <
kX
i=2

jpi qi j + t �
� k�1X

i=1

jqi pi+1j + jpkq1j)
�
:

Using the leapfrog property it is possible to bound the
weight of the graph. Das and Narasimhan [10] observed
that the Greedy-spanner can be approximated while main-
taining the leapfrog property. This observation allowed for
faster construction algorithms.

Theorem 3 ([14]) The approximate greedy-spanner is
a t-spanner of S with maximum degree O(1/(t � 1)2d�1),
weight O((1/(t � 1)2d�1 � wt(MST(S)))), and can be com-
puted in time O(n/((t � 1)2d) log n).

Fault-Tolerant Spanners

The concept of fault-tolerant spanners was first introduced
by Levcopoulos et al. [16] in 1998, i. e., after one or more
vertices or edges fail, the spanner should retain its good
properties. In particular, there should still be a short path
between any two vertices in what remains of the spanner
after the fault. Czumaj and Zhao [8] showed that a greedy
approach produces a k-vertex (or k-edge) fault tolerant
geometric t-spanner with degree O(k) and total weight
O(k2 � wt(MST(S))); these bounds are asymptotically op-
timal.

For geometric spanners it is natural to consider region
faults, i. e., faults that destroy all vertices and edges inter-
secting some geometric fault region. For a fault region F
let G � F be the part of G that remains after the points
from S inside F and all edges that intersect F have been re-
moved from the graph, see Fig. 1b. Abam et al. [1] showed
how to construct region-fault tolerant t-spanners of size
O(n log n) that are fault-tolerant to any convex region-
fault. If one is allowed to use Steiner points then a linear
size t-spanner can be achieved.

Spanners Among Obstacles

The visibility graph of a set of pairwise non-intersecting
polygons is a graph of intervisible locations. Each polygo-
nal vertex is a vertex in the graph, and each edge represents
a visible connection between them; that is, if two vertices
can see each other, an edge is drawn between them. This
graph is useful since it contains the shortest obstacle avoid-
ing path between any pair of vertices.

Das [9] showed that a t-spanner of the visibility graph
of a point set in the Euclidean plane can be constructed by
using the 	-graph approach followed by a pruning step.
The obtained graph has linear size and constant degree.

Dynamic and Kinetic Spanners

Not much is known in the areas of dynamic or kinetic
spanners. Arya et al. [4] showed a data structure of size
O(n logd n) that maintains the skip-list spanner, described
in Sect. “The 	-Graph”, in O(logd n log log n) expected
amortized time per insertion and deletion in the model of
random updates.

Gao et al. [13] showed how to maintain a t-spanner of
sizeO(n/(t�1)d) andmaximumdegreeO(1/(t�2)d log ˛)
in time O((log ˛)/(t � 1)d) per insertion and deletion,
where ˛ denotes the aspect ratio of S, i. e., the ratio of the
maximum pairwise distance to the minimum pairwise dis-
tance. The idea is to use an hierarchical structure T with
O(log ˛) levels, where each level contains a set of centers

Geometric Spanners G 363

(subset of S). Each vertex v on level i in T is connected
by an edge to all other vertices on level i within distance
O(2i /(t � 1)) of v. The resulting graph is a t-spanner of
S and it can be maintained as stated above. The approach
can be generalized to the kinetic case so that the total num-
ber of events in maintaining the spanner is O(n2 log n) un-
der pseudo-algebraic motion. Each event can be updated
in O((log ˛)/(t � 1)d) time.

Applications

The construction of sparse spanners has been shown to
have numerous applications areas such as metric space
searching [1], which includes query by content in multi-
media objects, text retrieval, pattern recognition and func-
tion approximation. Another example is broadcasting in
communication networks [17]. Several well-known theo-
retical results also use the construction of t-spanners as
a building block, for example, Rao and Smith [19] made
a breakthrough by showing an optimal O(n log n)-time
approximation scheme for the well-known Euclidean trav-
eling salesperson problem, using t-spanners (or banyans).
Similarly, Czumaj and Lingas [7] showed approximation
schemes for minimum-cost multi-connectivity problems
in geometric networks.

Open Problems

There are many open problems in this area. Only a few are
mentioned here:
1. Design a dynamic t-spanner that can be updated in

O(logc n) time, for some constant c.
2. Determine if there exists a fault-tolerant t-spanner of

linear size for convex region faults.
3. The k-vertex fault tolerant spanner by Czumaj and

Zhao [8] produces a k-vertex fault tolerant t-spanner of
degreeO(k) andweightO(k2 � wt(MST(S))). However,
it is not known how to implement it efficiently. Can
such a spanner be computed in O(n log n + kn) time?

4. Bound the weight of skip-list spanners.

Experimental Results

The problem of constructing spanners has received con-
siderable attention from a theoretical perspective but not
much attention from a practical, or experimental per-
spective. Navarro and Paredes [1] presented four heuris-
tics for point sets in high-dimensional space (d = 20) and
showed by empirical methods that the running time was
O(n2.24) and the number of edges in the produced graphs
wasO(n1.13). Recently Farshi and Gudmundsson [12] per-
formed a thorough comparison of the construction algo-

rithms discussed in Section “Spanners of Points in Eu-
clidean Space”.

Cross References

� Applications of Geometric Spanner Networks
� Approximating Metric Spaces by Tree Metrics
� Dilation of Geometric Networks
� Planar Geometric Spanners
� Single-Source Shortest Paths
� Sparse Graph Spanners
�Well Separated Pair Decomposition

Recommended Reading
1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-

fault tolerant geometric spanners. In: Proceedings of the 18th
ACM-SIAM Symposium on Discrete Algorithms, New Orleans,
7–9 January 2007

2. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean
spanners: short, thin, and lanky. In: Proceedings of the 27th
ACM Symposium on Theory of Computing, pp. 489–498. Las
Vegas, 29 May–1 June 1995

3. Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic
algorithms for geometric spanners of small diameter. In: Pro-
ceedings of the 35th IEEE Symposium on Foundations of Com-
puter Science, pp. 703–712. Santa Fe, 20–22 November 1994

4. Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for ge-
ometric spanners of small diameter: Randomized solutions.
Comput. Geom. Theor. Appl. 13(2), 91–107 (1999)

5. Arya, S., Smid, M.: Efficient construction of a bounded-degree
spanner with low weight. Algorithmica 17, 33–54 (1997)

6. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and
n-body potential fields. J. ACM 42, 67–90 (1995)

7. Czumaj, A., Lingas, A.: Fast approximation schemes for Eu-
clidean multi-connectivity problems. In: Proceedings of the
27th International Colloquium on Automata, Languages and
Programming. Lect. Notes Comput. Sci. 1853, 856–868 (2000)

8. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Dis-
cret. Comput. Geom. 32(2), 207–230 (2004)

9. Das, G.: The visibility graph contains a bounded-degree span-
ner. In: Proceedings of the 9th Canadian Conference on Com-
putational Geometry, Kingston, 11–14 August 1997

10. Das, G., Narasimhan, G.: A fast algorithm for constructing
sparse Euclidean spanners. Int. J. Comput. Geom. Appl. 7, 297–
315 (1997)

11. Das, G., Narasimhan, G., Salowe, J.: A new way to weigh mal-
nourished Euclidean graphs. In: Proceedings of the 6th ACM-
SIAM Symposium on Discrete Algorithms, pp. 215–222. San
Francisco, 22–24 January 1995

12. Farshi, M., Gudmundsson, J.: Experimental study of geometric
t-spanners. In: Proceedings of the 13th Annual European Sym-
posium on Algorithms. Lect. Notes Comput. Sci. 3669, 556–
567 (2005)

13. Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and ap-
plications. In: Proceedings of the 20th ACM Symposium on
Computational Geometry, pp. 190–199, New York, 9–11 June
2004

364 G Gomory–Hu Trees

14. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Improved
greedy algorithms for constructing sparse geometric span-
ners. SIAM J. Comput. 31(5), 1479–1500 (2002)

15. Levcopoulos, C., Lingas, A.: There are planar graphs almost as
good as the complete graphs and almost as cheap as mini-
mum spanning trees. Algorithmica 8(3), 251–256 (1992)

16. Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algo-
rithms for constructing fault-tolerant spanners. Algorithmica
32, 144–156 (2002)

17. Li, X.Y.: Applications of computational geometry in wireless ad
hoc networks. In: Cheng, X.Z., Huang, X., Du, D.Z. (eds.) Ad Hoc
Wireless Networking, pp. 197–264. Kluwer, Dordrecht (2003)

18. Narasimhan, G., Smid, M.: Geometric spanner networks. Cam-
bridge University Press, New York (2006)

19. Navarro, G., Paredes, R.: Practical construction of metric t-
spanners. In: Proceedings of the 5th Workshop on Algorithm
Engineering and Experiments, pp. 69–81, 11 January 2003.
SIAM Press, Baltimore

20. Rao, S., Smith, W.D.: Approximating geometrical graphs via
spanners and banyans. In: Proceedings of the 30th ACM Sym-
posium on Theory of Computing, pp. 540–550. Dallas, 23–26
May 1998

Gomory–Hu Trees
2007; Bhalgat, Hariharan, Kavitha, Panigrahi

DEBMALYA PANIGRAHI
Computer Science & Artificial Intelligence Laboratory,
MIT, Cambridge, MA, USA

Keywords and Synonyms

Cut trees

ProblemDefinition

Let G = (V ; E) be an undirected graph with jV j = n and
jEj = m. The edge connectivity of two vertices s; t 2 V ,
denoted by �(s; t), is defined as the size of the smallest
cut that separates s and t; such a cut is called a mini-
mum s–t cut. Clearly, one can represent the �(s; t) val-
ues for all pairs of vertices s and t in a table of size O(n2).
However, for reasons of efficiency, one would like to rep-
resent all the �(s; t) values in a more succinct manner.
Gomory–Hu trees (also known as cut trees) offer one such
succinct representation of linear (i. e., O(n)) space and
constant (i. e., O(1)) lookup time. It has the additional ad-
vantage that apart from representing all the �(s; t) values,
it also contains structural information from which a min-
imum s–t cut can be retrieved easily for any pair of ver-
tices s and t.

Formally, a Gomory–Hu tree T = (V ; F) of an undi-
rected graph G = (V ; E) is a weighted undirected tree de-

Gomory–Hu Trees, Figure 1
An undirected graph (left) and a corresponding Gomory–Hu tree
(right)

fined on the vertices of the graph such that the following
properties are satisfied:
� For any pair of vertices s; t 2 V , �(s; t) is equal to the

minimum weight on an edge in the unique path con-
necting s to t in T. Call this edge e(s; t). If there are
multiple edges with the minimum weight on the s to t
path in T, any one of these edges is designated as e(s; t).

� For any pair of vertices s and t, the bipartition of ver-
tices into components produced by removing e(s; t) (if
there are multiple candidates for e(s; t), this property
holds for each candidate edge) from T corresponds to
a minimum s–t cut in the original graph G.
To understand this definition better, consider the fol-

lowing example. Figure 1 shows an undirected graph and
a corresponding Gomory–Hu tree. Focus on a pair of ver-
tices, for instance, 3 and 5. Clearly, the edge (6; 5) of weight
3 is a minimum-weight edge on the 3 to 5 path in the Go-
mory–Hu tree. It is easy to see that �(3; 5) = 3 in the orig-
inal graph. Now, removing this edge produces the vertex
bipartition (f1; 2; 3; 6g; f4; 5g), which is a cut of size 3 in
the original graph.

It is not immediate that such Gomory–Hu trees exist
for all undirected graphs. In a classical result in 1961, Go-
mory and Hu [7] showed that not only do such trees exist
for all undirected graphs, but that they can also be com-
puted using n � 1 minimum s–t computations (which are
equivalent to maximum flow computations, by the cele-
brated Menger’s theorem). In fact, a graph can have mul-
tiple Gomory–Hu trees.

All previous algorithms for building Gomory–Hu trees
in undirected graphs used maximum flow subroutines.
Gomory and Hu showed how to compute the cut tree T
using n � 1 maximum flow computations and graph con-
tractions. Gusfield [8] proposed an algorithm that does not
use graph contractions; all n � 1 maximum flow compu-

Gomory–Hu Trees G 365

tations are performed on the input graph. Goldberg and
Tsioutsiouliklis [6] did an experimental study of the algo-
rithms due to Gomory and Hu and due to Gusfield for the
cut tree problem and described efficient implementations
of these algorithms. Examples were shown by Benczúr [1]
that cut trees do not exist for directed graphs.

Any maximum flow based approach for constructing
a Gomory–Hu tree would have a running time of (n � 1)
times the time for computing a single maximum flow.
Till now, faster algorithms for Gomory–Hu trees were by-
products of faster algorithms for computing a maximum
flow. The current fastest Õ(m + n�(s; t)) (polylog n factors
ignored in Õ notation) maximum-flow algorithm, due to
Karger and Levine [10], yields the current best expected
running time of Õ(n3) for Gomory–Hu tree construc-
tion on simple unweighted graphs with n vertices. Bhal-
gat et al. [2] improved this time complexity to Õ(mn).
Note that both Karger and Levine’s algorithm and Bhal-
gat et al.’s algorithm are randomized Las Vegas algorithms.
The fastest deterministic algorithm for the Gomory–Hu
tree construction problem is a by-product of Goldberg
and Rao’s maximum-flow algorithm [5] and has a running
time of Õ(nm1/2 min(m; n3/2)).

Key Results

Bhalgat et al. [2] considered the problem of designing an
efficient algorithm for constructing a Gomory–Hu tree on
unweighted undirected graphs. The main theorem shown
in this paper is the following.

Theorem 1 Let G = (V ; E) be a simple unweighted graph
with m edges and n vertices. Then a Gomory–Hu tree for G
can be built in expected time Õ(mn).

Their algorithm is always faster by a factor of ˜̋ (n2/9)
(polylog n factors ignored in ˜̋ notation) compared to the
previous best algorithm.

Instead of using maximum flow subroutines, they use
a Steiner connectivity algorithm. The Steiner connectivity
of a set of vertices S (called the Steiner set) in an undirected
graph is the minimum size of a cut which splits S into two
parts; such a cut is called a minimum Steiner cut. Gener-
alizing a tree-packing algorithm given by Gabow [4] for
finding the edge connectivity of a graph, Cole and Hariha-
ran [3] gave an algorithm for finding the Steiner connec-
tivity k of a set of vertices in either undirected or directed
Eulerian unweighted graphs in Õ(mk2) time. (For undi-
rected graphs, their algorithm runs a little faster in time
Õ(m + nk3).) Bhalgat et al. improved this result and gave
the following theorem.

Theorem 2 In an undirected or directed Eulerian un-
weighted graph, the Steiner connectivity k of a set of vertices
can be determined in time Õ(mk).

The algorithm in [3] was used by Hariharan et al. [9] to de-
sign an algorithmwith expected running time Õ(m + nk3)
to compute a partial Gomory–Hu tree for representing
the �(s; t) values for all pairs of vertices s, t that satisfied
�(s; t) � k. Replacing the algorithm in [3] by the new al-
gorithm for computing Steiner connectivity yields an algo-
rithm to compute a partial Gomory–Hu tree in expected
running time Õ(m + nk2). Bhalgat et al. showed that us-
ing a more detailed analysis this result can be improved to
give the following theorem.

Theorem 3 The partial Gomory–Hu tree of an undirected
unweighted graph to represent all �(s; t) values not exceed-
ing k can be constructed in expected time Õ(mk).

Since �(s; t) < n for all s; t vertex pairs in an unweighted
(and simple) graph, setting k to n in Theorem 3 implies
Theorem 1.

Applications

Gomory–Hu trees have many applications in multitermi-
nal network flows and are an important data structure in
graph connectivity literature.

Open Problems

The problem of derandomizing the algorithm due to Bhal-
gat et al. [2] to produce an Õ(mn) time deterministic algo-
rithm for constructing Gomory–Hu trees for unweighted
undirected graphs remains open. The other main chal-
lenge is to extend the results in [2] to weighted graphs.

Experimental Results

Goldberg and Tsioutsiouliklis [6] did an extensive exper-
imental study of the cut tree algorithms due to Gomory
and Hu [7] and that due to Gusfield [8]. They showed how
to efficiently implement these algorithms and also intro-
duced and evaluated heuristics for speeding up the algo-
rithms. Their general observation was that while Gusfield’s
algorithm is faster in many situations, Gomory and Hu’s
algorithm is more robust. For more detailed results of their
experiments, refer to [6].

No experimental results are reported for the algorithm
due to Bhalgat et al. [2].

Cross References

� Approximate Maximum Flow Construction

366 G Graph Bandwidth

Recommended Reading
1. Benczúr, A.A.: Counterexamples for Directed and Node Capac-

itated Cut-Trees. SIAM J. Comput. 24(3), 505–510 (1995)
2. Bhalgat, A., Hariharan, R., Kavitha, T., Panigrahi, D.: An

Õ(mn) Gomory-Hu tree construction algorithm for unweighted
graphs. In: Proc. of the 39th Annual ACM Symposium on The-
ory of Computing, San Diego 2007

3. Cole, R., Hariharan, R.: A Fast Algorithm for Computing Steiner
Edge Connectivity. In: Proc. of the 35th Annual ACM Sympo-
sium on Theory of Computing, San Diego 2003, pp. 167–176

4. Gabow, H.N.: A matroid approach to finding edge connectivity
and packing arborescences. J. Comput. Syst. Sci. 50, 259–273
(1995)

5. Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Bar-
rier. J. ACM 45(5), 783–797 (1998)

6. Goldberg, A.V., Tsioutsiouliklis, K.: Cut Tree Algorithms: An Ex-
perimental Study. J. Algorithms 38(1), 51–83 (2001)

7. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. In-
dust. Appl. Math. 9(4), 551–570 (1961)

8. Gusfield, D.: Very Simple Methods for All Pairs Network Flow
Analysis. SIAM J. Comput. 19(1), 143–155 (1990)

9. Hariharan, R., Kavitha, T., Panigrahi, D.: Efficient Algorithms for
Computing All Low s-t Edge Connectivities and Related Prob-
lems. In: Proc. of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007, pp. 127–136

10. Karger, D., Levine, M.: Random Sampling in Residual Graphs. In:
Proc. of the 34th Annual ACM Symposium on Theory of Com-
puting 2002, pp. 63–66

Graph Bandwidth
1998; Feige
2000; Feige

JAMES R. LEE
Department of Computer Science and Engineering,
University of Washington, Seattle, WA, USA

Keywords and Synonyms

Graph bandwidth; Approximation algorithms; Metric em-
beddings

ProblemDefinition

The graph bandwidth problem concerns producing a lin-
ear ordering of the vertices of a graph G = (V ; E) so as to
minimize the maximum “stretch” of any edge in the or-
dering. Formally, let n = jV j, and consider any one-to-one
mapping
 : V ! f1; 2; : : : ; ng. The bandwidth of this or-
dering is bw� (G) = maxfu;vg2E j
(u) �
(v)j. The band-
width of G is given by the bandwidth of the best possible
ordering: bw(G) = min� bw� (G).

The original motivation for this problem lies in the
preprocessing of sparse symmetric square matrices. Let A

be such an n � nmatrix, and consider the problem of find-
ing a permutation matrix P such that the non-zero entries
of PTAP all lie in as narrow a band as possible about the
diagonal. This problem is equivalent to minimizing the
bandwidth of the graph G whose vertex set is f1; 2; : : : ; ng
and which has an edge fu; vg precisely when Au;v ¤ 0.

In lieu of this fact, one tries to efficiently compute a lin-
ear ordering
 for which bw� (G) � A � bw(G), with the
approximation factor A is as small as possible. There is
even evidence that achieving any value A = O(1) is NP-
hard [18]. Much of the difficulty of the bandwidth prob-
lem is due to the objective function being a maximum over
all edges of the graph. This makes divide-and-conquer ap-
proaches ineffective for graph bandwidth, whereas they
often succeed for related problems like Minimum Lin-
ear Arrangement [6] (here the objective is to minimizeP
fu;vg2E j
(u)�
(v)j). Instead, a more global algorithm

is required. To this end, a good lower bound on the value
of bw(G) has to be initially discussed.

The Local Density

For any pair of vertices u; v 2 V , let d(u, v) to be the
shortest path distance between u and v in the graph G.
Then, define B(v; r) = fu 2 V : d(u; v) � rg as the ball
of radius r about a vertex v 2 V . Finally, the local den-
sity of G is defined by D(G) = maxv2V ;r�1 jB(v; r)j/(2r):
It is not difficult to see that bw(G) � D(G). Although
it was conjectured that an upper bound of the form
bw(G) � poly(log n) � D(G) holds, it was not proven until
the seminal work of Feige [7].

Key Results

Feige proved the following.

Theorem 1 There is an efficient algorithm that, given
a graph G = (V ; E) as input, produces a linear order-
ing
 : V ! f1; 2; : : : ; ng for which bw� (G) �

O
�
(log n)3

p
log n log log n

�
�D(G). In particular, this pro-

vides a poly(log n)-approximation algorithm for the band-
width problem in general graphs.

Feige’s algorithmic framework can be described quite sim-
ply as follows.
1. Compute a representation f : V ! Rn of G in Eu-

clidean space.
2. Let u1; u2; : : : ; un be independent N(0; 1)1 random

variables, and for each vertex v 2 V , compute h(v) =

1N(0; 1) denotes a standard normal random variable with mean 0
and variance 1.

Graph Bandwidth G 367

Pn
i=1 ui fi(v), where f i(v) is the ith coordinate of the

vector f (v).
3. Sort the vertices by the value h(v), breaking ties arbi-

trarily, and output the induced linear ordering.
An equivalent characterization of steps (2) and (3) is to
choose a uniformly random vector a 2 Sn�1 from the
(n � 1)-dimensional sphere Sn�1
 Rn and output the
linear ordering induced by the values h(v) = ha; f (v)i,
where h�; �i denotes the usual inner product on Rn .
In other words, the algorithm first computes a map
f : V ! Rn , projects the images of the vertices onto a ran-
domly oriented line, and then outputs the induced order-
ing; step (2) is the standard way that such a random pro-
jection is implemented.

Volume-Respecting Embeddings

The only step left unspecified is (1); the function f has
to somehow preserve the structure of the graph G in or-
der for the algorithm to output a low-bandwidth order-
ing. The inspiration for the existence of such an f comes
from the field of low-distortion metric embeddings (see,
e. g. [2,14]). Feige introduced a generalization of low-dis-
tortion embeddings to mappings called volume respecting
embeddings. Roughly, the map f should be non-expan-
sive, in the sense that k f (u) � f (v)k � 1 for every edge
fu; vg 2 E, and should satisfy the following property: For
any set of k vertices v1; : : : ; vk , the (k � 1)-dimensional
volume of the convex hull of the points f (v1); : : : ; f (vk)
should be as large as possible. The proper value of k is cho-
sen to optimize the performance of the algorithm. Refer
to [7,10,11] for precise definitions on volume-respecting
embeddings, and a detailed discussion of their construc-
tion. Feige showed that a modification of Bourgain’s em-
bedding [2] yields a mapping f : V ! Rn which is good
enough to obtain the results of Theorem 1.

The requirement k f (u) � f (v)k � 1 for every edge
fu; vg is natural since f (u) and f (v) need to have similar
projections onto the random direction a; intuitively, this
suggests that u and v will not be mapped too far apart in
the induced linear ordering. But even if jh(u) � h(v)j is
small, it may be that many vertices project between h(u)
and h(v), causing u and v to incur a large stretch. To pre-
vent this, the images of the vertices should be sufficiently
“spread out,” which corresponds to the volume require-
ment on the convex hull of the images.

Applications

As was mentioned previously, the graph bandwidth prob-
lem has applications to preprocessing sparse symmetric
matrices. Minimizing the bandwidth of matrices helps in

improving the efficiency of certain linear algebraic algo-
rithms like Gaussian elimination; see [3,8,17]. Follow-up
work has shown that Feige’s techniques can be applied to
VLSI layout problems [19].

Open Problems

First, state the bandwidth conjecture (see, e. g. [13]).

Conjecture: For any n-node graph G = (V ; E), one has
bw(G) = O(log n) � D(G).

The conjecture is interesting and unresolved even in
the special case when G is a tree (see [9] for the best results
for trees). The best-known bound in the general case fol-
lows from [7,10], and is of the form bw(G) = O(log n)3:5 �
D(G). It is known that the conjectured upper bound is best
possible, even for trees [4]. One suspects that these combi-
natorial studies will lead to improved approximation algo-
rithms.

However, the best approximation algorithms, which
achieve ratio O((log n)3(log log n)1/4); are not based on
the local density bound. Instead, they are a hybrid of
a semi-definite programming approach of [1,5] with the
arguments of Feige, and the volume-respecting embed-
dings constructed in [12,16]. Determining the approxima-
bility of graph bandwidth is an outstanding open problem,
and likely requires improving both the upper and lower
bounds.

Recommended Reading

1. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite re-
laxations for minimum bandwidth and other vertex-ordering
problems. Theor. Comput. Sci. 235(1), 25–42 (2000), Selected
papers in honor of Manuel Blum (Hong Kong, 1998)

2. Bourgain, J.: On Lipschitz embedding of finite metric spaces in
Hilbert space. Israel J. Math. 52(1–2), 46–52 (1985)

3. Chinn, P.Z., Chvátalová, J., Dewdney, A.K., Gibbs, N.E.: The
bandwidth problem for graphs and matrices—a survey.
J. Graph Theory 6(3), 223–254 (1982)

4. Chung, F.R.K., Seymour, P.D.: Graphswith small bandwidth and
cutwidth. Discret. Math. 75(1–3), 113–119 (1989). Graph theory
and combinatorics, Cambridge (1988)

5. Dunagan, J., Vempala, S.: On Euclidean embeddings and band-
width minimization. In: Randomization, approximation, and
combinatorial optimization, pp. 229–240. Springer (2001)

6. Even, G., Naor, J., Rao, S., Schieber, B.: Divide-and-conquer ap-
proximation algorithms via spreading metrics. J. ACM 47(4),
585–616 (2000)

7. Feige, U.: Approximating the bandwidth via volume respecting
embeddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)

8. George, A., Liu, J.W.H.: Computer solution of large sparse pos-
itive definite systems. Prentice-Hall Series in Computational
Mathematics, Prentice-Hall Inc. Englewood Cliffs (1981)

368 G Graph Coloring

9. Gupta, A.: Improved bandwidth approximation for trees and
chordal graphs. J. Algorithms 40(1), 24–36 (2001)

10. Krauthgamer, R., Lee, J.R., Mendel, M., Naor, A.: Measured de-
scent: A new embedding method for finite metrics. Geom.
Funct. Anal. 15(4), 839–858 (2005)

11. Krauthgamer, R., Linial, N., Magen, A.: Metric embeddings–
beyond one-dimensional distortion. Discrete Comput. Geom.
31(3), 339–356 (2004)

12. Lee, J.R.: Volume distortion for subsets of Euclidean spaces.
In: Proceedings of the 22nd Annual Symposium on Computa-
tional Geometry, ACM, Sedona, AZ 2006, pp. 207–216.

13. Linial, N.: Finite metric-spaces—combinatorics, geometry and
algorithms. In: Proceedings of the International Congress of
Mathematicians, vol. III, Beijing, 2002, pp. 573–586. Higher Ed.
Press, Beijing (2002)

14. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs
and some of its algorithmic applications. Combinatorica 15(2),
215–245 (1995)

15. Papadimitriou, C.H.: The NP-completeness of the bandwidth
minimization problem. Computing 16(3), 263–270 (1976)

16. Rao, S.: Small distortion and volume preserving embeddings
for planar and Euclidean metrics. In: Proceedings of the 15th
Annual Symposium on Computational Geometry, pp. 300–
306. ACM, New York (1999)

17. Strang, G.: Linear algebra and its applications, 2nd edn. Aca-
demic Press [Harcourt Brace Jovanovich Publishers], New York
(1980)

18. Unger, W.: The complexity of the approximation of the band-
width problem. In: 39th Annual Symposium on Foundations of
Computer Science, IEEE, 8–11 Oct 1998, pp. 82–91.

19. Vempala, S.: Random projection: A new approach to VLSI lay-
out. In: 39th Annual Symposium on Foundations of Computer
Science, IEEE, 8–11 Oct 1998, pp. 389–398.

Graph Coloring
1994; Karger, Motwani, Sudan
1998; Karger, Motwani, Sudan

MICHAEL LANGBERG
Department of Computer Science,
The Open University of Israel,
Raanana, Israel

Keywords and Synonyms

Clique cover

ProblemDefinition

An independent set in an undirected graph G = (V ; E) is
a set of vertices that induce a subgraph which does not
contain any edges. The size of the maximum independent
set in G is denoted by ˛(G). For an integer k, a k-coloring
of G is a function � : V ! [1 : : : k] which assigns colors
to the vertices of G. A valid k-coloring of G is a coloring

in which each color class is an independent set. The chro-
matic number �(G) of G is the smallest k for which there
exists a valid k-coloring of G. Finding �(G) is a fundamen-
tal NP-hard problem. Hence, when limited to polynomial
time algorithms, one turns to the question of estimating
the value of �(G) or to the closely related problem of ap-
proximate coloring.

Problem 1 (Approximate coloring)
INPUT: Undirected graph G = (V ; E).
OUTPUT: A valid coloring of G with r � �(G) colors, for
some approximation ratio r � 1.
OBJECTIVE: Minimize r.

Let G be a graph of size n. The approximate coloring of G
can be solved efficiently within an approximation ratio of
r = O

�
n(log log n)2

log3 n

�
[12]. This holds also for the approxi-

mation of ˛(G) [8]. These results may seem rather weak,
however it is NP-hard to approximate ˛(G) and �(G)
within a ratio of n1�" for any constant " > 0 [9,14,21]. Un-
der stronger complexity assumptions, there is some con-
stant 0 < ı < 1 such that neither problem can be approx-
imated within a ratio of n/2log

ı n [17,21]. This chapter will
concentrate on the problem of coloring graphsG for which
�(G) is small. As will be seen, in this case the approxima-
tion ratio achievable significantly improves.

Vector Coloring of Graphs

The algorithms achieving the best ratios for approximate
coloring when �(G) is small [1,3,13,15] are all based on
the idea of vector coloring, introduced by Karger,Motwani,
and Sudan [15]1

Definition 1 A vector k-coloring of a graph is an assign-
ment of unit vectors to its vertices, such that for every edge,
the inner product of the vectors assigned to its endpoints
is at most (in the sense that it can only be more negative)
�1/(k � 1).

The vector chromatic number �!� (G) of G is the smallest k
for which there exists a vector k-coloring of G. The vector
chromatic number can be formulated as follows:
�!� (G) Minimize k

subject to : hvi ; v ji � �
1

k � 1
8(i; j) 2 E

hvi ; vi i = 1 8i 2 V :

Here, assume that V = [1; : : : ; n] and that the vectors
fvigni=1 are in Rn. Every k-colorable graph is also vector

1Vector coloring as presented in [15] is closely related to the
Lovász � function [19]. This connection will be discussed shortly.

Graph Coloring G 369

k-colorable. This can be seen by identifying each color
class with one vertex of a perfect (k � 1)-dimensional sim-
plex centered at the origin. Moreover, unlike the chro-
matic number, a vector k-coloring (when it exists) can
be found in polynomial time using semidefinite program-
ming (up to an arbitrarily small error in the inner prod-
ucts).

Claim 1 (Complexity of vector coloring [15]) Let " > 0.
If a graph G has a vector k-coloring then a vector (k + ")-
coloring of the graph can be constructed in time polynomial
in n and log(1/").

One can strengthen Definition 1 to obtain a different no-
tion of vector coloring and the vector chromatic number.

�!� 2(G) Minimize k

subject to: hvi ; v ji = �
1

k � 1
8(i; j) 2 E

hvi ; vi i = 1 8i 2 V

�!� 3(G) Minimize k

subject to: hvi ; v ji = �
1

k � 1
8(i; j) 2 E

hvi ; v ji � �
1

k � 1
8i; j 2 V

hvi ; vi i = 1 8i 2 V :

The function �!� 2(G) is referred to as the strict vec-
tor chromatic number of G and is equal to the Lovász
� function on Ḡ [15,19], where Ḡ is the complement
graph of G. The function �!� 3(G) is referred to as the
strong vector chromatic number. An analog to Claim 1
holds for both �!� 2(G) and �!� 3(G). Let !(G) denote
the size of the maximum clique in G, it holds that:
!(G) � �!� (G) � �!� 2(G) � �!� 3(G) � �(G).

Key Results

In what follows, assume that G has n vertices and max-
imal degree �. The Õ(�) and ˜̋ (�) notation are used to
suppress polylogarithmic factors. The key result of Karger,
Motwani, and Sudan [15] is stated below:

Theorem 1 ([15]) If �!� (G) = k then G can be colored in
polynomial time usingminfÕ(�1�2/k), Õ(n1�3/(k+1))g col-
ors.

As mentioned above, the use of vector coloring in the con-
text of approximate coloring was initiated in [15]. Roughly
speaking, once given a vector coloring of G, the heart of
the algorithm in [15] finds a large independent set in G. In

a nutshell, this independent set corresponds to a set of vec-
tors in the vector coloring which are close to one another
(and thus by definition cannot share an edge). Combin-
ing this with the ideas ofWigderson [20] mentioned below
yields Theorem 1.

A description of related work is given below. The first
two theorems below appeared prior to the work of Karger,
Motwani, and Sudan [15].

Theorem 2 ([20]) If �(G) = k then G can be colored in
polynomial time using O(kn1�1/(k�1)) colors.

Theorem 3 ([2]) If �(G) = 3 then G can be colored in
polynomial time using Õ(n3/8) colors. If �(G) = k � 4
then G can be colored in polynomial time using at most
Õ(n1�1/(k�3/2)) colors.

Combining the techniques of [15] and [2] the following
results were obtained for graphs G with �(G) = 3; 4 (these
results were also extended for higher values of �(G)).

Theorem 4 ([3]) If �(G) = 3 then G can be colored in
polynomial time using Õ(n3/14) colors.

Theorem 5 ([13]) If �(G) = 4 then G can be colored in
polynomial time using Õ(n7/19) colors.

The currently best-known result for coloring a 3-colorable
graph is presented in [1]. In their algorithm, [1] use the
strict vector coloring relaxation (i. e. �!� 2) enhanced with
certain odd cycle constraints.

Theorem 6 ([1]) If �(G) = 3 then G can be colored in
polynomial time using O(n0:2111) colors.

To put the above theorems in perspective, it is NP-hard to
color a 3-colorable graph G with 4 colors [11,16] and a k-
colorable graph (for sufficiently large k) with k(log k)/25 col-
ors [17]. Under stronger complexity assumptions (related
to the Unique Games Conjecture [18]) for any constant k
it is hard to color a k-colorable graph with any constant
number of colors [6]. The wide gap between these hard-
ness results and the approximation ratios presented in this
section has been a major initiative in the study of approxi-
mate coloring.

Finally, the limitations of vector coloring are ad-
dressed. Namely, are there graphs for which �!� (G) is
a poor estimate of �(G)? One would expect the answer
to be “yes” as estimating �(G) beyond a factor of n1�"

is a hard problem. As will be stated below, this is indeed
the case (even when �!� (G) is small). Some of the results
that follow are stated in terms of the maximum indepen-
dent set ˛(G) in G. As �(G) � n/˛(G), these results im-

370 G Graph Coloring

ply a lower bound on �(G). Theorem 1 (i) states that the
original analysis of [15] is essentially tight. Theorem 1
(ii) presents bounds for the case of �!� (G) = 3. Theorem 1
(iii) and Theorem 2 present graphs G in which there is
an extremely large gap between �(G) and the relaxations
�!� (G) and �!� 2(G).

Theorem 7 ([10]) (i) For every constant " > 0 and
constant k > 2, there are infinitely many graphs G with
�!� (G) = k and ˛(G) � n/�1�2/k�" (here � > nı for
some constant ı > 0). (ii) There are infinitely many graphs
G with �!� (G) = 3 and ˛(G) � n0:843. (iii) For some con-
stant c, there are infinitely many graphs G with �!� (G) =
O(log n/ log log n) and ˛(G) � logc n.

Theorem 8 ([7]) For some constant c, there are infinitely
many graphs G with �!� 2(G) � 2

p
log n and �(G) �

n/2c
p

log n.

Vector colorings, including the Lovász � function and its
variants, have been extensively studied in the context of
approximation algorithms for problems other than Prob-
lem 1. These include approximating ˛(G), approximating
the Minimum Vertex Cover problem, and combinatorial
optimization in the context of random graphs.

Applications

Besides its theoretical significance, graph coloring has sev-
eral concrete applications that fall under the model of con-
flict free allocation of resources (see for example [4,5]).

Open Problems

By far the major open problem in the context of approx-
imate coloring addresses the wide gap between what is
known to be hard and what can be obtained in polyno-
mial time. The case of constant �(G) is especially intrigu-
ing, as the best-known upper bounds (on the approxima-
tion ratio) are polynomial while the lower bounds are of
constant nature. Regarding the vector coloring paradigm,
a majority of the results stated in Sect. “Key Results” use
the weakest form of vector coloring �!� (G) in their proof,
while stronger relaxations such as�!� 2(G) and �!� 3(G) may
also be considered. It would be very interesting to improve
upon the algorithmic results stated above using stronger
relaxations, as would amatching analysis of the limitations
of these relaxations.

Cross References

� Channel Assignment and Routing in Multi-Radio
Wireless Mesh Networks

�Max Cut
� Randomized Rounding
� Sparsest Cut

Recommended Reading

1. Arora, S., Chlamtac, E., Charikar, M.: New approximation guar-
antee for chromatic number. In: Proceedings of the 38th
annual ACM Symposium on Theory of Computing (2006)
pp. 215–224.

2. Blum, A.: New approximations for graph coloring. J. ACM41(3),
470–516 (1994)

3. Blum, A., Karger, D.: An Õ(n3/14)-coloring for 3-colorable
graphs. Inf. Process. Lett. 61(6), 49–53 (1997)

4. Chaitin, G.J.: Register allocation & spilling via graph coloring.
In: Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction (1982) pp. 98–105.

5. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins,
M.E., Markstein, P.W.: Register allocation via coloring. Comp.
Lang. 6, 47–57 (1981)

6. Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approx-
imate coloring. In: Proceedings of the 38th annual ACM Sym-
posium on Theory of Computing (2006) pp. 344–353.

7. Feige, U.: Randomized graph products, chromatic numbers,
and the Lovász theta function. Combinatorica 17(1), 79–90
(1997)

8. Feige, U.: Approximating maximum clique by removing sub-
graphs. SIAM J. Discret. Math. 18(2), 219–225 (2004)

9. Feige, U., Kilian, J.: Zero knowledge and the chromatic number.
J. Comput. Syst. Sci. 57, 187–199 (1998)

10. Feige, U., Langberg, M., Schechtman, G.: Graphs with tiny vec-
tor chromatic numbers and huge chromatic numbers. SIAM J.
Comput. 33(6), 1338–1368 (2004)

11. Guruswami, V., Khanna, S.: On the hardness of 4-coloring
a 3-colorable graph. In: Proceedings of the 15th annual IEEE
Conference on Computational Complexity (2000) pp. 188–197.

12. Halldorsson, M.: A still better performance guarantee for
approximate graph coloring. Inf. Process. Lett. 45, 19–23
(1993)

13. Halperin, E., Nathaniel, R., Zwick, U.: Coloring k-colorable
graphs using smaller palettes. J. Algorithms 45, 72–90 (2002)

14. Håstad, J.: Clique is hard to approximate within n1�" . Acta
Math. 182(1), 105–142 (1999)

15. Karger, D., Motwani, R., Sudan,M.: Approximategraph coloring
by semidefinite programming. J. ACM 45(2), 246–265 (1998)

16. Khanna, S., Linial, N., Safra, S.: On the hardness of approx-
imating the chromatic number. Combinatorica 20, 393–415
(2000)

17. Khot, S.: Improved inapproximability results for max clique,
chromatic number and approximate graph coloring. In: Pro-
ceedings of the 42nd annual IEEE Symposium on Foundations
of Computer Science (2001) pp. 600–609.

18. Khot, S.: On the power of unique 2-prover 1-round games. In:
Proceedings of the 34th annual ACM symposium on Theory of
Computing (2002) pp. 767–775.

19. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf.
Theor. 25, 2–13 (1979)

20. Wigderson, A.: Improving the performance guarantee for ap-
proximate graph coloring. J. ACM 30(4), 729–735 (1983)

Graph Connectivity G 371

21. Zuckerman, D.: Linear degree extractors and the inapproxima-
bility of max clique and chromatic number. In: Proceedings
of the 38th annual ACM symposium on Theory of Computing
(2006) pp. 681–690.

Graph Connectivity
1994; Khuller, Vishkin

SAMIR KHULLER1, BALAJI RAGHAVACHARI2
1 Computer Science Department, University
of Maryland, College Park, MD, USA

2 Computer Science Department, University of Texas
at Dallas, Richardson, TX, USA

Keywords and Synonyms

Highly connected subgraphs; Sparse certificates

ProblemDefinition

An undirected graph is said to be k-connected (specifi-
cally, k-vertex-connected) if the removal of any set of k � 1
or fewer vertices (with their incident edges) does not dis-
connect G. Analogously, it is k-edge-connected if the re-
moval of any set of k � 1 edges does not disconnect G.
Menger’s theorem states that a k-vertex-connected graph
has at least k openly vertex-disjoint paths connecting ev-
ery pair of vertices. For k-edge-connected graphs there are
k edge-disjoint paths connecting every pair of vertices. The
connectivity of a graph is the largest value of k for which
it is k-connected. Finding the connectivity of a graph, and
finding k disjoint paths between a given pair of vertices can
be found using algorithms for maximum flow. An edge is
said to be critical in a k-connected graph if upon its re-
moval the graph is no longer k-connected.

The problem of finding a minimum-cardinality k-
vertex-connected (k-edge-connected) subgraph that spans
all vertices of a given graph is called k-VCSS (k-ECSS) and
is known to be nondeterministic polynomial-time hard for
k � 2. We review some results in finding approximately
minimum solutions to k-VCSS and k-ECSS. We focus pri-
marily on simple graphs. A simple approximation algo-
rithm is one that considers the edges in some order and
removes edges that are not critical. It thus outputs a k-con-
nected subgraph in which all edges are critical and it can
be shown that it is a 2-approximation algorithm (that out-
puts a solution with at most kn edges in an n-vertex graph,
and since each vertex has to have degree at least k, we can
claim that kn/2 edges are necessary).

Approximation algorithms that do better than the sim-
ple algorithm mentioned above can be classified into two

categories: depth first search (DFS) based, and matching
based.

Key Results

Lower Bounds for k-Connected Spanning Subgraphs

Each node of a k-connected graph has at least k edges in-
cident to it. Therefore, the sum of the degrees of all its
nodes is at least kn, where n is the number of its nodes.
Since each edge is counted twice in this degree-sum, the
cardinality of its edges is at least kn/2. This is called the de-
gree lower bound. Expanding on this idea yields a stronger
lower bound on the cardinality of a k-connected spanning
subgraph of a given graph. Let Dk be a subgraph in which
the degree of each node is at least k. Unlike a k-connected
subgraph, Dk has no connectivity constraints. The count-
ing argument above shows that any Dk has at least kn/2
edges. A minimum cardinality Dk can be computed in
polynomial time by reducing the problem to matching,
and it is called thematching lower bound.

DFS-Based Approaches

The following natural algorithm finds a 3/2 approximation
for 2-ECSS. Root the tree at some node r and run DFS. All
edges of the graph are now either tree edges or back edges.
Process the DFS tree in postorder. For each subtree, if the
removal of the edge from its root to its parent separates
the graph into two components, then add a farthest-back
edge from this subtree, whose other end is closest to r. It
can be shown that the number of back edges added by the
algorithm is at most half the size of Opt.

This algorithm has been generalized to solve the
2-VCSS problem with the same approximation ratio, by
adding carefully chosen back edges that allow the deletion
of tree edges. Wherever it is unable to delete a tree edge, it
adds a vertex to an independent set I. In the final analysis,
the number of edges used is less than n + jIj. Since Opt is
at least max(n; 2jIj), it obtains a 3/2-approximation ratio.

The algorithm can also be extended to the k-ECSS
problem by repeating these ideas k/2 times, augmenting
the connectivity by 2 in each round. It has been shown that
this algorithm achieves a performance of about 1.61.

Matching-Based Approaches

Several approximation algorithms for k-ECSS and k-VCSS
problems have used a minimum cardinality Dk as a start-
ing solution, which is then augmented with additional
edges to satisfy the connectivity constraints. This approach
yields better ratios than the DFS-based approaches.

372 G Graph Connectivity

1 + 1
k Algorithm for k-VCSS Find aminimum cardinal-

ity Dk�1. Add just enough additional edges to it to make
the subgraph k-connected. In this step, it is ensured that
the edges added are critical. It is known by a theorem
of Mader that in a k-connected graph, a cycle of critical
edges contains at least one node of degree k. Since the
edges added by the algorithm in the second step are all
critical, there can be no cycle induced by these edges be-
cause the degree of all the nodes on such a cycle would
be at least k + 1. Therefore, at most n � 1 edges are added
in this step. The number of edges added in the first step,
in the minimum Dk�1 is at most Opt � n/2. The to-
tal number of edges in the solution thus computed is at
most (1 + 1/k) times the number of edges in an optimal
k-VCSS.

1 + 2
k+1 Algorithm for k-ECSS Mader’s theorem about

cycles induced by critical edges is valid only for vertex con-
nectivity and not edge connectivity, Therefore, a differ-
ent algorithm is proposed for k-ECSS in graphs that are
k-edge-connected, but not k-connected. This algorithm
finds a minimum cardinality Dk and augments it with
a minimal set of edges to make the subgraph k-edge-con-
nected. The number of edges added in the last step is at
most k

k+1 (n � 1). Since the number of edges added in the
first step is at most Opt, the total number of edges is at
most (1 + 2

k+1)Opt.

Better Algorithms for Small k For k 2 f2; 3g, bet-
ter algorithms have been obtained by implementing the
abovementioned algorithms carefully, deleting unneces-
sary edges, and by getting better lower bounds. For
k = 2, a 4/3 approximation can be obtained by generat-
ing a path/cycle cover from aminimum cardinalityD2 and
2-connecting them one at a time to a “core” component.
Small cycles/paths allow an edge to be deleted when they
are 2-connected to the core, which allows a simple amor-
tized analysis. This method also generalizes to the 3-ECSS
problem, yielding a 4/3 ratio.

Hybrid approaches have been proposed which use the
path/cycle cover to generate a specific DFS tree of the orig-
inal graph and then 2-connect the tree, trying to delete
edges wherever possible. The best ratios achieved using
this approach are 5/4 for 2-ECSS, 9/7 for 2-VCSS, and 5/4
for 2-VCSS in 3-connected graphs.

Applications

Network design is one of the main application areas
for this work. This involves the construction of low-cost
highly connected networks.

Recommended Reading

For additional information on DFS, matchings and
path/cycle covers, see [3]. Fast 2-approximation algo-
rithms for k-ECSS and k-VCSS were studied by Nag-
amochi and Ibaraki [13]. DFS-based algorithms for 2-con-
nectivity were introduced by Khuller and Vishkin [11].
They obtained 3/2 for 2-ECSS, 5/3 for 2-VCSS, and 2 for
weighted k-ECSS. The ratio for 2-VCSS was improved to
3/2 by Garg et al. [6], 4/3 by Vempala and Vetta [14],
and 9/7 by Gubbala and Raghavachari [7]. Khuller and
Raghavachari [10] gave an algorithm for k-ECSS, which
was later improved by Gabow [4], who showed that the al-
gorithm obtains a ratio of about 1.61. Cheriyan et al. [2]
studied the k-VCSS problem with edge weights and de-
signed an O(log k) approximation algorithm in graphs
with at least 6k2 vertices.

The matching-based algorithms were introduced by
Cheriyan and Thurimella [1]. They proposed algorithms
with ratios of 1 + 1

k for k-VCSS, 1 + 2
k+1 for k-ECSS, 1 +

1
k

for k-VCSS in directed graphs, and 1 + 4p
k
for k-ECSS in

directed graphs. Vempala and Vetta [14] obtained a ra-
tio of 4/3 for 2-VCSS. The ratios were further improved
by Krysta and Kumar [12], who introduced the hybrid ap-
proach, which was used to derive a 5/4 algorithm by Jothi
et al. [9]. A 3/2-approximation algorithm for 3-ECSS has
been proposed by Gabow [5] that works on multigraphs,
whereas the earlier algorithm of Cheriyan and Thurimella
gets the same ratio in simple graphs only. This ratio has
been improved to 4/3 by Gubbala and Raghavachari [8].

1. Cheriyan, J., Thurimella, R.: Approximating minimum-size
k-connected spanning subgraphs via matching. SIAM J. Com-
put. 30(2), 528–560 (2000)

2. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm
for the minimum-cost k-vertex connected subgraph. SIAM J.
Comput. 32(4), 1050–1055 (2003)

3. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.:
Combinatorial optimization. Wiley, New York (1998)

4. Gabow, H.N.: Better performance bounds for finding the small-
est k-edge connected spanning subgraph of a multigraph. In:
SODA, 2003, pp. 460–469

5. Gabow, H.N.: An ear decomposition approach to approximat-
ing the smallest 3-edge connected spanning subgraph of
a multigraph. SIAM J. Discret. Math. 18(1), 41–70 (2004)

6. Garg, N., Vempala, S., Singla, A.: Improved approximation algo-
rithms for biconnected subgraphs via better lower bounding
techniques. In: SODA, 1993, pp. 103–111

7. Gubbala, P., Raghavachari, B.: Approximation algorithms for
the minimum cardinality two-connected spanning subgraph
problem. In: Jünger, M., Kaibel, V. (eds.) IPCO. Lecture Notes
in Computer Science, vol. 3509, pp. 422–436. Springer, Berlin
(2005)

8. Gubbala, P., Raghavachari, B.: A 4/3-approximation algorithm
for minimum 3-edge-connectivity. In: Proceedings of the

Graph Isomorphism G 373

Workshop on Algoriths and Data Structures (WADS) August
2007, pp. 39–51. Halifax (2007)

9. Jothi, R., Raghavachari, B., Varadarajan, S.: A 5/4-approximation
algorithm for minimum 2-edge-connectivity. In: SODA, 2003,
pp. 725–734

10. Khuller, S., Raghavachari, B.: Improved approximation algo-
rithms for uniform connectivity problems. J. Algorithms 21(2),
434–450 (1996)

11. Khuller, S., Vishkin, U.: Biconnectivity approximations and
graph carvings. J. ACM 41(2), 214–235 (1994)

12. Krysta, P., Kumar, V.S.A.: Approximation algorithms for mini-
mum size 2-connectivity problems. In: Ferreira, A., Reichel, H.
(eds.) STACS. Lecture Notes in Computer Science, vol. 2010,
pp. 431–442. Springer, Berlin (2001)

13. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding
a sparse k-connected spanning subgraph of a k-connected
graph. Algorithmica 7(5–6), 583–596 (1992)

14. Vempala, S., Vetta, A.: Factor 4/3 approximations for minimum
2-connected subgraphs. In: Jansen, K., Khuller, S. (eds.) AP-
PROX. Lecture Notes in Computer Science, vol. 1913, pp. 262–
273. Springer, Berlin (2000)

Graph Isomorphism
1980; McKay

BRENDAN D. MCKAY
Department of Computer Science, Australian
National University, Canberra, ACT, Australia

Keywords and Synonyms

Graph matching; Symmetry group

ProblemDefinition

The problem of determining isomorphism of two combi-
natorial structures is a ubiquitous one, with applications
in many areas. The paradigm case of concern in this chap-
ter is isomorphism of two graphs. In this case, an isomor-
phism consists of a bijection between the vertex sets of the
graphs which induces a bijection between the edge sets
of the graphs. One can also take the second graph to be
a copy of the first, so that isomorphisms map a graph onto
themselves. Such isomorphisms are called automorphisms
or, less formally, symmetries. The set of all automorphisms
forms a group under function composition called the au-
tomorphism group. Computing the automorphism group
is a problem rather similar to that of determining isomor-
phisms.

Graph isomorphism is closely related to many other
types of isomorphism of combinatorial structures. In the
section entitled “Applications”, several examples are given.

Formal Description

A graph is a pairG = (V ; E) of finite sets, with E being a set
of 2-tuples (v,w) of elements of V . The elements of V are
called vertices (also points, nodes), while the elements of
E are called directed edges (also arcs). A complementary
pair (v;w); (w; v) of directed edges (v ¤ w) will be called
an undirected edge and denoted fv;wg. A directed edge
of the form (v, v) will also be considered an undirected
edge, called a loop (also self-loop). The word “edges” with-
out qualification will indicate undirected edges, directed
edges, or both.

Given two graphs G1 = (V1; E1) and G2 = (V2; E2), an
isomorphism from G1 to G2 is a bijection from V1 to V2
such that the induced action on E1 is a bijection onto E2.
If G1 = G2, then the isomorphism is an automorphism of
G1. The set of all automorphisms of G1 is a group under
function composition, called the automorphism group of
G1, and denoted Aut(G1).

In Fig. 1 two isomorphic graphs are shown, together
with an isomorphism between them and the automor-
phism group of the first.

Canonical Labeling

Practical applications of graph isomorphism testing do
not usually involve individual pairs of graphs. More com-
monly, onemust decide whether a certain graph is isomor-
phic to any of a collection of graphs (the database lookup
problem) or one has a collection of graphs and needs to
identify the isomorphism classes in it (the graph sorting
problem). Such applications are not well served by an al-
gorithm that can only test graphs in pairs.

An alternative is a canonical labeling algorithm. The
essential idea is that in each isomorphism class there is
a unique, canonical graph which the algorithm can find,
given as input any graph in the isomorphism class. The
canonical graph might be, for example, the least graph in
the isomorphism class according to some ordering (such
as lexicographic) of the graphs in the class. Practical al-
gorithms usually compute a canonical form designed for
efficiency rather than ease of description.

Key Results

The graph isomorphism problem plays a key role in mod-
ern complexity theory. It is not known to be solvable
in polynomial time, nor to be NP-complete, nor is it
known to be in the class co-NP. See [3,8] for details.
Polynomial-time algorithms are known for many special
classes, notably graphs with bounded genus, bounded de-
gree, bounded tree-width, and bounded eigenvalue multi-

374 G Graph Isomorphism

Graph Isomorphism, Figure 1
Example of an isomorphism and an automorphism group

plicity. The fastest theoretical algorithm for general graphs
requires exp(n1/2+o(1)) time [1], but it is not known to be
practical.

In this entry, the focus is on the program nauty,
which is generally regarded as the most successful for
practical use. McKay wrote the first version of nauty
in 1976 and described its method of operation in [5]. It
is known [7] to have exponential worst-case time, but in
practice the worst case is rarely encountered.

The input to nauty is a graph with colored vertices.
Two outputs are produced. The first is a set of generators
for the color-preserving automorphism group. Though it
is rarely necessary, the full group can also be developed ele-
ment by element. The second, optional, output is a canoni-
cal graph. The canonical graph has the following property:
two input graphs with the same number of vertices of each
color have the same canonical graph if and only if they are
isomorphic by a color-preserving isomorphism.

Two graph data structures are supported: a packed ad-
jacencymatrix suitable for small dense graphs and a linked
list suitable for large sparse graphs.

Applications

As mentioned, nauty can handle graphs with colored
vertices. In this section, it is described how several other
types of isomorphism problems can be solved by mapping
them onto a problem for vertex-colored graphs.

Isomorphism of Edge-Colored Graphs

An isomorphism of two graphs, each with both vertices
and edges colored, is defined in the obvious way. An ex-
ample of such a graph appears at the left of Fig. 2.

In the center of the figure the colors are identified with
the integers 1; 2; 3. At the right of the figure an equivalent
vertex-colored graph is shown. In this case there are two
layers, each with its own color. Edges of color 1 are repre-
sented as an edge in the first (lowest) layer, edges of color 2
are represented as an edge in the second layer, and edges
of color 3 are represented as edges in both layers. It is now
easy to see that the automorphism group of the new graph
(specifically, its action on the first layer) is the automor-
phism group of the original graph. Moreover, the order in
which a canonical labeling of the new graph labels the ver-
tices of the first layer can be taken to be a canonical labeling
of the original graph.

More generally, if the edge colors are integers in
f1; 2; : : : ; 2d � 1g, there are d layers, and the binary ex-
pansion of each color number dictates which layers con-
tain edges. The vertical threads (each corresponding to one
vertex of the original graph) can be connected using either
paths or cliques. If the original graph has n vertices and k
colors, the new graph has O(n log k) vertices. This can be
improved to O(n

p
log k) vertices by also using edges that

are not horizontal.

Graph Isomorphism G 375

Graph Isomorphism, Figure 2
Graph isomorphismwith colored edges

Graph Isomorphism, Figure 3
Hypergraph/design isomorphism as graph isomorphism

Isomorphism of Hypergraphs and Designs

A hypergraph is similar to an undirected graph except that
the edges can be vertex sets of any size, not just of size 2.
Such a structure is also called a design.

On the left of Fig. 3 there is a hypergraph with five ver-
tices, two edges of size 2, and one edge of size 3. On the
right is an equivalent vertex-colored graph. The vertices
on the left, colored with one color, represent the hyper-
graph edges, while the edges on the right, colored with
a different color, represent the hypergraph vertices. The
edges of the graph indicate the hypergraph incidence (con-
tainment) relationship.

The edge-vertex incidence matrix appears in the cen-
ter of the figure. This can be any binary matrix at all, which
correctly suggests that the problem under consideration
is just that of determining the 0-1 matrix equivalence un-
der independent permutation of the rows and columns. By
combining this idea with the previous construction, such
an equivalence relation on the set of matrices with arbi-
trary entries can be handled.

Other Examples

For several applications to equivalence operations such
as isotopy, important for Latin squares and quasigroups,
see [6].

Another important type of equivalence relates ma-
trices over f�1;+1g. As well as permuting rows and

columns, it allows multiplication of rows and columns
by -1. A method of converting this Hadamard equivalence
problem to a graph isomorphism problem is given in [4].

Experimental Results

Nauty gives a choice of sparse and dense data structures,
and some special code for difficult graph classes. For the
following timing examples, the best of the various options
are used for a single CPU of a 2.4 GHz Intel Core-duo pro-
cessor.
1. Random graph with 10,000 vertices, p = 1

2 : 0.014 s for
group only, 0.4 s for canonical labeling as well.

2. Random cubic graph with 100,000 vertices: 8 s.
3. 1-skeleton of 20-dimensional cube (1,048,576 vertices,

group size 2:5 � 1024): 92 s.
4. 3-dimensional mesh of size 50 (125,000 vertices): 0.7 s.
5. 1027-vertex strongly regular graph from random

Steiner triple system: 0.6 s.
Examples of more difficult graphs can be found in the
nauty documentation.

URL to Code

The source code of nauty is available at http://cs.anu.
edu.au/~bdm/nauty/. Another implementation of the au-
tomorphism group portion of nauty, highly optimized for
large sparse graphs, is available as saucy [2]. Nauty is

http://cs.anu.edu.au/~bdm/nauty/
http://cs.anu.edu.au/~bdm/nauty/

376 G Graphs

also incorporated into a number of general-purpose pack-
ages, including GAP, Magma, and MuPad.

Cross References

� Abelian Hidden Subgroup Problem
� Parameterized Algorithms for Drawing Graphs

Recommended Reading

1. Babai, L., Luks, E.: Canonical labelling of graphs. In: Proceedings
of the 15th Annual ACM Symposium on Theory of Computing,
pp. 171–183. ACM, New York (1983)

2. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Ex-
ploiting Structure in Symmetry Generation for CNF. In:
Proceedings of the 41st Design Automation Conference,
2004, pp. 530–534. Source code at http://vlsicad.eecs.umich.
edu/BK/SAUCY/

3. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Prob-
lem: its structural complexity. Birkhäuser, Boston (1993)

4. McKay, B.D.: Hadamard equivalence via graph isomorphism.
Discret. Math. 27, 213–214 (1979)

5. McKay, B.D.: Practical graph isomorphism. Congr. Numer. 30,
45–87 (1981)

6. McKay, B.D., Meynert, A., Myrvold, W.: Small Latin squares, quasi-
groups and loops. J. Comb. Des. 15, 98–119 (2007)

7. Miyazaki, T.: The complexity of McKay’s canonical labelling al-
gorithm. In: Groups and Computation, II. DIMACS Ser. Discret.
Math. Theor. Comput. Sci., vol. 28, pp. 239–256. AmericanMath-
ematical Society, Providence, RI (1997)

8. Toran, J.: On the hardness of graph isomorphism. SIAM J. Com-
put. 33, 1093–1108 (2004)

Graphs
� Algorithms for Spanners in Weighted Graphs
�Minimum Bisection
�Mobile Agents and Exploration

Greedy Approximation Algorithms
2004; Ruan, Du, Jia, Wu, Li, Ko

FENG WANG1, WEILI WU2

1 Department of Mathmatical Science and Applied
Computing, Arizona State University, Phoenix, AZ,
USA

2 Department of Computer Science, University
of Texas at Dallas, Richardson, TX, USA

Keywords and Synonyms

Technique for analysis of greedy approximation

ProblemDefinition

Consider a graph G = (V ; E). A subset C of V is called
a dominating set if every vertex is either in C or adjacent
to a vertex in C. If, furthermore, the subgraph induced by
C is connected, thenC is called a connected dominating set.

Given a connected graph G, find a connecting dom-
inating set of minimum cardinality. This problem is de-
noted by MCDS and is NP-hard. Its optimal solution is
called a minimum connected dominating set. The follow-
ing is a greedy approximation with potential function f .

Greedy Algorithm A:
C ;;
while f (C) > 2 do

choose a vertex x to maximize f (C) � f (C [fxg) and
C C [fxg; output C.

Here, f is defined as f (C) = p(C) + q(C) where p(C) is the
number of connected components of subgraph induced
by C and q(C) is the number of connected components
of subgraph with vertex set V and edge set f(u; v) 2 E j
u 2 C or v 2 Cg. f has an important property that C is
a connected dominating set if and only if f (C) = 2.

IfC is a connected dominating set, then p(C) = q(C) =
1 and hence f (C) = 2. Conversely, suppose f (C[fxg) = 2.
Since p(C) � 1 and q(C) � 1, one has p(C) = q(C) =
1 which implies that C is a connected dominating set.
f has another property, for G with at least three ver-
tices, that if f (C) > 2, then there exists x 2 V such that
f (C) � f (C [fxg) > 0. In fact, for C = ;, sinceG is a con-
nected graph with at least three vertices, there must exist
a vertex x with degree at least two and for such a ver-
tex x, f (C [fxg) < f (C). For C ¤ ;, consider a con-
nected component of the subgraph induced by C. Let B
denote its vertex set which is a subset of C. For every ver-
tex y adjacent to B, if y is adjacent to a vertex not ad-
jacent to B and not in C, then p(C [fyg) < p(C) and
q(C [fyg) � q(C); if y is adjacent to a vertex in C � B,
then p(C [fyg) � p(C) and q(C [fyg) < q(C).

Now, look at a possible analysis for the above greedy
algorithm: Let x1; : : : ; Xg be vertices chosen by the greedy
algorithm in the ordering of their appearance in the algo-
rithm. Denote Ci = fx1; : : : ; xig. Let C� = fy1; : : : ; yoptg
be aminimum connected dominating set. Since addingC�

to Ci will reduce the potential function value from f (Ci)
to 2, the value of f reduced by a vertex in C� would be
(f (Ci) � 2)/opt in average. By the greedy rule for choos-
ing xi + 1, one has

f (Ci)� f (Ci+1) �
f (Ci) � 2

opt
:

http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://vlsicad.eecs.umich.edu/BK/SAUCY/

Greedy Approximation Algorithms G 377

Hence,

f (Ci+1) � 2 � (f (Ci) � 2)(1 �
1
opt

)

� (f (;) � 2)(1 �
1
opt

)i+1 = (n � 2)(1 �
1
opt

)i+1 ;

where n = jV j. Note that 1 � 1/opt � e�1/opt . Hence,

f (Ci) � 2 � (n � 2)e�i/opt :

Choose i such that f (Ci) � opt + 2 > f (Ci+1). Then

opt � (n � 2)e�i/opt

and

g � i � opt :

Therefore,

g � opt + i � opt
�
1 + ln

n � 2
opt

�
:

Is this analysis correct? The answer is NO. Why? How
could one give a correct analysis. This article will an-
swer those questions and introduce a new general tech-
nique, analysis of greedy approximation with nonsubmod-
ular potential function.

Key Results

The Role of Submodularity

Consider a set X and a function f defined on the power
set 2X , i. e., the family of all subsets of X. f is said to be
submodular if for any two subsets A and B in 2X ,

f (A) + f (B) � f (A\ B) + f (A[B) :

For example, consider a connected graph G. Let X be the
vertex set of G. The function �q(C) defined in last section
is submodular. To see this, first mention a property of sub-
modular functions.

A submodular function f is normalized if f (;) = 0. Ev-
ery submodular function f can be normalized by setting
g(A) = f (A) � f (;). A function f is monotone increasing
if f (A) � f (B) for A � B. Denote�x f (A) = f (A[fxg)�
f (A).

Lemma 1 A function f : 2X ! R is submodular if and
only if �x f (A) � �x f (B) for any x 2 X � B and A
 B.
Moreover, f is monotone increasing if and only if�x f (A) �
�x f (B) for any x 2 B and A
 B.

Proof If f is submodular, then for x 2 X � B and A
 B,
one has

f (A[fxg) + f (B)
� f ((A[fxg) [B) + f (A[fxg)\ B)
= f (B [fxg) + f (A) ;

that is,

�x f (A) � �x f (B) : (1)

Conversely, suppose (1) holds for any x 2 B and A
 B.
Let C and D be two set and C n D = fx1; : : : ; xkg. Then

f (C [D) � f (D) =
kX
i=1

�xi f (D [fx1; : : : ; xi�1)

�

kX
i=1

�xi f ((C \ D)[fx1; : : : ; xi�1)

= f (C) � f (C \ D) :

If f is monotone increasing, then for A
 B, f (A) � f (B).
Hence, for x 2 B,

�)x f (A) � 0 = �x f (B) :

Conversely, if �x f (A) � �x f (B) for any x 2 B and
A
 B, then for any x andA,�x f (A) � �x f (A[fxg) = 0,
that is f (A) � f (A[fxg). Let B � A = fx1; : : : ; xkg. Then

f (A) � f (A[fx1g) � f (A[fx1; x2g) � � � � � f (B) :

Next, the submodularity of �q(A) is studied.

Lemma 2 If A � B, then�yq(A) � �yq(B).

Proof Note that each connected component of graph
(V ;D(B)) is constituted by one or more connected com-
ponents of graph (V ;D(A)) since A � B. Thus, the num-
ber of connected components of (V ;D(B)) dominated
by y is no more than the number of connected compo-
nents of (V ;D(A)) dominated by y. Therefore, the lemma
holds.

The relationship between submodular functions and
greedy algorithms have been established for a long
time [3].

Let f be a normalized, monotone increasing, submod-
ular integer function. Consider the minimization problem

min c(A)
subject to A 2 C f :

378 G Greedy Approximation Algorithms

where c is a nonnegative cost function defined on 2X and
C f = fC j f (C [fxg)� f (C) = 0 for all x 2 Xg. The fol-
lowing is a greedy algorithm to produce approximation
solution for this problem.

Greedy Algorithm B
input submodular function f and cost function c;
A ;;
while there exists x 2 E such that�x f (A) > 0
do select a vertex x that maximizes�x f (A)/c(x) and set

A A[fxg;
return A.

The following two results are well-known.

Theorem 1 If f is a normalized,monotone increasing, sub-
modular integer function, then Greedy Algorithm B pro-
duces an approximation solution within a factor of H(�)
from optimal, where � = maxx2E f (fxg).

Theorem 2 Let f be a normalized, monotone increas-
ing, submodular function and c a nonnegative cost func-
tion. If in Greedy Algorithm B, selected x always satisfies
�x f (Ai�1)/c(x) � 1, then it produces an approximation
solution within a factor of 1 + ln(f �/opt) from optimal for
above minimization problem where f � = f (A�) and opt =
c(A�) for optimal solution A�.

Now, come back to the analysis of Greedy Algorithm A for
the MCDS. It looks like that the submodularity of f is not
used. Actually, the submodularity was implicitly used in
the following statement:
“Since adding C� to Ci will reduce the potential function
value from f (Ci) to 2, the value of f reduced by a vertex
in C� would be (f (Ci) � 2)/opt in average. By the greedy
rule for choosing xi + 1, one has

f (Ci) � f (Ci+1) �
f (Ci) � 2

opt
: ”

To see this, write this argument more carefully.
Let C� = fy1; : : : ; yoptg and denoteC�j = fy1; : : : ; y jg.

Then

f (Ci) � 2 = f (Ci) � f (Ci [C�)

=
optX
j=1

[f (Ci [C�j�1) � f (Ci [C�j)]

where C�0 = ;. By the greedy rule for choosing xi + 1, one
has

f (Ci) � f (Ci+1) � f (Ci) � f (Ci [fy jg)

for j = 1; : : : ; opt. Therefore, it needs to have

��y j f (Ci) = f (Ci) � f (Ci [fy jg)

� f (Ci [C�j�1) � f (Ci [C�j)

= ��y j f (Ci [C�j�1)

(2)

in order to have

f (Ci)� f (Ci+1) �
f (Ci) � 2

opt
:

(2) asks the submodularity of� f . Unfortunately,� f is not
submodular. A counterexample can be found in [3]. This is
why the analysis of Greedy Algorithm A in Sect. “Problem
Definition” is incorrect.

Giving up Submodularity

Giving up submodularity is a challenge task since it is open
for a long time. But, it is possible based on the following
observation on (2) by Du et al. [1]: The submodularity of
� f is applied to increment of a vertex yj belonging to
optimal solutionC� .

Since the ordering of yj’s is flexible, one may arrange it
to make�y j f (Ci) ��y j f (Ci [C�j�1) under control. This
is a successful idea for the MCDS.

Lemma 3 Let yj’s be ordered in the way that for any
j = 1; : : : ; opt, fy1; : : : ; y jg induces a connected subgraph.
Then

�y j f (Ci) ��y j f (Ci [C�j�1) � 1 :

Proof Since all y1; : : : ; y j�1 are connected, yj can domi-
nate at most one additional connected component in the
subgraph induced by Ci�1 [C�j�1 than in the subgraph
induced by ci � 1. Hence

�y j p(Ci) ��y j f (Ci [C�j�1) � 1 :

Moreover, since �q is submodular,

�y j q(Ci) ��y j q(Ci [C�j�1) � 0 :

Therefore,

�y j f (Ci) ��y j f (Ci [C�j�1) � 1 :

Now, one can give a correct analysis for the greedy algo-
rithm for the MCDS [4].

By Lemma 3,

f (Ci)� f (Ci+1) �
f (Ci) � 2

opt
� 1 :

Greedy Set-Cover Algorithms G 379

Hence,

f (Ci+1) � 2 � opt � (f (Ci) � 2 + opt)
�
1 �

1
opt

�

� (f (;)� 2 � opt)
�
1 �

1
opt

�i+1

= (n � 2 � opt)
�
1 �

1
opt

�i+1
;

where n = jV j. Note that 1 � 1/opt � e�1/opt . Hence,

f (Ci) � 2 � opt � (n � 2)e�i/opt :

Choose i such that f (Ci) � 2 � opt + 2 > f (Ci+1). Then

opt � (n � 2)e�i/opt

and

g � i � 2 � opt :

Therefore,

g � 2 � opt + i � opt
�
2 + ln

n � 2
opt

�
� opt(2 + ln ı)

where ı is the maximum degree of input graph G.

Applications

The technique introduced in previous section has many
applications, including analysis of iterated 1-Steiner trees
for minimum Steiner tree problem and analysis of greedy
approximations for optimization problems in optical net-
works [4] and wireless networks [3].

Open Problems

Can one show the performance ratio 1 + H(ı) for Greedy
Algorithm B for the MCDS? The answer is unknown.
More generally, it is unknown how to get a clean gener-
alization of Theorem 1.

Cross References

� Connected Dominating Set
� Local Search Algorithms for kSAT
� Steiner Trees

Acknowledgments

Weili Wu is partially supported by NSF grant ACI-0305567.

Recommended Reading

1. Du, D.-Z., Graham, R.L., Pardalos, P.M., Wan, P.-J., Wu, W., Zhao,
W.: Analysis of greedy approximations with nonsubmodular
potential functions. ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2008

3. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Opti-
mization. Wiley, Hoboken (1999)

4. Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.-I.: A greedy approx-
imation for minimum connected dominating set. Theor. Com-
put. Sci. 329, 325–330 (2004)

5. Ruan, L., Wu, W.: Broadcast routing with minimum wavelength
conversion in WDM optical networks. J. Comb. Optim. 9 223–
235 (2005)

Greedy Set-Cover Algorithms
1974–1979; Chvátal, Johnson, Lovász, Stein

NEAL E. YOUNG
Department of Computer Science, University
of California at Riverside, Riverside, CA, USA

Keywords and Synonyms

Dominating set; Greedy algorithm; Hitting set; Set cover;
Minimizing a linear function subject to a submodular con-
straint

ProblemDefinition

Given a collection S of sets over a universe U, a set cover
C
 S is a subcollection of the sets whose union is U.
The set-cover problem is, given S, to find a minimum-
cardinality set cover. In the weighted set-cover problem,
for each set s 2 S a weight ws � 0 is also specified, and
the goal is to find a set cover C of minimum total weightP

s2C ws .
Weighted set cover is a special case ofminimizing a lin-

ear function subject to a submodular constraint, defined as
follows. Given a collection S of objects, for each object s
a non-negative weight ws, and a non-decreasing submod-
ular function f : 2S ! R, the goal is to find a subcollec-
tion C
 S such that f (C) = f (S) minimizing

P
s2C ws .

(Taking f (C) = j [s2C sj gives weighted set cover.)

Key Results

The greedy algorithm for weighted set cover builds a cover
by repeatedly choosing a set s that minimize the weight
ws divided by number of elements in s not yet covered by
chosen sets. It stops and returns the chosen sets when they
form a cover:

380 G Greedy Set-Cover Algorithms

greedy-set-cover(S, w)
1. Initialize C ;. Define f (C) := j [s2C sj.
2. Repeat until f (C) = f (S):
3. Choose s 2 Sminimizing the price per

element ws /[f (C [fsg) � f (C)].
4. Let C C [fsg.
5. Return C.

Let Hk denote
Pk

i=1 1/i 	 ln k, where k is the largest
set size.

Theorem 1 The greedy algorithm returns a set cover of
weight at most Hk times the minimum weight of any cover.

Proof When the greedy algorithm chooses a set s, imagine
that it charges the price per element for that iteration to
each element newly covered by s. Then the total weight of
the sets chosen by the algorithm equals the total amount
charged, and each element is charged once.

Consider any set s = fxk ; xk�1; : : : ; x1g in the opti-
mal set cover C�. Without loss of generality, suppose that
the greedy algorithm covers the elements of s in the or-
der given: xk ; xk�1; : : : ; x1. At the start of the iteration in
which the algorithm covers element xi of s, at least i el-
ements of s remain uncovered. Thus, if the greedy algo-
rithm were to choose s in that iteration, it would pay a cost
per element of at most ws/i. Thus, in this iteration, the
greedy algorithm pays at most ws/i per element covered.
Thus, it charges element xi at most ws/i to be covered.
Summing over i, the total amount charged to elements in s
is at mostws Hk. Summing over s 2 C� and noting that ev-
ery element is in some set in C�, the total amount charged
to elements overall is at most

P
s2C� wsHk = HkOPT. �

The theorem was shown first for the unweighted case
(each ws = 1) by Johnson [6], Lovász [9], and Stein [14],
then extended to the weighted case by Chvátal [2].

Since then a few refinements and improvements have
been shown, including the following:

Theorem 2 Let S be a set system over a universe with
n elements and weights ws � 1. The total weight of the
cover C returned by the greedy algorithm is at most
[1 + ln(n/OPT)]OPT + 1 (compare to [13]).

Proof Assume without loss of generality that the algo-
rithm covers the elements in order xn; xn�1; : : : ; x1. At the
start of the iteration in which the algorithm covers xi, there
are at least i elements left to cover, and all of them could be
covered using multiple sets of total cost OPT. Thus, there
is some set that covers not-yet-covered elements at a cost
of at most OPT/i per element.

Recall the charging scheme from the previous proof.
By the preceding observation, element xi is charged
at most OPT/i. Thus, the total charge to elements
xn ; : : : ; xi is at most (Hn � Hi�1)OPT. Using the assump-
tion that each ws � 1, the charge to each of the remain-
ing elements is at most 1 per element. Thus, the total
charge to all elements is at most i � 1 + (Hn � Hi�1)OPT.
Taking i = 1 + dOPTe, the total charge is at most
dOPTe + (Hn � HdOPTe)OPT � 1 + OPT(1 + ln(n/OPT)).�

Each of the above proofs implicitly constructs a linear-
programming primal-dual pair to show the approximation
ratio. The same approximation ratios can be shown with
respect to any fractional optimum (solution to the frac-
tional set-cover linear program).

Other Results

The greedy algorithm has been shown to have an approx-
imation ratio of ln n � ln ln n + O(1) [12]. For the spe-
cial case of set systems whose duals have finite Vapnik-
Chervonenkis (VC) dimension, other algorithms have
substantially better approximation ratio [1]. Constant-
factor approximation algorithms are known for geometric
variants of the closely related k-median and facility loca-
tion problems.

The greedy algorithm generalizes naturally to many
problems. For example, for minimizing a linear function
subject to a submodular constraint (defined above), the
natural extension of the greedy algorithm gives an Hk-
approximate solution, where k = maxs2S f (fsg)� f (;),
assuming f is integer-valued [10].

The set-cover problem generalizes to allow each el-
ement x to require an arbitrary number rx of sets con-
taining it to be in the cover. This generalization admits
a polynomial-time O(log n)-approximation algorithm [8].

The special case when each element belongs to at most
r sets has a simple r-approximation algorithm ([15] §
15.2).When the sets have uniformweights (ws = 1), the al-
gorithm reduces to the following: select any maximal col-
lection of elements, no two of which are contained in the
same set; return all sets that contain a selected element.

The variant “Max k-coverage” asks for a set collection
of total weight at most k covering as many of the elements
as possible. This variant has a (1 � 1/e)-approximation al-
gorithm ([15] Problem 2.18) (see [7] for sets with non-
uniform weights).

For a general discussion of greedymethods for approx-
imate combinatorial optimization, see ([5] Ch. 4).

Finally, under likely complexity-theoretic assump-
tions, the ln n approximation ratio is essentially the best
possible for any polynomial-time algorithm [3,4].

Greedy Set-Cover Algorithms G 381

Applications

Set Cover and its generalizations and variants are funda-
mental problems with numerous applications. Examples
include:
� selecting a small number of nodes in a network to store

a file so that all nodes have a nearby copy,
� selecting a small number of sentences to be uttered to

tune all features in a speech-recognition model [11],
� selecting a small number of telescope snapshots to be

taken to capture light from all galaxies in the night sky,
� finding a short string having each string in a given set

as a contiguous sub-string.

Cross References

� Local Search for K-medians and Facility Location

Recommended Reading
1. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in

finite VC-dimension. Discret. Comput. Geom. 14(4), 463–479
(1995)

2. Chvátal, V.: A greedy heuristic for the set-covering problem.
Math. Oper. Res. 4(3), 233–235 (1979)

3. Lund, C., Yannakakis, M.: On the hardness of approximating
minimization problems. J. ACM 41(5), 960–981 (1994)

4. Feige, U.: A threshold of ln n for approximating set cover.
J. ACM 45(4), 634–652 (1998)

5. Gonzalez, T.F.: Handbook of Approximation Algorithms and
Metaheuristics. Chapman & Hall/CRC Computer & Information
Science Series (2007)

6. Johnson, D.S.: Approximation algorithms for combinatorial
problems. J. Comput. Syst. Sci. 9, 256–278 (1974)

7. Khuller, S., Moss, A., Naor, J.: The budgetedmaximumcoverage
problem. Inform. Process. Lett. 70(1), 39–45 (1999)

8. Kolliopoulos, S.G., Young, N.E.: Tight approximation results
for general covering integer programs. In: Proceedings of the
forty-second annual IEEE Symposium on Foundations of Com-
puter Science, pp. 522–528 (2001)

9. Lovász, L.: On the ratio of optimal integral and fractional cov-
ers. Discret. Math. 13, 383–390 (1975)

10. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Opti-
mization. Wiley, New York (1988)

11. van Santen, J.P.H., Buchsbaum, A.L.: Methods for optimal text
selection. In: Proceedings of the European Conference on
Speech Communication and Technology (Rhodos, Greece) 2,
553–556 (1997)

12. Slavik, P.: A tight analysis of the greedy algorithm for set cover.
J. Algorithms 25(2), 237–254 (1997)

13. Srinivasan, A.: Improved approximations of packing and cov-
ering problems. In: Proceedings of the twenty-seventh annual
ACM Symposium on Theory of Computing, pp. 268–276 (1995)

14. Stein, S.K.: Two combinatorial covering theorems. J. Comb.
Theor. A 16, 391–397 (1974)

15. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin Hei-
delberg (2001)

Hamilton Cycles in Random Intersection Graphs H 383

H

Hamilton Cycles in Random
Intersection Graphs
2005; Efthymiou, Spirakis

CHARILAOS EFTHYMIOU1, PAUL SPIRAKIS2
1 Department of Computer Engineering and Informatics,
University of Patras, Patras, Greece

2 Computer Engineering and Informatics, Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

Threshold for appearance of Hamilton cycles in random
intersection graphs; Stochastic order relations between
Erdös–Rényi random graph model and random intersec-
tion graphs

ProblemDefinition

E. Marczewski proved that every graph can be represented
by a list of sets where each vertex corresponds to a set and
the edges to nonempty intersections of sets. It is natural to
ask what sort of graphs would be most likely to arise if the
list of sets is generated randomly.

Consider the model of random graphs where each ver-
tex chooses randomly from a universal set the members
of its corresponding set, each independently of the others.
The probability space that is created is the space of ran-
dom intersection graphs, Gn;m;p , where n is the number
of vertices, m is the cardinality of a universal set of ele-
ments and p is the probability for each vertex to choose
an element of the universal set. The model of random in-
tersection graphs was first introduced by M. Karońsky, E.
Scheinerman, and K. Singer-Cohen in [4]. A rigorous defi-
nition of the model of random intersection graphs follows:

Definition 1 Let n,m be positive integers and 0 � p � 1.
The random intersection graph Gn;m;p is a probability
space over the set of graphs on the vertex set f1; : : : ; ng
where each vertex is assigned a random subset from a fixed

set of m elements. An edge arises between two vertices
when their sets have at least a common element. Each ran-
dom subset assigned to a vertex is determined by

Pr
	
vertex i chooses element j

= p

with these events mutually independent.

A common question for a graph is whether it has a cycle,
a set of edges that form a path so that the first and the last
vertex is the same, that visits all the vertices of the graph
exactly once. We call this kind of cycle the Hamilton cycle
and the graph that contains such a cycle is called a Hamil-
tonian graph.

Definition 2 Consider an undirected graph G = (V ; E)
where V is the set of vertices and E the set of edges. This
graph contains a Hamilton cycle if and only if there is
a simple cycle that contains each vertex in V .

Consider an instance of Gn;m;p , for specific values of its
parameters n,m, and p, what is the probability of that in-
stance to be Hamiltonian? Taking the parameter p, of the
model, to be a function of n andm, in [2], a threshold func-
tion P(n;m) has been found for the graph property “Con-
tains a Hamilton cycle”; i. e. a function P(n;m) is derived
such that

if p(n;m)� P(n;m)
lim

n;m!1
Pr
	
Gn;m;p Contains Hamilton cycle

= 0

if p(n;m)� P(n;m)
lim

n;m!1
Pr
	
Gn;m;p Contains Hamilton cycle

= 1

When a graph property, such as “Contains a Hamilton
cycle,” holds with probability that tends to 1 (or 0) as n,
m tend to infinity, then it is said that this property holds
(does not hold), “almost surely” or “almost certainly.”

If in Gn;m;p the parameter m is very small compared
to n, the model is not particularly interesting and when
m is exceedingly large (compared to n) the behavior of
Gn;m;p is essentially the same as the Erdös–Rényi model

384 H Hamilton Cycles in Random Intersection Graphs

of random graphs (see [3]). If someone takes m = dn˛e,
for fixed real ˛ > 0, then there is some deviation from the
standard models, while allowing for a natural progression
from sparse to dense graphs. Thus, the parameterm is as-
sumed to be of the form m = dn˛e for some fixed positive
real ˛.

The proof of existence of a Hamilton cycle in Gn;m;p
is mainly based on the establishment of a stochastic order
relation between the model Gn;m;p and the Erdös–Rényi
random graph model Gn; p̂ .

Definition 3 Let n be a positive integer, 0 � p̂ � 1. The
random graphG(n; p̂) is a probability space over the set of
graphs on the vertex set f1; : : : ; ng determined by

Pr
	
i; j

= p̂

with these events mutually independent.

The stochastic order relation between the two models of
random graphs is established in the sense that if A is an
increasing graph property, then it holds that

Pr
	
Gn; p̂ 2A

� Pr

	
Gn;m;p 2A

where p̂ = f (p). A graph property A is increasing if and
only if given that A holds for a graph G(V ; E) then A
holds for any G(V ; E0): E0 � E.

Key Results

Theorem 1 Let m = dn˛e, where ˛ is a fixed real positive,
and C1;C2 be sufficiently large constants. If

p � C1
log n
m

for 0 < ˛ < 1 or

p � C2

r
log n
nm

for ˛ > 1

then almost all Gn;m;p are Hamiltonian. Our bounds are
asymptotically tight.

Note that the theorem above says nothing when m = n,
i. e. ˛ = 1.

Applications

The Erdös–Rényi model of random graphs, Gn;p , is ex-
haustively studied in computer science because it provides
a framework for studying practical problems such as “re-
liable network computing” or it provides a “typical in-
stance” of a graph and thus it is used for average case anal-
ysis of graph algorithms. However, the simplicity of Gn;p
means it is not able to capture satisfactorily many practical

problems in computer science. Basically, this is because of
the fact that in many problems independent edge-events
are not well justified. For example, consider a graph whose
vertices represent a set of objects that either are placed or
move in a specific geographical region, and the edges are
radio communication links. In such a graph, we expect
that, any two vertices u, w are more likely to be adjacent
to each other, than any other, arbitrary, pair of vertices, if
both are adjecent to a third vertex v. Even epidemiological
phenomena (like the spread of disease) tend to be more ac-
curately captured by this proximity-sensitive random in-
tersection graph model. Other applications may include
oblivious resource sharing in a distributive setting, inter-
action of mobile agents traversing the web etc.

The model of random intersection graphs Gn;m;p was
first introduced by M. Karońsky, E. Scheinerman, and
K. Singer-Cohen in [4] where they explored the evolu-
tion of random intersection graphs by studying the thresh-
olds for the appearance and disappearance of small in-
duced subgraphs. Also, J.A. Fill, E.R. Scheinerman, and
K. Singer Cohen in [3] proved an equivalence theorem re-
lating the evolution of Gn;m;p and Gn;p , in particular they
proved that when m = n˛ where ˛ > 6, the total variation
distance between the graph random variables has limit 0.
S. Nikoletseas, C. Raptopoulos, and P. Spirakis in [8] stud-
ied the existence and the efficient algorithmic construc-
tion of close to optimal independent sets in random in-
tersection graphs. D. Stark in [12] studied the degree of
the vertices of the random intersection graphs. However,
after [2], Spirakis and Raptopoulos, in [11], provide al-
gorithms that construct Hamilton cycles in instances of
Gn;m;p , for p above the Hamiltonicity threshold. Finally,
Nikoletseas et.al in [7] study the mixing time and cover
time as the parameter p of the model varies.

Open Problems

As in many other random structures, e. g. Gn;p and ran-
dom formulae, properties of random intersection graphs
also appear to have threshold behavior. So far threshold
behavior has been studied for the induced subgraph ap-
pearance and hamiltonicity.

Other fields of research for random intersection
graphs may include the study of connectivity behavior, of
the model i. e. the path formation, the formation of gi-
ant components. Additionally, a very interesting research
question is how cover and mixing times vary with the pa-
rameter p, of the model.

Cross References

� Independent Sets in Random Intersection Graphs

Hardness of Proper Learning H 385

Recommended Reading
1. Alon, N., Spencer, J.H.: The Probabilistic Method. 2nd edn. Wi-

ley, New York (2000)
2. Efthymiou, C., Spirakis, P.G.: On the Existence of Hamilton Cy-

cles in Random IntersectionGraphs. In: Proc. of the 32nd ICALP.
LNCS, vol. 3580, pp. 690–701. Springer, Berlin/Heidelberg
(2005)

3. Fill, J.A., Scheinerman, E.R., Singer-Cohen, K.B.: Random inter-
section graphs whenm = !(n): an equivalence theorem relat-
ing the evolution of theG(n;m; p) and G(n; p) models. Random
Struct. Algorithms 16, 156–176 (2000)

4. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.: On Random
Intersection Graphs: The Subgraph Problem. Comb. Probab.
Comput. 8, 131–159 (1999)

5. Komlós, J., Szemerédi, E.: Limit Distributions for the existence
of Hamilton cycles in a random graph. Discret. Math. 43, 55–63
(1983)

6. Korshunov, A.D.: Solution of a problem of P. Erdös and A. Rényi
on Hamilton Cycles in non-oriented graphs. Metody Diskr.
Anal. Teoriy Upr. Syst. Sb. TrubovNovosibrirsk31, 17–56 (1977)

7. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: Expander Proper-
ties and the Cover Time of Random Intersection Graphs. In:
Proc of the 32nd MFCS, pp. 44–55. Springer, Berlin/Heidelberg
(2007)

8. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: The existence and
Efficient construction of Large Independent Sets in General
Random Intersection Graphs. In: Proc. of the 31st ICALP. LNCS,
vol. 3142, pp. 1029–1040. Springer, Berlin/Heidelberg (2004)

10. Singer, K.: Random IntersectionGraphs. Ph. D. thesis, The Johns
Hopkins University, Baltimore (1995)

11. Spirakis, P.G. Raptopoulos, C.: Simple and Efficient Greedy Al-
gorithms for Hamilton Cycles in Random Intersection Graphs.
In: Proc. of the 16th ISAAC. LNCS, vol. 3827, pp. 493–504.
Springer, Berlin/Heidelberg (2005)

12. Stark, D.: The Vertex Degree Distribution of Random Intersec-
tion Graphs. Random Struct. Algorithms 24, 249–258 (2004)

Hardness of Proper Learning
1988; Pitt, Valiant

VITALY FELDMAN
Department of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA

Keywords and Synonyms

Representation-based hardness of learning

ProblemDefinition

The work of Pitt and Valiant [16] deals with learning
Boolean functions in the Probably Approximately Correct
(PAC) learningmodel introduced byValiant [17]. A learn-
ing algorithm in Valiant’s original model is given random
examples of a function f : f0; 1gn ! f0; 1g from a repre-
sentation class F and produces a hypothesis h 2 F that

closely approximates f . Here a representation class is a set
of functions and a language for describing the functions in
the set. The authors give examples of natural representa-
tion classes that areNP-hard to learn in this model whereas
they can be learned if the learning algorithm is allowed to
produce hypotheses from a richer representation classH .
Such an algorithm is said to learnF byH ; learning F by
F is called proper learning.

The results of Pitt and Valiant were the first to demon-
strate that the choice of representation of hypotheses can
have a dramatic impact on the computational complex-
ity of a learning problem. Their specific reductions from
NP-hard problems are the basis of several other follow-up
works on the hardness of proper learning [1,3,6].

Notation

Learning in the PAC model is based on the assumption
that the unknown function (or concept) belongs to a cer-
tain class of concepts C. In order to discuss algorithms that
learn and output functions one needs to define how these
functions are represented. Informally, a representation for
a concept class C is a way to describe concepts from C that
defines a procedure to evaluate a concept in C on any in-
put. For example, one can represent a conjunction of input
variables by listing the variables in the conjunction. More
formally, a representation class can be defined as follows.

Definition 1 A representation class F is a pair (L;R)
where
� L is a language over some fixed finite alphabet (e. g.
f0; 1g);

� R is an algorithm that for � 2 L, on input (�; 1n) re-
turns a Boolean circuit over f0; 1gn .

In the context of efficient learning, only efficient repre-
sentations are considered, or, representations for whichR
is a polynomial-time algorithm. The concept class repre-
sented by F is set of functions over f0; 1gn defined by the
circuits in fR(�; 1n) j � 2 Lg. For most of the represen-
tations discussed in the context of learning it is straight-
forward to construct a language L and the corresponding
translating function R, and therefore they are not speci-
fied explicitly.

Associated with each representation is the complexity
of describing a Boolean function using this representation.
More formally, for a Boolean function f 2 C,F-size(f)
is the length of the shortest way to represent f using F , or
minfj� j j � 2 L; R(�; 1n) � f g.

In Valiant’s PAC model of learning, for a function f
and a distribution D over X, an example oracle EX(f ;D)
is an oracle that, when invoked, returns an example

386 H Hardness of Proper Learning

hx; f (x)i, where x is chosen randomly with respect to
D, independently of any previous examples. For � � 0,
a function g �-approximates a function f with respect to
distributionD if PrD[f (x) ¤ g(x)] � �.

Definition 2 A representation class F is PAC learnable
by representation classH if there exist an algorithm that
for every � > 0, ı > 0, n, f 2 F , and distributionD over
X, given �, ı, and access to EX(f ;D), runs in time poly-
nomial in n; s = F-size(c); 1/� and 1/ı, and outputs,
with probability at least 1� ı, a hypothesis h 2H that �-
approximates f .

A DNF expression is defined as an OR of ANDs of liter-
als, where a literal is a possibly negated input variable. The
ANDs of a DNF formula are referred to as its terms. Let
DNF(k) denote the representation class of k-term DNF ex-
pressions. Similarly a CNF expression is anOR of ANDs of
literals. Let k-CNF denote the representation class of CNF
expressions with each AND having at most k literals.

For a real-valued vector c 2 Rn and � 2 R, a linear
threshold function (also called a halfspace) Tc;� (x) is the
function that equals 1 if and only if

P
i�n ci xi � � . The

representation class of Boolean threshold functions con-
sists of all linear threshold functions with c 2 f0; 1gn and
� an integer.

Key Results

Theorem 3 ([16]) For every k � 2, the representation
class of DNF(k) is not properly learnable unless RP = NP.

More specifically, Pitt and Valiant show that learning
DNF(k) by DNF(`) is at least as hard as coloring a k-
colorable graph using ` colors. For the case k = 2 they ob-
tain the result by reducing from Set Splitting (see [8] for
details on the problems). Theorem 3 is in sharp contrast
with the fact that DNF(k) is learnable by k-CNF [17].

Theorem 4 ([16]) The representation class of Boolean
threshold functions is not properly learnable unless
RP = NP.

This result is obtained via a reduction from the
NP-complete Zero-One Integer Programming problem
(see [8](p. 245) for details on the problem). The result is
contrasted by the fact that general linear thresholds are
properly learnable [4].

These results show that using a specific representation
of hypotheses forces the learning algorithm to solve a com-
binatorial problem that can be NP-hard. In most machine
learning applications it is not important which represen-
tation of hypotheses is used as long as the value of the un-

known function is predicted correctly. Therefore learning
in the PAC model is now defined without any restrictions
on the output hypothesis (other than it being efficiently
evaluatable). Hardness results in this setting are usually
based on cryptographic assumptions (cf. [14]).

Hardness results for proper learning based on assump-
tion NP ¤ RP are now known for several other represen-
tation classes and for other variants and extensions of
the PAC learning model. Blum and Rivest show that for
any k � 3, unions of k halfspaces are not properly learn-
able [3]. Hancock et al. prove that decision trees (cf. [15]
for the definition of this representation) are not learnable
by decision trees of somewhat larger size [10]. This result
was strengthened by Alekhnovich et al. who also prove
that intersections of two halfspaces are not learnable by in-
tersections of k halfspaces for any constant k, general DNF
expressions are not learnable by unions of halfspaces (and
in particular are not properly learnable), and k-juntas are
not properly learnable [1]. Feldman shows that DNF ex-
pressions are NP-hard to learn properly even if member-
ship queries, or the ability to query the unknown function
at any point, are allowed [6]. No efficient algorithms or
hardness results are known for any of the above learning
problems if no restriction is placed on the representation
of hypotheses.

The choice of representation is very important even
in powerful learning models. Feldman proved that nc-
term DNF are not properly learnable for any constant c
even when the distribution of examples is assumed to be
uniform and membership queries are available [6]. This
contrasts with Jackson’s celebrated algorithm for learning
DNF in this setting [12], which is not proper.

In the agnostic learning model of Haussler [11] and
Kearns et al. [13] even the representation classes of con-
junctions, halfspaces, and parity functions are NP-hard to
learn properly (cf. [2,7,9] and references therein). Here
again the status of these problems in the representation-
independent setting is largely unknown.

Applications

A large number of practical algorithms use representations
for which hardness results are known (most notably deci-
sion trees, halfspaces, and neural networks). Hardness of
learning F byH implies that an algorithm that usesH
to represent its hypotheses will not be able to learn F in
the PAC sense. Therefore such hardness results elucidate
the limitations of algorithms used in practice. In particu-
lar, the reduction from an NP-hard problem used to prove
the hardness of learning F byH can be used to generate
hard instances of the learning problem.

High Performance Algorithm Engineering for Large-scale Problems H 387

Open Problems

A number of problems related to proper learning in the
PAC model and its extensions are open. Almost all hard-
ness of proper learning results are for learning with respect
to unrestricted distributions. For most of the problems
mentioned in Sect. “Key Results” it is unknown whether
the result is true if the distribution is restricted to belong
to some natural class of distributions (e. g. product distri-
butions). It is unknown whether decision trees are learn-
able properly in the PAC model or in the PAC model with
membership queries. This question is open even in the
PAC model restricted to the uniform distribution only.
Note that decision trees are learnable (non-properly) if
membership queries are available [5] and are learnable
properly in time O(nlog s), where s is the number of leaves
in the decision tree [1].

An even more interesting direction of research would
be to obtain hardness results for learning by richer repre-
sentations classes, such as AC0 circuits, classes of neural
networks and, ultimately, unrestricted circuits.

Cross References

� Cryptographic Hardness of Learning
� Graph Coloring
� Learning DNF Formulas
� PAC Learning

Recommended Reading
1. Alekhnovich,M., Braverman,M., Feldman, V., Klivans, A., Pitassi,

T.: Learnability and automizability. In: Proceeding of FOCS, pp.
621–630 (2004)

2. Ben-David, S., Eiron, N., Long, P. M.: On the difficulty of approx-
imately maximizing agreements. In: Proceedings of COLT, pp.
266–274 (2000)

3. Blum, A.L., Rivest, R.L.: Training a 3-node neural network is NP-
complete. Neural Netw. 5(1), 117–127 (1992)

4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learn-
ability and the Vapnik-Chervonenkis dimension. J. ACM 36(4),
929–965 (1989)

5. Bshouty, N.: Exact learning via the monotone theory. Inf. Com-
put. 123(1), 146–153 (1995)

6. Feldman, V.: Hardness of Approximate Two-level Logic Mini-
mization and PAC Learning with Membership Queries. In: Pro-
ceedings of STOC, pp. 363–372 (2006)

7. Feldman, V.: Optimal hardness results for maximizing agree-
ments with monomials. In: Proceedings of Conference on
Computational Complexity (CCC), pp. 226–236 (2006)

8. Garey, M., Johnson, D.S.: Computers and Intractability. W. H.
Freeman, San Francisco (1979)

9. Guruswami, V., Raghavendra, P.: Hardness of Learning Halfs-
paces with Noise. In: Proceedings of FOCS, pp. 543–552 (2006)

10. Hancock, T., Jiang, T., Li, M., Tromp, J.: Lower bounds on learn-
ing decision lists and trees. In: 12th Annual Symposiumon The-
oretical Aspects of Computer Science, pp. 527–538 (1995)

11. Haussler, D.: Decision theoretic generalizations of the PAC
model for neural net and other learning applications. Inf. Com-
put. 100(1), 78–150 (1992)

12. Jackson, J.: An efficientmembership-query algorithm for learn-
ing DNF with respect to the uniform distribution. J. Comput.
Syst. Sci. 55, 414–440 (1997)

13. Kearns, M., Schapire, R., Sellie, L.: Toward efficient agnostic
learning. Mach. Learn. 17(2–3), 115–141 (1994)

14. Kearns, M., Valiant, L.: Cryptographic limitations on learning
boolean formulae and finite automata. J. ACM 41(1), 67–95
(1994)

15. Kearns, M., Vazirani, U.: An introduction to computational
learning theory. MIT Press, Cambridge, MA (1994)

16. Pitt, L., Valiant, L.: Computational limitations on learning from
examples. J. ACM 35(4), 965–984 (1988)

17. Valiant, L.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

High Performance Algorithm
Engineering for Large-scale Problems
2005; Bader

DAVID A. BADER
College of Computing, Georgia Institute of Technology,
Atlanta, GA, USA

Keywords and Synonyms

Experimental algorithmics

ProblemDefinition

Algorithm engineering refers to the process required to
transform a pencil-and-paper algorithm into a robust, effi-
cient, well tested, and easily usable implementation. Thus
it encompasses a number of topics, from modeling cache
behavior to the principles of good software engineering;
its main focus, however, is experimentation. In that sense,
it may be viewed as a recent outgrowth of Experimen-
tal Algorithmics [14], which is specifically devoted to the
development of methods, tools, and practices for assess-
ing and refining algorithms through experimentation. The
ACM Journal of Experimental Algorithmics (JEA), at URL
www.jea.acm.org, is devoted to this area.

High-performance algorithm engineering [2] focuses
on one of the many facets of algorithm engineering: speed.
The high-performance aspect does not immediately imply
parallelism; in fact, in any highly parallel task, most of the
impact of high-performance algorithm engineering tends
to come from refining the serial part of the code.

The term algorithm engineering was first used with
specificity in 1997, with the organization of the firstWork-
shop on Algorithm Engineering (WAE 97). Since then, this

388 H High Performance Algorithm Engineering for Large-scale Problems

workshop has taken place every summer in Europe. The
1998Workshop on Algorithms and Experiments (ALEX98)
was held in Italy and provided a discussion forum for re-
searchers and practitioners interested in the design, ana-
lyzes and experimental testing of exact and heuristic algo-
rithms. A sibling workshop was started in the Unites States
in 1999, the Workshop on Algorithm Engineering and Ex-
periments (ALENEX99), which has taken place every win-
ter, colocated with theACM/SIAM Symposium on Discrete
Algorithms (SODA).

Key Results

Parallel computing has two closely relatedmain uses. First,
with more memory and storage resources than available
on a single workstation, a parallel computer can solve
correspondingly larger instances of the same problems.
This increase in size can translate into running higher-
fidelity simulations, handling higher volumes of informa-
tion in data-intensive applications, and answering larger
numbers of queries and datamining requests in corpo-
rate databases. Secondly, with more processors and larger
aggregate memory subsystems than available on a single
workstation, a parallel computer can often solve problems
faster. This increase in speed can also translate into all of
the advantages listed above, but perhaps its crucial advan-
tage is in turnaround time. When the computation is part
of a real-time system, such as weather forecasting, finan-
cial investment decision-making, or tracking and guid-
ance systems, turnaround time is obviously the critical is-
sue. A less obvious benefit of shortened turnaround time
is higher-quality work: when a computational experiment
takes less than an hour, the researcher can afford the lux-
ury of exploration—running several different scenarios in
order to gain a better understanding of the phenomena be-
ing studied.

In algorithm engineering, the aim is to present repeat-
able results through experiments that apply to a broader
class of computers than the specific make of com-
puter system used during the experiment. For sequen-
tial computing, empirical results are often fairly machine-
independent. While machine characteristics such as word
size, cache and main memory sizes, and processor and
bus speeds differ, comparisons across different unipro-
cessor machines show the same trends. In particular, the
number of memory accesses and processor operations re-
mains fairly constant (or within a small constant factor).
In high-performance algorithm engineering with parallel
computers, on the other hand, this portability is usually
absent: each machine and environment is its own special
case. One obvious reason is major differences in hardware

that affect the balance of communication and computation
costs—a true shared-memory machine exhibits very dif-
ferent behavior from that of a cluster based on commodity
networks.

Another reason is that the communication libraries
and parallel programming environments (e. g., MPI [12],
OpenMP [16], and High-Performance Fortran [10]), as
well as the parallel algorithm packages (e. g., fast Fourier
transforms using FFTW [6] or parallelized linear algebra
routines in ScaLAPACK [4]), often exhibit differing per-
formance on different types of parallel platforms. When
multiple library packages exist for the same task, a user
may observe different running times for each library ver-
sion evenon the same platform. Thus a running-time anal-
ysis should clearly separate the time spent in the user code
from that spent in various library calls. Indeed, if partic-
ular library calls contribute significantly to the running
time, the number of such calls and running time for each
call should be recorded and used in the analysis, thereby
helping library developers focus on the most cost-effective
improvements. For example, in a simple message-passing
program, one can characterize the work done by keep-
ing track of sequential work, communication volume, and
number of communications. A more general program us-
ing the collective communication routines of MPI could
also count the number of calls to these routines. Several
packages are available to instrumentMPI codes in order to
capture such data (e. g., MPICH’s nupshot [8], Pablo [17],
and Vampir [15]). The SKaMPI benchmark [18] allows
running-time predictions based on such measurements
even if the target machine is not available for program
development. SKaMPI was designed for robustness, ac-
curacy, portability, and efficiency; For example, SKaMPI
adaptively controls how often measurements are repeated,
adaptively refines message-length and step-width at “in-
teresting” points, recovers from crashes, and automatically
generates reports.

Applications

The following are several examples of algorithm engineer-
ing studies for high-performance and parallel computing.
1. Bader’s prior publications (see [2] and http://www.

cc.gatech.edu/~bader) contain many empirical studies
of parallel algorithms for combinatorial problems like
sorting, selection, graph algorithms, and image pro-
cessing.

2. In a recent demonstration of the power of high-per-
formance algorithm engineering, a million-fold speed-
up was achieved through a combination of a 2,000-fold
speedup in the serial execution of the code and a 512-

http://www.cc.gatech.edu/~bader
http://www.cc.gatech.edu/~bader

High Performance Algorithm Engineering for Large-scale Problems H 389

fold speedup due to parallelism (a speed-up, however,
that will scale to any number of processors) [13]. (In
a further demonstration of algorithm engineering, ad-
ditional refinements in the search and bounding strate-
gies have added another speedup to the serial part of
about 1,000, for an overall speedup in excess of 2 bil-
lion)

3. JáJá and Helman conducted empirical studies for prefix
computations, sorting, and list-ranking, on symmetric
multiprocessors. The sorting research (see [9]) extends
Vitter’s external Parallel Disk Model to the internal
memory hierarchy of SMPs and uses this new computa-
tional model to analyze a general-purpose sample sort
that operates efficiently in shared-memory. The per-
formance evaluation uses 9 well-defined benchmarks.
The benchmarks include input distributions commonly
used for sorting benchmarks (such as keys selected uni-
formly and at random), but also benchmarks designed
to challenge the implementation through load imbal-
ance and memory contention and to circumvent algo-
rithmic design choices based on specific input prop-
erties (such as data distribution, presence of duplicate
keys, pre-sorted inputs, etc.).

4. In [3] Blelloch et al. compare through analysis and im-
plementation three sorting algorithms on the Thinking
Machines CM-2. Despite the use of an outdated (and
no longer available) platform, this paper is a gem and
should be required reading for every parallel algorithm
designer. In one of the first studies of its kind, the au-
thors estimate running times of four of the machine’s
primitives, then analyze the steps of the three sorting
algorithms in terms of these parameters. The experi-
mental studies of the performance are normalized to
provide clear comparison of how the algorithms scale
with input size on a 32K-processor CM-2.

5. Vitter et al. provide the canonical theoretic founda-
tion for I/O-intensive experimental algorithmics using
external parallel disks (e. g., see [1,19,20]). Examples
from sorting, FFT, permuting, and matrix transposi-
tion problems are used to demonstrate the parallel disk
model.

6. Juurlink and Wijshoff [11] perform one of the first de-
tailed experimental accounts on the preciseness of sev-
eral parallel computation models on five parallel plat-
forms. The authors discuss the predictive capabilities
of the models, compare the models to find out which
allows for the design of the most efficient parallel algo-
rithms, and experimentally compare the performance
of algorithms designed with the model versus those de-
signed with machine-specific characteristics in mind.
The authors derive model parameters for each plat-

form, analyses for a variety of algorithms (matrix mul-
tiplication, bitonic sort, sample sort, all-pairs shortest
path), and detailed performance comparisons.

7. The LogP model of Culler et al. [5] provides a realis-
tic model for designing parallel algorithms for message-
passing platforms. Its use is demonstrated for a number
of problems, including sorting.

8. Several research groups have performed extensive al-
gorithm engineering for high-performance numerical
computing. One of the most prominent efforts is that
led by Dongarra for ScaLAPACK [4], a scalable lin-
ear algebra library for parallel computers. ScaLAPACK
encapsulates much of the high-performance algorithm
engineering with significant impact to its users who re-
quire efficient parallel versions of matrix–matrix lin-
ear algebra routines. New approaches for automatically
tuning the sequential library (e. g., LAPACK) are now
available as the ATLAS package [21].

Open Problems

All of the tools and techniques developed over the last
several years for algorithm engineering are applicable to
high-performance algorithm engineering. However, many
of these tools need further refinement. For example, cache-
efficient programming is a key to performance but it is not
yet well understood, mainly because of complex machine-
dependent issues like limited associativity, virtual address
translation, and increasingly deep hierarchies of high-per-
formance machines. A key question is whether one can
find simple models as a basis for algorithm development.
For example, cache-oblivious algorithms [7] are efficient
at all levels of the memory hierarchy in theory, but so far
only few work well in practice. As another example, pro-
filing a running program offers serious challenges in a se-
rial environment (any profiling tool affects the behavior
of what is being observed), but these challenges pale in
comparison with those arising in a parallel or distributed
environment (for instance, measuring communication
bottlenecks may require hardware assistance from the net-
work switches or at least reprogramming them, which
is sure to affect their behavior). Designing efficient and
portable algorithms for commodity multicore and many-
core processors is an open challenge.

Cross References

� Analyzing Cache Misses
� Cache-Oblivious B-Tree
� Cache-Oblivious Model
� Cache-Oblivious Sorting
� Engineering Algorithms for Computational Biology

390 H Hitting Set

� Engineering Algorithms for Large Network
Applications

� Engineering Geometric Algorithms
� Experimental Methods for Algorithm Analysis
� External Sorting and Permuting
� Implementation Challenge for Shortest Paths
� Implementation Challenge for TSP Heuristics
� I/O-model
� Visualization Techniques for Algorithm Engineering

Recommended Reading

1. Aggarwal, A., Vitter, J.: The input/output complexity of sorting
and related problems. Commun. ACM 31, 1116–1127 (1988)

2. Bader, D.A., Moret, B.M.E., Sanders, P.: Algorithm engineering
for parallel computation. In: Fleischer, R., Meineche-Schmidt,
E., Moret, B.M.E. (ed) Experimental Algorithmics. Lecture Notes
in Computer Science, vol. 2547, pp. 1–23. Springer, Berlin
(2002)

3. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith,
S.J., Zagha, M.: An experimental analysis of parallel sorting al-
gorithms. Theor. Comput. Syst. 31(2), 135–167 (1998)

4. Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: ScaLAPACK:
A scalable linear algebra library for distributed memory con-
current computers. In: The 4th Symp. the Frontiers ofMassively
Parallel Computations, pp. 120–127, McLean, VA (1992)

5. Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E.,
Santos, E., Subramonian, R., von Eicken,T.: LogP: Towards a re-
alistic model of parallel computation. In: 4th Symp. Principles
and Practice of Parallel Programming, pp. 1–12. ACM SIGPLAN
(1993)

6. Frigo, M., Johnson, S. G.: FFTW: An adaptive software architec-
ture for the FFT. In: Proc. IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing, vol. 3, pp. 1381–1384, Seattle, WA
(1998)

7. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-
oblivious algorithms. In: Proc. 40th Ann. Symp. Foundations
of Computer Science (FOCS-99), pp. 285–297, New York, NY,
1999. IEEE Press

8. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance,
portable implementation of the MPI message passing inter-
face standard. Technical report, Argonne National Laboratory,
Argonne, IL, (1996) www.mcs.anl.gov/mpi/mpich/

9. Helman, D.R., JáJá, J.: Sorting on clusters of SMP’s. In: Proc.
12th Int’l Parallel Processing Symp., pp. 1–7, Orlando, FL,
March/April 1998

10. High Performance Fortran Forum. High Performance Fortran
Language Specification, 1.0 edition, May 1993

11. Juurlink, B.H.H., Wijshoff, H.A.G.: A quantitative comparison of
parallel computation models. ACM Trans. Comput. Syst. 13(3),
271–318 (1998)

12. Message Passing Interface Forum. MPI: A message-passing in-
terface standard. Technical report, University of Tennessee,
Knoxville, TN, June 1995. Version 1.1

13. Moret, B.M.E., Bader, D.A., Warnow, T.: High-performance algo-
rithm engineering for computational phylogenetics. J. Super-
comput. 22, 99–111 (2002) Special issue on the best papers
from ICCS’01

14. Moret, B.M.E., Shapiro, H.D.: Algorithms and experiments: The
new (and old) methodology. J. Univers. Comput. Sci. 7(5),
434–446 (2001)

15. Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach,
K.: VAMPIR: visualization and analysis of MPI resources. Super-
computer 63. 12(1), 69–80 (1996)

16. OpenMP Architecture Review Board. OpenMP: A proposed in-
dustry standard API for shared memory programming. www.
openmp.org, October 1997

17. Reed, D.A., Aydt, R.A., Noe, R.J., Roth, P.C., Shields, K.A.,
Schwartz, B., Tavera, L.F.: Scalable performance analysis: The
Pablo performance analysis environment. In: Skjellum, A., (ed)
Proc. Scalable Parallel Libraries Conf., pp. 104–113, Mississippi
State University, October 1993. IEEE Computer Society Press

18. Reussner, R., Sanders, P., Träff, J.: SKaMPI: A comprehensive
benchmark for public benchmarking of MPI. Scientific Pro-
gramming, 2001. accepted, conference version with Prechelt,
L., Müller, M. In: Proc. EuroPVM/MPI (1998)

19. Vitter, J. S., Shriver, E.A.M.: Algorithms for parallel memory. I:
Two-level memories. Algorithmica. 12(2/3), 110–147 (1994)

20. Vitter, J. S., Shriver, E.A.M.: Algorithms for parallel memory II:
Hierarchical multilevel memories. Algorithmica 12(2/3), 148–
169 (1994)

21. Whaley, R., Dongarra, J.: Automatically tuned linear algebra
software (ATLAS). In: Proc. Supercomputing 98, Orlando, FL,
November 1998. www.netlib.org/utk/people/JackDongarra/
PAPERS/atlas-sc98.ps

Hitting Set
� Greedy Set-Cover Algorithms
� Set Cover with Almost Consecutive Ones

Hospitals/Residents Problem
1962; Gale, Shapley

DAVID F. MANLOVE
Department of Computing Science,
University of Glasgow, Glasgow, UK

Keywords and Synonyms

College admissions problem; University admissions prob-
lem; Stable admissions problem; Stable assignment prob-
lem; Stable b-matching problem

ProblemDefinition

An instance I of the Hospitals/Residents problem
(HR) [5,6,14] involves a set R = fr1; : : : ; rng of residents
and a set H = fh1; : : : ; hmg of hospitals. Each hospital
hj 2 H has a positive integral capacity, denoted by cj. Also,
each resident ri 2 R has a preference list in which he ranks
in strict order a subset ofH. A pair (ri ; hj) 2 R � H is said

http://www.mcs.anl.gov/mpi/mpich/
http://www.openmp.org
http://www.openmp.org
http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps
http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps

Hospitals/Residents Problem H 391

to be acceptable if hj appears in ri’s preference list; in this
case ri is said to find hj acceptable. Similarly each hospital
hj 2 H has a preference list in which it ranks in strict or-
der those residents who find hj acceptable. Given any three
agents x; y; z 2 R [H, x is said to prefer y to z if x finds
each of y and z acceptable, and y precedes z on x’s prefer-
ence list. Let C =

P
h j2H c j .

Let A denote the set of acceptable pairs in I, and let
L = jAj. An assignment M is a subset of A. If (ri ; hj) 2 M,
ri is said to be assigned to hj, and hj is assigned ri. For each
q 2 R [H, the set of assignees of q in M is denoted by
M(q). If ri 2 R and M(ri) = ;, ri is said to be unassigned,
otherwise ri is assigned. Similarly, any hospital hj 2 H
is under-subscribed, full or over-subscribed according as
jM(hj)j is less than, equal to, or greater than cj, respec-
tively.

A matching M is an assignment such that jM(ri)j � 1
for each ri 2 R and jM(hj)j � c j for each hj 2 H (i. e., no
resident is assigned to an unacceptable hospital, each res-
ident is assigned to at most one hospital, and no hospi-
tal is over-subscribed). For notational convenience, given
a matching M and a resident ri 2 R such that M(ri) ¤ ;,
where there is no ambiguity the notationM(ri) is also used
to refer to the single member of M(ri).

A pair (ri ; hj) 2 AnM blocks a matching M, or is
a blocking pair forM, if the following conditions are satis-
fied relative toM:
1. ri is unassigned or prefers hj toM(ri);
2. hj is under-subscribed or prefers ri to at least one mem-

ber ofM(hj) (or both).

M := ;;
while (some resident ri is unassigned and ri has a non-empty list) {

hj := first hospital on ri ’s list;
/* ri applies to hj */
M := M [f(ri ; hj)g;
if (hj is over-subscribed) {

rk := worst resident in M(hj) according to hj ’s list;
M := Mnf(rk ; hj)g;

}
if (hj is full) {

rk := worst resident in M(hj) according to hj ’s list;
for (each successor rl of rk on hj ’s list)

delete the pair (rl ; hj);
}

}

Hospitals/Residents Problem, Figure 1
Gale/Shapley algorithm for HR

A matching M is said to be stable if it admits no block-
ing pair. Given an instance I of HR, the problem is to find
a stable matching in I.

Key Results

HR was first defined by Gale and Shapley [5] under the
name “College Admissions Problem”. In their seminal pa-
per, the authors’ primary consideration is the classical Sta-
ble Marriage problem (SM; see � Stable Marriage and
� Optimal Stable Marriage), which is a special case of HR
in which n = m, A = R � H, and c j = 1 for all hj 2 H – in
this case, the residents and hospitals are more commonly
referred to as the men and women respectively. Gale and
Shapley show that every instance I of HR admits at least
one stable matching. Their proof of this result is construc-
tive, i. e., an algorithm for finding a stable matching in
I is described. This algorithm has become known as the
Gale/Shapley algorithm.

An extended version of the Gale/Shapley algorithm
for HR is shown in Fig. 1. The algorithm involves a se-
quence of apply and delete operations. At each iteration of
the while loop, some unassigned resident ri with a non-
empty preference list applies to the first hospital hj on his
list, and becomes provisionally assigned to hj (this assign-
ment could subsequently be broken). If hj becomes over-
subscribed as a result of this assignment, then hj rejects its
worst assigned resident rk. Next, if hj is full (irrespective
of whether hj was over-subscribed earlier in the same loop
iteration), then for each resident rl that hj finds less de-

392 H Hospitals/Residents Problem

sirable than its worst resident rk, the algorithm deletes the
pair (rl, hj), which comprises deleting hj from rl’s prefer-
ence list and vice versa.

Given that the above algorithm involves residents ap-
plying to hospitals, it has become known as the Resident-
oriented Gale/Shapley algorithm, or RGS algorithm for
short [6, Sect. 1.6.3]. The RGS algorithm terminates with
a stable matching, given an instance of HR [5,6, The-
orem 1.6.2]. Using a suitable choice of data structures
(extending those described in [6, Sect. 1.2.3]), the RGS
algorithm can be implemented to run in O(L) time.
This algorithm produces the stable matching that is si-
multaneously best-possible for all residents [5,6, Theo-
rem 1.6.2]. These observations may be summarized as fol-
lows:

Theorem 1 Given an instance of HR, the RGS algorithm
constructs, in O(L) time, the unique stable matching in
which each assigned resident obtains the best hospital that
he could obtain in any stable matching, whilst each unas-
signed resident is unassigned in every stable matching.

A counterpart of the RGS algorithm, known as the
Hospital-oriented Gale/Shapley algorithm, or HGS algo-
rithm for short [6, Sect. 1.6.2], gives the unique stable
matching that similarly satisfies an optimality property for
the hospitals [6, Theorem 1.6.1].

Although there may be many stable matchings for
a given instance I of HR, some key structural prop-
erties hold regarding unassigned residents and under-
subscribed hospitals with respect to all stable matchings
in I, as follows.

Theorem 2 For a given instance of HR,
� the same residents are assigned in all stable matchings;
� each hospital is assigned the same number of residents in

all stable matchings;
� any hospital that is under-subscribed in one stable

matching is assigned exactly the same set of residents in
all stable matchings.

These results are collectively known as the “Rural Hos-
pitals Theorem” (see [6, Sect. 1.6.4] for further details).
Furthermore, the set of stable matchings in I forms a dis-
tributive lattice under a natural dominance relation [6,
Sect. 1.6.5].

Applications

Practical applications of HR are widespread, most notably
arising in the context of centralized automated matching

schemes that assign applicants to posts (for examplemedi-
cal students to hospitals, school-leavers to universities, and
primary school pupils to secondary schools). Perhaps the
best-known example of such a scheme is the National Res-
ident Matching Program (NRMP) in the US [16], which
annually assigns around 31,000 graduating medical stu-
dents (known as residents) to their first hospital posts, tak-
ing into account the preferences of residents over hospitals
and vice versa, and the hospital capacities. Counterparts of
the NRMP are in existence in other countries, including
Canada [17], Scotland [18] and Japan [19]. These match-
ing schemes essentially employ extensions of the RGS al-
gorithm for HR.

Centralized matching schemes based largely on HR
also occur in other practical contexts, such as school place-
ment in New York [1], university faculty recruitment in
France [3] and university admission in Spain [12].

Extensions of HR

One key extension of HR that has considerable practical
importance arises when an instance may involve a set of
couples, each of which submits a joint preference list over
pairs of hospitals (typically in order that the members of
a given couple can be located geographically close to one
another, for example). The extension of HR in which cou-
ples may be involved is denoted by HRC; the stability def-
inition in HRC is a natural extension of that in HR (see [6,
Sect. 1.6.6] for a formal definition of HRC). It is known
that an instance of HRC need not admit a stable match-
ing (see [6, Section 1.6.6] and [14, Sect. 5.4.3]). Moreover,
the problem of deciding whether an HRC instance admits
a stable matching is NP-complete [13].

HR may be regarded as a many-one generalization of
SM. A further generalization of SM is to a many-many sta-
ble matching problem, in which both residents and hos-
pitals may be multiply assigned subject to capacity con-
straints. In this case, residents and hospitals are more com-
monly referred to as workers and firms respectively. There
are two basic variations of themany-many stablematching
problem according to whether (i) workers rank acceptable
firms in order of preference and vice versa, or (ii) work-
ers rank acceptable subsets of firms in order of preference
and vice versa. Previous work relating to both models is
surveyed in [4].

Other variants of HR may be obtained if preference
lists include ties. This extension is again important from
a practical perspective, since it may be unrealistic to ex-
pect a popular hospital to rank a large number of appli-
cants in strict order, particularly if it is indifferent among
groups of applicants. The extension of HR in which pref-

Hospitals/Residents Problem H 393

erence lists may include ties is denoted by HRT. In this
context three natural stability definitions arise, so-called
weak stability, strong stability and super-stability (see [8]
for formal definitions of these concepts). Given an in-
stance I of HRT, it is known that weakly stable match-
ings may have different sizes, and the problem of find-
ing a maximum cardinality weakly stable matching is NP-
hard (see � Stable Marriage with Ties and Incomplete
Lists for further details). On the other hand, in contrast
to the case for weak stability, a super-stable matching in I
need not exist, though there is an O(L) algorithm to find
a such a matching if one does [7]. Analogous results hold
in the case of strong stability – in this case an O(L2) algo-
rithm [8] was improved by an O(CL) algorithm [10] and
extended to themany-many case [11]. Furthermore, coun-
terparts of the Rural Hospitals Theorem hold for HRT un-
der each of the super-stability and strong stability crite-
ria [7,15].

A further generalization of HR arises when each hos-
pital may be split into several departments, where each de-
partment has a capacity, and residents rank individual de-
partments in order of preference. This variant is modeled
by the Student-Project Allocation problem [2]. Finally, the
Stable Fixtures problem [9] is a non-bipartite extension of
HR in which there is a single set of agents, each of whom
has a capacity and ranks a subset of the others in order of
preference.

Open Problems

Several approximation algorithms for finding a maximum
cardinality weakly stable matching have been formulated,
given an instance of HRT where each hospital has capac-
ity 1 (see� Stable Marriage with Ties and Incomplete Lists
for further details). It remains open to extend these algo-
rithms or to formulate effective heuristics for the case of
HRT with arbitrary capacities. This problem is particu-
larly relevant from the practical perspective, since as al-
ready noted in Sect. “Applications”, hospitals may wish to
include ties in their preference lists. In this case weak sta-
bility is the most commonly-used stability criterion, due
to the guaranteed existence of such a matching. Attempt-
ing to match as many residents as possible motivates the
search for large weakly stable matchings.

URL to Code

Ada implementations of the RGS and HGS algorithms for
HR may be found via the following URL: http://www.dcs.
gla.ac.uk/research/algorithms/stable.

Cross References

� Optimal Stable Marriage
� Ranked Matching
� Stable Marriage
� Stable Marriage and Discrete Convex Analysis
� Stable Marriage with Ties and Incomplete Lists
� Stable Partition Problem

Recommended Reading

1. Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E.: The New York
City high school match. Am. Economic. Rev. 95(2), 364–367
(2006)

2. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for
the Student-Project allocation problem. J. Discret. Algorithms
5(1), 73–90 (2007)

3. Baïou, M., Balinski, M.: Student admissions and faculty recruit-
ment. Theor. Comput. Sci. 322(2), 245–265 (2004)

4. Bansal, V., Agrawal, A., Malhotra, V.S.: Stable marriages with
multiple partners: efficient search for an optimal solution. In:
Proceedings of ICALP ’03: the 30th International Colloquium
on Automata, Languages and Programming. Lecture Notes
in Computer Science, vol. 2719, pp. 527–542. Springer, Berlin
(2003)

5. Gale, D., Shapley, L.S.: College admissions and the stability of
marriage. Am. Math. Month. 69, 9–15 (1962)

6. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Struc-
ture and Algorithms. MIT Press, Cambridge (1989)

7. Irving, R.W., Manlove, D.F., Scott, S.: The Hospitals/Residents
problem with Ties. In: Proceedings of SWAT 2000: the 7th
Scandinavian Workshop on Algorithm Theory. Lecture Notes
in Computer Science, vol. 1851, pp. 259–271. Springer, Berlin
(2000)

8. Irving, R.W., Manlove, D.F., Scott, S.: Strong stability in the
Hospitals/Residents problem. In: Proceedings of STACS 2003:
the 20th Annual Symposium on Theoretical Aspects of Com-
puter Science. Lecture Notes in Computer Science, vol. 2607,
pp. 439–450. Springer, Berlin (2003)

9. Irving, R.W., Scott, S.: The stable fixtures problem – a many-to-
many extension of stable roommates. Discret. Appl.Math. 155,
2118–2129 (2007)

10. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Strongly sta-
ble matchings in time O(nm) and extension to the Hospitals-
Residents problem. In: Proceedings of STACS 2004: the 21st
International Symposium on Theoretical Aspects of Com-
puter Science. Lecture Notes in Computer Science, vol. 2996,
pp. 222–233. Springer, Berlin (2004)

11. Malhotra, V.S.: On the stability of multiple partner stable mar-
riages with ties. In: Proceedings of ESA ’04: the 12th Annual Eu-
ropean Symposium on Algorithms. Lecture Notes in Computer
Science, vol. 3221, pp. 508–519. Springer, Berlin (2004)

12. Romero-Medina, A.: Implementation of stable solutions in a re-
stricted matching market. Rev. Economic. Des. 3(2), 137–147
(1998)

13. Ronn, E.: NP-complete stable matching problems. J. Algo-
rithms 11, 285–304 (1990)

14. Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in
game-theoretic modeling and analysis. Econometric Society

http://www.dcs.gla.ac.uk/research/algorithms/stable
http://www.dcs.gla.ac.uk/research/algorithms/stable

394 H Hospitals/Residents Problem

Monographs, vol. 18. Cambridge University Press, Cambridge,
UK (1990)

15. Scott, S.: A study of stable marriage problems with ties. Ph. D.
thesis, University of Glasgow, Dept. Comput. Sci. (2005)

16. http://www.nrmp.org/ (National Resident Matching Program
website)

17. http://www.carms.ca (Canadian Resident Matching Service
website)

18. http://www.nes.scot.nhs.uk/sfas/ (Scottish Foundation Alloca-
tion Scheme website)

19. http://www.jrmp.jp (Japan Resident Matching Program web-
site)

http://www.nrmp.org/
http://www.carms.ca
http://www.nes.scot.nhs.uk/sfas/
http://www.jrmp.jp

Implementation Challenge for Shortest Paths I 395

I

Implementation Challenge
for Shortest Paths
2006; Demetrescu, Goldberg, Johnson

CAMIL DEMETRESCU1, ANDREW V. GOLDBERG2,
DAVID S. JOHNSON3

1 Department of Information and Computer Systems,
University of Roma, Rome, Italy

2 Microsoft Research – Silicon Valley,
Mountain View, CA, USA

3 Algorithms and Optimization Research Dept.,
AT&T Labs, Florham Park, NJ, USA

Keywords and Synonyms

Test sets and experimental evaluation of computer pro-
grams for solving shortest path problems; DIMACS

ProblemDefinition

DIMACS Implementation Challenges (http://dimacs.
rutgers.edu/Challenges/) are scientific events devoted to
assessing the practical performance of algorithms in ex-
perimental settings, fostering effective technology transfer
and establishing common benchmarks for fundamental
computing problems. They are organized by DIMACS,
the Center for Discrete Mathematics and Theoretical
Computer Science. One of the main goals of DIMACS
Implementation Challenges is to address questions of de-
termining realistic algorithm performance where worst
case analysis is overly pessimistic and probabilistic models
are too unrealistic: experimentation can provide guides to
realistic algorithm performance where analysis fails. Ex-
perimentation also brings algorithmic questions closer to
the original problems that motivated theoretical work. It
also tests many assumptions about implementation meth-
ods and data structures. It provides an opportunity to
develop and test problem instances, instance generators,
and other methods of testing and comparing performance

of algorithms. And it is a step in technology transfer by
providing leading edge implementations of algorithms for
others to adapt.

The first Challenge was held in 1990–1991 and was
devoted to Network flows and Matching. Other ad-
dressed problems included:Maximum Clique, Graph Col-
oring, and Satisfiability (1992–1993), Parallel Algorithms
for Combinatorial Problems (1993–1994), Fragment As-
sembly and Genome Rearrangements (1994–1995), Pri-
ority Queues, Dictionaries, and Multi-Dimensional Point
Sets (1995–1996), Near Neighbor Searches (1998–1999),
Semidefinite and Related Optimization Problems (1999–
2000), and The Traveling Salesman Problem (2000–2001).

This entry addresses the goals and the results of the 9th
DIMACS Implementation Challenge, held in 2005–2006
and focused on Shortest Path problems.

The 9th DIMACS Implementation Challenge:
The Shortest Path Problem

Shortest path problems are among the most fundamental
combinatorial optimization problems with many applica-
tions, both direct and as subroutines in other combinato-
rial optimization algorithms. Algorithms for these prob-
lems have been studied since the 1950’s and still remain an
active area of research.

One goal of this Challenge was to create a reproducible
picture of the state of the art in the area of shortest path
algorithms, identifying a standard set of benchmark in-
stances and generators, as well as benchmark implemen-
tations of well-known shortest path algorithms. Another
goal was to enable current researchers to compare their
codes with each other, in hopes of identifying the more
effective of the recent algorithmic innovations that have
been proposed.

Challenge participants studied the following variants
of the shortest paths problem:
� Point to point shortest paths [4,5,6,9,10,11,14]: the

problem consists of answering multiple online queries
about the shortest paths between pairs of vertices

http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/

396 I Implementation Challenge for Shortest Paths

and/or their lengths. The most efficient solutions for
this problem preprocess the graph to create a data
structure that facilitates answering queries quickly.

� External-memory shortest paths [2]: the problem con-
sists of finding shortest paths in a graph whose size is
too large to fit in internal memory. The problem actu-
ally addressed in the Challenge was single-source short-
est paths in undirected graphs with unit edge weights.

� Parallel shortest paths [8,12]: the problem consists of
computing shortest paths using multiple processors,
with the goal of achieving good speedups over tradi-
tional sequential implementations. The problem actu-
ally addressed in the Challenge was single-source short-
est paths.

� K-shortest paths [13,15]: the problem consists of rank-
ing paths between a pair of vertices by non decreasing
order of their length.

� Regular-language constrained shortest paths: [3] the
problem consists of a generalization of shortest path
problems where paths must satisfy certain constraints
specified by a regular language. The problems studied
in the context of the Challenge were single-source and
point-to-point shortest paths, with applications rang-
ing from transportation science to databases.

The Challenge culminated in a Workshop held at the
DIMACS Center at Rutgers University, Piscataway, New
Jersey on November 13–14, 2006. Papers presented at
the conference are available at the URL: http://www.dis.
uniroma1.it/~challenge9/papers.shtml. Selected contribu-
tions are expected to appear in a book published by the
American Mathematical Society in the DIMACS Book Se-
ries.

Key Results

The main results of the 9th DIMACS Implementation
Challenge include:
� Definition of common file formats for several variants

of the shortest path problem, both static and dynamic.
These include an extension of the famous DIMACS
graph file format used by several algorithmic software
libraries. Formats are described at the URL: http://
www.dis.uniroma1.it/~challenge9/formats.shtml.

� Definition of a common set of core input instances for
evaluating shortest path algorithms.

� Definition of benchmark codes for shortest path prob-
lems.

� Experimental evaluation of state-of-the-art implemen-
tations of shortest path codes on the core input families.

� A discussion of directions for further research in the
area of shortest paths, identifying problems critical in

real-world applications for which efficient solutions
still remain unknown.

The chief information venue about the 9th DIMACS
Implementation Challenge is the website http://www.dis.
uniroma1.it/~challenge9.

Applications

Shortest path problems arise naturally in a remarkable
number of applications. A limited list includes transporta-
tion planning, network optimization, packet routing, im-
age segmentation, speech recognition, document format-
ting, robotics, compilers, traffic information systems, and
dataflow analysis. It also appears as a subproblem of sev-
eral other combinatorial optimization problems such as
network flows. A comprehensive discussion of applica-
tions of shortest path problems appears in [1].

Open Problems

There are several open questions related to shortest path
problems, both theoretical and practical. One of the
most prominent discussed at the 9th DIMACS Chal-
lenge Workshop is modeling traffic fluctuations in point-
to-point shortest paths. The current fastest implementa-
tions preprocess the input graph to answer point-to-point
queries efficiently, and this operation may take hours on
graphs arising in large-scale road map navigation systems.
A change in the traffic conditions may require rescan-
ning the whole graph several times. Currently, no efficient
technique is known for updating the preprocessing in-
formation without rebuilding it from scratch. This would
have a major impact on the performance of routing soft-
ware.

Data Sets

The collection of benchmark inputs of the 9th DIMACS
Implementation Challenge includes both synthetic and
real-world data. All graphs are strongly connected. Syn-
thetic graphs include random graphs, grids, graphs em-
bedded on a torus, and graphs with small-world proper-
ties. Real-world inputs consist of graphs representing the
road networks of Europe andUSA. Europe graphs are pro-
vided by courtesy of the PTV company, Karlsruhe, Ger-
many, subject to signing a (no-cost) license agreement.
They include the road networks of 17 European coun-
tries: AUT, BEL, CHE, CZE, DEU, DNK, ESP, FIN, FRA,
GBR, IRL, ITA, LUX, NDL, NOR, PRT, SWE, with a to-
tal of about 19 million nodes and 23 million edges. USA
graphs are derived from the UA Census 2000 TIGER/Line

http://www.dis.uniroma1.it/~challenge9/papers.shtml
http://www.dis.uniroma1.it/~challenge9/papers.shtml
http://www.dis.uniroma1.it/~challenge9/formats.shtml
http://www.dis.uniroma1.it/~challenge9/formats.shtml
http://www.dis.uniroma1.it/~challenge9
http://www.dis.uniroma1.it/~challenge9

Implementation Challenge for Shortest Paths I 397

Implementation Challenge for Shortest Paths, Table 1
USA Road Networks derived from the TIGER/Line collection

NAME DESCRIPTION NODES ARCS BOUNDING BOX LATITUDE (N) BOUNDING BOX LONGITUDE (W)
USA Full USA 23 947 347 58 333 344 – –
CTR Central USA 14 081 816 34 292 496 [25.0; 50.0] [79.0; 100.0]
W Western USA 6 262 104 15 248 146 [27.0; 50.0] [100.0; 130.0]
E Eastern USA 3 598 623 8 778 114 [24.0; 50.0] [-1; 79.0]
LKS Great Lakes 2 758 119 6 885 658 [41.0; 50.0] [74.0; 93.0]
CAL California and Nevada 1 890 815 4 657 742 [32.5; 42.0] [114.0; 125.0]
NE Northeast USA 1 524 453 3 897 636 [39.5, 43.0] [-1; 76.0]
NW Northwest USA 1 207 945 2 840 208 [42.0; 50.0] [116.0; 126.0]
FLA Florida 1 070 376 2 712 798 [24.0; 31.0] [79; 87.5]
COL Colorado 435 666 1 057 066 [37.0; 41.0] [102.0; 109.0]
BAY Bay Area 321 270 800 172 [37.0; 39.0] [121; 123]
NY New York City 264 346 733 846 [40.3; 41.3] [73.5; 74.5]

Implementation Challenge for Shortest Paths, Table 2
Results of the Challenge competition on the USA graph (23.9 million nodes and 58.3 million arcs) with unit arc lengths. The bench-
mark ratio is the average query time divided by the time required to answer a query using the Challenge Dijkstra benchmark code
on the same platform. Query times and node scans are average values per query over 1000 random queries

PREPROCESSING QUERY

CODE Time (minutes) Space (MB) Node scans Time (ms) Benchmark ratio
HH-based transit [14] 104 3664 n.a. 0.019 4.78 � 10�6

TRANSIT [4] 720 n.a. n.a. 0.052 10.77 � 10�6

HH Star [6] 32 2662 1082 1.14 287.32 � 10�6

REAL(16,1) [9] 107 2435 823 1.42 296.30 � 10�6

HH with DistTab [6] 29 2101 1671 1.61 405.77 � 10�6

RE [9] 88 861 3065 2.78 580.08 � 10�6

Files produced by the Geography Division of the US Cen-
sus Bureau, Washington, DC. The TIGER/Line collec-
tion is available at: http://www.census.gov/geo/www/tiger/
tigerua/ua_tgr2k.html. The Challenge USA core family
contains a graph representing the full USA road system
with about 24 million nodes and 58 million edges, plus 11
subgraphs obtained by cutting it along different bounding
boxes as shown in Table 1. Graphs in the collection include
also node coordinates and are given in DIMACS format.

The benchmark input package also features query gen-
erators for the single-source and point-to-point shortest
path problems. For the single-source version, sources are
randomly chosen. For the point-to-point problem, both
random and local queries are considered. Local queries of
the form (s, t) are generated by randomly picking t among
the nodes with rank in [2i ; 2i+1) in the ordering in which
nodes are scanned by Dijkstra’s algorithm with source s,
for any parameter i. Clearly, the smaller i is, the closer
nodes s and t are in the graph. Local queries are impor-
tant to test how the algorithms’ performance is affected by
the distance between query endpoints.

The core input families of the 9thDIMACS Implemen-
tation Challenge are available at the URL: http://www.dis.
uniroma1.it/~challenge9/download.shtml.

Experimental Results

One of themain goals of the Challenge was to compare dif-
ferent techniques and algorithmic approaches. The most
popular topic was the point-to-point shortest path prob-
lem, studied by six research groups in the context of the
Challenge. For this problem, participants were addition-
ally invited to join a competition aimed at assessing the
performance and the robustness of different implementa-
tions. The competition consisted of preprocessing a ver-
sion of the full USA graph of Table 1 with unit edge
lengths and answering a sequence of 1,000 random dis-
tance queries. The details were announced on the first day
of the workshop and the results were due on the second
day. To compare experimental results by different partic-
ipants on different platforms, each participant ran a Dijk-
stra benchmark code [7] on the USA graph to do machine

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
http://www.dis.uniroma1.it/~challenge9/download.shtml
http://www.dis.uniroma1.it/~challenge9/download.shtml

398 I Implementation Challenge for TSP Heuristics

calibration. The final ranking was made by considering
each query time divided by the time required by the bench-
mark code on the same platform (benchmark ratio). Other
performance measures taken into account were space us-
age and the average number of nodes scanned by query
operations.

Six point-to-point implementations were run success-
fully on the USA graph defined for the competition.
Among them, the fastest query time was achieved by the
HH-based transit code [14]. Results are reported in Ta-
ble 2. Codes RE and REAL(16, 1) [9] were not eligible for
the competition, but used by the organizers as a proof that
the problem is feasible. Some other codes were not able to
deal with the size of the full USA graph, or incurred run-
time errors.

Experimental results for other variants of the shortest
paths problem are described in the papers presented at the
Challenge Workshop.

URL to Code

Generators of problem families and benchmark solvers for
shortest paths problems are available at the URL: http://
www.dis.uniroma1.it/~challenge9/download.shtml.

Cross References

� Engineering Algorithms for Large Network
Applications

� Experimental Methods for Algorithm Analysis
� High Performance Algorithm Engineering for

Large-scale Problems
� Implementation Challenge for TSP Heuristics
� LEDA: a Library of Efficient Algorithms

Recommended Reading

1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Al-
gorithms and Applications. Prentice Hall, Englewood Cliffs, NJ
(1993)

2. Ajwani, D., Dementiev, U., Meyer, R., Osipov, V.: Breadth first
search on massive graphs. In: 9th DIMACS Implementation
Challenge Workshop: Shortest Paths, DIMACS Center, Piscat-
away, NJ, 13–14 Nov 2006

3. Barrett, C., Bissett, K., Holzer, M., Konjevod, G., Marathe, M.,
Wagner, D.: Implementations of routing algorithms for trans-
portation networks. In: 9thDIMACS Implementation Challenge
Workshop: Shortest Paths. DIMACS Center, Piscataway, NJ, 13–
14 Nov 2006

4. Bast, H., Funke, S., Matijevic, D.: Transit: Ultrafast shortest-path
queries with linear-time preprocessing. In: 9th DIMACS Imple-
mentation Challenge Workshop: Shortest Paths, DIMACS Cen-
ter, Piscataway, NJ, 13–14 Nov 2006

5. Delling, D., Holzer, M., Muller, K., Schulz, F., Wagner, D.: High-
performance multi-level graphs. In: 9th DIMACS Implementa-
tion Challenge Workshop: Shortest Paths, DIMACS Center, Pis-
cataway, NJ, 13–14 Nov 2006

6. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hier-
archies star. In: 9th DIMACS Implementation Challenge Work-
shop: Shortest Paths, DIMACS Center, Piscataway, NJ, 13–14
Nov 2006

7. Dijkstra, E.: A note on two problems in connexion with graphs.
NumerischeMathematik 1, 269–271 (1959)

8. Edmonds, N., Breuer, A., Gregor, D., Lumsdaine, A.: Single-
source shortest paths with the parallel boost graph library.
In: 9thDIMACS Implementation ChallengeWorkshop: Shortest
Paths, DIMACS Center, Piscataway, NJ, 13–14 Nov 2006

9. Goldberg, A., Kaplan, H., Werneck, R.: Better landmarks within
reach. In: 9th DIMACS Implementation Challenge Workshop:
Shortest Paths. DIMACS Center, Piscataway, NJ, 13–14 Nov
2006

10. Köhler, E., Möhring, R., Schilling, H.: Fast point-to-point shortest
path computationswith arc-flags. In: 9thDIMACS Implementa-
tion Challenge Workshop: Shortest Paths, DIMACS Center, Pis-
cataway, NJ, 13–14 Nov 2006

11. Lauther, U.: An experimental evaluation of point-to-point
shortest path calculation on roadnetworks with precalculated
edge-flags. In: 9th DIMACS Implementation Challenge Work-
shop: Shortest Paths, DIMACS Center, Piscataway, NJ, 13–14
Nov 2006

12. Madduri, K., Bader, D., Berry, J., Crobak, J.: Parallel shortest path
algorithms for solving large-scale instances. In: 9th DIMACS
Implementation ChallengeWorkshop: Shortest Paths, DIMACS
Center, Piscataway, NJ, 13–14 Nov 2006

13. Pascoal, M.: Implementations and empirical comparison of k
shortest loopless path algorithms. In: 9th DIMACS Implemen-
tation Challenge Workshop: Shortest Paths, DIMACS Center,
Piscataway, NJ, 13–14 Nov 2006

14. Sanders, P., Schultes, D.: Robust, almost constant time
shortest-path queries in road networks. In: 9th DIMACS Imple-
mentation Challenge Workshop: Shortest Paths, DIMACS Cen-
ter, Piscataway, NJ, 13–14 Nov 2006

15. Santos, J.: K shortest path algorithms. In: 9th DIMACS Imple-
mentation Challenge Workshop: Shortest Paths, DIMACS Cen-
ter, Piscataway, NJ, 13–14 Nov 2006

Implementation Challenge
for TSP Heuristics
2002; Johnson, McGeoch

LYLE A. MCGEOCH
Department of Mathematics and Computer Science,
Amherst College, Amherst, MA, USA

Keywords and Synonyms

Lin-Kernighan; Two-opt; Three-opt; Held-Karp; TSPLIB;
Concorde

http://www.dis.uniroma1.it/~challenge9/download.shtml
http://www.dis.uniroma1.it/~challenge9/download.shtml

Implementation Challenge for TSP Heuristics I 399

ProblemDefinition

The Eighth DIMACS Implementation Challenge, spon-
sored by DIMACS, the Center for Discrete Mathematics
and Theoretical Computer Science, concerned heuristics
for the symmetric Traveling Salesman Problem. The Chal-
lenge began in June 2000 and was organized by David S.
Johnson, Lyle A. McGeoch, Fred Glover and César Rego.
It explored the state-of-the-art in the area of TSP heuris-
tics, with researchers testing a wide range of implementa-
tions on a common (and diverse) set of input instances.
The Challenge remained ongoing in 2007, with new re-
sults still being accepted by the organizers and posted on
the Challenge website: www.research.att.com/~dsj/chtsp.
A summary of the submissions through 2002 appeared in
a book chapter by Johnson and McGeoch [5].

Participants tested their heuristics on four types of in-
stances, chosen to test the robustness and scalability of dif-
ferent approaches:
1. The 34 instances that have at least 1000 cities in

TSPLIB, the instance library maintained by Gerd
Reinelt.

2. A set of 26 instances consisting of points uniformly
distributed in the unit square, with sizes ranging from
1000 to 10,000,000 cities.

3. A set of 23 randomly generated clustered instances,
with sizes ranging from 1000 to 316,000 cities.

4. A set of 7 instances based on random distance matrices,
with sizes ranging from 1000 to 10,000 cities.

The TSPLIB instances and generators for the random in-
stances are available on the Challenge website. In addition,
the website contains a collection of instances for the asym-
metric TSP problem.

For each instance upon which a heuristic was tested,
the implementers reported the machine used, the tour
length produced, the user time, and (if possible) memory
usage. Some heuristics could not be applied to all of the
instances, either because the heuristics were inherently ge-
ometric or because the instances were too large. To help
facilitate timing comparisons between heuristics tested on
different machines, participants ran a benchmark heuris-
tic (provided by the organizers) on instances of different
sizes. The benchmark times could then be used to normal-
ize, at least approximately, the observed running times of
the participants’ heuristics.

The quality of a tour was computed from a submit-
ted tour length in two ways: as a ratio over the opti-
mal tour length for the instance (if known), and as a ra-
tio over the Held-Karp (HK) lower bound for the in-
stance. The Concorde optimization package of Applegate
et al. [1] was able to find the optimum for 58 of the in-

stances in reasonable time. Concorde was used in a sec-
ond way to compute the HK lower bound for all but the
three largest instances. A third algorithm, based on La-
grangian relaxation, was used to compute an approximate
HK bound, a lower bound on true HK bound, for the
remaining instances. The Challenge website reports on
each of these three algorithms, presenting running times
and a comparison of the bounds obtained for each in-
stance.

The Challenge website permits a variety of reports to
be created:
1. For each heuristic, tables can be generated with results

for each instance, including tour length, tour quality,
and raw and normalized running times.

2. For each instance, a table can be produced showing
the tour quality and normalized running time of each
heuristic.

3. For each pair of heuristics, tables and graphs can be
produced that compare tour quality and running time
for instances of different type and size.
Heuristics for which results were submitted to the

Challenge fell into several broad categories:
Heuristics designed for speed. These heuristics – all of

which target geometric instances – have running times
within a small multiple of the time needed to read the in-
put instance. Examples include the strip and spacefilling-
curve heuristics. The speed requirement affects tour qual-
ity dramatically. Two of these algorithms produced tours
with 14% of the HK lower bound for a particular TSPLIB
instance, but none came within 25% on the other 89 in-
stances.

Tour construction heuristics.These heuristics construct
tours in various ways, without seeking to find improve-
ments once a single tour passing through all cities is found.
Some are simple, such as the nearest-neighbor and greedy
heuristics, while others are more complex, such as the fa-
mous Christofides heuristic. These heuristics offer a num-
ber of options in trading time for tour quality, and several
produce tours within 15% of the HK lower bound on most
instances in reasonable time. The best of them, a variant
of Christofides, produces tours within 8% on uniform in-
stances but is much more time-consuming than the other
algorithms.

Simple local improvement heuristics. These include the
well-known two-opt and three-opt heuristics and variants
of them. These heuristics outperform tour construction
heuristics in terms of tour quality on most types of in-
stances. For example, 3-opt gets within about 3% of theHK
lower bound on most uniform instances. The submissions
in this category explored various implementation choices
that affect the time-quality tradeoff.

http://www.research.att.com/~dsj/chtsp

400 I Implementing Shared Registers in Asynchronous Message-Passing Systems

Lin-Kernighan and its variants. These heuristics ex-
tend the local search neighborhood used in 3-opt. Lin-
Kernighan can produce high-quality tours (for example,
within 2% of the HK lower bound on uniform instances) in
reasonable time. One variant, due to Helsgaun [3], obtains
tours within 1% on a wide variety of instances, although
the running time can be substantial.

Repeated local search heuristics. These heuristics are
based on repeated executions of a heuristic such as Lin-
Kernighan, with random kicks applied to the tour after
a local optimum is found. These algorithms can yield high-
quality tours at increased running time.

Heuristics that begin with repeated local search. One
example is the tour-merge heuristic [2], which runs re-
peated local search multiple times, builds a graph con-
taining edges found in the best tours, and does exhaustive
search within the resulting graph. This approach yields the
best known tours for some of the instances in the Chal-
lenge.

The submissions to the Challenge demonstrated the
remarkable effectiveness of heuristics for the traveling
salesman problem. They also showed that implementation
details, such a choice of data structure or whether to ap-
proximate aspects of the computation, can affect running
time and/or solution quality greatly. Results for a given
heuristic also varied enormously depending on the type of
instance to which it is applied.

URL to Code

www.research.att.com/~dsj/chtsp

Cross References

� TSP-Based Curve Reconstruction

Recommended Reading
1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of

traveling salesman problems. Documenta Mathematica, Extra
Volume Proceedings ICM III:645–656. Deutsche Mathematiker-
Vereinigung, Berlin (1998)

2. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding tours in
the TSP. Technical Report 99885, Research Institute for Discrete
Mathematics, Universität Bonn (1999)

3. Helsgaun, K.: An effective implementation of the Lin-Kernighan
traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130
(2000)

4. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem:
A case study. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Com-
binatorial Optimization, pp. 215–310. Wiley, Chicester (1997)

5. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics
for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Sales-
man Problem and Its Variants, pp. 369–443, Kluwer, Dordrecht
(2002)

Implementing Shared Registers
in Asynchronous Message-Passing
Systems
1995; Attiya, Bar-Noy, Dolev

ERIC RUPPERT
Department Computer Science and Engineering,
York University, Toronto, ON, Canada

Keywords and Synonyms

Simulation; Emulation

ProblemDefinition

A distributed system is composed of a collection of n pro-
cesses which communicate with one another. Two means
of interprocess communication have been heavily studied.
Message-passing systemsmodel computer networks where
each process can send information over message chan-
nels to other processes. In shared-memory systems, pro-
cesses communicate less directly by accessing information
in shared data structures. Distributed algorithms are of-
ten easier to design for shared-memory systems because
of their similarity to single-process system architectures.
However, many real distributed systems are constructed
as message-passing systems. Thus, a key problem in dis-
tributed computing is the implementation of sharedmem-
ory inmessage-passing systems. Such implementations are
also called simulations or emulations of shared memory.

The most fundamental type of shared data structure to
implement is a (read-write) register, which stores a value,
taken from some domain D. It is initially assigned a value
from D and can be accessed by two kinds of operations,
read and write(v), where v 2 D. A register may be either
single-writer, meaning only one process is allowed to write
it, or multi-writer, meaning any process may write to it.
Similarly, it may be either single-reader or multi-reader.
Attiya and Welch [4] give a survey of how to build multi-
writer, multi-reader registers from single-writer, single-
reader ones.

If reads and writes are performed one at a time, they
have the following effects: a read returns the value stored
in the register to the invoking process, and a write(v)
changes the value stored in the register to v and returns
an acknowledgment, indicating that the operation is com-
plete. When many processes apply operations concur-
rently, there are several ways to specify a register’s behav-
ior [14]. A single-writer register is regular if each read re-
turns either the argument of the write that completedmost
recently before the read began or the argument of some

http://www.research.att.com/~dsj/chtsp

Implementing Shared Registers in Asynchronous Message-Passing Systems I 401

write operation that runs concurrently with the read. (If
there is no write that completes before the read begins,
the read may return either the initial value of the register
or the value of a concurrent write operation.) A register
is atomic (see � linearizability) if each operation appears
to take place instantaneously. More precisely, for any con-
current execution, there is a total order of the operations
such that each read returns the value written by the last
write that precedes it in the order (or the initial value of
the register, if there is no such write). Moreover, this total
order must be consistent with the temporal order of op-
erations: if one operation finishes before another one be-
gins, the former must precede the latter in the total order.
Atomicity is a stronger condition than regularity, but it is
possible to implement atomic registers from regular ones
with some complexity overhead [12].

This article describes the problem of implementing
registers in an asynchronous message-passing system in
which processes may experience crash failures. Each pro-
cess can send a message, containing a finite string, to any
other process. To make the descriptions of algorithms
more uniform, it is often assumed that processes can send
messages to themselves. All messages are eventually deliv-
ered. In the algorithms described below, senders wait for
an acknowledgment of each message before sending the
next message, so it is not necessary to assume that the mes-
sage channels are first-in-first-out. The system is totally
asynchronous: there is no bound on the time required for
a message to be delivered to its recipient or for a process
to perform a step of local computation. A process that fails
by crashing stops executing its code, but other processes
cannot distinguish between a process that has crashed and
one that is running very slowly. (Failures of message chan-
nels [3] and more malicious kinds of process failures [15]
have also been studied.)

A t-resilient register implementation provides pro-
grammes to be executed by processes to simulate read and
write operations. These programmes can include any stan-
dard control structures and accesses to a process’s local
memory, as well as instructions to send a message to an-
other process and to read the process’s buffer, where in-
coming messages are stored. The implementation should
also specify how the processes’ local variables are initial-
ized to reflect any initial value of the implemented register.
In the case of a single-writer register, only one process may
execute the write programme. A process may invoke the
read andwrite programmes repeatedly, but it must wait for
one invocation to complete before starting the next one. In
any such execution where at most t processes crash, each
of a process’s invocations of the read or write programme
should eventually terminate. Each read operation returns

a result from the setD, and these results should satisfy reg-
ularity or atomicity.

Relevant measures of algorithm complexity include
the number of messages transmitted in the system to per-
form an operation, the number of bits per message, and
the amount of local memory required at each process. One
measure of time complexity is the time needed to per-
form an operation, under the optimistic assumption that
the time to deliver messages is bounded by � and local
computation is instantaneous (although algorithms must
work correctly even without these assumptions).

Key Results

Implementing a Regular Register

One of the core ideas for implementing shared registers
in message-passing systems is a construction that imple-
ments a regular single-writer multi-reader register. It was
introduced by Attiya, Bar-Noy and Dolev [3] and made
more explicit by Attiya [2]. A write(v) sends the value v
to all processes and waits until a majority of the processes
(

 n
2
˘
+ 1, including the writer itself) return an acknowl-

edgment. A reader sends a request to all processes for their
latest values. When it has received responses from a ma-
jority of processes, it picks the most recently written value
among them. If a write completes before a read begins, at
least one process that answers the reader has received the
write’s value prior to sending its response to the reader.
This is because any two sets that each contain a majority
of the processes must overlap. The time required by oper-
ations when delivery times are bounded is 2�.

This algorithm requires the reader to determine which
of the values it receives is most recent. It does this using
timestamps attached to the values. If the writer uses in-
creasing integers as timestamps, the messages grow with-
out bound as the algorithm runs. Using the bounded
timestamp scheme of Israeli and Li [13] instead yields the
following theorem.

Theorem 1 (Attiya [2]) There is an
˙ n�2

2
�
-resilient im-

plementation of a regular single-writer, multi-reader regis-
ter in a message-passing system of n processes. The imple-
mentation uses 	(n) messages per operation, with 	(n3)
bits per message. The writer uses 	(n4) bits of local mem-
ory and each reader uses	(n3) bits.

Theorem 1 is optimal in terms of fault-tolerance. If
˙ n
2
�

processes can crash, the network can be partitioned into
two halves of size

 n
2
˘
, with messages between the two

halves delayed indefinitely. A write must terminate be-
fore any evidence of the write is propagated to the half
not containing the writer, and then a read performed by

402 I Implementing Shared Registers in Asynchronous Message-Passing Systems

a process in that half cannot return an up-to-date value.
For t �

˙ n
2
�
, registers can be implemented in a message-

passing system only if some degree of synchrony is present
in the system. The exact amount of synchrony required
was studied by Delporte-Gallet et al. [6].

Theorem 1 is within a constant factor of the optimal
number of messages per operation. Evidence of each write
must be transmitted to at least

˙ n
2
�
� 1 processes, requir-

ing˝(n) messages; otherwise this evidence could be oblit-
erated by crashes. A write must terminate even if only
 n
2
˘
+ 1 processes (including the writer) have received in-

formation about the valuewritten, since the rest of the pro-
cesses could have crashed. Thus, a read must receive in-
formation from at least

˙ n
2
�
processes (including itself) to

ensure that it is aware of the most recent write operation.
A t-resilient implementation, for t <

˙ n
2
�
, that uses

	(t) messages per operation is obtained by the follow-
ing adaptation. A set of 2t + 1 processes is preselected to
be data storage servers. Writes send information to the
servers, and wait for t + 1 acknowledgments. Reads wait
for responses from t + 1 of the servers and choose the one
with the latest timestamp.

Implementing an Atomic Register

Attiya, Bar-Noy and Dolev [3] gave a construction of an
atomic register in which readers forward the value they re-
turn to all processes and wait for an acknowledgment from
a majority. This is done to ensure that a read does not
return an older value than another read that precedes it.
Using unbounded integer timestamps, this algorithm uses
	(n) messages per operation. The time needed per opera-
tion when delivery times are bounded is 2� for writes and
4� for reads. However, their technique of bounding the
timestamps increases the number of messages per opera-
tion to	(n2) (and the time per operation to 12�). A better
implementation of atomic registers with boundedmessage
size is given by Attiya [2]. It uses the regular registers of
Theorem 1 to implement atomic registers using the “hand-
shaking” construction of Haldar and Vidyasankar [12],
yielding the following result.

Theorem 2 (Attiya [2]) There is an
˙ n�2

2
�
-resilient im-

plementation of an atomic single-writer, multi-reader reg-
ister in a message-passing system of n processes. The imple-
mentation uses 	(n) messages per operation, with 	(n3)
bits per message. The writer uses 	(n5) bits of local mem-
ory and each reader uses	(n4) bits.

Since atomic registers are regular, this algorithm is optimal
in terms of fault-tolerance and within a constant factor of
optimal in terms of the number of messages.The time used

when delivery times are bounded is at most 14� for writes
and 18� for reads.

Applications

Any distributed algorithm that uses shared registers can
be adapted to run in a message-passing system using the
implementations described above. This approach yielded
new or improved message-passing solutions for a number
of problems, including randomized consensus [1], multi-
writer registers [4], and snapshot objects � Snapshots.
The reverse simulation is also possible, using a straight-
forward implementation of message channels by single-
writer, single-reader registers. Thus, the two asynchronous
models are equivalent, in terms of the set of problems
that they can solve, assuming only a minority of processes
crash. However there is some complexity overhead in us-
ing the simulations.

If a shared-memory algorithm is implemented in
a message-passing system using the algorithms described
here, processes must continue to operate evenwhen the al-
gorithm terminates, to help other processes execute their
reads and writes. This cannot be avoided: if each pro-
cess must stop taking steps when its algorithm terminates,
there are some problems solvable with shared registers that
are not solvable in the message-passing model [5].

Using a majority of processes to “validate” each read
and write operation is an example of a quorum system,
originally introduced for replicated data by Gifford [10].
In general, a quorum system is a collection of sets of pro-
cesses, called quorums, such that every two quorums inter-
sect. Quorum systems can also be designed to implement
shared registers in other models of message-passing sys-
tems, including dynamic networks and systems with mali-
cious failures. For examples, see [7,9,11,15].

Open Problems

Although the algorithms described here are optimal in
terms of fault-tolerance and message complexity, it is not
known if the number of bits used in messages and local
memory is optimal. The exact time needed to do reads
and writes when messages are delivered within time � is
also a topic of ongoing research. (See, for example, [8].)
As mentioned above, the simulation of shared registers
can be used to implement shared-memory algorithms in
message-passing systems. However, because the simula-
tion introduces considerable overhead, it is possible that
some of those problems could be solvedmore efficiently by
algorithms designed specifically for message-passing sys-
tems.

Incentive Compatible Selection I 403

Cross References

� Linearizability
�Quorums
� Registers

Recommended Reading
1. Aspnes, J.: Randomizedprotocols for asynchronous consensus.

Distrib. Comput. 16(2–3), 165–175 (2003)
2. Attiya, H.: Efficient and robust sharing of memory in message-

passing systems. J. Algorithms 34(1), 109–127 (2000)
3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in

message-passing systems. J. ACM 42(1), 124–142 (1995)
4. Attiya, H., Welch, J.: Distributed Computing: Fundamen-

tals, Simulations and Advanced Topics, 2nd edn. Wiley-
Interscience, Hoboken (2004)

5. Chor, B., Moscovici, L.: Solvability in asynchronous environ-
ments. In: Proc. 30th Symposium on Foundations of Computer
Science, pp. 422–427 (1989)

6. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos,
V., Kouznetsov, P., Toueg, S.: The weakest failure detectors to
solve certain fundamental problems in distributed comput-
ing. In: Proc. 23rd ACMSymposium on Principles of Distributed
Computing, pp. 338–346. St. John’s, Newfoundland, 25–28 July
2004

7. Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, J.L.:
GeoQuorums: Implementing atomic memory inmobile ad hoc
networks. Distrib. Comput. 18(2), 125–155 (2005)

8. Dutta, P., Guerraoui, R., Levy, R.R., Chakraborty, A.: How fast
can a distributed atomic read be? In: Proc. 23rd ACM Sympo-
sium on Principles of Distributed Computing, pp. 236–245. St.
John’s, Newfoundland, 25–28 July 2004

9. Englert, B., Shvartsman, A.A.: Graceful quorum reconfiguration
in a robust emulation of shared memory. In: Proc. 20th IEEE
International Conference on Distributed Computing Systems,
pp. 454–463. Taipei, 10–13 April 2000

10. Gifford, D.K.: Weighted voting for replicated data. In: Proc.
7th ACM Symposium on Operating Systems Principles,
pp. 150–162. Pacific Grove, 10–12 December 1979

11. Gilbert, S., Lynch, N., Shvartsman, A.: Rambo II: rapidly reconfig-
urable atomicmemory for dynamic networks. In: Proc. Interna-
tional Conference on Dependable Systems and Networks, pp.
259–268. San Francisco, 22–25 June 2003

12. Haldar, S., Vidyasankar, K.: Constructing 1-writer multireader
multivalued atomic variables from regular variables. J. ACM
42(1), 186–203 (1995)

13. Israeli, A., Li, M.: Bounded time-stamps. Distrib. Comput. 6(4),
205–209 (1993)

14. Lamport, L.: On interprocess communication, Part II: Algo-
rithms. Distrib. Comput. 1(2), 86–101 (1986)

15. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distrib. Com-
put. 11(4), 203–213 (1998)

Incentive Compatible Algorithms
� Computing Pure Equilibria in the Game of Parallel

Links
� Truthful Mechanisms for One-Parameter Agents

Incentive Compatible Selection
2006; Chen, Deng, Liu

XI CHEN1, XIAOTIE DENG2

1 Department of Computer Science and Technology,
Tsinghua University, Beijing, China

2 Department of Computer Science, City University
of Hong Kong, Hong Kong, China

Keywords and Synonyms

Incentive compatible selection; Incentive compatible
ranking; Algorithmic mechanism design

ProblemDefinition

Ensuring truthful evaluation of alternatives in human ac-
tivities has always been an important issue throughout
history. In sport, in particular, such an issue is vital and
practice of the fair play principle has been consistently put
forward as a matter of foremost priority. In addition to re-
lying on the code of ethics and professional responsibility
of players and coaches, the design of game rules is an im-
portant measure in enforcing fair play.

Ranking alternatives through pairwise comparisons
(or competitions) is the most common approach in sports
tournaments. Its goal is to find out the “true” ordering
among alternatives through complete or partial pairwise
competitions [1, 3, 4, 5, 6, 7]. Such studies have been
mainly based on the assumption that all the players play
truthfully, i. e., with their maximal effort. It is, however,
possible that some players form a coalition, and cheat for
group benefit. An interesting example can be found in [2].

Problem Description

The work of Chen, Deng, and Liu [2] considers the prob-
lem of choosing m winners out of n candidates.

Suppose a tournament is held among n players Pn =
fp1; : : : png and m winners are expected to be selected by
a selection protocol. Here a protocol f n,m is a predefined
function (which will become clear later) to choose win-
ners through pairwise competitions, with the intention of
finding m players of highest capacity. When the tourna-
ment starts, a distinct ID in Nn = f1; 2; : : : ng is assigned to
each player in Pn by a randomly picked indexing function
I : Pn ! Nn . Then a match is played between each pair of
players. The competition outcomes will form a graph G,
whose vertex set is Nn and edges represent the results of
all the matches. Finally, the graph will be treated as the in-
put to f n,m, and it will output a set of m winners. Now it

404 I Incentive Compatible Selection

should be clear that f n,m maps every possible tournament
graph G to a subset (of cardinalitym) of Nn.

Suppose there exists a group of bad players who play
dishonestly, i. e. they might lose a match on purpose to
gain overall benefit for the whole group, while the rest of
the players always play truthfully, i. e. they try their best to
win matches. The group of bad players gains benefit if they
are able to have more winning positions than that accord-
ing to the true ranking. Given knowledge of the selection
protocol f n,m, the indexing function I and the true ranking
of all players, the bad players try to find a cheating strategy
that can fool the protocol and gain benefit.

The problem is discussed under two models in which
the characterizations of bad players are different. Under
the collective incentive compatible model, bad players are
willing to sacrifice themselves to win group benefit; while
the ones under the alliance incentive compatible model
only cooperate if their individual interests are well main-
tained in the cheating strategy.

The goal is to find an “ideal” protocol, under which
players or groups of players maximize their benefits only
by strictly following the fair play principle, i. e. always play
with maximal effort.

Formal Definitions

When the tournament begins, an indexing function I is
randomly picked, which assigns ID I(p) 2 Nn to each
player p 2 Pn . Then a match is played between each pair
of players, and the results are represented as a directed
graphG. Finally,G is fed into the predefined selection pro-
tocol f n,m, to produce a set of m winners I�1(W), where
W = fn;m(G) � Nn .

Notations An indexing function I for a tournament
attended by n players Pn = fp1; p2; : : : png is a one-
to-one correspondence from Pn to the set of IDs:
Nn = f1; 2; : : : ng. A ranking function R is a one-to-one
correspondence from Pn to f1; 2; : : : ng. R(p) represents
the underlying true ranking of player p among the n play-
ers. The smaller, the stronger.

A tournament graph of size n is a directed graph
G = (Nn ; E) such that, for all i 6= j 2 Nn , either i j 2 E
(player with ID i beats player with ID j) or ji 2 En . Let Kn
denote the set of all such graphs. A selection protocol f n,m,
which choosesmwinners out of n candidates, is a function
from Kn to fS � Nn and jSj = mg.

A tournament Tn among players Pn is a pair Tn =
(R; B) where R is a ranking function from Pn to Nn and
B � Pn is the group of bad players.

Definition 1 (Benefit) Given a protocol f n,m, a tourna-
ment Tn = (R; B), an indexing function I and a tourna-
ment graphG 2 Kn , the benefit of the group of bad players
is

Ben(fn;m; Tn ; I;G) =
ˇ̌
ˇ˚i 2 fn;m(G); I�1(i) 2 B

�ˇ̌ˇ
�
ˇ̌
ˇ˚p 2 B; R(p) � m

�ˇ̌ˇ:

Given knowledge of f n,m, Tn and I, not every G 2 Kn is
a feasible strategy for B: the group of bad players. First,
it depends on the tournament Tn = (R; B), e. g. a player
pb 2 B cannot win a player pg … B if R(pb) > R(pg). Sec-
ond, it depends on the property of bad players which is
specified by the model considered. Tournament graphs,
which are recognized as feasible strategies, are character-
ized below, for eachmodel. The key difference is that, a bad
player in the alliance incentive compatible model is not
willing to sacrifice his ownwinning position, while a player
in the other model fights for group benefit at all costs.

Definition 2 (Feasible Strategy) Given f n,m, Tn = (R; B)
and I, graph G 2 Kn is c-feasible if
1 For every two players pi ; p j … B, if R(pi) < R(p j), then

I(pi)I(p j) 2 E;
2 For all pg … B and pb 2 B, if R(pg) < R(pb), then edge

I(pg)I(pb) 2 E.
Graph G 2 Kn is a-feasible if it is c-feasible and also satis-
fies
3 For every bad player p 2 B, if R(p) � m, then I(p) 2

fn;m(G).

A cheating strategy is then a feasible tournament graph G
that can be employed by the group of bad players to gain
positive benefit.

Definition 3 (Cheating Strategy) Given f n,m, Tn =
(R; B) and I, a cheating strategy for the group of bad play-
ers under the collective incentive compatible (alliance in-
centive compatible) model is a graph G 2 Kn which is c-
feasible (a-feasible) and satisfies Ben(fn;m; Tn ; I;G) > 0.

The following two problems are studied in [2]: (1) Is there
a protocol f n,m such that for all Tn and I, no cheating
strategy exists under the collective incentive compatible
model? (2) Is there a protocol f n,m such that for all Tn and
I, no cheating strategy exists under the alliance incentive
compatible model?

Key Results

Definition 4 For all integers n andm such that 2 � m �
n � 2, a tournament graph Gn;m = (Nn ; E) 2 Kn , which
consists of three parts T1, T2, and T3, is defined as follows:

Independent Sets in Random Intersection Graphs I 405

1 T1 = f1; 2; : : :m � 2g. For all i < j 2 T1, edge i j 2 E;
2 T2 = fm � 1;m;m + 1g. (m � 1)m, m(m + 1), (m + 1)

(m � 1) 2 E;
3 T3 = fm + 2;m + 3; : : : ng. For all i < j 2 T3, edge

i j 2 E;
4 For all i0 2 Ti and j0 2 Tj such that i < j, edge i0 j0 2 E.

Theorem 1 Under the collective incentive compatible
model, for every selection protocol f n, m with 2 � m � n�2,
if Tn = (R; B) satisfies: (1) At least one bad player ranks as
high as m � 1; (2) The ones ranked m + 1 and m + 2 are
both bad players; (3) The one ranked m is a good player,
then there always exists an indexing function I such that
Gn,m is a cheating strategy.

Theorem 2 Under the alliance incentive compatible
model, if n � m � 3, then there exists a selection proto-
col f n,m [2] such that, for every tournament Tn, indexing
function I and a-feasible strategy G 2 Kn, Ben(fn;m; Tn ; I;
G) � 0.

Applications

The result shows that, if players are willing to sacrifice
themselves, no protocol is able to prevent malicious coali-
tions from obtaining undeserved benefits.

The result may have potential applications in the de-
sign of output truthful mechanisms.

Open Problems

Under the collective incentive compatible model, the work
of Chen, Deng, and Liu indicates that cheating strategies
are available in at least 1/8 tournaments, assuming the
probability for each player to be in the bad group is 1/2.
Could this bound be improved? Or could one find a good
selection protocol in the sense that the number of tourna-
ments with cheating strategies is close to this bound? On
the other hand, although no ideal protocol exists in this
model, does there exist any randomized protocol, under
which the probability of having cheating strategies is neg-
ligible?

Cross References

� Algorithmic Mechanism Design
� Truthful Multicast

Recommended Reading
1. Chang, P., Mendonca, D., Yao, X., Raghavachari, M.: An evalua-

tion of ranking methods for multiple incomplete round-robin
tournaments. In: Proceedings of the 35th AnnualMeeting of De-
cision Sciences Institute, Boston, 20–23 November 2004

2. Chen, X., Deng, X., Liu, B.J.: On incentive compatible competitive
selection protocol. In: COCOON’06: Proceedings of the 12th An-
nual International Computing and Combinatorics Conference,
pp. 13–22, Taipei, 15–18 August 2006

3. Harary, F., Moser, L.: The theory of round robin tournaments.
Am. Math. Mon. 73(3), 231–246 (1966)

4. Jech, T.: The ranking of incomplete tournaments: A mathemati-
cian’s guide to popular sports. Am. Math. Mon. 90(4), 246–266
(1983)

5. Mendonca, D., Raghavachari, M.: Comparing the efficacy
of ranking methods for multiple round-robin tournaments.
Eur. J. Oper. Res. 123, 593–605 (1999)

6. Rubinstein, A.: Ranking the participants in a tournament. SIAM
J. Appl. Math. 38(1), 108–111 (1980)

7. Steinhaus, H.: Mathematical Snapshots. Oxford University Press,
New York (1950)

Incremental Algorithms
� Fully Dynamic Connectivity
� Fully Dynamic Transitive Closure

Independent Sets
in Random Intersection Graphs
2004; Nikoletseas, Raptopoulos, Spirakis

SOTIRIS NIKOLETSEAS, CHRISTOFOROS RAPTOPOULOS,
PAUL SPIRAKIS
Research Academic Computer Technology Institute,
Greece and Computer Engineering and Informatics
Department, University of Patras, Patras, Greece

Keywords and Synonyms

Existence and efficient construction of independent sets of
vertices in general random intersection graphs

ProblemDefinition

This problem is concerned with the efficient construc-
tion of an independent set of vertices (i. e. a set of ver-
tices with no edges between them) with maximum cardi-
nality, when the input is an instance of the uniform ran-
dom intersection graphs model. This model was intro-
duced by Karoński, Sheinerman, and Singer-Cohen in [4]
and Singer-Cohen in [10] and it is defined as follows

Definition 1 (Uniform random intersection graph)
Consider a universe M = f1; 2; : : : ;mg of elements and
a set of vertices V = fv1; v2; : : : ; vng. If one assigns inde-
pendently to each vertex vj, j = 1; 2; : : : ; n, a subset Sv j of
M by choosing each element independently with probabil-
ity p and puts an edge between two vertices v j1 ; v j2 if and

406 I Independent Sets in Random Intersection Graphs

only if Sv j1
\ Sv j2

¤ ;, then the resulting graph is an in-
stance of the uniform random intersection graph Gn;m;p .

The universe M is sometimes called label set and its ele-
ments labels. Also, denote by Ll, for l 2 M, the set of ver-
tices that have chosen label l.

Because of the dependence of edges, this model can ab-
stract more accurately (than the Bernoulli random graphs
model Gn;p that assumes independence of edges) many
real-life applications. Furthermore, Fill, Sheinerman, and
Singer-Cohen show in [3] that for some ranges of the pa-
rameters n;m; p (m = n˛; ˛ > 6), the spaces Gn;m;p and
Gn; p̂ are equivalent in the sense that the total variation dis-
tance between the graph random variables has limit 0. The
work of Nikoletseas, Raptopoulos, and Spirakis [7] intro-
duces two new models, namely the general random inter-
section graphs model Gn;m;Ep; Ep = [p1; p2; : : : ; pm] and the
regular random intersection graphs model Gn;m;
; � > 0
that use a different way to randomly assign labels to ver-
tices, but the edge appearance rule remains the same. The
Gn;m;Ep model is a generalization of the uniform model
where each label i 2 M is chosen independently with
probability pi, whereas in the Gn;m;
 model each vertex
chooses a random subset ofM with exactly � labels.

The authors in [7] first consider the existence of inde-
pendent sets of vertices of a given cardinality in general
random intersection graphs and provide exact formulae
for the mean and variance of the number of independent
sets of vertices of cardinality k. Furthermore, they present
and analyze three polynomial time (on the number of la-
bels m and the number of vertices n) algorithms for con-
structing large independent sets of vertices when the input
is an instance of the Gn;m;p model. To the best knowledge
of the entry authors, this work is the first to consider algo-
rithmic issues for these models of random graphs.

Key Results

The following theorems concern the existence of indepen-
dent sets of vertices of cardinality k in general random in-
tersection graphs. The proof of Theorem 1 uses the linear-
ity of expectation of sums of random variables.

Theorem 1 Let X(k) denote the number of independent
sets of size k in a random intersection graph G(n;m; Ep),
where Ep = [p1; p2; : : : ; pm]. Then

E
h
X(k)

i
=

n
k

! mY
i=1

�
(1 � pi)k + kpi(1 � pi)k�1

�
:

Theorem 2 Let X(k) denote the number of independent
sets of size k in a random intersection graph G(n;m; Ep),

where Ep = [p1; p2; : : : ; pm]. Then

Var
�
X(k)� =

kX
s=1

n

2k � s

!
2k � s

s

!

�
� (k; s) E

	
X(k)

(nk)
�

E2	X(k)

(nk)
2

�

where E
	
X(k)
 is the mean number of independent sets of

size k and

� (k; s) =
mY
i=1

�
(1 � pi)k�s + (k � s)pi (1 � pi)k�s�1

�
1 � s p i

1+(k�1)pi

��
:

Theorem 2 is proved by first writing the variance as the
sum of covariances and then applying a vertex contrac-
tion technique that merges several vertices into one super-
vertex with similar probabilistic behavior in order to com-
pute the covariances. By using the secondmomentmethod
(see [1]) one can derive thresholds for the existence of in-
dependent sets of size k.

One of the three algorithms that were proposed in [7]
is presented below. The algorithm starts with V (i. e. the
set of vertices of the graph) as its “candidate” indepen-
dent set. In every subsequent step it chooses a label and
removes from the current candidate independent set all
vertices having that label in their assigned label set except
for one. Because of the edge appearance rule, this ensures
that after doing this for every label in M, the final candi-
date independent set will contain only vertices that do not
have edges between them and so it will be indeed an inde-
pendent set.

Algorithm:
Input: A random intersection graph Gn;m;p .
Output: An independent set of vertices Am.
1. set A0 := V ; set L := M;
2. for i = 1 tom do
3. begin
4. select a random label li 2 L; set L := L � flig;
5. set Di := fv 2 Ai�1 : li 2 Svg;
6. if (jDi j � 1) then select a random vertex u 2 Di and

set Di := Di � fug;
7. set Ai := Ai�1 � Di ;
8. end
9. output Am;

The following theorem concerns the cardinality of the in-
dependent set produced by the algorithm. The analysis
of the algorithm uses Wald’s equation (see [9]) for sums

Independent Sets in Random Intersection Graphs I 407

of a random number of random variables to calculate
the mean value of jAmj, and also Chernoff bounds (see
e. g. [6]) for concentration around the mean.

Theorem 3 For the case mp = ˛ log n, for some constant
˛ > 1 and m � n, and for some constant ˇ > 0, the follow-
ing hold with high probability:
1. If np!1 then jAmj � (1 � ˇ) n

log n .
2. If np! b where b > 0 is a constant then
jAmj � (1 � ˇ)n(1 � e�b).

3. If np! 0 then jAm j � (1 � ˇ)n.

The above theorem shows that the algorithm manages to
construct a quite large independent set with high proba-
bility.

Applications

First of all, note that (as proved in [5]) any graph can
be transformed into an intersection graph. Thus, the ran-
dom intersection graphs models can be very general.
Furthermore, for some ranges of the parameters n;m; p
(m = n˛ ; ˛ > 6) the spaces Gn;m;p and Gn;p are equiv-
alent (as proved by Fill, Sheinerman, and Singer-Cohen
in [3], showing that in this range the total variation dis-
tance between the graph random variables has limit 0).

Second, random intersection graphs (and in partic-
ular the general intersection graphs model of [7]) may
model real-life applications more accurately (compared to
the Gn;p case). In particular, such graphs can model re-
source allocation in networks, e. g. when network nodes
(abstracted by vertices) access shared resources (abstracted
by labels): the intersection graph is in fact the conflict
graph of such resource allocation problems.

Other Related Work

In their work [4] Karoński et al. consider the problem of
the emergence of graphs with a constant number of ver-
tices as induced subgraphs of Gn;m;p graphs. By observ-
ing that the Gn;m;p model generates graphs via clique cov-
ers (for example the sets Ll ; l 2 M constitute an obvious
clique cover) they devise a natural way to use them to-
gether with the first and second moment methods in order
to find thresholds for the appearance of any fixed graph H
as an induced subgraph of Gn;m;p for various values of the
parameters n,m and p.

The connectivity threshold for Gn;m;p was considered
by Singer-Cohen in [10]. She studies the casem = n˛ ; ˛ >
0 and distinguishes two cases according to the value of ˛.
For the case ˛ > 1, the results look similar to the Gn;p
graphs, as the mean number of edges at the connectiv-
ity thresholds are (roughly) the same. On the other hand,

for ˛ � 1 we get denser graphs in the Gn;m;p model. Be-
sides connectivity, [10] examines also the size of the largest
clique in uniform random intersection graphs for certain
values of n,m and p.

The existence of Hamilton cycles inGn;m;p graphs was
considered by Efthymiou and Spirakis in [2]. The authors
use coupling arguments to show that the threshold of ap-
pearance of Hamilton cycles is quite close to the con-
nectivity threshold of Gn;m;p . Efficient probabilistic algo-
rithms for finding Hamilton cycles in uniform random in-
tersection graphs were presented by Raptopoulos and Spi-
rakis in [8]. The analysis of those algorithms verify that
they perform well w.h.p. even for values of p that are close
to the connectivity threshold of Gn;m;p . Furthermore, in
the samework, an expected polynomial algorithm for find-
ing Hamilton cycles in Gn;m;p graphs with constant p is
given.

In [11] Stark gives approximations of the distribution
of the degree of a fixed vertex in the Gn;m;p model. More
specifically, by applying a sieve method, the author pro-
vides an exact formula for the probability generating func-
tion of the degree of some fixed vertex and then analyzes
this formula for different values of the parameters n,m
and p.

Open Problems

A number of problems related to random intersection
graphs remain open. Nearly all the algorithms proposed
so far concerning constructing large independent sets and
finding Hamilton cycles in random intersection graphs
are greedy. An interesting and important line of research
would be to find more sophisticated algorithms for these
problems that outperform the greedy ones. Also, all these
algorithms were presented and analyzed in the uniform
random intersection graphs model. Very little is known
about how the same algorithms would perform when their
input was an instance of the general or even the regular
random intersection graph models.

Of course, many classical problems concerning ran-
dom graphs have not yet been studied. One such exam-
ple is the size of the minimum dominating set (i. e. a set of
vertices that has the property that all vertices of the graph
either belong to this set or are connected to it) in a ran-
dom intersection graph. Also, what is the degree sequence
of Gn;m;p graphs? Note that this is very different from the
problem addressed in [11].

Finally, notice that none of the results presented in the
bibliography for general or uniform random intersection
graphs carries over immediately to regular random inter-
section graphs. Of course, for some values of n;m; p and

408 I Indexed Approximate StringMatching

�, certain graph properties shown for Gn;m;p could also be
proved for Gn;m;
 by showing concentration of the num-
ber of labels chosen by any vertex via Chernoff bounds.
Other than that, the fixed sizes of the sets assigned to each
vertex impose more dependencies to the model.

Cross References

� Hamilton Cycles in Random Intersection Graphs

Recommended Reading

1. Alon, N., Spencer, H.: The Probabilistic Method. Wiley, Inc.
(2000)

2. Efthymiou, C., Spirakis, P.: On the existence of hamiltonian cy-
cles in random intersec- tion graphs. In: Proceedings of 32st
International colloquium on Automata, Languages and Pro-
gramming (ICALP), pp. 690–701. Springer, Berlin Heidelberg
(2005)

3. Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random inter-
section graphs whenm = !(n): An equivalence theorem relat-
ing the evolution of the g(n, m, p) and g(n, p) models. Random
Struct. Algorithm. 16(2), 156–176 (2000)

4. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random
intersection graphs: The subgraph problem. Adv. Appl. Math.
8, 131–159 (1999)

5. Marczewski, E.: Sur deux propriétés des classes d‘ ensembles.
Fund. Math. 33, 303–307 (1945)

6. Motwani, R., Raghavan, P.: Randomized Algorithms. Cam-
bridge University Press (1995)

7. Nikoletseas, S., Raptopoulos, C., Spirakis, P.: The existence and
efficient construction of large independent sets in general
random intersection graphs. In: Proceedings of 31st Interna-
tional colloquium on Automata, Languages and Programming
(ICALP), pp. 1029–1040. Springer, Berlin Heidelberg (2004) Also
in the Theoretical Computer Science (TCS) Journal, accepted,
to appear in 2008

8. Raptopoulos, C., Spirakis, P.: Simple and efficient greedy algo-
rithms for hamiltonian cycles in random intersection graphs.
In: Proceedings of the 16th International Symposium on Algo-
rithms and Computation (ISAAC), pp 493–504. Springer, Berlin
Heidelberg (2005)

9. Ross, S.: Stochastic Processes. Wiley (1995)
10. Singer-Cohen, K.B.: Random Intersection Graphs. Ph. D. thesis,

John Hopkins University, Balimore (1995)
11. Stark, D.: The vertex degree distribution of random intersec-

tion graphs. Random Struct. Algorithms 24, 249–258 (2004)

Indexed Approximate
StringMatching
2006; Chan, Lam, Sung, Tam, Wong

WING-KIN SUNG
Department of Computer Science, National University
of Singapore, Singapore, Singapore

Keywords and Synonyms

Indexed inexact pattern matching problem; Indexed pat-
tern searching problem based on hamming distance or edit
distance; Indexed k-mismatch problem; Indexed k-differ-
ence problem

ProblemDefinition

Consider a text S[1::n] over a finite alphabet˙ . One wants
to build an index for S such that for any query pattern
P[1::m] and any integer k � 0, one can report efficiently
all locations in S thatmatch Pwith atmost k errors. If error
is measured in terms of the Hamming distance (number of
character substitutions), the problem is called the k-mis-
match problem. If error is measured in term of the edit
distance (number of character substitutions, insertions or
deletions), the problem is called the k-difference problem.
The two problems are formally defined as follows.

Problem 1 (k-mismatch problem) Consider a text
S[1::n] over a finite alphabet ˙ . For any pattern P and
threshold k, position i is an occurrence of P if the hamming
distance between P and S[i::i0] is less than k for some i0.
The k-mismatch problem asks for an index I for S such that,
for any pattern P, one can report all occurrences of P in S
efficiently.

Problem 2 (k-difference problem) Consider a text
S[1::n] over a finite alphabet ˙ . For any pattern P and
threshold k, position i is an occurrence of P if the edit dis-
tance between P and S[i::i0] is less than k for some i0. The
k-difference problem asks for an index I for S such that, for
any pattern P, one can report all occurrences of P in S effi-
ciently.

The major concern of the two problems is how to achieve
efficient pattern searching without using a large amount of
space for storing the index.

Below, assume j˙ j (the size of the alphabet) is con-
stant.

Key Results

Table 1 summarizes the related results in the literature. Be-
low, briefly describes the current best results.

For indexes for exact matching (k = 0), the best results
utilize data structures like the suffix tree, compressed suf-
fix array, and FM-index. Theorems 1 and 2 describe those
results.

Theorem 1 (Weiner, 1973 [17]) Given a suffix tree of size
O(n) words, one can support exact (0-mismatch) matching
in O(m + occ) time where occ is the number of occurrences.

Indexed Approximate StringMatching I 409

Indexed Approximate String Matching, Table 1
Known results for k-difference matching. c is some positive constant and " is some positive constant smaller than 1

Space k = 1
O(n log2 n) words O(m log n log log n + occ) [1]
O(n log n) words O(m log log n + occ)

O(m + occ + log n log log n)
[2]
[8]

O(n) words O(minfn;m2g + occ)
O(m log n + occ)
O(kn� log n)
O(n�)
O(m + occ + log3 n log log n)
O(m + occ + log n log log n)

[6]
[11]
[14]
[15]
[3]
[4]

O(n
p
log n) bits O(m log log n + occ) [12]

O(n) bits O(m log2 n + occ log n)
O((m log log n + occ) log� n)
O(m + (occ + log4 n log log n) log� n)

[11]
[12]
[3]

O(j˙ jn) words in avg O(m + occ) [13]
O(j˙ jn) words O(m + occ) in avg [13]

Space k = O(1)
O(n logk n) words O(m + occ + 1

k! (c log n)
k log log n) [8]

O(n logk�1 n) words O(m + k33kocc + 1
k! (c log n)

k log log n) [3]
O(n) words O(minfn; j˙ jkmk+2g + occ)

O((j˙ jm)k log n + occ)
O(m + k33kocc + (c log n)k(k+1) log log n)
O(j˙ jkmk�1 log n log log n + k33kocc)

[6]
[11]
[3]
[4]

O(n
p
log n) bits O((j˙ jm)k log log n + occ) [12]

O(n) bits O((j˙ jm)k log2 n + occ log n)
O(((j˙ jm)k log log n + occ) log� n)
O(m + (k33kocc + (c log n)k

2+2k log log n) log� n)

[11]
[12]
[3]

O(j˙ jkn logk n) words in avg O(m + occ) [13]
O(j˙ jkn logk n) words O(m + occ) in avg [13]
O(n logk n) words in avg O(3kmk+1 + occ) [7]

Theorem2 (Ferragina andManzini, 2000 [9]; Grossi and
Vitter [10]) Given a compressed suffix array or an FM-
index of size O(n) bits, one can support exact (0-mismatch)
matching in O(m + occ log� n) time, where occ is the num-
ber of occurrences and " is any positive constant smaller
than or equal to 1.

For inexact matching (k ¤ 0), there are solutions whose
indexes can help answer a k-mismatch/k-difference pat-
tern query for any k � 0. Those indexes are created by
augmenting the suffix tree and its variants. Theorems 3
to 7 summarize the current best results in such direction.

Theorem 3 (Chan, Lam, Sung, Tam, and Wong,
2006 [3]) Given an index of size O(n) words, one can sup-
port k-mismatch lookup in O(m + occ + (c log n)k(k+1) �
log log n) time where c is a positive constant. For k-differ-
ence lookup, the term occ becomes k33kocc.

Theorem 4 (Chan, Lam, Sung, Tam, and Wong,
2006 [3]) Given an index of size O(n) bits, one can sup-
port k-mismatch lookup in O(m + (occ + (c log n)k(k+2) �
log log n) log� n) time where c is a positive constant and " is
any positive constant smaller than or equal to 1. For k-dif-
ference lookup, the term occ becomes k33kocc.

Theorem 5 (Lam, Sung, andWong, 2005 [12]) Given an
index of size O(n

p
log n) bits, one can support k-mismatch/

k-difference lookup in O((j˙ jm)k (k+log log n)+occ) time.

Theorem 6 (Lam, Sung, andWong, 2005 [12]) Given an
index of size O(n) bits, one can support k-mismatch/k-dif-
ference lookup in O(log�((j˙ jm)k(k+log log n)+occ)) time
where " is any positive constant smaller than or equal to 1.

Theorem 7 (Chan, Lam, Sung, Tam, and Wong,
2006 [4]) Given an index of size O(n) words, one can sup-
port k-mismatch lookup in O(j˙ jkmk�1 log n log log n +

410 I Indexed Approximate StringMatching

occ) time. For k-difference lookup, the term occ becomes
k33kocc.

When k is given, one can create indexes whose sizes de-
pend on k. Those solutions create the so-called k-error suf-
fix tree and its variants. Theorems 8 to 11 summarize the
current best results in this direction.

Theorem 8 (Maas and Nowak, 2005 [13]) Given an in-
dex of size O(j˙ jkn logk n) words, one can support k-mis-
match/k-difference lookup in O(m + occ) expected time.

Theorem 9 (Maas and Nowak, 2005 [13]) Consider
a uniformly and independently generated text of length n.
One can construct an index of size O(j˙ jkn logk n) words
on average, such that a k-mismatch/k-difference lookup
query can be supported in O(m + occ) worst case time.

Theorem 10 (Chan, Lam, Sung, Tam, and Wong,
2006 [3]) Given an index of size O(n logk�h+1 n) words
where h� k, one can support k-mismatch lookup in O(m +
occ + ck2 logmaxfkh;k+hg n log log n) time where c is a posi-
tive constant. For k-difference lookup, the term occ becomes
k33kocc.

Theorem 11 (Chan, Lam, Sung, Tam, and Wong,
2006 [4]) Given an index of size O(n logk�1 n) words, one
can support k-mismatch lookup in O(m + occ + logk n �
log log n) time. For k-difference lookup, the term occ be-
comes k33kocc.

In addition, there are indexes which are efficient in prac-
tice for small k/m but give no worst case complexity guar-
antees. Those methods are based on filtration. The basic
idea is to partition the pattern into short segments and
locate those short segments in the text, allowing zero or
a small number of errors. Those short segments help to
identify candidate regions for the occurrences of the pat-
tern. Finally, by verifying those candidate regions, one can
recover all occurrences of the pattern. See [16] for a sum-
mary of those results. One of the best results based on fil-
tration is stated in the following theorem.

Theorem 12 (Myers, 1994 [14]; Navarro and Baeza-
Yates, 2000 [15]) Consider an index of size O(n) words.
If k/m < 1 � O(1/

p
˙), one can support a k-mismatch/

k-difference search in O(n�) expected time where " is a pos-
itive constant smaller than 1.

All the above approaches either tried to index the strings
with errors or are based on filtering. There are also so-
lutions which use radically different approaches. For in-
stance, there are solutions which transform approximate
string searching into range queries in metric space [5].

Applications

Due to the advance in both internet and biological tech-
nologies, enormous text data is accumulated. For example,
there is a 60G genomic sequence data in a gene bank. The
data size is expected to grow exponentially.

To handle the huge data size, indexing techniques are
vital to speed up the pattern matching queries. Moreover,
exact pattern matching is no longer sufficient for both in-
ternet and biological data. For example, biological data
usually contains a lot of differences due to experimental er-
ror and mutation and evolution. Therefore, approximate
pattern matching becomes more appropriate. This gives
the motivation for developing indexing techniques that al-
low pattern matching with errors.

Open Problems

The complexity for indexed approximate matching is still
not fully understood. One would like to know the answers
for a number of questions. For instance, one haves the
following two questions. (1) Given a fixed index size of
O(n) words, what is the best time complexity of a k-mis-
match/k-difference query? (2) If the k-mismatch/k-differ-
ence query time is fixed to O(m + occ), what is the best
space complexity of the index?

Cross References

� Text Indexing
� Two-Dimensional Pattern Indexing

Recommended Reading
1. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewen-

stein, N., Rodeh, M.: Indexing and dictionary matching with
one error. In: Proceedings of Workshop on Algorithms and
Data Structures, 1999, pp. 181–192

2. Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.R.: Range
searching over tree cross products. In: Proceedings of Euro-
pean Symposium on Algorithms, 2000, pp. 120–131

3. Chan, H.-L., Lam, T.-W., Sung,W.-K., Tam, S.-L., Wong, S.-S.: A lin-
ear size index for approximate pattern matching. In: Proceed-
ings of Symposium on Combinatorial Pattern Matching, 2006,
pp. 49–59

4. Chan, H.-L., Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, S.-
S.: Compressed indexes for approximate string matching. In:
Proceedings of European Symposium on Algorithms, 2006,
pp. 208–219

5. Navarro, G., Chávez, E.: A metric index for approximate string
matching. Theor. Comput. Sci. 352(1–3), 266–279 (2006)

6. Cobbs, A.: Fast approximate matching using suffix trees. In:
Proceedings of Symposium on Combinatorial Pattern Match-
ing, 1995, pp. 41–54

7. Coelho, L.P., Oliveira, A.L.: Dotted suffix trees: a structure for
approximate text indexing. In: SPIRE, 2006, pp. 329–336

Inductive Inference I 411

8. Cole, R., Gottlieb, L.A., Lewenstein,M.: Dictionarymatching and
indexing with errors and don’t cares. In: Proceedings of Sym-
posium on Theory of Computing, 2004, pp. 91–100

9. Ferragina, P., Manzini, G.: Opportunistic data structures with
applications. In: Proceedings of Symposium on Foundations of
Computer Science, 2000, pp. 390–398

10. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. In:
Proceedings of Symposium on Theory of Computing, 2000,
pp. 397–406

11. Huynh, T.N.D., Hon, W.K., Lam, T.W., Sung, W.K.: Approximate
string matching using compressed suffix arrays. In: Proceed-
ings of Symposium on Combinatorial Pattern Matching, 2004,
pp. 434–444

12. Lam, T.W., Sung,W.K., Wong, S.S.: Improved approximate string
matching using compressed suffix data structures. In: Proceed-
ings of International Symposium on Algorithms and Computa-
tion, 2005, pp. 339–348

13. Maaß, M.G., Nowak, J.: Text indexing with errors. In: Proceed-
ings of Symposium on Combinatorial Pattern Matching, 2005,
pp. 21–32

14. Myers, E.G.: A sublinear algorithm for approximate keyword
searching. Algorithmica 12, 345–374 (1994)

15. Navarro, G., Baeza-Yates R.: A hybrid indexing method for ap-
proximate string matching. J. Discret. Algorithms 1(1), 205–
209 (2000)

16. Navarro, G., Baeza-Yates, R.A., Sutinen, E., Tarhio, J.: Indexing
methods for approximate stringmatching. IEEE Data Eng. Bull.
24(4), 19–27 (2001)

17. Weiner., P.: Linear Pattern Matching Algorithms. In: Proceed-
ings of Symposium on Switching and Automata Theory, 1973,
pp. 1–11

Inductive Inference
1983; Case, Smith

SANDRA ZILLES
Department of Computing Science, University of Alberta,
Edmonton, AB, Canada

Keywords and Synonyms

Induction; Learning from examples

ProblemDefinition

The theory of inductive inference is concerned with the
capabilities and limitations of machine learning. Here the
learningmachine, the concepts to be learned, as well as the
hypothesis space aremodeled in recursion theoretic terms,
based on the framework of identification in the limit [1,8].

Formally, considering recursive functions (mapping
natural numbers to natural numbers) as target concepts,
a learner (inductive inference machine) is supposed to
process, step by step, gradually growing segments of the

graph of a target function. In each step, the learner out-
puts a program in some fixed programming system, where
successful learning means that the sequence of programs
returned in this process eventually stabilizes on some pro-
gram actually computing the target function.

Case and Smith [2,3] have proposed several variants
of this model in order to study the influence that cer-
tain constraints or relaxations may have on the capabili-
ties of learners, thereby restricting (i) the number of mind
changes (i. e., changes of output programs) a learner is al-
lowed for in this process and (ii) the number of errors the
program eventually hypothesized may have when com-
pared to the target function.

One major result of studying the corresponding effects
is a hierarchy of inference types culminating in a model
general enough to allow for the identification of the whole
class of recursive functions by a single inductive inference
machine.

Notations

The target concepts for learning in the model discussed
below are recursive functions [13] mapping natural num-
bers to natural numbers. Such functions, as well as par-
tial recursive functions in general, are considered as com-
putable in an arbitrary, but fixed acceptable numbering
' = ('i)i2N . Here N = f0; 1; 2; : : : g denotes the set of all
natural numbers. � is interpreted as a programming sys-
tem, where each i 2 N is called a program for the partial
recursive function 'i .

Suppose f and g are partial recursive functions and
n 2 N . Below f =n g is written if the set fx 2 N j f (x) ¤
g(x)g is of cardinality at most n. If the set fx 2 N j f (x) ¤
g(x)g is finite, this is denoted by f =� g. One considers �
as a special symbol for which the<-relation is extended by
n < � for all n 2 N . For any recursive f and any z 2 N , let
f [z] denote (z; (f (0); : : : ; f (z))) for short.

For further basic recursion theoretic notions, the
reader is referred to [13].

Learning Models

Case and Smith [3] build their theory upon the fundamen-
tal model of identification in the limit [1,8]. There a learner
can be understood as an algorithmic device, called an in-
ductive inference machine, which, given any ‘graph seg-
ment’ f [z] as its input, returns a program i 2 N . Such
a learner M identifies a recursive function f in the limit,
if there is some j 2 N such that

' j = f and M(f [z]) = j for all but finitely many z 2 N :

412 I Inductive Inference

A class of recursive functions is learnable in the limit, if
there is an inductive inference machine identifying each
function in the class in the limit. Identification in the limit
is called EX-identification, since a program for f is termed
an explanation for f .

For instance, the class of all primitive recursive func-
tions is EX-identifiable, whereas the class of all recursive
functions is not [8].

The central questions discussed by Case and Smith [3]
are how the limitations of EX-learners are affected by pos-
ing certain requirements on the success criterion, concern-
ing
� convergence criteria,

– e. g., when restricting the number of permittedmind
changes,

– e. g., when relaxing the constraints on syntactical
convergence of the sequence of programs returned
in the learning process,

� accuracy,
– e. g., when relaxing the number of permitted

anomalies in the programs returned eventually.

Problem 1 In which way do modifications of EX-identifi-
cation in terms of accuracy and convergence criteria affect
the capabilities of the corresponding learners?

Problem 2 In particular, if inaccuracies are permitted, can
EX-learners always refute inaccurate hypotheses?

Problem 3 Howmuch relaxation of the model of EX-iden-
tification is needed to achieve learnability of the full class of
recursive functions?

Key Results

Accuracy and Convergence Constraints

In order to systematically address these problems, Case
and Smith [3] have defined inference types reflecting re-
strictions and relaxations of EX-identification as follows.

Definition 1 Suppose S is a class of recursive functions
and m; n 2 N [f�g. S is EXm

n -identifiable, if there is an
inductive inference machineM, such that for any function
f 2 S there is some j 2 N satisfying
� M(f [z]) = j for all but finitely many z 2 N ,
� ' j =m f , and
� the cardinality of the set fz 2 N j M(f [z]) ¤ M(f [z +

1])g is at most n.

EXm
n denotes the set of all classes of recursive functions

which are EXm
n -identifiable.

Definition 2 Suppose S is a class of recursive functions
and m 2 N [f�g. S is BCm-identifiable, if there is an

inductive inference machine M, which, for any function
f 2 S, satisfies
� 'M(f [z]) =m f for all but finitely many z 2 N.

BCm denotes the set of all classes of recursive functions
which are BCm-identifiable. BC is short for behaviorally
correct—the difference to EX-learning is that convergence
of the sequence of programs returned by the learner is de-
fined only in terms of semantics, no longer in terms of syn-
tax.

The Impact of Accuracy and Convergence Constraints

In general, each permission of mind changes or anoma-
lies increases the capabilities of learners; however mind
changes cannot be traded in for anomalies or vice versa.

Theorem 1 Let a; b; c; d 2 N [f�g. Then EXa
b
 EXc

d if
and only if a � c and b � d.

Corollary 1 For any m; n 2 N the following inclusions
hold.
1. EXm

n � EXm+1
n � EX�n .

2. EXm
n � EXm

n+1 � EXm
� .

Theorem 2 Let n 2 N . Then EX�� � BCn � BCn+1 �

BC�.

These results are essential concerning Problem 1.

Refutability

In particular, refutability demands in the sense that every
incorrect hypothesis should be refutable (see [12]) are not
applicable in the theory of inductive inference, see Prob-
lem 2.

Formally, Case and Smith [3] consider refutability as
a property guaranteed by Popperian machines, the latter
being defined as follows:

Definition 3 Suppose M is an inductive inference ma-
chineM.M is Popperian if, on any input,M returns a pro-
gram of a recursive function.

Results thereon include:

Theorem 3 There is an EX-identifiable class S of recursive
functions for which there is no Popperian IIM witnessing its
EX-identifiability.

Corollary 2 There is an EX1-identifiable class S of recur-
sive functions for which there is no Popperian IIM witness-
ing its EX1-identifiability.

Additionally, in EX1-identification, Popper’s refutability
principle can not be applied even if it concerns only those
hypotheses returned in the limit.

I/O-model I 413

Learning All Recursive Functions

Since the results above yield a hierarchy of inference types
with strictly growing collections of learnable classes, there
is also an implicit answer to Problem 3: the class of recur-
sive functions is neither in EXm

n for any m; n 2 N [f�g
nor in BCm for any m 2 N . In contrast to that, Case and
Smith [3] prove

Theorem 4 The class of all recursive functions is in BC�.

Applications

The work of Case and Smith [3] has been of high impact
in learning theory.

A consequence of the discussion of anomalies has been
that refutability principles in general do not hold for iden-
tification in the limit. This result has given rise to later
studies on methods and techniques inductive inference
machines might apply in order to discover their errors [6]
and thus to further insights into the nature of inductive
inference.

Concerning the study of mind change hierarchies,
among others, their lifting to transfinite ordinal num-
bers [7] is a notable extension.

Moreover, the theory of learning as proposed by Case
and Smith [3] has been applied for the development of the
theory of identifying recursive [10] or recursively enumer-
able [9] languages.

Open Problems

Among the currently open problems in inductive infer-
ence, one key challenge is to find a reasonable notion of
the complexity of learning problems (i. e., of classes of re-
cursive functions) involving the run-time complexity of
learners as well as the number of mind changes required
to learn the functions in a class. In particular, special natu-
ral classes of functions should be analyzed in terms of such
a complexity notion.

Though of course the hierarchies EXm
0 � EXm

1 �

EXm
2 � : : : for any m 2 N reflect some increase of com-

plexity in that sense, a corresponding complexity notion
would not address the aspect of run-time complexity of
learners. Different complexity notions have been intro-
duced, such as the so-called intrinsic complexity [5] (ne-
glecting run-time complexity) and the ‘measure under the
curve’ [4] (respecting the number of examples required,
but neglecting the number of mind changes). In partic-
ular, for learning deterministic finite automata, different
notions of run-time complexity have been discussed [11].

However, the definition of a more capacious complex-
ity notion remains an open issue.

Cross References

� PAC Learning

Recommended Reading
1. Blum, L., Blum, M.: Toward a mathematical theory of inductive

inference. Inform. Control 28(2), 125–155 (1975)
2. Case, J., Smith, C.H.: Anomaly hierarchies of mechanized induc-

tive inference. In: Proceedings of the 10th Symposium on the
Theory of Computing, pp. 314–319. ACM, New York (1978)

3. Case, J., Smith, C.H.: Comparison of Identification Criteria for
Machine Inductive Inference. Theor. Comput. Sci. 25(2), 193–
220 (1983)

4. Daley, R.P., Smith, C.H.: On the Complexity of Inductive Infer-
ence. Inform. Control 69(1–3), 12–40 (1986)

5. Freivalds, R., Kinber, E., Smith, C.H.: On the Intrinsic Complexity
of Learning. Inform. Comput. 118(2), 208–226 (1995)

6. Freivalds, R., Kinber, E., Wiehagen, R.: How inductive inference
strategies discover their errors. Inform. Comput. 123(1), 64–71
(1995)

7. Freivalds, R., Smith, C.H.: On the Role of Procrastination in Ma-
chine Learning. Inform. Comput. 107(2), 237–271 (1993)

8. Gold, E.M.: Language identification in the limit. Inform. Control
10(5), 447–474 (1967)

9. Kinber, E.B., Stephan, F.: Language Learning from Texts: Mind-
changes, LimitedMemory, andMonotonicity. Inform. Comput.
123(2), 224–241 (1995)

10. Lange, S., Grieser, G., Zeugmann, T.: Inductive inference of
approximations for recursive concepts. Theor. Comput. Sci.
348(1), 15–40 (2005)

11. Pitt, L.: Inductive inference, DFAs, and computational complex-
ity. In: Analogical and Inductive Inference, 2nd International
Workshop, Reinhardsbrunn Castle, GDR. LectureNotes in Com-
puter Science, vol. 397, pp. 18–44. Springer, Berlin (1989)

12. Popper, K.: The Logic of Scientific Discovery. Harper & Row,
New York (1959)

13. Rogers, H.: Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, New York (1967)

I/O-model
1988; Aggarwal, Vitter

NORBERT ZEH
Faculty of Computer Science, Dalhousie University,
Halifax, NS, Canada

Keywords and Synonyms

External-memory model; Disk access model (DAM)

Definition

The Input/Output model (I/O-model) [1] views the com-
puter as consisting of a processor, internalmemory (RAM),
and external memory (disk). See Fig. 1. The internal mem-

414 I I/O-model

I/O-model, Figure 1
The I/O-model

I/O-model, Figure 2
The parallel disk model

ory is of limited size, large enough to hold M data items.
The external memory is of conceptually unlimited size and
is divided into blocks of B consecutive data items. All com-
putation has to happen on data in internal memory. Data
is brought into internal memory and written back to exter-
nal memory using I/O-operations (I/Os), which are per-
formed explicitly by the algorithm. Each such operation
reads or writes one block of data from or to external mem-
ory. The complexity of an algorithm in this model is the
number of I/Os it performs.

The parallel disk model (PDM) [10] is an extension of
the I/O-model that allows the external memory to consist
of D � 1 parallel disks. See Fig. 2. In this model, a sin-
gle I/O-operation is capable of reading or writing up to
D independent blocks, as long as each of them is stored on
a different disk.

Key Results

A few complexity bounds are of importance to virtually
every I/O-efficient algorithm or data structure. The search-
ing bound of 	(logB n) I/Os, which can be achieved using
a B-tree [4], is the cost of searching for an element in an
ordered collection of n elements, using comparisons only.

It is thus the equivalent of the 	(log n) searching bound
in internal memory.

Scanning a list of n consecutive data items obviously
takes dn/Be I/Os or, in the PDM, dn/DBe I/Os. This scan-
ning bound is usually referred to as a “linear number of
I/Os” because it is the equivalent of the O(n) time bound
required to do the same in internal memory.

The sorting bound of sort(n) = 	((n/B) logM/B(n/B))
I/Os denotes the cost of sorting n elements using compar-
isons only. It is thus the equivalent of the 	(n log n) sort-
ing bound in internal memory. In the PDM, the sorting
bound becomes 	((n/DB) logM/B(n/B)). This bound can
be achieved using a range of sorting algorithms, including
external merge sort [1,6] and distribution sort [1,5].

Arguably the most interesting bound is the permu-
tation bound, that is, the cost of rearranging n elements
in a given order, which is 	(min(sort(n); n)) [1] or,
in the PDM, 	(min(sort(n); n/D)) [10]. For all prac-
tical purposes, this is the same as the sorting bound.
Note the contrast to internal memory where, up to con-
stant factors, permuting has the same cost as a linear
scan. Since almost all non-trivial algorithmic problems in-
clude a permutation problem, this implies that only ex-
ceptionally simple problems can be solved in O(scan(n))
I/Os; most problems have an ˝(perm(n)), that is, es-
sentially an ˝(sort(n)) lower bound. Therefore, while
internal-memory algorithms aiming for linear time have
to carefully avoid the use of sorting as a tool, external-
memory algorithms can sort without fear of significantly
exceeding the lower bound. This makes the design of
I/O-optimal algorithms potentially easier than the de-
sign of optimal internal-memory algorithms. It is, how-
ever, counterbalanced by the fact that, unlike in inter-
nal memory, the sorting bound is not equal to n times
the searching bound, which implies that algorithms based
on querying a tree-based search structure O(n) times
usually do not translate into I/O-efficient algorithms.
Buffer trees [3] achieve an amortized search bound of
O((1/B) logM/B(N/B)) I/O, but can be used only if the
entire update and query sequence is known in advance
and thus provide only a limited solution to this prob-
lem.

Apart from these fundamental results, there exist
a wide range of interesting techniques, particularly for
solving geometric and graph problems. For surveys, refer
to [2,9].

Applications

Modern computers are equipped withmemory hierarchies
consisting of several levels of cache memory, main mem-

I/O-model I 415

ory (RAM), and disk(s). Access latencies increase with the
distance from the processor, as do the sizes of the memory
levels. To amortize these increasing access latencies, data
are transferred between different levels of cache in blocks
of consecutive data items. As a result, the cost of a mem-
ory access depends on the level in the memory hierarchy
currently holding the data item—the difference in access
latency between L1 cache and disk is about 106—and the
cost of a sequence of accesses to data items stored at the
same level depends on the number of blocks over which
these items are distributed.

Traditionally, algorithms have been designed to min-
imize the number of computation steps; the access local-
ity necessary to solve a problem using few data transfers
between memory levels has been largely ignored. Hence,
the designed algorithms work well on data sets of mod-
erate size, but do not take noticeable advantage of cache
memory and usually break down completely in out-of-
core computations. Since the difference in access laten-
cies is largest between main memory and disk, the I/O-
model focuses on minimizing this I/O-bottleneck. This
two-level view of the memory hierarchy keeps the model
simple and useful for analyzing sophisticated algorithms,
while providing a good prediction of their practical per-
formance.

Much effort has been made already to translate prov-
ably I/O-efficient algorithms into highly efficient imple-
mentations. Examples include TPIE [8] and STXXL [7],
two libraries that aim to provide highly optimized and
powerful primitives for the implementation of I/O-
efficient algorithms. In spite of these efforts, a significant
gap between the theory and practice of I/O-efficient algo-
rithms remains (see next section).

Open Problems

There are a substantial number of open problems in the
area of I/O-efficient algorithms. The most important ones
concern graph and geometric problems.

Traditional graph algorithms usually use a well-
organized graph traversal such as depth-first search or
breadth-first search to gain information about the struc-
ture of the graph and then use this information to solve the
problem at hand. In the I/O-model, no I/O-efficient depth-
first search algorithm is known and for breadth-first search
and shortest paths, progress has been made only recently
on undirected graphs. For directed graphs, even such sim-
ple problems as deciding whether there exists a directed
path between two vertices are currently open. The main
research focus in this area is therefore to either develop
I/O-efficient general traversal algorithms or to continue

the current strategy of devising graph algorithms that de-
part from traditional traversal-based approaches.

Techniques for solving geometric problems I/O-
efficiently are much better understood than is the case
for graph algorithms, at least in two dimensions. Never-
theless, there are a few important frontiers that remain.
Arguably the most important one is the development of
I/O-efficient algorithms and data structures for higher-
dimensional geometric problems. Motivated by database
applications, higher-dimensional range searching is one
of the problems to be studied in this context. Little work
has been done in the past on solving proximity prob-
lems, which pose another frontier currently explored by
researchers in the field. Motivated by the need for such
structures in a range of application areas and in partic-
ular in geographic information systems, there has been
some recent focus on the development of multifunctional
data structures, that is, structures that can answer differ-
ent types of queries efficiently. Most existing structures are
carefully tuned to efficiently support one particular type of
query.

For both, I/O-efficient graph algorithms and compu-
tational geometry, there is a substantial gap between the
obtained theoretical results and what is known to be prac-
tical, even though more experimental work has been done
on geometric algorithms than on graph algorithms. Thus,
if I/O-efficient algorithms in these areas are to have any
practical impact, increased efforts are needed to bridge this
gap by developing practically I/O-efficient algorithms that
are still provably efficient.

Cross References

For details on � External Sorting and Permuting, please
refer to the corresponding entry. Details on one- and
higher-dimensional searching are provided in the entries
on� B-trees and� R-trees. The reader interested in algo-
rithms that focus on efficiency at all levels of the memory
hierarchy should consult the entry on the � Cache-Obliv-
ious Model.

Recommended Reading

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sort-
ing and related problems. Commun. ACM 31(9), 1116–1127
(1988)

2. Arge, L.: External memory data structures. In: Abello, J., Parda-
los, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data
Sets, pp. 313–357. Kluwer Academic Publishers, Dordrecht
(2002)

3. Arge, L.: The buffer tree: A technique for designing batched ex-
ternal data structures. Algorithmica 37(1), 1–24 (2003)

416 I I/O-model

4. Bayer, R., McCreight, E.: Organization of large ordered indexes.
Acta Inform. 1, 173–189 (1972)

5. Nodine, M.H., Vitter, J.S.: Deterministic distribution sort in
shared and distributed memory multiprocessors. In: Proceed-
ings of the 5th Annual ACM Symposium on Parallel Al-
gorithms and Architectures, pp. 120–129. Velen, June/July
1993

6. Nodine, M.H., Vitter, J.S.: Greed Sort: An optimal sorting algo-
rithm for multiple disks. J. ACM 42(4), 919–933 (1995)

7. STXXL: C++ Standard Library for Extra Large Data Sets. http://
stxxl.sourceforge.net. Accessed: 15 March 2008

8. TPIE� A Transparent Parallel I/O-Environment. http://www.cs.
duke.edu/TPIE. Accessed: 15 March 2008

9. Vitter, J.S.: External memory algorithms and data structures:
Dealing with massive data. ACM Comput. Surv. 33(2), 209–271
(2001)

10. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I:
Two-level memories. Algorithmica 12(2–3), 110–147 (1994)

http://stxxl.sourceforge.net.
http://stxxl.sourceforge.net.
http://www.cs.duke.edu/TPIE.
http://www.cs.duke.edu/TPIE.

Kinetic Data Structures K 417

K

Kinetic Data Structures

1999; Basch, Guibas, Hershberger

BETTINA SPECKMANN
Department of Mathematics and Computer Science,
Technical University of Eindhoven,
Eindhoven, The Netherlands

ProblemDefinition

Many application areas of algorithms research involve ob-
jects in motion. Virtual reality, simulation, air-traffic con-
trol, and mobile communication systems are just some
examples. Algorithms that deal with objects in motion tra-
ditionally discretize the time axis and compute or update
their structures based on the position of the objects at
every time step. If all objects move continuously then in
general their configuration does not change significantly
between time steps—the objects exhibit spatial and tem-
poral coherence. Although time-discretizationmethods can
exploit spatial and temporal coherence they have the dis-
advantage that it is nearly impossible to choose the perfect
time step. If the distance between successive steps is too
large, then important interactions might be missed, if it is
too small, then unnecessary computations will slow down
the simulation. Even if the time step is chosen just right,
this is not always a satisfactory solution: some objects may
havemoved only slightly and in such a way that the overall
data structure is not influenced.

One would like to use the temporal coherence to de-
tect precisely those points in time when there is an actual
change in the structure. The kinetic data structure (KDS)
framework, introduced by Basch et al. in their seminal
paper [2], does exactly that: by maintaining not only the
structure itself, but also some additional information, they
can determine when the structure will undergo a “real”
(combinatorial) change.

Key Results

A kinetic data structure is designed to maintain or mon-
itor a discrete attribute of a set of moving objects, for ex-
ample, the convex hull or the closest pair. The basic idea is,
that although all objects move continuously, there are only
certain discrete moments in time when the combinatorial
structure of the attribute changes (in the earlier examples,
the ordered set of convex-hull vertices or the pair that is
closest, respectively). A KDS therefore contains a set of
certificates that constitutes a proof of the property of inter-
est. Certificates are generally simple inequalities that assert
facts like “point c is on the left of the directed line through
points a and b.” These certificates are inserted in a prior-
ity queue (event queue) based on their time of expiration.
The KDS then performs an event-driven simulation of the
motion of the objects, updating the structure whenever an
event happens, that is, when a certificate fails (see Fig. 1).
It is part of the art of designing efficient kinetic data struc-
tures to find a small set of simple and easily updatable cer-
tificates that serve as a proof of the property one wishes to
maintain.

A KDS assumes that each object has a known motion
trajectory or flight plan, which may be subject to restric-
tions to make analysis tractable. Two common restrictions
would be translation along paths parametrized by poly-
nomials of fixed degree d, or translation and rotation de-
scribed by algebraic curves. Furthermore, certificates are
generally simple algebraic equations, which implies that

Kinetic Data Structures, Figure 1
The basic structure of an event based simulation with a KDS

418 K Kinetic Data Structures

Kinetic Data Structures, Figure 2
Equivalent convex hull configurations (left and right), a proof that a; b; and c form the convex hull of S (center)

the failure time of a certificate can be computed as the next
largest root of an algebraic expression. An important as-
pect of kinetic data structures is their on-line character:
although the positions and motions (flight plans) of the
objects are known at all times, they are not necessarily
known far in advance. In particular, any object can change
its flight plan at any time. A good KDS should be able to
handle such changes in flight plans efficiently.

A detailed introduction to kinetic data structures can
be found in Basch’s Ph. D. thesis [1] or in the surveys by
Guibas [3,4]. In the following the principles behind kinetic
data structures are illustrated by an easy example.

Consider a KDS that maintains the convex hull of a set
S of four points a; b; c; and d as depicted in Fig. 2. A set of
four simple certificates is sufficient to certify that a; b; and
c form indeed the convex hull of S (see Fig. 2 center). This
implies, that the convex hull of S will not change under
any motion of the points that does not lead to a violation
of these certificates. To put it differently, if the points move
along trajectories that move them between the configura-
tions depicted in Fig. 2 without the point d ever appear-
ing on the convex hull, then the KDS in principle does not
have to process a single event.

Now consider a setting in which the points a; b; and
c are stationary and the point d moves along a linear tra-
jectory (Fig. 3 left). Here the KDS has exactly two events
to process. At time t1 the certificate “d is to the left of bc”
fails as the point d appears on the convex hull. In this easy
setting, only the failed certificate is replaced by “d is to the
right of bc” with failure time “never”, generally processing
an event would lead to the scheduling and descheduling of
several events from the event queue. Finally at time t2 the
certificates “b is to the right of ad” fails as the point b ceases

Kinetic Data Structures, Figure 3
Certificate structure for points a;b; and c being stationary and
point dmoving along a straight line

to be on the convex hull and is replaced by “b is to the left
of ad” with failure time “never.”

Kinetic data structures and their accompanying main-
tenance algorithms can be evaluated and compared with
respect to four desired characteristics.

Responsiveness. One of the most important performance
measures for a KDS is the time needed to update the
attribute and to repair the certificate set when a certifi-
cate fails. A KDS is called responsive if this update time
is “small”, that is, polylogarithmic.

Compactness. A KDS is called compact if the number of
certificates is near-linear in the total number of objects.
Note that this is not necessarily the same as the amount
of storage the entire structure needs.

Locality. A KDS is called local if every object is involved
in only a small number of certificates (again, “small”
translates to polylogarithmic). This is important when-
ever an object changes its flight plane, because one has
to recompute the failure times of all certificates this ob-
ject is involved in, and update the event queue accord-
ingly. Note that a local KDS is always compact, but that
the reverse is not necessarily true.

Efficiency. A certificate failure does not automatically im-
ply a change in the attribute that is beingmaintained, it
can also be an internal event, that is, a change in some
auxiliary structure that the KDS maintains. A KDS is
called efficient if the worst-case number of events han-
dled by the data structure for a given motion is small
compared to the number of combinatorial changes of
the attribute (external events) that must be handled for
that motion.

Applications

The paper by Basch et al. [2] sparked a large amount
of research activities and over the last years kinetic data
structures have been used to solve various dynamic com-
putational geometry problems. A number of papers deal
foremost with the maintenance of discrete attributes for
sets of moving points, like the closest pair, width and di-
ameter, clusters, minimum spanning trees, or the con-
strained Delaunay triangulation. Motivated by ad hoc mo-
bile networks, there have also been a number of papers that

Knapsack K 419

show how to maintain the connected components in a set
of moving regions in the plane.Major research efforts have
also been seen in the study of kinetic binary space parti-
tions (BSPs) and kinetic kd-trees for various objects. Fi-
nally, there are several papers that develop KDSs for colli-
sion detection in the plane and in three dimensions. A de-
tailed discussion and an extensive list of references can be
found in the survey by Guibas [4].

Cross References

� Fully Dynamic Minimum Spanning Trees
�Minimum Geometric Spanning Trees

Recommended Reading
1. Basch, J.: Kinetic Data Structures. Ph. D. thesis, Stanford Univer-

sity (1999)
2. Basch, J., Guibas, L., Hershberger, J.: Data structures for mobile

data. J. Algorithms 31, 1–28 (1999)
3. Guibas, L.: Kinetic data structures: A state of the art report. In:

Proc. 3rd Workshop on Algorithmic Foundations of Robotics,
pp. 191–209 (1998)

4. Guibas, L.: Modeling Motion. In: Goodman, J., O’Rourke, J.: (eds),
Handbook of Discrete and Computational Geometry. CRC Press,
2nd ed. (2004)

Knapsack
1975; Ibarra, Kim

HANS KELLERER
Department of Computer Science, University of Graz,
Graz, Austria

Keywords and Synonyms

Approximation algorithm; Fully polynomial time approx-
imation scheme (FPTAS)

ProblemDefinition

For a given set of items N = f1; : : : ; ng with nonnegative
integer weights wj and profits pj, j = 1; : : : ; n, and a knap-
sack of capacity c, the knapsack problem (KP) is to se-
lect a subset of the items such that the total profit of the
selected items is maximized and the corresponding total
weight does not exceed the knapsack capacity c.

Alternatively, a knapsack problem can be formulated
as a solution of the following linear integer programming
formulation:

(KP) maximize
nX
j=1

p j x j (1)

subject to
nX
j=1

wj x j � c ; (2)

x j 2 f0; 1g; j = 1; : : : ; n : (3)

The knapsack problem is the simplest non-trivial inte-
ger programming model having binary variables, only
a single constraint and only positive coefficients. A large
number of theoretical and practical papers has been pub-
lished on this problem and its extensions. An extensive
overview can be found in the books by Kellerer, Pferschy
and Pisinger [2] or Martello and Toth [7].

Adding the integrality condition (3) to the simple lin-
ear program (1)-(2) already puts (KP) into the class of
NP-hard problems. Thus, (KP) admits no polynomial
time algorithms unless P =NP holds.

Therefore, this entry will focus on approximation al-
gorithms for (KP). A common method to judge the qual-
ity of an approximation algorithm is its worst-case perfor-
mance. For a given instance I define by z�(I) the optimal
solution value of (KP) and by zH(I) the corresponding so-
lution value of a heuristic H. For " 2 [0; 1[a heuristic H
is called a (1 � ")–approximation algorithm for (KP) if for
any instance I

zH(I) � (1 � ")z�(I)

holds. Given a parameter ", a heuristic H is called a fully
polynomial approximation scheme, or an FTPAS, if H
is a (1 � ")–approximation algorithm for (KP) for any
" 2 [0; 1[, and its running time is polynomial both in the
length of the encoded input n and 1/". The first FTPAS for
(KP) was suggested by Ibarra and Kim [1] in 1975. It was
among the early FPTASes for discrete optimization prob-
lems. It will be described in detail in the following.

Key Results

(KP) can be solved in pseudopolynomial time by a sim-
ple dynamic programming algorithm. One possible vari-
ant is the so-called dynamic programming by profits (DP-
Profits). The main idea of DP-Profits is to reach every pos-
sible total profit value with a subset of items of minimal
total weight. Clearly, the highest total profit value, which
can be reached by a subset of weight not greater than the
capacity c, will be an optimal solution.

Let y j(q) denote the minimal weight of a subset of
items from f1; : : : ; jgwith total profit equal to q. To bound
the length of every array yj an upper bound u on the opti-
mal solution value has to be computed. An obvious pos-
sibility would be to use the upper bound ULP =

zLP

˘
from the solution zLP of the LP-relaxation of (KP) and set

420 K Knapsack

U := ULP. It can be shown thatULP is at most twice as large
as the optimal solution value z*. Initializing y0(0) := 0
and y0(q) := c + 1 for q = 1; : : : ;U , all other values can be
computed for j = 1; : : : ; n and q = 0; : : : ;U by using the
recursion

y j(q) :=

(
y j�1(q) if q < p j ;

minfy j�1(q); y j�1(q � p j) + wjg if q � p j :

The optimal solution value is given by maxfq j yn(q) � cg
and the running time of DP-Profits is bounded by O(nU).

Theorem 1 (Ibarra, Kim) There is an FTPAS for (KP)
which runs in O(n log n + n/"2) time.

Proof The FTPAS is based on appropriate scaling of
the profit values pj and then running DP-Profits with the
scaled profit values. Scaling means here that the given
profit values pj are replaced by new profits p̃ j such that

p̃ j :=
j

p j
K

k
for an appropriate chosen constant K .

This scaling can be seen as a partitioning of the
profit range into intervals of length K with starting points
0;K; 2K; : : :. Naturally, for every profit value pj there is
some integer value i � 0 such that pj falls into the inter-
val [iK; (i + 1)K[. The scaling procedure generates for ev-
ery pj the value p̃ j as the corresponding index i of the lower
interval bound iK .

Running DP-Profits yields a solution set X̃ for the
scaled items which will usually be different from the origi-
nal optimal solution set X*. Evaluating the original profits
of item set X̃ yields the approximate solution value zH . The
difference between zH and the optimal solution value can
be bounded as follows.

zH �
X

j2X̃

K
�
p j

K

�
�
X
j2X�

K
�
p j

K

�
�
X
j2X�

K
�
p j

K
� 1

�

= z� � jX�jK:

To get the desired performance guarantee of 1� " it is suf-
ficient to have z��zH

z� �
jX� jK
z� � ":

To ensure this K has to be choosen such that

K �
"z�

jX�j
: (4)

Since n � jX�j and ULP/2 � z� choosing K := "ULP
2n

satisfies condition (4) and thus guarantees the perfor-
mance ratio of 1 � ". Substituting U in the O(nU) bound
for DP-Profits by U/K yields an overall running time of
O(n2").

A further improvement in the running time is ob-
tained in the following way. Separate the items into small

items (having profit � "
2ULP) and large items (having

profit > "
2ULP). Then, perform DP-Profits for the scaled

large items only. To each entry q of the obtained dynamic
programming array with corresponding weight y(q) the
small items are added to a knapsack with residual capacity
c � y(q) in a greedy way. The small items shall be sorted
in non-increasing order of their profit to weight ratio. Out
of the resulting combined profit values, the highest one is
selected. Since every optimal solution contains at most 2/"
large items, jX�j can be replaced in (4) by 2/"which results
in an overall running time O(n log n + n/"2). The memory
requirement of the algorithm is O(n + 1/"3). �

Two important approximation schemes with advanced
treatment of items and algorithmic fine tuning were pre-
sented some years later. The classical paper by Lawler [5]
gives a refined scaling resp. partitioning of the items
and several other algorithmic improvements which re-
sults in a running time O(n log(1/") + 1/"4). A second pa-
per by Magazine and Oguz [6] contains among other fea-
tures a partitioning and recombination technique to re-
duce the space requirements of the dynamic programming
procedure. The fastest algorithm is due to Kellerer and
Pferschy [3,4] with running time O(nminflog n; log(1/")g
+ 1/"2 log(1/") � minfn; 1/" log(1/")g) and space require-
ment O(n + 1/"2).

Applications

(KP) is one the classical problems in combinatorial opti-
mization. Since (KP) has this simple structure and since
there are efficient algorithms for solving it, many solution
methods of more complex problems employ the knapsack
problem (sometimes iteratively) as a subproblem.

A straightforward interpretation of (KP) is an invest-
ment problem. A wealthy individual or institutional in-
vestor has a certain amount of money c available which
he wants to put into profitable business projects. As a ba-
sis for his decisions he compiles a long list of possible
investments including for every investment the required
amount wj and the expected net return pj over a fixed pe-
riod. The aspect of risk is not explicitly taken into account
here. Obviously, the combination of the binary decisions
for every investment such that the overall return on in-
vestment is as large as possible can be formulated by (KP).

One may also view the (KP) as a “cutting” problem.
Assume that a sawmill has to cut a log into shorter pieces.
The pieces must however be cut into some predefined
standard-lengths wj, where each length has an associated
selling price pj. In order to maximize the profit of the log,
the sawmill can formulate the problem as a (KP) where the
length of the log defines the capacity c.

Knapsack K 421

Among the wide range of “real world” applications
shall be mentioned two-dimensional cutting problems,
column generation, separation of cover inequalities, fi-
nancial decision problems, asset-backed securitization,
scheduling problems, knapsack cryptosystems and most
recent combinatorial auctions. For a survey on applica-
tions of knapsack problems the reader is referred to [2].

Recommended Reading

1. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the
knapsack and sum of subset problem. J. ACM 22, 463–468
(1975)

2. Kellerer, H., Pisinger, D., Pferschy U.: Knapsack Problems.
Springer, Berlin (2004)

3. Kellerer, H., Pferschy, U.: A new fully polynomial time approxi-
mation scheme for the knapsack problem. J. Comb. Optim. 3,
59–71 (1999)

4. Kellerer, H., Pferschy, U.: Improved dynamic programming in
connection with an FPTAS for the knapsack problem. J. Comb.
Optim. 8, 5-11 (2004)

5. Lawler, E.L.: Fast approximation algorithms for knapsack prob-
lems. Math. Oper. Res. 4, 339–356 (1979)

6. Magazine, M.J., Oguz, O.: A fully polynomial approximation al-
gorithm for the 0–1 knapsack problem. Eur. J. Oper. Res. 8, 270–
273 (1981)

7. Martello, S., Toth, P. Knapsack Problems: Algorithms and Com-
puter Implementations. Wiley, Chichester (1990)

Learning with the Aid of an Oracle L 423

L

Learning with the Aid of an Oracle
1996; Bshouty, Cleve, Gavaldà, Kannan, Tamon

CHRISTINO TAMON
Department of Mathematics and Computer Science,
Clarkson University,
Potsdam, NY, USA

Keywords and Synonyms

Oracles and queries that are sufficient for exact learning

ProblemDefinition

In the exact learningmodel of Angluin [1], a learning algo-
rithm Amust discover an unknown function f : f0; 1gn !
f0; 1g that is a member of a known class C of Boolean func-
tions. The learning algorithm can make at least one of the
following types of queries about f:
� Equivalence query EQf(g), for a candidate function g:

The reply is either “yes”, if g, f, or a counterexample
a with g(a) ¤ f(a), otherwise.

� Membership query MQf(a), for some a 2 f0; 1gn : The
reply is the Boolean value f(a).

� Subset query SubQf(g), for a candidate function g: The
reply is “yes”, if g) f, or a counterexample a with
f(a) < g(a), otherwise.

� Superset query SupQf(g), for a candidate function g:
The reply is “yes”, if f) g, or a counterexample a with
g(a) < f(a), otherwise.

A Disjunctive Normal Formula (DNF) is a depth-2 OR-
AND circuit whose size is given by the number of its AND
gates. Likewise, a Conjunctive Normal Formula (CNF) is
a depth-2 AND-OR circuit whose size is given by the num-
ber of its OR gates. Any Boolean function can be repre-
sented as both a DNF or a CNF formula. A k-DNF is a DNF
where each AND gate has a fan-in of at most k; similarly, it
is possible to define k-CNF.

Problem

For a given class C of Boolean functions, such as poly-
nomial-size Boolean circuits or Disjunctive Normal Form
(DNF) formulas, the goal is to design polynomial-time
learning algorithms for any unknown f 2 C and ask a poly-
nomial number of queries. The output of the learning al-
gorithm should be a function g of polynomial size satisfy-
ing g , f . The polynomial functions bounding the run-
ning time, query complexity, and output size are defined in
terms of the number of inputs n and the size of the smallest
representation (Boolean circuit or DNF) of the unknown
function f

Key Results

One of the main results proved in [4] is that Boolean cir-
cuits and Disjunctive Normal Formulas are exactly learn-
able using equivalence queries and access to an NP oracle.

Theorem 1 The following tasks can be accomplished with
probabilistic polynomial-time algorithms that have access
to an NP oracle and make polynomially many equivalence
queries:
� Learning DNF formulas of size s using equivalence

queries that are depth-3 AND-OR-AND formulas of size
O(sn2/log2n).

� Learning Boolean circuits of size s using equivalence
queries that are circuits of size O(sn + n log n).

The idea behind this result is simple. Any class C of
Boolean functions is exactly learnable with equivalence
queries using the Halving algorithm of Littlestone [10].
This algorithm asks equivalence queries that are the ma-
jority of candidate functions from C. These are functions
in C that are consistent with the counterexamples obtained
so far by the learning algorithm. Since each such major-
ity query eliminates at least half of the candidate func-
tions, log2 jCj equivalence queries are sufficient to learn
any function in C. A problem with using the Halving al-

424 L Learning with the Aid of an Oracle

gorithm here is that the majority query has exponential
size. But, it can be shown that a majority of a polyno-
mial number of uniformly random candidate functions
is a good enough approximator to the majority of all
candidate functions. Moreover, with access to an NP or-
acle, there is a randomized polynomial time algorithm
for generating random uniform candidate functions due
to Jerrum, Valiant, and Vazirani [6]. This yields the re-
sult.

The next observation is that subset and superset
queries are apparently powerful enough to simulate both
equivalence queries and the NP oracle. This is easy
to see since the tautology test g, 1 is equivalent to
SubQf(g) ^ SubQf(g), for any unknown function f; and,
EQf(g) is equivalent to SubQf(g) ^ SupQf(g). Thus, the
following generalization of Theorem 1 is obtained.

Theorem 2 The following tasks can be accomplished with
probabilistic polynomial-time algorithms that make poly-
nomially many subset and superset queries:
� Learning DNF formulas of size s using equivalence

queries that are depth-3 AND-OR-AND formulas of size
O(sn2/log2n).

� Learning Boolean circuits of size s using equivalence
queries that are circuits of size O(sn + n log n).

Stronger deterministic results are obtained by allowing
more powerful complexity-theoretic oracles. The first of
these results employ techniques developed by Sipser and
Stockmeyer [11,12].

Theorem 3 The following tasks can be accomplished with
deterministic polynomial-time algorithms that have access
to an ˙ p

3 oracle and make polynomially many equivalence
queries:
� Learning DNF formulas of size s using equivalence

queries that are depth-3 AND-OR-AND formulas of size
O(sn2/log2n).

� Learning Boolean circuits of size s using equivalence
queries that are circuits of size O(sn + n log n).

In the following result, C is an infinite class of functions
containing functions of the form f : f0; 1g? ! f0; 1g. The
class C is p-evaluatable if the following tasks can be per-
formed in polynomial time:
� Given y, is y a valid representation for any function

fy 2 C?
� Given a valid representation y and x 2 f0; 1g?, is

fy(x) = 1?

Theorem 4 Let C be any p-evaluatable class. The following
statements are equivalent:

� C is learnable from polynomially many equivalence
queries of polynomial size (and unlimited computa-
tional power).

� C is learnable in deterministic polynomial time with
equivalence queries and access to a˙ p

5 oracle.

For exact learning with membership queries, the following
results are proved.

Theorem 5 The following tasks can be accomplished with
deterministic polynomial-time algorithms that have access
to an NP oracle and make polynomially many membership
queries (in n, DNF and CNF sizes of f, where f is the un-
known function):
� Learning monotone Boolean functions.
� Learning O(log n) � CNF

T
O(log n) � DNF.

The ideas behind the above result use techniques
from [1,3]. For a monotone Boolean function f, the stan-
dard closure algorithm uses both equivalence and mem-
bership queries to learn f using candidate functions g sat-
isfying g) f. The need for membership can be removed
using the following observation. Viewing :f as a mono-
tone function on the inverted lattice, it is possible to learn
f and :f simultaneously using candidate functions g,h, re-
spectively, that satisfy g) h. The NP oracle is used to ob-
tain an example a that either helps in learning f or in learn-
ing :f; when no such example can be found, fwas learned.

Theorem 6 Any class C of Boolean functions that is ex-
actly learnable using a polynomial number of member-
ship queries (and unlimited computational power) is exactly
learnable in expected polynomial time using a polynomial
number of membership queries and access to an NP oracle.

Moreover, any p-evaluatable class C that is exactly
learnable from a polynomially number membership queries
(and unlimited computational power), is also learnable in
deterministic polynomial time using a polynomial number
of membership queries and access to a˙ p

5 oracle.

Theorems 4 and 6 showed that information-theoretic
learnability using equivalence and membership queries
can be transformed into computational learnability at the
expense of using the˙ p

5 and NP oracles, respectively.

Applications

The learning algorithm for Boolean circuits using equiv-
alence queries and access to an NP oracle has found
an application in complexity theory. Watanabe (see [9])
showed an improvement on a known theorem of Karp

Learning Automata L 425

and Lipton [7]: if NP has polynomial-size circuits, then the
polynomial-time hierarchy PH collapses to ZPPNP.

Some techniques developed in Theorem 5 for exact
learning using membership queries of monotone Boolean
functions have found applications in data mining [5].

Open Problems

It is unknown if there are polynomial-time learning algo-
rithms for Boolean circuits andDNF formulas using equiv-
alence queries (without complexity-theoretic oracles).
There are strong cryptographic evidence that Boolean cir-
cuits are not learnable in polynomial-time (see [2] and
the references therein). The best running time for learn-
ing DNF formulas is 2Õ(n1/3) as given by Klivans and Serve-
dio [8]. It is unclear if membership queries help in this
case.

Cross References

For related learning results, see� Learning DNFFormulas
and� Learning Automata in this encyclopedia.

Recommended Reading

1. Angluin, D.: Queries and Concept Learning. Mach. Learn. 2,
319–342 (1988)

2. Angluin, D., Kharitonov, M.: When Won’t Membership Queries
Help? J. Comput. Syst. Sci. 50, 336–355 (1995)

3. Bshouty, N.H.: Exact Learning Boolean Function via the Mono-
tone Theory. Inform. Comput. 123, 146–153 (1995)

4. Bshouty, N.H., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Ora-
cles and Queries That Are Sufficient for Exact Learning. J. Com-
put. Syst. Sci. 52(3), 421–433 (1996)

5. Gunopolous, D., Khardon, R., Mannila, H., Saluja, S., Toivonen,
H., Sharma, R.S.: Discovering All Most Specific Sentences. ACM
Trans. Database Syst. 28, 140–174 (2003)

6. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random Generation of
Combinatorial Structures from a Uniform Distribution. Theor.
Comput. Sci. 43, 169–188 (1986)

7. Karp, R.M., Lipton, R.J.: Some Connections Between Nonuni-
form and Uniform Complexity Classes. In: Proc. 12th Ann. ACM
Symposium on Theory of Computing, 1980, pp. 302–309

8. Klivans, A.R., Servedio, R.A.: Learning DNF in Time 2Õ(n
1/3).

J. Comput. Syst. Sci. 68, 303–318 (2004)
9. Köbler, J., Watanabe, O.: New Collapse Consequences of NP

Having Small Circuits. SIAM J. Comput. 28, 311–324 (1998)
10. Littlestone, N.: Learning Quickly When Irrelevant Attributes

Abound: A New Linear-Threshold Algorithm. Mach. Learn. 2,
285–318 (1987)

11. Sipser, M.: A complexity theoretic approach to randomness. In:
Proc. 15th Annual ACM Symposium on Theory of Computing,
1983, pp. 330–334

12. Stockmeyer, L.J.: On approximation algorithms for #P. SIAM J.
Comput. 14, 849–861 (1985)

Learning Automata
2000; Beimel, Bergadano, Bshouty, Kushilevitz,
Varricchio

AMOS BEIMEL1, FRANCESCO BERGADANO2,
NADER H. BSHOUTY3, EYAL KUSHILEVITZ3,
STEFANO VARRICCHIO4

1 Ben-Gurion University, Beer Sheva, Israel
2 University of Torino, Torino, Italy
3 Technion, Haifa, Israel
4 Department of Computer Science, University of Roma,
Rome, Italy

Keywords and Synonyms

Computational learning; Machine learning; Multiplicity
automata; Formal series; Boolean formulas; Multivariate
polynomials

ProblemDefinition

This problem is concerned with the learnability of mul-
tiplicity automata in Angluin’s exact learning model and
applications to the learnability of functions represented by
small multiplicity automata.

The Learning Model It is the exact learning model [2]:
Let f be a target function. A learning algorithm may pro-
pose to an oracle, in each step, two kinds of queries:mem-
bership queries (MQ) and equivalence queries (EQ). In
a MQ it may query for the value of the function f on
a particular assignment z. The response to such a query
is the value f (z).1 In a EQ it may propose to the oracle
a hypothesis function h. If h is equivalent to f on all in-
put assignments then the answer to the query is YES and
the learning algorithm succeeds and halts. Otherwise, the
answer to the equivalence query is NO and the algorithm
receives a counterexample, i. e., an assignment z such that
f (z) ¤ h(z). One says that the learner learns a class of
functions C, if for every function f 2 C the learner outputs
a hypothesis h that is equivalent to f and does so in time
polynomial in the “size” of a shortest representation of f
and the length of the longest counterexample. The exact
learning model is strictly related to the Probably Approx-
imately Correct (PAC) model of Valiant [19]. In fact, ev-
ery equivalence query can be easily simulated by a sample
of random examples. Therefore, learnability in the exact
learning model also implies learnability in the PAC model
with membership queries [2,19].

1If f is boolean this is the standard membership query.

426 L Learning Automata

Multiplicity Automata Let K be a field, ˙ be an al-
phabet, � be the empty string. A multiplicity automaton
(MA) A of size r consists of j˙ j matrices f�� : � 2 ˙g
each of which is an r � r matrix of elements from K
and an r-tuple E� = (�1; : : : ; �r) 2Kr . The automaton A
defines a function fA : ˙� !K as follows. First, define
a mapping �, which associates with every string in ˙�

an r � r matrix overK, by �(�) , ID, where ID denotes
the identity matrix, and for a string w = �1�2 : : : �n , let
�(w) , ��1 � ��2 � � ���n . A simple property of � is that
�(x ı y) = �(x) � �(y), where ı denotes concatenation.
Now, fA(w) , [�(w)]1 � E� (where [�(w)]i denotes the ith
row of the matrix �(w)). Let f : ˙� !K be a function.
Associate with f an infinite matrix F, where each of its rows
is indexed by a string x 2 ˙� and each of its columns is in-
dexed by a string y 2 ˙�. The (x, y) entry of F contains the
value f (x ı y). The matrix F is called theHankel Matrix of
f . The xth row of F is denoted by Fx. The (x, y) entry of F
may be therefore denoted as Fx(y) and as Fx;y . The follow-
ing result relates the size of the minimal MA for f to the
rank of F (cf. [4] and references therein).

Theorem 1 Let f : ˙� ! K such that f 6� 0 and let F
be its Hankel matrix. Then, the size r of the smallest multi-
plicity automaton A such that fA � f satisfies r = rank(F)
(over the fieldK).

Key Results

The learnability of multiplicity automata has been proved
in [7] and, independently, in [17]. In what follows letK be
a field, f : ˙� !K be a function and F its Hankel matrix
such that r = rank(F) (overK).

Theorem 2 ([4]) The function f is learnable by an algo-
rithm in time O(j˙ j � r �M(r) + m � r3) using r equivalence
queries and O((j˙ j + logm)r2)membership queries, where
m is the size of the longest counterexample obtained during
the execution of the algorithm, and M(r) is the complexity
of multiplying two r � r matrices.

Some extensions of the above result can be found
in [8,13,16]. In many cases of interest the domain of the
target function f is not˙� but rather˙ n for some value n,
i. e., f : ˙ n !K. The length of counterexamples, in this
case, is always n and so m = n. Denote by Fd the subma-
trix of F whose rows are strings in˙ d and its columns are
strings in ˙ n�d and let rmax = maxnd=0 rank(F

d) (where
rank is taken overK).

Theorem 3 ([4]) The function f is learnable by an algo-
rithm in time O(j˙ jrn �M(rmax)) using O(r) equivalence
queries and O((j˙ j + log n)r � rmax)membership queries.

The time complexity of the two above results has been re-
cently further improved [9].

Applications

The results of this section can be found in [3,4,5,6]. They
show the learnability of various classes of functions as
a consequence of Theorems 2 and 3. This can be done by
proving that for every function f in the class in question,
the corresponding Hankelmatrix F has low rank. As is well
known, any nondeterministic automaton can be regarded
as a multiplicity automaton, whose associated function re-
turns the number of accepting paths of the nondetermin-
istic automaton on w. Therefore, the learnability of mul-
tiplicity automata gives a new algorithm for learning de-
terministic automata and unambiguous automata2. The
learnability of deterministic automata has been proved
in [1]. By [14], the class of deterministic automata con-
tains the class of O(log n)-term DNF, i. e., DNF formulae
over n boolean variables with O(log n) number of terms.
Hence, this class can be learned using multiplicity au-
tomata.

Classes of Polynomials

Theorem 4 Let pi; j : ˙ ! K be arbitrary functions of
a single variable (1 � i � t, 1 � j � n). Let gi : ˙ n ! K
be defined by

Qn
j=1 pi; j(z j). Finally, let f : ˙

n !K be de-
fined by f =

Pt
i=1 gi . Let F be the Hankel matrix corre-

sponding to f , and Fd the sub-matrices defined in the previ-
ous section. Then, for every 0 � d � n, rank(Fd) � t.

Corollary 5 The class of functions that can be expressed as
functions over GF(p) with t summands, where each sum-
mand Ti is a product of the form pi;1(x1) � � � pi;n(xn) (and
pi; j : GF(p)! GF(p) are arbitrary functions) is learnable
in time poly(n; t; p).

The above corollary implies as a special case the learn-
ability of polynomials over GF(p). This extends the re-
sult of [18] from multi-linear polynomials to arbitrary
polynomials. The algorithm of Theorem 3, for polynomi-
als with n variables and t terms, uses O(nt) equivalence
queries and O(t2n log n) membership queries. The spe-
cial case of the above class – the class of polynomials over
GF(2) – was known to be learnable before [18]. Their al-
gorithm uses O(nt) equivalence queries and O(t3n) mem-
bership queries. The following theorem extends the latter
result to infinite fields, assuming that the functions pi; j are
bounded-degree polynomials.

2A nondeterministic automata is unambiguous if for every
w 2 ˙� there is at most one accepting path.

Learning Automata L 427

Theorem 6 The class of functions over a field K that
can be expressed as t summands, where each summand Ti
is of the form pi;1(x1) � � � pi;n(xn), and pi; j :K !K are
univariate polynomials of degree at most k, is learnable in
time poly(n; t; k). Furthermore, if jKj � nk + 1 then this
class is learnable from membership queries only in time
poly(n; t; k) (with small probability of error).

Classes of Boxes

Let [`] denotes the set f0; 1; : : : ; `� 1g. A box in [`]n is
defined by two corners (a1; : : : ; an) and (b1; : : : ; bn) (in
[`]n) as follows:

Ba1;:::;an ;b1;:::;bn = f(x1; : : : ; xn) : 8i; ai � xi � bi g :

A box can be represented by its characteristic function in
[`]n . The following result concerns a more general class of
functions.

Theorem 7 Let pi; j : ˙ ! f0; 1g be arbitrary func-
tions of a single variable (1 � i � t, 1 � j � n). Let
gi : ˙ n ! f0; 1g be defined by

Qn
j=1 pi; j(z j). Assume that

there is no point x 2 ˙ n such that gi (x) = 1 for more
than s functions gi. Finally, let f : ˙ n ! f0; 1g be defined
by f =

Wt
i=1 gi . Let F be the Hankel matrix correspond-

ing to f . Then, for every fieldK and for every 0 � d � n,
rank(Fd) �

Ps
i=1
�t
i
�
.

Corollary 8 The class of unions of disjoint boxes can be
learned in time poly(n; t; `) (where t is the number of boxes
in the target function). The class of unions of O(log n) boxes
can be learned in time poly(n; `).

Classes of DNF Formulae

The learnability of DNF formulae has been widely investi-
gated. The following special case of Corollary 5 solves an
open problem of [18]:

Corollary 9 The class of functions that can be expressed as
exclusive-OR of t (not necessarily monotone) monomials is
learnable in time poly(n; t).

While Corollary 9 does not refer to a subclass of DNF, it
already implies the learnability of disjoint (i. e., satisfy-1)
DNF. Since DNF is a special case of union of boxes (with
` = 2), one obtains also the learnability of disjoint DNF
from Corollary 8. Positive results for satisfy-s DNF (i. e.,
DNF formulae in which each assignment satisfies at most
s terms) can be obtained, with larger values of s. The fol-
lowing two important corollaries follow from Theorem 7.
Note that Theorem 7 holds in any field. For convenience
(and efficiency), letK = GF(2).

Theorem 10 Let f = T1 _ T2 _ � � � _ Tt be a satisfy-s
DNF (that is, each Ti is a monomial). Let F be the Han-
kel matrix corresponding to f . Then, rank(Fd) �

Ps
i=1
�t
i
�

� ts .

Corollary 11 The class of satisfy-s DNF formulae, for
s = O(1), is learnable in time poly(n; t).

Corollary 12 The class of satisfy-s, t-term DNF for-
mulae is learnable in time poly(n) for the following
choices of s and t: (1) t = O(log n); (2) t = polylog(n)
and s = O(log n/ log log n); (3) t = 2O(log n/ log log n) and
s = O(log log n).

Classes of Decision Trees

The algorithm of Theorem 3 efficiently learns the class
of disjoint DNF formulae. This includes the class of
decision trees. Therefore, decision trees of size t on n
variables are learnable using O(tn) equivalence queries
and O(t2n log n) membership queries. This is better than
the best known algorithm for decision trees [11] (which
uses O(t2) equivalence queries and O(t2n2) member-
ship queries). The following results concern more general
classes of decision trees.

Corollary 13 Consider the class of decision trees that
compute functions f : GF(p)n ! GF(p) as follows: each
node v contains a query of the form “xi 2 Sv ?”, for some
Sv
 GF(p). If xi 2 Sv then the computation proceeds to
the left child of v and if xi … Sv the computation proceeds
to the right child. Each leaf ` of the tree is marked by
a value �` 2 GF(p) which is the output on all the assign-
ments which reach this leaf. Then, this class is learnable in
time poly(n; jLj; p), where L is the set of leaves.

The above result implies the learnability of decision trees
with “greater-than” queries in the nodes, solving a prob-
lem of [11]. Every decision tree with “greater-than” queries
that computes a boolean function can be expressed as the
union of disjoint boxes. Hence, this case can also be de-
rived from Corollary 8. The next theorem will be used to
learn more classes of decision trees.

Theorem 14 Let gi : ˙ n ! K be arbitrary functions
(1 � i � `). Let f : ˙ n !K be defined by f =

Q`
i=1 gi .

Let F be the Hankel matrix corresponding to f , and
Gi be the Hankel matrix corresponding to gi. Then,
rank(Fd) �

Q`
i=1 rank(G

d
i).

This theorem has some interesting applications. The first
application states that arithmetic circuits of depth two with
multiplication gate of fan-in O(log n) at the top level and
addition gates with unbounded fan-in in the bottom level
are learnable.

428 L Learning Automata

Corollary 15 Let C be the class of functions that can be
expressed in the following way: Let pi; j : ˙ !K be arbi-
trary functions of a single variable (1 � i � `, 1 � j � n).
Let ` = O(log n) and gi : ˙ n !K (1 � i � `) be defined
by ˙ n

j=1pi; j(z j). Finally, let f : ˙ n !K be defined by

f =
Q`

i=1 gi . Then, C is learnable in time poly(n; j˙ j).

Corollary 16 Consider the class of decision trees of depth s,
where the query at each node v is a boolean function f v
with rmax � t (as defined in Section "Key Results") such
that (t + 1)s = poly(n). Then, this class is learnable in time
poly(n; j˙ j).
The above class contains, for example, all the decision trees
of depth O(log n) that contain in each node a term or
a XOR of a subset of variables as defined in [15] (in this
case rmax � 2).

Negative Results

In [4] some limitation of the learnability via the automa-
ton representation has been proved. One can show that the
main algorithm does not efficiently learn several impor-
tant classes of functions. More precisely, these classes con-
tain functions f that have no “small” automaton, i. e., by
Theorem 1, the corresponding Hankel matrix F is “large”
over every fieldK.
Theorem 17 The following classes are not learnable in
time polynomial in n and the formula size using multiplic-
ity automata (over any field K): DNF, Monotone DNF,
2-DNF, Read-once DNF, k-term DNF, for k = !(log n),
Satisfy-s DNF, for s = !(1), Read-j satisfy-s DNF, for
j = !(1) and s = ˝(log n).
Some of these classes are known to be learnable by
other methods, some are natural generalizations of
classes known to be learnable as automata (O(log n)-term
DNF [11,12,14], and satisfy-s DNF for s = O(1) (Corol-
lary 11)) or by other methods (read-j satisfy-s for js =
O(log n/ log log n) [10]), and the learnability of some of
the others is still an open problem.

Cross References

� Learning Constant-Depth Circuits
� Learning DNF Formulas

Recommended Reading
1. Angluin, D.: Learning regular sets from queries and counterex-

amples. Inf. Comput. 75, 87–106 (1987)
2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4),

319–342 (1988)
3. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varric-

chio, S.: On the applications of multiplicity automata in learn-
ing. In: Proc. of the 37th Annu. IEEE Symp. on Foundations of

Computer Science, pp. 349–358, IEEE Comput. Soc. Press, Los
Alamitos (1996)

4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varric-
chio, S.: Learning Functions Represented as Multiplicity Au-
tomata. J. ACM 47, 506–530 (2000)

5. Beimel, A., Kushilevitz, E.: Learning boxes in high dimension.
In: Ben-David S. (ed.) 3rd European Conf. on Computational
Learning Theory (EuroCOLT ’97), Lecture Notes in Artificial In-
telligence, vol. 1208, pp. 3–15. Springer, Berlin (1997) Journal
version: Algorithmica 22, 76–90 (1998)

6. Bergadano, F., Catalano, D., Varricchio, S.: Learning sat-k-DNF
formulas frommembership queries. In: Proc. of the 28th Annu.
ACM Symp. on the Theory of Computing, pp. 126–130. ACM
Press, New York (1996)

7. Bergadano, F., Varricchio, S.: Learning behaviors of automata
from multiplicity and equivalence queries. In: Proc. of 2nd
Italian Conf. on Algorithms and Complexity. Lecture Notes in
Computer Science, vol. 778, pp. 54–62. Springer, Berlin (1994).
Journal version: SIAM J. Comput. 25(6), 1268–1280 (1996)

8. Bergadano, F., Varricchio, S.: Learning behaviors of automata
from shortest counterexamples. In: EuroCOLT ’95, Lecture
Notes in Artificial Intelligence, vol. 904, pp. 380–391. Springer,
Berlin (1996)

9. Bisht, L., Bshouty, N.H., Mazzawi, H.: On Optimal Learning Algo-
rithms for Multiplicity Automata. In: Proc. of 19th Annu. ACM
Conf. Comput. Learning Theory, Lecture Notes in Computer
Science. vol. 4005, pp. 184–198. Springer, Berlin (2006)

10. Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On learn-
ing read-k-satisfy-j DNF. In: Proc. of 7th Annu. ACM Conf. on
Comput. Learning Theory, pp. 110–117. ACM Press, New York
(1994)

11. Bshouty, N.H.: Exact learning via themonotone theory. In: Proc.
of the 34th Annu. IEEE Symp. on Foundations of Computer
Science, pp. 302–311. IEEE Comput. Soc. Press, Los Alami-
tos (1993). Journal version: Inform. Comput. 123(1), 146–153
(1995)

12. Bshouty, N.H.: Simple learning algorithms using divide and
conquer. In: Proc. of 8th Annu. ACM Conf. on Comput. Learn-
ing Theory, pp. 447–453. ACM Press, New York (1995). Journal
version: Computational Complexity, 6, 174–194 (1997)

13. Bshouty, N.H., Tamon, C., Wilson, D.K.: Learning Matrix Func-
tions over Rings. Algorithmica 22(1/2), 91–111 (1998)

14. Kushilevitz, E.: A simple algorithm for learning O(log n)-term
DNF. In: Proc. of 9th Annu. ACM Conf. on Comput. Learning
Theory, pp 266–269, ACM Press, New York (1996). Journal ver-
sion: Inform. Process. Lett. 61(6), 289–292 (1997)

15. Kushilevitz, E., Mansour, Y.: Learning decision trees using the
Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

16. Melideo, G., Varricchio, S.: Learning unary output two-tape au-
tomata from multiplicity and equivalence queries. In: ALT ’98.
Lecture Notes in Computer Science, vol. 1501, pp. 87–102.
Springer, Berlin (1998)

17. Ohnishi, H., Seki, H., Kasami, T.: A polynomial time learning al-
gorithm for recognizable series. IEICE Transactions on Informa-
tion and Systems, E77-D(10)(5), 1077–1085 (1994)

18. Schapire, R.E., Sellie, L.M.: Learning sparse multivariate polyno-
mials over a field with queries and counterexamples. J. Com-
put. Syst. Sci. 52(2), 201–213 (1996)

19. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

Learning Constant-Depth Circuits L 429

Learning Constant-Depth Circuits
1993; Linial, Mansour, Nisan

ROCCO SERVEDIO
Department of Computer Science, Columbia University,
New York, NY, USA

Keywords and Synonyms

Learning AC0 circuits

ProblemDefinition

This problem deals with learning “simple” Boolean func-
tions f : f0; 1gn ! f�1; 1g from uniform random labeled
examples. In the basic uniform distribution PAC frame-
work, the learning algorithm is given access to a uniform
random example oracle EX(f ,U) which, when queried,
provides a labeled random example (x; f (x)) where x
is drawn from the uniform distribution U over the
Boolean cube f0; 1gn : Successive calls to the EX(f ,U) or-
acle yield independent uniform random examples. The
goal of the learning algorithm is to output a representa-
tion of a hypothesis function h : f0; 1gn ! f�1; 1g which
with high probability has high accuracy; formally, for any
�; ı > 0, given � and ı the learning algorithm should
output an h which with probability at least 1� ı has
Prx2U [h(x) ¤ f (x)] � �.

Many variants of the basic framework described above
have been considered. In the distribution-independent
PAC learning model, the random example oracle is
EX(f ;D) where D is an arbitrary (and unknown to the
learner) distribution over f0; 1gn ; the hypothesis h should
now have high accuracy with respect toD, i. e. with prob-
ability 1 � ı it must satisfy Prx2D[h(x) ¤ f (x)] � �: An-
other variant that has been considered is when the dis-
tribution D is assumed to be an unknown product dis-
tribution; such a distribution is defined by n parameters
0 � p1; : : : ; pn � 1, and a draw fromD is obtained by in-
dependently setting each bit xi to 1 with probability pi. Yet
another variant is to consider learning with the help of
amembership oracle: this is a “black-box” oracleMQ(f) for
f which, when queried on an input x 2 f0; 1gn , returns the
value of f (x): The model of uniform distribution learn-
ing with a membership oracle has been well studied, see
e. g. [4,11].

There are many ways to make precise the notion of
a “simple” Boolean function; one common approach is
to stipulate that the function be computed by a Boolean
circuit of some restricted form. A circuit of size s and
depth d consists of s AND and OR gates (of unbounded

fanin) in which the longest path from any input literal
x1; : : : ; xn; x1; : : : ; xn to the output node is of length d.
Note that a circuit of size s and depth 2 is simply a CNF for-
mula or DNF formula. The complexity class consisting of
those Boolean functions computed by poly(n)-size, O(1)-
depth circuits is known as nonuniform AC0.

Key Results

Positive Results

Linial et al. [12] showed that almost all of the “Fourier
weight” of any constant-depth circuit is on low-degree
Fourier coefficients:

Lemma 1 Let f : f0; 1gn ! f�1; 1g be a Boolean function
that is computed by a circuit of size s and depth d. Then for
any integer t � 0,

X
S�f1;:::;ng;jSj>t

f̂ (S)2 � 2s2�t
1/d /20:

(Hastad [3] has given a refined version of Lemma 1 with
slightly sharper bounds; see also [17] for a streamlined
proof.) They also showed that any Boolean function can
be well approximated by approximating its Fourier spec-
trum:

Lemma 2 Let f : f0; 1gn ! f�1; 1g be any Boolean
function and let g : f0; 1gn ! R be an arbitrary func-
tion such that

P
S	f1;:::;ng(f̂ (S) � ĝ(S))2 � �: Then

Prx2U [f (x) ¤ sign(g(x))] � �:

Using the above two results together with a procedure
that estimates all the “low-order” Fourier coefficients, they
obtained a quasipolynomial-time algorithm for learning
constant-depth circuits:

Theorem 3 There is an n(O(log(n/�)))d -time algorithm that
learns any poly(n)-size, depth-d Boolean circuit to accuracy
� with respect to the uniform distribution, using uniform
random examples only.

Furst et al. [2] extended this result to learning under
constant-bounded product distributions. A product dis-
tribution D is said to be constant-bounded if each of its
n parameters p1,� � � ,pn is bounded away from 0 and 1, i. e.
satisfies minfpi ; 1 � pig = 	(1):

Theorem 4 There is an n(O(log(n/�)))d -time algorithm that
learns any poly(n)-size, depth-d Boolean circuit to accu-
racy � given random examples drawn from any constant-
bounded product distribution.

By combining the Fourier arguments of Linial et al. with
hypothesis boosting, Jackson et al. [5] were able to extend

430 L Learning Constant-Depth Circuits

Theorem 3 to a broader class of circuits, namely constant-
depth AND/OR circuits that additionally contain (a lim-
ited number of) majority gates. A majority gate over r
Boolean inputs is a binary gate which outputs “true” if and
only if at least half of its r Boolean inputs are set to “true”.

Theorem 5 There is an nlog
O(1)(n/�)-time algorithm that

learns any poly(n)-size, constant-depth Boolean circuit that
contains polylog(n) many majority gates to accuracy � with
respect to the uniform distribution, using uniform random
examples only.

Negative Results

Kharitonov [7] showed that under a strong but plausible
cryptographic assumption, the algorithmic result of The-
orem 3 is essentially optimal. A Blum integer is an integer
N = P � Q where both P and Q are congruent to 3 mod-
ulo 4. Kharitonov proved that if the problem of factor-
ing a randomly chosen n-bit Blum integer is 2n� -hard for
some fixed � > 0, then any algorithm that (even weakly)
learns polynomial-size depth-d circuits must run in time
2log

˝(d) n , even if it is only required to learn under the
uniform distribution and can use a membership oracle.
This implies that there is no polynomial-time algorithm
for learning polynomial-size, depth-d circuits (for d larger
than some absolute constant).

Using a cryptographic construction of Naor and Rein-
gold [14], Jackson et al. [5] proved a related result
for circuits with majority gates. They showed that un-
der Kharitonov’s assumption, any algorithm that (even
weakly) learns depth-5 circuits consisting of logk n many
majority gates must run in time 2log

˝(k) n time, even if it is
only required to learn under the uniform distribution and
can use a membership oracle.

Applications

The technique of learning by approximating most of the
Fourier spectrum (Lemma 2 above) has found many ap-
plications in subsequent work on uniform distribution
learning. It is a crucial ingredient in the current state-
of-the-art algorithms for learning monotone DNF formu-
las [16], monotone decision trees [15], and intersections
of halfspaces [8] from uniform random examples only.
Combined with a membership-oracle based procedure for
identifying large Fourier coefficients, this technique is at
the heart of an algorithm for learning decision trees [11];
this algorithm in turn plays a crucial role in the cele-
brated polynomial-time algorithm of Jackson [4] for learn-
ing polynomial-size depth-2 circuits under the uniform
distribution.

The ideas of Linial et al. have also been applied
for the difficult problem of agnostic learning. In the
agnostic learning framework there is a joint distribu-
tion D over example-label pairs f0; 1gn � f�1; 1g; the
goal of an agnostic learning algorithm for a class C
of functions is to construct a hypothesis h such that
Pr(x;y)2D[h(x) ¤ y] � min f2C Pr(x;y)2D[f (x) ¤ y] + �.
Kalai et al. [6] gave agnostic learning algorithms for half-
spaces and related classes via an algorithm which may be
viewed as a generalization of Linial et al.’s algorithm to
a broader class of distributions.

Finally, there has been some applied work on learning
using Fourier representations as well [13].

Open Problems

Perhaps themost outstanding open question related to this
work is whether polynomial-size circuits of depth two –
i. e. DNF formulas – can be learned in polynomial time
from uniform random examples only. Blum [1] has of-
fered a cash prize for a solution to a restricted version of
this problem. A hardness result for learning DNF would
also be of great interest; recent work of Klivans and Sher-
stov [10] gives a hardness result for learning ANDs of ma-
jority gates, but hardness for DNF (ANDs of ORs) remains
an open question.

Another open question is whether the quasipolyno-
mial-time algorithms for learning constant-depth circuits
under uniform distributions and product distributions
can be extended to the general distribution-independent
model. Known results in complexity theory imply that
quasipolynomial-time distribution-independent learning
algorithms for constant-depth circuits would follow from
the existence of efficient linear threshold learning al-
gorithms with a sufficiently high level of tolerance to
“malicious” noise. Currently no nontrivial distribution-
independent algorithms are known for learning circuits of
depth 3; for depth-2 circuits the best known running time
in the distribution-independent setting is the 2Õ(n1/3)-time
algorithm of Klivans and Servedio [9].

A third direction for future work is to extend the re-
sults of [5] to a broader class of circuits. Can constant-
depth circuits augmented with MODp gates, or with
weighted majority gates, be learned in quasipolynomial
time? [5] discusses the limitations of current techniques
to address these extensions.

Cross References
� Cryptographic Hardness of Learning
� Learning DNF Formulas
� PAC Learning
� Statistical Query Learning

Learning DNF Formulas L 431

Recommended Reading

1. Blum, A.: Learning a function of r relevant variables (open
problem). In: Proceedings of the 16th Annual Conference on
Learning Theory, pp. 731–733, Washington, 24–27 August
2003

2. Furst, M., Jackson, J., Smith, S.: Improved learning of AC0 func-
tions. In: Proceedings of the Fourth AnnualWorkshop on Com-
putational Learning Theory, pp. 317–325, Santa Cruz, (1991)

3. Håstad, J.: A slight sharpening of LMN. J. Comput. Syst. Sci.
63(3), 498–508 (2001)

4. Jackson, J.: An efficientmembership-query algorithm for learn-
ing DNF with respect to the uniform distribution. J. Comput.
Syst. Sci. 55, 414–440 (1997)

5. Jackson, J., Klivans, A., Servedio, R.: Learnability beyond AC0. In:
Proceedings of the 34th ACM Symposium on Theory of Com-
puting, pp. 776–784, Montréal, 23–25 May 2002

6. Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically
learning halfspaces. In: Proceedings of the 46th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 11–20,
Pittsburgh, PA, USA, 23–25 October 2005

7. Kharitonov, M.: Cryptographic hardness of distribution-
specific learning. In: Proceedings of the 25th Annual Sympo-
sium on Theory of Computing, pp. 372–381. (1993)

8. Klivans, A., O’Donnell, R., Servedio, R.: Learning intersections
and thresholds of halfspaces. J. Comput. Syst. Sci. 68(4), 808–
840 (2004)

9. Klivans, A., Servedio, R.: Learning DNF in time 2Õ(n
1/3) . J. Com-

put. Syst. Sci. 68(2), 303–318 (2004)
10. Klivans, A., Sherstov, A.: Cryptographic hardness results for

learning intersections of halfspaces. In: Proceedings of the
47th Annual Symposium on Foundations of Computer Sci-
ence, pp. 553–562, Berkeley, 22–24 October 2006

11. Kushilevitz, E., Mansour, Y.: Learning decision trees using the
Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

12. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits,
Fourier transform and learnability. J. ACM 40(3), 607–620
(1993)

13. Mansour, Y., Sahar, S.: Implementation Issues in the Fourier
Transform Algorithm. Mach. Learn. 40(1), 5–33 (2000)

14. Naor, M., Reingold, O.: Number-theoretic constructions of effi-
cient pseudo-random functions. J. ACM 51(2), 231–262 (2004)

15. O’Donnell, R., Servedio, R.: Learning monotone decision trees
in polynomial time. In: Proceedings of the 21st Conference on
Computational Complexity (CCC), pp. 213–225, Prague, 16–20
July 2006

16. Servedio, R.: On learning monotone DNF under product distri-
butions. Inform Comput 193(1), 57–74 (2004)

17. Stefankovic, D.: Fourier transforms in computer science. Mas-
ters thesis, TR-2002-03, University of Chicago (2002)

Learning DNF Formulas
1997; Jackson

JEFFREY C. JACKSON
Department of Mathematics and Computer Science,
Duquesne University, Pittsburgh, PA, USA

Keywords and Synonyms

Sum of products notation; Learning disjunctive normal
form formulas (or expressions); Learning sums of prod-
ucts

ProblemDefinition

A Disjunctive Normal Form (DNF) expression is
a Boolean expression written as a disjunction of terms,
where each term is the conjunction of Boolean vari-
ables that may or may not be negated. For example,
(v1 ^ v2) _ (v2 ^ v3) is a two-term DNF expression over
three variables. DNF expressions occur frequently in dig-
ital circuit design, where DNF is often referred to as sum
of products notation. From a learning perspective, DNF
expressions are of interest because they provide a natural
representation for certain types of expert knowledge. For
example, the conditions under which complex tax rules
apply can often be readily represented as DNFs. Another
nice property of DNF expressions is their universality:
every n-bit Boolean function f : f0; 1gn ! f0; 1g can be
represented as a DNF expression F over at most n vari-
ables.

Informally, the problem to be addressed is the fol-
lowing. A learning algorithm is given access to an oracle
MEM(f) that, for some fixed integer n > 0, on an n-bit in-
put will return a 1-bit response. The output of the oracle
is determined by an n-bit Boolean function f that can be
represented by an s-term DNF expression F over n vari-
ables. All that is known about f and F is n. The algorithm’s
goal is to produce, with high probability over the random
choices it makes, an n-bit Boolean function h that agrees
with f on all but a small fraction of the 2n elements of
the domain of f and h. Furthermore, the algorithm must
run in time polynomial in n and s (and other parameters
given in the formal problem definition). The algorithm is
not required to output a DNF representation of the ap-
proximating function h, but hmust be computable in time
comparable to that needed to evaluate f . In particular, h(x)
should be computable in time polynomial in n and s for all
x 2 f0; 1gn .

In the following formal problem definition, Un repre-
sents the uniform distribution over f0; 1gn .

Problem 1 (UDNFL)
Input: Positive integer n; "; ı > 0; oracle MEM(f) for
f : f0; 1gn ! f0; 1g expressible as DNF with s terms over
n variables.
Output: With probability at least 1 � ı over the random
choices made by the algorithm, a function h : f0; 1gn !
f0; 1g (not necessarily a DNF expression) such that

432 L Learning DNF Formulas

Prx
Un [h(x) ¤ f (x)] < ". The algorithmmust run in time
polynomial in n, s, 1/", and 1/ı, and for all x 2 f0; 1gn, h(x)
must be computable in time polynomial in n and s.

Threshold of Parities (TOP) is another interesting univer-
sal representation for Boolean functions. For a and x in
f0; 1gn , the even parity function ea(x) returns 1 if the dot
product a � x is even and 0 otherwise. That is, the output
is 1 if the parity of the bits in x indexed by a is even and 0
otherwise. Similarly, define the odd parity function oa(x) to
return 1 if the parity of the bits in x indexed by a is odd and
0 otherwise. A parity function is either an even or an odd
parity function. Then a TOP representation of size s is de-
fined by a collection of s parity functions (p1; p2; : : : ; ps),
where pi is allowed to be the same as pj for i ¤ j (i. e., there
may be fewer than s distinct functions in the collection).
The value of a TOP F on input x is the majority value of
pi(x) over the s parity functions defining F (with value 0 in
the case of no majority).

Problem 2 (UTOPL)
Input: Positive integer n; "; ı > 0; oracle MEM(f) for
f : f0; 1gn ! f0; 1g expressible as TOP of size s over n vari-
ables.
Output: With probability at least 1 � ı over the random
choices made by the algorithm, a function h : f0; 1gn !
f0; 1g (not necessarily a TOP) such that Prx
Un [h(x) ¤
f (x)] < ". The algorithm must run in time polynomial in
n, s, 1/", and 1/ı, and for all x 2 f0; 1gn, h(x) must be com-
putable in time polynomial in n and s.

TOP and DNF representations of the same Boolean func-
tion f can be related as follows. For every f : f0; 1gn !
f0; 1g, if f can be represented by an s-termDNF expression
then there is a TOP representation of f of size O(ns2) [7].
On the other hand, a DNF of size 2n�1 is required to repre-
sent the parity function e1n () (even parity in which all bits
are relevant). So the DNF expression for a function is at
most polynomially more succinct than the optimal equiv-
alent TOP expression, whereas TOP expressions may be
exponentially more succinct than the optimal equivalent
DNF expressions.

From a learning viewpoint, this means that UTOPL is
a harder problem then UDNFL. This is because the only
difference between the problems is in how the size parame-
ter s is defined, with larger values of s allowing the learning
algorithm more time. Thus, since the DNF size of a func-
tion f is never much smaller than the TOP size of f and
may be much larger, the learning algorithm is effectively
allowed more time for DNF learning than it is for TOP
learning.

Another direction in which the DNF problem can nat-
urally be extended is to non-Boolean inputs. A DNF with

s terms can be viewed as a union of s subcubes of the
Boolean hypercube f0; 1gn , with the portion of the hyper-
cube covered by this union corresponding to the 1 val-
ues of the DNF. Similarly, for any fixed positive integer b,
a function f : f0; 1; : : : ; b � 1gn ! f0; 1g can be defined
as a union of rectangles over f0; 1; : : : ; b � 1gn , where
a rectangle is the set of all elements in a Cartesian productQn

i=1f`i ; `i + 1; : : : ; ui g, where for all i, 0 � `i � ui < b.
As in the Boolean case, the 1 values of f correspond exactly
to those inputs included in this union of rectangles. Such
a representation of f as a union of s rectangles will be called
a UBOX of size s. Defining Ub

n to be the uniform distribu-
tion over f0; 1; : : : ; b � 1gn , this gives rise to the following
problem:

Problem 3 (UUBOXL) Input: Positive integers n and b;
"; ı > 0; oracle MEM(f) for f : f0; 1; : : : ; b�1gn ! f0; 1g
expressible as UBOX of size s over n variables.

Output: With probability at least 1 � ı over the
random choices made by the algorithm, a function
h : f0; 1; : : : ; b � 1gn ! f0; 1g (not necessarily a UBOX)
such that Prx
Ub

n
[h(x) ¤ f (x)] < ". The algorithm must

run in time polynomial in n, s, 1/", and 1/ı, and for all
x 2 f0; 1gn, h(x) must be computable in time polynomial
in n and s (b is taken to be a constant).

Key Results

Theorem 1 There is an algorithm—the Harmonic
Sieve[7,9,10]—that solves both UDNFL and UTOPL.

The run time1 of the original version of the Harmonic
Sieve [7] is Õ(ns10/"12+c), where c is an arbitrarily small
positive constant and the Õ() notation is the same as big-
O notation except that logarithmic factors are suppressed
(in particular, the run-time dependence on 1/ı is loga-
rithmic). This bound was improved in [4] and [11] to
Õ(ns6/"2), and Feldman [6] has further improved the run
time to Õ(ns4/"). All of the improvements use the same
overall algorithmic structure as the Harmonic Sieve, but
some components of the structure are replaced with more
efficient approaches. The output h of the original Sieve is
a TOP, but this is not the case for the more efficient ver-
sions of the algorithm.

Learnability of TOP implies learnability of several
other classes that are, for purposes of uniform learning,
special cases of TOP [7]. This includes the class of those
functions that can be defined as a majority of arbitrary
(log n)-bit Boolean functions (size measure is the number

1See [4] for an explanation of an error in the time bound given
in [7]

Learning DNF Formulas L 433

of functions) and the class of those functions that can be
expressed as a parity-DNF, that is, as an OR of ANDs of
parity functions (size measure is the number of ANDs).

Theorem 2 A variation of the Harmonic Sieve solves
UUBOXL.

An algorithm for UUBOXL is given in [7].

Applications

An extended version of the Harmonic Sieve can tolerate
false responses by the oracle MEM(f). In particular, in
the uniform persistent classification noise learning model,
a constant noise rate 0 � � < 1/2 is fixed and an oracle
MEM�(f) is defined as follows: if the query x has not been
presented to the oracle previously, thenMEM�(f) returns
f (x) with probability 1� � and the complement f (x) with
probability �. If x has been presented to the oracle previ-
ously, then it returns the same response that it did on the
first query with x. Jackson et al. [8] showed how to mod-
ify the Harmonic Sieve to efficiently learn DNF (and TOP,
although the referenced paper does not state this) in the
uniform persistent classification noise model.

Bshouty and Jackson [3] defined a uniform quantum
example oracle QEX(f ;Un) that, for a fixed unknown
function f : f0; 1gn ! f0; 1g, produces a quantum super-
position of the 2n labeled-example pairs hx; f (x)i, one pair
for each x 2 f0; 1gn . All pairs have the same amplitude,
2�n/2. Bshouty and Jackson then showed that such an ora-
cle QEX(f ;Un) cannot simulate the oracle MEM(f) used
by the Harmonic Sieve to learn DNF and TOP, and there-
fore is a weaker form of oracle. Nevertheless, building on
the Harmonic Sieve, they gave an efficient quantum algo-
rithm for learning DNF and TOP from a uniform quan-
tum example oracle.

Bshouty et al. [5] defined a model of learning from
uniform random walks over f0; 1gn . Unlike the oracle
MEM(f), where the learning algorithm actively selects ex-
amples to be queried, in the random walk model the
learner passively accepts random examples from the ran-
dom walk oracle. Building in part on the Harmonic Sieve,
Bshouty et al. showed that DNF is efficiently learnable in
the uniform random walk model. In addition, for fixed
0 � � � 1, Bshouty et al. defined a �-Noise Sensitivity ex-
ample oracle NS � EX�(f) that, when invoked, selects
an input x 2 f0; 1gn uniformly at random, forms an in-
put y by flipping each bit of x independently at ran-
dom with probability 1

2 (1 � �), and returns the quadru-
ple hx; f (x); y; f (y)i. This oracle is shown to be no more
powerful than the uniform random walk oracle, and an
algorithm based in part on the Sieve is presented that,

for any constant � 2 [0; 1], efficiently learns DNF using
NS � EX�(f). However, the question of whether or not
TOP is efficiently learnable in either of these models is left
open.

Atici and Servedio [1] have given a generalized version
of the Harmonic Sieve that can, among other things, learn
an interesting subset of the class of unions of rectangles
over f0; 1; : : : ; b � 1gn for non-constant b.

Open Problems

A key open problem involves relaxing the power of the
oracle used. For instance, given a function f : f0; 1gn !
f0; 1g, a uniform example oracle for f EX(f ;Un) is an or-
acle that, on every query, randomly selects an input x ac-
cording to Un and returns the value f (x). If the definition
of UDNFL is changed so that EX(f ;Un) is provided rather
than MEM(f), is UDNFL still solvable? There is at least
some reason to believe that the answer is no (see, e. g., [2]).
The apparently simpler question of whether or not the
class ofmonotone DNF expressions (DNF expressions with
no negated variables) is efficiently uniform learnable from
an example oracle is also still open, and there is less rea-
son to doubt that an algorithm solving this problem will
be discovered.

Cross References

� Learning Constant-Depth Circuits
� Learning Heavy Fourier Coefficients of Boolean

Functions
� PAC Learning

Recommended Reading
1. Atici, A., Servedio, R.A.: Learning unions of !(1)-dimensional

rectangles. In: Proceedings of 17th Algorithmic Learning The-
ory Conference, pp. 32–47. Springer, New York (2006)

2. Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich,
S.: Weakly learning DNF and characterizing statistical query
learning using Fourier analysis. In: Proceedings of the 26th An-
nual ACM Symposium on Theory of Computing, pp. 253–262.
Association for computing Machinery, New York (1994)

3. Bshouty, N.H., Jackson, J.C.: Learning DNF over the uniformdis-
tribution using a quantum example oracle. SIAM J. Comput.
28, 1136–1153 (1999)

4. Bshouty, N.H., Jackson, J.C., Tamon, C.: More efficient PAC-
learning of DNF with membership queries under the uniform
distribution. J. Comput. Syst. Sci. 68, 205–234 (2004)

5. Bshouty, N.H., Mossel, E., O’Donnell, R., Servedio, R.A.: Learn-
ing DNF from random walks. J. Comput. Syst. Sci. 71, 250–265
(2005)

6. Feldman, V.: On attribute efficient and non-adaptive learning
of parities and DNF expressions. In: 18th Annual Conference
on Learning Theory, pp. 576–590. Springer-Verlag, Berlin Hei-
delberg (2005)

434 L Learning Heavy Fourier Coefficients of Boolean Functions

7. Jackson, J.: An efficientmembership-query algorithm for learn-
ing DNF with respect to the uniform distribution. J. Comput.
Syst. Sci. 55, 414–440 (1997)

8. Jackson, J., Shamir, E., Shwartzman, C.: Learning with queries
corrupted by classification noise. Discret. Appl. Math. 92, 157–
175 (1999)

9. Jackson, J.C.: An efficient membership-query algorithm for
learning DNF with respect to the uniform distribution. In:
35th Annual Symposium on Foundations of Computer Sci-
ence, pp. 42–53. IEEE Computer Society Press, Los Alamitos
(1994)

10. Jackson, J.C.: The Harmonic Sieve: A Novel Application of
Fourier Analysis to Machine Learning Theory and Practice.
Ph. D. thesis, Carnegie Mellon University (1995)

11. Klivans, A.R., Servedio, R.A.: Boosting and hard-core set con-
struction. Mach. Learn. 51, 217–238 (2003)

Learning Heavy Fourier Coefficients
of Boolean Functions
1989; Goldreich, Levin

LUCA TREVISAN
Department of Computer Science, University
of California at Berkeley, Berkeley, CA, USA

Keywords and Synonyms

Error-control codes, Reed–Muller code

ProblemDefinition

The Hamming distance dH(y, z) between two binary
strings y and z of the same length is the number of entries
in which y and z disagree. A binary error-correcting code
of minimumdistance d is a mapping C : f0; 1gk ! f0; 1gn

such that for every two distinct inputs x; x0 2 f0; 1gk , the
encodings C(x) and C(x0) have Hamming distance at least
d. Error-correcting codes are employed to transmit infor-
mation over noisy channels. If a sender transmits an en-
coding C(x) of a message x via a noisy channel, and the
recipient receives a corrupt bit string y ¤ C(x), then, pro-
vided that y differs from C(x) in at most (d � 1)/2 loca-
tions, the recipient can recover y from C(x). The recipi-
ent can do so by searching for the string x that minimizes
the Hamming distance between C(x) and y: there can be
no other string x0 such that C(x0) has Hamming distance
(d � 1)/2 or smaller from y, otherwise C(x) and C(x0)
would be within Hamming distance d � 1 or smaller, con-
tradicting the above definition. The problem of recovering
the message x from the corrupted encoding y is the unique
decoding problem for the error-correcting code C. For the
above-described scheme to be feasible, the decoding prob-

lem must be solvable via an efficient algorithm. These no-
tions are due to Hamming [4].

Suppose that C is a code of minimum distance d, and
such that there are pairs of encodings C(x), C(x0) whose
distance is exactly d. Furthermore, suppose that a com-
munication channel is used that could make a number
of errors larger than (d � 1)/2. Then, if the sender trans-
mits an encoded message using C, it is no longer pos-
sible for the recipient to uniquely reconstruct the mes-
sage. If the sender, for example, transmits C(x), and the
recipient receives a string y that is at distance d/2 from
C(x) and at distance d/2 from C(x0), then, from the per-
spective of the recipient, it is equally likely that the orig-
inal message was x or x0. If the recipient knows an upper
bound e on the number of entries that the channel has cor-
rupted, then, given the received string y, the recipient can
at least compute the list of all strings x such that C(x) and
y differ in at most e locations. An error-correcting code
C : f0; 1gk ! f0; 1gn is (e, L)-list decodable if, for every
string y 2 f0; 1gn , the set fx 2 f0; 1gk : dH(C(x); y) � eg
has cardinality at most L. The problem of reconstruct-
ing the list given y and e is the list-decoding problem for
the code C. Again, one is interested in efficient algorithms
for this problem. The notion of list-decoding is due to
Elias [1].

A code C : f0; 1gk ! f0; 1gn is aHadamard code if ev-
ery two encodings C(x), C(x0) differ in precisely n/2 lo-
cations. In the Computer Science literature, it is common
to use the term Hadamard code for a specific construc-
tion (the Reed–Muller code of order 2) that satisfies the
above property. For a string a 2 f0; 1gk , define the func-
tion `a : f0; 1gk ! f0; 1g as

`a(x) :=
X
i

ai xi mod 2 :

Observe that, for a ¤ b, the two functions `a and `b
differ on precisely (2k)/2 inputs. For n = 2k , the code
H : f0; 1gk ! f0; 1gn maps a message a 2 f0; 1gk into the
n-bit string which is the truth-table of the function `a. That
is, if b1; : : : ; bn is an enumeration of the n = 2k elements
of f0; 1gk , and a 2 f0; 1gk is a message, then the encoding
H(a) is the n-bit string that contains the value `a(bi) in the
i-th entry. Note that any two encodings H(x), H(x0) dif-
fer in precisely n/2 entries, and so what was just defined is
a Hadamard code. From now on, the termHadamard code
will refer exclusively to this construction.

It is known that the Hadamard code H : f0; 1gk !
f0; 1g2k is (12 � �;

1
4�2)-list decodable for every � > 0. The

Goldreich–Levin results provide efficient list-decoding al-
gorithm.

Learning Heavy Fourier Coefficients of Boolean Functions L 435

The following definition of the Fourier spectrum of
a boolean function will be needed later to state an ap-
plication of the Goldreich–Levin results to computa-
tional learning theory. For a string a 2 f0; 1gk , define the
function �a : f0; 1gk ! f�1;+1g as �a(x) := (�1)`a (x).
Equivalently, �a(x) = (�1)

P
i a i x i . For two functions

f ; g : f0; 1gk ! R, define their inner product as

h f ; gi :=
1
2k
X
x

f (x) � g(x) :

Then it is easy to see that, for every a ¤ b, h�a; �bi = 0,
and h�a; �ai = 1. This means that the functions
f�aga2f0;1gk form an orthonormal basis for the set of
all functions f : f0; 1gk ! R. In particular, every such
function f can be written as a linear combination

f (x) =
X
a

f̂ (a)�a(x)

where the coefficients f̂ (a) satisfy f̂ (a) = h f ; �ai. The co-
efficients f̂ (a) are called the Fourier coefficients of the func-
tion f .

Key Results

Theorem 1 There is a randomized algorithm GL that,
given in input an integer k and a parameter � > 0, and
given oracle access to a function f : f0; 1gk ! f0; 1g, runs
in time polynomial in 1/� and in k and outputs, with high
probability over its internal coin tosses, a set S
 f0; 1gk

that contains all the strings a 2 f0; 1gk such that `a and f
agree on at least a 1/2 + � fraction of inputs.

Theorem 1 is proved by Goldreich and Levin [3]. The re-
sult can be seen as a list-decoding for the Hadamard code
H : f0; 1gk ! f0; 1g2k ; remarkably, the algorithm runs in
time polynomial in k, which is poly-logarithmic in the
length of the given corrupted encoding.

Theorem 2 There is a randomized algorithm KM that
given in input an integer k and parameters �; ı > 0, and
given oracle access to a function f : f0; 1gk ! f0; 1g, runs
in time polynomial in 1/�, in 1/ı, and in k and outputs a set
S
 f0; 1gk and a value g(a) for each a 2 S.

With high probability over the internal coin tosses of the
algorithm,
1 S contains all the strings a 2 f0; 1gk such that
j f̂ (a)j � �, and

2 For every a 2 S, j f̂ (a)� g(a)j � ı.

Theorem 2 is proved by Kushilevitz and Mansour [5]; it is
an easy consequence of the Goldreich–Levin algorithm.

Applications

There are two key applications of the Goldreich–Levin al-
gorithm: one is to cryptography and the other is to com-
putational learning theory.

Application in Cryptography

In cryptography, a one-way permutation is a fam-
ily of functions fpngn�1 such that: (i) for every n,
pn : f0; 1gn ! f0; 1gn is bijective, (ii) there is a polyno-
mial time algorithm that, given x 2 f0; 1gn , computes
pn(x), and (iii) for every polynomial time algorithm A and
polynomial q, and for every sufficiently large n,

Px
f0;1gn [A(pn(x)) = x] �
1

q(n)
:

That is, even though computing pn(x) given x is doable
in polynomial time, the task of computing x given pn(x)
is intractable. A hard core predicate for a one-way per-
mutation fpng is a family of functions fBngn�1 such that:
(i) for every n, Bn : f0; 1gn ! f0; 1g, (ii) there is a poly-
nomial time algorithm that, given x 2 f0; 1gn , computes
Bn(x), and (iii) for every polynomial time algorithm A and
polynomial q, and for every sufficiently large n,

Px
f0;1gn [A(pn(x)) = Bn(x)] �
1
2
+

1
q(n)

:

That is, even though computing Bn(x) given x is doable in
polynomial time, the task of computing Bn(x) given pn(x)
is intractable.

Goldreich and Levin [3] use their algorithm to show
that every one-way permutation has a hard-core predicate,
as stated in the next theorem.

Theorem 3 Let fpng be a one-way permutation; define
fp0ng such that p02n(x; y) := pn(x); y and let B2n(x; y) :=P

i xi yi mod 2. (For odd indices, let p02n+1(z; b) := p02n(z)
and B2n+1(z; b) := B2n(z).)

Then fp0ng is a one-way permutation and fBng is
a hard-core predicate for fp0ng.

This result is used in efficient constructions of pseudoran-
dom generators, pseudorandom functions, and private-
key encryption schemes based on one-way permutations.
The interested reader is referred to Chapter 3 in Goldre-
ich’s monograph [2] for more details.

There are also related applications in computational
complexity theory, especially in the study of average-case
complexity. See [7] for an overview.

436 L Learning with Malicious Noise

Application in Computational Learning Theory

Loosely speaking, in computational learning theory one
is given an unknown function f : f0; 1gk ! f0; 1g and
one wants to compute, via an efficient randomized algo-
rithm, a representation of a function g : f0; 1gk ! f0; 1g
that agrees with f on most inputs. In the PAC learning
model, one has access to f only via randomly sampled pairs
(x; f (x)); in the model of learning with queries, instead,
one can evaluate f at points of one’s choice. Kushilevitz
and Mansour [5] suggest the following algorithm: using
the algorithm of Theorem 2, find a set S of large coeffi-
cients and approximations g(a) of the coefficients f̂ (a) for
a 2 S. Then define the function g(x) =

P
a2S g(a)�a(x).

If the error caused by the absence of the smaller coeffi-
cients and the imprecision in the larger coefficient is not
too large, g and f will agree on most inputs. (A tech-
nical point is that g as defined above is not necessarily
a boolean function, but it can be easily “rounded” to be
boolean.) Kushilevitz and Mansour show that such an ap-
proach works well for the class of functions f for whichP

a j f̂ (a)j is bounded, and they observe that functions of
small decision tree complexity fall into this class. In partic-
ular, they derive the following result.

Theorem 4 There is a randomized algorithm that, given
in input parameters k, m, " and ı, and given oracle ac-
cess to a function f : f0; 1gk ! f0; 1g of decision tree com-
plexity at most m, runs in time polynomial in k, m, 1/�
and log 1/ı and, with probability at least 1 � ı over its in-
ternal coin tosses, outputs a circuit computing a function
g : f0; 1gk ! f0; 1g that agrees with f on at least a 1 � �
fraction of inputs.

Another application of the Kushilevitz–Mansour tech-
nique is due to Linial, Mansour, and Nisan [6].

Cross-References

� Decoding Reed–Solomon Codes

Recommended Reading
1. Elias, P.: List decoding for noisy channels. Technical Report 335,

Research Laboratory of Electronics, MIT, Campridge, MA, USA
(1957)

2. Goldreich, O.: The Foundations of Cryptography – Volume 1.
Cambridge University Press, Campridge, UK (2001)

3. Goldreich, O., Levin, L.: A hard-core predicate for all one-way
functions. In: Proceedings of the 21st ACM Symposium on The-
ory of Computing, pp. 25–32 Seattle, 14–17 May 1989

4. Hamming, R.: Error detecting and error correcting codes. Bell
Syst. Tech. J. 29, 147–160 (1950)

5. Kushilevitz, E., Mansour, Y.: Learning decision trees using the
fourier spectrum. SIAM J. Comp. 22(6), 1331–1348 (1993)

6. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier
transform and learnability. J. ACM 40(3), 607–620 (1993)

7. Trevisan, L.: Some applications of coding theory in computa-
tional complexity. Quaderni Matematica 13, 347–424 (2004)
arXiv:cs.CC/0409044

Learning withMalicious Noise
1993; Kearns, Li

PETER AUER
Institute for Computer Science, University of Leoben,
Leoben, Austria

ProblemDefinition

This problem is concerned with PAC learning of concept
classes when training examples are effected by malicious
errors. The PAC (probably approximately correct) model
of learning (also known as the distribution-free model
of learning) was introduced by Valiant [11]. This model
makes the idealized assumption that error-free training
examples are generated from the same distribution which
is then used to evaluate the learned hypothesis. In many
environments, however, there is some chance that an erro-
neous example is given to the learning algorithm. The ma-
licious noise model – again introduced by Valiant [12] –
extends the PAC model by allowing example errors of any
kind: it makes no assumptions on the nature of the er-
rors that occur. In this sense the malicious noise model
is a worst-case model of errors, in which errors may be
generated by an adversary whose goal is to foil the learn-
ing algorithm. Kearns and Li [7,8] study the maximal ma-
licious error rate such that learning is still possible. They
also provide a canonical method to transform any stan-
dard learning algorithm into an algorithm which is robust
against malicious noise.

Notations

Let X be a set of instances. The goal of a learning algo-
rithm is to infer an unknown subset C
 X of instances
which exhibit a certain property. Such subsets are called
concepts. It is known to the learning algorithm that the
correct concept C is from a concept class C
 2X , C 2 C.
Let C(x) = 1 if x 2 C and C(x) = 0 if x 62 C. As input the
learning algorithm receives an accuracy parameter " > 0,
a confidence parameter ı > 0, and themalicious noise rate
ˇ � 0. The learning algorithm may request a sample of
labeled instances S = h(x1; `1); : : : ; (xm ; `m)i, xi 2 X and
`i 2 f0; 1g, and produces a hypothesis H
 X. Let D be
the unknown distribution of instances in X. Learning is

Learning with Malicious Noise L 437

successful if H misclassifies an example with probability
less than ", errD(C;H) := D fx 2 X : C(x) ¤ H(x)g < ".
A learning algorithm is requested to be successful with
probability 1� ı. The error of a hypothesis H in re-
spect to a sample S of labeled instances is defined as
err(S;H) := jf(x; `) 2 S : H(x) ¤ `gj/jSj.

The VC-dimension VC(C) of a concept class C
is the maximal number of instances x1; : : : ; xd such
that f(C(x1); : : : ;C(xd)) : C 2 Cg = f0; 1gd . The VC-
dimension is a measure for the difficulty to learn concept
class C [3].

To investigate the computational complexity of learn-
ing algorithms, sequences of concept classes with increas-
ing complexity (Xn ;Cn)n = h(X1;C1); (X2;C2); : : : i are
considered. In this case the learning algorithm receives
also a complexity parameter n as input.

Generation of Examples

In the malicious noise model the labeled instances (xi ; `i)
are generated independently from each other by the fol-
lowing random process.

(a) Correct examples: with probability 1 � ˇ an instance
xi is drawn from distribution D and labeled by the
correct concept C, `i = C(xi).

(b) Noisy examples: with probability ˇ an arbitrary exam-
ple (xi ; `i) is generated, possibly by an adversary.

Problem 1 (Malicious Noise Learning of (X;C))
INPUT: Reals "; ı > 0, ˇ � 0.
OUTPUT: A hypothesis H
 X.
For any distribution D on X and any concept C 2 C,
the algorithm needs to produce with probability 1 � ı
a hypothesis H such that errD(C;H) < ". The proba-
bility 1 � ı is taken in respect to the random sample
(x1; `1); : : : ; (xm ; `m) requested by the algorithm. The ex-
amples (xi ; `i) are generated as defined above.

Problem 2 (Polynomial Malicious Noise Learning of
(Xn;Cn)n)
INPUT: Reals "; ı > 0, ˇ � 0, integer n � 1.
OUTPUT: A hypothesis H
 Xn.
For any distributionD on Xn and any concept C 2 Cn, the
algorithm needs to produce with probability 1 � ı a hypoth-
esis H such that errD(C;H) < ". The computational com-
plexity of the algorithm must be bounded by a polynomial
in 1/", 1/ı, and n.

Key Results

Theorem 1 ([8]) If there are concepts C1;C2 2 C
and instances x1; x2 2 X such that C1(x1) = C1(x2) and

C2(x1) ¤ C2(x2), then no algorithm learns C with mali-
cious noise rate ˇ � "/(1 + ").

Theorem 2 Let � > 0 and d = VC(C). For a suit-
able constant �, any algorithm which requests a sam-
ple S of m � �("d log 1/(�ı))/�2 labeled examples and
returns a hypothesis H 2 C which minimizes err(S;H),
learns the concept class C with malicious noise rate
ˇ � "/(1 + ")��.

Lower bounds on the number of examples necessary
for learning with malicious noise were derived by Cesa-
Bianchi et al. [5].

Theorem 3 ([5]) Let� > 0 and d = VC(C) � 3. There is
a constant �, such that any algorithm which learns C with
malicious noise rate ˇ = "/(1 + ")�� by requesting a sam-
ple and returning a hypothesis H 2 C which minimizes
err(S;H), needs a sample of size at least m � �"d/�2.

A general conversion of a learning algorithm for the noise-
freemodel into an algorithm for themalicious noise model
was given by Kearns and Li.

Theorem 4 ([8]) Let A be a (polynomial-time) learning
algorithm which learns concept classes Cn from m("; ı; n)
noise-free examples, i. e. ˇ = 0. Then A can be converted
into a (polynomial-time) learning algorithm for Cn for any
malicious noise rate ˇ � logm("/8; 1/2; n)/m("/8; 1/2; n).

The next theorem relates learning with malicious noise to
a type of combinatorial optimization problems.

Theorem 5 ([8]) Let r � 1 and ˛ > 1.
1. Let A be an algorithm which, for any sample S,

returns a hypothesis H 2 C with err(S;H) � r �
minC2C err(S;C). Then A learns concept class C for
any malicious noise rate ˇ � "/(˛(1 + ")r) from a suf-
ficiently large sample.

2. LetA be a polynomial-time learning algorithm for con-
cept classes Cn which tolerates a malicious noise rate
ˇ = "/r. Then A can be converted into a polynomial-
time algorithm which for any sample S, with high
probability returns a hypothesis H 2 Cn such that
err(S;H) � ˛r �minC2C err(S;C).

The computational hardness of several such related com-
binatorial optimization problems was shown by Ben-
David, Eiron, and Long [2].

Applications

Several extensions of the learning model with malicious
noise have been proposed, in particular the agnostic learn-
ing model [9] and the statistical query model [6]. Follow-

438 L Learning Significant Fourier Coefficients over Finite Abelian Groups

ing relations between thesemodels and themalicious noise
model have been established.

Theorem 6 ([9]) If concept class C is polynomial-time
learnable in the agnostic model, then C is polynomial-time
learnable with any malicious noise rate ˇ � "/2.

Theorem 7 ([6]) If C is learnable from (relative error)
statistical queries, then C is learnable with any malicious
noise rate ˇ � "/ logp(1/") for a suitable large p indepen-
dent of C.
Another learning model related to the malicious noise
model is learning with nasty noise [4]. In this model exam-
ples effected by malicious noise are not chosen at random
with probability ˇ, but an adversary might manipulate an
arbitrary fraction of ˇm examples out of a given sample of
size m. The malicious noise model was also considered in
the context of on-line learning [1] and boosting [10].

Cross References

� Boosting Textual Compression
� PAC Learning
� Perceptron Algorithm
� Statistical Query Learning

Recommended Reading
1. Auer, P., Cesa-Bianchi, N.: On-line learningwithmalicious noise

and the closure algorithm. Ann. Math. Artif. Intell. 23, 83–99
(1998)

2. Ben-David, S., Eiron, N., Long, P.: On the difficulty of approxi-
mately maximizing agreements. J. CSS 66, 496–514 (2003)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learn-
ability and the Vapnik-Chervonenkis dimension. J. ACM 36,
929–965 (1989)

4. Bshouty, N., Eiron, N., Kushilevitz, E.: PAC learning with nasty
noise. TCS 288, 255–275 (2002)

5. Cesa-Bianchi, N., Dichterman, E., Fischer, P., Shamir, E., Simon,
H.U.: Sample-efficient strategies for learning in the presence of
noise. J. ACM 46, 684–719 (1999)

6. Aslam, J.A., Decatur, S.E.: Specification and simulation of statis-
tical query algorithms for efficiency and noise tolerance. J. CSS
56, 191–208 (1998)

7. Kearns, M., Li, M.: Learning in the presence of malicious errors.
In: Proc. 20th ACM Symp. Theory of Computing, pp. 267–280,
Chicago, 2–4 May 1988

8. Kearns, M., Li, M.: Learning in the presence of malicious errors.
SIAM J. Comput. 22, 807–837 (1993)

9. Kearns, M., Schapire, R., Sellie, L.: Toward efficient agnostic
learning. Mach. Learn. 17, 115–141 (1994)

10. Servedio, R.A.: Smooth boosting and learning with malicious
noise. JMLR 4, 633–648 (2003)

11. Valiant, L.: A theory of the learnable. C. ACM 27, 1134–1142
(1984)

12. Valiant, L.: Learning disjunctions of conjunctions. In: Proc. 9th
Int. Joint Conference on Artificial Intelligence, pp. 560–566, Los
Angeles, August 1985

Learning Significant Fourier
Coefficients over Finite Abelian
Groups
2003; Akavia, Goldwasser, Safra

ADI AKAVIA
Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, USA

Keywords and Synonyms
Learning heavy fourier coefficients; Finding heavy fourier
coefficients

ProblemDefinition
Fourier transform is among the most widely used tools
in computer science. Computing the Fourier transform
of a signal of length N may be done in time 	(N logN)
using the Fast Fourier Transform (FFT) algorithm. This
time bound clearly cannot be improved below 	(N), be-
cause the output itself is of length N. Nonetheless, it turns
out that in many applications it suffices to find only the
significant Fourier coefficients, i. e., Fourier coefficients oc-
cupying, say, at least 1% of the energy of the signal. This
motivates the problem discussed in this entry: the prob-
lem of efficiently finding and approximating the signifi-
cant Fourier coefficients of a given signal (SFT, in short).
A naive solution for SFT is to first compute the entire
Fourier transform of the given signal and then to output
only the significant Fourier coefficients; thus yielding no
complexity improvement over algorithms computing the
entire Fourier transform. In contrast, SFT can be solved
far more efficiently in running time e	(logN) and while
reading at most e	(log N) out of the N signal’s entries [2].
This fast algorithm for SFT opens the way to applications
taken from diverse areas including computational learn-
ing, error correcting codes, cryptography, and algorithms.

It is now possible to formally define the SFT
problem, restricting our attention to discrete signals.
Use functional notation where a signal is a function
f : G ! C over a finite Abelian group G, its energy is

k f k22
def= 1/jGj

P
x2G j f (x)j

2, and its maximal amplitude

is k f k1
def= maxfj f (x)j jx 2 Gg.1 For ease of presentation

1For readers more accustomed to vector notation, the au-
thors remark that there is a simple correspondence between vec-
tor and functional notation. For example, a one-dimensional sig-
nal (v1; : : : ; vN) 2 CN corresponds to the function f : ZN ! C
defined by f (i) = vi for all i = 1; : : : ;N . Likewise, a two-
dimensional signal M 2 CN1�N2 corresponds to the function
f : ZN1 �ZN2 ! C defined by f (i; j) = Mi j for all i = 1; : : : ;N1
and j = 1; : : : ;N2.

Learning Significant Fourier Coefficients over Finite Abelian Groups L 439

assume without loss of generality that G = ZN1 � ZN2 �

� � ��ZNk for N1; : : : ;Nk 2 Z+ (i. e., positive integers), and
for ZN is the additive group of integers modulo N.

The Fourier transform of f is the function bf : G ! C
defined for each ˛ = (˛1; : : : ; ˛k) 2 G by

bf (˛) def=
1
jGj

X
(x1;:::;xk)2G

2
4 f (x1; : : : ; xk)

kY
j=1

!
˛ jx j
N j

3
5 ;

where !N j = exp (i2
/Nj) is a primitive root of unity
of order Nj. For any ˛ 2 G, val˛ 2 C and �; " 2 [0; 1],
say that ˛ is a �-significant Fourier coefficient iff
bj f (˛)j2 � �k f k22, and say that val˛ is an "-approximation
forbf (˛) iff jval˛ �bf (˛)j < ".
Problem 1 (SFT)
INPUT: Integers N1; : : : ;Nk � 2 specifying the group
G = ZN1 � � � � � ZNk , a threshold � 2 (0; 1), an ap-
proximation parameter " 2 (0; 1), and oracle access2 to
f : G ! C.
OUTPUT: A list of all �-significant Fourier coefficients of f
along with "-approximations for them.

Key Results

The key result of this entry is an algorithm solving the SFT
problem which is much faster than algorithms for com-
puting the entire Fourier transform. For example, for f
a Boolean function over ZN , the running time of this al-
gorithm is logN � pol y(log logN; 1/�; 1/"), in contrast to
the 	(N logN) running time of the FFT algorithm. This
algorithm is named the SFT algorithm.

Theorem 1 (SFT algorithm [2]) There is an algo-
rithm solving the SFT problem with running time log jGj �
poly(log log jGj; k f k1/k f k2; 1/�; 1/") for jGj =

Qk
j=1 Nj

the cardinality of G.

Remarks
1. The above result extends to functions f over any finite

Abelian group G, as long as the algorithm is given a de-
scription of G by its generators and their orders [2].

2. The SFT algorithm reads at most log jGj �
poly(log log jGj; k f k1/k f k2; 1/�; 1/") out of the jGj
values of the signal.

3. The SFT algorithm is non adaptive, that is, ora-
cle queries to f are independent of the algorithm’s
progress.

2Say that an algorithm is given oracle access to a function f overG,
if it can request and receive the value f (x) for any x 2 G in unit time.

4. The SFT algorithm is a probabilistic algorithm hav-
ing a small error probability, where probability is taken
over the internal coin tosses of the algorithm. The error
probability can be made arbitrarily small by standard
amplification techniques.

The SFT algorithm follows a line of works solving
the SFT problem for restricted function classes. Goldre-
ich and Levin [9] gave an algorithm for Boolean func-
tions over the group Zk

2 = f0; 1gk . The running time of
their algorithm is polynomial in k; 1/� and 1/". Man-
sour [10] gave an algorithm for complex functions over
groups G = ZN1 � � � � � ZNk provided that N1; : : : ;Nk
are powers of two. The running time of his algo-
rithm is polynomial in log jGj; log(max˛2G jbf (˛)j); 1/�
and 1/". Gilbert et al. [6] gave an algorithm for com-
plex functions over the group ZN for any positive inte-
ger N. The running time of their algorithm is polyno-
mial in logN; log(maxx2ZN f (x)/minx2ZN f (x)); 1/� and
1/". Akavia et al. [2] gave an algorithm for complex func-
tions over any finite Abelian group. The latter [2] im-
proves on [6] evenwhen restricted to functions overZN in
achieving logN � pol y(log logN) rather than pol y(logN)
dependency on N. Subsequent works [7] improved the de-
pendency of [6] on � and ".

Applications

Next, the paper surveys applications of the SFT algo-
rithm [2] in the areas of computational learning theory,
coding theory, cryptography, and algorithms.

Applications in Computational Learning Theory

A common task in computational learning is to find
a hypothesis h approximating a function f , when given
only samples of the function f . Samples may be given
in a variety of forms, e. g., via oracle access to f . We
consider the following variant of this learning problem:
f and h are complex functions over a finite Abelian
group G = ZN1 � � � � � ZNk , the goal is to find h such that
k f � hk22 � �k f k

2
2 for � > 0 an approximation parame-

ter, and samples of f are given via oracle access.
A straightforward application of the SFT algorithm

gives an efficient solution to the above learning prob-
lem, provided that there is a small set

 G s.t.P
˛2�

bj f (˛)j2 > (1 � � /3)k f k22. The learning algorithm
operates as follows. It first runs the SFT algorithm to
find all ˛ = (˛1; : : : ; ˛k) 2 G that are � /j
 j-significant
Fourier coefficients of f along with their � /j
 jk f k1-

440 L Learning Significant Fourier Coefficients over Finite Abelian Groups

approximations val˛, and then returns the hypothesis

h(x1; : : : ; xk)
def=

X
˛ is� /j� j�significant

val˛ �
kY
j=1

!
˛ jx j
N j

:

This hypothesis h satisfies that k f � hk22 � �k f k
2
2. The

running time of this learning algorithm and the number
of oracle queries it makes is polynomially bounded by
log jGj, k f k1/k f k2, j
 jk f k1/� .

Theorem 2 Let f : G ! C be a function over G =
ZN1 � � � � � ZNk , and � > 0 an approximation
parameter. Denote t = minfj
 j j

G s.t.

P
˛2� j

bf (˛)j2
> (1 � � /3)k f k22g. There is an algorithm that given
N1; : : : ;Nk, � , and oracle access to f , outputs a
(short) description of h : G ! C s.t. k f � hk22 <

�k f k22. The running time of this algorithm is log jGj �
pol y(log log jGj; k f k1/k f k2; tk f k1/�).

More examples of function classes that can be efficiently
learned using our SFT algorithm are given in [3].

Applications in Coding Theory

Error correcting codes encode messages in a way that al-
lows decoding, that is, recovery of the original message,
even in the presence of noise. When the noise is very high,
unique decoding may be infeasible, nevertheless it may
still be possible to list decode, that is, to find a short list of
messages containing the original message. Codes equipped
with an efficient list decoding algorithm have found many
applications (see [11] for a survey).

Formally, a binary code is a subset C
 f0; 1g�
of codewords each encoding some message. Denote
by CN;x 2 f0; 1gN a codeword of length N encoding
a message x. The normalized Hamming distance be-
tween a codeword CN;x and a received word w 2 f0; 1gN

is �(CN;x ;w)
def= 1/Njfi 2 ZN jCN;x (i) ¤ w(i)gj where

CN;x (i) and w(i) are the ith bits of CN;x and w, respec-
tively. Givenw 2 f0; 1gN and a noise parameter � > 0, the
list decoding task is to find a list of all messages x such that
�(CN;x ;w) < �. The received word w may be given ex-
plicitly or implicitly; we focus on the latter where oracle
access to w is given. Goldreich and Levin [9] give a list de-
coding algorithm for Hadamard codes, using in a crucial
way their algorithm solving the SFT problem for functions
over the Boolean cube.

The SFT algorithm for functions over ZZN is a key
component in a list decoding algorithm given by Akavia
et al. [2]. This list decoding algorithm is applicable
to a large class of codes. For example, it is applica-
ble to the code Cmsb = fCN;x : ZN ! f0; 1ggx2Z�N ;N2Z+

whose codewords are CN;x (j) = msbN (j � x mod N) for
msbN (y) = 1 iff y � N/2 and msbN (y) = 0 otherwise.
More generally, this list decoding algorithm is applica-
ble to any Multiplication code CP for P a family of bal-
anced and well concentrated functions, as defined below.
The running time of this list decoding algorithm is poly-
nomial in logN and 1/(1 � 2�), as long as � < 1

2 .
Abstractly, the list decoding algorithm of [2] is ap-

plicable to any code that is “balanced,” “(well) con-
centrated,” and “recoverable,” as defined next (and
those Fourier coefficients have small greatest com-
mon divisor (GCD) with N). A code is balanced
if Pr j2ZN [CN;x (j) = 0] = Pr j2ZN [CN;x (j) = 1] for every
codeword CN;x . A code is (well) concentrated if its code-
words can be approximated by a small number of signifi-
cant coefficients in their Fourier representation (and those
Fourier coefficients have small greatest common divisor
(GCD) withN). A code is recoverable if there is an efficient
algorithm mapping each Fourier coefficient ˛ to a short
list of codewords for which ˛ is a significant Fourier coef-
ficient. The key property of concentrated codes is that re-
ceived words w share a significant Fourier coefficient with
all close codewords CN;x . The high level structure of the
list decoding algorithm of [2] is therefore as follows. First
it runs the SFT algorithm to find all significant Fourier co-
efficients ˛ of the receivedwordw. Second for each such ˛,
it runs the recovery algorithm to find all codewords CN;x
for which ˛ is significant. Finally, it outputs all those code-
words CN;x .

Definition 1 (Multiplication codes [2])
Let P = fPN : ZN ! f0; 1ggN2Z+ be a family of functions.
Say that CP = fCN;x : ZN ! f0; 1ggx2Z�N ;N2Z+ is amulti-
plication code for P if for every N 2 Z+ and x 2 Z�N , the
encoding CN;x : ZN ! f0; 1g of x is defined by

CN;x (j) = P(j � x mod N) :

Definition 2 (Well concentrated [2]) Let P =
fPN : ZN ! CgN2Z+ be a family of functions. Say that
P is well concentrated if 8N 2 Z+; � > 0, 9

 ZN
s.t. (i) j
 j � pol y(logN/�), (ii)

P
˛2�

bjPN (˛)j2 �
(1 � �)kPNk22, and (iii) for all ˛ 2
 , gcd(˛;N) �
pol y(logN/�) (where gcd(˛;N) is the greatest common
divisor of ˛ and N).

Theorem 3 (List decoding [2]) Let P = fPN : ZN !

f0; 1ggN2Z+ be a family of efficiently computable3,
well concentrated, and balanced functions. Let CP =

3P = fPN : ZN ! f0; 1ggN2Z+ is a family of efficiently com-
putable functions if there is an algorithm that given any N 2 Z+ and
x 2 ZN outputs PN (x) in time pol y(logN).

Learning Significant Fourier Coefficients over Finite Abelian Groups L 441

fCN;x : ZN ! f0; 1ggx2Z�N ;N2Z+ be the multiplication
code for P. Then there is an algorithm that, given N 2 Z+

N,
� < 1

2 and oracle access to w : ZN ! f0; 1g, outputs all
x 2 Z�N for which �(CN;x ;w) < �. The running time of
this algorithm is polynomial in logN and 1/(1 � 2�).

Remarks
1. The requirement that P is a family of efficiently com-

putable functions can be relaxed. It suffices to require
that the list decoding algorithm receives or computes
a set

 ZN with properties as specified in Defini-
tion 2.

2. The requirement that P is a family of balanced
functions can be relaxed. Denote bias(P) =
minb2f0;1g infN2Z+ Pr j2ZN [PN (j) = b]. Then the list
decoding algorithm of [2] is applicable to CP even
when bias(P) ¤ 1

2 , as long as � < bias(P).

Applications in Cryptography

Hard-core predicates for one-way functions are a funda-
mental cryptographic primitive, which is central for many
cryptographic applications such as pseudo-random num-
ber generators, semantic secure encryption, and crypto-
graphic protocols. Informally speaking, a Boolean pred-
icate P is a hard-core predicate for a function f if P(x)
is easy to compute when given x, but hard to guess with
a non-negligible advantage beyond 50% when given only
f (x). The notion of hardcore predicates was introduced
by Blum and Micali [2]. Goldreich and Levin [9] showed
a randomized hardcore predicate for any one-way func-
tion, using in a crucial way their algorithm solving the SFT
problem for functions over the Boolean cube.

Akavia et al. [2] introduce a unifying framework for
proving that a predicate P is hard-core for a one-way
function f . Applying their framework they prove for
a wide class of predicates—segment predicates—that they
are hard-core predicates for various well-known candidate
one-way functions. Thus showing new hard-core predi-
cates for well-known one-way function candidates as well
as reproving old results in an entirely different way.

Elaborating on the above, a segment predicate is any as-
signment of Boolean values to an arbitrary partition ofZN
into pol y(logN) segments, or dilations of such an assign-
ment. Akavia et al. [2] prove that any segment predicate
is hard-core for any one-way function f defined over ZN
for which, for a non-negligible fraction of the x’s in ZN ,
given f (x) and y, one can efficiently compute f (xy) (where
xy is multiplication in ZN). This includes the following
functions: the exponentiation function EXPp;g : Zp ! Z�p
defined by EXPp;g(x) = gx mod p for each prime p

and a generator g of the group Z�p ; the RSA func-
tion RSA : Z�N ! Z�N defined by RSA(x) = ex mod N for
each N = pq a product of two primes p, q, and e co-prime
to N; the Rabin function Rabin : Z�N ! Z�N defined by
Rabin(x) = x2 mod N for each N = pq a product of two
primes p, q; and the elliptic curve log function defined by
ECLa;b;p;Q = xQ for each elliptic curve Ea;b;p(Zp) and Q
a point of high order on the curve.

The SFT algorithm is a central tool in the frame-
work of [2]: Akavia et al. take a list decoding methodol-
ogy, where computing a hard-core predicate corresponds
to computing an entry in some error correcting code, pre-
dicting a predicate corresponds to access to an entry in
a corrupted codeword, and the task of inverting a one-way
function corresponds to the task of list decoding a cor-
rupted codeword. The codes emerging in [2] are multipli-
cation codes (see Definition 1 above), which are list de-
coded using the SFT algorithm.

Definition 3 (Segment predicates [2]) Let P =
fPN : ZN ! f0; 1ggN2Z+ be a family of predicates that are
non-negligibly far from constant4.
� It can be sayed that PN is a basic t-segment predicate if

PN (x + 1) ¤ PN (x) for at most t x’s in ZN.
� It can be sayed that PN is a t-segment predicate if there

exist a basic t-segment predicate P0 and a 2 ZN which
is co-prime to N s.t. 8x 2 ZN ; PN (x) = P0(x/a).

� It can be sayed that P is a family of segment predi-
cates if 8N 2 Z+, PN is a t(N)-segment predicate for
t(N) � pol y(log N).

Theorem 4 (Hardcore predicates [2]) Let P be a family
of segment predicates. Then, P is hard-core for RSA, Ra-
bin, EXP, ECL, under the assumption that these are one-
way functions.

Application in Algorithms

Our modern times are characterized by information ex-
plosion incurring a need for faster and faster algorithms.
Even algorithms classically regarded as efficient—such as
the FFT algorithm with its 	(N logN) complexity—are
often too slow for data-intensive applications, and linear
or even sub-linear algorithms are imperative. Despite the
vast variety of fields and applications where algorithmic
challenges arise, some basic algorithmic building blocks
emerge in many of the existing algorithmic solutions. Ac-
celerating such building blocks can therefore accelerate

4A family of functions P = fPN : ZN ! f0; 1ggN2Z+ is
non-negligibly far from constant if 8N 2 Z+ and b 2 f0; 1g,
Pr j2ZN [PN (j) = b] � 1� pol y(1/ logN).

442 L LEDA: a Library of Efficient Algorithms

many existing algorithms. One of these recurring build-
ing blocks is the Fast Fourier Transform (FFT) algorithm.
The SFT algorithm offers a great efficiency improvement
over the FFT algorithm for applications where it suffices
to deal only with the significant Fourier coefficients. In
such applications, replacing the FFT building block with
the SFT algorithm accelerates the 	(N logN) complexity
in each application of the FFT algorithm to pol y(logN)
complexity [1]. Lossy compression is an example of such
an application [1,5,8]. To elaborate, central component in
several transform compression methods (e. g., JPEG) is
to first apply Fourier (or Cosine) transform to the sig-
nal, and then discard many of its coefficients. To ac-
celerate such algorithms —instead of computing the en-
tire Fourier (or Cosine) transform—the SFT algorithm
can be used to directly approximate only the signifi-
cant Fourier coefficients. Such an accelerated algorithm
achieves compression guarantee as good as the original al-
gorithm (and possibly better), but with running time im-
proved to pol y(log N) in place of the former	(N logN).

Cross References

� Abelian Hidden Subgroup Problem
� Learning Constant-Depth Circuits
� Learning DNF Formulas
� Learning Heavy Fourier Coefficients of Boolean

Functions
� Learning with Malicious Noise
� List Decoding near Capacity: Folded RS Codes
� PAC Learning
� Statistical Query Learning

Recommended Reading

1. Akavia, A., Goldwasser, S.: Manuscript submitted as an NSF
grant, awarded (2005) CCF-0514167

2. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predi-
cates using list decoding. In: Proceedings of the 44th Sympo-
sium on Foundations of Computer Science (FOCS’03), pp. 146–
157. IEEE Computer Society (2003)

3. Atici, A., Servedio, R.A.: Learning unions of !(1)-dimensional
rectangles. In: ALT, pp. 32–47 (2006)

4. Blum, M., Micali, S.: How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits. SIAM J. Comput. 4(13),
850–864 (1984)

5. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for
compressed sensing. In: Structural Information and Commu-
nication Complexity, 13th International Colloquium, SIROCCO
(2006), Chester, UK, July 2–5, 2006 pp. 280–294

6. Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.:
Near-optimal sparse fourier representations via sampling. In:
Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pp. 152–161. ACM Press (2002)

7. Gilbert, A.C., Muthukrishnan, S., Strauss, M.J.: Improved time
bounds for near-optimal sparse fourier representation via sam-
pling. In: Proceedings of SPIE Wavelets XI, San Diego, CA 2005
(2005)

8. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch
for all: Fast algorithms for compressed sensing. In: 39th ACM
Symposium on Theory of Computing (STOC’07)

9. Goldreich, O., Levin, L.: A hard-core predicate for all one-way
functions. In: 27th ACM Symposium on Theory of Computing
(STOC’89) (1989)

10. Mansour, Y.: Randomized interpolation and approximation of
sparse polynomials. SIAM J. Comput. 24, 357–368 (1995)

11. Sudan, M.: List decoding: algorithms and applications. SIGACT
News 31, 16–27 (2000)

LEDA: a Library
of Efficient Algorithms
1995; Mehlhorn, Näher

CHRISTOS ZAROLIAGIS
Department of Computer Engineering and Informatics,
University of Patras, Patras, Greece

Keywords and Synonyms

LEDA platform for combinatorial and geometric comput-
ing

ProblemDefinition

In the last forty years, there has been a tremendous
progress in the field of computer algorithms, espe-
cially within the core area known as combinatorial algo-
rithms. Combinatorial algorithms deal with objects such as
lists, stacks, queues, sequences, dictionaries, trees, graphs,
paths, points, segments, lines, convex hulls, etc, and con-
stitute the basis for several application areas including
network optimization, scheduling, transport optimization,
CAD, VLSI design, and graphics. For over thirty years,
asymptotic analysis has been themainmodel for designing
and assessing the efficiency of combinatorial algorithms,
leading to major algorithmic advances.

Despite so many breakthroughs, however, very little
had been done (at least until 15 years ago) about the prac-
tical utility and assessment of this wealth of theoretical
work. The main reason for this lack was the absence of
a standard algorithm library, that is, of a software library
that contains a systematic collection of robust and efficient
implementations of algorithms and data structures, upon
which other algorithms and data structures can be easily
built.

The lack of an algorithm library limits severely the
great impact which combinatorial algorithms can have.

LEDA: a Library of Efficient Algorithms L 443

The continuous re-implementation of basic algorithms
and data structures slows down progress and typically dis-
courages people to make the (additional) effort to use an
efficient solution, especially if such a solution cannot be
re-used. This makes the migration of scientific discoveries
into practice a very slow process.

The major difficulty in building a library of combina-
torial algorithms stems from the fact that such algorithms
are based on complex data types, which are typically not
encountered in programming languages (i. e., they are not
built-in types). This is in sharp contrast with other com-
puting areas such as statistics, numerical analysis, and lin-
ear programming.

Key Results

The currently most successful algorithm library is LEDA
(Library for Efficient Data types and Algorithms) [4,5]. It
contains a very large collection of advanced data structures
and algorithms for combinatorial and geometric comput-
ing. The development of LEDA started in the early 1990s,
it reached a very mature state in the late 1990s, and it con-
tinues to grow. LEDA has been written in C++ and has
benefited considerably from the object-oriented paradigm.

Four major goals have been set in the design of LEDA.
1. Ease of use: LEDA provides a sizable collection of data

types and algorithms in a form that they can be read-
ily used by non-experts. It gives a precise and readable
specification for each data type and algorithm, which is
short, general and abstract (to hide the details of im-
plementation). Most data types in LEDA are parame-
terized (e. g., the dictionary data type works for arbi-
trary key and information type). To access the objects
of a data structure by position, LEDA has invented the
item concept that casts positions into an abstract form.

2. Extensibility: LEDA is easily extensible by means of
parametric polymorphism and can be used as a plat-
form for further software development. Advanced data
types are built on top of basic ones, which in turn rest
on a uniform conceptual framework and solid imple-
mentation principles. The main mechanism to extend
LEDA is through the so-called LEDA extension pack-
ages (LEPs). A LEP extends LEDA into a particular ap-
plication domain and/or area of algorithms that is not
covered by the core system. Currently, there are 15 such
LEPs; for details see [1].

3. Correctness: In LEDA, programs should give sufficient
justification (proof) for their answers to allow the user
of a program to easily assess its correctness. Many algo-
rithms in LEDA are accompanied by program checkers.
A program checker C for a program P is a (typically

very simple) program that takes as input the input of
P, the output of P, and perhaps additional information
provided by P, and verifies that the answer of P in in-
deed the correct one.

4. Efficiency: The implementations in LEDA are usually
based on the asymptotically most efficient algorithms
and data structures that are known for a problem. Quite
often, these implementations have been fine-tuned and
enhanced with heuristics that considerably improve
running times. This makes LEDA not only the most
comprehensive platform for combinatorial and geo-
metric computing, but also a library that contains the
currently fastest implementations.
Since 1995, LEDA is maintained by the Algorithmic

Solutions Software GmbH [1] which is responsible for its
distribution in academia and industry.

Other efforts for algorithm libraries include the Stan-
dard Template Library (STL) [7], the Boost Graph Li-
brary [2,6], and the Computational Geometry Algorithms
Library (CGAL) [3].

STL [7] (introduced in 1994) is a library of inter-
changeable components for solving many fundamental
problems on sequences of elements, which has been
adopted into the C++ standard. It contributed the itera-
tor concept which provides an interface between containers
(an object that stores other objects) and algorithms. Each
algorithm in STL is a function template parameterized by
the types of iterators upon which it operates. Any itera-
tor that satisfies a minimum set of requirements can be
used regardless of the data structure accessed by the itera-
tor. The systematic approach used in STL to build abstrac-
tions and interchangeable components is called generic
programming.

The Boost Graph Library [2,6] is a C++ graph library
that applies the notions of generic programming to the
construction of graph algorithms. Each graph algorithm
is written not in terms of a specific data structure, but in-
stead in terms of a graph abstraction that can be easily im-
plemented by many different data structures. This offers
the programmer the flexibility to use graph algorithms in
a wide variety of applications. The first release of the li-
brary became available in September 2000.

The Computational Geometry Algorithms Library [3]
is another C++ library that focuses on geometric comput-
ing only. Its main goal is to provide easy access to efficient
and reliable geometric algorithms to users in industry and
academia. The CGAL library started in 1996 and the first
release was in April 1998.

Among all libraries mentioned above LEDA is by far
the best (both in quality and efficiency of implemen-
tations) regarding combinatorial computing. It is worth

444 L Leontief Economy Equilibrium

mentioning that the late versions of LEDA have also in-
corporated the iterator concept of STL.

Finally, a notable effort concerns the Stony Brook Al-
gorithm Repository [8]. This is not an algorithm library,
but a comprehensive collection of algorithm implementa-
tions for over seventy problems in combinatorial comput-
ing, started in 2001. The repository features implementa-
tions coded in different programming languages, includ-
ing C, C++, Java, Fortran, ADA, Lisp, Mathematic, and
Pascal.

Applications

An algorithm library for combinatorial and geometric
computing has a wealth of applications in a wide variety of
areas, including: network optimization, scheduling, trans-
port optimization and control, VLSI design, computer
graphics, scientific visualization, computer aided design
and modeling, geographic information systems, text and
string processing, text compression, cryptography, molec-
ular biology, medical imaging, robotics and motion plan-
ning, and mesh partition and generation.

Open Problems

Algorithm libraries usually do not provide an interactive
environment for developing and experimenting with algo-
rithms. An important research direction is to add an in-
teractive environment into algorithm libraries that would
facilitate the development, debugging, visualization, and
testing of algorithms.

Experimental Results

The are numerous experimental studies based on LEDA,
STL, Boost, and CGAL, most of which can be found in the
world-wide web. Also, the web sites of some of the libraries
contain pointers to experimental work.

URL to Code

The afore mentioned algorithm libraries can be down-
loaded from their corresponding web sites, the details of
which are given in the bibliography (Recommended Read-
ing).

Cross References

� Engineering Algorithms for Large Network
Applications

� Experimental Methods for Algorithm Analysis
� Implementation Challenge for Shortest Paths
� Shortest Paths Approaches for Timetable Information
� TSP-Based Curve Reconstruction

Recommended Reading
1. Algorithmic Solutions Software GmbH, http://www.

algorithmic-solutions.com/. Accessed February 2008
2. Boost C++ Libraries, http://www.boost.org/. Accessed February

2008
3. CGAL: Computational Geometry Algorithms Library, http://

www.cgal.org/. Accessed February 2008
4. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and

Geometric Computing. Commun. ACM. 38(1), 96–102 (1995)
5. Mehlhorn, K., Näher, S.. LEDA: A Platform for Combinatorial

and Geometric Computing. Cambridge University Press, Boston
(1999)

6. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library.
Addison-Wesley, Cambridge (2002)

7. Stepanov, A., Lee, M.: The Standard Template Library. In: Tech-
nical Report X3J16/94–0095, WG21/N0482, ISO Programming
Language C++ Project. Hewlett-Packard, Palo Alto CA (1994)

8. The Stony Brook Algorithm Repository, http://www.cs.sunysb.
edu/~algorith/. Accessed February 2008

Leontief Economy Equilibrium
2005; Codenotti, Saberi, Varadarajan, Ye
2005; Ye

YIN-YU YE
Department of Management Science and Engineering,
Stanford University, Stanford, CA, USA

Keywords and Synonyms

Exchange market equilibrium with the leontief utility

ProblemDefinition

The Arrow–Debreu exchange market equilibrium prob-
lem was first formulated by Léon Walras in 1874 [7]. In
this problem everyone in a population of m traders has an
initial endowment of a divisible goods and a utility func-
tion for consuming all goods – their own and others’. Ev-
ery trader sells the entire initial endowment and then uses
the revenue to buy a bundle of goods such that his or her
utility function is maximized.Walras asked whether prices
could be set for everyone’s goods such that this is possible.
An answer was given by Arrow and Debreu in 1954 [1]
who showed that, undermild conditions, such equilibrium
would exist if the utility functions were concave. In gen-
eral, it is unknown whether or not an equilibrium can be
computed efficiently, see, e. g.,� General Equilibrium.

Consider a special class of Arrow–Debreu’s problems,
where each of the n traders has exactly one unit of a di-
visible and distinctive good for trade, and let trader i,
i = 1; : : : ; n, bring good i, which class of problems is called
the pairing class. For given prices pj on good j, consumer

http://www.algorithmic-solutions.com/
http://www.algorithmic-solutions.com/
http://www.boost.org/
http://www.cgal.org/
http://www.cgal.org/
http://www.cs.sunysb.edu/~algorith/
http://www.cs.sunysb.edu/~algorith/

Leontief Economy Equilibrium L 445

i’s maximization problem is

maximize ui (xi1; : : : ; xin)
subject to

P
j p jxi j � pi ;

xi j � 0; 8 j :
(1)

Let x�i denote a maximal solution vector of (1). Then, vec-
tor p is called the Arrow–Debreu price equilibrium if there
exists an x�i for consumer i, i = 1; : : : ; n, such that

X
i

x�i = e

where e is the vector of all ones representing available
goods on the exchange market.

The Leontief Economy Equilibrium problem is the Ar-
row–Debreu Equilibrium problem when the utility func-
tions are in the Leontief form:

ui (xi) = min
j : hi j>0

�
xi j
hi j

�
;

where the Leontief coefficient matrix is given by

H =

0
BB@

h11 h12 : : : h1n
h21 h22 : : : h2n
: : : : : : : : : : : :

hn1 hn2 : : : hnn

1
CCA : (2)

Here, one may assume that

Assumption 1 H has no all-zero row, that is, every trader
likes at least one good.

Key Results

Let ui be the equilibrium utility value of consumer i and pi
be the equilibrium price for good i, i = 1; : : : ; n. Also, let
U and P are diagonal matrices whose diagonal entries are
ui’s and pi’s, respectively. Then, the Leontief Economy
Equilibrium p 2 Rn , together with u 2 Rn , must satisfy

UHp = p;
P(e � HTu) = 0;

HTu � e;
u; p � 0;

p ¤ 0:

(3)

One can prove:

Theorem 1 (Ye [8]) Equation (3) always has a solution
(u, p) under Assumption 1 (i. e., H has no all-zero row).
However, a solution to Eq. (3)may not be a Leontief equilib-
rium, although every Leontief equilibrium satisfies Eq. (3).

Theorem 2 (Ye [8]) Let B � f1; 2; : : : ; ng, N =
f1; 2; : : : ; ng n B, HBB be irreducible, and uB satisfy the lin-
ear system

HT
BBuB = e; HT

BNuB � e; and uB > 0 :

Then the (right) Perron–Frobenius eigen-vector pB of
UBHBB together with pN = 0 will be a solution to Eq. (3).
And the converse is also true. Moreover, there is always a ra-
tional solution for every such B, that is, the entries of price
vector are rational numbers, if the entries of H are rational.
Furthermore, the size (bit-length) of the solution is bounded
by the size (bit-length) of H.

The theorem implies that the traders in block B can trade
among themselves and keep others goods “free”. In par-
ticular, if one trader likes his or her own good more than
any other good, that is, hi i � hi j for all j, then ui = 1/hi i ,
pi = 1, and uj = p j = 0 for all j ¤ i, that is, B = fig, makes
a Leontief economy equilibrium. The theorem thus es-
tablishes, for the first time, a combinatorial algorithm
to compute a Leontief economy equilibrium by finding
a right block B ¤ ;, which is actually a non-trivial solu-
tion (u ¤ 0) to an LCP problem

HTu + v = e; uTv = 0; 0 ¤ u; v � 0: (4)

If H > 0, then any complementary solution u ¤ 0, to-
gether with its support B = f j : uj > 0g, of Eq. (4) induce
a Leontief economy equilibrium that is the (right) Per-
ron–Frobenius eigen-vector ofUBHBB , and it can be com-
puted in polynomial time by solving a linear equation.
Even if H 6> 0, any complementary solution u ¤ 0 and
B = f j : uj > 0g, as long as HBB is irreducible, induces an
equilibrium for Eq. (3). The equivalence between the pair-
ing Leontief economy model and the LCP also implies

Corollary 1 LCP (4) always has a non-trivial solution,
where HBB is irreducible with B = f j : uj > 0g, under As-
sumption 1 (i. e., H has no all-zero row).

If Assumption 1 does not hold, the corollary may not be
true; see example below:

HT =
�

0 2
0 1

�
:

Applications

Given an arbitrary bimatrix game, specified by a pair of
n � m matrices A and B, with positive entries, one can
construct a Leontief exchange economywith n + m traders
and n + m goods as follows. In words, trader i comes to
the market with one unit of good i, for i = 1; : : : ; n + m.

446 L Linearity Testing/Testing Hadamard Codes

Traders indexed by any j 2 f1; : : : ; ng receive some util-
ity only from goods j 2 fn + 1; : : : ; n + mg, and this util-
ity is specified by parameters corresponding to the en-
tries of the matrix B. More precisely the proportions in
which the j-th trader wants the goods are specified by the
entries on the jth row of B. Vice versa, traders indexed
by any j 2 fn + 1; : : : ; n + mg receive some utility only
from goods j 2 f1; : : : ; ng. In this case, the proportions in
which the j-th trader wants the goods are specified by the
entries on the j-th column of A.

In the economy above, one can partition the traders
in two groups, which bring to the market disjoint sets of
goods, and are only interested in the goods brought by the
group they do not belong to.

Theorem 3 (Codenotti et al. [4]) Let (A,B) denote an ar-
bitrary bimatrix game, where assume, w.l.o.g., that the en-
tries of the matrices A and B are all positive. Let

HT =
�

0 A
BT 0

�

describe the Leontief utility coefficient matrix of the traders
in a Leontief economy. There is a one-to-one correspon-
dence between the Nash equilibria of the game (A,B) and
the market equilibria H of the Leontief economy. Further-
more, the correspondence has the property that a strategy
is played with positive probability at a Nash equilibrium if
and only if the good held by the corresponding trader has
a positive price at the corresponding market equilibrium.

Gilboa and Zemel [6] proved a number of hardness re-
sults related to the computation of Nash equilibria (NE)
for finite games in normal form. Since the NE for games
with more than two players can be irrational, these results
have been formulated in terms of NP-hardness for multi-
player games, while they can be expressed in terms of NP-
completeness for two-player games. Using a reduction to
the NE game, Codenotti et al. proved:

Theorem 4 (Codenotti et al. [4]) It is NP-hard to decide
whether a Leontief economy H has an equilibrium.

Cross References

� Complexity of Bimatrix Nash Equilibria
� General Equilibrium
� Non-approximability of Bimatrix Nash Equilibria

Recommended Reading

The reader may want to read Brainard and Scarf [2] on
how to compute equilibrium prices in 1891; Chen and
Deng [3] on the most recent hardness result of computing

the bimatrix game; Cottle et al. [5] for literature on linear
complementarity problems; and all references listed in [4]
and [8] for the recent literature on computational equilib-
rium.

1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for competi-
tive economy. Econometrica 22, 265–290 (1954)

2. Brainard, W.C., Scarf, H.E.: How to compute equilibrium
prices in 1891. Cowles Foundation Discussion Paper 1270,
August 2000

3. Chen, X., Deng, X.: Settling the complexity of 2-player Nash-
Equilibrium, ECCC TR05-140 (2005)

4. Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y.: Leontief
economies encode nonzero sum two-player games. SODA
(2006)

5. Cottle, R., Pang, J.S., Stone, R.E.: The linear complementarity
problem. Academic Press, Boston (1992)

6. Gilboa, I., Zemel, E.: Nash and correlated equilibria: some com-
plexity considerations. Games Econ. Behav. 1, 80–93 (1989)

7. Walras, L.: Elements of pure economics, or the theory of social
wealth (1899, 4th ed; 1926, rev ed, 1954, Engl. Transl.) (1874)

8. Ye, Y.: Exchangemarket equilibriawith leontief’s utility: freedom
of pricing leads to rationality. WINE (2005)

Linearity Testing/
Testing Hadamard Codes
1990; Blum, Luby, Rubinfeld

RONITT RUBINFELD
Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, USA

Keywords and Synonyms

Linearity testing; Testing Hadamard codes; Homomor-
phism testing

ProblemDefinition

This problem is concerned with distinguishing functions
that are homomorphisms, i. e. satisfying 8x; y; f (x) +
f (y) = f (x + y), from those functions that must be
changed on at least � fraction of the domain in order to
be turned into a homomorphism, given query access to
the function. This problem was initially motivated by ap-
plications to testing programs which compute linear func-
tions [8]. Since Hadamard codes are such that the code-
words are exactly the evaluations of linear functions over
boolean variables, a solution to this problem gives a way
of distinguishing codewords of the Hadamard code from
those strings that are far in relative Hamming distance
from codewords. These algorithms were in turn used in
the constructions of Probabilistically Checkable Proof Sys-

Linearity Testing/Testing Hadamard Codes L 447

tems (cf. [3]). Further work has extended these techniques
to testing other properties of low degree polynomials and
solutions to other addition theorems [3,9,24,25].

Notations

For two finite groups G,H (not necessarily Abelian), an
arbitrary map f : G ! H is a homomorphism if

8x; y; f (x) � f (y) = f (x � y) :

f is �-close to a homomorphism if there is some homomor-
phism g such that g and f differ on at most �jGj elements
of G, and f is �-far otherwise.

Given a parameter 0 � � � 1, and query access to
a function f : G ! H, a homomorphism tester (also ref-
ereed to as a linearity tester in the literature) is an algo-
rithm T which outputs “Pass” if f is a homomorphism,
and “Fail” if f is �-far from a homomorphism. The homo-
morphism tester should err with probability at most 1/3
for any f .1

For two finite groups G,H (not necessarily Abelian),
an arbitrary map f : G ! H, and a parameter 0 < � < 1,
define ı f (the subscript is dropped and this is referred to
as ı, when f is obvious from the context) then the proba-
bility of group law failure, by

1 � ı = Pr
x;y

	
f (x) � f (y) = f (x � y)

:

Define � such that � is the minimum � for which f is �-
close to a homomorphism.

Problem 1 For f ; ı as above, is it possible to upper bound
� in terms of a function that depends on the probability of
group law failure ı, but not on the size of the domain jGj?

Key Results

Blum, Luby and Rubinfeld [8], considered this question
and showed that over cyclic groups, there is a constant
ı0, such that if ı � ı0, then the one can upper bound �
in terms of a function of ı that is independent of jGj.
This yields a homomorphism tester with query complex-
ity that depends (polynomially) on 1/�, but is indepen-
dent of jGj. The final version of [8] contains an improved
argument due to Coppersmith [10], which applies to all
Abelian groups, shows that ı0 < 2/9 suffices, and that � is

1The choice of 1/3 is arbitrary. Using standard techniques, any
homomorphism tester satisfying 1/3 error probability can be turned
into a homomorphism tester with 0 < ˇ < 1/3 error probability by
repeating the original tester O(log 1

ˇ
) times and taking the majority

answer.

upper bounded by the smaller root of x(1 � x) = ı (yield-
ing a homomorphism tester with query complexity linear
in 1/�). Furthermore, the bound on ı0 was shown to be
tight for general groups [10].

In [6], a relationship between the probability of group
law failure and the closeness to being a homomorphism
was established that applies to general (non-Abelian)
groups. For a given ı, let � = (3 �

p
9 � 24ı)/12 � ı/2 be

the smaller root of 3x � 6x2 = ı. In [6] it is shown that for
ı0 < 2/9, then f is �-close to a homomorphism. The con-
dition on ı, and the bound on � as a function of ı, are
shown to be tight. The latter improves on the relationship
given in [8,10].

There has been interest in improving various parame-
ters of homomorphism testing results, due to their use in
the construction of Probabilistically Checkable Proof Sys-
tems (cf. [3]). In particular, both the constant ı0 and the
number of random bits required by the homomorphism
test affect the efficiency of the proof system and in turn the
hardness of approximation results that one can achieve us-
ing the proof system.

The homomorphism testing results can be improved
in some cases: It has been previously mentioned that
ı0 < 2/9 is optimal over general Abelian groups [10].
However, using Fourier techniques, Bellare et al. [5] have
shown that for groups of the form (Z/2)n , ı0 � 45/128 suf-
fices. For such ı0, � < ı. Kiwi later provided a similar re-
sult based on the discrete Fourier transform and weight
distributions to improve the bound on the dependence of
� on ı [17].

Several works have shown methods of reducing the
number of random bits required by the homomorphism
tests. That is, in the natural implementation of the ho-
momorphism test, 2 log jGj random bits per trial are used
to pick x,y. The results of [7,14,26,28,29] have shown
that fewer random bits are sufficient for implementing
the homomorphism tests. In particular, Trevisan [29] and
Samorodnitsky and Trevisan [26] have considered the
“amortized query complexity” of testing homomorphisms,
which is a measure that quantifies the trade-off between
the query complexity of the testing algorithm and the
probability of accepting the function. Homomorphism
tests with low amortized query complexity are useful in
constructing PCP systems with low amortized query com-
plexity. A simpler analysis which improves the depen-
dence of the acceptance probability in terms of the dis-
tance of the tested function to the closest linear func-
tion is given in [14]. The work of [28] gives a homomor-
phism test for general (non-Abelian) groups that uses only
(1 + o(1)) log2 jGj random bits. Given a Cayley graph that
is an expander with normalized second eigenvalue � , and

448 L Linearity Testing/Testing Hadamard Codes

for the analogous definitions of ı; � , they show that for
ı < (1 � �)/12, � is upper bounded by 4ı/(1 � �). Very
recently, Samordnitsky and Trevisan [27] have considered
a relaxed version of a homomorphism test which accepts
linear functions and rejects functions with low influences.

The case when G is a subset of an infinite group, f is
a real-valued function and the oracle query to f returns
a finite precision approximation to f (x) has been consid-
ered in [2,11,12,20,21], and testers with query complexity
that are independent of the domain size have been given
(see [19] for a survey).

A Related Problem on Convolutions of Distributions

In the following, a seemingly unrelated question about dis-
tributions that are close to their self-convolutions is men-
tioned: Let A = fagjg 2 Gg be a distribution on group G.
The convolution of distributions A, B is

C = A � B; cx =
X

y;z2G ; yz=x

aybz :

Let A0 be the self-convolution of A, A � A, i. e. a0x =P
y;z2G ;yz=x ay az . It is known that A = A0 exactly when

A is the uniform distribution over a subgroup of G. Sup-
pose it is known that A is close to A0, can one say anything
about A in this case? Suppose dist(A;A0) = 1

2
P

x2G jax �
a0x j � � for small enough �. Then [6] show that A must
be close to the uniform distribution over a subgroup of G.
More precisely, in [6] it is shown that for a distribution
A over a group G, if dist(A;A0) = 1

2
P

x2G jax � a0x j �
� � 0:0273, then there is a subgroup H of G such that
dist(A;UH) � 5�, where UH is the uniform distribution
over H [6]. On the other hand, in [6] there is an exam-
ple of a distribution A such that dist(A;A � A) 	 :1504,
but A is not close to uniform on any subgroup of the do-
main.

A weaker version of this result, was used to prove
a preliminary version of the homomorphism testing re-
sult in [8]. To give a hint of why one might consider the
question on convolutions of distributions when investigat-
ing homomorphism testing, consider the distribution Af
achieved by picking x uniformly from G and outputting
f (x). It is easy to see that the error probability ı in the ho-
momorphism test is at least dist(A f ;A f � A f). The other,
more useful, direction is less obvious. In [6] it is shown
that this question on distributions is “equivalent” in diffi-
culty to homomorphism testing:

Theorem 1 Let G,H be finite groups. Assume that there
is a parameter ˇ0 and function � such that the following

holds:

For all distributions A over group G, if dist(A �
A;A) � ˇ � ˇ0 then A is �(ˇ)-close to uniform over
a subgroup of G.

Then, for any f : G ! H and ı < ˇ0 such that 1 � ı =
Pr[f (x) � f (y) = f (x � y)], and �(ı) � 1/2, it is the case
that f is �(ı)-close to a homomorphism.

Applications

Self-Testing/Correcting Programs

When a program has not been verified and therefore is not
known to be correct on all inputs (or possibly even known
to be incorrect on some inputs), [8] have suggested the
following approach: take programs that are known to be
correct on most inputs and apply a simple transformation
to produce a program that is correct on every input. This
transformation is referred to as producing a self-corrector.
Moreover, for many functions, one can actually test that
the program for f is correct on most inputs, without the
aid of another program for f that has already been verified.
Such testers for programs are referred to as self-testers.

The homomorphism testing problem was initially mo-
tivated by applications to constructing self-testers for pro-
grams which purport to compute various linear func-
tions [8]. Such functions include integer, polynomial, ma-
trix and modular multiplication and division. Once it is
verified that a program agrees on most inputs with a spe-
cific linear function, the task of determining whether it
agrees with the correct linear function on most inputs be-
comes much easier.

Furthermore, for programs purporting to compute lin-
ear functions, it is very simple to construct self-correctors:
Assume one is given a program which on input x outputs
f (x), such that f agrees on most inputs with linear func-
tion g. Consider the algorithm that picks c log 1/ˇ values
y, computes f (x + y) � f (y) and outputs the value that
is seen most often. If f is 1

8 -close to g, then since both
y and x + y are uniformly distributed, it is the case that
for at least 3/4 of the choices of y, g(x + y) = f (x + y) and
g(y) = f (y), in which case f (x + y) � f (y) = g(x). Thus it
is easy to show that there is a constant c such that if f is
1
8 -close to a homomorphism g, then for all x, the above
algorithm will output g(x) with probability at least 1 � ˇ.

Probabilistically Checkable Proofs

An equivalent formulation of the homomorphism testing
problem is in terms of the query complexity of testing
a codeword of a Hadamard code. The results mentioned

Linearity Testing/Testing Hadamard Codes L 449

about have been used to construct Probabilistically Check-
able Proof systems which can be verified with very few
queries (cf. [3,13]).

Open Problems

It is natural to wonder what other classes of functions have
testers whose efficiency is sublinear in the domain size?
There are some partial answers to this question: The field
of functional equations is concerned with the prototypical
problem of characterizing the set of functions that satisfy
a given set of properties (or functional equations). For ex-
ample, the class of functions of the form f (x) = tanAx are
characterized by the functional equation

8x; y; f (x + y) =
f (x) + f (y)
1 � f (x) f (y)

:

D’Alembert’s equation

8x; y; f (x + y) + f (x � y) = 2 f (x) f (y)

characterizes the functions 0; cos Ax; cosh Ax. Multivari-
ate polynomials of total degree d over Zp for p > md can
be characterized by the equation

8x̂; ĥ 2 Zm
p ;

d+1X
i=0

˛i f (x̂ + i ĥ) = 0 ;

where ˛i = (�1)i+1
�d+1

i
�
. All of the above characteriza-

tions are known to yield testers for the corresponding
function families whose query complexity is independent
of the domain size (though for the case of polynomi-
als, there is a polynomial dependence on the total degree
d) [9,24,25]. A long series of works have given increasingly
efficient to test characterizations of functions that are low
total degree polynomials (cf. [1,3,4,15,18,22,23]).

A second line of questions that remain to be under-
stood regard which codes are such that strings can be
quickly tested to determine whether they are close to
a codeword? Some initial work on this questions is given
in [1,15,16,18].

Cross References

� Learning Heavy Fourier Coefficients of Boolean
Functions

Recommended Reading
1. Alon, N., Kaufman, T., Krivilevich, M., Litsyn, S., Ron, D.: Test-

ing low-degree polynomials over gf(2). In: Proceedings of RAN-
DOM ’03. Lecture Notes in Computer Science, vol. 2764, pp.
188–199. Springer, Berlin Heidelberg (2003)

2. Ar, S., Blum, M., Codenotti, B., Gemmell, P.: Checking approx-
imate computations over the reals. In: Proceedings of the
Twenty-Fifth Annual ACM Symposium on the Theory of Com-
puting, pp. 786–795. ACM, New York (2003)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof
verification and the hardness of approximation problems.
J. ACM 45(3), 501–555 (1998)

4. Arora, S., Sudan, M.: Improved low degree testing and its ap-
plications. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, pp. 485–495. ACM,
New York (1997)

5. Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Lin-
earity testing over characteristic two. IEEE Trans. Inf. Theory
42(6), 1781–1795 (1996)

6. Ben-Or, M., Coppersmith, D., Luby, M., Rubinfeld, R.: Non-
abelian homomorphism testing, and distributions close to
their self-convolutions. In: Proceedings of APPROX-RANDOM.
Lecture Notes in Computer Science, vol. 3122, pp. 273–285.
Springer, Berlin Heidelberg (2004)

7. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.:
Randomness-efficient low degree tests and short pcps
via epsilon-biased sets. In: Proceedings of the Thirty-Fifth
Annual ACM Symposium on the Theory of Computing, pp.
612–621. ACM, New York (2003)

8. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with
applications to numerical problems. J. CSS 47, 549–595 (1993)

9. Cleve, R., Luby, M.: A note on self-testing/correcting methods
for trigonometric functions. In: International Computer Sci-
ence Institute Technical Report TR-90-032, July 1990

10. Coppersmith, D.: Manuscript, private communications (1989)
11. Ergun, F., Kumar, R., Rubinfeld, R.: Checking approximate com-

putations of polynomials and functional equations. SIAM J.
Comput. 31(2), 550–576 (2001)

12. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson,
A.: Self-testing/correcting for polynomials and for approximate
functions. In: Proceedings of the Twenty-Third Annual ACM
Symposium on Theory of Computing, pp. 32–42. ACM, New
York (1991)

13. Hastad, J.: Some optimal inapproximability results. J. ACM
48(4), 798–859 (2001)

14. Hastad, J., Wigderson, A.: Simple analysis of graph tests for
linearity and pcp. Random Struct. Algorithms 22(2), 139–160
(2003)

15. Jutla, C., Patthak, A., Rudra, A., Zuckerman, D.: Testing low-
degree polynomials over prime fields. In: Proceedings of the
Forty-Fifth Annual Symposium on Foundations of Computer
Science, pp. 423–432. IEEE, New York (2004)

16. Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are lo-
cally testable. In: Proceedings of the Forty-Sixth Annual Sym-
posium on Foundations of Computer Science, pp. 317–326.
IEEE, New York (2005)

17. Kaufman, T., Litsyn, S., Xie, N.: Breaking the �-soundness bound
of the linearity test over gf(2). Electronic Colloquium on Com-
putational Complexity, Report TR07–098, October 2007

18. Kaufman, T., Ron, D.: Testing polynomials over general fields.
In: Proceedings of the Forty-Fifth Annual Symposium on Foun-
dations of Computer Science, pp. 413–422. IEEE, New York
(2004)

19. Kiwi, M., Magniez, F., Santha, M.: Exact and approximate test-
ing/correcting of algebraic functions: A survey. Theoretical As-
pects Compututer Science, LNCS 2292, 30–83 (2001)

450 L Linearizability

20. Kiwi, M., Magniez, F., Santha, M.: Approximate testing with er-
ror relative to input size. J. CSS 66(2), 371–392 (2003)

21. Magniez, F.: Multi-linearity self-testing with relative error. The-
ory Comput. Syst. 38(5), 573–591 (2005)

22. Polischuk, A., Spielman, D.: Nearly linear-size holographic
proofs. In: Proceedings of the Twenty-Sixth Annual ACM Sym-
posium on the Theory of Computing, pp. 194–203. ACM, New
York (1994)

23. Raz, R., Safra, S.: A sub-constant error-probability low-degree
test, and a sub-constant error-probability pcp characterization
of np. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, pp. 475–484. ACM, New
York (1997)

24. Rubinfeld, R.: On the robustness of functional equations. SIAM
J. Comput. 28(6), 1972–1997 (1999)

25. Rubinfeld, R., Sudan, M.: Robust characterization of polyno-
mials with applications to program testing. SIAM J. Comput.
25(2), 252–271 (1996)

26. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP
with optimal amortized query complexity. In: Proceedings of
the Thirty-Second Annual ACM Symposium on the Theory of
Computing, pp. 191–199. ACM, New York (2000)

27. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of
variables, and pcps. In: Thirty-Eighth ACM Symposium on The-
ory of Computing, pp. 11–20. ACM, New York (2006)

28. Shpilka, A., Wigderson, A.: Derandomizing homomorphism
testing in general groups. In: Proceedings of the Thirty-Sixth
Annual ACM Symposium on the Theory of Computing, pp.
427–435. ACM, NY, USA (2004)

29. Trevisan, L.: Recycling queries in pcps and in linearity tests. In:
Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, pp. 299–308. ACM, New York (1998)

Linearizability
1990; Herlihy, Wing

MAURICE HERLIHY
Department of Computer Science, Brown University,
Providence, RI, USA

Keywords and Synonyms

Atomicity

ProblemDefinition

An object in languages such as Java and C++ is a container
for data. Each object provides a set ofmethods that are the
only way to to manipulate that object’s internal state. Each
object has a class which defines the methods it provides
and what they do.

In the absence of concurrency, methods can be de-
scribed by a pair consisting of a precondition (describing
the object’s state before invoking the method) and a post-
condition, describing, once the method returns, the ob-
ject’s state and the method’s return value. If, however, an
object is shared by concurrent threads in a multiproces-

sor system, then method calls may overlap in time, and it
no longer makes sense to characterize methods in terms of
pre- and post-conditions.

Linearizability is a correctness condition for concur-
rent objects that characterizes an object’s concurrent be-
havior in terms of an “equivalent” sequential behavior.
Informally, the object behaves “as if” each method call
takes effect instantaneously at some point between its in-
vocation and its response. This notion of correctness has
some useful formal properties. First, it is non-blocking,
whichmeans that linearizability as such never requires one
thread to wait for another to complete an ongoing method
call. Second, it is local, which means that an object com-
posed of linearizable objects is itself linearizable. Other
proposed correctness conditions in the literature lack at
least one of these properties.

Notation

An execution of a concurrent system is modeled by a his-
tory, a finite sequence of method invocation and response
events. A subhistory of a history H is a subsequence
of the events of H. A method invocation is written as
hx:m(a�)Ai, where x is an object, m a method name, a*

a sequence of arguments, and A a thread. A method re-
sponse is written as hx : t(r�)Ai where t is a termination
condition and r* is a sequence of result values.

A response matches an invocation if their objects and
thread names agree. A method call is a pair consisting of
an invocation and the next matching response. An invo-
cation is pending in a history if no matching response fol-
lows the invocation. If H is a history, complete(H) is the
subsequence of H consisting of all matching invocations
and responses. A history H is sequential if the first event
ofH is an invocation, and each invocation, except possibly
the last, is immediately followed by a matching response.

Let H be a a history. The thread subhistory H|P is the
subsequence of events in H with thread name P. The ob-
ject subhistory H|x is similarly defined for an object x.
Two histories H and H0 are equivalent if for every thread
A;HjA = H0jA. A history H is well-formed if each thread
subhistory H|A of H is sequential. Notice that thread sub-
histories of a well-formed history are always sequential,
but object subhistories need not be.

A sequential specification for an object is a prefix-
closed set of sequential object histories that defines that
object’s legal histories. A sequential history H is legal if
each object subhistory is legal. A method is total if it is
defined for every object state, otherwise it is partial. (For
example, a deq()method that blocks on an empty queue is
partial, while one that throws an exception is total.)

Linearizability L 451

A history H defines an (irreflexive) partial order!H
on its method calls: m0 !H m1 if the result event of m0
occurs before the invocation event ofm1. If H is a sequen-
tial history, then!H is a total order.

Let H be a history and x an object such that Hjx con-
tains method calls m0 and m1. A call m0 !x m1 if m0
precedesm1 in H|x. Note that!x is a total order.

Informally, linearizability requires that each method
call appear to “take effect” instantaneously at some mo-
ment between its invocation and response. An important
implication of this definition is that method calls that do
not overlap cannot be reordered: linearizability preserves
the “real-time” order of method calls. Formally,

Definition 1 A history H is linearizable if it can be ex-
tended (by appending zero or more response events) to
a history H0 such that:
� L1 complete(H0) is equivalent to a legal sequential his-

tory S, and
� L2 If method call m0 precedes method call m1 in H,

then the same is true in S.

S is called a linearization of H. (H may have multiple lin-
earizations.) Informally, extending H to H0 captures the
idea that some pending invocations may have taken effect
even though their responses have not yet been returned to
the caller.

Key Results

The Locality Property

A property is local if all objects collectively satisfy that
property provided that each individual object satisfies it.

Linearizability is local:

Theorem 1 H is linearizable if and only if H|x is lineariz-
able for ever object x.

Proof The “only if” part is obvious.
For each object x, pick a linearization ofH|x. Let Rx be

the set of responses appended to H|x to construct that lin-
earization, and let!x be the corresponding linearization
order. Let H0 be the history constructed by appending to
H each response in Rx .

The !H and !x orders can be “rolled up” into
a single partial order. Define the relation ! on method
calls of complete(H0): For method calls m and m̄;m !
m̄ if there exist method calls m0; : : : ;mn , such that
m = m0; m̄ = mn , and for each i between 0 and n � 1,
either mi !x mi+1 for some object x, or mi !H mi+1.

It turns out that! is a partial order. Clearly,! is tran-
sitive. It remains to be shown that! is anti-reflexive: for
all x, it is false that x ! x.

The proof proceeds by contradiction. If not, then there
exist method calls m0; : : : ;mn , such that m0 ! m1 !

� � � ! mn ;mn ! m0, and each pair is directly related by
some!x or by!H .

Choose a cycle whose length is minimal. Suppose all
method calls are associated with the same object x. Since
!x is a total order, theremust exist twomethod callsmi�1
andmi such that mi�1 !H mi and mi !x mi�1, contra-
dicting the linearizability of x.

The cycle must therefore include method calls of at
least two objects. By reindexing if necessary, let m1 and
m2 be method calls of distinct objects. Let x be the object
associated with m1. None of m2; : : : ;mn can be a method
call of x. The claim holds for m2 by construction. Let mi
be the first method call in m3; : : : ;mn associated with x.
Since mi�1 and mi are unrelated by!x , they must be re-
lated by!H , so the response ofmi�1 precedes the invoca-
tion of mi. The invocation of m2 precedes the response of
mi�1, since otherwise mi�1 !H m2, yielding the shorter
cycle m2; : : : ;mi�1. Finally, the response of m1 precedes
the invocation of m2, since m1 !H m2 by construction.
It follows that the response to m1 precedes the invoca-
tion of mi, hence m1 !H mi , yielding the shorter cycle
m1;mi ; : : : ;mn .

Since mn is not a method call of x, but mn ! m1, it
follows thatmn !H m1. Butm1 !H m2 by construction,
and because !H is transitive, mn !H m2, yielding the
shorter cycle m2; : : : ;mn , the final contradiction. �

Locality is important because it allows concurrent sys-
tems to be designed and constructed in a modular fash-
ion; linearizable objects can be implemented, verified, and
executed independently. A concurrent system based on
a non-local correctness property must either rely on a cen-
tralized scheduler for all objects, or else satisfy additional
constraints placed on objects to ensure that they follow
compatible scheduling protocols. Locality should not be
taken for granted; as discussed below, the literature in-
cludes proposals for alternative correctness properties that
are not local.

The Non-Blocking Property

Linearizability is a non-blocking property: a pending invo-
cation of a total method is never required to wait for an-
other pending invocation to complete.

Theorem 2 Let inv(m) be an invocation of a total method.
If hx invPi is a pending invocation in a linearizable history
H, then there exists a response hxresPi such that H�hxresPi
is linearizable.

452 L Linearizability

Proof Let S be any linearization of H. If S includes a re-
sponse hx resPi to hx invPi, the proof is complete, since S
is also a linearization of H � hx resPi. Otherwise, hx invPi
does not appear in S either, since linearizations, by defini-
tion, include no pending invocations. Because the method
is total, there exists a response hx resPi such that

S0 = S � hx invPi � hx res Pi

is legal. S0, however, is a linearization of H � hx resPi, and
hence is also a linearization of H. �

This theorem implies that linearizability by itself never
forces a threadwith a pending invocation of a total method
to block. Of course, blocking (or even deadlock)may occur
as artifacts of particular implementations of linearizabil-
ity, but it is not inherent to the correctness property itself.
This theorem suggests that linearizability is an appropri-
ate correctness condition for systems where concurrency
and real-time response are important. Alternative correct-
ness conditions, such as serializability [1] do not share this
non-blocking property.

The non-blocking property does not rule out block-
ing in situations where it is explicitly intended. For ex-
ample, it may be sensible for a thread attempting to de-
queue from an empty queue to block, waiting until another
thread enqueues an item. The queue specification captures
this intention by making the deq() method’s specifica-
tion partial, leaving it’s effect undefined when applied to
an empty queue. The most natural concurrent interpreta-
tion of a partial sequential specification is simply to wait
until the object reaches a state in which the method is de-
fined.

Other Correctness Properties

Sequential Consistency [4] is a weaker correctness condi-
tion that requires Property L1 but not L2: method calls
must appear to happen in some one-at-a-time, sequential
order, but calls that do not overlap can be reordered. Every
linearizable history is sequentially consistent, but not vice
versa. Sequential consistency permits more concurrency,
but it is not a local property: a system composed of multi-
ple sequentially-consistent objects is not itself necessarily
sequentially consistent.

Much work on databases and distributed systems
uses serializability as the basic correctness condition for
concurrent computations. In this model, a transaction
is a “thread of control” that applies a finite sequence of
methods to a set of objects shared with other transac-
tions. A history is serializable if it is equivalent to one in
which transactions appear to execute sequentially, that is,

without interleaving. A history is strictly serializable if the
transactions’ order in the sequential history is compatible
with their precedence order: if every method call of one
transaction precedes every method call of another, the
former is serialized first. (Linearizability can be viewed as
a special case of strict serializability where transactions are
restricted to consist of a single method applied to a single
object.)

Neither serializability nor strict serializability is a lo-
cal property. If different objects serialize transactions in
different orders, then there may be no serialization or-
der common to all objects. Serializability and strict seri-
alizability are blocking properties: Under certain circum-
stances, a transaction may be unable to complete a pend-
ing method without violating serializability. A deadlock
results if multiple transactions block one another. Such
transactions must be rolled back and restarted, implying
that additionalmechanismsmust be provided for that pur-
pose.

Applications

Linearizability is widely used as the basic correctness con-
dition for many concurrent data structure algorithms [5],
particularly for lock-free and wait-free data structures [2].
Sequential consistency is widely used for describing low-
level systems such as hardware memory interfaces. Se-
rializability and strict serializability are widely used for
database systems in which it must be easy for application
programmers to preserve complex application-specific in-
variants spanning multiple objects.

Open Problems

Modern multiprocessors often support very weak models
of memory consistency. There are many open problems
concerning how to model such behavior, and how to en-
sure linearizable object implementations on top of such ar-
chitectures.

Cross References

� Concurrent Programming, Mutual Exclusion
� Registers

Recommended Reading

The notion of Linearizability is due to Herlihy and
Wing [3], while Sequential Consistency is due to Lam-
port [4], and serializability to Eswaran et al. [1].

1. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of
consistency and predicate locks in a database system. Commun.
ACM 19(11), 624–633 (1976). doi: http://doi.acm.org/10.1145/
360363.360369

http://doi.acm.org/10.1145/360363.360369
http://doi.acm.org/10.1145/360363.360369

List Decoding near Capacity: Folded RS Codes L 453

2. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. (TOPLAS) 13(1), 124–149 (1991)

3. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condi-
tion for concurrent objects. ACM Trans. Program. Lang. Syst.
(TOPLAS) 12(3), 463–492 (1990)

4. Lamport, L.: How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput. C-
28(9), 690 (1979)

5. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving cor-
rectness of highly-concurrent linearisable objects. In: PPoPP
’06: Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pp. 129–136
(2006). doi: http://doi.acm.org/10.1145/1122971.1122992

List Decoding near Capacity:
Folded RS Codes
2006; Guruswami, Rudra

ATRI RUDRA
Department of Computer Science and Engineering,
University at Buffalo, State University of New York,
Buffalo, NY, USA

Keywords and Synonyms

Decoding; Error correction

ProblemDefinition

One of the central trade-offs in the theory of error-
correcting codes is the one between the amount of redun-
dancy needed and the fraction of errors that can be cor-
rected.1 The redundancy is measured by the rate of the
code, which is the ratio of the the number of information
symbols in the message to that in the codeword – thus,
for a code with encoding function E : ˙ k ! ˙ n , the rate
equals k / n. The block length of the code equals n, and ˙
is its alphabet.

The goal in decoding is to find, given a noisy received
word, the actual codeword that it could have possibly re-
sulted from. If the target is to correct a fraction � of er-
rors (� will be called the error-correction radius), then this
amounts to finding codewords within (normalized Ham-
ming) distance � from the received word. We are guar-
anteed that there will be a unique such codeword pro-
vided the distance between every two distinct codewords
is at least 2�, or in other words the relative distance of
the code is at least 2�. However, since the relative dis-
tance ı of a code must satisfy ı � 1 � R where R is the

1This entry deals with the adversarial or worst-case model of
errors�no assumption is made on how the errors and error locations
are distributed beyond an upper bound on the total number of errors
that may be caused.

rate of the code (by the Singleton bound), if one insists
on an unique answer, the best trade-off between � and R is
� = �U (R) = (1 � R)/2. But this is an overly pessimistic es-
timate of the error-correction radius, since the way Ham-
ming spheres pack in space, for most choices of the re-
ceived word there will be at most one codeword within
distance � from it even for �much greater than ı/2. There-
fore, always insisting on a unique answer will preclude de-
coding most such received words owing to a few patho-
logical received words that have more than one codeword
within distance roughly ı/2 from them.

A notion called list decoding, that dates back to the
late 1950’s [1,9], provides a clean way to get around this
predicament, and yet deal with worst-case error patterns.
Under list decoding, the decoder is required to output
a list of all codewords within distance � from the re-
ceived word. Let us call a code C (�; L)-list decodable if the
number of codewords within distance � of any received
word is at most L. To obtain better trade-offs via list de-
coding, (�; L)-list decodable codes are needed where L is
bounded by a polynomial function of the block length,
since this an a priori requirement for polynomial time
list decoding. How large can � be as a function of R for
which such (�; L)-list decodable codes exist? A standard
random coding argument shows that � � 1 � R � o(1)
can be achieved over large enough alphabets, cf. [2,10],
and a simple counting argument shows that � must be at
most 1 � R. Therefore the list decoding capacity, i. e., the
information-theoretic limit of list decodability, is given by
the trade-off �cap(R) = 1 � R = 2�U (R). Thus list decod-
ing holds the promise of correcting twice as many errors as
unique decoding, for every rate. The above-mentioned list
decodable codes are non-constructive. In order to realize
the potential of list decoding, one needs explicit construc-
tions of such codes, and on top of that, polynomial time
algorithms to perform list decoding.

Building on works of Sudan [8], Guruswami and Su-
dan [6] and Parvaresh and Vardy [7], Guruswami and
Rudra [5] present codes that get arbitrarily close to the list
decoding capacity �cap(R) for every rate. In particular, for
every 1 > R > 0 and every � > 0, they give explicit codes
of rate R together with polynomial time list decoding algo-
rithm that can correct up to a fraction 1� R � � of errors.
These are the first explicit codes (with efficient list decod-
ing algorithms) that get arbitrarily close to the list decod-
ing capacity for any rate.

Description of the Code

Consider a Reed�Solomon (RS) code C = RSF ;F� [n; k]
consisting of evaluations of degree k polynomials over

http://doi.acm.org/10.1145/1122971.1122992

454 L List Decoding near Capacity: Folded RS Codes

some finite field F at the set F� of nonzero elements of F .
Let q = jF j = n + 1. Let � be a generator of the multiplica-
tive group F�, and let the evaluation points be ordered
as 1; �; � 2; : : : ; � n�1. Using all nonzero field elements as
evaluation points is one of the most commonly used in-
stantiations of Reed�Solomon codes.

Let m � 1 be an integer parameter called the folding
parameter. For ease of presentation, it will assumed that
m divides n = q � 1.

Definition 1 (Folded Reed�Solomon Code) The m-
folded version of the RS code C, denoted FRSF ;�;m;k , is
a code of block length N = n/m over Fm . The encoding
of a message f (X), a polynomial over F of degree at most
k, has as its j’th symbol, for 0 � j < n/m, the m-tuple
(f (� jm); f (� jm+1); � � � ; f (� jm+m�1)). In other words, the
codewords of C0 = FRSF ;�;m;k are in one-one correspon-
dence with those of the RS code C and are obtained
by bundling together consecutive m-tuple of symbols in
codewords of C.

Key Results

The following is the main result of Guruswami and Rudra.

Theorem 1 ([5]) For every � > 0 and 0 < R < 1, there
is a family of folded Reed�Solomon codes that have rate
at least R and which can be list decoded up to a fraction
1 � R � � of errors in time (and outputs a list of size at
most) (N/�2)O(��1 log(1/R)) where N is the block length of the
code. The alphabet size of the code as a function of the block
length N is (N/�2)O(1/�2).

The result of Guruswami and Rudra also works in a more
general setting called list recovering, which is defined next.

Definition 2 (List Recovering) A code C
 ˙ n is said
to be (�; l ; L)-list recoverable if for every sequence of sets
S1,� � � ,Sn where each Si
 ˙ has at most l elements, the
number of codewords c 2 C for which ci 2 Si for at least
�n positions i 2 f1; 2; : : : ; ng is at most L.

A code C
 ˙ n is said to (�; l)-list recoverable in poly-
nomial time if it is (�; l ; L(n))-list recoverable for some
polynomially bounded function L(�), and moreover there
is a polynomial time algorithm to find the at most L(n)
codewords that are solutions to any (�; l ; L(n))-list recov-
ering instance.

Note that when l = 1, (�; 1; �)-list recovering is the same as
list decoding up to a (1 � �) fraction of errors. Guruswami
and Rudra have the following result for list recovering.

Theorem 2 ([5]) For every integer l � 1, for all R,
0 < R < 1 and � > 0, and for every prime p, there is an

explicit family of folded Reed�Solomon codes over fields
of characteristic p that have rate at least R and which
can be (R + �; l)-list recovered in polynomial time. The al-
phabet size of a code of block length N in the family is
(N/�2)O(��2 log l /(1�R)).

Applications

To get within � of capacity, the codes in Theorem 1 have
alphabet size N˝(1/�2) where N is the block length. By
concatenating folded RS codes of rate close to 1 (that are
list recoverable) with suitable inner codes followed by re-
distribution of symbols using an expander graph (similar
to a construction for linear-time unique decodable codes
in [3]), one can get within � of capacity with codes over
an alphabet of size 2O(��4 log(1/�)). A counting argument
shows that codes that can be list decoded efficiently to
within � of the capacity need to have an alphabet size of
2˝(1/�).

For binary codes, the list decoding capacity is known
to be �bin(R) = H�1(1 � R) where H(�) denotes the bi-
nary entropy function. No explicit constructions of binary
codes that approach this capacity are known. However, us-
ing the Folded RS codes of Guruswami Rudra in a natu-
ral concatenation scheme, one can obtain polynomial time
constructable binary codes of rate R that can be list de-
coded up to a fraction �Zyab(R) of errors, where �Zyab(R) is
the “Zyablov bound”.

See [5] for more details.

Open Problems

The work of Guruswami and Rudra could be improved
with respect to some parameters. The size of the list needed
to perform list decoding to a radius that is within � of
capacity grows as NO(��1 log(1/R)) where N and R are the
block length and the rate of the code respectively. It re-
mains an open question to bring this list size down to
a constant independent of n (the existential random cod-
ing arguments work with a list size of O(1/�)). The al-
phabet size needed to approach capacity was shown to
be a constant independent of N. However, this involved
a brute-force search for a rather large (inner) code, which
translates to a construction time of about NO(��2 log(1/�))

(instead of the ideal construction time where the exponent
of N does not depend on �). Obtaining a “direct” alge-
braic construction over a constant-sized alphabet, such as
the generalization of the Parvaresh-Vardy framework to
algebraic-geometric codes in [4], might help in addressing
these two issues.

Finally, constructing binary codes that approach list
decoding capacity remains open.

List Scheduling L 455

Cross References

� Decoding Reed–Solomon Codes
� Learning Heavy Fourier Coefficients of Boolean

Functions
� LP Decoding

Recommended Reading
1. Elias, P.: List decoding for noisy channels. Technical Report 335,

Research Laboratory of Electronics MIT (1957)
2. Elias, P.: Error-correcting codes for list decoding. IEEE Trans. Inf.

Theory 37, 5–12 (1991)
3. Guruswami, V., Indyk, P.: Linear-time encodable/decodable

codes with near-optimal rate. IEEE Trans. Inf. Theory 51(10),
3393–3400 (2005)

4. Guruswami, V., Patthak, A.: Correlated Algebraic-Geometric
codes: Improved list decoding over bounded alphabets. In:
Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 227–236, Berkley, Octo-
ber 2006

5. Guruswami, V., Rudra, A.: Explicit capacity-achieving list-
decodable codes. In: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pp. 1–10. Seattle, May
2006

6. Guruswami, V., Sudan, M.: Improved decoding of Reed–Solo-
mon and algebraic-geometric codes. IEEE Trans. Inf. Theory 45,
1757–1767 (1999)

7. Parvaresh, F., Vardy, A.: Correcting errors beyond the
Guruswami�Sudan radius in polynomial time. In: Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pp. 285–294. Pittsburgh, 2005

8. Sudan, M.: Decoding of Reed�Solomon codes beyond the
error-correction bound. J Complex. 13(1), 180–193 (1997)

9. Wozencraft, J.M.: List Decoding. Quarterly Progress Report, Re-
search Laboratory of Electronics. MIT 48, 90–95 (1958)

10. Zyablov, V.V., Pinsker, M.S.: List cascade decoding. Probl. Inf.
Trans. 17(4), 29–34 (1981) (in Russian); pp. 236–240 (in English)
(1982)

List Scheduling
1966; Graham

LEAH EPSTEIN
Department of Mathematics, University of Haifa,
Haifa, Israel

Keywords and Synonyms

Online scheduling on identical machines

ProblemDefinition

The paper of Graham [8] was published in the 1960s. Over
the years it served as a common example of online al-
gorithms (though the original algorithm was designed as
a simple approximation heuristic). The following basic set-
ting is considered.

A sequence of n jobs is to be assigned to m identi-
cal machines. Each job should be assigned to one of the
machines. Each job has a size associated with it, which
can be seen as its processing time or its load. The load of
a machine is the sum of sizes of jobs assigned to it. The
goal is to minimize the maximum load of any machine,
also called the makespan. We refer to this problem as JOB
SCHEDULING.

If jobs are presented one by one, and each job needs to
be assigned to a machine in turn, without any knowledge
of future jobs, the problem is called online. Online algo-
rithms are typically evaluated using the (absolute) compet-
itive ratio, which is similar to the approximation ratio of
approximation algorithms. For an algorithmA, we denote
its cost byA as well. The cost of an optimal offline algo-
rithm that knows the complete sequence of jobs is denoted
by OPT. The competitive ratio of an algorithmA is the in-
fimumR � 1 such that for any input,A � R �OPT.

Key Results

In paper [8], Graham defines an algorithm called LIST
SCHEDULING (LS). The algorithm receives jobs one by
one. Each job is assigned in turn to a machine which has
a minimal current load. Ties are broken arbitrarily.

The main result is the following.

Theorem 1 LS has a competitive ratio of 2 � 1
m .

Proof. Consider a schedule created for a given sequence.
Let ` denote a job that determines the makespan (that is,
the last job assigned to a machine i that has a maximum
load), let L denote its size, and let X denote the total size
of all other jobs assigned to i. At the time when L was as-
signed to i, this was a machine of minimum load. There-
fore, the load of each machine is at least X. The makespan
of an optimal schedule (i. e., a schedule that minimizes the
makespan) is the cost of an optimal offline algorithm and
thus is denoted by OPT. Let P be the sum of all job sizes in
the sequence.

The two following simple lower bounds on OPT can
be obtained.

OPT � L : (1)

OPT �
P
m
�

m � X + L
m

= X +
L
m
: (2)

Inequality (1) follows from the fact that {OPT} needs to
run job ` and thus at least one machine has a load of at
least L. The first inequality in (2) is due to the fact that at
least one machine receives at least a fraction of 1

m of the
total size of jobs. The second inequality in (2) follows from
the comments above on the load of each machine.

456 L List Scheduling

This proves that the makespan of the algorithm, X + L
can be bounded as follows.

1X + L � OPT +
m � 1
m

L � OPT +
m � 1
m

OPT

= (2 � 1/m) OPT : (3)

The first inequality in (3) follows from (2) and the second
one from (1).

To show that the analysis is tight, consider m(m � 1)
jobs of size 1 followed by a single job of size m. After
the smaller jobs arrive, LS obtains a balanced schedule in
which every machine has a load of m � 1. The additional
job increases the makespan to 2m � 1. However, an opti-
mal offline solution would be to assign the smaller jobs to
m � 1 machines, and the remaining job to the remaining
machine, getting a load ofm.

A natural question was whether this bound is best pos-
sible. In a later paper, Graham [9] showed that applying
LS with a sorted sequence of jobs (by non-increasing order
of sizes) actually gives a better upper bound of 4

3 �
1
3m on

the approximation ratio. A polynomial time approxima-
tion scheme was given by Hochbaum and Shmoys in [10].
This is the best offline result one could hope for as the
problem is known to be NP-hard in the strong sense.

As for the online problem, it was shown in [5] that no
(deterministic) algorithm has a smaller competitive ratio
than 2 � 1

m , for the cases m = 2 and m = 3. On the other
hand, it was shown in a sequence of papers that an algo-
rithm with a smaller competitive ratio can be found for
any m � 4, and even algorithms with a competitive ratio
that does not approach 2 for largem were designed.

The best such result is by Fleischer and Wahl [6], who
designed a 1.9201-competitive algorithm. Lower bounds
of 1.852 and 1.85358 on the competitive ratio of any online
algorithmwere shown in [1,7]. Rudin [13] claimed a better
lower bound of 1.88.

Applications
As the study of approximation algorithms and specifi-
cally online algorithms continued, the analysis of many
scheduling algorithms used similar methods to the proof
above. Below, several variants of the problemwhere almost
the same proof as above gives the exact same bound are
mentioned.

Load Balancing of Temporary Tasks

In this problem the sizes of jobs are seen as loads. Time is
a separate axis. The input is a sequence of events, where
every event is an arrival or a departure of a job. The set
of active jobs at time t is the set of jobs that have already

arrived at this time and have not departed yet. The cost
of an algorithm at a time t is its makespan at this time.
The cost of an algorithm is its maximum cost over time. It
turns out that the analysis above can be easily adapted for
this model as well. It is interesting to note that in this case
the bound 2 � 1

m is actually best possible, as shown in [2].

Scheduling with Release Times
and Precedence Constraints
In this problem, the sizes represent processing times of
jobs. Various versions have been studied. Jobs may have
designated release times, which are the times when these
jobs become available for execution. In the online sce-
nario, each job arrives and becomes known to the algo-
rithm only at its release time. Some precedence constraints
may also be specified, defined by a partial order on the set
of jobs. Thus, a job can be run only after its predecessors
complete their execution. In the online variant, a job be-
comes known to the algorithm only after its predecessors
have been completed. In these cases, LS acts as follows.
Once a machine becomes available, a waiting job that ar-
rived earliest is assigned to it. (If there is no waiting job,
the machine is idle until a new job arrives.)

The upper bound of 2 � 1
m on the competitive ratio

can be proved using a relation between the cost of an op-
timal schedule, and the amount of time when at least one
machine is idle. (See [14] for details).

This bound is tight for several cases. For the case
where there are release times, no precedence constraints,
and processing times (sizes) are not known upon arrival,
Shmoys,Wein, andWilliamson [15] proved a lower bound
of 2 � 1

m . For the case where there are only precedence
constraints (no release times, and sizes of jobs are known
upon arrival), a lower bound of the same value appeared
in [4]. Note that the case with clairvoyant scheduling (i. e.,
sizes of jobs are known upon arrival), release times, and
no precedence constraints is not settled. For m = 2 it was
shown by Noga and Seiden [11] that the tight bound is
(5 �
p
5)/2 	 1:38198, and the upper bound is achieved

using an algorithm that applies waiting with idle machines
rather than scheduling a job as soon as possible, as done
by LS.

Open Problems

The most challenging open problem is to find the best
possible competitive ratio for this basic online problem of
job scheduling. The gap between the upper bound and the
lower bound is not large, yet it seems very difficult to find
the exact bound. A possibly easier question would be to
find the best possible competitive ratio for m = 4. A lower

Load Balancing L 457

bound of
p
3 	 1:732 has been shown by [12] and the cur-

rently known upper bound is 1:733 by [3]. Thus, it may be
the case that this bound would turn out to be

p
3.

Recommended Reading
1. Albers, S.: Better bounds for online scheduling. SIAM J. Com-

put. 29(2), 459–473 (1999)
2. Azar, Y., Epstein, L.: On-line load balancing of temporary tasks

on identical machines. SIAM J. Discret. Math. 18(2), 347–352
(2004)

3. Chen, B., van Vliet, A., Woeginger, G.J.: New lower and upper
bounds for on-line scheduling. Oper. Res. Lett. 16, 221–230
(1994)

4. Epstein, L.: A note on on-line schedulingwith precedence con-
straints on identical machines. Inf. Process. Lett. 76, 149–153
(2000)

5. Faigle, U., Kern, W., Turán, G.: On the performane of online
algorithms for partition problems. Acta Cybern. 9, 107–119
(1989)

6. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3,
343–353 (2000)

7. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating
adversaries for request-answer games. In: Proc. of the 11th
Symposium on Discrete Algorithms. (SODA2000), pp. 564–565
(2000)

8. Graham, R.L.: Bounds for certain multiprocessing anomalies.
Bell Syst. Techn. J. 45, 1563–1581 (1966)

9. Graham, R.L.: Bounds on multiprocessing timing anomalies.
SIAM J. Appl. Math. 17, 263–269 (1969)

10. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algo-
rithms for scheduling problems: theoretical and practical re-
sults. J. ACM 34(1), 144–162 (1987)

11. Noga, J., Seiden, S.S.: An optimal online algorithm for schedul-
ing two machines with release times. Theor. Comput. Sci.
268(1), 133–143 (2001)

12. Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the on-
line scheduling problem. SIAM J. Comput. 32, 717–735 (2003)

13. Rudin III, J.F.: Improved bounds for the online scheduling prob-
lem. Ph. D. thesis, The University of Texas at Dallas (2001)

14. Sgall, J.: On-line scheduling. In: Fiat, A., Woeginger, G.J. (eds.)
Online Algorithms: The State of the Art, pp. 196–231. Springer
(1998)

15. Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel
machines on-line. SIAM J. Comput. 24, 1313–1331 (1995)

Load Balancing
1994; Azar, Broder, Karlin
1997; Azar, Kalyanasundaram, Plotkin, Pruhs,
Waarts

LEAH EPSTEIN
Department of Mathematics, University of Haifa,
Haifa, Israel

Keywords and Synonyms

Online scheduling of temporary tasks

ProblemDefinition

Load balancing of temporary tasks is a online problem. In
this problem, arriving tasks (or jobs) are to be assigned
to processors, which are also called machines. In this en-
try, deterministic online load balancing of temporary tasks
with unknown duration is discussed. The input sequence
consists of departures and arrivals of tasks. If the sequence
consists of arrivals only, the tasks are called permanent.
Events happen one by one, so that the next event appears
after the algorithm completed dealing with the previous
event.

Clearly, the problem with temporary tasks is different
from the problem with permanent tasks. One such differ-
ence is that for permanent tasks, the maximum load is al-
ways achieved in the end of the sequence. For temporary
tasks this is not always the case. Moreover, the maximum
load may be achieved at different times for different algo-
rithms.

In the most general model, there are m machines
1; : : : ;m. The information of an arriving job j is a vector
pj of length m, where pij is the load or size of job j, if it
is assigned to machine i. As stated above, each job is to
be assigned to a machine before the next arrival or depar-
ture. The load of a machine i at time t is denoted by Lti and
is the sum of the loads (on machine i) of jobs which are
assigned to machine i, that arrived by time t and did not
depart by this time. The goal is to minimize the maximum
load of any machine over all times t. This machine model
is known as unrelated machines (see [3] for a study of the
load balancing problem of permanent tasks on unrelated
machines). Many more specific models were defined. In
the sequel a few such models are described.

For an algorithmA, denote its cost byA as well. The
cost of an optimal offline algorithm that knows the com-
plete sequence of events in advance is denoted by OPT.
Load balancing is studied in terms of the (absolute) com-
petitive ratio. The competitive ratio of A is the infimum
R such that for any input, A � R � OPT. If the competi-
tive ratio of an online algorithm is atmostC it is also called
C-competitive.

Uniformly related machines [3,12] are machines with
speeds associated with them, thus machine i has speed si
and the information that a job j needs to provide upon
its arrival is just its size, or the load that it incurs on
a unit speed machine, which is denoted by pj. Then let
pij = p j/si . If all speeds are equal, this results in identical
machines [15].

Restricted assignment [8] is a model where each job
may be run only on a subset of the machines. A job j is
associated with running time which is the time to run it

458 L Load Balancing

on any of its permitted machinesMj. Thus if i 2 Mj then
pij = p j and otherwise pij =1.

Key Results

The known results in all four models are surveyed below.

Identical Machines

Interestingly, the well known algorithm of Graham [15],
LIST SCHEDULING, which is defined for identical ma-
chines, is valid for temporary tasks as well as permanent
tasks. This algorithm greedily assigns a new job to the least
loaded machine. The competitive ratio of this algorithm
is 2 � 1/m, which is best possible (see [5]). Note that the
competitive ratio is the same as for permanent tasks, but
for permanent tasks, it is possible to achieve a competitive
ratio which does not tend to 2 for largem, see e. g. [11].

Uniformly Related Machines

The situation for uniformly related machines is not very
different. In this case, the algorithms of Aspnes et al. [3]
and of Berman et al. [12] cannot applied as they are, and
some modifications are required. The algorithm of Azar et
al. [7] has competitive ratio of at most 20 and it is based
on the general method introduced in [3]. The algorithm
of [3] keeps a guess value �, which is an estimation of
the cost of an optimal offline algorithm OPT. An invari-
ant that must be kept is � � 2OPT. At each step, a proce-
dure is applied for some value of � (which can be initial-
ized as the load of the first job on the fastest machine). The
procedure for a given value of � is applied until it fails,
and some job cannot be assigned while satisfying all con-
ditions. The procedure is designed so that if it fails, then
it must be the case that OPT > �, the value of � is dou-
bled, and the procedure is re-invoked for the new value,
ignoring all assignments that were done for small values of
�. This method is called doubling, and results in an algo-
rithm with a competitive ratio which is at most four times
the competitive ratio achieved by the procedure. The pro-
cedure for a given � acts as follows. Let c be a target com-
petitive ratio for the procedure. The machines are sorted
according to speed. Each job is assigned to the first ma-
chine in the sorted order such that the job is assignable
to it. A job j arriving at time t is assignable to machine
i if p j/si � � and Lt�1i + p j/si � c�. It is shown in [7]
that c = 5 allows the algorithm to succeed in the assign-
ment of all jobs (i. e., to have at least one assignable ma-
chine for each job), as long as OPT � �. Note that the
constant c for permanent tasks used in [3] is 2. As for
lower bounds, it is shown in [7] that the competitive ra-
tio R of any algorithm satisfies R � 3 � o(1). The upper

bound has been improved to 6 + 2
p
5 	 10:47 by Bar-Noy

et al. [9].

Restricted Assignment
As for restricted assignment, temporary tasks make this
model much more difficult than permanent tasks. The
competitive ratio O(logm) which is achieved by a sim-
ple greedy algorithm (see [8]) does not hold in this case.
In fact, the competitive ratio of this algorithm becomes
˝(m

2
3) [4]. Moreover, in the same paper, a lower bound

of ˝
p
m on the competitive ratio of any algorithm was

shown. The construction was quite involved, however,
Ma and Plotkin [16] gave a simplified construction which
yields the same result.

The construction of [16] selects a value p which
is the largest integer that satisfies p + p2 � m. Clearly
p = 	(

p
m). The lower bound uses two sets of machines,

pmachines which are called “the small group”, and p2 ma-
chines which are called “the large group”. The construc-
tion consists of p2 phases, each of which consists of p jobs
and is dedicated to one machine in the large group. In
phase i, job k of this phase can run either on the k-th
machine of the small group, or the i-th machine of the
large group. After this arrival, only one of these p jobs does
not depart. An optimal offline algorithm assigns all jobs in
each phase to the small group, except for the one job that
will not depart. Thus when the construction is completed,
it has one job on each machine of the large group. The
maximum load ever achieved by OPT is 1. However, the
algorithm does not know at each phase which job will not
depart. If no job is assigned to the small group in phase i,
then the load of machine i becomes p. Otherwise, a job that
the algorithm assigns to the small group is chosen as the
one that will not depart. In this way, after p phases, a total
load of p2 is accumulated on the small group, which means
that at least one machine there has load p. This completed
the construction.

An alternative algorithm called ROBIN HOOD was de-
signed in [7]. This algorithm keeps a lower bound on OPT,
which is the maximum between the following two func-
tions. The first one is the maximum average machine load
over time. The second is the maximum job size that has
ever arrived. Denote this lower bound at time t (after t
events have happened) by Bt . A machine i is called rich
at time t if Lti �

p
mBt . Otherwise it is called poor. The

windfall time of a rich machine i at time t is the time t0

such that i is poor at time t0 � 1 and rich at times t0; : : : ; t,
i. e., the last time that machine i became rich. Clearly, ma-
chines can become poor due to an update of Bt or depar-
ture of jobs. A machine can become rich due to arrival of
jobs that are assigned to it.

Local Alignment (with Affine Gap Weights) L 459

The algorithm assigns a job j to a poor machine in
M(j), if such a machine exists. Otherwise, j is assigned to
the machine in M(j) with the most recent windfall time.
The analysis makes use of the fact that at most

p
m ma-

chines can be rich simultaneously.
Note that for small values of m (m � 5), the compet-

itive ratio of the greedy algorithm is still best possible, as
shown in [1]. In this paper it was shown that these bounds
are (m + 3)/2 for m = 3; 4; 5. It is not difficult to see that
for m = 2, the best bound is 2.

Unrelated Machines

The most extreme difference occurs for unrelated ma-
chines. Unlike the case of permanent tasks, where an upper
bound of O(logm) can be achieved [3], it was shown in [2]
that any algorithm has a competitive ratio of˝(m/logm).
Note that a trivial algorithm, which assigns each job to the
machine where it has a minimum load, has competitive
ratio of at mostm [3].

Applications

A similar model is known for the bin packing problem as
well. In this problem, the sequence consists of arrivals and
departures items of sizes in (0; 1]. The goal is to keep a par-
tition of the currently existing items into subsets (bins),
where the sum of items in each subset is at most 1. The
cost is the maximum number of bins ever used simultane-
ously. This problem was studied in [13,14].

In [10], an hierarchical model was studied. This is
a special case of restricted assignment where for each job
j, M(j) is a prefix of the machines. They showed that even
for temporary tasks an algorithm of constant competitive
ratio exists for this model.

In [6], which studied resource augmentation in load
balancing, temporary tasks were considered as well. Re-
source augmentation is a type of analysis where the on-
line algorithm is compared to an optimal offline algorithm
which has less machines.

Open Problems

Small gaps still remain for both uniformly related ma-
chines, and for unrelated machines. For unrelated ma-
chines is could be interesting to find if there exists an al-
gorithm of competitive ratio o(m), or whether the simple
algorithm stated above has optimal competitive ratio (up
to a multiplicative factor).

Cross References

See� List Scheduling for more information on identical
machines and [15].

Recommended Reading

1. Armon, A., Azar, Y., Epstein, L., Regev, O.: On-line restricted as-
signment of temporary tasks with unknowndurations. Inf. Pro-
cess. Lett. 85(2), 67–72 (2003)

2. Armon, A., Azar, Y., Epstein, L., Regev, O.: Temporary tasks as-
signment resolved. Algorithmica 36(3), 295–314 (2003)

3. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load
balancingwith applications tomachine scheduling and virtual
circuit routing. J. ACM 44, 486–504 (1997)

4. Azar, Y., Broder, A.Z., Karlin, A.R.: On-line load balancing. Theor.
Comput. Sci. 130, 73–84 (1994)

5. Azar, Y., Epstein, L.: On-line load balancing of temporary tasks
on identical machines. SIAM J. Discret. Math. 18(2), 347–352
(2004)

6. Azar, Y., Epstein, L., van Stee, R.: Resource augmentation in load
balancing. J. Sched. 3(5), 249–258 (2000)

7. Azar, Y., Kalyanasundaram, B., Plotkin, S., Pruhs, K., Waarts, O.:
On-line load balancing of temporary tasks. J. Algorithms 22(1),
93–110 (1997)

8. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line as-
signments. J. Algorithms 18, 221–237 (1995)

9. Bar-Noy, A., Freund, A., Naor, J.: New algorithms for relatedma-
chines with temporary jobs. J. Sched. 3(5), 259–272 (2000)

10. Bar-Noy, A., Freund, A., Naor, J.: On-line load balancing in
a hierarchical server topology. SIAM J. Comput. 31, 527–549
(2001)

11. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an
ancient scheduling problem. J. Comput. Syst. Sci. 51(3), 359–
366 (1995)

12. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing
for related machines. J. Algorithms 35, 108–121 (2000)

13. Chan, W.-T., Wong, P.W.H., Yung, F.C.C.: On dynamic bin pack-
ing: an improved lower bound and resource augmentation
analysis. In: Proc. of the 12th Annual International Confer-
ence on Computing and Combinatorics (COCOON2006), 2006,
pp. 309–319

14. Coffman, E.G., Garey, M.R., Johnson, D.S.: Dynamic bin packing.
SIAM J. Comput. 12(2), 227–258 (1983)

15. Graham, R.L.: Bounds for certain multiprocessing anomalies.
Bell Syst. Tech. J. 45, 1563–1581 (1966)

16. Ma, Y., Plotkin, S.: Improved lower bounds for load balancing
of tasks with unknown duration. Inf. Process. Lett. 62, 31–34
(1997)

Local Alignment
(with Affine GapWeights)
1986; Altschul, Erickson

STEPHEN F. ALTSCHUL1,2, BRUCE W. ERICKSON1,
HENRY LEUNG2

1 The Rockefeller University,
New York, NY, USA

2 Department of Applied Mathematics,
MIT, Cambridge, MA, USA

460 L Local Alignment (with Affine Gap Weights)

Keywords and Synonyms

Pairwise local alignment with affine gap weight

ProblemDefinition

The pairwise local alignment problem is concerned with
identification of a pair of similar substrings from two
molecular sequences. This problem has been studied in
computer science for four decades. However, most prob-
lemmodels were generally not biologically satisfying or in-
terpretable before 1974. In 1974, Sellers developed a met-
ric measure of the similarity betweenmolecular sequences.
Waterman et al. (1976) generalized this metric to include
deletions and insertions of arbitrary length which repre-
sent the minimum number of mutational events required
to convert one sequence into another.

Given two sequences S and T, a pairwise alignment is
a way of inserting space characters ‘_’ in S and T to form
sequences S’ and T’ respectively with the same length.
There can be different alignments of two sequences. The
score of an alignment is measured by a scoring metric
ı(x, y). At each position i where both x and y are not
spaces, the similarity between S’[i] and T’[i] is measured
by ı(S’[i], T’[j]). Usually, ı(x, y) is positive when x and y
are the same and negative when x and y are different. For
positions with consecutive space characters, the alignment
scores of the space characters are not considered indepen-
dently; this is because inserting or deleting a long region
in molecular sequences is more likely to occur than in-
serting or deleting several short regions. Smith and Wa-
terman use an affine gap penalty to model the similarity at
positions with space characters. They define a consecutive
substring with spaces in S’ or T’ be a gap. For each length l
gap, they give a linear penaltyWk = Ws + l �Wp for some
predefined positive constantsWs andWp. The score of an
alignment is the sum of the score at each position i minus
the penalties of each gap. For example, the alignment score
of the following alignment is ı(G;G) + ı(C;C) + ı(C;C) +
ı(U;C) + ı(G;G) � (Ws + 2 �Wp).

S : GCCAUUG
T : GCC__CG

The optimal global alignment of sequences S and T is the
alignment of S and T with the maximum alignment score.

Sometimes we want to know whether sequences S
and T contain similar substrings instead of whether S
and T are similar. In this case, they solve the pairwise local
alignment problem, which wants to find a substringU in S
and another substring V in T such that the global align-
ment score of U and V is maximized.

Pairwise Local Alignment Problem

Input: Two sequences S[1::n] and T[1::m].
Output: A substring U in S and a substring V in T such
that the optimal global alignment of U and V is maxi-
mized.

Key Results

The pairwise local alignment problem can be solved in
O(mn) time and O(mn) space by dynamic programming.
The algorithm needs to fill in the 4 m � n tables H, HN ,
HS and HT , where each entry takes constant time. The in-
dividual meanings of these 4 tables are as follows.

H(i, j): maximum score of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j].

HN (i, j): maximumscore of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j], with the restriction that S[i] and T[j]
must be aligned.

HS(i, j): maximum score of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j], with S[j] aligned with a space charac-
ter.

HT(i, j): maximum score of the global alignment ofU and
V over all suffixes U in S[1::i] and all suffixes V
in T[1:: j], with T[j] aligned with a space charac-
ter.

The optimal local alignment score of S and T will be
maxfH(i; j)g and the local alignment of S and T can be
found by tracking back tableH.

In the tables, each entry can be filled in by the following
recursion in constant time.

Basic Step:

H(i; 0) = H(0; j) = 0 ; 0 6 i 6 n ; 0 6 i 6 m
HN (i; 0) = HN(0; j) = �1 ; 0 6 i 6 n ; 0 6 i 6 m
Hs(i; 0) = HT(0; j) = Ws +Wp ; 0 6 i 6 n ; 0 6 i 6 m
Hs(0; j) = HT(i; 0) = �1 ; 0 6 i 6 n ; 0 6 i 6 m

Recursion Step:

H(i; j) = maxfHN(i; j);Hs (i; j);HT (i; j); 0g ;
1 6 i 6 n ; 1 6 i 6 m

HN (i; j) = H(i � 1; j � 1) + ı(S[i]; T[j]) ;
1 6 i 6 n ; 1 6 i 6 m

Local Alignment (with Concave Gap Weights) L 461

Hs(i; j) = maxfH(i � 1; j) � (Ws +Wp);
HS(i � 1; j) �Wpg ;

1 6 i 6 n ; 1 6 i 6 m
HT(i; j) = maxfH(i; j � 1) � (Ws +Wp);

HT(i; j � 1) �Wpg ;

1 6 i 6 n ; 1 6 i 6 m

Applications

Local alignment with affine gap penalty can be used for
protein classification, phylogenetic footprinting and iden-
tification of functional sequence elements.

URL to Code

http://bioweb.pasteur.fr/seqanal/interfaces/water.html

Cross References

� Efficient Methods for Multiple Sequence Alignment
with Guaranteed Error Bounds

� Local Alignment (with Concave Gap Weights)

Recommended Reading
1. Allgower, E.L., Schmidt, P.H.: An Algorithm for Piecewise-Linear

Approximation of an Implicitly Defined Manifold. SIAM J. Num.
Anal. 22, 322–346 (1985)

2. Altschul, S.F., Gish,W., Miller,W., Myers, E.W., Lipman, D.J.: Basic
Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)

3. Chao, K.M., Miller, W.: Linear-space algorithms that build local
alignments from fragments. Algorithmica 13, 106–134 (1995)

4. Myers, E.W., Miller, W.: Optimal Alignments in Linear Space.
Bioinformatics 4, 11–17 (1988)

5. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cam-
bridge University Press, Cambridge (1999). ISBN 052158519

6. Ma, B., Tromp, J., Li, M.: PatternHunter: Faster and More Sensi-
tive Homology Search. Bioinformatics 18, 440–445 (2002)

7. Needleman, S.B., Wunsch, C.D.: A General Method Applicable
to the Search for Similarities in the Amino Acid Sequence of
Two Proteins. J. Mol. Biol. 48, 443–453 (1970)

8. Pearson, W.R., Lipman, D.J.: Improved Tools for Biological Se-
quence Comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448
(1988)

9. Sellers, P.H.: On the Theory and Computation of Evolutionary
Distances. SIAM J. Appl. Math. 26, 787–793 (1974)

10. Smith, T.F., Waterman, M.S.: Identification of Common Molec-
ular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

Local Alignment
(with Concave GapWeights)
1988; Miller, Myers

S. M. YIU
Department of Computer Science, The University
of Hong Kong, Hong Kong, China

Keywords and Synonyms

Sequence alignment; Pairwise local alignment

ProblemDefinition

This work of Miller and Myers [9] deals with the prob-
lem of pairwise sequence alignment in which the distance
measure is based on the gap penalty model. They proposed
an efficient algorithm to solve the problem when the gap
penalty is a concave function of the gap length.

Let X and Y be two strings (sequences) of alphabet˙ .
The pairwise alignment A of X and Y maps X, Y into
strings X0, Y 0 that may contain spaces (not in˙) such that
(1) jX 0j = jY 0j = `; (2) removing spaces from X0 and Y 0

returns X and Y , respectively; and (3) for any 1 � i � `,
X 0[i] and Y 0[i] cannot be both spaces where X 0[i] denotes
the ith character in X0.

To evaluate the quality of an alignment, there aremany
different measures proposed (e. g. edit distance, scoring
matrix [11]). In this work, they consider the gap penalty
model.

A gap in an alignment A of X and Y is a maximal
substring of contiguous spaces in either X0 or Y 0. There
are gaps and aligned characters (both X 0[i] and Y 0[i] are
not space) in an alignment. The score for a pair of aligned
characters is based on a distance function ı(a; b) where
a; b 2 ˙ . Usually ı is a metric, but this assumption is not
required in this work. The penalty of a gap of length k is
based on a non-negative function W(k). The score of an
alignment is the sum of the scores of all aligned characters
and gaps. An alignment is optimal if its score is the mini-
mum possible.

The penalty function W(k) is concave if
�
W(k) �

�
W(k + 1) for all k � 1, where

�
W(k) = W(k + 1) �

W(k).
The penalty function W(k) is affine if W(k) = a + bk

where a, b are constants. Affine function is a special case of
concave function. The problem for affine gap penalty has
been considered in [1,6].

The penalty function W(k) is a P-piece affine curve if
the domain ofW can be partitioned into P intervals, (�1 =
1; �1); (�2; �2); : : : ; (�p; �p =1), where �i = �i�1 + 1 for
all 1 < i � p, such that for each interval, the values of
W follow an affine function. More precisely, for any k 2
(�i ; �i),W(k) = ai + bi k for some constants ai, bi.

Problem

INPUT: Two strings X and Y , the scoring function ı, and
the gap penalty functionW(k).
OUTPUT: An optimal alignment of X and Y .

http://bioweb.pasteur.fr/seqanal/interfaces/water.html

462 L Local Alignment (with Concave Gap Weights)

Key Results

Theorem 1 If W(k) is concave, they provide an algo-
rithm for computing an optimal alignment that runs in
O(n2 log n) time where n is the length of each string and
uses O(n) expected space.

Corollary 1 If W(k) is an affine function, the same algo-
rithm runs in O(n2) time.

Theorem 2 For some special types of gap penalty func-
tions, the algorithm can be modified to run faster.
� If W(k) is a P-piece affine curve, the algorithm can be

modified to run in O(n2 log P) time.
� For logarithmic gap penalty function, W(k) = a +

b log k, the algorithm can be modified to run in O(n2)
time.

� IfW(k) is a concave function when k > K, the algorithm
can be modified to run in O(K + n2 log n) time.

Applications

Pairwise sequence alignment is a fundamental problem
in computational biology. Sequence similarity usually im-
plies functional and structural similarity. So, pairwise
alignment can be used to check whether two given se-
quences have similar functions or structures and to pre-
dict functions of newly identified DNA sequence. One can
refer to Gusfield’s book for some examples on the impor-
tance of sequence alignment (pp. 212–214 of [7]).

The alignment problem can be further divided into the
global alignment problem and the local alignment prob-
lem. The problem defined here is the global alignment
problem in which the whole input strings are required to
align with each other. On the other hand, for local align-
ment, the main interest lies in identifying a substring from
each of the input strings such that the alignment score
of the two substrings is the minimum among all possible
substrings. Local alignment is useful in aligning sequences
that are not similar, but contain a region that are highly
conserved (similar). Usually this region is a functional part
(domain) of the sequences. Local alignment is particularly
useful in comparing proteins. Proteins in the same fam-
ily from different species usually have some functional do-
mains that are highly conserved while the other parts are
not similar at all. Examples are the homeobox genes [10]
for which the protein sequences are quite different in each
species except the functional domain homeodomain.

Conceptually, the alignment score is used to cap-
ture the evolutionary distance between the two given se-
quences. Since a gap of more than one space can be cre-
ated by a single mutational event, so considering a gap

of length k as a unit instead of k different point mutation
may be more appropriate in some cases. However, which
gap penalty function should be used is a difficult question
to answer and sometimes depend on the actual applica-
tions. Most applications, such as BLAST, uses the affine
gap penalty which is still the dominate model in practice.
On the other hand, Benner et al. [2] and Gu and Li [13]
suggested to use the logarithmic gap penalty in some cases.
Whether using a concave gap penalty function in general
is meaningful is still an open issue.

Open Problem

Note that the results of this paper have been independently
obtained by Galil and Giancarlo [5] and for affine gap
penalty, Gotoh [6] also gave an O(n2) algorithm for solv-
ing the alignment problem. In [4], Eppstein gave a faster
algorithm that runs in O(n2) time for solving the same se-
quence alignment problemwith concave gap penalty func-
tion. Whether a subquadratic algorithm exists for solv-
ing this problem remains open. As a remark, subquadratic
algorithms do exist for solving the sequence alignment
problem if the measure is not based on the gap penalty
model, but is computed as

P`
i=1 ı(X1

0[i];Y 0[i]) based
only on a scoring function ı(a; b) where a; b 2 ˙ [f_g
where ‘_’ represents the space [3,8].

Experimental Results

They have performed some experiments to compare their
algorithm with Waterman’s O(n3) algorithm [12] on
a number of different concave gap penalty functions. Arti-
ficial sequences are generated for the experiments. Results
from their experiments lead to their conjectures that Wa-
terman’s method runs in O(n3) time when the two given
strings are very similar or the score for mismatch charac-
ters is small and their algorithm runs in O(n2) time if the
range of the function W(k) is not functionally dependent
on n.

Cross References

� Local Alignment (with Affine GapWeights)

Recommended Reading
1. Altschul, S.F., Erickson, B.W.: Optimal sequence alignment us-

ing affine gap costs. Bull. Math. Biol. 48, 603–616 (1986)
2. Benner, S.A., Cohen, M.A., Gonnet, G.H.: Empirical and struc-

tural models for insertions and deletions in the divergent evo-
lution of proteins. J. Mol. Biol. 229, 1065–1082 (1993)

3. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic
sequence alignment algorithm for unrestricted scoring matri-
ces. SIAM J. Comput. 32(6), 1654–1673 (2003)

Local Approximation of Covering and Packing Problems L 463

4. Eppstein, D.: Sequence comparison with mixed convex and
concave costs. J. Algorithms 11(1), 85–101 (1990)

5. Galil, Z., Giancarlo, R.: Speeding up dynamic programming
with applications tomolecular biology. Theor. Comput. Sci. 64,
107–118 (1989)

6. Gotoh, O.: An improved algorithm for matching biological se-
quences. J. Mol. Biol. 162, 705–708 (1982)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, Cambridge (1997)

8. Masek, W.J., Paterson, M.S.: A fater algorithm for computing
string edit distances. J. Comput. Syst. Sci. 20, 18–31 (1980)

9. Miller, W., Myers, E.W.: Sequence comparison with concave
weighting functions. Bull. Math. Biol. 50(2), 97–120 (1988)

10. De Roberts, E., Oliver, G., Wright, C.: Homeobox genes and the
vertibrate body plan, pp. 46–52. Scientific American (1990)

11. Sankoff, D., Kruskal, J.B.: Time Warps, Strings Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison.
Addison-Wesley (1983)

12. Waterman, M.S.: Efficient sequence alignment algorithms.
J. Theor. Biol. 108, 333–337 (1984)

13. Li, W.-H., Gu, X.: The size distribution of insertions anddeletions
in human and rodent pseudogenes suggests the logarithmic
gap penalty for sequence alignment. J. Mol. Evol. 40, 464–473
(1995)

Local Approximation of Covering
and Packing Problems
2003–2006; Kuhn, Moscibroda, Nieberg,
Wattenhofer

FABIAN KUHN
Department of Computer Science, ETH Zurich,
Zurich, Switzerland

Synomyms

Distributed approximation of covering and packing prob-
lems

ProblemDefinition

A local algorithm is a distributed algorithm on a network
with a running time which is independent or almost inde-
pendent of the network’s size or diameter. Usually, a dis-
tributed algorithm is called local if its time complexity is
at most polylogarithmic in the size n of the network. Be-
cause the time needed to send information from one node
of a network to another is at least proportional to the dis-
tance between the two nodes, in such an algorithm, each
node’s computation is based on information from nodes in
a close vicinity only. Although all computations are based
on local information, the network as a whole typically still
has to achieve a global goal. Having local algorithms is in-
evitable to obtain time-efficient distributed protocols for

large-scale and dynamic networks such as peer-to-peer
networks or wireless ad hoc and sensor networks.

In [2,6,7], Kuhn, Moscibroda, and Wattenhofer de-
scribe upper and lower bounds on the possible trade-off
between locality (time complexity) of distributed algo-
rithms and the quality (approximation ratio) of the achiev-
able solution for an important class of problems called
covering and packing problems. Interesting covering and
packing problems in the context of networks include min-
imum dominating set, minimum vertex cover, maximum
matching, as well as certain flow maximization problems.
All the results given in [2,6,7] hold for general network
topologies. Interestingly, it is shown by Kuhn, Mosci-
broda, Nieberg, and Wattenhofer in [3,4,5] that cover-
ing and packing problems can be solved much more effi-
ciently when assuming that the network topology has spe-
cial properties which seem realistic for wireless networks.

Distributed Computation Model

In [2,3,4,5,6,7], the network is modeled as an undirected
and except for [5] unweighted graph G = (V ; E). Two
nodes u; v 2 V of the network are connected by an edge
(u; v) 2 E whenever there is a direct bidirectional commu-
nication channel connecting u and v. In the following, the
number of nodes and the maximal degree ofG are denoted
by n = jV j and by�.

For simplicity, communication is assumed to be syn-
chronous. That is, all nodes start an algorithm simultane-
ously and time is divided into rounds. In each round, every
node can send an arbitrary message to each of its neigh-
bors and perform some local computation based on the
information collected in previous rounds. The time com-
plexity of a synchronous distributed algorithm is the num-
ber of rounds until all nodes terminate.

Local distributed algorithms in the described syn-
chronous model have first been considered in [8] and [9].
As an introduction to the above and similar distributed
computation models, it is also recommended to read [11].

Distributed Covering and Packing Problems

A fractional covering problem (P) and its dual fractional
packing problem (D), are linear programs (LPs) of the
canonical forms

min cTx max bTy

s.t. A � x � b (P) s.t. AT � y � c (D)
x � 0 y � 0

where all aij, bi, and ci are non-negative. In a distributed
context, finding a small (weighted) dominating set or

464 L Local Approximation of Covering and Packing Problems

a small (weighted) vertex cover of the network graph are
the most important covering problems. A dominating set
of a graph G is a subset S of its nodes such that all nodes
of G either are in S or have a neighbor in S. The domi-
nating set problem can be formulated as covering integer
LP by setting A to be the adjacency matrix with 1s in the
diagonal, by setting b to be a vector with all 1s and if c is
the weight vector. A vertex cover is a subset of the nodes
such that all edges are covered. Packing problems occur in
a broad range of resource allocation problems. As an ex-
ample, in [1] and [10], the problem of assigning flows to
a given fixed set of paths is described. Another common
packing problem is (weighted) maximum matching, the
problem of finding a largest possible set of pairwise non-
adjacent edges.

While computing a dominating set, vertex cover, or
matching of the network graph are inherently distributed
tasks, general covering and packing LPs have no immedi-
ate distributed meaning. To obtain a distributed version
of these LPs, two dual LPs (P) and (D) are mapped to a bi-
partite network as follows. For each primal variable xi and
for each dual variable yj, there are nodes vip and vjd , re-
spectively. There is an edge between two nodes vip and vjd

whenever a ji 6= 0, i. e., there is an edge if the ith variable of
an LP occurs in its jth inequality.

In most real-world examples of distributed covering
and packing problems, the network graph is of course not
equal to the described bipartite graph. However, it is usu-
ally straightforward to simulate an algorithm which is de-
signed for the above bipartite network on the actual net-
work graph without affecting time and message complexi-
ties.

Bounded Independence Graphs

In [3,4,5], local approximation algorithms for covering
and packing problems for graphs occuring in the context
of wireless ad hoc and sensor networks are studied. Be-
cause of scale, dynamism and the scarcity of resources,
these networks are a particular interesting area to apply
local distributed algorithms.

Wireless networks are often modeled as unit disk
graphs (UDGs): Nodes are assumed to be in a two-
dimensional Euclidean plane and two nodes are connected
by an edge iff their distance is at most 1. This certainly cap-
tures the inherent geometric nature of wireless networks.
However, unit disk graphs seemmuch too restrictive to ac-
curately model real wireless networks. In [3,4,5], Kuhn et.
al. therefore consider two generalizations of the unit disk
graphmodel, bounded independent graphs (BIGs) and unit
ball graphs (UBGs). A BIG is a graph where all local in-

dependent sets are of bounded size. In particular, it is as-
sumed that there is a function I(r) which upper bounds the
size of the largest independent set of every r-neighborhood
in the graph. Note that the value of I(r) is independent
of n, the size of the network. If I(r) is a polynomial in
r, a BIG is said to be polynomially bounded. UDGs are
BIGs with I(r) 2 O(r2). UBGs are a natural generalization
of UDGs. Given some underlying metric space (V , d) two
nodes u; v 2 V are connected by an edge iff d(u; v) � 1. If
the metric space (V , d) has constant doubling dimension1,
a UBG is a polynomially bounded BIG.

Key Results

The first algorithms to solve general distributed covering
and packing LPs appear in [1,10]. In [1], it is shown that
it is possible to find a solution which is within a factor of
1 + " of the optimum in O(log3(�n)/"3) rounds where �
is the ratio between the largest and the smallest non-zero
coefficient of the LPs. The result of [1] is improved and
generalized in [6,7] where the following result is proven:

Theorem 1 In k rounds, (P) and (D) can be approxi-
mated by a factor of (��)O(1/

p
k) using messages of size at

most O(log(��)). An (1 + ")-approximation can be found
in time O(log2(��)/"4).

The algorithm underlying Theorem 1 needs only small
messages of size O(log(��)) and extremely simple and ef-
ficient local computations. If larger messages and more
complicated (but still polynomial) local computations are
allowed, it is possible to improve the result of Theorem 1:

Theorem 2 In k rounds, LPs of the form (P) or (D) can be
approximated by a factor of O(nO(1/k)). This implies that
a constant approximation can be found in time O(log n).

Theorems 1 and 2 only give bounds on the quality of dis-
tributed solutions of covering and packing LPs. However,
many of the practically relevant problems are integer ver-
sions of covering and packing LPs. Combined with sim-
ple randomized rounding schemes, the following upper
bounds for dominating set, vertex cover, andmatching are
proven in [6,7]:

Theorem 3 Let � be the maximal degree of the given
network graph. In k rounds, minimum dominating set can
be approximated by a factor of O(�O(1/

p
k) � log�) in ex-

pectation by using messages of size O(�). Without bound
on the message size, an expected approximation ratio of

1The doubling dimension of a metric space is the logarithm of the
maximal number of balls needed to cover a ball Br(x) in the metric
space with balls Br/2(y) of half the radius.

Local Approximation of Covering and Packing Problems L 465

O(nO(1/k) � log�) can be achieved. Minimum vertex cover
and maximum matching can both be approximated by
a factor of O(�1/k) in k rounds.

In [2,7], it is shown that the upper bounds on the trade-offs
between time complexity and approximation ratio given
by Theorems 1–3 are almost optimal:

Theorem 4 In k rounds, it is not possible to approximate
minimum vertex cover better than by factors of ˝(�1/k /k)
and ˝(n˝(1/k2)/k). This implies time lower bounds of
˝(log�/ log log�) and˝(

p
log n/ log log n) for constant

or even poly-logarithmic approximation ratios. The same
bounds hold for minimum dominating set, for maximum
matching, as well as for the underlying LPs.

While Theorem 4 shows that the results given by The-
orems 1–3 are close to optimal for worst-case network
topologies, the problems might be much simpler if re-
stricted to networks which actually occur in reality. In fact,
it is shown in [3,4,5] that the above results can indeed be
improved if the network graph is assumed to be a BIG or
a UBG with constant doubling dimension. In [5], the fol-
lowing result for UBGs is proven:

Theorem 5 Assume that the network graph G = (V ; E) is
a UBG with underlying metric (V, d). If (V, d) has constant
doubling dimension and if all nodes know the distances to
their neighbors in G up to a constant factor, it is possible to
find constant approximations for minimumdominating set,
minimum vertex cover, maximum matching, as well as for
general LPs of the forms (P) and (D) in O(log� n) rounds2.

While the algorithms underlying the results of Theo-
rems 1 and 2 for solving covering and packing LPs are
deterministic or straight-forward to be derandomized, all
known efficient algorithms to solve minimum dominating
set and more complicated integer covering and packing
problems are randomized. Whether there are good deter-
ministic local algorithms for dominating set and related
problems is a long-standing open question . In [3], it is
shown that if the network is a BIG, efficient deterministic
distributed algorithms exist:

Theorem 6 On a BIG it is possible to find constant approx-
imations for minimum dominating set, minimum vertex
cover, maximum matching, as well as for LPs of the forms
(P) and (D) deterministically in O(log� � log� n) rounds.

In [4], it is shown that on polynomially bounded BIGs, one
can even go one step further and efficiently find an arbi-
trarily good approximation by a distributed algorithm:

2The log-star function log� n is an extremely slowly increasing
function which gives the number of times the logarithm has to be
taken to obtain a number smaller than 1.

Theorem 7 On a polynomially bounded BIG, there is
a local approximation scheme which computes a (1 + ")-
approximation for minimum dominating set in time
O(log� log�(n)/"+1/"O(1)). If the network graph is a UBG
with constant doubling dimension and nodes know the dis-
tances to their neighbors, a (1 + ")-approximation can be
computed in O(log�(n)/" + 1/"O(1)) rounds.

Applications

The most important application environments for local
algorithms are large-scale decentralized systems such as
wireless ad hoc and sensor networks or peer-to-peer net-
works. On such networks, only local algorithms lead to
scalable systems. Local algorithms are particularly well-
suited if the network is dynamic and computations have
to be repeated frequently.

A particular application of the minimum dominating
set problem is the task of clustering the nodes of wireless
ad hoc or sensor networks. Assigning each node to an ad-
jacent node in a dominating set induces a simple cluster-
ing of the nodes. If the nodes of the dominating set (i. e.,
the cluster centers) are connected with each other by us-
ing additional nodes, the resulting structure can be used as
a backbone for routing.

Open Problems

There are a number of open problems related to the dis-
tributed approximation of covering and packing problems
in particular and to distributed approximation algorithms
in general. The most obvious open problem certainly is to
close the gaps between the upper bounds of Theorems 1, 2,
and 3 and the lower bounds of Theorem 4. It would also
be interesting to see how well other optimization prob-
lems can be approximated in a distributed manner. In par-
ticular, the distributed complexity of more general classes
of linear programs remains completely open. A very in-
triguing unsolved problem is to determine to what ex-
tent randomization is needed to obtain time-efficient dis-
tributed algorithms. Currently, the best determinic algo-
rithms for finding a dominating set of reasonable size and
for many other problems take time 2O(

p
log n) whereas the

time complexity of the best randomized algorithms usually
is at most polylogarithmic in the number of nodes.

Cross References

� Fractional Packing and Covering Problems
�MaximumMatching
� Randomized Rounding

466 L Local Computation in Unstructured Radio Networks

Recommended Reading
1. Bartal, Y., Byers, J.W., Raz, D.: Global optimization using local

information with applications to flow control. In: Proc. of the
38th IEEE Symposium on the Foundations of Computer Sci-
ence (FOCS), pp. 303–312 (1997)

2. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! In: Proc. of the 23rd ACM Symp. on Principles of
Distributed Computing (PODC), pp. 300–309 (2004)

3. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast de-
terministic distributedmaximal independent set computation
on growth-boundedgraphs. In: Proc. of th 19th Int. Conference
on Distributed Computing (DISC), pp. 273–287 (2005)

4. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local ap-
proximation schemes for ad hoc and sensor networks. In: Proc.
of the 3rd Joint Workshop on Foundations of Mobile Comput-
ing (DIALM-POMC), pp. 97–103 (2005)

5. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of
bounded growth. In: Proc. of the 24th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 60–68 (2005)

6. Kuhn, F., Wattenhofer, R.: Constant-time distributed dominat-
ing set approximation. Distrib. Comput. 17(4), 303–310 (2005)

7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being
near-sighted. In: Proc. of the 17th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 980–989 (2006)

8. Linial, N.: Locality in distributedgraph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

9. Naor, M., Stockmeyer, L.: What can be computed locally? In:
Proc. of the 25th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 184–193 (1993)

10. Papadimitriou, C., Yannakakis, M.: Linear programming with-
out thematrix. In: Proc. of the 25th ACMSymposiumon Theory
of Computing (STOC), pp. 121–129 (1993)

11. Peleg, D.: Distributed Computing: A Locality-Sensitive Ap-
proach. SIAM (2000)

Local Computation
in Unstructured Radio Networks
2005; Moscibroda, Wattenhofer

THOMAS MOSCIBRODA
Systems & Networking Research Group, Microsoft
Research, Redmond, WA, USA

Keywords and Synonyms

Maximal independent sets in radio networks; Coloring
unstructured radio networks

ProblemDefinition

In many ways, familiar distributed computing communi-
cation models such as the message passing model do not
describe the harsh conditions faced in wireless ad hoc and
sensor networks closely enough. Ad hoc and sensor net-
works are multi-hop radio networks and hence, messages

being transmittedmay interfere with concurrent transmis-
sions leading to collisions and packet losses. Furthermore,
the fact that all nodes share the same wireless communi-
cation medium leads to an inherent broadcast nature of
communication. A message sent by a node can be received
by all nodes in its transmission range. These aspects of
communication are modeled by the radio network model,
e. g. [2].

Definition 1 (Radio Network Model) In the radio net-
work model, the wireless network is modeled as a graph
G = (V ; E). In every time-slot, a node u 2 V can either
send or not send a message. A node v, (u; v) 2 E, receives
the message if and only exactly one of its neighbors has
sent a message in this time-slot.

While communication primitives such as broadcast, wake-
up, or gossiping, have been widely studied in the litera-
ture on radio networks (e. g., [1,2,8]), less is known about
the computation of local network coordination structures
such as clusterings or colorings. The most basic notion of
a clustering in wireless networks boils down to the graph-
theoretic notion of a dominating set.

Definition 2 (MinimumDominating Set (MDS)) Given
a graph G = (V ; E). A dominating set is a subset S
 V
such that every node is either in S or has at least one neigh-
bor in S. The minimum dominating set problem asks for
a dominating set S of minimum cardinality.

A dominating set S
 V in which no two neighboring
nodes are in S is a maximal independent set (MIS). The
distributed complexity of computing a MIS in the mes-
sage passing model has been of fundamental interest to the
distributed computing community for over two decades
(e. g., [11,12,13]), but much less is known about the prob-
lem’s complexity in radio network models.

Definition 3 (Maximal Independent Set (MIS)) Given
a graphG = (V ; E). An independent set is a subset of pair-
wise non-adjacent nodes in G. A maximal independent set
in G is an independent set S
 V such that for every node
u … S, there is a node v 2
 (u) in S.

Another important primitive in wireless networks is the
vertex coloring problem, because associating different col-
ors with different time slots in a time-division multiple ac-
cess (TDMA) scheme; a correct coloring corresponds to
a medium access control (MAC) layer without direct in-
terference, that is, no two neighboring nodes send at the
same time.

Definition 4 (Minimum Vertex Coloring) Given
a graph G = (V ; E). A correct vertex coloring for G is an
assignment of a color c(v) to each node v 2 V , such that

Local Computation in Unstructured Radio Networks L 467

c(u) ¤ c(v) any two adjacent nodes (u; v) 2 E. A mini-
mum vertex coloring is a correct coloring that minimizes
the number of used colors.

In order to capture the especially harsh characteristics of
wireless multi-hop networks immediately after their de-
ployment, the unstructured radio network model makes
additional assumptions. In particular, a new notion of
asynchronous wake-up is considered, because, in a wire-
less, multi-hop environment, it is realistic to assume that
some nodes join the network (e. g. become deployed, or
switched on) later than others. Notice that this is differ-
ent from the notion of asynchronous wake-up defined and
studied in [8] and subsequent work, in which nodes are
assumed to be “woken up” by incoming messages.

Definition 5 (Unstructured Radio Network Model) In
the unstructured radio network model, the wireless net-
work is modeled as a unit disk graph (UDG) G = (V ; E).
In every time-slot, a node u 2 V can either send or not
send a message. A node v, (u; v) 2 E, receives the message
if and only exactly one of its neighbors has sent a message
in this time-slot. Additionally, the following assumptions
are made:
� Asynchronous wake-up:Newnodes can wake up/join in

asynchronously at any time. Before waking-up, nodes
do neither receive nor send any messages.

� No global clock: Nodes only have access to a local clock
that starts increasing after wake-up.

� No collision detection: Nodes cannot distinguish be-
tween the event of a collision and no message being
sent. Moreover, a sending node does not know how
many (if any at all!) neighbors have received its trans-
mission correctly.

� Minimal global knowledge: At the time of their wake-
up, nodes have no information about their neighbors in
the network and they do not whether some neighbors
are already awake, executing the algorithm. However,
nodes know an upper bound for the maximumnumber
of nodes n = jVj.

The measure that captures the efficiency of an algorithm
defined in the unstructured radio network model is its
time-complexity. Since every node can wake up at a differ-
ent time, the time-complexity of an algorithm is defined
as the maximum number of time-slots between a node’s
wake-up and its final, irrevocable decision.

Definition 6 (Time Complexity) The running time Tv
of a node v 2 V is defined as the number of time slots
between v’s waking up and the time v makes an irrevo-
cable final decision on the outcome of its protocol (e. g.
whether or not it joins the dominating set in a clustering

algorithm, or which color to take in a coloring algorithm,
etc.). The time complexity T(Q) of algorithm Q is defined
as the maximum running time over all nodes in the net-
work, i. e., T(Q) := maxv2V Tv .

Key Results

Naturally, algorithms for such uninitialized, chaotic net-
works have a different flavor compared to “traditional” al-
gorithms that operate on a given network graph that is
static and well-known to all nodes. Hence, the algorithmic
difficulty of the following algorithms partly stems from the
fact that since nodes wake up asynchronously and do not
have access to a global clock, the different phases of the al-
gorithm may be arbitrarily intertwined or shifted in time.
Hence, while some nodes may already be in an advanced
stage of the algorithm, there may be nodes that have ei-
ther just woken up, or that are still in early stage. It was
proven in [9] that even in single-hop networks (G is the
complete graph), no efficient algorithms exist if nodes have
no knowledge on n.

Theorem 1 If nodes have no knowledge of n, every (possi-
bly randomized) algorithm requires up to˝(n/ log n) time
slots before at least one node can send a message in single-
hop networks.

In single-hop networks, and if n is globally known, [8]
presented a randomized algorithm that selects a unique
leader in timeO(n log n), with high probability. This result
has subsequently been improved toO(log2n) by Jurdziński
and Stachowiak [9]. The generalized wake-up problem in
multi-hop radio network was first studied in [4].

The complexity of local network structures such as
clusterings or colorings in unstructured multi-hop radio
networks was first studied in [10]: A good approximation
to theminimumdominating set problem can be computed
in polylogarithmic time.

Theorem 2 In the unstructured radio network model, an
expected O(1)-approximation to the dominating set prob-
lem can be computed in expected time O(log2n). That is, ev-
ery node decides whether to join the dominating set within
O(log2n) time slots after its wake-up.

In a subsequent paper [18], it has been shown that the run-
ning time of O(log2n) is sufficient even for computing the
more sophisticated MIS structure. This result is asymptot-
ically optimal because—improving on a previously known
bound of˝(log2n/ log log n) [9]—, a corresponding lower
bound of˝(log2n) has been proven in [6].

Theorem 3 With high probability, a maximal indepen-
dent set (MIS) can be computed in expected time O(log2n)

468 L Local Search Algorithms for kSAT

in the unstructured radio network model. This is asymptot-
ically optimal.

It is interesting to compare this achievable upper bound
on the harsh unstructured radio network model with
the best known time lower bounds in message pass-
ing models: ˝(log�n) in unit disk graphs [12] and
˝(
p
log n/ log log n) in general graphs [11]. Also, a time

bound of O(log2n) was also proven in [7] in a radio net-
work model without asynchronous wake-up and in which
nodes have a-priori knowledge about their neighborhood.

Finally, it is also possible to efficiently color the nodes
of a network as shown in [17], and subsequently improved
and generalized in Chap. 12 of [15].

Theorem 4 In the unstructured radio network model,
a correct coloring with at most O(�) colors can be com-
puted in time O(� log n) with high probability.

Similar bounds for a model with collision detection mech-
anisms are proven in [3].

Applications

In wireless ad hoc and sensor networks, local network co-
ordination structures find important applications. In par-
ticular, clusterings and colorings can help in facilitating
the communication between adjacent nodes (MAC layer
protocols) and between distant nodes (routing protocols),
or to improve the energy efficiency of the network.

The following mentions two specific examples of ap-
plications: Based on the MIS algorithms of Theorem 3,
a protocol is presented in [5], which efficiently constructs
a spanner, i. e., a more sophisticated initial infrastruc-
ture that helps in structuring wireless multi-hop network.
In [16], the same MIS algorithm is used as an ingredi-
ent for a protocol that minimizes the energy consump-
tion of wireless sensor nodes during the deployment phase,
a problem that has been first studied in [14].

Recommended Reading
1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A Lower Bound for

Radio Broadcast. J. Comput. Syst. Sci. 43, 290–298 (1991)
2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity

of broadcast in radio networks: an exponential gap be-
tween determinism randomization. In: Proc. 6th Symposium
on Principles of Distributed Computing (PODC), pp. 98–108
(1987)

3. Busch, R., Magdon-Ismail, M., Sivrikaya, F., Yener, B.: Con-
tention-Free MAC Protocols for Wireless Sensor Networks.
In: Proc. 18th Annual Conference on Distributed Computing
(DISC) (2004)

4. Chrobak, M., Ga̧sieniec, L., Kowalski, D.: The Wake-Up Prob-
lem in Multi-Hop Radio Networks. In: Proc. of the 15th

ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 992–1000 (2004)

5. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Bootstrap-
ping a Hop-Optimal Network in the Weak Sensor Model. In:
Proc. of the 13th European Symposium on Algorithms (ESA),
pp. 827–838 (2005)

6. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower
Bounds for Clear Transmissions in Radio Networks. In: Proc. of
the 7th Latin American Symposium on Theoretical Informatics
(LATIN), pp. 447–454 (2006)

7. Gandhi, R., Parthasarathy, S.: Distributed Algorithms for Color-
ing and Connected Domination in Wireless Ad Hoc Networks.
In: Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), pp. 447–459 (2004)

8. Ga̧sieniec, L., Pelc, A., Peleg, D.: The Wakeup Problem in Syn-
chronous Broadcast Systems (Extended Abstract). In: Proc. of
the 19th ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 113–121 (2000)

9. Jurdziński, T., Stachowiak, G.: Probabilistic Algorithms for the
Wakeup Problem in Single-Hop Radio Networks. In: Proc. of
the 13th Annual International Symposium on Algorithms and
Computation (ISAAC), pp. 535–549 (2002)

10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: InitializingNewly De-
ployed Ad Hoc and Sensor Networks. In: Proc. of the 10th An-
nual International Conference on Mobile Computing and Net-
working (MOBICOM), pp. 260–274 (2004)

11. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What Cannot Be
Computed Locally! In: Proceedings of 23rd Annual Symposium
on Principles of Distributed Computing (PODC), pp. 300–309
(2004)

12. Linial, N.: Locality in Distributed Graph Algorithms. SIAM J.
Comput. 21(1), 193–201 (1992)

13. Luby, M.: A Simple Parallel Algorithm for theMaximal Indepen-
dent Set Problem. SIAM J. Comput. 15, 1036–1053 (1986)

14. McGlynn,M.J., Borbash, S.A.: Birthday Protocols for Low Energy
Deployment and Flexible Neighborhood Discovery in Ad Hoc
Wireless Networks. In: Proc. of the 2nd ACM Int. Symposium on
Mobile Ad Hoc Networking & Computing (MOBIHOC), (2001)

15. Moscibroda, T.: Locality, Scheduling, and Selfishness: Algorith-
mic Foundations of Highly Decentralized Networks. Doctoral
Thesis Nr. 16740, ETH Zurich (2006)

16. Moscibroda, T., von Rickenbach, P., Wattenhofer, R.: Analyzing
the Energy-Latency Trade-off during the Deployment of Sen-
sor Networks. In: Proc. of the 25th Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), (2006)

17. Moscibroda, T., Wattenhofer, R.: Coloring Unstructured Radio
Networks. In: Proc. of the 17th ACM Symposium on Parallel Al-
gorithms and Architectures (SPAA), pp. 39–48 (2005)

18. Moscibroda, T., Wattenhofer, R.: Maximal Independent Sets in
Radio Networks. In: Proc. of the 23rd ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 148–157 (2005)

Local Search Algorithms for kSAT
1999; Schöning

KAZUO IWAMA
School of Informatics, Kyoto University, Kyoto, Japan

Local Search Algorithms for kSAT L 469

ProblemDefinition

The CNF Satisfiability problem is to determine, given
a CNF formula F with n variables, whether or not there
exists a satisfying assignment for F. If each clause of F
contains at most k literals, then F is called a k-CNF for-
mula and the problem is called k-SAT, which is one of
the most fundamental NP-complete problems. The trivial
algorithm is to search 2n 0/1-assignments for the n vari-
ables. But since [6], several algorithms which run signifi-
cantly faster than this O(2n) bound have been developed.
As a simple exercise, consider the following straightfor-
ward algorithm for 3-SAT, which gives us an upper bound
of 1.913n: Choose an arbitrary clause in F, say (x1_x2_x3).
Then generate seven new formulas by substituting to these
x1, x2 and x3 all the possible values excepting (x1; x2; x3) =
(0; 1; 0) which obviously unsatisfies F. Now one can check
the satisfiability of these seven formulas and conclude that
F is satisfiable iff at least one of them is satisfiable. (Let
T(n) denote the time complexity of this algorithm. Then
one can get the recurrence T(n) � 7 � T(n � 3) and the
above bound follows.)

Key Results

In the long history of k-SAT algorithms, the one by Schön-
ing [11] is an important breakthrough. It is a standard lo-
cal search and the algorithm itself is not new (see e. g. [7]).
Suppose that y is the current assignment (its initial value
is selected uniformly at random). If y is a satisfying assign-
ment, then the algorithm answers yes and terminates. Oth-
erwise, there is at least one clause whose three literals are
all false under y. Pick an arbitrary such clause and select
one of the three literals in it at random. Then flip (true to
false and vice versa) the value of that variable, replace y
with that new assignment and then repeat the same proce-
dure. More formally:

SCH(CNF-formula F, integer I)
repeat I times

y = uniformly random vector 2 f0; 1gn

z = RandomWalk(F; y);
if z satisfies F

then output(z); exit;
end
output(‘Unsatisfiable’);

RandomWalk(CNF formula G(x1; x2; : : : ; xn),
assignment y);

y0 = y;
for 3n times

if y0 satisfies G
then return y0; exit;

C an arbitrary clause of G that is not satisfied
by y0;

Modify y0 as follows:
select one literal of C uniformly at random and
flip the assignment to this literal;

end
return y0

Schöning’s analysis of this algorithm is very elegant.
Let d(a; b) denote the Hamming distance between two bi-
nary vectors (assignments) a and b. For simplicity, sup-
pose that the formula F has only one satisfying assign-
ment y� and the current assignment y is far from y* by
Hamming distance d. Suppose also that the currently false
clause C includes three variables, xi, xj and xk. Then y and
y* must differ in at least one of these three variables. This
means that if the value of xi, xj or xk is flipped, then the
new assignment gets closer to y* byHamming distance one
with probability at least 1/3. Also, the new assignment gets
farther by Hamming distance one with probability at most
2/3. The argument can be generalized to the case that F has
multiple satisfying assignments. Now here comes the key
lemma:

Lemma 1 Let F be a satisfiable formula and y* be a sat-
isfying assignment for F. For each assignment y, the prob-
ability that a satisfying assignment (that may be differ-
ent from y*) is found by RandomWalk(F; y) is at least
(1/(k � 1))d(y;y�)/p(n), where p(n) is a polynomial in n.

By taking the average over random initial assignments, the
following theorem follows:

Theorem 2 For any satisfiable formula F on n variables,
the success probability of RandomWalk(F; y) is at least
(k/2(k � 1))n /p(n) for some polynomial p. Thus, by setting
I = (2(k � 1)/k)n � p(n), SCH finds a satisfying assign-
ment with high probability. When k = 3, this value of I is
O(1.334n).

Applications

The Schöning’s result has been improved by a series of
papers [1,3,9] based on the idea of [3]. Namely, Random
Walk is combined with the (polynomial time) 2SAT al-
gorithm, which makes it possible to choose better ini-
tial assignments. For derandomization of SCH, see [2].
[4] developed a nontrivial combination of SCH with an-
other famous, backtrack-type algorithm by [8], result-
ing in the then fastest algorithm with O(1:324n) running
time. The current fastest algorithm is due to [10], which

470 L Local Search for K-medians and Facility Location

is based on the same approach as [4] and runs in time
O(1:32216n).

Open Problems

k-SAT is probably the most popular NP-complete prob-
lem for which numerous researchers are competing for its
fastest algorithm. Thus improving its time bound is always
a good research target.

Experimental Results

AI researchers have also been very active in SAT algo-
rithms including local search, see e. g. [5].

Cross References

� Exact Algorithms for General CNF SAT
� Random Planted 3-SAT

Recommended Reading
1. Baumer, S., Schuler, R.: Improving a probabilistic 3-SAT algo-

rithm by dynamic search and independent clause pairs. ECCC
TR03-010, (2003) Also presented at SAT (2003)

2. Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Pa-
padimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 -
2/(k + 1))n algorithm for k-SAT based on local search. Theor.
Comput. Sci. 289(1), 69–83 (2002)

3. Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: Prob-
abilistic 3-SAT algorithm further improved. Proceedings 19th
Symposiumon Theoretical Aspects of Computer Science. LNCS
2285, 193–202 (2002)

4. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SA T. In:
Proceedings 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 321–322. New Orleans, USA (2004)

5. Kautz, H., Selman, B.: Ten Challenges Redux: Recent Progress
in Propositional Reasoning and Search. Proceedings 9th Inter-
national Conference on Principles and Practice of Constraint
Programming, pp. 1–18. Kinsale, Ireland (2003)

6. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than
2n steps. Discret. Appl. Math. 10, 287–295 (1985)

7. Papadimitriou, C.H.: On selecting a satisfying truth assign-
ment. Proceedings 32nd Annual Symposium on Foundations
of Computer Science, pp. 163–169. San Juan, Puerto Rico
(1991)

8. Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved
exponential-time algorithm for k-SAT. Proceedings 39th An-
nual Symposium on Foundations of Computer Science,
pp. 628–637. Palo Alto, USA (1998) Also, J. ACM 52(3), 337–364
(2006)

9. Rolf, D.: 3-SAT 2 RTIME(O(1.32793n)). ECCC TR03–054. (2003)
10. Rolf, D.: Improved Bound for the PPSZ/Schöning-Algorithm for

3-SAT. J. Satisf. Boolean Model. Comput. 1, 111–122 (2006)
11. Schöning, U.: A probabilistic algorithm for k-SAT and con-

straint satisfaction problems. Proceedings 40th Annual Sym-
posium on Foundations of Computer Science, pp. 410–414.
New York, USA (1999)

Local Search for K-medians
and Facility Location
2001; Arya, Garg, Khandekar, Meyerson,
Munagala, Pandit

KAMESH MUNAGALA
Levine Science Research Center, Duke University,
Durham, NC, USA

Keywords and Synonyms
k-Medians; k-Means; k-Medioids; Facility location; Point
location; Warehouse location; Clustering

ProblemDefinition
Clustering is a form of unsupervised learning, where the
goal is to “learn” useful patterns in a data setD of size n. It
can also be thought of as a data compression scheme where
a large data set is represented using a smaller collection of
“representatives”. Such a scheme is characterized by spec-
ifying the following:
1. A distance metric d between items in the data

set. This metric should satisfy the triangle inequal-
ity: d(i; j) � d(j; k) + d(k; i) for any three items
i; j; k 2 D. In addition, d(i; j) = d(j; i) for all i; j 2 S
and d(i; i) = 0. Intuitively, if the distance between two
items is smaller, they are more similar. The items are
usually points in some high dimensional Euclidean
space Rd . The commonly used distance metrics in-
clude the Euclidean and Hamming metrics, and the co-
sine metric measuring the angle between the vectors
representing the items.

