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Preface

The Encyclopedia of Algorithms aims to provide the researchers, students, and practitioners of algorithmic research with
a mechanism to efficiently and accurately find the names, definitions, key results, and further readings of important
algorithmic problems.

The work covers a wide range of algorithmic areas, and each algorithmic area is covered by a collection of entries.
An encyclopedia entry is an in-depth mini-survey of an algorithmic problem and is written by an expert researcher. The
entries for an algorithmic area are compiled by an area editor to survey the representative results in that area and can
form the core materials of a course in the area.

The Encyclopedia does not use the format of a conventional long survey for several reasons. A conventional survey
takes a handful of individuals too much time to write and is difficult to update. An encyclopedia entry contains the
same kinds of information as in a conventional survey, but an encyclopedia entry is much shorter and is much easier
for readers to absorb and for editors to update. Furthermore, an algorithmic area is surveyed by a collection of entries
which together provide a considerable amount of up-to-date information about the area, while the writing and updating
of the entries is distributed among multiple authors to speed up the work.

This reference work will be updated on a regular basis and will evolve towards primarily an Internet-based medium
to allow timely updates and fast search. If you have feedback regarding a particular entry, please feel free to communicate
directly with the author or the area editor of that entry. If you are interested in authoring an entry, please contact
a suitable area editor. If you have suggestions on how to improve the Encyclopedia as a whole, please contact me at
kao@northwestern.edu.

The credit of the Encyclopedia goes to the area editors, the entry authors, the entry reviewers, and the project editors
at Springer, including Jennifer Evans and Jennifer Carlson.

Ming-Yang Kao
Editor-in-Chief
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Problem Definition

The Abelian hidden subgroup problem is the problem
of finding generators for a subgroup K of an Abelian
group G, where this subgroup is defined implicitly by
a function f: G — X, for some finite set X. In particu-
lar, f has the property that f(v) = f(w) if and only if the
cosets! v + K and w + K are equal. In other words, f is con-
stant on the cosets of the subgroup K, and distinct on each
coset.

It is assumed that the group G is finitely generated and
that the elements of G and X have unique binary encod-
ings (the binary assumption is not so important, but it is
important to have unique encodings.) When using vari-
ables g and & (possibly with subscripts) multiplicative no-
tation is used for the group operations. Variables x and y
(possibly with subscripts) will denote integers with addi-
tion. The boldface versions x and y will denote tuples of
integers or binary strings.

By assumption, there is computational means of com-
puting the function f, typically a circuit or “black box” that
maps the encoding of a value g to the encoding of f(g). The

! Assuming additive notation for the group operation here.

theory of reversible computation implies that one can turn
a circuit for computing f(g) into a reversible circuit for
computing f(g) with a modest increase in the size of the
circuit. Thus it will be assumed that there is a reversible
circuit or black box that maps (g,z) — (g,z ® f(g)),
where @ denotes the bitwise XOR (sum modulo 2), and
z is any binary string of the same length as the encoding of
f@)-

Quantum mechanics implies that any reversible gate
can be extended linearly to a unitary operation that can
be implemented in the model of quantum computation.
Thus, it is assumed that there is a quantum circuit or
black box that implements the unitary map Uy: |g)|z)
Ig)z ® f(g))-

Although special cases of this problem have been con-
sidered in classical computer science, the general formu-
lation as the hidden subgroup problem seems to have
appeared in the context of quantum computing, since it
neatly encapsulates a family of “black-box” problems for
which quantum algorithms offer an exponential speed up
(in terms of query complexity) over classical algorithms.
For some explicit problems (i.e., where the black box
is replaced with a specific function, such as exponentia-
tion modulo N), there is a conjectured exponential speed

up.

Abelian Hidden Subgroup Problem

Input: Elements g1, g2,...,¢n € G that generate the
Abelian group G. A black box that implements Uy:
Imi,my, . omu)ly) = [myma, o me)|f() @ ),
where ¢ = g{"'gy"* ... gy, and K is the hidden subgroup
corresponding to f.

Output: Elements /iy, hy, ..., h; € G that generate K.

Here we use multiplicative notation for the group G in
order to be consistent with Kitaev’s formulation of the
Abelian stabilizer problem. Many of the applications of in-
terest typically use additive notation for the group G.

It is hard to trace the precise origin of this general for-
mulation of the problem, which simultaneously general-
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izes “Simon’s problem” [16], the order-finding problem
(which is the quantum part of the quantum factoring al-
gorithm [14]) and the discrete logarithm problem.

One of the earliest generalizations of Simon’s prob-
lem, the order-finding problem, and the discrete logarithm
problem, which captures the essence of the Abelian hidden
subgroup problem is the Abelian stabilizer problem, which
was solved by Kitaev [11] using a quantum algorithm in
his 1995 paper (and the solution also appears in [12]).

Let G be a group acting on a finite set X. That is, each
element of G acts as a map from X to X in such a way that
for any two elements g, h € G, g(h(z)) = (gh)(z) for all
z € X. For a particular element z € X, the set of elements
that fix z (that is the elements g € G such that g(z) = z)
form a subgroup. This subgroup is called the stabilizer of z
in G, denoted St;(2).

Abelian Stabilizer Problem

Input: Elements g, g>,...,¢, € G that generate the
group G. An element z € X. A black box that implements
UgG,x) : Imy.my, ... .my)|z) = |mi,my, ... my,)|g(2))
where g = g/"'gy" ... gn".

Output: Elements hy, h,, ..., h; € G that generate Stg(z).

Let f, denote the function from G to X that maps g € G
to g(z). One can implement Uy, using U, x)- The hidden
subgroup corresponding to f is Stg(z). Thus, the Abelian
stabilizer problem is a special case of the Abelian hidden
subgroup problem.

One of the subtle differences (discussed in Appendix 6
of [10]) between the above formulation of the Abelian
stabilizer problem and the Abelian hidden subgroup
problem is that Kitaev’s formulation gives a black box
that for any g,h € G maps |my,...,m,)|f.(2) +
[mi, ..., mp)|fz(hg)), where g = g/"' ¢)" ... gn" and es-
timates eigenvalues of shift operations of the form
| f2(£)) = |fz(hg)). In general, these shift operators are
not explicitly needed, and it suffices to be able to com-
pute a map of the form |y) — |f,(h) @ y) for any binary
string y.

Generalizations of this form have been known since
shortly after Shor presented his factoring and discrete log-
arithm algorithms. For example, in [18] the hidden sub-
group problem was discussed for a large class of finite
Abelian groups, and more generally in [2] for any fi-
nite Abelian group presented as a product of finite cyclic
groups. In [13] the Abelian hidden subgroup algorithm
was related to eigenvalue estimation.

Other problems which can be formulated in this way
include the following.

Deutsch’s Problem

Input: A black box that implements Uy: |x}|b) > |x)[b&®
f(x)), for some function f that maps Z, = {0, 1} to {0, 1}.
Output: “Constant” if f(0) = f(1), “balanced” if f(0) #
.

Note that f(x) = f(y) if and only if x — y € K, where K
is either {0} or Z; = {0,1}. If K = {0} then f is 1 —1 or
“balanced” and if K = Z, then f is constant [4,5].

Simon’s Problem

Input: A black box that implements Uy : [x)|b) = |x)|b®
f(x)) for some function f from ZJ to some set X (which
is assumed to consist of binary strings of some fixed
length) with the property that f(x) = f(y) if and only if
x—ye K ={0,s} forsomes € Z7.

Output: The “hidden” string s.

The decision version allows K = {0} and asks whether K
is trivial. Simon [16] presented an efficient algorithm for
solving this problem, and an exponential lower bound on
the query complexity. The solution to the Abelian hid-
den subgroup problem is a generalization of Simon’s al-
gorithm (which deals with finite groups with many gener-
ators) and Shor’s algorithms [14,12] (which deal with an
infinite group with one generator, and a finite group with
two generators).

Key Results

Theorem (Abelian stabilizer problem) There exists
a quantum algorithm that, given an instance of the Abelian
stabilizer problem, makes n + O(1) queries to Ug, x), uses
poly(n) other elementary quantum and classical opera-
tions, and with probability at least 2/3 outputs values

hi, hy, ..., hy such that Stg(z) = (h1) ® (hy) & --- ().

Kitaev first solved this problem (with a slightly higher
query complexity, because his eigenvalue estimation pro-
cedure was not optimal). An eigenvalue estimation proce-
dure based on the quantum Fourier transform achieves the
n + O(1) query complexity.

Theorem (Abelian hidden subgroup problem) There
exists a quantum algorithm that, given an instance of the
Abelian hidden subgroup problem, makes n + O(1) queries
to Uy, uses poly(n) other elementary quantum and classical
operations, and with probability at least 2/3 outputs values
hy,hy, ... hysuchthat K = (hy) @ (hy) @ --- (h;).

In some cases, the success probability can be made 1 with
the same complexity, and in general the success probabil-
ity can be made 1 — € using n + O(log(1/€)) queries and
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poly(n,log(1/€)) other elementary quantum and classical
operations.

Applications

Most of these applications in fact were known before the
Abelian stabilizer problem or the Abelian hidden sub-
group problem were formulated.

Finding the Order of an Element ina Group Letabean
element of a group H (which does not need to be Abelian).
Consider the function f from G = Z to the group H where
f(x) = a* for some element a of H. Then f(x) = f(y) if
and only if x — y € rZ. The hidden subgroup is K = rZ
and a generator for K gives the order r of a [14,12].

Discrete Logarithms Let a be an element of a group H
(which does not need to be Abelian), with a” =1, and
suppose b = a* from some unknown k. The integer k
is called the discrete logarithm of b to the base a. Con-
sider the function f from G =7, x Z, to H satisfying
f(x1,x2) = a*1b*2. Then f(x1, x2) = f(y1, y2) if and only
if (x1,22) — (y1. y2) € {(tk,—1),t =0,1,...,r—1}, which
is the subgroup ((k, —1)) of Z, x Z,. Thus, finding a gen-
erator for the hidden subgroup K will give the discrete log-
arithm k. Note that this algorithm works for H equal to the
multiplicative group of a finite field, or the additive group
of points on an elliptic curve, which are groups that are
used in public-key cryptography.

Hidden Linear Functions Let o be some permuta-
tion of Zx for some integer N. Let h be a function
from G=7Z xZ to ZN, h(x,y)=x+ay mod N. Let
f =0 o h. The hidden subgroup of f is ((—a, 1)). Boneh
and Lipton [1] showed that even if the linear structure of h
is hidden (by o), one can efficiently recover the parame-
ter a with a quantum algorithm.

Self-shift-equivalent Polynomials Given a polyno-
mial P in [ variables X1, X3, ..., X; over [Fy, the function f
that maps (a1, az,...,a;) € IFCII to P(X1—a1, Xo—az, ...,
X; — a;) is constant on cosets of a subgroup K of IF;.
This subgroup K is the set of shift-self-equivalences of the
polynomial P. Grigoriev [8] showed how to compute this
subgroup.

Decomposition of a Finitely Generated Group Let Gbe
a group with a unique binary representation for each ele-
ment of G, and assume that the group operation, and rec-
ognizing if a binary string represents an element of G or
not, can be done efficiently.

Given a set of generators g1, g2, . .., gn for a group G,
output a set of elements hy, hy, ..., h;, I < n, from the
group G such that G=(g1) ® (g2) ®--- D (g1). Such
a generating set can be found efficiently [3] from gener-
ators of the hidden subgroup of the function that maps

mp _mj my
g

(my,my,....mu) g/ 'g,

Discussion: What About non-Abelian Groups?

The great success of quantum algorithms for solving the
Abelian hidden subgroup problem leads to the natural
question of whether it can solve the hidden subgroup
problem for non-Abelian groups. It has been shown that
a polynomial number of queries suffice [7]; however, in
general there is no bound on the overall computational
complexity (which includes other elementary quantum or
classical operations).

This question has been studied by many researchers,
and efficient quantum algorithms can be found for some
non-Abelian groups. However, at present, there is no effi-
cient algorithm for most non-Abelian groups. For exam-
ple, solving the hidden subgroup problem for the symmet-
ric group would directly solve the graph automorphism
problem.

Cross References

» Graph Isomorphism

» Quantum Algorithm for the Discrete Logarithm
Problem

» Quantum Algorithm for Factoring

» Quantum Algorithm for the Parity Problem

» Quantum Algorithm for Solving the Pell’s Equation
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Problem Definition

Adaptive partition is one of major techniques to de-
sign polynomial-time approximation algorithms, espe-
cially polynomial-time approximation schemes for ge-
ometric optimization problems. The framework of this

technique is to put the input data into a rectangle and par-
tition this rectangle into smaller rectangles by a sequence
of cuts so that the problem is also partitioned into smaller
ones. Associated with each adaptive partition, a feasible
solution can be constructed recursively from solutions
in smallest rectangles to bigger rectangles. With dynamic
programming, an optimal adaptive partition is computed
in polynomial time.

Historical Background

The adaptive partition was first introduced to the design of
an approximation algorithm by Du et al. [5] with a guillo-
tine cut while they studied the minimum edge length rect-
angular partition (MELRP) problem. They found that if
the partition is performed by a sequence of guillotine cuts,
then an optimal solution can be computed in polynomial
time with dynamic programming. Moreover, this optimal
solution can be used as a pretty good approximation solu-
tion for the original rectangular partition problem. Both
Arora [1] and Mitchell et al. [12,13] found that the cut
needs not to be completely guillotine. In other words, the
dynamic programming can still runs in polynomial time
if subproblems have some relations but the number of
relations is smaller. As the number of relations goes up,
the approximation solution obtained approaches the opti-
mal one, while the run time, of course, goes up. They also
found that this technique can be applied to many geomet-
ric optimization problems to obtain polynomial-time ap-
proximation schemes.

Key Results

The MELRP was proposed by Lingas et al. [9] as follows:
Given a rectilinear polygon possibly with some rectangular
holes, partition it into rectangles with minimum total edge
length. Each hole may be degenerated into a line segment
or a point.

There are several applications mentioned in [9] for
the background of the problem: process control (stock
cutting), automatic layout systems for integrated circuit
(channel definition), and architecture (internal partition-
ing into offices). The minimum edge length partition is
a natural goal for these problems since there is a certain
amount of waste (e. g., sawdust) or expense incurred (e. g.,
for dividing walls in the office) which is proportional to the
sum of edge lengths drawn. For very large scale integra-
tion (VLSI) design, this criterion is used in the MIT Place-
ment and Interconnect (PI) System to divide the routing
region up into channels - one finds that this produces large
“natural-looking” channels with a minimum of channel-
to-channel interaction to consider.
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They showed that while the MELRP in general is non-
deterministic polynomial-time (NP) hard, is can be solved
in time O(#n*) in the hole-free case, where n is the num-
ber of vertices in the input rectilinear polygon. The poly-
nomial algorithm is essentially a dynamic programming
based on the fact that there always exists an optimal so-
lution satisfying the property that every cut line passes
through a vertex of the input polygon or holes (namely,
every maximal cut segment is incident to a vertex of input
or holes).

A naive idea to design an approximation algorithm for
the general case is to use a forest connecting all holes to the
boundary and then to solve the resulting hole-free case in
O(n*) time. With this idea, Lingas [10] gave the first con-
stant-bounded approximation; its performance ratio is 41.

Motivated by a work of Du et al. [4] on application
of dynamic programming to optimal routing trees, Du
et al. [5] initiated an idea of adaptive partition. They used
a sequence of guillotine cuts to do rectangular partition;
each guillotine cut breaks a connected area into at least
two parts. With dynamic programming, they were able to
show that a minimum-length guillotine rectangular parti-
tion (i. e., one with minimum total length among all guillo-
tine partitions) can be computed in O(n°) time. Therefore,
they suggested using the minimum-length guillotine rect-
angular partition to approximate the MELRP and tried to
analyze the performance ratio. Unfortunately, they failed
to get a constant ratio in general and only obtained a upper
bound of 2 for the performance ratio in a NP-hard special
case [7]. In this special case, the input is a rectangle with
some points inside. Those points are holes. The following
is a simple version of the proof obtained by Du et al. [6].

Theorem The minimum-length guillotine rectangular
partition is an approximation with performance ratio 2 for
the MELRP.

Proof Consider a rectangular partition P. Let proj(P) de-
note the total length of segments on a horizontal line cov-
ered by vertical projection of the partition P.

A rectangular partition is said to be covered by a guil-
lotine partition if each segment in the rectangular partition
is covered by a guillotine cut of the latter. Let guil(P) de-
note the minimum length of the guillotine partition cover-
ing P and length(P) denote the total length of rectangular
partition P. It will be proved by induction on the number
k of segments in P that

guil(P) < 2-length(P) — projc(P) .

For k = 1, one has guil(P) = length(P). If the segment is
horizontal, then one has proj, (P) = length(P) and hence

guil(P) =2 - length(P) — proj.(P) .

If the segment is vertical, then proj,(P) = 0 and hence
guil(P) < 2-length(P) — proj.(P) .

