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Preface

Important though the general concepts and propositions may be with which
the modern and industrious passion for axiomatizing and generalizing has
presented us, in algebra perhaps more than anywhere else, nevertheless I am
convinced that the special problems in all their complexity constitute the
stock and core of mathematics, and that to master their difficulties requires
on the whole the harder labor.

Herman Weyl

This book began about 20 years ago in the form of supplementary notes for my alge-
bra classes. 1 wanted to discuss some concrete topics such as symmetry, linear
groups, and quadratic number fields in more detail than the text provided, and to
shift the emphasis in group theory from permutation groups to matrix groups. Lat-
tices, another recurring theme, appeared spontaneously. My hope was that the con-
crete material would interest the students and that it would make the abstractions
more understandable, in short, that they could get farther by learning both at the
same time. This worked pretty well. It took me quite a while to decide what I
wanted to put in, but I gradually handed out more notes and eventually began teach-
ing from them without another text. This method produced a book which is, I think,
somewhat different from existing ones. However, the problems I encountered while
fitting the parts together caused me many headaches, so I can’t recommend starting
this way.

The main novel feature of the book is its increased emphasis on special topics.
They tended to expand each time the sections were rewritten, because I noticed over
the years that, with concrete mathematics in contrast to abstract concepts, students
often prefer more to less. As a result, the ones mentioned above have become major
parts of the book. There are also several unusual short subjects, such as the Todd—
Coxeter algorithm and the simplicity of PSL,.



xiv Preface
In writing the book, I tried to follow these principles:

1. The main examples should precede the abstract definitions.

2. The book is not intended for a “service course,” so technical points should be
presented only if they are needed in the book.

3. All topics discussed should be important for the average mathematician.

Though these principles may sound like motherhood and the flag, I found it useful to
have them enunciated, and to keep in mind that “Do it the way you were taught”
isn’t one of them. They are, of course, violated here and there.

The table of contents gives a good idea of the subject matter, except that a first
glance may lead you to believe that the book contains all of the standard material in
a beginning algebra course, and more. Looking more closely, you will find that
things have been pared down here and there to make space for the special topics. I
used the above principles as a guide. Thus having the main examples in hand before
proceeding to the abstract material allowed some abstractions to be treated more
concisely. I was also able to shorten a few discussions by deferring them until the
students have already overcome their inherent conceptual difficulties. The discussion
of Peano’s axioms in Chapter 10, for example, has been cut to two pages. Though
the treatment given there is very incomplete, my experience is that it suffices to give
the students the flavor of the axiomatic development of integer arithmetic. A more
extensive discussion would be required if it were placed earlier in the book, and the
time required for this wouldn’t be well spent. Sometimes the exercise of deferring
material showed that it could be deferred forever—that it was not essential. This
happened with dual spaces and multilinear algebra, for example, which wound up on
the floor as a consequence of the second principle. With a few concepts, such as the
minimal polynomial, I ended up believing that their main purpose in introductory al-
gebra books has been to provide a convenient source of exercises.

The chapters are organized following the order in which I usually teach a
course, with linear algebra, group theory, and geometry making up the first
semester. Rings are first introduced in Chapter 10, though that chapter is logically
independent of many earlier ones. I use this unusual arrangement because I want to
emphasize the connections of algebra with geometry at the start, and because, over-
all, the material in the first chapters is the most important for people in other fields.
The drawback is that arithmetic is given short shrift. This is made up for in the later
chapters, which have a strong arithmetic slant. Geometry is brought back from time
to time in these later chapters, in the guise of lattices, symmetry, and algebraic ge-
ometry.

Michael Artin
December 1990



A Note for the Teacher

There are few prerequisites for this book. Students should be familiar with calculus,
the basic properties of the complex numbers, and mathematical induction. Some ac-
quaintance with proofs is obviously useful, though less essential. The concepts from
topology, which are used in Chapter 8, should not be regarded as prerequisites. An
appendix is provided as a reference for some of these concepts; it is too brief to be
suitable as a text.

Don’t try to cover the book in a one-year course unless your students have al-
ready had a semester of algebra, linear algebra for instance, and are mathematically
fairly mature. About a third of the material can be omitted without sacrificing much
of the book’s flavor, and more can be left out if necessary. The following sections,
for example, would make a coherent course:

Chapter 1, Chapter 2, Chapter 3: 1-4, Chapter 4, Chapter 5: 1-7,
Chapter 6: 1,2, Chapter 7: 1-6, Chapter 8: 1-3,5, Chapter 10: 1-7,
Chapter 11: 1-8, Chapter 12: 1-7, Chapter 13: 1-6.

This selection includes some of the interesting special topics: symmetry of plane
figures, the geometry of SU, and the arithmetic of imaginary quadratic number
fields. If you don’t want to discuss such topics, then this is not the book for you.

It would be easy to spend an entire semester on the first four chapters, but this
would defeat the purpose of the book. Since the real fun starts with Chapter 5, it is
important to move along. If you plan to follow the chapters in order, try to get to
that chapter as soon as is practicable, so that it can be done at a leisurely pace. It will
help to keep attention focussed on the concrete examples. This is especially impor-

Xv



xvi A Note for the Teacher

tant in the beginning for the students who come to the course without a clear idea of
what constitutes a proof.

Chapter 1, matrix operations, isn’t as exciting as some of the later ones, so it
should be covered fairly quickly. I begin with it because I want to emphasize the
general linear group at the start, instead of following the more customary practice of
basing examples on the symmetric group. The reason for this decision is Principle 3
of the preface: The general linear group is more important.

Here are some suggestions for Chapter 2:

1. Treat the abstract material with a light touch. You can have another go at it in
Chapters 5 and 6.

2. For examples, concentrate on matrix groups. Mention permutation groups only in
passing. Because of their inherent notational difficulties, examples from symme-
try such as the dihedral groups are best deferred to Chapter 5.

3. Don’t spend too much time on arithmetic. Its natural place in this book is Chap-
ters 10 and 11.

4. Deemphasize the quotient group construction.

Quotient groups present a pedagogical problem. While their construction is concep-
tually difficult, the quotient is readily presented as the image of a homomorphism in
most elementary examples, and so it does not require an abstract definition. Modular
arithmetic is about the only convincing example for which this is not the case. And
since the integers modulo n form a ring, modular arithmetic isn’t the ideal motivat-
ing example for quotients of groups. The first serious use of quotient groups comes
when generators and relations are discussed in Chapter 6, and I deferred the treat-
ment of quotients to that point in early drafts of the book. But fearing the outrage of
the algebra community I ended up moving it to Chapter 2. Anyhow, if you don’t
plan to discuss generators and relations for groups in your course, then you can defer
an in-depth treatment of quotients to Chapter 10, ring theory, where they play a
central role, and where modular arithmetic becomes a prime motivating example.

In Chapter 3, vector spaces, I’ve tried to set up the computations with bases in
such a way that the students won’t have trouble keeping the indices straight. I've
probably failed, but since the notation is used throughout the book, it may be advis-
able to adopt it.

The applications of linear operators to rotations and linear differential equa-
tions in Chapter 4 should be discussed because they are used later on, but the temp-
tation to give differential equations their due has to be resisted. This heresy will be
forgiven because you are teaching an algebra course.

There is a gradual rise in the level of sophistication which is assumed of the
reader throughout the first chapters, and a jump which I've been unable to eliminate
occurs in Chapter 5. Had it not been for this jump, I would have moved symmetry
closer to the beginning of the book. Keep in mind that symmetry is a difficult con-
cept. It is easy to get carried away by the material and to leave the students behind.
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Except for its first two sections, Chapter 6 contains optional material. The last
section on the Todd—Coxeter algorithm isn’t standard; it is included to justify the
discussion of generators and relations, which is pretty useless without it.

There is nothing unusual in the chapter on bilinear forms, Chapter 7. I haven’t
overcome the main problem with this material, that there are too many variations on
the same theme, but have tried to keep the discussion short by concentrating on the
real and complex cases.

In the chapter on linear groups, Chapter 8, plan to spend time on the geometry
of SU,. My students complained every year about this chapter until I expanded the
sections on SU,, after which they began asking for supplementary reading, wanting
to learn more. Many of our students are not familiar with the concepts from topol-
ogy when they take the course, and so these concepts require a light touch. But I’ve
found that the problems caused by the students’ lack of familiarity can be managed.
Indeed, this is a good place for them to get an idea of what a manifold is. Unfortu-
nately, I don’t know a really satisfactory reference for further reading.

Chapter 9 on group representations is optional. I resisted including this topic
for a number of years, on the grounds that it is too hard. But students often request
it, and I kept asking myself: If the chemists can teach it, why can’t we? Eventually
the internal logic of the book won out and group representations went in. As a divi-
dend, hermitian forms got an application.

The unusual topic in Chapter 11 is the arithmetic of quadratic number fields.
You may find the discussion too long for a general algebra course. With this possibil-
ity in mind, I've arranged the material so that the end of Section 8, ideal factoriza-
tion, is a natural stopping point.

It seems to me that one should at least mention the most important examples of
fields in a beginning algebra course, so I put a discussion of function fields into
Chapter 13.

There is always the question of whether or not Galois theory should be pre-
sented in an undergraduate course. It doesn’t have quite the universal applicability
of most of the subjects in the book. But since Galois theory is a natural culmination
of the discussion of symmetry, it belongs here as an optional topic. I usually spend at
least some time on Chapter 14.

I considered grading the exercises for difficulty, but found that I couldn’t do it
consistently. So I’ve only gone so far as to mark some of the harder ones with an
asterisk. I believe that there are enough challenging problems, but of course one al-
ways needs more of the interesting, easier ones.

Though I’ve taught algebra for many years, several aspects of this book are ex-
perimental, and I would be very grateful for critical comments and suggestions from
the people who use it.

“One, two, three, five, four...”

“No Daddy, it's one, two, three, four, five.”

“Well if I want to say one, two, three, five, four,
why can't I?”

“That’s not how it goes.”
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Chapter 1

Matrix Operations

Crftlidy wicd alleg dasjenige eine Seodfe genennt,
weldyes einer Bermebrung oder einer Vevmindperuny fabig ift,
oder woju fidy nody etwad bingufeeen oder davon wegnebmen Lage.

Leonhard Euler

Matrices play a central role in this book. They form an important part of the theory,
and many concrete examples are based on them. Therefore it is essential to develop
facility in matrix manipulation. Since matrices pervade much of mathematics, the
techniques needed here are sure to be useful elsewhere.

The concepts which require practice to handle are matrix multiplication and
determinants.

1. THE BASIC OPERATIONS

Let m, n be positive integers. An m X n matrix is a collection of mn numbers ar-
ranged in a rectangular array:
n columns

an Tt Qin
(1.1) m rows

am °°° Qmn

For example, [:f 3 (5)] is a 2 X 3 matrix.

The numbers in a matrix are called the matrix entries and are denoted by aj;,
where i, j are indices (integers) with 1 =i =m and 1 = j < n. The index i is
called the row index, and j is the column index. So aj;; is the entry which appears in

1



2 Matrix Operation Chapter 1

the ith row and jth column of the matrix:

J
il ay
In the example above, a1 = 2, a;3 = 0, and a = 5.
We usually introduce a symbol such as A to denote a matrix, or we may write it

as (a,,)
A 1 X n matrix is called an n-dimensional row vector. We will drop the index i
when m = 1 and write a row vector as

(1.2) A=[aa)], oras A= (a,...,an).

The commas in this row vector are optional. Similarly, an m X 1 matrix is an m-
dimensional column vector:

(1.3) B =

A 1 X 1 matrix [a] contains a single number, and we do not distinguish such a ma-
trix from its entry.
(1.4) Addition of matrices is vector addition:
(ay) + (by) = (sy),
where s; = a; + by for all i, j. Thus
210+[1_ 03_[313
1 3 5 4 -3 1 5 0 6/
The sum of two matrices 4, B is defined only when they are both of the same
shape, that is, when they are m X n matrices with the same m and n.
(1.3) Scalar multiplication of a matrix by a number is defined as with vectors. The
result of multiplying a number ¢ and a matrix (a;;) is another matrix:
clay) = (by),

where by; = cay; for all i, j. Thus

01 0 2
212 31=14 6
21 4 2

Numbers will also be referred to as scalars.



Section 1 The Basic Operations 3

The complicated notion is that of matrix multiplication. The first case to learn
is the product AB of a row vector A (1.2) and a column vector B (1.3) which is
defined when both are the same size, that is, m = n. Then the product AB is the
1 X 1 matrix or scalar

(16) ab, + axby + -+ + ambm.
(This product is often called the “dot product” of the two vectors.) Thus

1
B 1 2)-1]=3-1+1-(-1)+2-4=10.
4

The usefulness of this definition becomes apparent when we regard A and B as vec-
tors which represent indexed quantities. For example, consider a candy bar contain-
ing m ingredients. Let a; denote the number of grams of (ingredient); per candy bar,
and let b; denote the cost of (ingredient); per gram. Then the matrix product AB = ¢
computes the cost per candy bar:

(grams/bar) - (cost/gram) = (cost/bar).

On the other hand, the fact that we consider this to be the product of a row by a
column is an arbitrary choice.

In general, the product of two matrices A and B is defined if the number of
columns of A is equal to the number of rows of B, say if A is an £ X m matrix and B
is an m X n matrix. In this case, the product is an € X n matrix. Symbolically,
(€Xm) - (mxn) = (€xn). The entries of the product matrix are computed by
multiplying all rows of A by all columns of B, using rule (1.6) above. Thus if we de-
note the product AB by P, then

(1.7) pi = anby + anby + -+ + Aimbp;.

This is the product of the ith row of A and the jth column of B.

J

by




4 Matrix Operation Chapter 1

For example,

1
0-1 2 2
(1.8) 2=
3
This definition of matrix multiplication has turned out to provide a very convenient
computational tool.

Going back to our candy bar example, suppose that there are € candy bars.
Then we may form a matrix A whose ith row measures the ingredients of (bar);. If
the cost is to be computed each year for n years, we may form a matrix B whose jth
column measures the cost of the ingredients in (year);. The matrix product AB = P
computes the cost per bar: p; = cost of (bar); in (year);.

Matrix notation was introduced in the nineteenth century to provide a short-
hand way of writing linear equations. The system of equations

anx; + o+ awxn = b
anxy + -+ amxn = b

amx; + + + ampXn = bm
can be written in matrix notation as
(1.9 AX = B,

where A denotes the coefficient matrix (a;), X and B are column vectors, and AX is
the matrix product

X1

Xn

o-1 2](" =[2
3 4-6||™" 1
X3

represents the following system of two equations in three unknowns:

Thus the matrix equation

X+ 2x3 =2
3xi + 4x; — 6x3 = 1.
Equation (1.8) exhibits one solution: x, = 1, x, = 4, x3 = 3.
Formula (1.7) defining the product can also be written in “sigma” notation as

m
pij = 2 aibyy = 2 airby;.
k=1 X
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Each of these expressions is a shorthand notation for the sum (1.7) which defines the
product matrix.

Our two most important notations for handling sets of numbers are the X or
sum notation as used above and matrix notation. The X notation is actually the more
versatile of the two, but because matrices are much more compact we will use them
whenever possible. One of our tasks in later chapters will be to translate complicated
mathematical structures into matrix notation in order to be able to work with them
conveniently.

Various identities are satisfied by the matrix operations, such as the distributive
laws

(1.10) AB+ B') =AB + AB’, and (A + A’)B= AB + A'B
and the associative law
(1.11) (AB)C = A(BC).

These laws hold whenever the matrices involved have suitable sizes, so that the
products are defined. For the associative law, for example, the sizes should be
A=4{€Xm,B=mXnand, C = nXp, for some €, m, n, p. Since the two products
(1.11) are equal, the parentheses are not required, and we will denote them by ABC.
The triple product ABC is then an £ X p matrix. For example, the two ways of com-
puting the product

1 2 0
ABC=[2][1 0 1]{1 1
01
are
2 0
1 0 1 31 1 3 1
(AB)C=[2 0 2](1) i =[6 2] and A(BC)=[2][2 1]=[6 2].

Scalar multiplication is compatible with matrix multiplication in the obvious
sense:
(1.12) c(AB) = (cA)B = A(cB).

The proofs of these identities are straightforward and not very interesting.

In contrast, the commutative law does not hold for matrix multiplication; that
is,
(1.13) AB # BA, usually.

In fact, if A is an € X m matrix and B is an m X € matrix, so that AB and BA are both
defined, then AB is € X € while BA is m X m. Even if both matrices are square, say
m X m, the two products tend to be different. For instance,

o ollo =[5 alrmels 2 ol <15 <l



6 Matrix Operation Chapter 1

Since matrix multiplication is not commutative, care must be taken when
working with matrix equations. We can multiply both sides of an equation B = C on
the left by a matrix A, to conclude that AB = AC, provided that the products are
defined. Similarly, if the products are defined, then we can conclude that BA = CA.
We can not derive AB = CA from B = C!

Any matrix all of whose entries are O is called a zero matrix and is denoted by
0, though its size is arbitrary. Maybe Omx, would be better.

The entries a; of a matrix A are called its diagonal entries, and a matrix A
is called a diagonal matrix if its only nonzero entries are diagonal entries.

The square n X n matrix whose only nonzero entries are 1 in each diagonal po-
sition,

(1.14) n=\{- - -,

is called the n X n identity matrix. It behaves like 1 in multiplication: If A is an
m X n matrix, then

InA = A and Al, = A.
Here are some shorthand ways of drawing the matrix I,:
1 0 1
1" = ) . = ) .
0 1 1
We often indicate that a whole region in a matrix consists of zeros by leaving it

blank or by putting in a single 0.
We will use * to indicate an arbitrary undetermined entry of a matrix. Thus

* *

0 "
may denote a square matrix whose entries below the diagonal are 0, the other entries

being undetermined. Such a matrix is called an upper triangular matrix.
Let A be a (square) n X n matrix. If there is a matrix B such that

(1.15) AB =1, and BA = I,

then B is called an inverse of A and is denoted by A™":

(1.16) ATlA =], =4A"".

When A has an inverse, it is said to be an invertible matrix. For example, the matrix

A= [;_)' ;] is invertible. Its inverse is A™' = [_g _;], as is seen by computing
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the products AA™" and A™'A. Two more examples are:

ol e [

We will see later that A is invertible if there is a matrix B such that either one of
the two relations AB = I, or BA = I, holds, and that B is then the inverse [see
(2.23)]. But since multiplication of matrices is not commutative, this fact is not obvi-
ous. It fails for matrices which aren’t square. For example, let A = [1 2] and let

_ |1 = 1 2
B—[O].ThenAB—[l] Il,butBA~[0 0 £ 1.

On the other hand, an inverse is unique if it exists at all. In other words, there
can be only one inverse. Let B,B’ be two matrices satisfying (1.15), for the same
matrix A. We need only know that AB = 1, (B is a right inverse) and that B'A = I,
(B" is a left inverse). By the associative law, B’(AB) = (B’A)B. Thus

(1.17) B' = B'l = B'(AB) = (B'A)B = IB = B,

and so B’ = B. o

(1.18) Proposition. Let A,B be n X n matrices. If both are invertible, so is their
product AB, and

(aB)™' = p7'a7L.
More generally, if A;,...,An are invertible, then so is the product A, --- A, and its

inverse is A ' ---A; 7"

. 1 1 1 _ (1 1. |1-1]11
Thusthelnverseof[ 2][ 1]—[ 2] 1s[ 1][

Proof. Assume that A,B are invertible. Then we check that B™'A™! is the in-
verse of AB:

N=
N— N —

ABBT'AT' = AJIAT' = aaT' =1,
and similarly

B'A'AB=..- = ].

The last assertion is proved by induction on m [see Appendix (2.3)]. When m = 1,
the assertion is that if A, is invertible then A,7! is the inverse of A4;, which is trivial.
Next we assume that the assertion is true for m = k, and we proceed to check it for
m = k + 1. We suppose that A,,..., Ax+1 are invertible n X n matrices, and we de-
note by P the product A, --- Ax of the first k matrices. By the induction hypothesis, P
is invertible, and its inverse is Ax”' -+ A,™'. Also, Ak+ is invertible. So, by what has
been shown for two invertible matrices, the product PAgr.1 = A; - ArAr+ is invert-
ible, and its inverse is Ak+1 'P”' = Ag+1 'Ax ! -+ A, 7. This shows that the assertion is
true for m = k + 1, which completes the induction proof. o
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Though this isn’t clear from the definition of matrix multiplication, we will see
that most square matrices are invertible. But finding the inverse explicitly is not a
simple problem when the matrix is large.

The set of all invertible #n X n matrices is called the n-dimensional general lin-
ear group and is denoted by GL,. The general linear groups will be among our most
important examples when we study the basic concept of a group in the next chapter.

Various tricks simplify matrix multiplication in favorable cases. Block multipli-
cation is one of them. Let M,M’ be m X n and n X p matrices, and let r be an integer
less than n. We may decompose the two matrices into blocks as follows:

M =[A|B] and M’=[%],

where A has r columns and A’ has r rows. Then the matrix product can be computed
as follows:
(1.19) MM’ = AA' + BB'.

This decomposition of the product follows directly from the definition of multiplica-
tion, and it may facilitate computation. For example,

2 3
1 0|5 1 0f{2 3 5 23
[0 1 '7] s 8=, 1k ik [7][0 =2 o)
00

Note that formula (1.19) looks the same as rule (1.6) for multiplying a row
vector and a column vector.

We may also multiply matrices divided into more blocks. For our purposes, a
decomposition into four blocks will be the most useful. In this case the rule for block
multiplication is the same as for multiplication of 2 X 2 matrices. Letr + s = n and

let k + € = m. Suppose we decompose an m X n matrix M and an n X p matrix M’

into submatrices
A|B , A | B
M= , M = > 7 1,
C|D C D

where the number of columns of A is equal to the number of rows of A". Then the
rule for block multiplication is

A|B][a | B AA’" + BC' | AB' + BD'
(1.20) P ’ = ’ ’ ’ r |
c|pllc’'|p cA’ + Dpc’' | cB' + DD

[u’__5.
0 1]7

For example,

2 3
4 1
0 1

Ll ==
IO =
i
| e
o
o0 | 00
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2 3
In this product, the upper left block is [1 0][4 1] + [5][0 1]=1[2 8], etc.

Again, this rule can be verified directly from the definition of matrix multipli-
cation. In general, block multiplication can be used whenever two matrices are de-
composed into submatrices in such a way that the necessary products are defined.

Besides facilitating computations, block multiplication is a useful tool for prov-
ing facts about matrices by induction.

2. ROW REDUCTION

Let A = (ay) be an m X n matrix, and consider a variable n X p matrix X = (x;).
Then the matrix equation

2.1 Y = AX

defines the m X p matrix ¥ = (y;) as a function of X. This operation is called left
multiplication by A:

(2.2) Yi = Qinxy T 00t QinXe

Notice that in formula (2.2) the entry y; depends only on xyj,..., X, that is, on the
Jjth column of X and on the ith row of the matrix A. Thus A operates separately on
each column of X, and we can understand the way A operates by considering its ac-

tion on column vectors:
x
.l 3)
A . = |
Xn Ym

Left multiplication by A on column vectors can be thought of as a function
from the space of n-dimensional column vectors X to the space of m-dimensional
column vectors Y, or a collection of m functions of n variables:

Yi = aixy + o0+ QinXn @=1,..,m).

It is called a linear transformation, because the functions are homogeneous and lin-
ear. (A linear function of a set of variables u,..., ux is one of the form a,u, +
-+ + aqrur + ¢, where a,..., ax,c are scalars. Such a function is homogeneous lin-
ear if the constant term c is zero.)

A picture of the operation of the 2 X 2 matrix [31} ﬂ is shown below. It maps

2-space to 2-space:
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€

(2.3) Figure.

Going back to the operation of A on an n X p matrix X, we can interpret the fact
that A acts in the same way on each column of X as follows: Let ¥; denote the ith row
of Y, which we view as a row vector:

We can compute Y; in terms of the rows X; of X, in vector notation, as
(24) Yi = anXi + - 4+ QAinXn.

This is just a restatement of (2.2), and it is another example of block multiplication.
For example, the bottom row of the product

[0-1 2] i =[2 2]
3 4-6 3 9 1-4

can be computed as 3[1 0] + 4[4 2] - 6[3 2]=[1 -4].

When A is a square matrix, we often speak of left multiplication by A as a row
operation.

The simplest nonzero matrices are the matrix units, which we denote by e;;:

J

(2.5) eij=i--1....
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This matrix e; has a 1 in the (i, j) position as its only nonzero entry. (We usually
denote matrices by capital letters, but the use of a small letter for the matrix units is
traditional.) Matrix units are useful because every matrix A = (a;) can be written
out as a sum in the following way:

A = anen t anep t 0t Quuenn = 2 aijejj.
i,j

The indices i, under the sigma mean that the sum is to be taken over all values of i
and all values of j. For instance

NN E LR e

Such a sum is called a linear combination of the matrices e;.

The matrix units are convenient for the study of addition and scalar multiplica-
tion of matrices. But to study matrix multiplication, some square matrices called ele-
mentary matrices are more useful. There are three types of elementary matrix:

1 1
(2.6i) . or o = | + ae; (i # ).
1 1
Such a matrix has diagonal entries 1 and one nonzero off-diagonal entry.

a '1

(2.6ii) I ) = I + e + € — e — €.

Here the ith and jth diagonal entries of / are replaced by zero, and two 1’s are
added in the (i, j) and (j, i) positions. (The formula in terms of the matrix units is
rather ugly, and we won’t use it much.)

1 .

(2.6iii) c =1+ (c — e, (c #0).

1

One diagonal entry of the identity matrix is replaced by a nonzero number c .



12 Matrix Operation Chapter 1

The elementary 2 X 2 matrices are

[roal o] 0 1] L (e 1
A A R R

where, as above, a is arbitrary and c is an arbitrary nonzero number.
The elementary matrices £ operate on a matrix X as described below.

(2.7) To get the matrix £X, you must:

Type (i):  Replace the ith row X; by X; + aX;, or
add a-(rowj) to (rowi);

Type (ii): Interchange (rowi) and (rowj);

Type (iii): Multiply (rowi) by a nonzero scalar c.

These operations are called elementary row operations. Thus multiplication by an el-
ementary matrix is an elementary row operation. You should verify these rules of
multiplication carefully.

(2.8) Lemma. Elementary matrices are invertible, and their inverses are also ele-
mentary matrices.

The proof of this lemma is just a calculation. The inverse of an elementary ma-
trix is the matrix corresponding to the inverse row operation: If E = I + aejy is of
Type (i), then E™! = 1 — aey; “subtract a-(row j) from (rowi)”. If E is of Type (ii),
then £7' = E, and if E is of Type (iii), then E~' is of the same type, with ¢™' in the

19

position that ¢ has in E; “multiply (rowi) by ¢™'”. o

We will now study the effect of elementary row operations (2.7) on a matrix 4,
with the aim of ending up with a simpler matrix A":

sequence of operations

’

Since each elementary row operation is obtained as the result of multiplication by an
elementary matrix, we can express the result of a succession of such operations as
multiplication by a sequence Ei,..., Ex of elementary matrices:

(2.9) A’ = Ep--EE\A.

This procedure is called row reduction, or Gaussian elimination. For example, we
can simplify the matrix

1 021 5
(2.10) M=11135 2 7
1 2 8 4 12

by using the first type of elementary operation to clear out as many entries as
possible:
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1 0 21 5 1 0 21 5 1 0 21 5
1152 7]—J0 1 31 2]1—J0 1 3 1 2]—
1 2 8 4 12 1 2 8 4 12 0 2 6 3 7
1 0 215 1 0 2 0 2
0131 2]——|0 1 3 0-13.
0 00 1 3 0 001 3

Row reduction is a useful method of solving systems of linear equations. Sup-
pose we are given a system of m equations in n unknowns, say AX = B as in (1.9),
where A is an m X n matrix, X is an unknown column vector, and B is a given
column vector. To solve this system, we form the m X (n + 1) block matrix

an - anm|b
(2.11) M=[alB]=| - N
am ‘' Qmn b"
and we perform row operations to simplify M. Note that EM = [EA|EB]. Let
M = [A"|B]

be the result of a sequence of row operations. The key observation follows:

(2.12) Proposition. The solutions of A’X = B’ are the same as those of AX = B.
Proof. Since M’ is obtained by a sequence of elementary row operations,
M' = E,-EM.

Let P = E,--- E,. This matrix is invertible, by Lemma (2.8) and Proposition (1.18).
Also, M’ = [A"|B'] = [PA|PB]. If X is a solution of the original system AX = B,
then PAX = PB, which is to say, A’X = B’. So X also solves the new system. Con-
versely, if A'X = B', then AX = P"'A’X = P"'B' = B, so X solves the system
AX = B t00. o
For example, consider the system

X + 2X3 + X4 = 5
(213) x+ x2+ S5x + 2X4 = 17

xi + 2x; + 8xs + 4xy = 12,

Its augmented matrix is the matrix M considered above (2.10), so our row reduction
of this matrix shows that this system of equations is equivalent to

x + 2x; = 2
x; + 3x3 = -1

X4 = 3
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We can read off the solutions of this system immediately: We may choose x; arbitrar-
ily and then solve for x,, x2, and xs. The general solution of (2.13) can therefore be
written in the form

xn=c,x=1—20,x=-1—3c,x =3,

where c; is arbitrary.

We now go back to row reduction of an arbitrary matrix. It is not hard to see
that, by a sequence of row operations, any matrix A can be reduced to one which
looks roughly like this:

1 .« 0 % % 0 % ..% 0
1 =, 0 *,% 0

(2.14) A= I #..%x 0 ,
1

where * denotes an arbitrary number and the large blank space consists of zeros.
This is called a row echelon matrix. For instance,

S O -
S O
S = O
S N -

is a row echelon matrix. So is the end result of our reduction of (2.10). The
definition of a row echelon matrix is given in (2.15):

(2.15)

(a) The first nonzero entry in every row is 1. This entry is called a pivot.

(b) The first nonzero entry of row i + 1 is to the right of the first nonzero en-
try of row i.

(c) The entries above a pivot are zero.

To make a row reduction, find the first column which contains a nonzero en-
try. (If there is none, then A = 0, and O is a row echelon matrix.) Interchange rows
using an elementary operation of Type (ii), moving a nonzero entry to the top row.
Normalize this entry to 1 using an operation of Type (iii). Then clear out the other
entries in its column by a sequence of operations of Type (i). The resulting matrix
will have the block form
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0o ... 0|1|* ..... *

0 ... 040 =* ..... * 1|8

. S - | » which we may write as [‘H?] = A’
0 ... 01O0I=* ..... *

We now continue, performing row operations on the smaller matrix D (cooking until
done). Formally, this is induction on the size of the matrix. The principle of com-
plete induction [see Appendix (2.6)] allows us to assume that every matrix with
fewer rows than A can be reduced to row echelon form. Since D has fewer rows, we
may assume that it can be reduced to a row echelon matrix, say D”. The row opera-
tions we perform to reduce D to D" will not change the other blocks making up A’.
Therefore A" can be reduced to the matrix

[ 1 B] )
/4 =A’
D

which satisfies requirements (2.15a and b) for a row echelon matrix. Therefore our
original matrix A can be reduced to this form. The entries in B above the pivots of D"
can be cleared out at this time, to finish the reduction to row echelon form. o

It can be shown that the row echelon matrix obtained from a given matrix A by
row reduction is unique, that is, that it does not depend on the particular sequence of
operations used. However, this is not a very important point, so we omit the proof.

The reason that row reduction is useful is that we can solve a system of equa-
tions A’X = B’ immediately if A’ is in row echelon form. For example, suppose that

1 6 0 1[0
iel=10 01 2o
000 0]1

There is no solution to A’X = B’ because the third equation is 0 = 1. On the other
hand,

16 0 11
aie]=]0 0 1 2|3
00000

has solutions. Choosing x;, x4 arbitrarily, we can solve the first equation for x, and
the second for x;. This is the procedure we use to solve system (2.13).
The general rule is as follows:

(2.16) Proposition. Let M’ = [A’|B’] be a row echelon matrix. Then the system
of equations A’X = B’ has a solution if and only if there is no pivot in the last
column B’. In that case, an arbitrary value can be assigned to the unknown x; if
column i does not contain a pivot. o
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Of course every homogeneous linear system AX = O has the trivial solution
X = 0. But looking at the row echelon form again, we can conclude that if there are
more unknowns than equations then the homogeneous equation AX = 0 has a non-
trivial solution for X :

(2.17) Corollary. Every system Ax = 0 of m homogeneous equations in n un-
knowns, with m < n, has a solution X in which some x; is nonzero.

For, let A’X = 0 be the associated row echelon equation, and let r be the number of
pivots of A’. Then r = m. According to the proposition, we may assign arbitrary
values to n — r variables x;. o

We will now use row reduction to characterize square invertible matrices.

(2.18) Proposition. Let A be a square matrix. The following conditions are equiva-
lent:

(a) A can be reduced to the identity by a sequence of elementary row operations.

(b) A is a product of elementary matrices.

(¢) A is invertible.

(d) The system of homogeneous equations AX = 0 has only the trivial solution
X=0.

Proof. We will prove this proposition by proving the implications (a)=>>(b)=>
(c)=>(d)=>(a). To show that (a) implies (b), suppose that A can be reduced to the
identity by row operations: Ex--- E\A = I. Multiplying both sides of this equation on
the left by E,™' - Ex”', we obtain A = E,”' --- E~'. Since the inverse of an elemen-
tary matrix is elementary, this shows that A is a product of elementary matrices. Be-
cause a product of elementary matrices is invertible, (b) implies (c). If A is invertible
we can multiply both sides of the equation AX = 0 by A™' to derive X = 0. So the
equation AX = 0 has only the trivial solution. This shows that (c) implies (d).

To prove the last implication, that (d) implies (a), we take a look at square row
echelon matrices M. We note the following dichotomy:

(2.19) Let M be a square row echelon matrix.
Either M is the identity matrix, or its bottom row is zero.

This is easy to see, from (2.15).

Suppose that (a) does not hold for a given matrix A. Then A can be reduced by
row operations to a matrix A’ whose bottom row is zero. In this case there are at
most n— 1 nontrivial equations in the linear system A’X = 0, and so Corollary (2.17)
tells us that this system has a nontrivial solution. Since the equation AX = 0
is equivalent to A’X = 0, it has a nontrivial solution as well. This shows that if (a)
fails then (d) does too; hence (d) implies (a). This completes the proof of Proposition
(2.18). o
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(2.20) Corollary. If a row of a square matrix A is zero, then A is not invertible. o

Row reduction provides a method of computing the inverse of an invertible
matrix A: We reduce A to the identity by row operations:

Ek EIA =]
as above. Multiplying both sides of this equation on the right by A™!, we have
Ex-Eil = AN

(2.21) Corollary. Let A be an invertible matrix. To compute its inverse A™*, apply

elementary row operations Ei,...,Ex to A, reducing it to the identity matrix. The
same sequence of operations, when applied to I, yields A™".

The corollary is just a restatement of the two equations. o

(2.22) Example. We seek the inverse of the matrix

L

To compute it we form the 2 X 4 block matrix

wn=[; 44 1]

We perform row operations to reduce A to the identity, carrying the right side along,
and thereby end up with A™! on the right because of Corollary (2.21).

—

5 41 0
(a|1] = 6 5|0 1] Subtract (row 1) from (row 2)

[5 4 1

—> R _i (1) Subtract 4 - (row 2) from (row 1)

— 1 (1) _? _‘11 Subtract (row 1) from (row 2)
[1 0| 5-4] _ o
[0 1]|-6 5_”[”" ]l

Thus A™' = [_ g]

(2.23) Proposition. Let A be a square matrix which has either a left inverse B:
BA = I, or a right inverse: AB = I. Then A is invertible, and B is its inverse.

Proof. Suppose that AB = I. We perform row reduction on A. According to
(2.19), there are elementary matrices Ei,..., Ex so that A" = E¢... E\A either is the
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identity matrix or has bottom row zero. Then A'B = Ei... E;, which is an invertible
matrix. Hence the bottom row of A’B is not zero, and it follows that A’ has a nonzero
bottom row too. So A’ = I. By (2.18), A is invertible, and the equations
I = E...E\Aand AB = | show that A™' = E,...E, = B (see (1.17)). The other case
is that BA = I. Then we can interchange A and B in the above argument and con-
clude that B is invertible and A is its inverse. So A is invertible too. o

For most of this discussion, we could have worked with columns rather than
rows. We chose to work with rows in order to apply the results to systems of linear
equations; otherwise columns would have served just as well. Rows and columns are
interchanged by the matrix transpose. The transpose of an m X n matrix A is the
n X m matrix A® obtained by reflecting about the diagonal: A° = (b;;), where

bij = qji.

1
t
[? ﬂ=[; ﬂ and [1 2 3]=1]2]
3

The rules for computing with the transpose are given in (2.24):

For instance,

(2.24)
(a) (A+B)!=24a"+B"
(b) (cA) = cA".
© (AB) = B'A"!
(d aYHY = 4.

Using formulas (2.24c and d), we can deduce facts about right multiplication,
XP, from the corresponding facts about left multiplication.

The elementary matrices (2.6) act by right multiplication as the following ele-
mentary column operations:

(2.25)

(a) Add a - (column i) to (column j).
(b) Interchange (column i) and (column j).
(c) Multiply (column §) by ¢ # 0.

3. DETERMINANTS

Every square matrix A has a number associated to it called its determinant. In this
section we will define the determinant and derive some of its properties. The deter-
minant of a matrix A will be denoted by det A.
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The determinant of a 1 X 1 matrix is just its unique entry

(3.1) det [a] = a,
and the determinant of a 2 X 2 matrix is given by the formula
(3.2) @{“ﬂ=m—w

c d

If we think of a 2 X2 matrix A as an operator on the space R* of real two-
dimensional vectors, as in Section 2, then det A can be interpreted geometrically. Its
absolute value is the area of the parallelogram which forms the image of a unit
square under the operation. For example, the area of the shaded region of Figure
(2.3) is 10. The determinant is positive or negative according to whether the orienta-
tion of the square is preserved or reversed by the operation. Moreover, det A = 0 if
and only if the parallelogram degenerates to a line segment, and this occurs if and
only if the two columns of A are proportional.

The set of all n X n matrices forms a space of dimension n?, which we denote
by R™". We will regard the determinant of n X n matrices as a function from this
space to the real numbers:

det: R”"—S R,

This just means that det is a function of the n® matrix entries. There is one such
function for each positive integer n. Unfortunately there are many formulas for the
determinant, and all of them are complicated when n is large. The determinant is
important because it has very nice properties, though there is no simple formula for
it. Not only are the formulas complicated, but it may not be easy to show directly
that two of them define the same function. So we will use the following strategy: We
choose one formula essentially at random and take it as the definition of the determi-
nant. In that way we are talking about a particular function. We show that the func-
tion we have chosen has certain very special properties. We also show that our cho-
sen function is the only one having these properties. Then, to check that some other
formula defines the same determinant, we have to check only that the function which
it defines has these same properties. It turns out that this is usually relatively easy.

The determinant of an n X n matrix can be computed in terms of certain
(n — 1) X (n — 1) determinants by a process called expansion by minors. This ex-
pansion allows us to give a recursive definition of the determinant function. Let A be
an n X n matrix and let A; denote the (n — 1) X (n — 1) matrix obtained by crossing
out the ith row and the jth column of A:

J

4

(3.3) /////£§////

-~

= Aj.

S
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For example, if

1 0 3
0
A=12 1 2], then A21=[5 ?]
0 5 1

Expansion by minors on the first column is the formula
(34) det A = a;; det A, — az det Az +,— - X am det Ap.

The signs alternate. We take this formula, together with (3.1), as a recursive
definition of the determinant. Notice that the formula agrees with (3.2) for 2 X 2
matrices.

The determinant of the matrix A shown above is

1 2 0 3 0 3
detA—l-det[5 l]—Z-det[S l]+0-det[l 2].

The three 2 X 2 determinants which appear here can be computed by expanding by
minors again and using (3.1), or by using (3.2), to get

detAa = 1-(-9) — 2:(-15) + 0-(=3) = 21.

There are other formulas for the determinant, including expansions by minors on
other columns and on rows, which we will derive presently [see (4.11, 5.1, 5.2)].

It is important, both for computation of determinants and for theoretical con-
siderations, to know some of the many special properties satisfied by determinants.
Most of them can be verified by direct computation and induction on n, using expan-
sion by minors (3.4). We will list some without giving formal proofs. In order to be
able to interpret these properties for functions other than the determinant, we will
denote the determinant by the symbol d for the time being.

(3.5) d(r) = 1.
(3.6) The function d(A) is linear in the rows of the matrix.

By this we mean the following: Let R; denote the row vector which is the ith row of
the matrix, so that A can be written symbolically as
— Ri—
A=

Rn
By definition, linearity in the ith row means that whenever R and S are row vectors
then

d| —R+s— | =d |—R——| +d |—s—,
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and
d{ —cR—1}= cd| —RrR——],

where the other rows of the matrices appearing in these relations are the same
throughout. For example,

1 2 4 1 2 4 1 2 4
det| 3+5 4+6 2+3)=det/3 4 2]+ det] 5 6 3},
2 -1 0 2-1 0 2-1 0
and
1 2 4 1 2 4
det] 2-5 26 23)=2-det|]5 6 3.
2 -1 0 2-1 0

Linearity allows us to operate on one row at a time, with the other rows left fixed.
Another property:

3.7 If two adjacent rows of a matrix A are equal, then d(A) = 0.

Let us prove this fact by induction on n. Suppose that rows j and j + 1 are equal.
Then the matrices A;; defined by (3.3) also have two rows equal, except when i = j
or i = j + 1. When A; has two equal rows, its determinant is zero by induction.
Thus only two terms of (3.4) are different from zero, and

d(A) = xand(4j1) F a+11d(4j+11).

Moreover, since the rows R; and Rj+; are equal, it follows that Aj; = A;j+1 and that
@i = aj+11. Since the signs alternate, the two terms on the right side cancel, and
the determinant is zero.

Properties (3.5-3.7) characterize determinants uniquely [see (3.14)], and we
will derive further relations from them without going back to definition (3.4).

(3.8) If a muliiple of one row is added to an adjacent row,
the determinant is unchanged.

For, by (3.6) and (3.7),
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The same reasoning works if s is above R.

(3.9) If two adjacent rows are interchanged,
the determinant is multiplied by — 1.

We apply (3.8) repeatedly:

’— - T r . 7] ’_ . T
R R —R + (S—R)—
= = d
d s d (s—R) (s—R)
s s s
=d —(s—R— d (-R) = R
(3.7 If two r_ows of a matrix A are equal, then d(A) = 0.

For, interchanging adjacent rows a few times results in a matrix A" with two adjacent
rows equal. By (3.7) d(4’) = 0, and by (3.9) d(4) = *det(4").
Using (3.7"), the proofs of (3.8) and (3.9) show the following:

(3.8) If a multiple of one row is added to another row,
the determinant is not changed.

(3.9) If two rows are interchanged,
the determinant is multiplied by —1.

Also, (3.6) implies the following:
(3.10) If a row of A is zero, then d(A) = 0.

If a row is zero, then A doesn’t change when we multiply that row by 0. But accord-
ing to (3.6), d(4) gets multiplied by 0. Thus d(4) = 0d(4) = 0.

Rules (3.8"), (3.97), and (3.6) describe the effect of an elementary row opera-
tion (2.7) on the determinant, so they can be rewritten in terms of the elementary
matrices. They tell us that d(£A) = d(4) if E is an elementary matrix of the first
kind, that d(EA) = —d(A) if E is of the second kind, and (3.6) that d(EA) = cd(4) if
E is of the third kind. Let us apply these rules to compute d(E) when E is an ele-
mentary matrix. We substitute A = 7. Then, since d(7) = 1, the rules determine
d(Er) = d(E):
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(3.11) The determinant of an elementary matrix is:

(i) First kind (add a multiple of one row to another): d(E) = 1, by (3.8’).
(ii) Second kind (row interchange): d(E) = —1, by (3.9").
(iii) Third kind (multiply a row by a nonzero constant). d(E) = c, by (3.6).

Moreover, if we use rules (3.8"), (3.9’), and (3.6) again, applying them this time to
an arbitrary matrix A and using the values for d(E) which have just been determined,
we obtain the following:
(3.12) Let E be an elementary matrix and let A be arbitrary. Then
d(EA) = d(E)d(4).
Recall from (2.19) that every square matrix A can be reduced by elementary

row operations to a matrix A’ which is either the identity / or else has its bottom row
Zero:

A" = Ep-- E\A.

We know by (3.5) and (3.10) that d(4)’ = 1 or d(A’) = 0 according to the case. By
(3.12) and induction,

(3.13) d(A") = d(E) --- d(E;)d(A).

We also know d(E;), by (3.11), and hence we can use this formula to compute d(A).
(3.14) Theorem. Axiomatic Characterization of the Determinant: The determinant
function (3.4) is the only one satisfying rules (3.5-3.7).

Proof. We used only these rules to arrive at equations (3.11) and (3.13), and
they determine d(4). Since the expansion by minors (3.4) satisfies (3.5-3.7), it
agrees with (3.13). o

We will now return to our usual notation det A for the determinant of a matrix.
(3.15) Corollary. A square matrix A is invertible if and only if det A # 0.
This follows from formulas (3.11), (3.13), and (2.18). By (3.11), det E; # O for all
i. Thus if A’ is as in (3.13), then det A # O if and only if det A’ # 0, which is the
case if and only if A’ = 7. By (2.18), A" = 1 if and only if A is invertible. o

We can now prove one of the most important properties of the determinant
function: its compatibility with matrix multiplications.

(3.16) Theorem. Let A, B be any two n X n matrices. Then
det(AB) = (det A)(det B).
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Proof. We note that this is (3.12) if A is an elementary matrix.

Case 1: A is invertible. By (2.18b), A is a product of elementary matrices:
A = E, -+ Er. By (3.12) and induction, det A = (det E;) --- (det E¢), and det AB =
det(E; --- ExB) = (det E;) -+ (det Ex)(det B) = (det A)(det B).

Case 2: A is not invertible. Then det A = 0 by (3.15), and so the theorem will fol-
low in this case if we show that det(4B) = 0 too. By (2.18), A can be reduced to a
matrix A" = E;--- E1A having bottom row zero. Then the bottom row of A’B is also
zero; hence

= det(A’B) = det(Er--- E1AB) = (det Ey) --- (det E;)(det AB).
Since det E; # 0, it follows that det AB = 0. o

.. . 1
(3.17) Corollary. If A is invertible, det(a™!) = Jera

Proof. (det A)(det A™') = det! = 1.

Note. It is a natural idea to try to define determinants using rules (3.11) and
(3.16). These rules certainly determine det A for every invertible matrix A, since we
can write such a matrix as a product of elementary matrices. But there is a problem.
Namely, there are many ways to write a given matrix as a product of elementary
matrices. Without going through some steps as we have, it is not clear that two such
products would give the same answer for the determinant. It is actually not particu-
larly easy to make this idea work.

The proof of the following proposition is a good exercise.

(3.18) Proposition. Let A® denote the transpose of A. Then
det A = det A". o

(3.19) Corollary. Properties (3.6—3.10) continue to hold if the word row is re-
placed by column throughout. o

4. PERMUTATION MATRICES

A bijective map p from a set S to itself is called a permutation of the set:
4.1) p: §—8.
For example,
1~ 3
4.2) 2]
32
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is a permutation of the set {1, 2, 3}. It is called a cyclic permutation because it oper-
ates as
&N

1 2
K—>3) '

There are several notations for permutations. We will use function notation in
this section, so that p(x) denotes the value of the permutation p on the element x.
Thus if p is the permutation given in (4.2), then

p()=3,p(2)=1p03) =2

A permutation matrix P is a matrix with the following property: The operation
of left multiplication by P is a permutation of the rows of a matrix. The elementary
matrices of the second type (2.6ii) are the simplest examples. They correspond to
the permutations called transpositions, which interchange two rows of a matrix,
leaving the others alone. Also,

010
(4.3) p=]0 0 1
I 00
is a permutation matrix. It acts on a column vector X = (x,y,z)" as
01 O0jfx y
PX=10 0 L}lyl=1]:
1 0 0] :z X

The entry in the first position is sent to the third position, and so on, so P has per-
muted rows according to the cyclic permutation p given in (4.2).

There is one point which can cause confusion and which makes it important
for us to establish our notation carefully. When we permute the entries of a vector
(x15..., x2)" according to a permutation p, the indices are permuted in the opposite
way. For instance, multiplying the column vector X = (x;, x2, x3)* by the matrix in
(4.3) gives

01 Oltx X2
(4.4 PX=10 0 1{lx)=1x
1 0O X3 X1

The indices in (4.4) are permuted by 1mwms2mmws3awws 1, which is the inverse of
the permutation p. Thus there are two ways to associate a permutation to a permuta-
tion matrix P: the permutation p which describes how P permutes the entries, and the
inverse operation which describes the effect on indices. We must make a decision, so
we will say that the permutation associated to P is the one which describes its action
on the entries of a column vector. Then the indices are permuted in the opposite
way, SO
Xp~l)
4.5) PX =

Xp~1(n)
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Multiplication by P has the corresponding effect on the rows of an n X r matrix A.

The permutation matrix P can be written conveniently in terms of the matrix
units (2.5) or in terms of certain column vectors called the standard basis and de-
noted by e;. The vector ¢; has a 1 in the ith position as its single nonzero entry, so
these vectors are the matrix units for an n X | matrix.

(4.6) Proposition. Let P be the permutation matrix associated to a permutation p.

(2) The jth column of P is the column vector ey(j).

(b) P is a sum of n matrix units; P = epuyi + -+ + €ppmn = Eep(j)j. o
J

A permutation matrix P always has a single 1 in each row and in each column,
the rest of its entries being 0. Conversely, any such matrix is a permutation matrix.

(4.7) Proposition.

(a) Let p, g be two permutations, with associated permutation matrices P,Q. Then
the matrix associated to the permutation pq is the product PQ.

(b) A permutation matrix P is invertible, and its inverse is the transpose matrix:
P! =Pl

Proof. By pq we mean the composition of the two permutations

(4.8) pq() = plq(d).

Since P operates by permuting rows according to p and Q operates by permuting ac-
cording to g, the associative law for matrix multiplication tells us that PQ permutes
according to pq:

(PO)X = P(0X).

Thus PQ is the permutation matrix associated to pqg. This proves (a). We leave the
proof of (b) as an exercise. o

The determinant of a permutation matrix is easily seen to be 1, using rule
(3.9). This determinant is called the sign of a permutation:

(4.9) signp = det P = *1.

The permutation (4.2) has sign +1, while any transposition has sign —1 [see
(3.11ii)]. A permutation p is called odd or even according to whether its sign is —1
or +1.

Let us now go back to an arbitrary n X n matrix A and use linearity of the de-
terminant (3.6) to expand det A. We begin by working on the first row. Applying
(3.6), we find that
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a110 ..... 0 00120 PPN 0 0 ..... Oal,,
R2
det A = det . + det . + == + det

——Rp—— ——Rn—— ——Rp——

We continue expanding each of these determinants on the second row, and so on.
When we are finished, det A is expressed as a sum of many terms, each of which is
the determinant of a matrix M having only one entry left in each row:

( a ]
az?

Qan?

Many of these determinants will be zero because a whole column vanishes. Thus the
determinant of a 2 X 2 matrix is the sum of four terms:

a b a O] [0 b
det[c d] = det_c d + det_c d]
[a O] [a 0] [0 b] 0 b
= det_c 0] + dc"-:t_0 d + det_c 0] + df-:t[0 d]'
But the first and fourth terms are zero; therefore
[a b [a O] [0 5]
det_c d| = det_0 d + det . ol

In fact, the matrices M having no column zero must have one entry a; left in each
row and each column. They are like permutation matrices P, except that the 1’s
in P are replaced by the entries of A:

(4.10) P= 2 ey M= 2 ap(iep(j)i-
J J

By linearity of the determinant (3.6),
det M = (ap()1 ** @p(in)(det P)
= (sign p)(ap(l)l ap(n)n)-

There is one such term for each permutation p. This leads to the formula

(4.1D detA = Z (signp)apy *** Ap(m)1s
permp
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where the sum is over all permutations of the set {1,..., n}. It seems slightly nicer to
write this formula in its transposed form:

(4.12) det A = E (sign p)aip(i) *** Gnp(n) -
permp

This is called the complete expansion of the determinant.
For example, the complete expansion of the determinant of a 3 X 3 matrix has
six terms:

an Qi ans
(4.13) det a1 an ax
asr asn  as

= auazaxs v ai2ana + apanan T anaxndsn T aadnas T Q3anas.

The complete expansion is more of theoretical than of practical importance,
because it has too many terms to be useful for computation unless n is small. Its the-
oretical importance comes from the fact that determinants are exhibited as polyno-
mials in the n? variable matrix entries a;;, with coefficients = 1. This has important
consequences. Suppose, for example, that each matrix entry a;; is a differentiable
function of a single variable: a; = a;(t). Then det A is also a differentiable function
of ¢, because sums and products of differentiable functions are differentiable.

5. CRAMER’S RULE

The name Cramer’s Rule is applied to a group of formulas giving solutions of sys-
tems of linear equations in terms of determinants. To derive these formulas we need
to use expansion by minors on columns other than the first one, as well as on rows.

(5.1) Expansion by minors on the jth column:

det A = (—1)/'ajjdet Ay + (= 1)/ 2ay det Ay + -+ + (—1)/*"ay; det Ay.

(5.2) Expansion by minors on the ith row:
det A = (—1)"*'a; det Aa + (—1)*%ap, det A + < + (=1)"*"ain det Ain.

In these formulas A;; is the matrix (3.3). The terms (- 1)"*/ provide alternating signs
depending on the position (i, j) in the matrix. (I doubt that such tricky notation is re-
ally helpful, but it has become customary.) The signs can be read off of the follow-
ing figure:
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(5.3) + -

L. 4

To prove (5.1), one can proceed in either of two ways:

(a) Verify properties (3.5-3.7) for (5.1) directly and apply Theorem (3.14), or
(b) Interchange (column j) with (column 1) and apply (3.9’) and (3.19).

We omit these verifications. Once (5.1) is proved, (5.2) can be derived from it by
transposing the matrix and applying (3.18).

(5.4) Definition. Let A be an n X n matrix. The adjoint of A is the n X n matrix
whose (i, j) entry (adj); is (- 1)'*/ det A; = i, where Aj; is the matrix obtained by
crossing out the ith row and the jth column, as in (3.3):

(adj 4) = (ay)',

where ai; = (—1)"*/ det A;;. Thus

da by | 4 -b
5 afe 2[4 ]
and
1 1 2 4 1-21 4-2-3
(5.6) adjl|0 2 1]=|-2 0 1] = 1 0-1
1 0 2 -3-1 2 -2 1 2

We can now proceed to derive the formula called Cramer’s Rule.

(5.7) Theorem. Let é = det A. Then
(adj A)-A = 61, and A-(adjA) = 61.

Note that in these equations
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(5.8) Corollary. Suppose that the determinant & of A is not zero. Then

ATl = %(adj A).

For example, the inverse of the 2 X 2 matrix [(Cl Z] is

. [ d—b]
ad — bc .
—C a

The determinant of the 3 X 3 matrix whose adjoint is computed in (5.6) happens to
be 1; therefore for that matrix, A™' = adj A.
The proof of Theorem (5.7) is easy. The (i, j) entry of (adj A) - A is

(5.9) (adj)nalj + -+ (adj)inanj = @ua; + o+ iy

If { = j, this is formula (5.1) for §, which is the required answer. Suppose { # J.
Consider the matrix # obtained by replacing (column /) by (column j) in the matrix
A. So (column j) appears twice in the matrix B. Then (5.9) is expansion by minors
for B on its ith column. But det B = 0 by (3.7') and (3.19). So (5.9) is zero, as re-
quired. The second equation of Theorem (5.7) is proved similarly. o

Formula (5.8) can be used to write the solution of a system of linear equations
AX = B, where A is an n X n matrix in a compact form, provided that det A # 0.
Multiplying both sides by A™!, we obtain

(5.10) X=4a'B= é(adj A)B,

where 6 = det A. The product on the right can be expanded out to obtain the for-
mula

1
(5.11) x = 'S(blalj + -+t baaty),

where a;; = *det A; as above.

Notice that the main term (b;a); + --- + baas;) on the right side of (5.11)
looks like the expansion of the determinant by minors on the jth column, except that
bi has replaced a;;. We can incorporate this observation to get another expression for
the solution of the system of equations. Let us form a new matrix M;, replacing the
jth column of A by the column vector B. Expansion by minors on the jth column
shows that

det M; = (biayj + -++ + bnay)).
This gives us the tricky formula

_ det M;

5.12 P =
(5-12) YT deta
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For some reason it is popular to write the solution of the system of equations AX = B
in this form, and it is often this form that is called Cramer’s Rule. However, this ex-
pression does not simplify computation. The main thing to remember is expression
(5.8) for the inverse of a matrix in terms of its adjoint; the other formulas follow
from this expression.

As with the complete expansion of the determinant (4.10), formulas
(5.8-5.11) have theoretical as well as practical significance, because the answers A™!
and X are exhibited explicitly as quotients of polynomials in the variables {ai;,b:},
with integer coefficients. If, for instance, a; and b; are all continuous functions of ¢,
so are the solutions x;.

A general algebraical determinant in its developed form

may be likened to a mixture of liquids seemingly homogeneous,

but which, being of differing boiling points, admit of being separated
by the process of fractional distillation.

James Joseph Sylvester

EXERCISES

1. The Basic Operations

1 2 5
1. What are the entries a,; and ay; of the matrix | 2 7 8 |?
0 9 4
2. Compute the products AB and B4 for the following values of 4 and B.
r -8 -4
(a) A= ; g ﬂ,B= 9 5
: -3 -2
[1 4] . [ 6-4
®a=1, 2}’3‘ [—3 2}
[ 1
©a=1-1],B=[1 2 1]
| 0
b,
3. Let A = (a),...,an) be a row vector, and let B = | . |- be a column vector. Compute
the products AB and BA. | bn

4. Verify the associative law for the matrix product

o 2l el
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. Compute the product [1 a][l b].

Matrix Operation Chapter 1

Notice that this is a self-checking problem. You have to multiply correctly, or it won’t
come out. If you need more practice in matrix multiplication, use this problem as a
model.

1 1

6. Compute [1 ” .
11 1|
7. Find a formula for 1 1], and prove it by induction.
1
8. Compute the following matrix products by block multiplication:

11.

12.

13.

14.
15.
16.

17.

1 1)1 51 2]10

0 1|0 1fjo 1 jo 1o 21|23
1 ojo 1fjt ojo 1{o|1 0fj4 |2 3]
011001]13 3’015’04

. Prove rule (1.20) for block multiplication.
10.

Let A, B be square matrices.

(a) Whenis (4 + B)(4 — B) = 4% — B??
(b) Expand (4 + B)>.

Let D be the diagonal matrix

d,
d,

dn

and let A = (a;;) be any n X n matrix.

(a) Compute the products DA and AD.

(b) Compute the product of two diagonal matrices.
(¢) When is a diagonal matrix invertible?

An n X n matrix is called upper triangular if a;; = 0 whenever i > j. Prove that the
product of two upper triangular matrices is upper triangular.

In each case, find all real 2 X 2 matrices which commute with the given matrix.

@) [}) 8} (b) [8 (1)] © [3 2] @ [}) f] © [3 Z]

Prove the properties 0 + A = 4, 04 = 0, and A0 = 0 of zero matrices.
Prove that a matrix which has a row of zeros is not invertible.

A square matrix A is called nilpotent if A¥ = 0 for some k > 0. Prove that if A is nilpo-
tent, then I + A is invertible.

(a) Find infinitely many matrices B such that BA = I, when
2 3
A=11 2].
2 5
(b) Prove that there is no matrix C such that AC = I;.
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18.

19.

20.

Write out the proof of Proposition (1.18) carefully, using the associative law to expand
the product (4B)(B~'A™').
The trace of a square matrix is the sum of its diagonal entries:
trAa=an +ax+ - + amm.
(a) Show that tr (A + B) = tr A + tr B, and that tr AB = tr BA.
(b) Show that if B is invertible, then tr A = tr BAB™',
Show that the equation AB — BA = [ has no solutions in n X n matrices with real entries.

2. Row Reduction

1.

11.
12.
3. A matrix A is called symmetric if A = A'. Prove that for any matrix 4, the matrix AA" is

. Make a sketch showing the effect of multiplication by the matrix A = [2

(a) For the reduction of the matrix M (2.10) given in the text, determine the elementary
matrices corresponding to each operation.
(b) Compute the product P of these elementary matrices and verify that PM is indeed the

end result.

. Find all solutions of the system of equations AX = B when

1 211

A=13 0 0 4

1-4-2-2

and B has the following value:

0 1 0
@)ool M|1] @©]2
0 0 2

Find all solutions of the equation x, + x2 + 2x3 — x4 = 3.

Determine the elementary matrices which are used in the row reduction in Example
(2.22) and verify that their product is A™".

. Find inverses of the following matrices:

DA T A

2 3} on the

plane R2

. How much can a matrix be simplified if both row and column operations are allowed?
. (a) Compute the matrix product e;exe .

{b) Write the identity matrix as a sum of matrix units.
(c) Let A be any n X n matrix. Compute e;iAej;.
(d) Compute e;A and Ae;;.

. Prove rules (2.7) for the operations of elementary matrices.
10.

Let 4 be a square matrix. Prove that there is a set of elementary matrices Ei,..., Ex
such that Ex -~ £,A either is the identity or has its bottom row zero.

Prove that every invertible 2 X 2 matrix is a product of at most four elementary matrices.
Prove that if a product AB of n X n matrices is invertible then so are the factors 4, B.

ssmmetric and that if A is a square matrix then A + A' is symmetric.



14.

15.
16.

17.

18.

*19,
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(a) Prove that (AB)! = B'A! and that A" = A.
(b) Prove that if A is invertible then (A7)t = (a!)™!.
Prove that the inverse of an invertible symmetric matrix is also symmetric.

Let A and B be symmetric n X n matrices. Prove that the product AB is symmetric if and

only if AB = BA.

Let A be an n X n matrix. Prove that the operator “left multiplication by A” determines A

in the following sense: If AX = Bx for very column vector X, then A = B.

Consider an arbitrary system of linear equations AX = B where A and B have real entries.

(a) Prove that if the system of equations AX = B has more than one solution then it has
infinitely many.

(b) Prove that if there is a solution in the complex numbers then there is also a real solu-
tion.

Prove that the reduced row echelon form obtained by row reduction of a matrix A is
uniquely determined by A.

3. Determinants

1.

2.

3.

4.

Evaluate the following determinants:

100 0
. 2 0 1
1 11 520 0
(a)[z—iJ (b)[l—l] @10 12 @ls 630
09 7 4
1 413
2350
® 141 0 0
2000
1 256 201 5 1
3177 _ 1370
Provethatdet0023—detOOZl.
4215 24 1 4

1 4 5-2
that this is a self-checking problem. It can be used as a model for practice in computing
determinants.
Compute the determinant of the following n X n matrices by induction on n.

Verify the rule det AB = (det A)(det B) for the matrices A = [2 3}, B = [1 l}. Note

1 2 -1
1 -1 2-1
(a) e (b) -1 2-1
. -1 -
1 2 -1
1 -1 2
1 2 3 n
2 23 .
333

5. Bvaluate det |’
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*6.

o o0 3

*13.

-
2
1

— NI
i\

Compute det

— NI
—_ N =
—_—NJ =

1
2
1 2 |

. Prove that the determinant is linear in the rows of a matrix, as asserted in (3.6).
. Let A be an n X n matrix. What is det (~4)?
. Prove that det A* = det A.

10.
11.
12.

b
d

Let A and B be square matrices. Prove that det(4B) = det(BA).

Prove that det[g

Derive the formula det[z ] = ad ~ bc from the properties (3.5, 3.6, 3.7, 3.9).

Iﬂ = (det A)(det D), if 4 and D are square blocks.

Let a 2n X 2n matrix be given in the form M = [: Iﬂ’ where each block is an n X n

matrix. Suppose that 4 is invertible and that AC = CA. Prove that det M = det(AD — CB).
Give an example to show that this formula need not hold when AC # CA.

4, Permutation Matrices

1.

[

I -7 I -

Consider the permutation p defined by 1 3,2 1,3 4,4 2,

(a) Find the associated permutation matrix P.

(b) Write p as a product of transpositions and evaluate the corresponding matrix product.
(c) Compute the sign of p .

. Prove that every permutation matrix is a product of transpositions.
. Prove that every matrix with a single 1 in each row and a single 1 in each column, the

other entries being zero, is a permutation matrix.

. Let p be a permutation. Prove that signp = signp™'.

. Prove that the transpose of a permutation matrix P is its inverse.

. What is the permutation matrix associated to the permutation i ~w>n—i?

. (a) The complete expansion for the determinant of a 3 X 3 matrix consists of six triple

products of matrix entries, with sign. Learn which they are.
(b) Compute the determinant of the following matrices using the complete expansion,
and check your work by another method:

11 2 4-1 1 a b ¢
2 4 21,11 121,11 0 1
0 2 1 1-1 1 1 1 1

. Prove that the complete expansion (4.12) defines the determinant by verifying rules

(3.5-3.7).

. Prove that formulas (4.11) and (4.12) define the same number.
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5. Cramer’s Rule

a

1. Let Z] be a matrix with determinant 1. What is A™'?
\ S B -1
2. (self-checking) Compute the adjoints of the matrices [3 4}, 2 4 2|, 1-21,
_ 0 21 -
a b ¢
and ] 1 0 1/, and verify Theorem (5.7) for them.
| 1 1 1

3. Let A be an n X n matrix with integer entries a;;. Prove that A™' has integer entries if and
only if detA = 1.

4. Prove that expansion by minors on a row of a matrix defines the determinant function.
Miscellaneous Problems

1. Write the matrix [; i] as a product of elementary matrices, using as few as you can.

Prove that your expression is as short as possible.

2. Find a representation of the complex numbers by real 2 X 2 matrices which is compatible
with addition and multiplication. Begin by finding a nice solution to the matrix equation

A= -1
1 1 1
3. (Vandermonde determinant) (a) Provethatdetla b ¢ | = (b — a)ic — a)(c — b).
aZ b2 CZ

*(b) Prove an analogous formula for n X n matrices by using row operations to clear out
the first column cleverly.

*4, Consider a general system AX = B of m linear equations in » unknowns. If the coefficient
matrix A has a left inverse A, a matrix such that A’A = I,,, then we may try to solve the
system as follows:

AX = B
A'AX = A'B
X = A'B.

But when we try to check our work by running the solution backward, we get into

trouble:
X =A'B

AX = AA'B
AX Z B.

We seem to want A’ to be a right inverse: AA’ = I, which isn’t what was given. Explain.
(Hint: Work out some examples. )
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5. (@) Let A be areal 2 X 2 matrix, and let A;, 4, be the rows of A. Let P be the parallelo-
gram whose vertices are 0, A;,A2,A; + A;. Prove that the area of P is the absolute
value of the determinant det A by comparing the effect of an elementary row opera-
tion on the area and on det A.