2. The output of the clustering process is a partitioning of
the data. This chapter deals with center-based cluster-
ing. Here, the output is a smaller set C � Rd of cen-
ters which best represents the input data set S � Rd .
It is typically the case that jCj � jDj. Each item j 2 D
is mapped to or approximated by the the closest cen-
ter i 2 C, implying d(i; j) � d(i0; j) for all i0 2 C. Let
� : D! C denote this mapping. This is intuitive since
closer-by (similar) items will be mapped to the same
center.

3. A measure of the quality of the clustering, which de-
pends on the desired output. There are several com-
monly used measures for the quality of clustering. In
each of the clustering measures described below, the
goal is to choose C such that jCj = k and the objective
function f (C) is minimized.

k-center: f (C) = max j2D d(j; �(j)).
k-median: f (C) =P j2D d(j; �(j)).
k-means: f (C) =P j2D d(j; �(j))2 .

Local Search for K-medians and Facility Location L 471

All the objectives described above are NP-HARD to
optimize in general metric spaces d, leading to the study
of heuristic and approximation algorithms. In the rest of
this chapter, the focus is on the k-median objective. The
approximation algorithms for k-median clustering are de-
signed for d being a general possibly non-Euclidean met-
ric space. In addition, a collection F of possible center lo-
cations is given as input, and the set of centers C is re-
stricted toC
 F . From the perspective of approximation,
the restriction of the centers to a finite set F is not too re-
strictive – for instance, the optimal solution which is re-
stricted to F = D has objective value at most a factor 2 of
the optimal solution which is allowed arbitrary F . Denote
jDj = n, and jF j = m. The running times of the heuristics
designedwill be polynomial inmn, and a parameter " > 0.
The metric space d is now defined overD [F .

A related problem to k-medians is its Lagrangean re-
laxation, called FACILITY LOCATION. In this problem,
there is a again collection F of possible center locations.
Each location i 2 F has a location cost ri. The goal is to
choose a collection C
 F of centers and construct the
mapping � : S! C from the items to the centers such
that the following function is minimized:

f (C) =
X
j2D

d(j; �(j)) +
X
i2C

ri :

The facility location problem effectively gets rid of the
hard bound k on the number of centers in k-medians, and
replaces it with the center cost term

P
i2C ri in the objec-

tive function, therebymaking it a Lagrangean relaxation of
the k-median problem. Note that the costs of centers can
now be non-uniform.

The approximation results for both the k-median and
facility location problems carry over as is to the weighted
case: Each item j 2 D is allowed to have a non-negative
weight wj. In the objective function f (C), the termP

j2D d(j; �(j)) is replaced with
P

j2D wj � d(j; �(j)).
The weighted case is especially relevant to the FACILITY
LOCATION problem where the item weights signify user
demands for a resource, and the centers denote locations
of the resource. In the remaining discussion, “items” and
“users” are used inter-changably to denotemembers of the
setD.

Key Results

The method of choice for solving both the k-median and
FACILITY LOCATION problems are the class of local search
heuristics, which run in “local improvement” steps. At
each step t, the heuristic maintains a set Ct of centers. For
the k-median problem, this collection satisfies jCtj = k.

A local improvement step first generates a collection of
new solutions Et+1 from Ct . This is done such that jEt+1j

is polynomial in the input size. For the k-median prob-
lem, in addition, each C 2 Et+1 satisfies jCj = k. The im-
provement step sets Ct+1 = argminC2Et+1

f (C). For a pre-
specified parameter " > 0, the improvement iterations
stop at the first step T where f (CT) � (1 � ") f (CT�1).

The key design issue is the specification of the start
setC0, and the construction ofEt+1 from Ct . The key anal-
ysis issues are bounding the number of steps T till termi-
nation, and the quality of the final solution f (CT) against
the optimal solution f (C�). The ratio (f (CT))/(f (C�)) is
termed the “locality gap” of the heuristic.

Since each improvement step reduces the value of the
solution by at least a factor of (1 � "), the running time
in terms of number of improvement steps is given by the
following expression (here D is the ratio of the largest to
smallest distance in the metric space overD [F).

T � log1/(1�")

�
f (C0)
f (CT)

�
�

log
�

f (C0)
f (CT)

�

"
�

log(nD)
"

which is polynomial in the input size. Each improvement
step needs computation of f (C) for C 2 Et . This is poly-
nomial in the input size since jEt j is assumed to be poly-
nomial.

k-Medians

The first local search heuristic with provable performance
guarantees is presented in the work of Arya et al. [1]. The
is the natural p-swap heuristic: Given the current center
set Ct of size k, the set Et+1 is defined by:

Et+1 =f(Ct nA) [B ;
whereA
 Ct ;B
 F n Ct ; jAj = jBj � pg :

The above simply means swap at most p centers from Ct
with the same number of centers from F n Ct . Recall that
jDj = n and jF j = m. Clearly, jEt+1j � (k(m � k))p �
(km)p . The start set C0 is chosen arbitrarily. The value p
is a parameter which affects the running time and the ap-
proximation ratio. It is chosen to be a constant, so that jEtj

is polynomial in m.

Theorem 1 ([1]) The p-swap heuristic achieves locality
gap (3 + 2/p) + " in running time O(nk(log(nD))/"(mk)p).
Furthermore, for every p there is a k-median instance where
the p-swap heuristic has locality gap exactly (3 + 2/p).

Setting p = 1/", the above heuristic achieves a 3 + " ap-
proximation in running time Õ(n(mk)O(1/")).

472 L Local Search for K-medians and Facility Location

Facility Location

For this problem, since there is no longer a constraint on
the number of centers, the local improvement step needs
to be suitably modified. There are two local search heuris-
tics both of which yield a locality gap of 3 + " in polyno-
mial time.

The “add/delete/swap” heuristic proposed by Kuehn
and Hamburger [10] either adds a center to Ct , drops
a center from Ct , or swaps a center in Ct with one in
F n Ct . The start set C0 is again arbitrary.

Et+1 = f(Ct nA)[B; whereA
 Ct ;B
 F n Ct ;

jAj = 0; jBj = 1 or jAj = 1; jBj = 0; or jAj = 1; jBj = 1g

Clearly, jEt+1j = O(m2), making the running time polyno-
mial in the input size and 1/". Korupolu, Plaxton, and Ra-
jaraman [9] show that this heuristic achieves a locality gap
of at most 5 + ". Arya et al. [1] strengthen this analysis to
show that this heuristic achieves a locality gap of 3 + ", and
that bound this is tight in the sense that there are instances
where the locality gap is exactly 3.

The “add one/delete many” heuristic proposed by
Charikar and Guha [2] is slightly more involved. This
heuristic adds one facility and drops all facilities which be-
come irrelevant in the new solution.

Et+1 = f(Ct [fig) n I(i); where i 2 F n Ct ; I(i)
 Ctg

The set I(i) is computed as follows: LetW denote the set of
items closer to i than to their assigned centers in Ct . These
items are ignored from the computation of I(i). For every
center s 2 Ct , let Us denote all items which are assigned
to s. If fs +

P
j2UsnW djd(j; s) >

P
j2UsnW djd(j; i), then

it is cheaper to remove location s and reassign the items in
Us nW to i. In this case, s is placed in I(i). Let N denote
m + n. Computing I(i) is therefore a O(N) time greedy
procedure, making the overall running time polynomial.
Charikar and Guha [2] show the following theorem:

Theorem 2 ([2]) The local search heuristic which at-
tempts to add a random center i … Ct and remove set
I(i), computes a 3 + " approximation with high probability
within T = O(N logN(logN + 1/")) improvement steps,
each with running time O(N).

Capacitated Variants

Local search heuristics are also known for capacitated vari-
ants of the k-median and facility location problems. In this
variant, each possible location i 2 F can serve at most ui
number of users. In the soft capacitated variant of facil-
ity location, some ri � 0 copies can be opened at i 2 F so

that the facility cost is fi ri and the number of users served
is at most riui . The optimization goal is now to decide the
value of ri for each i 2 F so that the assignment of users to
the centers satisfies the capacity constraints at each center,
and the cost of opening the centers and assigning the users
is minimized. For this variant, Arya et al. [1] show a local
search heuristic with a locality gap of 4 + ".

In the version of facility location with hard capaci-
ties, location i 2 F has a hard bound ui on the num-
ber of users that can be assigned here. If all the capaci-
ties ui are equal (uniform case), Korupolu, Plaxton, and
Rajaraman [9] present an elegant local search heuristic
based on solving a transshipment problem which achieves
a 8 + " locality gap. The analysis is improved by Chudak
andWilliamson [4] to show a locality gap 6 + ". The case of
non-uniform capacities requires significantly new ideas –
Pál, Tardos, andWexler [14] present a network flow based
local search heuristic that achieves a locality gap of 9 + ".
This bound is improved to 8 + " by Mahdian and Pál [12],
who generalize several of the local search techniques de-
scribed above in order to obtain a constant factor approx-
imation for the variant of facility location where the fa-
cility costs are arbitrary non-decreasing functions of the
demands they serve.

Related Algorithmic Techniques

Both the k-median and facility location problems have
a rich history of approximation results. Since the study
of uncapacitated facility location was initiated by Cornue-
jols, Nemhauser, and Wolsey [5], who presented a nat-
ural linear programming (LP) relaxation for this prob-
lem, several constant-factor approximations have been de-
signed via several techniques, ranging from rounding of
the LP solution [11,15], local search [2,9], the primal-dual
schema [7], and dual fitting [6]. For the k-median prob-
lem, the first constant factor approximation [3] of 6 2

3 was
obtained by rounding the natural LP relaxation via a gen-
eralization of the filtering technique in [11]. This result
was subsequently improved to a 4 approximation by La-
grangean relaxation and the primal-dual schema [2,7], and
finally to a (3 + ") approximation via local search [1].

Applications

The facility location problem has been widely studied
in operations research [5,10], and forms a fundamental
primitive for several resource location problems. The k-
medians and k-means metrics are widely used in cluster-
ing, or unsupervised learning. For clustering applications,
several heuristic improvements to the basic local search
framework have been proposed: k-Medioids [8] selects

Lower Bounds for Dynamic Connectivity L 473

a random input point and replaces it with one of the ex-
isting centers if there is an improvement; the CLARA [8]
implementation of k-Medioids chooses the centers from
a random sample of the input points to speed up the com-
putation; the CLARANS [13] heuristic draws a fresh ran-
dom sample of feasible centers before each improvement
step to further improve the efficiency.

Cross References

� Facility Location

Recommended Reading
1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K.,

Pandit, V.: Local search heuristics for k-median and facility lo-
cation problems. SIAM J. Comput. 33(3), 544–562 (2004)

2. Charikar, M., Guha, S.: Improved combinatorial algorithms for
facility location problems. SIAM J. Comput. 34(4), 803–824
(2005)

3. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-
factor approximation algorithm for the k-median problem (ex-
tended abstract). In: STOC ’99: Proceedings of the thirty-first
annual ACMsymposiumon Theory of computing, pp. 1–10. At-
lanta, May 1-4 1999

4. Chudak, F.A., Williamson, D.P.: Improved approximation algo-
rithms for capacitated facility location problems. Math. Pro-
gram. 102(2), 207–222 (2005)

5. Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapaci-
tated facility location problem. In: Discrete Location Theory,
pp. 119–171. Wiley, New York (1990)

6. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.:
Greedy facility location algorithms analyzed using dual fitting
with factor-revealing LP. J. ACM 50(6), 795–824 (2003)

7. Jain, K., Vazirani, V.V.: Approximation algorithms for metric
facility location and k-median problems using the primal-
dual schema and lagrangian relaxation. J. ACM 48(2), 274–296
(2001)

8. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley, New York (1990)

9. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a lo-
cal search heuristic for facility location problems. In: SODA ’98:
Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, pp. 1–10. San Francisco, USA; 25–26 Jan-
uary 1998

10. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating
warehouses. Management Sci. 9(4), 643–666 (1963)

11. Lin, J.-H., Vitter, J.S.: "-approximations with minimum packing
constraint violation (extended abstract). In: STOC ’92: Proceed-
ings of the twenty-fourth annual ACM symposium on Theory
of computing, pp. 771–782. Victoria (1992)

12. Mahdian, M., Pál, M.: Universal facility location. In: European
Symposium on Algorithms, pp. 409–421. Budapest, Hungary,
September 16–19 2003

13. Ng, R.T., Han, J.: Efficient and effective clustering methods for
spatial data mining. In: Proc. Symp. on Very Large Data Bases
(VLDB), pp. 144–155. SantiagodeChile, 12–15 September 1994

14. Pál, M., Tardos, É., Wexler, T.: Facility location with nonuniform
hard capacities. In: Proceedings of the 42nd Annual Sympo-

sium on Foundations of Computer Science, pp. 329–338. Las
Vegas, 14–17 October 2001

15. Shmoys, D.B., Tardos, É., and Aardal, K.: Approximation algo-
rithms for facility location problems. In: Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Comput-
ing, pp. 265–274. El Paso, 4–6 May 1997

Location-Based Routing
� Geographic Routing
� Routing in Geometric Networks

Lower Bounds for Dynamic
Connectivity
2004; Pătraşcu, Demaine

MIHAI PĂTRAŞCU
CSAIL, MIT, Cambridge, MA, USA

Keywords and Synonyms

Dynamic trees

ProblemDefinition

The dynamic connectivity problem requests maintenance
of a graph G subject to the following operations:

insert(u; v): insert an undirected edge (u, v) into the
graph.
delete(u; v): delete the edge (u, v) from the graph.
connected(u; v): test whether u and v lie in the same
connected component.

Let m be an upper bound on the number of edges in the
graph. This entry discusses cell-probe lower bounds for
this problem. Let tu be the complexity of insert and
delete and tq the complexity of query.

The Partial-Sums Problem

Lower bounds for dynamic connectivity are intimately re-
lated to lower bounds for another classic problem: main-
taining partial sums. Formally, the problem asks one to
maintain an array A[1::n] subject to the following oper-
ations:

update(k; �): let A[k] �.
sum(k): returns the partial sum

Pk
i=1 A[i].

testsum(k; �): returns a boolean value indicating
whether sum(k) = � .

474 L Lower Bounds for Dynamic Connectivity

To specify the problem completely, let elements A[i] come
from an arbitrary group G containing at least 2ı elements.
In the cell-probe model with b-bit cells, let t˙u be the com-
plexity of update and t˙q the complexity of testsum
(which is also a lower bound on sum).

The tradeoffs between t˙u and t˙q are well under-
stood for all values of b and ı. However, this entry only
considers lower bounds under the standard assumptions
that b = ˝(lg n) and tu � tq . It is standard to assume
b = ˝(lg n) for upper bounds in the RAM model; this as-
sumption also means that the lower bound applies to the
pointer machine. Then, Pătraşcu and Demaine [6] prove:

Theorem 1 The complexity of the partial-sums problems
satisfies: t˙q � lg(t˙u /t˙q) = ˝(ı/b � lg n).

Observe that this matches the textbook upper bound us-
ing augmented trees. One can build a balanced binary
tree over A[1]; : : : ;A[n] and store in every internal node
the sum of its subtree. Then, updates and queries touch
O(lg n) nodes (and spend O(dı/be) time in each one due
to the size of the group). To decrease the query time, one
can use a B-tree.

Relation to Dynamic Connectivity

We now clarify how lower bounds for maintaining par-
tial sums imply lower bounds for dynamic connectivity.
Consider the partial-sums problem over the groupG = Sn ,
i. e., the permutation group on n elements. Note that ı =
lg(n!) = ˝(n lg n). It is standard to set b = 	(lg n), as this
is the natural word size used by dynamic connectivity up-
per bounds. This implies t˙q lg(t˙u /t˙q) = ˝(n lg n).

The lower bound follows from implementing the
partial-sums operations using dynamic connectivity op-
erations. Refer to Fig. 1. The vertices of the graph form
an integer grid of size n � n. Each vertex is incident to at
most two edges, one edge connecting to a vertex in the
previous column and one edge connecting to a vertex in
the next column. Point (x; y1) in the grid is connected
to point (x + 1;A[x](y1)), i. e.,the edges between two ad-
jacent columns describe the corresponding permutation
from the partial-sums vector.

To implement update(x;
), all the edges between
column x and x + 1 are first deleted and then new edges
are inserted according to
 . This gives t˙u = O(2n � tu). To
implement testsum(x;
), one can use n connected
queries between the pairs of points (1; y)Ý (x + 1;
(y)).
Then, t˙q = O(n � tq). Observe that the sum query can-
not be implemented as easily. Dynamic connectivity is the
main motivation to study the testsum query.

Lower Bounds for Dynamic Connectivity, Figure 1
Constructing an instance of dynamic connectivity that mimics
the partial-sums problem

The lower bound of Theorem 1 translates into ntq �
lg(2ntu /ntq) = ˝(n lg n); hence tq lg(tu /tq) = ˝(lg n).
Note that this lower bound implies maxftu ; tqg = ˝(lg n).
The best known upper bound (using amortization and
randomization) is O(lg n(lg lg n)3) [9]. For any tu =
˝(lg n(lg lg n)3), the lower bound tradeoff is known to
be tight. Note that the graph in the lower bound is al-
ways a disjoint union of paths. This implies optimal lower
bounds for two important special cases: dynamic trees [8]
and dynamic connectivity in plane graphs [2].

Key Results

Understanding Hierarchies

Epochs To describe the techniques involved in the lower
bounds, first consider the sum query and assume ı = b.
In 1989, Fredman and Saks [3] initiated the study of
dynamic cell-probe lower bounds, essentially showing
a lower bound of t˙q lg t˙u = ˝(lg n). Note that this implies
maxft˙q ; t˙u g = ˝(lg n/ lg lg n).

At an intuitive level, their argument proceeded as fol-
lows. The hard instance will have n random updates, fol-
lowed by one random query. Leave r � 2 to be deter-
mined. Looking back in time from the query, one groups
the updates into exponentially growing epochs: the latest r
updates are epoch 1, the earlier r2 updates are epoch 2, etc.
Note that epoch numbers increase going back in time, and
there are O(logr n) epochs in total.

For some epoch i, consider revealing to the query all
updates performed in all epochs different from i. Then, the
query reduces to a partial-sums query among the updates
in epoch i. Unless the query is to an index below the mini-
mum index updated in epoch i, the answer to the query is
still uniformly random, i. e., has ı bits of entropy. Further-
more, even if one is given, say, riı/100 bits of information
about epoch i, the answer still has˝(ı) bits of entropy on

Lower Bounds for Dynamic Connectivity L 475

average. This is because the query and updates in epoch i
are uniformly random, so the query can ask for any par-
tial sum of these updates, uniformly at random. Each of
the ri partial sums is an independent random variable of
entropy ı.

Now one can ask how much information is available
to the query. At the time of the query, let each cell be as-
sociated with the epoch during which it was last written.
Choosing an epoch i uniformly at random, one can make
the following intuitive argument:
1. No cells written by epochs i + 1; i + 2; : : : can contain

information about epoch i, as they were written in the
past.

2. In epochs 1; : : : ; i � 1, a number of bt˙u �
Pi�1

j=1 r j �
bt˙u � 2ri�1 bits were written. This is less than riı/100
bits of information for r > 200t˙u (recall the assump-
tion ı = b). By the above, this implies the query answer
still has˝(ı) bits of entropy.

3. Since i is uniformly random among 	(logr n) epochs,
the query makes an expected O(t˙q / logr n) probes to
cells from epoch i. All queries that make no cell probes
to epoch i have a fixed answer (entropy 0), and all
other queries have answers of entropy � ı. Since an
average query has entropy ˝(ı), a query must probe
a cell from epoch i with constant probability. That
means t˙q / logr n = ˝(1), and

P
= ˝(logr n) =

˝(lg n/ lg t˙u).
One should appreciate the duality between the proof tech-
nique and the natural upper bounds based on a hierarchy.
Consider an upper bound based on a tree of degree r. The
last r random updates (epoch 1) are likely to be uniformly
spread in the array. Thismeans the updates touch different
children of the root. Similarly, the r2 updates in epoch 2
are likely to touch every node on level 2 of the tree, and so
on. Now, the lower bound argues that the query needs to
traverse a root-to-leaf path, probing a node on every level
of the tree (this is equivalent to one cell from every epoch).

Time Hierarchies Despite considerable refinement to
the lower bound techniques, the lower bound of
˝(lg n/ lg lg n) was not improved until 2004. Then, Pă-
traşcu and Demaine [6] showed an optimal bound of
t˙q lg(t˙u /t˙q) = ˝(lg n), implying maxft˙u ; t˙q g = ˝(lg n).
For simplicity, the discussion below disregards the trade-
off and just sketches the˝(lg n) lower bound.

Pătraşcu and Demaine’s [6] counting technique is
rather different from the epoch technique; refer to Fig. 2.
The hard instance is a sequence of n operations alternating
between updates and queries. They consider a balanced bi-
nary tree over the time axis, with every leaf being an op-
eration. Now for every node of the tree, they propose to

Lower Bounds for Dynamic Connectivity, Figure 2
Analysis of cell probes in the a epoch-based andb time-hierarchy
techniques

count the number of cell probes made in the right subtree
to a cell written in the left subtree. Every probe is counted
exactly once, for the lowest common ancestor of the read
and write times.

Now focus on two sibling subtrees, each containing k
operations. The k/2 updates in the left subtree, and the k/2
queries in the right subtree, are expected to interleave in
index space. Thus, the queries in the right subtree ask for
˝(k) different partial sums of the updates in the left sub-
tree. Thus, the right subtree “needs” ˝(kı) bits of infor-
mation about the left subtree, and this information can
only come from cells written in the left subtree and read in
the right one. This implies a lower bound of ˝(k) probes,
associated with the parent of the sibling subtrees. This
bound is linear in the number of leaves, so summing up
over the tree, one obtains a total ˝(n lg n) lower bound,
or˝(lg n) cost per operation.

An Optimal Epoch Construction Rather surprisingly,
Pătraşcu and Tarni̧tă [7] managed to reprove the optimal
tradeoff of Theorem 1 with minimal modifications to the
epoch argument. In the old epoch argument, the infor-
mation revealed by epochs 1; : : : ; i � 1 about epoch i was
bounded by the number of cells written in these epochs.
The key idea is that an equally good bound is the number
of cells read during epochs 1; : : : ; i � 1 and written during
epoch i.

In principle, all cell reads from epoch i � 1 could
read data from epoch i, making these two bounds iden-
tical. However, one can randomize the epoch construc-
tion by inserting the query after an unpredictable number
of updates. This randomization “smooths” out the distri-
bution of epochs from which cells are read, i. e., a query

476 L Lower Bounds for Dynamic Connectivity

reads O(t˙q / logr n) cells from every epoch, in expec-
tation over the randomness in the epoch construction.
Then, theO(ri�1) updates in epochs 1; : : : ; i � 1 only read
O(ri�1 � t˙u / logr n) cells from epoch i. This is not enough
information if r� t˙u / logr n = 	(t˙u /t˙q), which implies
t˙q = ˝(logr n) = ˝(lg n/ lg(t˙u /t˙q)).

Technical Difficulties

Nondeterminism The lower bounds sketched above are
based on the fact that the sum query needs to output˝(ı)
bits of information about every query. If dealing with the
decision testsum query, an argument based on output
entropy can no longer work.

The most successful idea for decision queries has been
to convert them to queries with nonboolean output, in an
extended cell-probe model that allows nondeterminism.
In this model, the query algorithm is allowed to spawn
an arbitrary number of computation threads. Each thread
can make tq cell probes, after with it must either terminate
with a ‘reject’ answer, or return an answer to the query.
All nonrejecting threads must return the same output. In
this model, a query with arbitrary output is equivalent to
a decision query, because one can just nondeterministi-
cally guess the answer, and then verify it.

By the above, the challenge is to prove good lower
bounds for sum even in the nondeterminstic model. Non-
determinism shakes our view that when analyzing epoch i,
only cell probes to epoch i matter. The trouble is that the
query may not know which of its probes are actually to
epoch i. A probe that reads a cell from a previous epoch
provides at least some information about epoch i: no up-
date in the epoch decided to overwrite the cell. Earlier
this was not a problem because the goal was only to rule
out the case that there are zero probes to epoch i. Now,
however, different threads can probe any cell in mem-
ory, and one cannot determine which threads actually
avoid probing anything in epoch i. In other words, there
is a covert communication channel between epoch i and
the query in which the epoch can use the choice of which
cells to write in order to communicate information to the
query.

There are two main strategies for handling nondeter-
ministic query algorithms. Husfeldt and Rauhe [4] give
a proof based on some interesting observations about the
combinatorics of nondeterministic queries. Pătraşcu and
Demaine [6] use the power of nondeterminism itself to
output a small certificate that rules out useless cell probes.
The latter result implies the optimal lower bound of The-
orem 1 for testsum and, thus, the logarithmic lower
bound for dynamic connectivity.

Alternative Histories The framework described above
relies on fixing all updates in epochs different from i to an
average value and arguing that the query answer still has
a lot of variability, depending on updates in epoch i. This
is true for aggregation problems but not for search prob-
lems. If a searched item is found with equal probability in
any epoch, then fixing all other epochs renders epoch i ir-
relevant with probability 1 � 1/(logr n).

Alstrup et al. [1] propose a very interesting refinement
to the technique, proving˝(lg n/ lg lg n) lower bounds for
an impressive collection of search problems. Intuitively,
their idea is to consider O(logr n) alternative histories of
updates, chosen independently at random. Epoch i is rel-
evant in at least one of the histories with constant proba-
bility. On the other hand, even if one knows what epochs
1 through i � 1 learned about epoch i in all histories, an-
swering a random query is still hard.

Bit-Probe Complexity Intuitively, if the word size is
b = 1, the lower bound for connectivity should be roughly
˝(lg2 n), because a query needs ˝(lg n) bits from every
epoch. However, ruling out anything except zero probes
to an epoch turns out to be difficult, for the same rea-
son that the nondeterministic case is difficult. Without
giving a very satisfactory understanding of this issue, Pă-
traşcu and Tarni̧tă [7] use a large bag of tricks to show an
˝((lg n/lg lg n)2) lower bound for dynamic connectivity.
Furthermore, they consider the partial-sums problem in
Z2 and show an ˝(lg n/lg lg lg n) lower bound, which is
a triply-logarithmic factor away from the upper bound!

Applications

The lower bound discussed here extends by easy reduc-
tions to virtually all natural fully dynamic graph prob-
lems [6].

Open Problems

By far, the most important challenge for future research is
to obtain a lower bound of !(lg n) per operation for some
dynamic data structure in the cell-probe model with word
size 	(lg n). Miltersen [5] specifies a set of technical con-
ditions for what qualifies as a solution to such a challenge.
In particular, the problem should be a dynamic language
membership problem.

For the partial-sums problem, though sum is perfectly
understood, testsum still lacks tight bounds for cer-
tain ranges of parameters [6]. In addition, obtaining tight
bounds in the bit-probe model for partial sums in Z2 ap-
pears to be rather challenging.

Low Stretch Spanning Trees L 477

Recommended Reading
1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In:

Proc. 39th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 1998, pp. 534–543

2. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook,
J.R., Yung, M.: Maintenance of a minimum spanning forest in
a dynamic planar graph. J. Algorithms 13, 33–54 (1992). See also
SODA’90

3. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic
data structures. In: Proc. 21st ACM Symposium on Theory of
Computing (STOC), 1989, pp. 345–354

4. Husfeldt, T., Rauhe, T.: New lower bound techniques for dynamic
partial sums and relatedproblems. SIAM J. Comput.32, 736–753
(2003). See also ICALP’98

5. Miltersen, P.B.: Cell probe complexity - a survey. In: 19th Confer-
ence on the Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS), 1999 (Advances in Data Struc-
tures Workshop)

6. Pătraşcu, M. and Demaine, E.D.: Logarithmic lower bounds in
the cell-probe model. SIAM J. Comput. 35, 932–963 (2006). See
also SODA’04 and STOC’04

7. Pătraşcu, M., Tarniţă, C.: On dynamic bit-probe complexity.
Theor. Comput. Sci. 380, 127–142 (2007). See also ICALP’05

8. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees.
J. Comput. Syst. Sci. 26, 362–391 (1983). See also STOC’81

9. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
Proc. 32nd ACM Symposium on Theory of Computing (STOC),
2000, pp. 343–350

Low Stretch Spanning Trees
2005; Elkin, Emek, Spielman, Teng

MICHAEL ELKIN
Department of Computer Science, Ben-Gurion
University, Beer-Sheva, Israel

Keywords and Synonyms

Spanning trees with low average stretch

ProblemDefinition

Consider a weighted connected multigraphG = (V ; E; !),
where ! is a function from the edge set E of G into the
set of positive reals. For a path P in G, the weight of P is
the sum of weights of edges that belong to the path P. For
a pair of vertices u; v 2 V , the distance between them in G
is the minimum weight of a path connecting u and v in G.
For a spanning treeT ofG, the stretch of an edge (u; v) 2 E
is defined by

stretchT (u; v) =
distT (u; v)
distG (u; v)

;

and the average stretch over all edges of E is

avestr(G; T) =
1
jEj

X
(u;v)2E

stretchT (u; v) :

The average stretch of a multigraph G = (V ; E; !) is de-
fined as the smallest average stretch of a spanning tree T of
G, avestr(G; T). The average stretch of a positive integer n,
avestr(n), is the maximum average stretch of an n-vertex
multigraph G. The problem is to analyze the asymptotic
behavior of the function avestr(n).

A closely related (dual) problem is to construct a prob-
ability distributionD of spanning trees for G, so that

expstr(G;D) = max
e=(u;v)2E

ET2D(stretchT (u; v))

is small as possible. Analogously, expstr(G) =
minDfexpstr(G;D)g, where the minimum is over all dis-
tributions D of spanning trees of G, and expstr(n) =
maxGfexpstr(G)g, where the maximum is over all n-vertex
multigraphs.

By viewing the problem as a 2-player zero-sum game
between a tree player that aims tominimize the payoff, and
an edge player that aims tomaximize it, it is easy to see that
for every positive integer n, avestr(n) = expstr(n) [2]. The
probabilistic version of the problem is, however, particu-
larly convenient for many applications.

Key Results

The problem was studied since sixties [8,13,15,16]. A ma-
jor progress in its study was achieved by Alon et al. [2],
who showed that

˝(log n) = avestr(n) = expstr(n)

= exp(O(
p
log n � log log n)) :

Elkin et al. [9] improved the upper bound and showed that

avestr(n) = expstr(n) = O(log2 n � log log n) :

Applications

One application of low stretch spanning trees is for solv-
ing symmetric diagonally dominant linear systems of
equations. Boman and Hendrickson [5] were the first to
discover the surprising relationship between these two
seemingly unrelated problems. They applied the span-
ning trees of [2] to design solvers that run in time
m3/22O(

p
log n log log n) log(1/�). Spielman and Teng [14]

improved their results by showing how to use the spanning
trees of [2] to solve diagonally-dominant linear systems in
time

m2O(
p

log n log log n) log(1/�):

By applying the low-stretch spanning trees developed
in [9], the time for solving these linear systems reduces to

m logO(1) n log(1/�);

478 L LP Decoding

and to O(n(log n log log n)2 log(1/�)) when the systems
are planar. Applying a recent reduction of Boman,
Hendrickson and Vavasis [6], one obtains a O(n(log n
log log n)2 log(1/�)) time algorithm for solving the lin-
ear systems that arise when applying the finite element
method to solve two-dimensional elliptic partial differen-
tial equations.

Recently Chekuri et al. [7] used low stretch span-
ning trees to devise an approximation algorithm for non-
uniform buy-at-bulk network design problem. Their al-
gorithm provides a first polylogarithmic approximation
guarantee for this problem.

In another recent work Abraham et al. [1] use a te-
chinique of star-decomposition introduced by Elkin et
al. [9] to construct embeddings with a constant average
stretch, where the average is over all pairs of vertices, rather
than over all edges. The result of Abraham et al. [1] was, in
turn, already used in a yet more recent work of Elkin et
al. [10] on fundamental circuits.

Open Problems
The most evident open problem is to close the gap be-
tween the upper bound of O(log2 n log log n) and the
lower bound of˝(log n) on avestr(n). Another intriguing
subject is the study of low stretch spanning trees for vari-
ous restricted families of graphs. Progress in this direction
was recently achieved by Emek and Peleg [11] that con-
structed low stretch spanning trees with average stretch
O(log n) for unweighted series-parallel graphs. Discover-
ing other applications of low stretch spanning trees is an-
other promising venue of study.

Finally, there is a closely related relaxed notion of low
stretch Steiner or Bartal trees. Unlike a spanning tree,
a Steiner tree does not have to be a subgraph of the origi-
nal graph, but rather is allowed to use edges and vertices
that were not present in the original graph. It is, how-
ever, required that the distances in the Steiner tree will
be no smaller than the distances in the original graph.
Low stretch Steiner trees were extensively studied [3,4,12].
Fakcharoenphol et al. [12] devised a construction of low
stretch Steiner trees with an average stretch of O(log n). It
is currently unknown whether the techniques used in the
study of low stretch Steiner trees can help improving the
bounds for the low stretch spanning trees.

Cross References
� Approximating Metric Spaces by Tree Metrics

Recommended Reading
1. Abraham, I., Bartal, Y., Neiman, O.: Embedding Metrics into Ul-

trametrics and Graphs into Spanning Trees with Constant Av-

erage Distortion. In: Proceedings of the 18th ACM-SIAM Sym-
posium on Discrete Algorithms, New Orleans, January 2007

2. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic
gane and its application to the k-server problem. SIAM J.
Comput. 24(1), 78–100 (1995). Also available Technical Report
TR-91-066, ICSI, Berkeley (1991)

3. Bartal, Y.: Probabilistic approximation of metric spaces and its
algorithmic applications. In: Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, Berlington,
Oct. 1996 pp. 184–193

4. Bartal, Y.: On approximating arbitrary metrices by tree metrics.
In: Proceedings of the 30th annual ACM symposium on Theory
of computing, Dallas, 23–26 May 1998, pp. 161–168

5. Boman, E., Hendrickson, B.: On spanning tree preconditioners.
Manuscript, Sandia National Lab. (2001)

6. Boman, E., Hendrickson, B., Vavasis, S.: Solving elliptic finite el-
ement systems in near-linear time with suppost precondition-
ers. Manuscript, Sandia National Lab. and Cornell, http://arXiv.
org/abs/cs/0407022 Accessed 9 July 2004

7. Chekuri, C., Hagiahayi, M.T., Kortsarz, G., Salavatipour, M.: Ap-
proximation Algorithms for Non-Uniform Buy-at-Bulk Network
Design. In: Proceedings of the 47th Annual Symp. on Founda-
tions of Computer Science, Berkeley, Oct. 2006, pp. 677–686

8. Deo, N., Prabhu, G.M., Krishnamoorthy, M.S.: Algorithms for
generating fundamental cycles in a graph. ACM Trans. Math.
Softw. 8, 26–42 (1982)

9. Elkin, M., Emek, Y., Spielman, D., Teng, S.-H.: Lower-Stretch
Spanning Trees. In: Proc. of the 37th Annual ACM Symp. on
Theory of Computing, STOC’05, Baltimore, May 2005, pp. 494–
503

10. Elkin, M., Liebchen, C., Rizzi, R.: New Length Bounds for Cycle
Bases. Inf. Proc. Lett. 104(5), 186–193 (2007)

11. Emek, Y., Peleg, D.: A tight upper bound on the probabilis-
tic embedding of series-parallel graphs. In: Proc. of Symp. on
Discr. Algorithms, SODA’06, Miami, Jan. 2006, pp. 1045–1053

12. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on ap-
proximating arbitrary metrics by tree metrics. In: Proceedings
of the 35th annual ACM symposium on Theory of Computing,
San Diego, June 2003, pp. 448–455

13. Horton, J.D.: A Polynomial-time algorithm to find the short-
est cycle basis of a graph. SIAM J. Comput. 16(2), 358–366
(1987)

14. Spielman, D., Teng, S.-H.: Nearly-linear time algorithm for
graph partitioning, graph sparsification, and solving linear sys-
tems. In: Proc. of the 36th Annual ACM Symp. on Theory of
Computing, STOC’04, Chicago. USA, June 2004, pp. 81–90

15. Stepanec, G.F.: Basis systems of vector cycles with extremal
properties in graphs. Uspekhi Mat. Nauk 19, 171–175 (1964).
(In Russian)

16. Zykov, A.A.: Theory of Finite Graphs. Nauka, Novosibirsk (1969).
(In Russian)

LP Decoding
2002 and later; Feldman, Karger,Wainwright

JONATHAN FELDMAN
Google, Inc., New York, NY, USA

http://arXiv.org/abs/cs/0407022
http://arXiv.org/abs/cs/0407022

LP Decoding L 479

Keywords and Synonyms

LP decoding; Error-correcting codes; Low-density parity-
check codes; LDPC codes; Pseudocodewords; Belief prop-
agation

ProblemDefinition

Error-correcting codes are fundamental tools used to
transmit digital information over unreliable channels.
Their study goes back to the work of Hamming and Shan-
non, who used them as the basis for the field of infor-
mation theory. The problem of decoding the original in-
formation up to the full error-correcting potential of the
system is often very complex, especially for modern codes
that approach the theoretical limits of the communication
channel.

LP decoding [4,5,8] refers to the application of linear
programming (LP) relaxation to the problem of decod-
ing an error-correcting code. Linear programming relax-
ation is a standard technique in approximation algorithms
and operations research, and is central to the study of ef-
ficient algorithms to find good (albeit suboptimal) solu-
tions to very difficult optimization problems [13]. LP de-
coders have tight combinatorial characterizations of de-
coding success that can be used to analyze error-correcting
performance.

The codes for which LP decoding has received
the most attention are low-density parity-check (LDPC)
codes [9], due to their excellent error-correcting perfor-
mance. The LP decoder is particularly attractive for anal-
ysis of these codes because the standard message-passing
algorithms such as belief propagation (see [15]) used for
decoding are often difficult to analyze, and indeed the per-
formance of LP decoding is closely tied to these methods.

Error-Correcting Codes
and Maximum-Likelihood Decoding

This section begins with a very brief overview of error-
correcting codes, sufficient for formulating the LP de-
coder. Some terms are not defined for space reasons; for
a full treatment of error-correcting codes in context, the
reader is referred to textbooks on the subject (e. g., [11]).

A binary error-correcting code is a subset C
 f0; 1gn .
The rate of the code C is r = log(jCj)/n. A linear binary
code is a linear subspace of f0; 1gn . A codeword is a vec-
tor y 2 C. Note that 0n is always a codeword of a linear
code, a fact that will be useful later. When the code is
used for communication, a codeword ẏ 2 C is transmit-
ted over a noisy channel, resulting in some received word
ŷ 2 ˙ n , where ˙ is some alphabet that depends on the

channel model. Generally in LP decoding a memoryless,
symmetric channel is assumed. One common such chan-
nel is the binary symmetric channel (BSC) with parameter
p, which will be referred to as BSCp , where 0 < p < 1/2.
In the BSCp , the alphabet is ˙ = f0; 1g, and for each i,
the received symbol ŷ i is equal to ẏ i with probability p,
and ŷ i = 1 � ẏ i otherwise. Although LP decoding works
with more general channels, this chapter will focus on the
BSCp .

The maximum-likelihood (ML) decoding problem is
the following: given a received word ŷ 2 f0; 1gn , find the
codeword y� 2 C that is most likely to have been sent
over the channel. Defining the vector � 2 f�1;+1gn where
�i = 1 � 2ŷ i , it is easy to show:

y� = argmin
y2C

X
i

�i yi : (1)

The complexity of the ML decoding problem depends
heavily on the code being used. For simple codes such as
a repetition code C = f0n; 1ng, the task is easy. For more
complex (and higher-rate) codes such as LDPC codes, ML
decoding is NP-hard [1].

LP Decoding

Since ML decoding can be very hard in general, one turns
to sub-optimal solutions that can be found efficiently. LP
decoding, instead of trying to solve (1), relaxes the con-
straint y 2 C, and instead requires that y 2 P for some
succinctly describable linear polytope P
 [0; 1]n , result-
ing in the following linear program:

yLP = argmin
y2P

nX
i=1

�i yi : (2)

It should be the case that the polytope includes all
the codewords, and does not include any integral non-
codewords. As such, a polytope P is called proper for code
C if P \ f0; 1gn = C:

The LP decoder works as follows. Solve the LP in (2) to
obtain yLP 2 [0; 1]n . If yLP is integral (i. e., all elements are
0 or 1), then output yLP. Otherwise, output “error”. By the
definition of a proper polytope, if the LP decoder outputs
a codeword, it is guaranteed to be equal to the ML code-
word y�. This fact is known as theML certificate property.

Comparing with ML Decoding

A successful decoder is one that outputs the original code-
word transmitted over the channel, and so the quality of an
algorithm is measured by the likelihood that this happens.

480 L LP Decoding

(Another common non-probabilistic measure is theworst-
case performance guarantee, which measures how many
bit-flips an algorithm can tolerate and still be guaranteed
to succeed.) Note that y� is the one most likely to be the
transmitted codeword ẏ, but it is not always the case that
y� = ẏ. However, no decoder can perform better than an
ML decoder, and so it is useful to useML decoding as a ba-
sis for comparison.

Figure 1 provides a geometric perspective of LP decod-
ing, and its relation to exact ML decoding. Both decoders
use the same LP objective function, but over different con-
straint sets. In exact ML decoding, the constraint set is the
convex hull C of codewords (i. e., the set of points that are
convex combinations of codewords from C), whereas re-
laxed LP decoding uses the larger polytope P. In Fig. 1, the
four arrows labeled (a)–(d) correspond to different “noisy”
versions of the LP objective function. (a) If there is very
little noise, then the objective function points to the trans-
mitted codeword ẏ, and thus both ML decoding and LP
decoding succeed, since both have the transmitted code-
word ẏ as the optimal point. (b) If more noise is intro-
duced, then ML decoding succeeds, but LP decoding fails,
since the fractional vertex y0 is optimal for the relaxation.
(c) With still more noise, ML decoding fails, since y3 is
now optimal; LP decoding still has a fractional optimum
y0, so this error is in some sense “detected”. (d) Finally,
with a lot of noise, both ML decoding and LP decoding
have y3 as the optimum, and so both methods fail and the
error is “undetected”. Note that in the last two cases (c, d),
when ML decoding fails, the failure of the LP decoder is
in some sense the fault of the code itself, as opposed to the
decoder.

Normal Cones and C-Symmetry

The (negative) normal cones at ẏ (also called the funda-
mental cone [10]) is defined as follows:

Nẏ(P) =
˚
� 2 Rn :

X
i

�i(yi � ẏ i) � 0 for all y 2 P
�
;

Nẏ(C) =
˚
� 2 Rn :

X
i

�i(yi � ẏ i) � 0 for all y 2 C
�
:

Note that Nẏ(P) corresponds to the set of cost vectors �
such that ẏ is an optimal solution to (2). The set Nẏ(C)
has a similar interpretation as the set of cost vectors � for
which ẏ is the ML codeword. Since P � C, it is immedi-
ate from the definition that Ny(C) � Ny(P) for all y 2 C.
Fig. 1 shows these two cones and their relationship.

The success probability of an LP decoder is equal to the
total probability mass of Nẏ(P), under the distribution on
cost vectors defined by the channel. The success probabil-
ity of ML decoding is similarly related to the probability

LP Decoding, Figure 1
A decoding polytope P (dotted line) and the convex hull C (solid
line) of the codewords ẏ, y1, y2, and y3. Also shown are the four
possible cases (a–d) for the objective function, and the normal
cones to bothP andC

mass in the normal cone Ny(C). Thus, the discrepancy be-
tween the normal cones of P and C is a measure of the gap
between exact ML and relaxed LP decoding.

This analysis is specific to a particular transmitted
codeword ẏ, but one would like to apply it in general.
When dealing with linear codes, for most decoders one
can usually assume that an arbitrary codeword is transmit-
ted, since the decision region for decoding success is sym-
metric. The same holds true for LP decoding (see [4] for
proof), as long as the polytope P is C-symmetric, defined
as follows:

Definition 1 A proper polytope P for the binary code C
is C-symmetric if, for all y 2 P and ẏ 2 C, it holds that
y0 2 P, where y0i = jyi � ẏ i j.

Using a DualWitness to Prove Error Bounds

In order to prove that LP decoding succeeds, one must
show that ẏ is the optimal solution to the LP in (2). If
the code C is linear, and the relaxation is proper and C-
symmetric, one can assume that ẏ = 0n , and then show
that 0n is optimal. Consider the dual of the decoding LP
in (2). If there is a feasible point of the dual LP that has the
same cost (i. e., zero) as the point 0n has in the primal, then
0n must be an optimal point of the decoding LP. Therefore,
to prove that the LP decoder succeeds, it suffices to exhibit
a zero-cost point in the dual.1

1Actually, since the existence of the zero-cost dual point only
proves that 0n is one of possibly many primal optima, one needs to
be a bit more careful, a minor issue deferred to more complete treat-
ments of this material.

LP Decoding L 481

Key Results

LP decoders have mainly been studied in the context of
Low-Density Parity-Check codes [9], and their general-
ization to expander codes [12]. LP decoders for Turbo
codes [2] have also been defined, but the results are not
as strong. This summary of key results gives bounds on
the word error rate (WER), which is the probability, over
the noise in the channel, that the decoder does not output
the transmitted word. These bounds are relative to specific
families of codes, which are defined as infinite set of codes
of increasing length whose rate is bounded from below by
some constant. Here the bounds are given in asymptotic
form (without constants instantiated), and only for the bi-
nary symmetric channel.

Many other important results that are not listed here
are known for LP decoding and related notions. Some of
these general areas are surveyed in the next section, but
there is insufficient space to reference most of them indi-
vidually; the reader is referred to [3] for a thorough bibli-
ography.

Low-Density Parity-Check Codes

The polytope P for LDPC codes, first defined in [4,8,10], is
based on the underlying Tanner graph of the code, and has
a linear number of variables and constraints. If the Tanner
graph expands sufficiently, it is known that LP decoding
can correct a constant fraction of errors in the channel,
and thus has an inverse exponential error rate. This was
proved using a dual witness:

Theorem 1 ([6]) For any rate r > 0, there is a constant
� > 0 such that there exists a rate r family of low-density
parity-check codes with length n where the LP decoder suc-
ceeds as long as at most �n bits are flipped by the channel.
This implies that there exists a constant �0 > 0 such that
the word error rate under the BSCp with p < �0 is at most
2�˝(n).

Expander Codes

The capacity of a communication channel bounds from
above the rate one can obtain from a family of codes and
still get a word error rate that goes to zero as the code
length increases. The notation Cp is used to denote the ca-
pacity of the BSCp . Using a family of codes based on ex-
panders [12], LP decoding can achieve rates that approach
capacity. Compared to LDPC codes, however, this comes
at the cost of increased decoding complexity, as the size
of the LP is exponential in the gap between the rate and
capacity.

Theorem 2 ([7]) For any p > 0, and any rate r < Cp,
there exists a rate r family of expander codes with length
n such that the word error rate of LP decoding under the
BSCp is at most 2�˝(n).

Turbo Codes

Turbo codes [2] have the advantage that they can be en-
coded in linear time, even in a streaming fashion. Repeat-
accumulate codes are a simple form of Turbo code. The
LP decoder for Turbo codes and their variants was first
defined in [4,5], and is based on the trellis structure of the
component convolutional codes. Due to certain properties
of turbo codes it is impossible to prove bounds for turbo
codes as strong as the ones for LDPC codes, but the fol-
lowing is known:

Theorem 3 ([5]) There exists a rate 1/2 � o(1) family
of repeat-accumulate codes with length n, and a constant
� > 0, such that under the BSCp with p < �, the LP decoder
has a word error rate of at most n�˝(1).

Applications

The application of LP decoding that has received the most
attention so far is for LDPC codes. The LP for this fam-
ily of codes not only serves as an interesting alternative to
more conventional iterative methods [15], but also gives
a useful tool for analyzing those methods, an idea first ex-
plored in [8,10,14]. Iterative methods such as belief propa-
gation use local computations on the Tanner graph to up-
date approximations of the marginal probabilities of each
code bit. In this type of analysis, the vertices of the poly-
tope P are referred to as pseudocodewords, and tend to co-
incide with the fixed points of this iterative process. Other
notions of pseudocodeword-like structures such as stop-
ping sets are also known to coincide with these polytope
vertices. Understanding these structures has also inspired
the design of new codes for use with iterative and LP de-
coding. (See [3] for a more complete bibliography of this
work).

The decoding method itself can be extended in many
ways. By adding redundant information to the description
of the code, one can derive tighter constraint sets to im-
prove the error-correcting performance of the decoder, al-
beit at an increase in complexity. Adaptive algorithms that
try to add constraints “on the fly” have also been explored,
using branch-and-bound or other techniques. Also, LP
decoding has inspired the use of other methods from
optimization theory in decoding error-correcting codes.
(Again, see [3] for references.)

482 L LP Decoding

Open Problems

The LP decoding method gives a simple, efficient and an-
alytically tractable approach to decoding error-correcting
codes. The results known to this point serve as a proof
of concept that strong bounds are possible, but there are
still important questions to answer. Although LP decoders
can achieve capacity with decoding time polynomial in the
length of the code, the complexity of the decoder still de-
pends exponentially on the gap between the rate and ca-
pacity (as is the case for all other known provably efficient
capacity-achieving decoders). Decreasing this dependence
would be a major accomplishment, and perhaps LP de-
coding could help. Improving the fraction of errors cor-
rectable by LP decoding is also an important direction for
further research.

Another interesting question is whether there exist
constant-rate linear-distance code families for which one
can formulate a polynomial-sized exact decoding LP. Put
another way, is there a constant-rate linear-distance family
of codes whose convex hulls have a polynomial number of
facets? If so, then LP decoding would be equivalent to ML
decoding for this family. If not, this is strong evidence that
suboptimal decoding is inevitable when using good codes,
which is a common belief.

An advantage to LP decoding is the ML certificate
property mentioned earlier, which is not enjoyed by most
other standard suboptimal decoders. This property opens
up the possibility for a wide range of heuristics for improv-
ing decoding performance, some of which have been ana-
lyzed, but largely remain wide open.

LP decoding has (for themost part) only been explored
for LDPC codes under memoryless symmetric channels.
The LP for turbo codes has been defined, but the error
bounds proved so far are not a satisfying explanation of the
excellent performance observed in practice. Other codes
and channels have gotten little, if any, attention.

Cross References

� Decoding Reed–Solomon Codes
� Learning Heavy Fourier Coefficients of Boolean

Functions

� Linearity Testing/Testing Hadamard Codes
� List Decoding near Capacity: Folded RS Codes

Recommended Reading
1. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent in-

tractability of certain coding problems. IEEE Trans. Inf. Theory
24, 384–386 (1978)

2. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit
error-correcting coding and decoding: turbo-codes. In: Proc.
IEEE Int. Conf. Comm. (ICC), pp. 1064–1070. Geneva, 23–26May
1993

3. Boston, N., Ganesan, A., Koetter, R., Pazos, S., Vontobel, P.: Pa-
pers on pseudocodewords. HP Labs, Palo Alto. http://www.
pseudocodewords.info.

4. Feldman, J.: Decoding Error-Correcting Codes via Linear Pro-
gramming. Ph. D. thesis, Massachusetts Institute of Technol-
ogy (2003)

5. Feldman, J., Karger, D.R.: Decoding turbo-like codes via lin-
ear programming. In: Proc. 43rd annual IEEE Symposium on
Foundations of Computer Science (FOCS), Vancouver, 16–19
November 2002

6. Feldman, J., Malkin, T., Servedio, R.A., Stein, C., Wainwright,
M.J.: LP decoding corrects a constant fraction of errors. In:
Proc. IEEE International Symposium on Information Theory,
Chicago, 27 June – 2 July 2004

7. Feldman, J., Stein, C.: LP decoding achieves capacity. In: Sym-
posium on Discrete Algorithms (SODA ’05), Vancouver, Jan-
uary (2005)

8. Feldman, J., Wainwright, M.J., Karger, D.R.: Using linear pro-
gramming to decode linear codes. In: 37th annual Conf. on
Information Sciences and Systems (CISS ’03), Baltimore, 12–
14 March 2003

9. Gallager, R.: Low-density parity-check codes. IRE Trans. Inform.
Theory, IT-8 , pp. 21–28 (1962)

10. Koetter, R., Vontobel, P.: Graph covers and iterative decoding
of finite-length codes. In: Proc. 3rd International Symposium
on Turbo Codes and Related Topics, pp. 75–82, September
2003. Brest, France (2003)

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting
Codes. North-Holland, Amsterdam (1981)

12. Sipser, M., Spielman, D.: Expander codes. IEEE Trans. Inf. Theory
42, 1710–1722 (1996)

13. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin
(2003)

14. Wainwright, M., Jordan, M.: Variational inference in graphical
models: the view from the marginal polytope. In: Proc. 41st
Allerton Conf. on Communications, Control, and Computing,
Monticello, October (2003)

15. Wiberg, N.: Codes andDecoding on General Graphs, Ph. D. the-
sis, Linkoping University, Sweden (1996)

http://www.pseudocodewords.info.
http://www.pseudocodewords.info.

Majority Equilibrium M 483

M

Majority Equilibrium
2003; Chen, Deng, Fang, Tian

QIZHI FANG
Department of Mathematics, Ocean University of China,
Qingdao, China

Keywords and Synonyms

Condorcet winner

ProblemDefinition

Majority rule is arguably the best decision mechanism for
public decision making, which is employed not only in
public management but also in business management. The
concept of majority equilibrium captures such a demo-
cratic spirit in requiring that no other solutions would
pleasemore than half of the voters in comparison to it. The
work of Chen, Deng, Fang, and Tian [1] considers a public
facility location problem decided via a voting process un-
der the majority rule on a discrete network. This work dis-
tinguishes itself from previous work by applying the com-
putational complexity approach to the study of majority
equilibrium. For the model with a single public facility lo-
cated in trees, cycles, and cactus graphs, it is shown that the
majority equilibrium can be found in linear time. On the
other hand, when the number of public facilities is taken
as the input size (not a constant), finding a majority equi-
librium is shown to beNP-hard.

Consider a network G = ((V ; !); (E; l)) with vertex
and edge weight functions ! : V ! R+ and l : E ! R+,
respectively. Each vertex i 2 V represents a community,
and !(i) represents the number of voters that reside
there. For each e 2 E, l(e) > 0 represents the length of
the road e = (i; j) connecting two communities i and j.
For two vertices i; j 2 V , the distance between i and j,
denoted by dG (i; j), is the length of a shortest path join-
ing them. The location of a public facility such as a li-
brary, community center, etc., is to be determined by the

public via a voting process under the majority rule. Here,
each member of the community desires to have the pub-
lic facility close to himself, and the decision has to be
agreed upon by a majority of the voters. Denote the ver-
tex set of G by V = fv1; v2; � � � ; vng. Then each vi 2 V
has a preference order �i on V induced by the distance
on G. That is, x �i y if and only if dG (vi ; x) � dG (vi ; y)
for two vertices x; y 2 V ; similarly, x>i y if and only if
dG (vi ; x) < dG (vi ; y). Under such a preference profile,
four types of majority equilibrium, called Condorcet win-
ners, are defined as follows.

Definition 1 Let v0 2 V , then v0 is called:
(1) a weak quasi-Condorcet winner, if for every u 2 V dis-

tinct of v0,

!(fvi 2 V : v0 �i ug) �
X
v i2V

!(vi)/2;

(2) a strong quasi-Condorcet winner, if for every u 2 V
distinct of v0,

!(fvi 2 V : v0 �i ug) >
X
v i2V

!(vi)/2;

(3) a weak Condorcet winner, if for every u 2 V distinct
of v0,

!(fvi 2 V : v0>iug) � !(fvi 2 V : u>i v0g);

(4) a strong Condorcet winner, if for every u 2 V distinct
of v0,

!(fvi 2 V : v0>iug) > !(fvi 2 V : u>i v0g):

Under the majority voting mechanism described above,
the problem is to develop efficient ways for determin-
ing the existence of Condorcet winners and finding such
a winner when one exists.

Problem 1 (Finding Condorcet Winners)
INPUT: A network G = ((V ;w); (E; l)).
OUTPUT: A Condorcet winner v 2 V, or nonexistence of
Condorcet winners.

484 M Majority Equilibrium

Key Results

The mathematical results given in this section depend
deeply on the understanding of combinatorial structures
of underlying networks. Theorem 1, 2, and 3 below are
given for weak quasi-Condorcet winners in themodel with
a single facility to be located. Other kinds of Condorcet
winners can be discussed similarly.

Theorem 1 Every tree has one weak quasi-Condorcet win-
ner, or two adjacent weak quasi-Condorcet winners, which
can be found in linear time.

Theorem 2 Let Cn be a cycle of order n with vertex-
weight function ! : V(Cn)! R+. Then v 2 V (Cn) is
a weak quasi-Condorcet winner of Cn if and only if the
weight of each b n+12 c-interval containing v is at least
1
2
P

v2Cn
!(v). Furthermore, the problem of finding a weak

quasi-Condorcet winner of Cn is solvable in linear time.

Given a graph G = (V ; E), a vertex v of G is a cut vertex
if E(G) can be partitioned into two nonempty subsets E1
and E2 such that the induced graphsG[E1] andG[E2] have
just the vertex v in common. A block of G is a connected
subgraph of G that has no cut vertices and is maximal with
respect to this property. Every graph is the union of its
blocks. A graph G is called a cactus graph, if G is a con-
nected graph in which each block is an edge or a cycle.

Theorem 3 The problem of finding a weak quasi-
Condorcet winner of a cactus graph with vertex-weight
function is solvable in linear time.

In general, the problem can be extended to the cases where
a number of public facilities are required to be located dur-
ing one voting process, and the definitions of Condorcet
winners can also be extended accordingly. In such cases,
the public facilities may be of the same type, or different
types; and the utility functions of the voters may be of dif-
ferent forms.

Theorem 4 If there are a bounded constant number of
public facilities to be located at one voting process under the
majority rule, then the problem of finding a Condorcet win-
ner (any of the four types) can be solved in polynomial time.

Theorem 5 If the number of public facilities to be located
is not a constant but considered as the input size, the prob-
lem of finding a Condorcet winner is NP-hard; and the
corresponding decision problem: deciding whether a candi-
date set of public facilities is a Condorcet winner, is co-NP-
complete.

Applications

Damange [2] first reviewed continuous and discrete spa-
tial models of collective choice, aiming at characterizing
the public facility location problem as a result of the pu-
bic voting process. Although the network models in Chen
et al. [1] have been studied for some problems in eco-
nomics [3,4], the principal point of departure in Chen et
al.’s work is the computational complexity and algorith-
mic approach. This approach can be applied to more gen-
eral public decision-making processes.

For example, consider a public road repair problem,
pioneered by Tullock [5] to study redistribution of tax
revenue under a majority rule system. An edge-weighted
graph G = (V ; E;w) represents a network of local roads,
where the weight of each edge represents the cost of re-
pairing the road. There is also a distinguished vertex s 2 V
representing the entry point to the highway system. The
majority decision problem involves a set of agents A
 V
situated at vertices of the network who would choose
a subset F of edges. The cost of repairing F, which is the
sum of the weights of edges in F, will be shared by all
n agents, each an n-th of the total. In this model, a ma-
jority stable solution under the majority rule is a subset
F
 E that connects s to a subset A1 � A of agents with
jA1j > jAj/2 such that no other solutionH connecting s to
a subset of agents A2 � A with jA2j > jAj/2 satisfies the
conditions that

P
e2H w(e) �

P
e2F w(e), and for each

agent inA2, its shortest path to s in solutionH is not longer
than that in solution F, and at least one of the inequalities
is strict. It is shown in Chen et al. [1] that for this model,
finding a majority equilibrium is NP-hard for general
networks, and is polynomially solvable for tree networks.

Cross References

� General Equilibrium
� Leontief Economy Equilibrium
� Local Search for K-medians and Facility Location

Recommended Reading
1. Chen, L., Deng, X., Fang, Q., Tian, F.: Majority equilib-

rium for public facility allocation. Lect. Notes Comput. Sci.
2697, 435–444 (2002)

2. Demange, G.: Spatial Models of Collective Choice. In: Thisse,
J.F., Zoller, H.G. (eds.) Locational Analysis of Public Facilities,
North-Holland Publishing Company, NorthHolland, Amsterdam
(1983)

3. Hansen, P., Thisse, J.F.: Outcomes of voting and planning: con-
dorcet, weber and rawls locations. J. Publ. Econ. 16, 1–15 (1981)

4. Schummer, J., Vohra, R.V.: Strategy-proof location on a network.
J. Econ. Theor. 104, 405–428 (2002)

5. Tullock, G.: Some problems of majority voting. J. Polit. Econ. 67,
571–579 (1959)

Market Games and Content Distribution M 485

Market Games
and Content Distribution
2005; Mirrokni

VAHAB S. MIRROKNI
Theory Group, Microsoft Research, Redmond,WA, USA

Keywords and Synonyms

Market sharing games; Valid-Utility games; Congestion
games; Stable matching

ProblemDefinition

This chapter studies market games for their performance
and convergence of the equilibrium points. The main ap-
plication is the content distribution in cellular networks
in which a service provider needs to provide data to
users. The service provider can use several cache loca-
tions to store and provide the data. The assumption is that
cache locations are selfish agents (resident subscribers)
who want to maximize their own profit. Most of the re-
sults apply to a general framework of monotone two-sided
markets.

Uncoordinated Two-Sided Markets

Various economic interactions can be modeled as two-
sided markets. A two-sided market consists of two disjoint
groups of agents: active agents and passive agents. Each
agent has a preference list over the agents of the other side,
and can be matched to one (or many) of the agents in the
other side. A central solution concept to these markets are
stable matchings, introduced by Gale and Shapley [5]. It is
well known that stable matchings can be achieved using
a centralized polynomial-time algorithm. Many markets,
however, do not have any centralized matching mecha-
nism to match agents. In those markets, matchings are
formed by actions of self-interested agents. Knuth [9] in-
troduced uncoordinated two-sided markets. In these mar-
kets, cycles of better or best responses exist, but ran-
dom better response and best response dynamics converge
to a stable matching with probability one [2,10,14]. Our
model for content distribution corresponds to a special
class of uncoordinated two-sided markets that is called the
distributed caching games.

Before introducing the distributed caching game as an
uncoordinated two-sided market, the distributed caching
problem and some game theoretic notations are defined.

Distributed Caching Problem

Let U be a set of n cache locations with given available
capacities Ai and given available bandwidths Bi for each
cache location i. There are k request types;1 each request
type t has a size at (1 � t � k). Let H be a set of m re-
quests with a reward Rj, a required bandwidth bj, a re-
quest type tj for each request j, and a cost cij for connect-
ing each cache location i to each request j. The profit of
providing request j by cache location i is fi j = Rj � ci j .
A cache location i can service a set of requests Si, if it
satisfies the bandwidth constraint:

P
j2Si b j � Bi , and the

capacity constraint:
P

t2ft jj j2Sig at � Ai (this means that
the sum of the sizes of the request types of the requests in
cache location i should be less than or equal to the available
capacity of cache location i). A set Si of requests is feasible
for cache location i if it satisfies both of these constraints.
The goal of the DCP problem is to find a feasible assign-
ment of requests to cache locations to maximize the total
profit; i. e., the total reward of requests that are provided
minus the connection costs of these requests.

Strategic Games

A strategic game G is defined as a tuple G(U; fFi ji 2
Ug; f˛i()ji 2 Ug) where (i) U is the set of n players or
agents, (ii) Fi is a family of feasible (pure) strategies or ac-
tions for player i and (iii) ˛i : ˘i2UFi ! R+ [f0g is the
(private) payoff or utility function for agent i, given the set
of strategies of all players. Player i’s strategy is denoted by
si 2 Fi . A strategy profile or a (strategy) state, denoted by
S = (s1; s2; : : : ; sn), is a vector of strategies of players. Also
let S ˚ s0i := (s1; : : : ; si�1; s0i ; si+1; : : : ; sk).

Best-Response Moves

In a non-cooperative game, each agent wishes to maximize
its own payoff. For a strategy profile S = (s1; s2; : : : ; sn),
a better response move of player i is a strategy s0i such
that ˛i(S ˚ s0i) � ˛i (S). In a strict better response move,
the above inequality is strict. Also, for a strategy profile
S = (s1; s2; : : : ; sn) a best response of player i in S is a better
response move s�i 2 Fi such that for any strategy si 2 Fi ,
˛i (S ˚ s�i) � ˛i (S ˚ si).

Nash Equilibria

A pure strategy Nash equilibrium (PSNE) of a strategic
game is a strategy profile in which each player plays his
best response.

1Request type can be thought of as different files that should be
delivered to clients.

486 M Market Games and Content Distribution

State Graph

The state graph, D = (F ;E), of a strategic game G, is an
arc-labeled directed graph, where the vertex set F corre-
sponds to the set of strategy profiles or states in G, and
there is an arc from state S to state S0 with label i if the only
difference between S and S0 is in the strategy of player i;
and player i plays one of his best responses in strategy pro-
file S0. A best-response walk is a directed walk in the state
graph.

Price of Anarchy

Given a strategic game, G(U; fFi ji 2 Ug; f˛()ji 2 Ug),
and a maximization social function � : ˘i2UFi ! R, the
price of anarchy, denoted by poa(G; �), is the worst ratio
between the social value of a pure Nash equilibrium and
the optimum.

Distributed Caching Games

The distributed caching game can be formalized as a two-
sided market game: active agents correspond to n resi-
dent subscribers or cache locations, and passive agents
correspond to m requests from transit subscribers. For-
mally, given an instance of the DCP problem, a strate-
gic game G(U; fFi ji 2 Ug; f˛i ji 2 Ug) is defined as fol-
lows. The set of players (or active agents) U is the set
of cache locations. The family of feasible strategies Fi
of a cache location i is the family of subsets si of re-
quests such that

P
j2s i b j � Bi and

P
t2ft jj j2s i g at � Ai .

Given a vector S = (s1; s2; : : : ; sn) of strategies of cache
locations, the favorite cache locations for request j, de-
noted by FAV(j), is the set of cache locations i such that
j 2 si and f ij has the maximum profit among the cache
locations that have request j in their strategy set, i. e.,
fi j � fi 0 j for any i0 such that j 2 si 0 . For a strategy pro-
file S = (s1; : : : ; sn) ˛i(S) =

P
j:i2FAV(j) fi j/jFAV(j)j. Intu-

itively, the above definition implies that the profit of each
request goes to the cache locations with theminimum con-
nection cost (or equivalently with the maximum profit)
among the set of cache locations that provide this request.
If more than one cache location have the maximum profit
(or minimum connection cost) for a request j, the profit
of this request is divided equally between these cache loca-
tions. The payoff of a cache location is the sum of profits
from the requests it actually serves. A player i serves a re-
quest j if i 2 FAV(j). The social value of strategy profile S,
denoted by � (S), is the sum of profits of all players. This
value � (S) is a measure of the efficiency of the assignment
of requests and request types to cache locations.

Special Cases

In this paper, the following variants and special cases of
the DCP problem are also studied: The CapDCP prob-
lem is a special case of DCP problem without bandwidth
constraints. The BanDCP problem is a special case of
DCP problem without capacity constraints. In the uniform
BanDCP problem, the bandwidth consumption of all re-
quests is the same. In the uniform CapDC problem, the
size of all request types is the same.

Many-to-One Two-Sided Markets with Ties

In the distributed caching game, active and passive agents
correspond to cache locations and requests respectively.
The set of feasible strategies for each active agent corre-
spond to a set of solutions to a packing problem. More-
over, the preferences of both active and passive agents is
determined from the profit of requests to cache locations.
In many-to-one two-sided markets, the preference of pas-
sive and active agents as well as the feasible family of strate-
gies are arbitrary. The preference list of agents may have
ties as well.

Monotone and Matroid Markets

In monotone many-to-one two-sided markets, the prefer-
ences of both active and passive agents are determined
based on payoffs pi j = p ji for each active agent i and pas-
sive agent j (similar to the DCP game). An agent i prefers
j to j0 if pi j > pi j0 . In matroid two-sided markets, the fea-
sible set of strategies of each active agent is the set of in-
dependent sets of a matroid. Therefore, uniform BanDCP
game is a matroid two-sided market game.

Key Results

In this section, the known results for these problems are
summarized.

Centralized Approximation Algorithm

The distributed caching problem generalizes the multiple
knapsack problem and the generalized assignment prob-
lem [3] and as a result is an APX-hard problem.

Theorem 1 ([4]) There exists a linear programming
based 1 � 1

e -approximation algorithm and a local search 1
2 -

approximation algorithm for the DCP problem.

The 1 � 1
e -approximation for this problem is based on

rounding an exponentially large configuration linear pro-
gram [4]. On the basis of some reasonable complexity the-
oretic assumptions, this approximation factor of 1 � 1

e is
tight for this problem. More formally,

Market Games and Content Distribution M 487

Theorem 2 ([4]) For any � > 0, there exists no 1 � 1
e � �-

approximation algorithm for the DCP problem unless NP

 DTIME(nO(log log n)).

Price of Anarchy

Since the DCP game is a strategic game, it possesses mixed
Nash equilibria [12]. The DCP game is a valid-utility game
with a submodular social function as defined by Vetta [16].
This implies that the performance of anymixedNash equi-
librium of this game is at least 1

2 of the optimal solution.

Theorem 3 ([4,11]) The DCP game is a valid-utility game
and the price of anarchy for mixed Nash equilibria is 1

2 .
Moreover, this result holds for all monotone many-to-one
two-sided markets with ties.

A direct proof of the above price of anarchy bound for the
DCP game can be found in [11].

Pure Nash Equilibria: Existence and Convergence

This part surveys known results for existence and conver-
gence of pure Nash equilibria.

Theorem 4 ([11]) There are instances of the IBDC game
that have no pure Nash equilibrium.

Since, IBDC is a special case of CapDCP, the above theo-
rem implies that there are instances of the CapDCP game
that have no pure Nash equilibrium. In the above theorem,
the bandwidth consumption of requests are not uniform,
and this was essential in finding the example. The follow-
ing gives theorems for the uniform variant of these games.

Theorem 5 ([1,11]) Any instance of the uniform BanDCP
game does not contain any cycle of strict best-response
moves, and thus possess a pure Nash equilibrium. On the
other hand, there are instances of the uniform CapDCP
game with no pure Nash equilibria.

The above result for the uniform BanDCP game can be
generalized to matroid two-sided markets with ties as fol-
lows.

Theorem 6 ([1]) Any instance of the monotone matroid
two-sided market game with ties is a potential game, and
possess pure Nash equilibria. Moreover, any instance of the
matroid two-sided market game with ties possess pure Nash
equilibria.

Convergence Time to Equilibria

This section proves that there are instances of the uniform
CapDCP game in which finding a pure Nash equilibrium

is PLS-hard [8]. The definition of PLS-hard problems can
be found in papers by Yannakakis et al. [8,15].

Theorem 7 ([11]) There are instances of the uniform
CapDCP game with pure Nash equilibria2 for which find-
ing a pure Nash equilibrium is PLS-hard.

Using the above proof and a result of Schaffer and Yan-
nakakis [13,15], it is possible to show that in some in-
stances of the uniform CapDCP game, there are states from
which all paths of best responses have exponential length.

Corollary 1 ([11]) There are instances of the uniform
CapDCP game that have pure Nash equilibria with states
fromwhich any sequence of best-responsemoves to any pure
Nash equilibrium (or sink equilibrium) has an exponential
length.

The above theorems show exponential convergence to
pure Nash equilibria in generalDCP games. For the special
case of the uniform BanDCP game, the following is a posi-
tive result for the convergence time to equilibria.

Theorem 8 ([2]) The expected convergence time of a ran-
dom best-response walk to pure Nash equilibria in matroid
monotone two-sided markets (without ties) is polynomial.

Since the uniform BanDCP game is a special case of ma-
troid monotone two-sided markets with ties, the above
theorem indicates that for the BanDCP game with no tie
in the profit of requests, the convergence time of a ran-
dom best-response walk is polynomial. Finally, we state
a theorem about the convergence time of the general (non-
monotone) matroid two-sided market games.

Theorem 9 ([2]) In the matroid two-sided markets (with-
out ties), a random best response dynamic of players may
cycle, but it converges to a Nash equilibrium with probabil-
ity one. However, it may take exponential time to converge
to a pure Nash equilibrium.

Pure Nash equilibria of two-sided market games corre-
spond to stable matchings in two-sided markets and vice-
versa [2]. The fact that better response dynamics of players
in two-sided market games may cycle, but will converge to
a stable matching has been proved in [9,14]. Ackermann
et al. [2] extend these results for best-response dynamics,
and show an exponential lower bound for expected con-
vergence time to pure Nash equilibria.

2It is also possible to say that finding a sink equilibrium is PLS-
hard. A sink equilibrium is a set of strategy profiles that is closed un-
der best-response moves. A pure equilibrium is a sink equilibrium
with exactly one profile. This equilibrium concept is formally defined
in [7].

488 M Market Games and Content Distribution

Applications

The growth of the Internet, the World Wide Web, and
wide-area wireless networks allow an increasing number
of users to access vast amounts of information in different
geographic areas. As one of the most important functions
of the service provider, content delivery can be performed
by caching popular items in cache locations close to the
users. Performing such a task in a decentralizedmanner in
the presence of self-interested entities in the system can be
modeled as an uncoordinated two-sided market game.

The 3G subscriber market can be categorized into
groups with shared interest in location-based services,
e. g., the preview of movies in a theater or scenes of the
mountain nearby. Since the 3G radio resources are lim-
ited, it is expensive to repeatedly transmit large quantities
of data over the air interface from the base station (BS).
It is more economical for the service provider to offload
such repeated requests on to the ad-hoc network com-
prised of its subscribers where some of them recently ac-
quired a copy of the data. In this scenario, the goal for the
service provider is to give incentives for peer subscribers in
the system to cache and forward the data to the requesting
subscribers. Since each data item is large in size and tran-
sit subscribers are mobile, we assume that the data transfer
occurs in a close range of a few hops.

In this setting, envision a system consisting of two
groups of subscribers: resident and transit subscribers.
Resident subscribers are less mobile and mostly confined
to a certain geographical area. Resident subscribers have
incentives to cache data items that are specific to this geo-
graphical region since the service provider gives monetary
rewards for satisfying the queries of transit subscribers.
Transit subscribers request their favorite data items when
they visit a particular region. Since the service provider
does not have knowledge of the spatial and temporal dis-
tribution of requests, it is difficult if not impossible for
the provider to stipulate which subscriber should cache
which set of data items. Therefore, the decision of what
to cache is left to each individual subscriber. The realiza-
tion of this content distribution system depends on two
main issues. First, since subscribers are selfish agents, they
may act to increase their individual payoff and decrease
the performance of the system. Here, we provide a frame-
work for which we can prove that in an equilibrium sit-
uation of this framework, we use the performance of the
system efficiently. The second issue is that the payoff of
each request for each agent must be a function of the set of
agents that have this request in their strategy, since these
agents compete on this request and the profit of this re-
quest should be divided among these agents in an appro-

priate way. Therefore, each selfish agent may change the
set of items it cached in response to the set of items cached
by others. This model leads to a non-cooperative caching
scenario that can bemodeled on a two-sided market game,
studied and motivated in the context of market sharing
games and distributed caching games [4,6,11].

Open Problems

It is known that there exist instances of the distributed
caching game with no pure Nash equilibria. It is also
known that best response dynamics of playersmay take ex-
ponential time to converge to pure Nash equilibria. An in-
teresting question is to study the performance of sink equi-
libria [7,11] or the price of sinking [7,11] for these games.
The distributed caching game is a valid-utility game. Goe-
mans, Mirrokni, and Vetta [7] show that despite the price
of anarchy of 1

2 for valid-utility games, the performance
of sink equilibria (or price of sinking) for these games is
1
n . We conjecture that the price of sinking for DCP games
is a constant. Moreover, it is interesting to show that af-
ter polynomial rounds of best responses of players the ap-
proximation factor of the solution is a constant. We know
that one round of best responses of players is not suffi-
cient to get constant-factor solutions. It might be easier to
show that after a polynomial number of random best re-
sponses of players, the expected total profit of players is at
least a constant factor of the optimal solution. Similar pos-
itive results for sink equilibria and random best responses
of players are known for congestion games [7,11].

The complexity of verifying if a given state of the dis-
tributed caching game is in a sink equilibrium or not is an
interesting question to explore. Also, given a distributed
caching game (or a many-to-one two-sided market game),
an interesting problem is to check if the set of all sink
equilibria is pure Nash equilibria or not. Finally, an in-
teresting direction of research is to classify classes of two-
sided market games for which pure Nash equilibria exists
or best-response dynamics of players converge to a pure
Nash equilibrium.

Cross References

� Stable Marriage
� Stable Marriage with Ties and Incomplete Lists
� Best Response Algorithms for Selfish Routing

Recommended Reading
1. Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöck-

ing, B.: A unified Approach to Congestion Games and Two-
sided markets. In: 3rd Workshop of Internet Economics (WINE),
pp. 30–41. San Diego, CA, USA (2007)

Max Cut M 489

2. Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking,
B.: Uncoordinated two-sided markets. ACM Electronic Com-
merce (ACM EC) (2008)

3. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack prob-
lem. In 11th ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp. 213–222 (2000)

4. Fleischer, L., Goemans, M., Mirrokni, V.S., Sviridenko, M.: Tight
approximation algorithms for maximum general assignment
problems. In: Proceedings of the 16th Annual ACM–SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 611–620 (2006)

5. Gale, D., Shapley, L.: College admissions and the stability of
marriage. Am. Math. Mon. 69, 9–15 (1962)

6. Goemans, M., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing
games applied to content distribution in ad-hoc networks. In:
Proceedings of the 5th ACM International Symposium on Mo-
bile Ad Hoc Networking and Computing (MobiHoc), pp. 1020–
1033 (2004)

7. Goemans, M., Mirrokni, V.S., Vetta, A.: Sink equilibria and con-
vergence. In: 46th Conference on Foundations of Computer
Science (FOCS), pp. 123–131 (2005)

8. Johnson, D., Papadimitriou, C.H., Yannakakis, M.: How easy is
local search? J. Comp. Syst. Sci. 37, 79–100 (1988)

9. Knuth, D.: Marriage Stables et leurs relations avec d’autres
problèmes Combinatories. Les Presses de l’Université de Mon-
tréal (1976)

10. Kojima, F., Unver, Ü.: Random paths to pairwise stability in
many-to-many matching problems: A study on market equi-
libration. Intern. J. Game Theor. (2006)

11. Mirrokni, V.S.: Approximation Algorithms for Distributed and
Selfish Agents. Ph.D. thesis, Massachusetts Institute of Tech-
nology (2005)

12. Nash, J.F.: Non-cooperative games. Ann. Math. 54, 268–295
(1951)

13. Papadimitriou, C.H., Schaffer, A., Yannakakis, M.: On the com-
plexity of local search. In: 22nd Symp. on Theory of Computing
(STOC), pp. 438 – 445 (1990)

14. Roth, A.E., Vande Vate, J.H.: Random paths to stability in two-
sided matching. Econometrica 58(6), 1475–1480 (1990)

15. Schaffer, A. Yannakakis, M.: Simple local search problems that
are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

16. Vetta, A.: Nash equilibria in competitive societies, with applica-
tions to facility location, traffic routing and auctions. In: 43rd
Symp. on Foundations of Computer Science (FOCS), pp. 416–
425 (2002)

Max Cut
1994; Goemans, Williamson
1995; Goemans, Williamson

ALANTHA NEWMAN
Department of Algorithms and Complexity,
Max-Planck Institute for Computer Science,
Saarbrücken, Germany

Keywords and Synonyms

Maximum bipartite subgraph

ProblemDefinition

Given an undirected edge-weighted graph,G = (V ; E), the
maximum cut problem (MAX-CUT) is to find a bipar-
tition of the vertices that maximizes the weight of the
edges crossing the partition. If the edge weights are non-
negative, then this problem is equivalent to finding amaxi-
mumweight subset of the edges that forms a bipartite sub-
graph, i. e. the maximum bipartite subgraph problem. All
results discussed in this article assume non-negative edge
weights. MAX-CUT is one of Karp’s original NP-complete
problems [19]. In fact, it is NP-hard to approximate to
within a factor better than 16/17[16,33].

For nearly twenty years, the best-known approxima-
tion factor for MAX-CUT was half, which can be achieved
by a very simple algorithm: Form a set S by placing each
vertex in S with probability half. Since each edge crosses
the cut (S;V n S) with probability half, the expected value
of this cut is half the total edge weight. This implies that for
any graph, there exists a cut with value at least half of the
total edge weight. In 1976, Sahni and Gonzalez presented
a deterministic half-approximation algorithm for MAX-
CUT, which is essentially a de-randomization of the afore-
mentioned randomized algorithm [31]: Iterate through
the vertices and form sets S and S̄ by placing each vertex
in the set that maximizes the weight of cut (S; S̄) thus far.
After each iteration of this process, the weight of this cut
will be at least half of the weight of the edges with both
endpoints in S [S̄.

This simple half-approximation algorithm uses the
fact that for any graph with non-negative edge weights, the
total edge weight of a given graph is an upper bound on
the value of its maximum cut. There exist classes of graphs
for which a maximum cut is arbitrarily close to half the
total edge weight, i. e. graphs for which this “trivial” upper
bound can be close to twice the true value of an optimal so-
lution. An example of such a class of graphs are complete
graphs on n vertices, Kn. In order to obtain an approxima-
tion factor better than half, one must be able to compute
an upper bound on the value of a maximum cut that is
better, i. e. smaller, than the trivial upper bound for such
classes of graphs.

Linear Programming Relaxations

For many optimization (maximization) problems, linear
programming has been shown to yield better (upper)
bounds on the value of an optimal solution than can be ob-
tained via combinatorial methods. There are several well-
studied linear programming relaxations for MAX-CUT.
For example, a classical integer program has a variable xe
for each edge and a constraint for each odd cycle, requir-

490 M Max Cut

ing that an odd cycle C contribute at most jCj � 1 edges to
an optimal solution.

max
X
e2E

wexe

X
e2C

xe � jCj � 1 8 odd cycles C

xe 2 f0; 1g :

The last constraint can be relaxed so that each xe is re-
quired to lie between 0 and 1, but need not be integral, i. e.
0 � xe � 1. Although this relaxation may have exponen-
tially many constraints, there is a polynomial-time separa-
tion oracle (equivalent to finding a minimum weight odd-
cycle), and thus, the relaxation can be solved in polyno-
mial time [13]. Another classical integer program contains
a variable xij for each pair of vertices. In any partition of
the vertices, either zero or two edges from a 3-cycle cross
the cut. This requirement is enforced in the following in-
teger program. If edge (i; j) … E, then wij is set to 0.

max
X
i; j2V

wi jxi j

xi j + x jk + xki � 2 8i; j; k 2 V
xi j + x jk � xki � 0 8i; j; k 2 V

xi j 2 f0; 1g :

Again, the last constraint can be relaxed so that each xij is
required to lie between 0 and 1. In contrast to the afore-
mentioned cycle-constraint based linear program, this lin-
ear programming relaxation has a polynomial number of
constraints.

Both of these relaxations actually have the same opti-
mal value for any graph with non-negative edgeweights [3,
26,30]. (For a simplified proof of this, see [25].) Poljak
showed that the integrality gap for each of these relax-
ations is arbitrarily close to 2 [26]. In other words, there
are classes of graphs that have a maximum cut containing
close to half of the edges, but for which each of the above
relaxations yields an upper bound close to all the edges,
i. e. no better than the trivial “all-edges” bound. In partic-
ular, graphs with a maximum cut close to half the edges
and with high girth can be used to demonstrate this gap.
A comprehensive look at these linear programming relax-
ations is contained in the survey of Poljak and Tuza [30].

Eigenvalue Upper Bounds

Delorme and Poljak [7] presented an eigenvalue up-
per bound on the value of a maximum cut, which was
a strengthened version of a previous eigenvalue bound

considered by Mohar and Poljak [24]. Computing De-
lorme and Poljak’s upper bound is equivalent to solving an
eigenvalue minimization problem. They showed that their
bound is computable in polynomial time with arbitrary
precision. In a series of work, Delorme, Poljak and Rendl
showed that this upper bound behaves “differently” from
the linear-programming-based upper bounds. For exam-
ple, they studied classes of sparse random graphs (e. g.
G(n, p) with p = 50/n) and showed that their upper bound
is close to optimal on these graphs [8]. Since graphs of this
type can also be used to demonstrate an integrality gap ar-
bitrarily close to 2 for the aforementioned linear program-
ming relaxations, their work highlighted contrasting be-
havior between these two upper bounds. Further compu-
tational experiments on other classes of graphs gave more
evidence that the bound was indeed stronger than previ-
ously studied bounds [27,29]. Delorme and Poljak conjec-
tured that the 5-cycle demonstrated the worst-case behav-
ior for their bound: a ratio of 32/(25 + 5

p
5) 	 :88445 be-

tween their bound and the optimal integral solution. How-
ever, they could not prove that their bound was strictly less
than twice the value of a maximum cut in the worst case.

Key Results

In 1994, Goemans and Williamson presented a ran-
domized .87856-approximation algorithm for MAX-
CUT [11]. Their breakthrough work was based on round-
ing a semidefinite programming relaxation and was the
first use of semidefinite programming in approximation
algorithms. Poljak and Rendl showed that the upper
bound provided by this semidefinite relaxation is equiv-
alent to the eigenvalue bound of Delorme and Poljak [28].
Thus, Goemans and Williamson’s proved that the eigen-
value bound of Delorme and Poljak is no more than 1.138
times the value of a maximum cut.

A Semidefinite Relaxation

MAX-CUT can be formulated as the following quadratic
integer program, which is NP-hard to solve. Each vertex
i 2 V is represented by a variable yi, which is assigned ei-
ther 1 or �1 depending on which side of the cut it occu-
pies.

max
1
2

X
(i; j)2E

wi j(1 � yi y j)

yi 2 f�1; 1g 8i 2 V :

Goemans and Williamson considered the following relax-
ation of this integer program, in which each vertex is rep-

Max Cut M 491

resented by a unit vector.

max
1
2

X
(i; j)2E

wi j(1 � vi � v j)

vi � vi = 1 8i 2 V
vi 2 Rn 8i 2 V :

They showed that this relaxation is equivalent to
a semidefinite program. Specifically, consider the follow-
ing semidefinite relaxation:

max
1
2

X
(i; j)2E

wi j(1 � yi j)

yi i = 1 8i 2 V
Y positive semidefinite :

The equivalence of these two relaxations is due to the fact
that a matrix Y is positive semidefinite if and only if there
is a matrix B such that BTB = Y . The latter relaxation
can be solved to within arbitrary precision in polynomial
time via the Ellipsoid Algorithm, since it has a polyno-
mial-time separation oracle [14]. Thus, a solution to the
first relaxation can be obtained by finding a solution to
the second relaxation and finding a matrix B such that
BTB = Y . If the columns of B correspond to the vectors
fvig, then yi j = vi � v j , yielding a solution to the first re-
laxation.

Random-Hyperplane Rounding

Goemans and Williamson showed how to round the
semidefinite programming relaxation of MAX-CUT using
a new technique that has since become known as “ran-
dom-hyperplane rounding” [11]. First obtain a solution
to the first relaxation, which consists of a set of unit vec-
tors fvig, one vector for each vertex. Then choose a ran-
dom vector r 2 Rn in which each coordinate of r is cho-
sen from the standard normal distribution. Finally, set
S = fijvi � r � 0g and output the cut (S;V n S).

The probability that a particular edge (i; j) 2 E crosses
the cut is equal to the probability that the dot products
vi � r and v j � r differ in sign. This probability is exactly
equal to �i j/
 , where �i j is the angle between vectors vi
and vj . Thus, the expected weight of edges crossing the cut
is equal to

P
(i; j)2E �i j/
 . How large is this compared to

the objective value given by the semidefinite programming
relaxation, i. e. what is the approximation ratio?

Define ˛gw as the worst-case ratio of the expected con-
tribution of an edge to the cut, to its contribution to the
objective function of the semidefinite programming relax-
ation. In other words: ˛gw = min0���� 2

�
�

1�cos� . It can

be shown that ˛gw > :87856. Thus, the expected value of
a cut is at least ˛gw � SDPOPT , resulting in an approxima-
tion ratio of at least .87856 for MAX-CUT. The same anal-
ysis applies to weighted graphs with non-negative edge
weights.

This algorithm was de-randomized by Mahajan and
Hariharan [23]. Goemans and Williamson also applied
their random-hyperplane rounding techniques to give im-
proved approximation guarantees for other problems such
as MAX-DICUT and MAX-2SAT.

Integrality Gap and Hardness

Karloff showed that there exist graphs for which the best
hyperplane is only a factor ˛gw of the maximum cut [18],
showing that there are graphs for which the analysis in [11]
is tight. Since the optimal SDP value for such graphs equals
the optimal value of a maximum cut, these graphs can not
be used to demonstrate an integrality gap. However, Feige
and Schechtman showed that there exist graphs for which
the maximum cut is a ˛gw fraction of the SDP bound [9],
thereby establishing that the approximation guarantee of
Goemans and Williamson’s algorithm matches the in-
tegrality gap of their semidefinite programming relax-
ation. Recently, Khot, Kindler, Mossel and O’Donnell [21]
showed that if the Unique Games Conjecture of Khot [20]
is assumed to be true, then it is NP-hard to approximate
MAX-CUT to within any factor larger than ˛gw.

Applications

The work of Goemans and Williamson paved the way
for the further use of semidefinite programming in ap-
proximation algorithms, particularly for graph partition-
ing problems. Methods based on the random-hyperplane
technique have been successfully applied to many op-
timization problems that can be categorized as parti-
tion problems. A few examples are 3-COLORING [17],
MAX-3-CUT [10,12,22], MAX-BISECTION [15], CORRE-
LATION-CLUSTERING [5,32], and SPARSEST-CUT [2]. Ad-
ditionally, some progress has been made in extending
semidefinite programming techniques outside the domain
of graph partitioning to problems such as BETWEEN-
NESS [6], BANDWIDTH [4], and LINEAR EQUATIONS
mod p [1].

Cross References

� Graph Coloring
�Maximum Two-Satisfiability
� Sparsest Cut

492 M Maximum Agreement Subtree (of 2 Binary Trees)

Recommended Reading

1. Andersson, G., Engebretsen, L., Håstad, J.: A new way to use
semidefinite programming with applications to linear equa-
tions mod p. J. Algorithms 39, 162–204 (2001)

2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric em-
beddings and graph partitioning. In: Proceedings of the 36th
Annual Symposium on the Theory of Computing (STOC),
Chicago 2004, pp. 222–231

3. Barahona, F.: On cuts and matchings in planar graphs. Math.
Program. 60, 53–68 (1993)

4. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite re-
laxations for minimum bandwidth and other vertex-ordering
problems. Theor. Comput. Sci. 235, 25–42 (2000)

5. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualita-
tive information. In: Proceedings of the 44th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), Boston
2003, pp. 524–533

6. Chor, B., Sudan, M.: A geometric approach to betweeness.
SIAM J. Discret. Math. 11, 511–523 (1998)

7. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maxi-
mum cut problem. Math. Program. 62, 557–574 (1993)

8. Delorme, C., Poljak, S.: The performance of an eigenvalue
bound in some classes of graphs. Discret. Math. 111, 145–156
(1993). Also appeared in: Proceedings of the Conference on
Combinatorics, Marseille, 1990

9. Feige, U., Schechtman, G.: On the optimality of the random
hyperplane rounding technique for MAX-CUT. Random Struct.
Algorithms 20(3), 403–440 (2002)

10. Frieze, A., Jerrum, M.R.: Improved approximation algorithms
for MAX-k-CUT and MAX BISECTION. Algorithmica 18, 61–77
(1997)

11. Goemans, M.X., Williamson, D.P.: Improved approximation al-
gorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM 42, 1115–1145 (1995)

12. Goemans,M.X., Williamson, D.P.: Approximation algorithms for
MAX-3-CUT and other problems via complex semidefinite pro-
gramming. STOC 2001 Special Issue of J. Comput. Syst. Sci. 68,
442–470 (2004)

13. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoidmethod and
its consequences in combinatorial optimization. Combinator-
ica 1, 169–197 (1981)

14. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms
and Combinatorial Optimization. Springer, Berlin (1988)

15. Halperin, E., Zwick, U.: A unified framework for obtaining
improved approximation algorithms for maximum graph bi-
section problems. Random Struct. Algorithms 20(3), 382–402
(2002)

16. Håstad, J.: Some optimal inapproximability results. J. ACM 48,
798–869 (2001)

17. Karger, D.R., Motwani, R., Sudan, M.: Improved graph color-
ing via semidefinite programming. J. ACM 45(2), 246–265
(1998)

18. Karloff, H.J.: How good is the Goemans-Williamson MAX CUT
algorithm? SIAM J. Comput. 29(1), 336–350 (1999)

19. Karp, R.M.: Reducibility Among Combinatorial Problems. In:
Complexity of Computer Computations, pp. 85–104. Plenum
Press, New York (1972)

20. Khot, S.: On the power of unique 2-prover 1-round games. In:
Proceedings of the 34th Annual Symposium on the Theory of
Computing (STOC), Montreal 2002, pp. 767–775

21. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapprox-
imability results for MAX CUT and other 2-variable CSPs? In:
Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), Rome 2004, pp. 146–154

22. de Klerk, E., Pasechnik, D., Warners, J.: On approximate graph
colouring andMAX-k-CUT algorithms based on the � function.
J. Combin. Optim. 8(3), 267–294 (2004)

23. Mahajan, R., Hariharan, R.: Derandomizing semidefinite pro-
gramming based approximation algorithms. In: Proceedings
of the 36th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), Milwaukee 1995, pp. 162–169

24. Mohar, B., Poljak, S.: Eigenvalues and the max-cut problem.
Czechoslov Math. J. 40(115), 343–352 (1990)

25. Newman, A.: A note on polyhedral relaxations for the maxi-
mum cut problem (2004). Unpublishedmanuscript

26. Poljak, S.: Polyhedral and eigenvalue approximations of the
max-cut problem. Sets, Graphs and Numbers. Colloqiua Math-
ematica Societatis Janos Bolyai 60, 569–581 (1992)

27. Poljak, S., Rendl, F.: Node and edge relaxations of the max-cut
problem. Comput. 52, 123–137 (1994)

28. Poljak, S., Rendl, F.: Nonpolyhedral relaxations of graph-bisec-
tion problems. SIAM J. Opt. 5, 467–487 (1995)

29. Poljak, S., Rendl, F.: Solving themax-cut using eigenvalues. Dis-
cret. Appl. Math. 62(1–3), 249–278 (1995)

30. Poljak, S., Tuza, Z.: Maximum cuts and large bipartite sub-
graphs. DIMACS Ser. Discret. Math. Theor. Comput. Sci. 20,
181–244 (1995)

31. Sahni, S., Gonzalez, T.: P-complete approximation problems.
J. ACM 23(3), 555–565 (1976)

32. Swamy, C.: Correlation clustering: maximizing agreements via
semidefinite programming. In: Proceedings of 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), New
Orleans 2004, pp. 526–527

33. Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, ap-
proximation, and linear programming. SIAM J. Comput. 29(6),
2074–2097 (2000)

MaximumAgreement Subtree
(of 2 Binary Trees)
1996; Cole, Hariharan

RAMESH HARIHARAN
Strand Life Sciences, Bangalore, India

Keywords and Synonyms

Isomorphism; Tree agreement

ProblemDefinition

Consider two rooted trees T1 and T2 with n leaves each.
The internal nodes of each tree have at least two children
each. The leaves in each tree are labeled with the same
set of labels and further, no label occurs more than once

Maximum Agreement Subtree (of 2 Binary Trees) M 493

in a particular tree. An agreement subtree of T1 and T2
is defined as follows. Let L1 be a subset of the leaves of
T1 and let L2 be the subset of those leaves of T2 which
have the same labels as leaves in L1. The subtree of T1 in-
duced by L1 is an agreement subtree of T1 and T2 if and
only if it is isomorphic to the subtree of T2 induced by L2.
The Maximum Agreement Subtree problem (henceforth
calledMAST) asks for the largest agreement subtree of T1
and T2.

The terms induced subtree and isomorphism used
above need to be defined. Intuitively, the subtree of T in-
duced by a subset L of the leaves of T is the topological
subtree of T restricted to the leaves in L, with branching in-
formation relevant to L preserved. More formally, for any
two leaves a b of a tree T, let lcaT (a; b) denote their lowest
common ancestor in T. If a = b, lcaT (a; b) = a. The sub-
tree U of T induced by a subset L of the leaves is the tree
with leaf set L and interior node set flcaT (a; b)ja; b 2 Lg
inheriting the ancestor relation from T, that is, for all
a; b 2 L, lcaU (a; b) = lcaT (a; b).

Intuitively, two trees are isomorphic if the children of
each node in one of the trees can be reordered so that
the leaf labels in each tree occur in the same order and
the shapes of the two trees become identical. Formally,
two trees U1 and U2 with the same leaf labels are said
to be isomorphic if there is a 1–1 mapping � between
their nodes mapping leaves to leaves with the same la-
bels and such that for any two different leaves a b of U1,
�(lcaU1(a; b)) = lcaU2 (�(a); �(b)).

Key Results

Previous Work

Finden and Gordon [8] gave a heuristic algorithm for
the MAST problem on binary trees which had an O(n5)
running time and did not guarantee an optimal so-
lution. Kubicka, Kubicki and McMorris [13] gave an
O(n(:5+�) log n) algorithm for the same problem. The first
polynomial time algorithm for this problem was given
by Steel and Warnow [15]; it had a running time of
O(n2). Steel and Warnow also considered the case of
non-binary and unrooted trees. Their algorithm takes
O(n2) time for fixed degree rooted and unrooted trees
and O(n4:5 log n) for arbitrary degree rooted and un-
rooted trees. They also give a linear reduction from the
rooted to the unrooted case. Farach and Thorup gave an
O(nc

p
log n) time algorithm for theMAST problem on bi-

nary trees; here c is a constant greater than 1. For arbi-
trary degree trees, their algorithm takes O(n2c

p
log n) time

for the unrooted case [6] and O(n1:5 log n) time for the

rooted case [7]. Farach, Przytycka, and Thorup [4] ob-
tained an O(n log3 n) algorithm for the MAST problem
on binary trees. Kao [12] obtained an algorithm for the
same problem which takes O(n log2 n) time. This algo-
rithm takes O(minfnd2 log d log2 n; nd

3
2 log3 ng) for de-

gree d trees.
The MAST problem for more than two trees has also

been studied. Amir and Keselman [1] showed that the
problem is NP-hard for even 3 unbounded degree trees.
However, polynomial bounds are known [1,5] for three or
more bounded degree trees.

Our Contribution

An O(n log n) algorithm for the MAST problem for two
binary trees is presented here. This algorithms is obtained
by improving upon the O(n log3 n) algorithm from [4] (in
fact, the final journal version [3] combines both papers).
The O(n log3 n) algorithm of [4] can be viewed as tak-
ing the following approach (although the authors do not
describe it this way). It identifies two special cases and
then solves the general case by interpolating between these
cases.

Special Case 1: The internal nodes in both trees form
a path. The MAST problem reduces to essentially a size n
Longest Increasing Subsequence Problem in this case. As
is well known, this can be solved in O(n log n) time.

Special Case 2: Both trees T1 and T2 are complete bi-
nary trees. For each node v in T2, only certain nodes u in
T1 can be usefully mapped to v, in the sense that the sub-
tree of T1 rooted at u and the subtree of T2 rooted at v have
a non-empty Agreement Subtree. There are O(n log2 n)
such pairs (u, v). This can be seen as follows. Note that for
(u, v) to be such a pair, the subtree of T1 rooted at u and
the subtree of T2 rooted at vmust have a leaf-label in com-
mon. For each label, there are only O(log2 n) such pairs
obtained by pairing each ancestor of the leaf with this la-
bel in T1 with each ancestor of the leaf with this label in T2.
The total number of interesting pairs is thus O(n log2 n).
For each pair, computing the MAST takes O(1) time, as
it is simply a question of deciding the best way of pairing
their children.

The interpolation process takes a centroid decomposi-
tion of the two trees and compares pairs of centroid paths,
rather than individual nodes as in the complete tree case.
The comparison of a pair of centroid paths requires find-
ing matchings with special properties in appropriately de-
fined bipartite graphs, a non-trivial generalization of the
Longest Increasing Subsequence problem. This process

494 M Maximum Agreement Subtree (of 2 Binary Trees)

creates O(n log2 n) interesting (u, v) pairs, each of which
takes O(log n) time to process.

This work provides two improvements, each of which
gains a log n factor.

Improvement 1: The complete tree special case is im-
proved to O(n log n) time as follows. A pair of nodes (u, v),
u 2 T1, v 2 T2, is said to be interesting if there is an agree-
ment subtree mapping u to v. As is shown below, for com-
plete trees, the total number of interesting pairs (u, v) is
just O(n log n). Consider a node v in T2. Let L2 be the set
of leaves which are descendants of v. Let L1 be the set of
leaves in T1 which have the same labels as the leaves in L2.
The only nodes that may be mapped to v are the nodes u
in the subtree of T1 induced by L1. The number of such
nodes u is O(size of the subtree of T2 rooted at v). The to-
tal number of interesting pairs is thus the sum of the sizes
of all subtrees of T2, which is O(n log n).

This reduces the number of interesting pairs (u, v) to
O(n log n). Again, processing a pair takes O(1) time (this
is less obvious, for identifying the descendants of u which
root the subtrees with which the two subtrees of v can be
matched is non-trivial). Constructing the above induced
subtree itself can be done in O(jL1j) time, as will be de-
tailed later. The basic tool here is to preprocess trees T1
and T2 inO(n) time so that least common ancestor queries
can be answered in O(1) time.

Improvement 2: As in [4], when the trees are not com-
plete binary trees, the algorithm takes centroid paths and
matches pairs of centroid paths. The O(log n) cost that the
algorithm in [4] incurs in processing each such interest-
ing pair of paths arises when there are large (polynomial
in n size) instances of the generalized Longest Increasing
Subsequence Problem. At first sight, it is not clear that
large instances of these problems can be created for suf-
ficiently many of the interesting pairs; unfortunately, this
turns out to be the case. However, these problem instances
still have some useful structure. By using (static) weighted
trees, pairs of interesting vertices are processed in O(1)
time per pair, on the average, as is shown by an appro-
priately parametrized analysis.

The Multiple Degree Case

The techniques can be generalized to higher degree
bounds d > 2, by combining it with techniques from ([6,
Sect. 2]) for unbounded degrees. This appears to yield an
algorithm with running time O(minfn

p
d log2 n; nd log n

log dg). The conjecture, however, is that there is an algo-
rithm with running time O(n

p
d log n).

Applications

Motivation

The MAST problem arises naturally in biology and lin-
guistics as a measure of consistency between two evolu-
tionary trees over species and languages, respectively. An
evolutionary tree for a set of taxa, either species or lan-
guages, is a rooted tree whose leaves represent the taxa and
whose internal nodes represent ancestor information. It is
often difficult to determine the true phylogeny for a set of
taxa, and one way to gain confidence in a particular tree is
to have different lines of evidence supporting that tree. In
the biological taxa case, one may construct trees from dif-
ferent parts of the DNA of the species. These are known as
gene trees. For many reasons, these trees need not entirely
agree, and so one is left with the task of finding a consensus
of the various gene trees. The maximum agreement sub-
tree is one method of arriving at such a consensus. Notice
that a gene is usually a binary tree, since DNA replicates by
a binary branching process. Therefore, the case of binary
trees is of great interest.

Another application arises in automated translation
between two languages [10]. The two trees are the parse
trees for the same meaning sentences in the two lan-
guages. A complication that arises in this application (due
in part to imperfect dictionaries) is that words need not be
uniquely matched, i. e., a word at the leaf of one tree could
match a number (usually small) of words at the leaves of
the other tree. The aim is to find a maximum agreement
subtree; this is done with the goal of improving context-
using dictionaries for automated translation. So long as
each word in one tree has only a constant number of
matches in the other tree (possibly with differing weights),
the algorithm given here can be used and its performance
remains O(n log n). More generally, if there are m word
matches in all, the performance becomesO((m + n) log n).
Note however, that if there are two collections of equal
meaning words in the two trees of sizes k1 and k2 respec-
tively, they induce k1 k2 matches.

Cross References

�Maximum Agreement Subtree (of 3 or More Trees)
�Maximum Agreement Supertree

Recommended Reading

1. Amir, A., Keselman, D.: Maximumagreement subtree in a set of
evolutionary trees. SIAM J. Comput. 26(6), 1656–1669 (1997)

2. Cole, R., Hariharan, R.: An O(n log n) algorithm for the maxi-
mum agreement subtree problem for binary trees. Proc. of the
7th ACM-SIAM SODA, pp. 323–332 (1996)

Maximum Agreement Subtree (of 3 or More Trees) M 495

3. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Tho-
rup, M.: An O(n log n) algorithm for the maximum agreement
subtree problem for binary trees. SIAM J. Comput. 30(5), 1385–
1404 (2000)

4. Farach, M., Przytycka, T., Thorup, M.: Themaximum agreement
subtree problem for binary trees. Proc. of 2nd ESA (1995)

5. Farach, M., Przytycka, T., Thorup, M.: Agreement of many
bounded degree evolutionary trees. Inf. Process. Lett. 55(6),
297–301 (1995)

6. Farach, M., Thorup, M.: Fast comparison of evolutionary trees.
Inf. Comput. 123(1), 29–37 (1995)

7. Farach, M., Thorup, M.: Sparse dynamic programming for
evolutionary-tree comparison. SIAM J. Comput.26(1), 210–230
(1997)

8. Finden, C.R., Gordon, A.D.: Obtaining common pruned trees.
J. Classific. 2, 255–276 (1985)

9. Fredman, M.L.: Two applications of a probabilistic search tech-
nique: sorting X + Y and building balanced search trees. Proc.
of the 7th ACM STOC, pp. 240–244 (1975)

10. Grishman, R., Yangarber, R.: Private Communication. NYU
(1995)

11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest com-
mon ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

12. Kao, M.-Y.: Tree contractions and evolutionary trees. SIAM J.
Comput. 27(6), 1592–1616 (1998)

13. Kubicka, E., Kubicki, G., McMorris, F.R.: An algorithm to find
agreement subtrees. J. Classific. 12, 91–100 (1995)

14. Mehlhorn, K.: A best possible bound for the weighted path
length of binary search trees. SIAM J. Comput. 6(2), 235–239
(1977)

15. Steel, M., Warnow, T.: Kaikoura tree theorems: computing the
maximum agreement subtree. Inf. Process. Lett. 48, 77–82
(1993)

MaximumAgreement Subtree
(of 3 or More Trees)
1995; Farach, Przytycka, Thorup

TERESA M. PRZYTYCKA
Computational Biology Branch, NCBI, NIH,
Bethesda, MD, USA

Keywords and Synonyms

Tree alignment

ProblemDefinition

The Maximum Agreement Subtree problem for k trees (k-
MAST) is a generalization of a similar problem for two
trees (MAST). Consider a tuple of k rooted leaf-labeled
trees (T1; T2 : : : Tk). Let A = fa1; a2; : : : ang be the set of
leaf labels. Any subset B
 A uniquely determines the
so called topological restriction T|B of the three T to B.
Namely, T|B is the topological subtree of T spanned by

all leaves labeled with elements from B and lowest com-
mon ancestors of all pairs of these leaves. In particular,
the ancestor relation in T|B is defined so that it agrees
with the ancestor relation in T. A subset B of A such
T1jB; : : : ; Tk jB are isomorphic is called an agreement set.

Problem 1 (k-MAST)
INPUT: A tuple ET = (T1; : : : ; Tk) of leaf-labeled trees, with
a common set of labels A = fa1; : : : ; ang, such that for each
tree Ti there exists one-to-one mapping between the set of
leaves of that tree and the set of labels A.
OUTPUT: k-MAST(ET) equal to the maximum cardinality
agreement set of ET.

Key Results

In the general setting, k-MAST problem is NP-complete
for k � 3 [1]. Under the assumption that the degree of at
least one of the trees is bounded, Farach et al. proposed an
algorithm leading to the following theorem:

Theorem 1 If the degree of the trees in the tuple ET =
(T1; : : : ; Tk) is bounded by d then the k-MAST(ET) can be
computed in O(kn3 + nd) time.

In what follows, the problem is restricted to finding the
cardinality of the maximum agreement set rather than the
set itself. The extension of this algorithm to an algorithm
that finds the agreement set (and subsequently the agree-
ment subtree) within the same time bounds is relatively
straightforward.

Recall that the classical O(n2) dynamic programming
algorithm for MAST of two binary trees [11] processes all
pairs of internal nodes of the two trees in a bottom up fash-
ion. For each pair of such nodes it computes the MAST
value for the subtrees rooted at this pair. There are O(n2)
pairs of nodes and the MAST value for the subtrees rooted
at a given pair of nodes can be computed in constant time
from MAST values of previously processed pairs of nodes.

To set the stage for the more general case, let k-
MAST(Ev) be the solution to the k-MAST problem for the
subtrees of T1(v1); : : : ; Tk(vk) where Ti (vi) is the subtree
if Ti rooted at vi. If, for all i, ui is a strict ancestor of vi in
Ti then, Ev is dominated by Eu (denoted Ev � Eu).

A naive extension of the algorithm for two trees to
an algorithm for k trees would require computing k-
MAST(Ev) for all possible tuples Ev by processing these tu-
ples in the order consistent with the domination rela-
tion. The basic idea that allows to avoid ˝(nk) complex-
ity is to replace the computation of k-MAST(Ev) with the
computation of a related value, mast(Ev), defined to be
the size of the maximum agreement set for the subtrees

496 M Maximum Agreement Subtree (of 3 or More Trees)

of (T1; : : : ; Tk) rooted at (v1; : : : vk) subject to the addi-
tional restriction that the agreement subtrees themselves
are rooted at v1; : : : vk respectively. Clearly

k-MAST(T1; : : : ; Tk) = max
Ev

mast(Ev) :

The benefit of computing mast rather than k-MAST fol-
lows from the fact that most of mast values are zero and
it is possible to identify (very efficiently) Ev with non-zero
mast values.

Remark 1 If mast(Ev) > 0 then Ev = (lcaT
1
(a; b); : : :

lcaT
k
(a; b)) for some leaf labels a, bwhere lcaT

i
(a; b) is the

lowest common ancestor of leaves labeled by a and b in the
tree Ti.

A tuple Ev such that Ev = (lcaT
1
(a; b); : : : lcaT

k
(a; b)) for

some a; b 2 A is called an lca-tuple. By Remark 1 it suf-
fices to compute mast values for the lca-tuples only. Just
like in the naive approach, mast(Ev) is computed from mast
values of other lca-tuples dominated by Ev. Another impor-
tant observation is that only some lca-tuples dominated by
Ev are needed to compute mast(Ev). To capture this, Farach
et al. define the so called proper domination relation (in-
troduced formally below) and show that the mast value for
any lca-tuple Ev can be computed from mast values of lca-
tuples properly dominated by Ev and that the proper domi-
nation relation has size O(n3).

Proper Domination Relation

Index the children of each internal node of any tree in
an arbitrary way. Given a pair Ev; Ew of lca-tuples such that
Ew � Ev the corresponding domination relation has asso-
ciated with it direction Eı Ew�Ev = (ı1; : : : ; ık) where wi de-
scends from the child of vi indexed with ıi. Let vi(j)
be the child of vi with index j. The direction domi-
nation is termed active is if the subtrees rooted at the
v1(ı1); : : : ; vk(ık) have at least one leaf label in common.
Note that each leaf label can witness only one active di-
rection, and consequently each lca-tuple can have at most
n active domination directions. Two directions Eı Ew�Ev and
EıEu�Ev are called compatible if and only if the direction vec-
tors differ in all coordinates.

Definition 1 Ev properly denominates Eu (denoted Eu < Ev)
if Ev dominates Eu along an active direction Eı and there ex-
ists another tuple Ew which is also dominated by Ev along an
active direction Eı? compatible with ı.

From the definition of proper domination and from the
fact that each leaf label can witness only one active domi-
nation direction, the following observations can be made:

Remark 2 The strong domination relation< on lca-tuples
has sizeO(n3). Furthermore, the relation can be computed
in O(kn3) time.

Remark 3 For any lca-tuple Ev, if mast(Ev) > 0 then either
Ev is an lca-tuple composed of leaves with the same label or
Ev properly dominates some lca-tuple.

It remains to show how the values mast(Ev) are computed.
For each lca-tuple Ev, the so called compatibility graphG(Ev)
is constructed. The nodes of G(Ev) are active directions
from Ev and there is an edge between two such nodes if and
only if corresponding directions are compatible. The ver-
tices of G(Ev) are weighted and the weight of a vertex cor-
responding to an active direction Eı equals the maximum
mast value of a lca-tuple dominated by Ev along the this di-
rection. Let MWC(G(Ev)) be the maximum weight clique
in G(Ev).

The bottom-up algorithm for computing non-zero
mast values based on the following recursive dependency
whose correctness follows immediately from the corre-
sponding definitions and Remark 3:

Lemma 2 For any lca-tuple Ev

mast(Ev) = max

(
1 if all elemets of Ev are leaves
MWC(G(Ev)) otherwise

: (1)

The final step is to demonstrate that once the lca-tuples
and the strong domination relation is pre-computed, the
computation all non-zero mast values can be preformed in
O(nd) time. This is done by generating all possible cliques
for all G(Ev). Using the fact that the degree of at least one
tree is bounded by d one can show that all the cliques can
be generated in O(

P
l�d

�n
l
�
) = O(d3(ne/d)d) time and

that there is O(d(ne/d)d) of them [6].

Applications

The k-MAST problem is motivated by the need to com-
pare evolutionary trees. Recent advances in experimental
techniques in molecular biology provide diverse data that
can be used to construct evolutionary trees. This diver-
sity of data combined with the diversity of methods used
to construct evolutionary trees often leads to the situa-
tion when the evolution of the same set of species is ex-
plained by different evolutionary trees. Maximum Agree-
ment Subtree problem has emerged as a measure of the
agreement between such trees and as a method to identify
subtree which is common for these trees. The problem was
first defined by Finden and Gordon in the context of two

Maximum Agreement Supertree M 497

binary trees [7]. These authors also gave a heuristic algo-
rithm to solve the problem. The O(n2) dynamic program-
ming algorithm for computing MAST values for two bi-
nary trees has been given in [11]. Subsequently, a number
of improvements leading to fast algorithms for computing
MAST value of two trees under various assumption about
rooting and tree degrees [5,10,8] and references therein.

The MAST problem for three or more unbounded de-
gree trees is NP-complete [1]. Amir and Keselman report
an O(knd+1 + n2d) time algorithm for the agreement of
k bounded degree trees. The work described here provides
a O(kn3 + nd) for the case where the number of trees is k
and the degree of at least one tree is bounded by d. For
d = 2 the complexity of the algorithm is dominated by the
first term. AnO(kn3) algorithm for this case was also given
by Bryant [4] and O(n2 logk�1 n) implementation of this
algorithm was proposed in [9].

k-MAST problem is fixed parameter tractable in p,
the smallest number of leafs labels such that removal of
the corresponding leaves produces agreement (see [3] and
references therein). Approximability of the MAST and
related problem has been studied in [2] and references
therein.

Cross References

�Maximum Agreement Subtree (of 2 Binary Trees)
�Maximum Agreement Supertree
�Maximum Compatible Tree

Acknowledgments

This work was supported by the Intramural Research Program of the
National Instituts of Health, National Library of Medicine.

Recommended Reading
1. Amir, A., Keselman, D.: Maximum agreement subtree in a set

of evolutionary trees: Metrics and efficient algorithms. SIAM J.
Comput. 26(6), 1656–1669 (1997)

2. Berry, V., Guillemot, S., Nicolas, F., Paul, C.: On the approxima-
tion of computing evolutionary trees. In: COCOON, pp. 115–
125. (2005)

3. Berry, V., Nicolas, F.: Improved parameterized complexity of
the maximum agreement subtree and maximum compatible
tree problems. IEEE/ACM Trans. Comput. Biology Bioinform.
3(3), 289–302 (2006)

4. Bryand, D.: Building trees, hunting for trees, and comparing
trees: theory and methods in phylogenetic analysis. In: Ph. D.
thesis, Dept. Math., University of Canterbury (1997)

5. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup,
M.: An o(n log n) algorithm for the maximum agreement sub-
tree problem for binary trees. SIAM J. Comput., pp. 1385–1404.
(2001)

6. Farach, M., Przytycka, T.M., Thorup, M.: On the agreement of
many trees. Inf. Process. Lett. 55(6), 297–301 (1995)

7. Finden, C.R., Gordon, A.D.: Obtaining common pruned trees.
J. Classific. 2, 255–276 (1985)

8. Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: An even faster
and more unifying algorithm for comparing trees via unbal-
anced bipartitematchings. J. Algorithms40(2), 212–233 (2001)

9. Lee, C.-M., Hung, L.-J., Chang, M.-S., Tang, C.-Y.: An improved
algorithm for themaximumagreement subtree problem. BIBE,
p. 533 (2004)

10. Przytycka, T.M.: Transforming rooted agreement into unrooted
agreement. J. Comput. Biol. 5(2), 335–349 (1998)

11. Steel, M.A., Warnow, T.: Kaikoura tree theorems: Computing
the maximum agreement subtree. Inf. Process. Lett. 48(2), 77–
82 (1993)

MaximumAgreement Supertree
2005; Jansson, Ng, Sadakane, Sung

WING-KIN SUNG
Department of Computer Science, National University
of Singapore, Singapore, Singapore

ProblemDefinition

Let T be a tree whose leaves are distinctly labeled by a set
of taxa S. By distinctly labeled, we mean that no two leaves
in T have the same label. Given a subset S0 of S, the topo-
logical restriction of T to S0 (denoted by TjS0) is the tree
obtained by deleting from T all nodes which are not on
any path from the root to a leaf in S0 along with their
incident edges, and then contracting every edge between
a node having just one child and its child (see Fig. 1). For
any tree T, denote its set of leaves by�(T).

Maximum Agreement Supertree, Figure 1
Let T be the tree on the left. Then Tjfa; c;dg is the tree shown on
the right

498 M Maximum Agreement Supertree

The maximum agreement supertree problem (MASP)
[8] is defined as follows.

Problem 1 Let D = fT1; T2; : : : ; Tkg be a set of rooted, un-
ordered trees, where each Ti is distinctly leaf-labeled and
where the sets �(Ti) may overlap. The maximum agree-
ment supertree problem (MASP) is to construct a distinctly
leaf-labeled tree Q with leaf set�(Q)

S
Ti2D �(Ti) such

that j�(Q)j is maximized and for each Ti 2 D, the topolog-
ical restriction of Ti to�(Q) is isomorphic to the topological
restriction of Q to �(Ti).

Below discussion uses the following notations: n =ˇ̌S
Ti2D �(Ti)

ˇ̌
, k = jDj, and D = maxTi2D

˚
deg(Ti)

�
where deg(Ti) is the degree of Ti.

Key Results

The following lemma gives the relationship between the
maximum agreement supertree problem and the maxi-
mum agreement subtree problem.

Lemma 1 ([8]) For any set D = fT1; T2; : : : ; Tkg of
distinctly leaf-labeled, rooted, unordered trees such that
�(T1) = �(T2) = : : : = �(Tk), an optimal solution to
MASP for D is an optimal solution to MAST for D and vice
versa.

The above lemma implies the following theorem for com-
puting the maximum agreement supertree for two trees.

Theorem 2 ([8]) When k = 2 (there are two trees),
the maximum agreement supertree can be found in
O(TMAST + n) time where TMAST is the time required for
computing maximum agreement subtree of two O(n)-leaf
trees. Note that TMAST = O

�p
Dn log(2n/D)

�
(see [9]).

[1] generalized Theorem2 and gave the following solution.

Theorem 3 ([1]) For any fixed k > 2, if every leaf in
D appears in either 1 or k trees, the maximum agree-
ment supertree can be found in O(T 0MAST + kn) time where
T 0MAST is the time required for computing maximum agree-
ment subtree of k trees leaf-labeled by

T
Ti2D �(Ti). Note

that T 0MAST = O(km3 + mD) where n =
ˇ̌T

Ti2D �(Ti)
ˇ̌

(see [4]).

In general, the following two theorems showed that the
maximum agreement supertree problem is NP-hard.

Theorem 4 ([8,1]) For any fixed k � 3, MASP with un-
restricted D is NP-hard. Even stronger, MASP is still NP-
hard even if restricted to rooted triplets. (A rooted triplet is
a distinctly leaf-labeled, binary, rooted, unordered tree with
three leaves.)

Theorem 5 ([1]) MASP cannot be approximated in poly-
nomial time within a constant factor, unless P = NP.

Though theMASP problem is NP-hard, approximation al-
gorithm for this problem exists.

Theorem 6 ([8]) MASP can be approximated within
a factor of n

log n in O(n2) � min
˚
O(k � (log log n)2); O(k +

log n � log log n)
�

time. MASP restricted to rooted
triplets can be approximated within a factor of n

log n in
O(k + n2 log2 n) time.

Fixed parameter polynomial time algorithms for comput-
ing MASP also exist. For the case where a set of k bi-
nary trees T labeled by n distinct labels is given, a num-
ber of works have been done. Jansson et al.[8] first gave
an O(k(2n2)3k2)-time algorithm to compute the MASP of
T . Recently, Guillemot and Berry [5] improved the time
complexity to O((8n)k). Hoang and Sung [7] further im-
proved the time complexity to O((6n)k) as summarized by
Theorem 7.

Theorem 7 ([7]) Given a set of k binary trees T which
are labeled by n distinct labels, their maximum agreement
supertree can be computed in O((6n)k) time.

For the case where a set of k trees T are of degree D and
are labeled by n distinct labels, Hoang and Sung [7] gave
the following fixed-parameter polynomial time solution to
compute the MASP of T .

Theorem 8 ([7]) Given a set of k trees T of degree D which
are labeled by n distinct labels, their maximum agreement
supertree can be computed in O((kD)kD+3(2n)k) time.

Applications

An important objective in phylogenetics is to develop good
methods for merging a collection of phylogenetic trees on
overlapping sets of taxa into a single supertree so that no
(or as little as possible) branching information is lost. Ide-
ally, the resulting supertree can then be used to deduce
evolutionary relationships between taxa which do not oc-
cur together in any one of the input trees. Supertree meth-
ods are useful because most individual studies investigate
relatively few taxa [11] and because sample bias leads to
certain taxa being studiedmuchmore frequently than oth-
ers [2]. Also, supertree methods can combine trees con-
structed for different types of data or under different mod-
els of evolution. Furthermore, although computationally
expensive methods for constructing reliable phylogenetic
trees are infeasible for large sets of taxa, they can be ap-
plied to obtain highly accurate trees for smaller, overlap-
ping subsets of the taxa which may then be merged using

Maximum Compatible Tree M 499

computationally less intense, supertree-based techniques
(see, e. g., [3,6,10]).

Since the set of trees which is to be combined may
in practice contain contradictory branching structure (for
example, if the trees have been constructed from data orig-
inating from different genes or if the experimental data
contains errors), a supertree method needs to specify how
to resolve conflicts. One intuitive idea is to identify and
remove a smallest possible subset of the taxa so that the
remaining taxa can be combined without conflicts. In this
way, one would get an indication of which ancestral re-
lationships can be regarded as resolved and which taxa
need to be subjected to further experiments. The above
biological problem can be formalized as a computational
problem called the maximum agreement supertree prob-
lem (MASP).

A related problem is the maximum compatible su-
pertree problem (MCSP) [1], which is defined as follows.

Problem 2 Let D = fT1; T2; : : : ; Tkg be a set of rooted, un-
ordered trees, where each Ti is distinctly leaf-labeled and
where the sets �(Ti) may overlap. The maximum compat-
ible supertree problem (MCSP) is to construct a distinctly
leaf-labeled tree Q with leaf set�(Q)

S
Ti2D �(Ti) such

that j�(Q)j is maximized and for each Ti 2 D, The topo-
logical restriction Qi

0 of Q to �(Ti) refines the topological
restriction Ti

0 of Ti, that is, Ti
0 can be obtained by collaps-

ing certain edges of Qi
0.

Open Problems

The current fixed parameter polynomial time algorithms
for MASP are not practical. It is important to provide
heuristics or to further improve the time complexity of
current fixed-parameter polynomial time algorithms.

Cross References

�Maximum Agreement Subtree (of 2 Binary Trees)
�Maximum Agreement Subtree (of 3 or More Trees)
�Maximum Compatible Tree

Recommended Reading
1. Berry, V., Nicolas, F.: Maximum agreement and compatible su-

pertrees. J. Discret. Algorithms (2006)
2. Bininda-Emonds, O., Gittleman, J., Steel, M.: The (super)tree of

life: Procedures, problems, and prospects. Ann. Rev. Ecol. Sys-
tem. 33, 265–289 (2002)

3. Chor, B., Hendy, M., Penny, D.: Analytic solutions for three-
taxon MLMC trees with variable rates across sites. In: Proceed-
ings of the 1st Workshop on Algorithms in Bioinformatics
(WABI 2001). Lecture Notes in Computer Science, vol. 2149,
pp. 204–213. Springer (2001)

4. Farach, M., Przytycka, T., Thorup, M.: On the agreement of
many trees. Information Process. Lett. 55, 297–301 (1995)

5. Guillemot, S., Berry, V.: Fixed-parameter tractability of themax-
imum agreement supertrees. In: Proceedings of the 18th An-
nual Symposium on Combinatorial Pattern Matching (CPM
2007). Lecture Notes in Computer Science. Springer, (2007)

6. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from
homeomorphic subtrees, with applications to computational
evolutionary biology. Algorithmica 24(1), 1–13 (1999)

7. Hoang, V.T., Sung, W.K.: Fixed Parameter Polynomial Time
Algorithms for Maximum Agreement and Compatible Su-
pertrees. In: Albers, S., Weil, P., 25th International Symposium
on Theoretical Aspects of Computer Science (STACS 2008).
Dagstuhl, Germany (2007)

8. Jansson, J., Joseph, H., Ng, K., Sadakane, K., Sung, W.-K.: Rooted
maximum agreement supertrees. Algorithmica43(4), 293–307
(2005)

9. Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: An even faster
and more unifying algorithm for comparing trees via unbal-
anced bipartitematchings. J. Algorithms40(2), 212–233 (2001)

10. Kearney, P.: Phylogenetics and the quartet method. In: Jiang,
T., Xu, Y., Zhang, M.Q. (eds.) Current Topics in Computational
Molecular Biology. The MIT Press, Massachusetts, pp. 111–133
(2002)

11. Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees:
assembling the trees of life. TRENDS in Ecology & Evolution,
13(3), 105–109 (1998)

MaximumCompatible Tree
2001; Ganapathy, Warnow

VINCENT BERRY
LIRMM, University of Montpellier, Montpellier, France

Keywords and Synonyms

Maximum refinement subtree (MRST)

ProblemDefinition

This problem is a pattern matching problem on leaf-
labeled trees. Each input tree is considered as a branching
pattern inducing specific groups of leaves.Given a tree col-
lection with identical leaf sets, the goal is to find a largest
subset of leaves on the branching pattern of which the in-
put trees do not disagree. A maximum compatible tree is
a tree with such a leaf-set and with the branching pat-
terns of the input trees for these leaves. The Maximum
Compatible Tree problem (MCT) is to find such a tree
or, equivalently, its leaf set. The main motivation for this
problem is in phylogenetics, to measure the similarity be-
tween evolutionary trees, or to represent a consensus of
a set of trees. The problem was introduced in [9] and [10],
under the MRST acronym. Previous related works con-
cern the well-known Maximum Agreement Subtree prob-

500 M Maximum Compatible Tree

Maximum Compatible Tree, Figure 1
Three unrooted trees. A tree T, a tree T0 such that T0 = T jfa; c; eg and a tree T00 such that T00 D T

lem (MAST). Solving MAST is finding a largest subset of
leaves on which all input trees exactly agree. More pre-
cisely, MAST seeks a tree whose branching information
is isomorphic to that of a subtree in each of the input
trees, while MCT seeks a tree that contains the branch-
ing information (i. e. groups) of a subtree of each input
tree. This difference allows the tree obtained for MCT to
be more informative, as it can include branching informa-
tion present in one input tree but not in the others, as long
as this information is compatible with them. Both prob-
lems are equivalent when all input trees are binary. Gana-
pathy and Warnow [5] were the first to give an algorithm
to solve MCT in its general form. Their algorithm relies
on a simple dynamic programming approach similar to
a work on MAST [12] and has a running time exponential
in the number of input trees and in the maximum degree
of a node in the input trees. Later, [2] proposed a fixed-
parameter algorithm using one parameter only. Approx-
imation results have also been obtained [1,6], the result
being low-cost polynomial-time algorithms that approxi-
mate the complement ofMCTwithin a constant threshold.

Notations Trees considered here are evolutionary trees
(phylogenies). Such a tree T has its leaf set L(T) in bijection
with a label set and is either rooted, in which case all inter-
nal nodes have at least two children each, or unrooted, in
which case internal nodes have a degree of at least three.
The size of |T| of a tree T is the number of its leaves. Given
a set L of labels and a tree T, the restriction of T to L, de-
noted T|L, is the tree obtained in the following way: take
the smallest induced subgraph of T connecting leaves with
labels in L \ L(T), then remove any degree two (non-root)
node to make the tree homeomorphically irreducible. Two
trees T, T0 are isomorphic, denoted T = T 0, if and only if
there is a graph isomorphism T 7! T 0 preserving leaf la-
bels (and the root if both trees are rooted). A tree T refines
a tree T0, denoted T D T 0, wheneverT can be transformed
into T0 by collapsing some of its internal edges (collapsing
an edge means removing it and merging its extremities).
See Fig. 1 for examples of these relations between trees.

Note that a tree T properly refining another tree T0, agrees
with the entire evolutionary history of T0, while containing
additional information absent from T0: at least one high
degree node of T0 is replaced in T by several nodes of lesser
degree, hence T contains more speciation events than T0.
Given a collectionT = fT1; T2; : : : ; Tkg of input trees with
identical leaf sets L, a tree T with leaves in L is said to be
compatible with T if and only if 8Ti 2 T , T D Ti jL(T).
If there is a tree T compatible with T such that L(T) = L,
then the collection T is said to be compatible. Knowing
whether a collection is compatible is a problem for which
linear-time algorithms have been known for a long time
e. g. [8]. The MAXIMUM COMPATIBLE TREE problem is
a natural optimization version of this problem to deal with
incompatible collections of trees.

Problem 1 (MAXIMUM COMPATIBLE TREE – MCT)
Input: A collection T of trees with the same leaf sets.
Output: A tree compatible with T having the largest num-
ber of leaves. Such a tree is denotedMCT(T).

See Fig. 2 for an example. Note that 8T ; jMCT(T)j �
jMAST(T)j and that MCT is equivalent to MAST when
input trees are binary. Note also that instances ofMCT and
MAST can have several optimum solutions.

Maximum Compatible Tree, Figure 2
An incompatible collection of two input trees fT1; T2g and their
maximum compatible tree, T = MCT(T1; T2). Removing the leaf
d renders the input trees compatible, hence L(T) = fa;b; c; eg.
Here, T strictly refines T2 restricted to L(T), which is expressed
by the fact that a node in T2 (the grey one) has its child subtrees
distributed between several connected nodes of T (grey nodes).
Note also that here jMCT(T1; T2)j > jMAST(T1; T2)j

Maximum Compatible Tree M 501

Key Results

Exact Algorithms

The MCT problem was shown to be NP-hard on 6 trees
in [9], then on 2 trees in [10]. The NP-hardness holds
as long as one of the input trees is not of bounded de-
gree. For two bounded-degree trees, Hein et al. mention
a polynomial-time algorithm based on aligning trees [10].
The work of Ganapathy and Warnow [5] proposed an ex-
ponential algorithm for solving MCT in the general case.
Given two trees T1,T2, they show how to compute a bi-
nary MCT of any pair of subtrees (S1 2 T1; S2 2 T2) by
dynamic programming. Subtrees whose root is of high de-
gree are handled by considering every possible partition of
the roots’s children in two sets. This leads the complex-
ity bound to have a term exponential in d, the maximum
degree of a node in the input trees. When dealing with k
input trees, k-tuples of subtrees are considered, and the si-
multaneous bipartitions of the roots’s children for k sub-
trees are considered. Hence, the complexity bound is also
exponential in k.

Theorem 1 ([5]) Let L be a set of n leaves. TheMCT prob-
lem for a collection of k rooted trees on L in which each tree
has degree at most d + 1, can be solved in O(22kdnk) time.

The result easily extends to unrooted trees by considering
each of the n leaves in turn as a possible root for all trees of
the collection.

Theorem 2 ([5]) Given a collection of k unrooted trees
with degree at most d + 1 on an n-leaf set, the MCT prob-
lem can be solved in O(22kd nk+1).

Let T be a collection on a leaf-set L, [2] considered the
following decision problem, denoted MCTp: given T and
p 2 [0; n], does jMCT(T)j � n � p?

Theorem 3 ([2])
1. MCTp on rooted trees can be solved in O(minf3pkn;

2:27p + kn3g) time.
2. MCTp on unrooted trees can be solved in O

�
(p + 1) �

minf3pkn; 2:27p + kn3g
�
time.

The 3pkn term comes from an algorithm that first locates
in O(kn) time a 3-leaf set S on which the input trees
conflict, then recursively obtains a maximum compatible
tree T1, resp. T2, T3 for each of the three collections T1,
resp. T2;T3 obtained by removing from the input trees
a leaf in S, and last returning the Ti such that |Ti| is max-
imum (for i 2 [1; 3]). The 2:27p + kn3 term comes from
an algorithm reducting MCT to 3-HITTING SET. Negative
results have been obtained by Guillemot and Nicolas con-
cerning the fixed-parameter tractability of MCT wrt the
maximum degreeD of the input trees.

Theorem 4 ([7])
1. MCT is W[1]-hard with respect to D.
2. MCT can not be solved in O(No(2D/2)) time unless SNP

 SE, where N denotes the input length, i. e. N = O(kn).

The MCT problem also admits a variant that deals with
supertrees, i. e. trees having different (but overlapping) sets
of leaves. The resulting problem isW[2]-hard with respect
to p [3].

Approximation Algorithms

The idea of locating and then eliminating successively all
the conflicts between the input trees has also led to ap-
proximation algorithms for the complement version of the
MCT problem, denotedCMCT. Let L be the leaf set of each
tree in an input collection T , CMCT aims at selecting the
smallest number of leaves S
 L such that the collection
fTi j(L � S) : Ti 2 T g is compatible.

Theorem 5 ([6]) Given a collection T of k rooted trees
on an n-leaf set L, there is a 3-approximation algorithm for
CMCT that runs in O(k2n2) time.

The running time of this algorithm was later improved:

Theorem 6 ([1]) There is an O(kn + n2) time 3-approxi-
mation algorithm forCMCT on a collection of k rooted trees
with n leaves.

Note also that working on rooted or unrooted trees does
not change the achievable approximation threshold for
CMCT [1].

Applications

In bioinformatics, the MCT problem (and similarly
MAST) is used to reach different practical goals. The
first motivation is to measure the similarity of a set
of trees. These trees can represent RNA secondary
structures [10,11] or estimates of a phylogeny inferred
from different datasets composed of molecular sequences
(e. g. genes) [13]. The gap between the size of a maximum
compatible tree and the number of input leaves indicates
the degree of disimilarity of the input trees. Concerning
the phylogenetic applications, quite often some edges of
the trees inferred from the datasets have been collapsed
due to insufficient statistical support, resulting in some
higher-degree nodes in the trees considered. Each such
node does not indicate a multi-speciation event but rather
the uncertainty with respect to the branching pattern to be
chosen for its child subtrees. In such a situation, the MCT
problem is to be preferred to MAST, as it correctly han-
dles high degree nodes, enabling them to be resolved ac-
cording to branching information present in other input

502 M Maximum-Density Segment

trees. As a result, more leaves are conserved in the output
tree, hence a larger degree of similarity is detected between
the input trees. Note also that a low similarity value be-
tween the input trees can be due to horizontal gene trans-
fers. When these events are not too numerous, identifying
species subject to such effects is done by first suspecting
leaves discarded from a maximum compatible tree.

The shape of a maximum compatible tree, i. e. not just
its size, also has an application in systematic biology to ob-
tain a consensus of a set of phylogenies that are optimal for
some tree-building criterion. For instance, the maximum
parsimony and maximum likelihood criteria can provide
several dozens (sometimes hundreds) of optimal or near-
optimal trees. In practice, these trees are first grouped into
islands of neighboring trees, and a consensus tree is ob-
tained for each island by resorting to a classical consensus
treemethod, e. g. themajority-rule or strict consensus. The
trees representing the islands form a collection of which
a consensus is then sought. However, consensus methods
keeping all input leaves tend to create trees that lack of res-
olution. An alternative approach lies in proposing a rep-
resentative tree that contains a largest possible subset of
leaves on the position of which the trees of the collection
agree. Again, MCT is more suited thanMAST as the input
trees can contain some high-degree nodes, with the same
meaning as discussed above.

Open Problems

A direction for future work is to examine the variant of
MCT where some leaves are imposed in the output tree.
This question arises when a biologist wants to ensure that
the species central to his study are contained in the output
tree. For MAST on two trees, this constrained variant of
the problem was shown in a natural way to be of the same
complexity as the standart version [4]. For MCT however,
such a constraint can lead to several optimization prob-
lems that need to be sorted out. Another important work
to be done is a set of experiments to measure the range of
parameters for which the algorithms proposed to solve or
approximate MCT are useful.

URL to Code

A beta-version of a Perl program can be asked to the au-
thor of this entry.

Cross References

�Maximum Agreement Subtree (of 2 Binary Trees)
�Maximum Agreement Subtree (of 3 or More Trees)

Recommended Reading

1. Berry, V., Guillemot, S., Nicolas, F., Paul, C.: On the approx-
imation of computing evolutionary trees. In: Wang, L. (ed.)
Proc. of the 11th Annual International Conference on Com-
puting and Combinatorics (COCOON’05). LNCS, vol. 3595,
pp. 115–125. Springer, Berlin (2005)

2. Berry, V., Nicolas, F.: Improved parametrized complexity of
the maximum agreement subtree and maximum compatible
tree problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(3),
289–302 (2006)

3. Berry, V., Nicolas, F.: Maximum agreement and compatible su-
pertrees. J. Discret. Algorithms. Algorithmica, Springer, New
York (2008)

4. Berry, V., Peng, Z.S., Ting, H.-F.: From constrained to uncon-
strainedmaximum agreement subtree in linear time. Algorith-
mica, to appear (2006)

5. Ganapathy, G., Warnow, T.J.: Finding a maximum compatible
tree for a bounded number of trees with bounded degree is
solvable in polynomial time. In: Gascuel, O., Moret, B.M.E. (eds.)
Proc. of the 1st International Workshop on Algorithms in Bioin-
formatics (WABI’01), pp. 156–163 (2001)

6. Ganapathy, G., Warnow, T.J.: Approximating the complement
of the maximum compatible subset of leaves of k trees. In:
Proc. of the 5th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization (APPROX’02), LCNS,
vol. 2462, pp. 122–134., Springer, Berlin (2002)

7. Guillemot, S., Nicolas, F.: Solving the maximum agreement
subtree and themaximum compatible tree problems onmany
bounded degree trees. In: Lewenshtein, M., Valiente, G. (eds.)
Proc. of the 17th Combinatorial Pattern Matching Symposium
(CPM’06). LNCS, vol. 4009, pp. 165–176. Springer, Berlin (2006)

8. Gusfield, D.: Efficient algorithms for inferring evolutionary
trees. Networks 21, 19–28 (1991)

9. Hamel, A.M., Steel, M.A.: Finding a maximum compatible tree
is NP-hard for sequences and trees. Appl. Math. Lett. 9(2),
55–59 (1996)

10. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of
comparing evolutionary trees. Discrete Appl. Math. 71(1–3),
153–169 (1996)

11. Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alterna-
tive to tree edit. Theor. Comput. Sci. 143(1), 137–148 (1995)

12. Steel, M.A., Warnow, T.J.: Kaikoura tree theorems: Computing
the maximum agreement subtree. Inform. Process. Lett. 48(2),
77–82 (1993)

13. Swofford, D.L., Olsen, G.J., Wadell, P.J., Hillis, D.M.: Phyloge-
netic inference. In: Hillis, D.M., Moritz, D.M., Mable, B.K. (eds.)
Molecular systematics, 2nd edn. pp. 407–514. Sunderland, USA
(1996)

Maximum-Density Segment
1994; Huang

KUN-MAO CHAO
Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan

Maximum-Density Segment M 503

Keywords and Synonyms

Maximum-average segment

ProblemDefinition

Given a sequence of numbers, A = ha1; a2; : : : ; ani, and
two positive integers L, U, where 1 � L � U � n, the
maximum-density segment problem is to find a consec-
utive subsequence, i. e. a segment or substring, of A with
length at least L and at most U such that the average value
of the numbers in the subsequence is maximized.

Key Results

If there is no length constraint, then obviously the
maximum-density segment is the maximum number in
the sequence. Let’s first consider the problem where only
the length lower bound L is imposed. By observing that
the length of the shortest maximum-density segment with
length at least L is at most 2L � 1, Huang [7] gave an
O(nL)-time algorithm. Lin et al. [10] proposed a new tech-
nique, called the right-skew decomposition, to partition
each suffix of A into right-skew segments of strictly de-
creasing averages. The right-skew decomposition can be
done in O(n) time, and it can answer, for each position
i, a consecutive subsequence of A starting at that position
such that the average value of the numbers in the subse-
quence is maximized. On the basis of the right-skew de-
composition, Lin et al. [10] devised an O(n log L)-time al-
gorithm for the maximum-density segment problem with
a lower bound L, which was improved to O(n) time by
Goldwasser et al. [6]. Kim [8] gave another O(n)-time al-
gorithm by reducing the problem to the maximum-slope
problem in computation geometry. As for the problem
which takes both L and U into consideration, Chung and
Lu [4] bypassed the construction of the right-skew decom-
position and gave an O(n)-time algorithm.

It should be noted that a closely related problem
in data mining, which basically deals with a binary se-
quence, was independently formulated and studied by
Fukuda et al. [5].

An Extension to Multiple Segments

Given a sequence of numbers, A = ha1; a2; : : : ; ani, and
two positive integers L and k, where k � n

L , let d(A[i; j])
denote the density of segment A[i; j], defined as (ai +
ai+1 + � � � + a j)/(j � i + 1). The problem is to find k
disjoint segments fs1; s2; : : : ; skg of A, each has a length
of at least L, such that

P
1�i�k d(si) is maximized.

Chen et al. [3] proposed an O(nkL)-time algorithm and
an improved O(nL + k2L2)-time algorithm was given by

Bergkvist and Damaschke [2]. Liu and Chao [11] gave an
O(n + k2L log L)-time algorithm.

Applications

In all organisms, the GC base composition of DNA varies
between 25–75%, with the greatest variation in bacteria.
Mammalian genomes typically have a GC content of 45–
50%. Nekrutenko and Li [12] showed that the extent of
the compositional heterogeneity in a genomic sequence
strongly correlates with its GC content. Genes are found
predominantly in the GC-richest isochore classes. Hence,
finding GC-rich regions is an important problem in gene
recognition and comparative genomics.

Given a DNA sequence, one would attempt to find
segments of length at least L with the highest C+G ratio.
Specifically, each of nucleotides C andG is assigned a score
of 1, and each of nucleotides A and T is assigned a score
of 0.

DNA sequence: ATGACTCGAGCTCGTCA
Binary sequence: 00101011011011010

The maximum-average segments of the binary sequence
correspond to those segments with the highest GC ratio in
the DNA sequence. Readers can refer to [1,9,10,13,14,15]
for more applications.

Open Problems

The best asymptotic time bound of the algorithms for
the multiple maximum-density segments problem is
O(n + k2L log L). Can this problem be solved in O(n)
time?

Cross References

�Maximum-scoring Segment with Length Restrictions

Recommended Reading

1. Arslan A., Eğecioğlu, Ö, Pevzner, P.: A new approach to se-
quence comparison: normalized sequence alignment. Bioin-
formatics 17, 327–337 (2001)

2. Bergkvist, A., Damaschke, P.: Fast algorithms for finding dis-
joint subsequences with extremal densities. In: Proceedings of
the 16th Annual International Symposium on Algorithms and
Computation. LNCS, vol. 3827, pp. 714–723 (2005)

3. Chen, Y.H., Lu, H.I., Tang, C.Y.: Disjoint segments with maxi-
mum density. In: Proceedings of the 5th Annual International
Conference on Computational Science, pp. 845–850 (2005)

4. Chung, K.-M., Lu, H.-I.: An optimal algorithm for themaximum-
density segment problem. SIAM. J. Comput. 34, 373–387
(2004)

504 M MaximumMatching

5. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Mining
Optimized Association Rules for Numeric Attributes. J. Com-
put. Syst. Sci. 58, 1–12 (1999)

6. Goldwasser, M.H., Kao, M.-Y., Lu, H.-I.: Linear-time algorithms
for computing maximum-density sequence segments with
bioinformatics applications. J. Comput. Syst. Sci. 70, 128–144
(2005)

7. Huang, X.: An algorithm for identifying regions of a DNA se-
quence that satisfy a content requirement. Comput. Appl.
Biosci. 10, 219–225 (1994)

8. Kim, S.K.: Linear-time algorithm for finding amaximum-density
segment of a sequence. Inf. Process. Lett. 86, 339–342 (2003)

9. Lin, Y.-L., Huang, X., Jiang, T., Chao, K.-M.: MAVG: locating non-
overlappingmaximumaverage segments in a given sequence.
Bioinformatics 19, 151–152 (2003)

10. Lin, Y.-L., Jiang, T., Chao, K.-M.: Efficient algorithms for locating
the length-constrained heaviest segments with applications
to biomolecular sequence analysis. J. Comput. Syst. Sci. 65,
570–586 (2002)

11. Liu, H.-F., Chao, K.-M.: On locating disjoint segments withmax-
imum sum of densities. In: Proceedings of the 17th Annual
International Symposium on Algorithms and Computation.
LNCS, vol. 4288, pp. 300–307 (2006)

12. Nekrutenko, A., Li, W.H.: Assessment of compositional hetero-
geneity within and between eukaryotic genomes. Genome
Res. 10, 1986–1995 (2000)

13. Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J.,
Goodman,M., Miller, W., Hardison, R.: Comparison of fivemeth-
ods for finding conserved sequences in multiple alignments
of gene regulatory regions. Nucl. Acid. Res. 19, 3899–3910
(1999)

14. Stojanovic, N., Dewar, K.: Identifying multiple alignment re-
gions satisfying simple formulas and patterns. Bioinformatics
20, 2140–2142 (2005)

15. Zhang, Z., Berman, P., Wiehe, T., Miller, W.: Post-processing
long pairwise alignments. Bioinformatics 15, 1012–1019
(1999)

MaximumMatching
2004; Mucha, Sankowski

MARCIN MUCHA
Faculty of Mathematics, Informatics and Mechanics,
Institute of Informatics, Warsaw, Poland

ProblemDefinition

Let G = (V ; E) be an undirected graph, and let n = jVj,
m = jEj. Amatching in G is a subset M
 E, such that no
two edges ofM have a common endpoint. A perfect match-
ing is a matching of cardinality n/2. The most basic match-
ing related problems are: finding a maximum matching
(i. e. a matching of maximum size) and, as a special case,
finding a perfect matching if one exists. One can also con-
sider the case where a weight function w : E ! R is given
and the problem is to find amaximum weight matching.

The maximum matching and maximum weight
matching are two of the most fundamental algorithmic
graph problems. They have also played a major role in the
development of combinatorial optimization and algorith-
mics. An excellent account of this can be found in a classic
monograph [10] by Lovász and Plummer devoted entirely
to matching problems. A more up-to-date, but also more
technical discussion of the subject can be found in [18].

Classical Approach

Solving the maximum matching problem in time polyno-
mial in n is a highly non-trivial task. The first such solu-
tion was given by Edmonds [3] in 1965 and has time com-
plexity O(n3). Edmond’s ingenious algorithm uses a com-
binatorial approach based on augmenting paths and blos-
soms. Several improvements followed, culminating in the
algorithm with complexity O(m

p
n) given by Micali and

Vazirani [11] in 1980 (a complete proof of the correctness
of this algorithm was given much later by Vazirani [19],
a nice exposition of the algorithm and its generalization to
the weighted case can be found in a work of Gabow and
Tarjan [4]). Beating this bound proved very difficult, sev-
eral authors managed to achieve only a logarithmic speed-
up for certain values of m and n. All these algorithms es-
sentially follow the combinatorial approach introduced by
Edmonds.

The maximummatching problem is much simpler for
bipartite graphs. The complexity of O(m

p
n) was achieved

for this case already in 1971 by Hopcroft and Karp [6],
while the key ideas of the first polynomial algorithms
date back to 1920’s and the works of König and Egerváry
(see [10] and [18]).

Algebraic Approach

Around the time Micali and Vazirani introduced their
matching algorithm, Lovász gave a randomized (Monte
Carlo) reduction of the problem of testing whether a given
n-vertex graph has a perfect matching to the problem
of computing a certain determinant of a n � n matrix.
Using the Hopcroft-Bunch fast Gaussian elimination al-
gorithm [1] this determinant can be computed in time
MM(n) = O(n!) – time required to multiply two n � n
matrices. Since ! < 2:38 (see [2]), for dense graphs this
algorithm is asymptotically faster than the matching algo-
rithm of Micali and Vazirani.

However, Lovász’s algorithm only tests for perfect
matching, it does not find it. Using it to find perfect/
maximum matchings in a straightforward fashion yields
algorithm with complexity O(mn!) = O(n4:38). A major

MaximumMatching M 505

open problem in the field was thus: can maximummatch-
ings be actually found in O(n!) time?

The first step in this direction was taken in 1989 by
Rabin and Vazirani [15]. They showed that maximum
matchings can be found in time O(n!+1) = O(n3:38).

Key Results

The following theorems state the key results of [12].

Theorem 1 Maximum matching in a n-vertex graph G
can be found in O(n3) time (Las Vegas) by performing
Gaussian elimination on a certain matrix related to G.

Theorem 2 Maximum matching in an n-vertex bipartite
graph can be found in Õ(n!) time (Las Vegas) by perform-
ing a Hopcroft-Bunch fast Gaussian elimination on a cer-
tain matrix related to G.

Theorem 3 Maximummatching in an n-vertex graph can
be found in Õ(n!) time (Las Vegas).

Note: Õ notation suppresses polylogarithmic factors, so
Õ(f (n)) means O(f (n) logk(n)) for some k.

Let us briefly discuss these results. Theorem 1 shows
that effective matching algorithms can be simple. This is
in large contrast to augmenting paths/blossoms based al-
gorithms which a generally regarded quite complicated.

The other two theorems show that, for dense graphs,
the algebraic approach is asymptotically faster than the
combinatorial one.

The algorithm for the bipartite case is very simple. It’s
only non-elementary part is the fast matrix multiplication
algorithm used as black box by the Hopcroft-Bunch al-
gorithm. The general algorithm, however, is complicated
and uses strong structural results from matching theory.
A natural question is whether or not it is possible to give
a simpler and/or purely algebraic algorithm. This has been
positively answered by Harvey [5].

Several other related results followed. Mucha and
Sankowski [13] showed that maximum matchings in pla-
nar graphs can be found in time Õ(n!/2) = Õ(n1:19) which
is currently fastest known. Yuster and Zwick [20] extended
this to any excludedminor class of graphs. Sankowski [16]
gave an RNC work-efficient matching algorithm (see also
Mulmuley et al. [14] and Karp et al. [8] for earlier, less ef-
ficient RNCmatching algorithms, and Karloff [7] for a de-
scription of a general technique for making such algorithm
Las Vegas). He also generalized Theorem 2 to the case
of weighted bipartite graphs with integer weights from
[0; : : : ;W], showing that in this case maximum weight
matchings can be found in time Õ(Wn!) (see [17]).

Applications

The maximum matching problem has numerous applica-
tions, both in practice and as a subroutine in other algo-
rithms. A nice discussion of practical applications can be
found in the monograph [10] by Lovász and Plummer. It
should be noted, however, that algorithms based on fast
matrix multiplication are completely impractical, so the
results discussed here are not really useful in these appli-
cations.

On the theoretical side, faster maximum (weight)
matching algorithms yield faster algorithms for related
problems: disjoint s-t paths problem, the minimum
(weight) edge cover problem, the (maximum weight)
b-matching problem, the (maximum weight) b-factor
problem, the maximum (weight) T-join or the Chinese
postman problem. For detailed discussion of all these ap-
plications see [10] and [18].

The algebraic algorithm of Theorem 1 also has a signif-
icant educational value. The combinatorial algorithms for
the general maximummatching problem are generally re-
garded too complicated for an undergraduate course. That
is definitely not the case with the algebraic O(n3) algo-
rithm.

Open Problems

One of the most important open problems in the area
is generalizing the results discussed above to weighted
graphs. Sankowski [17] gives a Õ(Wn!) algorithm for
bipartite graphs with integer weights from the interval
[0::W]. The complexity of this algorithm is really bad in
terms ofW. No effective algebraic algorithm is known for
general weighted graphs.

Another interesting, but most likely very hard problem
is the derandomization of the algorithms discussed.

Cross References

� All Pairs Shortest Paths via Matrix Multiplication
� Assignment Problem

Recommended Reading
1. Bunch, J., Hopcroft, J.: Triangular Factorization and Inversion

by Fast Matrix Multiplication. Math. Comput. 125, 231–236
(1974)

2. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arith-
metic Progressions. In: Proceedings of the 19th Annual ACM
Conference on Theory of Computing (STOC), 1987, pp. 1–6

3. Edmonds, J.: Paths, Trees, and Flowers. Canad. J. Math. 17, 449–
467 (1965)

4. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general
graph matching problems. J. ACM 38(4), 815–853 (1991)

506 M Maximum-scoring Segment with Length Restrictions

5. Harvey, N.: Algebraic Structures and Algorithms for Matching
and Matroid Problems. In: Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
2006

6. Hopcroft, J.E., Karp, R.M.: An O(n5/2) Algorithm for Maximum
Matchings in Bipartite Graphs. SIAM J. Comput. 2, 225–231
(1973)

7. Karloff, H.: A Las Vegas RNC algorithm for maximummatching.
Combinatorica 6, 387–391 (1986)

8. Karp, R., Upfal, E., Widgerson, A.: Constructing a perfect match-
ing is in Random NC. Combinatorica 6, 35–48 (1986)

9. Lovász, L.: On Determinants, Matchings and Random Algo-
rithms. In: Budach, L. (ed.) Fundamentals of Computation The-
ory, FCT’79, pp. 565–574. Akademie-Verlag, Berlin (1979)

10. Lovász, L., Plummer,M.D.: Matching Theory. Akadémiai Kiadó –
North Holland, Budapest (1986)

11. Micali, S., Vazirani, V.V.: AnO(
p
VE) Algorithm for FindingMax-

imumMatching in General Graphs. In: Proceedings of the 21st
Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 1980, pp. 17–27

12. Mucha, M., Sankowski, P.: Maximum Matchings via Gaussian
Elimination. In: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), 2004
pp. 248–255

13. Mucha, M., Sankowski, P.: Maximum Matchings in Planar
Graphs via Gaussian Elimination. Algorithmica 45, 3–20 (2006)

14. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy
as matrix inversion. In: Proceedings of the 19th Annual ACM
Conference on Theory of Computing, pp. 345–354. ACM Press,
New York (1987)

15. Rabin, M.O., Vazirani, V.V.: Maximum Matchings in General
Graphs Through Randomization. J. Algorithms 10, 557–567
(1989)

16. Sankowski, P.: Processor Efficient Parallel Matching. In: Pro-
ceeding of the 17th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), 2005, pp. 165–170

17. Sankowski, P.: Weighted Bipartite Matching in Matrix Multi-
plication Time. In: Proceedings of the 33rd International Col-
loquium on Automata, Languages and Programming, 2006,
pp. 274–285

18. Schrijver, A.: Combinatorial optimization: polyhedra and effi-
ciency. Springer, Berlin Heidelberg (2003)

19. Vazirani, V.V.: A Theory of Alternating Paths and Blossoms for
Proving Correctness of the O(

p
VE) Maximum Matching Algo-

rithm. Combinatorica 14(1), 71–109 (1994)
20. Yuster, R., Zwick, U.: MaximumMatching in Graphs with an Ex-

cludedMinor. In: Proceedings of theACM-SIAMSymposiumon
Discrete Algorithms (SODA), 2007

Maximum-scoring Segment
with Length Restrictions
2002; Lin, Jiang, Chao

KUN-MAO CHAO
Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan

Keywords and Synonyms

Shortest path; Longest path

ProblemDefinition

Given a sequence of numbers, A = ha1; a2; : : : ; ani, and
two positive integers L, U, where 1 � L � U � n, the
maximum-sum segment problem is to find a consecutive
subsequence, i. e. a segment or substring, of A with length
at least L and at most U such that the sum of the numbers
in the subsequence is maximized.

Key Results

Themaximum-sum segment problem without length con-
straints is linear-time solvable by using Kadane’s algo-
rithm [2]. Huang extended the recurrence relation used
in [2] for solving the maximum-sum segment prob-
lem, and derived a linear-time algorithm for comput-
ing the maximum-sum segment with length at least L.
Lin et al. [10] proposed an O(n)-time algorithm for the
maximum-sum segment problem with both L and U con-
straints, and an online version was given by Fan et al. [8].

An Extension to Multiple Segments

Computing the k largest sums over all possible segments is
a natural extension of the maximum-sum segment prob-
lem. This extension has been considered from two per-
spectives, one of which allows the segments to overlap,
while the other disallows.

Linear-time algorithms for finding all the non-
overlapping maximal segments were given in [3,12]. On
the other hand, one may focus on finding the kmaximum-
sum segments whose overlapping is allowed. A naïve ap-
proach is to choose the k largest from the sums of all pos-
sible contiguous subsequences which requires O(n2) time.
Bae and Takaoka [1] presented an O(kn)-time algorithm
for the k maximum segment problem. Liu and Chao [11]
noted that the kmaximum-sum segments problem can be
solved in O(n + k) time [7], and gave an O(n + k)-time
algorithm for the LENGTH-CONSTRAINED k MAXIMUM-
SUM SEGMENTS PROBLEM.

Applications

The algorithms for the maximum-sum segment problem
have applications in finding GC-rich regions in a genomic
DNA sequence, postprocessing sequence alignments, and
annotating multiple sequence alignments. Readers can re-
fer to [3,4,5,6,10,12,13,14,15] for more details.

Maximum Two-Satisfiability M 507

Open Problems

It would be interesting to consider the higher dimensional
cases.

Cross References

�Maximum-Density Segment

Recommended Reading
1. Bae, S.E., Takaoka, T.: Algorithms for the problem of k maxi-

mum sums and a VLSI algorithm for the k maximum subarrays
problem. Proceedings of the 7th International Symposium on
Parallel Architectures, Algorithms and Networks, pp. 247–253
(2004)

2. Bentley, J.: Programming Pearls. Addison-Wesley, Reading
(1986)

3. Chen, K.-Y., Chao, K.-M.: On the range maximum-sum segment
query problem. Proceedings of the 15th International Sympo-
sium on Algorithms And Computation. LNCS 3341, 294–305
(2004)

4. Chen, K.-Y., Chao, K.-M.: Optimal algorithms for locating the
longest and shortest segments satisfying a sum or an average
constraint. Inf. Process. Lett. 96, 197–201 (2005)

5. Cheng, C.-H., Chen, K.-Y., Tien, W.-C., Chao, K.-M.: Improved al-
gorithms for the k maximum-sum problems. Proceedings of
the 16th International Symposium on Algorithms And Compu-
tation. Theoret. Comput. Sci. 362: 162–170 (2006)

6. Csűrös, M.: Maximum-scoring segment sets. IEEE/ACM Trans.
Comput. Biol. Bioinform. 1, 139–150 (2004)

7. Eppstein, D.: Finding the k Shortest Paths. SIAM J. Comput. 28,
652–673 (1998)

8. Fan, T.-H., Lee, S., Lu, H.-I., Tsou, T.-S., Wang, T.-C., Yao, A.: An
optimal algorithm for maximum-sum segment and its applica-
tion in bioinformatics. Proceedings of the Eighth International
Conference on Implementation and Application of Automata.
LNCS 2759, 251–257 (2003)

9. Huang, X.: An algorithm for identifying regions of a DNA se-
quence that satisfy a content requirement. Comput. Appl.
Biosci. 10, 219–225 (1994)

10. Lin, Y.-L., Jiang, T., Chao, K.-M.: Efficient algorithms for locating
the length-constrained heaviest segments with applications
to biomolecular sequence analysis. J. Comput. Syst. Sci. 65,
570–586 (2002)

11. Liu, H.-F., Chao, K.-M.: Algorithms for Finding the Weight-
Constrained k Longest Paths in a Tree and the Length-
Constrained k Maximum-Sum Segments of a Sequence. The-
oret. Comput. Sci. in revision (2008)

12. Ruzzo, W.L., Tompa, M.: A linear time algorithm for finding all
maximal scoring subsequences. Proceedings of the 7th Inter-
national Conference on Intelligent Systems for Molecular Biol-
ogy, pp. 234–241 (1999)

13. Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J.,
Goodman,M., Miller, W., Hardison, R.: Comparison of fivemeth-
ods for finding conserved sequences in multiple alignments
of gene regulatory regions. Nucleic Acids Res. 19, 3899–3910
(1999)

14. Stojanovic, N., Dewar, K.: Identifying multiple alignment re-
gions satisfying simple formulas and patterns. Bioinformatics
20, 2140–2142 (2005)

15. Zhang, Z., Berman, P., Wiehe, T., Miller, W.: Post-processing
long pairwise alignments. Bioinformatics 15, 1012–1019
(1999)

Maximum Two-Satisfiability
2004; Williams

RYAN WILLIAMS
Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA

Keywords and Synonyms

Max 2-SAT

ProblemDefinition

In the maximum 2-satisfiability problem (abbreviated as
MAX 2-SAT), one is given a Boolean formula in conjunc-
tive normal form, such that each clause contains at most
two literals. The task is to find an assignment to the vari-
ables of the formula such that a maximum number of
clauses is satisfied.

MAX 2-SAT is a classic optimization problem. Its deci-
sion version was proved NP-complete by Garey, Johnson,
and Stockmeyer [7], in stark contrast with 2-SAT which is
solvable in linear time [2]. To get a feeling for the difficulty
of the problem, theNP-completeness reduction is sketched
here. One can transform any 3-SAT instance F into a MAX
2-SAT instance F0, by replacing each clause of F such as

ci = (`1 _ `2 _ `3) ;

where `1, `2, and `3 are arbitrary literals, with the collec-
tion of 2-CNF clauses

(`1); (`2); (`3); (ci); (:`1 _:`2); (:`2 _ :`3);
(:`1 _:`3); (`1 _ ci); (`2 _ ci); (`3 _ ci) ;

where ci is a new variable. The following are true:
� If an assignment satisfies ci, then exactly seven of the

ten clauses in the 2-CNF collection can be satisfied.
� If an assignment does not satisfy ci, then exactly six of

the ten clauses can be satisfied.
If F is satisfiable then there is an assignment satisfying 7/10
of the clauses in F0, and if F is not satisfiable then no as-
signment satisfiesmore than 7/10 of the clauses in F0. Since
3-SAT reduces to MAX 2-SAT, it follows that MAX 2-SAT
(as a decision problem) is NP-complete.

508 M Maximum Two-Satisfiability

Notation

A CNF formula is represented as a set of clauses.
The symbols R and Z denote the sets of reals and in-

tegers, respectively. The letter ! denotes the smallest real
number such that for all � > 0, n by n matrix multipli-
cation over a ring can be performed in O(n!+�) ring op-
erations. Currently, it is known that ! < 2:376 [4]. The
ring matrix product of two matrices A and B is denoted by
A� B.

Let A and B be matrices with entries from R [f1g.
The distance product of A and B (written shorthand as
A˝d B) is the matrix C defined by the formula

C[i; j] = min
k=1;:::;n

fA[i; k] + B[k; j]g :

A word on m’s and n’s: in reference to graphs, m and n
denote the number of edges and the number of nodes in
the graph, respectively. In reference to CNF formulas, m
and n denote the number of clauses and the number of
variables, respectively.

Key Result

The primary result of this article is a procedure solving
MAX 2-SAT in O(m � 2!n/3) time. The method can be gen-
eralized to count the number of solutions to any constraint
optimization problem with at most two variables per con-
straint (cf. [17]), though the presentation in this article
shall be somewhat different from the reference, and much
simpler. There are several other known exact algorithms
for MAX 2-SAT that are more effective in special cases,
such as sparse instances [3,8,9,11,12,13,15,16]. The proce-
dure described below is the only one known (to date) that
runs in O(pol y(m) � 2ın) time (for some fixed ı < 1) in all
possible cases.

Key Idea

The algorithm gives a reduction from MAX 2-SAT to the
problem MAX TRIANGLE, in which one is given a graph
with integer weights on its nodes and edges, and the goal
is to output a 3-cycle of maximum weight. At first, the ex-
istence of such a reduction sounds strange, as MAX TRI-
ANGLE can be trivially solved in O(n3) time by trying all
possible 3-cycles. The key is that the reduction exponen-
tially increases the problem size, from a MAX 2-SAT in-
stance withm clauses and n variables, to aMAX TRIANGLE
instance havingO(22n/3) edges,O(2n/3) nodes, and weights
in the range f�m; : : : ;mg.

Note that if MAX TRIANGLE required 	(n3) time to
solve, then the resulting MAX 2-SAT algorithm would

take 	(2n) time, rendering the above reduction pointless.
However, it turns out that the brute-force search of O(n3)
for MAX TRIANGLE is not the best one can do– using fast
matrix multiplication, there is an algorithm for MAX TRI-
ANGLE that runs in O(Wn!) time on graphs with weights
in the range f�W; : : : ;Wg.

Main Algorithm

First, a reduction from MAX 2-SAT to MAX TRIANGLE is
described, arguing that each triangle of weight K in the
resulting graph is in one-to-one correspondence with an
assignment that satisfies K clauses of the MAX 2-SAT in-
stance. Let a; b be reals, and letZ[a; b] := [a; b] \ Z

Lemma 1 IfMAX TRIANGLE on graphs with n nodes and
weights in Z[�W;W] is solvable in O(f (W) � g(n)) time,
for polynomials f and g, then MAX 2-SAT is solvable in
O(f (m) � g(2n/3)) time, where m is the number of clauses
and n is the number of variables.

Proof Let C be a given 2-CNF formula. Assume without
loss of generality that n is divisible by 3. Let F be an in-
stance of MAX 2-SAT. Arbitrarily partition the n variables
of F into three sets P1, P2, P3, each having n/3 variables.
For each Pi, make a list Li of all 2n/3 assignments to the
variables of Pi.

Define a graph G = (V ; E) with V = L1 [L2 [L3 and
E = f(u; v)ju 2 Pi ; v 2 Pj ; i ¤ jg. That is, G is a complete
tripartite graphwith 2n/3 nodes in each part, and each node
in G corresponds to an assignment to n/3 variables in C.
Weights are placed on the nodes and edges ofG as follows.
For a node v, define w(v) to be the number of clauses that
are satisfied by the partial assignment denoted by v. For
each edge {u, v}, define w(fu; vg) = �Wuv , where Wuv is
the number of clauses that are satisfied by both u and v.

Define the weight of a triangle in G to be the total sum
of all weights and nodes in the triangle.

Claim 1 There is a one-to-one correspondence between
the triangles of weightK inG and the variable assignments
satisfying exactly K clauses in F.

Proof Let a be a variable assignment. Then there ex-
ist unique nodes v1 2 L1; v2 2 L2, and v3 2 L3 such that
a is precisely the concatenation of v1, v2, v3 as assign-
ments.Moreover, any triple of nodes v1 2 L1; v2 2 L2, and
v3 2 L3 corresponds to an assignment. Thus there is a one-
to-one correspondence between triangles in G and assign-
ments to F.

The number of clauses satisfied by an assignment is ex-
actly the weight of its corresponding triangle. To see this,
let Ta = fv1; v2; v3g be the triangle in G corresponding to

Maximum Two-Satisfiability M 509

assignment a. Then

w(Ta) = w(v1) + w(v2) + w(v3) + w(fv1; v2g)
+ w(fv2; v3g) + w(fv1; v3g)

=
3X
i=1

jfc 2 Fjvi satisfies Fgj

�
X

i; j:i¤ j

jfc 2 Fjvi and v j satisfy Fgj

= jfc 2 Fja satisfies Fgj ;

where the last equality follows from the inclusion-
exclusion principle. �
Notice that the number of nodes inG is 3 � 2n/3, and the ab-
solute value of any node and edge weight is m. Therefore,
running a MAX TRIANGLE algorithm on G, a solution to
MAX 2-SAT is obtained in O(f (m) � g(3 � 2n/3)), which is
O(f (m) � g(2n/3)) since g is a polynomial. This completes
the proof of Lemma 1. �

Next, a procedure is described for finding a maximum tri-
angle faster than brute-force search, using fast matrix mul-
tiplication. Alon, Galil, and Margalit [1] (following Yu-
val [20]) showed that the distance product for matrices
with entries drawn from Z[�W;W] can be computed us-
ing fast matrix multiplication as a subroutine.

Theorem 2 (Alon, Galil, Margalit [1]) Let A and B be
n � n matrices with entries from Z[�W;W] [f1g. Then
A˝d B can be computed in O(Wn! log n) time.

Proof (Sketch) One can replace1 entries inA andBwith
2W + 1 in the following. Define matrices A0 and B0, where

A0[i; j] = x3W�A[i; j] ; B0[i; j] = x3W�B[i; j] ;

and x is a variable. Let C = A0 � B0. Then

C[i; j] =
nX
k=1

x6W�A[i;k]�B[k; j] :

The next step is to pick a number x thatmakes it easy to de-
termine, from the sum of arbitrary powers of x, the largest
power of x appearing in the sum; this largest power imme-
diately gives the minimum A[i; k] + B[k; j]. Each C[i, j] is
a polynomial in x with coefficients from Z[0; n]. Suppose
each C[i, j] is evaluated at x = (n + 1). Then each entry of
C[i, j] can be seen as an (n + 1)-ary number, and the posi-
tion of this number’s most significant digit gives the mini-
mum A[i; k] + B[k; j].

In summary,A˝d B can be computed by constructing

A0[i; j] = (n + 1)3W�A[i; j] ; B0[i; j] = (n + 1)3W�B[i; j]

in O(W log n) time per entry, computing C = A0 � B0 in
O(n! � (W log n)) time (as the sizes of the entries are
O(W log n)), then extracting the minimum from each en-
try of C, in O(n2 �W log n) time. Note if the minimum for
an entry C[i, j] is at least 2W + 1, then C[i; j] =1. �

Using the fast distance product algorithm, one can solve
MAX TRIANGLE faster than brute-force. The following is
based on an algorithm by Itai and Rodeh [10] for detect-
ing if an unweighted graph has a triangle in less than n3

steps. The result can be generalized to counting the num-
ber of k-cliques, for arbitrary k � 3. (To keep the presen-
tation simple, the counting result is omitted. Concerning
the k-clique result, there is unfortunately no asymptotic
runtime benefit from using a k-clique algorithm instead of
a triangle algorithm, given the current best algorithms for
these problems.)

Theorem 3 MAX TRIANGLE can be solved in O(W
n! log n), for graphs with weights drawn from Z[�W;W].

Proof First, it is shown that a weight function on nodes
and edges can be converted into an equivalent weight
function with weights on only edges. Let w be the weight
function of G, and redefine the weights to be:

w0(fu; vg) =
w(u) + w(v)

2
+ w(fu; vg) ; w0(u) = 0 :

Note the weight of a triangle is unchanged by this reduc-
tion.

The next step is to use a fast distance product to find
a maximum weight triangle in an edge-weighted graph of
n nodes. Construe the vertex set of G as the set f1; : : : ; ng.
Define A to be the n � n matrix such that A[i; j] =
�w(fi; jg) if there is an edge fi; jg, and A[i; j] =1 other-
wise. The claim is that there is a triangle through node i of
weight at least K if and only if (A˝d A˝d A)[i; i] � �K.
This is because (A ˝d A ˝d A)[i; i] � �K if and only
if there are distinct j and k such that fi; jg; f j; kg; fk; ig
are edges and A[i; j] + A[j; k] + A[k; i] � �K, i. e.,
w(fi; jg) + w(f j; kg) + w(fk; ig) � K.

Therefore, by finding an i such that (A˝d A˝d A)[i; i]
is minimized, one obtains a node i contained in a maxi-
mum triangle. To obtain the actual triangle, check all m
edges {j, k} to see if {i, j, k} is a triangle. �

Theorem 4 MAX 2-SAT can be solved in O(m � 1:732n)
time.

Proof Given a set of clauses C, apply the reduction from
Lemma 1 to get a graph G with O(2n/3) nodes and weights
from Z[�m;m]. Apply the algorithm of Theorem 3 to
output a max triangle in G in O(m � 2!n/3 log(2n/3)) =

510 M Maximum Two-Satisfiability

O(m � 1:732n) time, using the O(n2.376) matrix multipli-
cation of Coppersmith andWinograd [4]. �

Applications

By modifying the graph construction, one can solve other
problems inO(1.732n) time, such asMAX CUT,MINIMUM
BISECTION, and SPARSEST CUT. In general, any con-
straint optimization problem for which each constraint
has at most two variables can be solved faster using the
above approach. For more details, see [17] and the re-
cent survey by Woeginger [19]. Techniques similar to
the above algorithm have also been used by Dorn [6] to
speed up dynamic programming for some problems on
planar graphs (and in general, graphs of bounded branch-
width).

Open Problems

� Improve the space usage of the above algorithm. Cur-
rently, 	(22n/3) space is needed. A very interesting
open question is if there is a O(1.99n) time algorithm
for MAX 2-SAT that uses only polynomial space. This
question would have a positive answer if one could find
an algorithm for solving the k-CLIQUE problem that
uses polylogarithmic space and nk�ı time for some
ı > 0 and k � 3.

� Find a faster-than-2n algorithm for MAX 2-SAT that
does not require fast matrix multiplication. The fast
matrix multiplication algorithms have the unfortunate
reputation of being impractical.

� Generalize the above algorithm to work for MAX k-
SAT, where k is any positive integer. The current for-
mulation would require one to give an efficient algo-
rithm for finding a small hyperclique in a hypergraph.
However, no general results are known for this prob-
lem. It is conjectured that for all k � 2, MAX k-SAT is
in Õ(2n(1�

1
k+1)) time, based on the conjecture that ma-

trix multiplication is in n2+o(1) time [17].

Cross References

� All Pairs Shortest Paths via Matrix Multiplication
�Max Cut
�Minimum Bisection
� Sparsest Cut

Recommended Reading

1. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all-pairs
shortest path problem. J. Comput. Syst. Sci. 54, 255–262 (1997)

2. Aspvall, B., Plass, M.F., Tarjan R.E.: A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Inf.
Proc. Lett. 8(3), 121–123 (1979)

3. Bansal, N., Raman, V.: Upper bounds for Max Sat: Further Im-
proved. In: Proceedings of ISAAC. LNCS, vol. 1741, pp. 247–258.
Springer, Berlin (1999)

4. Coppersmith, D., Winograd S.: Matrix Multiplication via Arith-
metic Progressions. JSC 9(3), 251–280 (1990)

5. Dantsin, E., Wolpert, A.: Max SAT for formulas with constant
clause density can be solved faster than in O(2n) time. In: Proc.
of the 9th International Conference on Theory and Applica-
tions of Satisfiability Testing. LNCS, vol. 4121, pp. 266–276.
Springer, Berlin (2006)

6. Dorn, F.: Dynamic Programming and Fast Matrix Multiplica-
tion. In: Proceedings of 14th Annual European Symposium
on Algorithms. LNCS, vol. 4168, pp. 280–291. Springer, Berlin
(2006)

7. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-
complete graph problems. Theor. Comput. Sci. 1, 237–267
(1976)

8. Gramm, J., Niedermeier, R.: Faster exact solutions for Max2Sat.
In: Proceedings of CIAC. LNCS, vol. 1767, pp. 174–186. Springer,
Berlin (2000)

9. Hirsch, E.A.: A 2m/4-time Algorithm for Max 2-SAT: Corrected
Version. Electronic Colloquium on Computational Complexity
Report TR99-036 (2000)

10. Itai, A., Rodeh, M.: Finding a Minimum Circuit in a Graph. SIAM
J. Comput. 7(4), 413–423 (1978)

11. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Algorithms
Based on the Treewidth of Sparse Graphs. In: Proc. Work-
shop onGraph Theoretic Concepts in Computer Science. LNCS,
vol. 3787, pp. 385–396. Springer, Berlin (2005)

12. Kojevnikov, A., Kulikov, A.S.: A New Approach to Proving Up-
per Bounds for Max 2-SAT. In: Proc. of the Seventeenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp. 11–17
(2006)

13. Mahajan, M., Raman, V.: Parameterizing above Guaranteed
Values: MAXSAT and MAXCUT. J. Algorithms 31(2), 335–354
(1999)

14. Niedermeier, R., Rossmanith, P.: New upper bounds for maxi-
mum satisfiability. J. Algorithms 26, 63–88 (2000)

15. Scott, A., Sorkin, G.: Faster Algorithms for MAX CUT and MAX
CSP, with Polynomial Expected Time for Sparse Instances.
In: Proceedings of RANDOM-APPROX 2003. LNCS, vol. 2764,
pp. 382–395. Springer, Berlin (2003)

16. Williams, R.: On Computing k-CNF Formula Properties. In: The-
ory and Applications of Satisfiability Testing. LNCS, vol. 2919,
pp. 330–340. Springer, Berlin (2004)

17. Williams, R.: A new algorithm for optimal 2-constraint satisfac-
tion and its implications. Theor. Comput. Sci. 348(2–3), 357–
365 (2005)

18. Woeginger, G.J.: Exact algorithms for NP-hard problems: A sur-
vey. In: Combinatorial Optimization – Eureka! You shrink! LNCS,
vol. 2570, pp. 185–207. Springer, Berlin (2003)

19. Woeginger, G.J.: Space and time complexity of exact algo-
rithms: some open problems. In: Proc. 1st Int. Workshop on
Parameterized and Exact Computation (IWPEC 2004). LNCS,
vol. 3162, pp. 281–290. Springer, Berlin (2004)

20. Yuval, G.: An Algorithm for Finding All Shortest Paths Using
N2.81 Infinite-Precision Multiplications. Inf. Process. Lett. 4(6),
155–156 (1976)

Max Leaf Spanning Tree M 511

Max Leaf Spanning Tree
2005; Estivill-Castro, Fellows, Langston,
Rosamond

FRANCES ROSAMOND
Parameterized Complexity Research Unit,
University of Newcastle, Callaghan, NSW, Australia

Keywords and Synonyms

Maximum leaf spanning tree; Connected dominating set;
Extremal structure

ProblemDefinition

The MAX LEAF SPANNING TREE problem asks us to find
a spanning tree with at least k leaves in an undirected
graph. The decision version of parameterized MAX LEAF
SPANNING TREE is the following:

MAX LEAF SPANNING TREE
INPUT: A connected graph G, and an integer k.
PARAMETER: An integer k.
QUESTION: DoesG have a spanning tree with at least
k leaves?

The parameterized complexity of the nondeterministic
polynomial-time complete MAX LEAF SPANNING TREE
problem has been extensively studied [2,3,9,11] using a va-
riety of kernelization, branching and other fixed-parame-
ter tractable (FPT) techniques. The authors are the first to
propose an extremal structure method for hard compu-
tational problems. The method, following in the sense of
Grothendieck and in the spirit of the graph minors project
of Robertson and Seymour, is that a mathematical project
should unfold as a series of small steps in an overall tra-
jectory that is described by the appropriate “mathemati-
cal machine.” The authors are interested in statements of
the type: Every connected graph on n vertices that satis-
fies a certain set of properties has a spanning tree with at
least k leaves, and this spanning tree can be found in time
O(f (k) + nc), where c is a constant (independent of k) and
f is an arbitrary function.

In parameterized complexity, the value k is called the
parameter and is used to capture some structure of the in-
put or other aspect of the computational objective. For ex-
ample, k might be the number of edges to be deleted in
order to obtain a graph with no cycles, or k might be the
number of DNA sequences to be aligned in an alignment,
or kmay be the maximum type-declaration nesting depth
of a compiler, or k = 1/� may be the parameterization in
the analysis of approximation, or k might be a composite
of several variables.

There are two important ways of comparing FPT al-
gorithms, giving rise to two FPT races. In the “f (k)” race,
the competition is to find ever more slowing growing pa-
rameter functions f (k) governing the complexity of FPT
algorithms. The “kernelization race” refers to the follow-
ing lemma stating that a problem is in FPT if and only if
the input can be preprocessed (kernelized) in “ordinary”
polynomial time into an instance whose size is bounded
by a function of k only.

Lemma 1 A parameterized problem ˘ is in FPT if and
only if there is a polynomial-time transformation (in both n
and k) that takes (x, k) to (x0; k0) such that:
(1) (x, k) is a yes-instance of˘ if and only if (x0; k0) is a yes-

instance of˘ ,
(2) k0 � k, and
(3) jx0j � g(k) for some fixed function g.

In the situation described by the lemma, say that we can
kernelize to instances of size at most g(k). Although the
two races are often closely related, the result is not always
the same. The current best FPT algorithm for MAX LEAF
is due to Bonsma [1] (following the extremal structure ap-
proach outlined by the authors) with a running time of
O�(8:12k) to determine whether a graph G on n vertices
has a spanning tree with at least k leaves; however the au-
thors present the FPT algorithm with the smallest kernel
size.

The authors list five independent deliverables associ-
ated to the extremal structure theory, and illustrate all of
the objectives for the MAX LEAF problem. The five objec-
tives are:
(A) Better FPT algorithms as a result of deeper structure

theory, more powerful reduction rules associated with
that structure theory, and stronger inductive proofs of
improved kernelization bounds.

(B) Powerful preprocessing (data reduction/kerneliza-
tion) rules and combinations of rules that can be used
regardless of whether the parameter is small and that
can be combined with other approaches, such as ap-
proximation and heuristics. These are usually easy to
program.

(C) Gradients and transformation rules for local search
heuristics.

(D) Polynomial-time approximation algorithms and per-
formance bounds proved in a systematic way.

(E) Structure to exploit for solving other problems.

Key Results

The key results are programmatic, providing a method
of extremal structure as a systematic method for design-

512 M Max Leaf Spanning Tree

ing FPT algorithms. The five interrelated objectives listed
above are surveyed, and each is illustrated using the MAX
LEAF SPANNING TREE problem.

Objective A: FPT Algorithms

The objective here is to find polynomial-time preprocess-
ing (kernelization) rules where g(k) is as small as possible.
This has a direct payoff in terms of program objective B.

Rephrased as a structure theory question, the crucial
issue is: What is the structure of graphs that do not have
a subgraph with k leaves? A graph theory result due to
Kleitman and West shows that a graph of minimum de-
gree at least 3, that excludes a k-leaf subgraph, has at
most 4(k � 3) vertices. Figure 1 shows that this is the best
possible result for this hypothesis. However, investigating
the structure using extremal methods reveals the need for
the reduction rule of Fig. 2. About 20 different polyno-
mial-time reduction rules (some much more complex and
“global” in structure than the simple local reduction rule
depicted) are sufficient to kernelize to a graph of minimum
degree 2 having at most 3:5k vertices.

Max Leaf Spanning Tree, Figure 1
Reduction rules were developed in order to reduce this Kleit-
man–West graph structure

Max Leaf Spanning Tree, Figure 2
A reduction rule for the Kleitman–West graph

In general, an instance of a parameterized problem
consists of a pair (x, k) and a “boundary” which is located
by holding x fixed and varying k and regarding whether
the outcome of the decision problem is yes or no. Of inter-
est is the boundary when x is reduced. A typical boundary
lemma looks like the following.

Lemma 2 Suppose (G, k) is a reduced instance of MAX
LEAF, with (G, k) a yes-instance and (G; k + 1) a no-
instance. Then jGj � ck. (Here c is a small constant that
becomes clarified during the investigation.)

A proof of a boundary lemma is by minimum counterex-
ample. A counterexample would be a graph such that
(1) (G, k) is reduced, (2) (G, k) is a yes-instance of MAX
LEAF, (3) (G; k + 1) is a no-instance, and (4) jGj > ck.

The proof of a boundary lemma unfolds gradually. Ini-
tially, it is not known what bound will eventually succeed
and it is not known exactly what is meant by reduced. In
the course of an attempted proof, these details are worked
out. As the arguments unfold, structural situations will
suggest new reduction rules. Strategic choices involved in
a boundary lemma include:
(1) Determining the polarity of the boundary, and setting

up the boundary lemma.
(2) Choosing a witness structure.
(3) Setting inductive priorities.
(4) Developing a series of structural claims that describe

the situation at the boundary.
(5) Discovering reduction rules that can act in poly-

nomial-time on relevant structural situations at the
boundary.

(6) As the structure at the boundary becomes clear, filling
in the blank regarding the kernelization bound.

The overall structure of the argument is “by minimum
counterexample” according to the priorities established
by choice 3, which generally make reference to choice 2.
The proof proceeds by a series of small steps consisting of
structural claims that lead to a detailed structural picture at
the “boundary”—and thereby to the bound on the size of
G that is the conclusion of the lemma. The complete proof
assembles a series of claims made against the witness tree,
various sets of vertices, and inductive priorities and sets up
a master inequality leading to a proof by induction, and
a 3:5k problem kernel.

Objective B: Polynomial-Time Preprocessing
and Data-Reduction Routines

The authors have designed a table for tracing each pos-
sible boundary state for a possible solution. Examples are
given that show the surprising power of cascading data-re-
duction rules on real input distributions and that describe
a variety of mathematical phenomena relating to reduc-
tion rules. For example, some reduction rules, such as the
Kleitman–West dissolver rule for MAX LEAF (Fig. 2), have
a fixed “boundary size” (in this case 2), whereas crown-
type reduction rules do not have a fixed boundary size.

Max Leaf Spanning Tree M 513

Objective C: Gradients and Solution Transformations
for Local Search
A generalization of the usual setup for local search is given,
based on the mathematical power of the more compli-
cated gradient in obtaining superior kernelization bounds.
Idea 1 is that local search be conducted based onmaintain-
ing a “current witness structure” rather than a full solution
(spanning tree). Idea 2 is to use the list of inductive pri-
orities to define a “better solution” gradient for the local
search.

Objective D: Polynomial-Time
Approximation Algorithms
The polynomial-time extremal structure theory leads di-
rectly to a constant-factor p-time approximation algo-
rithm for MAX LEAF. First, reduce G using the kerneliza-
tion rules. The rules are approximation-preserving. Take
any tree T (not necessarily spanning) in G. If all of the
structural claims hold, then (by the boundary lemma argu-
ments) the tree T must have at least n/c leaves for c = 3:75.
Therefore, lifting T back along the reduction path, we ob-
tain a c-approximation.

If at least one of the structural claims does not hold,
then the tree T can be improved against one of the induc-
tive priorities. Notice that each claim is proved by an argu-
ment that can be interpreted as a polynomial-time routine
that improves T, when the claim is contradicted.

These consequences can be applied to the original T
(and its successors) only a polynomial number of times
(determined by the list of inductive priorities) until one
arrives at a tree T 0 for which all of the various structural
claims hold. At that point, we must have a c-approximate
solution.

Objective E: Structure To Exploit
in The Ecology of Complexity
The objective here is to understand how every input-gov-
erning problem parameter affects the complexity of ev-
ery other problem. As a small example, consider Table 1

Max Leaf Spanning Tree, Table 1
The complexity ecology of parameters

TW BW VC DS G ML
TW FPT W[1]-hard FPT FPT ? FPT
BW FPT W[1]-hard FPT FPT ? FPT
VC FPT ? FPT FPT ? FPT
DS ? ? W[1]-hard W[1]-hard ? ?
G W[1]-hard W[1]-hard W[1]-hard W[1]-hard FPT ?
ML FPT ? FPT FPT FPT ?

using the shorthand TW is TREEWIDTH, BW is BAND-
WIDTH, VC is VERTEX COVER, DS is DOMINATING SET,
G is GENUS and ML is MAX LEAF. The entry in the sec-
ond row and fourth column indicates that there is an FPT
algorithm to optimally solve the DOMINATING SET prob-
lem for a graph G of bandwidth at most k. The entry in
the fourth row and second column indicates that it is un-
known whether BANDWIDTH can be solved optimally by
an FPT algorithm when the parameter is a bound on the
domination number of the input.

MAX LEAF applies to the last row of the table. For
graphs of max leaf number bounded by k, the maxi-
mum size of an independent set can be computed in time
O�(2:972k) based on a reduction to a kernel of size at most
7k. There is a practical payoff for using the output of one
problem as the input to another.

Applications

TheMAX LEAF SPANNING TREE problem hasmotivations
in computer graphics for creating triangle strip represen-
tations for fast interactive rendering [5]. Other applica-
tions are found in the area of traffic grooming and net-
work design, such as the design of optical networks and
the utilization of wavelengths in order to minimize net-
work cost, either in terms of the line-terminating equip-
ment deployed or in terms of electronic switching [6]. The
minimum-energy problem in wireless networks consists
of finding a transmission radius vector for all stations in
such a way that the total transmission power of the whole
network is the least possible. A restricted version of this
problem is equivalent to the MAX LEAF SPANNING TREE
problem [7]. Finding spanning trees with many leaves is
equivalent to finding small connected dominating sets and
is also called the MINIMUM CONNECTED DOMINATING
problem [13].

Open Problems

Branching Strategies

While extremal structure is in some sense the right way to
design an FPT algorithm, this is not the only way. In par-
ticular, the recipe is silent on what to do with the kernel.
An open problem is to find general strategies for employ-
ing “parameter-appropriate structure theory” in branch-
ing strategies for sophisticated problem kernel analysis.

Turing Kernelizability

The polynomial-time transformation of (x, k) to the sim-
pler reduced instance (x0; k0) is a many:1 transformation.
One can generalize the notion of many:1 reduction to Tur-

514 M Metrical Task Systems

ing reduction. How should the quest for p-time extremal
theory unfold under this “more generous” FPT?

Algorithmic Forms of The Boundary Lemma Approach
The hypothesis of the boundary lemma that (G, k) is a yes-
instance implies that there exists a witness structure to this
fact. There is no assumption that one has algorithmic ac-
cess to this structure, and when reduction rules are discov-
ered, these have to be transformations that can be applied
to (G, k) and a structure that can be discovered in (G, k)
in polynomial time. In other words, reduction rules can-
not be defined with respect to the witness structure. Is it
possible to describe more general approaches to kerneliza-
tion where the witness structure used in the proof of the
boundary lemma is polynomial-time computable, and this
structure provides a conditional context for some reduc-
tion rules? How would this change the extremal method
recipe?

Problem Annotation
One might consider a generalized MAX LEAF problem
where vertices and edges have various annotations as to
whether they must be leaves (or internal vertices) in a so-
lution, etc. Such a generalized form of the problem would
generally be expected to be “more difficult” than the vanilla
form of the problem. However, several of the “best known”
FPT algorithms for various problems, are based on these
generalized, annotated forms of the problems. Examples
include PLANAR DOMINATING SET and FEEDBACK VER-
TEX SET [4]. Should annotation be part of the recipe for
the best possible polynomial-time kernelization?

Cross References

� Connected Dominating Set
� Data Reduction for Domination in Graphs

Recommended Reading

1. Bonsma, P.: Spanning trees withmany leaves: new extremal re-
sults and an improved FPT algorithm. Memorandum Depart-
ment of Applied Mathematics, vol. 1793, University of Twente,
Enschede (2006)

2. Bonsma, P., Brueggemann, T., Woeginger, G.: A faster FPT al-
gorithm for finding spanning trees with many leaves. Pro-
ceedings of MFCS 2003. Lecture Notes in Computer Science,
vol. 2747, pp. 259–268. Springer, Berlin (2003)

3. Downey, R.G., Fellows, M.R.: Parameterized complexity. Mono-
graphs in Computer Science. Springer, New York (1999)

4. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.:
An O(2O(k)n3) FPT algorithm for the undirected feedback ver-
tex set problem. Proceedings COCOON 2005. Lecture Notes
in Computer Science, vol. 3595, pp. 859–869. Springer, Berlin
(2005)

5. Diaz-Gutierrez, P., Bhushan, A., Gopi, M., Pajarola, R.: Single-
strips for fast interactive rendering. J. Vis. Comput. 22(6), 372–
386 (2006)

6. Dutta, R., Savage, C.: A Note on the Complexity of Converter
Placement SupportingBroadcast inWDMOptical Networks. In:
Proceedings of the International Conference on Telecommuni-
cation Systems-Modeling and Analysis, Dallas, November 2005
ISBN: 0-9716253-3-6 pp. 23–31. American Telecommunication
Systems Management Association, Nashville

7. Egecioglu, O., Gonzalez, T.: Minimum-energy Broadcast in Sim-
ple Graphs with Limited Node Power. In: Proc. IASTED Inter-
national Conference on Parallel and Distributed Computing
and Systems (PDCS 2001), Anaheim, August 2001 pp. 334–
338

8. Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond,
F.A.: FPT is P-time extremal structure I. In: Algorithms and com-
plexity in Durham 2005. Texts in Algorithmics, vol. 4, pp. 1–41.
Kings College Publications, London (2005)

9. Fellows, M., Langston, M.: On well-partial-order theory and its
applications to combinatorial problems of VLSI design. SIAM
J. Discret. Math. 5, 117–126 (1992)

10. Fellows,M.: Blow-ups, win/win’s and crown rules: somenewdi-
rections in FPT. In: Proceedings of the 29thWorkshop onGraph
Theoretic Concepts in Computer Science (WG 2003). Lecture
Notes in Computer Science, vol. 2880, pp. 1–12. Springer,
Berlin (2003)

11. Fellows, M., McCartin, C., Rosamond, F., Stege, U.: Coordina-
tized kernels and catalytic reductions: an improved FPT algo-
rithm for max leaf spanning tree and other problems. In: Pro-
ceedings of the 20th Conference on Foundations of Software
Technology and Theoretical Computer Science (FST-TCS 2000).
Lecture Notes in Theoretical Computer Science 1974, pp. 240–
251. Springer, Berlin (2000)

12. Kleitman, D.J., West, D.B.: Spanning trees with many leaves.
SIAM J. Discret. Math. 4, 99–106 (1991)

13. Kouider, M., Vestergaard, P.D.: Generalized connected domina-
tion in graphs. Discret. Math. Theor. Comput. Sci. (DMTCS) 8,
57–64 (2006)

14. Lu, H.-I., Ravi, R.: Approximatingmaximum leaf spanning trees
in almost linear time. J. Algorithm 29, 132–141 (1998)

15. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Lec-
ture Series inMathematics and Its Applications, Oxford Univer-
sity Press, Oxford (2006)

16. Prieto-Rodriguez, E.: Systematic kernelization in FPT algorithm
design. Dissertation, School of Electrical Engineering andCom-
puter Science, University of Newcastle, Australia (2005)

17. Solis-Oba, R.: 2-approximation algorithm for finding a span-
ning tree with the maximum number of leaves. In: Proceed-
ings of the 6th Annual European Symposium on Algorithms
(ESA’98). Lecture Notes in Computer Science, vol. 1461, pp.
441–452. Springer, Berlin (1998)

Metrical Task Systems
1992; Borodin, Linial, Saks

MANOR MENDEL
Department of Mathematics and Computer Science,
The Open University of Israel, Raanana, Israel

Metrical Task Systems M 515

Keywords and Synonyms

MTS

ProblemDefinition

Metrical task systems (MTS), introduced by Borodin,
Linial, and Saks [5], is a cost minimization problem de-
fined on a metric space (X, dX) and informally described
as follows: A given system has a set of internal statesX. The
aim of the system is to serve a given sequence of tasks. The
servicing of each task has a certain cost that depends on
the task and the state of the system. The systemmay switch
states before serving the task, and the total cost for servic-
ing the task is the sum of the service cost of the task in the
new state and the distance between the states in a metric
space defined on the set of states. Following Manasse, Mc-
Geoch, and Sleator [11], an extended model is considered
here, in which the set of allowable tasks may be restricted.

Notation

Let T� denote the set of finite sequences of elements from
a set T. For x; y 2 T�, x ı y is the concatenation of the
sequences x and y, and jxj is the length of the sequence x.

Definition 1 (Metrical Task System) Fix a metric space
(X, dX). Let
 = f(rx)x2X : 8x 2 X; r(x) 2 [0;1]g be
the set of all possible tasks. Let T

 be a subset of tasks,
called allowable tasks.
MTS((X, dX), T,a0 2 X):
INPUT: A finite sequence of tasks � = (�1; : : : ; �m) 2 T�.
OUTPUT: A sequence of points a = (a1; : : : ; am) 2 X�,
jaj = j� j.
OBJECTIVE: minimize

cost(�; a) =
mX
i=1

(dX(ai�1; ai) + �i (ai)):

When T =
 , the MTS problem is called general.

When X is finite and the task sequence � 2 T� is given in
advance, a dynamic programming algorithm can compute
an optimal solution in space O(jXj) and time O(j� j � jXj).
MTS, however, is most interesting in an online setting,
where the system must respond to a task � i with a state
ai 2 X without knowing the future tasks in � . Formally,

Definition 2 (Online algorithms for MTS) A deter-
ministic algorithm for a MTS((X, dX), T, a0) is a map-
ping S : T� ! X� such that for every � 2 T , jS(�)j = j� j.
A deterministic algorithm S : T� ! X� is called online
if for every �; � 2 T�, there exists a 2 X�, jaj = j� j such
that S(� ı �) = S(�) ı a. A randomized online algorithm

is a probability distribution over deterministic online al-
gorithms.

Online algorithms for MTS are evaluated using (asymp-
totic) competitive analysis, which is, roughly speaking, the
worst ratio of the algorithm’s cost to the optimal cost taken
over all possible task sequences.

Definition 3 A randomized online algorithm R for
MTS((X, dX), a0) is called c-competitive (against oblivious
adversaries) if there exists b = b(X) 2 R such that for any
task sequence � 2 T�, and any point sequence a 2 X�,
jaj = j� j,

E[cost(�; R(�))] � c � cost(�; a) + b;

where the expectation is taken over the distribution R.

The competitive ratio of an online algorithm R is the in-
fimum over c � 1 for which R is c-competitive. The de-
terministic [respectively, randomized] competitive ratio of
MTS((X, dX), T, a0) is the infimum over the competitive
ratios of all deterministic [respectively, randomized] on-
line algorithms for this problem. Note that because of the
existential quantifier over b, the asymptotic competitive
ratio (both randomized and deterministic) of a MTS((X,
dX), T, a0) is independent of a0, and it can therefore be
dropped from the notation.

Key Results

Theorem 1 ([5]) The deterministic competitive ratio of the
generalMTS problem on any n-pointmetric space is 2n � 1.

In contrast to the deterministic case, the understanding
of randomized algorithms for general MTS is not com-
plete, and generally no sharp bounds such as Theorem 1
are known.

Theorem 2 ([5,10]) The randomized competitive ratio of
the general MTS problem on n-point uniform space (where
all distances are equal) is at least Hn =

Pn�1
i=1 i�1, and at

most (1 + o(1))Hn.

The best bounds currently known for general n-point met-
rics are proved in two steps: First the given metric is
approximated by an ultrametric, and then a bound on
the competitive ratio of general MTS on ultrametrics is
proved.

Theorem 3 ([8,9]) For any n-point metric space (X, dX),
there exists an O(log2 n log log n) competitive randomized
algorithm for the general MTS on (X, dX).

The metric approximation component in the proof of
Theorem 3 is called probabilistic embedding. An op-
timal O(log n) probabilistic embedding is shown by

516 M Metrical Task Systems

Fakcheroenphol, Rao and Talwar before [8] improving
on results by Alon, Karp, Peleg, and West and by Bartal,
where this notion was invented. A different type of met-
ric approximation with better bounds for metrics of low
aspect ratio is given in [3].

Fiat and Mendel [9] show a O(log n log log n) compet-
itive algorithm for n-point ultrametrics, improving (and
using) a result of Bartal, Blum, Burch, and Tomkins [1],
where the first poly-logarithmic (or even sublinear) com-
petitive randomized algorithm for generalMTS on general
metric spaces is presented.

Theorem 4 ([2,12]) For any n-point metric space (X, dX),
the randomized competitive ratio of the generalMTS on (X,
dX) is at least˝(log n/ log log n).

Themetric approximation component in the proof of The-
orem 4 is called Ramsey subsets. It was first used in this
context by Karloff, Rabani, and Ravid, later improved by
Blum, Karloff, Rabani and Saks, and Bartal, Bollobás, and
Mendel [2]. A tight result on Ramsey subsets is proved
by Bartal, Linial, Mendel, and Naor. For a simpler (and
stronger) proof, see [12].

A lower bound of ˝(log n/ log log n) on the competi-
tive ratio of any randomized algorithm for generalMTS on
n-point ultrametrics is proved in [2], improving previous
results of Karloff, Rabani, and Ravid, and Blum, Karloff,
Rabani and Saks.

The last theorem is the only one not concerning gen-
eral MTSs.

Theorem 5 ([6]) It is PSPACE hard to determine the com-
petitive ratio of a given MTS instance ((X; dX); a0 2 X; T),
even when dX is the uniform metric. On the other hand,
when dX is uniform, there is a polynomial time determin-
istic online algorithm for MTS((X; dX); a0 2 X; T) whose
competitive ratio is O(log jXj) times the deterministic com-
petitive ratio of the MTS((X, dX), a0, T). Here it is assumed
that the instance ((X, dX), a0, T) is given explicitly.

Applications

Metrical task systems were introduced as an abstraction
for online computation, they generalize many concrete
online problems such as paging, weighted caching, k-
server, and list update. Historically, it served as an indi-
cator for a general theory of competitive online computa-
tion.

The main technical contribution of the MTS model
is the development of the work function algorithm used
to prove the upper bound in Theorem 1. This algorithm
was later analyzed by Koutsoupias and Papadimitriou in
the context of the k-server problem, and was shown to

be 2k � 1 competitive. Furthermore, although the MTS
model generalizes the k-server problem, the general MTS
problem on the n-point metric is essentially equivalent to
the (n � 1)-server problem on the samemetric [2]. Hence,
lower bounds on the competitive ratio of general MTS im-
ply lower bounds for the k-server problem, and algorithms
for general MTS may constitute a first step in devising an
algorithm for the k-server problem, as is the case with the
work function algorithm.

The metric approximations used in Theorem 3, and
Theorem 4 have found other algorithmic applications.

Open Problems

There is still an obvious gap between the upper bound and
lower bound known on the randomized competitive ratio
of general MTS on general finite metrics. It is known that,
contrary to the deterministic case, the randomized com-
petitive ratio is not constant across all metric spaces of the
same size. However, in those cases where exact bounds are
known, the competitive ratio is	(log n). An obvious con-
jecture is that the randomized competitive is 	(log n) for
any n-point metric. Arguably, the simplest classes of met-
ric spaces for which no upper bound on the randomized
competitive ratio better than O(log2 n) is known, are paths
and cycles.

Also lacking is a “middle theory” for MTS. On the
one hand, general MTS are understood fairly well. On the
other hand, specialized MTS such as list update, deter-
ministic k-server algorithms, and deterministic weighted-
caching, are also understood fairly well, and have a much
better competitive ratio than the corresponding general
MTS. What may be missing are “in between” models of
MTS that can explain the low competitive ratios for some
of the concrete online problems mentioned above.

It would be also nice to strengthen Theorem 5, and
obtain a polynomial time deterministic online algorithm
whose competitive ratio on any MTS instance on any n-
point metric space is at most poly-log(n) times the deter-
ministic competitive ratio of that MTS instance.

Cross References

� Algorithm DC-Tree for k Servers on Trees
� Approximating Metric Spaces by Tree Metrics
� Online List Update
� Online Paging and Caching
� Paging
� Ski Rental Problem
�Work-Function Algorithm for k Servers

Metric TSP M 517

Recommended Reading
1. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog()-

competitive algorithm for metrical task systems. In: Proceed-
ings of the 29th annual ACM Symposium on the Theory of
Computing, pp. 711–719. ACM, New York (1997)

2. Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for
metric spaceswith applications to online problems. J. Comput.
Syst. Sci. 72, 890–921 (2006)

3. Bartal, Y., Mendel, M.: Multiembedding of metric spaces.
SIAM J. Comput. 34, 248–259 (2004)

4. Borodin, A., El-Yaniv, R.: Online computation and competitive
analysis. Cambridge University Press, Cambridge, UK (1998)

5. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm
for metrical task system. J. ACM 39, 745–763 (1992)

6. Burley, W.R., Irani, S.: On algorithm design for metrical task sys-
tems. Algorithmica 18, 461–485 (1997)

7. Chrobak, M., Larmore, L.L.: Metrical task systems, the server
problem and the work function algorithm. In: Fiat, A., Woeg-
inger, G.J. (eds.) Online Algorithms. The State of the Art. LNCS,
vol. 1442, ch. 4, pp. 74–96. Springer, London (1998)

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight boundon approx-
imating arbitrary metrics by tree metrics. J. Comput. Syst. Sci.
69, 485–497 (2004)

9. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task
systems and applications. SIAM J. Comput. 32, 1403–1422
(2003)

10. Irani, S., Seiden, S.S.: Randomized algorithms for metrical task
systems. Theor. Comput. Sci. 194, 163–182 (1998)

11. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algo-
rithms for server problems. J. Algorithms 11, 208–230 (1990)

12. Mendel, M., Naor, A.: Ramsey partitions and proximity data
structures. J. Eur. Math. Soc. 9(2), 253–275 (2007)

Metric TSP
1976; Christofides

MARKUS BLÄSER
Department of Computer Science, Saarland University,
Saarbrücken, Germany

Keywords and Synonyms

Metric traveling salesman problem; Metric traveling sales-
person problem

ProblemDefinition

TheTraveling SalesmanProblem (TSP) is the following op-
timization problem:

Input: A complete loopless undirected graph G = (V ; E;
w) with a weight function w : E ! Q�0 that assigns to
each edge a non-negative weight.

Feasible solutions: All Hamiltonian tours, i. e, the sub-
graphs H of G that are connected, and each node in
them that has degree two.

Objective function: The weight function w(H) =
P

e2H
w(e) of the tour.

Goal: Minimization.

The TSP is an NP-hard optimization problem. This means
that a polynomial time algorithm for the TSP does not ex-
ist unless P = NP. One way out of this dilemma is pro-
vided by approximation algorithms. A polynomial time
algorithm for the TSP is called an ˛-approximation al-
gorithm if the tour H produced by the algorithm fulfills
w(H) � ˛ �OPT(G). Here OPT(G) is the weight of a min-
imum weight tour of G. If G is clear from the context,
one just writes OPT. An ˛-approximation algorithm al-
ways produces a feasible solution whose objective value is
at most a factor of ˛ away from the optimum value. ˛ is
also called the approximation factor or performance guar-
antee. ˛ does not need to be a constant; it can be a function
that depends on the size of the instance or the number of
nodes n.

If there exists a polynomial time approximation algo-
rithm for the TSP that achieves an exponential approxi-
mation factor in n, then P = NP [6]. Therefore, one has to
look at restricted instances. The most natural restriction is
the triangle inequality, that means,

w(u; v) � w(u; x) + w(x; v) for all u; v; x 2 V :

The corresponding problem is called the Metric TSP. For
the Metric TSP, approximation algorithms that achieve
a constant approximation factor exist. Note that for the
Metric TSP, it is sufficient to find a tour that visits each ver-
tex at least once: Given such a tour, we can find a Hamilto-
nian tour of no larger weight by skipping every vertex that
we already visited. By the triangle inequality, the new tour
cannot get heavier.

Key Results

A simple 2-approximation algorithm for the Metric TSP
is the tree doubling algorithm. It uses minimum spanning
trees to compute Hamiltonian tours. A spanning tree T of
a graph G = (V ; E;w) is a connected acyclic subgraph of
G that contains each node of V . The weight w(T) of such
a spanning tree is the sum of the weights of the edges in it,
i. e., w(T) =

P
e2T w(e). A spanning tree is called a min-

imum spanning tree if its weight is minimum among all
spanning trees of G. One can efficiently compute a min-
imum spanning tree, for instance via Prim’s or Kruskal’s
algorithm, see e. g. [5].

The tree doubling algorithm seems to be folklore. The
next lemma is the key for proving the upper bound on
the approximation performance of the tree doubling algo-
rithm.

518 M Metric TSP

Input: a complete loopless edge weighted undirected
graph G = (V ; E;w) with weight function w : E !
Q�0 that fulfills the triangle inequality

Output: a Hamiltonian tour of G that is a 2" approxi-
mation

1: Compute a minimum spanning tree T of G.
2: Duplicate each edge of T and obtain a Eulerianmul-

tigraph T 0.
3: Compute a Eulerian tour of T 0 (for instance via a

depth first search in T). Whenever a node is visited
in the Eulerian tour that was already visited, this
node is skipped and one proceeds with the next un-
visited node along the Eulerian cycle. (This process
is called shortcutting.) Return the resulting Hamil-
tonian tour H.

Metric TSP, Algorithm 1
Tree doubling algorithm

Lemma 1 Let T be a minimum spanning tree of G =
(V ; E;w). Then w(T) � OPT.

Proof If one deletes any edge of a Hamiltonian tour of G,
one gets a spanning tree of G. �
Theorem 2 Algorithm 1 always returns a Hamiltonian
tour whose weight is at most twice the weight of an opti-
mum tour. Its running time is polynomial.

Proof By Lemma 1, w(T) � OPT. Since one duplicates
each edge of T, the weight of T0 equals w(T 0) = 2w(T) �
2OPT. When taking shortcuts in step 3, a path in T0 is
replaced by a single edge. By the triangle inequality, the
sum of the weights of the edges in such a path is at least
the weight of the edge it is replaced by. (Here, the algo-
rithm breaks down for arbitrary weight functions.) Thus
w(H) � w(T 0). This proves the claim about the approxi-
mation performance.

The running time is dominated by the time needed to
compute aminimum spanning tree. This is clearly polyno-
mial. �
Christofides’ algorithm (Algorithm 2) is a clever refine-
ment of the tree doubling algorithm. It first computes
a minimum spanning tree. On the nodes that have an odd
degree in T, it then computes a minimum weight perfect
matching. A matching M of G is called a matching on
U
 V if all edges ofM consist of two nodes fromU. Such
a matching is called perfect if every node of U is incident
with an edge ofM.

Lemma 3 Let U
 V ; #U even. Let M be a minimum
weight perfect matching on U. Then w(M) � OPT/2.

Input: a complete loopless edge weighted undirected
graph G = (V ; E;w) with weight function w : E !
Q�0 that fulfills the triangle inequality

Output: a Hamiltonian tour of G that is a 3/2" approxi-
mation

1: Compute a minimum spanning tree T of G.
2: Let U
 V be the set of all nodes that have odd de-

gree in T . In G, compute a minimum weight per-
fect matching M on U .

3: Compute a Eulerian tour of T [M (considered as
a multigraph).

4: Take shortcuts in this Eulerian tour to a Hamilto-
nian tour H.

Metric TSP, Algorithm 2
Christofides’ algorithm

Proof Let H be an optimum Hamiltonian tour of G. One
takes shortcuts in H to get a tour H0 on G|U as follows:
H induces a permutation of the nodes in U, namely the
order in which the nodes are visited by H. One connects
the nodes of U in the order given by the permutation.
To every edge of H0 corresponds a path in H connect-
ing the two nodes of this edge. By the triangle inequality,
w(H0) � w(H). Since #U is even, H0 is the union of two
matchings. The lighter one of these two has a weight of at
most w(H0)/2 � OPT/2. �

One can compute a minimum weight perfect matching in
time O(n3), see for instance [5].

Theorem 4 Algorithm 2 is a 3/2-approximation algorithm
with polynomial running time.

Proof First observe that the number of odd degree nodes
of the spanning tree is even, since the sum of the degrees
of all nodes equals 2(n � 1), which is even. Thus a per-
fect matching on U exists. The weight of the Eulerian tour
is obviously w(T) + w(M). By Lemma 1, w(T) � OPT. By
Lemma 3, w(M) � OPT/2. The weight w(H) of the com-
puted tour H is at most the weight of the Eulerian tour by
the triangle inequality, i. e.,w(H) � 3

2OPT. Thus the algo-
rithm is a 3/2-approximation algorithm. Its running time
is O(n3). �

Applications

Experimental analysis shows that Christofides’ algorithm
itself deviates by 10% to 15% from the optimum tour [3].
However, it can serve as a good starting tour for other
heuristics like the Lin–Kernigham heuristic.

Minimum Bisection M 519

Metric TSP, Figure 1
A tight example for Christofides’ algorithm. There are 2n + 1
nodes. Solid edges have a weight of one, dashed ones have
a weight of 1 + �

Open Problems

The analysis of Algorithm 2 is tight; an example is themet-
ric completion of the graph depicted in Fig. 1. The unique
minimum spanning tree consists of all solid edges. It has
only two nodes of odd degree. The edge between these two
nodes has weight (1 + �)(n + 1). No shortcuts are needed,
and the weight of the tour produced by the algorithm is
	 3n. An optimum tour consists of all dashed edges plus
the leftmost and rightmost solid edge. The weight of this
tour is (2n � 1)(1 + �) + 2 	 2n.

The question whether there is an approximation algo-
rithm with a better performance guarantee is a major open
problem in the theory of approximation algorithms.

Held and Karp [2] design an LP based algorithm that
computes a lower bound for the weight of an optimum
TSP tour. It is conjectured that the weight of an optimum
TSP tour is at most a factor of 4/3 larger than this lower
bound, but this conjecture is unproven for more than three
decades. An algorithmic proof of this conjecture would
yield an 4/3-approximation algorithm for the Metric TSP.

Experimental Results

See e. g. [3], where a deviation of 10% to 15% of the opti-
mum (more precisely of the Held–Karp bound) is reported
for various sorts of instances.

Data Sets

The webpage of the 8th DIMACS implementation chal-
lenge, www.research.att.com/~dsj/chtsp/, contains a lot of
instances.

Cross References

�Minimum Spanning Trees

Recommended Reading

Christofides never published his algorithm. It is usually
cited as one of two technical reports from Carnegie Mellon
University, TR 388 of the Graduate School of Industrial

Administration (now Tepper School of Business) and CS-
93-13. None of them seem to be available at Carnegie Mel-
lon University anymore [Frank Balbach, personal com-
munication, 2006]. A one-page abstract was published in
a conference record. But his algorithm quickly found his
way into standard textbooks on algorithm theory, see [7]
for a recent one.

1. Christofides, N.: Worst case analysis of a new heuristic for the
traveling salesman problem, Technical Report 388, Graduate
School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, (1976). Also: Carnegie-Mellon University Technical
Report CS-93-13, 1976. Abstract in Traub, J.F. (ed.) Symposium
on new directions and recent results in algorithms and com-
plexity, pp. 441. Academic Press, New York (1976)

2. Held, M., Karp, R.M.: The traveling salesman problem and mini-
mum spanning trees. Oper. Res. 18, 1138–1162 (1970)

3. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics
for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Sales-
man Problem and its Variations. Kluwer, Dordrecht (2002)

4. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.
(eds.): The Traveling Salesman Problem. A Guided Tour of Com-
binatorial Optimization. Wiley, Chichester (1985)

5. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs
(1982)

6. Sahni, S., Gonzalez, T.: P-complete approximation problems.
J. ACM 23, 555–565 (1976)

7. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
8. Traveling Salesman Problem. www.tsp.gatech.edu (2006). Ac-

cessed 28 Mar 2008

MinimumBisection
1999; Feige, Krauthgamer

ROBERT KRAUTHGAMER1,2
1 Weizmann Institute of Science, Rehovot, Israel
2 IBM Almaden Research Center, San Jose, CA, USA

Keywords and Synonyms

Graph bisection

ProblemDefinition

Overview

Minimum bisection is a basic representative of a family of
discrete optimization problems dealing with partitioning
the vertices of an input graph. Typically, one wishes to
minimize the number of edges going across between the
different pieces, while keeping some control on the parti-
tion, say by restricting the number of pieces and/or their
size. (This description corresponds to an edge-cut of the
graph; other variants correspond to a vertex-cut with sim-
ilar restrictions.) In the minimum bisection problem, the

http://www.research.att.com/~dsj/chtsp/
http://www.tsp.gatech.edu

520 M Minimum Bisection

goal is to partition the vertices of an input graph into two
equal-size sets, such that the number of edges connecting
the two sets is as small as possible.

In a seminal paper in 1988, Leighton and Rao [14] de-
vised for MINIMUM-BISECTION a logarithmic-factor bi-
criteria approximation algorithm.1 Their algorithm has
found numerous applications, but the question of finding
a true approximation with a similar factor remained open
for over a decade later. In 1999, Feige and Krauthgamer [6]
devised the first polynomial-time algorithm that approxi-
mates this problem within a factor that is polylogarithmic
(in the graph size).

Cuts and Bisections

Let G = (V ; E) be an undirected graph with n = jV j ver-
tices, and assume for simplicity that n is even. For a sub-
set S of the vertices, let S̄ = V n S. The cut (also known as
cutset) (S; S̄) is defined as the set of all edges with one end-
point in S and one endpoint in S̄. These edges are said to
cross the cut, and the two sets S and S̄ are called the two
sides of the cut.

Assume henceforth that G has nonnegative edge-
weights. (In the unweighted version, every edge has a unit
weight.) The cost of a cut (S; S̄) is then defined to be the
total edge-weight of all the edges crossing the cut.

A cut (S; S̄) is called a bisection ofG if its two sides have
equal cardinality, namely jSj = jS̄j = n/2. Let b(G) denote
the minimum cost of a bisection of G.

Problem 1 (MINIMUM-BISECTION)
Input: An undirected graph G with nonnegative edge-
weights.
Output: A bisection (S; S̄) of G that has minimum cost.

This definition has a crucial difference from the classi-
cal MINIMUM-CUT problem (see e. g. [10] and references
therein), namely, there is a restriction on the sizes of the
two sides of the cut. As it turns out,MINIMUM-BISECTION
is NP-hard (see [9]), while MINIMUM-CUT can be solved
in polynomial time.

Balanced Cuts and Edge Separators

The above rather basic definition of minimum bisec-
tion can be extended in several ways. Specifically, one
may require only an upper bound on the size of each
side. For 0 < ˇ < 1, a cut (S; S̄) is called ˇ-balanced if
maxfjSj; jS̄jg � ˇn. Note the latter requirement implies

1A bicriteria approximation algorithm partitions the vertices into
two sets each containing at most 2/3 of the vertices, and its value, i. e.
the number of edges connecting the two sets, is compared against that
of the best partition into equal-size sets.

minfjSj; jS̄jg � (1 � ˇ)n. In this terminology, a bisection
is a 1/2-balanced cut.

Problem 2 (ˇ-BALANCED-CUT)
Input: An undirected graph G with nonnegative edge-
weights.
Output: A ˇ-balanced cut (S; S̄) of G with maxfjSj; jS̄jg �
ˇn, that has cost as small as possible.

The special case of ˇ = 2/3 is commonly refered to as the
EDGE-SEPARATOR problem.

In general, the sizes of the two sides may be specified
in advance arbitrarily (rather than being equal); in this case
the input contains a number k, and the goal is to find a cut
(S; S̄) such that jSj = k. One may also wish to divide the
graph into more than two pieces of equal size and then the
input contains a number r � 2, or alternatively, to divide
the graph into r pieces of whose sizes are k1,. . . ,kr, where
the numbers ki are prescribed in the input; in either case,
the goal is to minimize the number of edges crossing be-
tween different pieces.

Problem 3 (PRESCRIBED-PARTITION)
Input: An undirected graph G = (V ; E) with nonnegative
edge-weights, and integers k1,. . . ,kr such that

P
i ki = jVj.

Output: A partition V = V1 [� � � [Vr of G with jVi j = ki
for all i, such that the total edge-weight of edges whose end-
points lie in different sets Vi is as small as possible.

Key Results

The main result of Feige and Krauthgamer [6] is an ap-
proximation algorithm for MINIMUM-BISECTION. The
approximation factor they originally claimed is O(log2 n),
because it used the algorithm of Leighton and Rao [14];
however, by using instead the algorithm of [2], the factor
immediately improves to O(log1:5 n).

Theorem 1 Minimum-Bisection can be approximated in
polynomial time within O(log1:5 n) factor. Specifically, the
algorithm produces for an input graph G a bisection (S; S̄)
whose cost is at most O(log1:5 n) � b(G).

The algorithm immediately extends to similar results for
related and/or more general problems that are defined
above.

Theorem 2 ˇ-Balanced-Cut (and in particular Edge-
Separator) can be approximated in polynomial time within
O(log1:5 n) factor.

Theorem 3 Prescribed-Partition can be approximated in
time nO(r) to within O(log1:5 n) factor.

For all three problems above, the approximation ratio
improves to O(log n) for the family of graphs excluding

Minimum Bisection M 521

a fixedminor (which includes in particular planar graphs).
For simplicity, this result is stated forMinimum-Bisection.

Theorem 4 In graphs excluding a fixed graph as a minor
(e. g., planar graphs), the problems (i)Minimum-Bisection,
(ii) ˇ-Balanced-Cut, and (iii) Prescribed-Partition with
fixed r can all be approximated in polynomial time within
factor O(log n).

It should be noted that all these results can be generalized
further, including vertex-weights and terminals-vertices
(s � t pairs), see [Sect. 5 in 6].

Related Work

A bicriteria approximation algorithm for ˇ-balanced cut
returns a cut that is ˇ0-balanced for a predetermined
ˇ0 > ˇ. For bisection, for example, ˇ = 1/2 and typically
ˇ0 = 2/3.

The algorithms in the above theorems use (in a black-
box manner) an approximation algorithm for a problem
called minimum quotient-cuts (or equivalently, sparsest-
cut with uniform-demands). For this problem, the best
approximation currently known is O(

p
log n) for gen-

eral graphs due to Arora, Rao, and Vazirani [2], and
O(1) for graphs excluding a fixed minor due to Klein,
Plotkin, and Rao [13]. These approximation algorithms
for minimum quotient-cuts immediately give a poly-
nomial time bicriteria approximation (sometimes called
pseudo-approximation) for MINIMUM-BISECTION. For
example, in general graphs the algorithm is guaranteed
to produce a 2/3-balanced cut whose cost is at most
O(
p
log n) � b(G). Note however that a 2/3-balanced cut

does not provide a good approximation for the value of
b(G). For instance, if G consists of three disjoint cliques
of equal size, an optimal 2/3-balanced cut has no edges,
whereas b(G) = ˝(n2). For additional related work, in-
cluding approximation algorithms for dense graphs, for
directed graphs, and for other graph partitioning prob-
lems, see [Sect. 1 in 6] and the references therein.

Applications

One major motivation for MINIMUM-BISECTION, and
graph partitioning in general, is a divide-and-conquer ap-
proach to solving a variety of optimization problems, es-
pecially in graphs, see e. g. [15,16]. In fact, these problems
arise naturally in a wide range of practical settings such as
VLSI design and image processing; sometimes, the moti-
vation is described differently, e. g. as a clustering task.

Another application of MINIMUM-BISECTION is in as-
signment problems, of a form that is common in paral-
lel systems and in scientific computing: jobs need to be

assigned to machines in a balanced way, while assigning
certain pairs of jobs the same machine, as much as possi-
ble. For example, consider assigning n jobs to 2 machines,
when the amount of communication between every two
jobs is known, and the goal is to have equal load (number
of jobs) on each machine, and bring to minimum the total
communication that goes between the machines. Clearly,
this last problem can be restated asMINIMUM-BISECTION
in a suitable graph.

It should be noted that in many of these settings, a true
approximation is not absolutely necessary, and a bicriteria
approximation may suffice. Nevertheless, the algorithms
stated in Sect. “Key Results” have been used to design al-
gorithms for other problems, such as (1) an approxima-
tion algorithm for minimum bisection in k-uniform hy-
pergraphs [3]; (2) an approximation algorithm for a vari-
ant of the minimummulticut problem [17]; and (3) an al-
gorithm that efficiently certifies the unsatisfiability of ran-
dom 2k-SAT with sufficiently many clauses [5].

From a practical perspective, numerous heuristics (al-
gorithms without worst-case guarantees) for graph par-
titioning have been proposed and studied, see [1] for an
extensive survey. For example, one of the most famous
heuristics is Kerninghan and Lin’s local search heuristic
for minimum bisection [11].

Open Problems

Currently, there is a large gap between the O(log1:5 n)
approximation ratio for MINIMUM-BISECTION achieved
by Theorem 1 and the hardness of approximation results
known for it. As mentioned above,MINIMUM-BISECTION
is known to be NP-hard (see [9]).

The problem is not known to be APX-hard but sev-
eral results provide evidence towards this possibility. Bui
and Jones [4] show that for every fixed � > 0, it is NP-hard
to approximate the minimum bisection within an additive
term of n2�� . Feige [7] showed that if refuting 3SAT is
hard on average on a natural distribution of inputs, then
for every fixed " > 0 there is no 4/3 � " approximation
algorithm for minimum bisection. Khot [12] proved that
minimum bisection does not admit a polynomial-time ap-
proximation scheme (PTAS) unless NP has randomized
sub-exponential time algorithms.

Taking a broader perspective, currently there is a (mul-
tiplicative) gap of O(log n) between the approximation
ratio for MINIMUM-BISECTION and that of minimum
quotient-cuts (and thus also to the factor achieved by bi-
criteria approximation). It is interesting whether this gap
can be reduced, e. g. by using the algorithm of [2] in a non-
black box manner.

522 M Minimum Congestion Redundant Assignments

The vertex-cut version ofMINIMUM-BISECTION is de-
fined as follows: the goal is to partition the vertices of the
input graph into V = A[B [S with jSj as small as possi-
ble, under the constraints that maxfjAj; jBjg � n/2 and no
edge connects A with B. It is not known whether a poly-
logarithmic factor approximation can be attained for this
problem. It should be noted that the same question regard-
ing the directed version of MINIMUM-BISECTION was an-
swered negatively by Feige and Yahalom [8].

Cross References

See entry on the paper by Arora, Rao, and Vazirani [2].
� Separators in Graphs
� Sparsest Cut

Recommended Reading

1. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partition-
ing: a survey. Integr. VLSI J. 19(1–2), 1–81 (1995)

2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric em-
beddings, and graph partitionings. In: 36th Annual Sympo-
sium on the Theory of Computing, pp. 222–231, Chicago, June
2004

3. Berman, P., Karpinski, M.: Approximability of hypergraphmini-
mum bisection. ECCC Report TR03-056, Electronic Colloquium
on Computational Complexity, vol. 10 (2003)

4. Bui, T.N., Jones, C.: Finding good approximate vertex and edge
partitions is NP-hard. Inform. Process. Lett. 42(3), 153–159
(1992)

5. Coja-Oghlan, A., Goerdt, A., Lanka, A., Schädlich, F.: Techniques
from combinatorial approximation algorithms yield efficient
algorithms for random 2k-SAT. Theor. Comput. Sci. 329(1–3),
1–45 (2004)

6. Feige, U., Krauthgamer, R.: A polylogarithmic approximation
of the minimum bisection. SIAM Review 48(1), 99–130 (2006)
(Previous versions appeared in Proceedings of 41st FOCS,
1999; and in SIAM J. Comput. 2002)

8. Feige, U., Yahalom, O.: On the complexity of finding balanced
oneway cuts. Inf. Process. Lett. 87(1), 1–5 (2003)

7. Feige, U.: Relations between average case complexity and ap-
proximation complexity. In: 34th Annual ACM Symposium on
the Theory of Computing, pp. 534–543, Montréal, May 19–21,
2002

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A
Guide to the Theory of NP-completeness. W.H. Freeman and
Company (1979)

10. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1),
46–76 (2000)

11. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for par-
titioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

12. Khot, S.: Ruling out PTAS for graphMin-Bisection, Densest Sub-
graph and BipartiteClique. In: 45th Annual IEEE Symposium on
Foundations of Computer Science, pp. 136–145, Georgia Inst.
of Technol., Atlanta 17–19 Oct. 2004

13. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network de-
composition, and multicommodity flow. In: 25th Annual ACM

Symposium on Theory of Computing, pp. 682–690, San Diego,
1993 May 16–18

14. Leighton, T., Rao, S.: Multicommodity max-flow min-cut the-
orems and their use in designing approximation algorithms.
J. ACM 46(6), 787–832, 29th FOCS, 1988 (1999)

15. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator the-
orem. SIAM J. Comput. 9(3), 615–627 (1980)

16. Rosenberg, A.L., Heath, L.S.: Graph separators, with ap-
plications. Frontiers of Computer Science. Kluwer Aca-
demic/Plenum Publishers, New York (2001)

17. Svitkina, Z., Tardos, É.: Min-Max multiway cut. In: 7th Interna-
tional workshop on Approximation algorithms for combinato-
rial optimization (APPROX), pp. 207–218, Cambridge, 2004 Au-
gust 22–24

MinimumCongestion
Redundant Assignments
2002; Fotakis, Spirakis

DIMITRIS FOTAKIS1, PAUL SPIRAKIS2
1 Department of Information and Communication
Systems Engineering, University of the Aegean,
Samos, Greece

2 Computer Engineering and Informatics, Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

Minimum fault-tolerant congestion; Maximum fault-tol-
erant partition

ProblemDefinition

This problem is concerned with the most efficient use
of redundancy in load balancing on faulty parallel links.
More specifically, this problem considers a setting where
some messages need to be transmitted from a source to
a destination through some faulty parallel links. Each link
fails independently with a given probability, and in case of
failure, none of themessages assigned to it reaches the des-
tination1. An assignment of the messages to the links may
use redundancy, i. e. assign multiple copies of some mes-
sages to different links. The reliability of a redundant as-
signment is the probability that every message has a copy

1This assumption is realistic if the messages are split into many
small packets transmitted in a round-robin fashion. Then the suc-
cessful delivery of a message requires that all its packets should reach
the destination.

MinimumCongestion Redundant Assignments M 523

Minimum Congestion Redundant Assignments, Figure 1
Two redundant assignments of 4 unit size messages to 8 identical links. Both assign every message to 4 links and 2 messages to
every link. The corresponding graph is depicted below each assignment. The assignment on the left is the most reliable 2-partition-
ing assignment �2. Lemma 3 implies that for every failure probability f , �2 is at least as reliable as any other assignment � with
Cong(�) � 2. For instance, �2 is at least as reliable as the assignment on the right. Indeed the reliability of the assignment on the
right is 1 � 4f 4 + 2f 6 + 4f 7 � 3f 8, which is bounded from above by Rel(�2) = 1 � 2f 4 + f 8 for all f 2 [0;1]

on some active link, thus managing to reach the destina-
tion. Redundancy increases reliability, but also increases
the message load assigned to the links. A good assign-
ment should achieve high reliability and keep the maxi-
mum load of the links as small as possible.

The reliability of a redundant assignment depends on
its structure. In particular, the reliability of different as-
signments putting the same load on every link and using
the same number of copies for eachmessagemay vary sub-
stantially (e. g. compare the reliability of the assignments
in Fig. 1). The crux of the problem is to find an efficient
way of exploiting redundancy in order to achieve high re-
liability and low maximum load2.

The work of Fotakis and Spirakis [1] formulates the
scenario above as an optimization problem called Mini-
mum Fault-Tolerant Congestion and suggests a simple and
provably efficient approach of exploiting redundancy. This
approach naturally leads to the formulation of another in-
teresting optimization problem, namely that of computing
an efficient fault-tolerant partition of a set of faulty parallel
links. [1] presents polynomial-time approximation algo-
rithms for computing a fault-tolerant partition of the links
and proves that combining fault-tolerant partitions with
standard load balancing algorithms results in a good ap-
proximation to Minimum Fault-Tolerant Congestion. To
the best knowledge of the entry authors, this work is the
first to consider the approximability of computing a re-

2If one does not insist on minimizing the maximum load, a reli-
able assignment is constructed by assigning everymessage to the most
reliable links.

dundant assignment that minimizes the maximum load
of the links subject to the constraint that random faults
should be tolerated with a given probability.

Notations and Definitions

Let M denote a set of m faulty parallel links connecting
a source s to a destination t, and let J denote a set of n
messages to be transmitted from s to t. Each link i has
a rational capacity ci � 1 and a rational failure probabil-
ity fi 2 (0; 1). Each message j has a rational size s j � 1.
Let fmax � maxi2Mf fig denote the failure probability of
the most unreliable link. Particular attention is paid to the
special case of identical capacity links, where all capacities
are assumed to be equal to 1.

The reliability of a set of links M0, denoted Rel(M0), is
the probability that there is an active link in M0. Formally,
Rel(M0) � 1 �

Q
i2M0 fi . The reliability of a collection of

disjoint link subsetsM = fM1; : : : ;M�g, denoted Rel(M),
is the probability that there is an active link in every subset
ofM. Formally,

Rel(M) �
�Y
`=1

Rel(M`) =
�Y
`=1

0
@1 �

Y
i2M`

fi

1
A :

A redundant assignment � : J 7! 2M n ; is a function
that assigns every message j to a non-empty set of links
�(j)
 M. An assignment � is feasible for a set of linksM0

if for every message j, �(j) \ M0 ¤ ;. The reliability of an
assignment � , denoted Rel(�), is the probability that � is

524 M Minimum Congestion Redundant Assignments

feasible for the actual set of active links. Formally,

Rel(�) �
X

M0	M
8 j2J;
(j)\M0¤;

0
@Y

i2M0
(1 � fi)

Y
i2MnM0

fi

1
A

The congestion of an assignment � , denoted Cong(�), is
the maximum load assigned by � to a link inM. Formally,

Cong(�) � max
i2M

8<
:

X
j: i2
(j)

s j
ci

9=
; :

Problem 1 (Minimum Fault-Tolerant Congestion)
INPUT: A set of faulty parallel links M = f(c1; f1); : : : ;
(cm ; fm)g, a set of messages J = fs1; : : : ; sng, and a rational
number � 2 (0; 1).
OUTPUT: A redundant assignment � : J 7! 2M n ; with
Rel(�) � 1 � � that minimizes Cong(�).

Minimum Fault-Tolerant Congestion is NP-hard because
it is a generalization of minimizing makespan on (reli-
able) parallel machines. The decision version of Minimum
Fault-Tolerant Congestion belongs to PSPACE, but it is
not clear whether it belongs toNP. The reason is that com-
puting the reliability of a redundant assignment and decid-
ing whether it is a feasible solution is #P-complete.

The work of Fotakis and Spirakis [1] presents polyno-
mial-time approximation algorithms for Minimum Fault-
Tolerant Congestion based on a simple and natural class
of redundant assignments whose reliability can be com-
puted easily. The high level idea is to separate the re-
liability aspect from load balancing. Technically, the set
of links is partitioned in a collection of disjoint subsets
M = fM1; : : : ;M�g with Rel(M) � 1 � �. Every subset
M` 2M is regarded as a reliable link of effective capacity
c(M`) � mini2M`fcig. Then any algorithm for load bal-
ancing on reliable parallel machines can be used for as-
signing the messages to the subsets ofM, thus computing
a redundant assignment � with Rel(�) � 1 � �.

The assignments produced by this approach are
called partitioning assignments. More precisely, an as-
signment � : J 7! 2M n ; is a �-partitioning assignment
if for every pair of messages j; j0 , either �(j) = �(j0) or
�(j) \ �(j0) = ;, and � assigns the messages to � differ-
ent link subsets.

Computing an appropriate fault-tolerant collection of
disjoint link subsets is an interesting optimization problem
by itself. A feasible solutionM satisfies the constraint that
Rel(M) � 1 � �. For identical capacity links, themost nat-
ural objective is to maximize the number of subsets inM
(equivalently, the number of reliable links used by the load

balancing algorithm). For arbitrary capacities, this objec-
tive generalizes to maximizing the total effective capacity
ofM.

Problem 2 (Maximum Fault-Tolerant Partition)
INPUT: A set of faulty parallel links M = f(c1; f1); : : : ;
(cm ; fm)g, and a rational number � 2 (0; 1).
OUTPUT: A collection M = fM1; : : : ;M�g of disjoint
subsets of M with Rel(M) � 1 � � that maximizesP�
`=1 c(M`).

The problem of Maximum Fault-Tolerant Partition is
NP-hard. More precisely, given m identical capacity links
with rational failure probabilities and a rational num-
ber � 2 (0; 1), it is NP-complete to decide whether the
links can be partitioned into sets M1 and M2 with
Rel(M1) � Rel(M2) � 1 � �.

Key Results

Theorem 1 There is a 2-approximation algorithm for
Maximum Fault-Tolerant Partition of identical capacity
links. The time complexity of the algorithm is O((m �P

i2M ln fi) lnm).

Theorem 2 For every constant ı > 0, there is a (8 + ı)-
approximation algorithm for Maximum Fault-Tolerant
Partition of capacitated links. The time complexity of the
algorithm is polynomial in the input size and 1/ı.

To demonstrate the efficiency of the partitioning approach
for Maximum Fault-Tolerant Congestion, Fotakis and
Spirakis prove that for certain instances, the reliability of
the most reliable partitioning assignment bounds from
above the reliability of any other assignment with the same
congestion (see Fig. 1 for an example).

Lemma 3 For any positive integers �; �; � and any ra-
tional f 2 (0; 1), let � be a redundant assignment of ��
unit size messages to �� identical capacity links with fail-
ure probability f . Let �� be the �-partitioning assignment
that assigns � messages to each of � disjoint subsets con-
sisting of � links each. If Cong(�) � � = Cong(��), then
Rel(�) � (1 � f �)� = Rel(��).

Based on the previous upper bound on the reliability of
any redundant assignment, [1] presents polynomial-time
approximation algorithms for Maximum Fault-Tolerant
Congestion.

Theorem 4 There is a quasi-linear-time 4-approxima-
tion algorithm for Maximum Fault-Tolerant Congestion on
identical capacity links.

MinimumCongestion Redundant Assignments M 525

Theorem 5 There is a polynomial-time 2 dln(m/�)/
ln(1/ fmax)e-approximation algorithm for Maximum Fault-
Tolerant Congestion on instances with unit size messages
and capacitated links.

Applications

In many applications dealing with faulty components
(e. g. fault-tolerant network design, fault-tolerant routing),
a combinatorial structure (e. g. a graph, a hypergraph)
should optimally tolerate random faults with respect to
a given property (e. g. connectivity, non-existence of iso-
lated points). For instance, Lomonosov [5] derived tight
upper and lower bounds on the probability that a graph
remains connected under random edge faults. Using the
bounds of Lomonosov, Karger [3] obtained improved the-
oretical and practical results for the problem of estimating
the reliability of a graph. In this work, Lemma 3 provides
a tight upper bound on the probability that isolated nodes
do not appear in a not necessarily connected hypergraph
with �� nodes and �� “faulty” hyperedges of cardinal-
ity�.

More precisely, let � be any assignment of�� unit size
messages to �� identical links that assigns every message
to � links and � messages to every link. Then � corre-
sponds to a hypergraphH
 , where the set of nodes consists
of �� elements corresponding to the unit size messages
and the set of hyperedges consists of �� elements corre-
sponding to the identical links. Every hyperedge contains
the messages assigned to the corresponding link and has
cardinality � (see Fig. 1 for a simple example with � = 2,
� = 2, and � = 4). Clearly, an assignment � is feasible for
a set of links M0
 M iff the removal of the hyperedges
corresponding to the links in M n M0 does not leave any
isolated nodes3 in H
 . Lemma 3 implies that the hyper-
graph corresponding to the most reliable �-partitioning
assignment maximizes the probability that isolated nodes
do not appear when hyperedges are removed equiprobably
and independently.

The previous work on fault-tolerant network design
and routing mostly focuses on the worst-case fault model,
where a feasible solution must tolerate any configuration
of a given number of faults. The work of Gasieniec et
al. [2] studies the fault-tolerant version of minimizing con-
gestion of virtual path layouts in a complete ATM net-
work. In addition to several results for the worst-case fault
model, [2] constructs a virtual path layout of logarithmic
congestion that tolerates random faults with high proba-
bility. On the other hand, the work of Fotakis and Spirakis

3For a node v, let degH(v) � jfe 2 E(H) : v 2 egj. A node v is
isolated inH if degH(v) = 0.

shows how to construct redundant assignments that tol-
erate random faults with a probability given as part of the
input and achieve a congestion close to optimal.

Open Problems

An interesting research direction is to determine the com-
putational complexity of Minimum Fault-Tolerant Con-
gestion and related problems. The decision version of
Minimum Fault-Tolerant Congestion is included in the
class of languages decided by a polynomial-time non-de-
terministic Turing machine that reduces the language to
a single call of a #P oracle. After calling the oracle once, the
Turing machine rejects if the oracle’s outcome is less than
a given threshold and accepts otherwise. This class is de-
noted NP#P[1;comp] in [1]. In addition to Minimum Fault-
Tolerant Congestion, NP#P[1;comp] includes the decision
version of Stochastic Knapsack considered in [4]. A re-
sult of Toda and Watanabe [6] implies that NP#P[1;comp]

contains the entire Polynomial Hierarchy. A challenging
open problem is to determine whether the decision ver-
sion of Minimum Fault-Tolerant Congestion is complete
for NP#P[1;comp].

A second direction for further research is to con-
sider the generalizations of other fundamental optimiza-
tion problems (e. g. shortest paths, minimum connected
subgraph) under random faults. In the fault-tolerant ver-
sion of minimum connected subgraph for example, the
input consists of a graph whose edges fail independently
with given probabilities, and a rational number � 2 (0; 1).
The goal is to compute a spanning subgraph with a mini-
mum number of edges whose reliability is at least 1� �.

Cross References

� Approximation Schemes for Bin Packing
� Bin Packing
� Connectivity and Fault-Tolerance in Random Regular

Graphs
� List Scheduling

Recommended Reading

1. Fotakis, D., Spirakis, P.: Minimum Congestion Redundant As-
signments to Tolerate Random Faults. Algorithmica 32, 396–
422 (2002)

2. Gasieniec, L., Kranakis, E., Krizanc, D., Pelc, A.: Minimizing Con-
gestion of Layouts for ATM Networks with Faulty Links. In:
Penczek, W., Szalas, A. (eds.) Proceedings of the 21st Interna-
tional Symposium on Mathematical Foundations of Computer
Science. Lecture Notes in Computer Science, vol. 1113, pp. 372–
381. Springer, Berlin (1996)

526 M Minimum Energy Broadcasting in Wireless Geometric Networks

3. Karger, D.: A Randomized Fully Polynomial Time Approximation
Scheme for the All-Terminal Network Reliability Problem. SIAM
J. Comput. 29, 492–514 (1999)

4. Kleinberg, J., Rabani, Y., Tardos, E.: Allocating Bandwidth for
Bursty Connections. SIAM J. Comput. 30, 191–217 (2000)

5. Lomonosov, M.: Bernoulli Scheme with Closure. Probl. Inf.
Transm. 10, 73–81 (1974)

6. Toda, S., Watanabe, O.: Polynomial-Time 1-Turing Reductions
from #PH to #P. Theor. Comput. Sci. 100, 205–221 (1992)

Minimum Energy Broadcasting
inWireless Geometric Networks
2005; Ambühl

CHRISTOPH AMBÜHL
Department of Computer Science,
University of Liverpool, Liverpool, UK

Keywords and Synonyms

Energy-efficient broadcasting in wireless networks

ProblemDefinition

In the most commonmodel for wireless networks, stations
are represented by points in Rd . They are equipped with
a omnidirectional transmitter and receiver which enables
them to communicate with other stations. In order to send
a message from a station s to a station t, station s needs
to emit the message with enough power such that t can
receive it. It is usually assumed that the power required by
a station s to transmit data directly to station t is kstk˛ ,
for some constant ˛ � 1, where kstk denotes the distance
between s and t.

Because of the omnidirectional nature of the trans-
mitters and receivers, a message sent by a station s with
power r˛ can be received by all stations within a disc of ra-
dius r around s. Hence the energy required to send a mes-
sage from a station s directly to a set of stations S0 is deter-
mined by maxv2S0 ksvk˛ .

An instance of the minimum energy broadcast routing
problem in wireless networks (MEBR) consists of a set of
stations S and a constant ˛ � 1. One of the stations in S
is designated as the source station s0. The goal is to send
a message at minimum energy cost from s0 to all other sta-
tions in S. This operation is called broadcast.

In the case ˛ = 1, the optimal solution is to send the
message directly from s0 to all other stations. For ˛ > 1,
sending the message via intermediate stations which for-
ward it to other stations is often more energy efficient.

A solution of the MEBR instance can be described in
terms of a so-called broadcast tree. That is, a directed span-

ning tree of S which contains directed paths from s0 to all
other vertices. The solution described by a broadcast tree T
is the one in which every station forwards the message to
all its out-neighbors in T.

Problem 1 (MEBR)
INSTANCE: A set S of points in Rd, s0 2 S designated as
the source, and a constant ˛.
SOLUTION: A broadcast tree T of S.
MEASURE: The objective is to minimize the total energy
needed to broadcast a message from s0 to all other nodes,
which can be expressed by
X
u2S

max
v2ı(u)

kuvk˛ ; (1)

where ı(u) denotes the set of out-neighbors of station u in T.

TheMEBR problem is known to be NP-hard for d � 2 and
˛ > 1 [2]. APX-hardness is known for d � 3 [5].

Key Results

Numerous heuristics have been proposed for this problem.
Only a few of them have been analyzed theoretically. The
one which attains the best approximation guarantee is the
so-called MST-heuristic [12].

MST-HEURISTIC: Compute a minimum spanning
tree of S (mst(S)) and turn it into an broadcast tree by di-
recting the edges.

Theorem 1 [1] In the Euclidean plane, the MST-heuristic
is a 6 approximation algorithm for MEBR for all ˛ � 2.

Theorem 2 [9] In the Euclidean three-dimensional space,
the MST-heuristic is a 18.8 approximation algorithm for
MEBR for all ˛ � 3.

Minimum Energy Broadcasting in Wireless Geometric Networks,
Figure 1
Illustration of the first and second approach for bounding w(S).
In both approaches, w(S) is bounded in terms of the total area
covered by the shapes

Minimum Energy Broadcasting in Wireless Geometric Networks M 527

Minimum Energy Broadcasting in Wireless Geometric Networks, Figure 2
Illustration of the tight bound for d = 2. The total area of the equilateral triangles on the left is bounded by its extended convex hull
shown in the middle. The point set that maximizes area of the extended convex hull is the star shown on the right

For ˛ < d, the MST-heuristic does not provide a constant
approximation ratio. The d-dimensional kissing numbers
represent lower bounds for the performance of the MST-
heuristic. Hence the analysis for d = 2 is tight, whereas for
d = 3 the lower bound is 12.

Analysis

The analysis of the MST-heuristic is based on good upper
bounds for

w(S) :=
X

e2mst(S)

kek˛ ; (2)

which obviously is an upper bound on (1). The radius of an
instance of MEBR is the distance between s0 to the station
furthest from s0. It turns out that the MST-heuristic per-
forms worst on instances of radius 1 whose optimal solu-
tion is to broadcast themessage directly from s0 to all other
stations. Since the optimal value for such instances is 1, the
approximation ratio follows from good upper bounds on
w(S) for instances with radius 1.

The rest of this section focuses on the case d = ˛ = 2.
There are two main approaches for upper bounding w(S).
In both approaches, w(S) is upper bounded in terms of the
area of particular kinds of shapes associatedwith either the
stations or with the edges of the MST.

In the first approach, the shapes are disks of radius
m/2 placed around every station of S, wherem is the length
of the longest edge ofmst(S). LetA denote the area covered
by the disks. One can provew(S) � 4

�

�
A�
(m/2)2

�
. As-

suming that S has radius 1, one can prove w(S) � 8 quite
easily [4]. This approach can even be extended to obtain
w(S) � 6:33 [8], and it can be generalized for d � 2.

In the second approach [7,11], w(S) is expressed in
terms of shapes associated with the edges of mst(S), e. g.,
diamond shapes as shown on the right of Fig. 1. The area
of a diamond for an edge e is equal to kek2/(2

p
3). Since

one can prove that the diamonds never intersect, one ob-
tainsw(S) = A/(2

p
3). For instances with radius 1, one can

get w(S) � 12:15.
For the 2-dimensional case, one can even obtain

a matching upper bound [1]. The shapes used in this proof
are equilateral triangles, arranged in pairs along every edge
of theMST. As can be seen on the left of Fig. 2, these shapes
do intersect. Still one can obtain a good upper bound on
their total area by means of the convex hull of S:

Let the extended convex hull of S be the convex hull of
S extended by equilateral triangles along the border of the
convex hull. One can prove that the total area generated
by the equilateral triangle shapes along the edges ofmst(S)
is upper bounded by the area of the extended convex hull
of S. By showing that for instances of radius 1 the area of
the extended convex hull is maximized by the point con-
figuration shown on the right of Fig. 2, the matching upper
bound of 6 can be established.

Applications

The MEBR problem is a special case of a large class of
problems called range assignment problems. In all these
problems, the goal is to assign a range to each station such
that a certain type of communication operation such as
broadcast, all-to-1 (gathering), all-to-all (gossiping), can
be accomplished. See [3] for a survey on range assignment
problems.

It is worth noting that the problem of upper bounding
w(S) has already been considered in different contexts. The
idea of using diamond shapes to upper bound the length of
anMST has already been used by Gilbert and Pollak in [6].
Steele [10] makes use of space filling curves to bound w(S).

Open Problems

An obvious open problem is to close the gap in the analysis
of the MST-heuristic for the three dimensional case. This

528 M Minimum Energy Cost Broadcasting in Wireless Networks

might be very difficult, as the lower bound from the kissing
number might not be tight.

Even in the plane, the approximation ratio of theMST-
heuristic is quite large. It would be interesting to see a dif-
ferent approach for the problem, maybe based on LP-
rounding. It is still not known whetherMEBR is APX-hard
for instances in the Euclidean plane.Hence theremight ex-
ist a PTAS for this problem.

Cross References

� Broadcasting in Geometric Radio Networks
� Deterministic Broadcasting in Radio Networks
� Geometric Spanners
�Minimum Geometric Spanning Trees
�Minimum Spanning Trees
� Randomized Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks

Recommended Reading
1. C. Ambühl: An optimal bound for the MST algorithm to com-

pute energy efficient broadcast trees in wireless networks. In:
Proceedings of 32th International Colloquium on Automata,
Languages and Programming (ICALP). Lecture Notes in Com-
puter Science, vol. 3580, pp. 1139–1150. Springer, Berlin (2005)

2. Clementi, A., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On
the Complexity of Computing Minimum Energy Consumption
Broadcast Subgraphs. In: Proceedings of the 18th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS),
pp. 121–131 (2001)

3. Clementi, A., Huiban, G., Penna, P., Rossi, G., Verhoeven,
Y.: Some Recent Theoretical Advances and Open Ques-
tions on Energy Consumption in Ad-Hoc Wireless Networks.
In: Proceedings of the 3rd Workshop on Approximation
and Randomization Algorithms in Communication Networks
(ARACNE), pp. 23–38 (2002)

4. Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved
approximation results for the minimum energy broadcasting
problem. In: Proceedings of the 2004 joint workshop on Foun-
dations of mobile computing (2004)

5. Fuchs, B.: On the hardness of range assignment problems. In:
Proceedings of the 6th Italian Conference on Algorithms and
Complexity (CIAC), pp. 127–138 (2006)

6. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl.
Math. 16, 1–29 (1968)

7. Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adap-
tive broadcast consumption (ABC), a new heuristic and new
bounds for the minimum energy broadcast routing problem.
In: Proceeding of the 3rd IFIP-TC6 international networking
conference (NETWORKING), pp. 866–877 (2004)

8. Navarra, A.: Tighter bounds for the minimum energy broad-
casting problem. In: Proceedings of the 3rd International Sym-
posium on Modeling and Optimization in Mobile, Ad-hoc and
Wireless Networks (WiOpt), pp. 313–322 (2005)

9. Navarra, A.: 3-d minimum energy broadcasting. In: Proceed-
ings of the 13th Colloquium on Structural Information and
Communication Complexity (SIROCCO), pp. 240–252 (2006)

10. Steele, J.M.: Cost of sequential connection for points in space.
Oper. Res. Lett. 8, 137–142 (1989)

11. Wan, P.-J., Calinescu, G., Li, X.-Y., Frieder, O.: Minimum-energy
broadcasting in static ad hoc wireless networks. Wirel. Netw.
8, 607–617 (2002)

12. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-efficient
broadcast and multicast trees in wireless networks. Mobile
Netw. Appl. 7, 481–492 (2002)

Minimum Energy Cost Broadcasting
inWireless Networks
2001; Wan, Calinescu, Li, Frieder

PENG-JUN WAN, XIANG-YANG LI, OPHIR FRIEDER
Department of Computer Science, Illinois Institute
of Technology, Chicago, IL, USA

Keywords and Synonyms

Minimum energy broadcast; MST; MEB

ProblemDefinition

Ad hoc wireless networks have received significant atten-
tion in recent years due to their potential applications in
battlefield, emergency disaster relief and other applica-
tions [11,15]. Unlike wired networks or cellular networks,
no wired backbone infrastructure is installed in ad hoc
wireless networks. A communication session is achieved
either through a single-hop transmission if the commu-
nication parties are close enough, or through relaying by
intermediate nodes otherwise. Omni-directional antennas
are used by all nodes to transmit and receive signals. They
are attractive in their broadcast nature. A single transmis-
sion by a node can be received by many nodes within
its vicinity. This feature is extremely useful for multicast-
ing/broadcasting communications. For the purpose of en-
ergy conservation, each node can dynamically adjust its
transmitting power based on the distance to the receiv-
ing node and the background noise. In the most common
power-attenuation model [10], the signal power falls as
1
r� , where r is the distance from the transmitter antenna
and � is a real constant between 2 and 4 dependent on
the wireless environment. Assume that all receivers have
the same power threshold for signal detection, which is
typically normalized to one. With these assumptions, the
power required to support a link between two nodes sep-
arated by a distance r is r� . A key observation here is that
relaying a signal between two nodes may result in lower
total transmission power than communicating over a large
distance due to the nonlinear power attenuation. They as-

Minimum Energy Cost Broadcasting in Wireless Networks M 529

sume the network nodes are given as a finite point1 set P
in a two-dimensional plane. For any real number �, they
use G(�) to denote the weighted complete graph over P in
which the weight of an edge e is kek� .

The minimum-energy unicast routing is essentially
a shortest-path problem in G(�). Consider any unicast
path from a node p = p0 2 P to another node q = pm 2 P:
p0p1 � � � pm�1pm . In this path, the transmission power of
each node pi , 0 � i � m � 1, is kpipi+1k� and the trans-
mission power of pm is zero. Thus the total transmis-
sion energy required by this path is

Pm�1
i=0 kpipi+1k

� ,
which is the total weight of this path in G� . So by apply-
ing any shortest-path algorithm such as the Dijkstra’s al-
gorithm [5], one can solve the minimum-energy unicast
routing problem.

However, for broadcast applications (in general multi-
cast applications), Minimum-Energy Routing is far more
challenging. Any broadcast routing is viewed as an ar-
borescence (a directed tree) T, rooted at the source node
of the broadcasting, that spans all nodes. Use fT (p) to de-
note the transmission power of the node p required by T.
For any leaf node p of T, fT (p) = 0. For any internal node
p of T,

fT (p) = max
pq2T
kpqk� ;

in other words, the �-th power of the longest distance be-
tween p and its children in T. The total energy required by
T is

P
p2P fT (p). Thus the minimum-energy broad-

cast routing problem is different from the conven-
tional link-based minimum spanning tree (MST) prob-
lem. Indeed, while the MST can be solved in poly-
nomial time by algorithms such as Prim’s algorithm
and Kruskal’s algorithm [5], it is NP-hard [4] to find
the minimum-energy broadcast routing tree for nodes
placed in two-dimensional plane. In its general graph ver-
sion, the minimum-energy broadcast routing can also be
shown to be NP-hard [7], and even worse, it can not
be approximated within a factor of (1 � �) log�, un-
less NP
 DTIME

h
nO(log log n)

i
, by an approximation-

preserving reduction from the Connected Dominating Set
problem [8], where � is the maximal degree and � is any
arbitrary small positive constant.

Three greedy heuristics have been proposed for the
minimum-energy broadcast routing problem by [15]. The
MST heuristic first applies the Prim’s algorithm to obtain
a MST, and then orient it as an arborescence rooted at the

1The terms node, point and vertex are interchangeable here: node
is a network term, point is a geometric term, and vertex is a graph
term.

source node. The SPT heuristic applies the Dijkstra’s al-
gorithm to obtain a SPT rooted at the source node. The
BIP heuristic is the node version of Dijkstra’s algorithm
for SPT. It maintains, throughout its execution, a single
arborescence rooted at the source node. The arborescence
starts from the source node, and new nodes are added to
the arborescence one at a time on the minimum incre-
mental cost basis until all nodes are included in the ar-
borescence. The incremental cost of adding a new node
to the arborescence is the minimum additional power in-
creased by some node in the current arborescence to reach
this new node. The implementation of BIP is based on
the standard Dijkstra’s algorithm, with one fundamental
difference on the operation whenever a new node q is
added. Whereas the Dijkstra’s algorithm updates the node
weights (representing the current knowing distances to the
source node), BIP updates the cost of each link (represent-
ing the incremental power to reach the head node of the
directed link). This update is performed by subtracting the
cost of the added link pq from the cost of every link qr that
starts from q to a node r not in the new arborescence.

Key Results

The performance of these three greedy heuristics have
been evaluated in [15] by simulation studies. However,
their analytic performances in terms of the approximation
ratio remained open until [13]. The work ofWan et al. [13]
derived the bounds on their approximation ratios.

Let us begin with the SPT algorithm. Let � be
a sufficiently small positive number. Consider m nodes
p1;p2; � � � ;pm evenly distributed on a cycle of radius 1
centered at a node o. For 1 � i � m, let qi be the point
in the line segment opi with

��oqi
�� = �. They consider

a broadcasting from the node o to these n = 2m nodes
p1;p2; � � � ;pm ; q1; q2; � � � ; qm . The SPT is the superposi-
tion of paths oqipi , 1 � i � m. Its total energy consump-
tion is �2 + m (1 � �)2. On the other hand, if the transmis-
sion power of node o is set to 1, then the signal can reach
all other points. Thus the minimum energy consumed by
all broadcasting methods is at most 1. So the approxima-
tion ratio of SPT is at least �2 + m (1 � �)2. As � �! 0, this
ratio converges to n

2 = m.
They [13] also proved that

Theorem 1 The approximation ratio of MST is at least 6
for any � � 2.

Theorem 2 The approximation ratio of BIP is at least 13
3

for any � = 2.

They then derived the upper bounds by extensively using
the geometric structures of EuclideanMSTs (EMST). They

530 M Minimum Energy Cost Broadcasting in Wireless Networks

first observed that as long as the cost of a link is an increas-
ing function of the Euclidean length of the link, the set of
MSTs of any point set coincides with the set of Euclidean
MSTs of the same point set. They proved a key result about
an upper bound on the parameter

P
e2MST(P) kek

2 for any
finite point set P inside a disk with radius one.

Theorem 3 Let c be the supreme of
P

e2MST(P) kek
2 over

all such point sets P. Then 6 � c � 12.

The following lemma proved in [13] is used to bound the
energy cost for broadcast when each node can dynamically
adjust its power.

Lemma 4 For any point set P in the plane, the total
energy required by any broadcasting among P is at least
1
c
P

e2MST(P) kek
� .

Lemma 5 For any broadcasting among a point set P in
a two-dimensional plane, the total energy required by the
arborescence generated by the BIP algorithm is at mostP

e2MST(P) kek
� .

Thus, they conclude the following two theorems.

Theorem 6 The approximation ratio of EMST is at most
c, and therefore is at most 12.

Theorem 7 The approximation ratio of BIP is at most c,
and therefore is at most 12.

Later, Wan et al. [14] studied the energy efficient multi-
cast for wireless networks when each node can dynam-
ically adjust its power. Given a set of receivers Q, the
problem Min-Power Asymmetric Multicast seeks, for any
given communication session, an arborescence T of min-
imum total power which is rooted at the source node s
and reaches all nodes in Q. As a generalization of Min-
Power Asymmetric Broadcast Routing, Min-Power Asym-
metric Multicast Routing is also NP-hard. Wieselthier et
al. [15] adapted their three broadcasting heuristics to three
multicasting heuristics by a technique of pruning, which
was called as pruned minimum spanning tree (P-MST),
pruned shortest-path tree (P-SPT), and pruned broadcast-
ing incremental power (P-BIP), respectively in [14]. The
idea is as follows. They first obtain a spanning tree rooted
at the source of a given multicast session by applying
any of the three broadcasting heuristics. They then elim-
inate from the spanning arborescence all nodes which do
not have any descendant in Q. They [14] show by con-
structing examples that all structures P-SPT, P-MST and
P-BIP could have approximation ratio as large as 	(n)
in the worst case for multicast. They then further pro-
posed a multicast scheme with a constant approximation
ratio on the total energy consumption. Their protocol for

Min-Power Asymmetric Multicast Routing is based on
Takahashi-Matsuyama Steiner tree heuristic [12]. Initially,
the multicast tree T contains only the source node. At each
iterative step, the multicast tree T is grown by one path
from some node in T to some destination node from Q
that is not yet in the tree T. The path must have the least
total power among all such paths from a node in T to
a node in Q � T . This procedure is repeated until all re-
quired nodes are included in T. This heuristic is referred
to as Shortest Path First (SPF).

Theorem 8 For asymmetricmulticast communication, the
approximation ratio of SPF is between 6 and 2c, which is at
most 24.

Applications

Broadcasting andmulticasting in wireless ad hoc networks
are critical mechanisms in various applications such as in-
formation diffusion, wireless networks, and also for main-
taining consistent global network information. Broadcast-
ing is often necessary in MANET routing protocols. For
example, many unicast routing protocols such as Dynamic
Source Routing (DSR), Ad Hoc On Demand Distance
Vector (AODV), Zone Routing Protocol (ZRP), and Lo-
cation Aided Routing (LAR) use broadcasting or a deriva-
tion of it to establish routes. Currently, these protocols all
rely on a simplistic form of broadcasting called flooding, in
which each node (or all nodes in a localized area) retrans-
mits each received unique packet exactly one time. The
main problems with flooding are that it typically causes
unproductive and often harmful bandwidth congestion,
as well as inefficient use of node resources. Broadcast-
ing is also more efficient than sending multiple copies the
same packet through unicast. It is highly important to use
power-efficient broadcast algorithms for such networks
since wireless devises are often powered by batteries only.

Open Problems

There are some interesting questions left for further study.
For example, the exact value of the constant c remains un-
solved. A tighter upper bound on c can lead to tighter up-
per bounds on the approximation ratios of both the link-
based MST heuristic and the BIP heuristic. They conjec-
ture that the exact value for c is 6, which seems to be true
based on their extensive simulations. The second question
is what is the approximation lower bound for minimum
energy broadcast? Is there a PTAS for this problem?

So far, all the known theoretically good algorithms ei-
ther assume that the power needed to support a link uv is
proportional to kuvk� or is a fixed cost that is independent

Minimum Flow Time M 531

of the neighboring nodes that it will communicate with.
In practice, the energy consumption of a node is neither
solely dependent on the distance to its farthest neighbor,
nor totally independent of its communication neighbor.
For example, a more general power consumption model
for a node u would be c1 + c2 � kuvk� for some constants
c1 � 0 and c2 � 0 where v is its farthest communication
neighbor in a broadcast structure. No theoretical result is
known about the approximation of the optimum broad-
cast or multicast structure under this model. When c2 = 0,
this is the case where all nodes have a fixed power for com-
munication. Minimizing the total power used by a reliable
broadcast tree is equivalent to the minimum connected
dominating set problem (MCDS), i. e., minimize the num-
ber of nodes that relay themessage, since all relaying nodes
of a reliable broadcast form a connected dominating set
(CDS). Notice that recently a PTAS [2] has been proposed
for MCDS in UDG graph.

Another important question is how to find efficient
broadcast/multicast structures such that the delay from the
source node to the last node receiving message is bounded
by a predetermined value while the total energy consump-
tion is minimized. Notice that here the delay of a broad-
cast/multicast based on a tree is not simply the height of
the tree: many nodes cannot transmit simultaneously due
to the interference.

Cross References

� Broadcasting in Geometric Radio Networks
� Deterministic Broadcasting in Radio Networks

Recommended Reading
1. Ambühl, C.: An Optimal Bound for the MST Algorithm to

Compute Energy Efficient Broadcast Trees in Wireless Net-
works. In: Proceedings of 32th International ColloquiumonAu-
tomata, Languages and Programming (ICALP). LNCS, vol. 3580,
pp. 1139–1150 (2005)

2. Cheng, X., Huang, X., Li, D., Du, D.-Z.: Polynomial-time approxi-
mation scheme for minimum connected dominating set in ad
hoc wireless networks. Netw. 42, 202–208 (2003)

3. Chvátal, V.: A Greedy Heuristic for the Set-Covering Problem.
Math. Oper. Res. 4(3), 233–235 (1979)

4. Clementi, A., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On
the complexity of computing minimum energy consumption
broadcast subgraphs. In: 18th Annual Symposium on Theoret-
ical Aspects of Computer Science. LNCS, vol. 2010, pp. 121–131
(2001)

5. Cormen, T.J., Leiserson, C.E., Rivest, R.L.: Introduction to Algo-
rithms. MIT Press and McGraw-Hill, Columbus (1990)

6. Flammini, M., Navarra, A., Klasing, R., Pérennes, A.: Improved
approximation results for the minimum energy broadcast-
ing problem. DIALM-POMC, pp. 85–91. ACM Press, New York
(2004)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability:
a Guide to the Theory of NP-Completeness. W.H. Freeman and
Company, New York (1979)

8. Guha, S., Khuller, S.: Approximation Algorithms for Connected
Dominating Sets. Algorithmica 20, 347–387 (1998)

9. Preparata, F.P., Shamos, M.I.: Computational Geometry: an In-
troduction. Springer, New York (1985)

10. Rappaport, T.S.:Wireless Communications: Principles and Prac-
tices. Prentice Hall, IEEE Press, Piscataway (1996)

11. Singh, S., Raghavendra, C.S., Stepanek, J.: Power-Aware Broad-
casting in Mobile Ad Hoc Networks. In: Proceedings of IEEE
PIMRC’99, Osaka, September 1999

12. Takahashi, H., Matsuyama, A.: An approximate solution for
steiner problem in graphs. Mathematica Japonica 24(6),
573–577 (1980)

13. Wan, P.-J., Calinescu, G., Li, X.-Y., Frieder, O.: Minimum-energy
broadcast routing in static ad hoc wireless networks. ACM
Wirel. Netw. Preliminary version appeared in IEEE INFOCOM
(2000)8(6), 607–617 (2002)

14. Wan, P.-J., Calinescu, G., Yi, C.-W.: Minimum-power multicast
routing in static ad hoc wireless networks. IEEE/ACM Trans.
Netw. 12, 507–514 (2004)

15. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the Con-
struction of energy-Efficient Broadcast and Multicast Trees in
Wireless Networks. IEEE Infocom 2, 585–594 (2000)

Minimum Flow Time
1997; Leonardi, Raz

NIKHIL BANSAL
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Response time; Sojourn time

ProblemDefinition

The problem is concerned with efficiently scheduling jobs
on a system with multiple resources to provide a good
quality of service. In scheduling literature, several models
have been considered to model the problem setting and
several different measures of quality have been studied.
This note considers the following model: There are sev-
eral identical machines, and jobs are released over time.
Each job is characterized by its size, which is the amount of
processing it must receive to be completed, and its release
time, before which it cannot be scheduled. In this model,
Leonardi and Raz studied the objective of minimizing the
average flow time of the jobs, where the flow time of a job is
duration of time since it is released until its processing re-
quirement is met. Flow time is also referred to as response
time or sojourn time and is a very natural and commonly
used measure of the quality of a schedule.

532 M Minimum Flow Time

Notations Let J = f1; 2; : : : ; ng denote the set of jobs in
the input instance. Each job j is characterized by its re-
lease time rj and its processing requirement pj. There is
a collection ofm identical machines, each having the same
processing capability. A schedule specifies which job ex-
ecutes at what time on each machine. Given a schedule,
the completion time cj of a job is the earliest time at which
job j receives pj amount of service. The flow time f j of j is
defined as c j � r j . A schedule is said to be preemptive, if
a job can be interrupted arbitrarily, and its execution can
be resumed later from the point of interruption without
any penalty. A schedule is non-preemptive if a job cannot
be interrupted once it is started. In the context of multiple
machines, a schedule is said to be migratory, if a job can
be moved from one machine to another during its execu-
tion without any penalty. In the offline model, all the jobs J
are given in advance. In scheduling algorithms, the online
model is usually more realistic than the offline model.

Key Results

For a single machine, it is a folklore result that the Short-
est Remaining Processing Time (SRPT) policy, that at any
time works on the job with the least remaining process-
ing time is optimal for minimizing the average flow time.
Note that SRPT is an online algorithm, and is a preemptive
scheduling policy.

If no preemption is allowed Kellerer, Tautenhahn, and
Woeginger [6] gave an O(n1/2) approximation algorithm
for minimizing the flow time on a single machine, and also
showed that no polynomial time algorithm can have an
approximation ratio of n1/2�" for any " > 0 unless P=NP.

Leonardi and Raz [8] gave the first non-trivial results
for minimizing the average flow time on multiple ma-
chines. Later, a simpler presentation of this result was
given by Leonardi [7]. The main result of [8] is the fol-
lowing.

Theorem 1 ([8]) On multiple machines, the SRPT algo-
rithm is O(min(log(n/m); log P)) competitive for minimiz-
ing average flow time, where P is the maximum to mini-
mum job size ratio.

They also gave a matching lower bound (up to constant
factors) on the competitive ratio.

Theorem 2 ([8]) For the problem of minimizing flow time
on multiple machines, any online algorithm has a competi-
tive ratio of ˝(min(log(n/m); log P)), even when random-
ization is allowed.

Note that minimizing the average flow time is equivalent
to minimizing the total flow time. Suppose each job pays

$1 at each time unit it is alive (i. e. unfinished), then the to-
tal payment received is equal to the total flow time. Sum-
ming up the payment over each time step, the total flow
time can be expressed as the summation over the number
of unfinished jobs at each time unit. As SRPT works on
jobs that can be finished as soon as possible, it seems intu-
itively that it should have the least number of unfinished
jobs at any time. While this is true for a single machine, it
is not true for multiple machines (as shown in an example
below). The main idea of [8] was to show that at any time,
the number of unfinished jobs under SRPT is “essentially”
nomore thanO(min(log P)) times that under any other al-
gorithm. To do this, they developed a technique of group-
ing jobs into a logarithmic number of classes according to
their remaining sizes and arguing about the total unfin-
ished work in these classes. This technique has found a lot
of uses since then to obtain other results. To obtain a guar-
antee in terms of n, some additional ideas are required.

The instance below shows how SRPT could deviate
from optimum in the case of multiple machines. This in-
stance is also the key component in the lower bound con-
struction in Theorem 2 above. Suppose there are two ma-
chines, and three jobs of size 1, 1, and 2 arrive at time t = 0.
SRPT would schedule the two jobs of size 1 at t = 0 and
then work on size 2 job at time t = 1. Thus, it has one unit
of unfinished work at t = 2. However, the optimum could
schedule the size 2 job at time 0, and finish all these jobs
by time 2. Now, at time t = 2 three more jobs with sizes
1/2, 1/2, and 1 arrive. Again, SRPT will work on size 1/2
jobs first, and it can be seen that it will have two unfin-
ished jobs with remaining work 1/2 each at t = 3, whereas
the optimum can finish all these jobs by time 3. This pat-
tern is continued by giving three jobs of size 1/4, 1/4, and
1/2 at t = 3 and so on. After k steps, SRPT will have k jobs
with sizes 1/2; 1/4; 1/8; : : : ; 1/2k�2; 1/2k�1; 1/2k�1, while
the optimum has no jobs remaining. Now the adversary
can give 2 jobs of size 1/2k each every 1/2k time units for
a long time, which implies that SRPT could be ˝(log P)
worse than optimum.

Leonardi and Raz also considered offline algorithms
for the non-preemptive setting in their paper.

Theorem 3 ([8]) There is a polynomial time off-line al-
gorithm that achieves an approximation ratio of O(n1/2

log n/m) for minimizing average flow time on m machines
without preemption.

To prove this result, they give a general technique to con-
vert a preemptive schedule to a non-preemptive one at the
loss of an O(n1/2) factor in the approximation ratio. They
also showed an almost matching lower bound. In particu-
lar,

Minimum Geometric Spanning Trees M 533

Theorem 4 ([8]) No polynomial time algorithm for min-
imizing the total flow time on multiple machines without
preemption can have an approximation ratio of O(n1/3�")
for any " > 0, unless P=NP.

Extensions Since the publication of these results, they
have been extended in several directions. Recall that
SRPT is both preemptive and migratory. Awerbuch, Azar,
Leonardi, and Regev [2] gave an online scheduling al-
gorithm that is non-migratory and still achieves a com-
petitive ratio of O(min(log(n/m); log P)). Avrahami and
Azar [1] gave an even more restricted O(min(log P;
log(n/m))) competitive online algorithm. Their algorithm,
in addition to being non-migratory, dispatches a job im-
mediately to a machine upon its arrival. Recently, Garg
and Kumar [4,5] have extended these results to a setting
where machines have non-uniform speeds. Other related
problems and settings such as stretch minimization (de-
fined as the flow time divided by the size of a job), weighted
flow time minimization, and the non-clairvoyant setting
where the size of a job is not unknown upon its arrival
have also been investigated. The reader is referred to a re-
cent survey by Pruhs, Sgall, and Torng [9] for more details.

Applications

The flow time measure considered here is one of the most
widely used measures of quality of service, as it corre-
sponds to the amount of time one has to wait to get the job
done. The scheduling model considered here arises very
naturally when there are multiple resources and several
agents that compete for service from these resources. For
example, consider a computing system with multiple ho-
mogeneous processors where jobs are submitted by users
arbitrarily over time. Keeping the average response time
low also keeps the frustration levels of the users low. The
model is not necessarily limited to computer systems. At
a grocery store each cashier can be viewed as a machine,
and the users lining up to checkout can be viewed as jobs.
The flow time of a user is time spent waiting until she fin-
ishes her transaction with the cashier. Of course, in many
applications there are additional constraints such as it may
be infeasible to preempt jobs, or if customers expect a cer-
tain fairness such people might prefer to be serviced in
a first come first served manner at a grocery store.

Open Problems

The online algorithm of Leonardi and Raz is also the best-
known offline approximation algorithm for the problem.
In particular, it is not known whether an O(1) approxi-
mation exists even for the case of two machines. Settling

this would be very interesting. In related work, Bansal [3]
considered the problem of finding non-migratory sched-
ules for a constant number of machines. He gave an al-
gorithm that produces a (1 + ")-approximate solution for
any " > 0 in time nO(log n/"2). This suggests the possibility
of a polynomial time approximation scheme for the prob-
lem, at least for the case of a constant number of machines.

Cross References

� Flow Time Minimization
�Multi-level Feedback Queues
� Shortest Elapsed Time First Scheduling

Recommended Reading
1. Avrahami, N., Azar, Y.: Minimizing total flow time and comple-

tion time with immediate dispacthing. In: Proceedings of 15th
SPAA, pp. 11–18. (2003)

2. Awerbuch, B., Azar, Y., Leonardi, S., Regev, O.: Minimizing the
flow time without migration. SIAM J. Comput. 31, 1370–1382
(2002)

3. Bansal, N.: Minimizing flow time on a constant number of ma-
chines with preemption. Oper. Res. Lett. 33, 267–273 (2005)

4. Garg, N., Kumar, A.: Better algorithms for minimizing aver-
age flow-time on related machines. In: Proceesings of ICALP,
pp. 181–190 (2006)

5. Garg, N., Kumar, A.: Minimizing average flow time on related
machines. In: ACM Symposium on Theory of Compuring (STOC),
pp. 730–738 (2006)

6. Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximability
and nonapproximability results for minimizing total flow time
on a single machine. SIAM J. Comput. 28, 1155–1166 (1999)

7. Leonardi, S.: A simpler proof of preemptive flow-time approx-
imation. Approximation and On-line Algorithms. In: Bampis, E.
(ed.) Lecture Notes in Computer Science. Springer, Berlin (2003)

8. Leonardi, S., Raz, D.: Approximating total flow time on parallel
machines. In: ACM Symposium on Theory of Computing (STOC),
pp. 110–119 (1997)

9. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook
on Scheduling: Algorithms, Models and Performance Analysis,
CRC press (2004). Symposium on Theory of Computing (STOC),
pp. 110–119. (1997)

MinimumGeometric Spanning Trees
1999; Krznaric, Levcopoulos, Nilsson

CHRISTOS LEVCOPOULOS
Department of Computer Science, Lund University,
Lund, Sweden

Keywords and Synonyms

Minimum length spanning trees; Minimum weight span-
ning trees; Euclidean minimum spanning trees; MST;
EMST

534 M Minimum Geometric Spanning Trees

ProblemDefinition

Let S be a set of n points in d-dimensional real space where
d � 1 is an integer constant. A minimum spanning tree
(MST) of S is a connected acyclic graph with vertex set
S of minimum total edge length. The length of an edge
equals the distance between its endpoints under somemet-
ric. Under the so-called Lp metric, the distance between
two points x and y with coordinates (x1; x2; : : : ; xd) and
(y1; y2; : : : ; yd), respectively, is defined as the pth root of
the sum

Pd
i=1 jxi � yi jp .

Key Results

Since there is a very large number of papers concerned
with geometric MSTs, only a few of them will be men-
tioned here.

In the common Euclidean L2 metric, which simply
measures straight-line distances, the MST problem in two
dimensions can be solved optimally in time O(n log n), by
using the fact that the MST is a subgraph of the Delaunay
triangulation of the input point set. The latter is in turn
the dual of the Voronoi diagram of S, for which there exist
several O(n log n)-time algorithms. The term “optimally”
here refers to the algebraic computation tree model. After
computation of the Delaunay triangulation, the MST can
be computed in onlyO(n) additional time, by using a tech-
nique by Cheriton and Tarjan [5].

Even for higher dimensions, i. e., when d > 2, it holds
that the MST is a subgraph of the dual of the Voronoi
diagram; however, this fact cannot be exploited in the
same way as in the two-dimensional case, because this
dual may contain ˝(n2) edges. Therefore, in higher di-
mensions other geometric properties are used to reduce
the number of edges which have to be considered. The
first subquadratic-time algorithm for higher dimensions
was due to Yao [14]. A more efficient algorithm was later
proposed by Agarwal et al. [1]. For d = 3, their algorithm
runs in randomized expected time O((n log n)4/3), and for
d � 4, in expected time O(n2�2/(dd/2e+1)+�), where " stands
for an arbitrarily small positive constant.

The algorithm by Agarwal et al. builds on exploring the
relationship between computing aMST and finding a clos-
est pair between n red points and m blue points, which is
called the bichromatic closest pair problem. They showed
that if Td (n;m) denotes the time to solve the latter prob-
lem, then a MST can be computed in O(Td (n; n) logd n)
time. Later, Callahan and Kosaraju [4] improved this
bound to O(Td (n; n) log n). Both methods achieve run-
ning time O(Td (n; n)), if Td (n; n) = ˝(n1+˛), for some
˛ > 0. Finally, Krznaric et al. [10] showed that the two
problems, i. e., computing a MST and computing the

bichromatic closest pair, have the same worst-case time
complexity (up to constant factors) in the commonly used
algebraic computation tree model, and for any fixed Lp
metric. The hardest part to prove is that a MST can be
computed in time O(Td (n; n)). The other part, which is
that the bichromatic closest pair problem is not harder
than computing the MST, is easy to show: if one first com-
putes a MST for the union of the n + m red and blue
points, one can then find a closest bichromatic pair in lin-
ear time, because at least one such pair has to be connected
by some edge of the MST.

The algorithm proposed by Krznaric et al. [10] is based
on the standard approach of joining trees in a forest with
the shortest edge connecting two different trees, similar
to the classical Kruskal’s and Prim’s MST algorithms for
graphs. To reduce the number of candidates to be con-
sidered as edges of the MST, the algorithm works in a se-
quence of phases, where in each phase only edges of equal
or similar length are considered, within a factor of 2.

The initial forest is the set S of points, that is, each
point of the input constitutes an individual edgeless tree.
Then, as long as there is more than one tree in the forest,
two trees aremerged by producing an edge connecting two
nodes, one from each tree. After this procedure, the edges
produced comprise a single tree that remains in the forest,
and this tree constitutes the output of the algorithm.

Assume that the next edge that the algorithm is going
to produce has length l. Each tree T in the forest is parti-
tioned into groups of nodes, each group having a specific
node representing the group. The representative node in
such a group is called a leader. Furthermore, every node
in a group including the leader has the property that it lies
within distance � � l from its leader, where " is a real con-
stant close to zero.

Instead of considering all pairs of nodes which can be
candidates for the next edge to produce, first only pairs of
leaders are considered. Only if a pair of leaders belong to
different trees and the distance between them is approxi-
mately l, then the closest pair of points between their two
respective groups is computed, using the algorithm for the
bichromatic closest pair problem.

Also, the following invariant is maintained: for any
phase producing edges of length 	(l), and for any leader,
there is only a constant number of other leaders at distance
	(l). Thus, the total number of pairs of leaders to consider
is only linear in the number of leaders.

Nearby leaders for any given leader can be found effi-
ciently by using bucketing techniques and data structures
for dynamic closest pair queries [3], together with extra ar-
tificial points which can be inserted and removed for prob-
ing purposes at various small boxes at distance 	(l) from

Minimum Geometric Spanning Trees M 535

the leader. In order to maintain the invariant, when mov-
ing to subsequent phases, one reduces the number of lead-
ers accordingly, as pairs of nearby groups merge into sin-
gle groups. Another tool which is also needed to consider
the right types of pairs is to organize the groups according
to the various directions in which there can be new candi-
dateMST edges adjacent to nodes in the group. For details,
please see the original paper by Krznaric et al. [10].

There is a special version of the bichromatic closest
point problem which was shown by Krznaric et al. [10]
to have the same worst-case time complexity as comput-
ing a MST: namely, the problem for the special case when
both the set of red points and the set of blue points have a
very small diameter compared with the distance between
the closest bichromatic pair. This ratio can be made arbi-
trarily small by choosing a suitable " as the parameter for
creating the groups and leadersmentioned above. This fact
was exploited in order to derive more efficient algorithms
for the three-dimensional case.

For example, in the L1 metric it is possible to build in
timeO(n log n) a special kind of a planar Voronoi diagram
for the blue points on a plane separating the blue from the
red points having the following property: for each query
point q in the half-space including the red points one can
use this Voronoi diagram to find in time O(log n) the blue
point which is closest to q under the L1 metric. (This pla-
nar Voronoi diagram can be seen as defined by the verti-
cal projections of the blue points onto the plane contain-
ing the diagram, and the size of a Voronoi cell depends
on the distance between the corresponding blue point and
the plane.) So, by using subsequently every red point as
a query point for this data structure, one can solve the
bichromatic closest pair problem for such well-separated
red–blue sets in total O(n log n) time.

By exploiting and building upon this idea, Krznaric
et al. [10] showed how to find a MST of S in optimal
O(n log n) time under the L1 and L1 metrics when d = 3.
This is an improvement over previous bounds due to
Gabow et al. [9] and Bespamyatnikh [2], who proved that,
for d = 3, a MST can be computed in O(n log n log log n)
time under the L1 and L1 metrics.

Themain results of Krznaric et al. [10] are summarized
in the following theorem.

Theorem In the algebraic computation tree model, for any
fixed Lp metric, and for any fixed number of dimensions,
computing the MST has the same worst-case complexity,
within constant factors, as solving the bichromatic closest
pair problem. Moreover, for three-dimensional space under
the L1 and L1 metrics, the MST (as well as the bichromatic
closest pair) can be computed in optimal O(n log n) time.

Approximate and Dynamic Solutions

Callahan and Kosaraju [4] showed that a spanning tree
of length within a factor 1 + � from that of a MST can
be computed in time O(n(log n + ��d/2 log ��1)). Approx-
imation algorithms with worse tradeoff between time
and quality had earlier been developed by Clarkson [6],
Vaidya [13] and Salowe [12]. In addition, if the input point
set is supported by certain basic data structures, then the
approximate length of aMST can be computed in random-
ized sublinear time [7]. Eppstein [8] gave fully dynamic al-
gorithms that maintain a MST when points are inserted or
deleted.

Applications

MSTs belong to the most basic structures in computa-
tional geometry and in graph theory, with a vast number
of applications.

Open Problems

Although the complexity of computing MSTs is settled
in relation to computing bichromatic closest pairs, this
means also that it remains open for all cases where the
complexity of computing bichromatic closest pairs re-
mains open, e. g., when the number of dimensions is
greater than 3.

Experimental Results

Narasimhan and Zachariasen [11] have reported experi-
ments with computing geometric MSTs via well-separated
pair decompositions.

Cross References

� Degree-Bounded Trees
� Fully Dynamic Minimum Spanning Trees
� Greedy Set-Cover Algorithms
�Max Leaf Spanning Tree
�Minimum Spanning Trees
� Parallel Connectivity and Minimum Spanning Trees
� Randomized Minimum Spanning Tree
� Rectilinear Spanning Tree
� Rectilinear Steiner Tree
� Steiner Forest
� Steiner Trees

Recommended Reading
1. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.:

Euclidean minimum spanning trees and bichromatic closest
pairs. Discret. Comput. Geom. 6, 407–422 (1991)

536 M Minimum k-Connected Geometric Networks

2. Bespamyatnikh, S.: On ConstructingMinimum Spanning Trees
in Rk1. Algorithmica 18(4), 524–529 (1997)

3. Bespamyatnikh, S.: An Optimal Algorithm for Closest-Pair
Maintenance. Discret. Comput. Geom. 19(2), 175–195 (1998)

4. Callahan, P.B., Kosaraju, S.R.: Faster Algorithms for Some Geo-
metric Graph Problems in Higher Dimensions. In: SODA 1993,
pp. 291–300

5. Cheriton, D.and Tarjan, R.E.: FindingMinimumSpanning Trees.
SIAM J. Comput. 5(4), 724–742 (1976)

6. Clarkson, K.L.: Fast Expected-Time and Approximation Algo-
rithms for Geometric Minimum Spanning Trees. In: Proc. STOC
1984, pp. 342–348

7. Czumaj, A., Ergün, F., Fortnow, L., Magen, A., Newman, I., Rubin-
feld, R., Sohler, C.: Approximating the Weight of the Euclidean
Minimum Spanning Tree in Sublinear Time. SIAM J. Comput.
35(1), 91–109 (2005)

8. Eppstein, D.: Dynamic Euclidean Minimum Spanning Trees
and Extrema of Binary Functions. Discret. Comput. Geom.
13, 111–122 (1995)

9. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and Related
Techniques for Geometry Problems. In: STOC 1984, pp. 135–
143

10. Krznaric, D., Levcopoulos, C., Nilsson, B.J.: Minimum Spanning
Trees in d Dimensions. Nord. J. Comput. 6(4), 446–461 (1999)

11. Narasimhan, G., Zachariasen, M.: Geometric Minimum Span-
ning Trees via Well-Separated Pair Decompositions. ACM J.
Exp. Algorithms 6, 6 (2001)

12. Salowe, J.S.: Constructing multidimensional spanner graphs.
Int. J. Comput. Geom. Appl. 1(2), 99–107 (1991)

13. Vaidya, P.M.: Minimum Spanning Trees in k-Dimensional
Space. SIAM J. Comput. 17(3), 572–582 (1988)

14. Yao, A.C.: On Constructing Minimum Spanning Trees in k-Di-
mensional Spaces and Related Problems. SIAM J. Comput.
11(4), 721–736 (1982)

Minimum k-Connected Geometric
Networks
2000; Czumaj, Lingas

ARTUR CZUMAJ1, ANDRZEJ LINGAS2
1 DIMAP and Computer Science, University of Warwick,
Coventry, UK

2 Department of Computer Science, Lund University,
Lund, Sweden

Keywords and Synonyms

Geometric graphs; Euclidean graphs

ProblemDefinition

The following classical optimization problem is consid-
ered: for a given undirected weighted geometric network,
find its minimum-cost sub-network that satisfies a priori
given multi-connectivity requirements.

Notations

Let G = (V ; E) be a geometric network, whose vertex set
V corresponds to a set of n points in R d for certain inte-
ger d, d � 2, and whose edge set E corresponds to a set of
straight-line segments connecting pairs of points in V . G
is called complete if E connects all pairs of points in V .

The cost ı(x; y) of an edge connecting a pair of points
x; y 2 Rd is equal to the Euclidean distance between

points x and y, that is, ı(x; y) =
qPd

i=1(xi � yi)2, where
x = (x1; : : : ; xd) and y = (y1; : : : ; yd). More generally, the
cost ı(x; y) could be defined using other norms, such as `p

norms for any p > 1, i. e., ı(x; y) =
�Pp

i=1(xi � yi)p
�1/p

.
The cost of the network is equal to the sum of the costs of
the edges of the network, cost(G) =

P
(x;y)2E ı(x; y).

A network G = (V ; E) is spanning a set S of points
if V = S. G = (V ; E) is k-vertex-connected if for any set
U
 V of fewer than k vertices, the network (V n U; E \
((V n U) � (V n U)) is connected. Similarly, G is k-edge-
connected if for any set E
 E of fewer than k edges, the
network (V ; E n E) is connected.

The (Euclidean) Minimum-Cost k-Vertex Connected
Spanning Network Problem For a given set S of n
points in the Euclidean space Rd, find a minimum-cost k-
vertex connected Euclidean network spanning points in S.

The (Euclidean) Minimum-Cost k-Edge Connected
Spanning Network Problem For a given set S of n
points in the Euclidean space Rd, find a minimum-cost k-
edge connected Euclidean network spanning points in S.

A variant that allows parallel edges is also considered:

The (Euclidean) Minimum-Cost k-Edge Connected
Spanning Multi-Network Problem For a given set S
of n points in the Euclidean space Rd, find a minimum-
cost k-edge connected Euclidean multi-network spanning
points in S (where the multi-network can have parallel
edges).

The concept of minimum-cost k-connectivity nat-
urally extends to include that of Euclidean Steiner k-
connectivity by allowing the use of additional vertices,
called Steiner points. For a given set S of points in Rd,
a geometric network G is a Steiner k-vertex connected (or,
Steiner k-edge connected) for S if the vertex set of G is a su-
perset of S and for every pair of points from S there are k in-
ternally vertex-disjoint (edge-disjoint, respectively) paths
connecting them in G.

The (Euclidean) Minimum-Cost Steiner k-Vertex/Edge
Connectivity Problem Find a minimum-cost network

Minimum k-Connected Geometric Networks M 537

on a superset of S that is Steiner k-vertex/edge connected
for S.

Note that for k = 1, it is simply the Steinerminimal tree
problem, which has been very extensively studied in the
literature (see, e. g., [14]).

In a more general formulation of multi-connectivity
graph problems, non-uniform connectivity constraints
have to be satisfied.

The Survivable Network Design Problem For a given
set S of points inRd and a connectivity requirement func-
tion r : S � S ! N , find a minimum-cost geometric net-
work spanning points in S such that for any pair of ver-
tices p; q 2 S the sub-network has rp;q internally vertex-
disjoint (or edge-disjoint, respectively) paths between p
and q.

In many applications of this problem, often regarded
as the most interesting ones [9,13], the connectivity re-
quirement function is specified with the help of a one-
argument function which assigns to each vertex p its
connectivity type rv 2 N. Then, for any pair of vertices
p; q 2 S, the connectivity requirement rp;q is simply given
as minfrp; rqg [12,13,17,18]. This includes the Steiner tree
problem (see, e. g., [2]), in which rp 2 f0; 1g for any vertex
p 2 S.

A polynomial-time approximation scheme (PTAS) is
a family of algorithms fA"g such that, for each fixed " > 0,
A" runs in time polynomial in the size of the input and
produces a (1 + ")-approximation.

Related Work

For a very extensive presentation of results concerning
problems of finding minimum-cost k-vertex- and k-edge-
connected spanning subgraphs, non-uniform connectiv-
ity, connectivity augmentation problems, and geometric
problems, see [1,3,11,15].

Despite the practical relevance of the multi-
connectivity problems for geometrical networks and the
vast amount of practical heuristic results reported (see,
e. g., [12,13,17,18]), very little theoretical research had
been done towards developing efficient approximation
algorithms for these problems until a few years ago. This
contrasts with the very rich and successful theoretical
investigations of the corresponding problems in general
metric spaces and for general weighted graphs. And so,
until 1998, even for the simplest and most fundamental
multi-connectivity problem, that of finding a minimum-
cost 2-vertex connected network spanning a given set of
points in the Euclidean plane, obtaining approximations
achieving better than a 3

2 ratio had been elusive (the ratio

3
2 is the best polynomial-time approximation ratio known
for general networks whose weights satisfy the triangle
inequality [8]; for other results, see e. g., [4,15]).

Key Results

The first result is an extension of the well-known NP-
hardness result of minimum-cost 2-connectivity in gen-
eral graphs (see, e. g., [10]) to geometric networks.

Theorem 1 The problem of finding a minimum-cost 2-
vertex/edge connected geometric network spanning a set of
n points in the plane isNP-hard.

Next result shows that if one considers the minimum-cost
multi-connectivity problems in an enough high dimen-
sion, the problems become APX-hard.

Theorem 2 ([6]) There exists a constant � > 0 such that
it isNP-hard to approximate within 1 + � the minimum-
cost 2-connected geometric network spanning a set of n
points inRdlog2 ne.

This result extends also to any `p norm.

Theorem 3 ([6]) For and integer d � log n and for any
fixed p � 1 there exists a constant � > 0 such that it is
NP-hard to approximate within 1 + � the minimum-cost
2-connected network spanning a set of n points in the `p
metric inRd.

Since the minimum-cost multi-connectivity problems are
hard, the research turned into the study of approximation
algorithms. By combining some of the ideas developed for
the polynomial-time approximation algorithms for TSP
due to Arora [2] (see also [16]) together with several
new ideas developed specifically for the multi-connectivity
problems in geometric networks, Czumaj and Lingas ob-
tained the following results.

Theorem 4 ([5,6]) Let k and d be any integers, k; d � 2,
and let " be any positive real. Let S be a set of n points
in Rd. There is a randomized algorithm that in time n �

(log n)(kd/")O(d) � 22(kd/")
O(d)

with probability at least 0.99
finds a k-vertex-connected (or k-edge-connected) spanning
network for S whose cost is at most (1 + ")-time optimal.

Furthermore, this algorithm can be derandomized in
polynomial-time to return a k-vertex-connected (or k-edge-
connected) spanning network for S whose cost is at most
(1 + ") times the optimum.

Observe that when all d, k, and " are constant, then the
running-times are n � logO(1) n.

The results in Theorem 4 give a PTAS for small values
of k and d.

538 M Minimum k-Connected Geometric Networks

Theorem 5 (PTAS for vertex/edge-connectivity [6,5])
Let d � 2 be any constant integer. There is a certain positive
constant c < 1 such that for all k such that k � (log log n)c ,
the problems of finding aminimum-cost k-vertex-connected
spanning network and a k-edge-connected spanning net-
work for a set of points inRd admit PTAS.

The next theorem deals with multi-networks where feasi-
ble solutions are allowed to use parallel edges.

Theorem 6 ([5]) Let k and d be any integers, k; d � 2,
and let " be any positive real. Let S be a set of n points
in Rd. There is a randomized algorithm that in time n �

log n � (d/")O(d) + n � 22(k
O(1)
�(d/")O(d2)) , with probability at

least 0.99 finds a k-edge-connected spanning multi-network
for S whose cost is at most (1 + ") times the optimum. The
algorithm can be derandomized in polynomial-time.

Combining this theorem with the fact that parallel edges
can be eliminated in case k = 2, one obtains the following
result for 2-connectivity in networks.

Theorem 7 (Approximation schemes for 2-connected
graphs, [5]) Let d be any integer, d � 2, and let " be any
positive real. Let S be a set of n points inRd. There is a ran-
domized algorithm that in time n � log n � (d/")O(d) + n �
2(d/")O(d

2) , with probability at least 0.99 finds a 2-vertex-
connected (or 2-edge-connected) spanning network for S
whose cost is at most (1 + ") times the optimum. This al-
gorithm can be derandomized in polynomial-time.

For constant d the running time of the randomized algo-
rithms is n log n � (1/")O(1) + 2(1/")O(1) .

Theorem 8 ([7]) Let d be any integer, d � 2, and let " be
any positive real. Let S be a set of n points in Rd. There is
a randomized algorithm that in time n � log n � (d/")O(d) +

n �2(d/")O(d
2) +n �22d

dO(1)
, with probability at least 0.99 finds

a Steiner 2-vertex-connected (or 2-edge-connected) span-
ning network for S whose cost is at most (1 + ") times the
optimum. This algorithm can be derandomized in polyno-
mial-time.

Theorem 9 ([7]) Let d be any integer, d � 2, and let " be
any positive real. Let S be a set of n points in Rd. There is
a randomized algorithm that in time n � log n � (d/")O(d) +

n �2(d/")O(d
2) +n �22d

dO(1)
, with probability at least 0.99 gives

a (1 + ")-approximation for the geometric network surviv-
ability problem with rv 2 f0; 1; 2g for any v 2 V. This al-
gorithm can be derandomized in polynomial-time.

Applications

Multi-connectivity problems are central in algorithmic
graph theory and have numerous applications in com-
puter science and operation research, see, e. g., [1,13,
11,18]. They also play very important role in the de-
sign of networks that arise in practical situations, see,
e. g., [1,13]. Typical application areas include telecom-
munication, computer and road networks. Low degree
connectivity problems for geometrical networks in the
plane can often closely approximate such practical con-
nectivity problems (see, e. g., the discussion in [13,17,18]).
The survivable network design problem in geometric net-
works also arises in many applications, e. g., in telecom-
munication, communication network design, VLSI de-
sign, etc. [12,13,17,18].

Open Problems

The results discussed above lead to efficient algorithms
only for small connectivity requirements k; the running-
time is polynomial only for the value of k up to (log log n)c

for certain positive constant c < 1. It is an interesting open
problem if one can obtain polynomial-time approxima-
tion schemes algorithms also for large values of k.

It is also an interesting open problem if the multi-
connectivity problems in geometric networks can have
practically fast approximation schemes.

Cross References

� Euclidean Traveling Salesperson Problem
�Minimum Geometric Spanning Trees

Recommended Reading

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.R.: Applica-
tions of network optimization. In: Handbooks in Operations
Research and Management Science, vol. 7, Network Models,
chapter 1, pp. 1–83. North-Holland, Amsterdam (1995)

2. Arora, S.: Polynomial time approximation schemes for Eu-
clidean traveling salesman and other geometric problems.
J. ACM 45(5), 753–782 (1998)

3. Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation
schemes for minimum 2-connected spanning subgraphs in
weighted planar graphs. Proc. 13th Annual European Sympo-
sium on Algorithms, pp. 472–483. (2005)

4. Cheriyan, J., Vetta, A.: Approximation algorithms for network
design with metric costs. Proc. 37th Annual ACM Symposium
on Theory of Computing, Baltimore, 22–24May 2005, pp. 167–
175. (2005)

5. Czumaj, A., Lingas, A.: Fast approximation schemes for Eu-
clidean multi-connectivity problems. Proc. 27th Annual Inter-
national Colloquium on Automata, Languages and Program-
ming, Geneva, 9–15 July 2000, pp. 856–868

MinimumMakespan on Unrelated Machines M 539

6. Czumaj, A., Lingas, A.: On approximability of theminimum-cost
k-connected spanning subgraph problem. Proc. 10th Annual
ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 17–
19 January 1999, pp. 281–290

7. Czumaj, A., Lingas, A., Zhao, H.: Polynomial-time approxima-
tion schemes for the Euclidean survivable network design
problem. Proc. 29th Annual International Colloquium on Au-
tomata, Languages and Programming, Malaga, 8–13 July 2002,
pp. 973–984

8. Frederickson, G.N., JáJá, J.: On the relationship between the bi-
connectivity augmentation and Traveling Salesman Problem.
Theor. Comput. Sci. 19(2), 189–201 (1982)

9. Gabow, H.N., Goemans, M.X., Williamson, D.P.: An efficient
approximation algorithm for the survivable network design
problem. Math. Program. Ser. B 82(1–2), 13–40 (1998)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability:
A Guide to the Theory of NP-completeness. Freeman, New
York, NY (1979)

11. Goemans, M.X., Williamson, D.P.: The primal-dual method for
approximation algorithms and its application to network de-
sign problems. In: Hochbaum, D. (ed.) Approximation Algo-
rithms for NP-Hard Problems, Chapter 4, pp. 144–191. PWS
Publishing Company, Boston (1996)

12. Grötschel, M., Monma, C.L., Stoer, M.: Computational results
with a cutting plane algorithm for designing communication
networks with low-connectivity constraints. Oper. Res. 40(2),
309–330 (1992)

13. Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable net-
works. In: Handbooks in Operations Research and Manage-
ment Science, vol. 7, NetworkModels, chapter 10, pp. 617–672.
North-Holland, Amsterdam (1995)

14. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Prob-
lem. North-Holland, Amsterdam (1992)

15. Khuller, S.: Approximation algorithms for finding highly con-
nected subgraphs. In: Hochbaum, D. (ed.) Approximation Al-
gorithms forNP-Hard Problems, Chapter 6, pp. 236–265. PWS
Publishing Company, Boston (1996)

16. Mitchell, J.S.B.: Guillotine subdivisions approximate polygo-
nal subdivisions: A simple polynomial-time approximation
scheme for geometric TSP, k-MST, and related problems. SIAM
J. Comput. 28(4), 1298–1309 (1999)

17. Monma, C.L., Shallcross, D.F.: Methods for designing commu-
nications networks with certain two-connected survivability
constraints. Operat. Res. 37(4), 531–541 (1989)

18. Stoer, M.: Design of Survivable Networks. Springer, Berlin
(1992)

MinimumMakespan
on UnrelatedMachines
1990; Lenstra, Shmoys, Tardos

MAXIM SVIRIDENKO
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Schedule of minimum length on different machines

ProblemDefinition

Consider the following scheduling problem. There are
m parallel machines and n independent jobs. Each job is to
be assigned to one of the machines. The processing of job j
on machine i requires pi j units of time. The objective is to
find a schedule thatminimizes themakespan, defined to be
the time by which all jobs are completed. This problem is
denoted RjjCmax using standard scheduling notation ter-
minology [6].

There are few important special cases of the problem:
the restricted assignment problem with pi j 2 f1;1g,
the identical parallel machines with pi j = p j and the
uniform parallel machines pi j = p j/si where si > 0
is a speed of machine i. These problems are denoted
Rjpi j 2 f1;1gjCmax, PjjCmax and QjjCmax, respectively.
Two later problems admit polynomial time approximation
schemes [4,5].

Consider the following integer programming formula-
tion of the feasibility problem that finds a feasible assign-
ment of jobs to machines with makespan at most T

mX
i=1

xi j = 1 ; j = 1; : : : ; n ; (1)

nX
j=1

pi jxi j � T ; i = 1; : : : ;m ; (2)

xi j = 0 ; if pi j > T ; (3)

xi j 2 f0; 1g ; 8i; j : (4)

The variable xi j = 1 if job j is assigned to machine i and
xi j = 0, otherwise. The constraint (1) corresponds to job
assignments. The constraint (2) bounds the total process-
ing time of jobs assigned to one machine. The constraint
(3) forbids an assignment of a job to a machine if its pro-
cessing time is larger than the target makespan T.

Key Results

Theorem 1 (Rounding Theorem) Consider the linear
programming relaxation of the integer program (1)–(4) by
relaxing the integrality constraint (4) with the constraint

xi j � 0 ; 8i; j : (5)

If the linear program (1)–(3),(5) has a feasible solution for
some value of parameter T = T� then there exists a feasible
solution to an integer program (1)–(4) with parameter T =
T� + pmax where pmax = maxi; j pi j and such a solution can
be found in polynomial time.

540 M MinimumMakespan on Unrelated Machines

The idea of the proof is to start with a basic feasible so-
lution of the linear program (1)–(3),(5). The properties of
basic solutions imply the bound on the number of frac-
tional variables which in turn implies that the bipartite
graph defined between jobs and machines with edges cor-
responding to fractional variables has a very special struc-
ture. Lenstra, Shmoys and Tardos [7] show that it is possi-
ble to round fractional edges in such a way that each ma-
chine node has at most one edge (variable) rounded up
which implies the bound on the makespan.

The Theorem 1 combined with binary search on pa-
rameter T implies

Corollary 1 There is a 2-approximation algorithm for the
makespanminimization problem on unrelated parallel ma-
chines that runs in time polynomial in the input size.

Lenstra, Shmoys and Tardos [7] proved an inapproxima-
bility result that is valid even for the case of the restricted
assignment problem

Theorem 2 For every � < 3/2 there does not exist a poly-
nomial �-approximation algorithm for the makespan min-
imization problem on unrelated parallel machines unless
P = NP.

Generalizations

A natural generalization of the scheduling problem is to
add additional resource requirements

P
i; j ci j xi j � B, i. e.

there is a cost ci j associated with assigning job i to ma-
chine j. The goal is to find an assignment of jobs to ma-
chines of total cost at most B minimizing the makespan.
This problem is known under the name of the generalized
assignment problem. Shmoys and Tardos [8] proved an
analogous Rounding Theorem leading to a 2-approxima-
tion algorithm.

Even more general problem arises when each ma-
chine i has few modes s = 1; : : : ; k to process job j. Each
mode has the processing time pi js and the cost ci js asso-
ciated with it. The goal is to find a an assignment of jobs
to machines and modes of total cost at most Bminimizing
the makespan. Consider the following analogous integer
programming formulation of the problem

mX
i=1

kX
s=0

xi js = 1 ; j = 1; : : : ; n ; (6)

nX
j=1

kX
s=0

xi js pi js � T ; i = 1; : : : ;m ; (7)

nX
j=1

mX
i=1

kX
s=0

xi js ci js � B ; (8)

xi js = 0 ; if pi js > T ; (9)

xi js 2 f0; 1g ; 8 i; j; s : (10)

Theorem 3 (General Rounding Theorem) Consider the
linear programming relaxation of the integer program (6)–
(10) by relaxing the integrality constraint (10) with the con-
straint

xi js � 0 ; 8i; j; s : (11)

If linear program (6)–(9),(11) has a feasible solution for
some value of parameter T = T� then there exists a fea-
sible solution to the integer program (6)–(10) with param-
eter T = T� + pmax where pmax = maxi; j;s pi js and such
a solution can be found in polynomial time.

The randomized version of this Theorem was origi-
nally proved by Gandhi, Khuller, Parthasarathy and Srini-
vasan [2]. The deterministic version appeared first in [3].

Applications

Unrelated parallel machine scheduling is one of the ba-
sic scheduling models with a lot of industrial applications,
see for example [1, 9]. The rounding Theorem by Lenstra,
Shmoys, Tardos and its generalizations have found nu-
merous applications applications in design and analysis of
approximation algorithms where quite often generalized
assignment problem needs to be solved as a subroutine.

Open Problems

The most exciting open problem is to close the gap be-
tween positive (Corollary 1) and negative (Theorem 2) re-
sults for RjjCmax. A very simple example shows that the
integrality gap of the linear programming relaxation (1)–
(3),(5) is 2 and therefore there is a need for a stronger LP
to improve upon 2-approximation.

This example consists of m(T � 1) jobs such that for
each i 2 1; : : : ;m, processing time pi j = 1 for j =
(T � 1)(i� 1) + 1; : : : ; (T � 1)i and pi j =1 otherwise. In
other words, each machine has T � 1 jobs with unit pro-
cessing time, that cannot be processed on any other ma-
chine. Additionally, there is one large job b with process-
ing time pib = T for i = 1; : : : ;m.

One way to define a stronger LP is to define variables
xiS for each possible set S of jobs. The variable xiS = 1 if
the set S of jobs is assigned to be processed on machine i.
The set of jobs S is feasible for machine i if

P
j2S pi j � T .

Let Ci be the set of feasible sets for machine i. Consider the
following linear programming relaxation:

X
i;S2Ci : j2S

xiS = 1 ; j = 1; : : : ; n ; (12)

Minimum Spanning Trees M 541

X
S2Ci

xi S = 1 ; i = 1; : : : ;m ; (13)

xiS � 0 ; 8 i; S 2 Ci : (14)

The integrality gap of this linear program is also 2
for general unrelated parallel machine scheduling but it is
open for the special case of restricted assignment problem.

Cross References

� Flow Time Minimization
� List Scheduling
� Load Balancing
�Minimum Flow Time
�MinimumWeighted Completion Time

Recommended Reading
1. Jeng-Fung, C.: Unrelated parallel machine scheduling with sec-

ondary resource constraints. Int. J. Adv. Manuf. Technol. 26,
285–292 (2005)

2. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Depen-
dent rounding and its applications to approximation algo-
rithms. J. ACM 53(3), 324–360 (2006)

3. Grigoriev, A., Sviridenko, M., Uetz, M.: Machine scheduling with
resource dependent processing times. Math. Program. 110(1B),
209–228 (2002)

4. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algo-
rithms for scheduling problems: theoretical and practical re-
sults. J. Assoc. Comput. Mach. 34(1), 144–162 (1987)

5. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation
scheme for scheduling on uniform processors: using the dual
approximation approach. SIAM J. Comput. 17(3), 539–551
(1988)

6. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.:
Sequencing and Scheduling: Algorithms and Complexity. In:
Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (eds.) Logistics of
Production and Inventory. Handbooks in Operations Research
and Management Science, vol. 4, pp. 445–522. North–Holland,
Amsterdam (1993)

7. Lenstra, J.K., Shmoys, D., Tardos, E.: Approximation algorithms
for scheduling unrelated parallel machines. Math. Program.
46(3A), 259–271 (1990)

8. Shmoys, D., Tardos, E.: An approximation algorithm for the gen-
eralized assignment problem. Math. Program. 62(3A), 461–474
(1993)

9. Yu, L., Shih, H., Pfund, M., Carlyle, W., Fowler, J.: Scheduling of
unrelated parallelmachines: an application to PWBmanufactur-
ing. IIE Trans. 34, 921–931 (2002)

Minimum Spanning Trees
2002; Pettie, Ramachandran

SETH PETTIE
Department of Computer Science, University
of Michigan, Ann Arbor, Ann Arbor, MI, USA

Keywords and Synonyms

Minimal spanning tree; Minimum weight spanning tree;
Shortest spanning tree

ProblemDefinition

The minimum spanning tree (MST) problem is, given
a connected, weighted, and undirected graph G = (V ; E;
w), to find the tree withminimum totalweight spanning all
the verticesV . Herew : E ! R is the weight function. The
problem is frequently defined in geometric terms, where
V is a set of points in d-dimensional space and w corre-
sponds to Euclidean distance. The main distinction be-
tween these two settings is the form of the input. In the
graph setting the input has size O(m + n) and consists of
an enumeration of the n = jV j vertices and m = jEj edges
and edge weights. In the geometric setting the input con-
sists of an enumeration of the coordinates of each point
(O(dn) space): all

�V
2
�
edges are implicitly present and their

weights implicit in the point coordinates. See [16] for a dis-
cussion of the Euclidean minimum spanning tree prob-
lem.

History

The MST problem is generally recognized [7,12] as one
of the first combinatorial problems studied specifically
from an algorithmic perspective. It was formally defined
by Borůvka in 1926 [1] (predating the fields of computabil-
ity theory and combinatorial optimization, and evenmuch
of graph theory) and since his initial algorithm there has
been a sustained interest in the problem. The MST prob-
lem has motivated research in matroid optimization [3]
and the development of efficient data structures, partic-
ularly priority queues (aka heaps) and disjoint set struc-
tures [2,18].

Related Problems

The MST problem is frequently contrasted with the trav-
eling salesman and minimum Steiner tree problems [6].
A Steiner tree is a tree that may span any superset of the
given points; that is, additional points may be introduced
that reduce the weight of the minimum spanning tree. The
traveling salesman problem asks for a tour (cycle) of the
vertices with minimum total length. The generalization of
the MST problem to directed graphs is sometimes called
the minimum branching [5]. Whereas the undirected and
directed versions of theMST problem are solvable in poly-
nomial time, traveling salesman and minimum Steiner
tree are NP-complete [6].

542 M Minimum Spanning Trees

Optimality Conditions

A cut is a partition (V 0;V 00) of the vertices V . An edge
(u, v) crosses the cut (V 0;V 00) if u 2 V 0 and v 2 V 00. A se-
quence (v0; v1; : : : ; vk�1; v0) is a cycle if (vi ; vi+1(mod k)) 2
E for 0 � i < k.
The correctness of all MST algorithms is established by ap-
pealing to the dual cut and cycle properties, also known as
the blue rule and red rule [18].

Cut Property An edge is in someminimum spanning tree
if and only if it is the lightest edge crossing some cut.

Cycle Property An edge is not in any minimum spanning
tree if and only if it is the sole heaviest edge on some
cycle.

It follows from the cut and cycle properties that if the edge
weights are unique then there is a unique minimum span-
ning tree, denotedMST(G). Uniqueness can always be en-
forced by breaking ties in any consistent manner. MST al-
gorithms frequently appeal to a useful corollary of the cut
and cycle properties called the contractibility property. Let
G n C denote the graph derived from G by contracting the
subgraph C, that is, C is replaced by a single vertex c and
all edges incident to exactly one vertex in C become inci-
dent to c; in general G n C may have more than one edge
between two vertices.

Contractibility Property If C is a subgraph such that
for all pairs of edges e and f with exactly one end-
point in C, there exists a path P
 C connecting e f
with each edge in P lighter than either e or f , then
C is contractible. For any contractible C it holds that
MST(G) = MST(C) [MST(G n C).

The Generic Greedy Algorithm

Until recently all MST algorithms could be viewed as mere
variations on the following generic greedyMST algorithm.
Let T consist initially of n trivial trees, each containing
a single vertex of G. Repeat the following step n � 1 times.
Choose any T 2 T and find the minimum weight edge
(u, v) with u 2 T and v in a different tree, say T 0 2 T . Re-
place T and T 0 in T with the single tree T [f(u; v)g [T 0.
After n � 1 iterations T = fMST(G)g. By the cut property
every edge selected by this algorithm is in the MST.

Modeling MST Algorithms

Another corollary of the cut and cycle properties is that the
set of minimum spanning trees of a graph is determined
solely by the relative order of the edge weights—their spe-
cific numerical values are not relevant. Thus, it is natural

to model MST algorithms as binary decision trees, where
nodes of the decision tree are identified with edge weight
comparisons and the children of a node correspond to the
possible outcomes of the comparison. In this decision tree
model a trivial lower bound on the time of the optimal
MST algorithm is the depth of the optimal decision tree.

Key Results

The primary result of [14] is an explicit MST algorithm
that is provably optimal even though its asymptotic run-
ning time is currently unknown.

Theorem 1 There is an explicit, deterministic minimum
spanning tree algorithm whose running time is on the order
of DMST(m; n), where m is the number of edges, n the num-
ber of vertices, and DMST(m; n) the maximum depth of an
optimal decision tree for any m-edge n-node graph.

It follows that the Pettie–Ramachandran algorithm [14] is
asymptotically no worse than anyMST algorithm that de-
duces the solution through edge weight comparisons. The
best known upper bound on DMST(m; n) is O(m˛(m; n)),
due to Chazelle [2]. It is trivially˝(m).
Let us briefly describe how the Pettie–Ramachandran
algorithm works. An (m, n) instance is a graph with
m edges and n vertices. Theorem 1 is proved by giv-
ing a linear time decomposition procedure that re-
duces any (m, n) instance of the MST problem to in-
stances of size (m�; n�); (m1; n1); : : : ; (ms ; ns), where
m = m� +

P
i mi , n =

P
i ni , n� � n/ log log log n and

each ni � log log log n. The (m�; n�) instance can be
solved in O(m + n) time with existing MST algo-
rithms [2]. To solve the other instances the Pettie–
Ramachandran algorithm performs a brute-force search
to find the minimum depth decision tree for every graph
with at most log log log n vertices. Once these decision
trees are found the remaining instances are solved in
O(
P

i DMST(mi ; ni)) = O(DMST(m; n)) time. Due to the
restricted size of these instances (ni � log log log n) the
time for a brute force search is a negligible o(n). The
decomposition procedure makes use of Chazelle’s soft
heap [2] (an approximate priority queue) and an extension
of the contractibility property.

Approximate Contractibility Let G0 be derived from G
by increasing the weight of some edges. If C is con-
tractible w.r.t. G0 then MST(G) = MST(MST(C) [
MST(G n C) [E�), where E� is the set of edges with
increased weights.

A secondary result of [14] is that the running time
of the optimal algorithm is actually linear on nearly ev-

Minimum Spanning Trees M 543

ery graph topology, under any permutation of the edge
weights.

Theorem 2 Let G be selected uniformly at random from
the set of all n-vertex, m-edge graphs. Then regardless of the
edge weights,MST(G) can be found in O(m + n) time with
probability 1 � 2�˝(m/˛2), where ˛ = ˛(m; n) is the slowly
growing inverse-Ackermann function.

Theorem 1 should be contrasted with the results of Karger,
Klein, and Tarjan [9] and Chazelle [2] on the randomized
and deterministic complexity of the MST problem.

Theorem 3 [9] The minimum spanning forest of a graph
with m edges can be computed by a randomized algorithm
in O(m) time with probability 1 � 2�˝(m).

Theorem 4 [2] The minimum spanning tree of a graph
can be computed in O(m˛(m; n)) time by a deterministic
algorithm, where ˛ is the inverse-Ackermann function.

Applications

Borůvka [1] invented the MST problem while consider-
ing the practical problem of electrifying rural Moravia
(present day Czech Republic) with the shortest electrical
network. MSTs are used as a starting point for heuristic
approximations to the optimal traveling salesman tour and
optimal Steiner tree, as well as other network design prob-
lems. MSTs are a component in other graph optimiza-
tion algorithms, notably the single-source shortest path al-
gorithms of Thorup [19] and Pettie–Ramachandran [15].
MSTs are used as a tool for visualizing data that is pre-
sumed to have a tree structure; for example, if a matrix
contains dissimilarity data for a set of species, the mini-
mum spanning tree of the associated graph will presum-
ably group closely related species; see [7]. Other modern
uses of MSTs include modeling physical systems [17] and
image segmentation [8]; see [4] for more applications.

Open Problems

The chief open problem is to determine the determinis-
tic complexity of the minimum spanning tree problem. By
Theorem 1 this is tantamount to determining the decision-
tree complexity of the MST problem.

Experimental Results

Moret and Shapiro [11] evaluated the performance of
greedy MST algorithms using a variety of priority queues.
They concluded that the best MST algorithm is Jarník’s [7]
(also attributed to Prim and Dijkstra; see [3,7,12]) as im-
plemented with a pairing heap [13]. Katriel, Sanders, and

Träff [10] designed and implemented a non-greedy ran-
domized MST algorithm based on that of Karger et al. [9].
They concluded that on moderately dense graphs it runs
substantially faster than the greedy algorithms tested by
Moret and Shapiro.

Cross References

� Randomized Minimum Spanning Tree

Recommended Reading

1. Borůvka, O.: O jistém problému minimálním. Práce Moravské
Přírodovědecké Společnosti 3, 37–58 (1926). In Czech

2. Chazelle, B.: A minimum spanning tree algorithmwith inverse-
Ackermann type complexity. J. ACM 47(6), 1028–1047 (2000)

3. Cormen, TH., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2001)

4. Eppstein, D.: Geometry in action: minimum spanning trees.
http://www.ics.uci.edu/~eppstein/gina/mst.html

5. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algo-
rithms for finding minimum spanning trees in undirected and
directed graphs. Combinatorica 6, 109–122 (1986)

6. Garey, M.R., Johnson, D.S.: Computers and intractability:
a guide to NP-completeness. Freeman, San Francisco (1979)

7. Graham, R.L., Hell, P.: On the history of the minimum spanning
tree problem. Ann. Hist. Comput. 7(1), 43–57 (1985)

8. Ion, A., Kropatsch, W.G., Haxhimusa, Y.: Considerations re-
garding the minimum spanning tree pyramid segmentation
method. In: Proc. 11thWorkshop Structural, Syntactic, and Sta-
tistical Pattern Recognition (SSPR). LNCS, vol. 4109, pp. 182–
190. Springer, Berlin (2006)

9. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time
algorithm for finding minimum spanning trees. J. ACM 42,
321–329 (1995)

10. Katriel, I., Sanders, P., Träff, J.L.: A practical minimum spanning
tree algorithm using the cycle property. In: Proc. 11th Annual
European SymposiumonAlgorithms. LNCS, vol. 2832, pp. 679–
690. Springer, Berlin (2003)

11. Moret, B.M.E., Shapiro, H.D.: An empirical assessment of algo-
rithms for constructing a minimum spanning tree. In: DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., vol. 15, Am. Math.
Soc., Providence, RI (1994)

12. Pettie, S.: On the shortest path and minimum spanning tree
problems. Ph.D. thesis, The University of Texas, Austin, August
2003

13. Pettie, S.: Towards a final analysis of pairing heaps. In: Proc.
46th Annual Symposium on Foundations of Computer Science
(FOCS), 2005, pp. 174–183

14. Pettie, S., Ramachandran, V.: An optimal minimum spanning
tree algorithm. J. ACM 49(1), 16–34 (2002)

15. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-
weighted undirected graphs. SIAM J. Comput. 34(6), 1398–
1431 (2005)

16. Preparata, F.P., Shamos, M.I.: Computational geometry.
Springer, New York (1985)

17. Subramaniam, S., Pope, S.B.: A mixing model for turbulent
reactive flows based on euclidean minimum spanning trees.
Combust. Flame 115(4), 487–514 (1998)

http://www.ics.uci.edu/~eppstein/gina/mst.html

544 M MinimumWeighted Completion Time

18. Tarjan, R.E.: Data structures and network algorithms. In: CBMS-
NSF Reg. Conf. Ser. Appl. Math., vol. 44. SIAM, Philadelphia
(1983)

19. Thorup, M.: Undirected single-source shortest paths with pos-
itive integer weights in linear time. J. ACM 46(3), 362–394
(1999)

MinimumWeighted
Completion Time
1999; Afrati et al.

V.S. ANIL KUMAR1, MADHAV V. MARATHE2,
SRINIVASAN PARTHASARATHY3,
ARAVIND SRINIVASAN4

1 Network Dynamics and Simulation Science Laboratory,
Bioinformatics Institute, Virginia Tech,
Blacksburg, VA, USA

2 Department of Computer Science and Virginia
Bioinformatics Institute, Virginia Tech,
Blacksburg, VA, USA

3 IBM T.J. Watson Research Center,
Hawthorne, NY, USA

4 Department of Computer Science, University
of Maryland, College Park, MD, USA

Keywords and Synonyms

Average weighted completion time

ProblemDefinition

The minimum weighted completion time problem in-
volves (i) a set J of n jobs, a positive weight wj for each job
j 2 J, and a release date rj before which it cannot be sched-
uled; (ii) a set ofmmachines, each of which can process at
most one job at any time; and (iii) an arbitrary set of posi-
tive values fpi; jg, where pi, j denotes the time to process job
j on machine i. A schedule involves assigning jobs to ma-
chines and choosing an order in which they are processed.
Let Cj denote the completion time of job j for a given
schedule. Theweighted completion time of a schedule is de-
fined as

P
j2J w jCj , and the goal is to compute a schedule

that has the minimum weighted completion time.
In the scheduling notation introduced by Graham et

al. [7], a scheduling problem is denoted by a 3-tuple ˛jˇj� ,
where ˛ denotes the machine environment, ˇ denotes the
additional constraints on jobs, and � denotes the objec-
tive function. In this article, we will be concerned with the
˛-values 1, P, R, and Rm, which respectively denote one
machine, identical parallel machines (i. e., for a fixed job j
and for each machine i, pi, j equals a value pj that is inde-
pendent of i), unrelated machines (the pi, j’s are dependent

on both job i and machine j), and a fixed number m (not
part of the input) of unrelated machines. The field ˇ takes
on the values rj, which indicates that the jobs have release
dates, and the value pmtn, which indicates that preemp-
tion of jobs is permitted. Further, the value prec in the field
ˇ indicates that the problem may involve precedence con-
straints between jobs, which poses further restrictions on
the schedule. The field � is either

P
wjCj or

P
Cj , which

denote total weighted and total (unweighted) completion
times, respectively.

Some of the simpler classes of the weighted comple-
tion time scheduling problems admit optimal polynomial-
time solutions. They include the problem Pjj

P
Cj , for

which the shortest-job-first strategy is optimal, the prob-
lem 1jj

P
wjCj , for which Smith’s rule [13] (scheduling

jobs in their nondecreasing order of p j/wj values) is op-
timal, and the problem Rjj

P
Cj , which can be solved

via matching techniques [2,9]. With the introduction of
release dates, even the simplest classes of the weighted
completion time minimization problem becomes strongly
nondeterministic polynomial-time (NP)-hard. In this ar-
ticle, we focus on the work of Afrati et al. [1], whose main
contribution is the design of polynomial-time approxi-
mation schemes (PTASs) for several classes of schedul-
ing problems to minimize weighted completion time with
release dates. Prior to this work, the best solutions for
minimizing weighted completion time with release dates
were all O(1)-approximation algorithms (e. g., [4,5,11]);
the only known PTAS for a strongly NP-hard problem
involving weighted completion time was due to Skutella
and Woeginger [12], who developed a PTAS for the prob-
lem Pjj

P
wjCj . For an excellent survey on the minimum

weighted completion time problem, we refer the reader to
Chekuri and Khanna [3].

Key Results

Afrati et al. [1] were the first to develop PTASs for weigh-
ted completion time problems involving release dates. We
summarize the running times of these PTASs in Table 1.

The results presented in Table 1 were obtained
through a careful sequence of input transformations fol-
lowed by dynamic programming. The input transforma-
tions ensure that the input becomes well structured at
a slight loss in optimality, while dynamic programming
allows efficient enumeration of all the near-optimal solu-
tions to the well-structured instance.

The first step in the input transformation is geometric
rounding, in which the processing times and release dates
are converted to powers of 1 + �, with at most 1 + � loss
in the overall performance. More significantly, this step

MinimumWeighted Completion Time M 545

MinimumWeighted Completion Time, Table 1
Summary of results of Afrati et al. [1]

Problem Running time of polynomial-time
approximation schemes

1jrjj
P

wjCj O(2poly(
1
�)n + n log n)

Pjrjj
P

wjCj O((m + 1)poly(
1
�)n + n log n)

Pjrj; pmtnj
P

wjCj O(2poly(
1
�)n + n log n)

Rmjrjj
P

wjCj O(f (m; 1
�
)poly(n))

Rmjrj; pmtnj
P

wjCj O(f (m; 1
�
)n + n log n)

Rmjj
P

wjCj O(f (m; 1
�
)n + n log n)

(i) ensures that there are only a small number of distinct
processing times and release dates to deal with, (ii) allows
time to be broken into geometrically increasing intervals,
and (iii) aligns release dates with start and end times of in-
tervals. These are useful properties that can be exploited
by dynamic programming.

The second step in the input transformation is time
stretching, in which small amounts of idle time are added
throughout the schedule. This step also changes comple-
tion times by a factor of at most 1 + O(�), but is useful
for cleaning up the scheduling. Specifically, if a job is
large (i. e., occupies a large portion of the interval where
it executes), it can be pushed into the idle time of a later
interval where it is small. This ensures that most jobs
have small sizes compared with the length of the inter-
vals where they execute, which greatly simplifies schedule
computation. The next step is job shifting. Consider a par-
tition of the time interval [0;1) into intervals of the
form Ix = [(1 + �)x ; (1 + �)x+1), for integral values of
x. The job-shifting step ensures that there is a slightly
suboptimal schedule in which every job j gets completed
within O(log1+�(1 + 1

�
)) intervals after rj. This has the

following nice property: If we consider blocks of intervals
B0;B1; : : :, with each blockBi containing O(log1+�(1+

1
�
))

consecutive intervals, then a job j starting in blockBi com-
pletes within the next block. Further, the other steps in the
job-shifting phase ensure that there are not too many large
jobs which spill over to the next block; this allows the
dynamic programming to be done efficiently.

The precise steps in the algorithms and their analysis
are subtle, and the above description is clearly an oversim-
plification. We refer the reader to [1] or [3] for further de-
tails.

Applications

A number of optimization problems in parallel comput-
ing and operations research can be formulated as ma-

chine scheduling problems. When precedence constraints
are introduced between jobs, the weighted completion
time objective can generalize the more commonly studied
makespan objective, and hence is important.

Open Problems

Some of the major open problems in this area are to im-
prove the approximation ratios for scheduling on unre-
lated or related machines for jobs with precedence con-
straints. The following problems in particularmerit special
mention. The best known solution for the 1jprecj

P
wjCj

problem is the 2-approximation algorithm due to Hall et
al. [8]; improving upon this factor is a major open prob-
lem in scheduling theory. The problem Rjprecj

P
j w jCj

in which the precedence constraints form an arbitrary
acyclic graph is especially open – the only known results
in this direction are when the precedence constraints form
chains [6] or trees [10].

The other open direction is inapproximability – there
are significant gaps between the known approximation
guarantees and hardness factors for various problem
classes. For instance, the Rjj

P
wjCj and Rjr jj

P
wjCj are

both known to be approximable-hard, but the best known
algorithms for these problems (due to Skutella [11]) have
approximation ratios of 3/2 and 2 respectively. Closing
these gaps remain a significant challenge.

Cross References

� Flow Time Minimization
� List Scheduling
�Minimum Flow Time
�MinimumMakespan on Unrelated Machines

Acknowledgements

The Research of V.S. Anil Kumar andM.V.Marathe was supported in
part by NSF Award CNS-0626964. A. Srinivasan’s research was sup-
ported in part by NSF Award CNS-0626636.

Recommended Reading
1. Afrati, F.N., Bampis, E., Chekuri, C., Karger, D.R., Kenyon, C.,

Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviri-
denko, M.: Approximation schemes for minimizing average
weighted completion time with release dates. In: Proc. of
Foundations of Computer Science, pp. 32–44 (1999)

2. Bruno, J.L., Coffman, E.G., Sethi, R.: Scheduling independent
tasks to reduce mean finishing time. Commun. ACM 17,
382–387 (1974)

3. Chekuri, C., Khanna, S.: Approximation algorithms for minimiz-
ing weighted completion time. In: J. Y-T. Leung (eds.) Hand-
book of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Boca Raton (2004)

546 M MinimumWeight Triangulation

4. Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approxima-
tion techniques for average completion time scheduling. SIAM
J. Comput. 31(1), 146–166 (2001)

5. Goemans, M., Queyranne, M., Schulz, A., Skutella, M., Wang, Y.:
Single machine scheduling with release dates. SIAM J. Discret.
Math. 15, 165–192 (2002)

6. Goldberg, L.A., Paterson, M., Srinivasan, A., Sweedyk, E.: Bet-
ter approximation guarantees for job-shop scheduling. SIAM
J. Discret. Math. 14, 67–92 (2001)

7. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Op-
timization and approximation indeterministic sequencing and
scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

8. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling tomin-
imize average completion time: off-line and on-line approxi-
mation algorithms. Math. Oper. Res. 22(3), 513–544 (1997)

9. Horn, W.: Minimizing average flow timewithparallelmachines.
Oper. Res. 21, 846–847 (1973)

10. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.:
Scheduling on unrelatedmachines under tree-like precedence
constraints. In: APPROX-RANDOM, pp. 146–157 (2005)

11. Skutella, M.: Convex quadratic and semidefinite relaxations in
scheduling. J. ACM 46(2), 206–242 (2001)

12. Skutella, M., Woeginger, G.J.: A PTAS for minimizing the
weighted sum of job completion times on parallel machines.
In: Proc. of 31st Annual ACM Symposium on Theory of Com-
puting (STOC ’99), pp. 400–407 (1999)

13. Smith, W.E.: Various optimizers for single-stage production.
Nav. Res. Log. Q. 3, pp. 59–66 (1956)

MinimumWeight Triangulation
1998; Levcopoulos, Krznaric

CHRISTOS LEVCOPOULOS
Department of Computer Science, Lund University,
Lund, Sweden

Keywords and Synonyms

Minimum length triangulation

ProblemDefinition

Given a set S of n points in the Euclidean plane, a triangu-
lation T of S is a maximal set of non-intersecting straight-
line segments whose endpoints are in S. The weight of T is
defined as the total Euclidean length of all edges in T. A tri-
angulation that achieves minimum weight is called amin-
imum weight triangulation, often abbreviated MWT, of S.

Key Results

Since there is a very large number of papers and results
dealing with minimum weight triangulation, only rela-
tively very few of them can be mentioned here.

Mulzer and Rote have shown that MWT in NP-
hard [11]. Their proof of NP-completeness is not given ex-
plicitly; it relies on extensive calculations which they per-
formed with a computer. Also recently, Remy and Ste-
ger have shown a quasi-polynomial time approximation
scheme for MWT [12]. These results are stated in the fol-
lowing theorem.

Theorem 1 The problem of computing the MWT (min-
imum weight triangulation) of an input set S of n points
in the plane is NP-hard. However, for any constant � > 0,
a triangulation of S achieving the approximation ratio of
1 + �, for an arbitrarily small positive constant �, can be
computed in time nO(log

8 n).

The Quasi-Greedy Triangulation
Approximates the MWT

Levcopoulos and Krznaric showed that a triangulation
of total length within a constant factor of MWT can be
computed in polynomial time for arbitrary point sets [7].
The triangulation achieving this result is a modification
of the so-called greedy triangulation. The greedy triangu-
lation starts with the empty set of diagonals and keeps
adding a shortest diagonal not intersecting the diagonals
which have already been added, until a full triangulation
is produced. The greedy triangulation has been shown
to approximate the minimum weight triangulation within
a constant factor, unless a special case arises where the
greedy diagonals inserted are “climbing” in a special, very
unbalanced way along a relatively long concave chain con-
taining many vertices and with a large empty space in
front of it, at the same time blocking visibility from an-
other, opposite concave chain of many vertices. In such
“bad” cases the worst case ratio between the length of the
greedy and the length of the minimum weight triangu-
lation is shown to be 	(

p
n). To obtain a triangulation

which always approximates the MWT within a constant
factor, it suffices to take care of this special bad case in or-
der to avoid the unbalanced “climbing”, and replace it by
a more balanced climbing along these two opposite chains.
Each edge inserted in this modified method is still almost
as short as the shortest diagonal, within a factor smaller
than 1.2. Therefore, the modified triangulation which al-
ways approximates the MWT is named the quasi-greedy
triangulation. In a similar way as the original greedy trian-
gulation, the quasi-greedy triangulation can be computed
in timeO(n log n) [8]. Gudmundsson and Levcopoulos [5]
showed later that a variant of this method can also be par-
allelized, thus achieving a constant factor approximation
of MWT in O(log n) time, using O(n) processors in the

MinimumWeight Triangulation M 547

CRCW PRAM model. Another by-product of the quasi-
greedy triangulation is that one can easily select in lin-
ear time a subset of its edges to obtain a convex partition
which is within a constant factor of the minimum length
convex partition of the input point set. This last prop-
erty was crucial in the proof that the quasi-greedy trian-
gulation approximates the MWT. The proof also uses an
older result that the (original, unmodified) greedy trian-
gulation of any convex polygon approximates the mini-
mumweight triangulation [9]. Some of the results from [7]
and from [8] can be summarized in the following theo-
rem:

Theorem 2 Let S be an input set of n points in the plane.
The quasi-greedy triangulation of S, which is a slightly mod-
ified version of the greedy triangulation of S, has total length
within a constant factor of the length of the MWT (mini-
mum weight triangulation) of S, and can be computed in
time O(n log n). Moreover, the (unmodified) greedy trian-
gulation of S has length within O(

p
n) of the length ofMWT

of S, and this bound is asymptotically tight in the worst
case.

Computing the Exact MinimumWeight Triangulation

Below three approaches to compute the exact MWT are
shortly discussed. These approaches assume that it is nu-
merically possible to efficiently compare the total length of
sets of line segments in order to select the set of smallest
weight. This is a simplifying assumption, since this is an
open problem per se. However, the problem of comput-
ing the exact MWT remains NP-hard even under this as-
sumption [11]. The three approaches differ with respect to
the creation and selection of subproblems, which are then
solved by dynamic programming.

The first approach, sketched by Lingas [10], employs
a general method for computing optimal subgraphs of the
complete Euclidean graph. By developing this approach,
it is possible to achieve subexponential time 2O(

p
n log n).

The idea to create the subproblems which are solved by dy-
namic programming. This is done by trying all (suitable)
planar separators of length O(

p
n), separating the input

point set in a balanced way, and then to proceed recur-
sively within the resulting subproblems.

The second approach uses fixed-parameter algorithms.
So, for example, if there are only O(log n) points in the
interior of the convex hull of S, then the MWT of S can
be computed in polynomial time [4]. This approach ex-
tends also to compute the minimum weight triangulation
under the constraint that the outer boundary is not nec-
essarily the convex hull of the input vertices, it can be
an arbitrary polygon. Some of these algorithms have been

implemented, see Grantson et al. [2] for a comparison
of some implementations. These dynamic programming
approaches take typically cubic time with respect to the
points of the boundary, but exponential time with respect
to the number of remaining points. So, for example, if k
is the number of hole points inside the boundary polygon,
then an algorithm, which has also been implemented, can
compute the exact MWT in time O(n3 � 2k � k) [2].

In an attempt to solve larger problems, a different ap-
proach uses properties of MWT which usually help to
identify, for random point sets, many edges that must be,
respectively cannot be, in MWT. One can then use dy-
namic programming to fill in the remaining MWT-edges.
For random sets consisting of tens of thousands of points
from the uniform distribution, one can thus compute the
exact MWT in minutes [1].

Applications

The problem of computing a triangulation arises, for ex-
ample, in finite element analysis, terrain modeling, stock
cutting and numerical approximation [3,6]. Theminimum
weight triangulation has attracted the attention of many
researchers, mainly due to its natural definition of opti-
mality, and because it has proved to be a challenging prob-
lem over the past thirty years, with unknown complexity
status until the end of 2005.

Open Problems

All results mentioned leave open problems. For example,
can one find a simpler proof of NP-completeness, which
can be checked without running computer programs? It
would be desirable to improve the approximation constant
which can be achieved in polynomial time (to simplify the
proof, the constant shown in [7] is not explicitly calcu-
lated and it would be relatively large, if the proof is not
refined). The time bound for the approximation scheme
could hopefully be improved. It could also be possible to
refine the software which computes efficiently the exact
MWT for large random point sets, so that it can handle
efficiently a wider range of input, i. e., not only completely
random point sets. This could perhaps be done by combin-
ing this software with implementations of fixed parameter
algorithms, as the ones reported in [2,4], or with other ap-
proaches. It is also open whether or not the subexponential
exact method can be further improved.

Experimental Results

Please see the last paragraph under the section about key
results.

548 M Mobile Agents and Exploration

URL to Code

Link to code used to compare some dynamic program-
ming approaches in [2]: http://fuzzy.cs.uni-magdeburg.
de/~borgelt/pointgon.html

Cross References

� Fast Minimal Triangulation
� Greedy Set-Cover Algorithms
�Minimum Geometric Spanning Trees
�Minimum k-Connected Geometric Networks

Recommended Reading
1. Beirouti, R., Snoeyink, J.: Implementations of the LMT Heuristic

for Minimum Weight Triangulation. Symposium on Computa-
tional Geometry, pp. 96–105, Minneapolis, Minnesota, June 7–
10, 1998

2. Borgelt, C., Grantson, M., Levcopoulos, C.: Fixed-Parameter
Algorithms for the Minimum Weight Triangulation Problem.
Technical Report LU-CS-TR:2006-238, ISSN 1650-1276 Report
158. LundUniversity, Lund (An extended version has been sub-
mitted to IJCGA) (2006)

3. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.:
Computational Geometry – Algorithms and Applications, 2nd
edn. Springer, Heidelberg (2000)

4. Grantson,M., Borgelt, C., Levcopoulos, C.: MinimumWeight Tri-
angulation by Cutting Out Triangles. In: Proceedings 16th An-
nual International Symposium on Algorithms and Computa-
tion, ISAAC 2005, Sanya, China, pp. 984–994. Lecture Notes in
Computer Science, vol. 3827. Springer, Heidelberg (2005)

5. Gudmundsson, J., Levcopoulos, C.: A Parallel Approximation
Algorithm for Minimum Weight Triangulation. Nordic J. Com-
put. 7(1), 32–57 (2000)

6. Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. In:
Mathematics and Visualization, vol. IX. Springer, Heidelberg
(2006). ISBN 978-3-540-33260-2

7. Levcopoulos, C., Krznaric, D.: Quasi-Greedy Triangulations Ap-
proximating theMinimumWeight Triangulation. J. Algorithms
27(2), 303–338 (1998)

8. Levcopoulos, C., Krznaric, D.: The Greedy Griangulation can be
Computed from the Delaunay Triangulation in Linear Time.
Comput. Geom. 14(4), 197–220 (1999)

9. Levcopoulos, C., Lingas, A.: On Approximation Behavior of the
Greedy Triangulation for Convex Polygons. Algorithmica 2,
15–193 (1987)

10. Lingas, A.: Subexponential-time algorithms for minimum
weight triangulations and related problems. In: Proceed-
ings 10th Canadian Conference on Computational Geometry
(CCCG), McGill University, Montreal, Quebec, 10–12 August
1998

11. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard.
In: Proceedings 22nd Annual ACM Symposium on Computa-
tional Geometry, SoCG’06, Sedona, AZ, USA. ACM Press, New
York, NY, USA (2006)

12. Remy, J., Steger, A.: A Quasi-Polynomial Time Approximation
Scheme for Minimum Weight Triangulation. In: Proceedings
38th ACM Symposium on Theory of Computing (STOC’06).
ACM Press, New York, NY, USA (2006)

Mobile Agents and Exploration
1952; Shannon

EVANGELOS KRANAKIS1, DANNY KRIZANC2
1 Department of Computer Science, Carleton,
Ottawa, ON, Canada

2 Department of Computer Science, Wesleyan University,
Middletown, CT, USA

Keywords and Synonyms

Distributed algorithms; Graph exploration; Mobile agent;
Navigation; Rendezvous; Routing; Time/Memory trade-
offs

ProblemDefinition

How can a network be explored efficiently with the help of
mobile agents? This is a very broad question and to answer
it adequately it will be necessary to understand more pre-
cisely what mobile agents are, what kind of networked en-
vironment they need to probe, and what complexity mea-
sures are interesting to analyze.

Mobile Agents

Mobile agents are autonomous, intelligent computer soft-
ware that canmove within a network. They aremodeled as
automata with limited memory and computation capabil-
ity and are usually employed by another entity (to which
they must report their findings) for the purpose of col-
lecting information. The actions executed by the mobile
agents can be discrete or continuous and transitions from
one state to the next can be either deterministic or non-
deterministic, thus giving rise to various natural complex-
ity measures depending on the assumptions being consid-
ered.

Network Model

The network model is inherited directly from the theory of
distributed computing. It is a connected graph whose ver-
tices comprise the computing nodes and edges correspond
to communication links. It may be static or dynamic and
its resources may have various levels of accessibility. De-
pending on themodel being considered, nodes and links of
the network may have distinct labels. A particularly useful
abstraction is an anonymous network whereby the nodes
have no identities, which means that an agent cannot dis-
tinguish two nodes except perhaps by their degree. The
outgoing edges of a node are usually thought of as distin-
guishable but an important distinction can be made be-

http://fuzzy.cs.uni-magdeburg.de/~borgelt/pointgon.html
http://fuzzy.cs.uni-magdeburg.de/~borgelt/pointgon.html

Mobile Agents and Exploration M 549

tween a globally consistent edge-labeling versus a locally
independent edge-labeling.

Efficiency Measures for Exploration

Efficiency measures being adopted involve the time re-
quired for completing the exploration task, usually mea-
sured either by the number of edge traversals or nodes
visited by the mobile agent. The interplay between
time required for exploration and memory used by the
mobile agent (time/memory tradeoffs) are key parameters
considered for evaluating algorithms. Several researchers
impose no restrictions on the memory but rather seek al-
gorithmsminimizing exploration time. Others, investigate
theminimum size of memorywhich allows for exploration
of a given type of network (e. g., tree) of given (known or
unknown) size, regardless of the exploration time. Finally,
several researchers consider time/memory tradeoffs.

Main Problems

Given a model for both the agents and the network, the
graph exploration problem is that of designing an algo-
rithm for the agent that allows it to visit all of the nodes
and/or edges of the network. A closely related problem is
where the domain to be explored is presented as a region
of the plane with obstacles and exploration becomes vis-
iting all unobstructed portions of the region in the sense
of visibility. Another related problem is that of rendezvous
where two or more agents are required to gather at a single
node of a network.

Key Results

Claude Shannon [17] is credited with the first finite au-
tomaton algorithm capable of exploring an arbitrary maze
(which has a range of 5 � 5 squares) by trial and er-
ror means. Exploration problems for mobile agents have
been extensively studied in the scientific literature and the
reader will find a useful historical introduction in Fraigni-
aud et al.[11].

Exploration in General Graphs

The network is modeled as a graph and the agent canmove
from node to node only along the edges. The graph setting
can be further specified in two different ways. In Deng and
Papadimitriou [8] the agent explores strongly connected
directed graphs and it can move only in the direction from
head to tail of an edge, but not vice-versa. At each point,
the agent has a map of all nodes and edges visited and
can recognize if it sees them again. They minimize the ra-
tio of the total number of edges traversed divided by the

optimum number of traversals, had the agent known the
graph. In Panaite and Pelc [15] the explored graph is undi-
rected and the agent can traverse edges in both directions.
In the graph setting it is often required that apart from
completing exploration the agent has to draw a map of the
graph, i. e., output an isomorphic copy of it. Exploration of
directed graphs assuming the existence of labels is inves-
tigated in Albers and Henzinger [1] and Deng and Pa-
padimitriou [8]. Also in Panaite and Pelc [15], an explo-
ration algorithm is proposed working in time e + O(n),
where is n the number of nodes and e the number of
links. Fraigniaud et al. [11] investigate memory require-
ments for exploring unknown graphs (of unknown size)
with unlabeled nodes and locally labeled edges at each
node. In order to explore all graphs of diameterD andmax
degree d a mobile agent needs ˝(D log d) memory bits
even when exploration is restricted to planar graphs. Sev-
eral researchers also investigate exploration of anonymous
graphs in which agents are allowed to drop and remove
pebbles. For example in Bender et al. [4] it is shown that
one pebble is enough for exploration, if the agent knows
an upper bound on the size of the graph, and 	(log log n)
pebbles are necessary and sufficient otherwise.

Exploration in Trees
In this setting it is assumed the agent can distinguish ports
at a node (locally), but there is no global orientation of the
edges and no markers available. Exploration with stop is
when the mobile agent has to traverse all edges and stop at
some node. For exploration with return the mobile agent
has to traverse all edges and stop at the starting node. In
perpetual exploration the mobile agent has to traverse all
edges of the tree but is not required to stop. The upper and
lower bounds on memory for the exploration algorithms
analyzed in Diks et al. [9] are summarized in the table, de-
pending on the knowledge that themobile agent has. Here,
n is the number of nodes of the tree, N � n is an upper
bound known to the mobile agent, and d is the maximum
degree of a node of the tree.

Exploration Knowledge Lower Bounds Upper Bounds
Perpetual ; None O(log d)
w/Stop n�N ˝(log log log n) O(logN)
w/Return ; ˝(logn) O(log2 n)

Exploration in a Geometric Setting

Exploration in a geometric setting with unknown terrain
and convex obstacles is considered by Blum et al. [5]. They
compare the distance walked by the agent (or robot) to the
length of the shortest (obstacle-free) path in the scene and

550 M Mobile Agents and Exploration

describe and analyze robot strategies thatminimize this ra-
tio for different kinds of scenes. There is also related litera-
ture for exploration in more general settings with polygo-
nal and rectangular obstacles by Deng et al. [7] and Bar-
Eli et al. [3], respectively. A setting that is important in
wireless networking is when nodes are aware of their lo-
cation. In this case, Kranakis et al. [12] give efficient algo-
rithms for navigation, namely compass routing and face
routing that guarantee delivery in Delaunay and arbitrary
planar geometric graphs, respectively, using only local in-
formation.

Rendezvous

The rendezvous search problem differs from the explo-
ration problem in that it concerns two searchers placed at
different nodes of a graph that want to minimize the time
required to rendezvous (usually) at the same node. At any
given time the mobile agents may occupy a vertex of the
graph and can either stay still or move from vertex to ver-
tex. It is of interest to minimize the time required to ren-
dezvous. A natural extension of this problem is to study
multi-agent mobile systems. More generally, given a par-
ticular agentmodel and networkmodel, a set of agents dis-
tributed arbitrarily over the nodes of the network are said
to rendezvous if executing their programs after some fi-
nite time they all occupy the same node of the network at
the same time. Of special interest is the highly symmet-
ric case of anonymous agents on an anonymous network
and the simplest interesting case is that of two agents at-
tempting to rendezvous on a ring network. In particular, in
the model studied by Sawchuk [16] the agents cannot dis-
tinguish between the nodes, the computation proceeds in
synchronous steps, and the edges of each node are oriented
consistently. The table summarizes time/memory trade-
offs known for six algorithms (see Kranakis et al. [13] and
Flocchini et al. [10]) when the k mobile agents use indis-
tinguishable pebbles (one per mobile agent) to mark their
position in an n node ring.

Memory Time Memory Time
O(k log n) O(n) O(log n) O(n)
O(log n) O(kn) O(log k) O(n)

O(k log log n) O
�

n log n
log log n

�
O(log k) O(n log k)

Kranakis et al.[14] show a striking computational differ-
ence for rendezvous in an oriented, synchronous, n � n
torus when the mobile agents may have more indistin-
guishable tokens. It is shown that two agents with a con-
stant number of unmovable tokens, or with one mov-
able token each cannot rendezvous if they have o(log n)

memory, while they can perform rendezvous with de-
tection as long as they have one unmovable token and
O(log n) memory. In contrast, when two agents have two
movable tokens each then rendezvous (respectively, ren-
dezvous with detection) is possible with constant mem-
ory in a torus. Finally, two agents with three movable to-
kens each and constant memory can perform rendezvous
with detection in a torus. If the condition on synchrony
is dropped the rendezvous problem becomes very chal-
lenging. For a given initial location of agents in a graph,
De Marco et al. [6] measure the performance of a ren-
dezvous algorithm as the number of edge traversals of both
agents until rendezvous is achieved. If the agents are ini-
tially situated at a distance D in an infinite line, they give
a rendezvous algorithm with cost O(DjLminj

2) when D
is known and O((D + jLmaxj)3) if D is unknown, where
jLminj and jLmaxj are the lengths of the shorter and longer
label of the agents, respectively. These results still hold for
the case of the ring of unknown size but then they also give
an optimal algorithm of cost O(njLminj), if the size n of the
ring is known, and of cost O(njLmaxj), if it is unknown.
For arbitrary graphs, they show that rendezvous is feasible
if an upper bound on the size of the graph is known and
they give an optimal algorithm of cost O(DjLminj) if the
topology of the graph and the initial positions are known
to the agents.

Applications

Interest inmobile agents has been fueled by two overriding
concerns. First, to simplify the complexities of distributed
computing, and second to overcome the limitations of user
interface approaches. Today they find numerous applica-
tions in diverse fields such as distributed problem solv-
ing and planning (e. g., task sharing and coordination),
network maintenance (e. g., daemons in networking sys-
tems for carrying out tasks like monitoring and surveil-
lance), electronic commerce and intelligence search (e. g.,
data mining and surfing crawlers to find products and
services from multiple sources), robotic exploration (e. g.,
rovers, and other mobile platforms that can explore poten-
tially dangerous environments or even enhance planetary
extravehicular activity), and distributed rational decision
making (e. g., auction protocols, bargaining, decisionmak-
ing). The interested reader can find useful information in
several articles in the volume edited by Weiss [18].

Open Problems

Specific directions for further research would include the
study of time/memory tradeoffs in search game models
(see Alpern and Gal [2]). Multi-agent systems are partic-

Multicommodity Flow, Well-linked Terminals and Routing Problems M 551

ularly useful for content-based searches and exploration,
and further investigations in this area would be fruitful.
Memory restricted mobile agents provide a rich model
with applications in sensor systems. In the geometric set-
ting, navigation and routing in a three dimensional envi-
ronment using only local information is an area withmany
open problems.

Cross References

� Deterministic Searching on the Line
� Robotics
� Routing

Recommended Reading
1. Albers, S., Henzinger, M.R.: Exploring unknown environments.

SIAM J. Comput. 29, 1164–1188 (2000)
2. Alpern, S., Gal, S.: The Theory of Search Games and Ren-

dezvous. Kluwer Academic Publishers, Norwell (2003)
3. Bar-Eli, E., Berman, P., Fiat, A., Yan, R.: On-line navigation in

a room. J. Algorithms 17, 319–341 (1994)
4. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The

power of a pebble: Exploring andmapping directed graphs. In:
Proc. 30th Ann. Symp. on Theory of Computing, pp. 269–278.
Dallas, 23–26 May 1998

5. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar
geometric terrain. SIAM J. Comput. 26, 110–137 (1997)

6. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vac-
caro, U.: Asynchronous Deterministic Rendezvous in Graphs.
Theoret. Comput. Sci. 355, 315–326 (2006)

7. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an un-
known environment I: the rectilinear case. J. ACM 45, 215–245
(1998)

8. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph.
J. Graph Theory 32, 265–297 (1999)

9. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration
with little memory. J. Algorithms 51, 38–63 (2004)

10. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.:
Multiple Mobile Agent Rendezvous in the Ring. In: Proc. LATIN
2004. LNCS, vol. 2976, pp. 599–608. Bueons Aires, 5–8 April
2004

11. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph
exploration by a finite automaton. Theor. Comput. Sci. 345,
331–344 (2005)

12. Kranakis, E., Singh, H., Urrutia, J.: Compass Routing in Geo-
metric Graphs. In: Proceedings of 11th Canadian Conference
on Computational Geometry, CCCG-99, pp. 51–54, Vancouver,
15–18 August 1999

13. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile Agent
Rendezvous Search Problem in the Ring. In: Proc. Interna-
tional Conference on Distributed Computing Systems (ICDCS),
pp. 592–599. Providence, Rhode Island 19–22 May 2003

14. Kranakis, E., Krizanc, D., Markou, E.: Mobile Agent Rendezvous
in a Synchronous Torus. In: Proceedings of LATIN 2006, 7th
Latin American Symposium. Valdivia, March 20–24 2006. Cor-
rea, J., Hevia, A., Kiwi, M. SVLNCS 3887, 653–664 (2006)

15. Panaite, P., Pelc, A.: Exploring unknown undirected graphs.
J. Algorithms 33, 281–295 (1999)

16. Sawchuk, C.: Mobile Agent Rendezvous in the Ring. Ph. D. the-
sis, Carleton University, Ottawa, Canada (2004)

17. Shannon, C.: Presentation of a Maze Solving Machine, in Cy-
bernetics, Circular, Causal and Feedback Machines in Biolog-
ical and Social Systems. In: von Feerster, H., Mead, M., Teu-
ber, H.L. (eds.) Trans. 8th Conf, New York, March 15–16, 1951.
pp. 169–181. Josiah Mary Jr. Foundation, New York (1952)

18. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. MIT Press, Cambridge, MA
(1999)

MST
�Minimum Energy Broadcasting in Wireless Networks
�Minimum Geometric Spanning Trees

Multicommodity Flow, Well-linked
Terminals and Routing Problems
2005; Chekuri, Khanna, Shepherd

CHANDRA CHEKURI
Department of Computer Science, University of Illinois,
Urbana-Champaign, Urbana, IL, USA

Keywords and Synonyms

Edge disjoint paths problem; Maximum edge disjoint
paths problem; Node disjoint paths problem, All-or-noth-
ing multicommodity flow problem

ProblemDefinition

Three related optimization problems derived from the
classical edge disjoint paths problem (EDP) are described.
An instance of EDP consists of an undirected graph G =
(V ; E) and a multiset T = fs1t1; s2t2; : : : ; sk tkg of k node
pairs. EDP is a decision problem: can the pairs in T be
connected (alternatively routed) via edge-disjoint paths?
In other words, are there paths P1; P2; : : : ; Pk such that for
1 � i � k; Pi is path from si to ti, and no edge e 2 E
is in more than one of these paths? EDP is known to be
NP-Complete. This article considers there maximization
problems related to EDP.
� Maximum Edge-Disjoint Paths Problem (MEDP).

Input to MEDP is the same as for EDP. The objective
is to maximize the number of pairs in T that can be
routed via edge-disjoint paths. The output consists of
a subset S
 f1; 2; : : : ; kg and for each i 2 S a path Pi
connecting si to ti such that the paths are edge-disjoint.
The goal is to maximize |S|.

552 M Multicommodity Flow, Well-linked Terminals and Routing Problems

� Maximum Edge-Disjoint Paths Problem with Con-
gestion (MEDPwC). MEDPwC is a relaxation of
MEDP. The input, in addition to G and the node pairs,
contains an integer congestion parameter c. The output
is the same for MEDP; a subset S
 f1; 2; : : : ; kg and
for each i 2 S a path Pi connecting si to ti. However,
the paths Pi ; 1 � i � k are not required to be edge-
disjoint. The relaxed requirement is that for each edge
e 2 E, the number of paths for the routed pairs that
contain e is at most c. Note that MEDPwC with c = 1 is
the same as MEDP.

� All-or-Nothing Multicommodity Flow Problem
(ANF). ANF is a different relaxation of MEDP ob-
tained by relaxing the notion of routing. A pair si ti
is now said to be routed if a unit flow is sent from si
to ti (potentially on multiple paths). The input is the
same as for MEDP. The output consists of a subset
S
 f1; 2; : : : ; kg such that there is a feasible multi-
commodity flow in G that routes one unit of flow for
each pair in S. The goal is to maximize |S|.

In the rest of the article, graphs are assumed to be undi-
rected multigraphs. Given a graph G = (V ; E) and S � V ,
let ıG(S) denote the set of edges with exactly one end point
in S. Let n denote the number of vertices in the input
graph.

Key Results

A few results in the broader literature are reviewed in addi-
tion to the results from [6]. EDP is NP-Complete when k is
part of the input. A highly non-trivial result of Robertson
and Seymour yields a polynomial time algorithm when k
is a fixed constant.

Theorem 1 ([16]) There is a polynomial time algorithm
for EDP when k is a fixed constant independent of the input
size.

Using Theorem 1 it is easy to see that MEDP and MED-
PwC have polynomial time algorithms for fixed k . The
same holds for ANF by simple enumeration since the de-
cision version is polynomial-time solvable via linear pro-
gramming.

The focus of this article is on the case when k is part
of the input, and in this setting, all three problems consid-
ered are NP-hard. The starting point for most approxima-
tion algorithms is the natural multicommodity flow relax-
ation given below. This relaxation is valid for both MEDP
and ANF. The end points of the input pairs are referred to
as terminals and let X denote the set of terminals. To de-
scribe the relaxation as well as simplify further discussion,
the following simple assumption is made without loss of

generality; each node in the graph participates in at most
one of the input pairs. This assumption implies that the in-
put pairs induce a matchingM on the terminal setX. Thus
the input for the problem can alternatively given as a triple
(G; X;M).

For the given instance (G; X;M), let Pi denote the set
of paths joining si and ti in G and let P = [iPi . The
LP relaxation has the following variables. For each path
P 2 P there is a variable f (P) which is the amount of flow
sent on P. For each pair si ti there is a variable xi to indicate
the total flow that is routed for the pair.

(MCF � LP)max
kX
i=1

xi s:t

xi �
X
P2Pi

f (P) = 0 1 � i � k

X
P : e2P

f (P) � 1 8e 2 E

xi ; f (P) 2 [0; 1] 1 � i � k; P 2 P

The above path formulation has an exponential (in n)
number of variables, however it can still be solved in poly-
nomial time. There is also an equivalent compact formu-
lation with a polynomial number of variables and con-
straints. Let OPT denote the value of an optimum solution
to a given instance. Similarly, let OPT-LP denote the value
of an optimum solution the LP relaxation for the given
instance. It can be seen that OPT-LP � OPT. It is known
that the integrality gap of (MCF-LP) is ˝(

p
n) [10]; that

is, there is an infinite family of instances such that OPT �
LP/OPT = ˝(

p
n. The current best approximation algo-

rithm for MEDP is given by the following theorem.

Theorem 2 ([4]) The integrality gap of (MCF-LP) for
MEDP is	(

p
n) and there is an O(

p
n) approximation for

MEDP.

For MEDPwC the approximation ratio improves with the
congestion parameter c.

Theorem 3 ([18])
There is an O(n1/c) approximation for MEDPwC with

congestion parameter c. In particular there is a polynomial
time algorithm that routes˝(OPT-LP/n1/c) pairs with con-
gestion at most c.

The above theorem is established via randomized round-
ing of a solution to (MCF-LP). Similar results, but via sim-
pler combinatorial algorithms, are obtained in [2,15].

In [6] a new framework was introduced to obtain ap-
proximation algorithm for routing problems in undirected
graphs via (MCF-LP). A key part of the framework is the

Multicommodity Flow, Well-linked Terminals and Routing Problems M 553

Multicommodity Flow, Well-linked Terminals and Routing Problems, Table 1
Known bounds for MEDP, ANF and MEDPwC in general undirected graphs. The best upper bound on the approximation ratio is the
same as the upper bound on the integrality gap of (MCF-LP)

Integrality Gap of (MCF-LP) Approximation Ratio
Upper bound Lower bound Lower bound

MEDP O(
p
n) ˝(

p
n) ˝(log1/2�� n)

MEDPwC O(n1/c) ˝(log(1��)/(c+1) n) ˝(log(1��)/(c+1) n)
ANF O(log2 n) ˝(log1/2�� n) ˝(log1/2�� n)

so-called well-linked decomposition that allows a reduc-
tion of an arbitrary instance to an instance in which the
terminals satisfy a strong property.

Definition 1 Let G = (V ; E) be a graph. A subset X

V is cut-well-linked in G if for every S � V , jıG (S)j �
minfjS \ Xj; j(V n S) \ Xjg. X is flow-well-linked if there
exists a feasible fractional multicommodity flow in G for
the instance in which there is a demand of 1/|X| for each
unordered pair uv; u; v 2 X.

The main result in [6] is the following.

Theorem 4 ([6]) Let (G; X;M) be an instance of MEDP
or ANF and let OPT-LP be the value of an optimum solu-
tion to (MCF-LP) on (G; X;M). There there is a polyno-
mial time algorithm that obtains a collection of instances
(G1; X1;M1); (G2; X2;M2); : : : ; (Gh ; Xh ;Mh)with the fol-
lowing properties:
� The graphs G1;G2; : : : ;Gh are node-disjoint induced

subgraphs of G. For 1 � i � h; Xi
 X and Mi
 M.
� For 1 � i � h; Xi is flow-well-linked in Gi.
�
Ph

i=1 jXi j = ˝(OPT-LP/ log2 n).

For planar graphs and graphs that exclude a fixed minor,
the above theorem gives a stronger guarantee:

Ph
i=1 jXi j =

˝(OPT-LP/ log n). A well-linked instance satisfies a strong
symmetry property based on the following observation.
If A is flow-well-linked in G then for any matching J
on X, OPT-LP on the instance (G;A; J) is ˝(jAj). Thus
the particular matching M of a given well-linked instance
(G; X;M) is essentially irrelevant. The second part of the
framework in [6] consists of exploiting the well-linked
property of the instances produced by the decomposition
procedure. At a high level this is done by showing that
if G has a well-linked set X, then it contains a “crossbar”
(a routing structure) of size ˝(jXj/poly(log n)). See [6]
for more precise definitions. Techniques for the second
part vary based on the problem as well as the family of
graphs in question. The following results are obtained us-
ing Theorem 4 and other non-trivial ideas for the second
part [7,8,6,3].

Theorem 5 ([6) There is an O(log2 n) approximation for
ANF. This improves to an O(log n) approximation in pla-
nar graphs.

Theorem 6 ([6) There is an O(log n) approximation for
MEDPwC in planar graphs for c � 2. There is an O(log n)
approximation for ANF in planar graphs.

Theorem 7 ([3) There is an O(r log n log r) approxima-
tion for MEDP in graphs of treewidth at most r.

Generalizations and Variants

Some natural variants and generalizations of the problems
mentioned in this article are obtained by considering three
orthogonal aspects: (i) node disjointness instead of edge-
disjointness, (ii) capacities on the edges and/or nodes, and
(iii) demand values on the pairs (each pair si ti has an in-
teger demand di and the objective is to route di units of
flow between si and ti). Results similar to those mentioned
in the article are shown to hold for these generalizations
and variants [6]. Capacities and demand values on pairs
are somewhat easier to handle while node-disjoint prob-
lems often require additional non-trivial ideas. The reader
is referred to [6] for more details.

For some special classes of graphs (trees, expanders
and grids to name a few), constant factor or poly-logarith-
mic approximation ratios are known for MEDP.

Applications

Flow problems are at the core of combinatorial optimiza-
tion and have numerous applications in optimization,
computer science and operations research. Very special
cases of EDP andMEDP include classical problems such as
single-commodity flows, andmatchings in general graphs,
both of which have many applications. EDP and variants
arise most directly in telecommunication networks and
VLSI design. Since EDP captures difficult problems as spe-
cial cases, there are only a few algorithmic tools that can
address the numerous applications in a unified fashion.
Consequently, empirical research tends to focus on appli-
cation specific approaches to obtain satisfactory solutions.

554 M Multicut

The flip side of the difficulty of EDP is that it offers a rich
source of problems, the study of which has led to impor-
tant algorithmic advances of broad applicability, as well as
fundamental insights in graph theory, combinatorial opti-
mization, and related fields.

Open Problems

A number of very interesting open problems remain re-
garding the approximability of the problems discussed in
this article. Table 1 gives the best known upper and lower
bounds on the approximation ratio as well as integrality
gap of (MCF-LP). All the inapproximability results in Ta-
ble 1, and the integrality gap lower bounds for MEDPwC
and ANF, are from [1]. The inapproximability results are
based on the assumption that NP 6
 ZTIME(npoly(log n)).
Closing the gaps between the lower and upper bounds are
the major open problems.

Cross References

� Randomized Rounding
� Separators in Graphs
� Treewidth of Graphs

Recommended Reading

The limited scope of this article does not do justice to the
large literature on EDP and related problems. In addition
to the articles cited in the main body of the article, the
reader is referred to [5,9,11,12, 13,14,17] for further read-
ing and pointers to existing literature.

1. Andrews, M., Chuzhoy, J., Khanna, S., Zhang, L.: Hardness of
the Undirected Edge-Disjoint Paths Problem with Congestion.
Proc. of IEEE FOCS, 2005, pp. 226–244

2. Azar, Y., Regev, O.: Combinatorial algorithms for the unsplit-
table flow problem. Algorithmica 44(1), 49–66 (2006). Prelimi-
nary version in Proc. of IPCO 2001

3. Chekuri, C., Khanna, S., Shepherd, F.B.: A note on multiflows
and treewidth. Algorithmica, published online (2007)

4. Chekuri, C., Khanna, S., Shepherd, F.B.: An O(
p
n) approxima-

tion and integrality gap for disjoint paths andUFP. Theor. Com-
put. 2, 137–146 (2006)

5. Chekuri, C., Khanna, S., Shepherd, F.B.: Edge-Disjoint Paths in
Planar Graphs with Constant Congestion. Proc. ACM STOC,
pp. 757–766 (2006)

6. Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow,
well-linked terminals, and routing problems. Proc. ACM STOC,
pp. 183–192 (2005)

7. Chekuri, C., Khanna, S., Shepherd, F.B.: The All-or-NothingMul-
ticommodity Flow Problem. Proc. ACM STOC, pp. 156–165
(2004)

8. Chekuri, C., Khanna, S., Shepherd, F.B.: Edge Disjoint Paths in
Planar Graphs. Proc. of IEEE FOCS, 2004, pp. 71–80

9. Frank, A.: Packing paths, cuts, and circuits – a survey. In: Korte,
B., Lovász, L., Prömel H.J., Schrijver A. (eds.) Paths, Flows and
VLSI-Layout, pp. 49–100. Springer, Berlin (1990)

10. Garg, N., Vazirani, V., Yannakakis, M.: Primal-Dual Approxima-
tion Algorithms for Integral Flow and Multicut in Trees. Algo-
rithmica 18(1), 3–20 (1997). Preliminary version appeared in
Proc. ICALP 1993

11. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, F.B., Yan-
nakakis, M.: Near-Optimal Hardness Results and Approxima-
tion Algorithms for Edge-Disjoint Paths and Related Problems.
J. CSS 67, 473–496 (2003). Preliminary version in Proc. of ACM
STOC 1999

12. Kleinberg, J.M.: Approximation algorithms for disjoint paths
problems. Ph. D. thesis, MIT, Cambridge, MA (1996)

13. Kleinberg, J.M.: An Approximation Algorithm for the Disjoint
Paths Problem in Even-Degree Planar Graphs. Proc. of IEEE
FOCS, 2005, pp. 627–636

14. Kolliopoulos, S.G.: Edge Disjoint Paths and Unsplittable Flow.
In: Handbook on Approximation Algorithms and Metaheuris-
tics, Chapman & Hall/CRC Press Computer & Science Series, vol
13. Chapman Hall/CRC Press, May 2007

15. Kolliopoulos, S.G., Stein, C.: Approximating Disjoint-Path Prob-
lems Using Greedy Algorithms and Packing Integer Programs.
Math. Program. A 99, 63–87 (2004). Preliminary version in Proc.
of IPCO 1998

16. Robertson, N., Seymour, P.D.: Graph Minors XIII.The Disjoint
Paths Problem. J. Comb. Theor. B 63(1), 65–110 (1995)

17. Schrijver, A.: Combinatorial Optimization: Polyhedra and Effi-
ciency. Springer, Berlin (2003)

18. Srinivasan, A.: Improved approximations for edge-disjoint
paths, unsplittable flow, and related routing problems. Proc.
IEEE FOCS, 1997, pp. 416–425

Multicut
1993; Garg, Vazirani, Yannakakis
1996; Garg, Vazirani, Yannakakis

SHUCHI CHAWLA
Department of Computer Science,
University of Wisconsin–Madison, Madison, WI, USA

ProblemDefinition

The Multicut problem is a natural generalization of the s-t
mincut problem—given an undirected capacitated graph
G = (V ; E) with k pairs of vertices fsi ; tig; the goal is
to find a subset of edges of the smallest total capacity
whose removal from G disconnects si from ti for ev-
ery i 2 f1; � � � ; kg. However, unlike the Mincut problem
which is polynomial-time solvable, the Multicut problem
is known to be NP-hard and APX-hard for k � 3 [6].

This problem is closely related to the Multi-Commod-
ity Flow problem. The input to the latter is a capacitated
network with k commodities (source-sink pairs); the goal
is to route as much total flow between these source-sink

Multicut M 555

pairs as possible while satisfying capacity constraints. The
maximummulti-commodity flow in a graph can be found
in polynomial time via linear programming, and there are
also several combinatorial FPTASes known for this prob-
lem [7,9,11].

It is immediate from the definition of Multicut that the
multicommodity flow in a graph is bounded above by the
capacity of a minimummulticut in the graph. When there
is a single commodity to be routed, themax-flowmin-cut
theorem of Ford and Fulkerson [8] states that the converse
also holds: the maximum s-t flow in a graph is exactly
equal to the minimum s-t cut in the graph. This duality
between flows and cuts in a graph has many applications
and, in particular, leads to a simple algorithm for finding
the minimum cut in a graph.

Given its simplicity and elegance, several attempts
have been made to extend this duality to other classes of
flow and partitioning problems. Hu showed, for exam-
ple, that the min-multicut equals the maximum multi-
commodity flow when there are only two commodities
in the graph [12]. Unfortunately, this property does not
extend to graphs with more than two commodities. The
focus has therefore been on obtaining approximate max-
multicommodity flow min-multicut theorems. Such theo-
rems would also imply a polynomial-time algorithm for
approximately computing the capacity of the minimum
multicut in a graph.

Key Results

Garg, Vazirani andYannakakis [10] were the first to obtain
an approximate max-multicommodity flow min-multicut
theorem. They showed that the maximummulticommod-
ity flow in a graph is always at least an O(log k) fraction of
theminimummulticut in the graph. Moreover, their proof
of this result is constructive. That is, they also provide an
algorithm for computing a multicut for a given graph with
capacity at most O(log k) times the maximum multicom-
modity flow in the graph. This is the best approximation
algorithm known to date for the Multicut problem.

Theorem 1 Let M denote the minimum multicut in
a graph with k commodities and f denote the maximum
multicommodity flow in the graph. Then

M
O(log k)

� f � M :

Moreover, there is a polynomial time algorithm for finding
an O(log k)-approximate multicut in a graph.

Furthermore, they show that this theorem is tight to within
constant factors. That is, there are families of graphs in

which the gap between the maximum multicommodity
flow and minimummulticut is	(log k).

Theorem 2 There exists a infinite family of multicut in-
stances f(Gk ; Pk)g such that for all k, the graph Gk =
(Vk ; Ek) contains k vertices and Pk
 Vk � Vk is a set of
˝(k2) source-sink pairs. Furthermore, themaximummulti-
commodity flow in the instance (Gk ; Pk) is O(k/ log k) and
the minimum multicut is˝(k).

Garg et al. also consider the Sparsest Cut problem which is
another partitioning problem closely related to Multicut,
and provided an approximation algorithm for this prob-
lem. Their results for Sparsest Cut have subsequently been
improved upon [3,15]. The reader is referred to the entry
on� Sparsest Cut for more details.

Applications

A key application of the Multicut problem is to the
2CNF �Deletion problem. The latter is a constraint sat-
isfaction problem in which given a weighted set of clauses
of the form P � Q, where P and Q are literals, the goal
is to delete a minimum weight set of clauses so that the
remaining set is satisfiable. The 2CNF �Deletion prob-
lem models a number of partitioning problems, for ex-
ample the Minimum Edge-Deletion Graph Bipartization
problem—finding the minimumweight set of edges whose
deletion makes a graph bipartite. Klein et al. [14] showed
that the 2CNF �Deletion problem reduces in an ap-
proximation preserving way to Multicut. Therefore, a �-
approximation to Multicut implies a �-approximation to
2CNF �Deletion. (See the survey by Shmoys [16] for
more applications.)

Open Problems

There is a big gap between the best-known algorithm
for Multicut and the best hardness result (APX-hardness)
known for the problem. Improvements in either direction
may be possible, although there are indications that the
O(log k) approximation is the best possible. In particular,
Theorem 2 implies that the integrality gap of the natural
linear programming relaxation for Multicut is 	(log k).
Although improved approximations have been obtained
for other partitioning problems using semi-definite pro-
gramming instead of linear programming, Agarwal et
al. [1] showed that similar improvements cannot be
achieved for Multicut—the integrality gap of the natural
SDP-relaxation for Multicut is also	(log k). On the other
hand, there are indications that the APX-hardness is not
tight. In particular, assuming the so-called Unique Games

556 M Multidimensional Compressed Pattern Matching

conjecture, it has been shown that Multicut cannot be ap-
proximated to within any constant factor [4,13]. In light
of these negative results, the main open problem related to
this work is to obtain a super-constant hardness for the
Multicut problem under a standard assumption such as
P ¤ NP.

The Multicut problem has also been studied in di-
rected graphs. The best known approximation algorithm
for this problem is an O(n11/23 logO(1) n)-approximation
due to Aggarwal, Alon and Charikar [2], while on the
hardness side, Chuzhoy and Khanna [5] show that there
is no 2˝(log1�� n) approximation, for any � > 0, unless
NP
ZPP. Chuzhoy and Khanna also exhibit a family of
instances for which the integrality gap of the natural LP re-
laxation of this problem (which is also the gap between the
maximum directed multicommodity flow and the mini-
mum directed multicut) is˝(n1/7).

Cross References

� Sparsest Cut

Recommended Reading

1. Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.:
O(
p
log n) approximation algorithms for Min UnCut, Min

2CNF Deletion, and directed cut problems. In: Proceedings of
the 37th ACM Symposium on Theory of Computing (STOC),
pp. 573–581, Baltimore, May 2005

2. Aggarwal, A., Alon, N., Charikar, M.: Improved approximations
for directed cut problems. In: Proceedings of the 39th ACM
Symposium on Theory of Computing (STOC), pp. 671–680, San
Diego, June 2007

3. Arora, S., Satish, R., Vazirani, U.: Expander Flows, Geometric Em-
beddings, and Graph Partitionings. In: Proceedings of the 36th
ACM Symposium on Theory of Computing (STOC), pp. 222–
231, Chicago, June 2004

4. Chawla, S., Krauthgamer, R., Kumar, R., Rabani Y., Sivakumar, D.:
On the Hardness of Approximating Sparsest Cut and Multicut.
In: Proceedings of the 20th IEEE Conference on Computational
Complexity (CCC), pp. 144–153, San Jose, June 2005

5. Chuzhoy, J., Khanna, S.: Polynomial flow-cut gaps and hard-
ness of directed cut problems. In: Proceedings of the 39th ACM
Symposium on Theory of Computing (STOC), pp. 179–188, San
Diego, June 2007

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D.,
Yannakakis, M.: The complexity of multiterminal cuts. SIAM
Comput. J. 23(4), 864–894 (1994)

7. Fleischer, L.: Approximating fractional multicommodity flow
independent of the number of commodities. In: Proceedings
of the 40th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 24–31, New York, October 1999

8. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network.
Can. J. Math. 8, 399–404. (1956)

9. Garg, N., Könemann., J.: Faster and simpler algorithms for mul-
ticommodity flow and other fractional packing problems. In:

Proceedings of the 39th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 300–309. (1998)

10. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow
min-(multi)cut theorems and their applications. SIAM Comput.
J., 25(2), 235–251. (1996)

11. Grigoriadis, M.D., Khachiyan, L.G.: Coordination complexity of
parallel price-directive decomposition. Mathematics of Opera-
tions Research, 21, 321–340. (1996)

12. Hu, T.C.: Multi-commodity network flows. Operations Re-
search, 11(3), 344–360. (1963)

13. Khot, S., Vishnoi, N.: The Unique Games Conjecture, Integrality
Gap for Cut Problems and the Embeddability of Negative-Type
Metrics into `1. In: Proceedings of the 46th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 53–62. (2005)

14. Klein, P., Agrawal, A., Ravi, R., Rao, S.: Approximation through
multicommodity flow. In: Proceedings of the 31st IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 726–
737 (1990)

15. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs
and some of its algorithmic applications. Combinatorica 15(2),
215–245 (1995). Also in Proc. 35th FOCS, pp. 577–591 (1994)

16. Shmoys, D.B.: Cut problems and their application to divide-
and-conquer. In: Hochbaum D.S., (ed.), Approximation Algo-
rithms for NP-hard Problems, pp. 192–235. PWS Publishing,
Boston (1997)

Multidimensional Compressed
PatternMatching
2003; Amir, Landau, Sokol

AMIHOOD AMIR1,2
1 Department of Computer Science, Bar-Ilan University,
Ramat-Gan, Israel

2 Department of Computer Science, John Hopkins
University, Baltimore, MD, USA

Keywords and Synonyms

Pattern matching in compressed images; Two-dimen-
sional compressed matching; Multidimensional com-
pressed search

ProblemDefinition

Let c be a given compression algorithm, and let c(D) be
the result of c compressing data D. The compressed search
problem with compression algorithm c is defined as follows.

INPUT: Compressed text c(T) and pattern P:
OUTPUT: All locations in T where pattern P occurs.

A compressed matching algorithm is optimal if its time
complexity is O(jc(T)j).

Although optimality in terms of time is always impor-
tant, when dealingwith compression, the criterion of extra

Multidimensional Compressed Pattern Matching M 557

space is perhaps more important [20]. Applications em-
ploy compression techniques specifically because there is
a limited amount of available space. Thus, it is not suffi-
cient for a compressed matching algorithm to be optimal
in terms of time, it must also satisfy the given space con-
straints. Space constraints may be due to limited amount
of disk space (e. g., on a server), or they may be related to
the size of the memory or cache. Note that if an algorithm
uses as little extra space as the size of the cache, the run-
time of the algorithm is also greatly reduced as no cache
misses will occur [13]. It is also important to remember
that in many applications, e. g., LZ compression on strings,
the compression ratio – jSj/jc(S)j – is a small constant.
In a case where the compression ratio of the given text is
a constant, an optimal compressed matching performs no
better than the naive algorithm of decompressing the text.
However, if the constants hidden in the “big O” are smaller
than the compression ratio, then the compressedmatching
does offer a practical benefit. If those constants are larger
than the optimal the compressed search algorithmmay, in
fact, be using more space than the uncompressed text.

Definition 1 (inplace) A compressed matching is said to
be inplace if the extra space used is proportional to the in-
put size of the pattern.

Note that this definition encompasses the compressed
matching model (e. g., [2]) where the pattern is input
in uncompressed form, as well as the fully compressed
model [10], where the pattern is input in compressed form.
The inplace requirement allows the extra space to be the
input size of the pattern, whatever that size may be. How-
ever, in many applications the compression ratio is a con-
stant; therefore, a stronger space constraint is defined.

Definition 2 Let AP be the set of all patterns of size
m, and let c(AP) be the set of all compressed images of
AP. Letm0 be the length of the smallest pattern in c(AP).
A compressed matching algorithm with input pattern P of
length m is called strongly inplace if the amount of extra
space used is proportional to m0.

The problem as defined above is equally applicable to tex-
tual (one-dimensional), image (two-dimensional), or any
type of data, such as bitmaps, concordances, tables, XML
data, or any possible data structure.

The compressed matching problem is considered cru-
cial in image databases, since they are highly compress-
ible. The initial definition of the compressed matching
paradigm was motivated by the two dimensional run-
length compression. This is the compression used for fax
transmissions. The run-length compression is defined as
follows.

Let S = s1s2 � � � sn be a string over some alphabet
˙ . The run-length compression of string S is the string
S0 = � r1

1 �
r2
2 � � ��

rk
k such that (1) �i ¤ �i+1 for 1 � i < k

and (2) S can be described as the concatenation of k seg-
ments, the symbol �1 repeated r1 times, the symbol �2 re-
peated r2 times, : : :, and the symbol �k repeated rk times.
The two-dimensional run-length compression is the con-
catenation of the run-length compression of all the matrix
rows (or columns).

The two-dimensional run-length compressed matching
problem is defined as follows:
INPUT: Text array T of size n � n, and pattern array P
of size m � m both in two-dimensional run-length com-
pressed form.
OUTPUT: All locations in T of occurrences of P. For-
mally, the output is the set of locations (i, j) such that
T[i + k; j + l] = P[k + 1; l + 1] k; l = 0 : : :m � 1.

Another ubiquitous lossless two-dimensional com-
pression is CompuServe’s GIF standard, widely used on
the World Wide Web. It uses LZW [19] (a variation of
LZ78) on the image linearized row by row.

The two-dimensional LZ compression is formally de-
fined as follows. Given an image T[1 : : : n; 1 : : : n], create
a string Tlin [1 : : : n2] by concatenating all rows of T. Com-
pressing Tlin with one-dimensional LZ78 yields the two-
dimensional LZ compression of the image T.

The two-dimensional LZ compressedmatching problem
is defined as follows:
INPUT: Text array T of size n � n, and pattern array P of
sizem � m both in two-dimensional LZ compressed form.
OUTPUT: All locations in T of occurrences of P. For-
mally, the output is the set of locations (i, j) such that
T[i + k; j + l] = P[k + 1; l + 1] k; l = 0 : : :m � 1.

Key Results

The definition of compressed search first appeared in the
context of searching for two dimensional run-length com-
pression [1,2]. The following result was achieved there.

Theorem 1 (Amir and Benson [3]) There exists an
O(jc(T)j log jc(T)j) worst-case time solution to the com-
pressed search problem with the two dimensional run-
length compression algorithm.

The abovementioned paper did not succeed in achieving
either an optimal or an inplace algorithm. Nevertheless, it
introduced the notion of two-dimensional periodicity. As
in strings, periodicity plays a crucial rôle in two-dimen-
sional string matching, and its advent has provided solu-
tions to many longstanding open problems of two-dimen-
sional string matching. In [5], it was used to achieve the

558 M Multidimensional Compressed Pattern Matching

first linear-time, alphabet-independent, two-dimensional
text scanning. Later, in [4,16] it was used in two different
ways for a linear-time witness table construction. In [7] it
was used to achieve the first parallel, time and work opti-
mal, CREW algorithm for text scanning. A simpler variant
of periodicity was used by [11] to obtain a constant-time
CRCW algorithm for text scanning. A recent further at-
tempt has been made [17] to generalize periodicity analy-
sis to higher dimensions.

The first optimal two-dimensional compressed search
algorithm was the following.

Theorem 2 (Amir et al. [6]) There exists an O(jc(T)j)
worst-case time solution to the compressed search prob-
lem with the two-dimensional run-length compression al-
gorithm.

Optimality was achieved by a concept the authors called
witness-free dueling. The paper proved new properties of
two-dimensional periodicity. This enables duels to be per-
formed in which no witness is required. At the heart of the
dueling idea lies the concept that two overlapping occur-
rences of a pattern in a text can use the content of a pre-
determined text position or witness in the overlap to elim-
inate one of them. Finding witnesses is a costly operation
in a compressed text; thus, the importance of witness-free
dueling.

The original algorithm of Amir et al. [6] takes time
O(jc(T)j + jPj log �), where � is min(jPj; j˙ j), and ˙

is the alphabet. However with the witness table con-
struction of Galil and Park [12] the time is reduced to
O(jc(T)j + jPj). Using known techniques, one can modify
their algorithm so that its extra space is O(jPj). This cre-
ates an optimal algorithm that is also inplace, provided the
pattern is input in uncompressed form. With use of the
run-length compression, the difference between jPj and
jc(P)j can be quadratic. Therefore it is important to seek
an inplace algorithm.

Theorem 3 (Amir et al. [9]) There exists an O(jc(T)j +
jPj log �) worst-case time solution to the compressed search
problem with the two-dimensional run-length compression
algorithm, where � ismin(jPj; j˙ j), and˙ is the alphabet,
for all patterns that have no trivial rows (rows consisting
of a single repeating symbol). The amount of space used is
O(jc(P)j).

This algorithm uses the framework of the noncompressed
two dimensional pattern matching algorithm of [6].
The idea is to use the dueling mechanism defined by
Vishkin [18]. Applying the dueling paradigm directly to
run-length compressedmatching has previously been con-
sidered impossible since the location of a witness in the

compressed text cannot be accessed in constant time.
In [9], a way was shown in which a witness can be ac-
cessed in (amortized) constant time, enabling a relatively
straightforward application of the dueling paradigm to
compressed matching.

A strongly inplace compressedmatching algorithm ex-
ists for the two-dimensional LZ compression, but its pre-
processing is not optimal.

Theorem 4 (Amir et al. [8]) There exists an O(jc(T)j +
jPj3 log �) worst-case time solution to the compressed
search problem with the two-dimensional LZ compression
algorithm, where � is min(jPj; j˙ j), and ˙ is the alpha-
bet. The amount of space used is O(m), for an m � m size
pattern. O(m) is the best compression achievable for any
m �m sized pattern under the two-dimensional LZ com-
pression.

The algorithm of [8] can be applied to any two-dimen-
sional compressed text, in which the compression tech-
nique allows sequential decompression in small space.

Applications

The problem has many applications since two-dimen-
sional data appears in many different types of compres-
sion. The two compressions discussed here are the run-
length compression, used by fax transmissions, and the LZ
compression, used by GIF.

Open Problems

Any lossless two-dimensional compression used, espe-
cially one with a large compression ratio, presents the
problem of enabling the search without uncompressing
the data for saving of both time and space.

Searching in two-dimensional lossy compressions will
be a major challenge. Initial steps in this direction can be
found in [15,14], where JPEG compression is considered.

Cross References

� Compressed Pattern Matching
�Multidimensional String Matching

Recommended Reading
1. Amir, A., Benson, G.: Efficient two dimensional compressed

matching. In: Proceeding of Data Compression Conference,
Snow Bird, Utah, 1992, pp. 279–288

2. Amir, A., Benson, G.: Two-dimensional periodicity and its appli-
cation. Proceeding of 3rd Symposium on Discrete Algorithms,
Orlando, FL, 1992, pp. 440–452

3. Amir, A., Benson, G.: Two-dimensional periodicity and its appli-
cation. SIAM J. Comput. 27(1), 90–106 (1998)

Multidimensional StringMatching M 559

4. Amir, A., Benson, G., Farach, M.: The truth, the whole truth,
and nothing but the truth: Alphabet independent two di-
mensional witness table construction.Technical Report GIT-
CC-92/52, Georgia Institute of Technology (1992)

5. Amir, A., Benson, G., Farach, M.: An alphabet independent ap-
proach to two dimensional pattern matching. SIAM J. Comput.
23(2), 313–323 (1994)

6. Amir, A., Benson, G., Farach,M.: Optimal two-dimensional com-
pressed matching. J. Algorithms 24(2), 354–379 (1997)

7. Amir, A., Benson, G., Farach, M.: Optimal parallel two dimen-
sional text searching on a crew pram. Inf. Comput. 144(1), 1–
17 (1998)

8. Amir, A., Landau, G., Sokol, D.: Inplace 2d matching in com-
pressed images. J. Algorithms 49(2), 240–261 (2003)

9. Amir, A., Landau, G., Sokol, D.: Inplace run-length 2d com-
pressed search. Theor. Comput. Sci. 290(3), 1361–1383 (2003)

10. Berman, P., Karpinski, M., Larmore, L., Plandowski, W., Rytter,
W.: On the complexity of pattern matching for highly com-
pressed two dimensional texts. Proceeding of 8th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 97). LNCS,
vol. 1264, pp. 40–51. Springer, Berlin (1997)

11. Crochemore, M., Galil, Z., Gasieniec, L., Hariharan, R., Muthukr-
ishnan, S., Park, K., Ramesh, H., Rytter, W.: Parallel two-dimen-
sional pattern matching. In: Proceeding of 34th Annual IEEE
FOCS, 1993, pp. 248–258

12. Galil, Z., Park, K.: Alphabet-independent two-dimensional wit-
ness computation. SIAM. J. Comput. 25(5), 907–935 (1996)

13. Hennessy, J.L., Patterson, D.A.: Computer Architeture: A Quan-
titative Approach, 2nd edn. Morgan Kaufmann, San Francisco,
CA (1996)

14. Klein, S.T., Shapira, D.: Compressed pattern matching in jpeg
images. In: Proceeding Prague Stringology conference, 2005,
pp. 125–134

15. Klein, S.T., Wiseman, Y.: Parallel huffman decoding with appli-
cations to jpeg files. Comput. J. 46(5), 487–497 (2003)

16. Park, K., Galil, Z.: Truly alphabet-independent two-dimen-
sional pattern matching. In: Proceeding 33rd IEEE FOCS, 1992,
pp. 247–256

17. Régnier, M., Rostami, L.: A unifying look at d-dimensional peri-
odicities and space coverings. In: 4th Symp. on Combinatorial
Pattern Matching, 15, 1993

18. Vishkin, U.: Optimal parallel pattern matching in strings. In:
Proceeding 12th ICALP, 1985, pp. 91–113

19. Welch, T.A.: A technique for high-performance data compres-
sion. IEEE Comput. 17, 8–19 (1984)

20. Ziv, J.: Personal communication (1995)

Multidimensional StringMatching
1999; Kärkkäinen, Ukkonen

JUHA KÄRKKÄINEN, ESKO UKKONEN
Department of Computer Science, University of Helsinki,
Helsinki, Finland

Keywords and Synonyms

Multidimensional array matching; Image matching; Tem-
plate registration

ProblemDefinition

Given two two-dimensional arrays, the text T[1 : : : n;
1 : : : n] and the pattern P[1 : : : m; 1 : : : m],m � n, both
with element values from alphabet ˙ of size � , the ba-
sic two-dimensional string matching (2DSM) problem is to
find all occurrences of P in T, i. e., all m � m subarrays of
T that are identical to P. In addition to the basic prob-
lem, several types of generalizations are considered: ap-
proximate matching (allow local errors), invariant match-
ing (allow global transformations), indexedmatching (pre-
process the text), andmultidimensional matching.

In approximate matching, an occurrence is a subarray
S of the text, whose distance d(S,P) from the pattern does
not exceed a threshold k. Different distance measures lead
to different variants of the problem. When no distance is
explicitly mentioned, the Hamming distance, the number
of mismatching elements, is assumed.

For one-dimensional strings, the most common dis-
tance is the Levenshtein distance, the minimum num-
ber of insertions, deletions and substitutions for trans-
forming one string into the other. A simple generalization
to two dimensions is the Krithivasan–Sitalakshmi (KS)
distance, which is the sum of row-wise Levenshtein dis-
tances. Baeza-Yates and Navarro [6] introduced several
other generalizations, one of which, the RC distance, is de-
fined as follows. A two-dimensional array can be decom-
posed into a sequence of rows and columns by remov-
ing either the last row or the last column from the array
until nothing is left. Different decompositions are possi-
ble depending on whether a row or a column is removed
at each step. The RC distance is the minimum cost of
transforming a decomposition of one array into a decom-
position of the other, where the minimum is taken over
all possible decompositions as well as all possible trans-
formations. A transformation consists of insertions, dele-
tions and modifications of rows and columns. The cost
of inserting or deleting a row/column is the length of
the row/column, and the cost of modification is the Lev-
enshtein distance between the original and the modified
row/column.

The invariant matching problems search for occur-
rences that match the pattern after some global transfor-
mation of the pattern. In the scaling invariant matching
problem, an occurrence is a subarray that matches the pat-
tern scaled by some factor. If only integral scaling fac-
tors are allowed, the definition of the problem is obvi-
ous. For real-valued scaling, a refined model is needed,
where the text and pattern elements, called pixels in this
case, are unit squares on a plane. Scaling the patternmeans
stretching the pixels. An occurrence is a matching M be-

560 M Multidimensional StringMatching

tween text pixels and pattern pixels. The scaled pattern is
placed on top of the text with one corner aligned, and each
text pixel T[r, s], whose center is covered by the pattern,
is matched with the covering pattern pixel P[r0; s0], i. e.,
([r; s]; [r0 ; s0]) 2 M.

In the rotation invariantmatching problem, too, an oc-
currence is amatching between text pixels and pattern pix-
els. This time the center of the pattern is placed at the cen-
ter of a text pixel and the pattern is rotated around the cen-
ter. The matching is again defined by which pattern pixels
cover which text pixel centers.

In the indexed form of the problems, the text can be
preprocessed to speed up the matching. The preprocessing
and matching complexities are reported separately.

All the problems can be generalized to more than two
dimensions. In the d-dimensional problem, the text is an
nd array and the pattern an md array. The focus is on two
dimensions, but multidimensional generalizations of the
results are mentioned when they exist.

Many other variants of the problems are omitted here
due to lack of space. Some of them as well as some of the
results in this entry are surveyed by Amir [1]. A wider
range of problems as well as traditional image processing
techniques for solving them can be found in [9].

Key Results

The classical solution to the 2DSM problem by Bird [8]
and independently by Baker [7] reduces the problem to
one-dimensional string matching. It has two phases:
1. Find all occurrences of pattern rows on the text rows

and mark them. This takes O(n2 logmin(m; �)) time
using the Aho-Corasick algorithm. On an integer al-
phabet˙ = f0; 1; : : : ; ��1g, the time can be improved
toO(n2+m2 min(m; �)+�) usingO(m2 min(m; �)+�)
space.

2. The pattern is considered a sequence of m rows and
each n � m subarray of the text a sequence of n rows.
The Knuth–Morris–Pratt string matching algorithm is
used for finding the occurrences of the pattern in each
subarray. The algorithm makes O(n) row comparisons
for each of the n�m + 1 subarrays. With the markings
from Step 1, a row comparison can be done in constant
time, givingO(n2) time complexity for Step 2.

The time complexity of the Bird–Baker algorithm is linear
if the alphabet size � is constant. The algorithm of Amir,
Benson and Farach [2] (with improvements by Galil and
Park [14]) achieves linear time independent of the alpha-
bet size using a quite different kind of algorithm based on
string matching by duels and two-dimensional periodic-
ity.

Theorem 1 (Bird [8]; Baker [7]; Amir, Benson and
Farach [2]) The 2DSM problem can be solved in the op-
timal O(n2) worst-case time.

The Bird–Baker algorithm generalizes straightforwardly
into higher dimensions by repeated application of Step 1
to reduce a problem in d dimensions into n � m + 1
problems in d � 1 dimensions. The time complexity is
O(dnd logmd). The Amir–Benson–Farach algorithm has
been generalized to three dimensions with the time com-
plexity O(n3) [13].

The average-case complexity of the 2DSM problem
was studied by Kärkkäinen andUkkonen [15], who proved
a lower bound and gave an algorithmmatching the bound.

Theorem 2 (Kärkkäinen andUkkonen [15]) The 2DSM-
problem can be solved in the optimal O(n2(log� m)/m2)
average-case time.

The result (both lower and upper bound) generalizes to the
d-dimensional case with the 	(nd log� m/md) average-
case time complexity.

Amir and Landau [5] give algorithms for approximate
2DSM problems for both the Hamming distance and the
KS distance. The RC model was developed and studied by
Baeza–Yates and Navarro [6].

Theorem 3 (Amir and Landau [5]; Baeza–Yates and
Navarro [6]) The approximate 2DSM problem can be
solved in O(kn2) worst-case time for the Hamming dis-
tance, in O(k2n2) worst-case time for the KS distance, and
in O(k2mn2) worst-case time for the RC distance.

The results for the KS and RC distances generalize to d
dimensions with the time complexitiesO(k(k + d)nd) and
O(d!m2d nd), respectively.

Approximate matching algorithms with good average-
case complexity are described by Kärkkäinen and Ukko-
nen [15] for the Hamming distance, and by Baeza-Yates
and Navarro [6] for the KS and RC distances.

Theorem 4 (Kärkkäinen and Ukkonen [15]; Baeza–
Yates and Navarro [6]) The approximate 2DSM problem
can be solved in O(kn2(log� m)/m2) average-case time for
the Hamming and KS distances, and in O(n2/m) average-
case time for the RC distance.

The results for the Hamming and the RC distance have
d-dimensional generalizations with the time complexities
O(knd (log� md)/md) andO(knd /md�1), respectively.

The scaling and rotation invariant 2DSM problems in-
volve a continuous valued parameter (scaling factor or
rotation angle). However, the corresponding matching
between text and pattern pixels changes only at certain
points, and there are only O(nm) effectively distinct scales

Multidimensional StringMatching M 561

and O(m3) effectively distinct rotation angles. A separate
search for each distinct scale or rotation would give algo-
rithms with time complexities O(n3m) and O(n2m3), but
faster algorithms exist.

Theorem 5 (Amir and Chencinski [3]; Amir, Kapah and
Tsur [4]) The scaling invariant 2DSM problem can be
solved in O(n2m) worst-case time, and the rotation invari-
ant 2DSM problem in O(n2m2) worst-case time.

Fast average-case algorithms for the rotation invariant
problem are described by Fredriksson, Navarro andUkko-
nen [11]. They also consider approximate matching ver-
sions.

Theorem 6 (Fredriksson, Navarro and Ukkonen [11])
The rotation invariant 2DSM problem can be solved in the
optimalO(n2(log� m)/m2) average-case time. The rotation
invariant approximate 2DSM problem can be solved in the
optimal O(n2(k + log� m)/m2) average-case time.

Fredriksson, Navarro and Ukkonen [11] also consider ro-
tation invariant matching in d dimensions.

Indexed matching is based on two-dimensional suffix
trees and arrays, which are the subject of another entry
2D-Pattern Indexing. Their properties are similar to one-
dimensional suffix trees and arrays.

Theorem 7 (Kim and Park [16]) The text can be prepro-
cessed in O(n2) time so that subsequently a 2DSM query
can be answered in O(m2 log �) time or in O(m2 + log n)
time.

Fredriksson, Navarro and Ukkonen [11] describe an index
suitable for rotation invariant matching.

Theorem 8 (Fredriksson, Navarro and Ukkonen [11])
The text can be preprocessed in O(n2) time so that sub-
sequently a rotation invariant 2DSM query can be an-
swered in O((log� n)5/2) average-case time and a rotation
invariant approximate 2DSM query can be answered in
O((2 log� n)k+3/2� k) average-case time.

Applications

The main application area is pattern matching in im-
ages, particularly applications where the point of view in
the image is well-defined, such as aerial and astronomical
photography, optical character recognition, and biomed-
ical imaging. Even three-dimensional problems arise in
biomedical applications [12].

Open Problems

Many combinations of the different variants of the prob-
lem have not been studied. Combining scaling and rota-

tion invariance is an example. With rotation invariant ap-
proximate matching under the RC distance even the prob-
lem needs further specification.

Experimental Results

No conclusive results exist though some experiments are
reported in [10,12,15].

Cross References

Many of the problems and their solutions are related
to one-dimensional string matching problems and tech-
niques described in the entry � Sequential Approximate
String Matching. The construction of text index struc-
tures is described in � Two-Dimensional Pattern Index-
ing. Matching on a compressed text without decompres-
sion is considered in � Multidimensional Compressed
Pattern Matching.

Recommended Reading

1. Amir, A.: Theoretical issues of searching aerial photographs:
a bird’s eye view. Int. J. Found. Comput. Sci. 16, 1075–1097
(2005)

2. Amir, A., Benson, G., Farach, M.: An alphabet independent ap-
proach to two-dimensional patternmatching. SIAM J. Comput.
23, 313–323 (1994)

3. Amir, A., Chencinski, E.: Faster two dimensional scaled match-
ing. In: Proc. 17th Annual Symposium on Combinatorial Pat-
tern Matching. LNCS, vol. 4009, pp. 200–210. Springer, Berlin
(2006)

4. Amir, A., Kapah, O., Tsur, D.: Faster two dimensional pattern
matching with rotations. In: Proc. 15th Annual Symposium on
Combinatorial PatternMatching. LNCS, vol. 3109, pp. 409–419.
Springer, Berlin (2004)

5. Amir, A., Landau, G.M.: Fast parallel and serial multidimen-
sional approximate array matching. Theoretical Comput. Sci.
81, 97–115 (1991)

6. Baeza-Yates, R., Navarro, G.: New models and algorithms for
multidimensional approximate pattern matching. J. Discret.
Algorithms 1, 21–49 (2000)

7. Baker, T.P.: A technique for extending rapid exact-match string
matching to arrays of more than one dimension. SIAM J. Com-
put. 7, 533–541 (1978)

8. Bird, R.S.: Two dimensional patternmatching. Inf. Process. Lett.
6, 168–170 (1977)

9. Brown, L.G.: A survey of image registration techniques. ACM
Computing Surveys 24, 325–376 (1992)

10. Fredriksson, K., Navarro, G., Ukkonen, E.: Faster than FFT: Rota-
tion invariant combinatorial template matching. In: Pandalai,
S. (ed.) Recent Research Developments in Pattern Recognition,
vol. II, pp. 75–112. Transworld Research Network, Trivandrum,
India (2002)

11. Fredriksson, K., Navarro, G., Ukkonen, E.: Sequential and in-
dexed two-dimensional combinatorial template matching al-
lowing rotations. Theoretical Comput. Sci.347, 239–275 (2005)

562 M Multi-Hop Radio Networks, Ad Hoc Networks

12. Fredriksson, K., Ukkonen, E.: Combinatorial methods for ap-
proximate pattern matching under rotations and translations
in 3D arrays. In: Proc. 7th International Symposium on String
Processing and Information Retrieval, pp. 96–104. IEEE Com-
puter Society, Washington, DC (2000)

13. Galil, Z., Park, J.G., Park, K.: Three-dimensional periodicity and
its application to pattern matching. SIAM J. Discret. Math. 18,
362–381 (2004)

14. Galil, Z., Park, K.: Alphabet-independent two-dimensional wit-
ness computation. SIAM J. Comput. 25, 907–935 (1996)

15. Kärkkäinen, J., Ukkonen, E.: Two- and higher-dimensional pat-
tern matching in optimal expected time. SIAM J. Comput. 29,
571–589 (1999)

16. Kim, D.K., Park, K.: Linear-time construction of two-dimensional
suffix trees. In: Proc. 26th International Colloquium on Au-
tomata Languages and Programming. LNCS, vol. 1644, pp.
463–472. Springer, Berlin (1999)

Multi-Hop Radio Networks,
Ad Hoc Networks
� Randomized Broadcasting in Radio Networks

Multi-level Feedback Queues
1968; Coffman, Kleinrock

NIKHIL BANSAL
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Fairness; Low sojourn times; Scheduling with unknown
job sizes

ProblemDefinition

The problem is concerned with scheduling dynamically
arriving jobs in the scenario when the processing require-
ments of jobs are unknown to the scheduler. This is a clas-
sic problem that arises for example in CPU scheduling,
where users submit jobs (various commands to the oper-
ating system) over time. The scheduler is only aware of the
existence of the job and does not know how long it will
take to execute, and the goal is to schedule jobs to pro-
vide good quality of service to the users. Formally, this
note considers the average flow time measure, defined as
the average duration of time since a job is released until its
processing requirement is met.

Notations

Let J = f1; 2; : : : ; ng denote the set of jobs in the input in-
stance. Each job j is characterized by its release time rj and

its processing requirement pj. In the online setting, job j
is revealed to the scheduler only at time rj. A further re-
striction is the non-clairvoyant setting, where only the ex-
istence of job j is revealed at rj, in particular the sched-
uler does not know pj until the job meets its processing
requirement and leaves the system. Given a schedule, the
completion time cj of a job is the earliest time at which
job j receives pj amount of service. The flow time f j of j
is defined as c j � r j . A schedule is said to be preemptive,
if a job can be interrupted arbitrarily, and its execution
can be resumed later from the point of interruption with-
out any penalty. It is well known that preemption is nec-
essary to obtain reasonable guarantees even in the offline
setting [4].

There are several natural non-clairvoyant algorithms
such as First Come First Served, Processor Sharing (work
on all current unfinished jobs at equal rate), Shortest
Elapsed Time First (work on job that has received least
amount of service thus far). Coffman and Kleinrock [2]
proposed another natural algorithm known as the Multi-
Level Feedback Queueing (MLF). MLF works as fol-
lows: There are queues Q0;Q1;Q2; : : : and thresholds
0 < t0 < t1 < t2 : : :. Initially upon arrival, a job is placed
in Q0. When a job in Qi receives ti amount of cumulative
service, it is moved to Qi+ 1. The algorithm at any time
works on the lowest numbered non-empty queue. Coff-
man and Kleinrock analyzed MLF in a queuing theoretic
setting, where the jobs arrive according to a Poisson pro-
cess and the processing requirements are chosen identi-
cally and independently from a known probability distri-
bution.

Recall that the online Shortest Remaining Processing
Time (SRPT) algorithm, that at any time works on the job
with the least remaining processing time, produces an op-
timum schedule. However, SRPT requires the knowledge
of job sizes and hence is not non-clairvoyant. Since a non-
clairvoyant algorithm only knows a lower bound on a jobs
size (determined by the amount of service it has received
thus far), MLF tries to mimic SRPT by favoring jobs that
have received the least service thus far.

Key Results

While non-clairvoyant algorithms have been studied ex-
tensively in the queuing theoretic setting for many
decades, this notion was considered relatively recently in
the context of competitive analysis by Motwani, Phillips
and Torng [5]. As in traditional competitive analysis,
a non-clairvoyant algorithm is called c-competitive if
for every input instance, its performance is no worse
than c times than optimum offline solution for that in-

Multiple Unit Auctions with Budget Constraint M 563

stance. Motwani, Phillips and Torng showed the follow-
ing.

Theorem 1 ([5]) For the problem of minimizing aver-
age flow time on a single machine, any deterministic non-
clairvoyant algorithm must have a competitive ratio of at
least ˝(n1/3) and any randomized algorithm must have
a competitive ratio of at least˝(log n), where n is number
of jobs in the instance.

It is not too surprising that any deterministic algorithm
must have a poor competitive ratio. For example, con-
sider MLF where the thresholds are powers of 2, i. e.
1; 2; 4; : : :. Say n = 2k jobs of size 2k + 1 each arrive at
times 0; 2k ; 2 � 2k ; : : : ; (2k � 1)2k respectively. Then, it is
easily verified that the average flow time under MLF is
˝(n2), where as the average flow time is under the opti-
mum algorithm is˝(n).

Note that MLF performs poorly on the above instance
since all jobs are stuck till the end with just one unit
of work remaining. Interestingly, Kalyanasundaram and
Pruhs [3] designed a randomized variant of MLF (known
as RMLF) and proved that its competitive ratio is almost
optimum. For each job j, and for each queueQi, the RMLF
algorithm sets a threshold ti; j randomly and indepen-
dently according to a truncated exponential distribution.
Roughly speaking, setting a random threshold ensures that
if a job is stuck in a queue, then its remaining processing is
a reasonable fraction of its original processing time.

Theorem 2 ([3]) The RMLF algorithm is O(log n
log log n) competitive against an oblivious adversary.
Moreover, the RMLF algorithm is O(log n log log n) com-
petitive even against an adaptive adversary provided the ad-
versary chooses all the job sizes in advance.

Later, Becchetti and Leonardi [1] showed that in fact the
RMLF is optimally competitive up to constant factors.
They also analyzed RMLF on identical parallel machines.

Theorem 3 ([1]) The RMLF algorithm is O(log n)
competitive for a single machine. For multiple iden-
tical machines, RMLF achieves a competitive ratio of
O(log n log(nm)), where m is the number of machines.

Applications

MLF and its variants are widely used in operating sys-
tems [6,7]. These algorithms are not only close to opti-
mum with respect to flow time, but also have other at-
tractive properties such as the amortized number of pre-
emptions is logarithmic (preemptions occur only if a job
arrives or departs or moves to another queue).

Open Problems

It is not known whether there exists a o(n)-competitive de-
terministic algorithm. It would be interesting to close the
gap between the upper and lower bounds for this case. Of-
ten in real systems, even though the scheduler may not
know the exact job size, it might have some information
about its distribution based on historical data. An inter-
esting direction of research could be to design and analyze
algorithms that use this information.

Cross References

� Flow Time Minimization
�Minimum Flow Time
� Shortest Elapsed Time First Scheduling

Recommended Reading
1. Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to mini-

mize the total flow time on single and parallel machines. J. ACM
(JACM) 51(4), 517–539 (2004)

2. Coffman, E.G., Kleinrock, L.: Feedback Queueing Models for
Time-Shared Systems. J. ACM (JACM) 15(4), 549–576 (1968)

3. Kalyanasundaram, B., Pruhs, K.: Minimizing flow time nonclair-
voyantly. J. ACM (JACM) 50(4), 551–567 (2003)

4. Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximability
and Nonapproximability Results for Minimizing Total Flow Time
on a Single Machine. SIAM J. Comput. 28(4), 1155–1166 (1999)

5. Motwani, R., Phillips, S., Torng, E.: Non-Clairvoyant Scheduling.
Theor. Comput. Sci. 130(1), 17–47 (1994)

6. Nutt, G.: Operating System Projects UsingWindows NT. Addison
Wesley, Reading (1999)

7. Tanenbaum, A.S.: Modern Operating Systems. Prentice-Hall Inc.,
Upper Saddle River (1992)

Multiple String Alignment
� Efficient Methods for Multiple Sequence Alignment

with Guaranteed Error Bounds

Multiple Unit Auctions
with Budget Constraint
2005; Borgs, Chayes, Immorlica, Mahdian, Saberi
2006; Abrams

TIAN-MING BU
Department of Computer Science, Fudan University,
Shanghai, China

ProblemDefinition

In this problem, an auctioneer would like to sell an id-
iosyncratic commodity with m copies to n bidders, de-

564 M Multiple Unit Auctions with Budget Constraint

noted by i = 1; 2; : : : ; n. Each bidder i has two kinds of
privately known information: tui 2 R+, tbi 2 R+. tui 2 R+

represents the price buyer i is willing to pay per copy of the
commodity and tbi 2 R+ represents i’s budget.

Then a one-round sealed-bid auction proceeds as fol-
lows. Simultaneously all the bidders submit their bids to
the auctioneer. When receiving the reported unit value
vector u = (u1; : : : ; un) and the reported budget vector
b = (b1; : : : ; bn) of bids, the auctioneer computes and out-
puts the allocation vector x = (x1; : : : ; xn) and the price
vector p = (p1; : : : ; pn). Each element of the allocation
vector indicates the number of copies allocated to the cor-
responding bidder. If bidder i receives xi copies of the
commodity, he pays the auctioneer pixi. Then bidder i’s
total payoff is (tui � pi)xi if xi pi � tbi and �1 other-
wise. Correspondingly, the revenue of the auctioneer is
A(u; b;m) =

P
i pi xi .

If each bidder submits his privately true unit value tui
and budget tbi to the auctioneer, the auctioneer can deter-
mine the single price pF (i. e.,8i, pi = pF) and the alloca-
tion vector which maximize the auctioneer’s revenue. This
optimal single price revenue is denoted by F(u; b;m).

Interestingly, in this problem, we assume bidders have
free will, and have complete knowledge of the auction
mechanism. Bidders would just report the bid (maybe dif-
ferent from his corresponding privately true values) which
could maximize his payoff according to the auction mech-
anism.

So the objective of the problem is to design a truth-
ful auction satisfying voluntary participation to raise the
auctioneer’s revenue as much as possible. An auction is
truthful if for every bidder i, bidding his true valuation
would maximize his payoff, regardless of the bids submit-
ted by the other bidders [8,9]. An auction satisfies volun-
tary participation if each bidder’s payoff is guaranteed to
be non-negative if he reports his bid truthfully. The per-
formance of the auction A is determined by competitive
ratioˇ which is defined as the upper bound of F(u;b;m)

A(u;b;m) [5].
Clearly, the smaller the competitive ratio ˇ is, the better
the auctionA is.

Definition (Multiple Unit Auctions with Budget Con-
straint)
INPUT: the number of copies m, the submitted unit value
vector u, the submitted budget vector b.
OUTPUT: the allocation vector x and the price vector p.
CONSTRAINTS:
(a) Truthful
(b) Voluntary participation
(c)

P
i xi � m.

Key Results

Let bmax denote the largest budget amongst the bidders re-
ceiving copies in the optimal solution and define ˛ = F

bmax
.

Theorem 1 ([2]) A truthful auction satisfying voluntary
participation with competitive ratio 1/max0<ı<1f(1 � ı)

(1 � 2e�
˛ı2
36)g can be designed.

Theorem 2 ([1]) A truthful auction satisfying voluntary
participation with competitive ratio 4˛

˛�1 can be designed.

Theorem 3 ([1]) If ˛ is known in advance, then
a truthful auction satisfying voluntary participation
with competitive ratio (x˛+1)˛

(x˛�1)2 can be designed, where

x = ˛�1+((˛�1)2�4˛)1/2
2˛ .

Theorem 4 ([1]) For any truthful randomized auctionA
satisfying voluntary participation, the competitive ratio is
at least 2 � � when ˛ � 2.

Applications

This problem is motivated by the development of the IT
industry and the popularization of auctions, especially,
auctions on the Internet. The multiple copy auction of rel-
atively low-value goods, such as the auction of online ads
for search terms to bidders with budget constraint, is as-
suming a very important role. Companies such as Google
and Yahoo!’s revenue depends almost on certain types of
auctions.

All previous work concerning auctions with budget
constraint only focused on the traditional physical world
where the object to sell is almost unique, such as antiques,
paintings, land and nature resources. More specifically, [4]
studied the problem of single unit, single bidder with a
budget. [6] studied the model of single unit, multiple bid-
ders with common public budget. [7] studied the problem
of single unit, multiple bidders with flexible budgets.

Recently, [3] extended this problem so that the auc-
tioneer could sell unlimited copies of goods and the bid-
ders have both budget and copy constraints. This general
model is especially suitable for digital goods, which can
produce unlimited copies with marginal cost zero, such as
license sales, mp3 copies, online advertisements, etc. Fur-
ther, the auction mechanism designed in [3] could obtain
a similar competitive ratio.

Cross References

� Competitive Auction

Multiplex PCR for Gap Closing (Whole-genome Assembly) M 565

Recommended Reading

1. Abrams, Z.: Revenuemaximization when bidders have budgets.
In: Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA-06), Miami, Florida, 22–26 Jan 2006,
pp. 1074–1082. ACM Press, New York

2. Borgs, C., Chayes, J.T., Immorlica, N., Mahdian, M., Saberi, A.:
Multi-unit auctions with budget-constrained bidders. In: ACM
Conference on Electronic Commerce (EC-05), 2005, pp. 44–51

3. Bu, T.-M., Qi, Q., Sun, A.W.: Unconditional competitive auctions
with copy and budget constraints. In: Spirakis, P.G., Mavroni-
colas, M., Kontogiannis, S.C. (eds.) Internet and Network Eco-
nomics, 2nd InternationalWorkshop, WINE 2006, Patras, Greece,
15–17 Dec 2006. Lecture Notes in Computer Science, vol. 4286,
pp. 16–26. Springer, Berlin (2006)

4. Che, Y.-K., Gale, I.: Standard auctionswith financially constrained
bidders. Rev. Econ. Stud. 65(1), 1–21 (1998)

5. Goldberg, A.V., Hartline, J.D., Karlin, A.R., Wright, A.: Competitive
auctions. Games Econ. Behav. 55(2), 242–269 (2006)

6. Laffont, J.-J., Robert, J.: Optimal auction with financially con-
strained buyers. Econ. Lett. 52, 181–186 (1996)

7. Maskin, E.S.: Auctions, development, and privatization: Efficient
auctionswith liquidity-constrainedbuyers. Eur. Econ. Rev. 44(4–
6), 667–681 (2000)

8. Nisan, N. Ronen, A.: Algorithmicmechanismdesign. In: Proceed-
ings of the 31st Annual ACM Symposium on Theory of Comput-
ing (STOC-99), pp. 129–140. Association for ComputingMachin-
ery, New York (1999)

9. Parkes, D.C.: Chapter 2: Iterative Combinatorial Auctions. Ph. D.
thesis, University of Pennsylvania (2004)

Multiplex PCR for Gap Closing
(Whole-genome Assembly)
2002; Alon, Beigel, Kasif, Rudich, Sudakov

VERA ASODI
Center for the Mathematics of Information, California
Institute of Technology, Pasadena, CA, USA

Keywords and Synonyms

Whole genome assemble; Multiplex PCR

ProblemDefinition

This problem is motivated by an important and timely ap-
plication in computational biology that arises in whole-
genome shotgun sequencing. Shotgun sequencing is a high
throughput technique that has resulted in the sequenc-
ing of a large number of bacterial genomes as well as
Drosophila (fruit fly) and Mouse and the celebrated Hu-
man genome (at Celera) (see, e. g. [8]). In all such projects,
one is left with a collection of DNA fragments. These frag-
ments are subsequently assembled, in-silico, by a com-

putational algorithm. The typical assembly algorithm re-
peatedly merges overlapping fragments into longer frag-
ments called contigs. For various biological and computa-
tional reasons some regions of the DNA cannot covered
by the contigs. Thus, the contigs must be ordered and ori-
ented and the gaps between them must be sequenced us-
ing slower, more tedious methods. For further details see,
e. g., [3]. When the number of gaps is small (e. g., less than
ten) biologists often use combinatorial PCR. This tech-
nique initiates a set of “bi-directional molecular walks”
along the gaps in the sequence; these walks are facilitated
by PCR. In order to initiate the molecular walks biolo-
gists use primers. Primers are designed so that they bind
to unique (with respect to the entire DNA sequence) tem-
plates occurring at the end of each contig. A primer (at the
right temperature and concentration) anneals to the desig-
nated unique DNA substring and promotes copying of the
template starting from the primer binding site, initiating
a one-directional walk along the gap in the DNA sequence.
A PCR reaction occurs, and can be observed as a DNA lad-
der, when two primers that bind to positions on two ends
of the same gap are placed in the same test tube.

If there are N contigs, the combinatorial (exhaustive)
PCR technique tests all possible pairs (quadratically many)
of 2N primers by placing two primers per tube with the
original uncut DNA strand. PCR products can be detected
using gels or they can be read using sequencing technol-
ogy or DNAmass-spectometry. When the number of gaps
is large, the quadratic number of PCR experiments is pro-
hibitive, so primers are pooled using K > 2 primers per
tube; this technique is calledmultiplex PCR [4]. This prob-
lem deals with finding optimal strategies for pooling the
primers tominimize the number of biological experiments
needed in the gap-closing process.

This problem can be modeled as the problem of iden-
tifying or learning a hidden matching given a vertex set V
and an allowed query operation: for a subset F
 V , the
query QF is “does F contain at least one edge of the match-
ing”? In this formulation each vertex represents a primer,
an edge of the matching represents a reaction, and the
query represents checking for a reaction when a set of
primers are combined in a test tube. The objective is to
identify the matching asking as few queries as possible,
that is performing as few tests as possible. For further dis-
cussion of this model see [3,7].

This problem is of interest even in the deterministic,
fully non-adaptive case. A family F of subsets of a ver-
tex set V solves the matching problem on V if for any
two distinct matchings M1 and M2 on V there is at least
one F 2 F that contains an edge of one of the matchings
and does not contain any edge of the other. Obviously, any

566 M Multiplex PCR for Gap Closing (Whole-genome Assembly)

such family enables learning an unknown matching deter-
ministically and non-adaptively, by asking the questions
QF for each F 2 F . The objective here is to determine the
minimum possible cardinality of a family that solves the
matching problem on a set of n vertices.

Other interesting variants of this problem are when the
algorithm may be randomized, or when it is adaptive, that
is when the queries are asked in k rounds, and the queries
of each round may depend on the answers from the previ-
ous rounds.

Key Results

In [2], the authors study the number of queries needed to
learn a hidden matching in several models. Following is
a summary of the main results presented in this paper.

The trivial upper bound on the size of a family that
solves the matching problem on n vertices is

�n
2
�
, achieved

by the family of all pairs of vertices. Theorem 1 shows that
in the deterministic non-adaptive setting one cannot do
much better than this, namely, that the trivial upper bound
is tight up to a constant factor. Theorem 2 improves this
upper bound by showing a family of approximately half
that size that solves the matching problem.

Theorem 1 For every n > 2, every familyF that solves the
matching problem on n vertices satisfies

jF j � 49
153

n
2

!
:

Theorem 2 For every n there exists a family of size

�
1
2
+ o(1)

�
n
2

!

that solves the matching problem on n vertices.

Theorem 3 shows that one can do much better using
randomized algorithms. That is, one can learn a hidden
matching asking onlyO(n log n) queries, rather than order
of n2. These randomized algorithms make no errors, how-
ever, they might ask more queries with some small proba-
bility.

Theorem 3 The matching problem on n vertices can be
solved by probabilistic algorithms with the following param-
eters:
� 2 rounds and (1/(2 ln 2))n log n(1 + o(1)) 	 0:72n log n

queries
� 1 round and (1/ ln 2)n log n(1 + o(1)) 	 1:44n log n

queries.

Finally, Theorem 4 considers adaptive algorithms. In this
case there is a tradeoff between the number of queries and
the number of rounds. The more rounds one allows, the
fewer tests are needed, however, as each round can start
only after the previous one is completed, this increases the
running time of the entire procedure.

Theorem 4 For all 3 � k � log n, there is a deterministic
k-round algorithm for the matching problem on n vertices
that asks

O
�
n1+

1
2(k�1) (log n)1+

1
k�1

�

queries per round.

Applications

As described in Sect. “Problem Definition”, this prob-
lem was motivated by the application of gap closing in
whole-genome sequencing, where the vertices correspond
to primers, the edges to PCR reactions between pairs of
primers that bind to the two ends of a gap, and the queries
to tests in which a set of primers are combined in a test
tube.

This gap-closing problem can be stated more gener-
ally as follows. Given a set of chemicals, a guarantee that
each chemical reacts with at most one of the others, and an
experimental mechanism to determine whether a reaction
occurs when several chemicals are combined in a test tube,
the objective is to determinewhich pairs of chemicals react
with each other with a minimum number of experiments.

Another generalization which may have more applica-
tions in molecular biology is when the hidden subgraph is
not a matching but some other fixed graph, or a family of
graphs. The paper [2], as well as some other related works
(e. g. [1,5,6]), consider this generalization for other graphs.
Some of these generalizations have other specific applica-
tions in molecular biology.

Open Problems

� Determine the smallest possible constant c such that
there is a deterministic non-adaptive algorithm for
the matching problem on n vertices that performs
c
�n
2
�
(1 + o(1)) queries.

� Find more efficient deterministic k-round algorithms
or prove lower bounds for the number of queries in
such algorithms.

� Find efficient algorithms and prove lower bounds for
the generalization of the problem to graphs other than
matchings.

Multiway Cut M 567

Recommended Reading
1. Alon, N., Asodi, V.: Learning a hidden subgraph, ICALP. LNCS

3142, 110–121 (2004). Also: SIAM J. Discret. Math. 18, 697–712
(2005)

2. Alon, N., Beigel, R., Kasif, S., Rudich, S., Sudakov, B.: Learning
a Hidden Matching, Proceedings of the 43rd IEEE FOCS, 2002,
197–206. Also: SIAM J. Computing 33, 487–501 (2004)

3. Beigel, R., Alon, N., Apaydin, M.S., Fortnow, L., Kasif, S.: An op-
timal procedure for gap closing in whole genome shotgun se-
quencing. Proc. RECOMB, ACM Press pp. 22–30. (2001)

4. Burgart, L.J., Robinson, R.A., Heller, M.J., Wilke, W.W., Iak-
oubova, O.K., Cheville, J.C.: Multiplex polymerase chain reac-
tion. Mod. Pathol. 5, 320–323 (1992)

5. Grebinski, V., Kucherov, G.: Optimal Query Bounds for Recon-
structing a Hamiltonian Cycle in Complete Graphs. Proc. 5th
Israeli Symposium on Theoretical Computer Science, pp. 166–
173. (1997)

6. Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian Cycle
by Querying the Graph: Application to DNA Physical Mapping.
Discret. Appl. Math. 88, 147–165 (1998)

7. Tettelin, H., Radune, D., Kasif, S., Khouri, H., Salzberg, S.: Pipette
Optimal Multiplexed PCR: Efficiently Closing Whole Genome
Shotgun Sequencing Project. Genomics 62, 500–507 (1999)

8. Venter, J.C., Adams, M.D., Sutton, G.G., Kerlavage, A.R., Smith,
H.O., Hunkapiller, M.: Shotgun sequencing of the human
genome. Science 280, 1540–1542 (1998)

Multiway Cut
1998; Calinescu, Karloff, Rabani

GRUIA CALINESCU
Department of Computer Science, Illinois Institute
of Technology, Chicago, IL, USA

Keywords and Synonyms

Multiterminal cut

ProblemDefinition

Given an undirected graph with edge costs and a subset
of k nodes called terminals, a multiway cut is a subset of
edges whose removal disconnects each terminal from the
rest. MULTIWAY CUT is the problem of finding amultiway
cut of minimum cost.

Previous Work

Dahlhaus, Johnson, Papadimitriou, Seymour, and Yan-
nakakis [6] initiated the study of MULTIWAY CUT and
proved that MULTIWAY CUT is MAX SNP-hard even
when restricted to instances with three terminals and unit
edge costs. Therefore, unless P = NP, there is no poly-
nomial-time approximation scheme for MULTIWAY CUT.

For k = 2, the problem is identical to the undirected ver-
sion of the extensively studied s-tmin-cut problem of Ford
and Fulkerson, and thus has polynomial-time algorithms
(see, e. g., [1]). Prior to this paper, the best (and essen-
tially the only) approximation algorithm for k � 3 was
due to the above-mentioned paper of Dahlhaus et al. They
give a very simple combinatorial isolation heuristic that
achieves an approximation ratio of 2(1 � 1/k). Specifically,
for each terminal i, find a minimum-cost cut separating i
from the remaining terminals, and then output the union
of the k � 1 cheapest of the k cuts. For k = 4 and for k = 8,
Alon (see [6]) observed that the isolation heuristic can be
modified to give improved ratios of 4/3 and 12/7, respec-
tively.

In special cases, far better results are known. For fixed
k in planar graphs, the problem is solvable in polynomial
time [6]. For trees and 2-trees, there are linear-time algo-
rithms [5]. For dense unweighted graphs, there is a poly-
nomial-time approximation scheme [2,8].

Key Results

Theorem 1 ([3]) There is a deterministic polynomial
time algorithm that finds a multiway cut of cost at most
(1:5 � 1/k) times the optimum multiway cut.

The approximation algorithm from Theorem 1 is based
on a novel linear programming relaxation described later.
On the basis of the same linear program, the approxima-
tion ratio was subsequently improved to 1.3438 by Karger,
Klein, Stein, Thorup, and Young [10]. For three termi-
nals, [10] and Cheung, Cunningham, and Tang [4] give
very different 12/11-approximation algorithms.

Two variations of the problem have been considered in
the literature: Garg, Vazirani, and Yannakakis [9] obtain
a (2 � 2/k)-approximation ratio for the node-weighted
version, and Naor and Zosin [11] obtain 2-approxima-
tion for the case of directed graphs. It is known that any
approximation ratio for these variations translates imme-
diately into the same approximation ratio for VERTEX
COVER, and thus it is hard to get any significant improve-
ment over the approximation ratio of 2.

The algorithm from Theorem 1 appears next, giving
a flavor of how this result is obtained. The complete proof
of the approximation ratio is not long and appears in [3]
or the book [12].

Notation

Let G = (V ; E) be an undirected graph on V = f1; 2;
: : : ; ng in which each edge uv 2 E has a non-negative cost
c(u; v) = c(v; u), and let T = f1; 2; : : : ; kg
 V be a set

568 M Multiway Cut

of terminals. MULTIWAY CUT is the problem of finding
a minimum cost set C
 E such that in (V ; EŸC), each of
the terminals 1; 2; : : : ; k is in a different component. Let
MWC = MWC(G) be the value of the optimal solution to
MULTIWAY CUT.

�k denotes the (k � 1)-simplex, i. e., the (k � 1)-di-
mensional convex polytope in Rk given by fx 2 Rk j(x �
0) ^ (

P
i xi = 1)g.

For x 2 Rk , kxk is its L1 norm: kxk =
P

i jxi j. For
j = 1; 2; : : : ; k, e j 2 Rk denotes the unit vector given by
(e j) j = 1 and (e j)i = 0 for all i ¤ j.

LP-Relaxation

The simplex relaxation for MULTIWAY CUT with edge
costs has as variables k-dimensional real vectors xu, de-
fined for each vertex u 2 V :

Minimize
1
2

X
uv2E

c(u; v) � kxu � xvk

Subject to:
xu 2 �k 8u 2 V
xt = et 8t 2 T:

In other words, the terminals stay at the vertices of the
(k � 1)-simplex, and the other nodes anywhere in the sim-
plex, and measure an edge’s length by the total variation
distance between its endpoints. Clearly, placing all nodes
at simplex vertices gives an integral solution: the lengths of
edges are either 0 (if both endpoints are at the same vertex)
or 1 (if the endpoints are at different vertices), and the re-
moval of all unit length edges disconnects the graph into at
least k components, each containing at most one terminal.

To solve this relaxation as a linear program, new vari-
ables are introduced: yuv, defined for all uv 2 E, and xui ,
defined for all u 2 V and i 2 T . Also new variables are
yuvi , defined for all i 2 T and uv 2 E. Then one writes the
linear program:

Minimize
1
2

X
uv2E

c(u; v)yuv

Subject to:
xu 2 �k 8u 2 V
xt = et 8t 2 T

yuv =
X
i2T

yuvi 8uv 2 E

yuvi � xui � xvi 8uv 2 E ; i 2 T
yuvi � xvi � xui 8uv 2 E ; i 2 T :

It is easy to see that this linear program optimally
solves the simplex relaxation above, by noticing that an op-
timal solution to the linear program can be assumed to put
yuvi = jxui � xvi j and yuv = kxu � xvk. Thus, solving the
simplex relaxation can be done in polynomial time. This
is the first step of the approximation algorithm. Clearly,
the value Z� of this solution is a lower bound on the cost
of the minimummultiway cut MWC.

The second step of the algorithm is a rounding proce-
dure which transforms a feasible solution of the simplex
relaxation into an integral feasible solution. The rounding
procedure below differs slightly from the one given in [3],
but can be proven to give exactly the same solution. This
variant is easier to present, although if one wants to prove
the approximation ratio then the only way we know of is
by showing that indeed this variant gives the same solution
as the more complicated algorithm given in [3].

Rounding

Set B(i; �) = fu 2 V j xui > 1 � �g, the set of nodes suit-
ably “close” to terminal i in the simplex. Choose a permu-
tation � = h�1; �2; : : : ; �ki to be either h1; 2; 3; : : : ; k �
1; ki or hk � 1; k � 2; k � 3; : : : ; 1; ki with probability 1/2
each. Independently, choose � 2 (0; 1) uniformly at ran-
dom. Then, process the terminals in the order �(1); �(2);
�(3); : : : ; �(k). For each j from 1 to k � 1, place the nodes
that remain in B(� j ; �) at e� j . Place whatever nodes re-
main at the end at ek. The following code specifies the
rounding proceduremore formally. x̄ denotes the rounded
(integral) solution.

1: Let � = h1; : : : ; k� 3; k� 2; k� 1; ki or hk� 1; k�
2; k � 3; : : : ; 1; ki, each with prob. 1/2

2: Let � be a random real in (0; 1) /* See the paragraph
below. */

3: for j = 1 to k � 1 do
4: for all u such that xu 2 B(� j; �) n [i :i< jB(�i ; �)

do
5: x̄u := e� j /* assign node u to terminal � j */
6: end for
7: end for
8: for all u such that xu 62 [i :i<kB(�i ; �) do
9: x̄u := ek

10: end for

Multiway Cut, Algorithm 1
The Rounding Procedure

To derandomize and implement this algorithm in poly-
nomial time, one tries both permutations � and at most

Multiway Cut M 569

k(n + 1) values of �. Indeed, for any permutation � , two
different values of �, �1 < �2, produce combinatorially
distinct solutions only if there is a terminal i and a node
u such that xui 2 (1 � �2; 1 � �1]. Thus, there are at most
k(n + 1) “interesting” values of �, which can be deter-
mined easily by sorting the nodes according to each coor-
dinate separately. The resulting discrete sample space for
(�; �) has size at most 2k(n + 1), so one can search it ex-
haustively.

The analysis of the algorithm, however, is based on
the randomized algorithm above, as the proof shows that
the expected total cost of edges whose endpoints are at
different vertices of �k in the rounded solution x̄ is at
most 1:5 Z�. To get an (1:5 � 1/k)Z� upper bound, one
must rename the terminals such that terminal kmaximizes
a certain quantity given by the simplex relaxation, or al-
ternatively randomly pick a terminal as the last element of
the permutation (the order of the first k � 1 terminals does
not matter as long as both the increasing and the decreas-
ing permutations are tried by the rounding procedure).
Exhaustive search of the sample space produces one inte-
gral solution whose cost does not exceed the average.

Applications

MULTIWAY CUT is used in Computer Vision, but unless
one can solve the instance exactly, algorithms for the gen-
eralization METRIC LABELING are needed. MULTIWAY
CUT has applications in parallel and distributed comput-
ing, as well as in chip design.

Open Problems

The improvements of [10,4] are based on better round-
ing procedures and both compare the integral solution
obtained to Z�. This leads to the natural question: what
is the supremum, over multiway cut instances G, of
Z�(G)/MWC(G). This supremum is called integrality gap
or integrality ratio. For three terminals, [10] and [4] show
that the integrality gap is exactly 12/11, while for general k,
Freund and Karloff [7] give a lower bound of 8/7. The best-

known upper bound is 1.3438, achieved by an approxima-
tion algorithm of [10].

Cross References

�Multicut
� Sparsest Cut

Recommended Reading
1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice

Hall, Englewood Cliffs (1993)
2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approx-

imation schemes for dense instances of NP-hard problems.
J. Comput. Syst. Sci. 58(1), 193–210 (1999). Preliminary version
in STOC 1995

3. Calinescu, G., Karloff, H.J., Rabani, Y.: An Improved Approxima-
tion Algorithm for Multiway Cut. In: ACM Symposium on The-
ory of Computing 1998, pp. 48–52. Journal version in J. Comp.
Syst. Sci. 60, 564–574 (2000)

4. Cheung, K., Cunningham, W.H., Tang, L.: Optimal 3-Terminal
Cuts and Linear Programming. Math. Program. 105, 389–421
(2006), Preliminary version in IPCO 1999

5. Chopra, S., Rao, M.R.: On the Multiway Cut Polyhedron. Net-
works 21, 51–89 (1991)

6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D.,
Yannakakis, M.: The Complexity of Multiterminal Cuts. SIAM J.
Comp. 23, 864–894 (1994). Preliminary version in STOC 1992,
An extended abstract was first announced in 1983

7. Freund, A., Karloff, H.: A lower boundof 8/(7 + 1
k�1) on the inte-

grality ratio of the Calinescu–Karloff–Rabani relaxation for Mul-
tiway Cut. Inf. Process. Lett. 75, 43–50 (2000)

8. Frieze, A., Kannan, R.: The Regularity Lemma and Approxima-
tion Schemes for Dense Problems. In: Proc. 37th IEEE FOCS
1996, pp. 12–20. IEEE Computer Society Press, Los Alamitos

9. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node
weighted graphs. J. Algorithms 50(1), 49–61 (2004). Prelimi-
nary version in ICALP 1994

10. Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.: Round-
ing algorithms for a geometric embedding of minimum mul-
tiway cut. Math. Oper. Res. 29(3), 436–461 (2004). Preliminary
version in STOC 1999

11. Naor, J.S., Zosin, L.: A 2-Approximation Algorithm for the Di-
rected Multiway Cut Problem. SIAM J. Comput. 31(2), 477–492
(2001). Preliminary version in FOCS 1997

12. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin Hei-
delberg New York (2001)

Nash Equilibria and Dominant Strategies in Routing N 571

N

Nash Equilibria
and Dominant Strategies in Routing
2005; Wang, Li, Chu

WEIZHAO WANG1, XIANG-YANG LI2, XIAOWEN CHU3

1 Google Inc., Irvine, CA, USA
2 Department of Computer Science, Illinois Institute
of Tech., Chicago, IL, USA

3 Department of Computer Science,
Hong Kong Baptist University, Hong Kong, China

Keywords and Synonyms

Strategyproof; Truthful; Nash; BB

ProblemDefinition

This problem is concerned with the multicast routing and
cost sharing in a selfish network composed of relay termi-
nals and receivers. This problem is motivated by the recent
observation that the selfish behavior of the network could
largely degraded existing system performance, even dys-
function. Thework ofWang, Li andChu [7] first presented
some negative results of the strategyproof mechanism in
multicast routing and sharing, and then proposed a new
solution based on Nash Equilibrium that could greatly im-
prove the performance.

Wang, Li and Chu modeled a network by a link
weighted graph G = (V ; E; c), where V is the set of all
nodes and c is the cost vector of the set E of links. For
a multicast session, let Q denote the set of all receivers. In
game theoretical networking literatures, usually there are
two models for the multicast cost/payment sharing.

AxiomModel (AM)All receiversmust receive the ser-
vice, or equivalently, each receiver has an infinity valua-
tion [3]. In this model, a sharing method � computes how
much each receiver should pay when the receiver set is R
and cost vector is c.

ValuationModel (VM) There is a setQ = fq1; q2; � � � ;
qrg of r possible receivers. Each receiver qi 2 Q has a val-

uation ˜i for receiving the service. Let ˜ = (�1; �2; : : : ; �r)
be the valuation vector and ˜R be the valuation vector of
a set R
 Q of receivers. In this model, they are inter-
ested in a sharing mechanism S consisting of a selection
scheme �(˜; c) and a sharing method �(˜; c). �i (˜; c) de-
notes whether receiver i receives the service or not, and
�i(˜; c) computes howmuch the receiver qi should pay for
the multicast service. Let P (˜; c) be the total payment for
providing the service to the receiver set.

In the valuation model, a receiver who is willing to re-
ceive the service is not guaranteed to receive the service.
For notational simplicity, �(˜; c) is used to denote the set
of actual receivers. Under the ValuationModel, a fair shar-
ing according to the following criteria is studied.
� Budget Balance: For the receiver set R = �(˜; c),

P (˜; c) =
P

qi2Q �i(˜; c). If ˛ � P (˜; c) �
P

i2R
�i(˜; c) � P (˜; c), for some given parameter

1: Compute path LCP(s; qj ;d) and set
� j =

!(Bmm (s;q j;d);d)
r for every qj 2 Q.

2: Set ODM
i (η;d) = 0 and PDM

i (η;d) = 0 for each link
ei 62 LCP(s; qj;d).

3: for each receiver qj do
4: if � j � � j then
5: Receiver qj is granted the service and charged

�DMj (η;d), set R = R [qj .
6: else
7: Receiver qj is not granted the service and is

charged 0.
8: end if
9: end for
10: Set ODM

i (η;d) = 1 and PDM
i (η;d) = PLCPT

i (η=1
R ;d)

for each link ei 2 LCPT(R;d).

Nash Equilibria andDominant Strategies in Routing, Algorithm 1
The multicast system �DM = (MDM;SDM) based on multicast
tree LCPT

572 N Nash Equilibria and Dominant Strategies in Routing

0 < ˛ � 1, then S = (�; �) is called ˛-budget-balance.
If budget balance is not achievable, then a sharing
scheme S may need to be ˛-budget-balance instead of
budget balance.

� No Positive Transfer (NPT): Any receiver qi’s sharing
should not be negative.

� Free Leaving: (FR) The potential receivers who do not
receive the service should not pay anything.

� Consumer Sovereignty (CS): For any receiver qi, if ˜i
is sufficiently large, then qi is guaranteed to be an actual
receiver.

� Group-Strategyproof (GS): Assume that ˜ is the valu-
ation vector and ˜0 6= ˜. If �i(˜0; c) � �i(˜; c) for each
qi 2 ˜, then �i(˜0; c) = �i(˜; c).

Notations

The path with the lowest cost between two odes s and
t is denoted as LCP(s; t; c), and its cost is dented as
jLCP(s; t; c)j. Given a simple path P in the graph G with
cost vector c, the sum of the cost of links on path P is
denoted as jP(c)j. For a simple path P = vi v j ,
if LCP(s; t; c)

T
P = fvi ; v jg, then P is called a bridge

over LCP(s; t; c). This bridge P covers link ek if ek 2
LCP(vi ; v j; c). Given a link ei 2 LCP(s; t; c), the path with
the minimum cost that covers ei is denoted as Bmin(ei ; c).
The bridge Bmm(s; t; c) = maxe i2LCP(s;t;c) Bmin(ei ; c) is the
max-min cover of the path LCP(s; t; c).

A bridge setB is a bridge cover for LCP(s; t; c), if for ev-
ery link ei 2 LCP(s; t; c), there exists a bridge B 2 B such
that ei 2 LCP(vs(B); vt(B); c). The weight of a bridge cover
B(s; t; c) is defined as jB(s; t; c)j =

P
B2B(s;t;c)

P
e i2B ci .

A bridge cover is a least bridge cover (LB), denoted by
LB(s; t; c), if it has the smallest weight among all bridge
covers that cover LCP(s; t; c).

Key Results

Theorem 1 If � = (M;S) is an ˛-stable multicast system,
then ˛ � 1/n.

Theorem 2 Multicast system �DM is 1/(r � n)-stable,
where r is the number of receivers.

Theorem 1 gives an upper bound for ˛ for any ˛-stable
unicast system � . It is not difficult to observe that even
the receivers are cooperative, Theorem 1 still holds. The-
orem 2 showed that there exists a multicast system is
1/(r � n)-stable. When r = 1, the problem become tradi-
tional unicast system and the bound is tight. When relax-
ing the dominant strategy to the Nash Equilibria require-
ment, a First Price Auction (FPA) mechanism is proposed

1: Each terminal bids a price bi .
2: Every link sends a unit size dummypacket with prop-

erty � = � � (n � bu �
P
e i2G

bi) and receives payment

fi(s; q1; b) = � �
h
bu � (n � bu �

P
e j2G�e i b j) �

h2i
2

i
.

Here, bu is the maximum cost any link can declare.
3: Compute the unique path LCP(s; q1; b0) by applying

certain fixed tie-breaking rule consistently.
4: Each terminal bids again for a price b0i .
5: for each link ei do
6: It is select to relay the packet and receives pay-

ment b0i if and only if ei is on path LCP(s; q1; b0).
7: end for

Nash Equilibria andDominant Strategies in Routing, Algorithm 2
FPAMechanismMAUC

1: Execute Line 1 � 3 in Algorithm 2.
2: Compute LB(s; q1; b), and set � = jLB(s;q1;b)j

2 .
3: If � � �1 then set �AU1 (�1;eb) = 1 and �AU1 (�1;eb) = � .

Every relay link on LCP is selected and receives an
extra payment b0i .

4: For each link ei 62 LCP(s; q1; b0), it receives a pay-
ment PAU

i (�1;eb) � � � (b0i � bi)2.

Nash Equilibria andDominant Strategies in Routing, Algorithm 3
FPA based unicast system

byWang et al. under the AxiomModel that has many nice
properties.

Theorem 3 There exists NE for FPA mechanism MAUC

and for any NE, (a) each link bids his true cost as the first
bid bi, (b) the actual shortest path is always selected, (c) the
total cost for different NE differs at most 2 times.

Based on the FPA Mechanism �AUC, Wang, Li and Chu
design a unicast system as follows.

Theorem 4 The FPA based unicast system not only has
Nash Equilibria, but also is 1

2 -NE-stable with � additive, for
any given �.

By treating each receiver as a separate receiver and apply-
ing the similar process as in the unicast system, Wang, Li
and Chu extended the unicast system to a multicast sys-
tem.

Theorem 5 The FPA based multicast system not only has
Nash Equilibria, but also is 1/(2 � r)-NE-stable with � addi-
tive, for any given �.

Nearest Neighbor Interchange and Related Distances N 573

Applications

More and more research effort has been done to study
the non-cooperative games recently. Among these various
forms of games, the unicast/multicast routing game [2,5,6]
and multicast cost sharing game [1,3,4] have received
a considerable amount of attentions over the past few year
due to its application in the Internet. However, both uni-
cast/multicast routing game and multicast cost sharing
game are one folded: the unicast/multicast routing game
does not take the receivers into account while the mul-
ticast cost sharing game does not treat the links as non-
cooperative. In this paper, they study the scenario, which
was called multicast system, in which both the links and
the receivers could be non-cooperative. Solving this prob-
lem paving a way for the real world commercial multicast
and unicast application. A few examples are, but not lim-
ited to, the multicast of the video content in wireless mesh
network and commercial WiFi system; the multicast rout-
ing in the core Internet.

Open Problems

Anumber of problems related to the work ofWang, Li and
Chu [7] remain open. The first and foremost, the upper
bound and lower bound on ˛ still have a gap of r if the
multicast system is ˛-stable; and a gap of 2r if themulticast
system is ˛-Nash stable.

The second, Wang, Li and Chu only showed the exis-
tence of the Nash Equilibrium under their systems. They
have not characterized the convergence of the Nash Equi-
librium and the strategies of the user, which are not only
interesting but also important problems.