Now, consider k > 2. Suppose that the initial rectangle has
each vertical edge of length a and each horizontal edge of
length b. Consider two cases:

Case 1. There exists a vertical segment s having length
greater than or equal to 0.5a. Apply a guillotine cut along
this segment s. Then the remainder of P is divided into
two parts P; and P, which form rectangular partition of
two resulting small rectangles, respectively. By induction
hypothesis,

guil(P;) < 2-length(P;) — projy(P;)
for i = 1, 2. Note that
guil(P) < guil(Py) + guil(P,) + a ,
length(P) = length(P;) + length(P,) + length(s) ,
projx(P) = projx(P1) + proj(Ps) .
Therefore,
guil(P) < 2-length(P) — proj.(P) .

Case 2. No vertical segment in P has length greater than
or equal to 0.5a. Choose a horizontal guillotine cut which
partitions the rectangle into two equal parts. Let P; and P,
denote rectangle partitions of the two parts, obtained from
P. By induction hypothesis,

guil(P;) <2-length(P;) — projx(P;)
for i = 1, 2. Note that
guil(P) = guil(Py) + guil(Py) + b,
length(P) > length(Py) + length(P;) ,
projx(P) = proj.(P1) = proj.(P2) = b..
Therefore,

guil(P) < 2-length(P) — proj.(P) .

Gonzalez and Zheng [8] improved this upper bound to
1.75 and conjectured that the performance ratio in this
case is 1.5.

Applications

In 1996, Arora [1] and Mitchell et al. [12,13,14] found that
the cut does not necessarily have to be completely guillo-
tine in order to have a polynomial-time computable op-
timal solution for such a sequence of cuts. Of course, the
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number of connections left by an incomplete guillotine cut
should be limited. While Mitchell et al. developed the m-
guillotine subdivision technique, Arora employed a “por-
tal” technique. They also found that their techniques can
be used for not only the MELRP, but also for many geo-
metric optimization problems [1,2,3,12,13,14,15].

Open Problems

One current important submicron step of technology evo-
lution in electronics interconnects has become the domi-
nating factor in determining VLSI performance and reli-
ability. Historically a problem of interconnects design in
VLSI has been very tightly intertwined with the classi-
cal problem in computational geometry: Steiner minimum
tree generation. Some essential characteristics of VLSI are
roughly proportional to the length of the interconnects.
Such characteristics include chip area, yield, power con-
sumption, reliability and timing. For example, the area oc-
cupied by interconnects is proportional to their combined
length and directly impacts the chip size. Larger chip size
results in reduction of yield and increase in manufactur-
ing cost. The costs of other components required for man-
ufacturing also increase with increase of the wire length.
From the performance angle, longer interconnects cause
an increase in power dissipation, degradation of timing
and other undesirable consequences. That is why find-
ing the minimum length of interconnects consistent with
other goals and constraints is such an important problem
at this stage of VLSI technology.

The combined length of the interconnects on a chip is
the sum of the lengths of individual signal nets. Each sig-
nal net is a set of electrically connected terminals, where
one terminal acts as a driver and other terminals are re-
ceivers of electrical signals. Historically, for the purpose of
finding an optimal configuration of interconnects, termi-
nals were considered as points on the plane, and a rout-
ing problem for individual nets was formulated as a clas-
sical Steiner minimum tree problem. For a variety of rea-
sons VLSI technology implements only rectilinear wiring
on the set of parallel planes, and, consequently, with few
exceptions, only a rectilinear version of the Steiner tree
is being considered in the VLSI domain. This problem is
known as the RSMT.

Further progress in VLSI technology resulted in more
factors than just length of interconnects gaining impor-
tance in selection of routing topologies. For example, the
presence of obstacles led to reexamination of techniques
used in studies of the rectilinear Steiner tree, since many
classical techniques do not work in this new environment.
To clarify the statement made above, we will consider

the construction of a rectilinear Steiner minimum tree in
the presence of obstacles.

Let us start with a rectilinear plane with obstacles de-
fined as rectilinear polygons. Given # points on the plane,
the objective is to find the shortest rectilinear Steiner tree
that interconnects them. One already knows that a polyno-
mial-time approximation scheme for RSMT without ob-
stacles exists and can be constructed by adaptive parti-
tion with application of either the portal or the m-guil-
lotine subdivision technique. However, both the m-guil-
lotine cut and the portal techniques do not work in the
case that obstacles exists. The portal technique is not ap-
plicable because obstacles may block movement of the line
that crosses the cut at a portal. The m-guillotine cut could
not be constructed either, because obstacles may break
down the cut segment that makes the Steiner tree con-
nected.

In spite of the facts stated above, the RSMT with
obstacles may still have polynomial-time approxima-
tion schemes.Strong evidence was given by Min et
al. [11]. They constructed a polynomial-time approxima-
tion scheme for the problem with obstacles under the con-
dition that the ratio of the longest edge and the shortest
edge of the minimum spanning tree is bounded by a con-
stant. This design is based on the classical nonadaptive
partition approach. All of the above make us believe that
a new adaptive technique can be found for the case with
obstacles.
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Problem Definition

The model studied here is the same as that which was
first presented in [11] by Varian. For some keyword,
N ={1,2,..., N}, advertisers bid K ={1,2,...,K} ad-
vertisement slots (K < N) which will be displayed on the
search result page from top to bottom. The higher the

advertisement is positioned, the more conspicuous it is
and the more clicks it receives. Thus for any two slots
ki, ky € K, if k; < ky, then slot k;’s click-through rate
(CTR) cg, is larger than cg,. Thatis, ¢ > ¢ > ... > ¢k,
from top to bottom, respectively. Moreover, each bidder
i € N has privately known information, v/, which repre-
sents the expected return per click to bidder i.

According to each bidder i’s submitted bid &', the auc-
tioneer then decides how to distribute the advertisement
slots among the bidders and how much they should pay
per click. In particular, the auctioneer first sorts the bid-
ders in decreasing order according to their submitted bids.
Then the highest slot is allocated to the first bidder, the
second highest slot is allocated to the second bidder, and
so on. The last N — K bidders would lose and get nothing.
Finally, each winner would be charged on a per-click basis
for the next bid in the descending bid queue. The losers
would pay nothing.

Let by denote the kth highest bid in the descending bid
queue and vy the true value of the kth bidder in the de-
scending queue. Thus if bidder i got slot k, i’s payment
would be by, - ck. Otherwise, his payment would be zero.
Hence, for any bidder i € 2V, if i were on slot k € K, his
utility (payoff) could be represented as

up =W — b)) -k .

Unlike one-round sealed-bid auctions where each bid-
der has only one chance to bid, the adword auction al-
lows bidders to change their bids any time. Once bids
are changed, the system refreshes the ranking automati-
cally and instantaneously. Accordingly, all bidders’ pay-
ment and utility are also recalculated. As a result, other
bidders could then have an incentive to change their bids
to increase their utility, and so on.

Definition 1 (Adword Pricing)

INPUT: the CTR for each slot, each bidder’s expected re-
turn per click on his advertising.

OUTPUT: the stable states of this auction and whether any
of these stable states can be reached from any initial states.

Key Results

Let b represent the bid vector (b',b?,...,b"Y). Vi € N,
O'(b) denotes bidder s place in the descending bid queue.
Let b=% = (b',..., b1, bi*l ... bN) denote the bids of
all other bidders except i. Mi(b~) returns a set defined as

{u;i(bijb—i)} . (1)

Definition 2 (Forward-Looking Best-Response Func-
tion) Given b™', suppose ©'(M'(b~"),b™") = k, then

M (b~') =arg max
bieo,vi]
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bidder i’s forward-looking response function Fib™) is
defined as

i _Ck (i _
fi(b_i) — Vl‘ Ch—1 (VI bk+1) 2 = k = Ka (2)
v! k=lork>K.
Definition 3 (Forward-Looking Nash Equilibrium) A
forward-looking best-response-function-based Nash equi-
librium is a strategy profile b such that
VieN, b eFi®h).

Definition 4 (Output Truthful [7,9]) For any instance of
an adword auction and the corresponding equilibrium set
£, if Ve € F and Vi € N, O'(e) = O'(v',...,vN), then
the adword auction is output truthful on E.

Theorem 5 An adword auction is output truthful on

Z‘forw:«lrd—looking-

Corollary 6 An adword auction has a unique forward-
looking Nash equilibrium.

Corollary 7 Any bidder’s payment under the forward-
looking Nash equilibrium is equal to her payment under the
VCG mechanism for the auction.

Corollary 8 Foradword auctions, the auctioneer’s revenue
in a forward-looking Nash equilibrium is equal to her rev-
enue under the VCG mechanism for the auction.

Definition 9 (Simultaneous Readjustment Scheme) In
a simultaneous readjustment scheme, all bidders par-
ticipating in the auction will use forward-looking best-
response function F to update their current bids simul-
taneously, which turns the current stage into a new stage.
Then, based on the new stage, all bidders may update their
bids again.

Theorem 10 An adword auction may not always converge
to a forward-looking Nash equilibrium under the simulta-
neous readjustment scheme even when the number of slots
is 3. But the protocol converges when the number of slots
is 2.

Definition 11 (Round-Robin Readjustment Scheme) In
the round-robin readjustment scheme, bidders update
their biddings one after the other, according to the order
of the bidder’s number or the order of the slots.

Theorem 12 An adword auction may not always converge
to a forward-looking Nash equilibrium under the round-
robin readjustment scheme even when the number of slots
is 4. But the protocol converges when the number of slots is 2
or3.

: if (j = 0) then
exit
end if
: Let i be the ID of the bidder whose current bid is b;
(and equivalently, b").

: Leth = O/ (M (b~7),b~").

6: Let F'(b™") be the best response function value for
Bidder i.

7: Re-sort the bid sequence. (So h is the slot of the new
bid F(b~") of Bidder i.)

8: if (h < j) then

call Lowest-First(K, j, by, by, -+ , bN),

w

10: else
11: call Lowest-First(K, h — 1, by, by, -+, by)
12: end if

Adwords Pricing, Figure 1
Readjustment Scheme: Lowest-First(K, j, b1, ba, -+« , by)

Theorem 13 Adword auctions converge to a forward-look-
ing Nash equilibrium in finite steps with a lowest-first ad-
justment scheme.

Theorem 14 Adword auctions converge to a forward-look-
ing Nash equilibrium with probability one under a random-
ized readjustment scheme.

Applications

Online adword auctions are the fastest growing form of
advertising on the Internet today. Many search engine
companies such as Google and Yahoo! make huge prof-
its on this kind of auction. Because advertisers can change
their bids any time, such auctions can reduce advertisers’
risk. Further, because the advertisement is only displayed
to those people who are really interested in it, such auc-
tions can reduce advertisers’ investment and increase their
return on investment.

For the same model, Varian [11] focuses on a subset
of Nash equilibrium called symmetric Nash equilibrium,
which can be formulated nicely and dealt with easily. Edel-
man et al. [8] study locally envy-free equilibrium, where
no player can improve her payoff by exchanging bid with
the player ranked one position above her. Coincidently,
locally envy-free equilibrium is equal to symmetric Nash
equilibrium proposed in [11]. Further, the revenue under
the forward-looking Nash equilibrium is the same as the
lower bound under Varian’s symmetric Nash equilibrium
and the lower bound under Edelman et al.’s locally envy-
free equilibrium. In [6], Cary et al. also study the dynamic
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model’s equilibrium and convergence based on the bal-
anced bidding strategy, which is actually the same as the
forward-looking best-response function in [4]. Cary et al.
explore the convergence properties under two models, a
synchronous model, which is the same as the simultaneous
readjustment scheme in [4], and an asynchronous model,
which is the same as the randomized readjustment scheme
in [4].

In addition, there are other models for adword auc-
tions. [1] and [5] study the model under which each bidder
can submit a daily budget, even the maximum number of
clicks per day, in addition to the price per click. Both [10]
and [3] study bidders’ behavior of bidding on several key-
words. [2] studies a model whereby the advertiser not only
submits a bid but additionally submits which positions he
is going to bid for.

Open Problems

The speed of convergence remains open. Does the dy-
namic model converge in polynomial time under random-
ized readjustment scheme? Even more, are there other
readjustment schemes that converge in polynomial time?

Cross References

» Multiple Unit Auctions with Budget Constraint
» Position Auction

Recommended Reading

1. Abrams, Z.: Revenue maximization when bidders have bud-
gets. In: Proceedings of the 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA-06), Miami, FL 2006,
pp. 1074-1082, ACM Press, New York (2006)

2. Aggarwal, G., Muthukrishnan, S., Feldman, J.: Bidding to the
top: Vcg and equilibria of position-based auctions. http://
www.citebase.org/abstract?id=oai:arXiv.org:cs/0607117
(2006)

3. Borgs, C., Chayes, J., Etesami, O., Immorlica, N., Jain, K., Mah-
dian, M.: Bid optimization in online advertisement auctions.
In: 2nd Workshop on Sponsored Search Auctions, in conjunc-
tion with the ACM Conference on Electronic Commerce (EC-
06), Ann Arbor, MI, 2006

4. Bu, T.-M,, Deng, X., Qi, Q.: Dynamics of strategic manipulation
in ad-words auction. In: 3rd Workshop on Sponsored Search
Auctions, in conjunction with WWW2007, Banff, Canada, 2007

5. Bu, T.-M,, Qi, Q., Sun, A.W.: Unconditional competitive auc-
tions with copy and budget constraints. In: Spirakis, P.G.,
Mavronicolas, M., Kontogiannis, S.C. (eds.) Internet and Net-
work Economics, 2nd International Workshop, WINE 2006. Lec-
ture Notes in Computer Science, vol. 4286, pp. 16-26, Patras,
Greece, December 15-17. Springer, Berlin (2006)

6. Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A.R.,
Mathieu, C., Schwarz, M.: Greedy bidding strategies for key-
word auctions. In: MacKie-Mason, J.K., Parkes, D.C., Resnick, P.

(eds.) Proceedings of the 8th ACM Conference on Electronic
Commerce (EC-2007), San Diego, California, USA, June 11-15
2007, pp. 262-271. ACM, New York (2007)

7. Chen, X, Deng, X, Liu, B.J.: On incentive compatible com-
petitive selection protocol. In: Computing and Combinatorics,
12th Annual International Conference, COCOON 2006, Taipei,
Taiwan, 15 August 2006. Lecture Notes in Computer Science,
vol. 4112, pp. 13-22. Springer, Berlin (2006)

8. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising
and the generalized second price auction: selling billions of
dollars worth of dollars worth of keywords. In: 2nd Workshop
on Sponsored Search Auctions, in conjunction with the ACM
Conference on Electronic Commerce (EC-06), Ann Arbor, MI,
June 2006

9. Kao, M.-Y., Li, X.-Y.,, Wang, W.: Output truthful versus input
truthful: a new concept for algorithmic mechanism design
(2006)

. Kitts, B., Leblanc, B.: Optimal bidding on keyword auctions.
Electronic Markets, Special issue: Innovative Auction Markets
14(3), 186-201 (2004)

11. Varian, H.R.: Position auctions. Int. J. Ind. Organ. 25(6), 1163-

1178 (2007) http://www.sims.berkeley.edu/~hal/Papers/2006/
position.pdf. Accessed 29 March 2006

|
Agreement

» Asynchronous Consensus Impossibility
» Consensus with Partial Synchrony
» Randomization in Distributed Computing

I
Algorithm DC-Tree
for k Servers on Trees
1991; Chrobak, Larmore

MAREK CHROBAK
Department of Computer Science,
University of California, Riverside, CA, USA

Problem Definition

In the k-server problem, one wishes to schedule the move-
ment of k servers in a metric space M, in response to
asequence @ =y, 12,..., 1, of requests, where r; € M for
each i. Initially, all the servers are located at some point
ro € M. After each request r; is issued, one of the k servers
must move to ;. A schedule specifies which server moves
to each request. The cost of a schedule is the total distance
traveled by the servers, and our objective is to find a sched-
ule with minimum cost.

In the online version of the k-server problem the deci-
sion as to which server to move to each request r; must
be made before the next request ry; is issued. In other
words, the choice of this server is a function of requests
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Algorithm DC-Tree for k Servers on Trees, Figure 1

Algorithm DC-TREE serving a request on r. The initial configuration is on the left; the configuration after the service is completed is
on the right. At first, all servers are active. When server 3 reaches point x, server 1 becomes inactive. When server 3 reaches point y,

server 2 becomes inactive

ri,ta2, ..., ri. It is quite easy to see that in this online sce-
nario it is not possible to guarantee an optimal schedule.
The accuracy of online algorithms is often measured us-
ing competitive analysis. If A is an online k-server algo-
rithm, denote by cost4 (o) the cost of the schedule pro-
duced by A on a request sequence o, and by opt(o) the
cost of the optimal schedule. A is called R-competitive if
cost4(0) < R - opt(0) + B, where B is a constant that may
depend on M and ry. The smallest such R is called the com-
petitive ratio of A. Of course, the smaller the R the better.

The k-server problem was introduced by Manasse, Mc-
Geoch, and Sleator [7,8], who proved that there is no on-
line R-competitive algorithm for R < k, for any metric
space with at least k + 1 points. They also gave a 2-com-
petitive algorithm for k = 2 and formulated what is now
known as the k-server conjecture, which postulates that
there exists a k-competitive online algorithm for all k.
Koutsoupias and Papadimitriou [5,6] proved that the so-
called work-function algorithm has competitive ratio at
most 2k — 1, which to date remains the best upper bound
known.