*(b) Prove an analogous result for n X n matrices.
*6. Most invertible matrices can be written as a product A = LU of a lower triangular matrix
L and an upper triangular matrix U, where in addition all diagonal entries of U are 1.
(a) Prove uniqueness, that is, prove that there is at most one way to write A as a product.
(b) Explain how to compute L and U when the matrix A is given.
(c) Show that every invertible matrix can be written as a product LPU, where L, U are as
above and P is a permutation matrix.
7. Consider a system of n linear equations in n unknowns: AX = B, where A and B
have integer entries. Prove or disprove the following.
(a) The system has a rational solution if det A # 0.
(b) If the system has a rational solution, then it also has an integer solution.
*8. Let A,B be m X n and n X m matrices. Prove that I, — AB is invertible if and only if
I» — BA is invertible.



Chapter 2

Groups

1l est peu de notions en mathématiques qui soient plus primitives
que celle de loi de composition.

Nicolas Bourbaki

1. THE DEFINITION OF A GROUP
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In this chapter we study one of the most important algebraic concepts, that of a
group. A group is a set on which a law of composition is defined, such that all ele-
ments have inverses. The precise definition is given below in (1.10). For example,
the set of nonzero real numbers forms a group R under multiplication, and the set
of all real numbers forms a group R* under addition. The set of invertible n X n
matrices, called the general linear group, is a very important example in which the
law of composition is matrix multiplication. We will see many more examples as we
go along.

By a law of composition on a set S, we mean a rule for combining pairs a, b of
elements § to get another element, say p, of S. The original models for this notion
are addition and multiplication of real numbers. Formally, a law of composition is a
function of two variables on S, with values in §, or it is a map

SX§—S
a, brwsp.

Here, S X S denotes, as always, the product set of pairs (a, b) of elements of S.

Functional notation p = f(a, b) isn’t very convenient for laws of composition.
Instead, the element obtained by applying the law to a pair (a, b) is usually denoted
using a notation resembling those used for multiplication or addition:

p=ab,axXb,a°b,a+ b, and so on,

a choice being made for the particular law in question. We call the element p the
product or sum of a and b, depending on the notation chosen.
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Our first example of a law of composition, and one of the two main examples,
is matrix multiplication on the set S of n X n matrices.

We will use the product notation ab most frequently. Anything we prove with
product notation can be rewritten using another notation, such as addition. It will
continue to be valid, because the rewriting is just a change of notation.

It is important to note that the symbol ab is a notation for a certain element of
S. Namely, it is the element obtained by applying the given law of composition to
the elements called @ and b. Thus if the law is multiplication of matrices and if

|1 3 {1 0 . 7 3
a= [0 2] and b = [2 1], then ab denotes the matrix [4 2]. Once the

product ab has been evaluated, the elements @ and b can not be recovered from it.
Let us consider a law of composition written multiplicatively as ab. It will be
called associative if the rule

(1.1) (ab)e = a(bc) (associative law)
holds for all a, b, ¢ in S, and commutative if
(1.2) ab = ba (commutative law)

holds for all a, b in S. Our example of matrix multiplication is associative but not
commutative.

When discussing groups in general, we will use multiplicative notation. It is
customary to reserve additive notation a + b for commutative laws of composition,
that is, when @ + b = b + a for all a, b. Multiplicative notation carries no implica-
tion either way concerning commutativity.

In additive notation the associative law is (a + b) + ¢ = a + (b + ¢), and in
functional notation it is

f(f(a,b),c) = fla, f(b,c)).

This ugly formula illustrates the fact that functional notation isn’t convenient for al-
gebraic manipulation.

The associative law is more fundamental than the commutative law; one reason
for this is that composition of functions, our second example of a law of composi-
tion, is associative. Let T be a set, and let g, f be functions (or maps) from T to T.
Let g o fdenote the composed map ¢ »w> g(f(z)). The rule

g frmmge f
is a law of composition on the set S = Maps(7, T) of all maps T—>T.

As is true for matrix multiplication, composition of functions is an associative
law. For if f, g, h are three maps from T to itself, then (ho g)o f = ho(g° f):

hog
fo e
T T T T
\_/
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This is clear, since both of the composed maps send t mww> k(g (f(t))).
The simplest example is that T is a set of two elements {a, b}. Then there are
four maps T—>T:
i: the identity map, defined by i(a) = a, i(b) = b;
T: the transposition, defined by 7(a) = b, 7(b) = q;

«: the constant function a (@) = a(b) = a;
B: the constant function B(a) = B(b) = b.

The law of composition on § can be exhibited in a multiplication table as follows:

(1.3)

which is to be read in this way:

Thus 7° a = B, while @ © 7 = a. Composition of functions is not commutative.
Going back to a general law of composition, suppose we want to define the
product of a string of n elements of a set:

Q- an = ?

There are various ways to do this using the given law, which tells us how to multiply
two elements. For instance, we could first use the law to find the product a;az, then
multiply this element by as, and so on:

((al az)ag)a4 oo,

When n = 4, there are four other ways to combine the same elements; (a,a2)(asas)
is one of them. It can be proved by induction that if the law is associative, then all
such products are equal. This allows us to speak of the product of an arbitrary string
of elements.

(1.4) Proposition. Suppose an associative law of composition is given on a set S.
There is a unique way to define, for every integer n, a product of n elements
ap,...,an of S (we denote it temporarily by [a, --- a.]) with the following properties:
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(i) the product [a,] of one element is the element itself;
(ii) the product [a;a:] of two elements is given by the law of composition;
(iii) for any integer i between 1 and n, [a, -+ an]| = [a1 - ai][a@i+, -~ an].

The right side of equation (iii) means that the two products [a; --- a;] and [a;+, -+ an]
are formed first and the results are then multiplied using the given law of composi-
tion.

Proof. We use induction on n. The product is defined by (i) and (ii) forn < 2,
and it does satisfy (iii) when n = 2. Suppose that we know how to define the
product of r elements when r = n — 1, and that this product is the unique product
satisfying (iii). We then define the product of n elements by the rule

[a1 an] = [al an—l][an],

where the terms on the right side are those already defined. If a product satisfying
(iii) exists, then this formula gives the product because it is (iii) wheni = n — 1. So
if it exists, the product is unique. We must now check (iii) fori <n — 1:

[a;- ax] = [a) -+ an-1 J[an] (our definition)
= ([a1--- aillai+1 -+~ an-)an] (induction hypothesis)
= [a; - ai]([@i+1 - an-1][@.]) (associative law)
= [a1 -+ ai]lai+1 -+ an) (induction hypothesis).

This completes the proof. We will drop the brackets from now on and denote the
product by a; **- a,. o

An identity for a law of composition is an element e of § having the property
that

(1.5) ea =a and ae = a,foralla € §.

There can be at most one identity element. For if e, e’ were two such elements, then
since e is an identity, ee’ = e’, and since e’ is an identity, ee’ = e. Thus e = e’.

Both of our examples, matrix multiplication and composition of functions,
have an identity. For n X n matrices it is the identity matrix 7, and for Maps(7, T) it
is the identity map, which carries each element of T to itself.

Often the identity is denoted by 1 if the law of composition is written multi-
plicatively, or by 0 if it is written additively. These elements do not need to be re-
lated to the numbers 1 and 0, but they share the property of being identity elements
for their laws of composition.

Suppose that our law of composition has an identity, and let us use the symbol
1 forit. An element a € S is called invertible if there is another element b such that

ab=1 and ba = 1.
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As with matrix multiplication [Chapter 1 (1.17)], it follows from the associa-

tive law that the inverse is unique if it exists. It is denoted by a™' :

aa”' = a'a = 1.
Inverses multiply in the opposite order:
(1.6) (ab)y ' =bla.

The proof is the same as for matrices [Chapter 1 (1.18)].
Power notation may be used for an associative law of composition:

(1.7 “-ans =Y
a’ =1 provided the identity exists
a"=a'---a’' provided a is invertible.
The usual rules for manipulation of powers hold:
(1.8) a™ =aa* and (a")° = a”.
It isn’t advisable to introduce fraction notation
b
(1.9 2

unless the law of composition is commutative, for it is not clear from the notation
whether the fraction stands for ba™! or a™'b, and these two elements may be different.

When additive notation is used for the law of composition, the inverse is
denoted by —a, and the power notation a” is replaced by the notation na =
a + --- + a, as with addition of real numbers.

(1.10) Definition. A group is a set G together with a law of composition which is
associative and has an identity element, and such that every element of G has an
inverse.

It is customary to denote the group and the set of its elements by the same symbol.

An abelian group is a group whose law of composition is commutative. Addi-
tive notation is often used for abelian groups. Here are some simple examples of
abelian groups:

(1.11) Z*: the integers, with addition;
R*: the real numbers, with addition;
R*: the nonzero real numbers, with multiplication;

C*, C*: the analogous groups, where the set C of complex numbers
replaces the real numbers R.

Here is an important property of groups:

(1.12) Proposition. Cancellation Law: Let a, b, c be elements of a group G. If
ab = ac, then b = c¢. If ba = ca, then b = c.
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Proof. Multiply both sides of ab=ac by a' on the Ileft
=a'ab=a'ac=c. o

Multiplication by a™! in this proof is not a trick; it is essential. If an element a is not
invertible, the cancellation law need not hold. For instance, 0 -1 = 0 - 2, or

R ER Y A R

The two most basic examples of groups are obtained from the examples of laws
of composition that we have considered—multiplication of matrices and composition
of functions—by leaving out the elements which are not invertible. As we remarked
in Chapter 1, the n X n general linear group is the group of all invertible n X n ma-
trices. It is denoted by

(1.13) GL, = {n X n matrices A with det A # 0}.
If we want to indicate that we are working with real or complex matrices, we write
GL.(R) or GL.(C),

according to the case.

In the set S = Maps(7, T) of functions, a map f: T—> T has an inverse func-
tion if and only if it is bijective. Such a map is also called a permutation of T. The
set of permutations forms a group. In Example (1.3), the invertible elements are i
and 7, and they form a group with two elements. These two elements are the permu-
tations of the set {a, b}.

The group of permutations of the set {1,2,...,n} of integers from 1 to n is
called the symmetric group and is denoted by Sy:

(1.14) S» = group of permutations of {1,..., n}.

Because there are n! permutations of a set of n elements, this group contains n! ele-
ments. (We say that the order of the group is n!.) The symmetric group S, consists of
the two elements i and 7, where i denotes the identity permutation and 7 denotes the
transposition which interchanges 1,2 as in (1.3). The group law, composition of
functions, is described by the fact that i is the identity element and by the relation
T =1 = 0

The structure of S, becomes complicated very rapidly as n increases, but we
can work out the case n = 3 fairly easily. The symmetric group S; contains six ele-
ments. It will be an important example for us because it is the smallest group whose
law of composition is not commutative. To describe this group, we pick two particu-
lar permutations x,y in terms of which we can write all others. Let us take for x the
cyclic permutation of the indices. It is represented by matrix (4.3) from Chapter 1:

1
(1.15) x=[0 0
10
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For y, we take the transposition which interchanges 1, 2, fixing 3:

010
(1.16) y=11 0 0].
0 01
The six permutations of {1, 2,3} are
(1.17) {Lx,x%y,xy,xy} = {x'y/ |0=i=<2,0= j <1},
where 1 denotes the identity permutation. This can be verified by computing the
products.
The rules
(1.18) =1,y =1,yx = x%

can also be verified directly. They suffice for computation in the group S;. Any
product of the elements x,y and of their inverses, such as x™'y3x?y for instance, can
be brought into the form x’y/ with0 < i < 2and 0 < j =< 1 by applying the above
rules repeatedly. To do so, we move all occurrences of y to the right side using the
last relation and bring the exponents into the indicated ranges using the first two
relations:

x7'y3xty = xiyxly = xHyx)xy = x2xPyxy = - = x8y2 = 1,
Therefore one can write out a complete multiplication table for §; with the aid of
these rules. Because of this, the rules are called defining relations for the group, a

concept which we will study formally in Chapter 6.
Note that the commutative law does not hold in S;, because yx # xy.

2. SUBGROUPS

One reason that the general linear group and the symmetric group are so important
is that many other groups are contained in them as subgroups. A subset H of a group
G is called a subgroup if it has the following properties:

(2.1) (a) Closure: Ifa € Handb € H, thenab € H.
(b) Identity: 1€ H.
(c) Inverses: Ifa € H,thena™' € H.

These conditions are explained as follows: The first condition (a) tells us that the law
of composition on the group G can be used to define a law on H, called the induced
law of composition. The second and third conditions (b, c) say that H is a group with
respect to this induced law. Notice that (2.1) mentions all parts of the definition of a
group except for the associative law. We do not need to mention associativity. It car-
ries over automatically from G to H.
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Every group has two obvious subgroups: the whole group and the subgroup {1}
consisting of the identity element alone. A subgroup is said to be a proper subgroup
if it 1s not one of these two.

Here are two examples of subgroups:

(2.2) Examples.
(a) The set T of invertible upper triangular 2 X 2 matrices

[a Z] (a,d # 0)

is a subgroup of the general linear group GL(R).

(b) The set of complex numbers of absolute value 1—the set of points on the
unit circle in the complex plane—is a subgroup of C*.

As a further example, we will determine the subgroups of the additive group
Z™" of integers. Let us denote the subset of Z consisting of all multiples of a given
integer b by bZ:

(2.3) bZ = {n € Z | n = bk for some k € Z}.

(2.4) Proposition. For any integer b, the subset bZ is a subgroup of Z". More-
over, every subgroup H of Z* is of the type H = bZ for some integer b.

Proof. We leave the verification that bZ is a subgroup as an exercise and pro-
ceed to show that every subgroup has this form. Let H be a subgroup of Z*. Re-
member that the law of composition on Z* is addition, the identity element is 0, and
the inverse of @ is —a. So the axioms for a subgroup read

(i) ifa € Hand b € H,thena + b € H,
(ii) 0 € H;
(iii) if @ € H, then —a € H.

By axiom (ii), 0 € H. If 0 is the only element of H, then H = 0Z, so that case is
settled. If not, there is a positive integer in H. For let a € H be any nonzero ele-
ment. If a is negative, then —a is positive, and axiom (iii) tells us that —a is in H.
We choose for b the smallest positive integer in H, and we claim that H = bZ. We
first show that b7 C H, in other words, that bk € H for every integer k. If k is a
positive integer, then bk = b + b + --- + b (k terms). This element is in H by ax-
iom (1) and induction. So is b{-k) = —bk, by axiom (iii). Finally, axiom (ii) tells us
that b0 = 0 € H.

Next we show that H C bZ, that is, that every element n € H is an integer
multiple of b. We use division with remainder to write n = bg + r, where g, r are
integers and where the remainder r is in the range 0 = r < b. Then n and bg are
both in H, and axioms (iii) and (i) show that r = n — bq is in H too. Now by our
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choice, b is the smallest positive integer in H, while 0 < r < b. Therefore r = 0,
and n = bg € bZ, as required. o

The elements of the subgroup bZ can be described as the integers which are
divisible by b. This description leads to a striking application of proposition (2.3) to
subgroups which are generated by rwo integers a, b. Let us assume that ¢ and b are
not both zero. The set

(2.5) aZ + bZ = {n € Z | n = ar + bs for some integers r, s}

is a subgroup of Z*. It is called the subgroup generated by a and b, because it is the
smallest subgroup which contains both of these elements. Proposition (2.3) tells us
that this subgroup has the form dZ for some integer d, so it is the set of integers
which are divisible by d. The generator d is called the greatest common divisor of a
and b, for reasons which are explained in the following proposition:

(2.6) Proposition. Let a, b be integers, not both zero, and let d be the positive in-
teger which generates the subgroup aZ + bZ. Then

(a) d can be written in the form d = ar + bs for some integers r and s.
(b) d divides a and b.
(c) If an integer e divides a and b, it also divides d.

Proof. The first assertion (a) just restates the fact that d is contained in
aZ + bZ. Next, notice that ¢ and b are in the subgroup dZ = aZ + bZ. Therefore
d divides a and b. Finally, if e is an integer which divides a and b, then a and b are
in eZ. This being so, any integer n = ar + bs is also in eZ. By assumption, d has
this form, so e divides d. o

If two integers a, b are given, one way to find their greatest common divisor is
to factor each of them into prime integers and then collect the common ones. Thus
the greatest common divisor of 36 = 2-2-3-3 and 60 = 2-2-3-51is 12 = 2-2-3.
the integer determined by this method has the form ar + bs would not be clear at
all. (In our example, 12 = 36-2 — 60-1.) We will discuss the applications of this
fact to arithmetic in Chapter 11.

We now come to an important abstract example of a subgroup, the cyclic sub-
group generated by an arbitrary element x of a group G. We use multiplicative nota-
tion. The cyclic subgroup H generated by x is the set of all powers of x:

2.7 H={.,x% x, 1, x, x}...h

It is a subgroup of G—the smallest subgroup which contains x. But to interpret (2.7)
correctly, we must remember that x” is a notation for a certain element of G. It may
happen that there are repetitions in the list. For example, if x = 1, then all elements
in the list are equal to 1. We may distinguish two possibilities: Either the powers of
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x are all distinct elements, or they are not. In the first case, the group H is called
infinite cyclic.

Suppose we have the second case, so that two powers are equal, say x" = x™,
where n > m. Then x"~™ = | [Cancellation Law (1.12)], and so there is a nonzero
power of x which is equal to 1.

(2.8) Lemma. The set S of integers n such that x” = 1 is a subgroup of Z*.

Proof. If x™ = 1 and x" = 1, then x™*" = x™x™ = 1 too. This shows that
m+n € §if m,n € §. So axiom (i) for a subgroup is verified. Also, axiom (ii)
holds because x° = 1. Finally, if x" =1, then x™* = x"x™ = x° = 1. Thus
-n €Sifn €8. 0o

It follows from Lemma (2.8) and Proposition (2.4) that § = mZ, where m is
the smallest positive integer such that x” = 1. The m elements 1, x,..., x™ !are all
different. (If x' = x’ with 0 =i < j < m, then x/ "' = 1. But j ~ i < m, so this
is impossible.) Moreover, any power x" is equal to one of them: By division with re-
mainder, we may write n = mqg + r with remainder r less than m. Then
x" = (x™)9x" = x". Thus H consists of the following m elements:

(2.9) H = {1, x,...,x™ '}, these powers are distinct, and x"™ = 1.

Such a group is called a cyclic group of order m.
The order of any group G is the number of its elements. We will often denote
the order by

(2.10) |G| = number of elements of G.

Of course, the order may be infinite.

An element of a group is said to have order m (possibly infinity) if the cyclic
subgroup it generates has order m. This means that m is the smallest positive integer
with the property x™ = 1 or, if the order is infinite, that x™ # 1 for all m # 0.

For example, the matrix [_} (1)] is an element of order 6 in GL(R), so the

cyclic subgroup it generates has order 6. On the other hand, the matrix [ (1) i] has

B!

We may also speak of the subgroup of a group G generated by a subset U. This
is the smallest subgroup of G containing U, and it consists of all elements of G
which can be expressed as a product of a string of elements of U and of their in-
verses. In particular, a subset U of G is said to generate G if every element of G is
such a product. For example, we saw in (1.17) that the set U = {x, y} generates the
symmetric group S;. Proposition (2.18) of Chapter 1 shows that the elementary ma-
trices generate GL,.

infinite order, because
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The Klein four group V is the simplest group which is not cyclic. It will appear
in many forms. For instance, it can be realized as the group consisting of the four
matrices

(2.11) Flﬁ}

Any two elements different from the identity generate V.
The quaternion group H is another example of a small subgroup of GL.(C)
which is not cyclic. It consists of the eight matrices

(2.12) H = {*1, =i, %j, =k},

1 0. i oO]. | 01 10 i
1= [0 1]"‘ [0 —i]’J - [~1 0]"‘ - [,- 0]'
The two elements i, j generate H, and computation leads to the formulas

(2.13) =1, 2= ji =

These products determine the multiplication table of H.

where

3. ISOMORPHISMS

Let G and G' be two groups. We want to say that they are isomorphic if all proper-
ties of the group structure of G hold for G’ as well, and conversely. For example, let
G be the set of real matrices of the form

1]

This is a subgroup of GL,(R), and the product of two such matrices is

B TR A

The upper right entries of the matrices add when the matrices are multiplied, the rest
of the matrix being fixed. So when computing with such matrices, we need to keep
track of only the upper right entry. This fact is expressed formally by saying that the
group G is isomorphic to the additive group of real numbers.

How to make the concept of isomorphism precise will not be immediately
clear, but it turns out that the right way is to relate two groups by a bijective corre-
spondence between their elements, compatible with the laws of composition, that is, a
correspondence

(3.1) G<«—G'
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having this property: If a,b € G correspondtoa’,b’ € G', then the product ab in
G corresponds to the product a’b’ in G'. When this happens, all properties of the
group structure carry over from one group to the other.

For example, the identity elements in isomorphic groups G and G’ correspond.
To see this, say that the identity element 1 of G corresponds to an element €' in G ',
Let a’ be an arbitrary element of G', and let a be the corresponding element of G.
By assumption, products correspond to products. Since la = a in G, it follows that
€’'a’ = a' in G'. In this way, one shows that €’ = 1'. Another example: The or-
ders of corresponding elements are equal. If a corresponds to @’ in G’, then, since
the correspondence is compatible with multiplication, ¢” = 1 if and only if
a”=1"

Since two isomorphic groups have the same properties, it is often convenient
to identify them with each other when speaking informally. For example, the sym-
metric group S, of permutations of {1,...,n} is isomorphic to the group of permuta-
tion matrices, a subgroup of GL,(R), and we often blur the distinction between
these two groups.

We usually write the correspondence (3.1) asymmetrically as a function, or
map ¢: G——> G'. Thus an isomorphism ¢ from G to G' is a bijective map which is
compatible with the laws of composition. If we write out what this compatibility
means using function notation for ¢, we get the condition

(3.2) ¢(ab) = ¢(a)p(b), for alla,b € G.

The left side of this equality means to multiply @ and b in G and then apply ¢, while
on the right the elements ¢(a) and ¢(b), which we denoted by a’, b’ before, are
multiplied in G'. We could also write this condition as

(ab) = a'b’.

Of course, the choice of G as domain for this isomorphism is arbitrary. The inverse
function ¢™': G'——> G would serve just as well.

Two groups G and G' are called isomorphic if there exists an isomorphism
¢: G—>G'. We will sometimes indicate that two groups are isomorphic by the
symbol = :

(3.3) G =~ G' means G is isomorphic to G'.

For example, let C = {...,a’% a’',1,a,a%...} be an infinite cyclic group.
Then the map
p:72t—C
defined by ¢(n) = a™ is an isomorphism. Since the notation is additive in the do-
main and multiplicative in the range, condition (3.2) translates in this case to

¢(m + n) = (m)e(n), or

am+n = a™a”.
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One more simple example:

LetG = {l,x,x%....,x" tand G’ = {l,y,y%,...,y" '} be two cyclic groups, gen-
erated by elements x, y of the same order. Then the map which sends x’ to y’ is an
isomorphism: Two cyclic groups of the same order are isomorphic.

Recapitulating, two groups G and G ' are isomorphic if there exists an isomor-
phism ¢: G—> G', a bijective map compatible with the laws of composition. The
groups isomorphic to a given group G form what is called the isomorphism class of
G, and any two groups in an isomorphism class are isomorphic. When one speaks of
classifying groups, what is meant is to describe the isomorphism classes. This is too
hard to do for all groups, but we will see later that there is, for example, one iso-
morphism class of groups of order 3 [see (6.13)], and that there are two classes of
groups of order 4 and five classes of groups of order 12 [Chapter 6 (5.1)].

A confusing point about isomorphisms is that there exist isomorphisms from a
group G to itself:

0:G—>G.

Such an isomorphism is called an automorphism of G. The identity map is an auto-
morphism, of course, but there are nearly always other automorphisms as well. For
example, let G = {1, x, x?} be a cyclic group of order 3, so that x> = 1. The trans-
position which interchanges x and x? is an automorphism of G:

1 mwas]
x vaw>x2
X2 .

This is because x? is another element of order 3 in the group. If we call this element
y, the cyclic subgroup {1,y,y* generated by y is the whole group G, because
y? = x. The automorphism compares the two realizations of G as a cyclic group.
The most important example of automorphism is conjugation: Let b € G be a
fixed element. Then conjugation by b is the map ¢ from G to itself defined by

(3.4) @{x) = bxb™".

This is an automorphism because, first of all, it is compatible with multiplication in
the group:

@ (xy) = bxyb™' = bxb™'byb™" = @(x)e(y),
and, secondly, it is a bijective map since it has an inverse function, namely conjuga-
tion by b!. If the group is abelian, then conjugation is the identity map:
bab™' = abb™' = ag. But any noncommutative group has some nontrivial conjuga-
tions, and so it has nontrivial automorphisms.

The element bab ! is called the conjugate of a by b and will appear often. Two
elements a, a’ of a group G are called conjugate if a’ = bab™! for some b € G.
The conjugate behaves in much the same way as the element a itself;, for example, it
has the same order in the group. This follows from the fact that it is the image of a
by an automorphism.



Section 4 Homomorphisms 51

The conjugate has a useful, though trivial, interpretation. Namely, if we de-
note bab™' by a’, then

(3.5) ba = a'b.

So we can think of conjugation by b as the change in a which results when one
moves b from one side to the other.

4. HOMOMORPHISMS

Let G,G ' be groups. A homomorphism ¢: G—— G’ is any map satisfying the rule
4.1) @(ab) = ¢la)e(b),

for all a,b € G. This is the same requirement as for an isomorphism [see (3.2)].
The difference is that ¢ is not assumed to be bijective here.

(4.2) Examples. The following maps are homomorphisms:

(a) the determinant function det: GL,(R)—— R™;
(b) the sign of a permutation sign: S,—> {*1} [see Chapter 1 (4.9)];
(c) the map ¢: Z*—— G defined by ¢(n) = a™, where a is a fixed element of G;

(d) the inclusion map i: H—— G of a subgroup H into a group G, defined by
i(x) = x.

(4.3) Proposition. A group homomorphism ¢: G——> G ' carries the identity to
the identity, and inverses to inverses. In other words, ¢(lg) = lg, and
pa’) = pla)".

Proof. Since 1 =11 and since ¢ i a  homomorphism,
o(1) = ¢(1-1) = ¢(1)¢(1). Cancel ¢(1) from both sides by (1.12): 1 = ¢(1).
Next, ¢(aV)ep(a) = ¢(a'a) = ¢(1) = 1, and similarly ¢(a)p(a™') = 1. Hence
p@’) = el o

Every group homomorphism ¢ determines two important subgroups: its image
and its kernel. The image of a homomorphism ¢: G——> G ' is easy to understand. It
is the image of the map

(4.4) im¢ ={x €EG’'|x = ¢(a) for some a € G},

and it is a subgroup of G'. Another notation for the image is ¢ (G). In Examples
(4.2a,b), the image is equal to the range of the map, but in example (4.2c) it is the
cyclic subgroup of G generated by a, and in Example (4.2d) it is the subgroup H.

The kernel of ¢ is more subtle. It is the set of elements of G which are mapped
to the identity in G ':

(4.5) kero = {a €G | @la) = 1},
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which can also be described as the inverse image ¢ !(1) of the identity element [see
Appendix (1.5)]. The kernel is a subgroup of G, because if @ and b are in ker ¢,
then @(ab) = ¢(a)e(b) = 1-1 = 1, hence ab € ker ¢, and so on.

The kernel of the determinant homomorphism is the subgroup of matrices
whose determinant is 1. This subgroup is called the special linear group and is de-
noted by SL.(R):

(4.6) SL.(R) = {real n X n matrices A | det A = 1},

a subgroup of GL,(R). The kernel of the sign homomorphism in Example (4.2b)
above is called the alternating group and is denoted by A,:

(4.7) A, = {even permutations},

a subgroup of S». The kernel of the homomorphism (4.2d) is the set of integers n
such that @™ = 1. That this is a subgroup of Z* was proved before, in (2.8).

In addition to being a subgroup, the kernel of a homomorphism has an extra
property which is subtle but very important. Namely, if a is in ker ¢ and b is any
element of the group G, then the conjugate bab™' is in ker ¢. For to say a € ker ¢
means ¢(a) = 1. Then

@(bab™') = ¢ (blp(a)e(d!) = e(b)lek) " =1,
so bab! € ker ¢ too.

(4.8) Definition. A subgroup N of a group G is called a normal subgroup if it has
the following property: For every a € N and every b € G, the conjugate bab™! is
in N.

As we have just seen,
(4.9 The kernel of a homomorphism is a normal subgroup.

Thus SL.(R) is a normal subgroup of GL.(R), and A, is a normal subgroup of Sj.
Any subgroup of an abelian group G is normal, because when G is abelian,
bab™' = a. But subgroups need not be normal in nonabelian groups. For example,
group T of invertible upper trianfular matrices is not a normal subgroup of GL,(R).
1 1 1

For let A = and B = 1 I‘ThenBABle 1 1.HereAETand

1
B € GL:(R), but BAB"' & T.
The center of a group G, sometimes denoted by Z or by Z(G), is the set of ele-

ments which commute with every element of G:
(4.10) Z={zEG|zx = xzforallx € G}

The center of any group is a normal subgroup of the group. For example, it can be
shown that the center of GL.(R) is the group of scalar matrices, that is, those of the
form ci.
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5. EQUIVALENCE RELATIONS AND PARTITIONS

A fundamental mathematical construction is to start with a set S and to form a new
set by equating certain elements of § according to a given rule. For instance, we
may divide the set of integers into two classes, the even integers and the odd in-
tegers. Or we may wish to view congruent triangles in the plane as equivalent geo-
metric objects. This very general procedure arises in several ways, which we will
discuss here.

Let § be a set. By a partition P of §, we mean a subdivision of § into nonover-
lapping subsets:

(5.1) S = union of disjoint, nonempty subsets.

For example, the sets

{1,3}. {2, 5}, {4}
form a partition of the set {1,2,3,4, 5}. The two sets, of even integers and of odd
integers, form a partition of the set Z of all integers.
An equivalence relation on § is a relation which holds between certain ele-
ments of §. We often write it as @ ~ b and speak of it as equivalence of a and b.

(5.2) An equivalence relation is required to be:

(i) transitive: fa ~ bandb ~ ¢, thena ~ c;
(ii) symmetric. If a ~ b, then b ~ g,
(i11) reflexive: a ~ aforalla € §.

Congruence of triangles is an example of an equivalence relation on the set S of tri-
angles in the plane.

Formally, a relation on § is the same thing as a subset R of the set § X S of
pairs of elements; namely, the subset R consists of pairs (a,b) such that a ~ b.
In terms of this subset, we can write the axioms for an equivalence relation as fol-
lows: (i) if (a,b) € R and (b,c) € R, then (a,c) € R; (ii) if (a,b) € R, then
(b,a) € R; and (iii) (a, a) € R for all a.

The notions of a partition of § and an equivalence relation on S are logically
equivalent, though in practice one is often presented with just one of the two. Given
a partition P on S, we can define an equivalence relation R by the rule a ~ b if a
and b lie' in the same subset of the partition. Axioms (5.2) are obviously satisfied.
Conversely, given an equivalence relation R, we can define a partition P this way:
The subset containing a is the set of all elements b such that @ ~ b. This subset is
called the equivalence class of a, and § is partitioned into equivalence classes.

Let us check that the equivalence classes partition the set S. Call C, the equiva-
lence class of an element a € S. So C, consists of the elements b such that a ~ b:

(5.3) C.=1{bES|a~bh.
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The reflexive axiom tells us that a € C,. Therefore the classes C, are nonempty,
and since a can be any element, the classes cover S. The remaining property of a
partition which must be verified is that equivalence classes do not overlap. It is easy
to become confused here, because if a ~ b then by definition b € C,. But b € C»
too. Doesn’t this show that C; and C, overlap? We must remember that the symbol
C, is our notation for a subset of § defined in a certain way. The partition consists of
the subsets, not of the notations. It is true that C, and C, have the element b in com-
mon, but that is all right because these are two notations for the same set. We will
show the following:

(5.4)  Suppose that C, and Cp have an element d in common. Then C; = Cp.

Let us first show that if @ ~ b then Cq; = Cp. To do so, let x be an arbitrary
element of C». Then b ~ x. Since a ~ b, transitivity shows that a ~ x, hence that
x € C,. Therefore C» C C,. The opposite inclusion follows from interchanging the
roles of a and b. To prove (5.4), suppose that d is in C,; and in Cp; then a ~ d and
b ~ d. Then by what has been shown, C, = Cs = Cp, as required. o

Suppose that an equivalence relation or a partition is given on a set S. Then we
may construct a new set S whose elements are the equivalence classes or the subsets
making up the partition. To simplify notation, the equivalence class of a, or the sub-
set of the partition containing a, is often denoted by @. Thus @ is an element of §.

Notice that there is a natural surjective map

§—— S, which sends
(5.5) -

arnq,
In our original example of the partition of § = Z, the set § contains the two ele-
ments (Even), (Odd), where the symbol (Even) represents the set of even integers
and (Odd) the set of odd integers. And 0 = 2 = 4 and so on. So we can denote the
set (Even) by any one of these symbols. The map

(5.6) Z—> {(Even), (Odd)}

Is the obvious one.

There are two ways to think of this construction. We can imagine putting the
elements of S into separate piles, one for each subset of the partition, and then re-
garding the piles as the elements of a new set S. The map S—— § associates each
element with its pile. Or we can think of changing what we mean by equality among
elements of S, interpreting @ ~ b to mean a = b in §. With this way of looking at
it, the elements in the two sets § and S correspond, but in § more of them are equal
to each other. It seems to me that this is the way we treat congruent triangles in
school. The bar notation (5.5) is well suited to this intuitive picture. We can work
with the same symbols as in S, but with bars over them to remind us of the new rule:

(5.7) a = bmeansa ~ b.

This notation is often very convenient.



Section b Equivalence Relations and Partitions 55

A disadvantage of the bar notation is that many symbols represent the same el-
ement of §. Sometimes this disadvantage can be overcome by choosing once and for
all a particular element, or a representative, in each equivalence class. For example,
it is customary to represent (Even) by 0 and (Odd) by 1:

(5.8) {(Even), (0Odd)} = {0,1}.

Though the pile picture is more immediate, the second way of viewing S is of-
ten the better one, because operations on the piles are clumsy to visualize, whereas
the bar notation is well suited to algebraic manipulation.

Any map of sets ¢: S—— T defines an equivalence relation on the domain S,
namely the relation given by the rule @ ~ b if ¢ (a) = ¢ (b). We will refer to this as
the equivalence relation determined by the map. The corresponding partition is
made up of the nonempty inverse images of the elements of 7. By definition, the in-
verse image of an element ¢t € T is the subset of § consisting of all elements s such
that ¢ (s) = t. It is denoted symbolically as

(5.9) ') ={s €S| el =1

Thus ¢ '(¢) is a subset of the domain §, determined by the element ¢+ € T. (This is
symbolic notation. Please remember that ¢! is usually not a function.) The inverse
images may also be called the fibres of the map ¢. The fibres ¢ '(r) which are
nonempty, which means ¢ is in the image of ¢, form a partition of S. Here the set §
of equivalence classes, which is the set of nonempty fibres, has another incarnation,
as the image im ¢ of the map. Namely, there is a bijective map

(5.10) 7 S—im o,

the map which sends an element 5 of S to ¢ (s).

We now go back to group homomorphisms. Let ¢: G—> G’ be a homomor-
phism, and let us analyze the equivalence relation on G which is associated to the
map ¢ or, equivalently, the fibres of the homomorphism. This relation is usually de-
noted by =, rather than by ~, and is referred to as congruence:

(5.11) a =b if e(a = ¢b).
For example, let ¢: C*——> R™ be the absolute value homomorphism defined
by @(a) = |a|. The induced equivalence relation is @ = b if |a| = | b|. The fibres

of this map are the concentric circles about 0. They are in bijective correspondence
with elements of im ¢, the set of positive reals.

(5.12) Figure. Fibres of the absolute value map C*—— R*.
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The relation (5.11) can be rewritten in a number of ways, of which the follow-
ing will be the most important for us:

(5.13) Proposition. Let ¢: G—> G' be a group homomorphism with kernel N,
and let a, b be elements of G. Then ¢ (a) = ¢(b) if and only if b = an for some ele-
ment n € N, or equivalently, if a™'b € N.

Proof. Suppose that ¢ (a) = ¢(b). Then ¢(a) '¢(b) = 1, and since ¢ is a ho-
momorphism we can use (4.1) and (4.3) to rewrite this equality as ¢(a™'b) = 1.
Now by definition, the kernel N is the set of all elements x € G such that ¢ (x) = 1.
Thus a™'b € N, or a'b = n for some n € N. Hence b = an, as required. Con-
versely, if b = an and n € N, then ¢(b) = p{a)p(n) = ¢{a)l = ¢(a). o

The set of elements of the form an is denoted by aN and is called a coset of N
in G:
(5.14) aN = {g € G| g = an for some n € N}.
So the coset aN is the set of all group elements b which are congruent to a.
The congruence relation a = b partitions the group G into congruence classes, the

cosets aN. They are the fibres of the map ¢. In particular, the circles about the
origin depicted in (5.12) are cosets of the absolute value homomorphism.

(5.15) Figure. A schematic diagram of a group homomorphism.

An important case to look at is when the kernel is the trivial subgroup. In that
case (5.13) reads as follows:

(5.16) Corollary. A group homomorphism ¢: G— G’ is-injective if and only if
its kernel is the trivial subgroup {1}. o

This gives us a way to verify that a homomorphism is an isomorphism. To do so, we
check that ker ¢ = {1}, so that ¢ is injective, and also that im ¢ = G’, that is, that
@ is surjective.,
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6. COSETS

One can define cosets for any subgroup H of a group G, not only for the kernel of a
homomorphism. A left coset is a subset of the form

(6.1) aH = {ah | h € H}.

Note that the subgroup H is itself a coset, because H = 1H.
The cosets are equivalence classes for the congruence relation

(6.2) a =bif b = ah, for some h € H.

Let us verify that congruence is an equivalence relation. Transitivity: Suppose that
a = band b = c. This means that b = ah and ¢ = bh' for some h,h' € H. There-
fore ¢ = ahh'. Since H is a subgroup, hh' € H. Thus a = c. Symmetry: Suppose
a = b, so that b = agh. Then a = bh™" and h™' € H, and so b = a. Reflexivity:
a=aland 1 € H, so a = a. Note that we have made use of all the defining prop-
erties of a subgroup.

Since equivalence classes form a partition, we find the following:

(6.3) Corollary. The left cosets of a subgroup partition the group. o

(6.4) Note. The notation aH defines a certain subset of G. As with any equiva-
lence relation, different notations may represent the same subset. In fact, we know
that aH is the unique coset containing a, and so

(6.5) aH = bH if and only if a = b.
The corollary just restates (5.4):
(6.6) If aH and bH have an element in common, then they are equal.

For example, let G be the symmetric group S;, with the presentation given in
(1.18): G = {1, x,x%,y,xy, x*y}. The element xy has order 2, and so it generates a
cyclic subgroup H = {1, xy} of order 2. The left cosets of H in G are the three sets

6.7)  {l,xy}=H=xyH, {x,x’y}=xH=x»H, {x’y}=x’H = )H.

Notice that they do partition the group.
The number of left cosets of a subgroup is called the index of H in G and is
denoted by

(6.8) [G : H].

Thus in our example the index is 3. Of course if G contains infinitely many ele-
ments, the index may be infinite too.

Note that there is a bijective map from the subgroup H to the coset aH, send-
ing h~mwsah. (Why is this a bijective map?) Thus
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6.9 Each coset aH has the same number of elements as H does.

Since G is the union of the cosets of H and since these cosets do not overlap,
we obtain the important Counting Formula

(6.10) |G| = |H|G : H],

where | G| denotes the order of the group, as in (2.10), and where the equality has
the obvious meaning if some terms are infinite. In our example (6.7), this formula
reads 6 = 2 - 3.

The fact that the two terms on the right side of equation (6.10) must divide the
left side is very important. Here is one of these conclusions, stated formally:

(6.11) Corollary. Lagrange’s Theorem: Let G be a finite group, and let H be a
subgroup of G. The order of H divides the order of G. o

In Section 2 we defined the order of an element a € G to be the order of the
cyclic subgroup generated by a. Hence Lagrange’s Theorem implies the following:

(6.12) The order of an element divides the order of the group.
This fact has a remarkable consequence:

(6.13) Corollary. Suppose that a group G has p elements and that p is a prime in-
teger. Let a € G be any element, not the identity. Then G is the cyclic group
{1,a,...,aP™"} generated by a.

For, since a # 1, the order of a is greater than 1, and it divides |G| = p. Hence it
is equal to p. Since G has order p, {1, a,...,a” '} is the whole group. o

Thus we have classified all groups of prime order p. They form one isomor-
phism class, the class of a cyclic group of order p.

The Counting Formula can also be applied when a homomorphism is given.
Let ¢: G——> G' be a homomorphism. As we saw in (5.13), the left cosets of ker ¢
are the fibres of the map ¢. They are in bijective correspondence with the elements
in the image.

(6.14) [G : ker ¢] = |im ¢]|.
Thus (6.10) implies the following:

(6.15) Corollary. Let ¢: G—— G’ be a homomorphism of finite groups. Then
|G| = |ker @] - [im ¢|.
Thus |ker ¢| divides |G|, and |im ¢| divides both |G| and |G’ |.

Proof. The formula is obtained by combining (6.10) and (6.14), and it implies
that | ker ¢| and |im ¢| divide | G|. Since im ¢ is a subgroup of G', |im ¢| divides
|G’ | as well. o
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Let us go back for a moment to the definition of cosets. We made the decision
to work with left cosets aH. One can also define right cosets of a subgroup H
and repeat the above discussion for them. The right cosets of a subgroup H are the
sets

(6.16) Ha = {ha | h € H},
which are equivalence classes for the relation (right congruence)
a =bif b = ha, for some h € H.

Right cosets need not be the same as left cosets. For instance, the right cosets of the
subgroup {1, xy} of S; are

(6.17) {1,xy} = H = Hxy, {x,y} = Hx = Hy, {x*,x*y} = Hx* = Hx%.

This partition of S; is not the same as the partition (6.7) into left cosets.
However, if N is a normal subgroup, then right and left cosets agree.

(6.18) Proposition. A subgroup H of a group G is normal if and only if every left
coset is also a right coset. If H is normal, then alH = Ha for everya € G.

Proof. Suppose that A is normal. For any # € Hand any a € G,
ah = (aha™V)a.

Since H is a normal subgroup, the conjugate element k = aha™' is in H. Thus the el-
ement ah = ka is in aH and also in Ha. This shows that aH C Ha. Similarly,
aH D Ha, and so these two cosets are equal. Conversely, suppose that H is not nor-
mal. Then there are elements # € H and a € G so that aha™' is not in H. Then ak
is in the left coset aH but not in the right coset Ha. If it were, say ah = h'a for
some h' € H, then we would have aha' = b’ € H, contrary to our hypothesis.
On the other hand, aH and Ha do have an element in common, namely the element
a. So aH can’t be in some other right coset. This shows that the partition into left
cosets is not the same as the partition into right cosets. o

7. RESTRICTION OF A HOMOMORPHISM TO A SUBGROUP

The usual way to get an understanding of a complicated group is to study some less
complicated subgroups. If it made sense to single out one method in group theory as
the most important, this would be it. For example, the general linear group GL; is
much more complicated than the group of invertible upper triangular matrices. We
expect to answer any question about upper triangular matrices which comes up. And
by taking products of upper and lower triangular matrices, we can cover most of the
group GL,. Of course, the trick is to get back information about a group from an un-
derstanding of its subgroups. We don’t have general rules about how this should be
done. But whenever a new construction with groups is made, we should study its ef-
fect on subgroups. This is what is meant by restriction to a subgroup. We will do
this for subgroups and homomorphisms in this section.
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Let H be a subgroup of a group G. Let us first consider the case that a second
subgroup K is given. The restriction of K to H is the intersection K N H. The fol-
lowing proposition is a simple exercise.

(7.1) Proposition. The intersection K N H of two subgroups is a subgroup of H.
If K is a normal subgroup of G, then K N H is a normal subgroup of H. o

There is not very much more to be said here, but if G is a finite group, we may be
able to apply the Counting Formula (6.10), especially Lagrange’s Theorem, to get
information about the intersection. Namely, K N H is a subgroup of H and also a
subgroup of K. So its order divides both of the orders | H| and |K|. If | H| and |K|
have no common factor, we can conclude that K N H = {1}.

Now suppose that a homomorphism ¢: G——> G’ is given and that H is a sub-
group of G as before. Then we may restrict ¢ to H, obtaining a homomorphism

(7.2) ¢ly: H—>G'.

This means that we take the same map ¢ but restrict its domain to H. In other
words, ¢, (k) = ¢ (k) for all i € H. The restriction is a homomorphism because ¢
is one.

The kernel of ¢, is the intersection of ker ¢ with H :

(7.3) ker ¢, = (ker ¢) N H.

This is clear from the definition of kernel: ¢ (k) = 1 if and only if # € ker ¢.

Again, the Counting Formula may help to describe this restriction. For, the
image of ¢|,, is ¢ (H). According to Corollary (6.15), | ¢(H)| divides both | H | and
|G']. So if7H} and |G'| have no common factor, ¢ (H) = {1}. Then we can con-
clude that H C ker ¢.

For example, the sign of a permutation is described by a homomorphism
(4.2b), S,—> {=1}. The range of this homomorphism has order 2, and its kernel is
the alternating group. If a subgroup H of S, has odd order, then the restriction of
this homomorphism to H is trivial, which means that H is contained in the alternat-
ing group, that is, H consists of even permutations. This will be so when H is the
cyclic subgroup generated by a permutation p whose order in the group is odd. It fol-
lows that every permutation of odd order is an even permutation. On the other hand,
we can not make any conclusion about permutations of even order. They may be odd
or even.

When a homomorphism ¢: G—— G ' and a subgroup H' of G’ are given, we
may also restrict ¢ to H'. Here we must cut down the domain G of ¢ suitably, in
order to get a map to H'. The natural thing to do is to cut down the domain as little
as possible by taking the entire inverse image of H':

(7.4) Proposition. Let ¢: G— G’ be a homomorphism, and let H’ be a sub-
group of G'. Denote the inverse image ¢ '(H') = {x € G| ¢(x) € H'} by H.
Then



Section 8 Products of Groups 61

(a) H is a subgroup of G.

(b) If H' is a normal subgroup of G', then H is a normal subgroup of G.

(c) H contains ker ¢.

(d) The restriction of ¢ to H defines a homomorphism H—— H'’, whose kernel is
ker ¢.

For example, consider the determinant homomorphism det: GL,.(R)—> R*.
The set P of positive real numbers is a subgroup of R™, and its inverse image is the
set of invertible n X n matrices with positive determinant, which is a normal sub-
group of GL,.(R).

Proof of Proposition (7.4). This proof is also a simple exercise, but we must
keep in mind that ¢~' is not a map. By definition, H is the set of elements x € G
such that ¢ (x) € H'. We verify the conditions for a subgroup. Identity: 1 € H be-
cause ¢(1) = 1 € H'. Closure: Suppose that x, y € H. This means that ¢ (x) and
¢(y) are in H'. Since H' is a subgroup, ¢ (x)¢(y) € H'. Since ¢ is a homomor-
phism, <p(x)<p(y) = @(xy) € H'. Therefore xy € H. Inverses: Suppose x € H, so
that ¢(x) € H'; then ¢ (x)”' € H' because H' is a subgroup. Since ¢ is a homo-
morphism, <p(x)‘l = o(x"). Thus x™' € A. B

Suppose that H' is a normal subgroup, and let x € H and g € G. Then
o(gxg™! (p(g)(p(x)(p(g) ', and ¢(x) € H'. Therefore ¢ (gxg™') € H', and this
shows that gxg™' € H. Next, H contains ker ¢ because if x € ker ¢ then ¢(x) = 1,
and 1 € H'. Sox € ¢ '(H'). The last assertion should be clear. o

8. PRODUCTS OF GROUPS

Let G,G' be two groups. The product set G X G ' can be made into a group by com-
ponent-wise multiplication. That is, we define multiplication of pairs by the rule

(8.1) (a,a’), (b,b")»ww>(ab,a’b’),
for a,b €G and a',b’ €G’. The pair (1,1) is an identity, and
(@,a’)™' = (a”',a’™"). The associative law in G X G' follows from the fact that it

holds in G and in G'. The group thus obtained is called the product of G and G’ and
is denoted by G X G'. Its order is the product of the orders of G and G'.

The product group is related to the two factors G,G' in a simple way, which
we can sum up in terms of some homomorphisms

G G
(8.2) GXG'
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defined by
i(x) = (x, 1), i'(x")=(1,x"),

plx,x)y==x, p'(x,x")=x".

The maps i,i' are injective and may be used to identify G, G’ with the subgroups
GXx1, 1XG of GXG'. The maps p, p' are surjective, kerp = 1 X G’, and
ker p’ = G X 1. These maps are called the projections. Being kernels, G X 1 and
1 X G' are normal subgroups of G X G'.

(8.3) Propeosition. The mapping property of products: Let H be any group. The
homomorphisms ®: H——> G X G' are in bijective correspondence with pairs
(¢, ¢') of homomorphisms

¢: H— G, ¢ H—G'.
The kernel of ® is the intersection (ker ¢) N (ker ¢').

Proof. Given a pair (¢, ¢’) of homomorphisms, we define the corresponding
homomorphism

O H—GXG'

by the rule ®(k) = (¢ (h), ¢ '(h)). This is easily seen to be a homomorphism. Con-
versely, given ®@, we obtain ¢ and ¢’ by composition with the projections, as

¢ = pd, o' = p'd.

Obviously, ®(h) = (1,1) if and only if ¢ (k) = 1 and ¢'(h) = 1, which shows that
ker ® = (ker ¢) N (ker ¢'). o

1t is clearly desirable to compose a given group G as a product, meaning to find
two groups H and H' such that G is isomorphic to the product H X H'. For the
groups H,H' will be smaller and therefore simpler, and the relation between
H X H' and its factors is easily understood. Unfortunately, it is quite rare that a
given group is a product, but it does happen occasionally.

For example, it is rather surprising that a cyclic group of order 6 can be de-
composed: A cyclic group Cs of order 6 is isomorphic to the product C; X C; of
cyclic groups of orders 2 and 3. This can be shown using the mapping property just
discussed. Say that Cs = {1, x,x%,...,x°}, C. = {1,y}, Cs = {1, z,z*}. The rule

[ Co—> (2 X (G

defined by ¢ (x’) = (y',z%) is a homomorphism, and its kernel is the set of elements
x’ such that y* = 1 and z/ = 1. Now y’ = 1 if and only if i is divisible by 2, while
z' = 1if and only if i is divisible by 3. There is no integer between 1 and 5 which is
divisible by both 2 and 3. Therefore ker ¢ = {1}, and ¢ is injective. Since both
groups have order 6, ¢ is bijective and hence is an isomorphism. o
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The same argument works for a cyclic group of order rs, whenever the two in-
tegers r and s have no common factor.

(8.4) Proposition. Let r, s be integers with no common factor. A cyclic group of
order rs is isomorphic to the product of a cyclic group of order r and a cyclic group
of order s. o

On the other hand, a cyclic group of order 4 is not isomorphic to a product of two
cyclic groups of order 2. For it is easily seen that every element of C, X C; has order
1 or 2, whereas a cyclic group of order 4 contains two elements of order 4. And, the
proposition makes no assertions about a group which is not cyclic.

Let A and B be subsets of a group G. Then we denote the set of products of
elements of A and B by

(8.5) AB = {x €G| x = abfor some a € Aand b € B}.

The next proposition characterizes product groups.
(8.6) Proposition. Let H and X be subgroups of a group G.

(a) f H N K = {1}, the product map p: H X K—> G defined by p(h, k) = hk is
injective. Its image is the subset HK.

(b) If either H or K is a normal subgroup of G, then the product sets HK and KH
are equal, and HK is a subgroup of G.

(¢) If H and K are normal, H N K = {1}, and HK = G, then G is isomorphic to
the product group H X K.

Proof. (a) Let (hi, ki), (h2,k2) be elements of H X K such that hik; = hak,.
Multiplying both sides of this equation on the left by ;"' and on the right by k7',
we find klkz_l = 1_1h2. Since H N K = {1}, klkz_l = hl_lhz = 1, hence h1 = hz
and k; = k,. This shows that p is injective.

(b) Suppose that H is a normal subgroup of G, and let h € H and k € K. Note that
kh = (khk™')k. Since H is normal, khk! € H. Therefore kh € HK, which shows
that KH C HK. The proof of the other inclusion is similar. The fact that HK is a
subgroup now follows easily. For closure under multiplication, note that in a product
(hk)(h'k") = h(kh")k’', the middle term ki’ is in KH = HK, say kh' = h"k". Then
hkh'k’ = (hh")(k"k') € HK. Closure under inverses is similar: (hk)™' = k™'hA7' €
KH = HK. And of course, 1 = 1-1 € HK. Thus HK is a subgroup. The proof is
similar in the case that K is normal.

(c) Assume that both subgroups are normal and that H N K = {1}. Consider the
product (hkh ")k = h(kh™'k™'). Since K is a normal subgroup, the left side is in K.
Since H is normal, the right side is in H. Thus this product is the intersection
H N K, i.e., hkh™'k™' = 1. Therefore hk = kh. This being known, the fact that
p is a homomorphism follows directly: In the group H X K, the product rule is
(h1, k) (h2, k2) = (i ka2, kik,), and this element corresponds to hih:kik; in G, while
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in G the products Ak, and hxk: multiply as hikihzk,. Since haky = kihs, the products
are equal. Part (a) shows that p is injective, and the assumption that HK = G shows
that p is surjective. o

It is important to note that the product map p: HX K—— G will not be a
group homomorphism unless the two subgroups commute with each other.

9. MODUILAR ARITHMETIC

In this section we discuss Gauss’s definition of congruence of integers, which is one
of the most important concepts in number theory. We work with a fixed, but arbi-
trary, positive integer n throughout this section.

Two integers a,b are said to be congruent modulo n, written

9.1) a = b (modulo n),

if n divides b — a, or if b = a + nk for some integer k. It is easy to check that this
is an equivalence relation. So we may consider the equivalence classes, called con-
gruence classes modulo n or residue classes modulo n, defined by this relation, as in
Section 5. Let us denote the congruence class of an integer a by the symbol @. It is
the set of integers

(9.2) a={.,a—2n,a—n,a,a+n,a+ 2n,..}.

If a and b are integers, the equation @ = b means that n divides b — a.
The congruence class of 0 is the subgroup

0=nZ=1{.,-n0n,2n,.}

of the additive group Z* consisting of all multiples of n. The other congruence
classes are the cosets of this subgroup. Unfortunately, we have a slight notational
problem here, because the notation nZ is like the one we use for a coset. But nZ
is not a coset; it is a subgroup of Z*. The notation for a coset of a subgroup H
analogous to (6.1), but using additive notation for the law of composition, is

a+H={a+h|h €H}

In order to avoid writing a coset as a + nZ, let us denote the subgroup nZ by H.
Then the cosets of H are the sets

(9.3) a+H={a+nk|k €}

They are the congruence classes @ = a + H.
The n integers 0,1,...,n — 1 form a natural set of representative elements for
the congruence classes;

(9.4) Proposition. There are n congruence classes modulo n, namely

0,T,...,n— 1L
Or, the index [Z : nZ] of the subgroup nZ in Z is n.
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Proof. Let a be an arbitrary integer. Then we may use division with remain-
der to write

a=nq +r,

where g, r are integers and where the remainder r is in the range 0 =< r < n. Then a
is congruent to the remainder: a = r (modulo n). Thus @ = 7. This shows that @ is
one of the congruence classes listed in the proposition. On the other hand, if @ and b
are distinct integers less than n, say a < b, then b — a is less than n and different
from zero, so n does not divide b — a. Thus a # b (modulo n), which means that
a # b. Therefore the n classes 0, 1,...,n — 1 are distinct. g

The main point about congruence classes is that addition and multiplication of
integers preserve congruences modulo n, and therefore these laws can be used to
define addition and multiplication of congruence classes. This is expressed by saying
that the set of congruence classes forms a ring. We will study rings in Chapter 10.

Let @ and b be congruence classes represented by integers a and b. Their sum
is defined to be the congruence class of @ + b, and their product is defined to be the
class of ab. In other words, we define

9.5) @+b=a+0b and @b = ab.

This definition needs some justification, because the same congruence class a can be
represented by many different integers. Any integer a’ congruent to a modulo n
represents the same class. So it had better be true that if a’ = @ and ' = b, then
a' +b'=a+ banda'b’ = ab. Fortunately, this is so.

(9.6) Lemma. Ifa’ =aandb’

’ 1 —

n) and a’b’' = ab (modulo n).

b (modulo n), thena’ + b’ = a + b (modulo

Proof. Assume that a'=a and b'=b, so that a’' =a + nr and
b’ = b + ns for some integers r,s. Then a’ + b’ =a + b + n(r + s), which
shows that a' +b'=a+ b. Similarly, a'b’=(a+ nr)(b + ns) =
ab + n(as + rb + nrs), which shows that a’b’ = ab, as required. o

The associative, commutative, and distributive laws hold for the laws of com-
position (9.5) because they hold for addition and multiplication of integers. For ex-
ample, the formal verification of the distributive law is as follows:

ab+7c)=ab + c) =a(b + ¢) (definition of + and X for congruence classes)
=ab + ac (distributive law in the integers)
= ab + ac = ab + Gc¢ (definition of + and X for congruence classes).
The set of congruence classes modulo n is usually denoted by
(9.7) Z/nd.

Computation of addition, subtraction, and multiplication in Z/nZ can be made ex-
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plicitly by working with integers and taking remainders on division by n. That is
what the formulas (9.5) mean. They tell us that the map

(9.8) Z——>7/n7

sending an integer a to its congruence class a is compatible with addition and multi-
plication. Therefore computations can be made in the integers and then carried over
to Z/nZ at the end. However, doing this is not efficient, because computations are
simpler if the numbers are kept small. We can keep them small by computing the re-
mainder after some part of a computation has been made.

Thus if n = 13, so that

Z/nZ =1{0,1,2,...,12},

then
7 + 91 + 6)
canbe computed as 7 + 9 =3, 11 + 6 = 4,3 - 4 = 12.
The bars over the numbers are a nuisance, so they are often left off. One just
has to remember the following rule:

9.9 Tosay a=b in Z/nZ means a = b (modulo n).

10. QUOTIENT GROUPS

We saw in the last section that the congruence classes of integers modulo n are the
cosets of the subgroup nZ of Z*. So addition of congruence classes gives us a law
of composition on the set of these cosets. In this section we will show that a law of
composition can be defined on the cosets of a normal subgroup N of any group G.
We will show how to make the set of cosets into a group, called a quotient group.

Addition of angles is a familiar example of the quotient construction. Every
real number represents an angle, and two real numbers represent the same angle if
they differ by an integer multiple of 27r. This is very familiar. The point of the ex-
ample is that addition of angles is defined in terms of addition of real numbers. The
group of angles is a quotient group, in which G = R* and N is the subgroup of in-
teger multiples of 277.

We recall a notation introduced in Section 8: If A and B are subsets of a group
G, then

AB ={ab|a € A, b € B}.
We will call this the product of the two subsets of the group, though in other con-
texts the term product may stand for the set A X B.
(10.1) Lemma. Let N be a normal subgroup of a group G. Then the product of

two cosets aN, bN is again a coset, in fact
(aN)(bN) = abN.
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Proof. Note that Nb = bN, by (6.18), and since N is a subgroup NN = N.
The following formal manipulation proves the lemma:

(aN)(bN) = a(Nb)N = a(bN)N = abNN = abN. o

This lemma allows us to define multiplication of two cosets C,,C> by this rule:
C:C; is the product set. To compute the product coset, take any elements a € C,
and b € (3, sothat C; = aN and C, = bN. Then C,C; = abN is the coset contain-
ing ab. This is the way addition of congruence classes was defined in the last section.

For example, consider the cosets of the unit circle N in G = C*. As we saw in
Section 35, its cosets are the concentric circles

C, = {z| |z| = r}.
Formula (10.1) amounts to the assertion that if |a| = r and |B| =s, then
laB| = rs:
C,Cs = Cs.

The assumption that N is a normal subgroup of G is crucial to (10.1). If H
is not a normal subgroup of G, then there will be left cosets C,, C; of H in G whose
products do not lie in a single left coset. For to say H is not normal means there are
elements € H and a € G so that aha™' & H. Then the set

(10.2) (aH)(@™'H)

does not lie in any left coset. It contains ala™'1 = 1, which is an element of H. So
if the set (10.2) is contained in a coset, that coset must be H = 1H. But it also con-
tains aha™'1, which is not in H. o

It is customary to denote the set of cosets of a normal subgroup N of G by the
symbol
(10.3) G/N = set of cosets of N in G.

This agrees with the notation Z/nZ introduced in Section 9. Another notation we
will frequently use for the set of cosets is the bar notation:

G/N =G and aN =7,

so that @ denotes the coset containing a. This is natural when we want to consider
the map

(10.4) m: G—>G = G/N sending amw>q = aN.

(10.5) Theorem. With the law of composition defined above, G = G/N is a
group, and the map 7 (10.4) is a homomorphism whose kernel is N.

The order of G/N is the index [G : N] of N in G.

(10.6) Corollary. Every normal subgroup of a group G is the kernel of a homo-
morphism. o
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This corollary allows us to apply everything that we know about homomorphisms to
improve our understanding of normal subgroups.

Proof of Theorem (10.5). First note that 7 is compatible with the laws of composi-
tion: Since multiplication of cosets is defined by multiplication of elements,
7 (a)m (b) = m (ab). Moreover, the elements of G having the same image as the
identity element 1 are those inN: 1 = 1IN = N. The group axioms in G follow from
Lemma (10.7):

(10.7) Lemma. Let G be a group, and let § be any set with a law of composition.
Let ¢: G—> S be a surjective map which has the property ¢(a)e(b) = ¢ (ab) for
all @, b in G. Then S is a group.

Proof. Actually, any law concerning multiplication which holds in G will be
carried over to S. The proof of the associative law is this: Let 5,,s;,55 € S. Since ¢
is surjective, we know that s; = ¢(a;) for some a; € G. Then

(s152)53 = (p(a)e(@))e(a) = plaa)p(a) = ¢laiaas)
= p(a)e(@a) = pla)(e(a)e(as)) = si(s253).

We leave the other group axioms as an exercise. o

(10.8) Figure. A schematic diagram of coset multiplication.

For example, let G = R™ be the multiplicative group of nonzero real numbers,
and let P be the subgroup of positive real numbers. There are two cosets, namely P
and —P = {negative reals}, and G = G/P is the group of two elements. The multi-
plication rule is the familiar rule: (Neg)(Neg) = (Pos), and so on.

The quotient group construction is related to a general homomorphism
¢: G——> G’ of groups as follows:

(10.9) Theorem. First Isomorphism Theorem: Let ¢: G—> G’ be a surjective
group homomorphism, and let N = ker ¢. Then G/N is isomorphic to G’ by the
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map @ which sends the coset @ = aN to ¢ (a):
?@) = ¢(a).

This is our fundamental method of identifying quotient groups. For example, the ab-
solute value map C*—— R™ maps the nonzero complex numbers to the positive
real numbers, and its kernel is the unit circle U. So the quotient group C*/U is iso-
morphic to the multiplicative group of positive real numbers. Or, the determinant is
a surjective homomorphism GL,(R)—— R, whose kernel is the special linear
group SLA.(R). So the quotient GL,(R)/SL.(R) is isomorphic to R*.

Proof of the First Isomorphism Theorem. According to Proposition (5.13), the
nonempty fibres of ¢ are the cosets aN. So we can think of G in either way, as the
set of cosets or as the set of nonempty fibres of ¢. Therefore the map we are looking
for is the one defined in (5.10) for any map of sets. It maps G bijectively onto the
image of ¢, which is equal to G' because ¢ is surjective. By construction it is com-
patible with multiplication: @(ab) = ¢ (ab) = ¢(a)p(b) = B@)e(b). o

&8 giebt alfo febr viel verfdyiedene Avten von Srien,

melde fidy nicht wobl berzeblen lagen;

und daber entfteben die verjchicdene Theile ver Matbematic,

veren eine jegliche mit einer befonvern Avt von Brdgen befdhdftiget ift.

Leonhard Euler
EXERCISES

1. The Definition of a Group

1. (a) Verify (1.17) and (1.18) by explicit computation.
(b) Make a multiplication table for 5.

2. (a) Prove that GL,(R) is a group.
(b) Prove that S,, is a group.

3. Let S be a set with an associative law of composition and with an identity element.
Prove that the subset of S consisting of invertible elements is a group.

4. Solve for y, given that xyz~'w = | in a group.
5. Assume that the equation xyz = 1 holds in a group G. Does it follow that yzx = 1? That
yxz = 1?7

6. Write out all ways in which one can form a product of four elements a,b,c,d in the
given order.
. Let S be any set. Prove that the law of composition defined by ab = a is associative.
. Give an example of 2 X 2 matrices such that A™'B # BA™'.
Show that if ab = a in a group, then b = 1, and ifab = 1, then b = a™".
10. Let a, b be elements of a group G. Show that the equation ax = b has a unique solution
in G.
11. Let G be a group, with multiplicative notation. We define an opposite group G° with law
of composition a ° b as follows: The underlying set is the same as G, but the law of com-
position is the opposite; that is, we define a o b = ba. Prove that this defines a group.

e ® =
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10.

11.
12.
13.
14.

15.

16.

17.
18.
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Subgroups

. Determine the elements of the cyclic group generated by the matrix [_i (l)] explicitly.

. Let a, b be elements of a group G. Assume that ¢ has order 5 and that a®b = ba>. Prove

that ab = ba.

. Which of the following are subgroups?

(a) GL.(R) C GL,(C).

) {1,-1} C R*.

(¢) The set of positive integers in Z™.
(d) The set of positive reals in R*,

@ 0], with @ # 0, in GL,(R).

(e) The set of all matrices 0 0

. Prove that a nonempty subset H of a group G is a subgroup if for all x,y € H the ele-

ment xy~! is also in H.

. An nth root of unity is a complex number z such that z” = 1. Prove that the nth roots of

unity form a cyclic subgroup of C* of order n.

. (a) Find generators and relations analogous to (2.13) for the Klein four group.

(b) Find all subgroups of the Klein four group.

. Let a and b be integers.

(a) Prove that the subset aZ + bZ is a subgroup of Z*.
(b) Prove that @ and b + 7a generate the subgroup aZ + bZ.

. Make a multiplication table for the quaternion group H.
. Let H be the subgroup generated by two elements a,b of a group G. Prove that if

ab = ba, then H is an abelian group.