Cross References

�Non-approximability of Bimatrix Nash Equilibria

Recommended Reading
1. Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the

cost of multicast transmissions. J. Comput. Syst. Sci. 63, 21–41
(2001)

2. Kao, M.-Y., Li, X.-Y., Wang, W.: Towards truthful mechanisms for
binary demand games: A general framework. In: ACM EC, pp.
213–222, Vancouver, Canada (2005)

3. Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast
trees: an axiomatic analysis. IEEE/ACM Trans. Netw. 5, 847–860
(1997)

4. Moulin, H., Shenker, S.: Strategyproof sharing of submodular
costs: budget balance versus efficiency. Econ. Theory 18, 511–
533 (2001)

5. Wang, W., Li, X.-Y., Sun, Z., Wang, Y.: Design multicast protocols
for non-cooperative networks. In: Proceedings of the 24th IEEE
INFOCOM. vol. 3, pp. 1596–1607, Miami, USA (2005)

6. Wang, W., Li, X.-Y., Wang, Y.: Truthfulmulticast in selfish wireless
networks. In: Proceedings of the 10th ACMMOBICOM, pp. 245–
259, Philadelphia, USA (2004)

7. Wang, W., Li, X.-Y., Chu, X.: Nash equilibria, dominant strategies
in routing. In: Workshop for Internet and Network Economics
(WINE). Lecture Notes in Computer Science, vol. 3828, pp 979–
988. Springer, Hong Kong, China (2005)

Navigation
�Mobile Agents and Exploration
� Robotics

Nearest Neighbor Interchange
and Related Distances
1999; DasGupta, He, Jiang, Li, Tromp, Zhang

BHASKAR DASGUPTA1, XIN HE2, TAO JIANG3,
MING LI4, JOHN TROMP5, LOUXIN ZHANG6

1 Department of Computer Science, University of Illinois
at Chicago, Chicago, IL, USA

2 Department of Computer Science and Engineering,
University at Buffalo The State University of New York,
Buffalo, NY, USA

3 Department of Computer Science and Engineering,
University of California at Riverside,
Riverside, CA, USA

4 Department of Computer Science, University
of Waterloo, Waterloo, ON, Canada

5 CWI, Amsterdam, Netherlands
6 Department of Mathematics, National University
of Singapore, Singapore, Singapore

Keywords and Synonyms

Comparison of phylogenies; Network models of evolu-
tion

ProblemDefinition

In this chapter, the authors state results on some transfor-
mation based distances for evolutionary trees. Several dis-
tance models for evolutionary trees have been proposed
in the literature. Among them, the best known is per-
haps the nearest neighbor interchange (nni) distance in-
troduced independently in [10] and [9]. The authors will
focus on the nni distance and a closely related distance
called the subtree-transfer distance originally introduced
in [5,6]. Several papers that involved DasGupta, He, Jiang,

574 N Nearest Neighbor Interchange and Related Distances

Li, Tromp and Zhang essentially showed the following re-
sults:
� A correspondence between the nni distance and the

linear-cost subtree-transfer distance on unweighted
trees;

� Computing the nni distance is NP-hard, but admits
a fixed-parameter tractability and a logarithmic ratio
approximation algorithms;

� A 2-approximation algorithm for the linear-cost sub-
tree-transfer distance on weighted evolutionary trees.

The authors first define the nni and linear-cost subtree-
transfer distances for unweighted trees. Then the authors
extend the nni and linear-cost subtree-transfer distances
to weighted trees. For the purpose of this chapter, an evo-
lutionary tree (also called phylogeny) is an unordered tree,
has uniquely labeled leaves and unlabeled interior nodes,
can be unrooted or rooted, can be unweighted or weighted,
and has all internal nodes of degree 3.

Unweighted Trees

An nni operation swaps two subtrees that are separated by
an internal edge (u, v), as shown in Fig. 1.

The nni operation is said to operate on this internal
edge. The nni distance, Dnni(T1; T2), between two trees T1
and T2 is defined as the minimum number of nni opera-
tions required to transform one tree into the other.

An nni operation can also be viewed as moving a sub-
tree past a neighboring internal node. A more general op-
eration is to transfer a subtree from one place to another
arbitrary place. Figure 2 shows such a subtree-transfer op-
eration.

The subtree-transfer distance between two trees T1
and T2 is the minimum number of subtrees one need
to move to transform T1 into T2 [5,6,7]. It is sometimes

Nearest Neighbor Interchange and Related Distances, Figure 1
The two possible nni operations on an internal edge (u, v): ex-
change B $ C or B $ D

Nearest Neighbor Interchange and Related Distances, Figure 2
An example of subtree-transfer

appropriate in practice to discriminate among subtree-
transfer operations as they occur with different frequen-
cies. In this case, one can charge each subtree-transfer op-
eration a cost equal to the distance (the number of nodes
passed) that the subtree has moved in the current tree.
The linear-cost subtree-transfer distance, Dlcst(T1; T2), be-
tween two trees T1 and T2 is then the minimum total cost
required to transform T1 into T2 by subtree-transfer oper-
ations [1,2].

Weighted Trees

Both the linear-cost subtree-transfer and nni models can
be naturally extended to weighted trees. The extension for
nni is straightforward: an nni operation is simply charged
a cost equal to the weight of the edge it operates on. For
feasibility of weighted nni transformation between two
given weighted trees T1 and T2, one also requires that the
following conditions are satisfied: (1) for each leaf label
a, the weight of the edge in T1 incident on a is the same
as the weight of the edge in T2 incident on a and (2) the
multisets of weights of internal edges of T1 and T2 are the
same.

In the case of linear-cost subtree-transfer, although the
idea is immediate, i. e., amoving subtree should be charged
for the weighted distance it travels, the formal definition
needs some care and is given below. Consider (unrooted)
trees in which each edge e has a weight w(e) � 0. To en-
sure feasibility of transforming a tree into another, One re-
quires the total weight of all edges to equal one. A subtree-
transfer is now defined as follows. Select a subtree S of
T at a given node u and select an edge e 62 S. Split the
edge e into two edges e1 and e2 with weights w(e1) and
w(e2) (w(e1);w(e2) � 0,w(e1) + w(e2) = w(e)), andmove
S to the common end-point of e1 and e2. Finally, merge
the two remaining edges e0 and e00 adjacent to u into one
edge with weight w(e0) + w(e00). The cost of this subtree-
transfer is the total weight of all the edges over which S

Nearest Neighbor Interchange and Related Distances N 575

Nearest Neighbor Interchange and Related Distances, Figure 3
Subtree-transfer on weighted phylogenies. Tree b is obtained from tree awith one subtree-transfer

is moved. Figure 1 gives an example. The edge-weights of
the given tree are normalized so that their total sum is 1.
The subtree S is transferred to split the edge e4 to e6 and
e7 such that w(e6);w(e7) � 0 and w(e6) + w(e7) = w(e4);
finally, the two edges e1 and e2 are merged to e5 such
that w(e5) = w(e1) + w(e2). The cost of transferring S is
w(e2) + w(e3) + w(e6).

Note that for weighted trees, the linear-cost subtree-
transfer model is more general than the nni model in
the sense that one can slide a subtree along an edge with
subtree-transfers. Such an operation is not realizable with
nni moves.

Key Results

Let T1 and T2 be the two trees, each with n nodes, that are
being used in the distance computation.

Theorem 1 ([2,3,4]) Assume that T1 and T2 are un-
weighted. Then, the following results hold:
� Dnni(T1; T2) = Dlcst(T1; T2).
� Computing Dnni(T1; T2) is NP-complete.
� Suppose that Dnni(T1; T2) � d. Then, an optimal se-

quence of nni operations transforming T1 into T2 can
be computed in O(n2 log n + n � 223d/2) time.

� Dnni(T1; T2) can be approximated to within a factor of
log n + O(1) in polynomial time.

Theorem 2 ([1,2,3,4]) Assume that T1 and T2 are
weighted. Then, the following results hold:
� Dnni(T1; T2) can be approximated to within a factor of

6 + 6 log n in O(n2 log n) time.
� Assume that T1 and T2 are allowed to have leaves that

are not necessarily uniquely labeled. Then, computing
Dlcst(T1; T2) is NP-hard.

� Dlcst(T1; T2) can be approximated to within a factor of 2
in O(n2 log n) time.

Applications

The results reported here are on transformation based dis-
tances for evolutionary trees. Such a tree is can be rooted
if the evolutionary origin is known and can be weighted

if the evolutionary length on each edge is known. Recon-
structing the correct evolutionary tree for a set of species
is one of the fundamental yet difficult problems in evo-
lutionary genetics. Over the past few decades, many ap-
proaches for reconstructing evolutionary trees have been
developed, including (not exhaustively) parsimony, com-
patibility, distance and maximum likelihood approaches.
The outcomes of these methods usually depend on the
data and the amount of computational resources applied.
As a result, in practice they often lead to different trees on
the same set of species [8]. It is thus of interest to com-
pare evolutionary trees produced by different methods, or
by the same method on different data.

Another motivation for investigating the linear-cost
subtree transfer distance comes from the following mo-
tivation. When recombination of DNA sequences occurs
in an evolution, two sequences meet and generate a new
sequence, consisting of genetic material taken left of the
recombination point from the first sequence and right of
the point from the second sequence [5,6]. From a phylo-
genetic viewpoint, before the recombination, the ances-
tral material on the present sequence was located on two
sequences, one having all the material to the left of the
recombination point and another having all the material
to the right of the breaking point. As a result, the evo-
lutionary history can no longer be described by a single
tree. The recombination event partitions the sequences
into two neighboring regions. The history for the left and
the right regions could be described by separate evolution-
ary trees. The recombination makes the two evolutionary
trees describing neighboring regions differ. However, two
neighbor trees cannot be arbitrarily different, one must
be obtainable from the other by a subtree-transfer oper-
ation. When more than one recombination occurs, one
can describe an evolutionary history using a list of evo-
lutionary trees, each corresponds to some region of the
sequences and each can be obtained by several subtree-
transfer operations from its predecessor [6]. The com-
putation of a linear-cost subtree-transfer distance is use-
ful in reconstructing such a list of trees based on parsi-
mony [5,6].

576 N Negative Cycles in Weighted Digraphs

Open Problems

1. Is there a constant ratio approximation algorithm for
the nni distance on unweighted evolutionary trees or is
the O(log n)-approximation the best possible?

2. Is the linear-cost subtree-transfer distance NP-hard to
compute on weighted evolutionary trees if leaf labels
are not allowed to be non-unique?

3. Can one improve the approximation ratio for linear-
cost subtree-transfer distance on weighted evolutionary
trees?

Cross References

� Constructing a Galled Phylogenetic Network
�Maximum Agreement Subtree (of 2 Binary Trees)
�Maximum Agreement Subtree (of 3 or More Trees)
� Phylogenetic Tree Construction from a Distance

Matrix

Recommended Reading

1. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J.: On the linear-
cost subtree-transfer distance. Algorithmica 25(2), 176–195
(1999)

2. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On
distances between phylogenetic trees, 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 427–436 (1997)

3. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Wang, L.,
Zhang, L.: Computing Distances between Evolutionary Trees.
In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial
Optimization. Kluwer Academic Publishers, Norwell, 2, 35–76
(1998)

4. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On
Computing theNearest Neighbor InterchangeDistance. In: Du,
D.Z., Pardalos, P.M., Wang, J. (eds.) Proceedings of the DIMACS
Workshop on Discrete Problems withMedical Applications, DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science. Am. Math. Soc. 55, 125–143 (2000)

5. Hein, J.: Reconstructing evolution of sequences subject to
recombination using parsimony. Math. Biosci. 98, 185–200
(1990)

6. Hein, J.: A heuristic method to reconstruct the history of se-
quences subject to recombination. J. Mol. Evol. 36, 396–405
(1993)

7. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of
comparing evolutionary trees. Discret. Appl. Math. 71, 153–
169 (1996)

8. Kuhner, M., Felsenstein, J.: A simulation comparison of phy-
logeny algorithms under equal and unequal evolutionary
rates. Mol. Biol. Evol. 11(3), 459–468 (1994)

9. Moore, G.W., Goodman, M., Barnabas, J.: An iterative approach
from the standpoint of the additive hypothesis to the dendro-
gram problem posed by molecular data sets. J. Theor. Biol. 38,
423–457 (1973)

10. Robinson, D.F.: Comparison of labeled treeswith valency three.
J Combinator. Theory Series B 11, 105–119 (1971)

Negative Cycles
inWeighted Digraphs
1994; Kavvadias, Pantziou, Spirakis, Zaroliagis

CHRISTOS ZAROLIAGIS
Computer Engineering & Informatics,
University of Patras, Patras, Greece

ProblemDefinition

Let G = (V ; E) be an n-vertex,m-edge directed graph (di-
graph), whose edges are associated with a real-valued cost
function wt : E ! R. The cost, wt(P), of a path P in G is
the sum of the costs of the edges of P. A simple path C
whose starting and ending vertices coincide is called a cy-
cle. Ifwt(C) < 0, then C is called a negative cycle. The goal
of the negative cycle problem is to detect whether there
is such a cycle in a given digraph G with real-valued edge
costs, and if indeed exists to output the cycle.

The negative cycle problem is closely related to the
shortest path problem. In the latter, a minimum cost path
between two vertices s and t is sought. It is easy to see that
an s-t shortest path exists if and only if no s-t path in G
contains a negative cycle [1,13]. It is also well-known that
shortest paths from a given vertex s to all other vertices
form a tree called shortest path tree [1,13].

Key Results

For the case of general digraphs, the best algorithm to
solve the negative cycle problem (or to compute the short-
est path tree, if such a cycle does not exist) is the classi-
cal Bellman�Ford algorithm that takes O(nm) time (see
e. g., [1]). Alternative methods with the same time com-
plexity are given in [4,7,12,13]. Moreover, in [11, Chap. 7]
an extension of the Bellman�Ford algorithm is described
which, in addition to detecting and reporting the existing
negative cycles (if any), builds a shortest path tree rooted
a some vertex s reaching those vertices u whose shortest s-
u path does not contain a negative cycle. If edge costs are
integers larger than �L (L � 2), then a better algorithm
was given in [6] that runs in O(m

p
n log L) time, and it is

based on bit scaling.
A simple deterministic algorithm that runs in

O(n2 log n) expected time with high probability is given
in [10] for a large class of input distributions, where
the edge costs are chosen randomly according to the
endpoint-independent model (this model includes the
common case where all edge costs are chosen indepen-
dently from the same distribution).

Negative Cycles in Weighted Digraphs N 577

Better results are known for several important classes
of sparse digraphs (i. e., digraphs with m = O(n) edges)
such as planar digraphs, outerplanar digraphs, digraphs of
small genus, and digraphs of small treewidth.

For general sparse digraphs, an algorithm is given
in [8] that solves the negative cycle problem in
O(n + �̃ 1:5 log �̃) time, where �̃ is a topological measure of
the input sparse digraph G, and whose value varies from 1
up to 	(n). Informally, �̃ represents the minimum num-
ber of outerplanar subgraphs, satisfying certain separation
properties, into which G can be decomposed. In partic-
ular, �̃ is proportional to � (G) + q, where G is supposed
to be embedded into an orientable surface of genus � (G)
so as to minimize the number q of faces that collectively
cover all vertices. For instance, if G is outerplanar, then
�̃ = 1, which implies an optimal O(n) time algorithm for
this case. The algorithm in [8] does not require such an
embedding to be provided by the input. In the same pa-
per, it is shown that random Gn;p graphs with threshold
function 1/n are planar with probability one and have an
expected value for �̃ equal to O(1). Furthermore, an effi-
cient parallelization of the algorithm on the CREW PRAM
model of computation is provided in [8].

Better bounds for planar digraphs are as follows. If
edge costs are integers, then an algorithm running in
O(n4/3 log(nL)) time is given in [9]. For real edge costs,
an O(n log3 n)-time algorithm was given in [5].

An optimal O(n)-time algorithm is given in [3] for
the case of digraphs with small treewidth (and real edge
costs). Informally, the treewidth t of a graph G is a pa-
rameter which measures how close is the structure of
G to a tree. For instance, the class of graphs of small
treewidth includes series-parallel graphs (t = 2) and out-
erplanar graphs (t = 2). An optimal parallel algorithm for
the same problem, on the EREW PRAMmodel of compu-
tation, is provided in [2].

Applications

Finding negative cycles in a digraph is a fundamental com-
binatorial and network optimization problem that spans
a wide range of applications including: shortest path com-
putation, two dimensional package element, minimum
cost flows, minimal cost-to-time ratio, model verification,
compiler construction, software engineering, VLSI design,
scheduling, circuit production, constraint programming
and image processing. For instance, the isolation of neg-
ative feedback loops is imperative in the design of VLSI
circuits. It turns out that such loops correspond to nega-
tive cost cycles in the so-called amplifier-gain graph of the
circuit. In constraint programming, it is required to check

the feasibility of sets of constraints. Systems of difference
constraints can be represented by constraint graphs, and
one can show that such a system is feasible if and only if
there are no negative cost cycles in its corresponding con-
straint graph. In zero-clairvoyant scheduling, the prob-
lem of checking whether there is a valid schedule in such
a scheduling system can be reduced to detecting negative
cycles in an appropriately defined graph. For further dis-
cussion on these and other applications see [1,12,14].

Open Problems

The negative cycle problem is closely related to the shortest
path problem. The existence of negative edge costs makes
the solution of the negative cycle problem or the com-
putation of a shortest path tree more difficult and thus
more time consuming compared to the time required to
solve the shortest path tree problem in digraphs with non-
negative edge costs. For instance, for digraphs with real
edge costs, compare the O(nm)-time algorithm in the for-
mer case with the O(m + n log n)-time algorithm for the
latter case (Dijkstra’s algorithm implemented with an effi-
cient priority queue; see e. g., [1]).

It would therefore be interesting to try to reduce the
gap between the above two time complexities, even for
special classes of graphs or the case of integer costs.

The only case where these two complexities coincide
concerns the digraphs of small treewidth [3], making it the
currently most general such class of graphs. For planar di-
graphs, the result in [5] is only a polylogarithmic factor
away from the O(n)-time algorithm in [9] that computes
a shortest path tree when the edge costs are non-negative.

Experimental Results

An experimental study for the negative cycle problem
is conducted in [4]. In that paper, several methods
that combine a shortest path algorithm (based on the
Bellman�Ford approach) with a cycle detection strategy
are investigated, along with some new variations of them.
It turned out that the performance of algorithms for the
negative cycle problem depends on the number and the
size of the negative cycles. This gives rise to a collection of
problem families for testing negative cycle algorithms.

A follow-up of the above study is presented in [14],
where two new heuristics are introduced and are incor-
porated on three of the algorithms considered in [4] (the
original Bellman�Ford and the variations in [13] and [7]),
achieving dramatic improvements. The data sets consid-
ered in [14] are those in [4].

578 N Non-approximability of Bimatrix Nash Equilibria

Data Sets

Data set generators and problem families are described
in [4], and are available from http://www.avglab.com/
andrew/soft.html.

URL to Code

The code used in [4] is available from http://www.avglab.
com/andrew/soft.html.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Single-Source Shortest Paths

Recommended Reading
1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall,

Englewood Cliffs (1993)
2. Chaudhuri, S., Zaroliagis, C.: Shortest Paths in Digraphsof Small

Treewidth. Part II: Optimal Parallel Algorithms. Theor. Comput.
Sci. 203(2), pp. 205–223 (1998)

3. Chaudhuri, S., Zaroliagis, C.: Shortest Paths in Digraphsof Small
Treewidth. Part I: Sequential Algorithms. Algorithmca 27(3),
pp. 212–226 (2000)

4. Cherkassky, B.V., Goldberg, A.V.: Negative-Cycle Detection Al-
gorithms. Math. Program. 85, pp. 277–311 (1999)

5. Fakcharoenphol, J., Rao, S.: Planar Graphs, Negative Weight
Edges, Shortest Paths, and near Linear Time. In: Proc. 42nd IEEE
Symp. on Foundations of Computer Science – FOCS (2001),
pp. 232–241. IEEE Computer Society Press, Los Alamitos (2001)

6. Goldberg, A.V.: Scaling Algorithms for the Shortest Paths Prob-
lem. SIAM J. Comput. 24, pp. 494–504 (1995)

7. Goldberg, A.V., Radzik, T.: A Heuristic Improvement of the
Bellman�Ford Algorithm. Appl. Math. Lett. 6(3), pp. 3–6 (1993)

8. Kavvadias, D., Pantziou, G., Spirakis, P., Zaroliagis, C.: Efficient
Sequential and Parallel Algorithms for the Negative Cycle
Problem. In: Algorithms and Computation – ISAAC’94. Lect.
Notes Comput. Sci., vol. 834, pp.270–278. Springer, Heidelberg
(1994)

9. Klein, P., Rao, S., Rauch, M., Subramanian, S.: Faster shortest-
path algorithms for planar graphs. J. Comput. Syst. Sci. 5(1),
pp. 3–23 (1997)

10. Kolliopoulos, S.G., Stein, C.: Finding Real-Valued Single-Source
Shortest Paths in o(n3) Expected Time. J. Algorithms 28,
pp. 125–141 (1998)

11. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press, Cam-
bridge (1999)

12. Spirakis, P., Tsakalidis, A.: A Very Fast, Practical Algorithm for
Finding a Negative Cycle in a Digraph. In Proc. of 13th ICALP,
pp. 397–406 (1986)

13. Tarjan, R.E.: Data Structures and Network Algorithms. SIAM,
Philadelphia (1983)

14. Wong, C.H., Tam, Y.C.: Negative Cycle Detection Problem. In:
Algorithms – ESA 2005. Lecture Notes in Computer Science,
vol. 3669, pp. 652–663. Springer, Heidelberg (2005)

Non-approximability
of Bimatrix Nash Equilibria
2006; Chen, Deng, Teng

XI CHEN1, XIAOTIE DENG2

1 Computer Science and Technology, Tsinghua
University, Beijing, Beijing, China

2 Department of Computer Science, City University
of Hong Kong, Hong Kong, China

Keywords and Synonyms

Approximate Nash equilibrium

ProblemDefinition

In this entry, the following two problems are considered:
1) the problem of finding an approximate Nash equilib-
rium in a positively normalized bimatrix (or two-player)
game; and 2) the smoothed complexity of finding an ex-
act Nash equilibrium in a bimatrix game. It turns out that
these two problems are strongly correlated [3].

Let G = (A;B) be a bimatrix game, where A = (ai; j)
and B = (bi; j) are both n � n matrices. Game G is said
to be positively normalized, if 0 � ai; j; bi; j � 1 for all
1 � i; j � n.

Let P n denote the set of all probability vectors in Rn ,
i. e., non-negative vectors whose entries sum to 1. A Nash
equilibrium [8] of G = (A;B) is a pair of mixed strategies
(x� 2 P n ; y� 2 P n) such that for all x; y 2 P n ,

(x�)TAy� � xTAy� and (x�)TBy� � (x�)TBy ;

while an �-approximate Nash equilibrium is a pair
(x� 2 P n ; y� 2 P n) that satisfies

(x�)TAy� � xTAy� � � and

(x�)TBy� � (x�)TBy � � ; for all x; y 2 P n :

In the smoothed analysis [11] of bimatrix games, a per-
turbation of magnitude � > 0 is first applied to the input
game: For a positively normalized n � n game G = (A;B),
let A and B be two matrices with

ai; j = ai; j+rAi; j and bi; j = bi; j+rBi; j; 81 � i; j � n;

while rAi; j and rBi; j are chosen independently and uni-
formly from interval [��; �] or from Gaussian distribu-
tion with variance �2. These two kinds of perturbations
are referred to as �-uniform and �-Gaussian perturba-
tions, respectively. An algorithm for bimatrix games has
polynomial smoothed complexity (under �-uniform or �-
Gaussian perturbations) [11], if it finds a Nash equilibrium
of game (A;B) in expected time poly(n; 1/�), for all (A;B).

http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html

Non-shared Edges N 579

Key Results

The complexity class PPAD [9] is defined in entry � Bi-
matrix Nash. The following theorems are proved in [3].

Theorem 1 For any constant c > 0, the problem of com-
puting a 1/nc -approximate Nash equilibrium of a positively
normalized n � n bimatrix game is PPAD-complete.

Theorem 2 The problem of computing a Nash equilibrium
in a bimatrix game is not in smoothed polynomial time,
under uniform or Gaussian perturbations, unless PPAD

RP.

Corollary 1 The smoothed complexity of the Lemke-
Howson algorithm is not polynomial, under uniform or
Gaussian perturbations, unless PPAD
 RP.

Applications

See entry� Bimatrix Nash.

Open Problems

There remains a complexity gap on the approximation
of Nash equilibria in bimatrix games: The result of [7]
shows that, an �-approximate Nash equilibrium can be
computed in nO(log n/�2)-time, while [3] show that no al-
gorithm can find an �-approximate Nash equilibrium in
poly(n; 1/�)-time for � of order 1/poly(n), unless PPAD is
in P. However, the hardness result of [3] does not cover
the case when � is a constant between 0 and 1. Naturally,
it is unlikely that the problem of finding an �-approximate
Nash equilibrium is PPAD-complete when � is an absolute
constant, for otherwise, all the search problems in PPAD
would be solvable in nO(log n)-time, due to the result of [7].
An interesting open problem is that, for every constant
� > 0, is there a polynomial-time algorithm for finding an
�-approximate Nash equilibrium? The following conjec-
tures are proposed in [3]:

Conjecture 1 There is an O(nk+��c)-time algorithm for
finding an �-approximate Nash equilibrium in a bimatrix
game, for some constants c and k.

Conjecture 2 There is an algorithm to find a Nash
equilibrium in a bimatrix game with smoothed complex-
ity O(nk+��c) under perturbations with magnitude � , for
some constants c and k.

It is also conjectured in [3] that Corollary 1 remains
true without any complexity assumption on class PPAD.
A positive answer would extend the result of [10] to the
smoothed analysis framework.

Cross References

� Complexity of Bimatrix Nash Equilibria
� General Equilibrium
� Leontief Economy Equilibrium

Recommended Reading

1. Chen, X., Deng, X.: 3-Nash is PPAD-complete. ECCC, TR05-134
(2005)

2. Chen, X., Deng, X.: Settling the complexity of two-player Nash
equilibrium. In: FOCS’06: Proc. of the 47th Annual IEEE Sympo-
sium on Foundations of Computer Science, 2006, pp. 261–272

3. Chen, X., Deng, X., Teng, S.H.: Computing Nash equilibria: ap-
proximation and smoothed complexity. In: FOCS’06: Proc. of
the 47th Annual IEEE Symposiumon Foundations of Computer
Science, 2006, pp. 603–612

4. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The com-
plexity of computing a Nash equilibrium. In: STOC’06: Proceed-
ings of the 38th ACM Symposium on Theory of Computing,
2006, pp. 71–78

5. Daskalakis, C., Papadimitriou, C.H.: Three-player games are
hard. ECCC, TR05-139 (2005)

6. Goldberg, P.W., Papadimitriou, C.H.: Reducibility among equi-
librium problems. In: STOC’06: Proc. of the 38th ACM Sympo-
sium on Theory of Computing, 2006, pp. 61–70

7. Lipton, R., Markakis, E., Mehta, A.: Playing large games using
simple strategies. In: Proc. of the 4th ACM conference on Elec-
tronic commerce, 2003, pp. 36–41

8. Nash, J.F.: Equilibrium point in n-person games. Proc. Natl.
Acad. Sci. USA 36(1), 48–49 (1950)

9. Papadimitriou, C.H.: On the complexity of the parity argument
and other inefficient proofs of existence. J. Comput. Syst. Sci.
48, 498–532 (1994)

10. Savani, R., von Stengel, B.: Exponentially many steps for find-
ing a Nash equilibrium in a bimatrix game. In: FOCS’04: Proc. of
the 45th Annual IEEE Symposiumon Foundations of Computer
Science, 2004, pp. 258–267

11. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms
and heuristics: progress and open questions. In: Pardo, L.M.,
Pinkus, A., Süli, E., Todd, M.J. (eds.) Foundations of Computa-
tional Mathematics, pp. 274–342. Cambridge University Press,
Cambridge, UK (2006)

Non-shared Edges
1985; Day

WING-KAI HON
Department of Computer Science, National Tsing Hua
University, Hsin Chu, Taiwan

Keywords and Synonyms

Robinson–Foulds distance; Robinson–Foulds metric

580 N Non-shared Edges

ProblemDefinition

Phylogenies are binary trees whose leaves are labeled
with distinct leaf labels. This problem in this article is
concerned with a well-known measurement, called non-
shared edge distance, for comparing the dissimilarity be-
tween two phylogenies. Roughly speaking, the non-shared
edge distance counts the number of edges that differentiate
one phylogeny from the other.

Let e be an edge in a phylogeny T. Removing e from
T splits T into two subtrees. The leaf labels are partitioned
into two subsets according to the subtrees. The edge e is
said to induce a partition of the set of leaf labels. Given two
phylogenies T and T 0 having the same number of leaves
with the same set of leaf labels, an edge e in T is shared if
there exists some edge e0 in T 0 such that the edges e and
e0 induce the same partition of the set of leaf labels in their
corresponding tree. Otherwise, e is non-shared. Notice that
T and T 0 has the same number of edges, so that the num-
ber of non-shared edges in T (with respect to T 0) is the
same as the number of non-shared edges in T 0 (with re-
spect to T). Such a number is called the non-shared edge
distance between T and T 0. Two problems are defined as
follows:

Non-shared Edge Distance Problem
INPUT: Two phylogenies on the same set of leaf labels
OUTPUT: The non-shared edge distance between the two
input phylogenies

All-Pairs Non-shared Edge Distance Problem
INPUT: A collection of phylogenies on the same set of leaf
labels
OUTPUT: The non-shared edge distance between each pair
of the input phylogenies

Extension

Phylogenies that are commonly used in practice have
weights associated to the edges. The notion of non-shared
edge can be easily extended for edge-weighted phyloge-
nies. In this case, an edge e will induce a partition of the
set of leaf labels as well as the multi-set of edge weights
(here, edge weights are allowed to be non-distinct). Given
two edge-weighted phylogenies R and R0 having the same
set of leaf labels and the samemulti-set of edge weights, an
edge e in R is shared if there exists some edge e0 in R0 such
that the edges e and e0 induce the same partition of the
set of leaf labels and the multi-set of edge weights. Oth-
erwise, e is non-shared. The non-shared edge distance be-
tween R and R0 are similarly defined, giving the following
problem:

General Non-shared Edge Distance Problem
INPUT: Two edge-weighted phylogenies on the same set of
leaf labels and same multi-set of edge weights
OUTPUT: The non-shared edge distance between the two
input phylogenies

Key Results

Day [3] proposed the first linear-time algorithm for the
Non-shared Edge Distance Problem.

Theorem 1 Let T and T 0 be two input phylogenies with the
same set of leaf labels, and n be the number of leaves in each
phylogeny. The non-shared edge distance between T and T 0

can be computed in O(n) time.

Let � be a collection of k phylogenies on the same set of
leaf labels, and n be the number of leaves in each phy-
logeny. The All-Pairs Non-shared Edge Distance Problem
can be solved by applying Theorem 1 on each pair of phy-
logenies, thus solving the problem in a total of O(k2n)
time. Pattengale and Moret [9] proposed a randomized
result based on [7] to solve the problem approximately,
whose running time is faster when n � k � 2n .

Theorem 2 Let " be a parameter with ">0. Then, there
exists a randomized algorithm such that with probability at
least 1 � k�2, the non-shared edge distance between each
pair of phylogenies in� can be approximated within a fac-
tor of (1 + ") from the actual distance; the running time of
the algorithm is O(k(n2 + k log k)/"2).

For general phylogenies, let R and R0 be two input phylo-
genies with the same set of leaf labels and the same multi-
set of edge weights, and n be the number of leaves in
each phylogeny. The General Non-shared Distance Prob-
lem can be solved easily in O(n2) time by applying The-
orem 1 in a straightforward manner. The running time is
improved by Hon et al. in [5].

Theorem 3 The non-shared edge distance between R and
R0 can be computed in O(n log n) time.

Applications

Phylogenies are commonly used by biologists to model
the evolutionary relationship among species. Many recon-
struction methods (such as maximum parsimony, maxi-
mum likelihood, compatibility, distance matrix) produce
different phylogenies based on the same set of species,
and it is interesting to compute the dissimilarities between
them. Also, through the comparison, information about
rare genetic events such as recombinations or gene con-
versions may be uncovered. The most common dissimi-

Nucleolus N 581

larity measure is the Robinson–Foulds metric [11], which
is exactly the same as the non-shared edge distance.

Other dissimilarity measures, such as the nearest-
neighbor interchange (NNI) distance and the subtree-
transfer (STT) distance (see [2] for details), are also pro-
posed in the literature. Thesemeasures are sometimes pre-
ferred by the biologists since they can be used to deduce
the biological events that create the dissimilarity. Never-
theless, these measures are usually difficult to compute. In
particular, computing the NNI distance and the STT dis-
tance are shown to be NP-hard by DasGupta et al. [1,2].
Approximation algorithms are devised for these problems
(NNI: [4,8], STT: [1,6]). Interestingly, all these algorithms
make use of the non-shared edge distance to bound their
approximation ratios.

Cross References

A related problem is to measure the similarity between
two input phylogenies.�Maximum Agreement
Subtree for references.

Recommended Reading

1. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J.: On the Linear-
Cost Subtree-Transfer Distance between Phylogenetic Trees.
Algorithmica 25(2–3), 176–195 (1999)

2. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On
Distances between Phylogenetic Trees. In: Proceedings of the
Eighth ACM-SIAM Annual Symposium on Discrete Algorithms
(SODA), New Orleans, pp. 427–436. SIAM, Philadelphia (1997)

3. Day, W.H.E.: Optimal Algorithms for Comparing Trees with La-
beled Leaves. J. Classif. 2, 7–28 (1985)

4. Hon, W.K., Lam, T.W.: Approximating the Nearest Neighbor
Intercharge Distance for Non-Uniform-Degree Evolutionary
Trees. Int. J. Found. Comp. Sci. 12(4), 533–550 (2001)

5. Hon, W.K., Kao, M.Y., Lam, T.W., Sung, W.K., Yiu, S.M.: Non-
shared Edges andNearest Neighbor Interchanges revisited. Inf.
Process. Lett. 91(3), 129–134 (2004)

6. Hon, W.K., Lam, T.W., Yiu, S.M., Kao, M.Y., Sung, W.K.: Sub-
tree Transfer Distance For Degree-D Phylogenies. Int. J. Found.
Comp. Sci. 15(6), 893–909 (2004)

7. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz Map-
pings into a Hilbert Space. Contemp. Math. 26, 189–206 (1984)

8. Li, M., Tromp, J., Zhang, L.: Some Notes on the Nearest Neigh-
bour Interchange Distance. J. Theor. Biol. 26(182), 463–467
(1996)

9. Pattengale, N.D., Moret, B.M.E.: A Sublinear-Time Randomized
Approximation Scheme for the Robinson–Foulds Metric. In:
Proceedings of the Tenth ACM Annual International Confer-
ence on Research in Computational Molecular Biology (RE-
COMB), pp. 221–230. Venice, Italy, April 2–5 2006

10. Robinson, D.F.: Comparison of Labeled Trees with Valency
Three. J. Comb. Theor. 11, 105–119 (1971)

11. Robinson, D.F., Foulds, L.R.: Comparison of Phylogenetic Trees.
Math. Biosci. 53, 131–147 (1981)

Nucleolus
2006; Deng, Fang, Sun

QIZHI FANG
Department of Mathematics, Ocean University of China,
Qingdao, China

Keywords and Synonyms

Nucleon; Kernel

ProblemDefinition

Cooperative game theory considers how to distribute the
total income generated by a set of participants in a joint
project to individuals. The Nucleolus, trying to capture the
intuition of minimizing dissatisfaction of players, is one
of the most well-known solution concepts among various
attempts to obtain a unique solution. In Deng, Fang and
Sun’s work [2], they study the Nucleolus of flow games
from the algorithmic point of view. It is shown that, for
a flow game defined on a simple network (arc capacity be-
ing all equal), computing the Nucleolus can be done in
polynomial time, and for flow games in general cases, both
the computation and the recognition of the Nucleolus are
NP-hard.

A cooperative (profit) game (N, v) consists of a player
set N = f1; 2; � � � ; ng and a characteristic function
v : 2N ! R with v(;) = 0, where the value v(S) (S
 N) is
interpreted as the profit achieved by the collective action
of players in S. Any vector x 2 Rn with

P
i2N xi = v(N)

is an allocation. An allocation x is called an imputation if
xi � v(fig) for all i 2 N. Denote by I(v) the set of impu-
tations of the game.

Given an allocation x, the excess of a coalition
S(S
 N) at x is defined as

e(S; x) = x(S) � v(S) ;

where x(S) =
P

i2S xi for S
 N. The value e(S, x) can
be interpreted as a measure of satisfaction of coalition S
with the allocation x. The core of the game (N, v), denoted
by C(v), is the set of allocations whose excesses are all
non-negative. For an allocation x of the game (N, v), let
�(x) denote the (2n � 2)-dimensional vector whose com-
ponents are the non-trivial excesses e(S, x), ; 6= S 6= N , ar-
ranged in a non-decreasing order. That is, �i(x) � � j(x),
for 1 � i < j � 2n � 2. Denote by �l the “lexicograph-
ically greater than” relationship between vectors of the
same dimension.

Definition 1 The Nucleolus �(v) of game (N, v) is the set
of imputations that lexicographically maximize �(x) over

582 N Nucleolus

the set of all imputations x 2 I(v). That is,

�(v) = fx 2 I(v) : �(x) �l �(y) for all y 2 I(v)g :

Even though, the Nucleolus may contain multiple points
by the definition, it was proved by Schmeidler [12] that
the Nucleolus of a game with non-empty imputation set
contains exactly one element. Kopelowitz [10] proposed
that the Nucleolus can be obtained by recursively solving
a sequential linear programs (SLP):

LPk :

max "
x(S) = v(S) + "r 8S 2 Jr r = 0; 1; � � � ; k � 1

x(S) � v(S) + " 8S 2 2N n
k�1[
r=0

Jr

x 2 I(v):

Here, J0 = f;;Ng and "0 = 0 initially; the number "r
is the optimum value of the r-th program (LPr), and
Jr = fS 2 2N : x(S) = v(S) + "r for every x 2 Xrg, where
Xr = fx 2 I(v) : (x; "r) is an optimal solution to LPrg. It
can be shown that after at most n � 1 iterations, one ar-
rives at a unique optimal solution (x�; "k), where x� is just
the Nucleolus of the game. In addition, the set of optimal
solutionsX1 to the first program LP1 is called the least core
of the game.

The definition of the Nucleolus entails comparisons
between vectors of exponential length, and with linear
programming approach, each linear programs in (SLP)
may possess exponential size in the number of players.
Clearly, both do not provide an efficient solution in gen-
eral.

Flow games, first studied in Kailai and Zemel [8,9],
arise from the profit distribution problem related to the
maximum flow in a network. Let D = (V ; E;!; s; t) be
a directed flow network, where V is the vertex set, E is the
arc set, ! : E ! R+ is the arc capacity function, s and t are
the source and the sink of the network, respectively. The
network D is simple if !(e) = 1 for each e 2 E, which is
denoted briefly by D = (V ; E; s; t).

Definition 2 The flow game
 f = (E; �) associated with
network D = (V ; E;!; s; t) is defined by

(i) The player set is E;
(ii) 8S
 E, �(S) is the value of a maximum flow from

s to t in the subnetwork of D consisting only of arcs
belonging to S.

Problem 1 (Computing the Nucleolus)
INSTANCE: A flow network D = (V ; E;!; s; t).

QUESTION: Is there a polynomial time algorithm to com-
pute the Nucleolus of the flow game associated with D?

Problem 2 (Recognizing the Nucleolus)
INSTANCE: A flow network D = (V ; E;!; s; t) and
y : E ! R+.
QUESTION: Is it true that y is the Nucleolus of the flow
game associated with D?

Key Results

Theorem 1 Let D = (V ; E; s; t) be a simple network and

 f = (E; �) be the associated flow game. Then the Nucleolus
�(�) can be computed in polynomial time.

By making use of duality technique in linear program-
ming, Kalai and Zemel [9] gave an characterization on the
core of a flow game. They further conjectured that their
approach may serve as a practical basis for computing the
Nucleolus. In fact, the proof of Theorem 1 in the work of
Deng Fang and Sun [2] is just an elegant application of
Kalai and Zemel’s approach (especially the duality tech-
nique), and hence settling their conjecture.

Theorem 2 Given a flow game
 f = (E; �) defined on net-
work D = (V ; E;!; s; t), computing the Nucleolus �(�) is
NP-hard.

Theorem 3 Given a flow game
 f = (E; �) defined on
network D = (V ; E;!; s; t), and an imputation y 2 I(�),
checking whether y is the Nucleolus of
 f isNP-hard.

Although a flow game can be formulated as a linear pro-
duction game [1], the size of reduction may in general be
exponential in space, and consequently, their complexity
results on the Nucleolus are independent. However, in the
NP-hardness proof of Theorem 2 and 3, the flow game
constructed possesses a polynomial size formulation of
linear production game [2]. Therefore, as a direct corol-
lary, the same NP-hardness conclusions for linear pro-
duction games are obtained. That is, both computing and
recognizing the Nucleolus of a linear production game are
NP-hard.

Applications

As an important solution concept in economics and game
theory, the Nucleolus and related solution concepts have
been applied to study insurance policies, real estate and
bankruptcy, etc. However, it is a challenging problem in
mathematical programming to decide what classes of co-
operative games permit polynomial time computation of
the Nucleolus.

Nucleolus N 583

The first polynomial time algorithm for Nucleolus in
a special tree game was proposed by Megiddo [11], in ad-
vocation of efficient algorithms for cooperative game so-
lutions. Subsequently, some efficient algorithms have been
developed for computing the Nucleolus, such as, for as-
signment games [13] andmatching games [7]. On the neg-
ative side, NP-hardness result was obtained for mini-
mum cost spanning tree games [3].

Granot, Granot and Zhu [6] observed that most of the
efficient algorithms for computing the Nucleolus are based
on the fact that the information needed to completely
characterize the Nucleolus is much less than that dictated
by its definition. Therefore, they introduced the concept
of a characterization set for the Nucleolus to embody the
notion of “minimum” relevant information needed for de-
termining the Nucleolus. Furthermore, based on the se-
quential linear programs (SLP), they established a general
relationship between the size of a characterization set and
the complexity of computing the Nucleolus. Following this
line of development, some known efficient algorithms for
computing the Nucleolus are derived directly.

Another approach to computing the Nucleolus is
taken by Faigle, Kern and Kuipers [4], which is motivated
by Schmeidler’s observation that the Nucleolus of a game
lies in the kernel [12]. In the case where the kernel of the
game contains exactly one core vector and the minimum
excess for any given allocation can be compute efficiently,
their approach derives a polynomial time algorithm for
the Nucleolus. This also generalizes some known results
on the computation of the Nucleolus. However, their algo-
rithm uses the ellipsoid method as a subroutine, it implies
that the efficiency of the algorithm is of a more theoretical
kind.

Open Problems

The field of combinatorial optimization has much to of-
fer for the study of cooperative games. It is usually the
case that the value of subgroup of players can be obtained
via a combinatorial optimization problem, where the game
is called a combinatorial optimization game. This class of
games leads to the applications of a variety of combinato-
rial optimization techniques in design and analysis of al-
gorithms, as well as establishing complexity results. One
of the most interesting result is the LP duality characteri-
zation of the core [1]. However, little work dealt with the
Nucleolus by using the duality technique so far. Hence, the
work of Deng, Fang and Sun [2] on computing the Nucle-
olus may be of independent interest.

There are still many unsolved complexity questions
concerning the Nucleolus. For the computation of the Nu-

cleolus of matching games, Kern and Paulusma [7] pro-
posed an efficient algorithm in unweighted case, and con-
jectured that it is in generalNP-hard. Since both simple
flow game and matching game fall into the class of pack-
ing/covering games, it is interesting to know the complex-
ity of computing the Nucleolus for other game models in
this class, such as, vertex covering games and minimum
coloring games.

For cooperative games arising from NP-hard com-
binatorial optimization problems, the computation of the
Nucleolus may in general be a hard task. For example, in
a traveling salesman game, nodes of the graph are the play-
ers and an extra node 0, and the value of a subgroup S of
players is the length of a minimum Hamiltonian tour in
the subgraph induced by S [f0g [1]. It would not be sur-
prising if one shows that both the computation and the
recognition of the Nucleolus for this gamemodel areNP-
hard. However, this is not known yet. The same questions
are proposed for facility location games [5], though there
have been efficient algorithms for some special cases.

Moreover, when the computation of the Nucleolus is
difficult, it is also interesting to seek for meaningful ap-
proximation concepts of theNucleolus, especially from the
political and economic background.

Cross References

� Complexity of Core
� Routing

Recommended Reading

1. Deng, X.: Combinatorial Optimization and Coalition Games. In:
Du, D., Pardalos, P.M. (eds.) Handbook of combinatorial opti-
mization, vol 2, pp 77–103, Kluwer, Boston (1998)

2. Deng, X., Fang, Q., Sun, X.: Finding Nucleolus of Flow Games.
Proceedings of the 17th annual ACM-SIAM symposium on Dis-
crete algorithm (SODA 2006). Lect. Notes in Comput. Sci.3111,
124–131 (2006)

3. Faigle, U., Kern, W., Kuipers, J.: Computing the Nucleolus of
Min-cost Spanning Tree Games isNP-hard. Int. J. Game The-
ory 27, 443–450 (1998)

4. Faigle, U., Kern, W., Kuipers, J.: On the Computation of the Nu-
cleolus of a Cooperative Game. Int. J. Game Theory 30, 79–98
(2001)

5. Goemans, M.X., Skutella, M.: Cooperative Facility Location
Games. J. Algorithms 50, 194–214 (2004)

6. Granot, D., Granot, F., Zhu, W.R.: Characterization Sets for the
Nucleolus. Int. J. Game Theory 27, 359–374 (1998)

7. Kern, W., Paulusma, D.: Matching Games: The Least Core and
the Nucleolus. Math. Oper. Res. 28, 294–308 (2003)

8. Kalai, E., Zemel, E.: Totally Balanced Games and Games of Flow.
Math. Oper. Res. 7, 476–478 (1982)

9. Kalai, E., Zemel, E.: Generalized Network Problems Yielding To-
tally Balanced Games. Oper. Res. 30, 998–1008 (1982)

584 N Nucleolus

10. Kopelowitz, A.: Computation of the Kernels of Simple Games
and the Nucleolus of n-person Games. RM-31, Math. Dept., The
Hebre University of Jerusalem (1967)

11. Megiddo, N.: Computational Complexity and the Game Theory
Approach to Cost Allocation for a Tree.Math. Oper. Res. 3, 189–
196 (1978)

12. Schmeidler, D.: The Nucleolus of a Characteristic Function
Game. SIAM J. Appl. Math. 17, 1163–1170 (1969)

13. Solymosi, T., Raghavan, T.E.S.: An Algorithm for Finding theNu-
cleolus of Assignment Games. Int. J. Game Theory 23, 119–143
(1994)

Oblivious Routing O 585

O

Oblivious Routing
2002; Räcke

NIKHIL BANSAL
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Fixed path routing

ProblemDefinition

Consider a communication network, for example, the net-
work of cities across the country connected by commu-
nication links. There are several sender-receiver pairs on
this network that wish to communicate by sending traf-
fic across the network. The problem deals with routing all
the traffic across the network such that no link in the net-
work is overly congested. That is, no link in the network
should carry too much traffic relative to its capacity. The
obliviousness refers to the requirement that the routes in
the network must be designed without the knowledge of
the actual traffic demands that arise in the network, i. e. the
route for every sender-receiver pair stays fixed irrespective
of how much traffic any pair chooses to send. Designing
a good oblivious routing strategy is useful since it ensures
that the network is robust to changes in the traffic pattern.

Notations

Let G = (V ; E) be an undirected graph with non-negative
capacities c(e) on edges e 2 E. Suppose there are k source-
destination pairs (si ; ti) for i = 1; : : : ; k and let di denote
the amount of flow (or demand) that pair i wishes to send
from si to ti. Given a routing of these flows on G, the con-
gestion of an edge e is defined as u(e)/c(e), the ratio of the
total flow crossing edge e divided by its capacity. The con-
gestion of the overall routing is defined as the maximum
congestion over all edges. The congestion minimization
problem is to find the routing that minimizes the maxi-
mum congestion. Observe that specifying a flow from si

to ti is equivalent to finding a probability distribution (not
necessarily unique) on a collection of paths from si to ti.

The congestion minimization problem can be studied
in many settings. In the offline setting, the instance of the
flow problem is provided in advance and the goal is to
find the optimum routing. In the on line setting, the de-
mands arrive in an arbitrary adversarial order and a flow
must be specified for a demand immediately upon arrival;
this flow is fixed forever and cannot be rerouted later when
new demands arrive. Several distributed approaches have
also been studied where each pair routes its flow in a dis-
tributed manner based on some global information such
as the current congestion on the edges.

In this note, the oblivious setting is considered. Here
a routing scheme is specified for each pair of vertices in ad-
vance without any knowledge of which demandswill actu-
ally arrive. Note that an algorithm in the oblivious setting
is severely restricted. In particular, if di units of demand
arrive for pair (si ; ti), the algorithmmust necessarily route
this demand according to the pre-specified paths irrespec-
tive of the other demands or any other information such as
congestion of other edges. Thus given a network graph G,
the oblivious flows need to be computed just once. Af-
ter this is done, the job of the routing algorithm is triv-
ial; whenever a demand arrives, it simply routes it along
the pre-computed path. An oblivious routing scheme is
called c-competitive if for any collection of demandsD, the
maximum congestion of the oblivious routing is no more
than c times the congestion of the optimum offline solu-
tion for D. Given this stringent requirement on the quality
of oblivious routing, it is not a priori clear that any reason-
able oblivious routing scheme should exist at all.

Key Results

Oblivious routing was first studied in the context of per-
mutation routing where the demand pairs form a per-
mutation and have unit value each. It was shown that
any oblivious routing that specifies a single path (in-
stead of a flow) between every two vertices must neces-

586 O Oblivious Routing

sarily perform badly. This was first shown by Borodin and
Hopcroft [6] for hypercubes and the argument was later
extended to general graphs by Kaklamanis, Krizanc and
Tsantilas [12], who showed the following.

Theorem 1 ([6,12]) For every graph G of size n and max-
imum degree d and every oblivious routing strategy using
only a single path for every source-destination pair, there
is a permutation that causes an overlap of at least (n/d)1/2

paths at some node. Thus if each edge in G has unit capacity,
the edge congestion is at least (n/d)1/2/d.

Since there exists constant degree graphs such as the but-
terfly graphs that can route any permutation with loga-
rithmic congestion, this implies that such oblivious rout-
ing schemes must necessarily perform poorly on certain
graphs.

Fortunately, the situation is substantially better if the
single path requirement is relaxed and a probability dis-
tribution on paths (equivalently a flow) is allowed be-
tween each pair of vertices. In a seminal paper, Valiant and
Brebner [17] gave the first oblivious permutation routing
scheme with low congestion on the hypercube. It is in-
structive to consider their scheme. Consider an hypercube
with N = 2n vertices. Represent vertex i by the binary ex-
pansion of i. For any two vertices s and t, there is a canon-
ical path (of length at most n = logN) from s to t obtained
by starting from s and flipping the bits of s in left to right
order to match with that of t. Consider routing scheme
that for a pair s and t, it first chooses some node p uni-
formly at random, routes the flow from s to p along the
canonical path, and then routes it again from p to t along
the canonical path (or equivalently it sends 1/N units of
flow from s to each intermediate vertex p and then routes
it to t). An relatively simple analysis shows that

Theorem 2 ([17]) The above oblivious routing scheme
achieves a congestion of O(1) for hypercubes.

Subsequently, oblivious routing schemes were proposed
for few other special classes of networks. However, the
problem of designing oblivious routing schemes for gen-
eral graphs remained open until recently, when in a break-
through result Räcke showed the following.

Theorem 3 ([15]) For any undirected capacitated graph
G = (V ; E), there exist an oblivious routing scheme with
congestion O(log3 n)where n is the number of vertices in G.

The key to Räcke’s theorem is a hierarchical decompo-
sition procedure of the underlying graph (described in
further detail below). This hierarchical decomposition is
a fundamental combinatorial result about the cut struc-
ture of graphs and has found several other applications,

some of which are mentioned in Section “Applications”.
Räcke’s proof of Theorem 3 only showed the existence of
a good hierarchical decomposition and did not give an ef-
ficient polynomial time algorithm to find it. In subsequent
work, Harrelson, Hildrum and Rao [11] gave a polyno-
mial time procedure to find the decomposition and im-
proved the competitive ratio of the oblivious routing to
O(log2 n log log n).

Theorem 4 ([11]) There exists an O(log2 n log log n)-
competitive oblivious routing scheme for general graphs and
moreover it can be found in polynomial time.

Interestingly, Azar et al. [4] show that the problem of find-
ing the optimum oblivious routing for a graph can be for-
mulated as a linear program. They consider a formulation
with exponentially many constraints; one for each possi-
ble demand matrix that has optimum congestion 1, that
enforces that the oblivious routing should have low con-
gestion for this demand matrix. Azar et al. [4] give a sep-
aration oracle for this problem and hence it be solved
using the ellipsoid method. A more practical polynomial
size linear program was given later by Applegate and Co-
hen [2]. Bansal et al. [5] considered a more general vari-
ant referred to as the online oblivious routing that can
also be used to find an optimum oblivious routing. How-
ever, note that without Räcke’s result, it would not be clear
whether these optimum routings were any good. More-
over these techniques do not give a hierarchical decom-
position, and hence may be less desirable in certain con-
texts. On the other hand, they may be more useful some-
times since they produce an optimum routing (while [11]
implies an O(log2 n log log n)-competitive routing for any
graph, the best oblivious routing could have a much better
guarantee for a specific graph).

Oblivious routing has also been studied for directed
graphs, however the situation is much worse here. Azar
et al. [4] show that there exist directed graphs where any
oblivious routing is˝(

p
n) competitive. Some positive re-

sults are also known [10]. Hajiaghayi et al. [8] show a sub-
stantially improved guarantee of O(log2 n) for directed
graphs in the random demands model. Here each source-
sink pair has a distribution (that is known by the algo-
rithm) from which it chooses its demand independently.
A relaxation of oblivious routing known as semi-oblivious
routing has also been studied recently [9].

Techniques

This section describes the high level idea of Räcke’s result.
For a subset S � V , let cap(S) denote the total capacity
of the edges that cross the cut (S;V n S) and let dem(S)

Oblivious Routing O 587

denote the total demand that must be routed across the
cut (S;V n S). Observe that q = maxS�V dem(S)/cap(S) is
a lower bound on the congestion of any solution. On the
other hand, the key result [3,13] relatingmulti-commodity
flows and cuts implies that there is a routing such that the
maximum congestion is at most O(q log k) where k is the
number of distinct source sink pairs. However, note that
this by itself does not suffice to obtain good oblivious rout-
ings, since a pair (si ; ti) can have different routing for dif-
ferent demand sets. The main idea of Räcke was to impose
a tree like structure for routing on the graph to achieve
obliviousness. This is formalized by a hierarchical decom-
position described below.

Consider a hierarchical decomposition of the graph
G = (V ; E) as follows. Starting from the set S = V , the sets
are partitioned successively until each set becomes single-
ton vertex. This hierarchical decomposition can be viewed
naturally as a tree T, where the root corresponds to the
set V , and leaves corresponds to the singleton sets {v}.
Let Si denote the subset of V corresponding to node i in
T. For an edge (i; j) in the tree where i is the child of j,
assign it a capacity equal to cap(Si) (note that this is the
capacity from Si to the rest of G and not just capacity be-
tween Si and Sj in G). The tree T is used to simulate rout-
ing in G and vice versa. Given a demand from u to v in G,
consider the corresponding (unique) route among leaves
corresponding to {u} and {v} in T. For any set of demands,
it is easily seen that the congestion in T is nomore than the
congestion in G. Conversely, Räcke showed that there also
exists a tree T where the routes in T can be mapped back
to flows in G, such that for any set of demands the con-
gestion in G is at most O(log3 n) times that in T. In this
mapping a flow along the (i; j) in the tree T corresponds
to a suitably constructed flow between sets Si and Sj in G.
Since route between any two vertices in T is unique, this
gives an oblivious routing in G.

Räcke uses very clever ideas to show the existence of
such a hierarchical decomposition. Describing the con-
struction is beyond the scope of this note, but it is instruc-
tive to understand the properties that must be satisfied by
such a decomposition. First, the tree T should capture the
bottlenecks in G, i. e. if there is a set of demands that pro-
duces high congestion in G, then it should also produce
a high congestion in T. A natural approach to construct T
would be to start with V , split V along a bottleneck (for-
mally, along a cut with low sparsity), and recurse. How-
ever, this approach is too simple to work. As discussed
below, T must also satisfy two other natural conditions,
known as the bandwidth property and the weight property
which are motivated as follows. Consider a node i con-
nected to its parent j in T. Then, i needs to route dem(Si)

flow out of Si and it incurs congestion dem(Si)/cap(Si) in
T. However, when T is mapped back to G, all the flow go-
ing out of Si must pass via Sj. To ensure that the edges
from Si to Sj are not overloaded, it must be the case that
the capacity from Si to Sj is not too small compared to the
capacity from Si to the rest of the graph V n Si . This is
referred to as the bandwidth property. Räcke guarantees
that this is ratio is always ˝(1/ log n) for every Si and Sj
corresponding to edges (i; j) in the tree. The weight prop-
erty is motivated as follows. Consider a node j in T with
children i1; : : : ; ip, then the weight property essentially re-
quires that the sets Si1 ; : : : ; Sip should be well connected
among themselves even when restricted to the subgraph
Sj. To see why this is needed, consider any communication
between, say nodes i1 and i2 in T. It takes the route i1 to j
to i2, and hence in G; Si1 cannot use edges that lie outside
Sj to communicate with Si2 . Räcke shows that these con-
ditions suffice and that a decomposition can be obtained
that satisfies them.

The factor O(log3 n) in Räcke’s guarantee arises from
three sources. The first logarithmic factor is due to the
flow-cut gap [3,13]. The second is due to the logarithmic
height of the tree, and the third is due to the loss of a loga-
rithmic factor in the bandwidth and weight properties.

Applications

The problem has widespread applications to routing in
networks. In practice it is often required that the routes
must be a single path (instead of flows). This can often be
achieved by randomized rounding techniques (sometimes
under an assumption that the demands to capacity ratios
be not too large). The flow formulation provides a much
cleaner framework for studying the problems above.

Interestingly, the hierarchical decomposition also
found widespread uses in other seemingly unrelated ar-
eas such as obtaining good pre-conditioners for solving
systems of linear equations [14,16], for the all-or-nothing
multicommodity flow problem [7], online network opti-
mization [1] and so on.

Open Problems

It is possible that any graph has an O(log n) competitive
oblivious routing scheme. Settling this is a key open ques-
tion.

Cross References

� Routing
� Separators in Graphs
� Sparsest Cut

588 O Obstacle Avoidance Algorithms in Wireless Sensor Networks

Recommended Reading

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A gen-
eral approach to online network optimization problems. In:
Symposium on Discrete Algorithms, pp. 570–579 (2004)

2. Applegate, D., Cohen, E.: Making intra-domain routing ro-
bust to changing and uncertain traffic demands: under-
standing fundamental tradeoffs. In: SIGCOMM, pp. 313–324
(2003)

3. Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-
flow theorem and approximation algorithm. SIAM J. Comput.
27(1), 291–301 (1998)

4. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal obliv-
ious routing in polynomial time. In: Proceedings of the 35th
ACM Symposium on the Theory of Computing, pp. 383–388
(2003)

5. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Online oblivious
routing. In Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 44–49 (2003)

6. Borodin, A., Hopcroft, J.: Routing, merging and sorting on par-
allel models of computation. J. Comput. Syst. Sci. 10(1), 130–
145 (1985)

7. Chekuri, C., Khanna, S., Shepherd, F.B.: The All-or-NothingMul-
ticommodity Flow Problem. In: Proceedings of 36th ACM Sym-
posium on Theory of Computing, pp. 156–165 (2004)

8. Hajiaghayi, M., Kim, J.H., Leighton, T., Räcke, H.: Oblivious rout-
ing in directed graphs with random demands. In: Symposium
on Theory of Computing, pp. 193–201 (2005)

9. Hajiaghayi, M., Kleinberg, R., Leighton, T.: Semi-oblivious rout-
ing: lower bounds. In: Proceedings of the 18th ACM-SIAMSym-
posium on Discrete Algorithms, pp. 929–938 (2007)

10. Hajiaghayi, M., Kleinberg, R., Leighton, T., Räcke, H.: Oblivi-
ous routing in node-capacitated and directed graphs. In: Pro-
ceedings of the 16th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 782–790 (2005)

11. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree de-
composition to minimize congestion. In: Proceedings of the
15th annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pp. 34–43 (2003)

12. Kaklamanis, C., Krizanc, D., Tsantilas, T.: Tight bounds for obliv-
ious routing in the hypercube. In: Proceedings of the 3rd an-
nual ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 31–36 (1991)

13. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs
and some of its algorithmic applications. In: IEEE Sympo-
sium on Foundations of Computer Science, pp. 577–591
(1994)

14. Maggs, B.M., Miller, G.L., Parekh, O., Ravi, R., Woo, S.L.M.:
Finding effective support-tree preconditioners. In: Sympo-
sium on Parallel Algorithms and Architectures, pp. 176–185
(2005)

15. Räcke, H.: Minimizing congestion in general networks. In: Pro-
ceedings of the 43rd Annual Symposium on the Foundations
of Computer Science, pp. 43–52 (2002)

16. Vaidya, P.: Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners. Un-
published manuscript (1991)

17. Valiant, L., Brebner, G.J.: Universal schemes for parallel commu-
nication. In: Proceedings of the 13th ACM Symposium on The-
ory of Computing, pp. 263–277 (1981)

Obstacle Avoidance Algorithms
inWireless Sensor Networks
2007; Powell, Nikoletseas

SOTIRIS NIKOLETSEAS1, OLIVIER POWELL2
1 Computer Engineering and Informatics Department,
Computer Technology Institute, Patras, Greece

2 Informatics Department, University of Geneva, Geneva,
Switzerland

Keywords and Synonyms

Greedy geographic routing; Routing holes

ProblemDefinition

Wireless sensor networks are composed of many small de-
vices called sensor nodes with sensing, computing and ra-
dio frequency communication capabilities. Sensor nodes
are typically deployed in an ad hoc manner and use their
sensors to collect environmental data. The emerging net-
work collectively processes, aggregates and propagates
data to regions of interest, e. g. from a region where an
event is being detected to a base station or a mobile user.
This entry is concerned with the data propagation duty of
the sensor network in the presence of obstacles.

For different reasons, including energy conservation
and limited transmission range of sensor nodes, informa-
tion propagation is achieved via multi-hop message trans-
mission, as opposed to single-hop long range transmis-
sion. As a consequence, message routing becomes neces-
sary. Routing algorithms are usually situated at the net-
work layer of the protocol stack where the most important
component is the (dynamic) communication graph.

Definition 1 (Communication graph) A wireless sensor
network is viewed as a graph G = (V ; E) where vertexes
correspond to sensor nodes and edges represent wireless
links between nodes.

Wireless sensor networks have stringent constraints that
make classical routing algorithms inefficient, unreliable
or even incorrect. Therefore, the specific requirements of
wireless sensor networks have to be addressed [2] and geo-
graphic routing offers the possibility to design particularly
well adapted algorithms.

Geographic Routing

A geographic routing algorithm takes advantage of the fact
that sensor nodes are location aware, i. e. they know their
position in a coordinate system following the use of a lo-
calization protocol [7]. Although likely to introduce a sig-

Obstacle Avoidance Algorithms in Wireless Sensor Networks O 589

nificant overhead, the use of a localization protocol is also
likely to be inevitable inmany applications where environ-
mental data collected by the sensors would be useless if not
related to some geographical information. For those ap-
plications, node location awareness can be assumed to be
available for routing purposes at no additional cost.

The Power of Simple Geographic Routing The early
“most forward within range” (MFR) or greedy geographic
routing algorithms [14] route messages by maximizing,
at each hop, the progress on a projected line towards
the destination or, alternatively, minimizing the remain-
ing distance to the message’s destination. Both of these
greedy heuristics are referred to as greedy forwarding (GF).
Greedy forwarding is a very appealing routing technique
for wireless sensor networks. Among explanations for the
attractiveness of GF are the following. (1) GF, as is al-
most imperatively required, is fully distributed. (2) It is
lightweight in the sense that it induces no topology con-
trol overhead. (3) It is all-to-all (as opposed to all-to-one).
(4) Making no assumptions on the structure of the com-
munication graph, which can be directed, undirected, sta-
ble or dynamic (e. g. nodes may be mobile or wireless links
may appear and disappear, for example following environ-
mental fluctuation or as a consequence of lower protocol
stack layers such as sleep/awake schemes for energy saving
purposes), it is robust. (5) It is on-demand: no routing table
or gradient has to be built prior to message propagation.
(6) Efficiency is featured as messages find short paths to
their destination in terms of hop count. (7) It is very sim-
ple and thus easy to implement. (8) It ismemory efficient in
the sense that (8a) the only information stored in the mes-
sage header is the message’s destination and that (8b) it is
“ecologically sound” because no “polluting” information is
stored on the sensor nodes visited by messages.

Problem Statement

Although very appealing, GF suffers from a major flaw:
when a message reaches a local minimum where no fur-
ther progress towards the destination is possible the rout-
ing algorithm fails. There are two major reasons for the
occurrence of local minimums: routing holes [1] and ob-
stacles.

Definition 2 The so called routing holes are low density
regions of the network where no sensor nodes are available
for next-hop forwarding.

Even in uniform-randomly deployed networks, routing
holes appear as the manifestation of statistical variance of
node density. Although increasing as network density di-

minishes, routing holes have a severe impact on the per-
formance of GF even for very high density networks [12].

Definition 3 A transmission blocking obstacle is a region
of the network where no sensors are deployed and through
which radio signals do not propagate.

Clearly, large obstacles lying between a message and its
destination tend to make GF fail.

The problem reported in this entry is to find a geo-
graphic routing algorithm that maintains the advantages
of greedy forwarding listed in Sect. “Geographic Rout-
ing” such as simplicity, light weight, robustness and effi-
ciency while overcoming its weaknesses: the inability to es-
cape local minimum nodes created by routing holes and
large transmission blocking obstacles such as those seen in
Fig. 1.

Problem 1 (Escaping routing holes) The first problem is
to route messages out of the many routing holes which are
statistically doomed to occur even in dense networks.

Problem 2 (Contouring obstacles) The second problem
is to design a protocol capable of routing messages around
large transmission blocking obstacles.

Problem 1 can be considered a simplified instance of prob-
lem 2. Lightweight solutions to problem 1 have been previ-
ously proposed, usually using limited backtracking [6] or
controlled flooding combined with a GF heuristic [4,13].
However, as shown in [5] where an integrated model for
obstacles is proposed and where different algorithms are
compared with respect to their obstacle avoidance capa-
bility, those solutions do not satisfactorily solve problem 2
in the sense that only small and simple obstacles are effi-
ciently bypassed.

Key Results

In [12] a new geographic routing around obstacles (GRIC)
algorithmwas proposed to address the problems described
in the previous section.

Basic Idea of the Algorithm

In GF, the strategy is to always propagate the message to
the neighbor that maximizes progress towards the destina-
tion. Similarly, GRIC also maximizes progress in a cho-
sen direction. However, this direction is not necessarily
the message’s destination but an ideal direction of progress
which has to be computed according to one of two pos-
sible strategies: the inertia mode or the rescue mode de-
scribed below. Finally, it was found that performance is
better in the presence of slightly unstable networks, c. f.

590 O Obstacle Avoidance Algorithms in Wireless Sensor Networks

Obstacle Avoidance Algorithms inWireless Sensor Networks, Figure 1
Typical path followed by GRIC to bypass certain obstacles

Result 4, and thus in the case where the communication
graph is very stable it is recommended to use a random-
ized version of GRIC where nodes about to take a routing
decision randomly mark as either passive or active each
outbound wireless link of the communication graph. Only
active wireless links can be used for message propagation,
and link status is re-evaluated each time a new routing de-
cision is taken. Marking links as active with a probability
of p = 0:95 was found to be a good choice for practical
purposes [12].

Inertia Mode The idea of the inertia mode is that a mes-
sage should have a strong incentive to go towards its des-
tination but this incentive should be moderated by one
to follow the straight ahead direction of current motion
“. . . like a celestial body in a planet system . . . ” [12]. The
inertia mode aims at making messages follow closely the

perimeter of routing holes and obstacles in order to even-
tually bypass them and ensure final routing to the destina-
tion. To implement the inertia mode, a single additional
assumption is made: sensor nodes should be aware of the
position of the node from which they receive a message.
As an example, this could be done by piggy-backing this
1-hop away routing path history in the message header.
Knowing its own position p, the message’s destination and
the 1-hop away previous position of the message a sen-
sor node can compute the vectors vcur and vdst starting at
position p and pointing in the direction of current motion
and the direction to the message’s destination respectively.
The inertia mode defines the ideal direction of progress,
vidl, as a vector starting at point p and lying “somewhere in
between” vcur and vdst. More precisely, let ˛ be the only
angle in [�
;
[such that vdst is obtained by applying
a rotation of angle ˛ to vcur, then vidl is the vector ob-

Obstacle Avoidance Algorithms in Wireless Sensor Networks O 591

tained by applying a rotation of angle ˛0 to vcur, where
˛0 = sign(˛) � min

˚
�
6 ; j˛j

�
. Finally, the message is greed-

ily forwarded to the neighbor node maximizing progress
in the computed ideal direction of progress vidl.

Rescue Mode In order to improve overall performance
and to bypass complex obstacles, the rescue mode imitates
the right-hand rule (RHR) which is a well known wall fol-
lower technique to find one’s way out of a maze. A high-
level description of the RHR component of GRIC is given
below while details will be found in [12]. In GRIC, the
RHR makes use of a virtual compass and a flag. The vir-
tual compass assigns to vcur a cardinal point value, treating
themessage’s destination as the north. Considering the an-
gle ˛ defined in the previous section, the compass returns
a string x-y with x equal to north or south if |˛| is smaller
or greater than �

2 respectively, while y is equal to west or
east if ˛ is negative or positive respectively. The first time
the compass returns a south value, the flag is raised and
taggedwith the (x; y) value of the compass. Raising the flag
means that the message is being routed around an obstacle
using the RHR rule if the compass indicates south-west. In
the case where the compass indicates south-east, a sym-
metric case not discussed here for brevity is applied using
the left-hand rule (LHR) instead of the RHR. Once the flag
is raised, it stays up with its tag unchanged until the com-
pass indicates north, meaning that the obstacle has been
bypassed. In fact, a small optimization can be made by
lowering the flag only if the compass points to the north-
west (in the case of the RHR) and not if it points north-
east, but c.f. [12] for details. According to the RHR the ob-
stacle’s perimeter should be followed closely and kept on
the right side of the message’s current direction. If ever the
compass and the flag’s tag disagree, i. e. if the flag is tagged
with south-west and the compass returns south-east, it is
assumed that the message is turning left too much, that
it risks going away from the obstacle and that the RHR is
at risk of being violated (a symmetric case applies for the
LHR). When this is so, GRIC responds by calling the res-
cuemodewhich changes the default way of computing vidl:
in rescuemode themessage is forced to turn right (or left if
the LHR is applied), by defining vidl as the vector obtained
by applying to vcur a rotation of angle ˛00 (instead of ˛0 in
inertia mode) where ˛00 = �sign(˛)(2
 � j˛j)/6.

Main Findings

The performance of GRIC was evaluated through simu-
lations. The main parameters were the presence (or ab-
sence) of different shapes of large communication block-
ing obstacles and the network density which ranged from

very low to very high and controls the average degree of
the communication graph and the occurrence of routing
holes. The main performance metrics were the success
rate, i. e. the percentage of messages routed to destination,
and the path length. The main findings are that GRIC ef-
ficiently, i. e. using short paths, bypasses routing holes and
obstacles but that in the presence of hard obstacles, the
performance decreases with network density. In Figure 1,
typical routing paths found by GRIC for different obstacle
shapes are illustrated, c. f. [12] for details on the simulation
environment.

Result 1 In the absence of obstacles, routing holes are by-
passed for every network density: The success rate is close
to 100% as long as the source and the destination are
connected. Also, routing is efficient in the sense that path
lengths are very short.

Result 2 Some convex obstacles such as the one in Fig. 1b
are bypassed with almost 100% success rate and using short
paths, even for low densities.When the density gets very low
performance diminishes: If the density gets below the criti-
cal level guaranteeing the communication graph to be con-
nected with high probability, then the success probability di-
minishes quickly and successful routings use longer routing
paths.

Result 3 Some large concave obstacles such as those in
Fig. 1c and d are efficiently bypassed. However, when fac-
ing such obstacles performance becomes more sensitive to
network density. The success rate drops and routing paths
become longer when the density gets below a certain level
depending on the exact obstacle shape.

Result 4 (Robustness) Similarly to GF, GRIC is robust to
link instability. Furthermore, it was observed that limited
link instability has a significantly positive impact on per-
formances. This can be understood as the fact that messages
are less likely to enter endless routing loops in a “hot” system
than in a “cold” system.

Applications

Replacement for Greedy Forwarding

Because it makes no compromise with the advantages of
GF except the fact that it may be somehow more compli-
cated to implement and because it overcomes GF’s main
limitations, GRIC can probably replace GF for most rout-
ing scenarios including but not exclusively wireless sen-
sor networks. As an example opportunistic-routing strate-
gies [11] could be applied to GRIC rather than to GF.

592 O O(log log n)-competitive Binary Search Tree

Wireless Sensor Networks with Large Obstacles

GRIC successfully bypasses large communication blocking
obstacles. However, it does so efficiently only if the net-
work density is high enough. This suggests that the ob-
stacle avoidance feature of GRIC may be more useful for
dense wireless networks than for sparse networks. Wire-
less sensor networks are an example of networks which are
usually considered to be dense.

Dynamic Networks

There exist some powerful alternatives to GRIC such as
the celebrated guaranteed delivery protocols GFG [3],
GPSR [8] or GOAFR [10]. Those protocols rely on a pla-
narization phase such as the lazy cross-link detection pro-
tocol (CLDP) [9]. LCR implies significant topology main-
tenance overhead which would be amortized over time
if the network is stable enough. On the contrary, if the
network is highly dynamic the necessity for frequent up-
dates could make this topology maintenance overhead
prohibitive. GRIC may thus be a preferable choice for dy-
namic networks where the communication graph is not
a stable structure.

Open Problems

(1) Hard concave obstacles such as the one in Figure 1d
are still a challenge for lightweight protocol since in this
configuration GRIC’s performance is strongly dependent
on network density. (2) Low to very low densities are chal-
lenging when combined with large obstacles, even when
they are “simple” convex obstacles like the one in Fig-
ure 1b. (3) The problem reported in this entry in the case
of 3-dimensional networks is open. Inertia may be of some
help, however the virtual compass and the right-hand
rule seem quite strongly depend-ant on the 2-dimensional
plane. (4) GRIC is not loop free. A mechanism to detect
loops or excessively long routing paths would be quite im-
portant for practical purposes. (5) The understanding of
GRIC could be improved. Analytical results are lacking
and new metrics could be considered such as network life-
time, energy consumption or traffic congestion.

Cross References

� Probabilistic Data Forwarding in Wireless Sensor
Networks

Recommended Reading
1. Ahmed, N., Kanhere, S.S., Jha, S.: The holes problem in wire-

less sensor networks: a survey. SIGMOBILEMob. Comput. Com-
mun. Rev. 9, 4–18 (2005)

2. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sen-
sor networks: a survey. Wirel. Commun. IEEE 11, 6–28 (2004)

3. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routingwithguar-
anteed delivery in ad hoc wireless networks. In: Discrete Algo-
rithms and Methods for Mobile Computing and Communica-
tions (1999)

4. Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.:
A probabilistic forwarding protocol for efficient data propaga-
tion in sensor networks. In: European Wireless Conference on
Mobility andWireless Systems beyond 3G (EW 2004), pp. 344–
350. Barcelona, Spain, 27 February 2004

5. Chatzigiannakis, I., Mylonas, G., Nikoletseas, S.: Modeling and
evaluation of the effect of obstacles on the performance of
wireless sensor networks. In: 39th ACM/IEEE Simulation Sym-
posium (ANSS), Los Alamitos, CA, USA, IEEE Computer Society,
pp. 50–60 (2006)

6. Chatzigiannakis, I., Nikoletseas S., Spirakis, P.: Smart dust pro-
tocols for local detection and propagation. J. Mob. Netw.
(MONET) 10, 621–635 (2005)

7. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sen-
sor Networks. Wiley, West Sussex (2005)

8. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing
for wireless networks. In: Mobile Computing and Networking.
ACM, New York (2000)

9. Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Lazy cross-link re-
moval for geographic routing. In: Embedded Networked Sen-
sor Systems. ACM, New York (2006)

10. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric
ad-hoc routing: of theory and practice. In: Principles of Dis-
tributed Computing. ACM, New York (2003)

11. Lee, S., Bhattacharjee, B., Banerjee, S.: Efficient geographic
routing in multihop wireless networks. In MobiHoc ’05: Pro-
ceedings of the 6th ACM international symposium on Mobile
ad hoc networking and computing, pp. 230–241. ACM, New
York (2005)

12. Powell, O., Nikolesteas, S.: Simple and efficient geographic
routing around obstacles for wireless sensor networks. In:
WEA 6th Workshop on Experimental Algorithms, Rome, Italy.
Springer, Berlin (2007)

13. Stojmenovic, I., Lin, X.: Loop-free hybrid single-path/flooding
routing algorithms with guaranteed delivery for wireless net-
works. IEEE Trans. Paral. Distrib. Syst. 12, 1023–1032 (2001)

14. Takagi, H., Kleinrock, L.: Optimal transmission ranges for ran-
domly distributed packet radio terminals. Communications,
IEEE Trans. [legacy, pre - 1988]. 32, 246–257 (1984)

O(log logn)-competitive Binary
Search Tree
2004; Demaine, Harmon, Iacono, Patrascu

CHENGWEN CHRIS WANG
Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA

Keywords and Synonyms

Tango

O(log log n)-competitive Binary Search Tree O 593

ProblemDefinition

Here is a precise definition of BST algorithms and their
costs. This model is implied by most BST papers, and de-
veloped in detail by Wilber [22]. A static set of n keys is
stored in the nodes of a binary tree. The keys are from
a totally ordered universe, and they are stored in symmet-
ric order. Each node has a pointer to its left child, to its
right child, and to its parent. Also, each node may keep
o(log n) bits of additional information but no additional
pointers.

A BST algorithm is required to process a sequence
of m accesses (without insertions or deletions), S = s1; s2;
s3; s4 : : : sm . The ith access starts from the root and follows
pointers until si is reached. The algorithm can update the
fields in any node or rotate any edges that it touches along
the way. The cost of the algorithm to execute an access se-
quence is defined to be the number of nodes touched plus
the number of rotations.

Let A be any BST algorithm, define A(S) as the cost
of performing sequence S and OPT(S; T0) as the mini-
mum cost to perform the sequence S. An algorithm A
is T-competitive if for all possible sequences S, A(S) �
T � OPT(S; T0) + O(m + n).

Since the number of rotation needed to change any bi-
nary tree of n keys into another one (with the same n keys)
is at most 2n � 6 [4,5,12,13,15]. It follows that OPT(S; T0)
differs from OPT(S; T 00) by atmost 2n � 6. Thus, ifm > n,
then the initial tree can only affect the constant factor.

Key Results

The interleave bound is a lower bound on OPT(S; T0) that
depends only on S. Consider any binary search tree P of all
the elements in T0. For each node y in P, define the left side
of y includes all nodes in y’s left subtree and y. And define
the right side of y includes all nodes in y’s right subtree. For
each node y, label each access si in S by whether it is in the
left or right side of y, ignoring all accesses not in y’s sub-
tree. Denote the number of times the label changes for y as
IB(S; y). The interleave bound IB(S) is

P
y IB(S; y).

Theorem 1 (Interleave Lower Bound [6,22]) IB(S)/2�n
is a lower bound on OPT(S; T0).

Demaine et al observes that it is impossible to use this
lower bound to improve the competitive ratio beyond
	(log log n).

Theorem 2 (Tango is O(log log n)-competitive BST [6])
The running time of Tango BST on a sequence S of m ac-
cesses is O((OPT(S; T0)) + n) � (1 + log log n)).

Applications

Binary search tree (BST) is one of the oldest data structures
in the history of computer science. It is frequently used to
maintain an ordered set of data. In the last 40 years, many
specialized binary search trees have been designed for spe-
cific applications. Almost every one of them supports ac-
cess, insertion and deletion in worst-case O(log n) time on
average for random sequences of access. This matches the
best theoretically possible worst-case bound. For most of
these data structures, a random sequence ofm accesses will
use	(m log n) time.

While it is impossible to have better asymptotic per-
formance for a random sequence of m accesses, many of
the real world access sequences are not random. For in-
stance, if the set of accesses are randomly drawn from
a small subset of k element, it’s possible to answer all the
accesses in O(m log k) time. A notable binary search tree
is Splay Tree. It is proved to perform well for many ac-
cess patterns [2,3,8,14,16,17,18]. As a result, Sleator and
Tarjan [14] conjectured that splay tree isO(1)-competitive
to the optimal off-line BST. After more than 20 years, the
conjecture remains an open problem.

Over the years, several restricted types of optimality
have been proved. Many of these restrictions and usage
patterns are based on real world applications. If each ac-
cess is drawn independently at random from a fixed distri-
bution, D, Knuth [11] constructed a BST based on D that
is expected to run in optimal time up to a constant factor.
Sleator and Tarjan [14] achieve the same bound without
knowing D ahead of time. Other types includes key-inde-
pendent optimality [10] and BST with free rotations [1].

In 2004, Demaine et al suggested searching for alter-
native BST algorithms that have small but non-constant
competitive factors [6]. They proposed Tango, the first
data structure proved to achieve a non-trivial competitive
factor of O(log log n). This is a major step toward develop-
ing aO(1)-competitive BST, and this line of research could
potentially replace a large number of specialized BSTs.

Open Problems

Following this paper, several newO(log log n)-competitive
BST have emerged [9,21]. A notable example is Multi–
Splay Trees [21]. It generalizes the interleave bound to
include insertions and deletions. Multi–Splay Trees also
have many theorems analogous to Splay Trees [20,21],
such as the access lemma and the working set theorem.
Wang [21] conjectured that Multi-Splay Trees is O(1)-
competitive, but it remains an open problem.

Returning to the original motivation for this research,
the problem of finding an o(log log n)-competitive on-line

594 O Online Interval Coloring

BST remains open. Several attempts have been made to
improve the lower bound [6,7,22], but none of them have
led to a lower competitive ratio. Even in the off-line model,
the problem of finding an O(1)-competitive BST is diffi-
cult. The best known off-line constant competitive algo-
rithm uses dynamic programming and requires exponen-
tial time.

Cross References

� B-trees
� Degree-Bounded Trees
� Dynamic Trees

Recommended Reading

Based on Wilber [22]’s lower bound, Tango [6] is the first
O(log log n)-competitive binary search tree. Using many
of the ideas in Tango and Link-cut Trees [14,19], Multi-
Splay Trees [21] generalize the competitive framework to
include insertion and deletion. The recommended read-
ings are Self-adjusting binary search trees by Sleator and
Tarjan, Lower bounds for accessing binary search trees with
rotations by Wilber, Dynamic Optimality - Almost by De-
maine, et al, and O(log log n) dynamic competitive binary
search tree by Wang, et al.

1. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic
search-optimality in lists and trees. Algorithmica 36, 249–260
(2003)

2. Cole, R.: On the dynamic finger conjecture for splay trees II: The
proof. SIAM J. Comput. 30(1), 44–85 (2000)

3. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic fin-
ger conjecture for splay trees I: Splay sorting log n-block se-
quences. SIAM J. Comput. 30(1), 1–43 (2000)

4. Crane, C.A.: Linear lists and priority queues as balanced bi-
nary trees. Technical Report STAN-CS-72-259, Computer Sci-
ence Dept., Stanford University (1972)

5. Culik II, K., Wood, D.: A note on some tree similarity measures.
Inf. Process. Lett. 15(1), 39–42 (1982)

6. Demaine, E.D., Harmon, D., Iacono, J., Patrascu, M.: Dynamic
optimality—almost. SIAM J. Comput. 37(1), 240–251 (2007)

7. Derryberry, J., Sleator, D.D., Wang, C.C.: A lower bound frame-
work for binary search trees with rotations. Technical Report
CMU-CS-05-187, Carnegie Mellon University (2005)

8. Elmasry, A.: On the sequential access theorem and deque con-
jecture for splay trees. Theor. Comput. Sci. 314(3), 459–466
(2004)

9. Georgakopoulos, G.F.: How to splay for log log n-competitive-
ness. In: Proc. 4th Int’l Workshop on Experimental and Efficient
Algorithms (WEA), pp. 570–579 (2005)

10. Iacono, J.: Key-independent optimality. Algorithmica 42(1), 3–
10 (2005)

11. Knuth, D.E.: Optimum binary search trees. Acta Informatica 1,
14–25 (1971)

12. Luccio, F., Pagli, L.: On the upper bound on the rotation dis-
tance of binary trees. Inf. Process. Lett. 31(2), 57–60 (1989)

13. Mäkinen, E.: On the rotation distance of binary trees. Inf. Pro-
cess. Lett. 26(5), 271–272 (1988)

14. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees.
J. ACM 32(3), 652–686 (1985)

15. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, tri-
angulations, and hyperbolic geometry. In: Proceedings 18th
ACM Symposium on Theory of Computing (STOC), Berkeley,
1986, pp. 122–135

16. Sundar, R.: Twists, turns, cascades, deque conjecture, and scan-
ning theorem. In: Proceedings 30th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 555–559 (1989)

17. Sundar, R.: On the deque conjecture for the splay algorithm.
Combinatorica 12(1), 95–124 (1992)

18. Tarjan, R.: Sequential access in play trees takes linear time.
Combinatorica 5(4), 367–378 (1985)

19. Tarjan, R.E.: Data structures and network algorithms, CBMS-NSF
Reg. Conf. Ser. Appl.Math., vol. 44. SIAM, Philadelphia, PA (1983)

20. Wang, C.C.: Multi-splay trees. Ph.D. Thesis, Carnegie Mellon
University (2006)

21. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competi-
tive dynamic binary search trees. In: Proc. 17th Annual ACM-
SIAMSymposiumon Discrete Algorithms (SODA),Miami, 2006,
pp. 374–383

22. Wilber, R.: Lower bounds for accessing binary search trees with
rotations. SIAM J. Comput. 18(1), 56–67 (1989)

Online Interval Coloring
1981; Kierstead, Trotter

LEAH EPSTEIN
Department of Math, University of Haifa, Haifa, Israel

Keywords and Synonyms

An extremal problem in recursive combinatorics

ProblemDefinition

Online interval coloring is a graph coloring problem. In
such problems the vertices of a graph are presented one by
one. Each vertex is presented in turn, along with a list of its
edges in the graph, which are incident to previously pre-
sented vertices. The goal is to assign colors (which without
loss of generality are assumed to be non-negative integers)
to the vertices, so that two vertices which share an edge re-
ceive different colors, and the total number of colors used
(or alternatively, the largest index of any color that is used)
is minimized. The smallest number of colors, for which the
graph still admits a valid coloring, is called the chromatic
number of the graph.

The interval coloring problem is defined as follows. In-
tervals on the real line are presented one by one, and the
online algorithm must assign each interval a color before

Online Interval Coloring O 595

the next interval arrives, so that no two intersecting inter-
vals receive the same color. The goal is again to minimize
the number of colored used to color any interval. The last
problem is equivalent to coloring of interval graphs. These
are graphs which have a representation (or realization)
where each interval represents a vertex, and two vertices
share an edge if and only if they intersect. It is assumed
that the interval graph arrives online together with its re-
alization.

Given an interval graph, denote the size of the largest
cardinality clique (complete subgraph) in it by !. Interval
graphs have the special property that in a realization, the
set of vertices in a clique have a common point in which
they all intersect.

Before discussing the online problem, some properties
of interval graphs need to be stated. There exists a simple
offline algorithm which produces an optimal coloring of
interval graphs. An algorithm applies First Fit, if each time
it needs to assign a color to an interval, it assigns a smallest
index color which still produces a valid coloring. The op-
timal algorithm simply considers intervals sorted from left
to right by their left endpoints, and applies First Fit. Note
that the resulting coloring never uses more than ! colors.
Indeed, interval graphs are perfect1.

However, once intervals arrive online in an arbitrary
order, it is impossible to design an optimal coloring. Con-
sider a simple example where the two intervals [1,3] and
[6,8] are introduced. If they are colored using two dis-
tinct colors, this is already sub-optimal, since using the
same color for both of them is possible. However, if the se-
quence of intervals is augmentedwith [2,5] and [4,7], these
two new intervals cannot receive the color of the previous
intervals, or the same color for both new intervals. Thus
three colors are used, even though a valid coloring using
two colors can be designed. Note that even if it is known
in advance that the input can be colored using exactly two
colors, not knowing whether the additional intervals are
as defined above, or alternatively, a single interval [2,7] ar-
rives instead, leads to the usage of three colors instead of
only two.

Online coloring is typically hard, which already ap-
plies to some simple graph classes such as trees. This is
due to the lower bound of ˝(log n), given by Gyárfás
and Lehel [9] on the competitive ratio of online color-
ing of trees. There are very few classes for which constant
bounds are known. One such class is line graphs, for which
Bar-Noy, Motwani and Naor [3] showed that First-Fit is

1A graph G is perfect if any induced subgraph of G, G0 (includ-
ing G), can be colored using !(G0) colors, where !(G0) is the size of
the largest cardinality clique in G0. (For any graph, ! is a clear lower
bound on its chromatic number).

2-competitive (specifically it uses at most 2 � opt�1 colors,
where OPT is the number of colors in an optimal coloring),
and this is best possible. This result was later generalized
to k � opt � k + 1 for (k + 1)-claw free graphs by [6] (note
that line graphs are 3-claw free).

Key Results

The paper of Kierstead and Trotter [11] provides a solu-
tion to the online interval coloring problem. They show
that the best possible competitive ratio is 3 which is
achieved by an algorithm they design.More accurately, the
following theorem is proved in the paper.

Theorem 1 Given an interval graph which is introduced
online, and presented via its realization, any online algo-
rithm uses at least 3! � 2 colors to color the graph, and
there exists an algorithm which achieves this bound.

In the sequel the algorithm and the lower bound construc-
tion are described. Note that the algorithm does not need
to know ! in advance. Moreover, even though the algo-
rithm is deterministic, it was shown in [12] that the lower
bound of 3 on the competitive ratio of online algorithms
for interval coloring holds for randomized algorithms as
well. Thus [11], gives a complete solution for the problem!

The main idea of the algorithm is creation of “levels”.
At the time of arrival of an interval, it is classified into
a level as follows. Denote by Ak the union of sets of inter-
vals which currently belong to all levels 1; : : : ; k. Intervals
are classified so that the largest cardinality clique in Ak is
of size k. Thus, A1 is simply a set of non-intersecting in-
tervals. On arrival of an interval, the algorithm finds the
smallest k such that the new interval can join level k, with-
out violating the rule above. It can be shown that each level
can be colored using two colors by an offline algorithm.
Since the algorithm defined here is online, such a coloring
cannot be found in general (see example above). However
it is shown in [11] that at most three colors are required
for each such level, and a coloring using three colors can
be found by applying First Fit on each level (with disjoint
sets of colors). Moreover, the first level can always colored
using a single color, and ! is equal exactly to the number
of levels. Thus a total number of colors, which is at most
3! � 2, is used.

Next, the deterministic lower bound is sketched. The
idea is to create levels as in the algorithm. The levels are
called phases. Each phase increases the largest clique size
by 1, until the value ! is reached. Moreover, every phase
(except for the first one) increases the number of colors
used by the algorithm by 3.

596 O Online Interval Coloring

After each phase was created, some parts of the line are
shrunk into single points. Given a point p, that is a result
of shrinking an interval [a; b]. Every interval presented in
the past which is contained in [a; b] is also shrunk into p
and therefore such a point inherits a list of colors which
no interval that contains it can receive. This is done for
simplicity of the proof and means that for a given point p
that is the result of shrinking, either contains all intervals
that were shrunk into this point, or it has no overlap with
any of them.

The sequence construction stops once 3! � 2 colors
have been used. Therefore it can be assumed that an initial
palette of 3!�3 colors is given, where these colored can all
be used by the algorithm. The ith color ever used is called
color number i. As soon as color 3! � 2 is used (even if it
is before the construction is completed), the construction
stops. The constructed input has a maximum clique is of
size (at most) !.

The sequence starts with introducing a large enough
number of intervals N, this is phase 0. Since the algorithm
is using at most 3! � 3 colors, this means that there exists
a set of N/(3!�3) intervals that share the exact same color.
All intervals are shrunk into single points. Later phases re-
sult in additional points.

Next, phase i < ! is defined. The phases are con-
structed in a way that in the beginning of phase i there is
a large enough number of points that contain a given set
of 3i � 2 colors (points of interest). Without loss of gener-
ality, assume that these are colors 1 : : : ; 3i � 2 where the
size of the largest clique is i. There exist some other points
containing other sets of i colors, or sets of at most i � 1
colors. All these points are called void points. At this time,
the points of interest are partitioned into consecutive sets
of four.

Next, some additional intervals are defined, increasing
the size of largest clique by exactly one. Given a set of four
points a1; a2; a3; a4, let b be the leftmost void point on the
right hand side of a1, between a1 and a2. If no such point
exists, then let b = (a1 + a2)/2. Similarly, let c be the right-
most void point between a3 and a4, and if no such point
exists then c = (a3 + a4)/2. Let d be a point between a2 and
a3 that is not a void point. The intervals I1 = [a1; (a1+b)/2]
and I2 = [(c + a4)/2; a4] are introduced. Clearly none of
them may receive one of the currently used 3i � 2 col-
ors. If they both receive the same new color, the inter-
vals I3 = [(a1 + b)/2; d] and I4 = [d; (c + a4)/2] are in-
troduced. The interval I3 intersects with a2, and with I1.
Therefore it receives an additional color. The second inter-
val I4 intersects I3, a3 and I2. Therefore a third new color is
given to it. If I1, I2 receive distinct new colors, the interval
I5 = [(a1+b)/2; (c+a4)/2] is introduced. Since I5 intersects

with I1, I2, a2, a3, it must get a third new color. Every such
interval [a1; a4] is shrunk into a single point containing
3i + 1 colors. Since there are less than 3! colors, and each
point uses exactly 3i + 1 < 3! of them, there are less than
(3!)! such choices, and a large enough number of points,
having the same set of colors, can be picked. The points
containing this exact set of colors become the points of in-
terest of the next phase, and the others become void points
of the next phase. Points that are void points of previous
phases and are not contained in shrunk intervals remain
void points. The only points where the new intervals in-
tersect are points with no previous intervals, and therefore
the clique size increases by 1 exactly.

At this time phase i + 1 can be performed. After phase
!�1, there are at least 3!�2 colors in use and the claim is
proved. Note that prior to that phase, a minimum number
of four points of interest is required.

Applications

In this section, both real-world applications of the prob-
lem, and applications of the methods of Kierstead and
Trotter [11] to related problems, are discussed.

Many applications arise in various communication
networks. The need for connectivity all over the world is
rapidly increasing. On the other hand, networks are still
composed of very expensive parts. Thus application of op-
timization algorithms is required in order to save costs.

Consider a network with a line topology that consists
of links. Each connection request is for a path between
two nodes in the network. The set of requests assigned
to a channel must consist of disjoint paths. The goal is to
minimize the number of channels (colors) used. A connec-
tion request from a to b corresponds to an interval [a; b]
and the goal is to minimize the number of required chan-
nels to serve all requests.

Another network related application is that if the re-
quests have constant duration c, and all requests have to be
served as fast as possible. In this case the colors correspond
to time slots, and the total number of colors corresponds
to the schedule length.

These are just sample applications, the problem can be
described as a scheduling problem as well, and it is clearly
of theoretical interest being a natural online graph color-
ing problem.

Two later studies are of possible interest here, both due
to their relevance to the original problem and for the usage
of related methods.

The applications in networks stated above raise a gen-
eralized problem studied in the recent years. In these ap-
plications, it is assumed that once a connection request be-

Online Interval Coloring O 597

tween two points is satisfied, the channel is blocked at least
for the duration of this request. An interesting question,
that was raised by Adamy and Erlebach [1], is the follow-
ing. Assume that a request consists not only of a requested
interval, but also from a bandwidth requirement. That is,
a customer of a communication channel specifies exactly
how much of the channel is needed. Thus, in some cases it
is possible to have overlapping requests sharing the same
channel. It is required that at every point, the sum of all
bandwidth requirements of requests sharing a color can-
not exceed the value 1, which is the capacity of the chan-
nel. This problem is called online interval coloring with
bandwidth. In the paper [1], a (large) constant competi-
tive algorithm was designed for the problem. The original
interval coloring problem is a special case of this problem
where all bandwidth requests are 1. Note that this problem
is a generalization of bin packing as well, since bin packing
is the special case of the problem where all requests have
a common point. Azar et al. [2] designed an algorithm of
competitive ratio of at most 10 for this problem. This was
done by partitioning the requests into four classes based
on their bandwidth requirements, and coloring each such
class separately. The class of requests with bandwidth in� 1
2 ; 1

was colored using the basic algorithm of [11], since

no two such requests colored with one color can overlap.
The two other classes, which are

�
0; 14

and (14 ;

1
2] were col-

ored using adaptations of the algorithm of [11]. Epstein
and Levy [7,8] designed improved lower bounds on the
competitive ratio, showing that online interval coloring
with bandwidth is harder than online interval coloring.

Another problem related to coloring is the max color-
ing problem. In this problem each interval is given a non-
negative weight. Given a coloring, the weight of a color
is the maximum weight of any vertex of this color. The
goal is to minimize the sum of weights of the used col-
ors. Note that if all weights are 1, max coloring reduces
to the graph coloring problem. Pemmaraju, Raman and
Varadarajan [13] studied the offline max coloring prob-
lem for interval graphs. They apply an algorithm which
is based on the algorithm of [11]. Thus, they sort the in-
tervals according to their weights, in a monotone non-
increasing order. However, since their algorithm is not on-
line, they exploit the property stated above, that every level
is actually 2-colorable, and thus this results in an offline
2-approximation tomax coloring on interval graphs.

Epstein and Levin [5] studied online max coloring on
interval graphs. They design a general reduction which al-
lows to convert algorithms for graph coloring into algo-
rithms for max coloring. The loss in the competitive ra-
tio is a multiplicative factor of 4 for deterministic algo-
rithms, and a factor of e 	 2:718 for randomized algo-

rithms. Thus, using the algorithm of [11] as a black box,
they obtained a 12-competitive deterministic algorithm
and a 3 � e 	 8:155-competitive randomized algorithm.
Another result of [5] is lower bound of 4 on the competi-
tive ratio of any randomized algorithm.

Open Problems

Since the paper [11] provided a nice and clean solution to
the online interval coloring problem, it does not directly
raise open problems. Yet, one related problem is of inter-
est to researchers over the last thirty years, which is the
performance of First Fit on this problem. It was shown
by Kierstead [10] that First Fit uses at most 40! colors,
thus implying that First Fit has a constant competitive ra-
tio. The quest after the exact competitive ratio was never
completed. The best current published results are an up-
per bound of 10k by [13] and a lower bound of 4.4k by
Chrobak and Slusarek [4]. See [14] for recent develop-
ments. It is interesting to note that for online interval col-
oring with bandwidth, First Fit has an unbounded com-
petitive ratio [1].

Another open problem is to find the best possible com-
petitive ratios for online interval coloring with bandwidth
and for max coloring of interval graphs. As stated above,
the gap for coloring with bandwidth is currently between
24/7 	 3:4286 by [7,8] and 10 [2], and the gap for max
coloring is between 4 and 12 [5].

Recommended Reading
1. Adamy, U., Erlebach, T.: Online coloring of intervals with band-

width. In: Proc. of the First International Workshop on Approx-
imation and Online Algorithms (WAOA2003), pp. 1–12 (2003)

2. Azar, Y., Fiat, A., Levy, M., Narayanaswamy, N.S.: An improved
algorithm for online coloring of intervals with bandwidth.
Theor. Comput. Sci. 363(1), 18–27 (2006)

3. Bar-Noy, A., Motwani, R., Naor, J.: The greedy algorithm is op-
timal for on-line edge coloring. Inf. Proc. Lett. 44(5), 251–253
(1992)

4. Chrobak, M., Ślusarek, M.: On some packing problems relating
to dynamical storage allocation. RAIRO J. Inf. Theor. Appl. 22,
487–499 (1988)

5. Epstein, L., Levin, A.: On the max coloring problem. In: Proc. of
the Fifth International Workshop on Approximation and On-
line Algorithms (WAOA2007) (2007), pp. 142–155

6. Epstein, L., Levin, A., Woeginger, G.J.: Graph coloring with re-
jection. In: Proc. of 14th European Symposium on Algorithms
(ESA2006), pp. 364–375. (2006)

7. Epstein, L., Levy, M.: Online interval coloring and variants. In:
Proc. of The 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP2005), pp. 602–613. (2005)

8. Epstein, L., Levy, M.: Online interval coloring with packing
constraints. In: Proc. of the 30th International Symposium on
Mathematical Foundations of Computer Science (MFCS2005),
pp. 295–307. (2005)

598 O Online Learning

9. Gyárfás, A., Lehel, J.: Effective on-line coloring of P5-free
graphs. Combinatorica 11(2), 181–184 (1991)

10. Kierstead, H.A.: The linearity of first-fit coloring of interval
graphs. SIAM J. Discret. Math. 1(4), 526–530 (1988)

11. Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive
combinatorics. Congr. Numerantium 33, 143–153 (1981)

12. Leonardi, S., Vitaletti, A.: Randomized lower bounds for online
path coloring. In: Proc. of the second International Workshop
on Randomization and Approximation Techniques in Com-
puter Science (RANDOM’98), pp. 232–247. (1998)

13. Pemmaraju, S., Raman, R., Varadarajan, K.: Buffer minimiza-
tion using max-coloring. In: Proc. of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2004),
pp. 562–571. (2004)

14. Trotter, W.T.: Current research problems: First Fit colorings of
interval graphs. http://www.math.gatech.edu/~trotter/rprob.
htm Access date: December 24, 2007.

Online Learning
� Perceptron Algorithm

Online List Update
1985; Sleator, Tarjan

SUSANNE ALBERS
Institute for Computer Science, University of Freiburg,
Freiburg, Germany

Keywords and Synonyms

Self organizing lists

ProblemDefinition

The list update problem represents a classical online prob-
lem and, beside paging, is the first problem that was stud-
ied with respect to competitiveness. The list update prob-
lem is to maintain a dictionary as an unsorted linear list.
Consider a set of items that is represented as a linear linked
list. The system is presented with a request sequence � ,
where each request is one of the following operations.
(1) It can be an access to an item in the list, (2) it can be an
insertion of a new item into the list, or (3) it can be a dele-
tion of an item. To access an item, a list update algorithm
starts at the front of the list and searches linearly through
the items until the desired item is found. To insert a new
item, the algorithm first scans the entire list to verify that
the item is not already present and then inserts the item at
the end of the list. To delete an item, the algorithm scans
the list to search for the item and then deletes it.

In serving requests a list update algorithm incurs cost.
If a request is an access or a delete operation, then the in-
curred cost is i, where i is the position of the requested
item in the list. If the request is an insertion, then the cost
is n + 1, where n is the number of items in the list be-
fore the insertion. While processing a request sequence,
a list update algorithm may rearrange the list. Immedi-
ately after an access or insertion, the requested item may
be moved at no extra cost to any position closer to the
front of the list. These exchanges are called free exchanges.
Using free exchanges, the algorithm can lower the cost
on subsequent requests. At any time two adjacent items
in the list may be exchanged at a cost of 1. These ex-
changes are called paid exchanges. The goal is to serve the
request sequence so that the total cost is as small as possi-
ble.

Of particular interest are list update algorithms that
work online, i. e. each request is served without knowl-
edge of any future requests. The performance of online
algorithms is usually evaluated using competitive analysis.
Here an online strategy is compared to an optimal offline
algorithm that knows the entire request sequence in ad-
vance and can serve it withminimum cost. Given a request
sequence � , let A(�) denote the cost incurred by an on-
line algorithm A in serving � , and let OPT(�) denote the
cost incurred by an optimal offline algorithm OPT. On-
line algorithm A is called c-competitive if there is a con-
stant ˛ such that for all size lists and all request sequences
�;A(�) � c�OPT(�)+˛. The factor c is also called the com-
petitive ratio. The competitiveness must hold for all size
lists.

Key Results

There are three well-known deterministic online algo-
rithms for the list update problem.

Algorithm Move-To-Front: Move the requested item
to the front of the list.

Algorithm Transpose: Exchange the requested item
with the immediately preceding item in the list.

Algorithm Frequency-Count: Maintain a frequency
count for each item in the list. Whenever an item is re-
quested, increase its count by 1. Maintain the list so that
the items always occur in nonincreasing order of fre-
quency count.

The formulations of list update algorithms generally
assume that a request sequence consists of accesses only.
It is obvious how to extend the algorithms so that they
can also handle insertions and deletions. On an insertion,
the algorithm first appends the new item at the end of the
list and then executes the same steps as if the item was re-

http://www.math.gatech.edu/~trotter/rprob.htm
http://www.math.gatech.edu/~trotter/rprob.htm

Online List Update O 599

quested for the first time. On a deletion, the algorithm first
searches for the item and then just removes it.

First consider the algorithms Move-To-Front, Trans-
pose and Frequency-Count. Note thatMove-To-Front and
Transpose are memoryless strategies, i. e. they do not need
any extramemory to decide where a requested item should
be moved. Thus, from a practical point of view, they are
more attractive than Frequency-Count. Sleator and Tar-
jan [16] analyzed the competitive ratios of the three algo-
rithms.

Theorem 1 ([16]) The Move-To-Front algorithm is
2-competitive.

The algorithms Transpose and Frequency-Count are not
c-competitive, for any constant c.

Karp and Raghavan [13] developed a lower bound on
the competitiveness that can be achieved by deterministic
online algorithms. This lower bound implies that Move-
To-Front has an optimal competitive ratio.

Theorem 2 ([13]) Let A be a deterministic online algo-
rithm for the list update problem. If A is c-competitive, then
c � 2.

An interesting issue is randomization in the list up-
date problem. Against adaptive adversaries, no random-
ized online algorithm for list update can be better than
2-competitive, see [6,14]. Thus one concentrates on algo-
rithms against oblivious adversaries.Many randomized al-
gorithms for list update have been proposed [1,2,12,14].
The following paragraphs describe the two most impor-
tant algorithms. Reingold et al. [14] gave a very simple al-
gorithm, called Bit.

Algorithm Bit: Each item in the list maintains a bit
that is complemented whenever the item is accessed. If an
access causes a bit to change to 1, then the requested item
is moved to the front of the list. Otherwise the list remains
unchanged. The bits of the items are initialized indepen-
dently and uniformly at random.

Theorem 3 ([14]) The Bit algorithm is 1.75-competitive
against any oblivious adversary.

Reingold et al. [14] generalized the Bit algorithm and
proved an upper bound of

p
3 	 1:73 against oblivi-

ous adversaries. The best randomized algorithm currently
known is a combination of the Bit algorithm and a deter-
ministic 2-competitive online algorithm called Timestamp
proposed in [1].

Algorithm Timestamp (TS): Insert the requested
item, say x, in front of the first item in the list that pre-
cedes x and that has been requested at most once since the
last request to x. If there is no such item or if x has not been
requested so far, then leave the position of x unchanged.

As an example, consider a list of six items being in the
order L : x1 ! x2 ! x3 ! x4 ! x5 ! x6. Suppose that
algorithm TS has to serve the second request to x5 in the
request sequence � = : : : x5; x2; x2; x3; x1; x1; x5. Items x3
and x4 were requested atmost once since the last request to
x5, whereas x1 and x2 were both requested twice. Thus, TS
will insert x5 immediately in front of x3 in the list. A com-
bination of Bit and TS was proposed by [3].

Algorithm Combination: With probability 4
5 the al-

gorithm serves a request sequence using Bit, and with
probability 1

5 it serves a request sequence using TS.
Combination achieves the best competitive ratio cur-

rently known.

Theorem 4 ([2]) The algorithm Combination is 1.6-com-
petitive against any oblivious adversary.

Ambühl et al. [4] presented a lower bound for randomized
list update algorithms.

Theorem 5 ([4]) Let A be a randomized online algorithm
for the list update problem. If A is c-competitive against any
oblivious adversary, then c � 1:50084.

Using techniques from learning theory, Blum et al. [9] re-
cently gave a randomized online algorithm that, for any
� > 0, is (1:6+�)-competitive and at the same time (1+�)-
competitive against an offline algorithm that is restricted
to serving a request sequence with a static list.

So far this entry has considered online algorithms.
In the offline variant of the list update problem, the en-
tire request sequence � is known in advance. Ambühl [3]
showed that the offline variant is NP-hard.

Reingold et al. [14] studied an extended cost model,
called the Pd model, for the list update problem. In the
Pd model there are no free exchanges and each paid ex-
change costs d. Reingold et al. analyzed deterministic and
randomized strategies in this model.

Many of the concepts shown for self-organizing linear
lists can be extended to binary search trees. The most pop-
ular version of self-organizing binary search trees are the
splay trees presented by Sleator and Tarjan and the reader
is refered to [17].

Regarding the history of the list update problem, prior
to competitive analysis, list update algorithms were stud-
ied in scenarios where request sequences are generated ac-
cording to probability distributions. The asymptotic ex-
pected cost incurred by an online algorithm in serving
a single request was compared to corresponding cost in-
curred by the optimal static ordering. There exists a large
body of literature. Chung et al. [11] showed that, for
any distribution, the asymptotic service cost of Move-To-
Front is at most
/2 times that of the optimal ordering.

600 O Online List Update

This bound is tight. Rivest [15] identified distributions on
which Transpose performs better than Move-To-Front.

Applications

Linear lists are one possibility for representing a set of
items. Certainly, there are other data structures such as
balanced search trees or hash tables that, depending on
the given application, can maintain a set in a more effi-
cient way. In general, linear lists are useful when the set
is small and consists of only a few dozen items. The most
important application of list update algorithms are locally
adaptive data compression schemes. In fact, Burrows and
Wheeler [10] developed a data compression scheme using
linear lists that achieves a better compression than Ziv-
Lempel based algorithms. Before the description of that al-
gorithm, the next paragraph first presents a data compres-
sion scheme given by Bentley et al. [8] that is very simple
and easy to implement.

In data compression one is given a string S that shall
be compressed, i. e. that shall be represented using fewer
bits. The string S consists of symbols, where each symbol
is an element of the alphabet ˙ = fx1; : : : ; xng. The idea
of data compression schemes using linear lists it to con-
vert the string S of symbols into a string I of integers. An
encoder maintains a linear list of symbols contained in ˙
and reads the symbols in the string S. Whenever the sym-
bol xi has to be compressed, the encoder looks up the cur-
rent position of xi in the linear list, outputs this position
and updates the list using a list update rule. If symbols to
be compressed are moved closer to the front of the list,
then frequently occurring symbols can be encoded with
small integers. A decoder that receives I and has to recover
the original string S also maintains a linear list of symbols.
For each integer j it reads from I, it looks up the symbol
that is currently stored at position j. Then the decoder up-
dates the list using the same list update rule as the encoder.
As list update rule one may use any (deterministic) online
algorithm. Clearly, when the string I is actually stored or
transmitted, each integer in the string should be coded us-
ing a variable length prefix code.

Burrows and Wheeler [10] developed a very effective
data compression algorithm using self-organizing lists.
The algorithm first applies a reversible transformation to
the string S. The purpose of this transformation is to group
together instances of a symbol xi occurring in S. The re-
sulting string S0 is then encoded using the Move-To-Front
algorithm. More precisely, the transformed string S0 is
computed as follows. Let m be the length of S. The algo-
rithm first computes the m rotations (cyclic shifts) of S
and sorts them lexicographically. Then it extracts the last

character of these rotations. The kth symbol of S0 is the
last symbol of the kth sorted rotation. The algorithm also
computes the index J of the original string S in the sorted
list of rotations. Burrows andWheeler gave an efficient al-
gorithm to recover the original string S given only S0 and
J. The corresponding paper [10] gives a very detailed de-
scription of the algorithm and reports of experimental re-
sults. On the Calgary Compression Corpus [18], the algo-
rithm outperforms the UNIX utilities compress and gzip
and the improvement is 13% and 6%, respectively.

Open Problems

The most important open problem is to determine tight
upper and lower bounds on the competitive ratio that can
be achieved by randomized online list update algorithms
against oblivious adversaries. It is not clear what the true
competitiveness is. It is conjectured that the bound is be-
low 1.6. However, as implied by Theorem 5 the perfor-
mance ratio must be above 1.5.

Experimental Results

Early experimental analyses of the algorithms Move-To-
Front, Transpose and Frequency Count were performed
by Rivest [15] as well as Bentley and McGeoach [7].
A more recent and extensive experimental study was pre-
sented by Bachrach et al. [5]. They implemented and tested
a large number of online list update algorithms on re-
quest sequences generated by probability distributions and
Markov chains as well as on sequences extracted from the
Calgary Corpus. It shows that the locality of reference con-
siderably influences the absolute and relative performance
of the algorithms. Bachrach et al. also analyzed the various
algorithms as data compression strategies.

Recommended Reading
1. Albers, S.: Improved randomized on-line algorithms for the list

update problem. SIAM J. Comput. 27, 670–681 (1998)
2. Albers, S., von Stengel, B., Werchner, R.: A combined BIT and

TIMESTAMP algorithm for the list update problem. Inf. Proc.
Lett. 56, 135–139 (1995)

3. Ambühl, C.: Offline list update is NP-hard. In: Proc. 8th An-
nual European Symposium on Algorithms, pp. 42–51. LNCS,
vol. 1879. Springer (2001)

4. Ambühl, C., Gärtner, B., von Stengel, B.: Towards new lower
bounds for the list update problem. Theor. Comput. Sci 68, 3–
16 (2001)

5. Bachrach, B., El-Yaniv, R., Reinstädtler, M.: On the competitive
theory and practice of online list accessing algorithms. Algo-
rithmica 32, 201–245 (2002)

6. Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.:
On the power of randomization in on-line algorithms. Algorith-
mica 11, 2–14 (1994)

Online Paging and Caching O 601

7. Benteley, J.L., McGeoch, C.C.: Amortized analyses of self-
organizing sequential search heuristics. Commun. ACM 28,
404–411 (1985)

8. Bentley, J.L., Sleator, D.S., Tarjan, R.E., Wei, V.K.: A locally adap-
tive data compression scheme. Commun. ACM 29, 320–330
(1986)

9. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic
search-optimality in lists and trees. In: Proc. 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1–8 (2002)

10. Burrows, M., Wheeler, D.J.: A block-sorting lossless data com-
pression algorithm. DEC SRC Research Report 124, (1994)

11. Chung, F.R.K., Hajela, D.J., Seymour, P.D.: Self-organizing se-
quential search and Hilbert’s inequality. In: Proc. 17th Annual
Symposium on the Theory of Computing pp 217–223 (1985)

12. Irani, S.: Two results on the list update problem. Inf. Proc. Lett.
38, 301–306 (1991)

13. Karp, R. Raghavan, P.: From a personal communication cited
in [14]

14. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized com-
petitive algorithms for the list update problem. Algorithmica
11, 15–32 (1994)

15. Rivest, R.: On self-organizing sequential search heuristics. Com-
mun. ACM 19, 63–67 (1976)

16. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update
and paging rules. Commun. ACM 28, 202–208 (1985)

17. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees.
J. ACM 32, 652–686 (1985)

18. Witten, I.H., Bell, T.: The Calgary/Canterbury text compression
corpus. Anonymous ftp from ftp://ftp.cpsc.ucalgary.ca:/pub/
text.compression/corpus/text.compression.corpus.tar.Z

Online Paging and Caching
1985–2002; multiple authors

NEAL E. YOUNG
Department of Computer Science,
University of California at Riverside, Riverside, CA, USA

Keywords and Synonyms

Paging; Caching;Weighted caching;Weighted paging; File
caching

ProblemDefinition

A file-caching problem instance specifies a cache size k
(a positive integer) and a sequence of requests to files, each
with a size (a positive integer) and a retrieval cost (a non-
negative number). The goal is to maintain the cache to
satisfy the requests while minimizing the retrieval cost.
Specifically, for each request, if the file is not in the cache,
one must retrieve it into the cache (paying the retrieval
cost) and remove other files to bring the total size of files in
the cache to k or less. Weighted caching, or weighted pag-
ing is the special case when each file size is 1. Paging is the

special case when each file size and each retrieval cost is 1.
Then the goal is to minimize cache misses, or equivalently
the fault rate.

An algorithm is online if its response to each request is
independent of later requests. In practice this is generally
necessary. Standard worst-case analysis is not meaningful
for online algorithms – any algorithm will have some in-
put sequence that forces a retrieval for every request. Yet
worst-case analysis can be done meaningfully as follows.
An algorithm is c(h,k)-competitive if on any sequence � the
total (expected) retrieval cost incurred by the algorithm
using a cache of size k is at most c(h,k) times the mini-
mum cost to handle � with a cache of size h (plus a con-
stant independent of �). Then the algorithm has compet-
itive ratio c(h,k). The study of competitive ratios is called
competitive analysis. (In the larger context of approxima-
tion algorithms for combinatorial optimization, this ratio
is commonly called the approximation ratio.)

Algorithms

Here are definitions of a number of caching algorithms;
first is LANDLORD. LANDLORD gives each file “credit”
(equal to its cost) when the file is requested and not in
cache. When necessary, LANDLORD reduces all cached
file’s credits proportionally to file size, then evicts files as
they run out of credit.

File-caching algorithm LANDLORD Maintain real value
credit[f] with each file f (credit[f] = 0 if f is not in the
cache).

When a file g is requested:
1. if g is not in the cache:
2. until the cache has room for g:
3. for each cached file f : decrease credit[f] by

� � size[f],
4. where� = min f2cache credit[f]/size[f].
5. Evict from the cache any subset of the zero-credit

files f .
6. Retrieve g into the cache; set credit[g] cost(g).
7. else Reset credit[g] anywhere between its current value
and cost(g).

For weighted caching, file sizes equal 1. GREEDY DUAL is
LANDLORD for this special case. BALANCE is the further
special case obtained by leaving credit unchanged in line 7.

For paging, files sizes and costs equal 1. FLUSH-WHEN-
FULL is obtained by evicting all zero-credit files in line 5;
FIRST-IN-FIRST-OUT is obtained by leaving credits un-
changed in line 7 and evicting the file that entered the
cache earliest in line 5; LEAST-RECENTLY-USED is ob-
tained by raising credits to 1 in line 7 and evicting the least-

ftp://ftp.cpsc.ucalgary.ca:/pub/text.compression/corpus/text.compression.corpus.tar.Z
ftp://ftp.cpsc.ucalgary.ca:/pub/text.compression/corpus/text.compression.corpus.tar.Z

602 O Online Paging and Caching

recently requested file in line 5. The MARKING algorithm
is obtained by raising credits to 1 in line 7 and evicting
a random zero-credit file in line 5.

Key Results

This entry focuses on competitive analysis of paging and
caching strategies as defined above. Competitive analy-
sis has been applied to many problems other than paging
and caching, and much is known about other methods of
analysis (mainly empirical or average-case) of paging and
caching strategies, but these are outside scope of this entry.

Paging

In a seminal paper, Sleator and Tarjan showed that LEAST-
RECENTLY-USED, FIRST-IN-FIRST-OUT, and FLUSH-
WHEN-FULL are k

ı
(k � h + 1)-competitive [13]. Sleator

and Tarjan also showed that this competitive ratio is the
best possible for any deterministic online algorithm.

Fiat et al. showed that the Marking algorithm is
2Hk-competitive and that no randomized online algo-
rithm is better than Hk-competitive [7]. Here Hk = 1 +
1/2 + � � � + 1/k 	 :58 + ln k. McGeoch and Sleator gave
an optimal Hk-competitive randomized online paging al-
gorithm [12].

Weighted caching

For weighted caching, Chrobak et al. showed that the de-
terministic online BALANCE algorithm is k-competitive
[5]. Young showed that GREEDY DUAL is k

ı
(k � h +

1)-competitive, and that GREEDY DUAL is a primal-dual
algorithm – it generates a solution to the linear-program-
ming dual which proves the near-optimality of the primal
solution [15]. Recently Bansal et al. used the primal-dual
framework to give an O(log k)-competitive randomized
algorithm for weighted caching [1].

File caching

When each cost equals 1 (the goal is to minimize the num-
ber of retrievals), or when each file’s cost equals the file’s
size (the goal is to minimize the total number of bytes re-
trieved), Irani gaveO(log2 k)-competitive randomized on-
line algorithms [8].

For general file caching, Irani and Cao showed that
a restriction of LANDLORD is k-competitive [4]. Indepen-
dently, Young showed that LANDLORD is k

ı
(k � h +

1)-competitive [15].

Other theoretical models

Practical performance can be better than the worst case
studied in competitive analysis. Refinements of the model

have been proposed to increase realism. Borodin et al. [3],
to model locality of reference, proposed the access-graph
model (see also [9,10]). Koutsoupias and Papadimitriou
proposed the comparative ratio (for comparing classes
of online algorithms directly) and the diffuse-adversary
model (where the adversary chooses requests probabilis-
tically subject to restrictions) [11]. Young showed that
any k

ı
(k � h + 1)-competitive algorithm is also loosely

O(1)-competitive: for any fixed "; ı > 0, on any sequence,
for all but a ı-fraction of cache sizes k, the algorithm either
is O(1)-competitive or pays at most " times the sum of the
retrieval costs [15].

Analyses of deterministic algorithms

Here is a competitive analysis of GREEDY DUAL for
weighted caching.

Theorem 1 GREEDY DUAL is k
ı
(k � h + 1)-competitive

for weighted caching.

Proof Here is an amortized analysis (in the spirit of Sleator
and Tarjan, Chrobak et al., and Young; see [14] for a dif-
ferent primal-dual analysis). Define potential

˚ = (h � 1) �
X
f2GD

credit[f]

+ k �
X
f2OPT

�
cost(f) � credit[f]

�
;

where GD and OPT denote the current caches of GREEDY
DUAL and OPT (the optimal off-line algorithm that man-
ages the cache to minimize the total retrieval cost), respec-
tively. After each request, GREEDY DUAL and OPT take
(some subset of) the following steps in order.

OPT evicts a file f : Since credit[f] � cost(f), ˚ can-
not increase.

OPT retrieves requested file g: OPT pays cost(g) ; ˚
increases by at most k cost(g).

GREEDY DUAL decreases credit[f] for all f 2 GD: The
cache is full and the requested file is in OPT but not yet in
GD. So jGDj = k and jOPT \ GDj � h � 1. Thus, the
total decrease in ˚ is �[(h � 1)jGDj � k jOPT \ GDj] �
�[(h � 1)k � k(h � 1)] = 0.

GREEDY DUAL evicts a file f : Since credit[f] = 0,˚ is
unchanged.

GREEDY DUAL retrieves requested file g and sets
credit[g] to cost(g): GREEDY DUAL pays c = cost(g). Since
g was not in GD but is in OPT, credit[g] = 0 and ˚ de-
creases by �(h � 1)c + k c = (k � h + 1)c.

GREEDY DUAL resets credit[g] between its current
value and cost(g): Since g 2 OPT and credit[g] only in-
creases,˚ decreases.

Online Paging and Caching O 603

So, with each request: (1) when OPT retrieves a file of
cost c, ˚ increases by at most kc; (2) at no other time does
˚ increase; and (3) when GREEDY DUAL retrieves a file of
cost c, ˚ decreases by at least (k � h + 1)c. Since initially
˚ = 0 and finally ˚ � 0, it follows that GREEDY DUAL’s
total cost times k � h + 1 is at most OPT’s cost times k.

Extension to file caching

Although the proof above easily extends to LANDLORD, it
is more informative to analyze LANDLORD via a general
reduction from file caching to weighted caching:

Corollary 1 LANDLORD is k
ı
(k � h + 1)-competitive for

file caching.

Proof LetW be any deterministic c-competitive weighted-
caching algorithm. Define file-caching algorithm FW as
follows. Given request sequence � , FW simulates W on
weighted-caching sequence � 0 as follows. For each file f ,
break f into size(f) “pieces” {f i} each of size 1 and
cost cost(f)/size(f). When f is requested, give a batch
(f1; f2; : : : ; fs)N+1 of requests for pieces to W. Take N
large enough so W has all pieces {f i} cached after the first
sN requests of the batch.

Assume that W respects equivalence: after each batch,
for every file f , all or none of f ’s pieces are in W’s cache.
After each batch, make FW update its cache correspond-
ingly to f f : fi 2 cache(W)g. FW ’s retrieval cost for � is at
mostW’s retrieval cost for � 0, which is at most cOPT(� 0),
which is at most cOPT(� 0). Thus, FW is c-competitive for
file caching.

Now, observe that GREEDY DUAL can be made to re-
spect equivalence.When GREEDY DUAL processes a batch
of requests (f1; f2; : : : ; fs)N+1 resulting in retrievals, for
the last s requests, make GREEDY DUAL set credit[fi] =
cost(fi) = cost(f)/s in line 7. In general, restrict GREEDY
DUAL to raise credits of equivalent pieces f i equally in
line 7. After each batch the credits on equivalent pieces
f i will be the same. When GREEDY DUAL evicts a piece
f i, make GREEDY DUAL evict all other equivalent pieces f j
(all will have zero credit).

With these restrictions, GREEDY DUAL respects equiv-
alence. Finally, taking W to be GREEDY DUAL above, FW
is LANDLORD.

Analysis of the randomized MARKING algorithm

Here is a competitive analysis of the MARKING algorithm.

Theorem 2 The MARKING algorithm is 2Hk-competitive
for paging.

Proof Given a paging request sequence � , partition � into
contiguous phases as follows. Each phase starts with the
request after the end of the previous phase and continues
as long as possible subject to the constraint that it should
contain requests to at most k distinct pages. (Each phase
starts when the algorithm runs out of zero-credit files and
reduces all credits to zero.)

Say a request in the phase is new if the item requested
was not requested in the previous phase. Letmi denote the
number of new requests in the ith phase. During phases i�
1 and i, k +mi distinct files are requested. OPT has at most
k of these in cache at the start of the i� 1st phase, so it will
retrieve at leastmi of them before the end of the ith phase.
So OPT’s total cost is at least max

˚P
i m2i ;

P
i m2i+1

�
�P

i mi /2.
Say a non-new request is redundant if it is to a file

with credit 1 and non-redundant otherwise. Each new re-
quest costs the MARKING algorithm 1. The jth non-re-
dundant request costs the MARKING algorithm at most
mi /(k � j + 1) in expectation because, of the k � j + 1
files that if requested would be non-redundant, at most
mi are not in the cache (and each is equally likely to be
in the cache). Thus, in expectation MARKING pays at most
mi +

Pk�mi
j=1 mi /(k � j + 1) � miHk for the phase, and at

most Hk
P

i mi total.

Applications

Variants of GREEDY DUAL and LANDLORD have been in-
corporated into file-caching software such as Squid [6].

Experimental Results

For a study of competitive ratios on practical inputs, see
for example [4,6,14].

Cross References

� Algorithm DC-Tree for k Servers on Trees
� Alternative Performance Measures in Online

Algorithms
� Online List Update
� Price of Anarchy
�Work-Function Algorithm for k Servers

Recommended Reading
1. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual random-

ized algorithm for weighted paging. Proceedings of 48th An-
nual IEEE Symposium on Foundations of Computer Science,
pp. 507–517 (2007)

2. Borodin, A., El-Yaniv, R.: Online computation and competitive
analysis. Cambridge University Press, New York (1998)

604 O Online Scheduling

3. Borodin, A., Irani, S., Raghavan, P., Schieber B.: Competitive
paging with locality of reference. J. Comput. Syst. Sci. 50(2),
244–258 (1995)

4. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms.
In: USENIX Symposium on Internet Technologies and Systems,
Monterey, December 1997

5. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New re-
sults on server problems. SIAM J. Discret. Math. 4(2), 172–181
(1991)

6. Dilley, J., Arlitt, M., Perret, S.: Enhancement and validation of
Squid’s cache replacement policy. Hewlett-Packard Laborato-
ries Technical Report HPL-1999–69 (1999)

7. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D.,
Young, N.E.: Competitive paging algorithms. J. Algorithms
12(4), 685–699 (1991)

8. Irani, S.: Page replacement with multi-size pages and applica-
tions to Web caching. Algorithmica 33(3), 384–409 (2002)

9. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms
for paging with locality of reference. SIAM J. Comput. 25(3),
477–497 (1996)

10. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J.
Comput. 30(3), 906–922 (2000)

11. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive anal-
ysis. SIAM J. Comput. 30(1), 300–317 (2000)

12. McGeoch, L.A., Sleator, D.D.: A strongly competitive random-
ized paging algorithm. Algorithmica 6, 816–825 (1991)

13. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update
and paging rules. Commun. ACM 28(2), 202–208 (1985)

14. Young, N.E.: The k-server dual and loose competitiveness for
paging. Algorithmica 11(6), 525–541 (1994)

15. Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383
(2002)

Online Scheduling
� List Scheduling
� Load Balancing

Optimal Probabilistic Synchronous
Byzantine Agreement
1988; Feldman, Micali

JUAN GARAY
Bell Labs, Murray Hill, NJ, USA

Keywords and Synonyms
Distributed consensus; Byzantine generals problem

ProblemDefinition
The Byzantine agreement problem (BA) is concerned with
multiple processors (parties, “players”) all starting with
some initial value, agreeing on a common value, despite
the possible disruptive or evenmalicious behavior of some
them. BA is a fundamental problem in fault-tolerant dis-
tributed computing and secure multi-party computation.

The problem was introduced by Pease, Shostak and
Lamport in [18], who showed that the number of faulty
processors must be less than a third of the total number
of processors for the problem to have a solution. They
also presented a protocol matching this bound, which re-
quires a number of communication rounds proportional
to the number of faulty processors—exactly t + 1, where t
is the number of faulty processors. Fischer and Lynch [10]
later showed that this number of rounds is necessary in the
worst-case run of any deterministic BA protocol. Further-
more, the above assumes that communication takes place
in synchronous rounds. Fischer, Lynch and Patterson [11]
proved that no completely asynchronous BA protocol can
tolerate even a single processor with the simplest form of
misbehavior—namely, ceasing to function at an arbitrary
point during the execution of the protocol (“crashing”).

To circumvent the above-mentioned lower bound on
the number of communication rounds and impossibility
result, respectively, researchers beginning with Ben-Or [1]
and Rabin [19], and followed by many others (e. g., [3,5])
explored the use of randomization. In particular, Rabin
showed that linearly resilient BA protocols in expected
constant rounds were possible, provided that all the parties
have access to a “common coin” (i. e., a common source
of randomness)—essentially, the value of the coin can be
adopted by the non-faulty processors in case disagreement
at any given round is detected, a process that is repeated
multiple times. This line of research culminated in the
unconditional (or information-theoretic) setting with the
work of Feldman and Micali [9], who showed an efficient
(i. e., polynomial-time) probabilistic BA protocol tolerat-
ing the maximal number of faulty processors1 that runs in
expected constant number of rounds. The main achieve-
ment of the Feldman–Micali work is to show how to ob-
tain a shared random coin with constant success proba-
bility in the presence of the maximum allowed number of
misbehaving parties “from scratch”.

Randomization has also been applied to BA protocols
in the computational (or cryptographic) setting and for
weaker failure models. See [6] for an early survey on the
subject.

Notations

Consider a set P = fP1; P2; � � � ; Png of processors (prob-
abilistic polynomial-time Turing machines) out of which
t, t < n may not follow the protocol, and even collude
and behave in arbitrary ways. These processors are called

1Karlin and Yao [14] showed that the maximum number of faulty
processors for probabilistic BA is also t < n

3 , where n is the total
number of processors.

Optimal Probabilistic Synchronous Byzantine Agreement O 605

faulty; it is useful to model the faulty processors as be-
ing coordinated by an adversary, sometimes called a t-
adversary.

For 1 � i � n, let bi, bi 2 f0; 1g denote party Pi’s ini-
tial value. The work of Feldman and Micali considers the
problem of designing a probabilistic BA protocol in the
model defined below.

SystemModel

The processors are assumed to be connected by point-to-
point private channels. Such a network is assumed to be
synchronous, i. e., the processors have access to a global
clock, and thus the computation of all processors can pro-
ceed in a lock-step fashion. It is customary to divide the
computation of a synchronous network into rounds. In
each round, processors send messages, receive messages,
and perform some local computation.

The t-adversary is computationally unbounded, adap-
tive (i. e., it chooses which processors to corrupt on the fly),
and decides on the messages the faulty processors send in
a round depending on the messages sent by the non-faulty
processors in all previous rounds, including the current
round (this is called a rushing adversary).

Given the model above, the goal is to solve the problem
stated in the � Byzantine Agreement; that is, for every set
of inputs and any behavior of the faulty processors, to have
the non-faulty processors output a common value, subject
to the additional condition that if they all start the compu-
tation with the same initial value, then that should be the
output value. The difference with respect to the other entry
is that, thanks to randomization, BA protocols here run in
expected constant rounds.

Problem 1 (BA)
Input: Each processor Pi, 1 � i � n, has bit bi.
Output: Eventually, each processor Pi, 1 � i � n, outputs
bit di satisfying the following two conditions:
� Agreement: For any two non-faulty processors Pi and Pj,

di = dj .
� Validity: If bi = bj = b for all non-faulty processors Pi

and Pj, then di = b for all non-faulty processors Pi.

In the above definition input and output values are from
f0; 1g. This is without loss of generality, since there is
a simple two-round transformation that reduces a multi-
valued agreement problem to the binary problem [20].

Key Results

Theorem 1 Let t < n
3 . Then there exists a polynomial-

time BA protocol running in expected constant number of
rounds.

The number of rounds of the Feldman–Micali BA proto-
col is expected constant, but there is no bound in the worst
case; that is, for every r, the probability that the protocol
proceeds for more than r rounds is very small, yet greater
than 0—in fact, equal to 2�O(r). Further, the non-faulty
processors may not terminate in the same round.2

The Feldman–Micali BA protocol assumes syn-
chronous rounds. As mentioned above, one of the mo-
tivations for the use of randomization was to overcome
the impossibility result due to Fischer, Lynch and Pater-
son [11] of BA in asynchronous networks, where there
is no global clock, and the adversary is also allowed to
schedule the arrival time of a message sent to a non-faulty
processor (of course, faulty processors may not send any
message(s)). In [8], Feldman mentions that the Feldman–
Micali BA protocol can be modified to work on asyn-
chronous networks, at the expense of tolerating t < n

4
faults. In [4], Canetti and Rabin present a probabilistic
asynchronous BA protocol for t < n

3 that differs from the
Feldman–Micali approach in that it is a Las Vegas proto-
col—i. e., it has non-terminating runs, but when it termi-
nates, it does so in constant expected rounds.

Applications

There exists a one-to-one correspondence, possibility- and
impossibility-wise between BA in the unconditional set-
ting as defined above and a formulation of the problem
called the “Byzantine generals” by Lamport, Shostak and
Pease [16], where there is a distinguished source among
the parties sending a value, call it bs, and the rest of the
parties having to agree on it. The Agreement condition re-
mains unchanged; the Validity condition becomes

� Validity: If the source is non-faulty, then di = bs for all
non-faulty processors Pi.

A protocol for this version of the problem realizes a func-
tionality called a “broadcast channel” on a network with
only point-to-point connectivity. Such a tool is very use-
ful in the context of cryptographic protocols and secure
multi-party computation [12]. Probabilistic BA is particu-
larly relevant here, since it provides a constant-round im-
plementation of the functionality. In this respect, without
any optimizations, the reported actual number of expected
rounds of the Feldman–Micali BA protocol is at most 57.

2Indeed, it was shown by Dwork and Moses [7] that at least t + 1
rounds are necessary for simultaneous termination. In [13], Goldre-
ich and Petrank combine “the best of both worlds” by showing a BA
protocol running in expected constant number of rounds which al-
ways terminates within t + O(log t) rounds.

606 O Optimal Radius

Recently, Katz and Koo [15] presented a probabilistic BA
protocol with an expected number of rounds at most 23.

BA has many other applications. Refer to the� Byzan-
tine Agreement, as well as to, e. g., [17] for further discus-
sion of other application areas.

Cross References

� Asynchronous Consensus Impossibility
� Atomic Broadcast
� Byzantine Agreement
� Randomized Energy Balance Algorithms in Sensor

Networks

Recommended Reading
1. Ben-Or, M.: Another advantage of free choice: Completely

asynchronous agreement protocols. In: Proc. 22nd Annual
ACM Symposium on the Principles of Distributed Computing,
1983, pp. 27–30

2. Ben-Or, M., El-Yaniv, R.: Optimally-resilient interactive consis-
tency in constant time. Distrib. Comput. 16(4), 249–262 (2003)

3. Bracha, G.: An O(log n) expected rounds randomized Byzan-
tine generals protocol. J. Assoc. Comput. Mach. 34(4), 910–920
(1987)

4. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement
with optimal resilience. In: Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, San Diego, Cal-
ifornia, 16–18 May 1993, pp. 42–51

5. Chor, B., Coan, B.: A simple and efficient randomized Byzan-
tine agreement algorithm. IEEE Trans. Softw. Eng. SE-11(6),
531–539 (1985)

6. Chor, B., Dwork, C.: Randomization in Byzantine Agreement.
Adv. Comput. Res. 5, 443–497 (1989)

7. Dwork, C., Moses, Y.: Knowledge and Common Knowledge in
a Byzantine Environment: Crash Failures. Inf. Comput. 88(2),
156–186 (1990). Preliminary version in TARK’86

8. Feldman, P.: Optimal Algorithms for Byzantine Agreement.
Ph. D. thesis, MIT (1988)

9. Feldman, P., Micali, S.: An optimal probabilistic protocol for
synchronous Byzantine agreement. SIAM J. Comput. 26(4),
873–933 (1997). Preliminary version in STOC’88

10. Fischer, M.J., Lynch, N.A.: A Lower Bound for the Time to As-
sure Interactive Consistency. Inf. Process. Lett. 14(4), 183–186
(1982)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty processor. J. ACM 32(2),
374–382 (1985)

12. Goldreich, O.: Foundations of Cryptography, Volumes 1 and 2.
Cambridge University Press, Cambridge (2001), (2004)

13. Goldreich, O., Petrank, E.: The Best of Both Worlds: Guarantee-
ing Termination in Fast Randomized Agreement Protocols. Inf.
Process. Lett. 36(1), 45–49 (1990)

14. Karlin, A., Yao, A.C.: Probabilistic lower bounds for the byzan-
tine generals problem. Unpublished manuscript

15. Katz, J., Koo, C.: On Expected Constant-Round Protocols for
Byzantine Agreement. In: Proceedings of Advances in Cryp-
tology–CRYPTO 2006, Santa Barbara, California, August 2006,
pp. 445–462. Springer, Berlin Heidelberg New York (2006)

16. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals
problem. ACMTrans. Program. Lang. Syst. 4(3), 382–401 (1982)

17. Lynch, N.: Distributed Algorithms, Morgan Kaufmann, San
Francisco (1996)

18. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the
presence of faults. J. ACM 27(2), 228–234 (1980)

19. Rabin,M.: Randomized Byzantine Generals. In: Proc. 24th Anual
IEEE Symposium on Foundations of Computer Science, 1983,
pp. 403–409

20. Turpin, R., Coan, B.A.: Extending binary Byzantine Agreement
to multivalued Byzantine Agreement. Inf. Process. Lett. 18(2),
73–76 (1984)

Optimal Radius
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)

Optimal StableMarriage
1987; Irving, Leather, Gusfield

ROBERT W. IRVING
Department of Computing Science,
University of Glasgow, Glasgow, UK

Keywords and Synonyms

Optimal stable matching

ProblemDefinition

The classical Stable Marriage problem (SM), first stud-
ied by Gale and Shapley [5], is introduced in � Sta-
ble Marriage. An instance of SM comprises a set M =
fm1; : : : ;mng of n men and a set W = fw1; : : : ;wng

of n women, and for each person a preference list, which
is a total order over the members of the opposite sex.
A man’s (respectively woman’s) preference list indicates
his (respectively her) strict order of preference over the
women (respectively men). A matching M is a set of n
man–woman pairs in which each person appears exactly
once. If the pair (m,w) is in the matchingM thenm and w
are partners in M, denoted by w = M(m) and m = M(w).
Matching M is stable if there is no man m and woman w
such thatm prefers w toM(m) and w prefersm toM(w).

The key result established in [5] is that at least one sta-
ble matching exists for every instance of SM. In general
there may be many stable matchings, so the question arises
as to what is an appropriate definition for the ‘best’ stable
matching, and how such a matching may be found.

Gale and Shapley described an algorithm to find a sta-
ble matching for a given instance of SM. This algorithm

Optimal Stable Marriage O 607

may be applied either from the men’s side or from the
women’s side. In the former case, it finds the so-called
man-optimal stable matching, in which each man has the
best partner, and each woman the worst partner, that is
possible in any stable matching. In the latter case, the
woman-optimal stable matching is found, in which these
properties are interchanged. For some instances of SM, the
man-optimal and woman-optimal stable matchings coin-
cide, in which case this is the unique stable matching. In
general however, there may be many other stable match-
ings between these two extremes. Knuth [13] was first to
show that the number of stable matchings can grow expo-
nentially with n.

Because of the imbalance inherent, in general, in the
man-optimal and woman-optimal solutions, several other
notions of optimality in SM have been proposed.

A stable matchingM is egalitarian if the sum
X
i

r(mi ;M(mi)) +
X
j

r(wj ;M(wj))

is minimized over all stable matchings, where r(m,w) rep-
resents the rank, or position, of w in m’s preference list,
and similarly for r(w,m). An egalitarian stable matching
incorporates an optimality criterion that does not overtly
favor the members of one sex – though it is easy to con-
struct instances having many stable matchings in which
the unique egalitarian stable matching is in fact the man
(or woman) optimal.

A stable matching M is minimum regret if the value
max(r(p;M(p)) is minimized over all stable matchings,
where the maximum is taken over all persons p. A mini-
mum regret stable matching involves an optimality crite-
rion based on the least happy member of the society, but
again, minimum regret can coincide with man-optimal or
woman-optimal in some cases, even when there are many
stable matchings.

A stable matching is rank-maximal (or lexicographi-
cally maximal) if, among all stable matchings, the largest
number of people have their first choice partner, and sub-
ject to that, the largest number have their second choice
partner, and so on.

A stable matchingM is sex-equal if the difference
ˇ̌
ˇ
X
i

r(mi ;M(mi)) �
X
j

r(wj;M(wj))
ˇ̌
ˇ

is minimized over all stable matchings. This definition is
an explicit attempt to ensure that one sex is treated no
more favorably than the other, subject to the overriding
criterion of stability.

In the weighted stable marriage problem (WSM), each
person has, as before, a strictly ordered preference list, but

the entries in this list have associated costs or weights –
wt(m,w) represents the weight associated with woman w
in the preference list of man m, and likewise for wt(w,m).
It is assumed that the weights are strictly increasing along
each preference list.

A stable matchingM in an instance of WSM is optimal
if
X
i

wt(mi ;M(mi)) +
X
j

wt(wj;M(wj))

is minimized over all stable matchings.
A stable matching M in an instance of WSM is bal-

anced if

max

0
@X

i

wt(mi ;M(mi));
X
j

wt(wj;M(wj))

1
A

is minimized over all stable matchings.
These same forms of optimality may be defined in the

more general context of the Stable Marriage problem with
Incomplete Preference Lists (SMI) –see � Stable Mar-
riagefor a formal definition of this problem.

Again as described in � Stable Marriage, the Stable
Roommates problem (SR) is a non-bipartite generalization
of SM, also introduced by Gale and Shapley [5]. In contrast
to SM, an instance of SR may or may not admit a stable
matching. Irving [9] gave the first polynomial-time algo-
rithm to determine whether an SR instance admits a stable
matching, and if so to find one such matching.

There is no concept of man or woman optimal in the
SR context, and nor is there any analogue of sex-equal or
balanced matching. However, the other forms of optimal-
ity introduced above can be defined also for instances of
SR and WSR (Weighted Stable Roommates).

A comprehensive treatment ofmany aspects of the Sta-
ble Marriage problem, as of 1989, appears in the mono-
graph of Gusfield and Irving [6].

Key Results

The key to providing efficient algorithms for the vari-
ous kinds of optimal stable matching is an understand-
ing of the algebraic structure underlying an SM instance,
and the discovery of methods to exploit this structure.
Knuth [13] attributes to Conway the observation that the
set of stable matchings for an SM instance forms a dis-
tributive lattice under a natural dominance relation. Irving
and Leather [11] characterized this lattice in terms of so-
called rotations – essentially minimal differences between
lattice elements – which can be efficiently computed di-
rectly from the preference lists. The rotations form a nat-

608 O Optimal Stable Marriage

ural partial order, the rotation poset, and there is a one-to-
one correspondence between the stable matchings and the
closed subsets of the rotation poset.

Building on these structural results, Gusfield [8] gave
a O(n2) algorithm to find aminimum-regret stable match-
ing, improving an earlier O(n4) algorithm described by
Knuth [13] and attributed to Selkow. Irving et al. [10]
showed how application of network flow methods to the
rotation poset yield efficient algorithms for egalitarian and
rank-maximal stable matchings, as well as for an optimal
stable matching in WSM. These algorithms have com-
plexities O(n4), O(n5 log n log n) and O(n4 log n) respec-
tively. Subsequently, by using an interpretation of a sta-
ble marriage instance as an instance of 2-SAT, and with
the aid of a faster network flow algorithm exploiting the
special structure of networks representing SM instances,
Feder [3,4] reduced these complexities to O(n3), O(n3:5)
and O(min(n;

p
K)n2 log(K/nn + 2)) respectively, where

K is the weight of an optimal solution.
By way of contrast, and perhaps surprisingly, the prob-

lems of finding a sex-equal stable matching for an instance
of SM and of finding a balanced stable matching for an in-
stance of WSM have been shown to be NP-hard [2,12].

The following theorem summarizes the current state of
knowledge regarding the various flavors of optimal stable
matching in SM andWSM.

Theorem 1 For an instance of SM:
(i) A minimum regret stable matching can be found in

O(n2) time.
(ii) An egalitarian stable matching can be found in O(n3)

time.
(iii) A rank-maximal stable matching can be found in

O(n3:5) time.
(iv) The problem of finding a sex-equal stable matching is

NP-hard.
For an instance of WSM:

(v) An optimal stable matching can be found in
O(min(n;

p
K)n2 log(K/n2 + 2)) time, where K is the

weight of an optimal solution.
(vi) The problem of finding a balanced stable matching is

NP-hard, but can be approximated within a factor of 2
in O(n2) time.

Among related problems that can also be solved efficiently
by exploitation of the rotation structure of an instance of
SM are the following [8]:
� all stable pairs, i. e., pairs that belong to at least one sta-

ble matching, can be found in O(n2) time;
� all stable matchings can be enumerated in O(n2 + kn)

time, where k is the number of such matchings.

Results analogous to those of Theorem 1 are known for
the more general SMI problem. In the case of the Stable
Roommates problem (SR), some of these problems appear
to be harder, as summarized in the following theorem.

Theorem 2 For an instance of SR:
(i) A minimum regret stable matching can be found in

O(n2) time [7].
(ii) The problem of finding an egalitarian stable match-

ing is NP-hard. It can be approximated in polynomial
time within a factor of ˛ if and only if minimum vertex
cover can be approximated within ˛ [1,2].
For an instance of WSR (weighted stable roommates):

(iii) The problem of finding an optimal stable matching is
NP-hard, but can be approximated within a factor of 2
in O(n2) time [3].

Applications

The best known and most important applications of
stable matching algorithms are in centralized matching
schemes in the medical and educational domains. � Hos-
pitals / Residents Problem includes a summary of some of
these applications.

Open Problems

There remains the possibility of improving the complexity
bounds for some of the optimization problems discussed,
and for finding better polynomial-time approximation al-
gorithms for the various NP-hard problems.

Cross References

� Hospitals/Residents Problem
� Ranked Matching
� Stable Marriage and Discrete Convex Analysis
� Stable Marriage with Ties and Incomplete Lists
� Stable Partition Problem

Recommended Reading
1. Feder, T.: A new fixed point approach for stable networks

and stable marriages. In: Proceedings of 21st ACM Symposium
on Theory of Computing, pp. 513–522, Theory of Computing,
Seattle WA, May 1989, pp. 513–522, ACM, New York (1989)

2. Feder, T.: Stable networks and product graphs. Ph. D. thesis,
Stanford University (1991)

3. Feder, T.: A new fixed point approach for stable networks and
stable marriages. J. Comput. Syst. Sci. 45, 233–284 (1992)

4. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11,
291–319 (1994)

5. Gale, D., Shapley, L.S.: College admissions and the stability of
marriage. Am. Math. Mon. 69, 9–15 (1962)

Optimal Stable Marriage O 609

6. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Struc-
ture and Algorithms. MIT Press, Cambrigde MA (1989)

7. Gusfield, D.: The structure of the stable roommate problem:
efficient representation and enumeration of all stable assign-
ments. SIAM J. Comput. 17(4), 742–769 (1988)

8. Gusfield, D.: Three fast algorithms for four problems in stable
marriage. SIAM J. Comput. 16(1), 111–128 (1987)

9. Irving, R.W.: An efficient algorithm for the stable roommates
problem. J. Algorithms 6, 577–595 (1985)

10. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm
for the “optimal stable” marriage. J. ACM 34(3), 532–543
(1987)

11. Irving, R.W., Leather, P.: The complexity of counting stablemar-
riages. SIAM J. Comput. 15(3), 655–667 (1986)

12. Kato, A.: Complexity of the sex-equal stable marriage problem.
Jpn. J. Ind. Appl. Math. 10, 1–19 (1993)

13. Knuth, D.E.: Mariages Stables. Les Presses de L’Université de
Montréal (1976)

P2P P 611

P

P2P
2001; Stoica, Morris, Karger, Kaashoek,
Balakrishnan

DAHLIA MALKHI
Microsoft, Silicon Valley Campus,
Mountain View, CA, USA

Keywords and Synonyms

Peer to peer; Overlay; Overlay network; DHT; Distributed
hash table; CDN; Content delivery network; File sharing;
Resource sharing

ProblemDefinition

This problem is concerned with efficiently designing
a serverless infrastructure for a federation of hosts to store,
index and locate information, and for efficient data dis-
semination among the hosts. The key services of peer-to-
peer (P2P) overlay networks are:
1. A keyed lookup protocol locates information at the

server(s) that hold it.
2. Data store, update and retrieve operations maintain

a distributed persistent data repository.
3. Broadcast and multicast support information dissemi-

nation to multiple recipients.
Because of their symmetric, serverless nature, these net-
works are termed P2P networks. Below, we often refer to
hosts participating in the network as peers.

The most influential mechanism in this area is consis-
tent hashing, pioneered in a paper by Karger et al. [21].
The idea is roughly the following. Frequently, a good way
of arranging a lookup directory is a hash table, giving a fast
O(1)-complexity data access. In order to scale and provide
highly available lookup services, we partition the hash ta-
ble and assign different chunks to different servers. So, for
example, if the hash table has entries 1 through n, and
there are k participating servers, we can have each server
select a virtual identifier from 1 to n at random. Server i

will then be responsible for key values that are closer to i
than to any other server identifier. With a good random-
ization of the hash keys, we can have a more or less bal-
anced distribution of information between our k servers.
In expectation, each server will be responsible for (n/k)
keys. Furthermore, the departure/arrival of a server per-
turbs only one or two other servers with adjacent virtual
identifiers.

A network of servers that implement consistent hash-
ing is called a distributed hash table (DHT). Many cur-
rent-generation resource sharing networks, and virtually
all academic research projects in the area, are built around
a DHT idea.

The challenge in maintaining DHTs is two-fold:

Overlay routing Given a hash key i, and starting from any
node r in the network, the problem is to find the server
s whose key range contains i. The key name i bears no
relation to any real network address, such as the IP ad-
dress of a node, and therefore we cannot use the un-
derlying IP infrastructure to locate s. An overlay rout-
ing network links the nodes, and provides them with
a routing protocol, such that r can route toward s us-
ing the routing target i.

Dynamic maintenance DHTs must work in a highly dy-
namic environment in which the size of the network
is not known a priori, and where there are no per-
manent servers for maintaining either the hash func-
tion or the overlay network (all servers are assumed to
be ephemeral). This is especially acute in P2P settings,
where the servers are transient users who may come
and go as they wish. Hence, there must be a decentral-
ized protocol, executed by joining and leaving peers,
that incrementally maintains the structure of the sys-
tem. Additionally, a joining peer should be able to cor-
rectly execute this protocol while initially only having
knowledge of a single, arbitrary participating network
node.

One of the first overlay network projects was Chord [35],
after which this encyclopedia entry is named (2001; Sto-

612 P P2P

ica, Morris, Karger, Kaashoek, Balakrishnan). More details
about Chord are given below.

Key Results

The P2P area is very dynamic and rapidly evolving. The
current entry provides a mere snapshot, covering domi-
nant and characteristic strategies, but not offering an ex-
haustive survey.

Unstructured Overlays

Many of the currently deployedwidespread resource-shar-
ing networks have little or no particular overlay structure.
More specifically, early systems such as Gnutella version
0.4 had no overlay structure at all, and allowed every node
to connect to other nodes arbitrarily. This resulted in se-
vere load and congestion problems.

Two-tier networks were introduced to reduce com-
munication overhead and solve the scalability issues that
early networks like Gnutella version 0.4 had. Two-tier net-
works consist of one tier of relatively stable and powerful
nodes, called servers (superpeers, ultrapeers), and a larger
tier of clients that search the network though servers.Most
current networks, including Edonkey/Emule, KaZaa, and
Gnutella, are built using two tiers. Servers provide direc-
tory store and search facilities. Searching is either lim-
ited to servers to which clients directly connect (eDon-
key/eMule) or done by limited-depth flooding among the
servers (Gnutella). The two-tier design considerably en-
hances the scalability and reliability of P2P networks. Nev-
ertheless, the connections among servers and between
clients/servers is done in a completely ad hoc manner.
Thus, these networks provide no guarantee for the success
of searches, nor a bound on their costs.

Structured Overlays Without Locality Awareness

Chord The Chord system was built at MIT and is cur-
rently being developed under FNSF’s IRIS project (http://
project-iris.net/). Several aspects of the Chord [35] design
have influenced subsequent systems. We briefly explain
the core structure of Chord here. Nodes have binary iden-
tifiers, assigned uniformly at random. Nodes are arranged
in a linked ring according to their virtual identifiers. In ad-
dition, each node has shortcut links to other nodes along
the ring, link i to a node 2i away in the virtual identifier
space. In this way, one can move gradually to the target by
decreasing the distance by half at every step. Routing takes
on average log n hops to reach any target, in a network
containing n nodes. Each node maintains approximately
log n links, providing the ability to route to geometrically
increasing distances.

Constant Per-Node State Several overlay network al-
gorithms were developed with the goal of pushing the
amount of network state kept by each node in the over-
lay to a minimum. We refer to the state kept by a node as
its degree, as it mostly reflects the number of connections
to other nodes. Viceroy [23] was the first to demonstrate
a dynamic network in which each node stores only five
links to other network nodes, and routes to any other node
in a logarithmic number of hops, log n for a network of n
nodes. Viceroy provided a dynamic emulation of a butter-
fly network (see [11] for a textbook exposition of intercon-
nect networks like butterfly). Later, several emulations of
De Bruijn networks emerged, including the generic one of
Abraham et al. (AAABMP) [1], the distance halving net-
work [26], D2B [13], and Koorde [20]. Constant-degree
overlay networks are too fragile for practical purposes, and
may easily degrade in performance or even partition in the
face of failures. A study of overlay networks under churn
demonstrated these points [18]. Indeed, to the best of our
knowledge, none of these constant-degree networks were
built. Their main contribution, and the main reason for
mentioning these works here, is to know that it is possi-
ble in principle to bring the per-node state to a bare, small
constant.

Content Addressable Network The Content Address-
able Network (CAN) [31] developed at ICSI builds the
network as virtual d-dimensional space, giving every node
a d-dimensional identifier. The routing topology resem-
bles a d-dimensional torus. Routing is done by follow-
ing the Euclidean coordinates in every dimension, yield-
ing a dn1/d hop routing strategy. The parameter d can
be tuned by the network administrator. Note that for
d = log n, CAN’s features are the same as in Chord,
namely, logarithmic degree and logarithmic routing hop
count.

Overlay Routing Inspired by “Small-World” Networks
The Symphony [24] algorithm emulates routing in a small
world. Nodes have k links to nodes whose virtual identi-
fiers are chosen at random according to a routable small-
world distribution [22]. With k links, Symphony is ex-
pected to find a target in log2 /k hops.

Overlay Networks Supporting Range Queries One of
the deficiencies of DHTs is that they support only exact
key lookup; hence, they do not address well the need to lo-
cate a range of keys, or to have a fuzzy search, e. g., search
for any key that matches some prefix. SkipGraphs [4] and
the SkipNet [19] scheme from Microsoft (project Herald)
independently developed a similar DHT based on a ran-

http://project-iris.net/
http://project-iris.net/

P2P P 613

P2P, Table 1
Comparison of various measures of lookup schemes with no lo-
cality awareness

Overlay lookup scheme Topology
resemblance

Hops Degree

Chord Hypercube log n log n
Viceroy Butterfly log n 5
AAABMP, Distance-halving,
Koorde, D2B

De Bruijn log n 4

Symphony Small world log2 n/k k
SkipGraphs/SkipNet Skip list log n log n
CAN Torus dn1/d d

domized skip list [28] that supports range queries over
a distributed network. The approach in both of these net-
works is to link objects into a double-linked list, sorted
by object names, over which “shortcut” pointers are built.
Pointers from each object skip to a geometric sequence
of distances in the sorted list, i. e., the first pointer jumps
two items away, the second four items, and so on, up to
pointer log n � 1, which jumps over half of the list. Loga-
rithmic, load-balanced lookup is achieved in this scheme
in the same manner as in Chord. Because the identifier
space is sorted by object names, rather than hash identi-
fiers, ranges of objects can be scanned efficiently simply
by routing to the lowest value in the range; the remaining
range nodes reside contiguously along the ring.

By prefixing organization names to object names,
SkipNet achieves contiguity of nodes belonging to a single
organization along the ring, and the ability to map objects
on nodes in their local organizations. In this way SkipNet
achieves resource proximity and isolation the only system
besides RP [33] to have this feature.

Whereas the SkipGraphs work focuses on randomized
load-balancing strategies and proofs, the SkipNet system
considers issues of dynamic maintenance, variable base
sizes, and adopts the locality-awareness strategy of Pas-
try [33], which is described below.

Summary of Non-Locality-Aware Networks Each of
the networksmentioned above is distinct in one ormore of
the following properties: The (intuitive) emulated topol-
ogy; the expected number of hops required to reach a tar-
get; and the per-node degree. Table 1 summarizes these
properties.

Locality Awareness

The problem with the approaches listed above is that they
ignore the proximity of nodes in the underlying networks,

and allow hopping back and forth across large physical
distances in search of content. Recent studies of scalable
content exchange networks [17] have indicated that up to
80% of Internet searches could be satisfied by local hosts
within one’s own organization. Therefore, even one far
hop might be too costly. The next systems we encounter
consider proximity relations among nodes in order to ob-
tain locality awareness, i. e., that lookup costs are propor-
tional to the actual distance of interacting parties.

Growth-Bounded Networks Several locality-aware
lookup networks were built around a bit-fixing protocol
that borrows from the seminal work of Plaxton et al. [27]
(PRR). The growth bounded network model for which this
scheme is aimed views the network as a metric space, and
assumes that the densities of nodes in different parts of the
network are not terribly different. The PRR [27] lookup
scheme uses prefix routing, similar to Chord. It differs
from Chord in that a link for flipping the ith identifier
bit connects with any node whose length-i prefix matches
the next hop. In this way, the scheme favors the closest
one in the network. This strategy builds geometric routing,
whose characteristic is that the routing steps toward a tar-
get increase geometrically in distance. This is achieved by
having large flexibility in the choice of links for each prefix
at the beginning of a route, and narrowing it down as the
route progresses. The result is an overlay routing scheme
that finds any target with a cost that is proportional to the
shortest-distance route.

The systems that adopt the PRR algorithm are Pas-
try [33], Tapestry [36], and Bamboo [32]. A very close
variant is Kademlia [25], in which links are symmetric.
It is worth mentioning that the LAND scheme [2] im-
proves PRR in providing a nearly optimal guaranteed lo-
cality guarantee; however, LAND has not been deployed.

Applications

Caching

The Coral network [14] from NYU, built on top of DSHT
[15], has been operational since around 2004. It provides
free content delivery services on top of the PlanetLab-dis-
tributed test bed [9], similar to the commercial services
offered by the Akamai network. People use it to provide
multiple, fast access points to content they wish to publish
on the Web.

Coral optimizes access locality and download rate
using locality-aware lookup provided by DSHT. Within
Coral, DSHT is utilized to support locality-aware object
location in two applications. First, Coral contains a col-
lection of HTTP proxies that serve as content providers;

614 P P2P

DSHT is used by clients for locating a close-by proxy. Sec-
ond, proxy servers themselves use DSHT to locate a near-
by copy of content requested by the client, thus making
use of copies of the content that are stored in the network,
rather than going to the source of the content.

Multicast

Several works deploy an event notification or publish–
subscribe service over an existing routing overlay by build-
ing reverse-routing multicast paths from a single “target”
to all “sources.” For example, multicast systems built in
this way include the Bayeux network [38], which is built
over Tapestry [36], and SCRIBE [5], which is built over
Pastry. In order to publish a file, the source advertises us-
ing flooding a tuple which contains the semantic name of
a multicast session and a unique ID. This tuple is hashed
to obtain a node identifier which becomes the session root
node. Each node can join this multicast session by sending
amessage to the root. Nodes along the waymaintainmem-
bership information, so that a multicast tree is formed in
the reverse direction. The file content (and any updates) is
flooded down the tree. Narada [8] is built with the same
general architecture, but differs in its choice of links, and
the maintenance of data.

Routing Infrastructure

ADHT can serve well to store routing and (potentially dy-
namic) location information of virtual host names. This
idea has been utilized in a number of projects. A nam-
ing system for the Internet called CoDoNS [30] was
built at Cornell University over the BeeHive overlay [29].
CoDoNS provides a safety net and is a possible replace-
ment for the Domain Name System, the current service
for looking up host names. Support for virtual IPv6 net-
work addresses is provided in [37] by mapping names to
their up-to-date, reachable IPv4 address. The Internet In-
direction Infrastructure [34] built at the University of Cal-
ifornia, Berkeley provides support for virtual Internet host
addresses that allows mobility.

Collaborative Content Delivery

Recent advances provide collaborative content delivery so-
lutions that address both load balance and resilience via
striping. The content is split into pieces (quite possibly
with some redundancy through error-correcting codes).
The source pushes the pieces of the file to an initial group
of nodes, each of which becomes a source of a distribution
tree for its piece, and pushes it to all other nodes. These

works demonstrate clearly the advantages of data strip-
ing, i. e., of simultaneously exchanging stripes of data, over
a tree-based dissemination of the full content.

SplitStream [6] employs the Pastry routing overlay in
order to construct multiple trees, such that each partici-
pating node is an inner node in only one tree. It then sup-
ports parallel download of stripes within all trees. Split-
Stream [6] strives to obtain load balancing between multi-
cast nodes. It achieves that by splitting the published con-
tent into several parts, called stripes, and publishing each
part separately. Each stripe is published using a tree-based
multicast. The workload is divided between the participat-
ing nodes by sending each stripe using a different multi-
cast tree. Load balance is achieved by carefully choosing
the multicast trees so that each node serves as an interior
node in at most one tree. This reduces the number of “free
riders” who only receive data.

A very popular file-distribution network is the BitTor-
rent system [10]. Nodes in BitTorrent are divided into seed
nodes and clients. Seed nodes contain the desired content
in full (either by being original providers, or by having
completed a recent download of the content). Client nodes
connect with a seed node or several seed nodes, as well
as a tracker node, whose goal is to keep track of currently
downloading clients. Each client selects a group (currently,
of size about 20) of other downloading clients, and ex-
changes chunks of data obtained from the seed(s) with
them. BitTorrent employs several intricate strategies for
selecting which chunks to request from what other clients,
in order to obtain fair load sharing of the content distribu-
tion and, at the same time, achieve fast download.

BitTorrent currently does not contain P2P-searching
facilities. It relies on central sites known as “trackers” to
locate content, and to coordinate the BitTorrent download
process. Recent announcements by Bram Cohen (the cre-
ator of BitTorrent) and creators of other BitTorrent clients
state that new protocols based on BitTorrent will be avail-
able soon, in which the role of trackers is eliminated, and
searching and coordination is done in a completely P2P
manner.

Experience with BitTorrent and similar systems indi-
cates that the main problem with this approach is that to-
wards the end of a download, many peers may be miss-
ing the same rare chunks, and the download slows down.
Fairly sophisticated approaches were published in an at-
tempt to overcome this issue.

Recently, a number of works at Microsoft Research
have demonstrated the benefits of network coding in ef-
ficient multicast, e. g., [7] and Avalanche [16]. We do not
cover these techniques in detail here, but only briefly state
the principal ideas that underlie them.

P2P P 615

The basic approach in network coding is to re-encode
all the chunks belonging to the file, so that each one that
is shared is actually a linear combination of all the pieces.
The blocks are then distributed with a description of the
content. Once a node obtains these re-encoded chunks, it
can generate new combinations from the ones it has, and
can send those out to other peers. The main benefit is that
peers can make use of any new piece, instead of having
to wait for specific chunks that are missing. This means
no one peer can become a bottleneck, since no piece is
more important than any other. Once a peer collects suffi-
ciently many such chunks, it may use them to reconstruct
the whole file.

It is worth noting that in unstructured settings, it
was recently shown that network coding offers no advan-
tage [12].

Cross References

� Geometric Spanners
� Routing
� Sparse Graph Spanners

Recommended Reading
1. Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov,

E.: A generic scheme for building overlay networks in adversar-
ial scenarios. In: Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS 2003), 2003

2. Abraham, I., Malkhi, D., Dobzinski, O.: LAND: Stretch (1 + ") lo-
cality aware networks for DHTs. In: Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA04), 2004

3. Abraham, I., Badola, A., Bickson, D., Malkhi, D., Maloo, S., Ron,
S.: Practical locality-awareness for large scale information shar-
ing. In: The 4th Annual International Workshop on Peer-To-
Peer Systems (IPTPS ’05), 2005

4. Aspnes, J., Shah, G.: Skip graphs. In: Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Baltimore, January
2003, pp. 384–393

5. Castro, M., Druschel, P., Rowstron, A.: Scribe: A large-scale and
decentralised application-level multicast infrastructure, IEEE J.
Sel. Areas Commun. (JSAC) (Special issue on Network Support
for Multicast Communications) 20(8), 1489–1499 (2002). ISSN:
0733–8716

6. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron,
A., Singh, A.: Splitstream: High-bandwidth multicast in a coop-
erative environment. In: SOSP’03, October 2003

7. Chou, P., Wu, Y., Jain, K.: Network coding for the internet. In:
IEEE Communication Theory Workshop, 2004

8. Chu, Y., Rao, S.G., Zhang, H.: A case for end system multicast.
In: Proceedings of ACM SIGMETRICS, Santa Clara, June 2000,
pp. 1–12

9. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzo-
niak, M., Bowman, M.: Planetlab: An overlay testbed for broad-
coverage services. ACM SIGCOMMComput. Commun. Rev. 33,
3–12 (2003)

10. Cohen, B.: Incentives build robustness in bittorrent. In: Pro-
ceedings of P2P Economics Workshop, 2003

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algo-
rithms. MIT Press (1990)

12. Fernandess, Y., Malkhi, D.: On collaborative content distribu-
tion using multi-message gossip. In: Twentieth IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS
2006), Greece, April 2006

13. Fraigniaud, P., Gauron, P.: The content-addressable network
D2B. Tech. Report 1349, LRI, Univ. Paris-Sud (2003)

14. Freedman, M.J., Freudenthal, E., Mazières, D.: Democratizing
content publication with coral. In: Proceedings of the 1st
USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI ’04), March 2004

15. Freedman, M.J., Mazières, D.: Sloppy hashing and self-organiz-
ing clusters. In: Proceedings of the 2nd Intl. Workshop on Peer-
to-Peer Systems (IPTPS ’03), February 2003

16. Gkantsidis, C., Rodriguez, P.: Network coding for large scale
content distribution. In: IEEE/INFOCOM, 2005

17. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M.,
Zahorjan, J.: Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload. In: Proceedings of the nine-
teenth ACM symposium on Operating systems principles,
pp. 314–329. ACM Press (2003)

18. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker,
S., Stoica, I.: The impact of DHT routing geometry on resilience
and proximity. In: Proceedings of the 2003 conference on Ap-
plications, technologies, architectures, and protocols for com-
puter communications, pp. 381–394. ACM Press (2003)

19. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman,
A.: Skipnet: A scalable overlay network with practical locality
properties. In: Proceedings of Fourth USENIX Symposium on
Internet Technologies and Systems (USITS ’03), March 2003

20. Kaashoek, F., Karger, D.R.: Koorde: A simple degree-optimal
hash table. In: 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), 2003

21. Karger, D., Lehman, E., Leighton, F.T., Levine, M., Lewin, D., Pan-
igrahy, R.: Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide
web. In: Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC), 1997, pp. 654–663 1997

22. Kleinberg, J.: The small-world phenomenon: An algorithmic
perspective. In: Proc. 32nd ACM Symposium on Theory of
Computing (STOC 2000), 2000, pp. 163–170

23. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and
dynamic emulation of the butterfly. In: Proceedings of the
21st ACM Symposium on Principles of Distributed Computing
(PODC ’02), 2002, pp. 183–192

24. Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed
hashing in a small world. In: Proc. 4th USENIX Symposium
on Internet Technologies and Systems (USITS 2003) 2003,
pp. 127–140

25. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer infor-
mation systembasedon the XORmetric. In: Proc. 1st Intl. Work-
shop on Peer-to-Peer Systems (IPTPS 2002), 2002, pp. 53–65

26. Naor, M., Wieder, U.: Novel architectures for p2p applications:
the continuous-discrete approach. In: The Fifteenth Annual
ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA ’03), 2003

27. Plaxton, C., Rajaraman, R., Richa, A.: Accessing nearby copies of
replicated objects in a distributed environment. In: Proceed-
ings of the Ninth Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA 97), 1997, pp. 311–320

616 P Packet Routing

28. Pugh, W.: Skip lists: A probabilistic alternative to balanced
trees. In: Workshop on Algorithms and Data Structures, 1989,
pp. 437–449

29. Ramasubramanian, V., Sirer, E.G.: Beehive: O(1) lookup perfor-
mance for power-law query distributions in peer-to-peer over-
lays. In: Proceedings of Networked System Design and Imple-
mentation (NSDI), 2004

30. Ramasubramanian, V., Sirer, E.G.: The design and implementa-
tion of a next generation name service for the internet. In: Pro-
ceedings of SIGCOMM, 2004

31. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.:
A scalable content-addressable network. In: Proceedings of
the ACM SIGCOMM 2001 Technical Conference, 2001

32. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn
in a dht. Tech. Report Technical Report UCB//CSD-03-1299, The
University of California, Berkeley, December 2003

33. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems.
In: IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), 2001, pp. 329–350

34. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet
Indirection Infrastructure. In: Proceedings of ACM SIGCOMM,
pp. 73–88 (2002)

35. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet ap-
plications. In: Proceedings of the SIGCOMM 2001

36. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubi-
atowicz, J.: Tapestry: A resilient global-scale overlay for service
deployment. IEEE J. Sel. Areas Commun. (2003)

37. Zhou, L., van Renesse, R., Marsh, M.: Implementing IPv6 as
a Peer-to-Peer Overlay Network. In: Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems (SRDS’02),
pp. 347 (2002)

38. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz,
J.: Bayeux: An architecture for scalable and fault-tolerant wide-
area data dissemination. In: Proceedings of the Eleventh Inter-
nationalWorkshop onNetwork andOperating SystemSupport
for Digital Audio and Video (NOSSDAV 2001), 2001

Packet Routing
1988; Leighton, Maggs, Rao

LENORE J. COWEN
Department of Computer Science, Tufts University,
Medford, MA, USA

Keywords and Synonyms

Store-and-forward routing; Job shop scheduling

ProblemDefinition

A collection of packets need to be routed from a set of
specified sources to a set of specified destinations in an ar-
bitrary network. Leighton, Maggs and Rao [5] looked at
a model where this task is divided into two separate tasks:
the first is the path selection task, where for each specified

packet i with source si and packet destination ti, a sim-
ple (meaning edges don’t repeat) path Pi through the net-
work from si to ti is pre-selected. Packets traverse the net-
work in a store and forward manner: each time a packet is
forwarded it travels along the next link in the pre-selected
path. It is assumed that only one packet can cross each in-
dividual link at each given global (synchronous) timestep.
Thus, when there is contention for a link, packets awaiting
traversal are stored in the local link’s queue (special source
and sink queues of unbounded size are also defined that
store packets at their origins and destinations). Thus, the
second task, and the focus of the Leighton, Maggs and Rao
result (henceforth called the LMR result) is the scheduling
task: a determination, when a link’s queue is not empty, of
which packet gets to traverse the link in the next timestep
(where it is assumed to immediately join the link queue for
its next hop). The goal is to schedule the packets so that the
maximum time that it takes any packet to reach its desti-
nation is minimized.

There are two parameters of the network together with
the pre-selected paths that are clearly relevant. One is the
congestion c, defined as the maximum number of paths
that all use the same link. The other is the dilation d, which
is simply the length of the longest path that any packet tra-
verses in the network. Clearly each of c and d is a lower-
bound on the length of any schedule that routes all the
packets to their destinations. It is easy to see that a sched-
ule of length at most cd always exists. In fact, any schedule
that never lets a link go idle if there is a packet that can use
that link at that timestep is guaranteed to terminate in cd
steps, because each packet traverses at most d links, and at
any link can be delayed by at most c � 1 other packets.

Key Results
The surprising and beautiful result of LMR is as follows:

Theorem ([5]) For any network G with a pre-specified
set of paths P with congestion c and dilation d, there ex-
ists a schedule of length O(c + d), where the queue sizes at
each edge are always bounded by a constant.

The original proof of the LMR paper is non-constructive.
That is, it uses the Local Lemma [3] to prove the existence
of such a schedule, but does not give a way to find it. In
his book [10], Scheideler showed that in fact, a O(c + d)
schedule exists with edge queue sizes bounded by 2 (and
gave a simpler proof of the original LMR result). A sub-
sequent paper of Leighton, Maggs and Richa in 1999 [6]
provides a constructive version of the original LMR paper
as follows:

Theorem ([6]) For any network G with a pre-specified
set of paths P with congestion c and dilation d, there exists

Packet Routing P 617

a schedule of length O(c + d). Furthermore, such a schedule
can be found in O(p log1+� p log�(c+ d)) time for any �>0,
where p is the sum of the lengths of the paths taken by the
packets and " is incorporated into the constant hidden by
the big-O in the schedule length.

The algorithm in the paper is a randomized one, though
the authors claim that it can be derandomized using
the method of conditional probabilities. However, even
though the algorithm of Leighton, Maggs and Richa is
constructive, it is still an offline algorithm: namely, it re-
quires full knowledge of all packets in the network and the
precise paths that each will traverse in order to construct
the schedule. The original LMR paper also gave a simple
randomized online algorithm, that, by assigning delays to
packets independently and uniformly at random from an
appropriate interval, results in a schedule which is much
better than greedy schedules, though not as good as the
offline constructions.

Theorem ([5]) There is a simple randomized on-line al-
gorithm for producing, with high probability, a schedule of
length O(c + d log(Nd)) using queues of size O(log(Nd)),
where c is the congestion, d is the dilation, andN is the num-
ber of packets.

In the special case where it is assumed that all packets fol-
low shortest paths in the network, Meyer, auf der Heide
and Vöcking produced a simple randomized online algo-
rithm that produces, with high probability, a schedule of
length O(c + d + log Nd) steps, but queues can be as large
as O(c) [7]. For arbitrary paths, the LMR online result was
ultimately improved to O(c + d + log1+� N) steps, for any
�>0 with high probability, in a series of two papers by Ra-
bani and Tardos [9], and Rabani andOstrovsky [8]. Online
protocols have also been studied in a setting where addi-
tional packets are dynamically injected into the network in
adversarial settings, see [10] for a survey.

The discussion is briefly returned to the first task,
namely to pre-construct the set of paths. Clearly, the goal
is to find, for a particular set of packets with pre-specified
sources and destinations, a set of paths that minimizes
c + d. Srinivasan and Teo [12] designed an off-line algo-
rithm that produces a set of paths whose c + d is prov-
ably within a constant factor of optimal. Together with the
offline LMR result, that gives a constant-factor approxi-
mation problem for the offline store-and-forward packet
routing problem. Note that the approach of trying to min-
imize c + d rather than c alone seems crucial; producing
schedules within a constant factor of optimal congestion
c is hard, and in fact has been shown to be related to the
integrality gap for multicommodity flow [1,2].

Applications
Network Emulations
Typically, a guest network G is emulated by a host net-
workH by embeddingG intoH. Nodes ofG aremapped to
nodes of H, while edges of G are mapped to paths in H. If
P is the set of e paths (each corresponding to an edge in the
guest network G), the congestion and dilation can be de-
fined analogously as in the main result for the set of paths
P, namely c denotes the maximum number of paths that
use any one edge of H, and d is the length of the longest
path in P. In addition, the load l is defined to be the max-
imum number of nodes in G that are mapped to a single
node of H. Once G is embedded in H, H can emulate G
as follows: Each node of H emulates the local computa-
tions performed by the l (or fewer) nodes mapped to it in
O(l) time. Then for each packet sent along an edge of G,H
sends a packet along the corresponding path in the embed-
ding; using the offline LMR result this takes O(c+d) steps.
Thus, H can emulate each step of G in O(c + d + l) steps.

Job Shop Scheduling
Consider a scheduling problemwith jobs j1; : : : jr andma-
chines m1; : : : ;ms for which each job must be performed
on a specified sequence of machines (in a specified or-
der). Assume each job spends unit time on each machine,
and that no machine has to work on any job more than
once (In the language of job-shop scheduling, this is the
non-preemptive, acyclic, job-shop scheduling problem, with
unit jobs). There is a mapping of sequences of machines to
paths and jobs to packets so that this becomes an encod-
ing of the main packet routing problem, where if c is now
to be the maximum number of jobs that have to be run
on any one machine, and d to be the maximum number
of different machines that work on any single job, there
becomes O(c) congestion and O(d) dilation for the corre-
sponding packet-routing instance. Then the offline LMR
result shows that there is a schedule that completes all jobs
in O(c+ d) steps, where in addition, each job waits at most
a constant number of steps in between consecutive ma-
chines (and the queue of jobs waiting for any particular
machine will always be bounded by a constant). Similar
techniques to those developed in the LMR paper have sub-
sequently been applied to more general instances of Job-
Shop Scheduling; see [4,11].

Open Problems
The main open problem is whether there is a random-
ized online packet scheduling thatmatches the offline LMR
bound of O(c+d). The bound of [8] is close, but still grows
logarithmically with the total number of packets.

618 P Packet Switching in Multi-Queue Switches

For job shop scheduling, it is unknown whether the
constant-factor approximation algorithm for the non-
preemptive acyclic job-shop scheduling problem with unit
length jobs implied by LMR can be improved to a PTAS.
It is also unknown whether there is a constant-factor ap-
proximation in the case of arbitrary-length jobs.

Recommended Reading
1. Andrews, M., Zhang, L.: Hardness of the Undirected Conges-

tion Minimization Problem. Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, pp. 284–293 (2005)

2. Chuzhoy, J., Naor, J.: NewHardness Results for CongestionMin-
imization and Machine Scheduling. Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, pp. 28–34.
ACM, New York (2004)

3. Erdös, P., Lovász, L.: Problems and results on 3-chromatic hy-
pergraphs and some related questions. Colloq. Math. Soc.
János Bolyai 10, 609–627 (1975)

4. Goldberg, L.A., Patterson, M., Srinivasan, A., Sweedick, E.: Bet-
ter Approximation Guarantees for Job-Shop Scheduling. SIAM
J. Discret. Math. 14(1), 67–92 (2001)

5. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-
shop scheduling inO(congestion+dilation) steps. Combinator-
ica 14(2), 167–180 (1994)

6. Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms
for finding O(congestion+dilation) packet routing schedules.
Combinatorica 19(3), 375–401 (1999)

7. Meyer auf der Heide, F., Vöcking, B.: Shortest-Path Routing in
Arbitrary Networks. J. Algorithms 31(1), 105–131 (1999)

8. Ostrovsky, R., Rabani, Y.: Universal O(congestion + dilation+
log1 +" N) Local Control Packet Switching Algorithm. In: Pro-
ceedings of The Twenty-Ninth ACM Symposium on Theory of
Computing, pp. 644–653 (1997)

9. Rabani, Y., Tardos, E.: Distributed Packet Switching in Arbitrary
Networks. In: the 28th ACM Symposium on Theory of Comput-
ing, pp. 366–376 (1996)

10. Scheideler, C.: Universal RoutingStrategies for Interconnection
Networks. In: Lecture Notes in Computer Science, vol. 1390.
Springer (1998)

11. Shmoys, D.B., Stein, C.,Wein, J.: Improved ApproximationAlgo-
rithms for Shop Scheduling Problems. SIAM J. Comput. 23(3),
617–632 (1994)

12. Srinivasan, A., Teo, C.P.: A Constant-Factor Approximation Al-
gorithm for Packet Routing and Balancing Local vs. Global Cri-
teria. SIAM J. Comput. 30(6), 2051–2068 (2000)

Packet Switching
inMulti-Queue Switches
2004; Azar, Richter; Albers, Schmidt

MARKUS SCHMIDT
Institute for Computer Science, University of Freiburg,
Freiburg, Germany

Keywords and Synonyms

Online packet buffering; Online packet routing

ProblemDefinition

A multi-queue network switch serves m incoming queues
by transmitting data packets arriving at m input ports
through one single output port. In each time step, an ar-
bitrary number of packets may arrive at the input ports,
but only one packet can be passed through the common
output port. Each packet is marked with a value indicat-
ing its priority in the Quality of Service (QoS) network.
Since each queue has bounded capacity B and the rate of
arriving packets can be much higher than the transmis-
sion rate, packets can be lost due to insufficient queue
space. The goal is to maximize the throughput which is de-
fined as the total value of transmitted packets. The prob-
lem comprises two dependent questions: buffer manage-
ment, namely which packets to admit into the queues, and
scheduling, i. e. which (FIFO) queue to use for transmis-
sion in each time step.

Two scenarios are distinguished: (a) unit packet value
(All packets have the same value.), (b) arbitrary packet
values.

The problem is considered as an online problem, i. e.
at time step t, only the packet arrivals until t are known,
but nothing about future packet arrivals. The online switch
performance in QoS based networks is studied by using
competitive analysis in which the throughput of the on-
line algorithm is compared to the throughput of an opti-
mal offline algorithm knowing the whole arrival sequence
in advance.

If not stated otherwise, the admission control is as-
sumed to allows preemption, i. e. packets once enqueued
need not necessarily be transmitted, but can be discarded.
Problem 1 (Unit value problem) All packets have
value 1. Since all packets are thus equally important, the ad-
mission control policies simplify: All arriving packets are to
be enqueued; in the case of buffer overflow, it does not mat-
ter which packets are stored in the queue and which packets
are discarded.

Problem 2 (General problem) Each packet has its indi-
vidual value where usually a range [1; ˛] is given for all
packets. A special case consists in the two value model where
the values are restricted to f1; ˛g.

Key Results
Unit value packets
Deterministic algorithms

Theorem 1 ([1]) For any buffer size B, the competi-
tive ratio of each deterministic online algorithm is not
smaller than (eB + 2

B)/(eB � 1 + 1
B) �

e
e�1 	 1:58 where

eB = ((B + 1)/B)B.

Packet Switching in Multi-Queue Switches P 619

Theorem 2 ([4]) Every work-conserving online algorithm
is 2-competitive.

Theorem 3 ([1]) For any buffer size B, the competitive ra-
tio of any greedy algorithm, which always serves a longest
queue (LQF), is at least 2 � 1

B if m� B.

Algorithm: SGR (Semi-Greedy)
In each time step, the algorithm executes the first rule that
applies to the current buffer configuration.
1. If there is a queue buffering more than bB/2c packets,

serve the queue currently having the maximum load.
2. If there is a queue the hitherto maximum load of which

is less than B, serve among these queues the one cur-
rently having the maximum load.

3. Serve the queue currently having the maximum load.
Ties are broken by choosing the queue with the small-
est index. The hitherto maximum load is reset to 0 for
all queues whenever all queues are unpopulated in SGR’s
configuration.

Theorem 4 ([1]) If B is even, then SGR is 17
9 	 1:89-

competitive. If B is odd, then SGR is (179 + ıB
9)-competitive

where ıB = 2
B+1 .

Theorem 5 ([3]) Algorithm EMÊP0 (not stated in de-
tail due to space limitation), which is based on a wa-
ter level algorithm and uses a fractional matching in an
online constructed graph, achieves a competitiveness of
e/(e � 1)(1 + (bHm + 1c)/B), where Hm denotes the mth

harmonic number. Thus, EMÊP0 is asymptotically e
e�1 -

competitive for B� logm.

Randomized algorithms

Theorem 6 ([1]) The competitive ratio of each random-
ized online algorithm is at least % = 1:4659 for any buffer
size B (% = 1 + 1

˛+1 where ˛ is the unique positive root of
e˛ = ˛ + 2).

Theorem 7 (Generalizing technique [9]) If there is
a randomized c-competitive algorithm A for B = 1, then
there is a randomized c-competitive algorithm Ã for all B.

Algorithm: RS (Random Schedule)
1. The algorithm uses m auxiliary queues Q1; : : : ;Qm of

sizes B1; : : : ; Bm (different buffer sizes at the distinct
ports are allowed), respectively. These queues contain
real numbers from the range (0,1), where each number
is labeled as either marked or unmarked. Initially, these
queues are empty.

2. Packet arrival: If a new packet arrives at queue qi, then
the algorithm chooses uniformly at random a real num-

ber from the range (0,1) that is inserted into queue Qi
and labeled as unmarked. If queueQi was full when the
packet arrived, the number at the head of the queue is
deleted prior to the insertion of the new number.

3. Packet transmission: Check whether queues Q1;

: : : ;Qm contain any unmarked number. If there are
unmarked numbers, let Qi be the queue containing
the largest unmarked number. Change the label of
the largest number to “marked” and select queue qi
for transmission. Otherwise (no unmarked number),
transmit a packet from any non-empty queue if such
exists.

Theorem 8 ([4]) Randomized algorithm RS is
e

e�1 	 1:58-competitive.

Algorithm: RP (Random Permutation)
Let P be the set of permutations of f1; : : : ;mg, denoted as
m-tuples. Choose
 2 P according to the uniform distri-
bution and fix it. In each transmission step, choose among
the populated queues that one whose index is most to the
front in them-tuple
 .

Theorem 9 ([9]) Randomized algorithm RP is 3
2 -com-

petitive for B = 1. By Theorem 7, there is a randomized al-
gorithm R̃P that is 3

2 -competitive for arbitrary B.

Arbitrary value packets

Definition 1 A switching algorithm ALG is called com-
parison-based if it bases its decisions on the relative order
between packet values (by performing only comparisons),
with no regard to the actual values.

Theorem 10 (Zero-one principle [5]) Let ALG be
a comparison-based switching algorithm (deterministic or
randomized). ALG is c-competitive if and only if ALG
achieves a c-competitiveness for all packet sequences whose
values are restricted to f0; 1g for every possible way of break-
ing ties between equal values.

Algorithm: GR (Greedy)
Enqueue a new packet if
� the queue is not full
� or a packet with the smallest value in the queue has

a lower value then the new packet. In this case, a small-
est value packet is discarded and the new packet in
enqueued.

Algorithm: TLH (Transmit Largest Head)
1. Buffer management: Use algorithm GR independently

in allm incoming queues.

620 P Packet Switching in Multi-Queue Switches

2. Scheduling: At each time step, transmit the packet with
the largest value among all packets at the head of the
queues.

Theorem 11 ([5]) Algorithm TLH is 3-competitive.

Algorithm: TL (Transmit Largest)
1. Buffer management: Use algorithm GR independently

in allm incoming queues.
2. Scheduling: At each time step, transmit the packet with

the largest value among all packets stored in the queues.
Algorithm: GSA (Generic Switch)
1. Buffer management: Apply buffer management policy

A to allm incoming queues.
2. Scheduling: Run a simulation of algorithm TL (in the

preemptive relaxed model) with the online input se-
quence � . Adopt all scheduling decisions of TL, i. e. at
each time step, transmit the packet at the head of the
queue used by TL simulation.

Theorem 12 (General reduction [4]) Let GSA denote
the algorithm obtained by running algorithm GS with
the event-driven single-queue buffer management policy A
(preemptive or non-preemptive) and let cA be the com-
petitive ratio of A. The competitive ratio of GSA satisfies
cGSA � 2 � cA.

Applications

The unit value scenario models most current networks,
e. g. IP networks which only support a “best effort” service
in which all packet streams are treated equally, whereas the
scenario with arbitrary packet values integrates full QoS
capabilities.

The general reduction technique allows to restrict one-
self to investigate single-queue buffer problems. It can
be applied to a 1.75-competitive algorithm named PG by
Bansal et al. [7], which achieves the best ratio known to-
day, and yields an algorithm GSPG that is 3.5-competitive
for multi-queue buffers (3.5 is still higher than 3 which
is the competitive ratio of TLH). In the 2-value pre-
emptive model, Lotker and Patt-Shamir [8] presented
a mark&flush algorithm mf that is 1.30-competitive for
single queue buffers and that the general reduction tech-
nique transforms into a 2.60-competitive algorithm GSmf

for multi-queue buffers.
For the general non-preemptive model, Andelman et

al. [2] presented a policy for a single queue called Expo-
nential-Interval Round-Robin (EIRR), which is (edln˛e)-
competitive, and showed also a lower bound of 	(log˛).
In the multi-queue buffer case, the general reduction tech-
nique provides a non-preemptive (edln ˛e)-competitive
algorithm.

Open Problems

It is known from Theorem 3 that the competitive ratio of
any greedy algorithm in the unit value model is at least
2 if m� B. Which is the tight upper bound for greedy
algorithms in the opposite case B� m?

The proof of the lower bound e/(e � 1) in Theorem 1
uses m� B whereas Theorem 5 achieves e/(e � 1) as an
upper bound for B� logm. In [4], a lower bound of 1.366
is shown, independent of B and m. Which is the optimal
competitive ratio for arbitrary B andm?

Due to the general reduction technique in Theo-
rem 7, the competitive ratio for multi-queue buffer al-
gorithms can be improved if better competitiveness re-
sults for single queue buffer algorithms are achieved. Cur-
rently,

p
13+5
6 	 1:43 [2] and 1.75 [7] are the best known

lower and upper bounds, respectively. How to reduce this
gap?

Cross References

� Packet Switching in Single Buffer
� Paging

Recommended Reading

1. Albers, S., Schmidt, M.: On the performance of greedy al-
gorithms in packet buffering. SIAM J. Comput. 35, 278–304
(2005)

2. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing poli-
cies for QoS switches. In: Proc. 14th ACM-SIAM Symp. on Dis-
crete Algorithms (SODA), 761–770 (2003)

3. Azar, Y., Litichevskey, M.: Maximizing throughput in multi-
queue switches. In: Proc. 12th Annual European Symp. on Al-
gorithms (ESA), 53–64 (2004)

4. Azar, Y., Richter, Y.: Management of multi-queue switches in
QoS Networks. In: Proc. 35th ACM Symp. on Theory of Comput-
ing (STOC), 82–89 (2003)

5. Azar, Y., Richter, Y.: The zero-one principle for switching net-
works. In: Proc. 36th ACM Symp. on Theory of Computing
(STOC), 64–71 (2004)

6. Azar, Y., Richter, Y.: An improved algorithm for CIOQ switches. In:
Proc. 12th Annual European Symp. on Algorithms (ESA). LNCS,
vol. 3221, 65–76 (2004)

7. Bansal, N., Fleischer, L., Kimbrel, T., Mahdian, M., Schieber, B.,
Sviridenko, M.: Further improvements in competitive guaran-
tees for QoS buffering. In: Proc. 31st International Colloquium
on Automata, Languages, and Programming (ICALP), 64–71
(2004)

8. Lotker, Z., Patt-Shamir, B.: Nearly optimal FIFO buffer manage-
ment for two packet classes. Comput. Netw. 42(4), 481–492
(2003)

9. Schmidt, M.: Packet buffering: randomization beats determinis-
tic algorithms. In: Proc. 22nd Annual Symp. on Theoretical As-
pects of Computer Science (STACS). LNCS, vol. 3404, 293–304
(2005)

Packet Switching in Single Buffer P 621

Packet Switching in Single Buffer
2003; Bansal, Fleischer, Kimbrel, Mahdian,
Schieber, Sviridenko

ROB VAN STEE
Algorithms and Complexity Department, Max Planck
Institute for Computer Science, Saarbrücken, Germany

Keywords and Synonyms

Buffering

ProblemDefinition

In this entry, consider a Quality of Service (QoS) buffering
system that is able to hold B packets. Time is slotted. At the
beginning of a time step a set of packets (possibly empty)
arrives and at the end of the time step a single packet
may leave the buffer to be transmitted. Since the buffer
has a bounded size, at some point packets may need to be
dropped. The buffer management algorithm has to decide
at each step which of the packets to drop and which pack-
ets to transmit, subject to the buffer capacity constraint.
The value of a packet p is denoted by v(p). The system ob-
tains the value of the packets it sends, and gains no value
otherwise. The aim of the buffer management algorithm is
to maximize the total value of transmitted packets.

In the FIFO model, the packet transmitted at time t is
always the first (oldest) packet in the buffer.

In the nonpreemptive model, packets accepted to
the queue will be transmitted eventually and cannot be
dropped. In this model, the best competitive ratio achiev-
able is	(log˛) where ˛ is the ratio of the maximum value
of a packet to the minimum [1,2].

In the preemptive model, packets can also be dropped
at some later time before they are served. The rest of
this entry focuses on this model. Mansour, Patt-Shamir,
and Lapid [9] were the first to study preemptive queuing
policies for a single FIFO buffer, proving that the natu-
ral greedy algorithm (see definition in Fig. 1) maintains
a competitive ratio of at most 4. This bound was improved
to the tight value of 2 by Kesselman, Lotker, Mansour,
Patt-Shamir, Schieber, and Sviridenko [6].

The greedy algorithm is not optimal since it never pre-
empts a packet until the buffer is full and this might be too
late. The first algorithm with a competitive ratio strictly
below 2 was presented by Kesselman, Mansour, and van
Stee [7]. This algorithm uses a parameter ˇ and introduces
an extra rule for processing arrivals, that is executed before
rules 1 and 2 of the greedy algorithm. This rule is formu-
lated in Fig. 2.

The Greedy Algorithm.
When a packet of value v(p) arrives:
1. Accept p if there is free space in the buffer.
2. Otherwise, reject (drop or preempt) the packet p0

that has minimal value among p and the packets in
the buffer. If p0 6= p, accept p.

Packet Switching in Single Buffer, Figure 1
The natural greedy algorithm

0. Preempt (drop) the first packet p0 in the FIFO order
such that v(p0) � v(p)/ˇ, if any (p preempts p0).

Packet Switching in Single Buffer, Figure 2
Extra rule for the preemptive greedy algorithm

0’. Find the first (i. e., closest to the front of the buffer)
packet p0 such that p0 has value less than v(p)/ˇ and
not more than the value of the packet after p0 in the
buffer (if any). If such a packet exists, drop it (p pre-
empts p0).

Packet Switching in Single Buffer, Figure 3
Modified preemptive greedy

It is shown in [7] that by taking ˇ = 15, the algorithm
preemptive greedy (PG) has a competitive ratio of 1.983.
The analysis is rather complicated and is done by assign-
ing the value of packets served by the offline algorithm to
packets served by PG.

A lower bound of 5/4 for this problem was shown
in [9]. This was improved to

p
2 in [2] and then to 1.419

in [7].

Key Results

A modification of PG was presented by Bansal, Fleis-
cher, Kimbrel, Mahdian, Schieber, and Sviridenko [3]. It
changes rule 0 to rule 00.

Thus, the modification compared to PG is that this al-
gorithm finds a “locally optimal” packet to evict. We will
denote modified preemptive greedy by MPG.

Theorem 1 ([3]) For ˇ = 4, MPG has a competitive ratio
of 1.75.

The proof begins by showing that in order to analyze the
performance of MPG, it is sufficient to consider only input
instances in which the value of each packet is either 0 or ˇi

for some i � 0, but ties are allowed to be broken by the
adversary.

622 P PAC Learning

The authors then define an interval structure for input
instances. An interval I is said to be of type i if at every
step t 2 I MPG outputs a packet of value at least ˇi, and I
is a maximal interval with this property.

Ii is the collection of maximal intervals of type i, and I
is the union of all Ii ’s. This is a multiset, since an interval
of type i can also be contained in an interval of one ormore
types j < i.

This induces an interval structure which is a sequence
of ordered rooted trees in a natural way: the root of each
tree is an interval in I0, and the children of each inter-
val I 2 Ii are all the maximal intervals of type i + 1 which
are contained in I. These children are ordered from left to
right based on time, as are the trees themselves. The in-
tervals of type i (and the vertices that represent them) are
distinguished by whether or not an eviction of a packet of
value at least ˇi occurred during the interval.

To complete the proof, the authors show that for ev-
ery interval structure T , the competitive ratio of MPG on
instances with interval structure T can be bounded by the
solution of a linear program indexed by T . Finally, it is
shown that for every T and every ˇ � 4, the solution of
this program is at most 2 � 1/ˇ.

Applications

In recent years, there has been a lot of interest in Qual-
ity of Service networks. In regular IP networks, packets
are indistinguishable and in case of overload any packet
may be dropped. In a commercial environment, it is much
more preferable to allow better service to higher-paying
customers or customers with critical requirements. The
idea of Quality of Service guarantees is that packets are
marked with values which indicate their importance.

This naturally leads to decision problems at network
switches when many packets arrive and overload occurs.
The algorithm presented in this entry can be used to max-
imize network performance in a network which supports
Quality of Service.

Open Problems

Despite substantial advances in improving the upper
bound for this problem, a fairly large gap remains. Sgall [5]
showed that the performance of PG is as good as that of
MPG. Recently, Englert and Westermann [4] showed that
PG has a competitive ratio of at most

p
3 	 1:732 and at

least 1 + 1/2
p
2 	 1:707. Thus, to improve further, a dif-

ferent algorithm will be needed.
The authors also note that Lotker and Patt-Shamir [8]

studied the special case of two packet values and de-
rived a 1.3-competitive algorithm, which closely matches

the corresponding lower bound of 1.28 from Mansour et
al. [9]. An open problem is to close the remaining small
gap.

Cross References

� Packet Switching in Multi-Queue Switches

Recommended Reading
1. Aiello, W., Mansour, Y., Rajagopolan, S., Rosen, A.: Competitive

queue policies for differentiated services. In: Proc. of the IEEE IN-
FOCOM, pp. 431–440. IEEE, Tel-Aviv, Israel (2000)

2. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing poli-
cies inQoS switches. In: Proc. 14th Symp. onDiscrete Algorithms
(SODA), pp. 761–770 ACM/SIAM, San Francisco, CA, USA (2003)

3. Bansal, N., Fleischer, L., Kimbrel, T., Mahdian, M., Schieber, B.,
Sviridenko, M.: Further improvements in competitive guaran-
tees for QoS buffering. In: Proc. 31st International Colloquium
on Automata, Languages, and Programming (ICALP). Lecture
Notes in Computer Science, vol. 3142, pp. 196–207. Springer,
Berlin (2004)

4. Englert, M., Westermann, M.: Lower and upper bounds on
FIFO buffer management in qos switches. In: Azar, Y., Er-
lebach, T. (eds.) Algorithms – ESA 2006, 14th Annual European
Symposium, Proceedings. Lecture Notes in Computer Science,
vol. 4168, pp. 352–363. Springer, Berlin (2006)

5. Jawor, W.: Three dozen papers on online algorithms. SIGACT
News 36(1), 71–85 (2005)

6. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber,
B., Sviridenko,M.: Buffer overflowmanagement inQoS switches.
SIAM J. Comput. 33(3), 563–583 (2004)

7. Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive
guarantees for QoS buffering. In: Di Battista, G., Zwick, U. (eds.)
Algorithms – ESA 2003, Proceedings Eleventh Annual Euro-
pean Symposium. LectureNotes in Computer Science, vol. 2380,
pp. 361–373. Springer, Berlin (2003)

8. Lotker, Z., Patt-Shamir, B.: Nearly optimal FIFO buffer manage-
ment for DiffServ. In: Proceedings of the 21st ACM Symposium
on Principles of Distributed Computing (PODC 2002), pp. 134–
142. ACM, New York (2002)

9. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing
schedules for real-time streams. In: Proc. 19th Symp. on Prin-
ciples of Distributed Computing (PODC), pp. 21–29. ACM, New
York (2000)

PAC Learning
1984; Valiant

JOEL RATSABY
Department of Electrical and Electronic Engineering,
Ariel University Center of Samaria, Ariel, Israel

Keywords and Synonyms

Probably approximately correct learning

PAC Learning P 623

ProblemDefinition

Valiant’s work defines amodel for representing the general
problem of learning a Boolean concept from examples.
The motivation comes from classical fields of artificial in-
telligence [2], pattern classification [5] andmachine learn-
ing [10]. Classically, these fields have employed numerous
heuristics for representing knowledge and defining criteria
by which computer algorithms can learn. The pioneering
work of [12,13] provided the leap from heuristic-based ap-
proaches to a rigorous statistical theory of pattern recog-
nition (see also [1,4,11]). Their main contribution was the
introduction of probabilistic upper bounds on the gener-
alization error which hold uniformly over a whole class
of concepts. Valiant’s main contribution is in formalizing
this probabilistic theory into a general model for compu-
tational inference. This model which is known as the Prob-
ably Approximately Correct (PAC) model of learnability is
concerned with computational complexity of learning. In
his formulation, learning is depicted as an interaction be-
tween a teacher and a learner with two main procedures,
one which provides randomly drawn examples x of the
concept c that is being learned and the second acts as an
oracle which provides the correct classification label c(x).
Based on a finite number of such examples drawn identi-
cally and independently according to any fixed probability
distribution, the aim of the learner is to infer an approxi-
mation of c which is correct with high confidence. Using
the terminology of [9] suppose X denotes the space of in-
stances, i. e., objects which a learner can obtain as training
examples. A concept over X is a Boolean mapping from X
to f0; 1g. Let P be any fixed probability distribution overX
and c a fixed target concept to be learned. For any hypoth-
esis concept h over X define by L(h) = P (c(x) ¤ h(x)) the
error of h, i. e., the probability that h disagrees with c on
a test instance x which is drawn according to P . Then ac-
cording to Valiant, an algorithm A for learning c is one
which runs in time t and with a sample of size m where
both t and m are polynomials with respect to some pa-
rameters (to be specified below) and produces a hypothesis
concept h such that with high confidence L(h) is small.

Key Results

The main result of Valiant’s work is a formal definition
of what constitutes a learnable problem. Formally, this is
stated as follows: Let H be a class of concepts over X.
Then H is learnable if there exists an algorithm A with
the following property: for every possible target concept
c 2H , for every probability distribution P on X (this is
sometimes referred to as the ‘distribution-independence’
assumption), for all values of a confidence parameter

0 < ı < 1/2 and an approximation accuracy parameter
0 < � < 1/2, if A receives as input the value of ı; � and
a sample S = f(xi ; c(xi))gmi=1 of cardinality m (which may
depend on " and ı) which consists of examples xi that are
randomly drawn according to P and labeled by an oracle
as c(xi) thenwith probability 1� ı,A outputs a hypothesis
concept h 2H such that the error L(h) � �. That � can be
arbitrarily close to zero follows from what is known as the
‘noise-free’ assumption, i. e., that the labels comprise the
true value of the target concept. IfA runs in time t and if t
and m are polynomial in 1/� and 1/ı thenH is efficiently
PAC learnable.

Valiant has shown that the following classes are all
PAC learnable: class of conjunctive normal form expres-
sions with a bounded number of literals in each clause, the
class of monotone disjunctive normal form expressions
(here the learner requires in addition to S also an oracle
that can answer membership queries, i. e., provide the true
label c(x) for an x in question), and the class of arbitrary
expressions in which each variable occurs just once (us-
ing more powerful oracles). Work following Valiant’s pa-
per (see [8] for references) has shown that the classes of
k-DNF, k-CNF and k-decision lists are PAC learnable for
each fixed k. The class of concepts in the form of a disjunc-
tion of two conjunctions is not PAC learnable and neither
is the class of existential conjunctive concepts on structural
instance spaces with two objects. Linear threshold con-
cepts (perceptrons) are PAC learnable on both Boolean
and real-valued instance spaces but the class of concepts
in the form of a conjunction of two linear threshold con-
cepts is not PAC learnable. The same holds for disjunc-
tions and linear thresholds of linear thresholds (i. e., multi-
layer perceptrons with two hidden units). If the weights are
restricted to 1 and 0 (but the threshold is arbitrary) then
linear threshold concepts on Boolean instances spaces are
not PAC learnable.

It should be noted that the notion of PAC learnability
discussed throughout this entry is sometimes referred to as
“proper” PAC learnability because of the requirement that,
when learning a concept classH , the learning algorithm
must output a hypothesis that also belongs toH : Several
of the negative results mentioned above can be circum-
vented in a model of “improper” PAC learning, where the
learning algorithm is allowed to output hypotheses from
a broader class of functions thanH . See [9] and the pro-
ceedings of the COLT conferences for many results of this
type.

Applications
Valiant’s paper is a milestone in the history of the area
known as Computational Learning Theory (see proceed-

624 P PageRank Algorithm

ings of COLT conferences). The PACmodel has been crit-
icized in that the distribution independence assumption
and the notion of target concepts with noise free training
data are unrealistic in practice, e. g., in machine learning
and AI. There has thus been much work on learning mod-
els that relax several of the assumptions in Valiant’s PAC
model. For instance, models which allow noisy labels or
remove the assumptions on the independence of training
examples, relax the assumption on the probability distri-
bution to be fixed, allow the bounds to be distribution de-
pendent, permit the training sample to be picked by the
learner and labeled by the oracle instead of the random
sample, or chosen by a helpful teacher. For references, see
Sect. 2.6 of [1]. An important followup of Valiant’s model
was the work of [3] who unified his model with the uni-
form convergence results of [13]. They showed the im-
portant dependence between the notion of learnability and
certain combinatorial properties of concept classes, one of
which is known as the Vapnik-Chervonenkis (VC) dimen-
sion (see Sect. 3.4 of [1] for history on the VC-dimension).

Cross References

� Attribute-Efficient Learning
� Hardness of Proper Learning
� Learning with the Aid of an Oracle
� Learning Constant-Depth Circuits
� Learning DNF Formulas
� Learning with Malicious Noise

Recommended Readings

For a recommended collection of works on the PACmodel
and its extensions see [6,7,8].

1. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoreti-
cal Foundations. Cambridge University Press, Cambridge, Eng-
land (1999)

2. Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelli-
gence. Addison-Wesley Pub (Sd) (1994)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learn-
ability and the Vapnik–Chervonenkis dimension. J. ACM 36(4),
929–965 (1989)

4. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pat-
tern Recognition. Springer, New York, USA (1996)

5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-
Interscience Publication (2000)

6. Haussler, D.: Applying valiants learning framework to ai con-
cept learning problems. In: Michalski, R., Kodratoff, Y. (eds.)
Machine Learning: An Artificial Intelligence Approach. Morgan
Kaufmann

7. Haussler, D.: Decision theoretic generalizations of the PAC
model for neural net and other learning applications. Inf. Com-
put. 100(1), 78–150 (1992)

8. Haussler, D.: Probably approximately correct learning and
decision-theoretic generalizations. In: Smolensky, P., Mozer,
M., Rumelhart, D. (eds.) Mathematical Perspectives on Neural
Networks, pp. 651–718. L. Erlbaum Associates, Mahwah, New
Jersey (1996)

9. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational
Learning Theory. M.I.T. Press, London, England (1997)

10. Mitchell, T.: Machine Learning. McGraw Hill (1997)
11. Pearl, J.: Capacity and error-estimates for boolean classifiers

with limited complexity. IEEE Trans. on Pattern Recognition
and Machine Intelligence, PAMI-1(4), 350–356 (1979)

12. Vapnik, V.N.: Estimations of dependences based on statistical
data. Springer (1982)

13. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence
of relative frequencies of events to their probabilities. Theory
Probab. Apl. 16, 264–280 (1971)

PageRank Algorithm
1998; Brin, Page

MONIKA HENZINGER
Google Switzerland & Ecole Polytechnique Federale
de Lausanne (EPFL), Lausanne, Switzerland

ProblemDefinition

Given a user query current web search services retrieve all
web pages that contain the query terms, resulting in a huge
number of web pages for the majority of searches. Thus it
is crucial to reorder or rank the resulting documents with
the goal of placing the most relevant documents first. Fre-
quently, ranking uses two types of information: (1) query-
specific information and (2) query-independent informa-
tion. The query-specific part tries to measure how relevant
the document is to the query. Since it depends to a large
part on the content of the page, it is mostly under the con-
trol of the page’s author. The query-independent informa-
tion tries to estimate the quality of the page in general. To
achieve an objective measure of page quality it is impor-
tant that the query-independent information incorporates
a measure that is not controlled by the author. Thus the
problem is to find a measure of page quality that (a) can-
not be easily manipulated by the web page’s author and
(b) works well for allweb pages. This is challenging as web
pages are extremely heterogeneous.

Key Results

The hyperlink structure of the web is a good source for
basing such a measure as it is hard for one author or
a small set of authors to influence the whole structure, even
though they can manipulate a subset of the web pages.
Brin and Page showed that a relatively simple analysis of

Paging P 625

the hyperlink structure of the web can be used to produce
a quality measure for web documents that leads to large
improvements in search quality. The measure is called the
PageRankmeasure.

Linear Algebra-based Definition

Let n be the total number of web pages. The PageRank
vector is an n-dimensional vector with one dimension for
each web page. Let d be a small constant, like 1/8, let
deg(p) denote the number of hyperlinks in the body text
of page p and let PR(p) denote the PageRank value of page
p. Assume first that every page contains at least one hy-
perlink. In such a collection of web pages the PageRank
vector is computed by solving a system of linear equations
that contains for each page p the equation

PR(p) = d/n + (1� d) �
X

q has hyperlink to p

PR(q)/deg(q) :

In matrix notation the PageRank vector is the Eigenvector
with 1-Norm one of the matrixAwith d/n+(1�d)/deg(q)
for entryAqp if q has a hyperlink to p and d/n otherwise.

If web pages without hyperlinks are allowed in this lin-
ear system then they might become “PageRank sinks”, i. e.,
they would “receive” PageRank from the pages pointing
to them, but would not “give out” their PageRank, poten-
tially resulting in an “unusually high” PageRank value for
themselves. Brin and Page proposed two ways to deal with
web pages without out-links, namely either to recursively
delete them until no such web pages exist anymore in the
collection or to add a hyperlink from each such page to
every other page.

Random Surfer Model

Let theweb graph G = (V ; E) be a directed graph such that
each node corresponds to a web page and every hyperlink
corresponds to a directed edge from the referencing node
to the referenced node. The PageRank can also be inter-
preted as the following random walk in the web graph.
The random walk starts at a random node in the graph.
Assume in step k it visits page q. Then it flips a biased coin
and with probability d or if q has no out-edges, it selects
a random node out of V and visits it in step k + 1. Other-
wise it selects a random out-edge of the current node and
visits it in step k +1. (Note that this corresponds to adding
a directed edge from every page without hyperlink to ev-
ery node in the graph.) Under certain conditions (which
do not necessarily hold on the web) the stationary distri-
bution of this random walk corresponds to the PageRank
vector. See [1,4] for details.

Brin and Page also suggested to compute the PageRank
vector approximately using the power method, i. e., by set-
ting all initial values to 1/n and then repeatedly using the
PageRank vector of the previous iteration to compute the
PageRank vector of the current iteration using the above
linear equations. After a hundred iterations barely any val-
ues change and the computation is stopped.

Applications

The PageRank measure is used as one of the factors by
Google in its ranking of search results. The PageRank
computation can be applied to other domains as well.
Two examples are reputation management in P2P net-
works and learning word dependencies in natural lan-
guage processing. In relational databases PageRank was
used to weigh database tuples in order to improve keyword
searching when a user does not know the schema. Finally,
in rank aggregation PageRank can be used to find a per-
mutation that minimally violates a set of given orderings.
See [1] for more details.

Variations of PageRank were studied as well. Person-
alizing the PageRank computation such that the values re-
flect the interest of a user has received a lot of attention.
See [3] for a survey on this topic. It can also be modified to
be used for detecting web search spam, i. e., web pages that
try to manipulate web search results [1].

Recommended Reading
1. Berkhin, P.: A survey on PageRank computing. Internet Math.

2(1), 73–120 (2005)
2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web

search engine. In: Proc. 7th Int. World Wide Web Conference,
pp. 107–117. Elsevier Science, Amsterdam (1998)

3. Haveliwala, T., Kamvar, S., Jeh, G.: An Analytical Comparison of
Approaches to Personalizing PageRank. In: Technical Report.
Stanford University, Stanford (2003)

4. Langville, A.N., Meyer, C.D.: Deeper Inside PageRank. Internet
Math. 1(3), 335–380 (2004)

5. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Cita-
tion Ranking: Bringing Order to the Web. In: Technical Report.
Stanford University, Stanford (1998)

Paging
1985; Sleator, Tarjan, Fiat, Karp, Luby, McGeoch,
Sleator, Young
1991; Sleator, Tarjan, Fiat, Karp, Luby, McGeoch,
Sleator, Young

ROB VAN STEE
Department of Computer Science,
University of Karlsruhe, Karlsruhe, Germany

626 P Paging

Keywords and Synonyms

Caching

ProblemDefinition

Computers generally have a small amount of fast memory
to keep important data readily available. This is known as
the cache. The question which is considered in this chapter
is which pages should be kept in the cache when a new
page is requested.

Formally, a two-level store of memory is considered.
The cache can contain k pages, and the slow memory can
contain n pages, where typically n is much larger than k.
The input is a sequence of requests to pages. Whenever
a requested page is not in the cache, the algorithm incurs
a fault. The goal is to minimize the total number of page
faults.

It is easy to give an optimal algorithm if the whole re-
quest sequence is known: on each fault, evict that page
from the cache which is next requested the furthest in the
future [2]. However, in practice, paging decisions need to
be made without knowledge of the future. Thus an online
algorithm is needed, which makes its decisions for each re-
quest based only on that request and previous requests.

Key Results

Amajor contribution of the paper of Sleator and Tarjan [6]
was the idea of competitive analysis. In this type of analy-
sis, the performance of an online algorithm is compared to
that of an optimal offline algorithm OPT. Thus the offline
algorithm knows the entire input and moreover it can use
unbounded computational resources to find the best pos-
sible solution for this input.

Denote the cost of an algorithm ALG on an input se-
quence � by ALG(�). An online algorithm A is called
c-competitive if there exists a constant b such that on every
request sequence � ,

A(�) � c � OPT(�) + b : (1)

The competitive ratio ofA is the smallest value of c such
that A is c-competitive. This definition is very similar to
that of the approximation ratio of approximation algo-
rithms. However, it should be noted that there are no com-
putational restrictions on the online algorithm. In partic-
ular, it is allowed to use exponential time to make its deci-
sions. Thus the competitive ratio purely measures the per-
formance loss that results from not knowing the future.

Using this definition, Sleator and Tarjan give tight
bounds on the best competitive ratio which can be
achieved by a deterministic algorithm. They show that

two well-known algorithms both have a competitive ratio
of k:
� FIFO (First In First Out), which on a fault evicts the

page that was loaded into the cache the earliest
� LRU (Least Recently Used), which on a fault evicts the

page that was requested least recently.
Additionally, they show that any deterministic algorithm
has a competitive ratio of at least k, implying that k is the
best value that can be achieved.

Fiat et al. [3] considered randomized paging algo-
rithms. A randomized online algorithm is allowed to use
random bits in its decision making. To measure its perfor-
mance, consider the expectation of the cost for a particu-
lar input sequence and compare that to the optimal cost
for that sequence. Thus a randomized online algorithm is
c-competitive if there exists a constant b such that on every
request sequence � ,

E(A(�)) � c � OPT(�) + b : (2)

Fiat et al. presented themarking algorithm. This algorithm
marks pages that are requested. On a fault, an unmarked
page is selected uniformly at random and evicted from the
cache. When all pages are marked and a fault occurs, it un-
marks all pages and then evicts one uniformly at random.

Fiat et al. showed that this algorithm is 2Hk-competi-
tive. Here Hk is the k th harmonic number: Hk = 1 + 1

2 +
1
3 + � � � + 1

k . It is known that ln(k + 1) � Hk � ln(k) + 1.
They also showed that no randomized paging algorithm
can have a competitive ratio less than Hk. Thus the mark-
ing algorithm is at most twice as bad as the best possible
online algorithm (with regard to the competitive ratio).
A randomized algorithmwith competitive ratio exactlyHk
was given by McGeoch and Sleator [4]. This algorithm is
much more complicated than the marking algorithm.

Applications

Memory management has long been and continues to be
a fundamentally important problem in computing sys-
tems. In particular, the question of how to manage a two-
level or multilevel store of memory remains crucial to the
performance of computers, from the simplest personal or
game computer to the largest servers.

The study of the paging problem also was very im-
portant for the development of the whole area of online
algorithms. The paper by Sleator and Tarjan formally in-
troduced the concept of the competitive ratio as a perfor-
mance measure for online algorithms. This ratio is in wide
use today.

Parallel Algorithms for Two Processors Precedence Constraint Scheduling P 627

Open Problems
The problem as presented in this chapter is closed, since an
upper and a lower bound of k for deterministic algorithms
and an upper and a lower bound of Hk for randomized
algorithms are obtained.

Variations of this problem continue to inspire new re-
search. The basic problem has also been further studied,
because the upper bound of k for LRU is disappointingly
high and it is known from practice that LRU is “really”
constant competitive. Recently, Panagiotou and Souza [5]
managed to give a theoretical justification for this obser-
vation by formally restricting the input sequences to be
closer to the ones that occur in practice. Additional justifi-
cation for using LRU was given by Angelopoulos et al. [1],
using a direct comparison of LRU to all other online algo-
rithms.

Cross References
� Analyzing Cache Misses
� Deterministic Searching on the Line
�Online Paging and Caching

Recommended Reading

1. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separa-
tion and equivalence of paging strategies. In: Proceedings of the
18th Annual ACM–SIAM Symposium on Discrete Algorithms.
ACM/SIAM, New York, Philadelphia (2007)

2. Belady, L.A.: A study of replacement algorithms for virtual stor-
age computers. IBM Syst. J. 5, 78–101 (1966)

3. Fiat, A., Karp, R., Luby, M., McGeoch, L.A., Sleator, D., Young,
N.E.: Competitive paging algorithms. J. Algorithms 12, 685–699
(1991)

4. McGeoch, L., Sleator, D.: A strongly competitive randomized
paging algorithm. Algorithmica 6(6), 816–825 (1991)

5. Panagiotou, K., Souza, A.: On adequate performance measures
for paging. In: STOC ’06: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pp. 487–496. ACM
Press, New York, NY, USA (2006)

6. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and
paging rules. Commun. ACM 28, 202–208 (1985)

Parallel Algorithms
for Two Processors
Precedence Constraint Scheduling
2003; Jung, Serna, Spirakis

MARIA SERNA
Department of Language & System Information,
Technical University of Catalonia, Barcelona, Spain

Keywords and Synonyms

Optimal scheduling for two processors

ProblemDefinition
In the general form of multiprocessor precedence schedul-
ing problems a set of n tasks to be executed on m proces-
sors is given. Each task requires exactly one unit of execu-
tion time and can run on any processor. A directed acyclic
graph specifies the precedence constraints where an edge
from task x to task y means task x must be completed be-
fore task y begins. A solution to the problem is a schedule
of shortest length indicating when each task is started. The
work of Jung, Serna, and Spirakis provides a parallel algo-
rithm (on a PRAM machine) that solves the above prob-
lem for the particular case that m = 2, that is where there
are two parallel processors.

The two processor precedence constraint scheduling
problem is defined by a directed acyclic graph (dag)
G = (V ; E). The vertices of the graph represent unit time
tasks, and the edges specify precedence constraints among
the tasks. If there is an edge from node x to node y then x is
an immediate predecessor of y. Predecessor is the transitive
closure of the relation immediate predecessor, and succes-
sor is its symmetric counterpart. A two processor schedule
is an assignment of the tasks to time units 1; : : : ; t so that
each task is assigned exactly one time unit, at most two
tasks are assigned to the same time unit, and if x is a pre-
decessor of y then x is assigned to a lower time unit than
y. The length of the schedule is t. A schedule having min-
imum length is an optimal schedule. Thus the problem is
the following:

Name Two processor precedence constraint scheduling
Input A directed acyclic graph
Output A minimum length schedule preserving the pre-

cedence constraints.

Preliminaries

The algorithm assume that tasks are partitioned into levels
as follows:

(i) Every task will be assigned to only one level
(ii) Tasks having no successors will be assigned to level 1

and
(iii) For each level i, all tasks which are immediate pre-

decessors of tasks in level i will be assigned to level
i + 1.

Clearly topological sort will accomplish the above parti-
tion, and this can be done by an NC algorithm that uses
O(n3) processors and O(log n) time, see [3]. Thus, from
now on, it is assumed that a level partition is given as part
of the input. For sake of convenience two special tasks, t0
and t� are added, in such a way that the original graph
could be taught as the graph formed by all tasks that are

628 P Parallel Algorithms for Two Processors Precedence Constraint Scheduling

successors of t0 and predecessors of t�. Thus t0 is a pre-
decessor of all tasks in the system (actually an immediate
predecessor of tasks in level the highest level L(G)) and t�

is a successor of all tasks in the system (an immediate suc-
cessor of level 1 tasks).

Notice that if two tasks are at the same level they can
be paired. But when x and y are at different levels, they
can be paired only when neither of them is a predeces-
sor of the other. Let L(G) denote the number of levels
in a given precedence graph G. A level schedule sched-
ules tasks level by level. More precisely, suppose levels
L(G); : : : ; i + 1 have already been scheduled and there are
k unscheduled tasks remaining on level i. When k is even,
those tasks with are paired with each other. When k is odd,
k � 1 of the tasks are paired with each other, while the
remaining task may (but not necessarily) be paired with
a task from a lower level.

Given a level schedule level i jumps to level i0 (i0 < i) if
the last time step containing a task from level i also con-
tains a task from level i0. If the last task from level i is
scheduled with an empty slot, it is said that level i jumps
to level 0. The jump sequence of a level schedule is the list
of levels jumped to. A lexicographically first jump schedule
is a level schedule whose jump sequence is lexicographi-
cally greater than any other jump sequence resulting from
a level schedule.

Given a graph G a level partition of G is a partition
of the nodes in G into two sets in such a way that levels
0; : : : ; k are contained in one set (the upper part) denoted
by U, and levels k + 1; : : : ; L in the other (the lower part)
denoted by L. Given a graph G and a level i, the i-partition
of G (or the partition at level i) is formed by the graphs
Ui and Li defined as Ui contains all nodes x such that
level(x) < i and Li contains all nodes x with level(x) > i.
Note that each i-partition determines two different level
partitions depending on whether level i nodes are assigned
to the upper or the lower part. A task x 2 Ui is called free
with respect to a partition at level i if x has no predecessors
in Li.

Auxiliary Problems

The algorithm for the two processors precedence con-
straint scheduling problem uses as a building block an al-
gorithm for solving a matching problem in a particular
graph class.

A full convex bipartite graph G is a triple (V ;W; E),
where V = fv1; : : : ; vkg and W = fw1; : : : ;wk0g are dis-
joint sets of vertices. Furthermore the edge set E satisfies
the following property: If (vi ;wj) 2 E then (vq ;wj) 2 E
for all q � i. Thus, from now on it is assumed that the
graph is connected.

A set F
 E is a matching in the graph G = (V ;W; E)
iff no two edges in F have a common endpoint. A max-
imal matching is a matching that cannot be extended by
the addition of any edge inG. A lexicographically first max-
imal matching is a maximal matching whose sorted list of
edges is lexicographically first among all maximal match-
ings in G.

Key Results

When the number of processors m is arbitrary the prob-
lem is known to be NP-complete [8]. For any m � 3,
the complexity is open [6]. Here the case of interest
has been m = 2. For two processors a number of effi-
cient algorithms has been given. For sequential algorithms
see [2,4,5] among others. The first deterministic parallel
algorithm was given by Helmbold and Mayr [7], thus es-
tablishingmembership in the class NC. Previously [9] gave
a randomized NC algorithm for the problem. Jung, Serna
and Spirakis present a new parallel algorithm for the two
processors scheduling problem that takes time O(log2 n)
and uses O(n3) processors on a CREW PRAM. The algo-
rithm improves the number of processors of the algorithm
given in [7] from O(n7L(G)2), where L(G) is the num-
ber of levels in the precedence graph, to O(n3). Both al-
gorithms compute a level schedule that has a lexicograph-
ically first jump sequence.

To match jumps with tasks it is used a solution to the
problem of computing the lexicographically first matching
for a special type of convex bipartite graphs, here called
full convex bipartite graphs. A geometric interpretation of
this problem leads to the discovery of an efficient parallel
algorithm to solve it.

Theorem 1 The lexicographically first maximal match-
ing of full convex bipartite graphs can be computed in time
O(log n) on a CREW PRAM with O(n3/ log n) processors,
where n is the number of nodes.

The previous algorithm is used to solve efficiently in par-
allel two related problems.

Theorem 2 Given a precedence graph G, there is a PRAM
parallel algorithm that computes all levels that jump to level
0 in the graph Li and all tasks in level i � 1 that can be
scheduled together with a task in level i, for i = 1; : : : ; L(G),
using O(n3) processors and O(log2 n) time.

Theorem 3 Given a level partition of a graph G together
with the levels in the lower part in which one task remains
to be matched with some other task in the upper part of the
graph. There is a PRAM parallel algorithm that computes
the corresponding tasks in time O(log n) using n3/ log n
processors.

Parallel Connectivity and Minimum Spanning Trees P 629

With those building blocks the algorithm for two proces-
sor precedence constraint scheduling starts by doing some
preprocessing and after that an adequate decomposition
that insure that at each recursive call a number of problems
of half size are solved in parallel. This recursive schema is
the following:

Algorithm Schedule
0. Preprocessing
1. Find a level i such that jUi j � n/2 and jLi j � n/2.
2. Match levels that jump to free tasks in level i.
3. Match levels that jump to free tasks in Ui.
4. If level i (or i + 1) remain unmatched try to match it

with a non free task.
5. Delete all tasks used to match jumps.
6. Apply (1)–(5) in parallel to Li and the modified Ui.

Algorithm Schedule stops whenever the corresponding
graph has only one level.

The correction an complexity bounds for algorithm
Schedule follows from the previous results, leading to:

Theorem 4 There is an NC algorithm which finds an op-
timal two processors schedule for any precedence graph in
time O(log2 n) using O(n3) processors.

Applications

A fundamental problem in many applications is to devise
a proper schedule to satisfy a set of constrains. Assigning
people to jobs, meetings to rooms, or courses to final exam
periods are all different examples of scheduling problems.
A key and critical algorithm in parallel processing is the
one mapping tasks to processors. In the performance of
such an algorithm relies many properties of the system,
like load balancing, total execution time, etc. Scheduling
problems differ widely in the nature of the constraints that
must be satisfied, the type of processors, and the type of
schedule desired.

The focus on precedence-constrained scheduling
problems for directed acyclic graphs has a most direct
practical application in problems arising in parallel pro-
cessing. In particular in systems where computations are
decomposed, prior to scheduling into approximately equal
sized tasks and the corresponding partial ordering among
them is computed. These constraints must define a di-
rected acyclic graph, acyclic because a cycle in the prece-
dence constraints represents a Catch situation that can
never be resolved.

Open Problems

The parallel deterministic algorithm for the two processors
scheduling problem presented here improves the number

of processors of the Helmbold and Mayr algorithm for the
problem [7]. However, the complexity bounds are far from
optimal: recall that the sequential algorithm given in [5]
uses time O(e + n˛(n)), where e is the number of edges in
the precedence graph and ˛(n) is an inverse Ackermann’s
function. Such an optimal algorithm might have a quite
different approach, in which the levelling algorithm is not
used.

Interestingly enough computing the lexicographically
first matching for full convex bipartite graphs is in NC, in
contraposition with the results given in [1] which show
that many problems defined through a lexicographically
first procedure in the plane are P-complete. It is an inter-
esting problem to show whether all these problems fall in
NC when they are convex.

Cross References

� List Scheduling
�MaximumMatching
�MinimumMakespan on Unrelated Machines
� Shortest Elapsed Time First Scheduling
� Stochastic Scheduling
� Voltage Scheduling

Recommended Reading
1. Attallah, M., Callahan, P., Goodrich, M.: P-complete geometric

problems. Int. J. Comput. Geom. Appl. 3(4), 443–462 (1993)
2. Coffman, E.G., Graham, R.L.: Optimal scheduling for two proces-

sors systems. Acta Informatica 1, 200–213 (1972)
3. Dekel, E., Nassimi, D., Sahni, S.: Parallel matrix and graph algo-

rithms. SIAM J. Comput. 10, 657–675 (1981)
4. Fujii, M., Kasami, T., Ninomiya, K.: Optimal sequencing of two

equivalent processors. SIAM J. Comput. 17, 784–789 (1969)
5. Gabow, H.N.: An almost linear time algorithm for two processors

scheduling. J. ACM 29(3), 766–780 (1982)
6. Garey,M.R., Johnson, D.S.: Computers and Intractability: A Guide

to the theory of NP completeness. Freeman, San Francisco
(1979)

7. Helmbold, D., Mayr, E.: Two processor scheduling is in NC. SIAM
J. Comput. 16(4), 747–756 (1987)

8. Ullman, J.D.: NP-complete scheduling problems. J. Comput.
Syst. Sci. 10, 384–393 (1975)

9. Vazirani, U., Vazirani, V.: Two-processor scheduling problem is in
random NC. SIAM J. Comput. 18(4), 1140–1148 (1989)

Parallel Connectivity
andMinimum Spanning Trees
2001; Chong, Han, Lam

TAK-WAH LAM
Department of Computer Science,
University of Hong Kong, Hong Kong, China

630 P Parallel Connectivity and Minimum Spanning Trees

Keywords and Synonyms

EREW PRAM algorithms for finding connected compo-
nents and minimum spanning trees

ProblemDefinition

Given a weighted undirected graph G with n vertices and
m edges, compute a minimum spanning tree (or spanning
forest) of G on a parallel random access machine (PRAM)
without concurrent write capability.

A minimum spanning tree of a graph is a spanning
tree with the smallest possible sum of edge weights. Paral-
lel random access machine (PRAM) is an abstract model
for designing parallel algorithms and understanding the
power of parallelism. In this model, processors (each being
a random access machine) work in a synchronous man-
ner and communicate through a shared memory. PARM
can be further classified according to whether it is al-
lowed for more than one processor to read and write into
the same shared memory location simultaneously. The
strongest model is CRCW (concurrent-read, concurrent-
write) PRAM, and the weakest is EREW (exclusive-read,
exclusive-write) PRAM. For an introduction to PRAM al-
gorithms, one can refer to Karp and Ramachandran [8]
and JáJá [5].

The input graph G is assumed to be given in the form
of adjacency lists. Furthermore, isolated (degree-0) ver-
tices are removed and hence it is assumed that m � n.

Key Results

The MST problem is related to the connected component
(CC) problem, which is to find the connected components
of an undirected graph. Sequential algorithms for solving
the CC problem and the MST problem in O(m) time and
O(m log n) time, respectively, were known a few decades
ago. A number of more efficient MST algorithms have
since been published, the most recent of which is Pettie
and Ramachandran’s algorithm [9], which is provably op-
timal.

In the parallel context, both problems are often solved
in a similar way. With respect to CRCW PRAM, the
two problems can be solved using O(log n) time and
n + m processors (see, e. g., Cole and Vishkin [3]). Using
randomization, (n + m)/ log n processors are sufficient to
solve these problems in O(log n) expected time [2,10].

For EREW PRAM, O(log2 n) time algorithms for the
CC and MST problems were developed in the early 80’s.
For a while, it was believed that the exclusive write models
(including both concurrent read and exclusive read) could
not overcome the O(log2 n) time bound [8]. The first

breakthrough was due to Johnson and Metaxas [6]; they
devised O(log1:5 n) time algorithms for the CC problem
and the MST problem. These results were soon improved
to O(log n log log n) time by Chong and Lam. If random-
ization is allowed, the time complexity can be improved
to O(log n) expected time and optimal work [7,10,11]. Fi-
nally, Chong, Han, and Lam [1] obtained an algorithm
for MST (and CC) using O(log n) time and n + m proces-
sors. This algorithm does not need randomization. Notice
that 	(log n) is optimal since these graphs problems are
at least as hard as computing the OR of n bits, and Cook
et al. [4] have proven that the latter requires˝(log n) time
on exclusive-write PRAM no matter howmany processors
are used.

Below is a sketch of some ideas for computing a min-
imum spanning tree in parallel without using concurrent
write.

Without loss of generality, assume that the edge
weights are all distinct. Thus, G has a unique minimum
spanning tree, which is denoted by T�G . Let B be a subset of
edges in G which contains no cycle. B induces a set of trees
F = fT1; T2; � � � ; Tl g in a natural sense—two vertices in G
are in the same tree if they are connected by an edge of B. B
is said to be a �-forest if each tree T 2 F has at least � ver-
tices. For example, if B is the empty set then B is a 1-forest;
a spanning tree is an n-forest.

Suppose that B is a �-forest and its edges are all found
in T�G . Then B can be augmented to give a 2�-forest us-
ing a greedy approach: Let F 0 be an arbitrary subset of F
including all trees T 2 F with fewer than 2� vertices. For
every tree in F 0, pick its minimum external edge (i. e., the
smallest-weight edge connecting to a vertex outside the
tree). Denote B0 as this set of edges. It can be proven that
B0 consists of edges in T�G only, and B [B0 is a 2�-forest.
The above idea allows us to find T�G in blog nc stages as
follows.
1. B �

2. For i = 1 to blog nc do /* Stage i */
(a) Let F be the set of trees induced by B on G. Let F 0

be an arbitrary subset of F such that F 0 includes all
trees T 2 F with fewer than 2i vertices.

(b) Bi fe j e is the minimum external edge of
T 2 F 0g; B B [Bi

3. return B
Different strategies for choosing the set F 0 in Step

1(a) may lead to different Bi’s. Nevertheless, B[1; i] is al-
ways a subset of T�G and induces a 2i-forest. In particular,
B[1; blog nc] induces exactly one tree, which is exactly T�G .
Using standard parallel algorithmic techniques, each stage
can be implemented in O(log n) time on EREWPRAMus-
ing a linear number of processors (see e. g. [5],). Therefore,

Parameterized Algorithms for Drawing Graphs P 631

T�G can be found inO(log2 n) time. In fact, most parallel al-
gorithms for findingMST are based on a similar approach.
These parallel algorithms are “sequential” in the sense that
the computation of Bi starts only after Bi� 1 is available.

The O(log n)-time EREW algorithm in [1], is based on
some structural properties related to MST and can com-
pute the Bi’s in a more parallel fashion. In this algorithm,
there are blog nc concurrent threads (a thread is sim-
ply a group of processors). For 1 � i � blog nc, Thread i
aims at computing Bi, and it actually starts long before
Thread i � 1 has computed Bi� 1 and it receives the output
of Threads 1 to i � 1 (i. e., B1; � � � ; Bi�1) incrementally.
More specifically, the algorithm runs in blog nc supersteps,
where each superstep lasts O(1) time. Thread i delivers
Bi at the end of the ith superstep. The computation of
Thread i is divided into blog ic phases. Let us first consider
a simple case when i is a power of two. Phase 1 of Thread i
starts at the (i/2 + 1)th superstep, i. e., when B1; � � � ; Bi/2
are available. Phase 1 takes no more than i/4 supersteps,
ending at the (i/2 + i/4)th superstep. Phase 2 starts at the
(i/2 + i/4 + 1)th superstep (i. e., when Bi/2+1; � � � ; Bi/2+i/4
are available) and uses i/8 supersteps. Each subsequent
phase uses half as many supersteps as the preceding phase.
The last phase (Phase log i) starts and ends within the ith
superstep; note that Bi� is available after (i � 1)th super-
step.

Applications

Finding connected components or MST is a key step
in several parallel algorithms for other graph problems.
For example, the Chong-Han-Lam algorithm implies an
O(log n)-time algorithm for finding ear decomposition
and biconnectivity without using concurrent write.

Cross References

� Graph Connectivity
� Randomized Parallel Approximations to Max Flow

Recommended Reading

1. Chong, K.W., Han, Y., Lam, T.W.: Concurrent Threads and Opti-
cal Parallel Minimum Spanning Trees Algorithm. J. ACM 48(2),
297–323 (2001)

2. Cole, R., Klein, P.N., Tarjan, R.E.: Finding minimum spanning
forests in logarithmic time and linear work using random sam-
pling. In: Proceedings of the 8th Annual ACM Symposium on
Parallel Architectures and Algorithms, 1996, pp. 243–250

3. Cole, R., Vishkin, U.: Approximate and Exact Parallel Schedul-
ingwith Applications to List, Tree, andGraph Problems. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Foundations
of Computer Science, 1986, pp. 478–491

4. Cook, S.A., Dwork, C., Reischuk, R.: Upper and lower time
bounds for parallel random access machines without simulta-
neous writes. SIAM J. Comput. 15(1), 87–97 (1986)

5. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley
(1992)

6. Johnson, D.B., Metaxas, P.: Connected Components in
O(lg3/2 jVj) Parallel Time for the CREW PRAM. In: Proceedings
of the 32nd Annual IEEE Symposium on Foundations of
Computer Science, 1991, pp. 688–697

7. Karger, D.R.: Random sampling in Graph Optimization Prob-
lems. Ph. D. thesis, Department of Computer Science, Stanford
University (1995)

8. Karp, R.M., Ramachandran, V.: Parallel Algorithms for Shared-
Memory Machines. In: Van Leeuwen Ed, J. (ed) Handbook of
Theoretical Computer Science, vol. A, pp. (869–941). MIT Press,
Massachusetts (1990)

9. Pettie, S. Ramachandran, V.: An Optimal Minimum Spanning
Tree Algorithm. J. ACM 49(1), 16–34 (2002)

10. Pettie, S., Ramachandran, V.: A randomized time-work opti-
mal parallel algorithm for finding a minimum spanning forest.
SIAM J. Comput. 31(6), 1879–1895 (2002)

11. Poon, C.K., Ramachandran, V.: A randomized linear-work EREW
PRAM algorithm to find a minimum spanning forest. Algorith-
mica 35(3), 257–268 (2003)

Parameterized Algorithms
for Drawing Graphs
2004; Dujmovic, Whitesides

HENNING FERNAU
Institute for Computer Science, University of Trier,
Trier, Germany

ProblemDefinition

ONE-SIDED CROSSING MINIMIZATION (OSCM) can be
viewed as a specific form of drawing a bipartite graph
G = (V1;V2; E), where all vertices from partition Vi are as-
signed to the same line (also called layer) Li in the plane,
with L1 and L2 being parallel. The vertex assignment to L1
is fixed, while that to L2 is free and should be chosen in
a way to minimize the number of crossings between etdes
drawn as straight-line segments.

Notations

A graph G is described by its vertex set V and its edge set
E, i. e., G=(V ,E), with E
 V � V . The (open) neighbor-
hood of a vertex v, denoted N(v), collects all vertices that
are adjacent to v. N[v] = N(v) [fvg denotes the closed
neighborhood of v. deg(v) = jN(v)j is the degree of v. For
a vertex set S, N(S) =

S
v2S N(v), and N[S] = N(S) [S.

G[S] denotes the graph induced by vertex set S, i. e.,
G[S] = (S; E \ (S � S)). A graphG = (V , E) with vertex set

632 P Parameterized Algorithms for Drawing Graphs

V and edge set E
 V � V is bipartite if there is a parti-
tion of V into two sets V1 and V2 such that V = V1 [V2,
V1 \ V2 = ;, and E
 V1 � V2. For clarity,G = (V1;V2; E)
is written in this case.

A two-layer drawing of a bipartite graph G =
(V1;V2; E) can be described by two linear orders<1 on V1
and<2 on V2. This drawing can be realized as follows: the
vertices of V1 are placed on a line L1 (also called layer) in
the order induced by <1 and the vertices of V2 are placed
on a second layer L2 (parallel to the first one) in the or-
der induced by <2; then, draw a straight-line segment for
each edge e = (u1; u2) in E connecting the points that rep-
resent u1 and u2, respectively. A crossing is a pair of edges
e = (u1; u2) and f = (v1; v2) that cross in the realization of
a two-layer drawing (G; <1; <2). It is well-known that two
edges cross if and only if u1 <1 v1 and v2 <2 u2; in other
word, this notion is a purely combinatorical object, inde-
pendent of the concrete realization of the two-layer draw-
ing. cr(G; <1; <2) denotes the number of crossings in the
described two-layer drawing. In the graph drawing con-
text, it is of course desirable to draw graphs with few cross-
ings. In its simplest (yet probably most important) form,
the vertex order in one layer is fixed, and the aim is tomin-
imize crossings by choosing an order of the second layer.
Formally, this means:

Problem 1 (k–OSCM)
INPUT: A simple n-vertex bipartite graph G = (V1;V2; E)
and a linear order <1 on V1, a nonnegative integer k (the
parameter).
OUTPUT: If possible, a linear order <2 on V2 such that
cr(G; <1; <2) � k. If no such order exists, the algorithm
should tell so.

Given an instance G = (V1;V2; E) and <1 of OSCM and
two vertices u; v 2 V2,

cuv = cr(G[N[fu; vg]]; <1 \(N(fu; vg)
� N(fu; vg)); f(u; v)g) :

Hence, the closed neighborhoods of u and v are considered
when assuming the ordering u <2 v.

Consider the following as a running example:

Example 1 In Fig. 1, a concrete drawing of a bipartite
graph is shown. Is this drawing optimal with respect to the
number of crossings, assuming the ordering of the upper
layer being fixed? At some points, more than two edges
cross; in that case, a number is shown to count the cross-
ings. All crossings are emphasized by a surrounding box.

Let us now compute the crossing number matrix (cuv)
for this graph.

cuv a b c d e
a � 4 5 0 1
b 1 � 1 0 0
c 3 3 � 0 1
d 3 2 3 � 1
e 2 3 2 0 �

The number of crossings in the given drawing can be
hence computed as

cab + cac + cad + cae + cbc + cbd + cbe + ccd + cce + cde = 13 :

Key Results

Exact exponential-time algorithms are mostly interesting
when dealing with problems for which no polynomial-
time algorithm is expected to exist.

Theorem 1 ([6]) The decision problem corresponding to
k-OSCM isNP-complete.

In the following, to state the results, let G = (V1;V2; E) be
an instance of OSCM, where the ordering<1 ofV1 is fixed.

It can be checked in polynomial time if an order of V2
exists that avoids any crossings. This observation can be
based on either of the following graph-theoretic charac-
terizations:

Theorem 2 ([3]) cr(G; <1; <2) = 0 if and only if G is
acyclic and, for every path (x; a; y) of G with x; y 2 V1, it
holds: for all u 2 V1 with x <1 u <1 y, the only edge inci-
dent to u (if any) is (u, a).

The previously introduced notion is crucial due to the fol-
lowing facts:

Parameterized Algorithms for Drawing Graphs, Figure 1
The running example for OSCM

Parameterized Algorithms for Drawing Graphs P 633

Lemma 3
P

u;v2V2;u<2v cuv = cr(G; <1; <2):

Theorem 4 ([9]) If k is the minimum number of edge
crossings in an OSCM instance (G = (V1;V2; E); <1), then

X
u;v2V2;u¤v

minfcuv ; cvug � k < 1:4664

X
u;v2V2;u¤v

minfcuv ; cvug :

In fact, Nagamochi also presented an approximation algo-
rithm with a factor smaller than 1.4664.

Furthermore, for any u 2 V2 with deg(u) > 0, let lu
be the leftmost neighbor of u on L1, and ru be the right-
most neighbor of u. Two vertices u; v 2 V2 are called un-
suited if there exists some x 2 N(u) with lv <1 x <1 rv ,
or there exists some x 2 N(v) with lu <1 x <1 ru . Other-
wise, they are called suited. Observe that, for fu; vg suited,
cuv � cvu = 0. Dujmović and Whitesides have shown:

Lemma 5 ([5]) In any optimal ordering <2 of the vertices
of V2, u <2 v is found if ru �1 lv .

This means that all suited pairs appear in their natural or-
dering.

This already allows us to formulate a first parameter-
ized algorithm for OSCM, which is a simple search tree
algorithm. In the course of this algorithm, a suitable or-
dering <2 on V2 is gradually constructed; when settling
the ordering between u and v on V2, u <2 v or v <2 u is
committed. A generalized instance of OSCM therefore con-
tains, besides the bipartite graph G = (V1;V2; E), a partial
ordering <2 on V2. A vertex v 2 V2 is fully committed if,
for all u 2 V2 n fu; vg, fu; vg is committed.

Lemma 5 allows us to state the following rule:

RR1: For every pair of vertices fu; vg fromV2 with cuv = 0,
commit u <2 v. In the example, d would be fully commit-
ted by applying RR1, since the d-column in the crossing
numbermatrix is all zeros; hence, ignore d in what follows.

Algorithm 1 is a simple search tree algorithm for
OSCM that repeatedly uses Rule RR1.

Lemma 6 OSCM can be solved in time O�(2k).
Proof Before any branching can take place, the graph in-
stance is reduced, so that every pair of vertices fu; vg from
V2 which is not committed satisfies minfcuv ; cvug � 1.
Therefore, each recursive branch reduces the parameter by
at least one. �
It is possible to improve on this very simple search tree
algorithm. A first observation is that it is not necessary
to branch at fx; yg � V2 with cx y = cyx . This means two
modifications to Algorithm 1:

� Line 5 should exclude cx y = cyx .
� Line 12 should arbitrary commit some fx; yg � V2

that are not yet committed and recurse; only if all
fx; yg � V2 are committed, YES is to be returned.

These modifications immediately yield anO�(1:6182k) al-
gorithm for OSCM. This is also the core of the algorithm
proposed by Dujmović and Whitesides [5]. There, more
details are discussed, as, for example:
� How to efficiently calculate all the crossing numbers cxy

in a preprocessing phase.
� How to integrate branch and cut elements in the algo-

rithm that are surely helpful from a practical perspec-
tive.

� How to generalize the algorithm for instances that al-
low integer weights on the edges (multiple edges).
Further improvements are possible if one gives

a deeper analysis of local patterns fx; yg 2 V2 such that
cx y cyx � 2. This way, it has been shown:

Theorem 7 ([4]) OSCM can be solved in time
O�(1:4656k).

A possible run of the improved search tree algorithm is
displayed in Fig. 2, with the (optimal) outcome shown in
Fig. 3.

Variants and Related Problems have been discussed in
the literature.
1. Change the goal of the optimization: minimize the

number of edges involved in crossings (ONE-LAYER
PLANARIZATION (OLP)). As observed in [7,10], The-
orem 2 almost immediately leads to an O�(3k) algo-
rithm for OLP that was subsequently improved down
to O�(2k) in [10].

2. One could allow more degrees of freedom by consider-
ing two (or more) layer assignments at the same time.
For both the crossing minimization and the planariza-
tion variants, parameterized algorithms are reported in
[3,7,10].

3. One can consider other additional constraints on the
drawings or the admissible orderings; in [8], parame-
terized algorithms for two-layer assignment problems
are discussed where the admissible orderings are re-
stricted by binary trees.

Applications

Besides seeing the question of drawing bipartite graphs as
an interesting problem in itself, e. g., for nice drawings of
relational diagrams, this question quite naturally shows
up in the so-called Sugiyama approach to hierarchical
graph drawing, see [12]. This very popular approach tack-

634 P Parameterized Algorithms for Drawing Graphs

Require: a bipartite graph G = (V1;V2; E), an integer k, a linear ordering <1 on V1, a partial ordering <2 on V2
Ensure: YES iff the given OSCM instance has a solution

repeat
Exhaustively apply the reduction rules, adjusting<2 and k accordingly.
Determine the vertices whose order is settled by transitivity and adjust <2 and k accordingly.

until there are no more changes to<2 and to k
5: if k < 0 or <2 contains both (x; y) and (y; x) then

return NO.
else if 9fx; yg
 V2 : neither x <2 y nor y <2 x is settled then

if OSCM-ST-simple(G; k � 1; <1; <2 [f(x; y)g) then
return YES

10: else
return OSCM-ST-simple(G; k � 1; <1; <2 [f(y; x)g)

end if
else

return YES
15: end if

Parameterized Algorithms for Drawing Graphs, Algorithm 1
A search tree algorithm solving OSCM, called OSCM-ST-simple

les the problem of laying out a hierarchical graph in three
phases: (1) cycle removal (2) assignment of vertices to lay-
ers, (3) assignment of vertices to layers. The last phase is
usually performed in a sweep-line fashion, intermediately
solving many instances of OSCM. The third variant in the

Parameterized Algorithms for Drawing Graphs, Figure 2
A search tree example for OSCM

discussion above has important applications in computa-
tional biology.

Open Problems

As with all exponential-time algorithms, it is always a chal-
lenge to further improve on the running times of the algo-
rithms or to prove lower bounds on those running times
under reasonable complexity theoretic assumptions. Let us
notice that the tacit assumptions underlying the approach
by parameterized algorithmics are well met in this appli-
cation scenario: e. g., one would not accept drawings with

Parameterized Algorithms for Drawing Graphs, Figure 3
An optimal solution to the example instance

Parameterized Matching P 635

many crossings anyways (if such a situation is encountered
in practice, one would switch to another way of represent-
ing the information); so, one can safely assume that the
parameter is indeed small.

This is also true for otherNP-hard subproblems that
relate to the Sugiyama approach. However, no easy so-
lutions should be expected. For example, the DIRECTED
FEEDBACK ARC SET PROBLEM [1] that is equivalent to the
first phase is not known to admit a nice parameterized al-
gorithm, see [2].

Experimental Results

Suderman [10] reports on experiments with nearly all
problem variants discussed above, also see [11] for a bet-
ter accessible presentation of some of the experimental re-
sults.

URL to Code

Suderman presents several JAVA applets related to the
problems discussed in this article, see http://cgm.cs.mcgill.
ca/~msuder/.

Cross References

Other parameterized search tree algorithms are explained
in the contribution�Vertex Cover Search Trees by Chen,
Kanj, and Jia.

Recommended Reading
1. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A Fixed-

Parameter Algorithm for the Directed Feedback Vertex Set
Problem. In: 40th ACM Symposium on Theory of Computing
STOC 2008, May 17–20, Victoria (BC), Canada (2008)

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity.
Springer, Berlin (1999)

3. Dujmović, V., Fellows, M.R., Hallett, M., Kitching, M., Liotta,
G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A.,
Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter
approach to 2-layer planarization. Algorithmica 45, 159–182
(2006)

4. Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter al-
gorithms for one-sided crossing minimization revisited. In: Li-
otta G. (ed.) Graph Drawing, 11th International Symposium
GD 2003. LNCS, vol. 2912, pp. 332–344. Springer, Berlin (2004).
A journal version has been accepted to J. Discret. Algorithms,
see doi: 10.1016/j.jda.2006.12.008

5. Dujmović, V., Whitesides, S.: An efficient fixed parameter
tractable algorithm for 1-sided crossing minimization. Algo-
rithmica 40, 15–32 (2004)

6. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipar-
tite graphs. Algorithmica 11, 379–403 (1994)

7. Fernau, H.: Two-layer planarization: improving on parameter-
ized algorithmics. J. Graph Algorithms Appl. 9, 205–238 (2005)

8. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via cross-
ing minimization. In: Ramanujam R., Sen S. (eds.) Foundations
of Software Technology and Theoretical Computer Science
FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Berlin
(2005)

9. Nagamochi, H.: An improved bound on the one-sided mini-
mum crossing number in two-layered drawings. Discret. Com-
put. Geom. 33, 569–591 (2005)

10. Suderman, M.: Layered Graph Drawing. Ph. D. thesis, McGill
University, Montréal (2005)

11. Suderman, M., Whitesides, S.: Experiments with the fixed-pa-
rameter approach for two-layer planarization. J. Graph Algo-
rithms Appl. 9(1), 149–163 (2005)

12. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual under-
standing of hierarchical system structures. IEEE Trans. Syst.
Man Cybernet. 11(2), 109–125 (1981)

ParameterizedMatching
1993; Baker

MOSHE LEWENSTEIN
Department of Computer Science, Bar-Ilan University,
Ramat-Gan, Israel

ProblemDefinition

Parameterized strings, or p-strings, are strings that con-
tain both ordinary symbols from an alphabet ˙ and pa-
rameter symbols from an alphabet ˘ . Two equal-length
p-strings s and s0 are a parameterized match, or p-match,
if one p-string can be transformed into the other by ap-
plying a one-to-one function that renames the parameter
symbols. The following example of a p-match is one with
both ordinary and parameter symbols. The ordinary sym-
bols are in lowercase and the parameter symbols are in up-
percase.

s = A b A b C A d b A C d d
s0 = D b D b E D d b D E d d

In some of the problems to be considered it will be suf-
ficient to solve for p-strings in which all symbols are pa-
rameter symbols, as this is the more difficult part of the
problem. In other words, the case in which ˙ = ;. In this
case the definition can be reformulated so that s and s0 are
a p-match if there exists a bijection
 : ˘s ! ˘s0 , such
that
(s) = s0, where
(s) is the renaming of each charac-
ter of s via
 .

The following problems will be considered. Param-
eterized matching – given a parameterized pattern p of
length m and parameterized text t, find all locations i of
a parameterized text t for which p p-matches ti � � � ti+m�1,
where m = jpj. The same problem is also considered in

http://cgm.cs.mcgill.ca/~msuder/
http://cgm.cs.mcgill.ca/~msuder/

636 P Parameterized Matching

two dimensions. Approximate parameterized matching–
find all substrings of a parameterized text t that are ap-
proximate parameterized matches of a parameterized pat-
tern p (to be fully defined later).

Key Results

Baker [4] introduced parameterized matching in the
framework of her seminal work on discovering duplicate
code within large programs for the sake of code mini-
mization. An example of two code fragments that p-match
taken from the X Windows system can be found in [4].

Parameterized Suffix Trees

In [4] and in the follow-up journal versions [6,7] a novel
method was presented for parameterized matching by
constructing parameterized suffix trees. The advantage of
the parameterized suffix tree is that it supports indexing,
i. e., one can preprocess a text and subsequently answer pa-
rameterized queries p in O(jpj) time. In order to achieve
parameterized suffix trees it is necessary to introduce the
concept of a predecessor string. A predecessor string of
a string s has at each location i the distance between i
and the location containing the previous appearance of the
symbol. The first appearance of each symbol is replaced
with a 0. For example, the predecessor string of aabbaba is
0; 1; 0; 1; 3; 2; 2. A simple and well-known fact is that:

Observation [7] s and s0 p-match if and only if they have
the same predecessor string.

Notice that this implies transitivity of parameterized
matching, since if s and s0 p-match and s0 and s00 p-match
then, by the observation, s and s0 have the same predeces-
sor string and, likewise, s0 and s00 have the same predeces-
sor string. This implies that s and s00 have the same prede-
cessor string and hence, by the observation, p-match.

Moreover, one may also observe that if r is a prefix of s
then the predecessor string of r, by definition, is exactly the
jrj-length prefix of the predecessor string of s. Hence, sim-
ilar to regular pattern matching, a parameterized pattern p
p-matches at location i of t if and only if the jpj-length pre-
decessor string of p is equal to the jpj-length prefix of the
predecessor string of the suffix ti � � � tn . Combining these
observations it is natural to do as follows; create a (parame-
terized suffix) tree with a leaf for each suffix where the path
from the root to the leaf corresponding to a given suffix
will have its predecessor string labeling the path. Branch-
ing in the parameterized suffix tree, as with suffix trees,
occurs according to the labels of the predecessor strings.
See [4,6,7] for an example.

Baker’s method essentially mimics the McCreight suf-
fix tree construction [18]. However, while the suffix tree
and the parameterized suffix tree are very similar, there is
a slight hitch. A strong component of the suffix tree con-
struction is the suffix link. This is used for the construc-
tion and, sometimes, for later pattern searches. The suffix
link is based on the distinct right context property, which
does not hold for the parameterized suffix tree. In fact, the
node that is pointed to by the suffix link may not even ex-
ist. The main parts of [6,7] are dedicated to circumventing
this problem.

In [7] Baker added the notion of “bad” suffix links,
which point to the vertex just above, i. e., closer to the root
than the desired place, and of updating them with a lazy
evaluation when they are used. The algorithm runs in time
O(nj˘ j log j˙ j). In [6] (which is chronologically later
than [7] despite being the first to appear) Baker changed
the definition of “bad” suffix links to point to just below
the desired place. This turns out to have nice properties
and one can use more sophisticated data structures to im-
prove the construction time to O(n(j˘ j + log j˙ j)).

Kosaraju [16] made a careful analysis of Baker’s prop-
erties utilized in the algorithm of [6] which suffer from the
j˘ j factor. He pointed out two sources for this large fac-
tor. He handled these two issues by using a concatenable
queue and maintaining it in a lazy manner. This is suffi-
cient to reduce the j˘ j factor to a log j˘ j factor, yielding
an algorithm of time O(n(log j˘ j + log j˙ j)).

Obviously if the alphabet or symbol set is large the
construction time may be O(n log n). Cole and Hariha-
ran [9] showed how to construct the parameterized suf-
fix trees in randomized O(n) time for alphabets and pa-
rameters taken from a polynomially sized range, e. g.,
[1; � � � ; nc]. They did this by adding additional nodes to
the tree in a back-propagation manner which is reminis-
cent of fractional cascading. They showed that this adds
only O(n) nodes and allows the updating of the missing
suffix links. However, this causes other problems and one
may find the details of how this is handled in their pa-
per.

More Methods for Parameterized Matching

Obviously the parameterized suffix tree efficiently solves
the parameterizedmatching problem. Nevertheless, a cou-
ple of other results on parameterized matching are worth
mentioning.

First, in [6] it was shown how to construct the param-
eterized suffix tree for the pattern and then to run the pa-
rameterized text through it, giving an algorithmwithO(m)
space instead of O(n).

Parameterized Matching P 637

Amir et al. [2] presented a simple method to solve the
parameterized matching problem by mimicking the algo-
rithm of Knuth, Morris and Pratt. Their algorithm works
in O(n �min(log j˘ j;m)) time independent of the alpha-
bet size (j˙ j). Moreover, they proved that the log factor
cannot be avoided for large symbol sets.

In [5] parameterized matching was solved with a Bo-
yer–Moore type algorithm. In [10] the problem was solved
with a Shift–Or type algorithm. Both handle the average
case efficiently. In [10] emphasis was also put on the case
of multiple parameterizedmatching, which was previously
solved in [14] with an Aho–Corasick automaton-style al-
gorithm.

Two-Dimensional Parameterized Matching

Two-dimensional parameterized matching arises in ap-
plications of image searching; see [13] for more details.
Two-dimensional parameterized matching is the natu-
ral extension of parameterized matching where one seeks
p-matches of a two-dimensional parameterized pattern p
within a two-dimensional parameterized text t. It must be
pointed out that classical methods for two-dimensional
pattern matching, such as the L-suffix tree method, fail
for parameterized matching. This is because known meth-
ods tend to cut the text and pattern into pieces to avoid
going out of boundaries of the pattern. This is fine be-
cause each pattern piece can be individually evaluated
(checked for equality) to a text piece. However, in parame-
terizedmatching there is a strong dependency between the
pieces.

In [1] an innovative solution for the problem was given
based on a collection of linearizations of the pattern and
text with the property to be currently described. Consider
a linearization. Two elements with the same character, say
‘a,’ in the pattern are defined to be neighbors if there is
no other ‘a’ between them in this linearization. Now take
all the ‘a’s of the pattern and create a graph Ga with ‘a’s
as the nodes and edges between two if they are neighbors
in some linearization. We say that two ‘a’s are chained if
there is a path from one to the other in Ga. Applying one-
dimensional parameterized matching on these lineariza-
tions ensures that any two elements that are chained will
be evaluated to map to the same text value (the parameter-
ized property). A collection of linearizations has the fully
chained property if every two locations in p with the same
character are chained. It was shown in [1] that one can ob-
tain a collection of logm linearizations that is fully chained
and that does not exceed pattern boundary limits. Each
such linearization is solved with a convolution-based pat-
tern matching algorithm. This takes O(n2 logm) time for

each linearization, where the text size is n2. Hence, overall
the time is O(n2 log2 m).

A different solution was proposed in [13], where it
was shown that it is possible to solve the problem in
O(n2 + m2:5polylog m), where the text size is O(n2) and
the pattern size is O(m2). Clearly, this is more efficient for
large texts.

Approximate Parameterized Matching

Our last topic relates to parameterized matching in the
presence of errors. Errors occur in the various applications
and it is natural to consider parameterized matching with
the Hamming distance metric or the edit distance metric.

In [8] the parameterized matching problem was con-
sidered in conjunction with the edit distance. Here the
definition of edit distance was slightly modified so that
the edit operations are defined to be insertion, deletion
and parameterized replacements, i. e., the replacement of
a substring with a string that p-matches it. An algorithm
for finding the “parameterized edit distance” of two strings
was devisedwhose efficiency is close to the efficiency of the
algorithms for computing the classical edit distance.

However, it turns out that the operation of parameter-
ized replacement relaxes the problem to an easier problem.
The reason that the problem becomes easier is that two
substrings that participate in two parameterized replace-
ments are independent of each other (in the parameterized
sense).

A more rigid, but more realistic, definition for the
Hamming distance variant was given in [3]. For a pair of
equal-length strings s and s0 and a bijection
 defined on
the alphabet of s, the
-mismatch is the Hamming dis-
tance between the image under
 of s and s0. The mini-
mal
-mismatch over all bijections
 is the approximate
parameterized match. The problem considered in [3] is to
find for each location i of a text t the approximate param-
eterized match of a pattern p with the substring beginning
at location i. In [3] the problem was defined and linear-
time algorithms were given for the case where the pattern
is binary or the text is binary. However, this solution does
not carry over to larger alphabets.

Unfortunately, under this definition the methods for
classical string matching with errors for the Hamming
distance, also known as pattern matching with mis-
matches, seem to fail. Following is an outline of a classical
method [17] for pattern matching with mismatches that
uses suffix trees.

The pattern is compared separately with each suffix of
the text, beginning at locations 1 � i � n � m + 1. Using
a suffix tree of the text and precomputed longest common

638 P Parameterized Matching

ancestor information (which can be computed once in lin-
ear time [11]), one can find the longest common prefix
of the pattern and the corresponding suffix (in constant
time). There must be a mismatch immediately afterwards.
The algorithm jumps over the mismatch and repeats the
process, taking into consideration the offsets of the pattern
and suffix.

When attempting to apply this technique to a param-
eterized suffix tree, it fails. To illustrate this, consider the
first matching substring (up until the first error) and the
next matching substring (after the error). Both of these
substrings p-match the substring of the text that they are
aligned with. However, it is possible that combined they
do not form a p-match. See the example below. In the ex-
ample abab p-matches cdcd followed by a mismatch and
subsequently followed by abaa p-matching efee. However,
different
 ’s are required for the local p-matches. This ex-
ample also emphasizes why the definition of [8] is a sim-
plification. Specifically, each local p-matching substring is
one replacement, i. e., abab with cdcd is one replacement
and abaa with efee is one more replacement. However, the
definition of [3] captures the globality of the parameter-
ized matching, not allowing, in this case, abab to p-match
to two different substrings.

p = a b a b a a b a a � � �
t = � � � c d c d d e f e e � � �

In [12] the problem of parameterized matching with
k mismatches was considered. The parameterized match-
ing problem with k mismatches seeks all locations i
in text t where the minimal
-mismatch between p to
ti � � � ti+m�1 has at most k mismatches. An O(nk1:5 +
mk logm) time algorithm was presented in [12]. At the
base of the algorithm, i. e., for the case where jpj = jtj = m,
an O(m + k1:5) algorithm is used based on maximum
matching algorithms. Then the algorithm uses a doubling
scheme to handle the growing distance between potential
parameterized matches (with at most kmismatches). Also
shown in [12] is a strong relationship between maximum
matching algorithms in sparse graphs and parameterized
matching with k errors.

The rigid, but more realistic, definition for the Ham-
ming distance version given in [3] can be naturally ex-
tended to the edit distance. Lately, it was shown that
this problem is nondeterministic polynomial-time com-
plete [15].

Applications

Parameterized matching has applications in code duplica-
tion detection in programming languages, in homework

plagiarism detection, and in image processing, among oth-
ers [1,4].

Cross References

�Multidimensional String Matching
� Sequential Approximate String Matching
� Sequential Exact String Matching
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM

Recommended Reading
1. Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Func-

tionmatching: Algorithms, applications and a lower bound. In:
Proc. of the 30th International Colloquium on Automata, Lan-
guages and Programming (ICALP), 2003 pp. 929–942

2. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence
in parameterized matching. Inf. Process. Lett. 49, 111–115
(1994)

3. Apostolico, A., Erdös, P., Lewenstein, M.: Parameterized match-
ing with mismatches. J. Discret. Algorithms 5(1), 135–140
(2007)

4. Baker, B.S.: A theory of parameterized pattern matching: algo-
rithms and applications. In: Proc. 25th Annual ACMSymposium
on the Theory of Computation (STOC), 1993, pp. 71–80

5. Baker, B.S.: Parameterized pattern matching by Boyer-Moore-
type algorithms. In: Proc. 6th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 1995, pp. 541–550

6. Baker, B.S.: Parameterized pattern matching: Algorithms and
applications. J. Comput. Syst. Sci. 52(1), 28–42 (1996)

7. Baker, B.S.: Parameterized duplication in strings: Algorithms
and an application to software maintenance. SIAM J. Comput.
26(5), 1343–1362 (1997)

8. Baker, B.S.: Parameterized diff. In: Proc. 10th Annual ACM-SIAM
SymposiumonDiscrete Algorithms (SODA), 1999, pp. 854–855

9. Cole, R., Hariharan, R.: Faster suffix tree constructionwithmiss-
ing suffix links. In: Proc. 32nd ACM Symposium on Theory of
Computing (STOC), 2000 pp. 407–415

10. Fredriksson, K., Mozgovoy, M.: Efficient parameterized string
matching. Inf. Process. Lett. 100(3), 91–96 (2006)

11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest com-
mon ancestor. J. Comput. Syst. Sci. 13, 338–355 (1984)

12. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameter-
ized matching. ACM Trans. Algorithms 3(3) (2007)

13. Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parame-
terized matching. In: Proc. of 16th Symposium on Combinato-
rial Pattern Matching (CPM), 2005, pp. 266–279

14. Idury, R.M., Schäffer, A.A.: Multiple matching of parametrized
patterns. Theor. Comput. Sci. 154(2), 203–224 (1996)

15. Keller, O., Kopelowitz, T., Lewenstein, M.: Parameterized LCS
and edit distance are NP-Complete. Manuscript

16. Kosaraju, S.R.: Faster algorithms for the construction of pa-
rameterized suffix trees. In: Proc. 36th Annual Symposium on
Foundations of Computer Science (FOCS), 1995, pp. 631–637

17. Landau, G.M., Vishkin, U.: Fast string matching with k differ-
ences. J. Comput. Syst. Sci. 37(1), 63–78 (1988)

18. McCreight, E.M.: A space-economical suffix tree construction
algorithm. J. ACM 23, 262–272 (1976)

Parameterized SAT P 639

Parameterized SAT
2003; Szeider

STEFAN SZEIDER
Department of Computer Science, Durham University,
Durham, UK

Keywords and Synonyms

Structural parameters for SAT

ProblemDefinition

Much research has been devoted to finding classes of
propositional formulas in conjunctive normal form (CNF)
for which the recognition problem as well as the proposi-
tional satisfiability problem (SAT) can be decided in poly-
nomial time. Some of these classes form infinite chains
C1 � C2 � � � � such that every CNF formula is contained
in some Ck for k sufficiently large. Such classes are typ-
ically of the form Ck = fF 2 CNF:
(F) � kg, where

is a computable mapping that assigns to CNF formulas
F a non-negative integer
(F); we call such a mapping
a satisfiability parameter. Since SAT is an NP-complete
problem (actually, the first problem shown to be NP-
complete [1]), we must expect that, the larger k, the longer
the worst-case running times of the polynomial-time al-
gorithms that recognize and decide satisfiability of for-
mulas in Ck. Whence there is a certain tradeoff between
the generality of classes and the performance guarantee
for the corresponding algorithms. Szeider [12] initiates
a broad investigation of this tradeoff in the conceptional
framework of parameterized complexity [2,3,6]. This in-
vestigation draws attention to satisfiability parameters

for which the following holds: recognition and satisfiabil-
ity decision of formulas F with
(F) � k can be carried
out in uniform polynomial time, that is, by algorithms with
running time bounded by a polynomial whose order is in-
dependent of k (albeit, possibly involving a constant factor
that is exponential in k). If a satisfiability parameter
 al-
lows satisfiability decision in uniform polynomial time, we
say that SAT is fixed-parameter tractable with respect to
 .

Satisfiability Parameters Based on Graph Invariants

One can define satisfiability parameters by means of cer-
tain graphs associated with CNF formulas. The primal
graph of a CNF formula is the graph whose vertices are
the variables of the formula; two variables are joined by an
edge if the variables occur together in a clause. The inci-
dence graph of a CNF formula is the bipartite graph whose

vertices are the variables and clauses of the formula; a vari-
able and a clause are joined by an edge if the variable oc-
curs in the clause.

Satisfiability Parameters Based on Backdoor Sets

The concept of backdoor sets [13] gives rise to several
interesting satisfiability parameters. Let C be a class of
CNF formulas. A set B of variables of a CNF formula F
is a strong C-backdoor set if for every partial truth assign-
ment � : B! ftrue; falseg, the restriction of F to � belongs
to C. Here, the restriction of F to � is the CNF formula ob-
tained from F by removing all clauses that contain a literal
that is true under � and by removing from the remaining
clauses all literals that are false under � .

Key Results

Theorem 1 (Gottlob, Scarcello, and Sideri [4]) SAT is
fixed-parameter tractable with respect to the treewidth of
primal graphs.

Several satisfiability parameters that generalize the
treewidth of primal graphs, such as the treewidth
and clique-width of incidence graphs, have been stud-
ied [5,10,12].

The maximum deficiency of a CNF formula F is the
number of clauses remaining exposed by a maximum
matching of the incidence graph of F.

Theorem 2 (Szeider [11]) SAT is fixed-parameter
tractable with respect to maximum deficiency.

A CNF formula is minimal unsatisfiable if it is unsat-
isfiable but removing any of its clauses makes it satisfi-
able. Recognition of minimal unsatisfiable formulas is DP-
complete [9].

Corollary 1 (Szeider [11]) Recognition of minimal unsat-
isfiable CNF formulas is fixed-parameter tractable with re-
spect to the difference between the number of clauses and
the number of variables.

Theorem 3 (Nishimura, Ragde, and Szeider [7]) SAT is
fixed-parameter tractable with respect to the size of strong
HORN-backdoor sets and with respect to the size of strong
2CNF-backdoor sets.

Applications

Satisfiability provides a powerful and general formalism
for solving various important problems including hard-
ware and software verification and planning. Instances
stemming from applications usually contain a “hidden

640 P Pattern Matching

structure” (see, e. g. [13]). The satisfiability parameters
considered above are designed to make this hidden struc-
ture explicit in the form of small values for the parameter.
Thus, satisfiability parameters are a way to make the hid-
den structure accessible to an algorithm.

Open Problems

A new line of research is concerned with the identification
of further satisfiability parameters that allow a fixed-pa-
rameter tractable SAT decision are more general than the
known parameters and apply well to real-world problem
instances.

Cross References

�MaximumMatching
� Treewidth of Graphs

Recommended Reading

1. Cook, S.A.: The complexity of theorem-proving procedures.
In: Proc. 3rd Annual Symp. on Theory of Computing, Shaker
Heights, OH 1971, pp. 151–158

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Mono-
graphs in Computer Science. Springer, Berlin (1999)

3. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts
in Theoretical Computer Science, vol. XIV. An EATCS Series.
Springer, Berlin (2006)

4. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complex-
ity in AI and nonmonotonic reasoning. Artif. Intell. 138, 55–86
(2002)

5. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artifi-
cial intelligence, constraint satisfaction, and database prob-
lems. Comput. J., Special Issue on Parameterized Complexity,
Advanced Access (2007)

6. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, Ox-
ford Lecture Series inMathematics and Its Applications.Oxford
University Press, Oxford, UK (2006)

7. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets
with respect to Horn and binary clauses. In: Informal proceed-
ings of SAT 2004, 7th International Conference on Theory and
Applications of Satisfiability Testing, Vancouver, BC, Canada,
10–13 May 2004, pp. 96–103

8. Nishimura, N., Ragde, P., Szeider, S.: Solving SAT using vertex
covers. Acta Inf. 44(7–8), 509–523 (2007)

9. Papadimitriou, C.H., Wolfe, D.: The complexity of facets re-
solved. J. Comput. Syst. Sci. 37, 2–13 (1988)

10. Samer, M., Szeider, S.: Algorithms for propositional model
counting. In: Proceedings of LPAR 2007, 14th International
Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Yerevan, Armenia, 15–19 October 2007. Lec-
ture Notes in Computer Science, vol. 4790, pp. 484–498.
Springer, Berlin (2007)

11. Szeider, S.: Minimal unsatisfiable formulas with bounded
clause-variable difference are fixed-parameter tractable.
J. Comput. Syst. Sci. 69, 656–674 (2004)

12. Szeider, S.: On fixed-parameter tractable parameterizations of
SAT. In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applica-

tions of Satisfiability, 6th International Conference, SAT 2003,
Selected and Revised Papers. Lecture Notes in Computer Sci-
ence, vol. 2919, pp. 188–202. Springer, Berlin (2004)

13. Williams, R., Gomes, C., Selman, B.: On the connections be-
tween backdoors, restarts, and heavy-tailedness in combinato-
rial search, In: informal proceedings of SAT 2003 (Sixth Interna-
tional Conference on Theory and Applications of Satisfiability
Testing, 5–8 May 2003, S. Margherita Ligure – Portofino, Italy),
2003, pp. 222–230

PatternMatching
�Multidimensional Compressed Pattern Matching
� Two Dimensional Scaled Pattern Matching

Peer to Peer
� P2P

Peptide De Novo Sequencing
withMS/MS
2005; Ma, Zhang, Liang

BIN MA
Department of Computer Science, University of Western
Ontario, London, ON, Canada

Keywords and Synonyms

De novo sequencing; Peptide sequencing

ProblemDefinition

De novo sequencing arises from the identification of
peptides by using tandem mass spectrometry (MS/MS).
A peptide is a sequence of amino acids in biochemistry
and can be regarded as a string over a finite alphabet from
a computer scientist’s point of view. Each letter in the al-
phabet represents a different kind of amino acid, and is as-
sociate with a mass value. In the biochemical experiment,
a tandem mass spectrometer is utilized to fragment many
copies of the peptide into pieces, and to measure the mass
values (in fact, the mass to charge ratios) of the fragments
simultaneously. This gives a tandemmass spectrum. Since
different peptides normally produce different spectra, it
is possible, and now a common practice, to deduce the
amino acid sequence of the peptide from its spectrum. Of-
ten this deduction involves the searching in a database for
a peptide that can possibly produce the spectrum. But in
many cases such a database does not exist or is not com-
plete, and the calculation has to be done without looking

Peptide De Novo Sequencing with MS/MS P 641

for a database. The latter approach is called de novo se-
quencing.

A general form of de novo sequencing problems is de-
scribed in [2]. First, a score function f (P; S) is defined to
evaluate the pairing of a peptide P and a spectrum S. Then
the de novo sequencing problem seeks for a peptide P such
that f (P; S) is maximized for a given spectrum S.

When the peptide is fragmented in the tandem mass
spectrometer, many types of fragments can be generated.
The most common fragments are the so called b-ions and
y-ions. B-ions correspond to the prefixes of the peptide se-
quence, and y-ions the suffixes. Readers are referred to [8]
for the biochemical details of the MS/MS experiments and
the possible types of fragment ions. For clarity, in what
follows only b-ions and y-ions are considered, and the
de novo sequencing problem will be formulated as a pure
computational problem.

A spectrum S = f(xi ; hi)g is a set of peaks, each has
a mass value xi and an intensity value hi. A peptide
P = a1a2 : : : an is a string over a finite alphabet ˙ .
Each a 2 ˙ is associated with a positive mass valuem(a).
For any string t = t1 t2 : : : tk , denote m(t) =

Pk
i=1 m(ti).

The mass of a length-i prefix (b-ion) of P is defined as
bi = cb + m(a1a2 : : : ai). The mass of a length-i suffix (y-
ion) of P is defined as yi = cy + m(ak�i+1 : : : ak�1ak).
Here cb and cy are two constants related to the nature of
the MS/MS experiments. If the mass unit used for measur-
ing each amino acid is dalton, then cb = 1 and cy = 19.

Let ı be a mass error tolerance that is associated
with the mass spectrometer. For mass value m, the peaks
matched by m is defined as D(m) = f(xi ; hi) 2 S j jxi �
mj � ıg. The general idea of de novo sequencing is to
maximize the number and intensities of the peaksmatched
by all b and y ions. Normally, ı is far less than the min-
imum mass of an amino acid. Therefore, for different i
and j, D(bi) \ D(bj) = ; and D(yi)\ D(y j) = ;. How-
ever, D(bi) and D(y j) may share common peaks. So, if not
defined carefully, a peak may be counted twice in the score
function. There are two different definitions of de novo se-
quencing problem, corresponding to two different ways of
handling this situation.

Definition 1 (Anti-symmetric de novo sequencing)
Instance: A spectrum S, a mass valueM, and an error tol-
erance ı.
Solution: A peptide P such that m(P) = M, and
D(bi) \ D(y j) = ; for any i, j.
Objective: Maximize

Pn
k=1

P
(xi ;hi)2D(bk)[D(yk) hi :

This definition discards the peptides that gives a pair of
bi and yj with similar mass values, because this happens
rather infrequently in practice. Another definition allows

the peptides to have pairs of bi and yj with similar mass
values. However, when a peak is matched by multiple ions,
it is counted only once. More precisely, define the matched
peaks by P as

D(P) =
n[
i=1

(D(bi) [D(yi)) :

Definition 2 (De novo sequencing)
Instance: A spectrum S, a mass valueM, and an error tol-
erance ı.
Solution: A peptide P such that m(P) = M.
Objective: Maximize f (P; S) =

P
(xi ;hi)2D(P) hi :

Key Results

Anti-symmetric de novo sequencing was studied in [1,2].
These studies convert the spectrum into a spectrum graph.
Each peak in the spectrum generates a few of nodes in the
spectrum graph, corresponding to the different types of
ions that may produce the peak. Each edge in the graph in-
dicates that the mass difference of the two adjacent nodes
is approximately the mass of an amino acid, and the edge
is labeled with the amino acid. When at least one of each
pair of bi and yn�i matches a peak in the spectrum, the
de novo sequencing problem is reduced to the finding of
the “anti-symmetric” longest path in the graph. A dynamic
programming algorithm for such purpose was published
in [1].

Theorem 1 ([1]) The longest anti-symmetric path in
a spectrum graph G = hV ; Ei can be found in O(jV jjEj)
time.

Under definition 2, de novo sequencing was studied in [5]
and a polynomial time algorithm was provided. The algo-
rithm is again a dynamic programming algorithm. For two
mass values (m;m0), the dynamic programming calculates
an optimal pair of prefix Aa and suffix a0A0, such that
1. m(Aa) = m and m(a0A0) = m0.
2. Either cb + m(A) < cy + m(a0A0) � cb + m(Aa) or

cy + m(A0) � cb + m(A) < cy + m(a0A0).
The calculation for (m;m0) is based on the optimal so-

lutions of smallermass values. Because of the second above
requirement, it is proved in [5] that not all pairs of (m;m0)
are needed. This is used to speed up the algorithm. A care-
fully designed strategy can eventually output a prefix and
a suffix so that their concatenation form the optimal solu-
tion of the de novo sequencing problem. More specifically,
the following theorem holds.

Theorem 2 ([6]) The de novo sequencing problem has an
algorithm that gives the optimal peptide in O(j˙ j � ı �
maxa2˙ m(a) �M).

642 P Perceptron Algorithm

Because j˙ j, ı, maxa2˙ m(a) are all constants, the algo-
rithm in fact runs in linear time with a large coefficient.

Although the above algorithms are designed to max-
imize the total intensities of the matched peaks, they can
be adapted to work on more sophisticated score func-
tions. Some studies of other score functions can be found
in [2,3,4,6]. Some of these score functions require new al-
gorithms.

Applications

The algorithms have been implemented into software
programs to assist the analyses of tandem mass spec-
trometry data. Software using the spectrum graph ap-
proach includes Sherenga [2]. The de novo sequencing
algorithm under the second definition was implemented
in PEAKS [6]. More complete lists of the de novo se-
quencing software and their comparisons can be found
in [7,9].

URL to Code

PEAKS free trial version is available at http://www.
bioinfor.com/.

Recommended Reading
1. Chen, T., Kao, M.-Y., Tepel, M., Rush J., Church, G.: A dynamic

programming approach to de novo peptide sequencing via
tandem mass spectrometry. J. Comput. Biol. 8(3), 325–337
(2001)

2. Dančík, V., Addona, T., Clauser, K., Vath, J., Pevzner, P.: De novo
protein sequencing via tandem mass-spectrometry. J. Comput.
Biol. 6, 327–341 (1999)

3. Fischer, B., Roth, V., Roos, F., Grossmann, J., Baginsky, S., Wid-
mayer, P., Gruissem, W., Buhmann J.: NovoHMM: A Hidden
Markov Model for de novo peptide sequencing. Anal. Chem. 77,
7265–7273 (2005)

4. Frank, A., Pevzner, P.: Pepnovo: De novo peptide sequencing
via probabilistic network modeling. Anal. Chem. 77, 964–973
(2005)

5. Ma, B., Zhang, K., Liang, C.: An effective algorithm for the pep-
tide de novo sequencing from MS/MS spectrum. J. Comput.
Syst. Sci. 70, 418–430 (2005)

6. Ma, B., Zhang, K., Lajoie, G., Doherty-Kirby, A., Hendrie, C., Liang,
C., Li, M.: PEAKS: Powerful software for peptide de novo se-
quencing by tandemmass spectrometry. Rapid Commun. Mass
Spectrom. 17(20), 2337–2342 (2003)

7. Pevtsov, S., Fedulova, I., Mirzaei, H., Buck, C., Zhang, X.: Per-
formance evaluation of existing de novo sequencing algo-
rithms. J. Proteome Res. 5(11), 3018–3028 (2006) ASAP Article
10.1021/pr060222h

8. Steen, H., Mann, M.: The ABC’s (and XYZ’s) of peptide sequenc-
ing. Nat. Rev. Mol. Cell Biol. 5(9), 699–711 (2004)

9. Xu, C., Ma, B.: Software for Computational Peptide Identification
from MS/MS. Drug Discov. Today 11(13/14), 595–600 (2006)

Perceptron Algorithm
1959; Rosenblatt

SHAI SHALEV-SHWARTZ
Toyota Technological Institute, Chicago, IL, USA

Keywords and Synonyms

Online learning, Single layer neural network

ProblemDefinition

The Perceptron algorithm [1,13] is an iterative algorithm
for learning classification functions. The Perceptron was
mainly studied in the online learning model. As an on-
line learning algorithm, the Perceptron observes instances
in a sequence of trials. The observation at trial t is de-
noted by xt . After each observation, the Perceptron pre-
dicts a yes/no (+/�) outcome, denoted ŷt , which is calcu-
lated as follows

ŷt = sign(hwt; xti) ;

where wt is a weight vector which is learned by the Per-
ceptron and h�; �i is the inner product operation. Once the
Perceptron has made a prediction, it receives the correct
outcome, denoted yt , where yt 2 f+1;�1g. If the predic-
tion of the Perceptron was incorrect it updates its weight
vector, presumably improving the chance of making an ac-
curate prediction on subsequent trials. The update rule of
the Perceptron is

wt+1 =
�

wt + ytxt if ŷt ¤ yt
wt otherwise : (1)

The quality of an online learning algorithm is measured by
the number of prediction mistakes it makes along its run.
Novikoff [12] and Block [2] have shown that whenever the
Perceptron is presented with a sequence of linearly sepa-
rable examples, it makes a bounded number of prediction
mistakes which does not depend on the length of the se-
quence of examples. Formally, let (x1; y1); : : : ; (xT ; yT) be
a sequence of instance-label pairs. Assume that there ex-
ists a unit vector u (kuk2 = 1) and a positive scalar � > 0
such that for all t, yt(u � xt) � � . In words, u separates
the instance space into two half-spaces such that positively
labeled instances reside in one half-space while the neg-
atively labeled instances belong to the second half-space.
Moreover, the distance of each instance to the separating
hyperplane fx : u � x = 0g, is at least � . The scalar � is often
referred to as the margin attained by u on the sequence of

http://www.bioinfor.com/
http://www.bioinfor.com/

Perceptron Algorithm P 643

examples. Novikoff and Block proved that the number of
prediction mistakes the Perceptron makes on a sequence
of linearly separable examples is at most (R/�)2, where
R = maxt kxtk2 is the minimal radius of a ball enclosing
all the instances. In 1969, Minsky and Papert [11] under-
scored serious limitations of the Perceptron by showing
that it is impossible to learn many classes of patterns us-
ing the Perceptron (for example, XOR functions). This fact
caused a significant decrease of interest in the Perceptron.
The Perceptron has gained back its popularity after Fre-
und and Schapire [9] proposed to use it in conjunction
with kernels. The kernel-based Perceptron not only can
handle non-separable datasets but can also be utilized for
efficiently classifying non-vectorial instances such as trees
and strings (see for example [5]).

To implement the Perceptron in conjunction with ker-
nels one can utilize the fact that at each trial of the algo-
rithm, the weight vectorwt can be written as a linear com-
bination of the instances

wt =
X
i2It

yi xi ;

where It = fi < t : ŷ i ¤ yig is the indices of trials in
which the Perceptron made a prediction mistake. There-
fore, the prediction of the algorithm can be rewritten as

ŷt = sign

0
@X

i2It

yi hxi ; xti

1
A ;

and the update rule of the weight vector can be replaced
with an update rule for the set of erroneous trials

It+1 =
�

It [ftg if ŷt ¤ yt
It otherwise : (2)

In the kernel-based Perceptron, the inner product hxi ; xti
is replaced with a Mercer kernel function, K(xi ; xt), with-
out any further changes to the algorithm (for a discus-
sion on Mercer kernels see for example [15]). Intuitively,
the kernel function K(xi ; xt) implements an inner prod-
uct h�(xi); �(xt)i where � is a non-linear mapping from
the original instance space into another (possibly high di-
mensional) Hilbert space. Even if the original instances
are not linearly separable, the images of the instances due
to the non-linear mapping � can be linearly separable
and thus the kernel-based Perceptron can handle non-
separable datasets. Since the analysis of the Perceptron
does not depend on the dimensionality of the instances, all
of the formal results still hold when the algorithm is used
in conjunction with kernel functions.

Key Results

In the following a mistake bound for the Perceptron in the
non-separable case (see for example [10,14]) is provided.

Theorem Assume that the Perceptron is presented with
the sequence of examples (x1; y1); : : : ; (xT ; yT) and de-
note R = maxt kxtk2. Let u be a unit length weight vector
(kuk2 = 1), let � > 0 be a scalar, and denote

L =
TX
t=1

maxf0; 1 � yt hu/�; xtig :

Then, the number of prediction mistakes the Perceptron
makes on the sequence of example is at most

L +
�
R
�

�2
+
R
p
L

�
:

Note that if there exists u and � such that yt hu; xti � � for
all t then L = 0 and the above bound reduces to Novikoff’s
bound,
�
R
�

�2
:

Note also that the bound does not depend on the di-
mensionality of the instances. Therefore, it holds for the
kernel-based Perceptron as well with R = maxt K(xt ; xt).

Applications

So far the Perceptron has been viewed in the prism of on-
line learning. Freund and Schapire [9] proposed a simple
conversion of the Perceptron algorithm to the batch learn-
ing setting. A batch learning algorithm receives as input
a training set of examples f(x1; y1); : : : ; (xT ; yT)g sampled
independently from an underlying joint distribution over
the instance and label space. The algorithm is required to
output a single classification function which performs well
on unseen examples as long as the unseen examples are
sampled from the same distribution as the training set. The
conversion of the Perceptron to the batch setting proposed
by Freund and Schapire is called the voted Perceptron al-
gorithm. The idea is to simply run the online Perceptron
on the training set of examples, thus producing a sequence
of weight vectors w1; : : : ;wT . Then, the single classifica-
tion function to be used for unseen examples is a majority
vote over the predictions of the weight vectors. That is,

f (x) =
�

+1 if jft : hwt ; xi > 0 gj > jft : hwt; xi < 0 gj
�1 otherwise

It was shown (see again [9]) that if the number of predic-
tion mistakes the Perceptron makes on the training set is

644 P Perfect Phylogeny (Bounded Number of States)

Perceptron Algorithm, Table 1

Online Perceptron Kernel-based Online Perceptron
INITIALIZATION:w1 = 0 INITIALIZATION: I1 = f�g

For t = 1; 2; : : : For t = 1; 2; : : :
Receive an instance xt Receive an instance xt
Predict an outcome ŷt = sign(hwt; xti) Predict an outcome ŷt = sign

�P
i2It K(xi; xt)

�

Receive correct outcome yt 2 f+1;�1g Receive correct outcome yt 2 f+1;�1g

Update:wt+1 =

8
<
:
wt + ytxt if ŷt ¤ yt

wt otherwise
Update: It+1 =

8
<
:
It [ftg if ŷt ¤ yt

It otherwise

small, then f (x) is likely to perform well on unseen exam-
ples as well.

Finally, it should be noted that the Perceptron algo-
rithm was used for other purposes such as solving lin-
ear programming [3] and training support vector ma-
chines [14]. In addition, variants of the Perceptron was
used for numerous additional problems such as online
learning on a budget [8,4], multiclass categorization and
ranking problems [6,7], and discriminative training for
hidden Markov models [5].

Cross References

� Support Vector Machines

Recommended Reading
1. Agmon., S.: The relaxation method for linear inequalities. Can.

J. Math. 6(3), 382–392 (1954)
2. Block., H. D.: The perceptron: A model for brain functioning.

Rev. Mod. Phys. 34, 123–135 (1962)
3. Blum, A., Dunagan J. D.: Smoothed analysis of the perceptron

algorithm for linear programming. In: SODA, (2002)
4. Cesa-Bianchi, N., Gentile, C.: Tracking the best hyperplane with

a simple budget perceptron. In: Proceedings of the Nineteenth
Annual Conference on Computational Learning Theory, (2006)

5. Collins, M.: Discriminative trainingmethods for hiddenmarkov
models: Theory and experiments with perceptron algorithms.
In: Conference on EmpiricalMethods in Natural Language Pro-
cessing, (2002)

6. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer,
Y.: Online passive aggressive algorithms. J. Mach. Learn. Res.
7 (2006)

7. Crammer, K., Singer, Y.: A new family of online algorithms for
category ranking. In: Proceedings of the 25th Annual Interna-
tional ACMSIGIR Conference on Research andDevelopment in
Information Retrieval (2002)

8. Dekel, O., Shalev-Shwartz, S., Singer, Y.: The Forgetron:
A kernel-based perceptron on a fixed budget. In: Advances in
Neural Information Processing Systems 18 (2005)

9. Freund, Y., Schapire, R. E.: Large margin classification using the
perceptron algorithm. In: Proceedings of the Eleventh Annual
Conference on Computational Learning Theory (1998)

10. Gentile, C.: The robustness of the p-norm algorithms. Mach.
Learn. 53(3) (2002)

11. Minsky, M., Papert, S.: Perceptrons: An Introduction to Compu-
tational Geometry. The MIT Press, (1969)

12. Novikoff, A. B. J.: On convergence proofs on perceptrons. In:
Proceedings of the Symposium on the Mathematical Theory
of Automata, volume XII, pp. 615–622, (1962)

13. Rosenblatt, F.: The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychol. Rev. 65,
386–407 (1958)

14. Shalev-Shwartz, S., Singer, Y.: A new perspective on an old per-
ceptron algorithm. In: Proceedings of the Eighteenth Annual
Conference on Computational Learning Theory, (2005)

15. Vapnik, V. N.: Statistical Learning Theory. Wiley (1998)

Perfect Phylogeny
(Bounded Number of States)
1997; Kannan,Warnow

JESPER JANSSON
Ochanomizu University, Tokyo, Japan

Keywords and Synonyms

Compatibility of characters with a bounded number of
states; Convex tree-realization of partitions containing
a bounded number of sets

ProblemDefinition

Let S = fs1; s2; : : : ; sng be a set of elements called objects
and species, and let C = fc1; c2; : : : ; cmg be a set of func-
tions called characters such that each c j 2 C is a function
from S to the set f0; 1; : : : ; r j � 1g for some integer rj. For
every c j 2 C, the set f0; 1; : : : ; r j � 1g is called the set of al-
lowed states of character cj, and for any si 2 S and c j 2 C,
it is said that the state of si on cj is ˛, or that the state of cj
for si is ˛, where˛ = c j(si). The character statematrix for S
and C is the (n � m)-matrix in which entry (i, j) for any

Perfect Phylogeny (Bounded Number of States) P 645

i 2 f1; 2; : : : ; ng and j 2 f1; 2; : : : ;mg equals the state of si
on cj.

In this chapter, a phylogeny for S is an unrooted
tree whose leaves are bijectively labeled by S. For every
c j 2 C and ˛ 2 f0; 1; : : : ; r j � 1g, define the set Sc j;˛ by
Sc j;˛ = fsi 2 S : the state of si on c j is ˛g. A perfect phy-
logeny for (S,C) (if one exists) is a phylogeny T for S such
that the following holds: for each c j 2 C and pair of al-
lowed states ˛,ˇ of cj with ˛ ¤ ˇ, the minimal subtree
of T that connects Sc j;˛ and the minimal subtree of T that
connects Sc j;ˇ are vertex-disjoint. See Fig. 1 for an exam-
ple. The Perfect Phylogeny Problem is the following:

Problem 1 (The Perfect Phylogeny Problem)
INPUT: A character state matrix M for some S and C.
OUTPUT: A perfect phylogeny for (S, C), if one exists; other-
wise, null.

Below, define r = max j2f1;2;:::;mg r j .

Key Results

The following negative result was proved by Bodlaen-
der, Fellows, and Warnow [2] and, independently, by
Steel [13]:

Theorem 1 ([2,13]) The Perfect Phylogeny Problem is NP-
hard.

On the other hand, certain restrictions of The Perfect
Phylogeny Problem can be solved efficiently. One impor-
tant special case occurs if the number of allowed states
of each character is limited1. For this case, Agarwala and
Fernández-Baca [1] designed a dynamic programming-
based algorithm that builds perfect phylogenies on cer-
tain subsets of S called c-clusters (also referred to as
proper clusters in [5,10] and character subfamilies in [6])
in a bottom-up fashion. Each c-cluster G has the property
that: (1) G and S n G share at most one state of each char-
acter; and (2) for at least one character, G and S n G share
no states. The number of c-clusters is at most 2rm, and
the algorithm’s total running time is O(23r (nm3 + m4)),
i. e., exponential in r. (Hence, The Perfect Phylogeny
Problem is polynomial-time solvable if the number of
allowed states of every character is upper-bounded by
O(log(m + n)).) Subsequently, Kannan and Warnow [10]
presented a modified algorithm with improved running
time. They restructured the algorithm of [1] to eliminate
one of the three nested loops that steps through all possible

1For other variants of The Perfect Phylogeny Problem which can
be solved efficiently, see, for example, entries�Directed Perfect Phy-
logeny (Binary Characters) of this Encyclopedia or the survey by
Fernández-Baca [5] .

Perfect Phylogeny (Bounded Number of States), Table 1
The running times of the fastest known algorithms for The Per-
fect Phylogeny Problemwith a bounded number of states

r Running time Reference
2 O(nm) [11] together with [7]
3 minfO(nm2); O(n2m)g [3,10] together with [9]
4 minfO(nm2); O(n2m)g [10] together with [9]
� 5 O(22rnm2) [10]

c-clusters and added a pre-processing step which speeds
up the innermost loop. The resulting time complexity is
given by:

Theorem 2 ([10]) The algorithm of Kannan andWarnow
in [10] solves The Perfect Phylogeny Problem in O(22r nm2)
time.

A perfect phylogeny T for (S,C) is called minimal if no
tree which results by contracting an edge of T is a per-
fect phylogeny for (S,C). In [10], Kannan and Warnow
also showed how to extend their algorithm to enumerate
all minimal perfect phylogenies for (S,C) by constructing
a directed acyclic graph that implicitly stores the set of all
perfect phylogenies for (S,C).

Theorem 3 ([10]) The extended algorithm of Kannan and
Warnow in [10] enumerates the set of all minimal perfect
phylogenies for (S, C) so that the maximum computation
time between two consecutive outputs is O(22r nm2).

For very small values of r, even faster algorithms are
known. Refer to the table in Table 1 for a summary. If
r = 2 then the problem can be solved in O(nm) time by
reducing it to TheDirected Perfect Phylogeny Problem for
Binary Characters (see, e. g., Encyclopedia�Directed Per-
fect Phylogeny (Binary Characters) for a definition of this
variant of the problem) using O(nm) time [7,11] and then
applying Gusfield’s O(nm)-time algorithm [7]. If r = 3 or
r = 4, the problem is solvable in O(n2m) time by another
algorithm by Kannan and Warnow [9], which is faster
than the algorithm from Theorem 2 when n < m. Also
note that for the case r = 3, there exists an older algorithm
by Dress and Steel [3] whose running time coincides with
that of the algorithm in Theorem 2.

Applications

A central goal in computational evolutionary biology and
phylogenetic reconstruction is to develop efficient meth-
ods for constructing, from some given data, a phyloge-
netic tree that accurately describes the evolutionary rela-
tionships among a set of objects (e. g., biological species or

646 P Perfect Phylogeny (Bounded Number of States)

M c1 c2 c3

s1 0 0 1
s2 1 1 0
s3 2 2 0
s4 1 0 0
s5 0 3 1
s6 1 0 1

(a) (b)

Perfect Phylogeny (Bounded Number of States), Figure 1
a An example of a character state matrix M for S = fs1; s2; : : : ; s6g and C = fc1; c2; c3g with r1 = 3, r2 = 4, and r3 = 2, i. e., r = 4.
b A perfect phylogeny for (S,C). For convenience, the states of all three characters for each object are shown

other taxa, populations, proteins, genes, natural languages,
etc.) believed to have been produced by an evolutionary
process. One of the most widely used techniques for re-
constructing a phylogenetic tree is to represent the objects
as vectors of character states and look for a tree that clus-
ters objects which have a lot in common. The Perfect Phy-
logeny Problem can be regarded as the ideal special case of
this approach in which the given data contains no errors,
evolution is tree-like, and each character state can emerge
only once in the evolutionary history.

However, data obtained experimentally seldom admits
a perfect phylogeny, so various optimization versions of
the problem such as maximum parsimony and maximum
compatibility are often considered in practice; as might be
expected, these strategies generally lead to NP-complete
problems, but there exist many heuristics that work well
for most inputs. See, e. g. [4,5,12], for a further discussion
and references. Nevertheless, algorithms for The Perfect
Phylogeny Problemmay be useful evenwhen the data does
not admit a perfect phylogeny, for example if there exists
a perfect phylogeny form � O(1) of the characters in C. In
fact, in one crucial step of their proposed character-based
methodology for determining the evolutionary history of
a set of related natural languages, Warnow, Ringe, and
Taylor [14] consider all subsets of C in decreasing order of
cardinality, repeatedly applying the algorithm of [10] un-
til a largest subset of C which admits a perfect phylogeny
is found. The ideas behind the algorithms of [1] and [10]
have also been utilized and extended by Fernández-Baca
and Lagergren [6] in their algorithm for computing near-
perfect phylogenies in which the constraints on the output
have been relaxed in order to permit non-perfect phyloge-

nies whose so-called penalty score is less than or equal to
a prespecified parameter q (see [6] for details).

The motivation for considering a bounded number of
states is that characters based on directly observable traits
are, by the way they are defined, naturally bounded by
some small number (often 2). When biomolecular data is
used to define characters, the number of allowed states is
typically bounded by a constant; e. g., r = 2 for SNP mark-
ers, r = 4 for DNAor RNA sequences, or r = 20 for amino-
acid sequences (see also Encyclopedia � Directed Per-
fect Phylogeny (Binary Characters)). Moreover, characters
with r = 2 can be useful in comparative linguistics [8].

Open Problems

An important open problem is to determine whether
the running time of the algorithm of Kannan and
Warnow [10] can be improved. As pointed out in [5], it
would be especially interesting to find out if The Perfect
Phylogeny Problem is solvable in O(22r nm) time for any r,
or more generally, in O(f (r)�nm) time, where f is a func-
tion of r which does not depend on n or m, since this
would match the fastest known algorithm for the special
case r = 2 (see Table 1). Another open problem is to es-
tablish lower bounds on the computational complexity of
The Perfect Phylogeny Problem with a bounded number
of states.

Cross References

� Directed Perfect Phylogeny (Binary Characters)
� Perfect Phylogeny Haplotyping

Perfect Phylogeny Haplotyping P 647

Acknowledgments

Supported in part by Kyushu University, JSPS (Japan Society for the
Promotion of Science), and INRIA Lille – Nord Europe.

Recommended Reading
1. Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm

for the perfect phylogeny problem when the number of char-
acter states is fixed. SIAM J. Comput. 23, 1216–1224 (1994)

2. Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against
perfect phylogeny. In: Proceedings of the 19th Interna-
tional Colloquiumon Automata, Languages and Programming
(ICALP 1992). Lecture Notes in Computer Science, vol. 623, pp.
273–283. Springer, Berlin (1992)

3. Dress, A., Steel, M.: Convex tree realizations of partitions. Appl.
Math. Lett. 5, 3–6 (1992)

4. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc.
Sunderland, Massachusetts (2004)

5. Fernández-Baca, D.: The Perfect Phylogeny Problem. In: Cheng,
X., Du D.-Z. (eds.) Steiner Trees in Industry, pp. 203–234. Kluwer
Academic Publishers, Dordrecht, Netherlands (2001)

6. Fernández-Baca, D., Lagergren, J.: A polynomial-time algo-
rithm for near-perfect phylogeny. SIAM J. Comput. 32, 1115–
1127 (2003)

7. Gusfield, D.M.: Efficient algorithms for inferring evolutionary
trees. Networks 21, 19–28 (1991)

8. Kanj, I.A., Nakhleh, L., Xia, G.: Reconstructing evolution of nat-
ural languages: Complexity and parametrized algorithms. In:
Proceedings of the 12th Annual International Computing and
Combinatorics Conference (COCOON 2006). Lecture Notes in
Computer Science, vol. 4112, pp. 299–308. Springer, Berlin
(2006)

9. Kannan, S., Warnow, T.: Inferring evolutionary history from
DNA sequences. SIAM J. Comput. 23, 713–737 (1994)

10. Kannan, S., Warnow, T.: A fast algorithm for the computation
and enumeration of perfect phylogenies. SIAM J. Comput. 26,
1749–1763 (1997)

11. McMorris, F.R.: On the compatibility of binary qualitative taxo-
nomic characters. Bull. Math. Biol. 39, 133–138 (1977)

12. Setubal, J.C., Meidanis, J.: Introduction to Computational
Molecular Biology. PWS Publishing Company, Boston (1997)

13. Steel, M.A.: The complexity of reconstructing trees from qual-
itative characters and subtrees. J. Classification 9, 91–116
(1992)

14. Warnow, T., Ringe, D., Taylor, A.: Reconstructing the evolu-
tionary history of natural languages. In: Proceedings of the
7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’96), pp. 314–322 (1996)

Perfect Phylogeny Haplotyping
2005; Ding, Filkov, Gusfield

GIUSEPPE LANCIA
Department of Mathematics and Computer Science,
University of Udine, Udine, Italy

Keywords and Synonyms

Alleles phasing

ProblemDefinition

In the context of the perfect phylogeny haplotyping (PPH)
problem, each vector h 2 f0; 1gm is called a haplotype,
while each vector g 2 f0; 1; 2gm is called a genotype. Hap-
lotypes are binary encodings of DNA sequences, while
genotypes are ternary encodings of pairs of DNA se-
quences (one sequence for each of the two homologous
copies of a certain chromosome).

Two haplotypes h0 and h00 are said to resolve a geno-
type g if, at each position j: (i) if g j 2 f0; 1g then both
h0j = g j and h00j = g j ; (ii) if g j = 2 then either h0j = 0 and
h00j = 1 or h0j = 1 and h00j = 0. If h0 and h00 resolve g, we
write g = h0 + h00. An instance of the PPH problem con-
sists of a set G = fg1; g2; : : : ; gng of genotypes. A set H of
haplotypes such that, for each g 2 G, there are h0; h00 2 H
with g = h0 + h00, is called a resolving set for G.

A perfect phylogeny for a setH of haplotypes is a rooted
tree T for which
� the set of leaves is H and the root is labeled by some

binary vector r;
� each index j 2 f1; : : : ;mg labels exactly one edge of T;
� if an edge e is labeled by an index k, then, for each leaf h

that can be reached from the root via a path through e,
it is hk ¤ rk .
Without loss of generality, it can be assumed that the

vector labeling the root is r = 0. Within the PPH problem,
T is meant to represent the evolution of the sequences at
the leaves from a common ancestral sequence (the root).
Each edge labeled with an index represents a point in time
when a mutation happened at a specific site. This model
of evolution is also known as coalescent [11]. It can be
shown that a perfect phylogeny for H exists if and only if
for all choices of four haplotypes h1; : : : ; h4 2 H and two
indices i; j,

fhai h
a
j ; 1 � a � 4g 6= f00; 01; 10; 11g :

Given the above definitions, the problem surveyed in
this entry is the following:

Perfect Phylogeny Haplotyping Problem (PPH):
Given a set G of genotypes, find a resolving set H of hap-
lotypes and a perfect phylogeny T forH, or determine that
such a resolving set does not exist.

In a slightly different version of the above problem, one
may require to find all perfect phylogenies forH instead of
just one (in fact, all known algorithms for PPH do find all
perfect phylogenies).

The perfect phylogeny problem was introduced by
Gusfield [7], who also proposed a nearly linear-time
O(nm ˛(nm))-algorithm for its solution (where ˛() is the
extremely slowly growing inverse Ackerman function).

648 P Perfect Phylogeny Haplotyping

The algorithm resorted to a reduction to a complex pro-
cedure for the graph realization problem (Bixby andWag-
ner [2]), of very difficult understanding and implementa-
tion. Later approaches for PPH proposed much simpler,
albeit slower, O(nm2)-algorithms (Bafna et al. [1]; Eskin
et al. [6]). However, a major question was left open: does
there exist a linear-time algorithm for PPH? In [7], Gus-
field conjectured that this should be the case. The 2005 al-
gorithm by Ding, Filkov, and Gusfield [5] surveyed in this
entry settles the above conjecture in the affirmative.

Key Results
The main idea of the algorithm is to find the maximal sub-
graphs that are common to all PPH solutions. Let us call
P-class a maximal sub-graph of all PPH trees for G. The
authors show that each P-class consists of two sub-trees
which, in each PPH solution, can appear in either one of
two possible ways (called flips of the P-class) with respect
to any fixed P-class taken as a reference. Hence, if there are
k P-classes, there are 2k�1 distinct PPH solutions.

The algorithm resorts to an original and effective data
structure, called the shadow tree, which gives an implicit
representation of all P-classes. The data structure is built
incrementally, by processing one genotype at a time. The
total cost for building and updating the shadow tree is lin-
ear in the input size (i. e., in nm). A detailed description
of the shadow tree requires a rather large number of def-
initions, possibly accompanied by figures and examples.
Here, we will introduce only its basic features, those that
allow us to state the main theorems of [5].

The shadow tree is a particular type of directed rooted
tree, which contains both edges and links (strictly speaking,
the latter are just arcs, but they are called links to underline
their specific use in the algorithm). The edges are of two
types: tree-edges and shadow-edges, and are associated to
the indices f1; : : : ;mg. For each index i, there is a tree-edge
labeled ti and a shadow-edge labeled si. Both edges and
links are oriented, with their head closer to the root than
their tail. Other than the root, each node of the shadow tree
is the endpoint of exactly one tree-edge or one shadow-
edge (while the root is the head of two “dummy” links).
The links are used to connect certain tree- and shadow-
edges. A link can be either free or fixed. The head of a free
link can still be changed during the execution of the algo-
rithm, but once a link is fixed, it cannot be changed any
more.

Tree-edges, shadow-edges and fixed links are orga-
nized into classes, which are sub-graphs of the shadow tree.
Each fixed link is contained in exactly one class, while each
free link connects one class to another, called its parent.
For each index i, if the tree-edge ti is in a class X, then

the shadow-edge si is in X as well, so that a class can be
seen as a pair of “twin” sub-trees of the shadow tree. The
free links point out from the root of the sub-trees (the
class roots). Classes change during the running of the algo-
rithm. Specifically, classes are created (containing a single
tree- and shadow-edge)when a new genotype is processed;
a class can bemergedwith its parent, by fixing a pair of free
edges; finally, a class can be flipped, by switching the heads
of the two free links that connect the class roots to the par-
ent class.

A tree T is said to be “contained in” a shadow tree if
T can be obtained by flipping some classes in the shadow
tree, followed by contracting all links and shadow-edges.
Let us call contraction of a class the sub-graph (consisting
of a pair of sub-trees, made of tree-edges only) that is ob-
tained from a class X of the shadow tree by contracting all
fixed links and shadow-edges of X. The following are the
main results obtained in [5]:

Proposition 1 Every P-class can be obtained by contrac-
tion of a class of the final shadow tree produced by the al-
gorithm. Conversely, every contraction of a class of the final
shadow tree is a P-class.

Theorem 1 Every PPH solution is contained in the final
shadow tree produced by the algorithm. Conversely, every
tree contained in the final shadow tree is a distinct PPH so-
lution.

Theorem 2 The total time required for building and up-
dating the shadow tree is O(nm).

Applications
The PPH problem arises in the context of Single Nucleotide
Polymorphisms (SNP’s) analysis in human genomes.
A SNP is the site of a single nucleotide which varies in
a statistically significant way in a population. The deter-
mination of SNP locations and of common SNP patterns
(haplotypes) are of uttermost importance. In fact, SNP
analysis is used to understand the nature of several genetic
diseases, and the international Haplotype Map Project is
devoted to SNP study (Helmuth [9]).

The values that a SNP can take are called its alleles. Al-
most all SNPs are bi-allelic, i. e., out of the four nucleotides
A, C, T, G, only two are observed at any SNP. Humans are
diploid organisms, with DNA organized in pairs of chro-
mosomes (of paternal and of maternal origin). The se-
quence of alleles on a chromosome copy is called a haplo-
type. Since SNPs are bi-allelic, haplotypes can be encoded
as binary strings. For a given SNP, an individual can be
either homozygous, if both parents contributed the same
allele, or heterozygous, if the paternal and maternal alleles
are different.

Perfect Phylogeny Haplotyping P 649

Haplotyping an individual consists of determining his
two haplotypes. Haplotyping a population consists of hap-
lotyping each individual of the population. While it is to-
day economically infeasible to determine the haplotypes
directly, there is a cheap experiment which can determine
the (less informative and often ambiguous) genotypes.

A genotype of an individual contains the conflated in-
formation about the two haplotypes. For each SNP, the
genotype specifies which are the two (possibly identical)
alleles, but does not specify their origin (paternal or ma-
ternal). The ternary encoding that is used to represent
a genotype g has the following meaning: at each SNP j, it
is g j = 0 (respectively, 1) if the individual is homozygous
for the allele 0 (respectively, 1), and g j = 2 if the individual
is heterozygous. There may be many possible pairs of hap-
lotypes that justify a particular genotype (there are 2k�1

pairs of haplotypes that can resolve a genotype with k het-
erozygous SNPs). Given a set of genotypes, in order to de-
termine the correct resolving set out of the exponentially
many possibilities, one imposes some “biologically mean-
ingful” constraints that the solutionmust possess. The per-
fect phylogeny model (coalescent) requires that the resolv-
ing set must fit a particular type of evolutionary tree. That
is, all haplotypes should descend from some ancestral hap-
lotype, via mutations that happened (only once) at spe-
cific sites over time. The coalescent model is accurate es-
pecially for short haplotypes (for longer haplotypes there
is also another type of evolutionary event, recombination,
that should be taken into account).

The linear-time PPH algorithm is of significant prac-
tical value in two respects. First, there are instances of the
problem where the number of SNPs considered is fairly
large (genotypes can extend over several kilo-bases). For
these long instances, the advantage of anO(nm) algorithm
with respect to the previous O(nm2) approach is evident.
On the other hand, when genotypes are relatively short,
the benefit of using the linear-time algorithm is not imme-
diately evident (both algorithms run extremely quickly).
Nevertheless, there are situations in which one has to solve
a large set of haplotyping problems, where each single
problem is defined over short genotypes. For instance, this
is the case in which one examines all “small” subsets of
SNPs in order to determine the subsets for which there is
a PPH solution. In this type of application, the gain of ef-
ficiency with the use of the linear-time PPH algorithm is
significant (Chung and Gusfield [4]; Wiuf [14]).

Open Problems

A linear-time algorithm is the best possible for PPH, and
no open problems are listed in [5].

Experimental Results

The algorithm has been implemented in C and its perfor-
mance has been compared with the previous fastest PPH
algorithm, i. e. DPPH (Bafna et al. [1]). In the case of
m = 2000 and n = 1000, the algorithm is about 250-times
faster than DPPH, and is capable of solving an instance
in an average time of 2 seconds, versus almost 8 minutes
needed by DPPH (on a “standard” 2005 Personal Com-
puter). The smaller instances (e. g., withm = 50 SNPs) are
such that the superior performance of the algorithm is not
as evident, with an average running time of 0.07 seconds
versus 0.2 seconds. However, as already remarked, when
the small instances are executed within a loop, the speed-
up turns out to be again of two or more orders of magni-
tude.

Data Sets

The data sets used in [5] have been generated by the pro-
gramms (Hudson [12]), which is the widely used standard
for instance generation reflecting the coalescent model of
SNP sequence evolution. Real-life instances can be found
at the HapMap web site http://www.hapmap.org.

URL to Code

http://wwwcsif.cs.ucdavis.edu/~gusfield/lpph/

Cross References

� Directed Perfect Phylogeny (Binary Characters)
� Perfect Phylogeny (Bounded Number of States)

Recommended Reading

For surveys about computational haplotyping problems in
general, see Bonizzoni et al. [3], Gusfield and Orzack [8],
Halldorsson et al. [10], and Lancia [13].

1. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as
perfect phylogeny: a direct approach. J. Comput. Biol. 10(3–4),
323–340 (2003)

2. Bixby, R.E., Wagner, D.K.: An almost linear-time algorithm for
graph realization. Math. Oper. Res. 13, 99–123 (1988)

3. Bonizzoni, P., Della Vedova, G., Dondi, R., Li, J.: The haplotyping
problem: an overview of computational models and solutions.
J. Comput. Sci. Technol. 19(1), 1–23 (2004)

4. Chung, R.H., Gusfield, D.: Empirical exploration of perfect phy-
logeny haplotyping and haplotypes. In: Proceedings of Annual
International Conference on Computing and Combinatorics
(COCOON). Lecture Notes in Computer Science, vol. 2697,
pp. 5–9. Springer, Berlin (2003)

5. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for
the perfect phylogeny haplotyping problem. In: Proceedings
of the Annual International Conference on Computational

http://www.hapmap.org
http://wwwcsif.cs.ucdavis.edu/~gusfield/lpph/

650 P Performance Analysis

Molecular Biology (RECOMB), New York, 2005. ACMPress, New
York (2005)

6. Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of hap-
lotype structure via perfect phylogeny. J. Bioinform. Comput.
Biol. 1(1), 1–20 (2003)

7. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual
framework and efficient solutions. In: Myers, G., Hannenhalli,
S., Istrail, S., Pevzner, P., Waterman, M. (eds.) Proceedings of the
Annual International Conference on Computational Molecular
Biology (RECOMB), New York, 2002, pp. 166–175. ACM Press
(2002)

8. Gusfield, D. Orzack, S.H.: Haplotype inference. In: Aluru S.
(ed) Handbook of Computational Molecular Biology, pp. 1–28.
Champman and Hall/CRC-press, Boca Raton (2005)

9. Helmuth, L.: Genome research: Map of the human genome 3.0.
Science 293(5530), 583–585 (2001)

10. Halldorsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph,
S., Istrail, S.: A survey of computational methods for determin-
ing haplotypes. In: Computational methods for SNP and hap-
lotype inference: DIMACS/RECOMBsatelliteworkshop. Lecture
Notes in Computer Science, vol. 2983, pp. 26–47. Springer,
Berlin (2004)

11. Hudson, R.: Gene genealogies and the coalescent process. Oxf.
Surv. Evol. Biol. 7, 1–44 (1990)

12. Hudson, R.: Generating samples under the wright-fisher neu-
tral model of genetic variation. Bioinformatics 18(2), 337–338
(2002)

13. Lancia, G.: The phasing of heterozygous traits: Algorithms and
complexity. Comput. Math. Appl. 55(5), 960–969 (2008)

14. Wiuf, C.: Inference on recombination and block structure using
unphased data. Genetics 166(1), 537–545 (2004)

Performance Analysis
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)

Performance-Driven Clustering
1993; Rajaraman, Wong

RAJMOHAN RAJARAMAN
Department of Computer Science,
Northeastern University,
Boston, MA, USA

Keywords and Synonyms

Circuit partitioning; Circuit clustering

ProblemDefinition

Circuit partitioning consists of dividing the circuit into
parts each of which can be implemented as a separate com-
ponent (e. g., a chip), that satisfies the design constraints.

The work of Rajaraman andWong [5] considers the prob-
lem of dividing a circuit into components, subject to area
constraints, such that the maximum delay at the outputs is
minimized.

A combinational circuit can be represented as a di-
rected acyclic graph G = (V ; E), where V is the set of
nodes, and E is the set of directed edges. Each node rep-
resents a gate in the network and each edge (u, v) in E rep-
resents an interconnection between gates u and v in the
network. The fanin of a node is the number of edges in-
cident into it, and the fanout of of a node is the number
of edges incident out of it. A primary input (PI) is a node
with fanin 0, while a primary output (PO) is a node with
fanout 0. Each node has a weight and a delay associated
with it.

Definition 1 A clustering of a network G = (V ; E) is
a triple (H; �;˙), where
1. H = (V 0; E0) is a directed acyclic graph.
2. ' is a function mapping V 0 to V such that
� For every edge (u0; v0) 2 E0, (�(u0); �(v0)) 2 E.
� For every node v0 2 V 0 and edge (u; �(v0)) 2 E,

there exists a unique u0 2 V 0 such that �(u0) = u
and (u0; v0) 2 E0.

� For every PO node v 2 V , there exists a unique
v0 2 V 0 such that �(v0) = v.

3. ˙ is a partition of V 0.

Let
 = (H = (V 0; E0); �;˙) be a clustering of G. For
v 2 V , v0 2 V 0, if �(v0) = v, we call v0 a copy of v. The set
V 0 consists of all the copies of the nodes in V that appear
in the clustering. A node v0 is a PI (respectively, PO) in

if �(v0) is a PI (respectively, PO) in G. It follows from the
definition of ' that H is logically equivalent to G.

The weights and delays on the individual nodes in G
yield weights and delays of nodes in H0 and a delay for the
clustering
 . The weight (respectively, delay) of an node v0

inV 0 is the weight (respectively, delay) of �(v). The weight
of any cluster C 2 ˙ , denoted by W(C), is the sum of the
weights of the nodes in C. The delay of a clustering is given
by the general delay model of Murgai et al. [3], which is as
follows. The delay of an edge (u0; v0) 2 E0 is D (which is
a given parameter) if u0 and v0 belong to different elements
of ˙ and zero otherwise. The delay along a path in H0 is
simply the sum of the delays of the edges of the path. Fi-
nally, the delay of
 is the delay of a maximum-delay path
in H0, among all the paths from a PI node to a PO node
in H0.

Definition 2 Given a combinational network G = (V ; E)
with weight function w : V ! R+, weight capacity M and
a delay function ı : V ! R+, we say that a clustering

 = (H; �;˙) is feasible if for every cluster C 2 ˙ ,W(C)

Phylogenetic Tree Construction from a Distance Matrix P 651

is at most M. The circuit clustering problem is to compute
a feasible clustering
 ofG such that the delay of
 is min-
imum among all feasible clusterings of G.

An early work of Lawler et al. [2] presented a polynomial-
time optimal algorithm for the circuit clustering problem
in the special case where all the gate delays are zero (i. e.,
ı(v) = 0 for all v).

Key Results

Rajaraman and Wong [5] presented an optimal polyno-
mial-time algorithm for the circuit clustering problem un-
der the general delay model.

Theorem 1 There exists an algorithm that computes an
optimal clustering for the circuit clustering problem in
O(n2 log n + nm) time, where n and m are the vertices and
edges, respectively, of the given combinational network.

This result can be extended to compute optimal cluster-
ings under any monotone clustering constraint. A clus-
tering constraint is monotone if any connected subset of
nodes in a feasible cluster is also monotone [2].

Theorem 2 The circuit clustering problem can be solved
optimally under any monotone clustering constraint in time
polynomial in the size of the circuit.

Applications

Circuit partitioning/clustering is an important component
of very large scale integration design. One application of
the circuit clustering problem formulated above is to im-
plement a circuit on multiple field programmable gate ar-
ray chips. The work of Rajaraman and Wong focused on
clustering combinational circuits to minimize delay under
area constraints. Related studies have considered other im-
portant constraints, such as pin constraints [1] and a com-
bination of area and pin constraints [6]. Further work has
also included clustering sequential circuits (as opposed to
combinational circuits) with the objective of minimizing
the clock period [4].

Experimental Results

Rajaraman and Wong reported experimental results on
five ISCAS (International Symposium on Circuits and
Systems) circuits. The number of nodes in these circuits
ranged from 196 to 913. They reported the maximum de-
lay of the clusterings and running times of their algorithm
on a Sun Sparc workstation.

Cross References

� FPGA Technology Mapping

Recommended Reading
1. Cong, J., Ding, Y.: An optimal technologymapping algorithm for

delay optimization in lookup-table based fpga design. In: Pro-
ceedings of IEEE International Conference on Computer-Aided
Design, 1992, pp. 48–53

2. Lawler, E.L., Levitt, K.N., Turner, J.: Module clustering to mini-
mize delay in digital networks. IEEE Trans. Comput. C-18, 47–
57 (1966)

3. Murgai, R., Brayton, R.K., Sangiovanni-Vincentelli, A.: On cluster-
ing for minimum delay/area. In: Proceedings of IEEE Interna-
tional Conference on Computer-Aided Design, 1991, pp. 6–9

4. Pan, P., Karandikar, A.K., Liu, C.L.: Optimal clock period clustering
for sequential circuits with retiming. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 17, 489–498 (1998)

5. Rajaraman, R., Wong, D.F.: Optimum clustering for delay mini-
mization. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 14,
1490–1495 (1995)

6. Yang, H.H., Wong, D.F.: Circuit clustering for delay minimization
under area and pinconstraints. IEEE Trans. Comput.-Aided Des.
Integr. Circ. Syst. 16, 976–986 (1997)

Phylogenetic Tree Construction
from a DistanceMatrix
1989; Hein

JESPER JANSSON
Ochanomizu University, Tokyo, Japan

Keywords and Synonyms

Phylogenetic tree construction from a dissimilarity ma-
trix

ProblemDefinition

Let n be a positive integer. A distance matrix of or-
der n (also called a dissimilarity matrix of order n) is
a matrix D of size (n � n) which satisfies: (1) Di; j > 0
for all i; j 2 f1; 2; : : : ; ng with i ¤ j; (2) Di; j = 0 for all
i; j 2 f1; 2; : : : ; ng with i = j; and (3) Di; j = Dj;i for all
i; j 2 f1; 2; : : : ; ng.

Below, all trees are assumed to be unrooted and
edge-weighted. For any tree T , the distance between two
nodes u and v in T is defined as the sum of the weights
of all edges on the unique path in T between u and v,
and is denoted by dTu;v . A tree T is said to realize a given
distance matrix D of order n if and only if it holds that
f1; 2; : : : ; ng is a subset of the nodes of T and dTi; j = Di; j
for all i; j 2 f1; 2; : : : ; ng. Finally, a distance matrix D is

652 P Phylogenetic Tree Construction from a Distance Matrix

called additive or tree-realizable if and only if there exists
a tree which realizes D.

Problem 1 (The Phylogenetic Tree from Distance Ma-
trix Problem)
INPUT: An distance matrix D of order n.
OUTPUT: A tree which realizes D and has the smallest pos-
sible number of nodes, if D is additive; otherwise, null.

See Fig. 1 for an example.
In the time complexities listed below, the time needed

to input all ofD is not included. Instead,O(1) is charged to
the running time whenever an algorithm requests to know
the value of any specified entry of D.

Key Results

Several authors have independently shown how to solve
The Phylogenetic Tree from Distance Matrix Problem.
The fastest of these algorithms run in O(n2) time1:

Theorem 1 ([2,4,5,7,15]) There exists an algorithmwhich
solves The Phylogenetic Tree from DistanceMatrix Problem
in O(n2) time.

Although the algorithms are different, it can be proved
that:

Theorem 2 ([8,15]) For any given distance matrix, the so-
lution to The Phylogenetic Tree fromDistanceMatrix Prob-
lem is unique.

Furthermore, the algorithms referred to in Theorem 1
have optimal running time since any algorithm for The
Phylogenetic Tree from Distance Matrix Problem must in
the worst case query all ˝(n2) entries of D to make sure
that D is additive. However, if it is known in advance that
the input distance matrix is additive then the time com-
plexity improves, as shown by Hein [9]:

Theorem 3 ([9,12]) There exists an algorithm which
solves The Phylogenetic Tree from Distance Matrix Prob-
lem restricted to additive distance matrices in O(kn logk n)
time, where k is the maximum degree of the tree that real-
izes the input distance matrix2.

The algorithm of Hein [9] starts with a tree containing just
two nodes and then successively inserts each node i into
the tree by repeatedly choosing a pair of existing nodes and
computing where on the path between them that i should

1See [5] for a short survey of older algorithms which do not run
in O(n2) time.

2For this case, the Culberson-Rudnicki algorithm [5] runs in
O(n3/2

p
k) time for trees in which all edge weights are equal to 1,

and not in O(kn logk n) time as claimed in [5]. See [12] for a coun-
terexample to [5] and a correct analysis.

be attached, until i’s position has been determined. (The
same basic technique is used in the O(n2)-time algorithm
of Waterman et al. [15] referenced to by Theorem 1 above,
but the algorithm of Hein selects paths which are more
efficient at discriminating between the possible positions
for i.)

The lower bound corresponding to Theorem 3 is given
by:

Theorem 4 ([10]) The Phylogenetic Tree from Distance
Matrix Problem restricted to additive distance matrices re-
quires˝(kn logk n) queries to the distancematrix D, where
k is the maximum degree of the tree that realizes D, even if
restricted to trees in which all edge weights are equal to 1.

Finally, note that the following special case is easily solv-
able in linear time:

Theorem 5 ([5]) There exists an O(n)-time algorithm
which solves The Phylogenetic Tree from Distance Matrix
Problem restricted to additive distance matrices for which
the realizing tree contains two leaves only and has all edge
weights equal to 1.

Applications

The main application of The Phylogenetic Tree from Dis-
tance Matrix Problem is in the construction of a tree (a so-
called phylogenetic tree) that represents evolutionary re-
lationships among a set of studied objects (e. g., species
or other taxa, populations, proteins, genes, etc.). Here, it
is assumed that the objects are indeed related according
to a tree-like branching pattern caused by an evolution-
ary process and that their true pairwise evolutionary dis-
tances are proportional to the measured pairwise dissimi-
larities. See, e. g., [1,6,7,14,15] for examples and many ref-
erences as well as discussions on how to estimate pair-
wise dissimilarities based on biological data. Other appli-
cations of The Phylogenetic Tree from Distance Matrix
Problem can be found in psychology, for example to de-
scribe semantic memory organization [1], in comparative
linguistics to infer the evolutionary history of a set of lan-
guages [11], or in the study of the filiation of manuscripts
to trace how manuscript copies of a text (whose original
version may have been lost) have evolved in order to iden-
tify discrepancies among them or to reconstruct the origi-
nal text [1,3,13].

In general, real data seldom forms additive distance
matrices [15]. Therefore, in practice, researchers consider
optimization versions of The Phylogenetic Tree from Dis-
tance Matrix Problem which look for a tree that “almost”
realizes D. Many alternative definitions of “almost” have
been proposed, and numerous heuristics and approxima-

Planar Geometric Spanners P 653

Phylogenetic Tree Construction from a Distance Matrix, Figure 1
a An additive distancematrixD of order 5. b A treeT which realizes D. Here, f1;2; : : : ;5g forms a subset of the nodes ofT

tion algorithms have been developed. A comprehensive
description of some of the most popular distance-based
methods for phylogenetic reconstruction as well as more
background information can be found in, e. g., Chapt. 11
of [6] or Chapt. 4 of [14]. See also [1] and [16] and the
references therein.

Cross References

� Distance-Based Phylogeny Reconstruction
(Fast-Converging)

� Distance-Based Phylogeny Reconstruction (Optimal
Radius)

Acknowledgments

Supported in part by Kyushu University, JSPS (Japan Society for the
Promotion of Science), and INRIA Lille – Nord Europe.

Recommended Reading

1. Abdi, H.: Additive-tree representations. In: Dress, A., von Hae-
seler, A. (eds.) Trees and Hierarchical Structures: Proceedings
of a conference held at Bielefeld, FRG, Oct. 5–9th, 1987. Lecture
Notes in Biomathematics, vol. 84, pp. 43–59. Springer (1990)

2. Batagelj, V., Pisanski, T., Simões-Pereira, J.M.S.: An algorithm for
tree-realizability of distance matrices. Int. J. Comput. Math. 34,
171–176 (1990)

3. Bennett, C.H., Li, M., Ma, B.: Chain letters and evolutionary his-
tories. Sci. Am. 288, 76–81 (2003)

4. Boesch, F.T.: Properties of the distance matrix of a tree. Quar-
terly Appl. Math. 26, 607–609 (1968)

5. Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing
trees from distance matrices. Inf. Process. Lett. 30, 215–220
(1989)

6. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc.
(2004)

7. Gusfield, D.M.: Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, New York (1997)

8. Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realiz-
ability. Quarterly Appl. Math. 22, 305–317 (1964)

9. Hein, J.: An optimal algorithm to reconstruct trees from addi-
tive distance data. Bull. Math. Biol. 51, 597–603 (1989)

10. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-
based evolutionary tree construction. In: Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2003), pp. 444–453 (2003)

11. Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison
of phylogenetic reconstructionmethods on an Indo-European
dataset. Trans. Philol. Soc. 103, 171–192 (2005)

12. Reyzin, L., Srivastava, N.: On the longest path algorithm for re-
constructing trees from distance matrices. Inf. Process. Lett.
101, 98–100 (2007)

13. The Canterbury Tales Project: University of Birmingham,
Brigham Young University, University of Münster, New York
University, Virginia Tech, and Keio University. Website: http://
www.canterburytalesproject.org/

14. Warnow, T.: Some combinatorial optimization problems in
phylogenetics. In: Lovász, L., Gyárfás, G., Katona, G., Recski,
A., Székely, L. (eds.) Graph Theory and Combinatorial Biology.
Bolyai SocietyMathematical Studies, vol. 7, pp. 363–413. Bolyai
János Matematikai Társulat (1999)

15. Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive
evolutionary trees. J. Theor. Biol. 64, 199–213 (1977)

16. Wu, B.Y., K.-Chao, M., Tang, C.Y.: Approximation and exact al-
gorithms for constructingminimumultrametric trees from dis-
tance matrices. J. Combin. Optim. 3, 199–211 (1999)

Phylogeny Reconstruction
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)

Planar Geometric Spanners
2005; Bose, Smid, Gudmundsson

JOACHIM GUDMUNDSSON1, GIRI NARASIMHAN2,
MICHIEL SMID3

1 DMiST, National ICT Australia Ltd, Alexandria,
Australia

2 Department of Computer Science, Florida International
University, Miami, FL, USA

3 School of Computer Science, Carleton University,
Ottawa, ON, Canada

http://www.canterburytalesproject.org/
http://www.canterburytalesproject.org/

654 P Planar Geometric Spanners

Keywords and Synonyms

Geometric network; Dilation; Detour

ProblemDefinition

Let S be a set of n points in the plane and let G be an
undirected graph with vertex set S, in which each edge
(u; v) has a weight, which is equal to the Euclidean dis-
tance |uv| between the points u and v. For any two points
p and q in S, their shortest-path distance in G is denoted
by ıG (p; q). If t � 1 is a real number, then G is a t-spanner
for S if ıG (p; q) � tjpqj for any two points p and q in S.
Thus, if t is close to 1, then the graph G contains close ap-
proximations to the

�n
2
�
Euclidean distances determined by

the pairs of points in S. If, additionally, G consists of O(n)
edges, then this graph can be considered a sparse approx-
imation to the complete graph on S. The smallest value of
t for which G is a t-spanner is called the stretch factor (or
dilation) of G. For a comprehensive overview of geometric
spanners, see the book by Narasimhan and Smid [16].

Assume that each edge (u; v) of G is embedded as
the straight-line segment between the points u and v. The
graphG is said to be plane if its edges intersect only at their
common vertices.

In this entry, the following two problems are con-
sidered:

Problem 1 Determine the smallest real number t > 1 for
which the following is true: For every set S of n points in the
plane, there exists a plane graph with vertex set S, which is
a t-spanner for S. Moreover, design an efficient algorithm
that constructs such a plane t-spanner.

Problem 2 Determine the smallest positive integer D for
which the following is true: There exists a constant t, such
that for every set S of n points in the plane, there exists
a plane graph with vertex set S and maximum degree at
most D, which is a t-spanner for S. Moreover, design an ef-
ficient algorithm that constructs such a plane t-spanner.

Key Results

Let S be a finite set of points in the plane that is in gen-
eral position, i. e., no three points of S are on a line and
no four points of S are on a circle. The Delaunay trian-
gulation of S is the plane graph with vertex set S, in which
(u; v) is an edge if and only if there exists a circle through u
and v that does not contain any point of S in its interior.
(Since S is in general position, this graph is a triangula-
tion.) The Delaunay triangulation of a set of n points in
the plane can be constructed in O(n log n) time. Dobkin,
Friedman and Supowit [10] were the first to show that the

stretch factor of the Delaunay triangulation is bounded
by a constant: They proved that the Delaunay triangula-
tion is a t-spanner for t =
(1 +

p
5)/2. The currently best

known upper bound on the stretch factor of this graph is
due to Keil and Gutwin [12]:

Theorem 1 Let S be a finite set of points in the plane.
The Delaunay triangulation of S is a t-spanner for S, for
t = 4

p
3/9.

A slightly stronger result was proved by Bose et al. [3].
They proved that for any two points p and q in S, the
Delaunay triangulation contains a path between p and q,
whose length is at most (4

p
3/9)jpqj and all edges on this

path have length at most |pq|.
Levcopoulos and Lingas [14] generalized the result of

Theorem 1: Assume that the Delaunay triangulation of the
set S is given. Then, for any real number r > 0, a plane
graph G with vertex set S can be constructed in O(n) time,
such thatG is a t-spanner for S, where t = (1+1/r)4

p
3/9,

and the total length of all edges in G is at most 2r + 1 times
the weight of a minimum spanning tree of S.

The Delaunay triangulation can alternatively be de-
fined to be the dual of the Voronoi diagram of the set S. By
considering the Voronoi diagram for a metric other than
the Euclidean metric, a corresponding Delaunay triangu-
lation is obtained. Chew [7] has shown that the Delaunay
triangulation based on the Manhattan-metric is a

p
10-

spanner (in this spanner, path-lengths are measured in the
Euclidean metric). The currently best result for Problem 1
is due to Chew [8]:

Theorem 2 Let S be a finite set of points in the plane, and
consider the Delaunay triangulation of S that is based on the
convex distance function defined by an equilateral triangle.
This plane graph is a 2-spanner for S (where path-lengths
are measured in the Euclidean metric).

Das and Joseph [9] have generalized the result of Theo-
rem 1 in the following way (refer to Fig. 1). LetG be a plane
graph with vertex set S and let ˛ be a real number with
0 < ˛ <
/2. For any edge e of G, let �1 and �2 be the
two isosceles triangles with base e and base angle ˛. The
edge e is said to satisfy the ˛-diamond property, if at least
one of the triangles�1 and�2 does not contain any point
of S in its interior. The plane graph G is said to satisfy the
˛-diamond property, if every edge e ofG satisfies this prop-
erty. For a real number d � 1, G satisfies the d-good poly-
gon property, if for every face f of G, and for every two
vertices p and q on the boundary of f , such that the line
segment joining them is completely inside f , the shortest
path between p and q along the boundary of f has length
at most d|pq|. Das and Joseph [9] proved that any plane

Planar Geometric Spanners P 655

Planar Geometric Spanners, Figure 1
On the left, the ˛-diamond property is illustrated. At least one of the triangles �1 and �2 does not contain any point of S in its
interior. On the right, the d-good polygon property is illustrated. p and q are two vertices on the same face f which can see each
other. At least one of the two paths between p and q along the boundary of f has length at most d|pq|

graph satisfying both the ˛-diamond property and the d-
good polygon property is a t-spanner, for some real num-
ber t that depends only on ˛ and d. A slight improvement
on the value of t was obtained by Lee [13]:

Theorem 3 Let ˛ 2 (0;
/2) and d � 1 be real numbers,
and let G be a plane graph that satisfies the ˛-diamond
property and the d-good polygon property. Then, G is a t-
spanner for the vertex set of G, where

t =
8(
 � ˛)2d
˛2 sin2(˛/4)

:

To give some examples, it is not difficult to show that the
Delaunay triangulation satisfies the ˛-diamond property
with ˛ =
/4. Drysdale et al. [11] have shown that the
minimum weight triangulation satisfies the ˛-diamond
property with ˛ =
/4:6. Finally, Lee [13] has shown that
the greedy triangulation satisfies the ˛-diamond property
with ˛ =
/6. Of course, any triangulation satisfies the d-
good polygon property with d = 1.

Now consider Problem 2, that is, the problem of con-
structing plane spanners whose maximum degree is small.
The first result for this problem is due to Bose et al. [2].
They proved that the Delaunay triangulation of any fi-
nite point set contains a subgraph of maximum degree at
most 27, which is a t-spanner (for some constant t). Li
and Wang [15] improved this result, by showing that the
Delaunay triangulation contains a t-spanner of maximum
degree at most 23. Given the Delaunay triangulation, the
subgraphs in [2,15] can be constructed in O(n) time. The
currently best result for Problem 2 is by Bose et al. [6]:

Theorem 4 Let S be a set of n points in the plane. The
Delaunay triangulation of S contains a subgraph of maxi-
mum degree at most 17, which is a t-spanner for S, for some

constant t. Given the Delaunay triangulation of S, this sub-
graph can be constructed in O(n) time.

In fact, the result in [6] is more general:

Theorem 5 Let S be a set of n points in the plane, let
˛ 2 (0;
/2) be a real number, and let G be a triangulation
of S that satisfies the ˛-diamond property. Then, G contains
a subgraph ofmaximumdegree at most 14 + d2
/˛e, which
is a t-spanner for S, where t depends only on ˛. Given the
triangulation G, this subgraph can be constructed in O(n)
time.

Applications

Plane spanners have applications in on-line path-finding
and routing problems that arise in, for example, geo-
graphic information systems and communication net-
works. In these application areas, the complete environ-
ment is not known, and routing has to be done based only
on the source, the destination, and the neighborhood of
the current position. Bose and Morin [4,5] have shown
that, in this model, good routing strategies exist for plane
graphs, such as the Delaunay triangulation and graphs
that satisfy both the ˛-diamond property and the d-good
polygon property. These strategies are competitive, in the
sense that the paths computed have lengths that are within
a constant factor of the Euclidean distance between the
source and destination. Moreover, these routing strategies
use only a limited amount of memory.

Open Problems

None of the results for Problems 1 and 2 that are men-
tioned in Sect. “Key Results” seem to be optimal. The fol-
lowing problems are open:

656 P Planarity Testing

1. Determine the smallest real number t, such that the De-
launay triangulation of any finite set of points in the
plane is a t-spanner. It is widely believed that t =
/2.
By Theorem 1, t � 4

p
3/9.

2. Determine the smallest real number t, such that a plane
t-spanner exists for any finite set of points in the plane.
By Theorem 2, t � 2. By taking S to be the set of four
vertices of a square, it follows that tmust be at least

p
2.

3. Determine the smallest integer D, such that the Delau-
nay triangulation of any finite set of points in the plane
contains a t-spanner (for some constant t) of maximum
degree at most D. By Theorem 4, D � 17. It follows
from results in Aronov et al. [1] that the value ofDmust
be at least 3.

4. Determine the smallest integer D, such that a plane t-
spanner (for some constant t) of maximum degree at
mostD exists for any finite set of points in the plane. By
Theorem 4 and results in [1], 3 � D � 17.

Cross References

� Applications of Geometric Spanner Networks
� Dilation of Geometric Networks
� Geometric Spanners
� Sparse Graph Spanners

Recommended Reading

1. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Ha-
verkort, H., Vigneron, A.: Sparse geometric graphs with small
dilation. In: Proceedings of the 16th International Symposium
on Algorithms and Computation. Lecture Notes in Computer
Science, vol. 3827, pp. 50–59. Springer, Berlin (2005)

2. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane span-
ners of bounded degree and low weight. Algorithmica 42,
249–264 (2005)

3. Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.:
Approximating geometric bottleneck shortest paths. Comput.
Geom.: Theory Appl. 29, 233–249 (2004)

4. Bose, P., Morin, P.: Competitive online routing in geometric
graphs. Theor. Comput. Sci. 324, 273–288 (2004)

5. Bose, P., Morin, P.: Online routing in triangulations. SIAM J.
Comput. 33, 937–951 (2004)

6. Bose, P., Smid,M., Xu, D.: Diamond triangulations contain span-
ners of bounded degree. In: Proceedings of the 17th Interna-
tional Symposium on Algorithms and Computation. Lecture
Notes in Computer Science, vol. 4288, pp. 173–182. Springer,
Berlin (2006)

7. Chew, L.P.: There is a planar graph almost as good as the com-
plete graph. In: Proceedings of the 2nd ACM Symposium on
Computational Geometry, pp. 169–177 (1986)

8. Chew, L.P.: There are planar graphs almost as good as the com-
plete graph. J. Comput. Syst. Sci. 39, 205–219 (1989)

9. Das, G., Joseph, D.:Which triangulations approximate the com-
plete graph? In: Proceedings of the International Symposium
on Optimal Algorithms. Lecture Notes in Computer Science,
vol. 401, pp. 168–192. Springer, Berlin (1989)

10. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are
almost as good as complete graphs. Discret. Comput. Geom. 5,
399–407 (1990)

11. Drysdale, R.L., McElfresh, S., Snoeyink, J.S.: On exclusion re-
gions for optimal triangulations. Discrete Appl. Math. 109,
49–65 (2001)

12. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate
the complete Euclidean graph. Discrete Comput. Geom. 7,
13–28 (1992)

13. Lee, A.W.: Diamonds are a plane graph’s best friend. Mas-
ter’s thesis, School of Computer Science, Carleton University,
Ottawa (2004)

14. Levcopoulos, C., Lingas, A.: There are planar graphs almost as
good as the complete graphs and almost as cheap as mini-
mum spanning trees. Algorithmica 8, 251–256 (1992)

15. Li, X.-Y., Wang, Y.: Efficient construction of low weighted
bounded degree planar spanner. Int. J. Comput. Geom. Appl.
14, 69–84 (2004)

16. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cam-
bridge University Press, Cambridge, UK (2007)

Planarity Testing
1976; Booth, Lueker

GLENCORA BORRADAILE
Department of Computer Science, Brown University,
Providence, RI, USA

Keywords and Synonyms

Planarity testing; Planar embedding

ProblemDefinition

The problem is to determine whether or not the input
graph G is planar. The definition pertinent to planarity-
testing algorithms is: G is planar if there is an embedding
of G into the plane (vertices of G are mapped to distinct
points and edges of G are mapped to curves between their
respective endpoints) such that edges do not cross. Algo-
rithms that test the planarity of a graph can be modified to
obtain such an embedding of the graph.

Key Results

Theorem 1 There is an algorithm that given a graph G
with n vertices, determines whether or not G is planar in
O(n) time.

The first linear-time algorithm was obtained by Hopcroft
and Tarjan [5] by analyzing an iterative version of a recur-
sive algorithm suggested by Auslander and Parter [1] and
corrected by Goldstein [4]. The algorithm is based on the
observation that a connected graph is planar if and only
if all its biconnected components are planar. The recur-
sive algorithm works with each biconnected component

Point Pattern Matching P 657

in turn: find a separating cycle C and partition the edges
of G not in C; define a component of the partition as con-
sisting of edges connected by a path in G that does not use
an edge of C; and, recursively consider each cyclic compo-
nent of the partition. If each component of the partition
is planar and the components can be combined with C to
give a planar graph, then G is planar.

Another method for determining planarity was sug-
gested by Lempel, Even, and Cederbaum [6]. The algo-
rithm starts with embedding a single vertex and the edges
adjacent to this vertex. It then considers a vertex adjacent
to one of these edges. For correctness, the vertices must be
considered in a particular order. This algorithm was first
implemented in O(n) time by Booth and Lueker [2] us-
ing an efficient implementation of the PQ-trees data struc-
ture. Simpler implementations of this algorithm have been
given by Boyer and Myrvold [3] and Shih and Hsu [8].

Tutte gave an algebraic method for giving a straight-
line embedding of a graph that, if the input graph is 3-
connected and planar, is guaranteed to generate a planar
embedding. The key idea is to fix the vertices of one face of
the graph to be the corners of a convex polygon and then
embed every other vertex as the geometric average of its
neighbors.

Applications

Planarity testing has applications to computer-aided cir-
cuit design and VLSI layout by determining whether
a given network can be realized in the plane.

URL to Code

LEDA has an efficient implementation of the Hopcroft
and Tarjan planarity testing algorithm [7]: http://www.
algorithmic-solutions.info/leda_guide/graph_algorithms/
planar_kuratowski.html

Cross References

� Fully Dynamic Planarity Testing

Recommended Reading
1. Auslander, L., Parter, S.V.: On imbedding graphs in the plane.

J. Math. and Mech. 10, pp. 517–523 (1961)
2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones prop-

erty, interval graphs, and graph planarity using PQ-tree algo-
rithms. J. Comp. Syst. Sci. 13, pp. 335–379 (1976)

3. Boyer, J., Myrvold, W.: Stop minding your P’s and Q’s: A simpli-
fied O(n) planar embedding algorithm. In: SODA ’99: Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms. Philadelphia, PA, USA, Society for Industrial and
Applied Mathematics, pp. 140–146 (1999)

4. Goldstein, A.J.: An efficient and constructive algorithm for test-
ing whether a graph can be embedded in the plane. In: Graph
and Combinatorics Conf. (1963)

5. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21,
pp. 549–568 (1974)

6. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity
testing of graphs. In: Rosentiehl, P. (ed.) Theory of Graphs:
International Symposium. New York, Gordon and Breach,
pp. 215–232 (1967)

7. Mehlhorn, K., Mutzel, P., Näher, S.: An implementation of the
hopcroft and tarjan planarity test. Tech. Rep. MPI-I-93-151,
Saarbrücken (1993)

8. Shih,W.-K., Hsu, W.-L.: A new planarity test. Theor. Comput. Sci.
223, pp. 179–191 (1999)

Point PatternMatching
2003; Ukkonen, Lemström, Mäkinen

VELI MÄKINEN, ESKO UKKONEN
Department of Computer Science, University of Helsinki,
Helsinki, Finland

Keywords and Synonyms

Point set matching; Geometric matching; Geometric
alignment; Largest common point set

ProblemDefinition

LetR denote the set of reals andRd the d-dimensional real
space. A finite subset of Rd is called a point set. The set of
all point sets (subsets of Rd) is denoted P(Rd).

Point pattern matching problems ask for finding sim-
ilarities between point sets under some transformations.
In the basic set–up a target point set T � Rd and a pat-
tern point set (point pattern) P � Rd are given, and the
problem is to locate a subset I of T (if it exists) such that P
matches I. Matching here means that P becomes exactly
or approximately equal to I when a transformation from
a given setF of transformations is applied on P.

Set F can be, for example, the set of all translations
(a constant vector added to each point in P), or all com-
positions of translations and rotations (after a translation,
each point is rotated with respect to a common origin;
this preserves the distances and is also called a rigid move-
ment), or all compositions of translations, rotations, and
scales (after translating and rotating, distances to the com-
mon origin are multiplied by a constant).

The problem variant with exact matching, called the
Exact Point Pattern Matching (EPPM) problem, requires
that f (P) = I for some f 2 F . In other words, the EPPM
problem is to decide whether or not there is an allowed
transformation f such that f (P) � T . For example, if F

http://www.algorithmic-solutions.info/leda_guide/graph_algorithms/planar_kuratowski.html
http://www.algorithmic-solutions.info/leda_guide/graph_algorithms/planar_kuratowski.html
http://www.algorithmic-solutions.info/leda_guide/graph_algorithms/planar_kuratowski.html

658 P Point Pattern Matching

is the set of translations, the problem is simply to decide
whether P + t � T for some t 2 Rd .

Approximate matching is a better model of many
situations that arise in practice. Then the quality of
the matching between f (P) and I is controlled using
a threshold parameter " � 0 and a distance function
ı : (P(Rd);P(Rd))! R for measuring distances between
point sets. Given " � 0, the Approximate Point Pattern
Matching (APPM) problem is to determine whether there
is a subset I � T and a transformation f 2 F such that
ı(f (P); I) � ".

The choice of the distance function ı is another source
of diversity in the problem statement. A variant requires
that there is a one-to-onemapping between f (P) and I, and
each point p of f (P) is "-close to its one-to-one counterpart
p* in I, that is, jp � p�j � ". A commonly studied relaxed
version uses matching under a many-to-one mapping: it
is only required that each point of f (P) has some point
of I that is "-close; this distance is also known as the di-
rected Hausdorff distance. Still more variants come from
the choice of the norm j � j to measure the distance between
points.

Another form of approximation is obtained by al-
lowing a minimum amount of unmatched points in P:
The Largest Common Point Set (LCP) problem asks for
the largest I � T such that I � f (P) for some f 2 F .
In the Largest Approximately Common Point Set (LACP)
problem each point p� 2 I must occur "-close to a point
p 2 f (P).

Finally, a problem closely related to point pattern
matching is to evaluate for point sets A and B their small-
est distance min f2F ı(f (A); B) under transformations F
or to test if this distance is � ". This problem is called the
distance evaluation problem.

Key Results

A folk theorem is a voting algorithm to solve EPPM un-
der translations in O(jPjjTj log(jTjjPj)) time: Collect all
translations mapping each point of P to each point of T,
sort the set, and report the translation getting most votes.
If some translation gets |P| votes, then a subset I such
f (P) = I is found. With some care in organizing the sort-
ing, one can achieve O(jPjjTj log jPj) time [13].

The voting algorithm also solves the LCP problem un-
der translations. A faster algorithm specific to EPPM is as
follows: Let p1; p2; � � � pm and t1; t2; � � � tn be the lists of
pattern and target points, respectively, lexicographicly or-
dered according to their d-dimensional coordinate values.
Consider the translation fi1 = ti1 � p1, for any 1 � i1 � n.
One can scan the target points in the lexicographic order

to find a point ti2 such that p2 + fi1 = ti2 . If such is found,
one can continue scanning from ti2+1 on to find ti3 such
that p3 + fi1 = ti3 . This process is continued until a trans-
lated point of P does not occur in T or until a translated
occurrence of the entire P is found. Careful implementa-
tion of this idea leads to the following result showing that
the time bound of the naive string matching algorithm is
possible also for the exact point pattern matching under
translations.

Theorem 1 (Ukkonen et al. 2003 [13]) The EPPM
problem under translations for point pattern P and tar-
get T can be solved in O(mn) time and O(n) space where
m = jPj � jTj = n.

Quadratic running times are probably the best one can
achieve for PPM algorithms:

Theorem 2 (Clifford et al. 2006 [10]) The LCP problem
under translations is 3SUM-hard.

This means that an o(jPjjTj) time algorithm for LCP
would yield an o(n2) algorithm for the 3SUM problem,
where jTj = n and jPj = 	(n). The 3SUM problem asks,
given n numbers, whether there are three numbers a, b,
and c among them such that a + b + c = 0; finding a sub-
quadratic algorithm for 3SUM would be a surprise [5]. For
a more in-depth combinatorial characterization of the ge-
ometric properties of the EPPM problem, see [7].

For the distance evaluation problems there are
plethora of results. An excellent survey of the key re-
sults until 1999 is by Alt and Guibas [2]. As an exam-
ple, consider in the 2-dimensional case how one can de-
cide in O(n log n) time whether there is a transformation
f composed of translation, rotation and scale, such that
f (A) = B, where A; B � R2 and n = jAj = jBj: The idea
is to convert A and B into an invariant form such that
one can easily check their congruence under the trans-
formations. First, scale is taken into account by scaling A
to have the same diameter as B (in O(n log n) time). If A
and B are congruent, then they must have the same cen-
troids (which can be computed O(n) time). Consider ro-
tating a line from the centroid and listing the angles and
distances to other points in the order they are met during
the rotation. Having done this (inO(n log n) time) on both
A and B, the lists of angles and distances should be cyclic
shifts of each other; the list LA of A occurs as a substring in
LBLB , where LB is the list of B. This latter step can be done
in O(n) time using any linear time exact string matching
algorithm. One obtains the following result.

Theorem 3 (Atkinson 1987 [4]) It is possible to decide in
O(n log n) time whether there is a transformation f com-

Point Pattern Matching P 659

posed of translation, rotation and scale, such that f (A) = B,
where A; B � R2 and jAj = jBj = n.

Approximate variant of the above problem is much
harder. Denote by f (A) =" B the directed approximate
congruence of point sets A and B, meaning that there is
a one-to-one mapping from f (A) to B such that for each
point in f (A) its image in B is "-close. The following result
demonstrates the added difficulty.

Theorem 4 (Alt et al. 1988 [3]) It is possible to decide
in O(n6) time whether there is a translation f such that
f (A) =" B, where A; B � R2 and jAj = jBj = n. The same
algorithm solves the corresponding LACP problem for point
pattern P and target T under the one-to-one matching con-
dition in O((mn)3) time, where m = jPj � jTj = n.

To get an idea of the techniques to achieve the O((mn)3)
time algorithm for LACP, consider first the one-dimen-
sional version, i. e. let P; T � R. Observe, that if there
is a translation f ’ such that f 0(P) =" T , then there is
a translation f such that f (P) =" T and a point p 2 P
that is mapped exactly at "-distance of a point t 2 T .
This lets one concentrate on these 2mn representative
translations. Consider these translations sorted from left
to right. Denote the left-most translation by f . Cre-
ate a bipartite graph, whose nodes are the points in
P and in T on the different parties. There is an edge be-
tween p 2 P and t 2 T if and only if f (p) is "-close to t.
Finding amaximummatching in this graph tells the size of
the largest approximately common point set after applying
the translation f . One can repeat this on each representa-
tive translation to find the overall largest common point
set. When the representative translations are considered
from left to right, the bipartite graph instances are such
that one can compute the maximummatchings greedily at
each translation in time O(|P|) [6]. Hence, the algorithm
solves the one-dimensional LACP problem under transla-
tions and one-to-one matching condition in time O(m2n),
where m = jPj � jTj = n.

In the two-dimensional case, the set of representa-
tive translations is more implicitly defined: In short, the
mapping of each point p 2 P "-close to each point t 2 T ,
gives mn circles. The boundary of each such circle is par-
titioned into intervals such that the end points of these in-
tervals can be chosen as representative translations. There
are O((mn)2) such representative translations. As in the
one-dimensional case, each representative translation de-
fines a bipartite graph. Once the representative transla-
tions along a circle are processed e. g. counterclockwise,
the bipartite graph changes only by one edge at a time. This
allows an O(mn) time update for the maximum match-

ing at each representative translation yielding an overall
O((mn)3) time algorithm [3].

More efficient algorithms for variants of this problem
have been developed by Efrat, Itai, and Katz [11], as by-
products of more efficient bipartite matching algorithms
for points on a plane. Their main result is the following:

Theorem 5 (Efrat et al. 2001 [11]) It is possible to decide
in O(n5 log n) time whether there is a translation f such
that f (A) =" B, where A; B � R2 and jAj = jBj = n.

The problem becomes somewhat easier when the one-to-
one matching condition is relaxed; one-to-one condition
seems to necessitate the use of bipartite matching in one
form or another. Without the condition, one can match
the points independently of each other. This gives many
tools to preprocess and manipulate the point sets during
the algorithm using dynamic geometric data structures.
Such techniques are exploited e. g. in the following result.

Theorem 6 (Chew and Kedem 1992 [8]) The LACP
problem under translations and using directed Hausdorff
distance and the L1 norm, can be solved in O(mn log n)
time, where P; T � R2 and m = jPj � jTj = n. The dis-
tance evaluation problem for directed Hausdorff distance
can be solved in O(n2 log2 n) time.

Most algorithms revisited here have relatively high run-
ning times. To obtain faster algorithms, it seems that ran-
domization and approximation techniques are necessary.
See [9] for a comprehensive summary of themain achieve-
ments in that line of development.

Finally, note that the linear transformations consid-
ered here are not always enough to model a real-world
problem – even when approximate congruence is al-
lowed. Sometimes the proper transformation between two
point sets (or between their subsets) is non-linear, without
an easily parametrizable representation. Unfortunately,
the formulations trying to capture such non-uniformness
have been proven NP-hard [1] or even NP-hard to approx-
imate within any constant factor [12].

Applications

Point patternmatching is a fundamental problem that nat-
urally arises in many application domains such as com-
puter vision, pattern recognition, image retrieval, music
information retrieval, bioinformatics, dendrochronology,
and many others.

Cross References

� Assignment Problem
�Multidimensional String Matching

660 P Position Auction

� Sequential Exact String Matching
� Stable Matching

Recommended Reading
1. Akutsu, T., Kanaya, K., Ohyama, A., Fujiyama, A.: Pointmatching

under non-uniform distortions. Discret. Appl. Math. 127, 5–21
(2003)

2. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, in-
terpolation, and approximation. In: Sack, J.R., Urrutia, J. (eds.)
Handbook of Computational Geometry, pp. 121–153. Elsevier
Science Publishers B.V. North-Holland, Amsterdam (1999)

3. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, sim-
ilarity and symmetries of geometric objects. Discret. Comput.
Geom. 3, 237–256 (1988)

4. Atkinson, M.D.: An optimal algorithm for geometric congru-
ence. J. Algorithms 8, 159–172 (1997)

5. Barequet, G., Har-Peled, S.: Polygon containment and trans-
lational min-hausdorff-distance between segment sets are
3SUM-hard. Int. J. Comput. Geom. Appl. 11(4), 465–474 (2001)

6. Böcker, S., Mäkinen, V.: Maximum line-pair stabbing problem
and its variations. In: Proc. 21st European Workshop on Com-
putational Geometry (EWCG’05), pp. 183–186. Technische Uni-
versität Eindhoven, The Netherlands (2005)

7. Brass, P., Pach, J.: Problems and results on geometric patterns.
In: Avis, D. et al. (eds.) Graph Theory and Combinatorial Opti-
mization, pp. 17–36. Springer Science + Business Media Inc.,
NY, USA (2005)

8. Chew, L.P., Kedem, K.: Improvements on geometric pattern
matching problems. In: Proc. Scandinavian Workshop Algo-
rithm Theory (SWAT). LNCS, vol. 621, pp. 318–325. Springer,
Berlin (1992)

9. Choi, V., Goyal, N.: An efficient approximation algorithm for
point pattern matching under noise. In: Proc. 7th Latin Ameri-
can Symposiumon Theoretical Informatics (LATIN 2006). LNCS,
vol. 3882, pp. 298–310. Springer, Berlin (2006)

10. Clifford, R., Christodoukalis, M., Crawford, T., Meredith, D., Wig-
gins, G.: A Fast, Randomised, Maximum Subset Matching Al-
gorithm for Document-Level Music Retrieval. In: Proc. Interna-
tional Conference onMusic Information Retrieval (ISMIR 2006),
University of Victoria, Canada (2006)

11. Efrat, A., Itai, A., Katz, M.: Geometry Helps in Bottleneck Match-
ing and Related Problems. Algorithmica 31(1), 1–28 (2001)

12. Mäkinen, V., Ukkonen, E.: Local Similarity Based Point-Pattern
Matching. In: Proc. 13th Annual Symposium on Combinatorial
Pattern Matching (CPM 2002). LNCS, vol. 2373, pp. 115–132.
Springer, Berlin (2002)

13. Ukkonen, E., Lemström, K., Mäkinen, V.: Sweepline the mu-
sic! In: Klein, R. Six, H.W., Wegner, L. (eds.) Computer Science
in Perspective, Essays Dedicated to Thomas Ottmann. LNCS,
vol. 2598, pp. 330–342. Springer (2003)

Position Auction
2005; Varian

ARIES WEI SUN
Department of Computer Science, City University of
Hong Kong, Hong Kong, China

Keywords and Synonyms

Adword auction

ProblemDefinition

This problem is concerned with the Nash equilibria of
a game based on the ad auction used by Google and Ya-
hoo. This research work [5] is motivated by the huge rev-
enue that the adword auction derives every year. It de-
fines two types of Nash equilibrium in the position auc-
tion game, applies economic analysis to the equilibria, and
provides some empirical evidence that the Nash equilib-
ria of the position auction describes the basic properties of
the prices observed in Google’s adword auction reasonably
accurately. The problem being studied is closely related to
the assignment game studied by [4,1,3]. And [2] has in-
dependently examined the problem and developed related
results.

The Model and its Notations

Consider the problem of assigning agents a = 1; 2; : : : ;A
to slots s = 1; 2; : : : ; S where agent a’s valuation for slot s
is given by uas = vaxs . The slots are numbered such that
x1 > x2 > : : : > xS . It is assumed that xS = 0 for all s > S
and the number of agents is greater than the number of
slots. A higher position receives more clicks, so xs can be
interpreted as the click-through rate for slot s. The value
va > 0 can be interpreted as the expected profit per click
so uas = vaxs indicates the expected profit to advertiser a
from appearing in slot s.

The slots are sold via an auction. Each agent bids
an amount ba , with the slot with the best click through
rate being assigned to the agent with the highest bid, the
second-best slot to the agent with the second highest bid,
and so on. Renumbering the agents if necessary, let vs be
the value per click of the agent assigned to slot s. The price
agent s faces is the bid of the agent immediately below him,
so pt = bt+1. Hence the net profit that agent a can expect to
make if he acquires slot s is

�
va � ps

�
xs = (va � bs+1) xs .

Definitions

Definition 1 A Nash equilibrium set of prices (NE) satis-
fies

�
vs � ps

�
xs �

�
vs � pt

�
xt; for t > s�

vs � ps
�
xs �

�
vs � pt�1

�
xt; for t < s

where pt = bt+1.

Predecessor Search P 661

Definition 2 A symmetric Nash equilibrium set of prices
(SNE) satisfies
�
vs � ps

�
xs �

�
vs � pt

�
xt for all t and s:

Equivalently,

vs (xs � xt) � ps xs � ptxt for all t and s:

Key Results

Facts of NE and SNE

Fact 1 (Non-negative surplus) In an SNE, vs � ps .
Fact 2 (Monotone values) In an SNE, vs�1 � vs , for all s.
Fact 3 (Monotone prices) In an SNE, ps�1xs�1 > ps xs

and ps�1 � ps for all s. If vs > ps then ps�1 > ps .
Fact 4 (NE � SNE) If a set of prices is an SNE then it is

an NE.
Fact 5 (One-step solution) If a set of bids satisfies the

symmetric Nash equilibria inequalities for s + 1 and
s � 1, then it satisfies these inequalities for all s.

Fact 6 The maximum revenue NE yields the same rev-
enue as the upper recursive solution to the SNE.

A Sufficient and Necessary Condition
of the Existence of a Pure Strategy Nash Equilibrium
in the Position Auction Game

Theorem 1 In the position auction described before, a pure
strategy Nash equilibrium exists if and only if all the inter-
vals
�
ps xs � ps+1xs+1

xs � xs+1
;
ps�1xs�1 � psxs

xs�1 � xs

�
; for s = 2; 3; : : : ; S

are non-empty.

Applications

The model studied in this paper is a simple and elegant
abstraction of the real adword auctions used by search en-
gines such as Google and Yahoo. Different search engines
have slightly different rules. For example, Yahoo ranks the
advertisers according to their bids, while Google ranks the
advertisers not only according to their bids but also ac-
cording to the likelihood of their links being clicked.

However, similar analysis can be applied to real world
situations, as the author has demonstrated above for the
Google adword auction case.

Cross References

� Adwords Pricing

Recommended Reading
1. Demange, G., Gale, D., Sotomayor, M.: Multi-item auctions.

J. Polit. Econ. 94(4), 863–72 (1986)
2. Edelman, B., Ostrovsky, M., Schwartz, M.: Internet advertising

and the generalized second price auction. NBER Working Pa-
per, 11765, November 2005

3. Roth, A., Sotomayor, M.: Two-Sided Matching. Cambridge Uni-
versity Press, Cambridge (1990)

4. Shapely, L., Shubik, M.: The Assignment Game I: the core. Int.
J. Game Theor. 1, 111–130 (1972)

5. Varian, H.R.: Position auctions. Int. J. Ind. Organ. 25(6), 1163–
1178 (2007)

Predecessor Search
2006; Pătraşcu, Thorup

MIHAI PĂTRAŞCU
CSAIL, MIT, Cambridge, MA, USA

Keywords and Synonyms

Predecessor problem Successor problem IP lookup

ProblemDefinition

Consider an ordered universe U, and a set T � U with
jTj = n. The goal is to preprocess T, such that the fol-
lowing query can be answered efficiently: given x 2 U , re-
port the predecessor of x, i. e. maxfy 2 T j y < xg. One
can also consider the dynamic problem, where elements
are inserted and deleted into T. Let tq be the query time,
and tu the update time.

This is a fundamental search problem, with an impres-
sive number of applications. Later, this entry discusses IP
lookup (forwarding packets on the Internet), orthogonal
range queries and persistent data structures as examples.

The problem was considered in many computational
models. In fact, most models below were initially defined
to study the predecessor problem.

Comparison model: The problem can be solved through
binary search in 	(lg n) comparisons. There is a lot of
work on adaptive bounds, which may be sublogarith-
mic. Such bounds may depend on the finger distance,
the working set, entropy etc.

Binary search trees: Predecessor search is one of the fun-
damental motivations for binary search trees. In this
restrictive model, one can hope for an instance opti-
mal (competitive) algorithm. Attempts to achieve this
are described in a separate entry.1

1O(log log n)-competitive Binary Search Trees (2004; Demaine,
Harmon, Iacono, Pătraşcu)

662 P Predecessor Search

Word RAM: Memory is organized as words of b bits, and
can be accessed through indirection. Constant-time
operations include the standard operations in a lan-
guage such as C (addition, multiplication, shifts and
bitwise operations).
It is standard to assume the universe is U = f1; : : : ;
2`g, i. e. one deals with `-bit integers. The floating
point representation was designed so that order is pre-
served when values are interpreted as integers, so any
algorithm will also work for `-bit floating point num-
bers.
The standard transdichotomous assumption is that
b = `, so that an input integer is represented in a word.
This implies b � lg n.

Cell-probe model: This is a nonuniform model stronger
than the word RAM, in which the operations are ar-
bitrary functions on the memory words (cells) which
have already been probed. Thus, tq only counts the
number of cell probes. This is an ideal model for lower
bounds, since it does not depend on the operations im-
plemented by a particular computer.

Communication games: Let Alice have the query x, and
Bob have the set T. They are trying to find the prede-
cessor of x through � rounds of communication, where
in each roundAlice sendsmA bits, and Bob replies with
mB bits.
This can simulate the cell-probe model when mB = b
and mA is the logarithm of the memory size. Then
� � tq and one can use communication complexity to
obtain cell-probe lower bounds.

External memory: The unit of access is a page, contain-
ing B words of ` bits each. B-trees solve the problem
with query and update time O(logB n), and one can
also achieve this oblivious to the value of B.2 The cell-
probe model with b = B � ` is stronger than this model.

AC0 RAM: This is a variant of the word RAM in which
allowable operations are functions that have constant
depth, unbounded fan-in circuits. This excludes mul-
tiplication from the standard set of operations.

RAMBO: this is a variant of the RAMwith a nonstandard
memory, where words of memory can overlap in their
bits. In the static case this is essentially equivalent to
a normal RAM. However, in the dynamic case updates
can be faster due to the word overlap [5].

The worst-case logarithmic bound for comparison
search is not particularly informative when efficiency re-
ally matters. In practice, B-trees and variants are standard
when dealing with huge data sets. Solutions based on RAM

2See Cache-oblivious B-tree (2005; Bender, Demaine, Farach-
Colton).

tricks are essential when the data set is not too large, but
a fast query time is crucial, such as in software solutions to
IP lookup [7].

Key Results

Building on a long line of research, Pătraşcu and Tho-
rup [15,16] finally obtained matching upper and lower
bounds for the static problem in the word RAM, cell-
probe, external memory and communication game mod-
els.

Let S be the number of words of space available. (In
external memory, this is equivalent to S/B pages.) De-
fine a = lg S � `/n. Also define lg x = dlog2(x + 2)e, so that
lg x � 1 even if x 2 [0; 1]. Then the optimal search time is,
up to constant factors:

min

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

logb n = 	(minflogB n; log` ng)

lg `�lg na

lg `a
lg
�

a
lg n �lg

`
a

�

lg `a

lg

lg `a
lg lg n

a

!

(1)

The bound is achieved by a deterministic query al-
gorithm. For any space S, the data structure can be con-
structed in time O(S) by a randomized algorithm, starting
with the setT given in sorted order. Updates are supported
in expected time tq + O(S/n). Thus, besides locating the
element through one predecessor query, updates change
a minimal fraction of the data structure.

Lower bounds hold in the powerful cell-probe model,
and hold even for randomized algorithms. When S �
n1+", the optimal trade-off for communication games co-
incides to (1). Note that the case S = n1+o(1) essentially
disappears in the reduction to communication complex-
ity, because Alice’s messages only depends on lg S. Thus,
there is no asymptotic difference between S = O(n) and,
say, S = O(n2).

Upper Bounds

The following algorithmic techniques give the optimal re-
sult:
� B-trees give O(logB n) query time with linear space.
� Fusion trees, by Fredman and Willard [10], achieve

a query time of O(logb n). The basis of this is a fu-
sion node, a structure which can search among b" val-
ues in constant time. This is done by recognizing that

Predecessor Search P 663

only a few bits of each value are essential, and pack-
ing the relevant information about all values in a single
word.

� Van Emde Boas search [18] can solve the problem in
O(lg `) time by binary searching for the length of the
longest common prefix between the query and a value
in T. Beginning the search with a table lookup based
on the first lg n bits, and ending when there is enough
space to store all answers, the query time is reduced to
O(lg((` � lg n)/a)).

� A technique by Beame and Fich [4] can perform a mul-
tiway search for the longest common prefix, by main-
taining a careful balance between ` and n. This is rele-
vant when the space is at least n1+", and gives the third
branch of (1). Pătraşcu and Thorup [15] show how
related ideas can be implemented with smaller space,
yielding the last branch of (1).
Observe that external memory only features in the op-

timal trade-off through the O(logB n) term coming from
B-trees. Thus, it is optimal to either use the standard,
comparison-based B-trees, or use the best word RAM
strategy which completely ignores external memory.

Lower Bounds

All lower bounds before [15] where shown in the commu-
nication game model. Ajtai [1] was the first to prove a su-
perconstant lower bound. His results, with a correction by
Miltersen [12], show that for polynomial space, there ex-
ists n as a function of ` making the query time ˝(

p
lg `),

and likewise there exists ` a function of nmaking the query
complexity˝(3

p
lg n).

Miltersen et al [13] revisited Ajtai’s proof, extending
it to randomized algorithms. More importantly, they cap-
tured the essence of the proof in an independent round
elimination lemma, which is an important tool for proving
lower bounds in asymmetric communication.

Beame and Fich [4] improved Ajtai’s lower bounds to
˝(lg `/lg lg `) and ˝(

p
lg n/lg lg n) respectively. Sen and

Venkatesh [17] later gave an improved round elimination
lemma, which can reprove these lower bounds, but also for
randomized algorithms.

Finally, using the message compression lemma of [6]
(an alternative to round elimination), Pătraşcu and Tho-
rup [15] showed an optimal trade-off for communication
games. This is also an optimal lower bound in the other
models when S � n1+", but not for smaller space.

More importantly, [15] developed the first tools for
proving lower bounds exceeding communication com-
plexity, when S = n1+o(1). This showed the first separa-
tion ever between a data structure or polynomial size, and

one of near linear size. This is fundamentally impossible
through a direct communication lower bound, since the
reduction to communication games only depends on lg S.

The full result of Pătraşcu and Thorup [15] it the trade-
off (1). Initially, this was shown only for deterministic
query algorithms, but eventually it was extended to a ran-
domized lower bound as well [16]. Among the surprising
consequences of this result was that the classic van Emde
Boas search is optimal for near-linear space (and thus for
dynamic data structures), whereas with quadratic space it
can be beaten by the technique of Beame and Fich.

A key technical idea of [15] is to analyze many queries
simultaneously. Then, one considers a communication
game involving all queries, and proves a direct-sum ver-
sion of the round elimination lemma. Arguably, the proof
is even simpler than for the regular round elimination
lemma. This is achieved by considering a stronger model
for the inductive analysis, in which the algorithm is al-
lowed to reject a large fraction of the queries before start-
ing to make probes.

Bucketing

The rich recursive structure of the problem can not only
be used for fast queries, but also to optimize the space and
update time – of course, within the limits of (1). The idea
is to place ranges of consecutive values in buckets, and in-
clude a single representative of each bucket in the prede-
cessor structure. After performing a query on the prede-
cessor structure (now with fewer elements), one need only
search within the relevant bucket.

Because buckets of size wO(1) can be handled in con-
stant time by fusion trees, it follows that factors of w in
space are irrelevant. A more extreme application of the
idea is given by exponential trees [3]. Here buckets have
size 	(n1��), where � is a sufficiently small constant.
Buckets are handled recursively in the same way, lead-
ing to O(lg lg n) levels. If the initial query time is at least
tq � lg" n, the query times at each level decrease geometri-
cally, so overall time only grows by a constant factor. How-
ever, any polynomial space is reduced to linear, for an ap-
propriate choice of � . Also, the exponential tree can be up-
dated in O(tq) time, even if the original data structure was
static.

Applications

Perhaps the most important application of predecessor
search is IP lookup. This is the problem solved by routers
for each packet on the Internet, when deciding which sub-
network to forward the packet to. Thus, it is probably the
most run algorithmic problem in the world. Formally, this

664 P Predecessor Search

is an interval stabbing query, which is equivalent to pre-
decessor search in the static case [9]. As this is a prob-
lem where efficiency really matters, it is important to note
that the fastest deployed software solutions [7] use inte-
ger search strategies (not comparison-based), as theoreti-
cal results would predict.

In addition, predecessor search is used pervasively in
data structures, when reducing problems to rank space.
Given a set T, one often wants to relabel it to the simpler
f1; : : : ; ng (“rank space”), while maintaining order rela-
tions. If one is presented with new values dynamically, the
need for a predecessor query arises. Here are a couple of
illustrative examples:
� In orthogonal range queries, one maintains a set of

points in Ud, and queries for points in some rectan-
gle [a1; b1] � � � � � [ad ; bd]. Though bounds typically
grow exponentially with the dimension, the depen-
dence on the universe can be factored out. At query
time, one first runs 2d predecessor queries transform-
ing the universe to f1; : : : ; ngd .

� To make pointer data structures persistent [8], an out-
going link is replaced by a vector of pointers, each valid
for some period of time. Deciding which link to follow
(given the time being queried) is a predecessor prob-
lem.
Finally, it is interesting to note that the lower bounds

for predecessor hold, by reductions, for all applications
described above. To make these reductions possible, the
lower bounds are in fact shown for the weaker colored pre-
decessor problem. In this problem, the values in T are col-
ored red or blue, and the query only needs to find the color
of the predecessor.

Open Problems

It is known [2] how to implement fusion trees withAC0 in-
structions, but not the other query strategies. What is the
best query trade-off achievable on the AC0 RAM? In par-
ticular, can van Emde Boas search be implemented with
AC0 instructions?

For the dynamic problem, can the update times be
made deterministic? In particular, can van Emde Boas
search be implemented with fast deterministic updates?
This is a very appealing problem, with applications to de-
terministic dictionaries [14]. Also, can fusion nodes be up-
dated deterministically in constant time? Atomic heaps
[11] achieve this when searching only among (lg n)" ele-
ments, not b".

Finally, does an update to the predecessor structure re-
quire a query? In other words, can tu = o(tq) be obtained,
while still maintaining efficient query times?

Cross References

� Cache-Oblivious B-Tree
� O(log log n)-competitive Binary Search Tree

Recommended Reading

1. Ajtai, M.: A lower bound for finding predecessors in Yao’s cell
probe model. Combinatorica 8(3), 235–247 (1988)

2. Andersson, A., Miltersen, P.B., Thorup, M.: Fusion trees can be
implemented with AC0 instructions only. Theor. Comput. Sci.
215(1–2), 337–344 (1999)

3. Andersson, A., Thorup, M.: Dynamic ordered sets with expo-
nential search trees. CoRR cs.DS/0210006. See also FOCS’96,
STOC’00, 2002

4. Beame, P., Fich, F.E.: Optimal bounds for the predecessor prob-
lem and related problems. J. Comput. Syst. Sci. 65(1), 38–72
(2002). See also STOC’99

5. Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.:
Worst case constant time priority queue. J. Syst. Softw. 78(3),
249–256 (2005). See also SODA’01

6. Chakrabarti, A., Regev, O.: An optimal randomised cell probe
lower bound for approximate nearest neighbour searching. In:
Proc. 45th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 2004, pp. 473–482

7. Degermark, M., Brodnik, A., Carlsson, S., Pink, S.: Small forward-
ing tables for fast routing lookups. In: Proc. ACM SIGCOMM,
1997, pp. 3–14

8. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data
structures persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989).
See also STOC’86

9. Feldmann, A., Muthukrishnan, S.: Tradeoffs for packet classifi-
cation. In: Proc. IEEE INFOCOM, 2000, pp. 1193–1202

10. Fredman, M.L., Willard, D.E.: Surpassing the information theo-
retic bound with fusion trees. J. Comput. Syst. Sci. 47(3), 424–
436 (1993). See also STOC’90

11. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. J. Comput. Syst.
Sci. 48(3), 533–551 (1994). See also FOCS’90

12. Miltersen, P.B.: Lower bounds for Union-Split-Find related
problems on random access machines. In: 26th ACM Sympo-
sium on Theory of Computing (STOC), 1994, pp. 625–634

13. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data struc-
tures and asymmetric communication complexity. J. Comput.
Syst. Sci. 57(1), 37–49 (1998). See also STOC’95

14. Pagh, R.: A trade-off for worst-case efficient dictionaries. Nord.
J. Comput. 7, 151–163 (2000). See also SWAT’00

15. Pătraşcu,M., Thorup,M.: Time-space trade-offs for predecessor
search. In: Proc. 38th ACM Symposium on Theory of Comput-
ing (STOC), 2006, pp. 232–240

16. Pătraşcu, M., Thorup, M.: Randomization does not help search-
ing predecessors. In: Proc. 18th ACM/SIAM Symposium on Dis-
crete Algorithms (SODA), 2007

17. Sen, P., Venkatesh, S.: Lower bounds for predecessor search-
ing in the cell probe model. arXiv:cs.CC/0309033. See also
ICALP’01, CCC’03, 2003

18. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and imple-
mentation of an efficient priority queue. Math. Syst. Theor.
10, 99–127 (1977). Announced by van Emde Boas alone at
FOCS’75

Price of Anarchy P 665

Price of Anarchy
2005; Koutsoupias

GEORGE CHRISTODOULOU
Max-Planck-Institute for Computer Science,
Saarbruecken, Germany

Keywords and Synonyms

Coordination ratio

ProblemDefinition

The Price of Anarchy, captures the lack of coordination in
systems where users are selfish andmay have conflicted in-
terests. It was first proposed by Koutsoupias and Papadim-
itriou in [9], where the term coordination ratio was used
instead, but later Papadimitriou in [12] coined the term
Price of Anarchy, that finally prevailed in the literature.

Roughly, the Price of Anarchy is the system cost
(e. g. makespan, average latency) of the worst-case Nash
Equilibrium over the optimal system cost, that would be
achieved if the players were forced to coordinate. Although
it was originally defined in order to analyze a simple load-
balancing game, it was soon applied to numerous variants
and to more general games. The family of (weighted) con-
gestion games [11,13] is a nice abstract form to describe
most of the alternative settings.

The Price of Anarchy may vary, depending on the
� equilibirium solution concept (e. g. pure, mixed, corre-

lated equilibria)
� characteristics of the congestion game
� Players Set (e. g. atomic – non atomic)
� Strategy Set (e. g. symmetric-asymmetric, parallel

machines-network-general)
� Utility (e. g. linear, polynomial)

� social cost (e. g. maximum, sum, total latency).

Notations

Let G be a (finite) game, that is determined by the triple
(N; (Si)i2N ; (ci)i2N). N = f1; : : : ; ng is the set of the play-
ers, that participate in the game. Si is a pure strategy set for
player i. An element Ai 2 Si is a pure strategy for player
i 2 N. A pure strategy profile A = (A1; : : : ;An) is a vector
of pure strategies, one for each player. The set of all possi-
ble pure strategy profiles is denoted by S = S1 � : : : � Sn .
The cost of a player i 2 N , for a pure strategy, is deter-
mined by a cost function ci : S 7! R.

A pure strategy profile A is a pure Nash equilibrium, if
none of the players i 2 N can benefit, by unilaterally devi-

ating to another pure strategy si 2 Si :

ci (A) � ci (A�i ; si) 8i 2 N; 8si 2 Si ;

where (A�i,si) is the simple strategy profile that results
when just the player i deviates from strategy Ai 2 Si to
strategy si 2 Si .

A mixed strategy pi for a player i 2 N , is a probability
distribution over her pure strategy set Si . A mixed strat-
egy profile p is the tuple p = (p1; : : : pn), where player i
chooses mixed strategy pi. The expected cost of a player
i 2 N with respect to the p, is

ci (p) =
X
A2S

p(A)ci (A) ;

where p(A) =
Q

i2N pi (Ai) is the probability that pure
strategy A occurs, with respect to (pi)i2N . A mixed strat-
egy profile p is a Nash Equilibrium, if and only if

ci (p) � ci (p�i ; si) 8i 2 N; 8si 2 Si :

The social cost of a pure strategy profile A, denoted
by SC(A), is the maximum cost of a player MAX(A)
= maxi2N ci (A) or the average cost of a player. For sim-
plicity, the sum of the players cost is considered (that is n
times the average cost) SUM(A) =

P
i2N ci (A). The same

definitions extend naturally for the case of mixed strate-
gies, but with expected costs in this case.

The (mixed) Price of Anarchy [9] for a game, is the
worst-case ratio, among all the (mixed) Nash Equilibria, of
the social cost over the optimal cost, OPT = minP2S SC(P).

PA = max
p is N.E.

SC(p)
OPT

:

The Price of Anarchy for a class of games, is the maximum
(supremum) price of anarchy among all the games of this
class.

Congestion Games Here, a general class of games is
described, that contains most of the games for which
Price of Anarchy is studied in the literature. A conges-
tion game [11,13], is defined by the tuple (N; E; (Si)i2N ;
(fe)e2E), where N = f1; : : : ; ng is a set of players, E is a set
of facilities, Si
 2E is the pure strategy set for player i;
a pure strategy Ai 2 Si is a subset of the facility set, and
f e is a cost (or latency) function1 with respect to the facility
e 2 E.

1Unless otherwise stated, linear cost functions are considered
throughout this article. For additional results on more general cost
functions see entries� Best Response Algorithms for Selfish Routing,
� Computing Pure Equilibria in the Game of Parallel Links, � Price
of Anarchy for Routing on Parallel Links

666 P Price of Anarchy

A pure strategy profile A = (A1; : : : ;An) is a vector of
pure strategies, one for each player. The cost ci(A) of player
i for the pure strategy profile A is given by

ci (A) =
X
e2Ai

fe(ne (A)) ;

where ne(A) is the number of the players that use facility
e in A.

In general games, a pure Nash equilibrium may not
exist. Rosenthal [13] showed that every congestion game
possess at least a pure Nash equilibrium. In particular he
defined a potential function over the strategy space

˚(A) =
X
e2E

ne (A)X
i=1

fe(i) :

He proved that every local optimum of this potential func-
tion is a pure Nash Equilibrium.

˚(A) � ˚(A�i ; si); 8i 2 N; si 2 Si :

A congestion game is called symmetric or single-
commodity, if all the players have the same strategy set:
Si = C. The term asymmetric or multi-commodity is used,
to refer to all the games including the symmetric ones.

A special class of congestion games is the class of net-
work congestion games. In this games, the facilities are
edges of a (multi)graph G(V ,E). The pure strategy set for
a player i 2 N is the simple paths set from a source si 2 V
to a destination ti 2 V . In network symmetric congestion
games, all the players have the same source and destina-
tion.

A natural generalization of congestion games are the
weighted congestion games, where every player controls an
amount of traffic wi. The cost of each facility e 2 E de-
pends on the total load � e(A) of the facility. In this case,
an additional social cost function makes sense, i. e. total
latency. For a pure strategy profile A 2 S, the total latency
is defined as a weighted sum

C(A) =
X
e2E

�e(A) � fe(�e (A)) :

Notice that the sum and the total latency coincide for the
case of unweighted congestion games.

In a congestion game with splittable weights (divisi-
ble demands), every player i 2 N, instead of fixing a sin-
gle pure strategy, she is allowed to distribute her demand
among her pure strategy set.

In a non-atomic congestion game, there are k different
player types 1 : : : k. Players are infinitesimal and for each

player type i the continuum of the players is denoted by the
interval [0; ni]. In general, each player type contributes in
a different way to the congestion on the facility e 2 E, and
this contribution is determined by a positive rate of con-
sumption rs, e for a strategy s 2 Si and a facility e 2 s. Each
player chooses a strategy that results in a strategy distribu-
tion x = (xs)s2S, with

P
s2Si xs = ni .

Key Results

Maximum Social Cost

Here, it is considered the price of anarchy in the case where
the social cost is the maximum cost among the players.
Formally, for a pure strategy profile A, the social cost is

SC(A) = MAX(A) = max
i2N

ci (A) :

The definition naturally extends to mixed strategies.

Theorem 1 ([7,8,9,10]) The price of anarchy for m iden-
tical machines is	(logm/log logm).

Theorem2 ([7]) The price of anarchy for mmachineswith
speeds s1 � s2 � : : : � sm is

	

0
@min

8
<
:

logm
log log logm

;
logm

log
�

logm
log(s1/sm)

�
9
=
;

1
A :

Theorem 3 ([3]) The price of anarchy for m identical ma-
chines, in the asymmetric case is 	(logm/log logm) for
pure equilibria and	(logm/log log logm) for mixed equi-
libria.

Theorem 4 ([5]) The price of anarchy for pure equilib-
ria is	(

p
n) for asymmetric but at most 5/2 for symmetric

congestion games.

Theorem 5 ([5]) The price of anarchy for pure equilibria is
at least˝(np/(p+1)) and atmost O(n) for asymmetric, but at
most 5/2 for symmetric congestion games with polynomial
latencies.

Average Social Cost – Total Latency

Here, it is considered as social cost the sum of the players
cost (divided by the number of the players)

SC(A) = SUM(A) =
X
i2N

ci(A)

or the weighted sum of the players costs (total latency) for
weighted games

SC(A) = C(A) =
X
i2N

wi ci (A) :

Price of Anarchy for Machines Models P 667

The definition naturally extends for mixed strategies.

Theorem 6 ([2,4,5]) The price of anarchy is 5/2 for
asymmetric and (5n � 2)/(2n + 1) for symmetric conges-
tion games.

Theorem 7 ([2,4]) The Price of Anarchy for weighted con-
gestion games is 1 + � 	 2:618.

Theorem 8 ([6]) The Price of Anarchy is at most 3/2 for
congestion games with splittable weights.

Theorem 9 ([14,15]) The Price of Anarchy for non-atomic
congestion games is 4/3.

Theorem 10 ([1,2,4]) The Price of Anarchy for (weighted)
congestion games is d�(p) for polynomial latencies.

Applications

The efficiency of large scale networks, in which selfish
users interact, is highly affected due to the users’ selfish
behavior. The Price of Anarchy is a quantitative measure
of the lack of coordination in such systems. It is a useful
theoretical tool for the analysis and design of telecommu-
nication and traffic networks, where selfish users compete
on system’s resources motivated by their atomic interests
and are indifferent to the social welfare.

Cross References

� Best Response Algorithms for Selfish Routing
� Computing Pure Equilibria in the Game of Parallel

Links
� Price of Anarchy for Machines Models

Recommended Reading

1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann,
F.: Exact price of anarchy for polynomial congestion games. In:
23rd Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pp. 218–229. Springer, Marseille (2006)

2. Awerbuch, B., Azar, Y., Epstein A.: Large the price of routing un-
splittable flow. In: Proc. of the 37th Annual ACM Symposium
on Theory of Computing (STOC), pp. 57–66. ACM, Baltimore
(2005)

3. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-
case equilibria. In: Approximation and Online Algorithms,
1st International Workshop (WAOA), pp. 41–52. Springer, Bu-
dapest (2003)

4. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and
stability of correlated equilibria of linear congestion games.
In: Algorithms – ESA 2005, 13th Annual European Symposium,
pp. 59–70. Springer, Palma de Mallorca (2005)

5. Christodoulou, G., Koutsoupias, E.: The price of anarchy of fi-
nite congestion games. In: Proc. of the 37th Annual ACM Sym-

posium on Theory of Computing (STOC), pp. 67–73. ACM, Bal-
timore (2005)

6. Cominetti, R., Correa, J.R., Moses, N.E.S.: Network games with
atomic players. In: Automata, Languages and Programming,
33rd International Colloquium (ICALP), pp. 525–536. Springer,
Venice (2006)

7. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilib-
ria. In: Proc. of the 13th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 413–420. ACM/SIAM, San Fran-
sisco (2002)

8. Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: Approximate
equilibria and ball fusion. Theor. Comput. Syst. 36, 683–693
(2003)

9. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In:
Proc. of the 16th Annual Symposium on Theoretical Aspects
of Computer Science (STACS), pp. 404–413. Springer, Trier
(1999)

10. Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In:
Proc. on 33rd Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 510–519. ACM, Heraklion (2001)

11. Monderer, D., Shapley, L.: Potential games. Games Econ. Behav.
14, 124–143 (1996)

12. Papadimitriou, C.H.: Algorithms, games, and the internet. In:
Proc. on 33rd Annual ACM Symposium on Theory of Comput-
ing (STOC), pp. 749–753. ACM, Heraklion (2001)

13. Rosenthal, R.W.: A class of games possessing pure-strategy
Nash equilibria. Int. J. Game Theor. 2, 65–67 (1973)

14. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM
49, 236–259 (2002)

15. Roughgarden, T., Tardos, E.: Bounding the inefficiency of equi-
libria in nonatomic congestion games. Games Econ. Behav. 47,
389–403 (2004)

Price of Anarchy for MachinesModels
2002; Czumaj, Vöcking

ARTUR CZUMAJ1, BERTHOLD VÖCKING2

1 DIMAP and Computer Science, University of Warwick,
Coventry, UK

2 Department of Computer Science, RWTH Aachen
University, Aachen, Germany

Keywords and Synonyms

Worst-case coordination ratio; Selfish routing

ProblemDefinition

Notations

This entry considers a selfish routing model formally
introduced by Koutsoupias and Papadimitriou [11], in
which the goal is to route the traffic on parallel links with
linear latency functions. One can describe this model as
a scheduling problem with m independent machines with

668 P Price of Anarchy for Machines Models

speeds s1; : : : ; sm and n independent tasks with weights
w1; : : : ;wn . The goal is to allocate the tasks to the ma-
chines to minimize the maximum load of the links in the
system.

It is assumed that all tasks are assigned by non-co-
operative agents. The set of pure strategies for task i is the
set f1; : : : ;mg and amixed strategy is a distribution on this
set.

Given a combination (j1; : : : ; jn) 2 f1; : : : ;mgn of
pure strategies, one for each task, the cost for task i
is
P

jk= j i
wk
s j i

, which is the time needed for machine ji
chosen by task i to complete all tasks allocated to that
machine. Similarly, for a combination of pure strategies
(j1; : : : ; jn) 2 f1; : : : ;mgn , the load of machine j is defined
as
P

jk= j
wk
s j .

Given n tasks of length w1; : : : ;wn and m machines
with the speeds s1; : : : ; sm , let opt denote the social opti-
mum, that is, the minimum cost over all combinations of
pure strategies:

opt = min
(j1;:::; jn)2f1;:::;mgn

max
1� j�m

X
i : j i= j

wi

s j
:

For example, if all machines have the same unit speed
(s j = 1 for every j, 1 � j � m) and all tasks have the same
unit weight (wi = 1 for every i, 1 � i � n), then the social
optimum is d nm e.

It is also easy to see that in any system

opt �
maxi wi

max j s j
:

It is known that computing the social optimum is NP-
hard even for identical speeds (see [11]).

For mixed strategies, let pij denote the probability that
an agent i sends the entire traffic wi to a machine j. Let ` j
denote the expected load on a machine j, that is,

` j =
1
s j
�

nX
i=1

wi p
j
i :

For a task i, the expected cost of task i on machine j is
equal to

c ji =
wi

s j
+
X
t¤i

wt p
j
t

s j
= ` j + (1 � pji)

wi

s j
:

The expected cost c ji corresponds to the expected finish
time of task i on machine j under the processor sharing
scheduling policy. This is an appropriate cost model with
respect to the underlying traffic routing application.

Definition 1 (Nash equilibrium) The probabilities
(pji)1�i�n;1� j�m define a Nash equilibrium if and only if
any task i will assign non-zero probabilities only to ma-
chines that minimize c ji , that is, p

j
i > 0 implies c ji � cqi ,

for every q, 1 � q � m.

As an example, in the system considered above in which all
machines have the same unit speed and all weights are the
same, the uniform probabilities pji =

1
m for all 1 � j � m

and 1 � i � n define a system in a Nash equilibrium.
The existence of a Nash equilibrium over mixed strate-

gies for non-cooperative games was shown by Nash [13].
In fact, the routing game considered here admits an equi-
librium even if all players are restricted to pure strategies,
what has been shown by Fotakis et al. [7].

Fix an arbitrary Nash equilibrium, that is, fix the prob-
abilities (pji)1�i�n;1� j�m that define a Nash equilibrium.
Consider the randomized allocation strategies in which
each task i is allocated to a single machine chosen indepen-
dently at random according to the probabilities pij, that is,
task i is allocated to machine j with probability pij. Let Cj,
1 � j � m, be the random variable indicating the load of
machine j in our random experiment. Observe that Cj is
the weighted sum of independent 0–1 random variables
J ji , Pr[J

j
i = 1] = pji , such that

Cj =
1
s j

nX
i=1

wi � J
j
i :

Let c denote the maximum expected load over all ma-
chines, that is,

c = max
1� j�m

` j :

Notice that E[Cj] = ` j , and therefore c = max1� j�m
E[Cj].

Finally, let the social cost C be defined as the expected
maximum load (instead of maximum expected load),
that is,

C = E[max
1� j�m

Cj] :

Observe that c � C and possibly c� C. The goal is
to estimate the price of anarchy (also called the worst-case
coordination ratio) which is the worst-case ratio

R = max
C

opt
;

where the maximum is over all Nash equilibria.

Price of Anarchy for Machines Models P 669

Key Results

EarlyWork

The study of the price of anarchy has been initiated by
Koutsoupias and Papadimitriou [11], who showed also
some very basic results for this model. For example, they
proved that for two identical machines the price of an-
archy is exactly 3

2 , and for two machines (with pos-
sibly different speeds) the price of anarchy is at least
� = (1 +

p
5)/2. Koutsoupias and Papadimitriou showed

also that for m identical machines the price of anarchy
is ˝(logm/(log logm)) and it is at most O(

p
m lnm),

and for m arbitrary machines the price of anarchy is
O(
q
s1/sm

Pm
j=1 s j/sm

p
logm), where s1 � s2 � � � � �

sm [11].
Koutsoupias and Papadimitriou [11] conjectured also

that the price of anarchy for m identical machines is
	(logm/(log logm)). In the quest to resolve this conjec-
ture, Mavronicolas and Spirakis [12] considered the prob-
lem in the so-called fully-mixed model, which is a special
class of Nash equilibria in which all pij are strictly positive.
In this model, Mavronicolas and Spirakis [12] showed that
for m identical machines in the fully-mixed Nash equi-
librium the price of anarchy is 	(logm(log logm)). Sim-
ilarly, they proved also that for m (not necessarily identi-
cal) machines and n identical weights in the fully-mixed
Nash equilibrium, if m � n, then the price of anarchy is
	(log n/(log log n)).

Themotivation behind studying fully-mixed equilibria
is the so-called fully-mixed Nash equilibrium conjecture
stating that these equilibria maximize the price of anar-
chy because they maximize the randomization. The con-
jecture seems to be quite appealing as a fully-mixed equi-
librium can be computed in polynomial time, which led
to numerous studies of this kind of equilibria with the
hope to obtain efficient algorithms for computing or ap-
proximating the price of anarchy with respect to mixed
equilibria. However, Fischer and Vöcking [6] disproved
the fully-mixed Nash equilibrium conjecture and showed
that there is a mixed Nash equilibrium whose expected
cost is larger than the expected cost of the fully-mixed
Nash equilibrium by a factor of ˝(logm/(log logm)).
Furthermore, they presented polynomial time algo-
rithms for approximating the price of anarchy for
mixed equilibria on identical machines up to a constant
factor.

Tight Bounds for the Price of Anarchy

Czumaj and Vöcking [4] entirely resolved the conjecture
of Koutsoupias and Papadimitriou [11] and gave an ex-

act description of the price of anarchy as a function of
the number of machines and the ratio of the speed of the
fastest machine over the speed of the slowest machine.1

Theorem 1 [4] (Upper Bound) The price of anarchy for
m machines is bounded from above by

O

0
@min

8
<
:

logm
log log logm

;
logm

log
�

logm
log(s1/sm)

�
9
=
;

1
A ;

where it is assumed that the speeds satisfy s1 � � � � � sm.
In particular, the price of anarchy for m machines is

O(logm
log log logm).

The theorem follows directly from the following two re-
sults [4]: that the maximum expected load c satisfies

c = opt �
 (�1)(m)

= opt � O
�
min

�
logm

log logm
; log

�
s1
sm

���

and that the social cost C satisfies

C = opt �O

0
@ logm

log
�

opt�logm
c

� + 1

1
A :

If one applied these results to systems in which all
agents follow only pure strategies, then since then ` j = Cj
for every j, it holds that C = c. This leads to the following
result.

Corollary 2 [4] For pure strategies the price of anarchy for
m machines is upper bounded by

O
�
min

�
logm

log logm
; log

�
s1
sm

���
;

where it is assumed that the speeds satisfy s1 � � � � � sm.

Theorem 4 below proves that this corollary gives an
asymptotically tight bound for the price of anarchy for
pure
strategies.

By Theorem 1, in the special case when all machines
are identical, the price of anarchy is O(logm/(log logm));

1To simplify the notation, for any real x � 0, let log x
denote log x = maxflog2 x; 1g. Also, following standard conven-
tion, � (N) is used to denote the Gamma (factorial) function,
which for any natural N is defined by � (N + 1) = N! and for
an arbitrary real x > 0 is � (x) =

R
1

0 tx�1 e�t dt. For the in-
verse of the Gamma function, � (�1)(N), it is known that
� (�1)(N) = x such that bxc! � N � 1 � dxe!. It is well known that
� (�1)(N) = (logN)/(log logN)(1 + o(1)).

670 P Price of Anarchy for Machines Models

this result has been also obtained independently by Kout-
soupias et al. [10]. However, in this special case one can get
a stronger bound that is tight up to an additive constant.

Theorem 3 [4] For m identical machines the price of an-
archy is at most

 (�1)(m) +	(1) =
logm

log logm
� (1 + o(1)) :

One can obtain a lower bound for the price of anarchy for
m identical machines by considering the system in which
pji =

1
m for every i; j. The Result of Gonnet [9] implies that

then the price of anarchy is
 (�1)(m) � 3
2 + o(1), which

implies that Theorem 3 is tight up to an additive constant.
The next theorem shows that the upper bound in The-

orem 1 is asymptotically tight.

Theorem 4 [4] (Lower bound) The price of anarchy for
m machines is lower bounded by

˝

0
@min

8
<
:

logm
log log logm

;
logm

log
�

logm
log(s1/sm)

�
9
=
;

1
A :

In particular, the price of anarchy for m machines is
˝(logm/(log log logm)).

In fact, it can be shown [4] (analogously to the upper
bound) that for every positive integer m, positive real r,
and S � 1, there exists a set of m machines with s1

sm = S
being in a Nash equilibrium and satisfying opt = r,

c = opt �˝

�
min

�
logm

log logm
; log

�
s1
sm

���
;

and

C = opt �˝

0
@ logm

log
�

opt�logm
c

�
1
A :

Applications

The model discussed here has been extended in the liter-
ature in numerous ways, in particular in [1,5,8]; see also
survey presentations in [3,14].

Open Problems

An interesting attempt that adds an algorithmic or con-
structive element to the analysis of the price of anarchy is
made in [2]. The idea behind “coordination mechanisms”
is not to study the price of anarchy for a fixed system, but
to design the system in such a way that the increase in

cost or the loss in performance due to selfish behavior is
as small as possible. This is a promising direction of re-
search that might result in practical guidelines of how to
build a distributed system that does not suffer from self-
ish behavior but might even exploit the selfishness of the
agents.

Cross References

� Computing Pure Equilibria in the Game of Parallel
Links

� Price of Anarchy

Recommended Reading

1. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-
case equlibria. Theor. Comput. Sci. 361, 200–209 (2006)

2. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination
mechanisms. In: Proceedings of the 31st International Collo-
quium on Automata, Languages and Programming (ICALP),
pp. 345–357 (2004)

3. Czumaj, A.: Selfish routing on the Internet. In: Leung, J. (ed.)
Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. CRC Press, Boca Raton, FL, USA (2004)

4. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria.
ACM Trans. Algorithms 3(1) (2007)

5. Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for
server farms. In: Proceedings of the 34th Annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 287–296 (2002)

6. Fischer, S., Vöcking, B.: On the structure and complexity of
worst-case equilibria. Theor. Comput. Sci. 378(2), 165–174
(2007)

7. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M.,
Spirakis, P.: The structure and complexity of Nash equilibria
for a selfish routing game. In Proceedings of the 29th Interna-
tional Colloquiumon Automata, Languages and Programming
(ICALP), pp. 123–134, (2002)

8. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The price
of anarchy for polynomial social cost. Theor. Comput. Sci.
369(1-3), 116–135 (2006)

9. Gonnet, G.: Expected length of the longest probe sequence in
hash code searching. J. Assoc. Comput. Mach. 28(2), 289–304
(1981)

10. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate
equilibria and ball fusion. Theor. Comput. Syst. 36(6), 683–693
(2003)

11. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In:
Proceedings of the 16th Annual Symposium on Theoretical As-
pects of Computer Science (STACS), pp. 404–413 (1999)

12. Mavronicolas, M., Spirakis, P.: The price of selfish routing. In:
Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC), pp. 510–519 (2001)

13. Nash Jr., J.F.: Non-cooperative games. Ann. Math. 54(2),
286–295 (1951)

14. Vöcking, B.: Selfish load balancing. In: Nisan, N., Roughgarden,
T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory. Cam-
bridge University Press, New York, NY, USA (2007)

Probabilistic Data Forwarding in Wireless Sensor Networks P 671

Probabilistic Data Forwarding
inWireless Sensor Networks
2004; Chatzigiannakis, Dimitriou, Nikoletseas,
Spirakis

SOTIRIS NIKOLETSEAS
Computer Engineering and Informatics, Department
and CTI, University of Patras, Patras, Greece

Keywords and Synonyms
Data propagation; Routing

ProblemDefinition
An important problem in wireless sensor networks is that
of local detection and propagation, i. e. the local sensing of
a crucial event and the energy and time efficient propaga-
tion of data reporting its realization to a control center (for
a graphical presentation, see Fig. 1). This center (called
the “sink”) could be some human authorities responsible
of taking action upon the realization of the crucial event.
More formally:

Definition 1 Assume that a single sensor, E, senses the re-
alization of a local event E. Then the propagation problem
is the following: “How can sensor P, via cooperation with
the rest of the sensors in the network, efficiently propagate
information reporting the realization of the event to the
sink S?”

Note that this problem is in fact closely related to the more
general problem of data propagation in sensor networks.

Wireless Sensor Networks
Recent dramatic developments in micro-electro-mechani-
cal systems (MEMS), wireless communications and digital
electronics have led to the development of small in size,
low-power, low-cost sensor devices. Such extremely small

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 1
A sensor network

(soon in the cubic millimetre scale) devices integrate sens-
ing, data processing and wireless communication capabil-
ities. Examining each such device individually might ap-
pear to have small utility, however the effective distributed
self-organization of large numbers of such devices into an
ad-hoc network may lead to the efficient accomplishment
of large sensing tasks. Their wide range of applications
is based on the use of various sensor types (i. e. thermal,
visual, seismic, acoustic, radar, magnetic, etc.) to moni-
tor a wide variety of conditions (e. g. temperature, object
presence and movement, humidity, pressure, noise levels
etc.). For a survey on wireless sensor networks see [1] and
also [6,9].

A Simple Model
Sensor networks are comprised of a vast number of
ultra-small homogeneous sensors, which are called “grain”
particles. Each grain particle is a fully-autonomous com-
puting and communication device, characterized mainly
by its available power supply (battery) and the energy cost
of computation and transmission of data. Such particles
(in the model here) do not move. Each particle is equipped
with a set of monitors (sensors) for light, pressure, hu-
midity, temperature etc. and has a broadcast (digital radio)
beacon mode.

It is assumed that grain particles are randomly de-
ployed in a given area of interest. Such a placement may
occur e. g. when throwing sensors from an airplane over
an area. A special case is considered, when the network
being a lattice (or grid) deployment of sensors. This grid
placement of grain particles is motivated by certain appli-
cations, where it is possible to have a pre-deployed sensor
network, where sensors are put (possibly by a human or
a robot) in a way that they form a 2-dimensional lattice.

It is assumed that each particle has the following
abilities: (i) It can estimate the direction of a received
transmission (e. g. via the technology of direction-sensing
antennae). (ii) It can estimate the distance from a nearby
particle that did the transmission (e. g. via estimation of
the attenuation of the received signal). (iii) It knows the di-
rection towards the sink S. This can be implemented dur-
ing a set-up phase, where the (powerful) sink broadcasts
the information about itself to all particles. (iv) All parti-
cles have a common co-ordinates system. Notice that GPS
information is not assumed. Also, there is no need to know
the global structure of the network.

Key Results
The Basic Idea
For the above problem [3] proposes a protocol which tries
to minimize energy consumption by probabilistically fa-

672 P Probabilistic Data Forwarding in Wireless Sensor Networks

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 2
Angle ' and proximity to the optimal line

voring certain paths of local data transmissions towards the
sink. Thus this protocol is called PFR (Probabilistic For-
warding Protocol). Its basic idea is to avoid flooding by fa-
voring (in a probabilistic manner) data propagation along
sensors which lie “close” to the (optimal) transmission
line, ES, that connects the sensor node detecting the event,
E, and the sink, S. This is implemented by locally calculat-
ing the angle � = (bEPS), whose corner point P is the sen-
sor currently running the local protocol, having received
a transmission from a nearby sensor, previously possessing
the event information (see Fig. 2). If ' is equal or greater to
a predetermined threshold, then p will transmit (and thus
propagate the information further). Else, it decides
whether to transmit with probability equal to

�
. Because

of the probabilistic nature of data propagation decisions
and to prevent the propagation process from early failing,
the protocol initially uses (for a short time period which
is evaluated) a flooding mechanism that leads to a suffi-
ciently large “front” of sensors possessing the data under
propagation. When such a “front” is created, probabilistic
Forwarding is performed.

The PFR Protocol

The protocol evolves in two phases:

Phase 1: The “Front” Creation Phase Initially the pro-
tocol builds (by using a limited, in terms of rounds, flood-
ing) a sufficiently large “front” of particles, to guarantee

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 3
Thin zone of particles

the survivability of the data propagation process. During
this phase, each particle having received the data to be
propagated, deterministically forwards them towards the
sink.

Phase 2: TheProbabilistic Forwarding Phase Each par-
ticle P possessing the information under propagation
(called in f o(E) hereafter), calculates an angle ' by calling
the subprotocol “'-calculation” (see description below)
and broadcasts in f o(E) to all its neighbors with proba-
bility P f wd (or it does not propagate any data with proba-
bility 1� P f wd) as follows:

P f wd =

(
1 if � � �threshold

�

otherwise

where ' is the (bEPS) angle and �threshold = 134ı (the se-
lection reasons of this value are discussed in [3]).

If the density of particles is appropriately large, then
for a line ES there is (with high probability) a sequence of
points “closely surrounding ES” whose angles ' are larger
than �threshold and so that successive points are within
transmission range. All such points broadcast and thus es-
sentially they follow the line ES (see Fig. 3).

The '-calculation Subprotocol (see Fig. 4)

Let Pprev the particle that transmitted in f o(E) to P.
1. When Pprev broadcasts in f o(E), it also attaches the info
jEPprevj and the direction

����!
PprevE.

2. P estimates the direction and length of line segment
PprevP, as described in the model.

3. P now computes angle (2EPprevP), and computes jEPj
and the direction of

�!
PE (this will be used in further

transmission from P).

Probabilistic Data Forwarding in Wireless Sensor Networks P 673

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 4
Angle ' calculation example

4. P also computes angle (2PprevPE) and by subtracting it
from (2PprevPS) it finds '.

Performance Properties of PFR

Any protocol ˘ solving the data propagation problem
must satisfy the following three properties: a) Correctness.
˘ must guarantee that data arrives to the position S, given
that the whole network exists and is operational. b) Ro-
bustness. ˘ must guarantee that data arrives at enough
points in a small interval around S, in cases where part
of the network has become inoperative. c) Efficiency. If
˘ activates k particles during its operation then˘ should
have a small ratio of the number of activated over the total
number of particles r = k

N . Thus r is an energy efficiency
measure of ˘ . It is shown that this is indeed the case for
PFR.

Consider a partition of the network area into small
squares of a fictitious grid G (see Fig. 5). When particle
density is high enough, occupancy arguments guarantee
that with very high probability (tending to 1) all squares
get particles. All the analysis is conditioned on this event,
call it F, of at least one particle in each square. Below only
sketches of proofs are provided (full proofs can be found
in [3]).

The Correctness of PFR

Consider any square˙ intersecting the ES line. By the oc-
cupancy argument above, there is w.h.p. a particle in this
square. Clearly, the worst case is when the particle is lo-
cated in one of the corners of ˙ (since the two corners
located most far away from the ES line have the small-
est '-angle among all positions in ˙). By geometric cal-
culations, [3] proves that the angle ' of this particle is
� > 134ı. But the initial square (i. e. that containing E) al-
ways broadcasts and any intermediate intersecting square
will be notified (by induction) and thus broadcast because

Probabilistic Data Forwarding in Wireless Sensor Networks, Fig-
ure 5
A lattice dissection G

of the argument above. Thus the sink will be reached if the
whole network is operational:

Lemma 1 ([3]) PFR succeeds with probability 1 given the
event F.

The Energy Efficiency of PFR

Consider a “lattice-shaped” network like the one in Fig. 5
(all results will hold for any random deployment “in the
limit”). The analysis of the energy efficiency considers par-
ticles that are active but are as far as possible from ES.
[3] estimates an upper bound on the number of particles in
an n � n (i. e. N = n � n) lattice. If k is this number then
r = k

n2 (0 < r � 1) is the “energy efficiency ratio” of PFR.
More specifically, in [3] the authors prove the (very sat-
isfactory) result below. They consider the area around the
ES line, whose particles participate in the propagation pro-
cess. The number of active particles is thus, roughly speak-
ing, captured by the size of this area, which in turn is equal
to jESj times the maximum distance from jESj. This max-
imum distance is clearly a random variable. To calculate
the expectation and variance of this variable, the authors
in [3] basically “upper bound” the stochastic process of the
distance from ES by a random walk on the line, and subse-
quently “upper bound” this random walk by a well-known
stochastic process (i. e. the “discouraged arrivals” birth and
death Markovian process. Thus they prove:

Theorem 2 ([3]) The energy efficiency of the PFR protocol
is	

�� n0
n
�2� where n0 = jESj and n =

p
N, where N is the

number of particles in the network. For n0 = jESj = o(n),
this is o(1).

674 P Probabilistic Data Forwarding in Wireless Sensor Networks

The Robustness of PFR

Consider particles “very near” to the ES line. Clearly, such
particles have large '-angles (i. e. � > 134ı). Thus, even in
the case that some of these particles are not operating, the
probability that none of those operating transmits (during
phase 2) is very small. Thus:

Lemma 3 ([3]) PFRmanages to propagate the crucial data
across lines parallel to ES, and of constant distance, with
fixed nonzero probability (not depending on n, jESj).

Applications

Sensor networks can be used for continuous sensing,
event detection, location sensing as well as micro-sensing.
Hence, sensor networks have several important applica-
tions, including (a) security (like biological and chemical
attack detection), (b) environmental applications (such as
fire detection, flood detection, precision agriculture), (c)
health applications (like telemonitoring of human physio-
logical data) and (d) home applications (e. g. smart envi-
ronments and home automation). Also, sensor networks
can be combined with other wireless networks (like mo-
bile) or fixed topology infrastructures (like the Internet) to
provide transparent wireless extensions in global comput-
ing scenaria.

Open Problems

It would be interesting to come up with formal models
for sensor networks, especially with respect to energy as-
pects; in this respect, [10] models energy dissipation us-
ing stochastic methods. Also, it is important to investigate
fundamental trade-offs, such as those between energy and
time. Furthermore, the presence of mobility and/or mul-
tiple sinks (highly motivated by applications) creates new
challenges (see e. g. [2,11]). Finally, heterogeneity aspects
(e. g. having sensors of various types and/or combinations
of sensor networks with other types of networks like p2p,
mobile and the Internet) are very important; in this respect
see e. g. [5,13].

Experimental Results

An implementation of the PFR protocol along with a de-
tailed comparative evaluation (using simulation) with
greedy forwarding protocols can be found in [4]; with
clustering protocols (like LEACH, [7]) in [12]; with tree
maintenance approaches (like Directed Diffusion, [8])
in [5]. Several performance measures are evaluated, like
the success rate, the latency and the energy dissipation.

The simulations mainly suggest that PFR behaves best in
sparse networks of high dynamics.

Cross References

� Communication in Ad Hoc Mobile Networks Using
RandomWalks

� Obstacle Avoidance Algorithms in Wireless Sensor
Networks

� Randomized Energy Balance Algorithms in Sensor
Networks

Recommended Reading

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wire-
less sensor networks: a survey. J. Comput. Netw. 38, 393–422
(2002)

2. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Sink Mobility Pro-
tocols for Data Collection inWireless Sensor Networks . In: Proc.
of the 4th ACM/IEEE International Workshop on Mobility Man-
agement andWireless Access Protocols (MobiWac), ACMPress,
pp. 52–59 (2006)

3. Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.:
A Probabilistic Algorithm for Efficient and Robust Data Prop-
agation in Smart Dust Networks. In: Proc. 5th European Wire-
less Conference on Mobile and Wireless Systems (EW 2004),
pp. 344–350 (2004). Also in: Ad-Hoc Netw J 4(5), 621–635
(2006)

4. Chatzigiannakis, I., Dimitriou, T., Mavronicolas, M., Nikolet-
seas, S., Spirakis, P.: A Comparative Study of Protocols for Ef-
ficient Data Propagation in Smart Dust Networks. In: Proc.
9th European Symposium on Parallel Processing (EuroPar),
Distinguished Paper. Lecture Notes in Computer Science,
vol. 2790, pp. 1003–1016. Springer (2003) Also in the Paral-
lel Processing Letters (PPL) Journal, Volume 13, Number 4,
pp. 615–627 (2003)

5. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: An Adaptive
Power Conservation Scheme for Heterogeneous Wireless Sen-
sors. In: Proc. 17th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2005), ACM Press,
pp. 96–105 (2005). Also in: Theory Comput Syst (TOCS) J 42(1),
42–72 (2008)

6. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century
Challenges: Scalable Coordination in Sensor Networks. In: Proc.
5th ACM/IEEE International Conference onMobile Computing,
MOBICOM’1999

7. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-
Efficient Communication Protocol for Wireless Microsensor
Networks. In: Proc. 33rd Hawaii International Conference on
System Sciences, HICSS’2000

8. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor
Networks. In: Proc. 6th ACM/IEEE International Conference on
Mobile Computing, MOBICOM’2000

9. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next Century Challenges:
Mobile Networking for Smart Dust. In: Proc. 5th ACM/IEEE In-
ternational Conference on Mobile Computing, pp. 271–278,
Sept. 1999

Probabilistic Data Forwarding in Wireless Sensor Networks P 675

10. Leone, P., Rolim, J., Nikoletseas, S.: An Adaptive Blind Algo-
rithm for Energy Balanced Data Propagation in Wireless Sen-
sor Networks. In: Proc. of the IEEE International Conference
on Distributed Computing in Sensor Networks (DCOSS). Lec-
ture Notes in Computer Science (LNCS), vol. 3267, pp. 35–48.
Springer (2005)

11. Luo, J., Hubaux, J.-P.: Joint Mobility and Routing for Life-
time Elongation in Wireless Networks. In: Proc. 24th INFOCOM
(2005)

12. Nikoletseas, S., Chatzigiannakis, I., Antoniou, A., Efthymiou, C.,
Kinalis, A., Mylonas, G.: Energy Efficient Protocols for Sensing
Multiple Events in Smart Dust Networks. In: Proc. 37th Annual
ACM/IEEE Simulation Symposium (ANSS’04), pp. 15–24, IEEE
Computer Society Press (2004)

13. Triantafillou, P., Ntarmos, N., Nikoletseas, S., Spirakis, P.:
NanoPeer Networks and P2P Worlds. In:Proc. 3rd IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P 2003),
pp. 40–46, Sept. 2003

Quantization of Markov Chains Q 677

Q

Quantization of Markov Chains
2004; Szegedy

PETER RICHTER, MARIO SZEGEDY
Department of Computer Science, Rutgers,
The State University of New Jersey, Piscataway, NJ, USA

Keywords and Synonyms
Quantum walks

ProblemDefinition

Spatial Search andWalk Processes

Spatial search by quantum walk is database search with
the additional constraint that one must move through the
search space via a quantum walk that obeys some locality
structure (grid, hypercube, etc.). Quantum walks are ana-
logues of classical random walks on graphs. The complex-
ity of spatial search by quantum walk is essentially deter-
mined by the quantum hitting time [9] of the walk.

Let S with jSj = N be a finite set of states, and let
P = (px;y)x;y2S be the transition probability matrix of
a Markov chain on S, also denoted by P. Assume that
a subset M
 S of states are marked. The goal is either to
find a marked state, given that M ¤ ; (search version), or
to determine whetherM is nonempty (decision version). If
the possible x ! ymoves (i. e., those with px;y ¤ 0) form
the edges of a (directed) graph G, it is said that the walk
has locality structure G.
INPUT: Markov chain P on set S, marked subset M
 S.
OUTPUT: Amarked state with probability 0:1 iff one exists
(search version), or a Boolean return value with one-sided
error detecting M ¤ ; with probability 0:1 (decision ver-
sion).
If P is irreducible (i. e., if its underlying digraph is strongly
connected), a marked state can be found with high proba-
bility in finite time by simulating a classical random walk
using the coefficients of P. In the quantum case, this ran-
dom walk process may be replaced by a quantum walk us-
ing the coefficients of P (in particular, respecting locality).

The fundamental question is whether the quantum walk
process finds a marked state faster than the classical ran-
dom walk process.

The QuantumWalk Algorithm
Quantizing P is not so straightforward, since stochastic
matrices have no immediate unitary equivalents. It turns
out that one must either abandon the discrete-time nature
of the walk [7] or define the walk operator on a space other
than CS. Here the second route is taken, with notation as
in [18]. On CS�S, define the unitary WP := R1R2, where
R1 =

P
x2S(2jpxihpx j � I)˝ jxihxj, R2 =

P
x2S jxihxj ˝

(2jpx ihpx j � I), and jpxi :=
P

y2S
ppy;x jyi. WP is the

quantization of P, or the discrete-time quantum walk op-
erator arising from P. One can “check” whether or not the
current state is marked by applying the operator OM =P

x 62M jxihxj �
P

x2M jxihxj. Denote the cost of con-
structing WP (in the units of the resource of interest) by
U (update cost), the cost of constructing OM by C (check-
ing cost), and the cost of preparing the initial state, �0, by
S (setup cost). Every time an operator is used, its cost is in-
curred. This abstraction, implicit in [2] and made explicit
in [13], allowsWP andOM to be treated as black-box oper-
ators and provides a convenient way to capture time com-
plexity or, in the quantum query model, query complexity.
The spatial search algorithm by quantumwalk is described
by:

ALGORITHM: A quantum circuit X = XmXm�1 : : : X1,
with “wires” (typically two) that carry CS , and control bits.
Each Xi is either aWP gate or an OM gate, or a controlled
version of one of these. X is applied to the initial state �0.
The cost of the sequence is the sum of the costs of the indi-
vidual operators. The observation probability is the proba-
bility that after measuring the final state, �m , in the stan-
dard basis, one of the wires outputs an element of M. If
the observation probability is q, one must repeat the pro-
cedure 1/pq times using amplitude amplification (search
version). In the decision version one can distinguish be-
tween M and M0 if jX�0 � X 0�0j � 0:1, where X arises
from OM and X 0 from OM0 .

678 Q Quantization of Markov Chains

Key Results

Earlier Results

Spatial search blends Grover’s search algorithm [8], which
finds a marked element in a database of size N in

p
N/jMj

steps, with quantum walks.
Quantum walks were first introduced by David Meyer

and John Watrous to study quantum cellular automata
and quantum log-space, respectively. Discrete-time quan-
tum walks were investigated for their own sake by Nayak
et al. [3,15] and Aharonov et al. [1] on the infinite line and
the N-cycle, respectively. The central issues in the early
development of quantum walks included definition of the
walk operator, notions of mixing and hitting times, and
speedups achievable compared to the classical setting. Ex-
ponential quantum speedup of the hitting time between
antipodes of the hypercube was shown by Kempe [9], and
Childs et al. [6] presented the first oracle problem solv-
able exponentially faster by a quantum walk based algo-
rithm than by any (not necessarily walk-based) classical
algorithm.

The first systematic studies of quantum hitting time
on the hypercube and the d-dimensional torus were con-
ducted by Shenvi et al. [17] and Ambainis et al. [4]. Im-
proving upon the Grover search based spatial search al-
gorithm of Aaronson and Ambainis, Ambainis et al. [4]
showed that the d-dimensional torus (with N = nd nodes)
can be searched by quantum walk with cost of order S +p
N(U + C) and observation probability ˝(1/ log N) for

d � 3, and with cost of order S +
p
N logN(U + C) and

observation probability˝(1) for d = 2. The key difference
between these results and those of [6,9] is that the walk
is required to start from the uniform state, not from one
which is somehow “related” to the state one wishes to hit.
Only in the latter case is it possible to achieve an exponen-
tial speedup.

The first result that used a quantumwalk to solve a nat-
ural algorithmic problem, the so-called element distinct-
ness problem, was due to Ambainis [2]. Ambainis’ algo-
rithm uses a walk W on the Johnson graph J(r;m) whose
vertices are the r-size subsets of a universe of size m, with
two subsets connected iff their symmetric difference has
size two. The relevance of this graph follows from a non-
trivial algorithmic idea whereby the three different costs
(S, U, and C) are balanced in a novel way. In contrast,
Grover’s algorithm – though it inspired Ambainis’ result –
has no such option: its setup and update costs are zero in
the query model.

Ambainis’ main mathematical observation about the
walkW on the Johnson graph is that W

p
rOM behaves in

much the same way as the Grover iteration DOM , whereD

is the Grover diffusion operator. Recall that Grover’s algo-
rithm applies DOM repeatedly, sending the uniform start-
ing state �0 to the state �good =

P
x2M

p
1/jMjjxi after

t = O(1/˛) iterations, where ˛ := 2 sin�1h�goodj�0i is the
effective “rotation angle”.

What do W
p
r and D have in common? Ambainis

showed that the nontrivial eigenvalues of the matrixW
p
r

in the (finite dimensional) subspace containing the orbit of
�0 are separated away from 1 by a constant ". Thus, W

p
r

serves as a very good approximate reflection about the axis
�0 – as good as Grover’s in this application. This allows
one to conclude the following: there exists a t = O(1/˛)
for which the overlap h�goodj(W

p
rOM)t j�0i = ˝(1), so

the output is likely inM.

Theorem 1 ([2]) Let P be the randomwalk on the Johnson
graph J(r;m) with r = o(m). Let M be either the empty
set or the set of all r-size subsets containing a fixed subset
x1; : : : ; xk for constant k � r. Then there is a quantum
algorithm that solves the hitting problem (search version)
with cost of order S + t(

p
r � U + C), where t = (mr)

k/2. If
the costs are S = r, U = O(1), and C = 0, then the total cost
has optimum O(mk/(k+1)) at r = O(mk/(k+1)).

General Markov Chains

In [18], Szegedy investigates the hitting time of quan-
tum walks arising from general Markov chains. His defini-
tions (walk operator, hitting time) are abstracted directly
from [2] and are consistent with prior literature, although
slightly different in presentation.

For a Markov chain P, the (classical) average hitting
time with respect to M can be expressed in terms of the
leaking walk matrix PM , which is obtained from P by
deleting all rows and columns indexed by states of M.
Let h(x;M) denote the expected time to reach M from
x and let v1; : : : ; vN�jMj, �1; : : : ; �N�jMj be the (normal-
ized) eigenvectors and associated eigenvalues of PM . Let
d : S ! R+ be a starting distribution and d0 its re-
striction to S n M. Then h :=

P
x2S d(x)h(x;M) =PN�jMj

k=1
j(vk ;d0)j2
1�
k

. Although the leaking walk matrix PM is
not stochastic, one can consider the absorbing walk ma-
trix P0 =

	 PM 0
P00 I

, where P00 is the matrix obtained from P

by deleting columns indexed by M and rows indexed by
S n M:P0 behaves similarly to P but is absorbed by the
first marked state it hits. Consider the quantization WP0

of P0 and define the quantum hitting time, H, of set M to
be the smallest m for which jWm

P0�0 � �0j � 0:1, where
�0 :=

P
x2S
p
1/Njxijpxi (which is stationary for WP).

Note that the construction cost of WP0 is proportional to
U + C.

Quantization of Markov Chains Q 679

Why is this definition of quantum hitting time inter-
esting? The classical hitting time measures the number
of iterations of the absorbing walk P0 required to notice-
ably skew the uniform starting distribution. Similarly, the
quantum hitting time bounds the number of iterations of
the following quantum algorithm for detecting whetherM
is nonempty: At each step, apply operator WP0 . If M is
empty, then P0 = P and the starting state is left invariant. If
M is nonempty, then the angle betweenWt

P0�0 and Wt
P�0

gradually increases. Using an additional control register to
apply either WP0 or WP with quantum control, the diver-
gence of these two states (should M be nonempty) can be
detected. The required number of iterations is exactlyH.

It remains to compute H. When P is symmetric and
ergodic, the expression for the classical hitting time has
a quantum analogue [18] (jMj � N/2 for technical rea-
sons):

H �
N�jMjX
k=1

�2kp
1 � �k

; (1)

where �k is the sum of the coordinates of vk divided by
1/
p
N . From (1) and the expression for h one can derive

an amazing connection between the classical and quantum
hitting times:

Theorem 2 ([18]) Let P be symmetric and ergodic, and let
h be the classical hitting time for marked set M and uniform
starting distribution. Then the quantum hitting time of M
is at most

p
h.

One can further show:

Theorem 3 ([18]) If P is state-transitive and jMj = 1, then
the marked state is observed with probability at least N/h in
O(
p
h) steps.

Theorems 2 and 3 imply most quantum hitting time re-
sults of the previous section, without calculation, relying
only on estimates of the corresponding classical hitting
times. Expression (1) is based on a fundamental connec-
tion between the eigenvalues and eigenvectors of P and
WP. Notice that R1 and R2 are reflections on the subspaces
generated by fjpx i ˝ jxij x 2 Sg and fjxi ˝ jpx ij x 2 Sg,
respectively. Hence the eigenvalues of R1R2 can be ex-
pressed in terms of the eigenvalues of the mutual Gram
matrix of these systems. This matrix D, the discriminant
matrix of P, is:

D(P) =
p
P ı PT def= (

p
px;y py;x)x;y2S : (2)

If P is symmetric then D(P) = P, and the formula remains
fairly simple even when P is not symmetric. In particular,

the absorbing walk P0 has discriminant matrix
	 PM 0

0 I

. Fi-

nally, the relation between D(P) and the spectral decom-
position ofWP is given by:

Theorem 4 ([18]) Let P be an arbitrary Markov chain
on a finite state space S and let cos �1 � � � � � cos �l
be those singular values of D(P) lying in the open inter-
val (0; 1), with associated singular vector pairs v j;wj for
1 � j � l . Then the non-trivial eigenvalues of WP (ex-
cluding 1 and �1) and their corresponding eigenvectors are
e�2i� j , R1wj � e�i� j R2v j ; e2i� j and Rjwj � ei� j R2v j for
1 � j � l .

Latest Development

Recently, Magniez et al. [12] have used Szegedy’s quanti-
zation WP of an ergodic walk P (rather than its absorbing
version P0) to obtain an efficient and general implementa-
tion of the abstract search algorithm of Ambainis et al. [4].

Theorem 5 ([12]) Let P be reversible and ergodic with
spectral gap ı > 0. Let M have marked probability either
zero or "> 0. Then there is a quantum algorithm solv-
ing the hitting problem (search version) with cost S +
1p
"

�
1p
ı
U + C

�
.

Applications

Element Distinctness

Suppose one is given elements x1; : : : ; xm 2 f1; : : : ;mg
and is asked if there exist i, j such that xi = x j . The
classical query complexity of this problem is 	(m). Am-
bainis [2] gave an (optimal) O(m2/3) quantum query al-
gorithm using a quantum walk on the Johnson graph of
m2/3-subsets of f1; : : : ;mg with those subsets containing
i, j with xi = x j marked.

Triangle Finding

Suppose one is given the adjacency matrix A of a graph
on n vertices and is required to determine if the graph
contains a triangle (i. e., a clique of size 3) using as few
queries as possible to the entries of A. The classical query
complexity of this problem is	(n2). Magniez, Santha, and
Szegedy [13] gave an Õ(n1:3) algorithm by adapting [2].
This was improved to O(n1:3) by Magniez et al. [12].

Matrix Product Verification

Suppose one is given three n � n matrices A, B, C and is
required to determine if AB ¤ C (i. e., if their exist i, j such
that

P
k AikBk j ¤ Ci j) using as few queries as possible

to the entries of A, B, and C. This problem has classical

680 Q Quantum Algorithm for CheckingMatrix Identities

query complexity 	(n2). Buhrman and Spalek [5] gave an
O(n5/3) quantum query algorithm using [18].

Group Commutativity Testing

Suppose one is presented with a black-box group speci-
fied by its k generators and is required to determine if
the group commutes using as few queries as possible to
the group product operation (i. e., queries of the form
“What is the product of elements g and h?”). The classical
query complexity is 	(k) group operations. Magniez and
Nayak [11] gave an (essentially optimal) Õ(k2/3) quantum
query algorithm by walking on the product of two graphs
whose vertices are (ordered) l-tuples of distinct generators
and whose transition probabilities are nonzero only where
the l-tuples at two endpoints differ in at most one coordi-
nate.

Open Problems

Many issues regarding quantization of Markov chains re-
main unresolved, both for the hitting problem and the
closely related mixing problem.

Hitting

Can the quadratic quantum hitting time speedup be ex-
tended from all symmetric Markov chains to all reversible
ones? Can the lower bound of [18] on observation prob-
ability be extended beyond the class of state-transitive
Markov chains with a unique marked state? What other
algorithmic applications of quantum hitting time can be
found?

Mixing

Another wide use of Markov chains in classical algorithms
is in mixing. In particular, Markov chain Monte Carlo al-
gorithms work by running an ergodic Markov chain with
carefully chosen stationary distribution
 until reaching
its mixing time, at which point the current state is guaran-
teed to be distributed "-close to uniform. Such algorithms
form the basis of most randomized algorithms for approx-
imating #P-complete problems. Hence, the problem is:

INPUT: Markov chain P on set S, tolerance ">0.
OUTPUT: A state "-close to
 in total variation distance.

Notions of quantum mixing time were first proposed and
analyzed on the line, the cycle, and the hypercube by
Nayak et al. [3,15], Aharonov et al. [1], and Moore and
Russell [14]. Recent work of Kendon and Tregenna [10]
and Richter [16] has investigated the use of decoherence
in improving mixing of quantum walks. Two fundamental
questions about the quantum mixing time remain open:

What is the “most natural” definition? And, when is there
a quantum speedup over the classical mixing time?

Cross References
� Quantum Algorithm for Element Distinctness
� Quantum Algorithm for Finding Triangles

Recommended Reading
1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum

walks on graphs. In: Proc. STOC (2001)
2. Ambainis, A.: Quantum walk algorithm for element distinct-

ness. SIAM J. Comput. 37(1), 210–239 (2007). Preliminary ver-
sion in Proc. FOCS 2004

3. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.:
One-dimensional quantumwalks. In: Proc. STOC (2001)

4. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantumwalks
faster. In: Proc. SODA (2005)

5. Buhrman, H., Spalek, R.: Quantum verification of matrix prod-
ucts. In: Proc. SODA (2006)

6. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman,
D.: Exponential algorithmic speedup by a quantum walk. In:
Proc. STOC (2003)

7. Farhi, E., Gutmann, S.: Quantum computation and decision
trees. Phys. Rev. A 58 (1998)

8. Grover, L.K.: A fast quantum mechanical algorithm for
database search. In: Proc. STOC (1996)

9. Kempe, J.: Discrete quantum walks hit exponentially faster. In:
Proc. RANDOM (2003)

10. Kendon, V., Tregenna, B.: Decoherence can be useful in quan-
tumwalks. Phys. Rev. A. 67, 42–315 (2003)

11. Magniez, F., Nayak, A.: Quantum complexity of testing group
commutativity. Algorithmica 48(3), 221–232 (2007) Prelimi-
nary version in Proc. ICALP 2005

12. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quan-
tumwalk. In: Proc. STOC (2007)

13. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for
the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)
Preliminary version in Proc. SODA 2005

14. Moore, C., Russell, A.: Quantum walks on the hypercube. In:
Proc. RANDOM (2002)

15. Nayak, A., Vishwanath, A.: Quantum walk on the line. quant-
ph/0010117

16. Richter, P.C.: Quantum speedup of classical mixing processes.
Phys. Rev. A 76, 042306 (2007)

17. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk
search algorithm. Phys. Rev. A 67, 52–307 (2003)

18. Szegedy, M.: Quantum speed-up of Markov chain based algo-
rithms. In: Proc. FOCS (2004)

Quantum Algorithm
for CheckingMatrix Identities
2006; Buhrman, Spalek

ASHWIN NAYAK
Department of Combinatorics and Optimization,
University of Waterloo and Perimeter Institute
for Theoretical Physics, Waterloo, ON, Canada

QuantumAlgorithm for CheckingMatrix Identities Q 681

Keywords and Synonyms

Matrix product verification

ProblemDefinition

Let A, B, C be three given matrices of dimension n � n
over a field, where C is claimed to be the matrix prod-
uct AB. The straightforward method of checking whether
C = AB is to multiply the matrices A, B, and compare the
entries of the result with those ofC. This takes timeO(n!),
where ! is the “exponent of matrix multiplication”. It is
evident from the definition of the matrix multiplication
operation that 2 � ! � 3. The best known bound on !
is 2.376 [4].

Here, and in the sequel, “time” is taken to mean “num-
ber of arithmetic operations” over the field (or other alge-
braic structure to which the entries of the matrix belong).
Similarly, in stating space complexity, the multiplicative
factor corresponding to the space required to represent el-
ements of the algebraic structure is suppressed.

Surprisingly, matrix multiplication can be circum-
vented by using a randomized “fingerprinting” technique
due to Freivalds [5], and the matrix product can be
checked in time O(n2) with one-sided bounded probabil-
ity of error. This algorithm extends, in fact, to matrices
over any integral domain [3] and the number of random
bits used may be reduced to log n

�
+ O(1) for an algorithm

that makes one-sided probabilistic error at most � [8].
(All logarithms in this article are taken to base 2.) The
fingerprinting technique has found numerous other ap-
plications in theoretical computer science (see, for exam-
ple [10]).

Buhrman and Špalek consider the complexity of
checking matrix products on a quantum computer.

Problem 1 (Matrix product verification)
INPUT: Matrices A, B, C of dimension n � n over an inte-
gral domain.
OUTPUT: EQUAL if C = AB, and NOT EQUAL otherwise.

They also study the verification problem over the Boolean
algebra f0; 1g with operations f_;^g, where the finger-
printing technique does not apply.

As an application of their verification algorithms, they
consider multiplication of sparse matrices.

Problem 2 (Matrix multiplication)
INPUT: Matrices A, B of dimension n � n over an integral
domain or the Boolean algebra f0; 1g.
OUTPUT: The matrix product C = AB over the integral do-
main or the Boolean algebra.

Key Results

Ambainis, Buhrman, Høyer, Karpinski, and Kurur [2]
first studied matrix product verification in the quantum
mechanical setting. Using a recursive application of the
Grover search algorithm [6], they gave an O(n7/4) algo-
rithm for the problem. Buhrman and Špalek improve this
runtime by adapting search algorithms based on quantum
walk that were recently discovered by Ambainis [1] and
Szegedy [11].

Let W = f(i; j)j(AB � C)i; j 6= 0g be the set of coordi-
nates where C disagrees with the product AB, and let W0

be the largest independent subset of W. (A set of co-
ordinates is said to be independent if no row or col-
umn occurs more than once in the set.) Define q(W) =
maxfjW 0j;minfjWj;

p
ngg.

Theorem 1 Consider Problem 1. There is a quantum al-
gorithm that always returns EQUAL if C = AB, returns
NOT EQUAL with probability at least 2/3 if C 6= AB,
and has worst case run-time O(n5/3), expected run-time
O(n2/3/q(W)1/3), and space complexity O(n5/3).

Buhrman and Špalek state their results in terms of “black-
box” complexity or “query complexity”, where the entries
of the input matricesA, B,C are provided by an oracle. The
measure of complexity here is the number of oracle calls
(queries) made. The query complexity of their quantum
algorithm is the same as the run time in the above theorem.
They also derive a lower bound on the query complexity of
the problem.

Theorem 2 Any bounded-error quantum algorithm for
Problem 1 has query complexity˝(n3/2).

When the matrices A, B, C are Boolean, and the product is
defined over the operations f_;^g, an optimal algorithm
with run-time/query complexity O(n3/2) may be derived
from an algorithm for AND-OR trees [7]. This has space
complexity O((log n)3) .

All the quantum algorithms may be generalized to
handle rectangular matrix product verification, with ap-
propriate modification to the run-time and space com-
plexity.

Applications

Using binary search along with the algorithms in the pre-
vious section, the position of a wrong entry in a matrix C
(purported to be the product AB) can be located, and
then corrected. Buhrman and Špalek use this in an itera-
tive fashion to obtain a matrix multiplication algorithm,
starting from the guess C = 0. When the product AB is

682 Q Quantum Algorithm for the Collision Problem

a sparse matrix, this leads to a quantum matrix multipli-
cation scheme that is, for some parameters, faster than
known classical schemes.

Theorem 3 For any n � n matrices AB over an integral
domain, the matrix product C = AB can be computed by
a quantum algorithm with polynomially small error proba-
bility in expected time

O(1) �

8
<̂
:̂

n log n � n2/3w2/3 when 1 � w �
p
n ;

n log n �
p
n w when

p
n � w � n ; and

n log n � n
p
w when n � w � n2 ;

where w is the number of non-zero entries in C.

A detailed comparison of this quantum algorithm with
classical ones may be found in [3].

A subsequent quantum walk based algorithm due to
Magniez, Nayak, Roland, and Santha [9] finds a wrong en-
try in the same run-time as in Theorem 1, without the need
for binary search. This improves the run-time of the quan-
tum algorithm for matrix multiplication described above
slightly.

Since Boolean matrix products can be verified faster,
boolean matrix products can be computed in expected
time O(n3/2w), where w is the number of ‘1’ entries in the
product.

All matrix product algorithms presented here may be
used for multiplication of rectangular matrices as well,
with appropriate modifications.

Cross References

� Quantization of Markov Chains
� Quantum Algorithm for Element Distinctness

Recommended Reading
1. Ambainis, A.: Quantum walk algorithm for Element Distinct-

ness. In: Proceedings of the 45th Symposium on Foundations
of Computer Science, pp. 22–31, Rome, Italy, 17–19 October
2004

2. Ambainis, A., Buhrman, H., Høyer, P., Karpinski, M., Kurur, P.:
Quantummatrix verification. Unpublishedmanuscript (2002)

3. Buhrman, H., Špalek, R.: Quantum verification of matrix prod-
ucts. In: Proceedings of 17th ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 880–889, Miami, FL, USA, 22–26 January
2006

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arith-
metic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

5. Freivalds, R.: Fast probabilistic algorithms. In: Proceedings
of the 8th Symposium on Mathematical Foundations of
Computer Science, pp. 57–69, Olomouc, Czechoslovakia, 3–7
September 1979

6. Grover, L.K.: A fast quantum mechanical algorithm for
database search. In: Proceedings of the 28th ACM Symposium

on the Theory of Computing, pp. 212–219, Philadelphia, PA,
USA, 22–24 May 1996

7. Høyer, P., Mosca, M., deWolf, R.: Quantum search on bounded-
error inputs. In: Proceedings of the 30th International Collo-
quium on Automata, Languages and Programming. Lecture
Notes inComputer Science, vol. 2719, pp. 291–299, Eindhoven,
The Netherlands, 30 June – 4 July 2003

8. Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifying
matrix products using O(n2) time and log2 n + O(1) random
bits. Inf. Proc. Lett. 45(2), 107–110 (1993)

9. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quan-
tumwalk. In: Proceeding of the 39th ACM Symposium on The-
ory of Computing, pp. 575–584, San Diego, CA, USA, 11–13
June 2007 (2007)

10. Motwani, R., Raghavan, P.: Randomized Algorithms. Cam-
bridge University Press, Cambridge (1995)

11. Szegedy, M.: Quantum speed-up of Markov chain based algo-
rithms. In: Proceedings of the 45th IEEE Symposium on Foun-
dations of Computer Science, pp. 32–41, Rome, Italy, 17–19Oc-
tober 2004 (2004)

Quantum Algorithm
for the Collision Problem
1998; Brassard, Hoyer, Tapp

ALAIN TAPP
DIRO, University of Montréal, Montreal, QC, Canada

ProblemDefinition

A function F is said to be r-to-one if every element in its
image has exactly r distinct preimages.
Input: an r-to-one function F.
Output: x1 and x2 such that F(x1) = F(x2).

Key Results

The algorithm presented here finds collisions in arbitrary
r-to-one functions F after only O(3pN/r) expected evalua-
tions of F. The algorithm uses the function as a black box,
that is, the only thing the algorithm requires is the capac-
ity to evaluate the function. Again assuming the function
is given by a black box, the algorithm is optimal [1] and it
is more efficient than the best possible classical algorithm,
which has query complexity˝(

p
N/r). The result is stated

precisely in the following theorem and corollary.

Theorem 1 Given an r-to-one function F : X ! Y
with r � 2 and an integer 1 � k � N = jXj, algorithm
Collision(F; k) returns a collision after an expected num-
ber of O(k+

p
N/(rk)) evaluations of F and uses space	(k).

In particular, when k = 3pN/r then Collision(F; k) uses an
expected number of O(3pN/r) evaluations of F and space
	(3pN/r).

QuantumAlgorithm for the Discrete Logarithm Problem Q 683

Corollary 2 There exists a quantum algorithm that can
find a collision in an arbitrary r-to-one function F : X !
Y, for any r � 2, using space S and an expected number of
O(T) evaluations of F for every 1 � S � T subject to

ST2 � jF(X)j;

where F(X) denotes the image of F.

The algorithm uses as a procedure a version of Grover’s
search algorithm. Given a function H with domain size n
and a target y, Grover(H; y) returns an x such that
H(x) = y in expected O(

p
n) evaluations of H.

Collision(F,k)

1. Pick an arbitrary subset K
 X of cardinality k. Con-
struct a table L of size k where each item in L holds
a distinct pair (x; F(x)) with x 2 K.

2. Sort L according to the second entry in each item of L.
3. Check if L contains a collision, that is, check if there

exist distinct elements (x0; F(x0)); (x1; F(x1)) 2 L for
which F(x0) = F(x1). If so, go to step 6.

4. Compute x1 = Grover(H; 1), where H : X ! f0; 1g
denotes the function defined by H(x) = 1 if and only
if there exists x0 2 K so that (x0; F(x)) 2 L but x 6= x0.
(Note that x0 is unique if it exists since we already
checked that there are no collisions in L.)

5. Find (x0; F(x1)) 2 L.
6. Output the collision fx0; x1g.

Applications

This problem is of particular interest for cryptology be-
cause some functions known as hash functions are used
in various cryptographic protocols. The security of these
protocols crucially depends on the presumed difficulty of
finding collisions in such functions.