Efforts to prove the k-server conjecture led to dis-
coveries of k-competitive algorithms for some restricted
classes of metric spaces, including Algorithm DC-TREE for
trees [4] presented in the next section. (See [1,2,3] for other
examples.) A tree is a metric space defined by a connected
acyclic graph whose edges are treated as line segments of
arbitrary positive lengths. This metric space includes both
the tree’s vertices and the points on the edges, and the dis-
tances are measured along the (unique) shortest paths.

Key Results

Let T be a tree, as defined above. Given the current server
configuration S = {s1, ..., s}, where s; denotes the loca-
tion of server j, and a request point r, the algorithm will
move several servers, with one of them ending up on r. For
two points x, y € T, let [x, y] be the unique path from x to
yin T. A server j is called active if there is no other server
in [s;. 7] — {sj},andj is the minimum-index server located
on s; (the last condition is needed only to break ties).

Algorithm DC-TREE

On a request r, move all active servers, continuously and
with the same speed, towards r, until one of them reaches
the request. Note that during this process some active
servers may become inactive, in which case they halt.
Clearly, the server that will arrive at r is the one that was
closest to r at the time when r was issued. Figure 1 shows
how DC-TREE serves a request 7.

The competitive analysis of Algorithm DC-TREE is
based on a potential argument. The cost of Algorithm DC-
TREE is compared to that of an adversary who serves the
requests with her own servers. Denoting by A the con-
figuration of the adversary servers at a given step, define
the potential by @ = k- D(S, A) + Zi<j d(s;.s;j), where
D(S, A) is the cost of the minimum matching between S
and A. At each step, the adversary first moves one of her
servers to r. In this sub-step the potential increases by at
most k times the increase of the adversary’s cost. Then, Al-
gorithm DC-TREE serves the request. One can show that
then the sum of @ and DC-TREE’s cost does not increase.
These two facts, by amortization over the whole request
sequence, imply the following result [4]:

Theorem ([4]) Algorithm DC-TREE is k-competitive on
trees.

Applications

The k-server problem is an abstraction of various schedul-
ing problems, including emergency crew scheduling,
caching in multilevel memory systems, or scheduling head
movement in 2-headed disks. Nevertheless, due to its ab-
stract nature, the k-server problem is mainly of theoretical
interest.

Algorithm DC-TREE can be applied to other spaces
by “embedding” them into trees. For example, a uniform
metric space (with all distances equal 1) can be represented
by a star with arms of length 1/2, and thus Algorithm DC-
TREE can be applied to those spaces. This also immediately
gives a k-competitive algorithm for the caching problem,
where the objective is to manage a two-level memory sys-
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tem consisting of a large main memory and a cache that
can store up to k memory items. If an item is in the cache,
it can be accessed at cost 0, otherwise it costs 1 to read
it from the main memory. This caching problem can be
thought of as the k-server problem in a uniform metric
space where the server positions represent the items re-
siding in the cache. This idea can be extended further to
the weighted caching [3], which is a generalization of the
caching problem where different items may have different
costs. In fact, if one can embed a metric space M into a tree
with distortion bounded by §, then Algorithm DC-TREE
yields a § k-competitive algorithm for M.

Open Problems

The k-server conjecture — whether there is a k-competi-
tive algorithm for k servers in any metric space — remains
open. It would be of interest to prove it for some natural
special cases, for example the plane, either with the Eu-
clidean or Manhattan metric. (A k-competitive algorithm
for the Manhattan plane for k = 2, 3 servers is known [1],
but not for k > 4.)

Very little is known about online randomized algo-
rithms for k-servers. In fact, even for k = 2 it is not known
if there is a randomized algorithm with competitive ratio
smaller than 2.
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Problem Definition

The fusion of concepts taken from the fields of quan-
tum computation, data compression, and thermodynam-
ics, has recently yielded novel algorithms that resolve
problems in nuclear magnetic resonance and potentially
in other areas as well; algorithms that “cool down” physi-
cal systems.

e A leading candidate technology for the construction

of quantum computers is Nuclear Magnetic Resonance
(NMR). This technology has the advantage of being
well-established for other purposes, such as chemistry
and medicine. Hence, it does not require new and ex-
otic equipment, in contrast to ion traps and optical lat-
tices, to name a few. However, when using standard
NMR techniques (not only for quantum computing
purposes) one has to live with the fact that the state can
only be initialized in a very noisy manner: The parti-
cles’ spins point in mostly random directions, with only
a tiny bias towards the desired state.
The key idea of Schulman and Vazirani [13] is to com-
bine the tools of both data compression and quan-
tum computation, to suggest a scalable state initializa-
tion process, a “molecular-scale heat engine”. Based
on Schulman and Vazirani’s method, Boykin, Mor,
Roychowdhury, Vatan, and Vrijen [2] then developed
a new process, “heat-bath algorithmic cooling”, to sig-
nificantly improve the state initialization process, by
opening the system to the environment. Strikingly, this
offered a way to put to good use the phenomenon of
decoherence, which is usually considered to be the vil-
lain in quantum computation. These two methods are
now sometimes called “closed-system” (or “reversible”)
algorithmic cooling, and “open-system” algorithmic
cooling, respectively.
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o The far-reaching consequence of this research lies in
the possibility of reaching beyond the potential imple-
mentation of remote-future quantum computing de-
vices. An efficient technique to generate ensembles of
spins that are highly polarized by external magnetic
fields is considered to be a Holy Grail in NMR spec-
troscopy. Spin-half nuclei have steady-state polariza-
tion biases that increase inversely with temperature;
therefore, spins exhibiting polarization biases above
their thermal-equilibrium biases are considered cool.
Such cooled spins present an improved signal-to-noise
ratio if used in NMR spectroscopy or imaging.
Existing spin-cooling techniques are limited in their
efficiency and usefulness. Algorithmic cooling is
a promising new spin-cooling approach that employs
data compression methods in open systems. It reduces
the entropy of spins to a point far beyond Shannon’s
entropy bound on reversible entropy manipulations,
thus increasing their polarization biases. As a result, it
is conceivable that the open-system algorithmic cool-
ing technique could be harnessed to improve on cur-
rent uses of NMR in areas such as chemistry, material
science, and even medicine, since NMR is at the basis
of MRI - Magnetic Resonance Imaging.

Basic Concepts

Loss-Less in-Place Data Compression Given a bit-
string of length #, such that the probability distribution
is known and far enough from the uniform distribution,
one can use data compression to generate a shorter string,
say of m bits, such that the entropy of each bit is much
closer to one. As a simple example, consider a four-bit-
string which is distributed as follows; pooor = pooro =
Potoo = Piooo = 1/4, with p; the probability of the string
i. The probability of any other string value is exactly zero,
so the probabilities sum up to one. Then, the bit-string
can be compressed, via a loss-less compression algorithm,
into a 2-bit string that holds the binary description of the
location of “1” in the above four strings. As the proba-
bilities of all these strings are zero, one can also envision
a similar process that generates an output which is of the
same length n as the input, but such that the entropy is
compressed via a loss-less, in-place, data compression into
the last two bits. For instance, logical gates that operate
on the bits can perform the permutation 0001 — 0000,
0010 — 0001, 0100 — 0010 and 1000 — 0011, while the
other input strings transform to output strings in which
the two most significant bits are not zero; for instance
1100 — 1010. One can easily see that the entropy is now
fully concentrated on the two least significant bits, which

are useful in data compression, while the two most signif-
icant bits have zero entropy.

In order to gain some intuition about the design of
logical gates that perform entropy manipulations, one can
look at a closely related scenario which was first considered
by von Neumann. He showed a method to extract fair coin
flips, given a biased coin; he suggested taking a pair of bi-
ased coin flips, with results a and b, and using the value of
a conditioned on a # b. A simple calculation shows that
a =0 and a =1 are now obtained with equal probabili-
ties, and therefore the entropy of coin a is increased in this
case to 1. The opposite case, the probability distribution
of a given that a = b, results in a highly determined coin
flip; namely, a (conditioned) coin-flip with a higher bias or
lower entropy. A gate that flips the value of b if (and only
if) a = 1 is called a Controlled-NOT gate. If after applying
such a gate b = 1 is obtained, this means that a # b prior
to the gate operation, thus now the entropy of a is 1. If,
on the other hand, after applying such a gate b = 0 is ob-
tained, this means that a = b prior to the gate operation,
thus the entropy of a is now lower than its initial value.

Spin Temperature, Polarization Bias, and Effective
Cooling In physics, two-level systems, namely systems
that possess only binary values, are useful in many ways.
Often it is important to initialize such systems to a pure
state ‘0’ or to a probability distribution which is as close
as possible to a pure state ‘0’. In these physical two-level
systems a data compression process that brings some of
them closer to a pure state can be considered as “cool-
ing”. For quantum two-level systems there is a simple
connection between temperature, entropy, and popula-
tion probability. The population-probability difference be-
tween these two levels is known as the polarization bias,
€. Consider a single spin-half particle - for instance a hy-
drogen nucleus - in a constant magnetic field. At equi-
librium with a thermal heat-bath the probability of this
spin to be up or down (i.e., parallel or anti-parallel to
the field direction) is given by: py = 1<, and p, = 15¢.
The entropy H of the spin is H(single-bit) = H(1/2 + €/2)
with H(P) = —Plog, P — (1 — P)log,(1 — P) measured
in bits. The two pure states of a spin-half nucleus are com-
monly written as | 1) =0 and | |) =1’; the |) notation
will be clarified elsewhere!. The polarization bias of the
spin at thermal equilibrium is given by € = p4 — p,. For
such a physical system the bias is obtained via a quantum
hyB

statistical mechanics argument, € = tanh (m), where
B

h is Planck’s constant, B is the magnetic field, y is the

'Quantum Computing entries in this encyclopedia, e.g. » Quan-
tum Dense Coding
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particle-dependent gyromagnetic constant?, K is Boltz-
man’s coefficient, and T is the thermal heat-bath temper-
ature. For high temperatures or small biases € &LBBT,
thus the bias is inversely proportional to the temperature.
Typical values of € for spin-half nuclei at room temper-
ature (and magnetic field of ~ 10 Tesla) are 107°-107°,
and therefore most of the analysis here is done under the
assumption that € <« 1. The spin temperature at equi-
librium is thus T = %, and its (Shannon) entropy is
H=1-—(e?/In4).

A spin temperature out of thermal equilibrium is still
defined via the same formulas. Therefore, when a system is
moved away from thermal equilibrium, achieving a greater
polarization bias is equivalent to cooling the spins with-
out cooling the system, and to decreasing their entropy.
The process of increasing the bias (reducing the entropy)
without decreasing the temperature of the thermal-bath is
known as “effective cooling”. After a typical period of time,
termed the thermalization time or relaxation time, the bias
will gradually revert to its thermal equilibrium value; yet
during this process, typically in the order of seconds, the
effectively-cooled spin may be used for various purposes
as described in Sect. “Applications”.

Consider a molecule that contains # adjacent spin-half
nuclei arranged in a line; these form the bits of the string.
These spins are initially at thermal equilibrium due to their
interaction with the environment. At room temperature
the bits at thermal equilibrium are not correlated to their
neighbors on the same string: More precisely, the corre-
lation is very small and can be ignored. Furthermore, in
a liquid state one can also neglect the interaction between
strings (between molecules). It is convenient to write the
probability distribution of a single spin at thermal equilib-
rium using the “density matrix” notation

_(pr O\ _[((I+e)2 0
pf‘(o p¢)_( 0 (1—6)/2)’ )

since these two-level systems are of a quantum nature
(namely, these are quantum bits — qubits), and in general,
can also have states other than just a classical probability
distribution over ‘0" and ‘1’. The classical case will now be
considered, where p contains only diagonal elements and
these describe a conventional probability distribution. At
thermal equilibrium, the state of #n = 2 uncorrelated qubits

that have the same polarization bias is described by the
{n=2}

density matrix p; ;' = pe ® pe, where ® means tensor

2This constant, y, is thus responsible for the difference in equi-
librium polarization bias [e. g., a hydrogen nucleus is 4 times more
polarized than a carbon isotope '*C nucleus, but about 10> less polar-
ized than an electron spin].

product. The probability of the state 00, for instance, is
then (1 +¢€)/2 x (1 + €)/2 = (1 + €)?/4 (etc.). Similarly, the
initial state of an n-qubit system of this type, at thermal
equilibrium, is

P = pe ® pe ® -+ ® pe . )

This state represents a thermal probability distribution,
such that the probability of the classical state ‘000...0’ is
Pooo...o = (1 +€9)"/2", etc. In reality, the initial bias is not
the same on each qubit®, but as long as the differences be-
tween these biases are small (e. g., all qubits are of the same
nucleus), these differences can be ignored in a discussion
of an idealized scenario.

Key Results
Molecular Scale Heat Engines

Schulman and Vazirani (SV) [13] identified the impor-
tance of in-place loss-less data compression and of the
low-entropy bits created in that process: Physical two-level
systems (e.g., spin-half nuclei) may be similarly cooled
by data compression algorithms. SV analyzed the cool-
ing of such a system using various tools of data com-
pression. A loss-less compression of an n-bit binary string
distributed according to the thermal equilibrium distri-
bution, Eq. (2), is readily analyzed using information-
theoretical tools: In an ideal compression scheme (not
necessarily realizable), with sufficiently large n, all ran-
domness - and hence all the entropy - of the bit string
is transferred to n — m bits; the remaining m bits are thus
left, with extremely high probability, at a known determin-
istic state, say the string ‘000...0’. The entropy H of the en-
tire system is H(system) = nH(single — bit) = nH(1/2 +
€/2). Any compression scheme cannot decrease this en-
tropy, hence Shannon’s source coding entropy bound
yields m < n[1 — H(1/2 + €/2)]. A simple leading-order
calculation shows that m is bounded by (approximately)
% n for small values of the initial bias €. Therefore, with
typical € ~ 107>, molecules containing an order of mag-
nitude of 10'? spins are required to cool a single spin close
to zero temperature.

Conventional methods for NMR quantum computing
are based on unscalable state-initialization schemes [5,9]
(e.g., the “pseudo-pure-state” approach) in which the
signal-to-noise ratio falls exponentially with », the num-
ber of spins. Consequently, these methods are deemed in-
appropriate for future NMR quantum computers. SV [13]
were first to employ tools of information theory to address

3Furthermore, individual addressing of each spin during the algo-
rithm requires a slightly different bias for each.
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the scaling problem; they presented a compression scheme
in which the number of cooled spins scales well (namely,
a constant times #). SV also demonstrated a scheme ap-
proaching Shannon’s entropy bound, for very large n.
They provided detailed analyses of three cooling algo-
rithms, each useful for a different regime of € values.

Some ideas of SV were already explored a few years
earlier by Serensen [14], a physical chemist who ana-
lyzed effective cooling of spins. He considered the entropy
of several spin systems and the limits imposed on cool-
ing these systems by polarization transfer and more gen-
eral polarization manipulations. Furthermore, he consid-
ered spin-cooling processes in which only unitary oper-
ations were used, wherein unitary matrices are applied
to the density matrices; such operations are realizable, at
least from a conceptual point of view. Serensen derived
a stricter bound on unitary cooling, which today bears his
name. Yet, unlike SV, he did not infer the connection to
data compression or advocate compression algorithms.

SV named their concept “molecular-scale heat en-
gine”. When combined with conventional polarization
transfer (which is partially similar to a SWAP gate between
two qubits), the term “reversible polarization compression
(RPC)” to be more descriptive.

Heat-Bath Algorithmic Cooling

The next significant development came when Boykin,
Mor, Roychowdhury, Vatan and Vrijen, (hereinafter re-
ferred to as BMRVYV), invented a new spin-cooling tech-
nique, which they named Algorithmic cooling [2], or more
specifically, heat-bath algorithmic cooling in which the
use of controlled interactions with a heat bath enhances
the cooling techniques much further. Algorithmic Cool-
ing (AC) expands the effective cooling techniques by ex-
ploiting entropy manipulations in open systems. It com-
bines RPC steps* with fast relaxation (namely, thermal-
ization) of the hotter spins, as a way of pumping entropy
outside the system and cooling the system much beyond
Shannon’s entropy bound. In order to pump entropy out
of the system, AC employs regular spins (here called com-
putation spins) together with rapidly relaxing spins. The
latter are auxiliary spins that return to their thermal equi-
librium state very rapidly. These spins have been termed
“reset spins”, or, equivalently, reset bits. The controlled in-
teractions with the heat bath are generated by polarization
transfer or by standard algorithmic techniques (of data
compression) that transfer the entropy onto the reset spins

4When the entire process is RPC, namely, any of the processes that
follow SV ideas, one can refer to it as reversible AC or closed-system
AG, rather than as RPC.

which then lose this excess entropy into the environment.

The ratio Rielax—times> Detween the relaxation time of
the computation spins and the relaxation time of the reset
spins, must satisfy Ryelax—times > 1. This condition is vital
if one wishes to perform many cooling steps on the system
to obtain significant cooling.