(a) Assume that an element x of a group has order rs. Find the order of x”.

(b) Assuming that x has arbitrary order n, what is the order of x"?

Prove that in any group the orders of ab and of ba are equal.

Describe all groups G which contain no proper subgroup.

Prove that every subgroup of a cyclic group is cyclic.

Let G be a cyclic group of order n, and let r be an integer dividing n. Prove that G con-

tains exactly one subgroup of order r.

(a) In the definition of subgroup, the identity element in H is required to be the identity
of G. One might require only that A have an identity element, not that it is the same
as the identity in G. Show that if H has an identity at all, then it is the identity in G,
so this definition would be equivalent to the one given.

(b) Show the analogous thing for inverses.

(a) Let G be a cyclic group of order 6. How many of its elements generate G?

(b) Answer the same question for cyclic groups of order 5, 8, and 10.

(c) How many elements of a cyclic group of order n are generators for that group?

Prove that a group in which every element except the identity has order 2 is abelian.

According to Chapter 1 (2.18), the elementary matrices generate GL,, (R).

(a) Prove that the elementary matrices of the first and third types suffice to generate this

roup.

) %he Epecial linear group SLn(R) is the set of real n X n matrices whose determinant

is 1. Show that SL,(R) is a subgroup of GL.(R).
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*(¢) Use row reduction to prove that the elementary matrices of the first type generate
SL,(R). Do the 2 X 2 case first.
19. Determine the number of elements of order 2 in the symmetric group Ss.
20. (a) Let a,b be elements of an abelian group of orders m, n respectively. What -can you
say about the order of their product ab?
*(b) Show by example that the product of elements of finite order in a nonabelian group
need not have finite order.
21. Prove that the set of elements of finite order in an abelian group is a subgroup.
22. Prove that the greatest common divisor of a and b, as defined in the text, can be obtained
by factoring @ and b into primes and collecting the common factors.

3. Isomorphisms

1. Prove that the additive group R* of real numbers is isomorphic to the multiplicative
group P of positive reals.

2. Prove that the products ab and ba are conjugate elements in a group.

3. Leta, b be elements of a group G, and let a’ = bab™'. Prove that a = a’ if and only if a
and b commute.

4. (a) Let ' = aba’'. Prove that b'* = ab"a™".
(b) Prove that if aba™ = b2, then a’ba™® = b8,

5. Let ¢: G—— G’ be an isomorphism of groups. Prove that the inverse function ¢! is
also an isomorphism.

6. Let ¢: G—> G’ be an isomorphism of groups, let x,y € G, and let x’ = @(x) and
y' =)
(a) Prove that the orders of x and of x’ are equal.
(b) Prove that if xyx = yxy, thenx'y'x’ = y'x'y".
(¢) Prove that ¢ (x!) = x'7\.

7. Prove that the matrices [1 ”, [% l] are conjugate elements in the group GL,(R) but
that they are not conjugate when regarded as elements of SL,(R).

8. Prove that the matrices [1 2], [1 ;] are conjugate in GL,(R).

9. Find an isomorphism from a group G to its opposite group G° (Section 2, exercise 12).
10. Prove that the map A~ (4')"! is an automorphism of GL,(R).
11. Prove that the set Aut G of automorphisms of a group G forms a group, the law of com-
position being composition of functions.
12, Let G be a group, and let ¢: G—> G be the map ¢ (x) = x 1.
(a) Prove that ¢ is bijective.
(b) Prove that ¢ is an automorphism if and only if G is abelian.
13. (a) Let G be a group of order 4. Prove that every element of G has order 1, 2, or 4.
(b) Classify groups of order 4 by considering the following two cases:
(i) G contains an element of order 4.
(ii) Every element of G has order < 4.
14. Determine the group of automorphisms of the following groups.
(a) Z*, (b) a cyclic group of order 10, (c) Ss.
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15.

16.
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Show that the functions f = 1/x, g = (x — 1)/x generate a group of functions, the law
of composition being composition of functions, which is isomorphic to the symmetric
group S;.

Give an example of two isomorphic groups such that there is more than one isomorphism
between them.

4. Homomorphisms

1.

Let G be a group, with law of composition written x # y. Let H be a group with law of
composition # ° v. What is the condition for a map ¢: G—> H' to be a homomor-
phism?

. Let ¢: G——>G' be a group homomorphism. Prove that for any elements ai,..., ax of

G, @lar-ar) = @lar) " @lar).

. Prove that the kernel and image of a homomorphism are subgroups.
. Describe all homomorphisms ¢: Z*—— Z*, and determine which are injective, which

are surjective, and which are isomorphisms.

5. Let G be an abelian group. Prove that the nth power map ¢: G——>G defined by
¢(x) = x” is a homomorphism from G to itself.

6. Let f: R*——C* be the map f(x) = e™*. Prove that f is a homomorphism, and deter-
mine its kernel and image. 4

7. Prove that the absolute value map | |: C*——> R sending a@~w>|a | is a homomor-
phism, and determine its kernel and image.

8. (a) Find all subgroups of S3, and determine which are normal.

10.

11.

12.

13.

14.
15.

16.

17.

(b) Find all subgroups of the quaternion group, and determine which are normal.

. (a) Prove that the composition ¢ o ¢ of two homomorphisms ¢, ¢ is 2 homomorphism.

(b) Describe the kernel of ¢ © .

Let ¢: G——>G' be a group homomorphism. Prove that ¢ (x) = ¢@(y) if and only if
xy! € ker o.

Let G, H be cyclic groups, generated by elements x, y. Determine the condition on the
orders m, n of x and y so that the map sending x!~w>y’ is a group homomorphism.

Prove that the n X n matrices M which have the block form ['8 g] with A € GL,(R)

and D € GL,—(R) form a subgroup P of GL,(R), and that the map P—> GL,(R) send-

ing M a4 is a homomorphism. What is its kernel?

(a) Let H be a subgroup of G, and let g € G. The conjugate subgroup gHg™ ' is defined
to be the set of all conjugates ghg™', where h € H. Prove that gHg™! is a subgroup of
G.

{(b) Prove that a subgroup H of a group G is normal if and only if gHg! = H for all
g €6.

Let N be a normal subgroup of G, and let g € G, n € N. Prove that g''ng € N.

Let ¢ and ¢ be two homomorphisms from a group G to another group G’', and let

H C G be the subset {x € G| ¢(x) = ¥ (x)}. Prove or disprove: H is a subgroup of G.

Let ¢: G—> G’ be a group homomorphism, and let x € G be an element of order r.

What can you say about the order of ¢ (x)?

Prove that the center of a group is a normal subgroup.
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18. Prove that the center of GL,(R) is the subgroup Z = {c1 | ¢ € R, ¢ # 0}.

19. Prove that if a group contains exactly one element of order 2, then that element is in the
center of the group.

20. Consider the set U of real 3 X 3 matrices of the form

1 * =

* .

(a) Prove that U is a subgroup of SL,(R).
(b) Prove or disprove: U is normal.
*(¢) Determine the center of U.

21. Prove by giving an explicit example that GL,(R) is not a normal subgroup of GL,(C).
22. Let ¢: G——>G' be a surjective homomorphism.

(a) Assume that G is cyclic. Prove that G' is cyclic.

(b) Assume that G is abelian. Prove that G’ is abelian.
23. Let ¢: G—> G’ be a surjective homomorphism, and let N be a normal subgroup of G.

Prove that ¢ (N) is a normal subgroup of G'.

5. Equivalence Relations and Partitions

1. Prove that the nonempty fibres of a map form a partition of the domain.

2. Let S be a set of groups. Prove that the relation G ~ H if G is isomorphic to H is an
equivalence relation on §.

3. Determine the number of equivalence relations on a set of five elements.

4. Is the intersection R N R’ of two equivalence relations R, R’ C § X § an equivalence re-
lation? Is the union?

5. Let H be a subgroup of a group G. Prove that the relation defined by the rule @ ~ b if
bla € H is an equivalence relation on G.

6. (a) Prove that the relation x conjugate to y in a group G is an equivalence relation on G.
(b) Describe the elements @ whose conjugacy class (= equivalence class) consists of the

element a alone.

7. Let R be a relation on the set R of real numbers. We may view R as a subset of the (x, y)-
plane. Explain the geometric meaning of the reflexive and symmetric properties.

8. With each of the following subsets R of the (x, y)-plane, determine which of the axioms
(5.2) are satisfied and whether or not R is an equivalence relation on the set R of real
numbers.

(@ R ={s9]s €RL

(b) R = empty set.

(¢) R = locus {y = 0}.

(d) R = locus {xy + 1 = 0}.

(&) R = locus {x*y — xy* — x +y = O}
() R =locus {x* — xy + 2x — 2y = O}.

9, Describe the smallest equivalence relation on the set of real numbers which contains the
line x — y = 1 in the (x, y)-plane, and sketch it.

10. Draw the fibres of the map from the (x,z)-plane to the y-aXis defined by the map y = zx.
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. Work out rules, obtained from the rules on the integers, for addition and multiplication
on the set (5.8).
. Prove that the cosets (5.14) are the fibres of the map ¢.

Cosets

. Determine the index [Z : nZ].

. Prove directly that distinct cosets do not overlap.

. Prove that every group whose order is a power of a prime p contains an element of order
D-

. Give an example showing that left cosets and right cosets of GL:(R) in GL,(C) are not
always equal.

. Let H,K be subgroups of a group G of orders 3,5 respectively. Prove that
H NK={1}

. Justify (6.15) carefully.

. (a) Let G be an abelian group of odd order. Prove that the map ¢: G— G defined by

¢ (x) = x?is an automorphism.

(b) Generalize the result of (a).

. Let W be the additive subgroup of R™ of solutions of a system of homogeneous linear
equations AX = 0. Show that the solutions of an inhomogeneous system AX = B form a
coset of W.

. Let H be a subgroup of a group G. Prove that the number of left cosets is equal to the
number of right cosets (a) if G is finite and (b) in general.

(a) Prove that every subgroup of index 2 is normal.

(b) Give an example of a subgroup of index 3 which is not normal.

Classify groups of order 6 by analyzing the following three cases.
(a) G contains an element of order 6.

(b) G contains an element of order 3 but none of order 6.

(c) All elements of G have order 1 or 2.

Let G, H be the following subgroups of GL,(R):

o

An element of G can be represented by a point in the (x, y)-plane. Draw the partitions of
the plane into left and into right cosets of H.

Restriction of a Homomorphism to a Subgroup

. Let G and G’ be finite groups whose orders have no common factor. Prove that the only
homomorphism ¢: G——> G’ is the trivial one ¢ (x) = 1 for all x.

2. Give an example of a permutation of even order which is odd and an example of one

which is even.

3. (a) Let H and K be subgroups of a group G. Prove that the intersection xH N yK of two

cosets of H and X is either empty or else is a coset of the subgroup H N K.
(b) Prove that if H and K have finite index in G then H N K also has finite index.
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4.
5.

6.

7.
*8.

Prove Proposition (7.1).

Let H, N be subgroups of a group G, with N normal. Prove that HN = NH and that this
set is a subgroup.

Let ¢: G—— G’ be a group homomorphism with kernel K, and let H be another sub-
group of G. Describe ¢ (¢ (H)) in terms of H and K.

Prove that a group of order 30 can have at most 7 subgroups of order 5.

Prove the Correspondence Theorem: Let ¢: G——> G’ be a surjective group homomor-
phism with kernel N. The set of subgroups H' of G' is in bijective correspondence with
the set of subgroups H of G which contain N, the correspondence being defined by the
maps H~> @(H) and ¢ '(H') <~ H'. Moreover, normal subgroups of G correspond
to normal subgroups of G'.

. Let G and G' be cyclic groups of orders 12 and 6 generated by elements x,y re-

spectively, and let o: G—>G' be the map defined by ¢ (x’) = y’. Exhibit the corre-
spondence referred to the previous problem explicitly.

8. Products of Groups

N

=)

10.

11.

. Let G, G’ be groups. What is the order of the product group G X G'?
. Is the symmetric group S; a direct product of nontrivial groups?
. Prove that a finite cyclic group of order rs is isomorphic to the product of cyclic groups

of orders r and s if and only if r and s have no common factor.

. In each of the following cases, determine whether or not G is isomorphic to the product

of H and K.

(a) G = R*, H = {=1}, K = {positive real numbers}.

(b) G = {invertible upper triangular 2 X 2 matrices}, H = {invertible diagonal ma-
trices}, K = {upper triangular matrices with diagonal entries 1}.

(¢0 G = C* and H = {unit circle}, K = {positive reals}.

. Prove that the product of two infinite cyclic groups is not infinite cyclic.
. Prove that the center of the product of two groups is the product of their centers.
. (a) Let H,K be subgroups of a group G. Show that the set of products

HK ={hk|h € H, k € K} is a subgroup if and only if HK = KH.
(b) Give an example of a group G and two subgroups H, K such that HK is not a sub-

group.

. Let G be a group containing normal subgroups of orders 3 and 5 respectively. Prove that

G contains an element of order 15.

. Let G be a finite group whose order is a product of two integers: n = ab. Let H, K be

subgroups of G of orders @ and b respectively. Assume that H N K = {1}. Prove that

HK = G. Is G isomorphic to the product group H X K?

Let x € G have order m, and let y € G’ have order n. What is the order of (x,y) in

GxG"

Let H be a subgroup of a group G, and let ¢: G—> H be a homomorphism whose re-

striction to H is the identity map: ¢(h) = h, if h € H. Let N = ker o.

(a) Prove that if G is abelian then it is isomorphic to the product group H X N.

(b) Find a bijective map G— H x N without the assumption that G is abelian, but
show by an example that G need not be isomorphic to the product group.
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9. Modular Arithmetic

1.

Compute (7 + 14)(3 — 16) modulo 17.

2. (a) Prove that the square a” of an integer a is congruent to 0 or 1 modulo 4.

10

10.

11.

(b) What are the possible values of @*> modulo 8?

. (a) Prove that 2 has no inverse modulo 6.

(b) Determine ail integers n such that 2 has an inverse modulo 7.

. Prove that every integer a is congruent to the sum of its decimal digits modulo 9.
. Solve the congruence 2x = 5 (a) modulo 9 and (b) modulo 6.
. Determine the integers n for which the congruences x + y = 2, 2x — 3y = 3 (modulo

n) have a solution.

. Prove the associative and commutative laws for multiplication in Z/nZ.
. Use Proposition (2.6) to prove the Chinese Remainder Theorem: Let m,n,a,b be in-

tegers, and assume that the greatest common divisor of m and n is 1. Then there is an
integer x such that x = a (modulo m) and x = b (modulo r).

Quotient Groups

. Let G be the group of invertible real upper triangular 2 X 2 matrices. Determine whether

or not the following conditions describe normal subgroups H of G. If they do, use the
First Isomorphism Theorem to identify the quotient group G/H.
(a) any = 1. (b) apn = 0 (c) a, = Ay (d) a)) = Ap = 1

. Write out the proof of (10.1) in terms of elements,
. Let P be a partition of a group G with the property that for any pair of elements A, B of

the partition, the product set AB is contained entirely within another element C of the
partition. Let N be the element of P which contains 1. Prove that N is a normal subgroup
of G and that P is the set of its cosets.

. (a) Consider the presentation (1.17) of the symmetric group S;. Let H be the subgroup

{1, y}. Compute the product sets (1H)(xH) and (1H)(x*H), and verify that they are
not cosets.

(b) Show that a cyclic group of order 6 has two generators satisfying the rules x* = 1,
y2 =1, yx = xy.

(c) Repeat the computation of (a), replacing the relations (1.18) by the relations given in
part (b). Explain.

. Identify the quotient group R*/P, where P denotes the subgroup of positive real num-

bers.

. Let H = {=1, %i} be the subgroup of G = C* of fourth roots of unity. Describe the

cosets of H in G explicitly, and prove that G/H is isomorphic to G.

. Find all normal subgroups N of the quaternion group H, and identify the quotients H/N.
. Prove that the subset H of G = GLA(R) of matrices whose determinant is positive forms

a normal subgroup, and describe the quotient group G/H.

Prove that the subset G X 1 of the product group G X G' is a normal subgroup isomor-
phic to G and that (G X G')}/(G X 1) is isomorphic to G'.

Describe the quotient groups C*/P and C*/U, where U is the subgroup of complex
numbers of absolute value 1 and P denotes the positive reals.

Prove that the groups R*/Z* and R* /27 7+ are isomorphic.



Chapter 2  Exercises 7

Miscellaneous Problems

W N =

*5.

*7.

*8.

*9,

10.

11.

*]2.

. What is the product of all mth roots of unity in C?

. Compute the group of automorphisms of the quaternion group.

. Prove that a group of even order contains an element of order 2.

. Let K CH CG be subgroups of a finite group G. Prove the formula

[G: K] =[G: H]H: K]

A semigroup S is a set with an associative law of composition and with an identity. But
elements are not required to have inverses, so the cancellation law need not hold. The
semigroup S is said to be generated by an element s if the set {1, s, s%,...} of nonnegative
powers of s is the whole set S. For example, the relations s> = 1 and s? = s describe two
different semigroup structures on the set {1, s}. Define isomorphism of semigroups, and
describe all isomorphism classes of semigroups having a generator.

. Let S be a semigroup with finitely many elements which satisfies the Cancellation Law

(1.12). Prove that S is a group.

Let a = (ai,...,ax) and b = (by,..., bx) be points in k-dimensional space R¥. A path

from a to b is a continuous function on the interval [0, 1] with values in R¥, that is, a

function f: [0, 1]—> RX, sending tawwf(t) = (x1(r),...,xx(t)), such that f(0) = a and

F(1) = b. If S is a subset of R* and if a, b € S, we define a ~ b if a and b can be joined

by a path lying entirely in S.

(2) Show that this is an equivalence relation on S. Be careful to check that the paths you
construct stay within the set S.

(b) A subset S of R* is called path connected if a ~ b for any two points a,b € S.
Show that every subset S is partitioned into path-connected subsets with the property
that two points in different subsets can not be connected by a path in S.

(¢) Which of the following loci in R? are path-connected? {x? + y? = 1}, {xy = 0},
{xy = 1}.

The set of n X n matrices can be identified with the space R"*". Let G be a subgroup of

GL,(R). Prove each of the following.

(2) If A,B,C,D € G, and if there are paths in G from A to B and from C to D, then there
is a path in G from AC to BD.

(b) The set of matrices which can be joined to the identity / forms a normal subgroup of
G (called the connected component of G).

(a) Using the fact that SL,(R) is generated by elementary matrices of the first type (see
exercise 18, Section 2), prove that this group is path-connected.

(b) Show that GL,(R) is a union of two path-connected subsets, and describe them.

Let H, K be subgroups of a group G, and let g € G. The set
HgK = {x € G| x = hgkfor some h € H,k € K}

is called a double coset.

(a) Prove that the double cosets partition G.

(b) Do all double cosets have the same order?

Let H be a subgroup of a group G. Show that the double cosets HgH are the left cosets
gH if H is normal, but that if H is not normal then there is a double coset which properly
contains a left coset.

Prove that the double cosets in GL,(R) of the subgroups H = {lower triangular matrices}
and K = {upper triangular matrices} are the sets HPK, where P is a permutation matrix.
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Vector Spaces

Immer mit den einfachsten Beispielen anfangen.

David Hilbert

1 RFEAL VECTOR SPACES

78

The basic models for vector spaces are the spaces of n-dimensional row or column
VeCtors:

R™ the set of row vectors v = (a,..., a,), or
a
the set of column vectors v = :
Qn

Though row vectors take less space to write, the definition of matrix multiplication
makes column vectors more convenient for us. So we will work with column vec-
tors most of the time. To save space, we will occasionally write a column vector in
the form (ai,..., an)".

For the present we will study only two operations:

@ b, [ a,+b,
(1.1) vector addition: + = . and
Gn i bn_ | ant b,
[ a,] [ ca,
scalar multiplication: c - | -
| 9 | can
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These operations make R" into a vector space. Before going to the formal definition
of a vector space, let us look at some other examples—nonempty subsets of R”
closed under the operations (1.1). Such a subset is called a subspace.

(1.2) Example. The subspaces W of the space R?* are of three types:

(i) the zero vector alone: W = {0};
(ii) the vectors lying on a line L through the origin;
(iii) the whole space: W = R2.

This can be seen from the parallelogram law for addition of vectors. If W contains
two vectors wy, w, not lying on one line, then every vector v can be obtained from
these two vectors as a “linear combination”

aw, + cwa,

where ¢;, c; are scalars. So W = R? in this case. If W does not contain two such
vectors, then we are in one of the remaining cases. o

CIwWl + cawp

cowsy

CIW]

w1

Similarly, it can be shown that the subspaces of R?® are of four types:

(i) the zero vector;

(ii) the vectors lying on a line through the origin;
(iii) the vectors lying in a plane through the origin;
(iv) the whole space R?.

This classification of subspaces of R? and R® will be clarified in Section 4 by the
concept of dimension.

Systems of homogeneous linear equations furnish many examples. The set of
solutions of such a system is always a subspace. For, if we write the system in matrix
notation as AX = 0, where A is an m X n matrix and X is a column vector, then it is
clear that

(a) AX = 0 and AY = 0 imply A(x + ¥) = 0. In other words, if X and Y are solu-
tions, so is X + 7.
(b) Ax = O implies AcX = 0: If X is a solution, so is cX.



80 Vector Spaces Chapter 3

For example, let W be the set of solutions of the equation
(1.3) 2x; — x2 — 2x3 = 0, or AX = 0,

where A = [2 —1 2]. This space is the set of vectors lying in the plane through the
origin and orthogonal to A. Every solution is a linear combination ciwy + caw2 of
two particular solutions wy, w2. Most pairs of solutions, for example

1 1
(1.4) wi=10),w=1]21,
1 0

will span the space of solutions in this way. Thus every solution has the form

C1+C2
(1.5) awr + eowe = | 202 |,
C1

where ¢, ¢, are arbitrary constants. Another choice of the particular solutions wy, w2
would result in a different but equivalent description of the space of all solutions.
(1.6) Definition. A real vector space is a set V together with two laws of compo-
sition:

(a) Addition: VX V—— V, written v, wmwwsp + w

(b) Scalar multiplication: R X V—— V written ¢, v~wws cv
These laws of composition must satisfy the following axioms:

(i) Addition makes V into an abelian group V*.

(i) Scalar multiplication is associative with multiplication of real numbers:

(ab)v = a(bv).
(iii) Scalar multiplication by the real number 1 is the identity operation:
lv = v.
(iv) Two distributive laws hold:

(a + b

I

av + bv

a(v + w) = av + aw.

!

Of course all the axioms should be quantified universally; that is, they are assumed
to hold for all ¢, b € R and all v,w € V.

The identity element for the addition law in V is denoted by 0, or by Oy if there
is danger of confusing the zero vector with the number zero.
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Notice that scalar multiplication associates to every pair consisting of a real
number ¢ and a vector v another vector cv. Such a rule is called an external law of
composition on the vector space.

Multiplication of two vectors is not a part of the structure, though various
products, such as the cross product of vectors in R*, can be defined. These products
aren’t completely intrinsic; they depend on choosing coordinates. So they are con-
sidered to be additional structure on the vector space.

Read axiom (ii) carefully. The left side means multiply ¢ and b as real num-
bers, then scalar multiply ab and v, to get a vector. On the right side, both opera-
tions are scalar multiplication.

The two laws of composition are related by the essential distributive laws.
Note that in the first distributive law the symbol + on the left stands for addition of
real numbers, while on the right, it stands for addition of vectors.

(1.7) Proposition. The following identities hold in a vector space V:

(a) Ogo = Oy, forallv €V,
(b) cOy = Oy, forallc € R,
©) (o= -v,forallv €V.

Proof. To see (a), we use the distributive law to write
Ov + 00 =0+ 0)p=00=00v+0.

Cancelling Ov from both sides, we obtain Ov = 0. Please go through this carefully,
noting which symbols O refer to the number and which refer to the vector.
Similarly, ¢0 + ¢0 = ¢(0 + 0) = 0. Hence ¢O = 0. Finally,

v+ -lvo=1lo+ -lo=({1+ -1)p =0 = 0.
Hence —1v is the additive inverse of v. o

(1.8) Examples.

(a) A subspace of R" is a vector space, with the laws of composition induced from
those on R”.

(b) Let V = C be the set of complex numbers. Forget multiplication of complex
numbers, and keep only addition & + B and multiplication ca of a complex
number « by a real number ¢. These operations make C into a real vector
space.

(c) The set of real polynomials p(x) = anx” + «:+ + ap is a vector space, with
addition of polynomials and multiplication of polynomials by scalars as its
laws of composition.

(d) Let V be the set of continuous real-valued functions on the interval [0, 1]. Look
only at the operations of addition of functions f + g and multiplication of
functions by numbers ¢f. This makes V a real vector space.
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Note that each of our examples has more structure than we look at when we
view it as a vector space. This is typical. Any particular example is sure to have
some extra features which distinguish it from others, but this is not a drawback of the
definition. On the contrary, the strength of the abstract approach lies in the fact that
consequences of the general axioms can be applied to many different examples.

2. ABSTRACT FIELDS

It is convenient to treat the real and complex cases simultaneously in linear algebra.
This can be done by listing the properties of the “scalars” which are needed axiomat-
ically, and doing so leads to the notion of a field.

It used to be customary to speak only of subfields of the complex numbers. A
subfield of C is any subset which is closed under the four operations addition, sub-
traction, multiplication, and division, and which contains 1. In other words, F is a
subfield of C if the following properties hold:

2.1)

(a) Ifa,b € F, thena + b € F.

(b) Ifea € F, then —~a € F.

(c) Ifa,b € F, then ab € F.

(d) fea € Fanda # 0, thena™! € F.
() 1 € F.

Note that we can use axioms (), (b), and (e) to conclude that 1 — 1 = 0 is an ele-
ment of F. Thus F is a subset which is a subgroup of C* under addition and such
that F — {0} = F* is a subgroup of C* under multiplication. Conversely, any such
subset is a subfield.

Here are some examples of subfields of C:

(2.2) Examples.

(a) F = R, the field of real numbers.
(b) F = Q, the field of rational numbers (= fractions of integers).

() F = Q[V2], the field of all complex numbers of the form a + b2, where
a,b € Q.

It is a good exercise to check axioms (2.1) for the last example.

These days, it is customary to introduce fields abstractly. The notion of an ab-
stract field is harder to grasp than that of a subfield of C, but it contains important
new classes of fields, including finite fields.
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(2.3) Definition. A field F is a set together with two laws of composition
FXF—>F and FXF—>F
a,bmwwsg + b a, brwwsab
called addition and multiplication, and satisfying the following axioms:

(i) Addition makes F into an abelian group F*. Its identity element is denoted
by 0.

(ii) Multiplication is associative and commutative and makes F* = F — {0} into a
group. Its identity element is denoted by 1.

(iii) Distributive law: For all a,b,¢ € F, (@ + b)c = ac + bc.

The first two axioms describe properties of the two laws of composition, addition
and multiplication, separately. The third axiom, the distributive law, is the one
which relates addition to multiplication. This axiom is crucial, because if the two
laws were unrelated, we could just as well study each of them separately. Of course
we know that the real numbers satisfy these axioms, but the fact that they are all that
is needed for arithmetic operations can only be understood after some experience in
working with them.

One can operate with matrices A whose entries a;; are in any field F. The dis-
cussion of Chapter 1 can be repeated without change, and you should go back to
look at this material again with this in mind.

The simplest examples of fields besides the subfields of the complex numbers
are certain finite fields called the prime fields, which we will now describe. We saw
in Section 9 of Chapter 2 that the set Z/nZ of congruence classes modulo n has laws
of addition and multiplication derived from addition and multiplication of integers.
Now all of the axioms for a field hold for the integers, except for the existence of
multiplicative inverses in axiom (2.3ii). The integers are not closed under division.
And as we have already remarked, such axioms carry over to addition and multipli-
cation of congruence classes. But there is no reason to suppose that multiplicative in-
verses will exist for congruence classes, and in fact they need not. The class of 2, for
example, does not have a multiplicative inverse modulo 6. So it is a surprising fact
that if p is a prime integer then all nonzero congruence classes modulo p have in-
verses, and therefore the set Z/pZ is a field. This field is called a prime field and is
usually denoted by [Fp:

(2.4) F, ={0,1,....p — 1} = Z/pZ.
(2.5) Theorem. Let p be a prime integer. Every nonzero congruence class a

(modulo p) has a multiplicative inverse, and hence [, is a field with p elements.
The theorem can also be stated as follows:

(2.6) Let p be a prime, and let a be any integer not divisible by p.
There is an integer b such that ab = 1 (modulo p).
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For ab = 1 (modulo p) is the same as @b = ab = 1, which means that b is the mul-
tiplicative inverse of @. N o

For example, let p = 13 and @ = 6. Then @' = 11 because

6+ 11 = 66 = 1 (modulo 13).

Finding the inverse of a congruence class @ (modulo p) is not easy in general, but it
can be done by trial and error if p is small. A systematic way is to compute the pow-
ers of a@. Since every nonzero congruence class has an inverse, the set of all of them
forms a finite group of order p — 1, usually denoted by F,™. So every element a has
finite order dividing p — 1. Thus if p=13 and @ =3, we find a* =9, and
a@® = 27 = 1, which shows that  has order 3. We are lucky: @' = @*> = 9. On the
other hand, 1f we had tried this method with@ = 6, we would have found that 6 has
order 12. The computation would have been lengthy.

Proof of Theorem (2.5). Let a € [, be any nonzero element, and let us use
the method just discussed to show that @ has an inverse. We consider the powers
l,a,a%a?,.... Since there are infinitely many powers and only finitely many ele-
ments in F,, there must be two powers which are equal, say a” = a”", where
m < n. At this point, we would like to cancel @™, to obtain 1 = @" ™. Once this
cancellation is justified, we will have shown that 2" ™! is the inverse of @. This
will complete the proof.

Here is the cancellation law we need:

(2.7) Lemma. Cancellation Law: Let @,c,d be elements of F, with @ # 0. If
ac =ad, then T = 4.

Proof. Setb = T — d. Then the statement of the lemma becomes: If ab = 0
and @ # 0, then b = 0. To prove this, we represent the congruence classes @, b by
integers a, b. Then what has to be shown is the following intuitively plausible fact:

(2.8) Lemma. Let p be a prime integer and let a, b be integers. If p divides the
product ab, then p divides a or p divides b.

Proof. Suppose that p does not divide @, but that p divides ab. We must show
that p divides b. Since p is a prime, 1 and p are the only positive integers which di-
vide it. Since p does not divide a, the only common divisor of p and ¢ is 1. So 1 is
their greatest common divisor. By Proposition (2.6) of Chapter 2, there are integers
r,s so that 1 = rp + sa. Multiply both sides by b: b = rpb + sab. Both of the
terms on the right side of this equality are divisible by p; hence the left side a is di-
visible by p too, as was to be shown. o

As with congruences in general, computations in the field F, can be made by
working with integers, except that division can not be carried out in the integers.
This difficulty can often be handled by putting everything on a common denomina-
tor in such a way that the required division is left until the end. For example, suppose
we ask for solutions of a system of n linear equations in n unknowns, in the field F,.



Section 2 Abstract Fields 85

We represent the system of equations by an integer system, choosing representatives
for the residue classes in a convenient way. Say that the integer system is AX = B,
where A is an n X n integer matrix and B is an integer column vector. Then to solve
the system in [F,, we try to invert the matrix A modulo p. Cramer’s Rule,
(adj A)A = &I, where § = det 4, is a formula valid in the integers [Chapter 1 (5.7)],
and therefore it also holds in [, when the matrix entries are replaced by their con-
gruence classes. If the residue class of 8 is not zero, then we can invert the matrix A
in F, by computing 87 '(adj A).

(2.9) Corollary. Consider a system AX = B of n linear equations in n unknowns
where the entries of A,B are in [,. The system has a unique solution in [, if
detAa # 0in Fp. o

For example, consider the system of linear equations AX = B, where

=[]

Since the coefficients are integers, they define a system of equations in [, for any
prime p. The determinant of A is 42, so the system has a unique solution in [, for all
p different from 2,3 and 7. Thus if p = 13, we find det A = 3 when evaluated
(modulo 13). We already saw that 37! = 9 in F;;. So we can use Cramer’s Rule to
compute

ATl = [; _;] and X=A4"'B = [Z] in Fi3.

The system has no solution in F, or F;. It happens to have solutions in F;, though
det A = O in that field.

We remark in passing that invertible matrices with entries in the field F, pro-
vide new examples of finite groups—the general linear groups over finite fields:

GL.(F,) = {n X n invertible matrices with entries in F,}.

The smallest of these is the group GL,(F.) of invertible 2 X 2 matrices with entries
(modulo 2), which consists of the six matrices

(2.10)

R | R P S R S e S P A A

There is one property of the finite fields F = [, which distinguishes them
from subfields of C and which affects computations occasionally. This property is
that adding 1 to itself a certain number of times (in fact p times) gives 0. A field F
is said to have characteristic pif 1 + - + 1 (p terms) = 0 in F, and if p is the
smallest positive integer with that property. In other words, the characteristic of F is
the order of 1, as an element of the additive group F*, provided that the order
is finite (Chapter 2, Section 2). In case the order is infinite, that is, 1 + «-- + 1 is
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never 0 in F, the field is, paradoxically, said to have characteristic zero. Thus
subfields of C have characteristic zero, while the prime field F, has characteristic
p. It can be shown that the characteristic of any field F is either zero or a prime
number.

Now let F be an arbitrary field. A vector space over a field F is defined as in
(1.6), with F replacing R.

(2.11) Definition. A vector space V over a field F is a set together with two laws
of composition:

(a) addition: VX V——>V, written v, wamw> o + w,
(b) scalar multiplication: F X V—— V, written ¢, v~ cv,

and satisfying the following axioms:

(i) Addition makes V into a commutative group V*.
(ii) Scalar multiplication is associative with multiplication in F:

(ab)v = a(bv), foralla,b € Fandv € V.

(iii) The element 1 acts as identity: v = v, forallv € V.
(iv) Two distributive laws hold:

(@+ bv=av+bv and a(v + w) = av + aw,
foralla,b € Fandv,w €V,

All of Section 1 can be repeated, replacing the field R by F. Thus the space F”™
of row vectors (ai,...,an), a: € F, is a vector space over F and so on.

It is important to note that the definition of vector space includes implicitly the
choice of a field F. The elements of this field F are often called scalars. We usually
keep this field fixed. Of course, if V is a complex vector space, meaning a vector
space over the field C, and if F C C is any subfield, then V is also naturally a vector
space over F because cv is defined for all ¢ € F. But we consider the vector space
structure to have changed when we restrict the scalars from C to F.

Two important concepts analogous to subgroups and isomorphisms of groups
are the concepts of subspace and of isomorphism of vector spaces. We have already
defined subspaces for complex vector spaces, and the definition is the same for any
field. A subspace W of a vector space V (over a field F) is a subset with the follow-
ing properties:

(2.12)

(a) fw,w' EW, thenw + w’' €W.
by fw E&Wandc € F, thencw € W.
) 0ew.
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A subspace W is called a proper subspace of V if it is neither the whole space V nor
the zero subspace {0}.

It is easy to see that a subspace is just a subset on which the laws of composi-
tion induce the structure of vector space.

As in Section 1, the space of all solutions of a system of m linear equations in
n unknowns

AX = 0,

with coefficients in F, is an example of a subspace of the space F".

(2.13) Definition. An isomorphism ¢ from a vector space V to a vector space V',
both over the same field F, is a bijective map ¢: V——> V' compatible with the laws
of composition, that is, a bijective map satisfying

(@) e(v + v') = @(v) + @(v") and (b) p(cv) = cop(v),
forallv,v' € Vandall c € F.

(2.14) Examples.

(a) The space F" of n-dimensional row vectors is isomorphic to the space of n-
dimensional column vectors.

(b) View the set of complex numbers C as a real vector space, as in (1.8b). Then
the map ¢: R?*—— C sending (a, b) »w>a + bi is an isomorphism.

3. BASES AND DIMENSION

In this section we discuss the terminology used when working with the two opera-
tions, addition and scalar multiplication, in an abstractly given vector space. The
new concepts are span, linear independence, and basis.

It will be convenient to work with ordered sets of vectors here. The ordering
will be unimportant much of the time, but it will enter in an essential way when we
make explicit computations. We’ve been putting curly brackets around unordered
sets, so in order to distinguish ordered from unordered sets, let us enclose ordered
sets with round brackets. Thus the ordered set (a, b) is considered different from the
ordered set (b, @), whereas the unordered sets {a, b} and {b, a} are considered equal.
Repetitions will also be allowed in an ordered set. So (a, a, b) is considered an or-
dered set, and it is different from (a, b), in contrast to the convention for unordered
sets, where {a, a, b} would denote the same set as {a, b}.

Let V be a vector space over a field F, and let (vi,..., vs) be an ordered set of
elements of V. A linear combination of (v,,...,vs) is any vector of the form

(3.1) w=cuv +cvs+ o+ cpon, ci € F.
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For example, suppose that the ordered set consists of the two vectors in R’
considered in (1.4): v; = (1,0,1)' and v; = (1,2,0)". Then a linear combination
will have the form (1.5): (c1 + cz2,2¢2, ¢1)'. The vector (3,4, 1)! = v; + 2v; is one
such linear combination.

A solution X of a system of linear equations written in the matrix form AX = B
[Chapter 1 (1.9)] exhibits the column vector B as a linear combination of the
columns of the matrix A. The coefficients are the entries of the vector X.

A linear combination of a single vector (v) is just a multiple cv or v .

The set of all vectors w which are linear combinations of (vi,..., v.) forms a
subspace W of V, called the subspace spanned by the set: If w (3.1) and

!

w' = ¢/'v; + -+ + cn'vn are elements of W, then so is
w4+ w' = (¢ +ci)oy + -+ (en + ca')on,

and ifa € F, thenaw = (aci)v1 + - + (aca)vnis in W. Sow + w' and aw are in
W. Finally, 0 = Ov; + --- + Ov, € W. This shows that the conditions of (2.12)
hold.

The space spanned by a set S will often be denoted by Span §. Clearly, Span S
is the smallest subspace of V which contains S. We could also call it the subspace
generated by §. Note that the order is irrelevant here. The span of § is the same as
the span of any reordering of S.

One can also define the span of an infinite set of vectors. We will discuss this
in Section 5. In this section, let us assume that our sets are finite.

(3.2) Proposition. Let S be a set of vectors of V, and let W be a subspace of V. If
S C W, then Span § C W.

This is obvious, because W is closed under addition and scalar multiplication. If
S C W, then any linear combination of vectors of S is in W too. o

A linear relation among vectors vy,..., v, is any relation of the form
(3.3) civ1 + U2 + 0 + cpvp = 0,
where the coefficients ¢; are in F. An ordered set (vi,..., v,) of vectors is called lin-

early independent if there is no linear relation among the vectors in the set, except
for the trivial one in which all the coefficients ¢; are zero. It is useful to state this
condition positively:

(3.4) Let (v1,...,vn) be a linearly independent set. Then
Jfrom the equation civ; + - + cpvn = 0,
we can conclude that ¢; = O for everyi = 1,...,n.

Conversely, if (3.4) holds, then the vectors are linearly independent.
The vectors (1.4) are linearly independent.



Section 3 Bases and Dimension 89

Note that a linearly independent set S can not have any repetitions. For if two
vectors v;, v; of § are equal, then

v —v =0

is a linear relation of the form (3.3), the other coefficients being zero. Also, no vec-
tor v; of a linearly independent family may be zero, because if it is, then v; = O is a
linear relation.

A set which is not linearly independent is called linearly dependent.

If V is the space F™ and if the vectors (v1,..., vn) are given explicitly, we can
decide linear independence by solving a system of homogeneous linear equations.
For to say that a linear combination x;v; + -- + x,vn is zero means that each coor-
dinate is zero, and this leads to m equations in the n unknowns x;. For example, con-
sider the set of three vectors

1 1 2
(3.5) =10}, =12}, v,=11
1 0 2
Let 4 denote the matrix whose columns are these vectors:
1 1 2
(3.6) A=10 2 1
1 0 2

A general linear combination of the vectors will have the form x0; + x0;, + x30;.
Bringing the scalar coefficients to the other side, we can write this linear combina-
tion in the form AX, where X = (x;, x2, x3)". Since det A = 1, the equation AX = 0
has only the trivial solution, and this shows that (v, v2, v3) is a linearly independent
set. On the other hand, if we add an arbitrary fourth vector v4 to this set, the result
will be linearly dependent, because every system of three homogeneous equations in
four unknowns has a nontrivial solution [Chapter 1 (2.17)].
Here are some elementary facts about linear independence.

(3.7) Proposition.

(2) Any reordering of a linearly independent set is linearly independent.
(b) If v; € V is a nonzero vector, then the set (v;) is linearly independent.

(c) A set (v, v2) of two vectors is linearly dependent if and only if either v; = 0,
or else v, is a multiple of v;.

Let us verify the third of these assertions: Assume (v, v;) dependent. Let the rela-
tion be c,v, + c;v; = 0, where ¢y, ¢; are not both zero. If ¢; # 0, we can solve for
V2.

-

U, = —10y.
C2
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In this case v, is a multiple of v;. If ¢; = 0, then ¢; # 0 and the equation shows that
v; = 0. Conversely, if v; = cv;, then the relation cvi — v2 = 0 shows that the set
(v1, v2) is linearly dependent, and if v, = 0, then the relation v; + Ov, = 0 shows
the same thing. o

A set of vectors (vs,..., v,) which is linearly independent and which also spans
V is called a basis. For example, the vectors (1.4) form a basis for the space of solu-
tions of the linear equation (1.3). We will often use a symbol such as B to denote a
basis.

Let B = (vi,...,0n) be a basis. Then since B spans V, every w € V can be
written as a linear combination (3.1). Since B is linearly independent, this expres-
sion is unique.

(3.8) Proposition. The set B = (vi,...,va) is a basis if and only if every vector
w € V can be written in a unique way in the form (3.1).

Proof. Suppose that B is a basis and that w is written as a linear combination in
two ways, say (3.1) and alsow = ¢;"v1 + - + ¢i'vn. Then

O=w—w=(a—c')vi+ - + (cn — cn')On.

Hence by (3.4) ¢; — ¢i” = 0,...,¢n — ¢»’ = 0. Thus the two linear combinations
are the same. On the other hand, the definition of linear independence for B can be
restated by saying that 0 has only one expression as a linear combination. This
proves the converse. o

(3.9) Example, Let V = F" be the space of column vectors, and let e; denote the
column vector with 1 in the ith position and zeros elsewhere. The n vectors e; form
a basis for F" called the standard basis. This basis was introduced before, in Chap-
ter 1, Section 4. We will denote it by E. Every vector X = (xi,..., xs)' has the
unique expression

X = Xi1€1 4+ e 4 Xn€n
as a linear combination of E = (ey,..., en).
The set (3.5) is another basis of R*.

We now discuss the main facts (3.15-3.17) which relate the three notions of
span, linear independence, and basis.

(3.10) Proposition. Let L be a linearly independent ordered set in V, and let
v € V be any vector. Then the ordered set L' = (L, v) obtained by adding v to L is
linearly independent if and only if v is not in the subspace spanned by L.

Proof. Say thatL = (vi,...,v,). If v € Span L, then v = ¢yv; + -+ + c0r
for some ¢; € F. Hence

cvr+ -+ oo+ (F1)v=20
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is a linear relation among the vectors of L', and the coefficient —1 is not zero. Thus
L’ is linearly dependent.

Conversely, suppose that L’ is linearly dependent, so that there is some linear
relation

cior + -+ ¢or + b = 0,

in which not all coefficients are zero. Then certainly b # 0. For, if b were zero, the
expression would reduce to

civy + o+ ¢ =0.

Since L is assumed to be linearly independent, we could conclude that

¢1 = -+ = ¢, = 0 too, contrary to hypothesis. Now that we know b # 0, we can
solve for v:
—Ci —Cr
v=——1v t "+ bv,.

Thus v € Span L. o

(3.11) Proposition. Let S be an ordered set of vectors, let v € V be any vector,
and let S’ = (S,v). Then Span § = Span S’ if and only if v € Span S.

Proof. By definition, v € Span §’. So if v &€ Span S, then Span § #
Span S'. Conversely, if v € Span S, then S’ C Span §; hence Span §’ C Span §
(3.2). The fact that Span §' O Span S is trivial, and so Span S’ = Span S. o

(3.12) Definition. A vector space V is called finite-dimensional if there is some
finite set § which spans V.

For the rest of this section, we assume that our given vector space V is finite-
dimensional.

(3.13) Proposition. Any finite set S which spans V contains a basis. In particular,
any finite-dimensional vector space has a basis.

Proof. Suppose § = (v1,...,vs) and that § is not linearly independent. Then
there is a linear relation

cor + o+ + cnvn =0
in which some ¢; is not zero, say ¢, # 0. Then we may solve for v,:

—Ci ~Cn—1
Ul + s +

Cn Cn

Un - Un—l.

This shows that v, € Span(v,..., vn—1). Putting v = v, and S = (v1,...,0n—1) in
(3.11), we conclude Span(v;,..., vn—1) = Span(vi,...,vs) = V. So we may elimi-
nate v, from S. Continuing this way we eventually obtain a family which is linearly
independent but still spans V—a basis.
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Note. There is a problem with this proof if V is the zero vector space {0}. For,
starting with an arbitrary collection of vectors in V (all of them equal to zero), our
procedure will throw them out, one at a time, until there is only one vector v; = 0
left. And (0) is a linearly dependent set. How can we eliminate it? Of course the
zero vector space is not particularly interesting. But it may lurk around, waiting to
trip us up. We have to allow the possibility that a vector space which arises in the
course of some computation, such as solving a system of homogeneous linear equa-
tions, is the zero space. In order to avoid having to make special mention of this
case in the future, we adopt the following conventions:

(3.14) (a) The empty set is linearly independent.
(b) The span of the empty set is the zero subspace.

Thus the empty set is a basis for the zero vector space. These conventions allow us
to throw out the last vector v; = 0, and rescue the proof. o

(3.15) Proposition. Let V be a finite-dimensional vector space. Any linearly inde-
pendent set L can be extended by adding elements, to get a basis.

Proof. Let S be a finite set which spans V. If all elements of S are in Span L,
then L spans V (3.2) and so it is a basis. If not, choose v € §, which is not in
Span L. By (3.10), (L, v) is linearly independent. Continue until you get a basis. o

(3.16) Proposition. Let S, L be finite subsets of V. Assume that S spans V and that
L is linearly independent. Then S contains at least as many elements as L does.

Proof. To prove this, we write out what a relation of linear dependence on L
means in terms of the set S, obtaining a homogeneous system of m linear equations
in n unknowns, where m =S| and n = |L|. Say that S = (vi,...,0m) and
L = (w1,...,wn). We write each vector w; as a linear combination of S, which we
can do because S spans V, say

Wi = ayv; + -+ A, = 2 aijv;.
i

Let u=ciwi + -+ + cawn = Zjcjw; be a linear combination. Substituting, we
obtain

u= 2 Cj@ijvi.
i,

The coefficient of v; in this sum is 3;ajc;. If this coefficient is zero for every i, then
u = 0. So to find a linear relation among the vectors of L, it suffices to solve the
system 3;a;x; = 0 of m equations in n unknowns. If m < n, then this system has a
nontrivial solution [see Chapter 1 (2.17)], and therefore L is linearly dependent. o

(3.17) Proposition. Two bases By, B; of the vector space V have the same number
of elements.
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Proof. Put B, =S, B, = L in (3.16) to get |B,| = |B;|. By symmetry,
lel = IBl | o

(3.18) Definition. The dimension of a finite-dimensional vector space V is the
number of vectors in a basis. The dimension will be denoted by dim V.

(3.19) Proposition.

(a) If S spans V, then | S| = dim V, and equality holds only if § is a basis.
(b) If L is linearly independent, then | L| = dim V, and equality holds only if L is
a basis.

Proof. This follows from (3.13) and (3.15). o

(3.20) Proposition. If W C V is a subspace of a finite-dimensional vector space,
then W is finite-dimensional, and dim W < dim V. Moreover, dim W = dim V
onlyif W = V.

Proof. This will be obvious, once we show that W is finite-dimensional. For, if
W <V, that is, if W is contained in but not equal to V, then a basis for W will not
span V, but it can be extended to a basis of V by (3.15). Hence dim W < dim V. We
now check finite-dimensionality: If some given linearly independent set L in W does
not span W, there is a vector w € W not in Span L, and by Proposition (3.10),
(L, w) is linearly independent. So, we can start with the empty set and add elements
of W using (3.10), hoping to end up with a basis of W. Now it is obvious that if L is
a linearly independent set in W then it is also linearly independent when viewed as a
subset of V. Therefore (3.16) tells us that |[L| = n = dim V. So the process of
adding vectors to L must come to an end after at most n steps. When it is impossible
to apply (3.10) again, L is a basis of W. This shows that W is finite-dimensional, as
required. o

Notes.

(2) The key facts to remember are (3.13), (3.15), and (3.16). The others follow.

(b) This material is not deep. Given the definitions, you could produce a proof of
the main result (3.16) in a few days or less, though your first try would probably
be clumsy.

One important example of a vector space is obtained from an arbitrary set § by
forming linear combinations of elements of S with coefficients in F in a formal way.
If § = (s1,..., 5,) is a finite ordered set whose elements are distinct, then this space

V = V(S) is the set of all expressions

(321) aisi + =+ anSn, a4 € F.
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Addition and scalar multiplication are carried out formally, assuming no relations
among the elements s;:

(3.22)
(@is1 + -+ + ansn) + (bisi + -+ + bnsn) = (a1 + b)si + =+ + (an + bo)sn

claisy + -+ + ansn) = (cai)si + ==+ + (can)sn.
This vector space is isomorphic to F”, by the correspondence
(3.23) (ai,...,ap)»w»w>a 51 + -+ + QuSn.
Therefore the elements s;, interpreted as the linear combinations
s1 = ls; + 0s2 + -+ + Osy,

form a basis which corresponds to the standard basis of F" under the isomorphism
(3.23). Because of this, V(S) is often referred to as the space with basis S, or the
space of formal linear combinations of S. If § is an infinite set, V (S) is defined to be
the space of all finite expressions (3.21), where s; € § (see Section 5).

Since V (§) is isomorphic to F” when § contains n elements, there is no com-
pelling logical reason for introducing it. However, in many applications, V' (S) has a
natural interpretation. For example, if S is a set of ingredients, then a vector v may
represent a recipe. Or if S is a set of points in the plane, then v (3.21) can be inter-
preted as a set of weights at the points of S.

4. COMPUTATION WITH BASES

The purpose of bases in vector spaces is to provide a method of computation, and we
are going to learn to use them in this section. We will consider two topics: how to
express a vector in terms of a given basis, and how to relate two different bases of
the same vector space.

Suppose we are given a basis (vi,..., vs) of a vector space V. Remember: This
means that every vector v € V can be expressed as a linear combination

(4.1) ©v=x0; +  + xpUn, x EF,
in exactly one way. The scalars x; are called the coordinates of v, and the column
vector
X
X =
4.2) .
Xn

is called the coordinate vector of v, with respect to the basis. We pose the problem
of computing this coordinate vector.
The simplest case to understand is that V is the space of column vectors F".
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Let B = (vi,...,vn) be a basis of F”. Then each element v; of our basis is a column
vector, and so the array (vi,..., v,) forms an n X n matrix. It seems advisable to in-
troduce a new symbol for this matrix, so we will write it as

\ \

(4.3) B]={vi-" vn
| \

For example, if B is the basis

(4.4) v = [;] v = [g] then [B] = B g]

If E = (e1,..., €n) is the standard basis, the matrix [E] is the identity matrix.
A linear combination x,v; + -+ + x,0, can be written as the matrix product
I NI
(4.5) Blx=1ovi- o (] + | =0oxi+ - + vpxn,

\ | JLxn

where X denotes the column vector (x;,..., x»)". This is another example of block
multiplication. The only new feature is that the definition of matrix multiplication
has caused the scalar coefficients x; to migrate to the right side of the vectors, which
doesn’t matter.

Now if a vector Y = (yi,..., y)' is given, we can determine its coordinate vec-
tor with respect to the basis B by solving the equation

| HIE? y
(4.6) DR | i or [B]x=vY
| | L on Yn
for the unknown vector X. This is done by inverting the matrix [B].
(4.7) Proposition. LetB = (vi,...,vs) be a basis of F", and let Y € F" be a vec-
tor. The coordinate vector of Y with respect to the basis B is
x=[B]"r. o

Note that we get ¥ back if B is the standard basis E, because [E] is the identity ma-
trix. This is as it should be.

In Example (4.4),
I O 3 N I
(] _[2 5] _[ 2—1]'

So the coordinate vector of Y = l:i] is X = l:_;], which means that
Y = To; — 202.
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Of course we can not solve in this way unless the matrix is invertible. Fortu-
nately, [B] is always invertible, and in fact it can be any invertible matrix.

(4.8) Proposition. Let A be an n X n matrix with entries in a field F. The columns
of A form a basis of F" if and only if A is invertible.

Proof. Denote the ith column of A by v. For any column vector
X = (x1,...,xn)", the matrix product AX = v;x; + -+ + vnx, is a linear combination
of the set (v1,...,vn). So this set is linearly independent if and only if the only solu-
tion of the equation AX = 0 is the trivial solution X = 0. And as we know, this is
true if and only if A is invertible [Chapter 1 (2.18)]. Morever, if (vi,..., v,) is a lin-
early independent set, then it forms a basis because the dimension of F” is n. o

Now let V be an abstractly given vector space. We want to use matrix notation
to facilitate the manipulation of bases, and the way we have written ordered sets of
vectors was chosen with this in mind:

(4.9) (V15--.,0n).

Perhaps this array should be called a hypervector. Unless our vectors are given con-
cretely, we won’t be able to represent this hypervector by a matrix, so we will work
with it formally, as if it were a vector. Since multiplication of two elements of a
vector space is not defined, we can not multiply two matrices whose entries are vec-
tors. But there is nothing to prevent us from multiplying the hypervector (v, ..., Um)
by a matrix of scalars. Thus a linear combination of these vectors can be written as
the product with a column vector X:

X1
(4.10) (01,00, 0m) - | = ot UnXm.

Xm
Evaluating the product, we obtain another vector——a linear combination. The scalar
coefficients x; are on the right side of the vectors as before. If we use a symbol such
as B to denote the set (vy,..., vm), then the notation for this linear combination be-
comes very compact: BX = vjx; + -+ + Opxp.

We may also multiply a hypervector on the right by a matrix of scalars. If A is

an m X n matrix, the product will be another hypervector, say (wi,..., wa):

(4.11) (vl,...,v,,,)[ A ] = (Wiyeun, Wa).

To evaluate the product, we use the rule for matrix multiplication:
(4.12) Wi = 01Q; + Gy + 0t OmGny.

So each vector wy is a linear combination of (vy,..., v,), and the scalar coefficients in
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this linear combination form the columns of the matrix A. That is what the equation
means. For example,

3 21
(01,02)[4 0 1] = (3v; + 402,201, 01 + v2).

Let us restate this formally:

(4.13) Proposition. Let S = (v1,...,om) and U = (wi,..., w,) be ordered sets of
elements of a vector space V. The elements of U are in the span of S if and only if
there is an m X n scalar matrix A such that (v,..., 0m)A = (Wi,..., wn). O

Now let us consider the problem of determining the coordinate vector X of a
given vector v € V with respect to a given basis B = (vy,..., vn). That is, we wish
to write v = BX explicitly, as in (4.10). It is clear that this is not possible unless
both the basis and the vector are given in some explicit way, so we can not solve the
problem as posed. But we can use multiplication by the hypervector B to define ab-
stractly an isomorphism of vector spaces

(4.14) Y: F"™—> V sending
X rmans BX,

from the space F" of column vectors to V. This map is bijective because every vec-
tor v is a linear combination (4.10) in exactly one way—it is surjective because the
set B spans V, and injective because B is linearly independent. The axioms for an
isomorphism (2.13) are easy to check. We can use this isomorphism to introduce co-
ordinates into the vector space V.

The coordinate vector of a vector v is X = ¢ '(v). Please note that the symbol
B! is not defined. So unless the basis is given more specifically, we won’t have an
explicit formula for the inverse function ¢'. But the existence of the isomorphism s
is of interest in itself:

(4.15) Corollary. Every vector space V of dimension n is isomorphic to the space
F" of column vectors. o

Notice that F" is not isomorphic to F'™ if m # n, because F" has a basis of n
elements, and the number of elements in a basis depends only on the vector space,
not on the choice of a basis. Thus the finite-dimensional vector spaces V over a field
F are completely classified by (4.15): Every V is isomorphic to F”, for some
uniquely determined integer n. It follows that we will know all about an arbitrary
vector space if we study the basic examples of column vectors. This reduces any
problem on vector spaces to the familiar algebra of column vectors, once a basis is
given.

We now come to a very important computat onal method: change of basis.
Identifying V with the isomorphic vector space F" is useful when a natural basis is
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presented to us, but not when the given basis is poorly suited to the problem at hand.
In that case, we will want to change coordinates. So let us suppose that we are given
two bases for the same vector space V, say B = (vi,...,0,) and B’ = (v/',..., v,').
We will think of B as the old basis, and B’ as a new basis. There are two computa-
tions which we wish to clarify. We ask first: How are the two bases related? Sec-
ondly, a vector v € V will have coordinates with respect to each of these bases, but
of course they will be different. So we ask: How are the two coordinate vectors re-
lated? These are the computations called change of basis. They will be very impor-
tant in later chapters. They are also confusing and can drive you nuts if you don’t
organize the notation well.

We begin by noting that since the new basis spans V, every vector of the old
basis B is a linear combination of the new basis B’ = (v;’,..., v,'). So Proposition
(4.13) tells us that there is an equation of the form

(416) (Ul,,...,Un/)l: P ] - (’Ul,...,’Un), orB'P = B,

where P is an n X n matrix of scalars. This matrix equation reads
4.17) o' py t+ v py+ o+ 0 pa = v,

where p;; are the entries of P. The matrix P is called the matrix of change of basis.
Its jth column is the coordinate vector of the old basis vector v;, when computed
with respect to the new basis B’.

Note that the matrix of change of basis is invertible. This can be shown as fol-
lows: Interchanging the roles of B and B’ provides a matrix P’ such that BP' = B’.
Combining this with (4.16), we obtain the relation BP'P = B:

(vl,...,v,,)l: P'P ] = (U1y-.vy Un).

This formula expresses each v; as a linear combination of the vectors (v1,... vn). The
entries of the product matrix P'P are the coefficients. But since B is a linearly inde-
pendent set, there is only one way to write v; as such a linear combination of
(v1,...,0n), namely v; = v;, or BI = B. So P'P = I. This shows that P is invertible.

Now let X be the coordinate vector of v, computed with respect to the old basis
B, that is, v = BX. Substituting (4.16) gives us the matrix equation

(4.18) v = BX = B' PX.

This equation shows that PX = X' is the coordinate vector of v with respect to the
new basis B'.

Recapitulating, we have a single matrix P, the matrix of change of basis, with
the dual properties

4.19) B=BP and PX =X,

where X, X' denote the coordinate vectors of an arbitrary vector v with respect to the
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two bases. Each of these properties characterizes P. Note the position of the primes
carefully.

We can compute the matrix of change of basis explicitly when V = F”" and the
old basis is the standard basis E, but where the new basis B’ is arbitrary. The two
bases determine matrices [E] = 7 and [B'], as in (4.3). Formula (4.19) gives us the
matrix equation / = [B']P. Hence the matrix of change of basis is

(4.20) P =[B']Y, ifV = F"and if the old basis is E.

We can also write this as [B'] = P! So
(4.21) If the old basis is E, the new basis vectors are the columns of P™'.

In the above discussion, the matrix P was determined in terms of two bases B
and B’. We could also turn the discussion around, starting with just one basis B and
an invertible matrix P € GL,(F). Then we can define a new basis by formula
(4.16), that is,

(4.22) B’ = BP !,

The vectors v; making up the old basis are in the span of B’ because B = B'P
(4.13). Hence B’ spans V and, having the right number of elements, B’ is a basis.

(4.23) Corollary. Let B be a basis of a vector space V. The other bases are the
sets of the form B’ = BP !, where P € GL,(F) is an invertible matrix.

It is, of course, unnecessary to put an inverse matrix into this statement. Since P is
arbitrary, so is P~'. We could just as well set P~' = Q and say B’ = BQ, where
Q € GLx(F). o

As an application of our discussion, let us compute the order of the general lin-
ear group GL:(F) when F is the prime field F,. We do this by computing the number
of bases of the vector space V = F2. Since the dimension of V is 2, any linearly in-
dependent set (v, v;) of two elements forms a basis. The first vector v; of a linearly
independent set is not zero. And since the order of F is p, V contains p? vectors in-
cluding 0. So there are p* — 1 choices for the vector v;. Next, a set (v,, v2) of two
vectors, with v; nonzero, is linearly independent if and only if v, is not a multiple of
vy (3.7). There are p multiples of a given nonzero vector v;. Therefore if v, is given,
there are p> — p vectors v, such that (v;, v) is linearly independent. This gives us

(P> = 1)(p* — p) = p(p + D(p — 1)’
bases for V altogether.

(4.24) Corollary. The general linear group GL,(F,) has order p(p + 1)(p — 1)~

Proof. Proposition (4.23) establishes a bijective correspondence between
bases of F” and elements of GL.(F). o
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5. INFINITE-DIMENSIONAL SPACES

Some vector spaces are too big to be spanned by any finite set of vectors. They are
called infinite-dimensional. We are not going to need them very often, but since they
are so important in analysis, we will discuss them briefly.

The most obvious example of an infinite-dimensional space is the space R™ of
infinite real vectors

5.1 (@) = (a1, a2, as,...).

It can also be thought of as the space of sequences {an} of real numbers. Examples
(1.7¢, d) are also infinite-dimensional.
The space R” has many important subspaces. Here are a few examples:

(5.2) Examples.
(a) Convergent sequences: C = {(a) € R | lim a, exists}.
n—»o0
(b) Bounded sequences: £* = {(a) € R™ | {an} is bounded}.

A sequence {a,} is called bounded if there is some real number b, a bound,
such that | a.| =< b for all n.

(c) Absolutely convergent series: €' = {(a) € R*|2, | an| < ®}.
1
(d) Sequences with finitely many nonzero terms:

Z = {(a) € R” | a» = 0 for all but finitely many n}.

All of the above subspaces are infinite-dimensional. You should be able to make up
some more.

Now suppose that V is a vector space, infinite-dimensional or not. What should
we mean by the span of an infinite set S of vectors? The difficulty is this: It is not
always possible to assign a vector as the value of an infinite linear combination
civ; + c2v2 + -+ in a consistent way. If we are talking about the vector space of
real numbers, that is, v; € R’, then a value can be assigned provided that the series
civy + cv2 + -+ converges. The same can be done for convergent series of vectors
in R” or R”. But many series don’t converge, and then we don’t know what value to
assign.

In algebra it is customary to speak only of linear combinations of finitely many
vectors. Therefore, the span of an infinite set S must be interpreted as the set of
those vectors v which are linear combinations of finitely many elements of S:

(5.3) v=oc¢v + - + ¢, where vi,...,0, € S.

The number r is allowed to be arbitrarily large, depending on the vector v:

__ ) finite linear combinations
(5-4) Span.§ = { of elements of § }
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With this definition, Propositions (3.2) and (3.11) continue to hold.

For example, let ¢; = (0,...,0,1,0,...) be the vector in R with 1 in the ith
position as its only nonzero coordinate. Let S = (ey, ez, e;,...) be the infinite set of
these vectors e;. The set § does not span R”, because the vector

w=(1,1,1,..)

is not a (finite) linear combination. Instead the span of S is the subspace Z (5.2d).
A set S, infinite or not, is called linearly independent if there is no finite rela-
tion

(5.5) cvy + o+ v, =0, v,...,00 ES,

except for the trivial relation, in which ¢; = -+ = ¢, = 0. Again, the number r is
allowed to be arbitrary, that is, the condition has to hold for arbitrarily large r and
arbitrary vectors v,..., v, € S. For example, the set S’ = (w;e;, e, e;,...) is lin-
early independent, if w, ¢; are the vectors defined as above. With this definition of
linear independence, Proposition {3.10) continues to be true.

As with finite sets, a basis § of V is a linearly independent set which spans V.
Thus § = (ei, e2,...) is a basis of the space Z. It can be shown, using the Axiom of
Choice, that every vector space V has a basis. However, the proof doesn’t tell you
how to get one. A basis for R* will have uncountably many elements, and therefore
it can not be written down in an explicit way. We won’t need bases for infinite-di-
mensional spaces very often.

Let us go back for a moment to the case that our vector space V is finite-
dimensional (3.12), and ask if there can be an infinite basis. In Section 3, we saw
that any two finite bases have the same number of elements. We will now complete
the picture by showing that every basis is finite. The only confusing point is taken
care of by the following proposition:

(5.6) Proposition. Let V be finite-dimensional, and let S be any set which spans
V. Then S contains a finite subset which spans V.

Proof. By assumption, there is some finite set, say (wi,..., wm), which spans
V. Each w; is a linear combination of finitely many elements of S, since Span$ = V.
So when we express the vectors wy,..., wn it terms of the set S, we only need to use
finitely many of its elements. The ones we use make up a finite subset S’ C §. So,
(W1,..., wm) C Span §'. Since (wi,..., wn) spans V, so does S'. o

(5.7) Proposition. Let V be a finite-dimensional vector space.

(a) Every set S which spans V contains a finite basis.
(b) Every linearly independent set L is finite and therefore extends to a finite basis.
(c) Every basis is finite.

We leave the proof of (5.7) as an exercise. o
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6. DIRECT SUMS

Let V be a vector space, and let Wi,..., W, be subspaces of V. Much of the treatment
of linear independence and spans of vectors has analogues for subspaces, and we are
going to work out these analogues here.

We consider vectors v € V which can be written as a sum

(6.1) v=w + o+ wp,

where w; is a vector in W;. The set of all such vectors is called the sum of the sub-
spaces or their span, and is denoted by

62) Wi+ +Wa={vE€V]vo=w + -+ wn, withw €W}

The sum is a subspace of V, analogous to the span of a set {vi,..., vs} Of vectors.
Clearly, it is the smallest subspace containing W,..., Wy.

The subspaces W;,..., W, are called independent if no sum wy + -+ + w, with
w; € W is zero, except for the trivial sum in which w; = O for all i. In other words,
the spaces are independent if

(6.3) wi + - + wp = 0 and w; € W; implies wi = 0 for all i.

In case the span is the whole space and the subspaces are independent, we say
that V is the direct sum of Wi,..., W,, and we write

(6.4) V=W - ®W, if V=W + - + W,
and if Wi,..., W, are independent.

This is equivalent to saying that every vector v € V can be written in the form (6.1)
in exactly one way.