Cross References

� Greedy Set-Cover Algorithms

Recommended Reading
1. Aaronson, S., Shi, Y.: Quantum Lower Bounds for the Collision

and the Element Distinctness Problems. J. ACM 51(4), 595–605
(2004)

2. Boyer, M., Brassard, G., Høyer, P., Tapp A.: Tight bounds on
quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998)

3. Brassard, G., Høyer, P., Mosca, M., Tapp A.: QuantumAmplitude
Amplification and Estimation. In: Lomonaco, S.J. (ed.) Quan-
tum Computation & Quantum Information Science, AMS Con-
temporary Mathematics Series Millennium Volume, vol. 305,
pp. 53–74. American Mathematical Society, Providence (2002)

4. Brassard, G., Høyer, P., Tapp, A.: Quantum Algorithm for the
Collision Problem. 3rd Latin American Theoretical Informatics
Symposium (LATIN’98). LNCS, vol. 1380, pp. 163–169. Springer
(1998)

5. Carter, J.L., Wegman, M.N.: Universal classes of hash functions.
J. Comput. Syst. Sci. 18(2), 143–154 (1979)

6. Grover, L.K.: A fast quantum mechanical algorithm for data-
base search. Proceedings of the 28th Annual ACM Symposium
on Theory of Computing, pp. 212–219. ACM (1996)

7. Stinson, D.R.: Cryptography: Theory andPractice, CRC Press, Inc
(1995)

8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quan-
tum Information. Cambridge University Press, Cambridge
(2000)

QuantumAlgorithm
for the Discrete Logarithm Problem
1994; Shor

PRANAB SEN
School of Technology and Computer Science,
Tata Institute of Fundamental Research,
Mumbai, India

Keywords and Synonyms

Logarithms in groups

ProblemDefinition

Given positive real numbers a ¤ 1; b, the logarithm of b
to base a is the unique real number s such that b = as . The
notion of the discrete logarithm is an extension of this con-
cept to general groups.

Problem 1 (Discrete logarithm)
Input:Group G; a; b 2 G such that b = as for some positive
integer s.
Output: The smallest positive integer s satisfying b = as,
also known as the discrete logarithm of b to the base a in G.

The usual logarithm corresponds to the discrete logarithm
problem over the group of positive reals under multipli-
cation. The most common case of the discrete logarithm
problem is when the group G = Z�p , the multiplicative
group of integers between 1 and p � 1 modulo p, where
p is a prime. Another important case is when the group G
is the group of points of an elliptic curve over a finite field.

Key Results

The discrete logarithm problem inZ�p , where p is a prime,
as well as in the group of points of an elliptic curve
over a finite field is believed to be intractable for ran-

684 Q Quantum Algorithm for the Discrete Logarithm Problem

domized classical computers. That is any, possibly ran-
domized, algorithm for the problem running on a clas-
sical computer will take time that is superpolynomial in
the number of bits required to describe an input to the
problem. The best classical algorithm for finding discrete
logarithms in Z�p , where p is a prime, is Gordon’s [4]
adaptation of the number field sieve which runs in time
exp(O((log p)1/3(log log p)2/3)).

In a breakthrough result, Shor [9] gave an efficient
quantum algorithm for the discrete logarithm problem in
any group G; his algorithm runs in time that is polynomial
in the bit size of the input.

Result 1 ([9]) There is a quantum algorithm solving the
discrete logarithm problem in any group G on n-bit inputs
in time O(n3) with probability at least 3/4.

Description of the Discrete Logarithm Algorithm

Shor’s algorithm [9] for the discrete logarithm prob-
lem makes essential use of an efficient quantum proce-
dure for implementing a unitary transformation known
as the quantum Fourier transform. His original algorithm
gave an efficient procedure for performing the quan-
tum Fourier transform only over groups of the form Zr ,
where r is a “smooth” integer, but nevertheless, he showed
that this itself sufficed to solve the discrete logarithm in the
general case. In this article, however, a more modern de-
scription of Shor’s algorithm is given. In particular, a result
by Hales and Hallgren [5] is used which shows that the
quantum Fourier transform over any finite cyclic group
Zr can be efficiently approximated to inverse-exponential
precision.

A description of the algorithm is given below. A gen-
eral familiarity with quantum notation on the part of
the reader is assumed. A good introduction to quan-
tum computing can be found in the book by Nielsen
and Chuang [8]. Let (G; a; b; r̄) be an instance of the
discrete logarithm problem, where r̄ is a supplied up-
per bound on the order of a in G. That is, there exists
a positive integer r � r̄ such that ar = 1. By using an ef-
ficient quantum algorithm for order finding also discov-
ered by Shor [9], one can assume that the order of a in G
is known, that is, the smallest positive integer r satisfy-
ing ar = 1. Shor’s order-finding algorithm runs in time
O((log r̄)3). Let � > 0. The discrete logarithm algorithm
works on three registers, of which the first two are each t
qubits long, where t := O(log r + log(1/�)), and the third
register is big enough to store an element of G. Let U de-
note the unitary transformation

U : jxijyijzi 7! jxijyijz˚ (bx ay)i ;

where˚ denotes bitwise XOR. Given access to a reversible
oracle for group operations in G, U can be implemented
reversibly in time O(t3) by repeated squaring.

Let C[Zr] denote the Hilbert space of functions from
Zr to complex numbers. The computational basis of
C[Zr] consists of the delta functions fjlig0�l�r�1, where
ji is the function that sends the element l to 1 and the
other elements of Zr to 0. Let QFTZr denote the quantum
Fourier transform over the cyclic group Zr defined as the
following unitary operator on C[Zr]:

QFTZr : jxi 7! r�1/2
X
y2Zr

e�2� i x y/r jyi :

It can be implemented in quantum time O(t log(t/�) +
log2(1/�)) up to an error of � using one t-qubit regis-
ter [5]. Note that for any k 2 Zr ;QFTZr transforms the
state r�1/2

P
x2Zr

e2� i kx/r jxi to the state jki. For any in-
teger l ; 0 � l � r � 1, define

j l̂i := r�1/2
r�1X
k=0

e�2� i l k/rjaki : (1)

Observe that fj l̂ig0�l�r�1 forms an orthonormal basis of
C[hai], where hai is the subgroup generated by a in G and
is isomorphic to Zr , and C[hai] denotes the Hilbert space
of functions from hai to complex numbers.

Algorithm 1 (Discrete logarithm)
Input: Elements a; b 2 G, a quantum circuit for U, the or-
der r of a in G.
Output: With constant probability, the discrete loga-
rithm s of b to the base a in G.
Runtime: A total of O(t3) basic gate operations, including
four invocations of QFTZr and one of U.

PROCEDURE:
1. Repeat Steps (a)–(e) twice, obtaining (sl1 mod r; l1)

and (sl2 mod r; l2).

(a) j0ij0ij0i
Initialization;

(b) 7! r�1
X

x;y2Zr

jxijyij0i

ApplyQFTZr to the first two registers;

(c) 7! r�1
X

x;y2Zr

jxijyijbxayi

Apply U

QuantumAlgorithm for the Discrete Logarithm Problem Q 685

(d) 7! r�1/2
r�1X
l=0

jsl mod rijlij l̂i

Apply QFTZr to the first two registers;
(e) 7! (sl mod r; l)

Measure the first two registers;

2. If l1 is not coprime to l2, abort.
3. Let k1; k2 be integers such that k1 l1 + k2 l2 = 1. Then,

output s = k1(sl1) + k2(sl2) mod r.

The working of the algorithm is explained below. From
Eq. (1), it is easy to see that

jbx ayi = r�1/2
r�1X
l=0

e2� i l (sx+y)/r j l̂i :

Thus, the state in Step 1(c) of the above algorithm can be
written as

r�1
X

x;y2Zr

jxijyijbxayi

= r�3/2
r�1X
l=0

X
x;y2Zr

e2� i l (sx+y)/r jxijyij l̂i

= r�3/2
r�1X
l=0

2
4X
x2Zr

e2� i s l x/r jxi

3
5�
2
4X
y2Zr

e2� i l y/r jyi

3
5 j l̂i:

Now, applying QFTZr to the first two registers gives the
state in Step 1(d) of the above algorithm. Measuring the
first two registers gives (sl mod r; l) for a uniformly dis-
tributed l ; 0 � l � r � 1 in Step 1(e). By elementary num-
ber theory, it can be shown that if integers l1, l2 are uni-
formly and independently chosen between 0 and l � 1,
they will be coprime with constant probability. In that
case, there will be integers k1, k2 such that k1 l1 + k2 l2 = 1,
leading to the discovery of the discrete logarithm s in
Step 3 of the algorithm with constant probability. Since
actually only an �-approximate version of QFTZr can be
applied, � can be set to be a sufficiently small constant,
and this will still give the correct discrete logarithm s in
Step 3 of the algorithm with constant probability. The suc-
cess probability of Shor’s algorithm for the discrete loga-
rithm problem can be boosted to at least 3/4 by repeating
it a constant number of times.

Generalizations of the Discrete Logarithm Algorithm

The discrete logarithm problem is a special case of a more
general problem called the hidden subgroup problem [8].

The ideas behind Shor’s algorithm for the discrete loga-
rithm problem can be generalized in order to yield an effi-
cient quantum algorithm for hidden subgroups in Abelian
groups (see [1] for a brief sketch). It turns out that find-
ing the discrete logarithm of b to the base a in G reduces
to the hidden subgroup problem in the group Zr � Zr
where r is the order of a in G. Besides the discrete log-
arithm problem, other cryptographically important func-
tions like integer factoring, finding the order of permuta-
tions, as well as finding self-shift-equivalent polynomials
over finite fields can be reduced to instances of a hidden
subgroup in Abelian groups.

Applications

The assumed intractability of the discrete logarithm prob-
lem lies at the heart of several cryptographic algorithms
and protocols. The first example of public-key cryptogra-
phy, namely, the Diffie–Hellman key exchange [2], uses
discrete logarithms, usually in the group Z�p for a prime p.
The security of the US national standard Digital Signature
Algorithm (see [7] for details and more references) de-
pends on the assumed intractability of discrete logarithms
in Z�p , where p is a prime. The ElGamal public-key cryp-
tosystem [3] and its derivatives use discrete logarithms in
appropriately chosen subgroups ofZ�p , where p is a prime.
More recent applications include those in elliptic curve
cryptography [6], where the group consists of the group
of points of an elliptic curve over a finite field.

Cross References

� Abelian Hidden Subgroup Problem
� Quantum Algorithm for Factoring

Recommended Reading

1. Brassard, G., Høyer, P.: An exact quantum polynomial-time al-
gorithm for Simon’s problem. In: Proceedings of the 5th Israeli
Symposium on Theory of Computing and Systems, pp. 12–23,
Ramat-Gan, 17–19 June 1997

2. Diffie, W., Hellman, M.: New directions in cryptography. IEEE
Trans. Inf. Theor. 22, 644–654 (1976)

3. ElGamal, T.: A public-key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–
472 (1985)

4. Gordon, D.: Discrete logarithms in GF(p) using the number field
sieve. SIAM J. Discret. Math. 6(1), 124–139 (1993)

5. Hales, L., Hallgren, S.: An improved quantum Fourier transform
algorithm and applications. In: Proceedings of the 41st Annual
IEEE Symposiumon Foundations of Computer Science, pp. 515–
525 (2000)

6. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve
Cryptography. Springer, New York (2004)

686 Q Quantum Algorithm for Element Distinctness

7. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Ap-
plied Cryptography. CRC Press, Boca Raton (1997)

8. Nielsen, M., Chuang, I.: Quantum computation and quantum in-
formation. Cambridge University Press, Cambridge (2000)

9. Shor, P.: Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput.
26(5), 1484–1509 (1997)

QuantumAlgorithm
for Element Distinctness
2004; Ambainis

ANDRIS AMBAINIS
Department of Computer Science, University of Latvia,
Riga, Latvia

ProblemDefinition

In the element distinctness problem, one is given a list of
N elements x1; : : : ; xN 2 f1; : : : ;mg and one must deter-
mine if the list contains two equal elements. Access to the
list is granted by submitting queries to a black box, and
there are two possible types of query.

Value queries. In this type of query, the input to the
black box is an index i. The black box outputs xi as the
answer. In the quantum version of this model, the in-
put is a quantum state that may be entangled with the
workspace of the algorithm. The joint state of the query,
the answer register, and the workspace may be repre-
sented as

P
i;y;z ai;y;zji; y; zi, with y being an extra regis-

ter which will contain the answer to the query and z being
the workspace of the algorithm. The black box transforms
this state into

P
i;y;z ai;y;zji; (y + xi) mod m; zi. The sim-

plest particular case is if the input to the black box is of the
form

P
i ai ji; 0i. Then, the black box outputs

P
i ai ji; xii.

That is, a quantum state consisting of the index i is trans-
formed into a quantum state, each component of which
contains xi together with the corresponding index i.

Comparison queries. In this type of query, the input
to the black box consists of two indices i, j. The black box
gives one of three possible answers: “xi > x j”, “xi < x j” or
“xi = x j”. In the quantum version, the input is a quantum
state consisting of basis states ji; j; zi, with i, j being two
indices and z being algorithm’s workspace.

There are several reasons why the element distinctness
problem is interesting to study. First of all, it is related to
sorting. Being able to sort x1,. . . ,xN enables one to solve the
element distinctness by first sorting x1,. . . ,xN in increas-
ing order. If there are two equal elements xi = x j , then
they will be next one to another in the sorted list. There-
fore, after one has sorted x1,. . . ,xN , one must only check

the sorted list to see if each element is different from the
next one. Because of this relation, the element distinct-
ness problem might capture some of the same difficulty
as sorting. This has lead to a long line of research on clas-
sical lower bounds for the element distinctness problem
(cf [6,8,15]. and many other papers).

Second, the central concept of the algorithms for the
element distinctness problem is the notion of a collision.
This notion can be generalized in different ways, and
its generalizations are useful for building quantum algo-
rithms for various graph-theoretic problems (e. g. triangle
finding [12]) and matrix problems (e. g. checking matrix
identities [7]).

A generalization of element distinctness is element
k-distinctness [2], in which one must determine if there
exist k different indices i1; : : : ; ik 2 f1; : : : ;Ng such that
xi1 = xi2 = � � � = xik . A further generalization is the k-sub-
set finding problem [9], in which one is given a function
f (y1; : : : ; yk), and must determine whether there exist
i1; : : : ; ik 2 f1; : : : ;Ng such that f (xi1 ; xi2 ; : : : ; xik) = 1.

Key Results

Element Distinctness: Summary of Results

In the classical (non-quantum) context, the natural solu-
tion to the element distinctness problem is done by sort-
ing, as described in the previous section. This uses O(N)
value queries (or O(N logN) comparison queries) and
O(N logN) time. Any classical algorithm requires ˝(N)
value or˝(N log N) comparison queries. If the algorithm
is restricted to o(N) space, stronger lower bounds are
known [15].

In the quantum context, Buhrman et al. [5] gave
the first non-trivial quantum algorithm, using O(N3/4)
queries. Ambainis [2] then designed a new algorithm,
based on a novel idea using quantum walks. Ambainis’
algorithm uses O(N2/3) queries and is known to be opti-
mal: Aaronson and Shi [1,3,10] have shown that any quan-
tum algorithm for element distinctness must use˝(N2/3)
queries.

For quantum algorithms that are restricted to stor-
ing r values xi (where r < N2/3), the best algorithm runs
in O(N/

p
r) time.

All of these results are for value queries. They can be
adapted to the comparison query model, with an logN
factor increase in the complexity. The time complexity is
within a polylogarithmic O(logc N) factor of the query
complexity, as long as the computational model is suffi-
ciently general [2]. (Random access quantum memory is
necessary for implementing any of the two known quan-
tum algorithms.)

QuantumAlgorithm for Element Distinctness Q 687

Element k-distinctness (and k-subset finding)
can be solved with O(Nk/(k+1)) value queries, using
O(Nk/(k+1)) memory. For the case when the memory is
restricted to r < Nk/(k+1) values of xi, it suffices to use
O(r + (Nk/2)/(r(k�1)/2)) value queries. The results gener-
alize to comparison queries and time complexity, with
a polylogarithmic factor increase in the time complexity
(similarly to the element distinctness problem).

Element Distinctness: The Methods

Ambainis’ algorithm has the following structure. Its state
space is spanned by basic states jTi, for all sets of in-
dices T
 f1; : : : ;Ng with jTj = r. The algorithm starts in
a uniform superposition of all jTi and repeatedly applies
a sequence of two transformations:
1. Conditional phase flip: jTi ! �jTi for all T such that

T contains i, j with xi = x j and jTi ! jTi for all
other T;

2. Quantumwalk: perform O(
p
r) steps of quantumwalk,

as defined in [2]. Each step is a transformation that
maps each jTi to a combination of basis states jT 0i for
T 0 that differ from T in one element.
The algorithm maintains another quantum register,

which stores all the values of xi ; i 2 T . This register is up-
dated with every step of the quantum walk.

If there are two elements i, j such that xi = x j , repeat-
ing these two transformations O(N/r) times increases the
amplitudes of jTi containing i, j. Measuring the state of
the algorithm at that point with high probability produces
a set T containing i, j. Then, from the set T, we can find i
and j.

The basic structure of [2] is similar to Grover’s
quantum search, but with one substantial difference. In
Grover’s algorithm, instead of using a quantum walk, one
would use Grover’s diffusion transformation. Implement-
ing Grover’s diffusion requires˝(r) updates to the register
that stores xi ; i 2 T . In contrast to Grover’s diffusion, each
step of quantum walk changes T by one element, requir-
ing just one update to the list of xi ; i 2 T . Thus, O(

p
r)

steps of quantum walk can be performed with O(
p
r) up-

dates, quadratically better than Grover’s diffusion. And,
as shown in [2], the quantum walk provides a sufficiently
good approximation of diffusion for the algorithm to work
correctly.

This was one of first uses of quantum walks to con-
struct quantum algorithms. Ambainis, Kempe, Rivosh [4]
then generalized it to handle searching on grids (described
in another entry of this encyclopedia). Their algorithm is
based on the same mathematical ideas, but has a slightly
different structure. Instead of alternating quantum walk

. Initialize x to a state sampled from some initial dis-
tribution over the states of P.

. t times repeat:
(a) If the current state y is marked, output y and

stop;
(b) Simulate t steps of random walk, starting with

the current state y.
. If the algorithm has not terminated, output “no

marked state".

Quantum Algorithm for Element Distinctness, Algorithm 1
Search by a classical randomwalk

steps with phase flips, it performs a quantum walk with
two different walk rules – the normal walk rule and the
“perturbed” one. (The normal rule corresponds to a walk
without a phase flip and the “perturbed” rule corresponds
to a combination of the walk with a phase flip).

Generalization to Arbitrary Markov Chains

Szegedy [14] and Magniez et al. [13] have generalized
the algorithms of [4] and [2], respectively, to speed up
the search of an arbitrary Markov chain. The main result
of [13] is as follows.

Let P be an irreducible Markov chain with state space
X. Assume that some states in the state space of P are
marked. Our goal is to find a marked state. This can be
done by a classical algorithm that runs the Markov chain
P until it reaches a marked state (Algorithm 1).

There are 3 costs that contribute to the complexity of
Algorithm 1:
1. Setup cost S: the cost to sample the initial state x from

the initial distribution.
2. Update cost U: the cost to simulate one step of a ran-

dom walk.
3. Checking cost C: the cost to check if the current state x

is marked.
The overall complexity of the classical algorithm is then
S + t2(t1U + C). The required t1 and t2 can be calculated
from the characteristics of the Markov chain P. Namely,

Proposition 1 ([13]) Let P be an ergodic, yet symmetric
Markov chain. Let ı > 0 be the eigenvalue gap of P and,
assume that, whenever the set of marked states M is non-
empty, we have jMj/jXj � �. Then there are t1 = O(1/ı)
and t2 = O(1/�) such that Algorithm 1 finds a marked ele-
ment with high probability.

Thus, the cost of finding a marked element classically
is O(S + 1/�(1/ıU + C)). Magniez et al. [13] construct
a quantum algorithm that finds a marked element in

688 Q Quantum Algorithm for Element Distinctness

O(S0 + 1/�(1/
p
ıU 0 + C0)) steps, with S0, U 0, C0 being

quantum versions of the setup, update and checking costs
(in most of applications, these are of the same order as S,
U and C). This achieves a quadratic improvement in the
dependence on both " and ı.

The element distinctness problem is solved by a partic-
ular case of this algorithm: a search on the Johnson graph.
The Johnson graph is the graph whose vertices vT corre-
spond to subsets T
 f1; : : : ;Ng of size jTj = r. A vertex
vT is connected to a vertex vT 0 , if the subsets T and T 0 dif-
fer in exactly one element. A vertex vT ismarked if T con-
tains indices i, j with xi = x j .

Consider the following Markov chain on the Johnson
graph. The starting probability distribution s is the uni-
form distribution over the vertices of the Johnson graph.
In each step, the Markov chain chooses the next vertex vT 0
from all vertices that are adjacent to the current vertex vT ,
uniformly at random. While running the Markov chain,
one maintains a list of all xi ; i 2 T. This means that the
costs of the classical Markov chain are as follows:
� Setup cost of S = r queries (to query all xi ; i 2 T where

vT is the starting state).
� Update cost of U = 1 query (to query the value xi ;

i 2 T 0 � T , where vT is the vertex before the step and
vT 0 is the new vertex).

� Checking cost of C = 0 queries (the values xi ; i 2 T are
already known to the algorithm, no further queries are
needed).

The quantum costs S0, U 0, C0 are of the same order as S,
U, C.

For this Markov chain, it can be shown that the eigen-
value gap is ı = O(1/r) and the fraction of marked states
is � = O((r2)/(N2)). Thus, the quantum algorithm runs in
time

O
�
S0 +

1
p
�

�
1
p
ı
U 0 + C0

��

= O
�
S0 +
p
r
�
N
r
U 0 + C0

��
= O

�
r +

N
p
r

�
:

Applications

Magniez et al. [12] showed how to use the ideas from the
element distinctness algorithm as a subroutine to solve
the triangle problem. In the triangle problem, one is given
a graph G on n vertices, accessible by queries to an oracle,
and theymust determine whether the graph contains a tri-
angle (three vertices v1, v2, v3 with v1 v2, v1 v3 and v2 v3 all
being edges). This problem requires ˝(n2) queries classi-
cally. Magniez et al. [12] showed that it can be solved using
O(n1:3 logc n) quantum queries, with a modification of the

element distinctness algorithm as a subroutine. This was
then improved to O(n1.3) by [13].

The methods of Szegedy [14] and Magniez et al. [13]
can be used as subroutines for quantum algorithms for
checking matrix identities [7,11].

Open Problems

1. How many queries are necessary to solve the element
distinctness problem if the memory accessible to the al-
gorithm is limited to r items, r < N2/3? The algorithm
of [2] gives O(N/

p
r) queries, and the best lower bound

is˝(N2/3) queries.
2. Consider the following problem:

Graph collision [12]. The problem is specified by
a graph G (which is arbitrary but known in advance)
and variables x1; : : : ; xN 2 f0; 1g, accessible by queries
to an oracle. The task is to determine if G contains an
edge uv such that xu = xv = 1. How many queries are
necessary to solve this problem?
The element distinctness algorithm can be adapted to
solve this problem with O(N2/3) queries [12], but there
is no matching lower bound. Is there a better algo-
rithm? A better algorithm for the graph collision prob-
lemwould immediately imply a better algorithm for the
triangle problem.

Cross References

� Quantization of Markov Chains
� Quantum Algorithm for Finding Triangles
� Quantum Search

Recommended Reading
1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision

and the element distinctness problems. J. ACM 51(4), 595–605
(2004)

2. Ambainis, A.: Quantum walk algorithm for element distinct-
ness. SIAM J. Comput. 37(1), 210–239 (2007)

3. Ambainis, A.: Polynomial degree and lower bounds in quan-
tum complexity: Collision and element distinctness with small
range. Theor. Comput. 1, 37–46 (2005)

4. Ambainis, A., Kempe, J., Rivosh, A.: In: Proceedings of the
ACM/SIAM Symposium on Discrete Algorithms (SODA’06),
2006, pp. 1099–1108

5. Buhrman,H., Durr, C., Heiligman,M., Høyer, P., Magniez, F., San-
tha, M., de Wolf, R.: Quantum algorithms for element distinct-
ness. SIAM J. Comput. 34(6), 1324–1330 (2005)

6. Borodin, A., Fischer, M., Kirkpatrick, D., Lynch, N.: A time-space
tradeoff for sorting on non-oblivious machines. J. Comput.
Syst. Sci. 22, 351–364 (1981)

7. Buhrman, H., Spalek, R.: Quantum verification of matrix prod-
ucts. In: Proceedings of the ACM/SIAMSymposium on Discrete
Algorithms (SODA’06), 2006, pp. 880–889

QuantumAlgorithm for Factoring Q 689

8. Beame, P., Saks, M., Sun, X., Vee, E.: Time-space trade-off lower
bounds for randomized computation of decision problems.
J. ACM 50(2), 154–195 (2003)

9. Childs, A.M., Eisenberg, J.M.: Quantum algorithms for subset
finding. Quantum Inf. Comput. 5, 593 (2005)

10. Kutin, S.: Quantum lower bound for the collision problemwith
small range. Theor. Comput. 1, 29–36 (2005)

11. Magniez, F., Nayak, A.: Quantum complexity of testing group
commutativity. In: Proceedings of the International Collo-
quium Automata, Languages and Programming (ICALP’05),
2005, pp. 1312–1324

12. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for
the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

13. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search by quan-
tum walk. In: Proceedings of the ACM Symposium on the The-
ory of Computing (STOC’07), 2007, pp. 575–584

14. Szegedy, M.: Quantum speed-up of Markov Chain based algo-
rithms. In: Proceedings of the IEEE Conference on Foundations
of Computer Science (FOCS’04), 2004, pp. 32–41

15. Yao, A.: Near-optimal time-space tradeoff for element distinct-
ness. SIAM J. Comput. 23(5), 966–975 (1994)

Quantum Algorithm for Factoring
1994; Shor

SEAN HALLGREN
Department of Computer Science and Engineering, The
Pennsylvania State University, University Park, PA, USA

ProblemDefinition

Every positive integer n has a unique decomposition as
a product of primes n = pe11 � � � p

ek
k , for primes numbers pi

and positive integer exponents ei. Computing the decom-
position p1; e1; : : : ; pk ; ek from n is the factoring prob-
lem.

Factoring has been studied for many hundreds of years
and exponential time algorithms for it were found that in-
clude trial division, Lehman’smethod, Pollard’s �method,
and Shank’s class group method [1]. With the invention
of the RSA public-key cryptosystem in the late 1970s, the
problem became practically important and started receiv-
ing much more attention. The security of RSA is closely
related to the complexity of factoring, and in particular,
it is only secure if factoring does not have an efficient al-
gorithm. The first subexponential-time algorithm is due
to Morrison and Brillhard [4] using a continued frac-
tion algorithm. This was succeeded by the quadratic sieve
method of Pomerance and the elliptic curve method of
Lenstra [5]. The Number Field Sieve [2,3], found in 1989,
is the best known classical algorithm for factoring and runs
in time exp(c(log n)1/3(log log n)2/3) for some constant c.
Shor’s result is a polynomial-time quantum algorithm for
factoring.

Key Results

Theorem 1 ([2,3]) There is a subexponential-time
classical algorithm that factors the integer n in time
exp(c(log n)1/3(log log n)2/3).

Theorem 2 ([6]) There is a polynomial-time quantum al-
gorithm that factors integers. The algorithm factors n in
time O((log n)2(log n log n)(log log log n)) plus polynomial
in log n post-processing which can be done classically.

Applications
Computationally hard number theoretic problems are use-
ful for public key cryptosystems. The RSA public-key cryp-
tosystem, as well as others, require that factoring not have
an efficient algorithm. The best known classical algorithms
for factoring can help determine how secure the cryptosys-
tem is and what key sizes to choose. Shor’s quantum algo-
rithm for factoring can break these systems in polynomial-
time using a quantum computer.

Open Problems
Whether there is a polynomial-time classical algorithm for
factoring is open. There are problems which are harder
than factoring such as finding the unit group of an arbi-
trary degree number field for which no efficient quantum
algorithm has been found yet.

Cross References
� Quantum Algorithm for the Discrete Logarithm

Problem
� Quantum Algorithms for Class Group of a Number

Field
� Quantum Algorithm for Solving the Pell’s Equation

Recommended Reading

1. Cohen, H.: A course in computational algebraic number theory.
Graduate Texts in Mathematics, vol. 138. Springer (1993)

2. Lenstra, A., Lenstra, H. (eds.): The Development of the Number
Field Sieve. Lecture Notes in Mathematics, vol. 1544. Springer
(1993)

3. Lenstra, A.K., Lenstra, H.W. Jr., Manasse, M.S., Pollard, J.M.: The
number field sieve. In: Proceedings of the Twenty Second An-
nual ACM Symposium on Theory of Computing, Baltimore,
Maryland, 14–16 May 1990, pp. 564–572

4. Morrison, M., Brillhart, J.: A method of factoring and the factor-
ization of F7

5. Pomerance, C.: Factoring. In: Pomerance, C. (ed.) Cryptology
and Computational Number Theory, Proceedings of Symposia
in Applied Mathematics, vol. 42, p. 27. American Mathematical
Society

6. Shor, P.W.: Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Com-
put. 26, 1484–1509 (1997)

690 Q Quantum Algorithm for Finding Triangles

QuantumAlgorithm
for Finding Triangles
2005; Magniez, Santha, Szegedy

PETER RICHTER
Department of Computer Science, Rutgers, The State
University of New Jersey, Piscataway, NJ, USA

Keywords and Synonyms

Triangle finding

ProblemDefinition

A triangle is a clique of size three in an undirected graph.
Triangle finding is a fundamental computational problem
whose time complexity is closely related to that of ma-
trix multiplication. It has been the subject of considerable
study recently as a basic search problem whose quantum
query complexity is still unclear, in contrast to the unstruc-
tured search problem [4,10] and the element distinctness
problem [1,3]. This survey concerns quantum query algo-
rithms for triangle finding.

Notation and Constraints

A quantum query algorithm Qf : j 0i 7! j f i computes
a property P of a function f by mapping the initial state
j 0i = j0ij0ij0i (in which its query, answer, andworkspace
registers are cleared) to a final state j f i = Qf j 0i by ap-
plying a sequence Qf = UkO f Uk�1Of � � �U1Of U0 of uni-
tary operators on the complex vector space spanned by all
possible basis states jxijaijzi. The unitary operators are of
two types: oracle queries O f : jxijaijzi 7! jxija˚ f (x)ijzi,
which yield information about f , and non-query steps Uk,
which are independent of f . The quantum query complex-
ity of P is the minimum number of oracle queries required
by a quantum query algorithm computing P with proba-
bility at least 2/3.

Consider the triangle finding problem for an unknown
(simple, undirected) graph G
 f(a; b) : a; b 2 [n]; a ¤
bg on vertices [n] = f1; : : : ; ng and m = jGj undirected
edges, where (a; b) = (b; a) by convention. The function f
to query is the adjacency matrix ofG and the property P to
be computed is whether or not G contains a triangle.

Problem 1 (Triangle finding)
INPUT: The adjacency matrix f of a graph G on n vertices.
OUTPUT: A triangle with probability � 2/3 if one exists
(search version), or a boolean value indicating whether or
not one exists with probability� 2/3 (decision version).

A lower bound of˝(n) on the quantum query complexity
of the triangle finding problem was shown by Buhrman et
al. [6]. The trivial upper bound of O(n2) is attainable by
querying every entry of f classically.

Classical Results

The classical randomized query complexity of a problem
is defined similarly to the quantum query complexity, only
the operators Uk are stochastic rather than unitary; in par-
ticular, this means oracle queries can bemade according to
classical distributions but not quantum superpositions. It
is easy to see that the randomized query complexity of the
triangle finding problem (search and decision versions) is
	(n2).

Key Results

Improvement of the upper bound on the quantum query
complexity of the triangle finding problem has stemmed
from two lines of approach: increasingly clever utiliza-
tion of structure in the search space (combined with stan-
dard quantum amplitude amplification) and application of
quantum walk search procedures.

An O(n +
p
nm) Algorithm Using Amplitude

Amplification

Since there are
�n
3
�
potential triangles (a; b; c) in G, a triv-

ial application of Grover’s quantum search algorithm [10]
solves the triangle finding problem with O(n3/2) quantum
queries. Buhrman et al. [6] improved this upper bound in
the special case where G is sparse (i. e., m = o(n2)) by the
following argument.

Suppose Grover’s algorithm is used to find (a) an edge
(a; b) 2 G among all

�n
2
�
potential edges, followed by (b)

a vertex c 2 [n] such that (a; b; c) is a triangle in G. The
costs of steps (a) and (b) are O(

p
n2/m) and O(

p
n)

quantum queries, respectively. If G contains a triangle �,
then step (a) will find an edge (a, b) from � with prob-
ability ˝(1/m), and step (b) will find the third vertex
c in the triangle � = (a; b; c) with constant probability.
Therefore, steps (a) and (b) together find a triangle with
probability ˝(1/m). By repeating the steps O(

p
m) times

using amplitude amplification (Brassard et al. [5]), one
can find a triangle with probability 2/3. The total cost is
O(
p
m(
p
n2/m +

p
n)) = O(n +

p
nm) quantum queries.

Summarizing:

Theorem 1 (Buhrman et al. [6]) Using quantum am-
plitude amplification, the triangle finding problem can be
solved in O(n +

p
nm) quantum queries.

QuantumAlgorithm for Finding Triangles Q 691

An Õ(n10/7) Algorithm Using Amplitude Amplification

Let �2 be the complete graph on vertices �
 [n], �G (v)
be the set of vertices adjacent to a vertex v, and degG(v)
be the degree of v. Note that for any vertex v 2 [n], one
can either find a triangle in G containing v or verify that
G
 [n]2 n �G (v)2 with Õ(n) quantum queries and suc-
cess probability 1 � 1/n3, by first computing �G (v) classi-
cally and then using Grover’s search logarithmically many
times to find an edge of G in �G (v)2 with high probability
if one exists. Szegedy et al [13,14]. use this observation to
design an algorithm for the triangle finding problem that
utilizes no quantum procedure other than amplitude am-
plification (just like the algorithm of Buhrman et al [6].)
yet requires only Õ(n10/7) quantum queries.

The algorithm of Szegedy et al. [13,14]. is as fol-
lows. First, select k = Õ(n�) vertices v1; : : : ; vk uni-
formly at random from [n] without replacement and
compute each �G(vi). At a cost of Õ(n1+�) quantum
queries, one can either find a triangle in G contain-
ing one of the vi or conclude with high probability that
G
 G0 := [n]2 n [i�G (vi)2. Suppose the latter. Then it
can be shown that with high probability, one can construct
a partition (T, E) of G0 such that T contains O(n3��0)
triangles and E \ G has size O(n2�ı + n2��+ı+�0) in
Õ(n1+ı+�0) queries (or one will find a triangle in G in
the process). Since G
 G0, every triangle in G either lies
within T or intersects E. In the first case, one will find a tri-
angle in G \ T in O(

p
n3��0) quantum queries by search-

ing G with Grover’s algorithm for a triangle in T, which
is known from the partitioning procedure. In the second
case, one will find a triangle in G with an edge in E in
Õ(n +

p
n3�minfı;��ı��0g) quantum queries using the al-

gorithm of Buhrman et al.[6] with m = jG \ Ej. Thus:

Theorem 2 (Szegedy et al. [13,14]) Using quantum am-
plitude amplification, the triangle finding problem can be
solved in Õ(n1+� + n1+ı+�0 +

p
n3��0 +

p
n3�minfı;��ı��0g)

quantum queries.

Letting � = 3/7 and �0 = ı = 1/7 yields an algorithm using
Õ(n10/7) quantum queries.

An Õ(n13/10) Algorithm Using QuantumWalks

Amore efficient algorithm for the triangle finding problem
was obtained by Magniez et al. [13], using the quantum
walk search procedure introduced by Ambainis [3] to ob-
tain an optimal quantum query algorithm for the element
distinctness problem.

Given oracle access to a function f defining a re-
lation C
 [n]k Ambainis’ search procedure solves the
k-collision problem: find a pair (a1; : : : ; ak) 2 C if one

exists. The search procedure operates on three quan-
tum registers jAijD(A)ijyi: the set register jAi holds
a set A
 [n] of size jAj = r, the data register jD(A)i
holds a data structure D(A), and the coin register jyi
holds an element i … A. By checking the data struc-
ture D(A) using a quantum query procedure ˚ with
checking cost c(r), one can determine whether or not
Ak \ C ¤ ;. Suppose D(A) can be constructed from
scratch at a setup cost s(r) and modified from D(A) to
D(A0) where jA\ A0j = r � 1 at an update cost u(r). Then
Ambainis’ quantum walk search procedure solves the k-
collision problem in Õ(s(r) + (nr)

k/2 � (c(r) +
p
r � u(r)))

quantum queries. (For details, see the encyclopedia entry
on element distinctness.)

Consider the graph collision problem on a graph
G
 [n]2, where f defines the binary relationC
 [n]2 sat-
isfying C(u; u0) if f (u) = f (u0) = 1 and (u; u0) 2 G. Am-
bainis’ search procedure solves the graph collision prob-
lem in Õ(n2/3) quantum queries, by the following argu-
ment. Fix k = 2 and r = n2/3 in the k-collision algorithm,
and for every U
 [n] define D(U) = f(v; f (v)) : v 2 Ug
and ˚(D(U)) = 1 if some u; u0 2 U satisfies C. Then
s(r) = r initial queries f (v) are needed to set up D(U),
u(r) = 1 new query f (v) is needed to update D(U), and
c(r) = 0 additional queries f (v) are needed to check
˚(D(U)). Therefore, Õ(r + n

r (
p
r)) = Õ(n2/3) queries are

needed altogether.
Magniez et al. [13] solve the triangle finding prob-

lem by reduction to the graph collision problem. Again fix
k = 2 and r = n2/3. Let C be the set of edges contained in at
least one triangle. Define D(U) = GjU and ˚(D(U)) = 1
if some edge in GjU satisfies C. Then s(r) = O(r2) initial
queries are needed to set upD(U) and u(r) = r new queries
are needed to updateD(U). It remains to bound the check-
ing cost c(r). For any vertex v 2 [n], consider the graph
collision oracle f v onGjU satisfying fv(u) = 1 if (u; v) 2 G.
An edge of GjU is a triangle in G if and only if the edge
is a solution to the graph collision problem on GjU for
some v 2 [n]. This problem can be solved for a partic-
ular v in Õ(r2/3) queries. Using Õ(

p
n) steps of ampli-

tude amplification, one can find out if any v 2 [n] gen-
erates an accepting solution to the graph collision prob-
lem with high probability. Hence, the checking cost is
c(r) = Õ(

p
n � r2/3) queries, from which it follows that:

Theorem 3 (Magniez et al. [13]) Using a quantum walk
search procedure, the triangle finding problem can be solved
in Õ(r2 + n

r (
p
n � r2/3 +

p
r � r)) quantum queries.

Letting r = n3/5 yields an algorithm using Õ(n13/10) quan-
tum queries.

692 Q Quantum Algorithm for Finding Triangles

In recent work Magniez et al. [12], using the quan-
tum walk defined by Szegedy [15], have introduced a new
quantum walk search procedure generalizing that of Am-
bainis [3]. Among the consequences is a quantum walk al-
gorithm for triangle finding in O(n13/10) quantum queries.

Applications

Extensions of the quantum walk algorithm for triangle
finding have been used to find cliques and other fixed sub-
graphs in a graph and to decide monotone graph prop-
erties with small certificates using fewer quantum queries
than previous algorithms.

Finding Cliques, Subgraphs, and Subsets

Ambainis’ k-collision algorithm [3] can find a copy of
any graph H with k > 3 vertices in Õ(n2�2/(k+1)) quan-
tum queries. In the case where H is a k-clique, Childs
and Eisenberg [9] gave an Õ(n2:5�6/(k+2)) query algorithm.
A simple generalization of the triangle finding quantum
walk algorithm of Magniez et al. [13] improves this to
Õ(n2�2/k).

Monotone Graph Properties

Recall that a monotone graph property is a boolean prop-
erty of a graph whose value is invariant under permutation
of the vertex labels and monotone under any sequence of
edge deletions. Examples of monotone graph properties
are connectedness, planarity, and triangle-freeness. A 1-
certificate is a minimal subset of edge queries proving that
a property holds (e. g., three edges suffice to prove that
a graph contains a triangle). Magniez et al. [13] show
that their quantum walk algorithm for the triangle find-
ing problem can be generalized to an Õ(n2�2/k) quantum
query algorithm deciding any monotone graph property
with 1-certificates of size at most k > 3 vertices. The best
known lower bound is˝(n).

Open Problems

The most obvious remaining open problem is to resolve
the quantum query complexity of the triangle finding
problem; again, the best upper and lower bounds currently
known are O(n13/10) and˝(n). Beyond this, there are the
following open problems:

QuantumQuery Complexity
of Monotone Graph Properties

The best known lower bound for the quantum query
complexity of (nontrivial) monotone graph properties is

˝(n2/3 log1/6 n), observed by Andrew Yao to follow from
the classical randomized lower bound ˝(n4/3 log1/3 n) of
Chakrabarti and Khot [8] and the quantum adversary
technique of Ambainis [2]. Is an improvement to ˝(n)
possible? If so, this would be tight, since one can deter-
mine whether the edge set of a graph is nonempty in O(n)
quantum queries using Grover’s algorithm.

New QuantumWalk Algorithms

Quantum walks have been successfully applied in design-
ing more efficient quantum search algorithms for sev-
eral problems, including element distinctness [3], trian-
gle finding [13], matrix product verification [7], and group
commutativity testing [11]. It would be nice to see how far
the quantumwalk approach can be extended to obtain new
and better quantum algorithms for various computational
problems.

Cross References

� Quantization of Markov Chains
� Quantum Algorithm for Element Distinctness

Recommended Reading

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision
and the element distinctness problems. J. ACM 51(4), 595–605,
(2004), quant-ph/0112086

2. Ambainis, A.: Quantum lower bounds by quantum arguments.
J. Comput. Syst. Sci. 64, 750–767, (2002), quant-ph/0002066

3. Ambainis, A.: Quantum walk algorithm for element distinct-
ness. SIAM J. Comput. 37(1), 210–239, (2007) Preliminary ver-
sion in Proc. FOCS, (2004), quant-ph/0311001

4. Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths
and weaknesses of quantum computing. SIAM J. Comput.
26(5), 1510–1523, (1997), quant-ph/9701001

5. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantumamplitude
amplification and estimation. In: Quantum Computation and
Quantum Information: AMillenniumVolume, AMS Contempo-
rary Mathematics Series, vol. 305. (2002) quant-ph/0005055

6. Buhrman, H., Dürr, C., Heiligman, M., P.Høyer, Magniez, F., San-
tha, M., de Wolf, R.: Quantum algorithms for element distinct-
ness. SIAM J. Computing 34(6), 1324–1330, (2005). Preliminary
version in Proc. CCC (2001) quant-ph/0007016

7. Buhrman, H., Spalek, R.: Quantum verification of matrix prod-
ucts. Proc. SODA, (2006) quant-ph/0409035

8. Chakrabarti, A., Khot, S.: Improved lower bounds on the ran-
domized complexity of graph properties. Proc. ICALP (2001)

9. Childs, A., Eisenberg, J.: Quantum algorithms for subset find-
ing. Quantum Inf. Comput. 5, 593 (2005), quant-ph/0311038

10. Grover, L.: A fast quantum mechanical algorithm for database
search. Proc. STOC (1996) quant-ph/9605043

11. Magniez, F., Nayak, A.: Quantum complexity of testing group
commutativity. Algorithmica 48(3), 221–232 (2007) Prelimi-
nary version in Proc. ICALP (2005) quant-ph/0506265

QuantumAlgorithm for the Parity Problem Q 693

12. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quan-
tumwalk. Proc. STOC (2007) quant-ph/0608026

13. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for
the triangle problem. SIAM J. Comput. 37(2), 413–424, (2007).
Preliminary version in Proc. SODA (2005) quant-ph/0310134

14. Szegedy, M.: On the quantum query complexity of detecting
triangles in graphs. quant-ph/0310107

15. Szegedy, M.: Quantum speed-up of Markov chain based algo-
rithms. Proc. FOCS (2004) quant-ph/0401053

Quantum Algorithm
for the Parity Problem
1985; Deutsch

YAOYUN SHI
Department of Electrical Engineering and Computer
Science, University of Michigan,
Ann Arbor, MI, USA

Keywords and Synonyms

Parity; Deutsch–Jozsa algorithm; Deutsch algorithm

ProblemDefinition

The parity of n bits x0, x1, � � � , xn�1 2 f0; 1g is

x0 ˚ x1 ˚ � � � ˚ xn�1 =
n�1X
i=0

xi mod 2 :

As an elementary Boolean function, Parity is important
not only as a building block of digital logic, but also
for its instrumental roles in several areas such as error-
correction, hashing, discrete Fourier analysis, pseudoran-
domness, communication complexity, and circuit com-
plexity. The feature of Parity that underlies its many ap-
plications is its maximum sensitivity to the input: flipping
any bit in the input changes the output. The computa-
tion of Parity from its input bits is quite straightforward in
most computation models. However, two settings deserve
attention.

The first is the circuit complexity of Parity when the
gates are restricted to AND, OR, and NOT gates. It is
known that Parity cannot be computed by such a circuit of
a polynomial size and a constant depth, a groundbreaking
result proved independently by Furst, Saxe, and Sipser [7],
and Ajtai [1], and improved by several subsequent works.

The second, and the focus of this article, is in the deci-
sion tree model (also called the query model or the black-
box model), where the input bits x = x0x1 � � � xn�1 2
f0; 1gn are known to an oracle only, and the algorithm

needs to ask questions of the type “xi =?” to access the in-
put. The complexity is measured by the number of queries.
Specifically, a quantum query is the application of the fol-
lowing query gate

Ox : ji; bi 7! ji; b˚xii; i 2 f0; � � � ; n�1g; b 2 f0; 1g :

Key Results

Proposition 1 There is a quantum query algorithm com-
puting the parity of 2 bits with probability 1 using 1 query.

Proof Denote by j˙i = 1p
2
(j0i˙ j1i). The initial state of

the algorithm is

1
p
2
(j0i + j1i)˝ j�i :

Apply a query gate, using the first register for the index slot
and the second register for the answer slot. The resulting
state is

1
p
2
((�1)x0 j0i + (�1)x1 j1i)˝ j�i :

Applying a Hadamard gateH = j+ih0j+ j�ih1j on the first
register brings the state to

(�1)x0 jx0 + x1i ˝ j�i :

Thus measuring the first register gives x0 + x1 with cer-
tainty. �

Corollary 2 There is a quantum query algorithm com-
puting the parity of n bits with probability 1 using dn/2e
queries.

The above quantum upper bound for Parity is tight, even if
the algorithm is allowed to err with a probability bounded
away from 1/2 [6]. In contrast, any classical random-
ized algorithm with bounded error probability requires
n queries. This follows from the fact that on a random in-
put, any classical algorithm not knowing all the input bits
is correct with precisely 1/2 probability.

Applications

The quantum speedup for computing Parity was first ob-
served by Deutsch [4]. His algorithm uses j0i in the an-
swer slot, instead of j�i. After one query, the algorithm
has 3/4 chance of computing the parity, better than any
classical algorithm (1/2 chance). The presented algorithm
is actually a special case of the Deutsch–Jozsa Algorithm,
which solves the following problem now referred to as the
Deutsch–Jozsa Problem.

694 Q Quantum Algorithms for Class Group of a Number Field

Problem 1 (Deutsch–Jozsa Problem) Let n � 1 be an
integer. Given an oracle function f : f0; 1gn ! f0; 1g that
satisfies either (a) f (x) is constant on all x 2 f0; 1gn, or (b)
jfx : f (x) = 1gj = jfx : f (x) = 0gj = 2n�1, determine which
case it is.

When n = 1, the above problem is precisely Parity of 2 bits.
For a general n, the Deutsch–Jozsa Algorithm solves the
problem using only once the following query gate

Of : jx; bi 7! jx; f (x)˚ bi ; x 2 f0; 1gn ; b 2 f0; 1g :

The algorithm starts with

j0ni ˝ j�i :

It applies H˝n on the index register (the first n qubits),
changing the state to

1
2n/2

X
x2f0;1gn

jxi ˝ j�i :

The oracle gate is then applied, resulting in

1
2n/2

X
x2f0;1gn

(�1) f (x)jxi ˝ j�i :

For the second time, H˝n is applied on the index register,
bringing the state to

X
y2f0;1gn

0
@ 1
2n

X
x2f0;1gn

(�1) f (x)+x �y

1
A jyi ˝ j�i : (1)

Finally, the index register is measured in the computa-
tional basis. The Algorithm returns “Case (a)” if 0n is ob-
served, otherwise returns “Case (b)”.

By direct inspection, the amplitude of j0ni is 1 in
Case (a), and 0 in Case (b). Thus the Algorithm is correct
with probability 1. It is easy to see that any deterministic
algorithm requires n/2 + 1 queries in the worst case, thus
the Algorithm provides the first exponential quantum ver-
sus deterministic speedup.

Note that O(1) expected number of queries are suf-
ficient for randomized algorithms to solve the Deutsch–
Jozsa Problem with a constant success probability arbitrar-
ily close to 1. Thus the Deutsch–Jozsa Algorithm does not
have much advantage compared with error-bounded ran-
domized algorithms. One might also feel that the saving of
one query for computing the parity of 2 bits by Deutsch–
Jozsa Algorithm is due to the artificial definition of one
quantum query. Thus the significance of the Deutsch–
Jozsa Algorithm is not in solving a practical problem,

but in its pioneering use of Quantum Fourier Transform
(QFT), of which H˝n is one, in the pattern

QFT ! Query ! QFT :

The same pattern appears in many subsequent quantum
algorithms, including those found by Bernstein and Vazi-
rani [2], Simon [8], Shor.

The Deutsch–Jozsa Algorithm is also referred to as
Deutsch Algorithm. The Algorithm as presented above is
actually the result of the improvement by Cleve, Ekert,
Macchiavello, and Mosca [3] and independently by Tapp
(unpublished) on the algorithm in [5].

Cross References
� Greedy Set-Cover Algorithms

Recommended Reading

1. Ajtai, M.:
P1

1-formulae on finite structures. Ann. Pure Appl. Log.
24(1), 1–48 (1983)

2. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM
J. Comput. 26(5), 1411–1473 (1997)

3. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algo-
rithms revisited. Proc. Royal Soc. London A454, 339–354 (1998)

4. Deutsch, D.: Quantum theory, the Church-Turing principle and
the universal quantum computer. Proc. Royal Soc. London
A400, 97–117 (1985)

5. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum
computation. Proc. Royal Soc. London A439, 553–558 (1992)

6. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the
speed of quantum computation in determining parity. Phys.
Rev. Lett. 81, 5442–5444 (1998)

7. Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial
time hierarchy. Math. Syst. Theor. 17(1), 13–27 (1984)

8. Simon, D.R.: On the power of quantum computation. SIAM
J. Comput. 26(5), 1474–1483 (1997)

Quantum Algorithms
for Class Group of a Number Field
2005; Hallgren

SEAN HALLGREN
Department of Computer Science and Engineering, The
Pennsylvania State University, University Park, PA, USA

ProblemDefinition
Associated with each number field is a finite abelian group
called the class group. The order of the class group is called
the class number. Computing the class number and the
structure of the class group of a number field are among
the main tasks in computational algebraic number the-
ory [3].

A number field F can be defined as a subfield of the
complex numbers C which is generated over the rational

QuantumAlgorithms for Class Group of a Number Field Q 695

numbersQ by an algebraic number, i. e. F = Q(�) where �
is the root of a polynomial with rational coefficients. The
ring of integers O of F is the subset consisting of all el-
ements that are roots of monic polynomials with integer
coefficients. The ring O
 F can be thought of as a gener-
alization of Z, the ring of integers in Q. In particular, one
can ask whetherO is a principal ideal domain and whether
elements in O have unique factorization. Another inter-
esting problem is computing the unit group O�, which is
the set of invertible algebraic integers inside F, that is, ele-
ments ˛ 2 O such that ˛�1 is also in O.

Ever since the class group was discovered by Gauss in
1798 it has been an interesting object of study. The class
group of F is the set of equivalence classes of fractional ide-
als of F, where two ideals I and J are equivalent if there ex-
ists ˛ 2 F� such that J = ˛I. Multiplication of two ideals I
and J is defined as the ideal generated by all products ab,
where a 2 I and b 2 J. Much is still unknown about num-
ber fields, such as whether there exist infinitelymany num-
ber fields with trivial class group. The question of the class
group being trivial is equivalent to asking whether the el-
ements in the ring of integers O of the number field have
unique factorization.

In addition to computing the class number and the
structure of the class group, computing the unit group and
determining whether given ideals are principal, called the
principal ideal problem, are also central problems in com-
putational algebraic number theory.

Key Results

The best known classical algorithms for the class group
take subexponential time [1,3]. Assuming the GRH, com-
puting the class group, the unit group, and solving the
principal ideal problem are in NP\CoNP [7].

The following theorems state that the three problems
defined above have efficient quantum algorithms [4,6].

Theorem 1 There is a polynomial-time quantum algo-
rithm that computes the unit group of a constant degree
number field.

Theorem 2 There is a polynomial-time quantum algo-
rithm that solves the principal ideal problem in constant de-
gree number fields.

Theorem 3 The class group and class number of a con-
stant degree number field can be computed in quantum
polynomial-time assuming the GRH.

Computing the class group means computing the struc-
ture of a finite abelian group given a set of generators
for it. When it is possible to efficiently multiply group

elements and efficiently compute unique representations
of each group element, then this problem reduces to the
standard hidden subgroup problem over the integers, and
therefore has an efficient quantum algorithm. Ideal multi-
plication is efficient in number fields. For imaginary num-
ber fields, there are efficient classical algorithms for com-
puting group elements with a unique representation, and
therefore there is an efficient quantum algorithm for com-
puting the class group.

For real number fields, there is no known way to effi-
ciently compute unique representations of class group el-
ements. As a result, the classical algorithms typically com-
pute the unit group and class group at the same time.
A quantum algorithm [4] is able to efficiently compute the
unit group of a number field, and then use the principal
ideal algorithm to compute a unique quantum representa-
tion of each class group element. Then the standard quan-
tum algorithm can be applied to compute the class group
structure and class number.

Applications
There are factoring algorithms based on computing the
class group of an imaginary number fields. One is expo-
nential time and the other is subexponential-time [3].

Computationally hard number theoretic problems are
useful for public key cryptosystems. Pell’s equation re-
duces to the principal ideal problem, which forms the
basis of the Buchmann-Williams key-exchange proto-
col [2]. Identification schemes have also been based on
this problem by Hamdy and Maurer [5]. The classical
exponential-time algorithms help determine which pa-
rameters to choose for the cryptosystem. Factoring re-
duces to Pell’s equation and the best known algorithm for
it is exponentially slower than the best factoring algorithm.
Systems based on these harder problems were proposed as
alternatives in case factoring turns out to be polynomial-
time solvable. The efficient quantum algorithms can break
these cryptosystems.

Open Problems
It remains open whether these problems can be solved in
arbitrary degree number fields. The solution for the unit
group can be thought of in terms of the hidden subgroup
problem. That is, there exists a function on Rc which is
constant on values that differ by an element of the unit
lattice, and is one-to-one within the fundamental paral-
lelepiped. However, this function cannot be evaluated ef-
ficiently since it has an uncountable domain, and instead
an efficiently computable approximation must be used. To
evaluate this discrete version of the function, a classical al-
gorithm is used to compute reduced ideals near a given

696 Q Quantum Algorithm for Search on Grids

point in Rc. This algorithm is only polynomial-time for
constant degree number fields as it computes the shortest
vector in a lattice. Such an algorithm can be used to set
up a superposition over points approximating the points
in the a coset of the unit lattice. After setting up the su-
perposition, it must be shown that Fourier sampling, i. e.
computing the Fourier transform and measuring, suffices
to compute the lattice.

Cross References
� Quantum Algorithm for Factoring
� Quantum Algorithm for Solving the Pell’s Equation

Recommended Reading

1. Buchmann, J.: A subexponential algorithm for the determi-
nation of class groups and regulators of algebraic number
fields. In: Goldstein, C. (ed.) Séminaire de Théorie des Nombres,
Paris 1988–1989, Progress in Mathematics, vol. 91, pp. 27–41.
Birkhäuser (1990)

2. Buchmann, J.A., Williams, H.C.: A key exchange system based on
real quadratic fields (extended abstract). In: Brassard, G. (ed.) Ad-
vances in Cryptology–CRYPTO ’89. Lecture Notes in Computer
Science, vol. 435, 20–24 Aug 1989, pp. 335–343. Springer (1990)

3. Cohen, H., A course in computational algebraic number theory,
vol. 138 of Graduate Texts in Mathematics. Springer (1993)

4. Hallgren, S.: Fast quantum algorithms for computing the unit
group and class group of a number field. In: Proceedings of the
37th ACM Symposium on Theory of Computing. (2005)

5. Hamdy, S., Maurer, M.: Feige-fiat-shamir identification based
on real quadratic fields, Tech. Report TI-23/99. Technische
Universität Darmstadt, Fachbereich Informatik. http://www.
informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/ (1999)

6. Schmidt, A., Vollmer, U.: Polynomial timequantumalgorithm for
the computation of the unit group of a number field. In: Pro-
ceedings of the 37th ACMSymposiumon Theory of Computing.
(2005)

7. Thiel, C.: On the complexity of some problems in algorithmic al-
gebraic number theory, Ph. D. thesis. Universität des Saarlandes,
Saarbrücken, Germany (1995)

QuantumAlgorithm
for Search on Grids
2005; Ambainis, Kempe, Rivosh

ANDRIS AMBAINIS
Department of Computer Science, University of Latvia,
Riga, Latvia

Keywords and Synonyms

Spatial search

ProblemDefinition

Consider an
p
N �
p
N grid, with each location storing

a bit that is 0 or 1. The locations on the grid are indexed

by (i, j), where i; j 2 f0; 1; : : : ;
p
N � 1g:ai; j denotes the

value stored at the location (i, j).
The task is to find a location storing ai; j = 1. This

problem is as an abstract model for search in a two-di-
mensional database, with each location storing a variable
xi; j with more than two values. The goal is to find xi; j that
satisfies certain constraints. One can then define new vari-
ables ai; j with ai; j = 1 if xi; j satisfies the constraints and
search for i; j satisfying ai; j = 1.

The grid is searched by a “robot”, which, at any mo-
ment of time is at one location i; j. In one time unit, the
robot can either examine the current location or move one
step in one of four directions (left, right, up or down).

In a probabilistic version of this model, the robot is
probabilistic. It makes its decisions (querying the current
location or moving) randomly according to pre-specified
probability distributions. At any moment of time, such
robot a is at a probability distribution over the locations
of the grid. In the quantum case, one has a “quantum
robot” [4] which can be in a quantum superposition of
locations (i, j) and is allowed to perform transformations
that move it at most one step at a time.

There are several ways to make this model of a “quan-
tum robot” precise [1] and they all lead to similar results.

The simplest to define is the Z-local model of [1]. In
this model, the robot’s state space is spanned by states
ji; j; ai with i; j representing the current location and
a being the internal memory of the robot. The robot’s
state j i can be any quantum superposition of those:
j i =

P
i; j;a ˛i; j;aji; j; ai, where ˛i; j;a are complex num-

bers such that
P

i; j;a j˛i; j;aj
2 = 1. In one step, the robot

can either perform a query of the value at the current loca-
tion or a Z-local transformation.

A query is a transformation that leaves i; j parts of
a state ji; j; ai unchanged and modifies the a part in a way
that depends only on the value ai; j . A Z-local transfor-
mation is a transformation that maps any state ji; j; ai to
a superposition that involves only states with robot be-
ing either at the same location or at one of 4 adjacent
locations (ji; j; bi, ji � 1; j; bi, ji + 1; j; bi, ji; j� 1; bi or
ji; j + 1; bi where the content of the robot’s memory b is
arbitrary).

The problem generalizes naturally to d-dimensional
grid of size N1/d � N1/d � � � � � N1/d , with robot being al-
lowed to query or move one step in one of d directions in
one unit of time.

Key Results

This problem was first studied by Benioff [4] who con-
sidered the use of the usual quantum search algorithm,

http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/

QuantumAlgorithm for Search on Grids Q 697

by Grover [8] in this setting. Grover’s algorithm allows to
search a collection of N items ai; j with O(

p
N) queries.

However, it does not respect the structure of a grid. Be-
tween any two queries it performs a transformation that
may require the robot to move from any location (i, j) to
any other location (i0; j0). In the robot model, where the
robot in only allowed to move one step in one time unit,
such transformation requires O(

p
N) steps to perform.

Implementing Grover’s algorithm, which requires O(
p
N)

such transformations, therefore, takesO(
p
N)�O(

p
N) =

O(N) time, providing no advantage over the naive classi-
cal algorithm.

The first algorithm improving over the naive use of
Grover’s search was proposed by Aaronson and Ambai-
nis [1] who achieved the following results:
� Search on

p
N �
p
N grid, if it is known that the grid

contains exactly one ai; j = 1 in O(
p
N log3/2 N) steps.

� Search on
p
N �
p
N grid, if the grid may contain an

arbitrary number of ai; j = 1 in O(
p
N log5/2 N) steps.

� Search on N1/d � N1/d � � � � � N1/d grid, for d � 3, in
O(
p
N) steps.

They also considered a generalization of the problem,
search on a graph G, in which the robot moves on the ver-
tices v of the graph G and searches for a variable av = 1.
In one step, the robot can examine the variable av cor-
responding to the current vertex v or move to another
vertex w adjacent to v. Aaronson and Ambainis [1] gave
an algorithm for searching an arbitrary graph with grid-
like expansion properties in O(N1/2+o(1)) steps. The main
technique in those algorithms was the use of Grover’s
search and its generalization, amplitude amplification [5],
in combination with “divide-and-conquer” methods re-
cursively breaking up a grid into smaller parts.

The next algorithms were based on quantum
walks [3,6,7]. Ambainis, Kempe and Rivosh [3] pre-
sented an algorithm, based on a discrete time quantum
walk, which searches the two-dimensional

p
N �
p
N in

O(
p
N logN) steps, if the grid is known to contain exactly

one ai; j = 1 and in O(
p
N log2 N) steps in the general

case. Childs and Goldstone [7] achieved a similar perfor-
mance, using continuous time quantum walk. Curiously,
it turned out that the performance of the walk crucially
depended on the particular choice of the quantum walk,
both in the discrete and continuous time and some very
natural choices of quantum walk (e. g. one in [6]) failed.

Besides providing an almost optimal quantum
speedup, the quantum walk algorithms also have an addi-
tional advantage: their simplicity. The discrete quantum
walk algorithm of [3] uses just two bits of quantum mem-
ory. It’s basis states are ji; j; di, where (i, j) is a location on
the grid and d is one of 4 directions: ,!, " and #. The

basic algorithm consists of the following simple steps:
1. Generate the state

P
i; j;d

1
2
p

N
ji; j; di.

2. O(
p
N logN) times repeat

(a) Perform the transformation

C0 =

0
BBBB@

� 1
2

1
2

1
2

1
2

1
2 � 1

2
1
2

1
2

1
2

1
2 � 1

2
1
2

1
2

1
2

1
2 � 1

2

1
CCCCA

on the states ji; j; i, ji; j;!i, ji; j;"i, ji; j;#i,
if ai; j = 0 and the transformation C1 = �I on the
same four states if ai; j = 1.

(b) Move one step according to the direction register
and reverse the direction:

ji; j;!i ! ji + 1; j; i ;
ji; j; i ! ji � 1; j;!i ;
ji; j;"i ! ji; j � 1;#i ;
ji; j;#i ! ji; j + 1;"i :

In case, if ai; j = 1 for one location (i, j), a signifi-
cant part of the algorithm’s final state will consist of the
four states ji; j; di for the location (i, j) with ai; j = 1. This
can be used to detect the presence of such location.
A quantum algorithm for search on a grid can be also de-
rived by designing a classical algorithm that finds ai; j = 1
by performing a random walk on the grid and then apply-
ing Szegedy’s general translation of classical randomwalks
to quantum random chains, with a quadratic speedup over
the classical randomwalk algorithm [12]. The resulting al-
gorithm is similar to the algorithm of [3] described above
and has the same running time.

For an overview on related quantum algorithms using
similar methods, see [2,9].

Applications

Quantum algorithms for spatial search are useful for de-
signing quantum communication protocols for the set dis-
jointness problem. In the set disjointness problem, one
has two parties holding inputs x 2 f0; 1gN and y 2 f0; 1gN

and they have to determine if there is i 2 f1; : : : ;Ng for
which xi = yi = 1. (One can think of x and y as repre-
senting subsets X;Y
 f1; : : : ;Ng with xi = 1(yi = 1) if
i 2 X(i 2 Y). Then, determining if xi = yi = 1 for some
i is equivalent to determining if X \ Y ¤ ;.)

The goal is to solve the problem, communicating as
few bits between the two parties as possible. Classically,
˝(N) bits of communication are required [10]. The op-
timal quantum protocol [1] uses O(

p
N) quantum bits of

698 Q Quantum Algorithm for Solving the Pell’s Equation

communication and its main idea is to reduce the problem
to spatial search. As shown by the ˝(

p
N) lower bound

of [11], this algorithm is optimal.

Cross References

� Quantization of Markov Chains
� Quantum Search

Recommended Reading

1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions.
In: Proc. 44th Annual IEEE Symp. on Foundations of Computer
Science (FOCS), 2003, pp. 200–209

2. Ambainis, A.: Quantum walks and their algorithmic applica-
tions. Int. J. Quantum Inf. 1, 507–518 (2003)

3. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantumwalks
faster. In: Proc. of SODA’05, pp 1099–1108

4. Benioff, P.: Space searches with a quantum robot. In: Quantum
computation and information (Washington, DC, 2000). Con-
temp. Math., vol. 305, pp. 1–12. Amer. Math. Soc. Providence,
RI (2002)

5. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum am-
plitude amplification and estimation. In: Quantum computa-
tion and information (Washington, DC, 2000). Contemp. Math.,
vol. 305, pp. 53–74. American Mathematical Society, Provi-
dence, RI (2002)

6. Childs, A.M., Goldstone, J.: Spatial search by quantum walk.
Phys. Rev. A 70, 022314 (2004)

7. Childs, A.M., Goldstone, J.: Spatial search and the Dirac equa-
tion. Phys. Rev. A. 70, 042312 (2004)

8. Grover, L.: A fast quantum mechanical algorithm for database
search. In: Proc. 28th STOC, Philadelphia, Pennsylvania,
pp 212–219. ACM Press, New York, (1996)

9. Kempe, J.: Quantum randomwalks – an introductory overview.
Contemp. Phys. 44(4), 302–327 (2003)

10. Razborov, A.: On the Distributional Complexity of Disjointness.
Theor. Comput. Sci. 106(2), 385–390 (1992)

11. Razborov, A.A.: Quantum communication complexity of sym-
metric predicates. Izvestiya of the Russian Academy of Science,
Mathematics, 67, 145–159 (2002)

12. Szegedy, M.: Quantum speed-up of Markov Chain based algo-
rithms. In: Proceedings of FOCS’04, pp. 32–41

QuantumAlgorithm
for Solving the Pell’s Equation
2002; Hallgren

SEAN HALLGREN
Department of Computer Science and Engineering, The
Pennsylvania State University, University Park, PA, USA

ProblemDefinition
Pell’s equation is one of the oldest studied problem in
number theory. For a positive square-free integer d, Pell’s
equation is x2 � dy2 = 1, and the problem is to com-
pute integer solutions x, y of the equation [7,9]. The earli-

est algorithm for it uses the continued fraction expansion
of
p
d and dates back to 1000 a.d. by Indian mathemati-

cians. Lagrange showed that there are an infinite number
of solutions of Pell’s equation. All solutions are of the form
xn + yn

p
d = (x1 + y1

p
d)n , where the smallest solution,

(x1; y1), is called the fundamental solution. The solution
(x1; y1) may have exponentially many bits in general in
terms of the input size, which is log d, and so cannot be
written down in polynomial time. To resolve this difficulty,
the computational problem is recast as computing the in-
teger closest to the regulator R = ln(x1 + y1

p
d). In this

representation solutions of Pell’s equation are positive in-
teger multiples of R.

Solving Pell’s equation is a special case of comput-
ing the unit group of number field. For a positive non-
square integer � congruent to 0 or 1 mod 4;K =
Q(
p
�) is a real quadratic number field. Its subring O =

Z[�+
p
�

2]
 Q(
p
�) is called the quadratic order of dis-

criminant �. The unit group is the set of invertible el-
ements of O. Units have the form ˙"k , where k 2 Z,
for some " > 1 called the fundamental unit. The fun-
damental unit " can have exponentially many bits, so an
approximation of the regulator R = ln " is computed. In
this representation the unit group consists of integer mul-
tiples of R. Given the integer closest to R there are classical
polynomial-time algorithms to compute R to any preci-
sion. There are also efficient algorithms to test if a given
number is a good approximation to an integer multi-
ple of a unit, or to compute the least significant digits
of " = eR [1,3].

Two related and potentially more difficult problems
are the principal ideal problem and computing the class
group of a number field. In the principal ideal problem,
a number field and an ideal I ofO are given, and the prob-
lem is to decide if the ideal is principal, i. e. whether there
exists ˛ such that I = ˛O. If it is principal, then one can
ask for an approximation of ln˛. There are efficient classi-
cal algorithms to verify that a number is close to ln˛ [1,3].
The class group of a number field is the finite abelian group
defined by taking the set of fractional ideals modulo the
principal fractional ideals. The class number is the size
of the class group. Computing the unit group, comput-
ing the class group, and solving the principal ideal prob-
lems are three of the main problems of computational al-
gebraic number theory [3]. Assuming the GRH, they are
in NP\CoNP [8].

Key Results
The best known classical algorithms for the problems de-
fined in the last section take subexponential time, but there
are polynomial-time quantum algorithms for them [4,6].

QuantumAlgorithm for Solving the Pell’s Equation Q 699

Theorem 1 Given a quadratic discriminant �, there is
a classical algorithm that computes an integer multiple of
the regulator to within one. Assuming the GRH, this algo-
rithm computes the regulator to within one and runs in ex-
pected time exp(

p
(log�) log log�)O(1).

Theorem 2 There is a polynomial-time quantum algo-
rithm that, given a quadratic discriminant�, approximates
the regulator to within ı of the associated order O in time
polynomial in log� and log ı with probability exponen-
tially close to one.

Corollary 1 There is a polynomial-time quantum algo-
rithm that solves Pell’s equation.

The quantum algorithm for Pell’s equation uses the ex-
istence of a periodic function on the reals which has pe-
riod R and is one-to-one within each period [4,6]. There
is a discrete version of this function that can be computed
efficiently. This function does not have the same periodic
property since it cannot be evaluated at arbitrary real num-
bers such as R, but it does approximate the situation well
enough for the quantum algorithm. In particular, comput-
ing the approximate period of this function gives R to the
closest integer, or in other words, computes a generator for
the unit group.

Theorem 3 There is a polynomial-time quantum al-
gorithm that solves the principal ideal problem in real
quadratic number fields.

Corollary 2 There is a polynomial-time quantum al-
gorithm that can break the Buchmann–Williams key-
exchange protocol in real quadratic number fields.

Theorem 4 The class group and class number of a real
quadratic number field can be computed in quantum poly-
nomial-time assuming the GRH.

Applications

Computationally hard number theoretic problems are use-
ful for public key cryptosystems. There are reductions
from factoring to Pell’s equation and Pell’s equation to
the principal ideal problem, but no reductions are known
in the opposite direction. The principal ideal problem
forms the basis of the Buchmann–Williams key-exchange
protocol [2]. Identification schemes based on this prob-
lem have been proposed by Hamdy and Maurer [5].
The classical exponential-time algorithms help determine
which parameters to choose for the cryptosystem. The
best known algorithm for Pell’s equation is exponentially
slower than the best factoring algorithm. Systems based
on these harder problems were proposed as alternatives in

case factoring turns out to be polynomial-time solvable.
The efficient quantum algorithms can break these cryp-
tosystems.

Open Problems

It remains open whether these problems can be solved
in arbitrary degree number fields. The solution for Pell’s
equation can be thought of in terms of the hidden sub-
group problem. That is, there exists a periodic function on
the reals which has period R 2 R and is one-to-one within
each period. However, this function cannot be evaluated
efficiently since it has an uncountable domain, and instead
an efficiently computable approximation must be used. To
evaluate this discrete version of the function, a classical al-
gorithm is used to compute reduced ideals near a given
point in R. This algorithm is only polynomial-time for
constant degree number fields as it computes the short-
est vector in a lattice. Such an algorithm can be used to set
up a superposition over points approximating the points
in the a coset of the unit lattice. After setting up the super-
position, it must shown Fourier sampling, i. e. computing
the Fourier transform and measuring, suffices to compute
the lattice.

Cross References

� Quantum Algorithm for Factoring
� Quantum Algorithms for Class Group of a Number

Field

Recommended Reading
1. Buchmann, J., Thiel, C., Williams, H.C.: Short representation of

quadratic integers. In: Bosma, W., van der Poorten A.J. (eds.)
Computational Algebra and Number Theory, Sydney 1992.
Mathematics and its Applications, vol. 325, pp. 159–185. Kluwer
Academic Publishers (1995)

2. Buchmann, J.A., Williams, H.C.: A key exchange system based
on real quadratic fields (extended abstract). In: Brassard, G. (ed.)
Advances in Cryptology–CRYPTO ’89. Lecture Notes in Com-
puter Science, vol. 435, pp. 335–343. Springer 1990, 20–24 Aug
(1989)

3. Cohen, H.: A course in computational algebraic number theory,
vol. 138 of Graduate Texts in Mathematics. Springer (1993)

4. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s
equation and the principal ideal problem. J. ACM 54(1), 1–19
(2007)

5. Hamdy, S., Maurer, M.: Feige-fiat-shamir identification based
on real quadratic fields, Tech. Report TI-23/99. Technische
Universität Darmstadt, Fachbereich Informatik, http://www.
informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/ (1999)

6. Jozsa, R.: Notes on Hallgren’s efficient quantum algorithm for
solving Pell’s equation, tech. report, quant-ph/0302134 (2003)

7. Lenstra Jr, H.W.: Solving the Pell equation. Not. Am. Math. Soc.
49, 182–192 (2002)

http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/

700 Q Quantum Approximation of the Jones Polynomial

8. Thiel, C.: On the complexity of some problems in algorithmic al-
gebraic number theory, Ph. D. thesis. Universität des Saarlandes,
Saarbrücken, Germany (1995)

9. Williams, H.C.: Solving the Pell equation. In: Proc. Millennial Con-
ference on Number Theory, pp. 397–435 (2002)

QuantumApproximation
of the Jones Polynomial
2005; Aharonov, Jones, Landau

ZEPH LANDAU
Department of Mathematics, City College of CUNY,
New York, NY, USA

Keywords and Synonyms

AJL algorithm

ProblemDefinition

A knot invariant is a function on knots (or links –i. e. cir-
cles embedded in R3) which is invariant under isotopy of
the knot, i. e., it does not change under stretching, moving,
tangling, etc., (cutting the knot is not allowed). In low di-
mensional topology, the discovery and use of knot invari-
ants is of central importance. In 1984, Jones [12] discov-
ered a new knot invariant, now called the Jones polyno-
mial VL(t), which is a Laurent polynomial in

p
t with in-

teger coefficients, and which is an invariant of the link L. In
addition to the important role it has played in low dimen-
sional topology, the Jones polynomial has found applica-
tions in numerous fields, from DNA recombination [16],
to statistical physics [20].

From the moment of the discovery of the Jones poly-
nomial, the question of how hard it is to compute became
important. There is a very simple inductive algorithm (es-
sentially due to Conway [5]) to compute it by chang-
ing crossings in a link diagram, but, naively applied, this
takes exponential time in the number of crossings. It was
shown [11] that the computation of VL(t) is #P-hard for
all but a few values of t where VL(t) has an elementary in-
terpretation. Thus a polynomial time algorithm for com-
puting VL(t) for any value of t other than those elementary
ones is unlikely. Of course, the #P-hardness of the problem
does not rule out the possibility of good approximations.
Still, the best classical algorithms to approximate the Jones
polynomial at all but trivial values are exponential. Simply
stated, the problem becomes:

Problem 1 For what values of t and for what level of ap-
proximation can the Jones polynomial VL(t) be approxi-
mated in time polynomial in the number of crossings and
links of the link L?

Quantum Approximation of the Jones Polynomial, Figure 1
The trace closure (left) and plat closure (right) of the same 4-
strand braid

Key Results

As mentioned above, exact computation of the Jones poly-
nomial for most t is #P-hard and the best known classical
algorithms to approximate the Jones polynomial are expo-
nential. The key results described here consider the above
problem in the context of quantum rather than classical
computation.

The results concern the approximation of links that
are given as closures of braids. (All links can be described
this way.) Briefly, a braid of n strands and m crossings
is described pictorially by n strands hanging alongside
each other, withm crossings, each of two adjacent strands.
A braid B may be “closed” to form a link by tying its
ends together in a variety of ways, two of which are the
trace closure (denoted by Btr) which joins the ith strand
from the top right to the ith strand from the bottom right
(for each i), and the plat closure (denoted by Bpl) which
is defined only for braids with an even number of strands
by connecting pairs of adjacent strands (beginning at the
rightmost strand) on both the top and bottom. Examples
of the trace and plat closure of the same 4-strand braid are
given in Fig. 1.

For such braids, the following results have been shown
by Aharonov, Jones, and Landau:

Theorem 2.1 [3] For a given braid B in Bn with m
crossings, and a given integer k, there is a quantum al-
gorithm which is polynomial in n,m,k which with all
but exponentially (in n,m,k) small probability, outputs
a complex number r with jr � VBtr (e2� i/k)j < �dn�1 where
d = 2 cos(
/k), and � is inverse polynomial in n,k,m.

Theorem 2.2 [3] For a given braid B in Bn with m cross-
ings, and a given integer k, there is a quantum algorithm
which is polynomial in n,m,k which with all but expo-
nentially (in n,m,k) small probability, outputs a complex

QuantumApproximation of the Jones Polynomial Q 701

number r with jr � VBpl (e2� i/k)j < �dn/2�1 where d =
2 cos(
/k) and � is inverse polynomial in n,k,m.

The original connection between quantum computation
and the Jones polynomial was made earlier in the se-
ries of papers [6,7,8,9]. A model of quantum computa-
tion based on Topological Quantum Field Theory (TQFT)
and Chern–Simons theory was defined in [6,7], and Ki-
taev, Larsen, Freedman andWang showed that this model
is polynomially equivalent in computational power to the
standard quantum computation model in [8,9]. These re-
sults, combined with a deep connection between TQFT
and the value of the Jones polynomial at particular roots of
unity discovered byWitten 13 years earlier [18], implicitly
implied (without explicitly formulating) an efficient quan-
tum algorithm for the approximation of the Jones polyno-
mial at the value e2� i/5.

The approximation given by the above algorithms are
additive, namely the result lies in a given window, whose
size is independent of the actual value being approximated.
The formulation of this kind of additive approximation
was given in [4]; this is much weaker than a multiplicative
approximation, which is what one might desire (again, see
discussion in [4]). One might wonder if under such weak
requirements, the problem remains meaningful at all. It
turns out that, in fact, this additive approximation prob-
lem is hard for quantum computation, a result originally
shown by Freedman, Kitaev, and Wang:

Theorem 2.3 Adapted from [9] The problem of approx-
imating the Jones polynomial of the plat closure of a braid
at e2� i/k for constant k, to within the accuracy given in The-
orem 2.2, is BQP-hard.

A different proof of this result was given in [19], and the
result was strengthened by Aharonov and Arad [1] to any
k which is polynomial in the size of the input, namely, for
all the plat closure cases for which the algorithm is poly-
nomial in the size of the braid.

Understanding the Algorithm

The structure of the solution described by Theorems 2.1
and 2.2 consists of four steps:
1. Mapping the Jones polynomial computation to a compu-

tation in the Temperley–Lieb algebra. There exists a ho-
momorphism of the braid group inside the so called
Temperley–Lieb algebra (this homomorphism was the
connection that led to the original discovery of the
Jones polynomial in [12]). Using this homomorphism,
the computation of the Jones polynomial of either the
plat or trace closure of a braid can be mapped to the
computation of a particular linear functional (called the

Markov trace) of the image of the braid in the Tem-
perley–Lieb algebra (for an essential understanding of
a geometrical picture of the Temperley–Lieb algebra,
see [14]).

2. Mapping the Temperley–Lieb algebra calculation into
a linear algebra calculation. Using a representation of
the Temperley–Lieb algebra, called the path model rep-
resentation, the computation in step 1 is shown to be
equal to a particular weighted trace of the matrix corre-
sponding to the Temperley–Lieb algebra element com-
ing from the original braid.

3. Choosing the parameter t corresponding to unitary ma-
trices. The matrix in step 2 is a product of basic matri-
ces corresponding to individual crossings in the braid
group; an important characteristic of these basic matri-
ces is that they have a local structure. In addition, by
choosing the values of t as in Theorems 2.1 and 2.2,
the matrices corresponding to individual crossings be-
come unitary. The result is that the original problem
has been turned into a weighted trace calculation of
a matrix formed from a product of local unitary ma-
trices–a problem well suited to a quantum computer.

4. Implementing the quantum algorithm. Finally the
weighted trace calculation of a matrix described in step
3 is formally encoded into a calculation involving local
unitary matrices and qubits.
A nice exposition of the algorithm is given in [15].

Applications
Since the publication [3], a number of interesting results
have ensued investigating the possibility of quantum al-
gorithms for other combinatorial/topological questions.
Quantum algorithms have been developed for the case of
the HOMFLYPT two-variable polynomial of the trace clo-
sure of a braid at certain pairs of values [19]. (This paper
also extends the results of [3] to a class of more general-
ized braid closures; it is recommended reading as a com-
plement to [3] or [15] as it gives the representation the-
ory of the Jones-Wentzl representations thus putting the
path model representation of the Temperley–Lieb algebra
in a more general context). A quantum algorithm for the
colored Jones polynomial is given in [10].

Recently, significant progress was made on the ques-
tion of approximating the partition function of the Tutte
polynomial of a graph [2]. This polynomial, at various
parameters, captures important combinatorial features of
the graph. Intimately associated to the Tutte polynomial is
the Potts model, a model originating in statistical physics
as a generalization of the Ising model to more than 2
states [17,20]; approximating the partition function of the
Tutte polynomial of a graph is a very important question

702 Q Quantum Approximation of the Jones Polynomial

in statistical physics. The work of [2] develops a quantum
algorithm for additive approximation of the Tutte polyno-
mial for all planar graphs at all points in the Tutte plane
and shows that for a significant set of these points (though
not those corresponding to the Potts model) the problem
of approximating is a complete problem for a quantum
computer. Unlike previous results, these results use non-
unitary representations.

Open Problems
There remain many unanswered questions related to the
computation of the Jones polynomial from both a classical
and quantum computational point of view.

From a classical computation point of view, the origi-
nally stated Problem 1 remains wide open for all but triv-
ial choices of t. A result as strong as Theorem 2.2 for
a classical computer seems unlikely since it would imply
(via Theorem 2.3) that classical computation is as strong
as quantum computation. A recent result by Jordan and
Shor [13] shows that the approximation given in Theo-
rem 2.1 solves a complete problem for a presumed (but
not proven) weaker quantum model called the one clean
qubit model. Since this model seems weaker than the full
quantum computation model, a classical result as strong
as Theorem 2.1 for the trace closure of a braid is perhaps
in the realm of possibility.

From a quantum computational point of view, vari-
ous open directions seem worthy of pursuit. Most of the
quantum algorithms known as of the writing of this entry
are based on the quantum Fourier transform, and solve
problems which are algebraic and number theoretical in
nature. Arguably, the greatest challenge in the field of
quantum computation, (together with the physical realiza-
tion of large scale quantum computers), is the design of
new quantum algorithms based on substantially different
techniques. The quantum algorithm to approximate the
Jones polynomial is significantly different from the known
quantum algorithms in that it solves a problem which is
combinatorial in nature, and it does so without using the
Fourier transform. These observations suggest investigat-
ing the possibility of quantum algorithms for other com-
binatorial/topological questions. Indeed, the results de-
scribed in the applications section above address questions
of this type. Of particular interest would be progress be-
yond [2] in the direction of the Potts model; specifically
either showing that the approximation given in [2] is non-
trivial or providing a different non-trivial algorithm.

Cross References
� Fault-Tolerant Quantum Computation
� Quantum Error Correction

Recommended Reading

1. Aharonov, D., Arad, I.: The BQP-hardness of approximating the
Jones Polynomial. arxiv: quant-ph/0605181 (2006)

2. Aharonov, D., Arad, I., Eban, E., Landau, Z.: Polynomial Quan-
tum Algorithms for Additive approximations of the Potts
model and other Points of the Tutte Plane. arxiv:quant-
ph/0702008 (2007)

3. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum al-
gorithm for approximating the Jones polynomial. Proceedings
of the 38th ACM Symposium on Theory of Computing (STOC)
Seattle, Washington, USA, arxiv:quant-ph/0511096 (2006)

4. Bordewich, M., Freedman, M., Lovasz, L., Welsh, D.: Approx-
imate counting and Quantum computation, Combinatorics.
Prob. Comput. 14(5–6), 737–754 (2005)

5. Conway, J.H.: An enumeration of knots and links, and some
of their algebraic properties. Computational Problems in Ab-
stract Algebra (Proc. Conf., Oxford, 1967), 329–358 (1970)

6. Freedman, M.: P/NP and the quantum field computer. Proc.
Natl. Acad. Sci. USA 95, 98–101 (1998)

7. Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological
quantum computation. Mathematical challenges of the 21st
century. (Los Angeles, CA, 2000). Bull. Amer. Math. Soc. (N.S.)
40(1), 31–38 (2003)

8. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological
field theories by quantum computers. Commun. Math. Phys.
227, 587–603 (2002)

9. Freedman, M.H., Kitaev, A., Wang, Z.: A modular Functor which
is universal for quantum computation. Commun. Math. Phys.
227(3), 605–622 (2002)

10. Garnerone, S., Marzuoli, A., Rasetti, M.: An efficient quan-
tum algorithm for colored Jones polynomials arXiv.org:quant-
ph/0606167 (2006)

11. Jaeger, F., Vertigan, D., Welsh, D.: On the computational com-
plexity of the Jones and Tutte polynomials. Math. Proc. Cam-
bridge Philos. Soc. 108(1), 35–53 (1990)

12. Jones, V.F.R.: A polynomial invariant for knots via von Neu-
mann algebras. Bull. Am. Math. Soc. 12(1), 103–111 (1985)

13. Jordan, S., Shor, P.: Estimating Jones polynomials is a com-
plete problem for one clean qubit. http://arxiv.org/abs/0707.
2831 (2007)

14. Kauffman, L.: State models and the Jones polynomial. Topol-
ogy 26, 395–407 (1987)

15. Kauffman, L., Lomonaco, S.: Topological Quantum Comput-
ing and the Jones Polynomial, arXiv.org:quant-ph/0605004
(2006)

16. Podtelezhnikov, A., Cozzarelli, N., Vologodskii, A.: Equilibrium
distributions of topological states in circular DNA: interplay
of supercoiling and knotting. (English. English summary) Proc.
Natl. Acad. Sci. USA 96(23), 12974–129 (1999)

17. Potts, R.: Some generalized order - disorder transformations,
Proc. Camb. Phil. Soc. 48, 106–109 (1952)

18. Witten, E.: Quantum field theory and the Jones polynomial.
Commun. Math. Phys. 121(3), 351–399 (1989)

19. Wocjan, P., Yard, J.: The Jones polynomial: quantumalgorithms
and applications in quantum complexity theory. In: Quantum
Information and Computation, vol. 8, no. 1 & 2, 147–180 (2008).
arXiv.org:quant-ph/0603069 (2006)

20. Wu, F.Y.: Knot Theory and statistical mechanics. Rev. Mod.
Phys. 64(4), 1099–1131 (1992)

http://arxiv.org/abs/0707.2831
http://arxiv.org/abs/0707.2831

Quantum Dense Coding Q 703

QuantumDense Coding
1992; Bennett, Wiesner

BARBARA M. TERHAL
IBM Research, Yorktown Heights, NY, USA

Keywords and Synonyms

Super dense coding; Dense coding

ProblemDefinition

Quantum information theory distinguishes classical bits
from quantum bits or qubits. The quantum state of
n qubits is represented by a complex vector in (C2)˝n ,
where (C2)˝n is the tensor product of n 2-dimensional
complex vector spaces. Classical n-bit strings form a ba-
sis for the vector space (C2)˝n . Column vectors in
(C2)˝n are denoted as j i and row vectors are denoted
as j i� = j i�T � h j. The complex inner-product be-
tween vectors j i and j�i is conveniently written as
h j�i.

Entangled quantum states j i 2 (C2)˝n are those
quantum states that cannot be written as a product of some
vectors j ii 2 C2, that is j i ¤

N
i j ii. The Bell states

are four orthogonal (maximally) entangled states defined
as

j�00i =
1
p
2
(j00i + j11i) ; j�10i =

1
p
2
(j00i � j11i) ;

j�01i =
1
p
2
(j01i + j10i) ; j�11i =

1
p
2
(j01i � j10i) :

The Pauli-matrices X;Y and Z are three unitary, Hermi-
tian 2 � 2matrices. They are defined as X = j0ih1j+ j1ih0j;
Z = j0ih0j � j1ih1j and Y = iXZ.

Quantum states can evolve dynamically under inner-
product preserving unitary operations U (U�1 = U�).
Quantum information can be mapped onto observable
classical information through the formalism of quantum
measurements. In a quantum measurement on a state j i
in (C2)˝n a basis fjxig in (C2)˝n is chosen. This basis
is made observable through an interaction of the qubits
with a macroscopic measurement system. A basis vector x
is thus observed with probability P (x) = jhxj ij2.

Quantum information theory or more narrowly quan-
tum Shannon theory is concerned with protocols which
enable distant parties to efficiently transmit quantum or
classical information, possibly aided by the sharing of
quantum entanglement between the parties. For a detailed
introduction to quantum information theory, see the book
by Nielsen & Chuang [10].

Key Results

Super Dense Coding [3] is the protocol in which two clas-
sical bits of information are sent from sender Alice to re-
ceiver Bob. This is accomplished by sharing a Bell state
j�00iAB between Alice and Bob and the transmission of
one qubit. The protocol is illustrated in Fig. 1. Given two
bits b1, b2 Alice performs the following unitary transfor-
mation on her half of the Bell state:

Pb1b2 ˝ IBj�00i = j�b1b2 i ; (1)

i. e. one of the four Bell states. Here P00 = I; P01 = X;
P10 = Z and P11 = XZ = �iY . Alice then sends her qubit
to Bob. This allows Bob to do a measurement in the Bell
basis. He distinguishes the four states j�b1b2i and learns
the value of the two bits b1, b2.

The protocol demonstrates the interplay between clas-
sical information and quantum information. No informa-
tion can be communicated by merely sharing an entan-
gled state such as j�00i without the actual transmission
of physical information carriers. On the other hand it is
a consequence of Holevo’s theorem [8] that one qubit can
encode at most one classical bit of information. The pro-
tocol of dense coding shows that the two resources of en-
tanglement and qubit transmission combined give rise to
a super-dense coding of classical information. Dense Cod-
ing is thus captured by the following resource inequality

1 ebit + 1 qubit � 2 cbits : (2)

In words, one bit of quantum entanglement (one ebit) in
combination with the transmission of one qubit is suffi-
cient for the transmission of two classical bits or cbits.

Quantum Teleportation [1] is a protocol that is dual
to Dense Coding. In quantum teleportation, 1 ebit (a Bell
state) is used in conjunction with the transmission of two
classical bits to send one qubit from Alice to Bob. Thus the
resource relation for Quantum Teleportation is

1 ebit + 2 cbits � 1 qubit : (3)

The relation with quantum teleportation allows one to ar-
gue that dense coding is optimal. It is not possible to en-
code 2k classical bits in less than m < k quantum bits
even in the presence of shared quantum entanglement. Let
us assume the opposite and obtain a contradiction. One
uses quantum teleportation to convert the transmission of
k quantum bits into the transmission of 2k classical bits.
Then one can use the assumed super-dense coding scheme
to encode these 2k bits into m < k qubits. As a result one
can send k quantum bits by effectively transmittingm < k
quantum bits (and sharing quantum entanglement) which
is known to be impossible.

704 Q Quantum Dense Coding

Quantum Dense Coding, Figure 1
Dense Coding. Alice and Bob use a shared Bell state to transmit
two classical bits b = (b1;b2) by sending one qubit. Double lines
are classical bits and single lines represent quantum bits

Applications

Harrow [7] has introduced the notion of a coherent bit,
or cobit. The notion of a cobit is useful in understand-
ing resource relations and trade-offs between quantum
and classical information. The noiseless transmission of
a qubit from Alice to Bob can be viewed as the linear
map Sq : jxiA ! jxiB for a set of basis states fjxig. The
transmission of a classical bit can be viewed as the linear
map Sc : jxiA ! jxiBjxiE where E stands for the environ-
ment Eve. Eve’s copy of every basis state jxi can be viewed
as the output of a quantum measurement and thus Bob’s
state is classical. The transmission of a cobit corresponds
to the linear map Sco : jxiA ! jxiAjxiB. Since Alice keeps
a copy of the transmitted data, Bob’s state is classical. On
the other hand, the cobit can also be used to generate a Bell
state between Alice and Bob. Since no qubit can be trans-
mitted via a cobit, a cobit is weaker than a qubit. A cobit
is stronger than a classical bit since entanglement can be
generated using a cobit.

One can define a coherent version of super-dense cod-
ing and quantum teleportation in which measurements
are replaced by unitary operations. In this version of dense
coding Bob replaces his Bell measurement by a rotation of
the states j�b1b2 i to the states jb1b2iB. Since Alice keeps
her input bits, the coherent protocol implements the map
jx1x2iA ! jx1x2iAjx1x2iB. Thus one can strengthen the
dense coding resource relation to

1 ebit + 1 qubit � 2 cobits : (4)

Similarly, the coherent execution of quantum teleporta-
tion gives rise to the modified relation 2 cobits + 1 ebit �
1 qubit + 2 ebits. One can omit 1 ebit on both sides of the
inequality by using ebits catalytically, i. e. they can be bor-
rowed and returned at the end of the protocol. One can
then combine both coherent resource inequalities and ob-

tain a resource equality

2 cobits = 1 qubit + 1 ebit : (5)

A different extension of dense coding is the notion of
super-dense coding of quantum states proposed in [6].
Instead of dense coding classical bits, the authors in [6]
propose to code quantum bits whose quantum states are
known to the sender Alice. This last restriction is usually
referred to as the remote preparation of qubits, in contrast
to the transmission of qubits whose states are unknown to
the sender. In remote preparation of qubits the sender Al-
ice can use the additional knowledge about her states in the
choice of encoding. In [6] it is shown that one can obtain
the asymptotic resource relation

1 ebit + 1 qubit � 2 remotely prepared qubit(s) : (6)

Such relation would be impossible if the r.h.s. were re-
placed by 2 qubits. In that case the inequality could be used
repeatedly to obtain that 1 qubit suffices for the transmis-
sion of an arbitrary number of qubits which is impossible.

The “non-oblivious” super-dense coding of quantum
states should be compared with the non-oblivious and
asymptotic variant of quantum teleportation which was
introduced in [2]. In this protocol, referred to as remote
state preparation (using classical bits), the quantum tele-
portation inequality, Eq. (3) is tightened to

1 ebit + 1 cbit � 1 remotely prepared qubit(s) : (7)

These various resource (in)equalities and their underly-
ing protocols can be viewed as the first in a comprehen-
sive theory of resources inequalities. The goal of such the-
ory [4] is to provide a unified and simplified approach to
quantum Shannon theory.

Experimental Results

In [9] a partial realization of dense coding was given us-
ing polarization states of photons as qubits. The Bell state
j�01i can be produced by parametric down-conversion;
this state was used in the experiment as the shared en-
tanglement between Alice and Bob. With current exper-
imental techniques it is not possible to carry out a low-
noise measurement in the Bell basis which uniquely distin-
guishes the four Bell states. Thus in [9] one of three mes-
sages, a trit, is encoded into the four Bell states. Using two-
particle interferometry Bob learns the value of the trit by
distinguishing two of the four Bell states uniquely and ob-
taining a third measurement signal for the two other Bell
states.

Quantum Error Correction Q 705

In perfect dense coding the channel capacity is 2 bits.
For the trit-scheme of [9] the ideal channel capacity is
log 3 	 1:58. Due to the noise in the operations and mea-
surements the authors of [9] estimate the experimentally
achieved capacity as 1.13 bits.

In [11] the complete protocol of dense coding was
carried out using two 9Be+ ions confined to an electro-
magnetic trap. A qubit is formed by two internal hyper-
fine levels of the 9Be+ ion. Single qubit and two-qubit op-
erations are carried out using two polarized laser beams.
A single qubit measurement is performed by observing
a weak/strong fluorescence of j0i and j1i. The authors es-
timate that the noise in the unitary transformations and
measurements leads to an overall error rate on the trans-
mission of the bits b of 15%. This results in an effective
channel capacity of 1.16 bits.

In [5] dense coding was carried out using NMR spec-
troscopy. The two qubits were formed by the nuclear spins
of 1H and 13C of chloroform molecules 13CHCL3 in liq-
uid solution at room temperature. The full dense coding
protocol was implemented using the technique of tempo-
ral averaging and the application of coherent RF pulses,
see [10] for details. The authors estimate an overall error-
rate on the transmission of the bits b of less than 10%.

Cross References

� Teleportation of Quantum States

Recommended Reading

1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A.,
Wootters, W.K.: Teleporting an unknown quantum state via
dual classical and Einstein-Podolsky-Rosen channels. Phys.
Rev. Lett. 70, 1895–1899 (1993)

2. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Terhal, B.M., Woot-
ters, W.K.: Remote state preparation. Phys. Rev. Lett. 87,
077902 (2001)

3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-
particle operators on Einstein-Podolsky-Rosen states. Phys.
Rev. Lett. 69, 2881–2884 (1992)

4. Devetak, I., Harrow, A., Winter, A.: A resource framework for
quantum Shannon theory. Tech. Report CSTR-05-008, CS De-
partment, University of Bristol, December (2005)

5. Fang, X., Zhu, X., Feng, M., Mao, X., Du, F.: Experimental imple-
mentation of dense coding using nuclearmagnetic resonance.
Phys. Rev. A 61, 022307 (2000)

6. Harrow, A., Hayden, P., Leung, D.: Superdense coding of quan-
tum states. Phys. Rev. Lett. 92, 187901 (2004)

7. Harrow, A.W.: Coherent communication of classical messages.
Phys. Rev. Lett. 92, 097902 (2004)

8. Holevo, A.S.: Bounds for the quantity of information trans-
mitted by a quantum communication channel. Problemy
Peredachi Informatsii, 9, 3–11 (1973). English translation in:
Probl. Inf. Transm. 9, 177–183 (1973)

9. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense cod-
ing in experimental quantum communication. Phys. Rev. Lett.
76, 4656–4659 (1996)

10. Nielsen, M.A., Chuang, I.L.: Quantum computation and quan-
tum information. Cambridge University Press, Cambridge, U.K.
(2000)

11. Schaetz T., Barrett, M.D., Leibfried, D., Chiaverini, J., Britton, J.,
Itano, W.M., Jost, J.D., Langer, C., Wineland, D.J.: Quantum
Dense Coding with Atomic Qubits. Phys. Rev. Lett. 93, 040505
(2004)

Quantum Error Correction
1995; Shor

MARTIN RÖTTELER
NEC Laboratories America, Princeton, NJ, USA

Keywords and Synonyms

Quantum error-correcting codes; Quantum codes; Stabi-
lizer codes

ProblemDefinition

Quantum systems can never be considered isolated from
an environment which permanently causes disturbances
of the state of the system. This noise problem threatens
quantum computers and their great promise, namely to
provide a computational advantage over classical comput-
ers for certain problems (see also the cross references in
the Sect.“Cross References”). Quantum noise is usually
modeled by the notion of a quantum channelwhich gener-
alizes the classical case, and, in particular, includes scenar-
ios for communication (space) and storage (time) of quan-
tum information. For more information about quantum
channels and quantum information in general, see [12].
A basic channel is the quantum mechanical analog of
the classical binary symmetric channel [11]. This quan-
tum channel is called the depolarizing channel and de-
pends on a parameter p. Its effect is to randomly apply
one of the Pauli spin matrices X, Y , and Z to the state
of the system, mapping a quantum state � of one qubit
to (1 � p)� + p/3(X�X + Y�Y + Z�Z). It should be noted
that it is always possible to map any quantum channel to
a depolarizing channel by twirling operations. The basic
problem of quantum error correction is to devise a mech-
anism which allows to perfectly recover quantum infor-
mation which has been sent through a quantum channel,
in particular the depolarizing channel.

706 Q Quantum Error Correction

Key Results

For a long time, it was not known whether it would be
possible to protect quantum information against noise.
Even some indication in the form of the no-cloning the-
orem was put forward to support the view that it might be
impossible. The no-cloning theorem essentially says that
an unknown quantum state cannot be copied perfectly,
thereby dashing the hopes that a simple triple-replication
and majority voting mechanism (which works well clas-
sically) could be used for the quantum case. Therefore
it came as a surprise when Shor [13] found a quantum
code which encodes one qubit into nine qubits in such
a way that the resulting state has the ability to be protected
against arbitrary single-qubit errors on each of these nine
qubits. The idea is to use a concatenation of two three-
fold repetition codes. One of them protects against bit-flip
errors while the other protects against phase-flip errors.
The quantum code is a two-dimensional subspace of the
29 dimensional Hibert space (C2)˝9. Two orthogonal ba-
sis vectors of this space are identified with the logical 0 and
1 states, respectively, usually called j0i and j1i. Explicitly,
the code is given by

j0i =
1

2
p
2
(j000i + j111i) ˝ (j000i + j111i)

˝ (j000i + j111i) ;

j1i =
1

2
p
2
(j000i � j111i) ˝ (j000i � j111i)

˝ (j000i � j111i) :

The state ˛j0i + ˇj1i of one qubit is encoded to the state
˛j0i + ˇj1i of the nine qubit system. The reason why this
code can correct one arbitrary quantum error is as follows.

First, suppose that a bit-flip error has happened, which
in quantum mechanical notation is given by the opera-
tor X. Then a majority vote of each block of three qubits
1 � 3; 4 � 6, and 7� 9 can be computed and the bit-
flip can be corrected. To correct against phase-flip er-
rors, which are given by the operator Z, the fact is used
that the code can be written as j0i = j + ++i + j � ��i,
j1i = j + ++i � j � ��i, where j˙i = 1p

2
(j000i ˙ j111i).

By measuring each block of three in the basis fj+i; j�ig,
the majority of the phase-flips can be detected and one
phase-flip error can be corrected. Similarly, it can be
shown that Y , which is a combination of a bit-flip and
a phase-flip, can be corrected.

Discretization of Noise

Even though the above procedure seemingly only takes
care of bit-flips and phase-flip errors, it actually is true that

an arbitrary error affecting a single qubit out of the nine
qubits can be corrected. In particular, and perhaps surpris-
ingly, this is also the case if one of the nine qubits is com-
pletely destroyed. The linearity of quantum mechanics al-
lows this method to work. Linearity implies that when-
ever operators A and B can be corrected, so can their sum
A + B [6,13,15]. Since the (finite) set f12; X;Y ; Zg forms
a vector space basis for the (continuous) set of all one-
qubit errors, the nine-qubit code can correct an arbitrary
single qubit error.

Syndrome Decoding and the Need for Fresh Ancillas

A way to do the majority vote quantum-mechanically is
to introduce two new qubits (also called ancillas) that are
initialized in j0i. Then, the results of the two parity checks
for the repetition code of length three can be computed
into these two ancillas. This syndrome computation for
the repetition code can be done using the so-called con-
trolled not (CNOT) gates [12] and Hadamard gates. Af-
ter this, the qubits holding the syndrome will factor out
(i. e., they have no influence on future superpositions or
interferences of the computational qubits), and can be dis-
carded. Quantum error correction demands a large supply
of fresh qubits for the syndrome computations which have
to be initialized in a state j0i. The preparation of many
such states is required to fuel active quantum error cor-
recting cycles, in which syndrome measurements have to
be applied repeatedly. This poses great challenges to any
concrete physical realization of quantum error-correcting
codes.

Conditions for General QuantumCodes

Soon after the discovery of the first quantum code, gen-
eral conditions required for the existence of codes, which
protect quantum systems against noise, were sought after.
Here the noise is modeled by a general quantum channel,
given by a set of error operators Ei. The Knill–Laflamme
conditions [8] yield such a characterization. Let C be the
code subspace and let PC be an orthogonal projector onto
C. Then the existence of a recovery operation for the chan-
nel with error operators Ei is equivalent to the equation

PCE
�
i E jPC = �i; jPC ;

for all i and j, where �i; j are some complex constants. This
recently has been extended to the more general framework
of subsystem codes (also called operator quantum error
correcting codes) [10].

Quantum Error Correction Q 707

Constructing QuantumCodes

The problem of deriving general constructions of quan-
tum codes was addressed in a series of ground-breaking
papers by several research groups in the mid 90s. Tech-
niques were developed which allow classical coding theory
to be imported to an extent that is enough to providemany
families of quantum codes with excellent error correction
properties.

The IBM group [2] investigated quantum channels,
placed bounds on the quantum channels’ capacities, and
showed that for some channels it is possible to compute
the capacity (such as for the quantum erasure channel).
Furthermore, they showed the existence of a five qubit
quantum code that can correct an arbitrary error, thereby
being much more efficient than Shor’s code. Around the
same time, Calderbank and Shor [4] and Steane [14] found
a construction of quantum codes from any pair C1, C2
of classical linear codes satisfying C?2
 C1. Named after
their inventors, these codes are known as CSS codes.

The AT&T group [3] found a general way of defin-
ing a quantum code. Whenever a classical code over the
finite field F4 exists that is additively closed and self-or-
thogonal with respect to the Hermitian inner product,
they were able to find even more examples of codes. In-
dependently, D. Gottesman [6,7] developed the theory of
stabilizer codes. These are defined as the simultaneous
eigenspaces of an abelian subgroup of the group of ten-
sor products of Pauli matrices on several qubits. Soon after
this, it was realized that the two constructions are equiva-
lent.

A stabilizer code which encodes k qubits into n qubits
and has distance d is denoted by [[n; k; d]]. It can cor-
rect up to b(d � 1)/2c errors of the n qubits. The rate of
the code is defined as r = k/n. Similar to classical codes,
bounds on quantum error-correcting codes are known;
i. e., the Hamming, Singleton, and linear programming
bounds.

Asymptotically Good Codes

Matching the developments in classical algebraic coding
theory, an interesting question deals with the existence of
asymptotically good codes; i. e., families of quantum codes
with parameters [[ni ; ki ; di]], where i � 0, which have
asymptotically non-vanishing rate limi!1 ki /ni > 0 and
non-vanishing relative distance limi!1 di /ni > 0. In [4],
the existence of asymptotically good codes was established
using random codes. Using algebraic geometry (Goppa)
codes, it was later shown by Ashikhmin, Litsyn, and Ts-
fasman that there are also explicit families of asymptoti-
cally good quantum codes. Currently, most constructions

of quantum codes are from the above mentioned stabi-
lizer/additive code construction, with notable exception of
a few non-additive codes and some codes which do not fit
into the framework of Pauli error bases.

Applications

Besides their canonical application to protect quan-
tum information against noise, quantum error correct-
ing codes have been used for other purposes as well. The
Preskill/Shor proof of the security of the quantum key dis-
tribution scheme BB84 relies on an entanglement purifi-
cation protocol, which in turn uses CSS codes. Further-
more, quantum codes have been used for quantum se-
cret sharing, quantum message authentication, and secure
multiparty quantum computations. Properties of stabilizer
codes are also germane for the theory of fault-tolerant
quantum computation.

Open Problems

The literature of quantum error correction is fast growing,
and the list of open problems is certainly too vast to be
surveyed here in detail. The following short list is highly
influenced by the preference of the author.

It is desirable to find quantum codes for which all
stabilizer generators have low weight. This would be the
quantum equivalent of low-density parity check (LDPC)
codes. Since the weights directly translate into the com-
plexity of the syndrome computation circuitry, it would
be highly desirable to find examples of such codes. So far,
only few sporadic constructions are known.

It is an open problem to find new families of quantum
codes which improve on the currently known estimates on
the threshold for fault-tolerant quantum computing. An
advantage might be to use subsystem codes, since they al-
low for simple error correction circuits. It would be useful
to find more families of subsystem codes, thereby general-
izing the Bacon/Shor construction.

Most quantum codes are designed for the depolarizing
channel, where – roughly speaking – the error probability
is improved from p to pd/2 for a distance d code. The in-
dependence assumption underlying this model might not
always be justified and therefore it seems imperative to
consider other, e. g., non-Markovian, error models. Un-
der some assumptions on the decay of the interaction
strengths, threshold results for such channels have been
shown. However, good constructions of codes for such
types of noise are still out of reach.

Approximate quantum error-correcting codes have
found applications in quantum authentication and re-
cently for secure multiparty quantum computations [1].

708 Q Quantum Key Distribution

Here the Knill–Laflamme conditions do not have to be sat-
isfied exactly, but some error is allowed. This gives much
more freedom in defining subspaces and if some error can
be tolerated, quantum codes with much better error cor-
rection capabilities become feasible. However, not many
constructions of such codes are known.

Experimental Results

Active quantum error-correcting codes, such as those
codes which require syndrome measurements and correc-
tion operations, as well as passive codes (i. e., codes in
which the system stays in an simultaneous invariant sub-
space of all error operators for certain types of noise),
have been demonstrated for some physical systems. The
most advanced physical demonstration in this respect are
the nuclear magnetic resonance (NMR) experiments [9].
The three-qubit repetition code, which protects one qubit
against phase-flip error Z, was demonstrated in an ion-
trap for beryllium ion qubits [5].

Data Sets

M.Grassl maintains http://www.codetables.de, which con-
tains tables of the best known quantum codes, some en-
tries of which extend [3, Table III]. It also contains bounds
on the minimum distance of quantum codes for given
lengths and dimensions, and contains information about
the construction of the codes. In principle, this can be used
to get explicit generator matrices (see also the following
section, “URL to Code”).

URL to Code

The computer algebra system Magma (http://magma.
maths.usyd.edu.au/magma/) has functions and data struc-
tures for defining and analyzing quantum codes. Several
quantum codes are already defined in a database of quan-
tum codes. For instance, the command QECC(F,n,k)
returns the best known quantum code (i. e., the one of
highest distance) over the field F, of length n, and dimen-
sion k. It allows the user to define new quantum codes, to
study their properties (such as the weight distribution, au-
tomorphism), and several predefined methods for obtain-
ing new codes from old ones.

Cross References

� Abelian Hidden Subgroup Problem
� Fault-Tolerant Quantum Computation
� Quantization of Markov Chains
� Quantum Algorithm for Element Distinctness
� Quantum Algorithm for Factoring

� Quantum Algorithm for Finding Triangles
� Quantum Algorithm for Solving the Pell’s Equation
� Quantum Key Distribution
� Teleportation of Quantum States

Recommended Reading

1. Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.:
Secure multiparty quantum computation with (only) a strict
honest majority. In: Proceedings of the 47th Symposium on
Foundations of Computer Science (FOCS’06), 2006, pp. 249–
260

2. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.:
Mixed-state entanglement and quantum error correction.
Phys. Rev. A 54, 3824–3851 (1996)

3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quan-
tum error correction via codes over GF(4). IEEE Trans. Inform.
Theory 44, 1369–1387 (1998)

4. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting
codes exist. Phys. Rev. A 54, 1098–1105 (1996)

5. Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad,
R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri,
R., Wineland, D.J.: Realization of quantum error correction. Na-
ture 432, 602–605 (2004)

6. Gottesman, D.: Class of quantum error-correcting codes satu-
rating the quantum Hamming bound. Phys. Rev. A 54, 1862–
1868 (1996)

7. Gottesman, D.: Stabilizer codes and quantum error correction,
Ph. D. thesis, Caltech. (1997) See also: arXiv preprint quant-
ph/9705052

8. Knill, E., Laflamme, R.: Theory of quantum error-correcting
codes. Phys. Rev. A 55, 900–911 (1997)

9. Knill, E., Laflamme, R., Martinez, R., Negrevergne, C.: Bench-
marking quantum computers: the five-qubit error correcting
code. Phys. Rev. Lett. 86, 5811–5814 (2001)

10. Kribs, D., Laflamme, R., Poulin, D.: Unified and generalized ap-
proach to quantum error correction. Phys. Rev. Lett. 94(4),
180501 (2005)

11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error–
Correcting Codes. North–Holland, Amsterdam (1977)

12. Nielsen, M., Chuang, I.: Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge (2000)

13. Shor, P.W.: Scheme for reducing decoherence in quantum
computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

14. Steane, A.: Error correcting codes in quantum theory. Phys.
Rev. Lett. 77, 793–797 (1996)

15. Steane, A.: Multiple-particle interference and quantum error
correction. Proc. R. Soc. London A 452, 2551–2577 (1996)

Quantum Key Distribution
1984; Bennett, Brassard
1991; Ekert

RENATO RENNER
ETH, Institute for Theoretical Physics, Zurich,
Switzerland

http://www.codetables.de
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/

Quantum Key Distribution Q 709

Quantum Key Distribution, Figure 1
A QKD protocol � consists of algorithms �A and�B for Alice and
Bob, respectively. The algorithms communicate over a quantum
channelQ that might be coupled to a system E controlled by an
adversary. The goal is to generate identical keys SA and SB which
are independent of E

Keywords and Synonyms

Quantum key exchange, Quantum key growing

ProblemDefinition

Secret keys, i. e., random bitstrings not known to an ad-
versary, are a vital resource in cryptography (they can be
used, e. g., for message encryption or authentication). The
distribution of secret keys among distant parties, possi-
bly only connected by insecure communication channels,
is thus a fundamental cryptographic problem. Quantum
key distribution (QKD) is a method to solve this problem
using quantum communication. It relies on the fact that
any attempt of an adversary to wiretap the communica-
tion would, by the laws of quantum mechanics, inevitably
introduce disturbances which can be detected.

For the technical definition, consider a setting consist-
ing of two honest parties, called Alice and Bob, as well as
an adversary, Eve. Alice and Bob are connected by a quan-
tum channel Q which might be coupled to a (quantum)
system E controlled by Eve (see Fig. 1). In addition, it is
assumed that Alice and Bob have some means to exchange
classical messages authentically, that is, they canmake sure
that Eve is unable to (undetectably) alter classical mes-
sages during transmission. If only insecure communica-
tion channels are available, Alice and Bob can achieve this
using an authentication scheme [15] which, however, re-
quires a short initial key. This is why QKD is sometimes
called Quantum Key Growing.

A QKD protocol
 = (
A;
B) is a pair of algorithms
for Alice and Bob, producing classical outputs SA and SB,
respectively. SA and SB take values in S [f?g where S is
called key space and? is a symbol (not contained in S) in-
dicating that no key can be generated. A QKD protocol

with key space S is said to be perfectly secure on a chan-

nel Q if, after its execution using communication over Q,
the following holds:
� SA = SB ;
� if SA ¤? then SA and SB are uniformly distributed on
S and independent of the state of E.

More generally,
 is said to be "-secure on Q if it satisfies
the above conditions except with probability (at most) ".
Furthermore,
 is said to be "-robust onQ if the probabil-
ity that SA =? is at most ".

In the standard literature on QKD, protocols are typ-
ically parametrized by some positive number k quantify-
ing certain resources needed for its execution (e. g., the
amount of communication). A protocol
 = (
k)k2N is
said to be secure (robust) on a channelQ if there exists a se-
quence ("k)k2N which approaches zero exponentially fast
such that
k is "k-secure ("k-robust) onQ for any k 2 N .
Moreover, if the key space of
k is denoted by Sk , the key
rate of
 = (
k)k2N is defined by r = limk!1

`k
k where

`k := log2 jSkj is the key length.
The ultimate goal is to construct QKD protocols

which are secure against general attacks, i. e., on all pos-
sible channels Q. This ensures that an adversary cannot
get any information on the generated key even if she fully
controls the communication between Alice and Bob. At
the same time, a protocol
 should be robust on certain
realistic (possibly noisy) channels Q in the absence of an
adversary. That is, the protocol must always produce a key,
unless the disturbances in the channel exceed a certain
threshold. Note that, in contrast to security, robustness
cannot be guaranteed in general (i. e., on all Q), as an ad-
versary could, for instance, interrupt the entire communi-
cation between Alice and Bob (in which case key genera-
tion is obviously impossible).

Key Results

Protocols

On the basis of the pioneering work of Wiesner [16], Ben-
nett and Brassard, in 1984, invented QKD and proposed
a first protocol, known today as the BB84 protocol [2]. The
idea was then further developed by Ekert, who established
a connection to quantum entanglement [7]. Later, in an at-
tempt to increase the efficiency and practicability of QKD,
various extensions to the BB84 protocol as well as alterna-
tive types of protocols have been proposed.

QKD protocols can generally be subdivided into (at
least) two subprotocols. The purpose of the first, called dis-
tribution protocol, is to generate a raw key pair, i. e., a pair
of correlated classical values X and Y known to Alice and
Bob, respectively. In most protocols (including BB84), Al-
ice chooses X = (X1; : : : ; Xk) at random, encodes each of

710 Q Quantum Key Distribution

the Xi into the state of a quantum particle, and then sends
the k particles over the quantum channel to Bob. Upon re-
ceiving the particles, Bob applies ameasurement to each of
them, resulting in Y = (Y1; : : : ;Yk). The crucial idea now
is that, by virtue of the laws of quantum mechanics, the
secrecy of the raw key is a function of the strength of the
correlation between X and Y ; in other words, the more in-
formation (on the raw) key an adversary tries to acquire,
the more disturbances she introduces.

This is exploited in the second subprotocol, called dis-
tillation protocol. Roughly speaking, Alice and Bob esti-
mate the statistics of the raw key pair (X,Y). If the corre-
lation between their respective parts is sufficiently strong,
they use classical techniques such as information reconcil-
iation (error correction) and privacy amplification (see [3]
for the case of a classical adversarywhich is relevant for the
analysis of security against individual attacks and [12,13]
for the quantum-mechanical case which is relevant in the
context of collective and general attacks) to turn (X,Y)
into a pair (SA; SB) of identical and secure keys.

Key Rate as a Function of Robustness and Security

The performance (in terms of the key rate) of a QKD pro-
tocol strongly depends on the desired level of security and
robustness it is supposed to provide, as illustrated in Fig. 2.
(The robustness is typically measured in terms of themax-
imum tolerated channel noise, i. e., the maximum noise of
a channel Q such that the protocol is still robust on Q
according to the above definition.) The results summa-
rized below apply to protocols of the form described above
where, for the analysis of robustness, it is assumed that the
quantum channel Q connecting Alice and Bob is memo-
ryless and time-invariant, i. e., each transmission is subject
to the same type of disturbances. Formally, such channels
are denoted by Q = Q̄˝k where Q̄ describes the action of
the channel in a single transmission.

Security Against IndividualAttacks AQKDprotocol

is said to be secure against individual attacks if it is secure
on any channel Q of the form Q̄˝k where the coupling
to E is purely classical. Note that this notion of security is
relatively weak. Essentially, it only captures attacks where
the adversary applies identical and independent measure-
ments to each of the particles sent over the channel.

The following general statement can be derived from
a classical argument due to Csiszár and Körner [5]. Let �
be a distribution protocol as described above, i. e., � gener-
ates a raw key pair (X,Y). Moreover, let S be a set of quan-
tum channels Q̄ suitable for � . Then there exists a QKD
protocol
 (parametrized by k), consisting of k executions

Quantum Key Distribution, Figure 2
Key rate of an extended version of the BB84 QKD protocol de-
pending on the maximum tolerated channel noise (measured in
terms of the bit-flip probability e) [12]

of the subprotocol � followed by an appropriate distilla-
tion protocol such that the following holds:
 is robust on
Q = Q̄˝k for any Q̄ 2 S, secure against individual attacks,
and has key rate at least

r � min
Q̄2S

H(XjZ)� H(XjY) ; (1)

where the Shannon entropies on the r.h.s. are evaluated for
the joint distribution PQ̄XYZ of the raw key (X,Y) and the
(classical) value Z held by Eve’s system E after one execu-
tion of � on the channel Q̄. Evaluating the right hand side
for the BB84 protocol on a channel with bit-flip probabil-
ity e shows that the rate is non-negative if e � 14:6% [8].

Security Against Collective Attacks A QKD protocol

is said to be secure against collective attacks if it is secure
on any channel Q of the form Q̄˝k with arbitrary cou-
pling to E. This notion of security is strictly stronger than
security against individual attacks, but it still relies on the
assumption that an adversary does not apply joint opera-
tions to the particles sent over the channel.

As shown by Devetak and Winter [6], the above state-
ment for individual attacks extends to collective attacks
when replacing inequality (1) by

r � min
Q̄2S

S(XjE) � H(XjY) (2)

where S(XjE) is the conditional von Neumann entropy
evaluated for the classical value X and the quantum state
of E after one execution of � on Q̄. For the standard BB84
protocol, the rate is positive as long as the bit-flip proba-
bility e of the channel satisfies e � 11:0% [14] (see Fig. 2
for a graph of the performance of an extended version of
the protocol).

Quantum Key Distribution Q 711

Security Against General Attacks A QKD protocol

is said to be secure against general attacks if it is secure on
any arbitrary channelQ. This type of security is sometimes
also called full or unconditional security as it does not rely
on any assumptions on the type of attacks or the resources
needed by an adversary.

The first QKD protocol to be proved secure against
general attacks was the BB84 protocol. The original argu-
ment by Mayers [11] was followed by various alternative
proofs. Most notably, based on a connection to the prob-
lem of entanglement purification [4] established by Lo and
Chau [10], Shor and Preskill [14] presented a general argu-
ment which applies to various versions of the BB84 proto-
col.

More recently it has been shown that, for virtually
any QKD protocol, security against collective attacks im-
plies security against general attacks [12]. In particular,
the above statement about the security of QKD protocols
against collective attacks, including formula 2 for the key
rate, extends to security against general attacks.

Applications

Because the notion of security described above is com-
posable [13] (see [1,12] for a general discussion of com-
posability of QKD) the key generated by a secure QKD
protocol can in principle be used within any application
that requires a secret key (such as one-time pad encryp-
tion). More precisely, letA be a scheme which, when us-
ing a perfect key S (i. e., a uniformly distributed bitstring
which is independent of the adversary’s knowledge), has
some failure probability ı (according to some arbitrary
failure criterion). Then, if the perfect key S is replaced by
the key generated by an "-secure QKD protocol, the failure
probability ofA is bounded by ı + " [13].

Experimental Results

Most known QKD protocols (including BB84) only re-
quire relatively simple quantum operations on Alice and
Bob’s side (e. g., preparing a two-level quantum system in
a given state or measuring the state of such a system). This
makes it possible to realize them with today’s technology.
Experimental implementations of QKD protocols usually
use photons as carriers of quantum information, because
they can easily be transmitted (e. g., through optical fibers).
A main limitation, however, is noise in the transmission,
which, with increasing distance betweenAlice and Bob, re-
duces the performance of the protocol (see Fig. 2). We re-
fer to [9] for an overview on quantum cryptography with
a focus on experimental aspects.

Cross References

� Quantum Error Correction
� Teleportation of Quantum States

Recommended Reading

1. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppen-
heim, J.: The universal composable security of quantum key
distribution. In: Second Theory of Cryptography Conference
TCC. Lecture Notes in Computer Science, vol. 3378, pp. 386–
406. Springer, Berlin (2005). Also available at http://arxiv.org/
abs/quant-ph/0409078

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key
distribution and coin tossing. In: Proceedings of IEEE Interna-
tional Conference on Computers, Systems and Signal Process-
ing, pp. 175–179. IEEE Computer Society Press, Los Alamitos
(1984)

3. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized
privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923
(1995)

4. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin,
J., Wootters, W.: Purificationof noisy entanglement and faithful
teleportation via noisy channels. Phys. Rev. Lett. 76, 722–726
(1996)

5. Csiszár, I., Körner, J.: Broadcast channels with confidential mes-
sages. IEEE Trans. Inf. Theory 24, 339–348 (1978)

6. Devetak, I., Winter, A.: Distillation of secret key and entangle-
ment from quantum states. Proc. R. Soc. Lond. A 461, 207–235
(2005)

7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem.
Phys. Rev. Lett. 67, 661–663 (1991)

8. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C., Peres, A.: Opti-
mal eavesdropping in quantum cryptography, I. Information
bound andoptimal strategy. Phys. Rev. A 56, 1163–1172 (1997)

9. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptog-
raphy. Rev. Mod. Phys. 74, 145–195 (2002)

10. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key
distribution over arbitrarily long distances. Science 283, 2050–
2056 (1999)

11. Mayers, D.: Quantum key distribution and string oblivious
transfer in noisy channels. In: Advances in Cryptology –
CRYPTO ’96. Lecture Notes in Computer Science, vol. 1109,
pp. 343–357. Springer (1996)

12. Renner, R.: Security of Quantum Key Distribution. Ph. D. thesis,
Swiss Federal Institute of Technology (ETH) Zurich, Also avail-
able at http://arxiv.org/abs/quant-ph/0512258 (2005)

13. Renner, R., König, R.: Universally composable privacy amplifica-
tion against quantum adversaries. In: Second Theory of Cryp-
tography Conference TCC. LectureNotes in Computer Science,
vol. 3378, pp. 407–425. Springer, Berlin (2005). Also available at
http://arxiv.org/abs/quant-ph/0403133

14. Shor, P.W., Preskill, J.: Simple proof of security of the BB84
quantum key distribution protocol. Phys. Rev. Lett. 85, 441
(2000)

15. Wegman, M.N., Carter, J.L.: New hash functions and their
use in authentication and set equality. J. Comput. Syst. Sci.
22, 265–279 (1981)

16. Wiesner, S.: Conjugate coding. Sigact News 15(1), 78–88 (1983)

http://arxiv.org/abs/quant-ph/0409078
http://arxiv.org/abs/quant-ph/0409078
http://arxiv.org/abs/quant-ph/0512258
http://arxiv.org/abs/quant-ph/0403133

712 Q Quantum Search

Quantum Search
1996; Grover

LOV K. GROVER1, BEN W. REICHARDT2
1 Bell Labs, Alcatel-Lucent, Murray Hill, NJ, USA
2 Institute for Quantum Information, California Institute
of Technology, Pasadena, CA, USA

Keywords and Synonyms

Quantum unsorted database search

ProblemDefinition

Informal Description

The search problem can be described informally as, given
a set of N items, identify an item satisfying a given prop-
erty. Assume that it is easy to query whether a specific item
satisfies the property or not. Now, the set of N items is not
sorted and so there appears to be no shortcut to the brute-
force method of checking each item one by one until the
desired item is found. However, that intuition is only cor-
rect for classical computers; quantum computers can be in
multiple states simultaneously and can examine multiple
items at the same time. There is no obvious lower bound
to how fast search can be run by a quantum computer, but
nor is there an obvious technique faster than brute-force
search. It turns out, though, that there is an efficient quan-
tummechanical search algorithm that makes only O(

p
N)

queries, and this is optimal.
This quantum algorithm works very different from

searching with a classical computer [5]. The optimal clas-
sical strategy is to check the items one at a time in ran-
dom order. After � items are picked, the probability that
the search hasn’t yet succeeded is (1 � 1/N)(1 � 1/(N �
1)) � � � (1 � 1/(N � � + 1)). For �� N , the success proba-
bility is therefore roughly 1�(1�1/N)� 	 �/N . Increasing
the success probability to a constant requires the number
of items picked, �, to be˝(N).

In contrast, the quantum search algorithm through
a series of quantum mechanical operations steadily in-
creases the amplitude on the target item. In � steps it
increases this amplitude to roughly �/

p
N, and hence

the success probability (on measuring the state) to �2/N.
Boosting this to˝(1) requires only O(

p
N) steps, approx-

imately the square-root of the number of steps required by
any classical algorithm.

The reason the quantum search algorithm has been
of so much interest in a variety of fields is that it can be
adapted to different settings, giving a new class of quan-
tum algorithms extending well beyond search problems.

Formal Statement

Given oracle access to a bit string x 2 f0; 1gN , find an in-
dex i such that xi = 1, if such index exists. In particular,
determine if x = 0N or not – i. e., evaluate the OR func-
tion x1 _ x2 _ � � � _ xN . To understand this, think of the
indices i as combinatorial objects of some sort, and xi in-
dicates whether i satisfies a certain property or not – with
xi efficiently computable given i. The problem is to find
an object satisfying the property. This search problem is
unstructured because the solution may be arbitrary. Or-
dered search of a sorted list, on the other hand, may be
abstracted as: given access to a string promised to be of the
form x = 0m1N�m , findm.

Classically, oracle access means that one has a black-
box subroutine that given i returns xi. The cost of query-
ing the oracle is taken to be one per query. The hardest in-
puts to search are clearly those x that are all zeros except in
a single position – when there is a single solution – a single
“needle in a haystack.” (For the OR function, such inputs
are hard to distinguish from x = 0N .) For any determin-
istic search algorithm, there exists such an input on which
the algorithm makes at least N oracle queries; brute-force
search is the best strategy. Any randomized search algo-
rithmwith " probability of successmustmakeN/" queries.

Quantumly, one is allowed black-box access to a uni-
tary oracle Ux that can query the oracle in a superposi-
tion and get an answer in a superposition. Ux is defined as
a controlled reflection about indices i with xi = 0:

Ux jc; ii = (�1)cxi jc; ii ; (1)

where jci is a control qubit. This can be implemented us-
ing U 0x satisfying U 0x (jc; i; bi) = jc; i; (cxi) ˚ bi – where
b 2 f0; 1g and˚ is addition mod two – by setting the sec-
ond register to (1/

p
2)(j0i � j1i).

For example, if � is a 3-SAT formula on n variables, i 2
f1; 2; : : : ;N = 2ng represents a setting for the variables,
and xi indicates if assignment i satisfies � ; then is � satisfi-
able? (Another common example is unstructured database
search: i is a record and xi a function of that record. How-
ever, this example is complicated because records need to
be stored in a physical memory device. If it is easier to ac-
cess nearby records, then spatial relationships come into
play.)

More generally, say there is a subroutine that returns
an efficiently verifiable answer to some problemwith prob-
ability ". To solve the problem with constant probability,
the subroutine can be run ˝(1/") times. Quantumly, if
the subroutine is a unitary process that returns the right
answer with amplitude

p
", is there a better technique

than measuring the outcome and running the subroutine

Quantum Search Q 713

˝(1/") times? It turns out that this question is closely re-
lated to search, because the uniform superposition over in-
dices (1/

p
N)
P

i jii has amplitude of returning the right
answer as 1/

p
N: Thus, an algorithm for this problem im-

mediately implies a search algorithm.

Key Results

Grover [13] showed that there exists a quantum search al-
gorithm that is quadratically faster than the optimal clas-
sical randomized algorithm:

Theorem 1 (Grover search) There is a quantum black-
box unstructured search algorithm with success probabil-
ity ", using O(

p
N") queries and O(

p
N" � log logN) time.

If promised that the Hamming weight of x is jxj � k, then
one of the i such that xi = 1 can be found using O(

p
N"/k)

queries.

The Grover search algorithm has its simplest form if given
the promise that jxj = 1. Then the single “marked item”
i* with xi� = 1 can be found by preparing the uniform
superposition over indices j�i = (1/

p
N)
P

i jii, then re-
peating

p
N times:

1. Apply the oracle Ux from Eq. (1), with the control bit
c = 1, to reflect about i*.

2. Reflect about j�i by applying UD = I � 2j�ih� j.
Finally, measure and output i.
It turns out that i = i� with constant probability. The

analysis is straightforward because the quantum state j'i
stays in the two-dimensional subspace spanned by ji�i
and j�i. Initially, the amplitude on i* is hi�j�i = 1/

p
N ,

and the angle between ji�i and the initial state j'0i = j�i
is
/2 � � , with � = arcsin 1/

p
N 	 1/

p
N. Each pair

of reflection steps decreases the angle between the j'i and
ji�i by exactly � , so

p
N steps suffice to bound the angle

away from
/2. (Using the small angle approximation, af-
ter t steps of alternating reflections the amplitude hi�j'ti is
about t/

p
N , making the success probability about t2/N .)

The reflection about the uniform superposition, UD =
I � 2j�ih� j, is known as a Grover diffusion step. If the
indices are represented in binary, with N = 2n , it can be
implemented as transversal Hadamard gates H˝n , where
H = 1p

2

�
1 1
1 �1

�
), followed by reflection about j0ni, fol-

lowed by H˝n again. This operation can also be inter-
preted as an inversion about the average of the amplitudes
fhij'tig. Note that if one measures i before each query to
the oracle, then the algorithm collapses to effectively clas-
sical search by random guessing.

Brassard and Høyer [6], and Grover [14] both realized
that quantum search can be applied on top of nearly any
quantum algorithm for any problem. Roughly, the am-

plitude amplification technique says that given one quan-
tum algorithm that solves a problem with small probabil-
ity ", then by usingO(m) calls to that algorithm the success
probability can be increased to aboutm2". (Classically, the
success probability could only be increased to about m".)
More formally,

Theorem 2 (Amplitude amplification, [1, Lemma 9])
Let A be a quantum algorithm that outputs a correct an-
swer and witness with probability ı � " where " is known.
Furthermore, let

m �

4 arcsin
p
"
�

1
2
:

Then there is an algorithmA0 that uses 2m + 1 calls toA
andA�1 and outputs a correct answer and a witness with
probability

ınew �

�
1 �

(2m + 1)2

3
ı

�
(2m + 1)2ı :

Here, one is “searching” for an answer to some problem.
The “oracle” is implemented by a routine that condition-
ally flips the phase based on whether or not the answer is
correct (checked using the witness). The reflection about
the initial state is implemented by inverting A, applying
a reflection about j0i, and then reapplyingA (similarly to
how the reflection about j�i can be implemented using
Hadamard gates). See also [7].

The square-root speedup in quantum search is opti-
mal; Bennett, Bernstein, Brassard and Vazirani [4] gave an
˝(
p
N) lower bound on the number of oracle queries re-

quired for a quantum search algorithm. Therefore, quan-
tum computers cannot give an exponential speedup for ar-
bitrary unstructured problems; there exists an oracle rela-
tive to which BQP ª NP (an NP machine can guess the
answer and verify it with one query). In fact, under the
promise that jxj = 1, the algorithm is precisely optimal
and cannot be improved by even a single query [22].

Grover’s search algorithm is robust in several ways:
� It is robust against changing both initial state and the

diffusion operator:

Theorem 3 ([2]) Assume jxj = 1with xi� = 1. Assume the
initial state j'0i has real amplitudes hij'0i, with hi�j'0i =
˛. Let the reflection oracle be Ux = I � 2ji�ihi�j. Let the
diffusion operator UD be a real unitary matrix in the basis
fjiig. Assume UD j'0i = j'0i and that UD j i = ei� j i
for � 2 ["; 2
 � "] (where " > 0 is a constant) for all
eigenvectors j i orthogonal to j'0i. Then, there exists t =
O(1/˛) such that jhi�j(UDUx)t j'0ij = ˝(1). (The constant
under˝(1) is independent of ˛ but can depend on ":)

714 Q Quantum Search

Therefore, there is in fact an entire class of related algo-
rithms that use different “diffusion” operators. This ro-
bustness is useful in applications, and may help to explain
why Grover search ideas appear so frequently in quantum
algorithms.
� Høyer, Mosca and de Wolf [16] showed that quan-

tum search can be implemented so as to be robust also
against faulty oracles, a problem known as Bounded-
Error Search:

Theorem 4 Suppose U 00x ji; bi =
p
pi ji; xi ˚ bi +p

1 � pi ji; (1 � xi) ˚ bi, with each pi � 9/10 (i. e., there
is a bounded coherent error rate in the oracle). Search can
still be implemented in O(

p
N) time.

Applications

An early application of the Grover search algorithm was
to finding collisions; given oracle access to a 2-to-1 func-
tion f , find distinct points x, y such that f (x) = f (y).
Brassard, Høyer and Tapp [8] developed an O(N1/3)-time
collision algorithm. Finding x ¤ y such that f (x) =
f (y) for a general function f is known as the Element-
Distinctness problem. Buhrman et al. [9] later developed
an O(N3/4 logN)-time algorithm for Element Distinct-
ness, using amplitude amplification. In a breakthrough,
Ambainis [2] gave an optimal, O(N2/3)-time algorithm for
Element Distinctness, which has also led to other applica-
tions [18]. Ambainis’s algorithm extends quantum search
by using a certain quantumwalk to replace the Grover dif-
fusion step, and uses Theorem 3 for its analysis.

Grover search has also proved useful in communi-
cation complexity. For example, a straightforward dis-
tributed implementation of the search algorithm solves the
Set Intersection problem – Alice and Bob have respective
inputs x; y 2 f0; 1gN , and want to find an index i such
that xi = yi = 1 – with O(

p
N log N) qubits of commu-

nication. Recently, this technique has led to an exponen-
tial classical/quantum separation in the memory required
to evaluate a certain total function with a streaming in-
put [17].

Unlike the usual Grover search that has an oscil-
latory behavior, fixed-point quantum search algorithms
converge monotonically to the solution. These algorithms
replace the reflection operation – a phase shift of
 – with
selective phase shifts of
/3.

Theorem 5 ([15]) Let Rs and Rt be selective
/3 phase
shifts of the source and target state(s), respectively. If
khtjUijsik2 = 1 � ", then

��htjURsU�RtU jsi
��2 = 1 � "3.

In other words, the deviation of the final state from the
desired final state reduces to the cube of what it was for

the original transformation. (Classically only an O("2) im-
provement is possible.) This clearly gives a monotonic
improvement towards the solution state, which is useful
when the number of solutions is very high. The technique
has also been applied to composite pulses [19]. However,
it does not give a square-root speedup.

Another extension of unstructured search is to game-
tree evaluation, which is a recursive search problem. Clas-
sically, using the alpha-beta pruning technique, the value
of a balanced binary AND-OR tree can be computed
with zero error in expected time O(N log2[(1+

p
33)/4]) =

O(N0:754)[20], and this is optimal even for bounded-
error algorithms [21]. Applying quantum search recur-
sively, a depth-d regular AND-OR tree can be evaluated
with constant error in time

p
N � O(log N)d�1, where the

log factors come from amplifying the success probability
of inner searches to be close to one. Bounded-error quan-
tum search, Theorem 4, allows eliminating these log fac-
tors, so the time becomes O(

p
N � cd), for some constant c.

Very recently, an N1/2+o(1)-time algorithm has been dis-
covered for evaluating an arbitrary AND-OR tree on N
variables [3,11,12].

Open Problems

As already mentioned, search of a sorted list may be
abstracted as, given x = 0m1N�m , find m. Classically,
dlog2 Ne queries are necessary and sufficient to find m,
with binary search achieving the optimum. Quantumly,
	(log N) queries are also necessary and sufficient, but the
constant is unknown. The best lower bound on an exact
algorithm (i. e., which succeeds with probability one after
a fixed number of queries) is about 0:221 log2 N and the
best exact algorithm uses about 0:443 log2 N queries (al-
though there is a quantum Las Vegas algorithm that uses
expected 0:32 log2 N queries) [10].

Cross References

� Quantum Algorithm for Element Distinctness
� Routing

Recommended Reading
1. Aaronson, S., Ambainis A.: Quantum search of spatial regions.

Theor. Comput. 1, 47–79 (2005)
2. Ambainis, A.: Quantum walk algorithm for element distinct-

ness. SIAM J. Comput. 37(1), 210–239 (2007)
3. Ambainis, A.: A nearly optimal discrete query quantum algo-

rithm for evaluating NAND formulas, arXiv:0704.3628 (2007)
4. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths

and weaknesses of quantum computing. SIAM J. Comput.
26(5), 1510–1523 (1997)

Quorums Q 715

5. Brassard, G.: Searching a quantum phone book. Science
275(5300), 627–628 (1997)

6. Brassard, G., Høyer, P.: An exact quantum polynomial-time al-
gorithm for Simon’s problem. In: Proc. 5th Israeli Symp. on The-
ory of Computing and Systems (ISTCS), pp. 12–23. IEEE Com-
puter Society Press, Hoboken (1997)

7. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum ampli-
tude amplification and estimation. In: Quantum Computation
and Quantum Information Science. AMS Contemporary Math-
ematics Series, vol. 305 Contemporary Mathematics, pp. 53–
74, Providence (2002)

8. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash
and claw-free functions. In: Proc. 3rd Latin American Theoreti-
cal Informatics Conference (LATIN). LectureNotes in Computer
Science, vol. 1380, pp. 163–169. Springer, New York (1998)

9. Buhrman, H., Dürr, C., Heiligman,M., Høyer, P., Magniez, F., San-
tha, M., de Wolf, R. Quantum algorithms for element distinct-
ness, quant-ph/0007016 (2000)

10. Childs, A.M., Landahl A.J., Parrilo, P.A.: Improved quantum al-
gorithms for the ordered search problem via semidefinite pro-
gramming. Phys. Rev. A 75, 032335 (2007)

11. Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Every NAND
formula of size N can be evaluated in time N1/2+o(1) on a quan-
tum computer, quant-ph/0703015 (2007)

12. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for
the Hamiltonian NAND tree. quant-ph/0702144 (2007)

13. Grover, L.K.: A fast quantum mechanical algorithm for
database search. In: Proc. 28th ACM Symp. on Theory of Com-
puting (STOC), pp. 212–219. Philadelphia, 22–24 May 1996

14. Grover, L.K.: A framework for fast quantum mechanical algo-
rithms. In: Proc. 30th ACM Symp. on Theory of Computing
(STOC), pp. 53–62. Dallas, 23–26 May 1998

15. Grover, L.K.: Fixed-point quantum search. Phys. Rev. Lett. 95,
150501 (2005)

16. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-
error inputs. In: Proc. 30th International Colloquium on Au-
tomata, Languages and Programming (ICALP 03), Eindhoven,
The Netherlands, pp. 291–299 (2003)

17. Le Gall, F.: Exponential separation of quantum and classical on-
line space complexity. In: Proc. ACM Symp. on Parallel Algo-
rithms and Architectures (SPAA), Cambride, 30 July–1 August
(2006)

18. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quan-
tum walk. quant-ph/0608026. In: Proc. of 39th ACM Symp. on
Theory of Computing (STOC), San Diego, 11–13 June, pp. 575–
584 (2007)

19. Reichardt, B.W., Grover, L.K.: Quantum error correction of sys-
tematic errors using a quantum search framework. Phys. Rev.
A 72, 042326 (2005)

20. Saks, M., Wigderson, A.: Probabilistic Boolean decision trees
and the complexity of evaluating game trees. In: Proc. of
27th IEEE Symp. on Foundation of Computer Science (FOCS),
Toronto, 27–29 October, pp. 29–38 (1986)

21. Santha, M.: On the Monte Carlo decision tree complexity of
read-once formulae. Random Struct. Algorit. 6(1), 75–87 (1995)

22. Zalka, C.: Grover’s quantum searching algorithm is optimal.
Phys. Rev. A 60(4), 2746–2751 (1999)

Quickest Route

� All Pairs Shortest Paths in Sparse Graphs
� Single-Source Shortest Paths

Quorums
1985; Garcia-Molina, Barbara

DAHLIA MALKHI
Microsoft, Silicon Valley Campus,
Mountain View, CA, USA

Keywords and Synonyms

Quorum systems; Voting systems; Coteries

ProblemDefinition

Quorum systems are tools for increasing the availability
and efficiency of replicated services. A quorum system for
a universe of servers is a collection of subsets of servers,
each pair of which intersect. Intuitively, each quorum can
operate on behalf of the system, thus increasing its avail-
ability and performance, while the intersection property
guarantees that operations done on distinct quorums pre-
serve consistency.

The motivation for quorum systems stems from the
need tomake critical missions performed bymachines that
are reliable. The only way to increase the reliability of a ser-
vice, aside from using intrinsically more robust hardware,
is via replication. To make a service robust, it can be in-
stalled on multiple identical servers, each one of which
holds a copy of the service state and performs read/write
operations on it. This allows the system to provide infor-
mation and perform operations even if some machines fail
or communication links go down. Unfortunately, repli-
cation incurs a cost in the need to maintain the servers
consistent. To enhance the availability and performance
of a replicated service, Gifford and Thomas introduced in
1979 [3,14] the usage of votes assigned to each server, such
that a majority of the sum of votes is sufficient to perform
operations. More generally, quorum systems are defined
formally as follows:

Quorum system: Assume a universe U of servers,
jUj = n, and an arbitrary number of clients. A quorum sys-
tem Q
 2U is a set of subsets of U, every pair of which
intersect. Each Q 2 Q is called a quorum.

716 Q Quorums

Access Protocol

To demonstrate the usability of quorum systems in con-
structing replicated services, quorums are used here to im-
plement a multi-writer multi-reader atomic shared vari-
able. Quorums have also been used in various mutual ex-
clusion protocols, to achieve Consensus, and in commit
protocols.

In the application, clients perform read and write op-
erations on a variable x that is replicated at each server in
the universe U. A copy of the variable x is stored at each
server, along with a timestamp value t. Timestamps are as-
signed by a client to each replica of the variable when the
client writes the replica. Different clients choose distinct
timestamps, e. g., by choosing integers appended with the
name of c in the low-order bits. The read and write opera-
tions are implemented as follows.

Write: For a client c to write the value v, it queries
each server in some quorum Q to obtain a set of
value/timestamppairs A = fhvu ; tuigu2Q ; chooses a times-
tamp t 2 Tc greater than the highest timestamp value in A;
and updates x and the associated timestamp at each server
in Q to v and t, respectively.

Read: For a client to read x, it queries each server in
some quorum Q to obtain a set of value/timestamp pairs
A = fhvu ; tuigu2Q . The client then chooses the pair hv; ti
with the highest timestamp in A to obtain the result of the
read operation. It writes back hv; ti to each server in some
quorum Q0.

In both read and write operations, each server up-
dates its local variable and timestamp to the received val-
ues hv; ti only if t is greater than the timestamp currently
associated with the variable. The above protocol correctly
implements the semantics of a multi-writer multi-reader
atomic variable (see� Linearizability).

Key Results

Perhaps the two most obvious quorum systems are the
singleton, and the set of majorities, or more generally,
weighted majorities suggested by Gifford [3].

Singleton: The set system Q = ffugg for some u 2 U
is the singleton quorum system.

Weighted Majorities: Assume that every server s in
the universe U is assigned a number of votes ws. Then,
the set system Q = fQ
 U :

P
q2Q wq > (

P
q2U wq)/2g

is a quorum system called Weighted Majorities. When all
the weights are the same, simply call this the system of Ma-
jorities.

An example of a quorum system that cannot be defined
by voting is the following Grid construction:

Quorums, Figure 1
The Grid quorum system of 6 � 6, with one quorum shaded

Grid: Suppose that the universe of servers is of size
n = k2 for some integer k. Arrange the universe into
a
p
n �
p
n grid, as shown in Fig. 1. A quorum is the union

of a full row and one element from each row below the full
row. This yields the Grid quorum system, whose quorums
are of size O(

p
n).

Maekawa suggests in [6] a quorum system that has sev-
eral desirable symmetry properties, and in particular, that
every pair of quorums intersect in exactly one element:

FPP: Suppose that the universe of servers is of size
n = q2 + q + 1, where q = pr for a prime p. It is known that
a finite projective plane exists for n, with q + 1 pairwise in-
tersecting subsets, each subset of size q + 1, andwhere each
element is contained in q + 1 subsets. Then the set of finite
projective plane subsets forms a quorum system.

Voting and Related Notions

Since generally it would be senseless to access a large quo-
rum if a subset of it is a quorum, a good definition may
avoid such anomalies. Garcia-Molina and Barbara [2] call
such well-formed systems coteries, defined as follows:

Coterie: A coterie Q
 2U is a quorum system such
that for any Q;Q0 2 Q : Q 6
 Q0.

Of special interest are quorum systems that cannot be
reduced in size (i. e., that no quorum in the system can be
reduced in size). Garcia-Molina and Barbara [2] use the
term “dominates” to mean that one quorum system is al-
ways superior to another, as follows:

Domination: Suppose that Q;Q0 are two coteries,
Q ¤ Q0, such that for every Q0 2 Q0, there exists a Q 2 Q
such that Q
 Q0. Then Q dominates Q0:Q0 is dominated
if there exists a coterie Q that dominates it, and is non-
dominated if no such coterie exists.

Voting was mentioned above as an intuitive way of
thinking about quorum techniques. As it turns out, vote
assignments and quorums are not equivalent. Garcia-

Quorums Q 717

Molina and Barbara [2] show that quorum systems are
strictly more general than voting, i. e. each vote assignment
has some corresponding quorum system but not the other
way around. In fact, for a system with n servers, there is
a double-exponential (22cn) number of non-dominated co-
teries, and only O(2n2) different vote assignments, though
for n � 5, voting and non-dominated coteries are identi-
cal.

Measures

Several measures of quality have been identified to ad-
dress the question of which quorum system works best for
a given set of servers; among these, load and availability
are elaborated on here.

Load A measure of the inherent performance of a quo-
rum system is its load. Naor and Wool define in [10] the
load of a quorum system as the probability of accessing the
busiest server in the best case. More precisely, given a quo-
rum system Q, an access strategy w is a probability distri-
bution on the elements of Q; i. e.,PQ2Q w(Q) = 1: w(Q)
is the probability that quorum Q will be chosen when the
service is accessed. Load is then defined as follows:

Load: Let a strategy w be given for a quo-
rum system Q = fQ1; : : : ;Qmg over a universe U. For
an element u 2 U , the load induced by w on u is
lw(u) =

P
Qi3u w(Qi). The load induced by a strategy w

on a quorum systemQ is

Lw(Q) = max
u2U
flw(u)g:

The system load (or just load) on a quorum systemQ is

L(Q) = min
w
fLw (Q)g;

where the minimum is taken over all strategies.
The load is a best-case definition, and will be achieved

only if an optimal access strategy is used, and only in the
case that no failures occur. A strength of this definition is
that load is a property of a quorum system, and not of the
protocol using it.

The following theorem was proved in [10] for all quo-
rum systems.

Theorem 1 Let Q be a quorum system over a universe of
n elements. Denote by c(Q) the size of the smallest quo-
rum of Q. Then L(Q) � maxf 1

c(Q) ;
c(Q)
n g. Consequently,

L(Q) � 1p
n .

Availability The resilience f of a quorum system pro-
vides one measure of how many crash failures a quorum
system is guaranteed to survive.

Resilience: The resilience f of a quorum system Q is
the largest k such that for every set K
 U , jKj = k, there
exists Q 2 Q such that K \ Q = ;.

Note that, the resilience f is at most c(Q)� 1, since by
disabling the members of the smallest quorum every quo-
rum is hit. It is possible, however, that an f -resilient quo-
rum system, though vulnerable to a few failure configura-
tions of f + 1 failures, can survive many configurations of
more than f failures. One way to measure this property of
a quorum system is to assume that each server crashes in-
dependently with probability p and then to determine the
probability Fp that no quorum remains completely alive.
This is known as failure probability and is formally defined
as follows:

Failure probability: Assume that each server in the
system crashes independently with probability p. For ev-
ery quorum Q 2 Q let EQ be the event that Q is hit,
i. e., at least one element i 2 Q has crashed. Let crash(Q)
be the event that all the quorums Q 2 Q were hit, i. e.,
crash(Q) = VQ2Q EQ . Then the system failure probabil-
ity is Fp(Q) = Pr(crash(Q)).

Peleg and Wool study the availability of quorum sys-
tems in [11]. A good failure probability Fp(Q) for a quo-
rum system Q has limn!1 Fp(Q) = 0 when p < 1

2 . Note
that, the failure probability of any quorum system whose
resilience is f is at least e�˝(f). Majorities has the best
availability when p < 1

2 ; for p = 1
2 , there exist quorum

constructions with Fp(Q) = 1
2 ; for p >

1
2 , the singleton has

the best failure probability Fp(Q) = p, but for most quo-
rum systems, Fp(Q) tends to 1.

The Load and Availability of Quorum Systems

Quorum constructions can be compared by analyzing
their behavior according to the above measures. The sin-
gleton has a load of 1, resilience 0, and failure probability
Fp = p. This system has the best failure probability when
p > 1

2 , but otherwise performs poorly in both availability
and load.

The system of Majorities has a load of d n+12n e 	
1
2 . It

is resilient to b n�12 c failures, and its failure probability is
e�˝(n). This system has the highest possible resilience and
asymptotically optimal failure probability, but poor load.

Grid’s load is O(1p
n), which is within a constant factor

from optimal. However, its resilience is only
p
n � 1 and

it has poor failure probability which tends to 1 as n grows.
The resilience of a FPP quorum system is q 	

p
n.

The load of FPP was analyzed in [10] and shown to
be L(FPP) = q+1

n 	 1/
p
n, which is optimal. However, its

failure probability tends to 1 as n grows.

718 Q Quorums

As demonstrated by these systems, there is a trade-
off between load and fault tolerance in quorum systems,
where the resilience f of a quorum system Q satisfies
f � nL(Q). Thus, improving one must come at the ex-
pense of the other, and it is in fact impossible to si-
multaneously achieve both optimally. One might con-
clude that good load conflicts with low failure probabil-
ity, which is not necessarily the case. In fact, there ex-
ist quorum systems such as the Paths system of Naor
and Wool [10] and the Triangle Lattice of Bazzi [1] that
achieve asymptotically optimal load of O(1/

p
n) and have

close to optimal failure probability for their quorum sizes.
Another construction is the CWlog system of Peleg and
Wool [12], which has unusually small quorum sizes of
log n � log log n, and for systems with quorums of this
size, has optimal load, L(CWlog) = O(1/ log n), and opti-
mal failure probability.

Byzantine Quorum Systems
For the most part, quorum systems were studied in envi-
ronments where failures may simply cause servers to be-
come unavailable (benign failures). But what if a server
may exhibit arbitrary, possiblymalicious behavior?Malkhi
and Reiter [7] carried out a study of quorum systems in
environments prone to arbitrary (Byzantine) behavior of
servers. Intuitively, a quorum system tolerant of Byzan-
tine failures is a collection of subsets of servers, each pair
of which intersect in a set containing sufficiently many
correct servers to mask out the behavior of faulty servers.
More precisely, Byzantine quorum systems are defined as
follows:

Masking quorum system: A quorum system Q is a b-
masking quorum system if it has resilience f � b, and each
pair of quorums intersect in at least 2b + 1 elements.

The masking quorum system requirements enable
a client to obtain the correct answer from the service de-
spite up to b Byzantine server failures. More precisely,
a write operation remains as before; to obtain the cor-
rect value of x from a read operation, the client reads
a set of value/timestamp pairs from a quorum Q and
sorts them into clusters of identical pairs. It then chooses
a value/timestamp pair that is returned from at least b + 1
servers, and therefore must contain at least one correct
server. The properties of masking quorum systems guar-
antee that at least one such cluster exists. If more than
one such cluster exists, the client chooses the one with the
highest timestamp. It is easy to see that any value so ob-
tained was written before, and moreover, that the most
recently written value is obtained. Thus, the semantics of
a multi-writer multi-reader safe variable are obtained (see
� Linearizability) in a Byzantine environment.

For a b-masking quorum system, the following lower
bound on the load holds:

Theorem 2 Let Q be a b-masking quorum sys-
tem. Then L(Q) � maxf 2b+1c(Q) ;

c(Q)
n g, and consequently

L(Q) �
q

2b+1
n :

This bound is tight, and masking quorum constructions
meeting it were shown.

Malkhi and Reiter explore in [7] two variations of
masking quorum systems. The first, called dissemination
quorum systems, is suited for services that receive and dis-
tribute self-verifying information from correct clients (e. g.,
digitally signed values) that faulty servers can fail to redis-
tribute but cannot undetectably alter. The second varia-
tion, called opaque masking quorum systems, is similar to
regular masking quorums in that it makes no assumption
of self-verifying data, but it differs in that clients do not
need to know the failure scenarios for which the service
was designed. This somewhat simplifies the client protocol
and, in the case that the failures are maliciously induced,
reveals less information to clients that could guide an at-
tack attempting to compromise the system. It is also shown
in [7] how to deal with faulty clients in addition to faulty
servers.

Probabilistic Quorum Systems

The resilience of any quorum system is bounded by half
of the number of servers. Moreover, as mentioned above,
there is an inherent tradeoff between low load and good
resilience, so that it is in fact impossible to simultane-
ously achieve both optimally. In particular, quorum sys-
tems over n servers that achieve the optimal load of 1p

n
can tolerate at most

p
n faults.

To break these limitations, Malkhi et al. propose in [8]
to relax the intersection property of a quorum system so
that “quorums” chosen according to a specified strategy
intersect only with very high probability. They accord-
ingly name these probabilistic quorum systems. These sys-
tems admit the possibility, albeit small, that two opera-
tions will be performed at non-intersecting quorums, in
which case consistency of the systemmay suffer. However,
even a small relaxation of consistency can yield dramatic
improvements in the resilience and failure probability of
the system, while the load remains essentially unchanged.
Probabilistic quorum systems are thus most suitable for
use when availability of operations despite the presence
of faults is more important than certain consistency. This
might be the case if the cost of inconsistent operations is
high but not irrecoverable, or if obtaining the most up-to-

Quorums Q 719

date information is desirable but not critical, while having
no information may have heavier penalties.

The family of constructions suggested in [8] is as fol-
lows:

W(n; `) Let U be a universe of size n:W(n; `),
` � 1, is the system hQ;wi where Q is the set system
Q = fQ
 U : jQj = `

p
ng; w is an access strategy w de-

fined by 8Q 2 Q;w(Q) = 1
jQj .

The probability of choosing according to w two quo-
rums that do not intersect is less than e�`2 , and can be
made sufficiently small by appropriate choice of `. Since
every element is in

� n�1
`
p

n�1
�
quorums, the load L(W(n; `))

is p̀n = O(1p
n). Because only `

p
n servers need be avail-

able in order for some quorum to be available, W(n; `)
is resilient to n � `

p
n crashes. The failure probability of

W(n; `) is less than e�˝(n) for all p � 1 � p̀n , which

is asymptotically optimal. Moreover, if 1
2 � p � 1 � p̀n ,

this probability is provably better than any (non-proba-
bilistic) quorum system.

Relaxing consistency can also provide dramatic im-
provements in environments that may experience Byzan-
tine failures. More details can be found in [8].

Applications
Just about any fault tolerant distributed protocol, such as
Paxos [5] or consensus [1] implicitly builds on quorums,
typically majorities. More concretely, scalable data repos-
itories were built, such as Fleet [9], Rambo [4], and Rose-
bud [13].

Cross References
� Concurrent Programming, Mutual Exclusion

Recommended Reading
1. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the pres-

ence of partial synchrony. J. Assoc. Comput.Mach.35, 288–323
(1988)

2. Garcia-Molina, H., Barbara, D.: How to assign votes in a dis-
tributed system. J. ACM 32, 841–860 (1985)

3. Gifford, D.K.: Weighted voting for replicated data. In: Proceed-
ings of the 7th ACM Symposium on Operating Systems Princi-
ples, 1979, pp. 150–162

4. Gilbert, S.: Lynch, N., Shvartsman, A., Rambo ii: Rapidly recon-
figurable atomic memory for dynamic networks. pp. 259–268.
In: Proceedings if the IEEE 2003 International Conference on
Dependable Systems and Networks (DNS). San Francisco, USA
(2003)

5. Lamport, L.: The part-time parliament. ACM Trans. Comput.
Syst. 16, 133–169 (1998)

6. Maekawa, M.: A
p
n algorithm for mutual exclusion in de-

centralized systems. ACM Trans. Comput. Syst. 3(2), 145–159
(1985)

7. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distrib. Com-
put. 11, 203–213 (1998)

8. Malkhi, D., Reiter, M., Wool, A., Wright, R.: Probabilistic quorum
systems. Inf. Comput. J. 170, 184–206 (2001)

9. Malkhi, D., Reiter, M.K.: An architecture for survivable coordina-
tion in large-scale systems. IEEE Trans. Knowl. Data Engineer.
12, 187–202 (2000)

10. Naor, M., Wool, A.: The load, capacity and availability of quo-
rum systems. SIAM J. Comput. 27, 423–447 (1998)

11. Peleg, D., Wool, A.: The availability of quorum systems. Inf.
Comput. 123, 210–223 (1995)

12. Peleg, D., Wool, A.: Crumblingwalls: A class of practical and ef-
ficient quorum systems. Distrib. Comput. 10, 87–98 (1997)

13. Rodrigues, R., Liskov, B.: Rosebud: A scalable byzantine-fault
tolerant storage architecture. In: Proceedings of the 18th ACM
Symposium on Operating System Principles, San Francisco,
USA (2003)

14. Thomas, R.H.: A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.
4, 180–209 (1979)

Radiocoloring in Planar Graphs R 721

R

Radiocoloring in Planar Graphs
2005; Fotakis, Nikoletseas, Papadopoulou,
Spirakis

VICKY PAPADOPOULOU
Department of Computer Science, University of Cyprus,
Nicosia, Cyprus

Keywords and Synonyms

�-coloring; k-coloring; Distance-2 coloring; Coloring the
square of the graph

ProblemDefinition

Consider a graph G(V ; E). For any two vertices u; v 2 V ,
d(u; v) denotes the distance of u; v inG. The general prob-
lem concerns a coloring of the graph G and it is defined as
follows:

Definition 1 (k-coloring problem)
INPUT: A graph G(V ; E).
OUTPUT: A function � : V ! f1; : : : ;1g, called k-col-
oring of G such that 8u; v 2 V , x 2 f0; 1; : : : ; kg: if
d(u; v) � k � x + 1 then j�(u)� �(v)j = x.
OBJECTIVE: Let j�(V)j = �
 . Then �
 is the number of
colors that ' actually uses (it is usually called order of G
under '). The number �
 = maxv2V�(v)�minu2V�(u)+
1 is usually called the span of G under '. The function '
satisfies one of the following objectives:
� minimum span: �
 is the minimum possible over all

possible functions ' of G;
� minimum order: �
 is the minimum possible over all

possible functions ' of G;
� Min span order: obtains a minimum span and more-

over, from all minimum span assignments, ' obtains
a minimum order.

� Min order span: obtains a minimum order and more-
over, from all minimum order assignments, ' obtains
a minimum span.

Note that the case k = 1 corresponds to the well known
problem of vertex graph coloring. Thus, k-coloring prob-
lem (with k as an input) isNP-complete [4]. The case of
k-coloring problem where k = 2, is called the Radiocolor-
ing problem.

Definition 2 (Radiocoloring Problem (RCP) [7])
INPUT: A graph G(V ; E).
OUTPUT: A function ˚ : V ! N� such that j˚(u) �
˚(v)j � 2 if d(u; v) = 1 and j˚(u) � ˚(v)j � 1 if
d(u; v) = 2.
OBJECTIVE: The least possible number (order) needed to
radiocolor G is denoted by Xorder(G). The least possible
number maxv2V ˚(v) �minu2V ˚(u) + 1 (span) needed
for the radiocoloring ofG is denoted as Xspan(G). Function
˚ satisfies one of the followings:
� Min span RCP: ˚ obtains a minimum span, i. e.
�˚ = Xspan(G);

� Min order RCP: ˚ obtains a minimum order
�˚ = Xorder(G);

� Min span order RCP: obtains a minimum span and
moreover, from all minimum span assignments, ˚ ob-
tains a minimum order.

� Min order span RCP: obtains a minimum order and
moreover, from all minimumorder assignments,˚ ob-
tains a minimum span.

A related to the RCP problem concerns to the square of
a graph G, which is defined as follows:

Definition 3 Given a graphG(V ; E),G2 is the graph hav-
ing the same vertex set V and an edge set E0 : fu; vg 2 E0

iff d(u; v) � 2 in G.

The related problem is to color the square of a graphG,G2

so that no two neighbor vertices (inG2) get the same color.
The objective is to use a minimum number of colors, de-
noted as �(G2) and called chromatic number of the square
of the graph G. [5,6] first observed that for any graph G,
Xorder(G) is the same as the (vertex) chromatic number of
G2, i. e. Xorder(G) = �(G2).

722 R Radiocoloring in Planar Graphs

Key Results

[5,6] studiedmin span order,min order andmin span RCP
in planar graph G. A planar graph, is a graph for which
its edges can be embedded in the plane without crossings.
The following results are obtained:
� It is first shown that the number of colors used in the

min span order RCP of graph G is different from the
chromatic number of the square of the graph, �(G2).
In particular, it may be greater than �(G2).

� It is then proved that the radiocoloring problem
for general graphs is hard to approximate (unless
NP = ZPP, the class of problems with polynomial
time zero-error randomized algorithms) within a fac-
tor of n1/2�� (for any � > 0), where n is the number of
vertices of the graph. However, when restricted to some
special cases of graphs, the problem becomes easier.
It is shown that the min span RCP and min span order
RCP areNP-complete for planar graphs. Note that few
combinatorial problems remain hard for planar graphs
and their proofs of hardness are not easy since they
have to use planar gadgets which are difficult to find
and understand.

� It presents a O(n�(G)) time algorithm that approxi-
mates the min order of RCP, Xorder, of a planar graph
G by a constant ratio which tends to 2 as the maximum
degree�(G) of G increases.
The algorithm presented is motivated by a constructive
coloring theorem of Heuvel and McGuiness [9]. The
construction of [9] can lead (as shown) to an O(n2)
technique assuming that a planar embedding of G is
given. [5,6] improves the time complexity of the ap-
proximation, and presents a much more simple algo-
rithm to verify and implement. The algorithm does not
need any planar embedding as input.

� Finally, the work considers the problem of estimating
the number of different radiocolorings of a planar graph
G. This is a #P-complete problem (as can be easily seen
from the completeness reduction presented there that
can be done parsimonious). They authors employ here
standard techniques of rapidly mixing Markov Chains
and the new method of coupling for purposes of prov-
ing rapid convergence (see e. g. [10]) and present a fully
polynomial randomized approximation scheme for esti-
mating the number of radiocolorings with � colors for
a planar graph G, when � � 4�(G) + 50.
In [8] and [7] it has been proved that the problem of

min span RCP is NP-complete, even for graphs of di-
ameter 2. The reductions use highly non-planar graphs.
In [11] it is proved that the problem of coloring the square
of a general graph isNP-complete.

Another variation of RCP for planar graphs, called
distance-2-coloring is studied in [12]. This is the problem
of coloring a given graph G with the minimum number of
colors so that the vertices of distance at most two get dif-
ferent colors. Note that this problem is equivalent to col-
oring the square of the graph G, G2. In [12] it is proved
that the distance-2-coloring problem for planar graphs is
NP-complete. As it is shown in [5,6], this problem is
different from the min span order RCP. Thus, the NP-
completeness proof in [12] certainly does not imply the
NP-completeness of min span order RCP proved in [5,6].
In [12] a 9-approximation algorithm for the distance-2-
coloring of planar graphs is also provided.

Independently and in parallel, Agnarsson and
Halldórsson in [1] presented approximations for the chro-
matic number of square and power graphs (Gk). In par-
ticular they presented an 1:8-approximation algorithm
for coloring the square of a planar graph of large degree
(�(G) � 749). Their method utilizes the notion of induc-
tiveness of the square of a planar graph.

Bodlaender et al. in [2] proved also independently and
and in parallel that the min span RCP, called �-labeling
there, isNP-complete for planar graphs, using a similar
to the approach used in [5,6]. In the same work the au-
thors presented approximations for the problem for some
interesting families of graphs: outerplanar graphs, graphs
of bounded treewidth, permutation and split graphs.

Applications

The Frequency Assignment Problem (FAP) in radio net-
works is a well-studied, interesting problem, aiming at as-
signing frequencies to transmitters exploiting frequency
reuse while keeping signal interference to acceptable lev-
els. The interference between transmitters are modeled by
an interference graph G(V ; E), where V (jV j = n) corre-
sponds to the set of transmitters and E represents distance
constraints (e. g. if two neighbor nodes in G get the same
or close frequencies then this causes unacceptable levels
of interference). In most real life cases the network topol-
ogy formed has some special properties, e. g. G is a lattice
network or a planar graph. Planar graphs are mainly the
object of study in [5,6].

The FAP is usually modeled by variations of the graph
coloring problem. The set of colors represents the available
frequencies. In addition, each color in a particular assign-
ment gets an integer value which has to satisfy certain in-
equalities compared to the values of colors of nearby nodes
in G (frequency-distance constraints). A discrete version
of FAP is the k-coloring problem, of which a particular in-
stance, for k = 2, is investigated in [5,6].

Randomization in Distributed Computing R 723

Real networks reserve bandwidth (range of frequen-
cies) rather than distinct frequencies. In this case, an
assignment seeks to use as small range of frequencies as
possible. It is sometimes desirable to use as few distinct
frequencies of a given bandwidth (span) as possible, since
the unused frequencies are available for other use. How-
ever, there are cases where the primary objective is to min-
imize the number of frequencies used and the span is a sec-
ondary objective, since we wish to avoid reserving un-
necessary large span. These realistic scenaria directed re-
searchers to consider optimization versions of the RCP,
where one aims inminimizing the span (bandwidth) or the
order (distinct frequencies used) of the assignment. Such
optimization problems are investigated in [5,6].

Cross References

� Channel Assignment and Routing in Multi-Radio
Wireless Mesh Networks

� Graph Coloring

Recommended Reading

1. Agnarsson, G., Halldórsson, M.M.: Coloring Powers of Planar
Graphs. In: Proceedings of the 11th Annual ACM-SIAM sympo-
sium on Discrete algorithms, pp. 654–662 (2000)

2. Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approxi-
mations for
-Coloring of Graphs. In: Proceedings of the 17th
Annual Symposium on Theoretical Aspects of Computer Sci-
ence. Lecture Notes in Computer Science, vol. 1770, pp. 395-
406. Springer (2000)

3. Hale, W.K.: Frequency Assignment: Theory and Applications.
In: Proceedings of the IEEE, vol. 68, number 12, pp. 1497-1514
(1980)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman
and Co. (1979)

5. Fotakis, D., Nikoletseas, S., Papadopoulou, V., Spirakis, P.:NP-
Completeness Results and Efficient Approximations for Radio-
coloring in Planar Graphs. In: Proceedings of the 25th Inter-
national Symposium on Mathematical Foundations of Com-
puter Science, Lecture Notes of Computer Science, vol. 1893,
pp. 363–372. Springer (2000)

6. Fotakis, D., Nikoletseas, S., Papadopoulou, V.G., Spirakis, P.G.:
Radiocoloring in Planar Graphs: Complexity and Approxima-
tions. Theor. Comput. Sci. Elsevier 340, 514–538 (2005)

7. Fotakis, D., Pantziou, G., Pentaris, G., Spirakis, P.: Frequency As-
signment in Mobile and Radio Networks. In: Networks in Dis-
tributed Computing, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 45, pp. 73–90 (1999)

8. Griggs, J., Liu, D.: Minimum Span Channel Assignments. In:
Recent Advances in Radio Channel Assignments, Invited Min-
isymposium, Discrete Mathematics (1998)

9. van d. Heuvel, J., McGuiness, S.: Colouring the Square of a Pla-
nar Graph. CDAM Research Report Series, July 1999

10. Jerrum,M.: A very simple Algorithm for Estimating theNumber
of k-colourings of a Low Degree Graph. Random Struct. Algo-
rithms 7, 157–165 (1994)

11. Lin, Y.L., Skiena, S.: Algorithms for Square Roots of Graphs.
SIAM J. Discret. Math. 8, 99–118 (1995)

12. Ramanathan, S., Loyd, E.R.: The Complexity of Distance 2-
Coloring. In: Proceedings of the 4th International Conference
of Computing and Information, pp. 71–74 (1992)

Randomization
in Distributed Computing
1996; Chandra

TUSHAR DEEPAK CHANDRA
IBMWatson Research Center, Yorktown Heights,
NY, USA

Keywords and Synonyms

Agreement; Byzantine agreement

ProblemDefinition

This problem is concerned with using the multi-writer
multi-reader register primitive in the shared memory
model to design a fast, wait-free implementation of con-
sensus. Below are detailed descriptions of each of these
terms.

Consensus Problems

There are n processors and the goal is to design distributed
algorithms to solve the following two consensus problems
for these processors.

Problem 1 (Binary consensus)
Input: Processor i has input bit bi.
Output: Each processor i has output bit b0i such that: 1) all
the output bits b0i equal the same value v; and 2) v = bi for
some processor i.

Problem 2 (Id consensus)
Input: Processor i has a unique id ui.
Output: Each processor i has output value u0i such that:
1) all the output values u0i equal the same value u; and 2)
u = ui for some processor i.

Wait-Free

This result builds on extensive previous work on the
shared memory model of parallel computing. Shared ob-
ject types include data structures such as read/write regis-
ters and synchronization primitives such as “test and set”.

724 R Randomization in Distributed Computing

A shared object is said to be wait-free if it ensures that ev-
ery invocation on the object is guaranteed a response in
finite time even if some or all of the other processors in the
system crash. In this problem, the existence of wait-free
registers is assumed and the goal is to create a fast wait-
free algorithm to solve the consensus problem. In the rest
of this summary, “wait-free implementations” will be re-
ferred to simply as “implementations” i. e. the term wait-
free will be omitted.

Multi-writer Multi-reader Register

Many past results on solving consensus in the shared
memory model assume the existence of a single writer
multi-reader register. For such a register, there is a single
writer client and multiple reader clients. Unfortunately,
it is easy to show that the per processor step complex-
ity of any implementation of consensus from single writer
multi-reader registers will be at least linear in the num-
ber of processors. Thus, to achieve a time efficient im-
plementation of consensus, the more powerful primitive
of a multi-writer multi-reader register must be assumed.
A multi-writer multi-reader register assumes the clients of
the register are multiple writers and multiple readers. It is
well known that it is possible to implement such a register
in the shared memory model.

The Adversary

Solving the above problems is complicated by the fact that
the programmer has little control over the rate at which
individual processors execute. To model this fact, it is as-
sumed that the schedule at which processors run is picked
by an adversary. It is well-known that there is no deter-
ministic algorithm that can solve either Binary consensus
or ID consensus in this adversarial model if the number of
processors is greater than 1 [6,7]. Thus, researchers have
turned to the use of randomized algorithms to solve this
problem [1]. These algorithms have access to random coin
flips. Three types of adversaries are considered for ran-
domized algorithms. The strong adversary is assumed to
know the outcome of a coin flip immediately after the coin
is flipped and to be able to modify its schedule accordingly.
The oblivious adversary has to fix the schedule before any
of the coins are flipped. The intermediate adversary is not
permitted to see the outcome of a coin flip until some pro-
cess makes a choice based on that coin flip. In particular,
a process can flip a coin and write the result in a global
register, but the intermediate adversary does not know the
outcome of the coin flip until some process reads the value
written in the register.

Key Results

Theorem 1 Assuming the existence of multi-writer multi-
reader registers, there exists a randomized algorithm to
solve binary consensus against an intermediate adversary
with O(1) expected steps per processor.

Theorem 2 Assuming the existence of multi-writer multi-
reader registers, there exists a randomized algorithm to
solve id-consensus against an intermediate adversary with
O(log2 n) expected steps per processor.

Both of these results assume that every processor has
a unique identifier. Prior to this result, the fastest known
randomized algorithm for binary consensus made use of
single writer multiple reader registers, was robust against
a strong adversary, and requiredO(n log2 n) steps per pro-
cessor [2]. Thus, the above improvements are obtained at
the cost of weakening the adversary and strengthening the
system model when compared to [2].

Applications

Binary consensus is one of the most fundamental prob-
lems in distributed computing. An example of its impor-
tance is the following result shown by Herlihy [8]: If an
abstract data type X together with shared memory is pow-
erful enough to implement wait-free consensus, then X
together with shared memory is powerful enough to im-
plement in a wait-free manner any other data structure
Y . Thus, using this result, a wait-free version of any data
structure can be created using only wait-free multi-writer
multi-reader registers as a building block.

Binary consensus has practical applications in many
areas including: database management, multiprocessor
computation, fault diagnosis, and mission-critical systems
such as flight control. Lynch contains an extensive discus-
sion of some of these application areas [9].

Open Problems

This result leaves open several problems. First, it leaves
open a gap on the number of steps per process required to
perform randomized consensus using multi-writer multi-
reader registers against the strong adversary. A recent re-
sult by Attiya and Censor shows an ˝(n2) lower bound
on the total number of steps for all processors with multi-
writer multi-reader registers (implying ˝(n) steps per
process) [3]. They also show a matching upper bound of
O(n2) on the total number of steps. However, closing the
gap on the per-process number of steps is still open.

Another open problem is whether there is a random-
ized implementation of id consensus using multi-reader

Randomized Broadcasting in Radio Networks R 725

multi-writer registers that is robust to the intermediate ad-
versary and whose expected number of steps per proces-
sor is better than O(log2 n). In particular, is a constant run
time possible? Aumann in follow up work to this result
was able to improve the expected run time per process to
O(log n) [4]. However, to the best of the reviewer’s knowl-
edge, there have been no further improvements.

A third open problem is to close the gap on the time
required to solve binary consensus against the strong ad-
versary with a single writer multiple reader register. The
fastest known randomized algorithm in this scenario re-
quires O(n log2 n) steps per processor [2]. A trivial lower
bound on the number of steps per processor when single-
writer registers are used is ˝(n). However, to the best
of this reviewers knowledge, a O(log2 n) gap still remains
open.

A final open problem is to close the gap on the to-
tal work required to solve consensus with single-reader
single-writer registers against an oblivious adversary. Au-
mann and Kapah-Levy describe algorithms for this sce-
nario that require O(n log n exp(2

p
ln n ln(c log n log� n)

expected total work for some constant c [5]. In particular,
the total work is less than O(n1+�) for any � > 0. A triv-
ial lower bound on total work is ˝(n), but a gap remains
open.

Cross References

� Asynchronous Consensus Impossibility
� Atomic Broadcast
� Byzantine Agreement
� Implementing Shared Registers in Asynchronous

Message-Passing Systems
�Optimal Probabilistic Synchronous Byzantine

Agreement
� Registers
� Set Agreement
� Snapshots in Shared Memory
�Wait-Free Synchronization

Recommended Reading
1. Aspnes, J.: Randomized protocols for asynchronous consensus.

Distrib. Comput. 16(2–3), 165–175 (2003)
2. Aspnes, J., Waarts, O.: Randomized consensus in expected

o(n log2 n) operations per processor. In: Proceedings of the 33rd
Symposium on Foundations of Computer Science. 24–26 Oc-
tober 1992, pp. 137–146. IEEE Computer Society, Pittsburgh
(1992)

3. Attiya, H., Censor, K.: Tight bounds for asynchronous random-
ized consensus. In: Proceedings of the Symposium on the The-
ory of Computation. San Diego, 11–13 June 2007 ACM Spe-
cial Interest Group on Algorithms and Computation Theory
(SIGACT) (2007)

4. Aumann, Y.: Efficient asynchronous consensus with the weak
adversary scheduler. In: Symposium on Principles of Distrib.
Comput.(PODC) Santa Barbara, 21–24 August 1997, pp. 209–
218. ACM Special Interest Group on Algorithms and Computa-
tion Theory (SIGACT) (1997)

5. Aumann, Y., Kapach-Levy, A.: Cooperative sharing and asyn-
chronous consensus using single-reader/single-writer registers.
In: Proceedings of 10th Annual ACM-SIAM Symposium of Dis-
crete Algorithms (SODA) Baltimore, 17–19 January 1999, pp. 61–
70. Society for Industrial andAppliedMathematics (SIAM) (1999)

6. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchro-
nism needed for distributed consensus. J. ACM (JACM) 34(1),
77–97 (1987)

7. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of dis-
tributed consensus with one faulty process. In: Proceedings
of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database System (PODS) Atlante, 21–23 March, pp. 1–7. Associ-
ation for Computational Machinery (ACM) (1983)

8. Herlihy, M.: Wait-free synchronization. ACM Trans. Programm.
Lang. Syst. 13(1), 124–149 (1991)

9. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Ma-
teo (1996)

Randomized Broadcasting
in Radio Networks
1992; Reuven Bar-Yehuda, Goldreich, Itai

ALON ITAI
Depart of Computer Science, Technion,
Haifa, Israel

Keywords and Synonyms

Multi-hop radio networks; Ad hoc networks

ProblemDefinition

The paper investigates deterministic and randomized pro-
tocols for achieving broadcast (distributing a message
from a source to all other nodes) in arbitrary multi-hop
synchronous radio networks.

The model consists of an arbitrary (undirected) net-
work, with processors communicating in synchronous
time-slots subject to the following rules. In each time-slot,
each processor acts either as a transmitter or as a receiver.
A processor acting as a receiver is said to receive a mes-
sage in time-slot t if exactly one of its neighbors transmits
in that time-slot. Themessage received is the one transmit-
ted. If more than one neighbor transmits in that time-slot,
a conflict occurs. In this case the receiver may either get
amessage from one of the transmitting neighbors or get no
message. It is assumed that conflicts (or “collisions”) are
not detected, hence a processor cannot distinguish the case
in which no neighbor transmits from the case in which two

726 R Randomized Broadcasting in Radio Networks

or more of its neighbors transmits during that time-slot.
The processors are not required to have ID’s nor do they
know their neighbors, in particular the processors do not
know the topology of the network.

The only inputs required by the protocol are the num-
ber of processors in the network – n,� – an a priori known
upper bound on the maximum degree in the network and
the error bound –�. (All bounds are a priori known to the
algorithm.)

Broadcast is a task initiated by a single processor, called
the source, transmitting a single message. The goal is to
have the message reach all processors in the network.

Key Results

The main result is a randomized protocol that achieves
broadcast in time which is optimal up to a logarithmic
factor. In particular, with probability 1 � �, the protocol
achieves broadcast within O((D + log n/�) � log n) time-
slots.

On the other hand, a linear lower bound on the deter-
ministic time-complexity of broadcast is proved. Namely,
any deterministic broadcast protocol requires ˝(n) time-
slots, even if the network has diameter 3, and n is known
to all processors. These two results demonstrate an expo-
nential gap in complexity between randomization and de-
terminism.

Randomized Protocols

The Procedure Decay The basic idea used in the pro-
tocol is to resolve potential conflicts by randomly elimi-
nating half of the transmitters. This process of “cutting by
half” is repeated each time-slot with the hope that there
will exist a time-slot with a single active transmitter. The
“cutting by half” process is easily implemented distribu-
tively by letting each processor decide randomly whether
to eliminate itself. It will be shown that if all neighbors of
a receiver follow the elimination procedure then with pos-
itive probability there exists a time slot in which exactly
one neighbor transmits.

What follows is a description of the procedure for
sending a message m, that is executed by each processor
after receivingm:

procedure Decay(k;m);
repeat at most k times (but at least once!)

sendm to all neighbors;
set coin 0 or 1 with equal probability.

until coin = 0.

By using elementary probabilistic arguments, one can
prove:

Theorem 1 Let y be a vertex of G. Also let d � 2 neigh-
bors of y execute Decay during the time interval [0; k)
and assume that they all start the execution at Time = 0.
Then P(k, d), the probability that y receives a message by
Time = k, satisfies:
1. limk!1 P(k; d) � 2

3 ;
2. for k � 2dlog de, P(k; d) > 1

2 .
(All logarithms are to base 2.)

The expected termination time of the algorithm depends
on the probability that coin = 0. Here, this probability is
set to be one half. An analysis of the merits of using other
probabilities was carried out by Hofri [4].

The Broadcast Protocol The broadcast protocol makes
several calls to Decay(k,m). By Theorem 1 (2), to ensure
that the probability of a processor y receiving the message
be at least 1/2, the parameter k should be at least 2 log d
(where d is the number of neighbors sending a message
to y). Since d is not known, the parameter was chosen as
k = 2dlog�e (recall that � was defined to be an upper
bound on the in-degree). Theorem 1 also requires that all
participants start executing Decay at the same time-slot.
Therefore, Decay is initiated only at integer multiples of
2dlog�e .

procedure Broadcast;
k = 2dlog�e;
t = 2dlog(N/�)e;
Wait until receiving a message, saym;
do t times {

Wait until (Time mod k) = 0 ;
Decay(k,m) ;

}

A network is said to execute the Broadcast_scheme if some
processor, denoted s, transmits an initial message and each
processor executes the above Broadcast procedure.

Theorem 2 Let T = 2D + 5maxf
p
D;
p
log(n/�)g �p

log(n/�). Assume that Broadcast_scheme starts at
Time = 0. Then, with probability � 1 � 2�, by time
2dlog�e�T all nodes will receive the message. Furthermore,
with probability � 1 � 2�, all the nodes will terminate by
time 2dlog�e � (T + dlog(N/�)e).

The bound provided by Theorem 2 contains two additive
terms: the first represents the diameter of the network and
the second represents delays caused by conflicts (which are
rare, yet they exist).

Additional Properties of the Broadcast Protocol:
� Processor IDs – The protocol does not use processor

IDs, and thus does not require that the processors have

Randomized Broadcasting in Radio Networks R 727

distinct IDs (or that they know the identity of their
neighbors). Furthermore, a processor is not even re-
quired to know the number of its neighbors. This prop-
ertymakes the protocol adaptive to changes in topology
which occur throughout the execution, and resilient to
non-malicious faults.

� Knowing the size of the network – The protocol per-
forms almost as well when given instead of the actual
number of processors (i. e., n), a “good” upper bound
on this number (denoted N). An upper bound polyno-
mial in n yields the same time-complexity, up to a con-
stant factor (since complexity is logarithmic in N).

� Conflict detection – The algorithm and its complexity
remain valid even if no messages can be received when
a conflict occurs.

� Simplicity and fast local computation – In each time
slot each processor performs a constant amount of local
computation.

� Message complexity – Each processor is active for
dlog(N/�)e consecutive phases and the average number
of transmissions per phase is at most 2. Thus the ex-
pected number of transmissions of the entire network
is bounded by 2n � dlog(N/�)e.

� Adaptiveness to changing topology and fault re-
silience – The protocol is resilient to some changes in
the topology of the network. For example, edges may
be added or deleted at any time, provided that the net-
work of unchanged edges remains connected. This cor-
responds to fail/stop failure of edges, thus demonstrat-
ing the resilience to some non-malicious failures.

� Directed networks – The protocol does not use ac-
knowledgments. Thus it may be applied even when the
communication links are not symmetric, i. e., the fact
that processor v can transmit to u does not imply that
u can transmit to v. (The appropriate network model
is, therefore, a directed graph.) In real life this situation
occurs, for instance, when v has a stronger transmitter
than u.

A Lower Bound on Deterministic Algorithms

For deterministic algorithms one can show a lower bound:
for every n there exist a family of n-node networks such
that every deterministic broadcast scheme requires ˝(n)
time. For every non-empty subset S
 f1; 2; : : : ; ng, con-
sider the following network GS (Fig. 1).

Node 0 is the source and node n + 1 the sink. The
source initiates the message and the problem of broadcast
inGS is to reach the sink. The difficulty stems from the fact
that the partition of the middle layer (i. e., S) is not known
a priori. The following theorem can be proved by a series

Randomized Broadcasting in Radio Networks, Figure 1
The network used for the lower bound

of reductions to a certain “hitting game”:

Theorem 3 Every deterministic broadcast protocol that is
correct for all n-node networks requires time˝(n).

In [2] there was some confusion concerning the broad-
cast model. In that paper it was erroneously claimed that
the lower bound holds also when a collision is indistin-
guishable from the absence of transmission. Kowalski and
Pelc [5] disproved this claim by showing how to broadcast
in logarithmic time on all networks of type GS.

Applications

The procedure Decay has been used to resolve contention
in radio and cellular phone networks.

Cross Reference

� Broadcasting in Geometric Radio Networks
� Communication in Ad Hoc Mobile Networks Using

RandomWalks
� Deterministic Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks

Recommended Reading

Subsequent papers showed the optimality of the random-
ized algorithm:
� Alon et al. [1] showed the existence of a family of

radius-2 networks on n vertices for which any broad-
cast schedule requires at least˝(log2 n) time slots.

� Kushilevitz and Mansour [7] showed that for any ran-
domized broadcast protocol there exists a network in
which the expected time to broadcast a message is
˝(D log(N/D).

� Bruschi and Del Pinto [3] showed that for any de-
terministic distributed broadcast algorithm, any n and
D � n/2 there exists a network with n nodes and di-
ameter D such that the time needed for broadcast is
˝(D log n).

� Kowalski and Pelc [6] discussed networks in which col-
lisions are indistinguishable from the absence of trans-

728 R Randomized Energy Balance Algorithms in Sensor Networks

mission. They showed an ˝(n log n/ log(n/D)) lower
bound and an O(n log n) upper bound. For this model,
they also showed an O(D log n + log2 n) randomized
algorithm, thus matching the lower bound of [1] and
improving the bound of [2] for graphs for which
D = �(n/ log n).

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio
broadcast. J. Comput. Syst. Sci. 43(2), 290–298 (1991)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity
of broadcast in multi-hop radio networks: An exponential gap
between determinism and randomization. J. Comput. Syst. Sci.
45(1), 104–126 (1992)

3. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast
problem in mobile radio networks. Distrib. Comput. 10(3),
129–135 (1997)

4. Hofri, M.: A feedback-less distributed broadcast algorithm for
multihop radio networks with time-varying structure. In: Com-
puter Performance and Reliability, pp. 353–368. (1987)

5. Kowalski, D.R., Pelc, A.: Deterministic broadcasting time in radio
networks of unknown topology. In: FOCS ’02: Proceedings of the
43rd Symposium on Foundations of Computer Science, Wash-
ington, DC, USA, pp. 63–72. IEEE Computer Society (2002)

6. Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio
networks. Distrib. Comput. 18(1), 43–57 (2005)

7. Kushilevitz, E., Mansour, Y.: An ˝(d log(n/d)) lower bound for
broadcast in radio networks. In: PODC, 1993, pp. 65–74

Randomized Energy Balance
Algorithms in Sensor Networks
2005; Leone, Nikoletseas, Rolim

PIERRE LEONE1, SOTIRIS NIKOLETSEAS2, JOSÉ ROLIM1

1 Informatics Department, University of Geneva,
Geneva, Switzerland

2 Computer Engineering and Informatics, Department
and CTI, University of Patras, Patras, Greece

Keywords and Synonyms

Power conservation

ProblemDefinition

Recent developments in wireless communications and
digital electronics have led to the development of ex-
tremely small in size, low-power, low-cost sensor devices
(often called smart dust). Such tiny devices integrate sens-
ing, data processing and wireless communication capabil-
ities. Examining each such resource constraint device in-
dividually might appear to have small utility; however, the
distributed self-collaboration of large numbers of such de-
vices into an ad hoc network may lead to the efficient ac-
complishment of large sensing tasks i. e., reporting data

about the realization of a local event happening in the net-
work area to a faraway control center.

The problem considered is the development of a ran-
domized algorithm to balance energy among sensors
whose aim is to detect events in the network area and re-
port them to a sink. The network is sliced by the algo-
rithm into layers composed of sensors at approximately
equal distances from the sink [1,2,8] (Fig. 1). The slicing
of the network depends on the communication distance.
The sink initiates the process by sending a control mes-
sage containing a counter, the value of which is initially
1. Sensors receiving the message assign themselves to a
slice number corresponding to the counter, increment the
counter and propagate the message in the network. A sen-
sor already assigned to a slice ignores subsequent received
control messages.

The strategy suggested to balance the energy among
sensors consists in allowing a sensor to probabilistically
choose between either sending data to a sensor in the next
layer towards the sink or sending the data directly to the
sink. The difference between the two choices is the en-
ergy consumption, which is much higher if the sensor de-
cides to report to the sink directly. The energy consump-
tion is modeled as a function of the transmission distance
by assuming that the energy necessary to send data up to
a distance d is proportional to d2. Actually, more accurate
models can be considered, in which the dependence is of
the form d˛ , with 2 � ˛ � 5 depending on the particu-
lar environmental conditions. Although the model chosen

Randomized Energy Balance Algorithms in Sensor Networks,
Figure 1
The sink and five slices S1, . . . , S5

Randomized Energy Balance Algorithms in Sensor Networks R 729

determines the parameters of the algorithm, the particular
shape of the function describing the relationship between
the distance of transmission and energy consumption is
not relevant except that it might increase with distance.
The distance between two successive slices is normalized
to be 1. Hence, a sensor sending data to one of its neigh-
bors consumes one unit of energy and a sensor located in
slice i consumes i2 units of energy to report to the sink di-
rectly. Small hop transmissions are cheap (with respect to
energy consumption) but pass through the critical region
around the sink and might strain sensors in that region,
while expensive direct transmissions bypass that critical
area.

Energy balance is defined as follows:

Definition 1 The network is energy-balanced if the aver-
age per sensor energy dissipation is the same for all sectors,
i. e., when

E[Ei]
Si

=
E[E j]
S j

; i; j = 1; : : : ; n (1)

where Ei is the total energy available and Si is the number
of nodes in slice number i.

The dynamics of the network is modeled by assigning
probabilities �i ; i = 1; : : : ;N;

P
�i = 1, of the occurrence

of an event in slice i. The protocol consists in transmitting
the data to a neighbor slice with probability pi and with
probability 1 � pi to the sink, for a sensor belonging to
slice i. Hence, the mean energy consumption per data unit
is pi + (1 � pi)i2. A central assumption in the following is
that the events are evenly generated in a given slice. Then,
denoting by ei the energy available per node in slice i (i. e.,
ei = Ei /Si), the problem of energy-balanced data propa-
gation can be formally stated as follows:

Given �i ; ei ; Si ; i = 1; : : : ;N , find pi ; � such that

�
�i + �i+1pi+1 + : : : + �n pn pn�1 � � � pi+1„ ƒ‚ …

=:xi

�

�

�
pi

1
Si

+ (1 � pi)
i2

Si

�
= �ei ; i = 1; : : : ;N :

(2)

Equation (2) amounts to ensuring that the mean energy
dissipation for all sensors is proportional to the available
energy. In turn, this ensures that sensors might, on aver-
age, run out of energy all at the same time. Notice that (2)
contains the definitions of the xi. They are the ones esti-
mated in the pseudo-code in Fig. 2, the successive estima-
tions being denoted as x̃i . These variables are proportional
to the number of messages handled by slice i.

Initialize x̃0 = �; : : : ; x̃n
Initialize NbrLoop=1
repeat forever

Send x̃i and � values to the stations which compute
their pi probability

wait for a data
for i=0 to n

if the data passed through slice i then
X 1

else
X 0

end if
Generate R a x̃i -Bernoulli random variable
x̃i x̃i + 1

NbrLoop (X � R)
Increment NbrLoop by one.

end for
end repeat

Randomized Energy Balance Algorithms in Sensor Networks,
Figure 2
Pseudo-code for estimation of the xi value by the sink

Key Results

In [1,2] recursive equations similar to (2) were suggested
and solved in closed form under adequate hypotheses. The
need for a priori knowledge of the probability of occur-
rence of the events, the �i parameters, was considered
in [7], in which these parameters were estimated by the
sink on the basis of the observations of the various paths
the data follow. The algorithm suggested is based on re-
cursive estimation, is computationally not expensive and
converges with rate O(1/pn). One might argue that the
rate of convergence is slow; however, it is numerically ob-
served that relatively quickly compared with the conver-
gence time, the algorithm finds an estimation close enough
to the final value. The estimation algorithm run by the sink
(which has no energy constraints) is given in Fig. 2.

Results taken from [1,2,7] all assume the existence of
an energy-balance solution. However, particular distribu-
tions of the eventsmight prevent the existence of such a so-
lution and the relevant question is no longer the compu-
tation of an energy-balance algorithm. For instance, as-
suming that �N = 0, sensors in slice N have no way of
balancing energy. In [9] the problem was reformulated
as finding the probability distribution fpigi=1;:::;N which
leads to the maximal functional lifetime of the networks. It
was proved that if an energy-balance strategy exists, then
it maximizes the lifetime of the network establishing for-
mally the intuitive reasoning which was the motivation

730 R Randomized Energy Balance Algorithms in Sensor Networks

to consider energy-balance strategies. A centralized algo-
rithm was presented to compute the optimal parameters.
Moreover, it was observed numerically that the interslice
energy consumption is prone to be uneven and a spread-
ing technique was suggested and numerically validated as
being efficient to overcome this limitation of the proba-
bilistic algorithm.

The communication graph considered is a restrictive
subset of the complete communication graph and it is le-
gitimate to wonder whether one can improve the situation
by extending it. For instance, by allowing data to be sent
two hops or more away. In [3,6] it was proved that the
topology in which sensors communicate only to neighbor
slices and the sink is the one which maximizes the flow of
data in the network. Moreover, the communication graph
in which sensors send data only to their neighbors and the
sink leads to a completely distributed algorithm balancing
energy [6]. Indeed, as a sensor sends data to a neighbor
slice, the neighbor must in turn send the data and can at-
tach information concerning its own energy level. This in-
formation might be captured by the initial sensor since it
belongs to the communication range of its neighbor (this
does not hold any longer if multiple hops are allowed).
Hence, a distributed strategy consists in sending data to
a particular neighbor only if its energy level consumption
is lower, otherwise the data are sent directly to the sink.

Applications
Among the several constraints sensor networks design-
ers have to face, energy management is central since sen-
sors are usually battery powered, making the lifetime of
the networks highly sensitive to the energy management.
Besides the traditional strategy consisting in minimizing
the energy consumption at sensor nodes, energy-balance
schemes aim at balancing the energy consumption among
sensors. The intuitive function of such schemes is to avoid
energy depletion holes appearing as some sensors that run
out of their available energy resources and are no longer
able to participate in the global function of the networks.
For instance, routing might be no longer possible if a small
number of sensors run out of energy, leading to a dis-
connected network. This was pointed out in [5] as well as
the need to develop application-specific protocols. Energy
balancing is suggested as a solution in order to make the
global functional lifetime of the network longer. The ear-
liest development of dedicated protocols ensuring energy
balance can be found in [4,10,11].

A key application is tomaximize the lifetime of the net-
work while gathering data to a sink. Besides increasing the
lifetime of the networks, other criteria have to be taken
into account. Indeed, the distributed algorithm might be

as simple as possible owing to limited computational re-
sources, might avoid collisions or limit the total number
of transmissions, and might ensure a large enough flow
of data from the sensors toward the sink. Actually, max-
imizing the flow of data is equivalent to maximizing the
lifetime of sensor networks if some particular realizable
conditions are fulfilled. Besides the simplicity of the dis-
tributed algorithm, the network deployment and the self-
realization of the network structure might be possible in
realistic conditions.

Cross References
� Obstacle Avoidance Algorithms in Wireless Sensor

Networks
� Probabilistic Data Forwarding in Wireless Sensor

Networks

Recommended Reading

1. Efthymiou, C., Nikoletseas, S., Rolim, J.: Energy Balanced Data
Propagation in Wireless Sensor Networks. 4th International
Workshop on Algorithms for Wireless, Mobile, Ad-Hoc and
Sensor Networks (WMAN ’04) IPDPS 2004, Wirel. Netw. J.
(WINET) 12(6), 691–707 (2006)

2. Efthymiou, C., Nikoletseas, S., Rolim, J.: Energy Balanced Data
Propagation in Wireless Sensor Networks. In: Wireless Net-
works (WINET) Journal, Special Issue on Algorithms for Wire-
less, Mobile, Ad Hoc and Sensor Networks. Springer (2006)

3. Giridhar, A., Kumar, P.R.: Maximizing the Functional Lifetime
of Sensor Networks. In: Proceedings of The Fourth Interna-
tional Conference on Information Processing in Sensor Net-
works, IPSN ’05, UCLA, Los Angeles, April 25–27 2005

4. Guo, W., Liu, Z., Wu, G.: An Energy-Balanced Transmission
Scheme for Sensor Networks. In: 1st ACM International Confer-
ence on Embedded Networked Sensor Systems (ACM SenSys
2003), Poster Session, Los Angeles, CA, November 2003

5. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-
efficient communication protocol for wireless microsensor
networks. In: Proceedings of the 33rd IEEE Hawaii International
Conference on System Sciences (HICSS 2000). 2000

6. Jarry, A., Leone, P., Powell, O., Rolim, J.: An Optimal Data Prop-
agation Algorithm for Maximizing the Lifespan of Sensor Net-
works. In: Second International Conference, DCOSS 2006, San
Francisco, CA, USA, June 2006. Lecture Notes in Computer Sci-
ence, vol. 4026, pp. 405–421. Springer, Berlin (2006)

7. Leone, P., Nikoletseas, S., Rolim, J.: An Adaptive BlindAlgorithm
for Energy Balanced Data Propagation in Wireless Sensor Net-
works. In: First International Conference on Distributed Com-
puting in Sensor Systems (DCOSS), Marina del Rey, CA, USA,
June/July 2005. Lecture Notes in Computer Science, vol. 3560,
pp. 35–48. Springer, Berlin (2005)

8. Olariu, S., Stojmenovic, I.: Design guidelines for maximizing
lifetime and avoiding energy holes in sensor networks with
uniform distribution and uniform reporting. In: IEEE INFOCOM,
Barcelona, Spain, April 24–25 2006

9. Powell, O., Leone, P., Rolim, J.: Energy Optimal Data Propa-
gation in Sensor Networks. J. Prarallel Distrib. Comput. 67(3),
302–317 (2007) http://arxiv.org/abs/cs/0508052

http://arxiv.org/abs/cs/0508052

Randomized Gossiping in Radio Networks R 731

10. Singh, M., Prasanna, V.: Energy-Optimal and Energy-Balanced
Sorting in a Single-Hop Wireless Sensor Network. In: Proc. First
IEEE International Conference on Pervasive Computing and
Communications (PerCom ’03), pp. 302–317, Fort Worth, 23–
26 March 2003

11. Yu, Y., Prasanna, V.K.: Energy-Balanced Task Allocation for Col-
laborative Processing in Networked Embedded System. In:
Proceedings of the 2003 Conference on Language, Compilers,
and Tools for Embedded Systems (LCTES’03), pp. 265–274, San
Diego, 11–13 June 2003

Randomized Gossiping
in Radio Networks
2001; Chrobak, Gąsieniec, Rytter

LESZEK GĄSIENIEC
Department of Computer Science,
University of Liverpool, Liverpool, UK

Keywords and Synonyms

Wireless networks; Broadcast; Gossip; Total exchange of
information; All-to-all communication

ProblemDefinition

The two classical problems of disseminating information
in computer networks are broadcasting and gossiping. In
broadcasting, the goal is to distribute amessage from a dis-
tinguished source node to all other nodes in the networks.
In gossiping, each node v in the network initially contains
a message mv ; and the task is to distribute each message
mv to all nodes in the network.

The radio network abstraction captures the features
of distributed communication networks with multi-access
channels, with minimal assumptions on the channel
model and processors’ knowledge. Directed edges model
uni-directional links, including situations in which one of
two adjacent transmitters is more powerful than the other.
In particular, there is no feedback mechanism (see, for ex-
ample, [6]). In some applications, collisions may be diffi-
cult to distinguish from the noise that is normally present
in the channel, justifying the need for protocols that do not
depend on the reliability of the collision detection mecha-
nism (see [3,4]). Some network configurations are subject
to frequent changes. In other networks, a network topol-
ogy could be unstable or dynamic; for example, when mo-
bile users are present. In such situations, algorithms that
do not assume any specific topology are more desirable.

More formally a radio network is a directed graph
G = (V ; E); where by jVj = n we denote the number of
nodes in this graph. Individual nodes in V are denoted

by letters u; v; : : :. If there is an edge from u to v, i. e.,
(u; v) 2 E; then we say that v is an out-neighbor of u and
u is an in-neighbor of v. Messages are denoted by letterm,
possibly with indices. In particular, the message originat-
ing from node v is denoted by mv. The whole set of initial
messages is M = fmv : v 2 Vg. During the computation,
each node v holds a set of messagesMv that have been re-
ceived by v so far. Initially, each node v does not possess
any information apart from Mv = fmvg. Without loss of
generality, whenever a node is in the transmitting mode,
one can assume that it transmits the whole content ofMv.

The time is divided into discrete time steps. All nodes
start simultaneously, have access to a common clock, and
work synchronously. A gossiping algorithm is a protocol
that for each node u, given all past messages received by
u, specifies, for each time step t, whether u will transmit
a message at time t, and if so, it also specifies the message.
A message M transmitted at time t from a node u is sent
instantly to all its out-neighbors. An out-neighbor v of u
receivesM at time step t only if no collision occurred, that
is, if the other in-neighbors of v do not transmit at time t at
all. Further, collisions cannot be distinguished from back-
ground noise. If v does not receive anymessage at time t, it
knows that either none of its in-neighbors transmitted at
time t, or that at least two did, but it does not know which
of these two events occurred. The running time of a gossip-
ing algorithm is the smallest t such that for any network
topology, and any assignment of identifiers to the nodes,
all nodes receive messages originating in every other node
no later than at step t.

Limited Broadcastv(k) Given an integer k and a node
v; the goal of limited broadcasting is to deliver the mes-
sage mv (originating in v) to at least k other nodes in the
network.

Distributed Coupon Collection The set of network
nodes V can be interpreted as a set of n bins and the set of
messagesM as a set of n coupons. Each coupon has at least
k copies, each copy belonging to a different bin. Mv is the
set of coupons in bin v. Consider the following process. At
each step, one opens every bin at random, independently,
with probability 1/n. If no bin is opened, or if two or more
bins are opened, a failure occurs and no coupons are col-
lected. If exactly one bin, say v, is opened, all coupons from
Mv are collected. The task is to establish how many steps
are needed to collect (a copy of) each coupon.

Key Results

Theorem 1 ([1]) There exists a deterministic O(k log2 n)-
time algorithm for limited broadcasting from any node in
radio networks with an arbitrary topology.

732 R Randomized Minimum Spanning Tree

Theorem 2 ([1]) Let ı be a given constant, 0 < ı < 1,
and s = (4n/k) ln(n/ı). After s steps of the distributed
coupon collection process, with probability at least 1 � ı, all
coupons will be collected.

Theorem 3 ([1]) Let � be a given constant, where
0 < � < 1. There exists a randomized O(n log3 n log(n/
�))-time Monte Carlo-type algorithm that completes radio
gossiping with probability at least 1 � �.

Theorem 4 ([1]) There exists a randomized Las Vegas-
type algorithm that completes radio gossiping with expected
running time O(n log4 n).

Applications
Further work on efficient randomized radio gossiping in-
clude the O(n log3 n)-time algorithm by Liu and Prab-
hakaran, see [5], where the deterministic procedure for
limited broadcasting is replaced by its O(k log n)-time
randomized counterpart. This bound was later reduced to
O(n log2 n) by Czumaj and Rytter in [2], where a new ran-
domized limited broadcasting procedure with an expected
running time O(k) is proposed.

Open Problems
The exact complexity of randomized radio gossiping
remains an open problem. All three gossiping algo-
rithms [1,2,5] are based on the concepts of limited broad-
cast and distributed coupon collection. The two improve-
ments [2,5] refer solely to limited broadcasting. Thus, very
likely further reduction of the time complexity must coin-
cide with more accurate analysis of the distributed coupon
collection process or with development of a new gossiping
procedure.

Recommended Reading

1. Chrobak, M., Gąsieniec, L., Rytter, W.: A Randomized Algorithm
for Gossiping in Radio Networks. In: Proc. 8th Annual Inter-
national Computing Combinatorics Conference. Guilin, China,
pp. 483–492 (2001) Full version in Networks 43(2), 119–124
(2004)

2. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio net-
works with unknown topology. J. Algorithms 60(2), 115–143
(2006)

3. Ephremides, A., Hajek, B.: Information theory and communi-
cation networks: an unconsummated union. IEEE Trans. Inf.
Theor. 44, 2416–2434 (1998)

4. Gallager, R.: A perspective on multiaccess communications.
IEEE Trans. Inf. Theor. 31, 124–142 (1985)

5. Liu, D., Prabhakaran,M.: On randomizedbroadcasting andgos-
siping in radio networks. In: Proc. 8th Annual International
Computing Combinatorics Conference, pp. 340-349, Singa-
pore (2002)

6. Massey, J.L., Mathys, P.: The collision channel without feed-
back. IEEE Trans. Inf. Theor. 31, 192–204 (1985)

RandomizedMinimum
Spanning Tree
1995; Karger, Klein, Tarjan

VIJAYA RAMACHANDRAN
Department of Computer Science,
University of Texas at Austin, Austin, TX, USA

ProblemDefinition

The input to the problem is a connected undirected graph
G = (V ; E) with a weight w(e) on each edge e 2 E. The
goal is to find a spanning tree of minimum weight, where
for any subset of edges E0
 E, the weight of E0 is defined
to be w(E0) =

P
e2E0 w(e).

If the graph G is not connected, the goal of the prob-
lem is to find aminimum spanning forest, which is defined
to be a minimum spanning tree in each connected com-
ponent of G. Both problems will be referred to as theMST
problem.

The randomized MST algorithm by Karger, Klein and
Tarjan [9] which is considered here will be called the KKT
algorithm. Also it will be assumed that the input graph
G = (V ; E) has n vertices and m edges, and that the edge-
weights are distinct.

The MST problem has been studied extensively prior
to the KKT result, and several very efficient, deterministic
algorithms are available from these studies. All of these are
deterministic and are based on amethod that greedily adds
an edge to a forest that is a subgraph of theminimum span-
ning tree at all times. The early algorithms in this class are
already efficient with a running time of O(m log n). These
include the algorithms of Borůvka [1], Jarník [8] (later re-
discovered by Dijkstra and Prim [5]) and Kruskal [5].

The fastest algorithm known for MST prior to the
KKT algorithm runs in time O(m logˇ(m; n)) [7], where
ˇ(m; n) = minfij log(i) n � m/ng [7]; here log(i) n is de-
fined as log n if i = 1 and as log log(i�1) n if i > 1. Al-
though this running time is close to linear, it is not linear-
time if the graph is very sparse.

The problem of finding the minimum spanning tree
efficiently is an important and fundamental problem in
graph algorithms and combinatorial optimization.

Background
Some relevant background is summarized here.
� The basic step in Borůvka’s algorithm [1] is the

Borůvka step, which picks the minimum weight edge
incident on each vertex, adds it to the minimum span-
ning tree, and then contracts these edges. This step runs
in linear time, and also very efficiently in parallel. It is

Randomized Minimum Spanning Tree R 733

the backbone of most efficient parallel algorithms for
minimum spanning tree, and is also used in the KKT
algorithm.

� A related and simpler problem is that of minimum
spanning tree verification. Here, given a spanning tree T
of the input edge-weighted graph, one needs to deter-
mine if T is its minimum spanning tree. An algorithm
that solves this problem with a linear number of edge-
weight comparisons was shown by Komlós [13], and
later a deterministic linear-time algorithm was given
in [6] (see also [12] for a simpler algorithm).

Key Results
The main result in [9] is a randomized algorithm for the
minimum spanning tree problem that runs in expected
linear time. The only operations performed on the edge-
weights are pairwise comparisons. The algorithm does not
assume any particular representation of the edge-weights
(i. e., integer or real values), and only assumes that any
comparison between a pair of edge-weights can be per-
formed in unit time. The paper also shows that the algo-
rithm runs in O(m + n) time with the exponentially high
probability 1 � exp(�˝(m)), and that its worst-case run-
ning time is O(n + m log n).

The simple and elegantMST sampling lemma given in
Lemma 1 below is the key tool used to derive and analyze
the KKT algorithm. This lemma needs a couple of defini-
tions and facts:
1. The well-known cycle property for minimum spanning

tree states that the heaviest edge in any cycle in the in-
put graph G cannot be in the minimum spanning tree.

2. Let F be a forest of G (i. e., an acyclic subgraph of G).
An edge e 2 E is F-light if F [feg either continues to
be a forest of G, or the heaviest edge in the cycle con-
taining e is not e. An edge in G that is not F-light is F-
heavy. Note that by the cycle property, an F-heavy edge
cannot be in the minimum spanning tree of G, no mat-
ter what forest F is used. Given a forest F of G, the set
of F-heavy edges can be determined in linear time by
a simple modification to existing linear-time minimum
spanning tree verification algorithms [6,12].

Lemma 1 (MST Sampling Lemma) Let H = (V ; EH) be
formed from the input edge-weighted graph G = (V ; E) by
including each edge with probability p independent of the
other edges. Let F be the minimum spanning forest of H.
Then, the expected number of F-light edges in G is� n/p.

TheKKT algorithm identifies edges in theminimum span-
ning tree of G only using Borůvka steps. However, after
every two Borůvka steps, it removes F-heavy edges using
the minimum spanning forest F of a subgraph obtained

through sampling edges with probability p = 1/2. As men-
tioned earlier, these F-heavy edges can be identified in lin-
ear time. The minimum spanning forest of the sampled
graph is computed recursively.

The correctness of the KKT algorithm is immediate
since every F-heavy edge it removes cannot be in the MST
of G since F is a forest of G, and every edge it adds to the
minimum spanning tree is in the MST since it is added
through a Borůvka step.

The expected running time analysis as well as the ex-
ponentially high probability bound for the running time
are surprisingly simple to derive using the MST Sampling
Lemma (Lemma 1).

In summary, the paper [9] proves the following results.

Theorem 2 The KKT algorithm is a randomized algo-
rithm that finds a minimum spanning tree of an edge-
weighted undirected graph on n nodes and m edges in
O(n + m) time with probability at least 1 � exp (�˝(m)).
The expected running time is O(n + m) and the worst-case
running time is O(n + m log n).

The model of computation used in [9] is the unit-cost
RAMmodel since the known MST verification algorithms
were for this model, and not the more restrictive pointer
machinemodel. More recently the MST verification result
and hence the KKT algorithm have been shown to work
on the pointer machine as well [2].

Lemma 1 is proved in [9] through a simulation of
Kruskal’s algorithm along with an analysis of the proba-
bility with which an F-light edge is not sampled. Another
proof that uses a backward analysis is given in [3].

Further Comments

� Recently (and since the appearance of the KKT al-
gorithm in 1995), two new deterministic algorithms
for MST have appeared, due to Chazelle [4] and
Pettie and Ramachandran [14]. The former [4] runs
in O(n + m˛(m; n)) time, where ˛ is an inverse of
the Ackermann’s function, whose growth rate is even
smaller than the ˇ function mentioned earlier for the
best result that was known prior to the KKT algo-
rithm [7]. The latter algorithm [14] provably runs in
time that is within a constant factor of the decision-tree
complexity of the MST problem, and hence is optimal;
its time bound is O(n + m˛(m; n)) and˝(n + m), and
the exact bound remains to be determined.

� Although the KKT algorithm runs in expected linear
time (and with exponentially high probability), it is not
the last word on randomized MST algorithms. A ran-
domized MST algorithm that runs in expected linear

734 R Randomized Parallel Approximations to Max Flow

time and uses only O(log� n) random bits is given
in [16,17]. In contrast, the KKT algorithm uses a lin-
ear number of random bits.

Applications
Theminimum spanning tree problems has a large number
of applications, which are discussed in Minimum span-
ning trees.

Open Problems
Some open problems that remain are the following:
1. Can randomness be removed in the KKT algorithm?

A hybrid algorithm that uses the KKT algorithm within
a modified version of the Pettie–Ramachandran algo-
rithm [14] is given in [16,17] that achieves expected
linear time while reducing the number of random bits
used to only O(log� n). Can this tiny amount of ran-
domness be removed as well? If all randomness can be
removed from the KKT algorithm, that will establish
a linear time bound for the Pettie–Ramachandran al-
gorithm [14] and also provide another optimal deter-
ministic MST algorithm, this one based on the KKT ap-
proach.

2. Can randomness be removed from the work-optimal
parallel algorithms [10] for MST? A linear-work, ex-
pected logarithmic-time parallel MST algorithm for the
EREWPRAM is given in [15]. This parallel algorithm is
both work- and time-optimal. However, it uses a linear
number of random bits. Another work-optimal paral-
lel algorithm is given in [16,17] that runs in expected
polylog time using only polylog random bits. This leads
to the following open questions regarding parallel algo-
rithms for the MST problem:
� To what extent can dependence on random bits be

reduced (from the current linear bound) in a time-
and work-optimal parallel algorithm for MST?

� To what extent can the dependence on random bits
be reduced (from the current polylog bound) in
a work-optimal parallel algorithm with reasonable
parallelism (say polylog parallel time)?

Experimental Results
Katriel, Sanders, and Träff [11] performed an experimen-
tal evaluation of the KKT algorithm and showed that it has
good performance on moderately dense graphs.

Cross References

�Minimum Spanning Trees

Acknowledgments
This work was supported in part by NSF grant CFF-0514876.

Recommended Reading

1. Borůvka, O.: O jistém problému minimálním. Práce Moravské
Přírodovědecké Společnosti 3, 37–58 (1926) (In Czech)

2. Buchsbaum, A., Kaplan, H., Rogers, A., Westbrook, J.R.: Linear-
time pointer-machine algorithms for least common ancestors,
MST verification and dominators. In: Proc. ACM Symp. on The-
ory of Computing (STOC), 1998, pp. 279–288

3. Chan, T.M.: Backward analysis of the Karger–Klein–Tarjan algo-
rithm for minimum spanning trees. Inf. Process. Lett. 67, 303–
304 (1998)

4. Chazelle, B.: A minimum spanning tree algorithmwith inverse-
Ackermann type complexity. J. ACM 47(6), 1028–1047 (2000)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2001)

6. Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity
analysis of minimum spanning trees in linear time. SIAM J.
Comput. 21(6), 1184–1192 (1992)

7. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algo-
rithms for finding minimum spanning trees in undirected and
directed graphs. Comb. 6, 109–122 (1986)

8. Graham, R.L., Hell, P.: On the history of the minimum spanning
tree problem. Ann. Hist. Comput. 7(1), 43–57 (1985)

9. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time
algorithm for finding minimum spanning trees. J. ACM 42(2),
321–329 (1995)

10. Karp, R.M., Ramachandran, V.: Parallel algorithms for shared-
memory machines. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science, pp. 869–941. Elsevier Science Pub-
lishers B.V., Amsterdam (1990)

11. Katriel, I., Sanders, P., Träff, J.L.: A practical minimum spanning
tree algorithm using the cycle property. In: Proc. 11th Annual
European SymposiumonAlgorithms. LNCS, vol. 2832, pp. 679–
690. Springer, Berlin (2003)

12. King, V.: A simpler minimum spanning tree verification algo-
rithm. Algorithmica 18(2), 263–270 (1997)

13. Komlós, J.: Linear verification for spanning trees. Combinator-
ica 5(1), 57–65 (1985)

14. Pettie, S., Ramachandran, V.: An optimal minimum spanning
tree algorithm. J. ACM 49(1), 16–34 (2002)

15. Pettie, S., Ramachandran, V.: A randomized time-work opti-
mal parallel algorithm for finding a minimum spanning forest.
SIAM J. Comput. 31(6), 1879–1895 (2002)

16. Pettie, S., Ramachandran, V.: Minimizing randomness in mini-
mum spanning tree, parallel connectivity, and set maxima al-
gorithms. In: Proc. ACM-SIAM Symp. on Discrete Algorithms
(SODA), 2002, pp. 713–722

17. Pettie, S., Ramachandran, V.: New randomized minimum span-
ning tree algorithms using exponentially fewer random bits.
ACM Trans. Algorithms. 4(1), article 5 (2008)

Randomized Parallel Approximations
toMax Flow
1991; Serna, Spirakis

MARIA SERNA
Department of Language & System Information,
Technical University of Catalonia, Barcelona, Spain

Randomized Parallel Approximations to Max Flow R 735

Keywords and Synonyms

Approximate maximum flow construction

ProblemDefinition

The work of Serna and Spirakis provides a parallel ap-
proximation schema for the Maximum Flow problem. An
approximate algorithm provides a solution whose cost is
within a factor of the optimal solution. The notation and
definitions are the standard ones for networks and flows
(see for example [2,7]).

A network N = (G; s; t; c) is a structure consisting of
a directed graph G = (V ; E), two distinguished vertices,
s; t 2 V (called the source and the sink), and c : E ! Z+,
an assignment of an integer capacity to each edge in E.
A flow function f is an assignment of a non-negative num-
ber to each edge of G (called the flow into the edge) such
that first at no edge does the flow exceed the capacity, and
second for every vertex except s and t, the sum of the flows
on its incoming edges equals the sum of the flows on its
outgoing edges. The total flow of a given flow function f is
defined as the net sum of flow into the sink t. The Maxi-
mum Flow problem can be stated as

Name Maximum Flow
Input A network N = (G; s; t; c)
Output Find a flow f for N for which the total flow is

maximum.

Maximum Flows and Matchings The Maximum Flow
problem is closely related to the Maximum Matching
problem on bipartite graphs.

Given a graph G = (V ; E) and a set of edges M
 E is
a matching if in the subgraph (V ;M) all vertices have de-
gree at most one. A maximum matching for G is a match-
ing with a maximum number of edges. For a graph
G = (V ; E) with weight w(e), the weight of a matching M
is the sum of the weights of the edges in M. The problem
can be stated as follows:

Name MaximumWeight Matching
Input A graph G = (V ; E) and a weight w(e) for each

edge e 2 E
Output Find a matching of G with the maximum possi-

ble weight.

There is a standard reduction from the MaximumMatch-
ing problem for bipartite graphs to the Maximum Flow
problem ([7,8]). In the general weighted case one has just
to look at each edge with capacity c > 1 as c edges join-
ing the same points each with capacity one, and transform
the multigraph obtained as shown before. Notice that to

perform this transformation a c value is required which
is polynomially bounded. The whole procedure was intro-
duced by Karp, Upfal, and Wigderson [5] providing the
following results

Theorem 1 The Maximum Matching problem for bipar-
tite graphs is NC equivalent to the Maximum Flow prob-
lem on networks with polynomial capacities. Therefore, the
Maximum Flow with polynomial capacities problem be-
longs to the class RNC.

Key Results

The first contribution is an extension of Theorem 1 to
a generalization of the problem, namely the Maximum
Flow on networks with polynomially bounded maximum
flow. The proof is based on the construction (in NC) of
a second network which has the same maximum flow but
for which the maximum flow and the maximum capacity
in the network are polynomially related.

Lemma 2 Let N = (G; s; t; c). Given any integer k,
there is an NC algorithm that decides whether f (N) �
k or f (N) < km.

Since Lemma 2 applies even to numbers that are exponen-
tial in size, they get

Lemma 3 Let N = (G; s; t; c) be a network, there is an
NC algorithm that computes an integer value k such that
2k � f (N) < m 2k+1.

The following lemma establishes the NC-reduction from
the Maximum Flow problem with polynomial maximum
flow to the Maximum Flow problem with polynomial ca-
pacities.

Lemma 4 Let N = (G; s; t; c) be a network, there is
an NC algorithm that constructs a second network
N1 = (G; s; t; c1) such that

log(Max(N1)) � log(f (N1)) + O(log n)

and f (N) = f (N1).

Lemma 4 shows that the Maximum Flow problem re-
stricted to networks with polynomially bounded maxi-
mum flow is NC-reducible to the Maximum Flow prob-
lem restricted to polynomially bounded capacities, the lat-
ter problem is a simplification of the former one, so the
following results follow.

Theorem 5 For each polynomial p, the problem of con-
structing a maximum flow in a network N such that
f (N) � p(n) is NC-equivalent to the problem of construct-
ing a maximum matching in a bipartite graph, and thus it
is in RNC.

736 R Randomized Parallel Approximations to Max Flow

Recall that [5] gave us an O(log2 n) randomized parallel
time algorithm to compute a maximum matching. The
combination of this with the reduction from the Maxi-
mum Flow problem to the Maximum Matching leads to
the following result.

Theorem 6 There is a randomized parallel algorithm to
construct a maximum flow in a directed network, such that
the number of processors is bounded by a polynomial in
the number of vertices and the time used is O((log n)˛

log f (N)) for some constant ˛ > 0.

The previous theorem is the first step towards finding an
approximate maximum flow in a network N by an RNC
algorithm. The algorithm, given N and an " > 0, outputs
a solution f 0 such that f (N)/ f 0 � 1 + 1/". The algorithm
uses a polynomial number of processors (independent of
") and parallel time O(log˛ n(log n + log ")), where ˛ is
independent of ". Thus, the algorithm is an RNC one as
long as " is at most polynomial in n. (Actually " can be
O(nlog

ˇ n) for some ˇ.) Thus, being a Fully RNC approxi-
mation scheme (FRNCAS).

The second ingredient is a rough NC approximation
to the Maximum Flow problem.

Lemma 7 Let N = (G; s; t; c) be a network. Let k � 1
be an integer, then there is an NC algorithm to construct
a network M = (G; s; t; c1) such that k f (M) � f (N) �
k f (M) + km.

Putting all together and allowing randomization the algo-
rithm can be sketched as follows:

FAST-FLOW(N = (G; s; t; c); ")
1. Compute k such that 2k � F(N) � 2k+1m.
2. Construct a network N1 such that

log(Max(N1)) � log(F(N1)) + O(log n) :

3. If 2k � (1 + ")m then F(N) � (1 + ")m2 so use the al-
gorithm given in Theorem 6 to solve the Maximum
Flow problem in N as a Maximum Matching and re-
turn

4. Let ˇ = b(2k)/((1 + ")m)c. Construct N2 from N1 and
ˇ using the construction in Lemma 7.

5. Solve the Maximum Flow problem in N2 as a Maxi-
mumMatching.

6. Output F 0 = ˇF(M2) and for all e 2 E, f 0(e) = ˇ f (e).

Theorem 8 Let N = (G; s; t; c) be a network. Then, algo-
rithm FAST-FLOW is an RNC algorithm such that for all
" > 0 at most polynomial in the number of network ver-
tices, the algorithm computes a legal flow of value f 0 such
that

f (N)
f 0
� 1 +

1
"
:

Furthermore, the algorithm uses a polynomial num-
ber of processors and runs in expected parallel time
O(log˛ n(log n + log ")), for some constant ˛, independent
of ".

Applications

The rounding/scaling technique is used in general to deal
with problems that are hard due to the presence of large
weights in the problem instance. The technique mod-
ifies the problem instance in order to produce a sec-
ond instance that has no large weights, and thus can be
solved efficiently. The way in which a new instance is ob-
tained consists of computing first an estimate of the opti-
mal value (when needed) in order to discard unnecessary
high weights. Then the weights are modified, scaling them
down by an appropriate factor that depends on the esti-
mation and the allowed error. The rounding factor is de-
termined in such a way that the so-obtained instance can
be solved efficiently. Finally, a last step consisting of scaling
up the value of the “easy” instance solution is performed in
order to meet the corresponding accuracy requirements.

It is known that in the sequential case, the only way to
construct FPTAS uses rounding/scaling and interval par-
tition [6]. In general, both techniques can be paralyzed,
although sometimes the details of the parallelization are
non-trivial [1].

The Maximum Flow problem has a long history
in Computer Science. Here are recorded some results
about its parallel complexity. Goldschlager, Shaw, and
Staples showed that the Maximum Flow problem is P-
complete [3]. The P-completeness proof for Maximum
Flow uses large capacities on the edges; in fact the values of
some capacities are exponential in the number of network
vertices. If the capacities are constrained to be no greater
than some polynomial in the number of network vertices
the problem is in ZNC. In the case of planar networks it is
known that the Maximum Flow problem is in NC, even if
arbitrary capacities are allowed [4].

Open Problems

The parallel complexity of the Maximum Weight Match-
ing problem when the weight of the edges are given in
binary is still an open problem. However, as mentioned
earlier, there is a randomized NC algorithm to solve the
problem in O(log2 n) parallel steps, when the weights of
the edges are given in unary. The scaling technique has
been used to obtain fully randomized NC approximation
schemes, for the Maximum Flow and Maximum Weight
Matching problems (see [10]). The result appears to be the
best possible in regard of full approximation, in the sense

Randomized Rounding R 737

that the existence of an FNCAS for any of the problems
considered is equivalent to the existence of an NC algo-
rithm for perfect matching which is also still an open prob-
lem.

Cross References

� Approximate Maximum Flow Construction
�MaximumMatching
� Paging

Recommended Reading
1. Díaz, J., Serna, M., Spirakis, P.G., Torán, J.: Paradigms for fast

parallel approximation. In: Cambridge International Series on
Parallel Computation, vol 8, Cambridge University Press, Cam-
bridge (1997)

2. Even, S.: Graph Algorithms. Computer Science Press, Potomac
(1979)

3. Goldschlager, L.M., Shaw, R.A., Staples, J.: The maximum flow
problem is log-space complete for P. Theor. Comput. Sci. 21,
105–111 (1982)

4. Johnson, D.B., Venkatesan, S.M.: Parallel algorithms for mini-
mum cuts and maximum flows in planar networks. J. ACM 34,
950–967 (1987)

5. Karp, R.M., Upfal, E., Wigderson, A.: Constructing a perfect
matching is in Random NC. Combin. 6, 35–48 (1986)

6. Korte, B., Schrader, R.: On the existence of fast approximation
schemes. Nonlinear Program. 4, 415–437 (1980)

7. Lawler, E.L.: Combinatorial Optimization: Networks and Ma-
troids. Holt, Rinehart andWinston, New York (1976)

8. Papadimitriou, C.: Computational Complexity. Addison-
Wesley, Reading (1994)

9. Peters, J.G., Rudolph, L.: Parallel aproximation schemes for sub-
set sum and knapsack problems. Acta Inform. 24, 417–432
(1987)

10. Spirakis, P.: PRAM models and fundamental parallel algorithm
techniques: Part II. In: Gibbons, A., Spirakis, P. (eds.) Lectures on
Parallel Computation, pp. 41–66. Cambrige University Press,
New York (1993)

Randomized Rounding
1987; Raghavan, Thompson

RAJMOHAN RAJARAMAN
Department of Computer Science,
Northeastern University,
Boston, MA, USA

ProblemDefinition

Randomized rounding is a technique for designing ap-
proximation algorithms for NP-hard optimization prob-
lems. Many combinatorial optimization problems can be
represented as 0-1 integer linear programs; that is, integer
linear programs in which variables take values in f0; 1g.

While 0-1 integer linear programming is NP-hard, the
rational relaxations (also referred to as fractional relax-
ations) of these linear programs are solvable in polynomial
time [12,13]. Randomized rounding is a technique to con-
struct a provably good solution to a 0-1 integer linear pro-
gram from an optimum solution to its rational relaxation
by means of a randomized algorithm.

Let ˘ be a 0-1 integer linear program with variables
xi 2 f0; 1g, 1 � i � n. Let ˘R be the rational relaxation
of ˘ obtained by replacing the xi 2 f0; 1g constraints
by xi 2 [0; 1]; 1 � i � n. The randomized rounding ap-
proach consists of two phases:
1. Solve ˘R using an efficient linear program solver. Let

the variable xi take on value x�i 2 [0; 1], 1 � i � n.
2. Compute a solution to˘ by setting the variables xi ran-

domly to one or zero according to the following rule:

Pr[xi = 1] = x�i :

For several fundamental combinatorial optimization
problems, the randomized rounding technique yields sim-
ple randomized approximation algorithms that yield solu-
tions provably close to optimal. Variants of the basic ap-
proach outlined above, in which the rounding of variable
xi in the second phase is done with a probability that is
some appropriate function of xi*, have also been studied.
The analyses of algorithms based on randomized rounding
often rely on Chernoff–Hoeffding bounds from probabil-
ity theory [5,11].

The work of Raghavan andThompson [14] introduced
the technique of randomized rounding for designing ap-
proximation algorithms for NP-hard optimization prob-
lems. The randomized rounding approach also implic-
itly proves the existence of a solution with certain desir-
able properties. In this sense, randomized rounding can
be viewed as a variant of the probabilistic method, due to
Erdös [1], which is widely used for various existence proofs
in combinatorics.

Raghavan and Thompson illustrate the randomized
rounding approach using three optimization problems:
VLSI routing, multicommodity flow, and k-matching in
hypergraphs.

Definition 1 In the VLSI Routing problem, we are given
a two-dimensional rectilinear lattice Ln over n nodes and
a collection of m nets fai : 1 � i � mg, where net ai, is
a set of nodes to be connected by means of a Steiner tree
in Ln. For each net ai, we are also given a set Ai of al-
lowed trees that can be used for connecting the nodes in
that set. A solution to the problem is a set T of trees
fTi 2Ai : 1 � i � mg. The width of solution T is the
maximum, over all edges e, of the number of trees in T

738 R Randomized Rounding

that contain the edge. The goal of the VLSI routing prob-
lem is to determine a solution with minimum width.

Definition 2 In theMulticommodity Flow Congestiom
Minimization problem (or simply, the Congestion Mini-
mization problem), we are given a graph G = (V ; E), and
a set of source-destination pairs f(si ; ti) : 1 � i � kg. For
each pair (si ; ti), we would like to route one unit of de-
mand from si to ti. A solution to the problem is a set
P = fPi : 1 � i � kg such that Pi is a path from si to ti in
G. We define the congestion of P to be the maximum, over
all edges e, of the number of paths containing e. The goal
of the undirected multicommodity flow problem is to de-
termine a path set P with minimum congestion.

In their original work [14], Raghavan and Thompson
studied the above problem for the case of undirected
graphs and referred to it as the UndirectedMulticommod-
ity Flow problem. Here, we adopt the more commonly-
used term of Congestion Minimization and consider both
undirected and directed graphs since the results of [14]
apply to both classes of graphs. Researchers have studied
a number of variants of the multicommodity flow prob-
lem, which differ in various aspects of the problem such as
the nature of demands (e. g., uniform vs. non-uniform),
the objective function (e. g., the total flow vs. the maxi-
mum fraction of each demand), and edge capacities (e. g.,
uniform vs. non-uniform).

Definition 3 In the Hypergraph Simple k-Matching
problem, we are given a hypergraph H over an n-element
vertex set V . A k-matching of H is a set M of edges such
that each vertex in V belongs to at most k of the edges
in M. A k-matching M is simple if no edge in H occurs
more than once inM. The goal of the problem is to deter-
mine a maximum-size simple k-matching of a given hy-
pergraph H.

Key Results

Raghavan and Thompson present approximation algo-
rithms for the above three problems using randomized
rounding. In each case, the algorithm is easy to present:
write a 0-1 integer linear program for the problem, solve
the rational relaxation of this program, and then apply
randomized rounding. They establish bounds on the qual-
ity of the solutions (i. e., the approximation ratios of the
algorithm) using Chernoff–Hoeffding bounds on the tail
of the sums of bounded and independent random vari-
ables [5,11].

The VLSI Routing problem can be easily expressed as
a 0-1 integer linear program, say ˘ 1. Let W* denote the

width of the optimum solution to the rational relaxation
of˘ 1.

Theorem 1 For any " such that 0 < " < 1, the width of the
solution produced by randomized rounding does not exceed

W� +
�
3W� ln

2n(n � 1)
"

�1/2

with probability at least 1� ", provided W� � 3 ln(2n(n�
1)/").

Since W* is a lower bound on the width of an optimum
solution to ˘ 1, it follows that the randomized rounding
algorithm has an approximation ratio of 1 + o(1) with high
probability as long asW* is sufficiently large.

The Congestion Minimization problem can be easily
expressed as a 0-1 integer linear program, say ˘ 2. Let C*

denote the congestion of the optimum solution to the lin-
ear relaxation of˘ 2. This optimum solution yields a set of
flows, one for each commodity i. The flow for commod-
ity i can be decomposed into a set
 i of at most |E| paths
from si to ti. The randomized rounding algorithm selects,
for each commodity i, one path Pi at random from
 i ac-
cording to the flow values determined by the flow decom-
position.

Theorem 2 For any " such that 0 < " < 1, the capacity
of the solution produced by randomized rounding does not
exceed

C� +
�
3C� ln

jEj
"

�1/2

with probability at least 1 � ", provided C� � 2 ln jEj.

Since C* is a lower bound on the width of an optimum
solution to ˘ 1, it follows that the randomized rounding
algorithm achieves a constant approximation ratio with
probability 1 � 1/n when C* is˝(log n).

For both the VLSI Routing and the Congestion Min-
imization problems, slightly worse approximation ratios
are achieved if the lower bound condition on W* and
C*, respectively, is removed. In particular, the approxima-
tion ratio achieved is O(log n/ log log n) with probability at
least 1 � n�c for a constant c > 0 whose value depends on
the constant hidden in the big-Oh notation.

The hypergraph k-matching problem is different than
the above two problems in that it is a packing problem
with a maximization objective while the latter are covering
problems with a minimization objective. Raghavan and
Thompson show that randomization rounding, in con-
junction with a scaling technique, yields good approxima-
tion algorithms for the hypergraph k-matching problem.

Randomized Rounding R 739

They first express the matching problem as a 0-1 integer
linear program, solve its rational relaxation ˘ 3, and then
round the optimum rational solution by using appropri-
ately scaled values of the variables as probabilities. Let S*

denote the value of the optimum solution to˘ 3.

Theorem 3 Let ı1 and ı2 be positive constants such that
ı2 > n � e�k/6 and ı1 + ı2 < 1. Let ˛ = 3 ln(n/ı2)/k and

S0 = S�
�
1 �

(˛2 + 4˛)1/2 � ˛
2

�
:

Then, there exists a simple k-matching for the given hyper-
graph with size at least

S0 �

2S0 ln

1
ı1

!1/2

:

Note that the above result is stated as an existence result.
It can be modified to yield a randomized algorithm that
achieves essentially the same bound with probability 1 � "
for a given failure probability ".

Applications

Randomized rounding has found applications for a wide
range of combinatorial optimization problems. Follow-
ing the work of Raghavan and Thompson [14], Goemans
and Williamson showed that randomized rounding yields
an e/(e � 1)-approximation algorithm for MAXSAT, the
problem of finding an assignment that satisfies the max-
imum number of clauses of a given Boolean formula [7].
For the set cover problem, randomized rounding yields an
algorithm with an asymptotically optimal approximation
ratio of O(log n), where n is the number of elements in
the given set cover instance [10]. Srinivasan has developed
more sophisticated randomized rounding approaches for
set cover and more general covering and packing prob-
lems [15]. Randomized rounding also yields good approx-
imation algorithms for several flow and cut problems, in-
cluding variants of undirected multicommodity flow [9]
and the multiway cut problem [4].

While randomized rounding provides a unifying ap-
proach to obtain approximation algorithms for hard opti-
mization problems, better approximation algorithms have
been designed for specific problems. In some cases, ran-
domized rounding has been combined with other algo-
rithms to yield better approximation ratios than previ-
ously known. For instance, Goemans and Williamson
showed that the better of two solutions, one obtained by
randomized rounding and the other obtained by an earlier

algorithm due to Johnson, yields a 4/3 approximation for
MAXSAT [7].

The work of Raghavan and Thompson applied ran-
domized rounding to a solution obtained for the relax-
ation of a 0-1 integer program for a given problem. In re-
cent years, more sophisticated approximation algorithms
have been obtained by applying randomized rounding to
semidefinite program relaxations of the given problem.
Examples include the 0.87856-approximation algorithm
for MAXCUT due to Goemans andWilliamson [8] and an
O(
p
log n)-approximation algorithm for the sparsest cut

problem, due to Arora, Rao, and Vazirani [3].
An excellent reference for the above and other appli-

cations of randomized rounding in approximation algo-
rithms is the text by Vazirani [16].

Open Problems

While randomized rounding has yielded improved ap-
proximation algorithms for a number of NP-hard opti-
mization problems, the best approximation achievable by
a polynomial-time algorithm is still open for most of the
problems discussed in this article, including MAXSAT,
MAXCUT, the sparsest cut, the multiway cut, and sev-
eral variants of the congestion minimization problem.
For directed graphs, it has been shown that best ap-
proximation ratio achievable for congestion minimization
in polynomial time is ˝(log n/ log log n), unless NP �
ZPTIME(nO(log log n)), matching the upper bound men-
tioned in Sect. “Key Results” up to constant factors [6].
For undirected graphs, the best known inapproximability
lower bound is˝(log log n/ log log log n) [2].

Cross References

� Oblivious Routing

Recommended Reading
1. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New

York (1991)
2. Andrews, M., Zhang, L.: Hardness of the undirected conges-

tion minimization problem. In: STOC ’05: Proceedings of the
thirty-seventh annual ACM symposium on Theory of comput-
ing, pp. 284–293. ACM Press, New York (2005)

3. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric em-
beddings and graphpartitioning. In: STOC, pp. 222–231. (2004)

4. Calinescu, G., Karloff, H.J., Rabani, Y.: An improved approxima-
tion algorithm for multiway cut. J. Comput. Syst. Sci. 60(3),
564–574 (2000)

5. Chernoff, H.: A measure of the asymptotic efficiency for tests
of a hypothesis based on the sum of observations. Ann. Math.
Stat. 23, 493–509 (1952)

6. Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K.: Hardness of
routing with congestion in directed graphs. In: STOC ’07: Pro-

740 R Randomized Searching on Rays or the Line

ceedings of the thirty-ninth annual ACM symposium on The-
ory of computing, pp. 165–178. ACM Press, New York (2007)

7. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algo-
rithms for the maximum satisfiability problem. SIAM J. Discret.
Math. 7, 656–666 (1994)

8. Goemans, M.X., Williamson, D.P.: Improved approximation al-
gorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

9. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yan-
nakakis, M.: Near-optimal hardness results and approxima-
tion algorithms for edge-disjoint paths and related problems.
J. Comput. Syst. Sci. 67, 473–496 (2003)

10. Hochbaum, D.S.: Approximation algorithms for the set cover-
ing and vertex cover problems. SIAM J. Comput. 11(3), 555–
556 (1982)

11. Hoeffding, W.: On the distribution of the number of successes
in independent trials. Ann. Math. Stat. 27, 713–721 (1956)

12. Karmarkar, N.: A new polynomial-time algorithm for linear pro-
gramming. Combinatorica 4, 373–395 (1984)

13. Khachiyan, L.G.: A polynomial algorithm for linear program-
ming. Soviet Math. Doklady 20, 191–194 (1979)

14. Raghavan, P., Thompson, C.: Randomized rounding: A tech-
nique for provably good algorithms and algorithmic proofs.
Combinatorica 7 (1987)

15. Srinivasan, A.: Improved approximations of packing and cover-
ing problems. In: Proceedings of the 27th Annual ACM Sympo-
sium on Theory of Computing, pp. 268–276 (1995)

16. Vazirani, V.: Approximation Algorithms. Springer (2003)

Randomized Searching
on Rays or the Line
1993; Kao, Reif, Tate

STEPHEN R. TATE
University of North Carolina at Greensboro,
Greensboro, NC, USA

Keywords and Synonyms

Cow-path problem; On-line navigation

ProblemDefinition

This problem deals with finding a point at an unknown
position on one of a set of w rays which extend from
a common point (the origin). In this problem there is
a searcher, who starts at the origin, and follows a sequence
of commands such as “explore to distance d on ray i.”
The searcher detects immdiately when the target point is
crossed, but there is no other information provided from
the search environment. The goal of the searcher is to min-
imize the distance traveled.

There are several different ways this problem has been
formulated in the literature, including one called the “cow-
path problem” that involves a cow searching for a pasture

down a set of paths. When w = 2, this problem is to search
for a point on the line, which has also been described as
a robot searching for a door in an infinite wall or a ship-
wreck survivor searching for a stream after washing ashore
on a beach.

Notation

The problem is as described above, with w rays. The posi-
tion of the target point (or goal) is denoted (g, i) if it is at
distance g on ray i 2 f0; 1; � � � ;w � 1g. The standard no-
tion of competitive ratio is usedwhen analyzing algorithms
for this problem: An algorithm that knows which ray the
goal is on will simply travel distance g down that ray be-
fore stopping, so search algorithms are compared to this
optimal, omniscient strategy.

In particular, ifR is a randomized algorithm, then the
distance traveled to find a particular goal position is a ran-
dom variable denoted distance(R; (g; i)), with expected
value E[distance(R; (g; i))]. Algorithm R has competi-
tive ratio c if there is a constant a such that, for all goal
positions (g, i),

E[distance(R; (g; i))] � c � g + a : (1)

Key Results

This problem is solved optimally using a randomized ge-
ometric sweep strategy: Search through the rays in a ran-
dom (but fixed) order, with each search distance a constant
factor longer than the preceding one. The initial search
distance is picked from a carefully selected probability dis-
tribution, giving the following algorithm:

RAYSEARCHr,w
� A random permutation of f0; 1; 2; � � � ;w � 1g;
� A random real uniformly chosen from [0; 1);
d r� ;
p 0;
repeat

Explore path �(p) up to distance d;
if goal not found then return to origin;
d d � r;
p (p + 1) mod w;

until goal found;

The theorems below give the competitive ratio of this al-
gorithm, show how to pick the best r, and establish the op-
timality of the algorithm.

Theorem 1 ([9]) For any fixed r > 1, Algorithm
RAYSEARCHr, w has competitive ratio

R(r;w) = 1 +
2
w
�
1 + r + r2 + � � � + rw�1

ln r
;

Randomized Searching on Rays or the Line R 741

Randomized Searching on Rays or the Line, Table 1
The asymptotic growth of the competitive ratio with w is estab-
lished in the following theorem

w r�w Optimal randomized ratio Optimal deterministic
ratio

2 3.59112 4.59112 9
3 2.01092 7.73232 14.5
4 1.62193 10.84181 19.96296
5 1.44827 13.94159 25.41406
6 1.35020 17.03709 30.85984
7 1.28726 20.13033 36.30277

Theorem 2 ([9]) The unique solution of the equation

ln r =
1 + r + r2 + � � � + rw�1

r + 2r2 + 3r3 + � � � + (w � 1)rw�1
(2)

for r > 1, denoted by r�w , gives the minimum value for
R(r, w).

Theorem 3 ([7,9,12]) The optimal competitive ratio for
any randomized algorithm for searching on w rays is

min
r>1

�
1 +

2
w
�
1 + r + r2 + � � � + rw�1

ln r

�
:

Corollary 1 Algorithm RAYSEARCHr, w is optimally com-
petitive.

Using Theorem 2 and standard numerical techniques, r�w
can be computed to any required degree of precision. The
following table shows, for small values of w, approximate
values for r�w and the corresponding optimal competitive
ratio (achieved by RAYSEARCHr,w)—the optimal deter-
ministic competitive ratio (see [1]) is also shown for com-
parison:

Theorem 4 ([9]) The competitive ratio for algorithm
RAYSEARCHr, w (with r = r�w) is �w + o(w), where

� = min
s>0

�
2
es � 1
s2

�
	 3:088 :

Applications

The most direct applications of this problem are in geo-
metric searching, such as robot navigation problems. For
example, when a robot is traveling in an unknown area
and encounters an obstacle, a typical first step is to find the
nearest corner to go around [2,3], which is just an instance
of the ray searching problem (with w = 2).

In addition, any abstract search problem with a cost
function that is linear in the distance to the goal reduces to

ray searching. This includes applications in artificial intel-
ligence that search for a goal in a largely unknown search
space [11] and the construction of hybrid algorithms [7].
In hybrid algorithms, a set of algorithms A1;A2; � � � ;Aw
for solving a problem is considered—algorithm A1 is run
for a certain amount of time, and if the algorithm is not
successful algorithm A1 is stopped and algorithm A2 is
started, repeating through all algorithms as many times as
is necessary to find a solution. This notion of hybrid al-
gorithms has been used successfully for several problems
(such as the first competitive algorithm for the online k-
server problem [4]), and the ray search algorithm gives
the optimal strategy for selecting the trial running times
of each algorithm.

Open Problems

Several natural extensions of this problem have been stud-
ied in both deterministic and randomized settings, includ-
ing ray-searching when an upper bound on the distance to
the goal is known (i. e., the rays are not infinite, but are line
segments) [10,5,12], or when a probability distribution of
goal positions is known [8]. Other variations of this ba-
sic searching problem have been studied for deterministic
algorithms only, such as when the searcher’s control is im-
perfect (so distances can’t be specified precisely) [6] and
for more general search spaces like points in the plane [1].
A thorough study of these variants with randomized algo-
rithms remains an open problem.

Cross References

� Alternative Performance Measures in Online
Algorithms

� Deterministic Searching on the Line
� Robotics

Recommended Reading
1. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in

the plane. Inf. Comput. 16, 234–252 (1993)
2. Berman, P., Blum, A., Fiat, A., Karloff, H., Rosén, A., Saks, M.: Ran-

domized robot navigation algorithms. In: Proceedings, Sev-
enth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 75–84 (1996)

3. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar
geometric terrain. In: Proceedings 23rd ACM Symposium on
Theory of Computing (STOC), pp. 494–504 (1991)

4. Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms.
In: Proceedings 31st IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 454–463 (1990)

5. Hipke, C., Icking, C., Klein, R., Langetepe, E.: How to find a point
on a line within a fixed distance. Discret. Appl. Math. 93, 67–73
(1999)

742 R Random Number Generation

6. Kamphans, T., Langetepe, E.: Optimal competitive online ray
search with an error-prone robot. In: 4th International Work-
shop on Experimental and Efficient Algorithms, pp. 593–596
(2005)

7. Kao, M., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hy-
brid algorithms. In: Proceedings 5th ACM-SIAM Symposium on
Discrete Algorithms (SODA) pp. 372–381 (1994)

8. Kao, M.-Y., Littman, M.L.: Algorithms for informed cows. In:
AAAI-97 Workshop on On-Line Search, pp. 55–61 (1997)

9. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown envi-
ronment: An optimal randomized algorithm for the cow-path
problem. Inf. Comput. 133, 63–80 (1996)

10. López-Ortiz, A., Schuierer, S.: The ultimate strategy to search
on m rays? Theor. Comput. Sci. 261, 267–295 (2001)

11. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley, Reading, MA (1984)

12. Schuierer, S.: A lower bound for randomized searching on m
rays. In: Computer Science in Perspective, pp. 264–277 (2003)

RandomNumber Generation
�Weighted Random Sampling

Random Planted 3-SAT
2003; Flaxman

ABRAHAM FLAXMAN
Theory Group, Microsoft Research, Redmond, WA, USA

Keywords and Synonyms
Constraint satisfaction

ProblemDefinition
This classic problem in complexity theory is concerned
with efficiently finding a satisfying assignment to a propo-
sitional formula. The input is a formula with n Boolean
variables which is expressed as anAND of ORs with 3 vari-
ables in each OR clause (a 3-CNF formula). The goal
is to (1) find an assignment of variables to TRUE and
FALSE so that the formula has value TRUE, or (2) prove
that no such assignment exists. Historically, recognizing
satisfiable 3-CNF formulas was the first “natural” exam-
ple of an NP-complete problem, and, because it is NP-
complete, no polynomial-time algorithm can succeed on
all 3-CNF formulas unless P = NP [4,10]. Because of the
numerous practical applications of 3-SAT, and also due
to its position as the canonical NP-complete problem,
many heuristic algorithms have been developed for solving
3-SAT, and some of these algorithms have been analyzed
rigorously on random instances.

Notation A 3-CNF formula over variables x1; x2; : : : ; xn
is the conjunction ofm clauses C1 ^ C2 ^ � � � ^ Cm , where

each clause is the disjunction of 3 literals, Ci = `i1 _ `i2 _
`i3 , and each literal `i j is either a variable or the negation
of a variable (the negation of the variable x is denoted by
x). A 3-CNF formula is satisfiable if and only if there is an
assignment of variables to truth values so that every clause
contains at least one true literal. Here, all asymptotic anal-
ysis is in terms of n, the number of variables in the 3-CNF
formula, and a sequence of events fEng is said to holdwith
high probability (abbreviatedwhp) if limn!1 Pr[En] = 1.

Distributions There are many distributions over 3-CNF
formulas which are interesting to consider, and this chap-
ter focuses on dense satisfiable instances. Dense satisfi-
able instances can be formed by conditioning on the event
fIn;m is satisfiableg, but this conditional distribution is
difficult to sample from and to analyze. This has led to re-
search in “planted” random instances of 3-SAT, which are
formed by first choosing a truth assignment ' uniformly
at random, and then selecting each clause independently
from the triples of literals where at least one literal is set to
TRUE by the assignment '. The clauses can be included
with equal probabilities in analogy to the In;p or In;m dis-
tributions above [8,9], or different probabilities can be as-
signed to the clauses with one, two, or three literals set to
TRUE by ', in an effort to better hide the satisfying assign-
ment [2,7].

Problem 1 (3-SAT)
INPUT: 3-CNF Boolean formula F = C1 ^ C2 ^ � � � ^ Cm,
where each clause Ci is of the form Ci = `i1 _ `i2 _ `i3 ,
and each literal `i j is either a variable or the negation of
a variable.
OUTPUT: A truth assignment of variables to Boolean values
which makes at least one literal in each clause TRUE, or
a certificate that no such assignment exists.

Key Results

A line of basic research dedicated to identifying hard
search and decision problems, as well as the potential cryp-
tographic applications of planted instances of 3-SAT, has
motivated the development of algorithms for 3-SAT which
are known to work on planted random instances.

Majority Vote Heuristic: If every clause consistent with
the planted assignment is included with the same proba-
bility, then there is a bias towards including the literal sat-
isfied by the planted assignment more frequently than its
negation. This is the motivation behind the Majority Vote
Heuristic, which assigns each variable to the truth value
which will satisfy the majority of the clauses in which it ap-
pears. Despite its simplicity, this heuristic has been proven
successful whp for sufficiently dense planted instances [8].

Random Planted 3-SAT R 743

Theorem 1 When c is a sufficiently large constant and I

I
n;cn log n, whp the majority vote heuristic finds the planted
assignment '.

When the density of the planted random instance is lower
than c log n, then the majority vote heuristic will fail, and if
the relative probability of the clauses satisfied by one, two,
and three literals are adjusted appropriately then it will fail
miserably. But there are alternative approaches.

For planted instances where the density is a sufficiently
large constant, the majority vote heuristic provides a good
starting assignment, and then the k-OPT heuristic can fin-
ish the job. The k-OPT heuristic of [6] is defined as follows:
Initialize the assignment by majority vote. Initialize k to 1.
While there exists a set of k variables for which flipping the
values of the assignment will (1) make false clauses true
and (2) will not make true clauses false, flip the values of
the assignment on these variables. If this reaches a local
optimum that is not a satisfying assignment, increase k and
continue.

Theorem 2 When c is a sufficiently large constant and I

I
n;cn the k-OPT heuristic finds a satisfying assignment in
polynomial time whp. The same is true even in the semi-
random case, where an adversary is allowed to add clauses
to I that have all three literals set to TRUE by ' before giving
the instance to the k-OPT heuristic.

A related algorithm has been shown to run in expected
polynomial time in [9], and a rigorous analysis ofWarning
Propagation (WP), a message passing algorithm related to
Survey Propagation, has shown that WP is successful whp
on planted satisfying assignments, provided that the clause
density exceeds a sufficiently large constant [5].

When the relative probabilities of clauses containing
one, two, and three literals are adjusted carefully, it is pos-
sible to make the majority vote assignment very different
from the planted assignment. A way of setting these rel-
ative probabilities that is predicted to be difficult is dis-
cussed in [2]. If the density of these instances is high
enough (and the relative probabilities are anything be-
sides the case of “Gaussian elimination with noise”), then
a spectral heuristic provides a starting assignment close to
the planted assignment and local reassignment operations
are sufficient to recover a satisfying assignment [7].

More formally, consider instance I = In;p1;p2;p3 ,
formed by choosing a truth assignment ' on n variables
uniformly at random and including in I each clause with
exactly i literals satisfied by ' independently with proba-
bility pi. By setting p1 = p2 = p3 this reduces to the distri-
bution mentioned above.

Setting p1 = p2 and p3 = 0 yields a natural distri-
bution on 3CNFs with a planted not-all-equal assignment,
a situation where the greedy variable assignment rule gen-
erates a random assignment. Setting p2 = p3 = 0 gives
3CNFs with a planted exactly-one-true assignment (which
succumb to the greedy algorithm followed by the non-
spectral steps below). Also, correctly adjusting the ratios of
p1; p2; and p3 can obtain a variety of (slightly less natural)
instance distributions which thwart the greedy algorithm.
Carefully selected values of p1; p2; and p3 are considered
in [2], where it is conjectured that no algorithm running
in polynomial time can solve In;p1;p2;p3 whp when pi =
ci˛/n2 and

0:077 < c3 < 0:25 c2 = (1 � 4c3)/6

c1 = (1 + 2c3)/6 ˛ >
4:25
7

:

The spectral heuristic modeled after the coloring algo-
rithms of [1,3] was developed for such planted distribu-
tions in [7]. This polynomial time algorithmwhich returns
a satisfying assignment to In;p1;p2;p3 whp when p1 = d/n2,
p2 = �2d/n2 and p3 = �3d/n2, for 0 � �2; �3 � 1, and
d � dmin, where dmin is a function of �2; �3. The algorithm
is structured as follows:
1. Construct a graph G from the 3CNF.
2. Find the most negative eigenvalue of a matrix related to

the adjacency matrix of G.
3. Assign a value to each variable based on the signs of the

eigenvector corresponding to the most negative eigen-
value.

4. Iteratively improve the assignment.
5. Perfect the assignment by exhaustive search over

a small set containing all the incorrect variables.
A more elaborate description of each step is the following:

Step (1):Given 3CNF I = In;p1;p2;p3 , where p1 = d/n2,
p2 = �2d/n2, and p3 = �3d/n2, the graph in step (1),
G = (V ; E), has 2n vertices, corresponding to the literals
in I, and labeled fx1; x1; : : : xn ; xng.G has an edge between
vertices `i and ` j if I includes a clause with both `i and ` j
(and G does not have multiple edges).

Step (2): Consider G0 = (V ; E0), formed by deleting
all the edges incident to vertices with degree greater than
180d. Let A be the adjacency matrix of G0. Let � be the
most negative eigenvalue of A and v be the corresponding
eigenvector.

Step (3): There are two assignments to consider,
+,
which is defined by

+(xi) =

(
T ; if vi � 0 ;
F ; otherwise ;

744 R Ranked Matching

and
�, which is defined by

�(x) = :
+(x) :

Let
0 be the better of
+ and
� (that is, the assign-
ment which satisfies more clauses). It can be shown that

0 agrees with ' on at least (1 � C/d)n variables for some
absolute constant C.

Step (4): For i = 1; : : : ; log n do the following: for
each variable x, if x appears in 5"d clauses unsatisfied by

i�1, then set
i(x) = :
i�1(x), where " is an appropri-
ately chosen constant (taking " = 0:1 works); otherwise set

i (x) =
i�1(x).

Step (5): Let
 00 =
log n denote the final assignment

generated in step (4). LetA� 00
4 be the set of variables which

do not appear in (3 ˙ 4")d clauses as the only true lit-
eral with respect to assignment
 00, and let B be the set
of variables which do not appear in (�D ˙ ")d clauses,
where �Dd = (3 + 6)d + (6 + 3)�2d + 3�3d +O(1/n) is the
expected number of clauses containing variable x. Form
partial assignment
10 by unassigning all variables inA� 00

4
and B. Now, for i � 1, if there is a variable xi which ap-
pears in less than (�D�2")d clauses consisting of variables
that are all assigned by
 0i , then let
 0i+1 be the partial as-
signment formed by unassigning xi in
 0i . Let

0 be the
partial assignment when this process terminates. Consider
the graph
 with a vertex for each variable that is unas-
signed in
 0 and an edge between two variables if they ap-
pear in a clause together. If any connected component in

 is larger than log n then fail. Otherwise, find a satisfying
assignment for I by performing an exhaustive search on
the variables in each connected component of
 .

Theorem 3 For any constants 0 � �2; �3 � 1, except
(�2; �3) = (0; 1), there exists a constant dmin such that for
any d � dmin , if p1 = d/n2, p2 = �2d/n2, and p3 = �3d/n2

then this polynomial-time algorithm produces a satisfying
assignment for random instances drawn from In;p1;p2;p3
whp.

Applications

3-SAT is a universal problem, and due to its simplic-
ity, it has potential applications in many areas, including
proof theory and program checking, planning, cryptanal-
ysis, machine learning, and modeling biological networks.

Open Problems

An important direction is to develop alternative models
of random distributions which more accurately reflect the
type of instances that occur in the real world.

Data Sets

Sample instances of satisfiability and 3-SAT are available
on the web at http://www.satlib.org/.

URL to Code
Solvers and information on the annual satisfiability solving
competition are available on the web at http://www.satlive.
org/.

Recommended Reading

1. Alon, N., Kahale, N.: A spectral technique for coloring random
3-colorable graphs. SIAM J. Comput. 26(6), 1733–1748 (1997)

2. Barthel, W., Hartmann, A.K., Leone, M., Ricci-Tersenghi, F.,
Weigt, M., Zecchina, R.: Hiding solutions in random satisfiabil-
ity problems: A statistical mechanics approach. Phys. Rev. Lett.
88, 188701 (2002)

3. Chen, H., Frieze, A.M.: Coloring bipartite hypergraphs. In: Cun-
ningham, H.C., McCormick, S.T., Queyranne, M. (eds.) Integer
Programming and Combinatorial Optimization, 5th Interna-
tional IPCO Conference, Vancouver, British Columbia, Canada,
June 3–5 1996. Lecture Notes in Computer Science, vol. 1084,
pp. 345–358. Springer

4. Cook, S.: The complexity of theorem-proving procedures. In:
Proceedings of the 3rd Annual Symposium on Theory of Com-
puting, pp. 151–158. Shaker Heights. May 3–5, 1971.

5. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of
message passing algorithms for some satisfiability problems.
In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) Approxi-
mation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, 9th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Prob-
lems, APPROX 2006 and 10th International Workshop on
Randomization and Computation, RANDOM 2006, Barcelona,
Spain, August 28–30 2006. Lecture Notes in Computer Science,
vol. 4110, pp. 339–350. Springer

6. Feige, U., Vilenchik, D.: A local search algorithm for 3-SAT, Tech.
rep. The Weizmann Institute, Rehovat, Israel (2004)

7. Flaxman, A.D.: A spectral technique for random satisfiable
3CNF formulas. In: Proceedings of the Fourteenth Annual
ACM-SIAMSymposiumonDiscrete Algorithms (Baltimore,MD,
2003), pp. 357–363. ACM, New York (2003)

8. Koutsoupias, E., Papadimitriou, C.H.: On the greedy algorithm
for satisfiability. Inform. Process. Lett. 43(1), 53–55 (1992)

9. Krivelevich, M., Vilenchik, D.: Solving random satisfiable 3CNF
formulas in expected polynomial time. In: SODA ’06: Proceed-
ings of the 17th annual ACM-SIAM symposium on Discrete al-
gorith. ACM, Miami, Florida (2006)

10. Levin, L.A.: Universal enumeration problems. Probl. Pereda. Inf.
9(3), 115–116 (1973)

RankedMatching
2005; Abraham, Irving, Kavitha, Mehlhorn

KAVITHA TELIKEPALLI
CSA Department, Indian Institute of Science,
Bangalore, India

http://www.satlib.org/
http://www.satlive.org/
http://www.satlive.org/

Ranked Matching R 745

Keywords and Synonyms

Popular matching

ProblemDefinition

This problem is concerned with matching a set of appli-
cants to a set of posts, where each applicant has a prefer-
ence list, ranking a non-empty subset of posts in order of
preference, possibly involving ties. Say that a matching M
is popular if there is no matchingM0 such that the number
of applicants preferring M0 to M exceeds the number of
applicants preferringM toM0. The rankedmatching prob-
lem is to determine if the given instance admits a popular
matching and if so, to compute one. There are many prac-
tical situations that give rise to such large-scale matching
problems involving two sets of participants – for exam-
ple, pupils and schools, doctors and hospitals – where par-
ticipants of one set express preferences over the partici-
pants of the other set; an allocation determined by a pop-
ular matching can be regarded as an optimal allocation in
these applications.

Notations and Definitions

An instance of the ranked matching problem is a bipartite
graphG = (A[P; E) and a partition E = E1 [̇E2 : : : [̇Er
of the edge set. Call the nodes inA applicants, the nodes
in P posts, and the edges in Ei the edges of rank i. If
(a; p) 2 Ei and (a; p0) 2 Ej with i < j, say that a prefers
p to p0. If i = j, say that a is indifferent between p and p0.
An instance is strict if the degree of every applicant in ev-
ery Ei is at most one.

A matchingM is a set of edges, no two of which share
an endpoint. In a matchingM, a node u 2A[P is either
unmatched, or matched to some node, denoted by M(u).
Say that an applicant a prefersmatchingM0 toM if (i) a is
matched in M0 and unmatched in M, or (ii) a is matched
in bothM0 andM, and a prefers M0(a) toM(a).

Definition 1 M0 is more popular than M, denoted by
M0 � M, if the number of applicants preferring M0 to
M exceeds the number of applicants preferring M to M0.
A matching M is popular if and only if there is no match-
ingM0 that is more popular thanM.

Figure 1 shows an instance with A = fa1; a2; a3g, P =
fp1; p2; p3g, and each applicant prefers p1 to p2, and p2
to p3 (assume throughout that preferences are transitive).
Consider the three symmetrical matchingsM1 = f(a1; p1),
(a2; p2), (a3; p3)g, M2 = f(a1; p3), (a2; p1), (a3; p2)g and
M3 = f(a1; p2), (a2; p3), (a3; p1)g. It is easy to verify that
none of these matchings is popular, since M1 � M2,

a1 : p1 p2 p3
a2 : p1 p2 p3
a3 : p1 p2 p3

RankedMatching, Figure 1
An instance for which there is no popular matching

M2 � M3, and M3 � M1. In fact, this instance admits no
popular matching—the problem being, of course, that the
more popular than relation is not acyclic, and so there need
not be a maximal element.

The rankedmatching problem is to determine if a given
instance admits a popular matching, and to find such
a matching, if one exists. Popular matchings may have dif-
ferent sizes, and a largest such matching may be smaller
than a maximum-cardinality matching. The maximum-
cardinality popular matching problem then is to determine
if a given instance admits a popular matching, and to find
a largest such matching, if one exists.

Key Results

First consider strict instances, that is, instances (A [P; E)
where there are no ties in the preference lists of the appli-
cants. Let n be the number of vertices andm be the number
of edges in G.

Theorem 1 For a strict instance G = (A[P; E), it is pos-
sible to determine in O(m + n) time if G admits a popular
matching and compute one, if it exists.

Theorem 2 Find a maximum-cardinality popular match-
ing of a strict instance G = (A [P; E), or determine that
no such matching exists, in O(m + n) time.

Next consider the general problem, where preference lists
may have ties.

Theorem 3 Find a popular matching of G = (A [P; E),
or determine that no such matching exists, in O(

p
nm)

time.

Theorem 4 Find a maximum-cardinality popular match-
ing of G = (A [P; E), or determine that no such matching
exists, in O(

p
nm) time.

Techniques

Our results are based on a novel characterization of pop-
ular matchings. For exposition purposes, create a unique
last resort post l(a) for each applicant a and assign the edge
(a; l(a)) a rank higher than any edge incident on a. In this

746 R Ranked Matching

way, assume that every applicant is matched, since any un-
matched applicant can be allocated to his/her last resort.
From now on then, matchings are applicant-complete, and
the size of a matching is just the number of applicants not
matched to their last resort. Also assume that instances
have no gaps, i. e., if an applicant has a rank i edge inci-
dent to it then it has edges of all smaller ranks incident to
it. First outline the characterization in strict instances and
then extend it to general instances.

Strict Instances For each applicant a, let f (a) denote
the most preferred post on a’s preference list. That is,
(a; f (a)) 2 E1. Call any such post p an f-post, and denote
by f (p) the set of applicants a for which f (a) = p.

For each applicant a, let s(a) denote the most preferred
non-f -post on a’s preference list; note that s(a) must exist,
due to the introduction of l(a). Call any such post p an s-
post, and remark that f -posts are disjoint from s-posts.

Using the definitions of f -posts and s-posts, show three
conditions that a popular matching must satisfy.

Lemma 5 Let M be a popular matching.
1. For every f -post p, (i) p is matched in M, and

(ii) M(p) 2 f (p).
2. For every applicant a, M(a) can never be strictly between

f (a) and s(a) on a’s preference list.
3. For every applicant a, M(a) is never worse than s(a) on

a’s preference list.

It is then shown that these three necessary conditions are
also sufficient. This forms the basis of the following pre-
liminary characterization of popular matchings.

Lemma 6 A matching M is popular if and only if (i) ev-
ery f -post is matched in M, and (ii) for each applicant a,
M(a) 2 f f (a); s(a)g.

Given an instance graph G = (A [P; E), define the re-
duced graph G0 = (A [P; E0) as the subgraph of G con-
taining two edges for each applicant a: one to f (a), the
other to s(a). The authors remark that G0 need not ad-
mit an applicant-complete matching, since l(a) is now iso-
lated whenever s(a) ¤ l(a). Lemma 6 shows that a match-
ing is popular if and only if it belongs to the graph G0 and
it matches every f -post. Recall that all popular matchings
are applicant-complete through the introduction of last re-
sorts. Hence, the following characterization is immediate.

Theorem 7 M is a popular matching of G if and only if
(i) every f -post is matched in M, and (ii) M is an applicant-
complete matching of the reduced graph G0.

The characterization in Theorem 7 immediately suggests
the following algorithm for solving the popular match-
ing problem. Construct the reduced graph G0. If G0 does

not admit an applicant-complete matching, then G ad-
mits no popular matching. If G0 admits an applicant-
complete matchingM, then modifyM so that every f -post
is matched. So for each f -post p that is unmatched in M,
let a be any applicant in f (p); remove the edge (a;M(a))
from M and instead match a to p. This algorithm can be
implemented in O(m + n) time. This shows Theorem 1.

Now, consider the maximum-cardinality popular
matching problem. Let A1 be the set of all applicants a
with s(a) = l(a). Let A1 be the set of all applicants with
s(a) = l(a). Our target matching must satisfy conditions
(i) and (ii) of Theorem 7, and among all such match-
ings, allocate the fewestA1-applicants to their last resort.
This scheme can be implemented in O(m + n) time. This
proves Theorem 2.

General Instances For each applicant a, let f (a) denote
the set of first-ranked posts on a’s preference list. Again,
refer to all such posts p as f-posts, and denote by f (p) the
set of applicants a for which p 2 f (a). It may no longer
be possible to match every f -post p with an applicant in
f (p) (as in Lemma 5), since, for example, theremay now be
more f -posts than applicants. LetM be a popularmatching
of some instance graph G = (A [P; E). Define the first-
choice graph of G as G1 = (A[P; E1), where E1 is the set
of all rank one edges. Next the authors show the following
lemma.

Lemma 8 Let M be a popular matching. Then M \ E1 is
a maximum matching of G1.

Next, work towards a generalized definition of s(a). Re-
strict attention to rank-one edges, that is, to the graph G1
and using M1, partition A [P into three disjoint sets.
A node v is even (respectively odd) if there is an even (re-
spectively odd) length alternating path (with respect to
M1) from an unmatched node to v. Similarly, a node v is
unreachable if there is no alternating path (w.r.t.M1) from
an unmatched node to v. Denote by E, O, andU the sets
of even, odd, and unreachable nodes, respectively. Con-
clude the following facts about E, O, and U by using the
well-known Gallai–Edmonds decomposition theorem.

(a) E, O, and U are pairwise disjoint. Every maximum
matching in G1 partitions the vertex set into the same
partition of even, odd, and unreachable nodes.

(b) In any maximum-cardinality matching of G1, every
node in O is matched with some node in E, and every
node inU is matched with another node inU. The size
of a maximum-cardinality matching is jOj + jUj/2.

(c) No maximum-cardinality matching of G1 contains an
edge between two nodes in O, or a node in O and

Ranked Matching R 747

a node in U. And there is no edge in G1 connecting
a node in E with a node inU.

The above facts motivate the following definition of s(a):
let s(a) be the set of most preferred posts in a’s preference
list that are even in G1 (note that s(a) ¤ ;, since l(a) is al-
ways even in G1). Recall that our original definition of s(a)
led to parts (2) and (3) of Lemma 5 which restrict the set
of posts to which an applicant can be matched in a popular
matching. This shows that the generalized definition leads
to analogous results here.

Lemma 9 Let M be a popular matching. Then for every
applicant a,M(a) can never be strictly between f (a) and s(a)
on a’s preference list and M(a) can never be worse than s(a)
in a’s preference list.

The following characterization of popular matchings is
formed.

Lemma 10 A matching M is popular in G if and only if
(i) M \ E1 is a maximum matching of G1, and (ii) for each
applicant a, M(a) 2 f (a)[s(a).

Given an instance graph G = (A [P; E), we define the
reduced graph G0 = (A [P; E0) as the subgraph of G con-
taining edges from each applicant a to posts in f (a)[s(a).
The authors remark that G0 need not admit an applicant-
complete matching, since l(a) is now isolated whenever
s(a) ¤ fl(a)g. Lemma 11 tells us that a matching is popu-
lar if and only if it belongs to the graph G0 and it is a max-
imummatching on rank one edges. Recall that all popular
matchings are applicant-complete through the introduc-
tion of last resorts. Hence, the following characterization
is immediate.

Theorem 11 M is a popular matching of G if and only if
(i) M \ E1 is a maximum matching of G1, and (ii) M is an
applicant-complete matching of G0.

Using the characterization in Theorem 11, the authors
now present an efficient algorithm for solving the ranked
matching problem.

Popular-Matching(G = (A [P; E))
1. Construct the graph G0 = (A [P; E0), where

E0 = f(a; p) j p 2 f (a)[s(a); a 2Ag.
2. Compute a maximum matchingM1 on rank one edges

i. e.,M1 is a maximummatching in G1 = (A[P; E1).
(M1 is also a matching in G0 because E0 � E1)

3. Delete all edges in G0 connecting two nodes in the
set O or a node in O with a node in U, where O
and U are the sets of odd and unreachable nodes of
G1 = (A [P; E1).

Determine a maximum matching M in the modified
graph G0 by augmentingM1.

4. If M is not applicant-complete, then declare that there
is no popular matching in G.
Else returnM.

The matching returned by the algorithm Popular-
Matching is an applicant-complete matching in G0 and it
is a maximummatching on rank one edges. So the correct-
ness of the algorithm follows from Theorem 11. It is easy
to see that the running time of this algorithm is O(

p
nm).

The algorithm of Hopcroft and Karp [7] is uesd to com-
pute a maximum matching in G1 and identify the set of
edges E0 and construct G0 in O(

p
nm) time. Repeatedly

augment M1 (by the Hopcroft–Karp algorithm) to obtain
M. This proves Theorem 3.

It is now a simple matter to solve the maximum-
cardinality popular matching problem. Assume that the
instance G = (A [P; E) admits a popular matching.
(Otherwise, the process is done.) In order to compute an
applicant-complete matching in G0 that is a maximum
matching on rank one edges and which maximizes the
number of applicants not matched to their last resort, first
compute an arbitrary popular matchingM0 and remove all
edges of the form (a; l(a)) fromM0 and from the graphG0.
Call the resulting subgraph of G0 as H. Determine a max-
imum matching N in H by augmenting M0. N need not
be a popular matching, since it need not be a maximum
matching in the graph G0. However, this is easy to mend.
Determine a maximum matching M in G0 by augmenting
N. It is easy to show that M is a popular matching which
maximizes the number of applicants not matched to their
last resort. Since the algorithm takes O(

p
nm) time, The-

orem 4 is shown.

Applications

The bipartite matching problem with a graded edge set
is well-studied in the economics literature, see for exam-
ple [1,10,12]. It models some important real-world prob-
lems, including the allocation of graduates to training
positions [8], and families to government-owned hous-
ing [11]. The concept of a popular matching was first
introduced by Gardenfors [5] under the name majority
assignment in the context of the stable marriage prob-
lem [4,6].

Various other definitions of optimality have been con-
sidered. For example, a matching is Pareto-optimal [1,2,
10] if no applicant can improve his/her allocation (say by
exchanging posts with another applicant) without requir-
ing some other applicant to be worse off. Stronger defini-

748 R Rank and Select Operations on Binary Strings

tions exist: a matching is rank-maximal [9] if it allocates
the maximum number of applicants to their first choice,
and then subject to this, the maximum number to their
second choice, and so on. A matching is maximum utility
if it maximizes

P
(a;p)2M ua;p , where ua;p is the utility of

allocating post p to applicant a. Neither rank-maximal nor
maximum-utility matchings are necessarily popular.

Cross References

� Hospitals/Residents Problem
�MaximumMatching
�Weighted Popular Matchings

Recommended Reading
1. Abdulkadiroĝlu, A., Sönmez, T.: Random serial dictatorship and

the core from random endowments in house allocation prob-
lems. Econom. 66(3), 689–701 (1998)

2. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.:
Pareto-optimality in house al- location problems. In: Proceed-
ings of the 15th International Symposium on Algorithms and
Computation, (LNCS, vol. 3341), pp. 3–15. Springer, Sanya,
Hainan (2004)

3. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular
matchings. In: Proceedings of the 16th ACM-SIAM Symposium
on Discrete Algorithms, pp. 424–432. SIAM, Vancouver (2005)

4. Gale, D., Shapley, L.S.: College admissions and the stability of
marriage. Am. Math. Mon. 69, 9–15 (1962)

5. Gardenfors, P.: Match Making: assignments based on bilateral
preferences. Behav. Sci. 20, 166–173 (1975)

6. Guseld, D., Irving, R.W.: The StableMarriage Problem: Structure
and Algorithms. MIT Press, Cambridge (1989)

7. Hopcroft, J.E., Karp, R.M.: A n5/2 Algorithm forMaximumMatch-
ings in Bipartite Graphs. SIAM J. Comput. 2, 225–231 (1973)

8. Hylland, A., Zeckhauser, R.: The ecient allocation of individuals
to positions. J. Political Econ. 87(2), 293–314 (1979)

9. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.:
Rank-maximal matchings. In: Proceedings of the 15th ACM-
SIAM Symposium on Discrete Algorithms, pp. 68–75. SIAM,
New Orleans (2004)

10. Roth, A.E., Postlewaite, A.: Weak versus strong domination in
a market with indivisible goods. J. Math. Econ. 4, 131–137
(1977)

11. Yuan, Y.: Residence exchange wanted: a stable residence ex-
change problem. Eur. J. Oper. Res. 90, 536–546 (1996)

12. Zhou, L.: On a conjecture by Gale about one-sided matching
problems. J. Econ. Theory 52(1), 123–135 (1990)

Rank and Select Operations
on Binary Strings
1974; Elias

NAILA RAHMAN, RAJEEV RAMAN
Department of Computer Science,
University of Leicester, Leicester, UK

Keywords and Synonyms

Binary bit-vector; Compressed bit-vector, Rank and select
dictionary; Fully indexable dictionary (FID)

ProblemDefinition

Given a static sequence b = b1 : : : bm of m bits, to pre-
process the sequence and to create a space-efficient data
structure that supports the following operations rapidly:

rank1(i) takes an index i as input, 1 � i � m, and returns
the number of 1s among b1 : : : bi .

select1(i) takes an index i � 1 as input, and returns the
position of the ith 1 in b, and�1 if i is greater than the
number of 1s in b.

The operations rank0 and select0 are defined analo-
gously for the 0s in b. As rank0(i) = i � rank1(i), one
considers just rank1 (abbreviated to rank), and refers to
select0 and select1 collectively as select. In what follows,
|x| denotes the length of a bit sequence x and w(x) denotes
the number of 1s in it. b is always used to denote the input
bit sequence,m to denote |b| and n to denote w(b).

Models of Computation, Time and Space Bounds

Two models of computation are commonly considered.
One is the unit-cost RAM model with word size O(lgm)
bits [1]. The other model, which is particularly useful for
proving lower bounds, is the bit-probe model, where the
data structure is stored in bit-addressablememory, and the
complexity of answering a query is the worst-case number
of bits of the data structure that are probed by the algo-
rithm to answer that query. In the RAM model, the algo-
rithm can readO(lgm) consecutive bits in one step, so sup-
porting all operations inO(1) time on the RAMmodel im-
plies a solution that uses O(lgm) bit-probes, but the con-
verse is not true.

This entry considers three variants of the problem: in
each variant, rank and select must be supported in O(1)
time on the RAM model, or in O(lgm) bit-probes. How-
ever, the use of memory varies:

Problem 1 (Bit-Vector) The overall space used must be
m + o(m) bits.

Problem 2 (Bit-Vector Index) b is given in read-only
memory and the algorithm can create auxiliary data struc-
tures (called indices) which must use o(m) bits.

Indices allow the representation of b to be de-coupled
from the auxiliary data structure, e. g., b can be stored (in
a potentially highly compressed form) in a data structure

Rank and Select Operations on Binary Strings R 749

such as that of [6,9,17] which allows access to O(lgm) con-
secutive bits of b in O(1) time on the RAM model. Most
bit-vectors developed to date are bit-vector indices.

Recalling that n = w(b), observe that if m and n are
known to an algorithm, there are only l =

�m
n
�
possibili-

ties for b, so an information-theoretically optimal encod-
ing of b would require B(m; n) = dlg le bits (it can be ver-
ified that B(m; n) < m for allm, n). The next problem is:

Problem 3 (Compressed Bit-Vector) The overall space
used must be B(m; n) + o(n) bits.

It is helpful to understand the asymptotics of B(m; n) in
order to appreciate the difference between the bit-vector
and the compressed bit-vector problems:
� Using standard approximations of the factorial func-

tion, one can show [14] that:

B(m; n) = n lg(m/n) + n lg e + O(n2/m) (1)

If n = o(m), then B(m; n) = o(m), and if such a sparse
sequence b were represented as a compressed bit-
vector, then it would occupy o(m) bits, rather than
m + o(m) bits.

� B(m; n) = m � O(lgm), whenever jm/2 � nj =
O(
p
m lgm). In such cases, a compressed bit-vector

will take about the same amount of space as a bit-
vector.

� Taking p = n/m;H0(b) = (1/p) lg(1/p) + (1/(1 �
p)) lg(1/(1 � p)) is the empirical zeroth-order entropy
of b. If b is compressed using an ‘entropy’ compres-
sor such as non-adaptive arithmetic coding [18], the
size of the compressed output is at least mH0(b) bits.
However, B(m; n) = mH0(b) � O(logm). Applying
Golomb coding to the ‘gaps’ between successive 1s,
which is the best way to compress bit sequences that
represent inverted lists [18], also gives a space usage
close to B(m; n) [4].

Related Problems

Viewing b as the characteristic vector of a set S
 U =
f1; : : : ;mg, note that the well-known predecessor prob-
lem – given y 2 U , return pred(y) = maxfz 2 Sjz �
yg – may be implemented as select1(rank1(y)). One may
also view b as a multiset of size m � n over the universe
f1; : : : ; n+1g [5]. First, append a 1 to b. Then, take each of
the n+1 1s to be the elements of the universe, and the num-
ber of consecutive 0s immediately preceding a 1 to indicate
their multiplicities. For example, b = 01100100 maps to
the multiset f1; 3; 3; 4; 4g. Seen this way, select1(i) � i on
b gives the number of items in the multiset that are � i,
and select0(i) � i + 1 gives the value of the ith element of
the multiset.

Lower-Order Terms

From an asymptotic viewpoint, the space utilization is
dominated by the main terms in the space bound. How-
ever, the second (apparently lower-order) terms are of
interest for several reasons, primarily because the lower-
order terms are extremely significant in determining
practical space usage, and also because non-trivial space
bounds have been proven for the size of the lower-order
terms.

Key Results

Reductions

It has been already noted that rank0 and rank1 reduce to
each other, and that operations on multisets reduce to se-
lect operations on a bit sequence. Some other reductions,
whereby one can support operations on b by performing
operations on bit sequences derived from b are:

Theorem 1

(a) rank reduces to select0 on a bit sequence c such that
jcj = m + n and w(c) = n.

(b) If b has no consecutive 1s, then select0 on b can be re-
duced to rank on a bit sequence c such that jcj = m� n
and w(c) is either n � 1 or n.

(c) From b one can derive two bit sequences b0 and b1 such
that jb0j = m � n; jb1j = n;w(b0);w(b1) � minfm �
n; ng and select0 and select1 on b can be supported by
supporting select1 and rank on b0 and b1.

Parts (a) and (b) follow from Elias’s observations on mul-
tiset representations (see the “Related Problems” para-
graph), specialized to sets. For part (a), create c from b by
adding a 0 after every 1. For example, if b = 01100100 then
c = 01010001000. Then, rank1 (i) on b equals select0(i)�
i on c. For part (b), essentially invert the mapping of
part (a). Part (c) is shown in [3].

Bit-Vector Indices

Theorem 2 ([8]) There is an index of size (1 +
o(1))(m lg lgm/ lgm) + O(m/ lgm) that supports rank and
select in O(1) time on the RAM model.

Elias previously gave an o(m)-bit index that supported se-
lect in O(lgm) bit-probes on average (where the average
was computed across all select queries). Jacobson gave
o(m)-bit indices that supported rank and select in O(lgm)
bit-probes in the worst case. Clark andMunro [2] gave the
first o(m)-bit indices that support both rank and select in
O(1) time on the RAM. A matching lower bound on the

750 R Rank and Select Operations on Binary Strings

size of indices has also been shown (this also applies to in-
dices which support rank and select in O(1) time on the
RAM model):

Theorem 3 ([8]) Any index that allows rank or
select1 to be supported in O(lgm) bit-probes has size
˝(m lg lgm/ lgm) bits.

Compressed Bit-Vectors

Theorem 4 There is a compressed bit-vector that uses:

(a) B(m; n) + O(m lg lgm/ lgm) bits and supports rank
and select in O(1) time.

(b) B(m; n) +O(n(lg lg n)2/ lg n) bits and supports rank in
O(1) time, when n = m/(lgm)O(1).

(c) B(m; n) + O(n lg lg n/
p
lg n) bits and supports select1

in O(1) time.

Theorem 4(a) and (c) were shown by Raman et al. [16]
and Theorem 4(b) by Pagh [14]. Note that Theorem 4(a)
has a lower-order term that is o(m), rather than o(n) as
required by the problem statement. As compressed bit-
vectorsmust represent b compactly, they are not bit-vector
indices, and the lower bound of Theorem 3 does not ap-
ply to compressed bit-vectors. Coarser lower bounds are
obtained by reduction to the predecessor problem on sets
of integers, for which tight upper and lower bounds in the
RAMmodel are now known. In particular the work of [15]
implies:

Theorem 5 Let U = f1; : : : ;Mg and let S
 U; jSj = N.
Any data structure on a RAM with word size O(lgM) bits
that occupies at most O(N lgM) bits of space can sup-
port predecessor queries on S in O(1) time only when N =
M/(lgM)O(1) or N = (lgM)O(1).

As noted in the paragraph “Related Problems”, the pre-
decessor problem can be solved by the use of rank and
select1 operations. Thus, Theorem 5 has consequences for
compressed bit-vector data structures, which are spelt out
below:

Corollary 1 There is no data structure that uses B(m; n)+
o(n) bits and supports either rank or select0 in O(1) time
unless n = m/(lgm)O(1), or n = (logm)O(1).

Given a set S
 U = f1; : : : ;mg; jSj = n, we have already
noted that the predecessor problem on S is equivalent to
rank and select1 on a bit-vector c with w(c) = n, and
jcj = m. However, B(m; n)+o(n) = O(n lgm). Thus, given
a bit-vector that uses B(m; n)+o(n) bits and supports rank
in O(1) time for m = n(lg n)!(1), we can augment it with

the trivial O(1)-time data structure for select1, that stores
the value of select1 (i) for i = 1; : : : ; n (which occupies
a further O(n lgm) bits), solving the predecessor problem
in O(1) time, a contradiction. The hardness of select0 is
shown in [16], but follows easily from Theorem 1(a) and
Eq. (1).

Applications

There are a vast number of applications of bit-vectors in
succinct and compressed data structures (see e. g. [12]).
Such data structures are used for, e. g., text indexing, com-
pact representations of graphs and trees, and representa-
tions of semi-structured (XML) data.

Experimental Results

Several teams have implemented bit-vectors and com-
pressed bit-vectors. When implementing bit-vectors for
good practical performance, both in terms of speed and
space usage, the lower-order terms are very important,
even for uncompressed bit-vectors1, and can dominate the
space usage even for bit-vector sizes that are at the limit
of conceivable future practical interest. Unfortunately, this
problem may not be best addressed purely by a theoretical
analysis of the lower-order terms. Bit-vectors work by par-
titioning the input bit sequence into (usually equal-sized)
blocks at several levels of granularity – usually 2–3 levels
are needed to obtain a space bound of m+o(m) bits. How-
ever, better space usage – as well as better speed – in prac-
tice can be obtained by reducing the number of levels, re-
sulting in space bounds of the form (1 + �)m bits, for any
� > 0, with support for rank and select in O(1/�) time.

Clark [2] implemented bit-vectors for external-
memory suffix trees. More recently, an implementation
using ideas of Clark and Jacobson was used by [7], which
occupied (1+�)m bits and supported operations in O(1/�)
time. Using a substantially different approach, Kim et
al. [11] gave a bit-vector that takes (2 + �)n bits to support
rank and select. Experiments using bit sequences derived
from real-world data in [3,4] showed that if parameters are
set to ensure that [11] and [7] use similar space – on typ-
ical inputs – the Clark–Jacobson implementation of [7] is
somewhat faster than an implementation of [11]. On some
inputs, the Clark–Jacobson implementation can use signif-
icantly more space, whereas Kim et al.’s bit-vector appears
to have stable space usage; Kim et al.’s bit-vector may also
be superior for somewhat sparse bit-vectors. Combining
ideas from [7,11], a third practical bit-vector (which is not

1For compressed bit-vectors, the ‘lower-order’ o(m) or o(n) term
can dominate B(m; n), but this is not our concern here.

Rate-Monotonic Scheduling R 751

a bit-vector index) was described in [4], and appears to
have desirable features of both [11] and [7]. A first imple-
mentational study on compressed bit-vectors can be found
in [13] (compressed bit-vectors supporting only select1
were considered in [4]).

URL to Code

Bit-vector implementations from [3,4,7] can be found at
http://hdl.handle.net/2381/318.

Cross References

� Arithmetic Coding for Data Compression
� Compressed Text Indexing
� Succinct Encoding of Permutations: Applications to

Text Indexing
� Tree Compression and Indexing

Recommended Reading
1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis

of Computer Algorithms. Addison-Wesley (1974)
2. Clark, D., Munro, J.I.: Efficient suffix trees on secondary storage.

In: Proc. 7th ACM-SIAM SODA, pp. 383–391 (1996)
3. Delpratt, O., Rahman, N., Raman, R.: Engineering the LOUDS

succinct tree representation. In: Proc. WEA 2006. LNCS,
vol. 4007, pp. 134–145. Springer, Berlin (2006)

4. Delpratt, O., Rahman, N., Raman, R.: Compressed prefix sums.
In: Proc. SOFSEM 2007. LNCS, vol. 4362, pp. 235–247 (2007)

5. Elias, P.: Efficient storage retrieval by content and address of
static files. J. ACM, 21(2):246–260 (1974)

6. Ferragina, P., Venturini, R.: A simple storage scheme for strings
achieving entropy bounds. Theor. Comput. Sci. 372, 115–121
(2007)

7. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal
representation for balanced parentheses. Theor. Comput. Sci.
368, 231–246 (2006)

8. Golynski, A.: Optimal lower bounds for rank and select indexes.
In: Proc. ICALP 2006, Part I. LNCS, vol. 4051, pp. 370–381 (2006)

9. González, R., Navarro, G.: Statistical encoding of succinct data
structures. In: Proc. CPM 2006. LNCS, vol. 4009, pp. 294–305.
Springer, Berlin (2006)

10. Jacobson, G.: Space-efficient static trees and graphs. In: Proc.
30th FOCS, pp. 549–554 (1989)

11. Kim, D.K., Na, J.C., Kim, J.E., Park, K.: Efficient implementation of
Rank and Select functions for succinct representation. In: Proc.
WEA 2005. LNCS, vol. 3505, pp. 315–327 (2005)

12. Munro, J.I., Srinivasa Rao, S.: Succinct representation of data
structures. In: Mehta, D., Sahni, S. (eds.) Handbook of Data
Structures with Applications, Chap 37. Chapman and Hall/CRC
Press (2005)

13. Okanohara, D., Sadakane, K.: Practical entropy-compressed
rank/select dictionary. In: Proc. 9th ACM-SIAMWorkshop onAl-
gorithm Engineering and Experiments (ALENEX ’07), SIAM, to
appear (2007)

14. Pagh, R.: Low redundancy in static dictionaries with constant
query time. SIAM J. Comput. 31, 353–363 (2001)

15. Patrascu, M., Thorup, M.: Time-space trade-offs for predecessor
search. In: Proc. 38th ACM STOC, pp. 232–240 (2006)

16. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries,
with applications to representing k-ary trees and multisets. In:
Proc. 13th ACM-SIAM SODA, pp. 233–242 (2002)

17. Sadakane, K., Grossi, R.: Squeezing succinct data structures into
entropy bounds. In: Proc. 17th ACM-SIAM SODA, pp. 1230–
1239. ACM Press (2006)

18. Witten, I., Moffat, A., Bell, I.: ManagingGigabytes, 2nd edn.Mor-
gan Kaufmann (1999)

Rate Adjustment and Allocation
� Schedulers for Optimistic Rate Based Flow Control

Rate-Monotonic Scheduling
1973; Liu, Layland

NATHAN FISHER, SANJOY BARUAH
Department of Computer Science,
University of North Carolina, Chapel Hill, NC, USA

Keywords and Synonyms

Real-time systems; Static-priority scheduling; Fixed-prio-
rity scheduling; Rate-monotonic analysis

ProblemDefinition

Liu and Layland [9] introduced rate-monotonic schedul-
ing in the context of the scheduling of recurrent real-time
processes upon a computing platform comprised of a sin-
gle preemptive processor.

The Periodic Task Model

The periodic task abstraction models real-time processes
that make repeated requests for computation. As defined
in [9], each periodic task �i is characterized by an ordered
pair of positive real-valued parameters (Ci ; Ti), where Ci
is the worst-case execution requirement and Ti the period
of the task. The requests for computation that are made by
task �i (subsequently referred to as jobs that are generated
by �i) satisfy the following assumptions:

A1: �i ’s first job arrives at system start time (assumed to
equal time zero), and subsequent jobs arrive every Ti
time units. I.e., one job arrives at time-instant k � Ti
for all integer k � 0.

A2: Each job needs to execute for at most Ci time units.
I.e.,Ci is the maximum amount of time that a proces-
sor would require to execute each job of �i , without
interruption.

http://hdl.handle.net/2381/318

752 R Rate-Monotonic Scheduling

A3: Each job of �i must complete before the next job ar-
rives. That is, each job of task �i must complete execu-
tion by a deadline that is Ti time-units after its arrival
time.

A4: Each task is independent of all other tasks – the exe-
cution of any job of task �i is not contingent on the
arrival or completion of jobs of any other task � j .

A5: A job of �i may be preempted on the processor with-
out additional execution cost. In other words, if a job
of �i is currently executing, then it is permitted that
this execution be halted, and a job of a different task
� j begin execution immediately.

A periodic task system �
def= f�1; �2; : : : ; �ng is a collec-

tion of n periodic tasks. The utilization U(�) is defined as
follows:

U(�) def=
nX
i=1

Ci /Ti : (1)

Intuitively, this denotes the fraction of time that may be
spent by the processor executing jobs of tasks in � , in the
worst case.

The Rate-Monotonic Scheduling Algorithm

A (uniprocessor) scheduling algorithm determines which
task executes on the shared processor at each time-instant.
If a scheduling algorithm is guaranteed to always meet
all deadlines when scheduling a task system � , then � is
said to be schedulablewith respect to that scheduling algo-
rithm.

Many scheduling algorithms work as follows: At each
time-instant, they assign a priority to each job, and se-
lect for execution the greatest-priority job with remain-
ing execution. A static priority (often called fixed priority)
scheduling algorithm for scheduling periodic tasks is one
in which it is required that all the jobs of each periodic task
be assigned the same priority.

Liu and Layland [9] proposed the rate-monotonic (RM)
static priority scheduling algorithm, which assigns priority
to jobs according to the period parameter of the task that
generates them: the smaller the period, the higher the pri-
ority. Hence if Ti < Tj for two tasks �i and � j , then each
job of �i has higher priority than all jobs of � j and hence
any executing job of � j will be preempted by the arrival of
one of �i ’s jobs. Ties may be broken arbitrarily but con-
sistently – if Ti = Tj , then either all jobs of �i are assigned
higher priority than all jobs of � j , or all jobs of � j are as-
signed higher priority than all jobs of �i .

Key Results

Results from the original paper by Liu and Layland [9] are
presented in Sect. “Results from [9]” below; results extend-
ing the original work are briefly described in Sect. “Results
since [9]”.

Results from [9]

Optimality Liu and Layland were concerned with de-
signing “good” static priority scheduling algorithms. They
defined a notion of optimality for such algorithms: A static
priority algorithmA is optimal if any periodic task system
that is schedulable with respect to some static priority al-
gorithm is also schedulable with respect toA.

Liu and Layland obtained the following result for the
rate-monotonic scheduling algorithm (RM):

Theorem 1 For periodic task systems, RM is an optimal
static priority scheduling algorithm.

Schedulability Testing A schedulability test for a par-
ticular scheduling algorithm determines, for any periodic
task system � , whether � is schedulable with respect to that
scheduling algorithm. A schedulability test is said to be ex-
act if it is the case that it correctly identifies all schedula-
ble task systems, and sufficient if it identifies some, but not
necessarily all, schedulable task systems.

In order to derive good schedulability tests for the rate-
monotonic scheduling algorithm, Liu and Layland consid-
ered the concept of response time. The response time of
a job is defined as the elapsed time between the arrival of
a job and its completion time in a schedule; the response
time of a task is defined to be the largest response time
that may be experienced by one its jobs. For static priority
scheduling, Liu and Layland obtained the following result
on the response time:

Theorem 2 The maximum response time for a periodic
task �i occurs when a job of �i arrives simultaneously
with jobs of all higher-priority tasks. Such a time-instant is
known as the critical instant for task �i .

Observe that the critical instant of the lowest-priority task
in a periodic task system is also a critical instant for all
tasks of higher priority. An immediate consequence of the
previous theorem is that the response-time of each task
in the periodic task system can be obtained by simulat-
ing the scheduling of the periodic task system starting at
the critical instant of the lowest-priority task. If the re-
sponse time for each task �i obtained from such simula-
tion does not exceed Ti, then the task system will always
meet all deadlines when scheduled according to the given

Rate-Monotonic Scheduling R 753

priority assignment. This argument immediately gives rise
to a schedulability analysis test [7] for any static priority
scheduling algorithm. Since the simulation may need to
be carried out until maxni=1fTig, this schedulability test has
run-time pseudo-polynomial in the representation of the
task system:

Theorem 3 ([7]) Exact rate-monotonic schedulability
testing of a periodic task system may be done in time
pseudo-polynomial in the representation in the task system.

Liu and Layland also derived a polynomial-time sufficient
(albeit not exact) schedulability test for RM, based upon
the utilization of the task system:

Theorem 4 Let n denote the number of tasks in periodic
task system � . If U(�) � n(21/n � 1), then � is schedulable
with respect to the RM scheduling algorithm.

Results since [9]

The utilization-bound sufficient schedulability test (The-
orem 4) was shown to be tight in the sense that for all n,
there are unschedulable task systems comprised of n tasks
with utilization exceeding n(21/n � 1) by an arbitrarily
small amount. However, tests have been devised that ex-
ploit more knowledge about tasks’ period parameters. For
instance, Kuo and Mok [6] provide a potentially superior
utilization bound for task systems in which the task period
parameters tend to be harmonically related – exact multi-
ples of one another. Suppose that a collection of numbers
is said to comprise a harmonic chain if for every two num-
bers in the set, it is the case that one is an exact multiple of
the other. Let ñ denote theminimum number of harmonic
chains into which the period parameters fTigni=1 of tasks in
� may be partitioned; a sufficient condition for task system
� to be RM-schedulable is that

U(�) � ñ(21/ñ � 1) :

Since ñ � n for all task systems � , this utilization bound
above is never inferior to the one in Theorem 4, and is su-
perior for all � for which ñ < n.

A different polynomial-time schedulability test was
proposed by Bini, Buttazzo, and Buttazzo [3]: they showed
that

nY
i=1

((Ci /Ti) + 1) � 2

is sufficient to guarantee that the periodic task system
f�1; �2; : : : ; �ng is rate-monotonic schedulable. This test is
commonly referred to as the hyperbolic schedulability test
for rate-monotonic schedulability. The hyperbolic test is

in general known to be superior to the utilization-based
test of Theorem 4 – see [3] for details.

Other work done since the seminal paper of Liu and
Layland has focused on relaxing the assumptions of the
periodic task model.

The (implicit-deadline) sporadic task model relaxed
assumption A1 by allowing Ti to be the minimum (rather
than exact) separation between arrivals of successive jobs
of task �i . It turns out that the results in Sect. “Results from
[9]” – Theorems 1–4 – hold for systems of such tasks as
well.

A more general sporadic task model has also been
studied that relaxes assumption A3 in addition to assump-
tion A1, by allowing for the explicit specification of a dead-
line parameter for each task (which may differ from the
task’s period). The deadline monotonic scheduling algo-
rithm [8] generalizes rate-monotonic scheduling to such
task systems.

Work has also been done [2,10] in removing the inde-
pendence assumption of A4, by allowing for different tasks
to use critical sections to access non-preemptable serially
reusable resources.

Current work is focused on scheduling tasks on mul-
tiprocessor or distributed systems where one or more of
the assumptions A1–A5 have been relaxed. In addition, re-
cent work has relaxed the assumption (A2) that worst-case
execution requirement is known and instead probabilistic
execution requirement distributions are considered [4].

Applications

The periodic task model has been invaluable for model-
ing several different types of systems. For control systems,
the periodic task model is well-suited for modeling the pe-
riodic requests and computations of sensors and actua-
tors. Multimedia and network applications also typically
involve computation of periodically arriving packets and
data. Many operating systems for real-time systems pro-
vide support for periodic tasks as a standard primitive.

Many of the results described in Sect. “Key Results”
above have been integrated into powerful tools, tech-
niques, and methodologies for the design and analysis of
real-time application systems [1,5]. Although these are
centered around the deadline-monotonic rather than rate-
monotonic scheduling algorithm, the general methodol-
ogy is commonly referred to as the rate-monotonic analysis
(RMA) methodology.

Open Problems

There are plenty of interesting and challenging open prob-
lems in real-time scheduling theory; however, most of

754 R Real-Time Systems

these are concerned with extensions to the basic task and
scheduling model considered in the original Liu and Lay-
land paper [9]. Perhaps the most interesting open prob-
lem with respect to the task model in [9] is regarding
the computational complexity of schedulability analysis
of static priority scheduling. While all known exact tests
(e. g., Theorem 3) run in pseudo-polynomial time and all
known polynomial-time tests are sufficient rather than ex-
act, there has been no significant result pigeonholing the
computational complexity of static priority schedulability
analysis for periodic task systems.

Cross References

� List Scheduling
� Load Balancing
� Schedulers for Optimistic Rate Based Flow Control
� Shortest Elapsed Time First Scheduling

Recommended Reading
1. Audsley, N., Burns, A., Wellings, A.: Deadline monotonic

scheduling theory and application. Control Eng. Pract. 1,
71–78 (1993)

2. Baker, T.P.: Stack-based scheduling of real-time processes.
Real-Time Systems: The Int. J. Time-Critical Comput. 3, 67–100
(1991)

3. Bini, E., Buttazzo, G., Buttazzo, G.: Rate monotonic scheduling:
The hyperbolic bound. IEEE Trans. Comput. 52, 933–942 (2003)

4. Gardener, M.K.: Probabilistic Analysis and Scheduling of Critical
Soft Real-Time Systems. Ph. D. thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign (1999)

5. Klein, M., Ralya, T., Pollak, B., Obenza, R., Harbour,M.G.: A Practi-
tioner’s Handbook for Real-Time Analysis: Guide to RateMono-
tonic Analysis for Real-Time Systems. Kluwer Academic Pub-
lishers, Boston (1993)

6. Kuo, T.-W., Mok, A.K.: Load adjustment in adaptive real-time
systems. In: Proceedings of the IEEE Real-Time Systems Sym-
posium, pp. 160–171. San Antonio, December 1991

7. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling
algorithm: Exact characterization and average case behavior.
In: Proceedings of the Real-Time Systems Symposium – 1989,
Santa Monica, December 1989. IEEE Computer Society Press,
pp. 166–171

8. Leung, J., Whitehead, J.: On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Perform. Eval. 2,
237–250 (1982)

9. Liu, C., Layland, J.: Scheduling algorithms for multiprogram-
ming in a hard real-time environment. J. ACM 20, 46–61 (1973)

10. Rajkumar, R.: Synchronization In Real-Time Systems – A Prior-
ity Inheritance Approach. Kluwer Academic Publishers, Boston
(1991)

Real-Time Systems
� Rate-Monotonic Scheduling

Rectilinear Spanning Tree
2002; Zhou, Shenoy, Nicholls

HAI ZHOU
Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL, USA

Keywords and Synonyms

Metric minimum spanning tree; Rectilinear spanning
graph

ProblemDefinition

Given a set of n points in a plane, a spanning tree is a set of
edges that connects all the points and contains no cycles.
When each edge is weighted using some distance metric
of the incident points, the metric minimum spanning tree
is a tree whose sum of edge weights is minimum. If the
Euclidean distance (L2) is used, it is called the Euclidean
minimum spanning tree; if the rectilinear distance (L1) is
used, it is called the rectilinear minimum spanning tree.

Since the minimum spanning tree problem on
a weighted graph is well studied, the usual approach
for metric minimum spanning tree is to first define an
weighted graph on the set of points and then to construct
a spanning tree on it.

Much like a connection graph is defined for the maze
search [4], a spanning graph can be defined for the mini-
mum spanning tree construction.

Definition 1 Given a set of points V in a plane, an undi-
rected graphG = (V ; E) is called a spanning graph if it con-
tains a minimum spanning tree of V in the plane.

Since spanning graphs with fewer edges givemore efficient
minimum spanning tree construction, the cardinality of
a spanning graph is defined as its number of edges. It is
easy to see that a complete graph on a set of points con-
tains all spanning trees, thus is a spanning graph. However,
such a graph has a cardinality of O(n2). A rectilinear span-
ning graph of cardinality O(n) can be constructed within
O(n log n) time [6] and will be described here.

Minimum spanning tree algorithms usually use two
properties to infer the inclusion and exclusion of edges in
a minimum spanning tree. The first property is known as
the cut property. It states that an edge of smallest weight
crossing any partition of the vertex set into two parts be-
longs to a minimum spanning tree. The second prop-
erty is known as the cycle property. It says that an edge
with largest weight in any cycle in the graph can be safely
deleted. Since the two properties are stated in connection

Rectilinear Spanning Tree R 755

Rectilinear Spanning Tree, Figure 1
Octal partition and the uniqueness property

with the construction of a minimum spanning tree, they
are useful for a spanning graph.

Key Results

Using the terminology given in [3], the uniqueness prop-
erty is defined as follows.

Definition 2 Given a point s, a region R has the unique-
ness property with respect to s if for every pair of points
p; q 2 R; jjpqjj < max(jjspjj; jjsqjj). A partition of space
into a finite set of disjoint regions is said to have the
uniqueness property with respect to s if each of its regions
has the uniqueness property with respect to s.

The notation ||sp|| is used to represent the distance be-
tween s and p under the L1 metric. Define the octal par-
tition of the plane with respect to s as the partition in-
duced by the two rectilinear lines and the two 45 degree
lines through s, as shown in Fig. 2a. Here, each of the re-
gions R1 through R8 includes only one of its two bounding
half line as shown in Fig. 2b. It can be shown that the octal
partition has the uniqueness property.

Lemma 1 Given a point s in the plane, the octal partition
with respect to s has the uniqueness property.

Proof To show a partition has the uniqueness property,
it needs to prove that each region of the partition has the
uniqueness property. Since the regions R1 through R8 are
similar to each other, a proof for R1 will be sufficient.

The points in R1 can be characterized by the following
inequalities

x � xs ;
x � y < xs � ys :

Suppose there are two points p and q in R1. Without loss
of generality, it can be assumed xp � xq . If yp � yq , then

jjsqjj = jjspjj + jjpqjj > jjpqjj. Therefore it only needs to
consider the case when yp > yq . In this case,

jjpqjj = jxp � xqj + jyp � yq j
= xq � xp + yp � yq
= (xq � yq) + yp � xp
< (xs � ys) + yp � xs
= yp � ys
� xp � xs + yp � ys
= jjspjj :

�
Given two points p, q in the same octal region of
point s, the uniqueness property says that jjpqjj <

max(jjspjj; jjsqjj). Consider the cycle on points s, p, and q.
Based on the cycle property, only one point with the min-
imum distance from s needs to be connected to s. An in-
teresting property of the octal partition is that the contour
of equi-distant points from s forms a line segment in each
region. In regions R1, R2, R5, R6, these segments are cap-
tured by an equation of the form x + y = c; in regions R3,
R4, R7, R8, they are described by the form x � y = c.

From each point s, the closest neighbor in each oc-
tant needs to be found. It will be described how to effi-
ciently compute the neighbors inR1 for all points. The case
for other octant is symmetric. For the R1 octant, a sweep
line algorithm will run on all points according to non-
decreasing x + y. During the sweep, maintained will be an
active set consisting of points whose nearest neighbors in
R1 are yet to be discovered. When a point p is processed,
all points in the active set that have p in their R1 regions
will be found. If s is such a point in the active set, since
points are scanned in non-decreasing x + y, then p must
be the nearest point in R1 for s. Therefore, the edge sp will
be added and s will be deleted from the active set. After
processing those active points, the point p will be added
into the active set. Each point will be added and deleted at
most once from the active set.

A fundamental operation in the sweep line algorithm
is to find a subset of active points such that a given point
p is in their R1 regions. Based on the observation that
point p is in the R1 region of point s if and only if s is
in the R5 region of p, it needs to find the subset of active
points in the R5 region of p. Since R5 can be represented as
a two-dimensional range (�1; xp] � (xp � yp;+1) on
(x; x � y), a priority search tree [1] can be used to main-
tain the active point set. Since each of the insertion and
deletion operations takes O(log n) time, and the query op-
eration takes O(log n + k) time where k is the number of
objects within the range, the total time for the sweep is

756 R Rectilinear Spanning Tree

O(n log n). Since other regions can be processed in the
similar way as in R1, the algorithm is running in O(n log n)
time. Priority search tree is a data structure that relies on
maintaining a balanced structure for the fast query time.
This works well for static input sets. When the input set
is dynamic, re-balancing the tree can be quite challeng-
ing. Fortunately, the active set has a structure that can be
explored for an alternate representation. Since a point is
deleted from the active set if a point in its R1 region is
found, no point in the active set can be in the R1 region
of another point in the set.

Lemma 2 For any two points p, q in the active set, it must
be xp ¤ xq, and if xp < xq then xp � yp � xq � yq.

Based on this property, the active set can be ordered in
increasing order of x. This implies a non-decreasing order
on x � y. Given a point s, the points which have s in their
R1 region must obey the following inequalities

x � xs ;
x � y > xs � ys :

To find the subset of active points which have s in their R1
regions, it can first find the largest x such that x � xs , then
proceed in decreasing order of x until x � y � xs � ys .
Since the ordering is kept on only one dimension, using
any binary search tree with O(log n) insertion, deletion,
and query time will also give us an O(n log n) time algo-
rithm. Binary search trees also need to be balanced. An
alternative is to use skip-lists [2] which use randomiza-
tion to avoid the problem of explicit balancing but provide
O(log n) expected behavior.

A careful study also shows that after the sweep pro-
cess for R1, there is no need to do the sweep for R5,
since all edges needed in that phase are either connected
or implied. Moreover, based on the information in R5,
the number of edge connections can be further reduced.
When the sweep step processes point s, it finds a sub-
set of active points which have s in their R1 regions.
Without lost of generality, suppose p and q are two of
them. Then p and q are in the R5 region of s, which
means jjpqjj < max(jjspjj; jjsqjj). Therefore, it needs only
to connect s with the nearest active point.

Since R1 and R2 have the same sweep sequence, they
can be processed together in one pass. Similarly, R3 and
R4 can be processed together in another pass. Based on the
above discussion, the pseudo-code of the algorithm is pre-
sented in Fig. 2.

The correctness of the algorithm is stated in the fol-
lowing theorem.

Rectilinear Spanning Tree, Figure 2
The rectilinear spanning graph algorithm

Theorem 3 Given n points in the plane, the rectilinear
spanning graph algorithm constructs a spanning graph in
O(n log n) time, and the number of edges in the graph is
O(n).

Proof The algorithm can be considered as deleting edges
from the complete graph. As described, all deleted edges
are redundant based on the cycle property. Thus, the out-
put graph of the algorithm will contain at least one recti-
linear minimum spanning tree.

In the algorithm, each given point will be inserted and
deleted atmost once from the active set for each of the four
regions R1 through R4. For each insertion or deletion, the
algorithm requires O(log n) time. Thus, the total time is
upper bounded by O(n log n). The storage is needed only
for active sets, which is at most O(n). �

Applications

Rectilinear minimum spanning tree problem has wide ap-
plications in VLSI CAD. It is frequently used as a met-
ric of wire length estimation during placement. It is of-
ten constructed to approximate a minimum Steiner tree
and is also a key step in many Steiner tree heuristics. It
is also used in an approximation to the traveling salesper-
son problem which can be used to generate scan chains
in testing. It is important to emphasize that for real world
applications, the input sizes are usually very large. Since
it is a problem that will be computed hundreds of thou-
sands times and many of them will have very large in-
put sizes, the rectilinear minimum spanning tree problem
needs a very efficient algorithm.

Experimental Results

The experimental results using the Rectilinear Spanning
Graph (RSG) followed by Kruskal’s algorithm for a rec-
tilinear minimum spanning tree were reported in Zhou

Rectilinear Steiner Tree R 757

Rectilinear Spanning Tree, Table 1
Experimental Results

Input Complete Bound-degree RSG
orig distinct #edge time #edge time #edge time
1000 999 498501 5.095 s 3878 0.299 s 2571 0.112 s
2000 1996 1991010 24.096 s 7825 0.996 s 5158 0.218 s
4000 3995 7978015 2m 7.233 s 15761 3.452 s 10416 0.337 s
6000 5991 17943045 5m 54.697 s 23704 7.515 s 15730 0.503 s
8000 7981 31844190 13m 7.682 s 31624 13.141 s 21149 0.672 s

10000 9962 49615741 – 39510 20.135 s 26332 0.934 s
12000 11948 – – 47424 32.300 s 31586 1.052 s
14000 13914 – – 55251 46.842 s 36853 1.322 s
16000 15883 – – 63089 1m 3.759 s 42251 1.486 s
18000 17837 – – 70876 1m 19.812 s 47511 1.701 s
20000 19805 – – 78723 1m 45.792 s 52732 1.907 s

et al. [5]. Two other approaches were compared. The first
approach used the complete graph on the point set as the
input to Kruskal’s algorithm. The second approach is an
implementation of concepts described in [3]; namely for
each point, scan all other points but only connect the near-
est one in each quadrant region. With sizes ranging from
1000 to 20,000, randomly generated point sets were used
in the experiments. The results are reproduced here in
Table 1. The first column gives the number of generated
points; the second column gives the number of distinct
points. For each approach, the number of edges in the
given graph and the total running time are reported. For
input size larger than 10,000, the complete graph approach
simply runs out of memory.

Cross References

� Rectilinear Steiner Tree

Recommended Reading
1. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14, 257–

276 (1985)
2. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees.

Commun. ACM 33, 668–676 (1990)
3. Robins, G., Salowe, J.S.: Low-degree minimum spanning tree.

Discret. Comput. Geom. 14, 151–165 (1995)
4. Zheng, S.Q., Lim, J.S., Iyengar, S.S.: Finding obstacle-avoiding

shortest paths using implicit connection graphs. IEEE Trans.
Comput. Aided Des. 15, 103–110 (1996)

5. Zhou, H., Shenoy, N., Nicholls, W.: Efficient minimum spanning
tree constructionwithout delaunay triangulation. In: Proc. Asian
and South Pacific Design Automation Conference, Yokohama,
Japan (2001)

6. Zhou, H., Shenoy, N., Nicholls, W.: Efficient spanning tree con-
struction without delaunay triangulation. Inf. Proc. Lett. 81,
271–276 (2002)

Rectilinear Steiner Tree
2004; Zhou

HAI ZHOU
Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL, USA

Keywords and Synonyms

Metric minimum Steiner tree; Shortest routing tree

ProblemDefinition

Given n points on a plane, a Steiner minimal tree connects
these points through some extra points (called Steiner
points) to achieve a minimal total length. When the length
between two points is measured by the rectilinear distance,
the tree is called a rectilinear Steiner minimal tree.

Because of its importance, there is much previous
work to solve the SMT problem. These algorithms can
be grouped into two classes: exact algorithms and heuris-
tic algorithms. Since SMT is NP-hard, any exact algo-
rithm is expected to have an exponential worst-case run-
ning time. However, two prominent achievements must
be noted in this direction. One is the GeoSteiner al-
gorithm and implementation by Warme, Winter, and
Zacharisen [14,15], which is the current fastest exact so-
lution to the problem. The other is a Polynomial Time
Approximation Scheme (PTAS) by Arora [1], which is
mainly of theoretical importance. Since exact algorithms
have long running time, especially on large input sizes,
much more previous efforts were put on heuristic algo-
rithms. Many of them generate a Steiner tree by improv-
ing on a minimal spanning tree topology [7], since it was

758 R Rectilinear Steiner Tree

Rectilinear Steiner Tree, Figure 1
Edge substitution by Borah et al.

proved that a minimal spanning tree is a 3/2 approxima-
tion of a SMT [8]. However, since the backbones are re-
stricted to the minimal spanning tree topology in these
approaches, there is a reported limit on the improvement
ratios over the minimal spanning trees. The iterated 1-
Steiner algorithm by Kahng and Robins [10] is an early
approach to deviate from that restriction and an improved
implementation [6] is a champion among such programs
in public domain. However, the implementation in [10]
has a running time of O(n4 log n) and the implementa-
tion in [6] has a running time of O(n3). A much more
efficient approach was later proposed by Borah et al. [2].
In their approach, a spanning tree is iteratively improved
by connecting a point to an edge and deleting the longest
edge on the created circuit. Their algorithm and imple-
mentation had a worst-case running time of 	(n2), even
though an alternative O(n log n) implementation was also
proposed. Since the backbone is no longer restricted to the
minimal spanning tree topology, its performance was re-
ported to be similar to the iterated 1-Steiner algorithm [2].
A recent effort in this direction is a new heuristic by Man-
doiu et al. [11] which is based on a 3/2 approximation
algorithm of the metric Steiner tree problem on quasi-
bipartite graphs [12]. It performs slightly better than the
iterated 1-Steiner algorithm, but its running time is also
slightly longer than the iterated 1-Steiner algorithm (with
the empty rectangle test [11] used). More recently, Chu [3]
and Chu and Wong [4] proposed an efficient lookup table
based approach for rectilinear Steiner tree construction.

Key Results

The presented algorithm is based on the edge substitution
heuristic of Borah et al. [2]. The heuristic works as fol-
lows. It starts with a minimal spanning tree and then it-
eratively considers connecting a point (for example p in
Fig. 1) to a nearby edge (for example (a, b)) and deleting
the longest edge ((b, c)) on the circuit thus formed. The al-

Rectilinear Steiner Tree, Figure 2
Aminimal spanning tree and its merging binary tree

gorithm employs the spanning graph [17] as a backbone of
the computation: it is first used to generate the initial min-
imal spanning tree, and then to generate point-edge pairs
for tree improvements. This kind of unification happens
also in the spanning tree computation and the longest edge
computation for each point-edge pair: using Kruskal’s al-
gorithm with disjoint set operations (instead of Prim’s al-
gorithm) [5] will unify these two computations.

In order to reduce the number of point-edge pair can-
didates from O(n2) to O(n), Borah et al. suggested to use
the visibility of a point from an edge, that is, only a point
visible from an edge can be considered to connect to that
edge. This requires a sweepline algorithm to find visibil-
ity relations between points and edges. In order to skip
this complex step, the geometrical proximity information
embedded within the spanning graph is leveraged. Since
a point has eight nearest points connected around it, it
is observed that if a point is visible to an edge then the
point is usually connected in the graph to at lease one end
point. In the algorithm, the spanning graph is used to gen-
erate point-edge pair candidates. For each edge in the cur-
rent tree, all points that are neighbors of either of the end
points will be considered to form point-edge pairs with the
edge. Since the cardinality of the spanning graph is O(n),
the number of possible point-edge pairs generated in this
way is also O(n).

When connecting a point to an edge, the longest edge
on the formed circuit needs to be deleted. In order to find
the corresponding longest edge for each point-edge pair
efficiently, it explores how the spanning tree is formed
through Kruskal’s algorithm. This algorithm first sorts the
edges into non-decreasing lengths and each edge is con-
sidered in turn. If the end points of the edge have been
connected, then the edge will be excluded from the span-
ning tree, otherwise, it will be included. The structure of
these connecting operations can be represented by a bi-
nary tree, where the leaves represent the points and the

Rectilinear Steiner Tree R 759

Rectilinear Steiner Tree (RST) Algorithm
T = ;;
Generate the spanning graph G by RSG algorithm;
for (each edge (u; v) 2 G in non-decreasing length) {

s1 = find_set(u); s2 = find_set(v);
if (s1 != s2) {

add (u, v) in tree T ;
for (each neighbor w of u, v in G)

if (s1 == find_set(w))
lca_add_query(w; u; (u; v));

else lca_add_query(w; v; (u; v));
lca_tree_edge((u, v), s1.edge);
lca_tree_edge((u, v), s2.edge);
s = union_set(s1; s2); s.edge = (u, v);

}
}
generate point-edge pairs by lca_answer_queries;
for (each pair (p; (a; b); (c; d)) in non-increasing positive gains)

if ((a; b); (c; d) has not been deleted from T) {
connect p to (a, b) by adding three edges to T ;
delete (a; b); (c; d) from T ;

}

Rectilinear Steiner Tree, Figure 3
The rectilinear Steiner tree algorithm

internal nodes represent the edges. When an edge is in-
cluded in the spanning tree, a node is created representing
the edge and has as its two children the trees representing
the two components connected by this edge. To illustrate
this, a spanning tree with its representing binary tree are
shown in Fig. 2. As can be seen, the longest edge between
two points is the least common ancestor of the two points
in the binary tree. For example, the longest edge between
p and b in Fig. 2 is (b, c), which is the least common ances-
tor of p and b in the binary tree. To find the longest edge
on the circuit formed by connecting a point to an edge, it
needs to find the longest edge between the point and one
end point of the edge that are in the same component be-
fore connecting the edge. For example, consider the pair
p and (a, b), since p and b are in the same component be-
fore connecting (a, b), the edge needs to be deleted is the
longest between p and b.

Based on the above discussion, the pseudo-code of the
algorithm can be described in Fig. 3. At the beginning of
the algorithm, Zhou et al.’s rectilinear spanning graph al-
gorithm [17] is used to generate the spanning graph G for

the given set of points. Then Kruskal’s algorithm is used
on the graph to generate a minimal spanning tree. The
data structure of disjoint sets [5] is used to merge compo-
nents and check whether two points are in the same com-
ponent (the first for loop). During this process, the merg-
ing binary tree and the queries for least common ancestors
of all point-edge pairs are also generated. Here s, s1, and
s2 represent disjoint sets and each records the root of the
component in themerging binary tree. For each edge (u, v)
adding to T, each neighbor w of either u or v will be con-
sidered to connect to (u, v). The longest edge for this pair
is the least common ancestor of w, u or w, v depending on
which point is in the same component asw. The procedure
lca_add_query is used to add this query. Connecting
the two components by (u, v) will also be recorded in the
merging binary tree by the procedure lca_tree_edge.
After generating the minimal spanning tree, it also has
the corresponding merging binary tree and the least
common ancestor queries ready. Using Tarjan’s off-line
least common ancestor algorithm [5] (represented by
lca_answer_queries), it can generate all longest

760 R Rectilinear Steiner Tree

Rectilinear Steiner Tree, Table 1
Comparison with other algorithms I

Input
size

GeoSteiner BI1S BOI RST

Improve Time Improve Time Improve Time Improve Time
100 11:440 0:487 10:907 0:633 9.300 0:0267 10.218 0.004
200 11:492 3:557 10:897 4:810 9.192 0:1287 10.869 0.020
300 11:492 12:685 10:931 18:770 9.253 0:2993 10.255 0.041
500 11:525 72:192 – – 9.274 0:877 10.381 0.084
800 11:343 536:173 – – 9.284 2:399 10.719 0.156

1000 – – – – 9.367 4:084 10.433 0.186
2000 – – – – 9.326 31:098 10.523 0.381
3000 – – – – 9.390 104:919 10.449 0.771
5000 – – – – 9.356 307:977 10.499 1.330

Rectilinear Steiner Tree, Table 2
Comparison with other algorithms II

Input
size

BGA Borah Rohe RST

Improve Time Improve Time Improve Time Improve Time
Randomly generated testcases

100 10:272 0:006 10:341 0:004 9:617 0:000 10:218 0:002
500 10:976 0:068 10:778 0:178 10:028 0:010 10:381 0:041

1000 10:979 0:162 10:829 0:689 9:768 0:020 10:433 0:121
5000 11:012 1:695 11:015 25:518 10:139 0:130 10:499 0:980

10000 11:108 4:135 11:101 249:924 10:111 0:310 10:559 2:098
50000 11:120 59:147 – – 10:109 1:890 10:561 13:029

100000 11:098 161:896 – – 10:079 4:410 10:514 28:527
500000 – – – – 10:059 27:210 10:527 175:725

VLSI testcases
337 6:434 0:035 6:503 0:037 5:958 0:010 5:870 0:016
830 3:202 0:070 3:185 0:213 3:102 0:020 2:966 0:033

1944 7:850 0:342 7:772 2:424 6:857 0:040 7:533 0:238
2437 7:965 0:549 7:956 4:502 7:094 0:050 7:595 0:408
2676 8:928 0:623 8:994 3:686 8:067 0:060 8:507 0:463

12052 8:450 4:289 8:465 232:779 7:649 0:300 8:076 2:281
22373 9:848 11:330 9:832 1128:365 8:987 0:570 9:462 4:605
34728 9:046 18:416 9:010 2367:629 8:158 0:900 8:645 5:334

edges for the pairs. With the longest edge for each point-
edge pair, the gain of connecting the point to the edge can
be calculated. Then each of the point to edge connections
will be realized in a non-increasing order of their gains.
A connection can only be realized if both the connection
edge and deletion edge have not been deleted yet.

The running time of the algorithm is dominated by the
spanning graph generation and edge sorting, which take
O(n log n) time. Since the number of edges in the spanning
graph is O(n), both Kruskal’s algorithm and Tarjan’s off-
line least common ancestor algorithm take O(n˛(n)) time,
where ˛(n) is the inverse of Ackermann’s function, which
grows extremely slow.

Applications

The Steiner Minimal Tree (SMT) problem has wide appli-
cations in VLSI CAD. A SMT is generally used in initial
topology creation for non-critical nets in physical synthe-
sis. For timing critical nets, minimization of wire length is
generally not enough. However, since most nets are non-
critical in a design and a SMT gives the most desirable
route of such a net, it is often used as an accurate estima-
tion of congestion and wire length during floorplanning
and placement. This implies that a Steiner tree algorithm
will be invoked millions of times. On the other hand, there
exist many large pre-routes in modern VLSI design. The

Registers R 761

pre-routes are generally modeled as large sets of points,
thus increasing the input sizes of the Steiner tree problem.
Since the SMT is a problem that will be computed millions
of times and many of them will have very large input sizes,
highly efficient solutions with good performance are de-
sired.

Experimental Results
As reported in [16], the first set of experiments were con-
ducted on a Linux system with a 928MHz Intel Pen-
tium III processor and 512M memory. The RST algo-
rithm was compared with other publicly available pro-
grams: the exact algorithm GeoSteiner (version 3.1) by
Warme,Winter, and Zacharisen [14]; the Batched Iterated
1-Steiner (BI1S) by Robins; and the Borah et al.’s algo-
rithm implemented by Madden (BOI).

Table 1 gives the results of the first set of experi-
ments. For each input size ranging from 100 to 5000,
30 different test cases are randomly generated through
the rand_points program in GeoSteiner. The im-
provement ratios of a Steiner tree St over its cor-
responding minimal spanning tree MST is defined as
100 � (MST � St)/MST. For each input size, the average
of the improvement ratios and the average running time
(in seconds) on each of the programs is reported. As can
be seen, RST always gives better improvements than BOI
with less running times.

The second set of experiments comparedRSTwith Bo-
rah’s implementation of Borah et al.’s algorithm (Borah),
Rohe’s Prim-based algorithm (Rohe) [13], and Kahng
et al.’s Batched Greedy Algorithm (BGA) [9]. They were
run on a different Linux system with a 2.4GHz Intel Xeon
processor and 2G memory. Besides the randomly gener-
ated test cases, the VLSI industry test cases used in [9] were
also used. The results are reported in Table 2.

Cross References
� Rectilinear Spanning Tree

Recommended Reading

1. Arora, S.: Polynomial-time approximation schemes for eu-
clidean tsp and other geometric problem. J. ACM 45, 753–782
(1998)

2. Borah, M., Owens, R.M., Irwin, M.J.: An edge-based heuristic for
steiner routing. IEEE Transac. Comput. Aided Des. 13, 1563–
1568 (1994)

3. Chu, C.: FLUTE: Fast lookup table based wirelength estimation
technique. In: Proc. Intl. Conf. on Computer-Aided Design, San
Jose, Nov. 2004, pp. 696–701

4. Chu, C., Wong, Y.C.: Fast and accurate rectilinear steiner mini-
mal tree algorithm for vlsi design. In: International Symposium
on Physical Design, pp. 28–35 (2005)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algo-
rithms. MIT Press, Cambridge (1989)

6. Griffith, J., Robins, G., Salowe, J.S., Zhang, T.: Closing the gap:
Near-optimal steiner trees in polynomial time. IEEE Transac.
Comput. Aided Des. 13, 1351–1365 (1994)

7. Ho, J.M., Vijayan, G., Wong, C.K.: New algorithms for the recti-
linear steiner tree problem. IEEE Transac. Comput. Aided Des.
9, 185–193 (1990)

8. Hwang, F.K.: On Steinerminimal trees with rectilinear distance.
SIAM J. Appl. Math. 30, 104–114 (1976)

9. Kahng, A.B., Mandoiu, I.I., Zelikovsky, A.: Highly scalable algo-
rithms for rectilinear and octilinear steiner trees. In: Proc. Asia
and South Pacific Design Automation Conference, Kitakyushu,
Japan, (2003) pp. 827–833

10. Kahng, A.B., Robins, G.: A new class of iterative steiner tree
heuristics with good performance. IEEE Transac. Comput.
Aided Des. 11, 893–902 (1992)

11. Mandoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rec-
tilinear Steiner trees. In: Proc. Intl. Conf. on Computer-Aided
Design, San Jose, (1999)

12. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation
for themetric Steiner tree problem. In: 10th ACM-SIAMSympo-
sium on Discrete Algorithms, Baltimore, (1999), pp. 742–751

13. Rohe, A.: Sequential and Parallel Algorithms for Local Routing.
Ph. D. thesis, Bonn University, Bonn, Germany, Dec. (2001)

14. Warme, D.M., Winter, P., Zacharisen, M.: GeoSteiner 3.1
package. ftp://ftp.diku.dk/diku/users/martinz/geosteiner-3.1.
tar.gz. Accessed Oct. 2003

15. Warme, D.M., Winter, P., Zacharisen, M.: Exact algorithms for
plane steiner tree problems: A computational study, Tech.
Rep. DIKU-TR-98/11, Dept. of Computer Science, University of
Copenhagen (1998)

16. Zhou, H.: A new efficient retiming algorithm derived by formal
manipulation. In: Workshop Notes of Intl. Workshop on Logic
Synthesis, Temecula, CA, June (2004)

17. Zhou, H., Shenoy, N., Nicholls, W.: Efficient spanning tree con-
struction without delaunay triangulation. Inf. Process. Lett. 81,
271–276 (2002)

Registers
1986; Lamport, Vitanyi, Awerbuch

PAUL VITÁNYI
CWI, Amsterdam, Netherlands

Keywords and Synonyms

Shared-memory (wait-free); Wait-free registers; Wait-free
shared variables; Asynchronous communication hard-
ware

ProblemDefinition

Consider a system of asynchronous processes that com-
municate among themselves by only executing read and
write operations on a set of shared variables (also known as
shared registers). The system has no global clock or other

ftp://ftp.diku.dk/diku/users/martinz/geosteiner-3.1.tar.gz
ftp://ftp.diku.dk/diku/users/martinz/geosteiner-3.1.tar.gz

762 R Registers

synchronization primitives. Every shared variable is asso-
ciated with a process (called owner) which writes it and
the other processes may read it. An execution of a write
(read) operation on a shared variable will be referred to as
aWrite (Read) on that variable. A Write on a shared vari-
able puts a value from a pre-determined finite domain into
the variable, and a Read reports a value from the domain.
A process that writes (reads) a variable is called a writer
(reader) of the variable.

The goal is to construct shared variables in which the
following two properties hold. (1) Operation executions
are not necessarily atomic, that is, they are not indivisible
but rather consist of atomic sub-operations, and (2) every
operation finishes its execution within a bounded num-
ber of its own steps, irrespective of the presence of other
operation executions and their relative speeds. That is,
operation executions are wait-free. These two properties
give rise to a classification of shared variables, depend-
ing on their output characteristics. Lamport [8] distin-
guishes three categories for 1-writer shared variables, us-
ing a precedence relation on operation executions defined
as follows: for operation executions A and B, A precedes
B, denoted A �! B, if A finishes before B starts; A and
B overlap if neither A precedes B nor B precedes A. In 1-
writer variables, all theWrites are totally ordered by “�!”.
The three categories of 1-writer shared variables defined
by Lamport are the following.
1. A safe variable is one in which a Read not overlap-

ping anyWrite returns the most recently written value.
A Read that overlaps aWritemay return any value from
the domain of the variable.

2. A regular variable is a safe variable in which a Read that
overlaps one or more Writes returns either the value of
the most recent Write preceding the Read or of one of
the overlapping Writes.

3. An atomic variable is a regular variable in which the
Reads and Writes behave as if they occur in some total
order which is an extension of the precedence relation.
A shared variable is boolean1 or multivalued depend-

ing upon whether it can hold only one out of two or one
out of more than two values. A multiwriter shared vari-
able is one that can be written and read (concurrently) by
many processes. If there is only one writer and more than
one reader it is called amultireader variable.

Key Results

In a series of papers starting in 1974, for details see [4],
Lamport explored various notions of concurrent reading
and writing of shared variables culminating in the semi-

1Boolean variables are referred to as bits.

nal 1986 paper [8]. It formulates the notion of wait-free
implementation of an atomic multivalued shared vari-
able—written by a single writer and read by (another) sin-
gle reader—from safe 1-writer 1-reader 2-valued shared
variables, being mathematical versions of physical flip-
flops, later optimized in [13]. Lamport did not consider
constructions of shared variables with more than one
writer or reader.

Predating the Lamport paper, in 1983 Peterson [10]
published an ingenious wait-free construction of an
atomic 1-writer, n-reader m-valued atomic shared vari-
able from n + 2 safe 1-writer n-reader m-valued registers,
2n 1-writer 1-reader 2-valued atomic shared variables, and
2 1-writer n-reader 2-valued atomic shared variables. He
presented also a proper notion of the wait-freedom prop-
erty. In his paper, Peterson didn’t tell how to construct the
n-reader boolean atomic variables from flip-flops, while
Lamport mentioned the open problem of doing so, and,
incidentally, uses a version of Peterson’s construction to
bridge the algorithmically demanding step from atomic
shared bits to atomic shared multivalues. On the basis
of this work, N. Lynch, motivated by concurrency con-
trol of multi-user data-bases, posed around 1985 the ques-
tion of how to construct wait-free multiwriter atomic vari-
ables from 1-writer multireader atomic variables. Her stu-
dent Bloom [1] found in 1985 an elegant 2-writer con-
struction, which, however, has resisted generalization to
multiwriter. Vitányi and Awerbuch [14] were the first
to define and explore the complicated notion of wait-
free constructions of general multiwriter atomic variables,
in 1986. They presented a proof method, an unbounded
solution from 1-writer 1-reader atomic variables, and
a bounded solution from 1-writer n-reader atomic vari-
ables. The bounded solution turned out not to be atomic,
but only achieved regularity (“Errata” in [14]). The paper
introduced important notions and techniques in the area,
like (bounded) vector clocks, and identified open prob-
lems like the construction of atomic wait-free bounded
multireader shared variables from flip-flops, and atomic
wait-free bounded multiwriter shared variables from the
multireader ones. Peterson who had been working on the
multiwriter problem for a decade, together with Burns,
tried in 1987 to eliminate the error in the unbounded
construction of [14] retaining the idea of vector clocks,
but replacing the obsolete-information tracking tech-
nique by repeated scanning as in [10]. The result [11]
was found to be erroneous in the technical report (R.
Schaffer, On the correctness of atomic multiwriter reg-
isters, Report MIT/LCS/TM-364, 1988). Neither the re-
correction in Schaffer’s Technical Report, nor the claimed
re-correction by the authors of [11] has appeared in print.

Registers R 763

Also in 1987 there appeared at least five purported solu-
tions for the implementation of 1-writer n-reader atomic
shared variable from 1-writer 1-reader ones: [2,7,12] (for
the others see [4]) of which [2] was shown to be incor-
rect (S. Haldar, K. Vidyasankar, ACM Oper. Syst. Rev,
26:1(1992), 87–88) and only [12] appeared in journal ver-
sion. The paper [9], initially a 1987 Harvard Tech Re-
port, resolved all multiuser constructions in one stroke:
it constructs a bounded n-writer n-reader (multiwriter)
atomic variable from O(n2) 1-writer 1-reader safe bits,
which is optimal, and O(n2) bit-accesses per Read/Write
operation which is optimal as well. It works by making the
unbounded solution of [14] bounded, using a new tech-
nique, achieving a robust proof of correctness. “Projec-
tions” of the construction give specialized constructions
for the implementation of 1-writer n-reader (multireader)
atomic variables from O(n2) 1-writer 1-reader ones using
O(n) bit accesses per Read/Write operation, and for the
implementation of n-writer n-reader (multiwriter) atomic
variables from n 1-writer n-reader (multireader) ones. The
first “projection” is optimal, while the last “projection”
may not be optimal since it uses O(n) control bits per
writer while only a lower bound of ˝(log n) was estab-
lished. Taking up this challenge, the construction in [6]
claims to achieve this lower bound.

Timestamp System

In a multiwriter shared variable it is only required that
every process keeps track of which process wrote last.
There arises the general question whether every process
can keep track of the order of the last Writes by all pro-
cesses. A. Israeli and M. Li were attracted to the area by
the work in [14], and, in an important paper [5], they
raised and solved the question of the more general and
universally useful notion of a bounded timestamp sys-
tem to track the order of events in a concurrent system.
In a timestamp system every process owns an object, an
abstraction of a set of shared variables. One of the re-
quirements of the system is to determine the temporal
order in which the objects are written. For this purpose,
each object is given a label (also referred to as a times-
tamp) which indicates the latest (relative) time when it
has been written by its owner process. The processes as-
sign labels to their respective objects in such a way that
the labels reflect the real-time order in which they are
written to. These systems must support two operations,
namely labeling and scan. A labeling operation execution
(Labeling, in short) assigns a new label to an object, and
a scan operation execution (Scan, in short) enables a pro-
cess to determine the ordering in which all the objects are

written, that is, it returns a set of labeled-objects ordered
temporally. The concern is with those systems where op-
erations can be executed concurrently, in an overlapped
fashion. Moreover, operation executions must be wait-
free, that is, each operation execution will take a bounded
number of its own steps (the number of accesses to the
shared space), irrespective of the presence of other op-
eration executions and their relative speeds. Israeli and
Li [5] constructed a bit-optimal bounded timestamp sys-
tem for sequential operation executions. Their sequential
timestamp system was published in the above journal ref-
erence, but the preliminary concurrent timestamp system
in the conference proceedings, of which a more detailed
version has been circulated in manuscript form, has not
been published in final form. The first generally accepted
solution of the concurrent case of the bounded timestamp
system was from Dolev and Shavit [3]. Their construc-
tion is of the type presented in [5] and uses shared vari-
ables of size O(n), where n is the number of processes in
the system. Each Labeling requires O(n) steps, and each
Scan O(n2 log n) steps. (A ‘step’ accesses an O(n) bit vari-
able.) In [4] the unbounded construction of [14] is cor-
rected and extended to obtain an efficient version of the
more general notion of a bounded concurrent timestamp
system.

Applications

Wait-free registers are, together with message-passing sys-
tems, the primary interprocess communication method in
distributed computing theory. They form the basis of all
constructions and protocols, as can be seen in the text-
books. Wait-free constructions of concurrent timestamp
systems (CTSs, in short) have been shown to be a pow-
erful tool for solving concurrency control problems such
as various types of mutual exclusion, multiwriter multi-
reader shared variables [14], and probabilistic consensus,
by synthesizing a “wait-free clock” to sequence the actions
in a concurrent system. For more details see [4].

Open Problems

There is a great deal of work in the direction of regis-
ter constructions that use less constituent parts, or sim-
pler parts, or parts that can tolerate more complex fail-
ures, than previous constructions referred to above. Only,
of course, if the latter constructions were not yet optimal
in the parameter concerned. Further directions are work
on wait-free higher-typed objects, as mentioned above, hi-
erarchies of such objects, and probabilistic constructions.
This literature is too vast and diverse to be surveyed here.

764 R Regular Expression Indexing

Experimental Results

Register constructions, or related constructions for asyn-
chronous interprocess communication, are used in cur-
rent hardware and software.

Cross References

� Asynchronous Consensus Impossibility
� Atomic Broadcast
� Causal Order, Logical Clocks, State Machine

Replication
� Concurrent Programming, Mutual Exclusion
� Linearizability
� Renaming
� Self-Stabilization
� Snapshots in Shared Memory
� Synchronizers, Spanners
� Topology Approach in Distributed Computing

Recommended Reading

1. Bloom, B.: Constructing two-writer atomic registers. IEEE Trans.
Comput. 37(12), 1506–1514 (1988)

2. Burns, J.E., Peterson, G.L.: Constructing multi-reader atomic
values from non-atomic values. In: Proc. 6th ACM Symp. Prin-
ciples Distr. Comput., pp. 222–231. Vancouver, 10–12 August
1987

3. Dolev, D., Shavit, N.: Bounded concurrent time-stamp systems
are constructible. SIAM J. Comput. 26(2), 418–455 (1997)

4. Haldar, S., Vitanyi, P.: Bounded concurrent timestamp systems
using vector clocks. J. Assoc. Comp. Mach. 49(1), 101–126
(2002)

5. Israeli, A., Li, M.: Bounded time-stamps. Distribut. Comput. 6,
205–209 (1993) (Preliminary, more extended, version in: Proc.
28th IEEE Symp. Found. Comput. Sci., pp. 371–382, 1987.)

6. Israeli, A., Shaham, A.: Optimal multi-writer multireader atomic
register. In: Proc. 11th ACM Symp. Principles Distr. Comput.,
pp. 71–82. Vancouver, British Columbia, Canada, 10–12 August
1992

7. Kirousis, L.M., Kranakis, E., Vitányi, P.M.B.: Atomic multireader
register. In: Proc. Workshop DistributedAlgorithms. Lect Notes
Comput Sci, vol 312, pp. 278–296. Springer, Berlin (1987)

8. Lamport, L.: On interprocess communication—Part I: Basic
formalism, Part II: Algorithms. Distrib. Comput. 1(2), 77–101
(1986)

9. Li, M., Tromp, J., Vitányi, P.M.B.: How to share concurrent wait-
free variables. J. ACM 43(4), 723–746 (1996) (Preliminary ver-
sion: Li, M., Vitányi, P.M.B. A very simple construction for atomic
multiwriter register. Tech. Rept. TR-01–87, Computer Science
Dept., Harvard University, Nov. 1987)

10. Peterson, G.L.: Concurrent reading while writing. ACM Trans.
Program. Lang. Syst. 5(1), 56–65 (1983)

11. Peterson, G.L., Burns, J.E.: Concurrent reading while writing II:
Themultiwriter case. In: Proc. 28th IEEE Symp. Found. Comput.
Sci., pp. 383–392. Los Angeles, 27–29 October 1987

12. Singh, A.K., Anderson, J.H., Gouda, M.G.: The elusive atomic
register. J. ACM 41(2), 311–339 (1994) (Preliminary version in:
Proc. 6th ACM Symp. Principles Distribt. Comput., 1987)

13. Tromp, J.: How to construct an atomic variable. In: Proc. Work-
shop Distrib. Algorithms. Lecture Notes in Computer Science,
vol. 392, pp. 292–302. Springer, Berlin (1989)

14. Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by
asynchronous hardware. In: Proc. 27th IEEE Symp. Found. Com-
put. Sci. pp. 233–243. Los Angeles, 27–29 October 1987. Errata,
Proc. 28th IEEE Symp. Found. Comput. Sci., pp. 487–487. Los
Angeles, 27–29 October 1987

Regular Expression Indexing
2002; Chan, Garofalakis, Rastogi

CHEE-YONG CHAN1, MINOS GAROFALAKIS2,
RAJEEV RASTOGI3
1 Department of Computer Science, National University
of Singapore, Singapore, Singapore

2 Computer Science Division, University
of California – Berkeley, Berkeley, CA, USA

3 Bell Labs, Lucent Technologies, Murray Hill, NJ, USA

Keywords and Synonyms

Regular expression indexing; Regular expression retrieval

ProblemDefinition

Regular expressions (REs) provide an expressive and pow-
erful formalism for capturing the structure of messages,
events, and documents. Consequently, they have been
used extensively in the specification of a number of lan-
guages for important application domains, including the
XPath pattern language for XML documents [6], and the
policy language of the Border Gateway Protocol (BGP)
for propagating routing information between autonomous
systems in the Internet [12]. Many of these applications
have to manage large databases of RE specifications and
need to provide an effective matching mechanism that,
given an input string, quickly identifies all the REs in the
database that match it. This RE retrieval problem is there-
fore important for a variety of software components in the
middleware and networking infrastructure of the Internet.

The RE retrieval problem can be stated as follows:
Given a large set S of REs over an alphabet˙ , where each
RE r 2 S defines a regular language L(r), construct a data
structure on S that efficiently answers the following query:
given an arbitrary input string w 2 ˙�, find the subset Sw
of REs in S whose defined regular languages include the
string w. More precisely, r 2 Sw iff w 2 L(r). Since S is
a large, dynamic, disk-resident collection of REs, the data

Regular Expression Indexing R 765

structure should be dynamic and provide efficient support
of updates (insertions and deletions) to S. Note that this
problem is the opposite of the more traditional RE search
problem where S
 ˙� is a collection of strings and the
task is to efficiently find all strings in S that match an input
regular expression.

Notations

An RE r over an alphabet˙ represents a subset of strings
in ˙� (denoted by L(r)) that can be defined recursively
as follows [9]: (1) the constants � and ; are REs, where
L(�) = f�g and L(;) = ;; (2) for any letter a 2 ˙ , a is a RE
where L(a) = fag; (3) if r1 and r2 are REs, then their union,
denoted by r1 +r2, is a RE where L(r1 +r2) = L(r1) [L(r2);
(4) if r1 and r2 are REs, then their concatenation, denoted
by r1:r2, is a RE where L(r1:r2) = fs1s2 j s1 2 L(r1); s2 2
L(r2)g; (5) if r is a RE, then its closure, denoted by r�, is
a RE where L(r�) = L(�) [L(r) [L(rr) [L(rrr) [� � �;
and (6) if r is a RE, then a parenthesized r, denoted by (r),
is a RE where L((r)) = L(r). For example, if˙ = fa; b; cg,
then (a + b):(a + b + c)�:c is a RE representing the set of
strings that begins with either a “a” or a “b” and ends with
a “c”. A string s 2 ˙� is said to match a RE r if s 2 L(r).

The language L(r) defined by an RE r can be recog-
nized by a finite automaton (FA) M that decides if an input
string w is in L(r) by reading each letter in w sequentially
and updating its current state such that the outcome is de-
termined by the final state reached by M after w has been
processed [9]. Thus, M is an FA for r if the language ac-
cepted by M, denoted by L(M), is equal to L(r). An FA is
classified as a deterministic finite automaton (DFA) if its
current state is always updated to a single state; otherwise,
it is a non-deterministic finite automaton (NFA) if its cur-
rant state could refer to multiple possible states. The trade
off between a DFA and an NFA representations for a RE
is that the latter is more space-efficient while the former
is more time-efficient for recognizing a matching string by
checking a single path of state transitions. Let jL(M)j de-
note the size of L(M) and jLn(M)j denote the number of
length-n strings in L(M). Given a setM of finite automata,
let L(M) denote the language recognized by the automata
inM; i. e., L(M) =

S
Mi2M L(Mi).

Key Results

The RE retrieval problem was first studied for a restricted
class of REs in the context of content-based dissemina-
tion of XML documents using XPath-based subscriptions
(e. g., [1,3,7]), where each XPath expression is processed in
terms of a collection of path expressions. While the XPath
language [6] allows rich patterns with tree structure to be

specified, the path expressions that it supports lack the full
expressive power of REs (e. g., XPath does not permit the
RE operators �, + and � to be arbitrarily nested in path ex-
pressions), and thus extending these XML-filtering tech-
niques to handle general REs may not be straightforward.
Further, all of the XPath-based methods are designed for
indexing main-memory resident data. Another possible
approach would be to coalesce the automata for all the REs
into a single NFA, and then use this structure to determine
the collection of matching REs. It is unclear, however, if
the performance of such an approach would be superior
to a simple sequential scan over the database of REs; fur-
thermore, it is not easy to see how such a scheme could be
adapted for disk-resident RE data sets.

The first disk-based data structure that can handle
the storage and retrieval of REs in their full generality is
the RE-tree [4,5]. Similar to the R-tree [8], an RE-tree is
a dynamic, height-balanced, hierarchical index structure,
where the leaf nodes contain data entries corresponding
to the indexed REs, and the internal nodes contain “direc-
tory” entries that point to nodes at the next level of the
index. Each leaf node entry is of the form (id,M), where
id is the unique identifier of an RE r and M is a finite au-
tomaton representing r. Each internal node stores a collec-
tion of finite automata; and each node entry is of the form
(M, ptr), whereM is a finite automaton and ptr is a pointer
to some node N (at the next level) such that the following
containment property is satisfied: IfMN is the collection of
automata contained in nodeN, then L(MN)
 L(M). The
automatonM is referred to as the bounding automaton for
MN . The containment property is key to improving the
search performance of hierarchical index structures like
RE-trees: if a query string w is not contained in L(M), then
it follows thatw 62 L(Mi) for allMi 2MN . As a result, the
entire subtree rooted at N can be pruned from the search
space. Clearly, the closer L(M) is to L(MN), the more ef-
fective this search-space pruning will be.

In general, there are an infinite number of bounding
automata forMN with different degrees of precision from
the least precise bounding automaton with L(M) = ˙� to
the most precise bounding automaton, referred to as the
minimal bounding automaton, with L(M) = L(MN). Since
the storage space for an automaton is dependent on its
complexity (in terms of the number of its states and tran-
sitions), there is a space-precision tradeoff involved in the
choice of a bounding automaton for each internal node en-
try. Thus, even though minimal bounding automata result
in the best pruning due to their tightness, it may not be de-
sirable (or even feasible) to always storeminimal bounding
automata in RE-trees since their space requirement can be
too large (possibly exceeding the size of an index node),

766 R Regular Expression Indexing

thus resulting in an index structure with a low fan-out.
Therefore, to maintain a reasonable fan-out for RE-trees,
a space constraint is imposed on the maximum number
of states (denoted by ˛) permitted for each bounding au-
tomaton in internal RE-tree nodes. The automata stored
in RE-tree nodes are, in general, NFAs with a minimum
number of states. Also, for better space utilization, each
individual RE-tree node is required to contain at least m
entries. Thus, the RE-tree height is O(logm(jSj)).

RE-trees are conceptually similar to other hierarchi-
cal, spatial index structures, like the R-tree [8] that is de-
signed for indexing a collection of multi-dimensional rect-
angles, where each internal entry is represented by a min-
imal bounding rectangle (MBR) that contains all the rect-
angles in the node pointed to by the entry. RE-tree search
simply proceeds top-down along (possibly) multiple paths
whose bounding automaton accepts the input string; RE-
tree updates try to identify a “good” leaf node for inser-
tion and can lead to node splits (or, node merges for dele-
tions) that can propagate all the way up to the root. There
is, however, a fundamental difference between the RE-tree
and the R-tree in the indexed data types: regular languages
typically represent infinite sets with no well-defined no-
tion of spatial locality. This difference mandates the de-
velopment of novel algorithmic solutions for the core RE-
tree operations. To optimize for search performance, the
core RE-tree operations are designed to keep each bound-
ing automatonM in every internal node to be as “tight” as
possible. Thus, if M is the bounding automaton forMN ,
then L(M) should be as close to L(MN) as possible.

There are three core operations that need to be ad-
dressed in the RE-tree context: (P1) selection of an op-
timal insertion node, (P2) computing an optimal node
split, and (P3) computing an optimal bounding automa-
ton. The goal of (P1) is to choose an insertion path for
a new RE that leads to “minimal expansion” in the bound-
ing automaton of each internal node of the insertion path.
Thus, given the collection of automata M(N) in an in-
ternal index node N and a new automaton M, an opti-
mal Mi 2M(N) needs to be chosen to insertM such that
jL(Mi) \ L(M)j is maximum. The goal of (P2), which
arises when splitting a set of REs during an RE-tree node-
split, is to identify a partitioning that results in theminimal
amount of “covered area” in terms of the languages of the
resulting partitions. More formally, given the collection of
automataM = fM1;M2; � � � ;Mkg in an overflowed index
node, find the optimal partition of M into two disjoint
subsetsM1 andM2 such that jM1j � m, jM2j � m and
jL(M1)j + jL(M2)j is minimum. The goal of (P3), which
arises during insertions, node-splits, or node-merges, is to
identify a bounding automaton for a set of REs that does

not cover too much “dead space”. Thus, given a collection
of automataM, the goal is to find the optimal bounding
automaton M such that the number of states of M is no
more than ˛, L(M)
 L(M) and jL(M)j is minimum.

The objective of the above three operations is to max-
imize the pruning during search by keeping bounding au-
tomata tight. In (P1), the optimal automaton Mi selected
(within an internal node) to accommodate a newly in-
serted automatonM is to maximize jL(Mi) \ L(M)j. The
set of automataM are split into two tight clusters in (P2),
while in (P3), the most precise automaton (with no more
than ˛ states) is computed to cover the set of automata
in M. Note that (P3) is unique to RE-trees, while both
(P1) and (P2) have their equivalents in R-trees. The heuris-
tics solutions [2,8] proposed for (P1) and (P2) in R-trees
aim to minimize the number of visits to nodes that do not
lead to any qualifying data entries. Although the minimal
bounding automata in RE-trees (which correspond to reg-
ular languages) are very different from the MBRs in R-
trees, the intuition behind minimizing the area of MBRs
(total area or overlapping area) in R-trees should be ef-
fective for RE-trees as well. The counterpart for area in
an RE-tree is jL(M)j, the size of the regular language for
M. However, since a regular language is generally an infi-
nite set, new measures need to be developed for the size of
a regular language or for comparing the sizes of two regu-
lar languages.

One approach to compare the relative sizes of two reg-
ular languages is based on the following definition: for
a pair of automata Mi and Mj, L(Mi) is said to be larger
than L(Mj) if there exists a positive integer N such that
for all k � N ,

Pk
l=1 jLl (Mi)j �

Pk
l=1 jLl (Mj)j. Based on

the above intuition, three increasingly sophisticated mea-
sures are proposed to capture the size of an infinite regu-
lar language. The max-count measure simply counts the
number of strings in the language up to a certain size
�; i. e., jL(M)j =

P

i=1 jLi(M)j. This measure is useful for

applications where the maximum length of all the REs
to be indexed are known and is not too large so that �
can be set to some value slightly larger than the max-
imum length of the REs. A second more robust mea-
sure that is less sensitive to the � parameter value is
the rate-of-growth measure which is based on the intu-
ition that a larger language grows at a faster rate than
a smaller language. The size of a language is approxi-
mated by computing the rate of change of its size from
one “window” of lengths to the next consecutive “win-
dow” of lengths: if � is a length parameter that denote the
start of the first window and � is a window-size parameter,
then jL(M)j =

P
+2��1

+� jLi(M)j/

P
+��1

 jLi(M)j. As in

Regular Expression Indexing R 767

the max-count measure, the parameters � and � should be
chosen to be slightly greater than the number of states of
M to ensure that strings involving a substantial portion of
paths, cycles, and accepting states are counted in each win-
dow. However, there are cases where the rate-of-growth
measure also fails to capture the “larger than” relation-
ship between regular languages [4]. To address some of the
shortcomings of the first two metrics, a third information-
theoretic measure is proposed that is based on Rissanen’s
Minimum description length (MDL) principle [11]. The
intuition is that if L(Mi) is larger than L(Mj), then the
per-symbol-cost of an MDL-based encoding of a random
string in L(Mi) using Mi is very likely to be higher than
that of a string in L(Mj) using Mj, where the per-symbol-
cost of encoding a string w 2 L(M) is the ratio of the cost
of an MDL-based encoding of w using M to the length
of w. More specifically, if w = w1:w2: � � � :wn 2 L(M) and
s0; s1; : : : ; sn is the unique sequence of states visited by w
in M, then the MDL-based encoding cost of w using M is
given by

Pn�1
i=0 dlog2(ni)e, where each ni denotes the num-

ber of transitions out of state si, and log2(ni) is the num-
ber of bits required to specify the transition out of state si.
Thus, a reasonable measure for the size of a regular lan-
guage L(M) is the expected per-symbol-cost of an MDL-
based encoding for a random sample of strings in L(M).

To utilize the above metrics for measuring L(M), one
common operation needed is the computation of jLn(M)j,
the number of length-n strings in L(M). While jLn(M)j
can be efficiently computed when M is a DFA, the prob-
lem becomes #P-complete when M is an NFA [10]. Two
approaches were proposed to approximate jLn(M)j when
N is an NFA [10]. The first approach is an unbiased esti-
mator for jLn(M)j, which can be efficiently computed but
can have a very large standard deviation. The second ap-
proach is a more accurate randomized algorithm for ap-
proximating jLn(M)j but it is not very useful in practice
due to its high time complexity of O(nlog(n)). A more prac-
tical approximation algorithm with a time complexity of
O(n2jMj2 minfj˙ j; jMjg) was proposed in [4].

The RE-tree operations (P1) and (P2) require frequent
computations of jL(Mi \ Mj)j and jL(Mi [Mj)j to be
performed for pairs of automata Mi ;Mj . These computa-
tions can adversely affect RE-tree performance since con-
struction of the intersection and union automaton M can
be expensive. Furthermore, since the final automaton M
may have many more states than the two initial automata
Mi and Mj, the cost of measuring jL(M)j can be high.
The performance of these computations can, however, be
optimized by using sampling. Specifically, if the counts
and samples for each L(Mi) are available, then this infor-
mation can be utilized to derive approximate counts and

samples for L(Mi \Mj) and L(Mi [Mj) without incur-
ring the overhead of constructing the automata Mi \Mj
andMi [Mj and counting their sizes. The sampling tech-
niques used are based on the following results for approx-
imating the sizes of and generating uniform samples of
unions and intersections of arbitrary sets:

Theorem 1 (Chan, Garofalakis, Rastogi, [4]) Let r1 and
r2 be uniform random samples of sets S1 and S2, respec-
tively.
1. (jr1 \ S2jjS1j)/jr1j is an unbiased estimator of the size of

S1 \ S2.
2. r1 \ S2 is a uniform random sample of S1 \ S2 with size
jr1 \ S2j.

3. If the sets S1 and S2 are disjoint, then a uniform ran-
dom sample of S1 [S2 can be computed in O(jr1j + jr2j)
time. If S1 and S2 are not disjoint, then an approximate
uniform random sample of S1 [S2 can be computed
with the same time complexity.

Applications

The RE retrieval problem also arises in the context of both
XML document classification, which identifies match-
ing DTDs for XML documents, as well as BGP rout-
ing, which assigns appropriate priorities to BGP advertise-
ments based on their matching routing-system sequences.

Experimental Results

Experimental results with synthetic data sets [5] clearly
demonstrate that the RE-tree index is significantly more
effective than performing a sequential search for match-
ing REs, and in a number of cases, outperforms sequential
search by up to an order of magnitude.

Recommended Reading
1. Altinel, M., Franklin, M.: Efficient filtering of XML documents for

selective dissemination of information. In: Proceedings of 26th
International Conference on Very LargeData Bases, Cairo, Egypt,
pp. 53–64. Morgan Kaufmann, Missouri (2000)

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-
Tree: An efficient and robust access method for points and
rectangles. In: Proceedings of the ACM International Conference
onManagementofData, Atlantic City, New Jersey, pp. 322–331.
ACM Press, New York (1990)

3. Chan, C.-Y., Felber, P., Garofalakis, M., Rastogi, R.: Efficient fil-
tering of XML documents with XPath expressions. In: Proceed-
ings of the 18th International Conference on Data Engineering,
San Jose, California, pp. 235–244. IEEE Computer Society, New
Jersey (2002)

4. Chan, C.-Y., Garofalakis, M., Rastogi, R.: RE-Tree: An efficient in-
dex structure for regular expressions. In: Proceedings of 28th
International Conference on Very Large Data Bases, Hong Kong,
China, pp. 251–262. Morgan Kaufmann, Missouri (2002)

768 R Regular Expression Matching

5. Chan, C.-Y., Garofalakis, M., Rastogi, R.: RE-Tree: An efficient in-
dex structure for regular expressions. VLDB J. 12(2), 102–119
(2003)

6. Clark, J., DeRose, S.: XML Path Language (XPath) Version
1.0. W3C Recommendation, http://www.w3.org./TR/xpath, Ac-
cessed Nov 1999

7. Diao, Y., Fischer, P., Franklin, M., To, R.: YFilter: Efficient and scal-
able filtering of XML documents. In: Proceedings of the 18th In-
ternational Conference on Data Engineering, San Jose, Califor-
nia, pp. 341–342. IEEE Computer Society, New Jersey (2002)

8. Guttman, A.: R-Trees: A dynamic index structure for spatial
searching. In: Proceedings of the ACM International Conference
on Management of Data, Boston, Massachusetts, pp. 47–57.
ACM Press, New York (1984)

9. Hopcroft, J., Ullman, J.: Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Massachusetts
(1979)

10. Kannan, S., Sweedyk, Z., Mahaney, S.: Counting and random
generation of strings in regular languages. In: Proceedings of
the 6th ACM-SIAM Symposium on Discrete Algorithms, San Fran-
cisco, California, pp. 551–557. ACM Press, New York (1995)

11. Rissanen, J.: Modeling by Shortest Data Description. Automat-
ica 14, 465–471 (1978)

12. Stewart, J.W.: BGP4, Inter-Domain Routing in the Internet. Addi-
son Wesley, Massacuhsetts (1998)

Regular ExpressionMatching
2004; Navarro, Raffinot

LUCIAN ILIE
Department of Computer Science, University
of Western Ontario, London, ON, Canada

Keywords and Synonyms

Automata-based searching

ProblemDefinition

Given a text string T of length n and a regular expression
R, the regular expression matching problem (REM) is to
find all text positions at which an occurrence of a string in
L(R) ends (see below for definitions).

For an alphabet˙ , a regular expression R over˙ con-
sists of elements of ˙ [f"g (" denotes the empty string)
and operators � (concatenation), | (union), and � (iter-
ation, that is, repeated concatenation); the set of strings
L(R) represented by R is defined accordingly; see [5].
It is important to distinguish two measures for the size
of a regular expression: the size, m, which is the total
number of characters from ˙ [f�; j;�g, and ˙-size, m˙ ,
which counts only the characters in˙ . As an example, for
R = (AjT)((CjCG)�), the set L(R) contains all strings that
start with an A or a T followed by zero or more strings in
the set {C, CG}; the size of R is m = 8 and the ˙-size is

m˙ = 5. Any regular expression can be processed in lin-
ear time so that m = O(m˙) (with a small constant); the
difference becomes important when the two sizes appear
as exponents.

Key Results

Finite Automata

The classical solutions for the REM problem involve fi-
nite automata which are directed graphs with the edges
labeled by symbols from ˙ [f"g; their nodes are called
states; see [5] for details. Unrestricted automata are called
nondeterministic finite automata (NFA). Deterministic fi-
nite automata (DFA) have no "-labels and require that
no two outgoing edges of the same state have the same
label. Regular expressions and DFAs are equivalent, that
is, the sets of strings represented are the same, as shown
by Kleene [8]. There are two classical ways of computing
an NFA from a regular expression. Thompson’s construc-
tion [14], builds an NFA with up to 2m states and up to
4m edges whereas Glushkov–McNaughton–Yamada’s au-
tomaton [3,9] has theminimumnumber of states,m˙ + 1,
and O(m2

˙) edges; see Fig. 1. Any NFA can be converted
into an equivalent DFA by the subset construction: each
subset of the set of states of the NFA becomes a state of
the DFA. The problem is that the DFA can have exponen-
tially more states than the NFA. For instance, the regular
expression ((ajb)�)a(ajb)(ajb) : : : (a|b), with k occur-
rences of the (a|b) term, has a (k + 2)-state NFA but re-
quires˝(2k) states in any equivalent DFA.

Classical Solutions

A regular expression is first converted into anNFAorDFA
which is then simulated on the text. In order to be able to
search for a match starting anywhere in the text, a loop
labeled by all elements of˙ is added to the initial state; see
Fig. 1.

Searching with an NFA requires linear space but many
states can be active at the same time and to update them all
one needs, for Thompson’s NFA,O(m) time for each letter
of the text; this gives Theorem 1. On the other hand, DFAs
allow searching time that is linear in n but require more
space for the automaton. Theorem 2 uses the DFA ob-
tained from the Glushkov–McNaughton–Yamada’s NFA.

Theorem 1 (Thompson [14]) The REM problem can be
solved with an NFA inO(mn) time andO(m) space.

Theorem 2 (Kleene [8]) The REM problem can be solved
with a DFA inO(n + 2m˙) time and O(2m˙) space.

http://www.w3.org./TR/xpath

Regular Expression Matching R 769

Regular ExpressionMatching, Figure 1
Thompson’s NFA (left) and Glushkov–McNaughton–Yamada’s NFA (right) for the regular expression (A|T)((C|CG)*); the initial
loops labeled A,T,C,G are not part of the construction, they are needed for REM

Lazy Construction and Modules

One heuristic to alleviate the exponential increase in the
size of DFA is to build only the states reached while scan-
ning the text, as implemented in Gnu Grep. Still, the space
needed for the DFA remains a problem. A four-Russians
approach was presented by Myers [10] where a tradeoff
between the NFA and DFA approaches is proposed. The
syntax tree of the regular expression is divided into mod-
ules which are implemented as DFAs and are thereafter
treated as leaf nodes in the syntax tree. The process con-
tinues until a single module is obtained.

Theorem 3 (Myers [10]) The REM problem can be solved
in O(mn/ log n) time andO(mn/ log n) space.

Bit-Parallelism

The simulation of the above mentioned modules is done
by encoding all states as bits of a single computer word
(called bit mask) so that all can be updated in a single op-
eration. The method can be used without modules, to sim-
ulate directly an NFA as done in [17] and implemented
in the Agrep software [16]. Note that, in fact, the DFA is
also simulated: a whole bit mask corresponds to a subset
of states of the NFA, that is, one state of the DFA.

The bit-implementation of Wu and Manber [17] uses
the property of Thompson’s automaton that all˙-labeled
edges connect consecutive states, that is, they carry a bit
1 from position i to position i + 1. This makes it easy to
deal with the ˙-labeled edges but the "-labeled ones are
more difficult. A table of size linear in the number of states
of the DFA needs to be precomputed to account for the
"-closures (set of states reachable from a given state by "-
paths).

Note that in Theorems 1, 2, and 3 the space complexity
is given in words. In Theorems 4 and 5 below, for a more
practical analysis, the space is given in bits and the alpha-
bet size is also taken into consideration. For comparison,
the space in Theorem 2, given in bits, is O(j˙ jm˙2m˙).

Theorem 4 (Wu andManber [17]) Thompson’s automa-
ton can be implemented using 2m(22m+1 + j˙ j) bits.

Glushkov–McNaughton–Yamada’s automaton has differ-
ent structural properties. First, it is "-free, that is, there are
no "-labels on edges. Second, all edges incoming to a given
state are labeled the same. These properties are exploited
by Navarro and Raffinot [13] to construct a bit-parallel im-
plementation that requires less space. The results is a sim-
ple algorithm for regular expression searching which uses
less space and usually performs faster than any existing al-
gorithm.

Theorem 5 (Navarro and Raffinot [13]) Glushkov–
McNaughton–Yamada’s automaton can be implemented
using (m˙ + 1)(2m˙+1 + j˙ j) bits.

All algorithms in this category run in O(n) time but
smaller DFA representation implies more locality of refer-
ence and thus faster algorithms in practice. An improve-
ment of any algorithm using Glushkov–McNaughton–
Yamada’s automaton can be done by reducing first the
automaton by merging some of its states, as done by
Ilie et al. [6]. The reduction can be performed in such
a way that all useful properties of the automaton are pre-
served. The search becomes faster due to the reduction in
size.

Filtration

The above approaches examine every character in the
text. In [15] a multipattern search algorithm is used to
search for strings that must appear inside any occurrence
of the regular expression. Another technique is used in
Gnu Grep; it extracts the longest string that must appear in
any match (it can be used only when such a string exists).
In [13], bit-parallel techniques are combined with a re-
verse factor search approach to obtain a very fast character
skipping algorithm for regular expression searching.

770 R Regular Expression Matching

Related Problems

Regular expressions with backreference have a feature that
helps remembering what was matched to be used later;
the matching problem becomes NP-complete; see [1]. Ex-
tended regular expressions involve adding two extra oper-
ators, intersection and complement, which do not change
the expressive power. The corresponding matching prob-
lem can be solved inO((n + m)4) time using dynamic pro-
gramming, see [5, Exercise 3.23].

Concerning finite automata construction, recall that
Thompson’s NFA has O(m) edges whereas the "-free
Glushkov–McNaughton–Yamada’s NFA can have a quad-
ratic number of edges. It has been shown in [2] that one
can always build an "-free NFAwithO(m logm) edges (for
fixed alphabets). However, it is the number of states which
is more important in the searching algorithms.

Applications

Regular expression matching is a powerful tool in text-
based applications, such as text retrieval and text editing,
and in computational biology to find various motifs in
DNA and protein sequences. See [4] for more details.

Open Problems

The most important theoretical problem is whether lin-
ear time and linear space can be achieved simultane-
ously. Characterizing the regular expressions that can be
searched for using a linear-size equivalent DFA is also of
interest. The expressions consisting of a single string are
included here – the algorithm of Knuth, Morris, and Pratt
is based on this. Also, it is not clear howmuch an NFA can
be efficiently reduced (as done by [6]); the problem of find-
ing a minimal NFA is PSPACE-complete, see [7]. Finally,
for testing, it is not clear how to define random regular ex-
pressions.

Experimental Results

A disadvantage of the bit-parallel technique compared
with the classical implementation of a DFA is that the for-
mer builds all possible subsets of states whereas the latter
builds only the states that can be reached from the initial
one (the other ones are useless). On the other hand, bit-
parallel algorithms are simpler to code, more flexible (they
allow also approximate matching), and there are tech-
niques for reducing the space required. Among the bit-
parallel versions, Glushkov–McNaughton–Yamada-based
algorithms are better than Thompson-based ones. Mod-
ules obtain essentially the same complexity as bit-parallel
ones but are more complicated to implement and slower

in practice. As the number of computer words increases,
bit-parallel algorithms slow down and modules may be-
come attractive. Note also that technological progress has
more impact on the bit-parallel algorithms, as opposed to
classical ones, since the former depend very much on the
machine word size. For details on comparison among var-
ious algorithms (including filtration based) see [12]; more
recent comparisons are in [13], including the fastest algo-
rithms to date.

URL to Code

Many text editors and programming languages include
regular expression search features. They are, as well,
among the tools used in protein databases, such as
PROSITE and SWISS-PROT, which can be found at
http://www.expasy.org/. The package agrep [17] can be
downloaded from http://webglimpse.net/download.html
and nrgrep [11] from http://www.dcc.uchile.cl/gnavarro/
software.

Cross References

� Approximate Regular Expression Matching is a more
general problem where errors are allowed.

Recommended Reading

1. Aho, A.: Algorithms for Finding Patterns in Strings. In: van
Leewen, J. (ed.) Handbook of Theoretical Computer Science,
vol. A: Algorithms and Complexity, pp. 255–300. Elsevier Sci-
ence, Amsterdam andMIT Press, Cambridge (1990)

2. Geffert, V.: Translation of binary regular expressions into
nondeterministic "-free automata with O(n log n) transitions.
J. Comput. Syst. Sci. 66(3), 451–472 (2003)

3. Glushkov, V.M.: The abstract theory of automata. Russ. Math.
Surv. 16, 1–53 (1961)

4. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cam-
bridge University Press, Cambridge (1997)

5. Hopcroft, J., Ullman, J.: Introduction to Automata, Languages,
and Computation. Addison-Wesley, Reading, MA (1979)

6. Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In: Karhumäki, J.
et al. (eds.) Theory is Forever. Lect. Notes Comput. Sci. 3113,
112–124 (2004)

7. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM
J. Comput. 22(6), 1117–1141 (1993)

8. Kleene, S.C.: Representation of events in nerve sets. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–40.
Princeton Univ. Press, Princeton (1956)

9. McNaughton, R., Yamada, H.: Regular expressions and state
graphs for automata. IRE Trans. Elect. Comput. 9(1), 39–47
(1960)

10. Myers, E.: A four Russians algorithm for regular expression pat-
tern matching. J. ACM 39(2), 430–448 (1992)

11. Navarro, G.: Nr-grep: a fast and flexible pattern matching tool.
Softw. Pr. Exp. 31, 1265–1312 (2001)

http://www.expasy.org/
http://webglimpse.net/download.html
http://www.dcc.uchile.cl/gnavarro/software
http://www.dcc.uchile.cl/gnavarro/software

Reinforcement Learning R 771

12. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings –
Practical on-line search algorithms for texts and biological se-
quences. Cambridge University Press, Cambridge (2002)

13. Navarro, G., Raffinot, M.: New techniques for regular expression
searching. Algorithmica 41(2), 89–116 (2004)

14. Thompson, K.: Regular expression search algorithm. Commun.
ACM 11(6), 419–422 (1968)

15. Watson, B.: Taxonomies and Toolkits of Regular Language Al-
gorithms, Ph. D. Dissertation, EindhovenUniversity of Technol-
ogy, The Netherlands (1995)

16. Wu, S., Manber, U.: Agrep – a fast approximate patter-
matching tool. In: Proceedings of the USENIX Technical Conf.,
pp. 153–162 (1992)

17. Wu, S., Manber, U.: Fast text searching allowing errors. Com-
mun. ACM 35(10), 83–91 (1992)

Reinforcement Learning
1992; Watkins

EYAL EVEN-DAR
Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA, USA

Keywords and Synonyms

Neuro dynamic programming

ProblemDefinition

Many sequential decision problems ranging from dynamic
resource allocation to robotics can be formulated in terms
of stochastic control and solved by methods of Reinforce-
ment learning. Therefore, Reinforcement learning (a.k.a
Neuro Dynamic Programming) has become one of the
major approaches to tackling real life problems.

In Reinforcement learning, an agent wanders in an un-
known environment and tries to maximize its long term
return by performing actions and receiving rewards. The
most popular mathematical models to describe Reinforce-
ment learning problems are the Markov Decision Process
(MDP) and its generalization Partially Observable MDP.
In contrast to supervised learning, in Reinforcement learn-
ing the agent is learning through interaction with the envi-
ronment and thus influences the “future”. One of the chal-
lenges that arises in such cases is the exploration-exploita-
tion dilemma. The agent can choose either to exploit its
current knowledge and perhaps not learn anything new or
to explore and risk missing considerable gains.

While Reinforcement learning contains many prob-
lems, due to lack of space this entry focuses on the basic
ones. For a detailed history of the development of Rein-
forcement learning, see [13] chapter 1, the focus of the en-
try is on Q-learning and Rmax.

Notation

Markov Decision Process: A Markov Decision Process
(MDP) formalizes the following problem. An agent is in
an environment, which is composed of different states. In
each time step the agent performs an action and as a result
observes a signal. The signal is composed from the reward
to the agent and the state it reaches in the next time step.
More formally the MDP is defined as follows,

Definition 1 AMarkov Decision process (MDP)M is a 4-
tuple (S;A; P; R), where S is a set of the states, A is a set
of actions, Pa

s;s0 is the transition probability from state s
to state s0 when performing action a 2 A in state s, and
R(s, a) is the reward distribution when performing action
a in state s.

A strategy for an MDP assigns, at each time t, for each
state s a probability for performing action a 2 A, given
a history Ft�1 = fs1; a1; r1; : : : ; st�1; at�1; rt�1g which in-
cludes the states, actions and rewards observed until time
t � 1. While executing a strategy
 an agent performs at
time t action at in state st and observe a reward rt (dis-
tributed according to R(st ; at)), and a next state st+1 (dis-
tributed according to Pat

st ;�). The sequence of rewards is
combined into a single value called the return. The agent’s
goal is to maximize the return. There are several natural
ways to define the return.
� Finite horizon: The return of policy
 for a given hori-

zon H is
PH

t=0 rt .
� Discounted return: For a discount parameter � 2 (0; 1),

the discounted return of policy
 is
P1

t=0 �
t rt .

� Undiscounted return: The return of policy
 is
limt!1

1
t+1
Pt

i=0 ri .
Due to to lack of space, only discounted return, which
is the most popular approach mainly due to its math-
ematical simplicity, is considered. The value func-
tion for each state s, under policy
 , is defined as
V� (s) = E� [

P1
i=0 ri�

i], where the expectation is over
a run of policy
 starting at state s. The state-action value
function for using action a in state s and then following

is defined as Q� (s; a) = R(s; a) + �

P
s0 P

a
s;s0V

� (s0).
There exists a stationary deterministic optimal policy,

�, which maximizes the return from any start state [11].
This implies that for any policy
 and any state s,
V�� (s) � V� (s), and
�(s) = argmaxa(Q

�� (s; a)). A po-
licy
 is "-optimal if kV�� � V�k1 � �.

Problems Formulation

The Reinforcement learning problems are divided into
two categories, planning and learning.

772 R Reinforcement Learning

Planning: Given an MDP in its tabular form compute
the optimal policy. An MDP is given in its tabular form if
the 4-tuple, (A; S; P; R) is given explicitly.

The standard methods for the planning problem in
MDP are given below.

Value Iteration: The value iteration is defined as fol-
lows. Start with some initial value function, Cs and then it-
erate using the Bellman operator, TV (s) = maxa R(s; a) +
�
P

s02S P
a
s;s0V(s0).

V0(s) = Cs

Vt+1(s) = TVt(s) ;

This method relies on the fact that the Bellman operator
is contracting. Therefore, the distance between the opti-
mal value function and current value function contracts
by a factor of � with respect to max norm (L1) in each
iteration.

Policy Iteration: This algorithm starts with initial pol-
icy
0 and iterates over polices. The algorithm has two
phases for each iteration. In the first phase, the Value
evaluation step, a value function for
t is calculated, by
finding the fixed point of T�t V�t = V�t , where T�t V =
R(s;
t(s)) + �

P
s02S P

�t (s)
s;s0 V(s0). The second phase, Pol-

icy Improvement step, is taking the next policy,
t+1 as
a greedy policy with respect to V�t . It is known that Policy
iteration converges with fewer iterations than value itera-
tion. In practice the convergence of Policy iteration is very
fast.

Linear Programming: Formulates and solves an MDP
as linear program (LP). The LP variables are V1,. . . ,Vn,
where Vi = V (si). The definition is:

Variables: V1; : : : ;Vn

Minimize:
X
i

Vi

Subject to: Vi � [R(si ; a) + �
X
j

Psi ;s j (a)Vj]

8a 2 A; si 2 S:

Learning: Given the states and action identities, learn an
(almost)optimal policy through interaction with the en-
vironment. The methods are divided into two categories:
model free learning and model based learning.

The widely used Q-learning [16] is a model free al-
gorithm. This algorithm belongs to the class of tempo-
ral difference algorithms [12]. Q-learning is an off policy
method, i. e. it does not depend on the underlying policy

Rmax
Set K = ;;
if s 2 K? then

Execute
̂(s)
else

Execute a random action;
if s becomes known then

K = K
S
fsg;

Compute optimal policy,
̂ for
the modified empirical model

end
end

Reinforcement Learning, Algorithm 1
Amodel based algorithm

and as immediately will be seen it depends on the trajec-
tory and not on the policy generating the trajectory.

Q learning: The algorithm estimates the state-action
value function (for discounted return) as follows:

Q0(s; a) = 0
Qt+1(s; a) = (1 � ˛t(s; a))Qt(s; a)

+ ˛t(s; a)(rt(s; a) + �Vt(s0))

where s0 is the state reached from state s when perform-
ing action a at time t, and Vt(s) = maxa Qt(s; a). As-
sume that ˛t(s0; a0) = 0 if at time t action a0 was not per-
formed at state s0. A learning rate ˛t is well-behaved if
for every state action pair (s, a): (1)

P1
t=1 ˛t(s; a) =1 and

(2)
P1

t=1 ˛
2
t (s; a) <1. As will be seen this is necessary for

the convergence of the algorithm.
The model based algorithms are very simple to de-

scribe; they simply build an empirical model and use any
of the standard methods to find the optimal policy in the
empirical (approximate) model. The main challenge in
this methods is in balancing exploration and exploitation
and having an appropriate stopping condition. Several al-
gorithms give a nice solution for this [3,7]. A version of
these algorithms appearing in [6] is described below.

On an intuitive level a state will become known when it
was visited “enough” times and one can estimate with high
probability its parameters with good accuracy. The mod-
ified empirical model is defined as follows. All states that
are not in K are represented by a single absorbing state in
which the reward is maximal (which causes exploration).
The probability to move to the absorbing state from a state
s 2 K is the empirical probability to move out of K from
s and the probability to move between states in K is the
empirical probability.

Reinforcement Learning R 773

Sample complexity [6] measures how many samples
an algorithm need in order to learn. Note that the sample
complexity translates into the time needed for the agent to
wander in the MDP.

Key Results

The first Theorem shows that the planning problem is easy
as long as theMDP is given in its tabular form, and one can
use the algorithms presented in the previous section.

Theorem 1 ([10]) Given an MDP the planning problem is
P-complete.

The learning problem can be done also efficiently using the
Rmax algorithm as is shown below.

Theorem 2 ([3,7]) Rmax computes an "-optimal policy
from state s with probability at least 1 � ı with sample com-
plexity polynomial in jAj; jSj; 1

�
and log 1

ı
, where s is the

state in which the algorithm halts. Also the algorithm’s com-
putational complexity is polynomial in jAj and jSj.

The fact that Q-learning converges in the limit to the op-
timal Q function (which guarantees that the greedy pol-
icy with respect to the Q function will be optimal) is now
shown.

Theorem 3 ([17]) If every state-action is visited infinitely
often and the learning rate is well behaved then Qt con-
verges to Q� with probability one.

The last statement is regarding the convergence rate of
Q-learning. This statement must take into consideration
some properties of the underlying policy, and assume that
this policy covers the entire state space in reasonable time.
The next theorem shows that the convergence rate of Q-
learning can vary according to the tuning of the algorithm
parameters.

Theorem 4([4]) Let L be the time needed for the underly-
ing policy to visit every state action with probability 1/2. Let
T be the time until kQ� � QTk � � with probability at least
1 � ı and #(s; a; t) be the number of times action a was per-
formed at state s until time t. Then if ˛t(s; a) = 1/#(s; a; t),
then T is polynomial in L; 1

�
; log 1

ı
and exponential in 1

1�� .
If ˛t(s; a) = 1/#(s; a; t)! for ! 2 (1/2; 1), then T is polyno-
mial L; 1

�
; log 1

ı
and 1

1�� .

Applications

The biggest successes of Reinforcement learning so far
are mentioned here. For a list of Reinforcement learn-
ing successful applications see http://neuromancer.eecs.
umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL.

Backgammon Tesauro [14] used Temporal difference
learning combined with neural network to design a player
who learned to play backgammon by playing itself, and re-
sult in one level with the world’s top players.
Helicopter control Ng et al. [9] used inverse Reinforce-
ment learning for autonomous helicopter flight.

Open Problems

While in this entry only MDPs given in their tabular form
were discussed much of the research is dedicated to two
major directions: large state space and partially observable
environments.

In many real world applications, such as robotics, the
agent cannot observe the state she is in and can only ob-
serves a signal which is correlated with it. In such scenar-
ios the MDP framework is no longer suitable, and another
model is in order. The most popular reinforcement learn-
ing for such environment is the Partially ObservableMDP.
Unfortunately, for POMDP even the planning problems
are intractable (and not only for the optimal policy which
is not stationary but even for the optimal stationary pol-
icy); the learning contains evenmore obstacles as the agent
cannot repeat the same state twice with certainty and thus
it is not obvious how she can learn. An interesting open
problem is trying to characterize when a POMDP is “solv-
able” and when it is hard to solve according to some struc-
ture.

In most applications the assumption that the MDP
can be be represented in its tabular form is not realistic
and approximate methods are in order. Unfortunately not
much theoretically is known under such conditions. Here
are a few of the prominent directions to tackle large state
space.

Function Approximation: The term function approxi-
mation is due to the fact that it takes examples from a de-
sired function (e. g., a value function) and construct an ap-
proximation of the entire function. Function approxima-
tion is an instance of supervised learning, which is studied
inmachine learning and other fields. In contrast to the tab-
ular representation, this time a parameter vector	 repre-
sents the value function. The challenge will be to learn the
optimal vector parameter in the sense of minimum square
error, i. e.

min�
X
s2S

(V� (s) � V (s;))2;

where V(s;) is the approximation function. One of
the most important function approximations is the linear

http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL
http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/SuccessesOfRL

774 R Renaming

function approximation,

Vt(s;) =
TX
i=1

�s(i)	t(i) ;

where each state has a set of vector features, �s . A feature
based function approximation was analyzed and demon-
strated in [2,15]. The main goal here is designing algo-
rithm which converge to almost optimal polices under re-
alistic assumptions.

Factored Markov Decision Process: In a FMDP the set
of states is described via a set of random variables X =
fX1; : : : ; Xng, where each Xi takes values in some finite
domain Dom(Xi). A state s defines a value xi 2 Dom(Xi)
for each variable Xi. The transition model is encoded us-
ing a dynamic Bayesian network. Although the represen-
tation is efficient, not only is finding an "-optimal policy
intractable [8], but it cannot be represented succinctly [1].
However, under few assumptions on the FMDP structure
there exists algorithms such as [5] that have both theoreti-
cal guarantees and nice empirical results.

Cross References

� Attribute-Efficient Learning
� Learning Automata
� Learning Constant-Depth Circuits
�Mobile Agents and Exploration
� PAC Learning

Recommended Reading
1. Allender, E., Arora, S., Kearns, M., Moore, C., Russell, A.: Note

on the representational incompatabilty of function approxi-
mation and factored dynamics. In: Advances in Neural Infor-
mation Processing Systems 15, 2002

2. Bertsekas, D.P., Tsitsiklis, J. N.: Neuro-Dynamic Programming.
Athena Scientific, Belmont (1996)

3. Brafman, R., Tennenholtz, M.: R-max – a general polyno-
mial time algorithm for near optimal reinforcement learning.
J. Mach. Learn. Res. 3, 213–231 (2002)

4. Even-Dar, E., Mansour, Y.: Learning rates for Q-learning.
J. Mach. Learn. Res. 5, 1–25 (2003)

5. Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solu-
tion algorithms for factored mdps. J. Artif. Intell. Res. 19, 399–
468 (2003)

6. Kakade, S.: On the Sample Complexity of Reinforcement Learn-
ing. Ph. D. thesis, University College London (2003)

7. Kearns, M., Singh, S.: Near-optimal reinforcement learning in
polynomial time. Mach. Learn. 49(2–3), 209–232 (2002)

8. Lusena, C., Goldsmith, J., Mundhenk, M.: Nonapproximabil-
ity results for partially observable markov decision processes.
J. Artif. Intell. Res. 14, 83–103 (2001)

9. Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B.,
Berger, E., Liang, E.:Inverted autonomous helicopter flight via

reinforcement learning. In: International Symposiumon Exper-
imental Robotics, 2004

10. Papadimitriu, C.H., Tsitsiklis, J.N.: The complexity of markov
decision processes. In: Mathematics of Operations Research,
1987, pp. 441–450.

11. Puterman, M.: Markov Decision Processes. Wiley-Interscience,
New York (1994)

12. Sutton, R.: Learning to predict by themethods of temporal dif-
ferences. Mach. Learn. 3, 9–44 (1988)

13. Sutton, R., Barto, A.: Reinforcement Learning. An Introduction.
MIT Press, Cambridge (1998)

14. Tesauro, G.J.: TD-gammon, a self-teaching backgammon pro-
gram, achieves amaster-level play. Neural Comput. 6, 215–219
(1996)

15. Tsitsiklis, J.N., Van Roy, B.: Feature-based methods for large
scale dynamic programming. Mach. Learn. 22, 59–94 (1996)

16. Watkins, C.: Learning from Delayed Rewards. Ph. D. thesis,
Cambridge University (1989)

17. Watkins, C., Dyan, P.: Q-learning. Mach. Learn. 8(3/4), 279–292
(1992)

Renaming
1990; Attiya, Bar-Noy, Dolev, Peleg, Reischuk

MAURICE HERLIHY
Department of Computer Science, Brown University,
Providence, RI, USA

Keywords and Synonyms

Wait-free renaming

ProblemDefinition

Consider a system in which n + 1 processes P0; : : : ; Pn
communicate either by message-passing or by reading
and writing a shared memory. Processes are asynchronous:
there is no upper or lower bounds on their speeds, and up
to t of themmay fail undetectably by halting. In the renam-
ing task proposed by Attiya, Bar-Noy, Dolev, Peleg, and
Reischuk [1], each process is given a unique input name
taken from a range 0; : : : ;N , and chooses a unique output
name taken from a strictly smaller range 0; : : : ;K. To rule
out trivial solutions, a process’s decision function must de-
pend only on input names, not its preassigned identifier
(so that Pi cannot simply choose output name i). Attiya et
al. showed that the task has no solution when K = n, but
does have a solution when K = N + t. In 1993, Herlihy
and Shavit [2] showed that the task has no solution when
K < N + t.

Vertexes, simplexes, and complexes model decision
tasks. (See the companion article entitled� Topology Ap-
proach in Distributed Computing). A process’s state at the
start or end of a task is represented as a vertex Ev labeled

Renaming R 775

with that process’s identifier, and a value, either input or
output: Ev = hP; vi i. Two such vertexes are compatible if
(1) they have distinct process identifiers, and (2) those pro-
cess can be assigned those values together. For example,
in the renaming task, input values are required to be dis-
tinct, so two input vertexes are compatible only if they are
labeled with distinct process identifiers and distinct input
values.

Figure 1 shows the output complex for the three-
process renaming task using four names. Notice that the
two edges marked A are identical, as are the two edges
marked B. By identifying these edges, this task defines
a simplicial complex that is topologically equivalent to
a torus. Of course, after changing the number of processes
or the number of names, this complex is no longer a torus.

Key Results

Theorem 1 Let Sn be an n-simplex, and Sm a face of Sn.
Let S be the complex consisting of all faces of Sm, and Ṡ the
complex consisting of all proper faces of Sm (the boundary
complex of S). If �(Ṡ) is a subdivision of Ṡ, and � : �(Ṡ)!
F(S) a simplicial map, then there exists a subdivision �(S)
and a simplicial map : �(S) ! F(S) such that �(Ṡ) =
�(Ṡ), and � and agree on �(Ṡ).
Informally, any simplicial map of anm-sphere toF can be
“filled in” to a simplicial map of the (m + 1)-disk. A span
for F(Sn) is a subdivision � of the input simplex Sn to-
gether with a simplicial map � : �(Sn)! F(Sn) such that
for every face Sm of Sn, � : �(Sm) ! F(Sm). Spans are
constructed one dimension at a time. For each Es = hPi ; vi i
2 Sn ; � carries Es to the solo execution by Pi with input
Evi . For each S1 = (Es0; Es1), Theorem 1 implies that �(Es0)
and �(Es1) can be joined by a path in F(S1). For each
S2 = (Es0; Es1; Es2), the inductively constructed spans define
each face of the boundary complex � : �(S1i j) ! F(S1)i j ,
for i; j 2 f0; 1; 2g. Theorem 1 implies that one can “fill
in” this map, extending the subdivision from the bound-
ary complex to the entire complex.

Theorem 2 If a decision task has a protocol in asyn-
chronous read/write memory, then each input simplex has
a span.

One can restrict attention to protocols that have the prop-
erty that any process chooses the same name in a solo exe-
cution.

Definition 1 A protocol is comparison-based if the only
operations a process can perform on processor identifiers
is to test for equality and order; that is, given two P and
Q, a process can test for P = Q; P � Q, and P � Q, but

cannot examine the structure of the identifiers in anymore
detail.

Lemma 3 If a wait-free renaming protocol for K names
exists, then a comparison-based protocol exists.

Proof Attiya et al. [1] give a simple comparison-based
wait-free renaming protocol that uses 2n+1 output names.
Use this algorithm to assign each process an intermedi-
ate name, and use that intermediate name as input to the
K-name protocol. �

Comparison-based algorithms are symmetric on the
boundary of the span. Let Sn be an input simplex,
� : �(Sn)! F(Sn) a span, andR the output complex for
2n names. Composing the span map � and the decision
map ı yields a map �(Sn) ! R. This map can be simpli-
fied by replacing each output name by its parity, replacing
the complexR with the binary n-sphere Bn .

� : �(Sn)! Bn : (1)

Denote the simplex of Bn whose values are all zero by 0n,
and all one by 1n.

Lemma 4 ��1(0n) = ��1(1n) = ;.

Proof The range 0; : : : ; 2n � 1 does not contain n + 1
distinct even names or n + 1 distinct odd names. �

The n-cylinder Cn is the binary n-sphere without 0n and
1n. Informally, the rest of the argument proceeds by show-
ing that the boundary of the span is “wrapped around” the
hole in Cn a non-zero number of times.

The span �(Sn) (indeed any any subdivided n-sim-
plex) is a (combinatorial) manifold with boundary: each
(n � 1)-simplex is a face of either one or two n-simplexes.
If it is a face of two, then the simplex is an internal simplex,
and otherwise it is a boundary simplex. An orientation of
Sn induces an orientation on each n-simplex of �(Sn) so
that each internal (n� 1)-simplex inherits opposite orien-
tations. Summing these oriented simplexes yields a chain,
denoted ��(Sn), such that

@��(Sn) =
nX
i=0

(�1)i��(facei (S
n)) :

The following is a standard result about the homology of
spheres.

Theorem 5 Let the chain 0n be the simplex 0n oriented like
Sn. (1) For 0 < m < n, any two m-cycles are homologous,
and (2) every n-cycle Cn is homologous to k � @0n , for some
integer k. Cn is a boundary if and only if k = 0.

776 R Renaming

Renaming, Figure 1
Output complex for 3-process renaming with 4 names

Let Sm be the face of Sn spanned by solo executions of
P0; : : : ; Pm . Let 0m denote some m-simplex of Cn whose
values are all zero. Which one will be clear from context.

Lemma 6 For every proper face Sm�1 of Sn, there is an
m-chain ˛(Sm�1) such that

��(��(Sm)) � 0m �
mX
i=0

(�1)i˛(facei (S
m))

is a cycle.

Proof By induction on m. When m = 1, ids(S1) = fi; jg.
01 and ��(��(S1)) are 1-chains with a common bound-
ary hPi ; 0i � hPj ; 0i, so ��(��(S1)) � 01 is a cycle, and
˛(hPi ; 0i) = ;.

Assume the claim for m; 1 � m < n � 1. By Theo-
rem 5, every m-cycle is a boundary (for m < n � 1), so
there exists an (m + 1)-chain ˛(Sm) such that

��(��(Sm)) � 0m �
mX
i=0

(�1)i˛(facei (S
m)) = @˛(Sm) :

Taking the alternating sum over the faces of Sm+1, the
˛(facei (S

m)) cancel out, yielding

��(@��(Sm+1)) � @0m+1 =
m+1X
i=0

(�1)i@˛(facei(S
m+1)) :

Rearranging terms yields

@

��(��(Sm+1)) � 0m+1 �

m+1X
i=0

(�1)i˛(facei (S
m+1))

!

= 0 ;

implying that

��(��(Sm+1)) � 0m+1 �

m+1X
i=0

(�1)i˛(facei (S
m+1))

is an (m + 1)-cycle. �

Theorem 7 There is no wait-free renaming protocol for
(n + 1) processes using 2n output names.

Proof Because

��(��(Sn�1)) � 0n�1 �
nX
i=0

(�1)i˛(facei (S
n�1))

is a cycle, Theorem 5 implies that it is homologous to k �
@0n , for some integer k. Because � is symmetric on the
boundary of �(Sn), the alternating sum over the (n � 1)-
dimensional faces of Sn yields:

��(@��(Sn)) � @0n
 (n + 1)k � @0n

or

��(@��(Sn))
 (1 + (n + 1)k) � @0n :

Since there is no value of k for which (1 + (n + 1)k) is zero,
the cycle ��(@��(Sn)) is not a boundary, a contradiction.

�

Applications

The renaming problem is a key tool for understanding the
power of various asynchronous models of computation.

RNA Secondary Structure Boltzmann Distribution R 777

Open Problems

Characterizing the full power of the topological approach
to proving lower bounds remains an open problem.

Cross References

� Asynchronous Consensus Impossibility
� Set Agreement
� Topology Approach in Distributed Computing

Recommended Reading
1. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renam-

ing in an asynchronous environment. J. ACM 37(3), 524–548
(1990)

2. Herlihy, M.P., Shavit, N.: The asynchronous computability theo-
rem for t-resilient tasks. In: Proceedings 25th Annual ACM Sym-
posium on Theory of Computing, 1993, pp. 111–120

Response Time
�Minimum Flow Time
� Shortest Elapsed Time First Scheduling

Reversal Distance
� Sorting Signed Permutations by Reversal (Reversal

Distance)

RNA Secondary Structure
Boltzmann Distribution
2005; Miklós, Meyer, Nagy

RUNE B. LYNGSØ
Department of Statistics, Oxford University, Oxford, UK

Keywords and Synonyms

Full partition function

ProblemDefinition

This problem is concerned with computing features of the
Boltzmann distribution over RNA secondary structures
in the context of the standard Gibbs free energy model
used for RNA Secondary Structure Prediction by Mini-
mum Free Energy (cf. corresponding entry). Thermody-
namics state that for a system with configuration space ˝
and free energy given by E : ˝ 7! R, the probability of the
system being in state ! 2 ˝ is proportional to e�E(!)/RT

where R is the universal gas constant and T the absolute
temperature of the system. The normalizing factor

Z =
X
!2˝

e�E(!)/RT (1)

is called the full partition function of the system.
Over the past several decades, a model approximating

the free energy of a structured RNAmolecule by indepen-
dent contributions of its secondary structure components
has been developed and refined. The main purpose of this
work has been to assess the stability of individual sec-
ondary structures. However, it immediately translates into
a distribution over all secondary structures. Early work fo-
cused on computing the pairing probability for all pairs
of bases, i. e. the sum of the probabilities of all secondary
structures containing that base pair. Recent work has ex-
tended methods to compute probabilities of base pairing
probabilities for RNA heterodimers [2], i. e. interacting
RNAmolecules, and expectation, variance and higher mo-
ments of the Boltzmann distribution.

Notation

Let s 2 fA;C;G;Ug� denote the sequence of bases of an
RNA molecule. Use X � Y where X;Y 2 fA;C;G;Ug to
denote a base pair between bases of type X and Y , and i � j
where 1 � i < j � jsj to denote a base pair between bases
s[i] and s[j].

Definition 1 (RNA Secondary Structure) A secondary
structure for an RNA sequence s is a set of base pairs
S = fi � j j 1 � i < j � jsj ^ i < j � 3g. For i � j; i0 � j0 2 S
with i � j ¤ i0 � j0

� fi; jg \ fi0; j0g = ; (each base pairs with at most one
other base)

� fs[i]; s[j]g 2 ffA;Ug; fC;Gg; fG;Ugg (only Watson-
Crick and G,U wobble base pairs)

� i < i0 < j) j0 < j (base pairs are either nested or jux-
taposed but not overlapping)

The second requirement, that only canonical base pairs are
allowed, is standard but not consequential in solutions to
the problem. The third requirement states that the struc-
ture does not contain pseudoknots. This restriction is cru-
cial for the results listed in this entry.

Energy Model

The model of Gibbs free energy applied, usually referred
to as the nearest-neighbor model, was originally proposed
by Tinoco et al. [10,11]. It approximates the free energy by
postulating that the energy of the full three dimensional

778 R RNA Secondary Structure Boltzmann Distribution

RNA Secondary Structure Boltzmann Distribution, Figure 1
A hypothetical RNA structure illustrating the different loop
types. Bases are represented by circles, the RNA backbone by
straight lines, and base pairs by zigzagged lines

structure only depends on the secondary structure, and
that this in turn can be broken into a sum of independent
contributions from each loop in the secondary structure.

Definition 2 (Loops) For i � j 2 S, base k is accessible
from i � j iff i < k < j and :9i0 � j0 2 S : i < i0 < k <
j0 < j. The loop closed by i � j; `i � j , consists of i � j and all
the bases accessible from i � j. If i0 � j0 2 S and i0 and j0 are
accessible from i � j, then i0 � j0 is an interior base pair in
the loop closed by i � j.

Loops are classified by the number of interior base pairs
they contain:
� hairpin loops have no interior base pairs
� stacked pairs, bulges, and internal loops have one in-

terior base pair that is separated from the closing base
pair on neither side, on one side, or on both sides, re-
spectively

� multibranched loops have two or more interior base
pairs

Bases not accessible from any base pair are called external.
This is illustrated in Fig. 1. The free energy of structure S
is

�G(S) =
X
i � j2S

�G(`i � j) (2)

where �G(`i � j) is the free energy contribution from the
loop closed by i � j. The contribution of S to the full parti-
tion function is

e��G(S)/RT = e�
P

i� j2S�G(`i� j)/RT =
Y
`i� j2S

e��G(`i� j)/RT :

(3)

Problem 1 (RNA Secondary Structure Distribution)
INPUT: RNA sequence s, absolute temperature T and speci-
fication of�G at T for all loops.

OUTPUT:
P
S e
��G(S)/RT , where the sum is over all sec-

ondary structures for s.

Key Results

Solutions are based on recursions similar to those for RNA
Secondary Structure Prediction byMinimum Free Energy,
replacing sum and minimization with multiplication and
sum (or more generally with amerge function and a choice
function [8]). The key difference is that recursions are re-
quired to be non-redundant, i. e. any particular secondary
structure only contributes through one path through the
recursions.

Theorem 1 Using the standard thermodynamic model
for RNA secondary structures, the partition function can
be computed in time O(|s|3) and space O(|s|2). More-
over, the computation can build data structures that al-
low O(1) queries of the pairing probability of i � j for any
1 � i < j � jsj [5,6,7].

Theorem 2 Using the standard thermodynamic model for
RNA secondary structures, the expectation and variance of
free energy over the Boltzmann distribution can be com-
puted in time O(|s|3) and space O(|s|2). More generally, the
kth moment

EBoltzmann[�G] = 1/Z
X
S

e��G(S)/RT�Gk (S) ; (4)

where Z =
P
S e
��G(S)/RT is the full partition function and

the sums are over all secondary structures for s, can be com-
puted in time O(k2|s|3) and space O(k|s|2) [8].

In Theorem 2 the free energy does not hold a special place.
The theorem holds for any function ˚ defined by an inde-
pendent contribution from each loop,

˚(S) =
X
i � j2S

�
�
`i � j
�
; (5)

provided each loop contribution can be handled with the
same efficiency as the free energy contributions. Hence,
moments over the Boltzmann distribution of e. g. num-
ber of base pairs, unpaired bases, or loops can also be ef-
ficiently computed by applying appropriately chosen indi-
cator functions.

Applications

The original use of partition function computations was
for discriminating between well defined and less well de-
fined regions of a secondary structure. Minimum free en-
ergy predictions will always return a structure. Base pair-
ing probabilities help identify regions where the predic-
tion is uncertain, either due to the approximations of the

RNA Secondary Structure Boltzmann Distribution R 779

model or that the real structure indeed does fluctuate be-
tween several low energy alternatives. Moments of Boltz-
mann distributions are used in identifying how biological
RNA molecules deviates from random RNA sequences.

The data structures computed in Theorem 1 can also
be used to efficiently sample secondary structures from the
Boltzmann distribution. This has been used for probabilis-
tic methods for secondary structure prediction, where the
centroid of the most likely cluster of sampled structures is
returned rather than themost likely, i. e.minimum free en-
ergy, structure [3]. This approach better accounts for the
entropic effects of large neighborhoods of structurally and
energetically very similar structures. As a simple illustra-
tion of this effect, consider twice flipping a coin with prob-
ability p > 0:5 for heads. The probability p2 of heads in
both flips is larger than the probability p(1 � p) of heads
followed by tails or tails followed by heads (which again is
larger than the probability (1� p)2 of tails in both flips).
However, if the order of the flips is ignored the probabil-
ity of one heads and one tails is 2p(1 � p). The probability
of two heads remains p2 which is smaller than 2p(1 � p)
when p < 2

3 . Similarly a large set of structures with fairly
low free energy may be more likely, when viewed as a set,
than a small set of structures with very low free energy.

Open Problems

As for RNA Secondary Structure Prediction by Minimum
Free Energy, improvements in time and space complexity
are always relevant. Thismay bemore difficult for comput-
ing distributions, as the more efficient dynamic program-
ming techniques of [9] cannot be applied. In the context
of genome scans, the fact that the start and end positions
of encoded RNA molecule is unknown has recently been
considered [1].

Also the problem of including structures with pseu-
doknots, i. e. structures violating the last requirement in
Def. 1, in the configuration space is an active area of re-
search. It can be expected that all the methods of Theo-
rems 3 through 6 in the entry on RNA Secondary Struc-
ture Prediction Including Pseudoknots can be modified to
computation of distributions without affecting complexi-
ties. This may require some further bookkeeping to ensure
non-redundancy of recursions, and only in [4] has this ac-
tively been considered.

Though the moments of functions that are defined as
sums over independent loop contributions can be com-
puted efficiently, it is unknown whether the same holds for
functions with more complex definitions. One such func-
tion that has traditionally been used for statistics on RNA
secondary structure [12] is the order of a secondary struc-

ture which refers to the nesting depth of multibranched
loops.

URL to Code

Software for partition function computation and a range
of related problems is available from www.bioinfo.rpi.edu/
applications/hybrid/download.php and www.tbi.univie.
ac.at/~ivo/RNA/. Software including a restricted class of
structures with pseudoknots [4] is available at www.
nupack.org.

Cross References

� RNA Secondary Structure Prediction Including
Pseudoknots

� RNA Secondary Structure Prediction by Minimum
Free Energy

Recommended Reading
1. Bernhart, S., Hofacker, I.L., Stadler, P.: Local RNA base pairing

probabilities in large sequences. Bioinformatics 22, 614–615
(2006)

2. Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F.,
Hofacker, I.L.: Partition function and base pairing probabilities
of RNA heterodimers. AlgorithmsMol. Biol. 1, 3 (2006)

3. Ding, Y., Chan, C.Y., Lawrence, C.E.: RNA secondary structure
prediction by centroids in a Boltzmann weighted ensemble.
RNA 11, 1157–1166 (2005)

4. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nu-
cleic acid secondary structure including pseudoknots. J. Com-
put. Chem. 24, 1664–1677 (2003)

5. Hofacker, I.L., Stadler, P.F.: Memory efficient folding algorithms
for circular RNA secondary structures. Bioinformatics 22, 1172–
1176 (2006)

6. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of in-
ternal loops in RNA secondary structure prediction. Bioinfor-
matics 15, 440–445 (1999)

7. McCaskill, J.S.: The equilibriumpartition function and base pair
binding probabilities for RNA secondary structure. Biopoly-
mers 29, 1105–1119 (1990)

8. Miklós, I., Meyer, I.M., Nagy, B.: Moments of the Boltzmann dis-
tribution for RNA secondary structures. Bull. Math. Biol. 67,
1031–1047 (2005)

9. Ogurtsov, A.Y., Shabalina, S.A., Kondrashov, A.S., Roytberg,
M.A.: Analysis of internal loopswithin the RNA secondary struc-
ture in almost quadratic time. Bioinformatics 22, 1317–1324
(2006)

10. Tinoco, I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C.,
Crothers, D.M., Gralla, J.: Improved estimation of secondary
structure in ribonucleic acids. Nature New Biol. 246, 40–41
(1973)

11. Tinoco, I., Uhlenbeck, O.C., Levine, M.D.: Estimation of sec-
ondary structure in ribonucleic acids. Nature 230, 362–367
(1971)

12. Waterman, M.S.: Secondary structure of single-stranded nu-
cleic acids. Adv. Math. Suppl. Stud. 1, 167–212 (1978)

http://www.bioinfo.rpi.edu/applications/hybrid/download.php
http://www.bioinfo.rpi.edu/applications/hybrid/download.php
http://www.tbi.univie.ac.at/~ivo/RNA/
http://www.tbi.univie.ac.at/~ivo/RNA/
http://www.nupack.org
http://www.nupack.org

780 R RNA Secondary Structure Prediction Including Pseudoknots

RNA Secondary Structure Prediction
Including Pseudoknots
2004; Lyngsø

RUNE B. LYNGSØ
Department of Statistics, Oxford University, Oxford, UK

Keywords and Synonyms

Abbreviated as Pseudoknot Prediction

ProblemDefinition

This problem is concerned with predicting the set of base
pairs formed in the native structure of an RNA molecule,
including overlapping base pairs also known as pseudo-
knots. Standard approaches to RNA secondary structure
prediction only allow sets of base pairs that are hierarchi-
cally nested. Though few known real structures require the
removal of more than a small percentage of their base pairs
to meet this criteria, a significant percentage of known real
structures contain at least a few base pairs overlapping
other base pairs. Pseudoknot substructures are known to
be crucial for biological function in several contexts. One
of the more complex known pseudoknot structures is il-
lustrated in Fig. 1

Notation

Let s 2 fA;C;G;Ug� denote the sequence of bases of an
RNA molecule. Use X � Y where X;Y 2 fA;C;G;Ug to
denote a base pair between bases of type X and Y , and i � j
where 1 � i < j � jsj to denote a base pair between bases
s[i] and s[j].

Definition 1 (RNA Secondary Structure) A secondary
structure for an RNA sequence s is a set of base pairs
S = fi � j j 1 � i < j � jsj ^ i < j � 3g. For i � j; i0 � j0 2 S
with i � j ¤ i0 � j0

� fi; jg \ fi0; j0g = ; (each base pairs with at most one
other base)

� fs[i]; s[j]g 2 ffA;Ug; fC;Gg; fG;Ugg (only Watson-
Crick and G;U wobble base pairs)

The second requirement, that only canonical base pairs are
allowed, is standard but not consequential in solutions to
the problem.

Scoring Schemes

Structures are usually assessed by extending the model of
Gibbs free energy used for RNA Secondary Structure Pre-
diction by Minimum Free Energy (cf. corresponding en-

try) with ad hoc extrapolation of multibranched loop ener-
gies to pseudoknot substructures [11], or by summing in-
dependent contributions e. g. obtained from base pair re-
stricted minimum free energy structures from each base
pair [13]. To investigate the complexity of pseudoknot
prediction the following three simple scoring schemes will
also be considered:

Number of Base Pairs,

#BP(S) = jSj

Number of Stacking Base Pairs

#SBP(S)= jfi � j2S j i + 1 � j � 12S _ i � 1 � j + 12Sgj

Number of Base Pair Stackings

#BPS(S) = jfi � j 2 S j i + 1 � j � 1 2 Sgj

These scoring schemes are inspired by the fact that
stacked pairs are essentially the only loops having a sta-
bilizing contribution in the Gibbs free energy model.

Problem 1 (Pseudoknot Prediction)
INPUT:RNA sequence s and an appropriately specified scor-
ing scheme.
OUTPUT: A secondary structure S for s that is optimal un-
der the scoring scheme specified.

Key Results

Theorem 1 The complexities of pseudoknot prediction un-
der the three simplified scoring schemes can be classified as
follows, where˙ denotes the alphabet.

Fixed alphabet Unbounded alphabet
#BP [13] Time O

�
jsj3

�
,

spaceO
�
jsj2

� Time O
�
jsj3

�
,

space O
�
jsj2

�

#SBP [7] Time
O
�
jsj1+j˙ j

2+j˙ j3
�
,

spaceO
�
jsjj˙ j

2+j˙ j3
�

NP hard

#BPS NP hard for j˙ j = 2,
PTAS [7]
1/3-approximation
in timeO

�
jsj
�
[6]

NP hard [7],
1/3-approximation
in time and spaceO

�
jsj2

�
[6]

Theorem 2 If structures are restricted to be planar, i. e. the
graph with the bases of the sequence as nodes and base
pairs and backbone links of consecutive bases as edges is re-
quired to be planar, pseudoknot prediction under the #BPS
scoring scheme is NP hard for an alphabet of size 4. Con-
versely, a 1/2-approximation can be found in time O

�
jsj3
�

RNA Secondary Structure Prediction Including Pseudoknots R 781

RNA Secondary Structure Prediction Including Pseudoknots, Figure 1
Secondary structure of the Escherichia coli ˛ operon mRNA from position 16 to position 127, cf. [5], Figure 1. The backbone of the
RNAmolecule is drawn as straight lineswhile base pairings are shown with zigzagged lines

and space O
�
jsj2
�
by observing that an optimal pseudoknot

free structure is a 1/2-approximation [6].

There are no steric reasons that RNA secondary structures
should be planar, and the structure in Fig. 1 is actually
non-planar. Nevertheless, known real structures have rel-
atively simple overlapping base pair patterns with very few
non-planar structures known. Hence, planarity has been
used as a defining restriction on pseudoknotted struc-
tures [2,15]. Similar reasoning has lead to development of
several algorithms for finding an optimal structure from
restricted classes of structures. These algorithms tend to
use more realistic scoring schemes, e. g. extensions of the
Gibbs free energy model, than the three simple scoring
schemes considered above.

Theorem 3 Pseudoknot prediction for a restricted class of
structures including Fig. 2a through Fig. 2e, but not Fig. 2f,
can be done in time O

�
jsj6
�
and space O

�
jsj4
�
[11].

Theorem 4 Pseudoknot prediction for a restricted class of
planar structures including Fig. 2a through Fig. 2c, but not
Fig. 2d through Fig. 2f, can be done in time O

�
jsj5
�
and

space O
�
jsj4
�
[14].

Theorem 5 Pseudoknot prediction for a restricted class
of planar structures including Fig. 2a and Fig. 2b, but not
Fig. 2c through Fig. 2f, can be done in time O

�
jsj5
�
and

space O
�
jsj4
�
or O

�
jsj3
�
[1,4] (methods differ in generality

of scoring schemes that can be used).

Theorem 6 Pseudoknot prediction for a restricted class of
planar structures including Fig. 2a, but not Fig. 2b through
Fig. 2f, can be done in time O

�
jsj4
�
and space O

�
jsj2
�
[1,8].

Theorem 7 Recognition of structures belonging to the re-
stricted classes of Theorems 3, 5, and 6, and enumeration

of all irreducible cycles (i. e. loops) in such structures can be
done in time O (jsj) [3,9].

Applications

As for the prediction of RNA secondary structures with-
out pseudoknots, the key application of these algorithms
are for predicting the secondary structure of individual
RNAmolecules. Due to the steep complexities of the algo-
rithms of Theorems 3 through 6, these are less well suited
for genome scans than prediction without pseudoknots.

Enumerating all loops of a structure in linear time also
allows scoring a structure in linear time, as long as the
scoring scheme allows the score of a loop to be computed
in time proportional to its size. This has practical applica-
tions in heuristic searches for good structures containing
pseudoknots.

Open Problems

Efficient algorithms for prediction based on restricted
classes of structures with pseudoknots that still contain
a significant fraction of all known structures is an active
area of research. Even using the more theoretical simple
#SBP scoring scheme, developing e. g. an O

�
jsjj˙ j

�
algo-

rithm for this problem would be of practical significance.
From a theoretical point of view, the complexity of planar
structures is the least well understood, with results for only
the #BPS scoring scheme.

Classification of and realistic energy models for RNA
secondary structures with pseudoknots are much less de-
veloped than for RNA secondary structures without pseu-
doknots. Several recent papers have been addressing this
gap [3,9,12].

782 R RNA Secondary Structure Prediction by Minimum Free Energy

RNA Secondary Structure Prediction Including Pseudoknots, Figure 2
RNA secondary structures illustrating restrictions of pseudoknot prediction algorithms. Backbone is drawn as a straight line while
base pairings are shownwith zigzagged arcs

Data Sets

PseudoBase at http://biology.leidenuniv.nl/~batenburg/
PKB.html is a repository of representatives of most known
RNA structures with pseudoknots.

URL to Code

The method of Theorem 3 is available at http://selab.
janelia.org/software.html#pknots, of one of the methods
of Theorem 5 at http://www.nupack.org, and an imple-
mentation applying a slight heuristic reduction of the
class of structures considered by the method of Theo-
rem 6 is available at http://bibiserv.techfak.uni-bielefeld.
de/pknotsrg/ [10].

Cross References

� RNA Secondary Structure Prediction by Minimum
Free Energy

Recommended Reading
1. Akutsu, T.: Dynamic programming algorithms for RNA sec-

ondary structure prediction with pseudoknots. Discret. Appl.
Math. 104, 45–62 (2000)

2. Brown, M., Wilson, C.: RNA pseudoknot modeling using inter-
sections of stochastic context free grammars with applications
to database search. In: Hunter, L., Klein, T. (eds.) Proceedings
of the 1st Pacific Symposium on Biocomputing, 1996, pp. 109–
125

3. Condon, A., Davy, B., Rastegari, B., Tarrant, F., Zhao, S.: Classi-
fying RNA pseudoknotted structures. Theor. Comput. Sci. 320,
35–50 (2004)

4. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nu-
cleic acid secondary structure including pseudoknots. J. Com-
put. Chem. 24, 1664–1677 (2003)

5. Gluick, T.C., Draper, D.E.: Thermodynamics of folding a pseudo-
knotted mRNA fragment. J. Mol. Biol. 241, 246–262 (1994)

6. Ieong, S., Kao, M.-Y., Lam, T.-W., Sung, W.-K., Yiu, S.-M.: Pre-
dicting RNA secondary structures with arbitrary pseudoknots

by maximizing the number of stacking pairs. In: Proceedings
of the 2nd Symposium on Bioinformatics and Bioengineering,
2001, pp. 183–190

7. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple
models. In: Proceedings of the 31th International Colloquium
on Automata, Languages and Programming (ICALP), 2004,
pp. 919–931

8. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in
energy based models. J. Comput. Biol. 7, 409–428 (2000)

9. Rastegari, B., Condon, A.: Parsing nucleic acid pseudoknotted
secondary structure: algorithm and applications. J. Comput.
Biol. 14(1), 16–32 (2007)

10. Reeder, J., Giegerich, R.: Design, implementation and evalu-
ation of a practical pseudoknot folding algorithm based on
thermodynamics. BMC Bioinform. 5, 104 (2004)

11. Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA
structure prediction including pseudoknots. J. Mol. Biol. 285,
2053–2068 (1999)

12. Rødland, E.A.: Pseudoknots in RNA secondary structure: Rep-
resentation, enumeration, and prevalence. J. Comput. Biol. 13,
1197–1213 (2006)

13. Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA
folding method capable of identifying pseudoknots and base
triples. Bioinform. 14, 691–699 (1998)

14. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree ad-
joining grammars for RNA structure prediction. Theor. Com-
put. Sci. 210, 277–303 (1999)

15. Witwer, C., Hofacker, I.L., Stadler, P.F.: Prediction of consensus
RNA secondary structures including pseudoknots. IEEE Trans.
Comput. Biol. Bioinform. 1, 66–77 (2004)

RNA Secondary Structure Prediction
byMinimum Free Energy
2006; Ogurtsov, Shabalina, Kondrashov,
Roytberg

RUNE B. LYNGSØ
Department of Statistics, Oxford University, Oxford, UK

http://biology.leidenuniv.nl/~batenburg/PKB.html
http://biology.leidenuniv.nl/~batenburg/PKB.html
http://selab.janelia.org/software.html#pknots
http://selab.janelia.org/software.html#pknots
http://www.nupack.org
http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/
http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/

RNA Secondary Structure Prediction by Minimum Free Energy R 783

Keywords and Synonyms

RNA Folding

ProblemDefinition

This problem is concerned with predicting the set of base
pairs formed in the native structure of an RNA molecule.
The main motivation stems from structure being cru-
cial for function and the growing appreciation of the im-
portance of RNA molecules in biological processes. Base
pairing is the single most important factor determining
structure formation. Knowledge of the secondary struc-
ture alone also provides information about stretches of
unpaired bases that are likely candidates for active sites.
Early work [7] focused on finding structures maximiz-
ing the number of base pairs. With the work of Zuker
and Stiegler [17] focus shifted to energy minimization in
a model approximating the Gibbs free energy of struc-
tures.

Notation

Let s 2 fA;C;G;Ug� denote the sequence of bases of an
RNA molecule. Use X � Y where X;Y 2 fA;C;G;Ug to
denote a base pair between bases of type X and Y , and i � j
where 1 � i < j � jsj to denote a base pair between bases
s[i] and s[j].

Definition 1 (RNA Secondary Structure) A sec-
ondary structure for an RNA sequence s is a set
of base pairs S = fi � j j 1 � i < j � jsj ^ i < j � 3g. For
i � j; i0 � j0 2 S with i � j ¤ i0 � j0

� fi; jg \ fi0; j0g = ; (each base pairs with at most one
other base)

� fs[i]; s[j]g 2 ffA;Ug; fC;Gg; fG;Ugg (only Watson-
Crick and G;U wobble base pairs)

� i < i0 < j) j0 < j (base pairs are either nested or jux-
taposed but not overlapping).

The second requirement, that only canonical base pairs are
allowed, is standard but not consequential in solutions to
the problem. The third requirement states that the struc-
ture does not contain pseudoknots. This restriction is cru-
cial for the results listed in this entry.

Energy Model

The model of Gibbs free energy applied, usually referred
to as the nearest-neighbor model, was originally proposed
by Tinoco et al. [10,11]. It approximates the free energy by
postulating that the energy of the full three dimensional
structure only depends on the secondary structure, and

RNA Secondary Structure Prediction by Minimum Free Energy,
Figure 1
A hypothetical RNA structure illustrating the different loop
types. Bases are represented by circles, the RNA backbone by
straight lines, and base pairs by zigzagged lines

that this in turn can be broken into a sum of indepen-
dent contributions from each loop in the secondary struc-
ture.

Definition 2 (Loops) For i � j 2 S, base k is accessible from
i � j iff i < k < j and :9i0 � j0 2 S : i < i0 < k < j0 < j.
The loop closed by i � j; `i � j , consists of i � j and all the bases
accessible from i � j. If i0 � j0 2 S and i0 and j0 are accessible
from i � j, then i0 � j0 is an interior base pair in the loop
closed by i � j.

Loops are classified by the number of interior base pairs
they contain:
� hairpin loops have no interior base pairs
� stacked pairs, bulges, and internal loops have one in-

terior base pair that is separated from the closing base
pair on neither side, on one side, or on both sides, re-
spectively

� multibranched loops have two or more interior base
pairs.

Bases not accessible from any base pair are called external.
This is illustrated in Fig. 1. The free energy of structure S
is

´G(S) =
X
i � j2S

´G(`i � j) ; (1)

where ´G(`i � j) is the free energy contribution from the
loop closed by i � j.

Problem 1 (Minimum Free Energy Structure)
INPUT: RNA sequence s and specification of ´G for all loops.
OUTPUT: argminS f´G(S) j S secondary structure for sg.

784 R RNA Secondary Structure Prediction by Minimum Free Energy

Key Results

Solutions are based on using dynamic programming to
solve the general recursion

V[i; j] = min
k�0;i<i1< j1<:::<ik< jk< j

(
�G(`i � j;i1 � j1;:::;ik � jk)

+
kX
l=1

V[il ; jl]

)

W[i] = min
�
W[i � 1]; min

0<k<i
fW[k � 1] + V[k; i]g

�
;

where ´G(`i � j;i1 � j1;:::;ik � jk) is the free energy of the loop
closed by i � j and interior base pairs i1 � j1; : : : ; ik � jk and
with initial condition W[0] = 0. In the following it is as-
sumed that all loop energies can be computed in timeO(1).

Theorem 1 If the free energy of multibranched loops is
a sum of
� an affine function of the number of interior base pairs

and unpaired bases
� contributions for each base pair from stacking with ei-

ther neighboring unpaired bases in the loop or with
a neighboring base pair in the loop, whichever is more
favorable,

a minimum free energy structure can be computed in time
O(jsj4) and space O(jsj2) [17].

With these assumptions the time required to handle the
multibranched loop parts of the recursion reduces to
O(jsj3). Hence handling the O(jsj4) possible internal loops
becomes the bottleneck.

Theorem 2 If furthermore the free energy of internal loops
is a sum of
� a function of the total size of the loop, i. e. the number of

unpaired bases in the loop,
� a function of the asymmetry of the loop, i. e. the differ-

ence in number of unpaired bases on the two sides of the
loop,

� contributions from the closing and interior base pairs
stacking with the neighboring unpaired bases in the loop,

a minimum free energy structure can be computed in time
O(jsj3) and space O(jsj2) [5].

Under these assumptions the time required to handle in-
ternal loops reduces to O(jsj3). With further assumptions
on the free energy contributions of internal loops this can
be reduced even further, again making the handling of
multibranched loops the bottleneck of the computation.

Theorem 3 If furthermore the size dependency is con-
cave and the asymmetry dependency is constant for all but

O(1) values, a multibranched loop free minimum free en-
ergy structure can be computed in time O(jsj2 log2 jsj) and
space O(jsj2) [8].

The above assumptions are all based on the nature of
current loop energies [6]. These energies have to a large
part been developed without consideration of computa-
tional expediency and parameters determined experimen-
tally, although understanding of the precise behavior of
larger loops is limited. For multibranched loops some the-
oretical considerations [4] would suggest that a logarith-
mic dependency would be more appropriate.

Theorem 4 If the restriction on the dependency on num-
ber of interior base pairs and unpaired bases in Theorem 1
is weakened to any function that depends only on the num-
ber of interior base pairs, the number of unpaired bases,
or the total number of bases in the loop, a minimum free
energy structure can be computed in time O(n4) and space
O(n3) [13].

Theorem 5 All the above theorems can be modified to
compute a data structure that for any 1 � i < j � jsj al-
lows us to compute the minimum free energy of any struc-
ture containing i � j in time O(1) [15].

Applications

Naturally the key application of these algorithms are for
predicting the secondary structure of RNAmolecules. This
holds in particular for sequences with no homologues with
common structure, e. g. functional analysis based on mu-
tational effects and to some extent analysis of RNA ap-
tamers. With access to structurally conserved homologues
prediction accuracy is significantly improved by incorpo-
rating comparative information [2].

Incorporating comparative information seems to be
crucial when using secondary structure prediction as the
basis of RNA gene finding. As it turns out, the minimum
free energy of known RNA genes is not sufficiently dif-
ferent from the minimum free energy of comparable ran-
dom sequences to reliably separate the two [9,14]. How-
ever, minimum free energy calculations is at the core of
one successful comparative RNA gene finder [12].

Open Problems

Most current research is focused on refinement of the
energy parametrization. The limiting factor of sequence
lengths for which secondary structure prediction by the
methods described here is still feasible is adequacy of the
nearest neighbor approximation rather than computation
time and space. Still improvements on time and space

Robotics R 785

complexities are useful as biosequence analyzes are invari-
ably used in genome scans. In particular improvements on
Theorem 4, possibly for dependencies restricted to be log-
arithmic or concave, would allow for more advanced scor-
ing of multibranched loops. A more esoteric open prob-
lem is to establish the complexity of computing the min-
imum free energy under the general formulation of (1),
with no restrictions on loop energies except that they are
computable in time polynomial in |s|.

Experimental Results

With the release of the most recent energy parameters [6]
secondary structure prediction by finding a minimum free
energy structure was found to recover approximately 73%
of the base pairs in a benchmark data set of RNA se-
quences with known secondary structure. Another inde-
pendent assessment [1] put the recovery percentage some-
what lower at around 56%. This discrepancy is discussed
and explained in [1].

Data Sets

Families of homologous RNA sequences aligned and
annotated with secondary structure are available from
the Rfam data base at www.sanger.ac.uk/Software/Rfam/.
Three dimensional structures are available from the Nu-
cleic Acid Database at ndbserver.rutgers.edu/. An exten-
sive list of this and other data bases is available at www.
imb-jena.de/RNA.html.

URL to Code

Software for RNA folding and a range of related prob-
lems is available from www.bioinfo.rpi.edu/applications/
hybrid/download.php and www.tbi.univie.ac.at/~ivo/
RNA/. Software implementing the efficient handling of
internal loops of [8] is available from ftp.ncbi.nlm.nih.
gov/pub/ogurtsov/Afold.

Cross References

� RNA Secondary Structure Boltzmann Distribution
� RNA Secondary Structure Prediction Including

Pseudoknots

Recommended Reading
1. Dowell, R., Eddy, S.R.: Evaluation of several lightweight

stochastic context-free grammars for RNA secondary structure
prediction. BMC Bioinformatics 5, 71 (2004)

2. Gardner, P.P., Giegerich, R.: A comprehensive comparison of
comparative RNA structure prediction approaches. BMC Bioin-
formatics 30, 140 (2004)

3. Hofacker, I.L., Stadler, P.F.: Memory efficient folding algorithms
for circular RNA secondary structures. Bioinformatics 22, 1172–
1176 (2006)

4. Jacobson, H., Stockmayer, W.H.: Intramolecular reaction in
polycondensations. I. the theory of linear systems. J. Chem.
Phys. 18, 1600–1606 (1950)

5. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S., Fast evaluation of in-
ternal loops in RNA secondary structure prediction. Bioinfor-
matics 15, 440–445 (1999)

6. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded se-
quence dependence of thermodynamic parameters improves
prediction of RNA secondary structure. J. Mol. Biol. 288, 911–
940 (1999)

7. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the
secondary structure of single-stranded RNA. Proc. Natl. Acad.
Sci. USA 77, 6309–6313 (1980)

8. Ogurtsov, A.Y., Shabalina, S.A., Kondrashov, A.S., Roytberg,
M.A.: Analysis of internal loopswithin the RNA secondary struc-
ture in almost quadratic time. Bioinformatics 22, 1317–1324
(2006)

9. Rivas, E., Eddy, S.R.: Secondary structure alone is generally not
statistically significant for the detection of noncoding RNAs.
Bioinformatics 16, 583–605 (2000)

10. Tinoco, I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C.,
Crothers, D.M., Gralla, J.: Improved estimation of secondary
structure in ribonucleic acids. Nat. New Biol. 246, 40–41 (1973)

11. Tinoco, I., Uhlenbeck, O.C., Levine, M.D.: Estimation of sec-
ondary structure in ribonucleic acids. Nature 230, 362–367
(1971)

12. Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable predic-
tion of noncoding RNA. Proc. Natl. Acad. Sci. USA 102, 2454–59
(2005)

13. Waterman, M.S., Smith, T.F.: Rapid dynamic programming
methods for RNA secondary structure. Adv. Appl.Math. 7, 455–
464 (1986)

14. Workman, C., Krogh, A.: No evidence that mRNAs have lower
folding free energies than random sequences with the same
dinucleotide distribution. Nucleic Acids Res. 27, 4816–4822
(1999)

15. Zuker, M.: On finding all suboptimal foldings of an RNA
molecule. Science 244, 48–52 (1989)

16. Zuker, M.: Calculating nucleic acid secondary structure. Curr.
Opin. Struct. Biol. 10, 303–310 (2000)

17. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information.
Nucleic Acids Res. 9, 133–148 (1981)

Robotics
1997; (Navigation) Blum, Raghavan, Schieber
1998; (Exploration) Deng, Kameda,
Papadimitriou
2001; (Localization) Fleischer, Romanik,
Schuierer, Trippen

RUDOLF FLEISCHER
Deptartment of Computer Science and Engineering,
Fudan University, Shanghai, China

http://www.sanger.ac.uk/Software/Rfam/
http://ndbserver.rutgers.edu/
http://www.imb-jena.de/RNA.html
http://www.imb-jena.de/RNA.html
http://www.bioinfo.rpi.edu/applications/hybrid/download.php
http://www.bioinfo.rpi.edu/applications/hybrid/download.php
http://www.tbi.univie.ac.at/�egingroup uppercase {count@ 8764}
elax
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup ivo/RNA/
http://www.tbi.univie.ac.at/�egingroup uppercase {count@ 8764}
elax
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup ivo/RNA/
ftp://ftp.ncbi.nlm.nih.gov/pub/ogurtsov/Afold
ftp://ftp.ncbi.nlm.nih.gov/pub/ogurtsov/Afold

786 R Robotics

Keywords and Synonyms

Navigation problem – Search problem
Exploration problem – Mapping problem; Gallery tour
problem
Localization problem – Kidnapped robot problem

ProblemDefinition

Definitions

There are three fundamental algorithmic problems in
robotics: exploration, navigation, and localization. Explo-
rationmeans to draw a complete map of an unknown en-
vironment. Navigation (or search) means to find a way
to a predescribed location among unknown obstacles. Lo-
calization means to determine the current position on
a known map. Normally, the environment is modeled as
a simple polygon with or without holes. To distinguish
the underlying combinatorial problems from the geomet-
ric problems, the environment may also be modeled as
a graph.

Normally, a robot has a compass, i. e., it can distinguish
between different directions, and it can measure travel dis-
tance. A blind (or tactile) robot can only sense its immedi-
ate surroundings (for example, it only notices an obsta-
cle when it bumps into it; this is also sometimes called
"-radar), while a robot with vision can see objects far in
the distance, unless the view is blocked by opaque obsta-
cles. Robots on graphs are usually blind. In polygonal envi-
ronments, vision may help to judge the size of an obstacle
without moving, but a blind robot can circumvent obsta-
cles with a performance loss of only a factor of nine by
using the lost-cow doubling strategy [2].

Online Algorithms

An algorithm that tries to approximate an optimal so-
lution by making decisions under a given uncertainty is
called an online algorithm (see the surveys in [9]). Its per-
formance is measured by the competitive ratio, which is the
approximation ratio of the online algorithm maximized
over all possible input scenarios. In the case of exploration,
navigation, and localization, the robot should minimize its
travel distance. Therefore, the competitive ratio measures
the length of the detour compared to the optimal shortest
tour.

A randomized online algorithm against an oblivious
adversary uses randomization on a fixed predetermined
input (which is unknown to the online algorithm). In this
case, the competitive ratio is a random variable, and it is
maximized over all possible inputs.

Exploration

Deng et. al [7] introduced the gallery tour problem. Given
a polygonal room with polygonal obstacles, an entry
point s and exit point t, a robot with vision needs to travel
along a path from s to t such that it can see every point
of the perimeter of the polygons. If s = t, the problem is
known as thewatchman’s route problem. In the online ver-
sion of the problem, the polygon is initially unknown. The
problem becomes easier in rectilinear environments with
L1-metric.

Navigation

Blum et. al [5] studied the problem of a blind robot trying
to reach a goal t from a start position s (point-to-point nav-
igation) in a scene of non-overlapping axis-parallel rect-
angles of width at least one. In the wall problem, t is an
infinite vertical line. In the room problem, the obstacles are
within a square room with entry door s.

Localization

In the localization problem the robot knows a map of the
environment, but not its current position, which it deter-
mines by moving around and matching the observed local
environment with the given map.

Key Results

Exploration

Theorem 1 ([7]) The shortest exploration tour in L1-
metric in a known simple rectilinear polygon with n vertices
can be computed in time O(n3).

Theorem 2 ([15]) There is a 26.5-competitive online al-
gorithm to explore an unknown simple polygon without ob-
stacles.

Theorem 3 ([7]) There is an O(k + 1)-competitive online
algorithm to explore an unknown simple polygon with k
polygonal obstacles.

Theorem 4 ([1]) No randomized online algorithm can ex-
plore an unknown simple rectilinear polygon with k recti-
linear obstacles better than˝(

p
k)-competitively.

Navigation

Theorem 5 ([19]) No online algorithm for the wall prob-
lem with n rectangles can be better than ˝(

p
n)-competi-

tive.

Robotics R 787

Theorem 6 ([5]) There are O(
p
n)-competitive online

algorithms for the wall problem, the room problem, and
point-to-point navigation in scenes with n axis-parallel rect-
angles.

Theorem 7 ([3]) There is an optimal 	(log n)-competi-
tive online algorithms for the room problem with n axis-
parallel rectangles.

Theorem 8 ([4]) There are O(log n)-competitive random-
ized online algorithms against oblivious adversary for the
wall problem and point-to-point navigation in scenes with
n axis-parallel rectangles.

Theorem 9 ([16]) No randomized online algorithm
against oblivious adversary for point-to-point navigation
between n rectangles can be better than ˝(log log n)-com-
petitive.

Theorem 10 ([5]) There is a lower bound of n/8 for the
competitiveness of navigating between n non-convex obsta-
cles. A simple memoryless algorithm achieves a competitive
ratio of 50:4 � n.

Localization

Theorem 11 ([17]) No algorithm for localization in geo-
metric trees with n nodes can be better than ˝(

p
n)-com-

petitive.

Theorem 12 ([11]) There is an O(
p
n)-competitive algo-

rithm for localization in geometric trees with n nodes.

Applications

Exploration

It is NP-hard to find a shortest exploration tour in a known
polygonal environment [7]. Unknown scenes with arbi-
trary obstacles can be efficiently explored by Lumelsky’s
Sightseer Strategy. Most online exploration algo-
rithms can be transformed into an efficient online algo-
rithm to approximate the search ratio, a measure related
to the competitive ratio of the navigation problem [10].

The problem of exploring a polygonal environment is
closely related to the problem of exploring strongly con-
nected digraphs. Here, the competitive ratio is usually
given as a function of the deficiency of the graph which
is the minimum number of edges that must be added to
the graph to make it Eulerian. Eulerian graphs can be
explored with a simple optimal 2-competitive algorithm,
while graphs of deficiency d can be explored with a com-
petitive factor of O(d8) [14].

Navigation

In applied robotics, it is common to measure the compet-
itive ratio as a function of the aspect ratio of the obstacle
rectangles. Lumelsky’s BUG2 algorithm can navigate be-
tween convex obstacles, in the worst case moving at most
once around every obstacle, which is optimal.

A robot with a compass can sometimes find the goal
exponentially faster than a robot without a compass.

If we need to do several trips in an unknown environ-
ment, it may help to use partial map information from pre-
vious trips. In particular, the i-th trip between the same
two points can be searched

q
n
i -competitively.

Localization

There is a simple k-competitive localization algorithm in
polygons and graphs, where k is the number of positions
on the map matching the observed environment at the
wake-up point.

The visibility polygon of a point v is that part of a poly-
gon that a robot can see when sitting at v. One can com-
pute in polynomial time all points of a given simple poly-
gon whose visibility polygon matches a given star polygon.

Computing a shortest localization tour in a known
polygon is NP-hard. It can be approximated with a fac-
tor of O(log3 n), but not better than ˝(log n) unless
P = NP [18].

Open Problems

Exploration

� A polynomial time algorithm for computing the short-
est exploration tour in a known simple polygonwithout
obstacles. Such an algorithm is known for the watch-
man’s route problem.

� A simple online exploration algorithm for simple poly-
gons with tight analysis.

� Exploration and navigation with limited memory.

Navigation

� Online searching among convex polygonal obstacles.
� Three-dimensional navigation, in particular among

non-convex obstacles (3d-mazes).

Localization

� A simple algorithm for online localization in trees.
� Online localization in general graphs.
� A randomized online localization algorithm beating

deterministic algorithms.

788 R Robust Geometric Computation

Experimental Results

Exploration

Fleischer and Trippen [13] implemented most known al-
gorithms for exploring a directed graph and demonstrated
that the simple (but inferior) greedy algorithms usually
outperform the more sophisticated algorithms on random
graphs.

Navigation

Coffman and Gilbert [6] implemented eight heuristics for
point-to-point navigation in L1-metric.

Localization

Fleischer and Trippen [12] visualized their localization al-
gorithm in geometric trees.

Cross References

� Alternative Performance Measures in Online
Algorithms

� Deterministic Searching on the Line
�Metrical Task Systems
� Randomized Searching on Rays or the Line

Recommended Reading
1. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown envi-

ronments with obstacles. Algorithmica 32(1), 123–143 (2002)
2. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in

the plane. Inf. Comput. 106(2), 234–252 (1993)
3. Bar-Eli, E., Berman, P., Fiat, A., Yan, P.: Online navigation in

a room. J. Algorithms 17(3), 319–341 (1994)
4. Berman, P., Blum, A., Fiat, A., Karloff, H., Rosén, A., Saks, M.: Ran-

domized robot navigation algorithms. In: Proceedings of the
7th ACM-SIAM Symposium on Discrete Algorithms (SODA’96),
1996, pp. 75–84

5. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar
geometric terrain. SIAM J. Comput. 26(1), 110–137 (1997)

6. Coffman Jr., E.G., Gilbert, E.N.: Paths through a maze of rectan-
gles. Networks 22, 349–367 (1992)

7. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an un-
known environment. J. ACM 45, 215–245 (1998)

8. Dudek, G., Romanik, K., Whitesides, S.: Localizing a robot with
minimum travel. SIAM J. Comput. 27(2), 583–604 (1998)

9. Fiat, A., Woeginger, G. (eds.) Online Algorithms – The State of
the Art. Springer Lecture Notes in Computer Science, vol. 1442.
Springer, Heidelberg (1998)

10. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.:
Competitive online approximation of the optimal search ra-
tio. In: Proceedings of the 12th European Symposium on Algo-
rithms (ESA’04). Lecture Notes in Computer Science, vol. 3221,
pp. 335–346. Springer, Heidelberg (2004)

11. Fleischer, R., Romanik, K., Schuierer, S., Trippen, G.: Optimal
robot localization in trees. Inf. Comput. 171, 224–247 (2001)

12. Fleischer, R., Trippen, G.: Optimal robot localization in trees. In:
Proceedings of the 16th Annual SymposiumonComputational
Geometry (SoCG’00), 2000, pp. 373–374. A video shown at the
9th Annual Video Review of Computational Geometry

13. Fleischer, R., Trippen, G.: Experimental studies of graph traver-
sal algorithms. In: Proceedings of the 2nd International Work-
shop on Experimental and Efficient Algorithms (WEA’03). Lec-
ture Notes in Computer Science, vol. 2647, pp. 120–133.
Springer, Heidelberg (2003)

14. Fleischer, R., Trippen, G.: Exploring an unknown graph ef-
ficiently. In: Proceedings of the 13th European Symposium
on Algorithms (ESA’05). Lecture Notes in Computer Science,
vol. 3669, pp. 11–22. Springer, Heidelberg (2005)

15. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon explo-
ration problem. SIAM J. Comput. 31(2), 577–600 (2001)

16. Karloff, H., Rabani, Y., Ravid, Y.: Lower bounds for random-
ized k-server and motion-planning algorithms. SIAM J. Com-
put. 23(2), 293–312 (1994)

17. Kleinberg, J.M.: The localization problem for mobile robots. In:
Proceedings of the 35th Symposium on Foundations of Com-
puter Science (FOCS’94), 1994, pp. 521–531

18. Koenig, S., Mudgal, A., Tovey, C.: A near-tight approximation
lower bound and algorithm for the kidnapped robot problem.
In: Proceedings of the 17th ACM-SIAM Symposium on Discrete
Algorithms (SODA’06), 2006, pp. 133–142.

19. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without
a map. Theor. Comput. Sci. 84, 127–150 (1991)

Robust Geometric Computation
2004; Li, Yap

CHEE K. YAP, VIKRAM SHARMA
Department of Computer Science, New York University,
New York, NY, USA

Keywords and Synonyms

Exact geometric computation Floating-point filter; Dy-
namic and static filters; Topological consistency

ProblemDefinition

Algorithms in computational geometry are usually de-
signed under the Real RAMmodel. In implementing these
algorithms, however, fixed-precision arithmetic is used in
place of exact arithmetic. This substitution introduces nu-
merical errors in the computations thatmay lead to nonro-
bust behavior in the implementation, such as infinite loops
or segmentation faults.

There are various approaches in the the literature ad-
dressing the problem of nonrobustness in geometric com-
putations; see [9] for a survey. These approaches can be
classified along two lines: the arithmetic approach and the
geometric approach.

Robust Geometric Computation R 789

The arithmetic approach tries to address nonrobust-
ness in geometric algorithms by handling the numerical
errors arising because of fixed-precision arithmetic; this
can be done, for instance, by using multi-precision arith-
metic [6], or by using rational arithmetic whenever possi-
ble. In general, all the arithmetic operations, including ex-
act comparison, can be performed on algebraic quantities.
The drawback of such a general approach is its inefficiency.

The geometric approaches guarantee that certain ge-
ometric properties are maintained by the algorithm. For
example, if the Voronoi diagram of a planar point set
is being computed then it is desirable to ensure that the
output is a planar graph as well. Other geometric ap-
proaches are finite resolution geometry [7], approximate
predicates and fat geometry [8], consistency and topolog-
ical approaches [4], and topology oriented approach [13].
The common drawback of these approaches is that they
are problem or algorithm specific.

In the past decade, a general approach called the Ex-
act Geometric Computation (EGC) [15] has become very
successful in handling the issue of nonrobustness in ge-
ometric computations; strictly speaking, this approach is
subsumed in the arithmetic approaches. To understand
the EGC approach, it helps to understand the two parts
common to all geometric computations: a combinatorial
structure characterizing the discrete relations between ge-
ometric objects, e. g., whether a point is on a hyperplane
or not; and a numerical part that consists of the numeri-
cal representation of the geometric objects, e. g. the coor-
dinates of a point expressed as rational or floating-point
numbers. Geometric algorithms characterize the combi-
natorial structure by numerically computing the discrete
relations (that are embodied in geometric predicates) be-
tween geometric objects. Nonrobustness arises when nu-
merical errors in the computations yield an incorrect char-
acterization. The EGC approach ensures that all the geo-
metric predicates are evaluated correctly thereby ensuring
the correctness of the computed combinatorial structure
and hence the robustness of the algorithm.

Notation

An expression E refers to a syntactic object constructed
from a given set of operators over the reals R. For ex-
ample, the set of expressions on the set of operators
fZ;+;�;�;pg is the set of division-free radical expres-
sions on the integers; more concretely, expressions can be
viewed as directed acyclic graphs (DAG) where the inter-
nal nodes are operators with arity at least one, and the
leaves are constants, i. e., operators with arity zero. The
value of an expression is naturally defined using induction;

note that the value may be undefined. Let E represent both
the value of the expression and the expression itself.

Key Results

Following are the key results that have led to the feasibility
and success of the EGC approach.

Constructive Zero Bounds

The possibility of EGC approach hinges on the com-
putability of the sign of an expression. For determining
the sign of algebraic expressions EGC libraries currently
use a numerical approach based upon zero bounds. A zero
bound b > 0 for an expression E is such that absolute
value jEj of E is greater than b if the value of E is valid and
nonzero. To determine the sign of the expression E, com-
pute an approximation Ẽ to E such that jẼ � Ej < b

2 if
E is valid, otherwise Ẽ is also invalid. Then sign of E is the
same as the sign of Ẽ if jẼj � b

2 , otherwise it is zero. A con-
structive zero bound is an effectively computable function
B from the set of expressions to real numbers R such that
B(E) is a zero bound for any expression E. For examples of
constructive zero bounds, see [2,11].

Approximate Expression Evaluation

Another crucial feature in developing the EGC approach is
developing algorithms for approximate expression evalu-
ation, i. e., given an expression E and a relative or absolute
precision p, compute an approximation to the value of the
expression within precision p. The main computational
paradigm for such algorithms is the precision-driven ap-
proach [15]. Intuitively, this is a downward-upward pro-
cess on the input expression DAG; propagate precision
values down to the leaves in the downward direction; at
the leaves of the DAG, assume the ability to approximate
the value associated with the leaf to any desired precision;
finally, propagate the approximations in the upward di-
rection towards the root. Ouchi [10] has given detailed
algorithms for the propagation of “composite precision”,
a generalization of relative and absolute precision.