From a pure information-theoretical point of view, it is
legitimate to assume that the only restriction on ideal RPC
steps is Shannon’s entropy bound; then the equivalent of
Shannon’s entropy bound, when an ideal open-system AC
is used, is that all computation spins can be cooled down to
zero temperature, that is to € = 1. Proof. - repeat the fol-
lowing till the entropy of all computation spins is exactly
zero: (i) push entropy from computation spins into reset
spins; (ii) let the reset spins cool back to room tempera-
ture. Clearly, each application of step (i), except the last
one, pushes the same amount of entropy onto the reset
spins, and then this entropy is removed from the system
in step (ii). Of course, a realistic scenario must take other
parameters into account such as finite relaxation-time ra-
tios, realistic environment, and physical operations on the
spins. Once this is done, cooling to zero temperature is no
longer attainable. While finite relaxation times and a real-
istic environment are system dependent, the constraint of
using physical operations is conceptual.

BMRVYV therefore pursued an algorithm that follows
some physical rules, it is performed by unitary operations
and reset steps, and still bypass Shannon’s entropy bound,
by far. The BMRVV cooling algorithm obtains significant
cooling beyond that entropy bound by making use of very
long molecules bearing hundreds or even thousands of
spins, because its analysis relies on the law of large num-
bers.

Practicable Algorithmic Cooling

The concept of algorithmic cooling then led to practica-
ble algorithms [8] for cooling small molecules. In order to
see the impact of practicable algorithmic cooling, it is best
to use a different variant of the entropy bound. Consider
a system containing # spin-half particles with total entropy
higher than # — 1, so that there is no way to cool even one
spin to zero temperature. In this case, the entropy bound is
a result of the compression of the entropy into n — 1 fully-
random spins, so that the remaining entropy on the last
spin is minimal. The entropy of the remaining single spin
satisfies H(single) > 1 — ne?/1In 4, thus, at most, its polar-
ization can be improved to

€final = eﬁ . (3)
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The practicable algorithmic cooling (PAC), suggested by
Fernandez, Lloyd, Mor, and Roychowdhury in [8], indi-
cated potential for a near-future application to NMR spec-
troscopy. In particular, it presented an algorithm named
PAC?2 which uses any (odd) number of spins 7, such that
one of them is a reset spin, and (n — 1) are computation
spins. PAC2 cools the spins such that the coldest one can
(approximately) reach a bias amplification by a factor of
(3/2)"=V2_The approximation is valid as long as the fi-
nal bias (3/2)"""D2¢ is much smaller than 1. Otherwise,
a more precise treatment must be done. This proves an ex-
ponential advantage of AC over the best possible reversible
AG, as these reversible cooling techniques, e. g., of [13,14],
are limited to improve the bias by no more than a factor
of 4/n. PAC can be applied for small n (e. g., in the range
of 10-20), and therefore it is potentially suitable for near-
future applications [6,8,10] in chemical and biomedical us-
ages of NMR spectroscopy.

It is important to note that in typical scenarios the ini-
tial polarization bias of a reset spin is higher than that of
a computation spin. In this case, the bias amplification fac-
tor of (3/2)("*~172 is relative to the larger bias, that of the
reset spin.

Exhaustive Algorithmic Cooling

Next, AC was analyzed, wherein the cooling steps (reset
and RPC) are repeated an arbitrary number of times. This
is actually an idealization where an unbounded number of
reset and logic steps can be applied without error or de-
coherence, while the computation qubits do not lose their
polarization biases. Fernandez [7] considered two compu-
tation spins and a single reset spin (the least significant
bit, namely the qubit at the right in the tensor-product
density-matrix notation) and analyzed optimal cooling of
this system. By repeating the reset and compression ex-
haustively, he realized that the bound on the final biases of
the three spins is approximately {2,1, 1} in units of €, the
polarization bias of the reset spin.

Mor and Weinstein generalized this analysis further
and found that n — 1 computation spins and a single re-
set spin can be cooled (approximately) to biases accord-
ing to the Fibonacci series: {... 34, 21, 13, 8, 5, 3, 2, 1,
1}. The computation spin that is furthest from the reset
spin can be cooled up to the relevant Fibonacci number
F,. That approximation is valid as long as the largest term
times € is still much smaller than 1. Schulman then sug-
gested the “partner pairing algorithm” (PPA) and proved
the optimality of the PPA among all classical and quan-
tum algorithms. These two algorithms, the Fibonacci AC
and the PPA, led to two joint papers [11,12], where up-

per and lower bounds on AC were also obtained. The PPA
is defined as follows; repeat these two steps until cooling
sufficiently close to the limit: (a) RESET - applied to a re-
set spin in a system containing n — 1 computation spins
and a single (the LSB) reset spin. (b) SORT - a permu-
tation that sorts the 2" diagonal elements of the density
matrix by decreasing order, so that the MSB spin becomes
the coldest. Two important theorems proven in [12] are:
1. Lower bound: When €2” > 1 (namely, for long enough
molecules), Theorem 3 in [12] promises that n — log(1/¢)
cold qubits can be extracted. This case is relevant for scal-
able NMR quantum computing. 2. Upper bound: Section
4.2 in [12] proves the following theorem: No algorithmic
cooling method can increase the probability of any basis
state to above min{2~" ¢*"€, 1}, wherein the initial config-
uration is the completely mixed state (the same is true if
the initial state is a thermal state).

More recently, Elias, Fernandez, Mor, and Wein-
stein [6] analyzed more closely the case of n < 15 (at
room temperature), where the coldest spin (at all stages)
still has a polarization bias much smaller than 1. This
case is most relevant for near-future applications in NMR
spectroscopy. They generalized the Fibonacci-AC to algo-
rithms yielding higher-term Fibonacci series, such as the
tri-bonacci (also known as 3-term Fibonacci series), {... 81,
44, 24, 13, 7, 4, 2, 1, 1}, etc. The ultimate limit of these
multi-term Fibonacci series is obtained when each term in
the series is the sum of all previous terms. The resulting
series is precisely the exponential series {... 128, 64, 32, 16,
8,4, 2, 1, 1}, so the coldest spin is cooled by a factor of
2"=2, Furthermore, a leading order analysis of the upper
bound mentioned above (Section 4.2 in [12]) shows that
no spin can be cooled beyond a factor of 2"~!; see Corol-
lary 1 in [6].

Applications

The two major far-future and near-future applications are
already described in Sect. “Problem Definition”. It is im-
portant to add here that although the specific algorithms
analyzed so far for AC are usually classical, their practical
implementation via an NMR spectrometer must be done
through analysis of universal quantum computation, us-
ing the specific gates allowed in such systems. Therefore,
AC could yield the first near-future application of quan-
tum computing devices.

AC may also be useful for cooling various other physi-
cal systems, since state initialization is a common problem
in physics in general and in quantum computation in par-
ticular.
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Open Problems

A main open problem in practical AC is technological; can
the ratio of relaxation times be increased so that many
cooling steps may be applied onto relevant NMR sys-
tems? Other methods, for instance a spin-diffusion mech-
anism [1], may also be useful for various applications.

Another interesting open problem is whether the ideas
developed during the design of AC can also lead to appli-
cations in classical information theory.

Experimental Results

Various ideas of AC had already led to several experiments
using 3-4 qubit quantum computing devices: 1. An experi-
ment [4] that implemented a single RPC step. 2. An exper-
iment [3] in which entropy-conservation bounds (which
apply in any closed system) were bypassed. 3. A full AC ex-
periment [1] that includes the initialization of three carbon
nuclei to the bias of a hydrogen spin, followed by a single
compression step on these three carbons.
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Problem Definition

Mechanism design is a sub-field of economics and game
theory that studies the construction of social mechanisms
in the presence of selfish agents. The nature of the agents
dictates a basic contrast between the social planner, that
aims to reach a socially desirable outcome, and the agents,
that care only about their own private utility. The underly-
ing question is how to incentivize the agents to cooperate,
in order to reach the desirable social outcomes.

In the Internet era, where computers act and interact
on behalf of selfish entities, the connection of the above
to algorithmic design suggests itself: suppose that the in-
put to an algorithm is kept by selfish agents, who aim to
maximize their own utility. How can one design the algo-
rithm so that the agents will find it in their best interest
to cooperate, and a close-to-optimal outcome will be out-
putted? This is different than classic distributed comput-
ing models, where agents are either “good” (meaning obe-
dient) or “bad” (meaning faulty, or malicious, depending
on the context). Here, no such partition is possible. It is
simply assumed that all agents are utility maximizers. To
illustrate this, let us describe a motivating example:
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A Motivating Example: Shortest Paths

Given a weighted graph, the goal is to find a shortest path
(with respect to the edge weights) between a given source
and target nodes. Each edge is controlled by a selfish en-
tity, and the weight of the edge, we is private information
of that edge. If an edge is chosen by the algorithm to be in-
cluded in the shortest path, it will incur a cost which is mi-
nus its weight (the cost of communication). Payments to
the edges are allowed, and the total utility of an edge that
participates in the shortest path and gets a payment p, is
assumed to be u. = p. — we. Notice that the shortest path
is with respect to the true weights of the agents, although
these are not known to the designer.

Assuming that each edge will act in order to maximize
its utility, how can one choose the path and the payments?
One option is to ignore the strategic issue all together, ask
the edges to simply report their weights, and compute the
shortest path. In this case, however, an edge dislikes be-
ing selected, and will therefore prefer to report a very high
weight (much higher than its true weight) in order to de-
crease the chances of being selected. Another option is to
pay each selected edge its reported weight, or its reported
weight plus a small fixed “bonus”. However in such a case
all edges will report lower weights, as being selected will
imply a positive gain.

Although this example is written in an algorithmic lan-
guage, it is actually a mechanism design problem, and the
solution, which is now a classic, was suggested in the 70’s.
The chapter continues as follows: First, the abstract formu-
lation for such problems is given, the classic solution from
economics is described, and its advantages and disadvan-
tages for algorithmic purposes are discussed. The next sec-
tion then describes the new results that algorithmic mech-
anism design offers.

Abstract Formulation

The framework consists of a set A of alternatives, or
outcomes, and n players, or agents. Each player i has
a valuation function v;: A — N that assigns a value to
each possible alternative. This valuation function belongs
to a domain V; of all possible valuation functions. Let
V=V x-++xV,,and V_; = ]_[]-7&,- Vj. Observe that this
generalizes the shortest path example of above: A is all the
possible s — ¢ paths in the given graph, v.(a) for some path
a € Ais either —w, (if e € a) or zero.

A social choice function f: V — A assigns a socially
desirable alternative to any given profile of players’ valu-
ations. This parallels the notion of an algorithm. A mech-
anism is a tuple M = (f, p1,..., pn), where f is a social
choice function, and p;: V. — N (for i =1, ..., n) is the

price charged from player i. The interpretation is that the
social planner asks the players to reveal their true val-
uations, chooses the alternative according to f as if the
players have indeed acted truthfully, and in addition re-
wards/punishes the players with the prices. These prices
should induce “truthfulness” in the following strong sense:
no matter what the other players declare, it is always in
the best interest of player i to reveal her true valuation,
as this will maximize her utility. Formally, this translates
to:

Definition 1 (Truthfulness) M is “truthful” (in domi-
nant strategies) if, for any player 7, any profile of valuations
of the other players v_; € V_;, and any two valuations of
player iv;, v} € V,

vi(a) — pivi,v—i) = vi(b) — pi(Vi, v—;)
where f(vi,v—;) = aand f(vi,v—;) = b.

Truthfulness is quite strong: a player need not know any-
thing about the other players, even not that they are ra-
tional, and still determine the best strategy for her. Quite
remarkably, there exists a truthful mechanism, even under
the current level of abstraction. This mechanism suits all
problem domains, where the social goal is to maximize the
“social welfare”:

Definition 2 (Social welfare maximization) A social
choice function f: V — A maximizes the social welfare if
f(v) € argmax,c, >, vi(a), foranyv € V.

Notice that the social goal in the shortest path domain
is indeed welfare maximization, and, in general, this is
a natural and important economic goal. Quite remark-
ably, there exists a general technique to construct truthful
mechanisms that implement this goal:

Theorem 1 (Vickrey-Clarke-Groves (VCG)) Fix any
alternatives set A and any domain V, and suppose that
f:V — A maximizes the social welfare. Then there exist
prices p such that the mechanism (f, p) is truthful.

This gives “for free” a solution to the shortest path prob-
lem, and to many other algorithmic problems. The great
advantage of the VCG scheme is its generality: it suits all
problem domains. The disadvantage, however, is that the
method is tailored to social welfare maximization. This
turns out to be restrictive, especially for algorithmic and
computational settings, due to several reasons: (i) dif-
ferent algorithmic goals: the algorithmic literature con-
siders a variety of goals, including many that cannot be
translated to welfare maximization. VCG does not help
us in such cases. (ii) computational complexity: even if
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the goal is welfare maximization, in many settings achiev-
ing exactly the optimum is computationally hard. The
CS discipline usually overcomes this by using approxima-
tion algorithms, but VCG will not work with such algo-
rithm - reaching exact optimality is a necessary require-
ment of VCG. (iii) different algorithmic models: common
CS models change “the basic setup”, hence cause unex-
pected difficulties when one tries to use VCG (for exam-
ple, an online model, where the input is revealed over time;
this is common in CS, but changes the implicit setting that
VCG requires). This is true even if welfare maximization
is still the goal.

Answering any one of these difficulties requires the
design of a non-VCG mechanism. What analysis tools
should be used for this purpose? In economics and clas-
sic mechanism design, average-case analysis, that relies on
the knowledge of the underlying distribution, is the stan-
dard. Computer science, on the other hand, usually prefers
to avoid strong distributional assumptions, and to use
worst-case analysis. This difference is another cause to the
uniqueness of the answers provided by algorithmic mech-
anism design. Some of the new results that have emerged
as a consequence of this integration between Computer
Science and Economics is next described. Many other re-
search topics that use the tools of algorithmic mechanism
design are described in the entries on Adword Pricing,
Competitive Auctions, False Name Proof Auctions, Gen-
eralized Vickrey Auction, Incentive Compatible Ranking,
Mechanism for One Parameter Agents Single Buyer/Seller,
Multiple Item Auctions, Position Auctions, and Truthful
Multicast.

There are two different but closely related research
topics that should be mentioned in the context of this en-
try. The first is the line of works that studies the “price of
anarchy” of a given system. These works analyze existing
systems, trying to quantify the loss of social efficiency due
to the selfish nature of the participants, while the approach
of algorithmic mechanism design is to understand how
new systems should be designed. For more details on this
topic the reader is referred to the entry on Price of Anar-
chy. The second topic regards the algorithmic study of var-
ious equilibria computation. These works bring computa-
tional aspects into economics and game theory, as they ask
what equilibria notions are reasonable to assume, if one re-
quires computational efficiency, while the works described
here bring game theory and economics into computer sci-
ence and algorithmic theory, as they ask what algorithms
are reasonable to design, if one requires the resilience to
selfish behavior. For more details on this topic the reader is
referred (for example) to the entry on Algorithms for Nash
Equilibrium and to the entry on General Equilibrium.

Key Results
Problem Domain 1: Job Scheduling

Job scheduling is a classic algorithmic setting: n jobs are
to be assigned to m machines, where job j requires pro-
cessing time p;; on machine i. In the game-theoretic set-
ting, it is assumed that each machine i is a selfish en-
tity, that incurs a cost p;; from processing job j. Note
that the payments in this setting (and in general) may
be negative, offsetting such costs. A popular algorithmic
goal is to assign jobs to machines in order to minimize
the “makespan”: max; Z]- is assigned to i Pij- This is different
than welfare maximization, which translates in this setting
to the minimization of }; 3~y ssigned to 1 Pij» further il-
lustrating the problem of different algorithmic goals. Thus
the VCG scheme cannot be used, and new methods must
be developed.

Results for this problem domain depend on the specific
assumptions about the structure of the processing time
vectors. In the related machines case, p;; = p;/s; for any
ij, where the p;’s are public knowledge, and the only secret
parameter of player i is its speed, s;.

Theorem 2 ([3,22]) For job scheduling on related ma-
chines, there exists a truthful exponential-time mecha-
nism that obtains the optimal makespan, and a truthful
polynomial-time mechanism that obtains a 3-approxima-
tion to the optimal makespan.

More details on this result are given in the entry on Mecha-
nism for One Parameter Agents Single Buyer. The bottom
line conclusion is that, although the social goal is differ-
ent than welfare maximization, there still exists a truth-
ful mechanism for this goal. A non-trivial approximation
guarantee is achieved, even under the additional require-
ment of computational efficiency. However, this guarantee
does not match the best possible without the truthfulness
requirement, since in this case a PTAS is known.

Open Question 1 Is there a truthful PTAS for makespan
minimization in related machines?

If the number of machines is fixed then [2] give such
a truthful PTAS.

The above picture completely changes in the move to
the more general case of unrelated machines, where the
pij’s are allowed to be arbitrary:

Theorem 3 ([13,30]) Any truthful scheduling mechanism
for unrelated machines cannot approximate the optimal
makespan by a factor better than 1 + /2 (for deterministic
mechanisms) and 2 — 1/m (for randomized mechanisms).

Note that this holds regardless of computational consid-
erations. In this case, switching from welfare maximiza-
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tion to makespan minimization results in a strong im-
possibility. On the possibilities side, virtually nothing (!)
is known. The VCG mechanism (which minimizes the
total social cost) is an m-approximation of the optimal
makespan [32], and, in fact, nothing better is currently
known:

Open Question 2 What is the best possible approxima-
tion for truthful makespan minimization in unrelated ma-
chines?