So, if Wi,..., W, are independent subspaces of a vector space V and if
U=W, + -+ W, is their sum, then in fact U is their direct sum:
U=W&---dW,.

We leave the proof of the following two propositions as an exercise.

(6.5) Proposition.

(a) A single subspace W; is independent.
(b) Two subspaces Wi, W; are independent if and only if Wi N W, = (0). o

(6.6) Proposition. Let Wi,..., W, be subspaces of a finite-dimensional vector
space V, and let B; be a basis for W,.

(a) The ordered set B obtained by listing the bases By,..., B, in order is a basis of
V if and only if V is the direct sum W, --- ® W,.

(b) dim(W; + --- + W,) = (dim W;) + --- + (dim Wy), with equality if and only
if the spaces are independent. o
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(6.7) Corollary. Let W be a subspace of a finite-dimensional vector space V.
There is another subspace W' such that V = W W',

Proof. Let (wi,...,ws) be a basis for W. Extend to a basis (w,..., wa;
U1,..., Un—g) for V (3.15). The span of (v1,..., vn—a) is the required subspace W'. o

(6.8) Example. Let vy,..., v, be nonzero vectors, and let W; be the span of the sin-
gle vector v;. This is the one-dimensional subspace which consists of all scalar mul-
tiples of v;: W = {cvi}. Then Wi,..., W, are independent subspaces if and only if
(vi,...,0n) are independent vectors. This becomes clear if we compare (3.4) and
(6.3). The statement in terms of subspaces is actually the neater one, because the
scalar coefficients are absorbed.

(6.9) Proposition. Let W, W; be subspaces of a finite-dimensional vector space V.
Then

dim W, + dim W, = dim(W, N W) + dim(W; + W).

Proof. Note first that the intersection of two subspaces is again a subspace.
Choose a basis (u,..., u;) for the space W, N Wz, where r = dim(W, N W2). This is
a linearly independent set, and it is in W;. Hence we can extend it to a basis of W,
say

(6.10) Uiy U X1y Xm—r),
where m = dim W;. Similarly, we can extend it to a basis

(6.11) (Uiseres Ur; Yigerns Ynr),s

of W2, where n = dim W:. The proposition will follow if we show that the set
(6.12) (Ui ey Ury Xt geey Ximimr 3 Yiyenns Yrer)

is a basis of Wi + Wa.

This assertion has two parts. First, the vectors (6.12) span W; + W,. For any
vector v in W) + Wris a sum v = w; + w,, with w; € W,. We can write w; as a
linear combination of (6.10), and w, as a linear combination of (6.11). Collecting
terms, we find that v is a linear combination of (6.12).

Next, the vectors (6.11) are linearly independent: Suppose that some linear
combination is zero, say

aiuy + 0+ aur + by + 0+ bn—rxm—r + y1 + 0+ Cp—r Ya—r = 0.

Abbreviate this as u + x + y = 0. Solve for y: y = ~u —x € Wi. Buty € W,
too. Hence y € W; N Wa, and so y is a linear combination, say ', of (ui,...,4).
Then -1’ + y = 0 is a relation among the vectors (6.11), which are independent.
So it must be the trivial relation. This shows that y = 0. Thus our original relation
reduces to u + x = 0. Since (6.10) is a basis, this relation is trivial: ¥ = 0 and
x = 0. So the whole relation was trivial, as required. o
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I don’t need to learn 8 + 7: I'll remember 8 + 8 and subtract 1.
T. Cuyler Young, Jr.

EXERCISES

1. Real Vector Spaces

1.

N AU A WwWN

Which of the following subsets of the vector space of real n X n matrices is a subspace?
(a) symmetric matrices (4 = A")

(b) invertible matrices

(c) upper triangular matrices

. Prove that the intersection of two subspaces is a subspace.
. Prove the cancellation law in a vector space: If co = ¢w and ¢ # 0, then v = w.
. Prove that if w is an element of a subspace W, then -w € W too.

Prove that the classification of subspaces of R® stated after (1.2) is complete.

. Prove that every solution of the equation 2x; — x2 — 2x3 = 0 has the form (1.5).
. What is the description analogous to (1.4) obtained from the particular solutions

u = (2,2, 1) and ur = (0,2, -1)?

2. Abstract Fields

1.

10.

Prove that the set of numbers of the form @ + b\V/2, where a, b are rational numbers, is
a field.

. Which subsets of C are closed under +, —, X, and + but fail to contain 1?

Let F be a subset of C such that F* is a subgroup of C* and F* is a subgroup of C*.
Prove that F is a subfield of C.

. Let V = F" be the space of column vectors. Prove that every subspace W of V is the

space of solutions of some system of homogeneous linear equations AX = 0.

Prove that a nonempty subset W of a vector space satisfies the conditions (2.12) for a
subspace if and only if it is closed under addition and scalar multiplication.

Show that in Definition (2.3), axiom (ii) can be replaced by the following axiom: F* is
an abelian group, and 1 # 0. What if the condition 1 # 0 is omitted?

Define homomorphism of fields, and prove that every homomorphism of fields is
injective.

. Find the inverse of 5 (modulo p) for p = 2,3,7,11,13.

Compute the polynomial (x? 4+ 3x + 1)}(x*> + 4x® 4+ 2x + 2) when the coefficients are
regarded as elements of the fields (a) Fs (b) .
Consider the system of linear equations [8 3][x1] = [ 3].
2 6 X2 _1
(a) Solve it in F, when p = 5,11, 17.
(b) Determine the number of solutions when p = 7.
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11. Find all primes p such that the matrix

1 20
A=| 0 3-1
-2 0 2

is invertible, when its entries are considered to be in Fp.
12. Solve completely the systems of linear equations AX = B, where

1 10 0 1
A=11 0 1|, B=10| and B=] -1
1-1-1 0 1

(ain@Q @®inF, (¢)infF; (@) inF.

13. Let p be a prime integer. The nonzero elements of F, form a group F,* of orderp — 1.
It is a fact that this group is always cyclic. Verify this for all primes p < 20 by exhibiting
a generator.

14. (a) Let p be a prime. Use the fact that F,™ is a group to prove that ¢! = 1 (modulo p)
for every integer a not congruent to zero.
(b) Prove Fermat’s Theorem: For every integer a,

a? = a (modulo p).

15. (a) By pairing elements with their inverses, prove that the product of all nonzero ele-
ments of [, is —1.
(b) Let p be a prime integer. Prove Wilson’s Theorem:

(p — ! = -1 (modulo p).

16. Consider a system AX = B of n linear equations in n unknowns, where A and B have in-
teger entries. Prove or disprove: If the system has an integer solution, then it has a solu-
tion in F, for all p.

17. Interpreting matrix entries in the field [, prove that the four matrices [1 O], [O O],

01 00
1 1 01
[1 O:!’ [1 l:! form a field.

18. The proof of Lemma (2.8) contains a more direct proof of (2.6). Extract it.
3. Bases and Dimension

1. Find a basis for the subspace of R* spanned by the vectors (1,2, -1,0), (4,8, -4, —3),
0,1,3,4), (2,5,1,4).
2. Let W C R* be the space of solutions of the system of linear equations AX = 0, where

21 2 3 . .
A—[l 1 3 O].FmdabamsforW.

3. (a) Show that a subset of a linearly independent set is linearly independent.
(b) Show that any reordering of a basis is also a basis.

4. Let V be a vector space of dimension n over F, and let 0 = r = n. Prove that V contains
a subspace of dimension r.
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10.

11.
12,
13,
i4.

15,

16.

. Find a basis for the space of symmetric n X n matrices.
. Prove that a square matrix A is invertible if and only if its columns are linearly

independent.

. Let V be the vector space of functions on the interval [0, 1]. Prove that the functions x>,

sin x, and cos x are linearly independent.

. Let A be an m X n matrix, and let A" be the result of a sequence of elementary row opera-

tions on A. Prove that the rows of A span the same subspace as the rows of A’

. Let V be a complex vector space of dimension n. Prove that V has dimension 2n as real

vector space.

A complex n X n matrix is called hermitian if a; = @ for all i, j. Show that the hermi-

tian matrices form a real vector space, find a basis for that space, and determine its

dimension.

How many elements are there in the vector space [Fp"?

Let F = [,. Find all bases of F2.

Let F = Fs. How many subspaces of each dimension does the space F* contain?

(a) Let V be a vector space of dimension 3 over the field Fp. How many subspaces of
each dimension does V have?

(b} Answer the same question for a vector space of dimension 4.

(a) Let F = [F,. Prove that the group GL,(F) is isomorphic to the symmetric group Ss.

(b) Let F = [F;. Determine the orders of GL,(F) and of SL,(F).

Let W be a subspace of V.

(a) Prove that there is a subspace U of Vsuch that U + W = Vand U N W = 0.

(b) Prove that there is no subspace U such that W N U =0 and that
dim W + dim U > dim V.

Computation with Bases

. Compute the matrix P of change of basis in F? relating the standard basis E to

B’ = (v, v2), where o1 = (1,3), v, = (2,28

. Determine the matrix of change of basis, when the old basis is the standard basis

(e1,..., €x) and the new basis is (¢,, €x—1,...,e1).

. Determine the matrix P of change of basis when the old basis is (e;, e,) and the new basis

is (e1 + ex,e1 — e2).

. Consider the equilateral coordinate system for R?, given by the basis B’ in which v, = ¢,

and v, is a vector of unit length making an angle of 120° with v,. Find the matrix relat-
ing the standard basis E to B'.

(i) Prove that the set B = ((1,2,0)', (2,1,2)%, (3,1, 1)!) is a basis of R,

(i) Find the coordinate vector of the vector v = (1,2, 3)" with respect to this basis.
(i) Let B" = ((0, 1,0), (1,0,1)%, (2,1,0)"). Find the matrix P relating B to B’.

(iv) For which primes p is B a basis of [F,%?

Let B and B’ be two bases of the vector space F”. Prove that the matrix of change of ba-
sis is P = [B']"'[B].

Let B = (vs,..., vn) be a basis of a vector space V. Prove that one can get from B to any
other basis B’ by a finite sequence of steps of the following types:
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10.

11.

12.

(i) Replace v; by v; + av;, [ # j, for some a € F.

(i1) Replace v; by cv; for some ¢ # 0.

(iii) Interchange v; and v;.

Rewrite the proof of Proposition (3.16) using the notation of Proposition (4.13).

Let V = F”, Establish a bijective correspondence between the sets B of bases of V and

GL.(F).

Let F be a field containing 81 elements, and let V be a vector space of dimension 3 over

F. Determine the number of one-dimensional subspaces of V.

Let F = [,.

(a) Compute the order of SL,(F).

(b) Compute the number of bases of F”, and the orders of GL.(F) and SL,(F).

(a) Let A be an m X n matrix with m < n. Prove that A has no left inverse by comparing
A to the square n X n matrix obtained by adding (n — m) rows of zeros at the bottom.

(b) Let B = (v1,..., vm) and B’ = (v/,..., vy’ be two bases of a vector space V. Prove
that m = n by defining matrices of change of basis and showing that they are
invertible.

5. Infinite-Dimensional Spaces

1.

e

Prove that the set (w;e, ¢;,...) introduced in the text is linearly independent, and de-
scribe its span.

. We could also consider the space of doubly infinite sequences (a) = (...,a-1, a0, a,...),

with a; € R. Prove that this space is isomorphic to R™.

Prove that the space Z is isomorphic to the space of real polynomials.

Describe five more infinite-dimensional subspaces of the space R*.

For every positive integer, we can define the space €7 to be the space of sequences such
that =] a; P < .

(a) Prove that €7 is a subspace of R™.

(b) Prove that €7 < €P*1,

Let V be a vector space which is spanned by a countably infinite set. Prove that every
linearly independent subset of V is finite or countably infinite.

Prove Proposition (5.7).

6. Direct Sums

1. Prove that the space R™ " of all n X n real matrices is the direct sum of the spaces of
symmetric matrices (A = A') and of skew-symmetric matrices (4 = —A").

2. Let W be the space of n X n matrices whose trace is zero. Find a subspace W' so that
Rr>r = WO W',

3. Prove that the sum of subspaces is a subspace.

4. Prove Proposition (6.5).

5. Prove Proposition (6.6).
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Miscellaneous Problems

1. (a) Prove that the set of symbols {a + bi | a, b € F3} forms a field with nine elements,
if the laws of composition are made to mimic addition and multiplication of complex
numbers.

(b) Will the same method work for Fs? For [F;? Explain.

*2. Let V be a vector space over an infinite field F. Prove that V is not the union of finitely
many proper subspaces.

*3, Let W,,W, be subspaces of a vector space V. The formula dim(W, + W;) = dimW, +
dimW, — dim(W, N W) is analogous to the formula |S; U S:| = || + |S.| —
|81 N S|, which holds for sets. If three sets are given, then

|Sl us. U S3| = |Sl| + |S2| + |S3|
- |S1 N S2| - |S1 ﬂS3| - |S2 N S3I + |S1 N S2 N S3|

Does the corresponding formula for dimensions of subspaces hold?

4. Let F be a field which is not of characteristic 2, and let x> + bx + ¢ = 0 be a quadratic
equation with coefficients in F. Assume that the discriminant b*> — 4c is a square in F,
that is, that there is an element 8 € F such that 8 = b*> — 4c. Prove that the quadratic
formula x = (—b + 8)/2a solves the quadratic equation in F, and that if the discrimi-
nant is not a square the polynomial has no root in F.

5. (a) What are the orders of the elements [1 }], [2 1] of GL,(R)?

(b) Interpret the entries of these matrices as elements of [, and compute their orders in
the group GL:(F5).

6. Consider the function det: F"*"—— F, where F = [, is a finite field with p elements
and F™ " is the set of 2 X 2 matrices.

(a) Show that this map is surjective.
(b) Prove that all nonzero values of the determinant are taken on the same number of
times.

7. Let A be an n X n real matrix. Prove that there is a polynomial f(#) = a,t" +
ar_1t""' + =+ + a;t + ao which has A as root, that is, such that a,A” + a, 477! +
- + a1A + aol = 0. Do this by showing that the matrices /,A4,A%,... are linearly
dependent.

*8. An algebraic curve in R? is the locus of zeros of a polynomial f(x, y} in two variables.
By a polynomial path in R?, we mean a parametrized path x = x(¢), y = y(¢), where
x(t), y(z) are polynomials in ¢.

(a) Prove that every polynomial path lies on a real algebraic curve by showing that, for
sufficiently large n, the functions x (t)'y (¢¥, 0 < i, j < n, are linearly dependent.

(b) Determine the algebraic curve which is the image of the path x = 2 + ¢,y = ¢’ ex
plicitly, and draw it.



Chapter 4

Linear Transformations

That confusions of thought and errors of reasoning
still darken the beginnings of Algebra,
is the earnest and just complaint of sober and thoughtful men.

Sir William Rowan Hamilton

1. THE DIMENSION FORMUILA

The analogue for vector spaces of a homomorphism of groups is a map
nv—WwW

from one vector space over a field F to another, which is compatible with addition
and scalar multiplication:

(1.1) T, +v)) =T(vy) + T(vr) and T(cv) = T (v),

for all v;,v2in Vand all ¢ € F. It is customary to call such a map a linear transfor-
mation, rather than a homomorphism. However, use of the word homomorphism
would be correct too. Note that a linear transformation is compatible with linear
combinations:

(1.2) T(Z c,~v,~> = Z T (v).

This follows from (1.1) by induction. Note also that the first of the conditions of
(1.1) says that T is a homomorphism of additive groups V¥ —— W™,

We already know one important example of a linear transformation, which is
in fact the main example: left multiplication by a matrix. Let A be an m X n matrix
with entries in F, and consider A as an operator on column vectors. It defines a lin-
ear transformation

(1.3) F

X amwvwwwanwnws AX,

,, left mult. by A Fm

109
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Indeed, A(X; + X2) = AX; + AX, and A(cX) = cAX.
Another example: Let P, be the vector space of real polynomial functions of
degree < n, of the form

(1.4) Gux™ + ap X"+ -+ ax + ao.
The derivative d% is a linear transformation from P, to P,—;.

Let T: V—— W be any linear transformation. We introduce two subspaces
(1.5) ker T = kernel of T = {v € V| T(v) = 0}

im T = image of T = {w € W | w = T(v) for some v € V}.

As one may guess from the similar case of group homomorphisms (Chapter 2, Sec-
tion 4), ker T is a subspace of V and im T is a subspace of W.

It is interesting to interpret the kernel and image in the case that T is left mul-
tiplication by a matrix A. In that case the kernel T is the set of solutions of the homo-
geneous linear equation AX = 0. The image of T is the set of vectors B € F™ such
that the linear equation AX = B has a solution.

The main result of this section is the dimension formula, given in the next
theorem.

(1.6) Theorem Let7: V—— W be a linear transformation, and assume that V is
finite-dimensional. Then

dim V = dim(ker T) + dim(im 7).

The dimensions of im T and ker T are called the rank and nullity of T, respec-
tively. Thus (1.6) reads

(1.7) dim V = rank + nullity.

Note the analogy with the formula |G| = |ker ¢| | im ¢| for homomorphisms of
groups [Chapter 2 (6.15)].

The rank and nullity of an m X n matrix A are defined to be the dimensions of
the image and kernel of left multiplication by A. Let us denote the rank by r and the
nullity by k. Then k is the dimension of the space of solutions of the equation
AX = 0. The vectors B such that the linear equation AX = B has a solution form the
image, a space whose dimension is r. The sum of these two dimensions is n.

Let B be a vector in the image of multiplication by A, so that the equation
AX = B has at least one solution X = X,. Let K denote the space of solutions of the
homogeneous equation AX = 0, the kernel of multiplication by A. Then the set of so-
lutions of AX = B is the additive coset X, + K. This restates a familiar fact: Adding
any solution of the homogeneous equation AX = 0 to a particular solution X, of the
inhomogeneous equation AX = B, we obtain another solution of the inhomogeneous
equation.

Suppose that A is a square n X n matrix. Ifdet A # 0, then, as we know, the
system of equations AX = B has a unique solution for every B, because A is invert-
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ible. In this case, kK = 0 and r = n. On the other hand, if det A = 0 then the space
K has dimension k > 0. By the dimension formula, r < n, which implies that the
image is not the whole space F". This means that not all equations AX = B have so-
lutions. But those that do have solutions have more than one, because the set of solu-
tions of AX = B is a coset of K.

Proof of Theorem (1.6). Say that dim V = n. Let (u1,..., ux) be a basis for the
subspace ker T, and extend it to a basis of V [Chapter 3 (3.15)]:

(1.8) (U1,eeey Up] O1yeeny Op—p).

Let wy = T(v) for i = 1,...,n — k. If we prove that (wy,..., w,—x) = S is a basis
for im T, then it will follow that im 7 has dimension n — k. This will prove the the-
orem.

So we must show that S spans im 7 and that it is a linearly independent set. Lef
w € im T be arbitrary. Then w = T (v) for some v € V. We write v in terms of the
basis (1.8):
v=au + -+ aue + by + o+ by Un—k,
and apply 7, noting that T (x;) = O:
w=0+--+0+bw + - + by W+

Thus w is in the span of S, and so S spans im T.
Next, suppose a linear relation

(1.9) ewi + o+ Wk = 0

is given, and consider the linear combination v = ¢;v; + -+ + ¢—xn—k, Where v;
are the vectors (1.8). Applying T to v gives

T(w) = ciwi + -+ + Cp—iWn—k = 0.

Thus v € ker T. So we may write v in terms of the basis (ui,..., ux) of ker 7, say
v =au; + -+ + arux. Then

—aiuy + -+ —ap + cor + o+ k- = 0.

But (1.8) is a basis. So ~a; = 0,...,-a; = 0, and ¢; = 0,..., ca—x = 0. Therefore
the relation (1.9) was trivial. This shows that S is linearly independent and com-
pletes the proof.

2. THE MATRIX OF A LINEAR TRANSFORMATION

It is not hard to show that every linear transformation T: F"—> F™ is left multipli-
cation by some m X n matrix A. To see this, consider the images T (g;) of the stan-
dard basis vectors e; of F. We label the entries of these vectors as follows:

ayj

(2.1) Te)=| - |,
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and we form the m X n matrix A = (ay) having these vectors as its columns. We can
write an arbitrary vector X = (xi,...,x,)' from F" in the form Xx =
e\x; + -+ + e,x,, putting scalars on the right. Then

an Ain

TX) = 2T =] [xn+-+ ] |n=ax

J
am1 aan

For example, the linear transformation T: R*—— R* such that

o

T(e) = [;] and T (e)

11
2 o)
IfX = [i]] = eé1Xx; + erx,, then

e[ [ [0 )

Using the notation established in Section 4 of Chapter 3, we can make a simi-
lar computation with an arbitrary linear transformation 7: V—— W, once bases of
the two spaces are given. Let B = (v,,...,v,) and C = (wi,..., w.) be bases of V
and of W, and let us use the shorthand notation T (B) to denote the hypervector

T(B) = (T(v1),..., T (vn)).

Since the entries of this hypervector are in the vector space W, and since C is a basis
for that space, there is an m X n matrix A such that

is left multiplication by the matrix

(2.2) TB)=ca or (T(vi),...,T(vy) = (Wl,---,wm){ A ]
[Chapter 3 (4.13)]. Remember, this means that for each j,
(2.3) T(v) = 2 wiay = wiay + =+ + W amy.

So A is the matrix whose jth column is the coordinate vector of T(v;). This m X n
matrix A = (aj) is called the matrix of T with respect to the bases B, C. Different
choices of the bases lead to different matrices.

In the case that V = F* W = F™ and the two bases are the standard bases,
A is the matrix constructed as in (2.1).

The matrix of a linear transformation can be used to compute the coordinates
of the image vector T (v) in terms of the coordinates of v. To do this, we write v in
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terms of the basis, say
v=BX=opx1 T+ OnXn.
Then
T(v) = T(v)x; + - + T(va)x. = T(B)X = CAX.
Therefore the coordinate vector of T (v) is
Y = AX,
meaning that 7 (v) = CY. Recapitulating, the matrix A of the linear transformation
has two dual properties:
(2.4) T(B)=CA and Y = AX.

The relationship between T and A can be explained in terms of the isomor-
phisms ¢: F"—— V and ¢': F"—— W determined by the two bases [Chapter 3
(4.14)]. If we use ¢ and ¢’ to identify V and W with F™ and F"™, then T corresponds
to left multiplication by A:

T
V——W BX CAX

¥ v,

mult by 4
Fr—m——> X mwvwanwaanass AX

Going around this square in the two directions gives the same answer:
Teoy =y'°A

Thus any linear transformation between finite-dimensional vector spaces V and
W can be identified with matrix multiplication, once bases for the two spaces are
chosen. But if we study changes of basis in V and W, we can do much better. Let us
ask how the matrix A changes when we make other choices of bases for V and W.
Let B' = (v1',...,04"), C' = (w/,..., wn') be new bases for these spaces. We can
relate the new basis B’ to the old basis B by a matrix P € GL(F), as in Chapter 3
(4.19). Similarly, €' is related to C by a matrix 0 € GLn(F). These matrices have
the following properties:

(2.6) PX=X and QY =7Y'.

Here X and X' denote the coordinate vectors of a vector v € V with respect to the
bases B and B’, and similarly ¥ and ¥’ denote the coordinate vectors of a vector
w € W with respect to C and C'.

Let A’ denote the matrix of T with respect to the new bases, defined as above
(2.4), so that A’ X' = v’. Then QAP™'X' = QAX = QY = Y'. Therefore

(2.7) A" = QAP

Note that P and Q are arbitrary invertible n X n and m X m matrices [Chapter 3
(4.23)]. Hence we obtain the following description of the matrices of a given linear
transformation:



114 Linear Transformations Chapter 4

(2.8) Proposition. Let A be the matrix of a linear transformation T with respect to
some given bases B, C. The matrices A’ which represent T with respect to other bases
are those of the form

A/ — Q AP*I’

where Q9 € GL,,(F) and P € GL,(F) are arbitrary invertible matrices. o

Now given a linear transformation 7: V—— W, it is natural to look for bases
B, C of V and W such that the matrix of T becomes especially nice. In fact the matrix
can be simplified remarkably.
(2.9) Proposition.

(a) Vector space form: Let T: V—— W be a linear transformation. Bases B, C can
be chosen so that the matrix of T takes the form

I

(2.10) A

where I, is the r X r identity matrix, and » = rank T.

(b) Matrix form: Given any m X n matrix A, there are matrices Q € GL,.(F) and
P € GL,(F) so that QAP™! has the form (2.10).

It follows from our discussion that these two assertions amount to the same thing. To
derive (a) from (b), choose arbitrary bases B, C to start with, and let A be the matrix
of T with respect to these bases. Applying (b), we can find P, Q so that QAP™! has the
required form. Let B' = BP™' and C' = CQ' be the new bases, as in Chapter 3
(4.22). Then the matrix of T with respect to the bases B’, C' is QAP™'. So these new
bases are the required ones. Conversely, to derive (b) from (a) we view an arbitrary
matrix A as the matrix of the linear transformation “left multiplication by A”, with
respect to the standard bases. Then (a) and (2.7) guarantee the existence of P, Q so
that QAP™' has the required form.

Note that we can interpret QAP as the matrix obtained from A by a succession
of row and column operations: We write P and Q as products of elementary ma-
trices: P =E,---E; and Q = E,/---E,' [Chapter 1 (2.18)]. Then QAP™'=
E; -+-E\'AE,"'--- E;”'. Because of the associative law, it does not matter whether
the row operations or the column operations are done first. The equation
(E'A)E = E'(AE) tells us that row operations commute with column operations.

It is not hard to prove (2.9b) by matrix manipulation, but let us prove (2.9a)
using bases instead. Let (u;,...,u;) be a basis for ker 7. Extend to a basis B for
Vi (01,...,0001,..., ), Where r + k = n. Let wy = T (v;). Then, as in the proof of
(1.6), (w1,..., wr) is a basis for im 7. Extend to a basis C of W: (wy,..., w3 X1,..., X;).
The miatrix of T with respect to these bases has the required form. o
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Proposition (2.9) is the prototype for a number of results which will be proved
later. It shows the power of working in vector spaces without fixed bases (or coordi-
nates), because the structure of an arbitrary linear transformation is related to the
very simple matrix (2.10). It also tells us something remarkable about matrix multi-
plication, because left multiplication by A on F™ is a linear transformation. Namely,
it says that left multiplication by A is the same as left multiplication by a matrix of
the form (2.10), but with reference to different coordinate systems. Since multiplica-
tion by the matrix (2.10) is easy to describe, we have learned something new.

3. LINEAR OPERATORS AND EIGENVECTORS

Let us now consider the case of a linear transformation T V——V of a vector space
to itself. Such a linear transformation is called a linear operator on V. Left multipli-
cation by an n X n matrix with entries in F defines a linear operator on the space F"
of column vectors.

For example, a rotation pg of the plane through an angle 6 is a linear operator
on R?, whose matrix with respect to the standard basis is

cos 6 —sin 6
sin@ cos @]

3.1) R= [

To verify that this matrix represents a rotation, we write a vector X € R? in polar
coordinates, as X = (r, ). Then in rectangular coordinates, X = iiionsz . The
r cos(a + 6)
r sinfa + 6)
coordinates, RX = (r,@ + 6). This shows that RX is obtained from X by rotation
through the angle 6.

The discussion of the previous section must be changed slightly when we are
dealing with linear operators. It is clear that we want to pick only one basis
B = (v1,...,vs) for V, and use it in place of both of the bases B and C considered in
Section 2. In other words, we want to write

addition formulas for sine and cosine show that RX = [ ] So in polar

(3.2) T(B) = BA
or
T(v) = Z’Uiaij = viay + 0+ Onlyy.
This defines the matrix A = (a;) of T. It is a square matrix whose jth column is the
coordinate vector of T (v;) with respect to the basis B. Formula (2.4) is unchanged,

provided that W and C are replaced by V and B. As in the previous section, if X and
Y denote the coordinate vectors of v and T'(v) respectively, then

(3.3) Y = AX.
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The new feature arises when we study the effect of a change of basis on V.
Suppose that B is replaced by a new basis B’ = (v’,...,v,’). Then formula (2.7)
shows that the new matrix A" has the form

(3.9) A’ = PAPT!,

where P is the matrix of change of basis. Thus the rule for change of basis in a linear
transformation gets replaced by the following rule:

(3.5) Proposition. Let A be the matrix of a linear operator T with respect to a ba-
sis B. The matrices A’ which represent T for different bases are those of the form

A" = pAP!,
for arbitrary P € GL,(F). o

In general, we say that a square matrix A is similar to A" if A’ = pAP™' for
some P € GL,(F). We could also use the word conjugate [see Chapter 2 (3.4)].

Now given 4, it is natural to ask for a similar matrix A’ which is particularly
simple. One may hope to get a result somewhat like (2.10). But here our allowable
change is much more restricted, because we have only one basis, and therefore one
matrix P, to work with.

We can get some insight into the problem by writing the hypothetical matrix P
as a product of elementary matrices: P = E,--- E;. Then

PAP™! = E, "‘E1AE1_1 ...Er‘l_

In terms of elementary operations, we are allowed to change A by a sequence of
steps Amw> EAE'. In other words, we may perform an arbitrary row operation E,
but then we must also make the inverse column operation E~'. Unfortunately, the
row and column operations interfere with each other, and this makes the direct anal-
ysis of such operations confusing. I don’t know how to use them. It is remarkable
that a great deal can be done by another method.

The main tools for analyzing linear operators are the concepts of eigenvector
and invariant subspace.

Let T: V——V be a linear operator on a vector space. A subspace W of V is
called an invariant subspace or a T-invariant subspace if it is carried to itself by the
operator:

(3.6) ™W C W.

In other words, W is T-invariant if T(w) € W for all w € W. When this is so, T
defines a linear operator on W, called the restriction of T to W.

Let W be a T-invariant subspace, and let us choose a basis B of V by appending
some vectors to a basis (wy,..., wi) of W:

B = (Wi, Wk, Olsurny Un—k).

Then the fact that W is invariant can be read off from the matrix M of T. For, the
columns of this matrix are the coordinate vectors of the image vectors [see (2.3)],
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and T (wy) is in the subspace W, so it is a linear combination of the basis (w1,..., wi).
So when we write T(w;) in terms of the basis B, the coefficients of the vectors
v1,..., n—k are zero. It follows that M has the block form

A B
3.7 M=
o o]

where A is a k X k matrix. Moreover, A is the matrix of the restriction of T to W.

Suppose that V = W, ® W, is the direct sum of two T-invariant subspaces, and
let B; be a basis of W;. Then we can make a basis B of V by listing the elements of B,
and B; in succession [Chapter 3 (6.6a)]. In this case the matrix of T will have the
block diagonal form

(3.8) M= ["‘ 0],

0 A

where 4; is the matrix of T restricted to W;.
The concept of an eigenvector is closely related to that of an invariant sub-
space. An eigenvector v for a linear operator T is a nonzero vector such that

(3.9) T(v) = cv

for some scalar ¢ € F. Here c is allowed to take the value O, but the vector v can
not be zero. Geometrically, if V = R", an eigenvector is a nonzero vector v such
that v and T (v) are parallel.

The scalar ¢ appearing in (3.9) is called the eigenvalue associated to the eigen-
vector v. When we speak of an eigenvalue of a linear operator 7', we mean a scalar
¢ € F which is the eigenvalue associated to some eigenvector.

For example, the standard basis vector e, is an eigenvector for left multiplica-

tion by the matrix
[3 1
0 2)

The eigenvalue associated to the eigenvector e; is 3. Or, the vector (0,1,1)" is an ei-
genvector for multiplication by the matrix

1 1-1
A=]12 11
302

on the space R? of column vectors, and its eigenvalue is 2.

Sometimes eigenvectors and eigenvalues are called characteristic vectors and
characteristic values.

Let v be an eigenvector for a linear operator 7. The subspace W spanned by v is
T-invariant, because T (av) = aco € W for all a € F. Conversely, if this subspace
is invariant, then v is an eigenvector. So an eigenvector can be described as a basis
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of a one-dimensional T-invariant subspace. If v is an eigenvector, and if we extend it
to a basis (v = v1,..., vs) of V, then the matrix of T will have the block form

where ¢ is the eigenvalue associated to v;. This is the block decomposition (3.7) in
the case of an invariant subspace of dimension 1.

When we speak of an eigenvector for an n X n matrix A, we mean a vector
which is an eigenvector for left multiplication by A, a nonzero column vector such
that

AX = c¢X, forsomec € F.

As before, the scalar c is called an eigenvalue. Suppose that A is the matrix of T with
respect to a basis B, and let X denote the coordinate vector of a vector v € V. Then
T (v) has coordinates AX (2.4). Hence X is an eigenvector for A if and only if v is an
eigenvector for T. Moreover, if so, then the eigenvalues are the same: T and A have
the same eigenvalues.

(3.10) Corollary. Similar matrices have the same eigenvalues.

This follows from the fact (3.5) that similar matrices represent the same linear trans-
formation. o

Eigenvectors aren’t always easy to find, but it is easy to tell whether or not a
given vector X is an eigenvector for a matrix A. We need only check whether or not
AX is a multiple of X. So we can tell whether or not a given vector v is an eigenvec-
tor for a linear operator T, provided that the coordinate vector of v and the matrix of
T with respect to a basis are known. If we do this for one of the basis vectors, we
find the following criterion:

(3.11) The basis vector v; is an eigenvector of T, with eigenvalue c,
if and only if the jth column of A has the form ce;.

For the matrix A is defined by the property T(v;) = viay + =+ + vnay. So if
T(vj) = cvj, thena; = canday; = 0if i # j. o

(3.12) Corollary. With the above notation, A is a diagonal matrix if and only if
every basis vector v; is an eigenvector. o

(3.13) Corollary. The matrix A of a linear transformation is similar to a diagonal
matrix if and only if there is a basis B' = (v1',..., va") of V made up of eigenvec-
tors. o
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This last corollary shows that we can represent a linear operator very simply
by a diagonal matrix, provided that it has enough eigenvectors. We will see in Sec-
tion 4 that every linear operator on a complex vector space has at least one eigenvec-
tor, and in Section 6 that in most cases the eigenvectors form a basis. But a linear
operator on a real vector space needn’t have an eigenvector. For example, the rota-
tion po (3.1) of the plane does not carry any vector to a parallel one, unless 8 = 0 or
7. So pe has no eigenvector unless 8 = 0 or 7.

The situation is quite different for real matrices having positive entries. Such
matrices are sometimes called positive matrices. They occur often in applications,
and one of their most important properties is that they always have an eigenvector
whose coordinates are positive (a positive eigenvector). Instead of proving this fact,
let us illustrate it in the case of two variables by examining the effect of multiplica-
tion by a positive 2 X 2 matrix A on R>,

Let w; = Ae;. The parallelogram law for vector addition shows that A sends the
first quadrant S to the sector bounded by the vectors wi, w.. And the coordinate vec-
tor of w; is the ith column of A. Since the entries of A are positive, the vectors w; lie
in the first quadrant. So A carries the first quadrant to itself: S O AS. Applying A
again, we find AS D A%S, and so on:

(3.14) § DAS DA*S DAS D ...,

as illustrated below in Figure (3.15) for the matrix A = [? i]

(3.15) Figure. Images of the first quadrant under repeated multi-
plication by a positive matrix.

Now the intersection of a nested set of sectors is either a sector or a half line.
In our case, the intersection Z = MA”S turns out to be a half line. This is intuitively
plausible, and it can be shown in various ways. The proof is left as an exercise. We
multiply the relation Z = NA"S on both sides by A:

AZ=A<ﬂ A’S) =Nas =2
1] 1

Hence Z = AZ. This shows that the nonzero vectors in Z are eigenvectors. o
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4, THE CHARACTERISTIC POLYNOMIAL

In this section we determine the eigenvectors of an arbitrary linear operator 7. Re-
call that an eigenvector for T is a nonzero vector v such that

4.1 T (v) = cv,

for some ¢ in F. At first glance, it seems difficult to find eigenvectors if the matrix of

the linear operator is complicated. The trick is to solve a different problem, namely

to determine the eigenvalues first. Once an eigenvalue ¢ is determined, equation

(4.1) becomes linear in the coordinates of v, and solving it presents no problem.
We begin by writing (4.1) in the form

(4.2) [T — cI)v) =0,
where I stands for the identity operator and T — ¢/ is the linear operator defined by
(4.3) [T — cI](v) = T(v) — cv.

It is easy to check that T — I is indeed a linear operator. If A is the matrix of T with
respect to some basis, then the matrix of T — c¢lis A — cl.
We can restate (4.2) as follows:

(4.4) v is in the kernel of T — cl.

(4.5) Lemma. The following conditions on a linear operator T: V——V on a
finite-dimensional vector space are equivalent:

(@) kerT > 0.

(b) im T < V.

(c) If A is the matrix of the operator with respect to an arbitrary basis, then
det A = 0.

(d) O is an eigenvalue of T.

Proof. The dimension formula (1.6) shows that ker7 > 0 if and only if
im T < V. This is true if and only if T is not an isomorphism, or, equivalently, if
and only if A is not an invertible matrix. And we know that the square matrices A
which are not invertible are those with determinant zero. This shows the equiva-
lence of (a), (b), and (c). Finally, the nonzero vectors in the kernel of T are the ei-
genvectors with eigenvalue zero. Hence (a) is equivalent to (d). o

The conditions (4.5a) and (4.5b) are not equivalent for infinite-dimensional
vector spaces. For example, let V = R™ be the space of infinite row vectors
(a1,aa,...), as in Section 5 of Chapter 3. The shift operator, defined by

(46) T(al,az,...) = (O,al,az,...),

is a linear operator on V. For this operator, ker 7 = O butim 7' < V.
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(4.7) Definition. A linear operator T on a finite-dimensional vector space V is
called singular if it satisfies any of the equivalent conditions of (4.5). Otherwise, T
is nonsingular.

We know that ¢ is an eigenvalue for the operator T if and only if T — ¢I has a
nonzero kernel (4.4). So, if we replace T by T — ¢l in the lemma above, we find:

(4.8) Corollary. The eigenvalues of a linear operator T are the scalars ¢ € F such
that T — cl is singular. o

If A is the matrix of T with respect to some basis, then the matrix of T — ¢ is
A — cl. So T — dl is singular if and only if det (A — ¢7) = 0. This determinant can
be computed explicitly, and doing so provides us with a concrete method for deter-
mining the eigenvalues and eigenvectors.

Suppose for example that A is the matrix

4.9) [i i]

whose action on R? is illustrated in Figure (3.15). Then
A_C1=32_c0]=[3—c 2
1 4 0 c 1 4 —¢

det(A — cI) = ¢ — 7c + 10 = (¢ = 5)(c — 2).

and

This determinant vanishes if ¢ = 5 or 2, so we have shown that the eigenvalues of A
are 5 and 2. To find the eigenvectors, we solve the two systems of linear equations
[A — 5I]x = 0and [4 — 2I]x = 0. The solutions are unique up to scalar factor:

(4.10) o = m 02 = [_ﬂ

Note that the eigenvector v, with eigenvalue 5 is in the first quadrant. It lies on the
half line Z which is illustrated in Figure (3.15).

We now make the same computation with an arbitrary matrix. It is convenient
to change sign. Obviously det(c/ — A) = 0 if and only if det(A — c7) = 0. Also, it
is customary to replace the symbol ¢ by a variable . We form the matrix 1/ — A:

(I—au) —an ce —ain
(4.11) H—a=| & (t=am) --r
_C‘an PR PPN (t_ann)

Then the complete expansion of the determinant [Chapter 1 (4.11)] shows that
det(z/ — A) is a polynomial of degree n in ¢, whose coefficients are scalars.



122 Linear Transformations Chapter 4

(4.12) Definition. The characteristic polynomial of a linear operator T is the poly-
nomial

p(t) = det(tl — A),
where A is the matrix of T with respect to some basis.

The eigenvalues of T are determined by combining (4.8) and (4.12): ¢ is an ei-
genvalue if and only if p(c) = 0.

(4.13) Corollary. The eigenvalues of a linear operator are the roots of its charac-
teristic polynomial. o

(4.14) Corollary. The eigenvalues of an upper or lower triangular matrix are its
diagonal entries.

Proof. If A is an upper triangular matrix, then so is #/ — A. The determinant
of a triangular matrix is the product of its diagonal entries, and the diagonal entries
of t1 —A are t— a;. Therefore the characteristic polynomial is p(f) =
(t — au)(t — az) -+ (t — am), and its roots, the eigenvalues, are aii,..., am. o

We can compute the characteristic polynomial of an arbitrary 2 X 2 matrix
A= a b
c d

(4.15)  det(t1 — A) = det[’__f t__l;] =12 — (a + d)t + (ad — bo).

without difficulty. It is

The discriminant of this polynomial is
(4.16) (@ + d)* — 4(ad — bc) = (a — d)* + 4bc.

If the entries of A are positive real numbers, then the discriminant is also positive,
and therefore the characteristic polynomial has real roots, as predicted at the end of
Section 3.

(4.17) Proposition. The characteristic polynomial of an operator T does not de-
pend on the choice of a basis.
Proof. A second basis leads to a matrix A’ = PAP™! [see (3.4)]. We have
t1— A =1t — PAP' = PP ' — PAP™' = P(¢t1 — AP,
Thus
det(t1 — A') = det(P(t1 — A)P™') = det P det(t] — A)det P! = det(t] — A).

So the characteristic polynomials computed with A and A’ are equal, as was as-
serted. o
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(4.18) Proposition. The characteristic polynomial p(z) has the form
p(t) = t" — (tr A)t™' + (intermediate terms) + (—1)"(det A),
where tr A, the trace of A, is the sum of the diagonal entries:
trA=any +ax+ - + am.

All coefficients are independent of the basis. For instance tr PAP™! = tr A.
This is proved by computation. The independence of the basis follows from (4.17). o

Since the characteristic polynomial, the trace, and the determinant are*inde-
pendent of the basis, they depend only on the operator 7. So we may define the
terms characteristic polynomial, trace, and determinant of a linear operator T to be
those obtained using the matrix of T with respect to an arbitrary basis.
(4.19) Proposition. LetTbe a linear operator on a finite-dimensional vector space V.

(a) If V has dimension n, then T has at most n eigenvalues.

(b) If F is the field of complex numbers and V # 0, then T has at least one eigen-
value, and hence it has an eigenvector.

Proof.

(a) A polynomial of degree n can have at most n different roots. This is true for
any field F, though we have not proved it yet [see Chapter 11, (1.8)]. So we
can apply (4.13).

(b) Every polynomial of positive degree with complex coefficients has at least one
complex root. This fact is called the Fundamental Theorem of Algebra. There
is a proof in Chapter 13 (9.1). o

For example, let A be the rotation (3.1) of the real plane R* by an angle 8. Its
characteristic polynomial is
(4.20) p(t) =t*— (2cos )t + 1,

which has no real root unless cos § = +1. But if we view A as an operator on C?,
there are two complex eigenvalues.

5. ORTHOGONAL MATRICES AND ROTATIONS
In this section we describe the rotations of two- and three-dimensional spaces R?

and R* about the origin as linear operators. We have already noted (3.1) that a rota-
tion of R? through an angle 6 is represented as multiplication by the matrix

[cos 6 —sin 9]
sin@ cos @]
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A rotation of R* about the origin can be described by a pair (v, 8) consisting of a unit
vector v, a vector of length 1, which lies in the axis of rotation, and a nonzero angle
6, the angle of rotation. The two pairs (v,8) and (—v, —) represent the same rota-
tion. We also consider the identity map to be a rotation, though its axis is indetermi-
nate.

(5.1) Figure.

The matrix representing a rotation through the angle ¢ about the vector e, is
obtained easily from the 2 X 2 rotation matrix. It is
1 0 0
(5.2) A=|0 cos@ —sin 8 ].
0 sinf cos @
Multiplication by A fixes the first coordinate x; of a vector and operates by rotation
on (xz, x3)'. All rotations of R* are linear operators, but their matrices can be fairly
complicated. The object of this section is to describe these rotation matrices.
A real n X n matrix A is called orthogonal if A' = A™!, or, equivalently, if

A'A = I. The orthogonal n X n matrices form a subgroup of GL.(R) denoted by O,
and called the orthogonal group:

(5.3) O. = {A € GL(R) | A'A = I}.
The determinant of an orthogonal matrix is =1, because if A'A = I, then
(det A)* = (det A")(det 4) = 1.

The orthogonal matrices having determinant +1 form a subgroup called the special
orthogonal group and denoted by SO,:

(5.4) SO, = {A € GLW(R) | A'A = I, det A = 1}.

This subgroup has one coset in addition to SO,, namely the set of elements with de-
terminant — 1. So it has index 2 in O,.
The main fact which we will prove about rotations is stated below:

(5.5) Theorem. The rotations of R? or R? about the origin are the linear operators
whose matrices with respect to the standard basis are orthogonal and have determi-
nant 1. In other words, a matrix A represents a rotation of R? (or R?) if and only if
A € SO, (or SO5).

Note the following corollary:
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(5.6) Corollary. The composition of two rotations of R* about the origin is also a
rotation.

This corollary follows from the theorem because the matrix representing the compo-
sition of two linear operators is the product matrix, and because SO;, being a sub-
group of GL3(R), is closed under products. It is far from obvious geometrically.
Clearly, the composition of two rotations about the same axis is also a rotation about
that axis. But imagine composing rotations about different axes, What is the axis of
rotation of the composed operator?

Because their elements represent rotations, the groups SO; and SO; are called
the two- and three-dimensional rotation groups. Things become more complicated in
dimension > 3. For example, the matrix

cos 8@ —sin 6

sin@ cos@

(5.7) .
cos M —sin 7

sinmp cosm

is an element of SO,. Left multiplication by this matrix is the composition of a rota-
tion through the angle @ on the first two coordinates and a rotation through the angle
7 on the last two. Such an operation can not be realized as a single rotation.

The proof of Theorem (5.5) is not very difficult, but it would be clumsy if we
did not first introduce some terminology. So we will defer the proof to the end of
the section.

To understand the relationship between orthogonal matrices and rotations, we
will need the dot product of vectors. By definition, the dot product of column vec-
tors X and Y is

(5.8) (X-Y)=xiy + X202 + = + XnYn.
It is sometimes useful to write the dot product in matrix form as
(5.9) (x-v) =Xx'v.

There are two main properties of the dot product of vectors in R* and R®, The
first is that (X - X) is the square of the length of the vector:

'X z = X12 + sz or X12 + X22 + X32,

according to the case. This property, which follows from Pythagoras’s theorem, is
the basis for the definition of length of vectors in R”: The length of X is defined by
the formula

(5.10) [XP=X-X)=x2+ - + xt.

The distance between two vectors X, Y is defined to be the length |[X — Y| of X — Y.
The second important property of dot product in R? and R? is the formula

(5.11) (x-v)=|x||r]| cos 8,
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where 6 is the angle between the vectors. This formula is a consequence of the law
of cosines

c2=a*>+ b?*— 2ab cos 6

for the side lengths a, b, ¢ of a triangle, where 6 is the angle subtended by the sides
a,b. To derive (5.11), we apply the law of cosines to the triangle with vertices
0,Xx,Y. Its side lengths are | X|, | ¥| and | X — Y|, so the law of cosines can be written
as

v

X—Y-X—-V=(X-X)+(r-r) — 2|x||r]| cos 6.
The left side expands to
X-Y - XxX—-9N=x-X)-2x-1)+ (Y 1),

and formula (5.11) is obtained by comparing terms.

The most important application of (5.11) is that two vectors X and Y are or-
thogonal, meaning that the angle @ is /2, if and only if (X - ¥) = 0. This property
is taken as the definition of orthogonality of vectors in R":

(5.12) X is orthogonal to Y if (X - ¥) = 0.

(5.13) Proposition. The following conditions on a real n X n matrix A are equiva-
lent:

(a) A is orthogonal.

(b) Multiplication by A preserves dot product, that is, (4X - AY) = (X - ¥) for all
column vectors X, Y.

(c) The columns of A are mutually orthogonal unit vectors.

A basis consisting of mutually orthogonal unit vectors is called an orthonormal
basis. An orthogonal matrix is one whose columns form an orthonormal basis.

Left multiplication by an orthogonal matrix is also called an orthogonal opera-
tor. Thus the orthogonal operators on R” are the ones which preserve dot product.

Proof of Proposition (5.13). We write (X - Y) = X'Y. If A is orthogonal, then
A'A =1, 50
(x - Y) = X'y = xta'Ay = (AX)'(AY) = (AX - AY).

Conversely, suppose that X'Y = X'A'Ay for all X and Y. We rewrite this equality as
X'BY = 0, where B = I — A'A. For any matrix B,

(514) eitBej = bij.

So if X'BY = 0 for all X, Y, then ¢!Be; = b; = 0 for all {,j, and B = 0. Therefore
I = A'A. This proves the equivalence of (a) and (b). To prove that (a) and (c) are
equivalent, let A; denote the jth column of the matrix A. The (i, ) entry of the
product matrix A'A is (4; - Aj). Thus A'A = [ if and only if (4; - 4;) = 1 for all i,
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and (4; - Aj) = O forall i # j, which is to say that the columns have length 1 and are
orthogonal. o

The geometric meaning of multiplication by an orthogonal matrix can be ex-
plained in terms of rigid motions. A rigid motion or isometry of R" is a map
m: R"—> R" which is distance preserving; that is, it is a map satisfying the follow-
ing condition: If X, Y are points of R", then the distance from X to Y is equal to the
distance from m(x) to m(Y):

(5.15) |mX) — m(¥)| = |x - r|.

Such a rigid motion carries a triangle to a congruent triangle, and therefore it pre-
serves angles and shapes in general.

Note that the composition of two rigid motions is a rigid motion, and that the
inverse of a rigid motion is a rigid motion. Therefore the rigid motions of R" form a
group M,, with composition of operations as its law of composition. This group is
called the group of motions.

(5.16) Proposition. Let m be a map R"—— R". The following conditions on m
are equivalent:

(a) m is a rigid motion which fixes the origin.
(b) m preserves dot product; that is, for all X, ¥ € R, (m(X) - m(Y)) = (x - 1).
(c) m is left multiplication by an orthogonal matrix.

(5.17) Corollary. A rigid motion which fixes the origin is a linear operator.
This follows from the equivalence of (a) and (c).

Proof of Proposition (5.16). We will use the shorthand ’ to denote the map m, writ-
ing m(X) = Xx'. Suppose that m is a rigid motion fixing 0. With the shorthand nota-
tion, the statement (5.15) that m preserves distance reads

(5.18) X -v X -Y)=X—-Y-X—Y)

for all vectors X, Y. Setting ¥ = 0 shows that (x’ - X') = (X - X) for all X. We ex-
pand both sides of (5.18) and cancel (X - X) and (Y - ¥), obtaining (X' - ¥') =
(x - Y). This shows that m preserves dot product, hence that (a) implies (b).

To prove that (b) implies (c), we note that the only map which preserves dot
product and which also fixes each of the basis vectors e; is the identity. For, if m
preserves dot product, then (X - e) = (X' - &) for any X. If ¢/ = ¢; as well, then

i=X-eg)=X &)= -¢e) = x

for all j. Hence X = X', and m is the identity.

Now suppose that m preserves dot product. Then the images ei',..., e," of the
standard basis vectors are orthonormal: (e’ - ¢/) = 1 and (e - ¢) = 0 if i # j.
LetB' = (e1',...,en'), and let A = [B’]. According to Proposition (5.13), A is an or-
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thogonal matrix. Since the orthogonal matrices form a group, A" is also orthogonal.
This being so, multiplication by A™" preserves dot product too. So the composed mo-
tion A™'m preserves dot product, and it fixes each of the basis vectors e;. Therefore
A"'m is the identity map. This shows that m is left multiplication by A, as required.

Finally, if m is a linear operator whose matrix A is orthogonal, then
X' — Y = (X — v)’ because m is linear, and | X' — ¥'| = |(x = v)'| = |x — ¥| by
(5.13b). So m is a rigid motion. Since a linear operator also fixes 0, this shows that
(c) implies (a). o

One class of rigid motions which do not fix the origin, and which are therefore
not linear operators, is the translations. Given any fixed vector b = (by,..., by)" in
R", translation by b is the map

X1 +b1
(5.19) Xy =Xx+b=
Xn + bn

This map is a rigid motion because #(X) — 1(Y) = (X + b) — (¥ + b) = X — ¥,
and hence |t(X) — t(Y)| = |X — v/

(5.20) Proposition. Every rigid motion m is the composition of an orthogonal lin-
ear operator and a translation. In other words, it has the form m(X) = AX + b for
some orthogonal matrix A and some vector b.

Proof. Let b = m(0). Then t_,(b) = 0, so the composed operation ¢_,m is a
rigid motion which fixes the origin: ¢-5(m(0)) = 0. According to Proposition (5.16),
t-pm is left multiplication by an orthogonal matrix A: t-pm(X) = AX. Applying # to
both sides of this equation, we find m{(X) = AX + b.

Note that both the vector b and the matrix A are uniquely determined by m, be-
cause b = m(0) and A is the operator ¢ pm. o

Recall that the determinant of an orthogonal matrix is =1, An orthogonal op-
erator is called orientation-preserving if its determinant is +1, and orientation-
reversing if its determinant is —1. Similarly, let m be a rigid motion. We write
m(X) = AX + b as above. Then m is called orientation-preserving if det A = 1, and
orientation-reversing if det A = —1. A motion of R? is orientation-reversing if it
flips the plane over, and orientation-preserving if it does not.

Combining Theorem (5.5) with Proposition (5.16) gives us the following char-
acterization of rotations:

(5.21) Corollary. The rotations of R? and R? are the orientation-preserving rigid
motions which fix the origin. o

We now proceed to the proof of Theorem (5.5), which characterizes the rota-
tions of R* and R* about the origin. Every rotation p is a rigid motion, so Proposi-
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tion (5.16) tells us that p is multiplication by an orthogonal matrix A. Also, the de-
terminant of A is 1. This is because det A = *1 for any orthogonal matrix, and
because the determinant varies continuously with the angle of rotation. When the
angle is zero, A is the identity matrix, which has determinant 1. Thus the matrix of a
rotation is an element of SO; or SO;.

Conversely, let A € SO; be an orthogonal 2 X 2 matrix of determinant 1. Let
v; denote the first column Ae; of A. Since A is orthogonal, v; is a unit vector. There
is a rotation R (3.1) such that Re; = v, too. Then B = R™' A fixes e;. Also, A and R
are elements of SO,, and this implies that B is in SO,. So the columns of B form an
orthonormal basis of R?, and the first column is e;. Being of length 1 and orthogo-
nal to e;, the second column must be either e; or —e;, and the second case is ruled
out by the fact that det B = 1. It follows that B =1 and that A=R. So A is a
rotation.

To prove that an element A of SO represents a rotation, we’d better decide on
a definition of a rotation p of R* about the origin. We will require the following:

(5.22)

(i) pis a rigid motion which fixes the origin;
(ii) p also fixes a nonzero vector v;
(iii) p operates as a rotation on the plane P orthogonal to v.

According to Proposition (5.16), the first condition is equivalent to saying that p is
an orthogonal operator. So our matrix A € SOs satisfies this condition. Condition
(ii) can be stated by saying that v is an eigenvector for the operator p, with eigen-
value 1. Then since p preserves orthogonality, it sends the orthogonal space P to it-
self. In other words, P is an invariant subspace. Condition (iii) says that the restric-
tion of p to this invariant subspace is a rotation.

Notice that the matrix (5.2) does satisfy these conditions, with v = e;.

(5.23) Lemma. Every element A € SO; has the eigenvalue 1.

Proof. We will show that det(e — 7) = 0. This will prove the lemma [see
(4.8)]. This proof is tricky, but efficient. Recall that det A = det A' for any matrix 4,
so det A' = 1. Since 4 is orthogonal, A4 — 1) = (I — A)". Then

det(aA — 1) = det AA — I) = det(1 — A)' = det(I — A).

On the other hand, for any 3 X3 matrix B, det(—B) = —det B. Therefore
det(A — 1) = —det(I — A), and it follows that det(a — /) = 0. o

Now given a matrix A € SO;, the lemma shows that left multiplication by A
fixes a nonzero vector v;. We normalize its length to 1, and we choose orthogonal
unit vectors vz, vs lying in the plane P orthogonal to v;. Then B = (01, vz, v3) is an
orthonormal basis of R®. The matrix P = [B] ! is orthogonal because [B] is orthogo-
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nal, and A’ = PAP ! represents the same operator as A does, with respect to the basis

B. Since A and P are orthogonal, sois A’. Alsodet A’ = detA = 1. So A’ € S0s.
Since v is an eigenvector with eigenvalue 1, the first column of A’ is e;. Since

A’ is orthogonal, the other columns are orthogonal to e;, and A’ has the block form

110
0|RJ
Using the fact that A’ € SO;, one finds that R € SO;. So R is a rotation. This shows

that A’ has the form (5.2) and that it represents a rotation. Hence A does too. This
completes the proof of Theorem (5.5). o

(5.24) Note. To keep the new basis separate from the old basis, we denoted it by B’
in Chapter 3. The prime is not needed when the old basis is the standard basis, and
since it clutters the notation, we will often drop it, as we did here.

6. DIAGONALIZATION

In this section we show that for “most” linear operators on a complex vector space,
there is a basis such that the matrix of the operator is diagonal. The key fact, which
we already noted at the end of Section 4, is that every complex polynomial of posi-
tive degree has a root. This tells us that every linear operator has an eigenvector.

(6.1) Proposition.

(a) Vector space form: Let T be a linear operator on a finite-dimensional complex
vector space V. There is a basis B of V such that the matrix A of T is upper tri-
angular.

(b) Matrix form: Every complex n X n matrix A is similar to an upper triangular
matrix. In other words, there is a matrix P € GL,(C) such that PAP™! is upper
triangular.

Proof. The two assertions are equivalent, because of (3.5). We begin by ap-
plying (4.19b), which shows the existence of an eigenvector, call it v;’. Extend to a
basis B’ = (v1/,..., v,") for V. Then by (3.11), the first column of the matrix A" of T
with respect to B’ will be (c1,0,...,0)", where ¢, is the eigenvalue of v,’. Therefore
A’ has the form

e | * o %
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where B is an (n — 1) X (n — 1) matrix. The matrix version of this reduction is this:
Given any n X n matrix A, there is a P € GL1(C) such that A’ = PAP™' has the
above form. Now apply induction on n. By induction, we may assume that the exis-
tence of some Q € GL,—1(C) such that 9BQ ™' is triangular has been proved. Let 0,
be the n X n matrix

Then
(@1P)A(Q:P) ! = 0i(PAP )07 = 01A'O: !

has the form

c X e oo . %

0BQ™' |,

which is triangular. o

As we mentioned, the important point in the proof is that every complex poly-
nomial has a root. The same proof will work for any field F, provided that all the
roots of the characteristic polynomial are in the field.

(6.2) Corollary. Let F be a field.

(a) Vector space form: Let T be a linear operator on a finite-dimensional vector
space V over F, and suppose that the characteristic polynomial of T factors into
linear factors in the field F. Then there is a basis B of V such that the matrix A
of T is triangular.

(b) Matrix form: Let A be an n X n matrix whose characteristic polynomial factors
into linear factors in the field F. There is a matrix P € GL.(F) such that PAP™!
is triangular.

Proof. The proof is the same, except that to make the induction step one has
to check that the characteristic polynomial of the matrix B is p(1)/(¢ — ¢1), where
p (1) is the characteristic polynomial of A. This is true because p (¢) is also the charac-
teristic polynomial of A’ (4.17), and because det (tI — A") = (¢t — c¢1)det(t — B).
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So our hypothesis that the characteristic polynomial factors into linear factors carries
over from A to B. o

Let us now ask which matrices A are similar to diagonal matrices. As we saw
in (3.12), these are the matrices A which have a basis of eigenvectors. Suppose
again that F = C, and look at the roots of the characteristic polynomial p(¢). Each
root is the eigenvalue associated to some eigenvector, and an eigenvector has only
one eigenvalue. Most complex polynomials of degree n have n distinct roots. So
most complex matrices have n eigenvectors with different eigenvalues, and it is rea-
sonable to suppose that these eigenvectors may form a basis. This is true.

(6.3) Proposition. Let vy,..., v € V be eigenvectors for a linear operator 7', with
distinct eigenvalues ci,..., ¢.. Then the set (v1,..., v,) is linearly independent.
Proof. Induction on r: Suppose that a dependence relation
0=auv + - + avr
is given. We must show that a; = 0 for all /, and to do so we apply the operator T
0=T@0) = aT(v) + - +aT(vy) = acivy + - + arcror.

This is a second dependence relation among (v1,..., v,). We eliminate v, from the
two relations, multiplying the first relation by ¢, and subtracting the second:

0=afler —ci)or + - + ar1(cr = cr—1)vr—1.

Applying the principle of induction, we assume that (vy,..., v,—1) are independent.
Then the coefficients a,(cr — ¢1),...,ar—1(cr — ¢,_,) are all zero. Since the ¢;’s are
distinct, ¢, — ¢; # 0if i < r. Thus a; = ... = a,—; = 0, and the original relation

is reduced to 0 = arv,. Since an eigenvector can not be zero, a- = 0 too. o
The next theorem follows by combining (3.12) and (6.3):

(6.4) Theorem. Let T be a linear operator on a vector space V of dimension n over
a field F. Assume that its characteristic polynomial has n distinct roots in F. Then
there is a basis for V with respect to which the matrix of T is diagonal. o

Note that the diagonal entries are determined, except for their order, by the
linear operator 7. They are the eigenvalues.

When p(¢) has multiple roots, there is usually no basis of eigenvectors, and it
is harder to find a nice matrix for T. The study of this case leads to what is called the
Jordan canonical form for a matrix, which will be discussed in Chapter 12.

As an example of diagonalization, consider the matrix

N
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whose eigenvectors were computed in (4.10). These eigenvectors form a basis
B = (v1, v2) of R According to [Chapter 3 (4.20), see also Note (5.24)], the matrix
relating the standard basis E to this basis B is

1 2| 1{-1-2
6.5 P = -1 = - __
65 [] [1 ~1] 3[—1 1]’
and PAP™! = A’ is diagonal:

o AL L e

The general rule is stated in Corollary (6.7):

(6.7) Corollary. If a basis B of eigenvectors of A in F™ is known and if P = [B] ™,
then A’ = pAP™! is diagonal. o

The importance of Theorem (6.4) comes from the fact that it is easy to com-
pute with diagonal matrices. For example, if A’ = PAP™! is diagonal, then we can
compute powers of the matrix A using the formula

(6.8) Ak = (p'a'pyk = pia'kp,
Thus if A is the matrix (4.9), then

Ak=_l[1 2][5 ]"[12 _1[st+ 228 203k - 25
311 -1 2/ -1 1] 3[5F-2* 254+ 24)

7. SYSTEMS OF DIFFERENTIAL EQUATIONS

We learn in calculus that the solutions to the first-order linear differential equation

dx
7.1 X _ o
(7.1) ”
are x(t) = ce®, c being an arbitrary constant. Indeed, ce® obviously solves (7.1).
To show that every solution has this form, let x(f) be an arbitrary differentiable
function which is a solution. We differentiate e *x(¢) using the product rule:
d —at -at —at
zt(e x(t) = —ae™®x(t) + e “ax(t) = 0.
Thus e #x(¢) is a constant ¢, and x (f) = ce®.

As an application of diagonalization, we will extend this solution to systems of
differential equations. In order to write our equations in matrix notation, we use the
following terminology. A vector-valued function X(¢) is a vector whose entries are
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functions of ¢. Similarly, a matrix-valued function A(t) is a matrix whose entries are
functions:

x1(t) an(t) - an)
(7.2) xp=1] - |, a0= : :
xn(2) am(t) - am(t)

The calculus operations of taking limits, differentiating, and so on are ex
tended to vector-valued and matrix-valued functions by performing the operations on
each entry separately. Thus by definition

&
(7.3) limx(s) = | |, where & = lim xi(r).

=1 : e}

§n

So this limit exists if and only if lim x;(¢) exists for each i. Similarly, the derivative
of a vector-valued or matrix-valued function is the function obtained by differentiat-
ing each entry separately:

xi'(1) an'lt)y - an'(r)
dx _ : da _ . .
d | - | a . .

xn' (1) am' () - @ (2)

where x;/(¢) is the derivative of x;(¢), and so on. So dx/dt is defined if and only if
each of the functions x;(¢) is differentiable. The derivative can also be described in
vector notation, as

dx _ . x(t+h) — X
74 dr pm h )

Here X(t + h) — x(¢) is computed by vector addition and the 4 in the denominator
stands for scalar multiplication by A~'. The limit is obtained by evaluating the limit
of each entry separately, as above. So the entries of (7.4) are the derivatives x;'(z).
The same is true for matrix-valued functions.

A system of homogeneous first-order linear, constant-coefficient differential
equations is a matrix equation of the form

dx

(75) 7[ = AX,

where A is an n X n real or complex matrix and X(f) is an n-dimensional vector-
valued function. Writing out such a system, we obtain a system of n differential
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equations, of the form

d

7);1 = anxi(t) + - + ainxa(t)
(7.6)

dxn

a)'ct = amx(t) + -+ + @unxa(r).

The x;(¢) are unknown functions, and the a;; are scalars. For example, if we sub-

. .13 2 . .
stitute the matrix 4 for A, (7.5) becomes a system of two equations in two

1
unknowns:
% = 3)(1 + ZX2
(7.7)
d7.xtz = X1 + 4X2.

The simplest systems (7.5) are those in which A is a diagonal matrix. Let the
diagonal entries be a;. Then equation (7.6) reads
(78) % = aixi(t), i=1,...,n.
Here the unknown functions x; are not mixed up by the equations, so we can solve
for each one separately:

(79) Xi = Cieait,

for some constant c;.
The observation which allows us to solve the differential equation (7.5) in most
cases is this: If v is an eigenvector for A4 with eigenvalue a, then

(7.10) X =e%v

is a particular solution of (7.5). Here e®v is to be interpreted as the scalar product
of the function e® and the vector v. Differentiation operates on the scalar function,
fixing the constant vector v, while multiplication by A operates on the vector v,
fixing the scalar function e%. Thus % e%v = ae“v = Ae®v. For example, (2, —1) is
. iy .13 2 2e*

an eigenvector with eigenvalue 2 of the matrix [1 4], and [_ez, solves the sys-
tem of differential equations (7.7).

This observation allows us to solve (7.5) whenever the matrix A has distinct
real eigenvalues. In that case every solution will be a linear combination of the spe-
cial solutions (7.10). To work this out, it is convenient to diagonalize. Let us replace
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the notation ' used in the previous section by ~ here, to avoid confusion with differ-
entiation. Let P be an invertible matrix such that PAP™' = A is diagonal. So
P = [B]™!, where B is a basis of eigenvectors. We make the linear change of variable

(7.11) X =px.
Then

dx _ dX
(7.12) il

Substituting into (7.5), we find

~

dax . e
(7.13) i PAP™'X = AX.