Numerical Filters

Implementing approximate expression evaluation re-
quires multi-precision arithmetic. But efficiency can be
gained by exploiting machine floating-point arithmetic,
which is fast and optimized on current hardware. The
basic idea is to to check the output of machine evalua-
tion of predicates, and fallback on multi-precision meth-
ods if the check fails. These checks are called numerical

790 R Robust Geometric Computation

filters; they certify certain properties of computed numer-
ical values, such as their sign. There are two main clas-
sifications of numerical filters: static filters are those that
can be mostly computed at compile time, but they yield
overly pessimistic error bounds and thus are less effective;
dynamic filters are implemented during run time and even
though they have higher costs they are much more effec-
tive than static filters, i. e., have better estimate on error
bounds. See Fortune and van Wyk [5].

Applications

The EGC approach has led to the development of libraries,
such as LEDA Real and CORE, that provide EGC number
types, i. e., a class of expressions whose signs are guaran-
teed. CGAL, another major EGC Library that provides ro-
bust implementation of algorithms in computational ge-
ometry, offers various specialized EGC number types, but
for general algebraic numbers it can also use LEDA Real
or CORE.

Open Problems

1. An important challenge from the perspective of effi-
ciency for EGC approach is high degree algebraic com-
putation, such as those found in Computer Aided De-
sign. These issues are beginning to be addressed, for in-
stance [1].

2. The fundamental problem of EGC is the zero problem:
given any set of real algebraic operators, decide whether
any expression over this set is zero or not. The main
focus here is on the decidability of the zero problem
for non-algebraic expressions. The importance of this
problem has been highlighted by Richardson [12]; re-
cently some progress has been made for special non-
algebraic problems [3].

3. When algorithms in EGC approach are embedded in
larger application systems (such as mesh generation
systems), the output of one algorithm needs to be cas-
caded as input to another; the output of such algo-
rithms may be in high precision, so it is desirable to
reduce the precision in the cascade. The geometric ver-
sion of this problem is called the geometric rounding
problem: given a consistent geometric object in high
precision, “round” it to a consistent geometric object at
a lower precision.

4. Recently a computational model for the EGC approach
has been proposed [14]. The corresponding complex-
ity model needs to be developed. Standard complexity
analysis based on input size is inadequate for evaluat-
ing the complexity of real computation; the complexity
should be expressed in terms of the output precision.

URL to Code

1 Core Library: http://www.cs.nyu.edu/exact
2 LEDA: http://www.mpi-sb.mpg.de/LEDA
3 CGAL: http://www.cgal.org

Recommended Reading
1. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Schmer,

K. M., Schmer, E.: A computational basis for conic arcs and
boolean operations on conic polygons. In: 10th EuropeanSym-
posium on Algorithms (ESA’02), pp. 174–186, (2002) Lecture
Notes in CS, No. 2461

2. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.:
A separation bound for real algebraic expressions. In: Lecture
Notes in Computer Science, pp. 254–265. Springer, vol 2161
(2001)

3. Chang, E.C., Choi, S.W., Kwon, D., Park, H., Yap, C.: Short-
est Paths for Disc Obstacles is Computable. In: Gao, X.S.,
Michelucci, D. (eds.) Special Issue on Geometric Constraints.
Int. J. Comput. Geom. Appl. 16(5–6), 567–590 (2006), Also ap-
peared in Proc. 21st ACM Symp. Comp. Geom., pp. 116–125
(2005)

4. Fortune, S.J.: Stable maintenance of point-set triangulations in
two dimensions. IEEE Found. Comput. Sci.: 30, 494–499 (1989)

5. Fortune, S.J., van Wyk, C.J.: Efficient exact arithmetic for com-
putational geometry. In: Proceeding 9th ACM Symposium on
Computational Geometry, pp. 163–172 (1993)

6. Gowland, P., Lester, D.: Asurvey of exact arithmetic implemen-
tations. In: Blank, J., Brattka, V., Hertling, P. (eds.) Computability
and Complexity in Analysis, pp. 30–47. Springer, 4th Interna-
tional Workshop, CCA 2000, Swansea, UK, September 17–19,
(2000), Selected Papers. Lecture Notes in Computer Science,
No. 2064

7. Greene, D.H., Yao, F.F.: Finite-resolution computational geom-
etry. IEEE Found. Comput. Sci. 27, 143–152 (1986)

8. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building
robust algorithms from imprecise computations. ACM Symp
Comput. Geometr. 5, 208–217 (1989)

9. Li, C., Pion, S., Yap, C.K.: Recent progress in Exact Geometric
Computation. J. Log. Algebr. Program. 64(1), 85–111 (2004)

10. Ouchi, K.: Real/Expr: Implementation of an exact computation
package. Master’s thesis, New York University, Department
of Computer Science, Courant Institute, January (1997). URL
http://cs.nyu.edu/exact/doc/

11. Pion, S., Yap, C.: Constructive root bound method for k-ary ra-
tional input numbers, September, (2002). Extended Abstract.
Submitted, (2003) ACM Symposium on Computational Geom-
etry

12. Richardson, D.: How to recognize zero. J. Symb. Comput. 24,
627–645 (1997)

13. Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-oriented im-
plementation—an approach to robust geometric algorithms.
Algorithmica 27, 5–20 (2000)

14. Yap, C.K.: Theory of Real Computation according to EGC. To ap-
pear in LNCS Volume based on talks at a Dagstuhl Seminar “Re-
liable Implementation of Real Number Algorithms: Theory and
Practice”, Jan 8–13, (2006)

15. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du,
D.Z., Hwang, F.K.: (eds.) Computing in Euclidean Geometry,
2nd edn., pp. 452–492. World Scientific Press, Singapore (1995)

http://www.cs.nyu.edu/exact
http://www.mpi-sb.mpg.de/LEDA
http://www.cgal.org
http://cs.nyu.edu/exact/doc/.

Routing R 791

Robustness
� Connectivity and Fault-Tolerance in Random Regular

Graphs
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)
� False-Name-Proof Auction

Routing
2003; Azar, Cohen, Fiat, Kaplan, Räcke

JÓZSEF BÉKÉSI, GÁBOR GALAMBOS
Department of Computer Science, Juhász Gyula Teachers
Training College, Szeged, Hungary

Keywords and Synonyms

Routing algorithms; Network flows; Oblivious routing

ProblemDefinition

One of the most often used techniques in modern com-
puter networks is routing. Routing means selecting paths
in a network along which to send data. Demands usually
randomly appear on the nodes of a network, and routing
algorithms should be able to send data to their destination.
The transfer is done through intermediate nodes, using the
connecting links, based on the topology of the network.
The user waits for the network to guarantee that it has
the required capacity during data transfer, meaning that
the network behaves like its nodes would be connected di-
rectly by a physical line. Such service is usually called the
permanent virtual circuit (PVC) service. To model real life
situations, assume that demands arrive on line, given by
source and destination points, and capacity (bandwidth)
requirements.

Similar routing problems may occur in other environ-
ments, for example in parallel computation. In this case
there are several processors connected together by wires.
During an operation some data appear at given proces-
sors which should be sent to specific destinations. Thus,
this also defines a routing problem. However, this paper
mainly considers the networkmodel, not the parallel com-
puter one.

For any given situation there are several routing possi-
bilities. A natural question is to ask which is the best possi-
ble algorithm. To find the best algorithm one must define
an objective function, which expresses the effectiveness of
the algorithm. For example, the aim may be to reduce the
load of the network. Load can be measured in different
ways, but tomeasure the utilization percent of the nodes or

the links of the network is the most natural. In the online
setting, it is interesting to compare the behavior of a rout-
ing algorithm designed for a specific instance to the best
possible routing.

There are two fundamental approaches towards rout-
ing algorithms. The first approach is to route adaptively,
i. e. depending on the actual loads of the nodes or the links.
The second approach is to route obviously, without using
any information about the current state of the network.
Here the authors survey only results on oblivious routing
algorithms.

Notations and Definitions

A mathematical model of the network routing problem is
now presented.

LetG(V ; E; c) be a capacitated network, whereV is the
set of nodes and E is the set of edges with a capacity func-
tion c : E ! R+. Let jV j = n; jEj = m. It can be assumed
that G is directed, because if G is undirected then for each
undirected edge e = (u; v) two new nodes x, y and four
new directed edges e1 = (u; x); e2 = (v; x); e3 = (y; u);
e4 = (y; u) with infinite capacity may be added to the
graph. If e is considered as an undirected edge with the
same capacity then a directed network equivalent to the
original one is received.

Definition 1 A set of functions
f := f fi jji; j 2 V ; fi j : E(G)! R+g is called a multi–
commodity flow if

X
e2E+

k

fi j(e) =
X
e2E�k

fi j(e)

holds for all k ¤ i; k ¤ j, where k 2 V and E+
k ; E
�
k are the

set of edges coming out from k and coming into k resp.
Each function f ij defines a single–commodity flow from i
to j.

Definition 2 The value of a multi–commodity flow is an
n � n matrix Tf = (t fi j), where

t fi j =
X

e2E+
i

fi j(e) �
X
e2E�i

fi j(e) ;

if i ¤ j and v f
i i = 0 ; for all i; j 2 V :

Definition 3 Let D be a nonnegative n � n matrix where
the diagonal entries are 0. D is called as demand matrix.
The flow on an edge e 2 E routing the demand matrix D
by routing r is defined by

flow(e; r;D) =
X
i; j2V

di jri j(e) ;

792 R Routing

while the edge congestion is

con(e; r;D) =
flow(e; r;D)

c(e)
:

The congestion of demandD using routing r is

con(r;D) = max
e2E

con(e; r;D) :

Definition 4 Amulti–commodity flow r is called routing
if tri j = 1, and if i ¤ j for all i; j 2 V .

Routing represents a way of sending information over
a network. The real load of the edges can be represented
by scaling the edge congestions with the demands.

Definition 5 The oblivious performance ratio Pr of
routing r is

Pr = sup
D

�
con(r;D)
opt(D)

�

where opt(D) is the optimal congestion which can be
achieved on D. The optimal oblivious routing ratio for
a network G is denoted by opt(G), where

opt(G) = min
r

Pr

Problem
INPUT: A capacitated network G(V ; E; c).
OUTPUT: An oblivious routing r, where Pr is minimal.

Key Results

Theorem 1 There is a polynomial time algorithm that for
any input network G (directed or undirected) finds the opti-
mal oblivious routing ratio and the corresponding routing r.

Theorem 2 There is a directed graph G of n vertices such
that opt(G) is at least˝(

p
n).

Applications

Most importantly, with these results one can efficiently
calculate the best routing strategy for a network topol-
ogy with capacity constraints. This is a good tool for net-
work planning. The effectiveness of a given topology can
be tested without any knowledge of the the network traffic
using this analysis.

Many researchers have investigated the variants of
routing problems. For surveys on the most important
models and results, see [10] and [11]. Oblivious rout-
ing algorithms were first analyzed by Valiant and Breb-
ner ([15]). Here, they considered the parallel computer

model and investigated specific architectures, like hyper-
cube, square grids, etc. Borodin and Hopcroft investigated
general networks ([6]). They showed that such simple de-
terministic strategies like oblivious routing can not be very
efficient for online routing and proved a lower bound on
the competitive ration of oblivious algorithms. This lower
bound was later improved by Kaklamanis et al. ([9]), and
they also gave an optimal oblivious deterministic algo-
rithm for the hypercube.

In 2002, Räcke constructed a polylog competitive ran-
domized algorithm for general undirected networks. More
precisely, he proved that for any demand there is a rout-
ing such that the maximum edge congestion is at most
polylog(n) times the optimal congestion for this demand
([12]). The work of Azar et al. extends this result by giving
a polynomial method for calculating the optimal oblivious
routing for a network. They also prove that for directed
networks no logarithmic oblivious performance ratio ex-
ists. Recently, Hajiaghayi et al. present an oblivious rout-
ing algorithm which is O

�
log2 n

�
-competitive with high

probability in directed networks ([8]).
A special online model has been investigated in [5],

where the authors define the so called “repeated game” set-
ting, where the algorithm is allowed to chose a new routing
in each day. This means that it is oblivious to the demands,
that will occur the next day. They present an 1 + "-compet-
itive algorithm for this model.

There are better algorithms for the adaptive case, for
example in [2]. For the offline case Raghavan and Thom-
son gave an efficient algorithm in [13].

Open Problems

The authors investigated edge congestion in this paper,
but in practice, node congestion may be interesting as
well. Node congestion means the ratio of the total traf-
fic traversing a node to its capacity. Some results can be
found for this problem in [7] and in [3]. It is an open prob-
lemwhether this method used for edge congestion analysis
can be applied for such a model. Another interesting open
question may be whether there is a more efficient algo-
rithm to compute the optimal oblivious performance ratio
of a network ([1,14]).

Experimental Results

The authors applied their method on ISP network topolo-
gies and found that the calculated optimal oblivious ratios
are surprisingly low, between 1.4 and 2. Other research
dealing with this question found similar results ([1,14]).

Routing in Geometric Networks R 793

Cross References

� Approximate Maximum Flow Construction
� Direct Routing Algorithms
� Load Balancing
�Mobile Agents and Exploration
�Oblivious Routing
� Probabilistic Data Forwarding in Wireless Sensor

Networks

Recommended Reading

1. Applegate, D., Cohen, E.: Making routing robust to changing
traffic demands: algorithms and evaluation. IEEE/ACM Trans
Netw 14(6), 1193–1206 (2006). doi:10.1109/TNET.2006.886296

2. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line rout-
ing of virtual circuits with applications to load balancing and
machine scheduling. J. ACM 44(3), 486–504 (1997)

3. Azar, Y., Chaiutin, Y.: Optimal node routing. In: Proceedings of
the 23rd International Symposium on Theoretical Aspects of
Computer Science, 2006, pp. 596–607

4. Azar, Y., Cohen, E., Fiat, A., Kaplan, H. Räcke, H.: Optimal obliv-
ious routing in polynomial time. In: Proceedings of the Thirty-
Fifth Annual ACM Symposium on Theory of Computing, 2003,
pp. 383–388

5. Bansal, N., Blum, A., Chawla, S.: Meyerson, A.: Online oblivious
routing. In: Proceedings of the 15th Annual ACM Symposium
on Parallel Algorithms, 2003, pp. 44–49

6. Borodin, A., Hopcroft, J.E.: Routing, merging and sorting on
parallel models of computation. J. Comput. Syst. Sci. 30(1),
130–145 (1985)

7. Hajiaghayi, M.T., Kleinberg, R.D., Leighton, T., Räcke, H.: Oblivi-
ous routing on node-capacitated and directed graphs. In: Pro-
ceedings of the 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 2005, pp. 782–790

8. Hajiaghayi, M.T., Kim, J.H., Leighton, T., Räcke, H.: Oblivious
routing in directed graphswith random demands. In: Proceed-
ings of the 37th Annual ACM Symposium on Theory of Com-
puting, 2005, pp. 193–201

9. Kaklamanis, C., Krizanc, D., Tsantilas, A.: Tight bounds for obliv-
ious routing in the hypercube. In: Proc. 2nd Annual ACM Sym-
posiumon Parallel Algorithms andArchitectures, 1990, pp. 31–
36

10. Leighton, F.T.: Introduction to Parallel Algorithms and Archi-
tectures Arrays, Trees, Hypercubes.Morgan Kaufmann Publish-
ers, San Fransisco (1992)

11. Leonardi, S.: On-line network routing. In: Fiat, A., Woeginger,
G. (eds.) Online Algorithms – The State of the Art. Chap. 11,
pp. 242–267. Springer, Heidelberg (1998)

12. Räcke, H.: Minimizing Congestions in General Networks. In:
Proceedings of the 43rd Symposium on Foundations of Com-
puter Science, 2002, pp. 43–52

13. Raghavan, P., Thompson, C.D.: Randomized rounding: a tech-
nique for provably good algorithms and algorithmic proofs.
Combinatorica 7, 365–374 (1987)

14. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies
with Rocketfuel. In: Proceedings of the ACMSIGCOMM’02 Con-
ference. ACM, New York (2002)

15. Valiant, L.G., Brebner, G.: Universal schemes for parallel com-
munication. In: Proceedings of the 13th ACM Symposium on
Theory of Computing, 1981, pp. 263–277

Routing in Geometric Networks
2003; Kuhn, Wattenhofer, Zhang, Zollinger

LESZEK GĄSIENIEC, CHANG SU, PRUDENCE WONG
Department of Computer Science, University
of Liverpool, Liverpool, UK

Keywords and Synonyms

Geometric routing; Geographic routing; Location-based
routing

ProblemDefinition

Network Model/Communication Protocol

In geometric networks, the nodes are embedded into Eu-
clidean plane. Each node is aware of its geographic loca-
tion, i. e., it knows its (x; y) coordinates in the plane.

Each node has the same transmission range, i. e., if
a node v is within the transmission range of another node
u; the node u can transmit to v directly and vice versa.
Thus, the network can be modeled as an undirected graph
G = (V ; E); where two nodes u; v 2 V are connected by
an edge (u; v) 2 E if u and v are within their transmis-
sion ranges. Such two nodes are called neighboring nodes
or simply neighbors. If two nodes are outside of their trans-
mission ranges a multi-hop transmission is involved, i. e.,
the two nodes must communicate via intermediate nodes.

The cost c(e) of sending a message over an edge e 2 E
to a neighboring node has beenmodeled in many different
ways. The most common ones include: the hop (link) met-
ric (c(e) = 1), the Euclidean metric (c(e) = jej), where |e|
is the Euclidean length of the edge e, and the energy metric
(c(e) = jej˛ for ˛ � 2).

In geometric networks there is no fixed infrastructure
nor a central server. I.e., all the nodes act as hosts as well
as routers. The topology of the network is unknown to
the nodes apart from their direct neighborhood, i. e., each
node is aware of its own location as well as the coordi-
nates of its neighbors. The nodes need to discover and
maintain routes (involved in multi-hop transmissions) by
themselves in a distributed manner. It is also very often as-
sumed (in the context of sensor networks) that each node
has limited memory and power.

Geometric routing is to route a message from a source
node s to a destination t using geographic location infor-

794 R Routing in Geometric Networks

mation, i. e., the coordinates of the nodes. It is assumed
that the source node knows the coordinates of the destina-
tion node. A dedicated external location service is used for
the source node to obtain this information [8]. The routing
protocol consists of a sequence of communication steps.
During each step, both the label of a unique transmitting
node as well as the label of one of its neighbors who is ex-
pected to receive the transmitted message are specified by
the routing protocol. Geometric routing is uniform in the
context that all nodes execute the same protocol when de-
ciding to which other node to forward a message.

Three classes of geometric routing algorithms are con-
sidered: on-line geometric routing, off-line geometric rout-
ing and dynamic geometric routing. In the context of all
three classes, the focus is on routing the message from
the source node to the destination using as small number
of communication steps as possible. Note that the num-
ber of communication steps corresponds to the total num-
ber of transmissions. Thus by minimizing the number of
communication steps, the number of transmissions is also
minimized resulting in reduced power consumption. In
what follows a list of combinatorial and algorithmic defini-
tions commonly used in the context of geometric routing
is given.

Planar Graph A graph G = (V ; E) is planar if nodes
in V can be embedded into a 2-dimensional Euclidean
Space R2, i. e., each node in V obtains a unique coordi-
nates and an edge is drawn between every pair of nodes
in E, in such way the resulting edges do not cross each
other inR2.

Unit-Disk Graph (UDG) is defined to be a graph G =
(V ; E) embedded into R2 where two nodes u; v 2 V are
connected by an edge e if the Euclidean distance between
u and v, denoted by ju; vj, is not greater than one.

�-Precision/˝(1) Model or Civilized Graph is de-
fined to be a graph G = (V ; E) embedded into R2 where
for any fixed �>0, two nodes u; v 2 V are of a distance at
least � apart.

Gabriel Graph (GG) is defined to be a graph G =
(V ; E) embedded into R2 where for any u; v 2 V an edge
(u; v) 2 E if u and v are the only nodes in V belonging to
the circle with (u; v) as diameter.

Delaunay Triangulation � of a set of nodes V em-
bedded into R2 is the geometric dual of the Voronoi dia-
gram [9] of V , where any two nodes in V are linked by an
edge in � if their corresponding cells in the Voronoi dia-
gram are incident. A Delaunay triangulation� is unit if it
contains edges of length at most one.

The Right Hand Principle is a rule used by graph
traversal algorithms that primarily chooses the first edge
to the right while moving towards the destination.

Heap-Like Structure Let G = (V ; E) be an undirected
planar graph, s.t., each node in V contains some numer-
ical value. A heap-like structure is a BFS tree T spanning
all nodes in G, s.t., for every node v other than the root,
the value stored at v is smaller than the value stored at v’s
parent.

Systems of clusters [2] Let G = (V ; E) be an undi-
rected planar graph with jVj = n and radius R. One
can construct a system of families of clusters F(0);
F(1); : : : ; F(log R), s.t., (a) the diameter of each cluster
in F(i) is O(2i log n), (b) every node belongs to at most
O(log n) clusters, and (c) for any two nodes whose dis-
tance inG is 2i�1 < d � 2i , there exists at least one cluster
in F(i) that contains the two nodes.

Key Result and Applications

The key results on geometric routing rely on the following
lemmas about Delaunay triangulation, planar graph and
unit disk graph.

Lemma 1 ([9]) The Delaunay triangulation� for a set of
points V of cardinality n can be computed locally in time
O(n log n).

Lemma 2 ([4]) Consider any s; t 2 V. Assume x and y
are two points such that s, x and y belong to a Delaunay
triangulation �. And let ˛ and ˇ be the angles formed by
segments xs and st, and by segments ts and sy respectively.
If ˛ < ˇ, then jxsj < jstj. Otherwise jysj < jstj.

Lemma 3 Let G = (V ; E) be a planar graph embedded
intoR2 and s; t 2 V : Further, let xi be the closest to t inter-
section point defined by some edge ei belonging to some face
Fi and the line segment st. Similarly, let xi+1 be the closest to
t intersection point defined by some edge belonging to face
Fi+1 and the line segment st, where Fi+1 is the face incident
to Fi via edge ei. Then jxi ; tj>jxi+1; tj:

Lemma 4 ([6]) Let G = (V ; E) be a planar civilized graph
embedded into R2. Any ellipse with major axis c covers at
most O(c2) nodes and edges.

Lemma 5 ([5]) Let R be a convex region inR2 with area
A(R) and perimeter P(R), and let V � R: If the unit disk
graph of V has maximum degree k, the number of nodes in
V is bounded by jV j � 8(k + 1)(A(R) + P(R) +
)/
 .

Lemma 6 ([2]) The number of transmissions required to
construct a heap-like structure and the system of clusters for
a planar graph G is bounded by O(nD) and O(n2D), respec-
tively, where n is the number of nodes and D is the diameter
of G.

Routing in Geometric Networks R 795

Applications
On-Line Geometric Routing
On-line geometric routing is based on very limited control
information possessed by the routed message and the local
information available at the network nodes. This results in
natural scalability of geometric routing. It is also assumed
that the network is static, i. e., the nodes do not move and
no edges disappear nor (re)appear.

Compass Routing I (CR-I) [4] is a greedy procedure
based on Delaunay triangulation and the observation from
Lemma 2, where during each step the message is always
routed to a neighboring node which is closer to the desti-
nation t. Unfortunately, the message may eventually end
up in a local minimum (dead end) where all neighbors are
further away from t.CR-I is very simple. Also computation
of Delaunay triangulation is local and cheap, see Lemma 1.
However, the algorithm does not guarantee successful de-
livery.

Compass Routing II (CR-II) [1,4] is the first geomet-
ric routing algorithm based on the right hand principle
and the observation from Lemma 3 which guarantee suc-
cessful delivery in any graph embedded intoR2. The algo-
rithm is also known as Face Routing since the routed mes-
sage traverses along perimeters of faces closer and closer
to the destination. In convex graph, the segment st inter-
sects the perimeter of any face at most twice. Thus when
the routed message hits the first edge e that intersects st,
it immediately changes the face to the other side of e. In
consequence, every edge in each face is traversed at most
twice. However, in general graph the routed message has
to visit all edges incident to the face. This is to find the clos-
est intersection point xi to the destination t. In this case
each edge can be visited even 4 times. However if after
the traversal of all edges the routed message chooses the
shorter path to xi (rather than using the right hand princi-
ple), the amortized traversal cost of each edge is 3 [1]. The
proof of correctness follows from Lemma 3.

Theorem 7 ([1]) Compass Routing II guarantees success-
ful delivery in planar graphs using O(n) time where n is the
number of nodes in the network.

Adaptive Face Routing (AFR) [6] is an asymptotically op-
timal geometric routing in planar civilized graphs. The al-
gorithm attempts to estimate the length c of the shortest
path between s and t by bc (starting with bc = 2jstj and
doubling it in every consecutive round). In each round,
the face traversal is restricted to the region formed by the
ellipse with the major axisbc centered in st. In AFR each
edge is traversed at most 4 times, and the time complexity
of AFR is O(c2), see Lemma 4. The corresponding lower
bound is also provided in [6].

Theorem 8 ([6]) The time complexity O(c2), where c is
the length of the shortest path between s and t, is asymp-
totically optimal in civilized Unit Disk Graphs possessing
Gabriel Graph properties.

Geometric Ad-hoc Routing (GOAFR+) [5] has prov-
ably good theoretical and practical performance. Due to
Lemma 5, rather non-practical ˝ (1) assumption can
be dropped. GOAFR+ combines greedy routing and face
routing algorithms. The algorithm starts with the greedy
routing CR-I and when the routed message enters a local
minimum (dead end), it switches to Face Routing.

However,GOAFR+ intends to return to greedy routing
as early as possible via application of early fallback tech-
nique. The simulations show that GOAFR+ outperforms
GOAFR and GOAFRFC considered in [7] in the average
case.

Theorem 9 ([2]) GOAFR+ has the optimal time complex-
ity O(c2) in any Unit Disk Graphs possessingGabriel Graph
properties.

Off-Line Geometric Routing

In off-line geometric routing, the routing stage is preceded
by the preprocessing stage, when several data structures
are constructed on the basis of the input graph G. This is
to speed up the routing phase. The preprocessing is worth-
while if it is followed by further frequent queries.

Single-SourceQueries [2] is a routingmechanism that
allows to route messages from a distinguished source s to
any other node t in the network in time O(c), where c is
the distance between s and t in G. The routing procedure
is based on indirect addressing mechanism implemented
in a heap-like structure that can be efficiently computed,
see Lemma 6.

Multiple-Source-Queries [2] is an extension of
the single-source querying mechanism that provides
O(c log n)-time routing between any pair of nodes located
at distance c in G, where n is the number of nodes in G.
The extension is based on the system of clusters that can
be computed efficiently, see Lemma 6.

Theorem ([5]) After preprocessing, single-source queries
take time O(c) and multiple-source queries take time
O(c log n) in Unit Disk Graphs possessing Gabriel Graph
properties.

Dynamic Geometric Routing

Geometric Routing in Graphs with Dynamic Edges [3]
applies to the model in which the nodes are fault-free and

796 R Routing in Road Networks with Transit Nodes

stationary but the edges alternate their status between ac-
tive and inactive. However, it is assumed that despite dy-
namic changes in the topology the network always remains
connected. In this model Timestamp-Traversal routing al-
gorithm combines the use of the global time and the start-
ing time of the routing to traverse a spanning subgraph
containing only stable links.

An alternative solution called Tethered-Traversal is
based on the observation that (re)appearing edges poten-
tially shorten the traversal paths, where the time/space
complexity of the routing procedure is linear in the num-
ber of nodes n.

Open Problems

Very little is known about space efficient on-line routing in
static directed graphs. Also the current bounds in dynamic
geometric routing appear to be far from optimal.

Cross References

� Communication in Ad Hoc Mobile Networks Using
RandomWalks

�Minimum k-Connected Geometric Networks

Recommended Reading

1. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guar-
anteed delivery in ad hoc wireless networks. In: Proceedings
of the Third International Workshop on Discrete Algorithm and
Methods for Mobility, Seattle, Washington, Aug 1999, pp. 48–55

2. Gasieniec, L., Su, C., Wong, P.W.H., Xin, Q.: Routing via single-
source and multiple-source queries in static sensor networks.
J. Discret. Algorithm 5(1), 1–11 (2007). A preliminary version of
the paper appeared in IPDPS’2005

3. Guan, X.Y.: Face traversal routing on edge dynamic graphs. In:
Proceedings of the Nineteenth International Parallel and Dis-
tributed Processing Symposium, Denver, Colorado, April 2005

4. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric
networks. In: Proceedings of the Eleventh Canadian Conference
on Computational Geometry, Vancover, BC, Canada, Aug 1999,
pp. 51–54

5. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geomet-
ric ad-hoc routing: Of theory and practice. In: Proceedings
of the Twenty-Second ACM Symposium on the Principles
of Distributed Computing, Boston, Massachusetts, July 2003,
pp. 63–72

6. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal
geometric mobile ad-hoc routing. In: Proceedings of the Sixth
International Workshop on Discrete Algorithm andMethods for
Mobility, Atlanta, Georgia, USA, Sept 2002, pp. 24–33

7. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-case optimal and
average-case efficient geometric ad-hoc routing. In: Proceed-
ings of the Fourth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, Annapolis, Maryland, June
2003, pp. 267–278

8. Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A scal-
able location service for geographic ad hoc routing. In Proceed-

ings of the Sixth International Conference on Mobile Comput-
ing andNetworking, Boston, Massachusetts, Aug 2000, pp. 120–
130

9. Li, M., Lu, X.C., Peng, W.: Dynamic delaunay triangulation for
wireless ad hoc network. In Proceedings of the Sixth Interna-
tionalWorkshop onAdvancedParallel Processing Technologies,
Hong Kong, China, Oct 2005, pp. 382–389

Routing in Road Networks
with Transit Nodes
2007; Bast, Funke, Sanders, Schultes

DOMINIK SCHULTES
Institute for Computer Science,
University of Karlsruhe, Karlsruhe, Germany

Keywords and Synonyms
Shortest paths

ProblemDefinition

For a given directed graph G = (V ; E) with non-negative
edge weights, the problem is to compute a shortest path
in G from a source node s to a target node t for given s
and t. Under the assumption that G does not change and
that a lot of source-target queries have to be answered, it
pays to invest some time for a preprocessing step that al-
lows for very fast queries. As output, either a full descrip-
tion of the shortest path or only its length d(s, t) is ex-
pected—depending on the application.

Dijkstra’s classical algorithm for this problem [4] iter-
atively visits all nodes in the order of their distance from
the source until the target is reached. When dealing with
very large graphs, this general algorithm gets too slow
for many applications so that more specific techniques
are needed that exploit special properties of the particu-
lar graph. One practically very relevant case is routing in
road networks where junctions are represented by nodes
and road segments by edges whose weight is determined
by some weighting of, for example, expected travel time,
distance, and fuel consumption. Road networks are typi-
cally sparse (i. e., jEj = O(jV j)), almost planar (i. e., there
are only a few overpasses), and hierarchical (i. e., more or
less ‘important’ roads can be distinguished). An overview
on various speedup techniques for this specific problem is
given in [7].

Key Results

Transit-node routing [2,3] is based on a simple observation
intuitively used by humans: When you start from a source
node s and drive to somewhere ‘far away’, you will leave

Routing in Road Networks with Transit Nodes R 797

Routing in Road Networks with Transit Nodes, Figure 1
Finding the optimal travel time between two points (flags) somewhere between Saarbrücken and Karlsruhe amounts to retrieving
the 2× 4 access nodes (diamonds), performing 16 table lookups between all pairs of access nodes, and checking that the two disks
defining the locality filter do not overlap. Transit nodes that do not belong to the access node sets of the selected source and target
nodes are drawn as small squares. The figure draws the levels of the highway hierarchy using colors gray, red, blue, and green for
levels 0–1, 2, 3, and 4, respectively

your current location via one of only a few ‘important’
traffic junctions, called (forward) access nodes

�!
A (s). An

analogous argument applies to the target t, i. e., the tar-
get is reached from one of only a few backward access
nodes

 �
A (t). Moreover, the union of all forward and back-

ward access nodes of all nodes, called transit-node set T ,
is rather small. The two observations imply that for each
node the distances to/from its forward/backward access
nodes and for each transit-node pair (u, v), the distance
between u and v can be stored. For given source and target
nodes s and t, the length of the shortest path that passes at
least one transit node is given by

dT (s; t) = minfd(s; u) + d(u; v) + d(v; t) j

u 2
�!
A (s); v 2

 �
A (t)g :

Note that all involved distances d(s, u), d(u, v), and d(v, t)
can be directly looked up in the precomputed data struc-
tures. As a final ingredient, a locality filter L : V � V !
ftrue; falseg is needed that decides whether given nodes s
and t are too close to travel via a transit node. L has to fulfill
the property that :L(s; t) implies that d(s; t) = dT (s; t).
Note that in general the converse need not hold since this
might hinder an efficient realization of the locality filter.

Thus, false positives, i. e., “L(s; t) ^ d(s; t) = dT (s; t)”, may
occur.

The following algorithm can be used to compute
d(s, t):

If :L(s; t), then compute and return dT (s; t);
else, use any other routing algorithm.

Figure 1 gives an example. Knowing the length of the
shortest path, a complete description of it can be effi-
ciently derived using iterative table lookups and precom-
puted representations of paths between transit nodes. Pro-
vided that the above observations hold and that the per-
centage of false positives is low, the above algorithm is
very efficient since a large fraction of all queries can be
handled in line 1, dT (s; t) can be computed using only
a few table lookups, and source and target of the re-
maining queries in line 2 are quite close. Indeed, the re-
maining queries can be further accelerated by introduc-
ing a secondary layer of transit-node routing, based on
a set of secondary transit nodes T2 � T . Here, it is not
necessary to compute and store a complete T2 � T2 dis-
tance table, but it is sufficient to store only distances
fd(u; v) j u; v 2 T2 ^ d(u; v) ¤ dT (s; t)g, i. e., distances
that cannot be obtained using the primary layer. Analo-
gously, further layers can be added.

798 R Routing in Road Networks with Transit Nodes

Routing in Road Networks with Transit Nodes, Table 1
Statistics on preprocessing. The size of transit-node sets, the number of entries in distance tables, and the average number of access
nodes to the respective layer are given; furthermore, the space overhead and the preprocessing time

layer 1 layer 2 layer 3
jT j |A| avg. jT2j |table2| [�106] |A2| avg. jT3j |table3| [�106] space [B/node] time [h]

Europe 11 293 9.9 323 356 130 4.1 2 954 721 119 251 2:44
USA 10 674 5.7 485 410 204 4.2 3 855 407 173 244 3:25

Routing in Road Networks with Transit Nodes, Table 2
Performance of transit-node routing with respect to 10 000000 randomqueries. The column for layer i specifies which fraction of the
queries is correctly answered using only information available at layers � i. Each box spreads from the lower to the upper quartile
and contains themedian, the whiskers extend to the minimum andmaximum value omitting outliers, which are plotted individually

#nodes #edges layer 1 layer 2 layer 3 query
Europe 18 029 721 42 199 587 99.74% 99.9984% 99.99981% 5.6�s
USA 24 278 285 58 213 192 99.89% 99.9986% 99.99986% 4.9�s

Routing in Road Networks with Transit Nodes, Figure 2
Query time distribution as a function of Dijkstra rank–thenumber of iterations Dijkstra’s algorithmwould need to solve this instance.
The distributions are represented as box-and-whisker plots: each box spreads from the lower to the upper quartile and contains the
median, the whiskers extended to the minimum andmaximum value omitting, which are plotted individually

There are two different implementations: one is based
on a simple geometric grid and one on highway hierar-
chies, the fastest previous approach [5,6]. A highway hier-
archy consists of a sequence of levels (Fig. 1), where level

i + 1 is constructed from level i by bypassing low-degree
nodes and removing edges that never appear far away from
the source or target of a shortest path. Interestingly, these
levels are geometrically decreasing in size and otherwise

Routing in Road Networks with Transit Nodes R 799

similar to each other. The highest level contains the most
‘important’ nodes and becomes the primary transit-node
set. The nodes of lower levels are used to form the transit-
node sets of subordinated layers.

Applications

Apart from the most obvious applications in car navi-
gation systems and server-based route planning systems,
transit-node routing can be applied to several other fields,
for instance to massive traffic simulations and to various
optimization problems in logistics.

Open Problems

It is an open question whether one can find better transit-
node sets or a better locality filter so that the performance
can be further improved. It is also not clear if transit-node
routing can be successfully applied to other graph types
than road networks. In this context, it would be desir-
able to derive some theoretical guarantees that apply to
any graph that fulfills certain properties. For some practi-
cal applications, a dynamic version of transit-node routing
would be required in order to deal with time-dependent
networks or unexpected edge weight changes caused, for
example, by traffic jams. The latter scenario can be handled
by a related approach [8], which is, however, considerably
slower than transit-node routing.

Experimental Results

Experiments were performed on road networks of West-
ern Europe and the USA using a cost function that solely
takes expected travel time into account. The results exhibit
various tradeoffs between average query time (5 μs to 63 μs
for the USA), preprocessing time (59 min to 1200 min),
and storage overhead (21 bytes/node to 244 bytes/node).
For the variant that uses three layers and is tuned for best
query times, Tables 1 and 2 show statistics on the prepro-
cessing and the query performance, respectively. The av-
erage query times of about 5 μs are six orders of magni-
tude faster than Dijkstra’s algorithm. In addition, Fig. 2
gives for each rank r on the x-axis a distribution for 1 000
queries with random starting point s and the target node t
for which Dijkstra’s algorithm would need r iterations to
find it. The three layers of transit-node routing with small
transition zones in between can be recognized: for large
ranks, it is sufficient to access only the primary layer yield-
ing query times of about 5 μs, for smaller ranks, additional
layers have to be accessed resulting in median query times
of up to 20 μs.

Data Sets

The European road network has been provided by the
company PTV AG, the US network has been obtained
from the TIGER/Line Files [9]. Both graphs have also been
used in the 9th DIMACS Implementation Challenge on
Shortest Paths [1].

URL to Code

The source code might be published at some point in the
future at http://algo2.iti.uka.de/schultes/hwy/.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Decremental All-Pairs Shortest Paths
� Engineering Algorithms for Large Network

Applications
� Fully Dynamic All Pairs Shortest Paths
� Geographic Routing
� Implementation Challenge for Shortest Paths
� Shortest Paths Approaches for Timetable Information
� Shortest Paths in Planar Graphs with Negative Weight

Edges
� Single-Source Shortest Paths

Recommended Reading

1. 9th DIMACS Implementation Challenge: Shortest Paths. http://
www.dis.uniroma1.it/~challenge9/ (2006)

2. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In tran-
sit to constant time shortest-path queries in road networks. In:
Workshop on Algorithm Engineering and Experiments, 2007,
pp. 46–59

3. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road
networks with transit nodes. Science 316(5824), 566 (2007)

4. Dijkstra, E.W.: A note on two problems in connexion with
graphs. Numer. Math. 1 269–271 (1959)

5. Sanders, P., Schultes, D.: Highway hierarchies hasten exact
shortest path queries. In: 13th European Symposium on Algo-
rithms. LNCS, vol. 3669, pp. 568–579. Springer, Berlin (2005)

6. Sanders, P., Schultes, D.: Engineering highway hierarchies. In:
14th European Symposium on Algorithms. LNCS, vol. 4168,
pp. 804–816. Springer, Berlin (2006)

7. Sanders, P., Schultes, D.: Engineering fast route planning algo-
rithms. In: 6th Workshop on Experimental Algorithms. LNCS,
vol. 4525, pp. 23–36. Springer, Berlin (2007)

8. Schultes, D., Sanders, P.: Dynamic highway-node routing. In:
6th Workshop on Experimental Algorithms. LNCS, vol. 4525,
pp. 66–79. Springer, Berlin (2007)

9. U.S. Census Bureau, Washington, DC: UA Census 2000
TIGER/Line Files. http://www.census.gov/geo/www/tiger/
tigerua/ua_tgr2k.html (2002)

http://algo2.iti.uka.de/schultes/hwy/
http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html

800 R R-Trees

R-Trees
2004; Arge, de Berg, Haverkort, Yi

KE YI
Hong Kong University of Science and Technology,
Hong Kong, China

Keywords and Synonyms

R-Trees; Spatial databases; External memory data struc-
tures

ProblemDefinition

Problem Statement and the I/OModel

Let S be a set of N axis-parallel hypercubes in Rd . A very
basic operation in a spatial database is to answer window
queries on the set S. A window query Q is also an axis-
parallel hypercube in Rd that asks us to return all hyper-
cubes in S that intersect Q. Since the set S is typically huge
in a large spatial database, the goal is to design a disk-based,
or external memory data structure (often called an index
in the database literature) such that these window queries
can be answered efficiently. In addition, given S, the data
structure should be constructed efficiently, and should be
able to support insertions and deletions of objects.

When external memory data structures are concerned,
the standard external memory model [2], a.k.a. the I/O
model, is often used as the model of computation. In this
model, the machine consists of an infinite-size external
memory (disk) and a main memory of size M. A block of
B consecutive elements can be transferred between main
memory and disk in one I/O operation (or simply I/O). An
external memory data structure is a structure that is stored
on disk in blocks, but computation can only occur on ele-
ments in main memory, so any operation (e. g. query, up-
date, and construction) on the data structure must be per-
formed using a number I/Os, which is the measure for the
complexity of the operation.

R-Trees

The R-tree, first proposed by Guttman [9], is a multi-way
tree T , very similar to a B-tree, that is used to store the set
S such that a window query can be answered efficiently.
Each node of T fits in one disk block. The hypercubes of
S are stored only in the leaves of T . All leaves of T are
on the same level, and each stores 	(B) hypercubes from
S; while each internal node, except the root, has a fan-out
of 	(B). The root of T may have a fan-out as small as 2.
For any node u 2 T , let R(u) be the smallest axis-parallel

hypercube, called theminimal bounding box, that encloses
all the hypercubes stored below u. At each internal node
v 2 T , whose children are denoted v1,: : :,vk, the bound-
ing box R(vi) is stored along with the pointer to vi for
i = 1; : : : ; k. Note that these bounding boxes may overlap.
Please see Fig. 1 for an example of an R-tree in two dimen-
sions.

For a window query Q, the query answering process
starts from the root of T and visits all nodes u for which
R(u) intersects Q. When reaching a leaf v, it checks each
hypercube stored at v to decide if it should be reported.
The correctness of the algorithm is obvious, and the effi-
ciency (the number of I/Os) is determined by the number
of nodes visited.

Any R-tree occupies a linear number O(N/B) disk
blocks, but different R-trees might have different query,
update, and construction costs. When analyzing the query
complexity of window queries, the output size T is also
used, in addition to N,M, and B.

Key Results

Although the structure of an R-tree is restricted, there is
much freedom in grouping the hypercubes into leaves and
grouping subtrees into bigger subtrees. Different group-
ing strategies result in different variants of R-trees. Most
of the existing R-trees use various heuristics to group to-
gether hypercubes that are “close” spatially, so that a win-
dow query will not visit toomany unnecessary nodes. Gen-
erally speaking, there are two ways to build an R-tree: re-
peated insertion and bulk-loading. The former type of al-
gorithms include the original R-tree [9], the R+-tree [15],
the R*-tree [6], etc. These algorithms use O(logB N) I/Os
to insert an object and hence O(N logB N) I/Os to build
the R-tree on S, which is not scalable for large N. When
the set S is known in advance, it is much more efficient to
bulk-load the entire R-tree at once. Many bulk-loading al-
gorithms have been proposed, e. g. [7,8,10,11,13]. Most of
these algorithms build the R-tree with O(N/B logM/B N/B)
I/Os (the number of I/Os needed to sort N elements), and
they typically result in better R-trees than those obtained
by repeated insertion. During the past decades, there have
been a large number of works devoted to R-trees from the
database community, and the list here is by nomeans com-
plete. The reader is referred to the book by Manolopou-
los et al. [14] for an excellent survey on this subject in the
database literature. However, no R-tree variant mentioned
above has a guarantee on the query complexity; in fact,
Arge et al. [3] constructed an example showing that some
of the most popular R-trees may have to visit all the nodes
without reporting a single result.

R-Trees R 801

R-Trees, Figure 1
An R-tree example in two dimensions

From the theoretical perspective, the following are the
two main results concerning the worst-case query com-
plexity of R-trees.

Theorem 1 ([1,12]) There is a set of N points inRd , such
that for any R-tree T built on these points, there exists an
empty window query for which the query algorithm has to
visit˝((N/B)1�1/d) nodes of T .

The priority R-tree, proposed by Arge et al. [3], matches
the above lower bound.

Theorem 2 ([3]) For any set S of N axis-parallel hyper-
cubes in Rd , the priority R-tree answers a window query
with O((N/B)1�1/d + T/B) I/Os. It can be constructed with
O(N/B logM/B N/B) I/Os.

It is also reported that the priority R-tree performs well in
practice, too [3]. However, it is not known how to update it
efficiently while preserving the worst-case bound. The log-
arithmic method was used to support insertions and dele-
tions [3] but the resulted structure is no longer an R-tree.

Note that the lower bound in Theorem 1 only holds
for R-trees. If the data structure is not restricted to R-trees,
better query bounds can be obtained for the window-query
problem; see e. g. [4].

Applications

R-trees have been used widely in practice due to its sim-
plicity, the ability to store spatial objects of various shapes,
and to answer various queries. The areas of applica-
tions span from geographical information systems (GIS),
computer-aided design, computer vision, and robotics.
When the objects are not axis-parallel hypercubes, they
are often approximated by their minimal bounding boxes,
and the R-tree is then built on these bounding boxes. To
answer a window query, first the R-tree is used to locate

all the intersecting bounding boxes, followed by a filter-
ing step that checks the objects exactly. The R-tree can
also be used to support other kinds of queries, for exam-
ple aggregation queries, nearest-neighbors, etc. In aggre-
gation queries, each object o in S is associatedwith a weight
w(o) 2 R, and the goal is to compute

P
w(o) where the

sum is taken over all objects that intersect the query range
Q. The query algorithm is same as before, except that in
addition it keeps running sum while traversing the R-tree,
and may skip an entire subtree rooted at some u if R(u)
is completely contained in Q. To find the nearest neigh-
bor of a query point q, a priority queue is maintained,
which stores all the nodes u that might contain an object
that is closer to the current nearest neighbor found so far.
The priority of u in the queue is the distance between q
and R(u). The search terminates when the current near-
est neighbor is closer than the top element in the priority
queue. However, no worst-case guarantees are known for
R-trees answering these other types of queries, although
they tend to perform well in practice.

Open Problems

Several interesting problems remain open with respect to
R-trees. Some of them are listed here.
� Is it possible to design an R-tree with the optimal query

bound O((N/B)1�1/d + T/B) that can also be efficiently
updated? Or prove a lower bound on the update cost
for such an R-tree.

� Is there an R-tree that supports aggregation queries for
axis-parallel hypercubes in O((N/B)1�1/d) I/Os? This
would be optimal because the lower bound of Theo-
rem 1 also holds for aggregation queries on R-trees.
Note that, however, no sub-linearworst-case bound ex-
ists for nearest-neighbor queries, since it is not difficult
to design a worst-case example for which the distance

802 R Runs

between the query point q and any bounding box is
smaller than the distance between q and its true nearest
neighbor.

� When the window query Q shrinks to a point, that
is, the query asks for all hypercubes in S that con-
tain the query point, the problem is often referred
to as stabbing queries or point enclosure queries. The
lower bound of Theorem 1 does not hold for this spe-
cial case; while a lower bound of ˝(log2 N + T/B) was
proved in [5], which holds in the strong indexability
model. It is intriguing to find out the true complex-
ity for stabbing queries using R-trees, which is between
˝(log2 N + T/B) and O((N/B)1�1/d + T/B).

Experimental Results

Nearly all studies on R-trees include experimental evalu-
ations, mostly in two dimensions. Reportedly the Hilbert
R-tree [10,11] has been shown to have good query perfor-
mance while being easy to construct. The R*-tree’s inser-
tion algorithm [6] has often been used for updating the R-
tree. Please refer to the book by Manolopoulos et al. [14]
for more discussions on the practical performance of R-
trees.

Data Sets

Besides some synthetic data sets, the TIGER/Line
data (http://www.census.gov/geo/www/tiger/) from the
US Census Bureau has been frequently used as real-
world data to test R-trees. The R-tree portal (http://www.
rtreeportal.org/) also contains many interesting data sets.

URL to Code

Code for many R-tree variants is available at the R-tree
portal (http://www.rtreeportal.org/). The code for the pri-
ority R-tree is available at http://www.cse.ust.hk/~yike/
prtree/.

Cross References

� B-trees
� External Sorting and Permuting
� I/O-model

Recommended Reading
1. Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammar, M.,

Haverkort, H.J.: Box-trees and R-trees with near-optimal query
time. Discret. Comput. Geom. 28, 291–312 (2002)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sort-
ing and related problems. In: Communications of the ACM,
vol. 31, pp. 1116–1127 (1988)

3. Arge, L., de Berg, M., Haverkort, H.J., Yi, K.: The priority R-tree:
A practically efficient and worst-case optimal R-tree. In: Proc.
SIGMOD International Conference on Management of Data,
2004, pp. 347–358

4. Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional index-
ability and optimal range search indexing. In: Proc. ACM Sym-
posium on Principles of Database Systems, 1999, pp. 346–357

5. Arge, L., Samoladas, V., Yi, K.: Optimal external memory planar
point enclosure. In: Proc. European Symposiumon Algorithms,
2004

6. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-
tree: An efficient and robust accessmethod for points and rect-
angles. In: Proc. SIGMOD International Conference onManage-
ment of Data, 1990, pp. 322–331

7. DeWitt, D.J., Kabra, N., Luo, J., Patel, J.M., Yu, J.-B.: Client-server
paradise. In: Proc. International Conference on Very Large
Databases, 1994, pp. 558–569

8. García, Y.J., López, M.A., Leutenegger, S.T.: A greedy algorithm
for bulk loading R-trees. In: Proc. 6th ACM Symposium on Ad-
vances in GIS, 1998, pp. 163–164

9. Guttman, A.: R-trees: A dynamic index structure for spatial
searching. In: Proc. SIGMOD International Conference on Man-
agement of Data, 1984, pp. 47–57

10. Kamel, I., Faloutsos, C.: On packing R-trees. In: Proc. Interna-
tional Conference on Information and Knowledge Manage-
ment, 1993, pp. 490–499

11. Kamel, I., Faloutsos, C.: Hilbert R-tree: An improved R-tree us-
ing fractals. In: Proc. International Conference on Very Large
Databases, 1994, pp. 500–509

12. Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in
non-replicating index structures. In: Proc. International Confer-
ence on Database Theory. LNCS, vol. 1540, pp. 257–276 (1999)

13. Leutenegger, S.T., Lopez, M.A., Edington, J.: STR: A simple and
efficient algorithm for R-tree packing. In: Proc. 13th IEEE Inter-
national Conference on Data Engineering, 1997, pp. 497–506

14. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N.,
Theodoridis, Y.: R-trees: Theory and Applications. Springer,
London (2005)

15. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dy-
namic index for multi-dimensional objects. In: Proc. Interna-
tional Conference on Very Large Databases, 1987, pp. 507–518

Runs
� Squares and Repetitions

http://www.census.gov/geo/www/tiger/
http://www.rtreeportal.org/
http://www.rtreeportal.org/
http://www.rtreeportal.org/
http://www.cse.ust.hk/~yike/prtree/protect T1	extbraceright
http://www.cse.ust.hk/~yike/prtree/protect T1	extbraceright

Schedulers for Optimistic Rate Based Flow Control S 803

S

Schedulers for Optimistic Rate Based
Flow Control
2005; Fatourou, Mavronicolas, Spirakis

PANAGIOTA FATOUROU
Department of Computer Science,
University of Ioannina, Ioannina, Greece

Keywords and Synonyms

Rate allocation; Rate adjustment; Bandwidth alloca-
tion

ProblemDefinition

The problem concerns the design of efficient rate-based
flow control algorithms for virtual-circuit communication
networks where a connection is established by allocating
a fixed path, called session, between the source and the des-
tination. Rate-based flow-control algorithms repeatedly
adjust the transmission rates of different sessions in an
end-to-end manner with primary objectives to optimize
the network utilization and achieve some kind of fairness
in sharing bandwidth between different sessions.

A widely-accepted fairness criterion for flow-control is
max-min fairness which requires that the rate of a session
can be increased only if this increase does not cause a de-
crease to any other session with smaller or equal rate. Once
max-min fairness has been achieved, no session rate can
be increased any further without violating the above con-
dition or exceeding the bandwidth capacity of some link.
Call max-min rates the session rates when max-min fair-
ness has been reached.

Rate-based flow control algorithms perform rate ad-
justments through a sequence of operations in a way that
the capacities of network links are never exceeded. Some
of these algorithms, called conservative [3,6,10,11,12], em-
ploy operations that gradually increase session rates until

they converge to the max-min rates without ever perform-
ing any rate decreases. On the other hand, optimistic algo-
rithms, introduced more recently by Afek, Mansour, and
Ostfeld [1], allow for decreases, so that a session’s rate may
be intermediately be larger than its final max-min rate.

Optimistic algorithms [1,7] employ a specific rate ad-
justment operation, called update operation (introduced
in [1]). The goal of an update operation is to achieve
fairness among a set of neighboring sessions and optimize
the network utilization in a local basis. More specifically,
an update operation calculates an increase for the rate
of a particular session (the updated session) for each link
the session traverses. The calculated increase on a partic-
ular link is the maximum possible that respects the max-
min fairness condition between the sessions traversing the
link; that is, this increase should not cause a decrease to the
rate of any other session traversing the link with smaller
rate than the rate of the updated session after the increase.
Once the maximum increase on each link has been cal-
culated the minimum among them is applied to the ses-
sion’s rate (let e be the link for which the minimum in-
crease has been calculated). This causes the decrease of
the rates of those sessions traversing e which had larger
rates than the increased rate of the updated session to
the new rate. Moreover, the update operation guaran-
tees that all the capacity of link e is allocated to the ses-
sions traversing it (so the bandwidth of this link is fully
utilized).

One important performance parameter of a rate-based
flow control algorithm is its locality which is character-
ized by the amount of knowledge the algorithm requires
to decide which session’s rate to update next. Oblivious
algorithms do not assume any knowledge of the network
topology or the current session rates. Partially oblivious al-
gorithms have access to session rates but they are unaware
of the network topology, while non-oblivious algorithms
require full knowledge of both the network topology and
the session rates. Another crucial performance parameter
of rate-based flow control algorithms is the convergence
complexity measured as the maximum number of rate-

804 S Schedulers for Optimistic Rate Based Flow Control

adjustment operations performed in any execution until
max-min fairness is achieved.

Key Results

Fatourou, Mavronicolas and Spirakis [7] have studied the
convergence complexity of optimistic rate-based flow con-
trol algorithms under varying degrees of locality. More
specifically, they have proved lower and upper bounds
on the convergence complexity of oblivious, partially-
oblivious and non-oblivious algorithms. These bounds are
expressed in terms of n the number of sessions laid out on
the network.

Theorem 1 (Lower Bound for Oblivious Algorithms, Fa-
tourou, Mavronicolas and Spirakis [7]) Any optimistic,
oblivious, rate-based flow control algorithm requires˝(n2)
update operations to compute the max-min rates.

Fatourou, Mavronicolas and Spirakis [7] have presented
algorithm RoundRobin, which applies update oper-
ations to sessions in a round robin order. Obviously,
RoundRobin is oblivious. It has been proved [7] that the
convergence complexity of RoundRobin is O(n2). This
shows that the lower bound for oblivious algorithms is
tight.

Theorem 2 (Upper Bound for Oblivious Algorithms, Fa-
tourou, Mavronicolas and Spirakis [7]) RoundRobin
computes the max-min rates after performing O(n2)
update operations.

RoundRobin belongs to a class of oblivious algorithms,
called Epoch [7]. Each algorithm of this class repeatedly
chooses some permutation of all session indices and ap-
plies update operations on the sessions in the order de-
termined by this permutation. This is performed n times.
Clearly, Epoch is a class of oblivious algorithms. It has
been proved [7] that each of the algorithms in this class
has convergence complexity O(n2).

Another oblivious algorithm, called Arbitrary, has
been presented in [1]. The algorithm works in a very sim-
ple way by choosing the next session to be updated in an
arbitrary way, but it requires an exponential number of
update operations to compute the max-min rates.

Fatourou, Mavronicolas and Spirakis [7] have proved
that partially-oblivious algorithms do not achieve better
convergence complexity than oblivious algorithms despite
the knowledge they employ.

Theorem 3 (Lower Bound for Partially Oblivious Algo-
rithms, Fatourou, Mavronicolas and Spirakis [7]) Any
optimistic, partially oblivious, rate-based flow control algo-

rithm requires ˝(n2) update operations to compute the
max-min rates.

Afek, Mansour and Ostfeld [1] have presented a partially
oblivious algorithm, called GlobalMin. The algorithm
chooses as the session to update next the one with themin-
imum rate among all sessions. The convergence complex-
ity of GlobalMin is O(n2) [1]. This shows that the lower
bound for partially-oblivious algorithms is tight.

Theorem 4 (Upper Bound for Partially Oblivious algo-
rithms, Afek, Mansour and Ostfeld [1]) GlobalMin
computes the max-min rates after performing O(n2)
update operations.

Another partially-oblivious algorithm, called LocalMin,
is also presented in [1]. The algorithm chooses to sched-
ule next a session which has a minimum rate among all
the sessions that share a link with it. LocalMin has time
complexity O(n2).

Fatourou, Mavronicolas and Spirakis [7] have pre-
sented a non-oblivious algorithm, calledLinear, that ex-
hibits linear convergence complexity. Linear follows the
classical idea [3,12] of selecting as the next updated session
one of the sessions that traverse the most congested link in
the network. To discover such a session, Linear requires
knowledge of the network topology and the session rates.

Theorem 5 (Upper Bound for Non-Oblivious Al-
gorithms, Fatourou, Mavronicolas and Spirakis [7])
Linear computes the max-min rates after performing
O(n) update operations.

The convergence complexity of Linear is optimal, since
n rate adjustments must be performed in any execution of
an optimistic rate-based flow control algorithm (assuming
that the initial session rates are zero). However, this comes
at a remarkable cost in locality which makes Linear
impractical.

Applications

Flow control is the dominant technique used in most
communication networks for preventing data traffic con-
gestion when the externally injected transmission load
is larger than what can be handled even with optimal
routing. Flow control is also used to ensure high net-
work utilization and fairness among the different connec-
tions. Examples of networking technologies where flow
control techniques have been extensively employed to
achieve these goals are TCP streams [5] and ATM net-
works [4]. An overview of flow control in practice is pro-
vided in [3].

Schedulers for Optimistic Rate Based Flow Control S 805

The idea of controlling the rate of a traffic source orig-
inates back to the data networking protocols of the ANSI
Frame Relay Standard. Rate-based flow control is consid-
ered attractive due to its simplicity and its low hardware
requirements. It has been chosen by the ATM Forum on
Traffic Management as the best suited technique for the
goals of ABR service [4].

A substantial amount of research work has been
devoted in past to conservative flow control algo-
rithms [3,6,10,11,12]. The optimistic framework has been
introduced much later by Afek et al. [1] as a more suit-
able approach for real dynamic networks where decreases
of session rates may be necessary (e. g., for accommo-
dating the arrival of new sessions). The algorithms pre-
sented in [7] improve upon the original algorithms pro-
posed in [1] in terms of either convergence complexity, or
locality, or both. Moreover, they identify that certain clas-
sical scheduling techniques, such as round-robin [11], or
adjusting the rates of sessions traversing one of the most
congested links [3,12] can be efficient under the optimistic
framework. The first general lower bounds on the conver-
gence complexity of rate-based flow control algorithms are
also presented in [7].

The performance of optimistic algorithms has been
theoretically analyzed in terms of an abstraction, namely
the update operation, which has been designed to ad-
dress most of the intricacies encountered by rate-based
flow control algorithms. However, the update operation
masks low-level implementation details, while it may incur
non-trivial, local computations on the switches of the net-
work. Fatourou, Mavronicolas and Spirakis [9] have stud-
ied the impact on the efficiency of optimistic algorithms
of local computations required at network switches in or-
der to implement the update operation, and proposed
a distributed scheme that implements a broad class of such
algorithms. On a different avenue, Afek, Mansour and
Ostfeld [2] have proposed a simple flow control scheme,
called Phantom, which employs the idea of considering
an imaginary session on each link [10,12], and they have
discussed how Phantom can be applied to ATMnetworks
and networks of TCP routers.

A broad class of modern distributed applications (e. g.,
remote video, multimedia conferencing, data visualiza-
tion, virtual reality, etc.) exhibit highly differing band-
width requirements and need some kind of quality of ser-
vice guarantees. To efficiently support a wide diversity of
applications sharing available bandwidth, a lot of research
work has been devoted on incorporating priority schemes
on current networking technologies. Priorities offer a basis
for modeling the diverse resource requirements of mod-
ern distributed applications, and they have been used to

accommodate the needs of network management policies,
traffic levels, or pricing. The first efforts for embedding
priority issues into max-min fair, rate-based flow control
were performed in [10,12]. An extension of the classical
theory of max-min fair, rate-based flow control to accom-
modate priorities of different sessions has been presented
in [8]. (A number of other papers addressing similar gen-
eralizations of max-min fairness to account for priorities
and utility have been presented after the original publica-
tion of [8].)

Many modern applications are not based solely on
point-to-point communication but they rather require
multipoint-to-multipoint transmissions. A max-min fair
rate-based flow control algorithm for multicast networks
is presented in [14]. Max-min fair allocation of bandwidth
in wireless adhoc networks is studied in [15].

Open Problems

The research work on optimistic, rate-based flow control
algorithms leaves open several interesting questions. The
convergence complexity of the proposed optimistic algo-
rithms has been analyzed only for a static set of sessions
laid out on the network. It would be interesting to evalu-
ate these algorithms under a dynamic network setting, and
possibly extend the techniques they employ to efficiently
accommodate arriving and departing sessions.

Although max-min fairness has emerged as the most
frequently praised fairness criterion for flow control al-
gorithms, achieving it might be expensive in highly dy-
namic situations. Afek et al. [1] have proposed a modi-
fied version of the update operation, called approximate
update, which applies an increase to some session only if
it is larger than some quantity ı > 0. An approximate opti-
mistic algorithm uses the approximate update operation
and terminates if no session rate can be increased by more
than ı. Obviously such an algorithm does not necessar-
ily reach max-min fairness. It has been proved [1] that for
some network topologies every approximate optimistic al-
gorithm may converge to session rates that are away from
their max-min counterparts by an exponential factor. The
consideration of other versions of update operation or
different termination conditions might lead to better max-
min fairness approximations and deservesmore study; dif-
ferent choices may also significantly impact the conver-
gence complexity of approximate optimistic algorithms.
It would be also interesting to derive trade-off results be-
tween the convergence complexity of such algorithms and
the distance of the terminating rates they achieve to the
max-min rates.

806 S Scheduling with Equipartition

Fairness formulations that naturally approximate the
max-min condition have been proposed by Kleinberg et
al. [13] as suitable fairness criteria for certain routing and
load balancing applications. Studying these formulations
under the rate-based flow control setting is an interesting
open problem.

Cross References
�Multicommodity Flow, Well-linked Terminals and

Routing Problems

Recommended Reading

1. Afek, Y., Mansour, Y., Ostfeld, Z.: Convergence complexity of
optimistic rate based flow control algorithms. J. Algorithms
30(1), 106–143 (1999)

2. Afek, Y., Mansour, Y., Ostfeld, Z.: Phantom: a simple and effec-
tive flow control scheme. Comput. Netw. 32(3), 277–305 (2000)

3. Bertsekas, D.P., Gallager, R.G.: Data Networks, 2nd edn. Pren-
tice Hall, Englewood Cliffs (1992)

4. Bonomi, F., Fendick, K.: The Rate-Based Flow Control for Avail-
able Bit Rate ATM Service. IEEE/ACM Trans. Netw. 9(2), 25–39
(1995)

5. Brakmo, L.S., Peterson, L.: TCP Vegas: End-to-end Congestion
Avoidance on a Global Internet. IEEE J. Sel. Areas Commun.
13(8), 1465–1480 (1995)

6. Charny, A.: An algorithm for rate-allocation in a packet-
switching network with feedback. Technical Report MIT/LCS/
TR-601, Massachusetts Institute of Technology, April 1994

7. Fatourou, P., Mavronicolas, M., Spirakis, P.: Efficiency of oblivi-
ous versus non-oblivious schedulers for optimistic, rate-based
flow control. SIAM J. Comput. 34(5), 1216–1252 (2005)

8. Fatourou, P., Mavronicolas, M., Spirakis, P.: Max-min fair flow
control sensitive to priorities. J. Interconnect. Netw. 6(2), 85–
114 (2005) (also in Proceedings of the 2nd International Con-
ference on Principles of Distributed Computing, pp. 45–59
(1998)

9. Fatourou, P., Mavronicolas, M., Spirakis, P.: The global effi-
ciency of distributed, rate-based flow control algorithms. In:
Proceedings of the 5th Colloqium on Structural Information
and Communication Complexity, pp. 244–258, June 1998

10. Gafni, E., Bertsekas, D.: Dynamic control of session input
rates in communication networks. IEEE Trans. Autom. Control
29(11), 1009–1016 (1984)

11. Hahne, E.: Round Robin Scheduling for Max-min Fairness in
Data Networks. IEEE J. Sel. Areas Commun. 9(7), 1024–1039
(1991)

12. Jaffe, J.: Bottleneck Flow Control. IEEE Trans. Commun. 29(7),
954–962 (1981)

13. Kleinberg, J., Rabani, Y., Tardos, É.: Fairness in routing and load
balancing. In: Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, pp. 568–578, October
1999

14. Sarkar, S., Tassiulas, L.: Fair distributed congestion control in
multirate multicast networks. IEEE/ACM Trans. Netw. 13(1),
121–133 (2005)

15. Tassiulas, L., Sarkar, S.: Maxmin fair scheduling in wireless
adhoc networks. IEEE J. Sel. Areas Commun. 23(1), 163–173
(2005)

Scheduling with Equipartition
2000; Edmonds

JEFF EDMONDS
York University, Toronto, ON, Canada

Keywords and Synonyms

Round Robin and Equi-partition are the same algorithm.
Average Response time and Flow are basically the same
measure.

ProblemDefinition

The task is to schedule a set of n on-line jobs on p pro-
cessors. The jobs are J = fJ1; : : : ; Jng where job Ji has a re-
lease/arrival time ri and a sequence of phases hJ1i ; J

2
i ; : : : ;

Jqii i. Each phase is represented by hw
q
i ;

q
i i, where w

q
i de-

notes the amount of work and
 q
i is the speedup function

specifying the rate
 q
i (ˇ) at which this work is executed

when given ˇ processors.
A phase of a job is said to be fully parallelizable if

its speedup function is
 (ˇ) = ˇ. It is said to be sequen-
tial if its speedup function is
 (ˇ) = 1.1 A speedup
function
 is nondecreasing iff
 (ˇ1) �
 (ˇ2) whenever
ˇ1 � ˇ2;2 is sublinear iff
 (ˇ1)/ˇ1 �
 (ˇ2)/ˇ2;3 and
is strictly-sublinear by ˛ iff
 (ˇ2)/
 (ˇ1) � (ˇ2/ˇ1)1�˛ :

An s-speed scheduling algorithm Ss(J) allocates s � p
processors each point in time to the jobs J in a way such
that all the work completes.4 More formally, it constructs
a function S(i; t) from f1; : : : ; ng � [0;1) to [0; sp] giv-
ing the number of processors allocated to job Ji at time
t. (A job is allowed to be allocated a non-integral num-
ber of processors.) Requiring that for all t,

Pn
i=1 S(i; t) �

sp ensures that at most sp processors are allocated at
any given time. Requiring that for all i, there exist ri =
c0i < c1i < � � � < cqii such that for all 1 � q � qi ,

1Note that an odd feature of this definition is that a sequential job
completes work at a rate of 1 even when absolutely no processors are
allocated to it. This assumption makes things easier for the adversary
and harder for any non-clairvoyant algorithm. Hence, it only makes
these results stronger.

2A job phase with a nondecreasing speedup function executes no
slower if it is allocated more processors.

3Ameasure of how efficient a job utilizes its processors is� (ˇ)/ˇ ,
which is the work completed by the job per time unit per proces-
sor. A sublinear speedup function is one whose efficiency does not
increase with more processors. This is a reasonable assumption if in
practice ˇ1 processors can simulate the execution of ˇ2 processors in
a factor of at most ˇ2/ˇ1 more time.

4Ss(J) is defined to be the scheduler with p processors of speed s.
Ss and Ss are equivalent on fully parallelizable jobs and Ss is s times
faster than Ss on sequential jobs.

Scheduling with Equipartition S 807

R cqi
cq�1i

q
i (S(i; t))dt = wq

i ensures that before a phase of

a job begins, the job must have been released and all of
the previous phases of the job must have completed. The
completion time of a job Ji, denoted ci, is the completion
time of the last phase of the job.

The goal of a scheduling algorithm is to mini-
mize the average response time, 1

n
P

i2J(ci � ri), of the
jobs or equivalently its flow time Ss(J) =

P
i2J(ci � ri).

An alternative formalization is to integrate over time
the number of jobs nt alive at time t, Ss(J) =P

i2J
R1
0 (Ji is alive a time t)ıt =

R1
0 ntıt.

A scheduling algorithm is said to be on-line if it lacks
knowledge of which jobs will arrive in the future. It is said
to be non-clairvoyant if it also lacks all knowledge about
the jobs that are currently in the system, except for know-
ing when a job arrives and knowing when it completes.

The two examples of non-clairvoyant schedulers that
are often used in practice are Equi-partition (also called
Round Robin) and Balance. EQUIs is defined to be the
scheduler that allocates an equal number of processors to
each job that is currently alive. That is, for all i and t, if job
Ji is alive at time t, then EQUI(i; t) = sp/nt , where nt is
the number of jobs that are alive at time t. The schedule
BALs is defined in [8] to be the schedule that allocates all
of its processors to the job that has been allocated proces-
sors for the shortest length of time. (Though no one imple-
ments Balance directly, Unix uses a multi-level feedback
(MLF) queue algorithm which in a way approximates Bal-
ance).

The most obvious worst-case measure of the goodness
of an online non-clairvoyant scheduling algorithm S is its
competitive ratio. This compares the perform of the algo-
rithm to that of the optimal scheduler. However, in many
cases, the limited algorithm is unable to compete against
an all knowing all powerful optimal scheduler. To com-
pensate the algorithm Ss, it is given extra speed s. An on-
line scheduling algorithm S is said to be s-speed c-competi-
tive if: maxJ Ss(J)/Opt(J) � c. For example, being s-speed
2-competitive means that the cost Ss(J) of scheduler Swith
s � p processors on any instance J is at most twice the op-
timal cost for the same jobs when only given p processors.

Key Results

If all jobs arrive at time zero (batch), then the flow time
of EQUI is 2-competitive on fully parallelizable jobs [10]
and (2 +

p
3)-competitive on jobs with nondecreasing

sublinear speedup functions [3]. (The time until the last
job completes (makespan) on fully parallelizable jobs is
the same for EQUI and OPT, but can be a factor of

Scheduling with Equipartition, Figure 1
To understand the motivation for this resource augmentation
analysis [8], note that it is common for the quality of service of
a system to have a threshold property with respect to the load
that it is given. In this example, it seems that the online schedul-
ing algorithm S performs reasonably well in comparison to the
optimal scheduling algorithm. Despite this, one can see that the
competitive ratio of S is huge by looking at the vertical gap be-
tween the curves when the load is near capacity. To explain why
these curves are close, onemust alsomeasure thehorizontal gap
between curves. S performs at most c times worse than optimal,
when either the load is decreased or equivalently the speed is
increased by factor of s

	(log n/ log log n) worse for EQUI if the jobs can also have
sequential phases [11].) Table 1 summarizes all the results.

When the jobs have arbitrary arrival times and are
fully parallelizable, the optimal schedule simply allocates
all the processors to the jobs with least remaining work.
This, however, requires the scheduler to know the amount
of work per job. Without this knowledge, EQUI and BAL
are unable to compete with the optimal and hence can do
a factor of˝(n/ log n) and˝(n) respectively worse and no
non-clairvoyant schedulers has a better competitive ratio
than ˝(n1/3) [9,10]. Randomness improves the compet-
itive ratio of BAL to 	(log n log log n) [7]. Having more
(or faster) processors also helps. BALs achieves a s = 1 + �
speed competitive ratio of s

s�1 = 1 + 1
�
[8].

If some of the jobs are fully parallelizable and some are
sequential jobs, it is hard to believe that any non-clairvoy-
ant scheduler, even with sp processors, can perform well.
Not knowing which jobs are which, it waists too many
processors on the sequential jobs. Being starved, the fully
parallelizable jobs fall further and further behind and then
other fully parallelizable jobs arrive which fall behind as
well. For example, even the randomized version of BAL

808 S Scheduling with Equipartition

Scheduling with Equipartition, Table 1
Each row represents a specific scheduler and a class J of job sets. Here EQUIs denotes the Equi-partition scheduler with s times as
many processors and EQUIs the onewith processors that are s times as fast. The graphs give examples of speedup functions from the
class of those considered. The columns are for different extra resources ratios s. Each entry gives the corresponding ratio between
the given scheduler and the optimal

s = 1 s = 1 + � s = 2 + � s = 4 + 2� s = O(log p)
Batch , , or [2:71; 3:74]

Det. Non-clair ˝(n
1
3) �

Rand. Non-clair e�(log n) �

Rand. Non-clair or ˝(n
1
2) ˝(1

�
)

BALs ˝(n) 1 + 1
�

2
s

BALs ˝(s�1/˛n)

EQUIs , , or ˝(n
log n) ˝(n1��) [1 + 1

�
; 2 + 4

�
] � 1

EQUIs , , or ˝(n
log n) ˝(n1��) [23 (1 +

1
�
); 2 + 4

�
] [2s ;

16
s]

EQUI or [1:481/˛; 21/˛]
EQUI0s Few Preempts ˝(n1��) �(1)

H EQUIs or ˝(n1��) �(1)

H EQUI0s β or ˝(n) �(1)

can have an arbitrarily bad competitive ratio, even when
given arbitrarily fast processors.

EQUI, however, does amazingly well. EQUIs achieves
a s = 2 + � speed competitive ratio of 2 + 4

�
[1]. This

was later improved to 1 +O(ps/(s � 2)), which is bet-
ter for large s [1]. The intuition is that EQUIs is able
to automatically “self adjust” the number of processors
wasted on the sequential jobs. As it falls behind, it has
more uncompleted jobs in the system and hence allo-
cates fewer processors to each job and hence each job
utilizes the processors that it is given more efficiently.
The extra processors are enough to compensate for the
fact that some processors are still wasted on sequen-
tial jobs. For example, suppose the job set is such that
OPT has `t sequential jobs and at most one fully par-
allelizable job alive at any point in time t. (The proof
starts by proving that this is the worst case.) It may take
a while for the system under EQUIs to reach a “steady
state”, but when it does, mt , which denotes the num-
ber of fully parallelizable jobs it has alive at time t,
converges to `t

s�1 . At this time, EQUIs has `t + mt jobs
alive and OPT has `t + 1. Hence, the competitive ratio
is EQUIs (J)/OPT(J) = (`t + `t

s�1))/(`t + 1) � s
s�1 , which

is 1 + 1
e for s = 1 + �. This intuition makes it appear that

speed s = 1 + � is sufficient. However, unless the speed is
at least 2 then the competitive ratio can be bad during the
time until it reaches this steady state, [8].

More surprisingly if all the jobs are strictly sublinear,
i. e., are not fully parallel, then EQUI performs competi-

tively with no extra processors [1]. More specifically, it is
shown that if all the speedup functions are no more fully
parallelizable than
 (ˇ) = ˇ1�˛ than the competitive ra-
tio is at most 2

1
˛ . For intuition, suppose the adversary al-

locates p
n processors to each of n jobs and EQUI falls be-

hind enough so that it has 2
1
˛ n uncompleted jobs. Then it

allocates p/(2
1
˛ n) processors to each, completing work at

an overall rate of (2
1
˛ n)
 (p/(2

1
˛ n)) = 2 � n
 (p/n). This is

a factor of 2 more than that by the adversary. Hence, as in
the previous result, EQUI has twice the speed and so per-
forms competitively.

The results for EQUIs can be extended further. There
is a competitive s = (8 + �)-speed non-clairvoyant sched-
uler that only preempts when the number of jobs in the
system goes up or down by a factor of two (in some sense
log n times). There is s = (4 + �)-speed one that includes
both sublinear and superlinear jobs. Finally, there
is a s = O(log p) speed one that includes both nondecreas-
ing β and gradual jobs.

The proof of these results for EQUIs require tech-
niques that are completely new. For example, the previous
results prove that their algorithm is competitive by prov-
ing that at every point in time, the number of jobs alive
under their algorithm is within a constant fraction of that
under the optimal schedule. This, however, is simply not
true with this less restricted model. There are job sets such
that for a period of time the ratio between the numbers of
alive jobs under the two schedules is unbounded. Instead,

Searching S 809

a potential function is used to prove that this can only hap-
pen for a relatively short period of time.

The proof first transforms each possible input into
a canonical input that as described above only has paral-
lelizable or sequential phases. Having the number of fully
parallelizable jobs alive under EQUIs at time t be much
bigger than the number of sequential jobs alive at this same
time is bad for EQUIs because it then has many more jobs
alive then OPT and hence is currently incurring much
higher costs. On the other hand, this same situation is
also good for EQUIs because it means that it is allocating
a larger fraction of its processors to the fully parallelizable
jobs and hence is catching up toOPT. Both of these aspects
of the current situation is carefully measured in a poten-
tial function ˚(t). It is proven that at each point in time,
the occurred cost to EQUIs plus the gain (d˚(t))/(dt) in
this potential function is at most c times the costs occurred
by OPT. Assuming that the potential function begins and
ends at zero, the result follows.

More formally, the potential function is ˚(t) = F(t) +
Q(t) whereQ(t) is total sequential work finished by EQUIs
by time t minus the total sequential work finished by
the adversary by time t. To define F(t) requires some
preliminary definitions. For u � t, define mu(t) (`u(t))
to be number of fully parallelizable (sequential) phases
executing under EQUIs at time u, for which EQUIs at
time u has still not processed as much work as the ad-
versary processed at time t. Let nu(t) = mu(t) + `u(t).
Then F(t) =

R1
t fu(mu(t); `u(t))du, where fu(m; `) =

s
s�2

(m�`)(m+`)
nu . As the definition of the potential function

suggests, the analysis is quite complicated.

Applications

In addition to being interesting results on their own, they
have been powerful tools for the theoretical analysis of
other on-line algorithms. For example, in [2,4] TCP was
reduced to this problem and in [5], the online broadcast
scheduling problem was reduced to this problem.

Open Problems

An open question is whether there is an algorithm that is
competitive when given processors of speed s = 1 + � (as
opposed to s = 2 + �). There is a candidate algorithm that
is part way between EQUIs and BALs.

Cross References

� Flow Time Minimization
� List Scheduling
� Load Balancing

�Minimum Flow Time
�MinimumWeighted Completion Time
� Online List Update
� Schedulers for Optimistic Rate Based Flow Control
� Shortest Elapsed Time First Scheduling

Recommended Reading

1. Edmonds, J.: Scheduling in the dark. Improved results:
manuscript 2001. In: Theor. Comput. Sci. 235, 109–141 (2000).
In: 31st Ann. ACM Symp. on Theory of Computing, 1999

2. Edmonds, J.: On the Competitiveness of AIMD-TCP within
a General Network. In: LATIN, Latin American Theoretical In-
formatics, vol. 2976, pp. 577–588 (2004). Submitted to Journal
Theoretical Computer Science and/or Lecture Notes in Com-
puter Science

3. Edmonds, J., Chinn, D., Brecht, T., Deng, X.: Non-clairvoyant
Multiprocessor Scheduling of Jobs with Changing Execution
Characteristics. In: 29th Ann. ACM Symp. on Theory of Com-
puting, 1997, pp. 120–129. Submitted to SIAM J. Comput.

4. Edmonds, J., Datta, S., Dymond, P.: TCP is Competitive Against
a Limited Adversary. In: SPAA, ACM Symp. of Parallelism in Al-
gorithms and Achitectures, 2003, pp. 174–183

5. Edmonds, J., Pruhs, K.: Multicast pull scheduling: when fairness
is fine. Algorithmica 36, 315–330 (2003)

6. Edmonds, J., Pruhs, K.: A maiden analysis of longest wait first.
In: Proc. 15th Symp. on Discrete Algorithms (SODA)

7. Kalyanasundaram, B., Pruhs, K.: Minimizing flow time nonclair-
voyantly. In: Proceedings of the 38th Symposium on Founda-
tions of Computer Science, October 1997

8. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clair-
voyance. In: Proceedings of the 36th Symposium on Founda-
tions of Computer Science, October 1995, pp. 214–221

9. Matsumoto: Competitive Analysis of the Round Robin Algo-
rithm. in: 3rd International Symposium on Algorithms and
Computation, 1992, pp. 71–77

10. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling.
Theor. Comput. Sci. 130 (Special Issue on Dynamic and On-
Line Algorithms), 17–47 (1994). Preliminary Version in: Pro-
ceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1993, pp. 422–431

11. Robert, J., Schabanel, N.: Non-Clairvoyant Batch Sets Schedul-
ing: Fairness is Fair enough. Personal Correspondence (2007)

Scheduling with Unknown Job Sizes

�Multi-level Feedback Queues
� Shortest Elapsed Time First Scheduling

Searching

� Deterministic Searching on the Line

810 S Selfish Unsplittable Flows: Algorithms for Pure Equilibria

Selfish Unsplittable Flows:
Algorithms for Pure Equilibria
2005; Fotakis, Kontogiannis, Spirakis

PAUL SPIRAKIS
Computer Engineering and Informatics, Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

Atomic network congestion games; Cost of anarchy

ProblemDefinition

Consider having a set of resources E in a system. For
each e 2 E, let de (�) be the delay per user that requests its
service, as a function of the total usage of this resource
by all the users. Each such function is considered to be
non�decreasing in the total usage of the corresponding
resource. Each resource may be represented by a pair of
points: an entry point to the resource and an exit point
from it. So, each resource is represented by an arc from its
entry point to its exit point and the model associates with
this arc the cost (e. g., the delay as a function of the load of
this resource) that each user has to pay if she is served by
this resource. The entry/exit points of the resources need
not be unique; they may coincide in order to express the
possibility of offering joint service to users, that consists
of a sequence of resources. Here, denote by V the set of
all entry/exit points of the resources in the system. Any
nonempty collection of resources corresponding to a di-
rected path in G � (V ; E) comprises an action in the sys-
tem.

Let N � [n] be a set of users, each willing to adopt
some action in the system. 8i 2 N , let wi denote user
i’s demand (e. g., the flow rate from a source node to
a destination node), while ˘i
 2E n ; is the collection
of actions, any of which would satisfy user i (e. g., al-
ternative routes from a source to a destination node,
if G represents a communication network). The collec-
tion ˘ i is called the action set of user i and each of
its elements contains at least one resource. Any vector
r = (r1; : : : ; rn) 2 ˘ � �ni=1˘i is a pure strategies profile,
or a configuration of the users. Any vector of real func-
tions p = (p1; p2; : : : ; pn) s.t.8i 2 [n]; pi : ˘i ! [0; 1] is
a probability distribution over the set of allowable actions
for user i (i. e.,

P
r i2˘i

pi (ri) = 1), and is called a mixed
strategies profile for the n users.

A congestion model typically deals with users of
identical demands, and thus, user cost function de-

pending on the number of users adopting each action
([1,4,6]). In this work the more general case is con-
sidered, where a weighted congestion model is the tuple
((wi)i2N ; (˘i)i2N ; (de)e2E). That is, the users are allowed
to have different demands for service from the whole sys-
tem, and thus affect the resource delay functions in a dif-
ferent way, depending on their own weights. A weighted
congestion game associated with this model, is a game
in strategic form with the set of users N and user de-
mands (wi)i2N , the action sets (˘i)i2N and cost func-
tions (�ir i)i2N;r i2˘i defined as follows: For any configu-
ration r 2 ˘ and 8e 2 E, let �e(r) = fi 2 N : e 2 rig be
the set of users exploiting resource e according to r (called
the view of resource e wrt configuration r). The cost �i (r)
of user i for adopting strategy ri 2 ˘i in a given configu-
ration r is equal to the cumulative delay �r i (r) along this
path:

�i (r) = �r i (r) =
X
e2r i

de (�e (r)) (1)

where, 8e 2 E; �e (r) �
P

i2�e (r) wi is the load on re-
source e wrt the configuration r.

On the other hand, for a mixed strategies profile p, the
expected cost of user i for adopting strategy ri 2 ˘i is

�ir i (p) =
X

r�i2˘�i

P(p�i ; r�i) �
X
e2r i

de
�
�e(r�i ˚ ri)

�

(2)

where, r�i is a configuration of all the users except for user
i, p�i is the mixed strategies profile of all users except for
i, r�i ˚ ri is the new configuration with user i choosing
strategy ri , and P(p�i ; r�i) �

Q
j2Nnfig p j(r j) is the oc-

currence probability of r�i .

Remark 1 Here notation is abused a little bit and the
model considers the user costs �ir i as functions whose ex-
act definition depends on the other users’ strategies: In the
general case of a mixed strategies profile p, (2) is valid and
expresses the expected cost of user i wrt p, conditioned on
the event that i chooses path ri . If the other users adopt
a pure strategies profile r�i , we get the special form of (1)
that expresses the exact cost of user i choosing action ri .

A congestion game in which all users are indistinguish-
able (i. e., they have the same user cost functions) and have
the same action set, is called symmetric. When each user’s
action set ˘ i consists of sets of resources that comprise
(simple) paths between a unique origin-destination pair of
nodes (si ; ti) in a network G = (V ; E), the model refers
to a network congestion game. If additionally all origin-
destination pairs of the users coincide with a unique pair

Selfish Unsplittable Flows: Algorithms for Pure Equilibria S 811

(s, t) one gets a single commodity network congestion game
and then all users share exactly the same action set. Ob-
serve that a single-commodity network congestion game
is not necessarily symmetric because the users may have
different demands and thus their cost functions will also
differ.

Selfish Behavior

Fix an arbitrary (mixed in general) strategies profile p for
a congestion game ((wi)i2N ; (˘i)i2N ; (de)e2E). We say
that p is a Nash Equilibrium (NE) if and only if 8i 2
N;8ri ;
i 2 ˘i ; pi (ri) > 0) �ir i (p) � �i�i

(p):
A configuration r 2 ˘ is a Pure Nash Equilibrium (PNE)
if and only if (8i 2 N;8
i 2 ˘i ; �r i (r) � ��i (r�i ˚
i)
where, r�i ˚
i is the same configuration with r except
for user i that now chooses action
 i.

Key Results

In this section the article deals with the existence and
tractability of PNE in weighted network congestion games.
First, it is shown that it is not always the case that a PNE ex-
ists, even for a weighted single-commodity network con-
gestion game with only linear and 2-wise linear (e. g., the
maximumof two linear functions) resource delays. In con-
trast, it is well known ([1,6]) that any unweighted (not nec-
essarily single-commodity, or even network) congestion
game has a PNE, for any kind of nondecreasing delays. It
should be mentioned that the same result has been inde-
pendently proved also by [3].

Lemma 1 There exist instances of weighted single–
commodity network congestion games with resource delays
being either linear or 2–wise linear functions of the loads,
for which there is no PNE.

Theorem 2 For any weighted multi–commodity network
congestion game with linear resource delays, at least one
PNE exists and can be computed in pseudo-polynomial
time.

Proof Fix an arbitrary network G = (V ; E) with linear
resource/edge delays de (x) = aex + be , e 2 E, ae ; be � 0.
Let r 2 ˘ be an arbitrary configuration for the corre-
sponding weighted multi–commodity congestion game
on G. For the configuration r consider the potential
˚(r) = C(r) +W(r), where

C(r) =
X
e2E

de (�e(r))�e (r) =
X
e2E

[ae�2e (r) + be�e(r)];

and

W(r) =
nX
i=1

X
e2r i

de(wi)wi =
X
e2E

X
i2˜e (r)

de (wi)wi =

X
e2E

X
i2˜e (r)

(aew2
i + bewi)

one concludes that

˚(r0) � ˚(r) = 2wi[�i (r0) � �i (r)] ;

Note that the potential is a global system function
whose changes are proportional to selfish cost improve-
ments of any user. The global minima of the potential then
correspond to configurations in which no user can im-
prove her cost acting unilaterally. Therefore, any weighted
multi–commodity network congestion game with linear
resource delays admits a PNE. �

Applications

In [5] many experiments have been conducted for several
classes of pragmatic networks. The experiments show even
faster convergence to pure Nash Equilibria.

Open Problems

The Potential function reported here is polynomial on the
loads of the users. It is open whether one can find a purely
combinatorial potential , which will allow strong polyno-
mial time for finding Pure Nash equilibria.

Cross References

� Best Response Algorithms for Selfish Routing
� Computing Pure Equilibria in the Game of Parallel

Links
� General Equilibrium

Recommended Reading

1. Fabrikant A., Papadimitriou C., Talwar K.: The complexity of pure
nash equilibria. In: Proc. of the 36th ACM Symp. on Theory of
Computing (STOC ’04). ACM, Chicago (2004)

2. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable
flows. J. Theoret. Comput. Sci. 348, 226–239 (2005)

3. Libman L., Orda A.: Atomic resource sharing in noncooperative
networks. Telecommun. Syst. 17(4), 385–409 (2001)

4. Monderer D., Shapley L.: Potential games. Games Eco. Behav. 14,
124–143 (1996)

5. Panagopoulou P., Spirakis P.: Algorithms for pure Nash Equilib-
rium inweighted congestion games. ACM J. Exp. Algorithms11,
2.7 (2006)

6. Rosenthal R.W.: A class of games possessing pure-strategy nash
equilibria. Int. J. Game Theory 2, 65–67 (1973)

812 S Self-Stabilization

Self-Stabilization
1974; Dijkstra

TED HERMAN
Department of Computer Science, University of Iowa,
Iowa City, IA, USA

Keywords and Synonyms

Autopoesis; Homeostasis; Autonomic system control

ProblemDefinition

An algorithm is self-stabilizing if it eventually manifests
correct behavior regardless of initial state. The general
problem is to devise self-stabilizing solutions for a speci-
fied task. The property of self-stabilization is now known
to be feasible for a variety of tasks in distributed com-
puting. Self-stabilization is important for distributed sys-
tems and network protocols subject to transient faults.
Self-stabilizing systems automatically recover from faults
that corrupt state.

The operational interpretation of self-stabilization is
depicted in Fig. 1. Part (a) of the figure is an informal pre-
sentation of the behavior of a self-stabilizing system, with
time on the x-axis and some informal measure of correct-
ness on the y-axis. The curve illustrates a system trajec-
tory, through a sequence of states, during execution. At the
initial state, the system state is incorrect; later, the system
enters a correct state, then returns to an incorrect state,
and subsequently stabilizes to an indefinite period where
all states are correct. This period of stability is disrupted
by a transient fault that moves the system to an incorrect
state, after which the scenario above repeats. Part (b) of
the figure illustrates the scenario in terms of state predi-
cates. The box represents the predicate true, which char-
acterizes all possible states. Predicate C characterizes the
correct states of the system, and L � C depicts the closed
legitimacy predicate. Reaching a state in L corresponds to
entering a period of stability in part (a). Given an algo-
rithm A with this type of behavior, it is said that A self-
stabilizes to L; when L is implicitly understood, the state-
ment is simplified to: A is self-stabilizing.

Problem [3]. The first setting for self-stabilization
posed by Dijkstra is a ring of n processes numbered 0
through n � 1. Let the state of process i be denoted by
x[i]. Communication is unidirectional in the ring us-
ing a shared state model. An atomic step of process
i can be expressed by a guarded assignment of the form
g(x[i � 1]; x[i]) ! x[i]:= f (x[i� 1]; x[i]). Here, � is
subtraction modulo n, so that x[i � 1] is the state of the

previous process in the ring with respect to process i. The
guard g is a boolean expression; if g(x[i � 1]; x[i]) is true,
then process i is said to be privileged (or enabled). Thus
in one atomic step, privileged process i reads the state of
the previous process and computes a new state. Execution
scheduling is controlled by a central daemon, which fairly
chooses one among all enabled processes to take the next
step. The problem is to devise g and f so that, regardless
of initial states of x[i], 0 � i < n, eventually there is one
privilege and every process enjoys a privilege infinitely of-
ten.

Complexity Metrics

The complexity of self-stabilization is evaluated by mea-
suring the resource needed for convergence from an ar-
bitrary initial state. Most prominent in the literature of
self-stabilization aremetrics for worst-case time of conver-
gence and space required by an algorithm solving the given
task. Additionally, for reactive self-stabilizing algorithms,
metrics are evaluated for the stable behavior of the algo-
rithm, that is, starting from a legitimate state, and com-
pared to non-stabilizing algorithms, to measure costs of
self-stabilization.

Key Results

Composition

Many self-stabilizing protocols have a layered construc-
tion. Let fAi g

m�1
i=0 be a set programs with the property

that for every state variable x, if program Ai writes x, then
no program Aj, for j > i, writes x. Programs in fAj g

m�1
j=i+1

may read variables written by Ai, that is, they use the out-
put of Ai as input. Fair composition of programs B and C,
written B []C, assumes fair scheduling of steps of B and C.
Let Xj be the set of variables read by Aj and possibly writ-
ten by fAi g

j�1
i=0 .

Theorem 1 (Fair Composition [4]) Suppose Ai is self-
stabilizing to Li under the assumption that all variables
in Xi remain constant throughout any execution; then
A0 []A1[] � � � []Am�1 self-stabilizes to fLi g

m�1
i=0 .

Fair composition with a layered set fAi g
m�1
i=0 corresponds

to sequential composition of phases in a distributed algo-
rithm. For instance, let B be a self-stabilizing algorithm for
mutual exclusion in a network that assumes the existence
of a rooted, spanning tree and let algorithm C be a self-
stabilizing algorithm to construct a rooted spanning tree in
a connected network; then B []C is a self-stabilizing mu-
tual exclusion algorithm for a connected network.

Self-Stabilization S 813

Self-Stabilization, Figure 1
Self-stabilization trajectories

Synchronization Tasks

One question related to the problem posed in Sect.
“Problem Definition” is whether or not there can be
a uniform solution, where all processes have identical al-
gorithms. Dijkstra’s result for the unidirectional ring is
a semi-uniform solution (all but one process have the same
algorithm), using n states per process. The state of each
process is a counter: process 0 increments the counter
modulo k, where k � n suffices for convergence; the other
processes copy the counter of the preceding process in
the ring. At a legitimate state, each time process 0 incre-
ments the counter, the resulting value is different from all
other counters in the ring. This ring algorithm turns out
to be self-stabilizing for the distributed daemon (any sub-
set of privileged processes may execute in parallel) when
k > n. Subsequent results have established that mutual ex-
clusion on a unidirection ring is 	(1) space per process
with a non-uniform solution. Deterministic uniform so-
lutions to this task are generally impossible, with the ex-
ceptional case where n is and prime. Randomized uniform
solutions are known for arbitrary n, using O(lg˛) space
where ˛ is the smallest number that does not divide n.
Some lower bounds on space for uniform solutions are
derived in [7]. Time complexity of Dijkstra’s algorithm is
O(n2) rounds, and some randomized solutions have been
shown to have expected O(n2) convergence time.

Dijkstra also presented a solution to mutual exclusion
for a linear array of processes, using O(1) space per pro-
cess [3]. This result was later generalized to a rooted tree
of processes, but with mutual exclusion relaxed to hav-
ing one privilege along any path from root to leaf. Subse-
quent research built on this theme, showing how tasks for

distributed wave computations have self-stabilizing solu-
tions. Tasks of phase synchronization and clock synchro-
nization have also been solved. See reference [9] for an ex-
ample of self-stabilizing mutual exclusion in a multipro-
cessor shared memory model.

Graph Algorithms

Communication networks are commonly represented
with graph models and the need for distributed graph
algorithms that tolerate transient faults motivates study
of such tasks. Specific results in this area include self-
stabilizing algorithms for spanning trees, center-finding,
matching, planarity testing, coloring, finding indepen-
dent sets, and so forth. Generally, all graph tasks can be
solved by self-stabilizing algorithms: tasks that have net-
work topology and possibly related factors, such as edge
weights, for input, and define outputs to be a function
of the inputs, can be solved by general methods for self-
stabilization. These general methods require considerable
space and time resource, and may also use stronger model
assumptions than needed for specific tasks, for instance
unique process identifiers and an assumed bound on net-
work diameter. Therefore research continues on graph al-
gorithms.

One discovery emerging from research on self-
stabilizing graph algorithms is the difference between algo-
rithms that terminate and those that continuously change
state, even after outputs are stable. Consider the task of
constructing a spanning tree rooted at process r. Some
algorithms self-stabilize to the property that, for every
p ¤ r, the variable up refers to p’s parent in the span-
ning tree and the state remains unchanged. Other algo-

814 S Self-Stabilization

rithms are self-stabilizing protocols for token circulation
with the side-effect that the circulation route of the to-
ken establishes a spanning tree. The former type of al-
gorithm has O(lg n) space per process, whereas the lat-
ter has O(lg ı) where ı is the degree (number of neigh-
bors) of a process. This difference was formalized in the
notion of silent algorithms, which eventually stop chang-
ing any communication value; it was shown in [5] for the
link register model that silent algorithms for many graph
tasks have˝(lg n) space.

Transformation

The simple presentation of [3] is enabled by the abstract
computation model, which hides details of communica-
tion, program control, and atomicity. Self-stabilization be-
comes more complicated when considering conventional
architectures that have messages, buffers, and program
counters. A natural question is how to transform or re-
fine self-stabilizing algorithms expressed in abstract mod-
els to concrete models closer to practice. As an example,
consider the problem of transforming algorithms written
for the central daemon to the distributed daemon model.
This transformation can be reduced to finding a self-
stabilizing token-passing algorithm for the distributed
daemon model such that, eventually, no two neighboring
processes concurrently have a token; multiple tokens can
increase the efficiency of the transformation.

General Methods

The general problem of constructing a self-stabilizing al-
gorithm for an input nonreactive task can be solved using
standard tools of distributed computing: snapshot, broad-
cast, system reset, and synchronization tasks are building
blocks so that the global state can be continuously vali-
dated (in some fortunate cases L can be locally checked
and corrected). These building blocks have self-stabilizing
solutions, enabling the general approach.

Fault Tolerance

The connection between self-stabilization and transient
faults is implicit in the definition. Self-stabilization is also
applicable in executions that asynchronously change in-
puts, silently crash and restart, and perturb communi-
cation [10]. One objection to the mechanism of self-
stabilization, particularly when general methods are ap-
plied, is that a small transient fault can lead to a system-
wide correction. This problem has been investigated, for
example in [8], where it is shown how convergence can be

optimized for a limited number of faults. Self-stabilization
has also been combined with other types of failure tol-
erance, though this is not always possible: the task of
counting the number of processes in a ring has no self-
stabilizing solution in the shared state model if a process
may crash [1], unless a failure detector is provided.

Applications

Many network protocols are self-stabilizing by the follow-
ing simple strategy: periodically, they discard current data
and regenerate it from trusted information sources. This
idea does not work in purely asynchronous systems; the
availability of real-time clocks enables the simple strategy.
Similarly, watchdogs with hardware clocks can provide an
effective basis for self-stabilization [6].

Cross References

� Concurrent Programming, Mutual Exclusion

Recommended Reading

1. Anagnostou, E., Hadzilacos, V.: Tolerating Transient and Per-
manent Failures. In: Distributed Algorithms 7th International
Workshop. LNCS, vol. 725, pp. 174–188. Springer, Heidelberg
(1993)

2. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Snap-Stabilizing
PIF Algorithm in Arbitrary Networks. In: Proceedings of the
22nd International Conference Distributed Computing Sys-
tems, pp. 199–206, Vienna, July 2002

3. Dijkstra, E.W.: Self Stabilizing Systems in Spite of Distributed
Control. Commun. ACM 17(11), 643–644 (1974). See also
EWD391 (1973) In: Selected Writings on Computing: A Per-
sonal Perspective, pp. 41–46. Springer, New York (1982)

4. Dolev, S.: Self-Stabilization. MIT Press, Cambrigde (2000)
5. Dolev, S., Gouda, M.G., Schneider, M.: Memory Requirements

for Silent Stabilization. In: Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing,
pp. 27–34, Philadelphia, May 1996

6. Dolev, S., Yagel, R.: Toward Self-Stabilizing Operating Systems.
In: 2nd International Workshop on Self-Adaptive and Auto-
nomic Computing Systems, pp. 684–688, Zaragoza, August
2004

7. Israeli, A., Jalfon, M.: Token Management Schemes and Ran-
domWalks Yield Self-StabilizingMutual Exclusion. In: Proceed-
ings of the 9th Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 119–131, Quebec City, August 1990

8. Kutten, S., Patt-Shamir, B.: Time-Adaptive Self Stabilization. In:
Proceedings of the 16th Annual ACMSymposiumon Principles
of Distributed Computing, pp. 149–158, Santa Barbara, August
1997

9. Lamport, L.: The Mutual Exclusion Problem: Part II-Statement
and Solutions. J. ACM 33(2), 327–348 (1986)

10. Varghese, G., Jayaram, M.: The Fault Span of Crash Failures. J.
ACM 47(2), 244–293 (2000)

Separators in Graphs S 815

Separators in Graphs
1998; Leighton, Rao
1999; Leighton, Rao

GORAN KONJEVOD
Department of Computer Science and Engineering,
Arizona State University, Tempe, AZ, USA

Keywords and Synonyms

Balanced cuts

ProblemDefinition

The (balanced) separator problem asks for a cut of mini-
mum (edge)-weight in a graph, such that the two shores of
the cut have approximately equal (node)-weight.

Formally, given an undirected graph G = (V ; E), with
a nonnegative edge-weight function c : E ! R+, a non-
negative node-weight function
 : V ! R+, and a con-
stant b � 1/2, a cut (S : V n S) is said to be b-balanced,
or a (b; 1 � b)-separator, if b
(V) �
(S) � (1 � b)
(V)
(where
(S) stands for

P
v2S
(v)).

Problem 1 (b-balanced separator)
Input: Edge- and node-weighted graph G = (V ; E; c;
),
constant b � 1/2.
Output: A b-balanced cut (S : V n S). Goal: minimize the
edge weight c(ı(S)).

Closely related is the product sparsest cut problem.

Problem 2 ((Product) Sparsest cut)
Input: Edge- and node-weighted graph G = (V ; E; c;
).
Output: A cut (S : V n S) minimizing the ratio-cost
(
c (ı(S)))/(
(S)
(V n S)).

Problem 2 is the most general version of sparsest cut
solved by Leighton and Rao. Setting all node weights are
equal to 1 leads to the uniform version, Problem 3.

Problem 3 ((Uniform) Sparsest cut)
Input: Edge-weighted graph G = (V ; E; c).
Output: A cut (S : V n S) minimizing the ratio-cost
(c(ı(S)))/(jSjjV n Sj):

Sparsest cut arises as the (integral version of the) lin-
ear programming dual of concurrent multicommodity flow
(Problem 4). An instance of a multicommodity flow prob-
lem is defined on an edge-weighted graph by specifying for
each of k commodities a source si 2 V , a sink ti 2 V , and
a demand Di. A feasible solution to the multicommodity
flow problem defines for each commodity a flow function
on E, thus routing a certain amount of flow from si to ti.

The edge weights represent capacities, and for each edge e,
a capacity constraint is enforced: the sum of all commodi-
ties’ flows through e is at most the capacity c(e).

Problem 4 (Concurrent multicommodity flow)
Input: Edge-weighted graph G = (V ; E; c), commodities
(s1; t1;D1); : : : (sk ; tk ;Dk).
Output: A multicommodity flow that routes f Di units of
commodity i from si to ti for each i simultaneously, without
violating the capacity of any edge. Goal: maximize f .

Problem 4 can be solved in polynomial time by lin-
ear programming, and approximated arbitrarily well by
several more efficient combinatorial algorithms (Sect.
“Implementation”). The maximum value f for which
there exists a multicommodity flow is called the max-
flow of the instance. The min-cut is the minimum
ratio (c(ı(S)))/(D(S;V n S)), where D(S;V n S) =P

i :jfs i ;t ig\Sj=1 Di . This dual interpretation motivates the
most general version of the problem, the nonuniform
sparsest cut (Problem 5).

Problem 5 ((Nonuniform) Sparsest cut) Input: Edge-
weighted graph G = (V ; E; c), commodities (s1; t1;D1);
: : : (sk ; tk ;Dk).
Output: A min-cut (S : V n S), that is, a cut of minimum
ratio-cost (c(ı(S)))/(D(S;V n S)).

(Most literature focuses on either the uniform or the gen-
eral nonuniform version, and both of these two versions
are sometimes referred to as just the “sparsest cut” prob-
lem.)

Key Results

Even when all (edge- and node-) weights are equal to 1,
finding a minimum-weight b-balanced cut is NP-hard (for
b = 1/2, the problem becomes graph bisection). Leighton
and Rao [23,24] give a pseudo-approximation algorithm
for the general problem.

Theorem 1 There is a polynomial-time algorithm that,
given a weighted graph G = (V ; E; c;
), b � 1/2
and b0 < minfb; 1/3g, finds a b0-balanced cut of weight
O((log n)/(b � b0)) times the weight of the minimum b-
balanced cut.

The algorithm solves the sparsest cut problem on the given
graph, puts aside the smaller-weight shore of the cut, and
recurses on the larger-weight shore until both shores of the
sparsest cut found have weight at most (1� b0)
(G). Now
the larger-weight shore of the last iteration’s sparsest cut is
returned as one shore of the balanced cut, and everything
else as the other shore. Since the sparsest cut problem is

816 S Separators in Graphs

itself NP-hard, Leighton and Rao first required an approx-
imation algorithm for this problem.

Theorem 2 There is a polynomial-time algorithmwith ap-
proximation ratio O(log p) for product sparsest cut (Prob-
lem 2), where p denotes the number of nonzero-weight
nodes in the graph.

This algorithm follows immediately from Theorem 3.

Theorem 3 There is a polynomial-time algorithm that
finds a cut (S : V n S) with ratio-cost (c(ı(S)))/(
(S)
(V n
S)) 2 O(f log p), where f is the max-flow for the prod-
uct multicommodity flow and p the number of nodes with
nonzero weight.

The proof of Theorem 3 is based on solving a linear pro-
gramming formulation of the multicommodity flow prob-
lem and using the solution to construct a sparse cut.

Related Results

Shahrokhi andMatula [27] gave a max-flowmin-cut theo-
rem for a special case of themulticommodity flow problem
and used a similar LP-based approach to prove their re-
sult. An O(log n) upper bound for arbitrary demands was
proved by Aumann and Rabani [6] and Linial et al. [26]. In
both cases, the solution to the dual of the multicommod-
ity flow linear program is interpreted as a finite metric and
embedded into `1 with distortion O(log n), using an em-
bedding due to Bourgain [10]. The resulting `1 metric is
a convex combination of cut metrics, fromwhich a cut can
be extracted with sparsity ratio at least as good as that of
the combination.

Arora et al. [5] gave an O(
p
log n) pseudo-approxi-

mation algorithm for (uniform or product-weight) bal-
anced separators, based on a semidefinite programming
relaxation. For the nonuniform version, the best bound is
O(
p
log n log log n) due to Arora et al. [4]. Khot and Vish-

noi [18] showed that, for the nonuniform version of the
problem, the semidefinite relaxation of [5] has an integral-
ity gap of at least (log log n)1/6�ı for any ı > 0, and fur-
ther, assuming their Unique Games Conjecture, that it is
NP-hard to (pseudo)-approximate the balanced separator
problem towithin any constant factor. The SDP integrality
gap was strengthened to˝(log log n) by Krauthgamer and
Rabani [20]. Devanur et al. [11] show an ˝(log log n) in-
tegrality gap for the SDP formulation even in the uniform
case.

Implementation

The bottleneck in the balanced separator algorithm is
solving the multicommodity flow linear program. There

exists a substantial amount of work on fast approxi-
mate solutions to such linear programs [19,22,25]. In
most of the following results, the algorithm produces
a (1 + �)-approximation, and its hidden constant depends
on ��2. Garg and Könemann [15], Fleischer [14] and
Karakostas [16] gave efficient approximation schemes for
multicommodity flow and related problems, with running
times Õ((k + m)m) [15] and Õ(m2) [14,16]. Benczúr and
Karger [7] gave an O(log n) approximation to sparsest cut
based on randomized minimum cut and running in time
Õ(n2). The current fastest O(log n) sparsest cut (balanced
separator) approximation is based on a primal-dual ap-
proach to semidefinite programming due to Arora and
Kale [3], and runs in time O(m + n3/2)(Õ(m + n3/2), re-
spectively). The same paper gives an O(

p
log n) approx-

imation in time O(n2)(Õ(n2), respectively), improving
on a previous Õ(n2) algorithm of Arora et al. [2]. If an
O(log2 n) approximation is sufficient, then sparsest cut
can be solved in time Õ(n3/2), and balanced separator in
time Õ(m + n3/2) [17].

Applications

Many problems can be solved by using a balanced separa-
tor or sparsest cut algorithm as a subroutine. The approx-
imation ratio of the resulting algorithm typically depends
directly on the ratio of the underlying subroutine. In most
cases, the graph is recursively split into pieces of balanced
size. In addition to the O(log n) approximation factor re-
quired by the balanced separator algorithm, this leads to
another O(log n) factor due to the recursion depth. Even
et al. [12] improved many results based on balanced sep-
arators by using spreading metrics, reducing the approxi-
mation guarantee to O(log n log log n) from O(log2 n).

Some applications are listed here; where no reference
is given, and for further examples, see [24].
� Minimum cut linear arrangement and minimum

feedback arc set. One single algorithm provides an
O(log2 n) approximation for both of these problems.

� Minimum chordal graph completion and elimination
orderings [1]. Elimination orderings are useful for solv-
ing sparse symmetric linear systems. The O(log2 n) ap-
proximation algorithm of [1] for chordal graph com-
pletion has been improved to O(log n log log n) by
Even et al. [12].

� Balanced node cuts. The cost of a balanced cut may
be measured in terms of the weight of nodes removed
from the graph. The balanced separator algorithm can
be easily extended to this node-weighted case.

� VLSI layout. Bhatt and Leighton [8] studied several
optimization problems in VLSI layout. Recursive par-

Separators in Graphs S 817

titioning by a balanced separator algorithm leads to
polylogarithmic approximation algorithms for crossing
number, minimum layout area and other problems.

� Treewidth and pathwidth. Bodlaender et al. [9] showed
how to approximate treewidth within O(log n) and
pathwidth within O(log2 n) by using balanced node
separators.

� Bisection. Feige and Krauthgamer [13] gave an
O(˛ log n) approximation for the minimum bisection,
using any ˛-approximation algorithm for sparsest cut.

Experimental Results

Lang and Rao [21] compared a variant of the sparsest cut
algorithm from [24] to methods used in graph decompo-
sition for VLSI design.

Cross References

� Fractional Packing and Covering Problems
�Minimum Bisection
� Sparsest Cut

Recommended Reading

Further details and pointers to additional results may be
found in the survey [28].

1. Agrawal, A., Klein, P.N., Ravi, R.: Cutting down on fill using
nested dissection: provably good elimination orderings. In:
Brualdi, R.A., Friedland, S., Klee, V. (eds.) Graph theory and
sparse matrix computation. IMA Volumes in mathematics and
its applications, pp. 31–55. Springer, New York (1993)

2. Arora, S., Hazan, E., Kale, S.: O(
p
logn) approximation to spars-

est cut in Õ(n2) time. In: FOCS ’04: Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS’04), pp. 238–247. IEEE Computer Society, Washington
(2004)

3. Arora, S., Kale, S.: A combinatorial, primal-dual approach to
semidefinite programs. In: STOC ’07: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, pp. 227–
236. ACM (2007)

4. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the spars-
est cut. In: STOC ’05: Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pp. 553–562. ACM
Press, New York (2005)

5. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric em-
beddings and graph partitioning. In: STOC ’04: Proceedings of
the thirty-sixth annual ACM symposium on Theory of comput-
ing, pp. 222–231. ACM Press, New York (2004)

6. Aumann, Y., Rabani, Y.: An (log) approximate min-cut max-
flow theorem and approximation algorithm. SIAM J. Comput.
27(1), 291–301 (1998)

7. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts
in Õ(n2) time. In: STOC ’96: Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pp. 47–55.
ACM Press, New York (1996)

8. Bhatt, S.N., Leighton, F.T.: A framework for solving vlsi graph
layout problems. J. Comput. Syst. Sci. 28(2), 300–343 (1984)

9. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Ap-
proximating treewidth, pathwidth, frontsize, and shortest
elimination tree. J. Algorithms 18(2), 238–255 (1995)

10. Bourgain, J.: On Lipshitz embedding of finite metric spaces in
Hilbert space. Israel J. Math. 52, 46–52 (1985)

11. Devanur, N.R., Khot, S.A., Saket, R., Vishnoi, N.K.: Integrality
gaps for sparsest cut and minimum linear arrangement prob-
lems. In: STOC ’06: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pp. 537–546. ACM
Press, New York (2006)

12. Even, G., Naor, J.S., Rao, S., Schieber, B.: Divide-and-conquer
approximation algorithms via spreading metrics. J. ACM 47(4),
585–616 (2000)

13. Feige, U., Krauthgamer, R.: A polylogarithmic approximation
of the minimum bisection. SIAM J. Comput. 31(4), 1090–1118
(2002)

14. Fleischer, L.: Approximating fractional multicommodity flow
independent of the number of commodities. SIAM J. Discret.
Math. 13(4), 505–520 (2000)

15. Garg, N., Könemann, J.: Faster and simpler algorithms for mul-
ticommodity flow and other fractional packing problems. In:
FOCS ’98: Proceedings of the 39th Annual Symposium on
Foundations of Computer Science, p. 300. IEEE Computer Soci-
ety, Washington (1998)

16. Karakostas, G.: Faster approximation schemes for fractional
multicommodity flow problems. In: SODA ’02: Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 166–173. Society for Industrial and Applied Mathe-
matics, Philadelphia (2002)

17. Khandekar, R., Rao, S., Vazirani, U.: Graph partitioning using
single commodity flows. In: STOC ’06: Proceedings of the
thirty-eighth annual ACM symposium on Theory of comput-
ing, pp. 385–390. ACM Press, New York (2006)

18. Khot, S., Vishnoi, N.K.: The unique games conjecture, integrality
gap for cut problems and embeddability of negative typemet-
rics into l1. In: FOCS ’07: Proceedings of the 46th Annual IEEE
Symposium on Foundations and Computer Science, pp. 53–
62. IEEE Computer Society (2005)

19. Klein, P.N., Plotkin, S.A., Stein, C., Tardos, É.: Faster approxima-
tion algorithms for the unit capacity concurrent flow problem
with applications to routing and finding sparse cuts. SIAM J.
Comput. 23(3), 466–487 (1994)

20. Krauthgamer, R., Rabani, Y.: Improved lower bounds for em-
beddings into l1. In: SODA ’06: Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm,
pp. 1010–1017. ACM Press, New York (2006)

21. Lang, K., Rao, S.: Finding near-optimal cuts: an empirical eval-
uation. In: SODA ’93: Proceedings of the fourth annual ACM-
SIAM Symposium on Discrete algorithms, pp. 212–221. Society
for Industrial and AppliedMathematics, Philadelphia (1993)

22. Leighton, F.T., Makedon, F., Plotkin, S.A., Stein, C., Stein, É.,
Tragoudas, S.: Fast approximation algorithms for multicom-
modity flow problems. J. Comput. Syst. Sci. 50(2), 228–243
(1995)

23. Leighton, T., Rao, S.: An approximate max-flow min-cut theo-
rem for uniform multicommodity flow problems with appli-
cations to approximation algorithms. In: Proceedings of the
29th Annual Symposium on Foundations of Computer Sci-
ence, pp. 422–431, IEEE Computer Society (1988)

818 S Sequential Approximate StringMatching

24. Leighton, T., Rao, S.: Multicommodity max-flow min-cut the-
orems and their use in designing approximation algorithms.
J. ACM 46(6), 787–832 (1999)

25. Leong, T., Shor, P., Stein, C.: Implementation of a combinatorial
multicommodity flow algorithm. In: Johnson, D.S., McGeoch,
C.C. (eds.) Network flows and matching. DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, vol. 12,
pp. 387–406. AMS, Providence (1991)

26. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs
and some of its algorithmic applications. Comb. 15(2), 215–
245 (1995)

27. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow
problem. J. ACM 37(2), 318–334 (1990)

28. Shmoys, D.B.: Cut problems and their applications to divide-
and-conquer. In: Hochbaum, D.S. (ed.) Approximation algo-
rithms for NP-hard problems, pp. 192–235. PWS Publishing
Company, Boston, MA (1997)

Sequential Approximate
StringMatching
2003; Crochemore, Landau, Ziv-Ukelson
2004; Fredriksson, Navarro

GONZALO NAVARRO
Department of Computer Science, University of Chile,
Santiago, Chile

Keywords and Synonyms

String matching allowing errors or differences; Inexact
string matching; Semiglobal or semilocal sequence simi-
larity

ProblemDefinition

Given a text string T = t1t2 : : : tn and a pattern string
P = p1p2 : : : pm , both being sequences over an alphabet˙
of size � , and given a distance function among strings d
and a threshold k, the approximate string matching (ASM)
problem is to find all the text positions that finish a so-
called approximate occurrence of P in T, that is, compute
the set f j; 9i; 1 � i � j; d(P; ti : : : t j) � kg. In the sequen-
tial version of the problem T, P, and k are given together,
whereas the algorithm can be tailored for a specific d.

The solutions to the problem vary widely depending
on the distance d used. This entry focuses on a very popu-
lar one, calledLevenshtein distance or edit distance, defined
as theminimumnumber of character insertions, deletions,
and substitutions necessary to convert one string into the
other. It will also pay some attention to other common
variants such as indel distance, where only insertions and

deletions are permitted and is the dual of the longest com-
mon subsequence lcs (d(A; B) = jAj + jBj � 2 � l cs(A; B));
and Hamming distance, where only substitutions are per-
mitted.

A popular generalization of all the above is the
weighted edit distance, where the operations are given pos-
itive real-valued weights and the distance is the minimum
sum of weights of a sequence of operations converting
one string into the other. The weight of deleting a char-
acter c is written w(c ! �), that of inserting c is written
w(� ! c), and that of substituting c by c0 6= c is written
w(c ! c0). It is assumed w(c ! c) = 0 and the triangle
inequality, that is, w(x ! y) + w(y ! z) � w(x ! z) for
any x; y; z 2 ˙ [f�g. As the distance may now be asym-
metric, it is fixed that d(A; B) is the cost of converting A
into B. Of course any result for weighted edit distance ap-
plies to edit, Hamming and indel distances (collectively
termed unit-cost edit distances) as well, but other reduc-
tions are not immediate.

Both worst- and average-case complexity are consid-
ered. For the latter one assumes that pattern and text are
randomly generated by choosing each character uniformly
and independently from˙ . For simplicity and practicality,
m = o(n) is assumed in this entry.

Key Results

The most ancient and versatile solution to the prob-
lem [13] builds over the process of computing weighted
edit distance. Let A = a1a2 : : : am and B = b1b2 : : : bn be
two strings. Let C[0 : : :m; 0 : : : n] be a matrix such that
C[i; j] = d(a1 : : : ai ; b1 : : : bj). Then it holds C[0; 0] = 0
and

C[i; j] = min(C[i � 1; j] + w(ai ! �);C[i; j � 1]
+ w(� ! bj);C[i � 1; j � 1] + w(ai ! bj)) ;

where C[i;�1] = C[�1; j] =1 is assumed. This matrix is
computed in O(mn) time and d(A; B) = C[m; n]. In or-
der to solve the approximate string matching problem, one
takes A = P and B = T , and sets C[0; j] = 0 for all j, so that
the above formula is used only for i > 0.

Theorem 1 (Sellers 1980 [13]) There exists an O(mn)
worst-case time solution to the ASM problem under
weighted edit distance.

The space is O(m) if one realizes that C can be computed
column-wise and only column j � 1 is necessary to com-
pute column j. As explained, this immediately implies that
searching under unit-cost edit distances can be done in
O(mn) time as well. In those cases, it is quite easy to com-

Sequential Approximate StringMatching S 819

pute only part of matrix C so as to achieve O(kn) average-
time algorithms [14].

Yet, there exist algorithms with lower worst-case com-
plexity for weighted edit distance. By applying a Ziv-
Lempel parsing to P and T, it is possible to identify re-
gions of matrix C corresponding to substrings of P and T
that can be computed from other previous regions corre-
sponding to similar substrings of P and T [5].

Theorem 2 (Crochemore et al. 2003 [5]) There exists
an O(n + mn/ log� n) worst-case time solution to the ASM
problem under weighted edit distance. Moreover, the time
is O(n + mnh/ log n), where 0 � h � log � is the entropy
of T.

This result is very general, also holding for computing
weighted edit distance and local similarity (see section on
applications). For the case of edit distance and exploit-
ing the unit-cost RAM model, it is possible to do better.
On one hand, one can apply a four-Russian technique:
All the possible blocks (submatrices of C) of size t � t, for
t = O(log� n), are precomputed andmatrixC is computed
block-wise [9]. On the other hand, one can represent each
cell in matrix C using a constant number of bits (as it can
differ from neighboring cells by ˙ 1) so as to store and
process several cells at once in a single machine word [10].
This latter technique is called bit-parallelism and assumes
a machine word of	(log n) bits.

Theorem 3 (Masek and Paterson 1980 [9]; Myers
1999 [10]) There exist O(n + mn/(log� n)2) and O(n +
mn/ log n) worst-case time solutions to the ASM problem
under edit distance.

Both complexities are retained for indel distance, yet not
for Hamming distance.

For unit-cost edit distances, the complexity can de-
pend on k rather than on m, as k < m for the problem
to be nontrivial and usually k is a small fraction of m (or
even k = o(m)). A classic technique [8] computes matrix
C by processing in constant time diagonals C[i + d; j + d],
0 � d � s, along which cell values do not change. This is
possible by preprocessing the suffix trees of T and P for
Lowest Common Ancestor queries.

Theorem 4 (Landau and Vishkin 1989 [8]) There exists
an O(kn) worst-case time solution to the ASM problem un-
der unit-cost edit distances.

Other solutions exist which are better for small k, achiev-
ing time O(n(1 + k4/m)) [4]. For the case of Hamming
distance, one can achieve improved results using convo-
lutions [1].

Theorem 5 (Amir et al. 2004 [1]) There exist
O(n

p
k log k) and O(n(1 + k3/m) log k) worst-case time

solution to the ASM problem under Hamming distance.

The last result for edit distance [4] achieves O(n) time if k
is small enough (k = O(m1/4)). It is also possible to achieve
O(n) time on unit-cost edit distances at the expense of an
exponential additive term on m or k: The number of dif-
ferent columns in C is independent of n, so the transition
from every possible column to the next can be precom-
puted as a finite-state machine.

Theorem 6 (Ukkonen 1985 [14]) There exists an
O(n + mmin(3m ;m(2m�)k)) worst-case time solution to
the ASM problem under edit distance.

Similar results apply for Hamming and indel distance,
where the exponential term reduces slightly according to
the particularities of the distances.

The worst-case complexity of the ASM problem is of
course ˝(n), but it is not known if this can be attained
for any m and k. Yet, the average-case complexity of the
problem is known.

Theorem 7 (Chang andMarr 1994 [3]) The average-case
complexity of the ASM problem is	(n(k + log� m)/m) un-
der unit-cost edit distances.

It is not hard to prove the lower bound as an ex-
tension to Yao’s bound for exact string matching [15].
The lower bound was reached in the same paper [3],
for k/m < 1/3� O(1/

p
�). This was improved later to

k/m < 1/2� O(1/
p
�) [6] using a slightly different idea.

The approach is to precompute the minimum distance
to match every possible text substring (block) of length
O(log� m) inside P. Then, a text window is scanned back-
wards, block-wise, adding up those minimum precom-
puted distances. If they exceed k before scanning all the
window, then no occurrence of P with k errors can con-
tain the scanned blocks and the window can be safely slid
over the scanned blocks, advancing in T. This is an exam-
ple of a filtration algorithm, which discards most text areas
and applies an ASM algorithm only over those areas that
cannot be discarded.

Theorem 8 (Fredriksson and Navarro 2004 [6]) There
exists an optimal-on-average solution to the ASM prob-
lem under edit distance, for any k/m � 1�e/

p
�

2�e/
p
�

= 1/2 �
O(1/
p
�).

The result applies verbatim to indel distance. The same
complexity is achieved for Hamming distance, yet the limit
on k/m improves to 1 � 1/� . Note that, when the limit
k/m is reached, the average complexity is already 	(n). It

820 S Sequential Circuit Technology Mapping

is not clear up to which k/m limit could one achieve linear
time on average.

Applications

The problem has many applications in computational bi-
ology (to compare DNA and protein sequences, recover-
ing from experimental errors, so as to spot mutations or
predict similarity of structure or function), text retrieval
(to recover from spelling, typing or automatic recogni-
tion errors), signal processing (to recover from transmis-
sion and distortion errors), and several others. See [11] for
a more detailed discussion.

Many extensions of the ASM problem exist, particu-
larly in computational biology. For example, it is possible
to substitute whole substrings by others (called generalized
edit distance), swap characters in the strings (string match-
ing with swaps or transpositions), reverse substrings (rever-
sal distance), have variable costs for insertions/deletions
when they are grouped (similarity with gap penalties), and
look for any pair of substrings of both strings that are suffi-
ciently similar (local similarity). See for example Gusfield’s
book [7], where many related problems are discussed.

Open Problems

The worst-case complexity of the problem is not fully un-
derstood. For unit-cost edit distances it is 	(n) if m =
O(min(log n; (log� n)2)) or k = O(min(m1/4; logm� n)).
For weighted edit distance the complexity is 	(n) if
m = O(log� n). It is also unknown up to which k/m value
can one achieveO(n) average time; up to now this has been
achieved up to k/m = 1/2 � O(1/

p
�).

Experimental Results

A thorough survey on the subject [11] presents extensive
experiments. Nowadays, the fastest algorithms for edit dis-
tance are in practice filtration algorithms [6,12] combined
with bit-parallel algorithms to verify the candidate ar-
eas [2,10]. Those filtration algorithms work well for small
enough k/m, otherwise the bit-parallel algorithms should
be used stand-alone. Filtration algorithms are easily ex-
tended to handle multiple patterns searched simultane-
ously.

URL to Code

Well-known packages offering efficient ASM are agrep
(http://webglimpse.net/download.html, top-level subdi-
rectory agrep/) and nrgrep (http://www.dcc.uchile.cl/
~gnavarro/software).

Cross References

� Approximate Regular Expression Matching is the more
complex case where P can be a regular expression;

� Indexed Approximate String Matching refers to the
case where the text can be preprocessed;

� Local Alignment (with Concave Gap Weights) refers to
a more complex weighting scheme of interest in
computational biology.

� Sequential Exact String Matching is the simplified
version where no errors are permitted;

Recommended Reading
1. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string

matching with k mismatches. J. Algorithms 50(2), 257–275
(2004)

2. Baeza-Yates, R., Navarro, G.: Faster approximate string match-
ing. Algorithmica 23(2), 127–158 (1999)

3. Chang, W., Marr, T.: Approximate string matching and local
similarity. In: Proc. 5th Annual Symposium on Combinato-
rial Pattern Matching (CPM’94). LNCS, vol. 807, pp. 259–273.
Springer, Berlin, Germany (1994)

4. Cole, R., Hariharan, R.: Approximate stringmatching: A simpler
faster algorithm. SIAM J. Comput. 31(6), 1761–1782 (2002)

5. Crochemore, M., Landau, G., Ziv-Ukelson, M.: A subquadratic
sequence alignment algorithm for unrestricted scoring matri-
ces. SIAM J. Comput. 32(6), 1654–1673 (2003)

6. Fredriksson, K., Navarro, G.: Average-optimal single and mul-
tiple approximate string matching. ACM J. Exp. Algorithms
9(1.4) (2004)

7. Gusfield, D.: Algorithms on strings, trees and sequences. Cam-
bridge University Press, Cambridge (1997)

8. Landau, G., Vishkin, U.: Fast parallel and serial approximate
stringmatching. J. Algorithms 10, 157–169 (1989)

9. Masek, W., Paterson, M.: A faster algorithm for computing
string edit distances. J. Comput. Syst. Sci. 20, 18–31 (1980)

10. Myers, G.: A fast bit-vector algorithm for approximate string
matching based on dynamic progamming. J. ACM 46(3), 395–
415 (1999)

11. Navarro, G.: A guided tour to approximate string matching.
ACM Comput. Surv. 33(1), 31–88 (2001)

12. Navarro, G., Baeza-Yates, R.: Very fast and simple approximate
stringmatching. Inf. Proc. Lett. 72, 65–70 (1999)

13. Sellers, P.: The theory and computation of evolutionary dis-
tances: pattern recognition. J. Algorithms 1, 359–373 (1980)

14. Ukkonen, E.: Finding approximate patterns in strings. J. Algo-
rithms 6, 132–137 (1985)

15. Yao, A.: The complexity of pattern matching for a random
string. SIAM J. Comput. 8, 368–387 (1979)

Sequential Circuit
Technology Mapping
1998; Pan, Liu

PEICHEN PAN
Magma Design Automation, Inc., Los Angeles, CA, USA

http://webglimpse.net/download.html
http://www.dcc.uchile.cl/~gnavarro/software
http://www.dcc.uchile.cl/~gnavarro/software

Sequential Circuit Technology Mapping S 821

Keywords and Synonyms

Integrated retiming and technology mapping; Technology
mapping with retiming

ProblemDefinition

One of the key steps in VLSI design flow is tech-
nology mapping which converts a Boolean network of
technology-independent logic gates and edge-triggered D-
flipflops (FFs) into an equivalent one comprised of cells
from a target technology cell library [1,3,5]. Technology
mapping can be formulated as a covering problem in
where logic gates are covered by cells from the technol-
ogy library. For ease of discussion, it is assumed that the
cell library contains only one cell, a K-input lookup table
(K-LUT) with one unit of delay. A K-LUT can realize any
Boolean function with up to K inputs as is the case in high
performance field-programmable gate arrays (FPGAs).

Sequential Circuit Technology Mapping, Figure 1
Technology mapping: (1) Original network, (2) covering, (3) mapping solution

Sequential Circuit Technology Mapping, Figure 2
Retiming and mapping: (1) Retiming and covering, (2) mapping solution, (3) retimed solution

Figure 1 shows an example of technology mapping.
The original network in (1) with three FFs and four gates,
is covered by three 3-input cones as indicated in (2). The
corresponding mapping solution using 3-LUTs is shown
in (3). Note that gate i is covered by two cones. The map-
ping solution in (3) has a cycle time (or clock period) of two
units, which is the total delay of a longest path between
FFs, from primary inputs (PIs) to FFs, and from FFs to
primary outputs (POs).

Retiming is a transformation that relocates FFs of a de-
sign while preserving its functionality [4]. Retiming can af-
fect technology mapping. Figure 2 (1) shows a design ob-
tained from the one in Fig. 1 (1) by retiming the FFs at the
output of y and i to their inputs. It can be covered with
just one 3-input cone as indicated in (1). The correspond-
ing mapping solution shown in (2) is better in both timing
and area than the functionally-equivalent solution in Fig. 1
(3) obtained without retiming.

822 S Sequential Circuit Technology Mapping

FindAllCuts(N , K)
foreach node v in N do C(v)(ffv0gg
while (new cuts discovered) do

foreach node v in N do C(v)(merge(C(u1); :::;C(ut))

Sequential Circuit Technology Mapping, Figure 3
Cut enumeration procedure

iter a b i x y z o

0 fa0g fb0g fi0g fx0g fy0g fz0g fo0g

1 fa0g fi1; z1g
fa1; z1g

fi0; b0; z0g
fa0; b0; z0g

fx0; y1g
fi1; z1; b1g
fa1; z1; b1g
fi1; z1; y1g
fa1; z1; y1g

fz0g

2 fi1; x1; y2g
fa1; x1; y2g

Sequential Circuit Technology Mapping, Figure 4
Cut enumeration example

A K-bounded network is one in which each gate has at
most K inputs. The sequential circuit technology mapping
problem can be defined as follows: Given a K-bounded
Boolean network N and a target cycle time ' , find a map-
ping solution with a cycle time of ' , assuming FFs can be
repositioned using retiming.

Key Results

The first polynomial time algorithm for the problem was
proposed in [8,9]. An improved algorithm was proposed
in [2] to reduce runtime. Both algorithms are based on
min-cost flow computation.

In [7], another algorithm was proposed to take advan-
tage of the fact that K is a small integer usually between
3 and 6 in practice. The algorithm enumerates all K-input
cones for each gate. It can incorporate other optimization
objectives (e. g., area and power) and can be apllied to stan-
dard cells libraries.

Cut Enumeration

A Boolean network can be represented as an edge-
weighted directed graph where the nodes denote logic
gates, PIs, and POs. There is a directed edge (u, v) with
weight d if u, after going through d FFs, drives v.

A logic cone for a node can be captured by a cut con-
sisting of inputs to the cone. An element in a cut for v
consists of the driving node u and the total weight d on
the paths from u to v, denoted by ud. If u reaches v on

several paths with different FF counts, u will appear in
the cut multiple times with different d’s. As an example,
for the cone for z in Fig. 2 (2), the corresponding cut is
fz1; a1; b1g. A cut of size K is called a K-cut.

Let (ui, v) be an edge in N with weight di, and
C(ui) be a set of K-cuts for ui, for i = 1; : : : ; t. Let
merge(C(u1); : : : ;C(ut)) denote the following set opera-
tion:

ffv0gg [fcd11 [: : : [cdtt jc1 2 C(u1); : : : ; ct 2 C(ut);

jcd11 [: : : [cdtt j � Kg

where cdii = fud+di jud 2 cig for i = 1; : : : ; t. It is obvious
that merge(C(u1); : : : ;C(ut)) is a set of K-cuts for v.

If the network N does not contain cycles, the K-cuts of
all nodes can be determined using the merge operation in

FindMinLabels(N)
foreach node v in N do l(v)(�wv � �

while(there are updates in labels) do
foreach node v in N do
l(v)(minc2C(v)fmaxfl(u)� d � � + 1jud

2 cgg
if v is a PO and l(v) > � , return failure

return success

Sequential Circuit Technology Mapping, Figure 5
Labeling procedure

Sequential Circuit Technology Mapping S 823

iter a b i x y z o
0 fa0g : 0 fb0g : 0 fi0g : 0 fx0g : �1 fy0g : 0 fz0g : �1 fo0g : �1
1 fa0g : 1 fa1; z1g : 0 fa0; b0; z0g : 1 fa1; z1; b1g : 0 fz0g : 0

Sequential Circuit Technology Mapping, Figure 6
Labeling example

a topological order starting from the PIs. For general net-
works, Fig. 3 outlines the iterative cut computation proce-
dure proposed in [7].

Figure 4 depicts the iterations in enumerating 3-cuts
for the design in Fig. 1 (1) when cuts are merged in the
order i, x, y, z, and o. At the beginning, every node has
its trivial cut formed by itself. Row 1 shows the new cuts
discovered in the first iteration. In second iteration, two
more cuts are discovered (for x). After that, the procedure
stops as further merging does not yield any new cut.

Lemma 1 After at most Kn iterations, the cut enumeration
procedure will find the K-cuts for all nodes in N.

Techniques have been proposed to speed up the proce-
dure [7]. With those techniques, all 4-cuts for each of the
ISCAS89 benchmark designs can be found in at most five
iterations.

Labeling Phase

After obtaining all K-cuts, the algorithm evaluates the cuts
based on sequential arrival times (or l-values), which is an
extension of traditional arrival times, to consider the effect
of retiming [6,8].

The labeling procedure tries to find a label for each
node as outlined in Fig. 5, where wv denotes the weight
of shortest paths from PIs to node v.

Figure 6 shows the iterations for label computation for
the design in Fig. 1 (1) assuming the target cycle time� = 1
and the nodes are evaluated in the order of i, x, y, z, and o.
In the table, the current label as well as a corresponding cut
for each node is listed. In this example, after first iteration,
none of the labels will change and the procedure stops.

It can be shown that the labeling procedure will stop
after at most n(n � 1) iterations [9]. The following lemma
relates labels to mapping:

Lemma 2 N has a mapping solution with cycle time ' iff
the labeling procedure returns “success”.

Mapping Phase

Once the labels for all nodes are computed successfully,
a mapping solution can be constructed starting from POs.
At each node v, the procedure selects a cut that realizes the

label of the node, and then moves on to select a cut for u
if ud is in the cut selected for v. On the edge from the LUT
for u to the LUT for v, d FFs are added. For the design
in Fig. 1 (1), the mapping solution generated based on the
labels found in Fig. 6 is exactly the network in Fig. 2 (2).

To obtain a mapping solution with the target cycle
time ', the LUT for v can be retimed by dl(v)/�e � 1. For
the design in Fig. 1 (1), the final mapping solution after
retiming is shown in Fig. 2 (3).

Applications

The algorithm can be used to map a technology-
independent Boolean network to a network consisting of
cells from a target technology library. The concepts and
framework are general enough to be adapted to study
other circuit optimizations such as sequential circuit clus-
tering and sequential circuit restructuring.

Cross References

� Circuit Retiming
� FPGA Technology Mapping
� Technology Mapping

Recommended Reading
1. Cong, J., Ding, Y.: FlowMap: An Optimal Technology Mapping

Algorithm for Delay Optimization in Lookup-Table Based FPGA
Designs. IEEE Trans. on Comput. Aided Des. of Integr. Circuits
and Syst., 13(1), 1–12 (1994)

2. Cong, J., Wu, C.: FPGA Synthesis with Retiming and Pipelining
for Clock Period Minimization of Sequential Circuits. ACM/IEEE
Design Automation Conference (1997)

3. Keutzer, K.: DAGON: Technology Binding and Local Optimiza-
tion by DAG Matching. ACM/IEEE Design Automation Confer-
ence (1987)

4. Leiserson, C.E., Saxe, J.B.: Retiming Synchronous Circuitry. Algo-
rithmica 6, 5–35 (1991)

5. Mishchenko, A., Chatterjee, S., Brayton, R., Ciesielski, M.: An inte-
grated technology mapping environment. International Work-
shop on Logic Synthesis (2005)

6. Pan, P.: Continuous Retiming: Algorithms and Applications. IEEE
International Conference on Computer Design, pp. 116–121.
(1997)

7. Pan, P., Lin, C.C.: A New Retiming-based Technology Mapping
Algorithm for LUT-based FPGAs. ACM International Symposium
on Field-Programmable Gate Arrays (1998)

824 S Sequential Exact StringMatching

8. Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Map-
ping for Sequential Circuits. ACM/IEEE Design Automation Con-
ference, June (1996)

9. Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Map-
ping for Sequential Circuits. ACM Trans. on Des. Autom. of Elec-
tron. Syst., 3(3), 437–462 (1998)

Sequential Exact StringMatching
1994; Crochemore, Czumaj, Gąsieniec,
Jarominek, Lecroq, Plandowski, Rytter

MAXIME CROCHEMORE1, THIERRY LECROQ2

1 Laboratory of Computer Science, University
of Paris-East, Descartes, France

2 Computer Science Department and LITIS Faculty
of Science, University of Rouen, Rouen, France

Keywords and Synonyms

Exact pattern matching

ProblemDefinition

Given a pattern string P = p1p2 : : : pm and a text string
T = t1t2 : : : tn , both being sequences over an alphabet ˙
of size � , the exact string matching (ESM) problem is to
find one or, more generally, all the text positions where P
occurs in T, that is, compute the set f j j 1 � j � n�m+1
and P = t j t j+1 : : : t j+m�1g. The pattern is assumed to be
given first and is then to be searched for in several texts.

Both worst- and average-case complexity are consid-
ered. For the latter one assumes that pattern and text are
randomly generated by choosing each character uniformly
and independently from˙ . For simplicity and practicality
the assumption m = o(n) is set in this entry.

Key Results

Most algorithms that solve the ESM problem proceed in
two steps: a preprocessing phase of the pattern P followed
by a searching phase over the text T. The preprocessing
phase serves to collect information on the pattern in order
to speed up the searching phase.

The searching phase of string-matching algorithms
works as follows: it first aligns the left ends of the pattern
and the text, then compare the aligned symbols of the text
and the pattern – this specific work is called an attempt
or a scan – and after a whole match of the pattern or af-
ter a mismatch it shifts the pattern to the right. It repeats
the same procedure again until the right end of the pat-
tern goes beyond the right end of the text. The scanning

part can be viewed as operating on the text through a win-
dow, which size is most often the length of the pattern.
This processing manner is called the scan and shift mech-
anism. Different scanning strategies of the window lead to
algorithms having specific properties and advantages.

The brute force algorithm for the ESM problem con-
sists in checking if P occurs at each position j on T, with
1 � j � n � m + 1. It does not need any preprocessing
phase. It runs in quadratic timeO(mn) with constant extra
space and performs O(n) character comparisons on aver-
age. This is to be compared with the following bounds.

Theorem 1 (Cole et al. 1995 [3]) The minimum number
of character comparisons to solve the ESM problem in the
worst case is � n + 9/(4m)(n � m), and can be made �
n + 8/(3(m + 1))(n � m).

Theorem 2 (Yao 1979 [15]) The ESM problem can be
solved in optimal expected time O((logm/m) � n).

On-Line Text Parsing

The first linear ESM algorithm appears in the 1970’s. The
preprocessing phase consists in computing the periods
of the pattern prefixes, or equivalently the length of the
longest border for all the prefixes of the pattern. A border
of a string is both a prefix and a suffix of it distinct from
the string itself. Let next[i] be the length of the longest
border of p1 : : : pi�1. Consider an attempt at position j,
when the pattern p1 : : : pm is aligned with the segment
t j : : : t j+m�1 of the text. Assume that the first mismatch
(during a left to right scan) occurs between symbols pi and
ti+ j for 1 � i � m. Then, p1 : : : pi�1 = t j : : : ti+ j�1 = u
and a = pi ¤ ti+ j = b. When shifting, it is reasonable
to expect that a prefix v of the pattern matches some suf-
fix of the portion u of the text. Doing so, after a shift, the
comparisons can resume between pnex t[i] and ti+ j with-
out missing any occurrence of P in T and having to back-
track on the text. There exists two variants, depending on
whether pnex t[i] has to be different from pi or not.

Theorem 3 (Knuth, Morris and Pratt 1977 [11]) The
text searching can be done in time O(n) and space O(m).
Preprocessing the pattern can be done in time O(m).

The search can be realized using an implementation with
successor by default of the deterministic automatonD(P)
recognizing the language˙�P. The size of the implemen-
tation is O(m) independent of the alphabet size, due to the
fact thatD(P) possesses m + 1 states,m forward arcs, and
at mostm backward arcs. Using the automaton for search-
ing a text leads to an algorithm having an efficient delay
(maximum time for processing a character of the text).

Sequential Exact StringMatching S 825

Theorem 4 (Hancart 1993 [10]) Searching for the pat-
tern P can be done with a delay of O(minf�; log2 m)g) letter
comparisons.

Note that for most algorithms the pattern preprocessing
is not necessarily done before the text parsing as it can be
performed on the fly during the parsing.

Practically-Efficient Algorithms

The Boyer–Moore algorithm is among the most efficient
ESM algorithms. A simplified version of it, or the entire
algorithm, is often implemented in text editors for the
search and substitute commands.

The algorithm scans the characters of the window
from right to left beginning with its rightmost symbol.
In case of a mismatch (or a complete match of the pat-
tern) it uses two precomputed functions to shift the pat-
tern to the right. These two shift functions are called
the bad-character shift and the good-suffix shift. They are
based on the following observations. Assume that a mis-
match occurs between character pi = a of the pattern
and character ti+ j = b of the text during an attempt at
position j. Then, pi+1 : : : pm = ti+ j+1 : : : t j+m = u and
pi ¤ ti+ j . The good-suffix shift consists in aligning the
segment ti+ j+1 : : : t j+m with its rightmost occurrence in P
that is preceded by a character different from pi. Another
variant called the best-suffix shift consists in aligning the
segment ti+ j : : : t j+m with its rightmost occurrence in P.
Both variants can be computed in time and space O(m)
independent of the alphabet size. If there exists no such
segment, the shift consists in aligning the longest suffix v
of ti+ j+1 : : : t j+m with a matching prefix of x. The bad-
character shift consists in aligning the text character ti+ j
with its rightmost occurrence in p1 : : : pm�1. If ti+ j does
not appear in the pattern, no occurrence of P in T can
overlap the symbol ti+ j , then the left end of the pattern is
aligned with the character at position i + j + 1. The search
can then be done in O(n/m) in the best case.

Theorem 5 (Cole 1994 (see [5,14])) During the search for
a non-periodic pattern P of length m (such that the length
of the longest border of P is less than m/2) in a text T of
length n, the Boyer-Moore algorithm performs at most 3n
comparisons between letters of P and of T.

Yao’s bound can be reached using an indexing structure
for the reverse pattern. This is done by the Reverse Factor
algorithm also called BDM (for Backward Dawg Match-
ing).

Theorem 6 (Crochemore et al. 1994 [4]) The search can
be done in optimal expected time O((logm/m) � n) using
the suffix automaton or the suffix tree of the reverse pattern.

A factor oracle can be used instead of an index structure,
this is made possible since the only string of length m ac-
cepted by the factor oracle of a string w of lengthm is w it-
self. This is done by the BackwardOracleMatching (BOM)
algorithm of Allauzen, Crochemore and Raffinot [1]. Its
behavior in practice is similar to the one of the BDM algo-
rithm.

Time-Space Optimal Algorithms

Algorithms of this type run in linear time (for both pre-
processing and searching) and need only constant space
in addition to the inputs.

Theorem 7 (Galil and Seiferas 1983 [8]) The search can
be done optimally in time O(n) and constant extra space.

After Galil and Seiferas’ first solution, other solutions are
by Crochemore-Perrin [6] and by Rytter [13]. Algorithms
rely on a partition of the pattern in two parts; they first
search for the right part of the pattern from left to right,
and then, if no mismatch occurs, they search for the left
part. The partition can be: the perfect factorization [8], the
critical factorization [6], or based on the lexicographically
maximum suffix of the pattern [13]. Another solution by
Crochemore (see [2]) is a variant of KMP [11]: it com-
putes lower bounds of pattern prefixes periods on the fly
and requires no preprocessing.

Bit-Parallel Solution

It is possible to use the bit-parallelism technique for ESM.

Theorem 8 (Baeza-Yates & Gonnet 1992; Wu &Manber
1992 (see [5,14])) If the length m of the string P is smaller
than the number of bits of a machine word, the preprocess-
ing phase can be done in time and space 	(�). The search-
ing phase executes in time	(n).

It is even possible to use this bit-parallelism technique
to simulate the BDM algorithm. This is realized by the
BNDM (BackwardNon-deterministicDawgMatching) al-
gorithm (see [2,12]).

In practice, when scanning the window from right
to left during an attempt, it is sometimes more effi-
cient to only use the bad-character shift. This was first
done by the Horspool algorithm (see [2,12]). Other prac-
tical efficient algorithms are the Quick Search by Sun-
day (see [2,12]) and the Tuned Boyer-Moore by Hume and
Sunday (see [2,12]).

There exists another method that uses the bit-
parallelism technique that is optimal on the average
though it consists actually of a filtration method. It con-

826 S Sequential Multiple StringMatching

siders sparse q-grams and thus avoids to scan a lot of text
positions. It is due to Fredriksson and Grabowski [7].

Applications

The methods which are described here apply to the treat-
ment of the natural language, the treatment and analysis
of genetic sequences and of musical sequences, the prob-
lems of safety related to data flows like virus detection, and
the management of textual data bases, to quote only some
immediate applications.

Open Problems

There remain only a few open problems on this question.
It is still unknown if it is possible to design an average op-
timal time constant space string matching algorithm. The
exact size of the Boyer-Moore automaton is still unknown
(see [5]).

Experimental Results

The book of G. Navarro and M. Raffinot [12] is a good in-
troduction and presents an experimental map of ESM al-
gorithms for different alphabet sizes and pattern lengths.
Basically, the Shift-Or algorithm is efficient for small al-
phabets and short patterns, the BNDM algorithm is effi-
cient for medium size alphabets and medium length pat-
terns, the Horspool algorithm is efficient for large alpha-
bets, and the BOM algorithm is efficient for long patterns.

URL to Code

The site monge.univ-mlv.fr/~lecroq/string presents
a large number of ESM algorithms (see also [2]). Each
algorithm is implemented in C code and a Java applet is
given.

Cross References

� Indexed approximate string matching refers to the case
where the text is preprocessed;

� Regular expression matching is the more complex case
where P can be a regular expression.

� Sequential approximate string matching is the version
where errors are permitted;

� Sequential multiple string matching is the version
where a finite set of patterns is searched in a text;

Recommended Reading
1. Allauzen, C., Crochemore, M., Raffinot, M.: Factor oracle: a new

structure for patternmatching. In: SOFSEM’99. LNCS, vol. 1725,
pp. 291–306. Springer, Berlin (1999)

2. Charras, C., Lecroq, T.: Handbook of exact string matching al-
gorithms. King’s College London Publications, London (2004)

3. Cole, R., Hariharan, R., Paterson, M., Zwick, U.: Tighter lower
bounds on the exact complexity of string matching. SIAM
J. Comput. 24(1), 30–45 (1995)

4. Crochemore, M., Czumaj, A., Gąsieniec, L., Jarominek, S.,
Lecroq, T., Plandowski, W., Rytter, W.: Speeding up two string
matching algorithms. Algorithmica 12(4/5), 247–267 (1994)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings.
Cambridge University Press, New York (2007)

6. Crochemore, M., Perrin, D.: Two-way string matching. J. ACM
38(3), 651–675 (1991)

7. Fredriksson, K., Grabowski, S.: Practical and optimal string
matching. In: Proceedings of SPIRE’2005. LNCS, vol. 3772,
pp. 374–385. Springer, Berlin (2005)

8. Galil, Z., Seiferas, J.: Time-space optimal string matching.
J. Comput. Syst. Sci. 26(3), 280–294 (1983)

9. Gusfield, D.: Algorithms on strings, trees and sequences. Cam-
bridge University Press, Cambridge, UK (1997)

10. Hancart, C.: On Simon’s string searching algorithm. Inf. Process.
Lett. 47(2), 95–99 (1993)

11. Knuth, D.E., Morris, J.H. Jr., Pratt, V.R.: Fast pattern matching in
strings. SIAM J. Comput. 6(1), 323–350 (1977)

12. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings –
Practical on-line search algorithms for texts and biological se-
quences. Cambridge University Press, Cambridge, Uk (2002)

13. Rytter, W.: Onmaximal suffixes and constant-space linear-time
versions of KMP algorithm. Theor. Comput. Sci. 299(1–3), 763–
774 (2003)

14. Smyth, W.F.: Computing Patterns in Strings. Addison Wesley
Longman, Harlow, UK (2002)

15. Yao, A.: The complexity of pattern matching for a random
string. SIAM J. Comput. 8, 368–387 (1979)

Sequential Multiple StringMatching
1999; Crochemore, Czumaj, Ga̧sieniec, Lecroq,
Plandowski, Rytter

MAXIME CROCHEMORE1,2, THIERRY LECROQ3

1 Department of Computer Science,
Kings College London, London, UK

2 Laboratory of Computer Science,
University of Paris-East, Paris, France

3 Computer Science Department and LITIS Faculty
of Science, University of Rouen, Rouen, France

Keywords and Synonyms

Dictionary matching

ProblemDefinition

Given a finite set of k pattern strings P = fP1; P2; : : : ; Pkg

and a text string T = t1 t2 : : : tn , T and the Pis being se-
quences over an alphabet ˙ of size � , the multiple string
matching (MSM) problem is to find one or, more gener-
ally, all the text positions where a Pi occurs in T. More

http://monge.univ-mlv.fr/~lecroq/string

Sequential Multiple StringMatching S 827

precisely the problem is to compute the set f j j 9i; Pi =
t j t j+1 : : : t j+jP i j�1g, or equivalently the set f j j 9i; Pi =
t j�jP i j+1 t j�jP i j+2 : : : t jg. Note that reporting all the occur-
rences of the patterns may lead to a quadratic output (for
example, when Pis and T are drawn from a one-letter al-
phabet). The length of the shortest pattern in P is denoted
by `min. The patterns are assumed to be given first and are
then to be searched for in several texts. This problem is an
extension of the exact string matching problem.

Both worst- and average-case complexities are consid-
ered. For the latter one assumes that pattern and text are
randomly generated by choosing each character uniformly
and independently from˙ . For simplicity and practicality
the assumption jPi j = o(n) is set, for 1 � i � k, in this en-
try.

Key Results

A first solution to the multiple string matching problem
consists in applying an exact string matching algorithm
for locating each pattern in P. This solution has an O(kn)
worst case time complexity. There are more efficient so-
lutions along two main approaches. The first one, due to
Aho and Corasick [1], is an extension of the automaton-
based solution for matching a single string. The second
approach, initiated by Commentz-Walter [3], extends the
Boyer–Moore algorithm to several patterns.

The Aho–Corasick algorithm first builds a trie T(P),
a digital tree recognizing the patterns of P. The trie T(P)
is a tree whose edges are labeled by letters and whose
branches spell the patterns of P. A node p in the trie T(P)
is associated with the unique word w spelled by the path
of T(P) from its root to p. The root itself is identified with
the empty word ". Notice that if w is a node in T(P) then
w is a prefix of some Pi 2 P. If in addition a 2 ˙ then
child(w; a) is equal towa ifwa is a node in T(P); it is equal
to NIL otherwise.

During a second phase, when patterns are added to the
trie, the algorithm initializes an output function out. It as-
sociates the singleton {Pi} with the nodes Pi (1 � i � k),
and associates the empty set with all other nodes of T(P).

Finally, the last phase of the preprocessing consists in
building a failure link for each node of the trie, and si-
multaneously completing the output function. The failure
function fail is defined on nodes as follows (w is a node):
fail(w) = u where u is the longest proper suffix of w that
belongs to T(P). Computation of failure links is done
during a breadth-first traversal of T(P). Completion of
the output function is done while computing the failure
function fail using the following rule: if f ai l(w) = u then
out(w) = out(w) [out(u).

Sequential Multiple String Matching, Figure 1
The Pattern Matching Machine or Aho–Corasick automaton for
the set of strings {search, ear, arch, chart}

To stop going back with failure links during the com-
putation of the failure links, and also to overpass text char-
acters for which no transition is defined from the root dur-
ing the searching phase, a loop is added on the root of the
trie for these symbols. This finally produces what is called
a PatternMatching Machine or an Aho–Corasick automa-
ton (see Fig. 1).

After the preprocessing phase is completed, the search-
ing phase consists in parsing the text T with T(P). This
starts at the root of T(P) and uses failure links whenever
a character inT does notmatch any label of outgoing edges
of the current node. Each time a node with a nonempty
output is encountered, this means that the patterns of the
output have been discovered in the text, ending at the cur-
rent position. Then, the position is output.

Theorem 1 (Aho and Corasick [1]) After preprocessing
P, searching for the occurrences of the strings ofP in a text T
can be done in time O(n � log �). The running time of the
associated preprocessing phase is O(jPj � log �). The extra
memory space required for both operations is O(jPj).

The Aho–Corasick algorithm is actually a generalization
to a finite set of strings of the Morris–Pratt exact string
matching algorithm.

Commentz-Walter [3] generalized the Boyer–Moore
exact string matching algorithm toMultiple String Match-
ing. Her algorithm builds a trie for the reverse patterns
in P together with two shift tables, and applies a right to
left scan strategy. However it is intricate to implement and
has a quadratic worst-case time complexity.

828 S Sequential Multiple StringMatching

Sequential Multiple String Matching, Figure 2
An example of DAWG, index structure used for matching the set
of strings {search, ear, arch, chart}. The automaton accepts
the reverse prefixes of the strings

The DAWG-match algorithm [4] is a generalization of
the BDM exact string matching algorithm. It consists in
building an exact indexing structure for the reverse strings
ofP such as a factor automaton or a generalized suffix tree,
instead as just a trie as in the previous solution (see Fig. 2).
The overall algorithm can be made optimal by using both
an indexing structure for the reverse patterns and an Aho–
Corasick automaton for the patterns. Then, searching in-
volves scanning some portions of the text from left to right
and some other portions from right to left. This enables to
skip large portions of the text T.

Theorem 2 (Crochemore et al. [4]) The DAWG-match
algorithm performs atmost 2n symbol comparisons. Assum-
ing that the sum of the length of the patterns in P is less
than `mink, the DAWG-match algorithm makes on aver-
age O((n log `min)/`min) inspections of text characters.

The bottleneck of the DAWG-match algorithm is the con-
struction time and space consumption of the exact index-
ing structure. This can be avoided by replacing the exact
indexing structure by a factor oracle for a set of strings.
When the factor oracle is used alone, it gives the Set Back-
ward Oracle Matching (SBOM) algorithm [2]. It is an ex-
act algorithm that behaves almost as well as the DAWG-
match algorithm.

The bit-parallelism technique can be used to simulate
the DAWG-match algorithm. It gives the MultiBNDM al-
gorithm of Navarro and Raffinot [7]. This strategy is effi-
cient when k � `min bits fit in a few computer words. The

prefixes of strings of P of length `min are packed together
in a bit vector. Then, the search is similar to the BNDM
exact string matching and is performed for all the prefixes
at the same time.

The use of the generalization of the bad-character shift
alone as done in the Horspool exact string matching algo-
rithm gives poor performances for the MSM problem due
to the high probability of finding each character of the al-
phabet in one of the strings of P.

The algorithm of Wu and Manber [11] considers
blocks of length `. Blocks of such a length are hashed
using a function h into values less than maxvalue. Then
shift[h(B)] is defined as the minimum between jPi j � j
and `min � ` + 1 with B = pij�`+1 : : : p

i
j for 1 � i � k

and 1 � j � jPi j. The value of ` varies with the minimum
length of the strings in P and the size of the alphabet. The
value ofmaxvalue varies with the memory space available.

The searching phase of the algorithm consists in
reading blocks B of length `. If shift[h(B)] > 0 then
a shift of length shift[h(B)] is applied. Otherwise, when
shift[h(B)] = 0 the patterns ending with block B are exam-
ined one by one in the text. The first block to be scanned
is t`min�`+1 : : : t`min . This method is incorporated in the
agrep command [10].

Applications

MSM algorithms serve as basis for multidimensional pat-
tern matching and approximate pattern matching with
wildcards. The problem has many applications in com-
putational biology, database search, bibliographic search,
virus detection in data flows, and several others.

Experimental Results

The book of G. Navarro and M. Raffinot [8] is a good in-
troduction to the domain. It presents experimental graph-
ics that report experimental evaluation of multiple string
matching algorithms for different alphabet sizes, pattern
lengths, and sizes of pattern set.

URL to Code

Well-known packages offering efficient MSM are agrep
(http://webglimpse.net/download.html, top-level subdi-
rectory agrep/) and grepwith the -F option (http://www.
gnu.org/software/grep/grep.html).

Cross References

� Indexed String Matching refers to the case where the
text can be preprocessed;

http://webglimpse.net/download.html
http://www.gnu.org/software/grep/grep.html
http://www.gnu.org/software/grep/grep.html

Set Agreement S 829

�Multidimensional String Matching is the case where
the text dimension is greater than one.

� Regular Expression Matching is the more complex case
where the pattern can be a regular expression;

� Sequential Exact String Matching is the version where
a single pattern is searched for in a text;

Recommended Reading

Further information can be found in the four following
books: [5,6,8] and [9].

1. Aho, A.V., Corasick, M.J.: Efficient stringmatching: an aid to bib-
liographic search. C. ACM 18(6), 333–340 (1975)

2. Allauzen, C., Crochemore, M., Raffinot, M.: Factor oracle: a new
structure for patternmatching. In: SOFSEM’99. LNCS, vol. 1725,
pp. 291–306. Springer, Berlin (1999)

3. Commentz-Walter, B.: A string matching algorithm fast on the
average. In: Proceedings of ICALP’79. LNCS, vol. 71, pp. 118–
132. Springer, Berlin (1979)

4. Crochemore, M., Czumaj, A., Ga̧sieniec, L., Lecroq, T.,
Plandowski, W., Rytter, W.: Fast practical multi-pattern
matching. Inf. Process. Lett. 71(3–4), 107–113 (1999)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings.
Cambridge University Press, Cambridge (2007)

6. Gusfield, D.: Algorithms on strings, trees and sequences. Cam-
bridge University Press, Cambridge (1997)

7. Navarro, G., Raffinot, M.: Fast and flexible string matching by
combining bit-parallelism and suffix automata. ACM J. Exp. Al-
gorithm 5, 4 (2000)

8. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings –
Practical on-line search algorithms for texts and biological se-
quences. Cambridge University Press, Cambridge (2002)

9. Smyth, W.F.: Computing Patterns in Strings. Addison Wesley
Longman (2002)

10. Wu, S., Manber, U.: Agrep – a fast approximate pattern-
matching tool. In: Proceedings of USENIX Winter (1992) Tech-
nical Conference, pp. 153–162. USENIX Association, Berkeley
(1992)

11. Wu, S., Manber, U.: A fast algorithm formulti-pattern searching.
Report TR-94-17, Department of Computer Science, University
of Arizona, Tucson, AZ (1994)

Set Agreement
1993; Chaudhuri

MICHEL RAYNAL
IRISA, University of Rennes 1,
Rennes, France

Keywords and Synonyms

Distributed coordination

ProblemDefinition

Short History

The k-set agreement problem is a paradigm of coordina-
tion problems. Defined in the setting of systems made up
of processes prone to failures, it is a simple generalization
of the consensus problem (that corresponds to the case
k = 1). That problem was introduced in 1993 by Chaud-
huri [2] to investigate how the number of choices (k) al-
lowed for the processes is related to the maximumnumber
of processes that can crash. (After it has crashed, a process
executes no more steps: a crash is a premature halting.)

Definition

Let S be a systemmade up of n processes where up to t can
crash and where each process has an input value (called
a proposed value). The problem is defined by the three
following properties (i. e., any algorithm that solves that
problem has to satisfy these properties):
1. Termination. Every nonfaulty process decides a value.
2. Validity. A decided value is a proposed value.
3. Agreement. At most k different values are decided.

The Trivial Case

It is easy to see that this problem can be trivially solved
if the upper bound on the number of process failures t is
smaller than the allowed number of choices k, also called
the coordination degree. (The trivial solution consists in
having t + 1 predetermined processes that send their pro-
posed values to all the processes, and a process deciding
the first value it ever receives.) So, k� t is implicitly as-
sumed in the following.

Key Results

Key Results in Synchronous Systems

The Synchronous Model In this computation model,
each execution consists of a sequence of rounds. These are
identified by the successive integers 1; 2; etc. For the pro-
cesses, the current round number appears as a global vari-
able whose global progress entails their own local progress.

During a round, a process first broadcasts a message,
then receives messages, and finally executes local compu-
tation. The fundamental synchrony property the a syn-
chronous system provides the processes with is the fol-
lowing: a message sent during a round r is received by its
destination process during the very same round r. If dur-
ing a round, a process crashes while sending a message, an
arbitrary subset (not known in advance) of the processes
receive that message.

830 S Set Agreement

Function k-set_agreement (vi)
(1) esti vi ;
(2) when r = 1; 2; : : : ; b tk c + 1 do % r: round number %
(3) begin_round
(4) send (esti) to all; % including pi itself %
(5) esti min(fest j values received during

the current round rg);
(6) end_round;
(7) return (esti)

Set Agreement, Figure 1
A simple k-set agreement synchronous algorithm (code for pi)

Main Results The k-set agreement problem can always
be solved in a synchronous system. The main result is for
the minimal number of rounds (Rt) that are needed for
the nonfaulty processes to decide in the worst-case sce-
nario (this scenario is when exactly k processes crash in
each round). It was shown in [3] that Rt = b tk c + 1. A very
simple algorithm that meets this lower bound is described
in Fig. 1.

Although failures do occur, they are rare in practice.
Let f denote the number of processes that crash in a given
run, 0 � f � t. We are interested in synchronous algo-
rithms that terminate in at most Rt rounds when t pro-
cesses crash in the current run, but that allow the nonfaulty
processes to decide in far fewer rounds when there are
few failures. Such algorithms are called early-deciding al-
gorithms. It was shown in [4] that, in the presence of f pro-
cess crashes, any early-deciding k-set agreement algorithm
has runs in which no process decides before the round
R f = min(b fk c + 2; b tk c + 1). This lower bound shows an
inherent tradeoff linking the coordination degree k, the
maximum number of process failures t, the actual num-
ber of process failures f , and the best time complexity
that can be achieved. Early-deciding k-set agreement algo-
rithms for the synchronous model can be found in [4,12].

Other Failure Models In the send omission failure
model, a process is faulty if it crashes or forgets to send
messages. In the general omission failure model, a process
is faulty if it crashes, forgets to send messages, or forgets
to receive messages. (A send omission failure models the
failure of an output buffer, while a receive omission failure
models the failure of an input buffer.) These failuremodels
were introduced in [11].

The notion of strong termination for set agreement
problems was introduced in [13]. Intuitively, that prop-
erty requires that as many processes as possible decide. Let
a good process be a process that neither crashes nor com-
mits receive omission failures. A set agreement algorithm

is strongly terminating if it forces all the good processes to
decide. (Only the processes that crash during the execution
of the algorithm, or that do not receive enough messages,
can be prevented from deciding.)

An early-deciding k-set agreement algorithm for the
general omission failure model was described in [13]. That
algorithm, which requires t < n/2, directs a good process
to decide and stop in at most R f = min(b fk c + 2; b tk c + 1)
rounds. Moreover, a process that is not a good process
executes at most R f (not_good) = min(d fk e + 2; b tk c + 1)
rounds.

As Rf is a lower bound for the number of rounds in the
crash failure model, the previous algorithm shows that Rf
is also a lower bound for the nonfaulty processes to decide
in themore severe general omission failuremodel. Proving
that R f (not_good) is an upper bound for the number of
rounds that a nongood process has to execute remains an
open problem.

It was shown in [13] that, for a given coordination de-
gree k, t < k

k+1n is an upper bound on the number of pro-
cess failures when one wants to solve the k-set agreement
problem in a synchronous system prone to process gen-
eral omission failures. A k-set agreement algorithm that
meets this bound was described in [13]. That algorithm
requires the processes execute R = t + 2 � k rounds to de-
cide. Proving (or disproving) that R is a lower bound when
t < k

k+1n is an open problem. Designing an early-deciding
k-set agreement algorithm for t < k

k+1n and k > 1 is an-
other problem that remains open.

Key Results in Asynchronous Systems

Impossibility A fundamental result of distributed com-
puting is the impossibility to design a deterministic algo-
rithm that solves the k-set agreement problem in asyn-
chronous systems when k� t [1,7,15]. Compared with the
impossibility of solving asynchronous consensus despite
one process crash, that impossibility is based on deep
combinatorial arguments. This impossibility has opened
new research directions for the connection between dis-
tributed computing and topology. This topology approach
has allowed the discovery of links relating asynchronous k-
set agreement with other distributed computing problems
such as the renaming problem [5].

Circumventing the Impossibility Several approaches
have been investigated to circumvent the previous im-
possibility. These approaches are the same as those that
have been used to circumvent the impossibility of asyn-
chronous consensus despite process crashes.

Set Agreement S 831

One approach consists in replacing the “deterministic
algorithm” by a “randomized algorithm.” In that case, the
termination property becomes “the probability for a cor-
rect process to decide tends to 1 when the number of
rounds tends to +1:” That approach was investigated
in [9].

Another approach that has been proposed is based on
failure detectors. Roughly speaking, a failure detector pro-
vides each process with a list of processes suspected to
have crashed. As an example, the class of failure detectors
denoted ÞSx includes all the failure detectors such that,
after some finite (but unknown) time, (1) any list con-
tains the crashed processes and (2) there is a set Q of x
processes such that Q contains one correct process and
that correct process is no longer suspected by the pro-
cesses of Q (let us observe that correct processes can be
suspected intermittently or even forever). Tight bounds
for the k-set agreement problem in asynchronous sys-
tems equipped with such failure detectors, conjectured
in [9], were proved in [6]. More precisely, such a fail-
ure detector class allows the k-set agreement problem to
be solved for k � t � x + 2 [9], and cannot solve it when
k < t � x + 2 [6].

Another approach that has been investigated is the
combination of failure detectors and conditions [8].
A condition is a set of input vectors, and each input vector
has one entry per process. The entries of the input vector
associated with a run contain the values proposed by the
processes in that run. Basically, such an approach guaran-
tees that the nonfaulty processes always decide when the
actual input vector belongs to the condition the k-set algo-
rithm has been instantiated with.

Applications

The set agreement problem was introduced to study how
the number of failures and the synchronization degree
are related in an asynchronous system; hence, it is mainly
a theoretical problem. That problem is used as a canoni-
cal problem when one is interested in asynchronous com-
putability in the presence of failures. Nevertheless, one
can imagine practical problems the solutions of which
are based on the set agreement problem (e. g., allocating
a small shareable resources—such as broadcast frequen-
cies—in a network).

Cross References

� Asynchronous Consensus Impossibility
� Failure Detectors
� Renaming
� Topology Approach in Distributed Computing

Recommended Reading

1. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results
for t-Resilient Asynchronous Computations. In: Proc. 25th
ACM Symposium on Theory of Computation, California, 1993,
pp. 91–100

2. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus
Problems in Totally Asynchronous Systems. Inf. Comput. 105,
132–158 (1993)

3. Chaudhuri, S., Herlihy, M., Lynch, N., Tuttle, M.: Tight Bounds
for k-Set Agreement. J. ACM 47(5), 912–943 (2000)

4. Gafni, E., Guerraoui, R., Pochon, B.: From a Static Impossibility
to anAdaptive Lower Bound: The Complexity of Early Deciding
Set Agreement. In: Proc. 37th ACM Symposium on Theory of
Computing (STOC 2005), pp. 714–722. ACM Press, New York
(2005)

5. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Re-
naming is Weaker than Set Agreement. In: Proc. 20th Int’l Sym-
posium on Distributed Computing (DISC’06). LNCS, vol. 4167,
pp. 329–338. Springer, Berlin (2006)

6. Herlihy, M.P., Penso, L.D.: Tight Bounds for k-Set Agreement
with Limited Scope Accuracy Failure Detectors. Distrib. Com-
put. 18(2), 157–166 (2005)

7. Herlihy, M.P., Shavit, N.: The Topological Structure of Asyn-
chronous Computability. J. ACM 46(6), 858–923 (1999)

8. Mostefaoui, A., Rajsbaum, S., Raynal, M.: The Combined Power
of Conditions and Failure Detectors to Solve Asynchronous
Set Agreement. In: Proc. 24th ACM Symposium on Principles
of Distributed Computing (PODC’05), pp. 179–188. ACM Press,
New York (2005)

9. Mostefaoui, A., Raynal, M.: k-Set Agreement with Limited Accu-
racy Failure Detectors. In: Proc. 19th ACM Symposium on Prin-
ciples of Distributed Computing, pp. 143–152. ACMPress, New
York (2000)

10. Mostefaoui, A., Raynal, M.: Randomized Set Agreement. In:
Proc. 13th ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA’01), Hersonissos (Crete) pp. 291–297. ACM
Press, New York (2001)

11. Perry, K.J., Toueg, S.: Distributed Agreement in the Presence of
Processor and Communication Faults. IEEE Trans. Softw. Eng.
SE-12(3), 477–482 (1986)

12. Raipin Parvedy, P., Raynal, M., Travers, C.: Early-stopping k-set
agreement in synchronous systems prone to any number of
process crashes. In: Proc. 8th Int’l Conference on Parallel Com-
puting Technologies (PaCT’05). LNCS, vol. 3606, pp. 49–58.
Springer, Berlin (2005)

13. Raipin Parvedy, P., Raynal, M., Travers, C.: Strongly-termi-
nating early-stopping k-set agreement in synchronous sys-
tems with general omission failures. In: Proc. 13th Colloquium
on Structural Information and Communication Complexity
(SIROCCO’06). LNCS, vol. 4056, pp. 182–196. Springer, Berlin
(2006)

14. Raynal, M., Travers, C.: Synchronous set agreement: a concise
guided tour (including a new algorithmand a list of open prob-
lems). In: Proc. 12th Int’l IEEE Pacific Rim Dependable Comput-
ing Symposium (PRDC’2006), pp. 267–274. IEEE Society Com-
puter Press, Los Alamitos (2006)

15. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossi-
ble: The Topology of Public Knowledge. SIAM J. Comput. 29(5),
1449–1483 (2000)

832 S Set Cover with Almost Consecutive Ones

Set Cover with Almost
Consecutive Ones
2004; Mecke, Wagner

MICHAEL DOM
Department of Mathematics and Computer Science,
University of Jena, Jena, Germany

Keywords and Synonyms

Hitting set

ProblemDefinition

The SET COVER problem has as input a set R of m items,
a set C of n subsets of R and a weight function w : C ! Q.
The task is to choose a subset C0
 C of minimum weight
whose union contains all items of R.

The sets R and C can be represented by an m � n bi-
narymatrixA that consists of a row for every item in R and
a column for every subset of R inC, where an entry ai; j is 1
iff the ith item in R is part of the jth subset in C. Therefore,
the SET COVER problem can be formulated as follows.

Input: An m � n binary matrix A and a weight func-
tion w on the columns of A.
Task: Select some columns of A with minimum
weight such that the submatrixA0 ofA that is induced
by these columns has at least one 1 in every row.

While SET COVER is NP-hard in general [4], it can be
solved in polynomial time on instances whose columns
can be permuted in such a way that in every row the ones
appear consecutively, that is, on instances that have the
consecutive ones property (C1P).1

Motivated by problems arising from railway optimiza-
tion, Mecke and Wagner [7] consider the case of SET
COVER instances that have “almost the C1P”. Having al-
most the C1P means that the corresponding matrices are
similar to matrices that have been generated by starting
with a matrix that has the C1P and replacing randomly
a certain percentage of the 1’s by 0’s [7]. For Ruf and Schö-
bel [8], in contrast, having almost the C1P means that the
average number of blocks of consecutive 1’s per row is
much smaller than the number of columns of the matrix.
This entry will also mention some of their results.

1The C1P can be defined symmetrically for columns; this article
focuses on rows. SET COVER on instances with the C1P can be solved
in polynomial time, e. g., with a linear programming approach, be-
cause the corresponding coefficient matrices are totally unimodular
(see [9]).

Notation

Given an instance (A,w) of SET COVER, let R denote the
row set of A and C its column set. A column cj covers
a row ri, denoted by ri 2 c j , if ai; j = 1.

A binary matrix has the strong C1P if (without any col-
umn permutation) the 1’s appear consecutively in every
row. A block of consecutive 1’s is a maximal sequence of
consecutive 1’s in a row. It is possible to determine in lin-
ear time if a matrix has the C1P, and if so, to compute
a column permutation that yields the strong C1P [2,3,6].
However, note that it is NP-hard to permute the columns
of a binary matrix such that the number of blocks of con-
secutive 1’s in the resulting matrix is minimized [1,4,5].

A data reduction rule transforms in polynomial time
a given instance I of an optimization problem into an in-
stance I0 of the same problem such that jI0j < jIj and the
optimal solution for I0 has the same value (e. g., weight)
as the optimal solution for I. Given a set of data reduc-
tion rules, to reduce a problem instance means to repeat-
edly apply the rules until no rule is applicable; the resulting
instance is called reduced.

Key Results

Data Reduction Rules

For SET COVER there exist well-known data reduction
rules:

Row domination rule: If there are two rows
ri1 ; ri2 2 R
with8c 2 C : ri1 2 c implies ri2 2 c, then ri2 is dominated
by ri1 . Remove row ri2 from A.

Column domination rule: If there are two columns
c j1 ; c j2 2 C with w(c j1) � w(c j2) and 8r 2 R : r 2 c j1
implies r 2 c j2 , then c j1 is dominated by c j2 . Remove c j1
from A.

In addition to these two rules, a column c j1 2 C can
also be dominated by a subset C0
 C of the columns in-
stead of a single column: If there is a subset C0
 C with
w(c j1) �

P
c2C 0 w(c) and 8r 2 R : r 2 c j1 implies (9c 2

C0 : r 2 c), then remove c j1 from A. Unfortunately, it is
NP-hard to find a dominating subset C0 for a given set c j1 .
Mecke andWagner [7], therefore, present a restricted vari-
ant of this generalized column domination rule.

For every row r 2 R, let cmin(r) be a column in C that
covers r and hasminimumweight under this property. For
two columns c j1 ; c j2 2 C, define X(c j1 ; c j2) := fcmin(r) j
r 2 c j1 ^ r … c j2g. The new data reduction rule then reads
as follows.

Advanced column domination rule: If there are two
columns c j1 ; c j2 2 C and a row that is covered by both c j1

Set Cover with Almost Consecutive Ones S 833

and c j2 , and if w(c j1) � w(c j2) +
P

c2X(c j1 ;c j2)
w(c), then

c j1 is dominated by fc j2g [X(c j1 ; c j2). Remove c j1 fromA.

Theorem 1 ([7]) A matrix A can be reduced in
O(Nn) time with respect to the column domination rule, in
O(Nm) time with respect to the row domination rule, and in
O(Nmn) time with respect to all three data reduction rules
described above, when N is the number of 1’s in A.

In the databases used by Ruf and Schöbel [8], matrices are
represented by the column indices of the first and last 1’s
of its blocks of consecutive 1’s. For such matrix represen-
tations, a fast data reduction rule is presented [8], which
eliminates “unnecessary” columns and which, in the im-
plementations, replaces the column domination rule. The
new rule is faster than the column domination rule (a ma-
trix can be reduced in O(mn) time with respect to the new
rule), but not as powerful: Reducing a matrix A with the
new rule can result in a matrix that has more columns
than the matrix resulting from reducing A with the col-
umn domination rule.

Algorithms

Mecke and Wagner [7] present an algorithm that solves
SET COVER by enumerating all feasible solutions.

Given a row ri of A, a partial solution for the rows
r1; : : : ; ri is a subset C0
 C of the columns of A such that
for each row rj with j 2 f1; : : : ; ig there is a column in C0

that covers row rj.
The main idea of the algorithm is to find an optimal

solution by iterating over the rows of A and updating in
every step a data structure S that keeps all partial solutions
for the rows considered so far. More exactly, in every iter-
ation step the algorithm considers the first row of A and
updates the data structure S accordingly. Thereafter, the
first row of A is deleted. The following code shows the al-
gorithm.

1 Repeatm times: {
2 for every partial solution C0 in S that does not cover

the first row of A: {
3 for every column c of A that covers the first row

of A: {
4 Add fcg [C0 to S; }
5 Delete C0 from S; }
6 Delete the first row of A; }

This straightforward enumerative algorithm could create
a set S of exponential size. Therefore, the data reduction
rules presented above are used to delete after each itera-
tion step partial solutions that are not needed any more.
To this end, a matrix B is associated with the set S, where

every row corresponds to a row of A and every column
corresponds to a partial solution in S—an entry bi; j of B
is 1 iff the jth partial solution of B contains a column
of A that covers the row ri. The algorithm uses the matrix

C :=
�

A B
0 : : : 0 1 : : : 1

�
, which is updated together with S

in every iteration step.2 Line 6 of the code shown above is
replaced by the following two lines:

6 Delete the first row of the matrix C;
7 Reduce the matrix C and update S accordingly; }

At the end of the algorithm, S contains exactly one so-
lution, and this solution is optimal. Moreover, if the SET
COVER instance is nicely structured, the algorithm has
polynomial running time:

Theorem 2 ([7]) If A has the strong C1P, is reduced, and
its rows are sorted in lexicographic order, then the algorithm
has a running time of O(M3n) where M is the maximum
number of 1’s per row and per column.

Theorem 3 ([7]) If the distance between the first and the
last 1 in every column is at most k, then at any time through-
out the algorithm the number of columns in the matrix B
is O(2kn), and the running time is O(22kkmn2).

Ruf and Schöbel [8] present a branch and bound algorithm
for SET COVER instances that have a small average number
of blocks of consecutive 1’s per row.

The algorithm considers in each step a row ri of the
current matrix (which has been reduced with data reduc-
tion rules before) and branches into bli cases, where bli is
the number of blocks of consecutive 1’s in ri. In each case,
one block of consecutive 1’s in row ri is selected, and the 1’s
of all other blocks in this row are replaced by 0’s. There-
after, a lower and an upper bound on the weight of the
solution for each resulting instance is computed. If a lower
bound differs by a factor of more than 1 + �, for a given
constant ", from the best upper bound achieved so far, the
corresponding instance is subjected to further branchings.
Finally, the best upper bound that was found is returned.

In each branching step, the bli instances that are newly
generated are “closer” to have the (strong) C1P than the
instance from which they descend. If an instance has
the C1P, the lower and upper bound can easily be com-
puted by exactly solving the problem. Otherwise, standard
heuristics are used.

2The last row of C allows to distinguish the columns belonging
to A from those belonging to B.

834 S Shortest Elapsed Time First Scheduling

Applications

SET COVER instances occur e. g. in railway optimization,
where the task is to determine where new railway stations
should be built. Each row then corresponds to an exist-
ing settlement, and each column corresponds to a location
on the existing trackage where a railway station could be
build. A column c covers a row r, if the settlement corre-
sponding to r lies within a given radius around the location
corresponding to c.

If the railway network consisted of one straight line rail
track only, the corresponding SET COVER instance would
have the C1P; instances arising from real world data are
close to have the C1P [7,8].

Experimental Results

Mecke and Wagner [7] make experiments on real-world
instances as described in the Applications section and on
instances that have been generated by starting with a ma-
trix that has the C1P and replacing randomly a certain
percentage of the 1’s by 0’s. The real-world data consists
of a railway graph with 8200 nodes and 8700 edges, and
30 000 settlements. The generated instances consist of 50–
50 000 rows with 10–200 1’s per row. Up to 20% of the 1’s
are replaced by 0’s.

In the real-world instances, the data reduction rules
decrease the number of 1’s to between 1% and 25% of
the original number of 1’s without and to between 0.2%
and 2.5% with the advanced column reduction rule. In the
case of generated instances that have the C1P, the number
of 1’s is decreased to about 2% without and to 0.5% with
the advanced column reduction rule. In instances with
20% perturbation, the number of 1’s is decreased to 67%
without and to 20% with the advanced column reduction
rule.

The enumerative algorithm has a running time that
is almost linear for real-world instances and most gener-
ated instances. Only in the case of generated instances with
20% perturbation, the running time is quadratic.

Ruf and Schöbel [8] consider three instance types: real-
world instances, instances arising from Steiner triple sys-
tems, and randomly generated instances. The latter have
a size of 100 � 100 and contain either 1–5 blocks of con-
secutive 1’s in each row, each one consisting of between
one and nine 1’s, or they are generated with a probability
of 3% or 5% for any entry to be 1.

The data reduction rules used by Ruf and Schöbel turn
out to be powerful for the real-world instances (reducing
thematrix size from about 1100 � 3100 to 100 � 800 in av-
erage), whereas for all other instance types the sizes could
not be reduced noticeably.

The branch and bound algorithm could solve almost
all real-world instances up to optimality within a time of
less than a second up to one hour. In all cases where an
optimal solution has been found, the first generated sub-
problem had already provided a lower bound equal to the
weight of the optimal solution.

Cross References

� Greedy Set-Cover Algorithms

Recommended Reading
1. Atkins, J.E., Middendorf, M.: On physical mapping and the con-

secutive ones property for sparsematrices. Discret. Appl.Math.
71(1–3), 23–40 (1996)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones prop-
erty, interval graphs, and graph planarity using PQ-tree algo-
rithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

3. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval
graphs. Pac. J. Math. 15(3), 835–855 (1965)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, New
York (1979)

5. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four
strikes against physical mapping of DNA. J. Comput. Biol. 2(1),
139–152 (1995)

6. Hsu, W.L., McConnell, R.M.: PC trees and circular-ones arrange-
ments. Theor. Comput. Sci. 296(1), 99–116 (2003)

7. Mecke, S., Wagner, D.: Solving geometric covering problemsby
data reduction. In: Proceedings of the 12th Annual European
Symposium on Algorithms (ESA ’04). LNCS, vol. 3221, pp. 760–
771. Springer, Berlin (2004)

8. Ruf, N., Schöbel, A.: Set covering with almost consecutive ones
property. Discret. Optim. 1(2), 215–228 (2004)

9. Schrijver, A.: Theory of Linear and Integer Programming. Wiley,
Chichester (1986)

Shortest Elapsed Time First
Scheduling
2003; Bansal, Pruhs

NIKHIL BANSAL
IBM Research, IBM, Yorktown Heights, NY, USA

Keywords and Synonyms

Sojourn time; Response time; Scheduling with unknown
job sizes; MLF algorithm; Feedback Queues

ProblemDefinition

The problem is concerned with scheduling dynamically
arriving jobs in the scenario when the processing require-

Shortest Elapsed Time First Scheduling S 835

ments of jobs are unknown to the scheduler. The lack of
knowledge of how long a job will take to execute is a par-
ticularly attractive assumption in real systems where such
information might be difficult or impossible to obtain. The
goal is to schedule jobs to provide good quality of service
to the users. In particular the goal is to design algorithms
that have good average performance and are also fair in
the sense that no subset of users experiences substantially
worse performance than others.

Notations

Let J = f1; 2; : : : ; ng denote the set of jobs in the input
instance. Each job j is characterized by its release time rj
and its processing requirement pj. In the online setting,
job j is revealed to the scheduler only at time rj. A further
restriction is the non-clairvoyant setting, where only the
existence of job j is revealed at rj, in particular the sched-
uler does not know pj until the job meets its processing
requirement and leaves the system. Given a schedule, the
completion time cj of a job is the earliest time at which job
j receives pj amount of service. The flow time f j of j is de-
fined as c j � r j . The stretch of a job is defined the ratio
of its flow time divided by its size. Stretch is also referred
to as normalized flow time or slowdown, and is a natu-
ral measure of fairness as it measures the waiting time of
a job per unit of service received. A schedule is said to be
preemptive, if a job can be interrupted arbitrarily, and its
execution can be resumed later from the point of interrup-
tion without any penalty. It is well known that preemption
is necessary to obtain reasonable guarantees for flow time
even in the offline setting [5].

Recall that the online Shortest Remaining Processing
Time (SRPT) algorithm, that at any time works on the job
with the least remaining processing, is optimum for mini-
mizing average flow time. However, a common critique of
SRPT is that it may lead to starvation of jobs, where some
jobs may be delayed indefinitely. For example, consider
the sequence where a job of size 3 arrives at time t = 0,
and one job of size 1 arrives every unit of time starting
t = 1 for a long time. Under SRPT the size 3 job will be de-
layed until the size 1 jobs stop arriving. On the other hand,
if the goal is to minimize the maximum flow time, then it
is easily seen that First in First out (FIFO) is the optimum
algorithm. However, FIFO can perform very poorly with
respect to average flow time (for example, many small jobs
could be stuck behind a very large job that arrived just ear-
lier). A natural way to balance both the average and worst
case performance is to consider the `p norms of flow time
and stretch, where the `p norm of the sequence x1; : : : ; xn
is defined as (

P
i x

p
i)

1/p .

The Shortest Elapsed Time First (SETF) is a non-
clairvoyant algorithm that at any time works on the job
that has received the least amount of service thus far.
This is a natural way to favor short jobs given the lack
of knowledge of job sizes. In fact, SETF is the con-
tinuous version of the Multi-Level Feedback (MLF) al-
gorithm. Unfortunately, SETF (or any other determin-
istic non-clairvoyant algorithm) performs poorly in the
framework of competitive analysis, where an algorithm
is called c-competitive if for every input instance, its
performance is no worse than c times that of the opti-
mum offline (clairvoyant) solution for that instance [7].
However, competitive analysis can be overly pessimistic
in its guarantee. A way around this problem was pro-
posed by Kalyanasundaram and Pruhs [6] who allowed
the online scheduler a slightly faster processor to make
up for its lack of knowledge of future arrivals and job
sizes. Formally, an algorithm Alg is said to be s-speed,
c-speed competitive where c is worst case ratio over all in-
stance I, of Algs(I)/Opt1(I), where Algs is the value of so-
lution produced by Alg when given an s speed processor,
and Opt1 is the optimum value using a speed 1 processor.
Typically the most interesting results are those where c is
small and s = (1 + �) for any arbitrary � > 0.

Key Results

In their seminal paper [6], Kalyanasundaram and Pruhs
showed the following.

Theorem 1 ([6]) SETF is a (1 + �)-speed, (1 + 1/�)-
competitive non-clairvoyant algorithm for minimizing the
average flow time on a single machine with preemptions.

For minimizing the average stretch, Muthukrishnan, Ra-
jaraman, Shaheen and Gehrke [8] considered the clair-
voyant setting and showed that SRPT is 2-competitive
for a single machine and 14 competitive for multiple
machines. The non-clairvoyant setting was consider by
Bansal, Dhamdhere, Konemann and Sinha [1]. They
showed that

Theorem 2 ([1]) SETF is a (1 + �)-speed, O(log2 P)-
competitive for minimizing average stretch, where P is the
ratio of the maximum to minimum job size. On the other
hand, even with O(1)-speed, any non-clairvoyant algorithm
is at least˝(log P)-competitive. Interestingly, in terms of n,
any non-clairvoyant algorithm must be ˝(n)-competitive
even with O(1)-speedup. Moreover, SETF is O(n) competi-
tive (even without extra speedup).

For the special case when all jobs arrive at time 0,
SETF is optimum up to constant factors. It is O(log P)-
competitive (without any extra speedup). Moreover, any

836 S Shortest Elapsed Time First Scheduling

non-clairvoyant must be ˝(log P) competitive even with
factor O(1) speedup.

The key idea of the above result was a connection between
SETF and SRPT. First, at the expense of (1 + �)-speedup
it can be seen that SETF is no worse than MLF where the
thresholds are powers of (1 + �). Second, the behavior of
MLF on an instance I can be related to the behavior of
Shortest Job First (SJF) algorithm on another instance I0

that is obtained from I by dividing each job into logarith-
mically many jobs with geometrically increasing sizes. Fi-
nally, the performance of SJF is related to SRPT using an-
other (1 + �) factor speedup.

Bansal and Pruhs [2] considered the problem of min-
imizing the `p norms of flow time and stretch on a single
machine. They showed the following.

Theorem 3 ([2]) In the clairvoyant setting, SRPT and SJF
are (1 + �)-speed, O(1/�)-competitive for minimizing the
`p norms of both flowtime and stretch. On the other hand,
for 1 < p <1, no online algorithm (possibly clairvoyant)
can be O(1) competitive for minimizing `p norms of stretch
or flow time without speedup. In particular, any random-
ized online algorithm is at least ˝(n(p�1)/3p2)-competitive
for `p norms of stretch, and is at least ˝(n(p�1)/p(3p�1))-
competitive for `p norms of flow time.

The above lower bounds are somewhat surprising, since
SRPT and FIFO are optimum for the case p = 1 and p =1
for flow time.

Bansal and Pruhs [2] also consider the non-clairvoyant
case.

Theorem 4 ([2]) In the non-clairvoyant setting, SETF is
(1 + �)-speed, O(1/�2+2/p)-competitive for minimizing the
`p norms of flow time. For minimizing `p norms of stretch,
SETF is (1 + �)-speed, O(1/�3+1/p � log1+1/p P)-competitive.

Finally, Bansal and Pruhs also consider Round Robin (RR)
or Processor Sharing that at any time splits the proces-
sor equally among the unfinished jobs. RR is considered
to be an ideal fair strategy since it treats all unfinished jobs
equally. However, they show that

Theorem5 For any p � 1, there is an � > 0 such that even
with a (1 + �) times faster processor, RR is not no(1) com-
petitive for minimizing the `p norms of flow time. In par-
ticular, for � < 1/2p, RR is (1 + �)-speed, ˝(n(1�2�p)/p)-
competitive. For `p norms of stretch, RR is ˝(n) competi-
tive as is in fact any randomized non-clairvoyant algorithm.

The results above have been extended in a couple of direc-
tions. Bansal and Pruhs [3] extend these results toweighted
`p norms of flow time and stretch. Chekuri, Khanna, Ku-

mar and Goel [4] have extended these results to the mul-
tiple machines case. Their algorithms are particularly ele-
gant: Each job is assigned to some machine at random and
all jobs at a particular machine are processed using SRPT
or SETF (as applicable).

Applications

SETF and its variants such asMLF are widely used in oper-
ating systems [9,10]. Note that SETF is not really practical
since each job could be preempted infinitely often. How-
ever, variants of SETF with fewer preemptions are quite
popular.

Open Problems

It would be interesting to explore other notions of fairness
in the dynamic scheduling setting. In particular, it would
be interesting to consider algorithms that are both fair and
have a good average performance.

An immediate open problem is whether the gap be-
tween O(log2 P) and ˝(log P) can be closed for minimiz-
ing the average stretch in the non-clairvoyant setting.

Cross References

� Flow TimeMinimization
�Minimum Flow Time
�Multi-level Feedback Queues

Recommended Reading
1. Bansal, N., Dhamdhere, K., Könemann, J., Sinha, A.: Non-

Clairvoyant Scheduling for MinimizingMean Slowdown. Algo-
rithmica 40(4), 305–318 (2004)

2. Bansal, N., Pruhs, K.: Server scheduling in the Lp norm: a ris-
ing tide lifts all boat. In: Symposium on Theory of Computing,
STOC, pp. 242–250 (2003)

3. Bansal, N., Pruhs, K.: Server scheduling in the weighted Lp
norm. In: LATIN, pp. 434–443 (2004)

4. Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor
scheduling to minimize flow time with epsilon resource aug-
mentation. In: Symposium on Theory of Computing, STOC,
pp. 363–372 (2004)

5. Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximabil-
ity and Nonapproximability Results for Minimizing Total Flow
Time on a Single Machine. SIAM J. Comput. 28(4), 1155–1166
(1999)

6. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clair-
voyance. J. ACM 47(4), 617–643 (2000)

7. Motwani, R., Phillips, S., Torng, E.: Non-Clairvoyant Scheduling.
Theor. Comput. Sci. 130(1), 17–47 (1994)

8. Muthukrishnan, S., Rajaraman, R., Shaheen, A., Gehrke, J.: On-
line Scheduling to Minimize Average Stretch. SIAM J. Comput.
34(2), 433–452 (2004)

9. Nutt, G.: Operating System Projects Using Windows NT. Addi-
son Wesley, Reading (1999)

Shortest Paths Approaches for Timetable Information S 837

10. Tanenbaum, A.S.: Modern Operating Systems. Prentice-Hall
Inc., Englewood Cliffs (1992)

Shortest Path
� Algorithms for Spanners in Weighted Graphs
� All Pairs Shortest Paths via Matrix Multiplication
�Maximum-scoring Segment with Length Restrictions
� Routing in Road Networks with Transit Nodes

Shortest Paths Approaches
for Timetable Information
2004; Pyrga, Schulz, Wagner, Zaroliagis

RIKO JACOB
Institute of Computer Science,
Technical University of Munich, Munich, Germany

Keywords and Synonyms

Passenger information system; Timetable lookup; Journey
planner; Trip planner

ProblemDefinition

Consider the route-planning task for passengers of sched-
uled public transportation. Here, the running example is
that of a train system, but the discussion applies equally to
bus, light-rail and similar systems. More precisely, the task
is to construct a timetable information system that, based
upon the detailed schedules of all trains, provides passen-
gers with good itineraries, including the transfer between
different trains.

Solutions to this problem consist of a model of the
situation (e. g. can queries specify a limit on the number
of transfers?), an algorithmic approach, its mathematical
analysis (does it always return the best solution? Is it guar-
anteed to work fast in all settings?), and an evaluation in
the real world (Can travelers actually use the produced
itineraries? Is an implementation fast enough on current
computers and real data?).

Key Results

The problem is discussed in detail in a recent survey arti-
cle [6].

Modeling

In a simplistic model, it is assumed that a transfer between
trains does not take time. A more realistic model specifies

a certainminimum transfer time per station. Furthermore,
the objective of the optimization problem needs to be de-
fined. Should the itinerary be as fast as possible, or as cheap
as possible, or induce the least possible transfers? There
are different ways to resolve this as surveyed in [6], all
originating in multi-objective optimization, like resource
constraints or Pareto-optimal solutions. From a practical
point of view, the preferences of a traveler are usually diffi-
cult to model mathematically, and one might want to let
the user choose the best option among a set of reason-
able itineraries himself. For example, one can compute all
itineraries that are not inferior to some other itinerary in
all considered aspects. As it turns out, in real timetables the
number of such itineraries is not too big, such that this ap-
proach is computationally feasible and useful for the trav-
eler [5]. Additionally, the fare structure of most railways is
fairly complicated [4], mainly because fares usually are not
additive, i. e., are not the sum of fares of the parts of a trip.

Algorithmic Models

The current literature establishes two main ideas how to
transform the situation into a shortest path problem on
a graph. As an example, consider the simplistic model-
ing where transfer takes no time, and where queries spec-
ify starting time and station to ask for an itinerary that
achieves the earliest arrival time at the destination.

In the time-expandedmodel [11], every arrival and de-
parture event of the timetable is a vertex of the directed
graph. The arcs of the graph represent consecutive events
at one station, and direct train connections. The length of
an arc is given by the time difference of its end vertices.
Let s be the vertex at the source station whose time is di-
rectly after the starting time. Now, a shortest path from s to
any vertex of the destination station is an optimal itinerary.

In the time-dependent model [3,7,9,10], the vertices
model stations, and the arcs stand for the existence of a di-
rect (non-stop) train connection. Instead of edge length,
the arcs are labeled with edge-traversal functions that give
the arrival time at the end of the arc in dependence on the
time a passenger starts at the beginning of the arc, reflect-
ing the times when trains actually run. To solve this time-
dependent shortest path problem, a modification of Dijk-
stra’s algorithm can be used. Further exploiting the struc-
ture of this situation, the graph can be represented in a way
that allows constant time evaluation of the link traversal
functions [3]. To cope with more realistic transfer models,
a more complicated graph can be used.

Additionally, many of the speed-up techniques for
shortest path computations can be applied to the resulting
graph queries.

838 S Shortest Paths in Planar Graphs with Negative Weight Edges

Applications

The main application are timetable information systems
for scheduled transit (buses, trains, etc.). This extends to
route planning where trips in such systems are allowed, as
for example in the setting of fine-grained traffic simulation
to compute fastest itineraries [2].

Open Problems

Improve computation speed, in particular for fully inte-
grated timetables and the multi-criteria case. Extend the
problem to the dynamic case, where the current real situ-
ation is reflected, i. e., delayed or canceled trains, and oth-
erwise temporarily changed timetables are reflected.

Experimental Results

In the cited literature, experimental results usually are part
of the contribution [2,4,5,6,7,8,9,10,11]. The time-depen-
dent approach can be significantly faster than the time-
expanded approach. In particular for the simplistic mod-
els speed-ups in the range 10–45 are observed [8,10]. For
more detailed models, the performance of the two ap-
proaches becomes comparable [6].

Cross References

� Implementation Challenge for Shortest Paths
� Routing in Road Networks with Transit Nodes
� Single-Source Shortest Paths

Acknowledgments

I want to thankMatthias Müller-Hannemann, DorotheaWagner, and
Christos Zaroliagis for helpful comments on an earlier draft of this
entry.

Recommended Reading

1. Gerards, B., Marchetti-Spaccamela, A. (eds.): Proceedings of the
3rd Workshop on Algorithmic Methods and Models for Opti-
mization of Railways (ATMOS’03) 2003. Electronic Notes in The-
oretical Computer Science, vol. 92. Elsevier (2004)

2. Barrett, C.L., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.V.:
Classical and contemporary shortest path problems in road
networks: Implementation and experimental analysis of the
TRANSIMS router. In: Algorithms – ESA 2002: 10th Annual Eu-
ropean Symposium, Rome, Italy, 17–21 September 2002. Lec-
tureNotes Computer Science, vol. 2461, pp. 126–138. Springer,
Berlin (2002)

3. Brodal, G.S., Jacob, R.: Time-dependent networks as models to
achieve fast exact time-table queries. In: Proceedings of the
3rd Workshop on Algorithmic Methods and Models for Opti-
mization of Railways (ATMOS’03), 2003, [1], pp. 3–15

4. Müller-Hannemann, M., Schnee, M.: Paying less for train con-
nections with MOTIS. In: Kroon, L.G., Möhring, R.H. (eds.) Pro-
ceedings of the 5th Workshop on Algorithmic Methods and
Models for Optimization of Railways (ATMOS’05), Dagstuhl,
Germany, Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2006.
Dagstuhl Seminar Proceedings, no. 06901

5. Müller-Hannemann, M., Schnee, M.: Finding all attractive train
connections by multi-criteria pareto search. In: Geraets, F.,
Kroon, L.G., Schöbel, A., Wagner, D., Zaroliagis, C.D. (eds.)
Algorithmic Methods for Railway Optimization, International
Dagstuhl Workshop, Dagstuhl Castle, Germany, June 20–
25, 2004, 4th International Workshop, ATMOS 2004, Bergen,
September 16–17, 2004, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 4359, pp. 246–263. Springer,
Berlin (2007)

6. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.D.:
Timetable information: Models and algorithms. In: Geraets,
F., Kroon, L.G., Schöbel, A., Wagner, D., Zaroliagis, C.D. (eds.)
Algorithmic Methods for Railway Optimization, International
Dagstuhl Workshop, Dagstuhl Castle, Germany, June 20–
25, 2004, 4th International Workshop, ATMOS 2004, Bergen,
September 16–17, 2004, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 4359, pp. 67–90. Springer
(2007)

7. Nachtigall, K.: Time depending shortest-path problems with
applications to railway networks. Eur. J. Oper. Res. 83, 154–166
(1995)

8. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental
comparison of shortest path approaches for timetable infor-
mation. In: Proceedings 6thWorkshop on Algorithm Engineer-
ing and Experiments (ALENEX), Society for Industrial and Ap-
plied Mathematics, 2004, pp. 88–99

9. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic
modeling of time-table information through the time-depen-
dent approach. In: Proceedings of the 3rd Workshop on Algo-
rithmicMethods and Models for Optimization of Railways (AT-
MOS’03), 2003, [1], pp. 85–103

10. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient mod-
els for timetable information in public transportation systems.
J. Exp. Algorithmics 12, 2.4 (2007)

11. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line:
An empirical case study from public railroad transport. J. Exp.
Algorithmics 5 1–23 (2000)

Shortest Paths in Planar Graphs
with NegativeWeight Edges
2001; Fakcharoenphol, Rao

JITTAT FAKCHAROENPHOL1, SATISH RAO2

1 Department of Computer Engineering,
Kasetsart University, Bangkok, Thailand

2 Department of Computer Science,
University of California at Berkeley,
Berkeley, CA, USA

Shortest Paths in Planar Graphs with Negative Weight Edges S 839

Keywords and Synonyms

Shortest paths in planar graphs with general arc weights;
Shortest paths in planar graphs with arbitrary arc weights

ProblemDefinition

This problem is to find shortest paths in planar graphs
with general edge weights. It is known that shortest paths
exist only in graphs that contain no negative weight cycles.
Therefore, algorithms that work in this casemust deal with
the presence of negative cycles, i. e., they must be able to
detect negative cycles.

In general graphs, the best known algorithm, the Bell-
man-Ford algorithm, runs in time O(mn) on graphs with
n nodes and m edges, while algorithms on graphs with no
negative weight edges run much faster. For example, Di-
jkstra’s algorithm implemented with the Fibonacchi heap
runs in time O(m+n log n), and, in case of integer weights
Thorup’s algorithm runs in linear time. Goldberg [5] also
presented an O(m

p
n log L)-time algorithm where L de-

notes the absolute value of the most negative edge weights.
Note that his algorithm is weakly polynomial.

Notations

Given a directed graph G = (V ; E) and a weight function
w : E ! R on its directed edges, a distance labeling for
a source node s is a function d : V ! R such that d(v) is
the minimum length over all s-to-v paths, where the length
of path P is

P
e2P w(e).

Problem 1 (Single-Source-Shortest-Path)
INPUT: A directed graph G = (V ; E), weight function
w : E ! R, source node s 2 V.
OUTPUT: If G does not contain negative length cycles, out-
put a distance labeling d for source node s. Otherwise, report
that the graph contains some negative length cycle.

The algorithm by Fakcharoenphol and Rao [4] deals with
the case when G is planar. They gave an O(n log3 n)-time
algorithm, improving on an O(n3/2)-time algorithm by
Lipton, Rose, and Tarjan [9] and an O(n4/3 log nL)-time
algorithm byHenzinger, Klein, Rao, and Subramanian [6].

Their algorithm, as in all previous algorithms, uses
a recursive decomposition and constructs a data struc-
ture called a dense distance graph, which shall be defined
next.

A decomposition of a graph is a set of subsets P1;
P2; : : : ; Pk (not necessarily disjoint) such that the union
of all the sets is V and for all e = (u; v) 2 E, there is
a unique Pi that contains e. A node v is a border node of
a set Pi if v 2 Pi and there exists an edge e = (v; x) where

x 62 Pi . The subgraph induced on a subset Pi is referred to
as a piece of the decomposition.

The algorithm works with a recursive decomposition
where at each level, a piece with n nodes and r border
nodes is divided into two subpieces such that each sub-
piece has no more than 2n/3 nodes and at most 2r/3+ c

p
n

border nodes, for some constant c. In this recursive con-
text, a border node of a subpiece is defined to be any bor-
der node of the original piece or any new border node in-
troduced by the decomposition of the current piece.

With this recursive decomposition, the level of a de-
composition can be defined in the natural way, with the
entire graph being the only piece in the level 0 decompo-
sition, the pieces of the decomposition of the entire graph
being the level 1 pieces in the decomposition, and so on.

For each piece of the decomposition, the all-pair short-
est path distances between all its border nodes along paths
that lie entirely inside the piece are recursively computed.
These all-pair distances form the edge set of a non-planar
graph representing shortest paths between border nodes.
The dense distance graph of the planar graph is the union
of these graphs over all the levels.

Using the dense distance graph, the shortest distance
queries between pairs of nodes can be answered.

Problem 2 (Shortest-Path-Distance-Data-Structure)
INPUT: A directed graph G = (V ; E), weight function
w : E ! R, source node s 2 V.
OUTPUT: If G does not contain negative length cycles, out-
put a data structure that support distance queries between
pairs of nodes. Otherwise, report that the graph contains
some negative length cycle.

The algorithm of Fakcharoenphol and Rao relies heav-
ily on planarity, i. e., it exploits properties regarding how
shortest paths on each piece intersect. Therefore, unlike
previous algorithms that require only that the graph can
be recursively decomposed with small numbers of border
nodes [10], their algorithm also requires that each piece
has a nice embedding.

Given an embedding of the piece, a hole is a bounded
face where all adjacent nodes are border nodes. Ideally,
one would hope that there is a planar embedding of any
piece in the recursive decomposition where all the border
nodes are on a single face and are circularly ordered, i. e.,
there is no holes in each piece. Although this is not always
true, the algorithm works with any decomposition with
a constant number of holes in each piece. This decomposi-
tion can be found in O(n log n) time using the simple cycle
separator algorithm by Miller [12].

840 S Shortest Paths in Planar Graphs with Negative Weight Edges

Key Results

Theorem 1 Given a recursive decomposition of a planar
graph such that each piece of the decomposition contains at
most a constant number of holes, there is an algorithm that
constructs the dense distance graph is O(n log3 n) time.

Given the procedure that constructs the dense distance
graph, the shortest paths from a source s can be computed
by first adding s as a border node in every piece of the
decomposition, computing the dense distance graph, and
then extending the distances into all internal nodes on ev-
ery piece. This can be done in time O(n log3 n).

Theorem 2 The single-source shortest path problem for
an n-node planar graph with negative weight edges can be
solved in time O(n log3 n).

The dense distance graph can be used to answer distance
queries between pairs of nodes.

Theorem 3 Given the dense distance graph, the short-
est distance between any pair of nodes can be found in
O(
p
n log2 n) time.

It can also be used as a dynamic data structure that answers
shortest path queries and allows edge cost updates.

Theorem 4 For planar graphs with only non-negative
weight edges, there is a dynamic data structure that sup-
ports distance queries and update operations that change
edge weights in amortized O(n2/3 log7/3 n) time per opera-
tion. For planar graph with negative weight edges, there is
a dynamic data structures that supports the same set of op-
erations in amortized O(n4/5 log13/5 n) time per operation.

Note that the dynamic data structure does not support
edge insertions and deletions, since these operations might
destroy the recursive decomposition.

Applications

The shortest path problem has long been studied and
continues to find applications in diverse areas. There are
a many problems that reduce to the shortest path prob-
lem where negative weight edges are required, for exam-
ple the minimum-mean length directed circuit. For planar
graphs, the problem has wide application even when the
underlying graph is a grid. For example, there are recent
image segmentation approaches that use negative cycle de-
tection [2,3]. Some of other applications for planar graphs
include separator algorithms [13] and multi-source multi-
sink flow algorithms [11].

Open Problems

Klein [8] gives a technique that improves the running
time of the construction of the dense distance graph to
O(n log2 n) when all edge weights are non-negative; this
also reduces the amortized running time for the dynamic
case down to O(n2/3 log5/3 n). Also, for planar graphs with
no negative weight edges, Cabello [1] gives a faster algo-
rithm for computing the shortest distances between k pairs
of nodes. However, the problem for improving the bound
of O(n log3 n) for finding shortest paths in planar graphs
with general edge weights remains opened.

It is not known how to handle edge insertions and
deletions in the dynamic data structure. A new data struc-
ture might be needed instead of the dense distance graph,
because the dense distance graph is determined by the de-
composition.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Approximation Schemes for Planar Graph Problems
� Decremental All-Pairs Shortest Paths
� Fully Dynamic All Pairs Shortest Paths
� Implementation Challenge for Shortest Paths
� Negative Cycles in Weighted Digraphs
� Planarity Testing
� Shortest Paths Approaches for Timetable Information
� Single-Source Shortest Paths

Recommended Reading
1. Cabello, S.: Many distances in planar graphs. In: SODA ’06: Pro-

ceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pp. 1213–1220. ACM Press, New York
(2006)

2. Cox, I.J., Rao, S. B., Zhong, Y.: ‘Ratio Regions’: A Technique
for Image Segmentation. In: Proceedings International Confer-
ence on Pattern Recognition, IEEE, pp. 557–564, August (1996)

3. Geiger, L.C.D., Gupta, A., Vlontzos, J.: Dynamic programming
for detecting, tracking and matching elastic contours. IEEE
Trans. On Pattern Analysis and Machine Intelligence (1995)

4. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight
edges, shortest paths, andnear linear time. J. Comput. Syst. Sci.
72, 868–889 (2006)

5. Goldberg, A.V.: Scaling algorithms for the shortest path prob-
lem. SIAM J. Comput. 21, 140–150 (1992)

6. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster
Shortest-Path Algorithms for Planar Graphs. J. Comput. Syst.
Sci. 55, 3–23 (1997)

7. Johnson, D.: Efficient algorithms for shortest paths in sparse
networks. J. Assoc. Comput. Mach. 24, 1–13 (1977)

8. Klein, P.N.: Multiple-source shortest paths in planar graphs. In:
Proceedings, 16th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 146–155 (2005)

Shortest Vector Problem S 841

9. Lipton, R., Rose, D., Tarjan, R.E.: Generalized nested dissection.
SIAM. J. Numer. Anal. 16, 346–358 (1979)

10. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs.
SIAM. J. Appl. Math. 36, 177–189 (1979)

11. Miller, G., Naor, J.: Flow in planar graphs with multiple sources
and sinks. SIAM J. Comput. 24, 1002–1017 (1995)

12. Miller, G.L.: Finding small simple cycle separators for 2-con-
nected planar graphs. J. Comput. Syst. Sci. 32, 265–279 (1986)

13. Rao, S.B.: Faster algorithms for finding small edge cuts in pla-
nar graphs (extended abstract). In: Proceedings of the Twenty-
Fourth Annual ACM Symposium on the Theory of Computing,
pp. 229–240, May (1992)

14. Thorup, M.: Compact oracles for reachability and approximate
distances in planar digraphs. J. ACM 51, 993–1024 (2004)

Shortest Route
� All Pairs Shortest Paths in Sparse Graphs
� Rectilinear Steiner Tree
� Single-Source Shortest Paths

Shortest Vector Problem
1982; Lenstra, Lenstra, Lovasz

DANIELE MICCIANCIO
Department of Computer Science, University
of California, San Diego, La Jolla, CA, USA

Keywords and Synonyms

Lattice basis reduction; LLL algorithm; Closest vector
problem; Nearest vector problem; Minimum distance
problem

ProblemDefinition

A point lattice is the set of all integer linear combinations

L(b1; : : : ; bn) =
(nX

i=1

xibi : x1; : : : ; xn 2 Z

)

of n linearly independent vectors b1; : : : ; bn 2 Rm

in m-dimensional Euclidean space. For computational
purposes, the lattice vectors b1; : : : ; bn are often as-
sumed to have integer (or rational) entries, so that
the lattice can be represented by an integer matrix
B = [b1; : : : ; bn] 2 Zm�n (called basis) having the gen-
erating vectors as columns. Using matrix notation, lattice
points in L(B) can be conveniently represented as Bx
where x is an integer vector. The integers m and n are
called the dimension and rank of the lattice respectively.
Notice that any lattice admits multiple bases, but they all
have the same rank and dimension.

The main computational problems on lattices are the
Shortest Vector Problem, which asks to find the shortest
nonzero vector in a given lattice, and the Closest Vector
Problem, which asks to find the lattice point closest to
a given target. Both problems can be defined with respect

to any norm, but the Euclidean norm kvk =
qP

i v
2
i is the

most common. Other norms typically found in computer
science applications are the `1 norm kvk1 =

P
i jvi j and

themax norm kvk1 = maxi jvi j. This entry focuses on the
Euclidean norm.

Since no efficient algorithm is known to solve SVP and
CVP exactly in arbitrary high dimension, the problems are
usually defined in their approximation version, where the
approximation factor � � 1 can be a function of the di-
mension or rank of the lattice.

Definition 1 (Shortest Vector Problem, SVP�) Given
a lattice L(B), find a nonzero lattice vector Bx (where
x 2 Zn n f0g) such that kBxk � � � kByk for any
y 2 Zn n f0g.

Definition 2 (Closest Vector Problem, CVP�) Given
a lattice L(B) and a target point t, find a lattice vector Bx
(where x 2 Zn) such that kBx � tk � � � kBy � tk for any
y 2 Zn .

Lattices have been investigated bymathematicians for cen-
turies in the equivalent language of quadratic forms, and
are the main object of study in the geometry of numbers,
a field initiated by Minkowski as a bridge between geom-
etry and number theory. For a mathematical introduction
to lattices see [3]. The reader is referred to [6,12] for an in-
troduction to lattices with an emphasis on computational
and algorithmic issues.

Key Results

The problem of finding an efficient (polynomial time) so-
lution to SVP� for lattices in arbitrary dimension was
first solved by the celebrated lattice reduction algorithm of
Lenstra, Lenstra and Lovász [11], commonly known as the
LLL algorithm.

Theorem 1 There is a polynomial time algorithm to solve
SVP� for � = (2/

p
3)n, where n is the rank of the input lat-

tice.

The LLL algorithm achieves more than just finding a rela-
tively short lattice vector: it finds a so-called reduced basis
for the input lattice, i. e., an entire basis of relatively short
lattice vectors. Shortly after the discovery of the LLL algo-
rithm, Babai [2] showed that reduced bases can be used to
efficiently solve CVP� as well within similar approxima-
tion factors.

842 S Shortest Vector Problem

Corollary 1 There is a polynomial time algorithm to solve
CVP� for � = O(2/

p
3)n, where n is the rank of the input

lattice.

The reader is referred to the original papers [2,11] and
[12, chap. 2] for details. Introductory presentations of the
LLL algorithm can also be found in many other texts, e. g.,
[5, chap. 16] and [15, chap. 27]. It is interesting to note
that CVP is at least as hard as SVP (see [12, chap 2]) in
the sense that any algorithm that solves CVP� can be effi-
ciently adapted to solve SVP� within the same approxima-
tion factor.

Both SVP� and CVP� are known to be NP-hard in
their exact (� = 1) or even approximate versions for small
values of � , e. g., constant � independent of the dimension.
(See [13, chaps. 3 and 4] and [4,10] for the most recent re-
sults.) So, no efficient algorithm is likely to exist to solve
the problems exactly in arbitrary dimension. For any fixed
dimension n, both SVP and CVP can be solved exactly in
polynomial time using an algorithm of Kannan [9]. How-
ever, the dependency of the running time on the lattice di-
mension is nO(n). Using randomization, exact SVP can be
solved probabilistically in 2O(n) time and space using the
sieving algorithm of Ajtai, Kumar and Sivakumar [1].

As for approximate solutions, the LLL lattice reduction
algorithm has been improved both in terms of running
time and approximation guarantee. (See [14] and refer-
ences therein.) Currently, the best (randomized) polyno-
mial time approximation algorithm achieves approxima-
tion factor � = 2O(n log log n/ log n).

Applications

Despite the large (exponential in n) approximation factor,
the LLL algorithm has found numerous applications and
lead to the solution of many algorithmic problems in com-
puter science. The number and variety of applications is
too large to give a comprehensive list. Some of the most
representative applications in different areas of computer
science are mentioned below.

The first motivating applications of lattice basis reduc-
tion were the solution of integer programs with a fixed
number of variables and the factorization of polynomials
with rationals coefficients. (See [11] [8], and [5, chap. 16].)
Other classic applications are the solution of random
instances of low-density subset-sum problems, breaking
(truncated) linear congruential pseudorandomgenerators,
simultaneous Diophantine approximation, and the dis-
proof of Mertens’ conjecture. (See [8] and [5, chap. 17].)

More recently, lattice basis reduction has been exten-
sively used to solve many problems in cryptanalysis and
coding theory, including breaking several variants of the

RSA cryptosystem and the DSA digital signature algo-
rithm, finding small solutions to modular equations, and
list decoding of CRT (Chinese Reminder Theorem) codes.
The reader is referred to [7,13] for a survey of recent ap-
plications, mostly in the area of cryptanalysis.

One last class of applications of lattice problems is
the design of cryptographic functions (e. g., collision re-
sistant hash functions, public key encryption schemes,
etc.) based on the apparent intractability of solving SVP�
within small approximation factors. The reader is referred
to [12, chap. 8] and [13] for a survey of such applications,
and further pointers to relevant literature. One distin-
guishing feature of many such lattice based cryptographic
functions is that they can be proved to be hard to break on
the average, based on a worst-case intractability assump-
tion about the underlying lattice problem.

Open Problems

The main open problems in the computational study of
lattices is to determine the complexity of approximate
SVP� and CVP� for approximation factors � = nc poly-
nomial in the rank of the lattice. Specifically,
� Are there polynomial time algorithm that solve SVP�

or CVP� for polynomial factors � = nc? (Finding such
algorithms even for very large exponent c would be
a major breakthrough in computer science.)

� Is there an � > 0 such that approximating SVP� or
CVP� to within � = n� is NP-hard? (The strongest
known inapproximability results [4] are for factors of
the form nO(1/ log log n) which grow faster than any poly-
logarithmic function, but slower than any polynomial.)
There is theoretical evidence that for large polyno-

mials factors � = nc , SVP� and CVP� are not NP-hard.
Specifically, both problems belong to complexity class
coAM for approximation factor � = O(

p
n/ log n). (See

[12, chap. 9].) So, the problems cannot be NP-hard within
such factors unless the polynomial hierarchy PH collapses.

URL to Code

The LLL lattice reduction algorithm is implemented in
most library and packages for computational algebra, e. g.,
� GAP (http://www.gap-system.org)
� LiDIA (http://www.cdc.informatik.tu-darmstadt.de/

TI/LiDIA/)
� Magma (http://magma.maths.usyd.edu.au/magma/)
� Maple (http://www.maplesoft.com/)
� Mathematica (http://www.wolfram.com/products/

mathematica/index.html)
� NTL (http://shoup.net/ntl/).

http://www.gap-system.org
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/
http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/
http://magma.maths.usyd.edu.au/magma/
http://www.maplesoft.com/
http://www.wolfram.com/products/mathematica/index.html
http://www.wolfram.com/products/mathematica/index.html
http://shoup.net/ntl/

Similarity between Compressed Strings S 843

NTL also includes an implementation of Block Korkine-
Zolotarev reduction that has been extensively used for
cryptanalysis applications.

Cross References

� Cryptographic Hardness of Learning
� Knapsack
� Learning Heavy Fourier Coefficients of Boolean

Functions
�Quantum Algorithm for the Discrete Logarithm

Problem
�Quantum Algorithm for Factoring
� Sphere Packing Problem

Recommended Reading
1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the

shortest lattice vector problem. In: Proceedings of the thirty-
third annual ACM symposium on theory of computing – STOC
2001, Heraklion, Crete, Greece, July 2001, pp 266–275. ACM,
New York (2001)

2. Babai, L.: On Lovasz’ lattice reduction and the nearest lattice
point problem. Combinatorica 6(1), 1–13 (1986). Preliminary
version in STACS 1985

3. Cassels, J.W.S.: An introduction to the geometry of numbers.
Springer, New York (1971)

4. Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to
within almost-polynomial factors is NP-hard. Combinatorica
23(2), 205–243 (2003). Preliminary version in FOCS 1998

5. von zur Gathen, J., Gerhard, J.: Modern Comptuer Algebra, 2nd
edn. Cambridge (2003)

6. Grotschel, M., Lovász, L., Schrijver, A.: Geometric algorithms
and combinatorial optimization. Algorithms and Combina-
torics, vol. 2, 2nd edn. Springer (1993)

7. Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptan-
alyst. J. Cryptolo. 11(3), 161–185 (1998)

8. Kannan, R.: Annual reviews of computer science, vol. 2, chap.
“Algorithmic geometry of numbers”, pp. 231–267. Annual Re-
view Inc., Palo Alto, California (1987)

9. Kannan, R.: Minkowski’s convex body theorem and integer
programming. Math. Oper. Res. 12(3), 415–440 (1987)

10. Khot, S.: Hardness of Approximating the Shortest Vector Prob-
lem in Lattices. J. ACM 52(5), 789–808 (2005). Preliminary ver-
sion in FOCS 2004

11. Lenstra, A.K., Lenstra, Jr., H.W., Lovász, L.: Factoring polynomi-
als with rational coefficients. Math Ann. 261, 513–534 (1982)

12. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems:
A Cryptographic Perspective. The Kluwer International Series
in Engineering and Computer Science, vol. 671. Kluwer Aca-
demic Publishers, Boston, Massachusetts (2002)

13. Nguyen, P., Stern, J.: The two faces of lattices in cryptology. In:
J. Silverman (ed.) Cryptography and lattices conference – CaLC
2001, Providence, RI, USA, March 2001. Lecture Notes in Com-
puter Science, vol. 2146, pp. 146–180. Springer, Berlin (2001)

14. Schnorr, C.P.: Fast LLL-type lattice reduction. Inform. Comput.
204(1), 1–25 (2006)

15. Vazirani, V.V.: Approximation Algorithms. Springer (2001)

Similarity
between Compressed Strings
2005; Kim, Amir, Landau, Park

JIN WOOK KIM1, AMIHOOD AMIR2, GAD M. LANDAU3,
KUNSOO PARK4
1 HM Research, Seoul, Korea
2 Department of Computer Science,
Bar-Ilan University, Ramat-Gan, Israel

3 Department of Computer Science, University of Haifa,
Haifa, Israel

4 School of Computer Science and Engineering, Seoul
National University, Seoul, Korea

Keywords and Synonyms

Similarity between compressed strings; Compressed ap-
proximate string matching; Alignment between com-
pressed strings

ProblemDefinition

The problem of computing similarity between two strings
is concerned with comparing two strings using some scor-
ing metric. There exist various scoring metrics and a pop-
ular one is the Levenshtein distance (or edit distance) met-
ric. The standard solution for the Levenshtein distance
metric was proposed byWagner and Fischer [13], which is
based on dynamic programming. Other widely used scor-
ing metrics are the longest common subsequence met-
ric, the weighted edit distance metric, and the affine gap
penalty metric. The affine gap penalty metric is the most
general, and it is a quite complicated metric to deal with.
Table 1 shows the differences between the four metrics.

The problem considered in this entry is the similar-
ity between two compressed strings. This problem is con-
cerned with efficiently computing similarity without de-
compressing two strings. The compressions used for this

Similarity between Compressed Strings, Table 1
Various scoring metrics

Metric Match Mismatch Indel Indel of
k characters

Longest common
subsequence

1 0 0 0

Levenshtein
distance

0 1 1 k

Weighted edit
distance

0 ı � k�

Affine gap penalty 1 �ı �� �� �� � k�

844 S Similarity between Compressed Strings

Similarity between Compressed Strings, Figure 1
Dynamic programming table for strings arcpbt and asbqcu is di-
vided into 9 blocks. For oneof theblocks, e.g., B, only thebottom
row C and the rightmost column D are computed from E and F

problem in the literature are run-length encoding and
Lempel-Ziv (LZ) compression [14].

Run-Length Encoding

A string S is run-length encoded if it is described as
an ordered sequence of pairs (�; i), often denoted “� i”,
each consisting of an alphabet symbol, � , and an inte-
ger, i. Each pair corresponds to a run in S, consisting of
i consecutive occurrences of � . For example, the string
aaabbbbaccccbb can be encoded a3b4a1c4b2 or, equiv-
alently, (a; 3)(b; 4)(a; 1)(c; 4)(b; 2). Let A and B be two
strings with lengths n and m, respectively. Let A0 and B0

be the run-length encoded strings of A and B, and n0 and
m0 be the lengths of A0 and B0, respectively.

Problem 1
INPUT: Two run-length encoded strings A0 and B0, a scoring
metric d.
OUTPUT: The similarity between A0 and B0 using d.

LZ Compression

Let X and Y be two strings with length O(n). Let X0 and
Y 0 be the LZ compressed strings of X and Y , respectively.
Then the lengths of X0 and Y 0 are O(hn/ log n), where
h � 1 is the entropy of strings X and Y .

Problem 2
INPUT: Two LZ compressed strings X0 and Y 0, a scoring
metric d.
OUTPUT: The similarity between X0 and Y 0 using d.

Block Computation

To compute similarity between compressed strings effi-
ciently, one can use a block computation method. Dy-
namic programming tables are divided into submatrices,
which are called “blocks”. For run-length encoded strings,

a block is a submatrix made up of two runs – one of A and
one of B. For LZ compressed strings, a block is a subma-
trix made up of two phrases – one phrase from each string.
See [5] for more details. Then, blocks are computed from
left to right and from top to bottom. For each block, only
the bottom row and the rightmost column are computed.
Figure 1 shows an example of block computation.

Key Results

The problem of computing similarity of two run-length
encoded strings, A0 and B0, has been studied for various
scoring metrics. Bunke and Csirik [4] presented the first
solution to Problem 1 using the longest common subse-
quence metric. The algorithm is based on block computa-
tion of the dynamic programming table.

Theorem 1 (Bunke and Csirik 1995 [4]) A longest com-
mon subsequence of run-length encoded strings A0 and B0

can be computed in O(nm0 + n0m) time.

For the Levenshtein distance metric, Arbell, Landau, and
Mitchell [2] and Mäkinen, Navarro, and Ukkonen [10]
presented O(nm0 + n0m) time algorithms, independently.
These algorithms are extensions of the algorithm of Bunke
and Csirik.

Theorem 2 (Arbell, Landau, and Mitchell 2002 [2],
Mäkinen, Navarro, and Ukkonen [10]) The Levenshtein
distance between run-length encoded strings A0 and B0 can
be computed in O(nm0 + n0m) time.

For the weighted edit distance metric, Crochemore, Lan-
dau, and Ziv-Ukelson [6] and Mäkinen, Navarro, and
Ukkonen [11] gave O(nm0 + n0m) time algorithms using
techniques completely different from each other. The al-
gorithm of Crochemore, Landau, and Ziv-Ukelson [6] is
based on the technique which is used in the LZ com-
pressed pattern matching algorithm [6], and the algorithm
of Mäkinen, Navarro, and Ukkonen [11] is an extension of
the algorithm for the Levenshtein distance metric.

Theorem 3 (Crochemore, Landau, and Ziv-Ukelson
2003 [6] Mäkinen, Navarro, and Ukkonen [11]) The
weighted edit distance between run-length encoded strings
A0 and B0 can be computed in O(nm0 + n0m) time.

For the affine gap penalty metric, Kim, Amir, Landau, and
Park [8] gave an O(nm0 + n0m) time algorithm. To com-
pute similarity in this metric efficiently, the problem is
converted into a path problem on a directed acyclic graph
and some properties of maximum paths in this graph are
used. It is not necessary to build the graph explicitly since
they came up with new recurrences using the properties of
the graph.

Similarity between Compressed Strings S 845

Theorem 4 (Kim, Amir, Landau, and Park 2005 [8])
The similarity between run-length encoded strings A0 and
B0 in the affine gap penalty metric can be computed in
O(nm0 + n0m) time.

The above results show that comparison of run-length
encoded strings using the longest common subsequence
metric is successfully extended to more general scoring
metrics.

For the longest common subsequence metric, there
exist improved algorithms. Apostolico, Landau, and
Skiena [1] gave an O(n0m0 log(n0m0)) time algorithm. This
algorithm is based on tracing specific optimal paths.

Theorem 5 (Apostolico, Landau, and Skiena 1999 [1])
A longest common subsequence of run-length encoded
strings A0 and B0 can be computed in O(n0m0 log(n0 + m0))
time.

Mitchell [12] obtained anO((d + n0 + m0) log(d + n0 + m0))
time algorithm, where d is the number of matches of com-
pressed characters. This algorithm is based on computing
geometric shortest paths using special convex distance
functions.

Theorem 6 (Mitchell 1997 [12]) A longest common sub-
sequence of run-length encoded strings A0 and B0 can be
computed in O((d + n0 + m0) log(d + n0 + m0)) time, where
d is the number of matches of compressed characters.

Mäkinen, Navarro, and Ukkonen [11] conjectured an
O(n0m0) time algorithm on average under the assumption
that the lengths of the runs are equally distributed in both
strings.

Conjecture 1 (Mäkinen, Navarro, and Ukkonen
2003 [11]) A longest common subsequence of run-length
encoded strings A0 and B0 can be computed in O(n0m0) time
on average.

For Problem 2, Crochemore, Landau, and Ziv-Ukelson [6]
presented a solution using the additive gap penalty metric.
The additive gap penalty metric consists of 1 for match,�ı
for mismatch, and �� for indel, which is almost the same
as the weighted edit distance metric.

Theorem 7 (Crochemore, Landau, and Ziv-Ukelson
1993 [6]) The similarity between LZ compressed strings X0

and Y 0 in the additive gap penalty metric can be computed
in O(hn2/ log n) time, where h � 1 is the entropy of strings
X and Y.

Applications

Run-length encoding serves as a popular image compres-
sion technique, since many classes of images (e. g., bi-

nary images in facsimile transmission or for use in opti-
cal character recognition) typically contain large patches
of identically-valued pixels. Approximate matching on
images can be a useful tool to handle distortions. Even
a one-dimensional compressed approximate matching al-
gorithm would be useful to speed up two-dimensional ap-
proximate matching allowing mismatches and even rota-
tions [3,7,9].

Open Problems

The worst-case complexity of the problem is not fully un-
derstood. For the longest common subsequence metric,
there exist some results whose time complexities are better
than O(nm0 + n0m) to compute the similarity of two run-
length encoded strings [1,11,12]. It remains open to ex-
tend these results to the Levenshtein distance metric, the
weighted edit distance metric and the affine gap penalty
metric.

In addition, for the longest common subsequencemet-
ric, it is an open problem to prove Conjecture 1.

Cross References

� Compressed Pattern Matching
� Local Alignment (with Affine Gap Weights)
� Sequential Approximate String Matching

Recommended Reading
1. Apostolico, A., Landau, G.M., Skiena, S.: Matching for Run

Length Encoded Strings. J. Complex. 15(1), 4–16 (1999)
2. Arbell, O., Landau, G.M., Mitchell, J.: Edit Distance of Run-

Length Encoded Strings. Inf. Proc. Lett. 83(6), 307–314 (2002)
3. Baeza-Yates, R., Navaro, G.: New Models and Algorithms for

Multidimensional Approximate Pattern Matching. J. Discret.
Algorithms 1(1), 21–49 (2000)

4. Bunke, H., Csirik, H.: An Improved Algorithm for Computing the
Edit Distance of Run Length Coded Strings. Inf. Proc. Lett. 54,
93–96 (1995)

5. Crochemore, M., Landau, G.M., Schieber, B., Ziv-Ukelson, M.:
Re-Use Dynamic Programming for Sequence Alignment: An
Algorithmic Toolkit. In: Iliopoulos, C.S., Lecroq, T. (eds.) String
Algorithmics, pp. 19–59. King’s College London Publications,
London (2005)

6. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A Subquadratic
Sequence AlignmentAlgorithm for Unrestricted ScoringMatri-
ces. SIAM J. Comput. 32(6), 1654–1673 (2003)

7. Fredriksson, K., Navarro, G., Ukkonen, E.: Sequential and In-
dexed Two-Dimensional Combinatorial Template Matching
Allowing Rotations. Theor. Comput. Sci. 347(1–2), 239–275
(2005)

8. Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing Similar-
ity of Run-Length Encoded Strings with Affine Gap Penalty. In:
Proc. 12th Symposium on String Processing and Information
Retrieval (SPIRE’05). LNCS, vol. 3772, pp. 440–449 (2005)

846 S Single-Source Fully Dynamic Reachability

9. Krithivasan, K., Sitalakshmi, R.: Efficient Two-Dimensional Pat-
tern Matching in The Presence of Errors. Inf. Sci. 43, 169–184
(1987)

10. Mäkinen, V., Navarro, G., Ukkonen, E.: Approximate Matching
of Run-Length Compressed Strings. In: Proc. 12th Symposium
on Combinatorial Pattern Matching (CPM’01). LNCS, vol. 2089,
pp. 31–49 (2001)

11. Mäkinen, V., Navarro, G., Ukkonen, E.: Approximate Matching
of Run-Length Compressed Strings. Algorithmica 35, 347–369
(2003)

12. Mitchell, J.: A Geometric Shortest Path Problem, with Applica-
tion to Computing a Longest Common Subsequence in Run-
Length Encoded Strings. Technical Report, Dept. of Applied
Mathematics, SUNY Stony Brook (1997)

13. Wagner, R.A., Fischer, M.J.: The String-to-String correction
Problem. J. ACM 21(1), 168–173 (1974)

14. Ziv, J., Lempel, A.: Compression of Individual Sequences via
Variable Rate Coding. IEEE Trans. Inf. Theory 24(5), 530–536
(1978)

Single-Source Fully Dynamic
Reachability
2005; Demetrescu, Italiano

CAMIL DEMETRESCU, GIUSEPPE F. ITALIANO
Department of Computer & Systems Science,
University of Rome, Rome, Italy

Keywords and Synonyms

Single-source fully dynamic transitive closure

ProblemDefinition

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than
recomputing from scratch, as carried out by the fastest
static algorithm. An algorithm is fully dynamic if it can
handle both edge insertions and edge deletions and par-
tially dynamic if it can handle either edge insertions or
edge deletions, but not both.

Given a graph with n vertices and m edges, the transi-
tive closure (or reachability) problem consists of building
an n � n Boolean matrix M such that M[x; y] = 1 if and
only if there is a directed path from vertex x to vertex y in
the graph. The fully dynamic version of this problem can
be defifined as follows:

Definition 1 (Fully dynamic reachability problem) The
fully dynamic reachability problem consists of maintaining
a directed graph under an intermixed sequence of the fol-
lowing operations:

� insert(u,v): insert edge (u,v) into the graph.
� delete(u,v): delete edge (u,v) from the graph.
� reachable(x,y): return true if there is a directed path

from vertex x to vertex y, and false otherwise.

This entry addresses the single-source version of the fully-
dynamic reachability problem, where one is only inter-
ested in queries with a fixed source vertex s. The problem
is defined as follows:

Definition 2 (Single-source fully dynamic reachabil-
ity problem) The fully dynamic single-source reachability
problem consists of maintaining a directed graph under an
intermixed sequence of the following operations:
� insert(u,v): insert edge (u,v) into the graph.
� delete(u,v): delete edge (u,v) from the graph.
� reachable(y): return true if there is a directed path

from the source vertex s to vertex y, and false otherwise.

Approaches

A simple-minded solution to the problem of Definition
would be to keep explicit reachability information from
the source to all other vertices and update it by running
any graph traversal algorithm from the source s after each
insert or delete. This takes O(m + n) time per operation,
and then reachability queries can be answered in constant
time.

Another simple-minded solution would be to answer
queries by running a point-to-point reachability compu-
tation, without the need to keep explicit reachability in-
formation up to date after each insertion or deletion. This
can be done in O(m + n) time using any graph traver-
sal algorithm. With this approach, queries are answered in
O(m + n) time and updates require constant time. Notice
that the time required by the slowest operation is O(m+n)
for both approaches, which can be as high as O(n2) in the
case of dense graphs.

The first improvement upon these two basic solutions
is due to Demetrescu and Italiano, who showed how to
support update operations in O(n1:575) time and reacha-
bility queries in O(1) time [1] in a directed acyclic graph.
The result is based on a simple reduction of the single-
source problem of Definition to the all-pairs problem of
Definition. Using a result by Sankowski [2], the bounds
above can be extended to the case of general directed
graphs.

Key Results

This Section presents a simple reduction presented in [1]
that allows it to keep explicit single-source reachability in-
formation up to date in subquadratic time per operation

Single-Source Shortest Paths S 847

in a directed graph subject to an intermixed sequence of
edge insertions and edge deletions. The bounds reported
in this entry were originally presented for the case of di-
rected acyclic graphs, but can be extended to general di-
rected graphs using the following theorem from [2]:

Theorem 1 Given a general directed graph with n vertices,
there is a data structure for the fully dynamic reachability
problem that supports each insertion/deletion in O(n1:575)
time and each reachability query in O(n0:575) time. The al-
gorithm is randomized with one-sided error.

The idea described in [1] is to maintain reachability infor-
mation from the source vertex s to all other vertices ex-
plicitly by keeping a Boolean array R of size n such that
R[y] = 1 if and only if there is a directed path from s to
y. An instance D of the data structure for fully dynamic
reachability of Theorem is also maintained. After each in-
sertion or deletion, it is possible to update D in O(n1:575)
time and then rebuild R in O(n � n0:575) = O(n1:575) time
by letting R[y] D:reachable (s,y) for each vertex y.
This yields the following bounds for the single-source fully
dynamic reachability problem:

Theorem 2 Given a general directed graph with n vertices,
there is a data structure for the single-source fully dynamic
reachability problem that supports each insertion/deletion
in O(n1:575) time and each reachability query in O(1) time.

Applications

The graph reachability problem is particularly relevant to
the field of databases for supporting transitivity queries on
dynamic graphs of relations [3]. The problem also arises
in many other areas such as compilers, interactive verifi-
cation systems, garbage collection, and industrial robotics.

Open Problems

An important open problem is whether one can extend
the result described in this entry to maintain fully dynamic
single-source shortest paths in subquadratic time per op-
eration.

Cross References

� Trade-Offs for Dynamic Graph Problems

Recommended Reading

1. Demetrescu, C., Italiano, G.: Trade-offs for fully dynamic reacha-
bility on dags: Breaking through theO(n2) barrier. J. Assoc. Com-
put. Machin. (JACM) 52, 147–156 (2005)

2. Sankowski, P.: Dynamic transitive closure via dynamic matrix in-
verse. In: FOCS ’04: Proceedings of the 45th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’04), pp. 509–
517. IEEE Computer Society, Washington DC (2004)

3. Yannakakis, M.: Graph-theoretic methods in database theory. In:
Proc. 9-th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, Nashville, 1990 pp. 230–242

Single-Source Shortest Paths
1999; Thorup

SETH PETTIE
Department of Computer Science,
University of Michigan, Ann Arbor, MI, USA

Keywords and Synonyms

Shortest route; Quickest route

ProblemDefinition

The single source shortest path problem (SSSP) is, given
a graph G = (V ; E; `) and a source vertex s 2 V , to find
the shortest path from s to every v 2 V . The difficulty of
the problem depends on whether the graph is directed or
undirected and the assumptions placed on the length func-
tion `. In the most general situation ` : E ! R assigns ar-
bitrary (positive & negative) real lengths. The algorithms
of Bellman-Ford and Edmonds [1,4] may be applied in
this situation and have running times of roughly O(mn),1

where m = jEj and n = jV j are the number of edges and
vertices. If ` assigns only non-negative real edge lengths
then the algorithms of Dijkstra and Pettie-Ramachan-
dran [4,14] may be applied on directed and undirected
graphs, respectively. These algorithms include a sorting
bottleneck and, in the worst case, take ˝(m + n log n)
time.2

A common assumption is that ` assigns integer edge
lengths in the range f0; : : : ; 2w � 1g or f�2w�1; : : : ;
2w�1 � 1g and that the machine is a w-bit word RAM;
that is, each edge length fits in one register. For general
integer edge lengths the best SSSP algorithms improve on
Bellman-Ford and Edmonds by a factor of roughly

p
n [7].

For non-negative integer edge lengths the best SSSP algo-
rithms are faster than Dijkstra and Pettie-Ramachandran

1Edmonds’s algorithm works for undirected graphs and presumes
that there are no negative length simple cycles.

2The [14] algorithm actually runs inO(m + n log log n) time if the
ratio of any two edge lengths is polynomial in n.

848 S Single-Source Shortest Paths

by up to a logarithmic factor. They are frequently based on
integer priority queues [10].

Key Results

Thorup’s primary result [17] is an optimal linear time
SSSP algorithm for undirected graphs with integer edge
lengths. This is the first and only linear time shortest path
algorithm that does not make serious assumptions on the
class of input graphs.

Theorem 1 There is a SSSP algorithm for integer-weighted
undirected graphs that runs in O(m) time.

Thorup avoids the sorting bottleneck inherent in Dijk-
stra’s algorithm by precomputing (in linear time) a compo-
nent hierarchy. The algorithm of [17] operates in a manner
similar to Dijkstra’s algorithm [4] but uses the component
hierarchy to identify groups of vertices that can be visited
in any order. In later work, Thorup [18] extended this ap-
proach to work when the edge lengths are floating-point
numbers.3

Thorup’s hierarchy-based approach has since been
extended to directed and/or real-weighted graphs, and
to solve the all pairs shortest path (APSP) prob-
lem [12,13,14]. The generalizations to related SSSP prob-
lems are summarized by below. See [12,13] for hierarchy-
based APSP algorithms.

Theorem 2 (Hagerup [9], 2000) A component hierar-
chy for a directed graph G = (V ; E; `), where ` : E !
f0; : : : ; 2w � 1g, can be constructed in O(m logw) time.
Thereafter SSSP from any source can be computed in
O(m + n log log n) time.

Theorem 3 (Pettie and Ramachandran [14], 2005)
A component hierarchy for an undirected graph G =
(V ; E; `), where ` : E ! R+, can be constructed in
O(m˛(m; n)+minfn log log r; n log ng) time, where r is the
ratio of the maximum-to-minimum edge length. Thereafter
SSSP from any source can be computed in O(m log˛(m; n))
time.

The algorithms of Hagerup [9] and Pettie-Ramachan-
dran [14] take the same basic approach as Thorup’s algo-
rithm: use some kind of component hierarchy to identify
groups of vertices that can safely be visited in any order.
However, the assumption of directed graphs [9] and real
edge lengths [14] renders Thorup’s hierarchy inapplicable
or inefficient. Hagerup’s component hierarchy is based on
a directed analogue of the minimum spanning tree. The

3There is some flexibility in the definition of shortest path since
floating-point addition is neither commutative nor associative.

Pettie-Ramachandran algorithm enforces a certain degree
of balance in its component hierarchy and, when comput-
ing SSSP, uses a specialized priority queue to take advan-
tage of this balance.

Applications

Shortest path algorithms are frequently used as a sub-
routine in other optimization problems, such as flow and
matching problems [1] and facility location [19]. A widely
used commercial application of shortest path algorithms is
finding efficient routes on road networks, e. g., as provided
by Google Maps, MapQuest, or Yahoo Maps.

Open Problems

Thorup’s SSSP algorithm [17] runs in linear time and is
therefore optimal. The main open problem is to find a lin-
ear time SSSP algorithm that works on real-weighted di-
rected graphs. For real-weighted undirected graphs the
best running time is given in Theorem 3. For integer-
weighted directed graphs the fastest algorithms are based
on Dijkstra’s algorithm (not Theorem 2) and run in
O(m

p
log log n) time (randomized) and deterministically

in O(m + n log log n) time.

Problem 1 Is there an O(m) time SSSP algorithm for inte-
ger-weighted directed graphs?

Problem 2 Is there an O(m) + o(n log n) time SSSP al-
gorithm for real-weighted graphs, either directed or undi-
rected?

The complexity of SSSP on graphs with positive & negative
edge lengths is also open.

Experimental Results

Asano and Imai [2] and Pettie et al. [15] evaluated the per-
formance of the hierarchy-based SSSP algorithms [14,17].
There have been a number of studies of SSSP algorithms
on integer-weighted directed graphs; see [8] for the latest
and references to many others. The trend in recent years is
to find practical preprocessing schemes that allow for very
quick point-to-point shortest path queries. See [3,11,16]
for recent work in this area.

Data Sets

See [5] for a number of US and European road networks.

URL to Code

See [6] and [5].

Ski Rental Problem S 849

Cross References

� All Pairs Shortest Paths via Matrix Multiplication

Recommended Reading

1. Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs
(1993)

2. Asano, Y., Imai, H.: Practical efficiency of the linear-time algo-
rithm for the single source shortest path problem. J. Oper. Res.
Soc. Jpn. 43(4), 431–447 (2000)

3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In tran-
sit to constant shortest-path queries in road networks. In: Pro-
ceedings 9th Workshop on Algorithm Engineering and Experi-
ments (ALENEX), 2007

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2001)

5. Demetrescu, C., Goldberg, A.V., Johnson, D.: 9th DIMACS
Implementation Challege—Shortest Paths. http://www.dis.
uniroma1.it/~challenge9/ (2006)

6. Goldberg, A.V.: AVG Lab. http://www.avglab.com/andrew/
7. Goldberg, A.V.: Scaling algorithms for the shortest paths prob-

lem. SIAM J. Comput. 24(3), 494–504 (1995)
8. Goldberg, A.V.: Shortest path algorithms: Engineering aspects.

In: Proc. 12th Int’l Symp. on Algorithms and Computation
(ISAAC). LNCS, vol. 2223, pp. 502–513. Springer, Berlin (2001)

9. Hagerup, T.: Improved shortest paths on the word RAM. In:
Proc. 27th Int’l Colloq. on Automata, Languages, and Program-
ming (ICALP). LNCS vol. 1853, pp. 61–72. Springer, Berlin (2000)

10. Han, Y., Thorup, M.: Integer sorting inO(n
p
log log n) expected

time and linear space. In: Proc. 43rd Symp. on Foundations of
Computer Science (FOCS), 2002, pp. 135–144

11. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Com-
puting many-to-many shortest paths using highway hierar-
chies. In: Proceedings 9thWorkshop onAlgorithmEngineering
and Experiments (ALENEX), 2007

12. Pettie, S.: On the comparison-addition complexity of all-pairs
shortest paths. In: Proc. 13th Int’l Symp. on Algorithms and
Computation (ISAAC), 2002, pp. 32–43

13. Pettie, S.: A new approach to all-pairs shortest paths on real-
weighted graphs. Theor. Comput. Sci. 312(1), 47–74 (2004)

14. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-
weighted undirected graphs. SIAM J. Comput. 34(6), 1398–
1431 (2005)

15. Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evalua-
tion of a new shortest path algorithm. In: Proc. 4th Workshop
on Algorithm Engineering and Experiments (ALENEX), 2002,
pp. 126–142

16. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In:
Proc. 14th European Symposium on Algorithms (ESA), 2006,
pp. 804–816

17. Thorup, M.: Undirected single-source shortest paths with pos-
itive integer weights in linear time. J. ACM 46(3), 362–394
(1999)

18. Thorup, M.: Floats, integers, and single source shortest paths.
J. Algorithms 35 (2000)

19. Thorup, M.: Quick and good facility location. In: Proceedings
14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003, pp. 178–185

Ski Rental Problem
1990; Karlin, Manasse, McGeogh, Owicki

MARK S. MANASSE
Microsoft Research, Mountain View, CA, USA

Index Terms

Ski-rental problem, Competitive algorithms, Determinis-
tic and randomized algorithms, On-line algorithms

Keywords and Synonyms

Oblivious adversaries, Worst-case approximation, Metri-
cal task systems

ProblemDefinition

The ski rental problemwas developed as a pedagogical tool
for understanding the basic concepts in some early results
in on-line algorithms.1 The ski rental problem considers
the plight of one consumer who, in order to socialize with
peers, is forced to engage in a variety of athletic activities,
such as skiing, bicycling, windsurfing, rollerblading, sky
diving, scuba-diving, tennis, soccer, and ultimate Frisbee,
each of which has a set of associated apparatus, clothing,
or protective gear.

In all of these, it is possible either to purchase the ac-
coutrements needed, or to rent them. For the purpose of
this problem, it is assumed that one-time rental is less ex-
pensive than purchasing. It is also assumed that purchased
items are durable, and suitable for reuse for future activ-
ities of the same type without further expense, until the
items wear out (which occurs at the same rate for all users),
are outgrown, become unfashionable, or are disposed of

1In the interest of full disclosure, the earliest presentations of these
results described the problem as the wedding-tuxedo-rental problem.
Objections were presented that this was a gender-biased name for
the problem, since while groomsmen can rent their wedding apparel,
bridesmaids usually cannot. A further complication, owing to the dif-
ficulty of instantaneously producing fitted garments or ski equipment
outlined below, suggests that some complications could have been
avoided by focusing on the dilemma of choosing between daily lift
passes or season passes, although this leads to the pricing complexi-
ties of purchasing season passes well in advance of the season, as op-
posed to the higher cost of purchasing them at the mountain during
the ski season. A similar problem could be derived from the question
as to whether to purchase the daily newspaper at a newsstand or to
take a subscription, after adding the challenge that one’s peers will
treat one contemptuously if one has not read the news on days on
which they have.

http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://www.avglab.com/andrew/

850 S Ski Rental Problem

to make room for other purchased items. The social con-
sumer must make the decision to rent or buy for each
event, although it is assumed that the consumer is suffi-
ciently parsimonious as to abjure rental if already in pos-
session of serviceable purchased equipment.Whether pur-
chases are as easy to arrange as rentals, or whether some
advance planning is required (to mount bindings on a ski,
say) is a further detail considered in this problem. It is as-
sumed that the social consumer has no particular indepen-
dent interest in these activities, and engages in these activ-
ities only to socialize with peers who choose to engage in
these activities disregarding the consumer’s desires.

These putative peers are more interested in demon-
strating the superiority of their financial acumen to that
of the social consumer in question than they are in any
particular activity. To that end, the social consumer is
taunted mercilessly based on the ratio of his/her total ex-
penses on rentals and purchases to theirs. Consequently,
the peers endeavor to invite the social consumer to engage
in events while they are costly to him/her, and once the
activities are free to the social consumer, if continued ac-
tivity would be costly to them, cease. But, to present an
illusion of fairness, skis, both rented and purchased, have
the same cost for the peers as they do for the social con-
sumer in question. The ski rental problem takes a very re-
stricted setting. It assumes that purchased ski equipment
never needs replacement, and that there are no costs to
a ski trip other than the skis (thus, no cost for the gasoline,
for the lift and/or speeding tickets, for the hot chocolates
during skiing, or for the après-ski liqueurs and meals). It
is assumed that the social consumer experiences no phys-
ical disabilities preventing him/her from skiing, and has
no impending restrictions to his/her participation in ski
trips (obviously, a near-term-fatal illness or an anticipated
conviction leading to confinement for life in a peniten-
tiary would eliminate any potential interest in purchasing
alpine equipment—when the ratio of purchase to rental
exceeds the maximum need for equipment, one should al-
ways rent). It is assumed that the social consumer’s peers
have disavowed any interest in activities other than ski-
ing, and that the closet, basement, attic, garage, or stor-
age locker included in the social consumer’s rent or mort-
gage (or necessitated by other storage needs) has sufficient
capacity to hold purchased ski equipment without entail-
ing the disposal of any potentially useful items. Bringing
these complexities into consideration brings one closer to
the hardware-based problems which initially inspired this
work.

The impact of invitations issued with sufficient time
allowed for purchasing skis, as well as those without, will
be considered.

Given all of that, what ratio of expenses can the social
consumer hope to attain? What ratio can the social con-
sumer not expect to beat? These are the basic questions of
competitive analysis.

The impact of keeping secrets from one’s peers is fur-
ther considered. Rather than a fixed strategy for when to
purchase skis, the social consumer may introduce an ele-
ment of chance into the process. If the peers are able to
observe his/her ski equipment and notice when it changes
from rented skis to purchased skis, and change their
schedule for alpine recreation in light of this observation,
randomness provides no advantages. If, on the other hand,
the social consumer announces to the peers, in advance
of the first trip, how he/she will decide when the time is
right for purchasing skis, including any use of probabilis-
tic techniques, and they then decide on the schedule for ski
trips for the coming winter, a deterministic decision pro-
cedure generally produces a larger competitive ratio than
does a randomized procedure.

Key Results

Given an unbounded sequence of skiing trips, one should
eventually purchase skis if the cost of renting skis, r, is pos-
itive. In particular, let the cost of purchasing skis be some
number p � r. If one never intends to make a purchase,
one’s cost for the season will be rn, where n is the num-
ber of ski trips in which one participates. If n exceeds p/r,
one’s cost will exceed the price of purchasing skis; as n
continues to increase, the ratio of one’s costs to those of
one’s peers increases to nr/p, which grows unboundedly
with n, since your peers, knowing that n exceeds p/r, will
have purchased skis prior to the first trip.

On the other hand, if one rushes out to purchase skis
upon being told that the ski season is approaching, one’s
peers will decide that this season looks inopportune, and
that skiing is passé, leaving their costs at zero, and one’s
costs at p, leaving an infinite ratio between one’s costs and
theirs; if one chooses to defer the purchase until after one’s
first ski trip, this produces the less unfavorable ratio p/r or
1 + p/r, depending on whether the invitation left one time
to purchase skis before the first trip or not.

Suppose one chooses, instead, to defer one’s purchase
until after one has made k rentals, but before ski trip k + 1.
One’s costs are then bounded by kr + p. After k ski trips,
the cost to one’s peers will be the lesser of kr and p (as
one’s peers will have decided whether to rent or buy for
the season upon knowing one’s plans, which in this case
amounts to knowing k), for a ratio equal to the larger of
1 + kr/p and 1 + p/kr. Were they to choose to terminate
the activity earlier (so n < k), the ratio would be only the

Ski Rental Problem S 851

greater of kr/p and 1, which is guaranteed to be less than
the sum of the two—one’s peers would be shirking their
opportunity to make one’s behavior look foolish were they
to allow one to stop skiing prior to one’s purchase of a pair
of skis!

It is certain, since kr/p and p/kr are reciprocals, that
one of them is at least equal to 1, ensuring that one will be
compelled to spend at least twice as much as one’s peers.

The analysis above applies to the case where ski trips
are announced without enough warning to leave one time
to buy skis. Purchases in that case are not instantaneous;
in contrast, if one is able to purchase skis on demand, the
cost to one’s peers changes to the lesser of (k + 1) r and p.
The overall results are notmuch different; the ratio choices
become the larger of 1 + kr/p and 1 +

�
p � r

�
/ ((k + 1) r).

When probabilistic algorithms are considered with
oblivious frenemies (those who know the way in which
random choices will affect one’s purchasing decisions, but
who do not take time to notice that one’s skis are no longer
marked with the name and phone number of a rental
agency), one can appear more thrifty.

A randomized algorithm can be viewed as a distribu-
tion over deterministic algorithms. No good algorithm can
purchase skis prior to the first invitation, lest it exhibit in-
finite regrettability (some positive cost compared to zero).
A good algorithm must purchase skis by the time one’s
peers will have, otherwise one’s cost ratio continues to in-
crease with the number of ski trips. Moreover, the ratio
should be the same after every ski trip; if not, then there is
an earliest ratio not equal to the largest, and probabilities
can be adjusted to change this earliest ratio to be closer to
the largest while decreasing all larger ratios.

Consider, for example, the case of p = 2r, with pur-
chases allowed at the time of an invitation. The best de-
terministic ratio in this case is 1.5. It is only necessary to
choose a probability q, the probability of purchasing at
the time of the first invitation. The cost after one trip is
then

�
1 � q

�
r + 2qr = r

�
1 + q

�
, for a ratio of 1 + q, and

after two trips the costs is q (2r) +
�
1 � q

�
(3r) =

�
3 � q

�
r,

producing a ratio of
�
3 � q

�
/2. Setting these to be equal

yields q = 1/3, for a ratio of 4/3.
If insufficient time is allowed for purchases before ski-

ing, the best deterministic ratio is 2. Purchasing after the
first ski trip with probability q (and after the second with
probability 1� q) leads to expected costs of

�
1 � q

�
r +

3qr = r
�
1 + 2q

�
after the first trip, and

�
1 � q

�
(2 + 2) r +

3qr = r
�
4 � q

�
, leading to a ratio of 2� q/2. Setting

1 + 2q = 2 � q/2 yields q = 2/5, for a ratio of 9/5.
More careful analysis, for which readers are re-

ferred to the references and the remainder of this vol-
ume, shows that the best achievable ratio approaches

�/ (� � 1) 	 1:58197 as p/r increases, approaching the
limit from below if sufficient warning time is offered, and
from above otherwise.

Applications

The primary initial results were directed towards problems
of computer architecture; in particular, design questions
for capacity conflicts in caches, and sharedmemory design
in the presence of a shared communication channel. The
motivation for these analyses was to find designs which
would perform reasonably well on as-yet-unknown work-
loads, including those to be designed by competitors who
may have chosen alternative designs which favor certain
cases. While it is probably unrealistic to assume that pre-
cisely the least-desirable workloads will occur in ordinary
practice, it is not unreasonable to assume that extremal
workloads favoring either end of a decision will occur.

History and Further Reading

This technique of finding algorithms with bounded worst-
case performance ratios is common in analyzing approx-
imation algorithms. The initial proof techniques used for
such analyses (the method of amortized analysis) were first
presented by Sleator and Tarjan.

The reader is advised to consult the remainder of this
volume for further extensions and applications of the prin-
ciples of competitive on-line algorithms.

Cross References

� Algorithm DC-Tree for k Servers on Trees
�Metrical Task Systems
� Online List Update
� Online Paging and Caching
� Paging
�Work-Function Algorithm for k Servers

Recommended Reading

1. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Compet-
itive Snoopy Caching. Algorithmica 3, 77–119 (1988) (Confer-
ence version: FOCS 1986, pp. 244–254)

2. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Compet-
itive Randomized Algorithms for Nonuniform Problems. Algo-
rithmica11(6), 542–571 (1994) (Conference version: SODA 1990,
pp. 301–309)

3. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized Competi-
tive Algorithms for the List Update Problem. Algorithmica 11(1),
15–32 (1994) (Conference version included author Irani, S.:
SODA 1991, pp. 251–260)

http://www.acm.org/turing/sigmod/dblp/db/indices/a-tree/k/Karlin:Anna_R=.html
http://www.acm.org/turing/sigmod/dblp/db/indices/a-tree/m/Manasse:Mark_S=.html
http://www.acm.org/turing/sigmod/dblp/db/indices/a-tree/o/Owicki:Susan_S=.html

852 S Slicing Floorplan Orientation

Slicing Floorplan Orientation
1983; Stockmeyer

EVANGELINE F. Y. YOUNG
Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Hong Kong, China

Keywords and Synonyms

Shape curve computation

ProblemDefinition

This problem is about finding the optimal orientations
of the cells in a slicing floorplan to minimize the total
area. In a floorplan, cells represent basic pieces of the cir-
cuit which are regarded as indivisible. After performing an
initial placement, for example, by repeated application of
a min-cut partitioning algorithm, the relative positions be-
tween the cells on a chip are fixed. Various optimization
can then be done on this initial layout to optimize differ-
ent cost measures such as chip area, interconnect length,
routability, etc. One such optimization, as mentioned in
Lauther [3], Otten [4], and Zibert and Saal [13], is to deter-
mine the best orientation of each cell to minimize the total
chip area. This work by Stockmeyer [8] gives a polynomial
time algorithm to solve the problem optimally in a spe-
cial type of floorplans called slicing floorplans and shows
that this orientation optimization problem in general non-
slicing floorplans is NP-complete.

Slicing Floorplan

A floorplan consists of an enclosing rectangle subdivided
by horizontal and vertical line segments into a set of non-
overlapping basic rectangles. Two different line segments
can meet but not cross. A floorplan F is characterized by
a pair of planar acyclic directed graphs AF and LF defined
as follows. Each graph has one source and one sink. The
graph AF captures the “above” relationships and has a ver-

Slicing Floorplan Orientation, Figure 1
A floorplan F and its AF and LF representing the above and left relationships

tex for each horizontal line segment, including the top and
the bottom of the enclosing rectangle. For each basic rect-
angle R, there is an edge eR directed from segment � to
segment � 0 if and only if � (or part of �) is the top of R
and � 0 (or part of � 0) is the bottom of R. There is a one-
to-one correspondence between the basic rectangles and
the edges in AF . The graph LF is defined similarly for the
“left” relationships of the vertical segments. An example is
shown in Fig. 1. Two floorplans F and G are equivalent if
and only if AF = AG and LF = LG . A floorplan F is slicing
if and only if both its AF and LF are series parallel.

Slicing Tree

A slicing floorplan can also be described naturally by
a rooted binary tree called slicing tree. In a slicing tree, each
internal node is labeled by either an h or a v, indicating
a horizontal or a vertical slice respectively. Each leaf corre-
sponds to a basic rectangle. An example is shown in Fig. 2.
There can be several slicing trees describing the same slic-
ing floorplan but this redundancy can be removed by re-
quiring the label of an internal node to differ from that
of its right child [12]. For the algorithm presented in this
work, a tree of smallest depth should be chosen and this
depth minimization process can be done in O(n log n)
time using the algorithm by Golumbic [2].

Slicing Floorplan Orientation, Figure 2
A slicing floorplan F and its slicing tree representation

Slicing Floorplan Orientation S 853

Orientation Optimization

In optimization of a floorplan layout, some freedom in
moving the line segments and in choosing the dimensions
of the rectangles are allowed. In the input, each basic rect-
angle R has two positive integers aR and bR, representing
the dimensions of the cell that will be fit into R. Each cell
has two possible orientations resulting in either the side of
length aR or bR being horizontal. Given a floorplan F and
an orientation �, each edge e in AF and LF is given a label
l(e) representing the height or the width of the cell cor-
responding to e depending on its orientation. Define an
(F, �)-placement to be a labeling l of the vertices in AF and
LF such that (i) the sources are labeled by zero, and (ii) if
e is an edge from vertex � to � 0; l(� 0) � l(�) + l(e). In-
tuitively, if � is a horizontal segment, l(�) is the distance
of � from the top of the enclosing rectangle and the in-
equality constraint ensures that the basic rectangle corre-
sponding to e is tall enough for the cell contained in it,
and similarly for the vertical segments. Now, hF(�) (resp.
wF(�)) is defined to be the minimum label of the sink
in AF(�) (resp. LF(�)) over all (F,�)-placements, where
AF(�) (resp. LF(�)) is obtained fromAF (resp. LF) by label-
ing the edges and vertices as described above. Intuitively,
hF(�) and wF(�) give the minimum height and width of
a floorplan F given an orientation � of all the cells such
that each cell fits well into its associated basic rectangle.
The orientation optimization problem can be defined for-
mally as follows:

Problem 1 (Orientation Optimization Problem for Slic-
ing Floorplan) INPUT: A slicing floorplan F of n cells de-
scribed by a slicing tree T, the widths and heights of the cells
ai and bi for i = 1 : : : n and a cost function (h;w).
OUTPUT: An orientation � of all the cells that minimizes
the objective function (hF (�);wF (�)) over all orienta-
tions �.

For this problem, Lauther [3] has suggested a greedy
heuristic. Zibert and Saal [13] use integer programming
methods to do rotation optimization and several other op-
timization simultaneously for general floorplans. In the
following sections, an efficient algorithm will be given to
solve the problem optimally in O(nd) time where n is the
number of cells and d is the depth of the given slicing tree.

Key Results

In the following algorithm, F(u) denotes the floorplan de-
scribed by the subtree rooted at u in the given slicing tree
T and let L(u) be the set of leaves in that subtree. For each
node u of T, the algorithm constructs recursively a list of

pairs:

f(h1;w1); (h2;w2); : : : ; (hm ;wm)g

where (1) m � jL(u)j + 1, (2) hi > hi+1 and wi < wi+1
for i = 1 : : :m � 1, (3) there is an orientation � of the
cells in L(u) such that (hi ;wi) = (hF(u)(�);wF(u)(�)) for
each i = 1 : : :m, and (4) for each orientation � of the
cells in L(u), there is a pair (hi ;wi) in the list such that
hi � hF(u)(�) and wi � wF(u)(�).

L(u) is thus a non-redundant list of all possible dimen-
sions of the floorplan described by the subtree rooted at
u. Since the cost function is non-decreasing, it can be
minimized over all orientations by finding the minimum
 (hi,wi) over all the pairs (hi,wi) in the list constructed at
the root of T. At the beginning, a list is constructed at each
leaf node of T representing the possible dimensions of the
cell. If a leaf cell has dimensions a and bwith a > b, the list
is f(a; b); (b; a)g. If a = b, there will just be one pair (a, b)
in the list. (If the cell has a fixed orientation, there will also
be just one pair as defined by the fixed orientation.) Notice
that the condition (1) above is satisfied in these leaf node
lists. The algorithm then works its way up the tree and
constructs the list at each node recursively. In general, as-
sume that u is an internal node with children v and v0 and
u represents a vertical slice. Let f(h1;w1) : : : (hk ;wk)g and
f(h01;w

0
1) : : : (h

0
m ;w0m)g be the lists at v and v0 respectively

where k � jL(v)j + 1 and m � jL(v0)j + 1. A pair (hi,wi)
from v can be put together by a vertical slice with a pair
(h0j ;w

0
j) from v0 to give a pair:

join((hi ;wi); (h0j ;w
0
j)) = (max(hi ; h0j);wi + w0j)

in the list of u (see Fig. 3). The key fact is that most of
the km pairs are sub-optimal and do not need to be con-
sidered. For example, if hi > h0j , there is no need to join

Slicing Floorplan Orientation, Figure 3
An illustration of the merging step

854 S Slicing Floorplan Orientation

(hi ;wi) with (h0z ;w0z) for any z > j since

max(hi ; h0z) = max(hi ; h0j) = hi ;

wi + w0z > wi + w0j

Similarly, if node u represents a horizontal slice, the join
operation will be:

join((hi ;wi); (h0j ;w
0
j)) = (hi + h0j;max(wi ;w0j))

The algorithm also keeps two pointers for each element in
the lists in order to construct back the optimal orientation
at the end. The algorithm is summarized by the following
pseudocode:

Pseudocode Stockmeyer()
1. Initialize the list at each leaf node.
2. Traverse the tree in postorder. At each internal node

u with children v and v0, construct a list at node u as
follows:

3. Let f(h1;w1) : : : (hk ;wk)g and f(h01;w
0
1) : : :

(h0m ;w0m)g be the lists at v and v0 respectively.
4. Initialize i and j to one.
5. If i > k or j > m, the whole list at u is constructed.
6. Add join((hi ;wi); (h0j ;w

0
j)) to the list with point-

ers pointing to (hi ;wi) and (h0j;w
0
j) in L(v) and

L(v0) respectively.
7. If hi > h0j , increment i by 1.
8. If hi < h0j , increment j by 1.
9. If hi = h0j , increment both i and j by 1.
10. Go to step 5.
11. Compute (hi,wi) for each pair (hi,wi) in the list Lr

at the root r of T.
12. Return the minimum (hi,wi) for all (hi,wi) in Lr and

construct back the optimal orientation by following
the pointers.

Correctness

The algorithm is correct since at each node u, a list is con-
structed that records all the possible non-redundant di-
mensions of the floorplan described by the subtree rooted
at u. This can be proved easily by induction starting from
the leaf nodes and working up the tree recursively. Since
the cost function is non-decreasing, it can be minimized
over all orientations of the cells by finding the minimum
 (hi,wi) over all the pairs (hi,wi) in the list Lr constructed
at the root r of T.

Runtime

At each internal node u with children v and v0. If the
lengths of the lists at v and v0 are k and m respectively,

the time spent at u to combine the two lists is O(k + m).
Each possible dimension of a cell will thus invoke one
unit of execution time at each node on its path up to the
root in the post-order traversal. The total runtime is thus
O(d � N) whereN is the total number of realizations of all
the n cells, which is equal to 2n in the orientation optimiza-
tion problem. Therefore, the runtime of this algorithm is
O(nd).

Theorem 1 Let (h, w) be non-decreasing in both ar-
guments, i. e., if h � h0 and w � w0; (h;w) � (h0;w0),
and computable in constant time. For a slicing floorplan F
described by a binary slicing tree T, the problem of minimiz-
ing (hF (�);wF (�)) over all orientations � can be solved
in time O(nd) time, where n is the number of leaves of T
(equivalently, the number of cells of F) and d is the depth
of T.

Applications

Floorplan design is an important step in the physical de-
sign of VLSI circuits. Stockmeyer’s optimal orientation al-
gorithm [8] has been generalized to solve the area min-
imization problem in slicing floorplans [7], in hierarchi-
cal non-slicing floorplans of order five [6,9] and in general
floorplans [5]. The floorplan area minimization problem
is similar except that each soft cell now has a number of
possible realizations, instead of just two different orienta-
tions. The same technique can be applied immediately to
solve optimally the area minimization problem for slicing
floorplans inO(nd) time where n is the total number of re-
alizations of all the cells in a given floorplan F and d is the
depth of the slicing tree of F. Shi [7] has further improved
this result to O(n log n) time. This is done by storing the
list of non-redundant pairs at each node in a balanced bi-
nary search tree structure called realization tree and using
a newmerging algorithm to combine two such trees to cre-
ate a new one. It is also proved in [7] that this O(n log n)
time complexity is the lower bound for this areaminimiza-
tion problem in slicing floorplans.

For hierarchical non-slicing floorplans, Pan et al. [6]
prove that the problem is NP-complete. Branch-and-
bound algorithms are developed by Wang and Wong [9],
and pseudopolynomial time algorithms are developed by
Wang and Wong [10], and Pan et al. [6]. For general
floorplans, Stockmeyer [8] has shown that the problem
is strongly NP-complete. It is therefore unlikely to have
any pseudopolynomial time algorithm. Wimer et al. [11],
and Chong and Sahni [1] propose branch-and-bound al-
gorithms. Pan et al. [5] develop algorithms for general
floorplans that are approximately slicing.

Snapshots in Shared Memory S 855

Recommended Reading
1. Chong, K., Sahni, S.: Optimal Realizations of Floorplans. In: IEEE

Trans. Comput. Aided Des. 12(6), 793–901 (1993)
2. Golumbic, M.C.: Combinatorial Merging. IEEE Trans. Comput.

C-25, 1164–1167 (1976)
3. Lauther, U.: A Min-Cut Placement Algorithm for General Cell

Assemblies Based on a Graph Representation. J. Digital Syst. 4,
21–34 (1980)

4. Otten, R.H.J.M.: Automatic FloorplanDesign. In: Proceedings of
the 19th Design Automation Conference, pp. 261–267 (1982)

5. Pan, P., Liu, C.L.: Area Minimization for Floorplans. In: IEEE
Trans. Comput. Aided Des. 14(1), 123–132 (1995)

6. Pan, P., Shi, W., Liu, C.L.: Area Minimization for Hierarchical
Floorplans. In: Algorithmica 15(6), 550–571 (1996)

7. Shi, W.: A Fast Algorithm for AreaMinimization of Slicing Floor-
plan. In: IEEE Trans. Comput. Aided Des. 15(12), 1525–1532
(1996)

8. Stockmeyer, L.: Optimal Orientations of Cells in Slicing Floor-
plan Designs. Inf. Control 59, 91–101 (1983)

9. Wang, T.C., Wong, D.F.: Optimal Floorplan Area Optimization.
In: IEEE Trans. Comput. Aided Des. 11(8), 992–1002 (1992)

10. Wang, T.C., Wong, D.F.: A Note on the Complexity of Stock-
meyer’s Floorplan Optimization Technique. In: Algorithmic As-
pects of VLSI Layout, Lecture Notes Series on Computing,
vol. 2, pp. 309–320 (1993)

11. Wimer, S., Koren, I., Cederbaum, I.: Optimal Aspect Ratios of
Building Blocks in VLSI. IEEE Trans. Comput. Aided Des. 8(2),
139–145 (1989)

12. Wong, D.F., Liu, C.L.: A New Algorithm for Floorplan Design.
Proceedings of the 23rd ACM/IEEEDesign Automation Confer-
ence, pp. 101–107 (1986)

13. Zibert, K., Saal, R.: On Computer Aided Hybrid Circuit Layout.
Proceedings of the IEEE Intl. Symp. on Circuits and Systems,
pp. 314–318 (1974)

Snapshots in SharedMemory
1993; Afek, Attiya, Dolev, Gafni, Merritt, Shavit

ERIC RUPPERT
Department of Computer Science and Engineering,
York University, Toronto, ON, Canada

Keywords and Synonyms

Atomic scan

ProblemDefinition

Implementing a snapshot object is an abstraction of the
problem of obtaining a consistent view of several shared
variables while other processes are concurrently updating
those variables.

In an asynchronous shared-memory distributed sys-
tem, a collection of n processes communicate by accessing
shared data structures, called objects. The system provides

basic types of shared objects; other needed types must be
built from them. One approach uses locks to guarantee ex-
clusive access to the basic objects, but this approach is not
fault-tolerant, risks deadlock or livelock, and causes delays
when a process holding a lock runs slowly. Lock-free algo-
rithms avoid these problems but introduce new challenges.
For example, if a process reads two shared objects, the val-
ues it reads may not be consistent if the objects were up-
dated between the two reads.

A snapshot object stores a vector ofm values, each from
some domain D. It provides two operations: scan and up-
date(i, v), where 1 � i � m and v 2 D. If the operations
are invoked sequentially, an update(i, v) operation changes
the value of the ith component of the stored vector to v,
and a scan operation returns the stored vector.

Correctness when snapshot operations by different
processes overlap in time is described by the linearizability
condition, which says operations should appear to occur
instantaneously. More formally, for every execution, one
can choose an instant of time for each operation (called its
linearization point) between the invocation and the com-
pletion of the operation. (An incomplete operation may
either be assigned no linearization point or given a lin-
earization point at any time after its invocation.) The re-
sponses returned by all completed operations in the ex-
ecution must return the same result as they would if all
operations were executed sequentially in the order of their
linearization points.

An implementation must also satisfy a progress prop-
erty. Wait-freedom requires that each process completes
each scan or update in a finite number of its own steps.
The weaker non-blocking progress condition says the sys-
tem cannot run forever without some operation complet-
ing.

This article describes implementations of snapshots
from more basic types, which are also linearizable, with-
out locks. Two types of snapshots have been studied. In
a single-writer snapshot, each component is owned by
a process, and only that process may update it. (Thus, for
single-writer snapshots, m = n.) In a multi-writer snap-
shot, any process may update any component. There also
exist algorithms for single-scanner snapshots, where only
one process may scan at a time [10,13,14,16]. Snapshots
were introduced by Afek et al. [1], Anderson [2] and Asp-
nes and Herlihy [4].

Space complexity is measured by the number of ba-
sic objects used and their size (in bits). Time complexity
is measured by the maximum number of steps a process
must do to finish a scan or update, where a step is an ac-
cess to a basic shared object. (Local computation and lo-
cal memory accesses are usually not counted.) Complexity

856 S Snapshots in Shared Memory

bounds will be stated in terms of n;m; d = log jDj and k,
the number of operations invoked in an execution. Ordi-
narily, there is no bound on k.

Most of the algorithms below use read-write registers,
the most elementary shared object type. A single-writer
register may only be written by one process. A multi-
writer register may be written by any process. Some algo-
rithms using stronger types of basic objects are discussed
in Sect. “Wait-Free Implementations from Small, Stronger
Objects”.

Key Results

A Simple Non-blocking Implementation
from Small Registers

Suppose each component of a single-writer snapshot ob-
ject is represented by a single-writer register. Process i
does an update(i, v) by writing v and a sequence num-
ber into register i, and incrementing its sequence num-
ber. Performing a scan operation is more difficult than
merely reading each of them registers, since some registers
might change while these reads are done. To scan, a pro-
cess repeatedly reads all the registers. A sequence of reads
of all the registers is called a collect. If two collects return
the same vector, the scan returns that vector (with the se-
quence numbers stripped away). The sequence numbers
ensure that, if the same value is read in a register twice,
the register had that value during the entire interval be-
tween the two reads. The scan can be assigned a lineariza-
tion point between the two identical collects, and updates
are linearized at the write. This algorithm is non-blocking,
since a scan continues running only if at least one update
operation is completed during each collect. A similar algo-
rithm, with process identifiers appended to the sequence
numbers, implements a non-blocking multi-writer snap-
shot from mmulti-writer registers.

Wait-Free Implementations from Large Registers

Afek et al. [1] described how to modify the non-blocking
single-writer snapshot algorithm tomake it wait-free using
scans embedded within the updates. An update(i, v) first
does a scan and then writes a triple containing the scan’s
result, v and a sequence number into register i. While
a process P is repeatedly performing collects to do a scan,
either two collects return the same vector (which P can re-
turn) or P will eventually have seen three different triples
in the register of some other process. In the latter case, the
third triple that P saw must contain a vector that is the re-
sult of a scan that started after P’s scan, so P’s scan outputs
that vector. Updates and scans that terminate after seeing

two identical collects are assigned linearization points as
before. If one scan obtains its output from an embedded
scan, the two scans are given the same linearization point.
This is a wait-free single-writer snapshot implementation
from n single-writer registers of (n + 1)d + log k bits each.
Operations complete withinO(n2) steps. Afek et al. [1] also
describe how to replace the unbounded sequence numbers
with handshaking bits. This requires n	(nd)-bit registers
and n2 1-bit registers. Operations still complete in O(n2)
steps.

The same idea can be used to build multi-writer snap-
shots from multi-writer registers. Using unbounded se-
quence numbers yields a wait-free algorithm that uses
m registers storing 	(nd + log k) bits each, in which each
operation completes within O(mn) steps. (This algorithm
is given explicitly in [9].) No algorithm can use fewer than
m registers if n � m [9]. If handshaking bits are used in-
stead, the multi-writer snapshot algorithm uses n2 1-bit
registers, m(d + log n)-bit registers and n (md)-bit regis-
ters, and each operation uses O(nm + n2) steps [1].

Guerraoui and Ruppert [12] gave a similar wait-free
multi-writer snapshot implementation that is anonymous,
i. e., it does not use process identifiers and all processes are
programmed identically.

Anderson [3] gave an implementation of a multi-
writer snapshot from a single-writer snapshot. Each pro-
cess stores its latest update to each component of the
multi-writer snapshot in the single-writer snapshot, with
associated timestamp information computed by scanning
the single-writer snapshot. A scan is done using just one
scan of the single-writer snapshot. An update requires
scanning and updating the single-writer snapshot twice.
The implementation involves some blow-up in the size of
the components, i. e., to implement a multi-writer snap-
shot with domain D requires a single-writer snapshot
with a much larger domain D0. If the goal is to imple-
ment multi-writer snapshots from single-writer registers
(rather than multi-writer registers), Anderson’s construc-
tion gives a more efficient solution than that of Afek
et al.

Attiya, Herlihy and Rachman [7] defined the lattice
agreement object, which is very closely linked to the prob-
lem of implementing a single-writer snapshot when there
is a known upper bound on k. Then, they showed how
to construct a single-writer snapshot (with no bound on
k) from an infinite sequence of lattice agreement ob-
jects. Each snapshot operation accesses the lattice agree-
ment object twice and does O(n) additional steps. Their
implementations of lattice agreement are discussed in
Sect. “Wait-Free Implementations from Small, Stronger
Objects”.

Snapshots in Shared Memory S 857

Attiya and Rachman [8] used a similar approach to
give a single-writer snapshot implementation from large
single-writer registers using O(n log n) steps per opera-
tion. Each update has an associated sequence number.
A scanner traverses a binary tree of height log k from root
to leaf (here, a bound on k is required). Each node has
an array of n single-writer registers. A process arriving at
a node writes its current vector into a single-writer regis-
ter associated with the node and then gets a new vector by
combining information read from all n registers. It pro-
ceeds to the left or right child depending on the sum of the
sequence numbers in this vector. Thus, all scanners can
be linearized in the order of the leaves they reach. Up-
dates are performed by doing a similar traversal of the
tree. The bound on k can be removed as in [7]. Attiya
and Rachman also give a more direct implementation that
achieves this by recycling the snapshot object that assumes
a bound on k. Their algorithm has also been adapted to
solve condition-based consensus [15].

Attiya, Fouren and Gafni [6] described how to adapt
the algorithm of Attiya and Rachman [8] so that the num-
ber of steps required to perform an operation depends on
the number of processes that actually access the object,
rather than the number of processes in the system.

Attiya and Fouren [5] solve lattice agreement in O(n)
steps. (Here, instead of using the terminology of lattice
agreement, the algorithm is described in terms of imple-
menting a snapshot in which each process does at most
one snapshot operation.) The algorithm uses, as a data
structure, a two-dimensional array of O(n2) reflectors.
A reflector is an object that can be used by two processes
to exchange information. Each reflector is built from two
large single-writer registers. Each process chooses a path
through the array of reflectors, so that at most two pro-
cesses visit each reflector. Each reflector in column i is
used by process i to exchange information with one pro-
cess j < i. If process i reaches the reflector first, process j
learns about i’s update (if any). If process j reaches it first,
then process i learns all the information that j has already
gathered. (If both reach it at about the same time, both
processes learn the information described above.) As the
processes move from column i � 1 to column i, a pro-
cess that enters column i at some row r will have gath-
ered all the information that has been gathered by any pro-
cess that enters column i below row r (and possibly more).
This invariant is maintained by ensuring that if process i
passes information to any process j < i in row r of col-
umn i, it also passes that information to all processes that
entered column i above row r. Furthermore, process i ex-
its column i at a row that matches the amount of informa-
tion it learns while traveling through the column. When

processes have reached the rightmost column of the ar-
ray, the ones in higher rows know strictly more than the
ones in lower rows. Thus, the linearization order of their
scans is the order in which they exit the rightmost column,
from bottom to top. The techniques of Attiya, Herlihy and
Rachman [7,8], mentioned above, can be used to remove
the restriction that each process performs at most one op-
eration. The number of steps per operation is still O(n).

Wait-Free Implementations
from Small, Stronger Objects

All of the wait-free implementations described above use
registers that can store ˝(m) bits each, and are therefore
not practical whenm is large. Some implementations from
smaller objects equipped with stronger synchronization
operations, rather than just reads and writes, are described
in this section. An object is considered to be small if it can
store O(d + log n + log k) bits. This means that it can store
a constant number of component values, process identi-
fiers and sequence numbers.

Attiya, Herlihy and Rachman [7] gave an elegant
divide-and-conquer recursive solution to the lattice agree-
ment problem. The division of processes into groups for
the recursion can be done dynamically using test&set ob-
jects. This provides a snapshot algorithm that runs inO(n)
time per operation, and uses O(kn2 log n) small single-
writer registers and O(kn log2 n) test&set objects. (This
requires modifying their implementation to replace those
registers that are large, which are written only once, by
many small registers.) Using randomization, each test&set
object can be replaced by single-writer registers to give
a snapshot implementation from registers only with O(n)
expected steps per operation.

Jayanti [13] gave a multi-writer snapshot implementa-
tion from O(mn2) small compare&swap objects where up-
dates take O(1) steps and scans take O(m) steps. He began
with a very simple single-scanner, single-writer snapshot
implementation from registers that uses a secondary array
to store a copy of recent updates. A scan clears that array,
collects the main array, and then collects the secondary
array to find any overlooked updates. Several additional
mechanisms are introduced for the general, multi-writer,
multi-scanner snapshot. In particular, compare&swap op-
erations are used instead of writes to coordinate writers
updating the same component and multiple scanners co-
ordinate with one another to simulate a single scanner.
Jayanti’s algorithm builds on an earlier paper by Riany,
Shavit and Touitou [16], which gave an implementation
that achieved similar complexity, but only for a single-
writer snapshot.

858 S Sojourn Time

Applications

Applications of snapshots include distributed databases,
storing checkpoints or backups for error recovery, garbage
collection, deadlock detection, debugging distributed pro-
grammes and obtaining a consistent view of the values
reported by several sensors. Snapshots have been used
as building blocks for distributed solutions to random-
ized consensus and approximate agreement. They are also
helpful as a primitive for building other data structures.
For example, consider implementing a counter that stores
an integer and provides increment, decrement and read
operations. Each process can store the number of incre-
ments it has performed minus the number of its decre-
ments in its own component of a single-writer snapshot
object, and the counter may be read by summing the val-
ues from a scan. See [10] for references on many of the
applications mentioned here.

Open Problems

Some complexity lower bounds are known for implemen-
tations from registers [9], but there remain gaps between
the best known algorithms and the best lower bounds. In
particular, it is not known whether there is an efficient
wait-free implementation of snapshots from small regis-
ters.

Experimental Results

Riany, Shavit and Touitou gave performance evaluation
results for several implementations [16].

Cross References

� Implementing Shared Registers in Asynchronous
Message-Passing Systems

� Linearizability
� Registers

Recommended Reading

See also Fich’s survey paper on the complexity of imple-
menting snapshots [11].

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.:
Atomic snapshots of shared memory. J. Assoc. Comput. Mach.
40, 873–890 (1993)

2. Anderson, J.H.: Composite registers. Distrib. Comput. 6, 141–
154 (1993)

3. Anderson, J.H.: Multi-writer composite registers. Distrib. Com-
put. 7, 175–195 (1994)

4. Aspnes, J., Herlihy, M.: Wait-free data structures in the asyn-
chronous PRAMmodel. In: Proc. 2nd ACM Symposium on Par-
allel Algorithms and Architectures, Crete, July 1990. pp. 340–
349. ACM, New York, 1990

5. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lat-
tice agreement and renaming. SIAM J. Comput. 31, 642–664
(2001)

6. Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm
with applications. Distrib. Comput. 15, 87–96 (2002)

7. Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lat-
tice agreement. Distrib. Comput. 8, 121–132 (1995)

8. Attiya, H., Rachman, O.: Atomic snapshots in O(n log n) opera-
tions. SIAM J. Comput. 27, 319–340 (1998)

9. Ellen, F., Fatourou, P., Ruppert, E.: Time lower bounds for imple-
mentations of multi-writer snapshots. J. Assoc. Comput. Mach.
54(6) article 30 (2007)

10. Fatourou, P., Kallimanis, N.D.: Single-scannermulti-writer snap-
shot implementations are fast! In: Proc. 25th ACM Symposium
on Principles of Distrib. Comput. Colorado, July 2006 pp. 228–
237. ACM, New York (2006)

11. Fich, F.E.: How hard is it to take a snapshot? In: SOFSEM 2005:
Theory and Practice of Computer Science. Liptovský Ján, Jan-
uary 2005, LNCS, vol. 3381, pp. 28–37. Springer (2005)

12. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant
shared-memory computing. Distrib. Comput. 20(3) 165–177
(2007)

13. Jayanti, P.: An optimal multi-writer snapshot algorithm. In:
Proc. 37th ACM Symposium on Theory of Computing. Balti-
more, May 2005, pp. 723–732. ACM, New York (2005)

14. Kirousis, L.M., Spirakis, P., Tsigas, P.: Simple atomic snapshots:
A linear complexity solutionwith unbounded time-stamps. Inf.
Process. Lett. 58, 47–53 (1996)

15. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Roy, M.: Condition-
based consensus solvability: a hierarchy of conditions and effi-
cient protocols. Distrib. Comput. 17, 1–20 (2004)

16. Riany, Y., Shavit, N., Touitou, D.: Towards a practical snapshot
algorithm. Theor. Comput. Sci. 269, 163–201 (2001)

Sojourn Time
�Minimum Flow Time
� Shortest Elapsed Time First Scheduling

Sorting of Multi-Dimensional Keys
� String Sorting

Sorting Signed Permutations
by Reversal (Reversal Distance)
2001; Bader, Moret, Yan

DAVID A. BADER
College of Computing, Georgia Institute of Technology,
Atlanta, GA, USA

Sorting Signed Permutations by Reversal (Reversal Distance) S 859

Keywords and Synonyms

Sorting by reversals; Inversion distance; Reversal dis-
tance

ProblemDefinition

This entry describes algorithms for finding the minimum
number of steps needed to sort a signed permutation (also
known as: inversion distance, reversal distance). This is
a real-world problem and for example is used in compu-
tational biology.

Inversion distance is a difficult computational prob-
lem that has been studied intensively in recent years [1,4,
6,7,8,9,10]. Finding the inversion distance between un-
signed permutations is NP-hard [7], but with signed ones,
it can be done in linear time [1].

Key Results

Bader et al. [1] present the first worst-case linear-time al-
gorithm for computing the reversal distance that is simple
and practical and runs faster than previous methods. Their
key innovation is a new technique to compute connected
components of the overlap graph using only a stack, which
results in the simple linear-time algorithm for computing
the inversion distance between two signed permutations.
Bader et al. provide ample experimental evidence that their
linear-time algorithm is efficient in practice as well as in
theory: they coded it as well as the algorithm of Berman
and Hannenhalli, using the best principles of algorithm
engineering to ensure that both implementationswould be
as efficient as possible, and compared their running times
on a large range of instances generated through simulated
evolution.

Bafna and Pevzner introduced the cycle graph of a per-
mutation [3], thereby providing the basic data structure
for inversion distance computations. Hannenhalli and
Pevzner then developed the basic theory for expressing the
inversion distance in easily computable terms (number of
breakpoints minus number of cycles plus number of hur-
dles plus a correction factor for a fortress [3,15]—hurdles
and fortresses are easily detectable from a connected com-
ponent analysis). They also gave the first polynomial-time
algorithm for sorting signed permutations by reversals [9];
they also proposed a O(n4) implementation of their al-
gorithm which runs in quadratic time when restricted to
distance computation. Their algorithm requires the com-
putation of the connected components of the overlap
graph, which is the bottleneck for the distance computa-
tion. Berman and Hannenhalli later exploited some com-
binatorial properties of the cycle graph to give a O(n˛(n))

algorithm to compute the connected components, lead-
ing to a O(n2˛(n)) implementation of the sorting algo-
rithm [6], where ˛ is the inverse Ackerman function.
(The later Kaplan–Shamir–Tarjan (KST) algorithm [10]
reduces the time needed to compute the shortest sequence
of inversions, but uses the same algorithm for computing
the length of that sequence.)

No algorithm that actually builds the overlap graph
can run in linear time, since that graph can be of quadratic
size. Thus, Bader’s key innovation is to construct an over-
lap forest such that two vertices belong to the same tree
in the forest exactly when they belong to the same con-
nected component in the overlap graph. An overlap forest
(the composition of its trees is unique, but their structure
is arbitrary) has exactly one tree per connected component
of the overlap graph and is thus of linear size. The linear-
time step for computing the connected components scans
the permutation twice. The first scan sets up a trivial forest
in which each node is its own tree, labeled with the be-
ginning of its cycle. The second scan carries out an iter-
ative refinement of this first forest, by adding edges and
so merging trees in the forest; unlike a Union-Find, how-
ever, this algorithm does not attempt to maintain the trees
within certain shape parameters. This step is the key to
Bader’s linear-time algorithm for computing the reversal
distance between signed permutations.

Applications

Some organisms have a single chromosome or contain
single-chromosome organelles (such as mitochondria or
chloroplasts), the evolution of which is largely indepen-
dent of the evolution of the nuclear genome. Given a par-
ticular strand from a single chromosome, whether lin-
ear or circular, we can infer the ordering and direction-
ality of the genes, thus representing each chromosome by
an ordering of oriented genes. In many cases, the evolu-
tionary process that operates on such single-chromosome
organisms consists mostly of inversions of portions of
the chromosome; this finding has led many biologists to
reconstruct phylogenies based on gene orders, using as
a measure of evolutionary distance between two genomes
the inversion distance, i. e., the smallest number of inver-
sions needed to transform one signed permutation into the
other [11,12,14].

The linear-time algorithm is in wide-use (as it has been
cited nearly 200 times within the first several years of its
publication). Examples include the handling multichro-
mosomal genome rearrangements [16], genome compari-
son [5], parsing RNA secondary structure [13], and phylo-
genetic study of the HIV-1 virus [2].

860 S Sorting Signed Permutations by Reversal (Reversal Sequence)

Open Problems

Efficient algorithms for computing minimum distances
with weighted inversions, transpositions, and inverted
transpositions, are open.

Experimental Results

Bader et al. give experimental results in [1].

URL to Code

An implementation of the linear-time algorithm is avail-
able asC code fromwww.cc.gatech.edu/~bader. Two other
dominated implementations are available that are de-
signed to compute the shortest sequence of inversions as
well as its length; one, due to Hannenhalli that implements
his first algorithm [9], which runs in quadratic time when
computing distances, while the other, a Java applet writ-
ten by Mantin (http://www.math.tau.ac.il/~rshamir/GR/)
implements the KST algorithm [10], but uses an explicit
representation of the overlap graph and thus also takes
quadratic time. The implementation due to Hannenhalli
is very slow and implements the original method of Han-
nenhalli and Pevzner and not the faster one of Berman and
Hannenhalli. The KST applet is very slow as well since it
explicitly constructs the overlap graph.

Cross References

For finding the actual sorting sequence, see the entry:
� Sorting Signed Permutations by Reversal (Reversal

Sequence)

Recommended Reading
1. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for

computing inversion distance between signed permutations
with an experimental study. J. Comput. Biol. 8(5), 483–491
(2001) An earlier version of this work appeared In: the Proc.
7th Int‘l Workshop on Algorithms and Data Structures (WADS
2001)

2. Badimo, A., Bergheim, A., Hazelhurst, S., Papathanasopolous,
M., Morris, L.: The stability of phylogenetic tree construction of
the HIV-1 virus using genome-ordering data versus env gene
data. In: Proc. ACM Ann. Research Conf. of the South African
institute of computer scientists and information technologists
on enablement through technology (SAICSIT 2003), vol. 47,
pp. 231–240, Fourways, ACM, South Africa, September 2003

3. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting
by reversals. In: Proc. 34th Ann. IEEE Symp. Foundations of
Computer Science (FOCS93), pp. 148–157. IEEE Press (1993)

4. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting
by reversals. SIAM J. Comput. 25, 272–289 (1996)

5. Bergeron, A., Stoye, J.: On the similarity of sets of permutations
and its applications to genome comparison. J. Comput. Biol.
13(7), 1340–1354 (2006)

6. Berman, P., Hannenhalli, S.: Fast sorting by reversal. In:
Hirschberg, D.S., Myers, E.W. (eds.) Proc. 7th Ann. Symp. Combi-
natorial PatternMatching (CPM96). LectureNotes in Computer
Science, vol. 1075, pp. 168–185. Laguna Beach, CA, June 1996.
Springer (1996)

7. Caprara, A.: Sorting by reversals is difficult. In: Proc. 1st Conf.
Computational Molecular Biology (RECOMB97), pp. 75–83.
ACM, Santa Fe, NM (1997)

8. Caprara, A.: Sorting permutations by reversals and Eulerian cy-
cle decompositions. SIAM J. Discret. Math. 12(1), 91–110 (1999)

9. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into
turnip (polynomial algorithm for sorting signed permutations
by reversals). In: Proc. 27th Ann. Symp. Theory of Computing
(STOC95), pp. 178–189. ACM, Las Vegas, NV (1995)

10. Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler al-
gorithm for sorting signed permutations by reversals. SIAM
J. Comput. 29(3), 880–892 (1999) First appeared In: Proc.8th
Ann. Symp. Discrete Algorithms (SODA97), pp. 344–351. ACM
Press, New Orleans, LA

11. Olmstead, R.G., Palmer, J.D.: Chloroplast DNA systematics: a re-
view of methods and data analysis. Am. J. Bot. 81, 1205–1224
(1994)

12. Palmer, J.D.: Chloroplast andmitochondrial genome evolution
in land plants. In: Herrmann, R. (ed.) Cell Organelles, pp. 99–
133. Springer, Vienna (1992)

13. Rastegari, B., Condon, A.: Linear time algorithm for parsing RNA
secondary structure. In: Casadio, R., Myers, E.: (eds.) Proc. 5th
Workshop Algs. in Bioinformatics (WABI‘05). Lecture Notes in
Computer Science, vol. 3692, pp. 341–352. Springer, Mallorca,
Spain (2005)

14. Raubeson, L.A., Jansen, R.K.: Chloroplast DNA evidence on the
ancient evolutionary split in vascular land plants. Science 255,
1697–1699 (1992)

15. Setubal, J.C., Meidanis, J.: Introduction to Computational
Molecular Biology. PWS, Boston, MA (1997)

16. Tesler, G.: Efficient algorithms for multichromosomal genome
rearrangements. J. Comput. Syst. Sci. 63(5), 587–609 (2002)

Sorting Signed Permutations
by Reversal (Reversal Sequence)
2004; Tannier, Sagot

ERIC TANNIER
NRIA Rhone-Alpes, University of Lyon, Lyon, France

Keywords and Synonyms

Sorting by inversions

ProblemDefinition

A signed permutation
 of size n is a permutation over
f�n; : : : ;�1; 1 : : : ng, where
�i = �
i for all i.

The reversal � = �i; j (1 � i � j � n) is an operation
that reverses the order and flips the signs of the elements

http://www.cc.gatech.edu/�egingroup uppercase {count@ 160}
elax
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup bader
http://www.math.tau.ac.il/~rshamir/GR/

Sorting Signed Permutations by Reversal (Reversal Sequence) S 861

i ; : : : ;
 j in a permutation
 :

 � � = (
1; : : : ;
i�1;�
 j; : : : ;�
i ;
 j+1; : : : ;
n) :

If �1; : : : ; �k is a sequence of reversals, it is said
to sort a permutation
 if
 � �1 � � � �k = Id, where
Id = (1; : : : ; n) is the identity permutation. The length of
a shortest sequence of reversals sorting
 is called the re-
versal distance of
 , and is denoted by d(
).

If the computation of d(
) is solved in linear time [2]
(see the entry “reversal distance”), the computation of a se-
quence of size d(
) that sorts
 is more complicated and
no linear algorithm is known so far. The best complex-
ity is currently achieved by the solution of Tannier and
Sagot [17], which has later been improved papers by Tan-
nier, Bergeron and Sagot [18] and Han [8].

Key Results

Recall there is a linear algorithm to compute the reversal
distance thanks to the formula d(
) = n + 1 � c(
) + t(
)
(notation from [4]), where c(
) is the number of cycles
in the breakpoint graph, and t(
) is computed from the
unoriented components of the permutation (see the entry
“reversal distance”). Once this is known, there is a trivial
algorithm that computes a sequence of size d(
): try ev-
ery possible reversal � at one step, until you find one such
that d(
 � �) = d(
) � 1. Such a reversal is called safe. This
necessitates O(n) computations for every possible reversal
(they are at most (n + 1)(n + 2)/2 = O(n2)), and iterating
this to find a sequence yields an O(n4) algorithm.

The first polynomial algorithm by Hannenhalli and
Pevzner [9] was not achieving a better complexity and the
algorithmic study of finding shortest sequences of rever-
sals began its history.

The Scenario of Reversals

All the published solutions for the computations of a sort-
ing sequence are divided into two, following the division
of the distance formula into two parameters: a first part
computes a sequence of reversals so that the resulting per-
mutation has no unoriented component, and a second part
sorts all oriented components.

The first part was given its best solution by Kaplan,
Shamir and Tarjan [10], whose algorithm runs in lin-
ear time when coupled with the linear distance computa-
tion [2], and it is based on Hannenhalli and Pevzner’s [9]
early results.

The second part is the bottleneck of the whole proce-
dure. At this point, if there is no unoriented component,
the distance is d(
) = n + 1 � c(
), so a safe reversal is

one that increases c(
) and do not create unoriented com-
ponents (that would increase t(
)).

A reversal that increases c(
) is called oriented. Find-
ing an oriented reversal is an easy part: any two consecu-
tive numbers that have different signs in the permutation
define one. The hard part is to make sure it does not in-
crease the number of unoriented components.

The quadratic algorithms designed on one side by
Berman and Hannenhalli [5] and on the other by Kaplan,
Shamir and Tarjan [10] are based on the linear recognition
of safe reversals. No better algorithm is known so far to
recognize safe reversals, and it seemed that a lower bound
had been reached, as witnessed by a survey of Ozery-Flato
and Shamir [14] in which they wrote that “a central ques-
tion in the study of genome rearrangements is whether one
can obtain a subquadratic algorithm for sorting by rever-
sals”. This was obtained by Tannier and Sagot [17], who
proved that the recognition of safe reversal at each step is
not necessary, but only the recognition of oriented rever-
sals.

The algorithm is based on the following theo-
rem, taken from [18]. A sequence of oriented reversals
�1; : : : ; �k is said to be maximal if there is no oriented re-
versal in
 � �1 � � � �k . In particular a sorting sequence is
maximal, but the converse is not true.

Theorem 1 If S is a maximal but not a sorting sequence
of oriented reversals for a permutation, then there exists
a nonempty sequence S0 of oriented reversals such that S
may be split into two parts S = S1; S2, and S1; S0; S2 is a se-
quence of oriented reversal.

This allows to construct sequences of oriented reversals in-
stead of safe reversals, and increase their size by adding
reversals inside the sequence instead of at the end, and ob-
tain a sorting sequence.

This algorithm, with a classical data structure to rep-
resent permutations (as an array for example) has still an
O(n2) complexity, because at each step it has to test the
presence of an oriented reversal, and apply it to the per-
mutation.

The slight modification of a data structure invented by
Kaplan and Verbin [11] allows to pick and apply an ori-
ented reversal in O(

p
n log n), and using this, Tannier and

Sagot’s algorithm achieves O(n3/2
p
log n) time complex-

ity.
Recently, Han [8] announced another data structure

that allows to pick and apply an oriented reversal in
O(
p
n) time, and a similar slight modification can prob-

ably decrease the complexity of the overall method to
O(n3/2).

862 S Sorting Signed Permutations by Reversal (Reversal Sequence)

The Space of all Optimal Solutions

Almost all the studies on sorting sequences of reversals
were devoted to giving only one sequence, though it has
been remarked that there are often plenty of them (it may
be over several millions even for n � 10). A few studies
have tried to fill this deficiency.

An algorithm to enumerate all safe reversals at one
step has been designed and implemented by Siepel [16].
A structure of the space of optimal solutions has been dis-
covered by Chauve et al. [3], and the algorithmics related
to this structure are studied in [6].

Applications

The motivation as well as the main application of this
problem is in computational biology. Signed permutations
are an adequate object to model the relative position and
orientation of homologous blocks of DNA in two species.
A generalization of this problem to multichromosomal
models has been solved by and applied in mammalian
genomes [15] to argue for a model of evolution where re-
versals do not occur randomly.

Ajana et al. [1] used a random exploration in the space
of solutions to test the hypothesis that in bacteria, reversals
occur mainly around an origin or terminus of replication.

Generalizations to the comparison of more than two
genomes has been the subject of an abundant literature,
and applied to reconstruct evolutionary events and the or-
ganization of the genomes of common ancestors of living
species, or to infer gene orthology from their positions,
and they are based on heuristic principles guided by the
theory of sorting signed permutations by reversals [12,13].

Open Problems

� Finding a better complexity than O(n3/2). It could be
achieved by a smarter data structure, or changing the
principle of the algorithm, so that there is no need to
apply at each step a sorting reversal to be able to com-
pute the next ones.

� The efficient representation and enumeration of the
whole set of solutions (see some advances in [3,6]).

� Finding, among the solutions, the ones that fit some
biological constraints, as preserving some common
groups of genes or favoring small inversions (see some
advances in [7]).

Experimental Results

The algorithm of Tannier, Bergeron and Sagot [18] has
been implemented in its quadratic version (without any
special data structure, which are probably worth only for

very big sizes of permutations) by Diekmann (biomserv.
univ-lyon1.fr/~tannier/PSbR/), but no implementation of
the data structures nor experiments on the complexity are
reported.

URL to Code

� www.cse.ucsd.edu/groups/bioinformatics/GRIMM/
In Pevzner’s group, Tesler has put online an implemen-
tation of the multicromosomal generalization of the al-
gorithm of Kaplan, Shamir, and Tarjan [10], that he has
called GRIMM, for “Genome Rearrangements In Man
and Mouse”.

� www.cs.unm.edu/~moret/GRAPPA/
GRAPPA stands for “Genome Rearrangements Anal-
ysis under Parsimony and other Phylogenetic Algo-
rithms”. It contains the distance computation, and the
algorithm to find all safe reversals at one step. It has
been developed in Moret’s team.

� www.math.tau.ac.il/~rshamir/GR/
An applet written by Mantin implementing the algo-
rithm of Kaplan, Shamir and Tarjan [10].

� biomserv.univ-lyon1.fr/~tannier/PSbR/
A program by Diekmann to find a scenario of reversals
with additional constraints for signed permutations,
implementing the algorithm of Tannier and Sagot [17].

� www.geocities.com/mdvbraga/baobabLuna.html
A program by Braga for the manipulation of permuta-
tions, and in particular sorting signed permutations by
reversals, and giving a condensed representation of all
optimal sorting sequences, implementing an algorithm
of [6].

Cross References

� Sorting Signed Permutations by Reversal (Reversal
Distance)

Recommended Reading

1. Ajana, Y., Lefebvre, J.-F., Tillier, E., El-Mabrouk, N.: Exploring the
Set of All Minimal Sequences of Reversals – An Application
to Test the Replication-Directed Reversal Hypothesis, Proceed-
ings of the Second Workshop on Algorithms in Bioinformat-
ics. Lecture Notes in Computer Science, vol. 2452, pp. 300–315.
Springer, Berlin (2002)

2. Bader, D.A., Moret, B.M.E., Yan, M.: A Linear-Time Algorithm
for Computing Inversion Distance between Signed Permuta-
tions with an Experimental Study. J. Comput. Biol. 8(5), 483–
491 (2001)

3. Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the prop-
erties of sequences of reversals that sort a signed permutation.
Proceedings of JOBIM’02, 99–108 (2002)

http://biomserv.univ-lyon1.fr/~tannier/PSbR/
http://biomserv.univ-lyon1.fr/~tannier/PSbR/
http://www.cse.ucsd.edu/groups/bioinformatics/GRIMM/
http://www.cs.unm.edu/~moret/GRAPPA/
http://www.math.tau.ac.il/~rshamir/GR/
http://biomserv.univ-lyon1.fr/~tannier/PSbR/
http://www.geocities.com/mdvbraga/baobabLuna.html

Sorting by Transpositions and Reversals (Approximate Ratio 1.5) S 863

4. Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance prob-
lem. In: Gascuel, O. (ed.) Mathematics of evolution and phy-
logeny. Oxford University Press, USA (2005)

5. Berman, P., Hannenhalli, S.: Fast Sorting by Reversal, proceed-
ings of CPM ’96. Lecture notes in computer science 1075, 168–
185 (1996)

6. Braga, M.D.V., Sagot, M.F., Scornavacca, C., Tannier, E.: The So-
lution Space of Sorting by Reversals. In: Proceedings of IS-
BRA’07. Lect. Notes Comp. Sci. 4463, 293–304 (2007)

7. Diekmann, Y., Sagot, M.F., Tannier, E.: Evolution under Re-
versals: Parsimony and Conversation of Common Intervals.
IEEE/ACMTransactions in Computational Biology and Bioinfor-
matics, 4, 301–309, 1075 (2007)

8. Han, Y.: Improving the Efficiency of Sorting by Reversals, Pro-
ceedings of The 2006 International Conference on Bioinfor-
matics and Computational Biology. Las Vegas, Nevada, USA
(2006)

9. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by re-
versals). J. ACM 46, 1–27 (1999)

10. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm
for sorting signed permutations by reversals. SIAM J. Comput.
29, 880–892 (1999)

11. Kaplan, H., Verbin, E.: Efficient data structures and a new ran-
domized approach for sorting signed permutations by rever-
sals. In: Proceedings of CPM’03. Lecture Notes in Computer Sci-
ence 2676, 170–185

12. Moret, B.M.E., Tang, J., Warnow, T.: Reconstructingphylogenies
from gene-content and gene-order data. In: Gascuel, O. (ed.)
Mathematics of Evolution and Phylogeny. pp. 321–352, Oxford
Univ. Press, USA (2005)

13. Murphy, W., et al.: Dynamics of Mammalian Chromosome Evo-
lution Inferred from Multispecies Comparative Maps. Science
309, 613–617 (2005)

14. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrange-
ment. J. Bioinf. Comput. Biol. 1, 71–94 (2003)

15. Pevzner, P., Tesler, G.: Human and mouse genomic sequences
reveal extensive breakpoint reuse in mammalian evolution.
PNAS 100, 7672–7677 (2003)

16. Siepel, A.C.: An algorithm to enumerate sorting reversals for
signed permutations. J. Comput. Biol. 10, 575–597 (2003)

17. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic
time. In: Proceedings of CPM’04. Lecture Notes Comput. Sci.
3109, 1–13

18. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on Sorting by
Reversals. Discret. Appl. Math. 155, 881–888 (2006)

Sorting by Transpositions and
Reversals (Approximate Ratio 1.5)
2004; Hartman, Sharan

CHIN LUNG LU
Institute of Bioinformatics & Department of Biological
Science and Technology, National Chiao Tung
University, Hsinchu, Taiwan

Keywords and Synonyms

Genome rearrangements

ProblemDefinition

One of the most promising ways to determine evolu-
tionary distance between two organisms is to compare
the order of appearance of identical (e. g., orthologous)
genes in their genomes. The resulting genome rearrange-
ment problem calls for finding a shortest sequence of re-
arrangement operations that sorts one genome into the
other. In this work [8], Hartman and Sharan provide
a 1.5-approximation algorithm for the problem of sort-
ing by transpositions, transreversals and revrevs, improv-
ing on a previous 1.75 ratio for this problem. Their algo-
rithm is also faster than current approaches and requires
O(n3/2

p
log n) time for n genes.

Notations and Definition

A signed permutation
 = [
1;
2; : : : ;
n] on n(
) � n
elements is a permutation in which each element is la-
beled by a sign of plus or minus. A segment of
 is a se-
quence of consecutive elements
i ;
i+1; : : : ;
k , where
1 � i � k � n. A reversal � is an operation that reverses
the order of the elements in a segment and also flips their
signs. Two segments
i ;
i+1; : : : ;
k and
 j;
 j+1; : : : ;
l
are said to be contiguous if j = k + 1 or i = l + 1. A trans-
position � is an operation that exchanges two contiguous
(disjoint) segments. A transreversal ��A;B (respectively,
��B;A) is a transposition that exchanges two segments
A and B and also reverses A (respectively, B). A revrev
operation �� reverses each of the two contiguous seg-
ments (without transposing them). The problem of find-
ing a shortest sequence of transposition, transreversal and
revrev operations that transforms a permutation into the
identity permutation is called sorting by transpositions,
transreversals and revrevs. The distance of a permutation

 , denoted by d(
), is the length of the shortest sorting
sequence.

Key Results

Linear vs. Circular Permutations

An operation is said to operate on the affected segments
as well as on the elements in those segments. Two oper-
ations � and �0 are equivalent if they have the same re-
arrangement result, i. e., � �
 = �0 �
 for all
 . In this
work [8], Hartman and Sharan showed that for an ele-
ment x of a circular permutation
 , if � is an operation
that operates on x, then there exists an equivalent oper-

864 S Sorting by Transpositions and Reversals (Approximate Ratio 1.5)

Sorting by Transpositions and Reversals (Approximate Ratio 1.5), Figure 1
a The equivalence of transreversal and revrev on circular permutations. b The breakpoint graph G(�) of the permutation
� = [1; �4;6; �5;2; �7; �3], for which f (�) = [1;2;8;7;11;12;10;9;3;4;14;13;6;5]. It is convenient to draw G(�) on a circle
such that black edges (i. e., thick lines) are on the circumference and gray edges (i. e., thin lines) are chords

ation �0 that does not operate on x. Based on this prop-
erty, they further proved that the problem of sorting by
transpositions, transreversals and revrevs is equivalent for
linear and circular permutations. Moreover, they observed
that revrevs and transreversals are equivalent operations
for circular permutations (as illustrated in Fig. 1a), imply-
ing that the problem of sorting a linear/circular permuta-
tion by transpositions, transreversals and revrevs can be
reduced to that of sorting a circular permutation by trans-
positions and transreversals only.

The Breakpoint Graph

Given a signed permutation
 on f1; 2; : : : ; ng of n el-
ements, it is transformed into an unsigned permutation
f (
) =
 0 = [
 01;

0
2; : : : ;

0
2n] on f1; 2; : : : ; 2ng of 2n el-

ements by replacing each positive element i with two el-
ements 2i � 1; 2i (in this order) and each negative ele-
ment �i with 2i; 2i � 1. The extended f (
) is consid-
ered here as a circular permutation by identifying 2n + 1
and 1 in both indices and elements. To ensure that ev-
ery operation on f (
) can be mimicked by an operation
on
 , only operations that cut before odd position are al-
lowed for f (
). The breakpoint graph G(
) is an edge-
colored graph on 2n vertices f1; 2; : : : ; 2ng, in which for
every 1 � i � n,
 02i is joined to
 02i+1 by a black edge and
2i is joined to 2i + 1 by a gray edge (see Fig. 1b for an
example). Since the degree of each vertex in G(
) is ex-
actly 2, G(
) uniquely decomposes into cycles. A k-cycle
(i. e., a cycle of length k) is a cycle with k black edges, and
it is odd if k is odd. The number of odd cycles in G(
) is
denoted by codd(
). It is not hard to verify that G(
) con-
sists of n 1-cycles and hence codd(
) = n, if
 is an iden-
tity permutation [1; 2; : : : ; n]. Gu et al. [5] have shown
that codd(� �
) � codd(
) + 2 for all linear permutations

 and operations�. In this work [8], Hartman and Sharan
further noted that the above result holds also for circular
permutations and proved that the lower bound of d(
) is
(n(
) � codd(
))/2.

Transformation into 3-Permutations

A permutation is called simple if its breakpoint graph
contains only k-cycle, where k � 3. A simple permuta-
tion is also called a 3-permutation if it contains no 2-
cycles. A transformation from
 to
̂ is said to be safe if
n(
) � codd(
) = n(
̂) � codd(
̂). It has been shown that
every permutation
 can be transformed into a simple
one
 0 by safe transformations and, moreover, every sort-
ing of
 0 mimics a sorting of
 with the same number of
operations [6,11]. Here, Hartman and Sharan [8] further
showed that every simple permutation
 0 can be trans-
formed into a 3-permutation
̂ by safe paddings (of trans-
forming those 2-cycles into 1-twisted 3-cycles) and, more-
over, every sorting of
̂ mimics a sorting of
 0 with the
same number of operations. Hence, based on these two
properties, an arbitrary permutation
 can be transformed
into a 3-permutation
̂ such that every sorting of
̂ mim-
ics a sorting of
 with the same number of operations,
suggesting that one can restrict attention to circular 3-
permutations only.

Cycle Types

An operation that cuts some black edges is said to act on
these edges. An operation is further called a k-operation
if it increases the number of odd cycles by k. A (0, 2, 2)-
sequence is a sequence of three operations, of which the
first is a 0-operation and the next two are 2-operations.
An odd cycle is called oriented if there is a 2-operation
that acts on three of its black edges; otherwise, it is unori-

Sorting by Transpositions and Reversals (Approximate Ratio 1.5) S 865

Sorting by Transpositions and Reversals (Approximate Ratio 1.5), Figure 2
Configurations of 3-cycles. aUnoriented, 0-twisted 3-cycle.bUnoriented, 1-twisted 3-cycle. cOriented, 2-twisted 3-cycle.dOriented,
3-twisted 3-cycle. e A pair of intersecting 3-cycles. f A pair of interleaving 3-cycles

ented. A configuration of cycles is a subgraph of the break-
point graph that contains one ore more cycles. As shown
in Fig. 2a–d, there are four possible configurations of sin-
gle 3-cycles. A black edge is called twisted if its two ad-
jacent gray edges cross each other in the circular break-
point graph. A cycle is k-twisted if k of its black edges are
twisted. For example, the 3-cycles in Fig. 2a–d are 0-, 1-
, 2- and 3-twisted, respectively. Hartman and Sharan ob-
served that a 3-cycle is oriented if and only if it is 2- or
3-twisted.

Cycle Configurations

Two pairs of black edges are called intersecting if they al-
ternate in the order of their occurrence along the circle.
A pair of black edges intersects with cycle C, if it intersects
with a pair of black edges that belong to C. Cycles C andD
intersect if there is a pair of black edges in C that intersects
with D (see Fig. 2e). Two intersecting cycles are called in-
terleaving if their black edges alternate in their order of oc-
currence along the circle (see Fig. 2f). Clearly, the relation
between two cycles is one of (1) non-intersecting, (2) inter-
secting but non-interleaving and (3) interleaving. A pair of
black edges is coupled if they are connected by a gray edge
and when reading the edges along the cycle, they are read
in the same direction. For example, all pairs of black edges
in Fig. 2a are coupled. Gu et al. [5] have shown that given
a pair of coupled black edges (b1, b2), there exists a cycle
C that intersects with (b1, b2). A 1-twisted pair is a pair of
1-twisted cycles, whose twists are consecutive on the circle
in a configuration that consists of these two cycles only.
A 1-twisted cycle is called closed in a configuration if its
two coupled edges intersect with some other cycle in the
configuration. A configuration is closed if at least one of its
1-twisted cycles is closed; otherwise, it is called open.

The Algorithm

The basic ideas of the Hartman and Sharan’s 1.5-approxi-
mation algorithm [8] for the problem of sorting by trans-

positions, transreversals and revrevs are as follows. Hart-
man and Sharan reduced the problem to that of sorting
a circular 3-permutation by transpositions and transre-
versals only and then focused on transforming the 3-cy-
cles into 1-cycles in the breakpoint graph of this 3-per-
mutation. By definition, an oriented (i. e., 2- or 3-twisted)
3-cycle admits a 2-operation and, therefore, they contin-
ued to consider unoriented (i. e., 0- or 1-twisted) 3-cycles
only. Since configurations involving only 0-twisted 3-cy-
cles were handled with (0, 2, 2)-sequences in [7], Hart-
man and Sharan restricted their attention to those con-
figurations that consist of 0- and 1-twisted 3-cycles. They
showed that these configurations are all closed and that
it can be sorted by a (0, 2, 2)-sequence of operations
for each of the following five possible closed configu-
rations: (1) a closed configuration with two unoriented,
interleaving 3-cycles that do not form a 1-twisted pair,
(2) a closed configuration with two intersecting, 0-twisted
3-cycles, (3) a closed configuration with two intersecting,
1-twisted 3-cycles, (4) a closed configuration with a 0-
twisted 3-cycles that intersects with the coupled edges of
a 1-twisted 3-cycle, and (5) a closed configuration that
contains k � 2 mutually interleaving 1-twisted 3-cycles
such that all their twists are consecutive on the circle
and k is maximal with this property. As a result, the se-
quence of operations used by Hartman and Sharan in
their algorithm contains only 2-operations and (0, 2, 2)-
sequences. Since every sequence of three operations in-
creases the number of odd cycles by at least 4 out of 6
possible in 3 steps, the ratio of their approximation algo-
rithm is 1.5. Furthermore, Hartman and Sharan showed
that their algorithm can be implemented in O(n3/2

p
log n)

time using the data structure of Kaplan and Verbin [10],
where n is the number of elements in the permuta-
tion.

Theorem 1 The problem of sorting linear permutations by
transpositions, transreversals and revrevs is linearly equiv-

866 S Spanning Ratio

alent to the problem of sorting circular permutations by
transpositions, transreversals and revrevs.

Theorem 2 There is a 1.5-approximation algorithm for
sorting by transpositions, transreversals and revrevs, which
runs in O(n3/2

p
log n) time.

Applications

When trying to determine evolutionary distance between
two organisms using genomic data, biologists may wish to
reconstruct the sequence of evolutionary events that have
occurred to transform one genome into the other. One of
themost promising ways to do this phylogenetic study is to
compare the order of appearance of identical (e. g., orthol-
ogous) genes in two different genomes [9,12]. This com-
parison of computing global rearrangement events (such
as reversals, transpositions and transreversals of genome
segments) may provide more accurate and robust clues to
the evolutionary process than the analysis of local point
mutations (i. e., substitutions, insertions and deletions of
nucleotides/amino acids). Usually, the two genomes being
compared are represented by signed permutations, with
each element standing for a gene and its sign represent-
ing the (transcriptional) direction of the corresponding
gene on a chromosome. Then the goal of the resulting
genome rearrangement problem is to find a shortest se-
quence of rearrangement operations that transforms (or,
equivalently, sorts) one permutation into the other. Pre-
vious work focused on the problem of sorting a permu-
tation by reversals. This problem has been shown by Ca-
para [2] to be NP-hard, if the considered permutation is
unsigned. However, for signed permutations, this prob-
lem becomes tractable and Hannenhalli and Pevzer [6]
gave the first polynomial-time algorithm for it. On the
other hand, there has been less progress on the prob-
lem of sorting by transpositions. Thus far, the complex-
ity of this problem is still open, although several 1.5-
approximation algorithms [1,3,7] have been proposed for
it. Recently, the approximation ratio of sorting by trans-
positions was further improved to 1.375 by Elias andHart-
man [4]. Gu et al. [5] and Lin and Xue [11] gave quadratic-
time 2-approximation algorithms for sorting signed, lin-
ear permutations by transpositions and transreversals.
In [11], Lin and Xue considered the problem of sort-
ing signed, linear permutations by transpositions, transre-
versals and revrevs, and proposed a quadratic-time 1.75-
approximation algorithm for it. In this work [8], Hartman
and Sharan further showed that this problem is equivalent
for linear and circular permutations and can be reduced to
that of sorting signed, circular permutations by transpo-
sitions and transreversals only. In addition, they provided

a 1.5-approximation algorithm that can be implemented
in O(n3/2

p
log n) time.

Cross References

� Sorting Signed Permutations by Reversal (Reversal
Distance)

� Sorting Signed Permutations by Reversal (Reversal
Sequence)

Recommended Reading

1. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Dis-
cret. Math. 11, 224–240 (1998)

2. Caprara, A.: Sorting permutations by reversals and Eulerian cy-
cle decompositions. SIAM J. Discret. Math. 12, 91–110 (1999)

3. Christie, D.A.: Genome Rearrangement Problems. Ph. D. thesis,
Department of Computer Science. University of Glasgow, U.K.
(1999)

4. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sort-
ing by transpositions. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 3, 369–379 (2006)

5. Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algo-
rithm for genome rearrangements by reversals and transpo-
sitions. Theor. Comput. Sci. 210, 327–339 (1999)

6. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into
turnip: polynomial algorithm for sorting signed permutations
by reversals. J. Assoc. Comput. Mach. 46, 1–27 (1999)

7. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation
algorithm for sorting by transpositions. Inf. Comput. 204, 275–
290 (2006)

8. Hartman, T., Sharan, R.: A 1.5-approximation algorithm for sort-
ing by transpositions and transreversals. In: Proceedings of
the 4th Workshop on Algorithms in Bioinformatics (WABI’04),
pp. 50–61. Bergen, Norway, 17–21 Sep (2004)

9. Hoot, S.B., Palmer, J.D.: Structural rearrangements, includ-
ing parallel inversions, within the chloroplast genome of
Anemone and related genera. J. Mol. Evol. 38, 274–281 (1994)

10. Kaplan, H., Verbin, E.: Efficient data structures and a new ran-
domized approach for sorting signed permutations by rever-
sals. In: Proceedings of the 14th Annual Symposium on Combi-
natorial Pattern Matching (CPM’03), pp. 170–185. Morelia, Mi-
chocán, Mexico, 25–27 Jun (2003)

11. Lin, G.H., Xue, G.: Signed genome rearrangements by reversals
and transpositions: models and approximations. Theor. Com-
put. Sci. 259, 513–531 (2001)

12. Palmer, J.D., Herbon, L.A.: Tricircular mitochondrial genomes
of Brassica and Raphanus: reversal of repeat configurations by
inversion. Nucleic Acids Res. 14, 9755–9764 (1986)

Spanning Ratio
� Algorithms for Spanners in Weighted Graphs
� Dilation of Geometric Networks
� Geometric Dilation of Geometric Networks

Sparse Graph Spanners S 867

Sparse Graph Spanners
2004; Elkin, Peleg

MICHAEL ELKIN
Department of Computer Science,
Ben-Gurion University, Beer-Sheva, Israel

Keywords and Synonyms

(1 + �,ˇ)-spanners; Almost additive spanners

ProblemDefinition

For a pair of numbers ˛; ˇ, ˛ � 1, ˇ � 0, a sub-
graph G0 = (V ;H) of an unweighted undirected graph
G = (V ; E), H
 E, is an (˛; ˇ)-spanner of G if for every
pair of vertices u;w 2 V , distG0(u;w) � ˛ �distG (u;w)+ˇ,
where distG (u;w) stands for the distance between u and w
in G. It is desirable to show that for every n-vertex graph
there exists a sparse (˛; ˇ)-spanner with as small values of
˛ and ˇ as possible. The problem is to determine asymp-
totic tradeoffs between ˛ and ˇ on one hand, and the spar-
sity of the spanner on the other.

Key Results

The main result of Elkin and Peleg [6] establishes the exis-
tence and efficient constructibility of (1 + �; ˇ)-spanners
of size O(ˇn1+1/�) for every n-vertex graph G, where
ˇ = ˇ(�; �) is constant whenever � and � are. The specific
dependence of ˇ on � and � is ˇ(�; �)=� log log��log� .

An important ingredient of the construction of [6] is
a partition of the graph G into regions of small diame-
ter in such a way that the super-graph induced by these
regions is sparse. The study of such partitions was initi-
ated by Awerbuch [2], that used them for network syn-
chronization. Peleg and Schäffer [8] were the first to em-
ploy such partitions for constructing spanners. Specifi-
cally, they constructed (O(�); 1)-spanners with O(n1+1/�)
edges. Althofer et al. [1] provided an alternative proof of
the result of Peleg and Schäffer that uses an elegant greedy
argument. This argument also enabled Althofer et al. to
extend the result to weighted graphs, to improve the con-
stant hidden by the O-notation in the result of Peleg and
Schäffer, and to obtain related results for planar graphs.

Applications

Efficient algorithms for computing sparse (1 + �; ˇ)-
spanners were devised in [5] and [11]. The algorithm of [5]
was used in [5,7,10] for computing almost shortest paths

in centralized, distributed, streaming, and dynamic cen-
tralized models of computations. The basic approach used
in these results is to construct a sparse spanner, and then to
compute exact shortest paths on the constructed spanner.
The sparsity of the latter guarantees that the computation
of shortest paths in the spanner is far more efficient than
in the original graph.

Open Problems

Themain open question is whether it is possible to achieve
similar results with � = 0. More formally, the question is:
Is it true that for any � � 1 and any n-vertex graph G
there exists (1; ˇ(�))-spanner of G with O(n1+1/�) edges?
This question was answered in affirmitive for � equal to 2
and 3 [3,4,6]. Some lower bounds were recently proved by
Woodruff [12].

A less challenging problem is to improve the depen-
dence of ˇ on � and �. Some progress in this direction was
achieved by Thorup and Zwick [11], and very recently by
Pettie [9].

Cross References

� Synchronizers, Spanners

Recommended Reading
1. Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On

Sparse Spanners of Weighted Graphs. Discret. Comput. Geom.
9, 81–100 (1993)

2. Awerbuch, B.: Complexity of network synchronization. J. ACM
4, 804–823 (1985)

3. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New Construc-
tions of (alpha, beta)-spanners and purely additive spanners.
In: Proc. of Symp. on Discrete Algorithms, Vancouver, Jan 2005,
pp. 672–681

4. Dor, D., Halperin, S., Zwick, U.: All Pairs Almost Shortest Paths.
SIAM J. Comput. 29, 1740–1759 (2000)

5. Elkin, M.: Computing Almost Shortest Paths. Trans. Algorithms
1(2), 283–323 (2005)

6. Elkin, M., Peleg, D.: (1 + �; ˇ)-Spanner Constructions for Gen-
eral Graphs. SIAM J. Comput. 33(3), 608–631 (2004)

7. Elkin, M., Zhang, J.: Efficient Algorithms for Constructing
(1 + �; ˇ)-spanners in the Distributed and Streaming Models.
Distrib. Comput. 18(5), 375–385 (2006)

8. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13,
99–116 (1989)

9. Pettie, S.: Low-Distortion Spanners. In: 34th International Collo-
quium on Automata Languages and Programm, Wroclaw, July
2007, pp. 78–89

10. Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest
paths in undirected graphs. In: Proc. of Symp. on Foundations
of Computer Science, Rome, Oct. 2004, pp. 499–508

11. Thorup, M., Zwick, U.: Spanners and Emulators with sublinear
distance errors. In: Proc. of Symp. on Discrete Algorithms, Mi-
ami, Jan. 2006, pp. 802–809

868 S Sparsest Cut

12. Woodruff, D.: Lower Bounds for Additive Spanners, Emulators,
and More. In: Proc. of Symp. on Foundations of Computer Sci-
ence, Berckeley, Oct. 2006, pp. 389–398

Sparsest Cut
2004; Arora, Rao, Vazirani

SHUCHI CHAWLA
Department of Computer Science, University
of Wisconsin–Madison, Madison, WI, USA

Keywords and Synonyms

Minimum ratio cut

ProblemDefinition

In the Sparsest Cut problem, informally, the goal is to par-
tition a given graph into two or more large pieces while re-
moving as few edges as possible. Graph partitioning prob-
lems such as this one occupy a central place in the theory of
network flow, geometric embeddings, andMarkov chains,
and form a crucial component of divide-and-conquer ap-
proaches in applications such as packet routing, VLSI lay-
out, and clustering.

Formally, given a graph G = (V ; E), the sparsity or
edge expansion of a non-empty set S � V , jSj � 1

2 jV j, is
defined as follows:

˛(S) =
jE(S;V n S)j
jSj

:

The sparsity of the graph, ˛(G), is then defined as follows:

˛(G) = min
S�V ;jSj� 1

2 jV j
˛(S) :

The goal in the Sparsest Cut problem is to find a subset
S � V with the minimum sparsity, and to determine the
sparsity of the graph.

The first approximation algorithm for the Sparsest Cut
problem was developed by Leighton and Rao in 1988 [13].
Employing a linear programming relaxation of the prob-
lem, they obtained an O(log n) approximation, where n is
the size of the input graph. Subsequently Arora, Rao and
Vazirani [4] obtained an improvement over Leighton and
Rao’s algorithm using a semi-definite programming relax-
ation, approximating the problem to within an O(

p
log n)

factor.
In addition to the Sparsest Cut problem, Arora et al.

also consider the closely related Balanced Separator prob-
lem. A partition (S;V n S) of the graph G is called a c-
balanced separator for 0 < c � 1

2 , if both S and V n S have

at least cjVj vertices. The goal in the Balanced Separator
problem is to find a c-balanced partition with the mini-
mum sparsity. This sparsity is denoted ˛c(G).

Key Results

Arora et al. provide an O(
p
log n) pseudo-approximation

to the balanced-separator problem using semi-definite
programming. In particular, given a constant c 2 (0; 12],
they produce a separator with balance c0 that is slightly
worse than c (that is, c0 < c), but sparsity within an
O(
p
log n) factor of the sparsity of the optimal c-balanced

separator.

Theorem 1 Given a graph G = (V ; E), let ˛c(G) be the
minimum edge expansion of a c-balanced separator in this
graph. Then for every fixed constant a < 1, there exists
a polynomial-time algorithm for finding a c0-balanced sep-
arator in G, with c0 � ac, that has edge expansion at most
O(
p
log n˛c(G)).

Extending this theorem to include unbalanced partitions,
Arora et al. obtain the following:

Theorem 2 Let G = (V ; E) be a graph with sparsity ˛(G).
Then there exists a polynomial-time algorithm for finding
a partition (S;V n S), with S � V, S ¤ ;, having sparsity
at most O(

p
log n˛(G)).

An important contribution of Arora et al. is a new geo-
metric characterization of vectors in n-dimensional space
endowed with the squared-Euclideanmetric. This result is
of independent significance and has lead to or inspired im-
proved approximation factors for several other partition-
ing problems (see, for example, [1,5,6,7,11]).

Informally, the result says that if a set of points in
n-dimensional space is randomly projected on to a line,
a good separator on the line is, with high probability,
a good separator (in terms of squared-Euclidean distance)
in the original high-dimensional space. Separation on the
line is related to separation in the original space via the
following definition of stretch.

Definition 1 (Def. 4 in [4]) Let Ex1; Ex2; : : : ; Exn be a set
of n points in Rn , equipped with the squared-Euclidean
metric d(x; y) = jjx � yjj22. The set of points is said to be
(t; �; ˇ)-stretched at scale `, if for at least a � fraction
of all the n-dimensional unit vectors u, there is a par-
tial matching Mu = f(xi ; yi)gi among these points, with
jMuj � ˇn, such that for all (x; y) 2 Mu , d(x; y) � `2 and
hu; Ex � Eyi � t`/

p
n. Here h�; �i denotes the dot product of

two vectors.

Theorem 3 For any �; ˇ > 0, there is a constant

Sparsest Cut S 869

C = C(�; ˇ) such that if t > C log1/3 n, then no set of n
points inRn can be (t; �; ˇ)-stretched for any scale `.

In addition to the SDP-rounding algorithm, Arora et al.
provide an alternate algorithm for finding approximate
sparsest cuts, using the notion of expander flows. This re-
sult leads to fast (quadratic time) implementations of their
approximation algorithm [3].

Applications

One of the main applications of balanced separators is in
improving the performance of divide and conquer algo-
rithms for a variety of optimization problems.

One example is the Minimum Cut Linear Arrange-
ment problem. In this problem, the goal is to order the
vertices of a given n vertex graph G from 1 through
n in such a way that the capacity of the largest of
the cuts (f1; 2; � � � ; ig; fi + 1; � � � ; ng), i 2 [1; n], is mini-
mized. Given a �-approximation to the balanced separa-
tor problem, the following divide and conquer algorithm
gives an O(� log n)-approximation to the Minimum Cut
Linear Arrangement problem: find a balanced separator in
the graph, then recursively order the two parts, and con-
catenate the orderings. The approximation follows by not-
ing that if the graph has a balanced separator with expan-
sion ˛c (G), only O(�n˛n (G)) edges are cut at every level,
and given that a balanced separator is found at every step,
the number of levels of recursion is at most O(log n).

Similar approaches can be used for problems such as
VLSI layout and Gaussian elimination. (See the survey by
Shmoys [14] for more details on these topics.)

The Sparsest Cut problem is also closely related to
the problem of embedding squared-Euclideanmetrics into
the Manhattan (`1) metric with low distortion. In par-
ticular, the integrality gap of Arora et al.’s semi-definite
programming relaxation for Sparsest Cut (generalized to
include weights on vertices and capacities on edges) is
exactly equal to the worst-case distortion for embedding
a squared-Euclidean metric into the Manhattan metric.
Using the technology introduced by Arora et al., improved
embeddings from the squared-Euclidean metric into the
Manhattan metric have been obtained [5,7].

Open Problems

Hardness of approximation results for the Sparsest
Cut problem are fairly weak. Recently Chuzhoy and
Khanna [9] showed that this problem is APX-hard, that
is, there exists a constant � > 0, such that a (1 + �)-
approximation algorithm for Sparsest Cut would im-
ply P=NP. It is conjectured that the weighted version

of the problem is NP-hard to approximate better than
O((log log n)c) for some constant c, but this is only known
to hold true assuming a version of the so-called Unique
Games conjecture [8,12]. On the other hand, the semi-
definite programming relaxation of Arora et al. is known
to have an integrality gap of ˝(log log n) even in the
unweighted case [10]. Proving an unconditional super-
constant hardness result for weighted or unweighted
Sparsest Cut, or obtaining o(

p
log n)-approximations for

these problems remain open.
The directed version of the Sparset Cut problem has

also been studied, and is known to be hard to approxi-
mate within a 2˝(log1�� n) factor [9]. On the other hand,
the best approximation known for this problem only
achieves a polynomial factor of approximation—a fac-
tor of O(n11/23 logO(1) n) due to Aggarwal, Alon and
Charikar [2].

Recommended Reading

1. Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.:
O(
p
log n) approximation algorithms for Min UnCut, Min 2CNF

Deletion, and directed cut problems. In: Proceedings of the
37th ACM Symposium on Theory of Computing (STOC), Balti-
more, May 2005, pp. 573–581

2. Aggarwal, A., Alon, N., Charikar, M.: Improved approximations
for directed cut problems. In: Proceedings of the 39th ACM
Symposium on Theory of Computing (STOC), San Diego, June
2007, pp. 671–680

3. Arora, S., Hazan, E., Kale, S.: An O(
p
log n) approximation to

SPARSEST CUT in Õ(n2) time. In: Proceedings of the 45th
IEEE Symposium on Foundations of Computer Science (FOCS),
Rome, ITALY, 17–19 October 2004, pp. 238–247

4. Arora, S., Rao, S., Vazirani, U.: Expander Flows, Geometric Em-
beddings, and Graph Partitionings. In: Proceedings of the 36th
ACM Symposium on Theory of Computing (STOC), Chicago,
June 2004, pp. 222–231

5. Arora, S., Lee, J., Naor, A.: EuclideanDistortion and the Sparsest
Cut. In: Proceedings of the 37th ACM Symposium on Theory of
Computing (STOC), Baltimore, May 2005, pp. 553–562

6. Arora, S., Chlamtac, E., Charikar, M.: New approximation guar-
antees for chromatic number. In: Proceedings of the 38th
ACMSymposiumon Theory of Computing (STOC), Seattle, May
2006, pp. 215–224

7. Chawla, S., Gupta, A., Räcke, H.: Embeddings of Negative-type
Metrics andAn ImprovedApproximation toGeneralized Spars-
est Cut. In: Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), Vancouver, January 2005, pp. 102–
111

8. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar,
D.: On the Hardness of Approximating Sparsest Cut and Multi-
cut. In: Proceedings of the 20th IEEE Conference on Computa-
tional Complexity (CCC), San Jose, June 2005, pp. 144–153

9. Chuzhoy, J., Khanna, S.: Polynomial flow-cut gaps and hard-
ness of directed cut problems. In: Proceedings of the 39th ACM
Symposium on Theory of Computing (STOC), San Diego, June
2007 pp. 179–188

870 S Spatial Databases and Search

10. Devanur, N., Khot, S., Saket, R., Vishnoi, N.: Integrality gaps for
Sparsest Cut and Minimum Linear Arrangement Problems. In:
Proceedings of the 38th ACM Symposium on Theory of Com-
puting (STOC), Seattel, May 2006, pp. 537–546

11. Feige, U., Hajiaghayi, M., Lee, J.: Improved approximation algo-
rithms for minimum-weight vertex separators. In: Proceedings
of the 37th ACM Symposium on Theory of Computing (STOC),
Baltimore, May 2005, pp. 563–572

12. Khot, S., Vishnoi, N.: The Unique Games Conjecture, Integrality
Gap for Cut Problems and the Embeddability of Negative-Type
Metrics into `1. In: Proceedings of the 46th IEEE Symposium on
Foundations of Computer Science (FOCS), Pittsburgh, October
2005, pp. 53–62

13. Leighton, F.T., Rao, S.B.: An Approximate Max-Flow Min-Cut
Theorem for Uniform Multicommodity Flow Problems with
Applications to Approximation Algorithms. In: Proceedings of
the 29th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), White Plains, October 1988, pp. 422–431

14. Shmoys, D.B.: Cut problems and their application to divide-
and-conquer. In: Hochbaum, D.S. (ed.) Approximation Algo-
rithms for NP-hard Problems, pp. 192–235. PWS Publishing,
Boston (1997)

Spatial Databases and Search
� Quantum Algorithm for Search on Grids
� R-Trees

Speed Scaling
1995; Yao, Demers, Shenker

KIRK PRUHS
Department of Computer Science,
University of Pittsburgh, Pittsburgh, PA, USA

Keywords and Synonyms

Speed scaling; Voltage scaling; Frequency scaling

ProblemDefinition

Speed scaling is a power management technique in mod-
ern processor that allows the processor to run at different
speeds. There is a power function P(s) that specifies the
power, which is energy used per unit of time, as a func-
tion of the speed. In CMOS-based processors, the cube-
root rule states that P(s) 	 s3. This is usually generalized
to assume that P(s) = s˛ form some constant ˛. The goals
of power management are to reduce temperature and/or
to save energy. Energy is power integrated over time. The-
oretical investigations to date have assumed that there is
a fixed ambient temperature and that the processor cools
according to Newton’s law, that is, the rate of cooling is

proportional to the temperature difference between the
processor and the environment.

In the resulting scheduling problems, the scheduler
must not only have a job-selection policy to determine the
job to run at each time, but also a speed scaling policy to
determine the speed at which to run that job. The resulting
problems are generally dual objective optimization prob-
lems. One objective is some quality of service measure for
the schedule, and the other objective is temperature or en-
ergy.

We will consider problems where jobs arrive at the
processor over time. Each job i has a release time ri when it
arrives at the processor, and a work requirement wi. A job
i run at speed s takes wi /s units of time to complete.

Key Results

[5] initiated the theoretical algorithmic investigation of
speed scaling problems. [5] assumed that each job i had
a deadline di, and that the quality of service measure was
deadline feasibility (each job completes by its deadline). [5]
gives a greedy algorithm YDS to find the minimum en-
ergy feasible schedule. The job selection policy for YDS is
to run the job with the earliest deadline. To understand
the speed scaling policy for YDS, define the intensity of
a time interval to be the work that must be completed in
this time interval divided by the length of the time inter-
val. YDS then finds the maximum intensity interval, runs
the jobs that must be run in this interval at constant speed,
eliminates these jobs and this time interval from the in-
stance, and proceeds recursively. [5] gives two online al-
gorithms: OA and AVR. In OA the speed scaling policy is
the speed that YDS would run at, given the current state
and given that no more jobs will be released in the future.
In AVR, the rate at which each job is completed is constant
between the time that a job is released and the deadline for
that job. [5] showed that AVR is 2˛�1˛˛-competitive with
respect to energy.

The results in [5] were extended in [2]. [2] showed
that OA is ˛˛-competitive with respect to energy. [2] pro-
posed another online algorithm, BKP. BKP runs at the
speed of the maximum intensity interval containing the
current time, taking into account only the work that has
been released by the current time. They show that the
competitiveness of BKP with respect to energy is at most
2(˛/(˛�1))˛ e˛ . They also show that BKP is e-competitive
with respect to the maximum speed.

[2] initiated the theoretical algorithmic investigation
of speed scaling to manage temperature. [2] showed
that the deadline feasible schedule that minimizes maxi-
mum temperature can in principle be computed in poly-

Sphere Packing Problem S 871

nomial time. [2] showed that the competitiveness of
BKP with respect to maximum temperature is at most
2˛+1 e˛(6(˛/(˛ � 1))˛ + 1).

[4] initiated the theoretical algorithmic investigation
into speed scaling when the quality-of-service objective is
average/total flow time. The flow time of a job is the delay
from when a job is released until it is completed. [4] give
a rather complicated polynomial-time algorithm to find
the optimal flow time schedule for unit work jobs, given
a bound on the energy available. It is easy to see that no
O(1)-competitive algorithm exists for this problem.

[1] introduce the objective ofminimizing a linear com-
bination of energy used and total flow time. This has a nat-
ural interpretation if one imagines the user specifying how
much energy he is willing to use to increase the flow time
of a job by a unit amount. [1] give an O(1)-competitive
online algorithm for the case of unit work jobs. [3] im-
proves upon this result and gives a 4-competitive online
algorithm. The speed scaling policies of the online algo-
rithms in [1] and [3] essentially run as power equal to the
number of unfinished jobs (in each case modified in a par-
ticular way to facilitate analysis of the algorithm). [3] ex-
tend these results to apply to jobs with arbitrary work, and
even arbitrary weight. The speed scaling policy is essen-
tially to run at power equal to the weight of the unfinished
work. The expression for the resulting competitive ratio is
a bit complicated but is approximately 8 when the cube-
root rule holds.

The analysis of the online algorithms in [2] and [3]
heavily relied on amortized local competitiveness. An on-
line algorithm is locally competitive for a particular objec-
tive if for all times the rate of increase of that objective for
the online algorithm, plus the rate of change of some po-
tential function, is at most the competitive ratio times the
rate of increase of the objective in any other schedule.

Applications

None

Open Problems

The outstanding open problem is probably to determine if
there is an efficient algorithm to compute the optimal flow
time schedule given a fixed energy bound.

Recommended Reading
1. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time

minimization. In: STACS. Lecture Notes in Computer Science,
vol. 3884, pp. 621–633. Springer, Berlin (2006)

2. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling tomanage energy
and temperature. J. ACM 54(1) (2007)

3. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow.
In: ACM/SIAM Symposium on Discrete Algorithms, 2007

4. Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the Best Re-
sponse for Your Erg. In: Scandanavian Workshop on Algorithms
and Theory, 2004

5. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced
CPU energy. In: IEEE Syposiumon Foundations of Computer Sci-
ence, 1995, p. 374

Sphere Packing Problem
2001; Chen, Hu, Huang, Li, Xu

DANNY Z. CHEN
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN, USA

Keywords and Synonyms

Ball packing; Disk packing

ProblemDefinition

The sphere packing problem seeks to pack spheres into
a given geometric domain. The problem is an instance
of geometric packing. Geometric packing is a venerable
topic in mathematics. Various versions of geometric pack-
ing problems have been studied, depending on the shapes
of packing domains, the types of packing objects, the po-
sition restrictions on the objects, the optimization crite-
ria, the dimensions, etc. It also arises in numerous ap-
plied areas. The sphere packing problem under consid-
eration here finds applications in radiation cancer treat-
ment using Gamma Knife systems. Unfortunately, even
very restricted versions of geometric packing problems
(e. g., regular-shaped objects and domains in lower dimen-
sional spaces) have been proved to be NP-hard. For exam-
ple, for congruent packing (i. e., packing copies of the same
object), it is known that the 2-D cases of packing fixed-
sized congruent squares or disks in a simple polygon are
NP-hard [7]. Baur and Fekete [2] considered a closely re-
lated dispersion problem of packing k congruent disks in
a polygon of n vertices such that the radius of the disks is
maximized; they proved that the dispersion problem can-
not be approximated arbitrarily well in polynomial time
unless P = NP, and gave a 2

3 -approximation algorithm for
the L1 disk case with a time bound of O(n38).

Chen et al. [4] proposed a practically efficient heuristic
scheme, called pack-and-shake, for the congruent sphere
packing problem, based on computational geometry tech-
niques. The problem is defined as follows.

872 S Sphere Packing Problem

The Congruent Sphere Packing Problem

Given a d-D polyhedral region R(d = 2; 3) of n vertices
and a value r > 0, find a packing SP of R using spheres of
radius r, such that (i) each sphere is contained in R, (ii) no
two distinct spheres intersect each other in their interior,
and (iii) the ratio (called the packing density) of the cov-
ered volume in R by SP over the total volume of R is max-
imized.

In the above problem, one can view the spheres as
“solid” objects. The region R is also called the domain or
container. Without loss of generality, let r = 1.

Much work on congruent sphere packing studied the
case of packing spheres into an unbounded domain or
even the whole space [5]. There are also results on pack-
ing congruent spheres into a bounded region. Hochbaum
and Maass [8] presented a unified and powerful shifting
technique for designing pseudo-polynomial time approxi-
mation schemes for packing congruent squares into a rec-
tilinear polygon. But, the high time complexities associ-
ated with the resulting algorithms restrict their applicabil-
ity in practice. Another approach is to formulate a packing
problem as a non-linear optimization problem, and resort
to an available optimization software to generate packings;
however, this approach works well only for small problem
sizes and regular-shaped domains.

To reduce the running time yet achieve a dense pack-
ing, a common idea is to consider objects that form
a certain lattice or double-lattice. A number of results
were given on lattice packing of congruent objects in
the whole (especially high dimensional) space [5]. For
a bounded rectangular 2-D domain, Milenkovic [10]
adopted a method that first finds the densest translational
lattice packing for a set of polygonal objects in the whole
plane, and then uses some heuristics to extract the actual
bounded packing.

Key Results

The pack-and-shake scheme of Chen et al. [4] for pack-
ing congruent spheres in an irregular-shaped 2-D or 3-D
bounded domain R consists of three phases. In the first
phase, the d-D domain R is partitioned into a set of con-
vex subregions (called cells). The resulting set of cells de-
fines a dual graph GD, such that each vertex v of GD cor-
responds to a cell C(v) and an edge connects two vertices
if and only if their corresponding cells share a (d � 1)-D
face. In the second phase, the algorithm repeats the follow-
ing trimming and packing process until GD = ;: Remove
the lowest degree vertex v from GD and pack the cell C(v).
In the third phase, a shake procedure is applied to globally
adjust the packing to obtain a denser one.

The objective of the trimming and packing procedure
is that after each cell is packed, the remaining “packable”
subdomain R0 of R is always kept as a connected region.
The rationale for maintaining the connectivity of R0 is as
follows. To pack spheres in a bounded domain R, two
typical approaches have been used: (a) packing spheres
layer by layer going from the boundary of R towards its
interior [9], and (b) packing spheres starting from the
“center” of R, such as its medial axis, towards its bound-
ary [3,13,14]. Due to the shape irregularity of R, both ap-
proaches may fragment the remaining “packable” subdo-
main R0 into more and more disconnected regions; how-
ever, at the end of packing each such region, a small “un-
packable” area may eventually remain that allows no fur-
ther packing. It could fit more spheres if the “packable”
subdomain R0 is lumped together instead of being divided
into fragments, which is what the trimming and packing
procedure aims to achieve.

Due to the packing of its adjacent cells that have been
done by the trimming and packing procedure, the bound-
ary of a cell C(v) that is to be packed may consist of
both line segments and arcs (from packed spheres). Hence,
a key problem is to pack spheres in a cell bounded by
curves of low degrees. Chen et al.’s algorithms [4] for pack-
ing each cell are based on certain lattice structures and al-
low the cell to both translate and rotate. Their algorithms
have fairly low time bounds. In certain cases, they even run
in nearly linear time.

An interesting feature of the cell packings generated by
the trimming and packing procedure is that the resulted
spheres cluster together in the middle of the cells of the
domain R, leaving some small unpackable areas scattered
along the boundary ofR. The “shake” procedure in [4] thus
seeks to collect these small areas together by “pushing” the
spheres towards the boundary of R, in the hope of obtain-
ing some “packable” region in the middle of R.

The approach in [4] is to first obtain a densest lattice
unit sphere packing LSP(C) for each cell C of R, and then
use a “shake” procedure to globally adjust the resulting
packing of R to generate a denser packing SP in R. Sup-
pose the plane P is already packed by infinitely many unit
spheres whose center points form a lattice (e. g., the hexag-
onal lattice). To obtain a densest packing LSP(C) for a cell
C from the lattice packing of the plane P, a position and
orientation of C on P need to be computed such that C
contains the maximum number of spheres from the lat-
tice packing of P. There are two types of algorithms in [4]
for computing an optimal placement of C on P: transla-
tional algorithms that allow C to be translated only, and
translational/rotational algorithms that allow C to be both
translated and rotated.

Sphere Packing Problem S 873

Let n = jCj, the number of bounding curves of C, and
m be the number of spheres along the boundary of C in
a sought optimal packing of C.

Theorem 1 Given a polygonal regionC bounded by n alge-
braic curves of constant degrees, a densest lattice unit sphere
packing of C based only on translational motion can be
computed in O(N logN + K) time, where N = f (n;m) is
a function of n and m, and K is the number of intersections
between N planar algebraic curves of constant degrees that
are derived from the packing instance.

Note: In the worst case,N = f (n;m) = n �m. But in prac-
tice, N may be much smaller. The N planar algebraic
curves in Theorem 1 form a structure called arrangement.
Since all these curves are of a constant degree, any two
such curves can intersect each other at most a constant
number of times. In the worst case, the number K of in-
tersections between the N algebraic curves, which is also
the size of the arrangement, is O(N2). The arrangement of
these curves can be computed by the algorithms [1,6] in
O(N logN + K) time.

Theorem 2 Given a polygonal regionC bounded by n alge-
braic curves of constant degrees, a densest lattice unit sphere
packing of C based on both translational and rotationalmo-
tions can be computed in O(T(n) + (N + K0) log N) time,
where N = f (n;m) is a function of n and m, K 0 is the size
of the arrangement of N pseudo-plane surfaces in 3-D that
are derived from the packing instance, and T(n) is the time
for solving O(n2) quadratic optimization problem instances
associated with the packing instance.

In Theorem 2, K0 = O(N3) in the worst case. In practice,
K 0 can be much smaller.

The results on 2-D sphere packing in [4] can be ex-
tended to d-D for any constant integer d � 3, so long as
a good d-D lattice packing of the d-D space is available.

Applications

Recent interest in the considered congruent sphere pack-
ing problem was motivated by medical applications in
Gamma Knife radiosurgery [4,11,12]. Radiosurgery is
a minimally invasive surgical procedure that uses radi-
ation to destroy tumors inside human body while spar-
ing the normal tissues. The Gamma Knife is a radiosur-
gical system that consists of 201 Cobalt-60 sources [3,14];
the gamma-rays from these sources are all focused on
a common center point, thus creating a spherical vol-
ume of radiation field. The Gamma Knife treatment nor-
mally applies high radiation dose. In this setting, overlap-
ping spheres may result in overdose regions (called hot

spots) in the target treatment domain, while a low packing
density may cause underdose regions (called cold spots)
and a non-uniform dose distribution. Hence, one may
view the spheres used in Gamma Knife packing as “solid”
spheres. Therefore, a key geometric problem in Gamma
Knife treatment planning is to fit multiple spheres into a 3-
D irregular-shaped tumor [3,13,14]. The total treatment
time crucially depends on the number of spheres used.
Subject to a given packing density, the minimum number
of spheres used in the packing (i. e., treatment) is desired.
The Gamma Knife currently produces spheres of four dif-
ferent radii (4mm, 8mm, 14mm, and 18mm), and hence
the Gamma Knife sphere packing is in general not con-
gruent. In practice, a commonly used approach is to pack
larger spheres first, and then fit smaller spheres into the
remaining subdomains, in the hope of reducing the total
number of spheres involved and thus shortening the treat-
ment time. Therefore, congruent sphere packing can be
used as a key subroutine for such a common approach.

Open Problems

An open problem is to analyze the quality bounds of the
resulting packing for the algorithms in [4]; such packing
quality bounds are currently not yet known. Another open
problem is to reduce the running time of the packing algo-
rithms in [4], since these algorithms, especially for sphere
packing problems in higher dimensions, are still very time-
consuming. In general, it is highly desirable to develop effi-
cient sphere packing algorithms in d-D (d � 2) with guar-
anteed good packing quality.

Experimental Results

Some experimental results of the 2-D pack-and-shake
sphere packing algorithms were given in [4]. The planar
hexagonal lattice was used for the lattice packing. On pack-
ings whose sizes are in the hundreds, the C++ programs
of the algorithms in [4] based only on translational mo-
tion run very fast (a few minutes), while those of the algo-
rithms based on both translation and rotation take much
longer time (hours), reflecting their respective theoretical
time bounds, as expected. On the other hand, the packing
quality of the translation-and-rotation based algorithms is
a little better than the translation based algorithms. The
packing densities of all the algorithms in the experiments
are well above 70% and some are even close to or above
80%. Comparing with the nonconvex programmingmeth-
ods, the packing algorithms in [4] seemed to run faster
based on the experiments.

874 S Squares and Repetitions

Cross References

� Local Approximation of Covering and Packing
Problems

Recommended Reading
1. Amato, N.M., Goodrich, M.T., Ramos, E.A.: Computing the

arrangement of curve segments: Divide-and-conquer algo-
rithms via sampling. In: Proc. 11th Annual ACM-SIAM Symp. on
Discrete Algorithms, pp. 705–706 (2000)

2. Baur, C., Fekete, S.P.: Approximation of geometric dispersion
problems. Algorithmica 30(3), 451–470 (2001)

3. Bourland, J.D., Wu, Q.R.: Use of shape for automated, optimized
3D radiosurgical treatment planning. SPIE Proc. Int. Symp. on
Medical Imaging, pp. 553–558 (1996)

4. Chen, D.Z., Hu, X., Huang, Y., Li, Y., Xu, J.: Algorithms for congru-
ent sphere packing and applications. Proc. 17th Annual ACM
Symp. on Computational Geometry, pp. 212–221 (2001)

5. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and
Groups. Springer, New York (1988)

6. Edelsbrunner, H., Guibas, L.J., Pach, J., Pollack, R., Seidel, R.,
Sharir, M.: Arrangements of curves in the plane: Topology,
combinatorics, and algorithms. Theor. Comput. Sci. 92, 319–
336 (1992)

7. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing
and covering in the plane are NP-complete. Inf. Process. Lett.
12(3), 133–137 (1981)

8. Hochbaum, D.S., Maass, W.: Approximation schemes for cov-
ering and packing problems in image processing and VLSI.
J. ACM 32(1), 130–136 (1985)

9. Li, X.Y., Teng, S.H., Üngör, A.: Biting: Advancing front meets
sphere packing. Int. J. Num. Methods Eng. 49(1–2), 61–81
(2000)

10. Milenkovic, V.J.: Densest translational lattice packing of non-
convex polygons. Proc. 16th ACM Annual Symp. on Computa-
tional Geometry, 280–289 (2000)

11. Shepard, D.M., Ferris, M.C., Ove, R., Ma, L.: Inverse treatment
planning for Gamma Knife radiosurgery. Med. Phys. 27(12),
2748–2756 (2000)

12. Sutou, A., Dai, Y.: Global optimization approach to unequal
sphere packing problems in 3D. J. Optim. Theor. Appl. 114(3),
671–694 (2002)

13. Wang, J.: Medial axis and optimal locations for min-max sphere
packing. J. Combin. Optim. 3, 453–463 (1999)

14. Wu, Q.R.: Treatment planning optimization for Gamma unit ra-
diosurgery. Ph. D. Thesis, The Mayo Graduate School (1996)

Squares and Repetitions
1999; Kolpakov, Kucherov

MAXIME CROCHEMORE1,2, WOJCIECH RYTTER3
1 Department of Computer Science,
King’s College London, London, UK

2 Laboratory of Computer Science,
University of Paris-East, Paris, France

3 Institute of Informatics, Warsaw University,
Warsaw, Poland

Keywords and Synonyms

Powers; Runs; Tandem repeats

ProblemDefinition

Periodicities and repetitions in strings have been exten-
sively studied and are important both in theory and prac-
tice (combinatorics of words, pattern-matching, computa-
tional biology). The words of the type ww andwww, where
w is a nonempty primitive (not of the form uk for an in-
teger k > 1) word, are called squares and cubes, respec-
tively. They are well-investigated objects in combinatorics
on words [16] and in string-matching with small mem-
ory [5].

A string w is said to be periodic iff period(w) � jwj/2,
where period(w) is the smallest positive integer p for which
w[i] = w[i + p] whenever both sides of the equality are de-
fined. In particular each square and cube is periodic.

A repetition in a string x = x1x2 : : : xn is an interval
[i : : j]
 [1 : : n] for which the associated factor x[i : : j] is
periodic. It is an occurrence of a periodic word x[i : : j],
also called a positioned repetition. A word can be associ-
ated with several repetitions, see Fig. 1.

Initially people investigatedmostly positioned squares,
but their number is˝(n log n) [2], hence algorithms com-
puting all of them cannot run in linear time, due to the po-
tential size of the output. The optimal algorithms report-
ing all positioned squares or just a single square were de-
signed in [1,2,3,19]. Unlike this, it is known that onlyO(n)
(un-positioned) squares can appear in a string of length
n [8].

The concept of maximal repetitions, called runs
(equivalent terminology) in [14], has been introduced to
represent all repetitions in a succinct manner. The crucial
property of runs is that there are only O(n) runs in a word
of length n [15,21].

A run in a string x is an interval [i : : j] such that both
the associated string x[i : : j] has period p � (j � i + 1)/2,
and the periodicity cannot be extended to the right nor to
the left: x[i � 1] ¤ x[x + p � 1] and x[j � p + 1] ¤ x[j +
1] when the elements are defined. The set of runs of x is
denoted by RUNS(x) . An example is displayed in Fig. 1.

Key Results

The main results concern fast algorithms for computing
positioned squares and runs, as well as combinatorial esti-
mation on the number of corresponding objects.

Theorem 1 (Crochemore [1], Apostolico-Preparata [2],
Main-Lorentz [19]) There exists an O(n log n)worst-case

Squares and Repetitions S 875

Squares and Repetitions, Figure 1
The structure of RUNS(x) where x = baababaababbabaababaab = bz2(zR)2b, for z = aabab. The operation �R is reversing the
string

Squares and Repetitions, Figure 2
The f-factorization of the example string x = baababaababbabaababaab and the set of its internal runs; all other runs overlap
factorization points

time algorithm for computing all the occurrences of squares
in a string of length n.

Techniques used to design the algorithms are based on
partitioning, suffix trees, and naming segments. A simi-
lar result has been obtained by Franek, Smyth, and Tang
using suffix arrays [11]. The key component in the next al-
gorithm is the function described in the following lemma.

Lemma 2 (Main-Lorentz [19]) Given two square-free
strings u and v, reporting if uv contains a square centered
in u can be done in worst-case time O(juj).

Using suffix trees or suffix automata together with the
function derived from the lemma, the following fact has
been shown.

Theorem 3 (Crochemore [3], Main-Lorentz [19]) Test-
ing the square-freeness of a string of length n can be done in
worst-case time O(n log a), where a is the size of the alpha-
bet of the string.

As a consequence of the algorithms and of the estimation
on the number of squares, the most important result re-
lated to repetitions can be formulated as follows.

Theorem 4 (Kolpakov-Kucherov [15], Rytter [21],
Crochemore-Ilie [4])
(1) All runs in a string can be computed in linear time (on

a fixed-size alphabet).
(2) The number of all runs is linear in the length of the

string.

The point (2) is very intricate, it is of purely combinato-
rial nature and has nothing to do with the algorithm. We

sketch shortly the basic components in the constructive
proof of the point (1). The main idea is to use, as for the
previous theorem, the f-factorization (see [3]): a string x
is decomposed into factors u1; u2; : : : ; uk , where ui is the
longest segment which appears before (possibly with over-
lap) or is a single letter if the segment is empty.

The runs which fit in a single factor are called internal
runs, other runs are called here overlapping runs. There
are three crucial facts:
� all overlapping runs can be computed in linear time,
� each internal run is a copy of an earlier overlapping

run,
� the f-factorization can be computed in linear time (on

a fixed-size alphabet) if we have the suffix tree or suffix
automaton of the string. Figure 2 shows f-factorization
and internal runs of an example string.
It follows easily from the definition of the f-factoriza-

tion that if a run overlaps two (consecutive) factors uk�1
and uk then its size is at most twice the total size of these
two factors.

Figure 3 shows the basic idea for computing runs that
overlap u v in time O(juj + jvj). Using similar tables as
in the Morris–Pratt algorithm (border and prefix tables),
see [6], we can test the continuation of a period p from po-
sition p in v to the left and to the right. The corresponding
tables can be constructed in linear time in a preprocessing
phase. After computing all overlapping runs the internal
runs can be copied from their earlier occurrences by pro-
cessing the string from left to right.

Another interesting result concerning periodicities is
the following lemma and its fairly immediate corollary.

876 S Squares and Repetitions

Squares and Repetitions, Figure 3
If an overlapping run with period p starts in u, ends in v, and its
part in v is of size at least p then it is easily detectable by comput-
ing continuations of the periodicity p in two directions: left and
right

Lemma 5 (Three Prefix Squares, Crochemore-
Rytter [5]) If u, v, and w are three primitive words
satisfying: juj < jvj < jwj, uu is a prefix of vv, and vv
is a prefix of ww, then juj + jvj � jwj

Corollary 1 Any nonempty string x possesses less than
log˚ jyj prefixes that are squares.

In the configuration of the lemma, a second consequence
is that uu is a prefix of w. Therefore, a position in a string
x cannot be the largest position of more than two squares,
which yields the next corollary. A simple direct proof of it
is by Ilie [13], see also [17].

Corollary 2 (Fraenkel and Simpson [8]) Any string x
contains at most 2jxj (different) squares, that is: cardfu j
u primitive and u2 factor of yg � 2jxj :

The structure of all squares and of un-positioned runs has
been also computed within the same time complexities as
above in [18] and [12].

Applications

Detecting repetitions in strings is an important element
of several questions: pattern matching, text compression,
and computational biology to quote a few. Pattern-match-
ing algorithms have to cope with repetitions to be effi-
cient as these are likely to slow down the process; the large
family of dictionary-based text compression methods use
a weaker notion of repeats (like the software gzip); repeti-
tions in genomes, called satellites, are intensively studied
because, for example, some over-repeated short segments
are related to genetic diseases; some satellites are also used
in forensic crime investigations.

Open Problems

The most intriguing question remains the asymptotically
tight bound for the maximum number �(n) of runs in
a string of size n. The first proof (by painful induction)
was quite difficult and has not produced any concrete con-
stant coefficient in the O(n) notation. This subject has

been studied in [9,10,22,23]. The best-known lower bound
of approximately 0:927 n is from [10]. The exact number
of runs has been considered for special strings: Fibonacci
words and (more generally) Sturmian words [7,14,20]. It is
proved in a structural and intricate manner in the full ver-
sion of [21] that �(n) � 3:44 n, by introducing a sparse-
neighbors technique. The neighbors are runs for which
both the distance between their starting positions is small
and the difference between their periods is also propor-
tionally small (according to some fixed coefficient of pro-
portionality). The occurrences of neighbors satisfy certain
sparsity properties which imply the linear upper bound.
Several variations for the definitions of neighbors and
sparsity are possible. Considering runs having close cen-
ters the bound has been lowered to 1:6 n in [4].

As a conclusion, we believe that the following fact is
valid.

Conjecture: A string of length n contains less than n runs,
i. e., jRUNSj(n) < n.

Cross References

Elements of the present entry are of main importance for
run-length compression as well as for� Run-length
Compressed Pattern Matching. They are also related to
the� Approximate Tandem Repeats entries because
“tandem repeat” is a synonym of repetition and
“power.”

Recommended Reading

1. Apostolico, A., Preparata, F.P.: Optimal off-line detection of
repetitions in a string. Theor. Comput. Sci. 22(3), 297–315
(1983)

2. Crochemore, M.: An optimal algorithm for computing the rep-
etitions in a word. Inform. Process. Lett. 12(5), 244–250 (1981)

3. Crochemore, M. : Transducers and repetitions. Theor. Comput.
Sci. 45(1), 63–86 (1986)

4. Crochemore, M., Ilie, L.: Analysis of maximal repetitions in
strings. J. Comput. Sci. (2007)

5. Crochemore, M., Rytter, W.: Squares, cubes, and time-space ef-
ficient string searching. Algorithmica 13(5), 405–425 (1995)

6. Crochemore, M., Rytter, W.: Jewels of stringology. World Scien-
tific, Singapore (2003)

7. Franek, F., Karaman, A., Smyth, W.F.: Repetitions in Sturmian
strings. Theor. Comput. Sci. 249(2), 289–303 (2000)

8. Fraenkel, A.S., Simpson, R.J.: How many squares can a string
contain? J. Comb. Theory Ser. A 82, 112–120 (1998)

9. Fraenkel, A.S., Simpson, R.J.: The Exact Number of Squares in
Fibonacci Words. Theor. Comput. Sci. 218(1), 95–106 (1999)

10. Franek, F., Simpson, R.J. , and Smyth, W.F.: The maximum num-
ber of runs in a string. In: Proc. 14-th Australian Workshop on
Combinatorial Algorithms, pp. 26–35. Curtin University Press,
Perth (2003)

Stable Marriage S 877

11. Franek, F., Smyth, W.F., Tang, Y.: Computing all repeats using
suffix arrays. J. Autom. Lang. Comb. 8(4), 579–591 (2003)

12. Gusfield, D.and Stoye, J.: Linear time algorithms for finding and
representing all the tandem repeats in a string. J. Comput. Syst.
Sci. 69(4), 525–546 (2004)

13. Ilie, L.: A simple proof that a word of length n has at most
2n distinct squares. J. Combin. Theory, Ser. A 112(1), 163–164
(2005)

14. Iliopoulos, C., Moore, D., Smyth, W.F.: A characterization of the
squares in a Fibonacci string. Theor. Comput. Sci. 172 281–291
(1997)

15. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in
a word in linear time. In: Proceedings of the 40th Symposium
on Foundations of Computer Science, pp. 596–604. IEEE Com-
puter Society Press, Los Alamitos (1999)

16. Lothaire, M. (ed.): Algebraic Combinatorics on Words. Cam-
bridge University Press, Cambridge (2002)

17. Lothaire, M. (ed.): Applied Combinatorics on Words. Cam-
bridge University Press, Cambridge (2005)

18. Main, M.G.: Detecting leftmost maximal periodicities. Discret.
Appl. Math. 25, 145–153 (1989)

19. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all
repetitions in a string. J. Algorithms 5(3), 422–432 (1984)

20. Rytter, W.: The structure of subword graphs and suffix trees
of Fibonacci words. In: Implementation and Application of
Automata, CIAA 2005. Lecture Notes in Computer Science,
vol. 3845, pp. 250–261. Springer, Berlin (2006)

21. Rytter, W.: The Number of Runs in a String: Improved Analy-
sis of the Linear Upper Bound. In: Proceedings of the 23rd An-
nual Symposium on Theoretical Aspects of Computer Science.
Lecture Notes in Computer Science, vol. 3884, pp. 184–195.
Springer, Berlin (2006)

22. Smyth, W.F.: Repetitive perhaps, but certainly not boring.
Theor. Comput. Sci. 249(2), 343–355 (2000)

23. Smyth, W.F.: Computing patterns in strings. Addison-Wesley,
Boston, MA (2003)

StableMarriage
1962; Gale, Shapley

ROBERT W. IRVING
Department of Computing Science,
University of Glasgow, Glasgow, UK

Keywords and Synonyms

Stable matching

ProblemDefinition

The objective in stable matching problems is to match to-
gether pairs of elements of a set of participants, taking
into account the preferences of those involved, and fo-
cusing on a stability requirement. The stability property

ensures that no pair of participants would both prefer to
be matched together rather than to accept their allocation
in the matching. Such problems have widespread applica-
tion, for example in the allocation of medical students to
hospital posts, students to schools or colleges, etc.

An instance of the classical Stable Marriage problem
(SM), introduced by Gale and Shapley [2], involves a set
of 2n participants comprising n men fm1; : : : ;mng and
n women fw1; : : : ;wng. Associated with each participant
is a preference list, which is a total order over the partici-
pants of the opposite sex. A man mi prefers woman wj to
woman wk if wj precedes wk on the preference list of mi,
and similarly for the women. A matching M is a bijection
between the sets of men and women, in other words a set
of man-woman pairs so that each man and each woman
belongs to exactly one pair ofM. For a manmi,M(mi) de-
notes the partner of mi in M, i. e., the unique woman wj
such that (mi ;wj) is in M. Similarly, M(wj) denotes the
partner of woman wj inM. A matchingM is stable if there
is no blocking pair, namely a pair (mi ;wj) such that mi
prefers wj toM(mi) and wj prefers mi toM(wj).

Relaxing the requirements that the numbers of men
and women are equal, and that each participant should
rank all of the members of the opposite sex, gives the Sta-
ble Marriage problem with Incomplete lists (SMI). So an in-
stance of SMI comprises a set of n1 men fm1; : : : ;mn1g

and a set of n2 women fw1; : : : ;wn2g, and each partici-
pant’s preference list is a total order over a subset of the
participants of the opposite sex. The implication is that if
woman wj does not appear on the list of man mi then she
is not an acceptable partner formi, and vice versa. A man-
woman pair is acceptable if each member of the pair is
on the preference list of the other, and a matching M is
now a set of acceptable pairs such that each man and each
woman is in atmost one pair ofM. In this context, a block-
ing pair for matching M is an acceptable pair (mi ;wj)
such that mi is either unmatched in M or prefers wj to
M(mi), and likewise, wj is either unmatched or prefers mi
toM(wj). A matching is stable if it has no blocking pair. So
in an instance of SMI, a stable matching need not match all
of the participants.

Gale and Shapley also introduced a many-one version
of stable marriage, which they called the College Admis-
sions problem, but which is now more usually referred to
as the � Hospitals/Residents Problem (HR) because of its
well-known applications in the medical employment field.
This problem is covered in detail in Entry 150 of this vol-
ume.

A comprehensive treatment ofmany aspects of the Sta-
ble Marriage problem, as of 1989, appears in the mono-
graph of Gusfield and Irving [5].

878 S Stable Marriage

Key Results

Theorem 1 For every instance of SM or SMI there is at
least one stable matching.

Theorem 1 was proved constructively by Gale and Shap-
ley [2] as a consequence of the algorithm that they gave to
find a stable matching.

Theorem 2
(i) For a given instance of SM involving n men and

n women, there is a O(n2) time algorithm that finds
a stable matching.

(ii) For a given instance of SMI in which the combined
lengths of all the preference lists is a, there is a O(a)
time algorithm that finds a stable matching.

The algorithm for SMI is a simple extension of that for
SM. Each can be formulated in a variety of ways, but is
most usually expressed in terms of a sequence of ‘propos-
als’ from the members of one sex to the members of the
other. A pseudocode version of the SMI algorithm appears
in Fig. 1, in which the traditional approach of allowing
men to make proposals is adopted.

The complexity bound of Theorem 2(i) first appeared
in Knuth’s monograph on Stable Marriage [11]. The fact
that this algorithm is asymptotically optimal was subse-
quently established by Ng and Hirschberg [15] via an ad-
versary argument. On the other hand, Wilson [19] proved
that the average running time, taken over all possible in-
stances of SM, is O(n log n).

The algorithm of Fig. 1, in its various guises, has come
to be known as the Gale–Shapley algorithm. The variant
of the algorithm given here is calledman-oriented, because
men have the advantage of proposing. Reversing the roles

M = ;;
assign each person to be free; /* i. e., not a member of a pair in M */
while (some man m is free and has not proposed to every woman on his list)

m proposes to w, the first woman on his list to whom he has not proposed;
if (w is free)

add (m;w) to M; /* w acceptsm */
else if (w prefersm to her current partnerm0)

remove (m0;w) from M; /* w rejectsm0, setting m0 free */
add (m;w) to M; /* w acceptsm */

else
M remains unchanged; /* w rejectsm */

return M;

Stable Marriage, Figure 1
The Gale–Shapley Algorithm

of men and women gives the woman-oriented variant. The
‘advantage’ of proposing is remarkable, as spelled out in
the next theorem.

Theorem 3 Theman-oriented version of the Gale–Shapley
algorithm for SM or SMI yields the man-optimal stable
matching in which each man has the best partner that he
can have in any stable matching, but in which each woman
has her worst possible partner. The woman-oriented version
yields the woman-optimal stable matching, which has anal-
ogous properties favoring the women.

The optimality property of Theorem 3 was established
by Gale and Shapley [2], and the corresponding ‘pessi-
mality’ property was first observed by McVitie and Wil-
son [14].

As observed earlier, a stable matching for an instance
of SMI need not match all of the participants. But the
following striking result was established by Gale and So-
tomayor [3] and Roth [17] (in the context of the more gen-
eral HR problem).

Theorem 4 In an instance of SMI, all stable matchings
have the same size and match exactly the same subsets of
the men and women.

For a given instance of SM or SMI, there may be many
different stable matchings. Indeed Knuth [11] showed that
the maximum possible number of stable matchings grows
exponentially with the number of participants. He also
pointed out that the set of stable matchings forms a dis-
tributive lattice under a natural dominance relation, a re-
sult attributed to Conway. This powerful algebraic struc-
ture that underlies the set of stable matchings can be ex-
ploited algorithmically in a number of ways. For example,

Stable Marriage S 879

Gusfield [4] showed how all k stable matchings for an in-
stance of SM can be generated in O(n2 + kn) time. � Op-
timal Stable Marriage.

Extensions of these problems that are important in
practice, so-called SMT and SMTI (extensions of SM and
SMI respectively), allow the presence of ties in the prefer-
ence lists. In this context, three different notions of stabil-
ity have been defined [7] –weak, strong and super-stability,
depending on whether the definition of a blocking pair re-
quires that both members should improve, or at least one
member improves and the other is no worse off, or merely
that neither member is worse off. The following theorem
summarizes the basic algorithmic results for these three
varieties of stable matchings.

Theorem 5 For a given instance of SMT or SMTI:
(i) A weakly stable matching is guaranteed to exist, and

can be found in O(n2) or O(a) time, respectively;
(ii) A super-stable matching may or may not exist; if one

does exist it can be found in O(n2) or O(a) time respec-
tively;

(iii) A strongly stable matching may or may not exist; if one
does exist it can be found in O(n3) or O(na) time, re-
spectively.

Theorem 5 parts (i) and (ii) are due to Irving [7] (for SMT)
andManlove [12] (for SMTI). Part (iii) is due toMehlhorn
et al. [10], who improved earlier algorithms of Irving and
Manlove.

It turns out that, in contrast to the situation described
by Theorem 4(i), weakly stable matchings in SMTI can
have different sizes. The natural problem of finding a max-
imum cardinality weakly stable matching, even under se-
vere restrictions on the ties, is NP-hard [13].� StableMar-
riage with Ties and Incomplete Lists explores this problem
further.

The Stable Marriage problem is an example of a bipar-
tite matching problem. The extension in which the bipar-
tite requirement is dropped is the so-called Stable Room-
mates (SR) problem.

Gale and Shapley had observed that, unlike the case
of SM, an instance of SR may or may not admit a stable
matching, and Knuth [11] posed the problem of finding an
efficient algorithm for SR, or proving it NP-complete. Irv-
ing [6] established the following theorem via a non-trivial
extension of the Gale–Shapley algorithm.

Theorem 6 For a given instance of SR, there exists a O(n2)
time algorithm to determine whether a stable matching ex-
ists, and if so to find such a matching.

Variants of SR may be defined, as for SM, in which pref-
erence lists may be incomplete and/or contain ties – these
are denoted by SRI, SRT and SRTI – and in the presence of
ties, the three flavors of stability, weak, strong and super,
are again relevant.

Theorem 7 For a given instance of SRT or SRTI:
(i) A weakly stable matching may or may not exist, and it

is an NP-complete problem to determine whether such
a matching exists;

(ii) A super-stable matching may or may not exist; if one
does exist it can be found in O(n2) or O(a) time respec-
tively;

(iii) A strongly stable matching may or may not exist; if one
does exist it can be found in O(n4) or O(a2) time, re-
spectively.

Theorem 7 part (i) is due to Ronn [16], part (ii) is due to
Irving and Manlove [9], and part (iii) is due to Scott [18].

Applications

Undoubtedly the best known and most important appli-
cations of stable matching algorithms are in centralized
matching schemes in the medical and educational do-
mains. � Hospitals/Residents Problem includes a sum-
mary of some of these applications.

Open Problems

The parallel complexity of stable marriage remains open.
The best known parallel algorithm for SMI is due to Feder,
Megiddo and Plotkin [1] and has O(

p
a log3 a) running

time using a polynomially bounded number of processors.
It is not known whether the problem is in NC, but nor is
there a proof of P-completeness.

One of the open problems posed by Knuth in his early
monograph on stable marriage [11] was that of determin-
ing the maximum possible number xn of stable matchings
for any SM instance involving n men and n women. This
problem remains open, although Knuth himself showed
that xn grows exponentially with n. Irving and Leather [8]
conjecture that, when n is a power of 2, this function satis-
fies the recurrence

xn = 3x2n/2 � 2x4n/4 :

Many open problems remain in the setting of weak
stability, such as finding a good approximation algorithm
for a maximum cardinality weakly stable matching – see
� Stable Marriage with Ties and Incomplete Lists – and
enumerating all weakly stable matchings efficiently.

880 S Stable Marriage and Discrete Convex Analysis

Cross References

� Hospitals/Residents Problem
� Optimal Stable Marriage
� Ranked Matching
� Stable Marriage and Discrete Convex Analysis
� Stable Marriage with Ties and Incomplete Lists
� Stable Partition Problem

Recommended Reading

1. Feder, T., Megiddo, N., Plotkin, S.A.: A sublinear parallel algo-
rithm for stable matching. Theor. Comput. Sci. 233(1–2), 297–
308 (2000)

2. Gale, D., Shapley, L.S.: College admissions and the stability of
marriage. Am. Math. Monthly 69, 9–15 (1962)

3. Gale, D., Sotomayor, M.: Some remarks on the stable matching
problem. Discret. Appl. Math. 11, 223–232 (1985)

4. Gusfield, D.: Three fast algorithms for four problems in stable
marriage. SIAM J. Comput. 16(1), 111–128 (1987)

5. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Struc-
ture and Algorithms. MIT Press, Cambridge (1989)

6. Irving, R.W.: An efficient algorithm for the stable roommates
problem. J. Algorithms 6, 577–595 (1985)

7. Irving, R.W.: Stable marriage and indifference. Discret. Appl.
Math. 48, 261–272 (1994)

8. Irving, R.W., Leather, P.: The complexity of counting stablemar-
riages. SIAM J. Comput. 15(3), 655–667 (1986)

9. Irving, R.W., Manlove, D.F.: The stable roommates problem
with ties. J. Algorithms 43, 85–105 (2002)

10. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Strongly sta-
ble matchings in time O(nm), and extension to the H/R prob-
lem. In: Proceedings of STACS 2004: the 21st Symposium on
Theoretical Aspects of Computer Science. Lecture Notes in
Computer Science, vol. 2996, pp. 222–233. Springer, Berlin
(2004)

11. Knuth, D.E.: Mariages Stables. Les Presses de L’Université de
Montréal, Montréal (1976)

12. Manlove, D.F.: Stable marriage with ties and unacceptable
partners. Technical Report TR-1999-29, University of Glasgow,
Department of Computing Science, January (1999)

13. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.:
Hard variants of stable marriage. Theor. Comput. Sci. 276(1–2),
261–279 (2002)

14. McVitie, D., Wilson, L.B.: The stable marriage problem. Com-
mun. ACM 14, 486–490 (1971)

15. Ng, C., Hirschberg, D.S.: Lower bounds for the stable marriage
problem and its variants. SIAM J. Comput. 19, 71–77 (1990)

16. Ronn, E.: NP-complete stable matching problems. J. Algo-
rithms 11, 285–304 (1990)

17. Roth, A.E.: The evolution of the labor market for medical in-
terns and residents: a case study in game theory. J. Polit. Econ.
92(6), 991–1016 (1984)

18. Scott, S.: A study of stable marriage problems with ties. Ph. D.
thesis, University of Glasgow, Department of Computing Sci-
ence (2005)

19. Wilson, L.B.: An analysis of the stable marriage assignment al-
gorithm. BIT 12, 569–575 (1972)

StableMarriage
and Discrete Convex Analysis
2000; Eguchi, Fujishige, Tamura, Fleiner

AKIHISA TAMURA
Department of Mathematics, Keio University,
Yokohama, Japan

Keywords and Synonyms

Stable matching

ProblemDefinition

In the stable marriage problem first defined by Gale and
Shapley [7], there are one set each of men and women hav-
ing the same size, and each person has a strict preference
order on persons of the opposite gender. The problem is
to find a matching such that there is no pair of a man
and a woman who prefer each other to their partners in
the matching. Such a matching is called a stable marriage
(or stable matching). Gale and Shapley showed the exis-
tence of a stable marriage and gave an algorithm for find-
ing one. Fleiner [4] extended the stable marriage problem
to the framework of matroids, and Eguchi, Fujishige, and
Tamura [3] extended this formulation to a more general
one in terms of discrete convex analysis, which was devel-
oped by Murota [8,9]. Their formulation is described as
follows.

Let M and W be sets of men and women who at-
tend a dance party at which each person dances a waltz
T times and the number of times that he/she can dance
with the same person of the opposite gender is unlimited.
The problem is to find an “agreeable” allocation of dance
partners, in which each person is assigned at most T per-
sons of the opposite gender with possible repetition. Let
E = M �W , i. e., the set of all man-woman pairs. Also de-
fine E(i) = fig �W for all i 2 M and E(j) = M � f jg for all
j 2 W. Denoting by x(i; j) the number of dances between
man i and woman j, an allocation of dance partners can be
described by a vector x = (x(i; j) : i 2 M; j 2 W) 2 ZE ,
where Z denotes the set of all integers. For each y 2 ZE

and k 2 M [W , denote by y(k) the restriction of y on
E(k). For example, for an allocation x 2 ZE , x(k) repre-
sents the allocation of person k with respect to x. Each
person k describes his/her preferences on allocations by
using a value function fk : ZE(k) ! R [f�1g, where R
denotes the set of all reals and fk(y) = �1means that al-
location y 2 ZE(k) is unacceptable for k. Note that the val-
uation of each person on allocations is determined only by
his/her allocations. Let dom fk = fy j fk(y) 2 Rg. Assume

Stable Marriage and Discrete Convex Analysis S 881

that each value function f k satisfies the following assump-
tion:

(A) dom fk is bounded and hereditary, and has 0 as
the minimum point, where 0 is the vector of all zeros and
heredity means that for any y; y0 2 ZE(k) ; 0 � y0 � y 2
dom fk implies y0 2 dom fk .

For example, the following value functions with
M = f1g andW = f2; 3g

f1(x(1; 2); x(1; 3)) =8
<
:
10(x(1; 2)+x(1; 3))�x(1; 2)2�x(1; 3)2 if x(1; 2); x(1; 3) � 0

and x(1; 2)+x(1; 3) � 3
�1 otherwise,

f j(x(1; j)) =

(
x(1; j) if x(1; j) 2 f0; 1; 2; 3g(j = 2; 3)
�1 otherwise

represent the case where (1) everyone wants to dance as
many times, up to three, as possible, and (2) man 1 wants
to divide his dances between women 2 and 3 as equally as
possible. Allocations (x(1; 2); x(1; 3)) = (1; 2) and (2,1) are
stable in the sense below.

A vector x 2 ZE is called a feasible allocation if
x(k) 2 dom fk for all k 2 M [W . An allocation x is said
to satisfy incentive constraints if each person has no incen-
tive to unilaterally decrease the current units of x, that is if
it satisfies

fk(x(k)) = maxf fk(y) j y � x(k)g (8k 2 M[W): (1)

An allocation x is called unstable if it does not satisfy in-
centive constraints or there exist i 2 M, j 2W , y0 2 ZE(i)

and y00 2 ZE(j) such that

fi(x(i)) < fi(y0) ; (2)

y0(i; j0) � x(i; j0) (8 j0 2W n f jg) ; (3)

f j(x(j)) < f j(y00); (4)

y00(i0; j) � x(i0; j) (8i0 2 M n fig) ; (5)

y0(i; j) = y00(i; j) : (6)

Conditions (2) and (3) say that man i can strictly increase
his valuation by changing the current number of dances
with jwithout increasing the numbers of dances with other
women, and (4) and (5) describe a similar situation for
women. Condition (6) requires that i and j agree on the

number of dances between them. An allocation x is called
stable if it is not unstable.

Problem 1 Given disjoint sets M and W, and value func-
tions fk : ZE(k) ! R[f�1g for k 2 M [W satisfying as-
sumption (A), find a stable allocation x.

Remark 1 A time schedule for a given feasible allocation
can be given by a famous result on graph coloring, namely,
“any bipartite graph can be edge-colorable with the maxi-
mum degree colors.”

Key Results

The work of Eguchi, Fujishige, and Tamura [3] gave a so-
lution to Problem 1 in the case where each value function
f k is M\-concave.

Discrete Convex Analysis: M\-Concave Functions

Let V be a finite set. For each S
 V , eS denotes the char-
acteristic vector of S defined by: eS(v) = 1 if v 2 S and
eS(v) = 0 otherwise. Also define e0 as the zero vector in
ZV . For a vector x 2 ZV , its positive support supp+(x)
and negative support supp�(x) is defined by supp+(x) =
fu 2 V j x(u) > 0g and supp�(x) = fu 2 V j x(u) < 0g.
A function f : ZV ! R [f�1g is called M\-concave
if it satisfies the following condition 8x; y 2 dom f ,
8u 2 supp+(x � y), 9v 2 supp�(x � y) [f0g :

f (x) + f (y) � f (x � eu + ev) + f (y + eu � ev) :

The above condition says that the sum of the function val-
ues at two points does not decrease as the points symmet-
rically move one or two steps closer to each other on the
set of integral lattice points of ZV . This is a discrete ana-
logue of the fact that for an ordinary concave function the
sum of the function values at two points does not decrease
as the points symmetrically move closer to each other on
the straight line segment between the two points.

Example 1 A nonempty family T of subsets of V is called
a laminar family if X \ Y = ;, X
 Y or Y
 X holds
for every X;Y 2 T . For a laminar family T and a fam-
ily of univariate concave functions fY : R! R [f�1g
indexed by Y 2 T , the function f : ZV ! R[f�1g de-
fined by

f (x) =
X
Y2T

fY

 X
v2Y

x(v)

!
(8x 2 ZV)

is M\-concave. The stable marriage problem can be for-
mulated as Problem 1 by using value functions of this type.

882 S Stable Marriage and Discrete Convex Analysis

Example 2 For the independence family I
 2V of a ma-
troid on V and w 2 RV , the function f : ZV ! R[f�1g
defined by

f (x) =

(P
u2X w(u) if x = eX for someX 2 I

�1 otherwise

(8x 2 ZV)

is M\-concave. Fleiner [4] showed that there always exists
a stable allocation for value functions of this type.

Theorem 1 ([6]) Assume that the value functions
fk (k 2 M [W) are M\-concave satisfying (A). Then
a feasible allocation x is stable if and only if there exist
zM = (z(i) j i 2 M) 2 (Z [f+1g)E and zW = (z(j) j
j 2W) 2 (Z [f+1g)E such that

x(i) 2 argmaxf fi(y) j y � z(i)g (8i 2 M) ; (7)

x(j) 2 argmaxf f j(y) j y � z(j)g (8 j 2W) ; (8)

zM(e) = +1 or zW (e) = +1 (8e 2 E) ; (9)

where argmaxf fi(y) j y � z(i)g denotes the set of all
maximizers of f i under the constraints y � z(i).

Theorem 2 ([3]) Assume that the value functions
fk (k 2 M [W) are M\-concave satisfying (A). Then there
always exists a stable allocation.

Eguchi, Fujishige, and Tamura [3] proved Theorem 2 by
showing that the following algorithm finds a feasible allo-
cation x, and zM , zW satisfying (7), (8), and (9).

Algorithm EXTENDED-GS
Input: M\-concave functions fM ; fW with fM(x) =

P
i2M

fi(x(i)) and fW (x) =
P

j2W f j(x(j)) ;
Output: (x; zM ; zW) satisfying (7), (8), and (9);

zM := (+1; � � � ;+1),zW := xW := 0;
repeat{

let xM be any element in
argmaxf fM(y) j xW � y � zMg ;
let xW be any element in
argmaxf fW(y) j y � xMg ;
for each e 2 E with xM(e) > xW (e) {

zM(e) := xW (e) ;
zW (e) := +1 ;

} ;
} until xM = xW ;
return (xM; zM ; zW _ xM).

Here zW _ xM is defined by (zW _ xM)(e) = maxfzW (e);
xM(e)g for all e 2 E.

Applications

Abraham, Irving, and Manlove [1] dealt with a student-
project allocation problem which is a concrete example of
models in [4] and [3], and discussed the structure of stable
allocations.

Fleiner [5] generalized the stable marriage problem
and its extension in [4] to a wide framework, and showed
the existence of a stable allocation by using a fixed point
theorem.

Fujishige and Tamura [6] proposed a common gener-
alization of the stable marriage problem and the assign-
ment game defined by Shapley and Shubik [10] by utiliz-
ing M\-concave functions, and gave a constructive proof
of the existence of a stable allocation.

Open Problems

Algorithm EXTENDED-GS solves the maximization prob-
lem of an M\-concave function in each iteration. A max-
imization problem of an M\-concave function f on E
can be solved in polynomial time in jEj and log L, where
L = maxfjjx � yjj1 j x; y 2 dom f g, provided that the
function value f (x) can be calculated in constant time for
each x [11,12]. Eguchi, Fujishige, and Tamura [3] showed
that EXTENDED-GS terminates after at most L iterations,
where L is defined by fjjxjj1 j x 2 dom fMg in this case,
and there exist a series of instances in which EXTENDED-
GS requires numbers of iterations proportional to L. On
the other hand, Baïou and Balinski [2] gave a polynomial
time algorithm in jEj for the special case where f M and
f W are linear on rectangular domains. Whether a stable
allocation for the general case can be found in polynomial
time in jEj and log L or not is open.

Cross References

� Assignment Problem
� Hospitals/Residents Problem
� Optimal Stable Marriage
� Stable Marriage
� Stable Marriage with Ties and Incomplete Lists

Recommended Reading

1. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two Algorithms for
the Student-Project Allocation Problem. J. Discret. Algorithms
5, 73–90 (2007)

2. Baïou, M., Balinski, M.: Erratum: The Stable Allocation (or Or-
dinal Transportation) Problem. Math. Oper. Res. 27, 662–680
(2002)

3. Eguchi, A., Fujishige, S., Tamura, A.: A generalized Gale-Shapley
algorithm for a discrete-concave stable-marriage model. In:

Stable Marriage with Ties and Incomplete Lists S 883

Ibaraki, T., Katoh, N., Ono, H. (eds.) Algorithms and Com-
putation: 14th International Symposium, ISAAC2003. LNCS,
vol. 2906, pp. 495–504. Springer, Berlin (2003)

4. Fleiner, T.: A matroid generalization of the stable matching
polytope. In: Gerards, B., Aardal K. (eds.) Integer Programming
and Combinatorial Optimization: 8th International IPCO Con-
ference. LNCS, vol. 2081, pp. 105–114. Springer, Berlin (2001)

5. Fleiner, T.: A Fixed Point Approach to Stable Matchings and
Some Applications. Math. Oper. Res. 28, 103–126 (2003)

6. Fujishige, S., Tamura, A.: A Two-SidedDiscrete-ConcaveMarket
with Bounded Side Payments: An Approach by Discrete Con-
vex Analysis. Math. Oper. Res. 32, 136–155 (2007)

7. Gale, D., Shapley, S.L.: College admissions and the stability of
marriage. Am. Math. Mon. 69, 9–15 (1962)

8. Murota, K.: Discrete Convex Analysis. Math. Program. 83, 313–
371 (1998)

9. Murota, K.: Discrete Convex Analysis. Soc. Ind. Appl. Math.
Philadelphia (2003)

10. Shapley, S.L., Shubik, M.: The Assignment Game I: The Core. Int.
J. Game. Theor. 1, 111–130 (1971)

11. Shioura, A.: Fast Scaling Algorithms for M-convex Function
Minimization with Application to the Resource Allocation
Problem. Discret. Appl. Math. 134, 303–316 (2004)

12. Tamura, A.: Coordinatewise Domain Scaling Algorithm for M-
convex Function Minimization. Math. Program. 102, 339–354
(2005)

StableMarriage with Ties
and Incomplete Lists
2007; Iwama, Miyazaki, Yamauchi

KAZUO IWAMA1, SHUICHI MIYAZAKI2
1 School of Informatics, Kyoto University, Kyoto, Japan
2 Academic Center for Computing and Media Studies,
Kyoto University, Kyoto, Japan

Keywords and Synonyms

Stable matching problem

ProblemDefinition

In the original setting of the stable marriage problem in-
troduced by Gale and Shapley [2], each preference list has
to include all members of the other party, and further-
more, each preference list must be totally ordered (see en-
try� Stable Marriage also).

One natural extension of the problem is then to allow
persons to include ties in preference lists. In this extension,
there are three variants of the stability definition, super-
stability, strong stability, and weak stability (see below
for definitions). In the first two stability definitions, there
are instances that admit no stable matching, but there is

a polynomial-time algorithm in each case that determines
if a given instance admits a stable matching, and finds one
if exists [8]. On the other hand, in the case of weak stabil-
ity, there always exists a stable matching and one can be
found in polynomial time.

Another possible extension is to allow persons to de-
clare unacceptable partners, so that preference lists may be
incomplete. In this case, every instance admits at least one
stable matching, but a stable matching may not be a per-
fect matching. However, if there are two or more stable
matchings for one instance, then all of them have the same
size [3].

The problem treated in this entry allows both exten-
sions simultaneously, which is denoted as SMTI (Stable
Marriage with Ties and Incomplete lists).

Notations

An instance I of SMTI comprises n men, n women and
each person’s preference list that may be incomplete and
may include ties. If a man m includes a woman w in his
list, w is acceptable to m. wi �m wj means that m strictly
prefers wi to wj in I. wi =m wj means that wi and wj are
tied inm0s list (including the case wi = wj). The statement
wi �m wj is true if and only if wi �m wj or wi =m wj .
Similar notations are used for women’s preference lists.
A matching M is a set of pairs (m,w) such that m is ac-
ceptable to w and vice versa, and each person appears at
most once in M. If a man m is matched with a woman w
inM, it is written as M(m) = w and M(w) = m.

A man m and a woman w are said to form a block-
ing pair for weak stability for M if they are not partners in
M but by matching them, both become better off, namely,
(i) M(m) ¤ w but m and w are acceptable to each other,
(ii) w �m M(m) orm is single inM, and (iii) m �w M(w)
or w is single inM.

Two persons x and y are said to form a blocking pair
for strong stability for M if they are not partners in M but
by matching them, one becomes better off, and the other
does not become worse off, namely, (i) M(x) ¤ y but x
and y are acceptable to each other, (ii) y �x M(x) or x is
single inM, and (iii) x �y M(y) or y is single inM.

A man m and a woman w are said to form a blocking
pair for super-stability for M if they are not partners in M
but by matching them, neither become worse off, namely,
(i) M(m) ¤ w but m and w are acceptable to each other,
(ii) w �m M(m) orm is single inM, and (iii) m �w M(w)
or w is single inM.

A matching M is called weakly stable (strongly stable
and super-stable, respectively) if there is no blocking pair
for weak (strong and super, respectively) stability forM.

884 S Stable Marriage with Ties and Incomplete Lists

Problem 1 (SMTI)
INPUT: n men, n women, and each person’s preference list.
OUTPUT: A stable matching.

Problem 2 (MAX SMTI)
INPUT: n men, n women, and each person’s preference list.
OUTPUT: A stable matching of maximum size.

The following problem is a restriction of MAX SMTI in
terms of the length of preference lists:

Problem 3 ((p, q)-MAX SMTI)
INPUT: n men, n women, and each person’s preference list,
where each man’s preference list includes at most p women,
and each woman’s preference list includes at most q men.
OUTPUT: A stable matching of maximum size.

Definition of Approximation Ratios

A goodness measure of an approximation algorithm T for
a maximization problem is defined as follows: the approxi-
mation ratio of T is maxfopt(x)/T(x)g over all instances x
of size N , where opt(x) and T(x) are the size of the optimal
and the algorithm’s solution, respectively.

Key Results

SMTI andMAX SMTI in Super-Stability
and Strong Stability

Theorem 1 ([16]) There is an O(n2)-time algorithm that
determines if a given SMTI instance admits a super-stable
matching, and finds one if exists.

Theorem 2 ([15]) There is an O(n3)-time algorithm that
determines if a given SMTI instance admits a strongly stable
matching, and finds one if exists.

It is shown that all stable matchings for a fixed instance are
of the same size [16]. So, the above theorems imply that
MAX SMTI can also be solved in the same time complex-
ity.

SMTI andMAX SMTI inWeak Stability

In the case of weak stability, every instance admits at
least one stable matching, but one instance can have sta-
ble matchings of different sizes. If the size is not impor-
tant, a stable matching can be found in polynomial time
by breaking ties arbitrarily and applying the Gale-Shapley
algorithm.

Theorem 3 There is an O(n2)-time algorithm that finds
a weakly stable matching for a given SMTI instance.

However, if larger stable matchings are required, the prob-
lem becomes hard.

Theorem 4 ([5,7,12,17]) MAX SMTI is NP-hard, and
cannot be approximated within 21/19� � for any positive
constant �, unless P = NP. (21/19 ' 1:105)

The current best approximation algorithm is a local search
type algorithm.

Theorem 5 ([13]) There is a polynomial-time approxima-
tion algorithm for MAX SMTI, whose approximation ratio
is at most 15/8(= 1:875).

There are a couple of approximation algorithms for re-
stricted inputs.

Theorem 6 ([6]) There is a polynomial-time randomized
approximation algorithm for MAX SMTI whose expected
approximation ratio is at most 10/7(' 1:429), if in a given
instance, ties appear in only one side and the length of each
tie is two.

Theorem 7 ([6]) There is a polynomial-time randomized
approximation algorithm for MAX SMTI whose expected
approximation ratio is at most 7/4(= 1:75), if in a given in-
stance, the length of each tie is two.

Theorem 8 ([7]) There is a polynomial-time approxima-
tion algorithm for MAX SMTI whose approximation ratio
is at most 2/(1 + L�2), if in a given instance, ties appear in
only one side and the length of each tie is at most L.

Theorem 9 ([7]) There is a polynomial-time approxima-
tion algorithm for MAX SMTI whose approximation ratio
is at most 13/7(' 1:858), if in a given instance, the length
of each tie is two.

(p, q)-MAX SMTI inWeak Stability

Irving et al. show the boundary between P andNP in terms
of the length of preference lists.

Theorem 10 ([11]) (2,1)-MAX SMTI is solvable in time
O(n

3
2 log n).

Theorem 11 ([11]) (3,4)-MAX SMTI is NP-hard, and
cannot be approximated within some constant ı(> 1), un-
less P = NP.

Recently, Manlove proved NP-hardness of (3,3)-MAX
SMTI [18].

Applications

One of the most famous applications of the stable mar-
riage problem is a centralized assignment system between

Stable Partition Problem S 885

medical students (residents) and hospitals. This is an ex-
tension of the stablemarriage problem to amany-one vari-
ant: Each hospital declares the number of residents it can
accept, which may be more than one, while each resident
has to be assigned to at most one hospital. Actually, there
are several applications in the world, known as NRMP in
the US [4], CaRMS in Canada [1], SPA in Scotland [9,10],
and JRMP in Japan [14]. One of the optimization criteria
is clearly the number of matched residents. In a real-world
application such as the above residents matching, hospi-
tals and residents tend to submit short preference lists that
include ties, in which case, the problem can be naturally
considered as MAX SMTI.

Open Problems

One apparent open problem is to narrow the gap of ap-
proximability of MAX SMTI in weak stability, namely,
between 15/8(= 1:875) and 21/19(' 1:105) for general
case. The same problem can be considered for restricted
instances. The reduction shown in [7] creates instances
where ties appear in only one side, and the length of ties
is two. So, considering Theorem 8 for L = 2, there is a gap
between 8/5(= 1:6) and 21/19(' 1:105) in this case. It is
shown in [7] that if the 2 � � lower bound (for any posi-
tive constant �) on the approximability of Minimum Ver-
tex Cover is derived, the same reduction shows the 5/4� ı
lower bound (for any positive constant ı) on the approx-
imability of MAX SMTI.

Cross References

� Assignment Problem
�Hospitals/Residents Problem
�Optimal Stable Marriage
� Ranked Matching
� Stable Marriage
� Stable Marriage and Discrete Convex Analysis
� Stable Partition Problem

Recommended Reading
1. Canadian Resident Matching Service (CaRMS) http://www.

carms.ca/. Accessed 27 Feb 2008, JST
2. Gale, D., Shapley, L.S.: College admissions and the stability of

marriage. Am. Math. Monthly 69, 9–15 (1962)
3. Gale, D., Sotomayor, M.: Some remarks on the stable matching

problem. Discret. Appl. Math. 11, 223–232 (1985)
4. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Struc-

ture and Algorithms. MIT Press, Boston, MA (1989)
5. Halldórsson, M.M., Irving, R.W., Iwama, K., Manlove, D.F.,

Miyazaki, S., Morita, Y., Scott, S.: Approximability results for sta-
blemarriage problems with ties. Theor. Comput. Sci. 306, 431–
447 (2003)

6. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.:
Randomized approximation of the stable marriage problem.
Theor. Comput. Sci. 325(3), 439–465 (2004)

7. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Im-
proved approximation of the stable marriage problem. Proc.
ESA 2003. LNCS 2832, pp. 266–277. (2003)

8. Irving, R.W.: Stable marriage and indifference. Discret. Appl.
Math. 48, 261–272 (1994)

9. Irving, R.W.: Matching medical students to pairs of hospi-
tals: a new variation on a well-known theme. Proc. ESA 98.
LNCS 1461, pp. 381–392. (1998)

10. Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents
problem with ties. Proc. SWAT 2000. LNCS 1851, pp. 259–271.
(2000)

11. Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with
ties and bounded length preference lists. Proc. the 2nd Algo-
rithms and Complexity in Durhamworkshop, Texts in Algorith-
mics, College Publications (2006)

12. Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y.: Stable mar-
riage with incomplete lists and ties. Proc. ICALP 99. LNCS 1644,
pp. 443–452. (1999)

13. Iwama, K., Miyazaki, S., Yamauchi, N.: A 1.875-approximation
algorithm for the stable marriage problem. Proc, SODA 2007,
pp. 288–297. (2007)

14. Japanese Resident Matching Program (JRMP) http://www.
jrmp.jp/

15. Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Strongly sta-
ble matchings in time O(nm) and extension to the hospitals-
residents problem. Proc. STACS 2004. LNCS (2996), pp. 222–
233. (2004)

16. Manlove, D.F.: Stable marriage with ties and unacceptable
partners. Technical Report no. TR-1999-29 of the Computing
Science Department of Glasgow University (1999)

17. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.:
Hard variants of stable marriage. Theor. Comput. Sci. 276(1–2),
261–279 (2002)

18. Manlove, D.F.: private communication (2006)

StableMatching
�Market Games and Content Distribution
� Stable Marriage
� Stable Marriage and Discrete Convex Analysis
� Stable Marriage with Ties and Incomplete Lists

Stable Partition Problem
2002; Cechlárová, Hajduková

KATARÍNA CECHLÁROVÁ
Faculty of Science, Institute of Mathematics,
P.J. Šafárik University, Košice, Slovakia

Keywords and Synonyms

In the economists community these models are often re-
ferred to as Coalition formation games [4,7], or Hedonic

http://www.carms.ca/
http://www.carms.ca/
http://www.jrmp.jp/
http://www.jrmp.jp/

886 S Stable Partition Problem

games [3,6,16]; some variants correspond to the Directed
cycle cover problems [1]. Important special cases are the
Stable Matching Problems [17]. .

ProblemDefinition

In the Stable Partition Problem a set of participants has to
be split into several disjoint sets called coalitions. The re-
sulting partition should fulfill some stability requirements
that take into account the preferences of participants.

Various variants of this problem arise if the partici-
pants are required to express their preferences over all the
possible coalitions to which they could belong or when
only preferences over other players are given and those are
then extended to preferences over coalitions. Sometimes
one seeks rather a permutation of players and the partition
is given by the cycles of the permutation [1, 19].

Notation

An instance of the Stable Partition Problem (SPP for short)
is a pair (N ,P), where N is a finite set of participants and
P the collection of their preferences, called the preference
profile. If the preferences of participants are given as lin-
early ordered lists of the coalitions to which a particular
participant can belong (i. e. participant i writes a list of
subsets of N that contain i), we say that the instance of
the SPP is in the LC form (list of coalitions). A special case
of the SPP in the LC form is obtained when participants
do not care about the actual content of the coalitions, only
about their sizes. Preferences are then called anonymous.

A more succinct representation is obtained when each
participant i linearly orders only individual participants,
or more precisely, a subset of them – these are acceptable
for i. In this case the SPP is in the LP form (list of par-
ticipants). With the exception of Stable Matchings, when
the obtained partitions are allowed to contain only single-
tons or a two-element sets, preferences over participants
have to be extended to preferences over coalitions. Algo-
rithmically, the most intensively studied are the following
extensions:

B-preferences – a participant orders coalitions first on
the basis of the most preferred (briefly best) member
of the coalition, and if those are equal or tied, the coali-
tion with smaller cardinality is preferred;

W -preferences – a participant orders coalitions on the
basis of the least preferred (briefly worst) member of
the coalition;

BW -preferences – a participant orders coalitions first on
the basis of the best member of the coalition, and if

those are equal or tied, the coalition with a more pre-
ferred worst member is preferred.

The above preferences are said to be strict, if the original
preferences over individuals are strict linear orders and
they are called dichotomous if all acceptable participants
are tied in each preference list. The presence of ties very
often leads to different computational results compared to
the case with strict preferences.

In additively separable preferences it is supposed that
for each i 2 N there exists a function vi : N ! R such
that i prefers a coalition S to coalition T if and only
if
P

j2S vi(j) >
P

j2T vi (j). Additively separable prefer-
ences and their various variants are studied in [7].

Another approach is presented in [16]. The authors
call these preferences simple and it is supposed that for
each participant i a set Fi of friends and a set Ei of ene-
mies are given. A participant i has appreciation of friends
when he prefers a coalition S to a coalition T if jS \ Fi j >
jT \ Fi j and he has aversion against enemies when he
prefers a coalition S to a coalition T if jS \ Ei j < jT \ Ei j.

Stability Definitions

LetM(i) denote the set of partitionM that contains partic-
ipant i.

Definition 1 A set Z
 N is called blocking for partition
M, if each participant i 2 Z prefers Z toM(i). A set Z
 N
is called weakly blocking for partition M, if each partici-
pant i 2 Z prefers Z to M(i) or is indifferent between Z
and M(i) and at least one participant j 2 Z prefers Z to
M(j).

A participant i is said to be covered if jM(i)j � 2.
In the literature, several different stability definitions

were studied, including Nash stability, individual stability,
contractual individual stability, Pareto optimality etc. An
interested reader can consult [4] or [6]. Algorithmically,
themost deeply studied notions are the core and the strong
core.

Definition 2 A partition M is called a core partition, if
there is no blocking set for M. A partition M is called
a strong core partition, if there is no weakly blocking set
forM.

Problems

Several decision or computational problems arise in the
context of the SPP:
� STABILITYTEST: Given (N,P) and a partition M of N,

isM stable?

Stable Partition Problem S 887

� EXISTENCE: Does a stable partition for a given (N,P)
exist?

� CONSTRUCTION: If a stable partition for a given (N,P)
exists, find one.

� STRUCTURE: Describe the structure of stable partitions
for a given (N ,P).

Their complexity depends on the particular type of prefer-
ences used.

Key Results

SPP in LC Form

EXISTENCE for core partitions is NP-complete even when
the given preferences over coalitions are strict or anony-
mous [3].

W -preferences

The SPP with strictW -preferences hasmany features sim-
ilar to the Stable Roommates Problem [17]. First, each
core partition set contains at most two participants and if
a blocking set exists, then there is a blocking set of size at
most 2, hence STABILITYTEST is polynomial. EXISTENCE
and CONSTRUCTION are polynomial in the strict prefer-
ences case [11], which can be shown using an extension of
Irving’s Stable Roommates Algorithm (discussed in detail
in [17]). This algorithm can also be used to derive some
results for STRUCTURE. In the case of ties, EXISTENCE is
NP-complete and a complete solution to STRUCTURE is
not available [11].

B-preferences
A polynomial algorithm for STABILITYTEST is given
in [9]. For strict B-preferences a core as well as strong
core partition always exists and one can be found by the
Top Trading Cycles algorithm attributed to Gale in [19]
(an implementation of this algorithm of time complex-
ity O(m), where m is the total length of the preference
lists of all participants, was described in [2]). However,
if preferences of participants contain ties, EXISTENCE is
NP-complete for both core and strict core [10]. In the di-
chotomous case, a core partition can be constructed in
polynomial time, but EXISTENCE for strong core is NP-
complete [8].

Very little is known about the STRUCTURE. Several
questions about the existence of core partitions with spe-
cial properties are shown to be NP-hard even for the strict
preferences case [15]:
� Does a core partitionM exist, such that jM(i)j < jT(i)j

for each participant i, where T is the partition obtained
by the Top Trading Cycles algorithm?

� Does a core partition M exist, such that jM(i)j � 3 for
each participant i?

� Does a core partition M exist that covers all partici-
pants?

Moreover, the maximum number of participants covered
by a core partition is not approximable within n1�" [5].

BW -preferences

In the strict preferences case a core partition always exists
and one can be obtained by the Top Trading Cycles algo-
rithm. However, if preferences contain ties, EXISTENCE is
NP-hard [12]. STABILITYTEST remains open.

Simple Preferences

If all the participants have aversion to enemies, a core par-
tition always exists, but CONSTRUCTION is NP-hard. In
the appreciation-of-friends case, a strong core partition al-
ways exists and CONSTRUCTION can be solved in O(n3)
time, where n is the number of participants [16].

Applications

Stable partitions give rise to various economic and game
theoretical models. They appear in the study of exchange
economies with discrete commodities [19], in barter ex-
change markets [20], or in the study of formation of coun-
tries [14]. A recent application concerns exchange of kid-
neys for transplantation between willing donors and their
incompatible intended recipients [18]. In this context, the
use of B-preferences was suggested in [8], as they express
the wish of each patient for the best suitable kidney as well
as his desire for the shortest possible exchange cycle.

Open Problems

Because of the great number of variants, a lot of open prob-
lems exist. In almost all cases, STRUCTURE is not satisfac-
torily solved. For instances with no stable partition, one
may seek one that minimizes the number of participants
who have an incentive to deviate. Parallel algorithms were
also not studied.

Experimental Results

In the context of kidney exchange, Roth et al. in [18] per-
formed extensive experiments with the Top Trading Cy-
cles algorithm on simulated patients’ data. The number
of covered participants and sizes of the obtained parti-
tion sets were recorded. The structure of core partitions
forB-preferences was studied in [15]. Two heuristics were
tested. The starting point was the stable partition obtained

888 S Stackelberg Games: The Price of Optimum

by the Top Trading Cycles algorithm. Heuristic Cut-Cycle
tried to split at least one of the obtained partition sets, Cut-
and-Add tried to add an uncovered participant to an ex-
isting partition set on condition that the new partition re-
mained in the core. It was shown that as the total number
of participants grows, the percentage of participants un-
covered in the Top Trading Cycles partition decreases and
the percentage of successes of both heuristics grows.

Cross References

� Hospitals/Residents Problem
� Optimal Stable Marriage
� Ranked Matching
� Stable Marriage
� Stable Marriage with Ties and Incomplete Lists

Recommended Reading

1. Abraham, D., Blum, A., Sandholm, T.: Clearing algorithms for
barter exchange markets: Enabling nationwide kidney ex-
changes. EC’07, June 11–15, 2007, San Diego, California

2. Abraham, D., Cechlárová, K., Manlove, D., Mehlhorn, K.: Pareto-
optimality in house allocation problems. In: Fleischer, R., Trip-
pen, G. (eds.) Lecture Notes in Comp. Sci. Vol. 3341/2004, Al-
gorithms and Computation, 14th Int. Symposium ISAAC 2004,
pp. 3–15. Hong Kong, December 2004

3. Ballester, C.: NP-completeness in Hedonic Games. Games.
Econ. Behav. 49(1), 1–30 (2004)

4. Banerjee, S., Konishi, H., Sönmez, T.: Core in a simple coalition
formation game. Soc. Choice. Welf. 18, 135–153 (2001)

5. Biró, P., Cechlárová, K.: Inapproximability of the kidney ex-
change problem. Inf. Proc. Lett. 101(5), 199–202 (2007)

6. Bogomolnaia, A., Jackson, M.O.: The Stability of Hedonic Coali-
tion Structures. Games. Econ. Behav. 38(2), 201–230 (2002)

7. Burani, N., Zwicker, W.S.: Coalition formation games with sepa-
rable preferences. Math. Soc. Sci. 45, 27–52 (2003)

8. Cechlárová, K., Fleiner, T., Manlove, D.: The kidney exchange
game. In: Zadnik-Stirn, L., Drobne, S. (eds.) Proc. SOR ’05, pp.
77–83. Nova Gorica, September 2005

9. Cechlárová, K., Hajduková, J.: Stability testing in coalition for-
mation games. In: Rupnik, V., Zadnik-Stirn, L., Drobne, S. (eds.)
Proceedings of SOR’99, pp. 111–116. Predvor, Slovenia (1999)

10. Cechlárová, K., Hajduková, J.: Computational complexity of sta-
ble partitions with B-preferences. Int. J. Game. Theory 31(3),
353–364 (2002)

11. Cechlárová, K., Hajduková, J.: Stable partitions with W -
preferences. Discret. Appl. Math. 138(3), 333–347 (2004)

12. Cechlárová, K., Hajduková, J.: Stability of partitions under WB-
preferences and BW-preferences. Int. J. Inform. Techn. Decis.
Mak. Special Issue on Computational Finance and Economics.
3(4), 605–614 (2004)

13. Cechlárová, K., Romero-Medina, A.: Stability in coalition forma-
tion games. Int. J. Game. Theor. 29, 487–494 (2001)

14. Cechlárová, K., Dahm, M., Lacko, V.: Efficiency and stability in
a discrete model of country formation. J. Glob. Opt. 20(3–4),
239–256 (2001)

15. Cechlárová, K., Lacko, V.: The Kidney Exchange problem: How
hard is it to find a donor? IM Preprint A4/2006, Institute of
Mathematics, P.J. Šafárik University, Košice, Slovakia, (2006)

16. Dimitrov, D., Borm, P., Hendrickx, R., Sung, S. Ch.: Simple pri-
orities and core stability in hedonic games. Soc. Choice. Welf.
26(2), 421–433 (2006)

17. Gusfield, D., Irving, R.W.: The Stable Marriage Problem. Struc-
ture and Algorithms. MIT Press, Cambridge (1989)

18. Roth, A., Sönmez, T., Ünver, U.: Kidney Exchange. Quarter.
J. Econ. 119, 457–488 (2004)

19. Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ.
1, 23–37 (1974)

20. Yuan, Y.: Residence exchange wanted: A stable residence ex-
change problem. Eur. J. Oper. Res. 90, 536–546 (1996)

Stackelberg Games:
The Price of Optimum
2006; Kaporis, Spirakis

ALEXIS KAPORIS1, PAUL SPIRAKIS2
1 Department of Computer Engineering & Informatics,
University of Patras, Patras, Greece

2 Computer Engineering and Informatics, Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

Cournot game; Coordination ratio

ProblemDefinition

Stackelberg games [15] may model the interplay amongst
an authority and rational individuals that selfishly demand
resources on a large scale network. In such a game, the
authority (Leader) of the network is modeled by a distin-
guished player. The selfish users (Followers) are modeled
by the remaining players.

It is well known that selfish behavior may yield a Nash
Equilibriumwith cost arbitrarily higher than the optimum
one, yielding unbounded Coordination Ratio or Price of
Anarchy (PoA) [7,13]. Leader plays his strategy first as-
signing a portion of the total demand to some resources of
the network. Followers observe and react selfishly assign-
ing their demand to the most appealing resources. Leader
aims to drive the system to an a posteriori Nash equilib-
rium with cost close to the overall optimum one [4,6,8,10].
Leader may also eager for his own rather than system’s
performance [2,3].

A Stackelberg game can be seen as a special, and
easy [6] to implement, case ofMechanismDesign. It avoids
the complexities of either computing taxes or assigning

Stackelberg Games: The Price of Optimum S 889

prices, or even designing the network at hand [9]. How-
ever, a central authority capable to control the overall de-
mand on the resources of a network may be unrealistic
in networks which evolute and operate under the effect of
many and diversing economic entities. A realistic way [4]
to act centrally even in large nets could be via Virtual Pri-
vate Networks (VPNs) [1]. Another flexible way is to com-
bine such strategies with Tolls [5,14].

A dictator controlling the entire demand optimally on
the resources surely yields PoA = 1. On the other hand,
rational users do prefer a liberal world to live. Thus, it is
important to compute the optimal Leader-strategy which
controls theminimum of the resources (Price of Optimum)
and yields PoA = 1. What is the complexity of comput-
ing the Price of Optimum? This is not trivial to answer,
since the Price of Optimum depends crucially on comput-
ing an optimal Leader strategy. In particular, [6] proved
that computing the optimal Leader strategy is hard.

The central result of this lemma is Theorem 5. It says
that on nonatomic flows and arbitrary s-t networks &
latencies, computing the minimum portion of flow and
Leader’s optimal strategy sufficient to induce PoA = 1 is
easy [10].

Problem (G(V ; E); s; t 2 V ; r)
INPUT: Graph G, 8e 2 E latency `e, flow r, a source-
destination pair (s, t) of vertices in V.
OUTPUT: (i) The minimum portion ˛G of the total flow r
sufficient for an optimal Stackelberg strategy to induce the
optimum on G. (ii) The optimal Stackelberg strategy.

Models & Notations

Consider a graph G(V ; E) with parallel edges allowed.
A number of rational and selfish users wish to route from
a given source s to a destination node t an amount of
flow r. Alternatively, consider a partition of users in k
commodities, where user(s) in commodity i wish to route
flow ri through a source-destination pair (si ; ti), for each
i = 1; : : : ; k. Each edge e 2 E is associated to a latency
function `e(), positive, differentiable and strictly increas-
ing on the flow traversing it.

Nonatomic Flows There are infinitely many users, each
routing his infinitesimally small amount of the total flow
ri from a given source si to a destination vertex ti in graph
G(V ; E). A flow f is an assignment of jobs f e on each edge
e 2 E. The cost of the injected flow f e (satisfying the stan-
dard constraints of the corresponding network-flow prob-
lem) that traverses edge e 2 E equals ce (fe) = fe � `e(fe).
It is assumed that on each edge e the cost is convex with
respect the injected flow f e. The overall system’s cost is

the sum
P

e2E fe � `e (fe) of all edge-costs in G. Let fP
the amount of flow traversing the si-ti path P. The la-
tency `P(f) of si-ti pathP is the sum

P
e2P `e (fe) of laten-

cies per edge e 2 P. The cost CP (f) of si-ti path P equals
the flow fP traversing it multiplied by path-latency `P(f).
That is, CP (f) = fP �

P
e2P `e (fe).

In an Nash equilibrium, all si-ti paths traversed by
nonatomic users in part i have a common latency, which
is at most the latency of any untraversed si-ti path. More
formally, for any part i and any pair P1;P2 of si-ti paths,
if fP1 > 0 then `P1 (f) � `P2 (f). By the convexity of edge-
costs the Nash equilibrium is unique and computable in
polynomial time given a floating-point precision. Also
computable is the unique Optimum assignment O of flow,
assigning flow oe on each e 2 E and minimizing the over-
all cost

P
e2E oe`e(oe). However, not all optimally tra-

versed si-ti paths experience the same latency. In partic-
ular, users traversing paths with high latency have incen-
tive to reroute towards more speedy paths. Therefore the
optimal assignment is unstable on selfish behavior.

A Leader dictates aweak Stackelberg strategy if on each
commodity i = 1; : : : ; k controls a fixed ˛ portion of flow
ri, ˛ 2 [0; 1]. A strong Stackelberg strategy is more flex-
ible, since Leader may control ˛i ri flow in commodity i
such that

Pk
i=1 ˛i = ˛. Let a Leader dictating flow se on

edge e 2 E. The a posteriori latencyèe (ne) of edge e, with
respect to the induced flow ne by the selfish users, equals
èe(ne) = `e(ne + se). In the a posteriori Nash equilibrium,
all si-ti paths traversed by the free selfish users in com-
modity i have a common latency, which is at most the
latency of any selfishly untraversed path, and its cost isP

e2E(ne + se) �èe (ne).

Atomic Splittable Flows There is a finite number of
atomic users 1; : : : ; k. Each user i is responsible for rout-
ing a non-negligible flow-amount ri from a given source
si to a destination vertex ti in graph G. In turn, each flow-
amount ri consists of infinitesimally small jobs.

Let flow f assigning jobs f e on each edge e 2 E.
Each edge-flow f e is the sum of partial flows f 1e ; : : : ; f ke
injected by the corresponding users 1; : : : ; k. That is,
fe = f 1e + � � � + f ke . As in the model above, the latency on
a given si-ti pathP is the sum

P
e2P `e (fe) of latencies per

edge e 2 P. Let f iP be the flow that user i ships through an
si-ti path P. The cost of user i on a given si-ti path P is
analogous to her path-flow f iP routed via P times the to-
tal path-latency

P
e2P `e(fe). That is, the path-cost equals

f iP �
P

e2P `e (fe). The overall cost Ci(f) of user i is the
sum of the corresponding path-costs of all si-ti paths.

In a Nash equilibrium no user i can improve his cost
Ci(f) by rerouting, given that any user j ¤ i keeps his

890 S Stackelberg Games: The Price of Optimum

routing fixed. Since each atomic user minimizes its cost,
if the game consists of only one user then the cost of the
Nash equilibrium coincides to the optimal one.

In a Stackelberg game, a distinguished atomic Leader-
player controls flow r0 and plays first assigning flow
se on edge e 2 E. The a posteriori latency èe(x) of
edge e on induced flow x equals èe(x) = `e(x + se). In-
tuitively, after Leader’s move, the induced selfish play
of the k atomic users is equivalent to atomic split-
table flows on a graph where each initial edge-latency
`e has been mapped to èe . In game-parlance, each
atomic user i 2 f1; : : : ; kg, having fixed Leader’s strategy,
computes his best reply against all others atomic users
f1; : : : ; kg n fig. If ne is the induced Nash flow on edge e
this yields total cost

P
e2E (ne + se) �èe(ne).

Atomic Unsplittable Flows The users are finite 1; : : : ; k
and user i is allowed to sent his non-negligible job ri only
on a single path. Despite this restriction, all definitions
given in atomic splittable model remain the same.

Key Results

Let us see first the case of atomic splittable flows, on par-
allel M/M/1 links with different speeds connecting a given
source-destination pair of vertices.

Theorem 1 (Korilis, Lazar, Orda [6]) The Leader can en-
force in polynomial time the network optimum if she con-
trols flow r0 exceeding a critical value r0.

In the sequel, we focus on nonatomic flows on s-t graphs
with parallel links. In [6] primarily were studied cases that
Leader’s flow cannot induce network’s optimum and was
shown that an optimal Stackelberg strategy is easy to com-
pute. In this vain, if s-t parallel-links instances are re-
stricted to ones with linear latencies of equal slope then
an optimal strategy is easy [4].

Theorem 2 (Kaporis, Spirakis [4]) The optimal Leader
strategy can be computed in polynomial time on any in-
stance (G; r; ˛) where G is an s-t graph with parallel-links
and linear latencies of equal slope.

Another positive result is that the optimal strategy can
be approximated within (1 + �) in polynomial time, given
that link-latencies are polynomials with non-negative co-
efficients.

Theorem 3 (Kumar, Marathe [8]) There is a fully
polynomial approximate Stackelberg scheme that runs in
pol y(m; 1

�
) time and outputs a strategy with cost (1 + �)

within the optimum strategy.

For parallel link s-t graphs with arbitrary latencies more
can be achieved: in polynomial time a “threshold” value
˛G is computed, sufficient for the Leader’s portion to in-
duce the optimum. The complexity of computing opti-
mal strategies changes in a dramatic way around the crit-
ical value ˛G from “hard” to “easy” (G; r; ˛) Stackelberg
scheduling instances. Call ˛G as the Price of Optimum for
graph G.

Theorem 4 (Kaporis, Spirakis [4]) On input an s-t par-
allel link graph G with arbitrary strictly increasing latencies
the minimum portion ˛G sufficient for a Leader to induce
the optimum, as well as her optimal strategy, can be com-
puted in polynomial time.

As a conclusion, the Price of Optimum ˛G essentially cap-
tures the hardness of instances (G; r; ˛). Since, for Stack-
elberg scheduling instances (G; r; ˛ � ˛G) the optimal
Leader strategy yields PoA = 1 and it is computed as hard
as in P, while for (G; r; ˛ < ˛G) the optimal strategy yields
PoA < 1 and it is as easy as NP [10].

The results above are limited to parallel-links connect-
ing a given s-t pair of vertices. Is it possible to efficiently
compute the Price of Optimum for nonatomic flows on
arbitrary graphs? This is not trivial to settle. Not only be-
cause it relies on computing an optimal Stackelberg strat-
egy, which is hard to tackle [10], but also because Proposi-
tion B.3.1 in [11] ruled out previously known performance
guarantees for Stackelberg strategies on general nets.

The central result of this lemma is presented below and
completely resolves this question (extending Theorem 4).

Theorem 5 (Kaporis, Spirakis [4]) On arbitrary s-t
graphs G with arbitrary latencies the minimum portion ˛G
sufficient for a Leader to induce the optimum, as well as her
optimal strategy, can be computed in polynomial time.

Example

Consider the optimum assignment O of flow r that wishes
to travel from source vertex s to sink t. O assigns flow oe
incurring latency `e(oe) per edge e 2 G. Let Ps!t the set
of all s-t paths. The shortest paths in Ps!t with respect to
costs `e(oe) per edge e 2 G can be computed in polyno-
mial time. That is, the paths that given flow assignment
O attain latency: minP2Ps!t

�P
e2P `e(oe)

�
i. e., minimize

their latency. It is crucial to observe that, if we want the in-
duced Nash assignment by the Stackelberg strategy to at-
tain the optimum cost, then these shortest paths are the
only choice for selfish users that eager to travel from s to t.
Furthermore, the uniqueness of the optimum assignment
O determines the minimum part of flow which can be self-
ishly scheduled on these shortest paths. Observe that any

Stackelberg Games: The Price of Optimum S 891

Stackelberg Games: The Price of Optimum, Figure 1
A bad example for Stackelberg routing

flow assigned byO on a non-shortest s-t path has incentive
to opt for a shortest one. Then a Stackelberg strategymust
frozen the flow on all non-shortest s-t paths.

In particular, the idea sketched above achieves coordi-
nation ratio 1 on the graph in Fig. 1. On this graph Rough-
garden proved that 1

˛
� (optimum cost) guarantee is not

possible for general (s, t)-networks, Appendix B.3 in [11].
The optimal edge-flows are (r = 1):

os!v =
3
4
� � ; os!w =

1
4
+ � ; ov!w =

1
2
� 2� ;

ov!t =
1
4
+ � ; ow!t =

3
4
� �

The shortest path P0 2 P with respect to the optimum O
is P0 = s! v ! w ! t (see [11] pp. 143, 5th-3th lines be-
fore the end) and its flow is fP0 =

1
2 � 2�. The non short-

est paths are: P1 = s! v ! t and P2 = s! w ! t with
corresponding optimal flows: fP1 =

1
4 + � and fP2 =

1
4 + �.

Thus the Price of Optimum is

fP1 + fP2 =
1
2
+ 2� = r � fP0

Applications

Stackelberg strategies are widely applicable in network-
ing [6], see also Section 6.7 in [12].

Open Problems

It is important to extend the above results on atomic un-
splittable flows.

Cross References

� Algorithmic Mechanism Design
� Best Response Algorithms for Selfish Routing
� Facility Location
� Non-approximability of Bimatrix Nash Equilibria
� Price of Anarchy
� Selfish Unsplittable Flows: Algorithms for Pure

Equilibria

Recommended Reading

1. Birman, K.: Building Secure and Reliable Network Applications.
Manning, (1996)

2. Douligeris, C., Mazumdar, R.: Multilevel flow control of Queues.
In: Johns Hopkins Conference on Information Sciences, Balti-
more, 22–24 Mar 1989 (2006)

3. Economides, A., Silvester, J.: Priority load sharing: an approach
using stackelberg games. In: 28th Annual Allerton Conference
on Communications, Control and Computing (1990)

4. Kaporis, A., Spirakis, P.G.: Stackelberg games on arbitrary net-
works and latency functions. In: 18th ACM Symposium on Par-
allelism in Algorithms and Architectures (2006)

5. Karakostas, G., Kolliopoulos, G.: Stackelberg strategies for self-
ish routing in general multicommodity networks. Technical re-
port, Advanced Optimization Laboratory, McMaster Univercity
(2006) AdvOL2006/08, 2006-06-27

6. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima us-
ing stackelberg routing strategies. IEEE/ACMTrans. Netw. 5(1),
161–173 (1997)

7. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In:
16th Symposium on Theoretical Aspects in Computer Science,
Trier, Germany. LNCS, vol. 1563, pp. 404–413. Springer (1999)

8. Kumar, V.S.A., Marathe, M.V.: Improved results for stackelberg
scheduling strategies. In: 29th International Colloquium, Au-

892 S Statistical Data Compression

tomata, Languages and Programming. LNCS, pp. 776–787.
Springer (2002)

9. Roughgarden, T.: Designing networks for selfish users is hard.
In: 42nd IEEE Annual Symposium of Foundations of Computer
Science, pp. 472–481 (2001)

10. Roughgarden, T.: Stackelberg scheduling strategies. In: 33rd
ACM Annual Symposium on Theory of Computing, pp. 104–
113 (2001)

11. Roughgarden, T.: Selfish Routing. Dissertation, Cornell Univer-
sity, USA, May 2002, http://theory.stanford.edu/~tim/

12. Roughgarden, T.: Selfish Routing and the Price of Anarchy. The
MIT Press, Cambridge (2005)

13. Roughgarden, T., Tardos, E.: How bad is selfish routing? In: 41st
IEEE Annual Symposium of Foundations of Computer Science,
pp. 93–102. J. ACM 49(2), pp 236–259, 2002, ACM, New York
(2000)

14. Swamy, C.: The effectiveness of stackelberg strategies and tolls
for network congestion games. In: ACM-SIAM Symposium on
Discrete Algorithms, Philadelphia, PA, USA (2007)

15. von Stackelberg, H.: Marktform und Gleichgewicht. Springer,
Vienna (1934)

Statistical Data Compression
� Arithmetic Coding for Data Compression

StatisticalMultiple Alignment
2003; Hein, Jensen, Pedersen

ISTVÁN MIKLÓS
Department of Plant Taxonomy and Ecology,
Eötvös Lóránd University, Budapest, Hungary

Keywords and Synonyms

Evolutionary hidden Markov models

ProblemDefinition

The three main types of mutations modifying biological
sequences are insertions, deletions and substitutions. The
simplest model involving these three types of mutations is
the so-called Thorne–Kishino–Felsenstein model [13]. In
this model, the characters of a sequence evolve indepen-
dently. Each character in the sequence can be substituted
with another character according to a prescribed reversible
time-continuous Markov model on the possible charac-
ters. Insertion-deletions are modeled as a birth-death pro-
cess, characters evolve independently and identically, with
insertion and deletion rates � and �.

The multiple statistical alignment problem is to cal-
culate the likelihood of a set of sequences, namely, what
is the probability of observing a set of sequences, given

all the necessary parameters that describe the evolution of
sequences. Hein, Jensen and Pedersen were the first who
gave an algorithm to calculate this probability [4]. Their
algorithm has O(5nLn) running time, where n is the num-
ber of sequences, and L is the geometric mean of the se-
quences. The running time has been improved to O(2nLn)
by Lunter et al. [10].

Notations

Insertions and Deletions In the Thorne–Kishino–
Felsenstein model (TKF91 model) [13], both the birth and
the death processes are Poisson processes with parameters
� and �, respectively. Since each character evolves inde-
pendently, the probability of an insertion-deletion pattern
given by an alignment can be calculated as the product of
the probabilities of patterns. Each pattern starts with an
ancestral character, except the first that starts with the be-
ginning of the alignment, end ends before the next ances-
tral character, except the last that ends at the end of the
alignment. The probability of the possible patterns can be
found on Fig. 1.

Evolutionary Trees An evolutionary tree is a leaf-
labeled, edge weighted, rooted binary tree. Labels are the
species related by the evolutionary tree, weights are evo-
lutionary distances. It might happen that the evolution-
ary changes had different speed at different lineages, and
hence the tree is not necessary ultrametric, namely, the
root not necessary has the same distance to all leaves.

Given a set S of l-long sequences over alphabet ˙ ,
a substitution model M on ˙ and an evolutionary tree T
labeled by the sequences. The likelihood of the tree is the
probability of observing the sequences at the leaves of the
tree, given that the substitution process starts at the root
of the tree with the equilibrium distribution. This likeli-
hood is denoted by P(SjT;M). The substitution likelihood
problem is to calculate the likelihood of the tree.

Let˙ be a finite alphabet and let S1 = s1;1s1;2 : : : s1;L1 ,
S2 = s2;1s2;2 : : : s2;L2 , : : : Sn = sn;1sn;2 : : : sn;Ln be se-

Statistical Multiple Alignment, Figure 1
The probabilities of alignment patterns. From left to right: k in-
sertions at the beginning of the alignment, a match followed by
k � 1 insertions, a deletion followed by k insertions, a deletion

not followed by insertions. ˇ = 1�e(���)t

���e(���)t

http://theory.stanford.edu/~tim/

Statistical Multiple Alignment S 893

quences over this alphabet. Let a TKF91 model TKF91 be
given with its parameters: substitution model M, inser-
tion rate � and deletion rate �. Let T be an evolutionary
tree labeled by S1; S2 : : : Sn . The multiple statistical align-
ment problem is to calculate the likelihood of the tree,
P(S1; S2; : : : Sn jT; TKF91), given that the TKF91 process
starts at the root with the equilibrium distribution.

Multiple Hidden Markov Models It will turn out that
the TKF91 model can be transformed to a multiple Hid-
den Markov Model, therefore it is formally defined here.
A multiple Hidden Markov Model (multiple-HMM) is
a directed graph with a distinguished Start and End state,
(the in-degree of the Start and the out-degree of the End
state are both 0), together with the following described
transition and emission distributions. Each vertex has
a transition distribution over its out-edges. The vertexes
can be divided for two classes, the emitting and silent
states. Each emitting state emits one-one random charac-
ter to a prescribed set of sequences, it is possible that a state
emits only one character to one sequence. For each state,
an emission distribution over the alphabet and the set of
sequences gives the probabilities which characters will be
emitted to which sequences. The Markov process is a ran-
dom walk from the Start to the End, following the tran-
sition distribution on the out edges. When the walk is in
an emitting state, characters are emitted according to the
emission distribution of the state. The process is hidden
since the observer sees only the emitted sequences, and
the observer does not observe which character is emitted
by which state, even the observer does not see which char-
acters are co-emitted. The multiple-HMM problem is to
calculate the emission probability of a set of sequences for
a multiple-HMM. This probability can be calculated with
the Forward algorithm that has O(V 2Ln) running time,
where V is the number of emitting states in the multiple-
HMM, L is the geometric mean of the sequences and n is
the number of sequences [2].

Key Results

Substitutions have been modeled with time-continuous
Markov models since the late sixties [7] and an effi-
cient algorithm for likelihood calculations was published
in 1981 [3]. The running time of this efficient algorithm
grows linearly both with the number of sequences and
with the length of the sequences being analyzed, and it
grows squarely with the size of the alphabet. The algorithm
belongs to the class of dynamic programming algorithms.

Thorne, Kishino and Felsenstein gave an O(nm) run-
ning time algorithm for calculating the likelihood of an

n-long and an m-long sequence under their model [13].
It was not clear for long time how to extend this algo-
rithm to more than two sequences. In 2001, several re-
searchers [6,11] realized that the TKF91 model for two se-
quences is equivalent with a pair Hidden Markov Model
(pair-HMM) in the sense that the transition and emis-
sion probabilities of the pair-HMM can be parameterized
with �, �, and the transition and equilibrium probabili-
ties of the substitutionmodel,moreover there is a bijection
between the paths emitting the two sequences and align-
ments such that the probability of a path in the pair-HMM
equals to the probability of the corresponding alignment of
the two sequences. Hence the likelihood of two sequences
can be calculated with the Forward algorithm of the pair-
HMM.

After this discovery, it was relatively easy to develop
an algorithm for multiple statistical alignment [4]. The
key observation is that a multiple-HMM can be created as
a composition of pair-HMMs along the evolutionary tree.
This technique was already known in the speech recog-
nition literature [12], and was also rediscovered by Ian
Holmes [5], who named this technique as transducer com-
position. The number of states in the so-created multiple-
HMM is O(5

n
2), where n is the number of leaves of the

tree. The emission probabilities are the substitution likeli-
hoods on the tree, which can be efficiently calculated using
Felsenstein’s algorithm [3]. The running time of the For-
ward algorithm is 5nLn , where L is the geometric mean of
the sequence lengths.

Lunter et al. [10] introduced an algorithm that does
not need a multiple-HMM description of the TKF91
model to calculate the likelihood of a tree. Using a logi-
cal sieve algorithm, they were able to reduce the running
time to O(2nLn). They called their algorithm the “one-
state recursion” since their dynamic programming algo-
rithm does not need different state of a multiple-HMM to
calculate the likelihood correctly.

Applications

Since the running time of the best known algorithm for
multiple statistical alignment grows exponentially with the
number of sequences, on its own it is not useful in practice.
However, Lunter et al. also showed that there is a one-state
recursion to calculate the likelihood of the tree given an
alignment [8]. The running time of this algorithm grows
only linearly with both the alignment length and the num-
ber of sequences. Since the number of states in a multiple-
HMM that can emit the same multiple alignment column
might grow exponentially, this version of the one-state re-
cursion is a significant improvement. The one-state recur-

894 S Statistical Query Learning

sion for multiple alignments is used in a Bayesian Markov
chain Monte Carlo where the state space is the Descart
product of the possible multiple alignments and evolu-
tionary trees. The one-state recursion provides an efficient
likelihood calculation for a point in the state space [9].

Csűrös and Miklós introduced a model for gene con-
tent evolution that is equivalent with the multiple statisti-
cal alignment problem for alphabet size 1 [1]. They gave
a polynomial running time algorithm that calculates the
likelihood of the tree. The running time is O(n + hL2),
where n is the number of sequences, h is the height of
the evolutionary tree, and L is the sum of the sequences
lengths.

Open Problems

It is conjectured that the multiple statistical alignment
problem cannot be solved in polynomial time for any non-
trivial alphabet size. One also can ask what the most likely
multiple alignment is or equivalently, what the most prob-
able path in the multiple-HMM is that emits the given se-
quences. For a set of sequences, a TKF91 model and an
evolutionary tree, the decision problem “Is there a multi-
ple alignment that is more probable than p” is conjectured
to be NP-complete.

Thorne, Kishino and Felsenstein also introduced
a fragment model, also called the TKF92 model, in which
multiple insertions and deletions are allowed. The birth
process is still a Poisson process, but instead of single char-
acters, fragments of characters are inserted with a geo-
metrically distributed length. The fragments are unbreak-
able, and the death process is going on the fragments. The
TKF92 model for a pair of sequences also can be described
into a pair-HMM and the TKF92 model on a tree can be
transformed to a multiple-HMM. It is conjectured that
there is no one-state recursion for the TKF92 model.

Cross References

� Efficient Methods for Multiple Sequence Alignment
with Guaranteed Error Bounds

� Local Alignment (with Affine GapWeights)

Recommended Reading
1. Csűrös, M., Miklós, I.: A probabilistic model for gene content

evolution with duplication, loss, and horizontal transfer. In:
Lecture Notes in Bioinformatics, Proceedings of RECOMB2006,
vol. 3909, pp. 206–220 (2006)

2. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological se-
quence analysis. Cambridge University Press, Cambridge, UK
(1998)

3. Felsenstein, J.: Evolutionary trees from DNA sequences: a max-
imum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

4. Hein, J., Jensen, J., Pedersen, C.: Recursions for statistical multi-
ple alignment. PNAS 100, 14,960–14,965 (2003)

5. Holmes, I.: Using guide trees to construct multiple-sequence
evolutionary hmms. Bioinform. 19, i147–i157 (2003)

6. Holmes, I., Bruno, W.J.: Evolutionary HMMs: a Bayesian ap-
proach to multiple alignment. Bioinform. 17(9), 803–820
(2001)

7. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In:
Munro (ed.) Mammalian Protein Metabolism, pp. 21–132.
Acad. Press (1969)

8. Lunter, G., Miklós, I., Drummond, A., Jensen, J., Hein, J.: Bayesian
phylogenetic inference under a statistical indel model. In:
Lecture Notes in Bioinformatics, Proceedings of WABI2003,
vol. 2812, pp. 228–244 (2003)

9. Lunter, G., Miklós, I., Drummond, A., Jensen, J., Hein, J.: Bayesian
coestimation of phylogeny and sequence alignment. BMC
Bioinformatics (2005)

10. Lunter, G.A., Miklós, I., Song, Y.S., Hein, J.: An efficient algo-
rithm for statistical multiple alignment on arbitrary phyloge-
netic trees. J. Comp. Biol. 10(6), 869–889 (2003)

11. Metzler, D., Fleißner, R., Wakolbringer, A., von Haeseler, A.: As-
sessing variability by joint sampling of alignments and muta-
tion rates. J. Mol. Evol. 53, 660–669 (2001)

12. Pereira, F., Riley, M.: Speech recognition by composition of
weighted finite automata. In: Finite-State Language Process-
ing, pp. 149–173. MIT Press, Cambridge (1997)

13. Thorne, J.L., Kishino, H., Felsenstein, J.: An evolutionary model
for maximum likelihood alignment of DNA sequences. J. Mol.
Evol. 33, 114–124 (1991)

Statistical Query Learning
1998; Kearns

VITALY FELDMAN
Department of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA

ProblemDefinition

The problem deals with learning f�1;+1g-valued func-
tions from random labeled examples in the presence of
random noise in the labels. In the random classification
noisemodel of Angluin and Laird [1] the label of each ex-
ample given to the learning algorithm is flipped randomly
and independently with some fixed probability � called the
noise rate. The model is the extension of Valiant’s PAC
model [14] that formalizes the simplest type of white label
noise.

Robustness to this relatively benign noise is an impor-
tant goal in the design of learning algorithms. Kearns de-
fined a powerful and convenient framework for construct-
ing noise-tolerant algorithms based on statistical queries.
Statistical query (SQ) learning is a natural restriction of
PAC learning that models algorithms that use statistical
properties of a data set rather than individual examples.

Statistical Query Learning S 895

Kearns demonstrated that any learning algorithm that is
based on statistical queries can be automatically converted
to a learning algorithm in the presence of random classifi-
cation noise of arbitrary rate smaller than the information-
theoretic barrier of 1/2. This result was used to give the first
noise-tolerant algorithm for a number of important learn-
ing problems. In fact, virtually all known noise-tolerant
PAC algorithms were either obtained from SQ algorithms
or can be easily cast into the SQ model.

Definitions and Notation

Let C be a class of f�1;+1g-valued functions (also called
concepts) over an input space X. In the basic PAC model
a learning algorithm is given examples of an unknown
function f from C on points randomly chosen from some
unknown distributionD over X and should produce a hy-
pothesis h that approximates f . More formally, an example
oracle EX(f ;D) is an oracle that upon being invoked re-
turns an example hx; f (x)i, where x is chosen randomly
with respect to D, independently of any previous exam-
ples. A learning algorithm forC is an algorithm that for ev-
ery " > 0, ı > 0, f 2 C, and distributionD over X, given
", ı, and access to EX(f ;D) outputs, with probability at
least 1 � ı, a hypothesis h that "-approximates f with re-
spect toD (i. e. PrD[f (x) ¤ h(x)] � "). Efficient learning
algorithms are algorithms that run in time polynomial in
1/", 1/ı, and the size of the learning problem s. The size of
a learning problem is determined by the description length
of f under some fixed representation scheme for functions
in C and the description length of an element in X (often
proportional to the dimension n of the input space).

A number of variants of this basic framework are com-
monly considered. The basic PAC model is also referred
to as distribution-independent learning to distinguish it
from distribution-specificPAC learning in which the learn-
ing algorithm is required to learn with respect to a sin-
gle distributionD known in advance. A weak learning al-
gorithm is a learning algorithm that can produce a hy-
pothesis whose error on the target concept is noticeably
less than 1/2 (and not necessarily any " > 0). More pre-
cisely, a weak learning algorithm produces a hypothesis h
such thatPrD[f (x) ¤ h(x)] � 1/2� 1/p(s) for some fixed
polynomial p. The basic PAC model is often referred to as
strong learning in this context.