What caused the switch from “mostly possibilities” to
“mostly impossibilities”? Related machines is a single-di-
mensional domain (players hold only one secret number),
for which truthfulness is characterized by a simple mono-
tonicity condition, that leaves ample flexibility for algo-
rithmic design. Unrelated machines, on the other hand,
are a multi-dimensional domain, and the algorithmic con-
ditions implied by truthfulness in such a case are harder
to work with. It is still unclear whether these conditions
imply real mathematical impossibilities, or perhaps just
pose harder obstacles that can be in principle solved. One
multi-dimensional scheduling domain for which possibil-
ity results are known is the case where p;; € {L;, H;},
where the “low”’s and “high”’s are fixed and known. This
case generalizes the classic multi-dimensional model of re-
stricted machines (p;; € {p;, 00}), and admits a truthful
3-approximation [27].

Problem Domain 2: Digital Goods
and Revenue Maximization

In the E-commerce era, a new kind of “digital goods” have
evolved: goods with no marginal production cost, or, in
other words, goods with unlimited supply. One example
is songs being sold on the Internet. There is a sunk cost
of producing the song, but after that, additional electronic
copies incur no additional cost. How should such items
be sold? One possibility is to conduct an auction. An auc-
tion is a one-sided market, where a monopolistic entity
(the auctioneer) wishes to sell one or more items to a set of
buyers.

In this setting, each buyer has a privately known value
for obtaining one copy of the good. Welfare maximization
simply implies the allocation of one good to every buyer,
but a more interesting question is the question of revenue
maximization. How should the auctioneer design the auc-
tion in order to maximize his profit? Standard tools from
the study of revenue-maximizing auctions' suggest to sim-
ply declare a price-per-buyer, determined by the probabil-

!This model was not explicitly studied in classic auction theory,
but standard results from there can be easily adjusted to this setting.

ity distribution of the buyer’s value, and make a take-it-or-
leave-it offer. However, such a mechanism needs to know
the underlying distribution. Algorithmic mechanism de-
sign suggests an alternative, worst-case result, in the spirit
of CS-type models and analysis.

Suppose that the auctioneer is required to sell all items
in the same price, as is the case for many “real-life” mo-
nopolists, and denote by F(v) the maximal revenue from
a fixed-price sale to bidders with values v = v1, ... v,, as-
suming that all values are known. Reordering indexes so
that v > v, > -+ > v, let F(v) = max; i - v;. The prob-
lem is, of-course, that in fact nothing about the values is
known. Therefore, a truthful auction that extracts the play-
ers’ values is in place. Can such an auction obtain a profit
that is a constant fraction of F(V), for any v (i.e. in the
worst case)? Unfortunately, the answer is provably no [17].
The proof makes use of situations where the entire profit
comes from the highest bidder. Since there is no potential
for competition among bidders, a truthful auction cannot
force this single bidder to reveal her value.

Luckily, a small relaxation in the optimality crite-
ria significantly helps. Specifically, denote by F@(v) =
max;> i - v; (i. e. the benchmark is the auction that sells
to at least two buyers).

Theorem 4 ([17,20]) There exists a truthful random-
ized auction that obtains an expected revenue of at least
F@/3.25, even in the worst-case. On the other hand, no
truthful auction can approximate F?) within a factor better
than 2.42.

Several interesting formats of distribution-free revenue-
maximizing auctions have been considered in the litera-
ture. The common building block in all of them is the
random partitioning of the set of buyers to random sub-
sets, analyzing each set separately, and using the results on
the other sets. Each auction utilizes a different analysis on
the two subsets, which yields slightly different approxima-
tion guarantees. [1] describe an elegant method to deran-
domize these type of auctions, while losing another factor
of 4 in the approximation. More details on this problem
domain can be found in the entry on Competitive Auc-
tions.

Problem Domain 3: Combinatorial Auctions

Combinatorial auctions (CAs) are a central model with
theoretical importance and practical relevance. It gen-
eralizes many theoretical algorithmic settings, like job
scheduling and network routing, and is evident in many
real-life situations. This new model has various pure com-
putational aspects, and, additionally, exhibits interesting
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game theoretic challenges. While each aspect is important
on its own, obviously only the integration of the two pro-
vides an acceptable solution.

A combinatorial auction is a multi-item auction in
which players are interested in bundles of items. Such a val-
uation structure can represent substitutabilities among
items, complementarities among items, or a combination
of both. More formally, m items (£2) are to be allocated
to n players. Players value subsets of items, and v;(S) de-
notes i’s value of a bundle S C £2. Valuations additionally
satisfy: (i) monotonicity, i.e v;(S) < v;(T) for S € T, and
(ii) normalization, i. e. v; (@) = 0. The literature has mostly
considered the goal of maximizing the social welfare: find
an allocation (Sy, ..., S,) that maximizes ), v;(S;).

Since a general valuation has size exponential in n and
m, the representation issue must be taken into account.
Two models are usually considered (see [11] for more de-
tails). In the bidding languages model, the bid of a player
represents his valuation is a concise way. For this model it
is NP-hard to approximate the social welfare within a ra-
tio of 2(m'/27¢), for any € > 0 (if “single-minded” bids
are allowed; the exact definition is given below). In the
query access model, the mechanism iteratively queries the
players in the course of computation. For this model, any
algorithm with polynomial communication cannot ob-
tain an approximation ratio of £2(m!/27€) for any € > 0.
These bounds are tight, as there exist a deterministic /m-
approximation with polynomial computation and com-
munication. Thus, for the general valuation structure, the
computational status by itself is well-understood.

The basic incentives issue is again well-understood:
VCG obtains truthfulness. Since VCG requires the exact
optimum, which is NP-hard to compute, the two consider-
ations therefore clash, when attempting to use classic tech-
niques. Algorithmic mechanism design aims to develop
new techniques, to integrate these two desirable aspects.

The first positive result for this integration challenge
was given by [29], for the special case of “single-minded
bidders”: each bidder, i, is interested in a specific bundle
S;, for a value v; (any bundle that contains S; is worth v;,
and other bundles have zero value). Both v;, S; are private
to the player i.

Theorem 5 ([29]) There exists a truthful and polynomial-
time deterministic combinatorial auction for single-minded
bidders, which obtains a \/m-approximation to the optimal
social welfare.

A possible generalization of the basic model is to assume
that each item has B copies, and each player still desires at
most one copy from each item. This is termed “multi-unit
CA”. As B grows, the integrality constraint of the prob-

lem reduces, and so one could hope for better solutions.
Indeed, the next result exploits this idea:

Theorem 6 ([7]) There exists a truthful and polynomial-
time deterministic multi-unit CA, for B > 3 copies of each
item, that obtains O(B- m'B=2)-approximation to the
optimal social welfare.

This auction copes with the representation issue (since
general valuations are assumed) by accessing the valua-
tions through a “demand oracle”: given per-item prices
{Px}xes, specify a bundle S that maximizes v;(S) —
D ves P

Two main drawbacks of this auction motivate further
research on the issue. First, as B gets larger it is reason-
able to expect the approximation to approach 1 (indeed
polynomial-time algorithms with such an approximation
guarantee do exist). However here the approximation ra-
tio does not decrease below O(log m) (this ratio is achieved
for B = O(log m)). Second, this auction does not provide
a solution to the original setting, where B = 1, and, in gen-
eral for small B’s the approximation factor is rather high.
One way to cope with these problems is to introduce ran-
domness:

Theorem 7 ([26]) There exists a truthful-in-expecta-
tion and polynomial-time randomized multi-unit CA, for
any B > 1 copies of each item, that obtains O(m'/B*D)-
approximation to the optimal social welfare.

Thus, by allowing randomness, the gap from the standard
computational status is being completely closed. The def-
inition of truthfulness-in-expectation is the natural exten-
sion of truthfulness to a randomized environment: the ex-
pected utility of a player is maximized by being truthful.
However, this notion is strictly weaker than the de-
terministic notion, as this implicitly implies that players
care only about the expectation of their utility (and not,
for example, about the variance). This is termed “the risk-
neutrality” assumption in the economics literature. An in-
termediate notion for randomized mechanisms is that of
“universal truthfulness”: the mechanism is truthful given
any fixed result of the coin toss. Here, risk-neutrality is
no longer needed. [15] give a universally truthful CA for
B = 1 that obtains an O(y/m)-approximation. Universally
truthful mechanisms are still weaker than deterministic
truthful mechanisms, due to two reasons: (i) It is not
clear how to actually create the correct and exact proba-
bility distribution with a deterministic computer. The sit-
uation here is different than in “regular” algorithmic set-
tings, where various derandomization techniques can be
employed, since these in general does not carry through
the truthfulness property. (ii) Even if a natural random-
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ness source exists, one cannot improve the quality of the
actual output by repeating the computation several times
(using the the law of large numbers). Such a repetition
will again destroy truthfulness. Thus, exactly because the
game-theoretic issues are being considered in parallel to
the computational ones, the importance of determinism
increases.

Open Question 3 What is the best-possible approxima-
tion ratio that deterministic and truthful combinatorial
auctions can obtain, in polynomial-time?

There are many valuation classes, that restrict the pos-
sible valuations to some reasonable format (see [28]
for more details). For example, sub-additive valua-
tions are such that, for any two bundles S, T,C €2,
v(SU T) < v(S) + v(T). Such classes exhibit much better
approximation guarantees, e. g. for sub-additive valuation
a polynomial-time 2-approximation is known [16]. How-
ever, no polynomial-time truthful mechanism (be it ran-
domized, or deterministic) with a constant approximation
ratio, is known for any of these classes.

Open Question 4 Does there exist polynomial-time truth-
ful constant-factor approximations for special cases of CAs
that are NP-hard?

Revenue maximization in CAs is of-course another impor-
tant goal. This topic is still mostly unexplored, with few ex-
ceptions. The mechanism [7] obtains the same guarantees
with respect to the optimal revenue. Improved approxi-
mations exist for multi-unit auctions (where all items are
identical) with budget constrained players [12], and for
unlimited-supply CAs with single-minded bidders [6].

The topic of Combinatorial Auctions is discussed also
in the entry on Multiple Item Auctions.

Problem Domain 4: Online Auctions

In the classic CS setting of “online computation”, the in-
put to an algorithm is not revealed all at once, before the
computation begins, but gradually, over time (for a de-
tailed discussion see the many entries on online problems
in this book). This structure suits the auction world, espe-
cially in the new electronic environments. What happens
when players arrive over time, and the auctioneer must
make decisions facing only a subset of the players at any
given time?

The integration of online settings, worst-case analysis,
and auction theory, was suggested by [24]. They consid-
ered the case where players arrive one at a time, and the
auctioneer must provide an answer to each player as it ar-
rives, without knowing the future bids. There are k iden-

tical items, and each bidder may have a distinct value for
every possible quantity of the item. These values are as-
sumed to be marginally decreasing, where each marginal
value lies in the interval [v, 7]. The private information of
a bidder includes both her valuation function, and her ar-
rival time, and so a truthful auction need to incentivize the
players to arrive on time (and not later on), and to reveal
their true values. The most interesting result in this setting
is for alarge k, so that in fact there is a continuum of items:

Theorem 8 ([24]) There exists a truthful online auc-
tion that simultaneously approximates, within a factor of
O(log(v/v)), the optimal offline welfare, and the offline rev-
enue of VCG. Furthermore, no truthful online auction can
obtain a better approximation ratio to either one of these
criteria (separately).

This auction has the interesting property of being
a “posted price” auction. Each bidder is not required to re-
veal his valuation function, but, rather, he is given a price
for each possible quantity, and then simply reports the de-
sired quantity under these prices.

Ideas from this construction were later used by [10] to
construct two-sided online auction markets, where multi-
ple sellers and buyers arrive online.

This approximation ratio can be dramatically im-
proved, to be a constant, 4, if one assumes that (i) there
is only one item, and (ii) player values are i.i.d from some
fixed distribution. No a-priori knowledge of this distribu-
tion is needed, as neither the mechanism nor the players
are required to make any use of it. This work, [19], ana-
lyzes this by making an interesting connection to the class
of “secretary problems”.

A general method to convert online algorithms to on-
line mechanisms is given by [4]. This is done for one item
auctions, and, more generally, for one parameter domains.
This method is competitive both with respect to the wel-
fare and the revenue.

The revenue that the online auction of Theorem 8
manages to raise is competitive only with respect to VCG’s
revenue, which may be far from optimal. A parallel line of
works is concerned with revenue maximizing auctions. To
achieve good results, two assumptions need to be made:
(i) there exists an unlimited supply of items (and recall
from Sect. “Problem Domain 2: Digital Goods and Rev-
enue Maximization” that F(v) is the offline optimal mo-
nopolistic fixed-price revenue), and (ii) players cannot lie
about their arrival time, only about their value. This last
assumption is very strong, but apparently needed. Such
auctions are termed here “value-truthful”, indicating that
“time-truthfulness” is missing.
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Theorem 9 ([9]) For any € > 0, there exists a value-
truthful online auction, for the unlimited supply case, with
expected revenue of at least (F(v))/(1 + €) — O(h/e?).

The construction exploits principles from learning the-
ory in an elegant way. Posted price auctions for this case
are also possible, in which case the additive loss increases
to O(hloglogh). [19] consider fully-truthful online auc-
tions for revenue maximization, but manage to obtain only
very high (although fixed) competitive ratios. Construct-
ing fully-truthful online auctions with a close-to-optimal
revenue remains an open question. Another interesting
open question involves multi-dimensional valuations. The
work [24] remains the only work for players that may
demand multiple items. However their competitive guar-
antees are quite high, and achieving better approxima-
tion guarantees (especially with respect to the revenue) is
a challenging task.

Advanced Issues

Monotonicity What is the general way for designing
a truthful mechanism? The straight-forward way is to
check, for a given social choice function f, whether truthful
prices exist. If not, try to “fix” f. It turns out, however, that
there exists a more structured way, an algorithmic condi-
tion that will imply the existence of truthful prices. Such
a condition shifts the designer back to the familiar terri-
tory of algorithmic design. Luckily, such a condition do
exist, and is best described in the abstract social choice set-
ting of Sect. “Problem Definition”:

Definition 3 ([8,23]) A social choice function f: V — A
is “weakly monotone” (W-MON) if for any i, v—; € V_,
and any v;, v} € V;, the following holds. Suppose that
fi,v—i) = a, and f(v},v_;) = b. Then v(b) — v;(b) >
vi(a) —vi(a).

In words, this condition states the following. Suppose that
player i changes her declaration from v; to v}, and this
causes the social choice to change from a to b. Then it must
be the case that i’s value for b has increased in the transi-
tion from v; to v; no-less than s value for a.

Theorem 10 ([35]) Fix a social choice function f: V —
A, where V is convex, and A is finite. Then there exist
prices p such that M = (f, p) is truthful if and only if f
is weakly monotone.

Furthermore, given a weakly monotone f, there exists an
explicit way to determine the appropriate prices p (see [18]
for details).

Thus, the designer should aim for weakly monotone
algorithms, and need not worry about actual prices. But

how difficult is this? For single-dimensional domains, it
turns out that W-MON leaves ample flexibility for the al-
gorithm designer. Consider for example the case where ev-
ery alternative has a value of either 0 (the player “loses”) or
some v; € N (the player “wins” and obtains a value v;). In
such a case, it is not hard to show that W-MON reduces
to the following monotonicity condition: if a player wins
with v;, and increases her value to v§ > v; (while v_; re-
mains fixed), then she must win with v/ as well. Further-
more, in such a case, the price of a winning player must be
set to the infimum over all winning values.

Impossibilities of truthful design It is fairly simple to
construct algorithms that satisfy W-MON for single-di-
mensional domains, and a variety of positive results were
obtained for such domains, in classic mechanism design,
as well as in algorithmic mechanism design. But how hard
is it to satisfy W-MON for multi-dimensional domains?
This question is yet unclear, and seems to be one of the
challenges of algorithmic mechanism design. The contrast
between single-dimensionality and multi-dimensionality
appears in all problem domains that were surveyed here,
and seems to reflect some inherent difficulty that is not
exactly understood yet. Given a social choice function f,
call f implementable (in dominant strategies) if there exist
prices p such that M = (f, p) is truthful. The basic ques-
tion is then what forms of social choice functions are imple-
mentable.

As detailed in the beginning, the welfare maximiz-
ing social choice function is implementable. This specific
function can be slightly generalized to allow weights, in
the following way: fix some non-negative real constants
{w;}_, (not all are zero) and {y,}se4, and choose an al-
ternative that maximizes the weighted social welfare, i.e.
f(v) € argmax, ., Y _; wivi(a)+ya. This class of functions
is sometimes termed “affine maximizers”. It turns out that
these functions are also implementable, with prices similar
in spirit to VCG. In the context of the above characteriza-
tion question, one sharp result stands out:

Theorem 11 ([34]) Fix a social choice function
f: V. — A, such that (i) A is finite, |A| > 3, and f is onto
A, and (ii) V; = R4 for all i. Then f is implementable (in
dominant strategies) if and only if it is an affine maximizer.