Since A is diagonal, the variables ; have been separated, so the equation can be
solved in terms of exponentials. The diagonal entries of A are the eigenvalues
A1,..., An of A, so the solution of the system (7.13) is

(7.14) % = cieM’, for some ¢;.
Substituting back,
(7.15) X=pX

solves the original system (7.5). This proves the following:

(7.16) Proposition. Let A be an n X n matrix, and let P be an invertible matrix
such that PAP~! = A is diagonal, with diagonal entries Ai,..., A». The general solu-

. dx . ~ . .
tion of the system - AX is X = P"'X, where X; = cie™’, for some arbitrary con-

stants c¢;. o

The matrix which diagonalizes A in example (7.7) was computed in (6.5):

(7.17) pl= [1 _?], and A = [5 2].

Thus
X1 ce”
= d
[fZ] [0262'] an
X 1 2||cie* cre” + 2ce?
7.18 = = .
( ) |:x2] |:1 —1]|:C262':| |:C165’_ C262’

In other words, every solution is a linear combination of the two basic solutions

o=l e -]



Section 7 Systems of Differential Equations 137

These are the solutions (7.10) corresponding to the eigenvectors (1, 1) and (2, —1)".
The coefficients ¢; appearing in these solutions are arbitrary. They are usually deter-
mined by assigning initial conditions, meaning the value of X at some particular f.

Let us now consider the case that the coefficient matrix A has distinct eigenval-
ues, but that they are not all real. To copy the method which we used above, we
must first consider differential equations of the form (7.1), in which a is a complex
number. Properly interpreted, the solutions of such a differential equation still have
the form ce®. The only thing to remember is that e* will now be a complex-valued
function of t. In order to focus attention, we restrict the variable ¢ to real values
here, although this is not the most natural choice when working with complex-valued
functions. Allowing ¢ to take on complex values would not change things very
much.

The definition of the derivative of a complex-valued function is the same as for
real-valued functions:

dx o ox(@+h) — x()

(7.19) dt }lll—rg h ’
provided that this limit exists. There are no new features. We can write any such
function x(¢) in terms of its real and imaginary parts, which will be real-valued
functions:

(7.20) x() = ut) + iv(r).

Then x is differentiable if and only if u and v are differentiable, and if they are, the
derivative of x is x' = u' + iv’. This follows directly from the definition. The
usual rules for differentiation, such as the product rule, hold for complex-valued
functions. These rules can be proved by applying the corresponding theorem for real
functions to u and v, or else by carrying the proof for real functions over to the com-
plex case.

Recall the formula

(7.21) e = ¢"(cos s + i sin §).

Differentiation of this formula shows that de®/dt = ae® for all complex numbers
a = r + si. Therefore ce® solves the differential equation (7.1), and the proof
given at the beginning of the section shows that these are the only solutions.

Having extended the case of one equation to complex coefficients, we can now
use the method of diagonalization to solve a system of equations (7.5) when A is an
arbitrary complex matrix with distinct eigenvalues.

11 1 i

For example, let A = [_1 1]. The vectors v, = [z] and v = [1]
are eigenvectors, with eigenvalues 1 + 7 and 1 — i respectively. Let B = (v;, v2).
According to (6.7), A is diagonalized by the matrix P, where

(7.22) pl=[B] = [: ll]
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=~ t+it
Formula (7.14) tells us that X = [fl] = [Cle,_i,]. The solutions of (7.5) are

X2 C2€
’3 x pif = cre't + ice’™
. - - . ;i — i ’
(7 ) x2 lcle’“’ + c;e’ it

where ¢, ¢; are arbitrary complex numbers. So every solution is a linear combina-
tion of the two basic solutions
t+it . t—it
€ e
(7‘24) |:l‘et+it:| and |: et-il:l ‘
However, these solutions are not completely satisfactory, because we began with a
system of differential equations with real coefficients, and the answer we obtained is

complex., When the original matrix is real, we want to have real solutions. We note
the following lemma:

(7.25) Lemma. Let A be a real n X n matrix, and let X(f) be a complex-valued so-
lution of the differential equation (7.5). The real and imaginary parts of X(r)
solve the same equation. o

Now every solution of the original equation (7.5), whether real or complex,
has the form (7.23) for some complex numbers c;. So the real solutions are among
those we have found. To write them down explicitly, we may take the real and imag-
inary parts of the complex solutions.

The real and imaginary parts of the basic solutions (7.24) are determined using
(7.21). They are

t t e
(7.26) [ ¢ o ’J and [e, sin ’].
—e Sint e Cost

Every real solution is a real linear combination of these particular solutions.

8. THE MATRIX EXPONENTIAL

Systems of first-order linear, constant-coefficient differential equations can also be
solved formally, using the matrix exponential. The exponential of an n X n real or
complex matrix A is obtained by substituting a matrix into the Taylor’s series

(8.1) 1+ x/10 + x¥/20 + x3/31 + -+
for e*. Thus by definition,
1 1
A — — A2 A3 .ne
(8.2) e -—1+A+2!A +3!A+

This is an n X n matrix.
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(8.3) Proposition. The series (8.2) converges absolutely for all complex matrices A.

In order not to break up the discussion, we have collected the proofs together at the
end of the section.

Since matrix multiplication is relatively complicated, it isn’t easy to write
down the matrix entries of e# directly. In particular, the entries of e* are usually
not obtained by exponentiating the entries of A. But one case in which they are, and
in which the exponential is easily computed, is when A is a diagonal matrix, say with
diagonal entries a;. Inspection of the series shows that e” is also diagonal in this
case and that its diagonal entries are e“.

The exponential is also relatively easy to compute for a triangular 2 X 2 ma-
trix. For example, let

(8.4) A= [1 ;]

Then

N (R R

The diagonal entries are exponentiated to obtain the diagonal entries of e®. It is a
good exercise to calculate the missing entry * directly from the definition.

The exponential of a matrix A can also be determined whenever we know a
matrix P such that PAP™" is diagonal. Using the rule PA*P™' = (PAP™')* and the dis-
tributive law for matrix multiplication, we find

1 -t
(8.6) pPe?Pt = pIP™! + (PAP7Y) + 5(10,419‘1)2 + o= gPAPT

Suppose that PAP™! = A is diagonal, with diagonal entries A;. Then e* is also diago-
nal, and its diagonal entries are e*. Therefore we can compute e* explicitly:

8.7) ed = plehp,

In order to use the matrix exponential to solve systems of differential equa-
tions, we need to extend some of the properties of the ordinary exponential to it.
The most fundamental property is e**> = e*e”. This property can be expressed as
a formal identity between the two infinite series which are obtained by expanding

eV =1+ (x + y)/1! + (x + y)*/2! + -+ and

8.8)
e*e? = (1 + x/1! + x2/2! + = )(1 + y/1! + y?/2! + ).

We can not substitute matrices into this identity because the commutative law is
needed to obtain equality of the two series. For instance, the quadratic terms of
(8.8), computed without the commutative law, are ; (x> + xy + yx + y*) and

3x% + xy + £y They are not equal unless xy = yx. So there is no reason to expect
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e"*® to equal ee? in general. However, if two matrices A and B happen to com-
mute, the formal identity can be applied.

(8.9) Proposition.

(a) The formal expansions of (8.8), with commuting variables x,y, are equal.
(b) Let A,B be complex nXn matrices which commute: AB = BA. Then
e 8 = ghef,

The proof is at the end of the section. o

(8.10) Corollary. For any n X n complex matrix A, the exponential e” is invert-
ible, and its inverse is ™.

This follows from the proposition because A4 and —A commute, and hence ee™ =

et M =¢"= 1.1

As a sample application of Proposition (8.9b), consider the matrix

(8.11) A= [2 ;]

We can compute its exponential by writing it in the form A = 2/ + B, where
B = 3ey,. Since 21 commutes with B, Proposition (8.9b) applies: e = eZe?, and
from the series expansion we read off the values e = e’ and ¢ = I + B. Thus

e[ -

We now come to the main result relating the matrix exponential to differential
equations. Given an n X n matrix A, we consider the exponential e, ¢ being a vari-
able scalar, as a matrix-valued function:

2

A — t_ 2 t_3 3
(8.12) e I+ 1A+ 2!A + 3!A +

(8.13) Proposition. e™ is a differentiable function of ¢, and its derivative is Ae™.

The proof is at the end of the section. o

(8.14) Theorem. Let A be a real or complex n X n matrix. The columns of the
matrix e” form a basis for the vector space of solutions of the differential equation

dx

E:

We will need the following lemma, whose proof is an exercise:
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(8.15) Lemma. Product rule: Let A(r) and B(r) be differentiable matrix-valued
functions of ¢, of suitable sizes so that their product is defined. Then the matrix
product A(#)B(r) is differentiable, and its derivative is

d dA dB

7 (Aa(nB(®)) dtB + A ks

Proof of Theorem (8.14). Proposition (8.13) shows that the columns of A

solve the differential equation, because differentiation and multiplication by A act in-
dependently on the columns of the matrix e“. To show that every solution is a linear
combination of the columns, we copy the proof given at the beginning of Section 7.
Let X(z) be an arbitrary solution of (7.5). We differentiate the matrix product
e “4X(1), obtaining

d

E(e"AX(t)) = —Ae "X(1) + eAX(r).
Fortunately, A and e 4 commute. This follows directly from the definition of the ex-
ponential. So the derivative is zero. Therefore, e X(1) is a constant column vector,
say C = (ci1,..., cn)', and X(¢) = e'Ac. This expresses X(¢) as a linear combination of
the columns of e”. The expression is unique because e* is an invertible matrix. o

According to Theorem (8.14), the matrix exponential always solves the differ-
ential equation (7.5). Since direct computation of the exponential can be quite
difficult, this theorem may not be easy to apply in a concrete situation. But if A is a
diagonalizable matrix, then the exponential can be computed as in .(8.7):
e® = P le“P. We can use this method of evaluating e to solve equation (7.5), but
of course it gives the same result as before. Thus if A is the matrix used in example
(7.7), so that P, A are as in (7.17), then

; st
e
. 1{1 2|le* -1-2
tA — p-l,tAp — _
e Trhe’ 3[1 —1][ e”][—l 1]

l[esz + 262' 25 — 262:]

and

3le¥ — ¥ 2% + e
The columns we have obtained form a second basis for the general solution (7.18).
On the other hand, the matrix A = [} 1], which represents the system of

equations

(8.16) — =X, l=x+y,
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is not diagonalizable. So the method of Section 7 can not be applied. To solve it, we
write At = It + Bt, where B = e;1, and find, as in the discussion of (8.11),

t
(8.17) et = el'eB = [ ¢ et]'

te'

Thus the solutions of (8.16) are linear combinations of the columns

(8.18) [IZ:] [2,].

To compute the exponential explicitly in all cases requires putting the matrix into
Jordan form (see Chapter 12).

We now go back to prove Propositions (8.3), (8.9), and (8.13). For want of a
more compact notation, we will denote the i, j-entry of a matrix A by A; here. So
(AB); will stand for the entry of the product matrix AB, and (4%); for the entry of A*.
With this notation, the i, j-entry of e# is the sum of the series

1 1
(8.19) (e)y = Iy + Ay + E(Az)g + §(A3),»j + e

In order to prove that the series for the exponential converges, we need to
show that the entries of the powers A* of a given matrix do not grow too fast, so that
the absolute values of the i, j-entries form a bounded (and hence convergent) series.
Let us define the norm of an n X n matrix A to be the maximum absolute value of the
matrix entries:

.20 Il = max as].
In other words, |4 is the smallest real number such that
(8.21) |Ay| = ||a|| for all £, ;.

This is one of several possible definitions of the norm. Its basic property is as fol-
lows:

(8.22) Lemma. Let A,B be complex n X n matrices. Then ||AB| =< nlA|] B,
and || 4[| = n* YAk for all k > 0.

Proof. We estimate the size of the i, j-entry of AB:

n
= 2 |aul|8,| = nlla]l ]|

| (aB)y| = ‘ gAivaj

Thus ||AB|| < n||Al|[|B||- The second inequality follows by induction from the first
inequality. o

Proof of Proposition (8.3). To prove that the matrix exponential converges ab-
solutely, we estimate the series as follows: Let a = n||A||. Then
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1 1
(8.23) | (eMy] = | 15] + |4y] + 5|(A2)ij| + 3 (Ay] + -

A

1 2 l 2 3
L+ flall + gynlalf + gpedlalP +

1
=1+ (a +%a2 +§a3 + )/n=1+(e*— 1)/n. o

Proof of Proposition (8.9).

(a) The terms of degree k in the expansions of (8.8) are

r,,s

(x + y/kt = D (’r‘)x'yS/k! and > L

rts=k rts=k r! S!

To show that these terms are equal, we have to show that

k 1 k k!
= — K
<r>/k‘ ris! or <r> rist’

for all k and all r, s such that r + s = k. This is a standard formula for bino-
mial coefficients.

(b) Denote by S,(x) the partial sum 1 + x/1! + x2/2! + - + x"/n!. Then
Su(x)Sn(y) = (1 + x/1! + x2/2! + =« + x"/n))(1 + y/1! + y*/21 + - + y*/n!)

n
xrys

r.s=0 r! S! ’

while
Sa(x +y) = (1 + (x + y)/1V + (x + ¥)*/2' + =« + (x + y)"/n!)
n k n x"ys
=3 3 <>x’ys/k.' -> ¥ =X
k=0 r+s=k \I' k=0 r+s=k ! S!

Comparing terms, we find that the expansion of the partial sum S.(x + ¥)
consists of the terms in $,(x)S.(y) such that » + s < n. The same is true when
we substitute commuting matrices A, B for x, y. We must show that the sum of
the remaining terms tends to zero as k ——> %,

AB
rist ij

Proof. Let a = n| Al and b = n| B||. We estimate the terms in the sum. Ac-
cording to (8.22), | (4B%);| = n(n"7Y|A[N(n*"Y||B|¥) = a’b®. Therefore

A" BS a” b’
3355, -
rl sl/y

k r+s=k

(8.24) Lemma. The series >, »,

k r4+s=k

converges for all 7, j.

a+b

% ris=k r! s!
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The proposition follows from this lemma because, on the one hand, the i, j-entry of

(%)
r! s! ij

According to the lemma, this sum tends to zero as k—> . And on the other hand,

(Sk(A)Sk(B) — Sk(A + B));; is bounded by >

r+s>k

(Sc(A)Sk(B) — Si(a + B))— (e”ef — e**B). g

Proof of Proposition (8.13). By definition,
d e e(z+h)A _ ezA
(%) = Jim——,

dt
Since the matrices 74 and h4 commute, the Proposition (8.9) shows that

e(t+h)A _ ezA <ehA _ 1) “
= €.
h h

So our proposition follows from this lemma:

M

(8.25) Lemma. lim>——— = A.
h—0 h
Proof. The series expansion for the exponential shows that
e — 1 h h?
8.26 — A= —A2 +—A3 + .-
(8.26) I Th

We estimate this series: Let a = | 2| n||A]]. Then

Ly h o h* s
‘ <5A + §A3 + ...>U < ‘E(A )i | + i(A Wil + o
1 1 | :
< alhlnHAll2 + g lhPnfaff + - = llAll(Ea oat+ )

Ml e
1 - g ==L - ).

Note that a——> 0 as h—— 0. Since the derivative of e* is e*,

e’ — 1 d

X

lim = —e
a—0 a dx

x=0

So (8.26) tends to zero with . o

We will use the remarkable properties of the matrix exponential again, in
Chapter 8.
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I have not thought it necessary to undertake the labour
of a formal proof of the theorem in the general case.

Arthur Cayley
EXERCISES
1. The Dimension Formula
1 2 0-1 5
e . . 20 2 01 .
1. Let T be left multiplication by the matrix 1 1-1 3 2| Compute ker 7 and im T
0 3-3 2 6
explicitly by exhibiting bases for these spaces, and verify (1.7).
11 12 13 14
. . 21 22 23 24
2. Determine the rank of the matrix 31 32 33 34
41 42 43 44

. Let T: V—— W be a linear transformation. Prove that ker T is a subspace of V and that
im T is a subspace of W.

. Let A be an m X n matrix. Prove that the space of solutions of the linear system AX = 0
has dimension at least n — m.

. Let A be a kX m matrix and let B be an n X p matrix. Prove that the rule Mawv> AMB
defines a linear transformation from the space F™*" of m X n matrices to the space
Fk)(p'

. Let (vy,...,v,) be a subset of a vector space V. Prove that the map ¢: F"—V

defined by ¢ (X) = v1x, + >+ + vax. is a linear transformation.

When the field is one of the fields [, finite-dimensional vector spaces have finitely many

elements. In this case, formula (1.6) and formula {6.15) from Chapter 2 both apply.

Reconcile them.

. Prove that every m X n matrix A of rank 1 has the form A = Xy, where X,Y are m- and

n-dimensional column vectors.

(a) The left shift operator S~ on V = R™ is defined by (ay,a:,...,) »w= (a2, 4a3,...).

Prove that ker s~ > 0, but im s~ = V.
(b) The right shift operator $* on V = R™ is defined by {(a,,a.,...)»w>(0,4a,,a2,...).
Prove that ker st = 0, but im s* < V.

The Matrix of a Linear Transformation

. Determine the matrix of the differentiation operator i: Pn— P»—, with respect to the
natural bases (see (1.4)). dx

. Find all linear transformations T: R?*-—> R? which carry the line y = x to the line
y = 3x.

. Prove Proposition (2.9b) using row and column operations.
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4. Let T: R*—— R? be the linear transformation defined by the rule T (x,,x:,xs)' =
(1 + x2,2x; — x;)'. What is the matrix of 7 with respect to the standard bases?

5. Let A be an n X n matrix, and let V = F" denote the space of row vectors. What is the
matrix of the linear operator “right multiplication by A” with respect to the standard basis
of V?

6. Prove that different matrices define different linear transformations.

7. Describe left multiplication and right multiplication by the matrix (2.10), and prove that
the rank of this matrix is r.

8. Prove that A and A" have the same rank.

9. Let 73,7, be linear transformations from V to W. Define 7; + T, and T by the rules
[T, + Tx)(v) = T)(v) + T:2(v) and [cT)(v) = T (v).
(a) Prove that T, + T- and T, are linear transformations, and describe their matrices in
terms of the matrices for 73, 7;.
(b) Let L be the set of all linear transformations from V to W. Prove that these laws
make L into a vector space, and compute its dimension.

3. Linear Operators and Eigenvectors

1. Let V be the vector space of real 2 X 2 symmetric matrices X = B i ], and let

A= [2 i] Determine the matrix of the linear operator on V defined by X ~mw>AXA",

with respect to a suitable basis.

2. Let A = (ay), B = (by) be 2 X 2 matrices, and consider the operator 7: Maww> AMB on
the space F**? of 2 X2 matrices. Find the matrix of 7 with respect to the basis
(€11, €12, 31, e) of F¥*2,

3. Let T: V—— ¥ be a linear operator on a vector space of dimension 2. Assume that T is
not multiplication by a scalar. Prove that there is a vector v € V such that (v, T (v)) is a
basis of V, and describe the matrix of T with respect to that basis.

4. Let T be a linear operator on a vector space V, and let ¢ € F. Let W be the set of eigen-
vectors of T with eigenvalue ¢, together with 0. Prove that W is a T-invariant subspace.

5. Find all invariant subspaces of the real linear operator whose matrix is as follows.
1
11
(a) [ 1] | 2
3

6. An operator on a vector space V is called nilpotent if T* = 0 for some k. Let T be a nil-

potent operator, and let W' = im T, .

(a) Prove that if W! # 0, then dim W*! < dim W',

(b) Prove that if V is a space of dimension n and if T is nilpotent, then T" = 0.
7. Let T be a linear operator on R?. Prove that if T carries a line € to €, then it also carries

every line parallel to / to another line parallel to /.

8. Prove that the composition 7; © T; of linear operators on a vector space is a linear opera-
tor, and compute its matrix in terms of the matrices 4,42 of T\, T>.

9. Let P be the real vector space of polynomials p(x) = ao + a + *** + a.x" of degree

oo d . .
=n, and let D denote the derivative ot considered as a linear operator on P.
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10.

11.

12,

13.

(a) Find the matrix of D with respect to a convenient basis, and prove that D is a nilpo-
tent operator.
(b) Determine all the D-invariant subspaces.

Prove that the matrices [‘8 g] and [g Z] (b # 0) are similar if and only if a # d.

a b .
Let A = [c d be a real 2 X 2 matrix. Prove that A can be reduced to a matrix

|

a = d. Make a careful case analysis to take care of the possibility that b or ¢ is zero.

Let T be a linear operator on R* with two linearly independent eigenvectors v, v;. As-

sume that the eigenvalues ¢, ¢, of these operators are positive and that ¢, > ¢,. Let £; be

the line spanned by v;.

(@) The operator T carries every line £ through the origin to another line. Using the par-
allelogram law for vector addition, show that every line € # ¢, is shifted away from
€, toward €.

(b) Use (a) to prove that the only eigenvectors are multiples of v, or v,.

(c) Describe the effect on lines when there is a single line carried to itself, with positive
eigenvalue.

Consider an arbitrary 2 X 2 matrix A = [j b]. The condition that a column vector X

[0 :J by row and column operations of the form A—— EAE™", unless b = ¢ = 0 and

d
be an eigenvector for left multiplication by 4 is that ¥ = AX be parallel to X, which means
that the slopes s = x,/x, and s’ = y,/y, are equal.
(a) Find the equation in s which expresses this equality.
(b) For which 4 is s = 0 a solution? s = ?
(c) Prove that if the entries of A are positive real numbers, then there is an eigenvector in
the first quadrant and also one in the second quadrant.

4. The Characteristic Polynomial

1.

Compute the characteristic polynomials, eigenvalues, and eigenvectors of the following
complex matrices.

@ [j ;| ® [_‘, ’1]

. (a) Prove that the eigenvalues of a real symmetric 2 X 2 matrix are real numbers.

(b) Prove that a real 2 X2 matrix whose off-diagonal entries are positive has real
eigenvalues.

. Find the complex eigenvalues and eigenvectors of the notation matrix

[cos 0 —sin 0]
sing cos@|

. Prove that a real 3 X 3 matrix has at least one real eigenvalue.
. Determine the characteristic polynomial of the matrix

01
1 01
-
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6. Prove Proposition (4.18).
7. (a) Let T be a linear operator having two linearly independent eigenvectors with the
same eigenvalue A. Is it true that A is a multiple root of the characteristic polynomial
of T?
(b) Suppose that A is a multiple root of the characteristic polynomial. Does T have two
linearly independent eigenvectors with eigenvalue A?

8. Let V be a vector space with basis (v,,..., v,) over a field F, and let a,,...,a,-, be ele-
ments of F. Define a linear operator on V by the rules T (v:) = vs+, if i <n and
T(vy) = ayo; + vy + - + Gy On—y.

(a) Determine the matrix of 7 with respect to the given basis.
(b) Determine the characteristic polynomial of T.
9. Do A and A' have the same eigenvalues? the same eigenvectors?
10. (a) Use the characteristic polynomial to prove that a 2 X 2 real matrix P all of whose en-
tries are positive has two distinct real eigenvalues.
(b) Prove that the larger eigenvalue has an eigenvector in the first quadrant, and the
smaller eigenvalue has an eigenvector in the second quadrant.

11. (a) Let A be a 3 X 3 matrix, with characteristic polynomial
p@® =12 — (tra)® + st — (det A).

Prove that s, is the sum of the symmetric 2 X 2 subdeterminants:
5 = det[all 012:' + det[all 013] + detl:‘hz 023]'
ax a4 as a4z a3 As3
*(b) Generalize to n X n matrices.
12. Let T be a linear operator on a space of dimension n, with eigenvalues Ai,..., A,.
(a) Prove that tr7 = A; + -+ + A, and thatdet 7 = A, - A,.
(b) Determine the other coefficients of the characteristic polynomial in terms of the
eigenvalues.
*13. Consider the linear operator of left multiplication of an n X n matrix A on the space F"*"
of all n X n matrices. Compute the trace and the determinant of this operator.
*14. Let P be a real matrix such that P* = P?, What are the possible eigenvalues of P?

15. Let A be a matrix such that A™ = I. Prove that the eigenvalues of A are powers of nth root
of unity £, = e*™/",

5. Orthogonal Matrices and Rotations

1. What is the matrix of the three-dimensional rotation through the angle @ about the axis
e?
2. Prove that every orthonormal set of n vectors in R” is a basis.

3. Prove algebraically that a real 2 X 2 matrix [j Z] represents a rotation if and only if it

is in SO,.
4. (a) Prove that O, and SO, are subgroups of GL,(R), and determine the index of SO, in
O».
(b) Is O, isomorphic to the product group SO, X {+ 1}? Is O; isomorphic to SO; X {*1}?
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5.

*10.

11.

12.

13.
*14,

What are the eigenvalues of the matrix A which represents the rotation of R* by 6 about
an axis v?

. Let A be a matrix in O; whose determinant is —1. Prove that -1 is an eigenvalue of A.
. Let A be an orthogonal 2 X 2 matrix whose determinant is ~1. Prove that A represents a

reflection about a line through the origin.

. Let A be an element of SO5, with angle of rotation 6. Show that cos 6 = 3{tr A — 1).
. Every real polynomial of degree 3 has a real root. Use this fact to give a less tricky proof

of Lemma (5.23).

Find a geometric way to determine the axis of rotation for the composition of two three-
dimensional rotations.

Let v be a vector of unit length, and let P be the plane in R? orthogonal to v. Describe a
bijective correspondence between points on the unit circle in P and matrices P € SO,
whose first column is v.

Describe geometrically the action of an orthogonal matrix with determinant ~1.
Prove that a rigid motion, as defined by (5.15), is bijective.
Let A be an element of SO;. Show that if it is defined, the vector

((az + an)™, (ais + an)’', (@2 + an)™')

is an eigenvector with eigenvalue 1.

6. Diagonalization

1.

. Diagonalize the rotation matrix [

(a) Find the eigenvectors and eigenvalues of the matrix

i
1 2]
(b) Find a matrix P such that PAP™' is diagonal.

2 l 30
(¢) Compute [1 2] .

cos & —sin @

sin @ cos 0]’ using complex numbers.

. Prove that if A, B are n X n matrices and if A is nonsingular, then AB is similar to BA.

Let A be a complex matrix having zero as its only eigenvalue. Prove or disprove: A is
nilpotent.

. In each case, if the matrix is diagonalizable, find a matrix P such that PAP™' is diagonal.

P L 1 2 3 00 1
(a)[_2 3] (b)[_i 1] @0 4 5| @|1 0 0
00 6 010

. Can the diagonalization (6.1) be done with a matrix P € SL,?
. Prove that a linear operator 7 is nilpotent if and only if there is a basis of V such that the

matrix of T is upper triangular, with diagonal entries zero.

Let T be a linear operator on a space of dimension 2. Assume that the characteristic poly-
nomial of T is (t — a)?. Prove that there is a basis of V such that the matrix of T has one
1 a 0

a
of the two forms [0 o 4l
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9. Let A be a nilpotent matrix. Prove that det(7 + A) = 1.

10. Prove that if A is a nilpotent n X n matrix, then A" = 0,

11. Find all real 2 X 2 matrices such that A> = 7, and describe geometrically the way they
operate by left multiplication on R?,

12. Let M be a matrix made up of two diagonal blocks: M = [’8 g] Prove that M is diago-

nalizable if and only if A and D are.
a b
13. (@) Leta = [C d
genvector for A.
(b) Find a matrix P such that PAP™' is diagonal, if A has two distinct eigenvalues
AL F A
14. Let A be a complex n X n matrix. Prove that there is a matrix B arbitrarily close to 4
(meaning that | by — a;;| can be made arbitrarily small for all i, j) such that B has n dis-
tinct eigenvalues.
*15. Let A be a complex n X n matrix with n distinct eigenvalues A,,..., A,. Assume that A, is
the largest eigenvalue, that is, that |A,| > |A;| for all i > 1. Prove that for most vectors
X the sequence Xx = A, *A*X converges to an eigenvector Y with eigenvalue A,, and de-
scribe precisely what the conditions on X are for this to be the case.

16. (a) Use the method of the previous problem to compute the largest eigenvalue of the ma-

] be a 2 X 2 matrix with eigenvalue A. Show that (b, A — a)'is an ei-

trix [3 ;’ to three-place accuracy.

3
1 23
(b) Compute the largest eigenvalue of the matrix { 1 1 1 | to three-place accuracy.
1 01

*17. Let A be m X m and B be n X n complex matrices, and consider the linear operator 7 on
the space F™*" of all complex matrices defined by T (M) = AMB.
(a) Show how to construct an eigenvector for T out of a pair of column vectors X, 7,
where X is an eigenvector for 4 and Y is an eigenvector for B'.
(b) Determine the eigenvalues of T in terms of those of A and B.

*18. Let A be an n X n complex matrix.
(a) Consider the linear operator T defined on the space F™" of all complex n X n

matrices by the rule T (B) = AB — BA. Prove that the rank of this operator is at most

n®— n.

(b) Determine the eigenvalues of 7 in terms of the eigenvalues A,..., A, of A,

7. Systems of Differential Equations

1. Let v be an eigenvector for the matrix A, with eigenvalue ¢. Prove that e“v solves the

differential equation % = AX.

2. Solve the equation % = AX for the following matrices A:

, 1 2 3 0 0 1
2 1 -2 2 1
@) [1 2] ®) [—2 3] © [—i ll] d|0 4 5§ 1 0 0
0 0 6 010
3. Explain why diagonalization gives the general solution.
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4.

(a) Prove Proposition (7.16).
(b) Why is it enough to write down the real and imaginary parts to get the general
solution?

Prove Lemma (7.25).

. Solve the inhomogeneous differential equation & _ AX + B in terms of the solutions to

dt

the homogeneous equation % = AX.

. A differential equation of the form d”x/dt" + a,-,d"'x/dt™ ' + - + a,dx/dt +

aox = 0 can be rewritten as a system of first-order equations by the following trick: We

introduce unknown functions xo,x;,..., X~ With x = xo, and we set dx;/dt = x;+, for
i =0,...,n — 2. The original equation can be rewritten as the system dx;/dt = x;+,,
i=0,..,n—2,and dxp-\/dt = —(@n-1%1 + =~ + a1x1 + aox). Determine the ma-

trix which represents this system of equations.

. (a) Rewrite the second-order linear equation in one variable

as a system of two first-order equations in two unknowns xo = x, x, = dx/dt.
(b) Solve the system when b = —4 and ¢ = 3.
Let A be an n X n matrix, and let B(t) be a column vector of continuous functions on the
1

interval [, B]. Define F(¢) = | e ™ B() dt.

(a) Prove that X = F(f) is a sofution of the differential equation X' = AX + B(¢) on the
interval (o, 8).
(b) Determine all solutions of this equation on the interval.

8. The Matrix Exponential

1.

Compute e” for the following matrices A:

1 a b
NP
LetA = [1 ;:'
(a) Compute e” directly from the expansion.
(b) Compute e by diagonalizing the matrix.

. Compute ¢4 for the following matrices A:

o1 |

o
(@) [2"3] (b) [}) }J © 0

. Compute e” for the following matrices A:

@ [271'1' 2m'] ®) [6771‘ 471'1']

2ari 2w 8
Let A be an n X n matrix. Prove that the map t~w>e
ditive group R* to GL,(C}.

*4 is a homomorphism from the ad-
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6. Find two matrices A, B such that e4*5 # ¢4¢B.

7. Prove the formula e ™4 = det(e4).

8. Solve the differential equation (51—}: = AX, when A = [(2) ;J

9. Let f(¢) be a polynomial, and let 7 be a linear operator. Prove that f(T) is a linear
operator.

10. Let A be a symmetric matrix, and let f(¢} be a polynomial. Prove that f(4) is symmetric.
11. Prove the product rule for differentiation of matrix-valued functions.
12. Let A(r), B(?) be differentiable matrix-valued functions of t. Compute the following.

(a) d/dt(a()°)
(b) d/dt(A(r)™"), assuming that A{#) is invertible for all ¢
(c) d/dt(a()”'B()
13. Let X be an eigenvector of an n X n matrix A, with eigenvalue A.
(a) Prove that if A is invertible then X is also an eigenvector for A™', and that its eigen-
value is A7!.
(b) Let p(r) be a polynomial. Then X is an eigenvector for p (4), with eigenvalue p(A).

(¢) Prove that X is an eigenvector for e?, with eigenvalue e?.

14. For an n X n matrix A, define sin A and cos A by using the Taylor’s series expansions for
sin x and cos x.
(a) Prove that these series converge for all A.
(b) Prove that sin ¢4 is a differentiable function of ¢ and that d (sin rtA)/dt = A cos tA.

15. Discuss the range of validity of the following identities.
(a) cos’A + sin®A = [
(b) e = cos A + isin A
(c) sin(A + B) = sin A cos B + cos A sin B
(d) cos(A + B) = cos A cos B — sin A sin B
(e) e2m’A =7
® deAV)/dr = e A'(r), where A(f) is a differentiable matrix-valued function of ¢.
16. (a) Derive the product rule for differentiation of complex-valued functions in two ways:
directly, and by writing x(t) = u(t) + iv(t) and applying the product rule for real-
valued functions.
(b) Let f(r) be a complex-valued function of a real variable ¢, and let ¢ () be a real-
valued function of u. State and prove the chain rule for f (¢ (w)).

17. (a) Let Bx be a sequence of m X n matrices which converges to a matrix B, and let P be
an m X m matrix. Prove that PBj converges to PB.
(b) Prove that if m = n and P is invertible, then PByP~' converges to PBP ',
18. Let f(x) = Zckx® be a power series such that Zc;A* converges when A is a sufficiently
small n X n matrix. Prove that A and f(A) commute.

19. Determine % det A(#), when A(¢) is a differentiable matrix function of ¢.

Miscellaneous Problems

1. What are the possible eigenvalues of a linear operator T such that (a) 7" = 1,
b)) T"=0,(c)T*~5T +6 =0?
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2.

11.

12.

*13.

14.

15.

A linear operator T is called nilpotent if some power of T is zero.

(a) Prove that T is nilpotent if and only if its characteristic polynomial is ", n = dim V.,

(b) Prove that if T is a nilpotent operator on a vector space of dimension #, then 7" = 0,

(c) A linear operator T is called unipotent if T — [ is nilpotent. Determine the character-
istic polynomial of a unipotent operator. What are its possible eigenvalues?

. Let A be an n X n complex matrix. Prove that if trace A’ = 0 for all i, then 4 is nilpotent.
. Let A, B be complex n X n matrices, and let ¢ = AB — BA. Prove that if ¢ commutes with

A then c is nilpotent.

. Let A1,..., A, be the roots of the characteristic polynomial p(¢) of a complex matrix A.

Prove the formulas trace A = A, + -+ + A, and det A = A, -+ A,
Let T be a linear operator on a real vector space V such that 72 = I, Define subspaces as
follows:

W ={o€eV|Tw =0, W ={v €V|T{) = -v}

Prove that V is isomorphic to the direct sum W@ w™.

. The Frobenius norm |A| of an n X n matrix A is defined to be the length of A when it is

considered as an n*-dimensional vector: [A|*> = 2 |ay|*. Prove the following inequali-
ties: |4 + B| = |A| + |B| and |AB| = |A]| |B)|.

. Let T: V——V be a linear operator on a finite-dimensional vector space V. Prove that

there is an integer n so that (ker 7% N (im T7) = 0.

. Which infinite matrices represent linear operators on the space Z [Chapter 3 (5.2d)]?
*10.

The k X k minors of an m X n matrix A are the square submatrices obtained by crossing

out m — k rows and n — k columns. Let A be a matrix of rank r. Prove that some r X r

minor is invertible and that no (r + 1) X (r + 1) minor is invertible.

Let ¢: F"—— F™ be left multiplication by an m X n matrix A. Prove that the following

are equivalent.

(a) A has aright inverse, a matrix B such that AB = I.

(b) ¢ is surjective,

(c) There is an m X m minor of A whose determinant is not zero.

Let o: F"—— F™ be left multiplication by an m X n matrix A. Prove that the following

are equivalent.

(a) A has a left inverse, a matrix B such that BA = .

(b) ¢ is injective.

(¢) There is an n X n minor of A whose determinant is not zero.

Let A be an n X n matrix such that A” = /. Prove that if A has only one eigenvalue {, then

A= (1.

(a) Without using the characteristic polynomial, prove that a linear operator on a vector
space of dimension n can have at most # different eigenvalues.

(b) Use (a) to prove that a polynomial of degree n with coefficients in a field F has at
most n roots in F.

Let A be an n X n matrix, and let p(f) = ¢ + cp—yt" ™! + -+« + 1t + ¢o be its charac-

teristic polynomial. The Cayley—Hamilton Theorem asserts that

pA) = A" + cpy AU+ o+ A + 0ol = 0.

(a) Prove the Cayley—Hamilton Theorem for 2 X 2 matrices.
(b) Prove it for diagonal matrices.
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(c) Prove it for diagonalizable matrices.
*(d) Show that every complex n X n matrix is arbitrarily close to a diagonalizable matrix,
and use this fact to extend the proof for diagonalizable matrices to all complex ma-
trices by continuity.

16. (a) Use the Cayley—Hamilton Theorem to give an expression for A™' in terms of 4,

*17.

18.

*19,

*20

(det A)~', and the coefficients of the characteristic polynomial.
(b) Verify this expression in the 2 X 2 case by direct computation.
Let A be a 2 X 2 matrix. The Cayley—Hamilton Theorem allows all powers of A to be
written as linear combinations of 7 and A. Therefore it is plausible that e? is also such a
linear combination.
(a) Prove that if a, b are the eigenvalues of A and if a # b, then
A _ aeb — be? 4 — et

= I+ A.
a—b a—b

(b) Find the correct formula for the case that A has two equal eigenvalues.

The Fibonacci numbers 0,1,1,2,3,5,8,... are defined by the recursive relations
fa = fa=1 T fa—2, with the initial conditions fo = 0, f; = 1. This recursive relation can

be written in matrix form as
i Fsie s

w5 - 05
where a = V5,

(b) Suppose that the sequence a, is defined by the relation a, = }(@n~1 + dn-2). Com-
pute lima, in terms of ao, a,.

Let A be an n X n real positive matrix, and let X € R” be a column vector. Let us use the

shorthand notation X > 0 or X = 0 to mean that all entries of the vector X are positive or

nonnegative, respectively. By “positive quadrant” we mean the set of vectors X = 0.

(But note that X = 0 and X # 0 do not imply X > 0 in our sense.)

(a) Prove that if X = 0 and X # 0 then AX > 0.

(b) Let C denote the set of pairs (X,#), t € R, such that x =0, |x| =1, and
(A — t1)X = 0. Prove that C is a compact set in R™*!,

(c) The function ¢ takes on a maximum value on C, say at the point (Xo,%). Then
(A — tol)Xo = 0. Prove that (A — t6/)Xo = 0.

(d8) Prove that X, is an eigenvector with eigenvalue #, by showing that otherwise the vec-
tor AX, = X, would contradict the maximality of #,.

(e) Prove that 1, is the eigenvalue of A with largest absolute value.

Let A = A(f) be a matrix of functions. What goes wrong when you try to prove that, in

analogy with n = 1, the matrix
exp< f A(u)du)

is a solution of the system dX/dt = AX? Can you find conditions on the matrix function
A(t) which will make this a solution?

(a) Prove the formula




Chapter 5

Symmetry

Lalgebre n’est qu’une géomeétrie écrite;
la géomeétrie n’est qu’une algebre figurée.

Sophie Germain

The study of symmetry provides one of the most appealing applications of group the-
ory. Groups were first invented to analyze symmetries of certain algebraic structures
called field extensions, and because symmetry is a common phenomenon in all sci-
ences, it is still one of the two main ways in which group theory is applied. The
other way is through group representations, which will be discussed in Chapter 9. In
the first four sections of this chapter, we will study the symmetry of plane figures in
terms of groups of rigid motions of the plane. Plane figures provide a rich source of
examples and a background for the general concept of group operation, which is in-
troduced in Section 5.

When studying symmetry, we will allow ourselves to use geometric reasoning
without bothering to carry the arguments back to the axioms of geometry. That can
be left for another occasion.

1. SYMMETRY OF PLANE FIGURES

The possible symmetry of plane figures is usually classified into the main types
shown in Figures (1.1-1.3).

O

(1.1) Figure. Bilateral symmetry.
155
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(1.2) Figure. Rotational symmetry.

Yy,

(1.3) Figure. Translational symmetry.

A fourth type of symmetry also exists, though it may be slightly less familiar:

g 7 7 _ 7
NN Y

(1.4) Figure. Glide symmetry.

Figures such as wallpaper patterns may have two independent translational
symmetries, as shown in Figure (1.5):

(1.5) Figure.

Other combinations of symmetries may also occur. For instance, the star has bilat-

eral as well as rotational symmetry. Figure (1.6) is an example in which translational
and rotational symmetry are combined:

(1.6) Figure.

Another example is shown in Figure (1.7).

(1.7) Figure.
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As in Section S of Chapter 4, we call a map m: P—— P from the plane P to
itself a rigid motion, or an isometry, if it is distance-preserving, that is, if for any
two points p, g € P the distance from p to g is equal to the distance from m(p) to
m(g). We will show in the next section that the rigid motions are translations, rota-
tions, reflections, and glide reflections. They form a group M whose law of composi-
tion is composition of functions.

If a rigid motion m carries a subset F of the plane to itself, we call it a symme-
try of F. The set of all symmetries of F always forms a subgroup G of M, called the
group of symmetries of the figure. The fact that G is a subgroup is clear: If m and m’
carry F to F, then so does the composed map mm', and so on.

The group of symmetries of the bilaterally symmetric Figure (1.1) consists of
two elements: the identity transformation 1 and the reflection r about a line called
the axis of symmetry. We have the relation rr = 1, which shows that G is a cyclic
group of order 2, as it must be, because there is no other group of order 2.

The group of symmetries of Figure (1.3) is an infinite cyclic group generated
by the motion which carries it one unit to the left. We call such a motion a transla-

tion t:
G={.,t%c1,1,1%...}.

The symmetry groups of Figures (1.4, 1.6, 1.7) contain elements besides translations
and are therefore larger. Do the exercise of describing their elements.

2. THE GROUP OF MOTIONS OF THE PIANE

This section describes the group M of all rigid motions of the plane. The coarsest
classification of motions is into the orientation-preserving motions, those which do
not flip the plane over, and the orientation-reversing motions which do flip it over
(see Chapter 4, Section 5). We can use this partition of M to define a map

M—s {1},

by sending the orientation-preserving motions to 1 and the orientation-reversing
motions to —1. You will convince yourself without difficulty that this map is a ho-
momorphism: The product of two orientation-reversing motions is orientation-
preserving, and so on.

A finer classification of the motions is as follows:

2.1)

(a) The orientation-preserving motions:
(i) Translation: parallel motion of the plane by a vector a: psws p+a.
(ii) Rotation: rotates the plane by an angle 6 # 0 about some point.
(b) The orientation-reversing motions:
(i) Reflection about a line €.
(i) Glide reflection: obtained by reflecting about a line €, and then translating
by a nonzero vector a parallel to €.
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(2.2) Theorem. The above list is complete. Every rigid motion is a translation, a
rotation, a reflection, a glide reflection, or the identity.

This theorem is remarkable. One consequence is that the composition of rotations
about two different points is a rotation about a third point, unless it is a translation.
This fact follows from the theorem, because the composition preserves orientation,
but it is not obvious.

Some of the other compositions are easier to visualize. The composition of ro-
tations through angles 6 and 7 about the same point is again a rotation, through the
angle 8 + m, about that point. The composition of translations by the vectors ¢ and
b is the translation by their sum a + b.

Note that a translation does not leave any point fixed (unless the vector a is
zero, in which case it is the identity map). Glides do not have fixed points either. On
the other hand, a rotation fixes exactly one point, the center of rotation, and a
reflection fixes the points on the line of reflection. Hence the composition of
reflections about two nonparallel lines €;, € is a rotation about the intersection point
p = € N £,. This follows from the theorem, because the composition does fix p,
and it is orientation-preserving. The composition of two reflections about parallel
lines is a translation by a vector orthogonal to the lines.

In order to prove Theorem (2.2), and also to be able to compute conveniently
in the group M, we are going to choose some special motions as generators for the
group. We will obtain defining relations similar to the relations (1.18) in Chapter 2
which define the symmetric group s, but since M is infinite, there will be more of
them.

Let us identify the plane with the space R* of column vectors, by choosing a
coordinate system. Having done this, we choose as generators the translations, the
rotations about the origin, and the reflection about the x;-axis:

(2.3)

, +
(a) Translation t, by a vector a:  tx) = x + a = [x' a'].
x + a

(b) Rotation pg by an angle 6 about the origin:
) = cos 6 —sin 8 || x;
po sing cosf||x]|

(c) Reflection r about the x,-axis: r(x) = [é _(1)] [x'] = [_x'].

X2 X2

Since they fix the origin, the rotations pe and the reflection r are orthogonal opera-
tors on R*. A translation is not a linear operator—it does not send zero to itself, ex-
cept of course for translation by the zero vector.

The motions (2.3) are not all of the elements of M. For example, rotation
about a point other than the origin is not listed, nor are reflections about other lines.
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However, they do generate the group: Every element of M is a product of such ele-
ments. It is easily seen that any rigid motion m can be obtained by composing them.
Either

2.4 m = tapg orelse m = tper,

for some vector a and angle 8, possibly zero. To see this, we recall that every rigid
motion is the composition of an orthogonal operator followed by a translation
[Chapter 4 (5.20)]. So we can write m in the form m = t.m', where m' is an or-
thogonal operator. Next, if det m’ = 1, then it is one of the rotations ps. This fol-
lows from Theorem (5.5) of Chapter 4. So in this case, m = t,pe. Finally, if
det m' = -1, thendet m'r = 1, som'ris arotation pe. Since r> = 1, m' = per in
this case, and m = t,p0r.

The expression of a motion m as a product (2.4) is unique. For suppose that m
is expressed in two ways: m = taper’ = trp,r/, where i, j are 0 or 1. Since m is
orientation-preserving if { = 0 and orientation-reversing if { = 1, we must have
i = j, and so we can cancel r from both sides if necessary, to obtain the equality
tape = thpn. Multiplying both sides on the left by ¢-, and on the right by p_, we
find t,-» = py—e. But a translation is not a rotation unless both are the trivial opera-
tions. Soa =band 8 = 7. o

Computation in M can be done with the symbols ¢, pg, r using rules for com-
posing them which can be calculated from the formulas (2.3). The necessary rules
are as follows:

talb = ta+b, PPy = POy, rr=1,

pola = tape, where a' = pe(a),
2.5 Fta = tgr, where a' = r(a),
rpe = p-gr.

Using these rules, we can reduce any product of our generators to one of the two
forms (2.4). The form we get is uniquely determined, because there is only one ex-
pression of the form (2.4) for a given motion.

Proof of Theorem (2.2). Let m be a rigid motion which preserves orientation but is
not a translation. We want to prove that m is a rotation about some point. It is clear
that an orientation-preserving motion which fixes a point p in the plane must be a ro-
tation about p. So we must show that every orientation-preserving motion m which
is not a translation fixes some point. We write m = f,ps as in (2.4). By assumption,
0 # 0. One can use the geometric picture in Figure (2.6) to find the fixed point. In
it, £ is the line through the origin and perpendicular to 4, and the sector with angle
@ is situated so as to be bisected by €. The point p is determined by inserting the
vector a into the sector, as shown. To check that m fixes p, remember that the oper-
ation pg is the one which is made first, and is followed by #,.
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0
(2.6) Figure. The fixed point of an orientation-preserving motion.

Another way to find the fixed point is by solving the equation x = 1,p4(x)
algebraically for x. By definition of a translation, f.(ps(x)) = ps(x) + a. So the
equation we need to solve is

x — pe(x) =a or

(2.7 [l—cos() sin 6 ][xl] _ [al].

-sin@ 1—cos@]|x: @
Note that det(l — pg) = 2 — 2 cos §. The determinant is not zero if 6 # 0, so
there is a unique solution for x.

(2.8) Corollary. The motion m = t,ps is the rotation through the angle 6 about
its fixed point,

Proof. As we just saw, the fixed point of m is the one which satisfies the rela-
tion p = pe(p) + a. Then for any x,

m(p + x) = taps(p + x) = po(p + x) + a = po(p) + po(x) + a = p + pe(x).

Thus m sends p + x to p + pe(x). So it is the rotation about p through the angle 6,
as required. o

Next, we will show that any orientation-reversing motion m = t,per is a glide
reflection or a reflection (which we may consider to be a glide reflection having glide
vector zero). We do this by finding a line € which is sent to itself by m, and so that
the motion of m on ¢ is a translation. It is clear geometrically that an orientation-
reversing motion which acts in this way on a line is a glide reflection.

The geometry is more complicated here, so we will reduce the problem in two
steps. First, the motion per = r' is a reflection about a line. The line is the one
which intersects the x,-axis at an angle of 16 at the origin. This is not hard to see,
geometrically or algebraically. So our motion m is the product of the translation 1,
and the reflection r . We may as well rotate coordinates so that the x;-axis becomes
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the line of reflection of r’. Then r' becomes our standard reflection r, and the trans-
lation 1, remains a translation, though the coordinates of the vector a will have
changed. In this new coordinate system, the motion is written as m = f,r, and it

acts as
[Xl [ Xl + al]
m = .
X2 -x2 + a
This motion sends the line x» = ja. to itself, by the translation (x;,1a) mw>
(x1 + a1, %a,), and so m is a glide along this line. o

There are two important subgroups of M for which we must introduce
notation:
(2.9

T,
O, the group of orthogonal operators.

the group of translations.

The group O consists of the motions leaving the origin fixed. It contains the rotations
about the origin and reflections about lines through the origin.
Notice that with our choice of coordinates we get a bijective correspondence

R*—T
(2.10)
arvwwstg,
This is an isomorphism of the additive group (R2)™ with the subgroup T, because
taly = ta+b.
The elements of O are linear operators. Again making use of our choice of co-
ordinates, we can associate an element m € O to its matrix. Doing so, we obtain an
isomorphism

0,—> 0
from the group O: of orthogonal 2 X 2 matrices to O [see Chapter 4 (5.16)].

We can also consider the subgroup of M of motions fixing a point of the plane
other than the origin. This subgroup is related to O as follows:

(2.11) Proposition.

(a) Let p be a point of the plane. Let ps’ denote rotation through the angle 6 about
D, and let r' denote reflection about the line through p and parallel to the
x-axis. Then po' = tppet,™! and r' = tprtp™".

(b) The subgroup of M of motions fixing p is the conjugate subgroup
o' = 1,017\
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Proof. We can obtain the rotation pe’' in this way: First translate p to the
origin, next rotate the plane about the origin through the angle 6, and finally trans-
late the origin back to p:

pe' = tppot-p = topety ™.
The reflection ' can be obtained in the same way from 7:
r' = tprtep = torty

This proves (a). Since every motion fixing p has the form ps' or ps'r' [see the proof
of (2.4)], (b) follows from (a). o

There is an important homomorphism ¢ from M to O whose kernel is T', which
is obtained by dropping the translation from the products (2.4):

M50
(212) tapo ™™ Pg
tapor ~ww> por.

This may look too naive to be a good definition, but formulas (2.5) show that ¢ is a

homomorphism: (tape){tpn) = taty PepPn = ta+b Po+n, hence @ (tapotvpy) = po+n,

and so on. Since T is the kernel of a homomorphism, it is a normal subgroup of M.
Note that we can not define a homomorphism from M to T in this way.

(2.13) Proposition. Let p be any point of the plane, and let ps’ denote rotation
through the angle 6 about p. Then ¢ (pe') = po. Similarly, if ' is reflection about
the line through p and parallel to the x-axis, then @ (r') = r.

This follows from (2.11a), because ¢, is in the kernel of ¢. The proposition can
also be expressed as follows:

(2.14)  The homomorphism ¢ does not depend on the choice of origin. o

3. FINITE GROUPS OF MOTIONS

In this section we investigate the possible finite groups of symmetry of figures such
as (1.1) and (1.2). So we are led to the study of finite subgroups G of the group M
of rigid motions of the plane.

The key observation which allows us to describe all finite subgroups is the fol-
lowing theorem.

(3.1) Theorem. Fixed Point Theorem: Let G be a finite subgroup of the group of
motions M. There is a point p in the plane which is left fixed by every element of G,
that is, there is a point p such that g(p) = p forallg € G.
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It follows, for example, that any subgroup of M which contains rotations about
two different points is infinite.

Here is a beautiful geometric proof of the theorem. Let s be any point in the
plane, and let S be the set of points which are the images of s under the various mo-
tions in G. So each element s’ € § has the form s’ = g(s) for some g € G. This
set is called the orbit of s under the action of G. The element s is in the orbit because
the identity element 1 is in G, and s = 1(s). A typical orbit is depicted below, for
the case that G is the group of symmetries of a regular pentagon.

ep S

Any element of the group G will permute the orbit S. In other words, if
s'"€S8andx € G, thenx(s') € S. For, say that s' = g(s), with g € G. Since G
is a group, xg € G. Therefore, by definition, xg(s) € §. Since xg(s) = x(s'), this
shows that x(s') € S.

We list the elements of § arbitrarily, writing S = {si,..., s.}. The fixed point
we are looking for is the center of gravity of the orbit, defined as

(3.2) p=i(si + o + 50,

where the right side is computed by vector addition, using an arbitrary coordinate
system in the plane. The center of gravity should be considered an average of the
points §i,..., Sn.

(3.3) Lemma. LetS = {si,..., s} be a finite set of points of the plane, and let p
be its center of gravity, defined by (3.2). Let m be a rigid motion, and let
m(s)) = si' and m(p) = p'. Then p’' = L(sy’ + +- + 5,). In other words, rigid
motions carry centers of gravity to centers of gravity.

Proof. This is clear by physical reasoning. It can also be shown by calcula-
tion. To do so, it suffices to treat separately the cases m = t,, m = pg, and m = r,
since any motion is obtained from these by composition.

Case 1: m = t,. Thenp' = p + aand s’ = 5; + a. It is true that
pra=i(si+a + - + (5. + a)).
Case 2: m = pgor r. Then m is a linear operator. Therefore

P =mE(si + o+ sp) = 2(m(s) + 0+ mlsy) =16 + - +s0'). o
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The center of gravity of our set § is a fixed point for the action of G. For, any
element g; of G permutes the orbit {s,..., s}, so Lemma (3.3) shows that it sends
the center of gravity to itself. This completes the proof of the theorem. o

Now let G be a finite subgroup of M. Theorem (3.1) tells us that there is a
point fixed by every element of G, and we may adjust coordinates so that this point
is the origin. Then G will be a subgroup of 0. So to describe the finite subgroups G
of M, we need only describe the finite subgroups of O (or, since O is isomorphic to
the group of orthogonal 2 X 2 matrices, the finite subgroups of the orthogonal group
0: ). These subgroups are described in the following theorem.

(3.4) Theorem. Let G be a finite subgroup of the group O of rigid motions which
fix the origin. Then G is one of the following groups:

(a) G = Cy: the cyclic group of order n, generated by the rotation ps, where
0 = 27 /n.

(b) G = D,: the dihedral group of order 2n, generated by two elements—the ro-
tation pg, where @ = 277/n, and a reflection r ' about a line through the origin.

The proof of this theorem is at the end of the section.

The group D, depends on the line of reflection, but of course we may choose
coordinates so that it becomes the x-axis, and then r’ becomes our standard
reflection r. If G were given as a finite subgroup of M, we would also need to shift
the origin to the fixed point in order to apply Theorem (3.4). So our end result about
finite groups of motions is the following corollary:

(3.5) Corollary. Let G be a finite subgroup of the group of motions M. If coordi-
nates are introduced suitably, then G becomes one of the groups C,, or D,,, where Cy,
is generated by ps, 6 = 27r/n , and D, is generated by pg and r. o

When n = 3 | the dihedral group D, is the group of symmetries of a regular
n-sided polygon. This is easy to see, and in fact it follows from the theorem. For a
regular n-gon has a group of symmetries which contains the rotation by 277 /n about
its center. It also contains some reflections. Theorem (3.4) tells us that it is D,.

The dihedral groups D, D are too small to be symmetry groups of an n-gon in
the usual sense. D, is the group {1, r} of two elements. So it is a cyclic group, as is
C>. But the nontrivial element of D, is a reflection, while in C, it is rotation through
the angle 7. The group D, contains the four elements {1, p,r, pr} , where p = p,.
It is isomorphic to the Klein four group. If we like, we can think of D, and D- as
groups of symmetry of the 1-gon and 2-gon:

= W

1-gon. 2-gon.
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The dihedral groups are important examples, and it will be useful to have a
complete set of defining relations for them. They can be read off from the list of
defining relations for M (2.5). Let us denote the rotation pg (9 = 27/n) by x, and
the reflection r by y.

(3.6) Proposition. The dihedral group D, is generated by two elements x, y which
satisfy the relations

x"=1, y>*=1, yx=xy.

The elements of D, are

{Lx,x%..,x" oy, xy, Py, x" yb={xy/ |[0=si<n 0=j<2}.

Proof. The elements x = pg and y = r generate D, by definition of the group.
The relations y> = 1 and yx = x”'y are included in the list of relations (2.5) for M:
They are rr = 1 and rpe = p-¢r. The relation x” = 1 follows from the fact that
0 = 27 /n , which also shows that the elements 1, x,..., x" ! are distinct. It follows
that the elements y, xy, x’y,..., x" 'y are also distinct and, since they are reflections
while the powers of x are rotations, that there is no repetition in the list of elements.
Finally, the relations can be used to reduce any product of x, y, x™!, y™ to the form
x'y/, with 0 =i < n, 0 < j < 2. Therefore the list contains all elements of the
group generated by x,y , and since these elements generate D, the list is complete. o

Using the first two relations (3.6), the third relation can be written in various
ways. It is equivalent to

(3.7 yx = x" 'y and also to xyxy = 1.

Note that when n = 3, the relations are the same as for the symmetric group S;
[Chapter 2(1.18)].

(3.8) Corollary. The dihedral group D3 and the symmetric group Ss are isomor-
phic. o

For n > 3, the dihedral and symmetric groups are certainly not isomorphic, because
D, has order 2n, while S, has order n!.

Proof of Theorem (3.4). Let G be a finite subgroup of 0. We need to remem-
ber that the elements of O are the rotations pg and the reflections pgr.

Case 1: All elements of G are rotations. We must prove that G is cyclic in this case.
The proof is similar to the determination of the subgroups of the additive group Z*
of integers [Chapter 2 (2.3)]. If G = {1}, then G = C,. Otherwise G contains a
nontrivial rotation pg. Let 6 be the smallest positive angle of rotation among the ele-
ments of G. Then G is generated by pg. For let ps be any element of G, where the
angle of rotation «a is represented as usual by a real number. Let nf be the greatest
integer multiple of 8 which is less than «, so that « = nf + B, with 0 = 8 < 6.
Since G is a group and since py and pg are in G, the product pg = pap-ne is also in
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G. But by assumption 6 is the smallest positive angle of rotation in G. Therefore
B = 0and & = nf. This shows that G is cyclic. Let 16 be the smallest multiple of 6
which is =27, so that 277 < nf < 27 + 0. Since 6 is the smallest positive angle of
rotation in G, nd = 27r. Thus § = 27 /n for some integer n.

Case 2: G contains a reflection. Adjusting coordinates as necessary, we may assume
that our standard reflection r is in G. Let H denote the subgroup of rotations in G.
We can apply what has been proved in Case 1 to the group H, to conclude that it is a
cyclic group: H = C,. Then the 2n products pé', pér, 0 <i <n — 1, are in G,
and so G contains the dihedral group D,. We must show that G = D,. Now if an
element g of G is a rotation, then g & H by definition of A; hence g is one of the
elements of D,. If g is a reflection, we can write it in the form pqr for some rotation
Pa (2.8). Since r is in G, so is the product porr = po. Therefore p, is a power of
pe, and g is in D, too. So G = D,. This completes the proof of the theorem. o

4. DISCRETE GROUPS OF MOTIONS

In this section we will discuss the symmetry groups of unbounded figures such as
wallpaper patterns. Our first task is to describe a substitute for the condition that the
group is finite—one which includes the groups of symmetry of interesting un-
bounded figures. Now one property which the patterns illustrated in the text have is
that they do not admit arbitrarily small translations or rotations. Very special figures
such as a line have arbitrarily small translational symmetries, and a circle, for exam-
ple, has arbitrarily small rotational symmetries. It turns out that if such figures are
ruled out, then the groups of symmetry can be classified.

(4.1) Definition. A subgroup G of the group of motions M is called discrete if it
does not contain arbitrarily small translations or rotations. More precisely, G is dis-
crete if there is some real number € > 0 so that

(i) if 4 is a translation in G by a nonzero vector a, then the length of « is at least
€lal =€

(ii) if p is a rotation in G about some point through a nonzero angle 6, then the
angle @ is at least €: |@] = .

Since the translations and rotations are all the orientation-preserving motions (2.1),
this condition applies to all orientation-preserving elements of G. We do not impose
a condition on the reflections and glides. The one we might ask for follows automat-
ically from the condition imposed on orientation-preserving motions.

The kaleidoscope principle can be used to show that every discrete group of
motions is the group of symmetries of a plane figure. We are not going to give pre-
cise reasoning to show this, but the method can be made into a proof. Start with a
sufficiently random figure R in the plane. We require in particular that R shall not
have any symmetries except for the identity. So every element g of our group will
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move R to a different position, call it gR. The required figure F is the union of all
the figures gR. An element x of G sends gR to xgR, which is also a part of F, and
hence it sends F to itself. If R is sufficiently random, G will be its group of sym-
metries. As we know from the kaleidoscope, the figure F is often very attractive.
Here is the result of applying this procedure in the case that G is the dihedral group
of symmetries of a regular pentagon:

N

Of course many figures have the same group or have similar groups of symme-
try. But nevertheless it is interesting and instructive to classify figures according to
their groups of symmetry. We are going to discuss a rough classification of the
groups, which will be refined in the exercises.

The two main tools for studying a discrete group G are its translation group
and its point group. The translation group of G is the set of vectors a such that
ta € G. Since ;8 = tavp and 1., = 1,7, this is a subgroup of the additive group of
vectors, which we will denote by Lg. Using our choice of coordinates, we identify
the space of vectors with R?. Then

(4.2) Le={a € R’|t, € G}

This group is isomorphic to the subgroup T N G of translations in G, by the isomor-
phism (2.10): a~w~t,. Since it is a subgroup of G, T N G is discrete: A subgroup
of a discrete group is discrete. If we translate this condition over to Lg, we find
4.3) L¢ contains no vector of length <€, except for the zero vector.

A subgroup L of R"" which satisfies condition (4.3) for some € > 0 is called a
discrete subgroup of R". Here the adjective discrete means that the elements of L
are separated by a fixed distance:

(4.4)  The distance between any two vectors a,b € L is at least €, if a # b.

For the distance is the length of b — a, and b — a € L because L is a subgroup.

(4.5) Proposition. Every discrete subgroup L of R* has one of these forms:

(a) L = {0}.
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(b) L is generated as an additive group by one nonzero vector a:
L={ma|m e Z}.
(¢) L is generated by two linearly independent vectors a, b :
L = {ma + nb | mnn € Z}.

Groups of the third type are called plane lattices, and the generating set (a, b) is
called a lattice basis.

(4.6) Figure. A lattice in R>.

We defer the proof of Proposition (4.5) and turn to the second tool for studying
a discrete group of motions—its point group. Recall that there is a homomorphism
(2.13) ¢: M—— 0, whose kernel is T. If we restrict this homomorphism to G, we
obtain a homomorphism

4.7 (pIGZ G—O0.

Its kernel is T N G (which is a subgroup isomorphic to the translation group Lg).
The point group G is the image of G in 0. Thus G is a subgroup of O.

By definition, a rotation pe is in G if G contains some element of the form
tape. And we have seen (2.8) that 1,pp is a rotation through the angle 6 about some
point in the plane. So the inverse image of an element pg € G consists of all of the
elements of G which are rotations through the angle 8 about some point.

Similarly, let € denote the line of reflection of per. As we have noted before,
its angle with the x-axis is 36. The point group G contains per if there is some ele-
ment f;per in G, and t,per is a reflection or a glide reflection along a line parallel to
£. So the inverse image of per consists of all elements of G which are reflections and
glides along lines parallel to €.

Since G contains no small rotations, the same is true of its point group G. So
G is discrete too—it is a discrete subgroup of O.
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(4.8) Proposition. A discrete subgroup of O is a finite group.
We leave the proof of this proposition as an exercise. o

Combining Proposition (4.8) with Theorem (3.4), we find the following:
(4.9) Corollary. The point group G of a discrete group G is cyclic or dihedral. o

Here is the key observation which relates the point group to the translation
group:

(4.10) Proposition. Let G be a discrete subgroup of M, with translation group
L = L and point group G. The elements of G carry the group L to itself. In other
words, if g € G and a € L, then g(a) € L.

We may restate this proposition by saying that G is contained in the group of
symmetries of L, when L is regarded as a set of points in the plane R*. However, it
is important to note that the original group G need not operate on L,

Proof. To say that @ € L means that t; € G. So we have to show that if
1 € G and g € G, then f3) € G. Now by definition of the point group, g is the
image of some element g of the group G: ¢(g) = g. We will prove the proposition
by showing that ;4 is the conjugate of 1, by g. We write g = t,p or t,pr, where
p = pe. Then g = p or pr, according to the case. In the first case,

8lag™ = tplap”'t-bp = bl@PP” b = by,
as required. The computation is similar in the other case. o

The following proposition describes the point groups which can arise when the
translation group L is a lattice.

(4.11) Proposition. Let H C O be a finite subgroup of the group of symmetries of a
lattice L. Then

(a) Every rotation in H has order 1, 2, 3, 4, or 6.
(b) H is one of the groups Cr, D, where n = 1, 2, 3, 4, or 6.

This proposition is often referred to as the Crystallographic Restriction. Notice that a
rotation of order 5 is ruled out by (4.11). There is no wallpaper pattern with fivefold
rotational symmetry. (However, there do exist “quasi-periodic” patterns with
fivefold symmetry.)

To prove Propositions (4.5) and (4.11), we begin by noting the following sim-
ple lemma:

(4.12) Lemma. Let L be a discrete subgroup of R,

(a) A bounded subset S of R? contains only finitely many elements of L.
(b) If L # {0}, then L contains a nonzero vector of minimal length.
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Proof.

(a) Recall that a subset S of R” is called bounded if it is contained in some large
box, or if the points of § do not have arbitrarily large coordinates. Obviously, if S
is bounded, so is L N S. Now a bounded set which is infinite must contain some
elements arbitrarily close to each other—that is, the elements can not be separated
by a fixed positive distance €. This is not the case for L, by (4.4). Thus L N S is
finite.
(b) When we say that a nonzero vector ¢ has minimal length, we mean that every
nonzero vector v € L has length at least | a|. We don’t require the vector a to be
uniquely determined. In fact we couldn’t require this, because whenever ¢ has min-
imal length, —a does too.