In the random classification noise model EX(f ;D) is
replaced by a faulty oracle EX�(f ;D), where � is the noise
rate. When queried, this oracle returns a noisy example
hx; bi where b = f (x) with probability 1� � and : f (x)
with probability � independently of previous examples.
When � approaches 1/2 the label of the corrupted exam-

ple approaches the result of a random coin flip, and there-
fore the running time of learning algorithms in this model
is allowed to depend on 1

1�2� (the dependence must be
polynomial for the algorithm to be considered efficient).
For simplicity one usually assumes that � is known to the
learning algorithm. This assumption can be removed us-
ing a simple technique due to Laird [12].

To formalize the idea of learning from statistical prop-
erties of a large number of examples, Kearns introduced
a new oracle STAT(f ;D) that replaces EX(f ;D). The or-
acle STAT(f ;D) takes as input a statistical query (SQ) of
the form (�; �) where � is a f�1;+1g-valued function on
labeled examples and � 2 [0; 1] is the tolerance parameter.
Given such a query the oracle responds with an estimate of
PrD[�(x; f (x)) = 1] that is accurate to within an additive
˙� . Chernoff bounds easily imply that STAT(f ;D) can,
with high probability, be simulated using EX(f ;D) by es-
timatingPrD[�(x; f (x)) = 1] on O(��2) examples. There-
fore the SQ model is a restriction of the PAC model. Effi-
cient SQ algorithms allow only efficiently evaluable�’s and
impose an inverse polynomial lower bound on the toler-
ance parameter over all oracle calls.

Key Results

Statistical Queries and Noise-Tolerance

The main result given by Kearns is a way to simulate sta-
tistical queries using noisy examples.

Lemma 1 ([10]) Let (�; �) be a statistical query such
that � can be evaluated on any input in time T and let
EX�(f ;D) be a noisy oracle. The value PrD[�(x; f (x)) =
1] can, with probability at least 1 � ı, be estimatedwithin �
using O(��2(1�2�)�2 log (1/ı)) examples from EX�(f ;D)
and time O(��2(1 � 2�)�2 log (1/ı) � T).

This simulation is based on estimating several probabili-
ties using examples from the noisy oracle and then offset-
ting the effect of noise. The lemma implies that any effi-
cient SQ algorithm for a concept class C can be converted
to an efficient learning algorithm for C tolerating random
classification noise of any rate � < 1/2.

Theorem 2 ([10]) Let C be a concept class efficiently PAC
learnable from statistical queries. Then C is efficiently PAC
learnable in the presence of random classification noise of
rate � for any � < 1/2.

Kearns also shows that in order to simulate all the statisti-
cal queries used by an algorithm one does not necessarily
need new examples for each estimation. Instead, assuming
that the set of possible queries of the algorithm has Vap-
nik–Chervonenkis dimension d, all its statistical queries

896 S Statistical Query Learning

can be simulated using Õ(d��2(1 � 2�)�2 log (1/ı) + "�2)
examples [10].

One of the most significant results on learning in
the distribution-independent PAC learning model is the
equivalence of weak and strong learnability demonstrated
by Schapire’s celebrated boosting method [13]. Aslam and
Decatur showed that this equivalence holds in the SQ
model as well [2].

A natural way to extend the SQmodel is to allow query
functions that depend on a t-tuple of examples instead
of just one example. Blum et al. proved that this exten-
sion does not increase the power of the model as long as
t = O(log s) [5].

Statistical Query Dimension

The restricted way in which SQ algorithms use examples
makes it simpler to understand the limitations of efficient
learning in this model. A long-standing open problem in
learning theory is learning of the concept class of all par-
ity functions over f0; 1gn with noise (a parity function is
a XOR of some subset of n Boolean inputs). Kearns has
demonstrated that parities cannot be efficiently learned us-
ing statistical queries even under the uniform distribution
over f0; 1gn [10]. This hardness result is unconditional in
the sense that it does not rely on any unproven complexity
assumptions.

The technique of Kearns was generalized by Blum et al.
who proved that efficient SQ learnability of a concept
class C is characterized by a relatively simple combina-
torial parameter of C called the statistical query dimen-
sion [4]. The quantity they defined measures the maxi-
mum number of “nearly uncorrelated” functions in a con-
cept class. More formally,

Definition 3 For a concept class C and distribution D,
the statistical query dimension of C with respect toD, de-
noted SQ-DIM(C;D), is the largest number d such that C
contains d functions f1; f2; : : : ; fd such that for all i ¤ j,
jED[fi f j]]j � 1

d3 .

Blum et al. relate the SQ dimension to learning in the SQ
model as follows.

Theorem 4 ([4]) Let C be a concept class andD be a dis-
tribution such that SQ-DIM(C;D) = d.
� If all queries are made with tolerance of at least 1/d1/3,

then at least d1/3 queries are required to learn C with
error 1/2� 1/d3 in the SQ model.

� There exists an algorithm for learning C with respect to
D that makes d fixed queries, each of tolerance 1/3d3,
and finds a hypothesis with error at most 1/2 � 1/3d3.

Thus SQ-DIM characterizes weak learnability in the SQ
model up to a polynomial factor. Parity functions are un-
correlated with respect to the uniform distribution and
therefore any concept class that contains a superpolyno-
mial number of parity functions cannot be learned by sta-
tistical queries with respect to the uniform distribution.
This for example includes such important concept classes
as k-juntas over f0; 1gn (or functions that depend on at
most k input variables) for k = !(1) and decision trees of
superconstant size.

The following important result is due to Blum et al. [5]:

Theorem 5 ([5]) For any constant � < 1/2, parities that
depend on the first log n log log n input variables are effi-
ciently PAC learnable in the presence of random classifica-
tion noise of rate �.

Since there are nlog log n parity functions that depend on the
first log n log log n input variables, this shows that there
exist concept classes that are efficiently learnable in the
presence of noise (at constant rate � < 1/2) but are not ef-
ficiently learnable in the SQ model.

Applications

Learning by statistical queries was used to obtain noise-
tolerant algorithms for a number of important concept
classes. One of the ways this can be done is by showing that
a PAC learning algorithm can be modified to use statistical
queries instead of random examples. Examples of learning
problems for which the first noise-tolerant algorithm was
obtained using this approach include [10]:
� Learning decision trees of constant rank.
� Attribute-efficient algorithms for learning conjunc-

tions.
� Learning axis-aligned rectangles overRn.
� Learning AC0 (constant-depth unbounded fan-in)

Boolean circuits over f0; 1gn with respect to the uni-
form distribution in quasipolynomial time.

Blum et al. also use the SQ model to show that their al-
gorithm for learning linear threshold functions is noise-
tolerant [3], resolving an important open problem.

The ideas behind the use of statistical queries to pro-
duce noise tolerant algorithms were adapted to learning
using membership queries (or ability to ask for the value
of the unknown function at any point). There the noise
model has to be modified slightly to prevent the learner
from asking for independently corrupted labels on the
same point. An appropriate modification is the introduc-
tion of persistent classification noise by Goldman et al. [7].
In this model, as before, the answer to a query at each point
x is flipped with probability 1� �. However, if the mem-

Steiner Forest S 897

bership oracle was already queried about the value of f at
some specific point x or x was already generated as a ran-
dom example, the returned label has the same value as in
the first occurrence.

Extensions of the SQ model suggested by Jackson
et al. [9] and Bshouty and Feldman [6] allow any algo-
rithm based on these extended statistical queries to be con-
verted to a noise-tolerant PAC algorithm with member-
ship queries. In particular, they used this approach to con-
vert Jackson’s algorithm for learning DNF with respect to
the uniform distribution to a noise-tolerant one. Bshouty
and Feldman also show that learnability in their extension
can be characterized using a dimension similar to the SQ
dimension of Blum et al. [4].

Open Problems

The main questions related to learning with random clas-
sification noise are still open. Is every concept class effi-
ciently learnable in the PAC model also learnable in the
presence of random classification noise? Is every concept
class efficiently learnable in the presence of random clas-
sification noise of arbitrarily high rate (less than 1/2) also
efficiently learnable using statistical queries? Note that the
algorithm of Blum et al. assumes that the noise rate is
a constant and therefore does not provide a complete an-
swer to this question [5]. For both questions a central issue
seems to be obtaining a better understanding of the com-
plexity of learning parities with noise.

Another important direction of research is learning
with weaker assumptions on the nature of noise. A natu-
ral model that places no assumptions on the way in which
the labels are corrupted is the agnostic learning model de-
fined by Haussler [8] and Kearns et al. [11]. Efficient learn-
ing algorithms that can cope with this, possibly adversar-
ial, noise is a very desirable if hard to achieve goal. For
example, learning conjunctions of input variables in this
model is an open problem known to be at least as hard
as learning DNF expressions in the PAC model [11]. It is
therefore important to identify and investigate useful and
general models of noise based on less pessimistic assump-
tions.

Cross References

� Attribute-Efficient Learning
� Learning Constant-Depth Circuits
� Learning DNF Formulas
� Learning Heavy Fourier Coefficients of Boolean

Functions
� Learning with Malicious Noise
� PAC Learning

Recommended Reading
1. Angluin, D., Laird, P.: Learning from noisy examples. Mach.

Learn. 2, 343–370 (1988)
2. Aslam, J., Decatur, S.: Specification and simulation of statistical

query algorithms for efficiency and noise tolerance. J. Comput.
Syst. Sci. 56, 191–208 (1998)

3. Blum, A., Frieze, A., Kannan, R., Vempala, S.: A polynomial time
algorithm for learning noisy linear threshold functions. Algo-
rithmica 22(1/2), 35–52 (1997)

4. Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich,
S.: Weakly learning DNF and characterizing statistical query
learning using Fourier analysis. In: Proceedings of STOC,
pp. 253–262 (1994)

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the
parity problem, and the statistical query model. J. ACM 50(4),
506–519 (2003)

6. Bshouty, N., Feldman, V.: On using extended statistical queries
to avoid membership queries. J. Mach. Learn. Res. 2, 359–395
(2002)

7. Goldman, S., Kearns, M., Schapire, R.: Exact identification of
read-once formulas using fixed points of amplification func-
tions. SIAM J. Comput. 22(4), 705–726 (1993)

8. Haussler, D.: Decision theoretic generalizations of the PAC
model for neural net and other learning applications. Inf. Com-
put. 100(1), 78–150 (1992)

9. Jackson, J., Shamir, E., Shwartzman, C.: Learning with queries
corrupted by classification noise. In: Proceedings of the Fifth Is-
rael Symposium on the Theory of Computing Systems, pp. 45–
53 (1997)

10. Kearns, M.: Efficient noise-tolerant learning from statistical
queries. J. ACM 45(6), 983–1006 (1998)

11. Kearns, M., Schapire, R., Sellie, L.: Toward efficient agnostic
learning. Mach. Learn. 17(2-3), 115–141 (1994)

12. Laird, P.: Learning from good and bad data. Kluwer Academic
Publishers (1988)

13. Schapire, R.: The strength of weak learnability. Mach. Learn.
5(2), 197–227 (1990)

14. Valiant, L.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

Steiner Forest
1995; Agrawal, Klein, Ravi

GUIDO SCHÄFER
Institute for Mathematics and Computer Science,
Technical University of Berlin, Berlin, Germany

Keywords and Synonyms

Requirement join; R-join, Requirement Join

ProblemDefinition

The Steiner forest problem is a fundamental problem in
network design. Informally, the goal is to establish con-
nections between pairs of vertices in a given network

898 S Steiner Forest

at minimum cost. The problem generalizes the well-
known Steiner tree problem. As an example, assume that
a telecommunication company receives communication
requests from their customers. Each customer asks for
a connection between two vertices in a given network. The
company’s goal is to build a minimum cost network in-
frastructure such that all communication requests are sat-
isfied.

Formal Definition and Notation

More formally, an instance I = (G; c; R) of the Steiner for-
est problem is given by an undirected graph G = (V ; E)
with vertex setV and edge set E, a non-negative cost func-
tion c : E ! Q+, and a set of vertex pairs R = f(s1; t1); : : : ;
(sk ; tk)g
 V �V . The pairs in R are called terminal pairs.
A feasible solution is a subset F
 E of the edges of G such
that for every terminal pair (si ; ti) 2 R there is a path be-
tween si and ti in the subgraph G[F] induced by F. Let the
cost c(F) of F be defined as the total cost of all edges in F,
i. e., c(F) =

P
e2F c(e). The goal is to find a feasible solu-

tion F of minimum cost c(F). It is easy to see that there
exists an optimum solution which is a forest.

The Steiner forest problem may alternatively be de-
fined by a set of terminal groups R = fg1; : : : ; gkg with
gi
 V instead of terminal pairs. The objective is to com-
pute a minimum cost subgraph such that all terminals be-
longing to the same group are connected. This definition
is equivalent to the one given above.

Related Problems

A special case of the Steiner forest problem is the Steiner
tree problem (see also the entry � Steiner Tree). Here,
all terminal pairs share a common root vertex r 2 V ,
i. e., r 2 fsi ; tig for all terminal pairs (si ; ti) 2 R. In other
words, the problem consists of a set of terminal vertices
R
 V and a root vertex r 2 V and the goal is to connect
the terminals in R to r in the cheapest possible way. Amin-
imum cost solution is a tree.

The generalized Steiner network problem (see the entry
� Generalized Steiner Network), also known as the sur-
vivable network design problem, is a generalization of the
Steiner forest problem. Here, a connectivity requirement
function r : V � V ! N specifies the number of edge dis-
joint paths that need to be established between every pair
of vertices. That is, the goal is to find a minimum cost
multi-subsetH of the edges of G (H may contain the same
edge several times) such that for every pair of vertices
(x; y) 2 V there are r(x, y) edge disjoint paths from x to
y in G[H]. The goal is to find a set H of minimum cost.

Clearly, if r(x; y) 2 f0; 1g for all (x; y) 2 V � V , this prob-
lem reduces to the Steiner forest problem.

Key Results

Agrawal, Klein and Ravi [1,2] give an approximation algo-
rithm for the Steiner forest problem that achieves an ap-
proximation ratio of 2. More precisely, the authors prove
the following theorem.

Theorem 1 There exists an approximation algorithm that
for every instance I = (G; c; R) of the Steiner forest problem,
computes a feasible forest F such that

c(F) �
�
2 �

1
k

�
� OPT(I) ;

where k is the number of terminal pairs in R and OPT(I) is
the cost of an optimal Steiner forest for I.

Related Work

The Steiner tree problem is NP-hard [10] and APX-com-
plete [4,8]. The current best lower bound on the achiev-
able approximation ratio for the Steiner tree problem
is 1.0074 [21]. Goemans and Williamson [11] general-
ized the results obtained by Agrawal, Klein and Ravi to
a larger class of connectivity problems, which they term
constrained forest problems. For the Steiner forest problem,
their algorithm achieves the same approximation ratio of
(2 � 1/k). The algorithms of Agrawal, Klein and Ravi [2]
and Goemans and Williamson [11] are both based on the
classical undirected cut formulation for the Steiner for-
est problem [3]. The integrality gap of this relaxation is
known to be (2 � 1/k) and the results in [2,11] are there-
fore tight. Jain [15] presents a 2-approximation algorithm
for the generalized Steiner network problem.

Primal-Dual Algorithm

The main ideas of the algorithm by Agrawal, Klein and
Ravi [2] are sketched below; subsequently, AKR is used to
refer to this algorithm. The description given here differs
from the one in [2]; the interested reader is referred to [2]
for more details.

The algorithm is based on the following integer pro-
gramming formulation for the Steiner forest problem. Let
I = (G; c; R) be an instance of the Steiner forest problem.
Associate an indicator variable xe 2 f0; 1gwith every edge
e 2 E. The value of xe is 1 if e is part of the forest F and 0
otherwise. A subset S
 V of the vertices is called a Steiner
cut if there exists at least one terminal pair (si ; ti) 2 R
such that jfsi ; tig \ Sj = 1; S is said to separate terminal

Steiner Forest S 899

pair (si, ti). Let S be the set of all Steiner cuts. For a subset
S
 V , define ı(S) as the the set of all edges in E that have
exactly one endpoint in S. Given a Steiner cut S 2 S, any
feasible solution F of I must contain at least one edge that
crosses the cut S, i. e.,

P
e2ı(S) xe � 1. This gives rise to the

following undirected cut formulation:

minimize
X
e2E

c(e)xe (IP)

subject to
X

e2ı(S)

xe � 1 8S 2 S (1)

xe 2 f0; 1g 8e 2 E : (2)

The dual of the linear programming relaxation of (IP) has
a variable yS for every Steiner cut S 2 S. There is a con-
straint for every edge e 2 E that requires that the total dual
assigned to sets S 2 S that contain exactly one endpoint of
e is at most the cost c(e) of the edge:

maximize
X
S2S

yS (D)

subject to
X

S2S : e2ı(S)

yS � c(e) 8e 2 E (3)

yS � 0 8S 2 S : (4)

Algorithm AKR is based on the primal-dual schema (see,
e. g., [22]). That is, the algorithm constructs both a fea-
sible primal solution for (IP) and a feasible dual solution
for (D). The algorithm starts with an infeasible primal
solution and reduces its degree of infeasibility as it pro-
gresses. At the same time, it creates a feasible dual packing
of subsets of large total value by raising dual variables of
Steiner cuts.

One can think of an execution of AKR as a process over
time. Let x� and y� , respectively, be the primal incidence
vector and feasible dual solution at time � . Initially, let
x0e = 0 for all e 2 E and y0S = 0 for all S 2 S. Let F� denote
the forest corresponding to the set of edges with x�e = 1.
A tree T in F� is called active at time � if it contains a ter-
minal that is separated from its mate; otherwise it is inac-
tive. Intuitively, AKR grows trees in F� that are active. At
the same time, the algorithm raises dual values of Steiner
cuts that correspond to active trees. If two active trees col-
lide, they are merged. The process terminates if all trees
are inactive and thus there are no unconnected terminal
pairs. The interplay of the primal (growing trees) and the
dual process (raising duals) is somewhat subtle and out-
lined next.

An edge e 2 E is tight if the corresponding con-
straint (3) holds with equality; a path is tight if all its edges
are tight. Let H� be the subgraph of G that is induced by

the tight edges for dual y� . The connected components of
H� induce a partition C� on the vertex setV . Let S� be the
set of all Steiner cuts contained in C� , i. e., S� = C� \ S.
AKR raises the dual values yS for all sets S 2 S� uniformly
at all times � � 0. Note that y� is dual feasible. The algo-
rithm maintains the invariant that F� is a subgraph of H�

at all times. Consider the event that a path P between two
trees T1 and T2 of F� becomes tight. The missing edges of
P are then added to F� and the process continues. Eventu-
ally, all trees in F� are inactive and the process halts.

Applications

The computation of (approximate) solutions for the
Steiner forest problem has various applications both in
theory and practice; only a few recent developments are
mentioned here.

Algorithms for more complex network design prob-
lems often rely on good approximation algorithms for the
Steiner forest problem. For example, the recent approxi-
mation algorithms [6,9,12] for the multi-commodity rent-
or-buy problem (MRoB) are based on the random sam-
pling framework by Gupta et al. [12,13]. The framework
uses a Steiner forest approximation algorithm that satis-
fies a certain strictness property as a subroutine. Fleischer
et al. [9] show that AKR meets this strictness requirement,
which leads to the current best 5-approximation algorithm
for MRoB. The strictness property also plays a crucial role
in the boosted sampling framework by Gupta et al. [14]
for two-stage stochastic optimization problems with re-
course.

Online versions of Steiner tree and forest problems
have been studied by by Awerbuch et al. [5] and Berman
and Coulston [7]. In the area of algorithmic game theory,
the development of group-strategyproof cost sharing mech-
anisms for network design problems such as the Steiner
tree problem has recently received a lot of attention; see
e. g., [16,17,19,20]. An adaptation of AKR yields such a cost
sharing mechanism for the Steiner forest problem [18].

Cross References

� Generalized Steiner Network
� Steiner Trees

Recommended Reading

The interested reader is referred in particular to the ar-
ticles [2,11] for a more detailed description of primal-
dual approximation algorithms for general network design
problems.

900 S Steiner Trees

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approxi-
mation algorithm for the generalized Steiner problem on net-
works. In: Proc. of the 23rd Annual ACM Symposium on The-
ory of Computing, Association for ComputingMachinery, New
York, pp. 134–144 (1991)

2. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approxi-
mation algorithm for the generalized Steiner problem in net-
works. SIAM J. Comput. 24(3), 445–456 (1995)

3. Aneja, Y.P.: An integer linear programming approach to the
Steiner problem in graphs. Networks 10(2), 167–178 (1980)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof
verification and the hardness of approximation problems.
J. ACM 45(3), 501–555 (1998)

5. Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized Steiner
problem. In: Proc. of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, Society for Industrial and Applied Mathe-
matics, Philadelphia, 2005, pp. 68–74 (1996)

6. Becchetti, L., Könemann, J., Leonardi, S., Pál, M.: Sharing the
cost more efficiently: improved approximation for multicom-
modity rent-or-buy. In: Proc. of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, pp. 375–384 (2005)

7. Berman, P., Coulston, C.: On-line algorithms for Steiner tree
problems. In: Proc. of the 29th Annual ACM Symposium on
Theory of Computing, pp. 344–353. Association for Comput-
ing Machinery, New York (1997)

8. Bern, M., Plassmann, P.: The Steiner problemwith edge lengths
1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)

9. Fleischer, L., Könemann, J., Leonardi, S., Schäfer, G.: Simple cost
sharing schemes formulticommodity rent-or-buy and stochas-
tic Steiner tree. In: Proc. of the 38th Annual ACM Symposium
on Theory of Computing, pp. 663–670. Association for Com-
putingMachinery, New York (2006)

10. Garey, M.R., Johnson, D.S.: Computers and intractability:
a guide to the theory of NP-completeness. Freeman, San Fran-
cisco (1979)

11. Goemans, M.X., Williamson, D.P.: A general approximation
technique for constrained forest problems. SIAM J. Comput.
24(2), 296–317 (1995)

12. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approxima-
tion via cost-sharing: a simple approximation algorithm for
the multicommodity rent-or-buy problem. In: Proc. of the
44th Annual IEEE Symposium on Foundations of Computer
Science, pp. 606–617., IEEE Computer Society, Washington
(2003)

13. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation
via cost-sharing: simpler and better approximation algorithms
for network design. J. ACM 54(3), Article 11 (2007)

14. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: ap-
proximation algorithms for stochastic optimization. In: Proc. of
the 36th Annual ACM Symposium on Theory of Computing,
pp. 417–426. Association for Computing Machinery, New York
(2004)

15. Jain, K.: A factor 2 approximation for the generalized Steiner
network problem. Combinatorica 21(1), 39–60 (2001)

16. Jain, K., Vazirani, V.V.: Applications of approximation algo-
rithms to cooperative games. In: Proc. of the 33rd Annual ACM
Symposium on Theory of Computing, Association for Comput-
ing Machinery, New York, pp. 364–372 (2001)

17. Kent, K., Skorin-Kapov, D.: Population monotonic cost alloca-
tion on mst’s. In: Proc. of the 6th International Conference on

Operational Research, Croatian Operational Research Society,
Zagreb, pp. 43–48 (1996)

18. Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof
mechanism for Steiner forests. In: Proc. of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 612–619.
Society for Industrial and Applied Mathematics, Philadelphia
(2005)

19. Megiddo, N.: Cost allocation for Steiner trees. Networks 8(1),
1–6 (1978)

20. Moulin, H., Shenker, S.: Strategyproof sharing of submodular
costs: budget balance versus efficiency. Econ. Theor. 18(3),
511–533 (2001)

21. Thimm,M.: On the approximabilityof the Steiner tree problem.
Theor. Comput. Sci. 295(1–3), 387–402 (2003)

22. Vazirani, V.V.: Approximation algorithms. Springer, Berlin
(2001)

Steiner Trees
2006; Du, Graham, Pardalos, Wan, Wu, Zhao

YAOCUN HUANG, WEILI WU
Department of Computer Science,
University of Texas at Dallas, Richardson, TX, USA

Keywords and Synonyms

Approximation algorithm design

Definition

Given a set of points, called terminals, in a metric space,
the problem is to find the shortest tree interconnecting
all terminals. There are three important metric spaces for
Steiner trees, the Euclidean plane, the rectilinear plane,
and the edge-weighted network. The Steiner tree prob-
lems in those metric spaces are called the Euclidean Steiner
Tree (EST), the Rectilinear Steiner Tree (RST), and the
Network Steiner Tree (NST), respectively. EST and RST
has been found to have polynomial-time approximation
schemes (PTAS) by using adaptive partition. However, for
NST, there exists a positive number r such that comput-
ing r-approximation is NP-hard. So far, the best perfor-
mance ratio of polynomial-time approximation for NST is
achieved by k-restricted Steiner trees. However, in prac-
tice, the iterated 1-Steiner tree is used very often. Actu-
ally, the iterated 1-Steiner was proposed as a candidate
of good approximation for Steiner minimum trees a long
time ago. It has a very good record in computer experi-
ments, but no correct analysis was given showing the iter-
ated 1-Steiner tree having a performance ratio better than
that of the minimum spanning tree until the recent work
by Du et al.[9]. There is minimal difference in construction
of the 3-restricted Steiner tree and the iterated 1-Steiner

Steiner Trees S 901

tree, which makes a big difference in analysis of those two
types of trees. Why does the difficulty of analysis make so
much difference? This will be explained in this article.

History and Background

The Steiner tree problem was proposed by Gauss in
1835 as a generalization of the Fermat problem. Given
three points A, B, and C in the Euclidean plane, Fer-
mat studied the problem of finding a point S to minimize
jSAj + jSBj + jSCj. He determined that when all three in-
ner angles of triangle ABC are less than 120°, the optimal S
should be at the position that †ASB = †BSC = †CSA =
120ı.

The generalization of the Fermat problem has two di-
rections:
1. Given n points in the Euclidean plane, find a point S

to minimize the total distance from S to n given points.
This is still called the Fermat problem.

2. Given n points in the Euclidean plane, find the shortest
network interconnecting all given points.
Gauss found the second generalization through com-

munication with Schumacher. On March 19, 1836, Schu-
macher wrote a letter to Gauss and mentioned a paradox
about Fermat’s problem: Consider a convex quadrilateral
ABCD. It is known that the solution of Fermat’s problem
for four points A, B, C, and D is the intersection E of di-
agonals AC and BD. Suppose extending DA and CB can
obtain an intersection F. Now, move A and B to F. Then E
will also be moved to F. However, when the angle at F is
less than 120°, the point F cannot be the solution of Fer-
mat’s problem for three given points F, D, and C. What
happens? (Fig. 1.)

On March 21, 1836, Gauss wrote a letter replying to
Schumacher in which he explained that the mistake of
Schumacher’s paradox occurs at the place where Fermat’s
problem for four points A, B, C, and D is changed to

Steiner Trees, Figure 1

Fermat’s problem for three points F, C, and D. When
A and B are identical to F, the total distance from E to
four points A, B, C, andD equals 2jEFj + jECj + jEDj, not
jEFj + jECj + jEDj. Thus, the point E may not be the so-
lution of Fermat’s problem for F, C, and D. More impor-
tantly, Gauss proposed a new problem. He said that it is
more interesting to find the shortest network rather than
a point. Gauss also presented several possible connections
of the shortest network for four given points.

It was unfortunate that Gauss’ letter was not seen by
researchers of Steiner trees at an earlier stage. Especially, R.
Courant and H. Robbins who in their popular bookWhat
ismathematics? (published in 1941) [6] calledGauss’ prob-
lem the Steiner tree so that “Steiner tree” became a popular
name for the problem.

The Steiner tree became an important research topic in
mathematics and computer science due to its applications
in telecommunication and computer networks. Starting
with Gilbert and Pollak’s work published in 1968, many
publications on Steiner trees have been generated to solve
various problems concerning it.

One well-known problem is the Gilbert–Pollak con-
jecture on the Steiner ratio, which is the least ratio of
lengths between the Steiner minimum tree and the mini-
mum spanning tree on the same set of given points. Gilbert
and Pollak in 1968 conjectured that the Steiner ratio in the
Euclidean plane is

p
3/2 which is achieved by three vertices

of an equilateral triangle. A great deal of research effort has
been put into the conjecture and it was finally proved by
Du and Hwang [7].

Another important problem is called the better ap-
proximation. For a long time no approximation could
be proved to have a performance ratio smaller than the
inverse of the Steiner ratio. Zelikovsky [14] made the
first breakthrough. He found a polynomial-time 11/6-
approximation for NST which beats 1/2, the inverse of
the Steiner ratio in the edge-weighted network. Later,
Berman and Ramaiye [2] gave a polynomial-time 92/72-
approximation for RST and Du, Zhang, and Feng [8]
closed the story by showing that in any metric space, there
exists a polynomial-time approximation with a perfor-
mance ratio better than the inverse of the Steiner ratio
provided that for any set of a fixed number of points, the
Steiner minimum tree is polynomial-time computable.

All the above better approximations came from the
family of k-restricted Steiner trees. By improving some de-
tail of construction, the constant performance ratio was
decreasing, but the improvements were also becoming
smaller. In 1996, Arora [1] made significant progress for
EST and RST. He showed the existence of PTAS for EST
and RST. Therefore, the theoretical researchers now pay

902 S Steiner Trees

more attention to NST. Bern and [3] showed that NST is
MAX SNP-complete. This means that there exists a posi-
tive number r, computing the r-approximation for NST is
NP-hard. The best-known performance for NSTwas given
by Robin and Zelikovsky [12]. They also gave a very simple
analysis to a well-known heuristic, the iterated 1-Steiner
tree for pseudo-bipartite graphs.

Analysis of the iterated 1-Steiner tree is another long-
standing open problem. Since Chang [4,5] proposed that
the iterated 1-Steiner tree approximates the Steiner min-
imum tree in 1972, its performance has been claimed
to be very good through computer experiments[10,13],
but no theoretical analysis supported this claim. Actually,
both the k-restricted Steiner tree and the iterated 1-Steiner
tree are obtained by greedy algorithms, but with different
types of potential functions. For the iterated 1-Steiner tree,
the potential function is non-submodular, but for the k-
restricted Steiner tree, it is submodular; a property that
holds for k-restricted Steiner trees may not hold for iter-
ated 1-Steiner trees. Actually, the submodularity of poten-
tial function is very important in analysis of greedy ap-
proximations [11]. Du et al. [9] gave a correct analysis for
the iterated 1-Steiner tree with a general technique to deal
with non-submodular potential function.

Key Results

Consider input edge-weighted graph G = (V ; E) of NST.
Assume that G is a complete graph and the edge-weight
satisfies the triangular inequality, otherwise, consider the
complete graph onV with each edge (u, v) having a weight
equal to the length of the shortest path between u and v in
G. Given a set P of terminals, a Steiner tree is a tree inter-
connecting all given terminals such that every leaf is a ter-
minal.

In a Steiner tree, a terminal may have degreemore than
one. The Steiner tree can be decomposed, at those termi-
nals with degreemore than one, into smaller trees in which
every terminal is a leaf. In such a decomposition, each re-
sulting small tree is called a full component. The size of
a full component is the number of terminals in it. A Steiner
tree is k-restricted if every full component of it has a size at
most k. The shortest k-restricted Steiner tree is also called
the k-restricted Steiner minimum tree. Its length is denoted
by smtk(P). Clearly, smt2(P) is the length of the minimum
spanning tree on P, which is also denoted by mst(P). Let
smt(P) denote the length of the Steiner minimum tree on
P. If smt3(P) can be computed in polynomial-time, then
it is better than mst(P) for an approximation of smt(P).
However, so far no polynomial-time approximation has
been found for smt3(P). Therefore, Zelikovsky [14] used

a greedy approximation of smt3(P) to approximate smt(P).
Actually, Chang [4,5] used a similar greedy algorithm to
compute an iterated 1-Steiner tree. Let F be a family of
subgraphs of input edge-weighted graph G. For any con-
nected subgraph H, denote by mst(H) the length of the
minimum spanning tree ofH and for any subgraphH, de-
note by mst(H) the sum of mst(H0) for H0 over all con-
nected components ofH. Define

gain(H) = mst(P) � mst(P : H)� mst(H) ;

where mst(P : H) is the length of the minimum spanning
tree interconnecting all unconnected terminals in P after
every edge of H shrinks into a point.

Greedy Algorithm H ;;
while P has not been interconnected by H do

choose F 2 F to maximize gain(H [F);
output mst(H).

When F consists of all full components of size at most
three, this greedy algorithm gives the 3-restricted Steiner
tree of Zelikovsky [14]. WhenF consists of all 3-stars and
all edges where a 3-star is a tree with three leaves and a cen-
tral vertex, this greedy algorithm produces the iterated 1-
Steiner tree. An interesting fact pointed out by Du et al. [9]
is that the function gain(�) is submodular over all full com-
ponents of size at most three, but not submodular over all
3-stars and edges.

Let us consider a base set E and a function f from all
subsets of E to real numbers. f is submodular if for any two
subsets A, B of E,

f (A) + f (B) � f (A[B) + f (A\ B) :

For x 2 E and A
 E, denote�x f (A) = f (A[fxg)� f (A).

Lemma 1 f is submodular if and only if for any A � E and
distinct x; y 2 E � A,

�x�y f (A) � 0 : (1)

Proof Suppose f is submodular. Set B = A[fxg
and C = A[fyg. Then B [C = A[A[fx; yg and
B \ C = A. Therefore, one has

f (A[fx; yg)� f (A[fxg)� f (A[fyg) + f (A) � 0 ;

that is, (1) holds.
Conversely, suppose (1) holds for any A � E and dis-

tinct x; y 2 E � A. Consider two subsets A; B of E. If
A
 B or B
 A, it is trivial to have

f (A) + f (B) � f (A[B) + f (A\ B) :

Steiner Trees S 903

Therefore, one may assume that A n B ¤ ; and
B n A¤ ;. Write A n B = fx1; : : : ; xkg and B n A = fy1;
: : : ; yhg. Then

f (A[B) � f (A) � f (B) + f (A\ B)

=
kX
i=1

hX
j=1

�xi�y j f (A[fx1; : : : ; xi�1g [fy1; : : : ; y j�1g)

� 0 ;

where fx1; : : : xi�1g = ; for i = 1 and fy1; : : : ; y j�1g = ;
for j = 1. �

Lemma 2 Define f (H) = �mst(P : H). Then f is submod-
ular over edge set E.

Proof Note that for any two distinct edges x and y not in
subgraph H,

�x� f (H)
= �mst(P : H [x [y) + mst(P : H [x)
+ mst(P : H [y) � mst(P : H)

= (mst(P : H) � mst(P : H [x [y))
� (mst(P : H)� mst(P : H [x)) + (mst(P : H)
� mst(P : H [y)) :

Let T be a minimum spanning tree for unconnected termi-
nals after every edge of H shrinks into a point. T contains
a path Px connecting two endpoints of x and also a path
Py connecting two endpoints of y. Let ex (ey) be a longest
edge in Px (Py). Then

mst(P : H)� mst(P : H [x) = l eng th(ex) ;
mst(P : H) � mst(P : H [y) = l eng th(ey) :

mst(P : H)� mst(P : H [x [y) can be computed as fol-
lows: Choose a longest edge e0 from Px [Py . Note
that T [x [y � e0 contains a unique cycle Q. Choose
a longest edge e00 from (Px [Py) \ Q. Then

mst(P : H)�mst(P : H[x[y) = l eng th(e0)+l eng th(e00):

Now, to show the submodularity of f , it suffices to prove

l eng th(ex)+ l eng th(ey) � l eng th(e0)+ l eng th(e00): (2)

Case 1. ex 62 Px \ Py and ey 62 Px \ Py . Without loss of
generality, assume l eng th(ex) � l eng th(ey). Then one
may choose e0 = ex so that (Px [Py) \ Q = Py . Hence
one can choose e00 = ey . Therefore, the equality holds
for (2).

Steiner Trees, Figure 2

Case 2. ex 62 Px \ Py and ey 2 Px \ Py . Clearly,
l eng th(ex) � l eng th(ey). Hence, one may choose e0 = ex
so that (Px [Py) \ Q = Py . Hence one can choose
e00 = ey . Therefore, the equality holds for (2).

Case 3. ex 2 Px \ Py and ey 62 Px \ Py . Similar to
Case 2.

Case 4. ex 2 Px \ Py and ey 2 Px \ Py . In this
case, l eng th(ex) = l eng th(ey) = l eng th(e0). Hence, (2)
holds. �

The following explains that the submodularity of gain(�)
holds for a k-restricted Steiner tree.

Proposition Let E be the set of all full components of
a Steiner tree. Then gain(�) as a function on the power set
of E is submodular.

Proof Note that for anyH � E and x; y 2 E �H ,

�x�ymst(H) = 0 ;

where H = [z2H z. Thus, this proposition follows from
Lemma 2. �

Let F be the set of 3-stars and edges chosen in the
greedy algorithm to produce an iterated 1-Steiner tree.
Then gain(�) may not be submodular on F . To see this
fact, consider two 3-stars x and y in Fig. 2. Note that
gain(x [y) > gain(x); gain(y) � 0 and gain(;) = 0.
One has

gain(x [y) � gain(x) � gain(y) + gain(;) > 0 :

Applications

The Steiner tree problem is a classic NP-hard problem
with many applications in the design of computer circuits,
long-distance telephone lines, multicast routing in com-
munication networks, etc. There exist many heuristics of
the greedy-type for Steiner trees in the literature. Most of
them have a good performance in computer experiments,

904 S Stochastic Scheduling

without support from theoretical analysis. The approach
given in this work may apply to them.

Open Problems

It is still open whether computing the 3-restricted Steiner
minimum tree is NP-hard or not. For k � 4, it is known
that computing the k-restricted Steiner minimum tree is
NP-hard.

Cross References

� Greedy Approximation Algorithms
�Minimum Spanning Trees
� Rectilinear Steiner Tree

Recommended Reading
1. Arora, S.: Polynomial-time approximation schemes for Eu-

clidean TSP and other geometric problems. Proc. 37th IEEE
Symp. on Foundations of Computer Science, pp. 2–12 (1996)

2. Berman, P., Ramaiyer, V.: Improved approximations for the
Steiner tree problem. J. Algorithms 17, 381–408 (1994)

3. Bern, M., Plassmann, P.: The Steiner problem with edge
lengths 1 and 2. Inf. Proc. Lett. 32, 171–176 (1989)

4. Chang, S.K.: The generation of minimal trees with a Steiner
topology. J. ACM 19, 699–711 (1972)

5. Chang, S.K.: The design of network configurations with lin-
ear or piecewise linear cost functions. In: Symp. on Computer-
Communications, Networks, and Teletraffic, pp. 363–369 IEEE
Computer Society Press, California (1972)

6. Crourant, R., Robbins, H.: What Is Mathematics? Oxford Univer-
sity Press, New York (1941)

7. Du, D.Z., Hwang, F.K.: The Steiner ratio conjecture of Gilbert-
Pollak is true. Proc. Natl. Acad. Sci. USA 87, 9464–9466 (1990)

8. Du, D.Z., Zhang, Y., Feng, Q.: On better heuristic for euclidean
Steiner minimum trees. In: Proceedings 32nd FOCS, IEEE Com-
puter Society Press, California (1991)

9. Du, D.Z., Graham, R.L., Pardalos, P.M., Wan, P.J., Wu, W., Zhao,
W.: Analysis of greedy approximations with nonsubmodular
potential functions. In: Proceedings of 19th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 167–175. ACM, New
York (2008)

10. Kahng, A., Robins, G.: A new family of Steiner tree heuris-
tics with good performance: the iterated 1-Steiner approach.
In: Proceedings of IEEE Int. Conf. on Computer-Aided Design,
Santa Clara, pp.428–431 (1990)

11. Wolsey, L.A.: An analysis of the greedy algorithm for the sub-
modular set covering problem. Combinatorica 2, 385–393
(1982)

12. Robin, G., Zelikovsky, A.: Improved Steiner trees approximation
in graphs. In: SIAM-ACM Symposium on Discrete Algorithms
(SODA), San Francisco, CA, pp. 770–779. January (2000)

13. Smith, J.M., Lee, D.T., Liebman, J.S.: An O(N logN) heuristic for
Steiner minimal tree problems in the Euclidean metric. Net-
works 11, 23–39 (1981)

14. Zelikovsky, A.Z.: The 11/6-approximation algorithm for the
Steiner problem on networks. Algorithmica 9, 463–470 (1993)

Stochastic Scheduling
2001; Glazebrook, Nino-Mora

JAY SETHURAMAN
Industrial Engineering and Operations Research,
Columbia University, New York, NY, USA

Keywords and Synonyms

Sequencing; Queueing

ProblemDefinition

Scheduling is concerned with the allocation of scarce re-
sources (such as machines or servers) to competing ac-
tivities (such as jobs or customers) over time. The dis-
tinguishing feature of a stochastic scheduling problem
is that some of the relevant data are modeled as ran-
dom variables, whose distributions are known, but whose
actual realizations are not. Stochastic scheduling prob-
lems inherit several characteristics of their determinis-
tic counterparts. In particular, there are virtually an un-
limited number of problem types depending on the ma-
chine environment (single machine, parallel machines, job
shops, flow shops), processing characteristics (preemptive
versus non-preemptive; batch scheduling versus allowing
jobs to arrive “over time”; due-dates; deadlines) and ob-
jectives (makespan, weighted completion time, weighted
flow time, weighted tardiness). Furthermore, stochastic
scheduling models have some new, interesting features (or
difficulties!):
� The scheduler may be able to make inferences about

the remaining processing time of a job by using infor-
mation about its elapsed processing time; whether the
scheduler is allowed to make use of this information or
not is a question for the modeler.

� Many scheduling algorithms make decisions by com-
paring the processing times of jobs. If jobs have de-
terministic processing times, this poses no problems
as there is only one way to compare them. If the pro-
cessing times are random variables, comparing pro-
cessing times is a subtle issue. There are many ways to
compare pairs of random variables, and some are only
partial orders. Thus any algorithm that operates by
comparing processing times must now specify the par-
ticular ordering used to compare random variables
(and to determine what to do if two random variables
are not comparable under the specified ordering).

These considerations lead to the notion of a scheduling
policy, which specifies how the scarce resources have to
be allocated to the competing activities as a function of

Stochastic Scheduling S 905

the state of the system at any point in time. The state of
the system includes information such as prior job com-
pletions, the elapsed time of jobs currently in service, the
realizations of the random release dates and due-dates (if
any), and any other information that can be inferred based
on the history observed so far. A policy that is allowed
to make use of all this information is said to be dynamic,
whereas a policy that is not allowed to use any state infor-
mation is static.

Given any policy, the objective function for a stochas-
tic scheduling model operating under that policy is typi-
cally a random variable. Thus comparison of two policies
entails the comparison of the associated random variables,
so the sense in which these random variables are compared
must be specified. A common approach is to find a so-
lution that optimizes the expected value of the objective
function (which has the advantage that it is a total order-
ing); less commonly, other orderings such as the stochastic
ordering or the likelihood ratio ordering are used.

Key Results

Consider a single machine that processes n jobs, with the
(random) processing time of job i given by a distribu-
tion Fi(�) whose mean is pi. The Weighted Shortest Ex-
pected Processing Time first (WSEPT) rule sequences the
jobs in decreasing order of wi /pi . Smith [13] proved that
the WSEPT rule minimizes the sum of weighted comple-
tion times when the processing times are deterministic.
Rothkopf [11] generalized this result and proved the fol-
lowing:

Theorem 1 The WSEPT rule minimizes the expected sum
of the weighted completion times in the class of all nonpre-
emptive dynamic policies (and hence also in the class of all
nonpreemptive static policies).

If preemption is allowed, the WSEPT rule is not optimal.
Nevertheless, Sevcik [12] showed how to assign an “in-
dex” to each job at each point in time such that scheduling
a job with the largest index at each point in time is optimal.
Such policies are called index policies and have been inves-
tigated extensively because they are (relatively) simple to
implement and analyze. Often the optimality of index poli-
cies can be proved under some assumptions on the pro-
cessing time distributions. For instance, Weber, Varaiya,
and Walrand [14] proved the following result for schedul-
ing n jobs on m identical parallel machines:

Theorem 2 The SEPT rule minimizes the expected sum of
completion times in the class of all nonpreemptive dynamic
polices, if the processing time distributions of the jobs are
stochastically ordered.

For the same problem but with the makespan objective,
Bruno, Downey, and Frederickson [3] proved the optimal-
ity of the Longest Expected Processing Time first rule pro-
vided all the jobs have exponentially distributed process-
ing times.

One of the most significant achievements in stochas-
tic scheduling is the proof of optimality of index policies
for themulti-armed bandit problem and its many variants,
due originally to Gittins and Jones [5,6]. In an instance of
the bandit problem there are N projects, each of which is
in any one of a possibly finite number of states. At each
(discrete) time, any one of the projects can be attempted,
resulting in a random reward; the attempted project un-
dergoes a (Markovian) state-transition, whereas the other
projects remain frozen and do not change state. The goal
of the decisionmaker is to determine an optimal way to at-
tempt the projects so as to maximize the total discounted
reward. Of course one can solve this problem as a large,
stochastic dynamic program, but such an approach does
not reveal any structure, and is moreover computationally
impractical except for very small problems. (Also, if the
state space of any project is countable or infinite, it is not
clear how one can solve the resulting DP exactly!) The re-
markable result of Gittins and Jones [5] is the optimality of
index policies: to each state of each project, one can asso-
ciate an index so that attempting a project with the largest
index at any point in time is optimal. The original proof of
Gittins and Jones [5] has subsequently been simplified by
many authors; moreover, several alternative proofs based
on different techniques have appeared, leading to a much
better understanding of the class of problems for which in-
dex policies are optimal.[2,4,6,10,17]

While index policies are easy to implement and ana-
lyze, they are often not optimal in many problems. It is
therefore natural to investigate the gap between an opti-
mal index policy (or a natural heuristic) and an optimal
policy. For example, the WSEPT rule is a natural heuris-
tic for the problem of scheduling jobs on identical parallel
machines to minimize the expected sum of the weighted
completion times. However, the WSEPT rule is not nec-
essarily optimal. Weiss [16] showed that, under mild and
reasonable assumptions, the expected number of times
that the WSEPT rule differs from the optimal decision is
bounded above by a constant, independent of the num-
ber of jobs. Thus, the WSEPT rule is asymptotically opti-
mal. As another example of a similar result, Whittle [18]
generalized the multi-armed bandit model to allow for
state-transitions in projects that are not activated, giving
rise to the “restless bandit” model. For this model, Whit-
tle [18] proposed an index policy whose asymptotic opti-
mality was established by Weber andWeiss [15].

906 S Strategyproof

A number of stochastic scheduling models allow for
jobs to arrive over time according to a stochastic process.
A commonly used model in this setting is that of a mul-
ticlass queueing network. Multiclass queueing networks
serve as useful models for problems in which several types
of activities compete for a limited number of shared re-
sources. They generalize deterministic job-shop problems
in two ways: jobs arrive over time, and each job has a ran-
dom processing time at each stage. The optimal control
problem in a multiclass queueing network is to find an op-
timal allocation of the available resources to activities over
time. Not surprisingly, index policies are optimal only for
restricted versions of this general model. An important ex-
ample is scheduling a multiclass single-server system with
feedback: there are N types of jobs, type i jobs arrive ac-
cording to a Poisson process with rate �i , require service
according to a service-time distribution Fi(�) with mean
processing time si, and incur holding costs at rate ci per
unit time. A type i job after undergoing processing be-
comes a type j job with probability pij, or exits the sys-
tem with probability 1 �

P
j pi j . The objective is to find

a scheduling policy that minimizes the expected holding
cost rate in steady-state. Klimov [9] proved the optimality
of index policies for this model, as well as for the objective
in which the total discounted holding cost is to be min-
imized. While the optimality result does not hold when
there are many parallel machines, Glazebrook and Niño-
Mora [7] showed that this rule is asymptotically optimal.
For more general models, the prevailing approach is to use
approximations such as fluid approximations [1] or diffu-
sion approximations [8].

Applications

Stochastic scheduling models are applicable in many set-
tings, most prominently in computer and communication
networks, call centers, logistics and transportation, and
manufacturing systems [4,10].

Cross References
� List Scheduling
�MinimumWeighted Completion Time

Recommended Reading
1. Avram, F., Bertsimas, D., Ricard, M.: Fluid models of sequenc-

ing problems in open queueing networks: an optimal con-
trol approach. In: Kelly, F.P., Williams, R.J. (eds.) Stochastic Net-
works. Proceedings of the International Mathematics Associa-
tion, vol. 71, pp. 199–234. Springer, New York (1995)

2. Bertsimas, D., Niño-Mora, J.: Conservation laws, extended
polymatroids and multiarmed bandit problems: polyhedral
approaches to indexable systems. Math. Oper. Res. 21(2),
257–306 (1996)

3. Bruno, J., Downey, P., Frederickson, G.N.: Sequencing tasks
with exponential service times to minimize the expected flow
time or makespan. J. ACM 28, 100–113 (1981)

4. Dacre, M., Glazebrook, K., Nino-Mora, J.: The achievable region
approach to the optimal control of stochastic systems. J. R.
Stat. Soc. Series B 61(4), 747–791 (1999)

5. Gittins, J.C., Jones, D.M.: A dynamic allocation index for the se-
quential design experiments. In: Gani, J., Sarkadu, K., Vince, I.
(eds.) Progress in Statistics. EuropeanMeeting of Statisticians I,
pp. 241–266. North Holland, Amsterdam (1974)

6. Gittins, J.C.: Bandit processes and dynamic allocation indices.
J. R. Stat. Soc. Series B, 41(2), 148–177 (1979)

7. Glazebrook, K., Niño-Mora, J.: Parallel scheduling of multiclass
M/M/mqueues: approximate and heavy-traffic optimization of
achievable performance. Oper. Res. 49(4), 609–623 (2001)

8. Harrison, J.M.: Brownian models of queueing networks with
heterogenous customer populations. In: Fleming, W., Lions,
P.L. (eds.) Stochastic Differential Systems, Stochastic Control
Theory and Applications. Proceedings of the International
Mathematics Association, pp. 147–186. Springer, New York
(1988)

9. Klimov, G.P.: Time-sharing service systems I. Theory Probab.
Appl. 19, 532–551 (1974)

10. Pinedo, M.: Scheduling: Theory, Algorithms and Systems, 2nd
ed. Prentice Hall, Englewood Cliffs (2002)

11. Rothkopf, M.: Scheduling with Random Service Times. Manag.
Sci. 12, 707–713 (1966)

12. Sevcik, K.C.: Scheduling for minimum total loss using service
time distributions. J. ACM 21, 66–75 (1974)

13. Smith, W.E.: Various optimizers for single-stage production.
Nav. Res. Logist. Quart. 3, 59–66 (1956)

14. Weber, R.R., Varaiya, P., Walrand, J.: Scheduling jobs with
stochastically ordered processing times on parallel machines
to minimize expected flow time. J. Appl. Probab. 23, 841–847
(1986)

15. Weber, R.R., Weiss, G.: On an index policy for restless bandits.
J. Appl. Probab. 27, 637–648 (1990)

16. Weiss, G.: Turnpike optimality of Smith’s rule in parallel ma-
chine stochastic scheduling. Math. Oper. Res. 17, 255–270
(1992)

17. Whittle, P.: Multiarmed bandit and the Gittins index. J. R. Stat.
Soc. Series B 42, 143–149 (1980)

18. Whittle, P.: Restless bandits: Activity allocation in a changing
world. In: Gani, J. (ed.) A Celebration of Applied Probability. J
Appl. Probab. 25A, 287–298 (1988)

Strategyproof
� Nash Equilibria and Dominant Strategies in Routing
� Truthful Multicast

Stretch Factor
� Applications of Geometric Spanner Networks
� Dilation of Geometric Networks
� Geometric Dilation of Geometric Networks

String Sorting S 907

String
� Compressed Pattern Matching
� Sequential Approximate String Matching
� Suffix Tree Construction in Hierarchical Memory
� Text Indexing

String Sorting
1997; Bentley, Sedgewick

ROLF FAGERBERG
Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Keywords and Synonyms

Sorting of multi-dimensional keys; Vector sorting

ProblemDefinition

The problem is to sort a set of strings into lexicographical
order. More formally: A string over an alphabet ˙ is a fi-
nite sequence x1x2x3 : : : xk where xi 2 ˙ for i = 1; : : : ; k.
The xi’s are called the characters of the string, and k is the
length of the string. If the alphabet ˙ is ordered, the lexi-
cographical order on the set of strings over˙ is defined by
declaring a string x = x1x2x3 : : : xk smaller than a string
y = y1y2y3 : : : yl if either there exists a j � 1 such that
xi = yi for 1 � i < j and x j < y j , or if k < l and xi = yi
for 1 � i � k. Given a set S of strings over some ordered
alphabet, the problem is to sort S according to lexicograph-
ical order.

The input to the string sorting problem consists of an
array of pointers to the strings to be sorted. The output is
a permutation of the array of pointers, such that traversing
the array will point to the strings in non-decreasing lexico-
graphical order.

The complexity of string sorting depends on the alpha-
bet as well as the machine model. The main solution [15]
described in this entry works for alphabets of unbounded
size (i. e., comparisons are the only operations on charac-
ters of˙), and can be implemented on a pointer machine.
See below for more information on the asymptotic com-
plexity of string sorting in various settings.

Key Results

This section is structured as follows: first the key result
appearing in title of this entry [15] is described, then an
overview of other relevant results in the area of string sort-
ing is given.

The string sorting algorithm proposed by Bentley and
Sedgewick in 1997 [15] is called Three-Way Radix Quick-
sort [5]. It works for unbounded alphabets, for which it
achieves optimal performance.

Theorem 1 The algorithm Three-Way Radix Quicksort
sorts K strings of total length N in time O(K log K + N).

That this time complexity is optimal follows by consider-
ing strings of the form bbb : : : bx, where all x’s are dif-
ferent: Sorting the strings can be no faster than sorting
the x’s, and all b’s must be read (else an adversary could
change one unread b to a or c, making the returned or-
der incorrect). Amore precise version of the bounds above
(upper as well as lower) is K log K + D, whereD is the sum
of the lengths of the distinguishing prefixes of the strings.
The distinguishing prefix ds of a string s in a set S is the
shortest prefix of s which is not a prefix of another string
in S (or is s itself, if s is a prefix of another string). Clearly,
K � D � N .

The Three-Way Radix Quicksort of Bentley and
Sedgewick is not the first algorithm to achieve this com-
plexity—however, it is a very simple and elegant way of do-
ing it. As demonstrated in [3,15], it is also very fast in prac-
tice. Although various elements of the algorithm had been
noted earlier, their practical usefulness for string sorting
was overlooked until the work in [15].

Three-Way Radix Quicksort is shown in pseudo-code
in Fig. 1 (adapted from [5]), where S is a list of strings
to be sorted and d is an integer. To sort S, an initial call
SORT(S, 1) is made. The value sd denotes the dth charac-
ter of the string s, and + denotes concatenation. The pre-
sentation in Fig. 1 assumes that all strings end in a special

SORT(S, d)
IF jSj � 1:

RETURN
Choose a partitioning character
v 2 fsd j s 2 Sg
S< = fs 2 S j sd < vg
S= = fs 2 S j sd = vg
S> = fs 2 S j sd > vg
SORT(S<; d)
IF v ¤ EOS:

SORT(S=; d + 1)
SORT(S>; d)
S = S< + S= + S>

String Sorting, Figure 1
Three-Way Radix Quicksort (assuming each string ends in a spe-
cial EOS character)

908 S String Sorting

End-Of-String (EOS) character (such as the null charac-
ter in C). In an actual implementation, S will be an array
of pointers to strings, and the sort will in-place (using an
in-place method from standard Quicksort for three-way
partitioning of the array into segments holding S<, S=, and
S>), rendering concatenation superfluous.

Correctness follows from the following invariant be-
ing maintained by the algorithm: At the start of a call
SORT(S, d), all strings in S agree on the first d � 1 char-
acters.

Time complexity depends on how the partitioning
character v is chosen. One particular choice is the me-
dian of all the dth characters (including doublets) of the
strings in S. Partitioning and median finding can be done
in time O(|S|), which is O(1) time per string partitioned.
Hence, the total running time of the algorithm is the sum
over all strings of the number of partitionings they take
part in. For each string, let a partitioning be of type I if
the string ends up in S< or S>, and of type II if it ends up
in S=. For a string s, type II can only occur |ds| times and
type I can only occur logK times. Hence, the running time
is O(K logK + D).

Like for standard Quicksort, median finding impairs
the constant factors of the algorithm, and more practical
choices of partitioning character include selecting a ran-
dom element among all the dth characters of the strings
in S, and selecting the median of three elements in this set.
The worst-case bound is lost, but the result is a fast, ran-
domized algorithm.

Note that the ternary recursion tree of Three-Way
Radix Quicksort is equivalent to a trie over the strings
sorted, with trie nodes implemented by binary trees
(where the elements stored in a binary tree are the char-
acters of the trie edges leaving the trie node). The equiva-
lence is as follows: an edge representing a recursive call on
S< or S> corresponds to an edge of a binary tree (imple-
menting a trie node), and an edge representing a recursive
call on S= corresponds to a trie edge leading to a child node
in the trie. This trie implementation is named Ternary
Search Trees in [15]. Hence, Three-Way Radix Quicksort
may additionally be viewed as a construction algorithm for
an efficient dictionary structure for strings.

For the version of the algorithmwhere the partitioning
character v is chosen as the median of all the dth charac-
ters, it is not hard to see that the binary trees represent-
ing the trie nodes become weighted trees, i. e., binary trees
in which each element x has an associated weight wx, and
searches for x takesO(logW/wx), whereW = ˙xwx is the
sum of all weights in the binary tree. The weight of a bi-
nary tree node storing character x is the number of strings
in the trie which reside below the trie edge labeled with

character x and leaving the trie node represented by the
binary tree. As shown in [13], in such a trie implementa-
tion searching for a string P among K stored strings takes
time O(log K + jPj), which is optimal for unbounded (i. e.,
comparison-based) alphabets.

Other key results in the area of string sorting are now
described. The classic string sorting algorithm is Radix-
sort, which assumes a constant sized alphabet. The Least-
Significant-Digit-first variant is easy to implement, and
runs in O(N + l j˙ j) time, where l is the length of the
longest string. The Most-Significant-Digit-first variant is
more complicated to implement, but has a better running
time of O(D + dj˙ j), where D is the sum of the lengths
of the distinguishing prefixes, and d is the longest dis-
tinguishing prefix. [12] discusses in depth efficient imple-
mentations of Radixsort.

If the alphabet consists of integers, then on a word-
RAM the complexity of string sorting is essentially de-
termined by the complexity of integer sorting. More pre-
cisely, the time (when allowing randomization) for sort-
ing strings is 	(SortInt(K) + N), where SortInt(K) is the
time to sort K integers [2], which currently is known to
be O(K

p
log logK) [11].

Returning to comparison-based model, the pa-
pers [8,10] give generic methods for turning any data
structure over one-dimensional keys into a data struc-
ture over strings. Using finger search trees, this gives
an adaptive sorting method for strings which uses
O(N + K log(F/K)) time, where F is the number of inver-
sions among the strings to be sorted.

Concerning space complexity, it has been shown [9]
that string sorting can still be done in O(K log K + N) time
using onlyO(1) space besides the strings themselves.How-
ever, this assumes that all strings have equal lengths.

All algorithms so far are designed to work in inter-
nal memory, where CPU time is assumed to be the dom-
inating factor. For external memory computation, a more
relevant cost measure is the number of I/Os performed,
as captured by the I/O-model [1], which models a two-
level memory hierarchy with an infinite outer memory,
an inner memory of size M, and transfer (I/Os) between
the two levels taking place in blocks of size B. In exter-
nal memory, upper bounds were first given in [4], along
with matching lower bounds in restricted I/O-models.
For a comparison based model where strings may only
be moved in blocks of size B (hence, characters may not
be moved individually), it is shown that string sorting
takes 	(N1/B logM/B(N1/B) + K2 logM/B K2 + N/B) I/Os,
where N1 is the total length of strings shorter than B char-
acters, K2 is the number of strings of at least B char-
acters, and N is the total number of characters. This

String Sorting S 909

bound is equal to the sum of the I/O costs of sort-
ing the characters of the short strings, sorting B char-
acters from each of the long strings, and scanning all
strings. In the same paper, slightly better bounds in
a model where characters may be moved individually
in internal memory are given, as well as some upper
bounds for non-comparison based string sorting. Fur-
ther bounds (using randomization) for non-comparison
based string sorting have been given, with I/O bounds
of O(K/B logM/B(K/M) log logM/B(K/M) + N/B) [7] and1

O(K/B(logM/B(N/M))2 log2 K + N/B).
Returning to internal memory, it may also there be

the case that memory hierarchy effects are the determin-
ing factor for the running time of algorithms, but now due
to cache faults rather than disk I/Os. Heuristic algorithms
(i. e., algorithms without good worst case bounds), aim-
ing at minimizing cache faults for internal memory string
sorting, have been developed. Of these, the Burstsort line
of algorithms [16] have particularly promising experimen-
tal results reported.

Applications

Data sets consisting partly or entirely of string data are
very common: Most database applications have strings as
one of the data types used, and in some areas, such as
bioinformatics, web retrieval, and word processing, string
data is predominant. Additionally, strings form a general
and fundamental data model, containing e. g. integers and
multi-dimensional data as special cases. Since sorting is ar-
guably among the most important data processing tasks
in any domain, string sorting is a general and important
problem with wide practical applications.

Open Problems

As appears from the bounds discussed above, the asymp-
totic complexity of the string sorting problem is known
for comparison based alphabets. For integer alphabets on
the word-RAM, the problem is almost closed in the sense
that it is equivalent to integer sorting, for which the gap
left between the known bounds and the trivial linear lower
bound is small.

In external memory, the situation is less settled. As
noted in [4], a natural upper bound to hope for in
a comparison based setting is to meet the lower bound
of 	(K/B logM/B K/M + N/B) I/Os, which is the sorting
bound for K single characters plus the complexity of scan-
ning the input. The currently known upper bounds only

1Ferragina, personal communication.

gets close to this if leaving the comparison based setting
and allowing randomization.

Further open problems include adaptive sorting algo-
rithms for other measures of presortedness than that used
in [8,10], and algorithms for sorting general strings (not
necessarily of equal lengths) using only O(1) additional
space [9].

Experimental Results

In [15], experimental comparison of two implementations
(one simple and one tuned) of Three-Way Radix Quick-
sort with a tuned Quicksort [6] and a tuned Radixsort [12]
showed the simple implementation to always outperform
the Quicksort implementation, and the tuned implemen-
tation to be competitive with the Radixsort implementa-
tion.

In [3], experimental comparison among existing and
new Radixsort implementations (including the one used
in [15]), as well as tuned Quicksort and tuned Three-Way
Radix Quicksort was performed. This study confirms the
picture of Three-Way Radix Quicksort as very competi-
tive, always being one of the fastest algorithms, and ar-
guably the most robust across various input distributions.

Data Sets

The data sets used in [15]: http://www.cs.princeton.edu/
~rs/strings/. The data sets used in [3]: http://www.jea.acm.
org/1998/AnderssonRadixsort/.

URL to Code

Code in C from [15]:
http://www.cs.princeton.edu/~rs/strings/.
Code in C from [3]:
http://www.jea.acm.org/1998/AnderssonRadixsort/.
Code in Java from [14]:
http://www.cs.princeton.edu/~rs/Algs3.java1-4/code.txt.

Cross References

� Suffix Array Construction
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM

Recommended Reading
1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sort-

ing and related problems. Commun. ACM 31, 1116–1127
(1988)

2. Andersson, A., Nilsson, S.: A new efficient radix sort. In: Pro-
ceedings of the 35th Annual Symposium on Foundations of

http://www.cs.princeton.edu/~rs/strings/
http://www.cs.princeton.edu/~rs/strings/
http://www.jea.acm.org/1998/AnderssonRadixsort/
http://www.jea.acm.org/1998/AnderssonRadixsort/
http://www.cs.princeton.edu/~rs/strings/
http://www.jea.acm.org/1998/AnderssonRadixsort/
http://www.cs.princeton.edu/~rs/Algs3.java1-4/code.txt

910 S Substring Parsimony

Computer Science (FOCS ’94), IEEE Comput. Soc. Press, pp.
714–721 (1994)

3. Andersson, A., Nilsson, S.: Implementing radixsort. ACM J. Exp.
Algorithmics 3, 7 (1998)

4. Arge, L., Ferragina, P., Grossi, R., Vitter, J.S.: On sorting strings
in external memory (extended abstract). In: Proceedings of the
29th Annual ACM Symposium on Theory of Computing (STOC
’97), ACM, ed., pp. 540–548. ACM Press, El Paso (1997),

5. Bentley, J., Sedgewick, R.: Algorithm alley: Sorting strings
with three-way radix quicksort. Dr. Dobb’s J. Softw. Tools 23,
133–134, 136–138 (1998)

6. Bentley, J.L., McIlroy, M.D.: Engineering a sort function. Softw.
Pract. Exp. 23, 1249–1265 (1993)

7. Fagerberg, R., Pagh, A., Pagh, R.: External string sorting: Faster
and cache-oblivious. In: Proceedings of STACS ’06. LNCS,
vol. 3884, pp. 68–79. Springer, Marseille (2006)

8. Franceschini, G., Grossi, R.: A general technique for managing
strings in comparison-driven data structures. In: Proceedings
of the 31st International Colloquium on Automata, Languages
and Programming (ICALP ’04). LNCS, vol. 3142, pp. 606–617.
Springer, Turku (2004)

9. Franceschini, G., Grossi, R.: Optimal in-place sorting of vectors
and records. In: Proceedings of the 32nd International Collo-
quiumonAutomata, Languages andProgramming (ICALP ’05).
LNCS, vol. 3580, pp. 90–102. Springer, Lisbon (2005)

10. Grossi, R., Italiano, G.F.: Efficient techniques for maintaining
multidimensional keys in linked data structures. In: Proceed-
ings of the 26th International Colloquium on Automata, Lan-
guages and Programming (ICALP ’99). LNCS, vol. 1644, pp.
372–381. Springer, Prague (1999)

11. Han, Y., Thorup,M.: Integer sorting inO(n
p
log log n) expected

time and linear space. In: Proceedings of the 43rd Annual Sym-
posium on Foundations of Computer Science (FOCS ’02), pp.
135–144. IEEE Computer Society Press, Vancouver (2002)

12. McIlroy, P.M., Bostic, K., McIlroy, M.D.: Engineering radix sort.
Comput. Syst. 6, 5–27 (1993)

13. Mehlhorn, K.: Dynamic binary search. SIAM J. Comput. 8,
175–198 (1979)

14. Sedgewick, R.: Algorithms in Java, Parts 1–4, 3rd edn. Addison-
Wesley, (2003)

15. Sedgewick, R., Bentley, J.: Fast algorithms for sorting and
searching strings. In: Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’97), ACM, ed., pp.
360–369. ACM Press, New Orleans (1997)

16. Sinha, R., Zobel, J., Ring, D.: Cache-efficient string sorting using
copying. ACM J. Exp. Algorithmics. 11 (2006)

Substring Parsimony
2001; Blanchette, Schwikowski, Tompa

MATHIEU BLANCHETTE
Department of Computer Science, McGill University,
Montreal, QC, Canada

ProblemDefinition

The Substring Parsimony Problem, introduced by Blan-
chette et al. [1] in the context of motif discovery in biolog-

ical sequences, can be described in a more general frame-
work:
Input:
� A discrete space S on which an integral distance d is

defined (i. e. d(x; y) 2 N 8x; y 2 S).
� A rooted binary tree T = (V ; E) with n leaves. Vertices

are labeled f1; 2; : : : ; n; : : : ; jV jg, where the leaves are
vertices f1; 2; : : : ; ng.

� Finite sets S1; S2; : : : ; Sn , where set Si
 S is assigned
to leaf i, for all i = 1 : : : n.

� A non-negative integer t
Output: All solutions of the form (x1; x2; : : : ; xn ; : : : ; xjV j)
such that:
� xi 2 S for all i = 1 : : : jV j
� xi 2 Si for all i = 1 : : : n
�
P

(u;v)2E d(xu ; xv) � t
The problem thus consists of choosing one element xi
from each set Si such that the Steiner distance of the set
of points is at most t. This is done on a Steiner tree T of
fixed topology. The case where jSi j = 1 for all i = 1 : : : n
is a standard Steiner tree problem on a fixed tree topology
(see [11]). It is known as the Maximum Parsimony Prob-
lem and its complexity depends on the space S.

Key Results

The substring parsimony problem can be solved using
a dynamic programming algorithm. Let u 2 V and s 2 S.
Let Wu[s] be the score of the best solution that can be ob-
tained for the subtree rooted at node u, under the con-
straint that node u is labeled with s, i. e.

Wu[s] = min
x1;:::;x

jVj2S
xu=s

X
(i; j)2E

i; j2subtree(u)

d(xi ; x j) :

Let v be a child of u, and let X(u;v)[s] be the score of the
best solution that can be obtained for the subtree consist-
ing of node u together with the subtree rooted at its child
v, under the constraint that node u is labeled with s:

X(u;v)[s] = min
x1;:::;x

jVj2S
xu=s

X
(i; j)2E

i; j2subtree(v)[f(u;v)g

d(xi ; x j) :

Then, we have:

Wu[s] =

8
<̂
:̂

0 if u is a leaf and s 2 Su
+1 if u is a leaf and s … SuP
v2children(u)

X(u;v)[s] if u is not a leaf

and

X(u;v)[s] = min
y02S

Wu[s0] + d(s; s0) :

Substring Parsimony S 911

Tables W and X can thus be computed using a dy-
namic programming algorithm, proceeding in a post-
order traversal of the tree. Solutions can then be recov-
ered by tracing the computation back for all s such that
Wroot[s] � t. Note that the same solution may be recov-
ered more than once in this process.

A straight-forward implementation of this dynamic
programming algorithm would run in time O(n � jSj2 �
� (S)), where � (S) is the time needed to compute the dis-
tance between any two points in S. Let Na(S) be the
maximum number of a-neighbors a point in S can have,
i. e. Na(S) = maxx2S jfy 2 S : d(x; y) = agj. Blanchette et
al. [3] showed how to use a modified breadth-first search
of the space S to compute each table X(u;v) in time
O(jSj � N1(S)), thus reducing the total time complexity to
O(n � jSj � N1(S)). Since only solutions with a score of at
most t are of interest, the complexity can be further re-
duced by only computing those table entries which will
yield a score of at most t. This results in an algorithm
whose running time is O(n �M � Nbt/2c(S) � N1(S)) where
M = maxi=1:::n jSi j.

The problem has been mostly studied in the context
of biological sequence analysis, where S = fA;C;G; Tgk ,
for some small k (k = 5; : : : ; 20 are typical values). The
distance d is the Hamming distance, and a phylogenetic
tree T is given. The case where jSi j = 1 for all i = 1 : : : n
is known as the Maximum Parsimony Problem and can
be solved in time O(n � k) using Fitch’s algorithm [9]
or Sankoff’s algorithm [12]. In the more general ver-
sion, a long DNA sequence Pu of length L is assigned
to each leaf u. The set Su is defined as the set of all
k-substrings of Pu. In this case, M = L � k + 1 2 O(L),
and Na 2 O(min(4k ; (3k)a)), resulting in a complexity of
O(n � L � 3k �min(4k ; (3k)bd/2c)). Notice that for a fixed k
and d, the algorithm is linear over the whole sequence.
The problem was independently shown to be NP-hard by
Blanchette et al. [3] and by Elias [7].

Applications

Most applications are found in computational biology,
although the algorithm can be applied to a wide vari-
ety of domains. The algorithm for the substring parsi-
mony problem has been implemented in a software pack-
age called FootPrinter [5] and applied to the detection of
transcription factor binding sites in orthologous DNA reg-
ulatory sequences through a method called phylogenetic
footprinting [4]. Other applications include the search for
conserved RNA secondary structure motifs in ortholo-
gous RNA sequences [2]. Variants of the problem have
been defined to identify motifs regulating alternative splic-

ing [13]. Blanchette et al. [3] study a relaxation of the prob-
lem where one does not require that a substring be cho-
sen from each of the input sequences, but instead asks
that substrings be chosen from a sufficiently large subset of
the input sequence. Fang and Blanchette [8] formulate an-
other variant of the problem where substring choices are
constrained to respect a partial order relation defined by
a set of local multiple sequence alignments.

Open Problems

Optimizations taking advantage of the specific structure
of the space S may yield more efficient algorithms in cer-
tain cases. Many important variations could be consid-
ered. First, the case where the tree topology is not given
needs to be considered, although the resulting problems
would usually be NP-hard even when jSi j = 1. Another
important variation is one where the phylogenetic rela-
tionships between trees is not given by a tree but rather
by a phylogenetic network [10]. Finally, randomized algo-
rithms similar to those proposed by Buhler et al. [6] may
yield important and practical improvements.

URL to Code

http://bio.cs.washington.edu/software.html

Cross References

� Closest Substring
� Efficient Methods for Multiple Sequence Alignment

with Guaranteed Error Bounds
� Local Alignment (with Affine Gap Weights)
� Local Alignment (with Concave Gap Weights)
� Statistical Multiple Alignment
� Steiner Trees

Recommended Reading
1. Blanchette, M.: Algorithms for phylogenetic footprinting. In:

RECOMB01: Proceedings of the Fifth Annual International Con-
ference on Computational Molecular Biology, pp. 49–58. ACM
Press, Montreal (2001)

2. Blanchette, M.: Algorithms for phylogenetic footprinting.
Ph. D. thesis, University of Washington (2002)

3. Blanchette, M., Schwikowski, B., Tompa,M.: Algorithms for phy-
logenetic footprinting. J. Comput. Biol. 9(2), 211–223 (2002)

4. Blanchette, M., Tompa, M.: Discovery of regulatory elements
by a computational method for phylogenetic footprinting.
Genome Res. 12, 739–748 (2002)

5. Blanchette, M., Tompa, M.: Footprinter: A program designed
for phylogenetic footprinting. Nucleic Acids Res. 31(13), 3840–
3842 (2003)

6. Buhler, J., Tompa, M.: Finding motifs using random projec-
tions. In: RECOMB01: Proceedings of the Fifth Annual Interna-

http://bio.cs.washington.edu/software.html

912 S Succinct Data Structures for Parentheses Matching

tional Conference on Computational Molecular Biology, 2001,
pp. 69–76

7. Elias, I.: Settling the intractability ofmultiple alignment. J. Com-
put. Biol. 13, 1323–1339 (2006)

8. Fang, F., Blanchette, M.: Footprinter3: phylogenetic footprint-
ing in partially alignable sequences. Nucleic Acids Res. 34(2),
617–620 (2006)

9. Fitch,W.M.: Towarddefining the course of evolution:Minimum
change for a specified tree topology. Syst. Zool. 20, 406–416
(1971)

10. Huson, D.H., Bryant, D.: Application of phylogenetic networks
in evolutionary studies. Mol. Biol. Evol. 23(2), 254–267 (2006)

11. Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree
in arbitrary metric space. Math. Program. 9, 240–246 (1975)

12. Sankoff, D.D.: Minimal mutation trees of sequences. SIAM J.
Appl. Math. 28, 35–42 (1975)

13. Shigemizu, D., Maruyama, O.: Searching for regulatory ele-
ments of alternative splicing events using phylogenetic foot-
printing. In: Proceedings of the Fourth Workshop on Algo-
rithms for Bioinformatics. Lecture Notes in Computer Science,
pp. 147–158. Springer, Berlin (2004)

Succinct Data Structures
for ParenthesesMatching
2001; Munro, Raman

MENG HE
School of Computer Science, University of Waterloo,
Waterloo, ON, Canada

Keywords and Synonyms

Succinct balanced parentheses

ProblemDefinition

This problem is to design succinct representation of bal-
anced parentheses in a manner in which a number of
“natural” queries can be supported quickly, and use it
to represent trees and graphs succinctly. The problem of
succinctly representing balanced parentheses was initially
proposed by Jacobson [6] in 1989, when he proposed suc-
cinct data structures, i. e. data structures that occupy space
close to the information-theoretic lower bound to repre-
sent them, while supporting efficient navigational opera-
tions. Succinct data structures provide solutions to ma-
nipulate large data in modern applications. The work of
Munro and Raman [8] provides an optimal solution to the
problem of balanced parentheses representation under the
word RAM model, based on which they design succinct
trees and graphs.

Balanced Parentheses

Given a balanced parenthesis sequence of length 2n, where
there are n opening parentheses and n closing parentheses,
consider the following operations:
� findclose(i) (findopen(i)), the matching closing

(opening) parenthesis for the opening (closing) paren-
thesis at position i;

� excess(i), the number of opening parentheses minus
the number of closing parentheses in the sequence up
to (and including) position i;

� enclose(i), the closest enclosing (matching paren-
thesis) pair of a given matching parenthesis pair whose
opening parenthesis is at position i.

Trees

There are essentially two forms of trees. An ordinal tree is
a rooted tree in which the children of a node are ordered
and specified by their ranks, while in a cardinal tree of de-
gree k, each child of a node is identified by a unique num-
ber from the set f1; 2; � � � ; kg. An binary tree is a cardinal
tree of degree 2. The information-theoretic lower bound
of representing an ordinal tree or binary tree of n nodes
is 2n � o(n) bits, as there are

�2n
n
�
/(n + 1) different ordinal

trees or binary trees.
Consider the following operations on ordinal trees

(a node is referred to by its preorder number):
� child(x,i), the ith child of node x for i � 1;
� child_rank(x), the number of left siblings of node

x;
� depth(x), the depth of x, i. e. the number of edges in

the rooted path to node x;
� parent(x), the parent of node x;
� nbdesc(x), the number of descendants of node x;
� height(x), the height of the subtree rooted at node x;
� LCA(x,y), the lowest common ancestor of node x and

node y.
On binary trees, the operations parent, nbdesc and the
following operations are considered:
� leftchild(x) (rightchild(x)), the left (right)

child of node x.

Graphs

Consider an undirected graph G of n vertices andm edges.
Bernhart and Kainen [1] introduced the concept of page
book embedding. A k-book embedding of a graph is a topo-
logical embedding of it in a book of k pages that speci-
fies the ordering of the vertices along the spine, and car-
ries each edge into the interior of one page, such that the
edges on a given page do not intersect. Thus, a graph with

Succinct Data Structures for Parentheses Matching S 913

Succinct Data Structures for Parentheses Matching, Figure 1
An example of the balanced parenthesis sequence of a given or-
dinal tree

one page is an outerplanar graph. The pagenumber or book
thickness [1] of a graph is the minimum number of pages
that the graph can be embedded in. A very common type
of graphs are planar graphs, and any planar graph can be
embedded in at most 4 pages [15]. Consider the following
operations on graphs:
� adjacency(x,y), whether vertices x and y are adja-

cent;
� degree(x), the degree of vertex x;
� neighbors(x), the neighbors of vertex x.

Key Results

All the results cited are under the word RAM model with
word size 	(lg n) bits1, where n is the size of the problem
considered.

Theorem 1 ([8]) A sequence of balanced parentheses of
length 2n can be represented using 2n + o(n) bits to sup-
port the operations findclose, findopen, excess
and enclose in constant time.

There is a polymorphism between a balanced parenthesis
sequence and an ordinal tree: when performing a depth-
first traversal of the tree, output an opening parenthesis
each time a node is visited, and a closing parenthesis im-
mediately after all the descendants of a node are visited
(see Fig. 1 for an example). Thework ofMunro andRaman
proposes a succinct representation of ordinal trees using
2n + o(n) bits to support depth, parent and nbdesc
in constant time, and child(x,i) in O(i) time. Lu and
Yeh have further extended this representation to support
child, child_rank, height and LCA in constant
time.

1lg n denotes dlog2 ne.

Theorem 2 ([8,7]) An ordinal tree of n nodes can be
represented using 2n + o(n) bits to support the opera-
tions child, child_rank, parent, depth, nbdesc,
height and LCA in constant time.

A similar approach can be used to represent binary trees:

Theorem 3 ([8]) A binary tree of n nodes can be rep-
resented using 2n + o(n) bits to support the operations
leftchild, rightchild, parent and nbdesc in
constant time.

Finally, balanced parentheses can be used to represent
graphs. To represent a one-page graph, the work of Munro
and Raman proposes to list the vertices from left to right
along the spine, and each node is represented by a pair
of parentheses, followed by zero or more closing paren-
theses and then zero or more opening parentheses, where
the number of closing (or opening) parentheses is equal to
the number of adjacent vertices to its left (or right) along
the spine (see Fig. 2 for an example). This representation
can be applied to each page to represent a graph with pa-
genumber k.

Theorem 4 ([8]) An outerplanar graph of n vertices and
m edges can be represented using 2n + 2m + o(n + m) bits
to support operations adjacency and degree in con-
stant time, and neighbors(x) in time proportional to the
degree of x.

Theorem 5 ([8]) A graph of n vertices and m edges with
pagenumber k can be represented using 2kn+2m+o(nk+m)
bits to support operations adjacency and degree in
O(k) time, and neighbors(x) in O(d(x) + k) time where
d(x) is the degree of x. In particular, a planar graph of n ver-
tices and m nodes can be represented using 8n + 2m + o(n)
bits to support operations adjacency and degree in
constant time, and neighbors(x) in O(d(x)) time where
d(x) is the degree of x.

Applications

Succinct Representation of Suffix Trees

As a result of the growth of the textual data in databases
and on the World Wide Web, and also applications in
bioinformatics, various indexing techniques have been de-
veloped to facilitate pattern searching. Suffix trees [14] are
a popular type of text indexes. A suffix tree is constructed
over the suffixes of the text as a tree-based data structure,
so that queries can be performed by searching the suffixes
of the text. It takes O(m) time to use a suffix tree to check
whether an arbitrary pattern P of length m is a substring
of a given text T of length n, and to count the number
of the occurrences, occ, of P in T. O(occ) additional time

914 S Succinct Data Structures for Parentheses Matching

Succinct Data Structures for Parentheses Matching, Figure 2
An example of the balanced parenthesis sequence of a graph with one page

is required to list all the occurrences of P in T. However,
a standard representation of a suffix tree requires some-
where between 4n lg n and 6n lg n bits, which is impracti-
cal for many applications.

By reducing the space cost of representing the tree
structure of a suffix tree (using the work of Munro and
Raman), Munro, Raman and Rao [9] have designed space-
efficient suffix trees. Given a string of n characters over
a fixed alphabet, they can represent a suffix tree using
n lg n + O(n) bits to support the search of a pattern in
O(m + occ) time. To achieve this result, they have also ex-
tended the work of Munro and Raman to support vari-
ous operations to retrieve the leaves of a given subtree in
an ordinal tree. Based on similar ideas and by applying
compressed suffix arrays [5], Sadakane [13] has proposed
a different trade-off; his compressed suffix tree occupies
O(n lg �) bits, where � is the size of the alphabet, and can
support any algorithm on a suffix tree with a slight slow-
down of a factor of polylog(n).

Succinct Representation of Functions

Munro and Rao [11] have considered the problem of suc-
cinctly representing a given function, f : [n]! [n], to
support the computation of f k(i) for an arbitrary integer
k. The straightforward representation of a function is to
store the sequence f (i), for i = 0; 1; : : : ; n � 1. This takes
n lg n bits, which is optimal. However, the computation of
f k(i) takes	(k) time even in the easier case when k is pos-
itive. To address this problem, Munro and Rao [11] first
extends the representation of balanced parenthesis to sup-
port the next_excess(i,k) operator, which returns the
minimum j such that j > i and excess(j) = k. They fur-
ther use this operator to support the level_anc(x,i) op-
erator on succinct ordinal trees, which returns the ith an-
cestor of node x for i � 0 (given a node x at depth d, its ith
ancestor is the ancestor of x at depth d � i). Then, using
succinct ordinal trees with the support for level_anc,
they propose a succinct representation of functions using
(1 + �)n lg n + O(1) bits for any fixed positive constant �,

to support f k(i) in constant time when k > 0, and f k(i) in
O(1 + j f k(i)j) time when k < 0.

Multiple Parentheses and Graphs

Chuang et al. [3] have proposed to succinctly represent
multiple parentheses, which is a string of O(1) types of
parentheses that may be unbalanced. They have extended
the operations on balanced parentheses to multiple paren-
theses and designed a succinct representation. Based on
the properties of canonical orderings for planar graphs,
they have used multiple parentheses and the succinct or-
dinal trees to represent planar graphs. One of their main
results is a succinct representation of planar graphs of
n vertices and m edges in 2m + (5 + �)n + o(m + n) bits,
for any constant � > 0, to support the operations sup-
ported on planar graphs in Theorem 5 in asymptotically
the same amount of time. Chiang et al. [2] have further re-
duced the space cost to 2m + 3n + o(m + n) bits. In their
paper, they have also shown how to support the opera-
tion wrapped(i), which returns the number of match-
ing parenthesis pairs whose closest enclosing (matching
parenthesis) pair is the pair whose opening parenthesis is
at position i, in constant time on balanced parentheses.
They have used it to show how to support the operation
degree(x), which returns the degree of node x (i. e. the
number of its children), in constant time on succinct ordi-
nal trees.

Open Problems

One open research area is to support more operations on
succinct trees. For example, it is not known how to support
the operation to convert a given node’s rank in a preorder
traversal into its rank in a level-order traversal.

Another open research area is to further reduce the
space cost of succinct planar graphs. It is not known
whether it is possible to further improve the encoding of
Chiang et al. [2].

Succinct Encoding of Permutations: Applications to Text Indexing S 915

A third direction for future work is to design succinct
representations of dynamic trees and graphs. There have
been some preliminary results by Munro et al. [10] on
succinctly representing dynamic binary trees, which have
been further improved by Raman and Rao [12]. It may
be possible to further improve these results, and there are
other related dynamic data structures that do not have suc-
cinct representations.

Experimental Results

Geary et al. [4] have engineered the implementation of
succinct ordinal trees based on balanced parentheses. They
have performed experiments on large XML trees. Their
implementation uses orders of magnitude less space than
the standard pointed-based representation, while support-
ing tree traversal operations with only a slight slowdown.

Cross References

� Compressed Suffix Array
� Compressed Text Indexing
� Rank and Select Operations on Binary Strings
� Succinct Encoding of Permutations: Applications to

Text Indexing
� Text Indexing

Recommended Reading
1. Bernhart, F., Kainen P.C.: The book thickness of a graph.

J. Comb. Theory B 27(3), 320–331 (1979)
2. Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with ap-

plications. SIAM J. Comput. 34(4), 924–945 (2005)
3. Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact

encodings of planar graphs via canonical orderings and multi-
ple parentheses. Comput. Res. Repos. cs.DS/0102005 (2001)

4. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal
representation for balanced parentheses. Theor. Comput. Sci.
368(3), 231–246 (2006)

5. Grossi, R., Gupta, A., Vitter J.S.: High-order entropy-compressed
text indexes. In: Farach-Colton, M. (ed) Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
pp. 841–850, Philadelphia (2003)

6. Jacobson, G.: Space-efficient static trees and graphs. In: Pro-
ceedings of the 30th Annual IEEE Symposium on Foundations
of Computer Science, IEEE, pp. 549–554, New York (1989)

7. Lu, H.-I., Yeh, C.-C.: Balanced parentheses strike back. Accepted
to ACM Trans. Algorithms (2007)

8. Munro, J.I., Raman V.: Succinct representation of balanced
parentheses and static trees. SIAM J. Comput. 31(3), 762–776
(2001)

9. Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Al-
gorithms 39(2), 205–222 (2001)

10. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary
trees succinctly. In: Rao Kosaraju, S. (ed.) Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, pp. 529–536, Philadelphia (2001)

11. Munro, J.I., Rao, S.S.: Succinct representations of functions. In:
Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.): Proceed-
ings of the 31st International Colloquium on Automata, Lan-
guages and Programming, pp. 1006–1015. Springer, Heidel-
berg (2004)

12. Raman, R., Rao, S. S.: Succinct dynamic dictionaries and trees.
In: Baeten, J.C.M., Lenstra, J.K., Parrow J., Woeginger, G.J. (eds.)
Proceedings of the 30th International Colloquium on Au-
tomata, Languages and Programming, pp. 357–368. Springer,
Heidelberg (2003)

13. Sadakane, K.: Compressed suffix trees with full functionality.
Theory Comput. Syst. (2007) Online first. http://dx.doi.org/10.
1007/s00224-006-1198-x

14. Weiner, P.: Linear pattern matching algorithms. In: Proceed-
ings of the 14th Annual IEEE Symposium on Switching and Au-
tomata Theory, pp. 1–11. IEEE, New York (1973)

15. Yannakakis, M.: Four pages are necessary and sufficient for pla-
nar graphs. In: Hartmanis, J. (ed.) Proceedings of the 18th An-
nual ACM-SIAMSymposiumon Theory of Computing, pp. 104–
108. ACM, New York (1986)

Succinct Encoding of Permutations:
Applications to Text Indexing
2003; Munro, Raman, Raman, Rao

JÉRÉMY BARBAY1, J. IAN MUNRO2

1 Department of Computer Science, University of Chile,
Santiago, Chile

2 Cheriton School of Computer Science, University
of Waterloo, Waterloo, ON, Canada

ProblemDefinition

A succinct data structure for a given data type is a repre-
sentation of the underlying combinatorial object that uses
an amount of space “close” to the information theoretic
lower bound together with algorithms that support op-
erations of the data type “quickly.” A natural example is
the representation of a binary tree [5]: an arbitrary binary
tree on n nodes can be represented in 2n + o(n) bits while
supporting a variety of operations on any node, which in-
clude finding its parent, its left or right child, and return-
ing the size of its subtree, each in O(1) time. As there are�2n
n
�
/(n + 1) binary trees on n nodes and the logarithm of

this term1 is 2n � o(n), the space used by this representa-
tion is optimal to within a lower-order term.

In the applications considered in this entry, the prin-
ciple concern is with indexes supporting search in strings
and in XML-like documents (i. e., tree-structured objects
with labels and “free text” at various nodes). As it happens,
not only labeled trees but also arbitrary binary relations

1All logarithms are taken to the base 2. By convention, the iterated
logarithm is denoted by lg(i) n; hence, lg lg lg x is lg(3) x.

http://dx.doi.org/10.1007/s00224-006-1198-x
http://dx.doi.org/10.1007/s00224-006-1198-x

916 S Succinct Encoding of Permutations: Applications to Text Indexing

Succinct Encoding of Permutations: Applications to Text Indexing, Figure 1
A permutation on f1; : : : ; 8g, with two cycles and three back pointers. The full black lines correspond to the permutation, the dashed
lines to the back pointers and the gray lines to the edges traversed to compute ��1(3)

over finite domains are key building blocks for this. Pre-
processing such data structures so as to be able to perform
searches is a complex process requiring a variety of subor-
dinate structures.

A basic building block for this work is the represen-
tation of a permutation of the integers f0; : : : ; n�1g, de-
noted by [n]. A permutation
 is trivially representable in
ndlg ne bits which is within O(n) bits of the information
theoretic bound of lg(n!). The interesting problem is to
support both the permutation and its inverse: namely, how
to represent an arbitrary permutation
 on [n] in a suc-
cinct manner so that
 k(i) (
 iteratively applied k times
starting at i, where k can be any integer so that
�1 is the
inverse of
) can be evaluated quickly.

Key Results

Munro et al. [7] studied the problem of succinctly rep-
resenting a permutation to support computing
 k(i)
quickly. They give two solutions: one supports the opera-
tions arbitrarily quickly, at the cost of extra space; the other
uses essentially optimal space at the cost of slower evalua-
tion.

Given an integer parameter t, the permutations
 and

�1 can be supported by simply writing down
 in an ar-
ray of n words of dlg ne bits each, plus an auxiliary array
S of at most n/t shortcuts or back pointers. In each cycle
of length at least t, every tth element has a pointer t steps
back.
(i) is simply the ith value in the primary struc-
ture, and
�1(i) is found by moving forward until a back
pointer is found and then continuing to follow the cycle
to the location that contains the value i. The trick is in the
encoding of the locations of the back pointers: this is done
with a simple bit vectorB of length n, in which a 1 indicates
that a back pointer is associated with a given location. B is
augmented using o(n) additional bits so that the number of
1’s up to a given position and the position of the rth 1 can

be found in constant time (i. e., using the rank and select
operations on binary strings [8]). This gives the location of
the appropriate back pointer in the auxiliary array S.

For example, the permutation
 = (4; 8; 6; 3; 5; 2; 1; 7)
consists of two cycles, (1; 4; 3; 6; 2; 8; 7) and (5) (Fig. 1).
For t = 3, the back pointers are cycling backward between
1, 6 and 7 in the largest cycle (there are none in the other
because it is smaller than t). To find
�1(3), follow
 from
3 to 6, observe that 6 is a back pointer because it is marked
by the second 1 in B, and follow the second value of S to
1, then follow
 from 1 to 4 and then to 3: the predecessor
of 3 has been found. As there are back pointers every t el-
ements in the cycle, finding the predecessor requires O(t)
memory accesses.

For arbitrary i and k,
 k(i) is supported by writ-
ing the cycles of
 together with a bit vector B mark-
ing the beginning of each cycle. Observe that the cycle
representation itself is a permutation in “standard form,”
call it � . For example, the permutation
 = (6; 4; 3; 5; 2; 1)
has three cycles f(1; 6); (3); (2; 5; 4)g and is encoded by
the permutation � = (1; 6; 3; 2; 5; 4) and the bit vector
B = (1; 0; 1; 1; 0; 0). The first task is to find i in the rep-
resentation: it is in position ��1(i). The segment of the
representation containing i is found through the rank and
select operations on B. From this
 k(i) is easily deter-
mined by taking k modulo the cycle length and moving
that number of steps around the cycle starting at the posi-
tion of i.

Other than the support of the inverse of � , all opera-
tions are performed in constant time; hence, the total time
depends on the value chosen for t.

Theorem 1 (Munro et al. [7]) There is a representa-
tion of an arbitrary permutation
 on [n] using at most
(1+")n lg n+O(n) bits that can support the operation
 k()
in time O(1/"), for any constant " less than 1 and for any
arbitrary value of k.

Succinct Encoding of Permutations: Applications to Text Indexing S 917

It is not difficult to prove that this technique is optimal
under a restricted model of a pointer machine. So, for ex-
ample, using O(n) extra bits (i. e., O(n/ lg n) extra words),
˝(lg n) time is necessary to compute both
 and
�1.
However, using another approachMunro et al. [7] demon-
strated that the lower bound suggested does not hold in the
RAMmodel. The approach is based on the Benes network,
a communication network composed of switches that can
be used to implement permutations.

Theorem 2 (Munro et al. [7]) There is a representa-
tion of an arbitrary permutation
 on [n] using at most
dlg(n!)e + O(n) bits that can support the operation
 k() in
time O(lg n/ lg(2) n).

While this data structure uses less space than the other,
it requires more time for each operation. It is not known
whether this time bound can be improved using only O(n)
“extra space.” As a consequence, the first data structure is
used in all applications. Obviously, any other solution can
be used, potentially with a better time/space trade-off.

Applications

The results on permutations are particularly useful for two
lines of research: first in the extension of the results on per-
mutation to arbitrary integer functions; and second, and
probably more importantly, in encoding and indexing text
strings, which themselves are used to encode sparse binary
relations and labeled trees. This section summarizes some
of these results.

Functions

Munro and Rao [9] extended the results on permutations
to arbitrary functions from [n] to [n]. Again f k(i) in-
dicates the function iterated k times starting at i. If k is
nonnegative, this is straightforward. The case in which k
is negative is more interesting as the image is a (possi-
bly empty) multiset over [n] (see Fig. 2 for an example).
Whereas
 is a set of cycles, f can be viewed as a set of
cycles in which each node is the root of a tree. Starting at
any node (element of [n]), the evaluation moves one step
toward the root of the tree or one step along a cycle (e. g.,
f (8) = 7; f (10) = 11). Moving k steps in a positive direc-
tion is straightforward; one moves up a tree and perhaps
around a cycle (e. g. f 5(9) = f 3(9) = 3) When k is nega-
tive one must determine all nodes of distance k from the
starting location, i, in the direction towards the leaves of
the trees (e. g., f�1(13) = f1; 11; 12g, f�1(3) = f4; 5g). The
key technical issue is to run across succinct tree represen-
tations picking off all nodes at the appropriate levels.

Theorem 3 (Munro and Rao [9]) For any fixed ", there
is a representation of a function f : [n] ! [n] that takes
(1+")n lg n+O(1) bits of space, and supports f k(i) in O(1+
j f k(i)j) time, for any integer k and for any i 2 [n].

Text Strings

Indexing text strings to support the search for patterns is
an important general issue. Barbay et al. [2] considered
“negative” searches, along the following lines.

Definition 1 Consider a string S[1; n] over the alphabet
[l]. A position x 2 [n]matches a literal ˛ 2 [l] if S[x] = ˛.
A position x 2 [n] matches a literal ¯̨ if S[x] ¤ ˛. The set
f1̄; : : : ; l̄g is denoted by [l̄].

Given a string S of length n over an alphabet of size l, for
any position x in the string, any literal ˛ 2 [l][[l̄] and
any integer r, consider the following operators:
� string_rankS(˛; x): the number of occurrences of
˛ in S[1::x];

� string_selectS(˛; r): the position of the rth oc-
currence of ˛ in S, or1 if none exists;

� string_accessS(x): the label S[x];
� string_predS(˛; x): the last occurrence of ˛ in

S[1 : : : x], or1 if none exists;
� string_succS(˛; r): the first occurrence of ˛ in

S[x : : :], or1 if none exists.
Golynski et al. [4] observed that a string of length l on al-
phabet [l] can be encoded and indexed by a permutation
on [l] (which for each label lists the positions of all its oc-
currences) together with a bit vector of length 2l (which
signals the end of each sublist of occurrences correspond-
ing to a label). For instance, the string ACCA on alpha-
bet fA; B;C;Dg is encoded by the permutation (1; 4; 2; 3)
and the bit vector (0; 0; 1; 1; 1; 0; 0; 1). Golynski et al. were
then able to support the operators rank, select and access
in time O(lg(2) n), by using a value of t = lg(2) n in the en-
coding of permutation of Theorem 1.

This encoding achieves fast support for the search op-
erators defined above restricted to labels (not literals), with
a small overhead in space, by integrating the encodings of
the text and the indexing information. Barbay et al. [2] ex-
tended those operators to literals, and showed how to sep-
arate the succinct encoding of the string S, in a manner that
assumes we can access a word of S in a fixed time bound,
and a succinct index containing auxiliary information use-
ful to support the search operators defined above.

Theorem 4 (Barbay et al. [2]) Given access to a label
in the raw encoding of a string S 2 [l]n in time f (n, l),
there is a succinct index using n(1 + o(lg l)) bits that sup-
ports the operators string_rankS , string_predS

918 S Succinct Encoding of Permutations: Applications to Text Indexing

Succinct Encoding of Permutations: Applications to Text Indexing, Figure 2
A function on f1; : : : ; 13g, with three cycles and two nontrivial tree structures

and string_succS for any literal ˛ 2 [l] [[l̄] in
O(lg(2) l � lg(3) l � (f (n; t) + lg(2) l)) time, and the opera-
tor string_selectS for any label ˛ 2 [l] in O(lg(3) l �
(f (n; t) + lg(2) l)) time.

The separation between the encoding of the string or of
an XML-like document and its index has twomain advan-
tages:
1. The string can now be compressed and searched at the

same time, provided that the compressed encoding of
the string supports the access in reasonable time, as
does the one described by Ferragina and Venturini [3].

2. The operators can be supported for several orderings
of the string, for instance, induced by distinct traver-
sals of a labeled tree, with only a small cost in space.
It is important, for instance, when those orders corre-
spond to various traversals of a labeled structure, such
as the depth-first and Depth First Uniary Degree Se-
quence (DFUDS) traversals of a labeled tree [2].

Binary Relations

Given two ordered sets of sizes l and n, denoted by [l] and
[n], a binary relation R between these sets is a subset of
their Cartesian product, i. e., R � [l]�[n]. It is used, for
instance, to represent the relation between a set of labels
[l] and a set of objects [n].

Although a string can be seen as a particular case of
a binary relation, where the objects are positions and ex-
actly one label is associated with each position, the search
operations on binary relations are diverse, including oper-
ators on both the labels and the objects. For any literal ˛,
object x and integer r, consider the following operators:
� label_rankR(˛; x): the number of objects labeled ˛

preceding or equal to x;
� label_selectR(˛; r): the position of the rth object

labeled ˛ if any, or1 otherwise;
� label_nbR (˛), the number of objects with label ˛;

� object_rankR(x; ˛): the number of labels associ-
ated with object x preceding or equal to label ˛;

� object_selectR(x; r): the rth label associated with
object x, if any, or1 otherwise;

� object_nbR(x): the number of labels associated with
object x;

� table_accessR(x; ˛): checks whether object x is
associated with label ˛.

Barbay et al. [1] observed that such a binary relation, con-
sisting of t pairs from [n] � [l], can be encoded as a text
string S listing the t labels, and a binary string B indicating
how many labels are associated with each object. So search
operations on the objects associated with a fixed label are
reduced to a combination of operators on text and binary
strings. Using a more direct reduction to the encoding of
permutations, the index of the binary relation can be sep-
arated from its encoding, and even more operators can be
supported [2].

Theorem 5 (Barbay et al. [2]) Given support for
object_accessR in f (n; l ; t) time on a binary relation
formed by t pairs from an object set [n] and a label set [l],
there is a succinct index using t(1 + o(lg l)) bits that sup-
ports label_rankR for any literal ˛ 2 [l] [[l̄] and
label_accessR for any label ˛ 2 [l] in O(lg(2) l � lg(3) l �
(f (n; l ; t) + lg(2) l)) time, and label_selectR for any
label ˛ 2 [l] in O(lg(3) l � (f (n; l ; t) + lg(2) l)) time.

To conclude this entry, note that a labeled tree T can be
represented by an ordinal tree coding its structure [6] and
a string S listing the labels of the nodes. If the labels are
listed in preorder (respectively in DFUDS order) the oper-
ator string_succS enumerates all the descendants (re-
spectively children) of a node matching some literal ˛. Us-
ing succinct indexes, a single encoding of the labels and
the support of a permutation between orders is sufficient
to implement both enumerations, and other search opera-
tors on the labels. These issues, along with strings and la-

Suffix Array Construction S 919

beled trees compression techniques which achieve the en-
tropy of the indexed data, are covered in more detail in the
entries cited in� Tree Compression and Indexing.

Cross References

� Compressed Suffix Array
� Compressed Text Indexing
� Rank and Select Operations on Binary Strings
� Text Indexing

Recommended Reading
1. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive search-

ing in succinctly encoded binary relations and tree-structured
documents. In: Proceedings of the 17th Annual Symposium
on Combinatorial Pattern Matching (CPM). Lecture Notes in
Computer Science (LNCS), vol. 4009, pp. 24–35. Springer, Berlin
(2006)

2. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for
strings, binary relations and multi-labeled trees. In: Proceed-
ings of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 680–689. ACM, SIAM (2007)

3. Ferragina, P., Venturini, R.: A simple storage scheme for strings
achieving entropy bounds. In: Proceedings of the 18th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 690–695.
ACM, SIAM (2007)

4. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on
large alphabets: a tool for text indexing. In: Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 368–373. ACM, SIAM (2006)

5. Jacobson, G.: Space-efficient static trees and graphs. In: Pro-
ceedings of the 30th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 549–554 (1989)

6. Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct represen-
tation of ordered trees. In: Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 575–584. ACM,
SIAM (2007)

7. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct represen-
tations of permutations. In: Proceedings of the 30th Interna-
tional Colloquium on Automata, Languages and Programming
(ICALP). Lecture Notes in Computer Science (LNCS), vol. 2719,
pp. 345–356. Springer, Berlin (2003)

8. Munro, J.I., Raman, V.: Succinct representation of balanced
parentheses and static trees. SIAM J. Comput. 31, 762–776
(2001)

9. Munro, J.I., Rao, S.S.: Succinct representations of functions. In:
Proceedings of the International Colloquiumon Automata, Lan-
guages and Programming (ICALP). Lecture Notes in Computer
Science (LNCS), vol. 3142, pp. 1006–1015. Springer, Berlin (2004)

Suffix Array Construction
2006; Kärkkäinen, Sanders, Burkhardt

JUHA KÄRKKÄINEN
Department of Computer Science, University of Helsinki,
Helsinki, Finland

Keywords and Synonyms

Suffix sorting; Full-text index construction

ProblemDefinition

The suffix array [5,14] is the lexicographically sorted array
of all the suffixes of a string. It is a popular text index struc-
ture with many applications. The subject of this entry are
algorithms that construct the suffix array.

More precisely, the input to a suffix array construc-
tion algorithm is a text string T = T[0; n) = t0t1 � � � tn�1,
i. e., a sequence of n characters from an alphabet ˙ . For
i 2 [0; n], let Si denote the suffix T[i; n) = ti ti+1 � � � tn�1.
The output is the suffix array SA[0; n] of T, a permutation
of [0; n] satisfying SSA[0] < SSA[1] < � � � < SSA[n], where
< denotes the lexicographic order of strings.

Two specificmodels for the alphabet˙ are considered.
An ordered alphabet is an arbitrary ordered set with con-
stant time character comparisons. An integer alphabet is
the integer range [1; n]. There is also a result that holds for
any alphabet.

Many applications require that the suffix array is aug-
mentedwith additional information, most commonly with
the longest common prefix array LCP[0; n). An entry
LCP[i] of the LCP array is the length of the longest com-
mon prefix of the suffixes SSA[i] and SSA[i+1]. The en-
hanced suffix array [1] adds two more arrays to obtain
a full range of text index functionalities.

Another related array, the Burrows–Wheeler transform
BWT[0; n) is often computed by suffix array construc-
tion using the equations BWT[i] = T[SA[i] � 1] when
SA[i] ¤ 0 and BWT[i] = T[n � 1] when SA[i] = 0.

There are other important text indexes, most notably
suffix trees and compressed text indexes, covered in sep-
arate entries. Each of these indexes have their own con-
struction algorithms, but they can also be constructed effi-
ciently from each other. However, in this entry, the focus is
on direct suffix array construction algorithms that do not
rely on other text indexes.

Key Results

The naive approach to suffix array construction is to use
a general sorting algorithm or an algorithm for sorting
strings. However, any such algorithm has a worst-case
time complexity˝(n2) because the total length of the suf-
fixes is˝(n2).

The first efficient algorithms were based on the dou-
bling technique of Karp, Miller, and Rosenberg [8]. The
idea is to assign a rank to all substrings whose length is
a power of two. The rank tells the lexicographic order of

920 S Suffix Array Construction

the substring among substrings of the same length. Given
the ranks for substrings of length h, the ranks for sub-
strings of length 2h can be computed using a radixsort step
in linear time (doubling). The technique was first applied
to suffix array construction by Manber and Myers [14].
The best practical algorithm based on the technique is by
Larsson and Sadakane [13].

Theorem 1 (Manber and Myers [14]; Larsson and
Sadakane [13]) The suffix array can be constructed in
O(n log n)worst-case time, which is optimal for the ordered
alphabet.

Faster algorithms for the integer alphabet are based on
a different technique, recursion. The basic procedure is as
follows.
1. Sort a subset of the suffixes. This is done by construct-

ing a shorter string, whose suffix array gives the order of
the desired subset. The suffix array of the shorter string
is constructed by recursion.

2. Extend the subset order to full order.
The technique first appeared in suffix tree construction [4],
but 2003 saw the independent and simultaneous publica-
tion of three linear time suffix array construction algo-
rithms based on the approach but not using suffix trees.
Each of the three algorithms uses a different subset of suf-
fixes requiring a different implementation of the second
step.

Theorem 2 (Kärkkäinen, Sanders and Burkhardt [7];
Kim el al. [10]; Ko and Aluru [11]) The suffix array can
be constructed in the optimal linear time for the integer al-
phabet.

The algorithm of Kärkkäinen, Sanders, and Burkhardt [7]
has generalizations for several parallel and hierarchical
memory models of computation including an optimal al-
gorithm for external memory and a linear work algorithm
for the BSP model.

The above algorithms andmany other suffix array con-
struction algorithms are surveyed in [18].

The ˝(n log n) lower bound for the ordered alphabet
mentioned in Theorem 1 comes from the sorting complex-
ity of characters, since the initial characters of the sorted
suffixes are the text characters in sorted order. Theorem 2
allows a generalization of this result. For any alphabet, one
can first sort the characters of T, remove duplicates, as-
sign a rank to each character, and construct a new string
T 0 over the alphabet [1; n] by replacing the characters of T
with their ranks. The suffix array of T 0 is exactly the same
as the suffix array of T. Optimal algorithms for the integer
alphabet then give the following result.

Theorem 3 For any alphabet, the complexity of suffix ar-
ray construction is the same as the complexity of sorting the
characters of the string.

The result extends to the related arrays.

Theorem 4 (Kasai et al. [9]; Abouelhoda, Kurtz and
Ohlebusch [1]) The LCP array, the enhanced suffix ar-
ray, and the BWT can be computed in linear time given the
suffix array.

One of the main advantages of suffix arrays over suffix
trees is their smaller space requirement (by a constant
factor), and a significant effort has been spent making
construction algorithms space efficient, too. A technique
based on the notion of difference covers gives the following
results.

Theorem 5 (Burkhardt and Kärkkäinen [2]; Kärkkäi-
nen, Sanders and Burkhardt [7]) For any v = O(n2/3),
the suffix array can be constructed in O(n(v + log n)) time
for the ordered alphabet and in O(nv) time for the integer
alphabet usingO(n/pv) space in addition to the input (the
string T) and the output (the suffix array).

Kärkkäinen [6] uses the difference cover technique to con-
struct the suffix array in blocks without ever storing the
full suffix array obtaining the following result for comput-
ing the BWT.

Theorem 6 (Kärkkäinen [6]) For any v = O(n2/3), the
BWT can be constructed inO(n(v + log n)) time for the or-
dered alphabet using O(n/pv) space in addition to the in-
put (the string T) and the output (the BWT).

Compressed text index construction algorithms are alter-
natives to space-efficient BWT computation.

Applications

The suffix array is a simple and powerful text index struc-
ture with numerous applications detailed in the entry Text
Indexing. In addition, due to the existence of efficient and
practical construction algorithms, the suffix array is often
used as an intermediate data structure in computing some-
thing else. The BWT is usually computed from the suffix
array and has applications in text compression and com-
pressed index construction. The suffix tree is also easy to
construct given the suffix array and the LCP array.

Open Problems

Theoretically, the suffix array construction problem is es-
sentially solved. The development of ever more efficient

Suffix Array Construction S 921

practical algorithms is still going on with several different
nontrivial heuristics available [18] including very recent
ones [15].

Experimental Results

An experimental comparison of a large number of suffix
array construction algorithms is presented in [18]. The
best algorithms in the comparison are the algorithm by
Maniscalco and Puglisi [15], which is the fastest but has
an ˝(n2) worst-case complexity, and a variant of the al-
gorithm by Burkhardt and Kärkkäinen [2], which is the
fastest among algorithms with good worst-case complex-
ity. Both algorithms are also space efficient. The algorithm
of Manzini and Ferragina [17] is still slightly more space
efficient and also very fast in practice.

There are also experiments with parallel [12] and ex-
ternal memory algorithms [3]. Variants of the algorithm
by Kärkkäinen, Sanders and Burkhardt [7] show high per-
formance and scalability in both cases.

Algorithms for computing the LCP array from the suf-
fix array are compared in [16].

Data Sets

The input to a suffix array construction algorithm is sim-
ply a text, so an abundance of data exists. Commonly used
text collections include the Canterbury Corpus at http://
corpus.canterbury.ac.nz/, the corpus compiled byManzini
and Ferragina at http://www.mfn.unipmn.it/~manzini/
lightweight/corpus/, and the Pizza&Chili Corpus at http://
pizzachili.dcc.uchile.cl/texts.html.

URL to Code

The implementations of many of the algorithms men-
tioned here are publicly available, for example: http://
www.larsson.dogma.net/research.html [13], http://www.
mpi-sb.mpg.de/~sanders/programs/suffix/ [7], and http://
www.cs.helsinki.fi/juha.karkkainen/publications/cpm03.
tar.gz [2]. Manzini provides a package that computes the
LCP array and the BWT, too, at http://www.mfn.unipmn.
it/~manzini/lightweight/index.html. The bzip2 com-
pression program (http://www.bzip.org/) computes the
BWT through suffix array construction.

Cross References

� Compressed Suffix Array
� Compressed Text Indexing
� String Sorting
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM

� Text Indexing
� Two-Dimensional Pattern Indexing

Recommended Reading

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees
with enhanced suffix arrays. J. Discret. Algorithms 2, 53–86
(2004)

2. Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array con-
struction and checking. In: Proc. 14th Annual Symposium on
Combinatorial Pattern Matching. LNCS, vol. 2676, pp. 55–69.
Springer, Berlin/Heidelberg (2003)

3. Dementiev, R., Mehnert, J., Kärkkäinen, J., Sanders, P.: Better ex-
ternal memory suffix array construction. ACM J. Exp. Algorith-
mics (2008) in press

4. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the
sorting-complexity of suffix tree construction. J. Assoc. Com-
put. Mach. 47, 987–1011 (2000)

5. Gonnet, G., Baeza-Yates, R., Snider, T.: New indices for text: PAT
trees and PAT arrays. In: Frakes, W.B., Baeza-Yates, R. (eds.) In-
formation Retrieval: Data Structures & Algorithms. pp. 66–82
Prentice-Hall, Englewood Cliffs (1992)

6. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sort-
ing. Theor. Comput. Sci. 387, 249–257 (2007)

7. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix ar-
ray construction. J. Assoc. Comput. Mach. 53, 918–936 (2006)

8. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of
repeated patterns in strings, trees and arrays. In: Proc. 4th An-
nual ACM Symposium on Theory of Computing, pp. 125–136.
ACM Press, New York (1972)

9. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-
time longest-common-prefix computation in suffix arrays and
its applications. In: Proc. 12th Annual Symposium on Combi-
natorial Pattern Matching, vol. (2089) of LNCS. pp. 181–192.
Springer, Berlin/Heidelberg (2001)

10. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays
in linear time. J. Discret. Algorithms 3, 126–142 (2005)

11. Ko, P., Aluru, S.: Space efficient linear time construction of suffix
arrays. J. Discret. Algorithms 3, 143–156 (2005)

12. Kulla, F., Sanders, P.: Scalable parallel suffix array construction.
In: Proc. 13th European PVM/MPI User’s GroupMeeting. LNCS,
vol. 4192, pp. 22–29. Springer, Berlin/Heidelberg (2006)

13. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theor. Comput.
Sci. 387, 258–272 (2006)

14. Manber, U., Myers, G.: Suffix arrays: A new method for on-line
string searches. SIAM J. Comput. 22, 935–948 (1993)

15. Maniscalco, M.A., Puglisi, S.J.: Faster lightweight suffix ar-
ray construction. In: Proc. 17th Australasian Workshop on
Combinatorial Algorithms, pp. 16–29. Univ. Ballavat, Ballavat
(2006)

16. Manzini, G.: Two space saving tricks for linear time LCP ar-
ray computation. In: Proc. 9th Scandinavian Workshop on
Algorithm Theory. LNCS, vol. 3111, pp. 372–383. Springer,
Berlin/Heidelberg (2004)

17. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array
construction algorithm. Algorithmica 40, 33–50 (2004)

18. Puglisi, S., Smyth,W., Turpin,A.: A taxonomy of suffix array con-
struction algorithms. ACM Comput. Surv. 39(2), Article 4, 31
pages (2007)

http://corpus.canterbury.ac.nz/
http://corpus.canterbury.ac.nz/
http://www.mfn.unipmn.it/~manzini/lightweight/corpus/
http://www.mfn.unipmn.it/~manzini/lightweight/corpus/
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html
http://www.larsson.dogma.net/research.html
http://www.larsson.dogma.net/research.html
http://www.mpi-sb.mpg.de/~sanders/programs/suffix/
http://www.mpi-sb.mpg.de/~sanders/programs/suffix/
http://www.cs.helsinki.fi/juha.karkkainen/publications/cpm03.tar.gz
http://www.cs.helsinki.fi/juha.karkkainen/publications/cpm03.tar.gz
http://www.cs.helsinki.fi/juha.karkkainen/publications/cpm03.tar.gz
http://www.mfn.unipmn.it/~manzini/lightweight/index.html
http://www.mfn.unipmn.it/~manzini/lightweight/index.html
http://www.bzip.org/

922 S Suffix Tree Construction in Hierarchical Memory

Suffix Tree Construction
in Hierarchical Memory
2000; Farach-Colton, Ferragina,Muthukrishnan

PAOLO FERRAGINA
Department of Computer Science, University of Pisa,
Pisa, Italy

Keywords and Synonyms

Suffix array construction; String B-tree construction; Full-
text index construction

ProblemDefinition

The suffix tree is the ubiquitous data structure of combi-
natorial pattern matching because of its elegant uses in
a myriad of situations–-just to cite a few, searching, data
compression and mining, bioinformatics [6]. In these ap-
plications, the large data sets now available involve the
use of numerous memory levels which constitute the stor-
age medium of modern PCs: L1 and L2 caches, internal
memory, multiple disks and remote hosts over a network.
The power of this memory organization is that it may be
able to offer the expected access time of the fastest level
(i. e. cache) while keeping the average cost per memory
cell near the one of the cheapest level (i. e. disk), pro-
vided that data are properly cached and delivered to the
requiring algorithms. Neglecting questions pertaining to
the cost of memory references may even prevent the use
of algorithms on large sets of input data. Engineering re-
search is presently trying to improve the input/output
subsystem to reduce the impact of these issues, but it is
very well known [16] that the improvements achievable
by means of a proper arrangement of data and a prop-
erly structured algorithmic computation abundantly sur-
pass the best-expected technology advancements.

The Model of Computation

In order to reason about algorithms and data structures
operating on hierarchical memories, it is necessary to in-
troduce a model of computation that grasps the essence
of real situations so that algorithms that are good in the
model are also good in practice. The model considered
here is the external memory model [16], which received
much attention because of its simplicity and reasonable
accuracy. A computer is abstracted to consist of two mem-
ory levels: the internal memory of size M, and the (un-
bounded) disk memory which operates by reading/writing
data in blocks of size B (called disk pages). The perfor-

mance of algorithms is then evaluated by counting: (a) the
number of disk accesses (I/Os), (b) the internal running
time (CPU time), and (c) the number of disk pages occu-
pied by the data structure or used by the algorithm as its
working space. This simple model suggests, correctly, that
a good external-memory algorithm should exploit both
spatial locality and temporal locality. Of course, “I/O” and
“two-level view” refer to any two levels of the memory hi-
erarchy with their parametersM and B properly set.

Notation

Let S[1; n] be a string drawn from alphabet ˙ , and con-
sider the notation: Si for the ith suffix of string S,lcp(˛; ˇ)
for the longest common prefix between the two strings ˛
and ˇ, and lca(u; v) for the lowest common ancestor be-
tween two nodes u and v in a tree.

The suffix tree of S[1; n], denoted hereafter by TS , is
a tree that stores all suffixes of S# in a compact form,
where # 62 ˙ is a special character (see Fig. 1). TS con-
sists of n leaves, numbered from 1 to n, and any root-to-
leaf path spells out a suffix of S#. The endmarker # guar-
antees that no suffix is the prefix of another suffix in S#.
Each internal node has at least two children and each edge
is labeled with a non empty substring of S. No two edges
out of a node can begin with the same character, and sib-
ling edges are ordered lexicographically according to that
character. Edge labels are encoded with pairs of integers –
say S[x; y] is represented by the pair hx; yi. As a result,
all 	(n2) substrings of S can be represented in O(n) opti-
mal space by TS ’s structure and edge encoding. Further-
more, the rightward scan of the suffix tree leaves gives the
ordered set of S’s suffixes, also known as the suffix array
of S [12]. Notice that the case of a large string collection
� = fS1; S2; : : : ; Skg reduces to the case of one long string
S = S1#1S2#2 � � � Sk#k , where #i 62 ˙ are special symbols.

Numerous algorithms are known that build the suffix
tree optimally in the RAM model (see [3] and references
therein). However, most of them exhibit a marked absence
of locality of references and thus elicit many I/Os when the
size of the indexed string is too large to be fit into the in-
ternal memory of the computer. This is a serious problem
because the slow performance of these algorithms can pre-
vent the suffix tree being used even inmedium-scale appli-
cations. This encyclopedia’s entry surveys algorithmic so-
lutions that deal efficiently with the construction of suffix
trees over large string collections by executing an optimal
number of I/Os. Since it is assumed that the edges leaving
a node in TS are lexicographically sorted, sorting is an ob-
vious lower bound for building suffix trees (consider the
suffix tree of a permutation!). The presented algorithms

Suffix Tree Construction in Hierarchical Memory S 923

Suffix Tree Construction in Hierarchical Memory, Figure 1
The suffix tree of S = ACACACCG on the left, and its compact edge-encoding on the right. The endmarker # is not shown. Node v
spells out the string ACAC. Each internal node stores the length of its associated string, and each leaf stores the starting position of
its corresponding suffix

DIVIDE-AND-CONQUER ALGORITHM
(1) Construct the string S0[j] = rank of hS[2 j]; S[2 j + 1]i, and recursively compute TS0 .
(2)Derive fromTS0 the compacted trieTo of all suffixes of S beginning at odd positions.
(3)Derive fromTo the compacted trieTe of all suffixes of S beginning at even positions.
(4)MergeTo andTe into the whole suffix treeTS , as follows:
(4.1) OvermergeTo andTe into the treeTM .
(4.2) Partially unmergeTM to getTS .

Suffix Tree Construction in Hierarchical Memory, Figure 2
The algorithm that builds the suffix tree directly

have sorting as their bottleneck, thus establishing that the
complexity of sorting and suffix tree construction match.

Key Results

Designing a disk-efficient approach to suffix-tree con-
struction has found efficient solutions only in the last few
years [4]. The present section surveys two theoretical ap-
proaches which achieve the best (optimal!) I/O-bounds in
the worst case, the next section will discuss some practical
solutions.

The first algorithm is based on a Divide-and-Conquer
approach that allows us to reduce the construction process
to external-memory sorting and few low-I/O primitives. It
builds the suffix tree TS by executing four (macro)steps,
detailed in Fig. 2. It is not difficult to implement the
first three steps in Sort(n) = O(nB logM/B

n
B) I/Os [16].

The last (merging) step is the most difficult one and its
I/O-complexity bounds the cost of the overall approach.
[3] proposes an elegant merge for To and Te : substep

(4.1) temporarily relaxes the requirement of getting TS in
one shot, and thus it blindly (over)merges the paths of To
and Te by comparing edges only via their first characters;
then substep (4.2) re-fixes TM by detecting and undoing
in an I/O-efficient manner the (over)merged paths. Note
that the time and I/O-complexity of this algorithm follow
a nice recursive relation: T(n) = T(n/2) + O(Sort(n)).

Theorem 1 (Farach-Colton et al. 1999) Given an ar-
bitrary string S[1; n], its suffix tree can be constructed in
O(Sort(n)) I/Os, O(n log n) time and using O(n/B) disk
pages.

The second algorithm is deceptively simple, elegant and
I/O-optimal, and applies successfully to the construction
of other indexing data structures, like the String B-tree [5].
The key idea is to derive TS from the suffix array AS
and from the lcp array, which stores the longest-com-
mon-prefix length of adjacent suffixes in AS . Its pseu-
docode is given in Fig. 3. Note that Step (1) may deploy
any external-memory algorithm for suffix array construc-

924 S Suffix Tree Construction in Hierarchical Memory

SUFFIXARRAY-BASED ALGORITHM
(1) Construct the suffix arrayAS and the array lcpS of the string S.
(2) Initially set TS as a single edge connecting the root to a leaf pointing to suffixAS [1].
(2) For i = 2; : : : ; n:
(2.1) Create a new leaf `i that points to the suffixAS [i].
(2.2)Walk up from `i�1 until a node ui is met whose string-length xi is� lcpS [i].
(2.3) If xi = lcpS [i], leaf `i is attached to ui .
(2.4) If xi < lcpS[i], create node u0i with string-length xi , attach it to ui and leaf `i to u0i .

Suffix Tree Construction in Hierarchical Memory, Figure 3
The algorithm that builds the suffix tree passing through the suffix array

tion: Used here is the elegant and optimal Skew algorithm
of [9] which takes O(Sort(n)) I/Os. Step (2) takes a to-
tal of O(n/B) I/Os by using a stack that stores the nodes
on the current rightmost path of TS in reversed order,
i. e. leaf `i is on top. Walking upward, splitting edges or
attaching nodes in TS boils down to popping/pushing
nodes from this stack. As a result, the time and I/O-
complexity of this algorithm follow the recursive relation:
T(n) = T(2n/3) + O(Sort(n)).

Theorem 2 (Kärkkäinen and Sanders 2003) Given an
arbitrary string S[1; n], its suffix tree can be constructed in
O(Sort(n)) I/Os, O(n log n) time and using O(n/B) disk
pages.

It is not evident which one of these two algorithms is better
in practice. The first one exploits a recursion with param-
eter 1/2 but incurs a large space overhead because of the
management of the tree topology; the second one is more
space efficient and easier to implement, but exploits a re-
cursion with parameter 2/3.

Applications

The reader is referred to [4] and [6] for a long list of appli-
cations of large suffix trees.

Open Problems

The recent theoretical and practical achievements mean
the idea that “suffix trees are not practical except when
the text size to handle is so small that the suffix tree fits
in internal memory” is no longer the case [13]. Given
a suffix tree, it is known now (see e. g. [4,10]) how to
map it onto a disk-memory system in order to allow I/O-
efficient traversals for subsequent pattern searches. A for-
tiori, suffix-tree storage and construction are challenging
problems that need further investigation.

Space optimization is closely related to time optimiza-
tion in a disk-memory system, so the design of succinct

suffix-tree implementations is a key issue in order to scale
to Gigabytes of data in reasonable time. This topic is an
active area of theoretical research with many fascinating
solutions (see e. g. [14]), which have not yet been fully ex-
plored in the practical setting.

It is theoretically challenging to design a suffix-tree
construction algorithm that takes optimal I/Os and space
proportional to the entropy of the indexed string. The
more compressible is the string, the lighter should be
the space requirement of this algorithm. Some results are
known [7,10,11], but both issues of compression and I/Os
have not yet been tackled jointly.

Experimental Results

The interest in building large suffix trees arose in the last
few years because of the recent advances in sequencing
technology, which have allowed the rapid accumulation
of DNA and protein data. Some recent papers [1,2,8,15]
proposed new practical algorithms that allow us to scale
to Gbps/hours. Surprisingly enough, these algorithms are
based on disk-inefficient schemes, but they properly se-
lect the insertion order of the suffixes and exploit care-
fully the internal memory as a buffer, so that their perfor-
mance does not suffers significantly from the theoretical
I/O-bottleneck.

In [8] the authors propose an incremental algorithm,
called PrePar, which performs multiple passes over the
string S and constructs the suffix tree for a subrange of suf-
fixes at each pass. For a user-defined a parameter q, a suf-
fix subrange is defined as the set of suffixes prefixed by the
same q-long string. Suffix subranges induce subtrees ofTS
which can thus be built independently, and evicted from
internal memory as they are completed. The experiments
reported in [8] successfully index 286Mbps using 2Gb in-
ternal memory.

In [2] the authors propose an improved version of
PrePar, called DynaCluster, that deploys a dynamic

Suffix Tree Construction in RAM S 925

technique to identify suffix subranges. Unlike Prepar,
DynaCluster does not scan over and over the string S,
but it starts from the q-based subranges and then splits
them recursively in a DFS-manner if their size is larger
than a fixed threshold � . Splitting is implemented by look-
ing at the next q characters of the suffixes in the subrange.
This clustering and lazy-DFS visit of TS significantly re-
duce the number of I/Os incurred by the frequent edge-
splitting operations that occur during the suffix tree con-
struction process; and allow it to cope efficiently with skew
data. As a result, DynaCluster constructs suffix trees
for 200Mbps with only 16Mb internal memory.

More recently, [15] improved the space requirement
and the buffering efficiency, thus being able to construct
a suffix tree of 3 Gbps in 30 hours; whereas [1] improved
the I/O behavior of RAM-algorithms for online suffix-tree
construction, by devising a novel low-overhead buffering
policy.

Cross References

� Cache-Oblivious Sorting
� String Sorting
� Suffix Array Construction
� Suffix Tree Construction in RAM
� Text Indexing

Recommended Reading
1. Bedathur, S.J., Haritsa, J.R.: Engineering a fast online persistent

suffix tree construction., In: Proc. 20th International Confer-
ence on Data Engineering, pp. 720–731, Boston, USA (2004)

2. Cheung, C., Yu, J., Lu, H.: Constructing suffix tree for gigabyte
sequences with megabyte memory. IEEE Trans. Knowl. Data
Eng. 17, 90–105 (2005)

3. Farach-Colton,M., Ferragina, P., Muthukrishnan, S.: On the sort-
ing-complexity of suffix tree construction. J. ACM 47 987–1011
(2000)

4. Ferragina, P.: Handbook of Computational Molecular Biology.
In: Computer and Information Science Series, ch. 35 on “String
search in external memory: algorithms and data structures”.
Chapman & Hall/CRC, Florida (2005)

5. Ferragina, P., Grossi, R.: The string B-tree: A new data struc-
ture for string search in external memory and its applications.
J. ACM 46, 236–280 (1999)

6. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology. Cambridge Univer-
sity Press, Cambridge (1997)

7. Hon, W., Sadakane, K., Sung, W.: Breaking a time-and-space
barrier in constructing full-text indices. In: IEEE Symposium on
Foundations of Computer Science (FOCS), 2003, pp. 251–260

8. Hunt, E., Atkinson, M., Irving, R.: Database indexing for large
DNA and protein sequence collections. Int. J. Very Large Data
Bases 11, 256–271 (2002)

9. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix ar-
ray construction. J. ACM 53, 918–936 (2006)

10. Ko, P., Aluru, S.: Optimal self-adjusting trees for dynamic string
data in secondary storage. In: Symposiumon String Processing
and Information Retrieval (SPIRE). LNCS, vol. 4726, pp. 184-194.
Springer, Berlin (2007)

11. Mäkinen, V., Navarro, G.: Dynamic Entropy-Compressed Se-
quences and Full-Text Indexes. In: Proc. 17th Symposium
on Combinatorial Pattern Matching (CPM). LNCS, vol. 4009,
pp. 307–318. Springer, Berlin (2006)

12. Manber, U., Myers, G.: Suffix arrays: a new method for on-line
string searches. SIAM J. Comput. 22, 935–948 (1993)

13. Navarro, G., Baeza-Yates, R.: A hybrid indexing method for
approximate string matching. J. Discret. Algorithms 1, 21–49
(2000)

14. Navarro, G., Mäkinen, V.: Compressed full text indexes. ACM
Comput. Surv. 39(1) (2007)

15. Tata, S., Hankins, R.A., Patel, J.M.: Practical suffix tree construc-
tion. In: Proc. 13th International Conference on Very LargeData
Bases (VLDB), pp. 36–47, Toronto, Canada (2004)

16. Vitter, J.: External memory algorithms and data structures:
Dealing with MASSIVE DATA. ACM Comput. Surv. 33, 209–271
(2002)

Suffix Tree Construction in RAM
1997; Farach-Colton

JENS STOYE
Department of Technology,
University of Bielefeld, Bielefeld, Germany

Keywords and Synonyms

Full-text index construction

ProblemDefinition

The suffix tree is perhaps the best-known and most-
studied data structure for string indexing with applications
in many fields of sequence analysis. After its invention in
the early 1970s, several approaches for the efficient con-
struction of the suffix tree of a string have been developed
for various models of computation. The most prominent
of those that construct the suffix tree in main memory are
summarized in this entry.

Notations

Given an alphabet ˙ , a trie over ˙ is a rooted tree whose
edges are labeled with strings over˙ such that no two la-
bels of edges leaving the same vertex start with the same
symbol. A trie is compacted if all its internal vertices, ex-
cept possibly the root, are branching. Given a finite string
S 2 ˙ n , the suffix tree of S, T(S), is the compacted trie over
˙ such that the concatenations of the edge labels along the
paths from the root to the leaves are the suffixes of S. An
example is given in Fig. 1.

926 S Suffix Tree Construction in RAM

Suffix Tree Construction in RAM, Figure 1
The suffix tree for the string S = MAMMAMIA. Dashed arrows de-
note suffix links that are employed by all efficient suffix tree con-
struction algorithms

The concatenation of the edge labels from the root to
a vertex v of T(S) is called the path-label of v, P(v). For ex-
ample, the path-label of the vertex indicated by the asterisk
in Fig. 1 is P(�) = MAM.

Constraints

The time complexity of constructing the suffix tree of
a string S of length n depends on the size of the underly-
ing alphabet˙ . It may be constant, it may be the alphabet
of integers ˙ = f1; 2; : : : ; ng, or it may be an arbitrary fi-
nite set whose elements can be compared in constant time.
Note that the latter case reduces to the previous one if one
maps the symbols of the alphabet to the set f1; : : : ; ng,
though at the additional cost of sorting˙ .

Problem 1 (suffix tree construction)
INPUT: A finite string S of length n over an alphabet˙ .
OUTPUT: The suffix tree T(S).

If one assumes that the outgoing edges at each vertex are
lexicographically sorted, which is usually the case, the suf-
fix tree allows to retrieve the sorted order of S0s characters
in linear time. Therefore, suffix tree construction inherits
the lower bounds from the problem complexity of sorting:
˝(n log n) in the general alphabet case, and˝(n) for inte-
ger alphabets.

Key Results

Theorem 1 The suffix tree of a string of length n requires
	(n log n) bits of space.

This is easy to see since the number of leaves of T(S) is
at most n, and so is the number of internal vertices that,
by definition, are all branching, as well as the number of
edges. In order to see that each edge label can be stored
in O(log n) bits of space, note that an edge label is always
a substring of S. Hence it can be represented by a pair (`, r)
consisting of left pointer ` and right pointer r, if the label is
S[`, r].

Note that this space bound is not optimal since there
are |˙ |n different strings and hence suffix trees, while
n log n bits would allow to represent n! different entities.

Theorem 2 Suffix trees can be constructed in optimal time,
in particular:
1. For constant-size alphabet, the suffix tree T(S) of a string

S of length n can be constructed in O(n) time [11,
12,13]. For general alphabet, these algorithms require
O(n log n) time.

2. For integer alphabet, the suffix tree of S can be con-
structed in O(n) time [4,9].

Generally, there is a natural strategy to construct a suf-
fix tree: Iteratively all suffixes are inserted into an initially
empty structure. Such a strategy will immediately lead to
a linear-time construction algorithm if each suffix can be
inserted in constant time. Finding the correct position
where to insert a suffix, however, is the main difficulty of
suffix tree construction.

The first solution for this problemwas given byWeiner
in his seminal 1973 paper [13]. His algorithm inserts the
suffixes from shortest to longest, and the insertion point
is found in amortized constant time for constant-size al-
phabet, using rather a complicated amount of additional
data structures. A simplified version of the algorithm was
presented by Chen and Seiferas [3]. They give a cleaner
presentation of the three types of links that are required in
order to find the insertion points of suffixes efficiently, and
their complexity proof is easier to follow. Since the suffix
tree is constructed while reading the text from right to left,
these two algorithms are sometimes called anti-online con-
structions.

A different algorithm was given 1976 by Mc-
Creight [11]. In this algorithm the suffixes are inserted
into the growing tree from longest to shortest. This sim-
plifies the update procedure, and the additional data struc-
ture is limited to just one type of link: an internal vertex
v with path label P(v) = aw for some symbol a 2 ˙ and
string w 2 ˙� has a suffix link to the vertex uwith path la-
bel P(u) = w. In Fig. 1, suffix links are shown as dashed
arrows. They often connect vertices above the insertion
points of consecutively inserted suffixes, like the vertex
with path-label “M” and the root, when inserting suffixes

Suffix Tree Construction in RAM S 927

“MAMIA” and “AMIA” in the example of Fig. 1. This
property allows to reach the next insertion point without
having to search for it from the root of the tree, thus en-
suring amortized constant time per suffix insertion. Note
that since McCreight’s algorithm treats the suffixes from
longest to shortest and the intermediate structures are not
suffix trees, the algorithm is not an online algorithm.

Another linear-time algorithm for constant size alpha-
bet is the online construction by Ukkonen [12]. It reads
the text from left to right and updates the suffix tree in
amortized constant time per added symbol. Again, the al-
gorithm uses suffix links in order to quickly find the inser-
tion points for the suffixes to be inserted. Moreover, since
during a single update the edge labels of all leaf-edges need
to be extended by the new symbol, it requires a trick to ex-
tend all these labels in constant time: all the right pointers
of the leaf edges refer to the same end of string value, which
is just incremented.

An even stronger concept than online construction is
real-time construction, where the worst-case (instead of
amortized) time per symbol is considered. Amir et al. [1]
present for general alphabet a suffix tree construction al-
gorithm that requires O(log n) worst-case update time per
every single input symbol when the text is read from right
to left, and thus requires overall O(n log n) time, like the
other algorithms for general alphabet mentioned so far.
They achieve this goal using a binary search tree on the
suffixes of the text, enhanced by additional pointers repre-
senting the lexicographic and the textual order of the suf-
fixes, called Balanced Indexing Structure. This tree can be
constructed in O(log n) worst-case time per added sym-
bol and allows to maintain the suffix tree in the same time
bound.

The first linear-time suffix tree construction algorithm
for integer alphabets was given by Farach–Colton [4]. It
uses the so-called odd-even technique that proceeds in
three steps:
1. Recursively compute the compacted trie of all suffixes

of S beginning at odd positions, called the odd tree To.
2. From To compute the even tree Te, the compacted trie

of the suffixes beginning at even positions in S.
3. Merge To and Te into the whole suffix tree T(S).

The basic idea of the first step is to encode pairs of
characters as single characters. Since at most n/2 different
such characters can occur, these can be radix-sorted and
range-reduced to an alphabet of size n/2. Thus, the string
S of length n over the integer alphabet ˙ = f1; : : : ; ng is
translated in O(n) time into a string S0 of length n/2 over
the integer alphabet˙ 0 = f1; : : : ; n/2g. Applying the algo-
rithm recursively to this string yields the suffix tree of S0.
After translating the edge labels from substrings of S0 back

to substrings of S, some vertices may exist with outgoing
edges whose labels start with the same symbol, because two
distinct symbols from ˙ 0 may be pairs with the same first
symbol from ˙ . In such cases, by local modifications of
edge labels or adding additional vertices the trie property
can be regained and the desired tree To is obtained.

In the second step, the odd tree To from the first step
is used to generate the lexicographically sorted list (lex-
ordering for short) of the suffixes starting at odd positions.
Radix-sorting these with the characters at the preceding
even positions as keys yields a lex-ordering of the even
suffixes in linear time. Together with the longest common
prefixes of consecutive positions that can be computed in
linear time from To using constant-time lowest common
ancestor queries and the identity

l cp(l2i ; l2 j) =
�

l cp(l2i+1; l2 j+1) + 1 if S[2i] = S[2 j]
0 otherwise

this ordering allows to reconstruct the even tree Te in lin-
ear time.

In the third step, the two tries To and Te are merged
into the suffix tree T(S). Conceptually, this is a straight-
forward procedure: the two tries are traversed in parallel,
and every part that is present in one or both of the two
trees, is inserted in the common structure. However, this
procedure is simple only if edges are traversed character
by character such that common and differing parts can be
observed directly. Such a traversal would, however, require
O(n2) time in the worst case, impeding the desired overall
linear running time. Therefore, Farach-Colton suggests to
use an oracle that tells, for an edge of To and an edge of
Te the length of their common prefix. However, the sug-
gested oracle may overestimate this length, and that is why
sometimes the tree generatedmust be corrected, called un-
merging. The full details of the oracle and the unmerging
procedure can be found in [4].

Overall, if T(n) is the time it takes to build the suf-
fix tree of a string S 2 f1; : : : ; ngn , the first step takes
T(n/2) + O(n) time and the second and third step take
O(n) time, thus the whole procedure takes O(n) overall
time on the RAM model.

Another linear-time construction of suffix trees for in-
teger alphabets can be achieved via linear-time construc-
tion of suffix arrays together with longest common prefix
tabulation, as described by Kärkkäinen and Sanders in [9].

In some applications the so-called generalized suffix
tree of several strings is used, a dictionary obtained by con-
structing the suffix tree of the concatenation of the con-
tained strings. An important question that arises in this
context is that of dynamically updating the tree upon in-
sertion and deletion of strings from the dictionary. More

928 S Support Vector Machines

specifically, since edge-labels are stored as pairs of point-
ers into the original string, when deleting a string from
the dictionary the corresponding pointers may become in-
valid and need to be updated. An algorithm to solve this
problem in amortized linear time was given by Fiala and
Greene [6], a linear worst-case (and hence real-time) algo-
rithm was given by Ferragina et al. [5].

Applications

The suffix tree supports many applications, most of them
in optimal time and space, including exact string match-
ing, set matching, longest common substring of two or
more sequences, all-pairs suffix-prefix matching, repeat
finding, and text compression. These and several other ap-
plications, many of them from bioinformatics, are given
in [2] and [8].

Open Problems

Some theoretical questions regarding the expected size and
branching structure of suffix trees under more compli-
cated than i. i. d. sequence models are still open. Currently
most of the research has moved towards more space-
efficient data structures like suffix arrays and compressed
string indices.

Experimental Results

Suffix trees are infamous for their high memory require-
ments. The practical space consumption is between 9 and
11 times the size of the string to be indexed, even in
the most space-efficient implementations known [7,10].
Moreover, [7] also shows that suboptimal algorithms
like the very simple quadratic-time write-only top-down
(WOTD) algorithm can outperform optimal algorithms
on many real-world instances in practice, if carefully en-
gineered.

URL to Code

Several sequence analysis libraries contain code for suf-
fix tree construction. For example, Strmat (http://www.
cs.ucdavis.edu/~gusfield/strmat.html) by Gusfield et al.
contains implementations of Weiner’s and Ukkonen’s
algorithm. An implementation of the WOTD algo-
rithm by Kurtz can be found at (http://bibiserv.techfak.
uni-bielefeld.de/wotd).

Cross References

� Compressed Text Indexing
� String Sorting

� Suffix Array Construction
� Suffix Tree Construction in Hierarchical Memory
� Text Indexing

Recommended Reading
1. Amir, A., Kopelowitz, T., Lewenstein, M., Lewenstein, N.: To-

wards real-time suffix tree construction. In: Proceedings of the
12th International Symposium on String Processing and In-
formation Retrieval, SPIRE 2005. LNCS, vol. 3772, pp. 67–78.
Springer, Berlin (2005)

2. Apostolico, A.: The myriad virtues of subword trees. In: Apos-
tolico, A., Galil, Z. (eds.) Combinatorial Algorithms on Words.
NATO ASI Series, vol. F12, pp. 85–96. Springer, Berlin (1985)

3. Chen, M.T., Seiferas, J.: Efficient and elegant subword tree con-
struction. In: Apostolico, A., Galil, Z. (eds.) Combinatorial Algo-
rithms on Words. Springer, New York (1985)

4. Farach, M.: Optimal suffix tree construction with large alpha-
bets. In: Proc. 38th Annu. Symp. Found. Comput. Sci., FOCS
1997, pp. 137–143. IEEE Press, New York (1997)

5. Ferragina, P., Grossi, R., Montangero, M.: A note on updating
suffix tree labels. Theor. Comput. Sci. 201, 249–262 (1998)

6. Fiala, E.R., Greene, D.H.: Data compression with finite windows.
Commun. ACM 32, 490–505 (1989)

7. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of
lazy suffix trees. Softw. Pract. Exp. 33, 1035–1049 (2003)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, New York (1997)

9. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array
construction. In: Proceedings of the 30th International Col-
loquium on Automata, Languages, and Programming, ICALP
2003. LNCS, vol. 2719, pp. 943–955. Springer, Berlin (2003)

10. Kurtz, S.: Reducing the space requirements of suffix trees.
Softw. Pract. Exp. 29, 1149–1171 (1999)

11. McCreight, E.M.: A space-economical suffix tree construction
algorithm. J. ACM 23, 262–272 (1976)

12. Ukkonen, E.: On-line construction of suffix trees. Algorithmica
14, 249–260 (1995)

13. Weiner, P.: Linear pattern matching algorithms. In: Proc. of the
14th Annual IEEE Symposiumon Switching andAutomata The-
ory, pp. 1–11. IEEE Press, New York (1973)

Support Vector Machines
1992; Boser, Guyon, Vapnik

NELLO CRISTIANINI1, ELISA RICCI2
1 Department of Engineering Mathematics, and
Computer Science, University of Bristol, Bristol, UK

2 Department of Engineering Mathematics,
University of Perugia, Perugia, Italy

ProblemDefinition

In 1992 Vapnik and coworkers [1] proposed a super-
vised algorithm for classification that has since evolved
into what are now known as Support Vector Machines

http://www.cs.ucdavis.edu/~gusfield/strmat.html
http://www.cs.ucdavis.edu/~gusfield/strmat.html
http://bibiserv.techfak.uni-bielefeld.de/wotd
http://bibiserv.techfak.uni-bielefeld.de/wotd

Support Vector Machines S 929

(SVMs) [2]: a class of algorithms for classification, regres-
sion and other applications that represent the current state
of the art in the field. Among the key innovations of this
method were the explicit use of convex optimization, sta-
tistical learning theory, and kernel functions.

Classification

Given a training set S = f(x1; y1); : : : ; (x`; y`)g of data
points xi from X
 Rn with corresponding labels yi from
Y = f�1;+1g, generated from an unknown distribution,
the task of classification is to learn a function g : X ! Y
that correctly classifies new examples (x; y) (i. e. such that
g(x) = y) generated from the sameunderlying distribution
as the training data.

A good classifier should guarantee the best possible
generalization performance (e. g. the smallest error on un-
seen examples). Statistical learning theory [3], from which
SVMs originated, provides a link between the expected
generalization error for a given training set and a property
of the classifier known as its capacity. The SV algorithm
effectively regulates the capacity by considering the func-
tion corresponding to the hyperplane that separates, ac-
cording to the labels, the given training data and it is max-
imally distant from them (maximal margin hyperplane).
When no linear separation is possible a non-linear map-
ping into a higher dimensional feature space is realized.
The hyperplane found in the feature space corresponds to
a non-linear decision boundary in the input space.

Let � : I
 Rn ! F
 Rn a mapping from the input
space I to the feature space F (Fig. 1a). In the learning
phase, the algorithm finds a hyperplane defined by the
equation hw; �(xi)i = b such that the margin

� = min1�i�` yi (hw; �(xi)i�b) = min1�i�` yi g(xi) (1)

is maximized, where h; i denotes the inner product,w is a `
dimensional vector of weights, b is a threshold.

The quantity (hw; �(xi)i � b)/kwk is the distance of
the sample xi from the hyperplane. When multiplied by
the label yi it gives a positive value for correct classifi-
cation and a negative value for an uncorrect one. Given
a new data point x a label is assigned evaluating the deci-
sion function:

g(x) = sign(hw; �(x)i � b) (2)

Maximizing the Margin

For linearly separable classes, there exists a hyperplane
(w; b) such that:

yi(hw; �(xi)i � b) � � i = 1; : : : ; ` (3)

Imposing kwk2 = 1, the choice of the hyperplane such that
the margin is maximized is equivalent to the following op-
timization problem:

maxw;b;��
subject to yi (hw; �(xi)i � b) � � i = 1; : : : ; `

and kwk2 = 1:

(4)

An efficient solution can be found in the dual space by
introducing the Lagrange multipliers ˛i , i = 1; : : : `. The
problem (4) can be recast in the following dual form:

max˛

X̀
i=1

˛i �
X̀
i=1

X̀
j=1

˛i˛ j yi y jh�(xi); �(x j)i

subject to
X̀
i=1

˛i yi = 0; ˛i � 0

(5)

This formulation shows how the problem reduces to a con-
vex (quadratic) optimization task. A key property of solu-
tions ˛� of this kind of problems is that they must satisfy
the Karush–Kuhn–Tucker (KKT) conditions, that ensure
that only a subset of training examples needs to be associ-
ated to a non-zero ˛i. This property is called sparseness of
the SVM solution, and is crucial in practical applications.

In the solution ˛�, often only a subset of training ex-
amples is associated to non-zero ˛i . These are called sup-
port vectors and correspond to the points that lie closest
to the separating hyperplane (Fig. 1b). For the maximal
margin hyperplane the weights vector w� is given by lin-
ear function of the training points:

w� =
X̀
i=1

˛�i yi�(xi) (6)

Then the decision function (2) can equivalently be ex-
pressed as:

g(x) = sign(
X̀
i=1

˛�i yi h�(xi); �(x)i � b) (7)

For a support vector xi , it is hw�; �(xi)i � b = yi from
which the optimum bias b� can be computed. How-
ever, it is better to average the values obtained by con-
sidering all the support vectors [2]. Both the quadratic
programming (QP) problem (5) and the decision func-
tion (7) depend only on the dot product between
data points. The matrix of dot products with elements
Ki j = K(xi ; x j) = h�(xi); �(x j)i is called the kernel ma-
trix. In the case of linear separation K(xi ; x j) = hxi ; x ji,

930 S Support Vector Machines

Support Vector Machines, Figure 1
a The feature map simplifies the classification task. b Amaximal margin hyperplane with its support vectors highlighted

but in general, one can use functions that provide non-
linear decision boundaries. Widely used kernels are the
polynomial K(xi ; x j) = (hxi ; x ji + 1)d or the Gaussian

K(xi ; x j) = e�
kxi�x jk2

�2 where d and � are user-defined pa-
rameters.

Key Results

In the framework of learning from examples, SVMs have
shown several advantages compared to traditional neu-
ral network models (which represented the state of the
art in many classification tasks up to 1992). The statisti-
cal motivation for seeking the maximal margin solution is
to minimize an upper bound on the test error that is inde-
pendent of the number of dimensions and inversely pro-
portional to the separation margin (and the sample size).
This directly suggests embedding of the data in a high-
dimensional space where a large separation margin can
be achieved; that this can be done efficiently with ker-
nels, and in a convex fashion, are two crucial computa-
tional considerations. The sparseness of the solution, im-
plied by the KKT conditions, adds to the efficiency of the
result.

The initial formulation of SVMs by Vapnik and
coworkers [1] has been extended by many other re-
searchers. Here we summarize some key contributions.

Soft Margin

In the presence of noise the SV algorithm can be subjected
to overfitting. In this case one needs to tolerate some train-
ing errors in order to obtain a better generalization power.
This has led to the development of the soft margin clas-
sifiers [4]. Introducing the slack variables �i � 0, optimal

class separation can be obtained by:

minw;b;�;� � � + C
X̀
i=1

�i

subject to yi (hw; �(xi)i � b) � � � �i ; �i � 0

i = 1; : : : ; ` and kwk2 = 1:

(8)

The constant C is user-defined and controls the trade-off
between the maximization of the margin and the number
of classification errors. The dual formulation is the same
as (5) with the only difference in the bound constraints
(0 � ˛i � C; i = 1; : : : ; `). The choice of soft margin pa-
rameter is one of the two main design choices (together
with the kernel function) in applications. It is an elegant
result [5] that the entire set of solutions for all possible val-
ues of C can be found with essentially the same computa-
tional cost over finding a single solution: this set is often
called the regularization path.

Regression

A SV algorithm for regression, called support vector re-
gression (SVR), was proposed in 1996 [6]. A linear algo-
rithm is used in the kernel-induced feature space to con-
struct a function such that the training points are inside
a tube of given radius ". As for classification the regression
function only depends on a subset of the training data.

Speeding up the Quadratic Program

Since the emergence of SVMs, many researchers have de-
veloped techniques to effectively solve the problem (5):
a quite time-consuming task, especially for large training
sets. Most methods decompose large-scale problems into
a series of smaller ones. The most widely used method is

Support Vector Machines S 931

that of Platt [7] and it is known as Sequential Minimal Op-
timization.

Kernel Methods

In SVMs, both the learning problem and the decision
function can be formulated only in terms of dot products
between data points. Other popular methods (i. e. Princi-
pal Component Analysis, Canonical Correlation Analysis,
Fisher Discriminant) have the same property. This fact has
led to a huge number of algorithms that effectively use ker-
nels to deal with non-linear functions keeping the same
complexity of the linear case. They are referred to as ker-
nel methods [8,9].

Choosing the Kernel

The main design choice when using SVMs is the selection
of an appropriate kernel function, a problem of model se-
lection that roughly relates to the choice of a topology for
a neural network. It is a non-trivial result [10] that also
this key task can be translated into a convex optimization
problem (a semi-definite program) under general condi-
tions. A kernel can be optimally selected from a kernel
space resulting from all linear combinations of a basic set
of kernels.

Kernels for General Data

Kernels are not just useful tools to allow us to deploymeth-
ods of linear statistics in a non-linear setting. They also al-
low us to apply them to non-vectorial data: kernels have
been designed to operate on sequences, graphs, text, im-
ages, and many other kinds of data [8].

Applications

Since their emergence, SVMs have been widely used in
a huge variety of applications. To give some examples good
results have been obtained in text categorization, hand-
written character recognition, and biosequence analysis.

Text Categorization

Automatic text categorization is where text documents
are classified into a fixed number of predefined cate-
gories based on their content. In the works performed by
Joachims [11] and by Dumais et al. [12], documents are
represented by vectors with the so-called bag-of-words ap-
proach used in the information retrieval field. The dis-
tance between two documents is given by the inner prod-
uct between the corresponding vectors. Experiments on

the collection of Reuters news stories showed good results
of SVMs compared to other classification methods.

Hand-Written Character Recognition

This is the first real-world task on which SVMs were
tested. In particular two publicly available data sets (USPS
and NIST) have been considered since they are usu-
ally used for benchmarking classifiers. A lot of experi-
ments, mainly summarized in [13], were performed which
showed that SVMs can perform as well as other complex
systems without incorporating any detailed prior knowl-
edge about the task.

Bioinformatics

SVMs have been widely used also in bioinformatics. For
example, Jaakkola and Haussler [14] applied SVMs to the
problem of protein homology detection, i. e. the task of re-
lating new protein sequences to proteins whose properties
are already known. Brown et al. [15] describe a success-
ful use of SVMs for the automatic categorization of gene
expression data from DNAmicroarrays.

URL to Code

Many free software implementations of SVMs are avail-
able at the website
� www.support-vector.net/software.html
Two in particular deserve a special mention for their effi-
ciency:
� SVMlight: Joachims T. Making large-scale SVM learn-

ing practical. In: Schölkopf B, Burges CJC, and Smola
AJ (eds) Advances in Kernel Methods Support Vector
Learning, MIT Press, 1999. Software available at http://
svmlight.joachims.org

� LIBSVM: Chang CC, and Lin CJ, LIBSVM: a library
for support vector machines, 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cross References

� PAC Learning
� Perceptron Algorithm

Recommended Reading
1. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal

margin classifiers. In: Proceedings of the Fifth Annual Work-
shop on Computational Learning Theory, Pittsburgh (1992)

2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support
Vector Machines and other kernel-based learning methods.
Cambridge University Press, Cambrigde, Book website: www.
support-vector.net (2000)

http://www.support-vector.net/software.html
http://svmlight.joachims.org
http://svmlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.support-vector.net
http://www.support-vector.net

932 S Symbolic Model Checking

3. Vapnik, V.: The Nature of Statistical Learning Theory. Springer,
New York (1995)

4. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20,
273–297 (1995)

5. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regulariza-
tion path for the support vector machine. J. Mach. Learn. Res.
5, 1391–1415 (2004)

6. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.:
Support Vector Regression Machines. Adv. Neural. Inf. Process.
Syst. (NIPS) 9, 155–161 MIT Press (1997)

7. Platt, J.: Fast training of support vector machines using se-
quential minimal optimization. In: Schölkopf, B., Burges, C.J.C.,
Smola, A.J. (eds.) Advances in Kernel Methods Support Vector
Learning. pp 185–208. MIT Press, Cambridge (1999)

8. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern
Analysis. Cambridge University Press, Cambridge. Book web-
site: www.kernel-methods.net (2004)

9. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press,
Cambridge (2002)

10. Lanckriet, G.R.G., Cristianini,N., Bartlett, P., El Ghaoui, L., Jordan,
M.I.: Learning the Kernel Matrix with Semidefinite Program-
ming. J. Mach. Learn. Res. 5, 27–72 (2004)

11. Joachims, T.: Text categorization with support vector ma-
chines. In: Proceedings of European Conference on Machine
Learning (ECML) Chemnitz (1998)

12. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learn-
ing algorithms and representations for text categorization. In:
7th International Conference on Information and Knowledge
Management (1998)

13. LeCun, Y., Jackel, L.D., Bottou, L., Brunot, A., Cortes, C., Denker,
J.S., Drucker, H., Guyon, I., Muller, U.A., Sackinger, E., Simard,
P., Vapnik, V.: Comparison of learning algorithms for handwrit-
ten digit recognition. In: Fogelman-Soulie F., Gallinari P. (eds.),
Proceedings International Conference on Artificial Neural Net-
works (ICANN) 2, 5360. EC2 (1995)

14. Jaakkola, T.S., Haussler, D.: Probabilistic kernel regressionmod-
els. In: Proceedings of the 1999 Conference on AI and Statistics
Fort Lauderdale (1999)

15. Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey,
T., Ares Jr., M., Haussler, D.: Knowledge-based analysis of mir-
coarray gene expression data using support vector machines.
In: Proceedings of the National Academy of Sciences 97(1),
262–267 (2000)

Symbolic Model Checking
1990; Burch, Clarke, McMillan, Dill

AMIT PRAKASH1, ADNAN AZIZ2
1 Microsoft, MSN, Redmond, WA, USA
2 Department of Electrical and Computer Engineering,
University of Texas, Austin, TX, USA

Keywords and Synonyms

Formal hardware verification

ProblemDefinition

Design verification is the process of taking a design
and checking that it works correctly. More specifically,
every design verification paradigm has three compo-
nents [6]—(1.) a language for specifying the design in an
unambiguous way, (2.) a language for specifying proper-
ties that are to be checked of the design, and (3.) a checking
procedure, which determines whether the properties hold
of the design.

The verification problem is very general: it arises in
low-level designs, e. g., checking that a combinational cir-
cuit correctly implements arithmetic, as well as high-level
designs, e. g., checking that a library written in high-level
language correctly implements an abstract data type.

Hardware Verification

The verification of hardware designs is particularly chal-
lenging. Verification is difficult in part because the large
number of concurrent operations, make it very difficult to
conceive of and construct all possible corner-cases, e. g.,
one unit initiating a transaction at the same cycle as an-
other receiving an exception. In addition, software mod-
els used for simulation run orders of several magnitude
slower than the final chip operates at. Faulty hardware
is usually impossible to correct after fabrication, which
means that the cost of a defect is very high, since it takes
several months to go through the process of designing and
fabricating new hardware. Wile et al. [15] provide a com-
prehensive account of hardware verification.

State Explosion

Since the number of state holding elements in digital hard-
ware is bounded, the number of possible states that the
design can be in is infinite, so complete automated ver-
ification is, in principle, possible. However, the number
of states that a hardware design can reach from the ini-
tial state can be exponential in the size of the design; this
phenomenon is referred to as “state explosion.” In par-
ticular, algorithms for verifying hardware that explicitly
record visited states, e. g., in a hash table, have very high
time complexity, making them infeasible for all but the
smallest designs. The problem of complete hardware ver-
ification is known to be PSPACE-hard, which means that
any approach must be based on heuristics.

Hardware Model

A hardware design is formally described using cir-
cuits [4,8]. A combinational circuit consists of Boolean
combinational elements connected by wires. The Boolean

http://www.kernel-methods.net

Symbolic Model Checking S 933

combinational elements are gates and primary inputs.
Gates come in three types: NOT, AND, and OR. The NOT
gate functions as follows: it takes a single Boolean-valued
input, and produces a single Boolean-valued output which
takes value 0 if the input is 1, and 1 if the input is 0. The
AND gate takes two Boolean-valued inputs and produce
a single output; the output is 1 if both inputs are 1, and 0
otherwise. The OR gate is similar to AND, except that its
output is 1 if one or both inputs are 1. A circuit can be rep-
resented as a directed graph where the nodes represent the
gates and wires represent edges in the direction of signal
flow.

A circuit can be represented by a directed graph where
the nodes represent the gates and primary inputs, and
edges represent wires in the direction of signal flow. Cir-
cuits are required to be acyclic, that is there is no cycle
of gates. The absence of cycles implies that a Boolean-
assignment to the primary inputs can be propagated
through the gates in topological order.

A sequential circuit extends the notion of circuit de-
scribed above by adding stateful elements. Specifically, a se-
quential circuit includes registers. Each register has a single
input, which is referred to as its next-state input.

A valuation on a setV is a function whose domain isV .
A state in a sequential circuit is a Boolean-valued valuation
on the set of registers. An input to a sequential circuit is
a Boolean-valued valuation on the set of primary inputs.
Given a state s and an input i, the logic gates in the circuit
uniquely define a Boolean-valued valuation t to the set of
register inputs—this is referred to as the next state of the
circuit at state s under input i, and say s transitions to t
on input i. It is convenient to denote such a transition by

s
i
! t.
A sequential circuit can naturally be identified with

a finite state machine (FSM), which is a graph defined over
the set of all states; an edge (s, t) exists in the FSM graph if
there exists an input i, state s transitions to t on input i.

Invariant Checking

An invariant is a set of states; informally, the term is used
to refer to a set of states that are “good” in some sense. One
common way to specify an invariant is to write a Boolean
formula on the register variables—the states which satisfy
the formula are precisely the states in the invariant.

Given states r and s, define r to be reachable from s
if there is a sequence of inputs hi0; i1; : : : ; in�1i such that

s = s0
i0
! s1

i1
! � � � sn = t. A fundamental problem in

hardware verification is the following—given an invari-
ant A, and a state s, does there exists a state r reachable
from s which is not in A?

Key Results
Symbolic model checking (SMC) is a heuristic approach
to hardware verification. It is based on the idea that rather
than representing and manipulating states one-at-a-time,
it is more efficient to use symbolic expressions to represent
and manipulate sets of states.

A key idea in SMC is that given a set A � f0; 1gn ,
a Boolean function A can be constructed such that
fA : f0; 1gn 7! f0; 1g given by f (˛1; : : : ; ˛n) = 1 iff
(˛1; : : : ; ˛n) 2 A. Note that given a characteristic func-
tion f A, A can be obtained and vice versa.

There are many ways in which a Boolean function
can be represented—formulas in DNF, general Boolean
formulas, combinational circuits, etc. In addition to an
efficient representation for state sets, the ability to per-
form fast computations with sets of states is also impor-
tant—for example, in order to determine if an invariant
holds, it is required to compute the set of states reachable
from a given state. BDDs [2] are particularly well-suited
to representing Boolean functions, as they combine suc-
cinct representation with efficient manipulation; they are
the data structure underlying SMC.

Image Computation
A key computation that arises in verification is determin-
ing the image of a set of states A in a design D—the image
of A is the set of all states t for which there exists a state
in A and an input i such that state s transitions to t under
input i. The image of A is denoted by Img(A).

The transition relation of a design is the set of (s, i, t)
triples such that s transitions to t under input i. Let the
design have n registers, and m primary inputs; then the
transition relation is subset of f0; 1gn � f0; 1gm � f0; 1gn .

Conceptually, the transition relation completely cap-
tures the dynamics of the design—given an initial state,
and input sequence, the evolution of the design is com-
pletely determined by the transition relation.

Since the transition relation is a subset of f0; 1gn+m+n ,
it has a characteristic function fT : f0; 1gn+m+n 7! f0; 1g.
View f T as being defined over the variables x0; : : : ; xn�1;
i0; : : : ; im�1; y0; : : : ; yn�1. Let the set of states A be
represented by the function f A defined over variables
x0; : : : ; xn�1. Then the following identity holds

Img(A) = (9x0 � 9xn�19i0 � � � 9im�1)(fA � fT) :

The identity hold because (ˇ0; : : : ; ˇn�1) satisfies the
right-hand side expression exactly when there are values
˛0; : : : ; ˛n�1 and �0; : : : ; �m�1 such that (˛0; : : : ; ˛n�1)
2 A and the state (˛0; : : : ; ˛n�1) transitions to (ˇ0; : : : ;
ˇn�1) on input (�0; : : : ; �m�1).

934 S Symbolic Model Checking

Invariant Checking
The set of all states reachable from a given setA is the limit
as n tends to infinity of the sequence of states hR0; R1; : : : i

defined below:

R0 = A
Ri+1 = Ri [Img(Ri) :

Since for all i; Ri
 Ri+1 and the number of distinct state
sets is finite, the limit is reached in some finite number
of steps, i. e., for some n, it must be that Rn+1 = Rn . It
is straightforward to show that the limit is exactly equal
to the set of states reachable from A—the basic idea is to
inductively construct input sequences that lead from states
in A to Ri, and to show that state t is reachable from a state
in A under an input sequence of length l, then t must be in
Rl.

Given BDDs F and G representing functions f and g
respectively, there is an algorithm based on dynamic pro-
gramming for performing conjunction, i. e., for comput-
ing the BDD for f � g. The algorithm has polynomial
complexity, specifically O(jFj � jGj), where |B| denotes the
number of nodes in the BDD B. There are similar algo-
rithms for performing disjunction (f + g), and comput-
ing cofactors (f x and f x0). Together these yield an algo-
rithm for the operation of existential quantification, since
(9x) f = fx + fx0 .

It is straightforward to build BDDs for f A and fT : A
is typically given using a propositional formula, and the
BDD for f A can be built up using functions for conjunc-
tion, disjunction, and negation. The BDD for f T is built
using from the BDDs for the next-state nodes, over the
register and primary input variables. Since the only gate
types are AND, OR, and NOT, the BDD can be built using
the standard BDD operators for conjunction, disjunction,
and negation. Let the next state functions be f0; : : : ; fn�1;
then f T is (y0 = f0) � (y1 = f1) � � � � � (yn�1 = fn�1), and so
the BDD for f T can be constructed using the usual BDD
operators.

Since the image computation operation can be ex-
pressed in terms of f A and FT , and conjunction and ex-
istential quantification operations, it can be performed us-
ing BDDs. The computation of Ri involves an image op-
eration, and a disjunction, and since BDDs are canonical,
the test for fixed-point is trivial.

Applications
The primary application of the technique described above
is for checking properties of hardware designs. These
properties can be invariants described using propositional
formulae over the register variables, in which case the ap-

proach above is directly applicable. More generally, prop-
erties can be expressed in a temporal logic [5], specifically
through formulae which express acceptable sequences of
outputs and transitions.

CTL is one common temporal logic. A CTL formula
is given by the following grammar: if x is a variable corre-
sponding to a register, then x is a CTL formula; otherwise,
if ' and are CTL formulas, then so as (:�); (�_); (�^
); (� !), and EX�; E�U , and EG� .

A CTL formula is interpreted as being true at a state;
a formula x is true at a state if that register is 1 in that
state. Propositional connectives are handled in the stan-
dard way, e. g., a state satisfies a formula (� ^) if it sat-
isfies both ' and . A state s satisfies EX� if there ex-
ists a state t such that s transitions to, and t satisfies '.
A state s satisfies E�U if there exists a sequence of inputs
hi0; : : : ; ini leading through state hs0 = s; s1; s2; : : : ; sn+1i
such that sn+1 satisfies , and all states si ; i � n + 1
satisfy '. A state s satisfies EG� if there exists an infi-
nite sequence of inputs hi0; i1; : : : i leading through state
hs0 = s; s1; s2; : : : i such that all states si satisfy '.

CTL formulas can be checked by a straightforward
extension of the technique described above for invariant
checking. One approach is to compute the set of states in
the design satisfying subformulas of ', starting from the
subformulas at the bottom of the parse tree for '. A minor
difference between invariant checking and this approach,
is that the latter relies on pre-image computation; the pre-
image of A is the set of all states t for which there exists an
input i such that t transitions under i to a state in A.

Symbolic analysis can also be used to check the equiv-
alence of two designs by forming a new design which op-
erates the two initial designs in parallel, and has a single
output that is set to 1 if the two initial designs differ [14].
In practice this approach is too inefficient to be useful, and
techniques which rely more on identifying common sub-
structures across designs are more successful.

The complement of the set of reachable states can be
used to identify parts of the design which are redundant,
and to propagate don’t care conditions from the input of
the design to internal nodes [12].

Many of the ideas in SMC can be applied to software
verification—the basic idea is to “finitize” the problem,
e. g., by considering integers to lie in a restricted range, or
setting an a priori bound on the size of arrays [7].

Experimental Results

Many enhancements have been made to the basic ap-
proach described above. For example, the BDD for the en-
tire transition relation can grow large, so partitioned tran-

Synchronizers, Spanners S 935

sition relations [11] are used instead; these are based on
the observation that 9x:(f � g) = f � 9x:g, in the spe-
cial case that f is independent of x. Another optimiza-
tion is the use of don’t cares; for example when comput-
ing the image of A, the BDD for f T can be simplified with
respect to transitions originating at A0 [13]. Techniques
based on SAT have enjoyed great success recently. These
approach case the verification problem in terms of satisfia-
bility of a CNF formula. They tend to be used for bounded
checks, i. e., determining that a given invariant holds on
all input sequences of length k [1]. Approaches based on
transformation-based verification, complement symbolic
model checking by simplifying the design prior to verifi-
cation. These simplifications typically remove complexity
that was added for performance rather than functionality,
e. g., pipeline registers.

The original paper by Clarke et al. [3] reported results
on a toy example, which could be described in a few dozen
lines of a high-level language. Currently, themost sophisti-
cated model checking tool for which published results are
ready is SixthSense, developed at IBM [10].

A large number of papers have been published on ap-
plying SMC to academic and industrial designs. Many re-
port success on designs with an astronomical number of
states—these results become less impressive when taking
into consideration the fact that a design with n registers
has 2n states.

It is very difficult to define the complexity of a design.
Onemeasure is the number of registers in the design. Real-
istically, a hundred registers is at the limit of design com-
plexity that can be handles using symbolic model check-
ing. There are cases of designs with many more registers
that have been successfully verified with symbolic model
checking, but these registers are invariably part of a very
regular structure, such as a memory array.

Data Sets

The SMV system described in [9] has been updated, and
its latest incarnation nuSMV (http://nusmv.irst.itc.it/) in-
clude a number of examples.

The VIS (http://embedded.eecs.berkeley.edu/pubs/
downloads/vis) system from UC Berkeley and UC Boul-
der also includes a large collection of verification prob-
lems, ranging from simple hardware circuits, to complex
multiprocessor cache systems.

The SIS (http://embedded.eecs.berkeley.edu/pubs/
downloads/sis/) system from UC Berkeley is used for
logic synthesis. It comes with a number of sequential
circuits that have been used for benchmarking symbolic
reachability analysis.

Cross References

� Binary Decision Graph

Recommended Reading

1. Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic
Model Checking Using Sat Procedures Instead of BDDs. In:
ACM Design Automation Conference. (1999)

2. Bryant, R.: Graph-based Algorithms for Boolean Function Ma-
nipulation. IEEE Trans. Comp. C-35, 677–691 (1986)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Symbolic
Model Checking: 1020 States and Beyond. Inf. Comp. 98(2),
142–170 (1992)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.H., Stein, C.: Introduction
to Algorithms. MIT Press (2001)

5. Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen,
J. (ed.) Formal Models and Semantics, vol. B of Handbook of
Theoretical Computer Science, pp. 996–1072. Elsevier Science
(1990)

6. Gupta, A.: Formal Hardware Verification Methods: A Survey.
Formal Method Syst. Des. 1, 151–238 (1993)

7. Jackson, D.: Software Abstractions: Logic, Language, and Anal-
ysis. MIT Press (2006)

8. Katz, R.: Contemporary logic design. Benjamin/CummingsPub.
Co. (1993)

9. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic
Publishers (1993)

10. Mony, H., Baumgartner, J., Paruthi, V., Kanzelman, R.,
Kuehlmann, A.: Scalable Automated Verification via Expert-
System Guided Transformations. In: Formal Methods in CAD.
(2004)

11. Ranjan, R., Aziz, A., Brayton, R., Plessier, B., Pixley, C.: Efficient
BDD Algorithms for FSM Synthesis and Verification. In: Pro-
ceedings of the International Workshop on Logic Synthesis,
May 1995

12. Savoj, H.: Don’t Cares in Multi-Level Network Optimization.
Ph. D. thesis, University of California, Berkeley, Electronics Re-
search Laboratory, College of Engineering. University of Cali-
fornia, Berkeley, CA (1992)

13. Shiple, T.R., Hojati, R., Sangiovanni-Vincentelli, A.L., Brayton,
R.K.: HeuristicMinimization of BDDs UsingDon’t Cares. In: ACM
Design Automation Conference, San Diego, CA, June (1994)

14. Touati, H., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-
Vincentelli, A.L.: Implicit State Enumeration of Finite State
Machines using BDDs. In: IEEE International Conference on
Computer-Aided Design, pp. 130–133, November (1990)

15. Wile, B., Goss, J., Roesner, W.: Comprehensive Functional Veri-
fication. Morgan-Kaufmann (2005)

Synchronizers, Spanners
1985; Awerbuch

MICHAEL ELKIN
Department of Computer Science,
Ben-Gurion University, Beer-Sheva, Israel

http://nusmv.irst.itc.it/
http://embedded.eecs.berkeley.edu/pubs/downloads/vis
http://embedded.eecs.berkeley.edu/pubs/downloads/vis
http://embedded.eecs.berkeley.edu/pubs/downloads/sis/
http://embedded.eecs.berkeley.edu/pubs/downloads/sis/

936 S Synchronizers, Spanners

Keywords and Synonyms

Network synchronization; Low-stretch spanning sub-
graphs

ProblemDefinition

Consider a communication network, modeled by an n-
vertex undirected unweighted graph G = (V ; E), for some
positive integer n. Each vertex of G hosts a processor of
unlimited computational power; the vertices have unique
identity numbers, and they communicate via the edges
of G by sending messages of size O(log n) each.

In the synchronous setting the communication occurs
in discrete rounds, and a message sent in the beginning
of a round R arrives at its destination before the round R
ends. In the asynchronous setting each vertexmaintains its
own clock, and clocks of distinct vertices may disagree. It
is assumed that each message sent (in the asynchronous
detting) arrives at its destination within a certain time �
after it was sent, but the value of � is not known to the
processors.

It is generallymuch easier to devise algorithms that ap-
ply to the synchronous setting (henceforth, synchronous
algorithms) rather than to the asynchronous one (hence-
forth, asynchronous algorithms). In [1] Awerbuch initi-
ated the study of simulation techniques that translate syn-
chronous algorithms to asynchronous ones. These simula-
tion techniques are called synchronizers.

To devise the first synchronizers Awerbuch [1] con-
structed a certain graph partition which is of its own inter-
est. In particular, Peleg and Schäffer noticed [8] that this
graph partition induces a subgraph with certain interest-
ing properties. They called this subgraph a graph spanner.
Formally, for an integer positive parameter k, a k-spanner
of a graph G = (V ; E) is a subgraph G0 = (V ;H), H
 E,
such that for every edge e = (v; u) 2 E, the distance be-
tween the vertices v and u in H, distG0(v; u), is at most k.

Key Results

Awerbuch devised three basic synchronizers, called ˛, ˇ,
and � . The synchronizer ˛ is the simplest one; using it
results in only a constant overhead in time, but in a very
significant overhead in communication. Specifically, the
latter overhead is linear in the number of edges of the
underlying network. Unlike the synchronizer ˛, the syn-
chronizer ˇ requires a somewhat costly initialization stage.
In addition, using it results in a significant time over-
head (linear in the number of vertices n), but it is more
communication-efficient than ˛. Specifically, its commu-
nication overhead is linear in n.

Finally, the synchronizer � represents a tradeoff be-
tween the synchronizers ˛ and ˇ. Specifically, this syn-
chronizer is parametrized by a positive integer parameter
k. When k is small then the synchronizer behaves simi-
larly to the synchronizer ˛, and when k is large it behaves
similarly to the synchronizer ˇ. A particularly important
choice of k is k = log n. At this point on the tradeoff curve
the synchronizer � has a logarithmic in n time overhead,
and a linear in n communication overhead. The synchro-
nizer � has, however, a quite costly initialization stage.

The main result of [1] concerning spanners is that for
every k = 1; 2; : : :, and every n-vertex unweighted undi-
rected graphG = (V ; E), there exists anO(k)-spanner with
O(n1+1/k) edges. (This result was explicated by Peleg and
Schäffer [8].)

Applications

Synchronizers are extensively used for constructing asyn-
chronous algorithms. The first applications of synchro-
nizers are constructing the breadth-first-search tree and
computing the maximum flow. These applications were
presented and analyzed by Awerbuch in [1]. Later syn-
chronizers were used for maximum matching [10], for
computing shortest paths [7], and for other problems.

Graph spanners were found useful for a variety
of applications in distributed computing. In particular,
some constructions of synchronizers employ graph span-
ners [1,9]. In addition, spanners were used for routing [4],
and for computing almost shortest paths in graphs [5].

Open Problems

Synchronizers with improved properties were devised by
Awerbuch and Peleg [3], and Awerbuch et al. [2]. Both
these synchronizers have polylogarithmic time and com-
munication overheads. However, the synchronizers of
Awerbuch and Peleg [3] require a large initialization time.
(The latter is at least linear in n.) On the other hand, the
synchronizers of [2] are randomized. A major open prob-
lem is to obtain deterministic synchronizers with polylog-
arithmic time and communication overheads, and sublin-
ear in n initialization time. In addition, the degrees of the
logarithm in the polylogarithmic time and communica-
tion overheads in synchronizers of [2,3] are quite large.
Another important open problem is to construct synchro-
nizers with improved parameters.

In the area of spanners, spanners that distort large dis-
tances to a significantly smaller extent than they distort
small distances were constructed by Elkin and Peleg in [6].
These spanners fall short from achieving a purely additive

Synchronizers, Spanners S 937

distortion. Constructing spanners with a purely additive
distortion is a major open problem.

Cross References

� Sparse Graph Spanners

Recommended Reading
1. Awerbuch, B.: Complexity of network synchronization. J. ACM

4, 804–823 (1985)
2. Awerbuch, B., Patt-Shamir, B., Peleg, D., Saks, M.E.: Adapting to

asynchronous dynamic networks. In: Proc. of the 24th Annual
ACM Symp. on Theory of Computing, Victoria, 4–6 May 1992,
pp. 557–570

3. Awerbuch, B., Peleg, D.: Network synchronization with poly-
logarithmic overhead. In: Proc. 31st IEEE Symp. on Foundations
of Computer Science, Sankt Louis, 22–24 Oct. 1990, pp. 514–
522

4. Awerbuch, B., Peleg, D.: Routing with polynomial communica-
tion-space tradeoff. SIAM J. Discret. Math. 5, 151–162 (1992)

5. Elkin, M.: ComputingAlmost Shortest Paths. In: Proc. 20th ACM
Symp. on Principles of Distributed Computing, Newport, RI,
USA, 26–29 Aug. 2001, pp. 53–62

6. Elkin, M., Peleg, D.: Spanner constructions for general graphs.
In: Proc. of the 33th ACM Symp. on Theory of Computing, Her-
aklion, 6–8 Jul. 2001, pp. 173–182

7. Lakshmanan, K.B., Thulasiraman, K., Comeau, M.A.: An effi-
cient distributed protocol for finding shortest paths in net-
works with negative cycles. IEEE Trans. Softw. Eng. 15, 639–644
(1989)

8. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13,
99–116 (1989)

9. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hyper-
cube. SIAM J. Comput. 18, 740–747 (1989)

10. Schieber, B., Moran, S.: Slowing sequential algorithms for ob-
taining fast distributed and parallel algorithms: Maximum
matchings. In: Proc. of 5th ACM Symp. on Principles of Dis-
tributed Computing, Calgary, 11–13 Aug. 1986, pp. 282–292

Table Compression T 939

T

Table Compression
2003; Buchsbaum, Fowler, Giancarlo

ADAM L. BUCHSBAUM1, RAFFAELE GIANCARLO2

1 Shannon Laboratory, AT&T Labs, Inc.,
Florham Park, NJ, USA

2 Department of Mathematics and Computer Science,
University of Palermo, Palermo, Italy

Keywords and Synonyms

Compression of multi-dimensional data; Storage, com-
pression and transmission of tables; Compressive esti-
mates of entropy

ProblemDefinition

Table compression was introduced by Buchsbaum et al. [2]
as a unique application of compression, based on sev-
eral distinguishing characteristics. Tables are collections of
fixed-length records and can grow to be terabytes in size.
They are often generated by information systems and kept
in data warehouses to facilitate ongoing operations. These
data warehouses will typically manage many terabytes of
data online, with significant capital and operational costs.
In addition, the tables must be transmitted to different
parts of an organization, incurring additional costs for
transmission. Typical examples are tables of transaction
activity, like phone calls and credit card usage, which are
stored once but then shipped repeatedly to different parts
of an organization: for fraud detection, billing, operations
support, etc. The goals of table compression are to be fast,
online, and effective: eventual compression ratios of 100:1
or better are desirable. Reductions in required storage and
network bandwidth are obvious benefits.

Tables are different than general databases [2]. Tables
are written once and read many times, while databases
are subject to dynamic updates. Fields in table records
are fixed in length, and records tend to be homogeneous;
database records often contain intermixed fixed- and vari-

able-length fields. Finally, the goals of compression dif-
fer. Database compression stresses index preservation, the
ability to retrieve an arbitrary record, under compres-
sion [6]. Tables are typically not indexed at the level of in-
dividual records; rather, they are scanned in toto by down-
stream applications.

Consider each record in a table to be a row in a matrix.
A naive method of table compression is to compress the
string derived from scanning the table in row-major order.
Buchsbaum et al. [2] observe experimentally that parti-
tioning the table into contiguous intervals of columns and
compressing each interval separately in this fashion can
achieve significant compression improvement. The parti-
tion is generated by a one-time, offline training procedure,
and the resulting compression strategy is applied online
to the table. In their application, tables are generated con-
tinuously, so offline training time can be ignored. They
also observe heuristically that certain rearrangements of
the columns prior to partitioning further improve com-
pression by grouping dependent columns more closely.
For example, in a table of addresses and phone numbers,
the area code can often be predicted by the zip code when
both are defined geographically. In information-theoretic
terms, these dependencies are contexts, which can be used
to predict parts of a table. Analogously to strings, where
knowledge of context facilitates succinct codings of a sym-
bols, the existence of contexts in tables implies, in princi-
ple, the existence of a more succinct representation of the
table.

Two main avenues of research have followed, one
based on the notion of combinatorial dependency [2,3]
and the other on the notion of column dependency [14,
15]. The first formalizes dependencies analogously to
the joint entropy of random variables, while the second
does so analogously to conditional entropy [7]. These ap-
proaches to table compression have deep connections to
universal similarity metrics [11], based on Kolmogorov
complexity and compression, and their later uses in classi-
fication [5]. Both approaches are instances of a new emerg-
ing paradigm for data compression, referred to as boost-

940 T Table Compression

ing [8], where data are reorganized to improve the per-
formance of a given compressor. A software platform to
facilitate the investigation of such invertible data transfor-
mations is described by Vo [16].

Notations

Let T be a table of n = jTj columns and m rows. Let T[i]
denote the ith column of T. Given two tables T1 and T2,
let T1T2 be the table formed by their juxtaposition. That is,
T = T1T2 is defined so that T[i] = T1[i] for 1 � i � jT1j
and T[i] = T2[i � jT1j] for jT1j < i � jT1j + jT2j. We
use the shorthand T[i; j] to represent the projection
T[i] � � � T[j] for any j � i. Also, given a sequence P of col-
umn indices, we denote by T[P] the table obtained from T
by projecting the columns with indices in P.

Combinatorial Dependency and Joint Entropy
of RandomVariables

Fix a compressor C: e. g., gzip, based on LZ77 [17]; com-
press, based on LZ78 [18]; or bzip, based on Burrows–
Wheeler [4]. Let HC(T) be the size of the result of com-
pressing table T as a string in row-major order using C.
Let HC(T1; T2) = HC(T1T2):HC(�) is thus a cost function
defined on the ordered power set of columns. Two ta-
bles T1 and T2, which might be projections of columns
from a common table T, are combinatorially dependent
if HC(T1; T2) < HC(T1) + HC(T2) – if compressing them
together is better than compressing them separately –
and combinatorially independent otherwise. Buchsbaum
et al. [3] show that combinatorial dependency is a com-
pressive estimate of statistical dependency when formal-
ized by the joint entropy of two random variables, i. e., the
statistical relatedness of two objects is measured by the
gain realized by compressing them together rather than
separately. Indeed, combinatorial dependency becomes
statistical dependencywhenHC is replaced by the joint en-
tropy function [7]. Analogous notions starting from Kol-
mogorov complexity are derived by Li et al. [11] and used
for classification and clustering [5]. Figure 1 exemplifies
why rearranging and partitioning columns may improve
compression.

Problem 1 Find a partition P of T into sets of contiguous
columns that minimizes

P
Y2P HC(Y) over all such parti-

tions.

Problem 2 Find a partition P of T that minimizesP
Y2P HC(Y) over all partitions.

The difference between Problems 1 and 2 is that the latter
does not require the parts of P to be sets of contiguous
columns.

     
     
     
     

Table Compression, Figure 1
The first three columns of the table, taken in row-major order,
form a repetitive string that can be very easily compressed.
Therefore, it may be advantageous to compress these columns
separately. If the fifth column is swappedwith the fourth, we get
an even longer repetitive string that, again, can be compressed
separately from the other two columns

Column Dependency and Conditional Entropy
of Random Variables

Definition 1 For any table T, a dependency relation is
a pair (P, c) in which P is a sequence of distinct column
indices (possibly empty) and c 62 P is another column in-
dex. If the length of P is less than or equal to k, then (P, c)
is called a k-relation. P is the predictor sequence and c is the
predictee.

Definition 2 Given a dependency relation (P, c), the de-
pendency transform dtP(c) of c is formed by permuting col-
umn T[c] based on the permutation induced by a stable
sort of the rows of P.

Definition 3 A collection D of dependency relations for
table T is said to be a k-transform if and only if: (a)
each column of T appears exactly once as a predictee in
some dependency relation (P, c); (b) the dependency hy-
pergraph G(D) is acyclic; (c) each dependency relation
(P, c) is a k-relation.

Let !(P; c) be the cost of the dependency relation (P, c),
and let ı(m) be an upper bound on the cost of comput-
ing !(P; c). Intuitively, !(P; c) gives an estimate of how
well a rearrangement of column c will compress, using the
rows of P as contexts for its symbols. We will provide an
example after the formal definitions.

Problem 3 Find a k-transformDof minimum cost!(D) =P
(P;c)2D !(P; c).

Definition 1 extends to columns the notion of context that
is well known for strings. Definition 3 defines a micro-
transformation that reorganizes the column symbols by
grouping together those that have similar contexts. The
context of a column symbol is given by the corresponding
row in T[P]. The fundamental ideas here are the same as
in the Burrows and Wheeler transform [4]. Finally, Prob-
lem 3 asks for an optimal strategy to reorganize the data
prior to compression. The cost function ! provides an es-

Table Compression T 941

timate of how well c can be compressed using the knowl-
edge of T[P].

Vo and Vo [14] connect these ideas to the conditional
entropy of random variables. Let S be a sequence,A(S) its
distinct elements, and f a the frequency of each element a.
The zeroth-order empirical entropy of S [13] is

H0(S) = �
1
jSj

X
˛2A(S)

fa lg
fa
jSj

;

and themodified zeroth order empirical entropy [13] is

H�0 (S) =

8
<̂
:̂

0 if jSj = 0 ;
(1 + lg jSj)/jSj if jSj 6= 0 and H0(S) = 0 ;
H0(S) otherwise :

For a dependency relation (P, c) with nonempty P, the
modified conditional empirical entropy of c given P is then
defined as

H�P (c) =
1
m

X
�2A(T[P])

j�c jH�0 (�c) ;

where �c is the string formed by catenating the symbols
in c corresponding to positions of � in T[P] [14]. A pos-
sible choice of !(P; c) is given by H�P (c). Vo and Vo also
develop another notion of entropy, called run length en-
tropy, to approximate more effectively the compressibility
of low-entropy columns and define another cost function
! accordingly.

Key Results

Combinatorial Dependency

Problem 1 admits a polynomial-time algorithm, based on
dynamic programming. Using the definition of combina-
torial dependency, one can show:

Theorem 1 ([2]) Let E[i] be the cost of an optimal, con-
tiguous partition of T[1; i]: E[n] is thus the cost of a solu-
tion to Problem 1. Define E[0] = 0; then, for 1 � i � n,

E[i] = min
0� j<i

E[j] + HC(Tj+1; : : : ; Ti) : (1)

The actual partition with cost E[n] can be maintained by
standard backtracking.

The only known algorithmic solution to Problem 2 is the
trivial one based on enumerating all possible feasible so-
lutions to choose an optimal one. Some efficient heuris-
tics based on asymmetric TSP, however, have been devised
and tested experimentally [3]. Define a weighted, com-
plete, directed graph, G(T), with a vertex Ti for each col-
umn T[i] 2 T ; the weight of edge fTi ; Tjg is w(Ti ; Tj) =

min(HC(Ti ; Tj);HC(Ti) + HC(Tj)). One then generates
a set of tours of various weights by iteratively applying
standard optimizations (e. g., 3-opt, 4-opt). Each tour in-
duces an ordering of the columns, which are then opti-
mally partitioned using the dynamic program (1).

Buchsbaum et al. [3] also provide a general frame-
work for studying the computational complexity of sev-
eral variations of table compression problems based on
notions analogous to combinatorial dependence, and they
give some initial MAX-SNP-hardness results. Particularly
relevant is the set of abstract problems in which one is re-
quired to find an optimal arrangement of a set of strings to
be compressed, which establishes a nontrivial connection
between table compression and the classical shortest com-
mon superstring problem [1]. Giancarlo et al. [10] con-
nect table compression to the Burrows andWheeler trans-
form [4] by deriving the latter as a solution to an analog of
Problem 2.

Column Dependency

Theorem 2 ([14,15]) For k � 2, Problem 3 is NP-hard.

Theorem 3 ([14,15]) An optimum 1-transform for a table
T can be found in O(n2ı(m)) time.

Theorem 4 ([14,15]) A 2-transform can be computed in
O(n2ı(m)) time.

Theorem 5 ([14]) For any dependency relation (P, c) and
some constant �, jC(dtP(c))j � 5mH�p (c) + �.

Applications

Storage and transmission of alphanumeric tables.

Open Problems

All the techniques discussed use the general paradigms
of context-dependent data rearrangement for compres-
sion boosting. It remains open to apply these paradigms
to other domains, e. g., XML data [9,12], where high-level
structures can be exploited, and to domains where perti-
nent structures are not known a priori.

Experimental Results

Buchsbaum et al. [2] showed that optimal partitioning
alone (no column rearrangement) yielded about 55% bet-
ter compression compared to gzip on telephone usage
data, with small training sets. Buchsbaum et al. [3] exper-
imentally supported the hypothesis that good TSP heuris-
tics can effectively reorder the columns, yielding addi-
tional improvements of 5 to 20% relative to partitioning

942 T Tail Bounds for Occupancy Problems

alone. They extended the data sets used to include other
tables from the telecom domain as well as biological data.
Vo and Vo [14,15] showed further 10 to 35% improve-
ment over these combinatorial dependency methods on
the same data sets.

Data Sets

Some of the data sets used for experimentation are pub-
lic [3].

URL to Code

The pzip package, based on combinatorial dependency, is
available at http://www.research.att.com/~gsf/pzip/pzip.
html. The Vcodex package, related to invertible trans-
forms, is available at http://www.research.att.com/~gsf/
download/ref/vcodex/vcodex.html. Although for the time
being Vcodex does not include procedures to compress
tabular data, it is a useful toolkit for their development.

Cross References

� Binary Decision Graph
� Burrows–Wheeler Transform
� Dictionary-Based Data Compression
� Succinct Data Structures for Parentheses Matching
� Tree Compression and Indexing

Recommended Reading
1. Blum, A., Li, M., Tromp, J., Yannakakis, M.: Linear approximation

of shortest superstrings. J. ACM 41, 630–47 (1994)
2. Buchsbaum, A.L., Caldwell, D.F., Church, K.W., Fowler, G.S.,

Muthukrishnan, S.: Engineering the compression of massive
tables: An experimental approach. In: Proc. 11th ACM-SIAM
Symp. on Discrete Algorithms, 2000, pp. 175–84

3. Buchsbaum, A.L., Fowler, G.S., Giancarlo, R.: Improving table
compression with combinatorial optimization. J. ACM50, 825–
851 (2003)

4. Burrows, M., Wheeler, D.: A block sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment
Corporation (1994)

5. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE
Trans. Inf. Theory 51, 1523–1545 (2005)

6. Cormack, G.: Data compression in a data base system. Com-
mun. ACM 28, 1336–1350 (1985)

7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wi-
ley Interscience, New York, USA (1990)

8. Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting
textual compression in optimal linear time. J. ACM52, 688–713
(2005)

9. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Struc-
turing Labeled Trees for Optimal Succinctness, and beyond. In:
Proc. 45th Annual IEEE Symposium on Foundations of Com-
puter Science, 2005, pp. 198–207

10. Giancarlo, R., Sciortino, M., Restivo, A.: From first principles to
the Burrows andWheeler transform and beyond, via combina-
torial optimization. Theor. Comput. Sci. (2007)

11. Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.M.B.: The similarity met-
ric. IEEE Trans. Inf. Theory 50, 3250–3264 (2004)

12. Liefke, H., Suciu, D.: XMILL: An efficient compressor for XML
data. In: Proceedings of the 2000 ACM SIGMOD Int. Conf.
on Management of Data, pp. 153–164. ACM, New York, USA
(2000)

13. Lifshits, Y., Mozes, S., Weimann, O., Ziv-Ukelson, M.: Speeding
upHMMdecoding and training by exploiting sequence repeti-
tions. Algorithmica to appear doi:10.1007/s00453-007-9128-0

14. Manzini, G.: An analysis of the Burrows–Wheeler transform.
J. ACM 48, 407–430 (2001)

15. Vo, B.D., Vo, K.-P.: Compressing table data with column depen-
dency. Theor. Comput. Sci. 387, 273–283 (2007)

16. Vo, B.D., Vo, K.-P.: Using column dependency to compress ta-
bles. In: DCC: Data Compression Conference, pp. 92–101. IEEE
Computer Society TCC, Washington DC, USA (2004)

17. Vo., K.-P.: Compression as data transformation. In: DCC: Data
Compression Conference. IEEE Computer Society TCC, pp. 403.
Washington DCD, USA (2006)

18. Ziv, J., Lempel, A.: A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theory 23, 337–343 (1977)

19. Ziv, J., Lempel, A.: Compression of individual sequences via
variable length coding. IEEE Trans. Inf. Theory 24, 530–536
(1978)

Tail Bounds for Occupancy Problems
1995; Kamath, Motwani, Palem, Spirakis

PAUL SPIRAKIS
Computer Engineering and Informatics, Research
and Academic Computer Technology Institute,
Patras University, Patras, Greece

Keywords and Synonyms

Balls and bins

ProblemDefinition

Consider a random allocation of m balls to n bins where
each ball is placed in a bin chosen uniformly and indepen-
dently. The properties of the resulting distribution of balls
among bins have been the subject of intensive study in
the probability and statistics literature [3,4]. In computer
science, this process arises naturally in randomized algo-
rithms and probabilistic analysis. Of particular interest is
the occupancy problem where the random variable under
consideration is the number of empty bins.

In this entry a series of bounds are presented (reminis-
cent of the Chernoff bound for binomial distributions) on
the tail of the distribution of the number of empty bins; the
tail bounds are successively tighter, but each new bound

http://www.research.att.com/~gsf/pzip/pzip.html.
http://www.research.att.com/~gsf/pzip/pzip.html.
http://www.research.att.com/~gsf/download/ref/vcodex/vcodex.html.
http://www.research.att.com/~gsf/download/ref/vcodex/vcodex.html.

Tail Bounds for Occupancy Problems T 943

has a more complex closed form. Such strong bounds do
not seem to have appeared in the earlier literature.

Key Results

The following notation in presenting sharp bounds on
the tails of distributions. The notation F
 G will de-
note that F = (1 + o(1))G; further, F � G will denote that
ln F
 lnG. The proof that f � g, is used for the purposes
of later claiming that 2 f � 2g . These asymptotic equalities
will be treated like actual equalities and it will be clear that
the results claimed are unaffected by this “approximation”.

Consider now the probabilistic experiment of throw-
ingm balls, independently and uniformly, into n bins.

Definition 1 Let Z be the number of empty bins when m
balls are placed randomly into n bins, and define r = m/n.
Define the function H(m; n; z) as the probability that
Z = z. The expectation of Z is given by

� = E[Z] = n
�
1 �

1
n

�m

 ne�r :

The following three theorems provide the bounds on the
tail of the distribution of the random variable Z. The proof
of the first bound is based on a martingale argument.

Theorem 1 (Occupancy Bound 1) For any � > 0,

P
	
jZ � �j � ��

� 2 exp

�
�2�2(n � 1

2)
n2 � �2

!
:

Remark that for large r this bound is asymptotically equal
to

2 exp
�
�
�2 e�2r n
1 � e�2r

�
:

The reader may wish to compare this with the following
heuristic estimate of the tail probability assuming that the
distribution of Z is well approximated by the approximat-
ing normal distribution also far out in the tails [3,4].

P
	
jZ � �j � ��

� 2 exp

�
�

�2 e�r n
2 (1 � (1 + r)e�r)

�
:

The next two bounds are in terms of point probabilities
rather than tail probabilities (as was the case in the Bino-
mial Bound), but the unimodality of the distribution im-
plies that the two differ by at most a small (linear) factor.
These more general bounds on the point probability are
essential for the application to the satisfiability problem.
The next result is obtained via a generalization of the Bi-
nomial Bound to the case of dependent Bernoulli trials.

Theorem 2 (Occupancy Bound 2) For � > �1,

H(m; n; (1 + �)�) � exp (� ((1 + �) ln[1 + �] � �)�) :

In particular, for �1 � � < 0,

H(m; n; (1 + �)�) � exp
�
�
�2�

2

�
:

The last result is proved using ideas from large deviations
theory [7].

Theorem 3 (Occupancy Bound 3) For jz � �j = ˝(n),

H (m; n; z) �

exp

 "
�n

 Z 1� z
n

0
ln
�
k � x
1 � x

�
dx � r ln k

!#!

where k is defined implicitly by the equation z = n(1�k(1�
e�r/k)).

Applications

Random allocations of balls to bins is a basic model that
arises naturally in many areas in computer science in-
volving choice between a number of resources, such as
communication links in a network of processors, actua-
tor devices in a wireless sensor network, processing units
in a multi-processor parallel machine etc. For such situ-
ations, randomization can be used to “spread” the load
evenly among the resources, an approach particularly use-
ful in a parallel or distributed environment where resource
utilization decisions have to be made locally at a large
number of sites without reference to the global impact
of these decisions. In the process of analyzing the perfor-
mance of such algorithms, of particular interest is the oc-
cupancy problem where the random variable under con-
sideration is the number of empty bins (i. e., machines
with no jobs, routes with no load, etc.). The properties of
the resulting distribution of balls among bins and the cor-
responding tails bounds may help in order to analyze the
performance of such algorithms.

Cross References

� Approximation Schemes for Bin Packing
� Bin Packing

Recommended Reading
1. Kamath, A., Motwani, R., Spirakis, P., Palem, K.: Tail bounds for

occupancy and the satisfiability threshold conjecture. J. Ran-
dom Struct. Algorithms 7(1), 59–80 (1995)

944 T Technology Mapping

2. Janson, S.: Large Deviation Inequalities for Sums of Indicator
Variables. Technical Report No. 34, Department of Mathematics,
Uppsala University (1994)

3. Johnson, N.L., Kotz, S.: UrnModels and Their Applications.Wiley,
New York (1977)

4. Kolchin, V.F., Sevastyanov, B.A., Chistyakov, V.P.: Random Allo-
cations. Wiley, New York (1978)

5. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge
University Press, New York (1995)

6. Shwartz, A., Weiss, A.: Large Deviations for Performance Analy-
sis. Chapman-Hall, Boca Raton (1994)

7. Weiss, A.: Personal Communication (1993)

Technology Mapping
1987; Keutzer

KURT KEUTZER, KAUSHIK RAVINDRAN
Department of Electrical Engineering and Computer
Science, University of California at Berkeley, Berkeley,
CA, USA

Keywords and Synonyms
Library-based technology mapping; Technology depen-
dent optimization

ProblemDefinition
Technologymapping is the problem of implementing a se-
quential circuit using the gates of a particular technol-
ogy library. It is an integral component of any automated
VLSI circuit design flow. In the prototypical chip design
flow, combinational logic gates and sequential memory el-
ements are composed to form sequential circuits. These
circuits are subject to various logic optimizations to min-
imize area, delay, power and other performance metrics.
The resulting optimized circuits still consist of primitive
logic functions such as AND and OR gates. The next step
is to efficiently realize these circuits in a specific VLSI tech-
nology using a library of gates available from the semi-
conductor vendor. Such a library would typically consist
of gates of varying sizes and speeds for primitive logic
functions, (AND and OR) and more complex functions
(exclusive-OR, multiplexer). However, a naïve translation
of generic logic elements to gates in the library will fall
short of realistic performance goals. The challenge is to
construct a mapping that maximally utilizes the gates in
the library to implement the logic function of the circuit
and achieve some performance goal—for example, min-
imum area with the critical path delay less than a target
value. This is accomplished by technology mapping. For
the sake of simplicity, in the following discussion it is pre-
sumed that the sequential memory elements are stripped
from the digital circuit and mapped directly into memory

Technology Mapping, Figure 1
Subject graph (DAG) of a Boolean circuit expressed usingNAND2
and INVERTER gates

Technology Mapping, Figure 2
Library of pattern graphs (composed of NAND2 and INVERTER
gates) and associated costs

elements of the particular technology. Then, only Boolean
circuits composed of combinational logic gates remain to
be mapped. Further, each remaining Boolean circuit is
necessarily a directed acyclic graph (DAG).

The technology mapping problem can be restated in
a more general graph-theoretic setting: find a minimum
cost covering of the subject graph (Boolean circuit) by choos-
ing from the collection of pattern graphs (gates) available in
a library. The inputs to the problem are:

(a) Subject graph: This is a directed acyclic graph rep-
resentation of a Boolean circuit expressed using a set of
primitive functions (e. g., 2-input NAND gates and invert-
ers). An example subject graph is shown in Fig. 1.

(b) Library of pattern graphs: This is a collection
of gates available in the technology library. The pattern
graphs are also DAGs expressed using the same primitive

Technology Mapping T 945

functions used to construct the subject graph. Addition-
ally, each gate is annotated with a number of values for
different cost functions, such as area, delay, and power.
An example library and associated cost model is shown in
Fig. 2.

A valid cover is a network of pattern graphs imple-
menting the function of the subject graph such that: (a)
every vertex (i. e. gate) of the subject graph is contained
in some pattern graph, and (b) each input required by
a pattern graph is actually an output of some other pat-
tern graph (i. e. the inputs of a gate must exist as outputs
of other gates). Technology mapping can then be viewed
as an optimization problem to find a valid cover of mini-
mum cost of the subject graph.

Key Results

To be viable in a realistic design flow, an algorithm for
minimum cost graph covering for technology mapping
should ideally possess the following characteristics: (a) the
algorithm should be easily adaptable to diverse libraries
and cost models—if the library is expanded or replaced,
the algorithm must be able to utilize the new gates effec-
tively, (b) it should allow detailed cost models to accu-
rately represent the performance of the gates in the library,
and (c) it should be fast and robust on large subject graph
instances and large libraries. One technique for solving
the minimum cost graph covering problem is to formu-
late it as a binate-covering problem, which is a specialized
integer linear program [5]. However, binate covering for
a DAG is NP-Hard for any set of primitive functions and
is typically unwieldy on large circuits. The DAGON al-
gorithm suggested solving the technology mapping prob-
lem through DAG covering and advanced an alternate ap-
proach for DAG covering based on a tree covering approx-
imation that produced near-optimal solutions for practical
circuits and was very fast even for large circuits and large
libraries [4].

DAGON was inspired by prevalent techniques for pat-
tern matching employed in the domain of code genera-
tion for programming language compilers [1]. The funda-
mental concept was to partition the subject graph (DAG)
into a forest of trees and solve the minimum cost covering
problem independently for each tree. The approach was
motivated by the existence of efficient dynamic program-
ming algorithms for optimum tree covering [2]. The three
salient components of the DAGON algorithm are: (a) sub-
ject graph partitioning, (b) pattern matching, and (c) cov-
ering.

(a) Subject graph partitioning: To apply the tree cov-
ering approximation the subject graph is first partitioned

into a forest of trees. One approach is to break the graph at
each vertex which has an out-degree greater than 1 (mul-
tiple fan-out point). The root of each tree is the primary
output of the corresponding sub-circuit and the leaves are
the primary inputs. Other heuristic partitions of the sub-
ject graph that consider duplication of vertices can also be
applied to improve the quality of the final cover. Alternate
subject graph partitions can also be derived starting from
different decompositions of the original Boolean circuit in
terms of the primitive functions.

(b) Pattern matching: The optimum covering of a tree
is determined by generating the complete set of matches
for each vertex in the tree (i. e. the set of pattern graphs
which are candidates for covering a particular vertex) and
then selecting the optimummatch from among the candi-
dates. An efficient approach for structural pattern match-
ing is to reduce the tree matching problem to a string
matching problem [2]. Fast string matching algorithms,
such as the Aho–Corasick and the Knuth–Morris–Pratt
algorithms, can then be used to find all strings (pattern
graphs) which match a given vertex in the subject graph
in time proportional to the length of the longest string in
the set of pattern graphs. Alternatively, Boolean match-
ing techniques can be used to find matches based on logic
functions [12]. Boolean matching is slower than structural
string matching, but it can compute matches independent
of the actual local decompositions and under different in-
put permutations.

(c) Covering: The final step is to generate a valid cover
of the subject tree using the pattern graph matches com-
puted at each vertex. Consider the problem of finding
a valid cover of minimum area for the subject tree. Every
pattern graph in the library has an associated area and the
area of a valid cover is the sum of the area of the pattern
graphs in the cover. The key property that makes mini-
mum area tree covering efficient is this: the minimum area
cover of a tree rooted at some vertex v can be computed us-
ing only the minimum area covers of vertices below v. If fol-
lows that for every pattern graph that matches at vertex
v, the area of the minimum cover containing that match
equals the sum of the area of the corresponding match at
v and the sum of the areas of the optimal covers of the
vertices which are inputs to that match. This property en-
ables a dynamic programming algorithm to compute the
minimum area cover of tree rooted at each vertex of the
subject tree. The base case is the minimum area cover of
a leaf (primary input) of subject tree. The area of a match
at a leaf is set to 0. A recursive formulation of this dy-
namic programming concept is summarized in the Algo-
rithm minimum_area_tree_cover shown below. As
an example, the minimum area cover displayed in Fig. 3 is

946 T Technology Mapping

Technology Mapping, Figure 3
Result of a minimum area tree covering of the subject graph in
Fig. 1 using the library of pattern graphs in Fig. 2

a result of applying this algorithm to the tree partitions of
the subject graph from Fig. 1 using the library from Fig. 2.

Given a vertex v in the subject tree, let M(v) denote the
set of candidate matches from the library of pattern graphs
for the sub-tree rooted at v.

Algorithm minimum_area_tree_cover (
Vertex v) {

// the algorithm minimum_area_tree_cover
// finds an optimal cover of the tree
// rooted at Vertex v
// the algorithm computes best_match(v)
// and areas_of_best_match(v), which
// denote the best pattern graph match
// at v and the associated areas of
// the optimal cover of the tree rooted
// at v respectively

// check if v is a leaf of the tree
if (v is a leaf) {

area_of_best_match(v) = 0;
best_match(v) = leaf;
return;

}

// compute optimal cover for each input
// of v
foreach (input of Vertex v) {

minimum_area_tree_cover(input);
}
// each tree rooted at each input of v is
// now annotated with its optimal cover

// find the optimal cover of the tree
// rooted at Vertex v
area_of_best_match(v) = INFINITY;
best_match(v) = NULL;

foreach (Match m in the set of matches
M(v)) {
// compute the area of match m at
// Vertex v
// area_of_match(v,m) denotes the area
// of the cover when Match m is
// selected for v
area_of_match(v,m) = area(m);
foreach input pin vi of matche m {

area_of_match (v,m) =
area_of_match(v,m) +

area_of_best_match(vi);
}

// update best pattern graph match
// and associated area of the optimal
// cover at Vertex v
if (area_of_match(v,m) <

area_of_best_match(v)) {
area_of_best_match(v) =

area_of_match(v,m);
best_match(v) = m;

}

}
}

In this algorithm each vertex in the tree is visited exactly
once. Hence, the complexity of the algorithm is propor-
tional to the number of vertices in the subject tree times
the maximum number of pattern matches at any vertex.
The maximumnumber of matches is a function of the pat-
tern graph library and is independent of the subject tree
size. As a result, the complexity of computing the mini-
mum cost valid cover of a tree is linear in the size of the
subject tree, and the memory requirements are also lin-
ear in the size of the subject tree. The algorithm computes
the optimum cover when the subject graph is a tree. In the
general case of the subject graph being a DAG, empirical
results have shown that the tree covering approximation
yields industrial-quality results achieving aggressive area
and timing requirements on large real circuit design prob-
lems [11,13].

Applications

Technology mapping is the key link between technology
independent logic synthesis and technology dependent
physical design of VLSI circuits. This motivates the need
for efficient and robust algorithms to implement large
Boolean circuits in a technology library. Early algorithms

Teleportation of Quantum States T 947

for technology mapping were founded on rule-based lo-
cal transformations [3]. DAGON was the first in advanc-
ing an algorithmic foundation in terms of graph transfor-
mations that was practicable in the inner loop of iterative
procedures in the VLSI design flow [4]. From a theoret-
ical standpoint, the graph covering formulation provided
a formal description of the problem and specified optimal-
ity criteria for evaluating solutions. The algorithmwas nat-
urally adaptable to diverse libraries and cost models, and
was relatively easy to implement and extend. The concept
of partitioning the subject graph into trees and covering
the trees optimally was effective for varied optimization
objectives such as area, delay, and power. The DAGON
approach has been incorporated in academic (SIS from
the University of California at Berkeley [6]) and industrial
(Synopsys™ Design Compiler) tool offerings for logic syn-
thesis and optimization.

The graph covering formulation has also served as
a starting point for advancements in algorithms for tech-
nology mapping over the last decade. Decisions related to
logic decomposition were integrated in the graph covering
algorithm, which in turn enabled technology independent
logic optimizations in the technology mapping phase [9].
Similarly, heuristics were proposed to impose placement
constraints and make technology mapping more aware of
the physical design and layout of the final circuit [10]. To
combat the problem of high power dissipation in mod-
ern submicron technologies, the graph algorithms were
enhanced to minimize power under area and delay con-
straints [8]. Specializations of these graph algorithms for
technology mapping have found successful application in
design flows for Field Programmable Gate Array (FPGA)
technologies [7]. We recommend the following works for
a comprehensive treatment of algorithms for technology
mapping and a survey of new developments and chal-
lenges in the design of modern VLSI circuits: [11,12,13].

Open Problems

The enduring problem with DAGON-related technology
mappers is handling non-tree pattern graphs that arise
from modeling circuit elements such as multiplexors,
Exclusive-Ors, or memory-elements (e. g. flip-flops) with
associated logic (e. g. scan logic). On the other hand, ap-
proaches that do not use the tree-covering formulation
face challenges in easily representing diverse technology
libraries and in matching the subject graph in a computa-
tionally efficient manner.

Cross References

� Sequential Exact String Matching

Recommended Reading

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques
and Tools. pp. 557–584. Addison Wesley, Boston (1986)

2. Aho, A., Johnson, S.: Optimal Code Generation for Expression
Trees. J. ACM 23(July), 488–501 (1976)

3. Darringer, J.A., Brand, D., Gerbi, J.V., Joyner, W.H., Trevillyan,
L.H.: LSS: Logic Synthesis through Local Transformations. IBM J.
Res. Dev. 25, 272–280 (1981)

4. Keutzer, K.: DAGON: Technology Binding and Local Optimiza-
tions by DAG Matching. In: Proc. of the 24th Design Automa-
tion Conference 28(1), pp. 341–347. Miami Beach, June 1987

5. Rudell, R.: Logic Synthesis for VLSI Design. Ph. D. thesis, Univer-
sity of California at Berkeley, ERL Memo 89/49, April 1989

6. Sentovich, E.M., Singh, K.J., Moon, C., Savoj, H., Brayton, R.K.,
Sangiovanni-Vincentelli, A.: Sequential Circuit Design using
Synthesis and Optimization. In: Proc. of the IEEE International
Conference on Computer Design: VLSI in Computers & Proces-
sors (ICCD), pp. 328–333. Cambridge, October 1992

7. Cong, J., Ding, Y.: An Optimal Technology Mapping Algorithm
for Delay Optimization in Lookup-Table based FPGA Designs.
In: Proc. of the 1992 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD-92) 8(12), pp. 48–53, Novem-
ber 1992

8. Tiwari, V., Ashar, P., Malik, S.: Technology Mapping for Low
Power in Logic Synthesis. Integr. VLSI J. 20(3), 243–268 (1996)

9. Lehman, E., Watanabe, Y., Grodstein, J., Harkness, H.: Logic
Decomposition during Technology Mapping. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 16(8), 813–834,
(1997)

10. Kutzschebauch, T., Stok, L.: Congestion Aware Layout Driven
Logic Synthesis. In: Proc. of the IEEE/ACM International Confer-
ence on Computer-Aided Design, 2001, pp. 216–223

11. Devadas, S., Ghosh, A., Keutzer, K.: Logic Synthesis. McGraw
Hill, New York (1994). pp. 185–200

12. De Micheli, G.: Synthesis and Optimization of Digital Circuits,
1st edn., pp. 504–533. McGraw-Hill, New York (1994)

13. Stok, L., Tiwari, V.: Technology Mapping. In: Hassoun, S., Sasou,
T. (eds.) Logic Synthesis and Verification, pp. 115–139. Kluwer
International Series In Engineering And Coputer Science Se-
ries. Kluwer Academic Publisher, Norwell (2002)

Teleportation of Quantum States
1993; Bennett, Brassard, Crepeau, Jozsa, Peres,
Wootters

RAHUL JAIN
Computer Science and Institute for Quantum
Computing, University of Waterloo,
Waterloo, ON, Canada

Keywords and Synonyms

Quantum teleportation; Teleportation

948 T Teleportation of Quantum States

ProblemDefinition

An n-qubit quantum state is a positive semi-definite oper-
ator of unit trace in the complex Hilbert spaceC2n . A pure
quantum state is a quantum state with a unique non-zero
eigenvalue. A pure state is also often represented by the
unique unit eigenvector corresponding to the unique non-
zero eigenvalue. In this article the standard (ket, bra) no-
tation is followed as is often used in quantum mechanics,
in which jvi (called as ‘ket v’) represents a column vector
and hvj (called as ‘bra v’) represents its conjugate trans-
pose. A classical n-bit state is simply a probability distri-
bution on the set f0; 1gn .

Let fj0i; j1ig be the standard basis for C2. For sim-
plicity of notation j0i ˝ j0i are represented as j0ij0i or
simply j00i. Similarly j0ih0j represents j0i ˝ h0j. An EPR
pair is a special two-qubit quantum state defined as j i ,
1p
2
(j00i+ j11i). It is one of the four Bell states which form

a basis for C4.
Suppose there are two spatially separated parties Al-

ice and Bob and Alice wants to send an arbitrary n-qubit
quantum state � to Bob. Since classical communication is
much more reliable, and possibly cheaper, than quantum
communication, it is desirable that this task be achieved
by communicating just classical bits. Such a procedure is
referred to as teleportation.

Unfortunately, it is easy to argue that this is in fact not
possible if arbitrary quantum states need to be commu-
nicated faithfully. However Bennett, Brassard, Crepeau,
Jozsa, Peres, Wootters [2] presented the following nice so-
lution to it.

Key Results

Alice and Bob are said to share an EPR pair if each hold
one qubit of the pair. In this article a standard notation
is followed in which classical bits are called ‘cbits’ and
shared EPR pairs are called ‘ebits’. Bennett et al. showed the
following:

Theorem 1 Teleportation of an arbitrary n-qubit state can
be achieved with 2n cbits and n ebits.

These shared EPR pairs are referred to as prior entangle-
ment to the protocol since they are shared at the begin-
ning of the protocol (before Alice gets her input state)
and are independent of Alice’s input state. This solution
is a good compromise since it is conceivable that Alice and
Bob share several EPR pairs at the beginning, when they
are possibly together, in which case they do not require
a quantum channel. Later they can use these EPR pairs
to transfer several quantum states when they are spatially
separated.

Now see how Bennett el al. [2] achieve teleportation.
First note that in order to show Theorem 1 it is enough to
show that a single qubit, which is possibly a part of a larger
state � can be teleported, while preserving its entangle-
ment with the rest of the qubits of �, using 2 cbits and 1
ebit. Also note that the larger state � can now be assumed
to be a pure state without loss of generality.

Theorem Let j�iAB = a0j�0iAB j0iA + a1j�1iAB j1iA,
where a0; a1 are complex numbers with ja0j2 + ja1j2 = 1.
Subscripts A, B (representing Alice and Bob respectively) on
qubits signify their owner.

It is possible for Alice to send two classical bits to
Bob such that at the end of the protocol the final state is
a0j�0iAB j0iB + a1j�1iAB j1iB.

Proof For simplicity of notation, let us assume below that
j�0iAB and j�1iAB do not exist. The proof is easily modi-
fied when they do exist by tagging them along. Let an EPR
pair j iAB = 1p

2
(j0iAj0iB + j1iAj1iB) be shared between

Alice and Bob. Let us refer to the qubit under concern that
needs to be teleported as the input qubit.

The combined starting state of all the qubits is

j�0iAB = j�iABj iAB

= (a0j0iA + a1j1iA)
�

1
p
2
(j0iAj0iB + j1iAj1iB)

�

Let CNOT (controlled-not) gate be a two-qubit unitary op-
eration described by the operator j00ih00j + j01ih01j +
j11ih10j + j10ih11j: Alice now performs a CNOT gate on
the input qubit and her part of the shared EPR pair. The
resulting state is then,

j�1iAB =
a0
p
2
j0iA (j0iAj0iB + j1iAj1iB)

+
a1
p
2
j1iA (j1iAj0iB + j0iAj1iB) :

Let the Hadamard transform be a single qubit unitary op-
eration with operator 1p

2
(j0i + j1i)h0j + 1p

2
(j0i � j1i)h1j.

Alice next performs a Hadamard transform on her input
qubit. The resulting state then is,

j�2iAB =
a0
2

(j0iA + j1iA) (j0iAj0iB + j1iAj1iB)

+
a1
2

(j0iA � j1iA) (j1iAj0iB + j0iAj1iB)

= 1
2 (j00iA (a0j0iB + a1j1iB) + j01iA (a0j1iB
+a1j0iB)) + 1

2 (j10iA (a0j0iB � a1j1iB)
+j11iA (a0j1iB � a1j0iB))

Alice next measures the two qubits in her possession in the
standard basis for C4 and sends the result of the measure-
ment to Bob.

Teleportation of Quantum States T 949

Teleportation of Quantum States, Figure 1
Teleportation protocol. H represent Hadamard transform and M
represents measurement in the standard basis for C4

Let the four Pauli gates be the single qubit unitary op-
erations: Identity: P00 = j0ih0j + j1ih1j, bit flip: P01 =
j1ih0j + j0ih1j, phase flip: P10 = j0ih0j � j1ih1j and bit flip
together with phase flip: P11 = j1ih0j�j0ih1j. On receiving
the two bits c0c1 from Alice, Bob performs the Pauli gate
Pc0c1 on his qubit. It is now easily verified that the resulting
state of the qubit with Bob would be a0j0iB + a1j1iB. The
input qubit is successfully teleported from Alice to Bob!
Please refer to Fig. 1 for the overall protocol. �

Super-Dense Coding

Super-dense coding [11] protocol is a dual to the teleporta-
tion protocol. In this Alice transmits 2 cbits of information
to Bob using 1 qubit of communication and 1 shared ebit.
It is discussed more elaborately in another article in the
encyclopedia.

Lower Bounds on Resources

The above implementation of teleportation requires 2 cbits
and 1 ebit for teleporting 1 qubit. It was argued in [2] that
these resource requirements are also independently opti-
mal. That is 2 cbits need to be communicated to teleport
a qubit independent of how many ebits are used. Also 1
ebit is required to teleport one qubit independent of how
much (possibly two-way) communication is used.

Remote State Preparation

Closely related to the problem of teleportation is the
problem of Remote state preparation (RSP) introduced by
Lo [10]. In teleportation Alice is just given the state to be
teleported in some input register and has no other infor-
mation about it. In contrast, in RSP, Alice knows a com-
plete description of the input state that needs to be tele-
ported. Also in RSP, Alice is not required to maintain any
correlation of the input state with the other parts of a pos-
sibly larger state as is achieved in teleportation. The extra
knowledge that Alice possesses about the input state can

be used to devise protocols for probabilistically exact RSP
with one cbit and one ebit per qubit asymptotically [3]. In
a probabilistically exact RSP, Alice and Bob can abort the
protocol with a small probability, however when they do
not abort, the state produced with Bob at the end of the
protocol, is exactly the state that Alice intends to send.

Teleportation as a Private QuantumChannel

The teleportation protocol that has been discussed in this
article also satisfies an interesting privacy property. That
is if there was a third party, say Eve, having access to the
communication channel between Alice and Bob, then Eve
learns nothing about the input state ofAlice that she is tele-
porting to Bob. This is because the distribution of the clas-
sical messages of Alice is always uniform, independent of
her input state. Such a channel is referred to as a Private
quantum channel [1,6,8].

Applications

Apart from the main application of transporting quantum
states over large distances using only classical channel, the
teleportation protocol finds other important uses as well.
A generalization of this protocol to implement unitary op-
erations [7], is used in Fault tolerant computation in or-
der to construct an infinite class of fault tolerant gates in
a uniform fashion. In another application, a form of tele-
portation called as the error correcting teleportation, in-
troduced by Knill [9], is used in devising quantum circuits
that are resistant to very high levels of noise.

Experimental Results

Teleportation protocol has been experimentally realized in
various different forms. To name a few, by Boschi et al. [4]
using optical techniques, by Bouwmeester et al. [5] using
photon polarization, by Nielsen et al. [12] using Nuclear
magnetic resonance (NMR) and by Ursin et al. [13] using
photons for long distance.

Cross References

� Quantum Dense Coding

Recommended Reading
1. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum

channels. In: Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, 2000, pp. 547–553

2. Bennett, C., Brassard G., Crepeau, C., Jozsa, R., Peres, A., Woot-
ters, W.: Teleporting an unknown quantum state via dual clas-
sical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70,
1895–1899 (1993)

950 T Text Indexing

3. Bennett, C.H., Hayden, P., Leung, W., Shor, P.W., Winter, A.: Re-
mote preparation of quantum states. IEEE Trans. Inform. The-
ory 51, 56–74 (2005)

4. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Exper-
imental realization of teleporting an unknown pure quantum
state via dual classical and einstein-podolski-rosen channels.
Phys. Rev. Lett. 80, 1121–1125 (1998)

5. Bouwmeester, D., Pan, J.W. , Mattle, K., Eible, M., Weinfurter,
H., Zeilinger, A.: Experimental quantum teleportation. Nature
390(6660), 575–579 (1997)

6. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quan-
tum bits. Phys. Rev. A 67, 042317 (2003)

7. Chaung, I.L., Gottesman, D.: Quantum teleportation is a univer-
sal computational primitive. Nature 402, 390–393 (1999)

8. Jain, R.: Resource requirements of private quantum chan-
nels and consequence for oblivious remote state preparation.
Technical report (2005). arXive:quant-ph/0507075

9. Knill, E.: Quantum computing with realistically noisy devices.
Nature 434, 39–44 (2005)

10. Lo, H.-K.: Classical communication cost in distributed quantum
information processing – a generalization of quantum com-
munication complexity. Phys. Rev. A 62, 012313 (2000)

11. Nielsen, M., Chuang, I.: Quantum Computation and Quantum
Information. Cambridge University Press (2000)

12. Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum
teleportation using nuclear magnetic resonance. Nature
396(6706), 52–55 (1998)

13. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Linden-
thal, M., Zeilinger, A.: Quantum teleportation link across the
danube. Nature 430(849), 849–849 (2004)

Text Indexing
1993; Manber, Myers

SRINIVAS ALURU
Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA

Keywords and Synonyms

String indexing

ProblemDefinition

Text or string data naturally arises in many contexts in-
cluding document processing, information retrieval, nat-
ural and computer language processing, and describing
molecular sequences. In broad terms, the goal of text in-
dexing is to design methodologies to store text data so as
to significantly improve the speed and performance of an-
swering queries. While text indexing has been studied for
a long time, it shot into prominence during the last decade
due to the ubiquity of web-based textual data and search
engines to explore it, design of digital libraries for archiv-
ing human knowledge, and application of string tech-
niques to further understanding of modern biology. Text

indexing differs from the typical indexing of keys drawn
from an underlying total order—text data can have varying
lengths, and queries are often more complex and involve
substrings, partial matches, or approximate matches.

Queries on text data are as varied as the diverse array of
applications they support. Consequently, numerous meth-
ods for text indexing have been developed and this contin-
ues to be an active area of research. Text indexingmethods
can be classified into two categories: (i) methods that are
generalizations or adaptations of indexing methods devel-
oped for an ordered set of one-dimensional keys, and (ii)
methods that are specifically designed for indexing text
data. The most classic query in text processing is to find
all occurrences of a pattern P in a given text T (or equiv-
alently, in a given collection of strings). Important and
practically useful variants of this problem include finding
all occurrences of P subject to at most kmismatches, or at
most k insertions/deletions/mismatches. The focus in this
entry is on these two basic problems and remarks on gen-
eralizations of one-dimensional data structures to handle
text data.

Key Results

Consider the problem of finding a given pattern P in text
T, both strings over alphabet ˙ . The case of a collection
of strings can be trivially handled by concatenating the
strings using a unique end of string symbol, not in ˙ , to
create text T. It is worth mentioning the special case where
T is structured—i. e.,T consists of a sequence of words and
the pattern P is a word. Consider a total order of charac-
ters in ˙ . A string (or word) of length k can be viewed
as a k-dimensional key and the order on ˙ can be nat-
urally extended to lexicographic order between multidi-
mensional keys of variable length. Any one-dimensional
search data structure that supports O(log n) search time
can be used to index a collection of strings using lexico-
graphic order such that a string of length k can be searched
in O(k log n) time. This can be considerably improved as
below [8]:

Theorem 1 Consider a data structure on one-dimensional
keys that relies on constant-time comparisons among keys
(e. g., binary search trees, red-black trees etc.) and the in-
sertion of a key identifies either its predecessor or successor.
Let O(F(n)) be the search time of the data structure storing
n keys (e. g., O(log n) for red-black trees). The data struc-
ture can be converted to index n strings using O(n) addi-
tional space such that the query for a string s can be per-
formed in O(F(n)) time if s is one of the strings indexed,
and in O(F(n) + jsj) otherwise.

Text Indexing T 951

A more practical technique that provides O(F(n) + jsj)
search time for a string s under more restrictions on the
underlying one-dimensional data structure is given in [9].
The technique is nevertheless applicable to several clas-
sic one-dimensional data structures, in particular binary
search trees and its balanced variants. For a collection of
strings that share long common prefixes such as IP ad-
dresses and XML path strings, a faster search method is
described in [5].

When answering a sequence of queries, significant sav-
ings can be obtained by promoting frequently searched
strings so that they are among the first to be encountered
in a search path through the indexing data structure. Ciri-
ani et al. [4] use self-adjusting skip lists to derive an ex-
pected bound for a sequence of queries that matches the
information-theoretic lower bound.

Theorem 2 A collection of n strings of total length N
can be indexed in optimal O(N) space so that a sequence
of m string queries, say s1,� � � ,sm, can be performed in
O(
Pm

j=1 js jj +
Pn

i=1 ni log(m/ni) expected time, where ni
is the number of times the ith string is queried.

Notice that the first additive term is a lower bound for
reading the input, and the second additive term is a stan-
dard information-theoretic lower bound denoting the en-
tropy of the query sequence. Ciriani et al. also extended
the approach to the external memory model, and to the
case of dynamic sets of strings. More recently, Ko and
Aluru developed a self-adjusting tree layout for dynamic
sets of strings in secondary storage that provides optimal
number of disk accesses for a sequence of string or sub-
string queries, thus providing a deterministic algorithm
that matches the information-theoretic lower bound [4].

The next part of this entry deals with some of the
widely used data structures specifically designed for string
data, suffix trees, and suffix arrays. These are particularly
suitable for querying unstructured text data, such as the
genomic sequence of an organism. The following nota-
tion is used: Let s[i] denote the ith character of string s,
s[i:: j] denote the substring s[i]s[i + 1] : : : s[j], and Si =
s[i]s[i + 1] : : : s[jsj] denote the suffix of s starting at ith
position. The suffix Si can be uniquely described by the
integer i. In case of multiple strings, the suffix of a string
can be described by a tuple consisting of the string num-
ber and the starting position of the suffix within the string.
Consider a collection of strings over˙ , having total length
n, each extended by adding a unique termination symbol
$ … ˙ . The suffix tree of the strings is a compacted trie
of all suffixes of these extended strings. The suffix array of
the strings is the lexicographic sorted order of all suffixes

of these extended strings. For convenience, we list ‘$’, the
last suffix of each string, just once. The suffix tree and suf-
fix array of strings ‘apple’ and ‘maple’ are shown in Fig. 1.
Both these data structures takeO(n) space and can be con-
structed in O(n) time [11, 13], both directly and from each
other.

Without loss of generality, consider the problem of
searching for a pattern P as a substring of a single string T.
Assume the suffix tree ST of T is available. If P occurs
in T starting from position i, then P is a prefix of suffix
Ti = T[i]T[i + 1] : : : T[jTj] in T. It follows that Pmatches
the path from root to leaf labeled i in ST. This property re-
sults in the following simple algorithm: Start from the root
of ST and follow the path matching characters in P, until P
is completely matched or a mismatch occurs. If P is not
fully matched, it does not occur in T. Otherwise, each leaf
in the subtree below the matching position gives an occur-
rence of P. The positions can be enumerated by traversing
the subtree in O(occ) time, where occ denotes the num-
ber of occurrences of P. If only one occurrence is desired,
ST can be preprocessed in O(jTj) time such that each in-
ternal node contains the suffix at one of the leaves in its
subtree.

Theorem 3 Given a suffix tree for text T and a pattern P,
whether P occurs in T can be answered in O(jPj) time. All
occurrences of P in T can be found in O(jPj + occ) time,
where occ denotes the number of occurrences.

Now consider solving the same problem using the suf-
fix array SA of T. All suffixes prefixed by P appear
in consecutive positions in SA. These can be found
using binary search in SA. Naively performed, this
would take O(jPj � log jTj) time. It can be improved to
O(jPj + log jTj) time as follows [15]:

Let SA[L::R] denote the range in the suffix array where
the binary search is focused. To begin with, L = 1 and
R = jTj. Let � denote “lexicographically smaller”, � de-
note “lexicographically smaller or equal”, and l cp(˛; ˇ)
denote the length of the longest common prefix between
strings ˛ and ˇ. At the beginning of an iteration, TSA[L] �
P � TSA[R]. Let M = d(L + R)/2e. Let l = l cp(P; TSA[L])
and r = l cp(P; TSA[R]). Because SA is lexicographically or-
dered, l cp(P; TSA[M]) � min(l ; r). If l = r, then compare
P and TSA[M] starting from the (l+1)th character. If l ¤ r,
consider the case when l > r.

Case I: l < l cp(TSA[L]; TSA[M]). In this case, TSA[M] � P
and l cp(P; TSA[M]) = l cp(P; TSA[L]). Continue search
in SA[M::R]. No character comparisons required.

Case II: l > l cp(TSA[L]; TSA[M]). In this case, P � TSA[M]
and l cp(P; TSA[M]) = l cp(TSA[L]; TSA[M]). Continue

952 T Text Indexing

Text Indexing, Figure 1
Suffix tree and suffix array of strings apple andmaple

search in SA[L::M]. No character comparisons re-
quired.

Case III: l = l cp(TSA[L]; TSA[M]). In this case, l cp(P;
TSA[M]) � l . Compare P and TSA[M] beyond lth char-
acter to determine their relative order and lcp.

Similarly, the case when r > l can be handled such that
comparisons between P and TSA[M], if at all needed, start
from (r + 1)th character. To start the execution of the al-
gorithm, l cp(P; TSA[1]) and l cp(P; TSA[jTj]) are computed
directly using at most 2jPj character comparisons. It re-
mains to be described how the l cp(TSA[L]; TSA[M]) and
l cp(TSA[R]; TSA[M]) values required in each iteration are
computed. Let Lcp[1 : : : jTj � 1] be an array such that
Lcp[i] = l cp(SA[i]; SA[i + 1]). The Lcp array can be com-
puted from SA in O(jTj) time [12]. For any 1 � i < j � n,
l cp(TSA[i]; TSA[j]) = min j�1

k=i Lcp[k]. In order to find the
lcp values required by the algorithm in constant time, note
that the binary search can be viewed as traversing a path
in the binary tree corresponding to all possible search in-
tervals used by any execution of the binary search algo-
rithm [15]. The root of the tree denotes the interval [1::n].
If [i:: j] (j � i � 2) is the interval at an internal node of the
tree, its left child is given by [i::d(i + j)/2e] and its right
child is given by [d(i + j)/2e:: j]. The lcp value for each
interval in the tree is precomputed and recorded in O(n)
time and space.

Theorem 4 Given the suffix array SA of text T and
a pattern P, the existence of P in T can be checked in
O(jPj + log jTj) time. All occurrences of P in T can be found

in O(occ) additional time, where occ denotes their number.

Proof The algorithm makes at most 2jPj comparisons in
determining l cp(P; TSA[1]) and l cp(P; TSA[n]). A compar-
ison made in an iteration to determine l cp(P; TSA[M]) is
categorized successful if it contributes the lcp, and catego-
rized failed otherwise. There is at most one failed com-
parison per iteration. As for successful comparisons, note
that the comparisons start with (max(l ; r) + 1)th charac-
ter of P, and each successful comparison increases the
value of max(l, r) for the next iteration. Thus, each char-
acter of P is involved only once in a successful compari-
son. The total number of character comparisons is at most
3jPj + log jTj = O(jPj + log jTj). �

Abouelhoda et al. [1] reduce this time further to O(jPj)
by mimicking the suffix tree algorithm on a suffix array
with some auxiliary information. The strategy is useful in
other applications based on top-down traversal of suffix
trees. At this stage, the distinction between suffix trees and
suffix arrays is blurred as the auxiliary information stored
makes the combined data structure equivalent to a suffix
tree. Using clever implementation techniques, the space is
reduced to approximately 6n bytes. A major advantage of
the suffix tree and suffix array based methods is that the
text T is often large and relatively static, while it is queried
with several short patterns.With suffix trees and enhanced
suffix arrays [1], once the text is preprocessed in O(jTj)
time, each pattern can be queried in O(jPj) time for con-
stant size alphabet. For large alphabets, the query can be
answered in O(jPj � log j˙ j) time using O(nj˙ j) space

Text Indexing T 953

(by storing an ordered array of j˙ j pointers to potential
children of a node), or in O(jPj � j˙ j) time using O(n)
space (by storing pointers to first child and next sibling).1

For indexing in various text-dynamic situations, see [3,7]
and references therein. The problem of compressing suf-
fix trees and arrays is covered in more detail in other en-
tries.

While exact pattern matching has many useful appli-
cations, the need for approximate pattern matching arises
in several contexts ranging from information retrieval to
finding evolutionary related biomolecular sequences. The
classic approximate pattern matching problem is to find
substrings in the text T that have an edit distance of k or
less to the pattern P, i. e., the substring can be converted to
P with at most k insert/delete/substitute operations. This
problem is covered in more detail in other entries. Also
see [16], the references therein, and Chapter 36 of [2].

Applications

Text indexing has many practical applications—finding
words or phrases in documents under preparation, search-
ing text for information retrieval from digital libraries,
searching distributed text resources such as the web, pro-
cessing XML path strings, searching for longest matching
prefixes among IP addresses for internet routing, to name
just a few. The reader interested in further exploring text
indexing is referred to the book by Crochemore and Ryt-
ter [6], and to other entries in this Encyclopedia. The last
decade of explosive growth in computational biology is
aided by the application of string processing techniques to
DNA and protein sequence data. String indexing and ag-
gregate queries to uncover mutual relationships between
strings are at the heart of important scientific challenges
such as sequencing genomes and inferring evolutionary
relationships. For an in depth study of such techniques,
the reader is referred to Parts I and II of [10] and Parts II
and VIII of [2].

Open Problems

Text indexing is a fertile research area, making it impossi-
ble to cover many of the research results or actively pur-
sued open problems in a short amount of space. Providing
better algorithms and data structures to answer a flow of
string-search queries when caches or other query models
are taken into account, is an interesting research issue [4].

1Recently, Cole et al. (2006) showed how to further reduce the
search time toO(jPj + log j˙ j) while still keeping the optimal O(jTj)
space.

Cross References

� Compressed Suffix Array
� Compressed Text Indexing
� Indexed Approximate String Matching
� Suffix Array Construction
� Suffix Tree Construction in Hierarchical Memory
� Suffix Tree Construction in RAM
� Two-Dimensional Pattern Indexing

Recommended Reading

1. Abouelhoda, M., Kurtz, S., Ohlebusch, E.: Replacing suffix trees
with enhanced suffix arrays. J. Discret. Algorithms 2, 53–86
(2004)

2. Aluru, S. (ed.): Handbook of Computational Molecular Biol-
ogy. Computer and Information Science Series. Chapman and
Hall/CRC Press, Boca Raton (2005)

3. Amir, A., Kopelowitz, T., Lewenstein, M., Lewenstein, N.: To-
wards real-time suffix tree construction. In: Proc. String Pro-
cessing and Information Retrieval Symposium (SPIRE), 2005,
pp. 67–78

4. Ciriani, V., Ferragina, P., Luccio, F., Muthukrishnan, S.: A data
structure for a sequence of string acesses in external memory.
ACM Trans. Algorithms 3 (2007)

5. Crescenzi, P., Grossi, R., Italiano, G.: Search data structures for
skewed strings. In: International Workshop on Experimental
and EfficientAlgorithms (WEA). LectureNotes in Computer Sci-
ence, vol. 2, pp. 81–96. Springer, Berlin (2003)

6. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scien-
tific Publishing Company, Singapore (2002)

7. Ferragina, P., Grossi, R.: Optimal On-Line Search and Sublinear
Time Update in String Matching. SIAM J. Comput. 3, 713–736
(1998)

8. Franceschini, G., Grossi, R.: A general technique for managing
strings in comparison-driven data structures. In: Annual Inter-
national Colloquium on Automata, Languages and Program-
ming (ICALP), 2004

9. Grossi, R., Italiano, G.: Efficient techniques for maintainingmul-
tidimensional keys in linked data structures. In: Annual Interna-
tional ColloquiumonAutomata, Languages and Programming
(ICALP), 1999, pp. 372–381

10. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology. Cambridge Univer-
sity Press, New York (1997)

11. Karkkainen, J., Sanders, P., Burkhardt, S.: Linear work suffix ar-
rays construction. J. ACM 53, 918–936 (2006)

12. Kasai, T., Lee, G., Arimura, H. et al.: Linear-time longest-com-
mon-prefix computation in suffix arrays and its applications. In:
Proc. 12th Annual Symposium, Combinatorial Pattern Match-
ing (CPM), 2001, pp. 181–192

13. Ko, P., Aluru, S.: Space efficient linear time construction of suffix
arrays. J. Discret. Algorithms 3, 143–156 (2005)

14. Ko, P., Aluru, S.: Optimal self-adjustring tree for dynamic string
data in secondary storage. In: Proc. String Processing and In-
formation Retrieval Symposium (SPIRE). Lect. Notes Comp. Sci.
vol. 4726, pp. 184–194, Santiago, Chile (2007)

15. Manber, U., Myers, G.: Suffix arrays: a new method for on-line
search. SIAM J. Comput. 22, 935–948 (1993)

954 T Thresholds of Random k-SAT

16. Navarro, G.: A guided tour to approximate string matching.
ACM Comput. Surv. 33, 31–88 (2001)

Thresholds of Random k-SAT
2002; Kaporis, Kirousis, Lalas

ALEXIS KAPORIS, LEFTERIS KIROUSIS
Department of Computer Engineering and Informatics,
University of Patras, Patras, Greece

Keywords and Synonyms

Phase transitions; Probabilistic analysis of a Davis–Put-
nam heuristic

ProblemDefinition

Consider n Boolean variables V = fx1; : : : ; xng and the
corresponding set of 2n literals L = fx1; x1 : : : ; xn ; xng.
A k-clause is a disjunction of k literals of distinct under-
lying variables. A random formula �n;m in k Conjunctive
Normal Form (k-CNF) is the conjunction of m clauses,
each selected in a uniformly random and independent way
amongst the 2k

�n
k
�
possible k-clauses on n variables in V .

The density rk of a k-CNF formula �n;m is the clauses-to-
variables ratiom/n.

It was conjectured that for each k � 2 there exists
a critical density r�k such that asymptotically almost all
(a.a.a.) k-CNF formulas with density r < r�k (r > r�k) are
satisfiable (unsatisfiable, respectively). So far, the conjec-
ture has been proved only for k = 2 [3,11]. For k � 3, the
conjecture still remains open but is supported by exper-
imental evidence [14] as well as by theoretical, but non-
rigorous, work based on Statistical Physics [15]. The value
of the putative threshold r�3 is estimated to be around 4.27.
Approximate values of the putative threshold for larger
values of k have also been computed.

As far as rigorous results are concerned, Friedgut [10]
proved that for each k � 3 there exists a sequence
r�k (n) such that for any � > 0, a.a.a. k-CNF formu-
las �n;b(r�k (n)��)nc (�n;d(r�k (n)+�)ne) are satisfiable (unsat-
isfiable, respectively). The convergence of the sequence
r�k (n); n = 0; 1; : : : for k � 3 remains open.

Let now

r��k = limn!1r�k (n)
= supfrk : Pr[�n;brk nc is satisfiable ! 1]g

and

r�+k = limn!1r�k (n)
= inffrk : Pr[�n;drk neis satisfiable! 0]g :

Obviously, r��k � r�+k . Bounding from below (from above)
r��k (r�+k , respectively) with an as large as possible (as small
as possible, respectively) bound has been the subject of in-
tense research work in the past decade.

Upper bounds to r�+k are computed by counting argu-
ments. To be specific, the standard technique is to com-
pute the expected number of satisfying truth assignments
of a random formula with density rk and find an as small
as possible value of rk for which this expected value ap-
proaches zero. Then, by Markov’s inequality, it follows
that for such a value of rk, a random formula �n;drk ne is
unsatisfiable asymptotically almost always. This argument
has been refined in two directions: First, considering not
all satisfying truth assignments but a subclass of themwith
the property that a satisfiable formula always has a satisfy-
ing truth assignment in the subclass considered. The re-
striction to a judiciously chosen such subclass forces the
expected value of the number of satisfying truth assign-
ments to get closer to the probability of satisfiability, and
thus leads to a better (smaller) upper bound rk. However,
it is important that the subclass should be such that the
expected value of the number of satisfying truth assign-
ments can be computable by the available probabilistic
techniques.

Second, make use in the computation of the expected
number of satisfying truth assignments of typical charac-
teristics of the random formula, i. e. characteristics shared
by a.a.a. formulas. Again this often leads to an expected
number of satisfying truth assignments that is closer to the
probability of satisfiability (non-typical formulasmay con-
tribute to the increase of the expected number). Increas-
ingly better upper bounds to r�+3 have been computed us-
ing counting arguments as above (see the surveys [6,13]).
Dubois, Boufkhad and Mandler [7] proved r�+3 < 4:506.
The latter remains the best upper bound to date.

On the other hand, for fixed and small values of k (es-
pecially for k = 3) lower bounds to r��k are usually com-
puted by algorithmic methods. To be specific, one designs
an algorithm that for an as large as possible rk it returns
a satisfying truth assignment for a.a.a. formulas �n;brk nc.
Such an rk is obviously a lower bound to r��k . The simpler
the algorithm, the easier to perform the probabilistic anal-
ysis of returning a satisfying truth assignment for a given
rk, but the smaller the rk’s for which a satisfying truth as-
signment is returned asymptotically almost always. In this
context, backtrack-free DPLL algorithms [4,5] of increas-
ing sophistication were rigorously analyzed (see the sur-
veys [2,9]). At each step of such an algorithm, a literal
is set to TRUE and then a reduced formula is obtained
by (i) deleting clauses where this literal appears and by
(ii) deleting the negation of this literal from the clauses it

Thresholds of Random k-SAT T 955

appears. At steps at which 1-clauses exist (known as forced
steps), the selection of the literal to be set to TRUE is made
so as a 1-clause becomes satisfied. At the remaining steps
(known as free steps), the selection of the literal to be set
to TRUE is made according to a heuristic that characterizes
the particular DPLL algorithm. A free step is followed by
a round of consecutive forced steps. To facilitate the prob-
abilistic analysis of DPLL algorithms, it is assumed that
they never backtrack: if the algorithm ever hits a contradic-
tion, i. e. a 0-clause is generated, it stops and reports fail-
ure, otherwise it returns a satisfying truth assignment. The
previously best lower bound for the satisfiability threshold
obtained by such an analysis was 3:26 < r��3 (Achlioptas
and Sorkin [1]).

The previously analyzed such algorithms (with the ex-
ception of the Pure Literal algorithm [8]) at a free
step take into account only the clause size where the se-
lected literal appears. Due to this limited information ex-
ploited on selecting the literal to be set, the reduced for-
mula in each step remains random conditional only on the
current numbers of 3- and 2-clauses and the number of yet
unassigned variables. This retention of “strong” random-
ness permits a successful probabilistic analysis of the algo-
rithm in a not very complicated way. However, for k = 3
it succeeds to show satisfiability only for densities up to
a number slightly larger than 3.26. In particular, in [1] it is
shown that this is the optimal value that can be attained by
such algorithms.

Key Results

In [12], a DPLL algorithm is described (and then prob-
abilistically analyzed) such that each free step selects the
literal to be set to TRUE taking into account its degree (i. e.
its number of occurrences) in the current formula.

Algorithm Greedy [Section 4.A in 12]

The first variant of the algorithm is very simple: At each
free step, a literal with the maximum number of occur-
rences is selected and set to TRUE. Notice that in this
greedy variant, a literal is selected irrespectively of the
number of occurrences of its negation. This algorithm suc-
cessfully returns a satisfying truth assignment for a.a.a.
formulas with density up to a number slightly larger
than 3.42, establishing that r��3 > 3:42. Its simplicity, con-
trasted with the improvement over the previously ob-
tained lower bounds, suggests the importance of analyzing
heuristics that take into account degree information of the
current formula.

Algorithm CL [Section 5.A in 12]

In the second variant, at each free step t, the degree of
the negation � of the literal � that is set to TRUE is also
taken into account. Specifically, the literal to be set to
TRUE is selected so as upon the completion of the round
of forced steps that follow the free step t, the marginal
expected increase of the flow from 2-clauses to 1-clauses
per unit of expected decrease of the flow from 3-clauses
to 2-clauses is minimized. The marginal expectation cor-
responding to each literal can be computed from the num-
bers of its positive and negative occurrences. More specifi-
cally, if mi ; i = 2; 3 equals the expected flow of i-clauses to
(i � 1)-clauses at each step of a round, and � is the literal
set to TRUE at the beginning of the round, then � is chosen
so as to minimize the ratio j4m2

4m3
j of the differences 4m2

and4m3 between the beginning and the end of the round.
This has as effect the bounding of the rate of generation of
1-clauses by the smallest possible number throughout the
algorithm. For the probabilistic analysis to go through, we
need to know for each i, j the number of literals with de-
gree i whose negation has degree j. This heuristic succeeds
in returning a satisfying truth assignment for a.a.a. formu-
las with density up to a number slightly larger than 3.52,
establishing that r��3 > 3:52.

Applications

Some applications of SAT solvers include Sequential Cir-
cuit Verification, Artificial Intelligence, Automated de-
duction and Planning, VLSI, CAD, Model-checking and
other type of formal verification. Recently, automatic SAT-
based model checking techniques were used to effectively
find attacks on security protocols.

Open Problems

The main open problem in the area is to formally show
the existence of the threshold r�k for all (or at least some)
k � 3. To rigorously compute upper and lower bounds
better than the ones mentioned here still attracts some in-
terest. Related results and problems arise in the framework
of variants of the satisfiability problem and also the prob-
lem of colorability.

Cross References

� Backtracking Based k-SAT Algorithms
� Local Search Algorithms for kSAT
�Maximum Two-Satisfiability
� Tail Bounds for Occupancy Problems

956 T Topology Approach in Distributed Computing

Recommended Reading

1. Achioptas, D., Sorkin, G.B.: Optimal myopic algorithms for ran-
dom 3-sat. In: 41st Annual Symposium on Foundations of
Computer Science, pp. 590–600. IEEE Computer Society,Wash-
ington (2000)

2. Achlioptas, D.: Lower bounds for random 3-sat via differential
equations. Theor. Comput. Sci. 265(1–2), 159–185 (2001)

3. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side).
In: 33rd Annual Symposium on Foundations of Computer Sci-
ence, pp. 620–627. IEEE Computer Society, Pittsburgh (1992)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for
theorem-proving. Commun. ACM 5, 394–397 (1962)

5. Davis, M., Putnam, H.: A computing procedure for quantifica-
tion theory. J. Assoc. Comput. Mach. 7(4), 201–215 (1960)

6. Dubois, O.: Upper bounds on the satisfiability threshold. Theor.
Comput. Sci. 265, 187–197 (2001)

7. Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3-sat for-
mulae and the satisfiability threshold. In: 11th ACM-SIAM sym-
posium onDiscrete algorithms, pp. 126–127. Society for Indus-
trial and AppliedMathematics, San Francisco (2000)

8. Franco, J.: Probabilistic analysis of the pure literal heuristic for
the satisfiability problem. Annal. Oper. Res. 1, 273–289 (1984)

9. Franco, J.: Results related to threshold phenomena research in
satisfiability: Lower bounds. Theor. Comput. Sci. 265, 147–157
(2001)

10. Friedgut, E.: Sharp thresholds of graph properties, and the k-
sat problem. J. AMS 12, 1017–1054 (1997)

11. Goerdt, A.: A threshold for unsatisfiability. J. Comput. Syst. Sci.
33, 469–486 (1996)

12. Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The probabilistic anal-
ysis of a greedy satisfiability algorithm. Random Struct. Algo-
rithms 28(4), 444–480 (2006)

13. Kirousis, L., Stamatiou, Y., Zito, M.: The unsatisfiability thresh-
old conjecture: the techniques behind upper bound improve-
ments. In: A. Percus, G. Istrate, C. Moore (eds.) Computational
Complexity and Statistical Physics, Santa Fe Institute Studies
in the Sciences of Complexity, pp. 159–178. Oxford University
Press, New York (2006)

14. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribu-
tion of sat problems. In: 10th National Conference on Artificial
Intelligence, pp. 459–465. AAAI Press, Menlo Park (1992)

15. Monasson, R., Zecchina, R.: Statisticalmechanics of the random
k-sat problem. Phys. Rev. E 56, 1357–1361 (1997)

Topology Approach
in Distributed Computing
1999; Herlihy Shavit

MAURICE HERLIHY
Department of Computer Science, Brown University,
Providence, RI, USA

Keywords and Synonyms

Wait-free renaming

ProblemDefinition

The application of techniques from Combinatorial and Al-
gebraic Topology has been successful at solving a number
of problems in distributed computing. In 1993, three in-
dependent teams [3,15,17], using different ways of gener-
alizing the classical graph-theoretical model of distributed
computing, were able to solve set agreement a long-
standing open problem that had eluded the standard ap-
proaches. Later on, in 2004, journal articles by Herlihy and
Shavit [15] and by Saks and Zaharoglou [17] were to win
the prestigious Gödel prize. This paper describes the ap-
proach taken by the Herlihy/Shavit paper, which was the
first draw the connection between Algebraic and Combi-
natorial Topology and Distributed Computing.

Pioneering work in this area, such as by Biran, Moran,
and Zaks [2] used graph-theoretic notions to model un-
certainty, and were able to express certain lower bounds in
terms of graph connectivity. This approach, however, had
limitations. In particular, it proved difficult to capture the
effects of multiple failures or to analyze decision problems
other then consensus.

Combinatorial topology generalizes the notion of
a graph to the notion of a simplicial complex, a structure
that has been well-studied in mainstreammathematics for
over a century. One property of central interest to topolo-
gists is whether a simplicial complex has no “holes” below
a certain dimension k, a property known as k-connectiv-
ity. Lower bounds previously expressed in terms of con-
nectivity of graphs can be generalized by recasting them
in terms of k-connectivity of simplicial complexes. By ex-
ploiting this insight, it was possible to solve some open
problems (k-set agreement, renaming), to pose and solve
some new problems ([13]), and to unify a number of dis-
parate results and models [14].

Key Results

A vertex Ev is a point in a high-dimensional Euclidean
space. Vertexes Ev0; : : : ; Evn are affinely independent if Ev1 �
Ev0; : : : ; Evn�Ev0 are linearly independent. An n-dimensional
simplex (or n-simplex) Sn = (Es0; : : : ; Esn) is the convex hull
of a set of n + 1 affinely-independent vertexes. For exam-
ple, a 0-simplex is a vertex, a 1-simplex a line segment,
a 2-simplex a solid triangle, and a 3-simplex a solid tetra-
hedron. Where convenient, superscripts indicate dimen-
sions of simplexes. The Es0; : : : ; Esn are said to span Sn. By
convention, a simplex of dimension d < 0 is an empty
simplex.

A simplicial complex (or complex) is a set of simplexes
closed under containment and intersection. The dimen-
sion of a complex is the highest dimension of any of its

Topology Approach in Distributed Computing T 957

simplexes. L is a subcomplex ofK if every simplex of L is
a simplex of K. A map � : K ! L carrying vertexes to
vertexes is simplicial if it also induces a map of simplexes
to simplexes.

Definition 1 A complexK is k-connected if every contin-
uous map of the k-sphere toK can be extended to a con-
tinuous map of the (k + 1)-disk. By convention, a complex
is (�1)-connected if and only if it is nonempty, and every
complex is k-connected for k < �1.

A complex is 0-connected if it is connected in the graph-
theoretic sense, and a complex is k-connected if it has no
holes in dimensions k or less. The definition of k-connec-
tivity may appear difficult to use, but fortunately reasoning
about connectivity can be done in a combinatorial way, us-
ing the following elementary consequence of the Mayer–
Vietoris sequence.

Theorem 2 IfK and L are complexes such thatK and L
are k-connected, andK \ L is (k�1)-connected, thenK [
L is k-connected.

This theorem, plus the observation that any non-empty
simplex is k-connected for all k, allows reasoning about
a complex’s connectivity inductively in terms of the con-
nectivity of its components.

A set of n + 1 sequential processes communicate either
by sending messages to one another or by applying opera-
tions to shared objects. At any point, a process may crash:
it stops and takes no more steps. There is a bound f on the
number of processes that can fail. Models differ in their
assumptions about timing. At one end of the spectrum is
the synchronous model in which computation proceeds in
a sequence of rounds. In each round, a process sends mes-
sages to the other processes, receives the messages sent to
it by the other processes in that round, and changes state.
(Or it applies operations to shared objects.) All processes
take steps at exactly the same rate, and all messages are de-
livered with exactly the samemessage delivery time. At the
other end is the asynchronous model in which there is no
bound on the amount of time that can elapse between pro-
cess steps, and there is no bound on the time it can take for
a message to be delivered. Between these extremes is the
semi-synchronous model in which process step times and
message delivery times can vary, but are bounded between
constant upper and lower bounds. Proving a lower bound
in any of these models requires a deep understanding of
the global states that can arise in the course of a protocol’s
execution, and of how these global states are related.

Each process starts with an input value taken from
a setV , and then executes a deterministic protocol in which
it repeatedly receives one or more messages, changes its

local state, and sends one or more messages. After a finite
number of steps, each process chooses a decision value and
halts.

In the k-set agreement task [5], processes are required
to (1) choose a decision value after a finite number of steps,
(2) choose as their decision values some process’s input
value, and (3) collectively choose no more than k distinct
decision values.When k = 1, this problem is usually called
consensus [16].

Here is the connection between topological models
and computation. An initial local state of process P is mod-
eled as a vertex Ev = hP; vi labeled with P’s process id
and initial value v. An initial global state is modeled as
an n-simplex Sn = (hP0; v0i; : : : ; hPn ; vni), where the Pi
are distinct. The term ids(Sn) denotes the set of process ids
associated with Sn, and val s(Sn) the set of values. The set
of all possible initial global states forms a complex, called
the input complex.

Any protocol has an associated protocol complexP, de-
fined as follows. Each vertex is labeled with a process id
and a possible local state for that process. A set of ver-
texes hP0; v0i; : : : ; hPd ; vd i spans a simplex ofP if and only
if there is some protocol execution in which P0; : : : ; Pd
finish the protocol with respective local states v0; : : : ; vd .
Each simplex thus corresponds to an equivalence class of
executions that “look the same” to the processes at its ver-
texes. The term P(Sm) to denote the subcomplex of P
corresponding to executions in which only the processes
in ids(Sm) participate (the rest fail before sending any
messages). If m < n � f , then there are no such execu-
tions, and P(Sm) is empty. The structure of the protocol
complex P depends both on the protocol and on the tim-
ing and failure characteristics of the model. P often refers
to both the protocol and its complex, relying on context to
disambiguate.

A protocol solves k-set agreement if there is a simplicial
map ı, called decisionmap, carrying vertexes ofP to values
in V such that if Ep 2 P(Sn) then ı(Ep) 2 val s(Sn), and
ı maps the vertexes of any given simplex in P(Sn) to at
most k distinct values.

Applications

The renaming problem is a key tool for understanding the
power of various asynchronous models of computation.

Open Problems

Characterizing the full power of the topological approach
to proving lower bounds remains an open problem.

958 T Trade-Offs for Dynamic Graph Problems

Cross References

� Asynchronous Consensus Impossibility
� Renaming

Recommended Reading

Perhaps the first paper to investigate the solvability of dis-
tributed tasks was the landmark 1985 paper of Fischer,
Lynch, and Paterson [6] which showed that consensus,
then considered an abstraction of the database commit-
ment problem, had no 1-resilient message-passing solu-
tion. Other tasks that attracted attention include renaming
[1,12,15] and set agreement [3,5,12,10,15,17].

In 1988, Biran, Moran, and Zaks [2] gave a graph-
theoretic characterization of decision problems that can
be solved in the presence of a single failure in a message-
passing system. This result was not substantially improved
until 1993, when three independent research teams suc-
ceeded in applying combinatorial techniques to protocols
that tolerate delays by more than one processor: Borowsky
and Gafni [3], Saks and Zaharoglou [17], and Herlihy and
Shavit [15].

Later, Herlihy and Rajsbaum used homology theory to
derive further impossibility results for set agreement and
to unify a variety of known impossibility results in terms of
the theory of chain maps and chain complexes [12]. Using
the same simplicial model.

Biran, Moran, and Zaks [2] gave the first decidability
result for decision tasks, showing that tasks are decidable
in the 1-resilient message-passing model. Gafni and Kout-
soupias [7] were the first to make the important observa-
tion that the contractibility problem can be used to prove
that tasks are undecidable, and suggest a strategy to reduce
a specific wait-free problem for three processes to a con-
tractibility problem. Herlihy and Rajsbaum [11] provide
a more extensive collection of decidability results.

Borowsky and Gafni [3], define an iterated immediate
snapshot model that has a recursive structure. Chaudhuri,
Herlihy, Lynch, and Tuttle [4] give an inductive construc-
tion for the synchronous model, and while the resulting
“Bermuda Triangle” is visually appealing and an elegant
combination of proof techniques from the literature, there
is a fair amount of machinery needed in the formal de-
scription of the construction. In this sense, the formal pre-
sentation of later constructions is substantially more suc-
cinct.

More recent work in this area includes separation re-
sults [8] and complexity lower bounds [9].

1. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renam-
ing in an asynchronous environment. J. ACM 37(3), 524–548
(1990)

2. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of
the distributed 1-solvable tasks. J. Algorithms 11(3), 420–440
(1990)

3. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for
t-resilient asynchronous computations. In: Proceedings of the
25th ACM Symposium on Theory of Computing, May 1993

4. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight
bounds for k-set agreement. J. ACM 47(5), 912–943 (2000)

5. Chaudhuri, S.: More choices allow more faults: Set consensus
problems in totally asynchronous systems. Inf. Comp. 105(1),
132–158 (1993) A preliminary version appeared in ACM PODC
1990

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty processor. J. ACM 32(2),
374–382 (1985)

7. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecid-
able. SIAM J. Comput. 28(3), 970–983 (1999)

8. Gafni, E., Rajsbaum, S., Herlihy,M.: Subconsensus tasks: Renam-
ing is weaker than set agreement. In: Lecture Notes in Com-
puter Science, pp. 329–338. (2006)

9. Guerraoui, R., Herlihy, M., Pochon, B.: A topological treatment
of early-deciding set-agreement. In: OPODIS, pp. 20–35, (2006)

10. Herlihy,M., Rajsbaum, S.: Set consensus using arbitrary objects.
In: Proceedings of the 13th Annual ACM Symposium on Princi-
ples of Distributed Computing, pp. 324–333, August (1994)

11. Herlihy, M., Rajsbaum, S.: The decidability of distributed deci-
sion tasks (extended abstract). In: STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of comput-
ing, pp. 589–598. ACM Press, New York (1997)

12. Herlihy, M., Rajsbaum, S.: Algebraic spans. Math. Struct. Com-
put. Sci. 10(4), 549–573 (2000)

13. Herlihy, M., Rajsbaum, S.: A classification of wait-free loop
agreement tasks. Theor. Comput. Sci. 291(1), 55–77 (2003)

14. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous
and asynchronousmessage-passing models. In: PODC ’98: Pro-
ceedings of the seventeenth annual ACM symposium on Prin-
ciples of distributed computing, pp. 133–142. ACM Press, New
York (1998)

15. Herlihy, M., Shavit, N.: The topological structure of asyn-
chronous computability. J. ACM 46(6), 858–923 (1999)

16. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the
presence of faults. J. ACM 27(2), 228–234 (1980)

17. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impos-
sible: The topology of public knowledge. SIAM J. Comput.
29(5), 1449–1483 (2000)

Trade-Offs
for Dynamic Graph Problems
2005; Demetrescu, Italiano

CAMIL DEMETRESCU, GIUSEPPE F. ITALIANO
Department of Computer & Systems Science,
University of Rome, Rome, Italy

Keywords and Synonyms

Trading off update time for query time in dynamic graph
problems

Trade-Offs for Dynamic Graph Problems T 959

ProblemDefinition

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates. A dy-
namic graph algorithm should process queries on prop-
erty P quickly, and perform update operations faster than
recomputing from scratch, as carried out by the fastest
static algorithm. A typical definition is given below:

Definition 1 (Dynamic graph algorithm) Given a graph
and a graph property P, a dynamic graph algorithm is
a data structure that supports any intermixed sequence of
the following operations:

insert(u; v) : insert edge (u; v) into the graph.
delete(u; v) : delete edge (u; v) from the graph.
query(: : :) : answer a query about property P

of the graph.

A graph algorithm is fully dynamic if it can handle both
edge insertions and edge deletions and partially dynamic if
it can handle either edge insertions or edge deletions, but
not both: it is incremental if it supports insertions only,
and decremental if it supports deletions only. Some pa-
pers study variants of the problem where more than one
edge can be deleted of inserted at the same time, or edge
weights can be changed. In some cases, an update may be
the insertion or deletion of a node along with all edges
incident to them. Some other papers only deal with spe-
cific classes of graphs, e. g., planar graphs, directed acyclic
graphs (DAGs), etc.

There is a vast literature on dynamic graph algorithms.
Graph problems for which efficient dynamic solutions are
known include graph connectivity, minimum cut, mini-
mum spanning tree, transitive closure, and shortest paths
(see, e. g. [3] and the references therein). Many of them
update explicitly the property P after each update in or-
der to answer queries in optimal time. This may be a good
choice in scenarios where there are few updates and many
queries. In applications where the numbers of updates and
queries are comparable, a better approach would be to try
to reduce the update time, possibly at the price of increas-
ing the query time. This is typically achieved by relaxing
the assumption that the property P should be maintained
explicitly.

This entry focuses on algorithms for dynamic graph
problems that maintain the graph property implicitly, and
thus require non-constant query time while supporting
faster updates. In particular, it considers two problems: dy-
namic transitive closure (also known as dynamic reachabil-
ity) and dynamic all-pairs shortest paths, defined below.

Definition 2 (Fully dynamic transitive closure) The
fully dynamic transitive closure problem consists of main-
taining a directed graph under an intermixed sequence of
the following operations:

insert(u; v) : insert edge (u; v) into the graph.
delete(u; v) : delete edge (u; v) from the graph.
query(x; y) : return true if there is a directed

path from vertex x to vertex y,
and false otherwise.

Definition 3 (Fully dynamic all-pairs shortest paths)
The fully dynamic transitive closure problem consists of
maintaining a weighted directed graph under an inter-
mixed sequence of the following operations:

insert(u; v;w) : insert edge (u; v) into the graph
with weight w.

delete(u; v) : delete edge (u; v) from the graph.
query(x; y) : return the distance from x to y in

the graph, or +1 if there is no
directed path from x to y.

Recall that the distance from a vertex x to a vertex y is the
weight of a minimum-weight path from x to y, where the
weight of a path is defined as the sum of edge weights in
the path.

Key Results

This section presents a survey of query/update trade-
offs for dynamic transitive closure and dynamic all-pairs
shortest paths.

Dynamic Transitive Closure

The first query/update tradeoff for this problem was de-
vised by Henzinger and King [6], who proved the follow-
ing result:

Theorem 1 (Henzinger and King 1995 [6]) Given a gen-
eral directed graph, there is a randomized algorithm with
one-sided error for the fully dynamic transitive closure that
supports a worst-case query time of O(n/ log n) and an
amortized update time of O(m

p
n log2 n).

The first subquadratic algorithm for this problem is due
to Demetrescu and Italiano for the case of directed acyclic
graphs [4,5]:

Theorem 2 (Demetrescu and Italiano 2000 [4,5]) Given
a directed acyclic graph with n vertices, there is a random-
ized algorithm with one-sided error for the fully dynamic

960 T Trade-Offs for Dynamic Graph Problems

Trade-Offs for Dynamic Graph Problems, Table 1
Fully dynamic transitive closure algorithms with implicit solution representation

Type of graphs Type of algorithm Update time Query time Reference
General Monte Carlo O(m

p
n log2 n) amort. O(n/ log n) HK [6]

DAG Monte Carlo O(n1.575) O(n0.575) DI [4]
General Monte Carlo O(n1.575) O(n0.575) Sank. [13]
General Monte Carlo O(n1.495) O(n1.495) Sank. [13]
General Deterministic O(m

p
n) amort. O(

p
n) RZ [10]

General Deterministic O(m + n log n) amort. O(n) RZ [11]

transitive closure problem that supports each query in O(n�)
time and each insertion/deletion in O(n!(1;�;1)�� + n1+�),
for any � 2 [0; 1], where !(1; �; 1) is the exponent of the
multiplication of an n � n� matrix by an n� � n matrix.

Notice that the dependence of the bounds upon parame-
ter " leads to a full range of query/update tradeoffs. Bal-
ancing the two terms in the update bound of Theorem 2
yields that " must satisfy the equation !(1; �; 1) = 1 + 2�.
The current best bounds on !(1; �; 1) [2,7] imply that
� < 0:575. Thus, the smallest update time is O(n1.575),
which gives a query time of O(n0.575):

Corollary 1 (Demetrescu and Italiano 2000 [4,5]) Given
a directed acyclic graph with n vertices, there is a ran-
domized algorithm with one-sided error for the fully dy-
namic transitive closure problem that supports each query
in O(n0.575) time and each insertion/deletion in O(n1.575)
time.

This result has been generalized to the case of general di-
rected graphs by Sankowski [13]:

Theorem 3 (Sankowsk 2004 [13]) Given a general di-
rected graph with n vertices, there is a randomized algo-
rithm with one-sided error for the fully dynamic transitive
closure problem that supports each query in O(n) time and
each insertion/deletion in O(n!(1;�;1)�� + n1+�), for any
� 2 [0; 1], where !(1; �; 1) is the exponent of the multipli-
cation of an n � n� matrix by an n� � n matrix.

Corollary 2 (Sankowski 2004 [13]) Given a general di-
rected graph with n vertices, there is a randomized algo-
rithm with one-sided error for the fully dynamic transitive
closure problem that supports each query in O(n0.575) time
and each insertion/deletion in O(n1.575) time.

Sankowski has also shown how to achieve an even faster
update time of O(n1.495) at the expense of a much higher
O(n1.495) query time:

Theorem 4 (Sankowski 2004 [13]) Given a general di-
rected graph with n vertices, there is a randomized algo-
rithm with one-sided error for the fully dynamic transitive

closure problem that supports each query and each inser-
tion/deletion in O(n1.495) time.

Roditty and Zwick presented algorithms designed to
achieve better bounds in the case of sparse graphs:

Theorem 5 (Roditty and Zwick 2002 [10]) Given a gen-
eral directed graph with n vertices and m edges, there is
a deterministic algorithm for the fully dynamic transitive
closure problem that supports each insertion/deletion in
O(m
p
n) amortized time and each query in O(

p
n) worst-

case time.

Theorem 6 (Roditty and Zwick 2004 [11]) Given a gen-
eral directed graph with n vertices and m edges, there is
a deterministic algorithm for the fully dynamic transitive
closure problem that supports each insertion/deletion in
O(m + n log n) amortized time and each query in O(n)
worst-case time.

Observe that the results of Theorem 5 and Theorem 6 are
subquadratic for m = o(n1:5) and m = o(n2), respectively.
Moreover, they are not based on fast matrix multiplica-
tion, which is theoretically efficient but impractical.

Dynamic Shortest Paths

The first effective tradeoff algorithm for dynamic shortest
paths is due to Roditty and Zwick in the special case of
sparse graphs with unit edge weights [12]:

Theorem 7 (Roditty and Zwick 2004 [12]) Given
a general directed graph with n vertices, m edges, and
unit edge weights, there is a randomized algorithm with
one-sided error for the fully dynamic all-pairs short-
est paths problem that supports each distance query in
O(t + n log n

k)worst-case time and each insertion/deletion in

O(mn2 log n
t2 + km + mn log n

k) amortized time.

By choosing k = (n log n)1/2 and (n log n)1/2 � t � n3/4

(log n)1/4 in Theorem 7, it is possible to obtain an amor-
tized update time of O(mn2 log n

t2) and a worst-case query

Traveling Sales Person with Few Inner Points T 961

time of O(t). The fastest update time of O(m
p
n log n) is

obtained by choosing t = n3/4(log n)1/4.
Later, Sankowski devised the first subquadratic algo-

rithm for dense graphs based on fast matrix multiplica-
tion [14]:

Theorem 8 (Sankowski 2005 [14]) Given a general di-
rected graph with n vertices and unit edge weights, there is
a randomized algorithm with one-sided error for the fully
dynamic all-pairs shortest paths problem that supports each
distance query in O(n1.288) time and each insertion/deletion
in O(n1.932) time.

Applications

The transitive closure problem studied in this entry is par-
ticularly relevant to the field of databases for supporting
transitivity queries on dynamic graphs of relations [16].
The problem also arises in many other areas such as com-
pilers, interactive verification systems, garbage collection,
and industrial robotics.

Application scenarios of dynamic shortest paths in-
clude network optimization [1], document formatting [8],
routing in communication systems, robotics, incremen-
tal compilation, traffic information systems [15], and
dataflow analysis. A comprehensive review of real-world
applications of dynamic shortest path problems appears
in [9].

Open Problems

It is a fundamental open problem whether the fully dy-
namic all pairs shortest paths problem of Definition 3 can
be solved in subquadratic time per operation in the case of
graphs with real-valued edge weights.

Cross References

� All Pairs Shortest Paths in Sparse Graphs
� All Pairs Shortest Paths via Matrix Multiplication
� Decremental All-Pairs Shortest Paths
� Fully Dynamic All Pairs Shortest Paths
� Fully Dynamic Transitive Closure
� Single-Source Fully Dynamic Reachability

Recommended Reading
1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algo-

rithms and Applications. Prentice Hall, Englewood Cliffs (1993)
2. Coppersmith, D., Winograd, S.: Matrix multiplication via arith-

metic progressions. J. Symb. Comput. 9, 251–280 (1990)
3. Demetrescu, C., Finocchi, I., Italiano, G.: Dynamic Graphs. In:

Mehta, D., Sahni, S. (eds.) Handbook on Data Structures and

Applications (CRC Press Series, in Computer and Information
Science), chap. 36. CRC Press, Boca Raton (2005)

4. Demetrescu, C., Italiano, G.: Fully dynamic transitive closure:
Breaking through the O(n2) barrier. In: Proc. of the 41st IEEE
Annual Symposium on Foundations of Computer Science
(FOCS’00), Redondo Beach (2000), pp. 381–389

5. Demetrescu, C., Italiano, G.: Trade-offs for fully dynamic reach-
ability on dags: Breaking through the O(n2) barrier. J. ACM 52,
147–156 (2005)

6. Henzinger, M., King, V.: Fully dynamic biconnectivity and tran-
sitive closure. In: Proc. 36th IEEE Symposiumon Foundations of
Computer Science (FOCS’95), Milwaukee (1995), pp. 664–672

7. Huang, X., Pan, V.: Fast rectangular matrix multiplication and
applications. J. Complex. 14, 257–299 (1998)

8. Knuth, D., Plass, M.: Breaking paragraphs into lines. Software-
practice Exp. 11, 1119–1184 (1981)

9. Ramalingam, G.: Bounded incremental computation. In: Lec-
ture Notes in Computer Science, vol. 1089. Springer, New York
(1996)

10. Roditty, L., Zwick, U.: Improved dynamic reachability algo-
rithms for directed graphs. In: Proceedings of 43th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), Van-
couver (2002), pp. 679–688

11. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for
directed graphswith an almost linear update time. In: Proceed-
ings of the 36th Annual ACM Symposium on Theory of Com-
puting (STOC), Chicago (2004), pp. 184–191

12. Roditty, L., Zwick, U.: On Dynamic Shortest Paths Problems. In:
Proceedings of the 12th Annual European Symposium on Al-
gorithms (ESA), Bergen (2004), pp. 580–591

13. Sankowski, P.: Dynamic transitive closure via dynamic matrix
inverse. In: FOCS ’04: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’04), pp.
509–517. IEEE Computer Society, Washington, DC (2004)

14. Sankowski, P.: Subquadratic algorithm for dynamic shortest
distances. In: 11th Annual International Conference on Com-
puting and Combinatorics (COCOON’05), Kunming (2005), pp.
461–470

15. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line:
an empirical case study from public railroad transport. In: Proc.
3rd Workshop on Algorithm Engineering (WAE’99), London
(1999), pp. 110–123

16. Yannakakis, M.: Graph-theoretic methods in database theory.
In: Proc. 9-th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Nashville (1990). pp. 230–242

Traveling Sales Person
with Few Inner Points
2004; Deı̆neko, Hoffmann, Okamoto, Woeginger

YOSHIO OKAMOTO
Department of Information and Computer Sciences,
Toyohashi University of Technology, Toyohashi, Japan

Keywords and Synonyms

Traveling salesman problem; Traveling salesperson
problem; Minimum-cost Hamiltonian circuit problem;

962 T Traveling Sales Person with Few Inner Points

Minimum-weight Hamiltonian circuit problem; Mini-
mum-cost Hamiltonian cycle problem; Minimum-weight
Hamiltonian cycle problem

ProblemDefinition

In the traveling salesman problem (TSP) n cities 1, 2, : : :, n
together with all the pairwise distances d(i, j) between
cities i and j are given. The goal is to find the shortest
tour that visits every city exactly once and in the end re-
turns to its starting city. The TSP is one of the most fa-
mous problems in combinatorial optimization, and it is
well-known to be NP-hard. For more information on the
TSP, the reader is referred to the book by Lawler, Lenstra,
Rinnooy Kan, and Shmoys [14].

A special case of the TSP is the so-called Euclidean
TSP, where the cities are points in the Euclidean plane, and
the distances are simply the Euclidean distances. A spe-
cial case of the Euclidean TSP is the convex Euclidean TSP,
where the cities are further restricted so that they lie in
convex position. The EuclideanTSP is still NP-hard [4,17],
but the convex Euclidean TSP is quite easy to solve: Run-
ning along the boundary of the convex hull yields a short-
est tour. Motivated by these two facts, the following natu-
ral question is posed: What is the influence of the number
of inner points on the complexity of the problem? Here,
an inner point of a finite point set P is a point from P
which lies in the interior of the convex hull of P. Intuition
says that “Fewer inner points make the problem easier to
solve.”

The result below answers this question and supports
the intuition above by providing simple exact algorithms.

Key Results

Theorem 1 The special case of the Euclidean TSP with few
inner points can be solved in the following time and space
complexity. Here, n denotes the total number of cities and
k denotes the number of cities in the interior of the convex
hull. 1. In timeO(k!kn) and spaceO(k). 2. In timeO(2kk2n)
and spaceO(2kkn) [1].

Here, assume that the convex hull of a given point set is
already determined, which can be done in time O(n log n)
and space O(n). Further, note that the above space bounds
do not count the space needed to store the input but they
just count the space in working memory (as usual in theo-
retical computer science).

Theorem 1 implies that, from the viewpoint of param-
eterized complexity [2,3,16], these algorithms are fixed-
parameter algorithms, when the number k of inner points

is taken as a parameter, and hence the problem is fixed-pa-
rameter tractable (FPT). (A fixed-parameter algorithm has
running time O(f (k)poly(n)), where n is the input size, k
is a parameter and f : N ! N is an arbitrary computable
function. For example, an algorithm with running time
O(5kn) is a fixed-parameter algorithm whereas one with
O(nk) is not.) Observe that the second algorithm gives
a polynomial-time exact solution to the problem when
k = O(log n).

The method can be extended to some generalized ver-
sions of the TSP. For example, Deı̆neko et al. [1] stated that
the prize-collecting TSP and the partial TSP can be solved
in a similar manner.

Applications

The theorem is motivated more from a theoretical side
rather than an application side. No real-world application
has been assumed.

As for the theoretical application, the viewpoint (intro-
duced in the problem definition section) has been applied
to other geometric problems. Some of them are listed be-
low.

The MinimumWeight Triangulation Problem: Given
n points in the Euclidean plane, the problem asks to
find a triangulation of the points which has mini-
mum total length. The problem is now known to be
NP-hard [15].
Hoffmann and Okamoto [10] proved that the prob-
lem is fixed-parameter tractable with respect to the
number k of inner points. The time complexity they
gave is O(6kn5 log n). This is subsequently improved
by Grantson, Borgelt, and Levcopoulos [6] to O(4kkn4)
and by Spillner [18] to O(2kkn3). Yet other fixed-
parameter algorithms have also been proposed by
Grantson, Borgelt, and Levcopoulos [7,8]. The cur-
rently best time complexity was given by Knauer
and Spillner [13] and it is O(2c

p
k log k k3/2n3) where

c = (2 +
p
2)/(
p
3 �
p
2) < 11.

The Minimum Convex Partition Problem:
Given n points in the Euclidean plane, the problem
asks to find a partition of the convex hull of the points
into the minimum number of convex regions having
some of the points as vertices.
Grantson and Levcopoulos [9] gave an algorithm run-
ning in O(k6k�5216kn) time. Later, Spillner [19] im-
proved the time complexity to O(2kk3n3).

The MinimumWeight Convex Partition Problem:
Given n points in the Euclidean plane, the problem
asks to find a convex partition of the points with min-
imum total length.

Traveling Sales Person with Few Inner Points T 963

Grantson [5] gave an algorithm running in
O(k6k�5216kn) time. Later, Spillner [19] improved
the time complexity to O(2kk3n3).

The Crossing Free Spanning Tree Problem: Given an
n-vertex geometric graph (i. e., a graph drawn on the
Euclidean plane where every edge is a straight line seg-
ment connecting two distinct points), the problem asks
to determine whether it has a spanning tree without
any crossing of the edges. Jansen and Woeginger [11]
proved this problem is NP-hard.
Knauer and Spillner [12] gave algorithms running in
O(175kk2n3) time and O(233

p
k log k k2n3) time.

The method proposed by Knauer and Spillner [12] can
be adopted to the TSP as well. According to their re-
sult, the currently best time complexity for the TSP is
2O(
p

k log k)poly(n).

Open Problems

Currently, no lower bound result for the time complexity
seems to be known. For example, is it possible to prove
under a reasonable complexity-theoretic assumption the
impossibility for the existence of an algorithm running in
2O(
p

k)poly(n) for the TSP?

Cross References

On the traveling salesman problem:
� Euclidean Traveling Salesperson Problem
�Hamilton Cycles in Random Intersection Graphs
� Implementation Challenge for TSP Heuristics
�Metric TSP
On fixed-parameter algorithms:
� Closest Substring
� Parameterized SAT
� Vertex Cover Kernelization
� Vertex Cover Search Trees
On others:
�MinimumWeight Triangulation

Recommended Reading
1. Deı̆neko, V.G., Hoffmann, M., Okamoto, Y., Woeginger, G.J.: The

traveling salesman problem with few inner points. Oper. Res.
Lett. 31, 106–110 (2006)

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity. In:
Monographs in Computer Science. Springer, New York (1999)

3. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts
in Theoretical Computer Science An EATCS Series. Springer,
Berlin (2006)

4. Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete
geometric problems. In: Proceedings of 8th Annual ACM Sym-

posium on Theory of Computing (STOC ’76), pp. 10–22. Asso-
ciation for Computing Machinery, New York (1976)

5. Grantson, M.: Fixed-parameter algorithms and other results for
optimal partitions. Lecentiate Thesis, Department of Computer
Science, Lund University (2004)

6. Grantson, M., Borgelt, C., Levcopoulos, C.: A fixed parameter al-
gorithm for minimum weight triangulation: Analysis and ex-
periments. Tech. Rep. 154, Department of Computer Science,
Lund University (2005)

7. Grantson, M., Borgelt, C., Levcopoulos, C.: Minimum weight
triangulation by cutting out triangles. In: Deng, X., Du, D.-
Z. (eds.) Proceedings of the 16th Annual International Sympo-
sium on Algorithms and Computation (ISAAC). Lecture Notes
in Computer Science, vol. 3827, pp. 984–994. Springer, New
York (2005)

8. Grantson, M., Borgelt, C., Levcopoulos, C.: Fixed parameter
algorithms for the minimum weight triangulation problem.
Tech. Rep. 158, Department of Computer Science, Lund Uni-
versity (2006)

9. Grantson, M., Levcopoulos, C.: A fixed parameter algorithm
for the minimum number convex partition problem. In:
Akiyama, J., Kano, M., Tan, X. (eds.) Proceedings of Japanese
Conference on Discrete and Computational Geometry (JCDCG
2004). Lecture Notes in Computer Science, vol. 3742, pp. 83–
94. Springer, New York (2005)

10. Hoffmann, M., Okamoto, Y.: The minimum weight triangula-
tion problem with few inner points. Comput. Geom. Theory
Appl. 34, 149–158 (2006)

11. Jansen, K., Woeginger, G.J.: The complexity of detecting
crossingfree configurations in the plane. BIT 33, 580–595
(1993)

12. Knauer, C., Spillner, A.: Fixed-parameter algorithms for finding
crossing-free spanning trees in geometric graphs. Tech. Rep.
06–07, Department of Computer Science, Friedrich-Schiller-
Universität Jena (2006)

13. Knauer, C., Spillner, A.: A fixed-parameter algorithm for the
minimumweight triangulation problem based on small graph
separators. In: Proceedings of the 32nd International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG).
Lecture Notes in Computer Science, vol. 4271, pp. 49–57.
Springer, New York (2006)

14. Lawler, E., Lenstra, J., Rinnooy Kan, A., Shmoys, D. (eds.): The
Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. Wiley, Chichester (1985)

15. Mulzer,W., Rote, G.: MinimumWeight Triangulation is NP-hard.
In: Proceedings of the 22nd Annual ACM Symposium on Com-
putational Geometry (SoCG), Association for Computing Ma-
chinery, New York 2006, pp. 1–10

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Ox-
ford Lecture Series inMathematics and Its Applications, vol. 31.
Oxford University Press, Oxford (2006)

17. Papadimitriou, C.H.: The Euclidean travelling salesman prob-
lem is NP-complete. Theor. Comput. Sci. 4, 237–244 (1977)

18. Spillner, A.: A faster algorithm for the minimum weight trian-
gulation problemwith few inner points. In: Broersma, H., John-
son, H., Szeider, S. (eds.) Proceedings of the 1st ACiD Work-
shop. Texts in Algorithmics, vol. 4, pp. 135–146. King’s College,
London (2005)

19. Spillner, A.: Optimal convex partitions of point sets with few
inner points. In: Proceedings of the 17th Canadian Conference
on Computational Geometry (CCCG), 2005, pp. 34–37

964 T Traveling Salesperson Problem

Traveling Salesperson Problem
� Traveling Sales Person with Few Inner Points

Tree Agreement
�Maximum Agreement Subtree (of 2 Binary Trees)

Tree Alignment
�Maximum Agreement Subtree (of 3 or More Trees)

Tree Compression and Indexing
2005; Ferragina, Luccio, Manzini,Muthukrishnan

PAOLO FERRAGINA1, S. SRINIVASA RAO2

1 Department of Computer Science, University of Pisa,
Pisa, Italy

2 Computational Logic and Algorithms Group,
IT University of Copenhagen, Copenhagen, Denmark

Keywords and Synonyms

XML compression and indexing

ProblemDefinition

Trees are a fundamental structure in computing. They are
used in almost every aspect of modeling and representa-
tion for explicit computation like searching for keys,main-
taining directories, and representations of parsing or exe-
cution traces—to name just a few. One of the latest uses
of trees is XML, the de facto format for data storage, inte-
gration, and exchange over the Internet (see http://www.
w3.org/XML/). Explicit storage of trees, with one pointer
per child as well as other auxiliary information (e. g. la-
bel), is often taken as given but can account for the dom-
inant storage cost. Just to have an idea, a simple tree en-
coding needs at least 16 bytes per tree node: one pointer to
the auxiliary information (e. g. node label) plus three node
pointers to the parent, the first child, and the next sibling.
This large space occupancy may even prevent the process-
ing of medium size trees, e. g. XML documents. This entry
surveys the best known storage solutions for unlabeled and
labeled trees that are space efficient and support fast nav-
igational and search operations over the tree structure. In
the literature, they are referred to as succinct/compressed
tree indexing solutions.

Notation and Basic Facts

The information-theoretic storage cost for any item of
a universe U can be derived via a simple counting argu-
ment: at least log jUj bits are needed to distinguish any two
items ofU.1 Now, letT be a rooted tree of arbitrary degree
and shape, and consider the following threemain classes of
trees:

Ordinal Trees. T is unlabeled and its children are left-to-
right ordered. The number of ordinal trees on t nodes

is Ct =
�
c2t
t

�
/(t + 1) which induces a lower bound of

2t �	(log t) bits.
Cardinal k-ary Trees T is labeled on its edges with sym-

bols drawn from the alphabet ˙ = f1; : : : ; kg. Any
node has degree at most k because the edges out-
going from each node have distinct labels. Typi-
cal examples of cardinal trees are the binary tree
(k = 2), the (uncompacted) tree and the Patricia tree.
The number of k-ary cardinal trees on t nodes is

Ck
t =

�
kt + 1

t

�
/(kt + 1) which induces a lower bound

of t(log k + log e) bits, when k is a slowly-growing
function of t.

(Multi-)Labeled Trees. T is an ordinal tree, labeled on
its nodes with symbols drawn from the alphabet ˙ .
In the case of multi-labeled trees, every node has
at least one symbol as its label. The same symbols
may repeat among sibling nodes, so that the degree
of each node is unbounded, and the same labeled-
subpath may occur many times in T , anchored any-
where. The information-theoretic lower bound on the
storage complexity of this class of trees on t nodes
comes easily from the decoupling of the tree structure
and the storage of tree labels. For labeled trees it is
logCt + t log j˙ j = t(log j˙ j + 2)�	(log t) bits.

The following query operations should be supported
over T :

Basic Navigational Queries. They ask for the parent of
node u, the ith child of u, the degree of u. These op-
erations may be restricted to some label c 2 ˙ , if T is
labeled.

Sophisticated Navigational Queries. They ask for the jth
level-ancestor of u, the depth of u, the subtree size of u,
the lowest common ancestor of a pair of nodes, the ith
node according to some node ordering over T , possi-
bly restricted to some label c 2 ˙ (ifT is labeled). For
even more operations see [2,11].

1Throughout the entry, all logarithms are taken to the base 2, and
it is assumed 0 log 0 = 0.

http://www.w3.org/XML/
http://www.w3.org/XML/

Tree Compression and Indexing T 965

Subpath Query. Given a labeled subpath˘ , it asks for the
(number occ of) nodes of T that immediately descend
from ˘ . Every subpath occurrence may be anchored
anywhere in the tree (i. e. not necessarily in its root).

The elementary solution to the tree indexing problem con-
sists of encoding the tree T via a mixture of pointers and
arrays, thus taking a total of 	(t log t) bits. This supports
basic navigational queries in constant time, but it is not
space efficient and requires the whole visit of the tree to
implement the subpath query or the more sophisticated
navigational queries. Here the goal is to design tree stor-
age schemes that are either succinct, namely “close to the
information-theoretic lower bound” mentioned before, or
compressed in that they achieve “entropy-bounded stor-
age.” Furthermore, these storage schemes do not require
the whole visit of the tree for most navigational opera-
tions. Thus, succinct/compressed tree indexing solutions
are distinct from simply compressing the input, and then
uncompressing it later on at query time.

In this entry, it is assumed that t � j˙ j and the Ran-
dom Access Machine (RAM) with word size 	(lg t) is
taken as the model of computation. This way, one can per-
form various arithmetic and bit-wise boolean operations
on single words in constant time.

Key Results

The notion of succinct data structures was introduced
by Jacobson [10] in a seminal work over 18 years ago.
He presented a storage scheme for ordinal trees using
2t + o(t) bits and supporting basic navigational queries in
O(log log t) time (i. e. parent, first child and next sibling
of a node). Later, Munro and Raman [13] closed the is-
sue for ordinal trees on basic navigational queries and the
subtree-size query by achieving constant query-time and
2t + o(t) bits of storage. Their storage scheme is called Bal-
anced Parenthesis (BP).2 Subsequently, Benoit et al. [3]
proposed a storage scheme called Depth-First Unary De-
gree Sequence (shortly, DFUDS) that still uses 2t + o(t) bits
but performsmore navigational queries like ith child, child
rank, and node degree in constant time. Geary et al. [8]
gave another representation still taking optimal space that
extends DFUDS’s operations to the level-ancestor query.

Although these three representations achieve the op-
timal space occupancy, none of them supports every ex-
isting operation in constant time: e. g. BP does not sup-

2Some papers [Chiang et al., ACM-SIAM SODA ‘01; Sadakane,
ISAAC ’01;Munro et al., J.ALG ‘01; Munro and Rao, ICALP ’04] have
extended BP to support in constant time other sophisticated naviga-
tional queries like LCA, node degree, rank/select on leaves and num-
ber of leaves in a subtree, level-ancestor and level-successor.

port ith child and child rank, DFUDS and Geary et al.’s
representation do not support LCA. Recently, Jansson et
al. [11] extended the DFUDS storage scheme in two di-
rections: (1) they showed how to implement in constant
time all navigational queries above;3 (2) they showed how
to compress the new tree storage scheme up to H*(T),
which denotes the entropy of the distribution of node de-
grees in T .

Theorem 1 ([Jansson et al. 2007]) For any rooted tree T
with t nodes, there exists a tree indexing scheme that uses
tH�(T) + O(t(log log t)2/ log t) bits and supports all navi-
gational queries in constant time.

This improves the standard tree pointer-based representa-
tion, since it needs no more thanH*(T) bits per node and
does not compromise the performance of sophisticated
navigational queries. Since it is H*(T) � 2, this solution
is also never worse than BP or DFUDS, but its improve-
ment may be significant! This result can be extended to
achieve the kth order entropy of the DFUDS sequence, by
adopting any compressed-storage scheme for strings (see
e. g. [7] and references therein).

Benoit et al. [3] extended the use of DFUDS to cardinal
trees, and proposed a tree indexing scheme whose space
occupancy is close to the information-theoretic lower
bound and supports various navigational queries in con-
stant time. Raman et al. [15] improved the space by using
a different approach (based on storing the tree as a set of
edges) thus proving the following:

Theorem 2 ([Raman et al. 2002]) For any k-ary cardi-
nal tree T with t nodes, there exists a tree indexing scheme
that uses logCk

t + o(t) + O(log log k) bits and supports in
constant time the following operations: finding the parent,
the degree, the ordinal position among its siblings, the child
with label c, the ith child of a node.

The subtree size operation cannot be supported efficiently
using this representation, so [3] should be resorted to in
case this operation is a primary concern.

Despite this flurry of activity, the fundamental prob-
lem of indexing labeled trees succinctly has remained
mostly unsolved. In fact, the succinct encoding for or-
dered trees mentioned above might be replicated j˙ j
times (one per possible symbol of˙), and then the divide-
and-conquer approach of [8] might be applied to reduce
the final space occupancy. However, the final space bound

3The BP representation and the one of Geary et al. [8] have been
recently extended to support further operations—like depth/height
of a node, next node in the same level, rank/select over various node
orders—still in constant time and 2t+o(t) bits (see [9] and references
therein).

966 T Tree Compression and Indexing

would be 2t + t log j˙ j + O(tj˙ j(log log log t)/(log log t))
bits, which is nonetheless far from the information-
theoretic storage bound even for moderately large ˙ . On
the other hand, if subpath queries are of primary concern
(e. g. XML), one can use the approach of [12] which con-
sists of a variant of the suffix-tree data structure prop-
erly designed to index all T ’s labeled paths. Subpath
queries can be supported in O(j˘ j log j˙ j + occ) time,
but the required space would be still 	(t log t) bits (with
large hidden constants due to the use of suffix trees). Re-
cently, some papers [1,2,5] addressed this problem in its
whole generality by either dealing simultaneously with
subpath and basic navigational queries [5], or by consid-
ering multi-labeled trees and a larger set of navigational
operations [1,2].

The tree-indexing scheme of [5] is based on a trans-
form of the labeled tree T , denoted xbw[T], which lin-
earizes it into two coordinated arrays hSlast;S˛i: the for-
mer capturing the tree structure and the latter keeping
a permutation of the labels of T . xbw[T] has the opti-
mal (up to lower-order terms) size of 2t + t log j˙ j bits
and can be built and inverted in optimal linear time. In
designing the XBW-Transform, the authors were inspired
by the elegant Burrows–Wheeler transform for strings [4].
The power of xbw[T] relies on the fact that it allows one to
transform compression and indexing problems on labeled
trees into easier problems over strings. Namely, the follow-
ing two string-search primitives are key tools for indexing
xbw[T]: rankc(S; i) returns the number of occurrences of
the symbol c in the string prefix S[1; i], and selectc(S; j)
returns the position of the jth occurrence of the symbol c in
string S. The literature offers many time/space efficient
solutions for these primitives that could be used as
a black-box for the compressed indexing of xbw[T] (see
e. g. [2,14] and references therein).

Theorem 3 ([Ferragina et al. 2005]) Consider a tree T
consisting of t nodes labeled with symbols drawn from al-
phabet ˙ . There exists a compressed tree-indexing scheme
that achieves the following performance:
� If j˙ j = O(polylog(t)), the index takes at most

tH0(S˛) + 2t + o(t) bits, supports basic navigational
queries in constant time and (counting) subpath queries
in O(j˘ j) time.

� For any alphabet˙ , the index takes less than tHk(S˛)+
2t + o(t log j˙ j)) bits, but label-based navigational
queries and (counting) subpath queries are slowed down
by a factor o((log log j˙ j)3).

Here Hk(s) is the kth order empirical entropy of string s,
with Hk(s) � Hk�1(s) for any k > 0.

Since Hk(S˛) � H0(S˛) � log j˙ j, the indexing of
xbw[T] takes at most as much space as its plain repre-
sentation, up to lower order terms, but with the additional
feature of being able to navigate and search T efficiently.
This is indeed a sort of pointerless representation of the la-
beled treeT with additional search functionalities (see [5]
for details).

If sophisticated navigational queries over labeled trees
are a primary concern, and subpath queries are not neces-
sary, then the approach of Barbay et al. [1,2] should be fol-
lowed. They proposed the novel concept of succinct index,
which is different from the concept of succinct/compressed
encoding implemented by all the above solutions. A suc-
cinct index does not touch the data to be indexed, it just
accesses the data via basic operations offered by the un-
derlying abstract data type (ADT), and requires asymp-
totically less space than the information-theoretic lower
bound on the storage of the data itself. The authors re-
duce the problem of indexing labeled trees to the one of
indexing ordinal trees and strings; and the problem of in-
dexing multi-labeled trees to the one of indexing ordinal
trees and binary relations. Then, they provide succinct in-
dexes for strings and binary relations. In order to present
their result, the following definitions are needed. Let m be
the total number of symbols in T , tc be the number of
nodes labeled c in T , and let �c be the maximum num-
ber of labels c in any rooted path of T (called the recursiv-
ity of c). Define � as the average recursivity of T , namely
� = (1/m)

P
c2˙ (tc�c).

Theorem 4 ([Barbay et al. 2007]) Consider a treeT con-
sisting of t nodes (multi-)labeled with possibly many sym-
bols drawn from alphabet ˙ . Let m be the total number
of symbols in T , and assume that the underlying ADT for
T offers basic navigational queries in constant time and
retrieves the ith label of a node in time f . There is a suc-
cinct index for T using m(log � + o(log(j˙ j�))) bits that
supports for a given node u the following operations (where
L = log log j˙ j log log log j˙ j):
� Every c-descendant or c-child of u can be retrieved in

O(L (f + log log j˙ j)) time.
� The set A of c-ancestors of u can be retrieved in

O(L(f +log log j˙ j)+jAj(log log �c+log log log j˙ j(f +
log log j˙ j))) time.

Applications

As trees are ubiquitous in many applications, this section
concentrates just on two examples that, in their simplicity,
highlight the flexibility and power of succinct/compressed
tree indexes.

Tree Compression and Indexing T 967

The first example regards suffix trees, which are a cru-
cial algorithmic block of many string processing applica-
tions—ranging from bioinformatics to data mining, from
data compression to search engines. Standard implemen-
tations of suffix trees take at least 80 bits per node. The
compressed suffix tree of a string S[1; s] consists of three
components: the tree topology, the string depths stored
into the internal suffix-tree nodes, and the suffix pointers
stored in the suffix-tree leaves (also called suffix array of
S). The succinct tree representation of [11] can be used to
encode the suffix-tree topology and the string depths tak-
ing 4s + o(s) bits (assuming w.l.o.g. that j˙ j = 2). The suf-
fix array can be compressed up to the kth order entropy
of S via any solution surveyed in [14]. The overall result is
never worse than 80 bits per node, but can be significantly
better for highly compressible strings.

The second example refers to the XML format which is
often modeled as a labeled tree. The succinct/compressed
indexes in [1,2,5] are theoretical in flavor but turn out to
be relevant for practical XML processing systems. As an
example, [6] has published some initial encouraging ex-
perimental results that highlight the impact of the XBW-
Transform on real XML datasets. The authors show that
a proper adaptation of the XBW-Transform allows one to
compress XML data up to state-of-the-art XML-conscious
compressors, and to provide access to its content, navigate
up and down the XML tree structure, and search for simple
path expressions and substrings in a few milliseconds over
MBs of XML data, by uncompressing only a tiny fraction
of them at each operation. Previous solutions took several
seconds per operation!

Open Problems

For a complete set of open problems and further directions
of research, the interested reader is referred to the recom-
mended readings. Here two main problems, which natu-
rally derive from the discussion above, are commented.

Motivated by XML applications, one may like to extend
the subpath search operation to the efficient search for all
leaves ofT whose labels contain a substring ˇ and that de-
scend from a given subpath ˘ . The term “efficient” here
means in time proportional to j˘ j and to the number of
retrieved occurrences, but independent as much as possi-
ble of T ’s size in the worst case. Currently, this search op-
eration is possible only for the leaves which are immediate
descendants of ˘ , and even for this setting, the solution
proposed in [6] is not optimal.

There are two main encodings for trees which lead to
the results above: ordinal tree representation (BP, DFUDS
or the representation of Geary et al. [8]) and XBW. The

former is at the base of solutions for sophisticated naviga-
tional operations, and the latter is at the base of solutions
for sophisticated subpath searches. Is it possible to devise
one unique transform for the labeled tree T which com-
bines the best of the two worlds and is still compressible?

Experimental Results

See http://cs.fit.edu/~mmahoney/compression/text.html
and at the paper [6] for numerous experiments on XML
datasets.

Data Sets

See http://cs.fit.edu/~mmahoney/compression/text.html
and the references in [6].

URL to Code

Paper [6] contains a list of software tools for compression
and indexing of XML data.

Cross References

� Compressed Text Indexing
� Rank and Select Operations on Binary Strings
� Succinct Encoding of Permutations: Applications to

Text Indexing
� Table Compression
� Text Indexing

Recommended Reading

1. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching
in succinctly encodedbinary relations and tree-structureddoc-
uments. In: Proc. 17th Combinatorial Pattern Matching (CPM).
LNCS n. 4009 Springer, Barcelona (2006), pp. 24–35

2. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for
strings, binary relations and multi-labeled trees. In: Proc. 18th
ACM-SIAM Symposium on Discrete Algorithms (SODA), New
Orleans, USA, (2007), pp. 680–689

3. Benoit, D., Demaine, E., Munro, J.I., Raman, R., Raman, V., Rao,
S.S.: Representing trees of higher degree. Algorithmica 43,
275–292 (2005)

4. Burrows, M., Wheeler, D.: A block sorting lossless data com-
pression algorithm. Tech. Report 124, Digital Equipment Cor-
poration (1994)

5. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Struc-
turing labeled trees for optimal succinctness, and beyond. In:
Proc. 46th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 184–193. Cambridge, USA (2005)

6. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Com-
pressing and searching XML data via two zips. In: Proc. 15th
WorldWideWeb Conference (WWW), pp. 751–760. Edingburg,
UK(2006)

http://cs.fit.edu/~mmahoney/compression/text.html
http://cs.fit.edu/~mmahoney/compression/text.html

968 T Treewidth of Graphs

7. Ferragina, P., Venturini, R.: A simple storage scheme for strings
achieving entropy bounds. Theor. Comput. Sci. 372, (1):115–
121 (2007)

8. Geary, R., Raman, R., Raman, V.: Succinct ordinal trees with
level-ancestor queries. In: Proc. 15th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1–10. New Orleans, USA
(2004)

9. He, M., Munro, J.I., Rao, S.S.: Succinct ordinal trees based on
tree covering. In: Proc. 34th International Colloquium on Al-
gorithms, Language and Programming (ICALP). LNCS n. 4596,
pp. 509–520. Springer, Wroclaw, Poland (2007)

10. Jacobson, G.: Space-efficient static trees and graphs. In: Proc.
30th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 549–554. Triangle Park, USA (1989)

11. Jansson, J., Sadakane, K., Sung, W.: Ultra-succinct representa-
tion of ordered trees. In: Proc. 18th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 575–584. New Orleans,
USA(2007)

12. Kosaraju, S.R.: Efficient tree pattern matching. In: Proc. 20th
IEEE Foundations of Computer Science (FOCS), pp. 178–183.
Triangle Park, USA (1989)

13. Munro, J.I., Raman, V.: Succinct representation of balanced
parentheses and static trees. SIAM J. Comput. 31(3), 762–776
(2001)

14. Navarro, G., Mäkinen, V.: Compressed full text indexes. ACM
Comput. Surv. 39(1) (2007)

15. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionar-
ies with applications to encoding k-ary trees and multisets.
In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 233–242. San Francisco, USA (2002)

Treewidth of Graphs
1987; Arnborg, Corneil, Proskurowski

HANS L. BODLAENDER
Institute of Information and Computing Sciences
Algorithms and Complexity Group, Center for
Algorithmic Systems, University of Utrecht,
Utrecht, The Netherlands

Keywords and Synonyms

Partial k-tree; Dimension; k-decomposable graphs

ProblemDefinition

The treewidth of graphs is defined in terms of tree decom-
positions. A tree decomposition of a graph G = (V ; E) is
a pair (fXi ji 2 Ig; T = (I; F)) with fXi ji 2 Ig a collection
of subsets of V , called bags, and T a tree, such that
�
S

i2I Xi = V .
� For all fv;wg 2 E, there is an i 2 I with v;w 2 Xi .
� For all v 2 V , the set fi 2 Ijv 2 Xig induces a con-

nected subtree of T.

Treewidth of Graphs, Figure 1
A graph and a tree decomposition of width 2

The width of a tree decomposition is maxi2I jXi j � 1, and
the treewidth of a graph G is the minimum width of a tree
decomposition of G.

An alternative definition is in terms of chordal graphs.
A graph G = (V ; E) is chordal, if and only if each cycle of
length at least 4 has a chord, i. e., an edge between two
vertices that are not successive on the cycle. A graph G
has treewidth at most k, if and only if G is a subgraph of
a chordal graphH that has maximum clique size at most k.

A third alternative definition is in terms of orderings
of the vertices. Let
 be a permutation (called elimination
scheme in this context) of the vertices of G = (V ; E). Re-
peat the following step for i = 1; : : : ; jV j: take vertex
(i),
turn the set of its neighbors into a clique, and then re-
move v. The width of
 is the maximum over all vertices
of its degree when it was eliminated. The treewidth of G
equals the minimum width over all elimination schemes.

In the treewidth problem, the given input is an undi-
rected graph G = (V ; E), assumed to be given in its adja-
cency list representation, and a positive integer k < jV j.
The problem is to decide if G has treewidth at most k, and
if so, to give a tree decomposition of G of width at most k.

Key Results

Theorem 1 (Arnborg et al. [1]) The problem, given
a graph G and an integer k, is to decide if the treewidth of G
of at most k is nondeterministic polynomial-time (NP) com-
plete.

For many applications of treewidth and tree decomposi-
tions, the case where k is assumed to be a fixed constant
is very relevant. Arnborg et al. [1] gave in 1987 an algo-
rithm that solves this problem in O(nk+2) time. A number
of faster algorithms for the problem with k fixed have been
found; see, e. g., [6] for an overview.

Theorem 2 (Bodlaender [4]) For each fixed k, there is an
algorithm, that given a graph G = (V ; E) and an integer k,
decides if the treewidth of G is at most k, and if so, that finds
a tree decomposition of width at most k in O(n) time.

Treewidth of Graphs T 969

This result of Theorem 2 is of theoretical importance only:
in a practical setting, the algorithm appears to be much
too slow owing to the large constant factor, hidden in the
O-notation. For treewidth 1, the problem is equivalent to
recognizing trees. Efficient algorithms based on a small set
of reduction rules exist for treewidth 2 and 3 [2].

Two often-used heuristics for treewidth are the min-
imum fill-in and minimum degree heuristic. In the min-
imum degree heuristic, a vertex v of minimum degree is
chosen. The graph G0, obtained by making the neighbor-
hood of v a clique and then removing v and its incident
edges, is built. Recursively, a chordal supergraph H0 of G0

is made with the heuristic. Then, a chordal supergraph H
of G is obtained, by adding v and its incident edges from G
to H0. The minimum fill-in heuristic works similarly, but
now a vertex is selected such that the number of edges that
is added to make the neighborhood of v a clique is as small
as possible.

Theorem 3 (Fomin et al. [9]) There is an algorithm that,
given a graph G = (V ; E), determines the treewidth of G
and finds a tree decomposition of G of minimum width that
uses O(1:8899n) time.

Bouchitté and Todinca [8] showed that the treewidth can
be computed in polynomial time for graphs that have
a polynomial number of minimal separators. This implies
polynomial-time algorithms for several classes of graphs,
e. g., permutation graphs, weakly triangulated graphs.

Applications

One of the main applications of treewidth and tree de-
composition is that many problems that are intractable
(e. g., NP-hard) on arbitrary graphs become polynomial
time or linear time solvable when restricted to graphs of
bounded treewidth. The problems where this technique
can be applied include many of the classic graph and net-
work problems, like Hamiltonian circuit, Steiner tree, ver-
tex cover, independent set, and graph coloring, but it can
also be applied to many other problems. It is also used in
the algorithm by Lauritzen and Spiegelhalter [11] to solve
the inference problem on probabilistic (“Bayesian”, or “be-
lief”) networks. Such algorithms typically have the follow-
ing form. First, a tree decomposition of bounded width is
found, and then a dynamic programming algorithm is run
that uses this tree decomposition. Often, the running time
of this dynamic programming algorithm is exponential in
the width of the tree decomposition that is used, and thus
one wants to have a tree decomposition whose width is as
small as possible.

There are also general characterizations of classes of
problems that are solvable in linear time on graphs of
bounded treewidth. Most notable is the class of problems
that can be formulated in monadic second order logic and
extensions of these.

Treewidth has been used in the context of several ap-
plications or theoretical studies, including graph minor
theory, data bases, constraint satisfaction, frequency as-
signment, compiler optimization, and electrical networks.

Open Problems

There are polynomial-time approximation algorithms for
treewidth that guarantee a width ofO(k

p
log k) for graphs

of treewidth k, but it is an open question whether there is
a polynomial-time approximation algorithm for treewidth
with a constant quality ratio. Another long-standing open
problem is whether there is a polynomial-time algorithm
to compute the treewidth of planar graphs.

Also open is to find an algorithm for the case where the
bound on the treewidth k is fixed and whose running time
as a function on n is polynomial, and as a function on k
improves significantly on the algorithm of Theorem 2.

The base of the exponent of the running time of the
algorithm of Theorem 3 can possibly be improved.

Experimental Results

Many algorithms (upper-bound heuristics, lower-bound
heuristics, exact algorithms, and preprocessing methods)
for treewidth have been proposed and experimentally eval-
uated. An overview of many of such results is given in [7].
A variant of the algorithm by Arnborg et al. [1] was imple-
mented by Shoikhet and Geiger [15]. Röhrig [14] has ex-
perimentally evaluated the linear-time algorithm of Bod-
laender [4], and established that it is not practical, even for
small values of k. Theminimum degree and minimum fill-
in heuristics are frequently used [10].

Data Sets

A collection of test graphs and results for many of the algo-
rithms on these graphs can be found in the TreewidthLIB
collection [16].

Cross References

� Branchwidth of Graphs

Recommended Reading
1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of find-

ing embeddings in a k-tree. SIAM J. Algebr. Discret. Methods 8,
277–284 (1987)

970 T Triangle Finding

2. Arnborg, S., Proskurowski, A.: Characterization and recognition
of partial 3-trees. SIAM J. Algebr. Discret. Methods 7, 305–314
(1986)

3. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cy-
bernetica 11, 1–23 (1993)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-de-
compositions of small treewidth. SIAM J. Comput. 25, 1305–
1317 (1996)

5. Bodlaender, H.L.: A partial k-arboretum of graphs with
bounded treewidth. Theor. Comp. Sci. 209, 1–45 (1998)

6. Bodlaender, H.L.: Discovering treewidth. In: P. Vojtás̆,
M. Bieliková, B. Charron-Bost (eds.) Proceedings 31st Confer-
ence on Current Trends in Theory and Practive of Computer
Science, SOFSEM 2005. Lecture Notes in Computer Science,
vol. 3381, pp. 1–16. Springer, Berlin (2005)

7. Bodlaender, H.L.: Treewidth: Characterizations, applications,
and computations. In: Fomin, F.V. (ed.) Proceedings 32nd Inter-
national Workshop on Graph-Theoretic Concepts in Computer
Science WG’06. Lecture Notes in Computer Science, vol. 4271,
pp. 1–14. Springer, Berlin (2006)

8. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques
of a graph. Theor. Comput. Sci. 276, 17–32 (2002)

9. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, I.: Exact (expo-
nential) algorithms for treewidth and minimum fill-in (2006).
To appear in SIAM Journal of Computing, Preliminary version
appeared in ICALP 2004

10. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.:
Treewidth: Computational experiments. In: Broersma, H.,
Faigle, U., Hurink, J., Pickl, S. (eds.) Electronic Notes in Discrete
Mathematics, vol. 8, pp. 54–57. Elsevier, Amsterdam (2001)

11. Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with
probabilities on graphical structures and their application to
expert systems. J. Royal Stat. Soc. Ser. B (Methodological) 50,
157–224 (1988)

12. Reed, B.A.: Tree width and tangles, a new measure of connec-
tivity and some applications, LMS Lecture Note Series, vol. 241,
pp. 87–162. Cambridge University Press, Cambridge (1997)

13. Reed, B.A.: Algorithmic aspects of tree width, pp. 85–107. CMS
Books Math. Ouvrages Math. SMC, 11. Springer, New York
(2003)

14. Röhrig, H.: Tree decomposition: A feasibility study. Master’s
thesis, Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many (1998)

15. Shoikhet, K., Geiger, D.: A practical algorithm for finding opti-
mal triangulations. In: Proc. National Conference on Artificial
Intelligence (AAAI ’97), pp. 185–190. Morgan Kaufmann, San
Fransisco (1997)

16. Bodlaender, H.L.: Treewidthlib. http://www.cs.uu.nl/people/
hansb/treewidthlib (2004)

Triangle Finding
� Quantum Algorithm for Finding Triangles

Trip Planner
� Shortest Paths Approaches for Timetable Information

Truthful
� Nash Equilibria and Dominant Strategies in Routing

Truthful Auctions
� Truthful Mechanisms for One-Parameter Agents

Truthful Mechanisms
for One-Parameter Agents
2001; Archer, Tardos

MOSHE BABAIOFF
Microsoft Research, Silicon Valley,
Mountain View, CA, USA

Keywords and Synonyms

Incentive compatible mechanisms; Dominant strategy
mechanisms; Single-parameter agents; Truthful auctions

ProblemDefinition

This problem is concerned with designing truthful (dom-
inant strategy) mechanisms for problems where each
agent’s private information is expressed by a single pos-
itive real number. The goal of the mechanisms is to al-
locate loads placed on the agents, and an agent’s private
information is the cost she incurs per unit load. Archer
and Tardos [4] give an exact characterization for the al-
gorithms that can be used to design truthful mechanisms
for such load-balancing problems using appropriate side
payments. The characterization shows that the allocated
load must be monotonic in the cost (decreasing when the
cost on an agent increases, fixing the costs of the others).
Thus, truthful mechanisms are characterized by a condi-
tion on the allocation rule and on payments that ensures
voluntary participation can be calculated using the given
characterization.

The characterization is used to design polynomial-
time truthful mechanisms for several problems in com-
binatorial optimization to which the celebrated Vick-
rey-Clarke-Groves (VCG) mechanism does not apply.
For scheduling related parallel machines to minimize
makespan (QkCmax), Archer and Tardos [4] presented
a 3-approximation mechanism based on randomized
rounding of the optimal fractional solution. This mech-

http://www.cs.uu.nl/people/hansb/treewidthlib
http://www.cs.uu.nl/people/hansb/treewidthlib

Truthful Mechanisms for One-Parameter Agents T 971

anism is truthful only in expectation (a weaker notion
of truthfulness in which truthful bidding maximizes the
agent’s expected utility). Archer [3] improved it to a ran-
domized 2-approximation truthful mechanism. Andel-
man et al. [2] provided a deterministic truthful mechanism
that is 5-approximation. Kovács improved it to 3-approx-
imation in [9], and to 2.8-approximation in [10] (Kovács
also gave other results for two special cases). Andelman et
al. [2] also presented a deterministic fully polynomial time
approximation scheme (FPTAS) for scheduling on a fixed
number of machines, as well as a suitable payment scheme
that yields a deterministic truthful mechanism.Archer and
Tardos [4] presented results for goals other than mini-
mizing the makespan. They presented a truthful mecha-
nism for Qk

P
Cj (scheduling related machines to mini-

mize the sum of completion times), and showed that for
Qk

P
wjCj (minimizing the weighted sum of completion

times) 2/
p
3 is the best approximation ratio achievable by

a truthful mechanism.
This family of problems belongs to the field of algo-

rithmic mechanism design, initiated in the seminal paper
of Nisan and Ronen [12]. Nisan and Ronen considered
makespan minimization for scheduling on unrelated ma-
chines and proved upper and lower bounds (note that for
unrelated machines agents have more than one parame-
ter).Mu’alem and Schapira [11] presented improved lower
bounds. The problem of scheduling on related machines
to minimize the makespan has been considered in other
papers. Auletta et al. [5] and Ambrosio and Auletta [1]
presented truthful mechanisms for several nondetermin-
istic polynomial-time hard restrictions of this problem.
Nisan and Ronen [12] also introduced a model in which
the mechanism is allowed to observe the machines’ ac-
tual processing time and compute the payments after-
wards (in such a model the machines essentially cannot
claim to be faster than they are). Auletta et al. [6] pre-
sented additional results for this model. In particular, they
showed that it is possible to overcome the lower bound
of 2/
p
3 for Qk

P
wjCj (minimizing the weighted sum

of completion times) and provided a polynomial-time
(1 + �)-approximation truthful mechanism (with verifica-
tion) when the number of machines (m) is constant.

TheMechanism Design Framework

Let I be the set of agents. Each agent i 2 I has some private
value (type) consisting of a single parameter ti 2 < that
describes the agent, and which only i knows. Everything
else is public knowledge. Each agent will report a bid bi to
the mechanism. Let t denote the vector of true values, and
b the vector of bids.

There is some set of outcomes O, and given the bids b
the mechanism’s output algorithm computes an outcome
o(b) 2 O. For any types t, the mechanism aims to choose
an outcome o 2 O that minimizes some function g(o; t).
Yet, given the bids b the mechanism can only choose the
outcome as a function of the bids (o = o(b)) and has no
knowledge of the true types t. To overcome the problem
that the mechanism knows only the bids b, the mechanism
is designed to be truthful (using payments), that is, in such
a mechanism it is a dominant strategy for the agents to
reveal their true types (b = t). For such mechanisms min-
imizing g(o; t) is done by assuming that the bids are the
true types (and this is justified by the fact that truth-telling
is a dominant strategy).

In the framework discussed here we assume that out-
come o(b) will assign some amount of load or work
wi(o(b)) to each agent i, and given o(b) and ti, agent
i incurs some monetary cost, costi (ti ; o(b)) = tiwi(o(b)).
Thus, agent i’s private data ti measure her cost per unit
work.

Each agent i attempts to maximize her utility (profit),
ui (ti ; b) = Pi (b) � costi (ti ; o(b)), where Pi(b) is the pay-
ment to agent i.

Let b�i denote the vector of bids, not including agent
i, and let b = (b�i ; bi). Truth-telling is a dominant strat-
egy for agent i if bidding ti always maximizes her util-
ity, regardless of what the other agents bid. That is,
ui (ti ; (b�i ; ti)) � ui (ti ; (b�i ; bi)) for all b�i and bi.

A mechanism M consists of the pair M = (o(�); P(�)),
where o(�) is the output function and P(�) is the pay-
ment scheme, i. e., the vector of payment functions Pi (�).
An output function admits a truthful payment scheme if
there exist payments P(�) such that for the mechanism
M = (o(�); P(�)), truth-telling is a dominant strategy for
each agent. A mechanism that admits a truthful payment
scheme is truthful.

Mechanism M satisfies the voluntary participation
condition if agents who bid truthfully never incur a net
loss, i. e., ui (ti ; (b�i ; ti)) � 0 for all agents i, true values ti,
and other agents’ bids b�i .

Definition 1 With the other agents’ bids b�i fixed, the
work curve for agent i iswi(b�i ; bi), considered as a single-
variable function of bi. The output function o is decreasing
if each of the associated work curves is decreasing (i. e.,
wi(b�i ; bi) is a decreasing function of bi, for all i and b�i).

Scheduling on Related Machines

There are n jobs and m machines. The jobs represent
amounts of work p1 � p2 � � � � � pn , and let p denote the

972 T Truthful Mechanisms for One-Parameter Agents

set of jobs. Machine i runs at some speed si, so it must
spend p j/si units of time processing each job j assigned
to it. The input to an algorithm is b, the (reported) speed
of the machines, and the output is o(b), an assignment
of jobs to machines. The load on machine i for outcome
o(b) is wi(b) =

P
p j , where the sum runs over jobs j as-

signed to i. Each machine incurs a cost proportional to
the time it spends processing its jobs. The cost of ma-
chine i is costi (ti ; o(b)) = tiwi(o(b)), where ti = 1/si and
wi(b) is the total load assigned to i when the speeds are
b. Let Cj denote the completion time of job j. One can
consider the following goals for scheduling related parallel
machines:
� Minimizing the makespan (QkCmax), the mechanism’s

goal is to minimize the completion time of the last job
on the last machine, i. e., g(o; t) = Cmax = maxi ti �
wi(b).

� Minimize the sum of completion times (Qk
P

Cj), i. e.
g(o; t) = Qk

P
Cj =

P
j C j .

� Minimize the weighted sum of completion times
(Qk

P
wjCj), i. e., g(o; t) = Qk

P
wjCj =

P
j w jCj ,

where wj is the weight of job j.
An algorithm is a c-approximation algorithm with respect
to g, if for every instance (p, t) it outputs an outcome of
cost at most c � g(o(t); t). A c-approximation mechanism
is one whose output algorithm is a c-approximation. Note
that if themechanism is truthful the approximation is with
respect to the true speeds. A polynomial-time approxima-
tion scheme (PTAS) is a family of algorithms such that
for every � > 0 there exists a (1 + �)-approximation algo-
rithm. If the running time is also polynomial in 1/�, the
family of algorithms is a FPTAS.

Key Results

The following two theorems hold for the mechanism de-
sign framework as defined in Sect. Problem Definition.

Theorem 1 ([4]) The output function o(b) admits a truth-
ful payment scheme if and only if it is decreasing. In this
case, the mechanism is truthful if and only if the payments
Pi (b�i ; bi) are of the form

hi (b�i) + biwi(b�i ; bi) �
Z bi

0
wi(b�i ; u)du ;

where the hi are arbitrary functions.

Theorem 2 ([4]) A decreasing output function admits
a truthful payment scheme satisfying voluntary participa-
tion if and only if

R1
0 wi (b�i ; u)du <1 for all i; b�i . In

this case, the payments can be defined by

Pi (b�i ; bi) = biwi (b�i ; bi) +
Z 1
bi

wi(b�i ; u)du :

Theorem 3 ([4]) There is a truthful mechanism (not poly-
nomial time) that outputs an optimal solution for QkCmax
and satisfies voluntary participation.

Theorem 4 For the problem of minimizing the makespan
(QkCmax):
� There is a polynomial-time randomized algorithm that

deterministically yields a 2-approximation, and admits
a truthful payment scheme that creates a mechanism
that is truthful in expectation and satisfies voluntary
participation [3] .

� There is a polynomial-time deterministic 2.8-approx-
imation algorithm that admits a truthful payment
scheme that creates a mechanism that satisfies voluntary
participation [10].

� There is a deterministic FPTAS for scheduling on a fixed
number of machines that admits a truthful payment
scheme that creates a mechanism that satisfies voluntary
participation [2].

Theorem 5 ([4]) There is a truthful polynomial-time
mechanism that outputs an optimal solution for Qk

P
Cj

and satisfies voluntary participation.

Theorem 6 ([4]) No truthful mechanism for Qk
P

wjCj
can achieve an approximation ratio better than 2/

p
3, even

on instances with just two jobs and two machines.

Applications

Archer and Tardos [4] applied the characterization of
truthful mechanisms to problems other than scheduling.
They presented results for the uncapacitated facility loca-
tion problem as well as the maximum-flow problem.

Kis and Kapolnai [8] considered the problem of
scheduling of groups of identical jobs on related machines
with sequence-independent setup times (Qjuj ; p jk =
p jkCmax). They provided a truthful, polynomial-time, ran-
domized mechanism for the batch-scheduling problem
with a deterministic approximation guarantee of 4 to the
minimalmakespan, based on the characterization of truth-
ful mechanisms presented above.

Open Problems

Considering scheduling on related machines to mini-
mize the makespan, Hochbaum and Shmoys [7] presented
a PTAS for this problem, but it is not monotonic. Is there

Truthful Multicast T 973

a truthful PTAS for this problem when the number of ma-
chines is not fixed? It is still an open problem whether
such a mechanism exists or not. Finding such a mech-
anism would be an interesting result. Proving a lower
bound that shows that such a mechanism does not exist
would be even more interesting as it will show that there
is a “cost of truthfulness” for this computational problem.
A gap between the best approximation algorithm and the
best monotonic algorithm (which creates a truthful mech-
anism), if it exists for this problem, would be a major step
in improving our understanding of the combined effect of
computational and incentive constraints.

Cross References

� Algorithmic Mechanism Design
� Competitive Auction
� Generalized Vickrey Auction
� Incentive Compatible Selection

Recommended Reading
1. Ambrosio, P., Auletta, V.: Deterministic monotone algorithms

for scheduling on relatedmachines. In: 2ndWs. onApprox. and
Online Alg. (WAOA), 2004, pp. 267–280

2. Andelman, N., Azar, Y., Sorani, M.: Truthful approximation
mechanisms for scheduling selfish related machines. In: 22nd
Ann. Symp. on Theor. Aspects of Comp. Sci. (STACS), 2005,
pp. 69–82

3. Archer, A.: Mechanisms for Discrete Optimizationwith Rational
Agents. Ph. D. thesis, Cornell University (2004)

4. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter
agents. In: 42nd Annual Symposium on Foundations of Com-
puter Science (FOCS), 2001, pp. 482–491

5. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Determinis-
tic truthful approximation mechanisms for scheduling related
machines. In: 21st Ann. Symp. on Theor. Aspects of Comp. Sci.
(STACS), 2004, pp. 608–619

6. Auletta, V., De Prisco, R., Penna, P., Persiano, G., Ventre, C.: New
constructions of mechanisms with verification. In: 33rd Inter-
national Colloquium on Automata, Languages and Program-
ming (ICALP) (1), 2006, pp. 596–607

7. Hochbaum, D., Shmoys, D.: A polynomial approximation
scheme for scheduling on uniform processors: Using the dual
approximation approach. SIAM J. Comput. 17(3), 539–551
(1988)

8. Kis, T., Kapolnai, R.: Approximations and auctions for schedul-
ing batches on relatedmachines. Operat. Res. Let. 35(1), 61–68
(2006)

9. Kovács, A.: Fast monotone 3-approximation algorithm for
scheduling related machines. In: 13th Annual European Sym-
posium (ESA), 2005, pp. 616–627

10. Kovács, A.: Fast Algorithms for Two Scheduling Problems.
Ph. D. thesis, Universität des Saarlandes (2007)

11. Mu’alem, A., Schapira, M.: Setting lower bounds on truthful-
ness. In: SODA, 2007

12. Nisan, N., Ronen, A.: Algorithmic mechanism design. Game.
Econ. Behav. 35, 166–196 (2001)

Truthful Multicast
2004; Wang, Li, Wang

WEIZHAO WANG1, XIANG-YANG LI2, YU WANG3

1 Google Inc., Irvine, CA, USA
2 Department of Computer Science, Illinois
Institute of Tech., Chicago, IL, USA

3 Department of Computer Science, University
of North Carolina at Charlotte, Charlotte, NC, USA

Keywords and Synonyms

Truthful multicast routing; Strategyproof multicast mech-
anism

ProblemDefinition

Several mechanisms [1,3,5,9], which essentially all belong
to the VCG mechanism family, have been proposed in the
literature to prevent the selfish behavior of unicast rout-
ing in a wireless network. In these mechanisms, the least
cost path, which maximizes the social efficiency, is used
for routing. Wang, Li, and Wang [8] studied the truth-
ful multicast routing protocol for a selfish wireless net-
work, in which selfish wireless terminals will follow their
own interests. The multicast routing protocol is composed
of two components: (1) the tree structure that connects
the sources and receivers, and (2) the payment to the re-
lay nodes in this tree. Multicast poses a unique challenge
in designing strategyproof mechanisms due to the rea-
son that (1) a VCG mechanism uses an output that max-
imizes the social efficiency; (2) it is NP-hard to find the
tree structure with theminimum cost, which in turnmaxi-
mizes the social efficiency. A range of multicast structures,
such as the least cost path tree (LCPT), the pruning min-
imum spanning tree (PMST), virtual minimum spanning
tree (VMST), and Steiner tree, were proposed to replace
the optimal multicast tree. In [8], Wang et al. showed how
payment schemes can be designed for existing multicast
tree structures so that rational selfish wireless terminals
will follow the protocols for their own interests.

Consider a communication network G = (V ; E; c),
where V = fv1; � � � ; vng is the set of communication
terminals, E = fe1; e2; � � � ; emg is the set of links, and
c is the cost vector of all agents. Here agents are termi-
nals in a node weighted network and are links in a link
weighted network. Given a set of sources and receivers
Q = fq0; q1; q2; � � � ; qr�1g � V , the multicast problem is
to find a tree T � G spanning all terminalsQ. For simplic-

974 T Truthful Multicast

ity, assume that s = q0 is the sender of a multicast session
if it exists. All terminals or links are required to declare
a cost of relaying the message. Let d be the declared costs
of all nodes, i. e., agent i declared a cost di. On the basis
of the declared cost profile d, a multicast tree needs to be
constructed and the payment pk(d) for each agent k needs
to be decided. The utility of an agent is its payment re-
ceived, minus its cost if it is selected in the multicast tree.
Instead of reinventing the wheels, Wang et al. still used the
previously proposed structures for multicast as the output
of their mechanism. Given a multicast tree, they studied
the design of strategyproof payment schemes based on this
tree.

Notations

Given a network H, !(H) denotes the total cost of all
agents in this network. If the cost of any agent i (link ei
or node vi) is changed to c0i, the new network is denoted
as G0 = (V ; E; cji c0i), or simply cji c0i . If one agent i is re-
moved from the network, it is denoted as cji1. For the
simplicity of notation, the cost vector c is used to denote
the network G = (V ; E; c) if no confusion is caused. For
a given source s and a given destination qi, LCP(s; qi ; c)
represents the shortest path between s and qi when the cost
of the network is represented by vector c. jLCP(s; qi ; d)j
denotes the total cost of the least cost path LCP(s; qi ; d).
The notation of several multicast trees is summarized as
follows.
1. Link Weighted Multicast Tree
� LCPT: The union of all least cost paths from the

source to receivers is called the least cost path tree,
denoted by LCPT(d).

� PMST: First construct the minimum spanning tree
MST(G) on the graph G. Take the tree MST(G)
rooted at sender s, prune all subtrees that do not
contain a receiver. The final structure is called the
Pruning Minimum Spanning Tree (PMST).

� LST: The Link Weighted Steiner Tree (LST) can
be constructed by the algorithm proposed by Taka-
hashi and Matsuyama [6].

2. Node Weighted Multicast Tree
� VMST: First construct a virtual graph using all re-

ceivers plus the sources as the vertices and the cost
of LCP as the link weight. Then compute the min-
imum spanning tree on the virtual graph, which is
called virtual minimum spanning tree (VMST). Fi-
nally, choose all terminals on the VMST as the relay
terminals.

� NST: The node weighted Steiner tree (NST) can be
constructed by the algorithm proposed by [4].

Key Results

If the LCPT tree is used as the multicast tree, Wang et al.
proved the following theorem.

Theorem 1 The VCG mechanism combined with LCPT is
not truthful.

Because of the failure of the VCG mechanism, they de-
signed their non-VGC mechanism for the LCPT-based
multicast routing as follows.

1: For each receiver qi 6= s, computes the least cost
path from the source s to qi , and compute a pay-
ment pik(d) to every link ek on the LCP(s; qi ; d) us-
ing the scheme for unicast

pik(d) = dk + jLCP(s; qi ; djk1)j� jLCP(s; qi ; d)j:

2: The final payment to link ek 2 LCPT is then
pk(d) = max

qi2Q
pik(d): (1)

The payment to each link not on LCPT is simply 0.

Truthful Multicast, Algorithm 1
Non-VCG mechanism for LCPT

Theorem 2 Payment (defined in Eq. (1)) based on LCPT
is truthful and it is minimum among all truthful payments
based on LCPT.

More generally, Wang et al. [8] proved the following theo-
rem.

Theorem 3 The VCG mechanism combined with either
one of the LCPT, PMST, LST, VMST, NST is not truthful.

1: Apply VCG mechanism on the MST. The payment
for edge ek 2 PMST(d) is

pk(d) = !(MST(djk1))�!(MST(d)) + dk : (2)

2: For every edge ek 62 PMST(d), its payment is 0.

Truthful Multicast, Algorithm 1
Non-VCG mechanism for PMST

Because of this negative result, they designed their non-
VCG mechanisms for all multicast structures they stud-
ied: LCPT, PMST, LST, VMST, NST. For example, Algo-
rithm 2 is the algorithm for PMST. For other algorithms,
please refer to [8].

Regarding all their non-VGC mechanisms, they
proved the following theorem.

Truthful Multicast T 975

Theorem 4 The non-VCG mechanisms designed for the
multicast structures LCPT, PMST, LST, VMST, NST are
not only truthful, but also achieve the minimum payment
among all truthful mechanisms.

Applications

In wireless ad hoc networks, it is commonly assumed that,
each terminal contributes its local resources to forward the
data for other terminals to serve the common good, and
benefits from resources contributed by other terminals to
route its packets in return. On the basis of such a funda-
mental design philosophy, wireless ad hoc networks pro-
vide appealing features such as enhanced system robust-
ness, high service availability and scalability. However, the
critical observation that individual users who own these
wireless devices are generally selfish and non-cooperative
may severely undermine the expected performances of
the wireless networks. Therefore, providing incentives to
wireless terminals is a must to encourage contribution and
thus maintains the robustness and availability of wireless
networking systems. On the other hand, to support a com-
munication among a group of users, multicast is more ef-
ficient than unicast or broadcast, as it can transmit pack-
ets to destinations using fewer network resources, thus
increasing the social efficiency. Thus, most results of the
work ofWang et al. can apply to multicast routing in wire-
less networks in which nodes are selfish. It not only guar-
antees that multicast routing behaves normally but also
achieves good social efficiency for both the receivers and
relay terminals.

Open Problems

There are several unsolved challenges left as future work
in [8]. Some of these challenges are listed below.
� How to design algorithms that can compute these pay-

ments in asymptotically optimum time complexities is
presently unknown.

� Wang et al. [8] only studied the tree-based structures
for multicast. Practically, mesh-based structures may
be more needed for wireless networks to improve the
fault tolerance of the multicast. It is unknown whether
a strategyproof multicast mechanism can be designed
for some mesh-based structures used for multicast.

� All of the tree construction and payment calculations
in [8] are performed in a centralized way, it would be
interesting to design some distributed algorithms for
them.

� In the work by Wang et al. [8] it was assumed that the
receivers will always relay the data packets for other re-
ceivers for free, the source node of the multicast will

pay the relay nodes to compensate their cost, and the
source node will not charge the receivers for getting the
data. As a possible future work, the budget balance of
the source node needs to be considered if the receivers
have to pay the source node for getting the data.

� Fairness of payment sharing needs to be considered in
a case where the receivers share the total payments to
all relay nodes on the multicast structure. Notice that
this is different from the cost-sharing studied in [2], in
which they assumed a fixed multicast tree, and the link
cost is publicly known; in that work they showed how
to share the total link cost among receivers.

� Another important task is to study how to implement
the protocols proposed in [8] in a distributed manner.
Notice that, in [3,9], distributed methods have been de-
veloped for a truthful unicast using some cryptography
primitives.

Cross References

� Algorithmic Mechanism Design

Recommended Reading
1. Anderegg, L., Eidenbenz, S.: Ad hoc-VCG: a truthful and cost-

efficient routing protocol for mobile ad hoc networks with self-
ish agents. In: Proceedings of the 9th annual international con-
ference on Mobile computing and networking. pp. 245–259
ACM Press, New York (2003)

2. Feigenbaum, J., Papadimitriou, C., Shenker, S.: Sharing the cost
of multicast transmissions. J. Comput. Syst. Sci. 63(1), 21–41
(2001)

3. Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-
based mechanism for lowest-cost routing. In: Proceedings of
the 2002 ACM Symposium on Principles of Distributed Com-
puting, pp. 173–182. Monterey, 21–24 July 2002

4. Klein, P., Ravi, R.: A nearly best-possible approximation algo-
rithm for node-weighted Steiner trees. J. Algorithms 19(1),
104–115 (1995)

5. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc.
31st Annual Symposium on Theory of Computing (STOC99),
Atlanta, 1–4 May 1999, pp. 129–140 (1999)

6. Takahashi, H., Matsuyama, A.: An approximate solution for the
Steiner problem in graphs. Math. Jap. 24(6), 573–577 (1980)

7. Wang, W., Li, X.-Y.: Low-Cost routing in selfish and rational
wireless ad hoc networks. IEEE Trans. Mobile Comput. 5(5),
596–607 (2006)

8. Wang, W., Li, X.-Y., Wang, Y.: Truthful multicast in selfish wire-
less networks. In: Proceedings of the 10th ACM Annual inter-
national Conference on Mobile Computing and Networking,
Philadelphia, 26 September – 1 October 2004

9. Zhong, S., Li, L., Liu, Y., Yang, Y.R.: On designing incentive-
compatible routing and forwarding protocols in wireless ad-
hoc networks –an integrated approach using game theo-
retical and cryptographic techniques. In: Proceedings of the
11th ACM Annual international Conference on Mobile Com-
puting and Networking, Cologne, 28 August – 2 September
2005

976 T Truthful Multicast Routing

Truthful Multicast Routing
� Truthful Multicast

t-Spanners
� Geometric Spanners

TSP-Based Curve Reconstruction
2001; Althaus, Mehlhorn

EDGAR RAMOS
School of Mathematics, National University of Colombia,
Medellín, Colombia

ProblemDefinition

An instance of the curve reconstruction problem is a finite
set of sample points V in the plane, which are assumed to
be taken from an unknown planar curve � . The task is to
construct a geometric graph G on V such that two points
inV are connected by an edge inG if and only if the points
are adjacent on � . The curve � may consist of one or more
connected components, and each of them may be closed
or open (with endpoints), and may be smooth everywhere
(tangent defined at every point) or not.

Many heuristic approaches have been proposed to
solve this problem. This work continues a line of recon-
struction algorithms with guaranteed performance, i. e. al-
gorithms which probably solve the reconstruction prob-
lem under certain assumptions of � and V . Previous
proposed solutions with guaranteed performances were
mostly local: a subgraph of the complete geometric graph
defined by the points is considered (in most cases the De-
launay edges), and then filtered using a local criteria into
a subgraph that will constitute the reconstruction. Thus,
most of these algorithms fail to enforce that the solution
have the global property of being a path/tour or collec-
tion of paths/tours and so usually require a dense sampling
to work properly and have difficulty handling nonsmooth
curves. See [6,7,8] for surveys of these algorithms.

This work concentrates on a solution approach based
on the traveling salesman problem (TSP). Recall that a trav-
eling salesman path (tour) for a set V of points is a path
(cycle) passing through all points in V . An optimal travel-
ing salesmanpath (tour) is a traveling salesmanpath (tour)
of shortest length. The first question is under which con-
ditions for � and V a traveling salesman path (tour) is
a correct reconstruction. Since the construction of an opti-
mal traveling salesman path (tour) is anNP-hard problem,

a second question is whether for the specific instances un-
der consideration, an efficient algorithm is possible.

A previous work of Giesen [9] gave a first weak an-
swer to the first question: For every benign semiregu-
lar closed curve � , there exists an � > 0 with the fol-
lowing property: If V is a finite sample set from � so
that for every x 2 � there is a p 2 V with kpvk � �,
then the optimal traveling salesman tour is a polygonal
reconstruction of � . For a curve � : [0; 1]! R2, its left
and right tangents at � (t0), are defined as the limits of
the ratio j� (t2) � � (t1)j / jt2 � t1j as (t1; t2) converges to
(t0; t0) from the right (t0 < t1 < t2) and from the right
(t1 < t2 < t0) respectively. A curve is semiregular if both
tangents exist at every points and regular if the tangents
exist and coincide at every point. The turning angle of
� at p is the angle between the left and right tangents at
a points p. A semiregular curve is benign if the turning an-
gle is less than
 .

To investigate the TSP-based solution of the recon-
struction problem, this work considers its integer linear
programming (ILP) formulation and the corresponding
linear programming (LP) relaxation. The motivation is
that a successful method for solving the TSP is to use
a branch-and-cut algorithm based on the LP-relaxation.
See Chapter 7 in [5]. For a path with endpoints a and b,
the formulation is based on variables xu;v 2 f0; 1g for each
pair u, v inV (indicating whether the edge uv is in the path
(xuv = 1) or not (xuv = 0) and consists of the following ob-
jective function and constraints (xuu = 0 for all u 2 V):

minimize
X
u;v2V

kuvk � xuv

subject to
X
v2V

xuv = 2 for all u 2 V n fa; bg

X
v2V

xuv = 1 for u 2 fa; bg

X
u;v2V 0

xuv �
ˇ̌
V 0
ˇ̌
� 1 for V 0
 V , V 0 ¤ ;

xuv 2 f0; 1g for all u; v 2 V .

Here kuvk denotes the Euclidean distance between u and
v and so the objective function is the total length of the se-
lected edges. This is called the subtour-ILP for the TSP with
specified endpoints. The equality constraints are called the
degree constraints, the inequality ones are called subtour
elimination constraints and the last ones are called the inte-
grality constraints. If the degree and integrality constraints
hold, the corresponding graph could include disconnected
cycles (subtours), hence the need for the subtour elimina-
tion constraints. The relaxed LP is obtained by replacing

TSP-Based Curve Reconstruction T 977

TSP-Based Curve Reconstruction, Figure 1
Sample data and its reconstruction

the integrality constraints by the constraints 0 � xuv � 1
and is called the subtour-LP for the TSP with specified end-
points. There is a polynomial time algorithm that given
a candidate solution returns a violated constraint if it ex-
ists: the degree constraints are trivial to check and the sub-
tour elimination constraints are checked using a min cut
algorithm (if a; b are joined by an edge and all edge capac-
ities are made equal to one, then a violated subtour con-
straint corresponds to a cut smaller than two). This means
that the subtour-LP for the TSP with specified endpoints
can potentially be solved in polynomial time in the bit size
of the input description, using the ellipsoid method [10].

Key Results

The main results of this paper are that, given a sample set
V with a; b 2 V from a benign semiregular open curve �
with endpoints a, b and satisfying certain sampling condi-
tion [it], then
� the optimal traveling salesman path on V with end-

points a; b is a polygonal reconstruction of � from V ,
� the subtour-LP for traveling salesman paths has an op-

timal integral solution which is unique.
This means that, under the sampling conditions, the
subtour-LP solution provides a TSP solution and also sug-
gests a reconstruction algorithm: solve the subtour-LP
and, if the solution is integral, output it. If the input sat-
isfies the sampling condition, then the solution will be
integral and the result is indeed a polygonal reconstruc-
tion. Two algorithms are proposed to solve the subtour-
LP. First, using the simplex method and the cutting plane
framework: it starts with an LP consisting of only the de-
gree constraints and in each iteration solves the current LP

and checks whether that solution satisfies all the subtour
elimination constraints (using a min cut algorithm) and, if
not, adds a violated constraint to the current LP. This algo-
rithm has a potentially exponential running time. Second,
using a similar approach but with the ellipsoid method.
This can be implemented so that the running time is poly-
nomial in the bit size of the input points. This requires jus-
tification for using approximate point coordinates and dis-
tances.

The main tool in deriving these results is the connec-
tion between the subtour-LP and the so-called Held–Karp
bound. The line of argument is as follows:
� Let c(u; v) = kuvk and � : V ! R be a potential func-

tion. The corresponding modified distance function c�
is defined by c�(u; v) = c(u; v) � �(u) � �(v).

� For any traveling salesman path T with endpoints a, b,

c�(T) = c(T) � 2
X
v2V

�(v) + �(a) + �(b);

and so an optimal traveling salesman path with end-
points a; b for c� is also optimal for c.

� Let C� be the cost of a minimum spanning tree MST�
under c�, then since a traveling salesman path is
a spanning tree, the optimal traveling salesman T0 sat-
isfiesC� � c�(T0) = c(T0)�2

P
v2V �(v)+�(a)+�(b),

and so

max
�

C� + 2

X
v2V

�(v) � �(a) � �(b)

!
� c(T0) :

The term on the left is the so called Held–Karp bound.
� Now, if for a particular �, MST� is a path with end-

points a; b, then MST� is in fact an optimal traveling
salesman path with endpoints a; b, and the Held–Karp
bound matches c(T0).

� The Held–Karp bound is equal to the optimal objective
value of the subtour-LP. This follows by relaxation of
the degree constraints in a Lagrangian fashion (see [5])
and gives an effective way to compute the Held-Karp
bound: solve the subtour-LP.

� Finally, a potential function � is constructed for � so
that, for an appropriately dense sample set V , MST�
is unique and is a polygonal reconstruction with end-
points a, b. This then implies that solving the subtour-
LP will produce a correct polygonal reconstruction.

Note that the potential function � enters the picture only
as an analysis tool. It is not needed by the algorithm. The
authors extend this work to the case of open curves with-
out specified endpoints and of closed curves using varia-
tions of the ILP formulation and a more restricted sam-
pling condition. They also extend it to the case of a col-
lection of closed curves. The latter requires preprocessing

978 T TSP-Based Curve Reconstruction

that partitions points into groups that are expected to form
individual curves. Then each subgroup is processed with
the subtour-LP approach and then the quality of the result
assessed and then that partition may be updated.

Finite Precision

The above results are obtained assuming exact represen-
tation of point samples and the distances between them,
so claiming a polynomial time algorithm is not immediate
as the running time of the ellipsoid method is polynomial
in the bit size of the input. The authors extend the results
to the case in which points and the distances between them
are known only approximately and from this they can con-
clude the polynomial running time.

Relation to Local Feature Size

The defined potential function � is related to the so called
local feature size function f used in the theory of smooth
curve reconstruction, where f (p) is defined as the distance
from p to themedial axis of the curve � . In this paper,�(p)
is defined as d(p)/3 where d(p) is the size of the largest
neighborhood of p so that � in that neighborhood does
not deviate significantly from a flat segment of curve. This
paper shows f (p) < 3d(p). In fact,�(p) amounts to a gen-
eralization of the local feature size to nonsmooth curves
(for a corner point p, �(p) is proportional to the size of
the largest neighborhood of p such that � inside does not
deviate significantly from a corner point with two nearly
flat legs incident to it, and for points near the corner, � is
defined as an appropriate interpolation of the two defini-
tions), and is in fact similar to definitions proposed else-
where.

Applications

The curve reconstruction problem appears in applied ar-
eas such as cartography. For example, to determine level
sets, features, object contours, etc. from samples. Admit-
tedly, these applications usually may require the ability to
handle very sparse sampling and noise. The 3D version
of the problem is very important in areas such as indus-
trial manufacturing, medical imaging, and computer ani-
mation. The 2D problem is often seen as a simpler (toy)
problem to test algorithmic approaches.

Open Problems

A TSP-based solution when the curve � is a collection of
curves, not all closed, is not given in this paper. A solution
similar to that for closed curves (partitioning and then ap-
plication of subtour-LP for each) seems feasible for gen-

eral collections, but some technicalities need to be solved.
More interesting is the study of corresponding reconstruc-
tion approaches for surfaces in 3D.

Experimental Results

The companion paper [2] presents results of experiments
comparing the TSP-based approach to several (local) De-
launay filtering algorithms. The TSP implementation uses
the simplex method and the cutting plane framework
(with a potentially exponential running time algorithm).
The experiments show that the TSP-based approach has
a better performance, allowing for much sparser samples
than the others. This is to be expected given the global
nature of the TSP-based solution. On the other hand, the
speed of the TSP-based solution is reported to be compet-
itive when compared to the speed of the others, despite its
potentially bad worst-case behavior.

Data Sets

None reported. Experiments in [2] were performed with
a simple reproducible curve based on a sinusoidal with
varying number of periods and samples.

URL to Code

The code of the TSP-based solution as well as the
other solutions considered in the companion paper [2]
are available from: http://www.mpi-inf.mpg.de/~althaus/
LEP:Curve-Reconstruction/curve.html

Cross References

� Engineering Geometric Algorithms
� Euclidean Traveling Salesperson Problem
�MinimumWeight Triangulation
� Planar Geometric Spanners
� Robust Geometric Computation

Recommended Reading
1. Althaus, E., Mehlhorn, K.: Traveling salesman-based curve re-

construction in polynomial time. SIAM J. Comput. 31, 27–66
(2001)

2. Althaus, E., Mehlhorn, K., Näher, S., Schirra, S.: Experiments on
curve reconstruction. In: ALENEX, 2000, pp. 103–114

3. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filter-
ing. Discret. Comput. Geom. 22, 481–504 (1999)

4. Amenta, N., Bern, M., Eppstein, D.: The crust and the ˇ -skele-
ton: Combinatorial curve reconstruction. Graph. Model. Image
Process. 60, 125–135 (1998)

5. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Com-
binatorial Optimization. Wiley, New York (1998)

http://www.mpi-inf.mpg.de/�egingroup uppercase {count@ 160}
elax
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup althaus/LEP:Curve-Reconstruction/curve.html
http://www.mpi-inf.mpg.de/�egingroup uppercase {count@ 160}
elax
elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup althaus/LEP:Curve-Reconstruction/curve.html

Two-Dimensional Pattern Indexing T 979

6. Dey, T.K.: Curve and surface reconstruction. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational
Geometry, 2nd edn. CRC, Boca Raton (2004)

7. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with
Mathematical Analysis. Cambridge University Press, New York
(2006)

8. Edlesbrunner, H.: Shape reconstruction with the Delaunay
complex. In: LATIN’98, Theoretical Informatics. Lecture Notes
in Computer Science, vol. 1380, pp. 119–132. Springer, Berlin
(1998)

9. Giesen, J.: Curve reconstruction, the TSP, and Menger’s theo-
rem on length. Discret. Comput. Geom. 24, 577–603 (2000)

10. Schrijver, A.: Theory of Linear and Integer Programming. Wiley,
New York (1986)

Two-Dimensional Compressed
Matching
�Multidimensional Compressed Pattern Matching

Two-Dimensional Pattern Indexing
2005; Na, Giancarlo, Park

JOONG CHAE NA1, PAOLO FERRAGINA2,
RAFFAELE GIANCARLO3, KUNSOO PARK4
1 Department of Computer Science and Engineering,
Sejong University, Seoul, Korea

2 Department of Computer Science, University of Pisa,
Pisa, Italy

3 Department of Mathematics and Applications,
University of Palermo, Palermo, Italy

4 School of Computer Science and Engineering,
Seoul National University, Seoul, Korea

Keywords and Synonyms

Two-Dimensional indexing for pattern matching; Two-
Dimensional index data structures; Index data structures
for matrices or images; Indexing for matrices or images

ProblemDefinition

This entry is concerned with designing and building in-
dexes of a two-dimensional matrix, which is basically the
generalization of indexes of a string, the suffix tree [12]
and the suffix array [11], to a two-dimensional matrix.
This problem was first introduced by Gonnet [7]. Infor-
mally, a two-dimensional analog of the suffix tree is a tree
data structure storing all submatrices of an n � m ma-
trix, n � m. The submatrix tree [2] is an incarnation of

such indexes. Unfortunately, building such indexes re-
quires˝(nm2) time [2]. Therefore, much of the attention
paid has been restricted to square matrices and submatri-
ces, the important special case in which much better re-
sults are available.

For square matrices, the Lsuffix tree and its array form,
storing all square submatrices of an n � n matrix, have
been proposed [3,9,10]. Moreover, the general framework
for these index families is also introduced [4,5]. Motivated
by LZ1-type image compression [14], the on-line case, i.e,
the matrix is given one row or column at a time, has been
also considered. These data structures can be built in time
close to n2. Building these data structures is a nontrivial ex-
tension of the algorithms for the standard suffix tree and
suffix array. Generally, a tree data structure and its array
form of this type for square matrices are referred to as the
two-dimensional suffix tree and the two-dimensional suffix
array, which are the main concerns of this entry.

Notations

Let A be an n � n matrix with entries defined over a fi-
nite alphabet ˙ . A[i::k; j::l] denotes the submatrix of
A with corners (i, j), (k, j), (i, l), and (k, l). When i = k
or j = l , one of the repeated indexes is omitted. For
1 � i; j � n, the suffix A(i, j) of A is the largest square
submatrix of A that starts at position (i, j) in A. That is,
A(i; j) = A[i::i + k; j:: j + k] where k = n �max(i; j). Let
$i be a special symbol not in˙ such that $i is lexicograph-
ically smaller than any other character in ˙ . Assume that
$i is lexicographically smaller than $j for i < j. For nota-
tional convenience, assume that the last entries of the ith
row and column are $i. It makes all suffixes distinct. See
Fig. 1a and b for an example.

Let L˙ =
S1

i=1˙
2i�1. The strings of L˙ are referred

to as Lcharacters, and each of them is considered as an
atomic item. L˙ is called the alphabet of Lcharacters. Two
Lcharacters are equal if and only if they are equal as strings
over ˙ . Moreover, given two Lcharacters La and Lb of
equal length, La is lexicographically smaller than or equal
to Lb if and only if the string corresponding to La is lex-
icographically smaller than or equal to that correspond-
ing to Lb. A chunk is the concatenation of Lcharacters
with the following restriction: an Lcharacter in ˙2i�1 can
precede only one in ˙2(i+1)�1 and succeed only one in
˙2(i�1)�1. An Lstring is a chunk such that the first Lchar-
acter is in˙ .

For dealing with matrices as strings, a linear represen-
tation of squarematrices is needed.Given A[1::n; 1::n], di-
vide A into n L-shaped characters. Let a(i) be the concate-
nation of row A[i; 1::i � 1] and column A[1::i; i]. Then

980 T Two-Dimensional Pattern Indexing

a(i) can be regarded as an Lcharacter. The linearized string
of matrix A, called the Lstring of matrix A, is the con-
catenation of Lcharacters a(1); : : : ; a(n). See Fig. 1c for
an example. Slightly different linearizations have been
used [9,10,13], but they are essentially the same in the as-
pect of two-dimensional functionality.

Two-Dimensional Suffix Trees

The suffix tree of matrix A is a compacted trie over the
alphabet L˙ that represents Lstrings corresponding to all
suffixes of A. Formally, the two-dimensional suffix tree of
matrix A is a rooted tree that satisfies the following condi-
tions (see Fig. 1d for an example):
1. Each edge is labeled with a chunk.
2. There is no internal node of outdegree one.
3. Chunks assigned to sibling edges start with different

Lcharacters, which are of the same length as strings
in˙�.

4. The concatenation of the chunks labeling the edges on
the path from the root to a leaf gives the Lstring of ex-
actly one suffix of A, say A(i, j). It is said that this leaf is
associated with A(i, j).

5. There is exactly one leaf associated with each suffix.

Two-Dimensional Pattern Indexing, Figure 1
a Amatrix A, b the suffix A(2;1) and Lcharacters composing A(2;1), c the Lstring of A(2;1), d the suffix tree of A, and e the suffix array
of A (omitting the suffixes started with $i)

Conditions 4 and 5 mean that there is a one-to-one corre-
spondence between the leaves of the tree and the suffixes
of A (which are all distinct because $i is unique).

Problem 1 (Construction of 2D suffix tree)
INPUT: An n � n matrix A.
OUTPUT: A two-dimensional suffix tree storing all square
submatrices of A.

On-Line Suffix Trees

Assume that A is read on-line in row major order (col-
umn major order can be considered similarly). Let At =
A[1::t; 1::n] and rowt = A[t; 1::n]. At time t � 1, nothing
but At�1 is known about A. At time t, rowt is read and so
At is known. After time t, the on-line suffix tree of A is
storing all suffixes of At . Note that Condition 4 may not
be satisfied during the on-line construction of the suffix
tree. A leaf may be associated with more than one suffix,
because the suffixes of At are not all distinct.

Problem 2 (On-line construction of 2D suffix tree)
INPUT: A sequence of rows of n � n matrix A, row1;

row2; : : : ; rown.

Two-Dimensional Pattern Indexing T 981

OUTPUT: A two-dimensional suffix tree storing all square
submatrices of At after reading rowt.

Two-Dimensional Suffix Arrays
The two-dimensional suffix array of matrix A is basically
a sorted list of all Lstrings corresponding to suffixes of A.
Formally, the kth element of the array has the start po-
sition (i, j) if and only if the Lstring of A(i, j) is the kth
smallest one among the Lstrings of all suffixes of A. See
Fig. 1e for an example. The two-dimensional suffix array
is also coupled with additional information tables, called
Llcp and Rlcp, to enhance its performance like the stan-
dard suffix array. The two-dimensional suffix array can be
constructed from the two-dimensional suffix tree in linear
time.
Problem 3 (Construction of 2D suffix array)
INPUT: An n � n matrix A.
OUTPUT: The two-dimensional suffix array storing all
square submatrices of A.

Submatrix Trees
The submatrix tree is a tree data structure storing all sub-
matrices. This entry just gives a result on submatrix trees.
See [2] for details.
Problem 4 (Construction of a submatrix tree)
INPUT: An n � m matrix B, n � m.
OUTPUT: The submatrix tree and its array form storing all
submatrices of B.

Key Results

Theorem 1 (Kim and Park 1999 [10], Cole and Hariha-
ran 2000 [1]) Given an n � n matrix A over an integer
alphabet, one can construct the two-dimensional suffix tree
in O(n2) time.
Kim and Park’s result is a deterministic algorithm, Cole
and Hariharan’s result is a randomized one. For an arbi-
trary alphabet, one needs first to sort it and then to apply
the theorem above.

Theorem 2 (Na et al. 2005 [13]) Given an n � n matrix
A, one can construct on-line the two-dimensional suffix tree
of A in O(n2 log n) time.

Theorem 3 (Kim et al. 2003 [9]) Given an n � n matrix
A, one can construct the two-dimensional suffix array of
A in O(n2 log n) time without constructing the two-dimen-
sional suffix tree.

Theorem 4 (Giancarlo 1993 [2]) Given an n � m ma-
trix B, one can construct the submatrix tree of B in
O(nm2 log(nm)) time.

Applications
Two-dimensional indexes can be used for many pattern-
matching problems of two-dimensional applications such
as low-level image processing, image compression, visual
data bases, and so on [3,6]. Given an n � n text matrix and
an m � m pattern matrix over an alphabet ˙ , the two-di-
mensional pattern retrieval problem, which is a basic pat-
tern matching problem, is to find all occurrences of the
pattern in the text. The two-dimensional suffix tree and
array of the text can be queried in O(m2 log j˙ j + occ)
time and O(m2 + log n + occ) time, respectively, where occ
is the number of occurrences of the pattern in the text.
This problem can be easily extended to a set of texts. These
queries have the same procedure and performance as those
of indexes for strings. On-line construction of the two-di-
mensional suffix tree can be applied to LZ-1-type image
compression [6].

Open Problems
The main open problems on two-dimensional indexes are
to construct indexes in optimal time. The linear-time con-
struction algorithm for two-dimensional suffix trees is al-
ready known [10]. The on-line construction algorithm due
to [13] is optimal for unbounded alphabets, but not for in-
teger or constant alphabets. Another open problem is to
construct two-dimensional suffix arrays directly in linear
time.

Experimental Results
An experiment that compares construction algorithms of
two-dimensional suffix trees and suffix arrays was pre-
sented in [8]. Giancarlo’s algorithm [2] and Kim et al.’s
algorithm [8] were implemented for two-dimensional suf-
fix trees and suffix arrays, respectively. Random matrices
of sizes 200 � 200
 800 � 800 and alphabets of sizes 2, 4,
16 were used for input data. According to experimental re-
sults, the construction of two-dimensional suffix arrays is
ten-times faster and five-times more space-efficient than
that of two-dimensional suffix trees.

Cross References
�Multidimensional String Matching
� Suffix Array Construction
� Suffix Tree Construction in RAM

Recommended Reading

1. Cole, R. Hariharan, R.: Faster suffix tree construction with miss-
ing suffix links. In: Proceedings of the 30th Annual ACM Sym-
posium on Theory of Computing, 2000, pp. 407–415

2. Giancarlo, R.: An index data structure for matrices, with appli-
cations to fast two-dimensional patternmatching. In: Proceed-

982 T Two-Dimensional Pattern Matching with Scaling

ings of Workshop on Algorithm and Data Structures, vol. 709,
pp. 337–348. Springer Lect. Notes Comp. Sci.Montréal, Canada
(1993)

3. Giancarlo, R.: A generalization of the suffix tree to square
matrices, with application. SIAM J. Comput. 24, 520–562
(1995)

4. Giancarlo, R., Grossi, R.: On the construction of classes of suf-
fix trees for square matrices: Algorithms and applications. Inf.
Comput. 130, 151–182 (1996)

5. Giancarlo, R., Grossi, R.: Suffix tree data structures for matri-
ces. In: Apostolico, A., Galil, Z. (eds.) Pattern Matching Algo-
rithms, ch. 11„ pp. 293–340. Oxford University Press, Oxford
(1997)

6. Giancarlo, R., Guaiana, D.: On-line construction of two-dimen-
sional suffix trees. J. Complex. 15, 72–127 (1999)

7. Gonnet, G.H.: Efficient searching of text and pictures. Tech. Re-
port OED-88-02, University of Waterloo (1988)

8. Kim, D.K., Kim, Y.A., Park, K.: Constructing suffix arrays for multi-
dimensional matrices. In: Proceedings of the 9th Symposium
on Combinatorial Pattern Matching, 1998, pp. 249–260

9. Kim, D.K., Kim, Y.A., Park, K.: Generalizations of suffix arrays to
multi-dimensional matrices. Theor. Comput. Sci. 302, 401–416
(2003)

10. Kim, D.K., Park, K.: Linear-time construction of two-dimen-
sional suffix trees. In: Proceedings of the 26th International Col-
loquium on Automata, Languages, and Programming, 1999,
pp. 463–372

11. Manber, U., Myers, G.: Suffix arrays: A new method for on-line
string searches. SIAM J. Comput. 22, 935–948 (1993)

12. McCreight, E.M.: A space-economical suffix tree construction
algorithms. J. ACM 23, 262–272 (1976)

13. Na, J.C., Giancarlo, R., Park, K.:O(n2 log n) time on-line construc-
tion of two-dimensional suffix trees. In: Proceedings of the
11th International Computing and Combinatorics Conference,
2005, pp. 273–282

14. Storer, J.A.: Lossless image compression using generalized
LZ1-type methods. In: Proceedings of Data Compression Con-
ference, 1996, pp. 290–299

Two-Dimensional PatternMatching
with Scaling
� Two-Dimensional Scaled Pattern Matching

Two-Dimensional
Scaled PatternMatching
2006; Amir, Chencinski

AMIHOOD AMIR1
1 Department of Computer Science, Bar-Ilan University,
Ramat-Gan, Israel

2 Department of Computer Science, Johns Hopkins
University, Baltimore, MD, USA

Keywords and Synonyms

Pattern matching in scaled images; 2d scaled matching;
Two dimensional pattern matching with scaling; Multidi-
mensional scaled search

ProblemDefinition

Definition 1 LetT be a two-dimensional n � n array over
some alphabet˙ .
1. The unit pixels array for T (T1X) consists of n2 unit

squares, called pixels in the real plane <2. The corners
of the pixel T[i; j] are (i � 1; j� 1); (i; j� 1); (i � 1; j);
and (i; j). Hence the pixels of T form a regular n � n
array that covers the area between (0; 0); (n; 0); (0; n);
and (n; n). Point (0; 0) is the origin of the unit pixel
array. The center of each pixel is the geometric center
point of its square location. Each pixel T[i; j] is identi-
fied with the value from˙ that the original array T had
in that position. Say that the pixel has a color or a char-
acter from ˙ . See Fig. 1 for an example of the grid and
pixel centers of a 7 � 7 array.

2. Let r 2 <; r � 1. The r-ary pixels array for T (TrX) con-
sists of n2 r-squares, each of dimension r � r whose ori-
gin is (0; 0) and covers the area between (0; 0); (nr; 0);
(0; nr); and (nr; nr). The corners of the pixel T[i; j]
are ((i � 1)r; (j � 1)r); (ir; (j � 1)r); ((i � 1)r; jr); and
(ir; jr). The center of each pixel is the geometric center
point of its square location.

Two-Dimensional Scaled Pattern Matching, Figure 1
The grid and pixel centers of a unit pixel array for a 7 � 7 array

Two-Dimensional Scaled Pattern Matching T 983

Two-Dimensional Scaled Pattern Matching, Figure 2
An original image, scaled by 1.3 and scaled by 2, using the geometric model definition of scaling

Notation: Let r 2 <. [r] denotes the rounding of r, i. e.

[r] =

(
brc if r � brc < :5;
dre otherwise:

Definition 2 Let T be an n � n text array, P be an m � m
pattern array over alphabet ˙ , and let r 2 <; 1 � r � n

m .
Say that there is an occurrence of P scaled to r at text loca-
tion (i; j) if the following conditions hold:

Let T1X be the unit pixels array of T and PrX be the r-
ary pixel arrays of P. Translate PrX onto T1X in a manner
that the origin of PrX coincides with location (i � 1; j � 1)
of T1X . Every center of a pixel in T1X which is within the
area covered by (i � 1; j � 1); (i � 1; j � 1 + mr); (i � 1 +
mr; j � 1) and (i � 1 +mr; j � 1 + mr) has the same color
as the r-square of PrX in which it falls.

The colors of the centers of the pixels in T1X which are
within the area covered by (i � 1; j � 1); (i � 1; j � 1 +
mr); (i�1+mr; j�1) and (i � 1 + mr; j � 1 + mr) define
a [mr] � [mr] array over˙ . This array is denoted by Ps(r)

and called P scaled to r.

The above definition is the one provided in the geomet-
ric model, pioneered by Landau and Vishkin [15], and
Fredriksson and Ukkonen [14]. Prior to the advent of the
geometric model, the only discrete definition of scaling
was to natural scales, as defined by Amir, Landau and
Vishkin [10]:

Definition 3 Let P[m � m] be a two-dimensional matrix
over alphabet˙ (not necessarily bounded). Then P scaled
by s (Ps) is the sm � smmatrix where every symbol P[i; j]
of P is replaced by a s � s matrix whose elements all equal
the symbol in P[i; j]. More precisely,

Ps[i; j] = P[d
i
s
e; d

j
s
e] :

Say that pattern P[m � m] occurs (or an occurrence
of P starts) at location (k; l) of the text T if for any
i 2 f1; : : : ;mg and j 2 f1; : : : ;mg, T[k + i�1; l + j�1] =
P[i; j].

The two dimensional pattern matching problem with
natural scales is defined as follows.
INPUT: Pattern matrix P[i; j] i = 1; : : :m; j = 1; : : : ;m
and Text matrix T[i; j] i = 1; : : : ; n; j = 1; : : : ; n where
n > m.
OUTPUT: all locations in T where an occurrence of P
scaled by s (an s-occurrence) starts, for any s = 1; : : : ; b nm c.

The natural scales definition cannot answer normal ev-
eryday occurrences such as an image scaled to, say, 1.3.
This led to the geometric model. The geometric model
is a discrete adaptation, without smoothing, of scaling as
used in computer graphics. The definition is pleasing in
a “real-world” sense. Figure 2 shows “lenna” scaled to non-
discrete scales by the geometric model definition. The re-
sults look natural.

It is possible, of course, to consider a one dimensional
version of scaling, or scaling in strings. Both above defi-
nitions apply for one dimensional scaling where the text
and pattern are taken to be matrices having a single row.
The interest in one dimensional scaling lies because of two
reasons: (1) There is a faster algorithm for one dimen-
sional scaling in the geometric model than the restriction
of the two dimensional scaling algorithm to one dimen-
sion. (2) Historically, before the geometric model was de-
fined, there was an attempt [3] to define real scaling on
strings as follows.

Definition 4 Denote the string aa � � � a, where a is re-
peated r times, by ar . The one dimensional floor real scaled
matching problem is the following.

984 T Two-Dimensional Scaled Pattern Matching

INPUT: A pattern P = ar11 ar22 : : : a
r j
j , of lengthm, and a text

T of length n.
OUTPUT: All locations in the text where the substring
ac11 abr2kc2 : : : abr j�1kcj�1 ac jj appears, where c1 � br1kc and
c j � br j kc.

This definition indeed handles real scaling but has a signif-
icant weakness in that a string of lengthm scaled to r may
be significantly shorter than mr. For this reason the def-
inition could not be generalized to two dimensions. The
geometric model does not suffer from these deficiencies.

Key Results

The first results in scaled natural matching dealt with fixed
finite-sized alphabets.

Theorem 1 (Amir, Landau, and Vishkin 1992 [10])
There exists an O(jTj log j˙ j) worst-case time solution to
the two dimensional pattern matching problem with natu-
ral scales, for fixed finite alphabet˙ .

The main idea behind the algorithm is analyzing the text
with the aid of power columns. Those are the text columns
appearing m � 1 columns apart, where P is anm � m pat-
tern. This dependence on the pattern size make the power
columns useless where a dictionary of different sized pat-
terns is involved. A significantly simpler algorithmwith an
additional advantage of being alphabet-independentwas
presented in [6].

Theorem 2 (Amir and Calinescu 2000 [6]) There exists
an O(|T|) worst-case time solution to the two dimensional
pattern matching problem with natural scales.

The alphabet independent time complexity of this algo-
rithm was achieved by developing a scaling-invariant “sig-
nature” of the pattern. This idea was further developed to
scaled dictionary matching.

Theorem 3 (Amir andCalinescu 2000 [6]) Given a static
dictionary of square pattern matrices. It is possible in
O(jDj log k) preprocessing, where |D| is the total dictionary
size and k is the number of patterns in the dictionary, and
O(jTj log k) text scanning time, for input text T, to find all
occurrences of dictionary patterns in the text in all natural
scales.

This is identical to the time at [8], the best non-scaled
matching algorithm for a static dictionary of square pat-
terns. It is somewhat surprising that scaling does not
add to the complexity of single matching nor dictionary
matching.

The first algorithm to solve the scaled matching prob-
lem for real scales, was a one dimensional real scaling al-
gorithm using Definition 4.

Theorem 4 (Amir, Butman, and Lewenstein 1998 [3])
There exists an O(|T|) worst-case time solution to the one
dimensional floor real scaled matching problem.

The first algorithm to solve the two dimensional scaled
matching problem for real scales in the geometric model
is the following.

Theorem 5 (Amir, Butman, Lewenstein, and Porat
2003 [4]) Given an n � n text and m � m pattern. It is
possible to find all pattern occurrences in all real scales in
time O(nm3 + n2m logm) and space O(nm3 + n2).

The above result was improved.

Theorem 6 (Amir and Chencinski 2006 [7]) Given an
n � n text and m � m pattern. It is possible to find all pat-
tern occurrences in all real scales in time O(n2m) and space
O(n2).

This algorithm achieves its time by exploiting geometric
characteristics of nested scales occurrences and a sophisti-
cated use of dueling [1,16].

The assumption in both above algorithms is that the
scaled occurrence of the pattern starts at the top left corner
of some pixel.

It turns out that one can achieve faster times in the one
dimensional real scaled matching problem, even in the ge-
ometric model.

Theorem 7 (Amir, Butman, Lewenstein, Porat, and Tsur
2004 [5]) Given a text string T of length n and a pat-
tern string P of length m, there exists an O(n logm +
m
p
nm logm) worst-case time solution to the one dimen-

sional pattern matching problem with real scales in the geo-
metric model.

Applications

The problem of finding approximate occurrences of a tem-
plate in an image is a central one in digital libraries and
web searching. The current algorithms to solve this prob-
lem use methods of computer vision and computational
geometry. Theymodel the image in another space and seek
a solution there. A deterministic worst-case algorithm in
pixel-level images does not yet exist. Yet, such an algo-
rithm could be useful, especially in raw data that has not
been modeled, e. g. movies. The work described here ad-
vances another step toward this goal from the scaling point
of view.

Two-Interval Pattern Problems T 985

Open Problems

Finding all scaled occurrences without fixing the scaled
pattern start at the top left corner of the text pixel would
be important from a practical point of view. The final goal
is an integration of scaling with rotation [2,11,12,13] and
local errors (edit distance) [9].

Cross References

�Multidimensional Compressed Pattern Matching
�Multidimensional String Matching

Recommended Reading

1. Amir, A., Benson, G., Farach, M.: An alphabet independent ap-
proach to two dimensional pattern matching. SIAM J. Comput.
23(2), 313–323 (1994)

2. Amir, A., Butman, A., Crochemore, M., Landau, G.M., Schaps,
M.: Two-dimensional pattern matching with rotations. Theor.
Comput. Sci. 314(1–2), 173–187 (2004)

3. Amir, A., Butman, A., Lewenstein, M.: Real scaled matching. Inf.
Proc. Lett. 70(4), 185–190 (1999)

4. Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real two dimen-
sional scaled matching. In: Proc. 8th Workshop on Algorithms
and Data Structures (WADS ’03), pp. 353–364 (2003)

5. Amir, A., Butman, A., Lewenstein, M., Porat, E., Tsur, D.: Effi-
cient one dimensional real scaledmatching. In: Proc. 11th Sym-
posium on String Processing and Information Retrieval (SPIRE
’04), pp. 1–9 (2004)

6. Amir, A., Calinescu, G.: Alphabet independent and dictionary
scaled matching. J. Algorithms 36, 34–62 (2000)

7. Amir, A., Chencinski, E.: Faster two dimensional scaled match-
ing. In: Proc. 17th Symposium on Combinatorial Pattern
Matching (CPM). LNCS, vol. 4009, pp. 200–210. Springer, Berlin
(2006)

8. Amir, A., Farach, M.: Two dimensional dictionary matching. Inf.
Proc. Lett. 44, 233–239 (1992)

9. Amir, A., Landau, G.: Fast parallel and serial multidimensional
approximate array matching. Theor. Comput. Sci. 81, 97–115
(1991)

10. Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching
with scaling. J. Algorithms 13(1), 2–32 (1992)

11. Amir, A., Tsur, D., Kapah, O.: Faster two dimensional pattern
matching with rotations. In: Proc. 15th Annual Symposium on
Combinatorial PatternMatching (CPM ’04), pp. 409–419 (2004)

12. Fredriksson, K., Mäkinen, V., Navarro, G.: Rotation and lighting
invariant template matching. In: Proceedings of the 6th Latin
American Symposium on Theoretical Informatics (LATIN’04).
LNCS, pp. 39–48 (2004)

13. Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and
fast approximate two dimensional pattern matching allowing
rotations. In: Proceedings of the 13th Annual Symposium on
Combinatorial Pattern Matching (CPM 2002). LNCS, vol. 2373,
pp. 235–248 (2002)

14. Fredriksson, K., Ukkonen, E.: A rotation invariant filter for two-
dimensional string matching. In: Proc. 9th Annual Symposium
on Combinatorial Pattern Matching (CPM). LNCS, vol. 1448,
pp. 118–125. Springer, Berlin (1998)

15. Landau, G.M., Vishkin, U.: Pattern matching in a digitized im-
age. Algorithmica 12(3/4), 375–408 (1994)

16. Vishkin, U.: Optimal parallel pattern matching in strings. Proc.
12th ICALP, pp. 91–113 (1985)

Two-Interval Pattern Problems
2004; Vialette
2007; Cheng, Yang, Yuan

STÉPHANE VIALETTE
IGM-LabInfo, University of Paris-East, Descartes, France

Keywords and Synonyms
2-intervals; RNA structures

ProblemDefinition
The problem is concerned with finding large constrained
patterns in sets of 2-intervals. Given a single-stranded
RNA molecule, a sequence of contiguous bases of the
molecule can be represented as an interval on a single line,
and a possible pairing between two disjoint sequences can
be represented as a 2-interval, which is merely the union
of two disjoint intervals. Derived from arc-annotated se-
quences, 2-interval representation considers thus only the
bonds between the bases and the pattern of the bonds, such
as hairpin structures, knots and pseudoknots. Amaximum
cardinality disjoint subset of a candidate set of 2-intervals
restricted to certain prespecified geometrical constraints
can provide a useful valid approximation for RNA sec-
ondary structure determination.

The geometric properties of 2-intervals provide a pos-
sible guide for understanding the computational complex-
ity of finding structured patterns in RNA sequences. Us-
ing a model to represent nonsequential information allows
us to vary restrictions on the complexity of the pattern
structure. Indeed, two disjoint 2-intervals, i. e., two 2-in-
tervals that do not intersect in any point, can be in prece-
dence order (<), be allowed to nest (@) or be allowed to
cross (G). Furthermore, the set of 2-intervals and the pat-
tern can have different restrictions, e. g., all intervals have
the same length or all the intervals are disjoint. These dif-
ferent combinations of restrictions alter the computational
complexity of the problems, and need to be examined sep-
arately. This examination produces efficient algorithms for
more restrictive structured patterns, and hardness results
for those that are less restrictive.

Notations
Let I = [a; b] be an interval on the line. Write start(I) = a
and end(I) = b. A 2-interval is the union of two dis-

986 T Two-Interval Pattern Problems

joint intervals defined over a single line and is denoted
by D = (I; J); I is completely to the left of J. Write
left(D) = I and right(D) = J. Two 2-intervals D1 = (I1; J1)
and D2 = (I2; J2) are said to be disjoint (or noninter-
secting) if both 2-intervals share no common point, i. e.,
(I1 [J1) \ (I2 [J2) = ;. For such disjoint pairs of 2-in-
tervals, three natural binary relations, denoted<, @ andG,
are of special interest:
� D1 < D2 (D1 precedes D2); if I1 < J1 < I2 < J2,
� D1 @ D2 (D1 is nested in D2); if I2 < I1 < J1 < J2,

and
� D1GD2 (D1 crosses D2); if I1 < I2 < J1 < J2.
A pair of 2-intervals D1 and D2 is said to be R-compa-
rable for some R 2 f<;@;Gg, if either D1RD2 or D2RD1.
Note that any two disjoint 2-intervals are R-comparable
for some R 2 f<;@;Gg. A set of disjoint 2-intervals D is
said to be R-comparable for someR
 f<;@;Gg,R ¤ ;,
if any pair of distinct 2-intervals inD is R-comparable for
some R 2 R. The nonempty subset R is called a model
forD.

The 2-interval-pattern problem asks one to find in
a set of 2-intervals a largest subset of pairwise compati-
ble 2-intervals. In the present context, compatibility de-
notes the fact that any two 2-intervals in the solution are
(1) nonintersecting and (2) satisfy some prespecified ge-
ometrical constraints. The 2-interval-pattern problem is
formally defined as follows:

Problem 1 (2-interval-pattern)
INPUT: A set of 2-intervalsD and a modelR
 f<;@;Gg.
SOLUTION: AR-comparable subsetD0
 D.
MEASURE: The size of the solution, i. e., jD0j.
According to the above definition, any solution for the 2-
interval-pattern problem for some model R
 f<;@;Gg
corresponds to an RNA structure constrained by R.
For example, a solution for the 2-interval-pattern
problem for the R = f<;@g model corresponds to
a pseudoknot-free structure (a pseudoknot in an RNA se-
quence S = s1; s2; : : : ; sn is composed of two interleav-
ing nucleotide pairings (si ; s j) and (si 0 ; s j0) such that
i < i0 < j < j0).

Some additional definitions are needed for further al-
gorithmic analysis. Let D be a set of 2-intervals. The
width (respectively height, depth) is the size of a maximum
cardinality f<g-comparable (respectively f@g-compara-
ble, fGg-comparable) subsetD0
 D. The interleaving dis-
tance of a 2-interval Di 2 D is defined to be the distance
between the two intervals of Di, i. e., start(right(Di)) �
end(left(Di)). The total interleaving distance of the set
of 2-intervals D, written L(D), is the sum of all inter-
leaving distances, i. e., L(D) =

P
Di2D start(right(Di)) �

end(left(Di)). The interesting coordinates of D are de-
fined to be the set X(D) =

S
Di2Dfend(left(Di));

start(right(Di))g. The density of D, written d(D), is the
maximum number of 2-intervals inD over a single point.
Formally, d(D) = maxx2X(D)fD 2 D : end(left(D) � x
< start(right(D))g.

Constraints

The structure of the set of all (simple) intervals involved
in a set of 2-intervals D turns out to be of particular im-
portance for algorithmic analysis of the 2-interval-pattern
problem. The interval ground set of D, denoted I(D),
is the set of all intervals involved in D, i. e., I(D) =
fleft(Di) : Di 2 Dg [fright < (Di) : Di 2 Dg. In [7,20],
four types of interval ground sets were introduced.
1. Unlimited: no restriction on the structure.
2. Balanced: each 2-interval Di 2 D is composed of two

intervals having the same length, i. e., jleft(Di)j =
jright(Di)j.

3. Unit: the interval ground set I(D) is solely composed
of unit length intervals.

4. Disjoint: no two distinct intervals in the interval ground
set I(D) intersect.
Observe that a unit 2-interval set is balanced, while the

converse is not necessarily true. Furthermore, for most ap-
plications, one may assume that a disjoint 2-interval set is
unit. Observe that in this latter case, a set of 2-intervals re-
duces to a graphG = (V ; E) equipped with a numbering of
its vertices from 1 to jV j, and hence the 2-interval-pattern
problem for disjoint interval ground sets reduces to find-
ing a constrained maximum matching in a linear graph.
Considering additional restrictions such as:
� Bounding the width, the height or the depth of either

the input set of 2-intervals or the solution subset
� Bounding the interleaving distances
is also of interest for practical applications.

Key Results

The different combinations of the models and interval
ground sets alter the computational complexity of the 2-
interval-pattern problem. The main results are summa-
rized in Tables 1 (time complexity and hardness) and 2
(approximation for hard instances).

Theorem 1 The 2-interval-pattern problem is approx-
imable (APX) hard for models R = f<;@;Gg and R =
f@;Gg, and is nondeterministic polynomial-time (NP) com-
plete – in its natural decision version – for modelR = f<;G
g, even when restricted to unit interval ground sets.

Two-Interval Pattern Problems T 987

Two-Interval Pattern Problems, Table 1
Complexity of the 2-interval-pattern problem for all combina-
tions of models and interval ground sets. For the polynomial-
time cases, n = jDj, L = L(D) and d = d(D)

ModelR Interval ground set I(D)
Unlimited, Balanced, Unit Disjoint

f<;@;Gg APX-hard [1] O(n
p
n) [15]

f<;Gg NP-complete [3] unknown
f@;Gg APX-hard [19] O(n log n + L) [8]
f<;@g O(n log n + nd) [8]
f<g O(n log n) [19]
f@g O(n log n) [3]
fGg O(n log n + L) [8]

Notice here that the 2-interval-pattern problem for model
R = f<;Gg is not APX-hard. Two hard cases of the 2-
interval-pattern turn out to be polynomial-time-solvable
when restricted to disjoint-interval ground sets.

Theorem 2 The 2-interval-pattern problem for a disjoint-
interval ground set is solvable in
� O(n

p
n) time for modelR = f<;@;Gg (trivial reduction

to the standard maximum matching problem)
� O(n log n + L) time for modelR = f@;Gg

The complexity of the 2-interval-pattern problem for
modelR = f<;Gg and a disjoint-interval ground set is still
unknown. Three cases of the 2-interval-pattern problem
are polynomial-time-solvable, regardless of the structure
of the interval ground sets.

Theorem 3 The 2-interval-pattern problem is solvable in
� O(n log n + nd) time for modelR = f<;@g
� O(n log n) time for modelsR = f<g andR = f@g
� O(n log n + L) time for modelR = fGg

One may now turn to approximating hard instances of
the 2-interval-pattern problem. Surprisingly enough, no
significant differences (in terms of approximation guar-
antees) have yet been found for the 2-interval-pattern
problem between the model R = f<;@;Gg and the model
R = f@;Gg (the approximation algorithms are, however,
different).

Theorem 4 The 2-interval-pattern problem for model
R = f<;@;Gg or modelR = f@;Gg is approximable within
ratio
� 4 for unlimited-interval ground sets, and
� 2 + � for unit-interval ground sets.
The 2-interval-pattern problem for modelR = f<;Gg is ap-
proximable within ratio 1 + 1/�, � � 2 for all models.

A practical 3-approximation algorithm for model
R = f<;@;Gg (resp. R = f@;Gg) and unit interval ground
set that runs in O(n lg n) (resp. O(n2 lg n)) time has
been proposed in [1] (resp. [7]). For model R = f<;Gg,
a more practical 2-approximation algorithm that runs
in O(n3 lg n) time has been proposed in [10]. Notice
that Theorem 4 holds true for the weighted version of
the 2-interval-pattern problem [7] except for models
R = f<;@;Gg andR = f@;Gg and unit interval ground set
where the best approximation ratio is 2:5 + � [5].

Applications

Sets of 2-intervals can be used for modeling stems in RNA
structures [20,21], determining DNA sequence similari-
ties [13] or scheduling jobs that are given as groups of non-
intersecting segments in the real line [1,9]. In all these ap-
plications, one is concerned with finding a maximum car-
dinality subset of nonintersecting 2-intervals. Some other
classical combinatorial problems are also of interest [5].
Also, considering sets of t-intervals (each element is the
union of at most t disjoint intervals) and their correspond-
ing intersection graph has proved to be useful.

It is computationally challenging to predict RNA
structures including pseudoknots [14]. Practical ap-
proaches to cope with intractability are either to restrict
the class of pseudoknots under consideration [18] or to
use heuristics [6,17,19]. The general problem of establish-
ing a general representation of structured patterns, i. e.,
macroscopic describers of RNA structures, was considered
in [20]. Sets of 2-intervals provide such a natural geomet-
ric description.

Constructing a relevant 2-interval set from a RNA se-
quence is relatively easy: stable stems are selected, usu-
ally according to a simplified thermodynamic model with-
out accounting for loop energy [2,16,19,20,21]. Predicting
a reliable RNA structure next reduces to finding a max-
imum subset of nonconflicting 2-intervals, i. e., a subset
of disjoint 2-intervals. Considering in addition a model
R
 f<;@;Gg allows us to vary restrictions on the com-
plexity of the pattern structure. In [21], the treewidth of
the intersection graph of the set of 2-intervals is consid-
ered for speeding up the computation.

For sets of 2-intervals involved in practical applica-
tions, restrictions on the interval ground set are needed.
Unit interval ground sets were considered in [7]. Of partic-
ular importance in the context of molecular biology (RNA
structures and DNA sequence similarities) are balanced
interval ground sets, where each 2-interval is composed of
two equally length intervals.

988 T Two-Interval Pattern Problems

Two-Interval Pattern Problems, Table 2
Performance ratios for hard instances of the 2-interval-pattern problem. LP stands for Linear Programming and N/A stands for Not
Applicable

ModelR Interval ground set I(D)
Unlimited Balanced Unit Disjoint

f<;@;Gg 4 LP [1] 4
O(n lgn) [7]

2 + �
O(n2 + nO(log 1/�)) [13]

N/A

f@;Gg 4 LP [7] 4
O(n2 lg n) [7]

2 + �
O(n2 + nO(log 1/�)) [13]

N/A

f<;Gg 1 + 1/� O(n2�+3); � � 2 [14]

Open Problems

A number of problems related to the 2-interval-pattern
problem remain open. First, improving the approxima-
tion ratios for the various flavors of the 2-interval-pattern
problem is of particular importance. For example, the exis-
tence of a fast approximation algorithm with good perfor-
mance guarantee for the 2-interval-pattern problem for
model R = f<;@;Gg remains an apparently challenging
open problem. A related open research area is concerned
with balanced-interval ground sets. In particular, no ev-
idence has shown yet that the 2-interval-pattern prob-
lem becomes easier to approximate for balanced-interval
ground sets. This question is of special importance in the
context of RNA structures where most 2-intervals are bal-
anced.

A number of important question are still open for
model R = f<;Gg. First, it is still unknown whether the
2-interval-pattern problem for disjoint-interval ground
sets and model R = f<;Gg is polynomial-time-solvable.
Observe that this problem trivially reduces to the fol-
lowing graph problem: Given a graph G = (V ; E) with
V = f1; 2; : : : ; ng, find a maximum cardinality matching
M
 E such that for any two distinct edges fi; jg and
fk; lg ofM, i < j, k < l and i < k, either j < k or j < l .
Another open question concerns the approximation of the
2-interval-pattern problem for balanced interval ground
set. Is this special case better approximable than the gen-
eral case?

A last direction of research is concerned with the pa-
rameterized complexity of the 2-interval-pattern prob-
lem. For example, it is not known whether the 2-interval-
pattern problem for models R = f<;@;Gg, R = f@;Gg or
R = f<;Gg is fixed-parameter-tractable when parameter-
ized by the size of the solution. Also, investigating the pa-
rameterized complexity for parameters such as the max-
imum number of pairwise crossing intervals in the input
set or the treewidth of the corresponding intersection 2-in-
terval graph, which are expected to be relatively small for
most practical applications, is of particular interest.

Cross References

� RNA Secondary Structure Prediction Including
Pseudoknots

� RNA Secondary Structure Prediction by Minimum
Free Energy

Recommended Reading

1. Bar-Yehuda, R., Halldorsson, M., Naor, J., Shachnai, H., Shapira,
I.: Scheduling split intervals. In: Proc. 13th Annual ACM-SIAM
SymposiumonDiscrete Algorithms (SODA), 2002, pp. 732–741

2. Billoud, B., Kontic, M., Viari, A.: Palingol a declarative program-
ming language to describe nucleic acids’ secondary structures
and to scan sequence database. Nucleic. Acids. Res. 24, 1395–
1403 (1996)

3. Blin, G., Fertin, G., Vialette, S.: Extracting 2-intervals subsets
from 2-interval sets. Theor. Comput. Sci. 385(1–3), 241–263
(2007)

4. Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval pat-
tern problem. In: Proc. 15th Annual Symposium on Combina-
torial Pattern Matching (CPM). Lecture Notes in Computer Sci-
ence, vol. 3109. Springer, Berlin (2004)

5. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimiza-
tion problems in multiple-interval graphs. In: Proc. 9th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM-
SIAM, 2007, pp. 268–277

6. Chen, J.-H., Le, S.-Y., Maize, J.: Prediction of common secondary
structures of RNAs: a genetic algorithm approach. Nucleic.
Acids. Res. 28, 991–999 (2000)

7. Crochemore, M., Hermelin, D., Landau, G., Rawitz, D., Vialette,
S.: Approximating the 2-interval pattern problem, Theoretical
Computer Science (special issue for Alberto Apostolico) (2008)

8. Erdong, C., Linji, Y., Hao, Y.: Improved algorithms for 2-interval
pattern problem. J. Combin. Optim. 13(3), 263–275 (2007)

9. Halldorsson, M., Karlsson, R.: Strip graphs: Recognition and
scheduling. In: Proc. 32nd International Workshop on Graph-
Theoretic Concepts in Computer Science (WG). Lecture Notes
in Computer Science, vol. 4271, pp. 137–146. Springer, Berlin
(2006)

10. Jiang, M.: A 2-approximation for the preceding-and-crossing
structured 2-interval pattern problem, J. Combin. Optim. 13,
217–221 (2007)

11. Jiang, M.: Improved approximation algorithms for predicting
RNA secondary structures with arbitrary pseudoknots. In: Proc.
3rd International Conference on Algorithmic Aspects in Infor-

Two-Level Boolean Minimization T 989

mation and Management (AAIM), Portland, OR, USA, Lecture
Notes in Computer Science, vol. 4508, pp. 399–410. Springer
(2007)

12. Jiang, M.: A PTAS for the weighted 2-interval pattern problem
over the preceding-and-crossing model. In: Y.X. A.W.M. Dress,
B. Zhu (eds.) Proc. 1st Annual International Conference on
Combinatorial Optimization and Applications (COCOA), Xi’an,
China, Lecture Notes in Computer Science, vol. 4616, pp. 378–
387. Springer (2007)

13. Joseph, D., Meidanis, J., Tiwari, P.: Determining DNA sequence
similarity using maximum independent set algorithms for in-
terval graphs. In: Proc. 3rd Scandinavian Workshop on Al-
gorithm Theory (SWAT). Lecture Notes in Computer Science,
pp. 326–337. Springer, Berlin (1992)

14. Lyngsø, R., Pedersen, C.: RNApseudoknot prediction in energy-
based models. J. Comput. Biol. 7, 409–427 (2000)

15. Micali, S., Vazirani, V.. An O
�
sqrtjVjjEj

�
algorithm for finding

maximum matching in general graphs. In: Proc. 21st Annual
Symposium on Foundation of Computer Science (FOCS), IEEE,
1980, pp. 17–27

16. Nussinov, R., Pieczenik, G., Griggs, J., Kleitman, D.: Algorithms
for loop matchings. SIAM J. Appl. Math. 35, 68–82 (1978)

17. Ren, J., Rastegart, B., Condon, A., Hoos, H.: HotKnots: Heuristic
prediction of rna secondary structure including pseudoknots.
RNA 11, 1194–1504 (2005)

18. Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA
structure prediction including pseudoknots. J. Mol. Biol. 285,
2053–2068 (1999)

19. Ruan, J., Stormo, G., Zhang, W.: An iterated loop matching ap-
proach to the prediction of RNA secondary structures with
pseudoknots. Bioinformatics 20, 58–66 (2004)

20. Vialette, S.: On the computational complexity of 2-interval pat-
tern matching. Theor. Comput. Sci. 312, 223–249 (2004)

21. Zhao, J., Malmberg, R., Cai, L.: Rapid ab initio rna folding includ-
ing pseudoknots via graph tree decomposition. In: Proc. Work-
shop on Algorithms in Bioinformatics. Lecture Notes in Com-
puter Science, vol. 4175, pp. 262–273. Springer, Berlin (2006)

Two-Level Boolean Minimization
1956; McCluskey

ROBERT DICK
Department Electrical Engineering and Computer
Systems, Northwestern University, Evanston, IL, USA

Keywords and Synonyms

Logic minimization; Quine–McCluskey algorithm; Tabu-
lar method

ProblemDefinition

Summary

Find a minimal sum-of-products expression for a Boolean
function.

Two-Level Boolean Minimization, Table 1
Equivalent representations with different implementation com-
plexities

Expression Meaning in english Boolean logic
identity

a^ b_ a ^ b not a and not b or not a and b
Distributivity
Complements

Boundedness

a^
�
b_ b

�
not a and either not b or b

a^ True not a and True

a not a

Extended Definition

Consider a Boolean algebra with two elements: False or
True. A Boolean function f (y1; y2; � � � ; yn) of n Boolean
input variables specifies an output value for each combi-
nation of input variable values. It is possible to represent
the same function with a number of different expressions.
For example, the first and last expressions in Table 1 corre-
spond to this function. Assuming access to complemented
input variables, straight-forward implementations of these
expressions would require two and gates and an or gate for
a ^ b _ a ^ b and only a wire for a. Although the imple-
mentation efficiency depends on target technology, in gen-
eral terser expressions enable greater efficiency. Boolean
minimization is the task of deriving the tersest expression
for a function. Elegant and optimal algorithms exist for
solving the variant of this problem in which the expression
is limited to two levels, i. e., a layer of and gates followed
by a single or gate or a layer of or gates followed by a single
and gate.

Key Results

This survey will start by introducing the Karnaugh Map
visualization technique, which will be used to assist in
the subsequent explanation of the Quine–McCluskey algo-
rithm for two-level Boolean minimization. This algorithm
is optimal for its constrained problem variant. It is one of
the fundamental algorithms in the field of computer-aided
design and forms the basis or inspiration for many solu-
tions to more general variants of the Boolean minimiza-
tion problem.

KarnaughMaps

Karnaugh Maps [4] provide a method of visualizing adja-
cency in Boolean space. A KarnaughMap is a projection of
an n-dimensional hypercube onto two-dimensional sur-
face such that adjacent points in the hypercube remain ad-
jacent in the two-dimensional projection. Figure 1 illus-
trates Karnaugh Maps of 1, 2, 3, and 4 variables: a, b, c,
and d.

990 T Two-Level Boolean Minimization

Two-Level Boolean Minimization, Figure 1
Boolean function spaces from one to four dimensions and their corresponding KarnaughMaps

Two-Level Boolean Minimization, Figure 2
(i) KarnaughMap of function f (a; b; c;d), (ii) elementary implicants, (iii) second-order implicants, (iv) prime implicants, and (v) a min-
imal cover

A literal is a single appearance of a complemented or
uncomplemented input variable in a Boolean expression.
A product term or implicant is the Boolean product, or
and, of one or more literals. Every implicant corresponds
to a repeated balanced bisection of Boolean space, or of the

corresponding Karnaugh Map, i. e., an implicant is a rect-
angle in a KarnaughMap with widthm and height nwhere
m = 2 j and n = 2k for arbitrary non-negative integers j
and k, e.g, the ovals in Fig. 2(ii–v). An elementary impli-
cant is an implicant in which, for each variable of the cor-

Two-Level Boolean Minimization T 991

responding function, the variable or its complement ap-
pears, e. g., the circles in Fig. 2(ii). Implicant A covers im-
plicant B if every elementary implicant in B is also in A.

Prime implicants are implicants that are not covered by
any other implicants, e. g., the ovals and circle in Fig. 2(iv).
It is unnecessary to consider anything but prime impli-
cants when seeking a minimal function representation be-
cause, if a non-prime implicants could be used to cover
some set of elementary implicants, there is guaranteed to
exist a prime implicant that covers those elementary impli-
cants and contains fewer literals. One can draw the largest
implicants covering each elementary implicant and cover-
ing no positions for which the function is False, thereby
using Karnaugh Maps to identify prime implicants. One
can then manually seek a compact subset of prime impli-
cants covering all elementary implicants in the function.

This Karnaugh Map based approach is effective for
functions with few inputs, i. e., those with low dimen-
sionality. However, representing and manipulating Kar-
naughMaps for functions of many variables is challenging.
Moreover, the Karnaugh Map method provides no clear
set of rules to follow when selecting a minimal subset of
prime implicants to implement a function.

The Quine–McCluskey Algorithm

The Quine–McCluskey algorithm provides a formal, op-
timal way of solving the two-level Boolean minimiza-
tion problem. W. V. Quine laid the essential theoret-
ical groundwork for optimal two-level logic minimiza-
tion [7,8]. However, E. J. McCluskey first proposed a pre-
cise algorithm to fully automate the process [6].

The Quine–McCluskey method has two phases:
(1) produce all prime implicants and (2) select a minimal
subset of prime implicants covering the function. In the
first phase, the elementary implicants of a function are it-
eratively combined to produce implicants with fewer lit-
erals. Eventually, all prime implicants are thus produced.
In the second phase, a minimal subset of prime implicants
covering the on-set elementary implicants is selected using
unate covering.

The Quine–McCluskey method may be illustrated us-
ing an example. Consider the function indicated by the
Karnaugh Map in Fig. 2(i) and the truth table in Table 2.
For each combination of Boolean input variable values, the
function f (a; b; c; d) is required to output a 0 (False), a 1
(True), or has no requirement. The lack of a requirement
is indicated with an X, or don’t-care symbol.

Expanding implicants as much as possible will ulti-
mately produce the prime implicants. To do this, combine
on-set and don’t-care elementary implicants using the re-

Two-Level Boolean Minimization, Table 2
Truth table of function f (a; b; c;d)

Elementary
implicant
(a; b; c; d)

Function
value
(a; b; c; d)

Elementary
implicant

Function
value

0000 X 1000 0
0001 0 1001 0
0010 1 1010 0
0011 1 1011 1
0100 0 1100 1
0101 0 1101 1
0110 0 1110 X
0111 0 1111 1

Two-Level Boolean Minimization, Table 3
Identifying prime implicants

Number
of ones

Elementary implicant
(a; b; c; d)

Second-order
implicant

Third-order
implicant

0 0000 X 00X0

1 0010 X 001X

2
0011 X
1100 X

X011
110X X
11X0 X

11XX

3
1011 X
1101 X
1110 X

1X11
11X1 X
111X X

4 1111 X

duction theorem (ab _ ab = b) shown in Table 1. The el-
ementary implicants are circled in Fig. 2(ii) and listed in
the second column of Table 3. In this table, 0s indicate
complemented variables and 1s indicate uncomplemented
variables, e. g., 0010 corresponds to abcd. It is necessary
to determine all possible combinations of implicants. It is
impossible to combine non-adjacent implicants, i. e., those
that differ in more than one variable. Therefore, it is not
necessary to consider combining any pair of implicants
with a number of uncomplemented variables differing by
any value other than 1. This fact can be exploited by or-
ganizing the implicants based on the number of ones they
contain, as indicated by the first column in Table 3. All
possible combinations of implicants in adjacent subsets
are considered. For example, consider combining 0010
with 0011, which results in 001X or abc, and also consider
combining 0010 with 1100, which is impossible due to dif-
ferences in more than one variable. Whenever an impli-
cant is successfully merged, it is marked. These marked
implicants are clearly not prime implicants because the
implicants they produced cover them and contain fewer
literals. Note that marked implicants should still be used
for subsequent combinations. The merged implicants in

992 T Two-Level Boolean Minimization

Two-Level Boolean Minimization, Table 4
Solving unate covering problem to select minimal cover

Requirements
(elementary implicants)

Resources (prime implicants)
00X0 001X X011 1X11 11XX

0010 X X
0011 X X
1011 X X
1100 X
1101 X
1111 X X

the third column of Table 3 correspond to those depicted
in Fig. 2(iii).

After all combinations of elementary implicants have
been considered, and successful combinations listed in the
third column, this process is repeated on the second-order
merged implicants in the third column, producing the
implicants in the fourth column. Implicants that contain
don’t-care marks in different locations may not be com-
bined. This process is repeated until a column yielding no
combinations is arrived at. The unmarked implicants in
Table 3 are the prime implicants, which correspond to the
implicants depicted in Fig. 2(iv).

After a function’s prime implicants have been identi-
fied, it is necessary to select a minimal subset that cov-
ers the function. The problem can be formulated as unate
covering. As shown in Table 4, label each column of a ta-
ble with a prime implicant; these are resources that may
be used to fulfill the requirements of the function. Label
each row with an elementary implicant from the on-set;
these rows correspond to requirements. Do not add rows
for don’t-cares. Don’t-cares impose no requirements, al-
though they were useful in simplifying prime implicants.
Mark each row–column intersection for which the ele-
mentary implicant corresponding to the row is covered by
the prime implicant corresponding to the column. If a col-
umn is selected, all the rows for which the column con-
tains marks are covered, i. e., those requirements are satis-
fied. The goal is to cover all rows with a minimal-cost sub-
set of columns. McCluskey definedminimal cost as having
a minimal number of prime implicants, with ties broken
by selecting the prime implicants containing the fewest
literals. The most appropriate cost function depends on
the implementation technology. One can also use a sim-
ilar formulation with other cost functions, e. g., minimize
the total number of literals by labeling each column with
a cost corresponding to the number of literals in the cor-
responding prime implicant.

One can use a number of heuristics to accelerate so-
lution of the unate covering problem, e. g., neglect rows

that have a superset of the marks of any other row, for
they will be implicitly covered and neglect columns that
have a subset of the marks of any other column if their
costs are as high, for the other column is at least as use-
ful. One can easily select columns as long as there exists
a row with only one mark because the marked column is
required for a valid solution. However, there exist prob-
lem instances in which each row contains multiple marks.
In the worst case, the best existing algorithms are required
to make tentative decisions, determine the consequences,
then backtrack and evaluate alternative decisions.

The unate covering problem appears in many applica-
tions. It isNP-complete [5], even for the instances arising
during two-level minimization [9]. Its use in the Quine–
McCluskey method predates its categorization as anNP-
complete problem by 16 years. A detailed treatment of this
problem would go well beyond the scope of this entry.
However, Gimpel [3] as well as Coudert and Madre [2]
provide good starting points for further reading.

Some families of logic functions have optimal two-
level representations that grow in size exponentially in the
number of inputs, but have more compact multi-level im-
plementations. These families are frequently encountered
in arithmetic, e. g., a function indicating whether the num-
ber of on inputs is odd. Efficient implementation of such
functions requires manual design or multilevel minimiza-
tion [1].

Applications

Digital computers are composed of precisely two things:
(1) implementations of Boolean logic functions and
(2) memory elements. The Quine–McCluskey method is
used to permit efficient implementation of Boolean logic
functions in a wide range of digital logic devices, includ-
ing computers. The Quine–McCluskey method served as
a starting point or inspiration for most currently-used
logic minimization algorithms. Its direct use is contra-
dicted when functions are not amenable to efficient two-
level implementation, e. g., many arithmetic functions.

Cross References

� Local Approximation of Covering and Packing
Problems

Recommended Reading

1. Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A.L.: Multi-
level logic synthesis. Proc. IEEE 78(2), 264–300 (1990)

2. Coudert, O., Madre, J.C.: New ideas for solving covering prob-
lems. In: Proc. Design Automation Conf., 1995, pp. 641–646

Two-Player Nash T 993

3. Gimpel, J.F.: A reduction technique for prime implicant tables.
IEEE Trans. Electron. Comput. 14(4), 535–541 (1965)

4. Karnaugh, M.: The map method for synthesis of combina-
tional logic circuits. Trans. AIEE, Commun. Electron. 72, 593–599
(1953)

5. Karp, R.M.: Reducibility among combinatorial problems. In:
Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Com-
putations, pp. 85–103. Plenum Press, New York (1972)

6. McCluskey, E.J.: Minimization of Boolean functions. Bell Syst.
Tech. J. 35(6), 1417–1444 (1956)

7. Quine, W.V.: The problem of simplyfying truth functions. Am.
Math. Mon. 59(8), 521–531 (1952)

8. Quine, W.V.: A way to simplify truth functions. Am. Math. Mon.
62(9), 627–631 (1955)

9. Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of
two-level logicminimization. IEEE Trans. Comput.-AidedDes. In-
tegr. Circuits Syst. 25(7), 1230–1246 (2006)

Two-Person Game
� Complexity of Bimatrix Nash Equilibria

Two-Player Game
� Complexity of Bimatrix Nash Equilibria

Two-Player Nash
� Complexity of Bimatrix Nash Equilibria

Undirected Feedback Vertex Set U 995

U

Undirected Feedback Vertex Set
2005; Dehne, Fellows, Langston, Rosamond,
Stevens
2005; Guo, Gramm, Hüffner, Niedermeier,
Wernicke

JIONG GUO1

Department of Mathematics and Computer Science,
University of Jena, Jena, Germany

Keywords and Synonyms

Odd cycle transversal

ProblemDefinition

The UNDIRECTED FEEDBACK VERTEX SET (UFVS) prob-
lem is defined as follows:

Input: An undirected graph G = (V ; E) and an inte-
ger k � 0.
Task: Find a feedback vertex set F
 V with jFj � k
such that each cycle in G contains at least one vertex
from F. (The removal of all vertices in F from G re-
sults in a forest.)

Karp [11] showed that UFVS is NP-complete. Lund
and Yannakakis [12] proved that there exists some con-
stant � > 0 such that it is NP-hard to approximate the op-
timization version of UFVS to within a factor of 1 + �.
The best-known polynomial-time approximation algo-
rithm for UFVS has a factor of 2 [1,4]. There is a simple
and elegant randomized algorithm due to Becker et al. [3]
which solves UFVS in O(c�4k�kn) time on an n-vertex and
m-edge graph by finding a feedback vertex set of size kwith
probability at least 1� (1 � 4�k)c4k for an arbitrary con-
stant c. An exact algorithm for UFVS with a running time

1Supported by the Deutsche Forschungsgemeinschaft, Emmy
Noether research group PIAF (fixed-parameter algorithms), NI 369/4

of O(1.7548n) was recently found by Fomin et al. [9]. In
the context of parameterized complexity [8,13], Bodlaen-
der [5] and Downey and Fellows [7] were the first to show
that the problem is fixed-parameter tractable, i. e., that the
combinatorial explosion when solving it can be confined
to the parameter k. The currently best fixed-parameter al-
gorithm for UFVS runs in O(ck�mn) for a constant c [6,10]
(see [6] for the so far best running time analysis leading to
a constant c = 10:567). This algorithm is the subject of this
entry.

Key Results

TheO(ck�mn)-time algorithm for the UNDIRECTED FEED-
BACK VERTEX SET is based on the so-called “iterative
compression” technique, which was introduced by Reed et
al. [14]. The central observation of this technique is quite
simple but fruitful: To derive a fixed-parameter algorithm
for a minimization problem, it suffices to give a fixed-
parameter “compression routine” that, given a size-(k + 1)
solution, either proves that there is no size-k solution or
constructs one. Starting with a trivial instance and iter-
atively applying this compression routine a linear num-
ber of rounds to larger instances, one obtains a fixed-
parameter algorithm of the problem. The main challenge
of applying this technique to UFVS lies in showing that
there is a fixed-parameter compression routine.

The compression routine from [6,10] works as follows:
1 Consider all possible partitions (X,Y) of the size-

(k + 1) feedback vertex set F with jXj � k under the
assumption that set X is entirely contained in the new
size-k feedback vertex set F 0 and Y \ F 0 = ;

2 For each partition (X,Y), if the vertices in Y induce cy-
cles, then answer “no” for this partition; otherwise, re-
move the vertices in X. Moreover, apply the following
data reduction rules to the remaining graph:
� Remove degree-1 vertices.
� If there is a degree-2 vertex v with two neighbors v1

and v2, where v1 … Y or v2 … Y , then remove v and
connect v1 and v2. If this creates two parallel edges

996 U Unified Energy-Efficient Unicast and Broadcast Topology Control

between v1 and v2, then remove the vertex of v1
and v2 that is not in Y and add it to any feedback
vertex set for the reduced instance.

Finally, exhaustively examine every vertex set S with
size at most k � jXj of the reduced graph as to
whether S can be added to X to form a feedback ver-
tex set of the input graph. If there is one such vertex set,
then output it together with X as the new size-k feed-
back vertex set.

The correctness of the compression routine follows from
its brute-force nature and the easy to prove correctness of
the two data reduction rules. The more involved part is to
show that the compression routine runs in O(ck�m) time:
There are 2k+1 partitions of F into the above sets (X,Y)
and one can show that, for each partition, the reduced
graph after performing the data reduction rules has at
most d�k vertices for a constant d; otherwise, there is no
size-k feedback vertex set for this partition. This then gives
the O(ck�m)-running time. For more details on the proof
of the d�k-size bound see [6,10].

Given as input a graph G with vertex set fv1; : : : ; vng,
the fixed-parameter algorithm from [6,10] solves UFVS
by iteratively considering the subgraphs Gi := G[fv1; : : : ;
vig]. For i = 1, the optimal feedback vertex set is empty.
For i > 1, assume that an optimal feedback vertex set Xi
for Gi is known. Obviously, Xi [fvi+1g is a solution set
for Gi+1. Using the compression routine, the algorithm
can in O(ck�m) time either determine that Xi [fvi+1g is
an optimal feedback vertex set for Gi+1, or, if not, com-
pute an optimal feedback vertex set for Gi+1. For i = n, we
thus have computed an optimal feedback vertex set for G
in O(ck�mn) time.

Theorem 1 UNDIRECTED FEEDBACK VERTEX SET can
be solved in O(ck�mn) time for a constant c.

Applications

The UNDIRECTED FEEDBACK VERTEX SET is of funda-
mental importance in combinatorial optimization. One
typical application, for example, appears in the context of
combinatorial circuit design [1]. For applications in the ar-
eas of constraint satisfaction problems and Bayesian infer-
ence, see Bar-Yehuda et al. [2].

Open Problems

It is open to explore the practical performance of the de-
scribed algorithm. Another research direction is to im-
prove the running time bound given in Theorem 1. Fi-
nally, it remains a long-standing open problem whether
the FEEDBACK VERTEX SET on directed graphs is fixed-

parameter tractable. The answer to this question would
represent a significant breakthrough in the field.

Recommended Reading
1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm

for the undirected feedback vertex set problem. SIAM J. Dis-
cret. Math. 3(2), 289–297 (1999)

2. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation
algorithms for the feedback vertex set problem with applica-
tions to constraint satisfaction and Bayesian inference. SIAM
J. Comput. 27(4), 942–959 (1998)

3. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms
for the Loop Cutset problem. J. Artif. Intell. Res. 12, 219–234
(2000)

4. Becker, A., Geiger, D.: Approximation algorithms for the Loop
Cutset problem. In: Proc. 10th Conference onUncertainty in Ar-
tificial Intelligence, pp. 60–68. Morgan Kaufman, San Fransisco
(1994)

5. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comp. Sci.
5(1), 59–68 (1994)

6. Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.,
Stevens, K.: An O(2O(k)n3) FPT algorithm for the undirected
feedback vertex set problem. In: Proc. 11th COCOON. LNCS,
vol. 3595, pp. 859–869. Springer, Berlin (2005). Long version to
appear in: J. Discret. Algorithms

7. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and
completeness. Congres. Numerant. 87, 161–187 (1992)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity.
Springer, Heidelberg (1999)

9. Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding aminimum feed-
back vertex set in time O(1.7548n). In: Proc. 2th IWPEC. LNCS,
vol. 4196, pp. 184–191. Springer, Berlin (2006)

10. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.:
Compression-based fixed-parameter algorithms for Feedback
Vertex Set and Edge Bipartization. J. Comp. Syst. Sci. 72(8),
1386–1396 (2006)

11. Karp, R.: Reducibility among combinatorial problems. In:
Miller, R., Thatcher, J. (eds.) Complexity of Computer Compu-
tations, pp. 85–103. Plenum Press, New York (1972)

12. Lund, C., Yannakakis, M.: The approximation of maximum sub-
graph problems. In: Proc. 20th ICALP. LNCS, vol. 700, pp. 40–51.
Springer, Berlin (1993)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Ox-
ford University Press, Oxford (2006)

14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals.
Oper. Res. Lett. 32(4), 299–301 (2004)

Unified Energy-Efficient Unicast
and Broadcast Topology Control
� Degree-Bounded Planar Spanner with Low Weight

University Admissions Problem
� Hospitals/Residents Problem

UtilitarianMechanism Design for Single-Minded Agents U 997

Using Visualization in the Empirical
Assessment of Algorithms
� Visualization Techniques for Algorithm Engineering

UtilitarianMechanismDesign
for Single-Minded Agents
2005; Briest, Krysta, Vöcking

PIOTR KRYSTA1, BERTHOLD VÖCKING2

1 Department of Computer Science, University of
Liverpool, Liverpool, UK

2 Department of Computer Science, RWTH Aachen
University, Aachen, Germany

Keywords and Synonyms

Forward (combinatorial, multi-unit) auction

ProblemDefinition

This problem deals with the design of efficiently com-
putable incentive compatible, or truthful, mechanisms for
combinatorial optimization problems with selfish one-
parameter agents and a single seller. The focus is on ap-
proximation algorithms for NP-hard mechanism design
problems. These algorithms need to satisfy certain mono-
tonicity properties to ensure truthfulness.

A one parameter agent is an agent who as her private
data has some resource as well as a valuation, i. e., the max-
imum amount of money she is willing to pay for this re-
source. Sometimes, however, the resource is assumed to
be known to the mechanism. The scenario where a sin-
gle seller offers these resources to the agents is primarily
considered. Typically, the seller aims at maximizing the
social welfare or her revenue. The work by Briest, Krysta
and Vöcking [6] will mostly be considered, but also other
existing models and results will be surveyed.

Utilitarian Mechanism Design

A famous example of mechanism design problems is given
by combinatorial auctions (CAs), in which a single seller,
auctioneer, wants to sell a collection of goods to poten-
tial buyers. A wider class of problems is encompassed
by a utilitarian mechanism design (maximization) prob-
lem ˘ defined by a finite set of objects A, a set of feasi-
ble outputs O˘
An and a set of n agents. Each agent
declares a set of objects Si
A and a valuation func-
tion vi : P(A) �An ! R by which she values all possible
outputs. Given a vector S = (S1; : : : ; Sn) of declarations

one is interested in output o� 2 O˘ maximizing the social
welfare, i. e., o� 2 argmaxo2O˘

Pn
i=1 vi (Si ; o). In CAs, an

object a corresponds to a subset of goods. Each agent de-
clares all the subsets she is interested in and the prices she
would be willing to pay. An output specifies the sets to be
allocated to the agents.

Here, a limited type of agents called single-minded
is considered, introduced by Lehmann et al. [10]. Let
R

A2 be a reflexive and transitive relation on A,
such that there exists a special object ¿ 2A with ¿ � a
for any a 2A to model the situation in which some
agent does not contribute to the solution at all. For
a; b 2A (a; b) 2 R
 will be denoted by a � b. The
single-minded agent i declares a single object ai and is fully
defined by her type (ai ; vi), with ai 2A and vi > 0. The
valuation function introduced earlier reduces to

vi(ai ; o) =

(
vi ; if ai � oi
0 ; else :

Agent i is called known if object ai is known to the
mechanism [11]. Here, mostly unknown agents will be
considered. Intuitively, each ai corresponds to an ob-
ject agent i offers to contribute to the solution, vi de-
scribes her valuation of any output o that indeed selects
ai. In CAs, relation R
 is set inclusion: an agent inter-
ested in set S will is also satisfied by S0 with S
 S0.
For ease of notation let (a; v) = ((a1; v1); : : : ; (an ; vn)),
(a�i ; v�i) = ((a1; v1); : : : ; (ai�1; vi�1); (ai+1; vi+1); : : : ;
(an ; vn)) and ((ai ; vi); (a�i ; v�i)) = (a; v).

Mechanism

A mechanism M = (A; p) consists of an algorithm A
computing a solution A(a; v) 2 O˘ and an n-tuple
p(a; v) = (p1(a; v); : : : ; pn(a; v)) 2 Rn

+ of payments col-
lected from the agents. If ai � A(a; v)i , agent i is se-
lected, and let S(A(a; v)) = fijai � A(a; v)ig be the set
of selected agents. Agent i’s type is her private knowl-
edge. Thus, the types declared by agents may not
match their true types. To reflect this, let (a�i ; v

�
i) re-

fer to agent i’s true type and (ai ; vi) be the declared
type. Given an output o 2 O˘ , the utility of agent i is
ui (a; v) = vi (a�i ; o) � pi (a; v). Each agent’s goal is tomax-
imize her utility. To achieve this, she will try to ma-
nipulate the mechanism by declaring a false type if this
could result in higher utility. A mechanism is called truth-
ful, or incentive compatible, if no agent i can gain by
lying about her type, i. e., given declarations (a�i ; v�i),
ui ((a�i ; v

�
i); (a�i ; v�i)) � ui ((ai ; vi); (a�i ; v�i)) for any

(ai ; vi) 6= (a�i ; v
�
i).

998 U UtilitarianMechanism Design for Single-Minded Agents

Algorithm Ak
˘
:

1 ˛k := n
"�2k ;

2 for i = 1; : : : ; n do
3 v0i := minfvi ; 2k+1g;
4 v00i := b˛k � v0ic;
5 return A˘ (a; v00);

Algorithm AFPTAS
˘

1 V := maxi vi , Best := (;; : : : ;;), best := 0;
2 for j = 0; : : : ; dlog(1 � ")�1ne + 1 do
3 k := blog(V)c � j;
4 if wk(Ak

˘
(a; v)) > best then

5 Best := Ak
˘
(a; v); best := wk(Ak

˘
(a; v));

6 return Best;

Utilitarian Mechanism Design for Single-Minded Agents, Figure 1
Amonotone FPTAS for utilitarian problem ˘ and single-minded agents

Monotonicity

A sufficient condition for truthfulness of approximate
mechanisms for single-minded CAs was first given by
Lehmann et al. [10]. Their results can be adopted for the
considered scenario. An algorithm A is monotone with
respect to R
 if

i 2 S(A((ai ; vi); (a�i ; v�i)))
) i 2 S(A((a0i ; v

0
i); (a�i ; v�i)))

for any a0i � ai and v0i � vi . Intuitively, one requires that
a winning declaration (ai ; vi) remains winning if an ob-
ject a0i , smaller according to R
, and a higher valuation v0i
are declared. If declarations (a�i ; v�i) are fixed and object
ai declared by i, algorithm A defines a critical value �Ai ,
i. e., the minimum valuation vi that makes (ai ; vi) win-
ning, i. e., i 2 S(A((ai ; vi); (a�i ; v�i))) for any vi > �Ai
and i … S(A((ai ; vi); (a�i ; v�i))) for any vi < �Ai . The
critical value payment scheme pA associated with A is de-
fined by pAi (a; v) = �

A
i , if i 2 S(A(a; v)), and pAi (a; v) = 0,

otherwise. The critical value for any fixed agent i can be
computed, e. g., by performing binary search on interval
[0; vi] and repeatedly running algorithm A to check if i
is selected. Also, mechanism MA = (A; pA) is normalized,
i. e., agents that are not selected pay 0. Algorithm A is ex-
act, if for declarations (a; v), A(a; v)i = ai or A(a; v)i = ¿
for all i. In analogy to [10] one obtains the following.

Theorem 1 Let A be a monotone and exact algorithm
for some utilitarian problem ˘ and single-minded agents.
Then mechanism MA = (A; pA) is truthful.

Additional definitions

In the unsplittable flow problem (UFP), an undirected
graph G = (V ; E), jEj = m, jV j = n, with edge capacities
be, e 2 E, and a set K of k � 1 commodities described
by terminal pairs (si ; ti) 2 V � V and a demand di and
a value ci are given. One assumes that maxi di � mine be ,

di 2 [0; 1] for each i 2 K = f1; : : : ; kg, and be � 1 for all
e 2 E. Let B = minefbeg. A feasible solution is a subset
K0
 K and a single flow si-ti-path for each i 2 K0, such
that the demands of K0 can simultaneously and unsplit-
tably be routed along the paths and the capacities are not
exceeded. The goal in UFP, called B-bounded UFP, is to
maximize the total value of the commodities in K0. A gen-
eralization is allocating bandwidth for multicast com-
munication, where commodity is a set of terminals that
should be connected by a multicast tree.

Key Results

Monotone approximation schemes

Let ˘ be a given utilitarian (maximization) problem.
Given declarations (a; v), let Opt(a; v) denote an optimal
solution to ˘ on this instance and w(Opt(a; v)) the cor-
responding social welfare. Assuming that A˘ is a pseu-
dopolynomial exact algorithm for˘ an algorithm Ak

˘ and
monotone FPTAS for˘ is defined in Fig. 1.

Theorem 2 Let ˘ be a utilitarian mechanism de-
sign problem among single-minded agents, A˘ mono-
tone pseudopolynomial algorithm for ˘ with running
time pol y(n;V), where V = maxi vi , and assume that
V � w(Opt(a; v)) for declaration (a; v). Then AFPTAS

˘
is

a monotone FPTAS for˘ .

Theorem 2 can also be applied to minimization problems.
Section “Applications” describes how these approximation
schemes can be used for forward multi-unit auctions and
job scheduling with deadlines.

Truthful primal-dual mechanisms

For an instance G = (V ; E) of UFP defined above, let Si
be the set of all si-t i-paths in G, and S =

Sk
i=1 Si . Given

S 2 Si , let qS (e) = di if e 2 S, and qS (e) = 0 otherwise.

UtilitarianMechanism Design for Single-Minded Agents U 999

Algorithm Greedy-1:
1 T := ;; K := f1; : : : ; kg;
2 forall e 2 E do ye := 1/be ;
3 repeat
4 forall i 2 K do Si := argmin

˚P
e2S ye

ˇ̌
S 2 Si

�
;

5 j := argmax

(
ci

di
P

e2Si ye

ˇ̌
ˇ̌
ˇ i 2 K

)
;

6 T := T [fS jg; K := K n f jg;
7 forall e 2 S j do ye := ye �

�
eB�1m

�qS j (e)/(be�1);
8 until

P
e2E be ye � eB�1m or K = ;;

9 return T .

Utilitarian MechanismDesign for Single-Minded Agents, Figure 2
Truthful mechanism for network (multicast) routing. e � 2:718 is Euler number.

UFP is the following integer linear program (ILP)

max
kX
i=1

ci �

0
@X

S2Si
xS

1
A (1)

s.t.
X

S :S2S;e2S
qS (e)xS � be 8e 2 E (2)

X
S2Si

xS � 1 8i 2 f1; : : : ; kg (3)

xS 2 f0; 1g 8S 2 S : (4)

The linear programming (LP) relaxation is the same linear
program with constraints (4) replaced with xS � 0 for all
S 2 S. The corresponding dual linear program is

min
X
e2E

be ye +
kX
i=1

zi (5)

s.t. zi+
X
e2S

qS (e)ye � ci 8i 2 f1; : : : ; kg 8S 2 Si (6)

zi ; ye � 0 8i 2 f1; : : : ; kg 8e 2 E: (7)

Based on these LPs, Fig. 2 specifies a primal-dual mecha-
nism for routing, called Greedy-1. Greedy-1 ensures feasi-
bility by using ye’s: if an added set exceeded the capacity be
of some e 2 E, then this would imply the stopping condi-
tion already in the previous iteration. Using the weak du-
ality of LPs the following result can be shown.

Theorem 3 Greedy-1 outputs a feasible solution, and it
is a (e�BB�1 (m)1/(B�1))-approximation algorithm if there is

a polynomial time algorithm that finds a � -approximate set
Si in line 4.

In case of UFP � = 1, as the shortest si-ti-path computa-
tion finds set Si in line 4 of Greedy-1. For multicast rout-
ing, this problem corresponds to the NP-hard Steiner tree
problem, for which one can take � = 1:55. Greedy-1 can
easily be shown to be monotone in demands and valua-
tions as required in Theorem 1. Thus it implies a truth-
ful mechanism for allocating network resources. The com-
modities correspond to bidders, the terminal nodes of bid-
ders are known, but the bidders might lie about their de-
mands and valuations. In the multicast routing the set of
terminals for each bidder is known but the demands and
valuations are unknown.

Corollary 1 Given any � > 0, B � 1 + �, Greedy-1 is
a truthful O(m1/(B�1))-approximation mechanism for UFP
(unicast routing) as well as for the multicast routing prob-
lem, where the demands and valuations of the bidders are
unknown.

When B is large, ˝(logm), then the approximation fac-
tor in Corollary 1 becomes constant. Azar et al. [4] pre-
sented further results in case of large B. Awerbuch et al. [3]
gave randomized online truthful mechanisms for uni-
andmulticast routing, obtaining an expectedO(log(�m))-
approximation if B = ˝(logm), where � is the ratio of the
largest to smallest valuation. Their approximation holds
in fact with respect to the revenue of the auctioneer, but
they assume that the demands are known to the mecha-
nism. Bartal et al. [5] give a truthful O(B � (m/�)1/(B�2))-
approximation mechanism for UFP with unknown valua-
tions and demands, where � = minifdig.

Greedy-1 can be modified to give truthful mecha-
nisms for multi-unit CAs among unknown single-mined

1000 U UtilitarianMechanism Design for Single-Minded Agents

Algorithm Greedy-2:
1 T := ;;
2 forall e 2 U do ye := 1/be ;
3 repeat

4 S := argmax
�

cSP
e2U qS (e)ye

ˇ̌
ˇ̌ S 2 S n T

�
;

5 T := T [fSg;
6 forall e 2 S do ye := ye � (eBm)qS (e)/be ;
7 until

P
e2U be ye � eBm;

8 return T .

Utilitarian Mechanism Design for Single-Minded Agents, Figure 3
Truthful mechanism for multi-unit CAs among unknown single-minded bidders. For CAs without multisets: qS(e) 2 f0;1g for each
e 2 U, S 2 S.

bidders.1 Archer et al. [2] used randomized rounding
to obtain a truthful mechanism for multi-unit CAs, but
only in a probabilistic sense and only for known bidders.
Multi-unit CA among single-minded bidders is a special
case of ILP (1)–(4), where jSi j = 1 for each i 2 K, and
qS (e) 2 f0; 1g for each e 2 U , S 2 S (E is U in CAs). A bid
of bidder i 2 K is (ai ; vi) = (S; cS), S 2 Si , and cS = ci is
the valuation. The relation R
 is
. Algorithm Greedy-2
in Fig. 3 is exact and monotone for CAs with unknown
single-minded bidders, as needed in Theorem 1.

Theorem 4 Algorithm Greedy-2 is a truthful O(m
1
B)-ap-

proximation mechanism for multi-unit CAs among un-
known single-minded bidders.

Bartal et al. [5] presented a truthful mechanism for this
problem among unknown single-minded bidders which
is O(B � m1/(B�2))-approximate. (It works in fact for more
general bidders.)

Applications

Applications of the techniques described above are pre-
sented and a short survey of other results.

Applications of monotone approximation schemes

In a forward multi-unit auction a single auctioneer wants
to sell m identical items to n possible buyers (bidders).
Each single-minded bidder specifies the number of items
she is interested in and a price she is willing to pay. El-
ements in the introduced notation correspond to the re-
quested and allocated numbers of items. Relation R
 de-

1In the case of unknown single-minded bidders, the bidders have
as private data not only their valuations (as in the case of known
single-minded bidders) but also the sets they demand.

scribes that bidder i requesting qi items will be satis-
fied also by any larger number of items. Mu’alem and
Nisan [11] give a 2-approximate monotone algorithm for
this problem. Theorem 2 gives a monotone FPTAS for
multi-unit auctions among unknown single-minded bid-
ders. This FPTAS is truthful with respect to agents where
both the number of items and price are private.

In job scheduling with deadlines (JSD), each agent i
has a job with running time ti, deadline di and a price
vi she is willing to pay if her job is processed by dead-
line di. Element ai is defined as ai = (ti ; di). Output for
agent i is a time slot for processing i’s job. For two el-
ements ai = (ti ; di) and a0i = (t0i ; d

0
i) one has ai � a0i if

ti � t0i and di � d0i . Theorem 2 leads to a monotone FP-
TAS, which, however, is not exact (see Theorem 1) with
respect to deadlines, and so it is a truthful mechanism
only if the deadlines are known. The techniques of The-
orem 2 apply also to minimization mechanism design
problems with a single buyer, such as reverse multi-unit
auctions, scheduling to minimize tardiness, constrained
shortest path and minimum spanning tree problems [6].

Applications of the primal dual algorithms

The applications of the primal dual algorithms are com-
binatorial auctions and auctions for unicast and multicast
routing. As these applications are tied very much to the al-
gorithms, they have already been presented in Sect. “Key
Results”.

Survey of other results

First truthful mechanisms for single-minded CAs were
designed by Lehmann et al. [10], where they introduced
the concept of single-minded agents, identified the role
of monotonicity, and used greedy algorithms to design

UtilitarianMechanism Design for Single-Minded Agents U 1001

truthful mechanisms. Better approximation ratios of these
greedy mechanisms were proved by Krysta [9] with the
help of LP duality. A tool-box of techniques for designing
truthful mechanisms for CAs was given by Mu’alem and
Nisan [11].

The previous section presented a monotone FPTAS
for job scheduling with deadlines where jobs are selfish
agents and the seller offers the agents the facilities to pro-
cess their jobs. Such scenarios when jobs are selfish agents
to be scheduled on (possibly selfish) machines have been
investigated further by Andelman and Mansour [1], see
also references therein.

So far social welfare was mostly assumed as the ob-
jective, but for a seller probably more important is to
maximize her revenue. This objective turns out to be
much harder to enforce in mechanism design. Such truth-
ful (in probabilistic sense) mechanisms were obtained for
auctioning unlimited supply goods among one-parameter
agents [7,8]. Another approach to maximizing seller’s rev-
enue is known as optimal auction design [12]. A seller
wants to auction a single good among agents and each
agent has a private value for winning the good. One
assumes that the seller knows a joint distribution of
those values and wants to maximize her expected rev-
enue [13,14].

Cross References

Mechanisms that approximately maximize revenue for
unlimited-supply goods as of Goldberg, Hartline and
Wright 8 are presented in entry� Competitive Auction.

Recommended Reading
1. Andelman, N., Mansour, Y.: A sufficient condition for truthful-

ness with single parameter agents. In: Proc. 8th ACM Confer-
ence on Electronic Commerce (EC),Ann, Arbor, Michigan, June
(2006)

2. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, E.: An approx-
imate truthful mechanism for combinatorial auctions with sin-

gle parameter agents. In: Proc. 14th Ann. ACM–SIAM Symp. on
Discrete Algorithms (SODA), pp. 205–214. Baltimore, Maryland
(2003)

3. Awerbuch, B., Azar, Y., Meyerson, A.: Reducing truth-telling on-
line mechanisms to online optimization. In: Proc. 35th Ann.
ACM. Symp. on Theory of Comput. (STOC), San Diego, Califor-
nia (2003)

4. Azar, Y., Gamzu, I., Gutner, S.: Truthful unsplittable flow for
large capacity networks. In: Proc. 19th Ann. ACM Symp. on Par-
allelism in Algorithms and Architectures (SPAA), pp. 320–329
(2007)

5. Bartal, Y., Gonen, R., Nisan, N.: Incentive compatible multi
unit combinatorial auctions. In: Proceedings of the 9th con-
ference on Theoretical aspects of rationality and knowledge
(TARK), pp. 72–87. ACM Press (2003). http://doi.acm.org/10.
1145/846241.846250

6. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for
utilitarian mechanism design. In: Proc. 37th Ann. ACM. Symp.
on Theory of Comput. (STOC), pp. 39–48 (2005)

7. Fiat, A., Goldberg, A.V., Hartline, J.D., Karlin, A.R.: Competitive
generalized auctions. In: Proc. 34th Ann. ACM. Symp. on The-
ory of Comput. (STOC), pp. 72–81 (2002)

8. Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions
and digital goods. In: Proc. 12th Ann. ACM–SIAMSymp. on Dis-
crete Algorithms (SODA), pp. 735–744 (2001)

9. Krysta, P.: Greedy approximation via duality for packing, com-
binatorial auctions and routing. In: Proc. 30th Int. Confer-
ence on Mathematical Foundations of Comput. Sci. (MFCS).
Lecture Notes in Computer Science, vol. 3618, pp. 615–627
(2005)

10. Lehmann, D.J., O’Callaghan, L.I., Shoham, Y.: Truth revelation
in approximately efficient combinatorial auctions. In: Proc. 1st
ACM Conference on Electronic Commerce (EC), pp. 96–102
(1999)

11. Mu’alem, A., Nisan, N.: Truthful approximationmechanisms for
restricted combinatorial auctions. In: Proc. 18th Nat. Conf. Arti-
ficial Intelligence, pp. 379–384. AAAI (2002)

12. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6,
58–73 (1981)

13. Ronen, A.: On approximating optimal auctions (extended ab-
stract). In: Proc. 3rd ACM Conference on Electronic Commerce
(EC), pp. 11–17 (2001)

14. Ronen, A., Saberi, A.: On the hardness of optimal auctions. In:
Proc. 43rd Ann. IEEE Symp. on Foundations of Comput. Sci.
(FOCS), pp. 396–405 (2002)

http://doi.acm.org/10.1145/846241.846250
http://doi.acm.org/10.1145/846241.846250

Vertex Cover Kernelization V 1003

V

Valid-Utility Games
�Market Games and Content Distribution

VCG
� Generalized Vickrey Auction

Vector Sorting
� String Sorting

Vertex Coloring
� Distributed Vertex Coloring
� Exact Graph Coloring Using Inclusion–Exclusion

Vertex Cover Data Reduction
� Vertex Cover Kernelization

Vertex Cover Kernelization
2004; Abu-Khzam, Collins, Fellows, Langston,
Suters, Symons

JIANER CHEN
Department of Computer Science,
Texas A&M University, College Station, TX, USA

Keywords and Synonyms

Vertex cover preprocessing; Vertex cover data reduction

ProblemDefinition

LetG be an undirected graph. A subset C of vertices inG is
a vertex cover forG if every edge inG has at least one end in
C. The (parametrized) VERTEX COVER problem is for each
given instance (G, k), where G is a graph and k � 0 is an
integer (the parameter), to determine whether the graphG
has a vertex cover of at most k vertices.

The VERTEX COVER problem is one of the six “ba-
sic” NP-complete problems according to Garey and John-
son [4]. Therefore, the problem cannot be solved in
polynomial time unless P = NP. However, the NP-
completeness of the problem does not obviate the need
for solving it because of its fundamental importance and
wide applications. One approach was initiated based on
the observation that in many applications, the parameter
k is small. Therefore, by taking the advantages of this fact,
one may be able to solve this NP-complete problem effec-
tively and practically for instances with a small parameter.
More specifically, algorithms of running time of the form
f (k)p(n) have been studied for VERTEX COVER, where
p(n) is a low-degree polynomial of the number n = jGj of
vertices in G and f (k) is a function independent of n.

There has been an impressive sequence of improved
algorithms for the VERTEX COVER problem. A number of
new techniques have been developed during this research,
including kernelization, folding, and refined branch-and-
search. In particular, the kernelization method is the
study of polynomial time algorithms that can signifi-
cantly reduce the instance size for VERTEX COVER. The
following are some concepts related to the kernelization
method:

Definition 1 Two instances (G, k) and (G0; k0) of VERTEX
COVER are equivalent if the graph G has a vertex cover of
size � k if and only if the graph G0 has a vertex cover of
size � k0.

Definition 2 A kernelization algorithm for the VER-
TEX COVER problem takes an instance (G, k) of VER-
TEX COVER as input and produces an equivalent instance
(G0; k0) for the problem, such that jG0j � jGj and k0 � k.

1004 V Vertex Cover Kernelization

The kernelization method has been used extensively in
conjunction with other techniques in the development of
algorithms for the VERTEX COVER problem. Two major
issues in the study of kernelization method are (1) effec-
tive reductions of instance size; and (2) the efficiency of
kernelization algorithms.

Key Results

A number of kernelization techniques are discussed and
studied in the current paper.

Preprocessing Based on Vertex Degrees

Let (G, k) be an instance of VERTEX COVER. Let v be a ver-
tex of degree larger than k inG. If a vertex coverC does not
include v, then C must contain all neighbors of v, which
implies that C contains more than k vertices. Therefore, in
order to find a vertex cover of no more than k vertices, one
must include v in the vertex cover, and recursively look for
a vertex cover of k � 1 vertices in the remaining graph.

The following fact was observed on vertices of degree
less than 3.

Theorem 1 There is a linear time kernelization algorithm
that on each instance (G, k) of VERTEX COVER, where the
graph G contains a vertex of degree less than 3, produces
an equivalent instance (G0; k0) such that jG0j < jGj and/or
k < k0.

Therefore, vertices of high degree (i. e., degree > k) and
low degree (i. e., degree < 3) can always be handled effi-
ciently before any more time-consuming process.

Nemhauser-Trotter Theorem

Let G be a graph with vertices v1, v2, : : :, vn. Consider the
following integer programming problem:

(IP) Minimize x1 + x2 + � � � + xn
Subject to xi + x j � 1 for each edge [vi ; v j] in G

xi 2 f0; 1g; 1 � i � n

It is easy to see that there is a one-to-one correspondence
between the set of feasible solutions to (IP) and the set of
vertex covers of the graph G. A natural LP-relaxation (LP)
of the problem (IP) is to replace the restrictions xi 2 f0; 1g
with xi � 0 for all i. Note that the resulting linear pro-
gramming problem (LP) now can be solved in polynomial
time.

Let � = fx01; : : : ; x
0
ng be an optimal solution to the

linear programming problem (LP). The vertices in the

graphG can be partitioned into three disjoint parts accord-
ing to � :

I0 = fvi j x0i < 0:5g ;

C0 = fvi j x0i > 0:5g ; and

V0 = fvi j x0i = 0:5g

The following nice property of the above vertex partition
of the graph G was first observed by Nemhauser and Trot-
ter [5].

Theorem 2 (Nemhauser-Trotter) Let G[V0] be the sub-
graph of G induced by the vertex set V0. Then (1) every
vertex cover of G[V0] contains at least jV0j/2 vertices; and
(2) every minimum vertex cover of G[V0] plus the vertex set
C0 makes a minimum vertex cover of the graph G.

Let k be any integer, and letG0 = G[V0] and k0 = k � jC0j.
As first noted in [3], by Theorem 2, the instances (G, k)
and (G0; k0) are equivalent, and jG0j � 2k0 is a necessary
condition for the graph G0 to have a vertex cover of size
k0. This observation gives the following kernelization re-
sult.

Theorem 3 There is a polynomial-time algorithm that for
a given instance (G, k) for the VERTEX COVER problem,
constructs an equivalent instance (G0; k0) such that k0 � k
and jG0j � 2k0.

A faster Nemhauser-Trotter Construction

Theorem 3 suggests a polynomial-time kernelization algo-
rithm for VERTEX COVER. The algorithm is involved in
solving the linear programming problem (LP) and parti-
tioning the graph vertices into the sets I0,C0, andV0. Solv-
ing the linear programming problem (LP) can be done in
polynomial time but is kind of costly in particular when
the input graph G is dense. Alternatively, Nemhauser and
Trotter [5] suggested the following algorithm without us-
ing linear programming. Let G be the input graph with
vertex set fv1; : : : ; vng.
1. construct a bipartite graph B with vertex set fvL1 ; : : : ;

vLn ; vR1 ; : : : ; v
R
n g such that [vLi ; v

R
j] is an edge in B if and

only if [vi ; v j] is an edge in G;
2. find a minimum vertex cover CB for B;
3. I00 = fvi j if neither v

L
i nor vRi is in CBg;

C00 = fvi j if both vLi and vRi are in CBg;
V 00 = fvi j if exactly one of vLi and vRi is in CBg

It can be proved [5] (see also [2]) that Theorem 2 still
holds true when the sets C0 and V0 in the theorem are re-
placed by the sets C00 and V 00 , respectively, constructed in
the above algorithm.

Vertex Cover Kernelization V 1005

The advantage of this approach is that the sets C00 and
V 00 can be constructed in time O(m

p
n) because the mini-

mum vertex cover CB for the bipartite graph B can be con-
structed via a maximummatching of B, which can be con-
structed in time O(m

p
n) using Dinic’s maximumflow al-

gorithm, which is in general faster than solving the linear
programming problem (LP).

Crown Reduction

For a set S of vertices in a graphG, denote byN(S) the set of
vertices that are not in S but adjacent to some vertices in S.
A crown in a graph G is a pair (I,H) of subsets of vertices
in G satisfying the following conditions: (1) I ¤ ; is an
independent set, andH = N(I); and (2) there is amatching
M on the edges connecting I and H such that all vertices
in H are matched inM.

It is quite easy to see that for a given crown (I,H),
there is a minimum vertex cover that includes all vertices
in H and excludes all vertices in I. Let G0 be the graph
obtained by removing all vertices in I and H from G.
Then, the instances (G, k) and (G0; k0) are equivalent,
where k0 = k � jHj. Therefore, identification of crowns in
a graph provides an effective way for kernelization.

Let G be the input graph. The following algorithm is
proposed.
1. construct a maximalmatchingM1 inG; letO be the set

of vertices unmatched inM1;
2. construct a maximum matching M2 of the edges be-

tween O and N(O); i = 0; let I0 be the set of vertices
in O that are unmatched inM2;

3. repeat until Ii = Ii�1 {Hi = N(Ii); Ii+1 = Ii [NM2(Hi);
i = i + 1; }; (where NM2(Hi) is the set of vertices in O
that match the vertices in Hi in the matchingM2)

4. I = Ii ; H = N(Ii); output (I,H).

Theorem 4 (1) if the set I0 is not empty, then the above
algorithm constructs a crown (I, H); (2) if both jM1j and
jM2j are bounded by k, and I0 = ;, then the graph G has at
most 3k vertices.

According to Theorem 4, the above algorithm on an in-
stance (G, k) of VERTEX COVER either (1) finds a match-
ing of size larger than k – which implies that there is no
vertex cover of k vertices in the graph G; or (2) constructs
a crown (I,H) – which will reduce the size of the instance;
or (3) in case neither of (1) and (2) holds true, concludes
that the graph G contains at most 3k vertices. Therefore,
repeatedly applying the algorithm either derives a direct
solution to the given instance, or constructs an equivalent
instance (G0; k0) with k0 � k and jG0j � 3k0.

Applications

The research of the current paper was directly motivated
by authors’ research in bioinformatics. It is shown that for
many computational biological problems, such as the con-
struction of phylogenetic trees, phenotype identification,
and analysis of microarray data, preprocessing based on
the kernelization techniques has been very effective.

Experimental Results

Experimental results are given for handling graphs ob-
tained from the study of phylogenetic trees based on pro-
tein domains, and from the analysis of microarray data.
The results show that in most cases the best way to ker-
nelize is to start handling vertices of high and low de-
grees (i. e., vertices of degree larger than k or smaller than
3) before attempting any of the other kernelization tech-
niques. Sometimes, kernelization based on Nemhauser-
Trotter Theorem can solve the problem without any fur-
ther branching. It is also observed that sometimes partic-
ularly on dense graphs, kernelization techniques based on
Nemhauser-Trotter Theorem are kind of time-consuming
but do not reduce the instance size by much. On the other
hand, the techniques based on high-degree vertices and
crown reduction seem to work better.

Data Sets

The experiments were performed on graphs obtained
based on data from NCBI and SWISS-PROT, well known
open-source repositories of biological data.

Cross References

� Data Reduction for Domination in Graphs
� Local Approximation of Covering and Packing

Problems
� Vertex Cover Search Trees

Recommended Reading
1. Abu-Khzam, F., Collins, R., Fellows, M., Langston, M., Suters, W.,

Symons, C.: Kernelization algorithms for the vertex cover prob-
lem: theory and experiments. In: Proc. Workshop on Algorithm
Engineering and Experiments (ALENEX) pp. 62–69 (2004)

2. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximat-
ing theweighted vertex cover problem. Ann. Discret. Math. 25,
27–45 (1985)

3. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations
and further improvements. J. Algorithm 41, 280–301 (2001)

4. Garey, M., Johnson, D.: Computers and Intractability: A Guide
to the Theory of NP-completeness. Freeman, San Francisco
(1979)

5. Nemhauser, G.L., Trotter, L.E.: Vertex packing: structural prop-
erties and algorithms. Math. Program. 8, 232–248 (1975)

1006 V Vertex Cover Preprocessing

Vertex Cover Preprocessing
� Vertex Cover Kernelization

Vertex Cover Search Trees
2001; Chen, Kanj, Jia

JIANER CHEN
Department of Computer Science, Texas A&M
University, College Station, TX, USA

Keywords and Synonyms

Branch and search; Branch and bound

ProblemDefinition

The VERTEX COVER problem is one of the six “basic” NP-
complete problems according to Garey and Johnson [7].
Therefore, the problem cannot be solved in polynomial
time unless P = NP. However, the NP-completeness of the
problem does not obviate the need for solving it because of
its fundamental importance and wide applications.

One approach is to develop parameterized algorithms
for the problem, with the computational complexity of the
algorithms being measured in terms of both input size and
a parameter value. This approach was initiated based on
the observation that in many applications, the instances of
the problem are associated with a small parameter. There-
fore, by taking the advantages of the small parameters, one
may be able to solve this NP-complete problem effectively
and practically.

The problem is formally defined as follows. LetG be an
(undirected) graph. A subset C of vertices in G is a vertex
cover for G if every edge in G has at least one end in C.
An instance of the (parameterized) VERTEX COVER prob-
lem consists of a pair (G, k), where G is a graph and k is
an integer (the parameter), which is to determine whether
the graph G has a vertex cover of k vertices. The goal
is to develop parameterized algorithms of running time
O(f (k)p(n)) for the VERTEX COVER problem, where p(n)
is a lower-degree polynomial of the input size n, and f (k)
is the non-polynomial part that is a function of the param-
eter k but independent of the input size n. It would be ex-
pected that the non-polynomial function f (k) is as small
as possible. Such an algorithm would become “practically
effective” when the parameter value k is small. It should be
pointed out that unless an unlikely consequence occurs in
complexity theory, the function f (k) is at least an exponen-
tial function of the parameter k [8].

Key Results

A number of techniques have been proposed in the de-
velopment of parameterized algorithms for the VERTEX
COVER problem.