The domain V that satisfies V; = %4 for all i is term an
“unrestricted domain”. The theorem states that, if the do-
main is unrestricted, at least three alternatives are chosen,
and the set A of alternatives is finite, then nothing besides
affine maximizers can be implemented!

However, the assumption that the domain is unre-
stricted is very restrictive. All the above example do-
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mains exhibit some basic combinatorial structure, and are
therefore restricted in some way. And as discussed above,
for many restricted domains the theorem is simply not
true. So what is the possibilities — impossibilities border?
As mentioned above, this is an unsolved challenge. Lavi,
Mu’alem, and Nisan [23] explore this question for Com-
binatorial Auctions and similar restricted domains, and

reach partial answers. For example:

Theorem 12 ([23]) Any truthful combinatorial auction or
multi-unit auction among two players, that must always al-
locate all items, and that approximates the welfare by a fac-
tor better than 2, must be an affine maximizer.

Of-course, this is far from being a complete answer. What
happens if there are more than two players? And what hap-
pens if it is possible to “throw away” part of the items?
These questions, and the more general and abstract char-
acterization question, are all still open.

Alternative solution concepts In light of the conclu-
sions of the previous section, a natural thought would be to
re-examine the solution concept that is being used. Truth-
fulness relies on the strong concept of dominant strategies:
for each player there is a unique strategy that maximizes
her utility, no matter what the other players are doing. This
is very strong, but it fits very well the worst-case way of
thinking in CS. What other solution concepts can be used?
As described above, randomization, and truthfulness-in-
expectation, can help. A related concept, again for ran-
domized mechanisms, is truthfulness with high probabil-
ity. Another direction is to consider mechanisms where
players cannot improve their utility too much by deviating
from the truth-telling strategy [21].

Algorithm designers do not care so much about actu-
ally reaching an equilibrium point, or finding out what will
the players play - the major concern is to guarantee the op-
timality of the solution, taking into account the strategic
behavior of the players. Indeed, one way of doing this is to
guarantee a good equilibrium point. But there is no reason
to rule out mechanisms where several acceptable strategic
choices for the players exist, provided that the approxima-
tion will be achieved in each of these choices.

As a first attempt, one is tempted to simply let the play-
ers try and improve the basic result by allowing them to
lie. However, this can cause unexpected dynamics, as each
player chooses her lies under some assumptions about the
lies of the others, etc. etc. To avoid such an unpredictable
situation, it is important to insist on using rigorous game
theoretic reasoning to explain exactly why the outcome
will be satisfactory.

The work [31] suggests the notion of “feasibly domi-
nant” strategies, where players reveal the possible lies they
consider, and the mechanism takes this into account. By
assuming that the players are computationally bounded,
one can show that, instead of actually “lying”, the players
will prefer to reveal their true types plus all the lies they
might consider. In such a case, since the mechanism has
obtained the true types of the players, a close-to-optimal
outcome will be guaranteed.

Another definition tries to capture the initial intuition
by using the classic game-theoretic notion of undominated
strategies:

Definition 4 ([5]) A mechanism M is an “algorithmic
implementation of a c-approximation (in undominated
strategies)” if there exists a set of strategies, D, such that
(i) M obtains a c-approximation for any combination of
strategies from D, in polynomial time, and (ii) For any
strategy not in D, there exists a strategy in D that weakly
dominates it, and this transition is polynomial-time com-
putable.

By the second condition, it is reasonable to assume that
a player will indeed play some strategy in D, and, by the
first condition, it does not matter what tuple of strategies
in D will actually be chosen, as any of these will provide the
approximation. This transfers some of the burden from
the game-theoretic design to the algorithmic design, since
now a guarantee on the approximation should bu provided
for a larger range of strategies. [5] exploit this notion to
design a deterministic CA for multi-dimensional players
that achieves a close-to-optimal approximation guarantee.
A similar-in-spirit notion, although a weaker one, is the
notion of “Set-Nash” [25].

Applications

One of the popular examples to a “real-life” combinato-
rial auction is the spectrum auction that the US govern-
ment conducts, in order to sell spectrum licenses. Typical
bids reflect values for different spectrum ranges, to accom-
modate different geographical and physical needs, where
different spectrum ranges may complement or substitute
one another. The US government invests research efforts
in order to determine the best format for such an auction,
and auction theory is heavily exploited. Interestingly, the
US law guides the authorities to allocate these spectrum
ranges in a way that will maximize the social welfare, thus
providing a good example for the usefulness of this goal.
Adword auctions are another new and fast-growing
application of auction theory in general, and of the new
algorithmic auctions in particular. These are auctions that
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determine the advertisements that web-search engines
place close to the search results they show, after the user
submits her search keywords. The interested companies
compete, for every given keyword, on the right to place
their ad on the results’ page, and this turns out to be the
main source of income for companies like Google. Several
entries in this book touch on this topic in more details, in-
cluding the entries on Adwords Pricing and on Position
Auctions.

A third example to a possible application, in the mean-
while implemented only in the academic research labs, is
the application of algorithmic mechanism design to pric-
ing and congestion control in communication networks.
The existing fixed pricing scheme has many disadvantages,
both with respect to the needs of efficiently allocating the
available resources, and with respect to the new oppor-
tunities of the Internet companies to raise more revenue
due to specific types of traffic. Theory suggests solutions to
both of these problems.

Cross References

» Adwords Pricing

» Competitive Auction

» False-Name-Proof Auction

» Generalized Vickrey Auction

» Incentive Compatible Selection
» Position Auction

» Truthful Multicast

Recommended Reading

The topics presented here are detailed in the textbook [33].
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Problem Definition

A spanner is a sparse subgraph of a given undirected graph
that preserves approximate distance between each pair of
vertices. More precisely, a t-spanner of a graph G = (V, E)
is a subgraph (V, Es), Es € E such that, for any pair of
vertices, their distance in the subgraph is at most ¢ times
their distance in the original graph, where ¢ is called the
stretch factor. The spanners were defined formally by Peleg

and Schiffer [14], though the associated notion was used
implicitly by Awerbuch [3] in the context of network syn-
chronizers.

Computing a t-spanner of smallest size for a given
graph is a well motivated combinatorial problem with
many applications. However, computing t-spanner of
smallest size for a graph is NP-hard. In fact, for t > 2, it
is NP-hard [10] even to approximate the smallest size of
a t-spanner of a graph with ratio O2U=*!"") for any
i > 0. Having realized this fact, researchers have pursued
another direction which is quite interesting and useful. Let
S¢ be the size of the sparsest t-spanner of a graph G, and
let !, be the maximum value of S;; over all possible graphs
on n vertices. Does there exist a polynomial time algorithm
which computes, for any weighted graph and parameter ¢,
its t-spanner of size O(SY,)? Such an algorithm would be
the best one can hope for given the hardness of the orig-
inal ¢-spanner problem. Naturally the question arises as
to how large can S’ be? A 43-year old girth lower bound
conjecture by Erdés [12] implies that there are graphs on
n vertices whose 2k- as well as (2k — 1)-spanner will re-
quire 2 (n'*1/%) edges. This conjecture has been proved for
k =1,2,3 and 5. Note that a (2k — 1)-spanner is also a 2k-
spanner and the lower bound on the size is the same for
both a 2k-spanner and a (2k — 1)-spanner. So the objec-
tive is to design an algorithm that, for any weighted graph
on n vertices, computes a (2k — 1)-spanner of O(n'*1k)
size. Needless to say, one would like to design the fastest
algorithm for this problem, and the most ambitious aim
would be to achieve the linear time complexity.

Key Results

The key results of this article are two very simple al-
gorithms which compute a (2k — 1)-spanner of a given
weighted graph G = (V, E). Let n and m denote the num-
ber of vertices and edges of G, respectively. The first al-
gorithm, due to Althofer et al. [2], is based on a greedy
strategy, and runs in O(mn'*/¥) time. The second al-
gorithm [6] is based on a very local approach and runs
in the expected O(km) time. To start with, consider the
following simple observation. Suppose there is a subset
Eg C E that ensures the following proposition for every
edge (x, y) € E\Es.

Pi(x, y): the vertices x and y are connected in the sub-
graph (V, Es) by a path consisting of at most t edges,
and the weight of each edge on this path is not more
than that of the edge (x, ).

It follows easily that the sub graph (V, Eg) will be a t-span-
ner of G. The two algorithms for computing the (2k — 1)-
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spanner eventually compute the set Eg based on two com-
pletely different approaches.

Algorithm I

This algorithm selects edges for its spanner in a greedy
fashion, and is similar to Kruskal’s algorithm for comput-
ing a minimum spanning tree. The edges of the graph are
processed in the increasing order of their weights. To be-
gin with, the spanner Eg = # and the algorithm adds edges
to it gradually. The decision as to whether an edge, say
(u, v), has to be added (or not) to Eg is made as follows:

If the distance between u and v in the subgraph induced
by the current spanner edges Eg is more than t-weight(u, v),
then add the edge (u, v) to Es, otherwise discard the edge.

It follows that P;(x, y) would hold for each edge of E
missing in Eg, and so at the end, the subgraph (V, Eg) will
be a t-spanner. A well known result in elementary graph
theory states that a graph with more than n'*'/* edges
must have a cycle of length at most 2k. It follows from the
above algorithm that the length of any cycle in the sub-
graph (V, Eg) has to be atleast ¢ + 1. Hence for ¢ = 2k — 1,
the number of edges in the subgraph (V,Egs) will be
less than n'*/%. Thus Algorithm I computes a (2k — 1)-
spanner of size O(n'*/¥), which is indeed optimal based
on the lower bound mentioned earlier.

A simple O(mn'*/¥) implementation of Algorithm
I follows based on Dijkstra’s algorithm. Cohen [9], and
later Thorup and Zwick [18] designed algorithms for
a (2k — 1)-spanner with an improved running time of
O(kmn''*). These algorithms rely on several calls to Di-
jkstra’s single-source shortest-path algorithm for distance
computation and therefore were far from achieving linear
time. On the other hand, since a spanner must approxi-
mate all pairs distances in a graph, it appears difficult to
compute a spanner by avoiding explicit distance informa-
tion. Somewhat surprisingly, Algorithm II, described in
the following section, avoids any sort of distance compu-
tation and achieves expected linear time.

Algorithm II

This algorithm employs a novel clustering based on a very
local approach, and establishes the following result for the
spanner problem.

Given a weighted graph G = (V, E), and an integer
k > 1, a spanner of (2k — 1)-stretch and O(kn!*1/¥)
size can be computed in expected O(km) time.

The algorithm executes in O(k) rounds, and in each round
it essentially explores adjacency list of each vertex to prune
dispensable edges. As a testimony of its simplicity, we will

present the entire algorithm for a 3-spanner and its anal-
ysis in the following section. The algorithm can be eas-
ily adapted in other computational models (parallel, ex-
ternal memory, distributed) with nearly optimal perfor-
mance (see [6] for more details).

Computing a 3-Spanner in Linear Time To meet the
size constraint of a 3-spanner, a vertex should contribute
an average of /1 edges to the spanner. So the vertices with
degree O(4/n) are easy to handle since all their edges can
be selected in the spanner. For vertices with higher degree
a clustering (grouping) scheme is employed to tackle this
problem which has its basis in dominating sets.

To begin with, there is a set of edges E’ initialized to
E, and an empty spanner Eg. The algorithm processes the
edges E’, moves some of them to the spanner Eg and dis-
cards the remaining ones. It does so in the following two
phases.
1. Forming the clusters:

A sample R C V is chosen by picking each vertex in-
dependently with probability 1/./n. The clusters will
be formed around these sampled vertices. Initially the
clusters are {{u}|u € R}. Each u € R is called the cen-
ter of its cluster. Each unsampled vertex v € V — R is
processed as follows.

(a) If vis not adjacent to any sampled vertex, then ev-
ery edge incident on v is moved to Eg.

(b) Ifvisadjacent to one or more sampled vertices, let
N (v, R) be the sampled neighbor that is nearest!
to v. The edge (v, N (v, R)) along with every edge
that is incident on v with weight less than this edge
is moved to Eg. The vertex v is added to the cluster
centered at N (v, R).

As a last step of the first phase, all those edges (u,v)

from E’ where u and v are not sampled and belong to

the same cluster are discarded.

Let V' be the set of vertices corresponding to the end-

points of the edges E’ left after the first phase. It fol-

lows that each vertex from V" is either a sampled vertex

or adjacent to some sampled vertex, and the step 1(b)

has partitioned V' into disjoint clusters, each centered

around some sampled vertex. Also note that, as a con-
sequence of the last step, each edge of the set E’ is an
inter-cluster edge. The graph (V’, E’), and the corre-
sponding clustering of V' is passed onto the following
(second) phase.
2. Joining vertices with their neighboring clusters:
Each vertex v of graph (V', E’) is processed as follows.

!Ties can be broken arbitrarily. However, it helps conceptually to
assume that all weights are distinct.



Algorithms for Spanners in Weighted Graphs

27

Let E'(v, ¢) be the edges from the set E’ incident on v

from a cluster c. For each cluster ¢ that is a neighbor

of v, the least-weight edge from E’(v, ¢) is moved to Es

and the remaining edges are discarded.
The number of edges added to the spanner Eg during
the algorithm described above can be bounded as follows.
Note that the sample set R is formed by picking each ver-
tex randomly and independently with probability 1/./n.
It thus follows from elementary probability that for each
vertex v € V, the expected number of incident edges with
weights less than that of (v, N'(v, R)) is at most 4/n. Thus
the expected number of edges contributed to the span-
ner by each vertex in the first phase of the algorithm is at
most /7. The number of edges added to the spanner in
the second phase is O(n|R]). Since the expected size of the
sample R is v/, therefore, the expected number of edges
added to the spanner in the second phase is at most #>2.
Hence the expected size of the spanner Eg at the end of
Algorithm II as described above is at most 2n*/. The algo-
rithm is repeated if the size of the spanner exceeds 31>, It
follows using Markov’s inequality that the expected num-
ber of such repetitions will be O(1).

We now establish that Eg is a 3-spanner. Note that for
every edge (u, v) ¢ Eg, the vertices u and v belong to some
cluster in the first phase. There are two cases now.

Case 1: (u and v belong to same cluster)

Let u and v belong to the cluster centered at x € R. It
follows from the first phase of the algorithm that there
is a 2-edge path u — x — v in the spanner with each edge
not heavier than the edge (u, v). (This provides a justifica-
tion for discarding all intra-cluster edges at the end of first
phase).

Case 2 : (u and v belong to different clusters)

Clearly the edge (u,v) was removed from E’ during phase
2, and suppose it was removed while processing the vertex
u. Let v belong to the cluster centered at x € R.

In the beginning of the second phase let (u,v") € E’ be
the least weight edge among all the edges incident on
u from the vertices of the cluster centered at x. So it
must be that weight(u,v") < weight(u, v). The process-
ing of vertex u during the second phase of our algo-
rithm ensures that the edge (u, v') gets added to Es. Hence
there is a path I1,, =u—v —x —v between u and v
in the spanner Es, and its weight can be bounded as
weight(IT,,) = weight(u, v') + weight(v/, x) + weight(x, v).
Since (v/, x) and (v, x) were chosen in the first phase, it fol-
lows that weight(v/, x) < weight(u, v') and weight(x, v) <
weight(u, v). It follows that the spanner (V, Eg) has stretch
3. Moreover, both phases of the algorithm can be executed

in O(m) time using elementary data structures and bucket
sorting.

The algorithm for computing a (2k — 1)-spanner exe-
cutes k iterations where each iteration is similar to the first
phase of the 3-spanner algorithm. For details and formal
proofs, the reader may refer to [6].

Other Related Work

The notion of a spanner has been generalized in the past
by many researchers.

Additive spanners: A t-spanner as defined above approx-
imates pairwise distances with multiplicative error, and
can be called a multiplicative spanner. In an analogous
manner, one can define spanners that approximate pair-
wise distances with additive error. Such a spanner is called
an additive spanner and the corresponding error is called
a surplus. Aingworth et al. [1] presented the first additive
spanner of size O(n*? logn) with surplus 2. Baswana et
al. [7] presented a construction of O(n*?) size additive
spanner with surplus 6. It is a major open problem if there
exists any sparser additive spanner.

(o, B)-spanner: Elkin and Peleg [11] introduced the no-
tion of an («, B)-spanner for unweighted graphs, which
can be viewed as a hybrid of multiplicative and additive
spanners. An (o, 8)-spanner is a subgraph such that the
distance between any pair of vertices u, v € V in this sub-
graph is bounded by «§(u, v) + B, where §(u, v) is the dis-
tance between u and v in the original graph. Elkin and Pe-
leg showed that an (1 + €, B)-spanner of size O(ﬂn1+8),
for arbitrarily small €, § > 0, can be computed at the ex-
pense of a sufficiently large surplus f. Recently Thorup
and Zwick [19] introduced a spanner where the additive
error is sublinear in terms of the distance being approxi-
mated.