Assume that L # {0}. To prove that a vector of minimal length exists, we let
b € L be any nonzero vector, and let S be the disc of radius | b| about the origin.
This disc is a bounded set, so it contains finitely many elements of L, including b.
We search through the nonzero vectors in this finite set to find one having minimal
length. It will be the required shortest vector. o

Proof of Proposition (4.11). The second part of the proposition follows from
the first, by (3.6). To prove (a), let @ be the smallest nonzero angle of rotation in H,
and let a be a nonzero vector in L of minimal length. Then since H operates on L,
pela) is also in L; hence b = pg(a) — @ € L. Since a has a minimal length,
|b| = |al. It follows that 6 = 27 /6.

pg(a)

0 a

Thus pe has order =< 6. The case that 8 = 277/5 is also ruled out, because then the
element b’ = pg’(a) + a is shorter than a:

/ P (a)
Pf;(a) .

|y
N

This completes the proof. o

Proof of Proposition (4.5). Let L be a discrete subgroup of R?. The possibility
that L = {0} is included in the list. If L # {0}, there is a nonzero vector ¢ € L, and
we have two possibilities:
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Case 1: All vectors in L lie on one line £ through the origin. We repeat an argument
used several times before, choosing a nonzero vector @ € L of minimal length. We
claim that L is generated by a. Let v be any element of L. Then it is a real multiple
v = ra of a, since L C ¢{. Take out the integer part of r, writingr = n + ry, where
n is an integer and 0 < ro < 1. Then v — na = roa has length less than a, and
since L is a group this element is in L. Therefore r, = 0. This shows that v is an in-
teger multiple of a, and hence that it is in the subgroup generated by a, as required.

Case 2: The elements of L do not lie on a line. Then L contains two linearly inde-
pendent vectors @', b'. We start with an arbitrary pair of independent vectors, and
we try to replace them by vectors which will generate the group L. To begin with,
we replace a' by a shortest nonzero vector a on the line € which ¢’ spans. When
this is done, the discussion of Case 1 shows that the subgroup € N L is generated by
a. Next, consider the parallelogram P ' whose vertices are 0,a,b',a + b';

(4.13) Figure.

Since P' is a bounded set, it contains only finitely many elements of L (4.12). We
may search through this finite set and choose a vector b whose distance to the line €
is as small as possible, but positive. We replace b’ by this vector. Let P be the paral-
lelogram with 0, ¢, b, a + b. We note that P contains no points of L except for its
vertices. To see this, notice first that any lattice point ¢ in P which is not a vertex
must lie on one of the line segments [b, a + b] or [0, a]. Otherwise the two points ¢
and ¢ — a would be closer to € than b, and one of these points would lie in P'. Next,
the line segment [0, a] is ruled out by the fact that a is a shortest vector on €. Fi-
nally, if there were a point ¢ on [b, a + b], then ¢ — b would be an element of L on
the segment [0, a]. The proof is completed by the following lemma.

(4.14) Lemma. Let q, b be linearly independent vectors which are elements of a
subgroup L of R?. Suppose that the parallelogram P which they span contains no ele-
ment of L other than the vertices 0, a, b, a + b. Then L is generated by a and b, that
is,

L ={ma + nb|m,n € Z}.

Proof. Let v be an arbitrary element of L. Then since (a,b) is a basis of R, v
is a linear combination, say v = ra + sb, where r,s are real numbers. We take out
the integer parts of r,s, writingr = m + ro, s = n + so, where m, n are integers
and 0 < ro, 5o < 1. Let vy = roa + sob = v — ma — nb. Then v lies in the paral-
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lelogram P, and vo € L. Hence v, is one of the vertices, and since ro, 50 < 1, it
must be the origin. Thus v = ma + nb. This completes the proof of the lemma and
of Proposition (4.5). o

Let L be a lattice in R®. An element v € L is called primitive if it is not
an integer multiple of another vector in L. The preceding proof actually shows the
following:

(4.15) Corollary. Let L be a lattice, and let v be a primitive element of L. There
is an element w € L so that the set (v, w) is a lattice basis. o

Now let us go back to our discrete group of motions G C M and consider the
rough classification of G according to the structure of its translation group Lg. If Lg
is the trivial group, then the homomorphism from G to its point group is bijective
and G is finite. We examined this case in Section 3.

The discrete groups G such that L¢ is infinite cyclic are the symmetry groups
of frieze patterns such as (1.3). The classification of these groups is left as an
exercise.

If Lg is a lattice, then G is called a two-dimensional crystallographic group, or
a lattice group. These groups are the groups of symmetries of wallpaper patterns and
of two-dimensional crystals.

The fact that any wallpaper pattern repeats itself in two different directions is
reflected in the fact that its group of symmetries will always contain two independent
translations, which shows that L¢ is a lattice. It may also contain further elements—
rotations, reflections, or glides—but the crystallographic restriction limits the possi-
bilities and allows one to classify crystallographic groups into 17 types. The clas-
sification takes into account not only the intrinsic structure of the group, but also the
type of motion that each group element represents. Representative patterns with the
various types of symmetry are illustrated in Figure (4.16).

Proposition (4.11) is useful for determining the point group of a crystallo-
graphic group. For example, the brick pattern shown below has a rotational symme-
try through the angle 7r about the centers of the bricks. All of these rotations repre-
sent the same element p. of the point group G. The pattern also has glide symmetry
along the dotted line indicated. Therefore the point group G contains a reflection.
By Proposition (4.11), G is a dihedral group. On the other hand, it is easy to see that
the only nontrivial rotations in the group G of symmetries are through the angle 7.
Therefore G = D> = {1, p, 7, par}.




Section 4 Discrete Groups of Motions 173

W
Y/

4
%
K

1

N

WA

\V/.

)

WA
AY,

LNANLLN

(4.16) Figure. Sample patterns for the 17 plane crystallographic groups.
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The point group G and the translation group L do not completely characterize
the group G. Things are complicated by the fact that a reflection in G need not be
the image of a reflection in G—it may be represented in G only by glides, as in the
brick pattern illustrated above.

As a sample of the methods required to classify the two-dimensional crystallo-
graphic groups, we will describe those whose point group contains a rotation p
through the angle 7/2. According to Proposition (4.11), the point group will be ei-
ther C, or D,4. Since any element of G which represents p is also a rotation through
7 /2 about some point p, we may choose p to be the origin. Then p can be thought
of as an element of G too.

(4.17) Proposition. Let G be a lattice group whose point group contains a rota-
tion p through the angle 7r/2. Choose coordinates so that the origin is a point of ro-
tation by 7/2 in G. Let a be a shortest vector in L = Lg, let b = p(a), and let
¢ = 5(a + b). Denote by r the reflection about the line spanned by a. Then G is
generated by one of the following sets: {tz, p}, {ta, p,r}, {ta, p, tcr}. Thus there are
three such groups.

Proof. We first note that L is a square lattice, generated by a and b. For, a is
in L by hypothesis, and Proposition (4.10) asserts that b = p(a) is also in L. These
two vectors generate a square sublattice L” of L. If L # L’, then according to
Lemma (4.14) there is an element w € L in the square whose vertices are
0,a,a + b and which is not one of the vertices. But any such vector would be at a
distance less than |a| from at least one of the vertices v, and the difference w — v
would be in L but shorter than a, contrary to the choice of a. Thus L = L', as
claimed.

Now the elements , and p are in G, and ptap™' = 1, (2.5). So the subgroup H
of G generated by the set {t., p} contains #, and #,. Hence it contains #, for every
w € L. The elements of this group are the products twp':

H={tp'|weEL0=i=3}

This is one of our groups. We now consider the possible additional elements which
G may contain.

Case 1: Every element of G preserves orientation. In this case, the point group is
C,. BEvery element of G has the form m = t,pg, and if such an element is in G then
pe is in the point group. So ps = p' for some i, and mp™ = 1, € G too. Therefore
u &€ L,and m € H. So G = H in this case.

Case 2: G contains an orientation-reversing motion. In this case the point group is
D,, and it contains the reflection about the line spanned by a. We choose coordi-
nates so that this reflection becomes our standard reflection r. Then r will be repre-
sented in G by an element of the form m = t,r.

Case 2a: The element u is in L; that is, t, € G. Then r € G too, so G contains its
point group G = Dy. If m’ = 1, pg or if t.per is any element of G, then per is in G
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too; hence t» € G, and w € L. Therefore G is the group generated by the set
{ta,p, 1}
Case 2b: The element u is not in L. This is the hard case.

(4.18) Lemma. Let U be the set of vectors u such that t,r € G. Then

(@ L+U=U.
(b) pU = U.
¢y U+ rU CL.

Proof. If v € L and u € U, then t, and 1,7 are in G; hence tot,r =
ty+ur € G. This shows that ¢ + v € U and proves (a). Next, suppose that u € U.
Then pt,rp = touprp = tour € G. This shows that pu € U and proves (b).
Finally, if w,v € U, then #,rtor = tu+ro € G; hence u + rv € L, which
proves (). o

Part (a) of the lemma allows us to choose an element u € U lying in the
square whose vertices are 0,a,b,a + b and which is not on the line segments
[a,a + b] and [b,a + b]. We write u in terms of the basis (a, b), say u = xa + yb,
where 0 =< x,y < 1. Then u + ru = 2xa. Since u + ru € L by (4.18c¢), the possi-
ble values for x are 0, 3. Next, pu + a = (1 — y)a + xb lies in the square too, and
the same reasoning shows that y is O or . Thus the three possibilities for u are 1a,
ib, and 3(a + b) =c. But if u=1%a, then pu=3b, and ru = u = 3a. So
¢ =3(a + b) € L (4.18b,c). This is impossible because ¢ is shorter than a. Simi-
larly, the case u = 3b is impossible. So the only remaining case is 4 = ¢, which
means that the group G is generated by {t,, p,t.7}. o

5. ABSTRACT SYMMETRY: GROUP OPERATIONS

The concept of symmetry may be applied to things other than geometric figures. For
example, complex conjugation (a + bi) ww~(a — bi) may be thought of as a sym-
metry of the complex numbers. It is compatible with most of the structure of C: If &
denotes the complex conjugate of a, then @ + 8 = @ + B and a8 = @ fB. Being
compatible with addition and multiplication, conjugation is called an automorphism
of the field C. Of course, this symmetry is just the bilateral symmetry of the com-
plex plane about the real axis, but the statement that it is an automorphism refers to
its algebraic structure.

Another example of abstract “bilateral” symmetry is given by a cyclic group H
of order 3. We saw in Section 3 of Chapter 2 that this group has an automorphism ¢,
which interchanges the two elements different from the identity.

The set of automorphisms of a group A (or of any other mathematical structure
H) forms a group Aut H, the law of composition being composition of maps. Each
automorphism should be thought of as a symmetry of H, in the sense that it is a per-
mutation of the elements of H which is compatible with the structure of H. But in-
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stead of being a geometric figure with a rigid shape, the structure in this case is the
group law. The group of automorphisms of the cyclic group of order 3 contains two
elements: the identity map and the map ¢.

So the words automorphism and symmetry are more oOr less Synonymous, €x-
cept that automorphism is used to describe a permutation of a set which preserves
some algebraic structure, while symmetry often refers to a permutation which pre-
serves a geometric structure.

These examples are special cases of a more general concept, that of an opera-
tion of a group on a set. Suppose we are given a group G and a set S. An operation
of G on § is a rule for combining elements ¢ € G and s € § to get an element gs of
S. In other words, it is a law of composition, a map G X S— §, which we gener-
ally write as multiplication:

g, Smw gs,

This rule is required to satisfy the following axioms:

(5.1)

(a) 1s = s for all s (1 is the identity of G).
(b) Associative law: (gg')s = g(g's), forall g, g’ € Gand s € S.

A set § with an operation of G is often called a G-set. This should really be
called a left operation, because elements of G multiply on the left.

Examples of this concept can be found manywhere. For example, let G = M
be the group of all rigid motions of the plane. Then M operates on the set of points
of the plane, on the set of lines in the plane, on the set of triangles in the plane, and
so on. Or let G be the cyclic group {1, r} of order 2, with r* = 1. Then G operates
on the set S of complex numbers, by the rule ra = @. The fact that the axioms (5.1)
hold in a given example is usually clear.

The reason that such a law of composition is called an operation is this: If we
fix an element g of G but let s € S vary, then left multiplication by g defines a map
from § to itself; let us denote this map by m,. Thus

(5.2 mg: §S——§
is defined by
mg(s) = gs.

This map describes the way the element g operates on S. Note that m, is a permuta-
tion of §; that is, it is bijective. For the axioms show that it has the two-sided inverse

m,-1 = multiplication by g™":

mg-1(mg(s)) = g7'(gs) = (g7'g)s = 1s = s. Interchanging the roles of g and g™!
shows that mg(m,-1(s)) = s too.
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The main thing that we can do to study a set § on which a group G operates is
to decompose the set into orbits. Let s be an element of S. The orbit of s in S is the
set

(5.3) O, ={s' € §|s' € gsforsome g € G}.

It is a subset of S. (The orbit is often written as Gs = {gs | g € G}, in analogy with
the notation for cosets [Chapter 2 (6.1)]. We won’t do this because Gs looks too
much like the notation for a stabilizer which we are about to introduce.) If we think
of elements of G as operating on § by permutations, then Oy is the set of images of s
under the various permutations m,. Thus, if G = M is the group of motions and S is
the set of triangles in the plane, the orbit Oa of a given triangle A is the set of all
triangles congruent to A. Another example of orbit was introduced when we proved
the existence of a fixed point for the operation of a finite group on the plane (3.1).
The orbits for a group action are equivalence classes for the relation

(5.4) s ~s' if s" = gsforsomeg € G.

The proof that this is an equivalence relation is easy, so we omit it; we made a simi-
lar verification when we introduced cosets in Section 6 of Chapter 2. Being equiva-
lence classes, the orbits partition the set S:

(5.5) S is a union of disjoint orbits.

The group G operates on S by operating independently on each orbit. In other words,
an element g € G permutes the elements of each orbit and does not carry elements
of one orbit to another orbit. For example, the set of triangles of the plane can be
partitioned into congruence classes, the orbits for the action of M. A motion m per-
mutes each congruence class separately. Note that the orbits of an element s and of
gs are equal.

If § consists of just one orbit, we say that G operates transitively on S. This
means that every element of § is carried to every other one by some element of the
group. Thus the group of symmetries of Figure (1.7) operates transitively on the set
of its legs. The group M of rigid motions of the plane operates transitively on the set
of points of the plane, and it operates transitively on the set of lines in the plane. It
does not operate transitively on the set of triangles in the plane.

The stabilizer of an element s € § is the subgroup G; of G of elements leaving
s fixed:

(5.6) Gs={g € G| gs = s}.

It is clear that this is a subgroup. Just as the kernel of a group homomorphism
¢: G——> G’ tells us when two elements x,y € G have the same image, namely, if
x'y € ker ¢ [Chapter 2 (5.13)], we can describe when two elements x,y € G act
in the same way on an element s € S in terms of the stabilizer G;:
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(5.7 xs = ysifand only if x'y € G;.

For xs = ys implies s = x"'ys, and conversely.

As an example of a nontrivial stabilizer, consider the action of the group M of
rigid motions on the set of points of the plane. The stabilizer of the origin is the sub-
group O of orthogonal operators.

Or, if S is the set of triangles in the plane and A is a particular triangle which
happens to be equilateral, then the stabilizer of A is its group of symmetries, a sub-
group of M isomorphic to Ds (see (3.4)). Note that when we say that a motion m sta-
bilizes a triangle A, we don’t mean that m fixes the points of A. The only motion
which fixes every point of a triangle is the identity. We mean that in permuting the
set of triangles, the motion carries A to itself. It is important to be clear about this
distinction.

6. THE OPERATION ON COSETS

Let H be a subgroup of a group G. We saw in Section 6 of Chapter 2 that the left
cosets aH = {ah | h € H} form a partition of the group [Chapter 2 (6.3)]. We will
call the set of left cosets the coset space and will often denote it by G/H, copying
this notation from that used for quotient groups when the subgroup is normal.

The fundamental observation to be made is this: Though G/H is not a group
unless the subgroup H is normal, nevertheless G operates on the coset space G/H in
a natural way. The operation is quite obvious: Let g be an element of the group, and
let C be a coset. Then gC is defined to be the coset

(6.1) gC = {gc|c € C}.

Thus if C = aH, then gC is the coset gaH. It is clear that the axioms (5.1) for an
operation are satisfied.

Note that the group G operates transitively on G/H, because G/H is the orbit
of the coset 1H = H. The stabilizer of the coset 1H is the subgroup H C G. Again,
note the distinction: Multiplication by an element # € H does not act trivially on the
elements of the coset 1 H, but it sends that coset to itself.

To understand the operation on cosets, you should work carefully through the
following example. Let G be the group D5 of symmetries of an equilateral triangle.
As in (3.6), it may be described by generators x,y satisfying the relations x* = 1,
y* =1, yx = x*y. Let H = {1, y}. This is a subgroup of order 2. Its cosets are

(6.2) Ci=H= {l,y}, G = {x,xy}, G = {xz,xzy},

and G operates on G/H = {C1, C2, C3}. So, as in (5.2), every element g of G deter-
mines a permutation my, of {Ci, Cz, Cs}. The elements x, y operate as

(6.3) my: 1 ‘) and my:1 2 3.
x_3 L
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In fact, the six elements of G yield all six permutations of three elements, and so the
map

G—>5; = Perm(G/H)

is an isomorphism. Thus the dihedral group G = Ds is isomorphic to the symmetric
group S3. We already knew this.

The following proposition relates an arbitrary group operation to the operation
on cosets:

(6.4) Proposition. Let S be a G-set, and let s be an element of S. Let H be the
stabilizer of s, and let Oy be the orbit of s. There is a natural bijective map

G/H—> 0,
defined by

aH ~w>qs.

This map is compatible with the operations of G in the sense that ¢ (gC) = g (C)-
for every coset C and every element g € G.

The proposition tells us that every group operation can be described in terms of
the operations on cosets. For example, let S = {v1, vz, v3} be the set of vertices of an
equilateral triangle, and let G be the group of its symmetries, presented as above.
The element y is a reflection which stabilizes one of the vertices of the triangle, say
v1. The stabilizer of this vertex is H = {1, y}, and its orbit is S. With suitable index-
ing, the set (6.2) of cosets maps to S by the map Cimw> ;.

Proof of Proposition (6.4). It is clear the map ¢, if it exists, will be compatible
with the operation of the group. What is not so clear is that the rule gH ~mw>gs
defines a map at all. Since many symbols gH represent the same coset, we must
show that if @ and b are group elements and if alH = bH, then as = bs too. This is
true, because we know that el = bH if and only if b = ah for some 4 in H
[Chapter 2 (6.5)]. And when b = ah, then bs = ahs = as, because h fixes s. Next,
the orbit of s consists of the elements gs, and ¢ carries gH to gs. Thus ¢ maps G/H
onto Oy, and ¢ is surjective. Finally, we show that ¢ is injective. Suppose aH and
bH have the same image: as = bs. Then s = a 'bs. Since H was defined to be the
stabilizer of s, this implies that a™'b = h € H. Thus b = ah € aH, and so
aH = bH. This completes the proof. o

(6.5) Proposition. Let S be a G-set, and let s € S. Let s’ be an element in the
orbit of s, say s’ = as. Then
(a) The set of elements g of G such that gs = s’ is the left coset
aGs; = {g € G| g = ah for some h € G,}.
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(b) The stabilizer of s’ is a conjugate subgroup of the stabilizer of s:
Gy = aGsa™' = {g € G| g = aha™" for some h € G;}.
We omit the proof. o
As an example, let us recompute the stabilizer of a point p in the plane, for the
operation of the group of motions. We have made this computation before, in

(2.11b). We have p = 1,(0), and the stabilizer of the origin is the orthogonal group
0. Thus by (6.5b),

Gp = 1,08, = 1,01, = {m € M| m = tppet p, O m = trpertp}.

We know on the other hand that G, consists of rotations and reflections about the
point p. Those are the motions fixing p. So 2,01, ' consists of these elements. This
agrees with (2.11).

7. THE COUNTING FORMUIA

Let H be a subgroup of G. As we know from Chapter 2 (6.9), all the cosets of H in
G have the same number of elements: | H| = |aH |. Since G is a union of nonover-
lapping cosets and the number of cosets is the index, which we write as [G: H] or
|G/H|, we have the fundamental formula for the order |G| of the group G (see
[Chapter 2 (6.10)]):

(7.1) G| = |H||G/H|.

Now let S be a G-set. Then we can combine Proposition (6.4) with (7.1) to get
the following:

(7.2) Proposition. Counting Formula: Let s € S. Then

(order of G) = (order of stabilizer)(order of orbit)

G| = [Gs|0s].
Equivalently, the order of the orbit is equal to the index of the stabilizer:
|0s| =[G : Gi].

There is one such equation for every s € S. As a consequence, the order of an orbit
divides the order of the group.

A more elementary formula uses the partition of § into orbits to count its ele-
ments. We label the different orbits which make up § in some way, say as Oy, . . .,
O¢. Then

(7.3) |S|=|01|+|02|+"'+|0k|.

These simple formulas have a great number of applications.
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(7.4) Example. Consider the group G of orientation-preserving symmetries of a
regular dodecahedron D. It follows from the discussion of Section 8 of Chapter 4
that these symmetries are all rotations. It is tricky to count them without error. Con-
sider the action of G on the set S of the faces of D. The stabilizer of a face s is the
group of rotations by multiples of 277 /5 about a perpendicular through the center of
5. So the order of Gs is 5. There are 12 faces, and G acts transitively on them. Thus
|G| =512 = 60. Or, G operates transitively on the vertices v of D. There are
three rotations, including 1, which fix a vertex, so | G,| = 3. There are 20 vertices;
hence |G| = 3 - 20 = 60, which checks. There is a similar computation for edges.
If e is an edge, then |G.| = 2, so since 60 = 2 - 30, the dodecahedron has 30
edges.

Following our general principle, we should study restriction of an operation of
a group G to a subgroup. Suppose that G operates on a set S, and let H be a subgroup
of G. We may restrict the operation, to get an operation of H on S. Doing so leads to
more numerical relations.

Clearly, the H-orbit of an element s will be contained in its G-orbit. So we
may take a single G-orbit and decompose it into H-orbits. We count the orders of
these H-orbits, obtaining another formula. For example, let § be the set of 12 faces
of the dodecahedron, and let H be the stabilizer of a particular face s. Then H also
fixes the face opposite to s, and so there are two H-orbits of order 1. The remaining
faces make up two orbits of order 5. In this case, (7.3) reads as follows.

12=1+1+5+5.

Or let S be the set of faces, and let K be the stabilizer of a vertex. Then K does not
fix any face, so every K-orbit has order 3:

12=3+3+3+3.

These relations give us a way of relating several subgroups of a group.
We close the section with a simple application of this procedure to the case that
the G-set is the coset space of a subgroup:

(7.5) Proposition. Let H and K be subgroups of a group G. Then the index of
H N K in H is at most equal to the index of K in G:

[H-HNK]=[G:K].
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Proof. To minimize confusion, let us denote the coset space G/K by S, and the
coset 1K by s. Thus |S| = [G : K]. As we have already remarked, the stabilizer of
s is the subgroup K. We now restrict the action of G to the subgroup H and decom-
pose S into H-orbits. The stabilizer of s for this restricted operation is obviously
H N K. We don’t know much about the H-orbit O of s except that it is a subset of S.
We now apply Proposition (7.2), which tells us that |O| = [H : H N K]. Therefore
[H:H N K]=|0]=|S|=[G: K], as required. o

8. PERMUTATION REPRESENTATIONS

By its definition, the symmetric group S, operates on the set § = {1,...,n}. A per-
mutation representation of a group G is a homomorphism

(8.1) @ G—>S,.

Given any such representation, we obtain an operation of G on § = {1,..., n} by let-
ting m, (5.2) be the permutation ¢(g). In fact, operations of a group G on {1,..., n}
correspond in a bijective way to permutation representations.

More generally, let S be any set, and denote by Perm (S) the group of its per-
mutations. Let G be a group.

(8.2) Proposition. There is a bijective correspondence

operations homomorphisms
of Gon S G—— Perm (S)

defined in this way: Given an operation, we define ¢: G——> Perm(S) by the rule
¢ (g) = my, where m, is multiplication by g (5.2).

Let us show that ¢ is a homomorphism, leaving the rest of the proof of (8.2) as
an exercise. We’ve already noted in Section 5 that m, is a permutation. So as defined
above, ¢(g) € Perm(S). The axiom for a homomorphism is ¢ (xy) = ¢ (x)¢(y), or
mxy = mxmy, where multiplication is composition of permutations. So we have to
show that my(s) = mi(m,(s)) for every s € S. By Definition (5.2), my(s) = (xy)s
and mx(m,(s)) = x(ys). The associative law (5.1b) for group operations shows that
(xy)s = x(ys), as required. o

The isomorphism D;—— §; obtained in Section 6 by the action of D3 on the
cosets of H (6.2) is a particular example of a permutation representation. But a ho-
momorphism need not be injective or surjective. If ¢: G—— Perm(S) happens to be
injective, we say that the corresponding operation is faithful. So to be faithful, the
operation must have the property that m, # identity, unless g = 1, or

if gs = sforeverys € 8§, theng = 1.

The operation of the group of motions M on the set S of equilateral triangles in the
plane is faithful, because the identity is the only motion which fixes all triangles.
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The rest of this section contains a few applications of permutation representa-
tions.

(8.3) Proposition. The group GLo(F;) of invertible matrices with mod 2
coefficients is isomorphic to the symmetric group S;.

Proof. Let us denote the field F, by F, and the group GL,(F.) by G. We
have listed the six elements of G before [Chapter 3 (2.10)]. Let V = F? be
the space of column vectors. This space consists of the following four vectors:
V ={0, e, e, €1 + ex}. The group G operates on V and fixes 0, so it operates on the
set of three nonzero vectors, which form one orbit. This gives us a permutation rep-
resentation ¢ G—> S;3. Now the image of e; under multiplication by a matrix
P € G is the first column of P, and similarly the image of e is the second column
of P. Therefore P can not operate trivially on these two elements unless it is the
identity. This shows that the operation of G is faithful, and hence that the map ¢ is
injective. Since both groups have order 6, ¢ is an isomorphism. o

(8.4) Proposition. Let ¢, denote conjugation by g, the map c,(x) = gxg™!. The
map f: S;——> Aut(S;) from the symmetric group to its group of automorphisms
which is defined by the rule g ¢, is bijective.

Proof. Let A denote the group of automorphisms of S;. We know from Chapter
2 (3.4) that ¢, is an automorphism. Also, cen = cgcn because con(x) =
(gh)x(gh)™" = ghxh™'g”" = cglcn(x)) for all x. This shows that f is a homomor-
phism. Now conjugation by g is the identity if and only if g is in the center of the
group. The center of §; is trivial, so fis injective.

It is to prove surjectivity of f that we look at a permutation representation of
A. The group A operates on the set S; in the obvious way; namely, if « is an auto-
morphism and s € S, then as = a(s). Elements of S; of different orders will be in
distinct orbits for this operation. So A operates on the subset of S; of elements of or-
der 2. This set contains the three elements {y, xy, x*y}. If an automorphism « fixes
both xy and y, then it also fixes their product xyy = x. Since x and y generate S,
the only such automorphism is the identity. This shows that the operation of A on
{y,xy,x*y} is faithful and that the associated permutation representation
A—> Perm{y, xy, x*y} is injective. So the order of A is at most 6. Since f is injec-
tive and the order of S; is 6, it follows that f is bijective. o

(8.5) Proposition. The group of automorphisms of the cyclic group of order p is
isomorphic to the multiplicative group F,* of nonzero elements of Fp.

Proof. The method here is to use the additive group F,* as the model for a
cyclic group of order p. It is generated by the element 1. Let us denote the multi-
plicative group F,™ by G. Then G operates on F,* by left multiplication, and this
operation defines an injective homomorphism ¢: G—— Perm(F,) to the group of
permutations of the set [, of p elements.
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Next, the group A = Aut(F,") of automorphisms is a subgroup of Perm (F,*).
The distributive law shows that multiplication by an element a € F,* is an automor-
phism of F,". It is bijective, and a(x + y) = ax + ay. Therefore the image of
¢: G——>Perm (F,") is contained in the subgroup A. Finally, an automorphism of
F,* is determined by where it sends the generator 1, and the image of 1 can not be
zero. Using the operations of G, we can send 1 to any nonzero ¢lement. Therefore ¢
is a surjection from G onto A. Being both injective and surjective, ¢ is an isomor-
phism. o

9. FINITE SUBGROUPS OF THE ROTATION GROUP

In this section, we will apply the Counting Formula to classify finite subgroups of
the rotation group SO;, which was defined in Chapter 4 (5.4). As happens with finite
groups of motions of the plane, there are rather few finite subgroups of SO, and all
of them are symmetry groups of familiar figures.

(9.1) Theorem. Every finite subgroup G of SOs is one of the following:

Cy: the cyclic group of rotations by multiples of 27 /k about a line;

Dy the dihedral group (3.4) of symmetries of a regular k—gon;

T: the tetrahedral group of twelve rotations carrying a regular tetrahedron to
itself;

O: the octahedral group of order 24 of rotations of a cube, or of a regular
octahedron;

I: the icosahedral group of 60 rotations of a regular dodecahedron or a regular
icosahedron:

1O Q&

We will not attempt to classify the infinite subgroups.

Proof. Let G be a finite subgroup of SOs, and denote its order by . Every ele-
ment g of G except the identity is a rotation about a line €, and this line is obviously
unique. So g fixes exactly two points of the unit sphere S in R®, namely the two
points of intersection € N S. We call these points the poles of g. Thus a pole is a
point p on the unit sphere such that gp = p for some element g # 1 of G. For ex-
ample, if G is the group of rotational symmetries of a tetrahedron A, then the poles
will be the points of S lying over the vertices, the centers of faces, and the centers of
edges of A.
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Let P denote the set of all poles.

(9.2) Lemma The set P is carried to itself by the action of G on the sphere. So G
operates on P.

Proof. Let p be a pole, say the pole of g € G. Let x be an arbitrary ele-
ment of G. We have to show that xp is a pole, meaning that xp is left fixed by
some element g’ of G other than the identity. The required element is xgx™':

xgx Y(xp) = xgp = xp, and xgx™' # 1 because g # 1. o

We are now going to get information about the group by counting the poles.
Since every element of G except 1 has two poles, our first guess might be that there
are 2v — 2 poles altogether. This isn’t quite correct, because the same point p may
be a pole for more than one group element.

The stabilizer of a pole p is the group of all of the rotations about the line
€ = (0, p) which are in G. This group is cyclic and is generated by the rotation of
smallest angle 6 in G. [See the proof of Theorem (3.4a).] If the order of the stabi-
lizer is r,, then 8 = 2 /rp.

We know that r, > 1 because, since p is a pole, the stabilizer G, contains an
element besides 1. By the Counting Formula (7.2),

|Gp|10,| = |GI.
We write this equation as
(9.3) 'php = N,

where n, is the number of poles in the orbit O, of p.

The set of elements of G with a given pole p is the stabilizer G,, minus the
identity element. So there are (r, — 1) group elements with p as pole. On the other
hand, every group element g except 1 has two poles. Having to subtract 1 every-
where is a little confusing here, but the correct relation is

(9.4) D= 1)=2n—2.
pPEP
Now if p and p’ are in the same orbit, then the stabilizers G, and G, have the
same order. This is because O, = Op and |G| = |G, | |Op| = |Gy | | Oy |. There-
fore we can collect together the terms on the left side of (9.4) which correspond
to poles in a given orbit O,. There are n, such terms, so the number of poles col-
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lected together is ny(r, — 1). Let us number the orbits in some way, as Oy, 0s,....
Then

2 onri— 1) =2 — 2,

H

where n; = | 0|, and r; = |G, | for any p € O;. Since N = n;r;, we can divide both
sides by ~ and switch sides, to get the famous formula

©.5) 2—%=2<1—%).

This formula may not look very promising at first glance, but actually it tells us a
great deal. The left side is less than 2, while each term on the right is at least I It
follows that there can be at most three orbits!

The rest of the classification is made by listing the various possibilities:

One orbit: 2 — %= 1 - % This is impossible, because 2 — % = 1, while
-1,
r
Two orbits: 2 — 2_ <1 - l) + <1 — l),thatis,g=l+l,
N r r2 N n n

We know that r; = N, because r; divides ~. This equation can hold only if
ri = r = N. Thus n; = n, = 1. There are two poles p, p’, both fixed by every ele-
ment of the group. Obviously, G is the cyclic group Cy of rotations about the line €
through p and p'.

Three orbits: This is the main case: Formula (9.5) reduces to

2 1 1 1
- ==+ =4+ — - 1.
N T T r3

We arrange the r; in increasing order. Then r; = 2. For if all r; were at least 3, then
the right side would be =< 0, which is impossible.

Case 1: At least two of the orders r; are 2: r; = ro = 2. The third order r; = r can
be arbitrary, and N = 2r. Then n; = 2: There is one pair of poles {p,p’} making
the orbit O;. Every element g either fixes p and p’ or interchanges them. So the ele-
ments of G are rotations about € = (p, p'), or else they are rotations by 7 about a
line €' perpendicular to €. It is easily seen that G is the group of rotations fixing a
regular r-gon A, the dihedral group D,. The polygon A lies in the plane perpendicu-
lar to €, and the vertices and the centers of faces of A corresponding to the remain-
ing poles. The bilateral (reflection) symmetries of the polygon in R? have become
rotations through the angle 7 when A is put into R>.
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Case 2: Only one r; is 2: The triples r; = 2, r, = 4, r; = 4 are impossible, because
1/2+1/4 + 1/4 — 1 = 0. Similarly, r; = 2, r» = 3, r3 = 6 can not occur be-
cause 1/2 + 1/3 + 1/6 — 1 = 0. There remain only three possibilities:

(9.6)

(i) = (2,3,3),~5 =12
() = (2,3,4), N = 24;
(i) r: = (2,3,5), N = 60.

It remains to analyze these three cases. We will indicate the configurations
briefly.

(9.7)

(1) n; = (6,4,4). The poles in the orbit O, are the vertices of a regular tetrahe-
dron A, and G is the group of rotations fixing it: G = T. Here n; is the number
of edges of A, and n, n; are the numbers of vertices and faces of A.

(@ii) n; = (12,8, 6). The poles in O, are the vertices of a cube, and the poles in O,
are the vertices of a regular octahedron. G = O is the group of their rotations.
The integers n; are the numbers of edges, vertices, and faces of a cube.

(i) n; = (30, 20, 12). The poles of O, are the vertices of a regular dodecahedron,
and those in O are the vertices of a regular icosahedron: G = I.

There is still some work to be done to prove the assertions of (9.7). Intu-
itively, the poles in an orbit should be the vertices of a regular polyhedron because
they form a single orbit and are therefore evenly spaced on the sphere. However this
is not quite accurate, because the centers of the edges of a cube, for example, form a
single orbit but do not span a regular polyhedron. (The figure they span is called a
truncated polyhedron.)

As an example, consider (9.7ii1). Let p be one of the 12 poles in O, and let g
be one of the poles of O, nearest to p. Since the stabilizer of p is of order 5 and op-
erates on O, (because G does), the images of g provide a set of five nearest neighbors
to p, the poles obtained from g by the five rotations about p in G. Therefore the
number of poles of O, nearest to p is a multiple of 5, and it is easily seen that 5 is the
only possibility. So these five poles are the vertices of a regular pentagon. The 12
pentagons so defined form a regular dodecahedron. o

We close this chapter by remarking that our discussion of the motions of the
plane has analogues for the group M; of rigid motions of 3-space. In particular, one
can define the notion of crystallographic group, which is a discrete subgroup whose
translation group is a three-dimensional lattice L. To say that L is a lattice means
that there are three linearly independent vectors a,b,c in R’ such that
ta,th,tc, € G. The crystallographic groups are analogous to lattice groups in
M = M, and crystals form examples of three-dimensional configurations having
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such groups as symmetry. We imagine the crystal to be infinitely large. Then the fact
that the molecules are arranged regularly implies that they form an array having
three independent translational symmetries. It has been shown that there are 230
types of crystallographic groups, analogous to the 17 lattice groups (4.15). This is
too long a list to be very useful, and so crystals have been classified more crudely
into seven crystal systems. For more about this, and for a discussion of the 32 crys-
tallographic point groups, look in a book on crystallography.

Un bon héritage vaut mieux que le plus joli probléme de géométrie,
parce qu'il tient lieu de méthode générale,
et sert a resoudre bien des problémes.

Gottfried Wilhelm Leibnitz

EXERCISES

1. Symmetry of Plane Figures

[y

. Prove that the set of symmetries of a figure F in the plane forms a group.
List all symmetries of (a) a square and (b) a regular pentagon.
3. List all symmetries of the following figures,
(@ (1.4) ®d (1.5 (o) (1.6) (d(1.7)
4. Let G be a finite group of rotations of the plane about the origin. Prove that G is cyclic.

»

N

The Group of Motions of the Plane

. Compute the fixed point of z,pe algebraically.

. Verify the rules (2.5) by explicit calculation, using the definitions (2.3).

. Prove that O is not a normal subgroup of M.

. Let m be an orientation-reversing motion. Prove that m? is a translation.

Let SM denote the subset of orientation-preserving motions of the plane. Prove that SM

is a normal subgroup of M, and determine its index in M.

6. Prove that a linear operator on R? is a reflection if and only if its eigenvalues are 1 and

-1, and its eigenvectors are orthogonal.

7. Prove that a conjugate of a reflection or a glide reflection is a motion of the same type,
and that if m is a glide reflection then the glide vectors of m and of its conjugates have
the same length.

. Complete the proof that (2.13) is a homomorphism.

9. Prove that the map M—— {1, r} defined by tapermn1, tapngM»r.is a homomor-
phism.

10. Compute the effect of rotation of the axes through an angle 7 on the expressions z,pg and

tapor for a motion.

[ R

o
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11.

12.
13.

14.

15.

(a) Compute the eigenvalues and eigenvectors of the linear operator m = per.

(b) Prove algebraically that m is a reflection about a line through the origin, which sub-
tends an angle of 10 with the x-axis.

(¢) Do the same thing as in (b) geometrically.

Compute the glide vector of the glide z;per in terms of a and 6.

(a) Let m be a glide reflection along a line €. Prove geometrically that a point x lies on €
if and only if x, m(x), m*(x) are colinear.

(b) Conversely, prove that if m is an orientation-reversing motion and x is a point such
that x, m(x), m*(x) are distinct points on a line £, then m is a glide reflection
along ¢.

Find an isomorphism from the group SM to the subgroup of GL,(C) of matrices of the

form | % b] with |a| = 1.

0o 1y
(a) Write the formulas for the motions (2.3) in terms of the complex variable
z=x+ iy.
(b) Show that every motion has the form m(z) = az + B or m(z) = az + 3, where
|| = 1 and B is an arbitrary complex number.

3. Finite Groups of Motions

1.

Let D, denote the dihedral group (3.6). Express the product x*yx~'y~Ix%? in the form
x'y/ in D,.

. List all subgroups of the group Ds, and determine which are normal.
. Find all proper normal subgroups and identify the quotient groups of the groups D;; and

D15.

. (a) Compute the cosets of the subgroup H = {1, x°} in the dihedral group D1 explicitly.

(b) Prove that Dy, /H is isomorphic to Ds.
(¢) Is Dy isomorphic to Ds X H?

. List the subgroups of G = Ds which do not contain N = {1, x*}.
. Prove that every finite subgroup of M is a conjugate subgroup of one of the standard sub-

groups listed in Corollary (3.5).

4. Discrete Groups of Motions

1.

2.

Prove that a discrete group G consisting of rotations about the origin is cyclic and is gen-
erated by ps where 8 is the smallest angle of rotation in G.

Let G be a subgroup of M which contains rotations about two different points. Prove al-
gebraically that G contains a translation.

. Let (a, b) be a lattice basis of a lattice L in R2. Prove that every other lattice basis has the

form (a’,b’) = (a, b)P, where P is a 2 X 2 integer matrix whose determinant is *1.

. Determine the point group for each of the patterns depicted in Figure (4.16).
. (a) Let B be a square of side length a, and let € > 0. Let S be a subset of B such that the

distance between any two points of S is = €. Find an explicit upper bound for the
number of elements in S.
(b) Do the same thing for a box B in R”,
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10.

11.

12.

13.

14.
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. Prove that the subgroup of R* generated by 1 and V2 is dense in R*.
. Prove that every discrete subgroup of O is finite.
. Let G be a discrete subgroup of M. Prove that there is a point p, in the plane which is not

fixed by any point of G except the identity.

. Prove that the group of symmetries of the frieze pattern

.. .CLeeeeeeeee. ..

is isomorphic to the direct product C> X C., of a cyclic group of order 2 and an infinite

cyclic group.

Let G be the group of symmetries of the frieze pattern . . . HebhESAS A

(a) Determine the point group G of G.

(b) For each element g € G, and each element g € G which represents g, describe the
action of g geometrically.

(c) Let H be the subgroup of translations in G. Determine [G:H].

Let G be the group of symmetries of the pattern

SSSSSSSSSSSSSSSS 2SPSPSrSIssIsis
LLELEEEELLE8K88k88% 2228238282828 3K
S222222222222222 K2 282828282828
LLLLLKLLKLRRRLR ... PO IOIOICI®I®I®O L
222323222222 222222 3833338 3E3eSs
LEEEEEELE885K8858k8 222828282822
S2323232222222222 383833838383 >
LLLELLEEEEL8888k58% 2228282828282
233222232 22222222 38383838383 E3es
SEitiiil L I e
LLLLLLLLL Lk PO ICICICIOIOIO L4

Determine the point group of G.

Let G be the group of symmetries of an equilateral triangular lattice L. Find the index in
G of the subgroup T N G.

Let G be a discrete group in which every element is orientation-preserving. Prove that
the point group G is a cyclic group of rotations and that there is a point p in the plane
such that the set of group elements which fix p is isomorphic to G.

With each of the patterns shown, find a pattern with the same type of symmetry in
(4.16).
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15. Let N denote the group of rigid motions of the line £ = R!. Some elements of N are

lgo—>x + a,

a €R, s:x—>—1x.

(a) Show that {t,, t;5} are all of the elements of N, and describe their actions on ¢

geometrically.

(b) Compute the products t4p, sta, S5.

(c¢) Find all discrete subgroups of N which contain a translation. It will be convenient to
choose your origin and unit length with reference to the particular subgroup. Prove

that your list is complete.
*16.

Let N’ be the group of motions of an infinite ribbon

R={(,y|-1=y =<1}

It can be viewed as a subgroup of the group M. The following elements are in N ':

1y (x’y)_>(x + aay)

s (x, y)—>(-x,y)

ri (x,y)—>(x, -y)
p: (x,y)—(=x, ~y).

(a) Show that these elements generate N ', and describe the elements of N " as products.
(b) State and prove analogues of (2.5) for these motions.
(c) A frieze pattern is any pattern on the ribbon which is periodic and not degenerate, in
the sense that its group of symmetries is discrete. Since it is periodic, its group of
symmetries will contain a translation. Some sample patterns are depicted in the text
(1.3, 1.4, 1.6, 1.7). Classify the symmetry groups which arise, identifying those
which differ only in the choice of origin and unit length on the ribbon. I suggest that
you begin by trying to make patterns with different kinds of symmetry. Please make
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*17.

18.

*19.

*20.

21.

22.

*23.

a careful case analysis when proving your results. A suitable format would be as fol-
lows: Let G be a discrete subgroup containing a translation.

Case 1. Every element of G is a translation. Then . ..,

Case 2: G contains the rotation p but no orientation-reversing symmetry. Then ...,
and so on.

Let L be a lattice of R?, and let a, b be linearly independent vectors lying in L. Show that

the subgroup L' = {ma + nb | m,n € Z} of L generated by a, b has finite index, and

that the index is the number of lattice points in the parallelogram whose vertices are
0,a,b,a + b and which are not on the “far edges” [a,a + b] and [b,a + b]. (So, 0 is

included, and so are points which lie on the edges [0, a], [0, b], except for the points a, b

themselves. )

(a) Find a subset F of the plane which is not fixed by any motion m € M.

(b) Let G be a discrete group of motions. Prove that the union S of all images of F by
elements of G is a subset whose group of symmetries G’ contains G.

(¢) Show by an example that G’ may be larger than G.

*(d) Prove that there exists a subset F such that G’ = G.

Let G be a lattice group such that no element g # 1 fixes any point of the plane. Prove

that G is generated by two translations, or else by one translation and one glide.

Let G be a lattice group whose point group is D; = {1, r}.

(a) Show that the glide lines and the lines of reflection of G are all parallel.

(b) Let L = L. Show that L contains nonzero vectors a = (a1, 0)', b = (0, by)".

(c) Let g and b denote the smallest vectors of the type indicated in (b). Then either (a, b)
or (a, c) is a lattice basis for L, where ¢ = 3(a + b).

(d) Show that if coordinates in the plane are chosen so that the x—axis is a glide line,
then G contains one of the elements g = r or g = t1or. In either case, show that
G=LULg.

(e) There are four possibilities described by the dichotomies (c) and (d). Show that there
are only three different kinds of group.

Prove that if the point group of a lattice group G is Cs, then L = L is an equilateral tri-

angular lattice, and G is the group of all rotational symmetries of L about the origin.

Prove that if the point group of a lattice group G is Ds, then L = Lg is an equilateral tri-

angular lattice, and G is the group of all symmetries of L.

Prove that symmetry groups of the figures in Figure (4.16) exhaust the possibilities.

5. Abstract Symmetry: Group Operations

1.

2.
3.

4.

Determine the group of automorphisms of the following groups.
@ Cs BMCs (©C X
Prove that (5.4) is an equivalence relation.

Let S be a set on which G operates. Prove that the relation s ~ s’ if s’ = gs for some
g € G is an equivalence relation.

Let ¢: G— G’ be a homomorphism, and let S be a set on which G’ operates. Show
how to define an operation of G on S, using the homomorphism .



Chapter 5 Exercises 193

5. Let G = Dy be the dihedral group of symmetries of the square.

*7.

10.

11.

12.

(a) What is the stabilizer of a vertex? an edge?

(b) G acts on the set of two elements consisting of the diagonal lines. What is the stabi-
lizer of a diagonal?

In each of the figures in exercise 14 of Section 4, find the points which have nontrivial

stabilizers, and identify the stabilizers.

Let G be a discrete subgroup of M.

(a) Prove that the stabilizer G, of a point p is finite.

(b) Prove that the orbit O, of a point p is a discrete set, that is, that there is a number
€ > 0 so that the distance between two distinct points of the orbit is at least €.

(c¢) Let B, B’ be two bounded regions in the plane. Prove that there are only finitely
many elements g € G so that gB M B’ is nonempty.

. Let G = GL,(R) operate on the set § = R”" by left multiplication.

(a) Describe the decomposition of S into orbits for this operation.
(b) What is the stabilizer of e;?

Decompose the set C**? of 2 X 2 complex matrices for the following operations of
GLAC):
(a) Left multiplication

*(b) Conjugation

(a) Let S = R™>" be the set of real m X n matrices, and let G = GL,(R) X GL,(R).
Prove that the rule (P, ),A ~> PAQ™! defines an operation of G on S.

(b) Describe the decomposition of S into G-orbits.

(c) Assume that m = n. What is the stabilizer of the matrix [/ |0]?

(a) Describe the orbit and the stabilizer of the matrix 10 under conjugation in
GL.(R) 0 2

(b) Interpreting the matrix in GL,(F3), find the order (the number of elements) of the
orbit.

(a) Define automorphism of a field.

(b) Prove that the field Q) of rational numbers has no automorphism except the identity.
(¢) Determine Aut F, when F = Q[V2].

6. The Operation on Cosets

What is the stabilizer of the coset aH for the operation of G on G/H?

. Let G be a group, and let H be the cyclic subgroup generated by an element x of G.

Show that if left multiplication by x fixes every coset of H in G, then H is a normal

subgroup.

(a) Exhibit the bijective map (6.4) explicitly, when G is the dihedral group D, and S is
the set of vertices of a square.

(b) Do the same for D,, and the vertices of a regular n—gon.

(a) Describe the stabilizer H of the index 1 for the action of the symmetric group G = S,
on {1,...,n} explicitly.

(b) Describe the cosets of H in G explicitly for this action.

(c) Describe the map (6.4) explicitly.
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5. Describe all ways in which S; can operate on a set of four elements.

6. Prove Proposition (6.5).

7. A map S—— S’ of G-sets is called a homomorphism of G- sets if ¢(gs) = go(s) for all
s € Sand g € G. Let ¢ be such a homomorphism. Prove the following:
(a) The stabilizer Gy(s) contains the stabilizer Gs;.
(b) The orbit of an element s € S maps onto the orbit of ¢ (s).

7. The Counting Formula

1. Use the counting formula to determine the orders of the group of rotational symmetries
of a cube and of the group of rotational symmetries of a tetrahedron.

2. Let G be the group of rotational symmetries of a cube C. Two regular tetrahedra A, A’
can be inscribed in C, each using half of the vertices. What is the order of the stabilizer
of A?

3. Compute the order of the group of symmetries of a dodecahedron, when orientation-
reversing symmetries such as reflections in planes, as well as rotations, are allowed. Do
the same for the symmetries of a cube and of a tetrahedron.

4. Let G be the group of rotational symmetries of a cube, let S., Sy, Sf be the sets of ver-
tices, edges, and faces of the cube, and let Hy, He, Hr be the stabilizers of a vertex, an
edge, and a face. Determine the formulas which represent the decomposition of each of
the three sets into orbits for each of the subgroups.

5. Let G D H D K be groups. Prove the formula [G : K] = [G : H] H : K] without the
assumption that G is finite.

6. (a) Prove that if H and K are subgroups of finite index of a group G, then the intersec-

tion H N K is also of finite index.
(b) Show by example that the index [H : H N K] need not divide [G : K].

8. Permutation Representations

1. Determine all ways in which the tetrahedral group T (see (9.1)) can operate on a set of
two elements.

2. Let S be a set on which a group G operates, and let H = {g € G|gs = sforalls € S}.
Prove that H is a normal subgroup of G.

3. Let G be the dihedral group of symmetries of a square. Is the action of G on the vertices
a faithful action? on the diagonals?

4. Suppose that there are two orbits for the operation of a group G on a set S, and that they
have orders m, n respectively. Use the operation to define a homomorphism from G to
the product Sy, X S, of symmetric groups.

5. A group G operates faithfully on a set S of five elements, and there are two orbits, one of
order 3 and one of order 2. What are the possibilities for G?

6. Complete the proof of Proposition (8.2).

7. Let F = [F5. There are four one-dimensional subspaces of the space of column vectors
F2. Describe them. Left multiplication by an invertible matrix permutes these subspaces.
Prove that this operation defines a homomorphism ¢: GL(F})——> S,. Determine the
kernel and image of this homomorphism.
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*8.

For each of the following groups, find the smallest integer n such that the group has a
faithful operation on a set with n elements.
(a) the quaternion group H (b) D, (¢) D¢

9. Finite Subgroups of the Rotation Group

1.

2.

*8.

*9,

Describe the orbits of poles for the group of rotations of an octahedron and of an
icosahedron.

Identify the group of symmetries of a baseball, taking the stitching into account and al-
lowing orientation-reversing symmetries.

Let O be the group of rotations of a cube. Determine the stabilizer of a diagonal line
connecting opposite vertices.

. Let G = O be the group of rotations of a cube, and let H be the subgroup carrying one

of the two inscribed tetrahedra to itself (see exercise 2, Section 7). Prove that H = T.

. Prove that the icosahedral group has a subgroup of order 10.

Determine all subgroups of the following groups:
@T7T (b1

. Explain why the groups of symmetries of the cube and octahedron, and of the dodecahe-

dron and icosahedron, are equal.

(a) The 12 points (*1, =a,0), (0, =1, za){(*a,0, 1) form the vertices of a regular
icosahedron if « is suitably chosen. Verify this, and determine «.

(b) Determine the matrix of the rotation through the angle 27r /5 about the origin in R2.

(c) Determine the matrix of the rotation of R* through the angle 27 /5 about the axis
containing the point (1, ¢, 0).

Prove the crystallographic restriction for three-dimensional crystallographic groups: A

rotational symmetry of a crystal has order 2, 3, 4, or 6.

Miscellaneous Problems

1.

2.

Describe completely the following groups:
(a) Aut D, (b) Aut H, where H is the quaternion group

(a) Prove that the set Aut G of automorphisms of a group G forms a group.

(b) Prove that the map ¢: G— Aut G defined by g~ (conjugation by g) is a homo-
morphism, and determine its kernel.

(c) The automorphisms which are conjugation by a group element are called inner auto-
morphisms. Prove that the set of inner automorphisms, the image of ¢, is a normal
subgroup of Aut G.

. Determine the quotient group Aut H/Int H for the quaternion group H.
*4,

Let G be a lattice group. A fundamental domain D for G is a bounded region in the

plane, bounded by piecewise smooth curves, such that the sets gD, g € G cover the

plane without overlapping except along the edges. We assume that D has finitely many

connected components.

(a) Find fundamental domains for the symmetry groups of the patterns illustrated in ex-
ercise 14 of Section 4.

(b) Show that any two fundamental domains D, D’ for G can be cut into finitely many
congruent pieces of the form gD N D’ or D N gD’ (see exercise 7, Section 5).
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(¢) Conclude that D and D' have the same area. (It may happen that the boundary
curves intersect infinitely often, and this raises some questions about the definition of
area. Disregard such points in your answer.)

*5, Let G be a lattice group, and let p, be a point in the plane which is not fixed by any ele-
ment of G. Let S = {gpo | g € G} be the orbit of p,. The plane can be divided into
polygons, each one containing a single point of S, as follows: The polygon A, containing
p is the set of points ¢ whose distance from p is the smallest distance to any point of S

A, = {qg € R?| dist(q, p) = dist(g, p') forallp’ € S}.

(a) Prove that A, is a polygon.
(b) Prove that A, is a fundamental domain for G.
(c) Show that this method works for all discrete subgroups of M, except that the domain
A, which is constructed need not be a bounded set.
(d) Prove that A, is bounded if and only if the group is a lattice group.
*6. (a) Let G' C G be two lattice groups. Let D be a fundamental domain for G. Show that
a fundamental domain D' for G' can be constructed out of finitely many translates
gD of D.
(b) Show that [G : G'] < » and that [G : G'] = area (D ")/area (D).
(¢) Compute the index [G : Lg] for each of the patterns {4.16).
*7. Let G be a finite group operating on a finite set S. For each element g € G, let S denote
the subset of elements of S fixed by g: §¢ = {s € S| gs = s}.
(a) We may imagine a true—false table for the assertion that gs = s, say with rows in-
dexed by elements of G and columns indexed by elements. Construct such a table for
the action of the dihedral group D; on the vertices of a triangle.

(b) Prove the formula >, |G| = > |$%].
SES gEG

(¢) Prove Burnside’s Formula:

|G| - (number of orbits) = 2, | $|.
gEG

8. There are 70 = (i

white. The group Ds operates on this set of 70, and the orbits represent equivalent color-
ings. Use Burnside’s Formula to count the number of equivalence classes.

9. Let G be a group of order n which operates nontrivially on a set of order r. Prove that if
n > r!, then G has a proper normal subgroup.

) ways to color the edges of an octagon, making four black and four



Chapter 6

More Group Theory

The more to do or to prove, the easier the doing or the proof.

James Joseph Sylvester

1. THE OPERATIONS OF A GROUP ON ITSELF

By an operation of a group G on itself, we mean that in the definition of the opera-
tion, G plays the role both of the group and of the set on which it operates. Any
group operates on itself in several ways, two of which we single out here. The first is
left multiplication.:

(1.1) GXG—>G
g, X vy,

This is obviously a transitive operation of G on G, that is, G forms a single orbit,
and the stabilizer of any element is the identity subgroup {1}. So the action is faith-
ful, and the homomorphism

(1.2) G—— Perm (G)
g ~w>m, = left multiplication by g
defined in Chapter 5, Section 8 is injective.
(1.3) Theorem. Cayley’s Theorem: Every finite group G is isomorphic to a sub-

group of a permutation group. If G has order n, then it is isomorphic to a subgroup
of the symmetric group S».

Proof. Since the operation by left multiplication is faithful, G is isomorphic to
its image in Perm (G). If G has order 1, then Perm (G) is isomorphic to S,. o

197
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Though Cayley’s Theorem is intrinsically interesting, it is not especially useful for
computation because S», having order n!, is too large in comparison with #.

The second operation we will consider is more subtle. It is conjugation, the
map G X G—> G, defined by

(1.4) (g, X) > gxg ™.

For obvious reasons, we will not use multiplicative notation for this operation. You
should verify the axioms (5.1) in Chapter 5, introducing a temporary notation such
as g *x to denote the conjugate gxg .

The stabilizer of an element x € G for the operation of conjugation has a spe-
cial name. It is called the centralizer of x and is denoted by Z (x):

(1.5) Zx) ={g €EG|grg' =x} ={g €G|gx = xg}.

The centralizer is the set of group elements which commute with x. Note that
x € Z(x), because x commutes with itself.

The orbit of x for the operation of conjugation is called the conjugacy class of
x. It consists of all conjugate elements gxg™'. We often write the conjugacy class as

(1.6) C:={x' EG|x' = gxg" for some g € G}.

By the Counting Formula [Chapter 5 (7.2)], |G| = |Cx| | Z(x)].
Since the conjugacy classes are orbits for a group operation, they partition G.
This gives us what is called the Class Equation for a finite group [see Chapter 5(7.3)]:

(1.7) Gl = 2 [C|.

conjugacy
classes C

If we number the conjugacy classes, say as C;, i = 1,..., k, then this formula reads
|G| =|Ci| + - + | Cxl.

However there is some danger of confusion, because the subscript i in C; is an index,
while the notation C, as used above stands for the conjugacy class containing the el-
ement x of G. In particular, C; has two meanings. Perhaps it will be best to list the
conjugacy class of the identity element 1 of G first. Then the two interpretations of
C, will agree.

Notice that the identity element is left fixed by all g € G. Thus C, consists of
the element 1 alone. Note also that each term on the right side of (1.7), being the
order of an orbit, divides the left side. This is a strong restriction on the combina-
tions of integers which may occur in such an equation.

(1.8) The numbers on the right side of the Class Equation divide the
order of the group, and at least one of them is equal to 1.

For example, the conjugacy classes in the dihedral group Ds, presented as in
Chapter 5 (3.6), are the following three subsets:

{1}, {x, x%, {y, xy, x%y}
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The two rotations x, x* are conjugate, as are the three reflections. The Class Equa-
tion for Ds is

(1.9) 6=1+2+ 3.

Recall from Chapter 2 (4.10) that the center of a group G is the set Z of ele-
ments which commute with all elements of the group:

Z={g€EG|gx=nxgforallx € G}.

Now the conjugacy class of an element x consists of that element alone if and only if
x = gxg~! for all g € G. This means that x is in the center. Thus the elements of
the center are represented by 1 on the right side of the Class Equation.

The next proposition follows directly from the definitions.

(1.10) Proposition. An element x is in the center of a group G if and only if its
centralizer Z(x) is the whole group. o

One case in which the Class Equation (1.7) can be used effectively is when the
order of G is a positive power of a prime p. Such a group is called a p-group. Here
are a few applications of the Class Equation to p-groups.

(1.11) Proposition. The center of a p-group G has order > 1.

Proof. The left side of (1.7) is a power of p, say p°. Also, every term on the
right side is a power of p too, because it divides p¢. We want to show that some
group element x # 1 is in the center, which is the same as saying that more than one
term on the right side of (1.7) is equal to 1. Now the terms other than 1, being posi-
tive powers of p, are divisible by p. Suppose that the class C, made the only contri-
bution of 1 to the right side. Then the equation would read

p¢ =1+ D (multiples of p),

which is impossible unless ¢ = 0. o

The argument used in this proof can be turned around and abstracted to give
the following important Fixed Point Theorem for actions of p-groups:

(1.12) Proposition. Let G be a p-group, and let S be a finite set on which G oper-
ates. Assume that the order of S is not divisible by p. Then there is a fixed point for
the action of G on S, that is, an element s € S whose stabilizer is the whole group. o

(1.13) Proposition. Every group of order p? is abelian.

Proof. Let G be a group of order p?>. We will show that for every x € G, the
centralizer Z(x) is the whole group. Proposition (1.10) will then finish the proof. So
let x € G. If x is in the center Z, then Z(x) = G as claimed. If x & Z, then Z(x) is
strictly larger than Z, because it contains Z and also contains the element x. Now the
orders of Z and Z(x) divide |G| = p?, and Proposition (1.11) tells us that | Z| is at
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least p. The only possibility is that | Z(x)| = p2 Hence Z(x) = G, and x was in the
center after all. o

There are nonabelian groups of order p*. The dihedral group Ds, for example,
has order 8.
Let us use (1.13) to classify groups of order p*.

(1.14) Corollary. Every group of order p? is of one of the following types:
(i) a cyclic group of order p?;
(ii) a product of two cyclic groups of order p.

Proof. Since the order of an element divides p?, there are two cases to
consider:

Case 1: G contains an element of order p? and is therefore a cyclic group.

Case 2: Every element x of G except the identity has order p. Let x,y be two ele-
ments different from 1, and let H,, H, be the cyclic groups of order p generated by x
and y respectively. We may choose y so that it is not a power of x. Then since
y & H\, Hi N H, is smaller than H,, which has order p. So H, N H, = {1}. Also,
the subgroups H; are normal because G is abelian. Since y & H,, the group H.\H, is
strictly larger than H,, and its order divides p>. Thus H\H, = G. By Chapter 2
(8.6), G = HiXH,. o

The number of possibilities for groups of order p” increases rapidly with n.
There are five isomorphism classes of groups of order 8, and 14 classes of groups of
order 16.

2, THE CIASS EQUATION OF THE ICOSAHEDRAL GROUP

In this section we determine the conjugacy classes in the icosahedral group I of rota-
tional symmetries of a dodecahedron, and use them to study this very interesting
group. As we have seen, the order of the icosahedral group is 60. It contains rota-
tions by multiples of 27r/5 about the centers of the faces of the dodecahedron, by
multiples of 277 /3 about the vertices, and by 7 about the centers of the edges. Each
of the 20 vertices has a stabilizer of order 3, and opposite vertices have the same
stabilizer. Thus there are 10 subgroups of order 3—the stabilizers of the vertices.
Each subgroup of order 3 contains two elements of order 3, and the intersection of
any two of these subgroups consists of the identity element alone. So I contains
10 X 2 = 20 elements of order 3. Similarly, the faces have stabilizers of order 5,
and there are six such stabilizers, giving us 6 X 4 = 24 elements of order 5. There
are 15 stabilizers of edges, and these stabilizers have order 2. So there are 15 ele-
ments of order 2. Finally, there is one element of order 1. Since

2.1) 60 =1+ 15 + 20 + 24,

we have listed all elements of the group.
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Equation (2.1) is obtained by partitioning the group according to the orders of
the elements. It is closely related to the Class Equation, but we can see that (2.1) is
not the Class Equation itself, because 24, which appears on the right side, does not
divide 60. On the other hand, we do know that conjugate elements have the same
order. So the Class Equation is obtained by subdividing this partition of G still fur-
ther. Also, note that the subgroups of order 3 are all conjugate. This is a general
property of group operations, because they are the stabilizers of the vertices, which
form a single orbit [Chapter 5 (6.5)]. The same is true for the subgroups of order 5
and for those of order 2.

Clearly the 15 elements of order 2, being the nontrivial elements in conjugate
subgroups of order 2, form one conjugacy class. What about the elements of order
3? Let x denote a counterclockwise rotation by 277 /3 about a vertex v. Though x will
be conjugate to rotation with the same angle about any other vertex [Chapter 5
(6.5)], it is not so clear whether or not x is conjugate to x?. Perhaps the first guess
would be that x and x? are not conjugate.

Let v’ denote the vertex opposite to v, and let x’ be the counterclockwise rota-
tion by 277 /3 about v'. So x and x' are conjugate elements of the group. Notice that
the counterclockwise rotation x about v is the same motion as the clockwise rotation
by 27 /3 about the opposite vertex v’. Thus x> = x', and this shows that x and x*
are conjugate after all. It follows that all the elements of order 3 are conjugate. Sim-
ilarly, the 12 rotations by 277 /5 and -2 /5 are conjugate. They are not conjugate to
the remaining 12 rotations by 477 /5, —41 /5 of order 5. (One reason, as we have al-
ready remarked, is that the order of a conjugacy class divides the order of the group,
and 24 does not divide 60.) Thus there are two conjugacy classes of elements of or-
der 5, and the Class Equation is

(2.2) 60=1+ 15+ 20 + 12 + 12,

We will now use this Class Equation to prove the following theorem.
(2.3) Theorem. The icosahedral group I has no proper normal subgroup.

A group G # {1} is called a simple group if it is not the trivial group and if it
contains no proper normal subgroup (no normal subgroup other than {1} and G).
Thus the theorem can be restated as follows:

(2.4) The icosahedral group is a simple group.

Cyclic groups of prime order contain no proper subgroup at all and are there-
fore simple groups. All other groups, except for the trivial group, contain proper
subgroups, though not necessarily normal ones. We should emphasize that this use
of the word simple does not imply “uncomplicated.” Its meaning here is roughly “not
compound.”

Proof of Theorem (2.3). The proof of the following lemma is straightforward:
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(2.5) Lemma.

(a) If a normal subgroup N of a group G contains an element x, then it contains
the conjugacy class Cy of x in G. In other words, a normal subgroup is a union
of conjugacy classes.

(b) The order of a normal subgroup N of G is the sum of the orders of the con-
jugacy classes which it contains. o

We now apply this lemma. The order of a proper normal subgroup of the icosa-
hedral group is a proper divisor of 60 and is also the sum of some of the terms on
the right side of the Class Equation (2.2), including the term 1. It happens that there
is no such integer. This proves the theorem. o

(2.6) Theorem. The icosahedral group is isomorphic to the alternating group As.

Proof. To describe this isomorphism, we need to find a set S of five elements
on which / operates. One such set consists of the five cubes which can be inscribed
into a dodecahedron, one of which is illustrated below:

(2.7) Figure. One of the cubes inscribed in a dodecahedron.

The group I operates on this set of cubes S, and this operation defines a homomor-
phism ¢: I— S, the associated permutation representation. The map ¢ is our iso-
morphism from / to its image As. To show that it is an isomorphism, we will use the
fact that / is a simple group, but we need very little information about the operation
itself.

Since the kernel of ¢ is a normal subgroup of I and since / is a simple group,
ker ¢ is either {1} or /. To say ker ¢ = I would mean that the operation of / on the
set of five cubes was the trivial operation, which it is not. Therefore ker ¢ = {1},
and ¢ is injective, defining an isomorphism of I onto its image in Ss.