Kernelization

Suppose (G, k) is an instance for the VERTEX COVER prob-
lem, where G is a graph and k is the parameter. The ker-
nelization operation applies a polynomial time prepro-
cessing on the instance (G, k) to construct another in-
stance (G0, k0), where G0 is a smaller graph (the kernel) and
k0 � k, such that G0 has a vertex cover of k0 vertices if and
only if G has a vertex cover of k vertices. Based on a clas-
sical result by Nemhauser and Trotter [9], the following
kernelization result was derived.

Theorem 1 There is an algorithm of running time
O(kn + k3) that for a given instance (G, k) for the VERTEX
COVER problem, constructs another instance (G0, k0) for the
problem, where the graph G0 contains at most 2k0 vertices
and k0 � k, such that the graph G has a vertex cover of k
vertices if and only if the graph G0 has a vertex cover of k0

vertices.

Therefore, kernelization provides an efficient preprocess-
ing for the VERTEX COVER problem, which allows one to
concentrate on graphs of small size (i. e., graphs whose size
is only related to k).

Folding

Suppose v is a degree-2 vertex in a graphGwith two neigh-
bors u and w such that u and w are not adjacent to each
other. Construct a new graph G0 as follows: remove the
vertices v, u, and w and introduce a new vertex v0 that is
adjacent to all remaining neighbors of the vertices u and w
in G. The graph G0 is said being obtained from the graph
G by folding the vertex v. The following result was derived.

Theorem 2 Let G0 be a graph obtained by folding a degree-
2 vertex v in a graph G, where the two neighbors of v are not
adjacent to each other. Then the graph G has a vertex cover
of k vertices if and only if the graph G0 has a vertex cover of
k � 1 vertices.

An folding operation allows one to decrease the value of
the parameter kwithout branching. Therefore, folding op-
erations are regarded as very efficient in the development
of exponential time algorithms for the VERTEX COVER
problem. Recently, the folding operation has be general-
ized to apply to a set of more than one vertex in a graph [6].

Vertex Cover Search Trees V 1007

Branch and Search

Amain technique is the branch and searchmethod that has
been extensively used in the development of algorithms
for the VERTEX COVER problem (and for many other NP-
hard problems). The method can be described as follows.
Let (G; k) be an instance of the VERTEX COVER problem.
Suppose that somehow a collection fC1; : : : ;Cbg of vertex
subsets in the graph G is identified, where for each i, the
subset Ci has ci vertices, such that if the graph G contains
a vertex cover of k vertices, then at least for one Ci of the
vertex subsets in the collection, there is a vertex cover of k
vertices for G that contains all vertices in Ci. Then a col-
lection of (smaller) instances (Gi, ki) can be constructed,
where 1 � i � b; ki = k � ci , and Gi is obtained from G
by removing all vertices in Ci. Note that the original graph
G has a vertex cover of k vertices if and only if for one
(Gi, ki) of the smaller instances the graph Gi has a ver-
tex cover of ki vertices. Therefore, now the process can be
branched into b sub-processes, each on a smaller instance
(Gi, ki) recursively searches for a vertex cover of ki vertices
in the graph Gi.

Let T(k) be the number of leaves in the search tree for
the above branch and search process on the instance (G, k),
then the above branch operation gives the following recur-
rence relation:

T(k) = T(k � c1) + T(k � c2) + � � � + T(k � cb)

To solve this recurrence relation, let T(k) = xk so that the
above recurrence relation becomes

xk = xk�c1 + xk�c2 + � � � + xk�cb

It can be proved [3] that the above polynomial equation
has a unique root x0 larger than 1. From this, one gets
T(k) = xk0 , which, up to a polynomial factor, gives an up-
per bound on the running time of the branch and search
process on the instance (G, k).

The simplest case is that a vertex v of degree d > 0 in
the graph G is picked. Let w1, . . . , wd be the neighbors of v.
Then either v is contained in a vertex cover C of k vertices,
or, if v is not contained in C, then all neighbors w1, . . . , wd
of v must be contained in C. Therefore, one obtains a col-
lection of two subsets C1 = fvg and C2 = fw1; : : : ;wdg, on
which the branch and search process can be applied.

The efficiency of a branch and search operation de-
pends on how effectively one can identify the collection
of the vertex subsets. Intuitively, the larger the sizes of the
vertex subsets, themore efficient is the operation.Much ef-
fort has been made in the development of VERTEX COVER
algorithms to achieve larger vertex subsets. Improvements
on the size of the vertex subsets have been involved with

very complicated and tedious analysis and enumerations
of combinatorial structures of graphs. The current pa-
per [3] achieved a collection of two subsets C1 and C2 of
sizes c1 = 1 and c2 = 6, respectively, and other collections
of vertex subsets that are at least as good as this (the tech-
niques of kernelization and vertex folding played impor-
tant roles in achieving these collections). This gives the fol-
lowing algorithm for the VERTEX COVER problem.

Theorem 3 The VERTEX COVER problem can be solved in
time O(kn + 1:2852k).

Very recently, a further improvement over Theorem 3 has
been achieved that gives an algorithm of running time
O(kn + 1:2738k) for the VERTEX COVER problem [4].

Applications

The study of parameterized algorithms for the VERTEX
COVER problem was motivated by ETH Zürich’s DAR-
WIN project in computational biology and computational
biochemistry (see, e. g. [10,11],). A number of computa-
tional problems in the project, such as multiple sequence
alignments [10] and biological conflict resolving [11], can
be formulated into the VERTEX COVER problem in which
the parameter value is in general not larger than 100.
Therefore, an algorithm of running time O(kn + 1:2852k)
for the problem becomes very effective and practical in
solving these problems.

The parameterized algorithm given in Theorem 3 has
also induced a faster algorithm for another important NP-
hard problem, the MAXIMUM INDEPENDENT SET prob-
lem on sparse graphs [3].

Open Problems

The main open problem in this line of research is how
far one can go along this direction. More specifically, how
small the constant c > 1 can be for the VERTEX COVER
problem to have an algorithm of running timeO(cknO(1))?
With further more careful analysis on graph combinatorial
structures, it seems possible to slightly improve the cur-
rent best upper bound [4] for the problem. Some new tech-
niques developedmore recently [6] also seem very promis-
ing to improve the upper bound. On the other hand, it is
known that the constant c cannot be arbitrarily close to 1
unless certain unlikely consequence occurs in complexity
theory [8].

Experimental Results

A number of research groups have implemented some of
the ideas of the algorithm in Theorem 3 or its variations,

1008 V Vickrey–Clarke–Groves Mechanism

including the Parallel Bioinformatics project in Carleton
University [2], the High Performance Computing project
in University of Tennessee [1], and the DARWIN project
in ETH Zürich [10,11]. As reported in [5], these imple-
mentations showed that this algorithm and the related
techniques are “quite practical” for the VERTEX COVER
problem with parameter value k up to around 400.

Cross References

� Data Reduction for Domination in Graphs
� Local Approximation of Covering and Packing

Problems
� Local Search Algorithms for kSAT
� Vertex Cover Kernelization

Recommended Reading

1. Abu-Khzam, F., Collins, R., Fellows, M., Langston, M., Suters, W.,
Symons, C.: Kernelization algorithms for the vertex cover prob-
lem: theory and experiments. Proc. Workshop on Algorithm
Engineering and Experiments (NLENEX), pp. 62–69. (2004)

2. Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.:
Solving large FPT problems on coarse grained parallel ma-
chines. J. Comput. Syst. Sci. 67, 691–706 (2003)

3. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations
and further improvements. J. Algorithms 41, 280–301 (2001)

4. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper
bounds for vertex cover. In: LectureNotes in Computer Science
(MFCS 2006), vol. 4162, pp. 238–249. Springer, Berlin (2006)

5. Fellows, M.: Parameterized complexity: the main ideas and
some research frontiers. In: Lecture Notes in Computer Science
(ISAAC 2001), vol. 2223, pp. 291–307. Springer, Berlin (2001)

6. Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer:
a simple O(20.288n) independent set algorithm. In: Proc. 17th
Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2006),
pp. 18–25 (2006)

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide
to the Theory of NP-completeness. Freeman, San Francisco
(1979)

8. Impagliazzo, R., Paturi, R.: Which problems have strongly expo-
nential complexity? J. Comput. Syst. Sci. 63, 512–530 (2001)

9. Nemhauser, G.L., Trotter, L.E.: Vertex packing: structural prop-
erties and algorithms. Math. Program. 8, 232–248 (1975)

10. Roth-Korostensky, C.: Algorithms for building multiple se-
quence alignments and evolutionary trees. Ph. D. Thesis, ETH
Zürich, Institute of Scientific Computing (2000)

11. Stege, U.: Resolving conflicts from problems in computational
biology. Ph. D. Thesis, ETH Zürich, Institute of Scientific Com-
puting (2000)

Vickrey–Clarke–GrovesMechanism
� Generalized Vickrey Auction

Visualization Techniques
for Algorithm Engineering
2002; Demetrescu, Finocchi, Italiano, Näher

CAMIL DEMETRESCU, GIUSEPPE F. ITALIANO
Department of Computer & Systems Science,
University of Rome, Rome, Italy

Keywords and Synonyms

Using visualization in the empirical assessment of algo-
rithms

ProblemDefinition

The whole process of designing, analyzing, implement-
ing, tuning, debugging and experimentally evaluating al-
gorithms can be referred to as Algorithm Engineering. Al-
gorithm Engineering views algorithmics also as an engi-
neering discipline rather than a purely mathematical dis-
cipline. Implementing algorithms and engineering algo-
rithmic codes is a key step for the transfer of algorithmic
technology, which often requires a high-level of expertise,
to different and broader communities, and for its effective
deployment in industry and real applications.

Experiments can help measure practical indicators,
such as implementation constant factors, real-life bottle-
necks, locality of references, cache effects and communi-
cation complexity, that may be extremely difficult to pre-
dict theoretically. Unfortunately, as in any empirical sci-
ence, it may be sometimes difficult to draw general con-
clusions about algorithms from experiments. To this aim,
some researchers have proposed accurate and comprehen-
sive guidelines on different aspects of the empirical evalu-
ation of algorithms maturated from their own experience
in the field (see, for example [1,15,16,20]). The interested
reader may find in [18] an annotated bibliography of ex-
perimental algorithmics sources addressing methodology,
tools and techniques.

The process of implementing, debugging, testing, en-
gineering and experimentally analyzing algorithmic codes
is a complex and delicate task, fraught with many diffi-
culties and pitfalls. In this context, traditional low-level
textual debuggers or industrial-strength development en-
vironments can be of little help for algorithm engineers,
who are mainly interested in high-level algorithmic ideas
rather than in the language and platform-dependent de-
tails of actual implementations. Algorithm visualization
environments provide tools for abstracting irrelevant pro-
gram details and for conveying into still or animated im-

Visualization Techniques for Algorithm Engineering V 1009

ages the high-level algorithmic behavior of a piece of soft-
ware.

Among the tools useful in algorithm engineering, vi-
sualization systems exploit interactive graphics to en-
hance the development, presentation, and understanding
of computer programs [27]. Thanks to the capability of
conveying a large amount of information in a compact
form that is easily perceivable by a human observer, visual-
ization systems can help developers gain insight about al-
gorithms, test implementation weaknesses, and tune suit-
able heuristics for improving the practical performances of
algorithmic codes. Some examples of this kind of usage are
described in [12].

Key Results

Systems for algorithm visualization have matured signif-
icantly since the rise of modern computer graphic inter-
faces and dozens of algorithm visualization systems have
been developed in the last two decades [2,3,4,5,6,8,9,10,
13,17,25,26,29]. For a comprehensive survey the interested
reader can be referred to [11,27] and to the references
therein. The remainder of this entry discusses the features
of algorithm visualization systems that appear to be most
appealing for their deployment in algorithm engineering.

Critical Issues

From the viewpoint of the algorithm developer, it is desir-
able to rely on systems that offer visualizations at a high
level of abstraction. Namely, one would be more interested
in visualizing the behavior of a complex data structure,
such as a graph, than in obtaining a particular value of
a given pointer.

Fast prototyping of visualizations is another funda-
mental issue: algorithm designers should be allowed to
create visualization from the source code at hand with lit-
tle effort and without heavy modifications. At this aim,
reusability of visualization code could be of substantial
help in speeding up the time required to produce a run-
ning animation.

One of the most important aspects of algorithm engi-
neering is the development of libraries. It is thus quite nat-
ural to try to interface visualization tools to algorithmic
software libraries: libraries should offer default visualiza-
tions of algorithms and data structures that can be refined
and customized by developers for specific purposes.

Software visualization tools should be able to animate
not just “toy programs”, but significantly complex algorith-
mic codes, and to test their behavior on large data sets. Un-
fortunately, even those systems well suited for large infor-

mation spaces often lack advanced navigation techniques
and methods to alleviate the screen bottleneck. Finding
a solution to this kind of limitations is nowadays a chal-
lenge.

Advanced debuggers take little advantage of sophis-
ticated graphical displays, even in commercial software
development environments. Nevertheless, software visual-
ization tools may be very beneficial in addressing problems
such as finding memory leaks, understanding anomalous
program behavior, and studying performance. In particu-
lar, environments that provide interpreted execution may
more easily integrate advanced facilities in support to de-
bugging and performance monitoring, and many recent
systems attempt at exploring this research direction.

Techniques

One crucial aspect in visualizing the dynamic behavior of
a running program is the way it is conveyed into graphic
abstractions. There are two main approaches to bind visu-
alizations to code: the event-driven and the state-mapping
approach.

Event-Driven Visualization A natural approach to al-
gorithm animation consists of annotating the algorithmic
code with calls to visualization routines. The first step con-
sists of identifying the relevant actions performed by the
algorithm that are interesting for visualization purposes.
Such relevant actions are usually referred to as interesting
events. As an example, in a sorting algorithm the swap of
two items can be considered an interesting event. The sec-
ond step consists of associating each interesting event with
a modification of a graphical scene. Animation scenes can
be specified by setting up suitable visualization procedures
that drive the graphic system according to the actual pa-
rameters generated by the particular event. Alternatively,
these visualization procedures may simply log the events
in a file for a post-mortem visualization. The calls to the vi-
sualization routines are usually obtained by annotating the
original algorithmic code at the points where the interest-
ing events take place. This can be done either by hand or
by means of specialized editors. Examples of toolkits based
on the event-driven approach are Polka [28] and GeoWin,
a C++ data type that can be easily interfaced with algo-
rithmic software libraries of great importance in algorithm
engineering such as CGAL [14] and LEDA [19].

State Mapping Visualization Algorithm visualization
systems based on state mapping rely on the assumption
that observing how the variables change provides clues to
the actions performed by the algorithm. The focus is on

1010 V Visualization Techniques for Algorithm Engineering

capturing and monitoring the data modifications rather
than on processing the interesting events issued by the an-
notated algorithmic code. For this reason they are also re-
ferred to as “data driven” visualization systems. Conven-
tional debuggers can be viewed as data driven systems,
since they provide direct feedback of variable modifica-
tions. The main advantage of this approach over the event-
driven technique is that a much greater ignorance of the
code is allowed: indeed, only the interpretation of the vari-
ables has to be known to animate a program. On the other
hand, focusing only on data modification may sometimes
limit customization possibilities making it difficult to re-
alize animations that would be natural to express with in-
teresting events. Examples of tools based on the state map-
ping approach are Pavane [23,25], which marked the first
paradigm shift in algorithm visualization since the intro-
duction of interesting events, and Leonardo [10] an inte-
grated environment for developing, visualizing, and exe-
cuting C programs.

A comprehensive discussion of other techniques used
in algorithm visualization appears in [7,21,22,24,27].

Applications

There are several applications of visualization in algorithm
engineering, such as testing and debugging of algorithm
implementations, visual inspection of complex data struc-
tures, identification of performance bottlenecks, and code
optimization. Some examples of uses of visualization in al-
gorithm engineering are described in [12].

Open Problems

There are many challenges that the area of algorithm visu-
alization is currently facing. First of all, the real power of
an algorithm visualization system should be in the hands
of the final user, possibly inexperienced, rather than of
a professional programmer or of the developer of the tool.
For instance, instructors may greatly benefit from fast and
easy methods for tailoring animations to their specific ed-
ucational needs, while they might be discouraged from us-
ing systems that are difficult to install or heavily dependent
on particular software/hardware platforms. In addition to
being easy to use, a software visualization tool should be
able to animate significantly complex algorithmic codes
without requiring a lot of effort. This seems particularly
important for future development of visual debuggers. Fi-
nally, visualizing the execution of algorithms on large data
sets seems worthy of further investigation. Currently, even
systems designed for large information spaces often lack
advanced navigation techniques and methods to alleviate

the screen bottleneck, such as changes of resolution and
scale, selectivity, and elision of information.

Cross References

� Experimental Methods for Algorithm Analysis

Recommended Reading
1. Anderson, R.J.: The Role of Experiment in the Theory of Al-

gorithms. In: Data Structures, Near Neighbor Searches, and
Methodology: Fifth and Sixth DIMACS Implementation Chal-
lenges. DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, vol. 59, pp. 191–195. American Mathe-
matical Society, Providence, RI (2002)

2. Baker, J., Cruz, I., Liotta, G., Tamassia, R.: Animating Ge-
ometric Algorithms over the Web. In: Proceedings of the
12th Annual ACM Symposium on Computational Geometry.
Philadelphia, Pennsylvania, May 24–26, pp. C3–C4 (1996)

3. Baker, J., Cruz, I., Liotta, G., Tamassia, R.: The Mocha Algorithm
Animation System. In: Proceedings of the 1996 ACM Work-
shop on Advanced Visual Interfaces. Gubbio, Italy, May 27–29,
pp. 248–250 (1996)

4. Baker, J., Cruz, I., Liotta, G., Tamassia, R.: A NewModel for Algo-
rithm Animation over the WWW, ACM Comput. Surv. 27, 568–
572 (1996)

5. Baker, R., Boilen, M., Goodrich, M., Tamassia, R., Stibel, B.:
Testers and Visualizers for Teaching Data Structures. In: Pro-
ceeding of the 13th SIGCSE Technical Symposium on Com-
puter Science Education. New Orleans, March 24–28, pp. 261–
265 (1999)

6. Brown, M.: Algorithm Animation. MIT Press, Cambridge, MA
(1988)

7. Brown, M.: Perspectives on Algorithm Animation. In: Proceed-
ings of the ACM SIGCHI’88 Conference on Human Factors in
Computing Systems. Washington, D.C., May 15–19, pp. 33–38
(1988)

8. Brown, M.: Zeus: a System for Algorithm Animation and Multi-
View Editing. In: Proceedings of the 7th IEEE Workshop on Vi-
sual Languages. Kobe, Japan, October 8–11, pp. 4–9 (1991)

9. Cattaneo, G., Ferraro, U., Italiano, G.F., Scarano, V.: Coopera-
tive Algorithm and Data Types Animation over the Net.J.Visual
Lang.Comp. 13(4): 391– (2002)

10. Crescenzi, P., Demetrescu, C., Finocchi. I., Petreschi, R.:
Reversible Execution and Visualization of Programs with
LEONARDO. J. Visual Lang. Comp. 11, 125–150 (2000).
Leonardo is available at: http://www.dis.uniroma1.it/
~demetres/Leonardo/. Accessed 15 Jan 2008

11. Demetrescu, C.: Fully Dynamic Algorithms for Path Problems
on Directed Graphs, Ph. D. thesis, Department of Computer
and Systems Science, University of Rome “La Sapienza” (2001)

12. Demetrescu, C., Finocchi, I., Italiano, G.F., Näher, S.: Visualiza-
tion in algorithm engineering: tools and techniques. In: Ex-
perimental AlgorithmDesign to Robust and Effizient Software.
Lecture Notes in Computer Science, vol. 2547. Springer, Berlin,
pp. 24–50 (2002)

13. Demetrescu, C., Finocchi, I., Liotta, G.: Visualizing Algorithms
over the Web with the Publication-driven Approach. In: Proc.
of the 4thWorkshop on AlgorithmEngineering (WAE’00), Saar-
brücken, Germany, 5–8 September (2000)

http://www.dis.uniroma1.it/~demetres/Leonardo/
http://www.dis.uniroma1.it/~demetres/Leonardo/

Voltage Scheduling V 1011

14. Fabri, A., Giezeman, G., Kettner, L., Schirra, S., Schönherr, S.:
The cgal kernel: A basis for geometric computation. In: Ap-
plied Computational Geometry: Towards Geometric Engineer-
ing Proceedings (WACG’96), Philadelphia. Philadelphia, PA,
May 27–28, pp. 191–202 (1996)

15. Goldberg, A.: Selecting problems for algorithm evaluation.
In: Proc. 3rd Workshop on Algorithm Engineering (WAE’99).
LNCS, vol. 1668. London, United Kingdom, July 19–21, pp. 1–
11 (1999)

16. Johnson, D.: A theoretician’s guide to the experimental analy-
sis of algorithms. In: Data Structures, Near Neighbor Searches,
and Methodology: Fifth and Sixth DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 59, 215–250.
American Mathematical Society, Providence, RI (2002)>

17. Malony, A., Reed, D.: Visualizing Parallel Computer System Per-
formance. In: Simmons, M., Koskela, R., Bucher, I. (eds.) Instru-
mentation for Future Parallel Computing Systems. ACM Press,
New York (1989) pp. 59–90

18. McGeoch, C.: A bibliography of algorithm experimentation.
In: Data Struktures, Near Neighbor Searches, and Methodol-
ogy: Fifth and Sixth DIMACS Implementation Challenges. DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, 59, 251–254. American Mathematical Society,
Providence, RI (2002)

19. Mehlhorn, K., Naher, S.: LEDA: A Platform of Combinatorial and
Geometric Computing, ISBN 0–521-56329–1. Cambrige Uni-
versity Press, Cambrige (1999)

20. Moret, B.: Towards a discipline of experimental algorithmics.
In: Data Structures, Near Neighbor Searches, and Methodol-
ogy: Fifth and Sixth DIMACS Implementation Challenges. DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, 59, 197–214. American Mathematical Society,
Providence, RI (2002)

21. Myers, B.: Taxonomies of Visual Programming and Program Vi-
sualization. J. Visual Lang. Comp. 1, 97–123 (1990)

22. Price, B., Baecker, R., Small, I.: A Principled Taxonomy of Soft-
ware Visualization. J. Visual Lang. Comp. 4, 211–266 (1993)

23. Roman, G., Cox, K.: A Declarative Approach to Visualizing Con-
current Computations. Computer 22, 25–36 (1989)

24. Roman, G., Cox, K.: A Taxonomy of Program Visualization Sys-
tems. Computer 26, 11–24 (1993)

25. Roman, G., Cox, K., Wilcox, C., Plun, J.: PAVANE: a System for
Declarative Visualizationof Concurrent Computations. J. Visual
Lang. Comp. 3, 161–193 (1992)

26. Stasko, J.: Animating Algorithms with X-TANGO. SIGACT News
23, 67–71 (1992)

27. Stasko, J., Domingue, J., Brown, M., Price B.: Software Visual-
ization: Programming as a Multimedia Experience. MIT Press,
Cambridge, MA (1997)

28. Stasko, J., Kraemer, E.: A Methodology for Building Applica-
tion-Specific Visualizations of Parallel Programs. J. Parall. Dis-
trib. Comp. 18, 258–264 (1993)

29. Tal, A., Dobkin, D.: Visualization of Geometric Algorithms. IEEE
Trans. Visual. Comp. Graphics 1, 194–204 (1995)

Voltage Scaling

� Speed Scaling

Voltage Scheduling
2005; Li, Yao

MINMING LI
Department of Computer Science, City University
of Hong Kong, Hong Kong, China

Keywords and Synonyms

Dynamic speed scaling

ProblemDefinition

This problem is concerned with scheduling jobs with as
little energy as possible by adjusting the processor speed
wisely. This problem is motivated by dynamic voltage scal-
ing (DVS) (or speed scaling) technique, which enables
a processor to operate at a range of voltages and frequen-
cies. Since energy consumption is at least a quadratic func-
tion of the supply voltage (hence CPU frequency/speed), it
saves energy to execute jobs as slowly as possible while still
satisfying all timing constraints. The associated schedul-
ing problem is referred to as min-energy DVS schedul-
ing. Previous work showed that min-energy DVS sched-
ule can be computed in cubic time. The work of Li and
Yao [7] considers the discrete model where the proces-
sor can only choose its speed from a finite speed set.
This work designs an O(dn log n) two-phase algorithm
to compute the min-energy DVS schedule for the dis-
crete model (d represents the number of speeds) and also
proves a lower bound of ˝(n log n) for the computation
complexity.

Notations and Definitions

In variable voltage scheduling model, there are two impor-
tant sets:
1. Set J (job set) consists of n jobs: j1; j2; : : : jn . Each job jk

has three parameters as its information: ak representing
the arrival time of jk, bk representing the deadline of jk
and Rk representing the total CPU cycles required by jk.
The parameters satisfy 0 � ak < bk � 1.

2. Set SD (speed set) consists of the possible speeds that
can be used by the processor. According to the property
of SD, the scheduling model is divided into the follow-
ing two categories,
Continuous Model: The set SD is the set of positive real
numbers.
Discrete Model: The set SD consists of d positive values:
s1 > s2 > : : : > sd .

A schedule S consists of the following two functions: s(t)
which specifies the processor speed at time t and job(t)

1012 V Voltage Scheduling

which specifies the job executed at time t. Both functions
are piecewise constant with finitely many discontinuities.

A feasible schedule must give each job its required
number of cycles between arrival time and deadline, there-
fore satisfying the property:

R bk
ak s(t)ı(k; job(t))dt = Rk ,

where ı(i; j) = 1 if i = j and ı(i; j) = 0 otherwise.
EDF principle defines an ordering on the jobs accord-

ing to their deadlines. At any time t, among jobs jk that are
available for execution, that is, jk satisfying t 2 [ak ; bk)
and jk not yet finished by t, it is the job with minimum bk
that will be executed during [t; t + �].

The power P, or energy consumed per unit of time,
is a convex function of the processor speed. The energy
consumption of a schedule S = (s(t); job(t)) is defined as
E(S) =

R 1
0 P(s(t))dt.

A schedule is called an optimal schedule if its energy
consumption is the minimum possible among all the fea-
sible schedules. Note that for the Continuous Model, opti-
mal schedule uses the same speed for the same job.

The work of Li and Yao considers the problem of com-
puting an optimal schedule for the Discrete Model under
the following assumptions.

Assumptions

1. Single Processor: At any time t, only one job can be
executed.

2. Preemptive: Any job can be interrupted during its exe-
cution.

3. Non-Precedence: There is no precedence relationship
between any pair of jobs.

4. Offline: The processor knows the information of all the
jobs at time 0.
This problem is called Min-Energy Discrete Dynamic

Voltage Scaling (MEDDVS).

Problem 1 (MEDDVSJ, SD) INPUT: Integer n, Set J = f j1;
j2; : : : ; jng and SD = fs1; s2; : : : ; sdg. jk = fak ; bk ; Rkg.

OUTPUT: Feasible schedule S = (s(t); job(t)) that min-
imizes E(S).

Kwon and Kim [6] proved that the optimal schedule for
the Discrete Model can be obtained by first calculating the
optimal schedule for the Continuous Model and then in-
dividually adjusting the speed of each job appropriately to
adjacent levels in set SD. The time complexity is O(n3).

Key Results

The work of Li and Yao finds a direct approach for solving
the MEDDVS problem without first computing the opti-
mal schedule for the continuous model.

Definition 1 An s-schedule for J is a schedule which con-
forms to the EDF principle and uses constant speed s in
executing any job of J.

Lemma 1 The s-schedule for J can be computed in
O(n log n) time.

Definition 2 Given a job set J and any speed s, let J�s

and J<s denote the subset of J consisting of jobs whose
executing speeds are� s and< s, respectively, in the opti-
mal schedule for J in the Continuous Model. The partition
hJ�s ; J<si is referred to as the s-partition of J.

By extracting information from the s-schedule, a partition
algorithm is designed to prove the following lemma:

Lemma 2 The s-partition of J can be computed in
O(n log n) time.

By applying s-partition to J using all the d speeds in SD
consecutively, one can obtain d subsets J1; J2; : : : ; Jd of J
where jobs in the same subset Ji use the same two speeds
si and si+1 in the optimal schedule for the Discrete Model
(sd+1 = 0).

Lemma 3 Optimal schedule for job set Ji using speeds si
and si+1 can be computed in O(n log n) time.

Combining the above three lemmas together, the main
theorem follows:

Theorem 4 The min-energy discrete DVS schedule can be
computed in O(dn log n) time.

A lower bound to compute the optimal schedule for the
Discrete Model under the algebraic decision tree model is
also shown by Li and Yao.

Theorem 5 Any deterministic algorithm for computing
min-energy discrete DVS schedule with d � 2 voltage levels
requires˝(n log n) time for n jobs.

Applications

Currently, dynamic voltage scaling technique is being used
by the world’s largest chip companies, e. g., Intel’s Speed-
Step technology and AMD’s PowerNow technology. Al-
though the scheduling algorithms being used are mostly
online algorithms, offline algorithms can still find their
places in real applications. Furthermore, the techniques
developed in the work of Li and Yao for the computation
of optimal schedules may have potential applications in
other areas.

People also study energy efficient scheduling problems
for other kind of job sets. Yun and Kim [10] proved that
it is NP-hard to compute the optimal schedule for jobs

Voting Systems V 1013

with priorities and gave an FPTAS for that problem. Ay-
din et al. [1] considered energy efficient scheduling for
real time periodic jobs and gave an O(n2 log n) schedul-
ing algorithm. Chen et al. [4] studied the weakly discrete
model for non-preemptive jobs where speed is not allowed
to change during the execution of one job. They proved the
NP-hardness to compute the optimal schedule.

Another important application for this work is to help
investigating scheduling model with more hardware re-
strictions (Burd and Brodersen [3] explained various de-
sign issues that may happen in dynamic voltage scaling).
Besides the single processor model, people are also inter-
ested in the multiprocessor model [11].

Open Problems

A number of problems related to the work of Li and Yao
remain open. In the Discrete Model, Li and Yao’s algo-
rithm for computing the optimal schedule requires time
O(dn log n). There is a gap between this and the currently
known lower bound ˝(n log n). Closing this gap when
considering d as an variable is an open problem.

Another open research area is the computation of the
optimal schedule for the Continuous Model. Li, Yao and
Yao [8] obtained an O(n2 log n) algorithm for computing
the optimal schedule. The bottleneck for the log n factor
is in the computation of s-schedules. Reducing the time
complexity for computing s-schedules is an open problem.
It is also possible to look for other methods to deal with the
Continuous Model.

Cross References

� List Scheduling
� Load Balancing
� Parallel Algorithms for Two Processors Precedence

Constraint Scheduling
� Shortest Elapsed Time First Scheduling

Recommended Reading
1. Aydin, H., Melhem, R., Mosse, D., Alvarez, P.M.: Determin-

ing Optimal Processor Speeds for Periodic Real-Time Tasks

with Different Power Characteristics. Euromicro Conference
on Real-Time Systems, pp. 225–232. IEEE Computer Society,
Washington, DC, USA (2001)

2. Bansalm, N., Kimbrel, T., Pruhs, K.: Dynamic Speed Scaling to
Manage Energy and Temperature, Proceedings of the 45th An-
nual IEEE Symposium on Foundations of Computer Science,
pp. 520–529. IEEE Computer Society, Washington, DC, USA
(2004)

3. Burd, T.D., Brodersen, R.W.: Design Issues for Dynamic Voltage
Scaling, Proceedings of the 2000 international symposium on
Low power electronics and design, pp. 9–14. ACM, New York,
USA (2000)

4. Chen, J.J., Kuo, T.W., Lu, H.I.: Power-Saving Scheduling for
Weakly Dynamic Voltage Scaling Devices Workshop on Algo-
rithms and Data Structures (WADS). LNCS, vol. 3608, pp. 338–
349. Springer, Berlin, Germany (2005)

5. Irani, S., Pruhs, K.: Algorithmic Problems in Power Manage-
ment. ACM SIGACT News 36(2), 63–76. New York, NY, USA
(2005)

6. Kwon, W., Kim, T.: Optimal Voltage Allocation Techniques for
Dynamically Variable Voltage Processors. ACM Trans. Embed.
Comput. Syst. 4(1), 211–230. New York, NY, USA (2005)

7. Li, M., Yao, F.F.: An Efficient Algorithm for Computing Optimal
Discrete Voltage Schedules. SIAM J. Comput. 35(3), 658–671.
Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA (2005)

8. Li, M., Yao, A.C., Yao, F.F.: Discrete and Continuous Min-Energy
Schedules for Variable Voltage Processors, Proceedings of the
National Academy of Sciences USA, 103, pp. 3983–3987. Na-
tional Academy of Science of the United States of America,
Washington, DC, USA (2005)

9. Yao, F., Demers, A., Shenker, S.: A Scheduling Model for Re-
duced CPU Energy, Proceedings of the 36th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 374–382.
IEEE Computer Society, Washington, DC, USA (1995)

10. Yun, H.S., Kim, J.: On Energy-Optimal Voltage Scheduling for
Fixed-Priority Hard Real-Time Systems. ACM Trans. Embed.
Comput. Syst. 2, 393–430. ACM, New York, NY, USA (2003)

11. Zhu, D., Melhem, R., Childers, B.: Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
Processor RealTime Systems. Proceedings of the 22nd IEEE
Real-Time Systems Symposium (RTSS’01), pp. 84–94. IEEE Com-
puter Society, Washington, DC, USA (2001)

Voting Systems
� Quorums

Wait-Free Synchronization W 1015

W

Wait-Free Consensus
� Asynchronous Consensus Impossibility

Wait-Free Registers
� Registers

Wait-Free Renaming
� Renaming
� Topology Approach in Distributed Computing

Wait-Free Shared Variables
� Registers

Wait-Free Synchronization
1991; Herlihy

MARK MOIR
Sun Microsystems Laboratories, Burlington, MA, USA

ProblemDefinition

The traditional use of locking to maintain consistency
of shared data in concurrent programs has a number of
disadvantages related to software engineering, robustness,
performance, and scalability. As a result, a great deal of
research effort has gone into nonblocking synchronization
mechanisms over the last few decades.

Herlihy’s seminal paper Wait-Free Synchroniza-
tion [12] studied the problem of implementing concur-
rent data structures in a wait-free manner, i. e., so that
every operation on the data structure completes in a finite
number of steps by the invoking thread, regardless of how

fast or slow other threads run and even if some or all of
them halt permanently. Implementations based on locks
are not wait-free because, while one thread holds a lock,
others can take an unbounded number of steps waiting
to acquire the lock. Thus, by requiring implementations
to be wait-free, some of the disadvantages of locks may
potentially be eliminated.

The first part of Herlihy’s paper examined the power of
different synchronization primitives for wait-free compu-
tation. He defined the consensus number of a given prim-
itive as the maximum number of threads for which we
can solve wait-free consensus using that primitive (to-
gether with read-write registers). The consensus problem
requires participating threads to agree on a value (e. g., true
or false) amongst values proposed by the threads. The abil-
ity to solve this problem is a key indicator of the power of
synchronization primitives because it is central to many
natural problems in concurrent computing. For example,
in a software transactional memory system, threads must
agree that a particular transaction either committed or
aborted.

Herlihy established a hierarchy of synchronization
primitives according to their consensus number. He
showed (i) that the consensus number of read-write regis-
ters is 1 (so wait-free consensus cannot be solved for even
two threads), (ii) that the consensus number of stacks and
FIFO queues is 2, and (iii) that there are so-called universal
primitives, which have consensus number 1. Common
examples include compare-and-swap (CAS) and the
load-linked/store-conditional (LL/SC) pair.

There are a number of papers which examineHerlihy’s
hierarchy inmore detail. These show that seeminglyminor
variations in the model or in the semantics of primitives
can have a surprising effect on results. Most of this work is
primarily of theoretical interest. The key practical point to
take away fromHerlihy’s hierarchy is that we need univer-
sal primitives to support effective wait-free synchroniza-
tion in general. Recognizing this fact, all modern shared-
memory multiprocessors provide some form of universal
primitive.

1016 W Wait-Free Synchronization

Herlihy additionally showed that a solution to consen-
sus can be used to implement any shared object in a wait-
free manner, and thus that any universal primitive suffices
for this purpose. He demonstrated this idea using a so-
called universal construction, which takes sequential code
for an object and creates a wait-free implementation of
the object using consensus to resolve races between con-
current operations. Despite the important practical rami-
fications of this result, the universal construction itself was
quite impractical. The basic idea was to build a list of op-
erations, using consensus to determine the order of oper-
ations, and to allow threads to iterate over the list apply-
ing the operations in order to determine the current state
of the object. The construction required O(N3) space to
ensure enough operations are retained to allow the cur-
rent state to be determined. It was also very slow, requir-
ing many threads to recompute the same information, and
thus preventing parallelism between operations in addi-
tion.

Later, Herlihy [13] presented a more concrete uni-
versal construction based on the LL/SC instruction pair.
This construction required N + 1 copies of the object for
N threads and still did not admit any parallelism; thus
it was also not practical. Despite this, work following on
from Herlihy’s has brought us to the point today that we
can support practical programming models that provide
nonblocking implementations of arbitrary shared objects.
The remainder of this chapter discusses the state of non-
blocking synchronization today, and mentions some his-
tory along the way.

Weaker Nonblocking Progress Conditions

Various researchers, including us, have had some success
attempting to overcome the disadvantages of Herlihy’s
wait-free constructions. However, the results remain im-
practical due to excessive overhead and overly complicated
algorithms. In fact, there are still no nontrivial wait-free
shared objects in widespread practical use, either imple-
mented directly or using universal constructions.

The biggest advances towards practicality have come
from considering weaker progress conditions. While the-
oreticians worked on wait-free implementations, more
pragmatic researchers sought lock-free implementations
of shared objects. A lock-free implementation guarantees
that, after a finite number of steps of any operation, some
operation completes. In contrast to wait-free algorithms,
it is in principle possible for one operation of a lock-free
data structure to be continually starved by others. How-
ever, this rarely occurs in practice, especially because con-
tention control techniques such as exponential backoff [1]

are often used to reduce contention when it occurs, which
makes repeated interference evenmore unlikely. Thus, the
lack of a strong progress guarantee like wait-freedom has
often been found to be acceptable in practice.

The observation that weaker nonblocking progress
conditions allow simpler and more practical algorithms
led Herlihy et al. [15] to define an even weaker condi-
tion: An obstruction-free algorithm does not guarantee
that an operation completes unless it eventually encoun-
ters no more interference from other operations. In our
experience, obstruction-free algorithms are easier to de-
sign, simpler, and faster in the common uncontended case
than lock-free algorithms. The price paid for these bene-
fits is that obstruction-free algorithms can “livelock”, with
two or more operations repeatedly interfering with each
other forever. This is not merely a theoretical concern: it
has been observed to occur in practice [16]. Fortunately,
it is usually straightforward to eliminate livelock in prac-
tice through contention control mechanisms that control
and manipulate when operations are executed to avoid re-
peated interference.

The obstruction-free approach to synchronization is
thus to design simple and efficient algorithms for the
weak obstruction-free progress condition, and to integrate
orthogonal contention control mechanisms to facilitate
progress when necessary. By largely separating the difficult
issues of correctness and progress, we significantly ease
the task of designing effective nonblocking implementa-
tions: the algorithms are not complicated by tightly cou-
pledmechanisms for achieving lock-freedom, and it is easy
to modify and experiment with contention control mech-
anisms because they are separate from the algorithm and
do not affect its correctness. We have found this approach
to be very powerful.

Transactional Memory

The severe difficulty of designing and verifying correct
nonblocking data structures has led researchers to inves-
tigate the use of tools to produce them, rather than de-
signing them directly. In particular, transactional mem-
ory ([5,17,23]) has emerged as a promising direction.
Transactional memory allows programmers to express
sections of code that should be executed atomically, and
the transactional memory system (implemented in hard-
ware, software, or a combination of the two) is responsi-
ble for managing interactions between concurrent trans-
actions to ensure this atomicity. Here we concentrate on
software transactional memory (STM).

The progress guarantee made by a concurrent data
structure implemented using STM depends on the STM

Wait-Free Synchronization W 1017

implementation. It is possible to characterize the progress
conditions of transactional memory implementations in
terms of a system of threads in which each operation on
a shared data structure is executed by repeatedly attempt-
ing to apply it using a transaction until an attempt suc-
cessfully commits. In this context, say the transactional
memory implementation is obstruction-free if it guaran-
tees that, if a thread repeatedly executes transactions and
eventually encounters no more interference from other
threads, then it eventually successfully commits a trans-
action.

Key Results

This section briefly discusses some of the most rele-
vant results concerning nonblocking synchronization, and
obstruction-free synchronization in particular.

While progress towards practicality was made with
lock-free implementations of shared objects as well as
lock-free STM systems, this progress was slow because
simultaneously ensuring correctness and lock-freedom
proved difficult. Before the introduction of obstruction-
freedom, the lock-free STMs still had some severe disad-
vantages such as the need to declare and initialize all mem-
ory to be accessed by transactions in advance, the need for
transactions to know in advance which memory locations
they will access, unacceptable constraints on the layout of
such memory, etc.

In addition to the work on tools such as STM for build-
ing nonblocking data structures, there has been a consid-
erable amount of work on direct implementations. While
this work has not yielded any practical wait-free algo-
rithms, a handful of practical lock-free implementations
for simple data structures such as queues and stacks have
been achieved [21,24]. There are also a few slightly more
ambitious implementations in the literature that are ar-
guably practical, but the algorithms are complicated and
subtle, many are incorrect, and almost none has a formal
proof. Proofs for such algorithms are challenging, and mi-
nor changes to the algorithm require the proofs to be re-
done.

The next section, discusses some of the results that
have been achieved by applying the obstruction-free ap-
proach. The remainder of this section, briefly discusses
a few results related to the approach itself.

An important practical aspect of using an obstruction-
free algorithm is how contention is managed when it
arises. In introducing obstruction-freedom, Herlihy et
al. [15] explained that contention control is necessary
to facilitate progress in the face of contention because
obstruction-free algorithms do not directly make any

progress guarantee in this case. However, they did not di-
rectly address how contention control mechanisms could
be used in practice.

Subsequently, Herlihy et al. [16] presented a dynamic
STM system (see next section) that provides an interface
for a modular contention manager, allowing for experi-
mentation with alternative contention managers. Scherer
and Scott [22] experimentedwith a number of alternatives,
and found that the best contention manager depends on
the workload. Guerraoui et al. [9] described an implemen-
tation that supports changing contention managers on the
fly in response to changing workload conditions.

All of the contention managers discussed in the above-
mentioned papers are ad hoc contention managers based
on intuition; no analysis is given of what guarantees (if
any) are made by the contention managers. Guerraoui
et al. [10] made a first step towards a formal analysis of
contention managers by showing that their Greedy con-
tention manager guarantees that every transaction even-
tually completes. However, using the Greedy contention
manager results in a blocking algorithm, so their proof
necessarily assumes that threads do not fail while execut-
ing transactions.

Fich et al. [7] showed that any obstruction-free algo-
rithm can be automatically transformed into one that is
practicallywait-free in any real system. “Practically” is said
because the wait-free progress guarantee depends on par-
tial synchrony that exists in any real system, but the trans-
formed algorithm is not technically wait-free, because this
term is defined in the context of a fully asynchronous sys-
tem. Nonetheless, an algorithm achieved by applying the
transformation of Fich et al. to an obstruction-free algo-
rithm does guarantee progress to non-failed transactions,
even if other transactions fail.

Work on incorporating contention management tech-
niques into obstruction-free algorithms has mostly been
done in the context of STM, so the contention man-
ager can be called directly from the STM implementation.
Thus, the programmer using the STM need not be con-
cerned with how contention management is integrated,
but this does not address how contention management is
integrated into direct implementations of obstruction-free
data structures.

One option is for the programmer to manually insert
calls to a contention manager, but this approach is tedious
and error prone. Guerraoui et al. [11] suggested a version
of this approach in which the contention manager is ab-
stracted out as a failure detector. They also explored what
progress guarantees can bemade by what failure detectors.

Attiya et al. [4] and Aguilera et al. [2] suggested chang-
ing the semantics of the data structure’s operations so

1018 W Wait-Free Synchronization

that they can return a special value in case of contention,
thus allowing contention management to be done outside
the data structure implementation. These approaches still
leave a burden on the programmer to ensure that these
special values are always returned by an operation that
cannot complete due to contention, and that the correct
special value is returned according to the prescribed se-
mantics.

Another option is to use system support to ensure that
contention management calls are made frequently enough
to ensure progress. This support could be in the form of
compiled-in calls, runtime support, signals sent upon ex-
piration of a timer, etc. But all of these approaches have
disadvantages such as not being applicable in general pur-
pose environments, not being portable, etc.

Given that it remains challenging to design and ver-
ify direct obstruction-free implementations of shared data
structures, and that there are disadvantages to the vari-
ous proposals for integrating contention control mecha-
nisms into them, using tools such as STMs with built-in
contention management interfaces is the most convenient
way to build nonblocking data structures.

Applications

The obstruction-free approach to nonblocking synchro-
nization was introduced by Herlihy et al. [15], who used
it to design a double-ended queue (deque) based on the
widely available CAS instruction. All previous nonblock-
ing deques either require exotic synchronization instruc-
tions such as double-compare-and-swap (DCAS),
or have the disadvantage that operations at opposite ends
of the queue always interfere with each other.

Herlihy et al. [16] introduced Dynamic STM (DSTM),
the first STM that is dynamic in the following two senses:
new objects can be allocated on the fly and subsequently
accessed by transactions, and transactions do not need to
know in advance what objects will be accessed. These two
advantages made DSTM much more useful than previous
STMs for programming dynamic data structures. As a re-
sult, nonblocking implementations of sophisticated shared
data structures such as balanced search trees, skip lists, dy-
namic hash tables, etc. were suddenly possible.

The obstruction-free approach played a key role in
the development of both of the results mentioned above:
Herlihy et al. [16] could concentrate on the function-
ality and correctness of DSTM without worrying about
how to achieve stronger progress guarantees such as lock-
freedom.

The introduction of DSTM and of the obstruction-free
approach have led to numerous improvements and varia-

tions by a number of research groups, and most of these
have similarly followed the obstruction-free approach.
However, Harris and Fraser [8] presented a dynamic STM
called OSTM with similar advantages to DSTM, but it
is lock-free. Experiments conducted at the University of
Rochester [20] showed that DSTM outperformed OSTM
by an order of magnitude on some workloads, but that
OSTM outperformed DSTM by a factor of 2 on others.
These differences are probably due to various design de-
cisions that are (mostly) orthogonal to the progress condi-
tion, so it is not clear what we can conclude about how the
choice of progress condition affects performance in this
case.

Perhaps a more direct comparison can be made be-
tween another pair of algorithms, again an obstruction-
free one by Herlihy et al. [14] and a similar but lock-free
one by Harris and Fraser [8]. These algorithms, invented
independently of each other, implement MCAS (CAS gen-
eralized to access M independently chosen memory loca-
tions). The two algorithms are very similar, and a close
comparison revealed that the only real differences between
themwere due to Harris and Fraser’s desire to have a lock-
free implementation. As a result of this, their algorithm
is somewhat more complicated, and also requires a min-
imum of 3M + 1 CAS operations, whereas the algorithm
of Herlihy et al. [14] requires only 2M + 1. The authors
are unaware of any direct performance comparison of
these algorithms, but they believe the obstruction-free one
would outperform the lock-free one, particularly in the ab-
sence of conflicting MCAS operations.

Open Questions

Because transactional memory research has grown out
of research into nonblocking data structures, it was long
considered mandatory for STM implementations to sup-
port the development of nonblocking data structures. Re-
cently, however, a number of researchers have observed
that at least the software engineering benefits of transac-
tional memory can be delivered even by a blocking STM.
There are ongoing debates whether STM needs to be non-
blocking and whether there is a fundamental cost to being
nonblocking.

While we agree that blocking STMs are considerably
easier to design, and that in many cases a blocking STM is
acceptable, this is not always true. Consider, for example,
an interrupt handler that shares data with the interrupted
thread. The interrupted thread will not run again until the
interrupt handler completes, so it is critical that the inter-
rupted thread does not block the interrupt handler. Thus,
if using STM is desired to simplify the code for accessing

Wait-Free Synchronization W 1019

this shared data, the STM must be nonblocking. The au-
thors are therefore motivated to continue research aimed
at improving nonblocking STMs and to understand what
fundamental gap, if any, exists between blocking and non-
blocking STMs.

Progress in improving the common-case performance
of nonblocking STMs continues [19], and the authors see
no reason to believe that nonblocking STMs should not be
very competitive with blocking STMs in the common case,
i. e., until the system decides that one transaction should
not wait for another that is delayed (an option that is not
available with blocking STMs).

It is conjectured that indeed a separation between
blocking and nonblocking STMs can be proved accord-
ing to some measure, but that this will not imply signif-
icant performance differences in the common case. In-
deed results of Attiya et al. [3] show a separation be-
tween obstruction-free and blocking algorithms according
to a measure that counts the number of distinct base ob-
jects accessed by the implementation plus the number of
“memory stalls”, which measure how often the implemen-
tation can encounter contention for a variable from an-
other thread. While this result is interesting, it is not clear
that it is useful for deciding whether to implement block-
ing or obstruction-free objects, because the measure does
not account for the time spent waiting by blocking imple-
mentations, and thus is biased in their favor. For now, re-
main optimistic that STMs can be made to be nonblocking
without paying a severe performance price in the common
case.

Another interesting question, which is open as far as
the authors know, is whether there is a fundamental cost to
implementing stronger nonblocking progress conditions
versus obstruction-freedom. Again, they conjecture that
there is. It is known that there is a fundamental differ-
ence between obstruction-freedom and lock-freedom in
systems that support only reads and writes: It is possible
to solve obstruction-free consensus but not lock-free con-
sensus in this model [15]. While this is a fascinating obser-
vation, it is mostly irrelevant from a practical standpoint
as all modern shared memory multiprocessors support
stronger synchronization primitives such as CAS, with
which it is easy to solve consensus, even wait-free. The in-
teresting question therefore is whether there is a funda-
mental cost to being lock-free as opposed to obstruction-
free in real systems.

To have a real impact on design directions, such results
need to address common case performance, or some other
measure (perhaps space) that is relevant to everyday use.
Many lower bound results establish a separation in worst-
case time complexity, which does not necessarily have a di-

rect impact on design decisions, because the worst case
may be very rare. So far, efforts to establish a separation
according to potentially useful measures have only led to
stronger results than we had conjectured were possible. In
the authors first attempt [18], they tried to establish a sep-
aration in the number of CAS instructions needed in the
absence of contention to solve consensus, but found that
this was not a very useful measure, as were able to come
up with a wait-free implementation that avoids CAS in the
absence of contention. The second attempt [6] was to es-
tablish a separation according to the obstruction-free step
complexity measure, which counts the maximum number
of steps to complete an operation once the operation en-
counters no more contention. They knew we could imple-
ment obstruction-free DCAS with constant obstruction-
free step complexity, and attempt to prove this impossible
for lock-free DCAS, but achieved such an algorithm. These
experiences suggest that, in addition to their direct advan-
tages, obstruction-free algorithms may provide a useful
stepping stone to algorithms with stronger progress prop-
erties.

Finally, while a number of contention managers have
proved effective for various workloads, it is an open ques-
tion whether a single contention manager can adapt to
be competitive with the best on all workloads, and how
close it can come to making optimal contention manage-
ment decisions. Experience to date suggests that this will
be very challenging to achieve. Therefore, as in any sys-
tem, the first priority should be avoiding contention in the
first place. Fortunately, transactional memory has the po-
tential to make this much easier than in lock-based pro-
gramming models, because it offers the benefits of fine-
grained synchronization without the programming com-
plexity that accompanies fine-grained locking schemes.

Cross References

� Concurrent Programming, Mutual Exclusion
� Linearizability

Recommended Reading

1. Agarwal, A., Cherian, M.: Adaptive backoff synchronization
techniques. In: Proceedings of the 16th Annual International
Symposium on Computer Architecture, pp. 396–406. ACM
Press, New York (1989)

2. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.:
Brief announcement: Abortable and query-abortable objects.
In: Proc. 20th Annual International Symposium on Distributed
Computing, 2006

3. Attiya, H., Guerraoui, R., Hendler, D., Kouznetsov, P.: Synchro-
nizing without locks is inherently expensive. In: PODC ’06: Pro-
ceedings of the twenty-fifth Annual ACM Symposium on Prin-

1020 W Warehouse Location

ciples of Distributed Computing, New York, USA, pp. 300–307.
ACM Press (2006)

4. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads
and writes in the absence of step contention. In: Proc. 19th
Annual International Symposium on Distributed Computing,
2005

5. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nuss-
baum, D.: Hybrid transactional memory. In: Proc. 12th Sym-
posium on Architectural Support for Programming Languages
and Operating Systems, 2006

6. Fich, F., Luchangco, V., Moir, M., Shavit, N.: Brief announce-
ment: Obstruction-free step complexity: Lock-free DCAS as an
example. In: Proc. 19th Annual International Symposium on
Distributed Computing, 2005

7. Fich, F., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free al-
gorithms can be practically wait-free. In: Proc. 19th Annual In-
ternational Symposium on Distributed Computing, 2005

8. Fraser, K., Harris, T.: Concurrent programming without locks.
http://www.cl.cam.ac.uk/netos/papers/
2004-cpwl-submission.pdf (2004)

9. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention
management. In: Proc. 19th Annual International Symposium
on Distributed Computing, 2005

10. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of trans-
actional contentionmanagers. In: Proc. 24th Annual ACMSym-
posiumon Principles of DistributedComputing, 2005, pp. 258–
264

11. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure
detector to boost obstruction freedom. In: Proc. 20th Annual
International Symposium on Distributed Computing, 2006

12. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124–149 (1991)

13. Herlihy, M.: A methodology for implementing highly concur-
rent data objects. ACM Trans. Program. Lang. Syst. 15(5), 745–
770 (1993)

14. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free mech-
anism for atomic update of multiple non-contiguous loca-
tions in shared memory. US Patent Application 20040034673
(2002)

15. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchro-
nization: Double-ended queues as an example. In: Proceedings
of the 23rd International Conference on Distributed Comput-
ing Systems, 2003

16. Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.: Soft-
ware transactionalmemory for supporting dynamic-sized data
structures. In: Proc. 22th Annual ACMSymposiumon Principles
of Distributed Computing, 2003, pp. 92–101

17. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural
support for lock-free data structures. In: Proc. 20th Annual
International Symposium on Computer Architecture, 1993,
pp. 289–300

18. Luchangco, V., Moir, M., Shavit, N.: On the uncontended com-
plexity of consensus. In: Proc. 17th Annual International Sym-
posium on Distributed Computing, 2005

19. Marathe, V.J., Moir, M.: Toward high performance nonblock-
ing software transactionalmemory. In: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of paral-
lel programming. pp. 227–236, ACM, New York, USA (2008)

20. Marathe, V., Scherer, W., Scott, M.: Adaptive software transac-
tional memory. In: Proc. 19th Annual International Symposium
on Distributed Computing, 2005

21. Michael, M., Scott, M.: Nonblocking algorithms and preemp-
tion-safe locking on multiprogrammed shared memory mul-
tiprocessors. J. Parall. Distrib. Comput. 51(1), 1–26 (1998)

22. Scherer, W., Scott, M.: Advanced contention management for
dynamic software transactional memory. In: Proc. 24th An-
nual ACM Symposium on Principles of Distributed Computing,
2005

23. Shavit, N., Touitou, D.: Software transactional memory. Distrib.
Comput., Special Issue 10, 99–116 (1997)

24. Treiber, R.: Systems programming: Coping with parallelism.
Technical Report RJ5118, IBM Almaden Research Center (1986)

Warehouse Location
� Facility Location
� Local Search for K-medians and Facility Location

Weighted BipartiteMatching
� Assignment Problem

Weighted Caching
� Online Paging and Caching

Weighted Connected Dominating Set
2005; Wang, Wang, Li

YU WANG1, WEIZHAO WANG2, XIANG-YANG LI3
1 Department of Computer Science, University
of North Carolina at Charlotte, Charlotte, NC, USA

2 Google Inc., Irvine, CA, USA
3 Department of Computer Science,
Illinois Institue of Technology,
Chicago, IL, USA

Keywords and Synonyms

Minimum weighted connected dominating set

ProblemDefinition

This problem is concerned with a weighted version of
the classical minimum connected dominating set prob-
lem. This problem has numerous motivations includ-
ing wireless networks and distributed systems. Previous
work [1,2,4,5,6,14] in wireless networks focuses on design-
ing efficient distributed algorithms to construct the con-
nected dominating set which can be used as the virtual

http://www.cl.cam.ac.uk/netos/papers/2004-cpwl-submission.pdf
http://www.cl.cam.ac.uk/netos/papers/2004-cpwl-submission.pdf

Weighted Connected Dominating Set W 1021

backbone for the network. Most of the proposed meth-
ods try to minimize the number of nodes in the backbone
(i. e., the number of clusterheads). However, in many ap-
plications, minimizing the size of the backbone is not suf-
ficient. For example, in wireless networks different wire-
less nodes may have different costs for serving as a cluster-
head, due to device differences, power capacities, and in-
formation loads to be processed. Thus, by assuming each
node has a cost to being in the backbone, there is a need to
study distributed algorithms for weighted backbone for-
mation. Centralized algorithms to construct a weighted
connected dominating set with minimum weight have
been studied [3,7,9]. Recently, the work of Wang, Wang,
and Li [12,13] proposes an efficient distributed method to
construct a weighted backbone with low cost. They proved
that the total cost of the constructed backbone is within
a small constant factor of the optimum when either the
nodes’ costs are smooth (i. e. the maximum ratio of costs
of adjacent nodes is bounded) or the network maximum
node degree is bounded. To the best knowledge of the en-
try authors, this work is the first to consider this weighted
version of minimum connected dominating set problem
and provide a distributed approximation algorithm.

Notations

A communication graph G = (V ; E) over a set V of wire-
less nodes has an edge uv between nodes u and v if
and only if u and v can communicate directly with each
other, i. e., inside the transmission region of each other.
Let dG(u) be the degree of node u in a graph G and �
be the maximum node degree of all wireless nodes (i. e.
� = maxu2V dG (u)). Each wireless node u has a cost c(u)
of being in the backbone. Let ı = maxi j2E c(i)/c(j), where
ij is the edge between nodes i and j, E is the set of com-
munication links in the wireless network G, and the maxi-
mumoperation is taken on all pairs of adjacent nodes i and
j in G. In other words, ı is the maximum ratio of costs of
two adjacent nodes and can be called the cost smoothness of
the network. When ı is bounded by some small constant,
the node costs are smooth. When the transmission region
of every wireless node is modeled by a unit disk centered at
itself, the communication graph is often called a unit disk
graph, denoted by UDG(V). Such networks are also called
homogeneous networks.

A subset S of V is a dominating set if each node in
V is either in S or is adjacent to some node in S. Nodes
from S are called dominators, while nodes not in S are
called dominatees. A subset B of V is a connected dom-
inating set (CDS) if B is a dominating set and B in-
duces a connected subgraph. Consequently, the nodes in

B can communicate with each other without using nodes
in V � B. A dominating set with minimum cardinality
is called minimum dominating set (MDS). A CDS with
minimum cardinality is the minimum connected domi-
nating set (MCDS). In the weighted version, assume that
each node u has a cost c(u). Then a CDS B is called
weighted connected dominating set (WCDS). A subset B
of V is a minimum weighted connected dominating set
(MWCDS) if B is a WCDS with minimum total cost. It
is well-known that finding either the minimum connected
dominating set or the minimum weighted connected dom-
inating set is a NP-hard problem even when G is a unit
disk graph. The work of Wang et al. studies efficient
approximation algorithms to construct a low-cost back-
bone which can approximate the MWCDS problem well.
For a given communication graph G = (V ; E;C) where
V is the set of nodes, E is the edge set, and C is the set of
weights for edges, the corresponding minimum weighted
connected dominating set problem is as follows.

Problem 1 (Minimum Weighted Connected Dominat-
ing Set)
INPUT: The weighted communication graph G = (V ; E;C).
OUTPUT: A subset A of V is a minimum weighted con-
nected dominating set, i. e., (1) A is a dominating set; (2) A
induces a connected subgraph; (3) the total cost of A is min-
imum.

Another related problem is independent set problem.
A subset of nodes in a graph G is an independent set if
for any pair of nodes, there is no edge between them. It
is a maximal independent set if no more nodes can be
added to it to generate a larger independent set. Clearly,
any maximal independent set is a dominating set. It is
a maximum independent set (MIS) if no other indepen-
dent set has more nodes. The independence number, de-
noted as ˛(G), of a graph G is the size of the MIS of G.
The k-local independence number, denoted by ˛[k](G), is
defined as ˛[k](G) = maxu2V ˛(Gk (u)). Here, Gk(u) is the
induced graph of G on k-hop neighbors of u (denoted
by Nk(u)), i. e., Gk(u) is defined on Nk(u), and contains
all edges in G with both end-points in Nk(u). It is well-
known that for a unit disk graph, ˛[1](UDG) � 5 [2] and
˛[2](UDG) � 18 [11].

Key Results

Since finding the minimum weighted connected dominat-
ing set (MWCDS) is NP-hard, centralized approximation
algorithms for MWCDS have been studied [3,7,9]. In [9],
Klein and Ravi proposed an approximation algorithm for
the node-weighted Steiner tree problem. Their algorithm

1022 W Weighted Connected Dominating Set

can be generalized to compute a O(log�) approxima-
tion for MWCDS. Guha and Khuller [7] also studied the
approximation algorithms for node-weighted Steiner tree
problem and MWCDS. They developed an algorithm for
MWCDS with an approximation factor of (1:35 + �) log�
for any fixed � > 0. Recently, Ambuhl et al. [3] provided
a constant approximation algorithm for MWCDS under
UDGmodel. Their approximation ratio is bounded by 89.
All these algorithms are centralized algorithms, while the
applications in wireless ad hoc networks prefer distributed
solutions for MWCDS.

In [12,13], Wang et al. proposed a distributed algo-
rithm that constructs a weighted connected dominat-
ing set for a wireless ad hoc network G. Their method
has two phases: the first phase (clustering phase, Al-
gorithm 1 in [12,13]) is to find a set of wireless nodes
as the dominators (clusterheads) and the second phase
(Algorithm 2 in [12,13]) is to find a set of nodes,
called connectors, to connect these dominators to form
the final backbone. Wang et al. proved that the to-
tal cost of the constructed backbone is no more than
min(˛[2](G) log(� + 1); (˛[1](G) � 1)ı + 1) + 2˛[1](G)
times of the optimum solution.

Algorithm 1 first constructs a maximal independent
set (MIS) using classical greedymethod with the node cost
as the selection criterion. For each node v in MIS, it then
runs a local greedy set cover method on the local neigh-
borhood N2(v) to find some nodes (GRDYv) to cover all
one-hop neighbors of v. If GRDYv has a total cost smaller
than v, then it uses GRDYv to replace v, which further re-
duces the cost of MIS. The following theorem of the total
cost of this selected set is proved in [12,13].

Theorem 1 For a network modeled by a graph G, Algo-
rithm 1 (in [12,13]) constructs a dominating set whose total
cost is nomore thanmin(˛[2](G) log(�+1); (˛[1](G)�1)ı+
1) times of the optimum.

Algorithm 2 finds some connectors among all the domina-
tees to connect the dominators into a backbone (CDS). It
forms a CDS by finding connectors to connect any pair of
dominators u and v if they are connected in the original
graph G with at most 3 hops. A distributed algorithm to
build a MST then is performed on the CDS. The follow-
ing theorem of the total cost of these connectors is proved
in [12,13].

Theorem 2 The connectors selected by Algorithm 2
(in [12,13]) have a total cost no more than 2 � ˛[1](G) times
of the optimum for networks modeled by G.

Combining Theorem 1 and Theorem 2, the following the-
orem is the main contributions of the work of Wang et al..

Theorem 3 For any communication graph G, Algorithm 1
and Algorithm 2 construct a weighted connected dominat-
ing set whose total cost is no more than

min(˛[2](G) log(� + 1); (˛[1](G) � 1)ı + 1) + 2˛[1](G)

times of the optimum.

Notice that, for homogeneous wireless networks modeled
by UDG, it implies that the constructed backbone has
a cost no more than min(18 log(� + 1); 4ı + 1) + 10 times
of the optimum. The advantage of the constructed back-
bone is that the total cost is small compared with the opti-
mum when either the costs of wireless nodes are smooth,
i. e., two neighboring nodes’ costs differ by a small con-
stant factor, or the maximum node degree is low.

In term of time complexity, the most time-consuming
step in the proposed distributed algorithm is building the
MST. In [10], Kuhn et al. gave a lower bound on the dis-
tributed time complexity of any distributed algorithm that
wants to compute a minimum dominating set in a graph.
Essentially, they proved that even for the unconnected
and unweighted case, any distributed approximation al-
gorithm with poly-logarithmic approximation guarantee
for the problem has to have a time-complexity of at least
˝(log�/ log log�).

Applications

The proposed distributed algorithms for MWCDS can be
used in ad hoc networks or distributed system to form
a low-cost network backbone for communication applica-
tion. The cost used as the input of the algorithms could
be a generic cost, defined by various practical applications.
It may represent the fitness or priority of each node to be
a clusterhead. The lower cost means the higher priority.
In practice, the cost could represent the power consump-
tion rate of the node if a backbone with small power con-
sumption is needed; the robustness of the node if fault-
tolerant backbone is needed; or a function of its security
level if a secure backbone is needed; or a combined weight
function to integrate various metrics such as traffic load,
signal overhead, battery level, and coverage. Therefore,
by defining different costs, the proposed low-cost back-
bone formation algorithms can be used in various prac-
tical applications. Beside forming the backbone for rout-
ing, the weighted clustering algorithm (Algorithm 1) can
also be used in other applications, such as selecting the
mobile agents to perform intrusion detection in ad hoc
networks [8] (to achieve more robust and power efficient
agent selection), or select the rendezvous points to collect
and store data in sensor networks [15] (to achieve the en-
ergy efficiency and storage balancing).

Weighted Popular Matchings W 1023

Open Problems

Anumber of problems related to the work ofWang,Wang,
and Li [12,13] remain open. The proposed method as-
sumes that the nodes are almost-static in a reasonable pe-
riod of time. However, in some network applications, the
network could be highly dynamic (both the topology or
the cost could change). Therefore, after the generation of
the weighted backbone, the dynamic maintenance of the
backbone is also an important issue. It is still unknown
how to update the topology efficiently while preserving the
approximation quality.

In [12,13], the following assumptions on wireless net-
work model is used: omni-directional antenna, single
transmission received by all nodes within the vicinity of
the transmitter. The MWCDS problem will become much
more complicated if some of these assumptions are re-
laxed.

Experimental Results

In [12,13], simulations on random networks are con-
ducted to evaluate the performances of the proposed
weighted backbone and several backbones built by previ-
ous methods. The simulation results confirm the theoreti-
cal results.

Cross References

� Connected Dominating Set

Recommended Reading
1. Alzoubi, K., Wan, P.-J., Frieder, O.: New distributed algorithm

for connected dominating set in wireless ad hoc networks. In:
Proceedings of IEEE 35th Hawaii International Conference on
System Sciences (HICSS-35), Hawaii, 7–10 January 2002

2. Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., Frieder, O.: Geomet-
ric spanners for wireless ad hoc networks. IEEE Trans. Parallel
Distrib. Process. 14, 408–421 (2003)

3. Ambuhl, C., Erlebach, T., Mihalak, M., Nunkesser, M.: Constant-
factor approximation for minimum-weight (connected) domi-
nating sets in unit disk graphs. In: Proceedings of the 9th Inter-
national Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems (APPROX 2006), Barcelona, 28–
30 August 2006, LNCS, vol. 4110, pp. 3–14. Springer, Berlin Hei-
delberg (2006)

4. Bao, L., Garcia�Aceves, J.J.: Topology management in ad hoc
networks. In: Proceedings of the 4th ACM international sympo-
siumonMobile adhoc networking& computing, Annapolis, 1–
3 June 2003, pp. 129–140. ACM Press, New York (2003)

5. Chatterjee, M., Das, S., Turgut, D.: WCA: A weighted cluster-
ing algorithm for mobile ad hoc networks. J. Clust. Comput. 5,
193–204 (2002)

6. Das, B., Bharghavan, V.: Routing in ad-hoc networks usingmin-
imum connected dominating sets. In: Proceedings of IEEE In-

ternational Conference on on Communications (ICC’97), vol. 1,
pp. 376–380. Montreal, 8–12 June 1997

7. Guhaa, S., Khuller, S.: Improved methods for approximating
node weighted Steiner trees and connected dominating sets.
Inf. Comput. 150, 57–74 (1999)

8. Kachirski, O., Guha, R.: Intrusion detection usingmobile agents
in wireless ad hoc networks. In: Proceedings of IEEE Workshop
on Knowledge Media Networking, Kyoto, 10–12 July 2002

9. Klein, P., Ravi, R.: A nearly best-possible approximation algo-
rithm for node-weighted Steiner trees. J. Algorithms 19, 104–
115 (1995)

10. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! In: Proceedings of the 23rd ACM Symposium
on the Principles of Distributed Computing (PODC), St. John’s,
July (2004)

11. Li, X.-Y., Wan, P.-J.: Theoretically good distributed CDMA/OVSF
code assignment for wireless ad hoc networks. In: Proceedings
of 11th Internatioanl Computing and Combinatorics Confer-
ence (COCOON), Kunming, 16–19 August 2005

12. Wang, Y., Wang,W., Li, X.-Y.: Efficient distributed low-cost back-
bone formation for wireless networks. In: Proceedings of 6th
ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2005), Urbana-Champaign, 25–27
May 2005

13. Wang, Y., Wang,W., Li, X.-Y.: Efficient distributed low cost back-
bone formation for wireless networks. IEEE Trans. Parallel Dis-
trib. Syst. 17, 681–693 (2006)

14. Wu, J., Li, H.: A dominating-set-based routing scheme in ad hoc
wireless networks. The special issue on Wirel. Netw. Telecom-
mun. Systems J. 3, 63–84 (2001)

15. Zheng, R., He, G., Gupta, I., Sha, L.: Time idexing in sensor net-
works. In: Proceedings of 1st IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS), Fort Lauderdale,
24–27 October 2004

Weighted Popular Matchings
2006; Mestre

JULIÁN MESTRE
Department of Computer Science, University
of Maryland, College Park, MD, USA

ProblemDefinition

Consider the problem of matching a set of individuals X
to a set of items Y where each individual has a weight and
a personal preference over the items. The objective is to
construct amatchingM that is stable in the sense that there
is no matching M0 such that the weighted majority vote
will chooseM0 overM.

More formally, a bipartite graph (X;Y ; E), a weight
w(x) 2 R+ for each individual x 2 X, and a rank function
r : E ! f1; : : : ; jY jg encoding the individual preferences
are given. For every applicant x and items y1; y2 2 Y say
applicant x prefers y1 over y2 if r(x; y1) < r(x; y2), and
x is indifferent between y1 and y2 if r(x; y1) = r(x; y2).

1024 W Weighted Random Sampling

The preference lists are said to be strictly ordered if appli-
cants are never indifferent between two items, otherwise
the preference lists are said to contain ties.

LetM andM0 be twomatchings. An applicant x prefers
M over M0 if x prefers the item he/she gets in M over the
item he/she gets inM0. AmatchingM ismore popular than
M0 if the applicants that preferM overM0 outweigh those
that prefer M0 over M. Finally, a matching M is weighted
popular if there is no matchingM0 more popular thanM.

In the weighted popular matching problem it is nec-
essary to determine if a given instance admits a popu-
lar matching, and if so, to produce one. In the maximum
weighted popular matching problem it is necessary to find
a popularmatching ofmaximumcardinality, provided one
exists.

Abraham et al. [2] gave the first polynomial time al-
gorithms for the special case of these problems where
the weights are uniform. Later, Mestre [8] introduced the
weighted variant and developed polynomial time algo-
rithms for it.

Key Results

Theorem 1 The weighted popular matching and max-
imum weighted popular matching problems on in-
stances with strictly ordered preferences can be solved in
O(jXj + jEj) time.

Theorem 2 The weighted popular matching and max-
imum weighted popular matching problems on instances
with arbitrary preferences can be solved in O(minfk

p
jXj;

jXjgjEj) time.

Both results rely on an alternative easy-to-compute char-
acterization of weighted popular matchings called well-
formed matchings. It can be shown that every popular
matching is well-formed. While in unweighted instances
every well-formedmatching is popular [2], in weighted in-
stances there may be well-formed matchings that are not
popular. These non-popular well-formed matchings can
be weeded out by pruning certain bad edges that cannot
be part of any popular matching. In other words, the in-
stance can be pruned so that a matching is popular if and
only if it is well-formed and is contained in the pruned in-
stance [8].

Applications

Many real-life problems can be modeled using one-sided
preferences. For example, the assignment of graduates to
training positions [5], families to government-subsidized
housing [10], students to projects [9], and Internet rental

markets [1] such as Netflix where subscribers are assigned
DVDs.

Furthermore, the weighted framework allows one to
model the naturally occurring situation in which some
subset of users has priority over the rest. For example, an
Internet rental site may offer a “premium” subscription
plan and promise priority over “regular” subscribers.

Cross References

� Ranked Matching
� Stable Marriage

Recommended Reading
1. Abraham, D.J., Chen, N., Kumar, V., Mirrokni, V.: Assignment

problems in rental markets. In: Proceedings of the 2nd Work-
shop on Internet and Network Economics, Patras, December
15–17 2006

2. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular
matchings. In: Proceedings of the 16th Annual ACM-SIAMSym-
posium on Discrete Algorithms (SODA), pp. 424–432 (2005)

3. Abraham, D.J., Kavitha, T.: Dynamicmatchingmarkets and vot-
ing paths. In: Proceedings of the 10th ScandinavianWorkshop
on Algorithm Theory (SWAT), pp. 65–76, Riga, July 6–8 2006

4. Gardenfors, P.: Match making: assignments based on bilateral
preferences. Behav. Sci. 20, 166–173 (1975)

5. Hylland, A., Zeeckhauser, R.: The efficent allocation of individ-
uals to positions. J. Polit. Econ. 87(2), 293–314 (1979)

6. Mahdian, M.: Random popular matchings. In: Proceedings
of the 7th ACM Conference on Electronic Commerce (EC),
pp. 238–242 Venice, July 10–14 2006

7. Manlove, D., Sng, C.: Popular matchings in the capacitated
house allocation problem. In: Proceedings of the 14th Annual
European SymposiumonAlgorithms (ESA), pp. 492–503 (2006)

8. Mestre, J.: Weighted popular matchings. In: Proceedings of the
16th International Colloquium on Automata, Languages, and
Programming (ICALP), pp. 715–726 (2006)

9. Proll, L.G.: A simple method of assigning projects to students.
Oper. Res. Q. 23(23), 195–201 (1972)

10. Yuan, Y.: Residence exchange wanted: a stable residence ex-
change problem. Eur. J. Oper. Res. 90, 536–546 (1996)

Weighted Random Sampling
2005; Efraimidis, Spirakis

PAVLOS EFRAIMIDIS1, PAUL SPIRAKIS2
1 Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece

2 Department of Computer Engineering
and Informatics, Research and Academic Computer
Technology Institute, Patras University, Patras, Greece

Keywords and Synonyms

Random number generation; Sampling

Weighted Random Sampling W 1025

ProblemDefinition

The problem of random sampling without replacement
(RS) calls for the selection ofm distinct random items out
of a population of size n. If all items have the same prob-
ability to be selected, the problem is known as uniform
RS. Uniform random sampling in one pass is discussed
in [1,6,11]. Reservoir-type uniform sampling algorithms
over data streams are discussed in [12]. A parallel uniform
random sampling algorithm is given in [10]. In weighted
random sampling (WRS) the items are weighted and the
probability of each item to be selected is determined by its
relative weight. WRS can be defined with the following al-
gorithm D:

Algorithm D, a definition of WRS

Input: A population V of n weighted items
Output: A set S with a WRS of sizem
1: For k = 1 tom do
2: Let pi (k) = wi /

P
s j2V�S wj be the probability of

item vi to be selected in round k
3: Randomly select an item vi 2 V � S and insert it

into S
4: End-For

Problem 1 (WRS)
INPUT: A population V of n weighted items.
OUTPUT: A set S with a weighted random sample.

The most important algorithms for WRS are the Alias
Method, Partial Sum Trees and the Acceptance/Rejection
method (see [9] for a summary of WRS algorithms). None
of these algorithms is appropriate for one-pass WRS. In this
work, an algorithm for WRS is presented. The algorithm
is simple, very flexible, and solves the WRS problem over
data streams. Furthermore, the algorithm admits parallel
or distributed implementation. To the best knowledge of
the entry authors, this is the first algorithm for WRS over
data streams and for WRS in parallel or distributed set-
tings.

Definitions

One-pass WRS is the problem of generating a weighted
random sample in one-pass over a population. If addition-
ally the population size is initially unknown (e. g. a data
streams), the random sample can be generated with reser-
voir sampling algorithms. These algorithms keep an aux-
iliary storage, the reservoir, with all items that are candi-
dates for the final sample.

Notation and Assumptions

The item weights are initially unknown, strictly positive
reals. The population size is n, the size of the random sam-
ple is m and the weight of item vi is wi. The function ran-
dom(L,H) generates a uniform random number in (L,H).
X denotes a random variable. Infinite precision arithmetic
is assumed. Unless otherwise specified, all sampling prob-
lems are without replacement. Depending on the context,
WRS is used to denote a weighted random sample or the
operation of weighted random sampling.

Key Results

All the results with their proofs can be found in [4].
The crux of the WRS approach of this work is given

with the following algorithm A:

Algorithm A

Input: A population V of n weighted items
Output: AWRS of sizem
1: For each vi 2 V , ui = random(0; 1) and ki = u(1/wi)

i
2: Select the m items with the largest keys ki as a WRS

Theorem 1 Algorithm A generates a WRS.

A reservoir-type adaptation of algorithmA is the following
algorithm A-Res:

Algorithm A with a Reservoir (A-Res)

Input: A population V of n weighted items
Output: A reservoir R with a WRS of sizem
1: The firstm items of V are inserted into R
2: For each item vi 2 R: Calculate a key ki = u(1/wi)

i ,
where ui = random(0; 1)

3: Repeat Steps 4–7 for i = m + 1; m + 2; : : : ; n
4: The smallest key in R is the current threshold T
5: For item vi: Calculate a key ki = u(1/wi)

i , where
ui = random(0; 1)

6: If the key ki is larger than T, then:
7: The item with the minimum key in R is

replaced by item vi

Algorithm A-Res performs the calculations required by
algorithm A and hence by Theorem 1 A-Res generates
a WRS. The number of reservoir operations for algorithm
A-Res is given by the following Proposition:

Theorem 2 If A-Res is applied on n weighted items, where
the weights wi > 0 are independent random variables with
a common continuous distribution, then the expected num-
ber of reservoir insertions (without the initial m insertions)

1026 W Weighted Random Sampling

is:
nX

i=m+1

P [item i is inserted into S] =
nX

i=m+1

m
i

= O
�
m � log

� n
m

��
:

Let Sw be the sum of the weights of the items that will be
skipped by A-Res until a new item enters the reservoir. If
Tw is the current threshold to enter the reservoir, then Sw
is a continuous random variable that follows an exponen-
tial distribution. Instead of generating a key for every item,
it is possible to generate random jumps that correspond to
the sum Sw. Similar techniques have been applied for uni-
form random sampling (see for example [3]). The follow-
ing algorithm A-ExpJ is an exponential jumps-type adap-
tation of algorithm A:

Algorithm A with exponential jumps (A-ExpJ)

Input: A population V of n weighted items
Output: A reservoir R with a WRS of sizem
1: The firstm items of V are inserted into R
2: For each item vi 2 R: Calculate a key ki = u(1/wi)

i ,
where ui = random(0; 1)

3: The threshold Tw is the minimum key of R
4: Repeat Steps 5–10 until the population is exhausted
5: Let r = random(0; 1) and Xw = log(r)/ log(Tw)
6: From the current item vc skip items until item vi,

such that:
7: wc + wc+1 + � � � + wi�1 < Xw

� wc + wc+1 + � � � + wi�1 + wi
8: The item in R with theminimum key is replaced by

item vi
9: Let tw = Twwi , r2 = random(tw ; 1) and vi’s key:

ki = r2(1/wi)

10: The new threshold Tw is the new minimum key
of R

Theorem 3 Algorithm A-ExpJ generates a WRS.

The number of exponential jumps of A-ExpJ is given by
Proposition 2. Hence algorithm A-ExpJ reduces the num-
ber of random variates that have to be generated from
O(n) (for A-Res) toO(m log(n/m)). Since generating high-
quality random variates can be a costly operation this is
a significant improvement for the complexity of the sam-
pling algorithm.

Applications

Random sampling is a fundamental problem in com-
puter science with applications in many fields includ-
ing databases (see [5,9] and the references therein), data

mining, and approximation algorithms and randomized
algorithms [7]. Consequently, algorithm A for WRS is
a general tool that can find applications in the de-
sign of randomized algorithms. For example, algorithm
A can be used within approximation algorithms for the k-
Median [7].

The reservoir based versions of algorithm A, A-Res
and A-ExpJ, have very small requirements for auxiliary
storage space (m keys organized as a heap) and during
the sampling process their reservoir continuously con-
tains a weighted random sample that is valid for the al-
ready processed data. This makes the algorithms applica-
ble to the emerging area of algorithms for processing data
streams([2,8]).

Algorithms A-Res and A-ExpJ can be used for
weighted random sampling with replacement from data
streams. In particular, it is possible to generate a weighted
random sample with replacement of size k with A-Res or
A-ExpJ, by running concurrently, in one pass, k instances
of A-Res or A-ExpJ respectively. Each algorithm instance
must be executed with a trivial reservoir of size 1. At the
end, the union of all reservoirs is aWRS with replacement.

URL to Code

The algorithms presented in this work are easy to im-
plement. An experimental implementation in Java can be
found at: http://utopia.duth.gr/~pefraimi/projects/WRS/
index.html

Cross References

� Online Paging and Caching
� Randomization in Distributed Computing

Recommended Reading

1. Ahrens, J.H., Dieter, U.: Sequential random sampling. ACM
Trans. Math. Softw. 11, 157–169 (1985)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Mod-
els and issues in data stream systems. In: Proceedings of the
twenty-first ACMSIGMOD-SIGACT-SIGART symposiumon Prin-
ciples of database systems, pp. 1–16. ACM Press (2002)

3. Devroye, L.: Non-uniform Random Variate Generation.
Springer, New York (1986)

4. Efraimidis, P., Spirakis, P.: Weighted Random Sampling with
a reservoir. Inf. Process. Lett. J. 97(5), 181–185 (2006)

5. Jermaine, C., Pol, A., Arumugam, S.: Online maintenance of
very large random samples. In: SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on Management
of data, New York, pp. 299–310. ACM Press (2004)

6. Knuth, D.: The Art of Computer Programming, vol. 2 : Seminu-
merical Algorithms, 2nd edn. Addison-Wesley Publishing Com-
pany, Reading (1981)

http://utopia.duth.gr/~pefraimi/projects/WRS/index.html
http://utopia.duth.gr/~pefraimi/projects/WRS/index.html

Well Separated Pair Decomposition W 1027

7. Lin, J.-H., Vitter, J.: �-approximations with minimum packing
constraint violation. In: 24th ACM STOC, pp. 771–782 (1992)

8. Muthukrishnan, S.: Data streams: Algorithms and applications.
Found. Trends Theor. Comput. Sci. 1, pp.1–126 (2005)

9. Olken, F.: Random Sampling from Databases. Ph. D. thesis, De-
partment of Computer Science, University of California, Berke-
ley (1993)

10. Rajan, V., Ghosh, R., Gupta, P.: An efficient parallel algorithm for
random sampling. Inf. Process. Lett. 30, 265–268 (1989)

11. Vitter, J.: Faster methods for random sampling. Commun. ACM
27, 703–718 (1984)

12. Vitter, J.: Random sampling with a reservoir. ACM Trans. Math.
Softw. 11, 37–57 (1985)

Well Separated Pair Decomposition
2003; Gao, Zhang

JIE GAO1, LI ZHANG2

1 Department of Computer Science,
Stony Brook University, Stony Brook, NY, USA

2 HP Labs, Palo Alto, CA, USA

Keywords and Synonyms

Proximity algorithms for growth-restricted metrics

ProblemDefinition

Well-separated pair decomposition, introduced by Calla-
han and Kosaraju [3], has found numerous applications
in solving proximity problems for points in the Euclidean
space. A pair of point sets (A, B) is c-well-separated if the
distance between A and B is at least c times the diame-
ters of both A and B. A well-separated pair decomposition
of a point set consists of a set of well-separated pairs that
“cover” all the pairs of distinct points, i. e., any two distinct
points belong to the different sets of some pair. Callahan
and Kosaraju [3] showed that for any point set in a Eu-
clidean space and for any constant c � 1, there always ex-
ists a c-well-separated pair decomposition (c-WSPD) with
linearly many pairs. This fact has been very useful for ob-
taining nearly linear time algorithms for many problems,
such as computing k-nearest neighbors, N-body potential
fields, geometric spanners, approximate minimum span-
ning trees, etc.Well-separated pair decomposition has also
been shown to be very useful for obtaining efficient dy-
namic, parallel, and external memory algorithms.

The definition of well-separated pair decomposition
can be naturally extended to any metric space. However,
a general metric space may not admit a well-separated
pair decomposition with a subquadratic size. Indeed, even

for the metric induced by a star tree with unit weight
on each edge,1 any well-separated pair decomposition re-
quires quadratically many pairs. This makes the well-sep-
arated pair decomposition useless for such a metric. How-
ever, it has been shown that for the unit disk graph metric,
there do exist well-separated pair decompositions with al-
most linear size, and therefore many proximity problems
under the unit disk graph metric can be solved efficiently.

Unit-Disk Graphs [4]

Denote by d(�; �) the Euclidean metric. For a set of points S
in the plane, the unit-disk graph I(S) = (S; E) is defined
to be the weighted graph where an edge e = (p; q) is in
the graph if d(p; q) � 1, and the weight of e is d(p; q).
Likewise, one can define the unit-ball graph for points in
higher dimensions.

Unit-disk graphs have been used extensively to model
the communication or influence between objects [9,12]
and have been studied in many different contexts [4,10].
For an example, wireless ad hoc networks can be mod-
eled by unit-disk graphs [6], as two wireless nodes can di-
rectly communicate with each other only if they are within
a certain distance. In unsupervised learning, for a dense
sampling of points from some unknown manifold, the
length of the shortest path on the unit-ball graph is a good
approximation of the geodesic distance on the underly-
ing (unknown) manifold if the radius is chosen appropri-
ately [14,5]. By using well-separated pair decomposition,
one can encode the all-pairs distances approximately by
a compact data structure that supports approximate dis-
tance queries in O(1) time.

Metric Space

Suppose that (S;
) is a metric space where S is a set of
elements and
 the distance function defined on S � S.
For any subset S1
 S, the diameter D�(S1) (or D(S1)
when
 is clear from the context) of S is defined to be
maxs1;s22S1
(s1; s2). The distance
(S1; S2) between two
sets S1; S2
 S is defined to be mins12S1;s22S2
(s1; s2).

Well-Separated Pair Decomposition

For a metric space (S;
), two nonempty subsets S1; S2

S are called c-well-separated if
(S1; S2) � c �max(D� (S1);
D� (S2)).

Following the definition in [3], for any two sets A and
B, a set of pairs P = fP1; P2; : : : ; Pmg, where Pi = (Ai ; Bi),
is called a pair decomposition of (A,B) (or of A if A = B) if

1A metric induced by a graph (with positive edge weights) is the
shortest-path distance metric of the graph.

1028 W Well Separated Pair Decomposition

� For all the i’s, Ai
 A, and Bi
 B.
� Ai \ Bi = ;.
� For any two elements a 2 A and b 2 B, there exists

a unique i such that a 2 Ai , and b 2 Bi . Call (a, b) is
covered by the pair (Ai ; Bi).

If in addition, every pair in P is c-well-separated, P is
called a c-well-separated pair decomposition (or c-WSPD
for short). Clearly, anymetric space admits a c-WSPDwith
quadratic size by using the trivial family that contains all
the pairwise elements.

Key Results

In [7], it was shown that for themetric induced by the unit-
disk graph on n points and for any constant c � 1, there
does exist a c-WSPD with O(n log n) pairs, and such a de-
composition can be computed in O(n log n) time. It was
also shown that the bounds can be extended to higher di-
mensions. The following theorems state the key results for
two and higher dimensions.

Theorem 1 For any set S of n points in the plane and any
c � 1, there exists a c-WSPD P of S under the unit disk
graph metric where P contains O(c4n log n) pairs and can
be computed in O(c4n log n) time.

Theorem 2 For any set S of n points in IRk , for k � 3, and
for any constant c � 1, there exists a c-WSPD P of S under
the unit ball graphmetric whereP contains O(n2�2/k) pairs
and can be constructed in O(n4/3 polylog n) time for k = 3
and in O(n2�2/k) time for k � 4.

The difficulty in obtaining a well-separated pair decompo-
sition for the unit disk graph metric is that two points that
are close in space are not necessarily close under the graph
metric. The above bounds are first shown for the point
set with constant-bounded density, i. e., a point set where
any unit disk covers only a constant number of points in
the set. The upper bound on the number of pairs is ob-
tained by using a packing argument similar to the one used
in [8].

For a point set with unbounded density, one applies
a clustering technique similar to the one used in [6] to
the point set and obtains a set of “clusterheads” with
a bounded density. Then the result for bounded density
is applied to those clusterheads. Finally, the well-sepa-
rated pair decomposition is obtained by combining the
well-separated pair decomposition for the bounded den-
sity point sets and for the Euclidean metric. The number
of pairs is dominated by the number of pairs constructed
for a constant density set, which is in turn dominated by
the bound given by the packing argument. It has been

shown that the bounds on the number of pairs is tight for
k � 3.

Applications

For a pair of well-separated sets, the distance between
two points from different sets can be approximated by
the “distance” between the two sets or the distance be-
tween any pair of points in different sets. In other words,
a well-separated pair decomposition can be thought of as
a compressed representation to approximate the 	(n2)
pairwise distances. Many problems that require the pair-
wise distances to be checked can therefore be approxi-
mately solved by examining those distances between the
well-separated pairs of sets. When the size of the well-
separated pair decomposition is subquadratic, it often
results in more efficient algorithms than examining all
the pairwise distances. Indeed, this is the intuition be-
hind many applications of the geometric well-separated
pair decomposition. By using the same intuition, one
can apply the well-separated pair decomposition in sev-
eral proximity problems under the unit disk graph met-
ric.

Suppose that (S, d) is a metric space. Let S1
 S. Con-
sider the following natural proximity problems.
� Furthest neighbor, diameter, center. The furthest

neighbor of p 2 S1 is the point in S1 that maximizes the
distance to p. Related problems include computing the
diameter, the maximum pairwise shortest distance for
points in S1, and the center, the point that minimizes
the maximum distance to all the other points.

� Nearest neighbor, closest pair. The nearest neighbor
of p 2 S1 is the point in S1 with the minimum distance
to p. Related problems include computing the closest
pair, the pair with the minimum shortest distance, and
the bichromatic closest pair, the pair that minimizes the
distance between points from two different sets.

� Median. The median of S is the point in S that min-
imizes the average (or total) distance to all the other
points.

� Stretch factor. For a graph G defined on S, its stretch
factor with respect to the unit disk graph metric is de-
fined to be the maximum ratio
G (p; q)/
(p; q), where

G ;
 are the distances induced by G and by the unit-
disk graph, respectively.

All the above problems can be solved or approximated ef-
ficiently for points in the Euclidean space. However, for
the metric induced by a graph, even for planar graphs,
very little is known besides solving the expensive all-pairs
shortest-path problem. For computing the diameter, there
is a simple linear-time method that achieves a 2-approx-

Well Separated Pair Decomposition W 1029

imation2 and a 4/3-approximate algorithm with running
time O(m

p
n log n + n2 log n), for a graph with n vertices

andm edges, by Aingworth et al. [1].
By using the well-separated pair decomposition, Gao

and Zhang [7] showed that one can obtain better approx-
imation algorithms for the above proximity problems for
the unit disk graph metric. Specifically, one can obtain al-
most linear-time algorithms for computing the 2.42-ap-
proximation and O(n

p
n log n/"3) time algorithms for

computing the (1 + ")-approximation for any " > 0. In ad-
dition, the well-separated pair decomposition can be used
to obtain an O(n log n/"4) space distance oracle so that any
(1 + ") distance query in the unit-disk graph can be an-
swered in O(1) time.

The bottleneck of the above algorithms turns out to
be computing the approximation of the shortest path dis-
tances between O(n log n) pairs. The algorithm in [7]
only constructs well-separated pair decompositions with-
out computing a good approximation of the distances.
The approximation ratio and the running time are dom-
inated by that of the approximation algorithms used to
estimate the distance between each pair in the well-sep-
arated pair decomposition. Once the distance estimation
has been made, the rest of the computation only takes al-
most linear time.

For a general graph, it is unknown whether O(n log n)
pairs shortest-path distances can be computed signifi-
cantly faster than all-pairs shortest-path distances. For
a planar graph, one can compute the O(n log n) pairs
shortest-path distances in O(n

p
n log n) time by using

separators with O(
p
n) size [2]. This method extends to

the unit-disk graph with constant bounded density since
such graphs enjoy a separator property similar to that of
planar graphs [13]. As for approximation, Thorup [15]
recently discovered an algorithm for planar graphs that
can answer any (1 + ")-shortest-distance query in O(1/")
time after almost linear time preprocessing. Unfortu-
nately, Thorup’s algorithm uses balanced shortest-path
separators in planar graphs which do not obviously extend
to the unit-disk graphs. On the other hand, it is known
that there does exist a planar 2.42-spanner for a unit-
disk graph [11]. By applying Thorup’s algorithm to that
planar spanner, one can compute the 2.42-approximate
shortest-path distance for O(n log n) pairs in almost lin-
ear time.

2Select an arbitrary node v and compute the shortest-path tree
rooted at v. Suppose that the furthest node from v is distance D away.
Then the diameter of the graph is no longer than 2D, by triangle in-
equality.

Open Problems

The most notable open problem is the gap between˝(n)
and O(n log n) on the number of pairs needed in the
plane. Also, the time bound for (1 + ")-approximation is
still about eO(npn) due to the lack of efficient methods
for computing the (1 + ")-approximate shortest path dis-
tances between O(n) pairs of points. Any improvement
to the algorithm for that problem will immediately lead
to improvement to all the (1 + ")-approximate algorithms
presented in this chapter.

Cross References

� Applications of Geometric Spanner Networks
� Separators in Graphs
� Sparse Graph Spanners
�Well Separated Pair Decomposition for Unit–Disk

Graph

Recommended Reading
1. Aingworth, D., Chekuri, C., Motwani, R.: Fast estimation of di-

ameter and shortest paths (without matrix multiplication). In:
Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, 1996,
pp. 547–553

2. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H.M., Zaro-
liagis, C.D: Planar spanners and approximate shortest path
queries among obstacles in the plane. In: Díaz, J., Serna, M.
(eds.) Proc. of 4th Annual European SymposiumonAlgorithms,
1996, pp. 514–528

3. Callahan, P.B., Kosaraju, S. R.: A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and
n-body potential fields. J. ACM 42, 67–90 (1995)

4. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Dis-
cret. Math. 86, 165–177 (1990)

5. Fischl, B., Sereno, M., Dale, A.: Cortical surface-based analysis
II: Inflation, flattening, and a surface-based coordinate system.
NeuroImage 9, 195–207 (1999)

6. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geomet-
ric spanners for routing in mobile networks. IEEE J. Sel. Areas
Commun. Wirel. Ad Hoc Netw. (J-SAC), 23(1), 174–185 (2005)

7. Gao, J., Zhang, L.: Well-separated pair decomposition for the
unit-disk graph metric and its applications. In: Proc. of 35th
ACM Symposium on Theory of Computing (STOC’03), 2003,
pp. 483–492

8. Guibas, L., Ngyuen, A., Russel, D., Zhang, L.: Collision detection
for deforming necklaces. In: Proc. 18th ACM Symposium on
Computational Geometry, 2002, pp. 33–42

9. Hale, W. K.: Frequency assignment: Theory and applications.
Proc. IEEE. 68(12), 1497–1513 (1980)

10. H.B.H. III, Marathe, M.V., Radhakrishnan, V., Ravi, S.S.,
Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes
for NP- and PSPACE-hard problems for geometric graphs.
J. Algorithms 26(2), 238–274 (1998)

11. Li, X.Y., Calinescu, G., Wan, P.J.: Distributed Construction of
a Planar Spanner and Routing for Ad Hoc Wireless Networks.
In: IEEE INFOCOM 2002, New York, NY, 23–27 June 2002

1030 W Well Separated Pair Decomposition for Unit–Disk Graph

12. Mead, C.A., Conway, L.: Introduction to VLSI Systems. Addison-
Wesley, (1980)

13. Miller, G.L., Teng, S.H., Vavasis, S.A.: An unified geometric ap-
proach to graph separators. In: Proc. 32nd Annu. IEEE Sympos.
Found. Comput. Sci. 1991, pp. 538–547

14. Tenenbaum, J., de Silva, V., Langford, J.: A global geomet-
ric framework for nonlinear dimensionality reduction. Science
290, 22 (2000)

15. Thorup, M.: Compact oracles for reachability and approximate
distances in planar digraphs. In: Proc. 42nd IEEE Symposiumon
Foundations of Computer Science, 2001, pp. 242–251

Well Separated Pair Decomposition
for Unit–Disk Graph
1995; Callahan, Kosaraju

ROLF KLEIN
Institute of Computer Science, University of Bonn,
Bonn, Germany

Keywords and Synonyms

Clustering

ProblemDefinition

Notations

Given a finite point set A in Rd, its bounding box R(A) is
the d-dimensional hyper-rectangle [a1; b1]� [a2; b2]� : : :
� [ad ; bd] that contains A and has minimum extension in
each dimension.

Two point sets A, B are said to be well-separated with
respect to a separation parameter s> 0 if there exist a real
number r> 0 and two d-dimensional spheres CA and CB
of radius r each, such that the following properties are ful-
filled.
1. CA \ CB = ;
2. CA contains the bounding box R(A) of A
3. CB contains the bounding box R(B) of B
4. jCACB j � s � r.
Here jCACB j denotes the smallest Euclidean distance be-
tween two points of CA and CB, respectively. An example
is depicted in Fig. 1. Given the bounding boxes R(A), R(B),
it takes time only O(d) to test if A and B are well-separated
with respect to s.

Two points of the same set, A or B, have a Euclidean
distance at most 2/s times the distance any pair (a; b) 2
A � B can have. Also, any two such pairs (a; b); (a0; b0)
differ in their distances ja � bj; ja0 � b0j by a factor of at
most 1 + 4/s.

Given a set S of n points in Rd, a well-separated pair
decomposition of S with respect to separation parameter s
is a sequence (A1; B1); (A2; B2); : : : ; (Am ; Bm) where
1. Ai ; Bi � S, for i = 1 : : :m
2. Ai and Bi are well-separated with respect to s, for i =

1 : : :m
3. for all points a; b 2 S; a 6= b, there exists a unique index

i in 1 : : :m such that a 2 Ai and b 2 Bi , or b 2 Ai and
a 2 Bi hold

Obviously, each set S = fs1; : : : ; sng possesses a well-sepa-
rated pair decomposition. One can simply use all singleton
pairs (fsig; fs jg) where i < j. The question is if decom-
positions consisting of fewer than O(n2) many pairs exist,
and how to construct them efficiently.

Key Results

In fact, the following result has been shown by Callahan
and Kosaraju [1,2].

Theorem 1 Given a set S of n points in Rd and a sep-
aration parameter s, there exists a well-separated pair
decomposition of S with respect to s, that consists of
O(sd dd/2n) many pairs (Ai ; Bi). It can be constructed in
time O(dn log n + sd dd/2+1n).

Thus, if dimension d and separation parameter s are
fixed – which is the case in many applications – then the
number of pairs is in O(n), and the decomposition can be
computed in time O(n log n).

The main tool in constructing the well-separated pair
decomposition is the split tree T(S) of S. The root, r, of
T(S) contains the bounding box R(S) of S. Its two child
nodes are obtained by cutting through the middle of the
longest dimension of R(S), using an orthogonal hyper-
plane. It splits S into two subsets Sa ; Sb , whose bounding
boxes R(Sa) and R(Sb) are stored at the two children a and
b of root r. This process continues until only one point
of S remains in each subset. These singleton sets form the
leaves of T(S). Clearly, the split tree T(S) contains O(n)
many nodes. It need not be balanced, but it can be con-
structed in time O(dn log n).

A well-separated pair decomposition of S, with respect
to a given separation parameter s, can now be obtained
from T(S) in the following way. For each internal node of
T(S) with children v and w the following recursive pro-
cedure FindPairs(v,w) is called. If Sv and Sw are well-sep-
arated then the pair (Sv ; Sw) is reported. Otherwise, one
may assume that the longest dimension of R(Sv) exceeds in
length the longest dimension of R(Sw), and that vl ; vr are
the child nodes of v in T(S). Then, FindPairs(vl ;w) and
FindPairs(vr ;w) are invoked.

Well Separated Pair Decomposition for Unit–Disk Graph W 1031

Well Separated Pair Decomposition for Unit–Disk Graph, Figure 1
The sets A, B are well-separated with respect to s

The total number of procedure calls is bounded by
the number of well-separated pairs reported, which can be
shown to be in O(sd dd/2n) by a packing argument. How-
ever, the total size of all sets Ai ; Bi in the decomposition is
in general quadratic in n.

Applications

From now on the dimension d is assumed to be a constant.
The well-separated pair decomposition can be used in ef-
ficiently solving proximity problems for points inRd.

Theorem 2 Let S be a set of n points in Rd. Then a closest
pair in S can be found in optimal time O(n log n).

Indeed, let q 2 S be a nearest neighbor of p 2 S. One can
construct a well-separated pair decomposition with sepa-
ration parameter s> 2 in time O(n log n), and let (Ai ; Bi)
be the pair where p 2 Ai and q 2 Bi . If there were another
point p0 of S in Ai, one would obtain jpp0j � 2/s � jpqj <
jpqj, which is impossible. Hence, Ai is a singleton set. If
(p; q) is a closest pair in S then Bi must be singleton, too.
Therefore, a closest pair can be found by inspecting all sin-
gleton pairs among the O(n) many pairs of the well-sepa-
rated pair decomposition.

With more effort, the following generalization can
been shown.

Theorem 3 Let S be a set of n points in Rd, and let k � n.
Then for each p 2 S its k nearest neighbors in S can be
computed in total time O(n log n + nk). In particular, for
each point in S can a nearest neighbor in S be computed in
optimal time O(n log n).

In dimension d = 2 one would typically use the Voronoi
diagram for solving these problems. But as the complex-
ity of the Voronoi diagram of n points can be as large
as nbd/2c, the well-separated pair decomposition is much
more convenient to use in higher dimensions.

A major application of the well-separated pair decom-
position is the construction of good spanners for a given
point set S. A spanner of S of dilation t is a geometric net-
work N with vertex set S such that, for any two vertices
p; q 2 S, the Euclidean length of a shortest path connect-
ing p and q in N is at most t times the Euclidean distance
jpqj.

Theorem 4 Let S be a set of n points in Rd, and let t>1.
Then a spanner of S of dilation t containing O(sd n) edges
can be constructed in time O (sdn+n log n), where s = 4(t+
1)(t � 1).

Indeed, if one edge (ai, bi) is chosen from each pair (Ai, Bi)
of a well-separated pair decomposition of S with respect
to s, these edges form a t-spanner of S, as can be shown by
induction on the rank of each pair (p; q) 2 S2 in the list of
all such pairs, sorted by distance.

Since spanners have many interesting applications of
their own, several articles of this encyclopedia are devoted
to this topic.

Open Problems

An important open question is which metric spaces admit
well-separated pair decompositions. It is easy to see that
the packing arguments used in the Euclidean case carry
over to the case of convex distance functions in Rd . More
generally, Talwar [6] has shown how to compute well-sep-
arated pair decompositions for point sets of bounded as-
pect ratio in metric spaces of bounded doubling dimen-
sion.

On the other hand, for the metric induced by a disk
graph in R2, a quadratic number of pairs may be neces-
sary in the well-separated pair decomposition. (In a disk
graph, each point p 2 S is center of a disk Dp of radius rp.
Two points p; q are connected by an edge if and only if
Dp \ Dq 6= ;. The metric is defined by Euclidean short-

1032 W Whole Genome Assemble

est path length in the resulting graph. If this graph is a star
with rays of identical length, a well-separated pair decom-
position with respect to s> 4 must consist of singleton
pairs.) Even for a unit disk graph, ˝(n2�2/d) many pairs
may be necessary for points in Rd , as Gao and Zhang [4]
have shown.

Cross References

� Applications of Geometric Spanner Networks
� Geometric Spanners
� Planar Geometric Spanners

Recommended Reading
1. Callahan, P.: Dealing with Higher Dimensions: The Well-Sepa-

rated Pair Decomposition and Its Applications. Ph. D. Thesis, The
Johns Hopkins University, USA (1995)

2. Callahan, P.B., Kosaraju, S.R.: A Decomposition of Multidimen-
sional Point Sets with Applications to k-Nearest Neighbors and
n-Body Potential Fields. J. ACM 42(1), 67–90 (1995)

3. Eppstein, D.: Spanning Trees and Spanners. In: Sack, J.R., Urrutia,
J. (eds.) Handbook of Computational Geometry, pp. 425–461. El-
sevier, Amsterdam (1999)

4. Ghao, J., Zhang, L.: Well-Separated Pair Decomposition for the
Unit Disk Graph Metric and its Applications. SIAM J. Comput.
35(1), 151–169 (2005)

5. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cam-
bridge University Press, New York (2007)

6. Talwar, K.: Bypassing the Embedding: Approximation Schemes
and Compact Representations for Low Dimensional Metrics. In:
Proceedings of the thirty-sixth Annual ACMSymposium on The-
ory of Computing (STOC’04), pp. 281–290 (2004)

Whole Genome Assemble
�Multiplex PCR for Gap Closing (Whole-genome

Assembly)

Wireless Networks
� Broadcasting in Geometric Radio Networks
� Deterministic Broadcasting in Radio Networks
� Randomized Gossiping in Radio Networks

Wire Sizing
1999; Chu, Wong

CHRIS CHU
Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA

Keywords and Synonyms

Wire tapering

ProblemDefinition

The problem is about minimizing the delay of an intercon-
nect wire in a Very Large Scale Integration (VLSI) circuit
by changing (i. e., sizing) the width of the wire. The de-
lay of interconnect wire has become a dominant factor in
determining VLSI circuit performance for advanced VLSI
technology. Wire sizing has been shown to be an effective
technique to minimize the interconnect delay. The work
of Chu and Wong [5] shows that the wire sizing prob-
lem can be transformed into a convex quadratic program.
This quadratic programming approach is very efficient
and can be naturally extended to simultaneously consider
buffer insertion, which is another popular interconnect
delay minimization technique. Previous approaches apply
either a dynamic programming approach [13], which is
computationally more expensive, or an iterative greedy ap-
proach [2,7], which is hard to combine with buffer inser-
tion.

The wire sizing problem is formulated as follows and
is illustrated in Fig. 1. Consider a wire of length L. The
wire is connecting a driver with driver resistance RD to
a load with load capacitance CL. In addition, there is
a set H = fh1; : : : ; hng of n wire widths allowed by the
fabrication technology. Assume h1 > � � � > hn . The wire
sizing problem is to determine the wire width function
f (x) : [0; L]! H so that the delay for a signal to travel
from the driver through the wire to the load is minimized.

Wire Sizing, Figure 1
Illustration of the wire sizing problem

Wire Sizing, Figure 2
The model of a wire segment of length l andwidth h by a �-type
RC circuit

Wire Sizing W 1033

As in most previous works on wire sizing, the work
of Chu and Wong uses the Elmore delay model to com-
pute the delay. The Elmore delay model is a delay model
for RC circuits (i. e., circuits consisting of resistors and ca-
pacitors). The Elmore delay for a signal path is equal to
the sum of the delays associated with all resistors along
the path, where the delay associated with each resistor is
equal to its resistance times its total downstream capaci-
tance. For a wire segment of length l and width h, its re-
sistance is r0 l/h and its capacitance is c(h)l, where r0 is the
wire sheet resistance and c(h) is the unit length wire capac-
itance. c(h) is an increasing function in practice. The wire
segment can be modeled as a
-type RC circuit as shown
in Fig. 2.

Key Results

Lemma 1 The optimal wire width function f (x) is a mono-
tonically decreasing function.

Lemma 1 above can be used to greatly simplify the wire
sizing problem. It implies that an optimally-sized wire can
be divided into n segments such that the width of ith seg-
ment is hi. The length of each segment is to be determined.
The simplified problem is illustrated in Fig. 3.

Lemma 2 For the wire in Fig. 3, the Elmore delay is

D =
1
2
lT˚ l + �T l + RDCL

where

˚ =

0
BBBB@

c(h1)r0/h1 c(h2)r0/h1 c(h3)r0/h1 � � � c(hn)r0/h1
c(h2)r0/h1 c(h2)r0/h2 c(h3)r0/h2 � � � c(hn)r0/h2
c(h3)r0/h1 c(h3)r0/h2 c(h3)r0/h3 � � � c(hn)r0/h3

:
:
:

:
:
:

:
:
:

: : :
:
:
:

c(hn)r0/h1 c(hn)r0/h2 c(hn)r0/h3 � � � c(hn)r0/hn

1
CCCCA

� =

0
BBBBB@

RDc(h1) + CLr0/h1
RDc(h2) + CLr0/h2
RDc(h3) + CLr0/h3

:::

RDc(hn) + CLr0/hn

1
CCCCCA

and l =

0
BBBBB@

l1
l2
l3
:::

ln

1
CCCCCA
:

So the wire sizing problem can be written as the fol-
lowing quadratic program:

WS : minimize 1
2 l

T˚ l + �T l
subject to l1 + � � � + ln = L

li � 0 for 1 � i � n :

Quadratic programming is NP-hard in general. In or-
der to solveWS efficiently, some properties of the Hessian
matrix ˚ are explored.

Wire Sizing, Figure 3
Illustration of the simplified wire sizing problem

Definition 1 (Symmetric Decomposable Matrix) Let
Q = (qi j) be an n � n symmetric matrix. If for some ˛ =
(˛1; : : : ; ˛n)T and v = (v1; : : : ; vn)T such that 0 < ˛1 <

� � � < ˛n , qi j = qji = ˛i vi v j for i� j, then Q is called
a symmetric decomposable matrix. Let Q be denoted as
SDM(˛; v).

Lemma 3 If Q is symmetric decomposable, then Q is posi-
tive definite.

Lemma 4 ˚ inWS is symmetric decomposable.

Lemma 3 and Lemma 4 imply that the Hessian matrix
˚ ofWS is positive definite. Hence, the problemWS is
a convex quadratic program and is solvable in polynomial
time [12].

The work of Chu and Wong proposes to solve WS
by active set method. The active set method transforms
a problem with some inequality constraints into a se-
quence of problems with only equality constraints. The
method stops when the solution of the transformed prob-
lem satisfies both the feasibility and optimality condi-
tions of the original problem. For the problem WS,
the active set method keeps track of an active set A
in each iteration. The method sets l j = 0 for all j 2A
and ignores the constraints l j � 0 for all j 62A. If
f j1; : : : ; jrg = f1; : : : ; ng �A, then WS is transformed
into the following equality-constrained wire sizing prob-
lem:

ECWS : minimize 1
2 l

T
A˚A lA + �T

A lA
subject to � A lA = L

where lA = (l j1 ; : : : ; l jr)T, � A = (1 1 � � � 1), �A =
(RDc(hj1)+CLr0/hj1 ; : : : ; RDc(hjr)+CLr0/hjr)T, and˚A
is the symmetric decomposable matrix corresponding to
A (i. e., ˚A = SDM(˛A; vA) with ˛A = (r0/c(hj1)hj1 ;

: : : ; r0/c(hjr)hjr)T and vA = (c(hj1); : : : ; c(hjr))T).

Lemma 5 The solution of ECWS is:

�A = �(� A˚�1A � T
A)�1(� A˚�1A �A + L)

lA = �˚�1A � T
A�A �˚�1A �A :

1034 W Wire Sizing

Lemma 6 If Q is symmetric decomposable, then Q�1 is
tridiagonal. In particular, if Q = SDM(˛; v), then Q�1 =
(�i j) where �i i = 1/(˛i � ˛i�1)v2i + 1/(˛i+1 � ˛i)v2i ,
�i;i+1 = �i+1;i = �1/(˛i+1 � ˛i)vi vi+1 for 1 � i � n � 1,
�nn = 1/(˛n � ˛n�1)v2n, and �i j = 0 otherwise.

By Lemma 5 and Lemma 6, ECWS can be solved in O(n)
time. To solveWS, in practice, the active set method takes
less than n iterations and hence the total runtime is O(n2).
Note that unlike previous works, the runtime of this con-
vex quadratic programming approach is independent of
the wire length L.

Applications

The wire sizing technique is commonly applied to mini-
mize the wire delay and hence to improve the performance
of VLSI circuits. As there are typically millions of wires in
modern VLSI circuits, and each wire may be sized many
many times in order to explore different architecture, logic
design and layout during the design process, it is very im-
portant for wire sizing algorithms to be very efficient.

Another popular technique for delay minimization of
slow signals is to insert buffers (or called repeaters) to
strengthen and accelerate the signals. The work of Chu
and Wong can be naturally extended to simultaneously
handle buffer insertion. It is shown in [4] that the delay
minimization problem for a wire by simultaneous buffer
insertion and wire sizing can also be formulated as a con-
vex quadratic program and be solved by active set method.
The runtime is onlym times more than that of wire sizing,
wherem is the number of buffers inserted.m is typically 5
or less in practice.

About one third of all nets in a typical VLSI circuit are
multi-pin nets (i. e., nets with a tree structure to deliver
a signal from a source to several sinks). It is important to
minimize the delay of multi-pin nets. Thework of Chu and
Wong can also be applied to optimize multi-pin nets. The
extension is described in Mo and Chu [14]. The idea is to
integrate the quadratic programming approach into a dy-
namic programming framework. Each branch of the net
is solved as a convex quadratic program while the overall
tree structure is handled by dynamic programming.

Open Problems

After more than a decade of active research, the wire
sizing problem by itself is now considered a well-
solved problem. Some important solutions are [1,2,3,4,5,6,
7,8,9,10,11,13,14,15]. The major remaining challenge is to
simultaneously apply wire sizing with other interconnect
optimization techniques to improve circuit performance.

Wire sizing, buffer insertion and gate sizing are three most
commonly used interconnect optimization techniques. It
has been demonstrated that better performance can be
achieved by simultaneously applying these three tech-
niques than applying them sequentially. One very practical
problem is to perform simultaneous wire sizing, buffer in-
sertion and gate sizing to a combinational circuit such that
the delay of all input-to-output paths are less than a given
target and the total wire/buffer/gate resource usage is min-
imized.

Cross References

� Circuit Retiming
� Circuit Retiming: An Incremental Approach
� Gate Sizing

Recommended Reading
1. Chen, C.-P., Chen, Y.-P., Wong, D.F.: Optimal wire-sizing for-

mula under the Elmore delaymodel. In: Proc. ACM/IEEEDesign
Automation Conf., pp. 487–490 ACM, New York (1996)

2. Chen, C.-P., Wong, D.F.: A fast algorithm for optimal wire-sizing
under Elmore delay model. In: Proc. IEEE ISCAS, vol. 4, pp. 412–
415 IEEE Press, Piscataway (1996)

3. Chen, C.-P., Wong, D.F.: Optimal wire-sizing functionwith fring-
ing capacitance consideration. In: Proc. ACM/IEEE Design Au-
tomation Conf., pp. 604–607 ACM, New York (1997)

4. Chu, C.C.N., Wong, D.F.: Greedy wire-sizing is linear time. IEEE
Trans. Comput. Des. 18(4), 398–405 (1999)

5. Chu, C.C.N., Wong, D.F.: A quadratic programming approach
to simultaneous buffer insertion/sizing and wire sizing. IEEE
Trans. Comput. Des. 18(6), 787–798 (1999)

6. Cong, J., He, L.: Optimal wiresizing for interconnects with mul-
tiple sources. ACM Trans. Des. Autom. Electron. Syst. 1(4) 568–
574 (1996)

7. Cong, J., Leung, K.-S.: Optimal wiresizing under the distributed
Elmore delay model. IEEE Trans. Comput. Des. 14(3), 321–336
(1995)

8. Fishburn., J.P.: Shaping a VLSI wire to minimize Elmore delay.
In: Proc. European Design and Test Conference pp. 244–251.
IEEE Compute Society, Washington D.C. (1997)

9. Fishburn, J.P., Schevon, C.A.: Shaping a distributed-RC line to
minimize Elmore delay. IEEE Trans. Circuits Syst.-I: Fundam.
Theory Appl. 42(12), 1020–1022 (1995)

10. Gao, Y., Wong, D.F.: Wire-sizing for delay minimization and
ringing control using transmission line model. In: Proc. Conf.
on Design Automation and Test in Europe, pp. 512–516. ACM,
New York (2000)

11. Kay, R., Bucheuv, G., Pileggi, L.: EWA: Efficient Wire-Sizing Al-
gorithm. In: Proc. Intl. Symp. on Physical Design, pp. 178–185.
ACM, New York (1997)

12. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: Polynomial solv-
ability of convex quadratic programming. Sov. Math. Dokl. 20,
1108–1111 (1979)

13. Lillis, J., Cheng, C.-K., Lin, T.-T.: Optimal and efficient buffer in-
sertion and wire sizing. In: Proc. of Custom Integrated Circuits
Conf., pp. 259–262. IEEE Press, Piscataway (1995)

Work-Function Algorithm for k Servers W 1035

14. Mo, Y.-Y., Chu, C.: A hybrid dynamic/quadratic programming
algorithm for interconnect tree optimization. IEEE Trans. Com-
put. Des. 20(5), 680–686 (2001)

15. Sapatnekar, S.S.: RC interconnect optimization under the El-
more delay model. In: Proc. ACM/IEEE Design Automation
Conf., pp. 387–391. ACM, New York (1994)

Work-Function Algorithm
for k Servers
1994; Koutsoupias, Papadimitriou

MAREK CHROBAK
Department of Computer Science at Riverside,
University of California at Riverside,
Riverside, CA, USA

ProblemDefinition

In the k-server problem, the task is to schedule the move-
ment of k servers in a metric space M in response to
a sequence % = r1; r2; : : : ; rn of requests, where ri 2M
for all i. The servers initially occupy some configuration
X0
M. After each request ri is issued, one of the k
serversmustmove to ri. A schedule S specifies which server
moves to each request. The task is to compute a schedule
with minimum cost, where the cost of a schedule is defined
as the total distance traveled by the servers. The example
below shows a schedule for 2 servers on a sequence of re-
quests.

In the offline case, given M, X0, and the complete re-
quest sequence %, the optimal schedule can be computed
in polynomial time [6].

In the online version of the problem the decision as to
which server to move to each request ri must be made be-
fore the next request ri+1 is issued. It is quite easy to see
that in this online scenario it is not possible to guarantee
an optimal schedule. The accuracy of online algorithms
is often measured using competitive analysis. Denote by
costA(%) the cost of the schedule produced by an online k-
server algorithmA on a request sequence %, and let opt(%)
be the cost of an optimal schedule on %. A is called R-
competitive if costA(%) � R � opt(%) + B, where B is a con-
stant that may depend on M and X0. The smallest such R
is called the competitive ratio ofA. Of course, the smaller
the R the better.

The k-server problemwas introduced byManasse,Mc-
Geoch, and Sleator [13,14], who proved that no (deter-
ministic) on-line algorithm can achieve a competitive ra-
tio smaller than k, in any metric space with at least k + 1
points. They also gave a 2-competitive algorithm for k = 2
and stated what is now known as the k-server conjecture,

Work-Function Algorithm for k Servers, Figure 1
A schedule for 2 servers on a request sequence% = r1; r2; : : : ; r7.
The initial configuration is X0 = fx1; x2g. Server 1 serves
r1; r2; r5; r6, while server 2 serves r3; r4; r7. The cost of this sched-
ule is d(x1; r1)+d(r1; r2)+d(r2; r5)+d(r5; r6)+d(x2; r3)+d(r3; r4)+
d(r4; r7), where d(x, y) denotes the distance between points x, y

which postulates that there exists a k-competitive online
algorithm for all k. Koutsoupias and Papadimitriou [10,11]
(see also [3,8,9]) proved that the work-function algorithm
presented in the next section has competitive ratio at
most 2k � 1, which to date remains the best upper bound
known.

Key Results

The idea of the work-function algorithm is to balance
two greedy strategies when a new request is issued. The
first one is to simply serve the request with the closest
server. The second strategy attempts to follow the opti-
mum schedule. Roughly, from among the k possible new
configurations, this strategy chooses the one where the op-
timum schedule would be at this time, if no more requests
remained to be issued.

To formalize this idea, for each request sequence % and
a k-server configuration X, let!%(X) be the minimum cost
of serving % under the constraint that at the end the server
configuration is X. (Assume that the initial configuration
X0 is fixed.) The function !%(�) is called the work function
after the request sequence %.

AlgorithmWFA

Denote by � the sequence of past requests, and suppose
that the current server configuration is S = fs1; s2; : : : ; skg,
where sj is the location of the jth server. Let r be the
new request. Choose s j 2 S that minimizes the quantity
!� r(S � fs jg [frg) + d(s j ; r), and move server j to r.

Theorem 1 ([10,11]) Algorithm WFA is (2k � 1)-com-
petitive.

Applications

The k-server problem can be viewed as an abstraction of
online problems that arise in emergency crew schedul-

1036 W Work-Function Algorithm for k Servers

ing, caching (or paging) in two-level memory systems,
scheduling of disk heads, and other. Nevertheless, in its
pure abstract form, it is mostly of theoretical interest.

Algorithm WFA can be applied to some generaliza-
tions of the k-server problem. In particular, it is (2n � 1)-
competitive for n-statemetrical task systems,matching the
lower bound [3,4,8]. See [1,3,5] for other applications and
extensions.

Open Problems

Theorem 1 comes tantalizingly close to settling the k-
server conjecture described earlier in this section. In fact,
it has been even conjectured that Algorithm WFA itself is
k-competitive for k servers, but the proof of this conjec-
ture, so far, remains elusive.

For k � 3, k-competitive online k-server algorithms
are known only for some restricted metric spaces, includ-
ing trees [7], metric spaces with up to k + 2 points, and the
Manhattan plane for k = 3 (see [2,6,12]). As the analysis
of Algorithm WFA in the general case appears difficult, it
would of interest to prove its k-competitiveness for some
natural special cases, for example in the plane (with any
reasonable metric) for k � 4 servers.

Very little is known about the competitive ratio of the
k-server problem in the randomized case. In fact, it is not
even known whether a ratio better than 2 can be achieved
for k = 2.

Cross References

� Algorithm DC-Tree for k Servers on Trees
� Deterministic Searching on the Line
� Generalized Two-Server Problem
�Metrical Task Systems

� Online Paging and Caching
� Paging

Recommended Reading
1. Anderson, E.J., Hildrum, K., Karlin, A.R., Rasala, A., Saks, M.: On

list update and work function algorithms. Theor. Comput. Sci.
287, 393–418 (2002)

2. Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in
the plane. Theor. Comput. Sci. 287, 387–391 (2002)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive
Analysis. Cambridge University Press, Cambridge (1998)

4. Borodin, A., Linial, N., Saks, M.: An optimal online algorithm for
metrical task systems. In: Proc. 19th Symp. Theory of Comput-
ing (STOC), ACM, pp. 373–382 (1987)

5. Burley,W.R.: Traversing layeredgraphs using thework function
algorithm. J. Algorithms 20, 479–511 (1996)

6. Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New re-
sults on server problems. SIAM J. Discret. Math. 4, 172–181
(1991)

7. Chrobak, M., Larmore, L.L.: An optimal online algorithm for k
servers on trees. SIAM J. Comput. 20, 144–148 (1991)

8. Chrobak, M., Larmore, L.L.: Metrical task systems, the server
problem, and the work function algorithm. In: Fiat, A., Woeg-
inger, G.J. (eds.) Online Algorithms: The State of the Art,
pp. 74–94. Springer, London (1998)

9. Koutsoupias, E.: Weak adversaries for the k-server problem. In:
Proc. 40th Symp. Foundations of Computer Science (FOCS),
IEEE, pp. 444–449 (1999)

10. Koutsoupias, E., Papadimitriou, C.: On the k-server conjec-
ture. In: Proc. 26th Symp. Theory of Computing (STOC), ACM,
pp. 507–511 (1994)

11. Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture.
J. ACM 42, 971–983 (1995)

12. Koutsoupias, E., Papadimitriou, C.: The 2-evader problem. Inf.
Proc. Lett. 57, 249–252 (1996)

13. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algo-
rithms for online problems. In: Proc. 20th Symp. Theory of
Computing (STOC), ACM, pp. 322–333 (1988)

14. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algo-
rithms for server problems. J. Algorithms 11, 208–230 (1990)

XML Compression and Indexing X 1037

X

XML Compression and Indexing
� Tree Compression and Indexing

Chronological Index

1952; Shannon 548
�Mobile Agents and Exploration

1955; Kuhn 68
� Assignment Problem

1956; McCluskey 989
� Two-Level Boolean Minimization

1957; Munkres 68
� Assignment Problem

1959; Rosenblatt 642
� Perceptron Algorithm

1962; Gale, Shapley 390
�Hospitals/Residents Problem

1962; Gale, Shapley 877
� Stable Marriage

1965; Dijkstra 188
� Concurrent Programming, Mutual Exclusion

1966; Graham 455
� List Scheduling

1968; Coffman, Kleinrock 562
�Multi-level Feedback Queues

1972; Bayer, McCreight 108
� B-trees

1973; Liu, Layland 751
� Rate-Monotonic Scheduling

1974–1979, Chvátal, Johnson, Lovász, Stein 379
� Greedy Set-Cover Algorithms

1974; Dijkstra 812
� Self-Stabilization

1974; Elias 748
� Rank and Select Operations on Binary Strings

1975; Ibarra, Kim 419
� Knapsack

1976; Booth, Lueker 656
� Planarity Testing

1976; Christofides 517
�Metric TSP

1977; Ziv, Lempel 236
� Dictionary-Based Data Compression

1978; Lamport 129
� Causal Order, Logical Clocks, State Machine

Replication

1980; McKay 373
� Graph Isomorphism

1980; Pease, Shostak, Lamport 116
� Byzantine Agreement

1981; Kierstead, Trotter 594
� Online Interval Coloring

1982; Karmarker, Karp 57
� Approximation Schemes for Bin Packing

1982; Lenstra, Lenstra, Lovasz 841
� Shortest Vector Problem

1040 Chronological Index

1983; Baker 59
� Approximation Schemes for Planar Graph Problems

1983; Case, Smith 411
� Inductive Inference

1983; Gallager, Humblet, Spira 256
� Distributed Algorithms for Minimum Spanning Trees

1983; Stockmeyer 852
� Slicing Floorplan Orientation

1984; Bennett, Brassard 708
� Quantum Key Distribution

1984; Valiant 622
� PAC Learning

1985–2002; multiple authors 601
� Online Paging and Caching

1985; Awerbuch 935
� Synchronizers, Spanners

1985; Day 579
� Non-shared Edges

1985; Deutsch 693
� Quantum Algorithm for the Parity Problem

1985; Fischer, Lynch, Paterson 70
� Asynchronous Consensus Impossibility

1985; Garcia-Molina, Barbara 715
� Quorums

1985; Sleator, Tarjan, Fiat, Karp, Luby, McGeoch, Sleator,
Young 625

� Paging

1985; Sleator, Tarjan 598
� Online List Update

1986; Altschul, Erickson 459
� Local Alignment (with Affine GapWeights)

1986; Bryant 90
� Binary Decision Graph

1986; Du, Pan, Shing 4
� Adaptive Partitions

1986; Lamport, Vitanyi, Awerbuch 761
� Registers

1987; Arnborg, Corneil, Proskurowski 968
� Treewidth of Graphs

1987; Irving, Leather, Gusfield 606
� Optimal Stable Marriage

1987; Keutzer 944
� Technology Mapping

1987; Littlestone 77
� Attribute-Efficient Learning

1987; Raghavan, Thompson 737
� Randomized Rounding

1988; Aggarwal, Vitter 291
� External Sorting and Permuting

1988; Aggarwal, Vitter 413
� I/O-model

1988; Baeza-Yates, Culberson, Rawlins 235
� Deterministic Searching on the Line

1988; Dwork, Lynch, Stockmeyer 198
� Consensus with Partial Synchrony

1988; Feldman, Micali 604
� Optimal Probabilistic Synchronous Byzantine

Agreement

1988; Leighton, Maggs, Rao 616
� Packet Routing

1988; Miller, Myers 461
� Local Alignment (with Concave Gap Weights)

1988; Pitt, Valiant 385
� Hardness of Proper Learning

1989; Goldreich, Levin 434
� Learning Heavy Fourier Coefficients of Boolean

Functions

1989; Hein 651
� Phylogenetic Tree Construction from a Distance

Matrix

Chronological Index 1041

1990; Attiya, Bar-Noy, Dolev, Peleg, Reischuk 774
� Renaming

1990; Blum, Luby, Rubinfeld 446
� Linearity Testing/Testing Hadamard Codes

1990; Burch, Clarke, McMillan, Dill 932
� Symbolic Model Checking

1990; Herlihy, Wing 450
� Linearizability

1990; Karlin, Manasse, McGeogh, Owicki 849
� Ski Rental Problem

1990; Lenstra, Shmoys, Tardos 539
�MinimumMakespan on Unrelated Machines

1991; Chrobak, Larmore 9
� Algorithm DC-Tree for k Servers on Trees

1991; Ekert 708
�Quantum Key Distribution

1991; Herlihy 1015
�Wait-Free Synchronization

1991; Leiserson, Saxe 146
� Circuit Retiming

1991; Plotkin, Shmoys, Tardos 326
� Fractional Packing and Covering Problems

1991; Serna, Spirakis 734
� Randomized Parallel Approximations to Max Flow

1991; Sleator, Tarjan; Fiat, Karp, Luby, McGeoch, Sleator,
Young 625

� Paging

1991; Gusfield 246
� Directed Perfect Phylogeny (Binary Characters)

1992; Bennett, Wiesner 703
�Quantum Dense Coding

1992; Borodin, Linial, Saks 514
�Metrical Task Systems

1992; Boser, Guyon, Vapnik 928
� Support Vector Machines

1992; Cong, Ding 322
� FPGA Technology Mapping

1992; Reuven Bar-Yehuda, Oded Goldreich, Alon
Itai 725

� Randomized Broadcasting in Radio Networks

1992; Watkins 771
� Reinforcement Learning

1993; Afek, Attiya, Dolev, Gafni, Merritt, Shavit 855
� Snapshots in Shared Memory

1993; Baker 635
� Parameterized Matching

1993; Bennett, Brassard, Crepeau, Jozsa, Peres,
Wootters 947

� Teleportation of Quantum States

1993; Chaudhuri 829
� Set Agreement

1993; Garg, Vazirani, Yannakakis 554
�Multicut

1993; Gusfield 267
� Efficient Methods with Guaranteed Error Bounds

1993; Kao, Reif, Tate 740
� Randomized Searching on Rays or the Line

1993; Kearns, Li 436
� Learning with Malicious Noise

1993; Linial, Mansour, Nisan 429
� Learning Constant-Depth Circuits

1993; Manber, Myers 950
� Text Indexing

1993; Rajaraman, Wong 650
� Performance-Driven Clustering

1994; Azar, Broder, Karlin 457
� Load Balancing

1994; Baker 59
� Approximation Schemes for Planar Graph Problems

1042 Chronological Index

1994; Burrows, Wheeler 112
� Burrows–Wheeler Transform

1994; Crochemore, Czumaj, Gąsieniec, Jarominek,
Lecroq, Plandowski, Rytter 824

� Sequential Exact String Matching

1994; Fürer, Raghavachari 231
� Degree-Bounded Trees

1994; Goemans, Williamson 489
�Max Cut

1994; Howard, Vitter 65
� Arithmetic Coding for Data Compression

1994; Huang 502
�Maximum-Density Segment

1994; Kajitani, Nakatake, Murata, Fujiyoshi 317
� Floorplan and Placement

1994; Karger, Motwani, Sudan 368
� Graph Coloring

1994; Kavvadias, Pantziou, Spirakis, Zaroliagis 576
� Negative Cycles in Weighted Digraphs

1994; Kearns, Valiant 210
� Cryptographic Hardness of Learning

1994; Khuller, Vishkin 371
� Graph Connectivity

1994; Koutsoupias, Papadimitriou 1035
�Work-Function Algorithm for k Servers

1994; Patt-Shamir, Rajsbaum 152
� Clock Synchronization

1994; Shor 683
� Quantum Algorithm for the Discrete Logarithm

Problem

1994; Shor 689
� Quantum Algorithm for Factoring

1994; Yang, Wong 138
� Circuit Partitioning: A Network-Flow-Based Balanced

Min-Cut Approach

1995; Agrawal, Klein, Ravi 897
� Steiner Forest

1995; Alon, Yuster, Zwick 158
� Color Coding

1995; Attiya, Bar-Noy, Dolev 400
� Implementing Shared Registers in Asynchronous

Message-Passing Systems

1995; Callahan, Kosaraju 1030
�Well Separated Pair Decomposition for Unit–Disk

Graph

1995; Cristian, Aghili, Strong, Dolev 73
� Atomic Broadcast

1995; Farach, Przytycka, Thorup 495
�Maximum Agreement Subtree (of 3 or More Trees)

1995; Goemans, Williamson 489
�Max Cut

1995; Kamath, Motwani, Palem, Spirakis 942
� Tail Bounds for Occupancy Problems

1995; Karger, Klein, Tarjan 732
� Randomized Minimum Spanning Tree

1995; Kitaev 1
� Abelian Hidden Subgroup Problem

1995; Mehlhorn, Näher 442
� LEDA: a Library of Efficient Algorithms

1995; Plotkin, Shmoys, Tardos 326
� Fractional Packing and Covering Problems

1995; Shor 705
� Quantum Error Correction

1995; Varian 353
� Generalized Vickrey Auction

1995; Wu, Manber, Myers 46
� Approximate Regular Expression Matching

1995; Yao, Demers, Shenker 870
� Speed Scaling

Chronological Index 1043

1995; Hellerstein, Pilliapakkamnatt, Raghavan,
Wilkins 131

� Certificate Complexity and Exact Learning

1996; Bartal, Fakcharoenphol, Rao, Talwar 51
� Approximating Metric Spaces by Tree Metrics

1996; Bshouty, Cleve, Gavaldà, Kannan, Tamon 423
� Learning with the Aid of an Oracle

1996; Chandra, Toueg 304
� Failure Detectors

1996; Chandra 723
� Randomization in Distributed Computing

1996; Cole, Hariharan 492
�Maximum Agreement Subtree (of 2 Binary Trees)

1996; Garg, Vazirani, Yannakakis 554
�Multicut

1996; Grover 712
�Quantum Search

1996; Shor, Aharonov, Ben-Or, Kitaev 313
� Fault-Tolerant Quantum Computation

1997; (Navigation) Blum, Raghavan, Schieber 785
� Robotics

1997; Azar, Kalyanasundaram, Plotkin, Pruhs,
Waarts 457

� Load Balancing

1997; Bentley, Sedgewick 907
� String Sorting

1997; Coffman, Garay, Johnson 94
� Bin Packing

1997; Eppstein, Galil, Italiano, Nissenzweig 335
� Fully Dynamic Higher Connectivity

1997; Farach-Colton 925
� Suffix Tree Construction in RAM

1997; Jackson 431
� Learning DNF Formulas

1997; Kannan, Warnow 644
� Perfect Phylogeny (Bounded Number of States)

1997; Leonardi, Raz 531
�Minimum Flow Time

1997; Shmoys, Tardos, Aardal 299
� Facility Location

1998; (Exploration) Deng, Kameda, Papadimitriou 785
� Robotics

1998; Arora 281
� Euclidean Traveling Salesperson Problem

1998; Brassard, Hoyer, Tapp 682
� Quantum Algorithm for the Collision Problem

1998; Brin, Page 624
� PageRank Algorithm

1998; Calinescu, Karloff, Rabani 567
�Multiway Cut

1998; Eppstein, Galil, Italiano, Spencer 337
� Fully Dynamic Higher Connectivity for Planar Graphs

1998; Feige 366
� Graph Bandwidth

1998; Hirsch 286
� Exact Algorithms for General CNF SAT

1998; Karger, Motwani, Sudan 368
� Graph Coloring

1998; Kearns 894
� Statistical Query Learning

1998; Leighton, Rao 815
� Separators in Graphs

1998; Levcopoulos, Krznaric 546
�MinimumWeight Triangulation

1998; Pan, Liu 820
� Sequential Circuit Technology Mapping

1999; Afrati et al. 544
�MinimumWeighted Completion Time

1044 Chronological Index

1999; Atteson 253
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)

1999; Basch, Guibas, Hershberger 417
� Kinetic Data Structures

1999; Chu, Wong 1032
�Wire Sizing

1999; Crochemore, Czumaj, Gasieniec, Lecroq,
Plandowski, Rytter 826

� Sequential Multiple String Matching

1999; Feige, Krauthgamer 519
�Minimum Bisection

1999; Frigo, Leiserson, Prokop, Ramachandran 123
� Cache-Oblivious Model

1999; Frigo, Leiserson, Prokop, Ramachandran 126
� Cache-Oblivious Sorting

1999; Galil, Italiano, Sarnak 342
� Fully Dynamic Planarity Testing

1999; Guruswami, Sudan 222
� Decoding Reed–Solomon Codes

1999; Herlihy Shavit 956
� Topology Approach in Distributed Computing

1999; Kärkkäinen, Ukkonen 559
�Multidimensional String Matching

1999; King 343
� Fully Dynamic Transitive Closure

1999; Kolpakov, Kucherov 874
� Squares and Repetitions

1999; Krznaric, Levcopoulos, Nilsson 533
�Minimum Geometric Spanning Trees

1999; Leighton, Rao 815
� Separators in Graphs

1999; Nisan, Ronen 16
� Algorithmic Mechanism Design

1999; Schulman, Vazirani 11
� Algorithmic Cooling

1999; Thorup 847
� Single-Source Shortest Paths

1999; DasGupta, He, Jiang, Li, Tromp, Zhang 573
� Nearest Neighbor Interchange and Related Distances

1999; Schöning 468
� Local Search Algorithms for kSAT

2000; Beimel, Bergadano, Bshouty, Kushilevitz,
Varricchio 425

� Learning Automata

2000; Caldwell, Kahng, Markov 143
� Circuit Placement

2000; Chrobak, Gąsieniec, Rytter 233
� Deterministic Broadcasting in Radio Networks

2000; Cormode, Paterson, Sahinalp, Vishkin 265
� Edit Distance Under Block Operations

2000; Czumaj, Lingas 536
�Minimum k-Connected Geometric Networks

2000; Edmonds 806
� Scheduling with Equipartition

2000; Eguchi, Fujishige, Tamura, Fleiner 880
� Stable Marriage and Discrete Convex Analysis

2000; Farach-Colton, Ferragina, Muthukrishnan 922
� Suffix Tree Construction in Hierarchical Memory

2000; Feige 366
� Graph Bandwidth

2000; Holm, de Lichtenberg, Thorup 339
� Fully Dynamic Minimum Spanning Trees

2000; Moffat, Stuiver 178
� Compressing Integer Sequences and Sets

2000; Muthukrishnan, Sahinalp 265
� Edit Distance Under Block Operations

2000; Thorup 332
� Fully Dynamic Connectivity: Upper and Lower Bounds

Chronological Index 1045

2000; Koutsoupias, Papadimitriou 34
� Alternative Performance Measures in Online

Algorithms

2000; Nikoletseas, Palem, Spirakis, Yung 195
� Connectivity and Fault-Tolerance in Random Regular

Graphs

2001; (Localization) Fleischer, Romanik, Schuierer,
Trippen 785

� Robotics

2001; Althaus, Mehlhorn 976
� TSP-Based Curve Reconstruction

2001; Archer, Tardos 970
� Truthful Mechanisms for One-Parameter Agents

2001; Arya, Garg, Khandekar, Meyerson, Munagala,
Pandit 470

� Local Search for K-medians and Facility Location

2001; Bader, Moret, Yan 858
� Sorting Signed Permutations by Reversal (Reversal

Distance)

2001; Becchetti, Leonardi, Marchetti-Spaccamela,
Pruhs 320

� Flow Time Minimization

2001; Blanchette, Schwikowski, Tompa 910
� Substring Parsimony

2001; Chen, Hu, Huang, Li, Xu 871
� Sphere Packing Problem

2001; Chen, Kanj, Jia 1006
� Vertex Cover Search Trees

2001; Chong, Han, Lam 629
� Parallel Connectivity and Minimum Spanning Trees

2001; Chrobak, Gąsieniec, Rytter 731
� Randomized Gossiping in Radio Networks

2001; Dessmark, Pelc 105
� Broadcasting in Geometric Radio Networks

2001; Fang, Zhu, Cai, Deng 168
� Complexity of Core

2001; Ganapathy, Warnow 499
�Maximum Compatible Tree

2001; Glazebrook, Nino-Mora 904
� Stochastic Scheduling

2001; Goldberg, Hartline, Wright 165
� Competitive Auction

2001; Holm, de Lichtenberg, Thorup 331
� Fully Dynamic Connectivity

2001; Jain 349
� Generalized Steiner Network

2001; Landau, Schmidt, Sokol 48
� Approximate Tandem Repeats

2001; McGeoch 290
� Experimental Methods for Algorithm Analysis

2001; Munro, Raman 912
� Succinct Data Structures for Parentheses Matching

2001; Pagh, Rodler 212
� Cuckoo Hashing

2001; Stoica, Morris, Karger, Kaashoek,
Balakrishnan 611

� P2P

2001; Wan, Calinescu, Li, Frieder 528
�Minimum Energy Cost Broadcasting in Wireless

Networks

2001; Fakcharoenphol, Rao 838
� Shortest Paths in Planar Graphs with Negative Weight

Edges

2002 and later; Feldman, Karger, Wainwright 478
� LP Decoding

2002; Alon, Beigel, Kasif, Rudich, Sudakov 565
�Multiplex PCR for Gap Closing (Whole-genome

Assembly)

2002; Bader, Moret, Warnow 270
� Engineering Algorithms for Computational Biology

2002; Boykin, Mor, Roychowdhury, Vatan, Vrijen 11
� Algorithmic Cooling

1046 Chronological Index

2002; Buhrman, Miltersen, Radhakrishnan,
Venkatesh 43

� Approximate Dictionaries

2002; Cechlárová, Hajduková 885
� Stable Partition Problem

2002; Chan, Garofalakis, Rastogi 764
� Regular Expression Indexing

2002; Czumaj, Vöcking 667
� Price of Anarchy for Machines Models

2002; Demetrescu, Finocchi, Italiano, Näher 1008
� Visualization Techniques for Algorithm Engineering

2002; Deng, Papadimitriou, Safra 347
� General Equilibrium

2002; Fiat, Goldberg, Hartline, Karlin 165
� Competitive Auction

2002; Fotakis, Kontogiannis, Koutsoupias, Mavronicolas,
Spirakis 183

� Computing Pure Equilibria in the Game of Parallel
Links

2002; Fotakis, Spirakis 522
�Minimum Congestion Redundant Assignments

2002; Gudmundsson, Levcopoulos, Narasimhan,
Smid 40

� Applications of Geometric Spanner Networks

2002; Gudmundsson, Levcopoulos, Narasimhan 360
� Geometric Spanners

2002; Hallgren 698
� Quantum Algorithm for Solving the Pell’s Equation

2002; Johnson, McGeoch 398
� Implementation Challenge for TSP Heuristics

2002; Kaporis, Kirousis, Lalas 954
� Thresholds of Random k-SAT

2002; Kennings, Markov 143
� Circuit Placement

2002; Li, Ma, Wang 155
� Closest String and Substring Problems

2002; Lin, Jiang, Chao 506
�Maximum-scoring Segment with Length Restrictions

2002; Pettie, Ramachandran 541
�Minimum Spanning Trees

2002; Räcke 585
� Oblivious Routing

2002; Schulz, Wagner, Zaroliagis 272
� Engineering Algorithms for Large Network

Applications

2002; Sundararajan, Sapatnekar, Parhi 345
� Gate Sizing

2002; Zhou, Shenoy, Nicholls 754
� Rectilinear Spanning Tree

2002; Zwick 31
� All Pairs Shortest Paths via Matrix Multiplication

2002; Thorup 278
� Equivalence Between Priority Queues and Sorting

2003–2006; Kuhn, Moscibroda, Nieberg,
Wattenhofer 463

� Local Approximation of Covering and Packing
Problems

2003; Akavia, Goldwasser, Safra 438
� Learning Significant Fourier Coefficients over Finite

Abelian Groups

2003; Amir, Landau, Sokol 556
�Multidimensional Compressed Pattern Matching

2003; Azar, Cohen, Fiat, Kaplan, Räcke 791
� Routing

2003; Bansal, Fleischer, Kimbrel, Mahdian, Schieber,
Sviridenko 621

� Packet Switching in Single Buffer

2003; Bansal, Pruhs 834
� Shortest Elapsed Time First Scheduling

2003; Baswana, Sen 25
� Algorithms for Spanners in Weighted Graphs

Chronological Index 1047

2003; Buchsbaum, Fowler, Giancarlo 939
� Table Compression

2003; Cai, Deng 62
� Arbitrage in Frictional Foreign Exchange Market

2003; Chatzigiannakis, Nikoletseas, Spirakis 161
� Communication in Ad Hoc Mobile Networks Using

RandomWalks

2003; Chen, Deng, Fang, Tian 483
�Majority Equilibrium

2003; Cheng, Huang, Li, Wu, Du 191
� Connected Dominating Set

2003; Crochemore, Landau, Ziv-Ukelson 818
� Sequential Approximate String Matching

2003; Even-Dar, Kesselman, Mansour 183
� Computing Pure Equilibria in the Game of Parallel

Links

2003; Feldman, Gairing, Lücking, Monien, Rode 183
� Computing Pure Equilibria in the Game of Parallel

Links

2003; Flaxman 742
� Random Planted 3-SAT

2003; Fomin, Thilikos 101
� Branchwidth of Graphs

2003; Gao, Zhang 1027
�Well Separated Pair Decomposition

2003; Grossi, Gupta, Vitter 174
� Compressed Suffix Array

2003; Hein, Jensen, Pedersen 892
� Statistical Multiple Alignment

2003; Jung, Serna, Spirakis 627
� Parallel Algorithms Precedence Constraint Scheduling

2003; Kida, Matsumoto, Shibata, Takeda, Shinohara,
Arikawa 171

� Compressed Pattern Matching

2003; King, Zhang, Zhou 251
� Distance-Based Phylogeny Reconstruction

(Fast-Converging)

2003; Kolpakov, Kucherov 48
� Approximate Tandem Repeats

2003; Kuhn, Wattenhofer, Zhang, Zollinger 793
� Routing in Geometric Networks

2003; Kuhn, Wattenhofer, Zollinger 355
� Geographic Routing

2003; Lipton, Markakis, Mehta 53
� Approximations of Bimatrix Nash Equilibria

2003; Mehlhorn, Sanders 37
� Analyzing Cache Misses

2003; Munro, Raman, Raman, Rao 915
� Succinct Encoding of Permutations: Applications to

Text Indexing

2003; Schuler 286
� Exact Algorithms for General CNF SAT

2003; Szeider 639
� Parameterized SAT

2003; Ukkonen, Lemström, Mäkinen 657
� Point Pattern Matching

2004; Abu-Khzam, Collins, Fellows, Langston, Suters,
Symons 1003

� Vertex Cover Kernelization

2004; Alber, Fellows, Niedermeier 220
� Data Reduction for Domination in Graphs

2004; Ambainis 686
� Quantum Algorithm for Element Distinctness

2004; Arge, de Berg, Haverkort, Yi 800
� R-Trees

2004; Arora, Rao, Vazirani 868
� Sparsest Cut

2004; Azar, Richter; Albers, Schmidt 618
� Packet Switching in Multi-Queue Switches

1048 Chronological Index

2004; Bartal, Fakcharoenphol, Rao, Talwar 51
� Approximating Metric Spaces by Tree Metrics

2004; Chatzigiannakis, Dimitriou, Nikoletseas,
Spirakis 671

� Probabilistic Data Forwarding in Wireless Sensor
Networks

2004; Cole, Gottlieb, Lewenstein 240
� Dictionary Matching and Indexing (Exact and with

Errors)

2004; Deı̆neko, Hoffmann, Okamoto, Woeginger 961
� Traveling Sales Person with Few Inner Points

2004; Demaine, Fomin, Hajiaghayi, Thilikos 88
� Bidimensionality

2004; Demaine, Harmon, Iacono, Patrascu 592
� O(log log n)-competitive Binary Search Tree

2004; Demetrescu, Italiano 226
� Decremental All-Pairs Shortest Paths

2004; Demetrescu, Italiano 329
� Fully Dynamic All Pairs Shortest Paths

2004; Dujmovic, Whitesides 631
� Parameterized Algorithms for Drawing Graphs

2004; Elkin, Peleg 867
� Sparse Graph Spanners

2004; Finocchi, Panconesi, Silvestri 258
� Distributed Vertex Coloring

2004; Fredriksson, Navarro 818
� Sequential Approximate String Matching

2004; Gramm, Guo, Hüffner, Niedermeier 78
� Automated Search Tree Generation

2004; Halperin 274
� Engineering Geometric Algorithms

2004; Hartman, Sharan 863
� Sorting by Transpositions and Reversals (Approximate

Ratio 1.5)

2004; Khuller, Kim, Wan 217
� Data Migration

2004; Li, Yap 788
� Robust Geometric Computation

2004; Lyngsø 780
� RNA Secondary Structure Prediction Including

Pseudoknots

2004; Mecke, Wagner 832
� Set Cover with Almost Consecutive Ones

2004; Mucha, Sankowski 504
�MaximumMatching

2004; Navarro, Raffinot 768
� Regular Expression Matching

2004; Nikoletseas, Raptopoulos, Spirakis 405
� Independent Sets in Random Intersection Graphs

2004; Pătraşcu, Demaine 473
� Lower Bounds for Dynamic Connectivity

2004; Pettie 28
� All Pairs Shortest Paths in Sparse Graphs

2004; Ruan, Du, Jia, Wu, Li, Ko 376
� Greedy Approximation Algorithms

2004; Szegedy 677
� Quantization of Markov Chains

2004; Tannier, Sagot 860
� Sorting Signed Permutations by Reversal (Reversal

Sequence)

2004; Vialette 985
� Two-Interval Pattern Problems

2004; Wan, Yi 207
� Critical Range for Wireless Networks

2004; Wang, Li, Wang 973
� Truthful Multicast

2004; Williams 507
�Maximum Two-Satisfiability

2004; Yokoo, Sakurai, Matsubara 308
� False-Name-Proof Auction

Chronological Index 1049

2004; Zhou 757
� Rectilinear Steiner Tree

2004; Pyrga, Schulz, Wagner, Zaroliagis 837
� Shortest Paths Approaches for Timetable Information

2005; Abraham, Irving, Kavitha, Mehlhorn 744
� Ranked Matching

2005; Aharonov, Jones, Landau 700
�Quantum Approximation of the Jones Polynomial

2005; Alicherry, Bhatia, Li 134
� Channel Assignment Wireless Mesh Networks

2005; Ambainis, Kempe, Rivosh 696
�Quantum Algorithm for Search on Grids

2005; Bader 387
�High Performance Algorithm Engineering for

Large-scale Problems

2005; Bender, Demaine, Farach-Colton 121
� Cache-Oblivious B-Tree

2005; Borgs, Chayes, Immorlica, Mahdian, Saberi 563
�Multiple Unit Auctions with Budget Constraint

2005; Bose, Smid, Gudmundsson 653
� Planar Geometric Spanners

2005; Briest, Krysta, Vöcking 997
� Utilitarian Mechanism Design for Single-Minded

Agents

2005; Chekuri, Khanna, Shepherd 551
�Multicommodity Flow, Well-linked Terminals and

Routing Problems

2005; Codenotti, Saberi, Varadarajan, Ye 444
� Leontief Economy Equilibrium

2005; Dehne, Fellows, Langston, Rosamond,
Stevens; 995

� Undirected Feedback Vertex Set

2005; Demetrescu, Italiano 958
� Trade-Offs for Dynamic Graph Problems

2005; Demetrescu, Italiano 846
� Single-Source Fully Dynamic Reachability

2005; Deng, Huang, Li 205
� CPU Time Pricing

2005; Ding, Filkov, Gusfield 647
� Perfect Phylogeny Haplotyping

2005; Ebbers-Baumann, Grüne, Karpinski, Klein, Kutz,
Knauer, Lingas 244

� Dilation of Geometric Networks

2005; Efraimidis, Spirakis 1024
�Weighted Random Sampling

2005; Efthymiou, Spirakis 383
� Hamilton Cycles in Random Intersection Graphs

2005; Elias, Lagergren 253
� Distance-Based Phylogeny Reconstruction (Optimal

Radius)

2005; Elkin, Emek, Spielman, Teng 477
� Low Stretch Spanning Trees

2005; Estivill-Castro, Fellows, Langston, Rosamond 511
�Max Leaf Spanning Tree

2005; Fatourou, Mavronicolas, Spirakis 803
� Schedulers for Optimistic Rate Based Flow Control

2005; Ferragina, Giancarlo, Manzini, Sciortino 97
� Boosting Textual Compression

2005; Ferragina, Luccio, Manzini, Muthukrishnan 964
� Tree Compression and Indexing

2005; Ferragina, Manzini 176
� Compressed Text Indexing

2005; Fomin, Grandoni, Kratsch 284
� Exact Algorithms for Dominating Set

2005; Fotakis, Kontogiannis, Spirakis 810
� Selfish Unsplittable Flows: Algorithms for Pure

Equilibria

2005; Fotakis, Kontogiannis, Spirakis 86
� Best Response Algorithms for Selfish Routing

2005; Fotakis, Nikoletseas, Papadopoulou, Spirakis 721
� Radiocoloring in Planar Graphs

1050 Chronological Index

2005; Guo, Gramm, Hüffner, Niedermeier,
Wernicke 995

� Undirected Feedback Vertex Set

2005; Hallgren 694
� Quantum Algorithms for Class Group of a Number

Field

2005; Heggernes, Telle, Villanger 310
� Fast Minimal Triangulation

2005; Jansson, Ng, Sadakane, Sung 497
�Maximum Agreement Supertree

2005; Kim, Amir, Landau, Park 843
� Similarity between Compressed Strings

2005; Koutsoupias 665
� Price of Anarchy

2005; Leone, Nikoletseas, Rolim 728
� Randomized Energy Balance Algorithms in Sensor

Networks

2005; Li, Yao 1011
� Voltage Scheduling

2005; Ma, Zhang, Liang 640
� Peptide De Novo Sequencing with MS/MS

2005; Magniez, Santha, Szegedy 690
� Quantum Algorithm for Finding Triangles

2005; Marx 156
� Closest Substring

2005; Miklós, Meyer, Nagy 777
� RNA Secondary Structure Boltzmann Distribution

2005; Mirrokni 485
�Market Games and Content Distribution

2005; Moscibroda, Wattenhofer 466
� Local Computation in Unstructured Radio Networks

2005; Na, Giancarlo, Park 979
� Two-Dimensional Pattern Indexing

2005; Paturi, Pudlák, Saks, Zane 83
� Backtracking Based k-SAT Algorithms

2005; Song, Li, Wang 228
� Degree-Bounded Planar Spanner with Low Weight

2005; Tarjan, Werneck 260
� Dynamic Trees

2005; Varian 660
� Position Auction

2005; Wang, Li, Chu 571
� Nash Equilibria and Dominant Strategies in Routing

2005; Wang, Wang, Li 1020
�Weighted Connected Dominating Set

2005; Ye 444
� Leontief Economy Equilibrium

2005; Zhou 149
� Circuit Retiming: An Incremental Approach

2005; Ambühl 526
�Minimum Energy Broadcasting in Wireless Geometric

Networks

2006; Abrams 563
�Multiple Unit Auctions with Budget Constraint

2006; Amir, Chencinski 982
� Two-Dimensional Scaled Pattern Matching

2006; Björklund, Husfeldt 289
� Exact Graph Coloring Using Inclusion–Exclusion

2006; Buhrman, Spalek 680
� Quantum Algorithm for Checking Matrix Identities

2006; Busch, Magdon-Ismail, Mavronicolas,
Spirakis 248

� Direct Routing Algorithms

2006; Chan, Lam, Sung, Tam,Wong 408
� Indexed Approximate String Matching

2006; Chen, Deng, Liu 403
� Incentive Compatible Selection

2006; Chen, Deng, Teng 578
� Non-approximability of Bimatrix Nash Equilibria

Chronological Index 1051

2006; Chen, Deng 166
� Complexity of Bimatrix Nash Equilibria

2006; Daskalaskis, Mehta, Papadimitriou 53
� Approximations of Bimatrix Nash Equilibria

2006; Demetrescu, Goldberg, Johnson 395
� Implementation Challenge for Shortest Paths

2006; Deng, Fang, Sun 581
�Nucleolus

2006; Du, Graham, Pardalos, Wan, Wu, Zhao 900
� Steiner Trees

2006; Dumitrescu, Ebbers-Baumann, Grüne, Klein,
Knauer, Rote 358

� Geometric Dilation of Geometric Networks

2006; Guruswami, Rudra 453
� List Decoding near Capacity: Folded RS Codes

2006; Jansson, Nguyen, Sung 202
� Constructing a Galled Phylogenetic Network

2006; Kärkkäinen, Sanders, Burkhardt 919
� Suffix Array Construction

2006; Kaporis, Spirakis 888
� Stackelberg Games: The Price of Optimum

2006; Kennings, Vorwerk 143
� Circuit Placement

2006; Kontogiannis, Panagopoulou, Spirakis 53
� Approximations of Bimatrix Nash Equilibria

2006; Mestre 1023
�Weighted Popular Matchings

2006; Ogurtsov, Shabalina, Kondrashov, Roytberg 782
� RNA Secondary Structure Prediction by Minimum

Free Energy

2006; Pătraşcu, Thorup 661
� Predecessor Search

2006; Sitters, Stougie 351
� Generalized Two-Server Problem

2007; Bast, Funke, Sanders, Schultes 796
� Routing in Road Networks with Transit Nodes

2007; Bhalgat, Hariharan, Kavitha, Panigrahi 364
� Gomory–Hu Trees

2007; Bu, Deng, Qi 7
� Adwords Pricing

2007; Cheng, Yang, Yuan 985
� Two-Interval Pattern Problems

2007; Iwama, Miyazaki, Yamauchi 883
� Stable Marriage with Ties and Incomplete Lists

2007; Powell, Nikoletseas 588
� Obstacle Avoidance Algorithms in Wireless Sensor

Networks

Bibliography

Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm
for the k-level uncapacitated facility location problem. Inf. Pro-
cess. Lett. 72, 161–167 (1999)

Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In:
Proc. 44th Annual IEEE Symp. on Foundations of Computer Sci-
ence (FOCS), 2003, pp. 200–209

Aaronson, S., Ambainis A.: Quantum search of spatial regions.
Theor. Comput. 1, 47–79 (2005)

Aaronson, S., Shi, Y.: Quantum Lower Bounds for the Collision
and the Element Distinctness Problems. J. ACM 51(4), 595–605
(2004)

Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault
tolerant geometric spanners. In: Proceedings of the 18th ACM-
SIAM Symposium on Discrete Algorithms, New Orleans, 7–9
January 2007

Abdi, H.: Additive-tree representations. In: Dress, A., von Hae-
seler, A. (eds.) Trees and Hierarchical Structures: Proceedings
of a conference held at Bielefeld, FRG, Oct. 5–9th, 1987. Lecture
Notes in Biomathematics, vol. 84, pp. 43–59. Springer (1990)

Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E.: The New York City
high school match. Am. Economic. Rev. 95(2), 364–367
(2006)

Abdulkadiroĝlu, A., Sönmez, T.: Random serial dictatorship and the
core from random endowments in house allocation problems.
Econom. 66(3), 689–701 (1998)

Abeysekera, S.P., Turtle H.J.: Long-run relations in exchange mar-
kets: a test of covered interest parity. J. Financial Res. 18(4),
431–447 (1995)

Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees
with enhanced suffix arrays. J. Discret. Algorithms 2, 53–86
(2004)

Abraham, D., Blum, A., Sandholm, T.: Clearing algorithms for barter
exchange markets: Enabling nationwide kidney exchanges.
EC’07, June 11–15, 2007, San Diego, California

Abraham, D., Cechlárová, K., Manlove, D., Mehlhorn, K.: Pareto-
optimality in house allocation problems. In: Fleischer, R., Trip-
pen, G. (eds.) Lecture Notes in Comp. Sci. Vol. 3341/2004, Al-
gorithms and Computation, 14th Int. Symposium ISAAC 2004,
pp. 3–15. Hong Kong, December 2004

Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto-
optimality in house al- location problems. In: Proceedings of
the 15th International Symposium on Algorithms and Com-
putation, (LNCS, vol. 3341), pp. 3–15. Springer, Sanya, Hainan
(2004)

Abraham, D.J., Chen, N., Kumar, V., Mirrokni, V.: Assignment prob-
lems in rental markets. In: Proceedings of the 2nd Workshop
on Internet and Network Economics, Patras, December 15–17
2006

Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popularmatch-
ings. In: Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 424–432 (2005)

Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the
Student-Project allocation problem. J. Discret. Algorithms 5(1),
73–90 (2007)

Abraham, D.J., Kavitha, T.: Dynamic matching markets and voting
paths. In: Proceedings of the 10th Scandinavian Workshop on
Algorithm Theory (SWAT), pp. 65–76, Riga, July 6–8 2006

Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D., Pavlov, E.:
A generic scheme for building overlay networks in adversarial
scenarios. In: Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS 2003), 2003

Abraham, I., Badola, A., Bickson, D., Malkhi, D., Maloo, S., Ron, S.:
Practical locality-awareness for large scale information sharing.
In: The 4th Annual International Workshop on Peer-To-Peer
Systems (IPTPS ’05), 2005

Abraham, I., Bartal, Y., Neiman, O.: Embedding Metrics into Ul-
trametrics and Graphs into Spanning Trees with Constant
Average Distortion. In: Proceedings of the 18th ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, January
2007

Abraham, I., Malkhi, D., Dobzinski, O.: LAND: Stretch (1 + ") local-
ity aware networks for DHTs. In: Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA04), 2004

Abrams, Z.: Revenue maximization when bidders have budgets.
In: Proceedings of the 17th Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA-06), Miami, FL 2006, pp. 1074–
1082, ACM Press, New York (2006)

Abu-Khzam, F., Collins, R., Fellows, M., Langston, M., Suters, W.,
Symons, C.: Kernelization algorithms for the vertex cover prob-
lem: theory and experiments. In: Proc. Workshop on Algorithm
Engineering and Experiments (ALENEX) pp. 62–69 (2004)

Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.: Dy-
namizing static algorithms, with applications to dynamic trees
and history independence. In: Proceedings of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 524–533. SIAM (2004)

Acar, U.A., Blelloch, G.E., Vittes, J.L.: An experimental analysis of
change propagation in dynamic trees. In: Proceedings of the
7th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 41–54 (2005)

Achioptas, D., Sorkin, G.B.: Optimal myopic algorithms for random
3-sat. In: 41st Annual Symposium on Foundations of Com-
puter Science, pp. 590–600. IEEE Computer Society, Washing-
ton (2000)

Achlioptas, D.: Lower bounds for random 3-sat via differential
equations. Theor. Comput. Sci. 265(1–2), 159–185 (2001)

1054 Bibliography

Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.: A
unified Approach to Congestion Games and Two-sided mar-
kets. In: 3rd Workshop of Internet Economics (WINE), pp. 30–
41. San Diego, CA, USA (2007)

Ackermann, H., Goldberg, P., Mirrokni, V., Röglin, H., Vöcking, B.:
Uncoordinated two-sided markets. ACM Electronic Commerce
(ACM EC) (2008)

ACM Journal of Experimental Algorithmics. Launched in 1996, this
journal publishes contributed articles as well as special sec-
tions containing selected papers from ALENEX and WEA. Visit
www.jea.acm.org, or visit portal.acm.org and click on ACMDig-
ital Library/Journals/Journal of Experimental Algorithmics

Adamy, U., Erlebach, T.: Online coloring of intervals with band-
width. In: Proc. of the First International Workshop on Ap-
proximation and Online Algorithms (WAOA2003), pp. 1–12
(2003)

Adler, M., Khanna, S., Rajaraman, R., Rosén, A.: Time-constrained
scheduling of weighted packets on trees andmeshes. Algorith-
mica 36, 123–152 (2003)

Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic
snapshots of sharedmemory. J. Assoc. Comput.Mach. 40, 873–
890 (1993)

Afek, Y., Mansour, Y., Ostfeld, Z.: Convergence complexity of opti-
mistic rate based flow control algorithms. J. Algorithms 30(1),
106–143 (1999)

Afek, Y., Mansour, Y., Ostfeld, Z.: Phantom: a simple and effective
flow control scheme. Comput. Netw. 32(3), 277–305 (2000)

Afek, Y., Stupp, G., Touitou, D.: Long lived adaptive splitter and ap-
plications. Distrib. Comput. 30, 67–86 (2002)

Afrati, F.N., Bampis, E., Chekuri, C., Karger, D.R., Kenyon, C., Khanna,
S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko,
M.: Approximation schemes for minimizing average weighted
completion time with release dates. In: Proc. of Foundations of
Computer Science, pp. 32–44 (1999)

Agarwal, A., Charikar,M., Makarychev, K., Makarychev, Y.:O(
p
log n)

approximation algorithms for Min UnCut, Min 2CNF Deletion,
and directed cut problems. In: Proceedings of the 37th ACM
Symposium on Theory of Computing (STOC), pp. 573–581, Bal-
timore, May 2005

Agarwal, A., Cherian, M.: Adaptive backoff synchronization tech-
niques. In: Proceedings of the 16th Annual International Sym-
posium on Computer Architecture, pp. 396–406. ACM Press,
New York (1989)

Agarwal, P.K., Arge, L., Danner, A., Holland-Minkley, B.: Cache-obliv-
ious data structures for orthogonal range searching. In: Proc.
19th ACM Symposium on Computational Geometry, pp. 237–
245. ACM, New York (2003)

Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammar, M.,
Haverkort, H.J.: Box-trees and R-trees with near-optimal query
time. Discret. Comput. Geom. 28, 291–312 (2002)

Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean
minimum spanning trees and bichromatic closest pairs. Dis-
cret. Comput. Geom. 6, 407–422 (1991)

Agarwal, P.K., Flato, E., Halperin, D.: Polygon decomposition for ef-
ficient construction of Minkowski sums. Comput. Geom. Theor.
Appl. 21(1–2), 39–61 (2002)

Agarwal, P.K., Har-Peled, S., Karia, M.: Computing approximate
shortest paths on convex polytopes. In: Proceedings of the
16th ACM Symposium on Computational Geometry, pp. 270–
279. ACM Press, New York (2000)

Agarwala, R., Fernández-Baca, D.: A polynomial-time algorithm for
the perfect phylogeny problemwhen the number of character
states is fixed. SIAM J. Comput. 23, 1216–1224 (1994)

Agarwala, R., Fernández-Baca, D., Slutzki, G.: Fast algorithms for in-
ferring evolutionary trees. J. Comput. Biol. 2, 397–407 (1995)

Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algorithm
for the uncapacitated facility location problem. Discret. Appl.
Math. 93, 149–156 (1999)

Aggarwal, A., Alon, N., Charikar, M.: Improved approximations for
directed cut problems. In: Proceedings of the 39th ACM Sym-
posium on Theory of Computing (STOC), pp. 671–680, San
Diego, June 2007

Aggarwal, A., Plaxton, C.G.: Optimal parallel sorting in multi-level
storage. In: Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms, vol. 5, pp. 659–668. ACM Press, New York
(1994)

Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting
and related problems. Commun. ACM 31(9), 1116–1127 (1988)

Aggarwal, G., Fiat, A., Goldberg, A., Immorlica, N., Sudan, M.: Deran-
domization of auctions. In: Proc. of the 37th ACM Symposium
on Theory of Computing (STOC’05), 2005

Aggarwal, G., Muthukrishnan, S., Feldman, J.: Bidding to the top:
Vcg and equilibria of position-based auctions. http://www.
citebase.org/abstract?id=oai:arXiv.org:cs/0607117 (2006)

Agmon., S.: The relaxation method for linear inequalities. Can. J.
Math. 6(3), 382–392 (1954)

Agnarsson, G., Halldórsson, M.M.: Coloring Powers of Planar
Graphs. In: Proceedings of the 11th Annual ACM-SIAM sympo-
sium on Discrete algorithms, pp. 654–662 (2000)

Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation
algorithm for the generalized Steiner problem in networks.
SIAM J. Comput. 24(3), 445–456 (1995)

Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation
algorithm for the generalized Steiner problem on networks.
In: Proc. of the 23rd Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York,
pp. 134–144 (1991)

Agrawal, A., Klein, P.N., Ravi, R.: Cutting down on fill using nested
dissection: provably good elimination orderings. In: Brualdi,
R.A., Friedland, S., Klee, V. (eds.) Graph theory and sparse ma-
trix computation. IMA Volumes in mathematics and its appli-
cations, pp. 31–55. Springer, New York (1993)

Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On im-
plementing Omega with weak reliability and synchrony as-
sumptions. In: 22th ACM Symposium on Principles of Dis-
tributed Computing, pp. 306–314 (2003)

Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.:
Brief announcement: Abortable and query-abortable objects.
In: Proc. 20th Annual International Symposium on Distributed
Computing, 2006

Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks
on graphs. In: Proc. STOC (2001)

Aharonov, D., Arad, I.: The BQP-hardness of approximating the
Jones Polynomial. arxiv: quant-ph/0605181 (2006)

Aharonov, D., Arad, I., Eban, E., Landau, Z.: Polynomial QuantumAl-
gorithms for Additive approximations of the Potts model and
other Points of the Tutte Plane. arxiv:quant-ph/0702008 (2007)

Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation
with constant error rate. In: Proc. 29th ACM Symp. on Theory
of Computing (STOC), pp. 176–188, (1997). quant-ph/9906129

http://www.jea.acm.org
http://portal.acm.org
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117

Bibliography 1055

Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algo-
rithm for approximating the Jones polynomial. Proceedings
of the 38th ACM Symposium on Theory of Computing (STOC)
Seattle, Washington, USA, arxiv:quant-ph/0511096 (2006)

Aharonov, D., Kitaev, A.Y., Preskill, J.: Fault-tolerant quantum com-
putation with long-range correlated noise. Phys. Rev. Lett. 96,
050504 (2006). quant-ph/0510231

Ahmed, N., Kanhere, S.S., Jha, S.: The holes problem in wireless sen-
sor networks: a survey. SIGMOBILE Mob. Comput. Commun.
Rev. 9, 4–18 (2005)

Aho, A.: Algorithms for Finding Patterns in Strings. In: van Leewen,
J. (ed.) Handbook of Theoretical Computer Science, vol. A: Al-
gorithms and Complexity, pp. 255–300. Elsevier Science, Ams-
terdam andMIT Press, Cambridge (1990)

Aho, A., Johnson, S.: Optimal Code Generation for Expression Trees.
J. ACM 23(July), 488–501 (1976)

Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and
Tools. pp. 557–584. Addison Wesley, Boston (1986)

Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to biblio-
graphic search. C. ACM 18(6), 333–340 (1975)

Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of
computer algorithms. Addison-Wesley, Reading (1975)

Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of
Computer Algorithms. Addison-Wesley (1974)

Ahrens, J.H., Dieter, U.: Sequential random sampling. ACM Trans.
Math. Softw. 11, 157–169 (1985)

Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, En-
glewood Cliffs (1993)

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., Reddy, M.R.: Applications of
network optimization. In: Handbooks in Operations Research
and Management Science, vol. 7, Network Models, chapter 1,
pp. 1–83. North-Holland, Amsterdam (1995)

Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

Aiello, W., Mansour, Y., Rajagopolan, S., Rosen, A.: Competitive
queue policies for differentiated services. In: Proc. of the IEEE
INFOCOM, pp. 431–440. IEEE, Tel-Aviv, Israel (2000)

Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation
of diameter and shortest paths (withoutmatrix multiplication).
SIAM J. Comput. 28, 1167–1181 (1999)

Aingworth, D., Chekuri, C., Motwani, R.: Fast estimation of diameter
and shortest paths (withoutmatrix multiplication). In: Proc. 7th
ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 547–
553

Ajana, Y., Lefebvre, J.-F., Tillier, E., El-Mabrouk, N.: Exploring the Set
of All Minimal Sequences of Reversals – An Application to Test
the Replication-Directed Reversal Hypothesis, Proceedings of
the SecondWorkshop on Algorithms in Bioinformatics. Lecture
Notes in Computer Science, vol. 2452, pp. 300–315. Springer,
Berlin (2002)

Ajtai, M.: A lower bound for finding predecessors in Yao’s cell probe
model. Combinatorica 8(3), 235–247 (1988)

Ajtai, M.:
P1

1-formulae on finite structures. Ann. Pure Appl. Log.
24(1), 1–48 (1983)

Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the short-
est lattice vector problem. In: Proceedings of the thirty-third
annual ACM symposium on theory of computing – STOC 2001,
Heraklion, Crete, Greece, July 2001, pp 266–275. ACM, New
York (2001)

Ajwani, D., Dementiev, U., Meyer, R., Osipov, V.: Breadth first search
on massive graphs. In: 9th DIMACS Implementation Challenge

Workshop: Shortest Paths, DIMACS Center, Piscataway, NJ, 13–
14 Nov 2006

Akavia, A., Goldwasser, S.: Manuscript submitted as an NSF grant,
awarded (2005) CCF-0514167

Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates us-
ing list decoding. In: Proceedings of the 44th Symposium on
Foundations of Computer Science (FOCS’03), pp. 146–157. IEEE
Computer Society (2003)

Akutsu, T.: Dynamic programming algorithms for RNA secondary
structure prediction with pseudoknots. Discret. Appl. Math.
104, 45–62 (2000)

Akutsu, T., Kanaya, K., Ohyama, A., Fujiyama, A.: Point matching
under non-uniform distortions. Discret. Appl. Math. 127, 5–21
(2003)

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless
sensor networks: a survey. J. Comput. Netw. 38, 393–422 (2002)

Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor
networks: a survey. Wirel. Commun. IEEE 11, 6–28 (2004)

Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Ex-
act price of anarchy for polynomial congestion games. In: 23rd
Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), pp. 218–229. Springer, Marseille (2006)

Alber, J., Betzler, N., Niedermeier, R.: Experiments on data reduction
for optimal domination in networks. Ann. Oper. Res. 146(1),
105–117 (2006)

Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier,
R.: Fixed parameter algorithms for Dominating Set and re-
lated problems on planar graphs. Algorithmica 33(4), 461–493
(2002)

Alber, J., Dorn, B., Niedermeier, R.: A general data reduction
scheme for domination in graphs. In: Proc. 32nd SOFSEM.
LNCS, vol. 3831, pp. 137–147. Springer, Berlin (2006)

Alber, J., Fan, H., Fellows, M.R., Fernau, H., Niedermeier, R., Rosa-
mond, F., Stege, U.: A refined search tree technique for Dom-
inating Set on planar graphs. J. Comput. Syst. Sci. 71(4),
385–405 (2005)

Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial time data reduc-
tion for Dominating Set. J. ACM 51(3), 363–384 (2004)

Albers, S.: Better bounds for online scheduling. SIAM J. Comput.
29(2), 459–473 (1999)

Albers, S.: Improved randomized on-line algorithms for the list up-
date problem. SIAM J. Comput. 27, 670–681 (1998)

Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time
minimization. In: STACS. Lecture Notes in Computer Science,
vol. 3884, pp. 621–633. Springer, Berlin (2006)

Albers, S., Henzinger, M.R.: Exploringunknown environments. SIAM
J. Comput. 29, 1164–1188 (2000)

Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environ-
ments with obstacles. Algorithmica 32(1), 123–143 (2002)

Albers, S., Schmidt, M.: On the performance of greedy algorithms in
packet buffering. SIAM J. Comput. 35, 278–304 (2005)

Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMES-
TAMP algorithm for the list update problem. Inf. Proc. Lett. 56,
135–139 (1995)

Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dy-
namic graph algorithms. ACM J. Exp. Algorithmics 2 (1997)

Aldous, D., Fill, J.: Reversible markov chains and random walks
on graphs. http://stat-www.berkeley.edu/users/aldous/book.
html (1999). Accessed 1999

Alekhnovich, M., Braverman, M., Feldman, V., Klivans, A.R., Pitassi,
T.: Learnability and automatizability. In: FOCS ’04 Proceedings

http://stat-www.berkeley.edu/users/aldous/book.html
http://stat-www.berkeley.edu/users/aldous/book.html

1056 Bibliography

of the 45th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’04), pp. 621–630. IEEE Computer Society,
Washington (2004)

ALENEX. Beginning in 1999, the annual workshop on Algorithm
Engineering and Experimentation is sponsored by SIAM and
ACM. It is co-located with SODA, the SIAM Symposium on
Data Structures and Algorithms. Workshop proceedings are
published in the Springer LNCS series. Visit www.siam.org/
meetings/ for more information

Algorithmic Solutions Software GmbH, http://www.
algorithmic-solutions.com/. Accessed February 2008

Alicherry, M., Bhatia, R., Li, L.E.: Joint channel assignment and rout-
ing for throughput optimization in multi-radio wireless mesh
networks. In: Proc. ACMMOBICOM 2005, pp. 58–72

Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold
for concatenated distance-3 codes. Quant. Inf. Comput. 6, 97–
165 (2006). quant-ph/0504218

Allauzen, C., Crochemore, M., Raffinot, M.: Factor oracle: a new
structure for patternmatching. In: SOFSEM’99. LNCS, vol. 1725,
pp. 291–306. Springer, Berlin (1999)

Allender, E., Arora, S., Kearns, M., Moore, C., Russell, A.: Note on
the representational incompatabilty of function approxima-
tion and factored dynamics. In: Advances inNeural Information
Processing Systems 15, 2002

Allgower, E.L., Schmidt, P.H.: An Algorithm for Piecewise-Linear Ap-
proximation of an Implicitly Defined Manifold. SIAM J. Num.
Anal. 22, 322–346 (1985)

Alon, N., Asodi, V.: Learning a hidden subgraph, ICALP. LNCS 3142,
110–121 (2004). Also: SIAM J. Discret. Math. 18, 697–712 (2005)

Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A general
approach to online network optimization problems. In: Sym-
posium on Discrete Algorithms, pp. 570–579 (2004)

Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio
broadcast. J. Comput. Syst. Sci. 43(2), 290–298 (1991)

Alon, N., Beigel, R., Kasif, S., Rudich, S., Sudakov, B.: Learning a Hid-
den Matching, Proceedings of the 43rd IEEE FOCS, 2002, 197–
206. Also: SIAM J. Computing 33, 487–501 (2004)

Alon, N., Chung, F., Graham, R.: Routing permutations on graphs via
matching. SIAM J. Discret. Math. 7(3), 513–530 (1994)

Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs
shortest path problem. In: Proc. 32th IEEE FOCS, pp. 569–575.
IEEE Computer Society, Los Alamitos, USA (1991). Also JCSS 54,
255–262 (1997)

Alon, N., Galil, Z., Margalit, O., Naor, M.: Witnesses for Boolean ma-
trix multiplication and for shortest paths. In: Proc. 33th IEEE
FOCS, pp. 417–426. IEEE Computer Society, Los Alamitos, USA
(1992)

Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of
almost k-wise independent random variables. Random Struct.
Algorithms 3(3), 289–304 (1992)

Alon, N., Kahale, N.: A spectral technique for coloring random 3-
colorable graphs. SIAM J. Comput. 26(6), 1733–1748 (1997)

Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and
its application to the k-server problem. SIAM J. Comput.24, 78–
100 (1995)

Alon, N., Kaufman, T., Krivilevich, M., Litsyn, S., Ron, D.: Testing low-
degree polynomials over gf(2). In: Proceedings of RANDOM ’03.
Lecture Notes in Computer Science, vol. 2764, pp. 188–199.
Springer, Berlin Heidelberg (2003)

Alon, N., Spencer, J.: The Probabilistic Method. Wiley (1992)

Alon, N., Spencer, J.H.: The Probabilistic Method. 2nd edn. Wiley,
New York (2000)

Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York
(1991)

Alon, N., Yuster, R., Zwick, U.: Color coding. J. ACM 42, 844–856
(1995)

Alon, N., Yuster, R., Zwick, U.: Finding and counting given length
cycles. Algorithmica 17(3), 209–223 (1997)

Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous.
Kluwer Academic Publishers, Norwell (2003)

Alpert, C.J., Chan, T., Kahng, A.B., Markov, I.L., Mulet, P.: Faster mini-
mization of linear wirelength for global placement. IEEE Trans.
CAD 17(1), 3–13 (1998)

Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a
survey. Integr. VLSI J. 19(1–2), 1–81 (1995)

Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic
texts. In: Proc. of Symposium on Discrete Algorithms (SODA),
2000, pp. 819–828

Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Direct routing
on trees. In: Proceedings of the Ninth Annual ACM-SIAM, Sym-
posium on Discrete Algorithms (SODA 98), pp. 342–349. San
Francisco, California, United States (1998)

Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Minimizing
diameters of dynamic trees. In: Proceedings of the 24th In-
ternational Colloquium on Automata, Languages and Pro-
gramming (ICALP), Bologna, Italy, 7–11 July 1997. Lecture
Notes in Computer Science, vol. 1256, pp. 270–280. Springer
(1997)

Alstrup, S., Holm, J., Thorup, M., de Lichtenberg, K.: Maintaining in-
formation in fully dynamic trees with top trees. ACM Trans. Al-
gorithms 1(2), 243–264 (2005)

Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In:
Proc. 39th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 1998, pp. 534–543

Alstrup, S., Husfeldt, T., Rauhe, T., Thorup, M.: Black box for
constant-time insertion in priority queues (note). ACM TALG
1(1), 102–106 (2005)

Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpola-
tion, and approximation. In: Sack, J.R., Urrutia, J. (eds.) Hand-
book of Computational Geometry, pp. 121–153. Elsevier Sci-
ence Publishers B.V. North-Holland, Amsterdam (1999)

Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity
and symmetries of geometric objects. Discret. Comput. Geom.
3, 237–256 (1988)

Althaus, E., Mehlhorn, K.: Traveling salesman-based curve recon-
struction in polynomial time. SIAM J. Comput. 31, 27–66 (2001)

Althaus, E., Mehlhorn, K., Näher, S., Schirra, S.: Experiments on curve
reconstruction. In: ALENEX, 2000, pp. 103–114

Althöfer, I.: On sparse approximations to randomized strategies
and convex combinations. Linear Algebr. Appl. 199, 339–355
(1994)

Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On Sparse
Spanners of Weighted Graphs. Discret. Comput. Geom. 9, 81–
100 (1993)

Altinel, M., Franklin, M.: Efficient filtering of XML documents for se-
lective dissemination of information. In: Proceedings of 26th In-
ternational Conference on Very Large Data Bases, Cairo, Egypt,
pp. 53–64. Morgan Kaufmann, Missouri (2000)

Altschul, S.F., Erickson, B.W.: Optimal sequence alignment using
affine gap costs. Bull. Math. Biol. 48, 603–616 (1986)

http://www.siam.org/meetings/
http://www.siam.org/meetings/
http://www.algorithmic-solutions.com/
http://www.algorithmic-solutions.com/

Bibliography 1057

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Lo-
cal Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990)

Alur, R., Taubenfeld, G.: Results about fast mutual exclusion. In: Pro-
ceedings of the 13th IEEE Real-Time Systems Symposium, De-
cember 1992, pp. 12–21

Aluru, S. (ed.): Handbook of Computational Molecular Biology.
Computer and Information Science Series. Chapman and
Hall/CRC Press, Boca Raton (2005)

Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., Frieder, O.: Geometric span-
ners for wireless ad hoc networks. IEEE Trans. Parallel Distrib.
Process. 14, 408–421 (2003)

Alzoubi, K., Wan, P.-J., Frieder, O.: New distributed algorithm for
connected dominating set in wireless ad hoc networks. In: Pro-
ceedings of IEEE 35th Hawaii International Conference on Sys-
tem Sciences (HICSS-35), Hawaii, 7–10 January 2002

Alzoubi, K.M., Wan, P.-J., Frieder, O.: Message-optimal connected
dominating sets inmobile ad hoc networks. In: ACMMOBIHOC,
Lausanne, Switzerland, 09–11 June 2002

Amato, N.M., Goodrich, M.T., Ramos, E.A.: Computing the arrange-
ment of curve segments: Divide-and-conquer algorithms via
sampling. In: Proc. 11th Annual ACM-SIAM Symp. on Discrete
Algorithms, pp. 705–706 (2000)

Ambainis, A.: A nearly optimal discrete query quantum algorithm
for evaluating NAND formulas, arXiv:0704.3628 (2007)

Ambainis, A.: Polynomial degree and lower bounds in quan-
tum complexity: Collision and element distinctness with small
range. Theor. Comput. 1, 37–46 (2005)

Ambainis, A.: Quantum lower bounds by quantum arguments.
J. Comput. Syst. Sci. 64, 750–767, (2002), quant-ph/0002066

Ambainis, A.: Quantumwalk algorithm for Element Distinctness. In:
Proceedings of the 45th Symposium on Foundations of Com-
puter Science, pp. 22–31, Rome, Italy, 17–19 October 2004

Ambainis, A.: Quantum walk algorithm for element distinctness.
SIAM J. Comput. 37(1), 210–239 (2007)

Ambainis, A.: Quantum walks and their algorithmic applications.
Int. J. Quantum Inf. 1, 507–518 (2003)

Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-
dimensional quantumwalks. In: Proc. STOC (2001)

Ambainis, A., Buhrman, H., Høyer, P., Karpinski, M., Kurur, P.: Quan-
tummatrix verification. Unpublishedmanuscript (2002)

Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks
faster. In: Proc. of SODA’05, pp 1099–1108

Ambainis, A., Kempe, J., Rivosh, A.: In: Proceedings of the
ACM/SIAM Symposium on Discrete Algorithms (SODA’06),
2006, pp. 1099–1108

Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum
channels. In: Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, 2000, pp. 547–553

Ambrosio, P., Auletta, V.: Deterministic monotone algorithms for
scheduling on related machines. In: 2nd Ws. on Approx. and
Online Alg. (WAOA), 2004, pp. 267–280

Ambühl, C.: Offline list update is NP-hard. In: Proc. 8th Annual Eu-
ropean Symposium on Algorithms, pp. 42–51. LNCS, vol. 1879.
Springer (2001)

Ambuhl, C., Erlebach, T., Mihalak,M., Nunkesser, M.: Constant-factor
approximation for minimum-weight (connected) dominating
sets in unit disk graphs. In: Proceedings of the 9th Interna-
tional Workshop on Approximation Algorithms for Combina-
torial Optimization Problems (APPROX 2006), Barcelona, 28–30
August 2006, LNCS, vol. 4110, pp. 3–14. Springer, Berlin Heidel-
berg (2006)

Ambühl, C., Gärtner, B., von Stengel, B.: Towards new lower bounds
for the list update problem. Theor. Comput. Sci 68, 3–16 (2001)

Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering.
Discret. Comput. Geom. 22, 481–504 (1999)

Amenta, N., Bern, M., Eppstein, D.: The crust and the ˇ -skeleton:
Combinatorial curve reconstruction. Graph. Model. Image Pro-
cess. 60, 125–135 (1998)

Amir, A.: Theoretical issues of searching aerial photographs: a bird’s
eye view. Int. J. Found. Comput. Sci. 16, 1075–1097 (2005)

Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Func-
tionmatching: Algorithms, applications and a lower bound. In:
Proc. of the 30th International Colloquium on Automata, Lan-
guages and Programming (ICALP), 2003 pp. 929–942

Amir, A., Benson, G.: Efficient two dimensional compressed match-
ing. In: Proceeding of Data Compression Conference, Snow
Bird, Utah, 1992, pp. 279–288

Amir, A., Benson, G.: Two-dimensional periodicity and its applica-
tion. Proceeding of 3rd SymposiumonDiscrete Algorithms, Or-
lando, FL, 1992, pp. 440–452

Amir, A., Benson, G.: Two-dimensional periodicity and its applica-
tion. SIAM J. Comput. 27(1), 90–106 (1998)

Amir, A., Benson, G., Farach,M.: An alphabet independent approach
to two dimensional pattern matching. SIAM J. Comput. 23(2),
313–323 (1994)

Amir, A., Benson, G., Farach,M.: Let sleeping files lie: Patternmatch-
ing in Z-compressed files. J. Comput. Syst. Sci. 52(2), 299–307
(1996)

Amir, A., Benson, G., Farach, M.: Optimal parallel two dimensional
text searching on a crew pram. Inf. Comput. 144(1), 1–17
(1998)

Amir, A., Benson, G., Farach, M.: Optimal two-dimensional com-
pressed matching. J. Algorithms 24(2), 354–379 (1997)

Amir, A., Benson, G., Farach, M.: The truth, the whole truth, and
nothing but the truth: Alphabet independent two dimen-
sional witness table construction.Technical Report GIT-CC-
92/52, Georgia Institute of Technology (1992)

Amir, A., Butman, A., Crochemore, M., Landau, G.M., Schaps,
M.: Two-dimensional pattern matching with rotations. Theor.
Comput. Sci. 314(1–2), 173–187 (2004)

Amir, A., Butman, A., Lewenstein,M.: Real scaledmatching. Inf. Proc.
Lett. 70(4), 185–190 (1999)

Amir, A., Butman, A., Lewenstein, M., Porat, E.: Real twodimensional
scaled matching. In: Proc. 8th Workshop on Algorithms and
Data Structures (WADS ’03), pp. 353–364 (2003)

Amir, A., Butman, A., Lewenstein, M., Porat, E., Tsur, D.: Efficient one
dimensional real scaledmatching. In: Proc. 11th Symposiumon
String Processing and Information Retrieval (SPIRE ’04), pp. 1–9
(2004)

Amir, A., Calinescu, G.: Alphabet independent anddictionary scaled
matching. J. Algorithms 36, 34–62 (2000)

Amir, A., Chencinski, E.: Faster two dimensional scaled matching.
In: Proc. 17th Annual Symposium on Combinatorial Pattern
Matching. LNCS, vol. 4009, pp. 200–210. Springer, Berlin (2006)

Amir, A., Farach, M.: Two dimensional dictionary matching. Inf.
Proc. Lett. 44, 233–239 (1992)

Amir, A., Farach, M., Matias, Y.: Efficient randomized dictionary
matching algorithms. In: Proc. of Symposium on Combinato-
rial Pattern Matching (CPM), 1992, pp. 259–272

Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence
in parameterized matching. Inf. Process. Lett. 49, 111–115
(1994)

1058 Bibliography

Amir, A., Kapah, O., Tsur, D.: Faster two dimensional pattern match-
ing with rotations. In: Proc. 15th Annual Symposium on Com-
binatorial Pattern Matching. LNCS, vol. 3109, pp. 409–419.
Springer, Berlin (2004)

Amir, A., Keselman, D.: Maximumagreement subtree in a set of evo-
lutionary trees: Metrics and efficient algorithms. SIAM J. Com-
put. 26(6), 1656–1669 (1997)

Amir, A., Keselman, D., Landau, G.M., Lewenstein, N., Lewenstein,
M., Rodeh, M.: Indexing and dictionary matching with one er-
ror. In: Proc. of Workshop on Algorithms and Data Structures
(WADS), 1999, pp. 181–192

Amir, A., Kopelowitz, T., Lewenstein, M., Lewenstein, N.: Towards
real-time suffix tree construction. In: Proceedings of the 12th
International Symposium on String Processing and Informa-
tion Retrieval, SPIRE 2005. LNCS, vol. 3772, pp. 67–78. Springer,
Berlin (2005)

Amir, A., Landau, G.: Fast parallel and serial multidimensional ap-
proximate array matching. Theor. Comput. Sci. 81, 97–115
(1991)

Amir, A., Landau, G., Sokol, D.: Inplace 2d matching in compressed
images. J. Algorithms 49(2), 240–261 (2003)

Amir, A., Landau, G.M., Sokol, D.: Inplace run-length 2d compressed
search. Theor. Comput. Sci. 290(3), 1361–1383 (2003)

Amir, A., Landau, G.M., Vishkin, U.: Efficient pattern matching with
scaling. J. Algorithms 13(1), 2–32 (1992)

Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string
matching with k mismatches. J. Algorithms 50(2), 257–275
(2004)

Anagnostopoulos, A., Bent, R., Upfal, E., van Hentenryck, P.: A sim-
ple and deterministic competitive algorithm for online facility
location. Inf. Comput. 194(2), 175–202 (2004)

Anagnostou, E., Hadzilacos, V.: Tolerating Transient and Permanent
Failures. In: Distributed Algorithms 7th International Work-
shop. LNCS, vol. 725, pp. 174–188. Springer, Heidelberg (1993)

Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mech-
anisms for scheduling selfish related machines. In: 22nd Ann.
Symp. on Theor. Aspects of Comp. Sci. (STACS), 2005, pp. 69–
82

Andelman, N., Mansour, Y.: A sufficient condition for truthfulness
with single parameter agents. In: Proc. 8th ACMConference on
Electronic Commerce (EC),Ann, Arbor, Michigan, June (2006)

Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing poli-
cies in QoS switches. In: Proc. 14th Symp. on Discrete Algo-
rithms (SODA), pp. 761–770 ACM/SIAM, San Francisco, CA, USA
(2003)

Anderegg, L., Eidenbenz, S.: Ad hoc-VCG: a truthful and cost-
efficient routing protocol for mobile ad hoc networks with self-
ish agents. In: Proceedings of the 9th annual international con-
ference on Mobile computing and networking. pp. 245–259
ACM Press, New York (2003)

Anderson, E., Hall, J., Hartline, J., Hobbes, M., Karlin, A., Saia, J.,
Swaminathan, R., Wilkes, J.: An experimental study of data mi-
gration algorithms. In: Workshop on Algorithm Engineering
(2001)

Anderson, E.J., Hildrum, K., Karlin, A.R., Rasala, A., Saks, M.: On list
update andwork function algorithms. Theor. Comput. Sci. 287,
393–418 (2002)

Anderson, J.H.: Composite registers. Distrib. Comput. 6, 141–154
(1993)

Anderson, J.H.:Multi-writer composite registers. Distrib. Comput. 7,
175–195 (1994)

Anderson, J.H., Kim, Y.-J.: Adaptive mutual exclusion with local
spinning. In: Proceedings of the 14th international sympo-
siumon distributed computing. Lect. Notes Comput. Sci.1914,
29–43, (2000)

Anderson, R.J.: The Role of Experiment in the Theory of Algorithms.
In: Data Structures, Near Neighbor Searches, and Methodol-
ogy: Fifth and Sixth DIMACS Implementation Challenges. DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, vol. 59, pp. 191–195. American Mathematical
Society, Providence, RI (2002)

Anderson, T.E.: The performance of spin lock alternatives for
shared-memory multiprocessor. IEEE Trans. Parallel Distrib.
Syst. 1(1), 6–16 (1990)

Andersson, A.: Faster deterministic sorting and searching in linear
space. In: Proc. 37th FOCS, 1998, pp. 135–141

Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in lin-
ear time? J. Comp. Syst. Sci. 57, 74–93 (1998). Announced at
STOC’95

Andersson, A., Miltersen, P.B., Thorup, M.: Fusion trees can be im-
plemented with AC0 instructions only. Theor. Comput. Sci.
215(1–2), 337–344 (1999)

Andersson, A., Nilsson, S.: A new efficient radix sort. In: Proceed-
ings of the 35th Annual Symposium on Foundations of Com-
puter Science (FOCS ’94), IEEE Comput. Soc. Press, pp. 714–721
(1994)

Andersson, A., Nilsson, S.: Implementing radixsort. ACM J. Exp. Al-
gorithmics 3, 7 (1998)

Andersson, A., Thorup, M.: Dynamic ordered sets with exponential
search trees. CoRR cs.DS/0210006. See also FOCS’96, STOC’00,
2002

Andersson, G., Engebretsen, L., Håstad, J.: A new way to use
semidefinite programming with applications to linear equa-
tions mod p. J. Algorithms 39, 162–204 (2001)

Andrews, M., Chuzhoy, J., Khanna, S., Zhang, L.: Hardness of
the Undirected Edge-Disjoint Paths Problem with Congestion.
Proc. of IEEE FOCS, 2005, pp. 226–244

Andrews, M., Zhang, L.: Hardness of the undirected congestion
minimization problem. In: STOC ’05: Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing,
pp. 284–293. ACM Press, New York (2005)

Andrews,M., Zhang, L.: The access network design problem. In: Pro-
ceedings of the 39th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 40–49. IEEE Computer Soci-
ety, Los Alamitos, CA, USA (1998)

Aneja, Y.P.: An integer linear programming approach to the Steiner
problem in graphs. Networks 10(2), 167–178 (1980)

Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation
and equivalence of paging strategies. In: Proceedings of the
18th Annual ACM–SIAM Symposium on Discrete Algorithms.
ACM/SIAM, New York, Philadelphia (2007)

Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 75, 87–106 (1987)

Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–
342 (1988)

Angluin, D.: Queries Revisited. Theor. Comput. Sci. 313(2),
175–194 (2004)

Angluin, D., Kharitonov, M.: When Won’t Membership Queries
Help? J. Comput. Syst. Sci. 50, 336–355 (1995)

Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2,
343–370 (1988)

Bibliography 1059

Anh, V.N., Moffat, A.: Improved word-aligned binary compression
for text indexing. IEEE Trans. Knowl. Data Eng. 18(6), 857–861
(2006)

Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical
Foundations. CambridgeUniversity Press, Cambridge, England
(1999)

Apostolico, A.: The myriad virtues of subword trees. In: Apostolico,
A., Galil, Z. (eds.) Combinatorial Algorithms on Words. NATO
ASI Series, vol. F12, pp. 85–96. Springer, Berlin (1985)

Apostolico, A., Erdös, P., Lewenstein, M.: Parameterized matching
with mismatches. J. Discret. Algorithms 5(1), 135–140 (2007)

Apostolico, A., Landau, G.M., Skiena, S.: Matching for Run Length
Encoded Strings. J. Complex. 15(1), 4–16 (1999)

Apostolico, A., Preparata, F.P.: Optimal off-line detection of repeti-
tions in a string. Theor. Comput. Sci. 22(3), 297–315 (1983)

Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding tours in the
TSP. Technical Report 99885, Research Institute for Discrete
Mathematics, Universität Bonn (1999)

Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of
traveling salesman problems. Documenta Mathematica, Extra
Volume Proceedings ICM III:645–656. Deutsche Mathematiker-
Vereinigung, Berlin (1998)

Applegate, D., Cohen, E.: Making intra-domain routing robust to
changing and uncertain traffic demands: understanding fun-
damental tradeoffs. In: SIGCOMM, pp. 313–324 (2003)

Applegate, D., Cohen, E.: Making routing robust to changing traf-
fic demands: algorithms and evaluation. IEEE/ACM Trans Netw
14(6), 1193–1206 (2006). doi:10.1109/TNET.2006.886296

Ar, S., Blum, M., Codenotti, B., Gemmell, P.: Checking approximate
computations over the reals. In: Proceedings of the Twenty-
Fifth Annual ACMSymposiumon the Theory of Computing, pp.
786–795. ACM, New York (2003)

Arbell, O., Landau, G.M., Mitchell, J.: Edit Distance of Run-Length
Encoded Strings. Inf. Proc. Lett. 83(6), 307–314 (2002)

Archer, A.: Mechanisms for Discrete Optimization with Rational
Agents. Ph. D. thesis, Cornell University (2004)

Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, E.: An approxi-
mate truthful mechanism for combinatorial auctions with sin-
gle parameter agents. In: Proc. 14th Ann. ACM–SIAM Symp. on
Discrete Algorithms (SODA), pp. 205–214. Baltimore, Maryland
(2003)

Archer, A., Tardos, É.: Truthful mechanisms for one-parameter
agents. In: Proc. 42nd Annual Symposium on Foundations of
Computer Science (FOCS), 2001, pp. 482–491

Arge, L.: The buffer tree: A technique for designing batched exter-
nal data structures. Algorithmica 37(1), 1–24 (2003)

Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro,
J.I.: Cache-oblivious priority queue and graph algorithm appli-
cations. In: Proc. 34th Annual ACM Symposium on Theory of
Computing, pp. 268–276. ACM Press, New York (2002)

Arge, L., Brodal, G.S., Fagerberg, R.: Cache-oblivious data structures.
In: Mehta, D., Sahni, S. (eds.) Handbook on Data Structures and
Applications. CRC Press, Boca Raton (2005)

Arge, L., Brodal, G.S., Fagerberg, R., Laustsen, M.: Cache-oblivious
planar orthogonal range searching and counting. In: Proc. 21st
ACM Symposium on Computational Geometry, pp. 160–169.
ACM, New York (2005)

Arge, L., de Berg, M., Haverkort, H.J.: Cache-oblivious R-trees.
In: Proc. 21st ACM Symposium on Computational Geometry,
pp. 170–179. ACM, New York (2005)

Arge, L., de Berg,M., Haverkort, H.J., Yi, K.: The priority R-tree: Aprac-
tically efficient and worst-case optimal R-tree. In: Proc. SIG-
MOD International Conference on Management of Data, 2004,
pp. 347–358

Arge, L., Ferragina, P., Grossi, R., Vitter, J.S.: On sorting strings in ex-
ternal memory (extended abstract). In: Proceedings of the 29th
Annual ACM Symposium on Theory of Computing (STOC ’97),
ACM, ed., pp. 540–548. ACM Press, El Paso (1997),

Arge, L., Knudsen, M., Larsen, K.: A general lower bound on the
I/O-complexity of comparison-based algorithms. In: Proceed-
ings of the Workshop on Algorithms and Data Structures. Lect.
Notes Comput. Sci. 709, 83–94 (1993)

Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability
and optimal range search indexing. In: Proc. ACM Symposium
on Principles of Database Systems, 1999, pp. 346–357

Arge, L., Samoladas, V., Yi, K.: Optimal externalmemory planar point
enclosure. In: Proc. European Symposium on Algorithms, 2004

Arge, L., Vitter, J.S.: Optimal external memory interval manage-
ment. SIAM J. Comput. 32(6), 1488–1508 (2003)

Arge, L., Zeh, N.: Simple and semi-dynamic structures for cache-
oblivious planar orthogonal range searching. In: Proc. 22nd
ACM Symposium on Computational Geometry, pp. 158–166.
ACM, New York (2006)

Arge, L.A.: External memory data structures. In: Abello, J., Pardalos,
P.M., Resende, M.G.C. (eds.) Handbook of Massive Data Sets,
pp. 313–357. Kluwer, Dordrecht (2002)

Arge, L.A., Hinrichs, K.H., Vahrenhold, J., Vitter, J.S.: Efficient bulk
operations on dynamic R-trees. Algorithmica 33, 104–128
(2002)

Arikati, S., Chen, D.Z., Chew, L.P., Das, G., Smid, M., Zaroliagis,
C.D.: Planar spanners and approximate shortest path queries
among obstacles in the plane. In: Proceedings of the 4th An-
nual European Symposium on Algorithms. Lecture Notes in
Computer Science, vol. 1136, Berlin, pp. 514–528. Springer,
London (1996)

Armon, A., Azar, Y., Epstein, L., Regev, O.: On-line restricted assign-
ment of temporary tasks with unknown durations. Inf. Process.
Lett. 85(2), 67–72 (2003)

Armon, A., Azar, Y., Epstein, L., Regev, O.: Temporary tasks assign-
ment resolved. Algorithmica 36(3), 295–314 (2003)

Arnborg, S.: Efficient algorithms for combinatorial problems on
graphs with bounded decomposability – A survey. BIT 25, 2–
23 (1985)

Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding
embeddings in a k-tree. SIAM J. Algebr. Discret. Methods 8,
277–284 (1987)

Arnborg, S., Proskurowski, A.: Characterization and recognition of
partial 3-trees. SIAM J. Algebr. Discret. Methods 7, 305–314
(1986)

Arnold, R., Bell, T.: A corpus for the evaluation of lossless compres-
sion algorithms. In: Proceedings of the IEEE Data Compression
Conference, Snowbird, Utah, March 1997, pp. 201–210

Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort,
H., Vigneron, A.: Sparse Geometric Graphs with Small Dilation.
16th International Symposium ISAAC 2005, Sanya. In: Deng, X.,
Du, D. (eds.) Algorithms and Computation, Proceedings. LNCS,
vol. 3827, pp. 50–59. Springer, Berlin (2005)

Arora, S.: Approximation schemes for NP-hard geometric opti-
mization problems: A survey. Math. Program. Ser. B 97, 43–69
(2003)

1060 Bibliography

Arora, S.: Nearly linear time approximation schemes for Eu-
clidean TSP and other geometric problems. In: Proc. 38th IEEE
Symp. on Foundations of Computer Science, 1997, pp. 554–
563

Arora, S.: Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems. J. ACM
45(5), 753–782 (1998)

Arora, S.: Polynomial-time approximation schemes for euclidean
tsp and other geometric problem. J. ACM 45, 753–782
(1998)

Arora, S.: Polynomial-time approximation schemes for Euclidean
TSP and other geometric problems. In: Proc. 37th IEEE Symp.
on Foundations of Computer Science, 1996, pp. 2–12

Arora, S., Chlamtac, E., Charikar,M.: New approximation guarantees
for chromatic number. In: Proceedings of the 38th ACM Sym-
posium on Theory of Computing (STOC), Seattle, May 2006,
pp. 215–224

Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A..: A polynomial
time approximation scheme for weighted planar graph TSP.
In: Proc. 9th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1998, pp. 33–41

Arora, S., Hazan, E., Kale, S.:O(
p
logn) approximation to sparsest cut

in Õ(n2) time. In: FOCS ’04: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’04),
pp. 238–247. IEEE Computer Society, Washington (2004)

Arora, S., Kale, S.: A combinatorial, primal-dual approach to
semidefinite programs. In: STOC ’07: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, pp. 227–
236. ACM (2007)

Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation
schemes for dense instances of NP-hard problems. J. Comput.
Syst. Sci. 58(1), 193–210 (1999). Preliminary version in STOC
1995

Arora, S., Lee, J., Naor, A.: Euclidean Distortion and the Sparsest
Cut. In: Proceedings of the 37th ACM Symposium on Theory
of Computing (STOC), Baltimore, May 2005, pp. 553–562

Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest
cut. In: STOC ’05: Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pp. 553–562. ACM Press,
New York (2005)

Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof veri-
fication and the hardness of approximation problems. J. ACM
45(3), 501–555 (1998)

Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Eu-
clidean k-medians and relatedproblems. In: Proceedings of the
30th Annual ACMSymposiumon Theory of Computing (STOC),
pp. 106–113. ACM, New York (1998)

Arora, S., Rao, S., Vazirani, U.: Expander Flows, Geometric Embed-
dings, and Graph Partitionings. In: Proceedings of the 36th
ACM Symposium on Theory of Computing (STOC), Chicago,
June 2004, pp. 222–231

Arora, S., Sudan, M.: Improved low degree testing and its applica-
tions. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, pp. 485–495. ACM, New
York (1997)

Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competi-
tive economy. Econometrica 22(3), 265–290 (1954)

Arroyuelo, D., Navarro, G., Sadakane, K.: Reducing the space re-
quirement of LZ-index. In: Proc. 17th Combinatorial Pattern
Matching conference (CPM), LNCS no. 4009, pp. 318–329,
Springer (2006)

Arslan A., Eğecioğlu, Ö, Pevzner, P.: A new approach to sequence
comparison: normalized sequence alignment. Bioinformatics
17, 327–337 (2001)

Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean span-
ners: short, thin, and lanky. In: Proceedings of the 27th ACM
Symposium on Theory of Computing, pp. 489–498. Las Vegas,
29 May–1 June 1995

Arya, S., Mount, D.M., Smid, M.: Dynamic algorithms for geomet-
ric spanners of small diameter: Randomized solutions. Comput.
Geom. Theor. Appl. 13(2), 91–107 (1999)

Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic al-
gorithms for geometric spanners of small diameter. In: Pro-
ceedings of the 35th IEEE Symposium on Foundations of Com-
puter Science, pp. 703–712. Santa Fe, 20–22 November 1994

Arya, S., Smid, M.: Efficient construction of a bounded-degree span-
ner with low weight. Algorithmica 17, 33–54 (1997)

Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pan-
dit, V.: Local search heuristics for k-median and facility location
problems. In: Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing (STOC), pp. 21–29. ACM, New York
(2001)

Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pan-
dit, V.: Local search heuristics for k-median and facility location
problems. SIAM J. Comput. 33(3), 544–562 (2004)

Asano, Y., Imai, H.: Practical efficiency of the linear-time algorithm
for the single source shortest path problem. J. Oper. Res. Soc.
Jpn. 43(4), 431–447 (2000)

Aslam, J., Decatur, S.: Specification and simulation of statistical
query algorithms for efficiency and noise tolerance. J. Comput.
Syst. Sci. 56, 191–208 (1998)

Aspnes, J.: Randomized protocols for asynchronous consensus. Dis-
trib. Comput. 16(2–3), 165–175 (2003)

Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load bal-
ancingwith applications tomachine scheduling and virtual cir-
cuit routing. J. ACM 44, 486–504 (1997)

Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing
of virtual circuits with applications to load balancing and ma-
chine scheduling. J. ACM 44(3), 486–504 (1997)

Aspnes, J., Herlihy, M.: Wait-free data structures in the asyn-
chronous PRAM model. In: Proc. 2nd ACM Symposium on Par-
allel Algorithms and Architectures, Crete, July 1990. pp. 340–
349. ACM, New York, 1990

Aspnes, J., Shah, G.: Skip graphs. In: Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Baltimore, January 2003,
pp. 384–393

Aspnes, J., Waarts, O.: Randomized consensus in expected
o(n log2 n) operations per processor. In: Proceedings of the
33rd Symposium on Foundations of Computer Science. 24–26
October 1992, pp. 137–146. IEEE Computer Society, Pittsburgh
(1992)

Aspvall, B., Plass, M.F., Tarjan R.E.: A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Inf. Proc. Lett.
8(3), 121–123 (1979)

Atici, A., Servedio, R.A.: Learning unions of !(1)-dimensional rect-
angles. In: Proceedings of 17th Algorithmic Learning Theory
Conference, pp. 32–47. Springer, New York (2006)

Atici, A., Servedio, R.A.: Learning unions of !(1)-dimensional rect-
angles. In: ALT, pp. 32–47 (2006)

Atkins, J.E., Middendorf, M.: On physical mapping and the consec-
utive ones property for sparse matrices. Discret. Appl. Math.
71(1–3), 23–40 (1996)

Bibliography 1061

Atkinson, M.D.: An optimal algorithm for geometric congruence.
J. Algorithms 8, 159–172 (1997)

Attallah,M., Callahan, P., Goodrich, M.: P-complete geometric prob-
lems. Int. J. Comput. Geom. Appl. 3(4), 443–462 (1993)

Atteson, K.: The performance of neighbor-joining methods of phy-
logenetic reconstruction. Algorithmica 25, 251–278 (1999)

Attiya, H.: Efficient and robust sharing of memory in message-
passing systems. J. Algorithms 34(1), 109–127 (2000)

Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in
message-passing systems. J. ACM 42(1), 124–142 (1995)

Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in
an asynchronous environment. J. ACM 37(3), 524–548 (1990)

Attiya, H., Censor, K.: Tight bounds for asynchronous randomized
consensus. In: Proceedings of the Symposium on the Theory
of Computation. San Diego, 11–13 June 2007 ACM Special In-
terest Group on Algorithms and Computation Theory (SIGACT)
(2007)

Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice
agreement and renaming. SIAM J. Comput. 31, 642–664 (2001)

Attiya, H., Fouren, A., Gafni, E.: An adaptive collect algorithm with
applications. Distrib. Comput. 15, 87–96 (2002)

Attiya, H., Guerraoui, R., Hendler, D., Kouznetsov, P.: Synchronizing
without locks is inherently expensive. In: PODC ’06: Proceed-
ings of the twenty-fifth Annual ACM Symposium on Principles
of Distributed Computing, New York, USA, pp. 300–307. ACM
Press (2006)

Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads and
writes in the absence of step contention. In: Proc. 19th Annual
International Symposium on Distributed Computing, 2005

Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lattice
agreement. Distrib. Comput. 8, 121–132 (1995)

Attiya, H., Herzberg, A., Rajsbaum, S.: Optimal clock synchroniza-
tion under different delay assumptions. SIAM J. Comput. 25(2),
369–389 (1996)

Attiya, H., Rachman, O.: Atomic snapshots in O(n log n) operations.
SIAM J. Comput. 27, 319–340 (1998)

Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simula-
tions andAdvanced Topics, 2nd edn.Wiley-Interscience, Hobo-
ken (2004)

Attiya, H., Welch, J.L.: Distributed Computing: Fundamentals, Sim-
ulations and Advanced Topics. McGraw-Hill, UK (1998)

Audsley, N., Burns, A., Wellings, A.: Deadline monotonic
scheduling theory and application. Control Eng. Pract. 1,
71–78 (1993)

Auer, P., Cesa-Bianchi, N.: On-line learningwithmalicious noise and
the closure algorithm. Ann. Math. Artif. Intell. 23, 83–99 (1998)

Auer, P., Warmuth, M.K.: Tracking the best disjunction. Mach. Learn.
32(2), 127–150 (1998)

Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Deterministic truth-
ful approximation mechanisms for scheduling related ma-
chines. In: 21st Ann. Symp. on Theor. Aspects of Comp. Sci.
(STACS), 2004, pp. 608–619

Auletta, V., De Prisco, R., Penna, P., Persiano, G., Ventre, C.: New
constructions ofmechanismswith verification. In: 33rd Interna-
tional Colloquiumon Automata, Languages and Programming
(ICALP) (1), 2006, pp. 596–607

Aumann, Y.: Efficient asynchronous consensus with the weak ad-
versary scheduler. In: Symposiumon Principles of Distrib. Com-
put.(PODC) Santa Barbara, 21–24 August 1997, pp. 209–218.
ACM Special Interest Group on Algorithms and Computation
Theory (SIGACT) (1997)

Aumann, Y., Kapach-Levy, A.: Cooperative sharing and asyn-
chronous consensus using single-reader/single-writer regis-
ters. In: Proceedings of 10th Annual ACM-SIAM Symposium
of Discrete Algorithms (SODA) Baltimore, 17–19 January 1999,
pp. 61–70. Society for Industrial and Applied Mathematics
(SIAM) (1999)

Aumann, Y., Rabani, Y.: An O(log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM J. Comput. 27(1),
291–301 (1998)

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spac-
camela, A., Protasi, M.: Complexity and approximation: com-
binatorial optimization problems and their approximability
properties. Springer, Berlin (1999)

Ausiello, G., Italiano, G.F., Marchetti-Spaccamela, A., Nanni, U.: In-
cremental algorithms for minimal length paths. J. Algorithm
12(4), 615–38 (1991)

Auslander, L., Parter, S.V.: On imbedding graphs in the plane.
J. Math. and Mech. 10, pp. 517–523 (1961)

Ausubel, L.M., Milgrom, P.R.: Ascending auctions with package bid-
ding. Front. Theor. Econ. 1(1) Article 1 (2002)

Avrahami, N., Azar, Y.: Minimizing total flow time and comple-
tion time with immediate dispacthing. In: Proceedings of 15th
SPAA, pp. 11–18. (2003)

Avram, F., Bertsimas, D., Ricard, M.: Fluid models of sequenc-
ing problems in open queueing networks: an optimal con-
trol approach. In: Kelly, F.P., Williams, R.J. (eds.) Stochastic Net-
works. Proceedings of the International Mathematics Associa-
tion, vol. 71, pp. 199–234. Springer, New York (1995)

Awerbuch, B.: Complexity of network synchronization. J. ACM 4,
804–823 (1985)

Awerbuch, B.: Optimal distributed algorithms for minimumweight
spanning tree, counting, leader election and related problems
(detailed summary). In: Proc. of the 19th Annual ACM Sympo-
sium on Theory of Computing, pp. 230–240. ACM, USA (1987)

Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized Steiner prob-
lem. In: Proc. of the 7th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, Society for Industrial and AppliedMathemat-
ics, Philadelphia, 2005, pp. 68–74 (1996)

Awerbuch, B., Azar, Y., Epstein A.: Large the price of routing unsplit-
table flow. In: Proc. of the 37th Annual ACM Symposium on
Theory of Computing (STOC), pp. 57–66. ACM, Baltimore (2005)

Awerbuch, B., Azar, Y., Leonardi, S., Regev, O.: Minimizing the flow
timewithoutmigration. SIAM J. Comput. 31, 1370–1382 (2002)

Awerbuch, B., Azar, Y., Meyerson, A.: Reducing truth-telling on-
line mechanisms to online optimization. In: Proc. 35th Ann.
ACM. Symp. on Theory of Comput. (STOC), San Diego, Califor-
nia (2003)

Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case
equilibria. In: Approximation and Online Algorithms, 1st In-
ternational Workshop (WAOA), pp. 41–52. Springer, Budapest
(2003)

Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case
equlibria. Theor. Comput. Sci. 361, 200–209 (2006)

Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light
weight spanners. Tech. Report CS92-22, Weizmann Institute of
Science (1992)

Awerbuch, B., Berger, B., Cowen, L., Peleg D.: Near-linear time con-
struction of sparse neighborhood covers. SIAM J. Comput. 28,
263–277 (1998)

Awerbuch, B., Patt-Shamir, B., Peleg, D., Saks, M.E.: Adapting to
asynchronous dynamic networks. In: Proc. of the 24th Annual

1062 Bibliography

ACM Symp. on Theory of Computing, Victoria, 4–6 May 1992,
pp. 557–570

Awerbuch, B., Peleg, D.: Network synchronization with polyloga-
rithmic overhead. In: Proc. 31st IEEE Symp. on Foundations
of Computer Science, Sankt Louis, 22–24 Oct. 1990, pp. 514–
522

Awerbuch, B., Peleg, D.: Routing with polynomial communication-
space tradeoff. SIAM J. Discret. Math. 5, 151–162 (1992)

Aydin, H., Melhem, R., Mosse, D., Alvarez, P.M.: Determining Opti-
mal Processor Speeds for Periodic Real-Time Tasks with Differ-
ent Power Characteristics. Euromicro Conference on Real-Time
Systems, pp. 225–232. IEEE Computer Society,Washington, DC,
USA (2001)

Azar, Y., Broder, A.Z., Karlin, A.R.: On-line load balancing. Theor.
Comput. Sci. 130, 73–84 (1994)

Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations.
SIAM J. Comput. 29(1), 180–200 (1999)

Azar, Y., Chaiutin, Y.: Optimal node routing. In: Proceedings of the
23rd International Symposium on Theoretical Aspects of Com-
puter Science, 2006, pp. 596–607

Azar, Y., Cohen, E., Fiat, A., Kaplan, H., Räcke, H.: Optimal oblivi-
ous routing in polynomial time. In: Proceedings of the 35th
ACM Symposium on the Theory of Computing, pp. 383–388
(2003)

Azar, Y., Epstein, L.: On-line load balancing of temporary tasks
on identical machines. SIAM J. Discret. Math. 18(2), 347–352
(2004)

Azar, Y., Epstein, L., van Stee, R.: Resource augmentation in load bal-
ancing. J. Sched. 3(5), 249–258 (2000)

Azar, Y., Fiat, A., Levy, M., Narayanaswamy, N.S.: An improved algo-
rithm for online coloring of intervals with bandwidth. Theor.
Comput. Sci. 363(1), 18–27 (2006)

Azar, Y., Gamzu, I., Gutner, S.: Truthful unsplittable flow for large ca-
pacity networks. In: Proc. 19th Ann. ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA), pp. 320–329 (2007)

Azar, Y., Kalyanasundaram, B., Plotkin, S., Pruhs, K., Waarts, O.: On-
line load balancing of temporary tasks. J. Algorithms 22(1), 93–
110 (1997)

Azar, Y., Litichevskey, M.: Maximizing throughput in multi-queue
switches. In: Proc. 12th Annual European Symp. on Algorithms
(ESA), 53–64 (2004)

Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assign-
ments. J. Algorithms 18, 221–237 (1995)

Azar, Y., Regev, O.: Combinatorial algorithms for the unsplittable
flow problem. Algorithmica 44(1), 49–66 (2006). Preliminary
version in Proc. of IPCO 2001

Azar, Y., Richter, Y.: An improved algorithm for CIOQ switches. In:
Proc. 12th Annual European Symp. on Algorithms (ESA). LNCS,
vol. 3221, 65–76 (2004)

Azar, Y., Richter, Y.: Management of multi-queue switches in QoS
Networks. In: Proc. 35th ACM Symp. on Theory of Computing
(STOC), 82–89 (2003)

Azar, Y., Richter, Y.: The zero-one principle for switching networks.
In: Proc. 36th ACM Symp. on Theory of Computing (STOC), 64–
71 (2004)

Aziz, A., Tasiran, S., Brayton, R.: BDD Variable Ordering for Interact-
ing Finite State Machines. In: ACM Design Automation Confer-
ence, pp. 283–288. (1994)

Babai, L.: On Lovasz’ lattice reduction and the nearest lattice point
problem. Combinatorica 6(1), 1–13 (1986). Preliminary version
in STACS 1985

Babai, L., Luks, E.: Canonical labelling of graphs. In: Proceedings of
the 15th Annual ACM Symposium on Theory of Computing,
pp. 171–183. ACM, New York (1983)

Babaioff, M., Lavi, R., Pavlov, E.: Single-value combinatorial auctions
and implementation in undominated strategies. In: Proc. of the
17th Symposium on Discrete Algorithms (SODA), 2006

Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and
issues in data stream systems. In: Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pp. 1–16. ACM Press (2002)

Bachrach, B., El-Yaniv, R., Reinstädtler, M.: On the competitive the-
ory and practice of online list accessing algorithms. Algorith-
mica 32, 201–245 (2002)

Bader, D.A., Moret, B.M.E., Sanders, P.: Algorithm engineering for
parallel computation. In: Fleischer, R., Meineche-Schmidt, E.,
Moret, B.M.E. (ed) Experimental Algorithmics. Lecture Notes in
Computer Science, vol. 2547, pp. 1–23. Springer, Berlin (2002)

Bader, D.A., Moret, B.M.E., Vawter, L.: Industrial applications of
high-performance computing for phylogeny reconstruction.
In: Siegel, H.J. (ed.) Proc. SPIE Commercial Applications for
High-Performance Computing, vol. 4528, pp. 159–168, Denver,
CO (2001)

Bader, D.A., Moret, B.M.E., Warnow, T., Wyman, S.K., Yan, M.: High-
performance algorithm engineering for gene-order phyloge-
nies. In: DIMACS Workshop on Whole Genome Comparison,
Rutgers University, Piscataway, NJ (2001)

Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for
computing inversion distance between signed permutations
with an experimental study. J. Comput. Biol. 8(5), 483–491
(2001) An earlier version of this work appeared In: the Proc.
7th Int‘l Workshop on Algorithms and Data Structures (WADS
2001)

Badimo, A., Bergheim, A., Hazelhurst, S., Papathanasopolous, M.,
Morris, L.: The stability of phylogenetic tree construction of the
HIV-1 virus using genome-ordering data versus env gene data.
In: Proc. ACMAnn. Research Conf. of the South African institute
of computer scientists and information technologists on en-
ablement through technology (SAICSIT 2003), vol. 47, pp. 231–
240, Fourways, ACM, South Africa, September 2003

Bae, S.E., Takaoka, T.: Algorithms for the problem of k maximum
sums and a VLSI algorithm for the k maximum subarrays prob-
lem. Proceedings of the 7th International Symposiumon Paral-
lel Architectures, Algorithms andNetworks, pp. 247–253 (2004)

Baeza-Yates, R., Navarro, G.: Faster approximate string matching.
Algorithmica 23(2), 127–158 (1999)

Baeza-Yates, R., Navarro, G.: New models and algorithms for mul-
tidimensional approximate pattern matching. J. Discret. Algo-
rithms 1, 21–49 (2000)

Baeza-Yates, R., Schott, R.: Parallel searching in the plane. Comput.
Geom. Theor. Appl. 5, 143–154 (1995)

Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the
plane. Inf. Comput. 106(2), 234–252 (1993)

Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the
undirected feedback vertex set problem. SIAM J. Discret. Math.
3(2), 289–297 (1999)

Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as per-
fect phylogeny: a direct approach. J. Comput. Biol. 10(3–4),
323–340 (2003)

Bafna, V., Lawler, E.L., Pevzner, P.A.: Approximation algorithms for
multiple sequence alignment. Theor. Comput. Sci. 182, 233–
244 (1997)

Bibliography 1063

Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by re-
versals. SIAM J. Comput. 25, 272–289 (1996)

Bafna, V., Pevzner, P.A.: Sorting by Transpositions. SIAM J. Discret.
Math. 11(2), 224–240 (1998)

Baïou, M., Balinski, M.: Erratum: The Stable Allocation (or Ordinal
Transportation) Problem. Math. Oper. Res. 27, 662–680 (2002)

Baïou, M., Balinski, M.: Student admissions and faculty recruitment.
Theor. Comput. Sci. 322(2), 245–265 (2004)

Baker, B.S.: A theory of parameterizedpatternmatching: algorithms
and applications. In: Proc. 25th Annual ACMSymposiumon the
Theory of Computation (STOC), 1993, pp. 71–80

Baker, B.S.: Approximation algorithms for NP-complete problems
on planar graphs. J. Assoc. Comput. Mach. 41(1), 153–180
(1994)

Baker, B.S.: Parameterized diff. In: Proc. 10th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1999, pp. 854–855

Baker, B.S.: Parameterized duplication in strings: Algorithms and an
application to software maintenance. SIAM J. Comput. 26(5),
1343–1362 (1997)

Baker, B.S.: Parameterized pattern matching by Boyer-Moore-type
algorithms. In: Proc. 6th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 1995, pp. 541–550

Baker, B.S.: Parameterized pattern matching: Algorithms and appli-
cations. J. Comput. Syst. Sci. 52(1), 28–42 (1996)

Baker, J., Cruz, I., Liotta, G., Tamassia, R.: A NewModel for Algorithm
Animation over the WWW, ACM Comput. Surv. 27, 568–572
(1996)

Baker, J., Cruz, I., Liotta, G., Tamassia, R.: AnimatingGeometric Algo-
rithms over the Web. In: Proceedings of the 12th Annual ACM
Symposium on Computational Geometry. Philadelphia, Penn-
sylvania, May 24–26, pp. C3–C4 (1996)

Baker, J., Cruz, I., Liotta, G., Tamassia, R.: The Mocha Algorithm Ani-
mation System. In: Proceedings of the 1996 ACMWorkshop on
Advanced Visual Interfaces. Gubbio, Italy, May 27–29, pp. 248–
250 (1996)

Baker, R., Boilen, M., Goodrich, M., Tamassia, R., Stibel, B.: Testers
and Visualizers for Teaching Data Structures. In: Proceed-
ing of the 13th SIGCSE Technical Symposium on Computer
Science Education. New Orleans, March 24–28, pp. 261–265
(1999)

Baker, T.P.: A technique for extending rapid exact-match string
matching to arrays of more than one dimension. SIAM J. Com-
put. 7, 533–541 (1978)

Baker, T.P.: Stack-based scheduling of real-time processes. Real-
Time Systems: The Int. J. Time-Critical Comput. 3, 67–100
(1991)

Balcan, M., Blum, A., Hartline, J., Mansour, Y.: Mechanism design via
machine learning. In: Proc. of the 46th Annual Symposium on
Foundations of Computer Science (FOCS’05), 2005

Balcázar, J.L., Castro, J., Guijarro, D.: A new abstract combinatorial
dimension for exact learning via queries. J. Comput. Syst. Sci.
64(1), 2–21 (2002)

Balcázar, J.L., Castro, J., Guijarro, D., Simon, H.-U.: The consistency
dimension and distribution-dependent learning from queries.
Theor. Comput. Sci. 288(2), 197–215 (2002)

Balinski, M.L.: On finding integer solutions to linear programs. In:
Proceedings of the IBM Scientific Computing Symposium on
Combinatorial Problems, pp. 225–248 IBM, White Plains, NY
(1966)

Balinski, M.L., Wolfe, P.: On Benders decomposition and a plant lo-
cation problem. In ARO-27. Mathematica Inc. Princeton (1963)

Ballester, C.: NP-completeness in Hedonic Games. Games. Econ. Be-
hav. 49(1), 1–30 (2004)

Banerjee, S., Konishi, H., Sönmez, T.: Core in a simple coalition for-
mation game. Soc. Choice. Welf. 18, 135–153 (2001)

Bansal, N.: Minimizing flow time on a constant number of machines
with preemption. Oper. Res. Lett. 33, 267–273 (2005)

Bansal, N., Blum, A., Chawla, S.: Meyerson, A.: Online oblivious rout-
ing. In: Proceedings of the 15th Annual ACM Symposium on
Parallel Algorithms, 2003, pp. 44–49

Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Online oblivious rout-
ing. In Symposium on Parallelism in Algorithms and Architec-
tures, pp. 44–49 (2003)

Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized al-
gorithm for weighted paging. Proceedings of 48th Annual IEEE
Symposiumon Foundations of Computer Science, pp. 507–517
(2007)

Bansal, N., Dhamdhere, K., Könemann, J., Sinha, A.: Non-Clairvoyant
Scheduling for Minimizing Mean Slowdown. Algorithmica
40(4), 305–318 (2004)

Bansal, N., Fleischer, L., Kimbrel, T., Mahdian, M., Schieber, B.,
Sviridenko, M.: Further improvements in competitive guaran-
tees for QoS buffering. In: Proc. 31st International Colloquium
on Automata, Languages, and Programming (ICALP). Lecture
Notes in Computer Science, vol. 3142, pp. 196–207. Springer,
Berlin (2004)

Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy
and temperature. J. ACM 54(1) (2007)

Bansal, N., Pruhs, K.: Server scheduling in the Lp norm: a rising tide
lifts all boat. In: Symposiumon Theory of Computing, STOC, pp.
242–250 (2003)

Bansal, N., Pruhs, K.: Server scheduling in the weighted Lp norm. In:
LATIN, pp. 434–443 (2004)

Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow. In:
ACM/SIAM Symposium on Discrete Algorithms, 2007

Bansal, N., Raman, V.: Upper bounds for Max Sat: Further Im-
proved. In: Proceedings of ISAAC. LNCS, vol. 1741, pp. 247–258.
Springer, Berlin (1999)

Bansal, V., Agrawal, A., Malhotra, V.S.: Stable marriages with mul-
tiple partners: efficient search for an optimal solution. In: Pro-
ceedings of ICALP ’03: the 30th International Colloquium on
Automata, Languages and Programming. Lecture Notes in
Computer Science, vol. 2719, pp. 527–542. Springer, Berlin
(2003)

Bansalm, N., Kimbrel, T., Pruhs, K.: Dynamic Speed Scaling to Man-
age Energy and Temperature, Proceedings of the 45th An-
nual IEEE Symposium on Foundations of Computer Science,
pp. 520–529. IEEE Computer Society, Washington, DC, USA
(2004)

Bao, L., Garcia�Aceves, J.J.: Topology management in ad hoc net-
works. In: Proceedings of the 4th ACM international sympo-
sium on Mobile ad hoc networking & computing, Annapolis,
1–3 June 2003, pp. 129–140. ACM Press, New York (2003)

Bar-Eli, E., Berman, P., Fiat, A., Yan, P.: Online navigation in a room.
J. Algorithms 17(3), 319–341 (1994)

Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: ShiftingGears: Chang-
ing Algorithms on the Fly To Expedite Byzantine Agreement.
In: PODC, 1987, pp. 42–51

Bar-Noy, A., Freund, A., Naor, J.: New algorithms for related ma-
chines with temporary jobs. J. Sched. 3(5), 259–272 (2000)

Bar-Noy, A., Freund, A., Naor, J.: On-line load balancing in a hierar-
chical server topology. SIAM J. Comput. 31, 527–549 (2001)

1064 Bibliography

Bar-Noy, A., Motwani, R., Naor, J.: The greedy algorithm is optimal
for on-line edge coloring. Inf. Proc. Lett. 44(5), 251–253 (1992)

Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating
theweighted vertex cover problem. Ann. Discret. Math. 25, 27–
45 (1985)

Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algo-
rithms for the feedback vertex set problem with applications
to constraint satisfaction and Bayesian inference. SIAM J. Com-
put. 27(4), 942–959 (1998)

Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of
broadcast inmulti-hop radio networks: An exponential gap be-
tween determinism and randomization. J. Comput. Syst. Sci.
45(1), 104–126 (1992)

Bar-Yehuda, R., Halldorsson, M., Naor, J., Shachnai, H., Shapira, I.:
Scheduling split intervals. In: Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2002, pp. 732–741

Bar-Yossef, Z., Hildrum, K., Wu, F.: Incentive-compatible online auc-
tions for digital goods. In: Proceedings of the 13th Annual
ACM-SIAM Symposium On Discrete Mathematics (SODA-02),
New York, 6–8 January 2002, pp. 964–970. ACM Press, New
York (2002)

Barahona, F.: On cuts and matchings in planar graphs. Math. Pro-
gram. 60, 53–68 (1993)

Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in
succinctly encoded binary relations and tree-structured doc-
uments. In: Proceedings of the 17th Annual Symposium on
Combinatorial Pattern Matching (CPM). Lecture Notes in Com-
puter Science (LNCS), vol. 4009, pp. 24–35. Springer, Berlin
(2006)

Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in
succinctly encoded binary relations and tree-structured docu-
ments. In: Proc. 17th Combinatorial Pattern Matching (CPM).
LNCS n. 4009 Springer, Barcelona (2006), pp. 24–35

Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings,
binary relations and multi-labeled trees. In: Proc. 18th ACM-
SIAM Symposium on Discrete Algorithms (SODA), New Or-
leans, USA, (2007), pp. 680–689

Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: Imprecision in
QHULL. http://www.qhull.org/html/qh-impre.htm. Accessed 6
Apr 2008

Barborak, M., Dahbura, A., Malek, M.: The Consensus Problem in
Fault-Tolerant Computing. ACM Comput. Surv. 25(2), 171–220
(1993)

Barequet, G., Har-Peled, S.: Polygon containment and translational
min-hausdorff-distance between segment sets are3SUM-hard.
Int. J. Comput. Geom. Appl. 11(4), 465–474 (2001)

Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelligence.
Addison-Wesley Pub (Sd) (1994)

Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.:
Designing and reporting on computational experiments with
heuristic methods. J. Heuristic 1(1), 9–32 (1995)

Barrett, C., Bissett, K., Holzer, M., Konjevod, G., Marathe, M., Wagner,
D.: Implementations of routing algorithms for transportation
networks. In: 9th DIMACS Implementation Challenge Work-
shop: Shortest Paths. DIMACS Center, Piscataway, NJ, 13–14
Nov 2006

Barrett, C.L., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.V.: Clas-
sical and contemporary shortest path problems in road net-
works: Implementation and experimental analysis of the TRAN-
SIMS router. In: Algorithms – ESA 2002: 10th Annual Euro-
pean Symposium, Rome, Italy, 17–21 September 2002. Lec-

tureNotes Computer Science, vol. 2461, pp. 126–138. Springer,
Berlin (2002)

Barrière, L., Fraigniaud, P., Narayanan, L.: Robust Position-Based
Routing in Wireless Ad Hoc Networks with Unstable Transmis-
sion Ranges. In: Proc. of the 5th International Workshop on
Discrete Algorithms and Methods for Mobile Computing and
Communications (DIAL-M), pp 19–27. ACM Press, New York
(2001)

Bartal, Y.: On approximating arbitrary metrices by tree metrics. In:
STOC ’98: Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pp. 161–168. ACM Press, New York
(1998)

Bartal, Y.: Probabilistic approximation of metric spaces and its al-
gorithmic applications. In: FOCS ’96: Proceedings of the 37th
Annual Symposium on Foundations of Computer Science,
Washington, DC, USA, IEEE Computer Society, pp. 184–193
(1996)

Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog()-competitive
algorithm for metrical task systems. In: Proceedings of the 29th
annual ACMSymposiumon the Theory of Computing, pp. 711–
719. ACM, New York (1997)

Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems formetric
spaces with applications to online problems. J. Comput. Syst.
Sci. 72, 890–921 (2006)

Bartal, Y., Byers, J.W., Raz, D.: Global optimization using local in-
formation with applications to flow control. In: Proc. of the
38th IEEE Symposium on the Foundations of Computer Sci-
ence (FOCS), pp. 303–312 (1997)

Bartal, Y., Charikar,M., Raz, D.: Approximatingmin-sum k-clustering
in metric spaces. In: STOC ’01: Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pp. 11–20.
ACM Press, New York (2001)

Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an an-
cient scheduling problem. J. Comput. Syst. Sci. 51(3), 359–366
(1995)

Bartal, Y., Gonen, R., Nisan, N.: Incentive compatiblemulti-unit com-
binatorial auctions. In: Proc. of the 9th Conference on Theoret-
ical Aspects of Rationality and Knowledge (TARK’03), 2003

Bartal, Y., Mendel, M.: Multiembedding of metric spaces.
SIAM J. Comput. 34, 248–259 (2004)

Barthel, W., Hartmann, A.K., Leone, M., Ricci-Tersenghi, F., Weigt,
M., Zecchina, R.: Hiding solutions in random satisfiability prob-
lems: A statistical mechanics approach. Phys. Rev. Lett. 88,
188701 (2002)

Barve, R.D., Kallahalla,M., Varman, P.J., Vitter, J.S.: Competitive anal-
ysis of buffer management algorithms. J. Algorithms 36, 152–
181 (2000)

Barve, R.D., Vitter, J.S.: A simple and efficient parallel disk merge-
sort. ACM Trans. Comput. Syst. 35, 189–215 (2002)

Basch, J.: Kinetic Data Structures. Ph. D. thesis, Stanford University
(1999)

Basch, J., Guibas, L., Hershberger, J.: Data structures formobile data.
J. Algorithms 31, 1–28 (1999)

Bast, H., Funke, S., Matijevic, D.: Transit: Ultrafast shortest-path
queries with linear-time preprocessing. In: 9th DIMACS Imple-
mentation Challenge Workshop: Shortest Paths, DIMACS Cen-
ter, Piscataway, NJ, 13–14 Nov 2006

Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit
to constant time shortest-path queries in road networks. In:
Workshop on Algorithm Engineering and Experiments, 2007,
pp. 46–59

http://www.qhull.org/html/qh-impre.htm

Bibliography 1065

Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road net-
works with transit nodes. Science 316(5824), 566 (2007)

Baswana, S., Sen, S.: A simple and linear time randomized algorithm
for computing sparse spanners in weighted graphs. Random
Struct. Algorithms 30, 532–563 (2007)

Baswana, S., Sen, S.: Approximate distance oracles for unweighted
graphs in Õ(n2) time. In: Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms, pp. 271–280. ACM Press,
New York (2004)

Baswana, S., Telikepalli, K., Mehlhorn, K., Pettie, S.: New construction
of (˛;ˇ)-spanners and purely additive spanners. In: Proceed-
ings of 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2005, pp. 672–681

Batagelj, V., Pisanski, T., Simões-Pereira, J.M.S.: An algorithm for
tree-realizability of distance matrices. Int. J. Comput. Math. 34,
171–176 (1990)

Batu, T., Ergün, F., Sahinalp, S.C.: Oblivious string embeddings and
edit distance approximations. Proc. ACM-SIAM SODA 792–801
(2006)

Baugh, J., Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Experi-
mental implementation of heat-bath algorithmic cooling using
solid-state nuclear magnetic resonance. Nature 438, 470–473
(2005)

Baumer, S., Schuler, R.: Improving a probabilistic 3-SAT algorithm
by dynamic search and independent clause pairs. ECCC TR03-
010, (2003) Also presented at SAT (2003)

Baumer, S., Schuler, R.: Improving a Probabilistic 3-SAT Algorithm
byDynamic Search and Independent Clause Pairs. In: SAT 2003,
pp. 150–161

Baur, C., Fekete, S.P.: Approximation of geometric dispersion prob-
lems. Algorithmica 30(3), 451–470 (2001)

Bayer, R., McCreight, E.M.: Organization and maintenance of large
ordered indexes. Acta Inform. 1, 173–189 (1972)

Bayer, R., Schkolnick, M.: Concurrency of operations on B-trees. Acta
Inform. 9, 1–21 (1977)

Bazzi, R.A., Neiger, G.: Simplifying Fault-tolerance: Providing the
Abstraction of Crash Failures. J. ACM 48(3), 499–554 (2001)

Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem
and related problems. J. Comput. Syst. Sci. 65(1), 38–72 (2002).
See also STOC’99

Beame, P., Saks, M., Sun, X., Vee, E.: Time-space trade-off lower
bounds for randomized computation of decision problems.
J. ACM 50(2), 154–195 (2003)

Beasley, J.E.: Operations research library. http://people.brunel.ac.
uk/~mastjjb/jeb/info.html. Accessed 2008

Becchetti, L.: Modeling locality: A probabilistic analysis of LRU and
FWF. In: Proceeding 12th European Symposium on Algorithms
(ESA) (2004)

Becchetti, L., Könemann, J., Leonardi, S., Pál, M.: Sharing the cost
more efficiently: improved approximation for multicommod-
ity rent-or-buy. In: Proc. of the 16th Annual ACM-SIAM Sympo-
siumon Discrete Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, pp. 375–384 (2005)

Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to minimize
the total flow time on single and parallel machines. J. ACM
51(4), 517–539 (2004)

Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for
the Loop Cutset problem. J. Artif. Intell. Res. 12, 219–234
(2000)

Becker, A., Geiger, D.: Approximation algorithms for the Loop Cut-
set problem. In: Proc. 10th Conference on Uncertainty in Arti-

ficial Intelligence, pp. 60–68. Morgan Kaufman, San Fransisco
(1994)

Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An
asymptotically optimal multiversion B-tree. VLDB J. 5, 264–275
(1996)

Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree:
An efficient and robust access method for points and rect-
angles. In: Proceedings of the ACM International Conference on
Management of Data, Atlantic City, New Jersey, pp. 322–331.
ACM Press, New York (1990)

Bedathur, S.J., Haritsa, J.R.: Engineering a fast online persistent suf-
fix tree construction., In: Proc. 20th International Conference
on Data Engineering, pp. 720–731, Boston, USA (2004)

Beigel, R., Alon, N., Apaydin, M.S., Fortnow, L., Kasif, S.: An optimal
procedure for gap closing in whole genome shotgun sequenc-
ing. Proc. RECOMB, ACM Press pp. 22–30. (2001)

Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio,
S.: Learning Functions Represented as Multiplicity Automata.
J. ACM 47, 506–530 (2000)

Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio,
S.: On the applications of multiplicity automata in learning. In:
Proc. of the 37th Annu. IEEE Symp. on Foundations of Com-
puter Science, pp. 349–358, IEEEComput. Soc. Press, Los Alami-
tos (1996)

Beimel, A., Kushilevitz, E.: Learning boxes in high dimension. In:
Ben-David S. (ed.) 3rd European Conf. on Computational Learn-
ing Theory (EuroCOLT ’97), Lecture Notes in Artificial Intelli-
gence, vol. 1208, pp. 3–15. Springer, Berlin (1997) Journal ver-
sion: Algorithmica 22, 76–90 (1998)

Bein, W., Chrobak, M., Larmore, L.L.: The 3-server problem in the
plane. Theor. Comput. Sci. 287, 387–391 (2002)

Beirouti, R., Snoeyink, J.: Implementations of the LMT Heuristic
for Minimum Weight Triangulation. Symposium on Computa-
tional Geometry, pp. 96–105, Minneapolis, Minnesota, June 7–
10, 1998

Belady, L.A.: A study of replacement algorithms for virtual storage
computers. IBM Syst. J. 5, 78–101 (1966)

Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice Hall,
NJ (1990)

Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Linear-
ity testing over characteristic two. IEEE Trans. Inf. Theory 42(6),
1781–1795 (1996)

Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On
the power of randomization in on-line algorithms. Algorith-
mica 11, 2–14 (1994)

Ben-David, S., Eiron, N., Long, P. M.: On the difficulty of approxi-
mately maximizing agreements. In: Proceedings of COLT, pp.
266–274 (2000)

Ben-David, S., Eiron, N., Long, P.: On the difficulty of approximately
maximizing agreements. J. CSS 66, 496–514 (2003)

Ben-Dor, A., Halevi, S., Schuster, A.: Potential function analysis of
greedy hot-potato routing. Theor. Comput. Syst. 31(1), 41–61
(1998)

Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing bias from con-
sensus sequences. In: Proc. 8th Ann. Combinatorial Pattern
Matching Conf., pp. 247–261. (1997)

Ben-Or, M.: Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In: PODC ’83:
Proceedings of the second annual ACM symposium on Princi-
ples of distributed computing, pp. 27–30. ACMPress, New York
(1983)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

1066 Bibliography

Ben-Or, M.: Another advantage of free choice: Completely asyn-
chronous agreement protocols. In: Proc. 22nd Annual ACM
Symposium on the Principles of Distributed Computing, 1983,
pp. 27–30

Ben-Or, M., Coppersmith, D., Luby, M., Rubinfeld, R.: Non-abelian
homomorphism testing, and distributions close to their self-
convolutions. In: Proceedings of APPROX-RANDOM. Lecture
Notes in Computer Science, vol. 3122, pp. 273–285. Springer,
Berlin Heidelberg (2004)

Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Se-
curemultiparty quantum computation with (only) a strict hon-
est majority. In: Proceedings of the 47th Symposium on Foun-
dations of Computer Science (FOCS’06), 2006, pp. 249–260

Ben-Or, M., El-Yaniv, R.: Optimally-resilient interactive consistency
in constant time. Distrib. Comput. 16(4), 249–262 (2003)

Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim,
J.: The universal composable security of quantum key distri-
bution. In: Second Theory of Cryptography Conference TCC.
Lecture Notes in Computer Science, vol. 3378, pp. 386–406.
Springer, Berlin (2005). Also available at http://arxiv.org/abs/
quant-ph/0409078

Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-
efficient low degree tests and short pcps via epsilon-biased
sets. In: Proceedings of the Thirty-Fifth Annual ACM Sympo-
sium on the Theory of Computing, pp. 612–621. ACM, New
York (2003)

Benczúr, A.A.: Counterexamples for Directed andNodeCapacitated
Cut-Trees. SIAM J. Comput. 24(3), 505–510 (1995)

Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in
Õ(n2) time. In: STOC ’96: Proceedings of the twenty-eighth an-
nual ACM symposium on Theory of computing, pp. 47–55.
ACM Press, New York (1996)

Bender, M., Cole, R., Demaine, E., Farach-Colton, M.: Scanning
and traversing: Maintaining data for traversals in a mem-
ory hierarchy. In: Proc. 10th Annual European Symposium
on Algorithms. LNCS, vol. 2461, pp. 139–151. Springer, Berlin
(2002)

Bender, M., Cole, R., Raman, R.: Exponential structures for cache-
oblivious algorithms. In: Proc. 29th International Colloquium
on Automata, Languages, and Programming. LNCS, vol. 2380,
pp. 195–207. Springer, Berlin (2002)

Bender, M., Demaine, E., Farach-Colton, M.: Efficient tree layout
in a multilevel memory hierarchy. In: Proc. 10th Annual Euro-
pean Symposium on Algorithms. LNCS, vol. 2461, pp. 165–173.
Springer, Berlin (2002). Full version at http://arxiv.org/abs/cs/
0211010

Bender, M.A., Brodal, G.S., Fagerberg, R., Ge, D., He, S., Hu, H., Ia-
cono, J., López-Ortiz, A.: The cost of cache-oblivious searching.
In: Proc. 44th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 271–282. IEEE Computer Society Press, Los
Alamitos (2003)

Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious
B-trees. SIAM J. Comput. 35(2), 341–358 (2005). Conference
version appeared at FOCS (2000)

Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-
trees. In: 41st Annual Symposium on Foundations of Computer
Science, pp. 399–409. IEEE Computer Society Press, Los Alami-
tos (2000)

Bender, M.A., Duan, Z., Iacono, J., Wu, J.: A locality-preserving
cache-oblivious dynamic dictionary. J. Algorithms 53(2), 115–
136 (2004). Conference version appeared at SODA (2002)

Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Pro-
ceedings of the 4th Latin American Symposium on Theoreti-
cal Informatics. Lecture Notes in Computer Science, vol. 1776,
Berlin, pp. 88–94. Springer, London (2000)

Bender, M.A., Farach-Colton, M., Fineman, J.T., Fogel, Y.R., Kusz-
maul, B.C., Nelson, J.: Cache-oblivious streaming B-trees. In:
Proc. 19th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 81–92. ACM, New York (2007)

Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: Cache-oblivious
string B-trees. In: Proc. 25th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 233–242.
ACM, New York (2006)

Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The
power of a pebble: Exploring andmapping directed graphs. In:
Proc. 30th Ann. Symp. on Theory of Computing, pp. 269–278.
Dallas, 23–26 May 1998

Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concur-
rent cache-oblivious B-trees. In: Proc. 17th Annual ACM Sym-
posium on Parallel Algorithms, pp. 228–237. ACM, New York
(2005)

Benioff, P.: Space searches with a quantum robot. In: Quantum
computation and information (Washington, DC, 2000). Con-
temp. Math., vol. 305, pp. 1–12. Amer. Math. Soc. Providence,
RI (2002)

Benner, S.A., Cohen, M.A., Gonnet, G.H.: Empirical and structural
models for insertions and deletions in the divergent evolution
of proteins. J. Mol. Biol. 229, 1065–1082 (1993)

Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and
weaknesses of quantum computing. SIAM J. Comput. 26(5),
1510–1523 (1997)

Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key dis-
tribution and coin tossing. In: Proceedings of IEEE Interna-
tional Conference on Computers, Systems and Signal Process-
ing, pp. 175–179. IEEE Computer Society Press, Los Alamitos
(1984)

Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters,
W.K.: Teleporting an unknown quantum state via dual classi-
cal and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70,
1895–1899 (1993)

Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized pri-
vacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923
(1995)

Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.,
Wootters, W.: Purification of noisy entanglement and faithful
teleportation via noisy channels. Phys. Rev. Lett. 76, 722–726
(1996)

Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Terhal, B.M., Wootters,
W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902
(2001)

Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-
state entanglement and quantum error correction. Phys. Rev.
A 54, 3824–3851 (1996)

Bennett, C.H., Hayden, P., Leung, W., Shor, P.W., Winter, A.: Remote
preparation of quantum states. IEEE Trans. Inform. Theory 51,
56–74 (2005)

Bennett, C.H., Li, M., Ma, B.: Chain letters and evolutionary histories.
Sci. Am. 288, 76–81 (2003)

Bennett, C.H., Wiesner, S.J.: Communication via one- and two-
particle operators on Einstein-Podolsky-Rosen states. Phys.
Rev. Lett. 69, 2881–2884 (1992)

http://arxiv.org/abs/quant-ph/0409078
http://arxiv.org/abs/quant-ph/0409078
http://arxiv.org/abs/cs/0211010
http://arxiv.org/abs/cs/0211010

Bibliography 1067

Benoit, D., Demaine, E., Munro, J.I., Raman, R., Raman, V., Rao, S.S.:
Representing trees of higher degree. Algorithmica 43, 275–
292 (2005)

Benson, G.: Tandem Repeats Finder: a program to analyze DNA se-
quences. Nucleic Acids Res. 27, 573–580 (1999)

Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM
J. Comput. 14(3), 545–568 (1985)

Benteley, J.L., McGeoch, C.C.: Amortized analyses of self-organizing
sequential search heuristics. Commun. ACM 28, 404–411
(1985)

Bentley, J.: Programming Pearls. Addison-Wesley, Reading (1986)
Bentley, J., Sedgewick, R.: Algorithm alley: Sorting strings with

three-way radix quicksort. Dr. Dobb’s J. Softw. Tools 23, 133–
134, 136–138 (1998)

Bentley, J.L., Johnson, D.S., Leighton, F.T., McGeoch, C.C.: An exper-
imental study of bin packing. In: Proc. of the 21st Annual Aller-
ton Conference on Communication, Control, and Computing,
Urbana, University of Illinois, 1983 pp. 51–60

Bentley, J.L., Johnson, D.S., Leighton, F.T., McGeoch, C.C., McGeoch,
L.A.: Some unexpected expected behavior results for bin pack-
ing. In: Proc. of the 16th Annual ACM Symposium on Theory of
Computing, pp. 279–288. ACM, New York (1984)

Bentley, J.L.,McIlroy, M.D.: Engineering a sort function. Softw. Pract.
Exp. 23, 1249–1265 (1993)

Bentley, J.L., Sleator, D.S., Tarjan, R.E., Wei, V.K.: A locally adaptive
data compression scheme. Commun. ACM 29, 320–330 (1986)

Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Schmer, K. M.,
Schmer, E.: A computational basis for conic arcs and boolean
operations on conic polygons. In: 10th European Symposium
on Algorithms (ESA’02), pp. 174–186, (2002) Lecture Notes in
CS, No. 2461

Bergadano, F., Catalano, D., Varricchio, S.: Learning sat-k-DNF for-
mulas from membership queries. In: Proc. of the 28th Annu.
ACM Symp. on the Theory of Computing, pp. 126–130. ACM
Press, New York (1996)

Bergadano, F., Varricchio, S.: Learning behaviors of automata from
multiplicity and equivalence queries. In: Proc. of 2nd Italian
Conf. on Algorithms and Complexity. Lecture Notes in Com-
puter Science, vol. 778, pp. 54–62. Springer, Berlin (1994). Jour-
nal version: SIAM J. Comput. 25(6), 1268–1280 (1996)

Bergadano, F., Varricchio, S.: Learning behaviors of automata from
shortest counterexamples. In: EuroCOLT ’95, Lecture Notes in
Artificial Intelligence, vol. 904, pp. 380–391. Springer, Berlin
(1996)

Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation schemes
for minimum 2-connected spanning subgraphs in weighted
planar graphs. Proc. 13th Annual European Symposium on Al-
gorithms, pp. 472–483. (2005)

Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the proper-
ties of sequences of reversals that sort a signed permutation.
Proceedings of JOBIM’02, 99–108 (2002)

Bergeron, A., Mixtacki, J., Stoye, J.: The inversion distance problem.
In: Gascuel, O. (ed.) Mathematics of evolution and phylogeny.
Oxford University Press, USA (2005)

Bergeron, A., Stoye, J.: On the similarity of sets of permutations and
its applications to genome comparison. J. Comput. Biol. 13(7),
1340–1354 (2006)

Bergkvist, A., Damaschke, P.: Fast algorithms for finding disjoint
subsequences with extremal densities. In: Proceedings of the
16th Annual International Symposium on Algorithms and
Computation. LNCS, vol. 3827, pp. 714–723 (2005)

Berkhin, P.: A survey on PageRank computing. Internet Math. 2(1),
73–120 (2005)

Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent in-
tractability of certain coding problems. IEEE Trans. Inf. Theory
24, 384–386 (1978)

Berman, C.L.: Ordered Binary Decision Diagrams and Circuit Struc-
ture. In: IEEE International Conference on Computer Design.
(1989)

Berman, P., Blum, A., Fiat, A., Karloff, H., Rosén, A., Saks, M.: Random-
ized robot navigation algorithms. In: Proceedings, Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 75–84 (1996)

Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for
related machines. J. Algorithms 35, 108–121 (2000)

Berman, P., Coulston, C.: On-line algorithms for Steiner tree prob-
lems. In: Proc. of the 29th Annual ACM Symposium on Theory
of Computing, pp. 344–353. Association for Computing Ma-
chinery, New York (1997)

Berman, P., Garay, J.A., Perry, K.J.: Bit Optimal Distributed Consen-
sus. In: Yaeza-Bates, R., Manber, U. (eds.) Computer Science
Research, pp. 313–322. Plenum Publishing Corporation, New
York (1992)

Berman, P., Garay, J.A., Perry, K.J.: Optimal Early Stopping in Dis-
tributed Consensus. In: Proc. 6th International Workshop on
DistributedAlgorithms (WDAG), pp. 221–237, Israel, November
1992

Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Hirschberg,
D.S., Myers, E.W. (eds.) Proc. 7th Ann. Symp. Combinatorial Pat-
tern Matching (CPM96). Lecture Notes in Computer Science,
vol. 1075, pp. 168–185. Laguna Beach, CA, June 1996. Springer
(1996)

Berman, P., Hannenhalli, S.: Fast Sorting by Reversal, proceedings
of CPM ’96. Lecture notes in computer science 1075, 168–185
(1996)

Berman, P., Karpinski, M.: Approximability of hypergraphminimum
bisection. ECCC Report TR03-056, Electronic Colloquium on
Computational Complexity, vol. 10 (2003)

Berman, P., Karpinski, M., Larmore, L., Plandowski, W., Rytter, W.:
On the complexity of pattern matching for highly compressed
two dimensional texts. Proceeding of 8th Annual Symposium
on Combinatorial Pattern Matching (CPM 97). LNCS, vol. 1264,
pp. 40–51. Springer, Berlin (1997)

Berman, P., Ramaiyer, V.: Improved approximations for the Steiner
tree problem. J. Algorithms 17, 381–408 (1994)

Bern, M., Eppstein, D.: Approximation algorithms for geometric
problems. In: Hochbaum, D. (ed.) Approximation Algorithms
for NP-hard problems. PWS Publishing, Boston (1996)

Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1
and 2. Inf. Process. Lett. 32(4), 171–176 (1989)

Bernhart, F., Kainen P.C.: The book thickness of a graph. J. Comb.
Theory B 27(3), 320–331 (1979)

Bernhart, S., Hofacker, I.L., Stadler, P.: Local RNA base pairing prob-
abilities in large sequences. Bioinformatics 22, 614–615 (2006)

Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F., Ho-
facker, I.L.: Partition function and base pairing probabilities of
RNA heterodimers. AlgorithmsMol. Biol. 1, 3 (2006)

Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM
J. Comput. 26(5), 1411–1473 (1997)

Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-
correcting coding and decoding: turbo-codes. In: Proc. IEEE Int.
Conf. Comm. (ICC), pp. 1064–1070. Geneva, 23–26 May 1993

1068 Bibliography

Berry, V., Guillemot, S., Nicolas, F., Paul, C.: On the approximation
of computing evolutionary trees. In: Wang, L. (ed.) Proc. of
the 11th Annual International Conference on Computing and
Combinatorics (COCOON’05). LNCS, vol. 3595, pp. 115–125.
Springer, Berlin (2005)

Berry, V., Nicolas, F.: Improved parameterized complexity of the
maximum agreement subtree and maximum compatible tree
problems. IEEE/ACM Trans. Comput. Biology Bioinform. 3(3),
289–302 (2006)

Berry, V., Nicolas, F.: Maximum agreement and compatible su-
pertrees. J. Discret. Algorithms (2006)

Berry, V., Nicolas, F.: Maximum agreement and compatible su-
pertrees. J. Discret. Algorithms. Algorithmica, Springer, New
York (2008)

Berry, V., Peng, Z.S., Ting, H.-F.: From constrained to unconstrained
maximum agreement subtree in linear time. Algorithmica, to
appear (2006)

Bertier, M., Marin, O., Sens, P.: Performance analysis of a hierarchical
failure detector. In: International Conference on Dependable
Systems andNetworks (DSN 2003), San Francisco, CA, USA, Pro-
ceedings, pp. 635–644. 22–25 June 2003

Bertsekas, D.P., Gallager, R.G.: Data Networks, 2nd edn. Prentice
Hall, Englewood Cliffs (1992)

Bertsekas, D.P., Tsitsiklis, J. N.: Neuro-Dynamic Programming.
Athena Scientific, Belmont (1996)

Bertsimas, D., Niño-Mora, J.: Conservation laws, extended poly-
matroids and multiarmed bandit problems: polyhedral ap-
proaches to indexable systems. Math. Oper. Res. 21(2), 257–
306 (1996)

Besmaphyatnikh, S., Segal, M.: Enumerating longest increasing
subsequences and patience sorting. Inform. Proc. Lett. 76(1–
2), 7–11 (2000)

Bespamyatnikh, S.: An Optimal Algorithm for Closest-Pair Mainte-
nance. Discret. Comput. Geom. 19(2), 175–195 (1998)

Bespamyatnikh, S.: On Constructing Minimum Spanning Trees in
Rk1. Algorithmica 18(4), 524–529 (1997)

Bhalgat, A., Hariharan, R., Kavitha, T., Panigrahi, D.: An Õ(mn)
Gomory-Hu tree construction algorithm for unweighted
graphs. In: Proc. of the 39th Annual ACM Symposium on The-
ory of Computing, San Diego 2007

Bhatt, S.N., Leighton, F.T.: A framework for solving vlsi graph layout
problems. J. Comput. Syst. Sci. 28(2), 300–343 (1984)

Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic Model
Checking Using Sat Procedures Instead of BDDs. In: ACM De-
sign Automation Conference. (1999)

Bikhchandani, S., Chatterjee, S., Lavi, R., Mu’alem, A., Nisan, N.,
Sen, A.: Weak monotonicity characterizes deterministic dom-
inant-strategy implementation. Econometrica 74, 1109–1132
(2006)

Billoud, B., Kontic, M., Viari, A.: Palingol a declarative programming
language to describe nucleic acids’ secondary structures and
to scan sequence database. Nucleic. Acids. Res. 24, 1395–1403
(1996)

Bini, E., Buttazzo, G., Buttazzo, G.: Rate monotonic scheduling: The
hyperbolic bound. IEEE Trans. Comput. 52, 933–942 (2003)

Bininda-Emonds, O., Gittleman, J., Steel, M.: The (super)tree of life:
Procedures, problems, and prospects. Ann. Rev. Ecol. System.
33, 265–289 (2002)

Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of
the distributed 1-solvable tasks. J. Algorithms 11(3), 420–440
(1990)

Bird, R.S.: Two dimensional pattern matching. Inf. Process. Lett. 6,
168–170 (1977)

Birman, K.: Building Secure and Reliable Network Applications.
Manning, (1996)

Biró, P., Cechlárová, K.: Inapproximability of the kidney exchange
problem. Inf. Proc. Lett. 101(5), 199–202 (2007)

Bisht, L., Bshouty, N.H., Mazzawi, H.: On Optimal Learning Algo-
rithms for Multiplicity Automata. In: Proc. of 19th Annu. ACM
Conf. Comput. Learning Theory, Lecture Notes in Computer
Science. vol. 4005, pp. 184–198. Springer, Berlin (2006)

Bixby, R.E., Wagner, D.K.: An almost linear-time algorithm for graph
realization. Math. Oper. Res. 13, 99–123 (1988)

Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiabil-
ity and number of perfect matchings. In: Proc. 33rd ICALP.
LNCS, vol. 4051, pp. 548–1559. Springer (2006). Algorithmica,
doi:10.1007/s00453-007-9149-8

Björklund, A., Husfeldt, T.: Finding a path of superlogarithmic
length. SIAM J. Comput. 32(6), 1395–1402 (2003)

Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets
Möbius: fast subset convolution. In: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing (STOC), San
Diego, CA, June 11–13, 2007. Association for Computing Ma-
chinery, pp. 67–74. New York (2007)

Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclu-
sion–exclusion. SIAM J. Comput.

Blanchette, M.: Algorithms for phylogenetic footprinting. In: RE-
COMB01: Proceedings of the Fifth Annual International Con-
ference on Computational Molecular Biology, pp. 49–58. ACM
Press, Montreal (2001)

Blanchette, M.: Algorithms for phylogenetic footprinting. Ph. D.
thesis, University of Washington (2002)

Blanchette, M., Schwikowski, B., Tompa, M.: Algorithms for phylo-
genetic footprinting. J. Comput. Biol. 9(2), 211–223 (2002)

Blanchette, M., Tompa, M.: Discovery of regulatory elements
by a computational method for phylogenetic footprinting.
Genome Res. 12, 739–748 (2002)

Blanchette, M., Tompa, M.: Footprinter: A program designed for
phylogenetic footprinting. Nucleic Acids Res. 31(13), 3840–
3842 (2003)

Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J.,
Zagha, M.: An experimental analysis of parallel sorting algo-
rithms. Theor. Comput. Syst. 31(2), 135–167 (1998)

Blin, G., Fertin, G., Vialette, S.: Extracting 2-intervals subsets from 2-
interval sets. Theor. Comput. Sci. 385(1–3), 241–263 (2007)

Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval pattern
problem. In: Proc. 15th Annual Symposium on Combinatorial
Pattern Matching (CPM). Lecture Notes in Computer Science,
vol. 3109. Springer, Berlin (2004)

Block., H. D.: The perceptron: A model for brain functioning. Rev.
Mod. Phys. 34, 123–135 (1962)

Bloom, B.: Constructing two-writer atomic registers. IEEE Trans.
Comput. 37(12), 1506–1514 (1988)

Blum, A.: Learning a function of r relevant variables (open prob-
lem). In: Proceedings of the 16th Annual Conference on
Learning Theory, pp. 731–733, Washington, 24–27 August
2003

Blum, A.: New approximations for graph coloring. J. ACM 41(3),
470–516 (1994)

Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-
optimality in lists and trees. Algorithmica 36, 249–260 (2003)

Bibliography 1069

Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-
optimality in lists and trees. In: Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1–8 (2002)

Blum, A., Dunagan J. D.: Smoothed analysis of the perceptron algo-
rithm for linear programming. In: SODA, (2002)

Blum, A., Frieze, A., Kannan, R., Vempala, S.: A polynomial time al-
gorithm for learning noisy linear threshold functions. Algorith-
mica 22(1/2), 35–52 (1997)

Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich, S.:
Weakly learning DNF and characterizing statistical query learn-
ing using Fourier analysis. In: Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, pp. 253–262. Asso-
ciation for computing Machinery, New York (1994)

Blum, A., Hartline, J.: Near-optimal online auctions. In: Proc. of the
16th Symposium on Discrete Algorithms (SODA), 2005

Blum, A., Hellerstein, L., Littlestone, N.: Learning in the presence of
finitely or infinitely many irrelevant attributes. J. Comp. Syst.
Sci. 50(1), 32–40 (1995)

Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50(4), 506–
519 (2003)

Blum, A., Karger, D.: An Õ(n3/14)-coloring for 3-colorable graphs. Inf.
Process. Lett. 61(6), 49–53 (1997)

Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On learn-
ing read-k-satisfy-j DNF. In: Proc. of 7th Annu. ACM Conf. on
Comput. Learning Theory, pp. 110–117. ACM Press, New York
(1994)

Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite re-
laxations for minimum bandwidth and other vertex-ordering
problems. Theor. Comput. Sci. 235(1), 25–42 (2000), Selected
papers in honor of Manuel Blum (Hong Kong, 1998)

Blum, A., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of
shortest superstrings. J. ACM 41, 630–47 (1994)

Blum, A., Raghavan, P., Schieber, B.: Navigating in Unfamiliar Ge-
ometric Terrain. In: On Line Algorithms, pp. 151–155, DIMACS
Series in Discrete Mathematics and Theoretical Computer Sci-
ence, American Mathematical Society, Providence RI (1992)
Preliminary Version in STOC 1991, pp. 494–504

Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geo-
metric terrain. In: Proceedings 23rd ACM Symposium on The-
ory of Computing (STOC), pp. 494–504 (1991)

Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geo-
metric terrain. SIAM J. Comput. 26(1), 110–137 (1997)

Blum, A., Sandholm, T., Zinkevich, M.: Online algorithms for market
clearing. J. ACM 53(5), 845–879 (2006)

Blum, A.L., Rivest, R.L.: Training a 3-node neural network is NP-
complete. Neural Netw. 5(1), 117–127 (1992)

Blum, J., Ding, M., Thaeler, A., Cheng, X.: Applications of Connected
Dominating Sets inWireless Networks. In: Du, D.-Z., Pardalos, P.
(eds.) Handbook of Combinatorial Optimization, pp. 329–369.
Kluwer Academic (2004)

Blum, L., Blum, M.: Toward a mathematical theory of inductive in-
ference. Inform. Control 28(2), 125–155 (1975)

Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with appli-
cations to numerical problems. J. CSS 47, 549–595 (1993)

Blum, M., Micali, S.: How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits. SIAM J. Comput. 4(13), 850–
864 (1984)

Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learnability
and the Vapnik–Chervonenkis dimension. J. ACM 36(4), 929–
965 (1989)

Blumrosen, L., Nisan, N.: On the computational power of iterative
auctions. In: Proc. of the 7th ACM Conference on Electronic
Commerce (EC’05), 2005

Böcker, S., Mäkinen, V.: Maximum line-pair stabbing problem and
its variations. In: Proc. 21st European Workshop on Computa-
tional Geometry (EWCG’05), pp. 183–186. Technische Univer-
sität Eindhoven, The Netherlands (2005)

Bodlaender, H.L.: A linear time algorithm for finding tree-decom-
positions of small treewidth. SIAM J. Comput. 25, 1305–1317
(1996)

Bodlaender, H.L.: A partial k-arboretum of graphs with bounded
treewidth. Theor. Comp. Sci. 209, 1–45 (1998)

Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet-
ica 11, 1–23 (1993)

Bodlaender, H.L.: Discovering treewidth. In: P. Vojtás̆, M. Bieliková,
B. Charron-Bost (eds.) Proceedings 31st Conference on Current
Trends in Theory and Practive of Computer Science, SOFSEM
2005. Lecture Notes in Computer Science, vol. 3381, pp. 1–16.
Springer, Berlin (2005)

Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comp. Sci. 5(1),
59–68 (1994)

Bodlaender, H.L.: Treewidth: Characterizations, applications, and
computations. In: Fomin, F.V. (ed.) Proceedings 32nd Interna-
tional Workshop on Graph-Theoretic Concepts in Computer
Science WG’06. Lecture Notes in Computer Science, vol. 4271,
pp. 1–14. Springer, Berlin (2006)

Bodlaender, H.L.: Treewidthlib. http://www.cs.uu.nl/people/hansb/
treewidthlib (2004)

Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against per-
fect phylogeny. In: Proceedings of the 19th International Col-
loquium on Automata, Languages and Programming (ICALP
1992). Lecture Notes in Computer Science, vol. 623, pp. 273–
283. Springer, Berlin (1992)

Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approxi-
mating treewidth, pathwidth, frontsize, and shortest elimina-
tion tree. J. Algorithms 18(2), 238–255 (1995)

Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approxima-
tions for
-Coloring of Graphs. In: Proceedings of the 17th An-
nual Symposium on Theoretical Aspects of Computer Science.
Lecture Notes in Computer Science, vol. 1770, pp. 395-406.
Springer (2000)

Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms
for branchwidth. In: Automata, languages and programming
(Bologna, 1997). Lecture Notes in Computer Science, vol. 1256,
pp. 627–637. Springer, Berlin (1997)

Bodlaender, H.L., Thilikos, D.M.: Graphs with branchwidth at most
three. J. Algorithms 32, 167–194 (1999)

Boesch, F.T.: Properties of the distance matrix of a tree. Quarterly
Appl. Math. 26, 607–609 (1968)

Boeva, V.A., Régnier, M., Makeev, V.J.: SWAN: searching for highly
divergent tandem repeats in DNA sequences with the evalua-
tion of their statistical significance. Proceedings of JOBIM 2004,
Montreal, Canada, p. 40 (2004)

Bogomolnaia, A., Jackson, M.O.: The Stability of Hedonic Coalition
Structures. Games. Econ. Behav. 38(2), 201–230 (2002)

Boissonat, J.-D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Trian-
gulations in CGAL. Comput. Geom. Theor. Appl. 22(1–3), 5-19
(2002)

Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geom-
etry for Curves and Surfaces. Springer, Berlin (2006)

http://www.cs.uu.nl/people/hansb/treewidthlib
http://www.cs.uu.nl/people/hansb/treewidthlib

1070 Bibliography

Boldi, P., Vigna, S.: Codes for the world-wide web. Internet Math.
2(4), 405–427 (2005)

Bollobás, B.: A probabilistic proof of an asymptotic formula for the
number of labeled regular graphs. Eur. J. Comb. 1, 311–316
(1980)

Bollobás, B.: Random Graphs. Academic Press (1985)
Bollobás, B., Coppersmith, D., Elkin M.: Sparse distance preserves

and additive spanners. In: Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003,
pp. 414–423

Boman, E., Hendrickson, B.: On spanning tree preconditioners.
Manuscript, Sandia National Lab. (2001)

Boman, E., Hendrickson, B., Vavasis, S.: Solving elliptic finite ele-
ment systems in near-linear time with suppost precondition-
ers. Manuscript, Sandia National Lab. and Cornell, http://arXiv.
org/abs/cs/0407022 Accessed 9 July 2004

Boneh, D., Lipton, R.: Quantum Cryptanalysis of Hidden Linear
Functions (Extended Abstract) In: Proceedings of 15th Annual
International Cryptology Conference (CRYPTO’95), pp. 424–
437, Santa Barbara, 27–31 August 1995

Bonizzoni, P., Della Vedova, G., Dondi, R., Li, J.: The haplotyping
problem: an overview of computational models and solutions.
J. Comput. Sci. Technol. 19(1), 1–23 (2004)

Bonomi, F., Fendick, K.: The Rate-Based Flow Control for Avail-
able Bit Rate ATM Service. IEEE/ACM Trans. Netw. 9(2), 25–39
(1995)

Bonsma, P.: Spanning trees withmany leaves: new extremal results
and an improved FPT algorithm. Memorandum Department
of Applied Mathematics, vol. 1793, University of Twente, En-
schede (2006)

Bonsma, P., Brueggemann, T., Woeginger, G.: A faster FPT algorithm
for finding spanning trees with many leaves. Proceedings of
MFCS 2003. Lecture Notes in Computer Science, vol. 2747, pp.
259–268. Springer, Berlin (2003)

Boost C++ Libraries, http://www.boost.org/. Accessed February
2008

Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms.
J. Comp. Syst. Sci. 13, pp. 335–379 (1976)

Borah, M., Owens, R.M., Irwin, M.J.: An edge-based heuristic for
steiner routing. IEEE Transac. Comput. Aided Des. 13, 1563–
1568 (1994)

Bordewich, M., Freedman, M., Lovasz, L., Welsh, D.: Approximate
counting and Quantum computation, Combinatorics. Prob.
Comput. 14(5–6), 737–754 (2005)

Borgelt, C., Grantson, M., Levcopoulos, C.: Fixed-Parameter Algo-
rithms for the Minimum Weight Triangulation Problem. Tech-
nical Report LU-CS-TR:2006-238, ISSN 1650-1276 Report 158.
Lund University, Lund (An extended version has been submit-
ted to IJCGA) (2006)

Borgs, C., Chayes, J., Etesami, O., Immorlica, N., Jain, K., Mahdian,
M.: Bid optimization in online advertisement auctions. In: 2nd
Workshop on Sponsored Search Auctions, in conjunction with
the ACM Conference on Electronic Commerce (EC-06), Ann Ar-
bor, MI, 2006

Borgs, C., Chayes, J.T., Immorlica, N., Mahdian, M., Saberi, A.: Multi-
unit auctions with budget-constrained bidders. In: ACM Con-
ference on Electronic Commerce (EC-05), 2005, pp. 44–51

Borodin, A., El-Yaniv, R.: Online Computation and Competitive
Analysis. Cambridge University Press, Cambridge (1998)

Borodin, A., Fischer, M., Kirkpatrick, D., Lynch, N.: A time-space
tradeoff for sorting on non-oblivious machines. J. Comput.
Syst. Sci. 22, 351–364 (1981)

Borodin, A., Hopcroft, J.E.: Routing, merging and sorting on paral-
lel models of computation. J. Comput. Syst. Sci. 30(1), 130–145
(1985)

Borodin, A., Irani, S., Raghavan, P., Schieber B.: Competitive paging
with locality of reference. J. Comput. Syst. Sci. 50(2), 244–258
(1995)

Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for
metrical task systems. J. ACM 39, 745–763 (1992)

Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-
resilient asynchronous computations. In: Proceedings of the
1993 ACM Symposium on Theory of Computing, May 1993.
pp. 206–215

Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: A polynomial-time
approximation scheme for Steiner tree in planar graphs. In:
Proceedings of the 18th Annual ACM-SIAM Symposiumon Dis-
crete Algorithms, 2007

Borůvka, O.: O jistém problému minimálním. Práce Moravské
Přírodovědecké Společnosti 3, 37–58 (1926) (In Czech)

Borůvka, O.: Otakar Borůvka on minimum spanning tree problem
(translation of both the 1926 papers, comments, history). Disc.
Math. 233, 3–36 (2001)

Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimen-
tal realization of teleporting an unknown pure quantum state
via dual classical and einstein-podolski-rosen channels. Phys.
Rev. Lett. 80, 1121–1125 (1998)

Bose, P., Brodnik, A., Carlsson, S., Demaine, E., Fleischer R., López-
Ortiz, A., Morin, P., Munro, J.: Online Routing in Convex Subdivi-
sions. In: International Symposium on Algorithms and Compu-
tation (ISAAC). LNCS, vol. 1969, pp 47–59. Springer, Berlin/New
York (2000)

Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners
of bounded degree and low weight. Algorithmica 42, 249–264
(2005)

Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners
of bounded degree and low weight. In: Proceedings of Eu-
ropean Symposium of Algorithms, University of Rome, 17–21
September 2002

Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.: Approx-
imating geometric bottleneck shortest paths. Comput. Geom.:
Theory Appl. 29, 233–249 (2004)

Bose, P., Morin, P.: Competitive online routing in geometric graphs.
Theor. Comput. Sci. 324, 273–288 (2004)

Bose, P., Morin, P.: Online Routing in Triangulations. In: Proc.
10th Int. Symposium on Algorithms and Computation (ISAAC).
LNCS, vol. 1741, pp 113–122. Springer, Berlin (1999)

Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput.
33, 937–951 (2004)

Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaran-
teed delivery in ad hoc wireless networks. ACM/Kluwer Wire-
less Networks 7(6), 609–616 (2001). 3rd int. Workshop on Dis-
crete Algorithms andmethods formobile computing and com-
munications, 48–55 (1999)

Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaran-
teed delivery in ad hoc wireless networks. In: Proceedings of
the Third International Workshop on Discrete Algorithm and
Methods for Mobility, Seattle, Washington, Aug 1999, pp. 48–
55

http://arXiv.org/abs/cs/0407022
http://arXiv.org/abs/cs/0407022
http://www.boost.org/

Bibliography 1071

Bose, P., Smid, M., Xu, D.: Diamond triangulations contain spanners
of bounded degree. In: Proceedings of the 17th International
Symposium on Algorithms and Computation. Lecture Notes
in Computer Science, vol. 4288, pp. 173–182. Springer, Berlin
(2006)

Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth AnnualWorkshop on
Computational Learning Theory, Pittsburgh (1992)

Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approximate
Nash Equilibria in Bimatrix Games. In: LNCS Proceedings of
the 3rd International Workshop on Internet and Network Eco-
nomics (WINE 2007), San Diego, 12–14 December 2007

Boston, N., Ganesan, A., Koetter, R., Pazos, S., Vontobel, P.: Pa-
pers on pseudocodewords. HP Labs, Palo Alto. http://www.
pseudocodewords.info.

Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of
a graph. Theor. Comput. Sci. 276(1–2), 17–32 (2002)

Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping
the minimal separators. SIAM J. Comput. 31, 212–232 (2001)

Bourgain, J.: On Lipschitz embedding of finite metric spaces in
Hilbert space. Israel J. Math. 52(1–2), 46–52 (1985)

Bourland, J.D., Wu, Q.R.: Use of shape for automated, optimized 3D
radiosurgical treatment planning. SPIE Proc. Int. Symp. onMed-
ical Imaging, pp. 553–558 (1996)

Bouwmeester, D., Pan, J.W. , Mattle, K., Eible, M., Weinfurter,
H., Zeilinger, A.: Experimental quantum teleportation. Nature
390(6660), 575–579 (1997)

Boyer, J., Myrvold, W.: Stop minding your P’s and Q’s: A simplified
O(n) planar embedding algorithm. In: SODA ’99: Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. Philadelphia, PA, USA, Society for Industrial and Ap-
plied Mathematics, pp. 140–146 (1999)

Boyer, M., Brassard, G., Høyer, P., TappA.: Tight bounds on quantum
searching. Fortschr. Phys. 46(4–5), 493–505 (1998)

Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algo-
rithmic cooling and scalable NMR quantum computers. Proc.
Natl. Acad. Sci. 99, 3388–3393 (2002)

Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum
bits. Phys. Rev. A 67, 042317 (2003)

Brace, K., Rudell, R., Bryant, R.: Efficient Implementation of a BDD
Package. In: ACM Design Automation Conference. (1990)

Bracha, G.: An O(log n) expected rounds randomized Byzantine
generals protocol. J. Assoc. Comput. Mach. 34(4), 910–920
(1987)

Brafman, R., Tennenholtz, M.: R-max – a general polynomial time
algorithm for near optimal reinforcement learning. J. Mach.
Learn. Res. 3, 213–231 (2002)

Braga, M.D.V., Sagot, M.F., Scornavacca, C., Tannier, E.: The Solution
Space of Sortingby Reversals. In: Proceedings of ISBRA’07. Lect.
Notes Comp. Sci. 4463, 293–304 (2007)

Brainard, W.C., Scarf, H.E.: How to compute equilibrium prices
in 1891. Cowles Foundation Discussion Paper 1270,
August 2000

Brakmo, L.S., Peterson, L.: TCP Vegas: End-to-end Congestion
Avoidance on a Global Internet. IEEE J. Sel. Areas Commun.
13(8), 1465–1480 (1995)

Brass, P., Pach, J.: Problems and results on geometric patterns. In:
Avis, D. et al. (eds.) Graph Theory and Combinatorial Optimiza-
tion, pp. 17–36. Springer Science + Business Media Inc., NY,
USA (2005)

Brassard, G.: Searching a quantumphone book. Science 275(5300),
627–628 (1997)

Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor,
T., Weinstein, Y., Xiao, L.: Experimental heat-bath cooling of
spins. Submitted to Proc. Natl. Acad. Sci. USA. See also quant-
ph/0511156 (2005)

Brassard, G., Høyer, P.: An exact quantum polynomial-time algo-
rithm for Simon’s problem. In: Proc. 5th Israeli Symp. on Theory
of Computing and Systems (ISTCS), pp. 12–23. IEEE Computer
Society Press, Hoboken (1997)

Brassard, G., Høyer, P., Mosca, M., Tapp A.: Quantum Amplitude
Amplification and Estimation. In: Lomonaco, S.J. (ed.) Quantum
Computation & Quantum Information Science, AMS Contem-
porary Mathematics Series Millennium Volume, vol. 305,
pp. 53–74. American Mathematical Society, Providence
(2002)

Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantumamplitude am-
plification and estimation. In: Quantum computation and in-
formation (Washington, DC, 2000). Contemp. Math., vol. 305,
pp. 53–74. American Mathematical Society, Providence, RI
(2002)

Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude
amplification and estimation. In: Quantum Computation and
Quantum Information Science. AMSContemporary Mathemat-
ics Series, vol. 305 Contemporary Mathematics, pp. 53–74,
Providence (2002)

Brassard, G., Høyer, P., Tapp, A.: Quantum Algorithm for the Colli-
sion Problem. 3rd Latin American Theoretical Informatics Sym-
posium (LATIN’98). LNCS, vol. 1380, pp. 163–169. Springer
(1998)

Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and
claw-free functions. In: Proc. 3rd Latin American Theoretical In-
formatics Conference (LATIN). Lecture Notes in Computer Sci-
ence, vol. 1380, pp. 163–169. Springer, New York (1998)

Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli, A.:
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Aca-
demic Publishers (1984)

Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A.L.: Multilevel
logic synthesis. Proc. IEEE 78(2), 264–300 (1990)

Brayton, R.K., Rudell, R., Sangiovanni-Vincentelli, A.L.: MIS:
A Multiple-Level Logic Optimization. IEEE Trans. CAD 6(6),
1061–1081 (1987)

Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for util-
itarian mechanism design. In: Proc. 37th Ann. ACM. Symp. on
Theory of Comput. (STOC), pp. 39–48 (2005)

Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web
search engine. In: Proc. 7th Int. World Wide Web Conference,
pp. 107–117. Elsevier Science, Amsterdam (1998)

Brisaboa, N.R., Fariña, A., Navarro, G., Esteller, M.F.: (S;C)-dense cod-
ing: An optimized compression code for natural language text
databases. In: Nascimento, M.A. (ed.) Proc. Symp. String Pro-
cessing and Information Retrieval. LNCS, vol. 2857, pp. 122–
136, Manaus, Brazil, October 2003

Brodal, G.S.: Cache-oblivious algorithms and data structures. In:
Proc. 9th Scandinavian Workshop on Algorithm Theory. LNCS,
vol. 3111, pp. 3–13. Springer, Berlin (2004)

Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweep-
ing. In: Proc. 29th International Colloquium on Automata,
Languages, and Programming. LNCS, vol. 2380, pp. 426–438.
Springer, Berlin (2002)

http://www.pseudocodewords.info.
http://www.pseudocodewords.info.

1072 Bibliography

Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries.
In: SODA: ACM-SIAM Symposium on Discrete Algorithms,
pp. 581–590. ACM Press, New York (2006)

Brodal, G.S., Fagerberg, R.: On the limits of cache-obliviousness. In:
Proc. 35th Annual ACM Symposium on Theory of Computing,
pp. 307–315. ACM, New York (2003)

Brodal, G.S., Fagerberg, R., Jacob, R.: Cache-oblivious search trees
via binary trees of small height. In: Proc. 13th Annual ACM-
SIAM SymposiumonDiscrete Algorithms, pp. 39–48 ACM, New
York (2002)

Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data
structures and algorithms for undirected breadth-first search
and shortest paths. In: Proc. 9th ScandinavianWorkshop on Al-
gorithm Theory. LNCS, vol. 3111, pp. 480–492. Springer, Berlin
(2004)

Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-oblivi-
ous sorting algorithm. ACM J. Exp. Algoritmics (Special Issue of
ALENEX 2004) 12(2.2), 23 (2007)

Brodal, G.S., Jacob, R.: Time-dependent networks as models to
achieve fast exact time-table queries. In: Proceedings of the 3rd
Workshop on Algorithmic Methods and Models for Optimiza-
tion of Railways (ATMOS’03), 2003, [1], pp. 3–15

Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.:
Worst case constant time priority queue. J. Syst. Softw. 78(3),
249–256 (2005). See also SODA’01

Brodnik, A.,Munro, J.I.: Membership in constant time andminimum
space. In: Lecture Notes in Computer Science, vol. 855, pp. 72–
81, Springer, Berlin (1994). Final version: Membership in Con-
stant Time andAlmost-MinimumSpace. SIAM J. Comput.28(5),
1627–1640 (1999)

Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite
VC-dimension. Discret. Comput. Geom. 14(4), 463–479 (1995)

Brown, L.G.: A survey of image registration techniques. ACM Com-
puting Surveys 24, 325–376 (1992)

Brown, M.: Algorithm Animation. MIT Press, Cambridge, MA (1988)
Brown, M.: Perspectives on Algorithm Animation. In: Proceed-

ings of the ACM SIGCHI’88 Conference on Human Factors in
Computing Systems. Washington, D.C., May 15–19, pp. 33–38
(1988)

Brown, M.: Zeus: a System for Algorithm Animation and Multi-View
Editing. In: Proceedings of the 7th IEEE Workshop on Visual
Languages. Kobe, Japan, October 8–11, pp. 4–9 (1991)

Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T.,
Ares Jr., M., Haussler, D.: Knowledge-based analysis of mircoar-
ray gene expression data using support vector machines. In:
Proceedings of the National Academy of Sciences 97(1), 262–
267 (2000)

Brown, M., Wilson, C.: RNA pseudoknot modeling using intersec-
tions of stochastic context free grammars with applications to
database search. In: Hunter, L., Klein, T. (eds.) Proceedings of
the 1st Pacific Symposium on Biocomputing, 1996, pp. 109–
125

Bruno, J., Downey, P., Frederickson, G.N.: Sequencing tasks with ex-
ponential service times to minimize the expected flow time or
makespan. J. ACM 28, 100–113 (1981)

Bruno, J.L., Coffman, E.G., Sethi, R.: Scheduling independent tasks
to reduce mean finishing time. Commun. ACM 17, 382–387
(1974)

Bruno, W.J., Socci, N.D., Halpern, A.L.: Weighted Neighbor Joining:
A Likelihood-Based Approach to Distance-Based Phylogeny
Reconstruction. Mol. Biol. Evol. 17, 189–197 (2000)

Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast
problem in mobile radio networks. Distrib. Comput. 10(3),
129–135 (1997)

Bryand, D.: Building trees, hunting for trees, and comparing trees:
theory and methods in phylogenetic analysis. In: Ph. D. thesis,
Dept. Math., University of Canterbury (1997)

Bryant, R.: Graph-based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Comp. C-35, 677–691 (1986)

Bshouty, N., Eiron, N., Kushilevitz, E.: PAC learning with nasty noise.
TCS 288, 255–275 (2002)

Bshouty, N., Feldman, V.: On using extended statistical queries to
avoid membership queries. J. Mach. Learn. Res. 2, 359–395
(2002)

Bshouty, N., Hellerstein, L.: Attribute-efficient learning in query
and mistake-bound models. J. Comp. Syst. Sci. 56(3), 310–319
(1998)

Bshouty, N.H.: Exact Learning Boolean Function via the Monotone
Theory. Inform. Comput. 123, 146–153 (1995)

Bshouty, N.H.: Exact learning via the monotone theory. In: Proc.
of the 34th Annu. IEEE Symp. on Foundations of Computer
Science, pp. 302–311. IEEE Comput. Soc. Press, Los Alami-
tos (1993). Journal version: Inform. Comput. 123(1), 146–153
(1995)

Bshouty, N.H.: Simple learning algorithms using divide and con-
quer. In: Proc. of 8th Annu. ACM Conf. on Comput. Learning
Theory, pp. 447–453. ACM Press, New York (1995). Journal ver-
sion: Computational Complexity, 6, 174–194 (1997)

Bshouty, N.H., Cleve, R., Gavaldà, R., Kannan, S., Tamon, C.: Oracles
and Queries That Are Sufficient for Exact Learning. J. Comput.
Syst. Sci. 52(3), 421–433 (1996)

Bshouty, N.H., Jackson, J.C.: Learning DNF over the uniform distri-
bution using a quantum example oracle. SIAM J. Comput. 28,
1136–1153 (1999)

Bshouty, N.H., Jackson, J.C., Tamon, C.: More efficient PAC-learning
of DNF with membership queries under the uniform distribu-
tion. J. Comput. Syst. Sci. 68, 205–234 (2004)

Bshouty, N.H., Mossel, E., O’Donnell, R., Servedio, R.A.: LearningDNF
from random walks. J. Comput. Syst. Sci. 71, 250–265 (2005)

Bshouty, N.H., Tamon, C., Wilson, D.K.: Learning Matrix Functions
over Rings. Algorithmica 22(1/2), 91–111 (1998)

Bu, T.-M., Deng, X., Qi, Q.: Dynamics of strategic manipulation in
ad-words auction. In: 3rdWorkshop on Sponsored Search Auc-
tions, in conjunction with WWW2007, Banff, Canada, 2007

Bu, T.-M., Qi, Q., Sun, A.W.: Unconditional competitive auctionswith
copy and budget constraints. In: Spirakis, P.G., Mavronicolas,
M., Kontogiannis, S.C. (eds.) Internet and Network Economics,
2nd International Workshop, WINE 2006, Patras, Greece, 15–
17 Dec 2006. Lecture Notes in Computer Science, vol. 4286,
pp. 16–26. Springer, Berlin (2006)

Buchmann, J.: A subexponential algorithm for the determination
of class groups and regulators of algebraic number fields.
In: Goldstein, C. (ed.) Séminaire de Théorie des Nombres,
Paris 1988–1989, Progress in Mathematics, vol. 91, pp. 27–41.
Birkhäuser (1990)

Buchmann, J., Thiel, C., Williams, H.C.: Short representation of
quadratic integers. In: Bosma, W., van der Poorten A.J. (eds.)
Computational Algebra and Number Theory, Sydney 1992.
Mathematics and its Applications, vol. 325, pp. 159–185.
Kluwer Academic Publishers (1995)

Buchmann, J.A., Williams, H.C.: A key exchange system based on
real quadratic fields (extended abstract). In: Brassard, G. (ed.)

Bibliography 1073

Advances in Cryptology–CRYPTO ’89. Lecture Notes in Com-
puter Science, vol. 435, 20–24 Aug 1989, pp. 335–343. Springer
(1990)

Buchsbaum, A., Kaplan, H., Rogers, A., Westbrook, J.R.: Linear-time
pointer-machine algorithms for least common ancestors, MST
verification and dominators. In: Proc. ACM Symp. on Theory of
Computing (STOC), 1998, pp. 279–288

Buchsbaum, A.L., Caldwell, D.F., Church, K.W., Fowler, G.S.,
Muthukrishnan, S.: Engineering the compression of massive
tables: An experimental approach. In: Proc. 11th ACM-SIAM
Symp. on Discrete Algorithms, 2000, pp. 175–84

Buchsbaum, A.L., Fowler, G.S., Giancarlo, R.: Improving table com-
pression with combinatorial optimization. J. ACM 50, 825–851
(2003)

Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.R.: Range searching
over tree cross products. In: Proceedings of European Sympo-
sium on Algorithms, 2000, pp. 120–131

Buhler, J., Tompa, M.: Finding motifs using random projections. In:
RECOMB01: Proceedings of the Fifth Annual International Con-
ference on Computational Molecular Biology, 2001, pp. 69–76

Buhler, J., Tompa, M.: Finding motifs using random projections.
J. Comput. Biol. 9(2), 225–242 (2002)

Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha,
M., de Wolf, R. Quantum algorithms for element distinctness,
quant-ph/0007016 (2000)

Buhrman, H., Durr, C., Heiligman, M., Høyer, P., Magniez, F., Santha,
M., de Wolf, R.: Quantum algorithms for element distinctness.
SIAM J. Comput. 34(6), 1324–1330 (2005)

Buhrman, H., Dürr, C., Heiligman, M., P.Høyer, Magniez, F., Santha,
M., de Wolf, R.: Quantum algorithms for element distinctness.
SIAM J. Computing 34(6), 1324–1330, (2005). Preliminary ver-
sion in Proc. CCC (2001) quant-ph/0007016

Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.: Are
bitvectors optimal? SIAM J. Comput. 31(6), 1723–1744 (2002)

Buhrman, H., Špalek, R.: Quantum verification of matrix prod-
ucts. In: Proceedings of 17th ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 880–889, Miami, FL, USA, 22–26 January
2006

Bui, T.N., Jones, C.: Finding good approximate vertex and edge par-
titions is NP-hard. Inform. Process. Lett. 42(3), 153–159 (1992)

Bunch, J., Hopcroft, J.: Triangular Factorization and Inversion by
Fast Matrix Multiplication.Math. Comput. 125, 231–236 (1974)

Bunke, H., Csirik, H.: An Improved Algorithm for Computing the Edit
Distance of Run Length Coded Strings. Inf. Proc. Lett. 54, 93–96
(1995)

Burani, N., Zwicker,W.S.: Coalition formation games with separable
preferences. Math. Soc. Sci. 45, 27–52 (2003)

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Symbolic Model
Checking: 1020 States and Beyond. Inf. Comp. 98(2), 142–170
(1992)

Burd, T.D., Brodersen, R.W.: Design Issues for Dynamic Voltage Scal-
ing, Proceedings of the 2000 international symposium on Low
power electronics and design, pp. 9–14. ACM, New York, USA
(2000)

Burgart, L.J., Robinson, R.A., Heller, M.J., Wilke, W.W., Iakoubova,
O.K., Cheville, J.C.: Multiplex polymerase chain reaction. Mod.
Pathol. 5, 320–323 (1992)

Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construc-
tion and checking. In: Proc. 14th Annual Symposiumon Combi-
natorial PatternMatching. LNCS, vol. 2676, pp. 55–69. Springer,
Berlin/Heidelberg (2003)

Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.:
Does topology control reduce interference. In: ACM Int. Sym-
posium on Mobile Ad-Hoc Networking and Computing (Mobi-
Hoc), Tokyo, 24–26 May 2004

Burley, W.R.: Traversing layered graphs using the work function al-
gorithm. J. Algorithms 20, 479–511 (1996)

Burley, W.R., Irani, S.: On algorithmdesign for metrical task systems.
Algorithmica 18, 461–485 (1997)

Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separa-
tion bound for real algebraic expressions. In: Lecture Notes in
Computer Science, pp. 254–265. Springer, vol 2161 (2001)

Burns, J.E.: A formal model for message-passing systems. Indiana
University, Bloomington, TR-91, USA (1980)

Burns, J.E., Lynch, N.A.: The Byzantine Firing Squad problem. Adv.
Comput. Res. 4, 147–161 (1987)

Burns, J.E., Peterson, G.L.: Constructing multi-reader atomic values
from non-atomic values. In: Proc. 6th ACM Symp. Principles
Distr. Comput., pp. 222–231. Vancouver, 10–12 August 1987

Burns, J.N., Lynch, N.A.: Bounds on shared-memory for mutual ex-
clusion. Inform. Comput. 107(2), 171–184 (1993)

Burrows, M., Wheeler, D.: A block sorting lossless data compres-
sion algorithm. Tech. Report 124, Digital Equipment Corpora-
tion (1994)

Busch, C., Herlihy, M., Wattenhofer, R.: Hard-potato routing. In:
Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, pp. 278–285. Portland, Oregon, United States
(2000)

Busch, C., Magdon-Ismail, M., Mavronicolas, M., Spirakis, P.: Direct
routing: Algorithms and Complexity. Algorithmica 45(1), 45–
68 (2006)

Busch, C., Tirthapura, S.: Analysis of link reversal routing algorithms.
SIAM J. Comput. 35(2):305–326 (2005)

Busch, R., Magdon-Ismail, M., Sivrikaya, F., Yener, B.: Contention-
FreeMAC Protocols for Wireless Sensor Networks. In: Proc. 18th
Annual Conference on Distributed Computing (DISC) (2004)

Butler, J.M.: Forensic DNA Typing: Biology and Technology Behind
STR Markers. Academic Press (2001)

Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimiza-
tion problems in multiple-interval graphs. In: Proc. 9th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM-
SIAM, 2007, pp. 268–277

Byrka, J.: An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. In: Proceed-
ings of the 10th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX),
Lecture Notes in Computer Science, vol. 4627, pp. 29–43.
Springer, Berlin (2007)

Byskov, J.M.: Exact algorithms for graph colouring and exact satisfi-
ability. Ph. D. thesis, University of Aarhus, Denmark (2004)

C. Ambühl: An optimal bound for the MST algorithm to compute
energy efficient broadcast trees in wireless networks. In: Pro-
ceedings of 32th International Colloquium on Automata, Lan-
guages and Programming (ICALP). Lecture Notes in Computer
Science, vol. 3580, pp. 1139–1150. Springer, Berlin (2005)

Cabello, S.: Many distances in planar graphs. In: SODA ’06: Pro-
ceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pp. 1213–1220. ACM Press, New York
(2006)

Cai, M., Deng, X.: Approximation and computation of arbitrage
in frictional foreign exchange market. Electron. Notes Theor.
Comput. Sci. 78, 1–10(2003)

1074 Bibliography

Cain, J.A., Sanders, P., Wormald, N.: The random graph threshold for
k-orientability and a fast algorithm for optimal multiple-choice
allocation. In: Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’07), pp. 469–476. ACM
Press, New Orleans, Louisiana, USA, 7–9 December 2007

Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The Complex-
ity of Unique k-SAT: An Isolation Lemma for k-CNFs. In: Pro-
ceedings of the Eighteenth IEEE Conference on Computational
Complexity, 2003

Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause
width and clause density for SAT. In: Proceedings of the 21st
Annual IEEE Conference on Computational Complexity (CCC
2006), pp. 252–260. IEEE Computer Society (2006)

Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum er-
ror correction via codes over GF(4). IEEE Trans. Inform. Theory
44, 1369–1387 (1998)

Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes
exist. Phys. Rev. A 54, 1098–1105 (1996)

Caldwell, A.E., Kahng, A.B., Markov, I.L.: Optimal partitioners and
end-case placers for standard-cell layout. IEEE Trans. CAD
19(11), 1304–1314 (2000)

Calinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms for
the 0-extension problem. In: SODA ’01: Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and AppliedMath-
ematics, pp. 8–16. (2001)

Calinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation
algorithm for multiway cut. J. Comput. Syst. Sci. 60(3), 564–574
(2000)

Callahan, P.: Dealing with Higher Dimensions: The Well-Separated
Pair Decomposition and Its Applications. Ph. D. Thesis, The
Johns Hopkins University, USA (1995)

Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-
body potential fields. J. ACM 42, 67–90 (1995)

Callahan, P.B., Kosaraju, S.R.: Faster Algorithms for Some Geometric
Graph Problems in Higher Dimensions. In: SODA 1993, pp. 291–
300

Canadian Resident Matching Service (CaRMS) http://www.carms.
ca/. Accessed 27 Feb 2008, JST

Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with
optimal resilience. In: Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, San Diego, Califor-
nia, 16–18 May 1993, pp. 42–51

Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In:
USENIX Symposium on Internet Technologies and Systems,
Monterey, December 1997

Caprara, A.: Sorting by reversals is difficult. In: Proc. 1st Conf. Com-
putational Molecular Biology (RECOMB97), pp. 75–83. ACM,
Santa Fe, NM (1997)

Caprara, A.: Sorting permutations by reversals and Eulerian cycle
decompositions. SIAM J. Discret. Math. 12(1), 91–110 (1999)

Carr, R.: The Tandem global update protocol. Tandem Syst. Rev. 1,
74–85 (1985)

Carter, J.L., Wegman, M.N.: Universal classes of hash functions.
J. Comput. Syst. Sci. 18(2), 143–154 (1979)

Cartigny, J., Ingelrest, F., Simplot-Ryl, D., Stojmenovic, I.: Localized
LMST and RNG based minimum-energy broadcast protocols in
ad hoc networks. Ad Hoc Netw. 3(1), 1–16 (2004)

Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A.R.,Math-
ieu, C., Schwarz, M.: Greedy bidding strategies for keyword

auctions. In: MacKie-Mason, J.K., Parkes, D.C., Resnick, P. (eds.)
Proceedings of the 8th ACM Conference on Electronic Com-
merce (EC-2007), San Diego, California, USA, June 11–15 2007,
pp. 262–271. ACM, New York (2007)

Case, J., Smith, C.H.: Anomaly hierarchies of mechanized inductive
inference. In: Proceedings of the 10th Symposium on the The-
ory of Computing, pp. 314–319. ACM, New York (1978)

Case, J., Smith, C.H.: Comparison of Identification Criteria for Ma-
chine Inductive Inference. Theor. Comput. Sci. 25(2), 193–220
(1983)

Cassels, J.W.S.: An introduction to the geometry of numbers.
Springer, New York (1971)

Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A.,
Singh, A.: Splitstream: High-bandwidth multicast in a coopera-
tive environment. In: SOSP’03, October 2003

Castro, M., Druschel, P., Rowstron, A.: Scribe: A large-scale and
decentralised application-level multicast infrastructure, IEEE J.
Sel. Areas Commun. (JSAC) (Special issue on Network Support
for Multicast Communications) 20(8), 1489–1499 (2002). ISSN:
0733–8716

Cattaneo, G., Faruolo, P., Ferraro Petrillo, U., Italiano, G.F.: Main-
taining Dynamic Minimum Spanning Trees: An Experimental
Study. In: Proceeding 4thWorkshop on Algorithm Engineering
and Experiments (ALENEX 02), 6–8 Jan 2002. pp. 111–125

Cattaneo, G., Ferraro, U., Italiano, G.F., Scarano, V.: Cooperative
Algorithm and Data Types Animation over the Net.J.Visual
Lang.Comp. 13(4): 391– (2002)

Cechlárová, K., Dahm, M., Lacko, V.: Efficiency and stability in a dis-
crete model of country formation. J. Glob. Opt. 20(3–4), 239–
256 (2001)

Cechlárová, K., Fleiner, T., Manlove, D.: The kidney exchange game.
In: Zadnik-Stirn, L., Drobne, S. (eds.) Proc. SOR ’05, pp. 77–83.
Nova Gorica, September 2005

Cechlárová, K., Hajduková, J.: Computational complexity of stable
partitions with B-preferences. Int. J. Game. Theory 31(3), 353–
364 (2002)

Cechlárová, K., Hajduková, J.: Stability of partitions under WB-
preferences and BW-preferences. Int. J. Inform. Techn. Decis.
Mak. Special Issue on Computational Finance and Economics.
3(4), 605–614 (2004)

Cechlárová, K., Hajduková, J.: Stability testing in coalition formation
games. In: Rupnik, V., Zadnik-Stirn, L., Drobne, S. (eds.) Proceed-
ings of SOR’99, pp. 111–116. Predvor, Slovenia (1999)

Cechlárová, K., Hajduková, J.: Stable partitionswithW -preferences.
Discret. Appl. Math. 138(3), 333–347 (2004)

Cechlárová, K., Lacko, V.: The Kidney Exchange problem: How hard
is it to find a donor? IM Preprint A4/2006, Institute of Mathe-
matics, P.J. Šafárik University, Košice, Slovakia, (2006)

Cechlárová, K., Romero-Medina, A.: Stability in coalition formation
games. Int. J. Game. Theor. 29, 487–494 (2001)

Cesa-Bianchi, N., Dichterman, E., Fischer, P., Shamir, E., Simon,
H.U.: Sample-efficient strategies for learning in the presence of
noise. J. ACM 46, 684–719 (1999)

Cesa-Bianchi, N., Gentile, C.: Tracking the best hyperplane with
a simple budget perceptron. In: Proceedings of the Nineteenth
Annual Conference on Computational Learning Theory, (2006)

CGAL: Computational Geometry Algorithms Library, http://www.
cgal.org/. Accessed February 2008

Chaitin, G.J.: Register allocation & spilling via graph coloring. In:
Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction (1982) pp. 98–105.

http://www.carms.ca/
http://www.carms.ca/
http://www.cgal.org/
http://www.cgal.org/

Bibliography 1075

Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E.,
Markstein, P.W.: Register allocation via coloring. Comp. Lang. 6,
47–57 (1981)

Chakrabarti, A., Khot, S.: Improved lower bounds on the random-
ized complexity of graph properties. Proc. ICALP (2001)

Chakrabarti, A., Regev, O.: An optimal randomised cell probe
lower bound for approximate nearest neighbour searching. In:
Proc. 45th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 2004, pp. 473–482

Chan, C.-Y., Felber, P., Garofalakis, M., Rastogi, R.: Efficient filter-
ing of XML documents with XPath expressions. In: Proceedings
of the 18th International Conference on Data Engineering, San
Jose, California, pp. 235–244. IEEE Computer Society, New Jer-
sey (2002)

Chan, C.-Y., Garofalakis, M., Rastogi, R.: RE-Tree: An efficient index
structure for regular expressions. In: Proceedings of 28th In-
ternational Conference on Very Large Data Bases, Hong Kong,
China, pp. 251–262. Morgan Kaufmann, Missouri (2002)

Chan, C.-Y., Garofalakis, M., Rastogi, R.: RE-Tree: An efficient index
structure for regular expressions. VLDB J. 12(2), 102–119 (2003)

Chan, H.-L., Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, S.-S.: A linear
size index for approximate pattern matching. In: Proceedings
of Symposium on Combinatorial Pattern Matching, 2006, pp.
49–59

Chan, H.-L., Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, S.-S.: Com-
pressed indexes for approximate stringmatching. In: Proceed-
ings of European Symposium on Algorithms, 2006, pp. 208–
219

Chan, T.: More algorithms for all-pairs shortest paths in weighted
graphs. In: Proc. 39th ACM Symposium on Theory of Comput-
ing (STOC), 2007, pp. 590–598

Chan, T., Cong, J., Sze, K.: Multilevel generalized force-directed
method for circuitplacement. Proc. Intl. Symp. Physical Design.
ACM Press, San Francisco, 3–5 Apr 2005. pp. 185–192 (2005)

Chan, T.M.: Backward analysis of the Karger–Klein–Tarjan algorithm
for minimum spanning trees. Inf. Process. Lett. 67, 303–304
(1998)

Chan, T.M.: Euclidean bounded-degree spanning tree ratios. Dis-
cret. Comput. Geom. 32(2), 177–194 (2004)

Chan, W.-T., Wong, P.W.H., Yung, F.C.C.: On dynamic bin packing:
an improved lower bound and resource augmentation anal-
ysis. In: Proc. of the 12th Annual International Conference on
Computing andCombinatorics (COCOON2006), 2006, pp. 309–
319

Chandhuri, S.: More Choices Allow More Faults: Set Consen-
sus Problems in Totally Asynchronous Systems. Inf. Comput.
105(1), 132–158, July 1993

Chandra, T.D., Hadzilacos, V., Toueg, S.: The Weakest Failure Detec-
tor for Solving Consensus. J. ACM 43(4), 685–722 (1996)

Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable dis-
tributed systems. J. ACM 43(2), 225–267 (1996)

Chang, D.E., Vandersypen, L.M.K., Steffen, M.: NMR implementation
of a building block for scalable quantum computation. Chem.
Phys. Lett. 338, 337–344 (2001)

Chang, E.C., Choi, S.W., Kwon, D., Park, H., Yap, C.: Shortest Paths
for Disc Obstacles is Computable. In: Gao, X.S., Michelucci, D.
(eds.) Special Issue on Geometric Constraints. Int. J. Comput.
Geom. Appl. 16(5–6), 567–590 (2006), Also appeared in Proc.
21st ACM Symp. Comp. Geom., pp. 116–125 (2005)

Chang, J.-M., Maxemchuk, N.F.: Reliable broadcast protocols. ACM
Trans. Comput. Syst. 2, 251–273 (1984)

Chang, J.T.: Full reconstruction of Markov models on evolutionary
trees: identifiability and consistency. Math. Biosci. 137, 51–73
(1996)

Chang, P., Mendonca, D., Yao, X., Raghavachari,M.: An evaluation of
ranking methods for multiple incomplete round-robin tourna-
ments. In: Proceedings of the 35th Annual Meeting of Decision
Sciences Institute, Boston, 20–23 November 2004

Chang, S.K.: The design of network configurations with linear
or piecewise linear cost functions. In: Symp. on Computer-
Communications, Networks, and Teletraffic, pp. 363–369 IEEE
Computer Society Press, California (1972)

Chang, S.K.: The generation of minimal trees with a Steiner topol-
ogy. J. ACM 19, 699–711 (1972)

Chang, W., Marr, T.: Approximate string matching and local simi-
larity. In: Proc. 5th Annual Symposium on Combinatorial Pat-
tern Matching (CPM’94). LNCS, vol. 807, pp. 259–273. Springer,
Berlin, Germany (1994)

Chang, Y.-C., Chang, Y.-W.,Wu,G.-M.,Wu, S.-W.: B*-trees: A new rep-
resentation for non-slicing floorplans. In: 37th DAC, June 2000,
pp. 458–463

Chao, K.M., Miller, W.: Linear-space algorithms that build local align-
ments from fragments. Algorithmica 13, 106–134 (1995)

Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: de-
terministic approximation algorithms for group steiner trees
and k-median. In: STOC ’98: Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pp. 114–123. ACM
Press, New York (1998)

Charikar, M., Guha, S.: Improved combinatorial algorithms for facil-
ity location problems. SIAM J. Comput. 34(4), 803–824 (2005)

Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor
approximation algorithm for the k-median problem (extended
abstract). In: STOC ’99: Proceedings of the thirty-first annual
ACM symposium on Theory of computing, pp. 1–10. Atlanta,
May 1-4 1999

Charikar,M., Guruswami, V., Wirth, A.: Clusteringwithqualitative in-
formation. In: Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), Boston 2003, pp.
524–533

Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Facility loca-
tion with outliers. In: Proceedings of the 12th Annual ACM-
SIAM SymposiumonDiscrete Algorithms (SODA), pp. 642–651.
SIAM, Philadelphia (2001)

Charikar, M., Lehman, E., Liu, D., Panigraphy, R., Prabhakaran, M.,
Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans.
Inf. Theor. 51, 2554–2576 (2005)

Charny, A.: An algorithm for rate-allocation in a packet-switching
network with feedback. Technical Report MIT/LCS/TR-601,
Massachusetts Institute of Technology, April 1994

Charras, C., Lecroq, T.: Handbook of exact string matching algo-
rithms. King’s College London Publications, London (2004)

Charron-Bost, B., Schiper A.: The “Heard-Of” model: Computing
in distributed systems with benign failures. Technical Report,
EPFL (2007)

Charron-Bost, B., Schiper, A.: Uniform Consensus is Harder than
Consensus. J. Algorithms 51(1), 15–37 (2004)

Chatterjee, M., Das, S., Turgut, D.: WCA: Aweighted clustering algo-
rithm for mobile ad hoc networks. J. Clust. Comput. 5, 193–204
(2002)

Chatzigiannakis, I., Dimitriou, T., Mavronicolas, M., Nikoletseas, S.,
Spirakis, P.: A Comparative Study of Protocols for Efficient Data
Propagation in Smart Dust Networks. In: Proc. 9th European

1076 Bibliography

Symposium on Parallel Processing (EuroPar), Distinguished Pa-
per. Lecture Notes in Computer Science, vol. 2790, pp. 1003–
1016. Springer (2003) Also in the Parallel Processing Letters
(PPL) Journal, Volume 13, Number 4, pp. 615–627 (2003)

Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.: A Prob-
abilistic Algorithm for Efficient and Robust Data Propagation
in Smart Dust Networks. In: Proc. 5th European Wireless Con-
ference on Mobile and Wireless Systems (EW 2004), pp. 344–
350 (2004). Also in: Ad-Hoc Netw J 4(5), 621–635 (2006)

Chatzigiannakis, I., Dimitriou, T., Nikoletseas, S., Spirakis, P.: A prob-
abilistic forwarding protocol for efficient data propagation in
sensor networks. In: European Wireless Conference on Mobil-
ity and Wireless Systems beyond 3G (EW 2004), pp. 344–350.
Barcelona, Spain, 27 February 2004

Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: An Adaptive Power
Conservation Scheme for Heterogeneous Wireless Sensors. In:
Proc. 17th Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA 2005), ACM Press, pp. 96–105
(2005). Also in: Theory Comput Syst (TOCS) J 42(1), 42–72
(2008)

Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Sink Mobility Proto-
cols for Data Collection in Wireless Sensor Networks . In: Proc.
of the 4th ACM/IEEE International Workshop on Mobility Man-
agement andWireless Access Protocols (MobiWac), ACMPress,
pp. 52–59 (2006)

Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: Sink mobility proto-
cols for data collection inwireless sensor networks. In: Zomaya,
A.Y., Bononi, L. (eds.) 4th International Mobility and Wireless
Access Workshop (MOBIWAC 2006), Terromolinos, pp 52–59

Chatzigiannakis, I., Mylonas, G., Nikoletseas, S.: Modeling and eval-
uation of the effect of obstacles on the performance of wire-
less sensor networks. In: 39th ACM/IEEE Simulation Sympo-
sium (ANSS), Los Alamitos, CA, USA, IEEE Computer Society,
pp. 50–60 (2006)

Chatzigiannakis, I., Nikoletseas, S.: Design and analysis of an ef-
ficient communication strategy for hierarchical and highly
changing ad-hoc mobile networks. J. Mobile Netw. Appl. 9(4),
319–332 (2004). Special Issue on Parallel Processing Issues in
Mobile Computing

Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Distributed commu-
nication algorithms for ad hoc mobile networks. J. Parallel Dis-
trib. Comput. (JPDC) 63(1), 58–74 (2003). Special Issue onWire-
less andMobile Ad-hoc Networking and Computing, edited by
Boukerche A

Chatzigiannakis, I., Nikoletseas S., Spirakis, P.: Smart dust protocols
for local detection andpropagation. J. Mob. Netw. (MONET)10,
621–635 (2005)

Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A push-relabel algo-
rithm for approximating degree bounded MSTs. In: Proceed-
ings of the 33rd International Colloquium on Automata, Lan-
guages and Programming (ICALP 2006), Part I. LNCS, vol. 4051,
pp. 191–201. Springer, Berlin (2006)

Chaudhuri, S.: Agreement is harder than consensus: Set consen-
sus problems in totally asynchronous systems. In: Proceedings
Of The Ninth Annual ACM Symposium On Principles of Dis-
tributed Computing, August 1990. pp. 311–234

Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for
k-set agreement. J. ACM 47(5), 912–943 (2000)

Chaudhuri, S., Zaroliagis, C.: Shortest Paths in Digraphs of Small
Treewidth. Part I: Sequential Algorithms. Algorithmca 27(3),
pp. 212–226 (2000)

Chaudhuri, S., Zaroliagis, C.: Shortest Paths in Digraphs of Small
Treewidth. Part II: Optimal Parallel Algorithms. Theor. Comput.
Sci. 203(2), pp. 205–223 (1998)

Chaung, I.L., Gottesman, D.: Quantum teleportation is a universal
computational primitive. Nature 402, 390–393 (1999)

Chawla, S., Gupta, A., Räcke, H.: Embeddings of Negative-type Met-
rics and An Improved Approximation to Generalized Spars-
est Cut. In: Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), Vancouver, January 2005, pp. 102–
111

Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.:
On the Hardness of Approximating Sparsest Cut and Multicut.
In: Proceedings of the 20th IEEE Conference on Computational
Complexity (CCC), San Jose, June 2005, pp. 144–153

Chazelle, B.: Aminimum spanning tree algorithmwith inverse-Ack-
ermann type complexity. J. ACM 47(6), 1028–1047 (2000)

Che, Y.-K., Gale, I.: Standard auctions with financially constrained
bidders. Rev. Econ. Stud. 65(1), 1–21 (1998)

Cheetham, J., Dehne, F., Rau-Chaplin, A., Stege, U., Taillon, P.: Solv-
ing large FPT problems on coarse grained parallel machines.
J. Comput. Syst. Sci. 67, 691–706 (2003)

Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor schedul-
ing tominimize flow timewith epsilon resource augmentation.
In: Symposium on Theory of Computing, STOC, pp. 363–372
(2004)

Chekuri, C., Hagiahayi, M.T., Kortsarz, G., Salavatipour, M.: Approx-
imation Algorithms for Non-Uniform Buy-at-Bulk Network De-
sign. In: Proceedings of the 47th Annual Symp. on Foundations
of Computer Science, Berkeley, Oct. 2006, pp. 677–686

Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack prob-
lem. In 11th ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp. 213–222 (2000)

Chekuri, C., Khanna, S.: Approximation algorithms for minimizing
weighted completion time. In: J. Y-T. Leung (eds.) Handbook
of Scheduling: Algorithms, Models, and Performance Analysis.
CRC Press, Boca Raton (2004)

Chekuri, C., Khanna, S., Shepherd, F.B.: A note on multiflows and
treewidth. Algorithmica, published online (2007)

Chekuri, C., Khanna, S., Shepherd, F.B.: An O(
p
n) approximation

and integrality gap for disjoint paths and UFP. Theor. Comput.
2, 137–146 (2006)

Chekuri, C., Khanna, S., Shepherd, F.B.: Edge Disjoint Paths in Planar
Graphs. Proc. of IEEE FOCS, 2004, pp. 71–80

Chekuri, C., Khanna, S., Shepherd, F.B.: Edge-Disjoint Paths in Planar
Graphs with Constant Congestion. Proc. ACM STOC, pp. 757–
766 (2006)

Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-
linked terminals, and routing problems. Proc. ACM STOC,
pp. 183–192 (2005)

Chekuri, C., Khanna, S., Shepherd, F.B.: The All-or-Nothing Mul-
ticommodity Flow Problem. Proc. ACM STOC, pp. 156–165
(2004)

Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation
techniques for average completion time scheduling. SIAM
J. Comput. 31(1), 146–166 (2001)

Chen, B., van Vliet, A., Woeginger, G.J.: New lower and upper
bounds for on-line scheduling. Oper. Res. Lett. 16, 221–230
(1994)

Chen, C.-P., Chen, Y.-P., Wong, D.F.: Optimal wire-sizing formula
under the Elmore delay model. In: Proc. ACM/IEEE Design Au-
tomation Conf., pp. 487–490 ACM, New York (1996)

Bibliography 1077

Chen, C.-P., Wong, D.F.: A fast algorithm for optimal wire-sizing un-
der Elmore delay model. In: Proc. IEEE ISCAS, vol. 4, pp. 412–
415 IEEE Press, Piscataway (1996)

Chen, C.-P., Wong, D.F.: Optimal wire-sizing function with fringing
capacitance consideration. In: Proc. ACM/IEEEDesign Automa-
tion Conf., pp. 604–607 ACM, New York (1997)

Chen, C.P., Chu, C.N, Wong, D.F.: Fast and Exact Simultaneous Gate
and Wire Sizing by Lagrangian Relax-ation. In: Proceedings of
the 1998 IEEE/ACM International Conference on Computer-
Aided Design, pp. 617–624. November 1998

Chen, D., Chiang, Y.J., Memon, N., Wu, X.: Optimal alphabet parti-
tioning for semi-adaptive coding of sources of unknown sparse
distributions. In: Storer, J.A., Cohn, M. (eds.) Proc. 2003 IEEE
Data Compression Conference, pp. 372–381, IEEE Computer
Society Press, Los Alamitos, California, March 2003

Chen, D., Cong, J., Pan, P.: FPGA design automation: a survey. Foun-
dations and Trends in Electronic Design Automation, vol 1, no
3. Now Publishers, Hanover, USA (2006)

Chen, D.Z., Daescu, O., Klenk, K.S.: On geometric path query prob-
lems. Int. J. Comput. Geom. Appl. 11, 617–645 (2001)

Chen, D.Z., Hu, X., Huang, Y., Li, Y., Xu, J.: Algorithms for con-
gruent sphere packing and applications. Proc. 17th An-
nual ACM Symp. on Computational Geometry, pp. 212–221
(2001)

Chen, H., Frieze, A.M.: Coloring bipartite hypergraphs. In: Cunning-
ham, H.C., McCormick, S.T., Queyranne, M. (eds.) Integer Pro-
gramming and Combinatorial Optimization, 5th International
IPCO Conference, Vancouver, British Columbia, Canada, June
3–5 1996. Lecture Notes in Computer Science, vol. 1084, pp.
345–358. Springer

Chen, H.Y., Kang, S.M.: icoach: A circuit optimiza-tion aid for
cmos high-performance circuits. Intergr. VLSI. J. 10(2), 185–212
(1991)

Chen, J.-H., Le, S.-Y., Maize, J.: Prediction of common secondary
structures of RNAs: a genetic algorithm approach. Nucleic.
Acids. Res. 28, 991–999 (2000)

Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernel-
ization: lower bounds and upper bounds on kernel size. SIAM
J. Comput. 37(4), 1077–1106 (2007)

Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and
further improvements. J. Algorithms 41, 280–301 (2001)

Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds
for vertex cover. In: Lecture Notes in Computer Science (MFCS
2006), vol. 4162, pp. 238–249. Springer, Berlin (2006)

Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A Fixed-Parameter
Algorithm for the Directed Feedback Vertex Set Problem. In:
40th ACM Symposium on Theory of Computing STOC 2008,
May 17–20, Victoria (BC), Canada (2008)

Chen, J., Lu, S., Sze, S., Zhang, F.: Improved algorithms for
path, matching, and packing problems. Proceedings of the
18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 298–307 (2007)

Chen, J.J., Kuo, T.W., Lu, H.I.: Power-Saving Scheduling for Weakly
Dynamic Voltage Scaling Devices Workshop on Algorithms
and Data Structures (WADS). LNCS, vol. 3608, pp. 338–349.
Springer, Berlin, Germany (2005)

Chen, K.-Y., Chao, K.-M.: On the range maximum-sum segment
query problem. Proceedings of the 15th International Sympo-
sium on Algorithms And Computation. LNCS 3341, 294–305
(2004)

Chen, K.-Y., Chao, K.-M.: Optimal algorithms for locating the longest
and shortest segments satisfying a sum or an average con-
straint. Inf. Process. Lett. 96, 197–201 (2005)

Chen, L., Deng, X., Fang, Q., Tian, F.: Majority equilibrium for pub-
lic facility allocation. Lect. Notes Comput. Sci. 2697, 435–444
(2002)

Chen,M.T., Seiferas, J.: Efficient and elegant subword tree construc-
tion. In: Apostolico, A., Galil, Z. (eds.) Combinatorial Algorithms
on Words. Springer, New York (1985)

Chen, T., Kao, M.-Y., Tepel, M., Rush J., Church, G.: A dynamic pro-
gramming approach to de novo peptide sequencing via tan-
dem mass spectrometry. J. Comput. Biol. 8(3), 325–337 (2001)

Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of fail-
ure detectors. IEEE Trans. Comput. 51(1), 13–32 (2002)

Chen, X., Deng, X.: 3-Nash is PPAD-complete. ECCC, TR05-134
(2005)

Chen, X., Deng, X.: Settling the complexity of 2-player Nash-
equilibrium. In: Proceedings of the 47th Annual IEEE Sympo-
siumon Foundations of Computer Science (FOCS’06). Berkeley,
21–24 October 2005

Chen, X., Deng, X., Liu, B.J.: On incentive compatible competitive se-
lection protocol. In: COCOON’06: Proceedings of the 12th An-
nual International Computing and Combinatorics Conference,
pp. 13–22, Taipei, 15–18 August 2006

Chen, X., Deng, X., Liu, B.J.: On incentive compatible competitive
selection protocol. In: Computing and Combinatorics, 12th An-
nual International Conference, COCOON 2006, Taipei, Taiwan,
15 August 2006. Lecture Notes in Computer Science, vol. 4112,
pp. 13–22. Springer, Berlin (2006)

Chen, X., Deng, X., Teng, S.H.: Computing Nash equilibria: approx-
imation and smoothed complexity. In: FOCS’06: Proc. of the
47th Annual IEEE Symposiumon Foundations of Computer Sci-
ence, 2006, pp. 603–612

Chen, Y.H., Lu, H.I., Tang, C.Y.: Disjoint segments with maximum
density. In: Proceedings of the 5th Annual International Con-
ference on Computational Science, pp. 845–850 (2005)

Cheng, C.-H., Chen, K.-Y., Tien, W.-C., Chao, K.-M.: Improved algo-
rithms for the k maximum-sum problems. Proceedings of the
16th International Symposium on Algorithms And Computa-
tion. Theoret. Comput. Sci. 362: 162–170 (2006)

Cheng, C.S., Shann, J.J.J., Chung, C.P.: Unique-order interpolative
coding for fast querying and space-efficient indexing in infor-
mation retrieval systems. Inf. Process. Manag. 42(2), 407–428
(2006)

Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: A polynomial-time ap-
proximation scheme for minimum connected dominating set
in ad hoc wireless networks. Networks 42, 202–208 (2003)

Cheriton, D.and Tarjan, R.E.: Finding Minimum Spanning Trees.
SIAM J. Comput. 5(4), 724–742 (1976)

Cheriyan, J., Thurimella, R.: Approximating minimum-size k-con-
nected spanning subgraphs via matching. SIAM J. Comput.
30(2), 528–560 (2000)

Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for
theminimum-cost k-vertex connected subgraph. SIAM J. Com-
put. 32(4), 1050–1055 (2003)

Cheriyan, J., Vetta, A.: Approximation algorithms for network de-
sign with metric costs. Proc. 37th Annual ACM Symposium on
Theory of Computing, Baltimore, 22–24 May 2005, pp. 167–
175. (2005)

Cherkassky, B.V., Goldberg, A.V.: Negative-Cycle Detection Algo-
rithms. Math. Program. 85, pp. 277–311 (1999)

1078 Bibliography

Chernoff, H.: A measure of the asymptotic efficiency for tests of
a hypothesis based on the sum of observations. Ann. Math.
Stat. 23, 493–509 (1952)

Cheung, C., Yu, J., Lu, H.: Constructing suffix tree for gigabyte se-
quences with megabyte memory. IEEE Trans. Knowl. Data Eng.
17, 90–105 (2005)

Cheung, K., Cunningham, W.H., Tang, L.: Optimal 3-Terminal Cuts
and Linear Programming. Math. Program. 105, 389–421 (2006),
Preliminary version in IPCO 1999

Cheung, K., Mosca, M.: Decomposing Finite Abelian Groups. Quan-
tum Inf. Comp. 1(2), 26–32 (2001)

Chew, L.P.: There are planar graphs almost as good as the complete
graph. J. Comput. Syst. Sci. 39, 205–219 (1989)

Chew, L.P.: There is a planar graph almost as good as the complete
graph. In: Proceedings of the 2nd ACMSymposium on Compu-
tational Geometry, pp. 169–177 (1986)

Chew, L.P., Kedem, K.: Improvements on geometric pattern match-
ing problems. In: Proc. Scandinavian Workshop Algorithm
Theory (SWAT). LNCS, vol. 621, pp. 318–325. Springer, Berlin
(1992)

Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with appli-
cations. SIAM J. Comput. 34(4), 924–945 (2005)

Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B.,
Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R.,
Wineland, D.J.: Realization of quantum error correction. Nature
432, 602–605 (2004)

Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.:
Exponential algorithmic speedup by a quantum walk. In: Proc.
STOC (2003)

Childs, A.M., Eisenberg, J.M.: Quantum algorithms for subset find-
ing. Quantum Inf. Comput. 5, 593 (2005)

Childs, A.M., Goldstone, J.: Spatial search and the Dirac equation.
Phys. Rev. A. 70, 042312 (2004)

Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys.
Rev. A 70, 022314 (2004)

Childs, A.M., Landahl A.J., Parrilo, P.A.: Improved quantum algo-
rithms for the ordered search problem via semidefinite pro-
gramming. Phys. Rev. A 75, 032335 (2007)

Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Every NAND for-
mula of size N can be evaluated in time N1/2+o(1) on a quantum
computer, quant-ph/0703015 (2007)

Chinn, P.Z., Chvátalová, J., Dewdney, A.K., Gibbs, N.E.: The band-
width problem for graphs and matrices—a survey. J. Graph
Theory 6(3), 223–254 (1982)

Chlebik M., Chlebikova J.: Approximation Hardness of the Steiner
Tree Problem on Graphs. In: 8th ScandinavianWorkshop on Al-
gorithm Theory. Number 2368 in LNCS, pp. 170–179, (2002)

Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deter-
ministic broadcasting in ad hoc radio networks. Distrib. Com-
put. 15, 27–38 (2002)

Chlebus, B.S., Kowalski, D.R.: Almost Optimal Explicit Selectors. In:
Proc. 15th International Symposium on Fundamentals of Com-
putation Theory, pp. 270–280, Lübeck, Germany (2005)

Chlebus, B.S., Kowalski, D.R.: Time and Communication Efficient
Consensus for Crash Failures. In: Proc. 20th International Sym-
posium on Distributed Computing (DISC), pp. 314–328, Swe-
den, September 2006

Chlebus, M., Gąsieniec, L., Östlin, A., Robson, J.M.: Deterministic
broadcasting in radio networks. In: Proc. 27th International
Colloquiumon Automata, Languages and Programming.LNCS,
vol. 1853, pp. 717–728, Geneva, Switzerland (2000)

Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifi-
cations: A comprehensive study. ACM Comput. Surv. 33, 427–
469 (2001)

Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: ScaLAPACK: A scal-
able linear algebra library for distributed memory concurrent
computers. In: The 4th Symp. the Frontiers of Massively Paral-
lel Computations, pp. 120–127, McLean, VA (1992)

Choi, V., Goyal, N.: An efficient approximation algorithm for point
pattern matching under noise. In: Proc. 7th Latin American
Symposium on Theoretical Informatics (LATIN 2006). LNCS,
vol. 3882, pp. 298–310. Springer, Berlin (2006)

Chong, K., Sahni, S.: Optimal Realizations of Floorplans. In: IEEE
Trans. Comput. Aided Des. 12(6), 793–901 (1993)

Chong, K.W., Han, Y., Lam, T.W.: Concurrent Threads and Opti-
cal Parallel Minimum Spanning Trees Algorithm. J. ACM 48(2),
297–323 (2001)

Chopra, S., Rao, M.R.: On the Multiway Cut Polyhedron. Networks
21, 51–89 (1991)

Chor, B., Coan, B.: A simple and efficient randomized Byzantine
agreement algorithm. IEEE Trans. Softw. Eng. SE-11(6), 531–
539 (1985)

Chor, B., Dwork, C.: Randomization in Byzantine Agreement. Adv.
Comput. Res. 5, 443–497 (1989)

Chor, B., Hendy, M., Penny, D.: Analytic solutions for three-taxon
MLMC trees with variable rates across sites. In: Proceedings of
the 1stWorkshop on Algorithms in Bioinformatics (WABI 2001).
Lecture Notes in Computer Science, vol. 2149, pp. 204–213.
Springer (2001)

Chor, B., Moscovici, L.: Solvability in asynchronous environments.
In: Proc. 30th Symposium on Foundations of Computer Sci-
ence, pp. 422–427 (1989)

Chor, B., Sudan, M.: A geometric approach to betweeness. SIAM J.
Discret. Math. 11, 511–523 (1998)

Chou, P., Wu, Y., Jain, K.: Network coding for the internet. In: IEEE
Communication Theory Workshop, 2004

Chowdhury, R.A., Ramachandran, V.: Cache-oblivious dynamic
programming. In: Proc. 17th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 591–600. ACM-SIAM, New York
(2006)

Chowdhury, R.A., Ramachandran, V.: Cache-oblivious shortest
paths in graphs using buffer heap. In: Proc. 16th Annual ACM
Symposium on Parallelism in Algorithms and Architectures.
ACM, New York (2004)

Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the
maximumagreement of phylogenetic networks. In: Proc. Com-
puting: the 10th Australasian Theory Symposium (CATS 2004),
2004, pp. 33–45

Christie, D.A.: Genome Rearrangement Problems. Ph. D. thesis, De-
partment of Computer Science. University of Glasgow, U.K.
(1999)

Christodoulou, G., Koutsoupias, E.: On the price of anarchy and sta-
bility of correlated equilibria of linear congestion games. In:
Algorithms – ESA 2005, 13th Annual European Symposium,
pp. 59–70. Springer, Palma de Mallorca (2005)

Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite
Congestion Games. In: Proc. of the 37th ACM Symp. on Th. of
Comp. (STOC ’05), pp. 67–73. ACM, Baltimore (2005)

Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination
mechanisms. In: Proceedings of the 31st International Collo-
quium on Automata, Languages and Programming (ICALP),
pp. 345–357 (2004)

Bibliography 1079

Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for
schedulingmechanisms. In: Proc. 18th Symposium on Discrete
Algorithms (SODA), 2007

Christofides, N.: Worst-case analysis of a new heuristic for the trav-
eling salesman problem. In: Technical report, Graduate School
of Industrial Administration. Carnegie-Mellon University, Pitts-
burgh (1976)

Chrobak, M.: Sigact news online algorithms column 1. ACM SIGACT
News 34, 68–77 (2003)

Chrobak, M., Ga̧sieniec, L., Kowalski, D.: The Wake-Up Problem in
Multi-Hop Radio Networks. In: Proc. of the 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 992–1000
(2004)

Chrobak, M., Gąsieniec, L., Rytter, W.: A Randomized Algorithm for
Gossiping in Radio Networks. In: Proc. 8th Annual International
Computing Combinatorics Conference. Guilin, China, pp. 483–
492 (2001) Full version in Networks 43(2), 119–124 (2004)

Chrobak, M., Gąsieniec, L., Rytter, W.: Fast Broadcasting and Gos-
siping in Radio Networks,. In: Proc. 41st Annual Symposium
on Foundations of Computer Science, pp. 575–581, Redondo
Beach, USA (2000) Full version in J. Algorithms 43(2) 177–189
(2002)

Chrobak, M., Karloff, H., Payne, T.H., Vishwanathan, S.: New results
on server problems. SIAM J. Discret. Math. 4(2), 172–181 (1991)

Chrobak,M., Larmore, L.L.: An optimal online algorithm for k servers
on trees. SIAM J. Comput. 20, 144–148 (1991)

Chrobak, M., Larmore, L.L.: Metrical service systems: Deterministic
strategies. Tech. Rep. UCR-CS-93-1, Department of Computer
Science, Univ. of California at Riverside (1992)

Chrobak, M., Larmore, L.L.: Metrical task systems, the server prob-
lem and the work function algorithm. In: Fiat, A., Woegin-
ger, G.J. (eds.) Online Algorithms. The State of the Art. LNCS,
vol. 1442, ch. 4, pp. 74–96. Springer, London (1998)

Chrobak, M., Sgall, J.: The weighted 2-server problem. Theor. Com-
put. Sci. 324, 289–312 (2004)

Chrobak, M., Ślusarek, M.: On some packing problems relating to
dynamical storage allocation. RAIRO J. Inf. Theor. Appl. 22,
487–499 (1988)

Chu, C.: FLUTE: Fast lookup table basedwirelength estimation tech-
nique. In: Proc. Intl. Conf. on Computer-AidedDesign, San Jose,
Nov. 2004, pp. 696–701

Chu, C., Wong, Y.C.: Fast and accurate rectilinear steiner minimal
tree algorithm for vlsi design. In: International Symposium on
Physical Design, pp. 28–35 (2005)

Chu, C.C.N., Wong, D.F.: A quadratic programming approach to si-
multaneous buffer insertion/sizing and wire sizing. IEEE Trans.
Comput. Des. 18(6), 787–798 (1999)

Chu, C.C.N.,Wong, D.F.: Greedy wire-sizing is linear time. IEEE Trans.
Comput. Des. 18(4), 398–405 (1999)

Chu, Y., Rao, S.G., Zhang, H.: A case for end systemmulticast. In: Pro-
ceedings of ACMSIGMETRICS, Santa Clara, June 2000, pp. 1–12

Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact en-
codings of planar graphs via canonical orderings and multiple
parentheses. Comput. Res. Repos. cs.DS/0102005 (2001)

Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for
the uncapacitated facility location problem. SIAM J Comput.
33(1), 1–25 (2003)

Chudak, F.A., Wiliamson, D.P.: Improved approximation algorithms
for capacitated facility location problems. In: Proceedings of
the 7th Conference on Integer Programing and Combinato-

rial Optimization (IPCO). Lecture Notes in Computer Science,
vol. 1610, pp. 99–113. Springer, Berlin (1999)

Chudak, F.A., Williamson, D.P.: Improved approximation algorithms
for capacitated facility location problems. Math. Program.
102(2), 207–222 (2005)

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzo-
niak, M., Bowman, M.: Planetlab: An overlay testbed for broad-
coverage services. ACM SIGCOMM Comput. Commun. Rev. 33,
3–12 (2003)

Chung, F.R.K., Hajela, D.J., Seymour, P.D.: Self-organizing sequential
search and Hilbert’s inequality. In: Proc. 17th Annual Sympo-
sium on the Theory of Computing pp 217–223 (1985)

Chung, F.R.K., Seymour, P.D.: Graphs with small bandwidth and
cutwidth. Discret. Math. 75(1–3), 113–119 (1989). Graph theory
and combinatorics, Cambridge (1988)

Chung, K.-M., Lu, H.-I.: An optimal algorithm for the maximum-
density segment problem. SIAM. J. Comput. 34, 373–387
(2004)

Chung, R.H., Gusfield, D.: Empirical exploration of perfect phy-
logeny haplotyping and haplotypes. In: Proceedings of Annual
International Conference on Computing and Combinatorics
(COCOON). Lecture Notes in Computer Science, vol. 2697,
pp. 5–9. Springer, Berlin (2003)

Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K.: Hardness of
routing with congestion in directed graphs. In: STOC ’07:
Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pp. 165–178. ACM Press, New York
(2007)

Chuzhoy, J., Khanna, S.: Polynomial flow-cut gaps and hardness of
directed cut problems. In: Proceedings of the 39th ACM Sym-
posium on Theory of Computing (STOC), San Diego, June 2007
pp. 179–188

Chuzhoy, J., Naor, J.: New Hardness Results for Congestion Min-
imization and Machine Scheduling. Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, pp. 28–34.
ACM, New York (2004)

Chvátal, V.: A Greedy Heuristic for the Set-Covering Problem. Math.
Oper. Res. 4(3), 233–235 (1979)

Chvátal, V.: Tough graphs and Hamiltonian circuits. Discret. Math.
5, 215–228 (1973)

Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In:
33rdAnnual Symposiumon Foundations of Computer Science,
pp. 620–627. IEEE Computer Society, Pittsburgh (1992)

Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans.
Inf. Theory 51, 1523–1545 (2005)

Cimikowski, R.: Branch-and-bound techniques for the maximum
planar subgraph problem. Int. J. Computer Math. 53, 135–147
(1994)

Ciriani, V., Ferragina, P., Luccio, F., Muthukrishnan, S.: A data struc-
ture for a sequence of string acesses in external memory. ACM
Trans. Algorithms 3 (2007)

Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret.
Math. 86, 165–177 (1990)

Clark, D., Munro, J.I.: Efficient suffix trees on secondary storage. In:
Proc. 7th ACM-SIAM SODA, pp. 383–391 (1996)

Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C
Recommendation, http://www.w3.org./TR/xpath, Accessed
Nov 1999

Clarke, E.H., Multipart pricing of public goods. Publ. Choice 2, 19–
33 (1971)

http://www.w3.org./TR/xpath

1080 Bibliography

Clarkson, K.L.: Fast Expected-Time and Approximation Algorithms
for Geometric Minimum Spanning Trees. In: Proc. STOC 1984,
pp. 342–348

Cleary, J.G., Witten, I.H.: Data compression using adaptive coding
and partial string matching. IEEE Transactions on Communica-
tions, COM–32, pp. 396–402 (1984)

Clementi, A., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On
the Complexity of Computing Minimum Energy Consumption
Broadcast Subgraphs. In: Proceedings of the 18th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS),
pp. 121–131 (2001)

Clementi, A., Huiban, G., Penna, P., Rossi, G., Verhoeven, Y.: Some
Recent Theoretical Advances and Open Questions on Energy
Consumption in Ad-Hoc Wireless Networks. In: Proceedings of
the 3rd Workshop on Approximation and Randomization Al-
gorithms in Communication Networks (ARACNE), pp. 23–38
(2002)

Cleve, R., Ekert, A., Macchiavello, C., Mosca,M.: Quantumalgorithms
revisited. Proc. Royal Soc. London A454, 339–354 (1998)

Cleve, R., Luby, M.: A note on self-testing/correcting methods for
trigonometric functions. In: International Computer Science In-
stitute Technical Report TR-90-032, July 1990

Clifford, R., Christodoukalis, M., Crawford, T., Meredith, D., Wig-
gins, G.: A Fast, Randomised, Maximum Subset Matching Al-
gorithm for Document-Level Music Retrieval. In: Proc. Interna-
tional Conference on Music Information Retrieval (ISMIR 2006),
University of Victoria, Canada (2006)

Clinton, K.: Transactions costs and covered interest arbitrage: the-
ory and evidence. J. Politcal Econ. 96(2), 358–370 (1988)

Coan, B.A., Welch, J.L.: Modular construction of a Byzantine agree-
ment protocol with optimal message bit complexity. Inf. Com-
put. 97(1), 61–85 (1992)

Cobbs, A.: Fast approximate matching using suffix trees. In: Pro-
ceedings of Symposium on Combinatorial Pattern Matching,
1995, pp. 41–54

Codenotti, B., McCune, B., Varadarajan, K.: Market equilibrium via
the excess demand function. In: Proceedings STOC’05, pp. 74–
83. ACM, Baltimore (2005)

Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y.: Leontief
economies encode nonzero sum two-player games.
SODA (2006)

Coelho, L.P., Oliveira, A.L.: Dotted suffix trees: a structure for ap-
proximate text indexing. In: SPIRE, 2006, pp. 329–336

Coffman, E., Garey, M., Jr., Johnson, D., Lapaugh, A.: Scheduling file
transfers. SIAM J. Comput. 14(3), 744–780 (1985)

Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algo-
rithms for bin packing: a survey. In: Hochbaum, D. (ed.) Ap-
proximation Algorithms for NP-hard Problems, pp. 46–93. PWS,
Boston (1996)

Coffman, E.G., Garey, M.R., Johnson, D.S.: Dynamic bin packing.
SIAM J. Comput. 12(2), 227–258 (1983)

Coffman, E.G., Graham, R.L.: Optimal scheduling for two processors
systems. Acta Informatica 1, 200–213 (1972)

Coffman, E.G., Kleinrock, L.: Feedback Queueing Models for Time-
Shared Systems. J. ACM (JACM) 15(4), 549–576 (1968)

Coffman Jr, E.G., Courcoubetis, C., Garey, M.R., Johnson, D.S., Mc-
Geoch, L.A., Shor, P.W., Weber, R.R., Yannakakis, M.: Fundamen-
tal discrepancies between average-case analyses under dis-
crete and continuous distributions. In: Proc. of the 23rd Annual
ACM Symposium on Theory of Computing, New York, 1991,
pp. 230–240. ACM Press, New York (1991)

Coffman Jr., E.G., Gilbert, E.N.: Paths through a maze of rectangles.
Networks 22, 349–367 (1992)

Coffman Jr., E.G., Johnson, D.S., Shor, P.W., Weber, R.R.: Bin packing
with discrete item sizes, part II: Tight bounds on first fit. Ran-
dom Struct. Algorithms 10, 69–101 (1997)

Coffman Jr., E.G., So, K., Hofri, M., Yao, A.C.: A stochastic model of
bin-packing. Inf. Cont. 44, 105–115 (1980)

Cohen, B.: Incentives build robustness in bittorrent. In: Proceedings
of P2P Economics Workshop, 2003

Cohen, E.: Fast algorithms for constructing t-spanners and paths
with stretch t. SIAM J. Comput. 28, 210–236 (1998)

Cohen, H.: A course in computational algebraic number theory.
Graduate Texts in Mathematics, vol. 138. Springer (1993)

Cohen, P.R.: Empirical Methods for Artificial Intelligence. MIT Press,
Cambridge (1995)

Coja-Oghlan, A., Goerdt, A., Lanka, A., Schädlich, F.: Techniques
from combinatorial approximation algorithms yield efficient
algorithms for random 2k-SAT. Theor. Comput. Sci. 329(1–3),
1–45 (2004)

Cole, R. Hariharan, R.: Faster suffix tree construction with missing
suffix links. In: Proceedings of the 30th Annual ACM Sympo-
sium on Theory of Computing, 2000, pp. 407–415

Cole, R.: On the dynamic finger conjecture for splay trees II: The
proof. SIAM J. Comput. 30(1), 44–85 (2000)

Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.:
An O(n log n) algorithm for the maximum agreement subtree
problem for binary trees. SIAM J. Comput. 30(5), 1385–1404
(2000)

Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and in-
dexing with errors and don’t cares. In: Proceedings of Sympo-
sium on Theory of Computing, 2004, pp. 91–100

Cole, R., Hariharan, R.: A Fast Algorithm for Computing Steiner Edge
Connectivity. In: Proc. of the 35th Annual ACM Symposium on
Theory of Computing, San Diego 2003, pp. 167–176

Cole, R., Hariharan, R.: An O(n log n) algorithm for the maximum
agreement subtree problem for binary trees. Proc. of the 7th
ACM-SIAM SODA, pp. 323–332 (1996)

Cole, R., Hariharan, R.: Approximate string matching: A simpler
faster algorithm. SIAM J. Comput. 31(6), 1761–1782 (2002)

Cole, R., Hariharan, R., Paterson, M., Zwick, U.: Tighter lower bounds
on the exact complexity of string matching. SIAM J. Comput.
24(1), 30–45 (1995)

Cole, R., Klein, P.N., Tarjan, R.E.: Finding minimum spanning forests
in logarithmic time and linear work using random sampling.
In: Proceedings of the 8th Annual ACM Symposium on Parallel
Architectures and Algorithms, 1996, pp. 243–250

Cole, R., Kopelowitz, T., Lewenstein, M.: Suffix trays and suffix trists:
Structures for faster text indexing. In: Proc. of International Col-
loquium on Automata, Languages and Programming (ICALP),
2006, pp. 358–369

Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic fin-
ger conjecture for splay trees I: Splay sorting log n-block se-
quences. SIAM J. Comput. 30(1), 1–43 (2000)

Cole, R., Vishkin, U.: Approximate and Exact Parallel Scheduling
with Applications to List, Tree, and Graph Problems. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Foundations
of Computer Science, 1986, pp. 478–491

Collins, M.: Discriminative training methods for hidden markov
models: Theory and experiments with perceptron algorithms.
In: Conference on Empirical Methods in Natural Language Pro-
cessing, (2002)

Bibliography 1081

Comer, D.E.: The ubiquitous B-tree. ACM Comput. Surv. 11, 121–
137 (1979)

Cominetti, R., Correa, J.R., Moses, N.E.S.: Network games with
atomic players. In: Automata, Languages and Programming,
33rd International Colloquium (ICALP), pp. 525–536. Springer,
Venice (2006)

Commentz-Walter, B.: A string matching algorithm fast on the av-
erage. In: Proceedings of ICALP’79. LNCS, vol. 71, pp. 118–132.
Springer, Berlin (1979)

Condon, A., Davy, B., Rastegari, B., Tarrant, F., Zhao, S.: Classifying
RNA pseudoknotted structures. Theor. Comput. Sci. 320, 35–
50 (2004)

Cong, J., Ding, Y.: An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs, Proc.
IEEE/ACM International Conference on Computer-Aided De-
sign, pp. 48–53. San Jose, USA (1992)

Cong, J., Ding, Y.: Combinational logic synthesis for LUT based field
programmable gate arrays. ACM Trans. Design Autom. Elec-
tron. Sys. 1(2): 145–204 (1996)

Cong, J., Ding, Y.: FlowMap: An Optimal Technology Mapping Al-
gorithm for Delay Optimization in Lookup-Table Based FPGA
Designs. IEEE Trans. on Comput. Aided Des. of Integr. Circuits
and Syst., 13(1), 1–12 (1994)

Cong, J., Hagen, L., Kahng, A.: Net Partitions Yield Better Module
Partitions. In: Proc. 29th ACM/IEEE Design Automation Conf.,
1992, pp. 47–52

Cong, J., He, L.: Optimal wiresizing for interconnects with multiple
sources. ACM Trans. Des. Autom. Electron. Syst. 1(4) 568–574
(1996)

Cong, J., Leung, K.-S.: Optimal wiresizing under the distributed El-
more delay model. IEEE Trans. Comput. Des. 14(3), 321–336
(1995)

Cong, J., Wu, C.: FPGA Synthesis with Retiming and Pipelining for
Clock PeriodMinimization of Sequential Circuits. ACM/IEEEDe-
sign Automation Conference (1997)

Conn, A.R., Coulman, P.K., Haring, R.A., Morrill, G.L., Viswesh-
wariah, C., Wu, C.W.: JiffyTune: Circuit Optimization Using
Time-Domain Sensitivities. IEEE Trans. Comput. Aided. Des. In-
tegr. Circuits. Syst.17(12), 1292–1309 (1998)

Conway, J.H.: An enumeration of knots and links, and some of their
algebraic properties. Computational Problems in Abstract Al-
gebra (Proc. Conf., Oxford, 1967), 329–358 (1970)

Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups.
Springer, New York (1988)

Cook, S.: The complexity of theorem-proving procedures. In: Pro-
ceedings of the 3rd Annual Symposium on Theory of Comput-
ing, pp. 151–158. Shaker Heights. May 3–5, 1971.

Cook, S.A., Dwork, C., Reischuk, R.: Upper and lower timebounds for
parallel random access machines without simultaneouswrites.
SIAM J. Comput. 15(1), 87–97 (1986)

Cook, W., Seymour, P.D.: Tour merging via branch-decomposition.
Inf. J. Comput. 15, 233–248 (2003)

Cook, W.J., Cunningham,W.H., Pulleyblank,W.R., Schrijver, A.: Com-
binatorial optimization. Wiley, New York (1998)

Coppersmith, D.: Manuscript, private communications (1989)
Coppersmith, D.: Rectangular matrix multiplication revisited.

J. Complex. 13, 42–49 (1997)
Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic

Progressions. In: Proceedings of the 19th Annual ACM Confer-
ence on Theory of Computing (STOC), 1987, pp. 1–6

Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic
progressions. J. Symb. Comput. 9(3), 251–280 (1990)

Cormack, G.: Data compression in a data base system. Commun.
ACM 28, 1336–1350 (1985)

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algo-
rithms. McGraw-Hill, New York (1990)

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algo-
rithms. MIT Press, Cambridge (1989)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms, 2nd edn. MIT Press, Cambridge (2001)

Cormen, T.H., Sundquist, T., Wisniewski, L.F.: Asymptotically tight
bounds for performing BMMC permutations on parallel disk
systems. SIAM J. Comput. 28, 105–136 (1999)

Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for com-
pressed sensing. In: Structural Information and Communi-
cation Complexity, 13th International Colloquium, SIROCCO
(2006), Chester, UK, July 2–5, 2006 pp. 280–294

Cormode, G., Muthukrishnan, S.: Substring compression problems.
In: Proc. 16th ACM-SIAM Symposium on Discrete Algorithms
(SODA ’05), pp. 321–330 (2005)

Cormode, G., Muthukrishnan, S.: The string edit distance matching
problem with moves. Proc. ACM-SIAM SODA 667–676 (2002)

Cormode, G., Paterson, M., Sahinalp, S.C., Vishkin, U.: Communi-
cation complexity of document exchange. Proc. ACM-SIAM
SODA 197–206 (2000)

Cornuéjols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank ac-
counts to optimize float: An analytic study of exact and approx-
imate algorithms. Manag. Sci. 8, 789–810 (1977)

Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated fa-
cility location problem. In: Discrete Location Theory, pp. 119–
171. Wiley, New York (1990)

Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20,
273–297 (1995)

Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum comput-
ing by NMR spectroscopy. Proc. Natl. Acad. Sci. 94, 1634–1639
(1997)

Cottle, R., Pang, J.S., Stone, R.E.: The linear complementarity prob-
lem. Academic Press, Boston (1992)

Coudert, O., Madre, J.C.: New ideas for solving covering problems.
In: Proc. Design Automation Conf., 1995, pp. 641–646

Courcoubetis, C., Weber, R.R.: Necessary and sufficient conditions
for stability of a bin packing system. J. Appl. Prob. 23, 989–999
(1986)

Cournier, A., Datta, A.K., Petit, F., Villain, V.: Snap-Stabilizing
PIF Algorithm in Arbitrary Networks. In: Proceedings of the
22nd International Conference Distributed Computing Sys-
tems, pp. 199–206, Vienna, July 2002

Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley In-
terscience, New York, USA (1990)

Cox, I.J., Rao, S. B., Zhong, Y.: ‘Ratio Regions’: A Technique for Im-
age Segmentation. In: Proceedings International Conference
on Pattern Recognition, IEEE, pp. 557–564, August (1996)

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: On-
line passive aggressive algorithms. J. Mach. Learn. Res. 7 (2006)

Crammer, K., Singer, Y.: A new family of online algorithms for cate-
gory ranking. In: Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (2002)

Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT
Press (2005)

1082 Bibliography

Cramton, P., Steinberg, R., Shoham, Y. (eds.): Combinatorial Auc-
tions. MIT Press, Cambridge (2005)

Crane, C.A.: Linear lists andpriority queues as balancedbinary trees.
Technical Report STAN-CS-72-259, Computer Science Dept.,
Stanford University (1972)

Crescenzi, P., Demetrescu, C., Finocchi. I., Petreschi, R.: Reversible
Execution and Visualization of Programs with LEONARDO.
J. Visual Lang. Comp. 11, 125–150 (2000). Leonardo is avail-
able at: http://www.dis.uniroma1.it/~demetres/Leonardo/.
Acessed 15 Jan 2008

Crescenzi, P., Grossi, R., Italiano, G.: Search data structures for
skewed strings. In: International Workshop on Experimental
and Efficient Algorithms (WEA). LectureNotes in Computer Sci-
ence, vol. 2, pp. 81–96. Springer, Berlin (2003)

Cristian, F.: Synchronous atomic broadcast for redundant broad-
cast channels. Real-Time Syst. 2, 195–212 (1990)

Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic Broadcast: From
simple message diffusion to Byzantine agreement. In: Proc.
15th Intl. Symp. on Fault-Tolerant Computing (FTCS-15), Ann
Arbor, June 1985 pp. 200–206. IEEE Computer Society Press

Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: From
simple message diffusion to Byzantine agreement. Inform.
Comput. 118, 158–179 (1995)

Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vec-
tor Machines and other kernel-based learning methods. Cam-
bridge University Press, Cambrigde, Book website: www.
support-vector.net (2000)

Crochemore, M. : Transducers and repetitions. Theor. Comput. Sci.
45(1), 63–86 (1986)

Crochemore, M.: An optimal algorithm for computing the repeti-
tions in a word. Inform. Process. Lett. 12(5), 244–250 (1981)

Crochemore, M.: Recherche linéaire d’un carré dans un mot.
Comptes Rendus Acad. Sci. Paris Sér. I Math. 296, 781–784
(1983)

Crochemore, M., Czumaj, A., Gąsieniec, L., Jarominek, S., Lecroq, T.,
Plandowski, W., Rytter, W.: Speeding up two string matching
algorithms. Algorithmica 12(4/5), 247–267 (1994)

Crochemore, M., Czumaj, A., Ga̧sieniec, L., Lecroq, T., Plandowski,
W., Rytter, W.: Fast practical multi-pattern matching. Inf. Pro-
cess. Lett. 71(3–4), 107–113 (1999)

Crochemore, M., Galil, Z., Gasieniec, L., Hariharan, R., Muthukrish-
nan, S., Park, K., Ramesh, H., Rytter,W.: Parallel two-dimensional
pattern matching. In: Proceeding of 34th Annual IEEE FOCS,
1993, pp. 248–258

Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cam-
bridge University Press, Cambridge (2007)

Crochemore,M., Hermelin, D., Landau, G., Rawitz, D., Vialette, S.: Ap-
proximating the 2-interval pattern problem, Theoretical Com-
puter Science (special issue for Alberto Apostolico) (2008)

Crochemore, M., Ilie, L.: Analysis of maximal repetitions in strings.
J. Comput. Sci. (2007)

Crochemore, M., Landau, G.M., Schieber, B., Ziv-Ukelson, M.: Re-Use
Dynamic Programming for Sequence Alignment: An Algorith-
mic Toolkit. In: Iliopoulos, C.S., Lecroq, T. (eds.) String Algorith-
mics, pp. 19–59. King’s College London Publications, London
(2005)

Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic se-
quence alignment algorithm for unrestricted scoringmatrices.
SIAM J. Comput. 32(6), 1654–1673 (2003)

Crochemore, M., Perrin, D.: Two-way string matching. J. ACM 38(3),
651–675 (1991)

Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific
Publishing Company, Singapore (2002)

Crochemore, M., Rytter, W.: Squares, cubes, and time-space effi-
cient string searching. Algorithmica 13(5), 405–425 (1995)

Crourant, R., Robbins, H.: What Is Mathematics? Oxford University
Press, New York (1941)

Crovella, M.E., Frangioso, R., Harchal-Balter, M.: Connection
scheduling in web servers. In: Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems (USITS-99),
1999 pp. 243–254

Csirik, J., Johnson, D.S.: Bounded space on-line bin packing: Best is
better than first. Algorithmica 31, 115–138 (2001)

Csirik, J., Johnson, D.S., Kenyon, C., Orlin, J.B., Shor, P.W.,Weber, R.R.:
On the sum-of-squares algorithm for bin packing. J. ACM53, 1–
65 (2006)

Csirik, J., Johnson, D.S., Kenyon, C., Shor, P.W., Weber, R.R.: A self
organizing bin packing heuristic. In: Proc. of the 1999 Work-
shop on Algorithm Engineering and Experimentation. LNCS,
vol. 1619, pp. 246–265. Springer, Berlin (1999)

Csirik, J., Woeginger, G.: On-line packing and covering problems.
In: Fiat, A., Woeginger, G. (eds.) Online Algorithms: The State of
the Art. LNCS, vol. 1442, pp. 147–177. Springer, Berlin (1998)

Csiszár, I., Körner, J.: Broadcast channels with confidential mes-
sages. IEEE Trans. Inf. Theory 24, 339–348 (1978)

Csürös, M.: Fast recovery of evolutionary trees with thousands of
nodes. J. Comput. Biol. 9(2), 277–297 (2002) Conference ver-
sion at RECOMB 2001

Csűrös, M.: Maximum-scoring segment sets. IEEE/ACMTrans. Com-
put. Biol. Bioinform. 1, 139–150 (2004)

Csürös, M., Kao, M.-Y.: Provably fast and accurate recovery of evolu-
tionary trees through Harmonic Greedy Triplets. SIAM J. Com-
put. 31(1), 306–322 (2001) Conference version at SODA (1999)

Csűrös, M., Miklós, I.: A probabilistic model for gene content evo-
lution with duplication, loss, and horizontal transfer. In: Lec-
ture Notes in Bioinformatics, Proceedings of RECOMB2006,
vol. 3909, pp. 206–220 (2006)

Culberson, J.C.: http://web.cs.ualberta.ca/~joe/Coloring/index.
html

Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing trees
from distance matrices. Inf. Process. Lett. 30, 215–220 (1989)

Culik II, K., Wood, D.: A note on some tree similarity measures. Inf.
Process. Lett. 15(1), 39–42 (1982)

Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E., San-
tos, E., Subramonian, R., von Eicken,T.: LogP: Towards a real-
istic model of parallel computation. In: 4th Symp. Principles
and Practice of Parallel Programming, pp. 1–12. ACM SIGPLAN
(1993)

Culpepper, J.S., Moffat, A.: Enhanced byte codes with restricted
prefix properties. In: Consens, M.P., Navarro, G. (eds.) Proc.
Symp. String Processing and Information Retrieval. LNCS Vol-
ume 3772, pp. 1–12, Buenos Aires, November 2005

Cypher, R., Meyer auf der Heide, F., Scheideler, C., Vöcking, B.: Uni-
versal algorithms for store-and-forward and wormhole rout-
ing. In: Proceedings of the 28th ACM Symposium on Theory
of Computing, pp. 356–365. Philadelphia, Pennsylvania, USA
(1996)

Czumaj, A.: Selfish routing on the Internet. In: Leung, J. (ed.) Hand-
book of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, Boca Raton, FL, USA (2004)

Czumaj, A., Ergün, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld,
R., Sohler, C.: Approximating the Weight of the EuclideanMini-

http://www.dis.uniroma1.it/~demetres/Leonardo/
http://www.support-vector.net
http://www.support-vector.net
http://web.cs.ualberta.ca/~joe/Coloring/index.html
http://web.cs.ualberta.ca/~joe/Coloring/index.html

Bibliography 1083

mum Spanning Tree in Sublinear Time. SIAM J. Comput. 35(1),
91–109 (2005)

Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server
farms. In: Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC), pp. 287–296 (2002)

Czumaj, A., Lingas, A.: Approximation schemes for minimum-cost
k-connectivity problems in geometric graphs. In: Gonzalez,
T.F. (eds.) Handbook of Approximation Algorithms and Meta-
heuristics. CRC Press, Boca Raton (2007)

Czumaj, A., Lingas, A.: Fast approximation schemes for Euclidean
multi-connectivity problems. In: Proceedings of the 27th Inter-
national Colloquium on Automata, Languages and Program-
ming. Lect. Notes Comput. Sci. 1853, 856–868 (2000)

Czumaj, A., Lingas, A.: On approximability of the minimum-cost
k-connected spanning subgraph problem. Proc. 10th Annual
ACM-SIAM Symposium on Discrete Algorithms, Baltimore, 17–
19 January 1999, pp. 281–290

Czumaj, A., Lingas, A., Zhao, H.: Polynomial-time approximation
schemes for the Euclidean survivable network design problem.
Proc. 29th Annual International Colloquiumon Automata, Lan-
guages and Programming, Malaga, 8–13 July 2002, pp. 973–
984

Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks
with unknown topology. J. Algorithms 60(2), 115–143 (2006)

Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM
Trans. Algorithms 3(1) (2007)

Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In:
Proc. of the 13th ACM-SIAM Symp. on Discr. Alg. (SODA ’02),
pp. 413–420. SIAM, San Francisco (2002)

Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret.
Comput. Geom. 32(2), 207–230 (2004)

Dacre, M., Glazebrook, K., Nino-Mora, J.: The achievable region ap-
proach to the optimal control of stochastic systems. J. R. Stat.
Soc. Series B 61(4), 747–791 (1999)

Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yan-
nakakis, M.: The Complexity of Multiterminal Cuts. SIAM J.
Comp. 23, 864–894 (1994). Preliminary version in STOC 1992,
An extended abstract was first announced in 1983

Dai, Z., Asada, K.: MOSIZ: A Two-Step Transistor Sizing Algorithm
based on Optimal Timing Assignment Method for Multi-Stage
Complex Gates. In: Proceedings of the 1989 Custom Integrated
Circuits Conference, pp. 17.3.1–17.3.4. May 1989

Daley, R.P., Smith, C.H.: On the Complexity of Inductive Inference.
Inform. Control 69(1–3), 12–40 (1986)

Dalli, D., Wilm, A., Mainz, I., Stegar, G.: STRAL: progressive alignment
of non-coding RNA using base pairing probability vectors in
quadratic time. Bioinformatics 22(13), 1593–1599 (2006)

Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nuss-
baum, D.: Hybrid transactional memory. In: Proc. 12th Sym-
posium on Architectural Support for Programming Languages
and Operating Systems, 2006

Dančík, V., Addona, T., Clauser, K., Vath, J., Pevzner, P.: De novo
protein sequencing via tandemmass-spectrometry. J. Comput.
Biol. 6, 327–341 (1999)

Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Pa-
padimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2 -
2/(k + 1))n algorithm for k-SAT based on local search. Theor.
Comput. Sci. 289(1), 69–83 (2002)

Dantsin, E., Hirsch, E.A.: Worst-Case Upper Bounds. In: Biere, A., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS Press
(2008) To appear

Dantsin, E., Hirsch, E.A., Wolpert, A.: Clause shortening combined
with pruning yields a new upper bound for deterministic SAT
algorithms. In: Proceedings of CIAC-2006. Lecture Notes in
Computer Science, vol. 3998, pp. 60–68. Springer, Berlin (2006)

Dantsin, E., Wolpert, A.: Max SAT for formulas with constant clause
density can be solved faster than in O(2n) time. In: Proc. of
the 9th International Conference on Theory and Applications
of Satisfiability Testing. LNCS, vol. 4121, pp. 266–276. Springer,
Berlin (2006)

Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting
Structure in Symmetry Generation for CNF. In: Proceedings of
the 41st Design Automation Conference, 2004, pp. 530–534.
Source code at http://vlsicad.eecs.umich.edu/BK/SAUCY/

Darringer, J.A., Brand, D., Gerbi, J.V., Joyner, W.H., Trevillyan, L.H.:
LSS: Logic Synthesis through Local Transformations. IBM J. Res.
Dev. 25, 272–280 (1981)

Das, B., Bharghavan, V.: Routing in ad-hoc networks using mini-
mum connected dominating sets. In: Proceedings of IEEE In-
ternational Conference on on Communications (ICC’97), vol. 1,
pp. 376–380. Montreal, 8–12 June 1997

Das, G.: The visibility graph contains a bounded-degree spanner.
In: Proceedings of the 9th Canadian Conference on Computa-
tional Geometry, Kingston, 11–14 August 1997

Das, G., Joseph, D.: Which Triangulations Approximate the Com-
plete Graph? In: Proc. Int. Symp. Optimal Algorithms. LNCS 401,
pp. 168–192. Springer, Berlin (1989)

Das, G., Joseph, D.:Which triangulations approximate the complete
graph? In: Proceedings of the International Symposium on Op-
timal Algorithms. Lecture Notes in Computer Science, vol. 401,
pp. 168–192. Springer, Berlin (1989)

Das, G., Narasimhan, G.: A fast algorithm for constructing sparse
Euclidean spanners. Int. J. Comput. Geom. Appl. 7, 297–315
(1997)

Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnour-
ished Euclidean graphs. In: Proceedings of the 6th ACM-SIAM
Symposium on Discrete Algorithms, pp. 215–222. San Fran-
cisco, 22–24 January 1995

Dasdan, A., Aykanat, C.: Improved Multiple-Way Circuit Partition-
ing Algorithms. In: Int. ACM/SIGDA Workshop on Field Pro-
grammable Gate Arrays, Feb. 1994

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J.: On the linear-cost
subtree-transfer distance. Algorithmica 25(2), 176–195 (1999)

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Wang, L., Zhang, L.:
Computing Distances between Evolutionary Trees. In: Du, D.Z.,
Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization.
Kluwer Academic Publishers, Norwell, 2, 35–76 (1998)

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On Com-
puting the Nearest Neighbor Interchange Distance. In: Du,
D.Z., Pardalos, P.M., Wang, J. (eds.) Proceedings of the DIMACS
Workshop on Discrete Problems withMedical Applications, DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science. Am. Math. Soc. 55, 125–143 (2000)

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On dis-
tances between phylogenetic trees, 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 427–436 (1997)

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On Dis-
tances between Phylogenetic Trees. In: Proceedings of the
Eighth ACM-SIAM Annual Symposium on Discrete Algorithms
(SODA), New Orleans, pp. 427–436. SIAM, Philadelphia (1997)

Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity
of computing a Nash equilibrium. In: STOC’06: Proceedings of

http://vlsicad.eecs.umich.edu/BK/SAUCY/

1084 Bibliography

the 38th ACM Symposium on Theory of Computing, 2006, pp.
71–78

Daskalakis, C., Hill, C., Jaffe, A., Mihaescu, R., Mossel, E., Rao, S.: Max-
imal accurate forests from distancematrices. In: Proc. Research
in Computational Biology (RECOMB), pp. 281–295 (2006)

Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate
Nash equilibria. In: Proceedings of the 2nd Workshop on In-
ternet and Network Economics (WINE’06), pp. 297–306. Patras,
15–17 December 2006

Daskalakis, C., Mehta, A., Papadimitriou, C: Progress in approximate
Nash equilibrium. In: Proceedings of the 8th ACM Conference
on Electronic Commerce (EC07), San Diego, 11–15 June 2007

Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic recon-
struction. In: Proc. ACM Symposium on Theory of Computing
(STOC), pp. 159–168 (2006)

Daskalakis, C., Papadimitriou, C.H.: Three-player games are hard.
ECCC, TR05-139 (2005)

Datta, S., Stojmenovic, I., Wu J.: Internal Node and Shortcut Based
Routing with Guaranteed Delivery in Wireless Networks. In:
Cluster Computing 5, pp 169–178. Kluwer Academic Publish-
ers, Dordrecht (2002)

Davis, M., Logemann, G., Loveland, D.: A machine program for the-
orem-proving. Commun. ACM 5, 394–397 (1962)

Davis, M., Putnam, H.: A computing procedure for quantification
theory. J. Assoc. Comput. Mach. 7(4), 201–215 (1960)

Day, W.H.E.: Optimal Algorithms for Comparing Trees with Labeled
Leaves. J. Classif. 2, 7–28 (1985)

de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Com-
putational Geometry – Algorithms and Applications, 2nd edn.
Springer, Heidelberg (2000)

De Bonis, A., Gąsieniec, L., Vaccaro, U.: Optimal Two-Stage Algo-
rithms for Group Testing Problems. SIAM J. Comput. 34(5),
1253–1270 (2005)

de Klerk, E., Pasechnik, D., Warners, J.: On approximate graph
colouring and MAX-k-CUT algorithms based on the � function.
J. Combin. Optim. 8(3), 267–294 (2004)

De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro,
U.: Asynchronous Deterministic Rendezvous in Graphs. Theo-
ret. Comput. Sci. 355, 315–326 (2006)

De Marco, G., Pelc, A.: Faster broadcasting in unknown radio net-
works. Inf. Process. Lett. 79(2), 53–56 (2001)

De Micheli, G.: Synthesis and Optimization of Digital Circuits, 1st
edn., pp. 504–533. McGraw-Hill, New York (1994)

de Moura, E.S., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flex-
ible word searching on compressed text. ACM Trans. Inf. Syst.
18(2), 113–139 (2000)

De Roberts, E., Oliver, G., Wright, C.: Homeobox genes and the vert-
ibrate body plan, pp. 46–52. Scientific American (1990)

Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multi-
cast algorithms: Taxonomy and survey. ACM Comput. Surv. 36,
372–421 (2004)

Degermark, M., Brodnik, A., Carlsson, S., Pink, S.: Small forwarding
tables for fast routing lookups. In: Proc. ACM SIGCOMM, 1997,
pp. 3–14

Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An
O(2O(k)n3) FPT algorithm for the undirected feedback vertex set
problem. Proceedings COCOON 2005. Lecture Notes in Com-
puter Science, vol. 3595, pp. 859–869. Springer, Berlin (2005)

Deı̆neko, V.G., Hoffmann, M., Okamoto, Y., Woeginger, G.J.: The
traveling salesman problem with few inner points. Oper. Res.
Lett. 31, 106–110 (2006)

Dekel, E., Nassimi, D., Sahni, S.: Parallelmatrix andgraph algorithms.
SIAM J. Comput. 10, 657–675 (1981)

Dekel, O., Shalev-Shwartz, S., Singer, Y.: The Forgetron: A kernel-
based perceptron on a fixed budget. In: Advances in Neural In-
formation Processing Systems 18 (2005)

Delgrange, O., Rivals, E.: STAR – an algorithm to Search for Tandem
Approximate Repeats. Bioinform. 20, 2812–2820 (2004)

Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-Perfor-
manceMulti-Level Graphs. In: 9th DIMACS Challenge on Short-
est Paths, Nov 2006. Rutgers University, USA (2006)

Delling, D., Holzer, M., Muller, K., Schulz, F., Wagner, D.: High-
performance multi-level graphs. In: 9th DIMACS Implementa-
tion Challenge Workshop: Shortest Paths, DIMACS Center, Pis-
cataway, NJ, 13–14 Nov 2006

Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierar-
chies Star. In: 9th DIMACS Challenge on Shortest Paths, Nov
2006 Rutgers University, USA (2006)

Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierar-
chies star. In: 9th DIMACS Implementation Challenge Work-
shop: Shortest Paths, DIMACS Center, Piscataway, NJ, 13–14
Nov 2006

Delorme, C., Poljak, S.: Laplacian eigenvalues and themaximum cut
problem. Math. Program. 62, 557–574 (1993)

Delorme, C., Poljak, S.: The performance of an eigenvalue bound
in some classes of graphs. Discret. Math. 111, 145–156 (1993).
Also appeared in: Proceedings of the Conference on Combina-
torics, Marseille, 1990

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Failure detection
lower bounds on registers and consensus. In: Proceedings of
the 16th International Symposium on Distributed Computing,
LNCS 2508 (2002)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Implementing
atomic objects in a message passing system. Technical report,
EPFL Lausanne (2005)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V.,
Kouznetsov, P., Toueg, S.: The weakest failure detectors to
solve certain fundamental problems in distributed comput-
ing. In: Proc. 23rd ACMSymposium on Principles of Distributed
Computing, pp. 338–346. St. John’s, Newfoundland, 25–28 July
2004

Delpratt, O., Rahman, N., Raman, R.: Compressed prefix sums. In:
Proc. SOFSEM 2007. LNCS, vol. 4362, pp. 235–247 (2007)

Delpratt, O., Rahman, N., Raman, R.: Engineering the LOUDS suc-
cinct tree representation. In: Proc. WEA 2006. LNCS, vol. 4007,
pp. 134–145. Springer, Berlin (2006)

Demaine, E., Fekete, S., Gal, S.: Online searching with turn cost.
Theor. Comput. Sci. 361, 342–355 (2006)

Demaine, E.D.: Cache-oblivious algorithms and data structures. In:
Proc. EFF summer school on massive data sets, LNCS. Springer,
Berlin. To appear. Online version at http://theory.csail.mit.edu/
edemaine/papers/BRICS2002/

Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimen-
sional parameters and local treewidth. SIAM J. Discret. Math.
18(3), 501–511 (2004)

Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-
parameter algorithms for (k, r)-center in planar graphs and
map graphs. ACM Trans. Algorithms 1(1), 33–47 (2005)

Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subex-
ponential parametrized algorithms on graphs of bounded
genus and H-minor-free graphs. J. ACM 52(6), 866–893
(2005)

http://theory.csail.mit.edu/edemaine/papers/BRICS2002/
http://theory.csail.mit.edu/edemaine/papers/BRICS2002/

Bibliography 1085

Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections
between FPT algorithms andPTASs. In: Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2005), Vancouver, January 2005, pp. 590–601

Demaine, E.D., Hajiaghayi, M.: Diameter and treewidth in minor-
closed graph families, revisited. Algorithmica 40(3), 211–215
(2004)

Demaine, E.D., Hajiaghayi, M.: Equivalence of local treewidth and
linear local treewidth and its algorithmic applications. In: Pro-
ceedings of the 15th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’04), January 2004, pp. 833–842 (2004)

Demaine, E.D., Hajiaghayi, M.: Graphs excluding a fixed minor have
grids as large as treewidth, with combinatorial and algorithmic
applications through bidimensionality. In: Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2005), pp. 682–689. Vancouver, January (2005)

Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its
algorithmic applications. Comput. J. To appear

Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-I.: Algorithmic
graph minor theory: Decomposition, approximation, and col-
oring. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science, Pittsburgh, October 2005,
pp. 637–646

Demaine, E.D., Hajiaghayi,M., Kawarabayashi, K.: Algorithmic graph
minor theory: Improved gridminor bounds andWagner’s con-
traction. In: Proceedings of the 17th Annual International Sym-
posium on Algorithms and Computation, Calcutta, India, De-
cember 2006. Lecture Notes in Computer Science, vol. 4288,
pp. 3–15 (2006)

Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms
via contraction decomposition. In: Proceedings of the 18th An-
nual ACM-SIAM Symposium on Discrete Algorithms, New Or-
leans, 7–9 January 2007, pp. 278–287

Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos,
D.M.: Approximation algorithms for classes of graphs exclud-
ing single-crossing graphs asminors. J. Comput. Syst. Sci. 69(2),
166–195 (2004)

Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: Exponential speedup
of fixed-parameter algorithms for classes of graphs excluding
single-crossing graphs as minors. Algorithmica 41(4), 245–267
(2005)

Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: The bidimensional the-
ory of bounded-genus graphs. SIAM J. Discret. Math. 20(2),
357–371 (2006)

Demaine, E.D., Harmon, D., Iacono, J., Patrascu, M.: Dynamic opti-
mality—almost. SIAM J. Comput. 37(1), 240–251 (2007)

Demange, G.: Spatial Models of Collective Choice. In: Thisse,
J.F., Zoller, H.G. (eds.) Locational Analysis of Public Facilities,
North-Holland Publishing Company, North Holland, Amster-
dam (1983)

Demange, G., Gale, D., Sotomayor, M.: Multi-item auctions. J. Polit.
Econ. 94(4), 863–72 (1986)

Dementiev, R., Mehnert, J., Kärkkäinen, J., Sanders, P.: Better exter-
nal memory suffix array construction. ACM J. Exp. Algorithmics
(2008) in press

Demestrescu, C., Italiano, G.F.: Trade-offs for fully dynamic transi-
tive closure on DAG’s: breaking through theO(n2) barrier, (pre-
sented in FOCS 2000). J. ACM 52(2), 147–156 (2005)

Demetrescu, C.: Fully Dynamic Algorithms for Path Problems on Di-
rected Graphs. Ph. D. thesis, Department of Computer and Sys-
tems Science, University of Rome “La Sapienza”, Rome (2001)

Demetrescu, C., Finocchi, I., Italiano, G.: Dynamic Graphs. In: Mehta,
D., Sahni, S. (eds.) Handbook on Data Structures and Applica-
tions (CRC Press Series, in Computer and Information Science),
chap. 36. CRC Press, Boca Raton (2005)

Demetrescu, C., Finocchi, I., Italiano, G.F., Näher, S.: Visualization in
algorithm engineering: tools and techniques. In: Experimen-
tal Algorithm Design to Robust and Effizient Software. Lecture
Notes in Computer Science, vol. 2547. Springer, Berlin, pp. 24–
50 (2002)

Demetrescu, C., Finocchi, I., Liotta, G.: Visualizing Algorithms over
the Web with the Publication-driven Approach. In: Proc. of
the 4th Workshop on Algorithm Engineering (WAE’00), Saar-
brücken, Germany, 5–8 September (2000)

Demetrescu, C., Goldberg, A.V., Johnson, D.: 9th DIMACS Im-
plementation challenge – shortest paths. http://www.dis.
uniroma1.it/~challenge9/ (2006)

Demetrescu, C., Italiano, G.: Fully dynamic transitive closure: Break-
ing through the O(n2) barrier. In: Proc. of the 41st IEEE Annual
Symposium on Foundations of Computer Science (FOCS’00),
Redondo Beach (2000), pp. 381–389

Demetrescu, C., Italiano, G.: Trade-offs for fully dynamic reachability
on dags: Breaking through the O(n2) barrier. J. ACM 52, 147–
156 (2005)

Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs
shortest paths. J. Assoc. Comp. Mach. 51(6), 968–992 (2004)

Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all
pairs shortest path algorithms. ACM Trans. Algorithms 2(4),
578–601 (2006)

Demetrescu, C., Italiano, G.F.: Fully Dynamic All Pairs Shortest Paths
with Real Edge Weights. J. Comp. Syst. Sci. 72(5), 813–837
(2006)

Deng, X.: Combinatorial Optimization and Coalition Games. In: Du,
D., Pardalos, P.M. (eds.) Handbook of combinatorial optimiza-
tion, vol 2, pp 77–103, Kluwer, Boston (1998)

Deng, X., Fang, Q., Sun, X.: Finding Nucleolus of Flow Games. Pro-
ceedings of the 17th annual ACM-SIAM symposium on Dis-
crete algorithm (SODA 2006). Lect. Notes in Comput. Sci. 3111,
124–131 (2006)

Deng, X., Huang, L.-S., Li, M.: On Walrasian Price of CPU time.
In: Proceedings of COCOON’05, Knming, 16–19 August 2005,
pp. 586–595. Algorithmica 48(2), 159–172 (2007)

Deng, X., Ibaraki, T., Nagamochi, H.: AlgorithmicAspects of the Core
of Combinatorial Optimization Games. Math. Oper. Res. 24,
751–766 (1999)

Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown
environment. J. ACM 45, 215–245 (1998)

Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Genetic Design of
DrugsWithout Side-Effects. SIAM. J. Comput. 32(4), 1073–1090
(2003)

Deng, X., Li, Z.F., Wang, S.: Computational complexity of arbitrage
in frictional security market. Int. J. Found. Comput. Sci. 13(5),
681–684 (2002)

Deng, X., Papadimitriou, C.: On the complexity of cooperative game
solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)

Deng, X., Papadimitriou, C., Safra, S.: On the complexity of price
equilibria. J. Comput. System Sci. 67(2), 311–324 (2003)

Deng, X., Papadimitriou, C.H.: Exploring an unknown graph.
J. Graph Theory 32, 265–297 (1999)

Denne, E., Sullivan, J.M.: The Distortion of a Knotted Curve. http://
www.arxiv.org/abs/math.GT/0409438 (2004)

http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
http://www.arxiv.org/abs/math.GT/0409438
http://www.arxiv.org/abs/math.GT/0409438

1086 Bibliography

Deo, N., Prabhu, G.M., Krishnamoorthy, M.S.: Algorithms for gener-
ating fundamental cycles in a graph. ACM Trans. Math. Softw.
8, 26–42 (1982)

Department of Computer Science, Duke University. TPIE: a trans-
parent parallel I/O environment. http://www.cs.duke.edu/
TPIE/. Accessed 2002

Derryberry, J., Sleator, D.D., Wang, C.C.: A lower bound framework
for binary search trees with rotations. Technical Report CMU-
CS-05-187, Carnegie Mellon University (2005)

Deshmukh, K., Goldberg, A.V., Hartline, J.D., Karlin, A.R.: Truthful
and competitive double auctions. In: Möhring, R.H., Raman,
R. (eds.) Algorithms–ESA 2002, 10th Annual European Sympo-
sium, Rome, Italy, 17–21 Sept 2002. Lecture Notes in Computer
Science, vol. 2461, pp. 361–373. Springer, Berlin (2002)

Desper, R., Gascuel, O.: Fast and Accurate Phylogeny Reconstruc-
tion Algorithms Based on the Minimum – Evolution Principle.
J. Comput. Biol. 9, 687–706 (2002)

Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks.
J. Discret. Algorithms 5, 187–201 (2007)

Dessmark, A., Pelc, A.: Tradeoffs between knowledge and time
of communication in geometric radio networks. Proc. 13th
Ann. ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pp. 59–66, Crete Greece, July 3–6, 2001

Dette, H., Henze, N.: The limit distribution of the largest nearest-
neighbour link in the unit d-cube. J. Appl. Probab. 26, 67–80
(1989)

Deutsch, D.: Quantum theory, the Church-Turing principle and the
universal quantum computer. Proc. Royal Soc. London A 400,
97–117 (1985)

Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum
computation. Proc. Royal Soc. London A 439, 553–558 (1992)

Devadas, S., Ghosh, A., Keutzer, K.: Logic Synthesis. McGraw Hill,
New York (1994). pp. 185–200

Devanur, N.R., Khot, S.A., Saket, R., Vishnoi, N.K.: Integrality gaps for
sparsest cut and minimum linear arrangement problems. In:
STOC ’06: Proceedings of the thirty-eighth annual ACM sym-
posium on Theory of computing, pp. 537–546. ACMPress, New
York (2006)

Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Mar-
ket equilibria via a primal-dual-type algorithm. In: Proceedings
of FOCS’02, pp. 389–395. IEEE Computer Society, Vancouver
(2002)

Devetak, I., Harrow, A., Winter, A.: A resource framework for quan-
tum Shannon theory. Tech. Report CSTR-05-008, CS Depart-
ment, University of Bristol, December (2005)

Devetak, I., Winter, A.: Distillation of secret key and entanglement
from quantum states. Proc. R. Soc. Lond. A 461, 207–235 (2005)

DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Sey-
mour, P., Vertigan, D.: Excluding any graph as a minor allows
a low tree-width 2-coloring. J. Comb. Theory Ser. B 91(1), 25–
41 (2004)

Devroye, L.: Non-uniform Random Variate Generation. Springer,
New York (1986)

Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern
Recognition. Springer, New York, USA (1996)

DeWitt, D.J., Kabra, N., Luo, J., Patel, J.M., Yu, J.-B.: Client-server
paradise. In: Proc. International Conference on Very Large
Databases, 1994, pp. 558–569

Dey, T.K.: Curve and surface reconstruction. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational
Geometry, 2nd edn. CRC, Boca Raton (2004)

Dey, T.K.: Curve and Surface Reconstruction: Algorithms with
Mathematical Analysis. Cambridge University Press, New York
(2006)

Dhagat, A., Hellerstein, L.: PAC learning with irrelevant attributes.
In: Proceedings of the 35th Annual Symposium on Founda-
tions of Computer Science, Santa Fe, pp 64–74. IEEE Computer
Society, Los Alamitos (1994)

Diao, Y., Fischer, P., Franklin, M., To, R.: YFilter: Efficient and scalable
filtering of XML documents. In: Proceedings of the 18th Inter-
national Conference on Data Engineering, San Jose, California,
pp. 341–342. IEEE Computer Society, New Jersey (2002)

Diaz-Gutierrez, P., Bhushan, A., Gopi, M., Pajarola, R.: Single-strips
for fast interactive rendering. J. Vis. Comput. 22(6), 372–386
(2006)

Díaz, J., Serna, M., Spirakis, P.G., Torán, J.: Paradigms for fast paral-
lel approximation. In: Cambridge International Series on Paral-
lel Computation, vol 8, Cambridge University Press, Cambridge
(1997)

Diekmann, Y., Sagot, M.F., Tannier, E.: Evolution under Reversals:
Parsimony and Conversation of Common Intervals. IEEE/ACM
Transactions in Computational Biology and Bioinformatics, 4,
301–309, 1075 (2007)

Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionar-
ies with tightly packed constant size bins. In: ICALP. Lecture
Notes in Computer Science, vol. 3580, pp. 166–178. Springer,
Berlin (2005)

Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans.
Inf. Theor. 22, 644–654 (1976)

Diggavi, S.N., Grossglauser, M., Tse, D.N.C.: Even one-dimensional
mobility increases the capacity of wireless networks. IEEE
Trans. Inf. Theory 51(11), 3947–3954 (2005)

Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numer. Math. 1 269–271 (1959)

Dijkstra, E.W.: Co-operating sequential processes. In: Genuys, F.
(ed.) Programming Languages, pp. 43–112. Academic Press,
New York (1968). Reprinted from: Technical Report EWD-123,
Technological University, Eindhoven (1965)

Dijkstra, E.W.: Self Stabilizing Systems in Spite of Distributed Con-
trol. Commun. ACM 17(11), 643–644 (1974). See also EWD391
(1973) In: SelectedWritings on Computing: A Personal Perspec-
tive, pp. 41–46. Springer, New York (1982)

Dijkstra, E.W.: Solution of a problem in concurrent programming
control. Commun. ACM 8(9), 569 (1965)

Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with
little memory. J. Algorithms 51, 38–63 (2004)

Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of knowledge
on broadcasting time in linear radio networks. Theor. Comput.
Sci. 287, 449–471 (2002)

Dilley, J., Arlitt,M., Perret, S.: Enhancement and validation of Squid’s
cache replacement policy. Hewlett-Packard Laboratories Tech-
nical Report HPL-1999–69 (1999)

DIMACS Implementation Challenges. Each DIMACS Implementa-
tion Challenge is a year-long cooperative research event in
which researchers cooperate to find the most efficient algo-
rithms and strategies for selected algorithmic problems. The
DIMACS Challenges since 1991 have targeted a variety of opti-
mization problems on graphs; advanced data structures; and
scientific application areas involving computational biology
and parallel computation. The DIMACS Challenge proceedings
are published by AMS as part of theDIMACS Series in Discrete

http://www.cs.duke.edu/TPIE/
http://www.cs.duke.edu/TPIE/

Bibliography 1087

Mathematics and Theoretical Computer Science. Visit dimacs.
rutgers.edu/Challenges for more information

Dimitriou, T., Nikoletseas, S.E., Spirakis, P.G.: Analysis of the in-
formation propagation time among mobile hosts. In: Niko-
laidis, I., Barbeau, M., Kranakis, E. (eds.) 3rd International Con-
ference on Ad-Hoc, Mobile, and Wireless Networks (ADHOC-
NOW 2004), pp 122–134. Lecture Notes in Computer Science
(LNCS), vol. 3158. Springer, Berlin (2004)

Dimitrov, D., Borm, P., Hendrickx, R., Sung, S. Ch.: Simple priorities
and core stability in hedonic games. Soc. Choice. Welf. 26(2),
421–433 (2006)

Ding, Y., Chan, C.Y., Lawrence, C.E.: RNA secondary structure pre-
diction by centroids in a Boltzmann weighted ensemble. RNA
11, 1157–1166 (2005)

Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the per-
fect phylogeny haplotyping problem. In: Proceedings of the
Annual International Conference on Computational Molecu-
lar Biology (RECOMB), New York, 2005. ACM Press, New York
(2005)

Dinitz, E.A.: Maintaining the 4-edge-connected components of
a graph on-line. In: Proc. 2nd Israel Symp. Theory of Comput-
ing and Systems, 1993, pp. 88–99

Dinitz, E.A., Karzanov A.V., Lomonosov M.V.: On the structure of the
system of minimal edge cuts in a graph. In: Fridman, A.A. (ed)
Studies in Discrete Optimization, pp. 290–306. Nauka, Moscow
(1990). In Russian

Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within
almost-polynomial factors is NP-hard. Combinatorica 23(2),
205–243 (2003). Preliminary version in FOCS 1998

Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approxi-
mate coloring. In: Proceedings of the 38th annual ACM Sym-
posium on Theory of Computing (2006) pp. 344–353.

Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic
acid secondary structure including pseudoknots. J. Comput.
Chem. 24, 1664–1677 (2003)

Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analy-
sis of minimum spanning trees in linear time. SIAM J. Comput.
21(6), 1184–1192 (1992)

Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay Graphs Are Al-
most as Good as Complete Graphs. Discret. Comput. Geom. 5,
399–407 (1990)

Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mech-
anisms for combinatorial auctions. In: Proc. of the 38th ACM
Symposium on Theory of Computing (STOC’06), 2006

Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchrony
needed for distributed consensus. J. ACM 34(1), 77–97 (1987)

Dolev, D., Reischuk, R.: Bounds on Information Exchange for Byzan-
tine Agreement. J. ACM 32(1), 191–204 (1985)

Dolev, D., Reischuk, R., Strong, H.R.: Early Stopping in Byzantine
Agreement. J. ACM 37(4), 720–741 (1990)

Dolev, D., Shavit, N.: Bounded concurrent time-stamp systems are
constructible. SIAM J. Comput. 26(2), 418–455 (1997)

Dolev, D., Strong, H.R.: Authenticated Algorithms for Byzantine
Agreement. SIAM J. Comput. 12(4), 656–666 (1983)

Dolev, S.: Self-Stabilization. MIT Press, Cambrigde (2000)
Dolev, S., Gilbert, S., Lynch, N.A., Shvartsman, A.A., Welch, J.L.: Geo-

Quorums: Implementing atomicmemory inmobile ad hoc net-
works. Distrib. Comput. 18(2), 125–155 (2005)

Dolev, S., Gouda, M.G., Schneider, M.: Memory Requirements for
Silent Stabilization. In: Proceedings of the 15th Annual ACM

Symposiumon Principles of DistributedComputing, pp. 27–34,
Philadelphia, May 1996

Dolev, S., Yagel, R.: Toward Self-Stabilizing Operating Systems. In:
2nd International Workshop on Self-Adaptive and Autonomic
Computing Systems, pp. 684–688, Zaragoza, August 2004

Dopazo, J., Rodríguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for
PCR amplification of highly variable genomes. CABIOS 9, 123–
125 (1993)

Dor, D., Halperin, S., Zwick, U.: All Pairs Almost Shortest Paths. SIAM
J. Comput. 29, 1740–1759 (2000)

Dorn, F.: Dynamic Programming and Fast Matrix Multiplication. In:
Proceedings of 14th Annual European Symposium on Algo-
rithms. LNCS, vol. 4168, pp. 280–291. Springer, Berlin (2006)

Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast subexponential algo-
rithm for non-local problems on graphs of bounded genus.
In: Proceedings of the 10th Scandinavian Workshop on Algo-
rithmTheory (SWAT 2006). LectureNotes in Computer Science.
Springer, Berlin (2005)

Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential algorithms for
non-local problems on H-minor-free graphs. In: Proceedings of
the nineteenth annual ACM-SIAM symposium on Discrete al-
gorithms (SODA 2008). pp. 631–640. Society for Industrial and
Applied Mathematics, Philadelphia (2006)

Dorn, F., Penninkx, E., Bodlaender, H., Fomin, F.V.: Efficient exact
algorithms on planar graphs: Exploiting sphere cut branch
decompositions. In: Proceedings of the 13th Annual Euro-
pean Symposium on Algorithms (ESA 2005). Lecture Notes
in Computer Science, vol. 3669, pp. 95–106. Springer, Berlin
(2005)

Douligeris, C., Mazumdar, R.: Multilevel flow control of Queues. In:
Johns Hopkins Conference on Information Sciences, Baltimore,
22–24 Mar 1989 (2006)

Dowell, R., Eddy, S.R.: Evaluation of several lightweight stochas-
tic context-free grammars for RNA secondary structure predic-
tion. BMC Bioinformatics 5, 71 (2004)

Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and com-
pleteness. Congres. Numerant. 87, 161–187 (1992)

Downey, R.G., Fellows, M.R.: Parameterized complexity. In: Mono-
graphs in Computer Science. Springer, New York (1999)

Dress, A., Steel, M.: Convex tree realizations of partitions. Appl.
Math. Lett. 5, 3–6 (1992)

Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data struc-
tures persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989). See
also STOC’86

Driscoll, K., Hall, B., Sivencrona, H., Zumsteg, P.: Byzantine Fault Tol-
erance, fromTheory to Reality. In: Proc. 22nd International Con-
ference on Computer Safety, Reliability, and Security (SAFE-
COMP), pp. 235–248, UK, September 2003

Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Sup-
port Vector Regression Machines. Adv. Neural. Inf. Process.
Syst. (NIPS) 9, 155–161 MIT Press (1997)

Drysdale, R.L., McElfresh, S., Snoeyink, J.S.: On exclusion regions for
optimal triangulations. Discrete Appl. Math. 109, 49–65 (2001)

Du, D.-Z., Hsu, D.F., Xu, K.-J.: Bounds on guillotine ratio. Congressus
Numerantium 58, 313–318 (1987)

Du, D.-Z., Pan, L.-Q., Shing, M.-T.: Minimum edge length guillotine
rectangular partition. Technical Report 0241886, Math. Sci. Res.
Inst., Univ. California, Berkeley (1986)

Du, D.Z., Graham, R.L., Pardalos, P.M., Wan, P.J., Wu, W., Zhao, W.:
Analysis of greedy approximations with nonsubmodular po-
tential functions. In: Proceedings of 19th ACM-SIAM Sympo-

http://dimacs.rutgers.edu/Challenges
http://dimacs.rutgers.edu/Challenges

1088 Bibliography

sium on Discrete Algorithms (SODA), pp. 167–175. ACM, New
York (2008)

Du, D.Z., Hwang, F.K.: The Steiner ratio conjecture of Gilbert-Pollak
is true. Proc. Natl. Acad. Sci. USA 87, 9464–9466 (1990)

Du, D.Z., Hwang, F.K., Shing,M.T., Witbold, T.: Optimal routing trees.
IEEE Trans. Circuits 35, 1335–1337 (1988)

Du, D.Z., Zhang, Y., Feng, Q.: On better heuristic for euclidean
Steiner minimum trees. In: Proceedings 32nd FOCS, IEEE Com-
puter Society Press, California (1991)

Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan,
A.: Fast Distributed Algorithms for (Weakly) Connected Domi-
nating Sets and Linear-Size Skeletons. In: SODA, 2003, pp. 717–
724

Dubois, O.: Upper bounds on the satisfiability threshold. Theor.
Comput. Sci. 265, 187–197 (2001)

Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3-sat formulae
and the satisfiability threshold. In: 11th ACM-SIAM symposium
on Discrete algorithms, pp. 126–127. Society for Industrial and
Applied Mathematics, San Francisco (2000)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-
Interscience Publication (2000)

Dudek, G., Romanik, K., Whitesides, S.: Localizing a robot with min-
imum travel. SIAM J. Comput. 27(2), 583–604 (1998)

Duffin, R.J.: Topology of Series-Parallel Networks. J. Math. Anal.
Appl. 10, 303–318 (1965)

Dujmović, V., Fellows, M.R., Hallett, M., Kitching, M., Liotta, G., Mc-
Cartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman,
M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to
2-layer planarization. Algorithmica 45, 159–182 (2006)

Dujmović, V., Fernau, H., Kaufmann,M.: Fixed parameter algorithms
for one-sided crossing minimization revisited. In: Liotta G. (ed.)
Graph Drawing, 11th International SymposiumGD 2003. LNCS,
vol. 2912, pp. 332–344. Springer, Berlin (2004). A journal ver-
sion has been accepted to J. Discret. Algorithms, see doi:
10.1016/j.jda.2006.12.008

Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable
algorithm for 1-sided crossing minimization. Algorithmica 40,
15–32 (2004)

Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning
algorithms and representations for text categorization. In: 7th
International Conference on Information and KnowledgeMan-
agement (1998)

Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote, G.:
On the Geometric Dilation of Closed Curves, Graphs, and Point
Sets. Comput. Geom. Theory Appl. 36(1), 16–38 (2006)

Dunagan, J., Vempala, S.: On Euclidean embeddings and band-
width minimization. In: Randomization, approximation, and
combinatorial optimization, pp. 229–240. Springer (2001)

Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence
analysis. Cambridge University Press, Cambridge, UK (1998)

Dutta, P., Guerraoui, R., Levy, R.R., Chakraborty, A.: How fast can
a distributed atomic read be? In: Proc. 23rd ACM Sympo-
sium on Principles of Distributed Computing, pp. 236–245. St.
John’s, Newfoundland, 25–28 July 2004

Dutta, R., Savage, C.: A Note on the Complexity of Converter Place-
ment Supporting Broadcast in WDM Optical Networks. In: Pro-
ceedings of the International Conference on Telecommunica-
tion Systems-Modeling and Analysis, Dallas, November 2005
ISBN: 0-9716253-3-6 pp. 23–31. American Telecommunication
Systems Management Association, Nashville

Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288–323 (1988)

Dwork, C., Moses, Y.: Knowledge and Common Knowledge in
a Byzantine Environment: Crash Failures. Inf. Comput. 88(2),
156–186 (1990)

Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive
codes. Problemy Peredachi Informatsii 18(3), 7–13 (1982)

Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite
graphs. Algorithmica 11, 379–403 (1994)

Eaves, B.C.: Finite solution for pure trade markets with Cobb-
Douglas utilities, Math. Program. Study 23, 226–239 (1985)

Ebbers-Baumann, A., Gruene, A., Karpinski, M., Klein, R., Knauer, C.,
Lingas, A.: Embedding Point Sets into Plane Graphs of Small
Dilation. Int. J. Comput. Geom. Appl. 17(3), 201–230 (2007)

Ebbers-Baumann, A., Grüne, A., Klein, R.: On the Geometric Dilation
of Finite Point Sets. Algorithmica 44(2), 137–149 (2006)

Ebbers-Baumann, A., Klein, R., Knauer, C., Rote, G.: The Geometric
Dilation of Three Points. Manuscript (2006)

Economides, A., Silvester, J.: Priority load sharing: an approach us-
ing stackelberg games. In: 28th Annual Allerton Conference on
Communications, Control and Computing (1990)

Edelman, B., Ostrovsky, M., Schwartz, M.: Internet advertising and
the generalized second price auction. NBER Working Paper,
11765, November 2005

Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and
the generalized second price auction: selling billions of dol-
lars worth of dollars worth of keywords. In: 2nd Workshop on
Sponsored Search Auctions, in conjunction with the ACM Con-
ference on Electronic Commerce (EC-06), Ann Arbor, MI, June
2006

Edelsbrunner, H., Guibas, L.J., Pach, J., Pollack, R., Seidel, R., Sharir,
M.: Arrangements of curves in the plane: Topology, combina-
torics, and algorithms. Theor. Comput. Sci. 92, 319–336 (1992)

Edlesbrunner, H.: Shape reconstruction with the Delaunay com-
plex. In: LATIN’98, Theoretical Informatics. Lecture Notes in
Computer Science, vol. 1380, pp. 119–132. Springer, Berlin
(1998)

Edmonds, J.: On the Competitiveness of AIMD-TCP within a Gen-
eral Network. In: LATIN, Latin American Theoretical Informatics,
vol. 2976, pp. 577–588 (2004). Submitted to Journal Theoretical
Computer Science and/or Lecture Notes in Computer Science

Edmonds, J.: Paths, Trees, and Flowers. Canad. J. Math. 17, 449–467
(1965)

Edmonds, J.: Scheduling in the dark. Improved results: manuscript
2001. In: Theor. Comput. Sci. 235, 109–141 (2000). In: 31st Ann.
ACM Symp. on Theory of Computing, 1999

Edmonds, J., Chinn, D., Brecht, T., Deng, X.: Non-clairvoyant Multi-
processor Scheduling of Jobs with Changing Execution Char-
acteristics. In: 29th Ann. ACM Symp. on Theory of Computing,
1997, pp. 120–129. Submitted to SIAM J. Comput.

Edmonds, J., Datta, S., Dymond, P.: TCP is Competitive Against
a Limited Adversary. In: SPAA, ACM Symp. of Parallelism in Al-
gorithms and Achitectures, 2003, pp. 174–183

Edmonds, J., Pruhs, K.: A maiden analysis of longest wait first. In:
Proc. 15th Symp. on Discrete Algorithms (SODA)

Edmonds, J., Pruhs, K.: Multicast pull scheduling: when fairness is
fine. Algorithmica 36, 315–330 (2003)

Edmonds, N., Breuer, A., Gregor, D., Lumsdaine, A.: Single-source
shortest paths with the parallel boost graph library. In: 9th DI-
MACS Implementation Challenge Workshop: Shortest Paths,
DIMACS Center, Piscataway, NJ, 13–14 Nov 2006

Bibliography 1089

Efraimidis, P., Spirakis, P.: Weighted Random Samplingwith a reser-
voir. Inf. Process. Lett. J. 97(5), 181–185 (2006)

Efrat, A., Itai, A., Katz, M.: Geometry Helps in Bottleneck Matching
and Related Problems. Algorithmica 31(1), 1–28 (2001)

Efthymiou, C., Nikoletseas, S., Rolim, J.: Energy Balanced Data Prop-
agation in Wireless Sensor Networks. 4th International Work-
shop on Algorithms for Wireless, Mobile, Ad-Hoc and Sen-
sor Networks (WMAN ’04) IPDPS 2004, Wirel. Netw. J. (WINET)
12(6), 691–707 (2006)

Efthymiou, C., Nikoletseas, S., Rolim, J.: Energy Balanced Data Prop-
agation in Wireless Sensor Networks. In: Wireless Networks
(WINET) Journal, Special Issue on Algorithms for Wireless, Mo-
bile, Ad Hoc and Sensor Networks. Springer (2006)

Efthymiou, C., Spirakis, P.: On the existence of hamiltonian cycles in
random intersec- tion graphs. In: Proceedings of 32st Interna-
tional colloquium on Automata, Languages and Programming
(ICALP), pp. 690–701. Springer, Berlin Heidelberg (2005)

Efthymiou, C., Spirakis, P.G.: On the Existence of Hamilton Cycles in
Random Intersection Graphs. In: Proc. of the 32nd ICALP. LNCS,
vol. 3580, pp. 690–701. Springer, Berlin/Heidelberg (2005)

Egecioglu, O., Gonzalez, T.: Minimum-energy Broadcast in Sim-
ple Graphs with Limited Node Power. In: Proc. IASTED Inter-
national Conference on Parallel and Distributed Computing
and Systems (PDCS 2001), Anaheim, August 2001 pp. 334–
338

Eguchi, A., Fujishige, S., Tamura, A.: A generalized Gale-Shapley
algorithm for a discrete-concave stable-marriage model. In:
Ibaraki, T., Katoh, N., Ono, H. (eds.) Algorithms and Com-
putation: 14th International Symposium, ISAAC2003. LNCS,
vol. 2906, pp. 495–504. Springer, Berlin (2003)

Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys.
Rev. Lett. 67, 661–663 (1991)

ElGamal, T.: A public-key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–
472 (1985)

Elias, I. Lagergren, J.: Fast Neighbor Joining. In: Proceedings of the
32nd International Colloquium on Automata, Languages, and
Programming (ICALP), pp. 1263–1274 (2005)

Elias, I.: Setting the intractability of multiple alignment. In: Proc. of
the 14th Annual International Symposium on Algorithms and
Computation (ISAAC 2003), 2003, pp. 352–363

Elias, I.: Settling the intractability of multiple alignment. J. Comput.
Biol. 13, 1323–1339 (2006)

Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by
transpositions. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics 3, 369–379 (2006)

Elias, P.: Efficient storage retrieval by content and address of static
files. J. ACM, 21(2):246–260 (1974)

Elias, P.: Error-correcting codes for list decoding. IEEE Trans. Inf. The-
ory 37, 5–12 (1991)

Elias, P.: List decoding for noisy channels. Technical Report 335,
Research Laboratory of Electronics, MIT, Campridge, MA, USA
(1957)

Elias, P., Flower, R.A.: The complexity of some simple retrieval prob-
lems. J. Assoc. Comput. Mach. 22, 367–379 (1975)

Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Optimal algorith-
mic cooling of spins. Isr. J. Chem. 46, 371–391 (2006), also in:
Ekl, S. et al. (eds.) Lecture Notes in Computer Science, Volume
4618, pp. 2–26. Springer, Berlin (2007), Unconventional Com-
putation. Proceedings of the Sixth International Conference
UC2007 Kingston, August 2007.

Elkin, M.: Computing Almost Shortest Paths. In: Proc. 20th ACM
Symp. on Principles of Distributed Computing, Newport, RI,
USA, 26–29 Aug. 2001, pp. 53–62

Elkin, M.: Computing Almost Shortest Paths. Trans. Algorithms 1(2),
283–323 (2005)

Elkin, M., Emek, Y., Spielman, D., Teng, S.-H.: Lower-Stretch Span-
ning Trees. In: Proc. of the 37th Annual ACM Symp. on Theory
of Computing, STOC’05, Baltimore, May 2005, pp. 494–503

Elkin, M., Emek, Y., Spielman, D.A., Teng, S.-H.: Lower-stretch span-
ning trees. In: STOC ’05: Proceedings of the thirty-seventh an-
nual ACM symposium on Theory of computing, pp. 494–503.
ACM Press, New York (2005)

Elkin, M., Liebchen, C., Rizzi, R.: New Length Bounds for Cycle Bases.
Inf. Proc. Lett. 104(5), 186–193 (2007)

Elkin, M., Peleg, D.: (1 + �; ˇ)-Spanner Constructions for General
Graphs. SIAM J. Comput. 33(3), 608–631 (2004)

Elkin, M., Peleg, D.: Spanner constructions for general graphs. In:
Proc. of the 33th ACM Symp. on Theory of Computing, Herak-
lion, 6–8 Jul. 2001, pp. 173–182

Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner
problem. In: Proc. of 27th International Colloquim on Au-
tomata, Languages and Programming, 2000, pp. 636–648

Elkin, M., Zhang, J.: Efficient Algorithms for Constructing (1 + �; ˇ)-
spanners in the Distributed and Streaming Models. Distrib.
Comput. 18(5), 375–385 (2006)

Ellen, F., Fatourou, P., Ruppert, E.: Time lower bounds for imple-
mentations of multi-writer snapshots. J. Assoc. Comput. Mach.
54(6) article 30 (2007)

Elmasri, R., Navanthe, S.B.: Fundamentals of Database Systems, 5th
edn. Addison-Wesley, Boston (2007)

Elmasry, A.: On the sequential access theorem and deque conjec-
ture for splay trees. Theor. Comput. Sci.314(3), 459–466 (2004)

Emek, Y., Peleg, D.: A tight upper bound on the probabilistic em-
bedding of series-parallel graphs. In: Proc. of Symp. on Discr.
Algorithms, SODA’06, Miami, Jan. 2006, pp. 1045–1053

Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.)
Formal Models and Semantics, vol. B of Handbook of Theoreti-
cal Computer Science, pp. 996–1072. Elsevier Science (1990)

Englert, B., Shvartsman, A.A.: Graceful quorum reconfiguration in
a robust emulation of shared memory. In: Proc. 20th IEEE Inter-
national Conference on Distributed Computing Systems, pp.
454–463. Taipei, 10–13 April 2000

Englert, M., Westermann, M.: Lower and upper bounds on FIFO
buffer management in qos switches. In: Azar, Y., Erlebach, T.
(eds.) Algorithms – ESA 2006, 14th Annual European Sym-
posium, Proceedings. Lecture Notes in Computer Science,
vol. 4168, pp. 352–363. Springer, Berlin (2006)

Ephremides, A., Hajek, B.: Information theory and communication
networks: an unconsummated union. IEEE Trans. Inf. Theor. 44,
2416–2434 (1998)

Eppstein, D.: Diameter and treewidth in minor-closed graph fami-
lies. Algorithmica 27(3–4), 275–291 (2000)

Eppstein, D.: Dynamic Connectivity in Digital Images. Inf. Process.
Lett. 62(3), 121–126 (1997)

Eppstein, D.: Dynamic Euclidean Minimum Spanning Trees
and Extrema of Binary Functions. Discret. Comput. Geom.
13, 111–122 (1995)

Eppstein, D.: Finding the k Shortest Paths. SIAM J. Comput. 28, 652–
673 (1998)

Eppstein, D.: Finding the k smallest spanning trees. BIT. 32, 237–
248 (1992)

1090 Bibliography

Eppstein, D.: Geometry in action: minimum spanning trees. http://
www.ics.uci.edu/~eppstein/gina/mst.html

Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In:
Proceedings of SODA 2004, pp. 781–790

Eppstein, D.: Sequence comparison with mixed convex and con-
cave costs. J. Algorithms 11(1), 85–101 (1990)

Eppstein, D.: Spanning Trees and Spanners. In: Sack, J.R., Urrutia,
J. (eds.) Handbook of Computational Geometry, pp. 425–461.
Elsevier, Amsterdam (1999)

Eppstein, D.: Subgraph isomorphism in planar graphs and related
problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999)

Eppstein, D.: The Geometry Junkyard. http://www.ics.uci.edu/
~eppstein/junkyard/dilation-free/

Eppstein, D.: Tree-weighted neighbors and geometric k smallest
spanning trees. Int. J. Comput. Geom. Appl. 4, 229–238 (1994)

Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification –
a technique for speeding up dynamic graph algorithms. J. As-
soc. Comput. Mach. 44(5), 669–696 (1997)

Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based
sparsification I: planarity testing andminimum spanning trees.
J. Comput. Syst. Sci. Special issue of STOC 93 52(1), 3–27 (1996)

Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator based
sparsification II: edge and vertex connectivity. SIAM J. Comput.
28, 341–381 (1999)

Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook, J.,
Yung, M.: Maintenance of a minimum spanning forest in a dy-
namic plane graph. J. Algorithms 13, 33–54 (1992)

Eppstein, D., Wortman, K.A.: Minimum Dilation Stars. In: Proc. 21st
ACM Symp. Comp. Geom. (SoCG), Pisa, 2005, pp. 321–326

Epstein, L.: A note on on-line scheduling with precedence con-
straints on identical machines. Inf. Process. Lett. 76, 149–153
(2000)

Epstein, L., Levin, A.: On the max coloring problem. In: Proc. of the
Fifth International Workshop on Approximation and Online Al-
gorithms (WAOA2007) (2007), pp. 142–155

Epstein, L., Levin, A., Woeginger, G.J.: Graph coloring with rejec-
tion. In: Proc. of 14th European Symposium on Algorithms
(ESA2006), pp. 364–375. (2006)

Epstein, L., Levy, M.: Online interval coloring and variants. In:
Proc. of The 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP2005), pp. 602–613. (2005)

Epstein, L., Levy, M.: Online interval coloring with packing con-
straints. In: Proc. of the 30th International Symposium on
Mathematical Foundations of Computer Science (MFCS2005),
pp. 295–307. (2005)

Erdong, C., Linji, Y., Hao, Y.: Improved algorithms for 2-interval pat-
tern problem. J. Combin. Optim. 13(3), 263–275 (2007)

Erdös, P.: Extremal problems in graph theory. In: Theory of Graphs
and its Applications (Proc. Sympos. Smolenice, 1963), pp. 29–
36. Publ. House Czechoslovak Acad. Sci., Prague (1964)

Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set
is covered by the union of r others. Isr. J. Math. 51, 79–89 (1985)

Erdös, P., Lovász, L.: Problems and results on 3-chromatic hyper-
graphs and some related questions. Colloq. Math. Soc. János
Bolyai 10, 609–627 (1975)

Erdős, P.L., Steel, M.A., Székely, L. A., Warnow, T.J.: A few logs suffice
to build (almost) all trees (II). Theor. Comput. Sci. 221, 77–118
(1999) Preliminary version as DIMACS TR97-72

Erdős, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs suf-
fice to build (almost) all trees (I). Random Struct. Algorithm 14,
153–184 (1999) Preliminary version as DIMACS TR97-71

Ergun, F., Kumar, R., Rubinfeld, R.: Checking approximate compu-
tations of polynomials and functional equations. SIAM J. Com-
put. 31(2), 550–576 (2001)

Erlenkotter, D.: A dual-based procedure for uncapacitated facility
location problems. Oper. Res. 26, 992–1009 (1978)

Erlingsson, Ú., Manasse, M., McSherry, F.: A cool and practical al-
ternative to traditional hash tables. In: Proceedings of the
7th Workshop on Distributed Data and Structures (WDAS ’06),
Santa Clara, CA, USA, 4–6 January 2006

Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of haplotype
structure via perfect phylogeny. J. Bioinform. Comput. Biol.
1(1), 1–20 (2003)

Estabrook, G.F., Johnson, C.S., Jr., McMorris, F.R.: A mathematical
foundation for the analysis of cladistic character compatibility.
Math. Biosci. 29, 181–187 (1976)

Estabrook, G.F., Johnson, C.S., Jr., McMorris, F.R.: An algebraic
analysis of cladistic characters. Discret. Math. 16, 141–147
(1976)

Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT
is P-time extremal structure I. In: Algorithms and complexity
in Durham 2005. Texts in Algorithmics, vol. 4, pp. 1–41. Kings
College Publications, London (2005)

Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century
Challenges: Scalable Coordination in Sensor Networks. In: Proc.
5th ACM/IEEE International Conference on Mobile Computing,
MOBICOM’1999

Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of con-
sistency and predicate locks in a database system. Commun.
ACM 19(11), 624–633 (1976). doi: http://doi.acm.org/10.1145/
360363.360369

Ettinger, M., Høyer, P., Knill, E.: The quantum query complexity of
the hidden subgroup problem is polynomial. Inf. Process. Lett.
91, 43–48 (2004)

Evans, P.A., Smith, A.D., Wareham, H.T.: On the complexity of
finding common approximate substrings. Theor. Comput. Sci.
306(1–3), 407–430 (2003)

Even, G., Naor, J.S., Rao, S., Schieber, B.: Divide-and-conquer ap-
proximation algorithms via spreading metrics. J. ACM 47(4),
585–616 (2000)

Even, S.: Graph Algorithms. Computer Science Press, Potomac
(1979)

Even, S., Gazit, H.: Updating distances in dynamic graphs. Method.
Oper. Res. 49, 371–387 (1985)

Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash
equilibria. In: Proc. of the 30th Int. Col. on Aut., Lang. and Progr.
(ICALP ’03). LNCS, pp. 502–513. Springer, Eindhoven (2003)

Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In:
Proc. of the 16th ACM-SIAM Symp. on Discr. Alg. (SODA ’05),
SIAM, pp. 772–781. SIAM, Vancouver (2005)

Even-Dar, E., Mansour, Y.: Learning rates for Q-learning. J. Mach.
Learn. Res. 5, 1–25 (2003)

Eyal, E., Halperin, D.: Improved Maintenance of Molecular Surfaces
Using Dynamic Graph Connectivity. in: Proc. 5th International
Workshop on Algorithms in Bioinformatics (WABI 2005), Mal-
lorca, Spain, 2005, pp. 401–413

Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.: On
the design of CGAL a computational geometry algorithms li-
brary. Softw. Pract. Experience 30(11), 1167–1202 (2000)

Fabri, A., Giezeman, G., Kettner, L., Schirra, S., Schönherr, S.: The cgal
kernel: A basis for geometric computation. In: Applied Compu-
tational Geometry: Towards Geometric Engineering Proceed-

http://www.ics.uci.edu/~eppstein/gina/mst.html
http://www.ics.uci.edu/~eppstein/gina/mst.html
http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/
http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/
http://doi.acm.org/10.1145/360363.360369
http://doi.acm.org/10.1145/360363.360369

Bibliography 1091

ings (WACG’96), Philadelphia. Philadelphia, PA, May 27–28,
pp. 191–202 (1996)

Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure
nash equilibria. In: Proc. of the 36th ACMSymp. on Th. of Comp.
(STOC ’04). ACM, Chicago (2004)

Fagerberg, R., Pagh, A., Pagh, R.: External string sorting: Faster and
cache-oblivious. In: Proceedings of STACS ’06. LNCS, vol. 3884,
pp. 68–79. Springer, Marseille (2006)

Faigle, U., Fekete, S., Hochstättler, W., Kern, W.: On the Complexity
of Testing Membership in the Core of Min-Cost Spanning Tree
Games. Int. J. Game. Theor. 26, 361–366 (1997)

Faigle, U., Kern, W., Kuipers, J.: Computing the Nucleolus of Min-
cost Spanning Tree Games isNP-hard. Int. J. Game Theory 27,
443–450 (1998)

Faigle, U., Kern, W., Kuipers, J.: On the Computation of the Nucleo-
lus of a CooperativeGame. Int. J. Game Theory30, 79–98 (2001)

Faigle, U., Kern, W., Turán, G.: On the performane of online algo-
rithms for partition problems. Acta Cybern. 9, 107–119 (1989)

Fakcharoenphol, J., Rao, S.: Planar Graphs, Negative Weight Edges,
Shortest Paths, and near Linear Time. In: Proc. 42nd IEEE Symp.
on Foundations of Computer Science – FOCS (2001), pp. 232–
241. IEEE Computer Society Press, Los Alamitos (2001)

Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges,
shortest paths, and near linear time. J. Comput. Syst. Sci. 72,
868–889 (2006)

Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approxi-
mating arbitrarymetrics by tree metrics. In: Proceedings of the
35th annual ACM symposium on Theory of Computing, San
Diego, June 2003, pp. 448–455

Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approxi-
mating arbitrary metrics by tree metrics. J. Comput. Syst. Sci.
69, 485–497 (2004)

Fakcharoenphol, J., Rao, S., Talwar, K.: Approximating metrics by
tree metrics. SIGACT News 35, 60–70 (2004)

Fan, R., Lynch, N.A.: Gradient clock synchronization. Distrib. Com-
put. 18(4), 255–266 (2006)

Fan, T.-H., Lee, S., Lu, H.-I., Tsou, T.-S., Wang, T.-C., Yao, A.: An op-
timal algorithm for maximum-sum segment and its applica-
tion in bioinformatics. Proceedings of the Eighth International
Conference on Implementation and Application of Automata.
LNCS 2759, 251–257 (2003)

Fang, F., Blanchette, M.: Footprinter3: phylogenetic footprinting in
partially alignable sequences. Nucleic Acids Res. 34(2), 617–
620 (2006)

Fang, Q., Zhu, S., Cai,M., Deng, X.: Membership for core of LP games
and other games. COCOON 2001 Lecture Notes in Computer
Science, vol. 2108, pp 247–246. Springer-Verlag, Berlin Heidel-
berg (2001)

Fang, X., Zhu, X., Feng, M., Mao, X., Du, F.: Experimental imple-
mentation of dense coding using nuclear magnetic resonance.
Phys. Rev. A 61, 022307 (2000)

Farach, M.: Optimal suffix tree construction with large alphabets.
In: Proc. 38th Annu. Symp. Found. Comput. Sci., FOCS 1997, pp.
137–143. IEEE Press, New York (1997)

Farach,M., Muthukrishnan, S.: Optimal parallel dictionarymatching
and compression. In: Symposium on Parallel Algorithms and
Architecture (SPAA), 1995, pp. 244–253

Farach,M., Przytycka, T., Thorup,M.: Themaximumagreement sub-
tree problem for binary trees. Proc. of 2nd ESA (1995)

Farach, M., Przytycka, T.M., Thorup, M.: On the agreement of many
trees. Inf. Process. Lett. 55(6), 297–301 (1995)

Farach, M., Thorup, M.: Fast comparison of evolutionary trees. Inf.
Comput. 123(1), 29–37 (1995)

Farach, M., Thorup, M.: Sparse dynamic programming for
evolutionary-tree comparison. SIAM J. Comput. 26(1), 210–230
(1997)

Farach, M., Thorup,M.: String-matching in Lempel–Ziv compressed
strings. Algorithmica 20(4), 388–404 (1998)

Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Bootstrapping
a Hop-Optimal Network in the Weak Sensor Model. In: Proc. of
the 13th European Symposium on Algorithms (ESA), pp. 827–
838 (2005)

Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower Bounds
for Clear Transmissions in Radio Networks. In: Proc. of the 7th
Latin American Symposium on Theoretical Informatics (LATIN),
pp. 447–454 (2006)

Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-
complexity of suffix tree construction. J. Assoc. Comput. Mach.
47, 987–1011 (2000)

Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the
Hamiltonian NAND tree. quant-ph/0702144 (2007)

Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed
of quantum computation indetermining parity. Phys. Rev. Lett.
81, 5442–5444 (1998)

Farhi, E., Gutmann, S.: Quantum computation and decision trees.
Phys. Rev. A 58 (1998)

Farris, J.S.: The logical basis of phylogenetic analysis. In: Platnick,
N.I., Funk, V.A. (eds.) Advances in Cladistics, pp. 1–36. Columbia
Univ. Press, New York (1983)

Farshi, M., Gudmundsson, J.: Experimental study of geometric t-
spanners. In: Proceedings of the 13th Annual European Sym-
posiumonAlgorithms. Lect. Notes Comput. Sci.3669, 556–567
(2005)

Farzan, A., Ferragina, P., Franceschini, G., Munro, J.I.: Cache-oblivi-
ous comparison-based algorithms on multisets. In: Proc. 13th
Annual European Symposium on Algorithms. LNCS, vol. 3669,
pp. 305–316. Springer, Berlin (2005)

Fatourou, P., Kallimanis, N.D.: Single-scanner multi-writer snapshot
implementations are fast! In: Proc. 25th ACM Symposium on
Principles of Distrib. Comput. Colorado, July 2006 pp. 228–237.
ACM, New York (2006)

Fatourou, P., Mavronicolas, M., Spirakis, P.: Efficiency of oblivious
versus non-oblivious schedulers for optimistic, rate-based flow
control. SIAM J. Comput. 34(5), 1216–1252 (2005)

Fatourou, P., Mavronicolas, M., Spirakis, P.: Max-min fair flow con-
trol sensitive to priorities. J. Interconnect. Netw. 6(2), 85–114
(2005) (also in Proceedings of the 2nd International Confer-
ence on Principles of Distributed Computing, pp. 45–59 (1998)

Fatourou, P., Mavronicolas, M., Spirakis, P.: The global efficiency of
distributed, rate-based flow control algorithms. In: Proceed-
ings of the 5th Colloqium on Structural Information and Com-
munication Complexity, pp. 244–258, June 1998

Feder, T.: A new fixed point approach for stable networks and sta-
blemarriages. In: Proceedings of 21st ACMSymposiumon The-
ory of Computing, pp. 513–522, Theory of Computing, Seattle
WA, May 1989, pp. 513–522, ACM, New York (1989)

Feder, T.: A new fixed point approach for stable networks and sta-
ble marriages. J. Comput. Syst. Sci. 45, 233–284 (1992)

Feder, T.: Network flow and 2-satisfiability. Algorithmica 11, 291–
319 (1994)

Feder, T.: Stable networks and product graphs. Ph. D. thesis, Stan-
ford University (1991)

1092 Bibliography

Feder, T., Megiddo, N., Plotkin, S.A.: A sublinear parallel algorithm
for stable matching. Theor. Comput. Sci. 233(1–2), 297–308
(2000)

Feder, T., Mihail, M.: Balanced matroids. In: Proceeding 24th
ACM Symp. Theory of Computing, pp 26–38, Victoria, British
Columbia, Canada, May 04–06 1992

Fedin, S.S., Kulikov, A.S.: Automated proofs of upper bounds on
the running time of splitting algorithms. J. Math. Sci. 134,
2383–2391 (2006). Improved results at http://logic.pdmi.ras.ru/
~kulikov/autoproofs.html

Feige, U.: A Threshold of ln n for Approximating Set Cover. J. ACM
45(4) 634–652 (1998)

Feige, U.: Approximatingmaximum clique by removing subgraphs.
SIAM J. Discret. Math. 18(2), 219–225 (2004)

Feige, U.: Approximating the bandwidth via volume respecting em-
beddings. J. Comput. Syst. Sci. 60(3), 510–539 (2000)

Feige, U.: On maximizing welfare when utility functions are subad-
ditive. In: Proc. of the 38th ACMSymposium on Theory of Com-
puting (STOC’06), 2006

Feige, U.: Randomized graph products, chromatic numbers, and
the Lovász theta function. Combinatorica 17(1), 79–90 (1997)

Feige, U.: Relations between average case complexity and approx-
imation complexity. In: 34th Annual ACM Symposium on the
Theory of Computing, pp. 534–543, Montréal, May 19–21, 2002

Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algo-
rithms for minimum-weight vertex separators. In: Proceedings
of the 37th annual ACM Symposium on Theory of computing
(STOC 2005), pp. 563–572. ACM Press, New York (2005)

Feige, U., Kilian, J.: Zero knowledge and the chromatic number.
J. Comput. Syst. Sci. 57, 187–199 (1998)

Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the
minimum bisection. SIAM J. Comput. 31(4), 1090–1118 (2002)

Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the
minimum bisection. SIAM Review 48(1), 99–130 (2006) (Previ-
ous versions appeared in Proceedings of 41st FOCS, 1999; and
in SIAM J. Comput. 2002)

Feige, U., Langberg, M., Schechtman, G.: Graphs with tiny vec-
tor chromatic numbers and huge chromatic numbers. SIAM J.
Comput. 33(6), 1338–1368 (2004)

Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of mes-
sage passing algorithms for some satisfiability problems. In:
Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 9th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems, AP-
PROX 2006 and 10th International Workshop on Randomiza-
tion and Computation, RANDOM 2006, Barcelona, Spain, Au-
gust 28–30 2006. LectureNotes in Computer Science, vol. 4110,
pp. 339–350. Springer

Feige, U., Raghavan, P.: Exact analysis of hot-potato routing. In: IEEE
(ed.) Proceedings of the 33rd Annual, Symposium on Founda-
tions of Computer Science, pp. 553–562, Pittsburgh (1992)

Feige, U., Schechtman, G.: On the optimality of the random hyper-
plane rounding technique for MAX-CUT. Random Struct. Algo-
rithms 20(3), 403–440 (2002)

Feige, U., Vilenchik, D.: A local search algorithm for 3-SAT, Tech. rep.
The Weizmann Institute, Rehovat, Israel (2004)

Feige, U., Yahalom, O.: On the complexity of finding balanced
oneway cuts. Inf. Process. Lett. 87(1), 1–5 (2003)

Feigenbaum, J., Papadimitriou, C., Sami, R., Shenker, S.: A BGP-
based mechanism for lowest-cost routing. In: Proceedings of

the 2002 ACM Symposium on Principles of Distributed Com-
puting, pp. 173–182. Monterey, 21–24 July 2002

Feigenbaum, J., Papadimitriou, C.H., Shenker, S.: Sharing the cost of
multicast transmissions. J. Comput. Syst. Sci. 63, 21–41 (2001)

Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young,
N.: A network-flow technique for finding low-weightbounded-
degree spanning trees. In: Proceedings of the 5th Integer Pro-
gramming and Combinatorial Optimization Conference (IPCO
1996) and J. Algorithms 24(2), 310–324 (1997)

Felber, P., Guerraoui, R., Fayad, M.: Putting oo distributed program-
ming to work. Commun. ACM 42(11), 97–101 (1999)

Feldman, J.: Decoding Error-Correcting Codes via Linear Program-
ming. Ph. D. thesis, Massachusetts Institute of Technology
(2003)

Feldman, J., Karger, D.R.: Decoding turbo-like codes via linear pro-
gramming. In: Proc. 43rd annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), Vancouver, 16–19 Novem-
ber 2002

Feldman, J., Malkin, T., Servedio, R.A., Stein, C., Wainwright, M.J.: LP
decoding corrects a constant fraction of errors. In: Proc. IEEE
International Symposium on Information Theory, Chicago, 27
June – 2 July 2004

Feldman, J., Stein, C.: LP decoding achieves capacity. In: Sympo-
sium on Discrete Algorithms (SODA ’05), Vancouver, January
(2005)

Feldman, J., Wainwright, M.J., Karger, D.R.: Using linear program-
ming to decode linear codes. In: 37th annual Conf. on Informa-
tion Sciences and Systems (CISS ’03), Baltimore, 12–14 March
2003

Feldman, P.: Optimal Algorithms for Byzantine Agreement. Ph. D.
thesis, MIT (1988)

Feldman, P., Micali, S.: An optimal probabilistic protocol for syn-
chronous Byzantine agreement. SIAM J. Comput. 26(4), 873–
933 (1997). Preliminary version in STOC’88

Feldman, V.: Hardness of Approximate Two-level Logic Minimiza-
tion and PAC Learning with Membership Queries. In: Proceed-
ings of STOC, pp. 363–372 (2006)

Feldman, V.: On attribute efficient and non-adaptive learning of
parities and DNF expressions. In: 18th Annual Conference on
Learning Theory, pp. 576–590. Springer-Verlag, Berlin Heidel-
berg (2005)

Feldman, V.: Optimal hardness results for maximizing agreements
with monomials. In: Proceedings of Conference on Computa-
tional Complexity (CCC), pp. 226–236 (2006)

Feldmann, A., Muthukrishnan, S.: Tradeoffs for packet classification.
In: Proc. IEEE INFOCOM, 2000, pp. 1193–1202

Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashifi-
cation and the coordination ratio for a selfish routing game. In:
Proc. of the 30th Int. Col. on Aut., Lang. and Progr. (ICALP ’03).
LNCS, pp. 514–526. Springer, Eindhoven (2003)

Fellows, M.: Blow-ups, win/win’s and crown rules: some new direc-
tions in FPT. In: Proceedings of the 29th Workshop on Graph
Theoretic Concepts in Computer Science (WG 2003). Lecture
Notes in Computer Science, vol. 2880, pp. 1–12. Springer, Berlin
(2003)

Fellows, M.: Parameterized complexity: the main ideas and some
research frontiers. In: Lecture Notes in Computer Science
(ISAAC 2001), vol. 2223, pp. 291–307. Springer, Berlin (2001)

Fellows,M., Langston,M.: Onwell-partial-order theory and its appli-
cations to combinatorial problems of VLSI design. SIAM J. Dis-
cret. Math. 5, 117–126 (1992)

http://logic.pdmi.ras.ru/~kulikov/autoproofs.html
http://logic.pdmi.ras.ru/~kulikov/autoproofs.html

Bibliography 1093

Fellows, M., McCartin, C., Rosamond, F., Stege, U.: Coordinatized
kernels and catalytic reductions: an improved FPT algorithm
for max leaf spanning tree and other problems. In: Proceed-
ings of the 20th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FST-TCS 2000). Lec-
ture Notes in Theoretical Computer Science 1974, pp. 240–251.
Springer, Berlin (2000)

Fellows, M.R.: New Directions and new challenges in algorithm de-
sign and complexity, parameterized. In: Lecture Notes in Com-
puter Science, vol. 2748, p. 505–519 (2003)

Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized
intractability of motif search problems. Combinatorica 26(2),
141–167 (2006)

Felsenstein, J.: Evolutionary trees fromDNA sequences: amaximum
likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sun-
derland (2004)

Fenwick, P.: Universal codes. In: Sayood, K. (ed.) Lossless Compres-
sion Handbook, pp. 55–78, Academic Press, Boston (2003)

Ferguson, D., Yemini, Y., Nikolaou, C.: Microeconomic Algorithms
for Load Balancing in Distributed Computer Systems. In:
Proceedings of DCS’88, pp. 419–499. San Jose, 13–17 June
1988

Fernandess, Y., Malkhi, D.: On collaborative content distribution
using multi-message gossip. In: Twentieth IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2006),
Greece, April 2006

Fernández, A., Jiménez, E., Raynal, M.: Eventual leader electionwith
weak assumptions on initial knowledge, communication relia-
bility and synchrony. In: Proc International Symposium on De-
pendable Systems and Networks (DSN), pp. 166–178 (2006)

Fernandez de la Vega, W., Lueker, G.: Bin packing can be solved
within 1 + " in linear time. Combinatorica 1, 349–355 (1981)

Fernandez, J.M.: De computatione quantica. Dissertation, Univer-
sity of Montreal (2004)

Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury V.: Practicable al-
gorithmic cooling of spins. Int. J. Quant. Inf. 2, 461–477 (2004)

Fernández-Baca, D.: The Perfect Phylogeny Problem. In: Cheng, X.,
Du, D.-Z. (eds.) Steiner Trees in Industry, pp. 203–234. Kluwer
Academic Publishers, Dordrecht (2001)

Fernández-Baca, D., Lagergren, J.: A polynomial-time algorithm for
near-perfect phylogeny. SIAM J. Comput. 32, 1115–1127 (2003)

Fernau, H.: Two-layer planarization: improving on parameterized
algorithmics. J. Graph Algorithms Appl. 9, 205–238 (2005)

Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via cross-
ing minimization. In: Ramanujam R., Sen S. (eds.) Foundations
of Software Technology and Theoretical Computer Science
FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Berlin
(2005)

Fernholz, D., Ramachandran, V.: The k-orientability thresholds for
gn; p. In: Proceedings of the 18th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA ’07), pp. 459–468. ACM
Press, New Orleans, Louisiana, USA, 7–9 December 2007

Ferragina, P.: Handbook of Computational Molecular Biology. In:
Computer and Information Science Series, ch. 35 on “String
search in external memory: algorithms and data structures”.
Chapman & Hall/CRC, Florida (2005)

Ferragina, P., Giancarlo, R., Manzini, G.: The engineering of a com-
pression boosting library: Theory vs practice in bwt compres-
sion. In: Proc. 14th European Symposium on Algorithms (ESA).
LNCS, vol. 4168, pp. 756–767. Springer, Berlin (2006)

Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of
wavelet trees. In: Proc. 33th International Colloquium on Au-
tomata and Languages (ICALP), pp. 561–572. LNCS n. 4051.
Springer, Berlin, Heidelberg (2006)

Ferragina, P., Giancarlo, R., Manzini, G., Sciortino, M.: Boosting tex-
tual compression in optimal linear time. J. ACM 52, 688–713
(2005)

Ferragina, P., Grossi, R.: Optimal On-Line Search and Sublinear Time
Update in StringMatching. SIAM J. Comput. 3, 713–736 (1998)

Ferragina, P., Grossi, R.: The string B-tree: A new data structure for
string search in external memory and its applications. J. ACM
46, 236–280 (1999)

Ferragina, P., Grossi, R., Montangero, M.: A note on updating suffix
tree labels. Theor. Comput. Sci. 201, 249–262 (1998)

Ferragina, P., Luccio, F.: Dynamic dictionary matching in external
memory. Inf. Comput. 146(2), 85–99 (1998)

Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Com-
pressing and searching XML data via two zips. In: Proc. 15th
World WideWeb Conference (WWW), pp. 751–760. Edingburg,
UK(2006)

Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring
labeled trees for optimal succinctness, and beyond. In: Proc.
46th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 184–193. Cambridge, USA (2005)

Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52,
552–581 (2005)

Ferragina, P., Manzini, G.: Opportunistic data structures with ap-
plications. In: Proceedings of Symposium on Foundations of
Computer Science, 2000, pp. 390–398

Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed rep-
resentation of sequences and full-text indexes. ACM Trans. Al-
gorithms 3(2) Article 20 (2007)

Ferragina, P., Muthukrishnan, S., deBerg, M.: Multi-method dis-
patching: a geometric approach with applications to string
matching. In: Proc. of the Symposium on the Theory of Com-
puting (STOC), 1999, pp. 483–491

Ferragina, P., Venturini, R.: A simple storage scheme for strings
achieving entropy bounds. In: Proceedings of the 18th ACM-
SIAM SymposiumonDiscrete Algorithms (SODA), pp. 690–695.
ACM, SIAM (2007)

Ferragina, P., Venturini, R.: A simple storage scheme for strings
achieving entropy bounds. Theor. Comput. Sci. 372, 115–121
(2007)

Fiala, E.R., Greene, D.H.: Data compression with finite windows.
Commun. ACM 32, 490–505 (1989)

Fiat, A., Goldberg, A.V., Hartline, J.D., Karlin, A.R.: Competitive gen-
eralized auctions. In: Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC-02), New York, 19–
21 May 2002, pp. 72–81. ACM Press, New York (2002)

Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young,
N.E.: Competitive paging algorithms. J. Algorithms 12(4), 685–
699 (1991)

Fiat, A., Mendel, M.: Better algorithms for unfair metrical task sys-
tems and applications. SIAM J. Comput. 32, 1403–1422 (2003)

Fiat, A., Naor, M.: ImplicitO(1) probe search. SIAM J. Comput. 22, 1–
10 (1993)

Fiat, A., Naor, M., Schmidt, J.P., Siegel, A.: Non-oblivious hashing.
J. Assoc. Comput. Mach. 31, 764–782 (1992)

Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms. In:
Proceedings 31st IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 454–463 (1990)

1094 Bibliography

Fiat, A., Ricklin, M.: Competitive algorithms for the weighted server
problem. Theor. Comput. Sci. 130, 85–99 (1994)

Fiat, A., Woeginger, G. (eds.) Online Algorithms – The State of the
Art. Springer Lecture Notes in Computer Science, vol. 1442.
Springer, Heidelberg (1998)

Fich, F., Luchangco, V., Moir, M., Shavit, N.: Brief announcement:
Obstruction-free step complexity: Lock-free DCAS as an ex-
ample. In: Proc. 19th Annual International Symposium on Dis-
tributed Computing, 2005

Fich, F., Luchangco, V., Moir, M., Shavit, N.: Obstruction-free algo-
rithms can be practically wait-free. In: Proc. 19th Annual Inter-
national Symposium on Distributed Computing, 2005

Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed
computing. Distrib. Comput. 16(2–3), 121–163 (2003)

Fich, F.E.: How hard is it to take a snapshot? In: SOFSEM 2005: The-
ory and Practice of Computer Science. Liptovský Ján, January
2005, LNCS, vol. 3381, pp. 28–37. Springer (2005)

Fidge, C. J.: Logical time in distributed computing systems. IEEE
Comput. 24, 28–33 (1991)

Fiduccia, C.M.,Mattheyses, R.M.: A Linear TimeHeuristic for Improv-
ing Network Partitions. In: Proc. ACM/IEEE Design Automation
Conf., 1982, pp. 175–181

Fill, J.A., Scheinerman, E.R., Singer-Cohen, K.B.: Random intersec-
tion graphs when m = !(n): an equivalence theorem relating
the evolution of the G(n;m; p) and G(n; p) models. Random
Struct. Algorithms 16, 156–176 (2000)

Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. J. Clas-
sific. 2, 255–276 (1985)

Finn G.: Routing and Addressing Problems in Large Metropoli-
tan-scale Internetworks. Tech. Report ISI/RR-87–180, USC/ISI,
March (1987)

Finocchi, I., Panconesi, A., Silvestri, R.: An experimental Analysis of
Simple Distributed Vertex Coloring Algorithms. Algorithmica
41, 1–23 (2004)

Fischer, B., Roth, V., Roos, F., Grossmann, J., Baginsky, S., Widmayer,
P., Gruissem, W., Buhmann J.: NovoHMM: A Hidden Markov
Model for de novo peptide sequencing. Anal. Chem. 77, 7265–
7273 (2005)

Fischer, M.J.: The Consensus Problem in Unreliable Distributed Sys-
tems (A Brief Survey). Research Report, YALEU/DCS/RR-273,
Yale University, New Heaven (1983)

Fischer, M.J., Lynch, N.A.: A Lower Bound for the Time to Assure In-
teractive Consistency. Inf. Process. Lett. 14(4), 183–186 (1982)

Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed
consensus with one faulty process. In: Proceedings of the 2nd
ACM SIGACT-SIGMOD Symposium on Principles of Database
System (PODS) Atlante, 21–23 March, pp. 1–7. Association for
Computational Machinery (ACM) (1983)

Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed
consensus with one faulty processor. J. ACM 32(2), 374–382
(1985)

Fischer, S., Vöcking, B.: On the structure and complexity of worst-
case equilibria. Theor. Comput. Sci. 378(2), 165–174 (2007)

Fischer, T.: Optimizing the degree of minimum weight spanning
trees, Technical Report TR93–1338. Cornell University, Com-
puter Science Department (1993)

Fischl, B., Sereno, M., Dale, A.: Cortical surface-based analysis II:
Inflation, flattening, and a surface-based coordinate system.
NeuroImage 9, 195–207 (1999)

Fishburn, J.P., Dunlop, A. E.: TILOS: A Posynomial Programming Ap-
proach to Transistor Sizing. In: Proceedings of the 1985 Inter-

national Conference on Computer-Aided Design, pp. 326–328.
Santa Clara, CA, November 1985

Fishburn, J.P., Schevon, C.A.: Shaping a distributed-RC line to mini-
mize Elmore delay. IEEE Trans. Circuits Syst.-I: Fundam. Theory
Appl. 42(12), 1020–1022 (1995)

Fishburn., J.P.: Shaping a VLSI wire to minimize Elmore delay. In:
Proc. European Design and Test Conference pp. 244–251. IEEE
Compute Society, Washington D.C. (1997)

Fitch, W.M.: Toward defining the course of evolution: Minimum
change for a specified tree topology. Syst. Zool. 20, 406–416
(1971)

Flammini, M., Klasing, R., Navarra, A., Perennes, S.: Improved ap-
proximation results for the minimum energy broadcasting
problem. In: Proceedings of the 2004 joint workshop on Foun-
dations of mobile computing (2004)

Flammini, M., Navarra, A., Klasing, R., Pérennes, A.: Improved
approximation results for the minimum energy broadcast-
ing problem. DIALM-POMC, pp. 85–91. ACM Press, New York
(2004)

Flaxman, A.D.: A spectral technique for random satisfiable 3CNF
formulas. In: Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (Baltimore, MD, 2003), pp.
357–363. ACM, New York (2003)

Fleiner, T.: A Fixed Point Approach to Stable Matchings and Some
Applications. Math. Oper. Res. 28, 103–126 (2003)

Fleiner, T.: A matroid generalization of the stable matching poly-
tope. In: Gerards, B., Aardal K. (eds.) Integer Programming and
Combinatorial Optimization: 8th International IPCO Confer-
ence. LNCS, vol. 2081, pp. 105–114. Springer, Berlin (2001)

Fleischer, L.: Approximating fractional multicommodity flow inde-
pendent of the number of commodities. In: Proceedings of the
40th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 24–31, New York, October 1999

Fleischer, L.: Approximating fractional multicommodity flow inde-
pendent of the number of commodities. SIAM J. Discret. Math.
13(4), 505–520 (2000)

Fleischer, L., Goemans, M., Mirrokni, V.S., Sviridenko, M.: Tight
approximation algorithms for maximum general assignment
problems. In: Proceedings of the 16th Annual ACM–SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 611–620 (2006)

Fleischer, L., Könemann, J., Leonardi, S., Schäfer, G.: Simple cost
sharing schemes for multicommodity rent-or-buy and stochas-
tic Steiner tree. In: Proc. of the 38th Annual ACMSymposiumon
Theory of Computing, pp. 663–670. Association for Computing
Machinery, New York (2006)

Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.:
Competitive online approximation of the optimal search ra-
tio. In: Proceedings of the 12th European Symposium on Algo-
rithms (ESA’04). Lecture Notes in Computer Science, vol. 3221,
pp. 335–346. Springer, Heidelberg (2004)

Fleischer, R., Romanik, K., Schuierer, S., Trippen, G.: Optimal robot
localization in trees. Inf. Comput. 171, 224–247 (2001)

Fleischer, R., Trippen, G.: Experimental studies of graph traversal al-
gorithms. In: Proceedings of the 2nd International Workshop
on Experimental and Efficient Algorithms (WEA’03). Lecture
Notes in Computer Science, vol. 2647, pp. 120–133. Springer,
Heidelberg (2003)

Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently.
In: Proceedings of the 13th European Symposium on Algo-
rithms (ESA’05). Lecture Notes in Computer Science, vol. 3669,
pp. 11–22. Springer, Heidelberg (2005)

Bibliography 1095

Fleischer, R., Trippen, G.: Optimal robot localization in trees. In: Pro-
ceedings of the 16th Annual Symposium on Computational
Geometry (SoCG’00), 2000, pp. 373–374. A video shown at the
9th Annual Video Review of Computational Geometry

Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3,
343–353 (2000)

Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multi-
ple Mobile Agent Rendezvous in the Ring. In: Proc. LATIN 2004.
LNCS, vol. 2976, pp. 599–608. Bueons Aires, 5–8 April 2004

Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in The-
oretical Computer Science, vol. XIV. An EATCS Series. Springer,
Berlin (2006)

Flum, J., Grohe, M.: The Parameterized complexity of counting
problems. SIAM J. Comput. 33(4), 892–922 (2004)

Flury, R., Wattenhofer, R.: MLS: An Efficient Location Service for Mo-
bile AdHoc Networks. In: Proceedings of the 7th ACM Int. Sym-
posium on Mobile Ad-Hoc Networking and Computing (Mobi-
Hoc), Florence, Italy, May 2006

Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: a sim-
ple O(20.288n) independent set algorithm. In: Proc. 17th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA 2006), pp. 18–
25 (2006)

Fomin, F.V., Gaspers, S., Pyatkin, A.V.: Finding a minimum feed-
back vertex set in time O(1.7548n). In: Proc. 2th IWPEC. LNCS,
vol. 4196, pp. 184–191. Springer, Berlin (2006)

Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Dom-
ination – A case study. In: Proceedings of ICALP 2005. LNCS,
vol. 3380, pp. 192–203. Springer, Berlin (2005)

Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms
for treewidth and minimum fill-in. In: ICALP of LNCS, vol. 3142,
pp. 568–580. Springer, Berlin (2004)

Fomin, F.V., Kratsch, D., Todinca, I., Villanger, I.: Exact (exponential)
algorithms for treewidth andminimum fill-in (2006). To appear
in SIAM Journal of Computing, Preliminary version appeared in
ICALP 2004

Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algo-
rithms for the dominating set problem. In: Proceedings of WG
2004. LNCS, vol. 3353, pp. 245–256. Springer, Berlin (2004)

Fomin, F.V., Mazoit, F., Todinca, I.: Computing branchwidth via ef-
ficient triangulations and blocks. In: Proceedings of the 31st
Workshop on Graph Theoretic Concepts in Computer Sci-
ence (WG 2005). Lecture Notes Computer Science, vol. 3787,
pp. 374–384. Springer, Berlin (2005)

Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs:
Branch-width and exponential speed-up. SIAM J. Comput. 36,
281–309 (2006)

Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for
graphs on surfaces: Linear kernel and exponential speed-up.
In: Proceedings of the 31st International Colloquium on Au-
tomata, Languages and Programming (ICALP 2004). Lecture
Notes Computer Science, vol. 3142, pp. 581–592. Springer,
Berlin (2004)

Fomin, F.V., Thilikos, D.M.: New upper bounds on the decompos-
ability of planar graphs. J. Graph Theor. 51, 53–81 (2006)

Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker,
S., Stoica, I.: Beacon Vector Routing: Scalable Point-to-Point
Routing in Wireless Sensornets. In: 2nd Symposium on Net-
worked Systems Design & Implementation (NSDI), Boston,
Massachusetts, USA, May 2005

Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can.
J. Math. 8, 399–404. (1956)

Fortune, S.J.: Stable maintenance of point-set triangulations in two
dimensions. IEEE Found. Comput. Sci.: 30, 494–499 (1989)

Fortune, S.J., van Wyk, C.J.: Efficient exact arithmetic for computa-
tional geometry. In: Proceeding 9th ACM Symposium on Com-
putational Geometry, pp. 163–172 (1993)

Foschini, L., Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals
compression: Experiments with compressing suffix arrays and
applications. ACM Trans. Algorithms 2(4), 611–639 (2006)

Fotakis, D.: On the competitive ratio for online facility location.
In: Proceedings of the 30th International Colloquium on Au-
tomata, Languages and Programming (ICALP). Lecture Notes
in Computer Science, vol. 2719, pp. 637–652. Springer, Berlin
(2003)

Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spi-
rakis, P.: The structure and complexity of nash equilibria for
a selfish routing game. In: Proc. of the 29th Int. Col. on Aut.,
Lang. and Progr. (ICALP ’02). LNCS, pp. 123–134. Springer,
Málaga (2002)

Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic congestion games
among coalitions. In: Proc. of the 33rd Int. Col. on Aut., Lang.
and Progr. (ICALP ’06). LNCS, vol. 4051, pp. 572–583. Springer,
Venice (2006)

Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows.
J. Theoret. Comput. Sci. 348, 226–239 (2005)

Fotakis, D., Kontogiannis, S., Spirakis, P.: Symmetry in Network Con-
gestion Games: Pure Equilibria and Anarchy Cost. In: Proc. of
the 3rd Workshop of Approximate and On-line Algorithms
(WAOA 2005). Lecture Notes in Computer Science (LNCS),
vol. 3879, pp. 161–175. Springer, Berlin Heidelberg (2006)

Fotakis, D., Nikoletseas, S., Papadopoulou, V., Spirakis, P.: NP-
Completeness Results and Efficient Approximations for Radio-
coloring in Planar Graphs. In: Proceedings of the 25th Inter-
national Symposium on Mathematical Foundations of Com-
puter Science, Lecture Notes of Computer Science, vol. 1893,
pp. 363–372. Springer (2000)

Fotakis, D., Nikoletseas, S., Papadopoulou, V.G., Spirakis, P.G.: Ra-
diocoloring in Planar Graphs: Complexity and Approximations.
Theor. Comput. Sci. Elsevier 340, 514–538 (2005)

Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash
tables with worst case constant access time. Theor. Comput.
Syst. 38(2), 229–248 (2005)

Fotakis, D., Pantziou, G., Pentaris, G., Spirakis, P.: Frequency As-
signment in Mobile and Radio Networks. In: Networks in Dis-
tributed Computing, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 45, pp. 73–90 (1999)

Fotakis, D., Spirakis, P.: Minimum Congestion Redundant Assign-
ments to Tolerate Random Faults. Algorithmica 32, 396–422
(2002)

Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and
covering in the plane are NP-complete. Inf. Process. Lett. 12(3),
133–137 (1981)

Fraenkel, A.S., Klein, S.T.: Novel compression of sparse bit-strings –
Preliminary report. In: Apostolico, A., Galil, Z. (eds) Combinato-
rial Algorithms on Words, NATO ASI Series F, vol. 12, pp. 169–
183. Springer, Berlin (1985)

Fraenkel, A.S., Simpson, R.J.: How many squares can a string con-
tain? J. Comb. Theory Ser. A 82, 112–120 (1998)

Fraenkel, A.S., Simpson, R.J.: The Exact Number of Squares in Fi-
bonacci Words. Theor. Comput. Sci. 218(1), 95–106 (1999)

Fraigniaud, P., Gauron, P.: The content-addressable network D2B.
Tech. Report 1349, LRI, Univ. Paris-Sud (2003)

1096 Bibliography

Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph explo-
ration by a finite automaton. Theor. Comput. Sci. 345, 331–344
(2005)

Frances, M., Litman, A.: On covering problems of codes. Theor.
Comput. Syst. 30, 113–119 (1997)

Franceschini, G.: Proximity mergesort: Optimal in-place sorting in
the cache-obliviousmodel. In: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
p. 291. Philadelphia, 2004

Franceschini, G., Grossi, R.: A general technique for managing
strings in comparison-driven data structures. In: Annual Inter-
national Colloquium on Automata, Languages and Program-
ming (ICALP), 2004

Franceschini, G., Grossi, R.: Optimal in-place sorting of vectors and
records. In: Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP ’05). LNCS,
vol. 3580, pp. 90–102. Springer, Lisbon (2005)

Franceschini, G., Grossi, R.: Optimal worst-case operations for im-
plicit cache-oblivious search trees. In: Proc. Algorithms and
Data Structures, 8th International Workshop, WADS. LNCS,
vol. 2748, pp. 114–126. Springer, Berlin (2003)

Francis, Y.L., Chin, N.L.H., Lam, T.W., Prudence,W.H.W.: Efficient con-
strained multiple sequence alignment with performance guar-
antee. J. Bioinform. Comput. Biol. 3(1), 1–18 (2005)

Franco, J.: Probabilistic analysis of the pure literal heuristic for the
satisfiability problem. Annal. Oper. Res. 1, 273–289 (1984)

Franco, J.: Results related to threshold phenomena research in sat-
isfiability: Lower bounds. Theor. Comput. Sci. 265, 147–157
(2001)

Franek, F., Karaman, A., Smyth,W.F.: Repetitions in Sturmian strings.
Theor. Comput. Sci. 249(2), 289–303 (2000)

Franek, F., Simpson, R.J. , and Smyth, W.F.: The maximum number
of runs in a string. In: Proc. 14-th AustralianWorkshop on Com-
binatorial Algorithms, pp. 26–35. Curtin University Press, Perth
(2003)

Franek, F., Smyth, W.F., Tang, Y.: Computing all repeats using suffix
arrays. J. Autom. Lang. Comb. 8(4), 579–591 (2003)

Frank, A.: Packing paths, cuts, and circuits – a survey. In: Korte, B.,
Lovász, L., Prömel H.J., Schrijver A. (eds.) Paths, Flows and VLSI-
Layout, pp. 49–100. Springer, Berlin (1990)

Frank, A., Pevzner, P.: Pepnovo: De novo peptide sequencing
via probabilistic network modeling. Anal. Chem. 77, 964–973
(2005)

Fraser, K., Harris, T.: Concurrent programming without locks.
http://www.cl.cam.ac.uk/netos/papers/
2004-cpwl-submission.pdf (2004)

Frederickson, G., Lynch, N.: The impact of synchronous communi-
cation on the problem of electing a leader in a ring. In: Proc.
of the 16th Annual ACM Symposium on Theory of Computing,
pp. 493–503. ACM, USA (1984)

Frederickson, G.N.: A data structure for dynamically maintaining
rooted trees. J. Algorithms 24(1), 37–65 (1997)

Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. SIAM J. Comput.
26(2), 484–538 (1997)

Frederickson, G.N.: Data structures for on-line update of minimum
spanning trees, with applications. SIAM J. Comput. 14(4), 781–
798 (1985)

Frederickson, G.N., JáJá, J.: On the relationship between the bi-
connectivity augmentation and Traveling Salesman Problem.
Theor. Comput. Sci. 19(2), 189–201 (1982)

Frederickson, G.N., Srinivas, M.A.: Algorithms and data structures
for an expanded family of matroid intersection problems.
SIAM. J. Comput. 18, 112–138 (1989)

Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM34(3), 596–615 (1987)

Fredman, M.L.: New bounds on the complexity of the shortest path
problem. SIAM J. Comput. 5(1), 83–89 (1976)

Fredman, M.L.: New bounds on the complexity of the shortest path
problems. SIAM J. Comp. 5(1), 87–89 (1976)

Fredman, M.L.: Two applications of a probabilistic search tech-
nique: sorting X + Y and building balanced search trees. Proc.
of the 7th ACM STOC, pp. 240–244 (1975)

Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with
O(1) worst case access time. J. Assoc. Comput. Mach. 31(3),
538–544 (1984)

Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic
data structures. In: Proc. 21st ACM Symposium on Theory of
Computing (STOC), 1989, pp. 345–354

Fredman, M.L., Willard, D.E.: Surpassing the information theoretic
bound with fusion trees. J. Comput. Syst. Sci. 47(3), 424–436
(1993). See also STOC’90

Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. J. Comput. Syst.
Sci. 48(3), 533–551 (1994). See also FOCS’90

Fredriksson, K., Grabowski, S.: Practical and optimal string match-
ing. In: Proceedings of SPIRE’2005. LNCS, vol. 3772, pp. 374–
385. Springer, Berlin (2005)

Fredriksson, K., Mäkinen, V., Navarro, G.: Rotation and lighting in-
variant template matching. In: Proceedings of the 6th Latin
American Symposium on Theoretical Informatics (LATIN’04).
LNCS, pp. 39–48 (2004)

Fredriksson, K., Mozgovoy, M.: Efficient parameterized string
matching. Inf. Process. Lett. 100(3), 91–96 (2006)

Fredriksson, K., Navarro, G.: Average-optimal single and multiple
approximate string matching. ACM J. Exp. Algorithms 9(1.4)
(2004)

Fredriksson, K., Navarro, G., Ukkonen, E.: Faster than FFT: Rota-
tion invariant combinatorial template matching. In: Pandalai,
S. (ed.) Recent Research Developments in Pattern Recognition,
vol. II, pp. 75–112. Transworld Research Network, Trivandrum,
India (2002)

Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and fast
approximate two dimensional pattern matching allowing ro-
tations. In: Proceedings of the 13th Annual Symposium on
Combinatorial Pattern Matching (CPM 2002). LNCS, vol. 2373,
pp. 235–248 (2002)

Fredriksson, K., Navarro, G., Ukkonen, E.: Sequential and Indexed
Two-Dimensional Combinatorial Template Matching Allowing
Rotations. Theor. Comput. Sci. 347(1–2), 239–275 (2005)

Fredriksson, K., Ukkonen, E.: A rotation invariant filter for two-
dimensional string matching. In: Proc. 9th Annual Symposium
on Combinatorial Pattern Matching (CPM). LNCS, vol. 1448,
pp. 118–125. Springer, Berlin (1998)

Fredriksson, K., Ukkonen, E.: Combinatorial methods for approxi-
mate pattern matching under rotations and translations in 3D
arrays. In: Proc. 7th International Symposiumon String Process-
ing and Information Retrieval, pp. 96–104. IEEE Computer So-
ciety, Washington, DC (2000)

Freedman, M.: P/NP and the quantum field computer. Proc. Natl.
Acad. Sci. USA 95, 98–101 (1998)

http://www.cl.cam.ac.uk/netos/papers/2004-cpwl-submission.pdf
http://www.cl.cam.ac.uk/netos/papers/2004-cpwl-submission.pdf

Bibliography 1097

Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quan-
tum computation. Mathematical challenges of the 21st cen-
tury. (Los Angeles, CA, 2000). Bull. Amer. Math. Soc. (N.S.)40(1),
31–38 (2003)

Freedman, M.H., Kitaev, A., Wang, Z.: A modular Functor which
is universal for quantum computation. Commun. Math. Phys.
227(3), 605–622 (2002)

Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field
theories by quantum computers. Commun. Math. Phys. 227,
587–603 (2002)

Freedman, M.J., Freudenthal, E., Mazières, D.: Democratizing
content publication with coral. In: Proceedings of the 1st
USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI ’04), March 2004

Freedman, M.J., Mazières, D.: Sloppy hashing and self-organizing
clusters. In: Proceedings of the 2nd Intl. Workshop on Peer-to-
Peer Systems (IPTPS ’03), February 2003

Freivalds, R.: Fast probabilistic algorithms. In: Proceedings of the
8th Symposium on Mathematical Foundations of Computer
Science, pp. 57–69, Olomouc, Czechoslovakia, 3–7 September
1979

Freivalds, R., Kinber, E., Smith, C.H.: On the Intrinsic Complexity of
Learning. Inform. Comput. 118(2), 208–226 (1995)

Freivalds, R., Kinber, E., Wiehagen, R.: How inductive inference
strategies discover their errors. Inform. Comput. 123(1), 64–71
(1995)

Freivalds, R., Smith, C.H.: On the Role of Procrastination in Machine
Learning. Inform. Comput. 107(2), 237–271 (1993)

Freund, A., Karloff, H.: A lower bound of 8/(7 + 1
k�1) on the integral-

ity ratio of the Calinescu–Karloff–Rabani relaxation for Multi-
way Cut. Inf. Process. Lett. 75, 43–50 (2000)

Freund, Y., Schapire, R. E.: Large margin classification using the
perceptron algorithm. In: Proceedings of the Eleventh Annual
Conference on Computational Learning Theory (1998)

Frick, M., Grohe, M.: Deciding first-order properties of locally tree-
decomposable structures. J. ACM 48(6), 1184–1206 (2001)

Friedgut, E.: Sharp thresholds of graph properties, and the k-sat
problem. J. AMS 12, 1017–1054 (1997)

Frieze, A., Jerrum, M.R.: Improved approximation algorithms for
MAX-k-CUT and MAX BISECTION. Algorithmica 18, 61–77
(1997)

Frieze, A., Kannan, R.: The Regularity Lemma and Approximation
Schemes for Dense Problems. In: Proc. 37th IEEE FOCS 1996,
pp. 12–20. IEEE Computer Society Press, Los Alamitos

Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic al-
gorithms for maintaining shortest paths trees. J. Algorithm 34,
351–381 (2000)

Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semi-dynamic al-
gorithms for maintaining single source shortest paths trees. Al-
gorithmica 22, 250–274 (1998)

Frigioni, D., Miller, T., Nanni, U., Zaroliagis, C.D.: An experimental
study of dynamic algorithms for transitive closure. ACM J Exp.
Algorithms 6(9) (2001)

Frigo, M., Johnson, S. G.: FFTW: An adaptive software architecture
for the FFT. In: Proc. IEEE Int’l Conf. Acoustics, Speech, and Sig-
nal Processing, vol. 3, pp. 1381–1384, Seattle, WA (1998)

Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-
oblivious algorithms. In: 40th Annual IEEE Symposium on
Foundations of Computer Science, pp. 285–298. IEEE Com-
puter Society Press, Los Alamitos (1999)

Ftp site of DIMACS implementation challenges, ftp://dimacs.
rutgers.edu/pub/challenge/

Fuchs, B.: On the hardness of range assignment problems. In: Pro-
ceedings of the 6th Italian Conference onAlgorithms andCom-
plexity (CIAC), pp. 127–138 (2006)

Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C., Peres, A.: Optimal eaves-
dropping in quantum cryptography, I. Information bound and
optimal strategy. Phys. Rev. A 56, 1163–1172 (1997)

Fujii, M., Kasami, T., Ninomiya, K.: Optimal sequencing of two equiv-
alent processors. SIAM J. Comput. 17, 784–789 (1969)

Fujishige, S., Tamura, A.: A Two-Sided Discrete-Concave Market
with Bounded Side Payments: An Approach by Discrete Con-
vex Analysis. Math. Oper. Res. 32, 136–155 (2007)

Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Mining Op-
timized Association Rules for Numeric Attributes. J. Comput.
Syst. Sci. 58, 1–12 (1999)

Fulkerson, D.R., Gross, O.A.: Incidencematrices and interval graphs.
Pac. J. Math. 15(3), 835–855 (1965)

Füredi, Z.: On r-cover-free families. J. Comb. Theory, Series A 73,
172–173 (1996)

Fürer, M., Raghavachari, B.: An NC approximation algorithm for the
minimum-degree spanning tree problem. In: Proceedings of
the 28th Annual Allerton Conference on Communication, Con-
trol and Computing, 1990, pp. 174–281

Fürer, M., Raghavachari, B.: Approximating the minimum degree
spanning tree to within one from the optimal degree. In: Pro-
ceedings of the Third Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 1992), 1992, pp. 317–324

Fürer, M., Raghavachari, B.: Approximating the minimum-degree
Steiner tree to within one of optimal. J. Algorithms 17(3), 409–
423 (1994)

Furst, M., Jackson, J., Smith, S.: Improved learning of AC0 functions.
In: Proceedings of the Fourth Annual Workshop on Computa-
tional Learning Theory, pp. 317–325, Santa Cruz, (1991)

Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and the polynomial time
hierarchy. Math. Syst. Theor. 17(1), 13–27 (1984)

Gabow, H.: Data structures for weighted matching and nearest
common ancestors with linking. In: Symp. on Discrete Algo-
rithms, 1990, pp. 434–443

Gabow, H.N.: A matroid approach to finding edge connectivity and
packing arborescences. J. Comput. Syst. Sci. 50, 259–273 (1995)

Gabow, H.N.: An almost linear time algorithm for two processors
scheduling. J. ACM 29(3), 766–780 (1982)

Gabow, H.N.: An ear decomposition approach to approximating
the smallest 3-edge connected spanning subgraph of a multi-
graph. SIAM J. Discret. Math. 18(1), 41–70 (2004)

Gabow, H.N.: Better performance bounds for finding the smallest k-
edge connected spanning subgraph of amultigraph. In: SODA,
2003, pp. 460–469

Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and Related Tech-
niques for Geometry Problems. In: STOC 1984, pp. 135–143

Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms
for finding minimum spanning trees in undirected and di-
rected graphs. Combinatorica 6, 109–122 (1986)

Gabow, H.N., Goemans, M.X., Williamson, D.P.: An efficient approx-
imation algorithm for the survivable network design problem.
Math. Program. Ser. B 82(1–2), 13–40 (1998)

Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general
graph matching problems. J. ACM 38(4), 815–853 (1991)

Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic
variation analysis. Syst. Zool. 18, 259–278 (1969)

ftp://dimacs.rutgers.edu/pub/challenge/
ftp://dimacs.rutgers.edu/pub/challenge/

1098 Bibliography

Gafni, E., Bertsekas, D.: Dynamic control of session input rates in
communication networks. IEEE Trans. Autom. Control 29(11),
1009–1016 (1984)

Gafni, E., Bertsekas, D.P.: Distributed algorithms for generating
loop-free routes in networks with frequently changing topol-
ogy. IEEE Trans. Commun. 29(1), 11–18 (1981)

Gafni, E., Guerraoui, R., Pochon, B.: From a Static Impossibility to an
Adaptive Lower Bound: The Complexity of Early Deciding Set
Agreement. In: Proc. 37th ACM Symposium on Theory of Com-
puting (STOC 2005), pp. 714–722. ACM Press, New York (2005)

Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable.
SIAM J. Comput. 28(3), 970–983 (1999)

Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Renaming
is Weaker than Set Agreement. In: Proc. 20th Int’l Symposium
on Distributed Computing (DISC’06). LNCS, vol. 4167, pp. 329–
338. Springer, Berlin (2006)

Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: The price of
anarchy for polynomial social cost. Theor. Comput. Sci. 369(1-
3), 116–135 (2006)

Gairing, M., Luecking, T., Mavronicolas, M., Monien, B.: The price of
anarchy for restricted parallel links. Parallel Process. Lett. 16,
117–131 (2006) Preliminary version appeared in STOC 2004

Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable flow in
games with player specific linear latency functions. In: Proc. of
the 33rd Int. Col. on Aut., Lang. and Progr. (ICALP ’06). LNCS,
pp. 501–512. Springer, Venice (2006)

Gal, S.: Minimax solutions for linear search problems. SIAM J. Appl.
Math. 27, 17–30 (1974)

Gal, S.: Search Games, pp. 109–115, 137–151, 189–195. Academic
Press, New York (1980)

Galambos, G., Woeginger, G.J.: Online bin packing – a restricted sur-
vey. ZORMath. Methods Oper. Res. 42, 25–45 (1995)

Gale, D., Shapley, L.S.: College admissions and the stability of mar-
riage. Am. Math. Mon. 69, 9–15 (1962)

Gale, D., Sotomayor, M.: Some remarks on the stable matching
problem. Discret. Appl. Math. 11, 223–232 (1985)

Galil, Z., Giancarlo, R.: Speeding up dynamic programming with ap-
plications to molecular biology. Theor. Comput. Sci. 64, 107–
118 (1989)

Galil, Z., Italiano, G. F.: Fully dynamic algorithms for 2-edge-connec-
tivity. SIAM J. Comput. 21, 1047–1069 (1992)

Galil, Z., Italiano, G.F.: Maintaining the 3-edge-connected compo-
nents of a graph on-line. SIAM J. Comput. 22, 11–28 (1993)

Galil, Z., Italiano, G.F., Sarnak, N.: Fully dynamic planarity testing
with applications. J. ACM 48, 28–91 (1999)

Galil, Z., Park, J.G., Park, K.: Three-dimensional periodicity and its ap-
plication to pattern matching. SIAM J. Discret. Math. 18, 362–
381 (2004)

Galil, Z., Park, K.: Alphabet-independent two-dimensional witness
computation. SIAM. J. Comput. 25(5), 907–935 (1996)

Galil, Z., Seiferas, J.: Time-space optimal stringmatching. J. Comput.
Syst. Sci. 26(3), 280–294 (1983)

Gallager, R.: A perspective on multiaccess communications. IEEE
Trans. Inf. Theor. 31, 124–142 (1985)

Gallager, R.: Low-density parity-check codes. IRE Trans. Inform. The-
ory, IT-8 , pp. 21–28 (1962)

Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Prog. Lang. Sys-
tems 5(1), 66–77 (1983)

Ganapathy, G., Warnow, T.J.: Approximating the complement of
themaximumcompatible subset of leaves of k trees. In: Proc. of

the 5th International Workshop on Approximation Algorithms
for Combinatorial Optimization (APPROX’02), LCNS, vol. 2462,
pp. 122–134., Springer, Berlin (2002)

Ganapathy, G., Warnow, T.J.: Finding a maximum compatible tree
for a bounded number of trees with bounded degree is solv-
able in polynomial time. In: Gascuel, O., Moret, B.M.E. (eds.)
Proc. of the 1st InternationalWorkshop on Algorithms in Bioin-
formatics (WABI’01), pp. 156–163 (2001)

Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent
rounding and its applications to approximation algorithms.
J. ACM 53(3), 324–360 (2006)

Gandhi, R., Parthasarathy, S.: Distributed Algorithms for Coloring
and Connected Domination in Wireless Ad Hoc Networks. In:
Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), pp. 447–459 (2004)

Gao, J., Guibas, L., Hershberger, J., Zhang, L., Zhu, A.: Geometric
Spanner for Routing in Mobile Networks. In: Proc. 2nd ACM
Int. Symposium on Mobile Ad-Hoc Networking and Comput-
ing (MobiHoc), Long Beach, CA, USA, October 2001

Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Discrete mo-
bile centers. Discrete Comput. Geom. 30, 45–63 (2003)

Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric
spanners for routing inmobile networks. IEEE J. Sel. Areas Com-
mun. Wirel. Ad Hoc Netw. (J-SAC), 23(1), 174–185 (2005)

Gao, J., Guibas, L.J., Nguyen, A.: Deformable spanners and ap-
plications. In: Proceedings of the 20th ACM Symposium on
Computational Geometry, pp. 190–199, New York, 9–11 June
2004

Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-
disk graph metric and its applications. In: Proc. of 35th ACM
Symposiumon Theory of Computing (STOC’03), 2003, pp. 483–
492

Gao, Y., Wong, D.F.: Wire-sizing for delay minimization and ringing
control using transmission linemodel. In: Proc. Conf. on Design
Automation and Test in Europe, pp. 512–516. ACM, New York
(2000)

Garay, J.A.,Moses, Y.: Fully Polynomial Byzantine Agreement for n >
3t Processors in t + 1 Rounds. SIAM J. Comput. 27(1), 247–290
(1998)

Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed
system. J. ACM 32, 841–860 (1985)

García, Y.J., López, M.A., Leutenegger, S.T.: A greedy algorithm for
bulk loading R-trees. In: Proc. 6th ACM Symposium on Ad-
vances in GIS, 1998, pp. 163–164

Gardener, M.K.: Probabilistic Analysis and Scheduling of Critical Soft
Real-Time Systems. Ph. D. thesis, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign (1999)

Gardenfors, P.: Match Making: assignments based on bilateral pref-
erences. Behav. Sci. 20, 166–173 (1975)

Gardner, P.P., Giegerich, R.: A comprehensive comparison of com-
parative RNA structure prediction approaches. BMC Bioinfor-
matics 30, 140 (2004)

Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-
complete graph problems. Theor. Comput. Sci. 1, 237–267
(1976)

Garey, M., Johnson, D.S.: Computers and Intractability. W. H. Free-
man, San Francisco (1979)

Garey, M.R., Graham, R.L., Johnson, D.S.: Some NP-complete geo-
metric problems. In: Proceedings of 8th Annual ACM Sympo-
sium on Theory of Computing (STOC ’76), pp. 10–22. Associa-
tion for Computing Machinery, New York (1976)

Bibliography 1099

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, New York (1979)

Garg, N., Könemann., J.: Faster and simpler algorithms for mul-
ticommodity flow and other fractional packing problems. In:
Proceedings of the 39th IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 300–309. (1998)

Garg, N., Kumar, A.: Better algorithms for minimizing average flow-
time on related machines. In: Proceesings of ICALP, pp. 181–
190 (2006)

Garg, N., Kumar, A.: Minimizing average flow time on related ma-
chines. In: ACM Symposium on Theory of Compuring (STOC),
pp. 730–738 (2006)

Garg, N., Vazirani, V., Yannakakis, M.: Primal-Dual ApproximationAl-
gorithms for Integral Flow and Multicut in Trees. Algorithmica
18(1), 3–20 (1997). Preliminary version appeared in Proc. ICALP
1993

Garg, N., Vazirani, V.V., Yannakakis, M.: Approximatemax-flow min-
(multi)cut theorems and their applications. SIAM Comput. J.,
25(2), 235–251. (1996)

Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node
weighted graphs. J. Algorithms 50(1), 49–61 (2004). Prelimi-
nary version in ICALP 1994

Garg, N., Vempala, S., Singla, A.: Improved approximation algo-
rithms for biconnected subgraphs via better lower bounding
techniques. In: SODA, 1993, pp. 103–111

Garg, R., Kapoor, S.: Auction algorithms for market equilibrium, In:
Proceedings of STOC’04, pp. 511–518. ACM, Chicago (2004)

Garnerone, S., Marzuoli, A., Rasetti, M.: An efficient quantum
algorithm for colored Jones polynomials arXiv.org:quant-
ph/0606167 (2006)

Gascuel, O.McKenzie, A.: Performance Analysis of Hierarchical Clus-
tering Algorithms. J. Classif. 21, 3–18 (2004)

Gascuel, O.: BIONJ: an Improved Version of the NJ Algorithm Based
on a Simple Model of Sequence Data. Mol. Biol. Evol. 14, 685–
695 (1997)

Gascuel, O., Steel, M.: Neighbor-Joining Revealed. Mol. Biol. Evol.
23, 1997–2000 (2006)

Gąsieniec, L., Jansson, J., Lingas, A.: Efficient approximation algo-
rithms for the hamming center problem. In: Proc. 10th ACM-
SIAM Symp. on Discrete Algorithms., pp. 135–S906. (1999)

Gąsieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient al-
gorithms for Lempel–Ziv encoding. In: Proc. 5th Scandinavian
Workshop on Algorithm Theory (SWAT’96). LNCS, vol. 1097,
pp. 392–403 (1996)

Gasieniec, L., Kranakis, E., Krizanc, D., Pelc, A.: Minimizing Conges-
tion of Layouts for ATMNetworkswith Faulty Links. In: Penczek,
W., Szalas, A. (eds.) Proceedings of the 21st International Sym-
posium on Mathematical Foundations of Computer Science.
Lecture Notes in Computer Science, vol. 1113, pp. 372–381.
Springer, Berlin (1996)

Ga̧sieniec, L., Pelc, A., Peleg, D.: The Wakeup Problem in Syn-
chronous Broadcast Systems (Extended Abstract). In: Proc. of
the 19th ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 113–121 (2000)

Gasieniec, L., Su, C., Wong, P.W.H., Xin, Q.: Routing via single-source
and multiple-source queries in static sensor networks. J. Dis-
cret. Algorithm 5(1), 1–11 (2007). A preliminary version of the
paper appeared in IPDPS’2005

Geary, R., Raman, R., Raman, V.: Succinct ordinal trees with level-
ancestor queries. In: Proc. 15th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 1–10. New Orleans, USA (2004)

Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal
representation for balanced parentheses. Theor. Comput. Sci.
368(3), 231–246 (2006)

Geffert, V.: Translation of binary regular expressions into nondeter-
ministic "-free automata withO(n log n) transitions. J. Comput.
Syst. Sci. 66(3), 451–472 (2003)

Geiger, L.C.D., Gupta, A., Vlontzos, J.: Dynamic programming for de-
tecting, tracking andmatching elastic contours. IEEE Trans. On
Pattern Analysis and Machine Intelligence (1995)

Gelfand, Y., Rodriguez, A., Benson, G.: TRDB – The Tandem Repeats
Database. Nucl. Acids Res. 35(suppl. 1), D80–D87 (2007)

Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-
testing/correcting for polynomials and for approximate func-
tions. In: Proceedings of the Twenty-Third Annual ACM Sym-
posium on Theory of Computing, pp. 32–42. ACM, New York
(1991)

Gentile, C.: The robustness of the p-norm algorithms. Mach. Learn.
53(3) (2002)

Gentile, C., Warmuth, M.K.: Linear hinge loss and average margin.
In: Kearns, M.J., Solla, S.A., Cohn, D.A. (eds.) Advances in neu-
ral information processing systems 11, p. 225–231. MIT Press,
Cambridge (1999)

Georgakopoulos, G.F.: How to splay for log log n-competitiveness.
In: Proc. 4th Int’l Workshop on Experimental and Efficient Algo-
rithms (WEA), pp. 570–579 (2005)

George, A., Liu, J.W.H.: Computer solution of large sparse positive
definite systems. Prentice-Hall Series in Computational Mathe-
matics, Prentice-Hall Inc. Englewood Cliffs (1981)

Gerards, B., Marchetti-Spaccamela, A. (eds.): Proceedings of the 3rd
Workshop on Algorithmic Methods and Models for Optimiza-
tion of Railways (ATMOS’03) 2003. Electronic Notes in Theoret-
ical Computer Science, vol. 92. Elsevier (2004)

Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum com-
putation. Science 275, 350–356 (1997)

Gfeller, B., Vicari, E.: A Randomized Distributed Algorithm for
the Maximal Independent Set Problem in Growth-Bounded
Graphs. In: PODC 2007

Ghao, J., Zhang, L.: Well-Separated Pair Decomposition for the Unit
Disk Graph Metric and its Applications. SIAM J. Comput. 35(1),
151–169 (2005)

Giammarresi D., ItalianoG.F.: Decremental 2- and 3-connectivity on
planar graphs. Algorithmica 16(3), 263–287 (1996)

Giancarlo, R.: A generalization of the suffix tree to square matrices,
with application. SIAM J. Comput. 24, 520–562 (1995)

Giancarlo, R.: An index data structure formatrices, with applications
to fast two-dimensional pattern matching. In: Proceedings of
Workshop on Algorithmand Data Structures, vol. 709, pp. 337–
348. Springer Lect. Notes Comp. Sci. Montréal, Canada (1993)

Giancarlo, R., Grossi, R.: On the construction of classes of suffix trees
for square matrices: Algorithms and applications. Inf. Comput.
130, 151–182 (1996)

Giancarlo, R., Grossi, R.: Suffix tree data structures for matrices.
In: Apostolico, A., Galil, Z. (eds.) Pattern Matching Algorithms,
ch. 11„ pp. 293–340. Oxford University Press, Oxford (1997)

Giancarlo, R., Guaiana, D.: On-line construction of two-dimensional
suffix trees. J. Complex. 15, 72–127 (1999)

Giancarlo, R., Restivo, A., Sciortino, M.: From first principles to the
Burrows andWheeler transform and beyond, via combinatorial
optimization. Theor. Comput. Sci. 387(3):236-248 (2007)

Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy suf-
fix trees. Softw. Pract. Exp. 33, 1035–1049 (2003)

1100 Bibliography

Giesen, J.: Curve reconstruction, the TSP, andMenger’s theorem on
length. Discret. Comput. Geom. 24, 577–603 (2000)

Gifford, D.K.: Weighted voting for replicated data. In: Proceedings
of the 7th ACM Symposium on Operating Systems Principles,
1979, pp. 150–162

Gilbert, A.C., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.: Near-
optimal sparse fourier representations via sampling. In: Pro-
ceedings of the thiry-fourth annual ACMsymposiumon Theory
of computing, pp. 152–161. ACM Press (2002)

Gilbert, A.C., Muthukrishnan, S., Strauss, M.J.: Improved time
bounds for near-optimal sparse fourier representation via sam-
pling. In: Proceedings of SPIE Wavelets XI, San Diego, CA 2005
(2005)

Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch for
all: Fast algorithms for compressed sensing. In: 39th ACM Sym-
posium on Theory of Computing (STOC’07)

Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math.
16, 1–29 (1968)

Gilbert, S., Lynch, N., Shvartsman, A.: Rambo II: rapidly reconfig-
urable atomic memory for dynamic networks. In: Proc. Interna-
tional Conference on Dependable Systems and Networks, pp.
259–268. San Francisco, 22–25 June 2003

Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complex-
ity considerations. Games Econ. Behav. 1, 80–93 (1989)

Gimpel, J.F.: A reduction technique for prime implicant tables. IEEE
Trans. Electron. Comput. 14(4), 535–541 (1965)

Giridhar, A., Kumar, P.R.: Maximizing the Functional Lifetime of Sen-
sor Networks. In: Proceedings of The Fourth International Con-
ference on Information Processing in Sensor Networks, IPSN
’05, UCLA, Los Angeles, April 25–27 2005

Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptogra-
phy. Rev. Mod. Phys. 74, 145–195 (2002)

Gittins, J.C.: Bandit processes and dynamic allocation indices. J. R.
Stat. Soc. Series B, 41(2), 148–177 (1979)

Gittins, J.C., Jones, D.M.: A dynamic allocation index for the se-
quential design experiments. In: Gani, J., Sarkadu, K., Vince, I.
(eds.) Progress in Statistics. EuropeanMeeting of Statisticians I,
pp. 241–266. North Holland, Amsterdam (1974)

Gkantsidis, C., Rodriguez, P.: Network coding for large scale content
distribution. In: IEEE/INFOCOM, 2005

Glazebrook, K., Niño-Mora, J.: Parallel scheduling of multiclass
M/M/m queues: approximate and heavy-traffic optimization of
achievable performance. Oper. Res. 49(4), 609–623 (2001)

Gluick, T.C., Draper, D.E.: Thermodynamics of folding a pseudoknot-
ted mRNA fragment. J. Mol. Biol. 241, 246–262 (1994)

Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv.
16, 1–53 (1961)

Goemans, M., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing
games applied to content distribution in ad-hoc networks. In:
Proceedings of the 5th ACM International Symposium on Mo-
bile Ad Hoc Networking and Computing (MobiHoc), pp. 1020–
1033 (2004)

Goemans, M., Mirrokni, V.S., Vetta, A.: Sink equilibria and conver-
gence. In: 46th Conference on Foundations of Computer Sci-
ence (FOCS), pp. 123–131 (2005)

Goemans, M., Queyranne, M., Schulz, A., Skutella, M., Wang, Y.: Sin-
gle machine scheduling with release dates. SIAM J. Discret.
Math. 15, 165–192 (2002)

Goemans, M.X.: Minimum bounded degree spanning trees. In: Pro-
ceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2006), 2006, pp. 273–282

Goemans M.X., Goldberg A.V., Plotkin S.A., Shmoys D.B., Tar-
dos É., Williamson D.P.: Improved Approximation Algorithms
for Network Design Problems. In: Proceedings of the Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 223–232. (1994)

Goemans, M.X., Skutella, M.: Cooperative Facility Location Games.
J. Algorithms 50, 194–214 (2004)

Goemans, M.X., Williamson, D.P.: A general approximation tech-
nique for constrained forest problems. SIAM J. Comput. 24(2),
296–317 (1995)

Goemans, M.X., Williamson, D.P.: Approximation algorithms for
MAX-3-CUT and other problems via complex semidefinite pro-
gramming. STOC 2001 Special Issue of J. Comput. Syst. Sci. 68,
442–470 (2004)

Goemans, M.X., Williamson, D.P.: Improved approximation al-
gorithms for maximum cut and satisfiability problems us-
ing semidefinite programming. J. ACM 42(6), 1115–1145
(1995)

Goemans, M.X., Williamson, D.P.: New 3/4-approximation algo-
rithms for the maximum satisfiability problem. SIAM J. Discret.
Math. 7, 656–666 (1994)

Goemans, M.X., Williamson, D.P.: The primal-dual method for ap-
proximation algorithms and its application to network design
problems. In: Hochbaum, D. (ed.) Approximation Algorithms
forNP-Hard Problems, Chapter 4, pp. 144–191. PWS Publish-
ing Company, Boston (1996)

Goerdt, A.: A threshold for unsatisfiability. J. Comput. Syst. Sci. 33,
469–486 (1996)

Goerdt, A.: Random regular graphs with edge faults: Expansion
through cores. Theor. Comput. Sci. 264(1), 91–125 (2001)

Goerdt, A.: The giant component threshold for random regu-
lar graphs with edge faults. In: Proceedings of Mathematical
Foundations of Computer Science ’97 (MFCS’97), pp. 279–288.
(1997)

Gold, E.M.: Language identification in the limit. Inform. Control
10(5), 447–474 (1967)

Goldberg, A.: Selecting problems for algorithm evaluation. In:
Proc. 3rdWorkshop on Algorithm Engineering (WAE’99). LNCS,
vol. 1668. London, United Kingdom, July 19–21, pp. 1–11
(1999)

Goldberg, A., Kaplan, H., Werneck, R.: Better landmarks within
reach. In: 9th DIMACS Implementation Challenge Workshop:
Shortest Paths. DIMACS Center, Piscataway, NJ, 13–14 Nov
2006

Goldberg, A.V. Hartline, J.D.: Envy-free auctions for digital goods.
In: Proceedings of the 4th ACMConference on Electronic Com-
merce (EC-03), New York, 9–12 June 2003, pp. 29–35. ACM
Press, New York (2003)

Goldberg, A.V.: AVG Lab. http://www.avglab.com/andrew/
Goldberg, A.V.: Scaling algorithms for the shortest path problem.