Other interesting variants of spanners include the dis-
tance preserver proposed by Bollobas et al. [8] and the
Light-weight spanner proposed by Awerbuch et al. [4].
A subgraph is said to be a d-preserver if it preserves ex-
act distances for each pair of vertices which are separated
by distance at least d. A light-weight spanner tries to min-
imize the number of edges as well as the total edge weight.
A lightness parameter is defined for a subgraph as the ra-
tio of the total weight of all its edges and the weight of the
minimum spanning tree of the graph. Awerbuch et al. [4]
showed that for any weighted graph and integer k > 1,
there exists a polynomially constructable O(k)-spanner
with O(kpn“”k) edges and O(kpn”k) lightness, where
p = log(Diameter).

In addition to the above work on the generalization of
spanners, a lot of work has also been done on computing
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spanners for special classes of graphs, e. g., chordal graphs,
unweighted graphs, and Euclidean graphs. For chordal
graphs, Peleg and Schiffer [14] designed an algorithm that
computes a 2-spanner of size O(n>?), and a 3-spanner
of size O(nlogn). For unweighted graphs Halperin and
Zwick [13] gave an O(m) time algorithm for this prob-
lem. Salowe [17] presented an algorithm for computing
a (1 + €)-spanner of a d-dimensional complete Euclidean
graph in O(nlogn + ;) time. However, none of the algo-
rithms for these special classes of graphs seem to extend to
general weighted undirected graphs.

Applications

Spanners are quite useful in various applications in the ar-
eas of distributed systems and communication networks.
In these applications, spanners appear as the underlying
graph structure. In order to build compact routing ta-
bles [16], many existing routing schemes use the edges
of a sparse spanner for routing messages. In distributed
systems, spanners play an important role in designing
synchronizers. Awerbuch [3], and Peleg and Ullman [15]
showed that the quality of a spanner (in terms of stretch
factor and the number of spanner edges) is very closely
related to the time and communication complexity of any
synchronizer for the network. The spanners have also been
used implicitly in a number of algorithms for comput-
ing all pairs of approximate shortest paths [5,9,18]. For
a number of other applications, please refer to the pa-
pers [2,3,14,16].

Open Problems

The running time as well as the size of the (2k — 1)-
spanner computed by the Algorithm II described above
are away from their respective worst case lower bounds by
a factor of k. For any constant value of k, both these pa-
rameters are optimal. However, for the extreme value of
k, that is, for k = log n, there is a deviation by a factor of
log n. Is it possible to get rid of this multiplicative factor of
k from the running time of the algorithm and/or the size
of the (2k — 1)-spanner computed? It seems that a more
careful analysis coupled with advanced probabilistic tools
might be useful in this direction.
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Problem Definition

Given a communications network or road network one
of the most natural algorithmic questions is how to de-
termine the shortest path from one point to another.
The all pairs shortest path problem (APSP) is, given
a directed graph G = (V,E,{), to determine the dis-
tance and shortest path between every pair of vertices,
where |V| = n,|E| = m, and £: E — R is the edge length
(or weight) function. The output is in the form of two
n X n matrices: D(u,v) is the distance from u to v and
S(u,v) = w if (u,w) is the first edge on a shortest path
from u to v. The APSP problem is often contrasted with the
point-to-point and single source (SSSP) shortest path prob-
lems. They ask for, respectively, the shortest path from
a given source vertex to a given target vertex, and all short-
est paths from a given source vertex.

Definition of Distance

If £ assigns only non-negative edge lengths then the defi-
nition of distance is clear: D(u, v) is the length of the mini-
mum length path from u to v, where the length of a path is
the total length of its constituent edges. However, if £ can
assign negative lengths then there are several sensible no-
tations of distance that depend on how negative length cy-
cles are handled. Suppose that a cycle C has negative length
and that u, v € V are such that C is reachable from u and v
reachable from C. Because C can be traversed an arbitrary
number of times when traveling from u to v, there is no
shortest path from u to v using a finite number of edges.
It is sometimes assumed a priori that G has no negative
length cycles; however it is cleaner to define D(u, v) = —o0
if there is no finite shortest path. If D(u, v) is defined to
be the length of the shortest simple path (no repetition of
vertices) then the problem becomes NP-hard.! One could
also define distance to be the length of the shortest path
without repetition of edges.

Classic Algorithms

The Bellman-Ford algorithm solves SSSP in O(mn) time
and under the assumption that edge lengths are non-
negative, Dijkstra’s algorithm solves it in O(m + nlogn)
time. There is a well known O(mn)-time shortest path pre-
serving transformation that replaces any length function
with a non-negative length function. Using this transfor-
mation and #n runs of Dijkstra’s algorithm gives an APSP
algorithm running in O(mn + n? logn) = O(n?) time. The

!1f all edges have length —1 then D(u,v) = —(n — 1) if and only
if G contains a Hamiltonian path [7] from u to v.

Floyd-Warshall algorithm computes APSP in a more di-
rect manner, in O(n®) time. Refer to [4] for a descrip-
tion of these algorithms. It is known that APSP on com-
plete graphs is asymptotically equivalent to (min, +) ma-
trix multiplication [1], which can be computed by a non-
uniform algorithm that performs O(n?-*) numerical oper-
ations [6].2

Integer-Weighted Graphs

Much recent work on shortest paths assume that edge
lengths are integers in the range {—C,...,C} or {0,...,
C}. One line of research reduces APSP to a series of stan-
dard matrix multiplications. These algorithms are limited
in their applicability because their running times scale lin-
early with C. There are faster SSSP algorithms for both
non-negative edge lengths and arbitrary edge lengths. The
former exploit the power of RAMs to sort in o(n logn)
time and the latter are based on the scaling technique. See
Zwick [19] for a survey of shortest path algorithms up to
2001.

Key Results

Pettie’s APSP algorithm [13] adapts the hierarchy ap-
proach of Thorup [17] (designed for undirected, inte-
ger-weighted graphs) to general real-weighted directed
graphs. Theorem 1 is the first improvement over the
O(mn + n?log n) time bound of Dijkstra’s algorithm on
arbitrary real-weighted graphs.

Theorem 1 Given a real-weighted directed graph, all pairs
shortest paths can be solved in O(mn + n* loglog n) time.

This algorithm achieves a logarithmic speedup through
a trio of new techniques. The first is to exploit the nec-
essary similarity between the SSSP trees emanating from
nearby vertices. The second is a method for computing
discrete approximate distances in real-weighted graphs.
The third is a new hierarchy-type SSSP algorithm that runs
in O(m + nloglog n) time when given suitably accurate
approximate distances.

Theorem 1 should be contrasted with the time bounds of
other hierarchy-type APSP algorithms [17,12,15].

Theorem 2 ([15],2005) Given a real-weighted undirected
graph, APSP can be solved in O(mnloga(m, n)) time.

Theorem 3 ([17], 1999) Given an undirected graph
G(V, E, L), where { assigns integer edge lengths in the range
{=2w=1 ..., 2%71 — 1}, APSP can be solved in O(mn) time
on a RAM with w-bit word length.

2The fastest known (min, +) matrix multiplier runs n O(n?(log
log n)3/(log n)?) time [3].
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Theorem 4 ([14], 2002) Given a real-weighted directed
graph, APSP can be solved in polynomial time by an algo-
rithm that performs O(mnloga(m, n)) numerical opera-
tions, where « is the inverse-Ackermann function.

A secondary result of [13,15] is that no hierarchy-type
shortest path algorithm can improve on the O(m +nlog n)
running time of Dijkstra’s algorithm.

Theorem 5 Let G be an input graph such that the ra-
tio of the maximum to minimum edge length is r. Any
hierarchy-type SSSP algorithm performs §2(m + min{n
log n, nlogr}) numerical operations if G is directed and
£2(m + min{nlog n, nloglog r}) if G is undirected.

Applications

Shortest paths appear as a subproblem in other graph op-
timization problems; the minimum weight perfect match-
ing, minimum cost flow, and minimum mean-cycle prob-
lems are some examples. A well known commercial ap-
plication of shortest path algorithms is finding efficient
routes on road networks; see, for example, Google Maps,
MapQuest, or Yahoo Maps.

Open Problems

The longest standing open shortest path problems are to
improve the SSSP algorithms of Dijkstra’s and Bellman-
Ford on real-weighted graphs.

Problem 1 Is there an o(mn) time SSSP or point-to-point
shortest path algorithm for arbitrarily weighted graphs?

Problem 2 Is there an O(m) + o(nlogn) time SSSP al-
gorithm for directed, non-negatively weighted graphs? For
undirected graphs?

A partial answer to Problem 2 appears in [15], which
considers undirected graphs. Perhaps the most surprising
open problem is whether there is any (asymptotic) dif-
ference between the complexities of the all pairs, single
source, and point-to-point shortest path problems on ar-
bitrarily weighted graphs.

Problem 3 Is point-to-point shortest paths easier than all
pairs shortest paths on arbitrarily weighted graphs?

Problem 4 Is there a genuinely subcubic APSP algorithm,
i. e., one running in time O(n3~¢€)? Is there a subcubic APSP
algorithm for integer-weighted graphs with weak depen-
dence on the largest edge weight C, i.e., running in time
O(n* ¢polylog(C))?

Experimental Results

See [9,16,5] for recent experiments on SSSP algorithms.
On sparse graphs the best APSP algorithms use repeated
application of an SSSP algorithm, possibly with some pre-
computation [16]. On dense graphs cache-efficiency be-
comes a major issue. See [18] for a cache conscious im-
plementation of the Floyd-Warshall algorithm.

The trend in recent years is to construct a linear space
data structure that can quickly answer exact or approxi-
mate point-to-point shortest path queries; see [10,6,2,11].

Data Sets

See [5] for a number of U.S. and European road networks.

URL to Code
See [8] and [5].
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Problem Definition

The all pairs shortest path (APSP) problem is to compute
shortest paths between all pairs of vertices of a directed
graph with non-negative real numbers as edge costs. Focus
is given on shortest distances between vertices, as shortest
paths can be obtained with a slight increase of cost. Clas-
sically, the APSP problem can be solved in cubic time of
O(n*). The problem here is to achieve a sub-cubic time for
a graph with small integer costs.

A directed graph is given by G =(V,E), where
V ={1,..., n}, the set of vertices, and E is the set of edges.
The cost of edge (i, j) € E is denoted by dj;. The (1, n)-ma-
trix D is one whose (i,/) element is dj;. It is assumed for

simplicity that d;; > 0 and d;; = 0 for all i # j. If there
is no edge from i to j, let d;; = oo. The cost, or distance,
of a path is the sum of costs of the edges in the path.
The length of a path is the number of edges in the path.
The shortest distance from vertex i to vertex j is the min-
imum cost over all paths from i to j, denoted by d;“] Let
D* = {d?‘j}. The value of n is called the size of the matri-
ces.

Let A and B be (n, n)-matrices. The three products are
defined using the elements of A and B as follows: (1) Ordi-
nary matrix product over a ring C = AB, (2) Boolean ma-
trix product C = A - B, and (3) Distance matrix product
C = A x B, where

Weij=> aixbej. @) cij=\/aixAbg .

k=1 k=1
(3) cij = min {a;x + byj} .
1<k<n

The matrix C s called a product in each case; the computa-
tional process is called multiplication, such as distance ma-
trix multiplication. In those three cases, k changes through
the entire set {1, ..., n}. A partial matrix product of A and
B is defined by taking k in a subset I of V. In other words,
a partial product is obtained by multiplying a vertically
rectangular matrix, A(%, I), whose columns are extracted
from A corresponding to the set I, and similarly a hori-
zontally rectangular matrix, B(I, %), extracted from B with
rows corresponding to I. Intuitively I is the set of check
points k, when going from i to j in the graph.

The best algorithm [3] computes (1) in O(n®)
time, where w = 2.376. Three decimal points are carried
throughout this article. To compute (2), Boolean values
0 and 1 in A and B can be regarded as integers and
use the algorithm for (1), and convert non-zero elements
in the resulting matrix to 1. Therefore, this complexity
is O(n®). The witnesses of (2) are given in the witness
matrix W = {w;;} where w;; = k for some k such that
aik A brj = 1. If there is no such k, w;; = 0. The wit-
ness matrix W = {w;;} for (3) is defined by w;; = k that
gives the minimum to ¢;. If there is an algorithm for
(3) with T(n) time, ignoring a polylog factor of n, the
APSP problem can be solved in O(T(n)) time by the re-
peated squaring method, described as the repeated use of
D < D x D O(log n) times.

The definition here of computing shortest paths is to
give a witness matrix of size n by which a shortest path
from i to j can be given in O({) time where £ is the length of
the path. More specifically, if w;; = k in the witness matrix
W = {w;;}, it means that the path from i to j goes through
k. Therefore, a recursive function path(i,j) is defined by
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(path(i, k), k, path(k, j)) if w;; = k > 0 and nil if w;; = 0,
where a path is defined by a list of vertices excluding end-
points. In the following sections, k is recorded in w;; when-
ever k is found such that a path from i to j is modified or
newly set up by paths from i to k and from k to j. Pre-
ceding results are introduced as a framework for the key
results.

Alon-Galil-Margalit Algorithm

The algorithm by Alon, Galil, and Margalit [1] is reviewed.
Let the costs of edges of the given graph be ones. Let D
be the £th approximate matrix for D" defined by dl(f) = d;"j
if d?‘j <{,and dl(f) = 0o otherwise. Let A be the adjacency
matrix of G, that is, a;; = 1 if there is an edge (i, ), and
a;j = 0 otherwise. Let a;; = 1 for all i. The algorithm con-
sists of two phases. In the first phase, D¥) is computed for
£=1,....r, by checking the (i, j)-element of A¢ = {afj}.
Note that if af =L there is a path from i to j of length £ or
less. Since Boolean mutrix multiplication can be computed
in O(n®) time, the computing time of this part is O(rn®).

In the second phase, the algorithm computes DY for
L=r,[3/27], [3/2[3/2r]], - -+ , n’ by repeated squaring,
where n’ is the smallest integer in this sequence of ¢
such that £ > n. Let T = {]|dff) =a},and I; = Tjq such
that |Tj| is minimum for [£/2] <« < {. The key ob-
servation in the second phase is that it is only needed
to check k in I; whose size is not larger than 2n/{,
since the correct distances between £ + 1 and [3£/2] can
be obtained as the sum dt(i) + d,(fj) for some k satisfying

[€/2] < dgi) < {. The meaning of I; is similar to I for par-
tial products except that I varies for each i. Hence the
computing time of one squaring is O(n’/£). Thus, the
time of the second phase is given with N = [log;, n/r]
by O(Zi\il n3/((3/2) r)) = 0n3/r). Balancing the two
phases with rn® = n’/r yields O(n'@+3)2) = O(n26%8)
time for the algorithm with r = o(n—0)2y,

Witnesses can be kept in the first phase in time polylog
of n by the method in [2]. The maintenance of witnesses
in the second phase is straightforward.

When a directed graph G whose edge costs are inte-
gers between 1 and M is given, where M is a positive inte-
ger, the graph G can be converted to G’ by replacing each
edge by up to M edges with unit cost. Obviously the prob-
lem for G can be solved by applying the above algorithm
to G’, which takes O((Mn)@*3/2) time. This time is sub-
cubic when M < n%116. The maintenance of witnesses has
an extra polylog factor in each case.

For undirected graphs with unit edge costs, O(n®)
time is known in Seidel [7].

Takaoka algorithm

When the edge costs are bounded by a positive integer M,
a better algorithm can be designed than in the above as
shown in Takaoka [9]. Romani’s algorithm [6] for distance
matrix multiplication is reviewed briefly.

Let A and B be (n,m) and (m, n) distance matrices
whose elements are bounded by M or infinite. Let the di-
agonal elements be 0. A and B are converted into A" and
B’ where a;j =(m+ 1)M=%j if aij # 00, 0 otherwise, and
b;j = (m+ 1)Mbij_if bij # 00, 0 otherwise.

Let C' = A’B’ be the product by ordinary matrix mul-
tiplication and C = A x B be that by distance matrix mul-
tiplication. Then it holds that

m
= 3 PN, =200 g,
k=1

This distance mutrix multiplication is called (n,m)-Ro-
mani. In this section the above multiplication is used with
square matrices, that is, (#, n)-Romani is used. In the next
section, the case where m < n is dealt with.

C can be computed with O(n®) arithmetic oper-
ations on integers up to (n+ M. Since these values
can be expressed by O(Mlogn) bits and Schonhage
and Strassen’s algorithm [8] for multiplying k-bit num-
bers takes O(klogkloglogk) bit operations, C can be
computed in O(n® M log nlog(M log n) loglog(M log n))
time, or O(Mn®) time.

The first phase is replaced by the one based on (n, n)-
Romani, and modify the second phase based on path
lengths, not distances.

Note that the bound M is replaced by {M in the dis-
tance matrix multiplication in the first phase. Ignoring
polylog factors, the time for the first phase is given by
O(n®r2M). 1t is assumed that M is O(n¥) for some con-
stant k. Balancing this complexity with that of the sec-
ond phase, O(n®/r), yields the total computing time of
O(ne*®)3 p13) with the choice of r = O(nG—®)/3 pp~1/3),
The value of M can be almost O(1n%-%2*) to keep the com-
plexity within sub-cubic.