Let us denote the image in Ss by 7 too. We restrict the sign homomorphism
Ss——{=*1} to I, obtaining a homomorphism /—> {+1}. If this homomorphism
were surjective, its kernel would be a normal subgroup of I of order 30 [Chapter 2
(6.15)]. This is impossible because I is simple. Therefore the restriction is the trivial
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homomorphism, which just means that / is contained in the kernel As of the sign ho-
momorphism. Since both groups have order 60, I = As. o

3. OPERATIONS ON SUBSETS

Whenever a group G operates on a set S, there is also an operation on subsets. If
U C § is a subset, then

(3.1) gU = {gu|u € U}

is another subset of §. The axioms for an operation are clearly verified. So G oper-
ates on the set of subsets of S. We can consider the operation on subsets of a given
order if we want to do so. Since multiplication by g is a permutation of S, the sub-
sets U and gU have the same order.

For example, let O be the octahedral group of 24 rotations of a cube, and let S
be the set of vertices of the cube. Consider the operation of O on subsets of order 2
of §, that is, on unordered pairs of vertices. There are 28 such pairs, and they form
three orbits for the group:

(i) {pairs of vertices on an edge};
(i) {pairs which are opposite on a face of the cube};
(iii) {pairs which are opposite on the cube}.

These orbits have orders 12, 12, and 4 respectively: 28 = 12 + 12 + 4.

The stabilizer of a subset U is the set of group elements g such that gU = U.
Thus the stabilizer of a pair of opposite vertices on a face contains two elements—
the identity and the rotation by 7 about the face. This agrees with the counting for-
mula: 24 = 2 - 12.

Note this important point once more: The equality gU = U does not mean that
g leaves the elements in U fixed, but rather that g permutes the elements within U,
that is, that gu € U whenever u € U.

(3.2) Proposition. Let H be a group which operates on a set S, and let U be a sub-
set of S. Then H stabilizes U if and only if U is a union of H-orbits. o

This proposition just restates the fact that the H-orbit of an element u € U is the set
of all elements hu. If H stabilizes U, then U contains the H-orbit of any of its
elements. o

Let’s consider the case that G operates by left multiplication on the subsets of
G. Any subgroup H of G is a subset, and its orbit consists of the left cosets. This
operation of G on cosets was defined in Chapter 5 (6.1). But any subset of G has an
orbit.

(3.3) Example. Let G = D; be the dihedral group of symmetries of an equilateral
triangle, presented as usual:

G={(Yy|0=i=20=<j=1,x>=1,y>=1,yx = x¥}.
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This group contains 15 subsets of order 2, and we can decompose this set of 15 into
orbits for left multiplication. There are three subgroups of order 2:

(3.4) H,={l,y}, H,={l,xy}, Hs={1,x%}.

Their cosets form three orbits of order 3. The other six subsets of order 2 form a sin-
gle orbit: 15 = 3 + 3 + 3 + 6. The orbit of six is

(3.5) {1, x}, {x, x%, {2, 11, {y, 2%} {xy, v}, (%, oy} o

(3.6) Proposition. Let U be a subset of a group G. The order of the stabilizer
Stab (U) of U for the operation of left multiplication divides the order of U.

Proof. Let H denote the stabilizer of U. Proposition (3.2) tells us that U is a
union of orbits for the operation of H on G. These H-orbits are right cosets Hg. So U
is a union of right cosets. Hence the order of U is a multiple of |H|. o

Of course since the stabilizer is a subgroup of G, its order also divides | G|. So
if |U| and | G| have no common factor, then Stab (U) is the trivial subgroup {1}.

The operation by conjugation on subsets of G is also interesting. For example,
we can partition the 15 subsets of D of order 2 into orbits for conjugation. The set
{H:, H,, Hs} of conjugate subgroups is one orbit, and the set {x, x*} forms an orbit
by itself. The other orbits have orders 2, 3,and 6: 15=1+2+3 + 3 + 6.

For our purposes, the important thing is the orbit under conjugation of a sub-
group H C G. This orbit is the set of conjugate subgroups

{¢Hg' | ¢ € G}.

The subgroup H is normal if and only if its orbit consists of H alone, that is,
gHg' = Hforallg € G.

The stabilizer of a subgroup H for the operation of conjugation is called the
normalizer of H and is denoted by

(3.7) N(H)={g €G|gHg" = H}.
The Counting Formula reads
(3.8) |G| = | N(H)| - |{conjugate subgroups}|.

Hence the number of conjugate subgroups is equal to the index [G : N (H)].
Note that the normalizer always contains the subgroup

(3.9) N(H)DH,

because hHh™' = H when h € H. So by Lagrange’s Theorem, |H| divides
| N(H)|, and | N (H)| divides | G|.

In example (3.3), the subgroups H,,H,,H; are all conjugate, and so
| N (H;)| = 2; hence N (H;) = H;.

The definition of the normalizer N (H) shows that H is a normal subgroup of
N (H), and in fact N (H) is the largest group containing H as a normal subgroup. In
particular, N (H) = G if and only if H is a normal subgroup of G.
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4. THE SYLOW THEOREMS

The Sylow Theorems, which we will prove in this section, describe the subgroups of
prime power order of an arbitrary finite group.

Let G be a group of order n = | G|, and let p be a prime number which divides
n. We will use the following notation: p¢ will denote the largest power of p dividing
n, so that

4.1) n= p‘m

for some integer m, and p does not divide m.

(4.2) Theorem. First Sylow Theorem: There is a subgroup of G whose order is p*.

The proofs of the Sylow Theorems are at the end of the section.

(4.3) Corollary. If a prime p divides the order of a finite group G, then G con-
tains an element of order p.

For, let H be a subgroup of order p¢, and let x be an element of H different fromrli
The order of x divides p®, so it is p” for some r in the range 0 < r = e, Then x”
has order p. o

Without the Sylow Theorem, this corollary is not obvious. We already know
that the order of any element divides | G|, but we might imagine a group of order 6,
for example, made up of the identity 1 and five elements of order 2. No such group
exists. According to (4.3), a group of order 6 must contain an element of order 3
and an element of order 2.

(4.4) Corollary. There are exactly two isomorphism classes of groups of order 6.
They are the classes of the cyclic group Cs and of the dihedral group Ds.

Proof. Let x be an element of order 3 and y an element of order 2 in G. It is
easily seen that the six products x'y/, 0 <i < 2,0 < j < 1 are distinct elements
of the group. For we can rewrite an equation x’y/ = x"y* in the form x'~" = y*7/,
Every power of x except the identity has order 3, and every power of y except the
identity has order 2. Thus x'™" = y*/ = 1, which shows that r =i and s = j.
Since G has order 6, the six elements 1,x,x? y,xy,x?y run through the whole
group. In particular, yx must be one of them. It is not possible that yx = y because
this would imply x = 1. Similarly, yx # 1, x, x2. Therefore one of the two relations

yx = xy or yx = x’y

holds in G. Either of these relations, together with x* = 1 and y*> = 1, allows us to
determine the multiplication table for the group. Therefore there are at most two iso-
morphism classes of groups of order 6. We know two already, namely the classes of
the cyclic group Cs and of the dihedral group Ds. So they are the only ones. o
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(4.5) Definition. Let G be a group of order n = p®m, where p is a prime not di-
viding m and e = 1. The subgroups H of G of order p® are called Sylow p-
subgroups of G, or often just Sylow subgroups.

Thus a Sylow p-subgroup is a p-subgroup whose index in the group is not di-
visible by p. By Theorem (4.2), a finite group G always has a Sylow p-subgroup if p
divides the order of G. The remaining Sylow Theorems (4.6) and (4.8) give more
information about them.

(4.6) Theorem. Second Sylow Theorem: Let K be a subgroup of G whose order is
divisible by p, and let H be a Sylow p-subgroup of G. There is a conjugate subgroup
H' = gHg ' such that K N H' is a Sylow subgroup of K.

(4.7) Corollary.

(a) If K is any subgroup of G which is a p-group, then K is contained in a Sylow
p-subgroup of G.
(b) The Sylow p-subgroups of G are all conjugate.

It is clear that a conjugate of a Sylow subgroup is also a Sylow subgroup. So to ob-
tain the first part of the corollary, we only need to note that the Sylow subgroup of a
p-group K is the group K itself. So if H is a Sylow subgroup and X is a p-group,
there is a conjugate H' such that K N H' = K, which is to say that H' contains K.
For part (b), let K and H be Sylow subgroups. Then there is a conjugate H ' of H
which contains K. Since their orders are equal, K = H'. Thus K and H are conju-
gate. o

(4.8) Theorem. Third Sylow Theorem: Let |G| = n, and n = p°m as in (4.1).
Let 5 be the number of Sylow p-subgroups. Then s divides m and is congruent 1
(modulo p): s|m, and s = ap + 1 for some integer a = 0.

Before proving these theorems, we will use them to determine the groups of
orders 15 and 21. These examples show how powerful the Sylow Theorems are, but
do not be misled. The classification of groups of order » is not easy when n has many
factors. There are just too many possibilities.

(4.9) Proposition.

(a) Every group of order 15 is cyclic.

(b) There are two isomorphism classes of groups of order 21: the class of the
cyclic group Cy and the class of the group G having two generators x, y which
satisfy the relations x” = 1, y> = 1, yx = x%y.

Proof.

(a) Let G be a group of order 15. By (4.8) the number of its Sylow 3-subgroups di-
vides 5 and is congruent 1 (modulo 3). The only such integer is 1. Therefore there is
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one Sylow 3-subgroup H, and so it is a normal subgroup. There is one Sylow 5-sub-
group K, and it is normal too, for similar reasons. Clearly, K N H = {1}, because
the order of K M H divides both 5 and 3. Also, KH is a subgroup of order >5, and
hence KH = G. By (8.6) in Chapter 2, G is isomorphic to the product group H X K.
Thus every group of order 15 is isomorphic to a direct product of cyclic groups of
orders 3 and 5. All groups of order 15 are isomorphic. Since the cyclic group Cis is
one of them, every group of order 15 is cyclic.

(b) Let G be a group of order 21. Then Theorem (4.8) shows that the Sylow 7-sub-
group K must be normal. But the possibility that there are seven conjugate Sylow
3-subgroups H is not ruled out by the theorem, and in fact this case does arise. Let x
denote a generator for K, and y a generator for one of the Sylow 3-subgroups H.
Thenx” = 1, y* = 1, and, since K is normal, yxy™' = x’ for some i < 7.
We can restrict the possible exponents i by using the relation y* = 1. It implies
that
x=ydxy3 = yzxiy—z — yxﬂy—l — xi3_

Hence i* = 1 (mod 7). This means that i can take the values 1, 2, 4,

Case 1. yxy™' = x. The group is abelian, and by (8.6) in Chapter 2 it is isomorphic
to a direct product of cyclic groups of orders 3 and 7. Such a group is cyclic [Chap-
ter 2 (8.4)].

Case 2: yxy~' = x*. The multiplication in G can be carried out using the rules
x7=1,y*=1, yx = x%y, to reduce every product of the elements x,y to one of
the forms x'y/ with 0 =i < 7 and 0 = j < 3. We leave the proof that this group
actually exists as an exercise.

Case 3: yxy™' = x*. In this case, we replace y by y?, which is also a generator for
H, to reduce to the previous case: y’xy 2 = yx*y™' = x'® = x2 Thus there are two
isomorphism classes of groups of order 21, as claimed. o

We will now prove the Sylow Theorems.

Proof of the First Sylow Theorem. We let ¥ be the set of all subsets of G of
order p¢. One of these subsets is the subgroup we are looking for, but instead of
finding it directly we will show that one of these subsets has a stabilizer of order p°.
The stabilizer will be the required subgroup.

(4.10) Lemma. The number of subsets of order p¢ in a set of n = p°m elements
( p not dividing m) is the binomial coefficient

(n =1 m—k--(n—p°+1
v <pe> Pt = (e — R 1

Moreover W is not divisible by p.
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Proof. 1t is a standard fact that the number of subsets of order p° is this bino-
mial coefficient. To see that » is not divisible by p, note that every time p divides a
term (n — k) in the numerator of », it also divides the term (p¢ — k) of the denomi-
nator exactly the same number of times: If we write k in the form k = p‘l, where p
does not divide /, then i < e. Therefore (n — k) and (p® — k) are both divisible by
p' but not divisible by p™'. o

We decompose ¥ into orbits for the operation of left multiplication, obtaining
the formula
v=I|gl= > o]
orbits O
Since p does not divide N, some orbit has an order which is not divisible by p, say
the orbit of the subset U. We now apply Proposition (3.6) to conclude that | Stab (U) |
is a power of p, Since

(4.11) |Stab(@)| - |Ov| = |G| = p*m

by the Counting Formula, and since |Oy| is not divisible by p, it follows that
| Stab (U)| = p*. This stabilizer is the required subgroup. o

Proof of the Second Sylow Theorem. We are given a subgroup K and a Sylow
subgroup H of G, and we are to show that for some conjugate subgroup H' of H, the
intersection K N H' is a Sylow subgroup of K.

Let S denote the set of left cosets G/H. The facts that we need about this set
are that G operates transitively, that is, the set forms a single orbit, and that H is the
stabilizer of one of its elements, namely of s = 1H. So the stabilizer of as is the
conjugate subgroup aHa ' [see Chapter 5(6.5b)].

We restrict the operation of G to K and decompose S into K-orbits. Since H 1s
a Sylow subgroup, the order of S is prime to p. So there is some K-orbit O whose
order is prime to p. Say that O is the K-orbit of the element as. Let H' denote the
stabilizer aHa™! of as for the operation of G. Then the stabilizer of as for the re-
stricted operation of K is obviously H' N K, and the index [K:H' N K] is |0,
which is prime to p. Also, since it is a conjugate of H, H' is a p-group. Therefore
H' N K is a p-group. It follows that H' N K is a Sylow subgroup of XK. o

Proof of the Third Sylow Theorem. By Corollary (4.7), the Sylow subgroups of
G are all conjugate to a given one, say to H. So the number of Sylow subgroups is
s = [G:N], where N is the normalizer of H. Since H C N, [G:N] divides
[G:H] = m. To show s = 1 (modulo p), we decompose the set {H.,..., H} of Sy-
low subgroups into orbits for the operation of conjugation by H = H;. An orbit con-
sists of a single group H; if and only if H is contained in the normalizer N; of H;. If
so, then H and H; are both Sylow subgroups of N;, and H; is normal in N;. Corollary
(4.7b) shows that H = H;. Therefore there is only one H-orbit of order 1, namely
{H}. The other orbits have orders divisible by p because their orders divide |H|, by
the Counting Formula. This shows that s = 1 (modulo p). o
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5. THE GROUPS OF ORDER 12
In this section, we use the Sylow Theorems to classify the groups of order 12;

(5.1) Theorem. There are five isomorphism classes of groups of order 12. They
are represented by:

(i) the product of cyclic groups Cs X Cy;
(ii) the product of cyclic groups C; X C> X Cs;
(iii) the alternating group A,
(iv) the dihedral group Ds,
(v) the group generated by x,y, with relations x* = 1, y*> =1, xy = y’x.

Note that C; X C, is isomorphic to C,, and that C, X C; X C; is isomorphic to
C2 X Cs (see [Chapter 2 (8.4)]).

Proof. Let G be a group of order 12. Denote by H a Sylow 2-subgroup of G,
which has order 4, and by X a Sylow 3-subgroup, of order 3. It follows from Theo-
rem (4.8) that the number of Sylow 2-subgroups is either 1 or 3, and that the number
of Sylow 3-subgroups is 1 or 4. Also, H is a group of order 4 and is therefore either
a cyclic group or the Klein four group V, a product of two cyclic groups of order 2:

(5.2) H=~=C, or H=YV.

(5.3) Lemma. At least one of the two subgroups H,K is normal.

Proof. Suppose that K is not normal. Then K has four conjugate subgroups
K = Ki,..., K,. Since | K;| = 3, the intersection of any two of these groups must be
the identity. Counting elements shows that there are only three elements of G which
are not in any of the groups K.

Any Sylow 2-subgroup H has order 4, and H N K; = {1}. Therefore it consists of
these three elements and 1. This describes H for us and shows that there is only one
Sylow 2-subgroup. Thus H is normal. o
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Since H N K = {1}, every element of HK has a unique expression as a
product hk [Chapter 2 (8.6)], and since |G| = 12, HK = G. If H is normal, then K
operates on H by conjugation, and we will show that this operation, together with
the structure of H and K, determines the structure of G. Similarly, if K is normal
then H operates on K, and this operation determines G.

Case 1: H and K are both normal. Then by (8.6) in Chapter 2, G is isomorphic to
the product group H X K. By (5.2) there are two possibilities:

(5.4 G =CyXCs or G=VXCs.
These are the abelian groups of order 12.

Case 2: H is normal but X is not. So there are four conjugate Sylow 3-subgroups
{Ki,..., K}, and G operates by conjugation on this set S of four subgroups. This op-
eration determines a permutation representation

(5.5) G455,

Let us show that ¢ maps G isomorphically to the alternating group A, in this case.

The stabilizer of K; for the operation of conjugation is the normalizer N (K}),
which contains K;. The Counting Formula shows that |N (K,~)| = 3, and hence that
N (K;) = K;. Since the only element common to the subgroups K; is the identity ele-
ment, only the identity stabilizes all of these subgroups. Thus ¢ is injective and G is
isomorphic to its image in S..

Since G has four subgroups of order 3, it contains eight elements of order 3,
and these elements certainly generate the group. If x has order 3, then ¢ (x) is a per-
mutation of order 3 in S,. The permutations of order 3 are even. Therefore
img C A,. Since |G| = | A4|, the two groups are equal.

As a corollary, we note that if H is normal and X is not, then H is the Klein
four group V, because the Sylow 2-subgroup of A, is V.

Case 3: K is normal, but H is not. In this case H operates on X by conjugation, and
conjugation by an element of H is an automorphism of K. We let y be a generator for
the cyclic group K: y* = 1. There are only two automorphisms of X—the identity
and the automorphism which interchanges y and y?.

Suppose that H is cyclic of order 4, and let x generate H: x* = 1. Then since G
is not abelian, xy # yx, and so conjugation by x is not the trivial automorphism of
K. Hence xyx™' = y2. The Todd—Coxeter Algorithm (see Section 9) is one way to
show that these relations define a group of order 12;

(5.6) *=1,y=1, xyx' = y2

The last possibility is that H is isomorphic to the Klein four group. Since there
are only two automorphisms of K, there is an element w € H besides the identity
which operates trivially: wyw™ = y. Since G is not abelian, there is also an element
v which operates nontrivially: vyv™' = y2. Then the elements of H are {1,0,w,ow},
and the relations v = w? = 1, and vw = wo hold in H. The element x = wy has
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order 6, and vxv™! = vwyv™' = wy? = y?w = x'. The relations x®* = 1, v2 =1,
vxv™' = x7! define the group Ds, so G is dihedral in this case. o

6. COMPUTATION IN THE SYMMETRIC GROUP

We want to bring up two points about calculation with permutations. The first con-
cerns the order of multiplication. To have a uniform convention, we have used the
functional notation p(x) for all our maps p, including permutations. This has the
consequence that a product pg must be interpreted as the composed operation p © g,
that is, “first apply g, then p.” When multiplying permutations, it is more usual to
read pg as “first apply p, then q.” We will use this second convention here. A com-
patible notation for the operation of a permutation p on an index i requires writing
the permutation on the right side of the index:

(i)p.

Applying first p and then ¢ to an index i, we get ((i)p)g = (i)pq, as desired. Actu-
ally, this notation looks funny to me. We will usually drop the parentheses:

(p = ip.
What is important is that p must appear on the right.

To make our convention for multiplication compatible with matrix multiplica-
tion, we must replace the matrix P associated to a permutation p in Chapter 1 (4.6)
by its transpose P!, and use it to multiply on the right on a row vector.

The second point is that it is not convenient to compute with permutation ma-
trices, because the matrices are large in relation to the amount of information they
contain. A better notation is needed. One way to describe a permutation is by means
of a table. We can consider the configuration

1 23 456 78
(6.1) p_[46835217]
as a notation for the permutation defined by

1p=4,2p=6,... .

It is easy to compute products using this notation. If for example
(12 3 45 6 78
q_[24681357]’
then we can evaluate pq (first p, then g) by reading the two tables in succession:
1 23 45 6 7 8
pq:[83761425]'

Table (6.1) still requires a lot of writing, and of course the top row is always
the same. It could, in principle, be left off,, to reduce the amount of writing by half,



212 More Group Theory Chapter 6

but this would make it hard to find our place in the bottom row if we were permut-
ing, say, 18 digits.

Another notation, called cycle notation, is commonly used. It describes a per-
mutation of # elements by at most n symbols and is based on the partition of the in-
dices into orbits for the operation of a permutation. Let p be a permutation, and let
H be the cyclic subgroup generated by p. We decompose the set {1,..., n} into H-
orbits and refer to these orbits as the p-orbits. The p-orbits form a partition of the
set of indices, called the cycle decomposition associated to the permutation p.

If an index i is in an orbit of k elements, the elements of the orbit will be

0 = {i,ip,ip?,...,ip* '}

Let us denote ip” by i,, so that O = {io,1,,...,i—}. Then p operates on this orbit as

/7 i‘\.

(62) E I
i—1...
A permutation which operates in this way on a subset {io, ii,..., ix—} of the indices

and leaves the remaining indices fixed is called a cyclic permutation. Thus

/4'\3
(6.3) o=1 i
8

defines a cyclic permutation of order 5 of {1,..., 8}, it being understood that the in-
dices 2, 5, 6 which are not mentioned are left fixed—each forms a o-orbit of one el-
ement. When we speak of the indices on which a permutation operates, we will
mean the ones which are not fixed: 1,3,4,7, 8 in this case.

Another cyclic permutation of {1,..., 8} is

(6.4) T = Ci)

Such a cyclic permutation of order 2 is called a transposition. A transposition is a
permutation which operates on two indices.
Our permutation p (6.1) is not cyclic because there are three p-orbits:

/N > )
: 1& 81 5 C6‘>
74/

o T

4

It is clear that
p =0T =70,

where ot denotes the product permutation.
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(6.5) Proposition. Let o, 7 be permutations which operate on disjoint sets of in-
dices. Then o7 = 70.

Proof. If neither ¢ nor 7 operates on an index i, then ior = iro =i. If &
sends i to j # i, then 7 fixes both i and j. In that case, ior = jT = j and
iro = io = j too. The case that T operates on i is the same. o

Note, however, that when we multiply permutations which operate on overlap-
ping sets of indices, the operations need not commute. The symmetric group S is
not a commutative group if n > 2. For example, if 7' is the transposition which in-
terchanges 3 and 6 and if o is as above, then o7’ # 7'0.

(6.6) Proposition. Every permutation p not the identity is a product of cyclic per-
mutations which operate on disjoint sets of indices: p = 0102 -+* 0%, and these cyclic
permutations o, are uniquely determined by p.

Proof. We know that p operates as a cyclic permutation when restricted to a
single orbit. For each p-orbit, we may define a cyclic permutation o which permutes
that orbit in the same way that p does and which fixes the other indices. Clearly, p is
the product of these cyclic permutations. Conversely, let p be written as a product
010, -+ 0% of cyclic permutations operating on distinct sets O, ..., O of indices. Ac-
cording to Proposition (6.5), the order does not matter. Note that o,..., 0% fix the
elements of O;; hence p and o act in the same way on O,. Therefore O, is a p-orbit.
The same is true for the other cyclic permutations. Thus Oi,..., Ok are the p-orbits
which contain more than one element, and the permutations o; are those constructed
at the start of the proof. o

A cycle notation for the cyclic permutation (6.2) is
(6.7) (Hody -+* ik—1).
Thus our particular permutation ¢ has the cycle notation (14 387). The notation is

not completely determined by the permutation, because we can start the list with
any of the indices io,..., ix-1. There are five equivalent notations for o:

o =(43871) = (38714) = ---.

Any one of these notations may be used.

A cycle notation for an arbitrary permutation p is obtained by writing the per-
mutation as a product of cyclic permutations which operate on disjoint indices, and
then writing the cycle notations for each of these permutations in succession. The or-
der is irrelevant. Thus two of the possible cycle notations for the permutation p de-
scribed above are

(14387)26) and (62)(87143).

If we wish, we can include the “one-cycle” (5), to represent the fixed element §,
thereby presenting all the indices in the list. But this is not customary.
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With this notation, every permutation can be denoted by a string of at most n
integers, suitably bracketed. Products can still be described by juxtaposition. A cy-
cle notation for the permutation ¢ considered above is ¢ = (12487 5)(36). Thus

! !

ag T ag T

(6.8) pqg = (14387)(26)(124875)(36) = 10 '7’.

This string of cycles represents the permutation pg. To evaluate the product on an in-
dex, the index is followed through the four factors:

IMEM>4M:M>4M?\-A,/\>8M:/:/\>8’ and SO 0On.

However, (6.8) does not exhibit the decomposition of pg into disjoint cycles, be-
cause indices appear more than once. Computation of the permutation as above leads
to the cycle decomposition

= (185)(237)(46) = 1/8> 2/ 3> ¢

When the computation is finished, every index occurs at most once.
For another sample, let p = (548). Then

op = (14387)(548) = (187)(354)
po = (548)(14387) = (147)(385).

Now let us compute the conjugate of a permutation p. Since p is a product of
disjoint cycles, it will be enough to describe the conjugate ¢ ' oq of a cyclic permu-
tation o, say the permutation (i, --- ix). (The fact that we have switched the order of
multiplication makes the expression for conjugation by ¢~ a little nicer than that for
conjugation by ¢.)

(6.9)

(6.10) Proposition.

(a) Let o denote the cyclic permutation (i,i; ---ix), and let ¢ be any permutation.
Denote the index i-g by j.. Then the conjugate permutation ¢ ' gq is the cyclic
permutation (jija - j).

(b) If an arbitrary permutation p is written as a product of disjoint cycles o, then
g~ 'pq is the product of the disjoint cycles ¢ 'oq.

(¢) Two permutations p, p’ are conjugate elements of the symmetric group if and
only if their cycle decompositions have the same orders.

Proof. The proof of (a) is the following computation:
irq'oq = \,0q = iri1q = jra,
in which the indices are to be read modulo k. Part (b) follows easily. Also, the fact

that conjugate permutations have cycle decompositions with the same orders follows
from (b). Conversely, suppose that p and p' have cycle decompositions of the same
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orders. Say that p = (i, - i,){i," ---is')--- and p’ = (ji -+ §)(Gi" =+ js') --- . Define
q to be the permutation sending i,~ww>j,, i,/»w>j,’, and so on. Then
P’ =4q'pg.o

Let us determine the Class Equation for the symmetric group S4 as an example.
This group contains six transpositions

12), (13), (14), (23), (24, G4,
three products of disjoint transpositions

12)34), 13)(24), (14)(23),

eight 3-cycles, and six 4-cycles. By Proposition (6.10), each of these sets forms one
conjugacy class. So the Class Equation of S is

24=1+4+3+6+6+ 8.

We will now describe the subgroups G of the symmetric group S, whose order
is divisible by p and whose Sylow p-subgroup is normal. We assume that p is a
prime integer. Since p divides p! = | S,| only once, it also divides | G| once, and so
the Sylow p-subgroup of G is a cyclic group.

It turns out that such subgroups have a very nice description in terms of the
finite field F,. To obtain it, we use the elements {0, 1, -+, p—1} of the finite field as
the indices. Certain permutations of this set are given by the field operations them-
selves. Namely, we have the operations (add a) and (multiply by c) for any given
a,c € F,, ¢ # 0. They are invertible operations and hence permutations of [, so
they represent elements of the symmetric group. For example, (add 1) is the p-cycle

(6.11) (add 1) = (012---(p-1)).

The operator (multiply by c) always fixes the index 0, but its cycle decomposition de-
pends on the order of the element ¢ in F,™. For example,

(6.12) (multiply by 2) = (1243) ifp=>5
= (124)(365) ifp =7.

Combining the operations of addition and multiplication gives us all operators on [,
of the form

(6.13) x~mwecx + oa.

The set of these operators forms a subgroup G of order p(p—1) of the symmetric

group.
The group of operators (6.13) has a nice matrix representation, as the set of

2 X 2 matrices with entries in the field [, of the form

(6.14) [1 ‘c’]
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This matrix operates by right multiplication on the vector (1,x), sending it to
(1, cx + a). So we can recover the operation of G on [, from right multiplication by
the corresponding matrix. (We use right multiplication because of our chosen order
of operations.) The operations (add a) and (multiply by c) are represented by the ele-

mentar y matrices
1 ? C '

(6.15) Theorem. Let p be a prime, and let H be a subgroup of the symmetric
group S, whose order is divisible by p. If the Sylow p- subgroup of H is normal,
then, w1th suitable labeling of the indices, H is contained in the group of operators
of the form (6.13).

For example, the dihedral group D, operates faithfully on the vertices of a reg-
ular p-gon, and so it is realized as a subgroup of the symmetric group S,. It is the
subgroup of (6.14) consisting of the matrices in which ¢ = *1.

Proof of the theorem. The only elements of order p of S, are the p-cycles. So
H contains a p-cycle, say o. We may relabel indices so that o becomes the standard
p-cycle (add 1) = (01---(p-1)). Then this permutation generates the Sylow
p-subgroup of H.

Let 71 be another element of H. We have to show that 7, corresponds to an op-
erator of the form (6.13). Say that 7, sends the index 0 to i. Since ¢ also sends 0 to
i, the product 7 = o7'7, fixes 0. It suffices to show that 7 has the form (6.13), and
to do so, we will show that 7 is one of the operators (multiply by c).

By hypothesis, K = {1,0,...,07"'} is a normal subgroup of H. Therefore

(6.16) o7 = ot

for some & between 1 and p—1. We now determine 7 by computing both sides of this
equation. By Proposition (6.10), the left side is the p-cycle 77'or =
(0r17...(p—1)7), while direct computation of the right side gives o* =
(0k 2k... (p—1)k):

Or 17... (p-1)7) = (0 k2k... (p-1K).

We must be careful in interpreting the equality of these two cycles, because the cycle
notation is not unique. We need to know that the first index on the left is the same as
the first index on the right. Otherwise we will have to identify equal indices in the
two cycles and begin with them. That is why we normalized at the start, to have
0r = 0. Knowing that fact, the two lists are the same, and we conclude that

17 =k, 2r = 2k,
This is the operator (multiply by k), as claimed. o

We now return for a moment to the question of order of operations. If we wish
to use the notation p (i) for permutations in this section, as we do for functions else-
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where, we must modify our way of computing with cycles in order to take this into
account. The most systematic way to proceed is to read everything, including cycles,
from right to left. In other words, we should read the cycle (14387) as

1 evw g e Jeman 8 a7 e ]|

This is the inverse of the permutation (6.3). We can then interpret the product
(14387)(548) as composition: “First apply (548), then (14387).” Computation
of this product gives

levww §evw T evw ] 3 emw§ e g o3

which we would write as (18 7)(354). Notice that this is the same string of symbols
as we obtained in (6.9). Miraculously, reading everything backward gives the same
answer when we multiply permutations. But of course, the notation (1 8 7)(35 4) now
stands for the inverse of the permutation (6.9). The fact that the notations multiply
consistently in our two ways of reading permutations mitigates the crime we have
committed in switching from left to right.

7. THE FREE GROUP

We have seen a few groups, such as the symmetric group Ss, the dihedral groups D,,
and the group M of rigid motions of the plane, in which one can compute easily us-
ing a list of generators and a list of relations for manipulating them. The rest of this
chapter is devoted to the formal background for such methods. In this section, we
consider groups which have a set of generators satisfying no relations other than ones
[such as x (yz) = (xy)z] which are implied by the group axioms. A set S of elements
of a group which satisfy no relations except those implied by the axioms is called
free, and a group which has a free set of generators is called a free group. We will
now describe the free groups.

We start with an arbitrary set S of symbols, say S = {a, b, c,...}, which may be
finite or infinite, and define a word to be a finite string of symbols from S, in which
repetition is allowed. For instance a, aa, ba, and aaba are words. Two words can be
composed by juxtaposition:

aa, ba~~~ gaba;

in this way the set W of all words has an associative law of composition. Moreover,
the “empty word” can be introduced as an identity element for this law. We will
need a symbol to denote the empty word; let us use 1. The set W is called the free
semigroup on the set of symbols S. Unfortunately it is not a group because inverses
are lacking, and the introduction of inverses complicates things.

Let S’ be the set consisting of the symbols in § and also of symbols a™' for
every a € §:

(7.1) S ={a,a',b,b!,c,c",...}.
Let W' be the set of words made using the symbols S'. If a word w € W' looks
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like

_1--- _1

e XX or e X X v

for some x € S, then we can agree to cancel the two symbols x, x' and reduce the
length of the word. The word will be called reduced if no such cancellation can be
made. Starting with any word w, we can perform a finite sequence of cancellations
and must eventually get a reduced word wo, possibly the empty word 1. We call this
word wo a reduced form of w.

Now there is often more than one way to proceed with cancellation. For in-
stance, starting with w = babb 'a'c¢™'ca, we can proceed in several ways, such as

bapp~'a 'c'ca  babb™'a”'¢'fa

bd ¢ ca babb ‘¢~ ¢
b '¢a bapp™
ba da.

The same reduced word is obtained at the end, though the letters come from differ-
ent places in the original word. (The letters which remain at the end have been un-
derlined.) This is the general situation.

(7.2) Proposition. There is only one reduced form of a given word w.

Proof. We use induction on the length of w. If w is reduced, there is nothing to
show. If not, there must be some pair of letters which can be cancelled, say the un-
derlined pair

w = -.-&—1 RN

(Let us allow x to denote any element of S', with the obvious convention that if
x = a ' then x™' = a.) If we show that we can obtain every reduced form wy of w
by cancelling the pair xx™' first, then the proposition will follow by induction on the
shorter word -+ ££7' --- thus obtained.

Let wo be a reduced form of w. We know that w; is obtained from w by some
sequence of cancellations. The first case is that our pair xx™' is cancelled at some step
in this sequence. Then we might as well rearrange the operations and cancel xx™'
first. So this case is settled. On the other hand, the pair xx™' can not remain in wy,
since wy is reduced. Therefore at least one of the two symbols must be cancelled at
some time. If the pair itself is not cancelled, then the first cancellation involving the

pair must look like
eI e or e xf e

Notice that the word obtained by this cancellation is the same as that obtained by
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cancelling the original pair xx™'. So we may cancel the original pair at this stage in-
stead. Then we are back in the first case, and the proposition is proved. o

Now we call two words w, w’ in W' equivalent, and we write w~w’, if they
have the same reduced form. This is an equivalence relation.

(7.3) Proposition. The product of equivalent words is equivalent: If w~w’ and
v~v’', then wo~w'v’.

Proof. To obtain the reduced word equivalent to the product wo, we can first
cancel as much as possible in w and in v, to reduce w to wp and v to ve. Then wo is
reduced to wove. Now we continue cancelling in wyuyp if possible. Since w'~w and
v’~v, the same process, applied to w’'v’, passes through wyv, too, and hence it
leads to the same reduced word. o

It follows from this proposition that equivalence classes of words may be mul-
tiplied, that is, that there is a well-defined law of composition on the set of equiva-
lence classes of words.

(7.4) Proposition. Let F denote the set of equivalence classes of words in W'.
Then F is a group with the law of composition induced from W',

Proof. The facts that multiplication is associative and that the class of the
empty word 1 is an identity follow from the corresponding facts in W'. It remains to
check that all elements of F are invertible. But clearly, if w = xy --- z then the class
of z7'-+- y~'x7! is the inverse of the class of w. o

(7.5) Definition. The group F of equivalence classes of words is called the free
group on the set S.

So an element of the free group F corresponds to exactly one reduced word in
W', by Proposition (7.2). To multiply reduced words, combine and cancel:

(abc™")(cb) mw abc™'cb = abb.

One can also introduce power notation for reduced words: aaab™'b™" = a’b™2,

The free group on the set § = {a} consisting of one element is the same as the
set of all powers of a: F = {a"}. It is an infinite cyclic group. In contrast, the free
group on a set S = {a, b} of two elements is very complicated.

8. GENERATORS AND REIATIONS

Having described free groups, we now consider the more likely case that a set of
generators of a group is not free—that there are some nontrivial relations among
them. Our discussion is based on the mapping properties of the free group and of
quotient groups.



220 More Group Theory Chapter 6

(8.1) Proposition. Mapping property of the free group: Let F be the free group on
asetS = {a,b,...}, and let G be a group. Every map of sets /2 S—— G extends in a
unique way to a group homomorphism ¢: F—— G. If we denote the image f(x) of
an element x € S by £, then ¢ sends a word in ' = {a,a”",b,b™,...} to the corre-
sponding product of the elements {d,a ', b,b”',...} in G.

Proof. This rule does define a map on the set of words in S’. We must show
that equivalent words are sent to the same product in G. But since cancellation in a
word will not change the corresponding product in G, this is clear. Also, since mul-
tiplication in F is defined by juxtaposition, the map ¢ thus defined is a homomor-
phism. It is the only way to extend f to a homomorphism. o

If § is any subset of a group G, the mapping property defines a homomorphism
¢: F—— G from the free group on S to G. This reflects the fact that the elements of
S satisfy no relations in F except those implied by the group axioms, and explains
the reason for the adjective free.

A family S of elements is said to generate a group G if the map ¢ from the free
group on S to G is surjective. This is the same as saying that every element of G is a
product of some string of elements of S’, so it agrees with the terminology intro-
duced in Section 2 of Chapter 2. In any case, whether or not S generates G, the im-
age of the homomorphism ¢ of Proposition (8.1) is a subgroup called the subgroup
generated by S. This subgroup consists precisely of all products of elements of S'.

Assume that S generates G. The elements of S are then called generators.
Since ¢ is a surjective homomorphism, the First Isomorphism Theorem [Chapter 2
(10.9)] tells us that G is isomorphic to the quotient group /N, where N = ker ¢.
The elements of N are called relations among the generators. They are equivalence
classes of words w with the property that the corresponding product in G is 1:

ew)y=1 or w=1inG.

In the special case that N = {1}, ¢ is an isomorphism. In this case G is called a free
group too.

If we know a set of generators and also all the relations, then we can compute
in the isomorphic group F/N and hence in our group G. But the subgroup N will be
infinite unless G is free, so we can’t list all its elements. Rather, a set of words

R=1{r,r,.}

is called a set of defining relations for G if R C N and if N is the smallest normal
subgroup containing R. This means that N is generated by the subset consisting of all
the words in R and also all their conjugates.

It might seem more systematic to require the defining relations to be generators
for the group N. But remember that the kernel of the homomorphism F——G
defined by a set of generators is always a normal subgroup, so there is no need to
make the list of defining relations longer. If we know that some relation r = 1 holds
in G, then we can conclude that grg™' = 1 holds in G too, simply by multiplying
both sides of the equation on the left and right by g and g™,
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We already know a few examples of generators and relations, such as the dihe-
dral group D, [Chapter 5 (3.6), (3.7)]. It is generated by the two elements x, y, with
relations

(8.2) x"=1, y*=1, xyxy=1.

{8.3) Proposition. The elements x", y*, xyxy form a set of defining relations for
the dihedral group.

This proposition is essentially what was checked in Chapter 5 (3.6). But to
prove it formally, and to work freely with the concept of generators and relations,
we will need what is called the mapping property of quotient groups. It is a general-
ization of the First Isomorphism Theorem:

(8.4) Proposition. Mapping property of quotient groups: Let N be a normal sub-
group of G, let G = G/N, and let 7 be the canonical map G—> G defined by
m(a) = a = aN. Let ¢: G——> G’ be a homomorphism whose kernel contains N.
There is a unique homomorphism @: G—— G’ such that o7 = ¢:

¢—E2—¢

/7

This map is defined by the rule g(a) = <p(a).

Proof. To define a map ¢: G——> G, we must define B(a) for every element
a of G. To do this, we represent a by an element a € G, choosing a so that
a = 7 (a). In the bar notation, this means that « = @. Now since we want our map
@ to satisfy the relation (1 (a)) = ¢ (a), there is no choice but to define @ by the
rule B(a) = ¢(a), as asserted in the proposition. To show that this is permissible,
we must show that the value we obtained for @(a), namely ¢ (a), depends only on «
and not on our choice of the representative a. This is often referred to as showing
that our map is “well-defined.”

Let a and a’ be two elements of G such that@ = @’ = a. The equality @ = @’
means that aN = a’'N, or [Chapter 2 (5.13)] that a’ € aN. So a’ = an for some
n € N. Since N C ker ¢ by hypothesis, ¢(n) = 1. Thus ¢(a’) = ¢(a)e(n) =

¢ (a), as required.

Finally, the map @ is a homomorphism because Ha)eb) = e(@e(b) =
¢ (ab) = P(ab). o

Proof of Proposition (8.3). We showed in Chapter 5 (3.6) that Dy, is gener-
ated by elements x,y which satisfy (8.2). Therefore there 1s a surjective map
¢: F—> D, from the free group on x,y to Dy, and R = {x", y?, xyxy} is contained
in ker . Let N be the smallest normal subgroup of F containing R. Then since ker ¢
is a normal subgroup which contains R, N C ker ¢. The mapping property of quo-
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tients gives us a homomorphism @: F/N —— D,,. If we show that 3 is bijective, the
proposition will be proved.

Note that since ¢ is surjective, @ is too. Also, in F/N the relations x” = 1,
y? = 1,and Xyxy = 1 hold. Using them, we can put any word in X, y into the form
x'y/,with0 <i =n — land 0 = j < 1. This shows that /N has at most 2n ele-
ments. Since | D.| = 2n, it follows that @ is bijective, as required. o

We will use the notation

(85) <x1,~-~,x’n;r17""rk>
to denote the group generated by elements xi,...,X,, with defining relations
ri,...,rt. Thus
(8.6) Dn = (x,y; x",y%, xyxy).

As a new example, let us consider the group generated by x, y, with the single
relation xyx~'y™' = 1. If x, y are elements of a group, then
(8.7) xyx'y™!

is called their commutaror. This commutator is important because it is equal to 1 if
and only if x and y commute. This is seen by multiplying both sides of the equation
xyx~'y™' = 1 on the right by yx. So if we impose the relation xyx™'y™" = 1 on the
free group, we will obtain a group in which x and y commute. Thus if N is the
smallest normal subgroup containing the commutator xyx~'y™! and if G = F/N,
then the residues of x and y are commuting elements of G. This forces any two ele-
ments of G to commute.

(8.8) Proposition. Let F be the free group on x,y and let N be the smallest nor-
mal subgroup generated by the commutator xyx™'y™'. The quotient group G = F/N
is abelian.

Proof. Let us denote the residues of the generators x,y in G by the same let-
ters. Since the commutator is in N, the elements x,y commute in G. Then x com-
mutes with y™' too. For xy™' and y~'x both become equal to x when multiplied on the
left by y. So by the Cancellation Law, they are equal. Also, x obviously commutes
with x and with x™'. So x commutes with any word in §' = {x,x™',y,y"'}. So does
y. It follows by induction that any two words in S’ commute. Since x,y generate the
group, G is commutative. o

Note this consequence: The commutator uvu™'v™" of any two words in S’ is in
the normal subgroup generated by the single commutator xyx™'y™', because, since
u, v commute in G, the commutator represents the identity element in G.

The group G constructed above is called the free abelian group on the set
{x,y}, because the elements x,y satisfy no relations except those implied by the
group axioms and the commutative law.

In the examples we have seen, knowledge of the relations allows us to compute
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easily in the group. This is somewhat misleading, because computation with a given
set of relations is often not easy at all. For example, suppose that we change the
defining relations (8.6) for the dihedral group slightly, substituting y* for y?:

(8.9) G = (x,y; x", y>, xyxy).

This group is much more complicated. When n > 5, it is an infinite group.

Things become very difficult when the relations are complicated enough. Sup-
pose that we are given a set R of words, and let N be the smallest normal subgroup
containing R. Let w, w' be any other words. Then we can pose the problem of de-
ciding whether or not w and w' represent the same element of F/N. This is called
the word problem for groups, and it is known that there is no general procedure for
deciding it in a predictable length of time. Nevertheless, generators and relations al-
low efficient computation in many cases, and so they are a useful tool. We will dis-
cuss an important method for computation, the Todd—Coxeter Algorithm, in the
next section.

Recapitulating, when we speak of a group defined by generators S and relations
R, we mean the quotient group F/N, where F is the free group on S and N is the
smallest normal subgroup of F containing R. Note that any set R of relations will
define a group, because F/N is always defined. The larger R is, the larger N becomes
and the more collapsing takes place in the homomorphism 7: F—— F/N. If R gets
“too big,” the worst that can happen is that N = F, hence that F/N is the trivial
group. Thus there is no such thing as a contradictory set of relations. The only prob-
lems which may arise occur when F/N becomes too small, which happens when the
relations cause more collapsing than was expected.

9. THE TODD~-COXETER ALGORITHM

Let H be a subgroup of a finite group G. The Todd—Coxeter Algorithm which is de-
scribed in this section is an amazing direct method of counting the cosets of H in G
and of determining the operation of G on the set of cosets. Since we know that any
operation on an orbit looks like an operation on cosets [Chapter 5 (6.3)], the al-
gorithm is really a method of describing any group operation.

In order to compute explicitly, both the group G and the subgroup H must be
given to us in an explicit way. So we consider a group

9.1) G = (X1,..e, Xm; Fiseens Th)

presented by generators x,,..., X» and explicitly given relations r,,..., r, as in the
previous section. Thus G is realized as the quotient group F'/N, where F is the free
group on the set {xi,...,xm} and N is the smallest normal subgroup containing
{r1,..., rx}. We also assume that the subgroup H of G is given to us explicitly by a set
of words

(9.2) {hi, ..., e}

in the free group F, whose images in G generate H.
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Let us work out a specific example to begin with. We take for G the group gen-
erated by three elements x,y,z, with relations x*,y?, z? xyz, and for H the cyclic
subgroup generated by z:

(93) G = <X,y,z; x3,y2,22’xyz>’ H = {Z}

Since we will be determining the operation on cosets, which is a permutation
representation [Chapter 5 (8.1)], we must decide how to write permutations. We
will use the cycle notation of Section 6. This forces us to work with right cosets Hg
rather than with left cosets, because we want G to operate on the right. Let us denote
the set of right cosets of H in G by €. We must also decide how to describe the op-
eration of our group explicitly, and the easiest way is to go back to the free group
again, that is, to describe the permutations associated to the given generators x, y, z.

The operations of the generators on the set of cosets will satisfy these rules:

(9.4) Rules.

. The operation of each generator (x,y,z in our example) is a permutation.
. The relations (x°, y?,z?, xyz in our example) operate trivially.

. The generators of H (z in our example) fix the coset H1.

. The operation on cosets is transitive.

W N =

The first rule is a general property of group operations. It follows from the fact that
group elements are invertible. We list it instead of mentioning inverses of the gener-
ators explicitly. The second rule holds because the relations represent 1 in G, and it
is the group G which operates. Rules 3 and 4 are special properties of the operation
on cosets.

We now determine the coset representation by applying only these rules. Let us
use indices 1,2, 3,... to denote the cosets, with 1 standing for the coset H1. Since
we don’t know how many cosets there are, we don’t know how many indices we
need. We will add new ones as necessary.

First, Rule 3 tells us that z sends 1 to itself: 1z = 1. This exhausts the informa-
tion in Rule 3, so Rules 1 and 2 take over. Rule 4 will appear only implicitly.

We don’t know what x does to the index 1. Let’s guess that 1x # 1 and assign
a new index, say 1x = 2. Continuing with the generator x, we don’t know 2x, so
we assign a third index: 1x? = 2x = 3. Rule 2 now comes into play. It tells us that
x? fixes every index. Therefore 1x* = 3x = 1. It is customary to sum up this infor-
mation in a table

which exhibits the operation of x on the three indices. The relation xxx appears on
the top, and Rule 2 is reflected in the fact that the same index 1 appears at both ends.
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At this point, we have determined the operation of x on the three indices 1,2, 3, ex-
cept for one thing: We don’t yet know that these indices represent distinct cosets.

We now ask for the operation for y on the index 1. Again, we don’t know it, so
we assign a new index, say 1y = 4. Rule 2 applies again. Since y? operates trivially,
we know that 1y*> = 4y = 1:

The remaining relation is xyz. We know that 1x = 2, but we don’t yet know
2y. So we set 1xy = 2y = 5. Rule 2 then tells us that 1xyz = 5z = 1:

We now apply Rule 1: The operation of each group element is a permutation of the
indices. We have determined that 1z = 1 and also that 5z = 1. It follows that
= 1. We eliminate the index 5, replacing it by 1. This in turn tells us that 2y = 1.
On the other hand, we have already determined that 4y = 1. So 4 = 2 by Rule 1,
and we eliminate 4.
The entries in the table below have now been determined:

x x x y oy z oz x y z

2 1
1

W N =
- B
N o W
W =
W N =
W
- W~
@ -

2

The bottom right corner shows that 2z = 3. This determines the rest of the table.
There are three indices, and the operation is

x=(123),y=(12),z=(23).

Since there are three indices, we conclude that there are three cosets and that
the index of H in G is 3. We also conclude that the order of H is 2, and hence that G
has order 6. For z? = 1 is one of our relations; therefore z has order 1 or 2, and
since z does not operate trivially on the indices, z # 1. The three permutations listed
above generate the symmetric group, so the permutation representation is an isomor-
phism from G onto S;.

Of course, these conclusions depend on our knowing that the permutation rep-
resentation we have constructed is the right one. We will show this at the end of the
section. Let’s compute a few more examples first.

(9.5) Example. Consider the tetrahedral group T of the 12 rotational symmetries of
a regular tetrahedron (see Section 9 of Chapter 5). If we let y and x denote counter-
clockwise rotations by 277 /3 about a vertex and the center of a face as shown below,
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then yx = z is the rotation by 7r about an edge. Thus the relations
(9.6) ¥=1,y=1yyx =1
hold in T.

Z

Q
*G

&)
y

Let us show that (9.6) is a complete set of relations for T. To do so, we con-
sider the group G = (y, x; y°, x>, yxyx) defined by these relations. Since the rela-
tions (9.6) hold in T, the mapping property of quotient groups provides a homomor-
phism ¢: G——T. This map is surjective because, as is easily seen, y and x
generate T. We need only show that ¢ is injective. We will do this by showing that
the order of the group G is 12.

It is possible to analyze the relations directly, but they aren’t particularly easy
to work with. We could also compute the order of G by enumerating the cosets of
the trivial subgroup H = {1}. This is not efficient either. It is better to use a nontriv-
ial subgroup H of G, such as the one generated by y. This subgroup has order at
most 3 because y* = 1. If we show that its order is 3 and that its index in G is 4, it
will follow that G has order 12, and we will be done.

Here is the resulting table. To fill it in, work from both ends of the relations.

X X X y y y y X y X

W -
=W
2= w
W -
[ SIS FS
W A
F Q7 S
N AW
W oA -
S SIS
W N

Thus the permutation representation is
9.7 x=(123),y =(34).

Since there are four indices, the index of H is 4. Also, notice that y does have order
precisely 3. For since y* = 1, the order is at most 3, and since the permutation
(23 4) associated to y has order 3, it is at least 3. So the order of the group is 12, as
predicted. Incidentally, we can derive the fact that T is isomorphic to the alternating
group A4 by verifying that the permutations (9.7) generate that group. o
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(9.8) Example. We modify the relations (9.6) slightly. Let G be generated by x, y,
with relations
=1,y =1, yxy’x = 1,

and let H be the subgroup generated by y. Here is a start for a table. Since y* = 1,
we have shortened the last relation, substituting y™' for y*. Clearly, y™ acts as the
inverse of the permutation associated to y. The entries in the bottom row have been
determined by working from the right side.

x x x oy y y oy x yl'x
231‘1 1’1’123F
2 213 1 112

We rewrite the relation 2y™' = 3 as 3y = 2. Since 2y = 3 as well, it follows that
3y? = 3 and that 3y*> = 2. But y’ = 1, so 3 = 2, which in turn implies 1 = 2 = 3.
Since the generators x,y fix 1, there is one coset, and H = G. Therefore x is a
power of y. The third relation shows that x> = 1. Combining this fact with the first
relation, we find x = 1. Thus G is a cyclic group of order 3. This example illustrates
how relations may collapse the group. o

1
2

In our examples, we have taken for H the subgroup generated by one of the
chosen generators of G, but we could also make the computation with a subgroup H
generated by an arbitrary set of words. They must be entered into the computation
using Rule 3.

This method can also be used when G is infinite, provided that the index
[G:H] is finite. The procedure can not be expected to terminate if there are
infinitely many cosets.

We now address the question of why the procedure we have described does
give the operation on cosets. A formal proof of this fact is not possible without first
defining the algorithm formally, and we have not done this. So we will discuss the
question informally. We describe the procedure this way: At a given stage of the
computation, we will have some set I of indices, and the operation of some genera-
tors of the group on some indices will have been determined. Let us call this a par-
tial operation on 1. A partial operation need not be consistent with Rules 1, 2, and 3,
but it should be transitive; that is, all indices should be in the “partial orbit” of 1.
This is where Rule 4 comes in. It tells us not to introduce any indices we don’t need.

The starting position is I = {1}, with no operations assigned. At any stage
there are two possible steps:

9.9)

(i) We may equate two indices i,j € I as a consequence of one of the first three
rules, or

(ii) we may choose a generator x and an index i such that ix has not yet been deter-
mined and define ix = j, where j is a new index.
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We stop the process when an operation has been determined which is consistent with
the rules, that is, when we have a complete, consistent table and the rules hold.

There are two questions to ask: First, will this procedure terminate? Second, if
it terminates, is the operation the right one? The answer to both questions is yes. It
can be shown that the process always terminates, provided that the group is finite
and that preference is given to Step (i). We will not prove this. The more important
fact for applications is that if the process terminates, the resulting permutation repre-
sentation is the right one.

(9.10) Theorem. Suppose that a finite number of repetitions of Steps (i) and (ii)
yields a consistent table. Then the table defines a permutation representation which
is isomorphic, by suitable numbering, to the representation on cosets.

Sketch of proof. Let I* denote the final set of indices, with its operation. We
will prove the proposition by defining a bijective map ¢*: I¥* —— € from this set to
the set of cosets which is compatibie with the two operations. We define ¢* induc-
tively, by defining at each stage a map ¢: I——> € from the set of indices deter-
mined at that stage to ‘€, such that ¢ is compatible with the partial operation on I. To
start, {1}——> 6 sends 1~ww>H1. Now suppose that ¢: [—— € has been defined,
and let I' be the result of applying one of Steps (9.9) to I. In case of Step (ii), there
is no difficulty in extending ¢ to a map ¢': I——>€. We simply define
¢'(k) = ¢(k) if k # j, and ¢'(j) = ¢(i)x. Next, suppose that we use Step (ii) to
equate two indices, say i, j, so that I is collapsed to form the new index set I'. Then
the next lemma allows us to define the map ¢ ": I' — €:

(9.11) Lemma. Suppose that a map ¢: I——> € is given, compatible with a par-
tial operation on I. Let i,j € I, and suppose that one of the Rules 1, 2, or 3 forces
i = j. Then ¢ (i) = ¢(j).

Proof. This is true because, as we have already remarked, the operation on
cosets does satisfy all of the Rules (9.4). So if the rules force i = j, they also force
o) = ¢(j). o

It remains to prove that the map ¢*: I*—— € is bijective. To do this, we
construct the inverse map ¢ *: ‘€ — I*, using the following lemma:

(9.12) Lemma. Let S be a set on which G operates, and let s € S be an element
stabilized by H. There is a unique map ¢: ‘€ —— S which is compatible with the op-
erations on the two sets and which sends H1 m»ws s,

Proof. This proof repeats that of (6.4) in Chapter 5, except that we have
changed to right operations. Since g sends H~w>Hg and since we want s (Hg)=
Y (H)g, we must try to set s (Hg) = sg. This proves uniqueness of the map . To
prove existence, we first check that the rule (Hg) = sg is well-defined: If
Ha = Hb, then ba™' € H. By hypothesis, ba™' stabilizes s, so sa = sb. Finally, ¢ is
compatible with the operations of G because ¢ (Hga) = sga = (sg)a = (Hg)a. o
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Now, to prove the bijectivity of ¥*, we use the lemma to construct a map
Yr*: € —— I*. Consider the composed map ¢*i*: €——> €. It sends H1 mww>H 1.
We apply the lemma again, substituting ‘€ for S. The uniqueness assertion of the
lemma tells us that ¢ *i * is the identity map. On the other hand, since the operation
on I* is transitive and since  * is compatible with the operations, ¥ * must be sur-
jective. It follows that ¢* and ¢ * are bijective. o

The axiomatic method has many advantages over honest work.

Bertrand Russell

EXERCISES

1. The Operations of a Group on Itself

1. Does the rule g, x mw> xg™" define an operation of G on itself?

2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe
the orbits for this operation.

3. Prove the formula [G| = | Z| + Z[C/|, where the sum is over the conjugacy classes con-
taining more than one element and where Z is the center of G.

4. Prove the Fixed Point Theorem (1.12).

5. Determine the conjugacy classes in the group M of motions of the plane.

6. Rule out as many of the following as possible as Class Equations for a group of order 10:
1+1+14245, 1424245, 1+2+43+4, 1+1+242+4242.

7. Let F = [s. Determine the order of the conjugacy class of [l 2] in GLy(Fs).

8. Determine the Class Equation for each of the following groups.
(a) the quaternion group, (b) the Klein four group, (c) the dihedral group Ds,
(d) Ds, (e) Dn, (f) the group of upper triangular matrices in GL,(F,),
(g) SL, ([Fa).
9. Let G be a group of order n, and let F be any field. Prove that G is isomorphic to a sub-
group of GL,(F).
10. Determine the centralizer in GL;(R) of each matrix.
1 1 11 11
(a) 2 ) 1 © 1 @ 11
1

(e) 11 () 1
L] 1 i
*11. Determine all finite groups which contain at most three conjugacy classes.
12. Let N be a normal subgroup of a group G. Suppose that [N | = 5 and that | G| is odd.
Prove that N is contained in the center of G.
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*13.

14,

*18.

[ \]

0 NN N AW

10.

11.

*12.

(a) Determine the possible Class Equations for groups of order 8.

(b) Classify groups of order 8.

Let Z be the center of a group G. Prove that if G/Z is a cyclic group, then G is abelian

and hence G = Z.

Let G be a group of order 35.

(a) Suppose that G operates nontrivially on a set of five elements. Prove that G has a
normal subgroup of order 7.

(b) Prove that every group of order 35 is cyclic.

The Class Equation of the Icosahedral Group

. Identify the intersection / M O when the dodecahedron and cube are as in Figure (2.7).
. Two tetrahedra can be inscribed into a cube C, each one using half the vertices. Relate

this to the inclusion A, C S,.

. Does I contain a subgroup T? Ds? D3?

. Prove that the icosahedral group has no subgroup of order 30.

. Prove or disprove: As is the only proper normal subgroup of Ss.

. Prove that no group of order p¢, where p is prime and e > 1, is simple.

. Prove or disprove: An abelian group is simple if and only if it has prime order.
. (a) Determine the Class Equation for the group T of rotations of a tetrahedron.

(b) What is the center of T?
(c) Prove that T has exactly one subgroup of order 4.
(d) Prove that T has no subgroup of order 6.

. (a) Determine the Class Equation for the octahedral group O.

(b) There are exactly two proper normal subgroups of O. Find them, show that they are
normal, and show that there are no others.

Prove that the tetrahedral group T is isomorphic to the alternating group A4, and that the

octahedral group O is isomorphic to the symmetric group S,. Begin by finding sets of

four elements on which these groups operate.

Prove or disprove: The icosahedral group is not a subgroup of the group of real upper tri-

angular 2 X 2 matrices.

Prove or disprove: A nonabelian simple group can not operate nontrivially on a set con-

taining fewer than five elements.

Operations on Subsets

. Let S be the set of subsets of order 2 of the dihedral group Ds. Determine the orbits for

the action of D; on § by conjugation.

. Determine the orbits for left multiplication and for conjugation on the set of subsets of

order 3 of Ds.

. List all subgroups of the dihedral group D,, and divide them into conjugacy classes.
. Let H be a subgroup of a group G. Prove that the orbit of the left coset gH for the opera-

tion of conjugation contains the right coset Hg.

. Let U be a subset of a finite group G, and suppose that |U| and |G| have no common

factor. Is the stabilizer of | U | trivial for the operation of conjugation?

. Consider the operation of left multiplication by G on the set of its subsets. Let U be a
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10.

*11.

12.

13.

*14.

15.

*7.

subset whose orbit {gU} partitions G. Let H be the unique subset in this orbit which con-
tains 1. Prove that H is a subgroup of G and that the sets gU are its left cosets.

. Let H be a subgroup of a group G. Prove or disprove: The normalizer N (H) is a normal

subgroup of the group G.

. Let H C K C G be groups. Prove that H is normal in K if and only if K C N (H).
. Prove that the subgroup B of upper triangular matrices in GLA(R) is conjugate to the

group L of lower triangular matrices.

Let B be the subgroup of G = GLA(C) of upper triangular matrices, and let U C B be

the set of upper triangular matrices with diagonal entries 1. Prove that B = N (U) and

that B = N (B).

Let S, denote the subgroup of GL,(R) of permutation matrices. Determine the normal-

izer of S, in GL,(R).

Let S be a finite set on which a group G operates transitively, and let U be a subset of S.

Prove that the subsets gU cover S evenly, that is, that every element of S is in the same

number of sets gU.

(a) Let H be a normal subgroup of G of order 2. Prove that H is in the center of G.

(b) Let H be a normal subgroup of prime order p in a finite group G. Suppose that p is
the smallest prime dividing |G |. Prove that H is in the center Z(G).

Let H be a proper subgroup of a finite group G. Prove that the union of the conjugates of

H is not the whole group G.

Let K be a normal subgroup of order 2 of a group G, and let G = G/K. Let C be a con-

jugacy class in G. Let S be the inverse image of C in G. Prove that one of the following

two cases occurs.

(a) S = C is a single conjugacy class and |C| = 2|C|.

(b) § = C, U C; is made up of two conjugacy classes and |C;| = |C2| = |C]|.

. Calculate the double cosets Hg H of the subgroup H = {1, y} in the dihedral group D.

Show that each double coset has either two or four elements.

. Let H, K be subgroups of G, and let H' be a conjugate subgroup of H. Relate the double

cosets H'gK and HgK.

. What can you say about the order of a double coset HgK?

The Sylow Theorems

. How many elements of order 5 are contained in a group of order 20?
. Prove that no group of order pg, where p and g are prime, is simple.
. Prove that no group of order p2q, where p and g are prime, is simple.

. Prove that the set of matrices [1 Z] where a,¢ € F; and ¢ = 1,2, 4 forms a group of

the type presented in (4.9b) (and that therefore such a group exists).

. Find Sylow 2-subgroups in the following cases:

@ Do T ©O0 @)L

Find a Sylow p-subgroup of GLy(F,).

(a) Let H be a subgroup of G of prime index p. What are the possible numbers of conju-
gate subgroups of H?

(b) Suppose that p is the smallest prime integer which divides | G |. Prove that H is a nor-
mal subgroup.
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*8.

10.

*11.

*12

13.

14.
15.
16.
17.

*18

Let H be a Sylow p-su group of G, and let K = N (H). Prove or disprove: K = N(K).

. Let G be a group of order p°m. Prove that G contains a subgroup of order p” for every

integer r < e.

Let n = pm be an integer which is divisible exactly once by p, and let G be a group

of order n. Let H be a Sylow p-subgroup of G, and let S be the set of all Sylow p-

subgroups. How does § decompose into H-orbits?

(a) Compute the order of GLA(Fp).

(b) Find a Sylow p-subgroup of GL,([F,).

(¢c) Compute the number of Sylow p-subgroups.

(d) Use the Second Sylow Theorem to give another proof of the First Sylow Theorem.

. Prove that no group of order 224 is simple.

Prove that if G has order n = p®a where 1 = a < p and e = 1, then G has a proper

normal subgroup.

Prove that the only simple groups of order < 60 are groups of prime order.

Classify groups of order 33.

Classify groups of order 18.

Prove that there are at most five isomorphism classes of groups of order 20.

. Let G be a simple group of order 60.

(a) Prove that G contains six Sylow 5-subgroups, ten Sylow 3-subgroups, and five Sylow
2-subgroups.

(b) Prove that G is isomorphic to the alternating group As.

5. The Groups of Order 12

1. Determine the Class Equations of the groups of order 12.

2. Prove that a group of order n = 2p, where p is prime, is either cyclic or dihedral.
*3. Let G be a group of order 30.

6.

BN =

(a) Prove that either the Sylow S-subgroup X or the Sylow 3-subgroup H is normal.

(b) Prove that HK is a cyclic subgroup of G.

(¢) Classify groups of order 30.

. Let G be a group of order 55.

(a) Prove that G is generated by two elements x,y, with the relations x'' = 1, y° = 1,
yxy ' = x", forsomer, | =r <1l.

(b) Prove that the following values of r are not possible: 2, 6,7, 8, 10.

(¢) Prove that the remaining values are possible, and that there are two isomorphism
classes of groups of order 55.

Computation in the Symmetric Group

. Verify the products (6.9).
. Prove explicitly that the permutation (12 3)(45) is conjugate to (241)(35).
. Let p, g be permutations. Prove that the products pg and gp have cycles of equal sizes.

(a) Does the symmetric group S; contain an element of order 5? of order 10? of order
157
(b) What is the largest possible order of an element of S;?
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5.
6.

7.
*8.
. Determine the cycle decomposition of the permutation i ~w»n—i.
10.

11.
12,
13.
14.

15.
16.
17.

18.
*19.
*20.

21.

Show how to determine whether a permutation is odd or even when it is written as a
product of cycles.

Prove or disprove: The order of a permutation is the least common multiple of the orders
of the cycles which make it up.

Is the cyclic subgroup H of S, generated by the cycle (12345) a normal subgroup?
Compute the number of permutations in S, which do not leave any index fixed.

(a) Prove that every permutation p is a product of transpositions.

{(b) How many transpositions are required to write the cycle (123 -+ n)?

(c) Suppose that a permutation is written in two ways as a product of transpositions, say
p=7TTmandp = 7'n' -+ 7,". Prove that m and n are both odd or else they are
both even.

What is the centralizer of the element (12) of S,?

Find all subgroups of order 4 of the symmetric group S,. Which are normal?

Determine the Class Equation of A,.

(a) Determine the number of conjugacy classes and the Class Equation for Ss.

(b) List the conjugacy classes in As, and reconcile this list with the list of conjugacy
classes in the icosahedral group [see (2.2)].

Prove that the transpositions (12), (23),..., (n~1,n) generate the symmetric group Sy.

Prove that the symmetric group S, is generated by the cycles (12 -+ n) and (12).

(a) Show that the product of two transpositions (ij)(kl) can always be written as a
product of 3-cycles. Treat the case that some indices are equal too.

(b) Prove that the alternating group A, is generated by 3-cycles, if n = 3.