SIAM J. Comput. 21, 140–150 (1992)
Goldberg, A.V.: Scaling algorithms for the shortest paths problem.

SIAM J. Comput. 24(3), 494–504 (1995)
Goldberg, A.V.: Shortest path algorithms: Engineering aspects. In:

Proc. 12th Int’l Symp. on Algorithms and Computation (ISAAC).
LNCS, vol. 2223, pp. 502–513. Springer, Berlin (2001)

Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E.: Use of Dynamic Trees
in a Network Simplex Algorithm for the Maximum Flow Prob-
lem. Math. Program. 50(3), 277–290 (1991)

Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A*

Search Meets Graph Theory. In: Proc. 16th ACM-SIAM Sympo-

http://www.avglab.com/andrew/

Bibliography 1101

sium on Discrete Algorithms – SODA, pp. 156–165. ACM, New
York and SIAM, Philadelphia (2005)

Goldberg, A.V., Hartline, J.D.: Competitive auctions for multiple
digital goods. In: auf der Heide, F.M. (ed.) Algorithms – ESA
2001, 9th Annual European Symposium, Aarhus, Denmark, 28–
31 Aug 2001. Lecture Notes in Computer Science, vol. 2161,
pp. 416–427. Springer, Berlin (2001)

Goldberg, A.V., Hartline, J.D., Karlin, A.R., Wright, A.: Competitive
auctions. Games Econ. Behav. 55(2), 242–269 (2006)

Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive Auctions and
Digital Goods. In: Proceedings of SODA’01, pp. 735–744. Wash-
ington D.C., 7–9 January 2001

Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions and
digital goods. In: Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-01), New York, 7–9
January 2001, pp. 735–744. ACM Press, New York (2001)

Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A*: efficient point-
to-point shortest path algorithms. In: Proc. 8th Workshop on
Algorithm Engineering and Experiments (ALENEX), 2006

Goldberg, A.V., Radzik, T.: A Heuristic Improvement of the
Bellman�Ford Algorithm. Appl. Math. Lett. 6(3), pp. 3–6 (1993)

Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Barrier. J.
ACM 45(5), 783–797 (1998)

Goldberg, A.V., Tarjan, R.E.: Solvingminimum cost flow problem by
successive approximation. In: Proc. ACM Symposium on the
Theory of Computing, pp. 7–18 (1987). Full paper in: Math.
Oper. Res. 15, 430–466 (1990)

Goldberg, A.V., Tsioutsiouliklis, K.: Cut Tree Algorithms: An Experi-
mental Study. J. Algorithms 38(1), 51–83 (2001)

Goldberg, A.W., Tarjan, R.E.: A NewApproach to theMaximumFlow
Problem. J. SIAM 35, 921–940 (1988)

Goldberg, L.A., Paterson, M., Srinivasan, A., Sweedyk, E.: Better ap-
proximation guarantees for job-shop scheduling. SIAM J. Dis-
cret. Math. 14, 67–92 (2001)

Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes
against physical mapping of DNA. J. Comput. Biol. 2(1), 139–
152 (1995)

Goldman, S., Kearns, M., Schapire, R.: Exact identification of read-
once formulas using fixed points of amplification functions.
SIAM J. Comput. 22(4), 705–726 (1993)

Goldreich, O.: Foundations of Cryptography, vol. 1-2. Cambridge
University Press, UK (2001) (2004)

Goldreich, O.: Foundations of Cryptography, Volumes 1 and 2.
Cambridge University Press, Cambridge (2001), (2004)

Goldreich, O.: Foundations of Cryptography: Basic Tools. Cam-
bridge University Press (2001)

Goldreich, O.: The Foundations of Cryptography – Volume 1. Cam-
bridge University Press, Campridge, UK (2001)

Goldreich, O., Levin, L.: A hard-core predicate for all one-way func-
tions. In: Proceedings of the 21st ACM Symposium on Theory
of Computing, pp. 25–32 Seattle, 14–17 May 1989

Goldreich, O., Petrank, E.: The Best of Both Worlds: Guaranteeing
Termination in Fast RandomizedAgreement Protocols. Inf. Pro-
cess. Lett. 36(1), 45–49 (1990)

Goldschlager, L.M., Shaw, R.A., Staples, J.: Themaximum flow prob-
lem is log-space complete for P. Theor. Comput. Sci. 21, 105–
111 (1982)

Goldstein, A.J.: An efficient and constructive algorithm for testing
whether a graph can be embedded in the plane. In: Graph and
Combinatorics Conf. (1963)

Goldwasser, M.H., Kao, M.-Y., Lu, H.-I.: Linear-time algorithms for
computing maximum-density sequence segments with bioin-
formatics applications. J. Comput. Syst. Sci. 70, 128–144 (2005)

Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Ap-
proximation algorithms for data placement on parallel disks.
In: Symposium on Discrete Algorithms, pp. 223–232. Society
for Industrial and AppliedMathematics, Philadelphia (2000)

Golubchik, L., Khuller, S., Kim, Y., Shargorodskaya, S., Wan., Y.: Data
migration on parallel disks. In: 12th Annual European Sympo-
sium on Algorithms (ESA) (2004)

Golumbic, M.C.: Combinatorial Merging. IEEE Trans. Comput. C-25,
1164–1167 (1976)

Golynski, A.: Optimal lower bounds for rank and select indexes. In:
Proc. ICALP 2006, Part I. LNCS, vol. 4051, pp. 370–381 (2006)

Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large
alphabets: a tool for text indexing. In: Proceedings of the 17th
Annual ACM-SIAM SymposiumonDiscrete Algorithms (SODA),
pp. 368–373. ACM, SIAM (2006)

Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Indust.
Appl. Math. 9(4), 551–570 (1961)

Gonnet, G.: Expected length of the longest probe sequence in hash
code searching. J. Assoc. Comput. Mach. 28(2), 289–304 (1981)

Gonnet, G., Baeza-Yates, R., Snider, T.: New indices for text: PAT
trees and PAT arrays. In: Frakes, W.B., Baeza-Yates, R. (eds.) In-
formation Retrieval: Data Structures & Algorithms. pp. 66–82
Prentice-Hall, Englewood Cliffs (1992)

Gonnet, G.H.: Efficient searching of text and pictures. Tech. Report
OED-88-02, University of Waterloo (1988)

González, R., Navarro, G.: Statistical encoding of succinct data
structures. In: Proc. CPM 2006. LNCS, vol. 4009, pp. 294–305.
Springer, Berlin (2006)

Gonzalez, T., Zheng, S.Q.: Bounds for partitioning rectilinear poly-
gons. In: Proc. 1st Symp. on Computational Geometry (1985)

Gonzalez, T., Zheng, S.Q.: Improved bounds for rectangular and
guillotine partitions. J. Symb. Comput. 7, 591–610 (1989)

Gonzalez, T.F.: Handbook of Approximation Algorithms and Meta-
heuristics. Chapman & Hall/CRC Computer & Information Sci-
ence Series (2007)

Gordon, D.: Discrete logarithms in GF(p) using the number field
sieve. SIAM J. Discret. Math. 6(1), 124–139 (1993)

Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating
adversaries for request-answer games. In: Proc. of the 11th
Symposium on Discrete Algorithms. (SODA2000), pp. 564–565
(2000)

Gotoh, O.: An improved algorithm for matching biological se-
quences. J. Mol. Biol. 162, 705–708 (1982)

Gottesman, D.: Class of quantum error-correcting codes saturat-
ing the quantumHamming bound. Phys. Rev. A 54, 1862–1868
(1996)

Gottesman, D.: Stabilizer codes and quantum error correction,
Ph. D. thesis, Caltech. (1997) See also: arXiv preprint quant-
ph/9705052

Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in
AI and nonmonotonic reasoning. Artif. Intell.138, 55–86 (2002)

Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial
intelligence, constraint satisfaction, and database problems.
Comput. J., Special Issue on Parameterized Complexity, Ad-
vanced Access (2007)

Gowland, P., Lester, D.: Asurvey of exact arithmetic implementa-
tions. In: Blank, J., Brattka, V., Hertling, P. (eds.) Computability
and Complexity in Analysis, pp. 30–47. Springer, 4th Interna-

1102 Bibliography

tional Workshop, CCA 2000, Swansea, UK, September 17–19,
(2000), Selected Papers. Lecture Notes in Computer Science,
No. 2064

Grable, D.A., Panconesi, A.: Fast distributed algorithms for Brooks–
Vizing colorings. J. Algorithms 37, 85–120 (2000)

Graefe, G.: B-tree indexes for high update rates. SIGMOD RECORD
35, 39–44 (2006)

Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell
Syst. Techn. J. 45, 1563–1581 (1966)

Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM
J. Appl. Math. 17, 263–269 (1969)

Graham, R.L., Hell, P.: On the history of theminimum spanning tree
problem. Ann. Hist. Comput. 7(1), 43–57 (1985)

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Opti-
mization and approximation in deterministic sequencing and
scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated gen-
eration of search tree algorithms for hard graph modification
problems. Algorithmica 39, 321–347 (2004)

Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data
clustering: Exact algorithms for clique generation. Theor. Com-
put. Syst. 38, 373–392 (2005)

Gramm, J., Niedermeier, R.: Faster exact solutions for Max2Sat. In:
Proceedings of CIAC. LNCS, vol. 1767, pp. 174–186. Springer,
Berlin (2000)

Grandoni, F.: Exact Algorithms for Hard Graph Problems. Ph. D. the-
sis, Università di Roma “Tor Vergata”, Roma, Italy (2004)

Granot, D., Granot, F., Zhu, W.R.: Characterization Sets for the Nu-
cleolus. Int. J. Game Theory 27, 359–374 (1998)

Grantson, M.: Fixed-parameter algorithms and other results for op-
timal partitions. Lecentiate Thesis, Department of Computer
Science, Lund University (2004)

Grantson, M., Borgelt, C., Levcopoulos, C.: A fixed parameter algo-
rithm for minimum weight triangulation: Analysis and experi-
ments. Tech. Rep. 154, Department of Computer Science, Lund
University (2005)

Grantson, M., Borgelt, C., Levcopoulos, C.: Fixed parameter algo-
rithms for the minimum weight triangulation problem. Tech.
Rep. 158, Department of Computer Science, Lund University
(2006)

Grantson, M., Borgelt, C., Levcopoulos, C.: Minimum weight trian-
gulation by cutting out triangles. In: Deng, X., Du, D.-Z. (eds.)
Proceedings of the 16th Annual International Symposium on
Algorithms and Computation (ISAAC). Lecture Notes in Com-
puter Science, vol. 3827, pp. 984–994. Springer, New York
(2005)

Grantson, M., Borgelt, C., Levcopoulos, C.: Minimum Weight Tri-
angulation by Cutting Out Triangles. In: Proceedings 16th
Annual International Symposium on Algorithms and Com-
putation, ISAAC 2005, Sanya, China, pp. 984–994. Lecture
Notes in Computer Science, vol. 3827. Springer, Heidelberg
(2005)

Grantson, M., Levcopoulos, C.: A fixed parameter algorithm for the
minimum number convex partition problem. In: Akiyama, J.,
Kano, M., Tan, X. (eds.) Proceedings of Japanese Conference on
Discrete and Computational Geometry (JCDCG 2004). Lecture
Notes in Computer Science, vol. 3742, pp. 83–94. Springer, New
York (2005)

Graunke, G., Thakkar, S.: Synchronization algorithms for shared-
memory multiprocessors. IEEE Comput. 28(6), 69–69 (1990)

Gray, J.: A Comparison of the Byzantine Agreement Problem
and the Transaction Commit Problem. In: Fault-Tolerant Dis-
tributedComputing [AsilomarWorkshop 1986]. LNCS, vol. 448,
pp. 10–17. Springer, Berlin (1990)

Grebinski, V., Kucherov, G.: Optimal Query Bounds for Reconstruct-
ing a Hamiltonian Cycle in Complete Graphs. Proc. 5th Israeli
Symposium on Theoretical Computer Science, pp. 166–173.
(1997)

Grebinski, V., Kucherov, G.: Reconstructing a Hamiltonian Cycle by
Querying the Graph: Application to DNA Physical Mapping.
Discret. Appl. Math. 88, 147–165 (1998)

Greene, D.H., Yao, F.F.: Finite-resolution computational geometry.
IEEE Found. Comput. Sci. 27, 143–152 (1986)

Griffith, J., Robins, G., Salowe, J.S., Zhang, T.: Closing the gap: Near-
optimal steiner trees in polynomial time. IEEE Transac. Comput.
Aided Des. 13, 1351–1365 (1994)

Griggs, J., Liu, D.: Minimum Span Channel Assignments. In: Recent
Advances in Radio Channel Assignments, Invited Minisympo-
sium, Discrete Mathematics (1998)

Grigoriadis, M.D., Khachiyan, L.G.: Coordination complexity of par-
allel price-directive decomposition. Mathematics of Opera-
tions Research, 21, 321–340. (1996)

Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes for
convex programs with many blocks and coupling constraints.
SIAM J. Optim. 4, 86–107 (1994)

Grigoriev, A., Sviridenko, M., Uetz, M.: Machine scheduling with re-
source dependent processing times. Math. Program. 110(1B),
209–228 (2002)

Grigoriev, D.: Testing Shift-Equivalence of Polynomials by Deter-
ministic, Probabilistic and QuantumMachines. Theor. Comput.
Sci. 180, 217–228 (1997)

Grishman, R., Yangarber, R.: Private Communication. NYU (1995)
Grodstein, J., Lehman, E., Harkness, H., Grundmann, B., Watanabe,

Y.: A delay model for logic synthesis of continuously sized net-
works. In: Proceedings of the 1995 International Conference on
Computer-Aided Design, pp. 458–462. November 1995

Grohe, M.: Local tree-width, excluded minors, and approximation
algorithms. Combinatorica 23(4), 613–632 (2003)

Gromov, M.: Structures Métriques des Variétés Riemanniennes.
Textes Math. CEDIX, vol. 1. F. Nathan, Paris (1981)

Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance,
portable implementation of theMPImessage passing interface
standard. Technical report, Argonne National Laboratory, Ar-
gonne, IL, (1996) www.mcs.anl.gov/mpi/mpich/

Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad
hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–486
(2002)

Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text
indexes. In: Proc. 14th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), Baltimore, 12–14 January, pp. 841–
850 (2003)

Grossi, R., Gupta, A., Vitter J.S.: High-order entropy-compressed text
indexes. In: Farach-Colton, M. (ed) Proceedings of the 14th An-
nual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp.
841–850, Philadelphia (2003)

Grossi, R., Italiano, G.F.: Efficient techniques for maintaining multi-
dimensional keys in linked data structures. In: Proceedings of
the 26th International Colloquium on Automata, Languages
and Programming (ICALP ’99). LNCS, vol. 1644, pp. 372–381.
Springer, Prague (1999)

http://www.mcs.anl.gov/mpi/mpich/

Bibliography 1103

Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM
J. Comput. 35(2), 378–407 (2006)

Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with
applications to text indexing and stringmatching. In: Proceed-
ings of Symposium on Theory of Computing, 2000, pp. 397–
406

Grotschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and
combinatorial optimization. Algorithms and Combinatorics,
vol. 2, 2nd edn. Springer (1993)

Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and
its consequences in combinatorial optimization. Combinator-
ica 1, 169–197 (1981)

Grötschel, M., Monma, C.L., Stoer, M.: Computational results with
a cutting plane algorithm for designing communication net-
works with low-connectivity constraints. Oper. Res. 40(2), 309–
330 (1992)

Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable net-
works. In: Handbooks in Operations Research and Manage-
ment Science, vol. 7, NetworkModels, chapter 10, pp. 617–672.
North-Holland, Amsterdam (1995)

Grover, L.K.: A fast quantum mechanical algorithm for database
search. In: Proceedings of the 28th ACM Symposium on the
Theory of Computing, pp. 212–219, Philadelphia, PA, USA, 22–
24 May 1996

Grover, L.K.: A framework for fast quantummechanical algorithms.
In: Proc. 30th ACM Symp. on Theory of Computing (STOC),
pp. 53–62. Dallas, 23–26 May 1998

Grover, L.K.: Fixed-point quantum search. Phys. Rev. Lett. 95,
150501 (2005)

Grüne, A.: Geometric Dilation and Halving Distance. Ph. D. thesis,
Institut für Informatik I, Universität Bonn (2006)

Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm
for genome rearrangements by reversals and transpositions.
Theor. Comput. Sci. 210, 327–339 (1999)

Gu, Q.P., Tamaki, H.: Branch-width, parse trees, and monadic
second-order logic for matroids. J. Combin. Theor. Ser. B 96,
325–351 (2006)

Gu, Q.P., Tamaki, H.: Optimal branch-decomposition of planar
graphs in O(n3) time. In: Proceedings of the 32nd Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP 2005). Lecture Notes Computer Science, vol. 3580,
pp. 373–384. Springer, Berlin (2005)

Guan, X.Y.: Face traversal routing on edge dynamic graphs. In:
Proceedings of the Nineteenth International Parallel and Dis-
tributed Processing Symposium, Denver, Colorado, April 2005

Gubbala, P., Raghavachari, B.: A 4/3-approximation algorithm for
minimum 3-edge-connectivity. In: Proceedings of the Work-
shop on Algoriths and Data Structures (WADS) August 2007,
pp. 39–51. Halifax (2007)

Gubbala, P., Raghavachari, B.: Approximation algorithms for
the minimum cardinality two-connected spanning subgraph
problem. In: Jünger, M., Kaibel, V. (eds.) IPCO. Lecture Notes
in Computer Science, vol. 3509, pp. 422–436. Springer, Berlin
(2005)

Gudmundsson, J., Levcopoulos, C.: A Parallel Approximation Algo-
rithm for Minimum Weight Triangulation. Nordic J. Comput.
7(1), 32–57 (2000)

Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy al-
gorithms for constructing sparse geometric spanners. SIAM
J. Comput. 31, 1479–1500 (2002)

Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Ap-
proximate distance oracles for geometric graphs. In: Proceed-
ings of the 13th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 828–837. ACM Press, New York (2002)

Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Ap-
proximate distance oracles for geometric spanners, ACMTrans.
Algorithms (2008). To Appear

Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Ap-
proximate distance oracles revisited. In: Proceedings of the
13th International Symposium on Algorithms and Computa-
tion. Lecture Notes in Computer Science, vol. 2518, Berlin, pp.
357–368. Springer, London (2002)

Gudmundsson, J., Narasimhan, G., Smid, M.: Fast pruning of geo-
metric spanners. In: Proceedings of the 22nd Symposium on
Theoretical Aspects of Computer Science. Lecture Notes in
Computer Science, vol. 3404, Berlin, pp. 508–520. Springer,
London (2005)

Guerraoui, R.: Indulgent algorithms. In: Proceedings of the 19th An-
nual ACM Symposium on Principles of Distributed Computing,
Portland, Oregon, USA, pp. 289–297, ACM, July 2000

Guerraoui, R., Herlihy, M., Pochon, B.: A topological treatment of
early-deciding set-agreement. In: OPODIS, pp. 20–35, (2006)

Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contentionman-
agement. In: Proc. 19th Annual International Symposium on
Distributed Computing, 2005

Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transac-
tional contention managers. In: Proc. 24th Annual ACM Sym-
posiumon Principles of DistributedComputing, 2005, pp. 258–
264

Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure de-
tector to boost obstruction freedom. In: Proc. 20th Annual In-
ternational Symposium on Distributed Computing, 2006

Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-
memory computing. Distrib. Comput. 20(3) 165–177 (2007)

Guestrin, C., Koller, D., Parr, R., Venkataraman, S.: Efficient solution
algorithms for factored mdps. J. Artif. Intell. Res. 19, 399–468
(2003)

Guha, S., Khuller, S.: Approximation algorithms for connected dom-
inating sets. Algorithmica 20, 374–387 (1998)

Guha, S., Khuller, S.: Greedy strikes back: Improved facility location
algorithms. In: Proceedings of the 9th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 228–248. SIAM, Philadel-
phia (1998)

Guha, S., Khuller, S.: Greedy strikes back: Improved facility location
algorithms. J. Algorithms 31, 228–248 (1999)

Guha, S., Meyerson, A., Munagala, K.: A constant factor approxi-
mation for the single sink edge installation problem. In: Pro-
ceedings of the 33rd Annual ACM Symposium on Theory
of Computing (STOC), pp. 383–388. ACM Press, New York
(2001)

Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and
network design problems. In: Proceedings of the 41st Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 603–612. IEEE Computer Society, Los Alamitos, CA, USA
(2000)

Guhaa, S., Khuller, S.: Improved methods for approximating node
weighted Steiner trees and connected dominating sets. Inf.
Comput. 150, 57–74 (1999)

Gui, H., Muller, R., Vohra, R.V.: Characterizing dominant strategy
mechanisms withmulti-dimensional types (2004). Working pa-
per

1104 Bibliography

Guibas, L.: Kinetic data structures: A state of the art report. In:
Proc. 3rd Workshop on Algorithmic Foundations of Robotics,
pp. 191–209 (1998)

Guibas, L.: Modeling Motion. In: Goodman, J., O’Rourke, J.: (eds),
Handbook of Discrete and Computational Geometry. CRC
Press, 2nd ed. (2004)

Guibas, L., Ngyuen, A., Russel, D., Zhang, L.: Collision detection for
deforming necklaces. In: Proc. 18th ACM Symposium on Com-
putational Geometry, 2002, pp. 33–42

Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building robust
algorithms from imprecise computations. ACM Symp Comput.
Geometr. 5, 208–217 (1989)

Guillemot, S., Berry, V.: Fixed-parameter tractability of the maxi-
mum agreement supertrees. In: Proceedings of the 18th An-
nual Symposium on Combinatorial Pattern Matching (CPM
2007). Lecture Notes in Computer Science. Springer, (2007)

Guillemot, S., Nicolas, F.: Solving the maximum agreement sub-
tree and the maximum compatible tree problems on many
bounded degree trees. In: Lewenshtein, M., Valiente, G. (eds.)
Proc. of the 17th Combinatorial Pattern Matching Symposium
(CPM’06). LNCS, vol. 4009, pp. 165–176. Springer, Berlin (2006)

Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S.,
Stoica, I.: The impact of DHT routing geometry on resilience
and proximity. In: Proceedings of the 2003 conference on Ap-
plications, technologies, architectures, and protocols for com-
puter communications, pp. 381–394. ACM Press (2003)

Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Za-
horjan, J.: Measurement, modeling, and analysis of a peer-to-
peer file-sharing workload. In: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pp. 314–
329. ACM Press (2003)

Gunopolous, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H.,
Sharma, R.S.: Discovering All Most Specific Sentences. ACM
Trans. Database Syst. 28, 140–174 (2003)

Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.:
Compression-based fixed-parameter algorithms for Feedback
Vertex Set and Edge Bipartization. J. Comp. Syst. Sci. 72(8),
1386–1396 (2006)

Guo, J., Niedermeier, R.: Invitation to data reduction and problem
kernelization. ACM SIGACT News 38(1), 31–45 (2007)

Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard prob-
lems on planar graphs. In: Proc. 34th ICALP. LNCS, vol. 4596,
pp. 375–386. Springer, Berlin (2007)

Guo, J., Niedermeier, R., Wernicke, S.: Fixed-parameter tractability
results for full-degree spanning tree and its dual. In: Proc. 2nd
IWPEC. LNCS, vol. 4196, pp. 203–214. Springer, Berlin (2006)

Guo, P.N., Cheng, C.K., Yoshimura, T.: An O-tree representation of
non-slicing floorplan and its applications. In: 36th DAC., June
1998, pp. 268–273

Guo, W., Liu, Z., Wu, G.: An Energy-Balanced Transmission Scheme
for Sensor Networks. In: 1st ACM International Conference on
Embedded Networked Sensor Systems (ACM SenSys 2003),
Poster Session, Los Angeles, CA, November 2003

Gupta, A.: Formal Hardware VerificationMethods: A Survey. Formal
Method Syst. Des. 1, 151–238 (1993)

Gupta, A.: Improved bandwidth approximation for trees and
chordal graphs. J. Algorithms 40(1), 24–36 (2001)

Gupta, A.: Steiner points in treemetrics don’t (really) help. In: SODA
’01: Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, Philadelphia, PA, USA, Society for In-
dustrial and AppliedMathematics, pp. 220–227. (2001)

Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network design. In:
SODA ’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp. 970–979. ACM Press,
New York (2006)

Gupta, A., Hon, W.K., Shah, R., Vitter, J.S.: Compressed data struc-
tures: Dictionaries and data-aware measures. In: Storer, J.A.,
Cohn, M. (eds) Proc. 16th IEEE Data Compression Conference,
pp. 213–222, IEEE, Snowbird, Utah, March 2006 Computer So-
ciety, Los Alamitos, CA

Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via
cost-sharing: a simple approximation algorithm for the mul-
ticommodity rent-or-buy problem. In: Proc. of the 44th An-
nual IEEE Symposium on Foundations of Computer Science,
pp. 606–617., IEEE Computer Society, Washington (2003)

Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via
cost-sharing: simpler and better approximation algorithms for
network design. J. ACM 54(3), Article 11 (2007)

Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approxi-
mation algorithms for stochastic optimization. In: Proceedings
of the 36st Annual ACM Symposium on Theory of Computing
(STOC), pp. 417–426. ACM, New York (2004)

Gupta, A., Talwar, K.: Approximating unique games. In: SODA ’06:
Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, New York, NY, USA, pp. 99–106. ACM
Press, New York (2006)

Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE
Trans. Inf. Theory, IT-46(2), 388–404 (2000)

Guruswami, V.: Algorithmic Results in List Decoding. In: Founda-
tions and Trends in Theoretical Computer Science, vol. 2, issue
2, NOW publishers, Hanover (2007)

Guruswami, V.: List Decoding of Error-Correcting Codes. Lecture
Notes in Computer Science, vol. 3282. Springer, Berlin (2004)

Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes
with near-optimal rate. IEEE Trans. Inf. Theory 51(10), 3393–
3400 (2005)

Guruswami, V., Khanna, S.: On the hardness of 4-coloring a 3-col-
orable graph. In: Proceedings of the 15th annual IEEE Confer-
ence on Computational Complexity (2000) pp. 188–197.

Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, F.B., Yan-
nakakis, M.: Near-Optimal Hardness Results and Approxima-
tion Algorithms for Edge-Disjoint Paths and Related Problems.
J. CSS 67, 473–496 (2003). Preliminary version in Proc. of ACM
STOC 1999

Guruswami, V., Patthak, A.: Correlated Algebraic-Geometric codes:
Improved list decoding over bounded alphabets. In: Proceed-
ings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 227–236, Berkley, October 2006

Guruswami, V., Raghavendra, P.: Hardness of Learning Halfspaces
with Noise. In: Proceedings of FOCS, pp. 543–552 (2006)

Guruswami, V., Rudra, A.: Explicit capacity-achieving list-decodable
codes. In: Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pp. 1–10. Seattle, May 2006

Guruswami, V., Rudra, A.: Explicit codes achieving list decoding ca-
pacity: Error-correction with optimal redundancy. IEEE Trans.
Inform. Theor. 54(1), 135–150 (2008)

Guruswami, V., Rudra, A.: Limits to list decoding Reed–Solomon
codes. IEEE Trans. Inf. Theory. 52(8), 3642–3649 (2006)

Guruswami, V., Sudan, M.: Improved decoding of Reed–Solomon
and algebraic-geometric codes. IEEE Trans. Inf. Theory. 45(6),
1757–1767 (1999)

Bibliography 1105

Guruswami, V., Vardy A.: Maximum Likelihood Decoding of Reed–
Solomon codes is NP-hard. IEEE Trans. Inf. Theory. 51(7), 2249–
2256 (2005)

Gusfield, D. Orzack, S.H.: Haplotype inference. In: Aluru S. (ed)
Handbook of Computational Molecular Biology, pp. 1–28.
Champman and Hall/CRC-press, Boca Raton (2005)

Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cam-
bridge University Press, Cambridge (1997)

Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Com-
puter Science and Computational Biology. Cambridge Univer-
sity Press, New York (1997)

Gusfield, D.: Efficient methods for multiple sequence alignment
with guaranteed error bounds. Bull. Math. Biol. 55(1), 141–154
(1993)

Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual frame-
work and efficient solutions. In: Myers, G., Hannenhalli, S., Is-
trail, S., Pevzner, P., Waterman, M. (eds.) Proceedings of the
Annual International Conference on Computational Molecular
Biology (RECOMB), New York, 2002, pp. 166–175. ACM Press
(2002)

Gusfield, D.: The structure of the stable roommate problem: ef-
ficient representation and enumeration of all stable assign-
ments. SIAM J. Comput. 17(4), 742–769 (1988)

Gusfield, D.: Three fast algorithms for four problems in stable mar-
riage. SIAM J. Comput. 16(1), 111–128 (1987)

Gusfield, D.: Very Simple Methods for All Pairs Network Flow Anal-
ysis. SIAM J. Comput. 19(1), 143–155 (1990)

Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phy-
logenetic networks with constrained recombination. In: Proc.
of Computational Systems Bioinformatics (CSB2003), 2003
pp. 363–374

Gusfield, D., Irving, R.W.: The Stable Marriage Problem. Structure
and Algorithms. MIT Press, Cambridge (1989)

Gusfield, D.and Stoye, J.: Linear time algorithms for finding and rep-
resenting all the tandem repeats in a string. J. Comput. Syst. Sci.
69(4), 525–546 (2004)

Gusfield, D.M.: Efficient algorithms for inferring evolutionary trees.
Networks 21, 19–28 (1991)

Gutman, R.: Reach-based Routing: A New Approach to Shortest
Path Algorithms Optimized for Road Networks. In: Algorithm
Engineering and Experiments – ALENEX (SIAM, 2004), pp. 100–
111. SIAM, Philadelphia (2004)

Guttman, A.: R-trees: A dynamic index structure for spatial search-
ing. In: Proc. SIGMOD International Conference on Manage-
ment of Data, 1984, pp. 47–57

Gyárfás, A., Lehel, J.: Effective on-line coloring of P5-free graphs.
Combinatorica 11(2), 181–184 (1991)

Hadzilacos, V., Toueg, S.: Fault-tolerant broadcasts and related
problems. In: Mullender, S. (ed.) Distributed Systems, 2nd edn.,
pp. 97–146. ACM Press Books, Addison-Wesley (1993). Ex-
tended version appeared as Cornell Univ. TR 94-1425

Hagen, L., Kahng, A.B.: Fast Spectral Methods for Ratio Cut Partition-
ing and Clustering. In: Proc. IEEE Int. Conf. on Computer-Aided
Design, November 1991, pp. 10–13

Hagerup, T.: Improved shortest paths on the word RAM. In: Proc.
27th Int’l Colloq. on Automata, Languages, and Programming
(ICALP). LNCS vol. 1853, pp. 61–72. Springer, Berlin (2000)

Hahne, E.: Round Robin Scheduling for Max-min Fairness in
Data Networks. IEEE J. Sel. Areas Commun. 9(7), 1024–1039
(1991)

Hajiaghayi, M., Kleinberg, R., Parkes, D.: Adaptive limited-supply on-
line auctions. In: Proc. of the 6th ACMConference on Electronic
Commerce (EC’04), 2004

Hajiaghayi, M., Mahdian, M., Mirrokni, V.S.: The facility location
problemwith general cost functions. Netw. 42(1), 42–47 (2003)

Hajiaghayi, M.T., Kim, J.H., Leighton, T., Räcke, H.: Oblivious rout-
ing in directed graphs with random demands. In: Proceedings
of the 37th Annual ACM Symposium on Theory of Computing,
2005, pp. 193–201

Hajiaghayi, M.T., Kleinberg, R.D., Leighton, T., Räcke, H.: Oblivious
routing on node-capacitated and directed graphs. In: Proceed-
ings of the 16th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2005, pp. 782–790

Hakimi, S.L., Yau, S.S.: Distancematrix of a graph and its realizability.
Quarterly Appl. Math. 22, 305–317 (1964)

Haldar, S., Vidyasankar, K.: Constructing 1-writer multireader mul-
tivalued atomic variables from regular variables. J. ACM 42(1),
186–203 (1995)

Haldar, S., Vitanyi, P.: Bounded concurrent timestamp systems us-
ing vector clocks. J. Assoc. Comp. Mach. 49(1), 101–126 (2002)

Hale, W. K.: Frequency assignment: Theory and applications. Proc.
IEEE. 68(12), 1497–1513 (1980)

Hale, W.K.: Frequency Assignment: Theory and Applications. In:
Proceedings of the IEEE, vol. 68, number 12, pp. 1497-1514
(1980)

Hales, L., Hallgren, S.: An improved quantum Fourier transform
algorithm and applications. In: Proceedings of the 41st An-
nual IEEE Symposium on Foundations of Computer Science,
pp. 515–525 (2000)

Hall, J., Hartline, J., Karlin, A., Saia, J., Wilkes, J.: On algorithms for
efficient data migration. In: SODA, pp. 620–629. Society for In-
dustrial and AppliedMathematics, Philadelphia (2001)

Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to mini-
mize average completion time: off-line and on-line approxima-
tion algorithms. Math. Oper. Res. 22(3), 513–544 (1997)

Halldorsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Is-
trail, S.: A survey of computational methods for determining
haplotypes. In: Computationalmethods for SNP and haplotype
inference: DIMACS/RECOMB satellite workshop. Lecture Notes
in Computer Science, vol. 2983, pp. 26–47. Springer, Berlin
(2004)

Halldorsson, M.: A still better performance guarantee for approxi-
mate graph coloring. Inf. Process. Lett. 45, 19–23 (1993)

Halldorsson,M., Karlsson, R.: Strip graphs: Recognition and schedul-
ing. In: Proc. 32nd International Workshop on Graph-Theo-
retic Concepts in Computer Science (WG). Lecture Notes in
Computer Science, vol. 4271, pp. 137–146. Springer, Berlin
(2006)

Halldórsson, M.M., Irving, R.W., Iwama, K., Manlove, D.F., Miyazaki,
S., Morita, Y., Scott, S.: Approximability results for stable mar-
riage problems with ties. Theor. Comput. Sci. 306, 431–447
(2003)

Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Im-
proved approximation of the stable marriage problem. Proc.
ESA 2003. LNCS 2832, pp. 266–277. (2003)

Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Random-
ized approximation of the stable marriage problem. Theor.
Comput. Sci. 325(3), 439–465 (2004)

Hallgren, S.: Fast quantum algorithms for computing the unit
group and class group of a number field. In: Proceedings of the
37th ACM Symposium on Theory of Computing. (2005)

1106 Bibliography

Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equa-
tion and the principal ideal problem. J. ACM 54(1), 1–19 (2007)

Halperin, D., Leiserowitz, E.: Controlled perturbation for arrange-
ments of circles. Int. J. Comput. Geom. Appl. 14(4–5), 277–310
(2004)

Halperin, E., Nathaniel, R., Zwick, U.: Coloring k-colorable graphs us-
ing smaller palettes. J. Algorithms 45, 72–90 (2002)

Halperin, E., Zwick, U.: A unified framework for obtaining improved
approximation algorithms for maximumgraph bisection prob-
lems. Random Struct. Algorithms 20(3), 382–402 (2002)

Halperin, S., Zwick, U.: Linear time deterministic algorithm for
computing spanners for unweighted graphs. unpublished
manuscript (1996)

Halpern, J.Y., Megiddo, N., Munshi, A.A.: Optimal precision in the
presence of uncertainty. J. Complex. 1, 170–196 (1985)

Hamdy, S., Maurer, M.: Feige-fiat-shamir identification based
on real quadratic fields, Tech. Report TI-23/99. Technische
Universität Darmstadt, Fachbereich Informatik, http://www.
informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/ (1999)

Hamel, A.M., Steel, M.A.: Finding a maximum compatible tree is
NP-hard for sequences and trees. Appl. Math. Lett. 9(2), 55–59
(1996)

Hamming, R.: Error detecting and error correcting codes. Bell Syst.
Tech. J. 29, 147–160 (1950)

Han, Y.: Deterministic sorting inO(n log log n) time and linear space.
J. Algorithms 50(1), 96–105 (2004). Announced at STOC’02

Han, Y.: Improved fast integer sorting in linear space. Inf. Comput.
170(8), 81–94 (2001). Announced at STACS’00 and SODA’01

Han, Y.: Improving the Efficiency of Sorting by Reversals, Proceed-
ings of The 2006 International Conference on Bioinformatics
and Computational Biology. Las Vegas, Nevada, USA (2006)

Han, Y., Thorup, M.: Integer sorting in O(n
p
log log n) expected

time and linear space. In: Proceedings of the 43rd Annual Sym-
posium on Foundations of Computer Science (FOCS ’02), pp.
135–144. IEEE Computer Society Press, Vancouver (2002)

Hancart, C.: On Simon’s string searching algorithm. Inf. Process.
Lett. 47(2), 95–99 (1993)

Hancock, T., Jiang, T., Li, M., Tromp, J.: Lower bounds on learning
decision lists and trees. In: 12th Annual Symposium on Theo-
retical Aspects of Computer Science, pp. 527–538 (1995)

Hanisch, D., Zimmer, R., Lengauer, T.: ProML – the Protein Markup
Language for specification of protein sequences, structures
and families. In: Silico Biol. 2, 0029 (2002). http://www.bioinfo.
de/isb/2002/02/0029/

Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve
Cryptography. Springer, New York (2004)

Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by re-
versals). J. ACM 46, 1–27 (1999)

Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by
reversals). In: Proc. 27th Ann. Symp. Theory of Computing
(STOC95), pp. 178–189. ACM, Las Vegas, NV (1995)

Hansen, P., Thisse, J.F.: Outcomes of voting and planning: con-
dorcet, weber and rawls locations. J. Publ. Econ. 16, 1–15
(1981)

Haran, I., Halperin, D.: An experimental study of point location
in general planar arrangements. In: Proceedings of 8th Work-
shop on Algorithm Engineering and Experiments, pp. 16–25
(2006)

Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

Harary, F., Moser, L.: The theory of round robin tournaments.
Am. Math. Mon. 73(3), 231–246 (1966)

Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common
ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

Hariharan, R., Kavitha, T., Panigrahi, D.: Efficient Algorithms for
Computing All Low s-t Edge Connectivities and Related Prob-
lems. In: Proc. of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007, pp. 127–136

Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decom-
position to minimize congestion. In: Proceedings of the 15th
annual ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 34–43 (2003)

Harrison, J.M.: Brownian models of queueing networks with het-
erogenous customer populations. In: Fleming, W., Lions, P.L.
(eds.) Stochastic Differential Systems, Stochastic Control The-
ory and Applications. Proceedings of the International Mathe-
matics Association, pp. 147–186. Springer, New York (1988)

Harrow, A., Hayden, P., Leung, D.: Superdense coding of quantum
states. Phys. Rev. Lett. 92, 187901 (2004)

Harrow, A.W.: Coherent communication of classical messages.
Phys. Rev. Lett. 92, 097902 (2004)

Hartline, J., McGrew, R.: From optimal limited to unlimited supply
auctions. In: Proc. of the 7th ACM Conference on Electronic
Commerce (EC’05), 2005

Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation al-
gorithm for sorting by transpositions. Inf. Comput. 204, 275–
290 (2006)

Hartman, T., Sharan, R.: A 1.5-approximation algorithm for sorting
by transpositions and transreversals. In: Proceedings of the 4th
Workshop on Algorithms in Bioinformatics (WABI’04), pp. 50–
61. Bergen, Norway, 17–21 Sep (2004)

Harvey, N.: Algebraic Structures and Algorithms for Matching and
Matroid Problems. In: Proceedings of the 47th Annual IEEE
Symposiumon Foundations of Computer Science (FOCS), 2006

Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skip-
net: A scalable overlay network with practical locality proper-
ties. In: Proceedings of Fourth USENIX Symposium on Internet
Technologies and Systems (USITS ’03), March 2003

Håstad, J.: A slight sharpening of LMN. J. Comput. Syst. Sci. 63(3),
498–508 (2001)

Håstad, J.: Clique is hard to approximate within n1�". Acta Math.
182(1), 105–142 (1999)

Hastad, J.: Some optimal inapproximability results. J. ACM 48(4),
798–859 (2001)

Hastad, J., Wigderson, A.: Simple analysis of graph tests for linearity
and pcp. Random Struct. Algorithms 22(2), 139–160 (2003)

Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization
path for the support vector machine. J. Mach. Learn. Res. 5,
1391–1415 (2004)

Haussler, D.: Applying valiants learning framework to ai concept
learning problems. In: Michalski, R., Kodratoff, Y. (eds.) Machine
Learning: An Artificial Intelligence Approach. Morgan Kauf-
mann

Haussler, D.: Decision theoretic generalizations of the PAC model
for neural net and other learning applications. Inf. Comput.
100(1), 78–150 (1992)

Haussler, D.: Probably approximately correct learning and decision-
theoretic generalizations. In: Smolensky, P., Mozer, M., Rumel-
hart, D. (eds.) Mathematical Perspectives on Neural Networks,
pp. 651–718. L. Erlbaum Associates, Mahwah, New Jersey
(1996)

http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/
http://www.bioinfo.de/isb/2002/02/0029/
http://www.bioinfo.de/isb/2002/02/0029/

Bibliography 1107

Haveliwala, T., Kamvar, S., Jeh, G.: An Analytical Comparison of
Approaches to Personalizing PageRank. In: Technical Report.
Stanford University, Stanford (2003)

Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs:
Advanced Topics. Pure and Applied Mathematics, vol. 209.
Marcel Dekker, New York (1998)

Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domi-
nation in Graphs. Pure and AppliedMathematics, vol. 208. Mar-
cel Dekker, New York (1998)

Hayrapetyan, A., Swamy, C., Tardos, É.: Network design for informa-
tion networks. In: SODA ’05: Proceedings of the sixteenth an-
nual ACM-SIAM symposium on Discrete algorithms, Philadel-
phia, PA, USA, Society for Industrial and Applied Mathematics,
pp. 933–942. (2005)

Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized
matching. ACM Trans. Algorithms 3(3) (2007)

Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parameterized
matching. In: Proc. of 16th Symposium on Combinatorial Pat-
tern Matching (CPM), 2005, pp. 266–279

H.B.H. III, Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz,
D.J., Stearns, R.E.: NC-approximation schemes for NP- and
PSPACE-hard problems for geometric graphs. J. Algorithms
26(2), 238–274 (1998)

He, M., Munro, J.I., Rao, S.S.: Succinct ordinal trees based on tree
covering. In: Proc. 34th International Colloquium on Algo-
rithms, Language and Programming (ICALP). LNCS n. 4596,
pp. 509–520. Springer, Wroclaw, Poland (2007)

He, Y.-J., Huynh, T.N.D., Jannson, J., Sung, W.-K.: Inferring phyloge-
netic relationships avoiding forbidden rooted triplets. J Bioin-
form. Comput. Biol. 4(1), 59–74 (2006)

Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.: A survey of gossip-
ing and broadcasting in communication networks. Networks
18, 129–134 (1988)

Hegedüs, T.: Generalized teaching dimensions and the query com-
plexity of learning. In: COLT ’95 Proceedings of the 8th Annual
Conference on Computational Learning Theory, pp. 108–117
(1995)

Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal trian-
gulations in time O(n˛ log n) = o(n2:376). SIAM J. Discret. Math.
19(4), 900–913 (2005)

Hein, J.: A heuristic method to reconstruct the history of sequences
subject to recombination. J. Mol. Evol. 36, 396–405 (1993)

Hein, J.: An optimal algorithm to reconstruct trees from additive
distance data. Bull. Math. Biol. 51, 597–603 (1989)

Hein, J.: Reconstructing evolution of sequences subject to recom-
bination using parsimony. Math. Biosci. 98(2), 185–200 (1990)

Hein, J., Jensen, J., Pedersen, C.: Recursions for statistical multiple
alignment. PNAS 100, 14,960–14,965 (2003)

Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of compar-
ing evolutionary trees. Discrete Appl. Math. 71(1–3), 153–169
(1996)

Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-
efficient communication protocol for wirelessmicrosensor net-
works. In: Proceedings of the 33rd IEEE Hawaii International
Conference on System Sciences (HICSS 2000). 2000

Held, M.: VRONI: An engineering approach to the reliable and effi-
cient computation of Voronoi diagrams of points and line seg-
ments. Comput. Geom. Theor. Appl. 18(2), 95–123 (2001)

Held, M., Karp, R.M.: The traveling salesman problem andminimum
spanning trees. Oper. Res. 18, 1138–1162 (1970)

Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., Wilkins, D.: How
many queries are needed to learn? J. ACM. 43(5), 840–862
(1996)

Hellerstein, L., Raghavan, V.: Exact learning of dnf formulas using
dnf hypotheses. J Comput. Syst. Sci. 70(4), 435–470 (2005)

Helman, D.R., JáJá, J.: Sorting on clusters of SMP’s. In: Proc. 12th Int’l
Parallel Processing Symp., pp. 1–7, Orlando, FL, March/April
1998

Helmbold, D., Mayr, E.: Two processor scheduling is in NC. SIAM J.
Comput. 16(4), 747–756 (1987)

Helmuth, L.: Genome research: Map of the human genome 3.0. Sci-
ence 293(5530), 583–585 (2001)

Helsgaun, K.: An effective implementation of the Lin-Kernighan
traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130
(2000)

Hennessy, J.L., Patterson, D.A.: Computer Architeture: A Quantita-
tive Approach, 2nd edn. Morgan Kaufmann, San Francisco, CA
(1996)

Henzinger, M., King, V.: Fully dynamic biconnectivity and transitive
closure. In: Proc. 36th IEEE Symposiumon Foundations of Com-
puter Science (FOCS’95). IEEE Computer Society, pp. 664–672.
Los Alamos (1995)

Henzinger, M.R.: Fully dynamic biconnectivity in graphs. Algorith-
mica 13(6), 503–538 (1995)

Henzinger, M.R.: Improved data structures for fully dynamic bicon-
nectivity. SIAM J. Comput. 29(6), 1761–1815 (2000)

Henzinger, M.R., Fredman, M.L.: Lower bounds for fully dynamic
connectivity problems in graphs. Algorithmica 22(3), 351–362
(1998)

Henzinger, M.R., King, V.: Maintainingminimum spanning forests in
dynamic graphs. SIAM. J. Comput. 31(2), 364–374 (2001)

Henzinger, M.R., King, V.: Randomized fully dynamic graph algo-
rithmswith polylogarihmic time per operation. In: Proceedings
of the 27th Annual ACM Symposium on Theory of Computing
(STOC), pp. 519–527 (1997)

Henzinger, M.R., King, V.: Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. J. ACM 46(4),
502–516 (1999)

Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from
homeomorphic subtrees, with applications to computational
evolutionary biology. Algorithmica 24(1), 1–13 (1999)

Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster
Shortest-Path Algorithms for Planar Graphs. J. Comput. Syst.
Sci. 55, 3–23 (1997)

Henzinger, M.R., Thorup, M.: Sampling to provide or to bound:
With applications to fully dynamic graph algorithms. Random
Struct. Algorithms 11(4), 369–379 (1997) (presented at ICALP
1996)

Herlihy, M.: A methodology for implementing highly concurrent
data objects. ACM Trans. Program. Lang. Syst. 15(5), 745–770
(1993)

Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang.
Syst. (TOPLAS) 13(1), 124–149 (1991)

Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free mechanism
for atomic update of multiple non-contiguous locations in
shared memory. US Patent Application 20040034673 (2002)

Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchroniza-
tion: Double-ended queues as an example. In: Proceedings of
the 23rd International Conference on Distributed Computing
Systems, 2003

1108 Bibliography

Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.: Software trans-
actional memory for supporting dynamic-sized data struc-
tures. In: Proc. 22th Annual ACM Symposium on Principles of
Distributed Computing, 2003, pp. 92–101

Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural sup-
port for lock-free data structures. In: Proc. 20th Annual Interna-
tional Symposium on Computer Architecture, 1993, pp. 289–
300

Herlihy, M., Rajsbaum, S.: A classification of wait-free loop agree-
ment tasks. Theor. Comput. Sci. 291(1), 55–77 (2003)

Herlihy, M., Rajsbaum, S.: Algebraic spans. Math. Struct. Comput.
Sci. 10(4), 549–573 (2000)

Herlihy, M., Rajsbaum, S.: Set consensus using arbitrary objects. In:
Proceedings of the 13th Annual ACM Symposium on Principles
of Distributed Computing, pp. 324–333, August (1994)

Herlihy, M., Rajsbaum, S.: The decidability of distributed decision
tasks (extended abstract). In: STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of comput-
ing, pp. 589–598. ACM Press, New York (1997)

Herlihy, M., Rajsbaum, S., Tuttle, M.R.: Unifying synchronous and
asynchronous message-passing models. In: PODC ’98: Pro-
ceedings of the seventeenth annual ACM symposium on Prin-
ciples of distributed computing, pp. 133–142. ACM Press, New
York (1998)

Herlihy, M.P., Penso, L.D.: Tight Bounds for k-Set Agreement with
Limited Scope Accuracy Failure Detectors. Distrib. Comput.
18(2), 157–166 (2005)

Herlihy, M.P., Shavit, N.: The asynchronous computability theorem
for t-resilient tasks. In: Proceedings 25th Annual ACM Sympo-
sium on Theory of Computing, 1993, pp. 111–120

Herlihy, M.P., Shavit, N.: The Topological Structureof Asynchronous
Computability. J. ACM 46(6), 858–923 (1999)

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst. (TOPLAS)
12(3), 463–492 (1990)

Hershberger, J., Suri,M.R., Suri, S.: Data structures for two-edge con-
nectivity in planar graphs. Theor. Comput. Sci. 130(1), 139–161
(1994)

Hertz, G., Stormo, G.: Identification of consensus patterns in un-
aligned DNA and protein sequences: a large-deviation statis-
tical basis for penalizing gaps. In: Proc. 3rd Int’l Conf. Bioinfor-
matics and Genome Research, pp. 201–216. (1995)

Herzog, S., Shenker, S., Estrin, D.: Sharing the “cost” of multicast
trees: an axiomatic analysis. IEEE/ACM Trans. Netw. 5, 847–860
(1997)

High Performance Fortran Forum. High Performance Fortran Lan-
guage Specification, 1.0 edition, May 1993

Hillar, C.J., Rhea, D.L. A Result about the Density of Iterated Line
Intersections. Comput. Geom.: Theory Appl. 33(3), 106–114
(2006)

Hipke, C., Icking, C., Klein, R., Langetepe, E.: How to find a point on
a line within a fixed distance. Discret. Appl. Math. 93, 67–73
(1999)

Hirsch, E.A.: A 2m/4-time Algorithm for Max 2-SAT: Corrected Ver-
sion. Electronic Colloquium on Computational Complexity Re-
port TR99-036 (2000)

Hirsch, E.A.: New worst-case upper bounds for SAT. J. Autom. Rea-
son. 24(4), 397–420 (2000)

Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. In: Mathe-
matics and Visualization, vol. IX. Springer, Heidelberg (2006).
ISBN 978-3-540-33260-2

Ho, J.M., Vijayan, G., Wong, C.K.: New algorithms for the rectilinear
steiner tree problem. IEEE Transac. Comput. Aided Des. 9, 185–
193 (1990)

Hoang, V.T., Sung, W.K.: Fixed Parameter Polynomial Time Algo-
rithms for Maximum Agreement and Compatible Supertrees.
In: Albers, S., Weil, P., 25th International Symposium on The-
oretical Aspects of Computer Science (STACS 2008). Dagstuhl,
Germany (2007)

Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962)
Hochbaum, D.S.: Approximation algorithms for the set covering

and vertex cover problems. SIAM J. Comput. 11(3), 555–556
(1982)

Hochbaum, D.S.: Heuristics for the fixed cost median problem.
Math. Program. 22(2), 148–162 (1982)

Hochbaum, D.S., Maass, W.: Approximation schemes for covering
and packing problems in image processing and VLSI. J. ACM
32(1), 130–136 (1985)

Hochbaum, D.S., Shmoys, D.B.: A best possible approximation algo-
rithm for the k-center problem. Math. Oper. Res. 10, 180–184
(1985)

Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation
scheme for scheduling on uniform processors: using the dual
approximation approach. SIAM J. Comput. 17(3), 539–551
(1988)

Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algo-
rithms for scheduling problems: theoretical and practical re-
sults. J. ACM 34(1), 144–162 (1987)

Hoefer, M.: Experimental comparison of heuristic and approxima-
tion algorithms for uncapacitated facility location. In: Proceed-
ings of the 2nd International Workshop on Experimental and
Efficient Algorithms (WEA). Lecture Notes in Computer Sci-
ence, vol. 2647, pp. 165–178. Springer, Berlin (2003)

Hoeffding, W.: On the distribution of the number of successes in
independent trials. Ann. Math. Stat. 27, 713–721 (1956)

Hofacker, I.L., Stadler, P.F.: Memory efficient folding algorithms for
circular RNA secondary structures. Bioinformatics 22, 1172–
1176 (2006)

Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon explo-
ration problem. SIAM J. Comput. 31(2), 577–600 (2001)

Hoffmann, M., Okamoto, Y.: The minimum weight triangulation
problem with few inner points. Comput. Geom. Theory Appl.
34, 149–158 (2006)

Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: A probabilis-
tic 3–SAT algorithm further improved. In: STACS 2002. LNCS,
vol. 2285, pp. 192–202. Springer, Berlin (2002)

Hofmeister, T., Schöning, U., Schuler, R., Watanabe, O.: Probabilistic
3-SAT algorithm further improved. Proceedings 19th Sympo-
sium on Theoretical Aspects of Computer Science. LNCS 2285,
193–202 (2002)

Hofri, M.: A feedback-less distributed broadcast algorithm for mul-
tihop radio networks with time-varying structure. In: Computer
Performance and Reliability, pp. 353–368. (1987)

Holevo, A.S.: Bounds for the quantity of information transmitted
by a quantum communication channel. Problemy Peredachi
Informatsii, 9, 3–11 (1973). English translation in: Probl. Inf.
Transm. 9, 177–183 (1973)

Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum
spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760
(2001)

Bibliography 1109

Holmes, I.: Using guide trees to construct multiple-sequence evo-
lutionary hmms. Bioinform. 19, i147–i157 (2003)

Holmes, I., Bruno, W.J.: Evolutionary HMMs: a Bayesian approach to
multiple alignment. Bioinform. 17(9), 803–820 (2001)

Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay
Graphs for Shortest-Path Queries. In: Algorithm Engineering
and Experiments – ALENEX (SIAM, 2006), pp. 156–170. SIAM,
Philadelphia (2006)

Hon, W., Sadakane, K., Sung, W.: Breaking a time-and-space barrier
in constructing full-text indices. In: Proc. of the 44th IEEE Sym-
posium on Foundations of Computer Science (FOCS), 251–
260, Cambridge, MA (2003)

Hon, W.K., Kao, M.Y., Lam, T.W., Sung, W.K., Yiu, S.M.: Non-shared
Edges and Nearest Neighbor Interchanges revisited. Inf. Pro-
cess. Lett. 91(3), 129–134 (2004)

Hon, W.K., Lam, T.W.: Approximating the Nearest Neighbor Inter-
charge Distance for Non-Uniform-Degree Evolutionary Trees.
Int. J. Found. Comp. Sci. 12(4), 533–550 (2001)

Hon, W.K., Lam, T.W., Yiu, S.M., Kao, M.Y., Sung, W.K.: Subtree Trans-
fer Distance For Degree-D Phylogenies. Int. J. Found. Comp. Sci.
15(6), 893–909 (2004)

Hong, X., Dong, S., Ma, Y., Cai, Y., Cheng, C.K., Gu, J.: Corner Block
List: An efficient topological representation of non-slicing
floorplan. In: International Computer AidedDesign (ICCAD) ’00,
November 2000, pp. 8–12,

Hoot, S.B., Palmer, J.D.: Structural rearrangements, including paral-
lel inversions, within the chloroplast genome of Anemone and
related genera. J. Mol. Evol. 38, 274–281 (1994)

Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21,
pp. 549–568 (1974)

Hopcroft, J., Ullman, J.: Introduction to Automata, Languages, and
Computation. Addison-Wesley, Reading, MA (1979)

Hopcroft, J.E., Karp, R.M.: AnO(n5/2) Algorithm for MaximumMatch-
ings in Bipartite Graphs. SIAM J. Comput. 2, 225–231 (1973)

Horn, W.: Minimizing average flow time with parallel machines.
Oper. Res. 21, 846–847 (1973)

Horton, J.D.: A Polynomial-time algorithm to find the shortest cycle
basis of a graph. SIAM J. Comput. 16(2), 358–366 (1987)

Hou, T., Li, V.: Transmission Range Control inMultihop Packet Radio
Networks. IEEE Tran. Commun. 34, 38–44 (1986)

Howard, P.G., Vitter, J.S.: Fast and efficient lossless image compres-
sion. In: Proceedings of the IEEEData Compression Conference,
Snowbird, Utah, March 1993, pp. 351–360

Howard, P.G., Vitter, J.S.: Parallel lossless image compression us-
ing Huffman and arithmetic coding. In: Proceedings of the IEEE
Data Compression Conference, Snowbird, Utah, March 1992,
pp. 299–308

Howard, P.G., Vitter, J.S.: Practical implementations of arith-
metic coding. In: Storer, J.A. (ed.) Images and Text Com-
pression. Kluwer Academic Publishers, Norwell, Massachusetts
(1992)

Høyer, P.: Conjugated operators in quantum algorithms. Phys. Rev.
A 59(5), 3280–3289 (1999)

Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-
error inputs. In: Proceedings of the 30th International Collo-
quium on Automata, Languages and Programming. Lecture
Notes in Computer Science, vol. 2719, pp. 291–299, Eindhoven,
The Netherlands, 30 June – 4 July 2003

Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of
information in interconnection networks (broadcasting and
gossiping). In: Du, D.Z., Hsu, F. (eds.) Combinatorial Network

Theory, pp. 125–212. Kluwer Academic Publishers, Dordrecht
(1996)

Hsu, W.L., McConnell, R.M.: PC trees and circular-ones arrange-
ments. Theor. Comput. Sci. 296(1), 99–116 (2003)

http://www.carms.ca (Canadian Resident Matching Service web-
site)

http://www.jrmp.jp (Japan Resident Matching Programwebsite)
http://www.nes.scot.nhs.uk/sfas/ (Scottish Foundation Allocation

Scheme website)
http://www.nrmp.org/ (National Resident Matching Program web-

site)
Hu, B., Marek-Sadowska, M.: Multilevel fixed-point-addition-based

VLSI placement. IEEE Trans. CAD 24(8), 1188–1203 (2005)
Hu, T.C.: Multi-commodity network flows. Operations Research,

11(3), 344–360. (1963)
Hu, T.C., Moerder, K.: Multiterminal Flows in a Hypergraph. In: Hu,

T.C., Kuh, E.S. (eds.) VLSI Circuit Layout: Theory and Design,
pp. 87–93. IEEE Press (1985)

Huang, X.: An algorithm for identifying regions of a DNA sequence
that satisfy a content requirement. Comput. Appl. Biosci. 10,
219–225 (1994)

Huang, X., Pan, V.Y.: Fast rectangularmatrix multiplications and ap-
plications. J. Complex. 14, 257–299 (1998)

Huddleston, S., Mehlhorn, K.: A new data structure for representing
sorted lists. Acta Inform. 17, 157–184 (1982)

Hudson, R.: Gene genealogies and the coalescent process. Oxf.
Surv. Evol. Biol. 7, 1–44 (1990)

Hudson, R.: Generating samples under the wright-fisher neutral
model of genetic variation. Bioinformatics 18(2), 337–338
(2002)

Huffman, D.A.: A method for the construction of minimum redun-
dancy codes. Proceedings of the Institute of Radio Engineers,
40, pp. 1098–1101 (1952)

Hüffner, F.: Graph Modification Problems and Automated Search
Tree Generation. Diplomarbeit, Wilhelm-Schickard-Institut für
Informatik, Universität Tübingen (2003)

Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for
Color Coding to facilitate Signaling Pathway Detection. In:
Proceedings of the 5th Asia-Pacific Bioinformatics Conference
(APBC), pp. 277–286 (2007)

Hunt, E., Atkinson, M., Irving, R.: Database indexing for large DNA
and protein sequence collections. Int. J. Very Large Data Bases
11, 256–271 (2002)

Husfeldt, T., Rauhe, T.: New lower bound techniques for dynamic
partial sums and related problems. SIAM J. Comput. 32, 736–
753 (2003). See also ICALP’98

Huson, D.H., Bryant, D.: Application of phylogenetic networks in
evolutionary studies. Mol. Biol. Evol. 23(2), 254–267 (2006)

Huson, D.H., Nettles, S., Warnow, T.: Disk-covering, a fast-
converging method for phylogenetic tree reconstruction.
J. Comput. Biol. 6, 369–386 (1999)

Huson, D.H., Nettles, S., Warnow, T.: Obtaining highly accurate
topology estimates of evolutionary trees from very short se-
quences. In: RECOMB, 1999, pp. 198–207

Hutchinson, D.A., Sanders, P., Vitter, J.S.: Duality between prefetch-
ing and queuedwritingwith parallel disks. SIAM J. Comput.34,
1443–1463 (2005)

Huynh, T.N.D., Hon, W.K., Lam, T.W., Sung, W.K.: Approximate string
matching using compressed suffix arrays. In: Proceedings of
Symposium on Combinatorial Pattern Matching, 2004, pp.
434–444

http://www.carms.ca
http://www.jrmp.jp
http://www.nes.scot.nhs.uk/sfas/
http://www.nrmp.org/

1110 Bibliography

Hwang, F.K.: On Steiner minimal trees with rectilinear distance.
SIAM J. Appl. Math. 30, 104–114 (1976)

Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem.
North-Holland, Amsterdam (1992)

Hylland, A., Zeeckhauser, R.: The efficent allocation of individuals to
positions. J. Polit. Econ. 87(2), 293–314 (1979)

Iacono, J.: Key-independent optimality. Algorithmica 42(1), 3–10
(2005)

Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knap-
sack and sum of subset problem. J. ACM 22, 463–468 (1975)

Idury, R.M., Schäffer, A.A.: Dynamic dictionarymatchingwith failure
functions. In: Proc. 3rd Annual Symposium on Combinatorial
Pattern Matching, 1992, pp. 273–284

Idury, R.M., Schäffer, A.A.: Multiple matching of parametrized pat-
terns. Theor. Comput. Sci. 154(2), 203–224 (1996)

Ieong, S., Kao, M.-Y., Lam, T.-W., Sung, W.-K., Yiu, S.-M.: Predicting
RNA secondary structures with arbitrary pseudoknots by max-
imizing the number of stacking pairs. In: Proceedings of the
2nd Symposium on Bioinformatics and Bioengineering, 2001,
pp. 183–190

Ilie, L.: A simple proof that a word of length n has atmost 2n distinct
squares. J. Combin. Theory, Ser. A 112(1), 163–164 (2005)

Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In: Karhumäki, J. et
al. (eds.) Theory is Forever. Lect. Notes Comput. Sci. 3113, 112–
124 (2004)

Iliopoulos, C., Moore, D., Smyth, W.F.: A characterization of the
squares in a Fibonacci string. Theor. Comput. Sci. 172 281–291
(1997)

Imahori, S.: Privatre communication, December 2005
Iman, S., Pedram, M., Fabian, C., Cong, J.: Finding Uni-Directional

Cuts Based on Physical Partitioning and Logic Restructuring. In:
4th ACM/SIGDA Physical Design Workshop, April 1993

Impagliazzo, R., Paturi, R.: Which problems have strongly exponen-
tial complexity? J. Comput. Syst. Sci. 63, 512–530 (2001)

Indyk, P.: Explicit constructions of selectors and related combina-
torial structures, with applications. In: Proc. 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 697–704, San
Francisco, USA (2002)

Indyk, P., Matousek, J.: Low-distortion embeddings of finite met-
ric spaces. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of
Discrete and Computational Geometry. CRC Press, Inc., Chap. 8
(2004), To appear

Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. Proc. ACM STOC 604–
613 (1998)

Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor
Networks. In: Proc. 6th ACM/IEEE International Conference on
Mobile Computing, MOBICOM’2000

Ion, A., Kropatsch, W.G., Haxhimusa, Y.: Considerations regarding
the minimum spanning tree pyramid segmentation method.
In: Proc. 11th Workshop Structural, Syntactic, and Statisti-
cal Pattern Recognition (SSPR). LNCS, vol. 4109, pp. 182–190.
Springer, Berlin (2006)

Irani, S.: Page replacement with multi-size pages and applications
to Web caching. Algorithmica 33(3), 384–409 (2002)

Irani, S.: Two results on the list update problem. Inf. Proc. Lett. 38,
301–306 (1991)

Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for
paging with locality of reference. SIAM J. Comput. 25(3), 477–
497 (1996)

Irani, S., Pruhs, K.: Algorithmic Problems in Power Management.
ACM SIGACT News 36(2), 63–76. New York, NY, USA (2005)

Irani, S., Seiden, S.S.: Randomized algorithms for metrical task sys-
tems. Theor. Comput. Sci. 194, 163–182 (1998)

Irving, R.W.: An efficient algorithm for the stable roommates prob-
lem. J. Algorithms 6, 577–595 (1985)

Irving, R.W.: Matching medical students to pairs of hospitals: a new
variation on a well-known theme. Proc. ESA 98. LNCS 1461,
pp. 381–392. (1998)

Irving, R.W.: Stable marriage and indifference. Discret. Appl. Math.
48, 261–272 (1994)

Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-
maximal matchings. In: Proceedings of the 15th ACM-SIAM
Symposium on Discrete Algorithms, pp. 68–75. SIAM, New Or-
leans (2004)

Irving, R.W., Leather, P.: The complexity of counting stable mar-
riages. SIAM J. Comput. 15(3), 655–667 (1986)

Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the
“optimal stable” marriage. J. ACM 34(3), 532–543 (1987)

Irving, R.W., Manlove, D.F.: The stable roommates problem with
ties. J. Algorithms 43, 85–105 (2002)

Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties
and bounded length preference lists. Proc. the 2nd Algorithms
and Complexity in Durham workshop, Texts in Algorithmics,
College Publications (2006)

Irving, R.W., Manlove, D.F., Scott, S.: Strong stability in the Hos-
pitals/Residents problem. In: Proceedings of STACS 2003: the
20th Annual Symposium on Theoretical Aspects of Com-
puter Science. Lecture Notes in Computer Science, vol. 2607,
pp. 439–450. Springer, Berlin (2003)

Irving, R.W., Manlove, D.F., Scott, S.: The Hospitals/Residents prob-
lem with Ties. In: Proceedings of SWAT 2000: the 7th Scan-
dinavian Workshop on Algorithm Theory. Lecture Notes in
Computer Science, vol. 1851, pp. 259–271. Springer, Berlin
(2000)

Irving, R.W., Scott, S.: The stable fixtures problem – a many-to-
many extension of stable roommates. Discret. Appl. Math. 155,
2118–2129 (2007)

Ismailescu, D., Radoičić, R.: A Dense Planar Point Set from Iterated
Line Intersections. Comput. Geom. Theory Appl. 27(3), 257–
267 (2004)

Israeli, A., Jalfon, M.: Token Management Schemes and Random
Walks Yield Self-Stabilizing Mutual Exclusion. In: Proceedings
of the 9th Annual ACM Symposiumon Principles of Distributed
Computing, pp. 119–131, Quebec City, August 1990

Israeli, A., Li, M.: Bounded time-stamps. Distrib. Comput. 6(4), 205–
209 (1993)

Israeli, A., Shaham, A.: Optimal multi-writer multireader atomic
register. In: Proc. 11th ACM Symp. Principles Distr. Comput.,
pp. 71–82. Vancouver, British Columbia, Canada, 10–12 August
1992

Itai, A., Konheim, A.G., Rodeh, M.: A sparse table implementation of
priority queues. In: Automata, Languages and Programming,
8th Colloquium. LNCS, vol. 115, pp. 417–431. Springer, Berlin
(1981)

Itai, A., Rodeh, M.: Finding a Minimum Circuit in a Graph. SIAM
J. Comput. 7(4), 413–423 (1978)

Italiano, G.F., La Poutré, J.A., Rauch,M.: Fully dynamic planarity test-
ing in planar embedded graphs. 1st Annual European Sympo-
sium on Algorithms, Bad Honnef, Germany, 30 September–2
October 1993

Bibliography 1111

Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y.: Stable marriage
with incomplete lists and ties. Proc. ICALP 99. LNCS 1644,
pp. 443–452. (1999)

Iwama, K., Miyazaki, S., Yamauchi, N.: A 1.875-approximation al-
gorithm for the stable marriage problem. Proc, SODA 2007,
pp. 288–297. (2007)

Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Pro-
ceedings of the fifteenth annual ACM-SIAM symposiumonDis-
crete algorithms, 2004, pp. 328–329

Iwasaki, A., Yokoo, M., Terada, K.: A robust open ascending-price
multi-unit auction protocol against false-name bids. Decis.
Support. Syst. 39, 23–39 (2005)

Iyer, R., Karger, D., Rahul, H., Thorup, M.: An experimental study of
poly-logarithmic fully-dynamic connectivity algorithms. J. Exp.
Algorithmics 6(4) (2001) (presented at ALENEX 2000)

Jaakkola, T.S., Haussler, D.: Probabilistic kernel regression models.
In: Proceedings of the 1999 Conference onAI and Statistics Fort
Lauderdale (1999)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis.
MIT Press (2006)

Jackson, J.: An efficient membership-query algorithm for learning
DNF with respect to the uniform distribution. J. Comput. Syst.
Sci. 55, 414–440 (1997)

Jackson, J., Klivans, A., Servedio, R.: Learnability beyond AC0. In: Pro-
ceedings of the 34th ACM Symposium on Theory of Comput-
ing, pp. 776–784, Montréal, 23–25 May 2002

Jackson, J., Shamir, E., Shwartzman, C.: Learning with queries cor-
rupted by classification noise. Discret. Appl. Math. 92, 157–175
(1999)

Jackson, J., Shamir, E., Shwartzman, C.: Learning with queries cor-
rupted by classification noise. In: Proceedings of the Fifth Israel
Symposium on the Theory of Computing Systems, pp. 45–53
(1997)

Jackson, J.C.: An efficientmembership-query algorithm for learning
DNF with respect to the uniform distribution. In: 35th Annual
Symposium on Foundations of Computer Science, pp. 42–53.
IEEE Computer Society Press, Los Alamitos (1994)

Jackson, J.C.: The Harmonic Sieve: A Novel Application of Fourier
Analysis toMachine Learning Theory andPractice. Ph. D. thesis,
Carnegie Mellon University (1995)

Jacobsen, L., Larsen, K.S., Nielsen, M.N.: On the existence of non-
extreme (a,b)-trees. Inform. Process. Lett. 84, 69–73 (2002)

Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th
IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 549–554. Triangle Park, USA (1989)

Jacobson, H., Stockmayer,W.H.: Intramolecular reaction in polycon-
densations. I. the theory of linear systems. J. Chem. Phys. 18,
1600–1606 (1950)

Jaeger, F., Vertigan, D., Welsh, D.: On the computational complex-
ity of the Jones and Tutte polynomials. Math. Proc. Cambridge
Philos. Soc. 108(1), 35–53 (1990)

Jaffe, J.: Bottleneck Flow Control. IEEE Trans. Commun. 29(7), 954–
962 (1981)

Jain, K.: A factor 2 approximation for the generalized Steiner net-
work problem. Combinatorica 21(1), 39–60 (2001)

Jain, K.: A polynomial time algorithm for computing the Arrow-
Debreu market equilibrium for linear utilities. In: Proceeding of
FOCS’04, pp. 286–294. IEEE Computer Society, Rome (2004)

Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Approx-
imation algorithms for facility location via dual fitting with
factor-revealing LP. J. ACM 50(6), 795–824 (2003)

Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy
facility location algorithms analyzed using dual fitting with
factor-revealing LP. J. ACM 50(6), 795–824 (2003)

Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facil-
ity location problems. In: Proceedings of the 34st Annual ACM
Symposiumon Theory of Computing (STOC) pp. 731–740, ACM
Press, New York (2002)

Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of inter-
ference on multi-hop wireless network performance. In: Proc.
ACMMOBICOM 2003, pp. 66–80

Jain, K., Vazirani, V.V.: An approximation algorithm for the fault tol-
erant metric facility location problem. In: Approximation Al-
gorithms for Combinatorial Optimization, Proceedings of AP-
PROX (2000), vol. (1913) of Lecture Notes in Computer Science,
pp. 177–183. Springer, Berlin (2000)

Jain, K., Vazirani, V.V.: Applications of approximation algorithms to
cooperative games. In: Proc. of the 33rd Annual ACM Sympo-
sium on Theory of Computing, Association for ComputingMa-
chinery, New York, pp. 364–372 (2001)

Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema
and lagrangian relaxation. J. ACM 48(2), 274–296 (2001)

Jain, R.: Resource requirements of private quantum channels and
consequence for oblivious remote state preparation. Technical
report (2005). arXive:quant-ph/0507075

Jain, S., Shah, R., Brunette, W., Borriello, G., Roy, S.: Exploiting mo-
bility for energy efficient data collection in wireless sensor net-
works. J. Mobile Netw. Appl. 11(3), 327–339 (2006)

JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley
(1992)

Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: On the place-
ment of internet instrumentations. In: Proceedings of the 19th
Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), vol. 1, pp. 295–304. IEEE Com-
puter Society, Los Alamitos, CA, USA (2000)

Jampala, H., Zeh, N.: Cache-oblivious planar shortest paths. In: Proc.
32nd International Colloquium on Automata, Languages, and
Programming. LNCS, vol. 3580, pp. 563–575. Springer, Berlin
(2005)

Jannink, J.: Implementing deletions in B+-trees. SIGMOD RECORD
24, 33–38 (1995)

Jansen, K., Woeginger, G.J.: The complexity of detecting cross-
ingfree configurations in the plane. BIT 33, 580–595 (1993)

Janson, S.: Large Deviation Inequalities for Sums of Indicator Vari-
ables. Technical Report No. 34, Department of Mathematics,
Uppsala University (1994)

Jansson, J., Joseph, H., Ng, K., Sadakane, K., Sung, W.-K.: Rooted
maximum agreement supertrees. Algorithmica 43(4), 293–307
(2005)

Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for combining
rooted triplets into a galled phylogenetic network. SIAM J.
Comput. 35(5), 1098–1121 (2006)

Jansson, J., Sadakane, K., Sung, W.: Ultra-succinct representation
of ordered trees. In: Proc. 18th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 575–584. New Orleans, USA
(2007)

Jansson, J., Sung, W.-K.: Inferring a level-1 phylogenetic network
from a dense set of rooted triplets. In: Proc. 10th International
Computing and Combinatorics Conference (COCOON 2004),
2004

1112 Bibliography

Japanese Resident Matching Program (JRMP) http://www.jrmp.jp/
Jarry, A., Leone, P., Powell, O., Rolim, J.: An Optimal Data Propa-

gation Algorithm for Maximizing the Lifespan of Sensor Net-
works. In: Second International Conference, DCOSS 2006, San
Francisco, CA, USA, June 2006. Lecture Notes in Computer Sci-
ence, vol. 4026, pp. 405–421. Springer, Berlin (2006)

Jawor, W.: Three dozen papers on online algorithms. SIGACT News
36(1), 71–85 (2005)

Jayanti, P.: An optimal multi-writer snapshot algorithm. In: Proc.
37th ACM Symposium on Theory of Computing. Baltimore,
May 2005, pp. 723–732. ACM, New York (2005)

Jech, T.: The ranking of incomplete tournaments: A mathemati-
cian’s guide to popular sports. Am. Math. Mon. 90(4), 246–266
(1983)

Jeng-Fung, C.: Unrelated parallel machine scheduling with sec-
ondary resource constraints. Int. J. Adv. Manuf. Technol. 26,
285–292 (2005)

Jermaine, C., Pol, A., Arumugam, S.: Online maintenance of very
large random samples. In: SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on Management
of data, New York, pp. 299–310. ACM Press (2004)

Jerrum, M.: A very simple Algorithm for Estimating the Number
of k-colourings of a Low Degree Graph. Random Struct. Algo-
rithms 7, 157–165 (1994)

Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random Generation of
Combinatorial Structures from a Uniform Distribution. Theor.
Comput. Sci. 43, 169–188 (1986)

Jia, L., Rajaraman, R., Suel, R.: An Efficient Distributed Algorithm
for Constructing Small Dominating Sets. In: PODC, Newport,
Rhode Island, USA, August 2001

Jiang, M.: A 2-approximation for the preceding-and-crossing struc-
tured 2-interval pattern problem, J. Combin. Optim. 13, 217–
221 (2007)

Jiang, M.: A PTAS for the weighted 2-interval pattern problem over
the preceding-and-crossingmodel. In: Y.X. A.W.M. Dress, B. Zhu
(eds.) Proc. 1st Annual International Conference on Combi-
natorial Optimization and Applications (COCOA), Xi’an, China,
Lecture Notes in Computer Science, vol. 4616, pp. 378–387.
Springer (2007)

Jiang, M.: Improved approximation algorithms for predicting RNA
secondary structures with arbitrary pseudoknots. In: Proc. 3rd
International Conference on Algorithmic Aspects in Informa-
tion and Management (AAIM), Portland, OR, USA, Lecture
Notes in Computer Science, vol. 4508, pp. 399–410. Springer
(2007)

Jiang, T., Kearney, P., Li, M.: A polynomial time approximation
scheme for inferring evolutionary trees from quartet topolo-
gies and its application. SIAM J. Comput. 30(6), 1942–1961
(2001)

Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM
J. Comput. 22(6), 1117–1141 (1993)

Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alternative to
tree edit. Theor. Comput. Sci. 143(1), 137–148 (1995)

Joachims, T.: Text categorization with support vector machines.
In: Proceedings of European Conference on Machine Learning
(ECML) Chemnitz (1998)

Johansen, K.E., Jorgensen, U.L., Nielsen, S.H.: A distributed spanning
tree algorithm. In: Proc. 2nd Int.Workshop onDistributedAlgo-
rithms (DISC). Lecture Notes in Computer Science, vol. 312, pp.
1–12. Springer, Berlin Heidelberg (1987)

Johansson, Ö.: Simple distributed (� + 1)-coloring of graphs. Inf.
Process. Lett. 70, 229–232 (1999)

Johnson, D.: Efficient algorithms for shortest paths in sparse net-
works. J. Assoc. Comput. Mach. 24, 1–13 (1977)

Johnson, D., Papadimitriou, C.H., Yannakakis, M.: How easy is local
search? J. Comp. Syst. Sci. 37, 79–100 (1988)

Johnson, D.B., Metaxas, P.: Connected Components in O(lg3/2 jVj)
Parallel Time for the CREW PRAM. In: Proceedings of the 32nd
Annual IEEE Symposium on Foundations of Computer Science,
1991, pp. 688–697

Johnson, D.B., Venkatesan, S.M.: Parallel algorithms for minimum
cuts and maximum flows in planar networks. J. ACM 34, 950–
967 (1987)

Johnson, D.S.: A theoretician’s guide to the experimental analysis
of algorithms. In: Goodrich, M.H., Johnson, D.S., McGeoch, C.C.
(eds.) Data Structures, Near Neighbors Searches, and Method-
ology: Fifth and Sixth DIMACS Implementation Challenges, DI-
MACS Series in Discrete Mathematics and Theoretical Com-
puter Science, vol. 59. American Mathematical Society, Provi-
dence (2002)

Johnson, D.S.: Approximation algorithms for combinatorial prob-
lems. J. Comput. Syst. Sci. 9, 256–278 (1974)

Johnson, D.S.: Near-Optimal Bin Packing Algorithms. Ph. D. thesis,
Massachusetts Institute of Technology, Department of Mathe-
matics, Cambridge (1973)

Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham, R.L.:
Worst-case performance bounds for simple one-dimensional
packing algorithms. SIAM J. Comput. 3, 299–325 (1974)

Johnson, D.S., Leighton, F.T., Shor, P.W., Weber, R.R.: The expected
behavior of FFD, BFD, and optimal bin packing under U(0; ˛])
distributions (in preparation)

Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics
for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Travel-
ing Salesman Problem and its Variations. Kluwer, Dordrecht
(2002)

Johnson, D.S., McGeoch, L.A.: The traveling salesman problem:
A case study. In: Aarts, E., Lenstra, J.K. (eds.) Local Search
in Combinatorial Optimization, pp. 215–310. Wiley, Chicester
(1997)

Johnson, N.L., Kotz, S.: Urn Models and Their Applications. Wiley,
New York (1977)

Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz Mappings
into a Hilbert Space. Contemp. Math. 26, 189–206 (1984)

Jones, C.K.: A networkmodel for foreign exchange arbitrage, hedg-
ing and speculation. Int. J. Theor. Appl. Finance 4(6), 837–852
(2001)

Jones, V.F.R.: A polynomial invariant for knots via von Neumann al-
gebras. Bull. Am. Math. Soc. 12(1), 103–111 (1985)

Jordan, S., Shor, P.: Estimating Jones polynomials is a complete
problem for one clean qubit. http://arxiv.org/abs/0707.2831
(2007)

Joseph, D., Meidanis, J., Tiwari, P.: Determining DNA sequence sim-
ilarity using maximum independent set algorithms for inter-
val graphs. In: Proc. 3rd Scandinavian Workshop on Algorithm
Theory (SWAT). Lecture Notes in Computer Science, pp. 326–
337. Springer, Berlin (1992)

Joswig, M.: Software. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, 2nd edn.,
chap. 64, pp. 1415–1433. Chapman & Hall/CRC, Boca Raton
(2004)

http://www.jrmp.jp/
http://arxiv.org/abs/0707.2831

Bibliography 1113

Jothi, R., Raghavachari, B., Varadarajan, S.: A 5/4-approximation al-
gorithm for minimum2-edge-connectivity. In: SODA, 2003, pp.
725–734

Joux, A., Stern, J.: Lattice reduction: A toolbox for the cryptanalyst.
J. Cryptolo. 11(3), 161–185 (1998)

Jozsa, R.: Notes on Hallgren’s efficient quantum algorithm for solv-
ing Pell’s equation, tech. report, quant-ph/0302134 (2003)

Jukes, T.H., Cantor, C.R.: Evolution of Protein Molecules. In: Munro,
H.N. (ed.), Mammalian Protein Metabolism, pp. 21–132, Aca-
demic Press, New York (1969)

Jurdziński, T., Stachowiak, G.: Probabilistic Algorithms for the
Wakeup Problem in Single-Hop Radio Networks. In: Proc. of
the 13th Annual International Symposium on Algorithms and
Computation (ISAAC), pp. 535–549 (2002)

Jutla, C., Patthak, A., Rudra, A., Zuckerman, D.: Testing low-degree
polynomials over prime fields. In: Proceedings of the Forty-
Fifth Annual Symposiumon Foundations of Computer Science,
pp. 423–432. IEEE, New York (2004)

Juurlink, B.H.H., Wijshoff, H.A.G.: A quantitative comparison of par-
allel computation models. ACM Trans. Comput. Syst. 13(3),
271–318 (1998)

Kaashoek, F., Karger, D.R.: Koorde: A simple degree-optimal hash
table. In: 2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), 2003

Kachirski, O., Guha, R.: Intrusion detection using mobile agents in
wireless ad hoc networks. In: Proceedings of IEEEWorkshop on
Knowledge Media Networking, Kyoto, 10–12 July 2002

Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next Century Challenges: Mo-
bile Networking for Smart Dust. In: Proc. 5th ACM/IEEE Inter-
national Conference onMobile Computing, pp. 271–278, Sept.
1999

Kahng, A., Robins, G.: A new family of Steiner tree heuristics with
good performance: the iterated 1-Steiner approach. In: Pro-
ceedings of IEEE Int. Conf. on Computer-Aided Design, Santa
Clara, pp.428–431 (1990)

Kahng, A.B., Mandoiu, I.I., Zelikovsky, A.: Highly scalable algo-
rithms for rectilinear and octilinear steiner trees. In: Proc. Asia
and South Pacific Design Automation Conference, Kitakyushu,
Japan, (2003) pp. 827–833

Kahng, A.B., Robins, G.: A new class of iterative steiner tree heuris-
tics with good performance. IEEE Transac. Comput. Aided Des.
11, 893–902 (1992)

Kahng, A.B., Wang, Q.: Implementation and extensibility of an ana-
lytic placer. IEEE Trans. CAD 24(5), 734–747 (2005)

Kajitani, Y.: Theory of placement by Single-Sequence Realted with
DAG, SP, BSG, and O-tree. In: International Symposium on Cir-
cuts and Systems, May 2006

Kakade, S.: On the Sample Complexity of Reinforcement Learning.
Ph. D. thesis, University College London (2003)

Kaklamanis, C., Krizanc, D., Rao, S.: Hot-potato routing on proces-
sor arrays. In: Proceedings of the 5th Annual ACM, Symposium
on Parallel Algorithms and Architectures, pp. 273–282, Velen
(1993)

Kaklamanis, C., Krizanc, D., Tsantilas, T.: Tight bounds for oblivi-
ous routing in the hypercube. In: Proceedings of the 3rd an-
nual ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 31–36 (1991)

Kalai, A., Klivans, A., Mansour, Y., Servedio, R.: Agnostically learn-
ing halfspaces. In: Proceedings of the 46th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 11–20, Pitts-
burgh, PA, USA, 23–25 October 2005

Kalai, E., Zemel, E.: Generalized Network Problems Yielding Totally
Balanced Games. Oper. Res. 30, 998–1008 (1982)

Kalai, E., Zemel, E.: Totally Balanced Games and Games of Flow.
Math. Oper. Res. 7, 476–478 (1982)

Kallahalla, M., Varman, P.J.: Optimal read-once parallel disk schedul-
ing. Algorithmica 43, 309–343 (2005)

Kalyanasundaram, B., Pruhs, K.: Minimizing flow time nonclairvoy-
antly. In: Proceedings of the 38th Symposium on Foundations
of Computer Science, October 1997

Kalyanasundaram, B., Pruhs, K.: Minimizing flow time nonclairvoy-
antly. J. ACM 50(4), 551–567 (2003)

Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoy-
ance. In: Proceedings of the 36th Symposium on Foundations
of Computer Science, October 1995, pp. 214–221

Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoy-
ance. J. ACM 47(4), 617–643 (2000)

Kamath, A., Motwani, R., Spirakis, P., Palem, K.: Tail bounds for oc-
cupancy and the satisfiability threshold conjecture. J. Random
Struct. Algorithms 7(1), 59–80 (1995)

Kamel, I., Faloutsos, C.: Hilbert R-tree: An improved R-tree us-
ing fractals. In: Proc. International Conference on Very Large
Databases, 1994, pp. 500–509

Kamel, I., Faloutsos, C.: On packing R-trees. In: Proc. Interna-
tional Conference on Information and Knowledge Manage-
ment, 1993, pp. 490–499

Kamphans, T., Langetepe, E.: Optimal competitive online ray search
with an error-prone robot. In: 4th International Workshop on
Experimental and Efficient Algorithms, pp. 593–596 (2005)

Kanj, I.A., Nakhleh, L., Xia, G.: Reconstructing evolution of natu-
ral languages: Complexity and parametrized algorithms. In:
Proceedings of the 12th Annual International Computing and
Combinatorics Conference (COCOON 2006). Lecture Notes in
Computer Science, vol. 4112, pp. 299–308. Springer, Berlin
(2006)

Kannan, R.: Annual reviews of computer science, vol. 2, chap. “Al-
gorithmic geometry of numbers”, pp. 231–267. Annual Review
Inc., Palo Alto, California (1987)

Kannan, R.: Minkowski’s convex body theorem and integer pro-
gramming. Math. Oper. Res. 12(3), 415–440 (1987)

Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bima-
trix games. In: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, New Orleans, 7–9 January 2007

Kannan, S., Lawler, E., Warnow, T.: Determining the evolutionary
tree using experiments. J. Algorithms 21(1), 26–50 (1996)

Kannan, S., Sweedyk, Z., Mahaney, S.: Counting and random gener-
ation of strings in regular languages. In: Proceedings of the 6th
ACM-SIAM Symposium on Discrete Algorithms, San Francisco,
California, pp. 551–557. ACM Press, New York (1995)

Kannan, S., Warnow, T.: A fast algorithm for the computation
and enumeration of perfect phylogenies. SIAM J. Comput. 26,
1749–1763 (1997)

Kannan, S., Warnow, T.: Inferring evolutionary history from DNA se-
quences. SIAM J. Comput. 23, 713–737 (1994)

Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-
replicating index structures. In: Proc. International Conference
on Database Theory. LNCS, vol. 1540, pp. 257–276 (1999)

Kao, M.-Y.: Tree contractions and evolutionary trees. SIAM J. Com-
put. 27(6), 1592–1616 (1998)

Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: An even faster and
more unifying algorithm for comparing trees via unbalanced
bipartite matchings. J. Algorithms 40(2), 212–233 (2001)

1114 Bibliography

Kao, M.-Y., Li, X.-Y., Wang, W.: Output truthful versus input truthful:
a new concept for algorithmic mechanism design (2006)

Kao, M.-Y., Li, X.-Y., Wang, W.: Towards truthful mechanisms for bi-
nary demand games: A general framework. In: ACM EC, pp.
213–222, Vancouver, Canada (2005)

Kao, M.-Y., Littman, M.L.: Algorithms for informed cows. In: AAAI-97
Workshop on On-Line Search, pp. 55–61 (1997)

Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown envi-
ronment: an optimal randomized algorithm for the cow-path
problem. Inf. Comput. 131(1), 63–79 (1996) Preliminary version
in SODA ’93, pp. 441–447

Kao, M., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid
algorithms. In: Proceedings 5th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA) pp. 372–381 (1994)

Kaplan, H., Landau, S., Verbin, E.: A simpler analysis of Burrows-
Wheeler-based compression. Theoretical Computer Science
387(3): 220–235 (2007)

Kaplan, H., Shafrir, N.: The greedy algorithm for shortest super-
strings. Inform. Proc. Lett. 93(1), 13–17 (2005)

Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for
sorting signed permutations by reversals. SIAM J. Comput. 29,
880–892 (1999)

Kaplan, H., Verbin, E.: Efficient data structures and a new random-
ized approach for sorting signed permutations by reversals. In:
Proceedings of the 14th Annual Symposium on Combinatorial
Pattern Matching (CPM’03), pp. 170–185. Morelia, Michocán,
Mexico, 25–27 Jun (2003)

Kaporis, A., Spirakis, P.G.: Stackelberg games on arbitrary networks
and latency functions. In: 18th ACM Symposium on Parallelism
in Algorithms and Architectures (2006)

Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The probabilistic analysis
of a greedy satisfiability algorithm. Random Struct. Algorithms
28(4), 444–480 (2006)

Karakostas, G.: Faster approximation schemes for fractional multi-
commodity flow problems. In: SODA ’02: Proceedings of the
thirteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 166–173. Society for Industrial and Applied Math-
ematics, Philadelphia (2002)

Karakostas, G., Kolliopoulos, G.: Stackelberg strategies for selfish
routing in general multicommodity networks. Technical re-
port, Advanced Optimization Laboratory, McMaster Univercity
(2006) AdvOL2006/08, 2006-06-27

Karchmer, M.: Communication Complexity: A NewApproach to Cir-
cuit Depth. MIT Press (1989)

Karger, D.: A Randomized Fully Polynomial Time Approximation
Scheme for the All-Terminal Network Reliability Problem. SIAM
J. Comput. 29, 492–514 (1999)

Karger, D., Lehman, E., Leighton, F.T., Levine, M., Lewin, D., Pan-
igrahy, R.: Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide
web. In: Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC), 1997, pp. 654–663 1997

Karger, D., Levine, M.: Random Sampling in Residual Graphs. In:
Proc. of the 34th Annual ACM Symposium on Theory of Com-
puting 2002, pp. 63–66

Karger, D., Minkoff, M.: Building Steiner trees with incomplete
global knowledge. In: Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, pp. 613–623. Los Alamitos (2000)

Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by
semidefinite programming. J. ACM 45(2), 246–265 (1998)

Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76
(2000)

Karger, D.R.: Random sampling in Graph Optimization Problems.
Ph. D. thesis, Department of Computer Science, Stanford Uni-
versity (1995)

Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.: Rounding
algorithms for a geometric embedding of minimum multiway
cut.Math. Oper. Res. 29(3), 436–461 (2004). Preliminary version
in STOC 1999

Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algo-
rithm for finding minimum spanning trees. J. ACM 42(2), 321–
329 (1995)

Karger, D.R., Stein, C.: An Õ(n2) algorithm for minimum cut. In: Pro-
ceeding of 25th Annual ACM Symposium on Theory of Com-
puting (STOC), 1993, pp. 757–765

Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sorting.
Theor. Comput. Sci. 387, 249–257 (2007)

Kärkkäinen, J., Navarro, G., Ukkonen, E.: Approximate string match-
ing on Ziv–Lempel compressed text. J. Discret. Algorithms1(3–
4), 313–338 (2003)

Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construc-
tion. In: Proceedings of the 30th International Colloquium on
Automata, Languages, and Programming, ICALP 2003. LNCS,
vol. 2719, pp. 943–955. Springer, Berlin (2003)

Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array
construction. J. ACM 53(6), 918–936 (2006)

Kärkkäinen, J., Ukkonen, E.: Two- and higher-dimensional pattern
matching in optimal expected time. SIAM J. Comput. 29, 571–
589 (1999)

Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor
Networks. Wiley, West Sussex (2005)

Karlin, A., Yao, A.C.: Probabilistic lower bounds for the byzantine
generals problem. Unpublishedmanuscript

Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive
Randomized Algorithms for Nonuniform Problems. Algorith-
mica 11(6), 542–571 (1994) (Conference version: SODA 1990,
pp. 301–309)

Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive
Snoopy Caching. Algorithmica 3, 77–119 (1988) (Conference
version: FOCS 1986, pp. 244–254)

Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Com-
put. 30(3), 906–922 (2000)

Karloff, H.: A Las Vegas RNC algorithm for maximum matching.
Combinatorica 6, 387–391 (1986)

Karloff, H., Rabani, Y., Ravid, Y.: Lower bounds for randomized k-
server andmotion-planning algorithms. SIAM J. Comput. 23(2),
293–312 (1994)

Karloff, H.J.: How good is the Goemans-Williamson MAX CUT algo-
rithm? SIAM J. Comput. 29(1), 336–350 (1999)

Karmarkar, N.: A new polynomial-time algorithm for linear pro-
gramming. Combinatorica 4, 373–395 (1984)

Karmarkar, N., Karp, R.M.: An efficient approximation scheme for
the one-dimensional bin packing problem. In: Proc. of the 23rd
Annual Symposium on Foundations of Computer Science, pp.
312–320. IEEE Computer Soc, Los Alamitos, CA (1982)

Karnaugh, M.: The map method for synthesis of combinational
logic circuits. Trans. AIEE, Commun. Electron. 72, 593–599
(1953)

Karoński, M., Scheinerman, E.R., Singer-Cohen, K.: On Random Inter-
section Graphs: The Subgraph Problem. Comb. Probab. Com-
put. 8, 131–159 (1999)

http://www.acm.org/turing/sigmod/dblp/db/indices/a-tree/k/Karlin:Anna_R=.html
http://www.acm.org/turing/sigmod/dblp/db/indices/a-tree/m/Manasse:Mark_S=.html
http://www.acm.org/turing/sigmod/dblp/db/indices/a-tree/o/Owicki:Susan_S=.html

Bibliography 1115

Karp, B., Kung, H.: GPSR: Greedy Perimeter Stateless Routing for
Wireless Networks. In: Proc. 6th Annual Int. Conf. on Mo-
bile Computing and Networking (MobiCom), 2000, pp 243–
254

Karp, R. Raghavan, P.: From a personal communication cited in [14]
Karp, R.: A 2k-competitive algorithm for the circle. Manuscript

(1989)
Karp, R., Pippenger, N., Sipser, M.: A Time-Randomness tradeoff. In:

Proc. Conference on Probabilistic Computational Complexity,
AMS, 1985, pp. 150–159

Karp, R.M.: Reducibility among combinatorial problems. In: Miller,
R.E., Thatcher, J.W. (eds.) Complexity of Computer Computa-
tions, pp. 85–103. Plenum Press, New York (1972)

Karp, R.M., Lipton, R.J.: Some Connections Between Nonuniform
and Uniform Complexity Classes. In: Proc. 12th Ann. ACM Sym-
posium on Theory of Computing, 1980, pp. 302–309

Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of re-
peated patterns in strings, trees and arrays. In: Proc. 4th Annual
ACM Symposium on Theory of Computing, pp. 125–136. ACM
Press, New York (1972)

Karp, R.M., Ramachandran, V.: Parallel Algorithms for Shared-Mem-
ory Machines. In: Van Leeuwen Ed, J. (ed) Handbook of Theo-
retical Computer Science, vol. A, pp. (869–941). MIT Press, Mas-
sachusetts (1990)

Karp, R.M., Upfal, E.,Wigderson, A.: Constructing a perfectmatching
is in Random NC. Combin. 6, 35–48 (1986)

Karzanov, A.V., Timofeev, E. A.: Efficient algorithm for finding all
minimal edge cuts of a nonoriented graph. Cybernetics 22,
156–162 (1986)

Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time
longest-common-prefix computation in suffix arrays and its
applications. In: Proc. 12th Annual Symposium on Combi-
natorial Pattern Matching, vol. (2089) of LNCS. pp. 181–192.
Springer, Berlin/Heidelberg (2001)

Kashyap, S., Khuller, S.: Algorithms for non-uniform size data place-
ment on parallel disks. In: Conference on FST&TCS Conference.
LNCS, vol. 2914, pp. 265–276. Springer, Heidelberg (2003)

Kashyap, S., Khuller, S., Wan, Y-C., Golubchik, L.: Fast reconfigura-
tion of data placement in parallel disks. In: Workshop on Algo-
rithm Engineering and Experiments (2006)

Kato, A.: Complexity of the sex-equal stablemarriage problem. Jpn.
J. Ind. Appl. Math. 10, 1–19 (1993)

Katriel, I., Sanders, P., Träff, J.L.: A practical minimum spanning tree
algorithm using the cycle property. In: Proc. 11th Annual Euro-
pean Symposium on Algorithms. LNCS, vol. 2832, pp. 679–690.
Springer, Berlin (2003)

Katz, J., Koo, C.: On Expected Constant-Round Protocols for Byzan-
tine Agreement. In: Proceedings of Advances in Cryptology–
CRYPTO 2006, Santa Barbara, California, August 2006, pp. 445–
462. Springer, Berlin Heidelberg New York (2006)

Katz, J., Trevisan, L.: On the efficiency of local decoding procedures
for error-correcting codes. In: Proceedings of STOC’00, pp. 80–
86

Katz, R.: Contemporary logic design. Benjamin/Cummings Pub. Co.
(1993)

Kauffman, L.: State models and the Jones polynomial. Topology 26,
395–407 (1987)

Kauffman, L., Lomonaco, S.: Topological Quantum Computing and
the Jones Polynomial, arXiv.org:quant-ph/0605004 (2006)

Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduc-
tion to Cluster Analysis. Wiley, New York (1990)

Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are locally
testable. In: Proceedings of the Forty-Sixth Annual Symposium
on Foundations of Computer Science, pp. 317–326. IEEE, New
York (2005)

Kaufman, T., Litsyn, S., Xie, N.: Breaking the �-soundness bound of
the linearity test over gf(2). Electronic Colloquium on Compu-
tational Complexity, Report TR07–098, October 2007

Kaufman, T., Ron, D.: Testing polynomials over general fields. In:
Proceedings of the Forty-Fifth Annual Symposium on Foun-
dations of Computer Science, pp. 413–422. IEEE, New York
(2004)

Kautz, H., Selman, B.: Ten Challenges Redux: Recent Progress in
Propositional Reasoning and Search. Proceedings 9th Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming, pp. 1–18. Kinsale, Ireland (2003)

Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Strongly stable
matchings in time O(nm) and extension to the Hospitals-
Residents problem. In: Proceedings of STACS 2004: the 21st
International Symposium on Theoretical Aspects of Com-
puter Science. Lecture Notes in Computer Science, vol. 2996,
pp. 222–233. Springer, Berlin (2004)

Kavvadias, D., Pantziou, G., Spirakis, P., Zaroliagis, C.: Efficient
Sequential and Parallel Algorithms for the Negative Cycle
Problem. In: Algorithms and Computation – ISAAC’94. Lect.
Notes Comput. Sci., vol. 834, pp.270–278. Springer, Heidelberg
(1994)

Kay, R., Bucheuv, G., Pileggi, L.: EWA: Efficient Wire-Sizing Algo-
rithm. In: Proc. Intl. Symp. on Physical Design, pp. 178–185.
ACM, New York (1997)

Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum
Computation. Oxford University Press, Oxford (2007)

Kearney, P.: Phylogenetics and the quartet method. In: Jiang, T., Xu,
Y., Zhang, M.Q. (eds.) Current Topics in Computational Molec-
ular Biology. The MIT Press, Massachusetts, pp. 111–133 (2002)

Kearns, M.: Efficient noise-tolerant learning from statistical queries.
J. ACM 45(6), 983–1006 (1998)

Kearns, M., Li, M.: Learning in the presence of malicious errors.
In: Proc. 20th ACM Symp. Theory of Computing, pp. 267–280,
Chicago, 2–4 May 1988

Kearns, M., Li, M.: Learning in the presence ofmalicious errors. SIAM
J. Comput. 22, 807–837 (1993)

Kearns, M., Schapire, R., Sellie, L.: Toward efficient agnostic learning.
Mach. Learn. 17(2-3), 115–141 (1994)

Kearns, M., Singh, S.: Near-optimal reinforcement learning in poly-
nomial time. Mach. Learn. 49(2–3), 209–232 (2002)

Kearns, M., Valiant, L.: Cryptographic limitations on learning
boolean formulae and finite automata. J. ACM 41(1), 67–95
(1994)

Kearns, M., Vazirani, U.: An introduction to computational learning
theory. MIT Press, Cambridge (1994)

Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus
when there are no faults-a tutorial. In: Tutorial 21th ACM Sym-
posium on Principles of Distributed Computing, July 2002

Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the
complete Euclidean graph. Discrete Comput. Geom. 7, 13–28
(1992)

Keil, J.M., Gutwin, C.A.: The Delaunay Triangulation Closely Approx-
imates the Complete EuclideanGraph.Discret. Comput. Geom.
7, 13–28 (1992)

Keller, O., Kopelowitz, T., Lewenstein, M.: Parameterized LCS and
edit distance are NP-Complete. Manuscript

1116 Bibliography

Kellerer, H., Pferschy, U.: A new fully polynomial time approxima-
tion scheme for the knapsack problem. J. Comb. Optim. 3, 59–
71 (1999)

Kellerer, H., Pferschy, U.: Improved dynamic programming in con-
nection with an FPTAS for the knapsack problem. J. Comb. Op-
tim. 8, 5-11 (2004)

Kellerer, H., Pisinger, D., Pferschy U.: Knapsack Problems. Springer,
Berlin (2004)

Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximability and
nonapproximability results for minimizing total flow time on
a single machine. In: Proceedings of 28th Annual ACM Sympo-
sium on the Theory of Computing (STOC ’96), 1996, pp. 418–
426

Kellerer, H., Tautenhahn, T., Woeginger, G.J.: Approximability and
Nonapproximability Results for Minimizing Total Flow Time on
a Single Machine. SIAM J. Comput. 28(4), 1155–1166 (1999)

Kelly, F.P.: Charging and rate control for elastic traffic. Eur. Trans.
Telecommun. 8, 33–37 (1997)

Kempe, J.: Discrete quantumwalks hit exponentially faster. In: Proc.
RANDOM (2003)

Kempe, J.: Quantum random walks – an introductory overview.
Contemp. Phys. 44(4), 302–327 (2003)

Kendon, V., Tregenna, B.: Decoherence can be useful in quantum
walks. Phys. Rev. A. 67, 42–315 (2003)

Kennings, A., Markov, I.L.: Smoothing max-terms and analytical
minimization of half-perimeter wirelength. VLSI Design 14(3),
229–237 (2002)

Kennings, A., Vorwerk, K.: Force-directed methods for generic
placement. IEEE Trans. CAD 25(10), 2076–2087 (2006)

Kent, K., Skorin-Kapov, D.: Population monotonic cost allocation
on mst’s. In: Proc. of the 6th International Conference on Op-
erational Research, Croatian Operational Research Society, Za-
greb, pp. 43–48 (1996)

Kern, W., Paulusma, D.: Matching Games: The Least Core and the
Nucleolus. Math. Oper. Res. 28, 294–308 (2003)

Kernighan, B.W., Lin, S.: An efficient heuristic procedure for parti-
tioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B.,
Sviridenko, M.: Buffer overflow management in QoS switches.
SIAM J. Comput. 33(3), 563–583 (2004)

Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive
guarantees for QoS buffering. In: Di Battista, G., Zwick, U.
(eds.) Algorithms – ESA 2003, Proceedings Eleventh Annual
European Symposium. Lecture Notes in Computer Science,
vol. 2380, pp. 361–373. Springer, Berlin (2003)

Kettner, L., Näher, S.: Two computational geometry libraries:
LEDA and CGAL. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, Chapter 65,
pp. 1435–1463, 2nd edn. Chapman & Hall/CRC, Boca Raton
(2004)

Keutzer, K.: DAGON: Technology Binding and Local Optimizations
by DAG Matching. In: Proc. of the 24th Design Automation
Conference 28(1), pp. 341–347. Miami Beach, June 1987

Khachiyan, L.G.: A polynomial algorithm for linear programming.
Soviet Math. Doklady 20, 191–194 (1979)

Khandekar, R., Rao, S., Vazirani, U.: Graph partitioning using sin-
gle commodity flows. In: STOC ’06: Proceedings of the thirty-
eighth annual ACM symposium on Theory of computing,
pp. 385–390. ACM Press, New York (2006)

Khanna, S., Linial, N., Safra, S.: On the hardness of approximating
the chromatic number. Combinatorica 20, 393–415 (2000)

Khardon, R., Roth, D., Servedio, R.A.: Efficiency versus convergence
of boolean kernels for on-line learning algorithms. J. Artif. In-
tell. Res. 24, 341–356 (2005)

Kharitonov, M.: Cryptographic hardness of distribution-specific
learning. In: Proceedings of the 25th Annual Symposium on
Theory of Computing, pp. 372–381. (1993)

Khot, S.: Hardness of Approximating the Shortest Vector Problem
in Lattices. J. ACM 52(5), 789–808 (2005). Preliminary version in
FOCS 2004

Khot, S.: Improved inapproximability results for max clique, chro-
matic number and approximate graph coloring. In: Proceed-
ings of the 42nd annual IEEE Symposium on Foundations of
Computer Science (2001) pp. 600–609.

Khot, S.: On the power of unique 2-prover 1-round games. In: Pro-
ceedings of the 34th Annual Symposium on the Theory of
Computing (STOC), Montreal 2002, pp. 767–775

Khot, S.: Ruling out PTAS for graph Min-Bisection, Densest Sub-
graph and Bipartite Clique. In: 45th Annual IEEE Symposium on
Foundations of Computer Science, pp. 136–145, Georgia Inst.
of Technol., Atlanta 17–19 Oct. 2004

Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproxima-
bility results for MAX CUT and other 2-variable CSPs? In: Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), Rome 2004, pp. 146–154

Khot, S., Vishnoi, N.: The Unique Games Conjecture, Integrality Gap
for Cut Problems and the Embeddability of Negative-TypeMet-
rics into `1. In: Proceedings of the 46th IEEE Symposium on
Foundations of Computer Science (FOCS), Pittsburgh, October
2005, pp. 53–62

Khuller, S.: Approximation algorithms for finding highly connected
subgraphs. In: Hochbaum, D. (ed.) Approximation Algorithms
forNP-Hard Problems, Chapter 6, pp. 236–265. PWS Publish-
ing Company, Boston (1996)

Khuller, S., Kim, Y., Malekian, A.: Improved algorithms for data mi-
gration. In: 9th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (2006)

Khuller, S., Kim, Y., Wan, Y.-C.: Algorithms for data migration with
cloning. SIAM J. Comput. 33(2), 448–461 (2004)

Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage
problem. Inform. Process. Lett. 70(1), 39–45 (1999)

Khuller, S., Raghavachari, B.: Improved approximation algorithms
for uniform connectivity problems. J. Algorithms 21(2), 434–
450 (1996)

Khuller, S., Raghavachari, B., Young, N.: Low-degree spanning trees
of small weight. SIAM J. Comput. 25(2), 355–368 (1996)

Khuller, S., Vishkin, U.: Biconnectivity approximations and graph
carvings. J. ACM 41(2), 214–235 (1994)

Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A.,
Arikawa, S.: Collage systems: a unifying framework for com-
pressed pattern matching. Theor. Comput. Sci. 298(1), 253–
272 (2003)

Kida, T., Takeda, M., Shinohara, A., Miyazaki, M., Arikawa, S.: Multi-
ple pattern matching in LZW compressed text. J. Discret. Algo-
rithms 1(1), 133–158 (2000)

Kierstead, H.A.: The linearity of first-fit coloring of interval graphs.
SIAM J. Discret. Math. 1(4), 526–530 (1988)

Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive
combinatorics. Congr. Numerantium 33, 143–153 (1981)

Kim, D.K., Kim, Y.A., Park, K.: Constructing suffix arrays for multi-di-
mensional matrices. In: Proceedings of the 9th Symposium on
Combinatorial Pattern Matching, 1998, pp. 249–260

Bibliography 1117

Kim, D.K., Kim, Y.A., Park, K.: Generalizations of suffix arrays tomulti-
dimensional matrices. Theor. Comput. Sci.302, 401–416 (2003)

Kim, D.K., Na, J.C., Kim, J.E., Park, K.: Efficient implementation of
Rank and Select functions for succinct representation. In: Proc.
WEA 2005. LNCS, vol. 3505, pp. 315–327 (2005)

Kim, D.K., Park, K.: Linear-time construction of two-dimensional suf-
fix trees. In: Proceedings of the 26th International Colloquium
on Automata, Languages, and Programming, 1999, pp. 463–
372

Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in
linear time. J. Discret. Algorithms 3, 126–142 (2005)

Kim, J.-H.: On Brook’s Theorem for sparse graphs. Combin. Probab.
Comput. 4, 97–132 (1995)

Kim, J.W., Amir, A., Landau, G.M., Park, K.: Computing Similarity
of Run-Length Encoded Strings with Affine Gap Penalty. In:
Proc. 12th Symposium on String Processing and Information
Retrieval (SPIRE’05). LNCS, vol. 3772, pp. 440–449 (2005)

Kim, S.K.: Linear-time algorithm for finding a maximum-density
segment of a sequence. Inf. Process. Lett. 86, 339–342 (2003)

Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Geographic Routing
Made Practical. In: Proceedings of the Second USENIX/ACM
Symposium on Networked System Design and Implementa-
tion (NSDI 2005), Boston, Massachusetts, USA, May 2005

Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: Lazy cross-link removal
for geographic routing. In: Embedded Networked Sensor Sys-
tems. ACM, New York (2006)

Kim, Y.J., Govindan, R., Karp, B., Shenker, S.: On the Pitfalls of Geo-
graphic Face Routing. In: Proc. of the ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), Cologne,
Germany, September 2005

Kimbrel, T., Sinha, R.K.: A probabilistic algorithm for verifyingmatrix
products using O(n2) time and log2 n + O(1) random bits. Inf.
Proc. Lett. 45(2), 107–110 (1993)

Kinber, E.B., Stephan, F.: Language Learning from Texts: Mind-
changes, Limited Memory, and Monotonicity. Inform. Comput.
123(2), 224–241 (1995)

King, V.: A simpler minimum spanning tree verification algorithm.
Algorithmica 18(2), 263–270 (1997)

King, V.: Fully dynamic algorithms for maintaining all-pairs short-
est paths and transitive closure in digraphs. In: Proc. 40th IEEE
Symposium on Foundations of Computer Science (FOCS’99),
pp. 81–99. IEEE Computer Society, New York, USA (1999)

King, V., Sagert, G.: A fully dynamic algorithm for maintaining the
transitive closure. J. Comp. Syst. Sci. 65(1), 150–167 (2002)

King, V., Thorup, M.: A space saving trick for dynamic transitive clo-
sure and shortest path algorithms. In: Proceedings of the 7th
Annual International Conference of Computing and Comina-
torics, vol. 2108/2001, pp. 269–277. Lect. Notes Comp. Sci. CO-
COON Springer, Heidelberg (2001)

King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based
evolutionary tree construction. In: Proceedings of the 14th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA
2003), pp. 444–453 (2003)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated
Annealing. Science 4598, 671–680 (1983)

Kirousis, L., Stamatiou, Y., Zito, M.: The unsatisfiability threshold
conjecture: the techniques behind upper bound improve-
ments. In: A. Percus, G. Istrate, C. Moore (eds.) Computational
Complexity and Statistical Physics, Santa Fe Institute Studies
in the Sciences of Complexity, pp. 159–178. Oxford University
Press, New York (2006)

Kirousis, L.M., Kranakis, E., Vitányi, P.M.B.: Atomic multireader reg-
ister. In: Proc. Workshop Distributed Algorithms. Lect Notes
Comput Sci, vol 312, pp. 278–296. Springer, Berlin (1987)

Kirousis, L.M., Spirakis, P., Tsigas, P.: Simple atomic snapshots: A lin-
ear complexity solutionwith unbounded time-stamps. Inf. Pro-
cess. Lett. 58, 47–53 (1996)

Kis, T., Kapolnai, R.: Approximations and auctions for scheduling
batches on related machines. Operat. Res. Let. 35(1), 61–68
(2006)

Kitaev, A.: Quantum measurements and the Abelian Stabilizer
Problem. quant-ph/9511026, http://arxiv.org/abs/quant-ph/
9511026 (1995) and in: Electronic Colloquium on Compu-
tational Complexity (ECCC) 3, Report TR96-003,http://eccc.
hpi-web.de/eccc-reports/1995/TR96-003/ (1996)

Kitaev, A.Y.: Quantum computations: algorithms and error correc-
tion. Russ. Math. Surv. 52(6), 1191–1249 (1997)

Kitts, B., Leblanc, B.: Optimal bidding on keyword auctions. Elec-
tronicMarkets, Special issue: Innovative AuctionMarkets 14(3),
186–201 (2004)

Kivinen, J., Warmuth, M.K.: Exponentiated gradient versus gradient
descent for linear predictors. Inf. Comp. 132(1), 1–64 (1997)

Kiwi, M., Magniez, F., Santha,M.: Approximate testingwith error rel-
ative to input size. J. CSS 66(2), 371–392 (2003)

Kiwi, M., Magniez, F., Santha, M.: Exact and approximate test-
ing/correcting of algebraic functions: A survey. Theoretical As-
pects Compututer Science, LNCS 2292, 30–83 (2001)

Klasing, R., Navarra, A., Papadopoulos, A., Perennes, S.: Adap-
tive broadcast consumption (ABC), a new heuristic and new
bounds for the minimum energy broadcast routing problem.
In: Proceeding of the 3rd IFIP-TC6 international networking
conference (NETWORKING), pp. 866–877 (2004)

Kleene, S.C.: Representation of events in nerve sets. In: Shannon,
C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–40. Princeton
Univ. Press, Princeton (1956)

Klein, M., Ralya, T., Pollak, B., Obenza, R., Harbour, M.G.: A Practi-
tioner’s Handbook for Real-Time Analysis: Guide to RateMono-
tonic Analysis for Real-Time Systems. Kluwer Academic Pub-
lishers, Boston (1993)

Klein, P., Agrawal, A., Ravi, R., Rao, S.: Approximation through mul-
ticommodity flow. In: Proceedings of the 31st IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 726–
737 (1990)

Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decompo-
sition, andmulticommodity flow. In: 25th Annual ACM Sympo-
sium on Theory of Computing, pp. 682–690, San Diego, 1993
May 16–18

Klein, P., Ravi, R.: A nearly best-possible approximation algorithm
for node-weighted Steiner trees. J. Algorithms 19(1), 104–115
(1995)

Klein, P.N.: A linear-time approximation scheme for TSP for planar
weighted graphs. In: Proceedings of the 46th IEEE Symposium
on Foundations of Computer Science, 2005, pp. 146–155

Klein, P.N.: A subset spanner for planar graphs, with application to
subset TSP. In: Proceedings of the 38th ACM Symposium on
Theory of Computing, 2006, pp. 749–756

Klein, P.N.: Multiple-source shortest paths in planar graphs. In: Pro-
ceedings, 16th ACM-SIAM Symposium on Discrete Algorithms,
pp. 146–155 (2005)

Klein, P.N., Krishnan, R., Raghavachari, B., Ravi, R.: Approximation
algorithms for finding low-degree subgraphs. Networks 44(3),
203–215 (2004)

http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
http://eccc.hpi-web.de/eccc-reports/1995/TR96-003/
http://eccc.hpi-web.de/eccc-reports/1995/TR96-003/

1118 Bibliography

Klein, P.N., Plotkin, S.A., Stein, C., Tardos, É.: Faster approximation
algorithms for the unit capacity concurrent flow problem with
applications to routing and finding sparse cuts. SIAM J. Com-
put. 23(3), 466–487 (1994)

Klein, R., Kutz, M.: The Density of Iterated Plane Intersection Graphs
and aGap Result for Triangulationsof Finite Point Sets. In: Proc.
22nd ACM Symp. Comp. Geom. (SoCG), Sedona (AZ), 2006,
pp. 264–272

Klein, S.T., Shapira, D.: Compressed pattern matching in jpeg im-
ages. In: Proceeding Prague Stringology conference, 2005,
pp. 125–134

Klein, S.T., Wiseman, Y.: Parallel huffman decoding with applica-
tions to jpeg files. Comput. J. 46(5), 487–497 (2003)

Kleinberg, J.: The small-world phenomenon: An algorithmic per-
spective. In: Proc. 32nd ACM Symposium on Theory of Com-
puting (STOC 2000), 2000, pp. 163–170

Kleinberg, J., Rabani, Y., Tardos, E.: Allocating Bandwidth for Bursty
Connections. SIAM J. Comput. 30, 191–217 (2000)

Kleinberg, J., Rabani, Y., Tardos, É.: Fairness in routing and load bal-
ancing. In: Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, pp. 568–578, October 1999

Kleinberg, J.M.: An Approximation Algorithm for the Disjoint Paths
Problem in Even-Degree Planar Graphs. Proc. of IEEE FOCS,
2005, pp. 627–636

Kleinberg, J.M.: Approximation algorithms for disjoint paths prob-
lems. Ph. D. thesis, MIT, Cambridge, MA (1996)

Kleinberg, J.M.: The localization problem for mobile robots. In: Pro-
ceedings of the 35th Symposium on Foundations of Computer
Science (FOCS’94), 1994, pp. 521–531

Kleinrock, L., Silvester, J.: Optimum transmission radii for packet ra-
dio networks or why six is a magic number. In: Proceedings of
the IEEE National Telecommunications Conference, pp. 431–
435, Birmingham, 4–6 December 1978

Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM
J. Discret. Math. 4, 99–106 (1991)

Klimov, G.P.: Time-sharing service systems I. Theory Probab. Appl.
19, 532–551 (1974)

Klivans, A., O’Donnell, R., Servedio, R.: Learning intersections and
thresholds of halfspaces. J. Comput. Syst. Sci. 68(4), 808–840
(2004)

Klivans, A., Servedio, R.: Learning DNF in time 2Õ(n
1/3). In: Proceed-

ings of the 33rd Annual Symposium on Theory of Computing,
2001

Klivans, A., Sherstov, A.: Cryptographic hardness results for learning
intersections of halfspaces. In: Proceedings of the 47th Annual
Symposium on Foundations of Computer Science, pp. 553–
562, Berkeley, 22–24 October 2006

Klivans, A.R. Servedio, R.A.: Toward attribute efficient learning of
decision lists and parities. J. Mach. Learn. Res. 7(Apr), 587–602
(2006)

Klivans, A.R., Servedio, R.A.: Boosting and hard-core set construc-
tion. Mach. Learn. 51, 217–238 (2003)

Klivans, A.R., Servedio, R.A.: Learning DNF in Time 2Õ(n
1/3). J. Com-

put. Syst. Sci. 68, 303–318 (2004)
Kloks, T., Kratochvíl, J., Müller, H.: Computing the branchwidth of

interval graphs. Discret. Appl. Math. 145, 266–275 (2005)
Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in

of asteroidal triple-free graphs. Theor. Comput. Sci. 175, 309–
335 (1997)

Knauer, C., Spillner, A.: A fixed-parameter algorithm for the mini-
mumweight triangulation problem based on small graph sep-

arators. In: Proceedings of the 32nd InternationalWorkshop on
Graph-Theoretic Concepts in Computer Science (WG). Lecture
Notes in Computer Science, vol. 4271, pp. 49–57. Springer, New
York (2006)

Knauer, C., Spillner, A.: Fixed-parameter algorithms for finding
crossing-free spanning trees in geometric graphs. Tech. Rep.
06–07, Department of Computer Science, Friedrich-Schiller-
Universität Jena (2006)

Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Algorithms Based on
the Treewidth of Sparse Graphs. In: Proc. Workshop on Graph
Theoretic Concepts in Computer Science. LNCS, vol. 3787,
pp. 385–396. Springer, Berlin (2005)

Knill, E.: Quantum computing with realistically noisy devices. Na-
ture 434, 39–44 (2005)

Knill, E., Laflamme, R.: Theory of quantum error-correcting codes.
Phys. Rev. A 55, 900–911 (1997)

Knill, E., Laflamme, R., Martinez, R., Negrevergne, C.: Benchmark-
ing quantum computers: the five-qubit error correcting code.
Phys. Rev. Lett. 86, 5811–5814 (2001)

Knödel, W.: A bin packing algorithm with complexity O(nlogn)
in the stochastic limit. In: Proc. 10th Symp. on Mathematical
Foundations of Computer Science. LNCS, vol. 118, pp. 369–378.
Springer, Berlin (1981)

Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Comput-
ing many-to-many shortest paths using highway hierarchies.
In: Proceedings 9th Workshop on Algorithm Engineering and
Experiments (ALENEX), 2007

Knuth, D.: Marriage Stables et leurs relations avec d’autres prob-
lèmes Combinatories. Les Presses de l’Université de Montréal
(1976)

Knuth, D.: The Art of Computer Programming, vol. 2 : Seminu-
merical Algorithms, 2nd edn. Addison-Wesley PublishingCom-
pany, Reading (1981)

Knuth, D., Plass, M.: Breaking paragraphs into lines. Software-
Practice Exp. 11, 1119–1184 (1981)

Knuth, D.E.: Mariages Stables. Les Presses de L’Université de Mon-
tréal, Montréal (1976)

Knuth, D.E.: Optimum binary search trees. Acta Informatica 1, 14–
25 (1971)

Knuth, D.E.: Sorting and Searching. The Art of Computer Program-
ming, vol. 3, 2nd edn. Addison-Wesley, Reading (1998)

Knuth, D.E., Morris, J.H. Jr., Pratt, V.R.: Fast pattern matching in
strings. SIAM J. Comput. 6(1), 323–350 (1977)

Ko, P., Aluru, S.: Optimal self-adjusting trees for dynamic string
data in secondary storage. In: Symposium on String Processing
and Information Retrieval (SPIRE). LNCS, vol. 4726, pp. 184-194.
Springer, Berlin (2007)

Ko, P., Aluru, S.: Space efficient linear time construction of suffix ar-
rays. J. Discret. Algorithms 3, 143–156 (2005)

Köbler, J., Lindner,W.: Oracles in sp2 are sufficient for exact learning.
Int. J. Found. Comput. Sci. 11(4), 615–632 (2000)

Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem:
its structural complexity. Birkhäuser, Boston (1993)

Köbler, J., Watanabe, O.: New Collapse Consequences of NP Having
Small Circuits. SIAM J. Comput. 28, 311–324 (1998)

Kodama, C., Fujiyoshi, K.: Selected Sequence-Pair: An efficient de-
codable packing representation in linear time using Sequence-
Pair. In: Proc. ASP-DAC 2003, pp. 331–337

Koenig, S., Mudgal, A., Tovey, C.: A near-tight approximation lower
bound and algorithm for the kidnapped robot problem. In:

Bibliography 1119

Proceedings of the 17th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’06), 2006, pp. 133–142.

Koetter, R., Vardy, A.: Algebraic soft-decision decoding of Reed–
Solomon codes. IEEE Trans. Inf. Theory. 49(11), 2809–2825
(2003)

Koetter, R., Vontobel, P.: Graph covers and iterative decoding of
finite-length codes. In: Proc. 3rd International Symposium on
Turbo Codes and Related Topics, pp. 75–82, September 2003.
Brest, France (2003)

Köhler, E., Möhring, R., Schilling, H.: Fast point-to-point shortest
path computationswith arc-flags. In: 9th DIMACS Implementa-
tion Challenge Workshop: Shortest Paths, DIMACS Center, Pis-
cataway, NJ, 13–14 Nov 2006

Kojevnikov, A., Kulikov, A.S.: A New Approach to Proving Up-
per Bounds for Max 2-SAT. In: Proc. of the Seventeenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp. 11–17
(2006)

Kojima, F., Unver, Ü.: Random paths to pairwise stability in many-
to-many matching problems: A study on market equilibration.
Intern. J. Game Theor. (2006)

Kolchin, V.F., Sevastyanov, B.A., Chistyakov, V.P.: Random Alloca-
tions. Wiley, New York (1978)

Kolliopoulos, S.G.: Edge Disjoint Paths and Unsplittable Flow. In:
Handbook on Approximation Algorithms and Metaheuristics,
Chapman & Hall/CRC Press Computer & Science Series, vol 13.
Chapman Hall/CRC Press, May 2007

Kolliopoulos, S.G., Stein, C.: Approximating Disjoint-Path Problems
Using Greedy Algorithms and Packing Integer Programs. Math.
Program. A 99, 63–87 (2004). Preliminary version in Proc. of
IPCO 1998

Kolliopoulos, S.G., Stein, C.: Finding Real-Valued Single-Source
Shortest Paths in o(n3) Expected Time. J. Algorithms 28,
pp. 125–141 (1998)

Kolliopoulos, S.G., Young, N.E.: Tight approximation results for gen-
eral covering integer programs. In: Proceedings of the forty-
second annual IEEE Symposium on Foundations of Computer
Science, pp. 522–528 (2001)

Kolpakov, R., Bana, G., Kucherov, G.: mreps: efficient and flexible
detection of tandem repeats in DNA. Nucl. Acids Res. 31(13),
3672–3678 (2003)

Kolpakov, R., Kucherov, G.: Finding approximate repetitions un-
der Hamming distance. Theoret. Comput. Sci. 33(1), 135–156,
(2003)

Kolpakov, R., Kucherov, G.: Findingmaximal repetitions in a word in
linear time. In: Proceedings of the 40th Symposiumon Founda-
tions of Computer Science, pp. 596–604. IEEE Computer Soci-
ety Press, Los Alamitos (1999)

Kolpakov, R., Kucherov, G.: Identification of periodic structures in
words. In: Berstel, J., Perrin, D. (eds.) Applied combinatorics
on words. Encyclopedia of Mathematics and its Applications.
Lothaire books, vol. 104, pp. 430–477. Cambridge University
Press (2005)

Komlós, J.: Linear verification for spanning trees. Combinatorica
5(1), 57–65 (1985)

Komlós, J., Szemerédi, E.: Limit Distributions for the existence of
Hamilton cycles in a random graph. Discret. Math. 43, 55–63
(1983)

Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof
mechanism for Steiner forests. In: Proc. of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 612–619.

Society for Industrial and Applied Mathematics, Philadelphia
(2005)

Könemann, J., Ravi, R.: A matter of degree: Improved approxima-
tion algorithms for degree-bounded minimum spanning trees.
SIAM J. Comput. 31(6), 1783–1793 (2002)

Könemann, J., Ravi, R.: Primal-dual meets local search: Approximat-
ing MSTs with nonuniform degree bounds. SIAM J. Comput.
34(3), 763–773 (2005)

Kontogiannis, S., Panagopoulou, P.N., Spirakis, P.G.: Polynomial al-
gorithms for approximating Nash equilibria of bimatrix games.
In: Proceedings of the 2ndWorkshop on Internet and Network
Economics (WINE’06), pp. 286–296. Patras, 15–17 December
2006

Kontogiannis, S., Spirakis, P.G.: Efficient Algorithms for Constant
Well Supported Approximate Equilibria in Bimatrix Games.
In: Proceedings of the 34th International Colloquium on Au-
tomata, Languages and Programming (ICALP’07, Track A: Al-
gorithms and Complexity), Wroclaw, 9–13 July 2007

Kopelowitz, A.: Computation of the Kernels of Simple Games and
the Nucleolus of n-person Games. RM-31, Math. Dept., The He-
bre University of Jerusalem (1967)

Korach, E., Moran, S., Zaks, S.: The optimality of distributive con-
structions of minimumweight and degree restricted spanning
trees in a complete network of processors. In: Proc. 4th Symp.
on Principles of Distributed Computing (PODC), pp. 277–286.
ACM, USA (1985)

Korach, E., Moran, S., Zaks, S.: Tight upper and lower bounds for
some distributed algorithms for a complete network of proces-
sors. In: Proc. 3rd Symp. on Principles of DistributedComputing
(PODC), pp. 199–207. ACM, USA (1984)

Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima us-
ing stackelberg routing strategies. IEEE/ACM Trans. Netw. 5(1),
161–173 (1997)

Korshunov, A.D.: Solution of a problem of P. Erdös and A. Rényi on
Hamilton Cycles in non-oriented graphs. Metody Diskr. Anal.
Teoriy Upr. Syst. Sb. Trubov Novosibrirsk 31, 17–56 (1977)

Korte, B., Schrader, R.: On the existence of fast approximation
schemes. Nonlinear Program. 4, 415–437 (1980)

Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local
search heuristic for facility location problems. In: SODA ’98: Pro-
ceedings of the ninth annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 1–10. San Francisco, USA; 25–26 January
1998

Kosaraju, R., Manzini, G.: Compression of low entropy strings with
Lempel–Ziv algorithms. SIAM J. Comput. 29, 893–911 (1999)

Kosaraju, S.R.: Efficient tree pattern matching. In: Proc. 20th IEEE
Foundations of Computer Science (FOCS), pp. 178–183. Trian-
gle Park, USA (1989)

Kosaraju, S.R.: Faster algorithms for the construction of parameter-
ized suffix trees. In: Proc. 36th Annual Symposium on Founda-
tions of Computer Science (FOCS), 1995, pp. 631–637

Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth:
Computational experiments. In: Broersma, H., Faigle, U., Hurink,
J., Pickl, S. (eds.) Electronic Notes in Discrete Mathematics,
vol. 8, pp. 54–57. Elsevier, Amsterdam (2001)

Kothari, A., Parkes, D., Suri, S.: Approximately-strategyproof and
tractable multi-unit auctions. Decis. Support Syst. 39, 105–121
(2005)

Kouider, M., Vestergaard, P.D.: Generalized connected domination
in graphs. Discret. Math. Theor. Comput. Sci. (DMTCS) 8, 57–64
(2006)

1120 Bibliography

Koutsoupias, E.: Weak adversaries for the k-server problem. In: Proc.
40th Symp. Foundations of Computer Science (FOCS), IEEE, pp.
444–449 (1999)

Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilib-
ria and ball fusion. Theor. Comput. Syst. 36(6), 683–693 (2003)

Koutsoupias, E., Papadimitriou, C.: On the k-server conjecture. In:
Proc. 26th Symp. Theory of Computing (STOC), pp. 507–511.
ACM (1994)

Koutsoupias, E., Papadimitriou, C.: The 2-evader problem. Inf. Proc.
Lett. 57, 249–252 (1996)

Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: 16th
Symposium on Theoretical Aspects in Computer Science, Trier,
Germany. LNCS, vol. 1563, pp. 404–413. Springer (1999)

Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis.
In: Proceeding 35th Annual Symposium on Foundations of
Computer Science, pp. 394–400, Santa Fe, NM (1994)

Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis.
SIAM J. Comput. 30(1), 300–317 (2000)

Koutsoupias, E., Papadimitriou, C.H.: On the greedy algorithm for
satisfiability. Inform. Process. Lett. 43(1), 53–55 (1992)

Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture.
J. ACM 42(5), 971–983 (1995)

Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Proc.
of the 16th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), pp. 404–413. Springer, Trier (1999)

Koutsoupias, E., Taylor, D.S.: The CNN problem and other k-server
variants. Theor. Comput. Sci. 324, 347–359 (2004)

Kovács, A.: Fast Algorithms for Two Scheduling Problems. Ph. D.
thesis, Universität des Saarlandes (2007)

Kovács, A.: Fast monotone 3-approximation algorithm for schedul-
ing related machines. In: Proc. 13th Annual European Sympo-
sium on Algorithms (ESA), 2005, pp. 616–627

Kowalski, D.R., Pelc, A.: Broadcasting in undirected adhoc radio net-
works. Distrib. Comput. 18(1), 43–57 (2005)

Kowalski, D.R., Pelc, A.: Deterministic broadcasting time in radio
networks of unknown topology. In: FOCS ’02: Proceedings of
the 43rd Symposium on Foundations of Computer Science,
Washington, DC, USA, pp. 63–72. IEEE Computer Society (2002)

Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: Polynomial solvability
of convex quadratic programming. Sov. Math. Dokl. 20, 1108–
1111 (1979)

Kozma, G., Lotker, Z., Sharir, M., Stupp, G.: Geometrically aware
communication in random wireless networks. In: Proceedings
of the twenty-third annual ACM symposium on Principles of
distributed computing, 25–28 July 2004, pp. 310–319

Kranakis, E., Krizanc, D., Markou, E.: Mobile Agent Rendezvous in
a Synchronous Torus. In: Proceedings of LATIN 2006, 7th Latin
American Symposium. Valdivia, March 20–24 2006. Correa, J.,
Hevia, A., Kiwi, M. SVLNCS 3887, 653–664 (2006)

Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio
networks. J. Algorithms 39, 47–67 (2001)

Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile Agent
Rendezvous Search Problem in the Ring. In: Proc. Interna-
tional Conference on Distributed Computing Systems (ICDCS),
pp. 592–599. Providence, Rhode Island 19–22 May 2003

Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geometric
Networks. In: Proc. 11th Canadian Conference on Computa-
tional Geometry, Vancouver, August 1999, pp 51–54

Krarup, J., Pruzan, P.M.: Ingredients of locational analysis. In: Mir-
chandani, P., Francis, R. (eds.) Discrete Location Theory, pp. 1–
54. Wiley, New York (1990)

Krarup, J., Pruzan, P.M.: The simple plant location problem: Survey
and synthesis. Eur. J. Oper. Res. 12, 38–81 (1983)

Kratsch, D.: Algorithms. In: Haynes, T., Hedetniemi, S., Slater, P.
(eds.) Domination in Graphs: Advanced Topics, pp. 191–231.
Marcel Dekker, New York (1998)

Kratsch, D., Spinrad, J.: Minimal fill in O(n2:69) time. Discret. Math.
306(3), 366–371 (2006)

Krauthgamer, R., Lee, J.R., Mendel, M., Naor, A.: Measured descent:
A new embedding method for finite metrics. Geom. Funct.
Anal. 15(4), 839–858 (2005)

Krauthgamer, R., Linial, N., Magen, A.: Metric embeddings–beyond
one-dimensional distortion. Discrete Comput. Geom. 31(3),
339–356 (2004)

Krauthgamer, R., Rabani, Y.: Improved lower bounds for embed-
dings into l1. In: SODA ’06: Proceedings of the seventeenth an-
nual ACM-SIAM symposium on Discrete algorithm, pp. 1010–
1017. ACM Press, New York (2006)

Kribs, D., Laflamme, R., Poulin, D.: Unified andgeneralized approach
to quantum error correction. Phys. Rev. Lett. 94(4), 180501
(2005)

Krishnan, P., Vitter, J.: Optimal prediction for prefetching in the
worst case. SIAM J. Comput. 27, 1617–1636 (1998)

Krithivasan, K., Sitalakshmi, R.: Efficient Two-Dimensional Pattern
Matching in The Presence of Errors. Inf. Sci. 43, 169–184
(1987)

Krivelevich, M., Vilenchik, D.: Solving random satisfiable 3CNF for-
mulas in expected polynomial time. In: SODA ’06: Proceedings
of the 17th annual ACM-SIAM symposium on Discrete algorith.
ACM, Miami, Florida (2006)

Krysta, P.: Greedy approximation via duality for packing, combi-
natorial auctions and routing. In: Proc. 30th Int. Conference
on Mathematical Foundations of Comput. Sci. (MFCS). Lecture
Notes in Computer Science, vol. 3618, pp. 615–627 (2005)

Krysta, P., Kumar, V.S.A.: Approximation algorithms for minimum
size 2-connectivity problems. In: Ferreira, A., Reichel, H. (eds.)
STACS. Lecture Notes in Computer Science, vol. 2010, pp. 431–
442. Springer, Berlin (2001)

Krznaric, D., Levcopoulos, C., Nilsson, B.J.: MinimumSpanning Trees
in d Dimensions. Nord. J. Comput. 6(4), 446–461 (1999)

Kubicka, E., Kubicki, G., McMorris, F.R.: An algorithm to find agree-
ment subtrees. J. Classific. 12, 91–100 (1995)

Kuehlmann, A., Krohm, F.: Equivalence Checking Using Cuts and
Heaps. In: ACMDesign Automation Conference (1997)

Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating
warehouses. Management Sci. 9(4), 643–666 (1963)

Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deter-
ministic distributedmaximal independent set computation on
growth-bounded graphs. In: Proc. of th 19th Int. Conference on
Distributed Computing (DISC), pp. 273–287 (2005)

Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local approx-
imation schemes for ad hoc and sensor networks. In: Proc. of
the 3rd Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC), pp. 97–103 (2005)

Kuhn, F., Moscibroda, T., Wattenhofer, R.: Initializing Newly De-
ployed Ad Hoc and Sensor Networks. In: Proc. of the 10th An-
nual International Conference on Mobile Computing and Net-
working (MOBICOM), pp. 260–274 (2004)

Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of
bounded growth. In: Proc. of the 24th ACM Symposium
on Principles of Distributed Computing (PODC), pp. 60–68
(2005)

Bibliography 1121

Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-
sighted. In: Proc. of the 17th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 980–989 (2006)

Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted locally! In: Proc. of the 23rd ACM Symp. on Principles of
Distributed Computing (PODC), pp. 300–309 (2004)

Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating
set approximation. Distrib. Comput. 17(4), 303–310 (2005)

Kuhn, F., Wattenhofer, R.: Constant-Time Distributed Dominating
Set Approximation. In: PODC, Boston, Massachusetts, USA, July
2003

Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-
hoc routing: of theory and practice. In: Principles of Distributed
Computing. ACM, New York (2003)

Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc
routing: Of theory and practice. In: Proceedings of the Twenty-
Second ACMSymposium on the Principles of Distributed Com-
puting, Boston, Massachusetts, July 2003, pp. 63–72

Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-Hoc Networks Beyond
Unit Disk Graphs. In: 1st ACM Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC), San Diego, California,
USA, September 2003

Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically Optimal Ge-
ometric Mobile Ad-Hoc Routing. In: Proc. 6th Int. Workshop
on Discrete Algorithms and Methods for Mobile Computing
and Communications (Dial-M), pp 24–33. ACM Press, New York
(2002)

Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-case optimal and
average-case efficient geometric ad-hoc routing. In: Proceed-
ings of the Fourth ACM International SymposiumonMobile Ad
Hoc Networking and Computing, Annapolis, Maryland, June
2003, pp. 267–278

Kuhn, H.: The Hungarian method for the assignment problem.
Naval Res. Logist. Quart. 2, 83–97 (1955)

Kuhner, M., Felsenstein, J.: A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Mol.
Biol. Evol. 11(3), 459–468 (1994)

Kulikov, A.: Automated Generation of Simplification Rules for SAT
and MAXSAT. Proceedings of the Eighth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT
2005). Lecture Notes in Computer Science, vol. 3569, pp. 430–
436. Springer, Berlin (2005)

Kulla, F., Sanders, P.: Scalable parallel suffix array construction. In:
Proc. 13th European PVM/MPI User’s Group Meeting. LNCS,
vol. 4192, pp. 22–29. Springer, Berlin/Heidelberg (2006)

Kullmann, O.: New methods for 3-SAT decision and worst-case
analysis. Theor. Comp. Sci. 223(1–2), 1–72 (1999)

Kullmann, O., Luckhardt, H.: Algorithms for SAT/TAUT decision
based on various measures, preprint, 71 pages, http://cs-svr1.
swan.ac.uk/csoliver/papers.html (1998)

Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping
sensor network. In: Proceedings of the 10th Annual Interna-
tional Conference on Mobile Computing and Networking (Mo-
biCom’04), 26 Sept–1 Oct 2004

Kumar, V.S.A., Marathe, M.V.: Improved results for stackelberg
scheduling strategies. In: 29th International Colloquium, Au-
tomata, Languages and Programming. LNCS, pp. 776–787.
Springer (2002)

Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Algo-
rithmic aspects of capacity in wireless networks. In: Proc. ACM
SIGMETRICS 2005, pp. 133–144

Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-
to-end packet-scheduling in wireless ad-hoc networks. In:
Proc. ACM-SIAM symposium on Discrete algorithms 2004,
pp. 1021–1030

Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.:
Scheduling on unrelatedmachines under tree-like precedence
constraints. In: APPROX-RANDOM, pp. 146–157 (2005)

Kuo, T.-W., Mok, A.K.: Load adjustment in adaptive real-time sys-
tems. In: Proceedings of the IEEE Real-Time Systems Sympo-
sium, pp. 160–171. San Antonio, December 1991

Kuperberg, K., Kuperberg, W., Matousek, J., Valtr, P.: Almost Tiling
the Plane with Ellipses. Discrete Comput. Geom. 22(3), 367–
375 (1999)

Kurose, J.F., Simha, R.: A Microeconomic Approach to Optimal Re-
source Allocation inDistributed Computer Systems. IEEE Trans.
Comput. 38(5), 705–717 (1989)

Kurtz, S.: Reducing the space requirements of suffix trees. Softw.
Pract. Exp. 29, 1149–1171 (1999)

Kushilevitz, E.: A simple algorithm for learning O(log n)-term DNF.
In: Proc. of 9th Annu. ACM Conf. on Comput. Learning Theory,
pp 266–269, ACM Press, New York (1996). Journal version: In-
form. Process. Lett. 61(6), 289–292 (1997)

Kushilevitz, E., Mansour, Y.: An ˝(d log(n/d)) lower bound for
broadcast in radio networks. In: PODC, 1993, pp. 65–74

Kushilevitz, E., Mansour, Y.: Learning decision trees using the
Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

Kusner, R.B., Sullivan, J.M.: On Distortion and Thickness of Knots.
In: Whittington, S.G. et al. (eds.) Topology and Geometry in
Polymer Science. IMA Volumes in Math. and its Applications,
vol. 103, pp. 67–78. Springer, New York (1998)

Kutin, S.: Quantum lower bound for the collision problem with
small range. Theor. Comput. 1, 29–36 (2005)

Kutten, S., Patt-Shamir, B.: Time-Adaptive Self Stabilization. In: Pro-
ceedings of the 16th Annual ACM Symposium on Principles
of Distributed Computing, pp. 149–158, Santa Barbara, August
1997

Kutzelnigg, R.: Bipartite Random Graphs and Cuckoo Hashing. In:
Proc. Fourth Colloquium on Mathematics and Computer Sci-
ence, Nancy, France, 18–22 September 2006

Kutzschebauch, T., Stok, L.: Congestion Aware Layout Driven Logic
Synthesis. In: Proc. of the IEEE/ACM International Conference
on Computer-Aided Design, 2001, pp. 216–223

Kwon, W., Kim, T.: Optimal Voltage Allocation Techniques for Dy-
namically Variable Voltage Processors. ACM Trans. Embed.
Comput. Syst. 4(1), 211–230. New York, NY, USA (2005)

Kyasanur, P., Vaidya, N.: Capacity of multi-channel wireless net-
works: Impact of number of channels and interfaces. In: Proc.
ACMMOBICOM, pp. 43–57. 2005

La Poutré, J.A.: Maintenance of 2- and 3-edge-connected compo-
nents of graphs II. SIAM J. Comput. 29(5), 1521–1549 (2000)

La Poutré, J.A.: Maintenance of triconnected components of
graphs. In: Proc. 19th Int. Colloquium on Automata, Lan-
guages and Programming. LectureNotes in Computer Science,
vol. 623, pp. 354–365. Springer, Berlin (1992)

La Poutré, J.A., van Leeuwen, J., Overmars, M.H.: Maintenance of
2- and 3-connected components of graphs, part I: 2- and
3-edge-connected components. Discret. Math. 114, 329–359
(1993)

La Poutré, J.A., Westbrook, J.: Dynamic two-connectivity with back-
tracking. In: Proc. 5th ACM-SIAM Symp. Discrete Algorithms,
1994, pp. 204–212

http://cs-svr1.swan.ac.uk/csoliver/papers.html
http://cs-svr1.swan.ac.uk/csoliver/papers.html

1122 Bibliography

Ladner, R.E., Fix, J.D., LaMarca, A.: Cache performance analysis
of traversals and random accesses. In: Proc. of 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1999),
pp. 613–622 Society for Industrial and Applied Mathematics,
Philadelphia (1999)

Ladner, R.E., Fortna, R., B.-Nguyen, H.: A comparison of cache aware
and cache oblivious static search trees using program in-
strumentation. In: Experimental Algorithmics. LNCS, vol. 2547,
pp. 78–92. Springer, Berlin (2000)

Laffont, J.-J., Robert, J.: Optimal auctionwith financially constrained
buyers. Econ. Lett. 52, 181–186 (1996)

Lagergren, J.: Combiningpolynomial running time and fast conver-
gence for the disk-coveringmethod. J. Comput. Syst. Sci. 65(3),
481–493 (2002)

Laird, P.: Learning from good and bad data. Kluwer Academic Pub-
lishers (1988)

Lake, J.A.: Reconstructing evolutionary trees from DNA and protein
sequences: paralinear distances. Proc. Natl. Acad. Sci. USA 91,
1455–1459 (1994)

Lakshmanan, K.B., Thulasiraman, K., Comeau, M.A.: An efficient dis-
tributed protocol for finding shortest paths in networks with
negative cycles. IEEE Trans. Softw. Eng. 15, 639–644 (1989)

Lam, T.W., Sung, W.K., Wong, S.S.: Improved approximate string
matching using compressed suffix data structures. In: Proceed-
ings of International Symposium on Algorithms and Computa-
tion, 2005, pp. 339–348

Lamport, L.: A fastmutual exclusion algorithm. ACMTrans. Comput.
Syst. 5(1), 1–11 (1987)

Lamport, L.: A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM 17(8), 453–455 (1974)

Lamport, L.: How tomake amultiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput. C-28(9),
690 (1979)

Lamport, L.: On interprocess communication. Part I: Basic formal-
ism. Distrib. Comput. 1, 77–85 (1986)

Lamport, L.: On interprocess communication—Part I: Basic formal-
ism, Part II: Algorithms. Distrib. Comput. 1(2), 77–101 (1986)

Lamport, L.: On interprocess communication, Part II: Algorithms.
Distrib. Comput. 1(2), 86–101 (1986)

Lamport, L.: The implementation of reliable distributed multipro-
cess systems. Comput. Netw. 2, 95–114 (1978)

Lamport, L.: Themutual exclusion problem. Part I: A theory of inter-
process communication. J. ACM 33(2), 313–326 (1986)

Lamport, L.: The Mutual Exclusion Problem: Part II-Statement and
Solutions. J. ACM 33(2), 327–348 (1986)

Lamport, L.: The Part-Time parliament. ACM Trans. Comput. Syst.
16(2), 133–169 (1998)

Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21(7), 558–565 (1978)

Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

Lancia, G.: The phasing of heterozygous traits: Algorithms and com-
plexity. Comput. Math. Appl. 55(5), 960–969 (2008)

Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan,M.I.:
Learning the Kernel Matrix with Semidefinite Programming.
J. Mach. Learn. Res. 5, 27–72 (2004)

Lanctot, J.K.: Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing String
Search Problems. Inf. Comput. 185, 41–55 (2003)

Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string
selection problems. In: Proc. 10th ACM-SIAMSymp. on Discrete
Algorithms, pp. 633–642. (1999)

Landau, G., Vishkin, U.: Fast parallel and serial approximate string
matching. J. Algorithms 10, 157–169 (1989)

Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string compar-
ison. SIAM J. Comput. 27(2), 557–582 (1998)

Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approximate
tandem repeats. J. Comput. Biol. 8, 1–18 (2001)

Landau, G.M., Vishkin, U.: Fast string matching with k differences.
J. Comput. Syst. Sci. 37(1), 63–78 (1988)

Landau, G.M., Vishkin, U.: Pattern matching in a digitized image. Al-
gorithmica 12(3/4), 375–408 (1994)

Lang, K., Rao, S.: Finding near-optimal cuts: an empirical evaluation.
In: SODA ’93: Proceedings of the fourth annual ACM-SIAMSym-
posiumon Discrete algorithms, pp. 212–221. Society for Indus-
trial and AppliedMathematics, Philadelphia (1993)

Lange, S., Grieser, G., Zeugmann, T.: Inductive inference of approxi-
mations for recursive concepts. Theor. Comput. Sci.348(1), 15–
40 (2005)

Langville, A.N.,Meyer, C.D.: Deeper Inside PageRank. InternetMath.
1(3), 335–380 (2004)

Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theor. Comput. Sci.
387, 258–272 (2006)

Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with proba-
bilities on graphical structures and their application to expert
systems. J. Royal Stat. Soc. Ser. B (Methodological) 50, 157–224
(1988)

Lauther, U.: A Min-Cut Placement Algorithm for General Cell As-
semblies Based on a Graph Representation. J. Digital Syst. 4,
21–34 (1980)

Lauther, U.: An experimental evaluation of point-to-point short-
est path calculationon roadnetworks with precalculated edge-
flags. In: 9th DIMACS Implementation Challenge Workshop:
Shortest Paths, DIMACS Center, Piscataway, NJ, 13–14 Nov
2006

Lavi, R., Mu’alem, A., Nisan, N.: Towards a characterization of
truthful combinatorial auctions. In: Proc. of the 44rd Annual
Symposium on Foundations of Computer Science (FOCS’03),
2003

Lavi, R., Nisan, N.: Competitive analysis of incentive compatible on-
line auctions. Theor. Comput. Sci. 310, 159–180 (2004)

Lavi, R., Nisan, N.: Online ascending auctions for gradually expiring
items. In: Proc. of the 16th Symposium on Discrete Algorithms
(SODA), 2005

Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design
via linear programming. In: Proc. 46th Annual Symposium on
Foundations of Computer Science (FOCS), 2005, pp. 595–604

Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimen-
sional scheduling via cycle monotonicity (2007). Working pa-
per

Lawler, E.L.: Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart andWinston, New York (1976)

Lawler, E.L.: Fast approximation algorithms for knapsack problems.
Math. Oper. Res. 4, 339–356 (1979)

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.):
The Traveling Salesman Problem. A Guided Tour of Combina-
torial Optimization. Wiley, Chichester (1985)

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Se-
quencing and Scheduling: Algorithms and Complexity. In:
Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P.H. (eds.) Logistics of
Production and Inventory. Handbooks in Operations Research
and Management Science, vol. 4, pp. 445–522. North–Holland,
Amsterdam (1993)

Bibliography 1123

Lawler, E.L., Levitt, K.N., Turner, J.: Module clustering to minimize
delay in digital networks. IEEE Trans. Comput. C-18, 47–57
(1966)

Lawrence, C., Reilly, A.: An expectation maximization (EM) algo-
rithm for the identification and characterization of common
sites in unaligned biopolymer sequences. Proteins 7, 41–51
(1990)

Le Gall, F.: Exponential separation of quantum and classical on-
line space complexity. In: Proc. ACM Symp. on Parallel Algo-
rithms and Architectures (SPAA), Cambride, 30 July–1 August
(2006)

LeCun, Y., Jackel, L.D., Bottou, L., Brunot, A., Cortes, C., Denker,
J.S., Drucker, H., Guyon, I., Muller, U.A., Sackinger, E., Simard,
P., Vapnik, V.: Comparison of learning algorithms for handwrit-
ten digit recognition. In: Fogelman-Soulie F., Gallinari P. (eds.),
Proceedings International Conference on Artificial Neural Net-
works (ICANN) 2, 5360. EC2 (1995)

Lee, A.W.: Diamonds are a plane graph’s best friend. Master’s the-
sis, School of Computer Science, Carleton University, Ottawa
(2004)

Lee, C.-M., Hung, L.-J., Chang, M.-S., Tang, C.-Y.: An improved al-
gorithm for the maximum agreement subtree problem. BIBE,
p. 533 (2004)

Lee, C.C., Lee, D.T.: A simple on-line packing algorithm. J. ACM 32,
562–572 (1985)

Lee, C.C., Lee, D.T.: Robust on-line bin packing algorithms. Tech.
Rep. Department of Electrical Engineering and Computer Sci-
ence, Northwestern University, Evanston, IL (1987)

Lee, J.R.: Volume distortion for subsets of Euclidean spaces. In: Pro-
ceedings of the 22nd Annual Symposium on Computational
Geometry, ACM, Sedona, AZ 2006, pp. 207–216.

Lee, S., Bhattacharjee, B., Banerjee, S.: Efficient geographic routing
in multihop wireless networks. In MobiHoc ’05: Proceedings of
the 6th ACM international symposium on Mobile ad hoc net-
working and computing, pp. 230–241. ACM, New York (2005)

Lehman, E., Watanabe, Y., Grodstein, J., Harkness, H.: Logic Decom-
position during Technology Mapping. IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst. 16(8), 813–834, (1997)

Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with
decreasing marginal utilities. Games Econom. Behav. 55(2),
270–296 (2006)

Lehmann, D., O’Callaghan, L., Shoham, Y.: Truth revelation in ap-
proximately efficient combinatorial auctions. J. ACM 49(5),
577–602 (2002)

Lehmann, D.J., O’Callaghan, L.I., Shoham, Y.: Truth revelation in ap-
proximately efficient combinatorial auctions. In: Proc. 1st ACM
Conference on Electronic Commerce (EC), pp. 96–102 (1999)

Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling al-
gorithm: Exact characterization and average case behavior.
In: Proceedings of the Real-Time Systems Symposium – 1989,
Santa Monica, December 1989. IEEE Computer Society Press,
pp. 166–171

Leighton, F.T.: Introduction to Parallel Algorithms and Architec-
tures: Arrays – Trees – Hypercubes. Morgan Kaufmann, SanMa-
teo (1992)

Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-
shop scheduling in O(congestion+dilation) steps. Combinator-
ica 14(2), 167–180 (1994)

Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms for find-
ing O(congestion+dilation) packet routing schedules. Combi-
natorica 19(3), 375–401 (1999)

Leighton, F.T., Makedon, F., Plotkin, S.A., Stein, C., Tardos, É.,
Tragoudas, S.: Fast approximation algorithms for multicom-
modity flow problems. J. Comp. Syst. Sci. 50(2), 228–243 (1995)

Leighton, T., Rao, S.: An approximatemax-flowmin-cut theorem for
uniform multicommodity flow problems with applications to
approximation algorithms. In: Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, pp. 422–
431, IEEE Computer Society (1988)

Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM
46(6), 787–832, 29th FOCS, 1988 (1999)

Leighton, T., Shor, P.: Tight bounds for minimax gridmatching with
applications to the average case analysis of algorithms. Com-
binatorica 9 161–187 (1989)

Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. Algorith-
mica 6, 5–35 (1991)

Lemke, C.E., Howson, J.T.: Equilibrium points of bimatrix games.
J. Soc. Indust. Appl. Math. 12, 413–423 (1964)

Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity test-
ing of graphs. In: Rosentiehl, P. (ed.) Theory of Graphs: Interna-
tional Symposium. New York, Gordon and Breach, pp. 215–232
(1967)

Lenstra, A., Lenstra, H. (eds.): The Development of the Number Field
Sieve. Lecture Notes inMathematics, vol. 1544. Springer (1993)

Lenstra, A.K., Lenstra, H.W. Jr., Manasse, M.S., Pollard, J.M.: The num-
ber field sieve. In: Proceedings of the Twenty Second Annual
ACM Symposium on Theory of Computing, Baltimore, Mary-
land, 14–16 May 1990, pp. 564–572

Lenstra, A.K., Lenstra, Jr., H.W., Lovász, L.: Factoring polynomials
with rational coefficients. Math Ann. 261, 513–534 (1982)

Lenstra, J.K., Shmoys, D., Tardos, E.: Approximation algorithms
for scheduling unrelated parallel machines. Math. Program.
46(3A), 259–271 (1990)

Lenstra Jr, H.W.: Solving the Pell equation. Not. Am. Math. Soc. 49,
182–192 (2002)

Lenstra Jr., H.W.: Integer programming with a fixed number of vari-
ables. Math. Oper. Res. 8(4), 538–548 (1983)

Leonardi, S.: A simpler proof of preemptive flow-time approxima-
tion. Approximation andOn-line Algorithms. In: Bampis, E. (ed.)
Lecture Notes in Computer Science. Springer, Berlin (2003)

Leonardi, S.: On-line network routing. In: Fiat, A., Woeginger, G.
(eds.) Online Algorithms – The State of the Art. Chap. 11,
pp. 242–267. Springer, Heidelberg (1998)

Leonardi, S., Raz, D.: Approximating total flow time on parallel ma-
chines. In: Proceedings of the Annual ACM Symposium on the
Theory of Computing STOC, 1997, pp. 110–119

Leonardi, S., Vitaletti, A.: Randomized lower bounds for online path
coloring. In: Proc. of the second International Workshop on
Randomization and Approximation Techniques in Computer
Science (RANDOM’98), pp. 232–247. (1998)

Leone, P., Rolim, J., Nikoletseas, S.: An Adaptive Blind Algo-
rithm for Energy Balanced Data Propagation in Wireless Sen-
sor Networks. In: Proc. of the IEEE International Conference
on Distributed Computing in Sensor Networks (DCOSS). Lec-
ture Notes in Computer Science (LNCS), vol. 3267, pp. 35–48.
Springer (2005)

Leong, B., Liskov, B., Morris, R.: Geographic Routing without Pla-
narization. In: 3rd Symposium on Networked Systems Design
& Implementation (NSDI), San Jose, California, USA, May 2006

Leong, B., Mitra, S., Liskov, B.: Path Vector Face Routing: Geographic
Routing with Local Face Information. In: 13th IEEE Interna-

1124 Bibliography

tional Conference on Network Protocols (ICNP), Boston, Mas-
sachusetts, USA, November 2005

Leong, T., Shor, P., Stein, C.: Implementation of a combinatorial
multicommodity flow algorithm. In: Johnson, D.S., McGeoch,
C.C. (eds.) Network flows and matching. DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, vol. 12,
pp. 387–406. AMS, Providence (1991)

Leung, J., Whitehead, J.: On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Perform. Eval. 2, 237–
250 (1982)

Leutenegger, S.T., Lopez, M.A., Edington, J.: STR: A simple and effi-
cient algorithm for R-tree packing. In: Proc. 13th IEEE Interna-
tional Conference on Data Engineering, 1997, pp. 497–506

Levcopoulos, C., Krznaric, D.: Quasi-Greedy Triangulations Approx-
imating the Minimum Weight Triangulation. J. Algorithms
27(2), 303–338 (1998)

Levcopoulos, C., Krznaric, D.: The Greedy Griangulation can be
Computed from the Delaunay Triangulation in Linear Time.
Comput. Geom. 14(4), 197–220 (1999)

Levcopoulos, C., Lingas, A.: On Approximation Behavior of the
Greedy Triangulation for Convex Polygons. Algorithmica2, 15–
193 (1987)

Levcopoulos, C., Lingas, A.: There are planar graphs almost as good
as the complete graphs and almost as cheap as minimum
spanning trees. Algorithmica 8(3), 251–256 (1992)

Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algorithms
for constructing fault-tolerant spanners. Algorithmica 32, 144–
156 (2002)

Levenshtein, V.I.: Binary codes capable of correcting dele-
tions, insertions, and reversals. Doklady Akademii Nauk SSSR
163(4):845–848 (1965) (Russian). Soviet Physics Doklady 10(8),
707–710 (1966) (English translation)

Levin, L.A.: Universal enumeration problems. Probl. Pereda. Inf.
9(3), 115–116 (1973)

Levin, L.A.: Universal Search Problems. Проблемы передачи
информации 9(3), 265–266, (1973). In Russian. English trans-
lation in: Trakhtenbrot, B.A.: A Survey of Russian Approaches to
Perebor (Brute-force Search) Algorithms. Annals of the History
of Computing 6(4), 384–400 (1984)

Li, B., Golin, M., Italiano, G., Deng, X., Sohraby, K.: On the optimal
placement of web proxies in the internet. In: Proceedings of
the 18th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), pp. 1282–1290. IEEE
Computer Society, Los Alamitos (1999)

Li, C., Pion, S., Yap, C.K.: Recent progress in Exact Geometric Com-
putation. J. Log. Algebr. Program. 64(1), 85–111 (2004)

Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A scalable
location service for geographic ad hoc routing. In Proceedings
of the Sixth International Conference on Mobile Computing
and Networking, Boston, Massachusetts, Aug 2000, pp. 120–
130

Li, L., Halpern, J.Y., Bahl, P., Wang, Y.-M., Wattenhofer, R.: Analysis of
a cone-based distributed topology control algorithms for wire-
less multi-hop networks. In: PODC: ACM Symposium on Princi-
ple of Distributed Computing, Newport, 26–29 August 2001

Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.M.B.: The similarity metric.
IEEE Trans. Inf. Theory 50, 3250–3264 (2004)

Li, M., Lu, X.C., Peng, W.: Dynamic delaunay triangulation for wire-
less ad hoc network. In Proceedings of the Sixth Interna-
tional Workshop on Advanced Parallel Processing Technolo-
gies, Hong Kong, China, Oct 2005, pp. 382–389

Li, M., Ma, B., Wang, L.: Finding similar regions in many sequences.
J. Comput. Syst. Sci. (1999)

Li, M., Ma, B., Wang, L.: Finding similar regions in many strings.
In: Proceedings of the Thirty-first Annual ACM Symposium on
Theory of Computing, pp. 473–482. Atlanta (1999)

Li, M., Ma, B., Wang, L.: On the Closest String and Substring Prob-
lems. J. ACM 49(2), 157–171 (2002)

Li, M., Tromp, J., Vitányi, P.M.B.: How to share concurrent wait-free
variables. J. ACM 43(4), 723–746 (1996) (Preliminary version: Li,
M., Vitányi, P.M.B. A very simple construction for atomic multi-
writer register. Tech. Rept. TR-01–87, Computer Science Dept.,
Harvard University, Nov. 1987)

Li, M., Tromp, J., Zhang, L.: Some Notes on the Nearest Neighbour
Interchange Distance. J. Theor. Biol. 26(182), 463–467 (1996)

Li, M., Yao, A.C., Yao, F.F.: Discrete and Continuous Min-Energy
Schedules for Variable Voltage Processors, Proceedings of the
National Academy of Sciences USA, 103, pp. 3983–3987. Na-
tional Academy of Science of the United States of America,
Washington, DC, USA (2005)

Li, M., Yao, F.F.: An Efficient Algorithm for Computing Optimal Dis-
crete Voltage Schedules. SIAM J. Comput. 35(3), 658–671. So-
ciety for Industrial and AppliedMathematics, Philadelphia, PA,
USA (2005)

Li, N., Hou, J.C., Sha, L.: Design and analysis of a MST-based dis-
tributed topology control algorithm for wireless ad-hoc net-
works. In: 22nd Annual Joint Conference Of The IEEE Computer
And Communications Societies (INFOCOM 2003), vol. 3, 1–3
April 2003, pp. 1702–1712

Li, Q., Rus, D.: Communication in disconnected ad hoc networks us-
ingmessage relay. Journal of Parallel and Distributed Comput-
ing (JPDC) 63(1), 75–86 (2003). Special Issue on Wireless and
Mobile Ad-hoc Networking and Computing, edited by A Bouk-
erche

Li, W.-H., Gu, X.: The size distribution of insertions and deletions
in human and rodent pseudogenes suggests the logarithmic
gap penalty for sequence alignment. J. Mol. Evol. 40, 464–473
(1995)

Li, X.-Y.: Approximate MST for UDG locally. In: COCOON, Big Sky,
25–28 July 2003

Li, X.-Y., Wan, P.-J.: Theoretically good distributed CDMA/OVSF
code assignment for wireless ad hoc networks. In: Proceedings
of 11th Internatioanl Computing and Combinatorics Confer-
ence (COCOON), Kunming, 16–19 August 2005

Li, X.-Y., Wan, P.-J., Wang, Y., Frieder, O.: Sparse power efficient
topology forwireless networks. In: IEEE Hawaii Int. Conf. on Sys-
tem Sciences (HICSS), Big Island, 7–10 January 2002

Li, X.-Y., Wang, Y.: Efficient construction of low weighted bounded
degree planar spanner. Int. J. Comput. Geom. Appl. 14, 69–84
(2004)

Li, X.-Y., Wang, Y., Song, W.-Z., Wan, P.-J., Frieder, O.: Localizedmini-
mum spanning tree and its applications in wireless ad hoc net-
works. In: IEEE INFOCOM, Hong Kong, 7–11 March 2004

Li, X.Y.: Applications of computational geometry in wireless ad hoc
networks. In: Cheng, X.Z., Huang, X., Du, D.Z. (eds.) Ad Hoc
Wireless Networking, pp. 197–264. Kluwer, Dordrecht (2003)

Li, X.Y., Calinescu, G., Wan, P.J.: Distributed Construction of a Planar
Spanner and Routing for AdHoc Wireless Networks. In: IEEE IN-
FOCOM 2002, New York, NY, 23–27 June 2002

Li, X.Y., Teng, S.H., Üngör, A.: Biting: Advancing front meets sphere
packing. Int. J. Num. Methods Eng. 49(1–2), 61–81 (2000)

Li., W.-H.: Molecular Evolution. Sinauer, Sunderland (1997)

Bibliography 1125

Libman, L., Orda, A.: Atomic Resource Sharing in Noncooperative
Networks. Telecommun. Syst. 17(4), 385-409 (2001)

Liefke, H., Suciu, D.: XMILL: An efficient compressor for XML data.
In: Proceedings of the 2000 ACM SIGMOD Int. Conf. on Man-
agement of Data, pp. 153–164. ACM, New York, USA (2000)

Lifshits, Y., Mozes, S., Weimann, O., Ziv-Ukelson, M.: Speeding up
HMM decoding and training by exploiting sequence repeti-
tions. Algorithmica to appear doi:10.1007/s00453-007-9128-0

Lillis, J., Cheng, C.-K., Lin, T.-T.: Optimal and efficient buffer insertion
and wire sizing. In: Proc. of Custom Integrated Circuits Conf.,
pp. 259–262. IEEE Press, Piscataway (1995)

Lin, G.H., Xue, G.: Signed genome rearrangements by reversals and
transpositions: models and approximations. Theor. Comput.
Sci. 259, 513–531 (2001)

Lin, J.-H., Vitter, J.: �-approximations with minimum packing con-
straint violation. In: 24th ACM STOC, pp. 771–782 (1992)

Lin, Y.-L., Huang, X., Jiang, T., Chao, K.-M.: MAVG: locating non-
overlappingmaximumaverage segments in a given sequence.
Bioinformatics 19, 151–152 (2003)

Lin, Y.-L., Jiang, T., Chao, K.-M.: Efficient algorithms for locating
the length-constrained heaviest segments with applications to
biomolecular sequence analysis. J. Comput. Syst. Sci. 65, 570–
586 (2002)

Lin, Y.L., Skiena, S.: Algorithms for Square Roots of Graphs. SIAM
J. Discret. Math. 8, 99–118 (1995)

Lingas, A.: Heuristics for minimum edge length rectangular parti-
tions of rectilinear figures. In: Proc. 6th GI-Conference, Dort-
mund, January 1983. Springer

Lingas, A.: Subexponential-time algorithms for minimum weight
triangulations and related problems. In: Proceedings 10th
Canadian Conference on Computational Geometry (CCCG),
McGill University, Montreal, Quebec, 10–12 August 1998

Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimumedge length
partitioning of rectilinear polygons. In: Proc. 20th Allerton
Conf. on Comm. Control and Compt., Illinos (1982)

Linial, N.: Finitemetric-spaces—combinatorics, geometry and algo-
rithms. In: Proceedings of the International Congress of Math-
ematicians, vol. III, Beijing, 2002, pp. 573–586. Higher Ed. Press,
Beijing (2002)

Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput.
21(1), 193–201 (1992)

Linial, N., London, E., Rabinovich, Y.: The geometry of graphs
and some of its algorithmic applications. Combinatorica 15(2),
215–245 (1995). Also in Proc. 35th FOCS, pp. 577–591 (1994)

Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and
some of its algorithmic applications. In: IEEE Symposium on
Foundations of Computer Science, pp. 577–591 (1994)

Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier
transform and learnability. J. ACM 40(3), 607–620 (1993)

Lipton, R., Rose, D., Tarjan, R.E.: Generalized nested dissection.
SIAM. J. Numer. Anal. 16, 346–358 (1979)

Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using sim-
ple startegies. In: Proceedings of the 4th ACM Conference on
Electronic Commerce (EC’03), pp. 36–41. San Diego, 9–13 June
2003

Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs.
SIAM J. Appl. Math. 36(2), 177–189 (1979)

Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem.
SIAM J. Comput. 9(3), 615–627 (1980)

Liskov, B.: Practical uses of synchronized clocks in distributed sys-
tems. Distrib. Comput. 6, 211–219 (1993). Invited talk at the 9th

Annual ACM Symposium on Principles of Distributed Comput-
ing, Quebec City 22–24 August 1990

Littlestone, N.: Learning quickly when irrelevant attributes abound:
A new linear threshold algorithm. Mach. Learn. 2(4), 285–318
(1988)

Littlestone, N., Warmuth, M.K.: The weighted majority algorithm.
Inf. Comp. 108(2), 212–261 (1994)

Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in
a hard real-time environment. J. ACM 20, 46–61 (1973)

Liu, D., Prabhakaran, M.: On randomized broadcasting and gos-
siping in radio networks. In: Proc. 8th Annual International
Computing Combinatorics Conference, pp. 340-349, Singa-
pore (2002)

Liu, H.-F., Chao, K.-M.: Algorithms for Finding the Weight-Con-
strained k Longest Paths in a Tree and the Length-Constrained
k Maximum-Sum Segments of a Sequence. Theoret. Comput.
Sci. in revision (2008)

Liu, H.-F., Chao, K.-M.: On locating disjoint segmentswithmaximum
sum of densities. In: Proceedings of the 17th Annual Interna-
tional Symposium on Algorithms and Computation. LNCS, vol.
4288, pp. 300–307 (2006)

Liu, H., Wong, D.F.: Network-Flow-based Multiway Partitioningwith
Area and Pin Constraints. IEEE Trans. CAD Integr. Circuits Syst.
17(1), 50–59 (1998)

Lo, H.-K.: Classical communication cost in distributed quantum in-
formation processing – a generalization of quantum commu-
nication complexity. Phys. Rev. A 62, 012313 (2000)

Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distri-
bution over arbitrarily long distances. Science 283, 2050–2056
(1999)

Lo, W.-K., Hadzilacos, V.: Using failure detectors to solve consen-
sus in asynchronous shared memory systems. In: Proceedings
of the 8th International Workshop on Distributed Algorithms,
LNCS 857, pp. 280–295, September 1994

Lockhart, P.J., Steel, M.A., Hendy, M.D., Penny, D.: Recovering evo-
lutionary trees under a more realistic model of sequence evo-
lution. Mol. Biol. Evol. 11, 605–612 (1994)

Lomonosov, M.: Bernoulli Scheme with Closure. Probl. Inf. Transm.
10, 73–81 (1974)

Lopez-Ortiz, A.: On-Line Target Searching in Bounded and Un-
bounded Domains: Ph. D. Thesis, Technical Report CS-96-25,
Dept. of Computer Sci., Univ. of Waterloo (1996)

Lopez-Ortiz, A., Schuierer, S.: The Ultimate Strategy to Search on m
Rays? Theor. Comput. Sci. 261(2), 267–295 (2001)

Lopresti, D.P., Tomkins, A.: Block Edit Models for Approximate
String Matching. Theoretical. Comput. Sci. 181(1), 159–179
(1997)

Lothaire, M. (ed.): Algebraic Combinatorics on Words. Cambridge
University Press, Cambridge (2002)

Lothaire, M. (ed.): Applied Combinatorics on Words. Cambridge
University Press, Cambridge (2005)

Lotker, Z., Patt-Shamir, B.: Nearly optimal FIFO buffer management
for DiffServ. In: Proceedings of the 21st ACM Symposium on
Principles of Distributed Computing (PODC 2002), pp. 134–
142. ACM, New York (2002)

Lotker, Z., Patt-Shamir, B.: Nearly optimal FIFO buffer management
for two packet classes. Comput. Netw. 42(4), 481–492 (2003)

Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight
spanning tree construction in O(log log n) communication
rounds. SIAM J. Comput. 35(1), 120–131 (2005)

1126 Bibliography

Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant
diameter graphs. Distrib. Comput. 18(6), 453–460 (2006)

Loubal, P.: A network evaluation procedure. Highway Res. Rec. 205,
96–109 (1967)

Lovász, L.: On Determinants, Matchings and Random Algorithms.
In: Budach, L. (ed.) Fundamentals of Computation Theory,
FCT’79, pp. 565–574. Akademie-Verlag, Berlin (1979)

Lovász, L.: On the ratio of optimal integral and fractional covers.
Discret. Math. 13, 383–390 (1975)

Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf.
Theor. 25, 2–13 (1979)

Lovász, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó –
North Holland, Budapest (1986)

Lu, C., Alvarez, G.A., Wilkes, J.: Aqueduct:online data migration with
performance guarantees. In: Proceedings of the Conference on
File and Storage Technologies (2002)

Lu, H.-I., Ravi, R.: Approximating maximum leaf spanning trees in
almost linear time. J. Algorithm 29, 132–141 (1998)

Lu, H.-I., Yeh, C.-C.: Balanced parentheses strike back. Accepted to
ACM Trans. Algorithms (2007)

Luby, M.: A Simple Parallel Algorithm for the Maximal Independent
Set Problem. SIAM J. Comput. 15, 1036–1053 (1986)

Luby, M.: Removing randomness in parallel without processor
penalty. J. Comput. Syst. Sci. 47(2), 250–286 (1993)

Luccio, F., Pagli, L.: On the upper bound on the rotation distance of
binary trees. Inf. Process. Lett. 31(2), 57–60 (1989)

Luchangco, V., Moir, M., Shavit, N.: On the uncontended complexity
of consensus. In: Proc. 17th Annual International Symposium
on Distributed Computing, 2005

Lueker, G.S.: An average-case analysis of bin packingwith uniformly
distributed item sizes. Tech. Rep. Report No 181, Dept. of Infor-
mation and Computer Science, University of California, Irvine,
CA (1982)

Lund, C., Yannakakis, M.: On the hardness of approximating mini-
mization problems. J. ACM 41(5), 960–981 (1994)

Lund, C., Yannakakis, M.: The approximation of maximum sub-
graph problems. In: Proc. 20th ICALP. LNCS, vol. 700, pp. 40–
51. Springer, Berlin (1993)

Lundelius, J., Lynch, N.: A new fault-tolerant algorithm for clock syn-
chronization. Inf. Comput. 77, 1–36 (1988)

Lunter, G., Miklós, I., Drummond, A., Jensen, J., Hein, J.: Bayesian co-
estimation of phylogeny and sequence alignment. BMC Bioin-
formatics (2005)

Lunter, G., Miklós, I., Drummond, A., Jensen, J., Hein, J.: Bayesian
phylogenetic inference under a statistical indel model. In:
Lecture Notes in Bioinformatics, Proceedings of WABI2003,
vol. 2812, pp. 228–244 (2003)

Lunter, G.A., Miklós, I., Song, Y.S., Hein, J.: An efficient algorithm for
statistical multiple alignment on arbitrary phylogenetic trees.
J. Comp. Biol. 10(6), 869–889 (2003)

Luo, J., Hubaux, J.-P.: Joint Mobility and Routing for Lifetime
Elongation in Wireless Networks. In: Proc. 24th INFOCOM
(2005)

Luo, J., Panchard, J., Piórkowski, M., Grossglauser, M., Hubaux, J.P.:
Mobiroute: Routing towards a mobile sink for improving life-
time in sensor networks. In: Gibbons, P.B., Abdelzaher, T., Asp-
nes, J., Rao, R. (eds.) 2nd IEEE/ACM International Conference on
Distributed Computing in Sensor Systems (DCOSS 2005). Lec-
ture Notes in Computer Science (LNCS), vol. 4026, pp 480–497.
Springer, Berlin (2006)

Lusena, C., Goldsmith, J., Mundhenk, M.: Nonapproximability re-
sults for partially observable markov decision processes. J. Ar-
tif. Intell. Res. 14, 83–103 (2001)

Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, CA (1996)
Lyngsø, R.B.: Complexity of pseudoknot prediction in simple mod-

els. In: Proceedings of the 31th International Colloquium
on Automata, Languages and Programming (ICALP), 2004,
pp. 919–931

Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in en-
ergy based models. J. Comput. Biol. 7, 409–428 (2000)

Lyngsø, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of inter-
nal loops in RNA secondary structure prediction. Bioinformat-
ics 15, 440–445 (1999)

Ma, B.: A polynomial time approximation scheme for the closest
substring problem. In: Proc. 11th Annual Symposium on Com-
binatorial Pattern Matching, Montreal, pp. 99–107. (2000)

Ma, B., Tromp, J., Li, M.: PatternHunter: Faster and More Sensitive
Homology Search. Bioinformatics 18, 440–445 (2002)

Ma, B., Zhang, K., Lajoie, G., Doherty-Kirby, A., Hendrie, C., Liang, C.,
Li, M.: PEAKS: Powerful software for peptide de novo sequenc-
ing by tandemmass spectrometry. Rapid Commun. Mass Spec-
trom. 17(20), 2337–2342 (2003)

Ma, B., Zhang, K., Liang, C.: An effective algorithm for the peptide
de novo sequencing from MS/MS spectrum. J. Comput. Syst.
Sci. 70, 418–430 (2005)

Ma, Y., Plotkin, S.: Improved lower bounds for load balancing of
tasks with unknown duration. Inf. Process. Lett. 62, 31–34
(1997)

Maaß, M.G., Nowak, J.: Text indexing with errors. In: Proceedings of
Symposium on Combinatorial Pattern Matching, 2005, pp. 21–
32

MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error–Correcting
Codes. North–Holland, Amsterdam (1977)

MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting
Codes. North-Holland, Amsterdam (1981)

Madduri, K., Bader, D., Berry, J., Crobak, J.: Parallel shortest path
algorithms for solving large-scale instances. In: 9th DIMACS
Implementation ChallengeWorkshop: Shortest Paths, DIMACS
Center, Piscataway, NJ, 13–14 Nov 2006

Maekawa, M.: A
p
n algorithm for mutual exclusion in decen-

tralized systems. ACM Trans. Comput. Syst. 3(2), 145–159
(1985)

Magazine, M.J., Oguz, O.: A fully polynomial approximation algo-
rithm for the 0–1 knapsack problem. Eur. J. Oper. Res. 8, 270–
273 (1981)

Maggs, B.M., Miller, G.L., Parekh, O., Ravi, R., Woo, S.L.M.: Finding
effective support-tree preconditioners. In: Symposium on Par-
allel Algorithms and Architectures, pp. 176–185 (2005)

Magniez, F.: Multi-linearity self-testing with relative error. Theory
Comput. Syst. 38(5), 573–591 (2005)

Magniez, F., Nayak, A.: Quantum complexity of testing group com-
mutativity. Algorithmica48(3), 221–232 (2007) Preliminary ver-
sion in Proc. ICALP (2005) quant-ph/0506265

Magniez, F., Nayak, A.: Quantum complexity of testing group com-
mutativity. In: Proceedings of the International Colloquium
Automata, Languages and Programming (ICALP’05), 2005,
pp. 1312–1324

Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum
walk. quant-ph/0608026. In: Proc. of 39th ACM Symp. on The-
ory of Computing (STOC), San Diego, 11–13 June, pp. 575–584
(2007)

Bibliography 1127

Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the
triangle problem. SIAM J. Comput. 37(2), 413–424 (2007) Pre-
liminary version in Proc. SODA 2005

Mahajan, M., Raman, V.: Parameterizing above Guaranteed Values:
MAXSAT and MAXCUT. J. Algorithms 31(2), 335–354 (1999)

Mahajan, R., Hariharan, R.: Derandomizing semidefinite program-
ming based approximation algorithms. In: Proceedings of the
36th Annual IEEE Symposiumon Foundations of Computer Sci-
ence (FOCS), Milwaukee 1995, pp. 162–169

Mahdian, M.: Facility Location and the Analysis of Algorithms
through Factor-Revealing Programs. Ph. D. thesis, MIT, Cam-
bridge (2004)

Mahdian, M.: Random popular matchings. In: Proceedings of the
7th ACM Conference on Electronic Commerce (EC), pp. 238–
242 Venice, July 10–14 2006

Mahdian, M., Pál, M.: Universal facility location. In: European
Symposium on Algorithms, pp. 409–421. Budapest, Hungary,
September 16–19 2003

Mahdian, M., Pál, M.: Universal facility location. In: Proceedings of
the 11th Annual European Symposium on Algorithms (ESA).
Lecture Notes in Computer Science, vol. 2832, pp. 409–421.
Springer, Berlin (2003)

Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for met-
ric facility location problems. SIAM J. Comput. 36(2), 411–432
(2006)

Maheshwari, N., Sapatnekar, S.S.: Efficient retiming of large circuits,
IEEE Transactions on Very Large-Scale Integrated Systems. 6,
74–83 (1998)

Main, M.G.: Detecting leftmost maximal periodicities. Discret. Appl.
Math. 25, 145–153 (1989)

Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all rep-
etitions in a string. J. Algorithms 5(3), 422–432 (1984)

Mäkinen, E.: On the rotation distance of binary trees. Inf. Process.
Lett. 26(5), 271–272 (1988)

Mäkinen, V., Navarro, G.: Dynamic Entropy-Compressed Sequences
and Full-Text Indexes. In: Proc. 17th Symposium on Combina-
torial Pattern Matching (CPM). LNCS, vol. 4009, pp. 307–318.
Springer, Berlin (2006)

Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length
encoding. Nord. J. Comput. 12(1), 40–66 (2005)

Makinen, V., Navarro, G., Ukkonen, E.: Approximate matching of
run-length compressed strings. Algorithmica 35(4), 347–369
(2003)

Mäkinen, V., Navarro, G., Ukkonen, E.: Approximate Matching of
Run-Length Compressed Strings. In: Proc. 12th Symposium
on Combinatorial Pattern Matching (CPM’01). LNCS, vol. 2089,
pp. 31–49 (2001)

Mäkinen, V., Ukkonen, E.: Local Similarity Based Point-Pattern
Matching. In: Proc. 13th Annual Symposium on Combinatorial
Pattern Matching (CPM 2002). LNCS, vol. 2373, pp. 115–132.
Springer, Berlin (2002)

Malhotra, V.S.: On the stability of multiple partner stable marriages
with ties. In: Proceedings of ESA ’04: the 12th Annual Euro-
pean Symposium on Algorithms. Lecture Notes in Computer
Science, vol. 3221, pp. 508–519. Springer, Berlin (2004)

Malik, S., Wang, A.R., Brayton, R.K., Sangiovanni-Vincentelli, A.:
Logic Verification using Binary Decision Diagrams in a Logic
Synthesis Environment. In: IEEE International Conference on
Computer-Aided Design, pp. 6–9. (1988)

Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic
emulation of the butterfly. In: Proceedings of the 21st ACM

Symposium on Principles of Distributed Computing (PODC
’02), 2002, pp. 183–192

Malkhi, D., Reiter, M.: Byzantine quorum systems. Distrib. Comput.
11(4), 203–213 (1998)

Malkhi, D., Reiter, M., Wool, A., Wright, R.: Probabilistic quorum sys-
tems. Inf. Comput. J. 170, 184–206 (2001)

Malkhi, D., Reiter, M.K.: An architecture for survivable coordination
in large-scale systems. IEEE Trans. Knowl. Data Engineer. 12,
187–202 (2000)

Malony, A., Reed, D.: Visualizing Parallel Computer System Perfor-
mance. In: Simmons, M., Koskela, R., Bucher, I. (eds.) Instrumen-
tation for Future Parallel Computing Systems. ACM Press, New
York (1989) pp. 59–90

Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms for
online problems. In: Proc. 20th Symp. Theory of Computing
(STOC), pp. 322–333. ACM (1988)

Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms
for on-line problems. In: Proceeding 20th Annual ACM Sym-
posium on the Theory of Computing, pp. 322–333, Chicago, IL
(1988)

Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms
for server problems. J. Algorithms 11, 208–230 (1990)

Manber, U.: A text compression scheme that allows fast searching
directly in the compressed file. ACM Trans. Inf. Syst. 15(2), 124–
136 (1997)

Manber, U., Myers, G.: Suffix arrays: a newmethod for on-line string
searches. SIAM J. Comput. 22(5), 935–948 (1993)

Mandoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rectilin-
ear Steiner trees. In: Proc. Intl. Conf. on Computer-Aided De-
sign, San Jose, (1999)

Maniscalco, M.A., Puglisi, S.J.: Faster lightweight suffix array con-
struction. In: Proc. 17th AustralasianWorkshop on Combinato-
rial Algorithms, pp. 16–29. Univ. Ballavat, Ballavat (2006)

Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed hash-
ing in a small world. In: Proc. 4th USENIX Symposium on Inter-
net Technologies and Systems (USITS 2003) 2003, pp. 127–140

Manlove, D., Sng, C.: Popular matchings in the capacitated house
allocation problem. In: Proceedings of the 14th Annual Euro-
pean Symposium on Algorithms (ESA), pp. 492–503 (2006)

Manlove, D.F.: private communication (2006)
Manlove, D.F.: Stablemarriagewith ties andunacceptable partners.

Technical Report TR-1999-29, University of Glasgow, Depart-
ment of Computing Science, January (1999)

Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard
variants of stable marriage. Theor. Comput. Sci. 276(1–2), 261–
279 (2002)

Manne, A.S.: Plant location under economies-of-scale – decentral-
ization and computation. Manag. Sci. 11, 213–235 (1964)

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodor-
idis, Y.: R-trees: Theory and Applications. Springer, London
(2005)

Mansour, Y.: Randomized interpolation and approximation of
sparse polynomials. SIAM J. Comput. 24, 357–368 (1995)

Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing sched-
ules for real-time streams. In: Proc. 19th Symp. on Principles
of Distributed Computing (PODC), pp. 21–29. ACM, New York
(2000)

Mansour, Y., Sahar, S.: Implementation Issues in the Fourier Trans-
form Algorithm. Mach. Learn. 40(1), 5–33 (2000)

Manzini, G.: An analysis of the Burrows–Wheeler transform. J. ACM
48, 407–430 (2001)

1128 Bibliography

Manzini, G.: Two space saving tricks for linear time LCP ar-
ray computation. In: Proc. 9th Scandinavian Workshop on
Algorithm Theory. LNCS, vol. 3111, pp. 372–383. Springer,
Berlin/Heidelberg (2004)

Manzini, G., Ferragina, P.: Engineering a lightweight suffix array
construction algorithm. Algorithmica 40, 33–50 (2004)

Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.:
Simple Heuristics for Unit Disk Graphs. Networks 25, 59–68
(1995)

Marathe, V., Scherer, W., Scott, M.: Adaptive software transactional
memory. In: Proc. 19th Annual International Symposium on
Distributed Computing, 2005

Marathe, V.J.,Moir, M.: Toward high performance nonblocking soft-
ware transactional memory. In: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel pro-
gramming. pp. 227–236, ACM, New York, USA (2008)

Marczewski, E.: Sur deux propriétés des classes d‘ ensembles. Fund.
Math. 33, 303–307 (1945)

Marple, D.P.: Performance Optimization of Digital VLSI Circuits.
Technical Report CSL-TR-86-308, Stanford University, October
1986

Marple, D.P.: Transistor Size Optimization in the Tailor Layout Sys-
tem. In: Proceedings of the 26th ACM/IEEE Design Automation
Conference, pp. 43–48. June 1989

Martello, S., Toth, P. Knapsack Problems: Algorithms and Computer
Implementations. Wiley, Chichester (1990)

Martin, R.K., Sethares, W.A., Williamson, R.C., Johnson, Jr., C.R.: Ex-
ploiting sparsity in adaptive filters. IEEE Trans. Signal Process.
50(8), 1883–1894 (2002)

Marx, D.: The Closest Substring problem with small distances. In:
Proceedings of the 46th FOCS, pp 63–72. IEEE Press, (2005)

Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory.
Oxford University Press, Oxford (1995)

Masek, W., Paterson, M.: A faster algorithm for computing string
edit distances. J. Comput. Syst. Sci. 20, 18–31 (1980)

Maskin, E.S.: Auctions, development, and privatization: Efficient
auctions with liquidity-constrained buyers. Eur. Econ. Rev.
44(4–6), 667–681 (2000)

Massey, J.L., Mathys, P.: The collision channel without feedback.
IEEE Trans. Inf. Theor. 31, 192–204 (1985)

Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded se-
quence dependence of thermodynamic parameters improves
prediction of RNA secondary structure. J. Mol. Biol. 288, 911–
940 (1999)

Matias, Y., Şahinalp, C.: On the optimality of parsing in dynamic dic-
tionary based data compression. In: Proceedings 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’99), pp.
943–944 (1999)

Matias, Y., Segal, E., Vitter, J.S.: Efficient bundle sorting. SIAM J. Com-
put. 36(2), 394–410 (2006)

Matousek, J.: Lectures on Discrete Geometry. Springer, New York
(2002)

Matsumoto: Competitive Analysis of the Round Robin Algorithm.
in: 3rd International Symposium on Algorithms and Computa-
tion, 1992, pp. 71–77

Mattern, F.: Virtual time and global states of distributed systems.
In: Cosnard, M., Quinton, P. (eds.) Parallel and Distributed Algo-
rithms, pp.215–226. North-Holland, Amsterdam (1989)

Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding
in experimental quantum communication. Phys. Rev. Lett. 76,
4656–4659 (1996)

Mavrides, M.: Triangular arbitrage in the foreign exchangemarket –
inefficiencies, technology and investment opportunities. Quo-
rum Books, London (1992)

Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In: Proc.
on 33rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 510–519. ACM, Heraklion (2001)

Mayers, D.: Quantum key distribution and string oblivious trans-
fer in noisy channels. In: Advances in Cryptology –CRYPTO ’96.
Lecture Notes in Computer Science, vol. 1109, pp. 343–357.
Springer (1996)

Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer informa-
tion system based on the XOR metric. In: Proc. 1st Intl. Work-
shop on Peer-to-Peer Systems (IPTPS 2002), 2002, pp. 53–65

Mazoit, F.: The branch-width of circular-arc graphs. In: 7th Latin
American Symposium on Theoretical Informatics (LATIN 2006),
2006, pp. 727–736

McCaskill, J.S.: The equilibrium partition function and base pair
binding probabilities for RNA secondary structure. Biopoly-
mers 29, 1105–1119 (1990)

McCluskey, E.J.: Minimization of Boolean functions. Bell Syst.
Tech. J. 35(6), 1417–1444 (1956)

McCreight, E.M.: A space-economical suffix tree construction algo-
rithm. J. ACM 23, 262–272 (1976)

McCreight, E.M.: Priority search trees. SIAM J. Comput. 14, 257–276
(1985)

McGeoch, C.: A bibliographyof algorithmexperimentation. In: Data
Struktures, Near Neighbor Searches, and Methodology: Fifth
and Sixth DIMACS Implementation Challenges. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science,
59, 251–254. American Mathematical Society, Providence, RI
(2002)

McGeoch, C.C.: Toward an experimental method for algorithm sim-
ulation. INFORMS J. Comp. 1(1), 1–15 (1996)

McGeoch, L., Sleator, D.: A strongly competitive randomized pag-
ing algorithm. Algorithmica 6(6), 816–825 (1991)

McGlynn, M.J., Borbash, S.A.: Birthday Protocols for Low Energy
Deployment and Flexible Neighborhood Discovery in Ad Hoc
Wireless Networks. In: Proc. of the 2nd ACM Int. Symposium on
Mobile Ad Hoc Networking & Computing (MOBIHOC), (2001)

McIlroy, P.M., Bostic, K., McIlroy, M.D.: Engineering radix sort. Com-
put. Syst. 6, 5–27 (1993)

McKay, B.D.: Hadamard equivalence via graph isomorphism. Dis-
cret. Math. 27, 213–214 (1979)

McKay, B.D.: Practical graph isomorphism. Congr. Numer. 30, 45–
87 (1981)

McKay, B.D., Meynert, A., Myrvold, W.: Small Latin squares, quasi-
groups and loops. J. Comb. Des. 15, 98–119 (2007)

McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Pub-
lishers (1993)

McMorris, F.R.: On the compatibility of binary qualitative taxonomic
characters. Bull. Math. Biol. 39, 133–138 (1977)

McNaughton, R., Yamada, H.: Regular expressions and state graphs
for automata. IRE Trans. Elect. Comput. 9(1), 39–47 (1960)

McVitie, D., Wilson, L.B.: The stable marriage problem. Commun.
ACM 14, 486–490 (1971)

Mead, C.A., Conway, L.: Introduction to VLSI Systems. Addison-Wes-
ley, (1980)

Mecke, S., Wagner, D.: Solving geometric covering problems by
data reduction. In: Proceedings of the 12th Annual European
Symposium on Algorithms (ESA ’04). LNCS, vol. 3221, pp. 760–
771. Springer, Berlin (2004)

Bibliography 1129

Megiddo, N.: Computational Complexity and the Game Theory Ap-
proach to Cost Allocation for a Tree. Math. Oper. Res. 3, 189–
196 (1978)

Megiddo, N.: Cost allocation for Steiner trees. Networks 8(1), 1–6
(1978)

Megiddo, N., Papadimitriou, C.H.: On total functions, existence the-
orems and computational complexity. Theor. Comp. Sci. 81,
317–324 (1991)

Mehlhorn, K.: A best possible bound for the weighted path
length of binary search trees. SIAM J. Comput. 6(2), 235–239
(1977)

Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and
Searching. EATCS Monographs on Theoretical Computer Sci-
ence, vol. 1. Springer, Berlin (1984)

Mehlhorn, K.: Dynamic binary search. SIAM J. Comput. 8(2), 175–
198 (1979)

Mehlhorn, K., Mutzel, P., Näher, S.: An implementation of the
hopcroft and tarjan planarity test. Tech. Rep. MPI-I-93-151,
Saarbrücken (1993)

Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Ge-
ometric Computing. Cambridge University Press, Cambridge
(1999)

Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Ge-
ometric Computing. Commun. ACM. 38(1), 96–102 (1995)

Mehlhorn, K., Sanders, P.: Scanning multiple sequences via cache
memory. Algorithmica 35, 75–93 (2003)

Melideo, G., Varricchio, S.: Learning unary output two-tape au-
tomata from multiplicity and equivalence queries. In: ALT ’98.
Lecture Notes in Computer Science, vol. 1501, pp. 87–102.
Springer, Berlin (1998)

Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. Com-
put. Syst. 9(1), 21–65 (1991)

Mendel, M., Naor, A.: Ramsey partitions and proximity data struc-
tures. J. Eur. Math. Soc. 9(2), 253–275 (2007)

Mendelson, R., Tarjan, R., Thorup, M., Zwick, U.: Melding prior-
ity queues. ACM TALG 2(4), 535–556 (2006). Announced at
SODA’04

Mendonca, D., Raghavachari, M.: Comparing the efficacy of
ranking methods for multiple round-robin tournaments.
Eur. J. Oper. Res. 123, 593–605 (1999)

Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied
Cryptography. CRC Press, Boca Raton (1997)

Message Passing Interface Forum. MPI: A message-passing in-
terface standard. Technical report, University of Tennessee,
Knoxville, TN, June 1995. Version 1.1

Messer, P.W., Arndt, P.F.: The majority of recent short DNA inser-
tions in the humangenome are tandem duplications.Mol. Biol.
Evol. 24(5), 1190–7 (2007)

Mestre, J.: Weighted popular matchings. In: Proceedings of the
16th International Colloquium on Automata, Languages, and
Programming (ICALP), pp. 715–726 (2006)

Metzler, D., Fleißner, R., Wakolbringer, A., von Haeseler, A.: Assess-
ing variability by joint sampling of alignments and mutation
rates. J. Mol. Evol. 53, 660–669 (2001)

Meyer auf der Heide, F., Vöcking, B.: Shortest-Path Routing in Arbi-
trary Networks. J. Algorithms 31(1), 105–131 (1999)

Meyer, U., Sanders, P., Sibeyn, J.F. (eds.): Algorithms for Memory Hi-
erarchies. LNCS, vol. 2625. Springer, Berlin (2003)

Meyerson, A.: Online facility location. In: Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Sci-

ence (FOCS), pp. 426–431. IEEE Computer Society, Los Alamitos
(2001)

Micali, S., Vazirani, V.V.: AnO(
p
VE) Algorithm for FindingMaximum

Matching inGeneral Graphs. In: Proceedings of the 21st Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
1980, pp. 17–27

Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems:
A Cryptographic Perspective. The Kluwer International Series
in Engineering and Computer Science, vol. 671. Kluwer Aca-
demic Publishers, Boston, Massachusetts (2002)

Michael, M., Scott, M.: Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared memory multipro-
cessors. J. Parall. Distrib. Comput. 51(1), 1–26 (1998)

Michel, R., Corentin, T.: In search of the holy grail: Looking for the
weakest failure detector for wait-free set agreement. Technical
Report TR 06-1811, INRIA, August 2006

Miklós, I., Meyer, I.M., Nagy, B.: Moments of the Boltzmann distribu-
tion for RNA secondary structures. Bull. Math. Biol. 67, 1031–
1047 (2005)

Milchtaich, I.: Congestion games with player-specific payoff func-
tions. Games Econ. Behav. 13, 111–124 (1996)

Milenkovic, V.J.: Densest translational lattice packing of non-
convex polygons. Proc. 16th ACM Annual Symp. on Computa-
tional Geometry, 280–289 (2000)

Miller, G., Naor, J.: Flow in planar graphs with multiple sources and
sinks. SIAM J. Comput. 24, 1002–1017 (1995)

Miller, G.L.: Finding small simple cycle separators for 2-connected
planar graphs. J. Comput. Syst. Sci. 32, 265–279 (1986)

Miller, G.L., Reif, J.H.: Parallel tree contraction and its applications.
In: Proceedings of the 26th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pp. 478–489 (1985)

Miller, G.L., Teng, S.H., Vavasis, S.A.: An unified geometric approach
to graph separators. In: Proc. 32nd Annu. IEEE Sympos. Found.
Comput. Sci. 1991, pp. 538–547

Miller, W., Myers, E.W.: Sequence comparison with concave weight-
ing functions. Bull. Math. Biol. 50(2), 97–120 (1988)

Mills, D.L.: Computer Network Time Synchronization: The Network
Time Protocol. CRC Press, Boca Raton (2006)

Miltersen, P.B.: Cell probe complexity – a survey. In: 19th Confer-
ence on the Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS), Advances in Data Structures
Workshop, 1999

Miltersen, P.B.: Lower bounds for Union-Split-Find related prob-
lems on random accessmachines. In: 26th ACMSymposium on
Theory of Computing (STOC), 1994, pp. 625–634

Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures
and asymmetric communication complexity. J. Comput. Syst.
Sci. 57(1), 37–49 (1998). See also STOC’95

Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Complexity
models for incremental computation. In: Ausiello, G., Italiano,
G.F. (eds.) Special Issue on Dynamic and On-line Algorithms.
Theor. Comp. Sci. 130(1), 203–236 (1994)

Min, M., Du, H., Jia, X., Huang, X., Huang, C.-H., Wu, W.: Improv-
ing construction for connected dominating set with Steiner
tree in wireless sensor networks. J. Glob. Optim. 35, 111–119
(2006)

Min,M., Huang, S.C.-H., Liu, J., Shragowitz, E., Wu,W., Zhao, Y., Zhao,
Y.: An Approximation Scheme for the Rectilinear Steiner Mini-
mum Tree in Presence of Obstructions. Fields Inst. Commun.
37, 155–164 (2003)

Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969)

1130 Bibliography

Minsky, M., Papert, S.: Perceptrons: An Introduction to Computa-
tional Geometry. The MIT Press, (1969)

Mirchandani, P.B., Francis, R.L.: Discrete Location Theory. Wiley,
New York (1990)

Mirrokni, V.S.: Approximation Algorithms for Distributed and Self-
ish Agents. Ph.D. thesis, Massachusetts Institute of Technology
(2005)

Mishchenko, A., Chatterjee, S., Brayton, R., Ciesielski, M.: An inte-
grated technology mapping environment. International Work-
shop on Logic Synthesis (2005)

Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribution of
sat problems. In: 10th National Conference on Artificial Intelli-
gence, pp. 459–465. AAAI Press, Menlo Park (1992)

Mitchell, J.: A Geometric Shortest Path Problem, with Application to
Computing a Longest Common Subsequence in Run-Length
Encoded Strings. Technical Report, Dept. of Applied Mathe-
matics, SUNY Stony Brook (1997)

Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal sub-
divisions: A simple newmethod for the geometric k-MST prob-
lem. In: Proc. 7th ACM-SIAM Symposium on Discrete Algo-
rithms, 1996, pp. 402–408.

Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal sub-
divisions: A simple polynomial-time approximation scheme for
geometric TSP, k-MST, and related problems. SIAM J. Comput.
28(4), 1298–1309 (1999)

Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal sub-
divisions: Part II – A simple polynomial-time approximation
scheme for geometric k-MST, TSP, and related problem. SIAM
J. Comput. 29(2), 515–544 (1999)

Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal
subdivisions: Part III – Faster polynomial-time approximation
scheme for geometric network optimization,manuscript, State
University of New York, Stony Brook (1997)

Mitchell, J.S.B., Blum, A., Chalasani, P., Vempala, S.: A constant-factor
approximation algorithm for the geometric k-MST problem in
the plane. SIAM J. Comput. 28(3), 771–781 (1999)

Mitchell, T.: Machine Learning. McGraw Hill (1997)
Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern

matching algorithm for strings in terms of straight-line pro-
grams. J. Discret. Algorithms 1(1), 187–204 (2000)

Miyazaki, T.: The complexity of McKay’s canonical labelling algo-
rithm. In: Groups and Computation, II. DIMACS Ser. Discret.
Math. Theor. Comput. Sci., vol. 28, pp. 239–256. American
Mathematical Society, Providence, RI (1997)

Mo, Y.-Y., Chu, C.: A hybrid dynamic/quadratic programming algo-
rithm for interconnect tree optimization. IEEE Trans. Comput.
Des. 20(5), 680–686 (2001)

Moffat, A.: An improved data structure for cumulative probability
tables. Softw. Prac. Exp. 29, 647–659 (1999)

Moffat, A., Anh, V.N.: Binary codes for locally homogeneous se-
quences. Inf. Process. Lett. 99(5), 75–80 (2006) Source code
available from www.cs.mu.oz.au/~alistair/rbuc/

Moffat, A., Stuiver, L.: Binary interpolative coding for effective index
compression. Inf. Retr. 3(1), 25–47 (2000)

Moffat, A., Turpin, A.: Compression and Coding Algorithms. Kluwer
Academic Publishers, Boston (2002)

Mohar, B., Poljak, S.: Eigenvalues and the max-cut problem.
Czechoslov Math. J. 40(115), 343–352 (1990)

Molly, M., Reed, B.: Graph Coloring and the Probabilistic method.
Springer (2002)

Monasson, R., Zecchina, R.: Statistical mechanics of the random k-
sat problem. Phys. Rev. E 56, 1357–1361 (1997)

Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14,
124–143 (1996)

Monien, B.: How to find long paths efficiently. Ann. Discret. Math.
25, 239–254 (1985)

Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n

steps. Discret. Appl. Math. 10, 287–295 (1985)
Monma, C.L., Shallcross, D.F.: Methods for designing communica-

tions networks with certain two-connected survivability con-
straints. Operat. Res. 37(4), 531–541 (1989)

Mony, H., Baumgartner, J., Paruthi, V., Kanzelman, R., Kuehlmann,
A.: Scalable Automated Verification via Expert-System Guided
Transformations. In: Formal Methods in CAD. (2004)

Moore, C., Russell, A.: Quantum walks on the hypercube. In: Proc.
RANDOM (2002)

Moore, G.W., Goodman, M., Barnabas, J.: An iterative approach from
the standpoint of the additive hypothesis to the dendrogram
problem posed by molecular data sets. J. Theor. Biol. 38, 423–
457 (1973)

Mor, T., Roychowdhury, V., Lloyd, S., Fernandez, J.M., Weinstein, Y.:
Algorithmic cooling. US Patent 6,873,154 (2005)

Moret, B.: Towards a discipline of experimental algorithmics. In:
Data Structures, Near Neighbor Searches, and Methodology:
Fifth and Sixth DIMACS Implementation Challenges. DIMACS
Series in Discrete Mathematics and Theoretical Computer Sci-
ence, 59, 197–214. American Mathematical Society, Provi-
dence, RI (2002)

Moret, B.M.E., Bader, D.A., Warnow, T.: High-performance algorithm
engineering for computational phylogenetics. J. Supercom-
put. 22, 99–111 (2002) Special issue on the best papers from
ICCS’01

Moret, B.M.E., Bader, D.A., Warnow, T., Wyman, S.K., Yan, M.:
GRAPPA: a highperformance computational tool for phy-
logeny reconstruction from gene-order data. In: Proc. Botany,
Albuquerque, August 2001

Moret, B.M.E., Shapiro, H.D.: Algorithms and experiments: The new
(and old) methodology. J. Univers. Comput. Sci. 7(5), 434–446
(2001)

Moret, B.M.E., Shapiro, H.D.: An empirical assessment of algorithms
for constructing aminimumspanning tree. In: DIMACS Ser. Dis-
creteMath. Theoret. Comput. Sci., vol. 15, Am.Math. Soc., Prov-
idence, RI (1994)

Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies
from gene-content and gene-order data. In: Gascuel, O. (ed.)
Mathematics of Evolution and Phylogeny. pp. 321–352, Oxford
Univ. Press, USA (2005)

Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., Yan, M.: A new
implementation and detailed study of breakpoint analysis. In:
Proc. 6th Pacific Symp. Biocomputing (PSB 2001), pp. 583–594,
Hawaii, January 2001

Morrison, M., Brillhart, J.: A method of factoring and the factoriza-
tion of F7

Mosca, M., Ekert, A.: The Hidden Subgroup Problem and Eigen-
value Estimation on a Quantum Computer. In: Proceedings
1st NASA International Conference on Quantum Computing
& Quantum Communications. Lecture Notes in Computer Sci-
ence, vol. 1509, pp. 174–188. Springer, London (1998)

Moscibroda, T.: Locality, Scheduling, and Selfishness: Algorithmic
Foundations of Highly Decentralized Networks. Doctoral The-
sis Nr. 16740, ETH Zurich (2006)

http://www.cs.mu.oz.au/~alistair/rbuc/

Bibliography 1131

Moscibroda, T., von Rickenbach, P., Wattenhofer, R.: Analyzing the
Energy-Latency Trade-off during the Deployment of Sensor
Networks. In: Proc. of the 25th Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), (2006)

Moscibroda, T., Wattenhofer, R.: Coloring Unstructured Radio Net-
works. In: Proc. of the 17th ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pp. 39–48 (2005)

Moscibroda, T., Wattenhofer, R.: Maximal Independent Sets in Ra-
dio Networks. In: Proc. of the 23rd ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 148–157 (2005)

Moses, Y., Shimony, B.: A new proof of the GHS minimum span-
ning tree algorithm. In: Distributed Computing, 20th Int. Symp.
(DISC), Stockholm, Sweden, September 18–20, 2006. Lecture
Notes in Computer Science, vol. 4167, pp. 120–135. Springer,
Berlin Heidelberg (2006)

Moshkov, M.Y.: Conditional tests. Probl. Kibern. (in Russian) 40,
131–170 (1983)

Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k rel-
evant variables. J. Comp. Syst. Sci. 69(3), 421–434 (2004)

Mostefaoui, A., Rajsbaum, S., Raynal, M.: The Combined Power of
Conditions and Failure Detectors to Solve Asynchronous Set
Agreement. In: Proc. 24th ACM Symposium on Principles of
Distributed Computing (PODC’05), pp. 179–188. ACM Press,
New York (2005)

Mostéfaoui, A., Rajsbaum, S., Raynal, M., Roy, M.: Condition-based
consensus solvability: a hierarchy of conditions and efficient
protocols. Distrib. Comput. 17, 1–20 (2004)

Mostefaoui, A., Raynal, M.: k-Set Agreement with Limited Accuracy
Failure Detectors. In: Proc. 19th ACM Symposium on Principles
of Distributed Computing, pp. 143–152. ACM Press, New York
(2000)

Mostefaoui, A., Raynal, M.: Randomized Set Agreement. In: Proc.
13th ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA’01), Hersonissos (Crete) pp. 291–297. ACM Press,
New York (2001)

Motwani, R., Phillips, S., Torng, E.: Non-Clairvoyant Scheduling.
Theor. Comput. Sci. 130(1), 17–47 (1994)

Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge
University Press, New York (1995)

Moulin, H.: Incremental cost sharing: Characterization by coalition
strategy-proofness. Social Choice and Welfare, 16, 279–320
(1999)

Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs:
budget balance versus efficiency. Econ. Theor. 18(3), 511–533
(2001)

Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for re-
stricted combinatorial auctions. In: Proc. 18th Nat. Conf. Artifi-
cial Intelligence, pp. 379–384. AAAI (2002)

Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness. In:
Proc. 18th Symposium on Discrete Algorithms (SODA), 2007

Mucha,M., Sankowski, P.: MaximumMatchings in Planar Graphs via
Gaussian Elimination. Algorithmica 45, 3–20 (2006)

Mucha, M., Sankowski, P.: Maximum Matchings via Gaussian Elimi-
nation. In: Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2004 pp. 248–255

Müller-Hannemann, M., Schnee, M.: Finding all attractive train con-
nections by multi-criteria pareto search. In: Geraets, F., Kroon,
L.G., Schöbel, A., Wagner, D., Zaroliagis, C.D. (eds.) Algorith-
mic Methods for Railway Optimization, International Dagstuhl
Workshop, Dagstuhl Castle, Germany, June 20–25, 2004, 4th
International Workshop, ATMOS 2004, Bergen, September 16–

17, 2004, Revised Selected Papers, Lecture Notes in Computer
Science, vol. 4359, pp. 246–263. Springer, Berlin (2007)

Müller-Hannemann, M., Schnee, M.: Paying less for train connec-
tions with MOTIS. In: Kroon, L.G., Möhring, R.H. (eds.) Pro-
ceedings of the 5th Workshop on Algorithmic Methods and
Models for Optimization of Railways (ATMOS’05), Dagstuhl,
Germany, Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2006.
Dagstuhl Seminar Proceedings, no. 06901

Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.D.:
Timetable information: Models and algorithms. In: Geraets,
F., Kroon, L.G., Schöbel, A., Wagner, D., Zaroliagis, C.D. (eds.)
Algorithmic Methods for Railway Optimization, International
Dagstuhl Workshop, Dagstuhl Castle, Germany, June 20–
25, 2004, 4th International Workshop, ATMOS 2004, Bergen,
September 16–17, 2004, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 4359, pp. 67–90. Springer
(2007)

Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy asma-
trix inversion. In: Proceedings of the 19th Annual ACM Confer-
ence on Theory of Computing, pp. 345–354. ACM Press, New
York (1987)

Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. In:
Proceedings 22nd Annual ACM Symposium on Computational
Geometry, SoCG’06, Sedona, AZ, USA. ACM Press, New York,
NY, USA (2006)

Mundell, R.A.: Currency areas, exchange rate systems, and inter-
national monetary reform, paper delivered at Universidad del
CEMA, Buenos Aires, Argentina. http://www.robertmundell.
net/pdf/Currency (2000). Accessed 17 Apr 2000

Mundell, R.A.: Gold Would Serve into the 21st Century. Wall Street
Journal, 30 September 1981, pp. 33

Munkres, J.: Algorithms for the assignment and transportation
problems. J. Soc. Ind. Appl. Math. 5, 32–38 (1957)

Munro, I.: Tables. In: Proc. 16th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS).
LNCS, vol. 1180, Hyderabad, 18–20 December, pp. 37–42
(1996)

Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations
of permutations. In: Proceedings of the 30th International Col-
loquium on Automata, Languages and Programming (ICALP).
Lecture Notes in Computer Science (LNCS), vol. 2719, pp. 345–
356. Springer, Berlin (2003)

Munro, J.I., Raman, V.: Succinct representation of balanced paren-
theses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Algo-
rithms 39(2), 205–222 (2001)

Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary
trees succinctly. In: Rao Kosaraju, S. (ed.) Proceedings of the
12th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, pp. 529–536, Philadelphia (2001)

Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Díaz,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.): Proceedings
of the 31st International Colloquium on Automata, Languages
and Programming, pp. 1006–1015. Springer, Heidelberg
(2004)

Munro, J.I., Rao, S.S.: Succinct representations of functions. In:
Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP). Lecture Notes in Com-
puter Science (LNCS), vol. 3142, pp. 1006–1015. Springer, Berlin
(2004)

http://www.robertmundell.net/pdf/Currency
http://www.robertmundell.net/pdf/Currency

1132 Bibliography

Munro, J.I., Srinivasa Rao, S.: Succinct representation of data struc-
tures. In: Mehta, D., Sahni, S. (eds.) Handbook of Data Struc-
tures with Applications, Chap 37. Chapman and Hall/CRC Press
(2005)

Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: A solution space of
size (n!)2 for optimal rectangle packing. In: 8th KaruizawaWork-
shop on Circuits and Systems, April 1995, pp. 109–114

Murata, H., Nakatake, S., Fujiyoshi, K., Kajitani, Y.: VLSI Mod-
ule placement based on rectangle-packing by Sequence-Pair.
IEEE Trans. Comput. Aided Design (TCAD) 15(12), 1518–1524
(1996)

Murchland, J.: The effect of increasing or decreasing the length of
a single arc on all shortest distances in a graph. Technical re-
port, LBS-TNT-26, London Business School, Transport Network
Theory Unit, London (1967)

Murgai, R., Brayton, R.K., Sangiovanni-Vincentelli, A.: On clustering
for minimum delay/area. In: Proceedings of IEEE International
Conference on Computer-Aided Design, 1991, pp. 6–9

Murota, K.: Discrete Convex Analysis. Math. Program. 83, 313–371
(1998)

Murota, K.: Discrete Convex Analysis. Soc. Ind. Appl. Math. Philadel-
phia (2003)

Murphy,W., et al.: Dynamics ofMammalian Chromosome Evolution
Inferred from Multispecies Comparative Maps. Science 309,
613–617 (2005)

Muthukrishnan, S.: Data streams: Algorithms and applications.
Found. Trends Theor. Comput. Sci. 1, pp.1–126 (2005)

Muthukrishnan, S., Rajaraman, R., Shaheen, A., Gehrke, J.: Online
Scheduling to Minimize Average Stretch. SIAM J. Comput.
34(2), 433–452 (2004)

Muthukrishnan, S., Sahinalp, S.C.: Approximate nearest neighbors
and sequence comparison with block operations. Proc. ACM
STOC 416–424 (2000)

Myers, B.: Taxonomies of Visual Programming and Program Visual-
ization. J. Visual Lang. Comp. 1, 97–123 (1990)

Myers, E.: A four Russians algorithm for regular expression pattern
matching. J. ACM 39(2), 430–448 (1992)

Myers, E.G.: A sublinear algorithm for approximate keyword search-
ing. Algorithmica 12, 345–374 (1994)

Myers, E.W.: Approximate matching of network expressions with
spacers. J. Comput. Biol. 3(1), 33–51 (1996)

Myers, E.W., Miller, W.: Approximate matching of regular expres-
sions. Bullet. Math. Biol. 51, 7–37 (1989)

Myers, E.W., Miller, W.: Optimal Alignments in Linear Space. Bioin-
formatics 4, 11–17 (1988)

Myers, G.: A fast bit-vector algorithm for approximate stringmatch-
ing based on dynamic progamming. J. ACM 46(3), 395–415
(1999)

Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6, 58–73
(1981)

Na, J.: Linear-time construction of compressed suffix arrays using
o(n log n)-bit working space for large alphabets. In: Proc. 16th
Symposium on Combinatorial Pattern Matching (CPM). LNCS,
vol. 3537, pp. 57–67. Springer, Berlin (2005)

Na, J.C., Giancarlo, R., Park, K.: O(n2 log n) time on-line construction
of two-dimensional suffix trees. In: Proceedings of the 11th In-
ternational Computing and Combinatorics Conference, 2005,
pp. 273–282

Nachtigall, K.: Time depending shortest-path problems with ap-
plications to railway networks. Eur. J. Oper. Res. 83, 154–166
(1995)

Nagamochi, H.: An improved bound on the one-sided minimum
crossing number in two-layered drawings. Discret. Comput.
Geom. 33, 569–591 (2005)

Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding
a sparse k-connected spanning subgraph of a k-connected
graph. Algorithmica 7(5–6), 583–596 (1992)

Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.:
VAMPIR: visualization and analysis of MPI resources. Super-
computer 63. 12(1), 69–80 (1996)

Nakatake, S., Fujiyoshi, K., Murata, H., Kajitani, Y.: Module packing
based on the BSG-structure and IC layout applications. IEEE
TCAD 17(6), 519–530 (1998)

Nakatake, S., Murata, H., Fujiyoshi, K., Kajitani, Y.: Bounded Sliceline
Grid (BSG) for module packing. IEICE Technical Report, October
1994, VLD94-66, vol. 94, no. 313, pp. 19–24 (in Japanese)

Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evo-
lution in species – theory and practice. In: Proc. 8th Annual In-
ternational Conference on Research in Computational Molecu-
lar Biology (RECOMB 2004), 2004, pp. 337–346

Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of
phylogenetic reconstruction methods on an Indo-European
dataset. Trans. Philol. Soc. 103, 171–192 (2005)

Naor, J., Naor, M.: Small-bias probability spaces: efficient construc-
tions and applications. SIAM J. Comput. Comput. 22(4), 838–
856 (1993)

Naor, J.S., Zosin, L.: A 2-Approximation Algorithm for the Directed
Multiway Cut Problem. SIAM J. Comput. 31(2), 477–492 (2001).
Preliminary version in FOCS 1997

Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. J. ACM 51(2), 231–262 (2004)

Naor, M., Stockmeyer, L.: What can be computed locally? In: Proc.
of the 25th Annual ACM Symposium on Theory of Computing
(STOC), pp. 184–193 (1993)

Naor, M., Wieder, U.: Novel architectures for p2p applications: the
continuous-discrete approach. In: The Fifteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA ’03), 2003

Naor, M., Wool, A.: The load, capacity and availability of quorum
systems. SIAM J. Comput. 27, 423–447 (1998)

Narasimhan, G., Smid, M.: Geometric spanner networks. Cambridge
University Press, New York (2006)

Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cam-
bridge University Press, New York (2007)

Narasimhan, G., Zachariasen, M.: Geometric Minimum Spanning
Trees via Well-Separated Pair Decompositions. ACM J. Exp. Al-
gorithms 6, 6 (2001)

Nash, J.F.: Equilibrium point in n-person games. In: Proceedings of
the National Academy of the USA, vol. 36, issue 1, pp. 48–49
(1950)

Nash, J.F.: Equilibrium point in n-person games. Proc. Natl. Acad.
Sci. USA 36(1), 48–49 (1950)

Nash, J.F.: Non-cooperative games. Ann. Math. 54, 268–295 (1951)
Navarra, A.: 3-d minimum energy broadcasting. In: Proceedings of

the 13th Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO), pp. 240–252 (2006)

Navarra, A.: Tighter bounds for the minimum energy broadcasting
problem. In: Proceedings of the 3rd International Symposium
on Modeling and Optimization in Mobile, Ad-hoc and Wireless
Networks (WiOpt), pp. 313–322 (2005)

Navarro, G.: A guided tour to approximate string matching. ACM
Comput. Surv. 33(1), 31–88 (2001)

Bibliography 1133

Navarro, G.: Approximate regular expression searching with arbi-
trary integer weights. Nord. J. Comput. 11(4), 356–373 (2004)

Navarro, G.: Indexing text using the Ziv–Lempel trie. J. Discret. Al-
gorithms 2, 87–114 (2004)

Navarro, G.: Nr-grep: a fast and flexible pattern matching tool.
Softw. Pr. Exp. 31, 1265–1312 (2001)

Navarro, G.: Regular expression searching on compressed text.
J. Discret. Algorithms 1(5–6), 423–443 (2003)

Navarro, G., Baeza-Yates, R.: A hybrid indexingmethod for approxi-
mate string matching. J. Discret. Algorithms 1, 21–49 (2000)

Navarro, G., Baeza-Yates, R.: Very fast and simple approximate
string matching. Inf. Proc. Lett. 72, 65–70 (1999)

Navarro, G., Baeza-Yates, R.A., Sutinen, E., Tarhio, J.: Indexing meth-
ods for approximate stringmatching. IEEEData Eng. Bull.24(4),
19–27 (2001)

Navarro, G., Chávez, E.: A metric index for approximate string
matching. Theor. Comput. Sci. 352(1–3), 266–279 (2006)

Navarro, G., Mäkinen, V.: Compressed full text indexes. ACM Com-
put. Surv. 39(1) (2007)

Navarro, G., Paredes, R.: Practical construction of metric t-spanners.
In: Proceedings of the 5th Workshop on Algorithm Engineer-
ing and Experiments, pp. 69–81, 11 January 2003. SIAM Press,
Baltimore

Navarro, G., Raffinot, M.: Fast and flexible string matching by com-
bining bit-parallelism and suffix automata. ACM J. Exp. Algo-
rithm 5, 4 (2000)

Navarro, G., Raffinot, M.: Fast and simple character classes and
bounded gaps pattern matching, with applications to protein
searching. J. Comput. Biol. 10(6), 903–923 (2003)

Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings –
Practical on-line search algorithms for texts and biological se-
quences. Cambridge University Press, Cambridge (2002)

Navarro, G., Raffinot, M.: New techniques for regular expression
searching. Algorithmica 41(2), 89–116 (2004)

Navarro, G., Tarhio, J.: LZgrep: A Boyer–Moore string matching
tool for Ziv–Lempel compressed text. Softw. Pract. Exp. 35(12),
1107–1130 (2005)

Nayak, A., Vishwanath, A.: Quantum walk on the line. quant-
ph/0010117

Needleman, S.B., Wunsch, C.D.: A GeneralMethod Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Pro-
teins. J. Mol. Biol. 48, 443–453 (1970)

Nekrutenko, A., Li, W.H.: Assessment of compositional heterogene-
ity within and between eukaryotic genomes. Genome Res. 10,
1986–1995 (2000)

Nemhauser, G.L., Trotter, L.E.: Vertex packing: structural properties
and algorithms. Math. Program. 8, 232–248 (1975)

Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimiza-
tion. Wiley, Hoboken (1999)

Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimiza-
tion. Wiley, New York (1988)

Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimiza-
tion. Wiley, New York (1990)

Nenakhov, E., Primak, M.: About one algorithm for finding the solu-
tion of the Arrow-DebreuModel. Kibernetica3, 127–128 (1983)

Newman, A.: A note on polyhedral relaxations for themaximumcut
problem (2004). Unpublishedmanuscript

Neyman, J.: Molecular studies of evolution: a source of novel sta-
tistical problems. In: Gupta, S.S., Yackel, J. (eds) Statistical Deci-
sion Theory and Related Topics, pp. 1–27. Academic Press, New
York (1971)

Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational
invariance. In: Greiner, R., Schuurmans, D. (eds.) Proceedings
of the 21st International Conference on Machine Learning, pp
615–622. The International Machine Learning Society, Prince-
ton (2004)

Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B.,
Berger, E., Liang, E.:Inverted autonomous helicopter flight via
reinforcement learning. In: International Symposium on Exper-
imental Robotics, 2004

Ng, C., Hirschberg, D.S.: Lower bounds for the stablemarriage prob-
lem and its variants. SIAM J. Comput. 19, 71–77 (1990)

Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from sub-
trees. Discrete Appl. Math. 69(1–2), 19–31 (1996)

Ng, R.T., Han, J.: Efficient and effective clustering methods for spa-
tial data mining. In: Proc. Symp. on Very Large Data Bases
(VLDB), pp. 144–155. Santiagode Chile, 12–15 September 1994

Nguyen, P., Stern, J.: The two faces of lattices in cryptology. In:
J. Silverman (ed.) Cryptography and lattices conference – CaLC
2001, Providence, RI, USA, March 2001. Lecture Notes in Com-
puter Science, vol. 2146, pp. 146–180. Springer, Berlin (2001)

Nieberg, T., Hurink, J.L.: A PTAS for the Minimum Dominating Set
Problem in Unit Disk Graphs. LNCS, vol. 3879, pp. 296–306.
Springer, Berlin (2006)

Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford
Lecture Series in Mathematics and Its Applications, vol. 31. Ox-
ford University Press, Oxford (2006)

Niedermeier, R., Rossmanith, P.: New upper bounds for maximum
satisfiability. J. Algorithms 26, 63–88 (2000)

Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge (2000)

Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleporta-
tion using nuclear magnetic resonance. Nature 396(6706), 52–
55 (1998)

Nikoletseas, S., Chatzigiannakis, I., Antoniou, A., Efthymiou, C., Ki-
nalis, A., Mylonas, G.: Energy Efficient Protocols for Sensing
Multiple Events in Smart Dust Networks. In: Proc. 37th Annual
ACM/IEEE Simulation Symposium (ANSS’04), pp. 15–24, IEEE
Computer Society Press (2004)

Nikoletseas, S., Palem, K., Spirakis, P., Yung, M.: Connectivity Prop-
erties in Random Regular Graphs with Edge Faults. In: Spe-
cial Issue on Randomized Computing of the International Jour-
nal of Foundations of Computer Science (IJFCS), vol. 11 no. 2,
pp. 247–262, World Scientific Publishing Company (2000)

Nikoletseas, S., Palem, K., Spirakis, P., Yung,M.: Short Vertex Disjoint
Paths and Multiconnectivity in Random Graphs: Reliable Net-
work Computing. In: Proc. 21st International Colloquium on
Automata, Languages and Programming (ICALP), pp. 508–515.
Jerusalem (1994)

Nikoletseas, S., Pantziou, G., Psycharis, P., Spirakis, P.: On the reli-
ability of fat-trees. In: Proc. 3rd International European Con-
ference on Parallel Processing (Euro-Par), pp. 208–217, Passau,
Germany (1997)

Nikoletseas, S., Raptopoulos, C., Spirakis, P.: Expander Properties
and the Cover Time of Random Intersection Graphs. In: Proc of
the 32nd MFCS, pp. 44–55. Springer, Berlin/Heidelberg (2007)

Nikoletseas, S., Raptopoulos, C., Spirakis, P.: The existence and Effi-
cient construction of Large Independent Sets in General Ran-
dom Intersection Graphs. In: Proc. of the 31st ICALP. LNCS,
vol. 3142, pp. 1029–1040. Springer, Berlin/Heidelberg (2004)

Nikoletseas, S., Spirakis, P.: Expander Properties in Random Regular
Graphs with Edge Faults. In: Proc. 12th Annual Symposium on

1134 Bibliography

Theoretical Aspects of Computer Science (STACS), pp.421–432,
München (1995)

Nisan, N. Ronen, A.: Algorithmicmechanismdesign. In: Proceedings
of the 31st Annual ACM Symposium on Theory of Computing
(STOC-99), pp. 129–140. Association for ComputingMachinery,
New York (1999)

Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In: Pro-
ceedings of EC’00, pp. 1–12. Minneapolis, 17–20 October 2000

Nisan, N., Ronen, A.: Algorithmic mechanism design. Game. Econ.
Behav. 35, 166–196 (2001)

Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc. 31st
Annual Symposium on Theory of Computing (STOC99), At-
lanta, 1–4 May 1999, pp. 129–140 (1999)

Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. In:
Proc. of the 2nd ACM Conference on Electronic Commerce
(EC’00), 2000

Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with
respect to Horn and binary clauses. In: Informal proceedings of
SAT 2004, 7th International Conference on Theory and Appli-
cations of Satisfiability Testing, Vancouver, BC, Canada, 10–13
May 2004, pp. 96–103

Nishimura, N., Ragde, P., Szeider, S.: Solving SAT using vertex cov-
ers. Acta Inf. 44(7–8), 509–523 (2007)

Nodine, M.H., Vitter, J.S.: Deterministic distribution sort in shared
and distributed memory multiprocessors. In: Proceedings of
the ACMSymposium on Parallel Algorithms and Architectures,
June–July 1993, vol. 5, pp. 120–129, ACM Press, New York
(1993)

Nodine, M.H., Vitter, J.S.: Greed Sort: An optimal sorting algorithm
for multiple disks. J. ACM 42(4), 919–933 (1995)

Noga, J., Seiden, S.S.: An optimal online algorithm for scheduling
two machines with release times. Theor. Comput. Sci. 268(1),
133–143 (2001)

Novikoff, A. B. J.: On convergence proofs on perceptrons. In: Pro-
ceedings of the Symposiumon theMathematical Theory of Au-
tomata, volume XII, pp. 615–622, (1962)

Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the sec-
ondary structure of single-stranded RNA. Proc. Natl. Acad. Sci.
USA 77, 6309–6313 (1980)

Nussinov, R., Pieczenik, G., Griggs, J., Kleitman, D.: Algorithms for
loop matchings. SIAM J. Appl. Math. 35, 68–82 (1978)

Nutt, G.: Operating System Projects Using Windows NT. Addison-
Wesley, Reading (1999)

O’Donnell, R., Servedio, R.: Learning monotone decision trees in
polynomial time. In: Proceedings of the 21st Conference on
Computational Complexity (CCC), pp. 213–225, Prague, 16–20
July 2006

Ogurtsov, A.Y., Shabalina, S.A., Kondrashov, A.S., Roytberg, M.A.:
Analysis of internal loops within the RNA secondary structure
in almost quadratic time. Bioinformatics 22, 1317–1324 (2006)

Ohnishi, H., Seki, H., Kasami, T.: A polynomial time learning algo-
rithm for recognizable series. IEICE Transactions on Informa-
tion and Systems, E77-D(10)(5), 1077–1085 (1994)

Ohta, T.: Near-neutrality in evolution of genes and gene regulation.
Proc. Natl. Acad. Sci. USA 99, 16134–16137 (2002)

Okanohara, D., Sadakane, K.: Practical entropy-compressed
rank/select dictionary. In: Proc. 9th ACM-SIAM Workshop on
Algorithm Engineering and Experiments (ALENEX ’07), SIAM,
to appear (2007)

Olariu, S., Stojmenovic, I.: Design guidelines for maximizing life-
time and avoiding energy holes in sensor networks with uni-

form distribution and uniform reporting. In: IEEE INFOCOM,
Barcelona, Spain, April 24–25 2006

Olken, F.: Random Sampling from Databases. Ph. D. thesis, Depart-
ment of Computer Science, University of California, Berkeley
(1993)

Olmstead, R.G., Palmer, J.D.: Chloroplast DNA systematics: a review
of methods and data analysis. Am. J. Bot. 81, 1205–1224 (1994)

OpenMPArchitecture ReviewBoard. OpenMP: A proposed industry
standardAPI for sharedmemory programming. www.openmp.
org, October 1997

Ostrovsky, R., Patt-Shamir, B.: Optimal and efficient clock synchro-
nization under drifting clocks. In: Proceedings of the 18th
Annual Symposium on Principles of Distributed Computing,
pp. 3–12, Atlanta, May (1999)

Ostrovsky, R., Rabani, Y.: Universal O(congestion + dilation +
log1+" N) Local Control Packet Switching Algorithm. In: Pro-
ceedings of The Twenty-Ninth ACM Symposium on Theory of
Computing, pp. 644–653 (1997)

Otten, R.H.J.M.: Automatic Floorplan Design. In: Proceedings of the
19th Design Automation Conference, pp. 261–267 (1982)

Ouchi, K.: Real/Expr: Implementation of an exact computation
package. Master’s thesis, New York University, Department
of Computer Science, Courant Institute, January (1997). URL
http://cs.nyu.edu/exact/doc/

Oum, S.I., Seymour, P.: Approximating clique-width and branch-
width. J. Combin. Theor. Ser. B 96, 514–528 (2006)

Owen, G.: On the Core of Linear Production Games. Math. Program.
9, 358–370 (1975)

Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangement.
J. Bioinf. Comput. Biol. 1, 71–94 (2003)

Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation
Ranking: BringingOrder to theWeb. In: Technical Report. Stan-
ford University, Stanford (1998)

Pagh, A., Pagh, R., Thorup, M.: On adaptive integer sorting. In:
Proc. 12th ESA, 2004, pp. 556–579

Pagh, R.: A trade-off for worst-case efficient dictionaries. Nord. J.
Comput. 7, 151–163 (2000). See also SWAT’00

Pagh, R.: Low redundancy in static dictionaries with constant query
time. SIAM J. Comput. 31, 353–363 (2001)

Pagh, R.: Low redundancy in static dictionaries with O(1) lookup
time. In: Proceedings of ICALP ’99. LNCS, vol. 1644, pp. 595–
604. Springer, Berlin (1999)

Pagh, R.: On the cell probe complexity of membership and perfect
hashing. In: Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing (STOC ’01), pp. 425–432. ACM Press,
New York (2001)

Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51, 122–144
(2004)

Pál, M., Tardos, É., Wexler, T.: Facility location with nonuniform hard
capacities. In: Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, pp. 329–338. Las Vegas, 14–
17 October 2001

Palmer, J.D.: Chloroplast and mitochondrial genome evolution in
land plants. In: Herrmann, R. (ed.) Cell Organelles, pp. 99–133.
Springer, Vienna (1992)

Palmer, J.D., Herbon, L.A.: Tricircular mitochondrial genomes of
Brassica and Raphanus: reversal of repeat configurations by in-
version. Nucleic Acids Res. 14, 9755–9764 (1986)

Pan, P.: Continuous retiming: Algorithms and applications. In: Proc.
Intl. Conf. Comput. Design, pp. 116–121. IEEE Press, Los Almitos
(1997)

http://www.openmp.org
http://www.openmp.org
http://cs.nyu.edu/exact/doc/.

Bibliography 1135

Pan, P., Karandikar, A.K., Liu, C.L.: Optimal clock period clustering for
sequential circuits with retiming. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 17, 489–498 (1998)

Pan, P., Lin, C.C.: A New Retiming-based Technology Mapping Al-
gorithm for LUT-based FPGAs. ACM International Symposium
on Field-Programmable Gate Arrays (1998)

Pan, P., Liu, C.L.: Area Minimization for Floorplans. In: IEEE Trans.
Comput. Aided Des. 14(1), 123–132 (1995)

Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Mapping
for Sequential Circuits. ACM Trans. on Des. Autom. of Electron.
Syst., 3(3), 437–462 (1998)

Pan, P., Liu, C.L.: Optimal Clock Period FPGA Technology Mapping
for Sequential Circuits. ACM/IEEE Design Automation Confer-
ence, June (1996)

Pan, P., Shi, W., Liu, C.L.: Area Minimization for Hierarchical Floor-
plans. In: Algorithmica 15(6), 550–571 (1996)

Panagiotou, K., Souza, A.: On adequate performance measures for
paging. In: STOC ’06: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pp. 487–496. ACM
Press, New York, NY, USA (2006)

Panagopoulou P., Spirakis P.: Algorithms for pure Nash Equilibrium
in weighted congestion games. ACM J. Exp. Algorithms 11, 2.7
(2006)

Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algo-
rithms 33, 281–295 (1999)

Panigrahy, R.: Efficient hashing with lookups in two memory ac-
cesses. In: Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA ’05), pp. 830–839. SIAM,
Vancouver, 23–25 January 2005

Papa, D.A., Markov, I.L.: Hypergraph partitioning and clustering. In:
Gonzalez, T. (ed.) Handbook of algorithms. Taylor & Francis
Group, Boca Raton, CRC Press, pp. 61–1 (2007)

Papadimitriou, C.: Computational Complexity. Addison-Wesley,
Reading (1994)

Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Al-
gorithms and Complexity. Prentice-Hall, Englewood Cliffs
(1982)

Papadimitriou, C., Yannakakis, M.: Linear programmingwithout the
matrix. In: Proc. of the 25th ACM Symposium on Theory of
Computing (STOC), pp. 121–129 (1993)

Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proc.
on 33rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 749–753. ACM, Heraklion (2001)

Papadimitriou, C.H.: On inefficient proofs of existence and com-
plexity classes. In: Proceedings of the 4th Czechoslovakian
Symposium on Combinatorics 1990, Prachatice (1991)

Papadimitriou, C.H.: On selecting a satisfying truth assignment.
Proceedings 32ndAnnual Symposiumon Foundations of Com-
puter Science, pp. 163–169. San Juan, Puerto Rico (1991)

Papadimitriou, C.H.: On the complexity of the parity argument and
other inefficient proofs of existence. J. Comput. Syst. Sci. 48,
498–532 (1994)

Papadimitriou, C.H.: The Euclidean travelling salesman problem is
NP-complete. Theor. Comput. Sci. 4, 237–244 (1977)

Papadimitriou, C.H.: The NP-completeness of the bandwidth mini-
mization problem. Computing 16(3), 263–270 (1976)

Papadimitriou, C.H., Schaffer, A., Yannakakis, M.: On the complexity
of local search. In: 22nd Symp. on Theory of Computing (STOC),
pp. 438 – 445 (1990)

Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved.
J. Comput. Syst. Sci. 37, 2–13 (1988)

Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism
and the complexity of the V-C dimension. J. Comput. Syst. Sci.
53(2), 161–170 (1996)

Papadimitriou, C.H., Yannakakis, M.: Shortest Paths without a Map.
Theor. Comput. Sci. 84, 127–150 (1991) Preliminary version in
ICALP ’89

Papadimitriu, C.H., Tsitsiklis, J.N.: The complexity of markov deci-
sion processes. In: Mathematics of Operations Research, 1987,
pp. 441–450.

Papaefthymiou, M.C.: Asymptotically Efficient Retiming under
Setup and Hold Constraints. In: Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design,pp. 288–
295, November 1998

Park, K., Galil, Z.: Truly alphabet-independent two-dimensional pat-
tern matching. In: Proceeding 33rd IEEE FOCS, 1992, pp. 247–
256

Parkes, D.C.: Chapter 2: Iterative Combinatorial Auctions. Ph. D. the-
sis, University of Pennsylvania (2004)

Parra, A., Scheffler, P.: Characterizations and algorithmic applica-
tions of chordal graph embeddings. Discret. Appl. Math. 79,
171–188 (1997)

Parvaresh, F., Vardy, A.: Correcting errors beyond the
Guruswami�Sudan radius in polynomial time. In: Pro-
ceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pp. 285–294. Pittsburgh, 2005

Parvédy, P.R., Raynal, M.: Optimal Early Stopping Uniform Consen-
sus in Synchronous Systems with Process Omission Failures.
In: Proc. 16th Annual ACM Symposium on Parallel Algorithms
(SPAA), pp. 302–310, Spain, June 2004

Pasco, R.: Source Coding Algorithms for Fast Data Compression,
Ph. D. thesis, Stanford University (1976)

Pascoal, M.: Implementations and empirical comparison of k short-
est loopless path algorithms. In: 9th DIMACS Implementation
Challenge Workshop: Shortest Paths, DIMACS Center, Piscat-
away, NJ, 13–14 Nov 2006

Pǎtraşcu, M., Demain, E.D.: Lower Bounds for Dynamic Connectiv-
ity. In: Proc. 36th ACM Symposium on Theory of Computing
(STOC), 2004, pp. 546–553

Pătraşcu, M., Demaine, E.: Logarithmic Lower Bounds in the Cell-
Probe Model. SIAM J. Comput. 35(4), 932–963 (2006) (pre-
sented at ACM STOC 2004)

Pătraşcu, M., Tarniţă, C.: On dynamic bit-probe complexity. Theor.
Comput. Sci. 380, 127–142 (2007). See also ICALP’05

Pǎtraşcu, M., Tarniţǎ, C.: On Dynamic Bit-Probe Complexity, The-
oretical Computer Science, Special Issue on ICALP’05. In: Ital-
iano, G.F., Palamidessi, C. (eds.) vol. 380, pp. 127–142 (2007)
A preliminary version in Proc. 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), 2005,
pp. 969–981

Pătraşcu, M., Thorup, M.: Randomization does not help searching
predecessors. In: Proc. 18th ACM/SIAMSymposium onDiscrete
Algorithms (SODA), 2007

Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor
search. In: Proc. 38th ACM Symposium on Theory of Comput-
ing (STOC), 2006, pp. 232–240

Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchronization. In:
Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, pp. 810–819, Montreal 23–25 May 1994

Pattengale, N.D., Moret, B.M.E.: A Sublinear-Time Randomized Ap-
proximation Scheme for the Robinson–Foulds Metric. In: Pro-
ceedings of the Tenth ACM Annual International Conference

1136 Bibliography

on Research in Computational Molecular Biology (RECOMB),
pp. 221–230. Venice, Italy, April 2–5 2006

Paturi, R., Pudlák, P., Saks, M., Zane, F.: An Improved Exponential-
time Algorithm for k-SAT. J. ACM52(3), 337–364 (2005) (An ear-
lier version presented in Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science, 1998, pp.
628–637)

Paturi, R., Pudlák, P., Saks, M.E., Zane, F.: An improved exponential-
time algorithm for k-SAT. Proceedings 39th Annual Sympo-
sium on Foundations of Computer Science, pp. 628–637. Palo
Alto, USA (1998) Also, J. ACM 52(3), 337–364 (2006)

Paturi, R., Pudlák, P., Zane, F.: Satisfiability Coding Lemma. In: Pro-
ceedings of the 38th Annual IEEE Symposium on Foundations
of Computer Science, 1997, pp. 566–574. Chicago J. Theor.
Comput. Sci. (1999), http://cjtcs.cs.uchicago.edu/

Paul, C., Proskurowski, A., Telle, J.A.: Generating graphs of bounded
branchwidth. In: Proceedings of the 32nd Workshop on Graph
Theoretic Concepts in Computer Science (WG 2006). Lecture
Notes Computer Science, vol. 4271, pp. 205–216. Springer,
Berlin (2006)

Paul, C., Telle, J.A.: New tools and simpler algorithms for branch-
width. In: Proceedings of the 13th Annual European Sympo-
sium on Algorithms (ESA 2005), 2005 pp. 379–390

Paul, J., Simon, W.: Decision trees and random access machines.
In: Symposium über Logik und Algorithmik. (1980) See also
Mehlhorn, K.: Sorting and Searching, pp. 85–97. Springer, Berlin
(1984)

Pearl, J.: Capacity and error-estimates for boolean classifiers with
limited complexity. IEEE Trans. on Pattern Recognition andMa-
chine Intelligence, PAMI-1(4), 350–356 (1979)

Pearl, J.: Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley, Reading, MA (1984)

Pearson, W.R., Lipman, D.J.: Improved Tools for Biological Sequence
Comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448 (1988)

Pease, M.C., Shostak, R.E., Lamport, L.: Reaching Agreement in the
Presence of Faults. J. ACM 27(2), 228–234 (1980)

Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with
random transmission failures. Proc. 24th Ann. ACMSymposium
on Principles of Distributed Computing (PODC), pp. 334–341,
Las Vegas, July 17–20 2005

Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
In: SIAM Monographs on Discrete Mathematics and Applica-
tions 5 (2000)

Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13, 99–
116 (1989)

Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube.
SIAM J. Comput. 18, 740–747 (1989)

Peleg, D., Upfal, E.: A trade-off between space and efficiency
for routing tables. J. Assoc. Comput Mach. 36(3), 510–530
(1989)

Peleg, D., Wool, A.: Crumblingwalls: A class of practical and efficient
quorum systems. Distrib. Comput. 10, 87–98 (1997)

Peleg, D., Wool, A.: The availability of quorum systems. Inf. Comput.
123, 210–223 (1995)

Pemmaraju, S., Raman, R., Varadarajan, K.: Buffer minimization us-
ing max-coloring. In: Proc. of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2004), pp. 562–571.
(2004)

Pennebaker, W.B., Mitchell, J.L., Langdon, G.G., Arps, R.B.: An
overview of the basic principles of the Q-coder adaptive binary
arithmetic coder. IBM J. Res. Develop. 32, 717–726 (1988)

Penrose, M.: On k-connectivity for a geometric random graph. Ran-
dom. Struct. Algorithms 15(2), 145–164 (1999)

Penrose, M.: Random Geometric Graphs. Oxford University Press,
Oxford (2003)

Penrose, M.: The longest edge of the random minimal spanning
tree. Ann. Appl. Probab. 7(2), 340–361 (1997)

Pereira, F., Riley, M.: Speech recognition by composition of
weighted finite automata. In: Finite-State Language Process-
ing, pp. 149–173. MIT Press, Cambridge (1997)

Perkins, C.E.: Ad Hoc Networking. Addison-Wesley, Boston (2001)
Perry, K.J., Toueg, S.: Distributed Agreement in the Presence of

Processor and Communication Faults. IEEE Trans. Softw. Eng.
12(3), 477–482 (1986)

Peters, J.G., Rudolph, L.: Parallel aproximation schemes for subset
sum and knapsack problems. Acta Inform. 24, 417–432 (1987)

Peterson, G.L.: Concurrent reading while writing. ACM Trans. Pro-
gram. Lang. Syst. 5(1), 56–65 (1983)

Peterson, G.L., Burns, J.E.: Concurrent reading while writing II: The
multiwriter case. In: Proc. 28th IEEE Symp. Found. Comput. Sci.,
pp. 383–392. Los Angeles, 27–29 October 1987

Peterson, W.W.: Encoding and error-correction procedures for
Bose-Chaudhuri codes. IEEE Trans. Inf. Theory. 6, 459–470
(1960)

Pettie, S. Ramachandran, V.: An Optimal Minimum Spanning Tree
Algorithm. J. ACM 49(1), 16–34 (2002)

Pettie, S.: A new approach to all-pairs shortest paths on real-
weighted graphs. Theor. Comput. Sci. 312(1), 47–74 (2004)

Pettie, S.: Low-Distortion Spanners. In: 34th International Collo-
quium on Automata Languages and Programm, Wroclaw, July
2007, pp. 78–89

Pettie, S.: On the comparison-addition complexity of all-pairs short-
est paths. In: Proc. 13th Int’l Symp. on Algorithms and Compu-
tation (ISAAC), 2002, pp. 32–43

Pettie, S.: On the shortest path and minimum spanning tree prob-
lems. Ph.D. thesis, The University of Texas, Austin, August 2003

Pettie, S.: Towards a final analysis of pairing heaps. In: Proc. 46th An-
nual Symposium on Foundations of Computer Science (FOCS),
2005, pp. 174–183

Pettie, S., Ramachandran, V.: A randomized time-work optimal par-
allel algorithm for finding a minimum spanning forest. SIAM
J. Comput. 31(6), 1879–1895 (2002)

Pettie, S., Ramachandran, V.: A shortest path algorithm for real-
weighted undirected graphs. SIAM J. Comput. 34(6), 1398–
1431 (2005)

Pettie, S., Ramachandran, V.: Minimizing randomness in minimum
spanning tree, parallel connectivity and set maxima algo-
rithms. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms
(SODA), 2002, pp. 713–722

Pettie, S., Ramachandran, V.: New randomized minimum spanning
tree algorithms using exponentially fewer random bits. ACM
Trans. Algorithms. 4(1), article 5 (2008)

Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evaluation of
a new shortest path algorithm. In: Proc. 4thWorkshop on Algo-
rithm Engineering and Experiments (ALENEX), 2002, pp. 126–
142

Pevsner, J.: Bioinformatics and functional genomics. Wiley, New
York (2003)

Pevtsov, S., Fedulova, I., Mirzaei, H., Buck, C., Zhang, X.: Per-
formance evaluation of existing de novo sequencing algo-
rithms. J. Proteome Res. 5(11), 3018–3028 (2006) ASAP Article
10.1021/pr060222h

http://cjtcs.cs.uchicago.edu/

Bibliography 1137

Pevzner, P., Tesler, G.: Human and mouse genomic sequences
reveal extensive breakpoint reuse in mammalian evolution.
PNAS 100, 7672–7677 (2003)

Pevzner, P.A.: Computationalmolecular biology: an algorithmic ap-
proach. MIT Press, Cambridge, MA (2000)

Pevzner, P.A.: Multiple alignment, communication cost, and graph
matching. SIAM J. Appl. Math. 52, 1763–1779 (1992)

Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding subtle
signals in DNA sequences. In: Proc. of 8th ISMB, pp. 269–278.
AAAI Press, (2000)

Pinedo, M.: Scheduling: Theory, Algorithms and Systems, 2nd ed.
Prentice Hall, Englewood Cliffs (2002)

Pion, S., Yap, C.: Constructive root bound method for k-ary rational
input numbers, September, (2002). ExtendedAbstract. Submit-
ted, (2003) ACM Symposium on Computational Geometry

Pitt, L.: Inductive inference, DFAs, and computational complexity.
In: Analogical and Inductive Inference, 2nd International Work-
shop, Reinhardsbrunn Castle, GDR. Lecture Notes in Computer
Science, vol. 397, pp. 18–44. Springer, Berlin (1989)

Pitt, L., Valiant, L.: Computational limitations on learning from ex-
amples. J. ACM 35(4), 965–984 (1988)

Platt, J.: Fast training of support vector machines using sequential
minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola,
A.J. (eds.) Advances in Kernel Methods Support Vector Learn-
ing. pp 185–208. MIT Press, Cambridge (1999)

Plaxton, C., Rajaraman, R., Richa, A.: Accessing nearby copies of
replicated objects in a distributed environment. In: Proceed-
ings of the Ninth Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA 97), 1997, pp. 311–320

Plehn, J., Voigt, B.: Finding minimally weighted subgraphs. Lect.
Notes Comput. Sci. 484, 18–29 (1990)

Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algo-
rithms for fractional packing and covering problems. In: Pro-
ceedings of 32nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1991, pp. 495–504

Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algo-
rithms for fractional packing and covering problems. Math.
Oper. Res. 20(2) 257–301 (1995). Preliminary version appeared
in [6]

Podtelezhnikov, A., Cozzarelli, N., Vologodskii, A.: Equilibrium dis-
tributions of topological states in circular DNA: interplay of su-
percoiling and knotting. (English. English summary) Proc. Natl.
Acad. Sci. USA 96(23), 12974–129 (1999)

Polischuk, A., Spielman, D.: Nearly linear-size holographic proofs.
In: Proceedings of the Twenty-Sixth Annual ACM Symposium
on the Theory of Computing, pp. 194–203. ACM, New York
(1994)

Poljak, S.: Polyhedral and eigenvalue approximations of the max-
cut problem. Sets, Graphs and Numbers. Colloqiua Mathemat-
ica Societatis Janos Bolyai 60, 569–581 (1992)

Poljak, S., Rendl, F.: Node and edge relaxations of themax-cut prob-
lem. Comput. 52, 123–137 (1994)

Poljak, S., Rendl, F.: Nonpolyhedral relaxations of graph-bisection
problems. SIAM J. Opt. 5, 467–487 (1995)

Poljak, S., Rendl, F.: Solving the max-cut using eigenvalues. Discret.
Appl. Math. 62(1–3), 249–278 (1995)

Poljak, S., Tuza, Z.: Maximum cuts and large bipartite subgraphs.
DIMACS Ser. Discret. Math. Theor. Comput. Sci. 20, 181–244
(1995)

Pomerance, C.: Factoring. In: Pomerance, C. (ed.) Cryptology and
Computational Number Theory, Proceedings of Symposia in

Applied Mathematics, vol. 42, p. 27. American Mathematical
Society

Poon, C.K., Ramachandran, V.: A randomized linear-work EREW
PRAM algorithm to find a minimum spanning forest. Algorith-
mica 35(3), 257–268 (2003)

Popper, K.: The Logic of Scientific Discovery. Harper & Row, New
York (1959)

Posada, D., Crandall, K.A.: Intraspecific gene genealogies: trees
grafting into networks. TRENDS Ecol. Evol. 16(1), 37–45 (2001)

Potts, R.: Some generalized order - disorder transformations,
Proc. Camb. Phil. Soc. 48, 106–109 (1952)

Powell, O., Leone, P., Rolim, J.: Energy Optimal Data Propagation
in Sensor Networks. J. Prarallel Distrib. Comput. 67(3), 302–317
(2007) http://arxiv.org/abs/cs/0508052

Powell, O., Nikolesteas, S.: Simple and efficient geographic rout-
ing around obstacles for wireless sensor networks. In: WEA 6th
Workshop on Experimental Algorithms, Rome, Italy. Springer,
Berlin (2007)

Preparata, F.P., Shamos, M.I.: Computational Geometry: an Intro-
duction. Springer, New York (1985)

Price, B., Baecker, R., Small, I.: A Principled Taxonomy of Software
Visualization. J. Visual Lang. Comp. 4, 211–266 (1993)

Prieto-Rodriguez, E.: Systematic kernelization in FPT algorithm de-
sign. Dissertation, School of Electrical Engineering and Com-
puter Science, University of Newcastle, Australia (2005)

Prokop, H.: Cache-oblivious algorithms. Master’s thesis, Mas-
sachusetts Institute of Technology, Dept. of Electrical Engi-
neering and Computer Science (1999)

Proll, L.G.: A simplemethod of assigning projects to students. Oper.
Res. Q. 23(23), 195–201 (1972)

Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook
on Scheduling: Algorithms, Models and Performance Analysis,
CRC press (2004). Symposium on Theory of Computing (STOC),
pp. 110–119. (1997)

Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the Best Re-
sponse for Your Erg. In: ScandanavianWorkshop onAlgorithms
and Theory, 2004

Przytycka, T.M.: Transforming rooted agreement into unrooted
agreement. J. Comput. Biol. 5(2), 335–349 (1998)

Pudlák, P.: Satisfiability – algorithms and logic. In: Proceedings of
the 23rd International Symposium on Mathematical Founda-
tions of Computer Science, MFCS’98. Lecture Notes in Com-
puter Science, vol. 1450, pp. 129–141. Springer, Berlin (1998)

Pugh, W.: Skip lists: A probabilistic alternative to balanced trees.
Commun. ACM 33, 668–676 (1990)

Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. In:
Workshop on Algorithms and Data Structures, 1989, pp. 437–
449

Puglisi, S., Smyth, W., Turpin, A.: A taxonomy of suffix array con-
struction algorithms. ACM Comput. Surv. 39(2), Article 4, 31
pages (2007)

Puterman, M.: Markov Decision Processes. Wiley-Interscience, New
York (1994)

Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for
Timetable Information in Public Transportation Systems. ACM
J. Exp. Algorithmic 12(2.4), 1–39 (2007)

Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental com-
parison of shortest path approaches for timetable informa-
tion. In: Proceedings 6th Workshop on Algorithm Engineering
and Experiments (ALENEX), Society for Industrial and Applied
Mathematics, 2004, pp. 88–99

http://arxiv.org/abs/cs/0508052

1138 Bibliography

Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic
modeling of time-table information through the time-depen-
dent approach. In: Proceedings of the 3rd Workshop on Algo-
rithmic Methods and Models for Optimization of Railways (AT-
MOS’03), 2003, [1], pp. 85–103

Qiu, L., Padmanabhan, V.N., Voelker, G.: On the placement of web
server replicas. In: Proceedings of the 20th Annual Joint Con-
ference of the IEEE Computer and Communications Societies
(INFOCOM), pp. 1587–1596. IEEE Computer Society, Los Alami-
tos (2001)

Quine, W.V.: A way to simplify truth functions. Am. Math. Mon.
62(9), 627–631 (1955)

Quine, W.V.: The problem of simplyfying truth functions. Am. Math.
Mon. 59(8), 521–531 (1952)

Rabani, Y., Tardos, E.: Distributed Packet Switching in Arbitrary Net-
works. In: the 28th ACM Symposium on Theory of Computing,
pp. 366–376 (1996)

Rabin, M.: Randomized Byzantine Generals. In: Proc. 24th Annual
ACM Symposium on Foundations of Computer Science, 1983,
pp. 403–409

Rabin, M.O., Vazirani, V.V.: Maximum Matchings in General Graphs
Through Randomization. J. Algorithms 10, 557–567 (1989)

Rabinovich, Y., Raz, R.: Lower bounds on the distortion of embed-
ding finitemetric spaces in graphs. Discret. Comput. Geom. 19,
79–94 (1998)

Räcke, H.: Minimizing congestion in general networks. In: Proceed-
ings of the 43rd Annual Symposium on the Foundations of
Computer Science, pp. 43–52 (2002)

Raghavachari, B.: Algorithms for finding low degree structures. In:
Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard
Problems. pp. 266–295. PWS Publishing Company, Boston
(1995)

Raghavan, P., Thompson, C.D.: Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combi-
natorica 7, 365–374 (1987)

Rahman, N., Cole, R., Raman, R.: Optimised predecessor data struc-
tures for internal memory. In: Proc. Algorithm Engineering,
5th International Workshop, WAE. LNCS, vol. 2141, pp. 67–78.
Springer, Berlin (2001)

Rahman, N., Raman, R.: Adapting radix sort to the memory hierar-
chy. ACM J. Exp. Algorithmics 6, Article 7 (2001)

Rahman, N., Raman, R.: Analysing cache effects in distribution sort-
ing. ACM J. Exp. Algorithmics 5, Article 14 (2000)

Rahman, N., Raman, R.: Cache analysis of non-uniform distribution
sorting algorithms. (2007) http://www.citebase.org/abstract?
id=oai:arXiv.org:0706.2839 Accessed 13 August 2007 Prelimi-
nary version in: Proc. of 8th Annual European Symposium on
Algorithms (ESA 2000). LNCS, vol. 1879, pp. 380–391. Springer,
Berlin Heidelberg (2000)

Raipin Parvedy, P., Raynal, M., Travers, C.: Early-stopping k-set
agreement in synchronous systems prone to any number of
process crashes. In: Proc. 8th Int’l Conference on Parallel Com-
puting Technologies (PaCT’05). LNCS, vol. 3606, pp. 49–58.
Springer, Berlin (2005)

Raipin Parvedy, P., Raynal, M., Travers, C.: Strongly-terminat-
ing early-stopping k-set agreement in synchronous systems
with general omission failures. In: Proc. 13th Colloquium
on Structural Information and Communication Complexity
(SIROCCO’06). LNCS, vol. 4056, pp. 182–196. Springer, Berlin
(2006)

Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for
the metric Steiner tree problem. In: 10th ACM-SIAM Sympo-
sium on Discrete Algorithms, Baltimore, (1999), pp. 742–751

Rajan, V., Ghosh, R., Gupta, P.: An efficient parallel algorithm for ran-
dom sampling. Inf. Process. Lett. 30, 265–268 (1989)

Rajaraman, R., Wong, D.F.: Optimum clustering for delay mini-
mization. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 14,
1490–1495 (1995)

Rajkumar, R.: Synchronization In Real-Time Systems – A Priority
Inheritance Approach. Kluwer Academic Publishers, Boston
(1991)

Ramalingam, G.: Bounded incremental computation. In: Lecture
Notes in Computer Science, vol. 1089. Springer, New York
(1996)

Ramalingam, G.: Bounded incremental computation. Lect. Note
Comp. Sci. 1089 (1996)

Ramalingam, G., Reps, T.: An incremental algorithm for a general-
ization of the shortest path problem. J. Algorithm 21, 267–305
(1996)

Ramalingam, G., Reps, T.: On the computational complexity of dy-
namic graph problems. Theor. Comp. Sci. 158, 233–277 (1996)

Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In: Proc.
13th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 233–242. San Francisco, USA (2002)

Raman, R., Rao, S. S.: Succinct dynamic dictionaries and trees. In:
Baeten, J.C.M., Lenstra, J.K., Parrow J., Woeginger, G.J. (eds.)
Proceedings of the 30th International Colloquium on Au-
tomata, Languages and Programming, pp. 357–368. Springer,
Heidelberg (2003)

Ramanathan, S., Loyd, E.R.: The Complexity of Distance 2-Coloring.
In: Proceedings of the 4th International Conference of Com-
puting and Information, pp. 71–74 (1992)

Ramasubramanian, V., Sirer, E.G.: Beehive: O(1) lookup performance
for power-law query distributions in peer-to-peer overlays. In:
Proceedings of Networked System Design and Implementa-
tion (NSDI), 2004

Ramasubramanian, V., Sirer, E.G.: The design and implementation
of a next generation name service for the internet. In: Proceed-
ings of SIGCOMM, 2004

Randerath, B., Schiermeyer, I.: Exact algorithms for MINIMUMDOM-
INATING SET. Technical Report, zaik-469, Zentrum für Ange-
wandte Informatik Köln (2004)

Ranjan, R., Aziz, A., Brayton, R., Plessier, B., Pixley, C.: Efficient BDD
Algorithms for FSM Synthesis and Verification. In: Proceedings
of the International Workshop on Logic Synthesis, May 1995

Rao, S.: Small distortion and volume preserving embeddings for
planar and Euclidean metrics. In: Proceedings of the 15th An-
nual Symposium on Computational Geometry, pp. 300–306.
ACM, New York (1999)

Rao, S., Smith, W.D.: Approximating geometrical graphs via span-
ners andbanyans. In: Proceedings of the 30th ACMSymposium
on Theory of Computing, pp. 540–550. Dallas, 23–26 May 1998

Rao, S.B.: Faster algorithms for finding small edge cuts in planar
graphs (extended abstract). In: Proceedings of the Twenty-
Fourth Annual ACM Symposium on the Theory of Computing,
pp. 229–240, May (1992)

Rappaport, T.S.:Wireless Communications: Principles and Practices.
Prentice Hall, IEEE Press, Piscataway (1996)

Raptopoulos, C., Spirakis, P.: Simple and efficient greedy algorithms
for hamiltonian cycles in random intersection graphs. In: Pro-

http://www.citebase.org/abstract?id=oai:arXiv.org:0706.2839
http://www.citebase.org/abstract?id=oai:arXiv.org:0706.2839

Bibliography 1139

ceedings of the 16th International Symposium on Algorithms
and Computation (ISAAC), pp 493–504. Springer, Berlin Heidel-
berg (2005)

Rastegari, B., Condon, A.: Linear time algorithm for parsing RNA sec-
ondary structure. In: Casadio, R., Myers, E.: (eds.) Proc. 5thWork-
shop Algs. in Bioinformatics (WABI‘05). Lecture Notes in Com-
puter Science, vol. 3692, pp. 341–352. Springer,Mallorca, Spain
(2005)

Rastegari, B., Condon, A.: Parsing nucleic acid pseudoknotted sec-
ondary structure: algorithm and applications. J. Comput. Biol.
14(1), 16–32 (2007)

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scal-
able content-addressable network. In: Proceedings of the ACM
SIGCOMM 2001 Technical Conference, 2001

Raubeson, L.A., Jansen, R.K.: Chloroplast DNA evidence on the an-
cient evolutionary split in vascular land plants. Science 255,
1697–1699 (1992)

Ravi, R., Singh, M.: Delegate and conquer: An LP-based approxi-
mation algorithm for minimum degree MSTs. In: Proceedings
of the 33rd International Colloquium on Automata, Languages
and Programming (ICALP 2006) Part I. LNCS, vol. 4051, pp. 169–
180. Springer, Berlin (2006)

Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algorithms
for stochastic optimization problems. Math. Program. 108(1),
97–114 (2006)

Ravi, R., Sinha, A.: Integrated logistics: Approximation algorithms
combining facility location and network design. In: Proceed-
ings of the 9th Conference on Integer Programming and Com-
binatorial Optimization (IPCO). Lecture Notes in Computer Sci-
ence, vol. 2337, pp. 212–229. Springer, Berlin (2002)

Ravi, R., Sinha, A.: Multicommodity facility location. In: Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 342–349. SIAM, Philadelphia (2004)

Ravishankar, K., Singh, S.: Broadcasting on [0; L]. Discret. Appl.
Math. 53, 299–319 (1994)

Raynal, M.: Algorithms for mutual exclusion. MIT Press, Cambridge
(1986). Translation of: Algorithmique du parallélisme, (1984)

Raynal, M.: Consensus in Synchronous Systems: A Concise Guided
Tour. In: Proc. 9th Pacific Rim International Symposium on De-
pendable Computing (PRDC), pp. 221–228, Japan, December
2002

Raynal, M., Singhal, M.: Capturing causality in distributed systems.
IEEE Comput. 29, 49–56 (1996)

Raynal, M., Travers, C.: Synchronous set agreement: a concise
guided tour (includinga new algorithm and a list of open prob-
lems). In: Proc. 12th Int’l IEEE Pacific Rim Dependable Comput-
ing Symposium (PRDC’2006), pp. 267–274. IEEE Society Com-
puter Press, Los Alamitos (2006)

Raz, R., Safra, S.: A sub-constant error-probability low-degree test,
and a sub-constant error-probability pcp characterization of
np. In: Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on the Theory of Computing, pp. 475–484. ACM, New
York (1997)

Razborov, A.: On the Distributional Complexity of Disjointness.
Theor. Comput. Sci. 106(2), 385–390 (1992)

Razborov, A.A.: Quantum communication complexity of symmetric
predicates. Izvestiya of the Russian Academy of Science, Math-
ematics, 67, 145–159 (2002)

Reda, S., Chowdhary, A.: Effective linear programming based place-
ment methods. In: ACM Press, San Jose, 9–12 Apr 2006

Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals.
Oper. Res. Lett. 32(4), 299–301 (2004)

Reed, B.A.: Algorithmic aspects of tree width, pp. 85–107. CMS
Books Math. Ouvrages Math. SMC, 11. Springer, New York
(2003)

Reed, B.A.: Tree width and tangles, a new measure of connectivity
and some applications, LMS Lecture Note Series, vol. 241, pp.
87–162. Cambridge University Press, Cambridge (1997)

Reed, D.A., Aydt, R.A., Noe, R.J., Roth, P.C., Shields, K.A., Schwartz,
B., Tavera, L.F.: Scalable performance analysis: The Pablo per-
formance analysis environment. In: Skjellum, A., (ed) Proc. Scal-
able Parallel Libraries Conf., pp. 104–113, Mississippi State Uni-
versity, October 1993. IEEE Computer Society Press

Reeder, J., Giegerich, R.: Design, implementation and evaluation of
a practical pseudoknot folding algorithm based on thermody-
namics. BMC Bioinform. 5, 104 (2004)

Regev, O.: New Lattice-Based Cryptographic Constructions. J. ACM
51, 899–942 (2004)

Régnier, M., Rostami, L.: A unifying look at d-dimensional periodic-
ities and space coverings. In: 4th Symp. on Combinatorial Pat-
tern Matching, 15, 1993

Reichardt, B.W.: Error-detection-based quantum fault tolerance
against discrete Pauli noise. Ph. D. thesis, University of Califor-
nia, Berkeley (2006). quant-ph/0612004

Reichardt, B.W., Grover, L.K.: Quantum error correction of system-
atic errors using a quantum search framework. Phys. Rev. A 72,
042326 (2005)

Reingold, N., Westbrook, J., Sleator, D.D.: Randomized Competitive
Algorithms for the List Update Problem. Algorithmica 11(1),
15–32 (1994) (Conference version included author Irani, S.:
SODA 1991, pp. 251–260)

Remy, J., Steger, A.: A Quasi-Polynomial Time Approximation
Scheme for Minimum Weight Triangulation. In: Proceedings
38th ACM Symposium on Theory of Computing (STOC’06).
ACM Press, New York, NY, USA (2006)

Ren, J., Rastegart, B., Condon, A., Hoos, H.: HotKnots: Heuristic pre-
diction of rna secondary structure includingpseudoknots. RNA
11, 1194–1504 (2005)

Renner, R.: Security of Quantum Key Distribution. Ph. D. thesis,
Swiss Federal Institute of Technology (ETH) Zurich, Also avail-
able at http://arxiv.org/abs/quant-ph/0512258 (2005)

Renner, R., König, R.: Universally composable privacy amplification
against quantum adversaries. In: Second Theory of Cryptog-
raphy Conference TCC. Lecture Notes in Computer Science,
vol. 3378, pp. 407–425. Springer, Berlin (2005). Also available
at http://arxiv.org/abs/quant-ph/0403133

Reussner, R., Sanders, P., Träff, J.: SKaMPI: A comprehensive bench-
mark for public benchmarking of MPI. Scientific Programming,
2001. accepted, conference version with Prechelt, L., Müller, M.
In: Proc. EuroPVM/MPI (1998)

Reyzin, L., Srivastava, N.: On the longest path algorithm for recon-
structing trees from distance matrices. Inf. Process. Lett. 101,
98–100 (2007)

Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in
a dht. Tech. Report Technical Report UCB//CSD-03-1299, The
University of California, Berkeley, December 2003

Riany, Y., Shavit, N., Touitou, D.: Towards a practical snapshot algo-
rithm. Theor. Comput. Sci. 269, 163–201 (2001)

Richardson, D.: How to recognize zero. J. Symb. Comput. 24, 627–
645 (1997)

http://arxiv.org/abs/quant-ph/0512258
http://arxiv.org/abs/quant-ph/0403133

1140 Bibliography

Richter, P.C.: Quantum speedup of classical mixing processes. Phys.
Rev. A 76, 042306 (2007)

Riess, B.M., Doll, K., Frank, M.J.: Partitioning Very Large Circuits Us-
ing Analytical Placement Techniques. In: Proc. 31th ACM/IEEE
Design Automation Conf., 1994, pp. 646–651

Rissanen, J.: Modeling by Shortest Data Description. Automatica
14, 465–471 (1978)

Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA struc-
ture prediction including pseudoknots. J. Mol. Biol. 285, 2053–
2068 (1999)

Rivas, E., Eddy, S.R.: Secondary structure alone is generally not sta-
tistically significant for the detection of noncoding RNAs. Bioin-
formatics 16, 583–605 (2000)

Rivest, R.: On self-organizing sequential search heuristics. Com-
mun. ACM 19, 63–67 (1976)

Robert, J., Schabanel, N.: Non-Clairvoyant Batch Sets Scheduling:
Fairness is Fair enough. Personal Correspondence (2007)

Roberts, K.: The characterization of implementable choice rules. In:
Laffont, J.J. (ed.) Aggregation and Revelation of Preferences,
pp. 321–349. North-Holland (1979)

Robertson, N. Seymour, P.D.: Graph minors. X. Obstructions to
tree-decomposition J. Combin. Theor. Ser. B 52, 153–190
(1991)

Robertson, N. Seymour, P.D.: Graph minors. XII. Distance on a sur-
face. J. Combin. Theor. Ser. B 64, 240–272 (1995)

Robertson, N., Seymour, P.: Graphminors. II. Algorithmic aspects of
tree-width. J. Algorithms 7, 309–322 (1986)

Robertson, N., Seymour, P.D.: Graph Minors XIII.The Disjoint Paths
Problem. J. Comb. Theor. B 63(1), 65–110 (1995)

Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a pla-
nar graph. J. Combin. Theor. Ser. B 62, 323–348 (1994)

Robin, G., Zelikovsky, A.: Improved Steiner trees approximation
in graphs. In: SIAM-ACM Symposium on Discrete Algorithms
(SODA), San Francisco, CA, pp. 770–779. January (2000)

Robins, G., Salowe, J.S.: Low-degree minimum spanning tree. Dis-
cret. Comput. Geom. 14, 151–165 (1995)

Robinson, D.F.: Comparison of Labeled Trees with Valency Three.
J. Comb. Theor. 11, 105–119 (1971)

Robinson, D.F., Foulds, L.R.: Comparison of Phylogenetic Trees.
Math. Biosci. 53, 131–147 (1981)

Rodeh, M., Pratt, V., Even, S.: Linear algorithm for data compres-
sion via string matching. J. Assoc. Comput. Mach. 28(1), 16–24
(1981)

Rodionov, V.: The parametric problem of shortest distances. USSR
Comp. Math. Math. Phys. 8(5), 336–343 (1968)

Roditty, L.: A faster and simpler fully dynamic transitive closure.
In: Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms. ACM IEEE SODA, pp. 404–412. ACM, Balti-
more (2003)

Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for di-
rected graphs with an almost linear update time. In: Proceed-
ings of the 36th ACM Symposium on Theory of Computing.
ACM STOC, pp. 184–191 ACM, Chicago (2004)

Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths
in undirected graphs. In: Proc. of Symp. on Foundations of
Computer Science, Rome, Oct. 2004, pp. 499–508

Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for
directed graphs. In: Proceedings of 43th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), Vancouver
(2002), pp. 679–688

Roditty, L., Zwick, U.: On Dynamic Shortest Paths Problems. In: Pro-
ceedings of the 12th Annual European Symposium on Algo-
rithms (ESA), Bergen (2004), pp. 580–591

Rødland, E.A.: Pseudoknots in RNA secondary structure: Repre-
sentation, enumeration, and prevalence. J. Comput. Biol. 13,
1197–1213 (2006)

Rodrigues, R., Liskov, B.: Rosebud: A scalable byzantine-fault toler-
ant storage architecture. In: Proceedings of the 18th ACMSym-
posium on Operating System Principles, San Francisco, USA
(2003)

Rogers, H.: Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, New York (1967)

Rohe, A.: Sequential and Parallel Algorithms for Local Routing.
Ph. D. thesis, Bonn University, Bonn, Germany, Dec. (2001)

Rohnert, H.: A dynamization of the all-pairs least cost problem.
In: Proc. 2nd Annual Symposium on Theoretical Aspects of
Computer Science, (STACS’85). LNCS, vol. 182, pp. 279–286.
Springer, Berlin (1985)

Röhrig, H.: Tree decomposition: A feasibility study. Master’s the-
sis, Max-Planck-Institut für Informatik, Saarbrücken, Germany
(1998)

Rolf, D.: 3-SAT 2 RTIME(1:32971n). In: ECCC TR03-054, 2003
Rolf, D.: 3-SAT 2 RTIME(O(1.32793n)). ECCC TR03–054. (2003)
Rolf, D.: Improved Bound for the PPSZ/Schöning-Algorithm for 3-

SAT. J. Satisf. Boolean Model. Comput. 1, 111–122 (2006)
Roman, G., Cox, K.: A Declarative Approach to Visualizing Concur-

rent Computations. Computer 22, 25–36 (1989)
Roman, G., Cox, K.: A Taxonomy of Program Visualization Systems.

Computer 26, 11–24 (1993)
Roman, G., Cox, K., Wilcox, C., Plun, J.: PAVANE: a System for Declar-

ative Visualization of Concurrent Computations. J. Visual Lang.
Comp. 3, 161–193 (1992)

Romani, F.: Shortest-path problem is not harder than matrix multi-
plications. Info. Proc. Lett. 11, 134–136 (1980)

Romero-Medina, A.: Implementation of stable solutions in a re-
stricted matching market. Rev. Economic. Des. 3(2), 137–147
(1998)

Ronen, A.: On approximating optimal auctions (extended abstract).
In: Proc. 3rd ACMConference on Electronic Commerce (EC), pp.
11–17 (2001)

Ronen, A., Saberi, A.: On the hardness of optimal auctions. In: Proc.
43rd Ann. IEEE Symp. on Foundations of Comput. Sci. (FOCS),
pp. 396–405 (2002)

Ronn, E.: NP-complete stable matching problems. J. Algorithms 11,
285–304 (1990)

Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elim-
ination on graphs. SIAM J. Comput. 5, 146–160 (1976)

Rosenberg, A.L., Heath, L.S.: Graph separators, with applications.
Frontiers of Computer Science. Kluwer Academic/PlenumPub-
lishers, New York (2001)

Rosenblatt, F.: The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychol. Rev. 65,
386–407 (1958)

Rosenthal, R.W.: A class of games possessing pure-strategy Nash
equilibria. Int. J. Game Theor. 2, 65–67 (1973)

Ross, S.: Stochastic Processes. Wiley (1995)
Roth, A., Sönmez, T., Ünver, U.: Kidney Exchange. Quarter. J. Econ.

119, 457–488 (2004)
Roth, A., Sotomayor, M.: Two-Sided Matching. Cambridge Univer-

sity Press, Cambridge (1990)

Bibliography 1141

Roth, A.E.: The evolution of the labor market for medical interns
and residents: a case study in game theory. J. Polit. Econ. 92(6),
991–1016 (1984)

Roth, A.E., Postlewaite, A.: Weak versus strong domination in amar-
ket with indivisible goods. J. Math. Econ. 4, 131–137 (1977)

Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in
game-theoretic modeling and analysis. Econometric Society
Monographs, vol. 18. Cambridge University Press, Cambridge,
UK (1990)

Roth, A.E., Vande Vate, J.H.: Random paths to stability in two-sided
matching. Econometrica 58(6), 1475–1480 (1990)

Roth-Korostensky, C.: Algorithms for building multiple sequence
alignments and evolutionary trees. Ph. D. Thesis, ETH Zürich,
Institute of Scientific Computing (2000)

Rothkopf, M.: Scheduling with Random Service Times. Manag. Sci.
12, 707–713 (1966)

Roughgarden, T.: Designing networks for selfish users is hard. In:
42nd IEEE Annual Symposiumof Foundations of Computer Sci-
ence, pp. 472–481 (2001)

Roughgarden, T.: Selfish Routing and the Price of Anarchy. TheMIT
Press, Cambridge (2005)

Roughgarden, T.: Selfish Routing. Dissertation, Cornell University,
USA, May 2002, http://theory.stanford.edu/~tim/

Roughgarden, T.: Stackelberg scheduling strategies. In: 33rd ACM
Annual Symposium on Theory of Computing, pp. 104–113
(2001)

Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria
in nonatomic congestion games. Games Econ. Behav. 47, 389–
403 (2004)

Roughgarden, T., Tardos, E.: How bad is selfish routing? In: 41st
IEEE Annual Symposium of Foundations of Computer Science,
pp. 93–102. J. ACM 49(2), pp 236–259, 2002, ACM, New York
(2000)

Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems. In:
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), 2001, pp. 329–350

Roy, J.A., Adya, S.N., Papa, D.A., Markov, I.L.: Min-cut floorplace-
ment. IEEE Trans. CAD 25(7), 1313–1326 (2006)

Ruan, J., Stormo, G., Zhang, W.: An iterated loop matching ap-
proach to the prediction of RNA secondary structures with
pseudoknots. Bioinformatics 20, 58–66 (2004)

Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.-I.: A greedy approxima-
tion for minimum connected dominating set. Theor. Comput.
Sci. 329, 325–330 (2004)

Ruan, L., Wu,W.: Broadcast routingwithminimumwavelength con-
version in WDM optical networks. J. Comb. Optim. 9 223–235
(2005)

Rubinfeld, R.: On the robustness of functional equations. SIAM J.
Comput. 28(6), 1972–1997 (1999)

Rubinfeld, R., Sudan, M.: Robust characterization of polynomials
with applications to program testing. SIAM J. Comput. 25(2),
252–271 (1996)

Rubinstein, A.: Ranking the participants in a tournament. SIAM
J. Appl. Math. 38(1), 108–111 (1980)

Rudell, R.: Logic Synthesis for VLSI Design. Ph. D. thesis, University
of California at Berkeley, ERL Memo 89/49, April 1989

Rudin III, J.F.: Improved bounds for the online scheduling problem.
Ph. D. thesis, The University of Texas at Dallas (2001)

Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online
scheduling problem. SIAM J. Comput. 32, 717–735 (2003)

Ruf, N., Schöbel, A.: Set covering with almost consecutive ones
property. Discret. Optim. 1(2), 215–228 (2004)

Ruszinkó, M. On the upper bound of the size of r-cover-free fami-
lies. J. Comb. Theory, Ser. A 66, 302–310 (1984)

Ruzzo, W.L., Tompa, M.: A linear time algorithm for finding all max-
imal scoring subsequences. Proceedings of the 7th Interna-
tional Conference on Intelligent Systems for Molecular Biology,
pp. 234–241 (1999)

Rytter, W.: Application of Lempel–Ziv factorization to the approx-
imation of grammar-based compression. Theor. Comput. Sci.
302(1–3), 211–222 (2003)

Rytter, W.: Onmaximal suffixes and constant-space linear-time ver-
sions of KMP algorithm. Theor. Comput. Sci.299(1–3), 763–774
(2003)

Rytter,W.: TheNumber of Runs in a String: Improved Analysis of the
Linear Upper Bound. In: Proceedings of the 23rd Annual Sym-
posium on Theoretical Aspects of Computer Science. Lecture
Notes in Computer Science, vol. 3884, pp. 184–195. Springer,
Berlin (2006)

Rytter, W.: The structure of subword graphs and suffix trees
of Fibonacci words. In: Implementation and Application of
Automata, CIAA 2005. Lecture Notes in Computer Science,
vol. 3845, pp. 250–261. Springer, Berlin (2006)

Sadakane, K.: Compressed suffix trees with full functionality. Theor.
Comput. Syst. 41, 589–607 (2007)

Sadakane, K.: Compressed suffix treeswith full functionality. Theory
Comput. Syst. (2007) Online first. http://dx.doi.org/10.1007/
s00224-006-1198-x

Sadakane, K.: New text indexing functionalities of the compressed
suffix arrays. J. Algorithms 48(2), 294–313 (2003)

Sadakane, K., Grossi, R.: Squeezing succinct data structures into en-
tropy bounds. In: Proc. 17th ACM-SIAM SODA, pp. 1230–1239.
ACM Press (2006)

Sagot, M.F.: Spelling approximate repeated or common motifs us-
ing a suffix tree. In: Proc. of the 3rd LATIN, vol. 1380 in LNCS,
pp. 111–127. Springer (1998)

Şahinalp, C., Rajpoot, N.: Dictionary-based data compression: An al-
gorithmic perspective. In: Sayood, K. (ed.) Lossless Compres-
sion Handbook, pp. 153–167. Academic Press, USA (2003)

Sahinalp, S.C., Vishkin, U.: Efficient approximate and dynamic
matching of patterns using a labeling paradigm. In: Proc. of the
Foundations of Computer Science (FOCS), 1996, pp. 320–328

Sahinalp, S.C., Vishkin, U.: Symmetry breaking for suffix tree con-
struction. ACM STOC 300–309 (1994)

Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM
23(3), 555–565 (1976)

Saitou, N., Nei, M.: The neighbor-joining method: A new method
for reconstruction of phylogenetic trees. Mol. Biol. Evol. 4, 406–
425 (1987)

Sakanushi, K., Kajitani, Y., Mehta, D.: The quarter-state-sequence
floorplan representation. In: IEEE TCAS-I: 50(3), 376–386
(2003)

Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and
the complexity of evaluating game trees. In: Proc. of 27th IEEE
Symp. on Foundation of Computer Science (FOCS), Toronto,
27–29 October, pp. 29–38 (1986)

Saks, M., Yu, L.: Weakmonotonicity suffices for truthfulness on con-
vex domains. In: Proc. 6th ACM Conference on Electronic Com-
merce (ACM-EC), 2005, pp. 286–293

Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible:
The topology of public knowledge. In: Proceedings of the 25th

http://theory.stanford.edu/~tim/
http://dx.doi.org/10.1007/s00224-006-1198-x
http://dx.doi.org/10.1007/s00224-006-1198-x

1142 Bibliography

ACM Symposium on Theory of Computing, pp. 101–110, ACM
Press, May 1993

Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible:
The Topology of Public Knowledge. SIAM J. Comput. 29(5),
1449–1483 (2000)

Salomon, D.: Data Compression: the Complete Reference, 3rd edn.
Springer, New York (2004)

Salomon, D.: Data Compression: the Complete Reference, 4th edn.
Springer, London (2007)

Salowe, J.D.: Construction of multidimensional spanner graphs,
with application to minimum spanning trees. In: ACM Sympo-
sium on Computational Geometry, 1991, pp. 256–261

Salowe, J.S.: Constructing multidimensional spanner graphs. Int. J.
Comput. Geom. Appl. 1(2), 99–107 (1991)

Samer, M., Szeider, S.: Algorithms for propositional model count-
ing. In: Proceedings of LPAR 2007, 14th International Confer-
ence on Logic for Programming, Artificial Intelligence and Rea-
soning, Yerevan, Armenia, 15–19 October 2007. Lecture Notes
in Computer Science, vol. 4790, pp. 484–498. Springer, Berlin
(2007)

Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with
optimal amortized query complexity. In: Proceedings of the
Thirty-Second Annual ACM Symposium on the Theory of Com-
puting, pp. 191–199. ACM, New York (2000)

Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of
variables, and pcps. In: Thirty-Eighth ACM Symposium on The-
ory of Computing, pp. 11–20. ACM, New York (2006)

Sampathkumar, E., Walikar, H.B.: The Connected Domination Num-
ber of a Graph. J. Math. Phys. Sci. 13, 607–613 (1979)

Sanchis, L.A.: Multiway Network Partitioning. IEEE Trans. Comput.
38(1), 62–81 (1989)

Sanders, P.: Fast priority queues for cached memory. ACM J. Exp.
Algorithmics 5, Article 7 (2000)

Sanders, P., Schultes, D.: Engineering fast route planning algo-
rithms. In: 6th Workshop on Experimental Algorithms. LNCS,
vol. 4525, pp. 23–36. Springer, Berlin (2007)

Sanders, P., Schultes, D.: Engineering highway hierarchies. In: 14th
European Symposium on Algorithms. LNCS, vol. 4168, pp. 804–
816. Springer, Berlin (2006)

Sanders, P., Schultes, D.: EngineeringHighway Hierarchies. In: Algo-
rithms – ESA 2006. Lect. Note Comp. Sci. 4168, 804–816 (2006)

Sanders, P., Schultes, D.: Highway hierarchies hasten exact short-
est path queries. In: 13th European Symposium on Algorithms.
LNCS, vol. 3669, pp. 568–579. Springer, Berlin (2005)

Sanders, P., Schultes, D.: HighwayHierarchies Hasten Exact Shortest
Path Queries. In: Algorithms – ESA 2005. Lect. Note Comp. Sci.
3669, 568–579 (2005)

Sanders, P., Schultes, D.: Robust, almost constant time shortest-
path queries in road networks. In: 9th DIMACS Implementation
Challenge Workshop: Shortest Paths, DIMACS Center, Piscat-
away, NJ, 13–14 Nov 2006

Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees: as-
sembling the trees of life. TRENDS in Ecology & Evolution,
13(3), 105–109 (1998)

Sankoff, D., Blanchette, M.: Multiple genome rearrangement and
breakpoint phylogeny. J. Comp. Biol. 5, 555–570 (1998)

Sankoff, D., Kruskal, J.B.: Time Warps, Strings Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison.
Addison-Wesley (1983)

Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in
arbitrary metric space. Math. Program. 9, 240–246 (1975)

Sankoff, D.D.: Minimal mutation trees of sequences. SIAM J. Appl.
Math. 28, 35–42 (1975)

Sankowski, P.: Dynamic transitive closure via dynamic matrix in-
verse. In: FOCS ’04: Proceedings of the 45th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’04), pp.
509–517. IEEE Computer Society, Washington, DC (2004)

Sankowski, P.: Processor Efficient Parallel Matching. In: Proceeding
of the 17th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2005, pp. 165–170

Sankowski, P.: Subquadratic algorithm for dynamic shortest dis-
tances. In: 11th Annual International Conference on Comput-
ing and Combinatorics (COCOON’05), Kunming (2005), pp.
461–470

Sankowski, P.: Weighted BipartiteMatching inMatrixMultiplication
Time. In: Proceedings of the 33rd International Colloquium on
Automata, Languages and Programming, 2006, pp. 274–285

Santha, M.: On the Monte Carlo decision tree complexity of read-
once formulae. Random Struct. Algorit. 6(1), 75–87 (1995)

Santos, J.: K shortest path algorithms. In: 9th DIMACS Implementa-
tion Challenge Workshop: Shortest Paths, DIMACS Center, Pis-
cataway, NJ, 13–14 Nov 2006

Sapatnekar, S.S.: RC interconnect optimization under the Elmore
delay model. In: Proc. ACM/IEEE Design Automation Conf., pp.
387–391. ACM, New York (1994)

Sapatnekar, S.S., Deokar, R.B.: Utilizing the retiming-skew equiva-
lence in a practical algorithm for retiming large circuits. IEEE
Trans. Comput. Aided Des. 15, 1237–1248 (1996)

Sapatnekar, S.S., Rao, V.B., Vaidya, P.M., Kang, S.M.: An Exact Solu-
tion to the Transistor Sizing Problem for CMOS Circuits Using
Convex Optimization. IEEE Trans. Comput. Aided. Des. 12(11),
1621–1634 (1993)

Sarkar, S., Tassiulas, L.: Fair distributed congestion control in multi-
ratemulticast networks. IEEE/ACMTrans. Netw. 13(1), 121–133
(2005)

Savani, R., von Stengel, B.: Exponentially many steps for finding
a nash equilibrium in a bimatrix game. In: Proceedings of the
45th Annual IEEE Symposiumon Foundations of Computer Sci-
ence (FOCS’04), pp. 258–267. Rome, 17–19 October 2004

Savari, S.: Redundancy of the Lempel–Ziv incremental parsing rule.
IEEE Trans. Inf. Theor. 43, 9–21 (1997)

Savoj, H.: Don’t Cares in Multi-Level Network Optimization. Ph. D.
thesis, University of California, Berkeley, Electronics Research
Laboratory, College of Engineering. University of California,
Berkeley, CA (1992)

Sawchuk, C.: Mobile Agent Rendezvous in the Ring. Ph. D. thesis,
Carleton University, Ottawa, Canada (2004)

Schaetz T., Barrett, M.D., Leibfried, D., Chiaverini, J., Britton, J., Itano,
W.M., Jost, J.D., Langer, C.,Wineland, D.J.: QuantumDense Cod-
ing with Atomic Qubits. Phys. Rev. Lett. 93, 040505 (2004)

Schaffer, A. Yannakakis, M.: Simple local search problems that are
hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

Schapire, R.: The strength of weak learnability. Mach. Learn. 5(2),
197–227 (1990)

Schapire, R.E., Sellie, L.M.: Learning sparse multivariate polynomi-
als over a field with queries and counterexamples. J. Comput.
Syst. Sci. 52(2), 201–213 (1996)

Scheideler, C.: Universal Routing Strategies for Interconnection
Networks. In: Lecture Notes in Computer Science, vol. 1390.
Springer (1998)

Scherer, W., Scott, M.: Advanced contention management for
dynamic software transactional memory. In: Proc. 24th An-

Bibliography 1143

nual ACM Symposium on Principles of Distributed Computing,
2005

Schieber, B., Moran, S.: Slowing sequential algorithms for obtaining
fast distributed and parallel algorithms: Maximum matchings.
In: Proc. of 5th ACM Symp. on Principles of Distributed Com-
puting, Calgary, 11–13 Aug. 1986, pp. 282–292

Schmeidler, D.: The Nucleolus of a Characteristic Function Game.
SIAM J. Appl. Math. 17, 1163–1170 (1969)

Schmidt, A., Vollmer, U.: Polynomial time quantum algorithm for
the computation of the unit group of a number field. In: Pro-
ceedings of the 37th ACM Symposium on Theory of Comput-
ing. (2005)

Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe
hash functions. SIAM J. Comput. 19(5), 775–786 (1990)

Schmidt, M.: Packet buffering: randomization beats deterministic
algorithms. In: Proc. 22ndAnnual Symp. on Theoretical Aspects
of Computer Science (STACS). LNCS, vol. 3404, 293–304 (2005)

Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. Surv. 22,
299–319 (1990)

Schneider, F.B.: Replication Management using the State-Machine
Approach. In Sape Mullender, editor, Distributed Systems,
pp. 169–197. ACM Press (1993)

Schnorr, C.P.: Fast LLL-type lattice reduction. Inform. Comput.
204(1), 1–25 (2006)

Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cam-
bridge (2002)

Schönhage, A., Strassen, V.: Schnelle Multiplikation Großer Zahlen.
Computing 7, 281–292 (1971)

Schöning, U.: A probabilistic algorithm for k-SAT and constraint
satisfaction problems. Proceedings 40th Annual Symposium
on Foundations of Computer Science, pp. 410–414. New York,
USA (1999)

Schöning, U.: A probabilistic algorithm for k-SAT based on limited
local search and restart. Algorithmica 32, 615–623 (2002) (An
earlier version appeared in 40th Annual Symposium on Foun-
dations of Computer Science (FOCS ’99), pp. 410–414)

Schoning, U., Pruim, R.: Gems of Theoretical Computer Science.
Springer (1998)

Schrage, L.: A proof of the optimality of the shortest remaining pro-
cessing time discipline. Oper. Res. 16(1), 687–690 (1968)

Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency.
Springer, Berlin (2003)

Schrijver, A.: Theory of Linear and Integer Programming. Wiley,
New York (1986)

Schuierer, S.: A lower bound for randomized searching on m rays.
In: Computer Science in Perspective, pp. 264–277 (2003)

Schuierer, S.: Lower bounds in on-line geometric searching. Com-
put. Geom. 18, 37–53 (2001)

Schuler, R.: An algorithm for the satisfiability problem of formulas
in conjunctive normal form. J. Algorithms 54(1), 40–44 (2005)

Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath
algorithmic cooling. Phys. Rev. Lett. 94, 120501, pp. 1–4 (2005)

Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath
algorithmic cooling. SIAM J. Comput. 36, 1729–1747 (2007)

Schulman, L.J., Vazirani, U.: Molecular scale heat engines and scal-
able quantum computation. Proc. 31st ACM STOC, Symp. The-
ory of Computing,pp. 322–329 Atlanta, 01–04 May 1999

Schultes, D., Sanders, P.: Dynamic highway-node routing. In:
6th Workshop on Experimental Algorithms. LNCS, vol. 4525,
pp. 66–79. Springer, Berlin (2007)

Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An
Empirical Case Study from Public Railroad Transport. ACM
J. Exp. Algorithmics 5(12), 1–23 (2000)

Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithmon-line: an em-
pirical case study from public railroad transport. In: Proc. 3rd
Workshop on Algorithm Engineering (WAE’99), pp. 110–123.
Notes in Computer Science 1668. London, UK (1999)

Schulz, F., Wagner, D., Zaroliagis, C.: Using Multi-Level Graphs for
Timetable Information in Railway Systems. In: Algorithm Engi-
neering and Experiments – ALENEX 2002. Lect. Note Comp. Sci.
2409, 43–59 (2002)

Schummer, J., Vohra, R.V.: Strategy-proof location on a network.
J. Econ. Theor. 104, 405–428 (2002)

Scott, A., Sorkin, G.: Faster Algorithms for MAX CUT and MAX CSP,
with Polynomial Expected Time for Sparse Instances. In: Pro-
ceedings of RANDOM-APPROX 2003. LNCS, vol. 2764, pp. 382–
395. Springer, Berlin (2003)

Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient Algorithms for
Detecting Signaling Pathways in Protein Interaction Networks.
J. Comput. Biol. 13(2), 133–144 (2006)

Scott, S.: A study of stable marriage problems with ties. Ph. D. the-
sis, University of Glasgow, Department of Computing Science
(2005)

Sedgewick, R.: Algorithms in Java, Parts 1–4, 3rd edn. Addison-
Wesley, (2003)

Sedgewick, R., Bentley, J.: Fast algorithms for sorting and search-
ing strings. In: Proceedings of the 8th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’97), ACM, ed., pp. 360–
369. ACM Press, New Orleans (1997)

Segall, A.: Distributednetwork protocols. IEEE Trans. Inform. Theory
29, 23–35 (1983)

Seidel, R.: On the all-pairs-shortest-path problem. In: Proc. 24th
ACM STOC pp. 745–749. Association for Computing Machin-
ery, New York, USA (1992) Also JCSS 51, 400–403 (1995)

Seiden, S.S.: On the online bin packing problem. J. ACM 49, 640–
671 (2002)

Sellers, P.: The theory and computation of evolutionary distances:
pattern recognition. J. Algorithms 1, 359–373 (1980)

Sellers, P.H.: On the Theory and Computation of Evolutionary Dis-
tances. SIAM J. Appl. Math. 26, 787–793 (1974)

Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic in-
dex for multi-dimensional objects. In: Proc. International Con-
ference on Very Large Databases, 1987, pp. 507–518

Sen, A., Huson, M. L.: A New Model for Scheduling Packet Ra-
dio Networks. Proc. 15th Annual Joint Conference of the IEEE
Computer and Communication Societies (IEEE INFOCOM’96),
pp. 1116–1124, San Francisco, 24–28 March, 1996

Sen, P., Venkatesh, S.: Lower bounds for predecessor searching in
the cell probe model. arXiv:cs.CC/0309033. See also ICALP’01,
CCC’03, 2003

Sen, S., Chatterjee, S.: Towards a theory of cache-efficient algo-
rithms. In: Proc. of 11th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2000), pp. 829–838. Society for Indus-
trial and AppliedMathematics (2000)

Sentovich, E.M., Singh, K.J., Moon, C., Savoj, H., Brayton, R.K., Sangio-
vanni-Vincentelli, A.: Sequential Circuit Design using Synthesis
andOptimization. In: Proc. of the IEEE International Conference
on Computer Design: VLSI in Computers & Processors (ICCD),
pp. 328–333. Cambridge, October 1992

Servedio, R.: On learning monotone DNF under product distribu-
tions. Inform Comput 193(1), 57–74 (2004)

1144 Bibliography

Servedio, R.A.: Smooth boosting and learningwithmalicious noise.
JMLR 4, 633–648 (2003)

Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular
Biology. PWS, Boston (1997)

Sevcik, K.C.: Scheduling for minimum total loss using service time
distributions. J. ACM 21, 66–75 (1974)

Seymour, P.D.: Packing directed circuits fractionally. Combinatorica
15, 281–288 (1995)

Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combi-
natorica 14, 217–241 (1994)

Sgall, J.: On-line scheduling. In: Fiat, A., Woeginger, G.J. (eds.) Online
Algorithms: The State of the Art, pp. 196–231. Springer (1998)

Shachnai, H., Tamir, T.: On two class-constrained versions of
the multiple knapsack problem. Algorithmica 29(3), 442–467
(2001)

Shachnai, H., Tamir, T.: Polynomial time approximation schemes
for class-constrained packing problems. J. Sched. 4(6) 313–338
(2001)

Shah, R., Varman, P.J., Vitter, J.S.: Online algorithms for prefetching
and caching on parallel disks. In: Proceedings of the ACM Sym-
posium on Parallel Algorithms and Architectures, pp. 255–264.
ACM Press, New York (2004)

Shahrokhi, F., Matula, D.W.: The maximum concurrent flow prob-
lem. J. ACM 37(2), 318–334 (1990)

Shalev-Shwartz, S., Singer, Y.: A new perspective on an old percep-
tron algorithm. In: Proceedings of the Eighteenth Annual Con-
ference on Computational Learning Theory, (2005)

Shannon, C.: Presentation of a Maze Solving Machine, in Cybernet-
ics, Circular, Causal and Feedback Machines in Biological and
Social Systems. In: von Feerster, H., Mead, M., Teuber, H.L. (eds.)
Trans. 8th Conf, New York, March 15–16, 1951. pp. 169–181.
Josiah Mary Jr. Foundation, New York (1952)

Shannon, C.E.: A mathematical theory of communication. Bell Syst.
Tech. J. 27, 398–403 (1948)

Shannon, C.E.: A theorem on colouring lines of a network. J. Math.
Phys. 28, 148–151 (1949)

Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1, 23–
37 (1974)

Shapley, S.L., Shubik, M.: The Assignment Game I: The Core. Int.
J. Game. Theor. 1, 111–130 (1971)

Sharan, R., Ideker, T.: Modeling cellular machinery through biologi-
cal network comparison. Nat. Biotechnol. 24, 427–433 (2006)

Shavit, N., Touitou, D.: Software transactional memory. Distrib.
Comput., Special Issue 10, 99–116 (1997)

Shawe-Taylor, J., Cristianini, N.: KernelMethods for Pattern Analysis.
Cambridge University Press, Cambridge. Book website: www.
kernel-methods.net (2004)

Shenoy, N., Rudell, R.: Efficient implementation of retiming. In Proc.
Intl. Conf. Computer-AidedDesign, pp. 226–233. IEEE Press, Los
Almitos (1994)

Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search
algorithm. Phys. Rev. A 67, 52–307 (2003)

Shepard, D.M., Ferris, M.C., Ove, R., Ma, L.: Inverse treatment plan-
ning for Gamma Knife radiosurgery. Med. Phys. 27(12), 2748–
2756 (2000)

Shi, W.: A Fast Algorithm for AreaMinimization of Slicing Floorplan.
In: IEEE Trans. Comput. Aided Des. 15(12), 1525–1532 (1996)

Shibata, Y., Kida, T., Fukamachi, S., Takeda, M., Shinohara, A., Shi-
nohara, T., Arikawa, S.: Speeding up pattern matching by
text compression. In: Proc. 4th Italian Conference on Algo-

rithms and Complexity (CIAC’00). LNCS, vol. 1767, pp. 306–315.
Springer, Heidelberg (2000)

Shibata, Y., Matsumoto, T., Takeda, M., Shinohara, A., Arikawa,
S.: A Boyer–Moore type algorithm for compressed pattern
matching. In: Proc. 11th Annual Symposium on Combinato-
rial Pattern Matching (CPM’00). LNCS, vol. 1848, pp. 181–194.
Springer, Heidelberg (2000)

Shigemizu, D., Maruyama, O.: Searching for regulatory elements of
alternative splicing events using phylogenetic footprinting. In:
Proceedings of the Fourth Workshop on Algorithms for Bioin-
formatics. Lecture Notes in Computer Science, pp. 147–158.
Springer, Berlin (2004)

Shih,W.-K., Hsu,W.-L.: A newplanarity test. Theor. Comput. Sci. 223,
pp. 179–191 (1999)

Shioura, A.: Fast Scaling Algorithms for M-convex Function Mini-
mization with Application to the Resource Allocation Problem.
Discret. Appl. Math. 134, 303–316 (2004)

Shiple, T.R., Hojati, R., Sangiovanni-Vincentelli, A.L., Brayton, R.K.:
Heuristic Minimization of BDDs Using Don’t Cares. In: ACMDe-
sign Automation Conference, San Diego, CA, June (1994)

Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for
querying pathways in a protein-protein interaction network.
BMC Bioinform. 7, 199 (2006)

Shmoys, D., Tardos, E.: An approximation algorithm for the gener-
alized assignment problem. Math. Program. 62(3A), 461–474
(1993)

Shmoys, D.B.: Approximation algorithms for facility location prob-
lems. In: Jansen, K., Khuller, S. (eds.) Approximation Algorithms
for Combinatorial Optimization. Lecture Notes in Computer
Science, vol. 1913, pp. 27–33. Springer, Berlin (2000)

Shmoys, D.B.: Cut problems and their application to divide-and-
conquer. In: Hochbaum, D.S. (ed.) Approximation Algorithms
for NP-hard Problems, pp. 192–235. PWS Publishing, Boston
(1997)

Shmoys, D.B.: The design and analysis of approximation algo-
rithms: Facility location as a case study. In: Thomas, R.R.,
Hosten, S., Lee, J. (eds) Proceedings of Symposia in Appl. Math-
ematics, vol. 61, pp. 85–97. AMS, Providence, RI, USA (2004)

Shmoys, D.B., Stein, C., Wein, J.: Improved Approximation Algo-
rithms for Shop Scheduling Problems. SIAM J. Comput. 23(3),
617–632 (1994)

Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for
facility location problems. In: Proceedings of the 29th Annual
ACM Symposium on Theory of Computing (STOC), pp. 265–
274. ACM Press, New York (1997)

Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel ma-
chines on-line. SIAM J. Comput. 24, 1313–1331 (1995)

Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal
triangulations. In: Proc. National Conference on Artificial Intel-
ligence (AAAI ’97), pp. 185–190. Morgan Kaufmann, San Fran-
sisco (1997)

Shor, P.: Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring. In: Proceedings of the 35th Annual Sym-
posium on Foundations of Computer Science, pp. 124–134,
Santa Fe, 20–22 November 1994

Shor, P.: Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput.
26(5), 1484–1509 (1997)

Shor, P.W.: Fault-tolerant quantum computation. In: Proc. 37th
Symp. on Foundations of Computer Science (FOCS) (1996).
quant-ph/9605011

http://www.kernel-methods.net
http://www.kernel-methods.net

Bibliography 1145

Shor, P.W.: Scheme for reducing decoherence in quantum com-
puter memory. Phys. Rev. A 52, R2493–R2496 (1995)

Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum
key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

Shpilka, A., Wigderson, A.: Derandomizing homomorphism testing
in general groups. In: Proceedings of the Thirty-Sixth Annual
ACM Symposium on the Theory of Computing, pp. 427–435.
ACM, NY, USA (2004)

Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis.
Chapman-Hall, Boca Raton (1994)

Shyu, J.M., Sangiovanni-Vincentelli, A.L., Fishburn, J.P., Dunlop, A.E.:
Optimization-based Transistor Sizing. IEEE J. Solid. State. Cir-
cuits. 23(2), 400–409 (1988)

Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library. Addison-
Wesley, Cambridge (2002)

Siepel, A.C.: An algorithm to enumerate sorting reversals for signed
permutations. J. Comput. Biol. 10, 575–597 (2003)

Simon, D.: On the power of quantum computation. In: Proceedings
of the 35th IEEE Symposium on the Foundations of Computer
Science (FOCS), pp. 116–123, Santa Fe, 20–22 November 1994

Simon, D.R.: On the power of quantum computation. SIAM J. Com-
put. 26(5), 1474–1483 (1997)

Singer-Cohen, K.B.: Random Intersection Graphs. Ph. D. thesis, John
Hopkins University, Balimore (1995)

Singh, A.K., Anderson, J.H., Gouda,M.G.: The elusive atomic register.
J. ACM 41(2), 311–339 (1994) (Preliminary version in: Proc. 6th
ACM Symp. Principles Distribt. Comput., 1987)

Singh, M., Lau, L.C.: Approximating minimum bounded degree
spanning trees to within one of optimal. In: Proceedings of the
thirty-ninth Annual ACM Symposium on Theory of Computing
(STOC 2007), New York, NY, 2007, pp. 661–670

Singh, M., Prasanna, V.: Energy-Optimal and Energy-Balanced Sort-
ing in a Single-Hop Wireless Sensor Network. In: Proc. First
IEEE International Conference on Pervasive Computing and
Communications (PerCom ’03), pp. 302–317, Fort Worth, 23–
26 March 2003

Singh, S., Raghavendra, C.S., Stepanek, J.: Power-Aware Broad-
casting in Mobile Ad Hoc Networks. In: Proceedings of IEEE
PIMRC’99, Osaka, September 1999

Singhal, M.: A taxonomy of distributed mutual exclusion. J. Parallel
Distrib. Comput. 18(1), 94–101 (1993)

Sinha, R., Zobel, J., Ring, D.: Cache-efficient string sorting using
copying. ACM J. Exp. Algorithmics. 11 (2006)

Sipser, M.: A complexity theoretic approach to randomness. In:
Proc. 15th Annual ACM Symposium on Theory of Computing,
1983, pp. 330–334

Sipser, M.: Introduction to the Theory of Computation, 2nd edn.
Course Technology (2005)

Sipser, M., Spielman, D.: Expander codes. IEEE Trans. Inf. Theory 42,
1710–1722 (1996)

Sitters, R.A., Stougie, L.: The generalized two-server problem.
J. ACM 53, 437–458 (2006)

Skjernaa, B.: Exact Algorithms for Variants of Satisfiability and
Colouring Problems. Ph. D. thesis, University of Aarhus, Depart-
ment of Computer Science (2004)

Skutella, M.: Convex quadratic and semidefinite relaxations in
scheduling. J. ACM 46(2), 206–242 (2001)

Skutella, M., Woeginger, G.J.: A PTAS for minimizing the weighted
sum of job completion times on parallel machines. In: Proc. of
31st Annual ACM Symposium on Theory of Computing (STOC
’99), pp. 400–407 (1999)

Slavik, P.: A tight analysis of the greedy algorithm for set cover. J. Al-
gorithms 25(2), 237–254 (1997)

Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Com-
put. Syst. Sci. 26(3), 362–391 (1983)

Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and
paging rules. Commun. ACM 28(2), 202–208 (1985)

Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM
32(3), 652–686 (1985)

Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, trian-
gulations, and hyperbolic geometry. In: Proceedings 18th ACM
Symposium on Theory of Computing (STOC), Berkeley, 1986,
pp. 122–135

Smith, D.R.: A new proof of the optimality of the shortest re-
maining processing time discipline. Oper. Res. 26(1), 197–199
(1976)

Smith, J.M., Lee, D.T., Liebman, J.S.: An O(N logN) heuristic for
Steiner minimal tree problems in the Euclidean metric. Net-
works 11, 23–39 (1981)

Smith, T.F., Waterman, M.S.: Identification of Common Molecular
Subsequences. J. Mol. Biol. 147, 195–197 (1981)

Smith, W.E.: Various optimizers for single-stage production. Nav.
Res. Log. Q. 3, pp. 59–66 (1956)

Smyth, W.F.: Computing patterns in strings. Addison-Wesley,
Boston, MA (2003)

Smyth, W.F.: Computing Patterns in Strings. Addison Wesley Long-
man, Harlow, UK (2002)

Smyth, W.F.: Repetitive perhaps, but certainly not boring. Theor.
Comput. Sci. 249(2), 343–355 (2000)

Sokol, D., Benson, G., Tojeira, J.: Tandem repeats over the edit dis-
tance. Bioinform. 23(2), e30–e35 (2006)

Solis-Oba, R.: 2-approximation algorithm for finding a spanning
tree with the maximum number of leaves. In: Proceedings of
the 6th Annual European Symposium on Algorithms (ESA’98).
Lecture Notes in Computer Science, vol. 1461, pp. 441–452.
Springer, Berlin (1998)

Solymosi, T., Raghavan, T.E.S.: An Algorithm for Finding the Nucle-
olus of Assignment Games. Int. J. Game Theory 23, 119–143
(1994)

Somenzi, F.: Colorado University Decision Diagram Package. http://
vlsi.colorado.edu/~fabio/

Song, W.-Z., Wang, Y., Li, X.-Y. Frieder, O.: Localized algorithms for
energy efficient topology in wireless ad hoc networks. In: ACM
Int. SymposiumonMobile Ad-HocNetworking andComputing
(MobiHoc), Tokyo, 24–26 May 2004

Sørensen, O.W.: Polarization transfer experiments in high-
resolution NMR spectroscopy. Prog. Nuc. Mag. Res. Spect. 21,
503–569 (1989)

Spielman, D., Teng, S.-H.: Nearly-linear time algorithm for graph
partitioning, graph sparsification, and solving linear systems.
In: Proc. of the 36th Annual ACM Symp. on Theory of Comput-
ing, STOC’04, Chicago. USA, June 2004, pp. 81–90

Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms and
heuristics: progress and open questions. In: Pardo, L.M., Pinkus,
A., Süli, E., Todd, M.J. (eds.) Foundations of Computational
Mathematics, pp. 274–342. Cambridge University Press, Cam-
bridge, UK (2006)

Spillner, A.: A faster algorithm for the minimum weight triangula-
tion problem with few inner points. In: Broersma, H., Johnson,
H., Szeider, S. (eds.) Proceedings of the 1st ACiD Workshop.
Texts in Algorithmics, vol. 4, pp. 135–146. King’s College, Lon-
don (2005)

http://vlsi.colorado.edu/~fabio/
http://vlsi.colorado.edu/~fabio/

1146 Bibliography

Spillner, A.: Optimal convex partitions of point sets with few inner
points. In: Proceedings of the 17th Canadian Conference on
Computational Geometry (CCCG), 2005, pp. 34–37

Spirakis, P.: PRAMmodels and fundamental parallel algorithm tech-
niques: Part II. In: Gibbons, A., Spirakis, P. (eds.) Lectures on Par-
allel Computation, pp. 41–66. Cambrige University Press, New
York (1993)

Spirakis, P., Tsakalidis, A.: A Very Fast, Practical Algorithm for Find-
ing a Negative Cycle in a Digraph. In Proc. of 13th ICALP,
pp. 397–406 (1986)

Spirakis, P.G. Raptopoulos, C.: Simple and Efficient Greedy Algo-
rithms for Hamilton Cycles in Random Intersection Graphs. In:
Proc. of the 16th ISAAC. LNCS, vol. 3827, pp. 493–504. Springer,
Berlin/Heidelberg (2005)

Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologieswith
Rocketfuel. In: Proceedings of the ACM SIGCOMM’02 Confer-
ence. ACM, New York (2002)

Srikanth, T.K., Toueg, S.: Simulating Authenticated Broadcasts to
Derive Simple Fault-Tolerant Algorithms. Distrib. Comp. 2(2),
80–94 (1987)

Srinivasan, A.: Improved approximations for edge-disjoint paths,
unsplittable flow, and related routing problems. Proc. IEEE
FOCS, 1997, pp. 416–425

Srinivasan, A.: Improved approximations of packing and covering
problems. In: Proceedings of the 27th Annual ACMSymposium
on Theory of Computing, pp. 268–276 (1995)

Srinivasan, A., Teo, C.P.: A Constant-Factor Approximation Algo-
rithm for Packet Routing and Balancing Local vs. Global Crite-
ria. SIAM J. Comput. 30(6), 2051–2068 (2000)

Stark, D.: The Vertex Degree Distribution of Random Intersection
Graphs. Random Struct. Algorithms 24, 249–258 (2004)

Stasko, J.: Animating Algorithms with X-TANGO. SIGACT News 23,
67–71 (1992)

Stasko, J., Domingue, J., Brown, M., Price B.: Software Visualization:
Programming as a Multimedia Experience. MIT Press, Cam-
bridge, MA (1997)

Stasko, J., Kraemer, E.: AMethodology for BuildingApplication-Spe-
cific Visualizations of Parallel Programs. J. Parall. Distrib. Comp.
18, 258–264 (1993)

Steane, A.: Error correcting codes in quantum theory. Phys. Rev.
Lett. 77, 793–797 (1996)

Steane, A.: Multiple-particle interference and quantum error cor-
rection. Proc. R. Soc. London A 452, 2551–2577 (1996)

Steel, M., Warnow, T.: Kaikoura tree theorems: computing the max-
imum agreement subtree. Inf. Process. Lett. 48, 77–82 (1993)

Steel, M.A.: Recovering a tree from the leaf colourations it gener-
ates under a Markov model. Appl. Math. Lett. 7, 19–24 (1994)

Steel, M.A.: The complexity of reconstructing trees from qualitative
characters and subtrees. J. Classification 9, 91–116 (1992)

Steele, J.M.: Cost of sequential connection for points in space. Oper.
Res. Lett. 8, 137–142 (1989)

Steen, H., Mann, M.: The ABC’s (and XYZ’s) of peptide sequencing.
Nat. Rev. Mol. Cell Biol. 5(9), 699–711 (2004)

Stefankovic, D.: Fourier transforms in computer science. Masters
thesis, TR-2002-03, University of Chicago (2002)

Stege, U.: Resolving conflicts from problems in computational biol-
ogy. Ph. D. Thesis, ETH Zürich, Institute of Scientific Computing
(2000)

Stein, S.K.: Two combinatorial covering theorems. J. Comb. Theor.
A 16, 391–397 (1974)

Steinhaus, H.: Mathematical Snapshots. Oxford University Press,
New York (1950)

Stepanec, G.F.: Basis systems of vector cycles with extremal proper-
ties in graphs. Uspekhi Mat. Nauk 19, 171–175 (1964). (In Rus-
sian)

Stepanov, A., Lee, M.: The Standard Template Library. In: Technical
Report X3J16/94–0095, WG21/N0482, ISO Programming Lan-
guage C++ Project. Hewlett-Packard, Palo Alto CA (1994)

Stewart, J.W.: BGP4, Inter-Domain Routing in the Internet. Addison
Wesley, Massacuhsetts (1998)

Stinson, D.R.: Cryptography: Theory and Practice, CRC Press, Inc
(1995)

Stockmeyer, L.: Optimal Orientations of Cells in Slicing Floorplan
Designs. Inf. Control 59, 91–101 (1983)

Stockmeyer, L.J.: On approximation algorithms for #P. SIAM J. Com-
put. 14, 849–861 (1985)

Stoer, M.: Design of Survivable Networks. Springer, Berlin (1992)
Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet

Indirection Infrastructure. In: Proceedings of ACM SIGCOMM,
pp. 73–88 (2002)

Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet ap-
plications. In: Proceedings of the SIGCOMM 2001

Stojanovic, N., Dewar, K.: Identifying multiple alignment regions
satisfying simple formulas and patterns. Bioinformatics 20,
2140–2142 (2005)

Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J., Good-
man, M., Miller, W., Hardison, R.: Comparison of five meth-
ods for finding conserved sequences inmultiple alignments of
gene regulatory regions. Nucl. Acid. Res. 19, 3899–3910 (1999)

Stojmenovic, I., Lin, X.: Loop-free hybrid single-path/flooding rout-
ing algorithms with guaranteed delivery for wireless networks.
IEEE Trans. Paral. Distrib. Syst. 12, 1023–1032 (2001)

Stok, L., Tiwari, V.: Technology Mapping. In: Hassoun, S., Sasou, T.
(eds.) Logic Synthesis and Verification, pp. 115–139. Kluwer In-
ternational Series In Engineering And Coputer Science Series.
Kluwer Academic Publisher, Norwell (2002)

Storer, J.A.: Lossless image compression using generalized LZ1-
type methods. In: Proceedings of Data Compression Confer-
ence, 1996, pp. 290–299

Stormo, G.: Consensus patterns in DNA. In: Doolittle, R.F. (ed.)
Molecular evolution: computer analysis of protein and nucleic
acid sequences. Methods in Enzymology, vol. 183, pp. 211–221
(1990)

Stormo, G., Hartzell III, G.W.: Identifying protein-binding sites from
unalignedDNA fragments. Proc. Natl. Acad. Sci. USA. 88, 5699–
5703 (1991)

Strang, G.: Linear algebra and its applications, 2nd edn. Academic
Press [Harcourt Brace Jovanovich Publishers], New York (1980)

STXXL: C++ Standard Library for Extra Large Data Sets. http://stxxl.
sourceforge.net. Acessed: 15 March 2008

Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive
flows based on euclidean minimum spanning trees. Combust.
Flame 115(4), 487–514 (1998)

Sudan, M.: Decoding of Reed–Solomon codes beyond the error-
correction bound. J. Complex. 13(1), 180–193 (1997)

Sudan, M.: List decoding: Algorithms and applications. SIGACT
News. 31(1), 16–27 (2000)

Suderman, M.: Layered Graph Drawing. Ph. D. thesis, McGill Univer-
sity, Montréal (2005)

http://stxxl.sourceforge.net.
http://stxxl.sourceforge.net.

Bibliography 1147

Suderman, M., Whitesides, S.: Experiments with the fixed-parame-
ter approach for two-layer planarization. J. Graph Algorithms
Appl. 9(1), 149–163 (2005)

Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-oriented imple-
mentation—an approach to robust geometric algorithms. Al-
gorithmica 27, 5–20 (2000)

Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understand-
ing of hierarchical system structures. IEEE Trans. Syst. Man Cy-
bernet. 11(2), 109–125 (1981)

Sundar, R.: On the deque conjecture for the splay algorithm. Com-
binatorica 12(1), 95–124 (1992)

Sundar, R.: Twists, turns, cascades, deque conjecture, and scanning
theorem. In: Proceedings 30th IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 555–559 (1989)

Sundararajan, V., Parhi, K.: Low Power Synthesis of Dual Thresh-
old Voltage CMOS VLSI Circuits. In: Proceedings of the Inter-
national Symposium on Low Power Electronics and Design.
pp. 139-144 (1999)

Sundararajan, V., Sapatnekar, S.S., Parhi, K.K.: Fast and exact transis-
tor sizing based on iterative relaxation. Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Trans. 21(5),568–
581 (2002)

Sutou, A., Dai, Y.: Global optimization approach to unequal sphere
packing problems in 3D. J. Optim. Theor. Appl.114(3), 671–694
(2002)

Sutton, R.: Learning to predict by the methods of temporal differ-
ences. Mach. Learn. 3, 9–44 (1988)

Sutton, R., Barto, A.: Reinforcement Learning. An Introduction. MIT
Press, Cambridge (1998)

Svitkina, Z., Tardos, E.: Facility location with hierarchical facility
costs. In: Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithm (SODA), pp. 153–161. SIAM,
Philadelphia, PA, USA (2006)

Svitkina, Z., Tardos, É.: Min-Max multiway cut. In: 7th International
workshop on Approximation algorithms for combinatorial op-
timization (APPROX), pp. 207–218, Cambridge, 2004 August
22–24

Swamy, C.: Correlation clustering: maximizing agreements via
semidefinite programming. In: Proceedings of 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), New
Orleans 2004, pp. 526–527

Swamy, C.: The effectiveness of stackelberg strategies and tolls for
network congestion games. In: ACM-SIAM Symposium on Dis-
crete Algorithms, Philadelphia, PA, USA (2007)

Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility
location problems. Algorithmica 40(4), 245–269 (2004)

Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. In: Pro-
ceedings of the 14th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 735–736. SIAM, Philadelphia
(2003)

Swofford, D.L., Olsen, G.J., Wadell, P.J., Hillis, D.M.: Phylogenetic in-
ference. In: Hillis, D.M., Moritz, D.M., Mable, B.K. (eds.) Molecular
systematics, 2nd edn. pp. 407–514. Sunderland, USA (1996)

Symvonis, A.: Routing on trees. Inf. Process. Lett. 57(4), 215–223
(1996)

Szegedy, M.: On the quantum query complexity of detecting trian-
gles in graphs. quant-ph/0310107

Szegedy, M.: Quantum speed-up of Markov chain based algo-
rithms. In: Proceedings of the 45th IEEE Symposium on Foun-
dations of Computer Science, pp. 32–41, Rome, Italy, 17–19 Oc-
tober 2004 (2004)

Szeider, S.: Minimal unsatisfiable formulas with bounded clause-
variable difference are fixed-parameter tractable. J. Comput.
Syst. Sci. 69, 656–674 (2004)

Szeider, S.: On fixed-parameter tractable parameterizations of SAT.
In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applications
of Satisfiability, 6th International Conference, SAT 2003, Se-
lected and Revised Papers. Lecture Notes in Computer Science,
vol. 2919, pp. 188–202. Springer, Berlin (2004)

Ta-Shma, A.: Explicitone-probe storing schemes usinguniversal ex-
tractors. Inf. Proc. Lett. 83(5), 267–274 (2002)

Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA folding
method capable of identifying pseudoknots and base triples.
Bioinform. 14, 691–699 (1998)

Takagi, H., Kleinrock, L.: Optimal Transmission Ranges for Randomly
Distributed Packet Radio Terminals. IEEE Trans. Commun. 32,
246–257 (1984)

Takahashi, H., Matsuyama, A.: An approximate solution for the
Steiner problem in graphs. Math. Jap. 24(6), 573–577 (1980)

Takaoka, T.: A new upper bound on the complexity of the all pairs
shortest path problem. Inf. Proc. Lett. 43, 195–199 (1992)

Takaoka, T.: Sub-cubic time algorithms for the all pairs shortest
path problem. Algorithmica 20, 309–318 (1998)

Tal, A., Dobkin, D.: Visualization of Geometric Algorithms. IEEE
Trans. Visual. Comp. Graphics 1, 194–204 (1995)

Talwar, K.: Bypassing the Embedding: Approximation Schemes and
Compact Representations for LowDimensionalMetrics. In: Pro-
ceedings of the thirty-sixth Annual ACMSymposiumon Theory
of Computing (STOC’04), pp. 281–290 (2004)

Tamassia, R.: A dynamic data structure for planar graph embed-
ding. 15th Int. Colloq. Automata, Languages, and Program-
ming. LNCS, vol. 317, pp. 576–590. Springer, Berlin (1988)

Tamura, A.: Coordinatewise Domain Scaling Algorithm for M-
convex Function Minimization. Math. Program. 102, 339–354
(2005)

Tanenbaum, A.S.: Modern Operating Systems. Prentice-Hall, Engle-
wood Cliffs (1992)

Tang, C.Y., Lu, C.L., Chang, M.D.T., Tsai, Y.T., Sun, Y.J., Chao, K.M.,
Chang, J.M., Chiou, Y.H., Wu, C.M., Chang, H.T., Chou, W.I.: Con-
strained multiple sequence alignment tool development and
its application to RNase family alignment. In: Proc. of the First
IEEE Computer Society Bioinformatics Conference (CSB 2002),
2002, pp. 127–137

Tang, X., Tian, R., Wong, M.D.F.: Optimal redistribution of white
space for wirelength minimization. In: Tang, T.-A. (ed.) Proc.
Asia South Pac. Design Autom. Conf., ACM Press, 18–21 Jan
2005, Shanghai. pp. 412–417 (2005)

Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on Sorting by Re-
versals. Discret. Appl. Math. 155, 881–888 (2006)

Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time.
In: Proceedings of CPM’04. Lecture Notes Comput. Sci. 3109,
1–13

Tarjan, R.: Sequential access in play trees takes linear time. Combi-
natorica 5(4), 367–378 (1985)

Tarjan, R.E.: Data structures and network algorithms. In: CBMS-NSF
Reg. Conf. Ser. Appl. Math., vol. 44. SIAM, Philadelphia (1983)

Tarjan, R.E.: Data Structures and Network Algorithms. SIAM,
Philadelphia (1983)

Tarjan, R.E.: Dynamic trees as search trees via Euler tours, applied to
the network simplex algorithm.Math. Prog. 78, 169–177 (1997)

Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algo-
rithm. SIAM. J. Comput. 14, 862–874 (1985)

1148 Bibliography

Tarjan, R.E., Werneck, R.F.: Dynamic trees in practice. In: Proceed-
ings of the 6th Workshop on Experimental Algorithms (WEA).
Lecture Notes in Computer Science, vol. 4525, pp. 80–93
(2007)

Tarjan, R.E., Werneck, R.F.: Self-adjusting top trees. In: Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 813–822 (2005)

Tassiulas, L., Sarkar, S.: Maxmin fair scheduling in wireless adhoc
networks. IEEE J. Sel. Areas Commun. 23(1), 163–173 (2005)

Tata, S., Hankins, R.A., Patel, J.M.: Practical suffix tree construction.
In: Proc. 13th International Conference on Very Large Data
Bases (VLDB), pp. 36–47, Toronto, Canada (2004)

Taubenfeld, G.: Synchronization algorithms and concurrent pro-
gramming. Pearson Education – Prentice-Hall, Upper Saddle
River (2006) ISBN: 0131972596

Taubenfeld, G.: The black-white bakery algorithm. In: 18th interna-
tional symposium on distributed computing, October (2004).
LNCS, vol. 3274, pp. 56–70. Springer, Berlin (2004)

Tenenbaum, J., de Silva, V., Langford, J.: A global geometric frame-
work for nonlinear dimensionality reduction. Science 290, 22
(2000)

Tesauro, G.J.: TD-gammon, a self-teaching backgammon program,
achieves a master-level play. Neural Comput. 6, 215–219
(1996)

Tesler, G.: Efficient algorithms for multichromosomal genome rear-
rangements. J. Comput. Syst. Sci. 63(5), 587–609 (2002)

Tettelin, H., Radune, D., Kasif, S., Khouri, H., Salzberg, S.: Pipette Op-
timalMultiplexed PCR: Efficiently ClosingWholeGenomeShot-
gun Sequencing Project. Genomics 62, 500–507 (1999)

Thai, M.T.,Wang F., Liu, D., Zhu, S., Du, D.-Z.: ConnectedDominating
Sets in Wireless Networks with Different Transmission Range.
IEEE Trans. Mob. Comput. 6(7), 721–730 (2007)

Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.:
Quantummemory hierarchies: Efficient designs tomatch avail-
able parallelism in quantum computing. In: Proc. 33rd. Int.
Symp. on Computer Architecture (ISCA), pp. 378–390 (2006)
quant-ph/0604070

The Canterbury Tales Project: University of Birmingham, Brigham
Young University, University of Münster, New York Univer-
sity, Virginia Tech, and Keio University. Website: http://www.
canterburytalesproject.org/

The CGAL project homepage. http://www.cgal.org/. Accessed 6 Apr
2008

The CORE library homepage. http://www.cs.nyu.edu/exact/core/.
Accessed 6 Apr 2008

The GMP webpage. http://gmplib.org/. Accessed 6 Apr 2008
The Stony Brook Algorithm Repository, http://www.cs.sunysb.edu/

~algorith/. Accessed February 2008
Thiel, C.: On the complexity of some problems in algorithmic alge-

braic number theory, Ph. D. thesis. Universität des Saarlandes,
Saarbrücken, Germany (1995)

Thimm, M.: On the approximability of the Steiner tree problem.
Theor. Comput. Sci. 295(1–3), 387–402 (2003)

Thomas, R.H.: A majority consensus approach to concurrency con-
trol for multiple copy databases. ACM Trans. Database Syst. 4,
180–209 (1979)

Thompson, K.: Regular expression search algorithm. Commun.
ACM 11(6), 419–422 (1968)

Thorne, J.L., Kishino, H., Felsenstein, J.: An evolutionary model for
maximum likelihood alignment of DNA sequences. J. Mol. Evol.
33, 114–124 (1991)

Thorup, M.: Compact oracles for reachability and approximate dis-
tances in planar digraphs. In: Proc. 42nd IEEE Symposium on
Foundations of Computer Science, 2001, pp. 242–251

Thorup, M.: Compact oracles for reachability and approximate dis-
tances in planar digraphs. J. ACM 51, 993–1024 (2004)

Thorup, M.: Dynamic Graph Algorithms with Applications. In:
Halldórsson, M.M. (ed) 7th Scandinavian Workshop on Algo-
rithm Theory (SWAT), Norway, 5–7 July 2000, pp. 1–9

Thorup, M.: Equivalence between priority queues and sorting. In:
Proc. 43rd FOCS, 2002, pp. 125–134

Thorup, M.: Faster deterministic sorting and priority queues in lin-
ear space. In: Proc. 9th SODA, 1998, pp. 550–555

Thorup, M.: Floats, integers, and single source shortest paths. J. Al-
gorithms 35 (2000)

Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and al-
lowing negative cycles. In: Proceedings of the 9th Scandina-
vian Workshop on Algorithm Theory (SWAT’04), pp. 384–396.
Springer, Berlin (2004)

Thorup, M.: Integer priority queues with decrease key in constant
time and the single source shortest paths problem. J. Comput.
Syst. Sci. (special issue on STOC’03) 69(3), 330–353 (2004)

Thorup, M.: Near-optimal fully-dynamic graph connectivity. In:
Proc. 32nd ACM Symposium on Theory of Computing (STOC),
2000, pp. 343–350

Thorup,M.: On RAMpriority queues. SIAM J. Comput.30(1), 86–109
(2000). Announced at SODA’96

Thorup, M.: Quick and good facility location. In: Proceedings 14th
Annual ACM-SIAM Symposiumon Discrete Algorithms (SODA),
2003, pp. 178–185

Thorup, M.: Randomized sorting in O(n log log n) time and linear
space using addition, shift, and bit-wise boolean operations. J.
Algorithms 42(2), 205–230 (2002). Announced at SODA’97

Thorup, M.: Undirected single-source shortest paths with positive
integer weights in linear time. J. ACM 46(3), 362–394 (1999)

Thorup, M.: Worst-case update times for fully-dynamic all-pairs
shortest paths. In: Proceedings of the 37th ACM Symposium
on Theory of Computing (STOC 2005), ACM. New York (2005)

Thorup, M., Zwick, U.: Approximate distance oracles. In: Proceed-
ings of the 33rd Annual ACM Symposium on the Theory of
Computing, pp. 183–192. ACM Press, New York (2001)

Thorup, M., Zwick, U.: Approximate distance oracles. J. Assoc. Com-
put. Mach. 52, 1–24 (2005)

Thorup, M., Zwick, U.: Spanners and emulators with sublinear dis-
tance errors. In: Proceedings of 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 2006, pp. 802–809

Tinoco, I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C.,
Crothers, D.M., Gralla, J.: Improved estimation of secondary
structure in ribonucleic acids. Nat. New Biol. 246, 40–41 (1973)

Tinoco, I., Uhlenbeck, O.C., Levine, M.D.: Estimation of secondary
structure in ribonucleic acids. Nature 230, 362–367 (1971)

Tiwari, V., Ashar, P., Malik, S.: Technology Mapping for Low Power
in Logic Synthesis. Integr. VLSI J. 20(3), 243–268 (1996)

Toda, S., Watanabe, O.: Polynomial-Time 1-Turing Reductions from
#PH to #P. Theor. Comput. Sci. 100, 205–221 (1992)

Tompa, M.: Lecture notes. Department of Computer Science
& Engineering, University of Washington. http://www.cs.
washington.edu/education/courses/527/00wi/. (2000)

Toran, J.: On the hardness of graph isomorphism. SIAM J. Comput.
33, 1093–1108 (2004)

Touati, H., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli,
A.L.: Implicit State Enumeration of Finite State Machines using

http://www.canterburytalesproject.org/
http://www.canterburytalesproject.org/
http://www.cgal.org/
http://www.cs.nyu.edu/exact/core/
http://gmplib.org/
http://www.cs.sunysb.edu/~algorith/
http://www.cs.sunysb.edu/~algorith/
http://www.cs.washington.edu/education/courses/527/00wi/.
http://www.cs.washington.edu/education/courses/527/00wi/.

Bibliography 1149

BDDs. In: IEEE International Conference on Computer-Aided
Design, pp. 130–133, November (1990)

Toueg, S., Perry, K.J., Srikanth, T.K.: Fast Distributed Agreement.
SIAM J. Comput. 16(3), 445–457 (1987)

Toussaint, G.T.: The relative neighborhood graph of a finite planar
set. Pattern Recognit. 12(4), 261–268 (1980)

TPIE � A Transparent Parallel I/O-Environment. http://www.cs.
duke.edu/TPIE. Acessed: 15 March 2008

Traveling Salesman Problem. www.tsp.gatech.edu (2006). Ac-
cessed 28 Mar 2008

Treiber, R.: Systems programming: Coping with parallelism. Tech-
nical Report RJ5118, IBM Almaden Research Center (1986)

Trevisan, L.: Recycling queries in pcps and in linearity tests. In: Pro-
ceedings of the Thirtieth Annual ACM Symposium on the The-
ory of Computing, pp. 299–308. ACM, New York (1998)

Trevisan, L.: Some applications of coding theory in computa-
tional complexity. Quaderni Matematica 13, 347–424 (2004)
arXiv:cs.CC/0409044

Trevisan, L.: When Hamming meets Euclid: the approximability of
geometric TSP and Steiner Tree. SIAM J. Comput. 30(2), 475–
485 (2000)

Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approxi-
mation, and linear programming. SIAM J. Comput. 29(6), 2074–
2097 (2000)

Triantafillou, P., Ntarmos, N., Nikoletseas, S., Spirakis, P.: NanoPeer
Networks and P2P Worlds. In:Proc. 3rd IEEE International Con-
ference on Peer-to-Peer Computing (P2P 2003), pp. 40–46,
Sept. 2003

Trick, M.: Michael Trick’s coloring page: http://mat.gsia.cmu.edu/
COLOR/color.html

Trimberger, S.: Field-Programmable Gate Array Technology.
Springer, Boston, USA (1994)

Tromp, J.: How to construct an atomic variable. In: Proc. Work-
shop Distrib. Algorithms. Lecture Notes in Computer Science,
vol. 392, pp. 292–302. Springer, Berlin (1989)

Trotter, W.T.: Current research problems: First Fit colorings of inter-
val graphs. http://www.math.gatech.edu/~trotter/rprob.htm.
Accessed 24 Dec 2007

Tsaknakis, H., Spirakis, P.: An Optimization Approach for Approx-
imate Nash Equilibria. In: LNCS Proceedings of the 3rd Inter-
national Workshop on Internet and Network Economics (WINE
2007), also in the Electronic Colloquium on Computational
Complexity, (ECCC), TR07-067 (Revision), San Diego, 12–14 De-
cember 2007

Tsitsiklis, J.N., Van Roy, B.: Feature-based methods for large scale
dynamic programming. Mach. Learn. 22, 59–94 (1996)

Tullock, G.: Some problems of majority voting. J. Polit. Econ. 67,
571–579 (1959)

Turpin, R., Coan, B.A.: Extending binary Byzantine Agreement to
multivalued Byzantine Agreement. Inf. Process. Lett. 18(2), 73–
76 (1984)

Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoin-
ing grammars for RNA structureprediction. Theor. Comput. Sci.
210, 277–303 (1999)

Ukkonen, E.: Finding approximate patterns in strings. J. Algorithms
6, 132–137 (1985)

Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14,
249–260 (1995)

Ukkonen, E., Lemström, K., Mäkinen, V.: Sweepline the music!
In: Klein, R. Six, H.W., Wegner, L. (eds.) Computer Science

in Perspective, Essays Dedicated to Thomas Ottmann. LNCS,
vol. 2598, pp. 330–342. Springer (2003)

Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst.
Sci. 10, 384–393 (1975)

Ullman, J.D.: The performance of a memory allocation algorithm.
Tech. Rep. 100, Princeton University, Princeton, NJ (1971)

Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of
two-level logic minimization. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 25(7), 1230–1246 (2006)

Unger, W.: The complexity of the approximation of the bandwidth
problem. In: 39th Annual Symposium on Foundations of Com-
puter Science, IEEE, 8–11 Oct 1998, pp. 82–91.

Urrutia, J.: Routing with Guaranteed Delivery in Geometric and
Wireless Networks. In: Stojmenovic, I. (ed.) Handbook of Wire-
less Networks and Mobile Computing, ch. 18 pp. 393–406. Wi-
ley, Hoboken (2002)

Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Linden-
thal, M., Zeilinger, A.: Quantum teleportation link across the
danube. Nature 430(849), 849–849 (2004)

U.S. Census Bureau, Washington, DC: UA Census 2000 TIGER/Line
Files. http://www.census.gov/geo/www/tiger/tigerua/ua_
tgr2k.html (2002)

Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness
of highly-concurrent linearisable objects. In: PPoPP ’06: Pro-
ceedings of the eleventh ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, pp. 129–136 (2006).
doi: http://doi.acm.org/10.1145/1122971.1122992

Vaidya, P.: Solving linear equations with symmetric diagonally
dominant matrices by constructing good preconditioners. Un-
published manuscript (1991)

Vaidya, P.M.: Minimum Spanning Trees in k-Dimensional Space.
SIAM J. Comput. 17(3), 572–582 (1988)

Valiant, L.: Learning disjunctions of conjunctions. In: Proc. 9th Int.
Joint Conference onArtificial Intelligence, pp. 560–566, Los An-
geles, August 1985

Valiant, L.G.: A scheme for fast parallel communication. SIAM
J. Comput. 11, 350–361 (1982)

Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11),
1134–1142 (1984)

Valiant, L.G., Brebner, G.: Universal schemes for parallel communi-
cation. In: Proceedings of the 13th ACM Symposium on Theory
of Computing, 1981, pp. 263–277

van d. Heuvel, J., McGuiness, S.: Colouring the Square of a Planar
Graph. CDAM Research Report Series, July 1999

van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementa-
tion of an efficient priority queue. Math. Syst. Theor. 10, 99–
127 (1977). Announced by van Emde Boas alone at FOCS’75

van Santen, J.P.H., Buchsbaum, A.L.: Methods for optimal text se-
lection. In: Proceedings of the European Conference on Speech
Communication and Technology (Rhodos, Greece) 2, 553–556
(1997)

van Vliet, A.: An improved lower bound for on-line bin packing al-
gorithms. Inf. Proc. Lett. 43, 277–284 (1992)

Vapnik, V. N.: Statistical Learning Theory. Wiley (1998)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New

York (1995)
Vapnik, V.N.: Estimations of dependences based on statistical data.

Springer (1982)
Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of

relative frequencies of events to their probabilities. Theory
Probab. Apl. 16, 264–280 (1971)

http://www.cs.duke.edu/TPIE.
http://www.cs.duke.edu/TPIE.
http://www.tsp.gatech.edu
http://mat.gsia.cmu.edu/COLOR/color.html
http://mat.gsia.cmu.edu/COLOR/color.html
http://www.math.gatech.edu/~trotter/rprob.htm
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
http://doi.acm.org/10.1145/1122971.1122992

1150 Bibliography

Varghese, G., Jayaram, M.: The Fault Span of Crash Failures. J. ACM
47(2), 244–293 (2000)

Varian, H.R.: Economic mechanism design for computerized
agents. In: Proceedings of the 1st Usenix Workshop on Elec-
tronic Commerce, 1995

Varian, H.R.: Position auctions. Int. J. Ind. Organ. 25(6), 1163–
1178 (2007) http://www.sims.berkeley.edu/~hal/Papers/2006/
position.pdf. Accessed 29 March 2006

Vazirani, U.: Berkeley Lecture Notes. Fall 1997. Lecture 8. http://
www.cs.berkeley.edu/~vazirani/qc.html (1997)

Vazirani, U., Vazirani, V.: Two-processor scheduling problem is in
random NC. SIAM J. Comput. 18(4), 1140–1148 (1989)

Vazirani, V.V.: A Theory of Alternating Paths and Blossoms for Prov-
ing Correctness of theO(

p
VE) MaximumMatching Algorithm.

Combinatorica 14(1), 71–109 (1994)
Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2003)
Vempala, S.: Random projection: A new approach to VLSI layout. In:

39th Annual Symposiumon Foundations of Computer Science,
IEEE, 8–11 Oct 1998, pp. 389–398.

Vempala, S., Vetta, A.: Factor 4/3 approximations for minimum
2-connected subgraphs. In: Jansen, K., Khuller, S. (eds.) AP-
PROX. Lecture Notes in Computer Science, vol. 1913, pp. 262–
273. Springer, Berlin (2000)

Venkataraman, G., Sahni, S., Mukhopadhyaya, S.: A blocked all-pairs
shortest paths algorithm. J. Exp. Algorithms 8 (2003)

Venter, J.C., Adams, M.D., Sutton, G.G., Kerlavage, A.R., Smith, H.O.,
Hunkapiller, M.: Shotgun sequencing of the human genome.
Science 280, 1540–1542 (1998)

Vetta, A.: Nash equilibria in competitive societies, with applications
to facility location, traffic routing and auctions. In: 43rd Symp.
on Foundations of Computer Science, pp. 416–425 (2002)

Vialette, S.: On the computational complexity of 2-interval pattern
matching. Theor. Comput. Sci. 312, 223–249 (2004)

Vickrey, W.: Counter speculation, auctions, and competitive sealed
tenders. J. Financ. 16, 8–37 (1961)

Vinh, L.S., von Haeseler, A.: Shortest triplet clustering: reconstruct-
ing large phylogenies using representative sets. BMC Bioinfor-
matics 6, 92 (2005)

Vishkin, U.: Optimal parallel pattern matching in strings. Proc. 12th
ICALP, pp. 91–113 (1985)

Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by
asynchronous hardware. In: Proc. 27th IEEE Symp. Found. Com-
put. Sci. pp. 233–243. Los Angeles, 27–29 October 1987. Errata,
Proc. 28th IEEE Symp. Found. Comput. Sci., pp. 487–487. Los
Angeles, 27–29 October 1987

Vitter, J. S., Shriver, E.A.M.: Algorithms for parallel memory. I: Two-
level memories. Algorithmica. 12(2/3), 110–147 (1994)

Vitter, J. S., Shriver, E.A.M.: Algorithms for parallel memory II: Hi-
erarchical multilevel memories. Algorithmica 12(2/3), 148–169
(1994)

Vitter, J.: Faster methods for random sampling. Commun. ACM 27,
703–718 (1984)

Vitter, J.: Random sampling with a reservoir. ACM Trans. Math.
Softw. 11, 37–57 (1985)

Vitter, J.S.: External memory algorithms and data structures: Deal-
ing with massive data. ACM Comput. Surv. 33(2), 209–271
(2001)

Vitter, J.S.: Geometric and spatial data structures in external mem-
ory. In: Mehta, D., Sahni, S. (eds.) Handbook on Data Structures
and Applications. CRC Press, Boca Raton (2005)

Vitter, J.S., Hutchinson, D.A.: Distribution sort with randomized cy-
cling. J. ACM. 53 (2006)

Vizing, V.G.: On an estimate of the chromatic class of a p-graph
(Russian). Diskret. Analiz. 3, 25–30 (1964)

Vo, B.D., Vo, K.-P.: Compressing table data with column depen-
dency. Theor. Comput. Sci. 387, 273–283 (2007)

Vo, B.D., Vo, K.-P.: Using column dependency to compress tables.
In: DCC: Data Compression Conference, pp. 92–101. IEEE Com-
puter Society TCC, Washington DC, USA (2004)

Vo., K.-P.: Compression as data transformation. In: DCC: Data Com-
pression Conference. IEEE Computer Society TCC, pp. 403.
Washington DCD, USA (2006)

Vöcking, B.: Selfish load balancing. In: Nisan, N., Roughgarden, T.,
Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory. Cam-
bridge University Press, New York, NY, USA (2007)

Vollmer, H.: Introduction to circuit complexity: a uniform approach.
Springer, New York (1999)

von Neumann, J.: Probabilistic logic and the synthesis of reliable
organisms from unreliable components. In: Shannon, C.E., Mc-
Carthy, J. (eds.) Automata Studies, pp. 43–98. PrincetonUniver-
sity Press, Princeton (1956)

von Neumann, J., Morgenstern, O.: Theory of Games and Economic
Behavior. Princeton University Press, Princeton, NJ (1944)

von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Vi-
enna (1934)

von zur Gathen, J., Gerhard, J.: Modern Comptuer Algebra, 2nd edn.
Cambridge (2003)

Vovk, V.: Aggregating strategies. In: Fulk, M., Case, J. (eds.) Proceed-
ings of the 3rd Annual Workshop on Computational Learning
Theory, p. 371–383. Morgan Kaufmann, San Mateo (1990)

Vygen, J.: Approximation algorithms for facility location problems
(lecture notes). Technical report No. 05950-OR, Research Insti-
tute for DiscreteMathematics, University of Bonn (2005) http://
www.or.uni-bonn.de/~vygen/fl.pdf

Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers for Ef-
ficient Shortest Path Computation. ACM J. Exp. Algorithmics
10(1.3), 1–30 (2005)

Wagner, R.A., Fischer, M.J.: The String-to-String correction Problem.
J. ACM 21(1), 168–173 (1974)

Wahlström, M.: An algorithm for the SAT problem for formulae
of linear length. In: Proceedings of the 13th Annual Euro-
pean Symposium on Algorithms, ESA 2005. Lecture Notes in
Computer Science, vol. 3669, pp. 107–118. Springer, Berlin
(2005)

Wainwright, M., Jordan, M.: Variational inference in graphical mod-
els: the view from the marginal polytope. In: Proc. 41st Aller-
ton Conf. on Communications, Control, and Computing, Mon-
ticello, October (2003)

Walras, L.: Elements of pure economics, or the theory of so-
cial wealth (1899, 4th ed; 1926, rev ed, 1954, Engl. Transl.)
(1874)

Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of
metamorphic robot chains. J. Distrib. Comput. 17(2), 171–189
(2004)

Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed Construction of
Connected Dominating Set in Wireless Ad Hoc Networks. In:
IEEE INFOCOM 2002

Wan, P.-J., Calinescu, G., Li, X.-Y., Frieder, O.: Minimum-energy
broadcast routing in static ad hoc wireless networks. ACM
Wirel. Netw. Preliminary version appeared in IEEE INFOCOM
(2000)8(6), 607–617 (2002)

http://www.sims.berkeley.edu/~hal/Papers/2006/position.pdf
http://www.sims.berkeley.edu/~hal/Papers/2006/position.pdf
http://www.cs.berkeley.edu/~vazirani/qc.html
http://www.cs.berkeley.edu/~vazirani/qc.html
http://www.or.uni-bonn.de/~vygen/fl.pdf
http://www.or.uni-bonn.de/~vygen/fl.pdf

Bibliography 1151

Wan, P.-J., Calinescu, G., Yi, C.-W.: Minimum-power multicast rout-
ing in static ad hoc wireless networks. IEEE/ACM Trans. Netw.
12, 507–514 (2004)

Wan, P.-J., Yi, C.-W.: Coverage by randomly deployed wireless sen-
sor networks. In: Proceedings of the 4th IEEE International Sym-
posium on Network Computing and Applications (NCA 2005),
27–29 July 2005

Wan, P.-J., Yi, C.-W.: On the longest edge of Gabriel graphs in wire-
less ad hoc networks. Trans. Parallel Distrib. Syst. 18(1), 1–16
(2007)

Wan, P.-J., Yi, C.-W., Yao, F., Jia, X.: Asymptotic critical transmission
radius for greedy forward routing in wireless ad hoc networks.
In: Proceedings of the 7th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, 22–25 May 2006,
pp. 25–36

Wang, C.C.: Multi-splay trees. Ph.D. Thesis, Carnegie Mellon Univer-
sity (2006)

Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competitive
dynamic binary search trees. In: Proc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, Miami, 2006, pp. 374–383

Wang, J.: Generating and solving 3-SAT, MSc Thesis. Rochester In-
stitute of Technology, Rochester (2002)

Wang, J.: Medial axis and optimal locations for min-max sphere
packing. J. Combin. Optim. 3, 453–463 (1999)

Wang, J., Huang, M., Cheng, J.: A Lower Bound on Approximation
Algorithms for the Closest Substring Problem. In: Proceedings
COCOA 2007, vol. 4616 in LNCS, pp. 291–300 (2007)

Wang, L. Jiang, T.: On the complexity of multiple sequence align-
ment. J. Comp. Biol. 1, 337–48 (1994)

Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with
recombination. J. Comput. Biol. 8(1), 69–78 (2001)

Wang, T.C., Wong, D.F.: A Note on the Complexity of Stockmeyer’s
Floorplan Optimization Technique. In: Algorithmic Aspects
of VLSI Layout, Lecture Notes Series on Computing, vol. 2,
pp. 309–320 (1993)

Wang, T.C., Wong, D.F.: Optimal Floorplan Area Optimization. In:
IEEE Trans. Comput. Aided Des. 11(8), 992–1002 (1992)

Wang, W., Li, X.-Y.: Low-Cost routing in selfish and rational wire-
less ad hoc networks. IEEE Trans.Mobile Comput.5(5), 596–607
(2006)

Wang, W., Li, X.-Y., Chu, X.: Nash equilibria, dominant strategies
in routing. In: Workshop for Internet and Network Economics
(WINE). Lecture Notes in Computer Science, vol. 3828, pp 979–
988. Springer, Hong Kong, China (2005)

Wang, W., Li, X.-Y., Sun, Z., Wang, Y.: Design multicast protocols for
non-cooperative networks. In: Proceedings of the 24th IEEE IN-
FOCOM. vol. 3, pp. 1596–1607, Miami, USA (2005)

Wang, W., Li, X.-Y., Wang, Y.: Truthful multicast in selfish wireless
networks. In: Proceedings of the 10th ACMMOBICOM, pp. 245–
259, Philadelphia, USA (2004)

Wang, Y., Li, X.-Y.: Efficient construction of bounded degree and
planar spanner for wireless networks. In: ACM DIALM-POMC
Joint Workshop on Foundations of Mobile Computing, San
Diego, 19 September 2003

Wang, Y., Li, X.-Y.: Localized construction of bounded degree and
planar spanner for wireless ad hoc networks, In: Proceedings of
the 2003 joint workshop on Foundations of mobile computing
(DIALM-POMC’03), 19 Sept 2003, pp. 59–68

Wang, Y., Wang, W., Li, X.-Y.: Efficient distributed low cost back-
bone formation for wireless networks. IEEE Trans. Parallel Dis-
trib. Syst. 17, 681–693 (2006)

Wang, Y., Wang, W., Li, X.-Y.: Efficient distributed low-cost back-
bone formation for wireless networks. In: Proceedings of 6th
ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2005), Urbana-Champaign, 25–27
May 2005

Warme, D.M., Winter, P., Zacharisen, M.: Exact algorithms for plane
steiner tree problems: A computational study, Tech. Rep. DIKU-
TR-98/11, Dept. of Computer Science, University of Copen-
hagen (1998)

Warme, D.M., Winter, P., Zacharisen, M.: GeoSteiner 3.1 pack-
age. ftp://ftp.diku.dk/diku/users/martinz/geosteiner-3.1.tar.gz.
Accessed Oct. 2003

Warnow, T.: Some combinatorial optimization problems in phy-
logenetics. In: Lovász, L., Gyárfás, G., Katona, G., Recski, A.,
Székely, L. (eds.) Graph Theory and Combinatorial Biology.
Bolyai Society Mathematical Studies, vol. 7, pp. 363–413. Bolyai
János Matematikai Társulat (1999)

Warnow, T., Ringe, D., Taylor, A.: Reconstructing the evolutionary
history of natural languages. In: Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’96), pp.
314–322 (1996)

Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable predic-
tion of noncoding RNA. Proc. Natl. Acad. Sci. USA 102, 2454–
59 (2005)

Waterman, M.S.: Efficient sequence alignment algorithms. J. Theor.
Biol. 108, 333–337 (1984)

Waterman, M.S.: Secondary structure of single-stranded nucleic
acids. Adv. Math. Suppl. Stud. 1, 167–212 (1978)

Waterman, M.S., Smith, T.F.: Rapid dynamic programming meth-
ods for RNA secondary structure. Adv. Appl. Math. 7, 455–464
(1986)

Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive evolu-
tionary trees. J. Theor. Biol. 64, 199–213 (1977)

Watkins, C.: Learning from Delayed Rewards. Ph. D. thesis, Cam-
bridge University (1989)

Watkins, C., Dyan, P.: Q-learning. Mach. Learn. 8(3/4), 279–292
(1992)

Watson, B.: Taxonomies and Toolkits of Regular Language Algo-
rithms, Ph. D. Dissertation, Eindhoven University of Technol-
ogy, The Netherlands (1995)

Wattenhofer, M., Wattenhofer, R., Widmayer, P.: Geometric Rout-
ing without Geometry. In: 12th Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO), Le Mont
Saint-Michel, France, May 2005

WEA. Beginning in 2001, the annual Workshop on Experimental
and Efficient Algorithms is sponsored by EATCS. Workshop
proceedings are published in the Springer LNCS series

Weber, R.R., Varaiya, P., Walrand, J.: Scheduling jobs with stochas-
tically ordered processing times on parallel machines to
minimize expected flow time. J. Appl. Probab. 23, 841–847
(1986)

Weber, R.R., Weiss, G.: On an index policy for restless bandits.
J. Appl. Probab. 27, 637–648 (1990)

Wegener, I.: Branching Programs and Binary Decision Diagrams.
SIAM (2000)

Wegman, M.N., Carter, J.L.: New hash functions and their use
in authentication and set equality. J. Comput. Syst. Sci.
22, 265–279 (1981)

Wei, Y.C., Cheng, C.K.: Towards Efficient Hierarchical Designs by Ra-
tio Cut Partitioning. In: Proc. IEEE Int. Conf. on Computer-Aided
Design, November 1989, pp. 298–301

ftp://ftp.diku.dk/diku/users/martinz/geosteiner-3.1.tar.gz

1152 Bibliography

Wein, R., Fogel, E., Zukerman, B., Halperin, D.: Advanced pro-
gramming techniques applied to CGAL’s arrangement pack-
age. Comput. Geom. Theor. Appl. 36(1–2), 37–63 (2007)

Weiner, P.: Linear patternmatching algorithms. In: Proc. of the 14th
Annual IEEE Symposium on Switching and Automata Theory,
pp. 1–11. IEEE Press, New York (1973)

Weiss, A.: Personal Communication (1993)
Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Dis-

tributed Artificial Intelligence. MIT Press, Cambridge, MA
(1999)

Weiss, G.: Turnpike optimality of Smith’s rule in parallel machine
stochastic scheduling. Math. Oper. Res. 17, 255–270 (1992)

Welch, T.A.: A technique for high-performance data compression.
IEEE Comput. 17, 8–19 (1984)

Werneck, R.F.: Design and Analysis of Data Structures for Dynamic
Trees. Ph. D. thesis, Princeton University (2006)

Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and
biconnected components on-line. Algorithmica 7, 433–464
(1992)

Wexler, Y., Yakhini, Z., Kashi, Y., Geiger, D.: Finding approximate
tandem repeats in genomic sequences. J. Comput. Biol. 12(7),
928–42 (2005)

Whaley, R., Dongarra, J.: Automatically tuned linear algebra soft-
ware (ATLAS). In: Proc. Supercomputing 98, Orlando, FL,
November 1998. www.netlib.org/utk/people/JackDongarra/
PAPERS/atlas-sc98.ps

Whittle, P.: Multiarmed bandit and the Gittins index. J. R. Stat. Soc.
Series B 42, 143–149 (1980)

Whittle, P.: Restless bandits: Activity allocation in a changingworld.
In: Gani, J. (ed.) A Celebration of Applied Probability. J Appl.
Probab. 25A, 287–298 (1988)

Wiberg, N.: Codes and Decoding on General Graphs, Ph. D. thesis,
Linkoping University, Sweden (1996)

Wickremesinghe, R., Arge, L., Chase, J.S., Vitter, J.S.: Efficient sort-
ing using registers and caches. ACM J. Exp. Algorithmics 7, 9
(2002)

Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-efficient
broadcast and multicast trees in wireless networks. Mobile
Netw. Appl. 7, 481–492 (2002)

Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the Construction
of energy-Efficient Broadcast and Multicast Trees in Wireless
Networks. IEEE Infocom 2, 585–594 (2000)

Wiesmann, M., Schiper, A.: Comparison of database replication
techniques based on total order broadcast. IEEE Trans. Knowl.
Data Eng. 17, 551–566 (2005)

Wiesner, S.: Conjugate coding. Sigact News 15(1), 78–88 (1983)
Wigderson, A.: Improving the performance guarantee for approxi-

mate graph coloring. J. ACM 30(4), 729–735 (1983)
Wilber, R.: Lower bounds for accessing binary search trees with ro-

tations. SIAM J. Comput. 18(1), 56–67 (1989)
Wile, B., Goss, J., Roesner, W.: Comprehensive Functional Verifica-

tion. Morgan-Kaufmann (2005)
Willard, D.: Examining computational geometry, van Emde Boas

trees, and hashing from the perspective of the fusion tree.
SIAM J. Comput. 29(3), 1030–1049 (2000). Announced at
SODA’92

Williams, H.C.: Solving the Pell equation. In: Proc. Millennial Confer-
ence on Number Theory, pp. 397–435 (2002)

Williams, J.W.J.: Algorithm232: Heapsort. Commun. ACM 7(6), 347–
348 (1964)

Williams, R.: A new algorithm for optimal 2-constraint satisfaction
and its implications. Theor. Comput. Sci. 348(2–3), 357–365
(2005)

Williams, R.: On Computing k-CNF Formula Properties. In: The-
ory and Applications of Satisfiability Testing. LNCS, vol. 2919,
pp. 330–340. Springer, Berlin (2004)

Williams, R., Gomes, C., Selman, B.: On the connections between
backdoors, restarts, and heavy-tailedness in combinatorial
search, In: informal proceedings of SAT 2003 (Sixth Interna-
tional Conference on Theory and Applications of Satisfiability
Testing, 5–8 May 2003, S. Margherita Ligure – Portofino, Italy),
2003, pp. 222–230

Williamson D.P., Goemans M.X., Mihail M., Vazirani V.V.: A Primal-
Dual Approximation Algorithm for Generalized Steiner Net-
work Problems. Combinatorica 15(3), 435–454 (1995)

Wilson, L.B.: An analysis of the stable marriage assignment algo-
rithm. BIT 12, 569–575 (1972)

Wimer, S., Koren, I., Cederbaum, I.: Optimal Aspect Ratios of Build-
ing Blocks in VLSI. IEEE Trans. Comput. Aided Des. 8(2), 139–
145 (1989)

Win, S.: On a connection between the existence of k-trees and the
toughness of a graph. Graphs Comb. 5(1), 201–205 (1989)

Witten, E.: Quantum field theory and the Jones polynomial. Com-
mun. Math. Phys. 121(3), 351–399 (1989)

Witten, I., Moffat, A., Bell, I.: Managing Gigabytes, 2nd edn. Morgan
Kaufmann (1999)

Witten, I.H., Bell, T.: The Calgary/Canterbury text compression cor-
pus. Anonymous ftp from ftp://ftp.cpsc.ucalgary.ca:/pub/text.
compression/corpus/text.compression.corpus.tar.Z

Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing
and Indexing Documents and Images, 2nd edn. Morgan Kauf-
mann, San Francisco, (1999)

Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data com-
pression. Commun. ACM 30, 520–540 (1987)

Witwer, C., Hofacker, I.L., Stadler, P.F.: Prediction of consensus RNA
secondary structures including pseudoknots. IEEE Trans. Com-
put. Biol. Bioinform. 1, 66–77 (2004)

Wiuf, C.: Inference on recombination and block structure using un-
phased data. Genetics 166(1), 537–545 (2004)

Wocjan, P., Yard, J.: The Jones polynomial: quantumalgorithms and
applications in quantum complexity theory. In: Quantum In-
formation and Computation, vol. 8, no. 1 & 2, 147–180 (2008).
arXiv.org:quant-ph/0603069 (2006)

Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey.
In: Combinatorial Optimization – Eureka, You Shrink. LNCS,
vol. 2570, pp. 185–207. Springer, Berlin (2003)

Woeginger, G.J.: Space and time complexity of exact algorithms:
some open problems. In: Proc. 1st Int. Workshop on Parame-
terized and Exact Computation (IWPEC 2004). LNCS, vol. 3162,
pp. 281–290. Springer, Berlin (2004)

Wolsey, L.A.: An analysis of the greedy algorithm for the submodu-
lar set covering problem. Combinatorica 2, 385–393 (1982)

Wong, C.H., Tam, Y.C.: Negative Cycle Detection Problem. In: Al-
gorithms – ESA 2005. Lecture Notes in Computer Science,
vol. 3669, pp. 652–663. Springer, Heidelberg (2005)

Wong, D.F., Liu, C.L.: A new algorithm for floorplan design. In:
ACM/IEEE Design Automation Conference (DAC), November
1985, 23rd, pp. 101–107

Wong, D.F., Liu, C.L.: A New Algorithm for Floorplan Design. Pro-
ceedings of the 23rd ACM/IEEE Design Automation Confer-
ence, pp. 101–107 (1986)

http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps
http://www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps
ftp://ftp.cpsc.ucalgary.ca:/pub/text.compression/corpus/text.compression.corpus.tar.Z
ftp://ftp.cpsc.ucalgary.ca:/pub/text.compression/corpus/text.compression.corpus.tar.Z

Bibliography 1153

Woodruff, D.: Lower Bounds for Additive Spanners, Emulators, and
More. In: Proc. of Symp. on Foundations of Computer Science,
Berckeley, Oct. 2006, pp. 389–398

Workman, C., Krogh, A.: No evidence that mRNAs have lower fold-
ing free energies than random sequences with the same dinu-
cleotide distribution. Nucleic Acids Res. 27, 4816–4822 (1999)

Wozencraft, J.M.: List Decoding. Quarterly Progress Report, Re-
search Laboratory of Electronics. MIT 48, 90–95 (1958)

Wu, B.Y., Chao, K.M.: Spanning Trees and Optimization Problems
(Discrete Mathematics and Its Applications). Chapman Hall,
USA (2004)

Wu, B.Y., K.-Chao, M., Tang, C.Y.: Approximation and exact algo-
rithms for constructing minimum ultrametric trees from dis-
tance matrices. J. Combin. Optim. 3, 199–211 (1999)

Wu, F.Y.: Knot Theory and statistical mechanics. Rev. Mod. Phys.
64(4), 1099–1131 (1992)

Wu, J., Li, H.: A dominating-set-based routing scheme in ad hoc
wireless networks. The special issue on Wirel. Netw. Telecom-
mun. Systems J. 3, 63–84 (2001)

Wu, Q.R.: Treatment planning optimization for Gamma unit radio-
surgery. Ph. D. Thesis, The Mayo Graduate School (1996)

Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Re-
port TR-94-17, Department of Computer Science, University of
Arizona, Tucson, AZ (1994)

Wu, S., Manber, U.: Agrep – a fast approximate pattern-matching
tool. In: Proceedings of USENIX Winter (1992) Technical Con-
ference, pp. 153–162. USENIX Association, Berkeley (1992)

Wu, S., Manber, U.: Fast text searching allowing errors. Commun.
ACM 35(10), 83–91 (1992)

Wu, S., Manber, U., Myers, E.W.: A subquadratic algorithm for ap-
proximate regular expression matching. J. Algorithms 19(3),
346–360 (1995)

Wu, W., Du, H., Jia, X., Li, Y., Huang, C.-H.: Minimum Connected
Dominating Sets and Maximal Independent Sets in Unit Disk
Graphs. Theor. Comput. Sci. 352, 1–7 (2006)

Xu, C., Ma, B.: Software for Computational Peptide Identification
from MS/MS. Drug Discov. Today 11(13/14), 595–600 (2006)

Yan, M.: High Performance Algorithms for Phylogeny Reconstruc-
tion with Maximum Parsimony. Ph. D. thesis, Electrical and
Computer EngineeringDepartment, University of NewMexico,
Albuquerque, January 2004

Yang, H., Wong, D.F.: Efficient Network Flow Based Min-Cut Bal-
anced Partitioning. In: Proc. IEEE Int. Conf. on Computer-Aided
Design, 1994, pp. 50–55

Yang, H.H., Wong, D.F.: Circuit clustering for delayminimization un-
der area and pinconstraints. IEEE Trans. Comput.-AidedDes. In-
tegr. Circ. Syst. 16, 976–986 (1997)

Yannakakis, M.: Four pages are necessary and sufficient for planar
graphs. In: Hartmanis, J. (ed.) Proceedings of the 18th Annual
ACM-SIAM Symposium on Theory of Computing, pp. 104–108.
ACM, New York (1986)

Yannakakis, M.: Graph-theoretic methods in database theory. In:
Proc. 9-th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, Nashville, 1990 pp. 230–242

Yao, A.: Near-optimal time-space tradeoff for element distinctness.
SIAM J. Comput. 23(5), 966–975 (1994)

Yao, A.: The complexity of pattern matching for a random string.
SIAM J. Comput. 8, 368–387 (1979)

Yao, A.C.-C.: On random 2–3 trees. Acta Inform. 9, 159–170 (1978)
Yao, A.C.: New algorithms for bin packing. J. ACM 27, 207–227

(1980)

Yao, A.C.: On Constructing Minimum Spanning Trees in k-Dimen-
sional Spaces and Related Problems. SIAM J. Comput. 11(4),
721–736 (1982)

Yao, A.C.C.: Should tables be sorted? J. Assoc. Comput. Mach. 28(3),
615–628 (1981)

Yao, F., Demers, A., Shenker, S.: A Scheduling Model for Reduced
CPU Energy, Proceedings of the 36th Annual IEEE Symposium
on Foundations of Computer Science, pp. 374–382. IEEE Com-
puter Society, Washington, DC, USA (1995)

Yap, C.K.: Theory of Real Computation according to EGC. To appear
in LNCS Volume based on talks at a Dagstuhl Seminar “Reliable
Implementation of Real Number Algorithms: Theory and Prac-
tice”, Jan 8–13, (2006)

Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z.,
Hwang, F.K.: (eds.) Computing in Euclidean Geometry, 2nd
edn., pp. 452–492. World Scientific Press, Singapore (1995)

Ye, Y.: A path to the Arrow-Debreu competitivemarket equilibrium,
Math. Program. 111(1–2), 315–348 (2008)

Ye, Y.: Exchangemarket equilibriawith leontief’s utility: freedom of
pricing leads to rationality. WINE (2005)

Yi, C.-W., Wan, P.-J., Li, X.-Y., Frieder, O.: Asymptotic distribution of
the number of isolated nodes in wireless ad hoc networks with
Bernoulli nodes. In: IEEE Wireless Communications and Net-
working Conference (WCNC 2003), March 2003

Yi, C.-W., Wan, P.-J., Lin, K.-W., Huang, C.-H.: Asymptotic distribu-
tion of the Number of isolated nodes in wireless ad hoc net-
works with unreliable nodes and links. In: the 49th Annual IEEE
GLOBECOM Technical Conference (GLOBECOM2006), 27 Nov–
1 Dec 2006

Yokoo, M.: The characterization of strategy/false-name proof com-
binatorial auction protocols: Price-oriented, rationing-free pro-
tocol. In: Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pp. 733–739 (2003)

Yokoo, M., Sakurai, Y., Matsubara, S.: Robust combinatorial auc-
tion protocol against false-name bids. Artif. Intell. 130, 167–
181 (2001)

Yokoo, M., Sakurai, Y., Matsubara, S.: Robust double auction pro-
tocol against false-name bids. Decis. Support. Syst. 39, 23–39
(2005)

Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name bids in
combinatorial auctions: New fraud in Internet auctions. Games
Econ. Behav. 46, 174–188 (2004)

Yoo-Ah Kim. Data migration to minimize the average completion
time. J. Algorithms 55, 42–57 (2005)

Young, N.E.: On-line file caching. Algorithmica 33(3), 371–383
(2002)

Young, N.E.: On-Line Paging against Adversarially Biased Random
Inputs. J. Algorithms 37, 218 (2000)

Young, N.E.: Sequential and parallel algorithms for mixed packing
and covering. In: Proceedings of 42nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2001, pp. 538–
546

Young, N.E.: The k-server dual and loose competitiveness for pag-
ing. Algorithmica 11(6), 525–541 (1994)

Yu, L., Shih, H., Pfund, M., Carlyle, W., Fowler, J.: Scheduling of unre-
lated parallel machines: an application to PWB manufacturing.
IIE Trans. 34, 921–931 (2002)

Yu, Y., Prasanna, V.K.: Energy-Balanced Task Allocation for Collab-
orative Processing in Networked Embedded System. In: Pro-
ceedings of the 2003 Conference on Language, Compilers,

1154 Bibliography

and Tools for Embedded Systems (LCTES’03), pp. 265–274, San
Diego, 11–13 June 2003

Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verfication. Springer
(2006)

Yuan, Y.: Residence exchangewanted: a stable residence exchange
problem. Eur. J. Oper. Res. 90, 536–546 (1996)

Yun, H.S., Kim, J.: On Energy-Optimal Voltage Scheduling for Fixed-
Priority Hard Real-Time Systems. ACM Trans. Embed. Comput.
Syst. 2, 393–430. ACM, New York, NY, USA (2003)

Yuster, R., Zwick, U.: Maximum Matching in Graphs with an Ex-
cludedMinor. In: Proceedings of the ACM-SIAMSymposium on
Discrete Algorithms (SODA), 2007

Yuval, G.: An Algorithm for Finding All Shortest Paths Using N2.81

Infinite-Precision Multiplications. Inf. Process. Lett. 4(6), 155–
156 (1976)

Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys.
Rev. A 60(4), 2746–2751 (1999)

Zarestkii, K.: Reconstructing a tree from the distances between its
leaves. Uspehi Mathematicheskikh Nauk 20, 90–92 (1965) (in
russian)

Zaroliagis, C.D.: Implementations and experimental studies of
dynamic graph algorithms. In: Experimental Algorithmics,
Dagstuhl seminar, September 2000, Lecture Notes in Com-
puter Science, vol. 2547. Springer (2002), Journal Article: J. Exp.
Algorithmics 229–278 (2000)

Zelikovsky, A.Z.: The 11/6-approximation algorithm for the Steiner
problem on networks. Algorithmica 9, 463–470 (1993)

Zhang, H., Hou, J.: On deriving the upper bound of ˛-lifetime for
large sensor networks. In: Proceedings of the 5th ACM Interna-
tional SymposiumonMobile AdHoc Networking & Computing
(MobiHoc 2004), 24–26 March 2004

Zhang, J.: Approximating the two-level facility location problem
via a quasi-greedy approach. In: Proceedings of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 808–817. SIAM, Philadelphia (2004). Also, Math. Program.
108, 159–176 (2006)

Zhang, J., Chen, B., Ye, Y.: A multiexchange local search algorithm
for the capacitated facility location problem. Math. Oper. Res.
30(2), 389–403 (2005)

Zhang, S., Xu, C., Deng, X.: Dynamic arbitrage-free asset pricing
with proportional transaction costs. Math. Finance 12(1), 89–
97 (2002)

Zhang, Z., Berman, P., Wiehe, T., Miller, W.: Post-processing long
pairwise alignments. Bioinformatics 15, 1012–1019 (1999)

Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubia-
towicz, J.: Tapestry: A resilient global-scale overlay for service
deployment. IEEE J. Sel. Areas Commun. (2003)

Zhao, J., Malmberg, R., Cai, L.: Rapid ab initio rna folding including
pseudoknots via graph tree decomposition. In: Proc.Workshop
on Algorithms in Bioinformatics. Lecture Notes in Computer
Science, vol. 4175, pp. 262–273. Springer, Berlin (2006)

Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach
for data delivery in sparse mobile ad hoc networks. In: Murai,
J., Perkins, C., Tassiulas, L. (eds.) 5th ACM international sym-
posium on Mobile ad hoc networking and computing (Mo-
biHoc 2004), pp 187–198. ACM Press, Roppongi Hills, Tokyo
(2004)

Zheng, R., He, G., Gupta, I., Sha, L.: Time idexing in sensor networks.
In: Proceedings of 1st IEEE International Conference on Mo-
bile Ad-hoc and Sensor Systems (MASS), Fort Lauderdale, 24–
27 October 2004

Zheng, S.Q., Lim, J.S., Iyengar, S.S.: Finding obstacle-avoiding short-
est paths using implicit connection graphs. IEEE Trans. Com-
put. Aided Des. 15, 103–110 (1996)

Zhong, S., Li, L., Liu, Y., Yang, Y.R.: On designing incentive-
compatible routing and forwarding protocols in wireless ad-
hoc networks –an integrated approach using game theoreti-
cal and cryptographic techniques. In: Proceedings of the 11th
ACM Annual international Conference on Mobile Computing
and Networking, Cologne, 28 August – 2 September 2005

Zhou, H.: A new efficient retiming algorithm derived by formal ma-
nipulation. In: Workshop Notes of Intl. Workshop on Logic Syn-
thesis, Temecula, CA, June (2004)

Zhou, H.: Deriving a new efficient algorithm for min-period retim-
ing. In Asia and South Pacific Design Automation Conference,
Shanghai, China, Jan. ACM Press, New York (2005)

Zhou, H., Shenoy, N., Nicholls, W.: Efficient minimum spanning tree
construction without delaunay triangulation. In: Proc. Asian
and South Pacific Design Automation Conference, Yokohama,
Japan (2001)

Zhou, H., Shenoy, N., Nicholls, W.: Efficient spanning tree construc-
tionwithout delaunay triangulation. Inf. Proc. Lett. 81, 271–276
(2002)

Zhou, L.: On a conjecture by Gale about one-sided matching prob-
lems. J. Econ. Theory 52(1), 123–135 (1990)

Zhou, L., van Renesse, R., Marsh,M.: Implementing IPv6 as a Peer-to-
Peer Overlay Network. In: Proceedings of the 21st IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’02), pp. 347 (2002)

Zhu, D., Melhem, R., Childers, B.: Scheduling with Dynamic Volt-
age/Speed Adjustment Using Slack Reclamation in Multi-
Processor RealTime Systems. Proceedings of the 22nd IEEE
Real-Time Systems Symposium (RTSS’01), pp. 84–94. IEEECom-
puter Society, Washington, DC, USA (2001)

Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.:
Bayeux: An architecture for scalable and fault-tolerant wide-
area data dissemination. In: Proceedings of the Eleventh Inter-
nationalWorkshop on Network andOperating System Support
for Digital Audio and Video (NOSSDAV 2001), 2001

Zibert, K., Saal, R.: On Computer Aided Hybrid Circuit Layout.
Proceedings of the IEEE Intl. Symp. on Circuits and Systems,
pp. 314–318 (1974)

Ziv, J.: Personal communication (1995)
Ziv, J., Lempel, A.: A universal algorithm for sequential data com-

pression. IEEE Trans. Inf. Theor. 23, 337–343 (1977)
Ziv, J., Lempel, A.: Compression of Individual Sequences via Vari-

able Rate Coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)
Zollinger, A.: Networking Unleashed: Geographic Routing and

Topology Control in Ad Hoc and Sensor Networks, Ph. D. the-
sis, ETH Zurich, Switzerland Diss. ETH 16025 (2005)

Zuckerman, D.: Linear degree extractors and the inapproximability
of max clique and chromatic number. In: Proceedings of the
38th annual ACM symposium on Theory of Computing (2006)
pp. 681–690.

Zuker, M.: Calculating nucleic acid secondary structure. Curr. Opin.
Struct. Biol. 10, 303–310 (2000)

Zuker, M.: On finding all suboptimal foldings of an RNA molecule.
Science 244, 48–52 (1989)

Zuker, M., Stiegler, P.: Optimal computer folding of large RNA se-
quences using thermodynamics and auxiliary information. Nu-
cleic Acids Res. 9, 133–148 (1981)

Zukowski, M., Heman, S., Boncz, P.A.: Architecture-conscious hash-
ing. In: Proceedings of the International Workshop on Data

Bibliography 1155

Management on New Hardware (DaMoN), Article No. 6. ACM
Press, Chicago, Illinois, USA, 25 June 2006

Zwick, U.: All pairs shortest paths using bridging sets and rectangu-
lar matrix multiplication. J. ACM 49(3), 289–317 (2002)

Zwick, U.: Exact and approximate distances in graphs – a sur-
vey. In: Proc. 9th European Symposium on Algorithms (ESA),

2001, pp. 33–48. See updated version at http://www.cs.tau.ac.
il/~zwick/

Zyablov, V.V., Pinsker, M.S.: List cascade decoding. Probl. Inf. Trans.
17(4), 29–34 (1981) (in Russian); pp. 236–240 (in English) (1982)

Zykov, A.A.: Theory of Finite Graphs. Nauka, Novosibirsk (1969). (In
Russian)

http://www.cs.tau.ac.il/~zwick
http://www.cs.tau.ac.il/~zwick

Index

A

Abelian hidden subgroup
problem 1

Abelian stabilizer problem 1
AC0 operation 278
Access-graph model 601
Active replication 73, 129
Acyclic job shop scheduling 616
Ad hoc networks 161, 355,

466, 725
Adaptive partition 4
Adaptive text 65
Additive 651
Additive approximation 57
Advertisement 660
Affine function 461
Affine gap penalty 460
Agreement 116

subtree 492
Agrep 46, 818
AJL algorithm 700
Algebraic algorithms 222
Algebraic decoding 453
Algorithm 143, 438, 829, 888

analysis 31, 34
animation 1008
engineering 387, 395, 1008

Algorithmic game theory 667
Algorithmic geometry of

numbers 841
Algorithmic learning theory 411
Algorithmic lower bounds 954
Algorithmic mechanism design

403, 970
Alignment 317

between compressed
strings 843

All pairs dynamic reachability 343

All pairs shortest path 28
problem 31

Alleles phasing 647
All-or-nothing multicommodity flow

problem 551
All-to-all communication 731
Almost additive spanners 867
Anrep 46
Anti-symmetric de novo

sequencing 640
Approximate nash equilibria 53
Approximate substrings 156
Approximate tandem repeat 48
Approximate text indexing 240
Approximation 735, 970

algorithm 40, 51, 57, 59, 88, 94,
134, 217, 231, 267, 281, 299, 349,
366, 368, 419, 470, 489, 539, 551,
554, 567, 737, 815, 868, 883, 897,
997, 1027

theory 438
Approximation ratio

performance 376
Arbitrage 62
Arrangement 871
Associative array 212
Asymptotically good quantum

codes 705
Asynchronous 855

communication hardware 761
processes 761

Asynchrony 304
vs synchrony 829

Atomic 855
broadcast 73, 129
congestion games 86, 183

Atomicity 761
Attribute efficient learning 77

Automata-based searching 768
Automated development and

analysis of algorithms 79
Automorphism group 373
Autonomic system control 812
Autopoesis 812
Average case analysis 94

of algorithms 195
Average flow time 320
Average response time 320, 806
Average weighted completion

time 544

B

Backdoor sets 639
Baker’s approach 59
Balance algorithm (weighted caching

algorithm) 601
Balanced 168

cut 519, 815
parentheses 912
partitioning 138

Ball packing 871
Balls and bins 942
Bandwidth allocation 803
Base pairs 783
BB 571
BDDs 90, 932
Belief propagation 479
Benign faults 198
Best fit 94
Better approximation 900
Bichromatic closest pairs 533
Bid-ask spreads 62
Bimatrix game 53, 166, 444
Bin packing 57
Binary

bit-vector 748

1158 Index

character 246
code 179
consensus 723
matrix multiplication 310
relations 915
search tree BST 592
trees 912

Bioinformatics 270
Bipartite graphs 69, 745
Bisection 815
Bit parallelism 46, 768, 818
Bit-vectors 748
Book embedding 912
Book thickness 912
Boolean

circuits 423
Fourier analysis 429
functions 90
satisfiability 286

Border 824
Bottleneck algorithms 803
Bounded degree tree 231
Bounded number of states 644
Branch and reduce 284
Branch and search 1006
Branchwidth 101
Bridging set 31
Broadcast 116, 217, 228, 233, 526,

528, 731
Brouwer’s fixed point 166, 578
BSG 317
Budget Balance 571
Buffer management 621
Burrows-Wheeler Transform 98
Byte-based code 179
Byzantine faults 198
Byzantine quorums 715

C

Cache memory 37
Cache-oblivious 121, 123, 126
Caching 601
Causal order 129
CDN 611
Cell probe lower bounds 661
Cell probe model 43
Center strings 156
Certificate 417

size 132
CGAL 274

Channel assignment 134
Channel capacity 453
Character 644
Character matrix

state 246, 644
Chord 611
Chordal graphs 968
Circuit 143

clustering 650
layout 754, 757
optimization 146, 149
partitioning 138, 650

Classification 929
noise 894

Clique cover 368
Clique width 639
Clocks 152
Closest substrings 156
Cluster graphs 40
Clustering 299, 466, 470, 1020
Cnegative weights 839
CNN-problem 351
Coding theory 155, 438
Collage systems 171
College admissions problem 390
Collision detection 725
Collision-free packet

scheduling 248
Color coding 158
Coloring 466

the square of the graph 721
unstructured radio
networks 466

Combinational Circuits 90
Combinatorial

algorithm 442, 939
auction 205, 997
optimization 28, 143, 231, 395,
541, 732

pattern matching 265
search problems 565

Common approximate
substring 156

Communication algorithms
161, 248

Comparative analysis 34
Comparing evolutionary trees 495
Comparison of phylogenies 573
Competitive

algorithms 849

analysis 9, 34, 351, 515, 592,
601, 618, 621, 626, 786, 791,
1035

auctions 564
exchange 444
market equilibrium 347
ratio 94, 601, 806

Complement graph 310
Compressed

approximate string
matching 843

full-text indexing 174
set representations 179
suffix tree 174

Compression 438, 556
Computational algebraic number

theory 694, 698
Computational biology 270, 1006
Computational complexity 62,

166, 578
Computational equilibrium 444
Computational geometry 244, 274,

358, 360, 533, 654
Computational learning 425
Computational learning theory

132, 434, 438, 622
Computational models 123
Computer Aided Electronics

Design 322
Concave function 461
Concurrency 829
Concurrent algorithms 188
Concurrent computing 450
Condorcet winner 483
Configuration LP 57
Congestion 551, 616, 791

control 803
games 485, 665
minimization 737

Connected components 630
Connected dominating set 191,

376, 1020
Connectivity 195, 207, 332
Consensus 116, 198, 304, 723, 829

of trees 499
strings 156

Constraint satisfaction 507, 742
Construction algorithms 922
Construction of pure Nash

equilibria 183
Constructive zero bounds 788

Index 1159

Content delivery network 611
Content distribution 485
Contention 188
Context-aware compression 98
Convergence 7
Convex optimization 929
Convex partition 546
Cooperation 188
Cooperative game 168, 581
Coordination 152

ratio 667
Core 168
Coteries 715
Cournot game 888
Covering 463

problems 737
set problem 832

Cow-path problem 740
Critical section problem 188
Crown reduction 1003
Cryptography 438, 683

and learning 210
CSS quantum codes 705
Cycle graph 859

D

Data
compression 11, 98, 598,
939, 964

distribution 37
flow 728
mules 161
propagation 671
reduction rules 832
streams 1024
structures 43, 108
transform 112
warehouse and repository 939

DAWG 826
De novo sequencing 640
Decision tasks 70, 774, 956
Decision-tree complexity 541
Decoding 222, 453
Delaunay triangulation 207, 654
Delay-tolerant networks 161
Deletions-only dynamic all-pairs

shortest paths 226
Derandomization 158
Design automorphism 373

Deterministic and randomized
algorithms 849

Deutsch–Jozsa algorithm 693
DHT 611
Dictionary 108, 121, 212

matching 240
problem 598

Difference-based coding 179
Diffuse adversary 34
Dijkstra’s algorithm 847
Dilation 40, 358, 616
Dilation graph 244
DIMACS implementation

challenge 399
Directional routing 355
Discrete

convex analysis 880
distribution 94
logarithm problem 683
optimization 1011

Disjoint paths 551
Disjunctive normal form 423, 431
Disk 291
Disk access model (DAM) 413
Disk packing 871
Dissection 317
Dissimilarity matrix 651
Distance

2 coloring 721
matrix 651
methods 253
oracles 40

Distance-based algorithm 251
Distance-based

transformations 573
Distributed

algorithms 152, 161, 548,
761, 803

approximation 463
communication 233
computing 70, 116, 188, 304,
400, 588, 604, 671, 728, 774,
855, 956

control 812
coordination 829
coupon collection 731
graph algorithms 256
hash table 611
systems 829

Distribution sorting 37
Divide and conquer 286, 519

DNA sequences similarity 460
DNF 385, 431
Dominant strategy 571

mechanisms 970
Dominating set 220, 284, 379,

463, 466
DPLL algorithms 286
Dynamic

data structures 330, 332, 335,
337, 342

graph algorithms 226, 330, 332,
335, 337, 342, 343, 846, 958

lower bounds 473
optimality 592
programming 46, 101, 818
trees 260
voltage scaling 1011

Dynamics 7

E

EDA 143
Edge connectivity 335, 337
Edge disjoint paths problem 551
Edit distance 46, 48, 265, 818
Edit graph 46
Electronic design automation

(EDA) 821
Element distinctness 686
Elias code 179
Elimination orderings 815
`1-Embeddings 815
Empirical entropy 98, 112
EMST 533
Emulation 400
End-to-end communication 161
Energy balance 728
Entropy 236

coding 65
empirical 98, 112

Enumerative algorithm 832
Equal-partition 806
Equilibrium 7
Equi-partition 806
Equivalence queries 132
EREW PRAM algorithms 630
Error-control codes 434
Error-correcting codes 222, 434,

438, 453, 479
Euclidean graphs 281

1160 Index

(Euclidean) minimum spanning
tree 526

Event 417
Evolutionary distance 863
Evolutionary hidden Markov

models 892
Evolutionary tree 251, 492, 495
Exact algorithm 469, 507

for SAT 286
Exact geometric computation 788
Exact learning 132

via queries 423
Exact pattern matching 824
Exchange market equilibrium see

Leontief economy equilibrium
Exclusion dimension 132
Experimental algorithmics 395,

1008
Exploration 786
Expression evaluation 788
External memory 108, 121,

123, 291
algorithm 37
data structures 800
model 413

F

Face routing 355, 793
Facility location 299, 470, 483
Failure detection 304
Failure function 826
Fairness 562, 834
False-name-proof auctions 308
Fast matrix multiplication 504
Fault tolerance 73, 116, 304, 313,

400, 522, 604, 812, 829, 855
Feedback arc set 815
Feedback queues 834
File caching 601
Filter techniques 788
Filtration 768
Fingerprinting 681
Finitary logic 90
Finite automata 46, 768
Finite projective planes 565
Finite state machines 932
First fit 94
First in first out (paging

algorithm) 601
Fixed path routing 585

Fixed-parameter
algorithm 88, 639
tractability 962

Fixed-priority scheduling 751
Floating-point filter 788
Floorplan 317
Flow 806

control 803
game 168, 581
time 320, 531, 562, 834

FlowMap 322
Flush when full (paging

algorithm) 601
FNCAS 735
Foreign exchange market 62
Formal verification 90
Forward (combinatorial, multi-unit)

auction 997
Fourier analysis 434, 438
Fourier transform 438
Four-Russian 818

technique 46
FPGA 821

Technology Mapping 322
Fractional covering problems 326
Fractional packing problems 326
Frequency assignment 721
Frequency scaling 870
Full-text index construction 919
Fully indexable dictionary

(FID) 748
Fully polynomial time approximation

scheme (FPTAS) 326, 419
Function representation 385
Functions 912, 915
Funnel sort 126

G

Gabriel graphs 207
Galled phylogenetic network 202
Galled-tree 202
Gallery tour problem 786
Game theory 166, 485, 578, 973
Games 888
Gamma Knife radiosurgery 871
Gap penalty 461
Gate sizing 345
Gaussian elimination 504
General equilibrium 347
Generalized Steiner network 349

Generalized Vickrey auction 353
Genome rearrangements 860, 863
Genome sequencing 565
Geographic routing 588
Geometric

algorithm 442
alignment 657
matching 657
network 244, 358, 360, 536
optimization 536
programming 274
routing 793
searching 740

Gibbs free energy 777, 783
Glushkov automaton 46
Glushkov-McNaughton-Yamada’s

automaton 768
Golomb code 179
Gossip 217, 731
Grammar transform based

compression 171
Graph 358, 786, 912, 968

algorithm 25, 28, 59, 88, 343,
519, 541, 732

bandwidth 366
classes 88
coloring 289, 368
connectivity 364
contraction 59, 88
covering 944
exploration 548
isomorphism 373
minors 59, 88, 101
model 837
modification 79
partitioning 489, 519, 554, 868
separators 519
theory 134

Greedy algorithm 376, 379
Greedy dual (weighted caching

algorithm) 601
Greedy forward routing 207
Greedy geographic routing 588
Gt-network 202
Guaranteed accuracy

computation 788
Guillotine cut 4
GVA 353

Index 1161

H

Hadamard code 434, 446
Hamiltonian circuit problem 961
Hamming distance 48
Haplotyping 647
Hardware verification 932
Hash table 212
Heap 278
Hidden subgroup problem 683
Hierarchical decomposition 585
Hierarchical memory 922
Highly connected subgraphs 371
High-order compression

models 98
High-performance computing 387
Hitting set 379
Homeostasis 812
Homomorphism testing 446
Hot-potato routing 248
Huffman and arithmetic coding 98
Hybrid algorithms 740
Hypergraph 143

matching 737
partitioning 138

Hyperlink analysis on the World
WideWeb 624

I

Id-consensus 723
Image

compression 65
matching 559
processing 559

Incentive compatible
mechanism 997
ranking 403
selection 403

Incentives for strategic agents 16
Incomplete lists 883
Independent set 405, 1020
Index data structure 925, 979
Indexed inexact pattern matching

problem 408
Indexed k-difference problem 408
Indexed k-mismatch problem 408
Indexed pattern searching problem

based on Hamming distance or
edit distance 408

Indexing 108, 265
data structures 964

Induced bipartitions 579
Inductive inference 411
Information theory 236, 939, 947
Integer codes 179
Interactive consistency 116
Interconnect optimization 1032
Interpolative code 179
Interval graphs 594
Inversion distance 859
Inversions 860
I/O 291
IP lookup 661
Isolated nodes 207
Isomorphism 492
Iterated Steiner tree 900
Iterative relaxation 345

J

Jones polynomial 700

K

k-Coloring 721
k-Connectivity 536
k-Decomposable graphs 968
Kernel 581, 929

matrix 929
Kernelization 220, 1003, 1006
Key agreement 709
Key distribution 709
Kidnapped robot problem 786
Kinetic data structure 417
k-Medians 470
Knapsack 419
Knill-Laflamme conditions for

quantum codes 705
k-Path 158
kSAT 83, 286, 469, 742, 953
k-Server problem 9, 351, 601, 1035

L

Landlord (file caching
algorithm) 601

Large-scale optimization 143, 272
Large-scale problems 387
Largest common point set 657
Lattice basis reduction 841
Layered graph drawing 631
Layout 143, 317
LDPC codes 479

Learning 429
AC0 circuits 429
an evolutionary tree 251
Boolean functions 77
from examples 411
linear threshold functions 77
with irrelevant attributes 77

Least recently used (paging
algorithm) 601

LEDA 274
Lempel–Ziv family 171
Leontief utility function 444
Levenshtein distance 46, 818
Lifetime maximization 728
Linear 567

algebra 681
linked lists 598
programming 143, 463,
554, 737

programming rounding 299
Link-cut trees 260
Lipton–Tarjan approach 59
List decoding 222, 434, 453
LLL algorithm 841
Load balancing 455, 457, 522

game 183
Local

algorithms 463
alignment 461
computation 466
lemma 616
search 299, 469, 470
treewidth 59

Localization problem 786
Localized communication 228
Location-based routing 793
Locks 188
Logic minimization 989
Logic optimization 322, 944
Logic synthesis 90, 944
Logical clocks 129
Logical time 129
Lookup-table mapping 322
Loose competitiveness 601
Lossless data compression 65,

112, 236
Low interference 228
Low sojourn times 562
Low weight 228
Low-density parity-check

codes 479

1162 Index

Low-distortion embeddings 477
Lower bounds 803
Low-stretch spanning

subgraphs 936
LP decoding 479
LP duality 581
LRU 34
LUT Mapping 322
LZ compression 236

M

Machine learning 425, 771
Machine scheduling 205, 539, 544
Majority 715

equilibrium 483
stable set 483

Makespan minimization 539
Mapping problem 786
Margin 929
Market equilibrium 205
Marking algorithm (paging

algorithm) 601
Markov chains 161
Markov decision processes 771
Markov paging 601
Mass spectrum 640
Matching 69, 94, 390, 463, 606,

639, 745, 877
in graphs 565
parentheses 912

Mathematical programming 134
Matrix multiplication 31, 681
Matroids 880
Max-flow min-cut 138, 554
Maximal independent set 466
Maximal margin 929
Maximum agreement subtree 495
Maximum agreement

supertree 497
Maximum compatible tree 499
Maximum deficiency 639
Maximum edge disjoint paths

problem 551
Maximum fault-tolerant

partition 522
Maximum flow 735
Maximummatching 504
Maximum refinement subtree

(MRST) 499
Maximum weight matching 735

Maximum weighted matching 780
Maximum-density segment

503, 506
Maximum-sum segment 503, 506
Max-min fairness 803
Measure and conquer 284
Mechanism design 7, 16, 165,

564, 997
Membership queries 132
Memory hierarchy 37
Message

ferrying 161
ordering 73
passing 256, 400
relays 161

Metric embeddings 51, 366, 868
Metrical service systems 351
Metrical task systems 34, 515
Metrics 51
Migration 217
Min-area retiming 146
Min-cost max-flow 143
Min-cut partitioning 138
Min-cut placement 143
Min-energy schedule 1011
Minimal fill problem 310
Minimal triangulation 310
Minimizing a linear function subject

to a submodular
constraint 379

Minimum cost network flow 345
Minimum cut linear

arrangement 815
Minimum distance problem 841
Minimum ratio cut 868
Minimum spanning tree 256, 528,

541, 630, 732
Minimum weight

triangulation 546
Mistake bounds 642
MLF algorithm 834
Mobile agent 548
Model Checking 90
Modeling 65
Moderately exponential time

algorithm 284
Moments of Boltzmann

distribution 777
Monetary system 62
Monotonic properties 207
Monotonicity 997

Motif detection 155
Motion 417
MS/MS 640
MTS 515
Multicast routing 571, 973
Multicommodity flow 551, 554,

585, 737
Multicommodity max-flow min-cut

theorems 815
Multicut 554
Multi-hop radio networks 725
Multi-item auctions 16
Multi-level feedback 320
Multi-level feedback algorithm 562
Multi-merge 37
Multiple machines 531
Multiple parentheses 912
Multiple sequence alignment 267
Multiple-HMM 892
Multiplicity automata 425
Multiprocessor 627
Multireader 761
Multisets 748
Multivariate polynomials 425
Multiway Cut 567
Multiwriter 761
Multi-writer multi-reader

register 723
Mutual exclusion 129, 188

N

Nash equilibrium 166, 571, 578,
660, 667

Nashification 183
Navigation 548, 786
NC class 627
Nearest-neighbor-interchange

distance 573
Negative cycle 576
Nemhauser-Trotter Theorem 1003
Netlist 143
Netlist partitioning 138
Network synchronization 936
Networks 791

algorithms 152
congestion 248
congestion games 810
design 231, 349, 536, 897
dilation 248
flow 143, 791

Index 1163

games 665
models of evolution 573
of parallel links 183
optimization 272

Neuro dynamic programming 771
Node disjoint paths problem 551
Noise threshold 313
Noise-tolerant learning 894
Noisy polynomial

reconstruction 222
Non-clairvoyant algorithms

562, 834
Non-cooperative networks 667
Non-greedy 28, 847
Non-hierarchical base pair

configurations 780
Non-linear optimization 143
Non-oblivious algorithms 803
NP-hard problems 79
NP-hardness of learning 385
Nrgrep 46, 818
Nuclear magnetic resonance 11
Nucleolus 581
Number theoretic problems 689,

694, 698

O

Oblivious adversaries 849
Oblivious algorithms 803
Oblivious routing 585, 791
Occupancy 942
One parameter agent 997
One-sided preference lists 745
One-to-all communication 233
Online

algorithm 9, 34, 77, 351, 455,
457, 531, 562, 594, 601, 618, 621,
626, 642, 740, 786, 791, 806, 834,
849, 1035

learning 77, 642
navigation 740
problems 515
query processing 272

Open addressing 212
Optimal BST 592
Optimal geometric trees 533
Optimal radius 253
Optimal triangulation 546
Ordinal trees 912
Orientation 852

Orthogonal range queries 661
Outerplanar graphs 912
Out-of-core 291
Overlap forest 859
Overlap graph 859
Overlay network 611

P

P2P 611
PAC learning 210, 385, 429,

431, 894
Packed Binary code 179
Packet

buffering 618
routing 248, 616
scheduling 248
switching 621

Packing 94, 463
density 871
problems 737

Pagenumber 912
Paging 34, 601

algorithm 601
caching 626

Pairwise alignment 460
Parallel algorithms 627
Parallel random access

machine 630
Parameterized algorithms 631
Parity 693
Parsimony 910
Parsing-based compression 236
Partial k-tree 968
Partial synchrony 198, 304
Partially oblivious algorithms 803
Partial-sums problem 473
Partitioning 143, 886
Passenger information system 837
Pattern analysis 929
Pattern matching 559, 824, 826

algorithms 982
on trees 499

Pauli spin matrices 705
Peaks 640
Peer to peer 611
Peptide de novo sequencing 640
Perceptron 642
Perfect phylogeny 246, 644, 647
Performance analysis 253
Performance driven clustering 650

Period 824
Periodic tasks 751
Permutations 126, 291, 915
Phylogenetic reconstruction 246,

644, 651
Phylogenetic tree 202, 246, 497,

573, 644, 651
Phylogenetics 499
Phylogenies 251, 579
Phylogeny reconstruction 253
Physical design 143, 852
Placement 143, 317
Planar embedding 656
Planar graph 59, 220, 337, 342,

654, 656, 839, 912
Planarity testing 342, 656
Point lattices 841
Point set matching 657
Pointer machine 278
Polygon 786
Polyhedral domain 871
Polymorphism 647
Polynomial time approximation

scheme 155, 191
Position auction 660
Position-based routing 355
Power efficient 228, 728
PPAD-completeness 166, 578
PRAM algorithm 627, 735
Precision-driven computation 788
Predecessor search 748
Prefix 824
Prefix sums 473
Price of anarchy 485, 665, 667, 810
Price of optimum 888
Primal-dual algorithms 601
Priority queue 278
Probabilistic

analysis of a Davis–Putnam
heuristic 954

byzantine agreement 604
embeddings 51
methods 405
quorums 715

Probably approximately correct
learning 622

Problem kernel 220
Program testing 681
Programmable logic 322
Programming relaxation 567
Proper learning 385

1164 Index

Property testing 446
Propositional logic 90
Propositional satisfiability 639
Proximity algorithms for

growth-restricted metrics
1027

Proximity-awareness 611
Pseudocodewords 479
Pseudoknots 780
Pseudonymous bidding 308
PTAS 281
Public transportation system 272
Pure Nash equilibria 810

Q

Q-learning 771
QoS 618
Quadratic forms 841
Quadratic programming 810
Quality of service 618
Quantum

algorithm 1, 677, 681, 683, 686,
689, 690, 694, 696, 698, 700, 712

channels 705
communication 947
complexity 1
computation 689, 694, 698,
700, 712

computing 1, 11, 313, 686, 696
cryptography 709
entanglement 703
error-correcting codes 705
Fourier transform 683
information theory 703
search 677, 686, 690, 696
teleportation 703

Quantum walk 677, 681, 686, 696
Query learning 132
Query/update tradeoffs 958
Queueing 904
Quine–McCluskey algorithm 989
Quorum 715

R

Radio broadcast 725
Radio network 233, 466, 731
Radiocoloring problem 721
Railway system 244
RAM model 847
Random allocations 942

Random faults 522
Random geometric graphs 207
Random graphs 195, 405
Random intersection graph

Gn;m;p 383
Random k-SAT 954
Random structures 742
Random walks 161, 686, 696

on the World Wide Web 624
Randomized algorithm 25, 405,

469, 601, 604, 671, 723, 728, 732,
735, 737, 1024

Randomized distributed
algorithms 725

Randomized searching 740
Range assignment 526
Rank space 661
Rate adjustment and allocation 803
Rate-monotonic scheduling 751
RC-Trees 260
Reachability 343, 846
Read-write register 400
Real-time systems 751
Rectangular partition 4
Recursion theory 411
Reducibility and completeness 939
Redundant assignments 522
Reed Solomon codes 222, 453
Reed–Muller code 434
Register 761, 855
Regular expressions 768
Regularity 761
Reliability 116, 812
Rendezvous 548
Repetitions 874
Representation-based hardness of

learning 385
Representation-independent

hardness for learning 210
Reservoir sampling 1024
Resource

allocation 188, 544
augmentation 834
scheduling 205
sharing 611

Response time 320, 806
Retiming 146, 149, 821
Reversal Sequence 860
Reversals 863
Revrevs 863
Riskless profit 62

R-Join, requirement join 897
RNA secondary structure 777

prediction 780, 783
RNA structures 985
RNC class 735
Road networks 395, 796
Robinson–Foulds 579
Robotics 786
Robust geometric

computation 788
Robustness 253, 274

against false-name bids 308
Rooted triplet 202, 497
Round robin 806
Route planning 796

system 272
Routing 355, 526, 548, 671, 754,

757, 796
R-Trees 800

S

Safeness 761
Safety radius approach 253
Sampling 1024
SAT 83, 286, 469, 742, 932, 953
Satisfiability 507, 742

threshold 954
Scheduling 320, 455, 531, 562, 627,

806, 834, 1011
related parallel machines 970

Search 712, 786
Search tree 121

algorithms 79
Searching 108

with partial information 235
Secondary storage 291
Secret keys 709
Secure multi-party

computation 604
Selectors 233
Self organizing lists 598
Self-indexing 176
Selfish agent 997
Selfish routing 667
Selfish strategies 667
Semi-adaptive text modeling 65
Semidefinite programming

368, 868
Semiglobal or semilocal sequence

similarity 818

Index 1165

Sensor networks 466, 728
Separating hyperplanes 642
Seperators 815
Sequence alignment 461
Sequence-pair 317
Sequencing 904
Sequential circuits 146, 149
Sequential consistency 450
Serializability 450
Series-parallel graphs 86
Server problems 515
Set cover 379
Set-associative cache 37
Sets 748
Shape curve computation 852
Shared coins 723
Shared memory 400, 723, 761, 855

wait-free 761
Shift function 824, 826
Shortest path 25, 40, 226, 272, 330,

395, 576, 837, 839, 847
Signal processing 438
Signed permutation 859, 860
Similarity between compressed

strings 843
Simple monotonic programs 345
Simulation 400
Single layer neural network 642
Single nucleotide 647
Single-minded agent 997
Single-parameter agents 970
Single-sequence 317
Singleton bound 453
Sink mobility 161
Ski-rental problem 849
Slicing floorplan 852
Smoothed analysis 578
Snapshot 855
Software library 442
Software visualization 1008
Sorting 126, 278, 291, 907

by reversals 860
Spanner 25, 40, 244, 358, 360, 654,

867, 936
Spanning forest 332
Spanning subgraphs 867
Spanning tree 231, 477, 754
Sparse certificates 371
Sparse dynamic programming 783
Sparseness 929
Sparsest cut 585, 868

Sparset cut 815
Spatial databases 800
Spatial search 677, 696
Speed scaling 870
Sphere packing 871
Spin cooling 11
Splay trees 260
Splitting algorithms 286
SQ dimension 894
Squares 874
Squid (file caching software) 601
Stability 390, 606, 877
Stabilizer codes 705
Stable admissions problem 390
Stable assignment problem 390
Stable b-matching problem 390
Stable marriage 390, 606, 877, 880,

883, 886
Stackelberg 888
Starvation 834
State initialization 11
State-machine replication 73, 129
Static membership 43
Static-priority scheduling 751
Statistical alignment 892
Statistical data compression 65
Statistical learning 622, 929
Statistical query 894
Steiner tree 168, 231, 537, 757, 900
Stochastic modeling of insertions and

deletions 892
Stochastic order relation between

Gn;m;p and Gn;p 383
Store-and-forward routing 616
Straight-line programs 171
Stretch factor 355, 360, 654
String algorithms 556, 559,

874, 925
and data structures 950

String indexing 950
String matching 824, 826
String pattern matching 171
Strings 265, 907
ST-trees 260
Subgraph detection 158
Submodular function 376, 900
Substring parsimony 910
Subtree-transfer distance 573
Successor problem 661
Succinct data structures 748,

912, 915

Suffix 824
array 112
sorting 919

Suffix tree 912, 922, 925
construction 919

Sugiyama approach 631
Sum of pairs score 267
Sum of products notation 431
Super dense coding 703
Support vector 929
Survivable network design 349, 536
Switch 618
Symmetry group 373
Synchronization 152, 188, 829, 936

T

Tandemmass spectrometry 640
Tandem repeats 874
Tangle number 101
Tango 592
Task decidability 829
Technique 818
Technology mapping 821, 944
Teleportation 947
Temperley-Lieb algebra 700
Template registration 559
Temporal Logic 932
Temporary tasks 457
Terms cooling 11
Text

compression 65, 171
indexing 240, 950
strings 915

Theory of searching aerial
photographs 982

Thompson automaton 46
Thompson’s automaton 768
Threshold behavior 383

of parities 431
Ties 883
Time-continuous Markov

models 892
Time-dependent 837
Time-expanded 837
Time/memory tradeoffs 548
Time-outs 304
Timestamp system 761
Timetable information 837
TOP 431
Top trees 260

1166 Index

Topological consistency 788
Topology control 228
Topology trees 260
Total exchange of information 731
Total order broadcast 73, 129
Traffic information system 272
Traffic routing 667
Transfers 217
Transient errors 812
Transistor sizing 345
Transitive closure 343, 846
Transportation network 244, 358
Transpositions 863
Transreversals 863
Trapdoor functions 210
Traveling salesman problem (TSP)

399, 517, 962
Trees 9, 499, 964

alignment score 267
comparison 579
covering 944
decomposition 968
isomorphism 492
metrics 51
navigation and search 964
realizable 651

Treewidth 88, 101, 639, 968
Triangle finding 690
Triangulation 244
Trie 826
Truthful 973
Truthful mechanism 970, 997
TSP 281, 399
Two dimensional pattern

matching 982
Two-dimensional index data

structures 979
Two-dimensional suffix array 979

Two-dimensional suffix tree 979
Two-intervals 985
Two-phase algorithm 31
Two-sided matching markets 485

U

UBOX 431
Unbounded searching 235
Undirected feedback 995
Undirected graph 847
Unicast 228
Uniform-distribution 429
Unique specification

dimension 132
Unit-disk graph 191, 793, 1027
Unsplittable flows 810
Urban street systems 358
Utilitarian objective 997

V

Variable voltage processor 1011
VCG mechanism 353, 973
Vertex

coloring 594
connectivity 335, 337
cover 463, 1003, 1006
folding 1006

Vickrey–Clarke–groves
mechanism 353

VLSI
CAD 143, 821, 852
design 650
physical design 1032
routing 737

Voltage scaling 870
Voting 715

W

Wait-free 723
shared variables 761

Walrasian equilibrium 205
Weakly exponential worst-case upper

bounds 286
Web information retrieval 624
Weighted

caching 601
completion time 544
directed graph 576
paging 601
random sampling 1024

Well-linked decomposition 551
Well-separated pair decomposition

1027
Well-supported approximate nash

equilibria 53
Winnow algorithm 77
Wire sizing 1032
Wire tapering 1032
Wireless communication 793

ad hoc networks 228
mesh networks 134
network 355, 526, 528, 1020
sensor networks 588, 671

Witness 31
Word RAM 278
Work function 34, 351, 1035
Worst case

analysis 94
approximation 849
constant lookup 212
coordination ratio 667

Z

Zindler curve 358
Ziv–Lempel compression 236

	front-matter
	fulltext01
	fulltext02
	fulltext03
	fulltext04
	fulltext05
	fulltext06
	fulltext07
	fulltext08
	fulltext09
	fulltext10
	fulltext11
	fulltext12
	fulltext13
	fulltext14
	fulltext15
	fulltext16
	fulltext17
	fulltext18
	fulltext19
	fulltext20
	fulltext21
	fulltext22
	fulltext23
	fulltext24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