Key Results

Zwick improved the Alon-Galil-Margalit algorithm in
several ways. The most notable is an improvement of the
time for the APSP problem with unit edge costs from
O(n?%88) to O(n*%7%). The main accelerating engine in
Alon-Galil-Margalit [1] was the fast Boolean matrix mul-
tiplication and that in Takaoka [9] was the fast distance
matrix multiplication by Romani, both powered by the fast
matrix multiplication of square matrices.
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In this section, the engine is the fast distance ma-
trix multiplication by Romani powered by the fast ma-
trix multiplication of rectangular matrices given by Cop-
persmith [4], and Huang and Pan [5]. Let w(p.q.r)
be the exponent of time complexity for multiplying
(n?,n1) and (n1, n") matrices. Suppose the product of
(n,m) matrix and (m, n) matrix can be computed with
O(n®L:#-1Y) arithmetic operations, where m = n* with
0 < p < 1. Several facts such as O(n®1:Dy = O(n2-376)
and O(n®1:0-2941)) = H(52) are known. To compute the
product of (n,n) square matrices, n'~* matrix multipli-
cations are needed, resulting in O(n®(LHDH1=1) time,
which is reformulated as O(n**#), where yu satisfies the
equation (1, u, 1) =2u + 1. Currently the best-known
value for p is p = 0.575, so the time becomes O(n?>>7°),
which is not as good as O(n%37%). So the algorithm for rect-
angular matrices is used in the following.

The above algorithm is incorporated into (n, m)-Ro-
mani with m = n* and M = n’ for some t > 0, and the
computing time of O(Mn®(:#-1)) The next step is how
to incorporate (1, m)-Romani into the APSP algorithm.
The first algorithm is a mono-phase algorithm based on
repeated squaring, similar to the second phase of the algo-
rithm in [1]. To take advantage of rectangular matrices in
(n, m)-Romani, the following definition of the bridging set
is needed, which plays the role of the set I in the partial
distance matrix product in Sect. “Problem Definition”.

Let §(i, j) be the shortest distance from i to j, and
n(i, j) be the minimum length of all shortest paths from
i to j. A subset I of V is an {-bridging set if it satis-
fies the condition that if n(i, j) > £, there exists k € I
such that 8(i,j) = 8(i,k) + 8(k,j). I is a strong
£-bridging set if it satisfies the condition that if n(i, j) > ¢,
there exists k € I such that §(i, j) = 8(i, k) + 8(k, j) and
n(i, j) = n(i, k) + n(k, j). Note that those two sets are the
same for a graph with unit edge costs.

Note that if (2/3)¢ < u(i,j) <€ and I is a strong
£/3-bridging set, thereisa k € I'such that (i, j) = 6(i, k)+
8(k, j) and (i, j) = p(i, k) + u(k, j). With this property
of strong bridging sets, (1, m)-Romani can be used for the
APSP problem in the following way. By repeated squar-
ing in a similar way to Alon-Galil-Margalit, the algorithm
computes D for £ = 1,[3/2],[3/2[3/2]].....n', where
n’ is the first value of £ that exceeds n, using various types
of set I described below. To compute the bridging set, the
algorithm maintains the witness matrix with extra poly-
log factor in the complexity. In [10], there are three ways
for selecting the set I. Let |I| = n” for some r sucn that
0<r<lI.

(1) Select 9nlnn/f vertices from V at random. In
this case, it can be shown that the algorithm solves the

APSP problem with high probability, i.e., with 1 —1/n°
for some constant ¢ > 0, which can be shown to be
3. In other words, I is a strong {/3-bridging set with
high probability. The time T is dominated by (n, m)-
Romani. It holds that T = O(¢Mn®®:"D) since the mag-
nitude of matrix elements can be up to £M. Since
m = O(nlnn/€) = n", it holds that £ = O(n'~"), and thus
T = O(Mn' " n®@:1)). When M = 1, this bound on r is
i =0.575,and thus T = O(#*°7°). When M = n' > 1, the
time becomes O(n?**()), where t <3 — w = 0.624 and
= ju(t) satisfies w(1, u, 1) = 1 + 24 — t. It is determined
from the best known w(1, i, 1) and the value of t. As the
result is correct with high probability, this is a randomized
algorithm.

(2) Consider the case of unit edge costs here. In (1), the
computation of witnesses is an extra thing, i. e., not neces-
sary if only shortest distances are needed. To achieve the
same complexity in the sense of an exact algorithm, not
a randomized one, the computation of witnesses is essen-
tial. As mentioned earlier, maintenance of witnesses, that
is, matrix W, can be done with an extra polylog factor,
meaning the analysis can be focused on Romani within the
O-notation. Specifically I is selected as an £/3-bridging set,
which is strong with unit edge costs. To compute I as an
O({)-bridging set, obtain the vertices on the shortest path
from i to j for each i and j using the witness matrix W in
O(¢) time. After obtaining those n? sets spending O(£n?)
time, it is shown in [10] how to obtain a O({)-bridging set
of O(nln n/f) size within the same time complexity. The
process of obtaining the bridging set must stop at £ = n'/?
as the process is too expensive beyond this point, and thus
the same bridging set is used beyond this point. The time
before this point is the same as that in (1), and that af-
ter this point is O(#?°). Thus, this is a two-phase algo-
rithm.

(3) When edge costs are positive and bounded by
M = n' > 0, a similar procedure can be used to compute
an O({)-bridging set of O(nlInn/{f) size in O(tn?) time.
Using the bridging set, the APSP problem can be solved in
O(n**M1) time in a similar way to (1). The result can be
generalized into the case where edge costs are between —M
and M within the same time complexity by modifying the
procedure for computing an £-bridging set, provided there
is no negative cycle. The details are shown in [10].

Applications

The eccentricity of a vertex v of a graph is the greatest dis-
tance from v to any other vertices. The diameter of a graph
is the greatest eccentricity of any vertices. In other words,
the diameter is the greatest distance between any pair of



34

Alternative Performance Measures in Online Algorithms

vertices. If the corresponding APSP problem is solved, the
maximum element of the resulting matrix is the diameter.

Open Problems

Two major challenges are stated here among others. The
first is to improve the complexity of O(n?>7°) for the APSP
with unit edge costs. The other is to improve the bound of
M < O(n%%2%) for the complexity of the APSP with inte-
ger costs up to M to be sub-cubic.
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Problem Definition

Even if online algorithms had been studied for around
thirty years, the explicit introduction of competitive anal-
ysis in the seminal papers by Sleator and Tarjan [8] and
Manasse, McGeoch and Sleator [6] sparked an extraordi-
nary boom in research about these class of problems and
algorithms, so both concepts (online algorithms and com-
petitive analysis) have been strongly related since. How-
ever, rather early in its development, some criticism arose
regarding the realism and practicality of the model mainly
because of its pessimism. That characteristic, in some
cases, attempts on the ability of the model to distinguish,
between good and bad algorithms. In a 1994 paper called
Beyond competitive analysis [3], Koutsoupias and Pa-
padimitriou proposed and explored two alternative per-
formance measures for on-line algorithms, both very
much related to competitive analysis and yet avoiding the
weaknesses that caused the aforementioned criticism. The
final version of that work appeared in 2000 [4].

In competitive analysis, the performance of an online
algorithm is compared against an all-powerful adversary
on a worst-case input. The competitive ratio of an algo-
rithm A is defined as the worst possible ratio

where x ranges over all possible inputs of the problem and
A(x) and opt(x) are respectively the costs of the solutions
obtained by algorithm A and the optimum offline algo-
rithm for input x!. This notion can be extended to define
the competitive ratio of a problem, as the minimum com-
petitive ratio of an algorithm for it, namely

A(x)
opt(x)

R = min R4 = min max
A A x

The main criticism to this approach has been that,
with the characteristic pessimism common to all kinds of
worst-case analysis, it fails to discriminate between algo-
rithms that could have different performances under dif-
ferent conditions. Moreover, algorithms that “try” to per-
form well relative to this worst case measure many times
fail to behave well in front of many “typical” inputs. This
arguments can be more easily contested in the (rare) sce-
narios where the very strong assumption that nothing is
known about the distribution of the input holds. But, this
is rarely the case in practice.

!n this article all problems are assumed to be online minimiza-
tion problems, therefore the objective is to minimize costs. All the re-
sults presented here are valid for online maximization problems with
the proper adjustments to the definitions.
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The paper by Koutsoupias and Papadimitriou pro-
poses and studies two refinements of competitive analy-
sis which try to overcome all these concerns. The first of
them is the diffuse adversary model, which points at the
cases where something is known about the input: its prob-
abilistic distribution. With this in mind, the performance
of an algorithm is evaluated comparing its expected cost
with the one of an optimal algorithm for inputs following
that distribution.

The second refinement is called comparative analy-
sis. This refinement is based on the notion of information
regimes. According to this, competitive analysis is inter-
preted as the comparison between two different informa-
tion regimes, the online and the offline ones. But this vi-
sion entails that those information regimes are just par-
ticular, extreme cases of a large set of possibilities, among
which, for example, the set of algorithms that know in ad-
vance some prefix of the awaiting input (finite lookahead
algorithms).

Key Results
Diffuse Adversaries

The competitive ratio of an algorithm A against a class A
of input distributions is the infimum c¢ such that the al-
gorithm is c-competitive when the input is restricted to
that class. That happens whenever there exists a constant
d such that, for all distributions D € A,

Ep(A(x)) < cEp(opt(x)) +d,

where Fp stands for the mathematical expectation over in-
puts following distribution D. The competitive ratio R(A)
of the class of distributions A is the minimum competitive
ratio achievable by an online algorithm against A.

The model is applied to the traditional Paging prob-
lem, for the class of distributions A¢. A¢ is the class that
contains all probability distributions such that, given a re-
quest sequence and a page p, the probability that the next
requested page is p is not more than €. It is shown that
the well-known online algorithm LRU achieves the opti-
mal competitive ratio R(A¢) for all €, that is, it is optimal
against any adversary that uses a distribution in this class.

The proof of this result makes strong use of the work
function concept introduced in [5], that is used as a tool
to track the behavior of the optimal offline algorithm and
estimate the optimal cost for a sequence of requests, and
that of conservative adversaries, which are adversaries that
assign higher probabilities to pages that have been re-
quested more recently. This kind of adversary is consistent
with locality of reference, a concept that has been always
connected to Paging algorithms and competitive analysis

(though in [1] another family of distributions is proposed,
and analyzed within this framework, which better captures
this notion).

The first result states that, for any adversary D € A,
there is a conservative adversary D € A, such that the
competitive ratio of LRU against D is at least the com-
petitive ratio of LRU against D. Then it is shown that for
any conservative adversary D € A, against LRU, there is
a conservative adversary D’ € A, against an on-line algo-
rithm A such that the competitive ratio of LRU against D
is at most the competitive ratio of A against D'. In other
words, for any €, LRU has the optimal competitive ratio
R(A¢) for the diffuse adversary model. This is the main
result in the first part of [4].

The last remaining point refers to the value of the op-
timal competitive ratio of LRU for the Paging problem.
As it is shown, that value is not easy to compute. For
the extreme values of € (the cases in which the adversary
has complete and almost no control of the input, respec-
tively), R(A;) = k, where k is the size of the cache, and also
lime_so R(A¢) = 1. Later work by Young [9] allowed to es-
timate R(A¢) within (almost) a factor of two. For values
of ¢ around the threshold 1/k the optimal ratio is ®(In k),
for values below that threshold the values tend rapidly to
0O(1), and above it to @ (k).

Comparative Analysis

Comparative analysis is a generalization of competitive
analysis that allows to compare classes of algorithms, and
not just individual algorithms. This new idea may be used
to contrast the behaviors of algorithms obeying to arbi-
trary information regimes. In a few words, an information
regime is a class of algorithms that acquire knowledge of
the input in the same way, or at similar “rates”, so both
classes of online and offline algorithms are particular in-
stances of this concept (the former know the input step by
step, the latter receive all the information before having to
produce any output).

The idea of comparative analysis is to measure the rel-
ative quality of two classes of algorithms by the maximum
possible quotient of the results obtained by algorithms in
each of the classes for the same input.

Formally, if A and B are classes of algorithms, the
comparative ratio R(A, B) is defined as

A(x)
B(x)

R(A, B) = max min max
BEB A€A  x
With this definition, if B is the class of all algorithms,
and A is the class of on-line algorithms, then the compar-
ative ratio coincides with the competitive ratio.
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The concept is illustrated determining how beneficial
it can be to allow some lookahead to algorithms for Met-
rical Task Systems (MTS). MTS are an abstract model that
has been introduced in [2], and generalizes a wide fam-
ily of on-line problems, among which Paging, the k-server
problem, list accessing, and many other more. In a Met-
rical Task System a server can travel through the points of
a Metric Space (states) while serving a sequence of requests
or Tasks. The cost of serving a task depends on the state in
which the server is, and the total cost for the sequence is
given by the sum of the distance traveled plus the cost of
servicing all the tasks. The meaning of the lookahead in
this context is that the server can decide where to serve the
next task based not only on the past movements and input
but also on some fixed number of future requests.

The main result here (apart from the definition of the
model itself) is that, for Metrical Task Systems, the Com-
parative Ratio for the class of online algorithms versus that
of algorithms with lookahead I (respectively £y and £;) is
not more than 2/ + 1. That is, for this family of problems
the benefit obtainable from lookahead is never more than
two times the size of the lookahead plus one. The result is
completed showing particular cases in which the equality
holds.

Finally, for particular Metrical Task System the power
of lookahead is shown to be strictly less than that: the last
important result of this section shows that for the Paging
Problem, the comparative ratio is exactly min{l + 1, k},
that is, the benefit of using lookahead [ is the minimum
between the size of the cache and the size of the lookahead
window plus one.

Applications

As it is mentioned in the introduction of [4], the ideas pre-
sented therein are useful to have a better and more precise
analysis of the performance of online algorithms. Also, the
diffuse adversary model may prove useful to depict char-
acteristics of the input that are probabilistic in nature (e. g.
locality). An example in this direction is a paper by Bec-
chetti [1], that uses a diffuse adversary with the intention
of better modeling the locality of reference phenomenon
that characterizes practical applications of Paging. In the
distributions considered there the probability of request-
ing a page is also a function of the page’s age, and it is
shown that the competitive ratio of LRU becomes constant
as locality increases.

A different approach is taken however in [7]. There the
Paging problem with variable cache size is studied and it is
shown that the approach of the expected competitive ra-
tio in the diffuse adversary model can be misleading, while

they propose the use of the average performance ratio in-
stead.

Open Problems

It is an open problem to determine the exact competitive
ratio against a diffuse adversary of known algorithms, for
example FIFO, for the Paging problem. FIFO is known to
be worse in practice than LRU, so proving that the former
is suboptimal for some values of ¢ would give more sup-
port to the model.

An open direction presented in the paper is to consider
what they call the Markov diffuse adversary, which as it is
suggested by the name, refers to an adversary that gener-
ates the sequence of requests following a Markov process
with output.

The last direction of research suggested is to use the
idea of comparative analysis to compare the efficiency of
agents or robots with different capabilities (for example
with different vision ranges) to perform some tasks (for
example construct a plan of the environment).
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Problem Definition

The problem considered here is multiple sequence access
via cache memory. Consider the following pattern of mem-
ory accesses. k sequences of data, which are stored in dis-
joint arrays and have a total length of N, are accessed as
follows:

for t :=1to N do
select a sequence s; € {1,...k}
work on the current element of sequence s;
advance sequence s; to the next element.

The aim is to obtain exact (not just asymptotic) closed
form upper and lower bounds for this problem. Concur-
rent accesses to multiple sequences of data are ubiquitous
in algorithms. Some examples of algorithms which use this
paradigm are distribution sorting, k-way merging, prior-
ity queues, permuting and FFT. This entry summarises the
analyses of this problem in [3,6].

Caches, Models and Cache Analysis

Modern computers have hierarchical memory which con-
sists of registers, one or more levels of caches, main mem-
ory and external memory devices such as disks and tapes.
Memory size increases but the speed decreases with dis-
tance from the CPU. Hierarchical memory is designed to
improve the performance of algorithms by exploiting tem-
poral and spatial locality in data accesses.

Caches are modeled as follows. A cache has m blocks
each of which holds B data elements. The capacity of the
cache is M = mB. Data is transferred between one level of
cache and the next larger and slower memory in blocks

of B elements. A cache is organized as s = m/a sets where
each set consists of a blocks. Memory at address xB, re-
ferred to as memory block x can only be placed in a block
in setx mods. If a = 1 the cache is said to be direct mapped
and if a = s it is said to be fully associative.

If memory block x is accessed and it is not in cache
then a cache miss occurs and the data in memory block x
is brought into cache, incurring a performance penalty. In
order to accommodate block x, it is assumed that the least
recently used (LRU) or the first used (FIFO) block from
the cache set x mod s is evicted and this is referred to as
the replacement strategy. Note that a block may be evicted
from a set even though there may be unoccupied blocks in
other sets.

Cache analysis is performed for the number of cache
misses for a problem with N data elements. To read or
write N data elements an algorithm must incur §2(N/B)
cache misses. These are the compulsory or first reference
misses. In the multiple sequence access via cache memory
problem, for given values of M and B, one aim is to find the
largest k such that there are O(N/B) cache misses for the
N data accesses. It is interesting to analyze cache misses
for the important case of direct mapped cache and for the
general case of set-associative caches.

A large numb