Prove that if a proper normal subgroup of S, contains a 3-cycle, it is An.

Prove that A, is simple for all n = 5.

Prove that A, is the only subgroup of S, of index 2.

Explain the miraculous coincidence at the end of the section in terms of the opposite

group (Chapter 2, Section 1, exercise 12).

7. The Free Group

1.

2.

Prove or disprove: The free group on two generators is isomorphic to the product of two

infinite cyclic groups.

(a) Let F be the free group on x,y. Prove that the two elements ¥ = x> and v = y® gen-
erate a subgroup of F which is isomorphic to the free group on u, v.

{(b) Prove that the three elements u = x2, v = y?, and z = xy generate a subgroup iso-
morphic to the free group on u, v, z.

. We may define a closed word in §' to be the oriented loop obtained by joining the ends

of a word. Thus

b ©

represents a closed word, if we read it clockwise. Establish a bijective correspondence
between reduced closed words and conjugacy classes in the free group.
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4. Let p be a prime integer. Let N be the number of words of length p in a finite set S.
Show that N is divisible by p.

8. Generators and Relations

1. Prove that two elements a, b of a group generate the same subgroup as bab?, bab®.

2. Prove that the smallest normal subgroup of a group G containing a subset S is generated
as a subgroup by the set {gsg' | g € G,s € S}.

3. Prove or disprove: y2x? is in the normal subgroup generated by xy and its conjugates.

4. Prove that the group generated by x, y, z with the single relation yxyz™? = 1 is actually a
free group.

5. Let S be a set of elements of a group G, and let {r;} be some relations which hold among
the elements S in G. Let F be the free group on S. Prove that the map F—— G (8.1)
factors through F/N, where N is the normal subgroup generated by {r:}.

6. Let G be a group with a normal subgroup N. Assume that G and G/N are both cyclic
groups. Prove that G can be generated by two elements.

7. A subgroup H of a group G is called characteristic if it is carried to itself by all automor-
phisms of G.

(a) Prove that every characteristic subgroup is normal.
(b) Prove that the center Z of a group G is a characteristic subgroup.
(c) Prove that the subgroup H generated by all elements of G of order 7 is characteristic.

8. Determine the normal subgroups and the characteristic subgroups of the quaternion
group.

9. The commutator subgroup C of a group G is the smallest subgroup containing all
commutators.

(a) Prove that the commutator subgroup is a characteristic subgroup.
(b) Prove that G/C is an abelian group.

10. Determine the commutator subgroup of the group M of motions of the plane.

11. Prove by explicit computation that the commutator x (yz)x™'(yz)™! is in the normal sub-
group generated by the two commutators xyx"'y™! and xzx 'z'! and their conjugates.

12. Let G denote the free abelian group (x, y; xyx 'y') defined in (8.8). Prove the universal
property of this group: If «, v are elements of an abelian group A, there is a unique
homomorphism ¢: G—> A such that ¢(x) = u, ¢(y) = v.

13. Prove that the normal subgroup in the free group {x, y) which is generated by the single
commutator xyx~'y! is the commutator subgroup.

14. Let N be a normal subgroup of a group G. Prove that G/N is abelian if and only if N
contains the commutator subgroup of G.

15. Let ¢: G—> G’ be a surjective group homomorphism. Let S be a subset of G such that
¢ (S) generates G, and let T be a set of generators of ker ¢. Prove that S U T generates
G.

16. Prove or disprove: Every finite group G can be presented by a finite set of generators and
a finite set of relations.

17. Let G be the group generated by x,y, z, with certain relations {r;}. Suppose that one of
the relations has the form wx, where w is a word in y, z. Let ri be the relation obtained
by substituting w™! for x into ri, and let G' be the group generated by y, z, with relations
{ri'}. Prove that G and G’ are isomorphic.
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9. The Todd-Coxeter Algorithm

1. Prove that the elements x, y of (9.5) generate T, and that the permutations (9.7) generate
A,

2. Use the Todd~Coxeter Algorithm to identify the group generated by two elements x, y,
with the following relations.
(@ x> = y> =1, xyx = yxy

(b) x2 =y’ =1, xyx = yxy

(© x*=y3=1,xyx = yxy

@) x* = yi =1, xyx = yxy
4

(& x*=y*=x%y?=1

3. Use the Todd-Coxeter Algorithm to determine the order of the group generated by x, y,
with the following relations.

@x*=1,y=1Lxy=yx (b)x"=1,y>=1, yx = x2y.

4. Identify the group G generated by elements x,y,z, with relations x* = y* = z* =
x’z2=1and z = xy.

S. Analyze the group G generated by x,y, with relations x* =1, y* =1, x? = y2,
xy = y3x.

*6. Analyze the group generated by elements x, y, with relations lyx =y Ly lxy = 70

7. Let G be the group generated by elements x, y, with relations x* = 1,y* = 1, x? = yxy.
Prove that this group is trivial in these two ways.

(a) using the Todd—Coxeter Algorithm
(b) working directly with the relations

8. Identify the group G generated by two elements x,y, with relations x
yxyxy = 1.

9. Let p = g =r be integers >1. The triangle group GP? is defined by generators
GP" = (x,y,z;x7,y9,z", xyz). In each case, prove that the triangle group is isomorphic
to the group listed.

(a) the dihedral group D,, when p,q,r = 2,2,n
(b) the tetrahedral group, when p,q,r = 2,3,3
(c) the octahedral group, when p,q,r = 2,3,4
(d) the icosahedral group, when p,gq,r = 2,3,5
10. Let A denote an isosceles right triangle, and let a, b, ¢ denote the reflections of the plane
about the three sides of A. Let x = ab, y = bc, z = ca. Prove that x, y, z generate a tri-
angle group.
11. (a) Prove that the group G generated by elements x,y,z with relations x
z® = 1, xyz = 1 has order 60.
{(b) Let H be the subgroup generated by x and zyz ', Determine the permutation repre-
sentation of G on G/H, and identify H.
(¢) Prove that G is isomorphic to the alternating group As.
(d) Let K be the subgroup of G generated by x and yxz. Determine the permutation rep-
resentation of G on G/K, and identify K.

3 3 —

=y3=

2 3

=y =

Miscellaneous Problems

1. (a) Prove that the subgroup T' of O of all symmetries of a regular tetrahedron, includ-
ing orientation-reversing symmetries, has order 24.
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(b) Is T’ isomorphic to the symmetric group S.?
(c) State and prove analogous results for the group of symmetries of a dodecahedron.
2. (a) Let U = {1, x} be a subset of order 2 of a group G. Consider the graph having one
vertex for each element of G and an edge joining the vertices g to gx for all g € G.
Prove that the vertices connected to the vertex 1 are the elements of the cyclic group
generated by x.
{(b) Do the analogous thing for the set U = {1, x, y}.
*3. (a) Suppose that a group G operates transitively on a set S, and that H is the stabilizer of
an element s, € S. Consider the action of G on §X S defined by g(s(,s2) =
(gs1, gs2). Establish a bijective correspondence between double cosets of H in G and
G-orbits in § X S.
(b) Work out the correspondence explicitly for the case that G is the dihedral group Ds
and § is the set of vertices of a 5-gon.
(c) Work it out for the case that G = T and that S is the set of edges of a tetrahedron.

*4, Assume that H C K C G are subgroups, that H is normal in K, and that X is normal in
G. Prove or disprove: A is normal in G.

*5. Prove the Bruhat decomposition, which asserts that GL,(R) is the union of the double
cosets BPB, where B is the group of upper triangular matrices and P is a permutation
matrix.

6. (a) Prove that the group generated by x,y with relations x2,y? is an infinite group in two

ways:

(i) It is clear that every word can be reduced by using these relations to the form
-+ xyxy ---. Prove that every element of G is represented by exactly one such
word.

(ii) Exhibit G as the group generated by reflections r,r’ about lines €, €’ whose
angle of intersection is not a rational multiple of 21r.
(b) Let N be any proper normal subgroup of G. Prove that G/N is a dihedral group.

7. Let H, N be subgroups of a group G, and assume that N is a normal subgroup.
(a) Determine the kernels of the restrictions of the canonical homomorphism
mr: G——> G/N to the subgroups H and HN.
(b) Apply the First Isomorphism Theorem to these restrictions to prove the
Second Isomorphism Theorem: H/(H N N) is isomorphic to (HN)/N.

8. Let H, N be normal subgroups of a group G such that H D N, and let H = H/N,
G = G/N.
(a) Prove that H is a normal subgroup of G.
(b) Use the composed homomorphism G—> G—> G/H to prove the
Third Isomorphism Theorem: G/H is isomorphic to G/H.



Chapter 7

Bilinear Forms

I presume that to the uninitiated
the formulae will appear cold and cheerless.

Benjamin Pierce

1. DEFINITION OF BILINEAR FORM

Our model for bilinear forms is the dot product
(1.1) X-v=xv=xy+ - + X

of vectors in R”, which was described in Section 5 of Chapter 4. The symbol (X - ¥)
has various properties, the most important for us being the following:

(1.2) Bilinearity. X+ =07+ XY
X-v,+1)=&71)+ X 1)
(ex-vy=c(x-v) = (X-c¥)
Symmetry: x-v)=(rx)
Positivity: x-x)>0, ifx#0.

Notice that bilinearity says this: If one variable is fixed, the resulting function of the
remaining variable is a linear transformation R"—— R.

We will study dot product and its analogues in this chapter. It is clear how to
generalize bilinearity and symmetry to a vector space over any field, while positivity
is, a priori, applicable only when the scalar field is R. We will also extend the con-
cept of positivity to complex vector spaces in Section 4.

237
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Let V be a vector space over a field F. A bilinear form on V is a function of two

variables on V, with values in the field: V X V—f—> F, satisfying the bilinear axioms,
which are

(1.3) flor + v, w) = floi,w) + flva, w)
flev,w) = ¢f(v, w)

flo,wr + wo) = flo,w) + flo, wa)
flv,ew) = ¢f (v, w)

for all v, w,v;,w; € V and all ¢ € F. Often a notation similar to dot product is
used. We will frequently use the notation

(1.4) (v, w)

to designate the value f(u, v) of the form. So (v, w) is a scalar, an element of F.
A form (,) is said to be symmetric if

(1.5) (v,w) = (w,v)
and skew-symmetric if
(1.6) (v,w) = ~(w, v),

for all v, w € V. (This is actually not the right definition of skew-symmetry if the
field F is of characteristic 2, thatis, if 1 + 1 = 0in F. We will correct the definition
in Section 8.)

If the form fis either symmetric or skew-symmetric, then linearity in the sec-
ond variable follows from linearity in the first.

The main examples of bilinear forms are the forms on the space F” of column
vectors, obtained as follows: Let A be an n X n matrix in F, and define

(1.7) X,v) = X'AY.

Note that this product is a 1 X 1 matrix, that is, a scalar, and that it is bilinear. Ordi-
nary dot product is included as the case A = I.
A matrix A is symmetric if

(1.8) A'= A, thatis, a; = a; foralli,j.

(1.9) Proposition. The form (1.7) is symmetric if and only if the matrix A is sym-
metric.

Proof. Assume that A is symmetric. Since Y'AX is a 1 X 1 matrix, it is equal to
its transpose: Y'AX = (Y'AX)' = x'A'Y = x'Ay. Thus (¥,X) = (X, v). The other im-
plication is obtained by setting X = e; and Y = ¢;. We find (e, e;)) = efAe; = ayj,
while (e;, e;) = a;i. If the form is symmetric, then a; = a;i, and so A is symmetric. o

Let (,) be a bilinear form on a vector space V, and let B = (vy,..., v,) be a ba-
sis for V. We can relate the form to a product X'AY by the matrix of the form with
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respect to the basis. By definition, this is the matrix A = (a;), where
(1.10) a; = (vi, vj).

Note that A is a symmetric matrix if and only if (,) is a symmetric form. Also, the
symmetry of the bilinear form does not depend on the basis. So if the matrix of the
form with respect to some basis is symmetric, its matrix with respect to any other
basis will be symmetric too.

The matrix A allows us to compute the value of the form on two vectors
v,w € V. Let X, Y be their coordinate vectors, as in Section 4 of Chapter 3, so that
v = BX, w = BY. Then

(v,w) = (E viXis D Y-

J
This expands using bilinearity to . xiy;(vi, v)) = 2, X;a;y; = X'AY:
iJ i

(1.11) (v, w) = X'AY.

Thus, if we identify F” with V using the basis B as in Chapter 3 (4.14), the bilinear
form (, ) corresponds to X'AY.

As in the study of linear operators, a central problem is to describe the effect
of a change of basis on such a product. For example, we would like to know what
happens to dot product when the basis of R" is changed. This will be discussed
presently. The effect of a change of basis B = B'P [Chapter 3 (4.16)] on the matrix
of the form can be determined easily from the rules X' = PX, ¥’ = Py: If A’ is the
matrix of the form with respect to a new basis B’, then by definition of A’,
(v,w) = X"A'Y" = x'P'A’PY. But we also have (v,w) = X'AY. So

(1.12) PA'P = A.

Let 0 = (P™")". Since P can be any invertible matrix, Q is also arbitrary.

(1.13) Corollary. Let A be the matrix of a bilinear form with respect to a basis.
The matrices A’ which represent the same form with respect to different bases are the
matrices A’ = QAQ', where Q is an arbitrary matrix in GL.(F). o

Let us now apply formula (1.12) to our original example of dot product on R”.
The matrix of the dot product with respect to the standard basis is the identity ma-
trix: (x - ¥Y) = X'Iv. So formula (1.12) tells us that if we change basis, the matrix of
the form changes to

(1.14) A" = (PP = (PP,

where P is the matrix of change of basis as before. If the matrix P happens to be or-
thogonal, meaning that P'P = [, then A’ = I, and dot product carries over to dot
product: (X - ¥) = (PX - PY) = (X' - Y’), as we saw in Chapter 4 (5.13). But under a
general change of basis, the formula for dot product changes to X"'A’yY’, where A" is
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as in (1.14). For example, let n = 2, and let the basis B’ be

v = [1] and v, = [(1)]
Then
1 0 1 11 O 2 1
-1 — [— —
(1.15) P [1 1] and A [0 1][1 1] [1 1].

The matrix A’ represents dot product on R?, with respect to the basis B’.

We can also turn the computation around. Suppose that we are given a bilinear
form (, ) on a real vector space V. Let us ask whether or not this form becomes dot
product when we choose a suitable basis. We start with an arbitrary basis B, so that
we have a matrix A to work with. Then the problem is to change this basis in such a
way that the new matrix is the identity, if that is possible. By formula (1.12), this
amounts to solving the matrix equation 7 = (P™')'A(P™"), or

(1.16) A = P'P.

(1.17) Corollary. The matrices A which represent a form equivalent to dot
product are the matrices A = P'P, where P is invertible. o

This corollary gives a theoretical answer to our problem of determining the bi-
linear forms equivalent to dot product, but it is not very satisfactory because we
don’t yet have a practical method of deciding which matrices can be written as a
product P'P, let alone a practical method of finding P.

We can get some conditions on the matrix A from the properties of dot product
listed in (1.2). Bilinearity imposes no condition on A, because the symbol X'AY is al-
ways bilinear. However, symmetry and positivity restrict the possibilities. The easier
property to check is symmetry: In order to represent dot product, the matrix A must
be symmetric. Positivity is also a strong restriction. In order to represent dot
product, the matrix A must have the property that

(1.18) X'Ax > 0, forallx # 0.

A real symmetric matrix having this property is called positive definite.

(1.19) Theorem. The following properties of a real n X n matrix A are equivalent:

(i) A represents dot product, with respect to some basis of R".
(ii) There is an invertible matrix P € GL,(R) such that A = P'P.
(iii) A is symmetric and positive definite.

We have seen that (i) and (ii) are equivalent [Corollary (1.17)] and that (i) implies
(iii). So it remains to prove the remaining implication, that (iii) implies (i). It will be
more convenient to restate this implication in vector space form.
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A symmetric bilinear form (, ) on a finite-dimensional real vector space V is
called positive definite if

(1.20) (v,v) >0

for every nonzero vector v € V. Thus a real symmetric matrix A is positive definite
if and only if the form (X, ¥) = X'AY it defines on R” is a positive definite form.
Also, the form (,) is positive definite if and only if its matrix A with respect to any
basis is a positive definite matrix. This is clear, because if X is the coordinate vector
of a vector v, then (v, v) = X'4x (1.11).

Two vectors v, w are called orthogonal with respect to a symmetric form if
(v,w) = 0. Orthogonality of two vectors is often denoted as

(1.21) v 1w

This definition extends the concept of orthogonality which we have already seen
when the form is dot product on R” [Chapter 4 (5.12)]. A basis B = (uy,..., vs) of V
is called an orthonormal basis with respect to the form if

(vi,v)) =0 foralli# j,and (v;,v;) =1 foralli.
It follows directly from the definition that a basis B is orthonormal if and only if the
matrix of the form with respect to B is the identity matrix.
(1.22) Theorem. Let (,) be a positive definite symmetric form on a finite-dimen-
sional vector real space V. There exists an orthonormal basis for V.

Proof. We will describe a method called the Gram—Schmidt procedure for

constructing an orthonormal basis, starting with an arbitrary basis B = (vy,..., v,).
Our first step is to normalize vy, so that (v1, v;) = 1. To do this we note that
(1.23) (cv, cv) = c?v.

Since the form is positive definite, (v;, v;) > 0. We set ¢ = (o1, v1)"%, and replace
vy by wi = co;.

Next we look for a linear combination of w; and v, which is orthogonal to w.
The required linear combination is w = v, — awi, where a = (vy, wy) : (w, w) =
(v2, W) — a{wi, w1) = (2, w;) — a = 0. We normalize this vector w to length 1.
obtaining a vector w, which we substitute for v,. The geometric interpretation of this
operation is illustrated below for the case that the form is dot product. The vector
aw is the orthogonal projection of v, onto the subspace (the line) spanned by w;.

(%
w 2




242 Bilinear Forms Chapter 7

This is the general procedure. Suppose that the & — 1 vectors wy,..., wx~1 are
orthonormal and that (wy,..., wk—1,1%,..., Us) is a basis. We adjust vy as follows: We
let a; = (v, wi) and

(1.24) W= 0p — @iW — Wy — = Q-1 We—1.
Then w is orthogonal to w; for i = 1,...,k — 1, because
w,wi) = (o, wi) — ar(wi,wy) — ax(wa,w) — -+ — ar—1(Wk—1, Wp).

Since wi,..., wk—; are orthonormal, all the terms (w;, w;), 1 < j < k — 1, are zero
except for the term (w;, w;), which is 1. So the sum reduces to

(w, wi) = (g, w) — ai{wi, wi) = (e, wi) — a; = 0.
We normalize the length of w to 1, obtaining a vector wi which we substitute for vk
as before. Then (wy,..., wy) is orthonormal. Since v is in the span of (wi,..., wk;
Vk+1,-.., Un), this set is a basis. The existence of an orthonormal basis follows by in-
duction on k. o

End of the proof of Theorem (1.19). The fact that part (iii) of Theorem (1.19) im-
plies (i) follows from Theorem (1.22). For if A is symmetric and positive definite,
then the form (X, ) = X'Ay it defines on R” is also symmetric and positive definite.
In that case, Theorem (1.22) tells us that there is a basis B’ of R” which is orthonor-
mal with respect to the form (X, ¥) = X'Ay. (But the basis will probably not be or-
thonormal with respect to the usual dot product on R”*.) Now on the one hand, the
matrix A’ of the form (X, ¥) with respect to the new basis B’ satisfies the relation
P'A'P = A (1.12), and on the other hand, since B’ is orthonormal, A’ = 7. Thus
A = P'P. This proves (ii), and since (i) and (ii) are already known to be equivalent,
it also proves (i). a

Unfortunately, there is no really simple way to show that a matrix is positive
definite. One of the most convenient criteria is the following: Denote the upper left
i X i submatrix of A by A;. Thus

ananpda;s
anan _
, A3 anandaxs |,...,An = A.

A = [au], Ay = [
ai a
az azdass

(1.25) Theorem. A real symmetric n X n matrix A is positive definite if and only
if the determinant det A; is positive for eachi = 1,...,n.

For example, the 2 X 2 matrix

_|la b
(1.26) A——[b d]

is positive definite if and only if @ > 0 and ad — bc > 0. Using this criterion, we
can check immediately that the matrix A" of (1.15) is positive definite, which agrees
with the fact that it represents dot product.

The proof of Theorem (1.25) is at the end of the next section.
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2. SYMMETRIC FORMS: ORTHOGONALITY

In this section, we consider a finite-dimensional real vector space V on which a sym-
metric bilinear form (, ) is given, but we drop the assumption made in the last sec-
tion that the form is positive definite. A form such that (v, v) takes on both positive
and negative values is called indefinite. The Lorentz form

XIAY = xX1y1 + X2y2 + X3y3 — CZX4y4

of physics is a typical example of an indefinite form on “space-time” R*. The
coefficient ¢ representing the speed of light can be normalized to 1, and then the ma-
trix of the form with respect to the given basis becomes

1

@2.1)
-1

We now pose the problem of describing all symmetric forms on a finite-dimen-
sional real vector space. The basic notion used in the study of such a form is still that
of orthogonality. But if a form is not positive definite, it may happen that a nonzero
vector v is self-orthogonal: (v, v) = 0. For example, this is true for the vector
(1,0,0, 1) € R*, when the form is defined by (2.1). So we must revise our geomet-
ric intuition. It turns out that there is no need to worry about this point. There are
enough vectors which are not self-orthogonal to serve our purposes.

(2.2) Proposition. Suppose the symmetric form (,) is not identically zero. Then
there is a vector v € V which is not self-orthogonal: (v,v) # 0.

Proof. To say that (,) is not identically zero means that there is a pair of vec-
tors v,w € V such that (v,w) # 0. Take these vectors. If (v,v) # 0, or if
(w,w) # 0, then the proposition is verified. Suppose (v,v) = (w,w) = 0. Let
u = v + w, and expand (u, u) using bilinearity:

(w,u) = (0 + w,o+w) = (v,0) + (0, w) + (w,v) + (w,w) = 0+ v, w) + 0.
Since (v, w) # 0, it follows that (u, u) # 0. o

If W is a subspace of V, then we will denote by W+ the set of all vectors v
which are orthogonal to every w € W:
(2.3) Wt={ev|{@®Ww)=0}
This is a subspace of V, called the orthogonal complement to W.
(2.4) Proposition. Let w € V be a vector such that (w, w) # 0. Let W = {cw}
be the span of w. Then V is the direct sum of W and its orthogonal complement:

V=Wwow
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Proof. According to Chapter 3 (6.4, 6.5), we have to show two things:

(@) W N W+ = 0. This is clear. The vector cw is not orthogonal to w unless

¢ = 0, because (cw,w) = c(w,w) and (w,w) # 0.

(b) W and W' span V: Every vector v € V can be written in the form

v=aw+ v’, where v’ €W To show this, we solve the -equation

(v —(aw,v;/) =0 for a: (v ~ aw,w) = (v,w) — a{w,w) = 0. The solution is
v, W

w,w)

Two more concepts which we will need are the null space of a symmetric form
and nondegenerate form. A vector v € V is called a null vector for the given form if
(v,w) = 0 forall w € V, that s, if v is orthogonal to the whole space V. The null
space of the form is the set of all null vectors

(2.5) N ={v|{o,V)=0} = V-

A symmetric form is said to be nondegenerate if the null space is {0}.

.Wesetv' = v~ aw. g

(2.6) Proposition. Let A be the matrix of a symmetric form with respect to a
basis.

(a) The null space of the form is the set of vectors v such that the coordinate vec-
tor X of v is a solution of the homogeneous equation AX = 0.

(b) The form is nondegenerate if and only if the matrix A is nonsingular.

Proof. Via the basis, the form corresponds to the product X'Ay [see (1.11)].
We might as well work with this product. If ¥ is a vector such that AY = 0, then
X'Ay = 0 for all X; hence Y is in the null space. Conversely, suppose that AY # 0.
Then AY has at least one nonzero coordinate. The ith coordinate of AY is e/AY. So
one of the products e/AY is not zero. This shows that ¥ is not a null vector, which
proves (a). Part (b) of the proposition follows from (a). o

Here is a generalized version of (2.4):
(2.7) Proposition. Let W be a subspace of V, and consider the restriction of a
symmetric form (,) to W. Suppose that this form is nondegenerate on W. Then
vV =WoOw-.
We omit the proof, which closely follows that of (2.4). o

(2.8) Definition. An orthogonal basis B = (vy,...,vs) for V, with respect to a
symmetric form (, ), is a basis such that v; 1 v; for all i # j.

Since the matrix A of a form is defined by a; = (v;, v;), the basis B is orthogo-
nal if and only if A is a diagonal matrix. Note that if the symmetric form (, ) is non-
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degenerate and the basis B = (v, ..., va) is orthogonal, then (v;, v:) # O for all i: the
diagonal entries of A are nonzero.

(2.9) Theorem. Let (,) be a symmetric form on a real vector space V.

(a) There is an orthogonal basis for V. More precisely, there exists a basis
B = (v,...,vns) such that (v;, v;)) = 0 for i # j and such that for each i, (v:, vs)
is either 1, -1, or 0.

(b) Matrix form: Let A be a real symmetric n X n matrix. There is a matrix
Q € GL.(R) such that QAQ' is a diagonal matrix each of whose diagonal en-
tries is 1, =1, or 0.

Part (b) of the theorem follows from (a), and (1.13), taking into account the fact
that any symmetric matrix A is the matrix of a symmetric form. o

We can permute an orthogonal basis B so that the indices with (vi, v:) = 1 are
the first ones, and so on. Then the matrix A of the form will be

(2.10) A = —Im ,
0z

where p is the number of +1’s, m is the number of ~1’s, and z is the number of 0’s,
so that p + m + z = n. These numbers are uniquely determined by the form or by
the matrix A:

(2.11) Theorem. Sylvester’s Law: The numbers p, m,z appearing in (2.10) are
uniquely determined by the form. In other words, they do not depend on the choice
of orthogonal basis B such that (v;, vi) = =1 or 0.

The pair of integers (p, m) is called the signature of the form.

Proof of Theorem (2.9). If the form is identically zero, then the matrix A, computed
with respect to any basis, will be the zero matrix, which is diagonal. Suppose the
form is not identically zero. Then by Proposition (2.2), there is a vector v = v, with
(v;,v,) # 0. Let W be the span of v,. By Proposition (2.4), V. = W® W™, and so a
basis for V is obtained by combining the basis (v;} of W with any basis (v2,..., vs) of
W+ [Chapter 3 (6.6)]. The form on V can be restricted to the subspace W=, and it
defines a form there. We use induction on the dimension to conclude that W+ has an
orthogonal basis (v2,...,v,). Then (v, v2,...,v,) is an orthogonal basis for V. For,
(vr,v) = 0 if i > 1 because v; € W, and (v;,v)) =0 if i,j > 1 and i # j,
because (v2,..., vn) 18 an orthogonal basis.

It remains to normalize the orthogonal basis just constructed. If (v;, vi) # 0,
we solve ¢~? = #(v;,v;) and change the basis vector v; to cv;. Then (vi, v is
changed to 1. This completes the proof of (2.9.) o
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Proof of Theorem (2.11). Let r = p + m. (This is the rank of the matrix A.) Let
(v1,...,n) be an orthogonal basis of V of the type under consideration, that is, so
that the matrix is (2.10). We will first show that the number z is determined by prov-
ing that the vectors vy41,..., v, form a basis for the null space N = V*. This will
show that z = dim N, hence that z does not depend on the choice of a basis.

A vector w € V is a null vector if and only if it is orthogonal to every ele-
ment v; of our basis. We write our vector as a linear combination of the basis: w =
cv; + -+ + cpop. Then since (vi,v) = 0 if i # j, we find (w,v)) = c;{v;, v3).
Now (vi,vi) = Oif and only if i > r. So in order for w to be orthogonal to every v,
we must have ¢; = 0 for all i =< r. This shows that (vr+1,..., vs) spans N, and, being
a linearly independent set, it is a basis for N.

The equation p + m + z = n proves that p + m is also determined. We still
have to show that one of the two remaining integers p,m is determined. This is not
quite so simple. It is not true that the span of (v;,..., v,), for instance, is uniquely
determined by the form.

Suppose a second such basis (vi’,..., v,') is given and leads to integers p’, m’
(with z' = z). We will show that the p + (n — p') vectors

14

(2.12) Dlyere, Upy Up' 41 5eeey Un

are linearly independent. Then since V has dimension n, it will follow that
p+ (n— p') =n, hence that p < p', and, interchanging the roles of p and p’,
thatp = p’'.

Let a linear relation between the vectors (2.12) be given. We may write it in
the form
(2.13) biog + =+ + bpv, = v’ + o+ crvn.
Let v denote the vector defined by either of these two expressions. We compute
(v, v) in two ways. The lefthand side gives

(v,0) = bl (vi,v1) + = + b (vp, vp) = b> + -+ + bt = 0,

while the right-hand side gives

<U;U> = Cp’+12<0p'+150p’+1> + o+ Cn2<0n’50;l> = "Cp’+12 -t CP'+'"'2 =0.
It follows that b,> + -+ + b,> = 0, hence that b, = ... = b, = 0. Once this is
known, the fact that (v/',...,vs") is a basis combines with (2.13) to imply
¢p'+1 = ... = ¢p = 0. Therefore the relation was trivial, as required. o

For dealing with indefinite forms, the notation I, . is often used to denote the
diagonal matrix

_ |
(2.14) L = [ —1,,,]‘

With this notation, the matrix representing the Lorentz form (2.1) is 5.
We will now prove Theorem (1.25)-—that a matrix A is positive definite if and
only if det A; > O for all i.



Section 3 The Geometry Associated to a Positive Form 247

Proof of Theorem (1.25). Suppose that the form X'AY is positive definite. A
change of basis in R” changes the matrix to A’ = QAQ', and

det A" = (det Q)(det A)(det ¢") = (det Q)*(det A).

Since they differ by a square factor, det A’ is positive if and only if det A is
positive. By (1.19), we can choose a matrix Q so that A’ = I, and since I has deter-
minant 1, det A > 0.

The matrix A; represents the restriction of the form to the subspace V; spanned
by (vi,..., v), and of course the form is positive definite on V;. Therefore det A; > 0
for the same reason that det A > 0.

Conversely, suppose that det A; is positive for all i. By induction on n, we may
assume the form to be positive definite on V,—,. Therefore there is a matrix

Q' € GL,-, such that Q'A,—,Q0"" = I,-,. Let @ be the matrix
o'
-7 |
Then
[~ *
0AQ' = )

We now clear out the bottom row of this matrix, except for the (n,n) entry, by ele-

mentary row operations Ei,...,En—1. Let P = E,—---E:Q. Then
0
I .
A" = pAP' = 1,
0
0 -+ 0 ¢

for some ¢. The last column has also been cleared out because A’ = PAP' is symmet-
ric. Since det A > 0, we have det A’ = (det A)(det P)* > 0 too, and this implies
that ¢ > 0. Therefore the matrix A’ represents a positive definite form. It also repre-
sents the same form as A does. So A is positive definite. o

3. THE GEOMETRY ASSOCIATED TO A POSITIVE FORM

In this section we return to look once more at a positive definite bilinear form (, ) on
an n-dimensional real vector space V. A real vector space together with such a form
is often called a Euclidean space.

It is natural to define the length of a vector v by the rule

(3.1) o] = V{v,v),

in analogy with the length of vectors in R" {Chapter 4 (5.10)]. One important con-
sequence of the fact that the form is positive definite is that we can decide whether a
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vector v is zero by computing its length:
(3.2) v=0 ifandonlyif (v,v) =0,

As was shown in Section 1, there is an orthonormal basis B = (v,,..., v,) for
V, and thereby the form corresponds to dot product on R”:

(v,w) = X%,

if v = BX and w = BY. Using this correspondence, we can transfer the geometry of
R” over to V. Whenever a problem is presented to us on a Euclidean space V, a natu-
ral procedure will be to choose a convenient orthonormal basis, thereby reducing
the problem to the familiar case of dot product on R".

When a subspace W of V is given to us, there are two operations we can make.
The first is to restrict the form (, ) to the subspace, simply by defining the value of
the form on a pair w;, w, of vectors in W to be (w;, w,). The restriction of a bilinear
form to a subspace W is a bilinear form on W, and if the form is symmetric or if it is
symmetric and positive definite, then so is the restriction.

Restriction of the form can be used to define the unoriented angle between two
vectors v, w. If the vectors are linearly dependent, the angle is zero. Otherwise,
(v, w) is a basis of a two-dimensional subspace W of V. The restriction of the form
to W is still positive definite, and therefore there is an orthonormal basis (w1, w») for
W. By means of this basis, v, w correspond to their coordinate vectors X, ¥ in R>.
This allows us to interpret geometric properties of the vectors v, w in terms of prop-
erties of X,7.

Since the basis (w;, w») is orthonormal, the form corresponds to dot product
on R*: (v, w) = x'v. Therefore

lol = [x|, |w|=]rl, and (o,w)=(x-¥).

We define the angle 0 between v and w to be the angle between X and Y, and thereby
obtain the formula

(3.3) (v,w) = |v||w| cos 8,

as a consequence of the analogous formula [Chapter 4 (5.11)] for dot product in R>.
This formula determines cos 6 in terms of the other symbols, and cos # determines 6
up to a factor of =1. Therefore the angle between v and w is determined up to sign
by the form alone. This is the best that can be done, even in R>.

Standard facts such as the Schwarz Inequality

(3.4) [(w.w)| = ov[lw]
and the Triangle Inequality
(3.5) o+ w| =|v| + |w]

can also be proved for arbitrary Euclidean spaces by restriction to a two-dimensional
subspace.
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The second operation we can make when a subspace W is given is to project V
onto W. Since the restriction of the form to W is positive definite, it is nondegener-
ate. Therefore V. = W@ W+ by (2.17), and so every v € V has a unique expression

(3.6) v=w+w', with we&W and (w,w')=0.
The orthogonal projection : V——> W is defined to be the linear transformation
(3.7 v g (p) = w

where w is as in (3.6).
The projected vector 7 (v) can be computed easily in terms of an orthonormal
basis (w,..., w,) of W. What follows is important:

(3.8) Proposition. Let (w,,...,w;) be an orthonormal basis of a subspace W, and
let v € V. The orthogonal projection 7 (v) of v onto w is the vector
m(v) = (o,wwy + -+ + (v, wwr.

Thus if 7 is defined by the above formula, then v — 7 (v) is orthogonal to W. This
formula explains the geometric meaning of the Gram—Schmidt procedure described
in Section 1.

Proof. Let us denote the right side of the above equation by w. Then (W, w;) =
(v, wi¥wi,wi) = (v,w;) for i = 1,...,r, hence v — w € W+, Since the expression
(3.6) for v is unique. w = wand w' = v — W. g

The case W = V is also important. In this case, 7 is the identity map.
(3.9) Corollary. Let B = (v1,...,vs) be an orthonormal basis for a Euclidean
space V. Then
v = (v,v1)v1 + -+ + (v, V)V,
In other words, the coordinate vector of v with respect to the orthonormal basis B is

X = ((v,v1),..., (v, v2))". ©

4. HERMITIAN FORMS

In this section we assume that our scalar field is the field C of complex numbers.
When working with complex vector spaces, it is desirable to have an analogue of the
concept of the length of a vector, and of course one can define length on C” by iden-
tifying it with R**. If X = (x;,..., x»)" is a complex vector and if x, = a, + b,i, then
the length of X is

4.1) |X| = Va?+ b2+ - + a + b = VEux + - + Tukn,

where the bar denotes complex conjugation. This formula suggests that dot product
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is “wrong” for complex vectors and that we should define a product by the formula
4.2) X, Y) =X'Yy =%y + - + Xnyn.
This product has the positivity property:

(4.3) (X, X) is a positive real number if X # 0.

Moreover, (4.2) agrees with dot product for real vectors.
The product (4.2) is called the standard hermitian product, or the hermitian
dot product. It has these properties:

(4.4)
Linearity in the second variable:
X,cv) = c(X,¥) and (X,Y1 + Y2) = (X, Y1) + (X, T2);
Conjugate linearity in the first variable:
(cx, vy = &x,Y) and (X, + X;,7) = (X1,¥) + (Xz,7);

Hermitian symmetry:

v, x) = X, ).

So we can have a positive definite product at a small cost in linearity and symmetry.

When one wants to work with notions involving length, the hermitian product
is the right one, though symmetric bilinear forms on complex vector spaces also
come up in applications.

If V is a complex vector space, a hermitian form on V is any function of two
variables

VXV— C

(4.5)

U,WM"N"<D,W>

satisfying the relations (4.4). Let B = (v,,..., Un) be a basis for V. Then the matrix
of the form is defined in the analogous way as the matrix of a bilinear form:

A = (aj), where a; = (vi,v)).
The formula for the form now becomes
(4.6) (v,w) = X'Av,

if v = Bx and w = BY.
The matrix A is not arbitrary, because hermitian symmetry implies that

ay = (vi,v;) = (v, vi) = Ty,

that is, that A = A'. Let us introduce the adjoint of a matrix A [different from the
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one defined in Chapter 1 (5.4)] as
4.7) A* = Al
It satisfies the following rules:

(A + B)* = A* + p*
(AB)* = B*A*
(49 = a7y

A¥¥ = A,

These rules are easy to check. Formula (4.6) can now be rewritten as
(4.8) (v, w) = X*AY,

and the standard hermitian product on C" becomes (X, ¥) = X*Y.
A matrix A is called hermitian or self-adjoint if
(4.9 A = A%,

and it is the hermitian matrices which are matrices of hermitian forms. Their entries
satisfy a; = @;. This implies that the diagonal entries are real and that the entries
below the diagonal are complex conjugates of those above it:

n aij
A= . , HnER, a,jEC.
aij In

2 i, iy .
For example, [—i 1] is a hermitian matrix.

Note that the condition for a real matrix to be hermitian is a; = aj:
(4.10) The real hermitian matrices are the real symmetric matrices.

The discussion of change of basis in Sections 1 and 2 has analogues for hermi-
tian forms. Given a hermitian form, a change of basis by a matrix P leads as in
(1.12) to )

X' *A'Y" = (PX)*A'PY = X*(P*A'P)Y.
Hence the new matrix A’ satisfies
(4.11) A=PA'P or A= (P¥)'aPTl.

Since P is arbitrary, we can replace it by Q = (P*)”! to obtain the description
analogous to (1.13):

(4.12) Corollary. Let A be the matrix of a hermitian form with respect to a basis.
The matrices which represent the same hermitian form with respect to different
bases are those of the form A’ = QAQ*, for some invertible matrix ¢ € GL,(C). o
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For hermitian forms, the analogues of orthogonal matrices are the unitary ma-
trices. A matrix P is called unitary if it satisfies the condition

(4.13) P¥P =] or P*=p,

1 {1 if. . .
For example, \/5[1 —i] is a unitary matrix.

Note that for a real matrix P, this condition becomes P'P = I:
(4.14) The real unitary matrices are the real orthogonal matrices.

The unitary matrices form a group, the unitary group U,:
(4.15) U. = {P | P*P = I}.

Formula (4.11) tells us that unitary matrices represent changes of basis which leave
the standard hermitian product X*y invariant:

(4.16) Corollary. A change of basis preserves the standard hermitian product,
that is, x*y = x'*Y’, if and only if its matrix P is unitary. o

But Corollary (4.12) tells us that a general change of basis changes the stan-
dard hermitian product X*Y to X'*A’Y’, where A’ = QQ*, and Q0 € GL,(C).

The notion of orthogonality for hermitian forms is defined exactly as for sym-
metric bilinear forms: v is called orthogonal to w if {(v,w) = 0. Since (v, w) =
(w, v), orthogonality is still a symmetric relation. We can now copy the discussion
of Sections 1 and 2 for hermitian forms without essential change, and Sylvester’s
Law (2.11) for real symmetric forms carries over to the hermitian case. In particu-
lar, we can speak of positive definite forms, those having the property that

4.17) (v,v) is a positive real number if v # 0,
and of orthonormal bases B = (vy,..., v,), those such that

(4.18) (vi,vi) =1 and (vi,v;) =0 if i # j.

(4.19) Theorem. Let (,) be a hermitian form on a complex vector space V. There
is an orthonormal basis for V if and only if the form is positive definite.

(4.20) Proposition. Let W be a subspace of a hermitian space V. If the restriction
of the form to W is nondegenerate, then V = WO W+

The proofs of these facts are left as exercises. o
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5. THE SPECTRAL THEOREM

In this section we will study an n-dimensional complex vector space V and a positive
definite hermitian form (,) on V. A complex vector space on which a positive
definite hermitian form is given is often called a hermitian space. You can imagine
that V is C", with its standard hermitian product X*Y, if you want to. The choice of
an orthonormal basis in V will allow such an identification.

Since the form (, ) is given, we will not want to choose an arbitrary basis for V
in order to make computations. It is natural to work exclusively with orthonormal
bases. This changes all previous calculations in the following way: It will no longer
be true that the matrix P of a change of basis is an arbitrary invertible matrix.
Rather, if B = (vy,...,vn), B' = (v/',..., v} are two orthonormal bases, then the
matrix P relating them will be unitary. The fact that the bases are orthonormal means
that the matrix of the form (,) with respect to each basis is the identity /, and so
(4.11) reads 1 = P*IP, or P*P = |.

We are going to study a linear operator

(5.1) TInV—sV

on our space. Let B be an orthonormal basis, and let M be the associated matrix of 7.
A change of orthonormal basis changes M to M’ = PMP™! [Chapter 4 (3.4)] where P
is unitary; hence

(5.2) M' = PMP*.

(5.3) Proposition. Let T be a linear operator on a hermitian space V, and let M be
the matrix of T with respect to an orthonormal basis B.

(a) The matrix M is hermitian if and only if (v, Tw) = (Tv,w) for all v,w € V.
If so, T is called a hermitian operator.

(b) The matrix M is unitary if and only if (v, w) = (Tv, Tw) for all v,w € V.
If so, T is called a unitary operator.

Proof. Let X,Y be the coordinate vectors of v, w: v = BX, w = BY, so that
(v,w) = x*Y and Tv = BMX. Then (v, Tw) = Xx*My, and (Tv,w) = x*M*Y. So if
M = M*, then (v, Tw) = (Tv,w) for all v,w; that is, T is hermitian. Conversely, if
T is hermitian, we set v = ¢;, w = ¢; as in the proof of (1.9) to obtain
by = e*(Me;) = (e*M*)e; = bj. Thus M = M*. Similarly, (v,w) = X*v and
(Tv,Tw) = X*M*MY, so {v,w) = (Tv, Tw) for all v, w if and only if M*M = I. o

(5.4) Theorem. Spectral Theorem:

(a) Let T be a hermitian operator on a hermitian vector space V. There is an or-
thonormal basis of V consisting of eigenvectors of T.

(b) Matrix form: Let M be a hermitian matrix. There is a unitary matrix P such that
PMP* is a real diagonal matrix.
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Proof. Choose an eigenvector v = v,, and normalize so that its length is 1:
(v,v) = 1. Extend to an orthonormal basis. Then the matrix of T becomes

«
*
*

Since T is hermitian, so is the matrix M (5.3). This implies that * «-- * = 0--- 0 and
that N is hermitian. Proceed by induction. o

To diagonalize a hermitian matrix M by a unitary P, one can proceed by deter-
mining the eigenvectors. If the eigenvalues are distinct, the corresponding eigenvec-
tors will be orthogonal. This follows from the Spectral Theorem. Let B’ be the
orthonormal basis obtained by normalizing the lengths of the eigenvectors to 1.
Then P = [B']™! [Chapter 3 (4.20)].

For example, let

2 i]
M= ] .

The eigenvalues of this matrix are 3, 1, and the vectors

1 = s U2 = .
-] i

are eigenvectors with these eigenvalues. We normalize their lengths to 1 by the fac-

1
tor —=. Then
V2

- T e ]

But the Spectral Theorem asserts that a hermitian matrix can be diagonalized
even if its eigenvalues aren’t distinct. This statement becomes particularly simple for
2 X 2 matrices: If the characteristic polynomial of a 2 X 2 hermitian matrix M has a
double root, then there is a unitary matrix P such that PMP* = a/. Bringing the P’s
over to the other side of the equation, we obtain M = P*aIP = aP*P = al. So it
follows from the Spectral Theorem that M = al. The only 2 X 2 hermitian matrices
whose characteristic polynomials have a double root are the matrices a/, where a is
a real number. We can verify this fact directly from the definition. We write

M= % 5 , where g, d are real and B is complex. Then the characteristic polyno-
mial is > — (a + d)t + (ad — BB). This polynomial has a double root if and only
if its discriminant vanishes, that is, if

(a+ dy* — 4ad — BB) = (a — d)* + 488 = 0.
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Both of the terms (a — d)* and BB are nonnegative real numbers. So if the discrimi-
nant vanishes, then a = d and 8 = 0. In this case, M = aJ, as predicted.

Here is an interesting consequence of the Spectral Theorem for which we can
give a direct proof:

(5.5) Proposition. The eigenvalues of a hermitian operator T are real numbers.

Proof. Let a be an eigenvalue, and let v be an eigenvector for T such that
T (v) = av. Then by (5.3) (Tv,v) = (v, Tv); hence {(av, v) = (v, av). By conjugate
linearity (4.4),

&(v,v) = {av,v) = (v,av) = a(v,v),
and (v, v) # 0 because the form (, ) is positive definite. Hence a = @. This shows

that a is real. o

The results we have proved for hermitian matrices have analogues for real
symmetric matrices. Let V be a real vector space with a positive definite bilinear
form {, ). Let T be a linear operator on V.

(5.6) Proposition. Let M be the matrix of T with respect to an orthonormal basis.

(a) The matrix M is symmetric if and only if (v, Tw) = (Tv,w) for all v,w € V.
If so, T is called a symmetric operator.
(b) The matrix M is orthogonal if and only if (v, w) = (Tv, Tw) for all v,w € V.
If so, T is called an orthogonal operator. o
(5.7) Proposition. The eigenvalues of a real symmetric matrix are real.

Proof. A real symmetric matrix is hermitian. So this is a special case of (5.5). o

(5.8) Theorem. Spectral Theorem (real case):

(a) Let T be a symmetric operator on a real vector space V with a positive definite
bilinear form. There is an orthonormal basis of eigenvectors of T.

(b) Matrix form: Let M be a real symmetric n X n matrix. There is an orthogonal
matrix P € Ox(R) such that PMP' is diagonal.

Proof. Now that we know that the eigenvalues of such an operator are real, we
can copy the proof of (5.4). o

6. CONICS AND QUADRICS

A conic is the locus in the plane R? defined by a quadratic equation in two variables,
of the form

(61) f(x1’x2) = a11x12+2012x1x2+022x22 + bix+byxs + ¢ = 0.
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More precisely, the locus (6.1) is a conic, meaning an ellipse, a hyperbola, or a
parabola, or else it is called degenerate. A degenerate conic can be a pair of lines, a
single line, a point, or empty, depending on the particular equation. The term
quadric is used to designate the analogous loci in three or more dimensions.

The quadratic part of f(x;, x2) is called a quadratic form:

(6.2) q(x1,x2) = anx® + 2apxx + anx)’.

In general, a quadratic form in n variables xi,..., x, is a polynomial each of whose
terms has degree 2 in the variables.

It is convenient to express the form g (x;, x,) in matrix notation. To do this, we
introduce the symmetric matrix

anan
6.3 A= .
( ) |:6112(122:|

Then g(x:, x2) = X'AX, where X denotes the column vector (x;, x2)'. We also intro-
duce the row vector B = (b1, b2). Then equation (6.1) can be written in matrix nota-
tion as

(6.4 XAX + Bx+ c=0.

We put the coefficient 2 into formulas (6.1) and (6.2) in order to avoid some
coefficients 3 in the matrix (6.3). An alternative way to write the quadratic form
would be

q(x1,x2) = anxi®> + apxixz + anxx + anx’.

We propose to describe the congruence classes of conics as geometric figures
or, what is the same, their orbits under the action of the group M of rigid motions of
the plane. A rigid motion will produce a change of variable in equation (6.1).

(6.5) Theorem. Every nondegenerate conic is congruent to one of the following:

(i) Ellipse: anx® + apx? —1=0,
(ll) Hyperbola.' a11x12 - 022X22 - 1= 0,
(Hl) Parabola.' a11x12 - X2 = 0, Where a;, dx > 0.

Proof. We simplify equation (6.1) in two steps, first applying an orthogonal
transformation (a rotation or reflection) to diagonalize A and then applying a transla-
tion to eliminate, as much as possible, the linear and constant terms BX + c.

By the Spectral Theorem (5.8), there is an orthogonal matrix P such that PAP'
is diagonal. We make the change of variable X’ = PX, or X = P'X’. Substitution into
equation (6.4) yields

(6.6) X'(PAPYX' + (BPY)X' + ¢ = 0.

Hence there is an orthogonal change of variable such that the quadratic form be-
comes diagonal, that is, the coefficient a,» of x1x, is zero.
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Suppose that A is diagonal. Then f has the form
fx, x2) = anxi*+anx? + bixi+bx, + ¢ = 0.
We eliminate b; by completing the squares, making the substitution
bi
6.7) X = (x,—’ —5‘;).
This substitution results in
(6.8) flx,x) = anx? + anx’* + ¢/,

where ¢’ is a number which can be determined if desired. This substitution corre-
sponds to translation by the vector (b, /2ay;, b>/2a2)", and we can make it provided
a1, ar are not zero.

If ai; = 0 but b; # 0, then we can use the substitution

(6.9) Xi = x,-’ - C/b,‘

to eliminate the constant term instead. We may normalize one coefficient to —1. Do-
ing so and eliminating degenerate conics leaves us with the three cases listed in the
theorem. It is not difficult to show that a change of the coefficients a1, az results in
a different congruence class, except for the interchange of ai1, a2; in the equation of
an ellipse. o

The method used above can be applied in any number of variables to classify
quadrics in n dimensions. The general quadratic equation has the form

(6.10) [, x) = Za,-,-x,-2 + > 2a;xx; + > bixi + ¢ = 0.

i<j i

We could also write this equation more compactly as
(6.11) fx,.., x) = Zainin+ Zb,-x,-+ c=0,
i,j i

where the first sum is over all pairs of indices, and where we set a;; = aj;.
We define the matrices A,B to be

anaiz . Qim
az

A= * M 3 B = (b],...,bn).
Aim e Amm

Then the quadratic form is

(6.12) q(x1,..., xn) = X'AX,

and

(6.13) f(x,..., xs) = X'AX + BX + c.
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By a suitable orthogonal transformation P, the quadric is carried to (6.6), where
PAP! is diagonal. When A is diagonal, linear terms are eliminated by the translation
(6.7), or else (6.9) is used.

Here is the classification in three variables:

(6.14) Theorem. The congruence classes of nondegenerate quadrics in R* are rep-
resented by

(i) Ellipsoids: anx*tanx’+anxi—1 =0,
(i1) I-sheeted hyperboloids: a)x*+ anx*—anx*—1 = 0,
(iii) 2-sheeted hyperboloids: anx,>—anx,’—anx*—1 = 0,
(iv) Elliptic paraboloids: anxi’tanx’—x = 0,

(v) Hyperbolic paraboloids: anx’—anx’—x; = 0,

where a1, ax»,an > 0.0

If a quadratic equation f(x;, x,) = 0 is given, we can determine the type of
conic it represents most easily by allowing nonorthogonal changes of coordinates.
For example, if the associated quadratic form ¢ is positive definite, then the conic is
either an ellipse, or else it is degenerate (a single point or empty). To distinguish
these cases, arbitrary changes of coordinates are permissible. A nonorthogonal co-
ordinate change will distort the conic, but it will not change an ellipse into a hyper-
bola or a degenerate conic.

As an example, consider the locus

(615) x12+x1x2+x22 + 4X1+3X2 + 4 = (.

The associated matrix is

which is positive definite by (1.25). We diagonalize A by the nonorthogonal substitu-
tion X' = PX, where

1 4 1
P = it PAP' = ,|, BP'=(4,1),
3

0 30?4+ 4t +4=0.

to obtain

Completing the square yields
x]/rz + %xzuz _ ;_ — 0’

an ellipse. Thus (6.15) represents an ellipse too. On the other hand, if we change the
constant term of (6.15) to 5, the locus becomes empty.
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7. THE SPECTRAL THEOREM FOR NORMAL OPERATORS

The Spectral Theorem (5.4) tells us that any hermitian matrix M can be transformed
into a real diagonal matrix D by a unitary matrix P: D = PMP*. We now ask for the
matrices M which can be transformed in the same way to a diagonal matrix D, but
where we no longer require D to be real. It turns out that there is an elegant formal
characterization of such matrices.

(7.1) Definition. A matrix M is called normal if it commutes with its adjoint, that
is, if MM* = M*M.

(7.2) Lemma. If M is normal and P is unitary, then M’ = PMP* is also normal,
and conversely.

Proof. Assume that M is normal. Then M'M'* = PMP*(PMP*)* = PMM*P* =
PM*MP* = (PMP*)*(PMP*) = M'*M’. So PMP* is normal. The converse follows by
replacing P by P*. o

This lemma allows us to define a normal operator T: V—— V on a hermitian
space V to be a linear operator whose matrix M with respect to any orthonormal basis
is a normal matrix.

(7.3) Theorem. A complex matrix M is normal if and only if there is a unitary
matrix P such that PMP* is diagonal. o

The most important normal matrices, aside from hermitian ones, are unitary
matrices: Since M* = M~! if M is unitary, MM* = M*M = I, which shows that M is
normal.

(7.4) Corollary. Every conjugacy class in the unitary group contains a diagonal
matrix. o

Proof of Theorem (7.3). First, any two diagonal matrices commute, so a diag-
onal matrix is normal: DD* = D*D. The lemma tells us that M is normal if
pmp* = D. Conversely, suppose that M is normal. Choose an eigenvector v = v; of
M, and normalize so that {(v,v) = 1, as in the proof of (5.4). Extend {v,} to an or-
thonormal basis. Then M will be changed to a matrix

apap * c cdin an 0 -+ 0
0 an

M, = PMP* = . N s and M]* = pM*p* = . N¥
0 QAin

The upper left entry of M*M, is aian, while the same entry of M\M* is
anan+apapt - +amas. Since M is normal, so is M, thatis, M *M* = M M *. It
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follows that apan+ -+ +ai,a, = 0. Since a,;a,; = 0, this shows that the entries a;
with j > 1 are zero and that

an 0O --- 0

0
M, =

We continue, working on N. o

8. SKEW-SYMMETRIC FORMS

The theory of skew-symmetric forms is independent of the field of scalars. One
might expect trouble with fields of characteristic 2, in which 1 + 1 = 0. They look
peculiar because a = —a for all a, so the conditions for symmetry (1.5) and for
skew symmetry (1.6) are the same. It turns out that fields of characteristic 2 don’t
cause trouble with skew-symmetric forms, if the definition of skew symmetry is
changed to handle them. The definition which works for all fields is this:

(8.1) Definition. A bilinear form (,) on a vector space V is skew-symmetric if

(v,v) =0
forall v € V.
The rule
(8.2) (o,w) = —(w,v)

for all v, w € V continues to hold with this definition. It is proved by expanding
(0 + w0+ w)=(v,0) + (o,w) + (w,0) + (w,w),

and by using the fact that (v, v) = (w,w) = (v + w,v + w) = 0. If the character-
istic of the field of scalars is not 2, then (8.1) and (8.2) are equivalent. For if (8.2)
holds for all v, w, then setting w = v we find (v,v) = —(v,v). This implies that
2{v,v) = 0, hence that {v,v) = 0 unless 2 = 0 in the field.

Note that if F has characteristic 2, then 1 = —1 in F, so (8.2) shows that the
form is actually symmetric. But most symmetric forms don’t satisfy (8.1).

The matrix A of a skew-symmetric form with respect to an arbitrary basis is
characterized by the properties

(8.3) ai =0 and ai; = —aji, ifi # _]

We take these properties as the definition of a skew-symmetric matrix. If the charac-
teristic is not 2, then this is equivalent with the condition

(8.4) Al = A,
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(8.5) Theorem.

(a) Let V be a vector space of dimension m over a field F, and let (, ) be a nonde-
generate skew-symmetric form on V. Then m is an even integer, and there is a
basis B of V such that the matrix A of the form with respect to that basis is

; :[0 1]
2n _109

where 0,7 denote the n X n matrices and n = {m.

(b) Matrix form: Let A be a nonsingular skew-symmetric m X m matrix. Then m is
even, and there is a matrix @ € GL,(F) such that QAQ' is the matrix J,,.

A basis B as in (8.6a) is called a standard symplectic basis. Note that rearrang-
ing the standard symplectic basis in the order (v;, On+1, U2, Un+2,..., Un, U2n) changes
the matrix J,, into a matrix made up of 2 X 2 blocks

o

-1 0

along the diagonal. This is the form which is most convenient for proving the theo-
rem. We leave the proof as an exercise. o

9. SUMMARY OF RESULTS, IN MATRIX NOTATION

Real numbers: A square matrix A is symmetric if A' = A and orthogonal if
A= AT

(1) Spectral Theorem: If A is a real symmetric matrix, there is an orthogonal ma-
trix P such that PAP'(= PAP™") is diagonal.

(2) If A is a real symmetric matrix, there is a real invertible matrix P such that

IP
PAP' = —Im
0,
for some integers p, m, z.
(3) Sylvester’s Law: The numbers p, m, z are determined by the matrix A.

Complex numbers: A complex square matrix A is hermitian if A* = A, uni-
tary if A* = A7, and normal if AA* = A*A.

(1) Spectral Theorem: If A is a hermitian matrix, there is a unitary matrix P such
that PAP* is a real diagonal matrix.

(2) If A is a normal matrix, there is a unitary matrix P such that PAP* is diagonal.
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F arbitrary: A square n X n matrix is skew-symmetric if a; = 0 and a; =
—aj for all i, j. If A is an invertible skew-symmetric matrix, then »n is even, and there
is an invertible matrix P so that PAP" has the form

0 1]
-1 0f
(9.1) Note. The rule A" = (") 'A(P™") for change of basis in a bilinear form (see

(1.12)) is rather ugly because of the way the matrix P of change of coordinates is
defined. It is possible to rearrange equations (4.17) of Chapter 3, by writing

9.2) o' = 2 gyv; or B’ = QB
J

This results in @ = (P™")!, and with this rule we obtain the nicer formula
A" = QAQ,

to replace (1.12). We can use it if we want to.

The problem with formula (9.2) is that change of basis on a linear transforma-
tion gets messed up; namely the formula A’ = PAP™' [Chapter 4 (3.4)] is replaced
by A" = (07")'AQ". Trying to keep the formulas neat is like trying to smooth a bump
in a rug.

This brings up an important point. Linear operators on V and bilinear forms on
V are each given by an n X n matrix A, once a basis has been chosen. One is tempted
to think that the theories of linear operators and of bilinear forms are somehow
equivalent, but they are not, unless a basis is fixed. For under a change of basis the
matrix of a bilinear form changes to (P")"'AP™' (1.12), while the matrix of a linear
operator changes to PAP™' [Chapter 4 (3.4)]. So the new matrices are no longer
equal. To be precise, this shows that the theories diverge when the basis is changed,
unless the matrix P of change of basis happens to be orthogonal. If P is orthogonal,
then P = (P")"', and we are all right. The matrices remain equal. This is one benefit

of working with orthonormal bases.

Yvonne Verdier

b))
M

S

EXERCISES
1. Definition of Bilinear Form

1. Let 4 and B be real n X n matrices. Prove that if X'Ay = X'By for all vectors X, Y in R",
then A = B.
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. Prove directly that the bilinear form represented by the matrix [z Z] is positive

definite if and only if @ > 0 and ad — b? > 0.

. Apply the Gram—Schmidt procedure to the basis (1, 1,0), (1,0, 1)}, (0, 1, 1)}, when the

form is dot product.

4. LetA = [f ;J Find an orthonormal basis for R? with respect to the form X'AY.
5. (a) Prove that every real square matrix is the sum of a symmetric matrix and a skew-

*7.

symmetric matrix (4' = —A) in exactly one way.
{(b) Let {,) be a bilinear form on a real vector space V. Show that there is a symmetric
form (,) and a skew-symmetric form [, ]so that (,) = (,) + [, ]

. Let (,) be a symmetric bilinear form on a vector space V over a field . The function g:

V——F defined by ¢(v) = (v, v) is called the quadratic form associated to the bilinear
form. Show how to recover the bilinear form from g, if the characteristic of the field F is
not 2, by expanding g(v + w).

Let X, ¥ be vectors in C", and assume that X # 0. Prove that there is a symmetric matrix
B such that BX = v.

2. Symmetric Forms: Orthogonality

1.

Prove that a positive definite form is nondegenerate.

2. A matrix A is called positive semidefinite if X'ax = 0 for all X € R". Prove that A'A is

10.

positive semidefinite for any m X n real matrix A.

Find an orthogonal basis for the form on R” whose matrix is as follows.
11 1 01
(a) [1 1] Mb)y|o 2 1
1 11

. Extend the vector X; = (1, 1, 1)!/V3 to an orthonormal basis for R®.
*8,

Prove that if the columns of an n X n matrix A form an orthonormal basis, then the rows
do too.

. Let A,A" be symmetric matrices related by A = P'A’P, where P € GLx(F). Is it true that

the ranks of A and of A’ are equal?

. Let A be the matrix of a symmetric bilinear form (, ) with respect to some basis. Prove or

disprove: The eigenvalues of A are independent of the basis.

. Prove that the only real matrix which is orthogonal, symmetric, and positive definite is

the identity.

. The vector space P of all real polynomials of degree =< n has a bilinear form. defined by

og) = j g .

Find an orthonormal basis for P when n has the following values. (@) 1 (b) 2 (¢) 3

Let V denote the vector space of real n X n matrices. Prove that (4, B) = trace(A'B) is a
positive definite bilinear form on V. Find an orthonormal basis for this form.
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11. A symmetric matrix 4 is called negative definite if Xx'Ax < 0 for all X # 0. Give a crite-
rion analogous to (1.26) for a symmetric matrix A to be negative definite.

12. Prove that every symmetric nonsingular complex matrix A has the form A = P'P.
13. In the notation of (2.12), show by example that the span of (v1,..., vp) is not determined
by the form.
14. (a) Let W be a subspace of a vector space V on which a symmetric bilinear form is given.
Prove that W+ is a subspace.
(b) Prove that the null space N is a subspace.
15, Let W,,W; be subspaces of a vector space V with a symmetric bilinear form. Prove each
of the following.
(@) W, + W)t = WX N Wyt (b) W C Wt (¢) TW, C W, then Wit D Wyt
16. Prove Proposition (2.7), that V = W@ W+ if the form is nondegenerate on W.
17. Let V = R?*? be the vector space of real 2 X 2 matrices.
(a) Determine the matrix of the bilinear form (4, B) = trace(4B) on V with respect to the
standard basis {e;}.
(b) Determine the signature of this form.
(¢) Find an orthogonal basis for this form.
(d) Determine the signature of the form on the subspace of V of matrices with trace
Zero.
*18. Determine the signature of the form (4, B) = trace AB on the space R™*” of real n X n
matrices.
19. Let V = R be the space of 2 X 2 matrices.
(a) Show that the form (4, B) defined by (4,B) = det(4 + B) — det A — det B is sym-
metric and bilinear.
(b) Compute the matrix of this form with respect to the standard basis {e;;}, and deter-
mine the signature of the form.
(¢) Do the same for the subspace of matrices of trace zero.
20. Do exercise 19 for R**?, replacing the quadratic form det A by the coefficient of ¢ in the
characteristic polynomial of A.
21. Decide what the analogue of Sylvester’s Law for symmetric forms over complex vector
spaces is, and prove it.
22, Using the method of proof of Theorem (2.9), find necessary and sufficient conditions on
a field F so that every finite-dimensional vector space V over F with a symmetric bilinear
form (,) has an orthogonal basis.

23. LetF = [, and let 4 = [l 1].

(a) Prove that the bilinear form X'y on F? can not be diagonalized.
{(b) Determine the orbits for the action P, Amw PAP' of GL,(F) on the space of 2 X 2
matrices with coefficients in F.

3. The Geometry Associated to a Positive Form

1. Let V be a Euclidean space. Prove the Schwarz Inequality and the Triangle Inequality.
2. Let W be a subspace of a Euclidean space V. Prove that W = W+*.

3. Let V be a Euclidean space. Show that if |o| = | w|, then (v + w) L (v — w). Interpret
this formula geometrically.
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4.

5.
6.

*7.

*8.

*9,

10.

11.

Prove the parallelogram law |o + w|> + |o — w|* = 2|o> + 2| w|? in a Euclidean

space.

Prove that the orthogonal projection (3.7) is a linear transformation.

Find the matrix of the projection r: R*—— R? such that the image of the standard bases

of R? forms an equilateral triangle and 7 (e;) points in the direction of the x-axis.

Let W be a two-dimensional subspace of R?, and consider the orthogonal projection 7 of

R? onto W. Let (a;, b;)' be the coordinate vector of w (e;), with respect to a chosen or-

thonormal basis of W. Prove that (ai, a2, a3) and (by, by, b3) are orthogonal unit vectors.

Let w € R" be a vector of length 1.

(a) Prove that the matrix P = I — 2ww! is orthogonal.

{(b) Prove that multiplication by P is a reflection through the space W orthogonal to w,
that is, prove that if we write an arbitrary vector v in the form v = cw + w', where
w' € W', then Po = —cw + w'.

(c) Let X, Y be arbitrary vectors in R" with the same length. Determine a vector w such
that PX = v.

Use exercise 8 to prove that every orthogonal n X n matrix is a product of at most n

reflections.

Let A be a real symmetric matrix, and let 7 be the linear operator on R” whose matrix

is A.

(a) Prove that (ker T) L (im T) and that V = (ker T)® (im 7).

(b) Prove that T is an orthogonal projection onto im T if and only if, in addition to being
symmetric, A2 = A.

Let A be symmetric and positive definite. Prove that the maximal matrix entries are on

the diagonal.

4. Hermitian Forms

®

10
11

12.

. Verify rules (4.4).

Show that the dot product form (X - ¥) = X'¥ is not positive definite on C”.

. Prove that a matrix A is hermitian if and only if the associated form X*AX is a hermitian

form.
Prove that if X*AX is real for all complex vectors X, then A is hermitian.

. Prove that the n X n hermitian matrices form a real vector space, and find a basis for that

space.
Let V be a two-dimensional hermitian space. Let (v, v;) be an orthonormal basis for V.
Describe all orthonormal bases (v, v,’) with v; = v,’.

Let X, ¥ € C" be orthogonal vectors. Prove that |x + Y| = |2 + | v |2

Is x,v) = xiy1 + ix1y2 — ixoy1 + ixay, on C? a hermitian form?

Let A, B be positive definite hermitian matrices. Determine which of the following ma-
trices are positive definite hermitian: A%, A™!, 4B, A + B.

Prove that 